Please use this identifier to cite or link to this item:
https://thuvienso.bvu.edu.vn/handle/TVDHBRVT/19077
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hoàng, Ngọc Thanh | - |
dc.contributor.author | Trần, Văn Lăng | - |
dc.contributor.author | Hoàng, Tùng | - |
dc.date.accessioned | 2018-08-07T08:12:12Z | - |
dc.date.accessioned | 2018-08-07T08:12:16Z | - |
dc.date.available | 2018-08-07T08:12:12Z | - |
dc.date.available | 2018-08-07T08:12:16Z | - |
dc.date.issued | 2016 | - |
dc.identifier.issn | 9786049134722 | - |
dc.identifier.uri | http://thuvienso.bvu.edu.vn/handle/TVDHBRVT/19077 | - |
dc.description | 7 tr | vi |
dc.description.abstract | Chức năng chính của hệ thống phát hiện xâm nhập mạng (Intrusion Detection System: IDS) là để bảo vệ hệ thống, phân tích và dự báo hành vi truy cập mạng của người sử dụng. Những hành vi này được xem xét là bình thường hoặc một cuộc tấn công. Các IDS ngoài việc xác định một hành vi là bình thường hoặc một cuộc tấn công dựa trên các mẫu đã lưu trữ, còn có khả năng học để nhận dạng các cuộc tấn công mới. Với mỗi kiểu tấn công cụ thể là DoS, Probe, R2L hoặc U2R, tập dữ liệu mẫu có các tính chất đặc thù. Bài viết này đề cập đến việc tìm kiếm kỹ thuật máy học tối ưu phù hợp với mỗi kiểu tấn công dựa trên các thuật toán máy học đã biết như: cây quyết định, K láng giềng gần nhất, máy vectơ hỗ trợ (SVM), mạng nơron nhân tạo,... Từ đó, xây dựng một bộ phận lớp lai đa tầng trên cơ sở sử dụng các kỹ thuật máy học tối ưu phù hợp với mỗi kiểu tấn công ở mỗi tầng. Kết quả thí nghiệm trên tập dữ liệu KDD99 sử dụng đánh giá chéo 5-fold cho thấy, bộ phân lớp lai đa tầng kết hợp các kỹ thuật máy học: cây quyết định, mạng nơron nhân tạo và SVM có độ chính xác dự báo cao nhất: 99.83% khi phân lớp các truy cập bình thường và 99.58% khi phân lớp các kiểu tấn công. | vi |
dc.language.iso | vi | vi |
dc.publisher | Khoa học tự nhiên và Công nghệ | vi |
dc.relation.ispartofseries | Kỷ yếu hội nghị Khoa học Quốc gia lần thứ IX;tr. 520-508 | - |
dc.subject | Máy học | vi |
dc.subject | An ninh mạng | vi |
dc.title | Một tiếp cận máy học đế phân lớp các kiều tấn công trong hệ thống phát hiện xâm nhập mạng | vi |
dc.type | Article | vi |
Appears in Collections: | Kỷ yếu - Hội thảo Kỷ yếu - Hội thảo |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Hoang-Ngoc-Thanh-1.pdf | 489,96 kB | Adobe PDF | Sign in to read |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.