
Preface, Contents

Product Overview 1

Getting Started 2

Installing the S7-200 3

PLC Concepts 4
Programming Concepts,
Conventions and Features 5

S7-200 Instruction Set 6

Communicating over a Network 7
Hardware Troubleshooting Guide
and Software Debugging Tools 8
Creating a Program for the
Position Module

9
Creating a Program for the
Modem Module

10
Using the USS Protocol Library to
Control a MicroMaster Drive

11
Using the Modbus Protocol
Library

 12

Technical Specifications A

Calculating a Power Budget B

Error Codes C

Special Memory (SM) Bits D

S7-200 Order Numbers E
Execution Times for STL
Instructions F

S7-200 Quick Reference
Information G

Index

S7-200 Programmable Controller
System Manual

SIMATIC

Edition 04/2002
A5E00157957-01

This manual has the order number:
 6ES7298-8FA22-8BH0

Safety Guidelines

This manual contains notices which you should observe to ensure your own personal safety, as well as to
protect the product and connected equipment. These notices are highlighted in the manual by a warning
triangle and are marked as follows according to the level of danger:

Danger
Danger indicates an imminently hazardous situation which, if not avoided, will result in death or serious
injury.

Warning
Warning indicates a potentially hazardous situation which, if not avoided, could result in death or serious
injury.

Caution
Caution used with the safety alert symbol indicates a potentially hazardous situation which, if not
avoided, may result in minor or moderate injury.

Caution
Caution used without the safety alert symbol indicates a potentially hazardous situation which, if not
avoided, may result in property damage.

Notice
Notice indicates a potential situation which, if not avoided, may result in an undesirable result or state.

Qualified Personnel

Only qualified personnel should be allowed to install and work on this equipment. Qualified persons are
defined as persons who are authorized to commission, to ground, and to tag circuits, equipment, and sys-
tems in accordance with established safety practices and standards.

Correct Usage
Note the following:

Warning
This device and its components may only be used for the applications described in the catalog or the
technical descriptions, and only in connection with devices or components from other manufacturers
which have been approved or recommended by Siemens.

This product can only function correctly and safely if it is transported, stored, set up, and installed
correctly, and operated and maintained as recommended.

Trademarks
SIMATIC�, SIMATIC HMI� and SIMATIC NET� are registered trademarks of SIEMENS AG.

Some of other designations used in these documents are also registered trademarks; the owner’s rights may be violated
if they are used by third parties for their own purposes.

We have checked the contents of this manual for agreement with the hardware and
software described. Since deviations cannot be precluded entirely, we cannot gua-
rantee full agreement. However, the data in this manual are reviewed regularly and
any necessary corrections included in subsequent editions. Suggestions for impro-
vement are welcomed.

Disclaimer of LiabilityCopyright Siemens AG 2002 All rights reserved

The reproduction, transmission or use of this document or its contents is not
permitted without express written authority. Offenders will be liable for damages.
All rights, including rights created by patent grant or registration of a utility model
or design, are reserved.

Siemens AG
Bereich Automation and Drives
Geschaeftsgebiet Industrial Automation Systems
Postfach 4848, D- 90327 Nuernberg

� Siemens AG 2002
Technical data subject to change.

Siemens Aktiengesellschaft 6ES7298-8FA22-8BH0

iii

Preface
The S7-200 series is a line of micro-programmable logic controllers (Micro PLCs) that can control a variety
of automation applications. Compact design, low cost, and a powerful instruction set make the S7-200 a
perfect solution for controlling small applications. The wide variety of S7-200 models and the
Windows-based programming tool give you the flexibility you need to solve your automation problems.

Audience
This manual provides information about installing and programming the S7-200 Micro PLCs and is
designed for engineers, programmers, installers, and electricians who have a general knowledge of
programmable logic controllers.

Scope of the Manual
The information contained in this manual pertains in particular to the following products:

S7-200 CPU models: CPU 221, CPU 222, CPU 224, CPU 226, and CPU 226XM

S7-200 EM 22x expansion modules

STEP 7--Micro/WIN, version 3.2, a 32-bit programming software package for the S7-200

STEP 7--Micro/WIN Instruction Libraries and TP-Designer for TP070, Version 1.0, a set of software
tools for customers who use an S7-200 with other components, such as the TP070 Touch Panel,
Modbus, or a MicroMaster drive

Standards Compliance
The SIMATIC S7-200 series meets the following standards:

European Community (CE) Low Voltage Directive 73/23/EEC
EN 61131--2: Programmable Controllers -- Equipment requirements

European Community (CE) EMC Directive 89/336/EEC

Electromagnetic emissions standard
EN 50081--1: residential, commercial, and light industry
EN 50081--2: industrial environment

Electromagnetic immunity standards
EN 61000--6--2: industrial environment

Underwriters Laboratories, Inc.
UL 508 Listed (Industrial Control Equipment) Registration number E75310

Canadian Standards Association: CSA C22.2 Number 142 Certified (Process Control Equipment)

Factory Mutual Research: FM Class I, Division 2, Groups A, B, C, & D Hazardous Locations, T4A
and Class I, Zone 2, IIC, T4

Refer to Appendix A for compliance information.

S7-200 Programmable Controller System Manual

iv

Maritime Approvals
At the time this manual was printed, the SIMATIC S7-200 series met the maritime agencies identifed
below. For the latest product approvals, contact your local Siemens distributor or sales office.

Agency Certificate Number

Lloyds Register of Shipping (LRS) 99 / 20018(E1)

American Bureau of Shipping (ABS) 01--HG20020--PDA

Germanischer Lloyd (GL) 12 045 -- 98 HH

Det Norske Veritas (DNV) A--8071

Bureau Veritas (BV) 09051 / A2 BV

Nippon Kaiji Kyokai (NK) A--534

How to Use This Manual
If you are a first-time (novice) user of S7-200 Micro PLCs, you should read the entire S7-200
Programmable Controller System Manual. If you are an experienced user, refer to the table of contents or
index to find specific information.

The S7-200 Programmable Controller System Manual is organized according to the following topics:

Chapter 1 (Product Overview) provides an overview of some of the features of the S7-200 family of
Micro PLC products.

Chapter 2 (Getting Started) provides a tutorial for creating and downloading a sample control
program to an S7-200.

Chapter 3 (Installing the S7-200) provides the dimensions and basic guidelines for installing the
S7-200 CPU modules and expansion I/O modules.

Chapter 4 (PLC Concepts) provides information about the operation of the S7-200.

Chapter 5 (Programming Concepts, Conventions, and Features) provides information about the
features of STEP 7--Micro/WIN, the program editors and types of instructions (IEC 1131-3 or
SIMATIC), S7-200 data types, and guidelines for creating programs.

Chapter 6 (S7-200 Instruction Set) provides descriptions and examples of programming instructions
supported by the S7-200.

Chapter 7 (Communicating over a Network) provides information for setting up the different network
configurations supported by the S7-200.

Chapter 8 (Hardware Troubleshooting Guide and Software Debugging Tools) provides information
for troubleshooting problems with the S7-200 hardware and about the STEP 7--Micro/WIN features
that help you debug your program.

Chapter 9 (Creating a Program for the Position Module) provides information about the instructions
and wizard used to create a program for the EM 253 Position module.

Chapter 10 (Creating a Program for the Modem Module) provides information about the instructions
and wizard used to create a program for the EM 241 Modem module.

Chapter 11 (Using the USS Protocol Library to Control a MicroMaster Drive) provides information
about the instructions used to create a control program for a MicroMaster drive. It also provides
information about how to configure the MicroMaster 3 and MicroMaster 4 drives.

Chapter 12 (Using the Modbus Protocol Library) provides information about the instructions used to
create a program that uses the Modbus protocol for communications.

Appendix A (Technical Specifications) provides the technical information and data sheets about the
S7-200 hardware.

The other appendices provide additional reference information, such as descriptions of the error codes,
descriptions of the Special Memory (SM) area, part numbers for ordering S7-200 equipment, and STL
instruction execution times.

Preface

v

Additional Information and Assistance

Information about the S7-200 and STEP 7--Micro/WIN
In addition to this manual, STEP 7--Micro/WIN provides extensive online help for getting started with
programming the S7-200. Included with the purchase of the STEP 7--Micro/WIN software is a free
documentation CD. On this CD you can find application tips, an electronic version of this manual and other
information.

Online Help
Help is only a keystroke away! Pressing F1 accesses the extensive online help for STEP 7--Micro/WIN.
The online help includes useful information about getting started with programming the S7-200, as well as
many other topics.

Electronic Manual
An electronic version of this S7-200 System Manual is available on the documentation CD. You can install
the electronic manual onto your computer so that you can easily access the information in the manual
while you are working with the STEP 7--Micro/WIN software.

Tips and Tricks
The documentation CD includes Tips and Tricks, a set of application examples with sample programs.
Reviewing or modifying these examples can help you find efficient or innovative solutions for your own
application. You can also find the most current version of Tips and Tricks on the S7-200 Internet site.

Internet: www.siemens.com/S7--200
For additional information about Siemens products and services, technical support, frequently asked
questions (FAQs), product updates, or application tips, refer to the following Internet addresses:

www.ad.siemens.de for general Siemens information

This Siemens Automation & Drives Internet site includes information about the SIMATIC product line
and other products available from Siemens.

www.siemens.com/S7--200 for S7-200 product information

The S7-200 Internet site includes frequently asked questions (FAQs), Tips and Tricks (application
examples and sample programs), information about newly released products, and product updates
or downloads.

www.siemens.com/S7-200
www.ad.siemens.de
www.siemens.com/S7-200

S7-200 Programmable Controller System Manual

vi

Technical Assistance and Purchasing S7-200 Products

Local Siemens Sales Office or Distributor
For assistance in answering any technical questions, for training on the S7-200 products, or for ordering
S7-200 products, contact your Siemens distributor or sales office. Because your sales representatives are
technically trained and have the most specific knowledge about your operations, process and industry, as
well as about the individual Siemens products that you are using, they can provide the fastest and most
efficient answers to any problems that you might encounter.

Technical Services
The highly trained staff of the S7-200 Technical Services center is also available to help you solve any
problems that you might encounter. You can call on them 24 hours a day, 7 days a week:

For calls originating from within the United States of America
Local time: Monday to Friday 0800 to 1900 Eastern time
Telephone: +1 800 241--4453
Fax: +1 (0) 770 740--3699
E-Mail: drives.support@sea.siemens.com

For calls originating from the Americas outside of the USA
Local time: Monday to Friday 0800 to 1900 Eastern time
Telephone: +1 (0) 770 740--3505
Fax: +1 (0) 770 740--3699
E-Mail: drives.support@sea.siemens.com

For calls originating from Europe and Africa
Local time (Nuremberg): Monday to Friday 0700 to 1700
Telephone: +49 (0) 180 5050--222
Fax: +49 (0) 180 5050--223
E-Mail: techsupport@ad.siemens.de

For calls originating from Asia and Australia
Local time (Singapore): Monday to Friday 0830 to 1730
Telephone: +65 (0) 740--7000
Fax: +65 (0) 740--7001
E-Mail: drives.support@sae.siemens.com.sg

vii

Contents
1 Product Overview 1. .

S7-200 CPU 2. .

S7-200 Expansion Modules 3. .

STEP 7--Micro/WIN Programming Package 3. .

Communications Options 4. .

Display Panels 4. .

2 Getting Started 5. .

Connecting the S7-200 CPU 6. .

Creating a Sample Program 8. .

Downloading the Sample Program 11. .

Placing the S7-200 in RUN Mode 11. .

3 Installing the S7-200 13. .

Guidelines for Installing S7-200 Devices 14. .

Installing and Removing the S7-200 Modules 15. .

Guidelines for Grounding and Wiring 18. .

4 PLC Concepts 21. .

Understanding How the S7-200 Executes Your Control Logic 22. .

Accessing the Data of the S7-200 24. .

Understanding How the S7-200 Saves and Restores Data 34. .

Storing Your Program on a Memory Cartridge 36. .

Selecting the Operating Mode for the S7-200 CPU 37. .

Using Your Program to Save V Memory to the EEPROM 38. .

Features of the S7-200 39. .

5 Programming Concepts, Conventions, and Features 47. .

Guidelines for Designing a Micro PLC System 48. .

Basic Elements of a Program 49. .

Using STEP 7--Micro/WIN to Create Your Programs 51. .

Choosing Between the SIMATIC and IEC 1131--3 Instruction Sets 53. .

Understanding the Conventions Used by the Program Editors 54. .

Using Wizards To Help You Create Your Control Program 56. .

Handling Errors in the S7-200 56. .

Assigning Addresses and Initial Values in the Data Block Editor 58. .

Using the Symbol Table for Symbolic Addressing of Variables 58. .

Using Local Variables 59. .

Using the Status Chart to Monitor Your Program 59. .

Creating an Instruction Library 60. .

Features for Debugging Your Program 60. .

S7-200 Programmable Controller System Manual

viii

6 S7-200 Instruction Set 61. .

Conventions Used to Describe the Instructions 63. .

S7-200 Memory Ranges and Features 64. .

Bit Logic Instructions 66. .

Contacts 66. .
Coils 68. .
Logic Stack Instructions 70. .
Set and Reset Dominant Bistable Instructions 72. .

Clock Instructions 73. .

Communications Instructions 74. .

Network Read and Network Write Instructions 74. .
Transmit and Receive Instructions (Freeport) 79. .
Get Port Address and Set Port Address Instructions 88. .

Compare Instructions 89. .

Comparing Numerical Values 89. .
Compare String 91. .

Conversion Instructions 92. .

Standard Conversion Instructions 92. .
ASCII Conversion Instructions 96. .
String Conversion Instructions 100. .
Encode and Decode Instructions 105. .

Counter Instructions 106. .

SIMATIC Counter Instructions 106. .
IEC Counter Instructions 109. .

High-Speed Counter Instructions 111. .

Pulse Output Instruction 125. .

Math Instructions 140. .

Add, Subtract, Multiply, and Divide Instructions 140. .
Multiply Integer to Double Integer and Divide Integer with Remainder 142. .
Numeric Functions Instructions 143. .
Increment and Decrement Instructions 144. .

Proportional/Integral/Derivative (PID) Loop Instruction 145. .

Interrupt Instructions 155. .

Logical Operations Instructions 162. .

Invert Instructions 162. .
AND, OR, and Exclusive OR Instructions 163. .

Move Instructions 165. .

Move Byte, Word, Double Word, or Real 165. .
Move Byte Immediate (Read and Write) 166. .
Block Move Instructions 167. .

Program Control Instructions 168. .

Conditional End 168. .
Stop 168. .
Watchdog Reset 168. .
For--Next Loop Instructions 170. .
Jump Instructions 172. .
Sequence Control Relay (SCR) Instructions 173. .

Contents

ix

Shift and Rotate Instructions 179. .

Shift Right and Shift Left Instructions 179. .
Rotate Right and Rotate Left Instructions 179. .
Shift Register Bit Instruction 181. .
Swap Bytes Instruction 183. .

String Instructions 184. .

Table Instructions 189. .

Add To Table 189. .
First-In-First-Out and Last-In-First-Out 190. .
Memory Fill 192. .
Table Find 193. .

Timer Instructions 196. .

SIMATIC Timer Instructions 196. .
IEC Timer Instructions 201. .

Subroutine Instructions 203. .

7 Communicating over a Network 207. .

Understanding the Basics of S7-200 Network Communications 208. .

Selecting the Communications Protocol for Your Network 211. .

Installing and Removing Communications Interfaces 216. .

Building Your Network 218. .

Creating User-Defined Protocols with Freeport Mode 222. .

Using Modems and STEP 7--Micro/WIN with Your Network 224. .

Advanced Topics 228. .

8 Hardware Troubleshooting Guide and Software Debugging Tools 235.

Features for Debugging Your Program 236. .

Displaying the Program Status 238. .

Using a Status Chart to Monitor and Modify the Data in the S7-200 239. .

Forcing Specific Values 240. .

Running Your Program for a Specified Number of Scans 240. .

Hardware Troubleshooting Guide 241. .

9 Creating a Program for the Position Module 243. .

Features of the Position Module 244. .

Configuring the Position Module 246. .

Position Instructions Created by the Motion Control Wizard 257. .

Sample Programs for the Position Module 269. .

Monitoring the Position Module with the EM 253 Control Panel 274. .

Error Codes for the Position Module and the Position Instructions 276. .

Advanced Topics 278. .

S7-200 Programmable Controller System Manual

x

10 Creating a Program for the Modem Module 287. .

Features of the Modem Module 288. .

Using the Modem Expansion Wizard to Configure the Modem Module 294. .

Overview of Modem Instructions and Restrictions 298. .

Instructions for the Modem Module 299. .

Sample Program for the Modem Module 303. .

S7-200 CPUs that Support Intelligent Modules 303. .

Special Memory Location for the Modem Module 304. .

Advanced Topics 306. .

Messaging Telephone Number Format 308. .

Text Message Format 309. .

CPU Data Transfer Message Format 310. .

11 Using the USS Protocol Library to Control a MicroMaster Drive 311.

Requirements for Using the USS Protocol 312. .

Calculating the Time Required for Communicating with the Drive 313. .

Using the USS Instructions 314. .

Instructions for the USS Protocol 315. .

Sample Programs for the USS Protocol 322. .

USS Execution Error Codes 323. .

Connecting and Setting Up the MicroMaster Series 3 Drive 324. .

Connecting and Setting Up the MicroMaster Series 4 Drive 327. .

12 Using the Modbus Protocol Library 329. .

Requirements for Using the Modbus Protocol 330. .

Initialization and Execution Time for the Modbus Protocol 330. .

Modbus Addressing 331. .

Using the Modbus Slave Protocol Instructions 332. .

Instructions for the Modbus Slave Protocol 333. .

A Technical Specifications 337. .

General Technical Specifications 338. .

CPU Specifications 340. .

Digital Expansion Modules Specifications 346. .

Analog Expansion Modules Specifications 351. .

Thermocouple and RTD Expansion Modules Specifications 361. .

EM 277 PROFIBUS--DP Module Specifications 373. .

EM 241 Modem Module Specifications 385. .

EM 253 Position Module Specifications 387. .

AS--Interface (CP 243--2) Module Specifications 393. .

Optional Cartridges 395. .

I/O Expansion Cable 395. .

PC/PPI Cable 396. .

Input Simulators 398. .

B Calculating a Power Budget 399. .

Contents

xi

C Error Codes 403. .

Fatal Error Codes and Messages 404. .

Run-Time Programming Problems 405. .

Compile Rule Violations 406. .

D Special Memory (SM) Bits 407. .

SMB0: Status Bits 408. .

SMB1: Status Bits 408. .

SMB2: Freeport Receive Character 409. .

SMB3: Freeport Parity Error 409. .

SMB4: Queue Overflow 409. .

SMB5: I/O Status 410. .

SMB6: CPU ID Register 410. .

SMB7: Reserved 410. .

SMB8 to SMB21: I/O Module ID and Error Registers 411. .

SMW22 to SMW26: Scan Times 412. .

SMB28 and SMB29: Analog Adjustment 412. .

SMB30 and SMB130: Freeport Control Registers 412. .

SMB31 and SMW32: Permanent Memory (EEPROM) Write Control 413. .

SMB34 and SMB35: Time Interval Registers for Timed Interrupts 413. .

SMB36 to SMB65: HSC0, HSC1, and HSC2 Register 413. .

SMB66 to SMB85: PTO/PWM Registers 415. .

SMB86 to SMB94, and SMB186 to SMB194: Receive Message Control 416. .

SMW98: Errors on the Expansion I/O Bus 417. .

SMB130: Freeport Control Register (see SMB30) 417. .

SMB131 to SMB165: HSC3, HSC4, and HSC5 Register 417. .

SMB166 to SMB185: PTO0, PTO1 Profile Definition Table 418. .

SMB186 to SMB194: Receive Message Control (see SMB86 to SMB94) 418. .

SMB200 to SMB549: Intelligent Module Status 419. .

E S7-200 Order Numbers 421. .

F Execution Times for STL Instructions 425. .

G S7-200 Quick Reference Information 431. .

Index 437. .

S7-200 Programmable Controller System Manual

xii

1

Product Overview
The S7-200 series of micro-programmable logic controllers (Micro PLCs) can control a wide variety of
devices to support your automation needs.

The S7-200 monitors inputs and changes outputs as controlled by the user program, which can include
Boolean logic, counting, timing, complex math operations, and communications with other intelligent
devices. The compact design, flexible configuration, and powerful instruction set combine to make the
S7-200 a perfect solution for controlling a wide variety of applications.

In This Chapter
S7-200 CPU 2.

S7-200 Expansion Modules 3.

STEP 7–Micro/WIN Programming Package 3.

Communications Options 4.

Display Panels 4.

1

S7-200 Programmable Controller System Manual

2

S7-200 CPU
The S7-200 CPU combines a microprocessor, an integrated power supply, input circuits, and output
circuits in a compact housing to create a powerful Micro PLC. See Figure 1-1. After you have downloaded
your program, the S7-200 contains the logic required to monitor and control the input and output devices
in your application.

I/O LEDs
Status LEDs:

System Fault
RUN
STOP

Optional cartridge:
EEPROM
Real-time Clock
Battery

Communications port

Terminal connector
(removable on CPU 224, CPU 226
 and CPU 226XM)

Clip for installation on a standard (DIN) rail

Access door:
Mode selector switch (RUN/STOP)
Analog adjustment potentiometer(s)
Expansion port (for most CPUs)

Figure 1-1 S7-200 Micro PLC

Siemens provides different S7-200 CPU models with a diversity of features and capabilities that help you
create effective solutions for your varied applications. Table 1-1 briefly compares some of the features of
the CPU. For detailed information about a specific CPU, see Appendix A.

Table 1-1 Comparison of the S7-200 CPU Models

Feature CPU 221 CPU 222 CPU 224 CPU 226 CPU 226XM

Physical size (mm) 90 x 80 x 62 90 x 80 x 62 120.5 x 80 x 62 190 x 80 x 62 190 x 80 x 62
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

Program memory 2048 words
ÑÑÑÑÑ
ÑÑÑÑÑ

2048 words
ÑÑÑÑÑ
ÑÑÑÑÑ

4096 words
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

4096 words
ÑÑÑÑÑ
ÑÑÑÑÑ

8192 words
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

Data memory 1024 words ÑÑÑÑÑ
ÑÑÑÑÑ

1024 words ÑÑÑÑÑ
ÑÑÑÑÑ

2560 words ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

2560 words ÑÑÑÑÑ
ÑÑÑÑÑ

5120 words
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

Memory backup 50 hours typicalÑÑÑÑÑ
ÑÑÑÑÑ

50 hours typicalÑÑÑÑÑ
ÑÑÑÑÑ

190 hours typicalÑÑÑÑÑÑ
ÑÑÑÑÑÑ

190 hours typicalÑÑÑÑÑ
ÑÑÑÑÑ

190 hours typical

ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

Local on-board I/O 6 In/4 Out ÑÑÑÑÑ
ÑÑÑÑÑ

8 In/6 Out ÑÑÑÑÑ
ÑÑÑÑÑ

14 In/10 Out ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

24 In/16 Out ÑÑÑÑÑ
ÑÑÑÑÑ

24 In/16 Out

ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

Expansion modules 0 ÑÑÑÑÑ
ÑÑÑÑÑ

2 ÑÑÑÑÑ
ÑÑÑÑÑ

7 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

7 ÑÑÑÑÑ
ÑÑÑÑÑ

7

ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

High-speed counters
Single phase
Two phase

4 at 30 kHz
2 at 20 kHz

ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ

4 at 30 kHz
2 at 20 kHz

ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ

6 at 30 kHz
4 at 20 kHz

ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

6 at 30 kHz
4 at 20 kHz

ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ

6 at 30 kHz
4 at 20 kHz

Pulse outputs (DC) 2 at 20 kHz 2 at 20 kHz 2 at 20 kHz 2 at 20 kHz 2 at 20 kHz

ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

Analog adjustments 1 ÑÑÑÑÑ
ÑÑÑÑÑ

1 ÑÑÑÑÑ
ÑÑÑÑÑ

2 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

2 ÑÑÑÑÑ
ÑÑÑÑÑ

2

Real-time clock Cartridge Cartridge Built-in Built-in Built-in

Communications
ports

1 RS–485 1 RS–485 1 RS–485 2 RS–485 2 RS–485

Floating-point math Yes

Digital I/O image size 256 (128 in, 128 out)

Boolean execution
speed

0.37 microseconds/instruction

1

Product Overview Chapter 1

3

S7-200 Expansion Modules
To better solve your application requirements, the S7-200 family includes a wide variety of expansion
modules. You can use these expansion modules to add additional functionality to the S7-200 CPU.
Table 1-2 provides a list of the expansion modules that are currently available. For detailed information
about a specific module, see Appendix A.

Table 1-2 S7-200 Expansion Modules

Expansion Modules Types

Discrete modules Input

Output

Combination

8 x DC In 8 x AC In

8 x DC Out 8 x AC Out 8 x Relay

4 x DC In / 4 x DC Out 8 x DC In / 8 x DC Out 16 x DC In / 16 x DC Out
4 x DC In / 4 x Relay 8 x DC In / 8 x Relay 16 x DC In / 16 x Relay

Analog modules Input

Output

Combination

4 x Analog In 4 x Thermocouple In 2 x RTD In

2 x Analog Out

4 x Analog In / 1 Analog Out

Intelligent modules Position Modem PROFIBUS-DP

Other modules AS–Interface

STEP 7–Micro/WIN Programming Package
The STEP 7–Micro/WIN programming package provides a user-friendly environment to develop, edit, and
monitor the logic needed to control your application. STEP 7–Micro/WIN provides three program editors
for convenience and efficiency in developing the control program for your application. To help you find the
information you need, STEP 7–Micro/WIN provides an extensive online help system and a documentation
CD that contains an electronic version of this manual, application tips, and other useful information.

Computer Requirements
STEP 7–Micro/WIN runs on either a personal computer or a Siemens programming device, such as a
PG 760. Your computer or programming device should meet the following minimum requirements:

� Operating system:
Windows 95, Windows 98, Windows 2000,
Windows Me (Millennium Edition), or
Windows NT 4.0 (or later version)

� At least 50M bytes of free hard disk space

� Mouse (recommended)

Figure 1-2 STEP 7–Micro/WIN

1

S7-200 Programmable Controller System Manual

4

Installing STEP 7–Micro/WIN
Insert the STEP 7–Micro/WIN CD into the CD-ROM drive of your computer. The installation wizard starts
automatically and prompts you through the installation process. Refer to the Readme file for more
information about installing STEP 7–Micro/WIN.

Tip
To install STEP 7–Micro/WIN on a Windows NT or Windows 2000 operating system, you must log in
with Administrator privileges.

Communications Options
Siemens provides two programming options for connecting your computer to your S7-200: a direct
connection with a PC/PPI cable, or a Communications Processor (CP) card with an MPI cable for MPI and
PROFIBUS–DP networks.

The PC/PPI programming cable is the most common and economical method of connecting your
computer to the S7-200. This cable connects the communications port of the S7-200 to the serial
communications of your computer. The PC/PPI programming cable can also be used to connect other
communications devices to the S7-200.

To use the MPI cable, you must also install a CP card in your computer. The CP card provides the extra
hardware required to connect at higher baud rates and to handle high-speed network communications.

Display Panels

TD 200 Text Display Unit
The TD 200 is a 2-line, 20-character, text display device that can be connected to the S7-200. Using the
TD 200 wizard, you can easily program your S7-200 to display text messages and other data pertaining to
your application.

The TD 200 provides a low cost interface to your
application by allowing you to view, monitor, and
change the process variables pertaining to your
application.

A separate manual describes the detailed
functionality and specifications of the TD 200.

Figure 1-3 TD 200 Text Display Unit

TP070 Touch Panel Display
The TP070 is a touch panel display device that
can be connected to the S7-200. This touch
panel provides you with a means to customize
your operator interface.

The TP070 can display custom graphics, slider
bars, application variables, custom user buttons,
and so forth, by means of a user-friendly touch
panel.

The optional TP–Designer for TP070, Version 1.0
CD provides the TP Designer software, which is
required for programming your TP070.

Figure 1-4 TP070 Touch Panel Unit

5

Getting Started
STEP 7–Micro/WIN makes it easy for you to program your S7-200. In just a few short steps using a simple
example, you can learn how to connect, program, and run your S7-200.

All you need for this example is a PC/PPI cable, an S7-200 CPU, and a programming device running the
STEP 7–Micro/WIN programming software.

In This Chapter
Connecting the S7-200 CPU 6.

Creating a Sample Program 8.

Downloading the Sample Program 11.

Placing the S7-200 in RUN Mode 11.

2

S7-200 Programmable Controller System Manual

6

Connecting the S7-200 CPU
Connecting your S7-200 is easy. For this example, you only need to connect power to your S7-200 CPU
and then connect the communications cable between your programming device and the S7-200 CPU.

Connecting Power to the S7-200 CPU
The first step is to connect the S7-200 to a power source. Figure 2-1 shows the wiring connections for
either a DC or an AC model of the S7-200 CPU.

Before you install or remove any electrical device, ensure that the power to that equipment has been
turned off. Always follow appropriate safety precautions and ensure that power to the S7-200 is disabled
before attempting to install or remove the S7-200.

Warning
Attempts to install or wire the S7-200 or related equipment with power applied could cause electric
shock or faulty operation of equipment. Failure to disable all power to the S7-200 and related equipment
during installation or removal procedures could result in death or serious injury to personnel, and/or
damage to equipment.

Always follow appropriate safety precautions and ensure that power to the S7-200 is disabled before
attempting to install or remove the S7-200 or related equipment.

DC Installation AC Installation

24 VDC 85 to 265 VAC

Figure 2-1 Connecting Power to the S7-200 CPU

Connecting the PC/PPI Cable
Figure 2-2 shows a PC/PPI cable connecting the
S7-200 to the programming device. To connect
the PC/PPI cable:

1. Connect the RS-232 connector (marked
“PC”) of the PC/PPI cable to the
communications port of the programming
device. (For this example, connect to
COM 1.)

2. Connect the RS-485 connector (marked
“PPI”) of the PC/PPI cable to Port 0 or
Port 1 of the S7-200.

3. Ensure that the dipswitches of the PC/PPI
cable are set as shown in Figure 2-2.

PC/PPI cable

S7-200

Programming
Device

1 2 3 4 5 6

↑1 – On
↓0 – Off

Figure 2-2 Connecting the PC/PPI Cable

2

Getting Started Chapter 2

7

Starting STEP 7–Micro/WIN
Click on the STEP 7–Micro/WIN icon to open a
new project. Figure 2-3 shows a new project.

Notice the navigation bar. You can use the icons
on the navigation bar to open elements of the
STEP 7–Micro/WIN project.

Click on the Communications icon in the
navigation bar to display the Communications
dialog box. You use this dialog box to set up the
communications for STEP 7–Micro/WIN.

Navigation bar

Communications icon

Figure 2-3 New STEP 7–Micro/WIN Project

Verifying the Communications Parameters for STEP 7–Micro/WIN
The example project uses the default settings for
STEP 7–Micro/WIN and the PC/PPI cable. To
verify these settings:

1. Verify that the address of the PC/PPI cable
in the Communications dialog box is set
to 0.

2. Verify that the interface for the network
parameter is set for PC/PPI cable(COM1).

3. Verify that the transmission rate is set to
9.6 kbps.

If you need to change your communications

1.

3.

2.

If you need to change your communications
parameter settings, see Chapter 7. Figure 2-4 Verifying the Communications Parameters

Establishing Communications with the S7-200
Use the Communications dialog box to connect with your S7-200 CPU:

1. Double-click the refresh icon in the
Communications dialog box.

STEP 7–Micro/WIN searches for the
S7-200 station and displays a CPU icon
for the connected S7-200 station.

2. Select the S7-200 and click OK.

If STEP 7–Micro/WIN does not find your S7-200
CPU, check the settings for the communications
parameters and repeat these steps.

After you have established communications with
the S7-200, you are ready to create and

1.

the S7-200, you are ready to create and
download the example program. Figure 2-5 Establishing Communications to the S7-200

2

S7-200 Programmable Controller System Manual

8

Creating a Sample Program
Entering this example of a control program will help you understand how easy it is to use
STEP 7–Micro/WIN. This program uses six instructions in three networks to create a very simple,
self-starting timer that resets itself.

For this example, you use the Ladder (LAD) editor to enter the instructions for the program. The following
example shows the complete program in both LAD and Statement List (STL). The network comments in
the STL program explain the logic for each network. The timing diagram shows the operation of the
program.

 Example: Sample Program for getting started with STEP 7–Micro/WIN

Network 1 //10 ms timer T33 times out after (100 x 10 ms = 1 s)
//M0.0 pulse is too fast to monitor with Status view.

LDN M0.0
TON T33, +100

Network 2 //Comparison becomes true at a rate that is visible with
//Status view. Turn on Q0.0 after (40 x 10 ms = 0.4 s),
//for a 40% OFF/60% ON waveform.

LDW>= T33, +40
= Q0.0

Network 3 //T33 (bit) pulse too fast to monitor with Status view.
//Reset the timer through M0.0 after the
//(100 x 10 ms = 1 s) period.

LD T33
= M0.0

Timing Diagram

2

Getting Started Chapter 2

9

Opening the Program Editor
Click on the Program Block icon to open the
program editor. See Figure 2-6.

Notice the instruction tree and the program
editor. You use the instruction tree to insert the
LAD instructions into the networks of the program
editor by dragging and dropping the instructions
from the instruction tree to the networks.

The toolbar icons provide shortcuts to the menu
commands.

After you enter and save the program, you can
download the program to the S7-200. Instruction tree

Program editor

Figure 2-6 STEP 7–Micro/WIN Window

Entering Network 1: Starting the Timer
When M0.0 is off (0), this contact turns on and provides power flow to start the timer. To enter the contact
for M0.0:

1. Either double-click the Bit Logic icon or
click on the plus sign (+) to display the bit
logic instructions.

2. Select the Normally Closed contact.

3. Hold down the left mouse button and drag
the contact onto the first network.

4. Click on the “???” above the contact and
enter the following address: M0.0

5. Press the Return key to enter the address
for the contact.

To enter the timer instruction for T33: Figure 2-7 Network 1

1. Double-click the Timers icon to display the timer instructions.

2. Select the TON (On-Delay Timer).

3. Hold down the left mouse button and drag the timer onto the first network.

4. Click on the “???” above the timer box and enter the following timer number: T33

5. Press the Return key to enter the timer number and to move the focus to the preset time (PT)
parameter.

6. Enter the following value for the preset time: 100

7. Press the Return key to enter the value.

2

S7-200 Programmable Controller System Manual

10

Entering Network 2: Turning the Output On
When the timer value for T33 is greater than or equal to 40 (40 times 10 milliseconds, or 0.4 seconds), the
contact provides power flow to turn on output Q0.0 of the S7-200. To enter the Compare instruction:

1. Double-click the Compare icon to display the compare instructions. Select the >=I instruction
(Greater-Than-Or-Equal-To-Integer).

2. Hold down the left mouse button and drag
the compare instruction onto the second
network.

3. Click on the “???” above the contact and
enter the address for the timer value: T33

4. Press the Return key to enter the timer
number and to move the focus to the other
value to be compared with the timer value.

5. Enter the following value to be compared
with the timer value: 40

6. Press the Return key to enter the value.

Figure 2-8 Network 2

To enter the instruction for turning on output Q0.0:

1. Double-click the Bit Logic icon to display the bit logic instructions and select the output coil.

2. Hold down the left mouse button and drag the coil onto the second network.

3. Click on the “???” above the coil and enter the following address: Q0.0

4. Press the Return key to enter the address for the coil.

Entering Network 3: Resetting the Timer
When the timer reaches the preset value (100) and turns the timer bit on, the contact for T33 turns on.
Power flow from this contact turns on the M0.0 memory location. Because the timer is enabled by a
Normally Closed contact for M0.0, changing the state of M0.0 from off (0) to on (1) resets the timer.

To enter the contact for the timer bit of T33:

1. Select the Normally Open contact from the
bit logic instructions.

2. Hold down the left mouse button and drag
the contact onto the third network.

3. Click on the “???” above the contact and
enter the address of the timer bit: T33

4. Press the Return key to enter the address
for the contact.

To enter the coil for turning on M0.0:

1. Select the output coil from the bit logic1. Select the output coil from the bit logic
instructions. Figure 2-9 Network 3

2. Hold down the left mouse button and drag the output coil onto the third network.

3. Double-click the “???” above the coil and enter the following address: M0.0

4. Press the Return key to enter the address for the coil.

2

Getting Started Chapter 2

11

Saving the Sample Project
After entering the three networks of instructions, you have finished entering the program. When you save
the program, you create a project that includes the S7-200 CPU type and other parameters. To save the
project:

1. Select the File > Save As menu command
from the menu bar.

2. Enter a name for the project in the Save As
dialog box.

3. Click OK to save the project.

After saving the project, you can download the
program to the S7-200.

Figure 2-10 Saving the Example Program

Downloading the Sample Program

Tip
Each STEP 7–Micro/WIN project is associated with a CPU type (CPU 221, CPU 222, CPU 224, CPU
226, or CPU 226XM). If the project type does not match the CPU to which you are connected,
STEP 7–Micro/WIN indicates a mismatch and prompts you to take an action. If this occurs, choose
“Continue Download” for this example.

1. Click the Download icon on the toolbar or
select the File > Download menu
command to download the program. See
Figure 2-11.

2. Click OK to download the elements of the
program to the S7-200.

If your S7-200 is in RUN mode, a dialog box
prompts you to place the S7-200 in STOP mode.
Click Yes to place the S7-200 into STOP mode. Click Yes to place the S7-200 into STOP mode.

Figure 2-11 Downloading the Program

Placing the S7-200 in RUN Mode
For STEP 7–Micro/WIN to place the S7-200 CPU in RUN mode, the mode switch of the S7-200 must be
set to TERM or RUN. When you place the S7-200 in RUN mode, the S7-200 executes the program:

1. Click the RUN icon on the toolbar or select
the PLC > RUN menu command.

2. Click OK to change the operating mode of
the S7-200.

When the S7-200 goes to RUN mode, the output
LED for Q0.0 turns on and off as the S7-200LED for Q0.0 turns on and off as the S7-200
executes the program. Figure 2-12 Placing the S7-200 in RUN Mode

Congratulations! You have just completed your first S7-200 program.

You can monitor the program by selecting the Debug > Program Status menu command.
STEP 7–Micro/WIN displays the values for the instructions. To stop the program, place the S7-200 in
STOP mode by clicking the STOP icon or by selecting the PLC > STOP menu command.

2

S7-200 Programmable Controller System Manual

12

13

Installing the S7-200
The S7-200 equipment is designed to be easy to install. You can use the mounting holes to attach the
modules to a panel, or you can use the built-in clips to mount the modules onto a standard (DIN) rail. The
small size of the S7-200 allows you to make efficient use of space.

This chapter provides guidelines for installing and wiring your S7-200 system.

In This Chapter
Guidelines for Installing S7-200 Devices 14.

Installing and Removing the S7-200 Modules 15.

Guidelines for Grounding and Wiring 18.

3

S7-200 Programmable Controller System Manual

14

Guidelines for Installing S7-200 Devices
You can install an S7-200 either on a panel or on a standard rail, and you can orient the S7-200 either
horizontally or vertically.

Separate the S7-200 Devices from Heat, High Voltage, and Electrical Noise
As a general rule for laying out the devices of your system, always separate the devices that generate
high voltage and high electrical noise from the low-voltage, logic-type devices such as the S7-200.

When configuring the layout of the S7-200 inside your panel, consider the heat-generating devices and
locate the electronic-type devices in the cooler areas of your cabinet. Operating any electronic device in a
high-temperature environment will reduce the time to failure.

Consider also the routing of the wiring for the devices in the panel. Avoid placing low voltage signal wires
and communications cables in the same tray with AC power wiring and high-energy, rapidly-switched DC
wiring.

Provide Adequate Clearance for Cooling and Wiring
S7-200 devices are designed for natural convection cooling. For proper cooling, you must provide a
clearance of at least 25 mm above and below the devices. Also, allow at least 75 mm of depth.

Tip
For vertical mounting, the maximum allowable ambient temperature is reduced by 10° C. Mount the
S7-200 CPU below any expansion modules.

When planning your layout for the S7-200 system, allow enough clearance for the wiring and
communications cable connections. For additional flexibility in configuring the layout of the S7-200 system,
use the I/O expansion cable.

ÓÓÓÓÓÓ

ÓÓÓÓÓÓ
ÓÓÓÓÓÓ

ÓÓÓÓÓÓ

75 mm

Front of the
enclosure

Side View

Mounting
surface

35 mm

7.5 mm
1 mm

DIN Rail

25 mm

Clearance

Horizontal DIN Rail Mounting with Optional
Expansion Cable (limit one per system)

Vertical Panel Mounting

ÓÓÓÓÓÓ
ÓÓÓÓÓÓ

Ó
Ó
Ó
Ó
Ó

ÓÓ
ÓÓ
ÓÓ
ÓÓ
ÓÓ

Figure 3-1 Mounting Methods, Orientation, and Clearance

3

Installing the S7-200 Chapter 3

15

Power Budget
All S7-200 CPUs have an internal power supply that provides power for the CPU, the expansion modules,
and other 24 VDC user power requirements.

The S7-200 CPU provides the 5 VDC logic power needed for any expansion in your system. Pay careful
attention to your system configuration to ensure that your CPU can supply the 5V power required by your
selected expansion modules. If your configuration requires more power than the CPU can supply, you
must remove a module or select a CPU with more power capability. Refer to Appendix A for information
about the 5 VDC logic budget supplied by your S7-200 CPU and the 5 VDC power requirements of the
expansion modules. Use Appendix B as a guide for determining how much power (or current) the CPU
can provide for your configuration.

All S7-200 CPUs also provide a 24 VDC sensor supply that can supply 24 VDC for input points, for relay
coil power on the expansion modules, or for other requirements. If your power requirements exceed the
budget of the sensor supply, then you must add an external 24 VDC power supply to your system. Refer
to Appendix A for the 24 VDC sensor supply power budget for your particular S7-200 CPU.

If you require an external 24 VDC power supply, ensure that the power supply is not connected in parallel
with the sensor supply of the S7-200 CPU. For improved electrical noise protection, it is recommended
that the commons (M) of the different power supplies be connected.

Warning
Connecting an external 24 VDC power supply in parallel with the S7-200 24 VDC sensor supply can
result in a conflict between the two supplies as each seeks to establish its own preferred output voltage
level.

The result of this conflict can be shortened lifetime or immediate failure of one or both power supplies,
with consequent unpredictable operation of the PLC system. Unpredictable operation could result in
death or serious injury to personnel, and/or damage to equipment.

The S7-200 DC sensor supply and any external power supply should provide power to different points.

Installing and Removing the S7-200 Modules
The S7-200 can be easily installed on a standard DIN rail or on a panel.

Prerequisites
Before you install or remove any electrical device, ensure that the power to that equipment has been
turned off. Also, ensure that the power to any related equipment has been turned off.

Warning
Attempts to install or remove S7-200 or related equipment with the power applied could cause electric
shock or faulty operation of equipment.

Failure to disable all power to the S7-200 and related equipment during installation or removal
procedures could result in death or serious injury to personnel, and/or damage to equipment.

Always follow appropriate safety precautions and ensure that power to the S7-200 is disabled before
attempting to install or remove S7-200 CPUs or related equipment.

Always ensure that whenever you replace or install an S7-200 device you use the correct module or
equivalent device.

Warning
If you install an incorrect module, the program in the S7-200 could function unpredictably.

Failure to replace an S7-200 device with the same model, orientation, or order could result in death or
serious injury to personnel, and/or damage to equipment.

Replace an S7-200 device with the same model, and be sure to orient and position it correctly.

3

S7-200 Programmable Controller System Manual

16

Mounting Dimensions
The S7-200 CPUs and expansion modules include mounting holes to facilitate installation on panels.
Refer to Table 3-1 for the mounting dimensions.

Table 3-1 Mounting Dimensions

96 mm

Mounting holes
(M4 or No. 8)

A
B

4 mm

88 mm 80 mm

9.5 mm*

4 mm

4 mm

* Minimum spacing
between modules when
hard-mounted

B
A

S7-200 Module Width A Width B

CPU 221 and CPU 222 90 mm 82 mm

CPU 224 120.5 mm 112.5 mm

CPU 226 and CPU 226XM 196 mm 188 mm

Expansion modules: 8-point DC and Relay I/O (8I, 8Q, 4I/4Q, 2 AQ) 46 mm 38 mm

Expansion modules: 16-point digital I/O (8I/8Q), Analog I/O (4AI, 4AI/1AQ),
RTD, Thermocouple, PROFIBUS, AS-Interface,
8-point AC (8I and 8Q), Position, and Modem

71.2 mm 63.2 mm

Expansion modules: 32-point digital I/O (16I/16Q) 137.3 mm 129.3 mm

Installing a CPU or Expansion Module
Installing the S7-200 is easy! Just follow these steps.

Panel Mounting
1. Locate, drill, and tap the mounting holes (M4 or American Standard number 8), using the

dimensions in Table 3-1.

2. Secure the module(s) to the panel, using the appropriate screws.

3. If you are using an expansion module, connect the expansion module ribbon cable into the
expansion port connector under the access door.

DIN Rail Mounting
1. Secure the rail to the mounting panel every 75 mm.

2. Snap open the DIN clip (located on the bottom of the module) and hook the back of the module onto
the DIN rail.

3. If you are using an expansion module, connect the expansion module ribbon cable into the
expansion port connector under the access door.

4. Rotate the module down to the DIN rail and snap the clip closed. Carefully check that the clip has
fastened the module securely onto the rail. To avoid damage to the module, press on the tab of the
mounting hole instead of pressing directly on the front of the module.

3

Installing the S7-200 Chapter 3

17

Tip
Using DIN rail stops could be helpful if your S7-200 is in an environment with high vibration potential or if
the S7-200 has been installed vertically.

If your system is in a high-vibration environment, then panel-mounting the S7-200 will provide a greater
level of vibration protection.

Removing a CPU or Expansion Module
To remove an S7-200 CPU or expansion module, follow these steps:

1. Remove power from the S7-200.

2. Disconnect all the wiring and cabling that is attached to the module. Most S7-200 CPU and
expansion modules have removable connectors to make this job easier.

3. If you have expansion modules connected to the unit that you are removing, open the access cover
door and disconnect the expansion module ribbon cable from the adjacent modules.

4. Unscrew the mounting screws or snap open the DIN clip.

5. Remove the module.

Removing and Reinstalling the Terminal Block Connector
Most S7-200 modules have removable connectors to make installing and replacing the module easy.
Refer to Appendix A to determine whether your S7-200 module has removable connectors. You can order
an optional fan-out connector for modules that do not have removable connectors. See Appendix E for
order numbers.

To Remove the Connector
1. Open the connector door to gain access to the connector.

2. Insert a small screwdriver in the notch in the middle of the connector.

3. Remove the terminal connector by prying the screwdriver away from the S7-200 housing. See
Figure 3-2.

Figure 3-2 Removing the Connector

To Reinstall the Connector
1. Open the connector door.

2. Align the connector with the pins on the unit and align the wiring edge of the connector inside the
rim of the connector base.

3. Press down firmly to rotate the connector until it snaps into place. Check carefully to ensure that the
connector is properly aligned and fully engaged.

3

S7-200 Programmable Controller System Manual

18

Guidelines for Grounding and Wiring
Proper grounding and wiring of all electrical equipment is important to help ensure the optimum operation
of your system and to provide additional electrical noise protection for your application and the S7-200.

Prerequisites
Before you ground or install wiring to any electrical device, ensure that the power to that equipment has
been turned off. Also, ensure that the power to any related equipment has been turned off.

Ensure that you follow all applicable electrical codes when wiring the S7-200 and related equipment.
Install and operate all equipment according to all applicable national and local standards. Contact your
local authorities to determine which codes and standards apply to your specific case.

Warning
Attempts to install or wire the S7-200 or related equipment with power applied could cause electric
shock or faulty operation of equipment. Failure to disable all power to the S7-200 and related equipment
during installation or removal procedures could result in death or serious injury to personnel, and/or
damage to equipment.

Always follow appropriate safety precautions and ensure that power to the S7-200 is disabled before
attempting to install or remove the S7-200 or related equipment.

Always take safety into consideration as you design the grounding and wiring of your S7-200 system.
Electronic control devices, such as the S7-200, can fail and can cause unexpected operation of the
equipment that is being controlled or monitored. For this reason, you should implement safeguards that
are independent of the S7-200 to protect against possible personal injury or equipment damage.

Warning
Control devices can fail in an unsafe condition, resulting in unexpected operation of controlled
equipment. Such unexpected operations could result in death or serious injury to personnel, and/or
damage to equipment.

Use an emergency stop function, electromechanical overrides, or other redundant safeguards that are
independent of the S7-200.

Guidelines for Isolation
S7-200 AC power supply boundaries and I/O boundaries to AC circuits are rated 1500 VAC. These
isolation boundaries have been examined and approved as providing safe separation between AC line
and low voltage circuits.

All low voltage circuits connected to an S7-200, such as 24V power, must be supplied from an approved
source that provides safe isolation from AC line and other high voltages. Such sources include double
insulation as defined in international electrical safety standards and have outputs that are rated as SELV,
PELV, Class 2, or Limited Voltage according to various standards.

Warning
Use of non-isolated or single insulation supplies to supply low voltage circuits from an AC line can result
in hazardous voltages appearing on circuits that are expected to be touch safe, such as
communications circuits and low voltage sensor wiring.

Such unexpected high voltages could result in death or serious injury to personnel, and/or damage to
equipment.

Only use high voltage to low voltage power converters that are approved as sources of touch safe,
limited voltage circuits.

3

Installing the S7-200 Chapter 3

19

Guidelines for Grounding the S7-200
The best way to ground your application is to ensure that all the common connections of your S7-200 and
related equipment are grounded to a single point. This single point should be connected directly to the
earth ground for your system.

For improved electrical noise protection, it is recommended that all DC common returns be connected to
the same single-point earth ground. Connect the 24 VDC sensor supply common (M) to earth ground.

All ground wires should be as short as possible and should use a large wire size, such as 2 mm2

(14 AWG).

When locating grounds, remember to consider safety grounding requirements and the proper operation of
protective interrupting devices.

Guidelines for Wiring the S7-200
When designing the wiring for your S7-200, provide a single disconnect switch that simultaneously
removes power from the S7-200 CPU power supply, from all input circuits, and from all output circuits.
Provide overcurrent protection, such as a fuse or circuit breaker, to limit fault currents on supply wiring.
You might want to provide additional protection by placing a fuse or other current limit in each output
circuit.

Install appropriate surge suppression devices for any wiring that could be subject to lightning surges.

Avoid placing low-voltage signal wires and communications cables in the same wire tray with AC wires
and high-energy, rapidly switched DC wires. Always route wires in pairs, with the neutral or common wire
paired with the hot or signal-carrying wire.

Use the shortest wire possible and ensure that the wire is sized properly to carry the required current. The
connector accepts wire sizes from 2 mm2 to 0.3 mm2 (14 AWG to 22 AWG). Use shielded wires for
optimum protection against electrical noise. Typically, grounding the shield at the S7-200 gives the best
results.

When wiring input circuits that are powered by an external power supply, include an overcurrent protection
device in that circuit. External protection is not necessary for circuits that are powered by the 24 VDC
sensor supply from the S7-200 because the sensor supply is already current-limited.

Most S7-200 modules have removable connectors for user wiring. (Refer to Appendix A to determine if
your module has removable connectors.) To prevent loose connections, ensure that the connector is
seated securely and that the wire is installed securely into the connector. To avoid damaging the
connector, be careful to not over-tighten the screws. The maximum torque for the connector screw is
0.56 N-m (5 inch-pounds).

To help prevent unwanted current flows in your installation, the S7-200 provides isolation boundaries at
certain points. When you plan the wiring for your system, you should consider these isolation boundaries.
Refer to Appendix A for the amount of isolation provided and the location of the isolation boundaries.
Isolation boundaries rated less than 1500VAC must not be depended on as safety boundaries.

Tip
For a communications network, the maximum length of the communications cable is 50 m without using
a repeater. The communications port on the S7-200 is non-isolated. Refer to Chapter 7 for more
information.

3

S7-200 Programmable Controller System Manual

20

Guidelines for Suppression Circuits
You should equip inductive loads with suppression circuits to limit voltage rise when the control output
turns off. Suppression circuits protect your outputs from premature failure due to high inductive switching
currents. In addition, suppression circuits limit the electrical noise generated when switching inductive
loads.

Tip
The effectiveness of a given suppression circuit depends on the application, and you must verify it for
your particular use. Always ensure that all components used in your suppression circuit are rated for
use in the application.

DC Outputs and Relays That Control DC Loads
The DC outputs have internal protection that is adequate for most applications. Since the relays can be
used for either a DC or an AC load, internal protection is not provided.

Figure 3-3 shows a sample suppression circuit
for a DC load. In most applications, the addition
of a diode (A) across the inductive load is
suitable, but if your application requires faster
turn-off times, then the addition of a Zener diode
(B) is recommended. Be sure to size your Zener
diode properly for the amount of current in your

A – I1N4001 diode or equivalent

B – 8.2 V Zener for DC Outputs
36 V Zener for Relay Outputs

A

DC Inductive Load

B (optional)

Output
Point

diode properly for the amount of current in your
output circuit. Figure 3-3 Suppression Circuit for a DC Load

AC Outputs and Relays That Control AC Loads
The AC outputs have internal protection that is adequate for most applications. Since the relays can be
used for either a DC or an AC load, internal protection is not provided.

Figure 3-4 shows a sample suppression circuit
for an AC load. In most applications, the addition
of a metal oxide varistor (MOV) will limit the peak
voltage and provide protection for the internal
S7-200 circuits. Ensure that the working voltage
of the MOV is at least 20% greater than the
nominal line voltage.

MOV

AC Inductive Load

Output
Point

nominal line voltage.
Figure 3-4 Suppression Circuit for a AC Load

21

PLC Concepts
The basic function of the S7-200 is to monitor field inputs and, based on your control logic, turn on or off
field output devices. This chapter explains the concepts used to execute your program, the various types
of memory used, and how that memory is retained.

In This Chapter
Understanding How the S7-200 Executes Your Control Logic 22.

Accessing the Data of the S7-200 24.

Understanding How the S7-200 Saves and Restores Data 34.

Storing Your Program on a Memory Cartridge 36.

Selecting the Operating Mode for the S7-200 CPU 37.

Using Your Program to Save V Memory to the EEPROM 38.

Features of the S7-200 39.

4

S7-200 Programmable Controller System Manual

22

Understanding How the S7-200 Executes Your Control Logic
The S7-200 continuously cycles through the control logic in your program, reading and writing data.

The S7-200 Relates Your Program to the Physical Inputs and Outputs
The basic operation of the S7-200 is very simple:

� The S7-200 reads the status of the inputs.

� The program that is stored in the S7-200 uses these
inputs to evaluate the control logic. As the program
runs, the S7-200 updates the data.

� The S7-200 writes the data to the outputs.

Figure 4-1 shows a simple diagram of how an electrical
relay diagram relates to the S7-200. In this example, the
state of the switch for starting the motor is combined with the
states of other inputs. The calculations of these states then
determine the state for the output that goes to the actuator

Start_PB

M_Starter

M_StarterE_Stop

Output

Motor

Start / Stop Switch
Input

Motor Starter

determine the state for the output that goes to the actuator
which starts the motor. Figure 4-1 Controlling Inputs and Outputs

The S7-200 Executes Its Tasks in a Scan Cycle
The S7-200 executes a series of tasks repetitively. This cyclical execution of tasks is called the scan
cycle. As shown in Figure 4-2, the S7-200 performs most or all of the following tasks during a scan cycle:

� Reading the inputs: The S7-200 copies the state of
the physical inputs to the process-image input register.

� Executing the control logic in the program: The
S7-200 executes the instructions of the program and
stores the values in the various memory areas.

� Processing any communications requests: The
S7-200 performs any tasks required for
communications.

� Executing the CPU self-test diagnostics: The S7-200
ensures that the firmware, the program memory, and
any expansion modules are working properly.

� Writing to the outputs: The values stored in the
process-image output register are written to the

Process any
Communications Requests

Perform the CPU Diagnostics

Scan Cycle

Writes to the outputs

Reads the inputs

Execute the Program

process-image output register are written to the
physical outputs. Figure 4-2 S7-200 Scan Cycle

The execution of the scan cycle is dependent upon whether the S7-200 is in STOP mode or in RUN
mode. In RUN mode, your program is executed; in STOP mode, your program is not executed.

4

PLC Concepts Chapter 4

23

Reading the Inputs
Digital inputs: Each scan cycle begins by reading the current value of the digital inputs and then writing
these values to the process-image input register.

Analog inputs: The S7-200 does not update analog inputs as part of the normal scan cycle unless filtering
of analog inputs is enabled. An analog filter is provided to allow you to have a more stable signal. You can
enable the analog filter for each analog input point.

When analog input filtering is enabled for an analog input, the S7-200 updates that analog input once per
scan cycle, performs the filtering function, and stores the filtered value internally. The filtered value is then
supplied each time your program accesses the analog input.

When analog filtering is not enabled, the S7-200 reads the value of the analog input from the physical
module each time your program accesses the analog input.

Tip
Analog input filtering is provided to allow you to have a more stable analog value. Use the analog input
filter for applications where the input signal varies slowly with time. If the signal is a high-speed signal,
then you should not enable the analog filter.

Do not use the analog filter with modules that pass digital information or alarm indications in the analog
words. Always disable analog filtering for RTD, Thermocouple, and AS-Interface Master modules.

Executing the Program
During the execution phase of the scan cycle, the S7-200 executes your program, starting with the first
instruction and proceeding to the end instruction. The immediate I/O instructions give you immediate
access to inputs and outputs during the execution of either the program or an interrupt routine.

If you use interrupts in your program, the interrupt routines that are associated with the interrupt events are
stored as part of the program. The interrupt routines are not executed as part of the normal scan cycle, but
are executed when the interrupt event occurs (which could be at any point in the scan cycle).

Processing Any Communications Requests
During the message-processing phase of the scan cycle, the S7-200 processes any messages that were
received from the communications port or intelligent I/O modules.

Executing the CPU Self-test Diagnostics
During this phase of the scan cycle, the S7-200 checks for proper operation of the CPU, for memory
areas, and for the status of any expansion modules.

Writing to the Digital Outputs
At the end of every scan cycle, the S7-200 writes the values stored in the process-image output register to
the digital outputs. (Analog outputs are updated immediately, independently from the scan cycle.)

4

S7-200 Programmable Controller System Manual

24

Accessing the Data of the S7-200
The S7-200 stores information in different memory locations that have unique addresses. You can
explicitly identify the memory address that you want to access. This allows your program to have direct
access to the information. Table 4-1 shows the range of integer values that can be represented by the
different sizes of data.

Table 4-1 Decimal and Hexadecimal Ranges for the Different Sizes of Data

Representation Byte (B) Word (W) Double Word (D)

Unsigned Integer 0 to 255

0 to FF

0 to 65,535

0 to FFFF

0 to 4,294,967,295

0 to FFFF FFFF

Signed Integer –128 to +127

80 to 7F

–32,768 to +32,767

8000 to 7FFF

–2,147,483,648 to +2,147,483,647

8000 0000 to 7FFF FFFF

Real
IEEE 32-bit Floating Point

Not applicable Not applicable +1.175495E–38 to +3.402823E+38 (positive)

–1.175495E–38 to –3.402823E+38 (negative)

To access a bit in a memory area, you specify the address, which includes the memory area identifier, the
byte address, and the bit number. Figure 4-3 shows an example of accessing a bit (which is also called
“byte.bit” addressing). In this example, the memory area and byte address (I = input, and 3 = byte 3) are
followed by a period (“.”) to separate the bit address (bit 4).

I 3 4

7 6 5 4 3 2 1 0

Byte 0

Byte 1
Byte 2

Byte 3
Byte 4

Byte 5

.

Memory area identifier

Byte address: byte 3 (the
fourth byte)

Period separates the
byte address from the bit
number

Bit of byte, or bit number:
bit 4 of 8 (0 to 7)

Process-image Input (I) Memory Area

Figure 4-3 Byte.Bit Addressing

You can access data in most memory areas (V, I, Q, M, S, L, and SM) as bytes, words, or double words by
using the byte-address format. To access a byte, word, or double word of data in the memory, you must
specify the address in a way similar to specifying the address for a bit. This includes an area identifier,
data size designation, and the starting byte address of the byte, word, or double-word value, as shown in
Figure 4-4.

Data in other memory areas (such as T, C, HC, and the accumulators) are accessed by using an address
format that includes an area identifier and a device number.

4

PLC Concepts Chapter 4

25

V B 100

VB100
MSB LSB

VW100 15 8
MSB

7 0
LSB

VD100

Most significant byte Least significant byte

31 8 7 016 1524 23

Most significant byte Least significant byte

MSB = most significant bit
LSB = least significant bit

VB100

VB100 VB101

VB100 VB103VB101 VB102

MSB LSB

7 0

Byte address
Access to a byte size
Area identifier

V W 100
Byte address
Access to a word size
Area identifier

V D 100
Byte address
Access to a double word size
Area identifier

Figure 4-4 Comparing Byte, Word, and Double-Word Access to the Same Address

Accessing Data in the Memory Areas

Process-Image Input Register: I
The S7-200 samples the physical input points at the beginning of each scan cycle and writes these values
to the process-image input register. You can access the process-image input register in bits, bytes, words,
or double words:

Bit: I[byte address].[bit address] I0.1
Byte, Word, or Double Word: I[size][starting byte address] IB4

Process-Image Output Register: Q
At the end of the scan cycle, the S7-200 copies the values stored in the process-image output register to
the physical output points. You can access the process-image output register in bits, bytes, words, or
double words:

Bit: Q[byte address].[bit address] Q1.1
Byte, Word, or Double Word: Q[size][starting byte address] QB5

Variable Memory Area: V
You can use V memory to store intermediate results of operations being performed by the control logic in
your program. You can also use V memory to store other data pertaining to your process or task. You can
access the V memory area in bits, bytes, words, or double words:

Bit: V[byte address].[bit address] V10.2
Byte, Word, or Double Word: V[size][starting byte address] VW100

Bit Memory Area: M
You can use the bit memory area (M memory) as control relays to store the intermediate status of an
operation or other control information. You can access the bit memory area in bits, bytes, words, or double
words:

Bit: M[byte address].[bit address] M26.7
Byte, Word, or Double Word: M[size][starting byte address] MD20

4

S7-200 Programmable Controller System Manual

26

Timer Memory Area: T
The S7-200 provides timers that count increments of time in resolutions (time-base increments) of 1 ms,
10 ms, or 100 ms. Two variables are associated with a timer:

� Current value: this 16-bit signed integer stores the amount of time counted by the timer.

� Timer bit: this bit is set or cleared as a result of comparing the current and the preset value. The
preset value is entered as part of the timer instruction.

You access both of these variables by using the timer address (T + timer number). Access to either the
timer bit or the current value is dependent on the instruction used: instructions with bit operands access
the timer bit, while instructions with word operands access the current value. As shown in Figure 4-5, the
Normally Open Contact instruction accesses the timer bit, while the Move Word instruction accesses the
current value of the timer.

Format: T[timer number] T24

Current Value

T0
T1
T2
T3

I2.1 MOV_W

EN

OUT VW200INT3

T3
Timer Bits

T0

T3

T1
T2

0 (LSB)15 (MSB)

Accesses the current value Accesses the timer bit

Figure 4-5 Accessing the Timer Bit or the Current Value of a Timer

Counter Memory Area: C
The S7-200 provides three types of counters that count each low-to-high transition event on the counter
input(s): one type counts up only, one type counts down only, and one type counts both up and down. Two
variables are associated with a counter:

� Current value: this 16-bit signed integer stores the accumulated count.

� Counter bit: this bit is set or cleared as a result of comparing the current and the preset value. The
preset value is entered as part of the counter instruction.

You access both of these variables by using the counter address (C + counter number). Access to either
the counter bit or the current value is dependent on the instruction used: instructions with bit operands
access the counter bit, while instructions with word operands access the current value. As shown in
Figure 4-6, the Normally Open Contact instruction accesses the counter bit, while the Move Word
instruction accesses the current value of the counter.

Format: C[counter number] C24

Current Value

C0
C1
C2
C3

I2.1 MOV_W

EN

OUT VW200INC3

C3
Counter Bits

C0

C3

C1
C2

0 (LSB)15 (MSB)

Accesses the current value Accesses the counter bit

Figure 4-6 Accessing the Counter Bit or the Current Value of a Counter

4

PLC Concepts Chapter 4

27

High-Speed Counters: HC
The high-speed counters count high-speed events independent of the CPU scan. High-speed counters
have a signed, 32-bit integer counting value (or current value). To access the count value for the
high-speed counter, you specify the address of the high-speed counter, using the memory type (HC) and
the counter number (such as HC0). The current value of the high-speed counter is a read-only value and
can be addressed only as a double word (32 bits).

Format: HC[high–speed counter number] HC1

Accumulators: AC
The accumulators are read/write devices that can be used like memory. For example, you can use
accumulators to pass parameters to and from subroutines and to store intermediate values used in a
calculation. The S7-200 provides four 32-bit accumulators (AC0, AC1, AC2, and AC3). You can access
the data in the accumulators as bytes, words, or double words.

The size of the data being accessed is determined by the instruction that is used to access the
accumulator. As shown in Figure 4-7, you use the least significant 8 or 16 bits of the value that is stored in
the accumulator to access the accumulator as bytes or words. To access the accumulator as a double
word, you use all 32 bits.

For information about how to use the accumulators within interrupt subroutines, refer to the Interrupt
Instructions in Chapter 6.

Format: AC[accumulator number] AC0

MSB
7 0

LSB

15 0
LSB

31
MSB

0
LSB

AC2 (accessed as a byte)

AC1 (accessed as a word) MSB
78

7815162324

Least significant

Least significantMost significant

Byte 0Byte 1

Byte 0Byte 1Byte 2Byte 3

Most significant

AC3 (accessed as a double word)

Figure 4-7 Accessing the Accumulators

4

S7-200 Programmable Controller System Manual

28

Special Memory: SM
The SM bits provide a means for communicating information between the CPU and your program. You
can use these bits to select and control some of the special functions of the S7-200 CPU, such as: a bit
that turns on for the first scan cycle, a bit that toggles at a fixed rate, or a bit that shows the status of math
or operational instructions. (For more information about the SM bits, see Appendix D.) You can access the
SM bits as bits, bytes, words, or double words:

Bit: SM[byte address].[bit address] SM0.1
Byte, Word, or Double Word: SM[size][starting byte address] SMB86

Local Memory Area: L
The S7-200 provides 64 bytes of local memory of which 60 can be used as scratchpad memory or for
passing formal parameters to subroutines.

Tip
If you are programming in either LAD or FBD, STEP 7–Micro/WIN reserves the last four bytes of local
memory for its own use. If you program in STL, all 64 bytes of L memory are accessible, but it is
recommended that you do not use the last four bytes of L memory.

Local memory is similar to V memory with one major exception. V memory has a global scope while L
memory has a local scope. The term global scope means that the same memory location can be
accessed from any program entity (main program, subroutines, or interrupt routines). The term local scope
means that the memory allocation is associated with a particular program entity. The S7-200 allocates
64 bytes of L memory for the main program, 64 bytes for each subroutine nesting level, and 64 bytes for
interrupt routines.

The allocation of L memory for the main program cannot be accessed from subroutines or from interrupt
routines. A subroutine cannot access the L memory allocation of the main program, an interrupt routine, or
another subroutine. Likewise, an interrupt routine cannot access the L memory allocation of the main
program or of a subroutine.

The allocation of L memory is made by the S7-200 on an as-needed basis. This means that while the
main portion of the program is being executed, the L memory allocations for subroutines and interrupt
routines do not exist. At the time that an interrupt occurs or a subroutine is called, local memory is
allocated as required. The new allocation of L memory might reuse the same L memory locations of a
different subroutine or interrupt routine.

The L memory is not initialized by the S7-200 at the time of allocation and might contain any value. When
you pass formal parameters in a subroutine call, the values of the parameters being passed are placed by
the S7-200 in the appropriate L memory locations of the called subroutine. L memory locations, which do
not receive a value as a result of the formal parameter passing step, will not be initialized and might
contain any value at the time of allocation.

Bit: L[byte address].[bit address] L0.0
Byte, Word, or Double Word: L[size] [starting byte address] LB33

4

PLC Concepts Chapter 4

29

Analog Inputs: AI
The S7-200 converts an analog value (such as temperature or voltage) into a word-length (16-bit) digital
value. You access these values by the area identifier (AI), size of the data (W), and the starting byte
address. Since analog inputs are words and always start on even-number bytes (such as 0, 2, or 4), you
access them with even-number byte addresses (such as AIW0, AIW2, or AIW4). Analog input values are
read-only values.

Format: AIW[starting byte address] AIW4

Analog Outputs: AQ
The S7-200 converts a word-length (16-bit) digital value into a current or voltage, proportional to the digital
value (such as for a current or voltage). You write these values by the area identifier (AQ), size of the data
(W), and the starting byte address. Since analog outputs are words and always start on even-number
bytes (such as 0, 2, or 4), you write them with even-number byte addresses (such as AQW0, AQW2, or
AQW4). Analog output values are write-only values.

Format: AQW[starting byte address] AQW4

Sequence Control Relay (SCR) Memory Area: S
SCRs or S bits are used to organize machine operations or steps into equivalent program segments.
SCRs allow logical segmentation of the control program. You can access the S bits as bits, bytes, words,
or double words.

Bit: S[byte address].[bit address] S3.1
Byte, Word, or Double Word: S[size][starting byte address] SB4

Format for Real Numbers
Real (or floating-point) numbers are represented as 32-bit, single-precision numbers, whose format is
described in the ANSI/IEEE 754–1985 standard. See Figure 4-8. Real numbers are accessed in
double-word lengths.

For the S7-200, floating point numbers are
accurate up to 6 decimal places. Therefore, you
can specify a maximum of 6 decimal places
when entering a floating-point constant.

31 0
LSBMSB

2223

MantissaExponent

30

S

Sign

Figure 4-8 Format of a Real Number

Accuracy when Calculating Real Numbers
Calculations that involve a long series of values including very large and very small numbers can produce
inaccurate results. This can occur if the numbers differ by 10 to the power of x, where x > 6.

For example: 100 000 000 + 1 = 100 000 000

4

S7-200 Programmable Controller System Manual

30

Format for Strings
A string is a sequence of characters, with each character being stored as a byte. The first byte of the string
defines the length of the string, which is the number of characters. Figure 4-9 shows the format for a
string. A string can have a length of 0 to 254 characters, plus the length byte, so the maximum length for a
string is 255 bytes.

Character 1

Byte 3Byte 2Byte 1Byte 0

Length Character 2 Character 3

Byte 4

Character 4

Byte 254

Character 254...

Figure 4-9 Format for Strings

Specifying a Constant Value for S7-200 Instructions
You can use a constant value in many of the S7-200 instructions. Constants can be bytes, words, or
double words. The S7-200 stores all constants as binary numbers, which can then be represented in
decimal, hexadecimal, ASCII, or real number (floating point) formats. See Table 4-2.

Table 4-2 Representation of Constant Values

Representation Format Sample

Decimal [decimal value] 20047

Hexadecimal 16#[hexadecimal value] 16#4E4F

Binary 2#[binary number] 2#1010_0101_1010_0101

ASCII ’[ASCII text]’ ’Text goes between single quotes.’

Real ANSI/IEEE 754–1985 +1.175495E–38 (positive) –1.175495E–38 (negative)

Tip
The S7-200 CPU does not support “data typing” or data checking (such as specifying that the constant
is stored as an integer, a signed integer, or a double integer). For example, an Add instruction can use
the value in VW100 as a signed integer value, while an Exclusive Or instruction can use the same value
in VW100 as an unsigned binary value.

4

PLC Concepts Chapter 4

31

Addressing the Local and Expansion I/O
The local I/O provided by the CPU provides a fixed set of I/O addresses. You can add I/O points to the
S7-200 CPU by connecting expansion I/O modules to the right side of the CPU, forming an I/O chain. The
addresses of the points of the module are determined by the type of I/O and the position of the module in
the chain, with respect to the preceding input or output module of the same type. For example, an output
module does not affect the addresses of the points on an input module, and vice versa. Likewise, analog
modules do not affect the addressing of digital modules, and vice versa.

Tip
Digital expansion modules always reserve process-image register space in increments of eight bits (one
byte). If a module does not provide a physical point for each bit of each reserved byte, these unused bits
cannot be assigned to subsequent modules in the I/O chain. For input modules, the unused bits in
reserved bytes are set to zero with each input update cycle.

Analog expansion modules are always allocated in increments of two points. If a module does not
provide physical I/O for each of these points, these I/O points are lost and are not available for
assignment to subsequent modules in the I/O chain.

Figure 4-10 provides an example of the I/O numbering for a particular hardware configuration. The gaps in
the addressing (shown as gray italic text) cannot be used by your program.

Module 0 Module 1 Module 2

I2.0 Q2.0
I2.1 Q2.1
I2.2 Q2.2
I2.3 Q2.3
I2.4 Q2.4
I2.5 Q2.5
I2.6 Q2.6
I2.7 Q2.7

I3.0
I3.1
I3.2
I3.3
I3.4
I3.5
I3.6
I3.7

CPU 224
4 Analog In
1 Analog Out

8 In4 In / 4 Out

Module 3 Module 4

Q3.0
Q3.1
Q3.2
Q3.3
Q3.4
Q3.5
Q3.6
Q3.7

8 Out

AIW0 AQW0
AIW2 AQW2
AIW4
AIW6

AIW8 AQW4
AIW10 AQW6
AIW12
AIW14

4 Analog In
1 Analog Out

Expansion I/O

I0.0 Q0.0
I0.1 Q0.1
I0.2 Q0.2
I0.3 Q0.3
I0.4 Q0.4
I0.5 Q0.5
I0.6 Q0.6
I0.7 Q0.7
I1.0 Q1.0
I1.1 Q1.1
I1.2 Q1.2
I1.3 Q1.3
I1.4 Q1.4
I1.5 Q1.5
I1.6 Q1.6
I1.7 Q1.7

Local I/O

Figure 4-10 Sample I/O Addresses for Local and Expansion I/O (CPU 224)

4

S7-200 Programmable Controller System Manual

32

Using Pointers for Indirect Addressing of the S7-200 Memory Areas
Indirect addressing uses a pointer to access the data in memory. Pointers are double word memory
locations that contain the address of another memory location. You can only use V memory locations,
L memory locations, or accumulator registers (AC1, AC2, AC3) as pointers. To create a pointer, you must
use the Move Double Word instruction to move the address of the indirectly addressed memory location to
the pointer location. Pointers can also be passed to a subroutine as a parameter.

The S7-200 allows pointers to access the following memory areas: I, Q, V, M, S, T (current value only),
and C (current value only). You cannot use indirect addressing to access an individual bit or to access AI,
AQ, HC, SM, or L memory areas.

To indirectly access the data in a memory address, you create a pointer to that location by entering an
ampersand (&) and the memory location to be addressed. The input operand of the instruction must be
preceded with an ampersand (&) to signify that the address of a memory location, instead of its contents,
is to be moved into the location identified in the output operand of the instruction (the pointer).

Entering an asterisk (*) in front of an operand for an instruction specifies that the operand is a pointer. As
shown in Figure 4-11, entering *AC1 specifies that AC1 is a pointer to the word-length value being
referenced by the Move Word (MOVW) instruction. In this example, the values stored in both VB200 and
VB201 are moved to accumulator AC0.

AC1

address of VW200

AC0

1 2 3 4

1 2

3 4

5 6

7 8

V199

V200

V201

V202

V203

MOVD &VW200, AC1

MOVW *AC1, AC0

Creates the pointer by moving the address of VB200 (address of the initial
byte for VW200) to AC1.

Moves the word value pointed to by AC1 to AC0.

Figure 4-11 Creating and Using a Pointer

As shown in Figure 4-12, you can change the value of a pointer. Since pointers are 32-bit values, use
double-word instructions to modify pointer values. Simple mathematical operations, such as adding or
incrementing, can be used to modify pointer values.

AC1

address of VW200

AC0

1 2 3 4

1 2

3 4

5 6

7 8

V199

V200
V201

V202

V203

MOVD &VW200, AC1

MOVW *AC1, AC0

Creates the pointer by moving the address of VB200 (address of
VW200’s initial byte) to AC1.

Moves the word value pointed to by AC1 (VW200) to AC0.

AC0

5 6 7 8

1 2

3 4

5 6

7 8

V199

V200

V201

V202
V203

MOVW *AC1, AC0
Moves the word value pointed to by AC1 (VW202) to AC0.

+D +2, AC1
AC1

address of VW202
Adds 2 to the accumulator to point to the next word location.

Figure 4-12 Modifying a Pointer

Tip
Remember to adjust for the size of the data that you are accessing: to access a byte, increment the
pointer value by 1; to access a word or a current value for a timer or counter, add or increment the
pointer value by 2; and to access a double word, add or increment the pointer value by 4.

4

PLC Concepts Chapter 4

33

Sample Program for Using an Offset to Access Data in V Memory

This example uses LD10 as a pointer to the address VB0. You then increment the pointer by an offset stored in VD1004. LD10
then points to another address in V memory (VB0 + offset). The value stored in the V memory address pointed to by LD10 is then
copied to VB1900. By changing the value in VD1004, you can access any V memory location.

Network 1 //How to use an offset to read the value of any VB location:
//
//1. Load the starting address of the V memory to a pointer.
//2. Add the offset value to the pointer.
//3. Copy the value from the V memory location (offset) to VB1900.

LD SM0.0
MOVD &VB0, LD10
+D VD1004, LD10
MOVB *LD10, VB1900

Sample Program for Using a Pointer to Access Data in a Table

This example uses LD14 as a pointer to a recipe stored in a table of recipes that begins at VB100. In this example, VW1008
stores the index to a specific recipe in the table. If each recipe in the table is 50 bytes long, you multiply the index by 50 to obtain
the offset for the starting address of a specific recipe. By adding the offset to the pointer, you can access the individual recipe
from the table. In this example, the recipe is copied to the 50 bytes that start at VB1500.

Network 1 //How to transfer a recipe from a table of recipes:
// – Each recipe is 50 bytes long.
// – The index parameter (VW1008) identifies the recipe
// to be loaded.
//
//1. Create a pointer to the starting address of the recipe table.
//2. Convert the index of the recipe to a double-word value.
//3. Multiply the offset to accommodate the size of each recipe.
//4. Add the adjusted offset to the pointer.
//5. Transfer the selected recipe to VB1500 through VB1549.

LD SM0.0
MOVD &VB100, LD14
ITD VW1008, LD18
*D +50, LD18
+D LD18, LD14
BMB *LD14, VB1500, 50

4

S7-200 Programmable Controller System Manual

34

Understanding How the S7-200 Saves and Restores Data
The S7-200 provides a variety of safeguards to ensure that your program, the program data, and the
configuration data for your S7-200 are properly retained.

The S7-200 provides a super capacitor that
maintains the integrity of the RAM after power
has been removed. Depending on the model of
the S7-200, the super capacitor can maintain the
RAM for several days.

The S7-200 provides an EEPROM to store
permanently all of your program, user-selected
data areas, and the configuration data.

The S7-200 also supports an optional battery
cartridge that extends the amount of time that the
RAM can be maintained after power has been
removed from the S7-200. The battery cartridge
provides power only after the super capacitor has
been drained.

RAM:
maintained by the super capacitor
and the optional battery cartridge

Program block

V memory

System block

M memory

Timer and Counter
current values

EEPROM:
permanent storage

Program block

Data block

System block

M memory
(permanent area)

Forced values

Forced values

S7-200 CPU

been drained.
Figure 4-13 Storage Areas of the S7-200 CPU

Downloading and Uploading the Elements of Your Project
Your project consists of three elements: the
program block, the data block (optional), and the
system block (optional).

Figure 4-14 shows how a project is downloaded
to the S7-200.

When you download a project, the elements of a
downloaded project are stored in the the RAM
area. The S7-200 also automatically copies the
user program, data block, and the system block
to the EEPROM for permanent storage.

Program block

Data block

System block

M memory
(permanent area)

Forced values

Program block

V memory

System block

M memory

Timer and Counter
current values

Forced values

RAM EEPROM

Program block
System block
Data block: up to the maximum

V memory range

Program block
System block
Data block

S7-200 CPU

Figure 4-14 Downloading a Project to the S7-200

Figure 4-15 shows how a project is uploaded
from the S7-200.

When you upload a project to your computer, the
S7-200 uploads the system block from the RAM
and uploads the program block and the data
block from the EEPROM.

RAM EEPROM

System block
Program block
Data block

Program block

V memory

System block

M memory

Timer and Counter
current values

Forced values

Program block

Data block

System block

M memory
(permanent area)

Forced values

S7-200 CPU

Figure 4-15 Uploading a Project from the S7-200

4

PLC Concepts Chapter 4

35

Saving the Retentive M Memory Area on Power Loss
If you configured the first 14 bytes of bit memory
(MB0 to MB13) to be retentive, these bytes are
permanently saved to the EEPROM in the event
that the S7-200 loses power.

As shown in Figure 4-16, the S7-200 moves
these retentive areas of M memory to the
EEPROM.

The default setting for the first 14 bytes of
M memory is to be non-retentive. The default
disables the save that normally occurs when you
power off the S7-200.

S7-200 CPU

Program block

Data block

System block

M memory
(permanent area)

Forced values

RAM EEPROM

MB0 to MB13
(if configured as
retentive)

Program block

V memory

System block

M memory

Timer and Counter
current values

Forced values

Figure 4-16 Saving the M Memory on Power Loss

Restoring Data After Power On
At power on, the S7-200 restores the program block and the system block from the EEPROM memory, as
shown in Figure 4-17. Also at power on, the S7-200 checks the RAM to verify that the super capacitor
successfully maintained the data stored in RAM memory. If the RAM was successfully maintained, the
retentive areas of RAM are left unchanged.

The retentive and non-retentive areas of V memory are restored from the corresponding data block in the
EEPROM. If the contents of the RAM were not maintained (such as after an extended power failure), the
S7-200 clears the RAM (including both the retentive and non-retentive ranges) and sets the Retentive
Data Lost memory bit (SM0.2) for the first scan cycle following power on, and then copies the data stored
in the EEPROM to the RAM.

Program block

V memory

System block

M memory

Timer and Counter
current values

Forced values

EEPROMRAM

Program block
System block
Data block
M memory
Forced values

Sets all other
non-retentive areas
of memory to 0

If the program data was successfully
maintained, copies the data block to the
non-retentive areas of V memory in RAM.

If the program data was NOT maintained,
copies the data block and M memory
(MB0 to MB13), if defined as retentive.

Program block

Data block

System block

M memory
(permanent area)

Forced values

S7-200 CPU

Figure 4-17 Restoring Data after Power On

4

S7-200 Programmable Controller System Manual

36

Storing Your Program on a Memory Cartridge
The S7-200 supports an optional memory cartridge that provides a portable EEPROM storage for your
program. The S7-200 stores the following elements on the memory cartridge: the program block, the data
block, the system block, and the forced values.

You can copy your program to the memory cartridge from the RAM only when the S7-200 is powered on
and in STOP mode and the memory cartridge is installed. You can install or remove the memory cartridge
while the S7-200 is powered on.

Caution
Electrostatic discharge can damage the memory cartridge or the receptacle on the S7-200 CPU.

Make contact with a grounded conductive pad and/or wear a grounded wrist strap when you handle the
cartridge. Store the cartridge in a conductive container.

To install the memory cartridge, remove the plastic slot cover from the S7-200 CPU and insert the memory
cartridge in the slot. The memory cartridge is keyed for proper installation.

Copying Your Program to the Memory Cartridge

After installing the memory cartridge, use the
following procedure to copy the program:

1. Put the S7-200 CPU in STOP mode.

2. If the program has not already been
downloaded to the S7-200, download the
program.

3. Select the PLC > Program Memory
Cartridge menu command to copy the
program to the memory cartridge.
Figure 4-18 shows the elements of the
CPU memory that are stored on the
memory cartridge.

4. Optional: Remove the memory cartridge
and replace the cover on the S7-200.

Memory
Cartridge

RAM EEPROM

System block

Program block

V memory

System block

M memory

Timer and Counter
current values

Forced values

Program block
Data block
Forced values

S7-200 CPU

Program block

Data block

System block

M memory
(permanent area)

Forced values

Figure 4-18 Copying to a Memory Cartridge

Restoring the Program from a Memory Cartridge

To transfer the program from a memory cartridge to the S7-200, you must cycle the power to the S7-200
with the memory cartridge installed.

Notice
Powering on an S7-200 CPU with a blank memory cartridge or a memory cartridge that was
programmed by a different model of S7-200 CPU could cause an error. Memory cartridges that were
programmed by a lower model number CPU can be read by a higher model number CPU. However, the
opposite is not true. For example, memory cartridges that were programmed by a CPU 221 or CPU 222
can be read by a CPU 224, but memory cartridges that were programmed by a CPU 224 are rejected by
a CPU 221 or CPU 222.

Remove the memory cartridge and turn the power on for the S7-200. After power on, the memory
cartridge can then be inserted and reprogrammed, if required.

4

PLC Concepts Chapter 4

37

As shown in Figure 4-19, the S7-200 performs
the following tasks after you cycle power with the
memory cartridge installed:

1. If the contents of the memory cartridge
differ from the contents of the EEPROM,
the S7-200 clears the RAM.

2. The S7-200 copies the contents of the
memory cartridge to the RAM.

3. The S7-200 copies the program block, the
system block, and the data block to the
EEPROM.

S7-200 CPU

Program block

Data block

System block

M memory
(permanent area)

Forced values

Program block

V memory

System block

M memory

Timer and Counter
current values

Forced values

Program block
System block
Data block
Forced values

EEPROMRAM

All other areas
of memory are
set to 0.

Program block
System block
Data block
Forced values

Memory
Cartridge

Figure 4-19 Restoring from a Memory Cartridge

Selecting the Operating Mode for the S7-200 CPU
The S7-200 has two modes of operation: STOP mode and RUN mode. The status LED on the front of the
CPU indicates the current mode of operation. In STOP mode, the S7-200 is not executing the program,
and you can download a program or the CPU configuration. In RUN mode, the S7-200 is running the
program.

� The S7-200 provides a mode switch for changing the mode of operation. You can use the mode
switch (located under the front access door of the S7-200) to manually select the operating mode:
setting the mode switch to STOP mode stops the execution of the program; setting the mode switch
to RUN mode starts the execution of the program; and setting the mode switch to TERM (terminal)
mode does not change the operating mode.

If a power cycle occurs when the mode switch is set to either STOP or TERM, the S7-200 goes
automatically to STOP mode when power is restored. If a power cycle occurs when the mode switch
is set to RUN, the S7-200 goes to RUN mode when power is restored.

� STEP 7–Micro/WIN allows you to change the operating mode of the online S7-200. To enable the
software to change the operating mode, you must manually set the mode switch on the S7-200 to
either TERM or RUN. You can use the PLC > STOP or PLC > RUN menu commands or the
associated buttons on the toolbar to change the operating mode.

� You can insert the STOP instruction in your program to change the S7-200 to STOP mode. This
allows you to halt the execution of your program based on the program logic. For more information
about the STOP instruction, see Chapter 6.

4

S7-200 Programmable Controller System Manual

38

Using Your Program to Save V Memory to the EEPROM
You can save a value (byte, word, or double word) stored in any location of the V memory area to the
EEPROM. A Save-to-EEPROM operation typically increases the scan time by a maximum of 5 ms. The
value written by the Save operation overwrites any previous value stored in the V memory area of the
EEPROM.

The Save-to-EEPROM operation does not update the data in the memory cartridge.

Tip
Since the number of Save operations to the EEPROM is limited (100,000 minimum, and 1,000,000
typical), you should ensure that only necessary values are saved. Otherwise, the EEPROM can wear
out and the CPU can fail. Typically, you should perform Save operations at the occurrence of specific
events that occur rather infrequently.

For example, if the scan time of the S7-200 is 50 ms and a value was saved once per scan, the
EEPROM would last a minimum of 5,000 seconds, which is less than an hour and a half. On the other
hand, if a value were saved once an hour, the EEPROM would last a minimum of 11 years.

Copying V Memory to the EEPROM
Special Memory Byte 31 (SMB31) commands the S7-200 to copy a value in V memory to the V memory
area of the EEPROM. Special Memory Word 32 (SMW32) stores the address location of the value that is
to be copied. Figure 4-20 shows the format of SMB31 and SMW32.

Use the following steps to program the S7-200 to save or
write a specific value in V memory:

1. Load the V memory address of the value to be saved
in SMW32.

2. Load the size of the data in SM31.0 and SM31.1, as
shown in Figure 4-20.

3. Set SM31.7 to 1.

At the end of every scan cycle, the S7-200 checks SM31.7;
if SM31.7 equals 1, the specified value is saved to the
EEPROM. The operation is complete when the S7-200

7 0

sv 0 0 0 0 0 s1 s0

SMB31

Save to EEPROM:
0 = No
1 = Yes

Size of value to be
saved:
00 – byte
01 – byte
10 – word
11 – double word

15

SMW32

0V memory address

Specify the V memory address as an offset from V0.

The CPU resets
SM31.7 after each
save operation.

resets SM31.7 to 0. Figure 4-20 SMB31 and SMW32

Do not change the value in V memory until the save operation is complete.

Sample Program: Copying V Memory to the EEPROM

This example transfers VB100 to the EEPROM. On a rising edge of I0.0, if another transfer is not in progress, it loads the address
of the V memory location to be transferred to SMW32. It selects the amount of V memory to transfer (1=Byte; 2=Word; 3=Double
Word or Real). It then sets SM31.7 to have the S7-200 transfer the data at the end of the scan.

The S7-200 automatically resets SM31.7 when the transfer is complete.

Network 1 //Transfer a V memory location (VB100)
//to the EEPROM

LD I0.0
EU
AN SM31.7
MOVW +100, SMW32
MOVB 1, SMB31
S SM31.7, 1

4

PLC Concepts Chapter 4

39

Features of the S7-200
The S7-200 provides several special features that allow you to customize how the S7-200 functions to
better fit your application.

The S7-200 Allows Your Program to Immediately Read or Write the I/O
The S7-200 instruction set provides instructions that immediately read from or write to the physical I/O.
These immediate I/O instructions allow direct access to the actual input or output point, even though the
image registers are normally used as either the source or the destination for I/O accesses.

The corresponding process-image input register location is not modified when you use an immediate
instruction to access an input point. The corresponding process-image output register location is updated
simultaneously when you use an immediate instruction to access an output point.

Tip
The S7-200 handles reads of analog inputs as immediate data, unless you enable analog input filtering.
When you write a value to an analog output, the output is updated immediately.

It is usually advantageous to use the process-image register rather than to directly access inputs or
outputs during the execution of your program. There are three reasons for using the image registers:

� The sampling of all inputs at the start of the scan synchronizes and freezes the values of the inputs
for the program execution phase of the scan cycle. The outputs are updated from the image register
after the execution of the program is complete. This provides a stabilizing effect on the system.

� Your program can access the image register much more quickly than it can access I/O points,
allowing faster execution of the program.

� I/O points are bit entities and must be accessed as bits or bytes, but you can access the image
register as bits, bytes, words, or double words. Thus, the image registers provide additional
flexibility.

The S7-200 Allows Your Program to Interrupt the Scan Cycle
If you use interrupts, the routines associated with each interrupt event are stored as part of the program.
The interrupt routines are not executed as part of the normal scan cycle, but are executed when the
interrupt event occurs (which could be at any point in the scan cycle).

Interrupts are serviced by the S7-200 on a first-come-first-served basis within their respective priority
assignments. See the Interrupt instructions in Chapter 6 for more information.

4

S7-200 Programmable Controller System Manual

40

The S7-200 Allows You to Allocate Processing Time for Communications
Tasks

You can configure a percentage of the scan cycle to be dedicated for processing the communications
requests that are associated with a RUN mode edit compilation or execution status. (Run mode edit and
execution status are options provided by STEP 7–Micro/WIN to make debugging your program easier.) As
you increase the percentage of time that is dedicated to processing communications requests, you
increase the scan time, which makes your control process run more slowly.

The default percentage of the scan dedicated to
processing communications requests is set to
10%. This setting was chosen to provide a
reasonable compromise for processing the
compilation and status operations while
minimizing the impact to your control process.
You can adjust this value by 5% increments up to
a maximum of 50%. To set the scan cycle
time-slice for background communications:

1. Select the View > Component >
System Block menu command and click
on the Background Time tab.

2. Edit the properties for the communications
background time and click OK.

3. Download the modified system block to the

1.

2.

S7-200.
Figure 4-21 Communications Background Time

The S7-200 Allows You to Set the States of Digital Outputs for Stop Mode
The output table of the S7-200 allows you to determine whether to set the state of the digital output points
to known values upon a transition to the STOP mode, or to leave the outputs in the state they were in
before the transition to the STOP mode. The output table is part of the system block that is downloaded
and stored in the S7-200 and applies only to the digital outputs.

1. Select the View > Component >
System Block menu command and click
on the Output Table tab.

2. To freeze the outputs in their last state,
select the Freeze Outputs check box.

3. To copy the table values to the outputs,
enter the output table values by clicking the
checkbox for each output bit you want to
set to On (1) after a run-to-stop transition.
(The default values of the table are all
zeroes.)

4. Click OK to save your selections.

5. Download the modified system block to the
S7-200.

1.

3.

2.

Figure 4-22 Configuring the Output Table

4

PLC Concepts Chapter 4

41

The S7-200 Allows You to Define Memory to Be Retained on Loss of Power
You can define up to six retentive ranges to select the areas of memory you want to retain through power
cycles. You can define ranges of addresses in the following memory areas to be retentive: V, M, C, and T.
For timers, only the retentive timers (TONR) can be retained. The default setting for the first 14 bytes of
M Memory is to be non-retentive.

Only the current values for timers and counters can be retained: the timer and counter bits are not
retentive.

Tip
Changing the range MB0 to MB13 to be retentive enables a special feature that automatically saves
these locations to the EEPROM on power down.

To define the retentive memory:

1. Select the View > Component >
System Block menu command and click
on the Retentive Ranges tab.

2. Select the ranges of memory to be retained
following loss of power and click OK.

3. Download the modified system block to the
S7-200.

1.

2.

Figure 4-23 Retentive Memory

The S7-200 Allows You to Filter the Digital Inputs
The S7-200 allows you to select an input filter that defines a delay time (selectable from 0.2 ms to
12.8 ms) for some or all of the local digital input points. This delay helps to filter noise on the input wiring
that could cause inadvertent changes to the states of the inputs.

The input filter is part of the system block that is
downloaded and stored in the S7-200. The
default filter time is 6.4 ms. As shown in
Figure 4-24, each delay specification applies to
groups of input points.

To configure the delay times for the input filter:

1. Select the View > Component >
System Block menu command and click
on the Input Filters tab.

2. Enter the amount of delay for each group
of inputs and click OK.

3. Download the modified system block to the
S7-200.

1.

2.

Figure 4-24 Configuring the Input Filters

Tip
The digital input filter affects the input value as seen by instruction reads, input interrupts, and pulse
catches. Depending on your filter selection, your program could miss an interrupt event or pulse catch.
The high speed counters count the events on the unfiltered inputs.

4

S7-200 Programmable Controller System Manual

42

The S7-200 Allows You to Filter the Analog Inputs
The S7-200 allows you to select software filtering on individual analog inputs. The filtered value is the
average value of a preselected number of samples of the analog input. The filter specification (number of
samples and deadband) is the same for all analog inputs for which filtering is enabled.

The filter has a fast response feature to allow large changes to be quickly reflected in the filter value. The
filter makes a step function change to the latest analog input value when the input exceeds a specified
change from the current value. This change, called the deadband, is specified in counts of the digital value
of the analog input.

The default configuration is to enable filtering for
all analog inputs.

1. Select the View > Component >
System Block menu command and click
on the Analog Input Filters tab.

2. Select the analog inputs that you want to
filter, the number of samples, and the
deadband.

3. Click OK.

4. Download the modified system block to the
S7-200.

1.

2.

Figure 4-25 Analog Input Filter

Tip
Do not use the analog filter with modules that pass digital information or alarm indications in the analog
words. Always disable analog filtering for RTD, Thermocouple, and AS-Interface Master modules.

The S7-200 Allows You to Catch Pulses of Short Duration
The S7-200 provides a pulse catch feature which can be used for some or all of the local digital input
points. The pulse catch feature allows you to capture high-going pulses or low-going pulses that are of
such a short duration that they would not always be seen when the S7-200 reads the digital inputs at the
beginning of the scan cycle. When pulse catch is enabled for an input, a change in state of the input is
latched and held until the next input cycle update. This ensures that a pulse which lasts for a short period
of time is caught and held until the S7-200 reads the inputs.

You can individually enable the pulse catch
operation for each of the local digital inputs.

To access the pulse catch configuration screen:

1. Select the View > Component >
System Block menu command and click
on the Pulse Catch Bits tab.

2. Click the corresponding check box and
click OK.

3. Download the modified system block to the
S7-200.

1.

2.

Figure 4-26 Pulse Catch

4

PLC Concepts Chapter 4

43

Figure 4-27 shows the basic operation of the S7-200 with and without pulse catch enabled.

Physical Input

The S7-200 misses this pulse because the input turned
on and off before the S7-200 updated the process-image
input register

Input update

Disabled

Enabled The S7-200 catches the pulse on the physical input

Scan cycle Next scan cycle

Input update

Output from pulse catch

Figure 4-27 Operation of the S7-200 with the Pulse Catch Feature Enabled and Disabled

Because the pulse catch function operates on the input after it passes through the input filter, you must
adjust the input filter time so that the pulse is not removed by the filter. Figure 4-28 shows a block diagram
of the digital input circuit.

Optical
Isolation

Pulse Catch Enable
External
Digital Input

Digital Input
Filter

Pulse
Catch

Input to S7-200

Figure 4-28 Digital Input Circuit

Figure 4-29 shows the response of an enabled pulse catch function to various input conditions. If you
have more than one pulse in a given scan, only the first pulse is read. If you have multiple pulses in a
given scan, you should use the rising/falling edge interrupt events. (For a listing of interrupt events, see
Table 6-44.)

Input to pulse catch

Output from pulse catch

Scan cycle Next scan cycle

Input to pulse catch

Output from pulse catch

Input to pulse catch

Output from pulse catch

Input update Input update

Figure 4-29 Responses of the Pulse Catch Function to Various Input Conditions

4

S7-200 Programmable Controller System Manual

44

The S7-200 Provides Password Protection
All models of the S7-200 provide password
protection for restricting access to specific
functions.

A password authorizes access to the functions
and memory: without a password, the S7-200
provides unrestricted access. When it is
password protected, the S7-200 limits all
restricted operations according to the
configuration provided when the password was
installed.

The password is not case sensitive.

As shown in Table 4-3, the S7-200 provides
three levels of access restriction. Each level
allows certain functions to be accessible
without a password. For all three levels of
access, entering the correct password provides
access to all of the functions. The default
condition for the S7-200 is level 1 (no
restriction).

Entering the password over a network does not
compromise the password protection for the
S7-200.

Table 4-3 Restricting Access to the S7-200

CPU Function Level 1 Level 2 Level 3

Read and write user data Access
Allowed

Access
Allowed

Access
Allowed

Start, stop, and restart the
CPU

Allowed Allowed Allowed

Read and write the
time-of-day clock

Upload the user program,
data, and the CPU
configuration

Access
Allowed

Access
Allowed

Password
required

Download to the CPU Access
Allowed

Password
required

Get the execution status
Allowed required

Delete the program block,
data block, or system block

Force data or execute the
single/multiple scan

Copy to the memory
cartridge

Write outputs in STOP mode

Having one user authorized to access restricted functions does not authorize other users to access those
functions. Only one user is allowed unrestricted access to the S7-200 at a time.

Tip
After you enter the password, the authorization level for that password remains effective for up to one
minute after the programming device has been disconnected from the S7-200. Always exit
STEP 7-Micro/WIN before disconnecting the cable to prevent another user from accessing the privileges
of the programming device.

Configuring a Password for the S7-200
The System Block dialog box (Figure 4-30)
allows you to configure a password for the
S7-200:

1. Select the View > Component >
System Block menu command to display
the System Block dialog box and click on
the Password tab.

2. Select the appropriate level of access for
the S7-200.

3. Enter and verify the password.

4. Click OK.

5. Download the modified system block to the
S7-200.

1.

2.

3.

Figure 4-30 Creating a Password

4

PLC Concepts Chapter 4

45

Recovering from a Lost Password
If you forget the password, you must clear the memory of the S7-200 and reload your program. Clearing
the memory puts the S7-200 in STOP mode and resets the S7-200 to the factory-set defaults, except for
the network address, baud rate, and the time-of-day clock. To clear your program in the S7-200:

1. Select the PLC > Clear menu command to display the Clear dialog box.

2. Select all three blocks and confirm your action by clicking OK.

3. If a password had been configured, STEP 7–Micro/WIN displays a password-authorization dialog
box. To clear the password, enter CLEARPLC in the password-authorization dialog box to continue
the Clear All operation. (The CLEARPLC password is not case sensitive.)

The Clear All operation does not remove the program from a memory cartridge. Since the memory
cartridge stores the password along with the program, you must also reprogram the memory cartridge to
remove the lost password.

Warning
Clearing the S7-200 memory causes the outputs to turn off (or in the case of an analog output, to be
frozen at a specific value).

If the S7-200 is connected to equipment when you clear the memory, changes in the state of the outputs
can be transmitted to the equipment. If you had configured the “safe state” for the outputs to be different
from the factory settings, changes in the outputs could cause unpredictable operation of your
equipment, which in turn could cause death or serious injury to personnel, and/or damage to equipment.

Always follow appropriate safety precautions and ensure that your process is in a safe state before
clearing the S7-200 memory.

The S7-200 Provides Analog Adjustment Potentiometers
The analog adjustment potentiometers are located under the front access cover of the module. You can
adjust these potentiometers to increase or decrease values that are stored in bytes of Special Memory
(SMB). These read-only values can be used by the program for a variety of functions, such as updating
the current value for a timer or a counter, entering or changing the preset values, or setting limits. Use a
small screwdriver to make the adjustments: turn the potentiometer clockwise (to the right) to increase the
value, and counterclockwise (to the left) to decrease the value.

SMB28 holds the digital value that represents the position of analog adjustment 0. SMB29 holds the digital
value that represents the position of analog adjustment 1. The analog adjustment has a nominal range of
0 to 255 and a repeatability of ±2 counts.

Sample Program for Referencing the Value Entered with the Analog Adjustment Potentiometers

Network 1 //Read analog adjustment 0 (SMB28).
//Save the value as an integer in VW100.

LD I0.0
BTI SMB28, VW100

Network 2 //Use the integer value (VW100) as a preset for a timer.

LDN Q0.0
TON T33, VW100

Network 3 //Turn on Q0.0 when T33 reaches the preset value.

LD T33
= Q0.0

4

S7-200 Programmable Controller System Manual

46

The S7-200 Provides High-speed I/O

High-Speed Counters
The S7-200 provides integrated high-speed counter functions that count high speed external events
without degrading the performance of the S7-200. See Appendix A for the rates supported by your CPU
model. Each counter has dedicated inputs for clocks, direction control, reset, and start, where these
functions are supported. You can select different quadrature modes for varying the counting rate. For more
information on high-speed counters, see Chapter 6.

High-Speed Pulse Output
The S7-200 supports high-speed pulse outputs, with outputs Q0.0 and Q0.1 generating either a
high-speed pulse train output (PTO) or pulse width modulation (PWM).

The PTO function provides a square wave (50% duty cycle) output for a specified number of pulses (from
1 to 4,294,967,295 pulses) and a specified cycle time (in either microsecond or millisecond increments
either from 50 µs to 65,535 µs or from 2 ms to 65,535 ms). You can program the PTO function to produce
either one train of pulses or a pulse profile consisting of multiple trains of pulses. For example, you can
use a pulse profile to control a stepper motor through a simple ramp up, run, and ramp down sequence or
more complicated sequences. The pulse profile can consist of up to 255 segments with a segment
corresponding to the ramp up or run or ramp down operation.

The PWM function provides a fixed cycle time with a variable duty cycle output, with the cycle time and the
pulse width specified in either microsecond or millisecond increments. The cycle time has a range either
from 50 µs to 65,535 µs or from 2 ms to 65,535 ms. The pulse width time has a range either from 0 µs to
65,535 µs or from 0 ms to 65,535 ms. When the pulse width is equal to the cycle time, the duty cycle is
100 percent and the output is turned on continuously. When the pulse width is zero, the duty cycle is 0
percent and the output is turned off.

For more information on the high-speed pulse output instruction, see Chapter 6.

47

Programming Concepts, Conventions,
and Features

The S7-200 continuously executes your program to control a task or process. You use STEP 7–Micro/WIN
to create this program and download it to the S7-200. STEP 7–Micro/WIN provides a variety of tools and
features for designing, implementing, and debugging your program.

In This Chapter
Guidelines for Designing a Micro PLC System 48.

Basic Elements of a Program 49.

Using STEP 7–Micro/WIN to Create Your Programs 51.

Choosing Between the SIMATIC and IEC 1131–3 Instruction Sets 53.

Understanding the Conventions Used by the Program Editors 54.

Using Wizards To Help You Create Your Control Program 56.

Handling Errors in the S7-200 56.

Assigning Addresses and Initial Values in the Data Block Editor 58.

Using the Symbol Table for Symbolic Addressing of Variables 58.

Using Local Variables 59.

Using the Status Chart to Monitor Your Program 59.

Creating an Instruction Library 60.

Features for Debugging Your Program 60.

5

S7-200 Programmable Controller System Manual

48

Guidelines for Designing a Micro PLC System
There are many methods for designing a Micro PLC system. The following general guidelines can apply to
many design projects. Of course, you must follow the directives of your own company’s procedures and
the accepted practices of your own training and location.

Partition Your Process or Machine
Divide your process or machine into sections that have a level of independence from each other. These
partitions determine the boundaries between controllers and influence the functional description
specifications and the assignment of resources.

Create the Functional Specifications
Write the descriptions of operation for each section of the process or machine. Include the following topics:
I/O points, functional description of the operation, states that must be achieved before allowing action for
each actuator (such as solenoids, motors, and drives), description of the operator interface, and any
interfaces with other sections of the process or machine.

Design the Safety Circuits
Identify equipment requiring hard-wired logic for safety. Control devices can fail in an unsafe manner,
producing unexpected startup or change in the operation of machinery. Where unexpected or incorrect
operation of the machinery could result in physical injury to people or significant property damage,
consideration should be given to the use of electro-mechanical overrides which operate independently of
the S7-200 to prevent unsafe operations. The following tasks should be included in the design of safety
circuits:

� Identify improper or unexpected operation of actuators that could be hazardous.

� Identify the conditions that would assure the operation is not hazardous, and determine how to
detect these conditions independently of the S7-200.

� Identify how the S7-200 CPU and I/O affect the process when power is applied and removed, and
when errors are detected. This information should only be used for designing for the normal and
expected abnormal operation, and should not be relied on for safety purposes.

� Design manual or electro-mechanical safety overrides that block the hazardous operation
independent of the S7-200.

� Provide appropriate status information from the independent circuits to the S7-200 so that the
program and any operator interfaces have necessary information.

� Identify any other safety-related requirements for safe operation of the process.

Specify the Operator Stations
Based on the requirements of the functional specifications, create drawings of the operator stations.
Include the following items:

� Overview showing the location of each operator station in relation to the process or machine

� Mechanical layout of the devices, such as display, switches, and lights, for the operator station

� Electrical drawings with the associated I/O of the S7-200 CPU or expansion module

5

Programming Concepts, Conventions, and Features Chapter 5

49

Create the Configuration Drawings
Based on the requirements of the functional specification, create configuration drawings of the control
equipment. Include the following items:

� Overview showing the location of each S7-200 in relation to the process or machine

� Mechanical layout of the S7-200 and expansion I/O modules (including cabinets and other
equipment)

� Electrical drawings for each S7-200 and expansion I/O module (including the device model
numbers, communications addresses, and I/O addresses)

Create a List of Symbolic Names (optional)
If you choose to use symbolic names for addressing, create a list of symbolic names for the absolute
addresses. Include not only the physical I/O signals, but also the other elements to be used in your
program.

Basic Elements of a Program
A program block is composed of executable code and comments. The executable code consists of a main
program and any subroutines or interrupt routines. The code is compiled and downloaded to the S7-200;
the program comments are not. You can use the organizational elements (main program, subroutines, and
interrupt routines) to structure your control program.

The following example shows a program that includes a subroutine and an interrupt routine. This sample
program uses a timed interrupt for reading the value of an analog input every 100 ms.

Example:Basic Elements of a Program

M
A
I
N

Network 1 //On first scan, call subroutine 0.

LD SM0.1
CALL SBR_0

S
B
R
0

Network 1 //Set the interval to 100 ms
//for the timed interrupt.
//Enable interrupt 0.

LD SM0.0
MOVB 100, SMB34
ATCH INT_0, 10
ENI

I
N
T
0

Network 1 //Sample the Analog Input 4.

LD SM0.0
MOVW AIW4,VW100

5

S7-200 Programmable Controller System Manual

50

Main Program
The main body of the program contains the instructions that control your application. The S7-200 executes
these instructions sequentially, once per scan cycle. The main program is also referred to as OB1.

Subroutines
These optional elements of your program are executed only when called: by the main program, by an
interrupt routine, or by another subroutine. Subroutines are useful in cases where you want to execute a
function repeatedly. Rather than rewriting the logic for each place in the main program where you want the
function to occur, you can write the logic once in a subroutine and call the subroutine as many times as
needed during the main program. Subroutines provide several benefits:

� Using subroutines reduces the overall size of your program.

� Using subroutines decreases your scan time because you have moved the code out of the main
program. The S7-200 evaluates the code in the main program every scan cycle, whether the code
is executed or not, but the S7-200 evaluates the code in the subroutine only when you call the
subroutine, and does not evaluate the code during the scans in which the subroutine is not called.

� Using subroutines creates code that is portable. You can isolate the code for a function in a
subroutine, and then copy that subroutine into other programs with little or no rework.

Tip
Using V memory addresses can limit the portability of your subroutine, because it is possible for V
memory address assignment from one program to conflict with an assignment in another program.
Subroutines that use the local variable table (L memory) for all address assignments, by contrast, are
highly portable because there is no concern about address conflicts between the subroutine and
another part of the program when using local variables.

Interrupt Routines
These optional elements of your program react to specific interrupt events. You design an interrupt routine
to handle a pre-defined interrupt event. Whenever the specified event occurs, the S7-200 executes the
interrupt routine.

The interrupt routines are not called by your main program. You associate an interrupt routine with an
interrupt event, and the S7-200 executes the instructions in the interrupt routine only on each occurrence
of the interrupt event.

Tip
Because it is not possible to predict when the S7-200 might generate an interrupt, it is desirable to limit
the number of variables that are used both by the interrupt routine and elsewhere in the program.

Use the local variable table of the interrupt routine to ensure that your interrupt routine uses only the
temporary memory and does not overwrite data used somewhere else in your program.

There are a number of programming techniques you can use to ensure that data is correctly shared
between your main program and the interrupt routines. These techniques are described in Chapter 6
with the Interrupt instructions.

Other Elements of the Program
Other blocks contain information for the S7-200. You can choose to download these blocks when you
download your program.

System Block
The system block allows you to configure different hardware options for the S7-200.

Data Block
The data block stores the values for different variables (V memory) used by your program. You can use
the data block to enter initial values for the data.

System
Block

Data
Block

5

Programming Concepts, Conventions, and Features Chapter 5

51

Using STEP 7–Micro/WIN to Create Your Programs
To open STEP 7–Micro/WIN, double-click on the STEP 7–Micro/WIN icon, or select the Start > SIMATIC >
STEP 7 MicroWIN 3.2 menu command. As shown in Figure 5-1, the STEP 7–Micro/WIN project window
provides a convenient working space for creating your control program.

The toolbars provide buttons for shortcuts to frequently used menu commands. You can view or hide any
of the toolbars.

The navigation bar presents groups of icons for
accessing different programming features of
STEP 7–Micro/WIN.

The instruction tree displays all of the project
objects and the instructions for creating your
control program. You can drag and drop
individual instructions from the tree into your
program, or you can double-click an instruction to
insert it at the current location of the cursor in the
program editor.

The program editor contains the program logic
and a local variable table where you can assign
symbolic names for temporary local variables.
Subroutines and interrupt routines appear as
tabs at the bottom of the program editor window.
Click on the tabs to move between the

Instruction tree

Program Editor

Navigation bar

subroutines, interrupts, and the main program. Figure 5-1 STEP 7–Micro/WIN

STEP 7–Micro/WIN provides three editors for creating your program: Ladder Logic (LAD), Statement List
(STL), and Function Block Diagram (FBD). With some restrictions, programs written in any of these
program editors can be viewed and edited with the other program editors.

Features of the STL Editor
The STL editor displays the program as a text-based language. The STL editor allows you to create
control programs by entering the instruction mnemonics. The STL editor also allows you to create
programs that you could not otherwise create with the LAD or FBD editors. This is because you are
programming in the native language of the S7-200, rather than in a graphical editor where some
restrictions must be applied in order to draw the diagrams correctly. As shown in Figure 5-2, this
text-based concept is very similar to assembly language programming.

The S7-200 executes each instruction in the
order dictated by the program, from top to
bottom, and then restarts at the top.

STL uses a logic stack to resolve the control
logic. You insert the STL instructions for handling

LD I0.0 //Read one input
A I0.1 //AND with another input
= Q1.0 //Write value to output 1

the stack operations. Figure 5-2 Sample STL Program

Consider these main points when you select the STL editor:

� STL is most appropriate for experienced programmers.

� STL sometimes allows you to solve problems that you cannot solve very easily with the LAD or FBD
editor.

� You can only use the STL editor with the SIMATIC instruction set.

� While you can always use the STL editor to view or edit a program that was created with the LAD or
FBD editors, the reverse is not always true. You cannot always use the LAD or FBD editors to
display a program that was written with the STL editor.

Program
Editor

5

S7-200 Programmable Controller System Manual

52

Features of the LAD Editor
The LAD editor displays the program as a graphical representation similar to electrical wiring diagrams.
Ladder programs allow the program to emulate the flow of electric current from a power source through a
series of logical input conditions that in turn enable logical output conditions. A LAD program includes a
left power rail that is energized. Contacts that are closed allow energy to flow through them to the next
element, and contacts that are open block that energy flow.

The logic is separated into networks. The
program is executed one network at a time, from
left to right and then top to bottom as dictated by
the program. Figure 5-3 shows an example of a
LAD program. The various instructions are
represented by graphic symbols and include
three basic forms.

Contacts represent logic input conditions such as
switches, buttons, or internal conditions.

Coils usually represent logic output results such
as lamps, motor starters, interposing relays, or
internal output conditions.

Boxes represent additional instructions, such asBoxes represent additional instructions, such as
timers, counters, or math instructions. Figure 5-3 Sample LAD Program

Consider these main points when you select the LAD editor:

� Ladder logic is easy for beginning programmers to use.

� Graphical representation is easy to understand and is popular around the world.

� The LAD editor can be used with both the SIMATIC and IEC 1131–3 instruction sets.

� You can always use the STL editor to display a program created with the SIMATIC LAD editor.

Features of the FBD Editor
The FBD editor displays the program as a graphical representation that resembles common logic gate
diagrams. There are no contacts and coils as found in the LAD editor, but there are equivalent instructions
that appear as box instructions.

Figure 5-4 shows an example of an FBD
program.

FBD does not use the concept of left and right
power rails; therefore, the term “power flow” is
used to express the analogous concept of control
flow through the FBD logic blocks. Figure 5-4 Sample FBD Program

The logic “1” path through FBD elements is called power flow. The origin of a power flow input and the
destination of a power flow output can be assigned directly to an operand.

The program logic is derived from the connections between these box instructions. That is, the output from
one instruction (such as an AND box) can be used to enable another instruction (such as a timer) to
create the necessary control logic. This connection concept allows you to solve a wide variety of logic
problems.

Consider these main points when you select the FBD editor:

� The graphical logic gate style of representation is good for following program flow.

� The FBD editor can be used with both the SIMATIC and IEC 1131–3 instruction sets.

� You can always use the STL editor to display a program created with the SIMATIC FBD editor.

5

Programming Concepts, Conventions, and Features Chapter 5

53

Choosing Between the SIMATIC and IEC 1131–3 Instruction Sets
Most PLCs offer similar basic instructions, but there are usually small differences from vendor to vendor in
appearance, operation, and so forth. Over the last several years, the International Electrotechnical
Commission (IEC) has developed an emerging global standard that specifically relates to many aspects of
PLC programming. This standard encourages different PLC manufacturers to offer instructions that are the
same in both appearance and operation.

Your S7-200 offers two instruction sets that allow you to solve a wide variety of automation tasks. The IEC
instruction set complies with the IEC 1131–3 standard for PLC programming, and the SIMATIC instruction
set is designed specifically for the S7-200.

Tip
When STEP 7–Micro/WIN is set to the IEC mode, it displays a red diamond 〈♦) in the Instruction Tree
beside the instructions that are not defined by the IEC 1131–3 standard.

There are a few key differences between the SIMATIC instruction set and the IEC instruction set:

� The IEC instruction set is restricted to those instructions that are standard among PLC vendors.
Some instructions that are normally included in the SIMATIC set are not standard instructions in the
IEC 1131–3 specification. These are still available for use as non-standard instructions, but if you
use them, the program is no longer strictly IEC 1131–3 compatible.

� Some IEC box instructions accept multiple data formats. This practice is often referred to as
overloading. For example, rather than have separate ADD_I (Add Integer) and ADD_R (Add Real),
math boxes, the IEC ADD instruction examines the format of the data being added and
automatically chooses the correct instruction in the S7-200. This can save valuable program design
time.

� When you use the IEC instructions, the instruction parameters are automatically checked for the
proper data format, such as a signed integer versus an unsigned integer. For example, an error
results if you try to enter an integer value for an instruction that expected a bit value (on/off). This
feature helps to minimize programming syntax errors.

Consider these points when you select either the SIMATIC or the IEC instruction set:

� SIMATIC instructions usually have the shortest execution times. Some IEC instructions might have
longer execution times.

� Some IEC instructions, such as timers, counters, multiply, and divide, operate differently than their
SIMATIC counterparts.

� You can use all three program editors (LAD, STL, FBD) with the SIMATIC instruction set. You can
use only the LAD and FBD program editors for IEC instructions.

� The operation of the IEC instructions is standard for different brands of PLCs, and the knowledge
about creating an IEC-compliant program can be leveraged across PLC platforms.

� While the IEC standard defines fewer instructions than are available in the SIMATIC instruction set,
you can always include SIMATIC instructions in your IEC program.

� IEC 1131–3 specifies that variables must be declared with a type, and supports system checking of
data type.

5

S7-200 Programmable Controller System Manual

54

Understanding the Conventions Used by the Program Editors
STEP 7–Micro/WIN uses the following conventions in all of the program editors:

� A # in front of a symbol name (#var1) indicates that the symbol is of local scope.

� For IEC instructions, the % symbol indicates a direct address.

� The operand symbol “?.?” or “????” indicates that an operand configuration is required.

LAD programs are divided into segments called networks. A network is an ordered arrangement of
contacts, coils, and boxes that are all connected to form a complete circuit: no short circuits, no open
circuits, and no reverse power flow conditions exist. STEP 7–Micro/WIN allows you to create comments
for your LAD program on a network-by-network basis. FBD programming uses the network concept for
segmenting and commenting your program.

STL programs do not use networks; however, you can use the NETWORK keyword to segment your
program.

Conventions Specific to the LAD Editor
In the LAD editor, you can use the F4, F6, and F9 keys on your keyboard to access contact, box, and coil
instructions. The LAD editor uses the following conventions:

� The symbol “–––>>” is an open circuit or a required power flow connection.

� The symbol “ ” indicates that the output is an optional power flow for an instruction that can be
cascaded or connected in series.

� The symbol “>>” indicates that you can use power flow.

Conventions Specific to the FBD Editor
In the FBD editor, you can use the F4, F6, and F9 keys on your keyboard to access AND, OR, and box
instructions. The FBD editor uses the following conventions:

� The symbol “–––>>” on an EN operand is a power flow or operand indicator. It can also depict an
open circuit or a required power flow connection.

� The symbol “ ” indicates that the output is an optional power flow for an instruction that can be
cascaded or connected in series.

� The symbols “<<” and “>>” indicate that you can use
either a value or power flow.

� Negation bubbles: The logical NOT condition or
inverted condition of the operand or power flow is
shown by the small circle on the input. In Figure 5-5,
Q0.0 is equal to the NOT of I0.0 AND I0.1. Negation

Logical NOT
Condition

Immediate
Condition

bubbles are only valid for Boolean signals, which can
be specified as parameters or power flow. Figure 5-5 FBD Conventions

� Immediate indicators: As shown in Figure 5-5, the FBD editor displays an immediate condition of a
Boolean operand with a vertical line on the input to an FBD instruction. The immediate indicator
causes an immediate read from the specified physical input. Immediate operators are only valid for
physical inputs.

� Box with no input or output: A box with no input indicates an instruction that is independent of power
flow.

Tip
The number of operands can be expanded up to 32 inputs for AND and OR instructions. To add or
subtract operand tics, use the “+” and “–” keys on your keyboard.

5

Programming Concepts, Conventions, and Features Chapter 5

55

General Conventions of Programming for an S7-200

EN/ENO Definition
EN (Enable IN) is a Boolean input for boxes in LAD and FBD. Power flow must be present at this input for
the box instruction to be executed. In STL, the instructions do not have an EN input, but the top of stack
value must be a logic “1” for the corresponding STL instruction to be executed.

ENO (Enable Out) is a Boolean output for boxes in LAD and FBD. If the box has power flow at the EN
input and the box executes its function without error, then the ENO output passes power flow to the next
element. If an error is detected in the execution of the box, then power flow is terminated at the box that
generated the error.

In STL, there is no ENO output, but the STL instructions that correspond to the LAD and FBD instructions
with ENO outputs do set a special ENO bit. This bit is accessible with the AND ENO (AENO) instruction
and can be used to generate the same effect as the ENO bit of a box.

Tip
The EN/ENO operands and data types are not shown in the valid operands table for each instruction
because the operands are the same for all LAD and FBD instructions. Table 5-1 lists these operands
and data types for LAD and FBD. These operands apply to all LAD and FBD instructions shown in this
manual.

Table 5-1 EN/ENO Operands and Data Types for LAD and FBD

Program Editor Inputs/Outputs Operands Data Types

LAD EN, ENO Power Flow BOOL

FBD EN, ENO I, Q, V, M, SM, S, T, C, L BOOL

Conditional/Unconditional Inputs
In LAD and FBD, a box or a coil that is dependent upon power flow is shown with a connection to any
element on the left side. A coil or box that is independent of power flow is shown with a connection directly
to the left power rail. Table 5-2 shows an example of both a conditional and an unconditional input.

Table 5-2 Representation of Conditional and Unconditional Inputs

Power Flow LAD FBD

Instruction that is dependent on power flow (conditional)

Instruction that is independent of power flow (unconditional)

Instructions without Outputs
Boxes that cannot cascade are drawn with no Boolean outputs. These include the Subroutine Call, Jump,
and Conditional Return instructions. There are also ladder coils that can only be placed on the left power
rail. These include the Label, Next, Load SCR, Conditional SCR End, and SCR End instructions. These
are shown in FBD as boxes and are distinguished with unlabeled power inputs and no outputs.

Compare Instructions
The compare instruction is executed regardless of the state of power flow. If power flow is false, the output
is false. If power flow is true, the output is set depending upon the result of the compare. SIMATIC FBD,
IEC Ladder, and IEC FBD compare instructions are shown as boxes, although the operation is performed
as a contact.

5

S7-200 Programmable Controller System Manual

56

Using Wizards To Help You Create Your Control Program
STEP 7–Micro/WIN provides wizards to make aspects of your programming easier and more automatic. In
Chapter 6, instructions that have an associated wizard are identified by the following Instruction Wizard
icon:

Instruction
Wizard

Handling Errors in the S7-200
The S7-200 classifies errors as either fatal errors or non-fatal errors. You can view the error codes that
were generated by an error by selecting the PLC > Information menu command.

Figure 5-6 shows the PLC Information dialog box
that displays the error code and the description
of the error.

The Last Fatal field shows the previous fatal error
code generated by the S7-200. This value is
retained over power cycles if the RAM is
retained. This location is cleared either whenever
all memory of the S7-200 is cleared or if the RAM
is not retained after a prolonged power outage.

The Total Fatal field is the count of fatal errors
generated by the S7-200 since the last time the
S7-200 had all memory areas cleared. This value
is retained over power cycles if the RAM is
retained. This location is cleared whenever all
memory of the S7-200 is cleared, or when the
RAM is not retained after a prolonged power
outage.

Appendix C lists the S7-200 error codes, and
Appendix D describes the special memory (SM)
bits, which can be used for monitoring errors.

Figure 5-6 PLC Information Dialog Box

Non-Fatal Errors
Non-fatal errors are those indicating problems with the construction of the user program, with the
execution of an instruction in the user program, and with expansion I/O modules. You can use
STEP 7–Micro/WIN to view the error codes that were generated by the non-fatal error. There are three
basic categories of non-fatal errors.

Program-compile errors
The S7-200 compiles the program as it downloads. If the S7-200 detects that the program violates a
compilation rule, the download is aborted and an error code is generated. (A program that was already
downloaded to the S7-200 would still exist in the EEPROM and would not be lost.) After you correct your
program, you can download it again. Refer to Appendix C for a list of compile rule violations.

5

Programming Concepts, Conventions, and Features Chapter 5

57

I/O errors
At startup, the S7-200 reads the I/O configuration from each module. During normal operation, the S7-200
periodically checks the status of each module and compares it against the configuration obtained during
startup. If the S7-200 detects a difference, the S7-200 sets the configuration error bit in the module error
register. The S7-200 does not read input data from or write output data to that module until the module
configuration again matches the one obtained at startup.

The module status information is stored in special memory (SM) bits. Your program can monitor and
evaluate these bits. Refer to Appendix D for more information about the SM bits used for reporting I/O
errors. SM5.0 is the global I/O error bit and remains set while an error condition exists on an expansion
module.

Program execution errors
Your program can create error conditions while being executed. These errors can result from improper use
of an instruction or from the processing of invalid data by an instruction. For example, an indirect-address
pointer that was valid when the program compiled could be modified during the execution of the program
to point to an out-of-range address. This is an example of a run-time programming problem. SM4.3 is set
upon the occurrence of a run-time programming problem and remains set while the S7-200 is in RUN
mode. (Refer to Appendix C for the list of run-time programming problems). Program execution error
information is stored in special memory (SM) bits. Your program can monitor and evaluate these bits.
Refer to Appendix D for more information about the SM bits used for reporting program execution errors.

The S7-200 does not change to STOP mode when it detects a non-fatal error. It only logs the event in SM
memory and continues with the execution of your program. However, you can design your program to
force the S7-200 to STOP mode when a non-fatal error is detected. The following sample program shows
a network of a program that is monitoring two of the global non-fatal error bits and changes the S7-200 to
STOP whenever either of these bits turns on.

Sample Program: Logic for Detecting a Non-Fatal Error Condition

Network 1 //When an I/O error or a run-time error occurs, go to STOP mode

LD SM5.0
O SM4.3
STOP

Fatal Errors
Fatal errors cause the S7-200 to stop the execution of your program. Depending upon the severity of the
fatal error, it can render the S7-200 incapable of performing any or all functions. The objective for handling
fatal errors is to bring the S7-200 to a safe state from which the S7-200 can respond to interrogations
about the existing error conditions. When a fatal error is detected, the S7-200 changes to STOP mode,
turns on the System Fault LED and the STOP LED, overrides the output table, and turns off the outputs.
The S7-200 remains in this condition until the fatal error condition is corrected.

Once you have made the changes to correct the fatal error condition, use one of the following methods to
restart the S7-200:

� Turn the power off and then on.

� Change the mode switch from RUN or TERM to STOP.

� Select the PLC > Power-Up Reset menu command from STEP 7–Micro/WIN to restart the S7-200.
This forces the S7-200 to restart and clear any fatal errors.

Restarting the S7-200 clears the fatal error condition and performs power-up diagnostic testing to verify
that the fatal error has been corrected. If another fatal error condition is found, the S7-200 again sets the
fault LED, indicating that an error still exists. Otherwise, the S7-200 begins normal operation.

Some error conditions can render the S7-200 incapable of communication. In these cases, you cannot
view the error code from the S7-200. These types of errors indicate hardware failures that require the
S7-200 to be repaired; they cannot be fixed by changes to the program or clearing the memory of the
S7-200.

5

S7-200 Programmable Controller System Manual

58

Assigning Addresses and Initial Values in the Data Block Editor
The data block editor allows you to make initial data assignments to V memory (variable memory) only.
You can make assignments to bytes, words, or double words of V memory. Comments are optional.

The data block editor is a free-form text editor;
that is, no specific fields are defined for particular
types of information. After you finish typing a line
and press the Enter key, the data block editor
formats the line (aligns columns of addresses,
data, comments; capitalizes V memory
addresses) and redisplays it. The data block
editor assigns an appropriate amount of V
memory based on your previous address
allocations and the size (byte, word, or double
word) of the data value(s). Figure 5-7 Data Block Editor

The first line of the data block must have an explicit address assignment. Subsequent lines can have
explicit or implicit address assignments. An implicit address assignment is made by the editor when you
type multiple data values after a single address assignment, or type a line that contains only data values.

The data block editor accepts uppercase or lowercase letters and allows commas, tabs, or spaces to
serve as separators between addresses and data values.

Using the Symbol Table for Symbolic Addressing of Variables
The symbol table allows you to define and edit the symbols that can be accessed by the symbolic name
anywhere in your program. You can create multiple symbol tables. There is also a tab in the symbol table
for system-defined symbols that you can use in your program. The symbol table is also referred to as the
global variable table.

You can identify the operands of the instructions in your program absolutely or symbolically. An absolute
reference uses the memory area and bit or byte location to identify the address. A symbolic reference
uses a combination of alphanumeric characters to identify the address.

For SIMATIC programs, you make global symbol
assignments by using the symbol table. For IEC
programs, you make global symbol assignments
by using the global variable table.

To assign a symbol to an address:

1. Click on the Symbol Table icon in the1. Click on the Symbol Table icon in the
navigation bar to open the symbol table. Figure 5-8 Symbol Table

2. Enter the symbol name (for example, Input1) in the Symbol Name column. The maximum symbol
length is 23 characters.

3. Enter the address (for example, I0.0) in the Address column.

4. For an IEC global variable table, enter a value in the Data Type column or select one from the
listbox.

You can create multiple symbol tables; however, you cannot use the same string more than once as a
global symbol assignment, neither within a single table nor among several tables.

Data
Block

Symbol
Table

5

Programming Concepts, Conventions, and Features Chapter 5

59

Using Local Variables
You can use the local variable table of the
program editor to assign variables that are
unique to an individual subroutine or interrupt
routine. See Figure 5-9.

Local variables can be used as parameters that
are passed in to a subroutine and they increase
the portability or reuse of a subroutine.

Figure 5-9 Local Variable Table

Using the Status Chart to Monitor Your Program
A status chart allows you to monitor or modify the values of the process variables as your S7-200 runs the
control program. You can track the status of program inputs, outputs, or variables by displaying the current
values. The status chart also allows you to force or change the values of the process variables.

You can create multiple status charts in order to view elements from different portions of your program.

To access the status chart, select the View > Component > Status Chart menu command or click the
Status Chart icon in the navigation bar.

When you create a status chart, you enter
addresses of process variables for monitoring.
You cannot view the status of constants,
accumulators, or local variables. You can display
a timer or counter value either as a bit or as a
word. Displaying the value as a bit shows the
status of the timer or counter bit; displaying the
value as a word shows the timer or counter
value. Figure 5-10 Status Chart

To build a status chart and monitor the variables:

1. Enter the address for each desired value in the Address field.

2. Select the data type in the Format column.

3. To view the status of the process variables in your S7-200, select the Debug > Chart Status menu
command.

4. To continuously sample the values, or to perform a single read of the status, click the button on the
toolbar. The Status Chart also allows you to modify or force values for the different process
variables.

You can insert additional rows in your Status Chart by selecting the Edit > Insert > Row menu command.

Tip
You can create multiple status charts to divide the variables into logical groups so that each group can
be viewed in a shorter and separate status chart.

Status
Chart

5

S7-200 Programmable Controller System Manual

60

Creating an Instruction Library
STEP 7–Micro/WIN allows you either to create a custom library of instructions, or to use a library created
by someone else. See Figure 5-11.

To create a library of instructions, you create standard STEP 7–Micro/WIN subroutine and interrupt
routines and group them together. You can hide the code in these routines to prevent accidental changes
or to protect the technology (know-how) of the author.

To create an instruction library, perform the following tasks:

1. Write the program as a standard STEP 7–Micro/WIN
project and put the function to be included in the
library into subroutines or interrupt routines.

2. Ensure that all V memory locations in the subroutines
or interrupt routines have been assigned a symbolic
name. To minimize the amount of V memory that the
library requires, use sequential V memory locations.

3. Rename the subroutines or interrupt routines to the
names that you want to appear in the instruction
library.

4. Select the File > Create Library menu command to
compile the new instruction library.

For more information about creating libraries, refer to the
online help for STEP 7–Micro/WIN.

Use the following procedure to access an instruction in an

Instruction Library

instruction library: Figure 5-11 Instruction Tree with Libraries

1. Add the Libraries directory to the instruction tree by selecting the File > Add Libraries menu
command.

2. Select the specific instruction and insert it into your program (as you would any standard
instruction).

If the library routine requires any V memory, STEP 7–Micro/WIN prompts you when the project is
compiled to assign a block of memory. Use the Library Memory Allocation dialog box to assign
blocks of memory.

Features for Debugging Your Program
STEP 7–Micro/WIN provides the following features to help you debug your program:

� Bookmarks in your program to make it easy to move back and forth between lines of a long
program.

� Cross Reference table allow you to check the references used in your program.

� RUN-mode editing allows you to make small changes to your program with minimal disturbance to
the process controlled by the program. You can also download the program block when you are
editing in RUN mode.

For more information about debugging your program, refer to Chapter 8.

61

S7-200 Instruction Set
This chapter describes the SIMATIC and IEC 1131 instruction set for the S7-200 Micro PLCs.

In This Chapter
Conventions Used to Describe the Instructions 63.

S7-200 Memory Ranges and Features 64.

Bit Logic Instructions 66.

Contacts 66.

Coils 68.
Logic Stack Instructions 70.
Set and Reset Dominant Bistable Instructions 72.

Clock Instructions 73.

Communications Instructions 74.

Network Read and Network Write Instructions 74.

Transmit and Receive Instructions (Freeport) 79.
Get Port Address and Set Port Address Instructions 88.

Compare Instructions 89.

Comparing Numerical Values 89.
Compare String 91.

Conversion Instructions 92.

Standard Conversion Instructions 92.
ASCII Conversion Instructions 96.
String Conversion Instructions 100.

Encode and Decode Instructions 105.
Counter Instructions 106.

SIMATIC Counter Instructions 106.

IEC Counter Instructions 109.
High-Speed Counter Instructions 111.

Pulse Output Instruction 125.

Math Instructions 140.

Add, Subtract, Multiply, and Divide Instructions 140.

Multiply Integer to Double Integer and Divide Integer with Remainder 142.
Numeric Functions Instructions 143.
Increment and Decrement Instructions 144.

Proportional/Integral/Derivative (PID) Loop Instruction 145.

Interrupt Instructions 155.

Logical Operations Instructions 162.

Invert Instructions 162.
AND, OR, and Exclusive OR Instructions 163.

Move Instructions 165.

Move Byte, Word, Double Word, or Real 165.
Move Byte Immediate (Read and Write) 166.
Block Move Instructions 167.

6

S7-200 Programmable Controller System Manual

62

Program Control Instructions 168.

Conditional End 168.
Stop 168.
Watchdog Reset 168.

For–Next Loop Instructions 170.
Jump Instructions 172.
Sequence Control Relay (SCR) Instructions 173.

Shift and Rotate Instructions 179.

Shift Right and Shift Left Instructions 179.
Rotate Right and Rotate Left Instructions 179.

Shift Register Bit Instruction 181.
Swap Bytes Instruction 183.

String Instructions 184.

Table Instructions 189.

Add To Table 189.
First-In-First-Out and Last-In-First-Out 190.

Memory Fill 192.
Table Find 193.

Timer Instructions 196.

SIMATIC Timer Instructions 196.
IEC Timer Instructions 201.

Subroutine Instructions 203.

6

S7-200 Instruction Set Chapter 6

63

Conventions Used to Describe the Instructions
Figure 6-1 shows a typical description for an instruction and points to the different areas used to describe
the instruction and its operation. The illustration of the instruction shows the format in LAD, FBD, and STL.
The operand table lists the operands for the instruction and shows the valid data types, memory areas
and sizes for each operand.

EN/ENO operands and data types are not shown in the instruction operand table because the operands
are the same for all LAD and FBD instructions.

� For LAD: EN and ENO are power flow and are BOOL data types.

� For FBD: EN and ENO are I, Q, V, M, SM, S, T, C, L, or power flow and are BOOL data types.

LAD and FBD instructions

Valid data types

Operands for the
instruction

Valid memory areas and sizes for
the operands

Description of the instruction
and operands

STL instruction

List of the error conditions
that affect ENO and any SM
bits affected

Figure 6-1 Instruction Descriptions

6

S7-200 Programmable Controller System Manual

64

S7-200 Memory Ranges and Features

Table 6-1 Memory Ranges and Features for the S7-200 CPUs

Description CPU 221 CPU 222 CPU 224 CPU 226 CPU 226XM

ÑÑÑÑÑÑÑÑUser program size ÑÑÑÑÑ2 Kwords ÑÑÑÑÑÑ2 Kwords ÑÑÑÑÑ4 Kwords ÑÑÑÑÑÑ4 Kwords ÑÑÑÑÑ8 KwordsÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑUser data size

ÑÑÑÑÑ
ÑÑÑÑÑ1 Kwords

ÑÑÑÑÑÑ
ÑÑÑÑÑÑ1 Kwords

ÑÑÑÑÑ
ÑÑÑÑÑ2.5 Kwords

ÑÑÑÑÑÑ
ÑÑÑÑÑÑ2.5 Kwords

ÑÑÑÑÑ
ÑÑÑÑÑ5 KwordsÑÑÑÑÑÑÑÑ

ÑÑÑÑÑÑÑÑ
Process-image input register

ÑÑÑÑÑ
ÑÑÑÑÑ

I0.0 to I15.7
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

I0.0 to I15.7
ÑÑÑÑÑ
ÑÑÑÑÑ

I0.0 to I15.7
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

I0.0 to I15.7
ÑÑÑÑÑ
ÑÑÑÑÑ

I0.0 to I15.7
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Process-image output register ÑÑÑÑÑ
ÑÑÑÑÑ

Q0.0 to Q15.7 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

Q0.0 to Q15.7 ÑÑÑÑÑ
ÑÑÑÑÑ

Q0.0 to Q15.7 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

Q0.0 to Q15.7 ÑÑÑÑÑ
ÑÑÑÑÑ

Q0.0 to Q15.7

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Analog inputs (read only) ÑÑÑÑÑ
ÑÑÑÑÑ

–– ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

AIW0 to AIW30 ÑÑÑÑÑ
ÑÑÑÑÑ

AIW0 to AIW62 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

AIW0 to AIW62 ÑÑÑÑÑ
ÑÑÑÑÑ

AIW0 to AIW62

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Analog outputs (write only) ÑÑÑÑÑ
ÑÑÑÑÑ

–– ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

AQW0 to AQW30 ÑÑÑÑÑ
ÑÑÑÑÑ

AQW0 to AQW62ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

AQW0 to AQW62 ÑÑÑÑÑ
ÑÑÑÑÑ

AQW0 to AQW62

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Variable memory (V) ÑÑÑÑÑ
ÑÑÑÑÑ

VB0 to VB2047 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

VB0 to VB2047 ÑÑÑÑÑ
ÑÑÑÑÑ

VB0 to VB5119 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

VB0 to VB5119 ÑÑÑÑÑ
ÑÑÑÑÑ

VB0 to VB10239

ÑÑÑÑÑÑÑÑLocal memory (L)1 ÑÑÑÑÑLB0 to LB63 ÑÑÑÑÑÑLB0 to LB63 ÑÑÑÑÑLB0 to LB63 ÑÑÑÑÑÑLB0 to LB63 ÑÑÑÑÑLB0 to LB63ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑBit memory (M)

ÑÑÑÑÑ
ÑÑÑÑÑM0.0 to M31.7

ÑÑÑÑÑÑ
ÑÑÑÑÑÑM0.0 to M31.7

ÑÑÑÑÑ
ÑÑÑÑÑM0.0 to M31.7

ÑÑÑÑÑÑ
ÑÑÑÑÑÑM0.0 to M31.7

ÑÑÑÑÑ
ÑÑÑÑÑM0.0 to M31.7ÑÑÑÑÑÑÑÑ

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Special Memory (SM)

Read only

ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ

SM0.0 to SM179.7

SM0.0 to SM29.7

ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

SM0.0 to SM299.7

SM0.0 to SM29.7

ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ

SM0.0 to SM549.7

SM0.0 to SM29.7

ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

SM0.0 to SM549.7

SM0.0 to SM29.7

ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ

SM0.0 to SM549.7

SM0.0 to SM29.7

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Timers

Retentive on-delay 1 ms

10 ms

100 ms

On/Off delay 1 ms

10 ms

100 ms

ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ

256 (T0 to T255)

T0, T64

T1 to T4, and
T65 to T68

T5 to T31, and
T69 to T95

T32, T96

T33 to T36, and
T97 to T100

T37 to T63, and
T101 to T255

ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

256 (T0 to T255)

T0, T64

T1 to T4, and
T65 to T68

T5 to T31, and
T69 to T95

T32, T96

T33 to T36, and
T97 to T100

T37 to T63, and
T101 to T255

ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ

256 (T0 to T255)

T0, T64

T1 to T4, and
T65 to T68

T5 to T31, and
T69 to T95

T32, T96

T33 to T36, and
T97 to T100

T37 to T63, and
T101 to T255

ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

256 (T0 to T255)

T0, T64

T1 to T4, and
T65 to T68

T5 to T31, and
T69 to T95

T32, T96

T33 to T36, and
T97 to T100

T37 to T63, and
T101 to T255

ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ

256 (T0 to T255)

T0, T64

T1 to T4, and
T65 to T68

T5 to T31, and
T69 to T95

T32, T96

T33 to T36, and
T97 to T100

T37 to T63, and
T101 to T255ÑÑÑÑÑÑÑÑ

ÑÑÑÑÑÑÑÑ
Counters

ÑÑÑÑÑ
ÑÑÑÑÑ

C0 to C255
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

C0 to C255
ÑÑÑÑÑ
ÑÑÑÑÑ

C0 to C255
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

C0 to C255
ÑÑÑÑÑ
ÑÑÑÑÑ

C0 to C255
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

High-speed counters ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ

HC0, HC3, HC4,
and HC5

ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

HC0, HC3, HC4,
and HC5

ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ

HC0 to HC5 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

HC0 to HC5 ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ

HC0 to HC5

ÑÑÑÑÑÑÑÑSequential control relays (S) ÑÑÑÑÑS0.0 to S31.7 ÑÑÑÑÑÑS0.0 to S31.7 ÑÑÑÑÑS0.0 to S31.7 ÑÑÑÑÑÑS0.0 to S31.7 ÑÑÑÑÑS0.0 to S31.7ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Accumulator registers
ÑÑÑÑÑ
ÑÑÑÑÑ

AC0 to AC3
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

AC0 to AC3
ÑÑÑÑÑ
ÑÑÑÑÑ

AC0 to AC3
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

AC0 to AC3
ÑÑÑÑÑ
ÑÑÑÑÑ

AC0 to AC3
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Jumps/Labels
ÑÑÑÑÑ
ÑÑÑÑÑ

0 to 255
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

0 to 255
ÑÑÑÑÑ
ÑÑÑÑÑ

0 to 255
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

0 to 255
ÑÑÑÑÑ
ÑÑÑÑÑ

0 to 255

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Call/Subroutine ÑÑÑÑÑ
ÑÑÑÑÑ

0 to 63 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

0 to 63 ÑÑÑÑÑ
ÑÑÑÑÑ

0 to 63 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

0 to 63 ÑÑÑÑÑ
ÑÑÑÑÑ

0 to 127

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Interrupt routines ÑÑÑÑÑ
ÑÑÑÑÑ

0 to 127 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

0 to 127 ÑÑÑÑÑ
ÑÑÑÑÑ

0 to 127 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

0 to 127 ÑÑÑÑÑ
ÑÑÑÑÑ

0 to 127

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Positive/negative transitions ÑÑÑÑÑ
ÑÑÑÑÑ

256 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

256 ÑÑÑÑÑ
ÑÑÑÑÑ

256 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

256 ÑÑÑÑÑ
ÑÑÑÑÑ

256

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

PID loops ÑÑÑÑÑ
ÑÑÑÑÑ

0 to 7 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

0 to 7 ÑÑÑÑÑ
ÑÑÑÑÑ

0 to 7 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

0 to 7 ÑÑÑÑÑ
ÑÑÑÑÑ

0 to 7

ÑÑÑÑÑÑÑÑPorts ÑÑÑÑÑPort 0 ÑÑÑÑÑÑPort 0 ÑÑÑÑÑPort 0 ÑÑÑÑÑÑPort 0, Port 1 ÑÑÑÑÑPort 0, Port 1

1 LB60 to LB63 are reserved by STEP 7–Micro/WIN, version 3.0 or later.

6

S7-200 Instruction Set Chapter 6

65

Table 6-2 Operand Ranges for the S7-200 CPUs

Access Method CPU 221 CPU 222 CPU 224, CPU 226 CPU 226XM

Bit access (byte.bit) I

Q

V

M

SM

S

T

C

L

0.0 to 15.7

0.0 to 15.7

0.0 to 2047.7

0.0 to 31.7

0.0 to 179.7

0.0 to 31.7

0 to 255

0 to 255

0.0 to 59.7

0.0 to 15.7

0.0 to 15.7

0.0 to 2047.7

0.0 to 31.7

0.0 to 299.7

0.0 to 31.7

0 to 255

0 to 255

0.0 to 59.7

0.0 to 15.7

0.0 to 15.7

0.0 to 5119.7

0.0 to 31.7

0.0 to 549.7

0.0 to 31.7

0 to 255

0 to 255

0.0 to 59.7

0.0 to 15.7

0.0 to 15.7

0.0 to 10239.7

0.0 to 31.7

0.0 to 549.7

0.0 to 31.7

0 to 255

0 to 255

0.0 to 59.7

Byte access IB

QB

VB

MB

SMB

SB

L

AC

0 to 15

0 to 15

0 to 2047

0 to 31

0 to 179

0 to 31

0 to 63

0 to 3

0 to 15

0 to 15

0 to 2047

0 to 31

0 to 299

0 to 31

0 to 63

0 to 3

0 to 15

0 to 15

0 to 5119

0 to 31

0 to 549

0 to 31

0 to 63

0 to 3

0 to 15

0 to 15

0 to 10239

0 to 31

0 to 549

0 to 31

0 to 255

0 to 255

Word access IW

QW

VW

MW

SMW

SW

T

C

LW

AC

AIW

AQW

0 to 14

0 to 14

0 to 2046

0 to 30

0 to 178

0 to 30

0 to 255

0 to 255

0 to 58

0 to 3

None

None

0 to 14

0 to 14

0 to 2046

0 to 30

0 to 298

0 to 30

0 to 255

0 to 255

0 to 58

0 to 3

0 to 30

0 to 30

0 to 14

0 to 14

0 to 5118

0 to 30

0 to 548

0 to 30

0 to 255

0 to 255

0 to 58

0 to 3

0 to 62

0 to 62

0 to 14

0 to 14

0 to 10238

0 to 30

0 to 548

0 to 30

0 to 255

0 to 255

0 to 58

0 to 3

0 to 62

0 to 62

Double word access ID

QD

VD

MD

SMD

SD

LD

AC

HC

0 to 12

0 to 12

0 to 2044

0 to 28

0 to 176

0 to 28

0 to 56

0 to 3

0, 3, 4, 5

0 to 12

0 to 12

0 to 2044

0 to 28

0 to 296

0 to 28

0 to 56

0 to 3

0, 3, 4, 5

0 to 12

0 to 12

0 to 5116

0 to 28

0 to 546

0 to 28

0 to 56

0 to 3

0 to 5

0 to 12

0 to 12

0 to 10236

0 to 28

0 to 546

0 to 28

0 to 56

0 to 3

0 to 5

6

S7-200 Programmable Controller System Manual

66

Bit Logic Instructions

Contacts

Standard Contacts
The Normally Open contact instructions (LD, A, and O) and
Normally Closed contact instructions (LDN, AN, ON) obtain the
referenced value from the memory or from the process-image
register. The standard contact instructions obtain the referenced
value from the memory (or process-image register if the data type is
I or Q).

The Normally Open contact is closed (on) when the bit is equal to 1,
and the Normally Closed contact is closed (on) when the bit is equal
to 0. In FBD, inputs to both the And and Or boxes can be expanded
to a maximum of 32 inputs. In STL, the Normally Open instructions
Load, AND, or OR the bit value of the address bit to the top of the
stack, and the Normally Closed instructions Load, AND, or OR the
logical NOT of the bit value to the top of the stack.

Immediate Contacts
An immediate contact does not rely on the S7-200 scan cycle to
update; it updates immediately. The Normally Open Immediate
contact instructions (LDI, AI, and OI) and Normally Closed
Immediate contact instructions (LDNI, ANI, and ONI) obtain the
physical input value when the instruction is executed, but the
process-image register is not updated.

The Normally Open Immediate contact is closed (on) when the
physical input point (bit) is 1, and the Normally Closed Immediate
contact is closed (on) when the physical input point (bit) is 0. The
Normally Open instructions immediately Load, AND, or OR the
physical input value to the top of the stack, and the Normally Closed
instructions immediately Load, AND, or OR the logical NOT of the
value of the physical input point to the top of the stack.

NOT Instruction
The Not instruction (NOT) changes the state of power flow input
(that is, it changes the value on the top of the stack from 0 to 1 or
from 1 to 0).

Positive and Negative Transition Instructions
The Positive Transition contact instruction (EU) allows power to flow for one scan for each off-to-on
transition. The Negative Transition contact instruction (ED) allows power to flow for one scan for each
on-to-off transition. For the Positive Transition instruction, detection of a 0-to-1 transition in the value on
the top of the stack sets the top of the stack value to 1; otherwise, it is set to 0. For a Negative Transition
instruction, detection of a 1-to-0 transition in the value on the top of the stack sets the top of the stack
value to 1; otherwise, it is set to 0.

For run-time editing (when you edit your program in RUN mode), you must enter a parameter for the
Positive Transition and Negative Transition instructions. Refer to Chapter 5 for more information about
editing in RUN mode.

Table 6-3 Valid Operands for the Bit Logic Input Instructions

Inputs/Outputs Data Type Operands

Bit BOOL I, Q, V, M, SM, S, T, C, L, Power Flow

Bit (immediate) BOOL I

6

S7-200 Instruction Set Chapter 6

67

Tip
Because the Positive Transition and Negative Transition instructions require an on-to-off or an off-to-on
transition, you cannot detect an edge-up or edge-down transition on the first scan. During the first scan,
the S7-200 sets the state of the bit specified by these instructions. On subsequent scans, these
instructions can then detect transitions for the specified bit.

Example: Contact Instructions

Network 1 //N.O. contacts I0.0 AND I0.1 must be on (closed) to activate
//Q0.0. The NOT instruction acts as an inverter.
//In RUN mode, Q0.0 and Q0.1 have opposite logic states.

LD I0.0
A I0.1
= Q0.0
NOT
= Q0.1

Network 2 //N.O. contact I0.2 must be on or N.C. contact I0.3 must be off
//to activate Q0.2. One or more parallel LAD branches
//(OR logic inputs) must be true to make the output active.

LD I0.2
ON I0.3
= Q0.2

Network 3 //A positive Edge Up input on a P contact or a negative Edge
//Down input on a N contact outputs a pulse with a 1 scan cycle
//duration. In RUN mode, the pulsed state changes of Q0.4 and
//Q0.5 are too fast to be visible in program status view.
//The Set and Reset outputs latch the pulse in Q0.3 and
//make the state change visible in program status view.

LD I0.4
LPS
EU
S Q0.3, 1
= Q0.4
LPP
ED
R Q0.3, 1
= Q0.5

Timing Diagram

Network 2

Network 3

Network 1

6

S7-200 Programmable Controller System Manual

68

Coils

Output
The Output instruction (=) writes the new value for the output bit to
the process-image register. When the Output instruction is
executed, the S7-200 turns the output bit in the process-image
register on or off. For LAD and FBD, the specified bit is set equal to
power flow. For STL, the value on the top of the stack is copied to
the specified bit.

Output Immediate
The Output Immediate instruction (=I) writes the new value to both
the physical output and the corresponding process-image register
location when the instruction is executed.

When the Output Immediate instruction is executed, the physical
output point (Bit) is immediately set equal to power flow. For STL,
the instruction immediately copies the value on the top of the stack
to the specified physical output bit (STL). The “I” indicates an
immediate reference; the new value is written to both the physical
output and the corresponding process-image register location when
the instruction is executed. This differs from the non-immediate
references, which write the new value to the process-image register
only.

Set and Reset
The Set (S) and Reset (R) instructions set (turn on) or reset (turn off)
the specified number of points (N), starting at the specified address
(Bit). You can set or reset from 1 to 255 points.

If the Reset instruction specifies either a timer bit (T) or counter bit
(C), the instruction resets the timer or counter bit and clears the
current value of the timer or counter.

Error conditions that set ENO = 0

� 0006 (indirect address)

� 0091 (operand out of range)

Set Immediate and Reset Immediate
The Set Immediate and Reset Immediate instructions immediately set (turn on) or immediately reset (turn
off) the number of points (N), starting at specified address (Bit). You can set or reset from 1 to 128 points
immediately.

The “I” indicates an immediate reference; when the instruction is executed, the new value is written to
both the physical output point and the corresponding process-image register location. This differs from
the non-immediate references, which write the new value to the process-image register only.

Error conditions that set ENO = 0

� 0006 (indirect address)

� 0091 (operand out of range)

Table 6-4 Valid Operands for the Bit Logic Output Instructions

Inputs/Outputs Data Type Operands

Bit BOOL I, Q, V, M, SM, S, T, C, L

Bit (immediate) BOOL Q

N BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

6

S7-200 Instruction Set Chapter 6

69

Example: Coil Instructions

Network 1 //Output instructions assign bit values to external I/O (I, Q)
//and internal memory (M, SM, T, C, V, S, L).

LD I0.0
= Q0.0
= Q0.1
= V0.0

Network 2 //Set a sequential group of 6 bits to a value of 1.
//Specify a starting bit address and how many bits to set.
//The program status indicator for Set is ON when the value
//of the first bit (Q0.2) is 1.

LD I0.1
S Q0.2, 6

Network 3 //Reset a sequential group of 6 bits to a value of 0.
//Specify a starting bit address and how many bits to reset.
//The program status indicator for Reset is ON when the value
//of the first bit (Q0.2) is 0.

LD I0.2
R Q0.2, 6

Network 4 //Sets and resets 8 output bits (Q1.0 to Q1.7) as a group.

LD I0.3
LPS
A I0.4
S Q1.0, 8
LPP
A I0.5
R Q1.0, 8

Network 5 //The Set and Reset instructions perform the function of a latched relay.
//To isolate the Set/Reset bits, make sure they are not overwritten by
//another assignment instruction. In this example, Network 4 sets and
//resets eight output bits (Q1.0 to Q1.7) as a group.
//In RUN mode, Network 5 can overwrite the Q1.0 bit value and
//control the Set/Reset program status indicators in Network 4.

LD I0.6
= Q1.0

Timing Diagram

6

S7-200 Programmable Controller System Manual

70

Logic Stack Instructions
AND Load
The AND Load instruction (ALD) combines the values in the first and
second levels of the stack using a logical AND operation. The result
is loaded in the top of stack. After the ALD is executed, the stack
depth is decreased by one.

OR Load
The OR Load instruction (OLD) combines the values in the first and
second levels of the stack, using a logical OR operation. The result
is loaded in the top of the stack. After the OLD is executed, the stack
depth is decreased by one.

Logic Push
The Logic Push instruction (LPS) duplicates the top value on the stack and pushes this value onto the
stack. The bottom of the stack is pushed off and lost.

Logic Read
The Logic Read instruction (LRD) copies the second stack value to the top of stack. The stack is not
pushed or popped, but the old top-of-stack value is destroyed by the copy.

Logic Pop
The Logic Pop instruction (LPP) pops one value off of the stack. The second stack value becomes the
new top of stack value.

AND ENO
The AND ENO instruction (AENO) performs a logical AND of the ENO bit with the top of the stack to
generate the same effect as the ENO bit of a box in LAD or FBD. The result of the AND operation is the
new top of stack.

ENO is a Boolean output for boxes in LAD and FBD. If a box has power flow at the EN input and is
executed without error, the ENO output passes power flow to the next element. You can use the ENO as
an enable bit that indicates the successful completion of an instruction. The ENO bit is used with the top of
stack to affect power flow for execution of subsequent instructions. STL instructions do not have an EN
input. The top of the stack must be a logic 1 for conditional instructions to be executed. In STL there is
also no ENO output. However, the STL instructions that correspond to LAD and FBD instructions with
ENO outputs set a special ENO bit. This bit is accessible with the AENO instruction.

Load Stack
The Load Stack instruction (LDS) duplicates the stack bit (N) on the stack and places this value on top of
the stack. The bottom of the stack is pushed off and lost.

Table 6-5 Valid Operands for the Load Stack Instruction

Inputs/Outputs Data Type Operands

N BYTE Constant (0 to 8)

6

S7-200 Instruction Set Chapter 6

71

As shown in Figure 6-2, the S7-200 uses a logic stack to resolve the control logic. In these examples, “iv0”
to “iv7” identify the initial values of the logic stack, “nv” identifies a new value provided by the instruction,
and “S0” identifies the calculated value that is stored in the logic stack.

ALD
AND the top
two stack
values

Before After

iv8

x1

S0

iv2

iv3

iv4

iv5

iv6

iv7

iv0

iv1

iv2

iv3

iv4

iv5

iv6

iv7

iv8S0 = iv0 AND iv1

OLD
OR the top two
stack values

Before After

S0 = iv0 OR iv1

iv8

x1

S0

iv2

iv3

iv4

iv5

iv6

iv7

iv0

iv1

iv2

iv3

iv4

iv5

iv6

iv7

iv8

LDS
Load Stack

iv6

iv7

iv3

iv0

iv1

iv2

iv3

iv4

iv5

iv0

iv1

iv2

iv3

iv4

iv5

iv6

iv7

iv82

Before After

LPS
Logic Push

iv6

iv7

iv0

iv0

iv1

iv2

iv3

iv4

iv5

iv0

iv1

iv2

iv3

iv4

iv5

iv6

iv7

iv82

Before After LRD
Logic Read

Before After

iv1iv0

iv1

iv2

iv3

iv4

iv5

iv6

iv7

iv8

iv1

iv2

iv3

iv4

iv5

iv6

iv7

iv8

LPP
Logic Pop

Before After

iv8

x1

iv1

iv2

iv3

iv4

iv5

iv6

iv7

iv0

iv1

iv2

iv3

iv4

iv5

iv6

iv7

iv8

1 The value is unknown (it could be either a 0 or a 1).
2 After the execution of a Logic Push or a Load Stack instruction, value iv8 is lost.

Figure 6-2 Operations of the Logic Stack Instructions

Example: Logic Stack Instructions

Network 1

LD I0.0
LD I0.1
LD I2.0
A I2.1
OLD
ALD
= Q5.0

Network 2

LD I0.0
LPS
LD I0.5
O I0.6
ALD
= Q7.0
LRD
LD I2.1
O I1.3
ALD
= Q6.0
LPP
A I1.0
= Q3.0

6

S7-200 Programmable Controller System Manual

72

Set and Reset Dominant Bistable Instructions
The Set Dominant Bistable is a latch where the set dominates. If the
set (S1) and reset (R) signals are both true, the output (OUT) is true.

The Reset Dominant Bistable is a latch where the reset dominates.
If the set (S) and reset (R1) signals are both true, the output (OUT)
is false.

The Bit parameter specifies the Boolean parameter that is set or
reset. The optional output reflects the signal state of the Bit
parameter.

Table 6-7 shows the truth tables for the sample program.

Table 6-6 Valid Operands for the Set Dominant Bistable and Reset Dominant Bistable Instructions

Inputs/Outputs Data Types Operands

S1, R BOOL I, Q, V, M, SM, S, T, C, Power Flow

S, R1, OUT BOOL I, Q, V, M, SM, S, T, C, L, Power Flow

Bit BOOL I, Q, V, M, S

Example: Set and Reset Dominant Bistable Instructions

Set I0.0

Reset I0.1

SR Q0.0

RS Q0.1

Timing Diagram

Table 6-7 Truth Table for the Set and Reset Dominant Bistable Instructions

Instruction S1 R Out (Bit)

Set Dominant Bistable instruction (SR) 0 0 Previous state

0 1 0

1 0 1

1 1 1

Instruction S R1 Out (Bit)

Reset Dominant Bistable instruction (RS) 0 0 Previous state

0 1 0

1 0 1

1 1 0

6

S7-200 Instruction Set Chapter 6

73

Clock Instructions

Read Real-Time Clock and Set Real-Time Clock
The Read Real-Time Clock (TODR) instruction reads the current
time and date from the hardware clock and loads it in an 8-byte
Time buffer starting at address T. The Set Real-Time Clock (TODW)
instruction writes the current time and date to the hardware clock,
beginning at the 8-byte Time buffer address specified by T.

You must code all date and time values in BCD format (for example,
16#97 for the year 1997). Figure 6-3 shows the format of the Time
buffer (T).

The time-of-day (TOD) clock initializes the following date and time
after extended power outages or when memory has been lost:

Date: 01–Jan–90
Time: 00:00:00
Day of Week: Sunday

Error conditions that set ENO = 0

� 0006 (indirect address)

� 0007 (TOD data error) Set Real-Time Clock only

� 000C (clock not present)

Table 6-8 Valid Operands for the Clock Instructions

Inputs/Outputs Data Types Operands

T BYTE IB, QB, VB, MB, SMB, SB, LB, *VD, *LD, *AC

Year:
00 to 99

Month:
01 to 12

Day:
01 to 31

Hours:
00 to 23

Minutes:
00 to 59

Seconds:
00 to 59

0 Day of Week:
0 to 7*

T T+1 T+2 T+3 T+4 T+6T+5 T+7

*T+7 1=Sunday, 7=Saturday
0 disables the day of week.

Figure 6-3 Format of the 8-Byte Time Buffer (T)

Tip
The S7-200 CPU does not perform a check to verify that the day of week is correct based upon the
date. Invalid dates, such as February 30, could be accepted. You should ensure that the date you enter
is correct.

Do not use the TODR/TODW instruction in both the main program and in an interrupt routine. A
TODR/TODW instruction in an interrupt routine that attempts to execute while another TODR/TODW
instruction is in process cannot be executed. SM4.3 is set indicating that two simultaneous accesses to
the clock were attempted (non-fatal error 0007).

The time-of-day clock in the S7-200 uses only the least significant two digits for the year, so for the year
2000, the year is represented as 00. The S7-200 PLC does not use the year information in any way.
However, user programs that use arithmetic or compares with the year’s value must take into account
the two-digit representation and the change in century.

Leap year is correctly handled through year 2096.

6

S7-200 Programmable Controller System Manual

74

Communications Instructions

Network Read and Network Write Instructions
The Network Read instruction (NETR) initiates a communications
operation to gather data from a remote device through the specified
port (PORT), as defined by the table (TBL). The Network Write
instruction (NETW) initiates a communications operation to write
data to a remote device through the specified port (PORT), as
defined by the table (TBL).

Error conditions that set ENO = 0:

� 0006 (indirect address)

� If the function returns an error and sets the E bit of table status byte (see
Figure 6-4)

The Network Read instruction can read up to 16 bytes of information
from a remote station, and the Network Write instruction can write up
to 16 bytes of information to a remote station.

You can have any number of Network Read and Network Write
instructions in the program, but only a maximum of eight Network
Read and Network Write instructions can be activated at any one
time. For example, you can have 4 Network Read and 4 Network
Write instructions, or 2 Network Read and 6 Network Write
instructions, active at the same time in a given S7-200.

You can use the Network Read/Network Write Instruction Wizard to configure the counter. To start the
Network Read/Network Write Instruction Wizard, select the Tools > Instruction Wizard menu command
and then select Network Read/Network Write from the Instruction Wizard window.

Table 6-9 Valid Operands for the Network Read and Network Write Instructions

Inputs/Outputs Data Type Operands

TBL BYTE VB, MB, *VD, *LD, *AC

PORT BYTE Constant for CPU 221, CPU 222, CPU 224: 0
for CPU 226 and CPU 226XM: 0 or 1

Instruction
Wizard

6

S7-200 Instruction Set Chapter 6

75

Figure 6-4 describes the table that is referenced by the TBL parameter, and Table 6-10 lists the error
codes.

Remote station address

Pointer to the data

area in the

remote station

(I, Q, M, or V)

Data length

Data byte 0

Data byte 15

D A E 0 Error code

7 0
Byte
Offset

0

1

2

3

4

5

6

7

8

22

D Done (function has been completed): 0 = not done 1 = done
A Active (function has been queued): 0 = not active 1 = active
E Error (function returned an error): 0 = no error 1 = error

Receive or transmit data area. 1 to 16 bytes reserved for the data.

For a Network Read instruction, stores the values that were read from the
remote station when the instruction was executed.

For a Network Write instruction, stores the values to be sent to the remote
station when the instruction is executed.

Remote station address: the address of the PLC whose data is to be accessed.

Data byte 1

Pointer to the data area in the remote station: an indirect pointer to the data that
is to be accessed.

Data length: the number of bytes of data that are to be accessed in the remote
station (1 to 16 bytes).

Figure 6-4 TBL Parameter for the Network Read and Network Write Instructions

Table 6-10 Error Codes for the TBL Parameter

Code Definition

0 No error.

1 Time-out error: Remote station not responding.

2 Receive error: Parity, framing, or checksum error in the response.

3 Offline error: Collisions caused by duplicate station addresses or failed hardware.

4 Queue overflow error: More than 8 Network Read or Network Write instructions have been activated.

5 Protocol violation: Attempt to execute a Network Read or Network Write instruction without enabling the PPI
Master Mode in SMB30 or SMB130.

6 Illegal parameter: TBL parameter contains an illegal or invalid value.

7 No resource: Remote station is busy. (An upload or a download sequence is in process.)

8 Layer 7 error: Application protocol violation

9 Message error: Wrong data address or incorrect data length

A to F Not used. (Reserved)

Figure 6-5 shows an example to illustrate the utility of the Network Read and Network Write instructions.
For this example, consider a production line where tubs of butter are being filled and sent to one of four
boxing machines (case packers). The case packer packs eight tubs of butter into a single cardboard box.
A diverter machine controls the flow of butter tubs to each of the case packers. Four S7-200s control the
case packers, and an S7-200 with a TD 200 operator interface controls the diverter.

6

S7-200 Programmable Controller System Manual

76

Case Packer #2
Station 3

Case Packer #3
Station 4

Case Packer #4
Station 5 TD 200 Station 1

Case Packer #1
Station 2

Diverter
Station 6

VB100

VW101

Control

Status

VB100

VW101

Control

Status

VB100

VW101

Control

Status

VB100

VW101

VB200 VB300

VB200 Receive buffer
Station 2

VB300 Transmit buffer
Station 2

Rcv
Buffers

Xmt
Buffers

Control

Status

t Out of butter tubs to pack; t=1, out of butter tubs

b Box supply is low; b=1, must add boxes in the
next 30 minutes

g Glue supply is low; g=1, must add glue in the next 30 minutes

eee error code identifying the type of fault experienced

f Fault indicator; f=1, the case packer has detected an error

VB230 Receive buffer
Station 5

VB210 Receive buffer
Station 3

VB220 Receive buffer
Station 4

VB330 Transmit buffer
Station

VB310 Transmit buffer
Station

VB320 Transmit buffer
Station 4

f e e e 0 g b t

Number of

cases packed

VB100

VB101

VB102

Control

Status MSB

LSB

Figure 6-5 Example of the Network Read and Network Write Instructions

Figure 6-6 shows the receive buffer (VB200) and transmit buffer (VB300) for accessing the data in
station 2. The S7-200 uses a Network Read instruction to read the control and status information on a
continuous basis from each of the case packers. Each time a case packer has packed 100 cases, the
diverter notes this and sends a message to clear the status word using a Network Write instruction.

Receive Buffer for reading from Case Packer #1 Transmit Buffer for clearing the count of Case Packer #1

Remote station address = 2
Pointer to the

data area
in the

Remote station = (&VB101)
Data length = 2 bytes

0

D A E 0 Error Code

7 0

VB300

VB301

VB302

VB303

VB304

VB305

VB306

VB307

VB308 0

Remote station address = 2
Pointer to the

data area
in the

Remote station = (&VB100)
Data length = 3 bytes

Control

D A E 0 Error Code

7 0

VB200

VB201

VB202

VB203

VB204

VB205

VB206

VB207

VB208 Status (MSB)
VB209 Status (LSB)

Figure 6-6 Sample TBL Data for the Network Read/Write Example

6

S7-200 Instruction Set Chapter 6

77

Example: Network Read and Network Write Instructions

Network 1 //On the first scan, enable the PPI master mode
/and clear all receive and transmit buffers.

LD SM0.1
MOVB 2, SMB30
FILL +0, VW200, 68

Network 2 //When the NETR Done bit (V200.7) is set
//and 100 cases have been packed:

 //1. Load the station address of case packer #1.
//2. Load a pointer to the data in the remote station.
//3. Load the length of data to be transmitted.
//4. Load the data to transmit.
//5. Reset the number of cases packed
// by case packer #1

LD V200.7
AW= VW208, +100
MOVB 2, VB301
MOVD &VB101, VD302
MOVB 2, VB306
MOVW +0, VW307
NETW VB300, 0

Network 3 //When the NETR Done bit is set, save the control
//data from case packer #1.

LD V200.7
MOVB VB207, VB400

6

S7-200 Programmable Controller System Manual

78

Example: Network Read and Network Write Instructions , continued

Network 4 //If not the first scan and there are no errors:
//1. Load the station address of case packer #1.
//2. Load a pointer to the data in the remote station.
//3. Load the length of data to be received.
//4. Read the control and status data
// in case packer #1.

LDN SM0.1
AN V200.6
AN V200.5
MOVB 2, VB201
MOVD &VB100, VD202
MOVB 3, VB206
NETR VB200, 0

6

S7-200 Instruction Set Chapter 6

79

Transmit and Receive Instructions (Freeport)

The Transmit instruction (XMT) is used in Freeport mode to transmit
data by means of the communications port(s).

The Receive instruction (RCV) initiates or terminates the receive
message function. You must specify a start and an end condition for
the Receive box to operate. Messages received through the
specified port (PORT) are stored in the data buffer (TBL). The first
entry in the data buffer specifies the number of bytes received.

Error conditions that set ENO = 0

� 0006 (indirect address)

� 0009 (simultaneous Transmit/Receive on port 0)

� 000B (simultaneous Transmit/Receive on port 1)

� Receive parameter error sets SM86.6 or SM186.6

� S7-200 CPU is not in Freeport mode

Table 6-11 Valid Operands for the Transmit and Receive Instructions

Inputs/Outputs Data Type Operands

TBL BYTE IB, QB, VB, MB, SMB, SB, *VD, *LD, *AC

PORT BYTE Constant for CPU 221, CPU 222, CPU 224: 0
for CPU 226 and CPU 226XM: 0 or 1

For more information about using Freeport mode, see the section Creating User-Defined Protocols with
Freeport Mode on page 222 in Chapter 7.

Using Freeport Mode to Control the Serial Communications Port
You can select the Freeport mode to control the serial communications port of the S7-200 by means of the
user program. When you select Freeport mode, your program controls the operation of the
communications port through the use of the receive interrupts, the transmit interrupts, the Transmit
instruction, and the Receive instruction. The communications protocol is entirely controlled by the ladder
program while in Freeport mode. SMB30 (for port 0) and SMB130 (for port 1 if your S7-200 has two ports)
are used to select the baud rate and parity.

The Freeport mode is disabled and normal communications are re-established (for example, programming
device access) when the S7-200 is in STOP mode.

In the simplest case, you can send a message to a printer or a display using only the Transmit (XMT)
instruction. Other examples include a connection to a bar code reader, a weighing scale, and a welder. In
each case, you must write your program to support the protocol that is used by the device with which the
S7–200 communicates while in Freeport mode.

Freeport communications are possible only when the S7-200 is in RUN mode. Enable the Freeport mode
by setting a value of 01 in the protocol select field of SMB30 (Port 0) or SMB130 (Port 1). While in Freeport
mode, communications with the programming device are not possible.

Tip
Freeport mode can be controlled using special memory bit SM0.7, which reflects the current position of
the operating mode switch. When SM0.7 is equal to 0, the switch is in TERM position; when SM0.7 = 1,
the operating mode switch is in RUN position. If you enable Freeport mode only when the switch is in
RUN position, you can use the programming device to monitor or control the S7-200 operation by
changing the switch to any other position.

6

S7-200 Programmable Controller System Manual

80

Changing PPI Communications to Freeport Mode
SMB30 and SMB130 configure the communications ports, 0 and 1 respectively, for Freeport operation and
provide selection of baud rate, parity, and number of data bits. Figure 6-7 describes the Freeport control
byte. One stop bit is generated for all configurations.

7
MSB LSB

p p d b b b m m

0

pp: Parity select
00 = no parity
01 = even parity
10 = no parity
11 = odd parity

d: Data bits per character
0 = 8 bits per character
1 = 7 bits per character

bbb: Freeport baud rate
000 = 38,400 baud
001 = 19,200 baud
010 = 9,600 baud
011 = 4,800 baud
100 = 2,400 baud
101 = 1,200 baud
110 = 115.2 kbaud1

111 = 57.6 kbaud1

mm: Protocol selection
00 = PPI/slave mode
01 = Freeport protocol
10 = PPI/master mode
11 = Reserved (defaults to PPI/slave mode)

SMB30 = Port 0
SMB130 = Port 1

1 S7-200 CPUs version 1.2 or later
support the 57.6 kbaud and
115.2 kbaud rates.

Figure 6-7 SM Control Byte for Freeport Mode (SMB30 or SMB130)

Transmitting Data
The Transmit instruction lets you send a buffer of one or more characters, up to a maximum of 255.

Figure 6-8 shows the format of the Transmit
buffer.

If an interrupt routine is attached to the transmit
complete event, the S7-200 generates an
interrupt (interrupt event 9 for port 0 and interrupt
event 26 for port 1) after the last character of the

Characters of the message

EM S S EA GCount

Number of bytes to transmit (byte field)

buffer is sent. Figure 6-8 Format for the Transmit Buffer

You can make transmissions without using interrupts (for example, sending a message to a printer) by
monitoring SM4.5 or SM4.6 to signal when transmission is complete.

You can use the Transmit instruction to generate a BREAK condition by setting the number of characters
to zero and then executing the Transmit instruction. This generates a BREAK condition on the line for
16-bit times at the current baud rate. Transmitting a BREAK is handled in the same manner as transmitting
any other message, in that a Transmit interrupt is generated when the BREAK is complete and SM4.5 or
SM4.6 signals the current status of the Transmit operation.

Receiving Data
The Receive instruction lets you receive a buffer of one or more characters, up to a maximum of 255.

Figure 6-9 shows the format of the Receive
buffer.

If an interrupt routine is attached to the receive
message complete event, the S7-200 generates
an interrupt (interrupt event 23 for port 0 and
interrupt event 24 for port 1) after the last

Characters of the message

EM S S EA GCount

Number of bytes received (byte field)

Start
Char

End
Char

character of the buffer is received. Figure 6-9 Format for the Receive Buffer

You can receive messages without using interrupts by monitoring SMB86 (port 0) or SMB186 (port 1). This
byte is non-zero when the Receive instruction is inactive or has been terminated. It is zero when a receive
is in progress.

6

S7-200 Instruction Set Chapter 6

81

As shown in Table 6-12, the Receive instruction allows you to select the message start and message end
conditions, using SMB86 through SMB94 for port 0 and SMB186 through SMB194 for port 1.

Tip
The receive message function is automatically terminated in case of an overrun or a parity error. You
must define a start condition and an end condition (maximum character count) for the receive message
function to operate.

Table 6-12 Bytes of the Receive Buffer (SMB86 to SMB94, and SM1B86 to SMB194)

Port 0 Port 1 Description

SMB86 SMB186 MSB LSB

n r e 0 t c p

0
Receive message status byte

n: 1 = Receive message function terminated: user issued disable command.

r: 1 = Receive message function terminated: error in input parameters
or missing start or end condition.

e: 1 = End character received.

t: 1 = Receive message function terminated: timer expired.

c: 1 = Receive message function terminated: maximum character count achieved.

p 1 = Receive message function terminated: a parity error.

7

0

SMB87 SMB187 MSB LSB

en sc ec c/m tmr bk 0

7

il

Receive message control byte
0

en: 0 =Receive message function is disabled.
1 =Receive message function is enabled.
The enable/disable receive message bit is checked each time
the RCV instruction is executed.

sc: 0 =Ignore SMB88 or SMB188.
1 =Use the value of SMB88 or SMB188 to detect start of message.

ec: 0 =Ignore SMB89 or SMB189.
1 =Use the value of SMB89 or SMB189 to detect end of message.

il: 0 =Ignore SMW90 or SMW190.
1 =Use the value of SMW90 or SMW190 to detect an idle line condition.

c/m: 0 =Timer is an inter-character timer.
1 =Timer is a message timer.

tmr: 0 =Ignore SMW92 or SMW192.
1 =Terminate receive if the time period in SMW92 or SMW192 is exceeded.

bk: 0 =Ignore break conditions.
1 =Use break condition as start of message detection.

SMB88 SMB188 Start of message character.

SMB89 SMB189 End of message character.

SMW90 SMW190 Idle line time period given in milliseconds. The first character received after idle line time
has expired is the start of a new message.

SMW92 SMW192 Inter-character/message timer time-out value given in milliseconds. If the time period is
exceeded, the receive message function is terminated.

SMB94 SMB194 Maximum number of characters to be received (1 to 255 bytes). This range must be set to
the expected maximum buffer size, even if the character count message termination is not
used.

6

S7-200 Programmable Controller System Manual

82

Start and End Conditions for the Receive Instruction
The Receive instruction uses the bits of the receive message control byte (SMB87 or SMB187) to define
the message start and end conditions.

Tip
If there is traffic present on the communications port from other devices when the Receive instruction is
executed, the receive message function could begin receiving a character in the middle of that
character, resulting in a possible parity error and termination of the receive message function. If parity is
not enabled the received message could contain incorrect characters. This situation can occur when the
start condition is specified to be a specific start character or any character, as described in item 2. and
item 6. below.

The Receive instruction supports several message start conditions. Specifying a start condition
involving a break or an idle line detection avoids this problem by forcing the receive message function to
synchronize the start of the message with the start of a character before placing characters into the
message buffer.

The Receive instruction supports several start conditions:

1. Idle line detection: The idle line condition is defined as a quiet or idle time on the transmission line.
A receive is started when the communications line has been quiet or idle for the number of
milliseconds specified in SMW90 or SMW190. When the Receive instruction in your program is
executed, the receive message function initiates a search for an idle line condition. If any characters
are received before the idle line time expires, the receive message function ignores those
characters and restarts the idle line timer with the time from SMW90 or SMW190. See Figure 6-10.
After the idle line time expires, the receive message function stores all subsequent characters
received in the message buffer.

The idle line time should always be greater than the time to transmit one character (start bit, data
bits, parity and stop bits) at the specified baud rate. A typical value for the idle line time is three
character times at the specified baud rate.

You use idle line detection as a start condition for binary protocols, protocols where there is not a
particular start character, or when the protocol specifies a minimum time between messages.

Setup: il = 1, sc = 0, bk = 0, SMW90/SMW190 = idle line timeout in milliseconds

Characters

Restarts the idle time

Receive instruction is executed:
starts the idle time

Idle time is detected:
starts the Receive Message function

First character placed in the
message buffer

Characters

Figure 6-10 Using Idle Time Detection to Start the Receive Instruction

2. Start character detection: The start character is any character which is used as the first character of
a message. A message is started when the start character specified in SMB88 or SMB188 is
received. The receive message function stores the start character in the receive buffer as the first
character of the message. The receive message function ignores any characters that are received
before the start character. The start character and all characters received after the start character
are stored in the message buffer.

Typically, you use start character detection for ASCII protocols in which all messages start with the
same character.

Setup: il = 0, sc = 1, bk = 0, SMW90/SMW190 = don’t care, SMB88/SMB188 = start
character

6

S7-200 Instruction Set Chapter 6

83

3. Idle line and start character: The Receive instruction can start a message with the combination of an
idle line and a start character. When the Receive instruction is executed, the receive message
function searches for an idle line condition. After finding the idle line condition, the receive message
function looks for the specified start character. If any character but the start character is received,
the receive message function restarts the search for an idle line condition. All characters received
before the idle line condition has been satisfied and before the start character has been received
are ignored. The start character is placed in the message buffer along with all subsequent
characters.

The idle line time should always be greater than the time to transmit one character (start bit, data
bits, parity and stop bits) at the specified baud rate. A typical value for the idle line time is three
character times at the specified baud rate.

Typically, you use this type of start condition when there is a protocol that specifies a minimum time
between messages, and the first character of the message is an address or something which
specifies a particular device. This is most useful when implementing a protocol where there are
multiple devices on the communications link. In this case the Receive instruction triggers an
interrupt only when a message is received for the specific address or devices specified by the start
character.

Setup: il = 1, sc = 1, bk = 0, SMW90/SMW190 > 0, SMB88/SMB188 = start character

4. Break detection: A break is indicated when the received data is held to a zero value for a time
greater than a full character transmission time. A full character transmission time is defined as the
total time of the start, data, parity and stop bits. If the Receive instruction is configured to start a
message on receiving a break condition, any characters received after the break condition are
placed in the message buffer. Any characters received before the break condition are ignored.

Typically, you use break detection as a start condition only when a protocol requires it.

Setup: il = 0, sc = 0, bk = 1, SMW90/SMW190 = don’t care, SMB88/SMB188 = don’t care

5. Break and a start character: The Receive instruction can be configured to start receiving characters
after receiving a break condition, and then a specific start character, in that sequence. After the
break condition, the receive message function looks for the specified start character. If any
character but the start character is received, the receive message function restarts the search for an
break condition. All characters received before the break condition has been satisfied and before
the start character has been received are ignored. The start character is placed in the message
buffer along with all subsequent characters.

Setup: il = 0, sc = 1, bk = 1, SMW90/SMW190 = don’t care,
SMB88/SMB188 = start character

6. Any character: The Receive instruction can be configured to immediately start receiving any and all
characters and placing them in the message buffer. This is a special case of the idle line detection.
In this case the idle line time (SMW90 or SMW190) is set to zero. This forces the Receive
instruction to begin receiving characters immediately upon execution.

Setup: il = 1, sc = 0, bk = 0, SMW90/SMW190 = 0, SMB88/SMB188 = don’t care

Starting a message on any character allows the message timer to be used to time out the receiving
of a message. This is useful in cases where Freeport is used to implement the master or host
portion of a protocol and there is a need to time out if no response is received from a slave device
within a specified amount of time. The message timer starts when the Receive instruction executes
because the idle line time was set to zero. The message timer times out and terminates the receive
message function if no other end condition is satisfied.

Setup: il = 1, sc = 0, bk = 0, SMW90/SMW190 = 0, SMB88/SMB188 = don’t care
c/m = 1, tmr = 1, SMW92 = message timeout in milliseconds

6

S7-200 Programmable Controller System Manual

84

The Receive instruction supports several ways to terminate a message. The message can be terminated
on one or a combination of the following:

1. End character detection: The end character is any character which is used to denote the end of the
message. After finding the start condition, the Receive instruction checks each character received
to see if it matches the end character. When the end character is received, it is placed in the
message buffer and the receive is terminated.

Typically, you use end character detection with ASCII protocols where every message ends with a
specific character. You can use end character detection in combination with the intercharacter timer,
the message timer or the maximum character count to terminate a message.

Setup: ec = 1, SMB89/SMB189 = end character

2. Intercharacter timer: The intercharacter time is the time measured from the end of one character
(the stop bit) to the end of the next character (the stop bit). If the time between characters (including
the second character) exceeds the number of milliseconds specified in SMW92 or SMW192, the
receive message function is terminated. The intercharacter timer is restarted on each character
received. See Figure 6-11.

You can use the intercharacter timer to terminate a message for protocols which do not have a
specific end-of-message character. This timer must be set to a value greater than one character
time at the selected baud rate since this timer always includes the time to receive one entire
character (start bit, data bits, parity and stop bits).

You can use the intercharacter timer in combination with the end character detection and the
maximum character count to terminate a message.

Setup: c/m = 0, tmr = 1, SMW92/SMW192 = timeout in milliseconds

Characters

Restarts the intercharacter
timer

The intercharacter timer expires:
Terminates the message and generates the
Receive Message interrupt

Characters

Figure 6-11 Using the Intercharacter Timer to Terminate the Receive Instruction

3. Message timer: The message timer terminates a message at a specified time after the start of the
message. The message timer starts as soon as the start condition(s) for the receive message
function have been met. The message timer expires when the number of milliseconds specified in
SMW92 or SMW192 have passed. See Figure 6-12.

Typically, you use a message timer when the communications devices cannot guarantee that there
will not be time gaps between characters or when operating over modems. For modems, you can
use a message timer to specify a maximum time allowed to receive the message after the message
has started. A typical value for a message timer would be about 1.5 times the time required to
receive the longest possible message at the selected baud rate.

You can use the message timer in combination with the end character detection and the maximum
character count to terminate a message.

Setup: c/m = 1, tmr = 1, SMW92/SMW192 = timeout in milliseconds

6

S7-200 Instruction Set Chapter 6

85

Characters

Start of the message:
Starts the message timer

The message timer expires:
Terminates the message and generates the
Receive Message interrupt

Characters

Figure 6-12 Using the Message Timer to Terminate the Receive Instruction

4. Maximum character count: The Receive instruction must be told the maximum number of
characters to receive (SMB94 or SMB194). When this value is met or exceeded, the receive
message function is terminated. The Receive instruction requires that the user specify a maximum
character count even if this is not specifically used as a terminating condition. This is because the
Receive instruction needs to know the maximum size of the receive message so that user data
placed after the message buffer is not overwritten.

The maximum character count can be used to terminate messages for protocols where the
message length is known and always the same. The maximum character count is always used in
combination with the end character detection, intercharacter timer, or message timer.

5. Parity errors: The Receive instruction is automatically terminated when the hardware signals a
parity error on a received character. Parity errors are only possible if parity is enabled in SMB30 or
SMB130. There is no way to disable this function.

6. User termination: The user program can terminate a receive message function by executing another
Receive instruction with the enable bit (EN) in SMB87 or SMB187 set to zero. This immediately
terminates the receive message function.

Using Character Interrupt Control to Receive Data
To allow complete flexibility in protocol support, you can also receive data using character interrupt control.
Each character received generates an interrupt. The received character is placed in SMB2, and the parity
status (if enabled) is placed in SM3.0 just prior to execution of the interrupt routine attached to the receive
character event. SMB2 is the Freeport receive character buffer. Each character received while in Freeport
mode is placed in this location for easy access from the user program. SMB3 is used for Freeport mode
and contains a parity error bit that is turned on when a parity error is detected on a received character. All
other bits of the byte are reserved. Use the parity bit either to discard the message or to generate a
negative acknowledgement to the message.

When the character interrupt is used at high baud rates (38.4 kbaud to 115.2 kbaud), the time between
interrupts is very short. For example, the character interrupt for 38.4 kbaud is 260 microseconds, for
57.6 kbaud is 173 microseconds, and for 115.2 kbaud is 86 microseconds. Ensure that you keep the
interrupt routines very short to avoid missing characters, or else use the Receive instruction.

Tip
SMB2 and SMB3 are shared between Port 0 and Port 1. When the reception of a character on Port 0
results in the execution of the interrupt routine attached to that event (interrupt event 8), SMB2 contains
the character received on Port 0, and SMB3 contains the parity status of that character. When the
reception of a character on Port 1 results in the execution of the interrupt routine attached to that event
(interrupt event 25), SMB2 contains the character received on Port 1 and SMB3 contains the parity
status of that character.

6

S7-200 Programmable Controller System Manual

86

Example: Transmit and Receive Instructions

M
A
I
N

Network 1 //This program receives a string of characters until
//a line feed character is received.
//The message is then transmitted back to the sender.

LD SM0.1 //On the first scan:
MOVB 16#09, SMB30 //1. Initialize Freeport:

// – Select 9600 baud.
// – Select 8 data bits.
// – Select no parity.

MOVB 16#B0, SMB87 //2. Initialize RCV message control byte:
// – RCV enabled.
// – Detect end of message character.

 // – Detect idle line condition as the message
// start condition.

MOVB 16#0A, SMB89 //3. Set end of message character
// to hex OA (line feed).

MOVW +5, SMW90 //4. Set idle line timeout
// to 5 ms.

MOVB 100, SMB94 //5. Set maximum number of characters
// to 100.

ATCH INT_0, 23 //6. Attach interrupt 0
// to the Receive Complete event.

ATCH INT_2, 9 //7. Attach interrupt 2
// to the Transmit Complete event.

ENI //8. Enable user interrupts.
RCV VB100, 0 //9. Enable receive box with buffer at VB100.

6

S7-200 Instruction Set Chapter 6

87

Example: Transmit and Receive Instructions, continued

I
N
T
0

Network 1 //Receive complete interrupt routine:
//1. If receive status shows receive of end character,
// then attach a 10 ms timer to trigger a transmit and return.
//2. If the receive completed for any other reason,
// then start a new receive.

LDB= SMB86, 16#20
MOVB 10, SMB34
ATCH INT_1, 10
CRETI
NOT
RCV VB100, 0

I
N
T
1

Network 1 //10-ms Timer interrupt:
//1. Detach timer interrupt.
//2. Transmit message back to user on port.

LD SM0.0
DTCH 10
XMT VB100, 0

I
N
T
2

Network 1 //Transmit Complete interrupt:
 //Enable another receive.

LD SM0.0
RCV VB100, 0

6

S7-200 Programmable Controller System Manual

88

Get Port Address and Set Port Address Instructions

The Get Port Address instruction (GPA) reads the station address of
the S7-200 CPU port specified in PORT and places the value in the
address specified in ADDR.

The Set Port Address instruction (SPA) sets the port station address
(PORT) to the value specified in ADDR. The new address is not
saved permanently. After a power cycle, the affected port returns to
the last address (the one that was downloaded with the system
block).

Error conditions that set ENO = 0:

� 0006 (indirect address)

� 0004 (attempted to perform a Set Port Address instruction in an interrupt
routine)

Table 6-13 Valid Operands for the Get Port Address and Set Port Address Instructions

Inputs/Outputs Data Type Operands

ADDR BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

(A constant value is valid only for the Set Port Address instruction.)

PORT BYTE Constant for CPU 221, CPU 222, CPU 224: 0
for CPU 226 and CPU 226XM: 0 or 1

6

S7-200 Instruction Set Chapter 6

89

Compare Instructions

Comparing Numerical Values
The compare instructions are used to compare two values:

IN1 = IN2 IN1 >= IN2 IN1 <= IN2
IN1 > IN2 IN1 < IN2 IN1 <> IN2

Compare Byte operations are unsigned.
Compare Integer operations are signed.
Compare Double Word operations are signed.
Compare Real operations are signed.

For LAD and FBD: When the comparison is true, the Compare
instruction turns on the contact (LAD) or output (FBD).

For STL: When the comparison is true, the Compare instruction
Loads, ANDs, or ORs a 1 with the value on the top of the stack
(STL).

When you use the IEC compare instructions, you can use various
data types for the inputs. However, both input values must be of the
same data type.

Notice
The following conditions are fatal errors and cause your S7-200 to
immediately stop the execution of your program:

� Illegal indirect address is encountered (any Compare
instruction)

� Illegal real number (for example, NAN) is encountered
(Compare Real instruction)

To prevent these conditions from occurring, ensure that you
properly initialize pointers and values that contain real numbers
before executing compare instructions that use these values.

Compare instructions are executed regardless of the state of
power flow.

Table 6-14 Valid Operands for the Compare Instructions

Inputs/Outputs Type Operands

IN1, IN2 BYTE

INT

DINT

REAL

IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant

ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, Constant

ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC, Constant

Output (or OUT) BOOL I, Q, V, M, SM, S, T, C, L, Power Flow

6

S7-200 Programmable Controller System Manual

90

Example: Compare Instructions

Network 1 //Turn analog adjustment potentiometer 0 to vary
//the SMB28 byte value.
//Q0.0 is active when the SMB28 value is less than
//or equal to 50.
//Q0.1 is active when the SMB28 value is greater than
//or equal to 150.
//The status indicator is on when the comparison is true.

LD I0.0
LPS
AB<= SMB28, 50
= Q0.0
LPP
AB>= SMB28, 150
= Q0.1

Network 2 //Load V memory addresses with low values
//that make the comparisons false and that turn
//the status indicators off.

LD I0.1
MOVW –30000, VW0
MOVD –200000000, VD2
MOVR 1.012E–006, VD6

Network 3 //Load V memory addresses with high values
//that make the comparisons true and that turn
//the status indicators on.

LD I0.2
MOVW +30000, VW0
MOVD –100000000, VD2
MOVR 3.141593, VD6

Network 4 //The Integer Word comparison tests to find if
//VW0 > +10000 is true.
//Uses program constants to show the different
//data types. You can also compare two values
//stored in programmable memory like:
//VW0 > VW100

LD I0.3
LPS
AW> VW0, +10000
= Q0.2
LRD
AD< –150000000, VD2
= Q0.3
LPP
AR> VD6, 5.001E–006
= Q0.4

6

S7-200 Instruction Set Chapter 6

91

Compare String
The Compare String instruction compares two strings of ASCII
characters:

IN1 = IN2 IN1 <> IN2

When the comparison is true, the Compare instruction turns the
contact (LAD) or output (FBD) on, or the compare instruction Loads,
ANDs or ORs a 1 with the value on the top of the stack (STL).

Notice
The following conditions are fatal errors and cause your S7-200 to
immediately stop the execution of your program:

� Illegal indirect address is encountered (any compare
instruction)

� A string with a length greater than 254 characters is
encountered (Compare String instruction)

� A string whose starting address and length are such that it will
not fit in the specified memory area (Compare String
instruction)

To prevent these conditions from occurring, ensure that you
properly initialize pointers and memory locations that are intended
to hold ASCII strings prior to executing compare instructions that
use these values. Ensure that the buffer reserved for an ASCII
string can reside completely within the specified memory area.

Compare instructions are executed regardless of the state of
power flow.

Table 6-15 Valid Operands for the Compare String Instructions

Inputs/Outputs Type Operands

IN1, IN2 BYTE (String) VB, LB, *VD, *LD, *AC

Output (OUT) BOOL I, Q, V, M, SM, S, T, C, L, Power Flow

6

S7-200 Programmable Controller System Manual

92

Conversion Instructions

Standard Conversion Instructions
Numerical Conversions
The Byte to Integer (BTI), Integer to Byte (ITB), Integer to Double
Integer (ITD), Double Integer to Integer (DTI), Double Integer to Real
(DTR), BCD to Integer (BCDI) and Integer to BCD (IBCD)
instructions convert an input value IN to the specified format and
stores the output value in the memory location specified by OUT. For
example, you can convert a double integer value to a real number.
You can also convert between integer and BCD formats.

Round and Truncate
The Round instruction (ROUND) converts a real value IN to a
double integer value and places the rounded result into the variable
specified by OUT.

The Truncate instruction (TRUNC) converts a real number IN into a
double integer and places the whole-number portion of the result
into the variable specified by OUT.

Segment
The Segment instruction (SEG) allows you to generate a bit pattern
that illuminates the segments of a seven-segment display.

Table 6-16 Valid Operands for the Standard Conversion Instructions

Inputs/Outputs Data Type Operands

IN BYTE

WORD, INT

DINT

REAL

IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

IW, QW, VW, MW, SMW, SW, T, C, LW, AIW, AC, *VD, *LD, *AC, Constant

ID, QD, VD, MD, SMD, SD, LD, HC, AC, *VD, *LD, *AC, Constant

ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC, Constant

OUT BYTE

WORD, INT

DINT, REAL

IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC

IW, QW, VW, MW, SMW, SW, T, C, LW, AC, *VD, *LD, *AC

ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

6

S7-200 Instruction Set Chapter 6

93

Operation of the BCD to Integer and Integer to BCD Instructions

The BCD to Integer instruction (BCDI) converts the binary-coded
decimal value IN to an integer value and loads the result into the
variable specified by OUT. The valid range for IN is 0 to 9999 BCD.

Error conditions that set ENO = 0

� SM1.6 (invalid BCD)

� 0006 (indirect address)

The Integer to BCD instruction (IBCD) converts the input integer
value IN to a binary-coded decimal and loads the result into the
variable specified by OUT. The valid range for IN is 0 to 9999
integer.

SM bits affected:

� SM1.6 (invalid BCD)

Operation of the Double Integer to Real Instruction

The Double Integer to Real instruction (DTR) converts a 32-bit,
signed integer IN into a 32-bit real number and places the result into
the variable specified by OUT.

Error conditions that set ENO = 0

� 0006 (indirect address)

Operation of the Double Integer to Integer Instruction

The Double Integer to Integer instruction (DTI) converts the double
integer value IN to an integer value and places the result into the
variable specified by OUT.

Error conditions that set ENO = 0

� SM1.1 (overflow)

� 0006 (indirect address)

If the value that you are converting is too large to be represented in
the output, then the overflow bit is set and the output is not affected.

SM bits affected:

� SM1.1 (overflow)

Operation of the Integer to Double Integer Instruction

The Integer to Double Integer instruction (ITD) converts the integer
value IN to a double integer value and places the result into the
variable specified by OUT. The sign is extended.

Error conditions that set ENO = 0

� 0006 (indirect address)

Operation of the Byte to Integer Instruction

The Byte to Integer instruction (BTI) converts the byte value IN to an
integer value and places the result into the variable specified by
OUT. The byte is unsigned, therefore there is no sign extension.

Error conditions that set ENO = 0

� 0006 (indirect address)

Operation of the Integer to Byte Instruction

The Integer to Byte instruction (ITB) converts the word value IN to a
byte value and places the result into the variable specified by OUT.
Values 0 to 255 are converted. All other values result in overflow

Error conditions that set ENO = 0

� SM1.1 (overflow)

� 0006 (indirect address)and the output is not affected.
SM bits affected:

� SM1.1 (overflow)

Tip
To change an integer to a real number, use the Integer to Double Integer instruction and then use the
Double Integer to Real instruction.

6

S7-200 Programmable Controller System Manual

94

Operation of the Round and Truncate Instructions

The Round instruction (ROUND) converts the real-number value IN
to a double integer value and places the result into the variable
specified by OUT. If the fraction portion is 0.5 or greater, the number
is rounded up.

The Truncate instruction (TRUNC) converts a real-number value IN
into a double integer and places the result into the variable specified
by OUT. Only the whole number portion of the real number is
converted, and the fraction is discarded.

Error conditions that set ENO = 0

� SM1.1 (overflow)

� 0006 (indirect address)

SM bits affected:

� SM1.1 (overflow)

If the value that you are converting is not a valid real number or is too large to be represented in the
output, then the overflow bit is set and the output is not affected.

Example: Standard Conversion Instructions

Network 1 //Convert inches to centimeters:
//1. Load a counter value (inches) into AC1.

 //2. Convert the value to a real number.
//3. Multiply by 2.54 (convert to centimeters).
//4. Convert the value back to an integer.

LD I0.0
ITD C10, AC1
DTR AC1, VD0
MOVR VD0, VD8
*R VD4, VD8
ROUND VD8, VD12

Network 2 //Convert a BCD value to an integer

LD I0.3
BCDI AC0

101

VD0

C10

101.0

VD4 2.54

VD8 256.54

VD12 257

Count = 101 inches

2.54 constant (inches to centimeters)

256.54 centimeters as real number

257 centimeters as double integer

1234

BCDI

AC0

04D2AC0

Double Word Integer to Real and Round BCD to Integer

Count (as a real number)

6

S7-200 Instruction Set Chapter 6

95

Operation of the Segment Instruction
To illuminate the segments of a seven-segment display, the Segment instruction (SEG) converts the
character (byte) specified by IN to generate a bit pattern (byte) at the location specified by OUT.

The illuminated segments represent the character in the least
significant digit of the input byte. Figure 6-13 shows the
seven-segment display coding used by the Segment instruction.

Error conditions that set ENO = 0

� 0006 (indirect address)

0 0 0 1 1 1 1 1 1

(IN)
LSD

Segment
Display

(OUT)

8 0 1 1 1 1 1 1 1

(IN)
LSD

Segment
Display

1 0 0 0 0 0 1 1 0 9 0 1 1 0 0 1 1 1

2 0 1 0 1 1 0 1 1 A 0 1 1 1 0 1 1 1

3 0 1 0 0 1 1 1 1 B 0 1 1 1 1 1 0 0

4 0 1 1 0 0 1 1 0 C 0 0 1 1 1 0 0 1

5 0 1 1 0 1 1 0 1 D 0 1 0 1 1 1 1 0

6 0 1 1 1 1 1 0 1 E 0 1 1 1 1 0 0 1

7 0 0 0 0 0 1 1 1 F 0 1 1 1 0 0 0 1

(OUT)
– g f e d c b a– g f e d c b a

a

b

c

d

e

f g

Figure 6-13 Coding for a Seven-Segment Display

Example: Segment Instruction

Network 1

LD I1.0
SEG VB48, AC1

6D

AC1
SEG05

VB48

(display character)

6

S7-200 Programmable Controller System Manual

96

ASCII Conversion Instructions
Valid ASCII characters are the hexadecimal values 30 to 39, and 41 to 46.

Converting between ASCII and Hexadecimal Values
The ASCII to Hexadecimal instruction (ATH) converts a number LEN
of ASCII characters, starting at IN, to hexadecimal digits starting at
OUT. The Hexadecimal to ASCII instruction (HTA) converts the
hexadecimal digits, starting with the input byte IN, to ASCII
characters starting at OUT. The number of hexadecimal digits to be
converted is specified by length LEN.

The maximum number of ASCII characters or hexadecimal digits
that can be converted is 255.

Error conditions that set ENO = 0

� SM1.7 (illegal ASCII) ASCII to Hexadecimal only

� 0006 (indirect address)

� 0091 (operand out of range)
SM bits affected:

� SM1.7 (illegal ASCII)

Converting Numerical Values to ASCII
The Integer to ASCII (ITA), Double Integer to ASCII (DTA), and Real
to ASCII (RTA) instructions convert integer, double integer, or real
number values to ASCII characters.

Table 6-17 Valid Operands for the ASCII Conversion Instructions

Inputs/Outputs Data Type Operands

IN BYTE

INT

DINT

REAL

IB, QB, VB, MB, SMB, SB, LB, *VD, *LD, *AC

IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant

ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, Constant

ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC, Constant

LEN, FMT BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

OUT BYTE IB, QB, VB, MB, SMB, SB, LB, *VD, *LD, *AC

Operation of the Integer to ASCII Instruction

The Integer to ASCII instruction (ITA) converts an integer word IN to
an array of ASCII characters. The format FMT specifies the
conversion precision to the right of the decimal, and whether the
decimal point is to be shown as a comma or a period. The resulting
conversion is placed in 8 consecutive bytes beginning with OUT.

Error conditions that set ENO = 0

� 0006 (indirect address)

� Illegal format

� nnn > 5

The array of ASCII characters is always 8 characters.

Figure 6-14 describes the format operand for the Integer to ASCII instruction. The size of the output buffer
is always 8 bytes. The number of digits to the right of the decimal point in the output buffer is specified by
the nnn field. The valid range of the nnn field is 0 to 5. Specifying 0 digits to the right of the decimal point
causes the value to be displayed without a decimal point. For values of nnn bigger than 5, the output
buffer is filled with ASCII spaces. The c bit specifies the use of either a comma (c=1) or a decimal point
(c=0) as the separator between the whole number and the fraction. The upper 4 bits must be zero.

6

S7-200 Instruction Set Chapter 6

97

Figure 6-14 shows examples of values that are formatted using a decimal point (c=0) with three digits to
the right of the decimal point (nnn=011). The output buffer is formatted according to the following rules:

� Positive values are written to the output buffer without a sign.

� Negative values are written to the output buffer with a leading minus sign (–).

� Leading zeros to the left of the decimal point (except the digit adjacent to the decimal point) are
suppressed.

� Values are right-justified in the output buffer.

in=12

in = –12345
in=1234
in=–123

Out OutOutOutOut Out Out
+1 +2 +3 +4 +5 +6 +7

Out

.

.

.

.

0 1 2
1

2

2 3
2 3 4
3 4 51

1
0

–

0
–

FMT

MSB LSB

n n n00 0 0 c

c = comma (1) or decimal point (0)
nnn = digits to right of decimal point

2 1 067 5 4 3

Figure 6-14 FMT Operand for the Integer to ASCII (ITA) Instruction

Operation of the Double Integer to ASCII Instruction

The Double Integer to ASCII (DTA) instruction converts a double
word IN to an array of ASCII characters. The format operand FMT
specifies the conversion precision to the right of the decimal. The
resulting conversion is placed in 12 consecutive bytes beginning
with OUT.

Error conditions that set ENO = 0

� 0006 (indirect address)

� Illegal format

� nnn > 5

The size of the output buffer is always 12 bytes.

Figure 6-15 describes the format operand for the Double Integer to ASCII instruction. The number of digits
to the right of the decimal point in the output buffer is specified by the nnn field. The valid range of the nnn
field is 0 to 5. Specifying 0 digits to the right of the decimal point causes the value to be displayed without
a decimal point. For values of nnn bigger than 5, the output buffer is filled with ASCII spaces. The c bit
specifies the use of either a comma (c=1) or a decimal point (c=0) as the separator between the whole
number and the fraction. The upper 4 bits must be zero.

Figure 6-15 shows examples of values that are formatted using a decimal point (c=0) with four digits to the
right of the decimal point (nnn=100). The output buffer is formatted according to the following rules:

� Positive values are written to the output buffer without a sign.

� Negative values are written to the output buffer with a leading minus sign (–).

� Leading zeros to the left of the decimal point (except the digit adjacent to the decimal point) are
suppressed.

� Values are right-justified in the output buffer.

in=–12
in=1234567

Out OutOutOutOut Out Out
+1 +2 +3 +4 +5 +6 +7

Out

.

.
0 1 2

1 2 3 4 5
–

Out Out OutOut

00
6 7

+8 +9 +10 +11

FMT

MSB LSB

n n n00 0 0 c

c = comma (1) or decimal point (0)
nnn = digits to right of decimal point

2 1 067 5 4 3

Figure 6-15 FMT Operand for the Double Integer to ASCII (DTA) Instruction

6

S7-200 Programmable Controller System Manual

98

Operation of the Real to ASCII Instruction

The Real to ASCII instruction (RTA) converts a real-number value IN
to ASCII characters. The format FMT specifies the conversion
precision to the right of the decimal, whether the decimal point is
shown as a comma or a period, and the output buffer size.

The resulting conversion is placed in an output buffer beginning with
OUT.

Error conditions that set ENO = 0

� 0006 (indirect address)

� nnn > 5

� ssss < 3

� ssss< number of characters in OUT

The number (or length) of the resulting ASCII characters is the size of the output buffer and can be
specified to a size ranging from 3 to 15 bytes or characters.

The real-number format used by the S7-200 supports a maximum of 7 significant digits. Attempting to
display more than 7 significant digits produces a rounding error.

Figure 6-16 describes the format operand (FMT) for the RTA instruction. The size of the output buffer is
specified by the ssss field. A size of 0, 1, or 2 bytes is not valid. The number of digits to the right of the
decimal point in the output buffer is specified by the nnn field. The valid range of the nnn field is 0 to 5.
Specifying 0 digits to the right of the decimal point causes the value to be displayed without a decimal
point. The output buffer is filled with ASCII spaces for values of nnn bigger than 5 or when the specified
output buffer is too small to store the converted value. The c bit specifies the use of either a comma (c=1)
or a decimal point (c=0) as the separator between the whole number and the fraction.

Figure 6-16 also shows examples of values that are formatted using a decimal point (c=0) with one digit to
the right of the decimal point (nnn=001) and a buffer size of six bytes (ssss=0110). The output buffer is
formatted according to the following rules:

� Positive values are written to the output buffer without a sign.

� Negative values are written to the output buffer with a leading minus sign (–).

� Leading zeros to the left of the decimal point (except the digit adjacent to the decimal point) are
suppressed.

� Values to the right of the decimal point are rounded to fit in the specified number of digits to the right
of the decimal point.

� The size of the output buffer must be a minimum of three bytes more than the number of digits to
the right of the decimal point.

� Values are right-justified in the output buffer.

Out
+1 +2 +3 +4 +5

OutOutOut Out Out

in = 1234.5
in = –0.0004

in = –3.67526
in = 1.95

1 2 3 4 . 5
0 . 0

. 73–
2 . 0

MSB

7 6 5 4 3 2 1 0
s s s s c n n n

LSB

ssss = size of output buffer
c = comma (1) or decimal point (0)
nnn = digits to right of decimal point

FMT

Figure 6-16 FMT Operand for the Real to ASCII (RTA) Instruction

6

S7-200 Instruction Set Chapter 6

99

Example: ASCII to Hexadecimal Instruction

Network 1

LD I3.2
ATH VB30, VB40, 3

3E

VB40
ATH

VB30

Ax33 45 41 Note: The X indicates that the “nibble” (half of a byte) is
unchanged.

‘3’ ‘E’ ‘A’

Example: Integer to ASCII Instruction

Network 1 //Convert the integer value at VW2
//to 8 ASCII characters starting at VB10,
//using a format of 16#0B
//(a comma for the decimal point,
//followed by 3 digits).

LD I2.3
ITA VW2, VB10, 16#0B

VB10
ITA 20

VB11

20 31

...

32 2C 33 34 35

VW2

12345
‘ ’ ‘ ’ ‘1’ ‘2’ ‘,’ ‘3’ ‘4’ ‘5’

Example: Real to ASCII Instruction

Network 1 //Convert the real value at VD2
//to 10 ASCII characters starting at VB10,
//using a format of 16#A3
//(a period for the decimal point,
//followed by 3 digits).

LD I2.3
RTA VD2, VB10, 16#A3

VB10
RTA 20

VB11

20

...

20 31 32 33 2E 34

VD2

123.45 35
‘ ’ ‘ ’ ‘ ’ ‘1’ ‘2’ ‘3’ ‘.’ ‘4’ ‘5’

30
‘0’

6

S7-200 Programmable Controller System Manual

100

String Conversion Instructions
Converting Numerical Values to String
The Integer to String (ITS), Double Integer to String (DTS), and Real
to String (RTS) instructions convert integers, double integers, or real
number values (IN) to an ASCII string (OUT).

Operation of the Integer to String
The Integer to String instruction (ITS) converts an integer word IN to
an ASCII string with a length of 8 characters. The format (FMT)
specifies the conversion precision to the right of the decimal, and
whether the decimal point is to be shown as a comma or a period.
The resulting string is written to 9 consecutive bytes starting at OUT.
See the section, format for strings in Chapter 4 for more information.

Error conditions that set ENO = 0

� 0006 (indirect address)

� 0091 (operand out of range)

� Illegal format (nnn > 5)

Figure 6-17 describes the format operand for the Integer to String
instruction. The length of the output string is always 8 characters.
The number of digits to the right of the decimal point in the output
buffer is specified by the nnn field. The valid range of the nnn field is
0 to 5. Specifying 0 digits to the right of the decimal point causes the
value to be displayed without a decimal point. For values of nnn
greater than 5, the output is a string of 8 ASCII space characters.
The c bit specifies the use of either a comma (c=1) or a decimal
point (c=0) as the separator between the whole number and the
fraction. The upper 4 bits of the format must be zero.

Figure 6-17 also shows examples of values that are formatted using
a decimal point (c= 0) with three digits to the right of the decimal
point (nnn = 011).The value at OUT is the length of the string.

The output string is formatted according to the following rules:

� Positive values are written to the output buffer without a sign.

� Negative values are written to the output buffer with a leading minus sign (–).

� Leading zeros to the left of the decimal point (except the digit adjacent to the decimal point) are
suppressed.

� Values are right-justified in the output string.

Table 6-18 Valid Operands for the Instructions That Convert Numerical Values to Strings

Inputs/Outputs Data Type Operands

IN BYTE (String)

INT

DINT

REAL

VB, LB, *VD, *LD, *AC

IW, QW, VW, MW, SMW, SW, T, C, LW, AIW, *VD, *LD, *AC, Constant

ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, Constant

ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC, Constant

INDX, FMT BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

OUT BYTE (String)

INT

DINT, REAL

VB, LB, *VD, *LD, *AC

IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AQW, *VD, *LD, *AC

ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

6

S7-200 Instruction Set Chapter 6

101

in=12

in = –12345
in=1234
in=–123

Out OutOutOutOut Out Out
+1 +2 +3 +4 +5 +6 +7

Out

.

.
1
2

. 0 1

.

1

1 2
. 2 3
. 3 4–

FMT

MSB LSB

n n n00 0 0 c

c = comma (1) or decimal point (0)
nnn = digits to right of decimal point

2 1 067 5 4 3 0
0

Out
+8

2
3
4
58

8
8
8

Figure 6-17 FMT Operand for the Integer to String Instruction

Operation of the Double Integer to String

The Double Integer to String instruction (DTS) converts a double
integer IN to an ASCII string with a length of 12 characters. The
format (FMT) specifies the conversion precision to the right of the
decimal, and whether the decimal point is to be shown as a comma
or a period. The resulting string is written to 13 consecutive bytes
starting at OUT. For more information, see the section that describes
the format for strings in Chapter 4.

Error conditions that set ENO = 0

� 0006 (indirect address)

� 0091 (operand out of range)

� Illegal format (nnn > 5)

Figure 6-18 describes the format operand for the Integer to String instruction. The length of the output
string is always 8 characters. The number of digits to the right of the decimal point in the output buffer is
specified by the nnn field. The valid range of the nnn field is 0 to 5. Specifying 0 digits to the right of the
decimal point causes the value to be displayed without a decimal point. For values of nnn greater than 5,
the output is a string of 12 ASCII space characters. The c bit specifies the use of either a comma (c=1) or
a decimal point (c=0) as the separator between the whole number and the fraction. The upper 4 bits of the
format must be zero.

Figure 6-18 also shows examples of values that are formatted using a decimal point (c= 0) with four digits
to the right of the decimal point (nnn = 100). The value at OUT is the length of the string. The output string
is formatted according to the following rules:

� Positive values are written to the output buffer without a sign.

� Negative values are written to the output buffer with a leading minus sign (–).

� Leading zeros to the left of the decimal point (except the digit adjacent to the decimal point) are
suppressed.

� Values are right-justified in the output string.

in=12
in=–1234567

Out OutOutOutOut Out Out
+1 +2 +3 +4 +5 +6 +7

Out

. – 0
1 2 3

FMT

MSB LSB

n n n00 0 0 c

c = comma (1) or decimal point (0)
nnn = digits to right of decimal point

2 1 067 5 4 3

Out
+8

.

.12
12

Out
+9

Out
+10

Out
+11

Out
+12

0
4

0
5

1
6

2
7

Figure 6-18 FMT Operand for the Double Integer to String Instruction

6

S7-200 Programmable Controller System Manual

102

Operation of the Real to String

The Real to String instruction (RTS) converts a real value IN to an
ASCII string. The format (FMT) specifies the conversion precision to
the right of the decimal, whether the decimal point is to be shown as
a comma or a period and the length of the output string.

The resulting conversion is placed in a string beginning with OUT.
The length of the resulting string is specified in the format and can
be 3 to 15 characters. For more information, see the section that
describes the format for strings in Chapter 4.

Error conditions that set ENO = 0

� 0006 (indirect address)

� 0091 (operand out of range)

� Illegal format:
 nnn > 5
 ssss < 3
 ssss < number of characters

required

The real-number format used by the S7-200 supports a maximum of 7 significant digits. Attempting to
display more than the 7 significant digits produces a rounding error.

Figure 6-19 describes the format operand for the Real to String instruction. The length of the output string
is specified by the ssss field. A size of 0, 1, or 2 bytes is not valid. The number of digits to the right of the
decimal point in the output buffer is specified by the nnn field. The valid range of the nnn field is 0 to 5.
Specifying 0 digits to the right of the decimal point causes the value to be displayed without a decimal
point. The output string is filled with ASCII space characters when nnn is greater than 5 or when the
specified length of the output string is too small to store the converted value. The c bit specifies the use of
either a comma (c=1) or a decimal point (c=0) as the separator between the whole number and the
fraction.

Figure 6-19 also shows examples of values that are formatted using a decimal point (c= 0) with one digit
to the right of the decimal point (nnn = 001) and a output string length of 6 characters (ssss = 0110). The
value at OUT is the length of the string. The output string is formatted according to the following rules:

� Positive values are written to the output buffer without a sign.

� Negative values are written to the output buffer with a leading minus sign (–).

� Leading zeros to the left of the decimal point (except the digit adjacent to the decimal point) are
suppressed.

� Values to the right of the decimal point are rounded to fit in the specified number of digits to the right
of the decimal point.

� The size of the output string must be a minimum of three bytes more than the number of digits to the
right of the decimal point.

� Values are right-justified in the output string.

in=1234.5

in = 1.95
in= –3.67526
in= –0.0004

Out OutOutOutOut Out Out
+1 +2 +3 +4 +5 +6

4
.

3
2

. 5

. 0

. 7

. 0

FMT

MSB LSB

n n nss s s c

ssss = length of output string
c = comma (1) or decimal point (0)
nnn = digits to right of decimal point

2 1 067 5 4 3

0

6

6
6
6

1 2 3

–

Figure 6-19 FMT Operand for the Real to String Instruction

6

S7-200 Instruction Set Chapter 6

103

Converting Substrings to Numerical Values
The Substring to Integer (STI), Substring to Double Integer (STD),
and Substring to Real (STR) instructions convert a string value IN,
starting at the offset INDX, to an integer, double integer or real
number value OUT.

Error conditions that set ENO = 0

� 0006 (indirect address)

� 0091 (operand out of range)

� 009B (index = 0)

� SM1.1 (overflow)

The Substring to Integer and Substring to Double Integer convert
strings with the following form: [spaces] [+ or –] [digits 0 – 9]

The Substring to Real instruction converts strings with the following
form: [spaces] [+ or –] [digits 0 – 9] [. or ,] [digits 0 – 9]

The INDX value is normally set to 1, which starts the conversion with
the first character of the string. The INDX value can be set to other
values to start the conversion at different points within the string.
This can be used when the input string contains text that is not part
of the number to be converted. For example, if the input string is
“Temperature: 77.8”, you set INDX to a value of 13 to skip over the
word “Temperature: ” at the start of the string.

The Substring to Real instruction does not convert strings using
scientific notation or exponential forms of real numbers. The
instruction does not produce an overflow error (SM1.1) but converts
the string to a real number up to the exponential and then terminates
the conversion. For example, the string ‘1.234E6’ converts without
errors to a real value of 1.234.

The conversion is terminated when the end of the string is reached or when the first invalid character is
found. An invalid character is any character which is not a digit (0 – 9).

The overflow error (SM1.1) is set whenever the conversion produces an integer value that is too large for
the output value. For example, the Substring to Integer instruction sets the overflow error if the input string
produces a value greater than 32767 or less than –32768.

The overflow error (SM1.1) is also set if no conversion is possible when the input string does not contain a
valid value. For example, if the input string contains ‘A123’, the conversion instruction sets SM1.1
(overflow) and the output value remains unchanged.

Table 6-19 Valid Operands for the Instructions That Convert Substrings to Numerical Values

Inputs/Outputs Data Type Operands

IN BYTE (string) IB, QB, VB, MB, SMB, SB, LB, *VD, *LD, *AC, Constant

INDX BYTE VB, IB, QB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

OUT BYTE (string)

INT

DINT, REAL

VB, IB, QB, MB, SMB, SB, LB, *VD, *LD, *AC, Constant

VW, IW, QW, MW, SMW, SW, T, C, LW, AC, AQW, *VD, *LD, *AC

VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

6

S7-200 Programmable Controller System Manual

104

‘+2345’
‘123.45’
‘–00456’

Output Integer

123
–456
123

2345

‘123’

Input String

‘000000123ABCD’ 123

Valid Input Strings
for Integer and Double Integer

‘+2345’
‘123.45’
‘–00456’

Output Real

123.0
–456.0
123.45
2345.0

‘123’

Input String

Valid Input Strings
for Real Numbers

‘00.000000123’ 0.000000123
‘+–123
‘++123’

‘ ’
‘A123’

Input String

Invalid Input Strings

‘+ 123’

Figure 6-20 Examples of Valid and Invalid Input Strings

Example: String Conversion: Substring to Integer, Double Integer and Real

Network 1 //Converts the numeric string to an integer.
//Converts the numeric string to a double integer.
//Converts the numeric string to a real.

LD I0.0
STI VB0,7,VW100
STD VB0,7,VD200
STR VB0,7,VD300

VB0

11 ’T’ ’e’ ’m’ ’p’ ’ ’’ ’ ’9’ ’8’ ’.’ ’6’ ’F’

VB11

After executing the network:

VW100 (integer) = 98

VD200 (double integer) = 98

VD300 (real) = 98.6

6

S7-200 Instruction Set Chapter 6

105

Encode and Decode Instructions
Encode
The Encode instruction (ENCO) writes the bit number of the least
significant bit set of the input word IN into the least significant
“nibble” (4 bits) of the output byte OUT.

Decode
The Decode instruction (DECO) sets the bit in the output word OUT
that corresponds to the bit number represented by the least
significant “nibble” (4 bits) of the input byte IN. All other bits of the
output word are set to 0.

SM Bits and ENO
For both the Encode and Decode instructions, the following
conditions affect ENO.

Error conditions that set ENO = 0

� 0006 (indirect address)

Table 6-20 Valid Operands for the Encode and Decode Instructions

Inputs/Outputs Data Types Operands

IN BYTE

WORD

IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant

OUT BYTE

WORD

IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC

IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AQW, *VD, *LD, *AC

Example: Decode and Encode Instructions

Network 1 //AC2 contains error bits.
//1. The DECO instruction sets the bit in VW40
// that corresponds to this error code.
//2. The ENCO instruction converts
// the least significant bit set to an error code
// that is stored in VB50.

LD I3.1
DECO AC2, VW40
ENCO AC3, VB50

 3AC2

DECO

0000 0000 0000VW40
15 3 0

1000 9VB50

ENCO

1000 0010 0000 0000AC3
15 9 0

6

S7-200 Programmable Controller System Manual

106

Counter Instructions

SIMATIC Counter Instructions
Count Up Counter
The Count Up instruction (CTU) counts up from the current value
each time the count up (CU) input makes the transition from off to
on. When the current value Cxx is greater than or equal to the
preset value PV, the counter bit Cxx turns on. The counter is reset
when the Reset (R) input turns on, or when the Reset instruction is
executed. The counter stops counting when it reaches the
maximum value (32,767).

STL operation :

� Reset input: Top of stack

� Count Up input: Value loaded in the second stack location

Count Down Counter
The Count Down instruction (CTD) counts down from the current
value of that counter each time the count down (CD) input makes
the transition from off to on. When the current value Cxx is equal to
0, the counter bit Cxx turns on. The counter resets the counter bit
Cxx and loads the current value with the preset value PV when the
load input LD turns on. The counter stops upon reaching zero, and
the counter bit Cxx turns on.

STL operation:

� Load input: Top of stack

� Count Down input: Value loaded in the second stack location.

Count Up/Down Counter
The Count Up/Down instruction (CTUD) counts up each time the count up (CU) input makes the
transition from off to on, and counts down each time the count down (CD) input makes the transition from
off to on. The current value Cxx of the counter maintains the current count. The preset value PV is
compared to the current value each time the counter instruction is executed.

Upon reaching maximum value (32,767), the next rising edge at the count up input causes the current
count to wrap around to the minimum value (–32,768). On reaching the minimum value (–32,768), the
next rising edge at the count down input causes the current count to wrap around to the maximum value
(32,767).

When the current value Cxx is greater than or equal to the preset value PV, the counter bit Cxx turns on.
Otherwise, the counter bit turns off. The counter is reset when the Reset (R) input turns on, or when the
Reset instruction is executed. The CTUD counter stops counting when it reaches PV.

STL operation:

� Reset input: Top of stack

� Count Down input: Value loaded in the second stack location

� Count Up input: Value loaded in the third stack location

Table 6-21 Valid Operands for the SIMATIC Counter Instructions

Inputs/Outputs Data Types Operands

Cxx WORD Constant (C0 to C255)

CU, CD, LD, R BOOL I, Q, V, M, SM, S, T, C, L, Power Flow

PV INT IW, QW, VW, MW, SMW, SW, LW, T, C, AC, AIW, *VD, *LD, *AC, Constant

6

S7-200 Instruction Set Chapter 6

107

Tip
Since there is one current value for each counter, do not assign the same number to more than one
counter. (Up Counters, Up/Down Counters, and Down counters with the same number access the same
current value.)

When you reset a counter using the Reset instruction, the counter bit is reset and the counter current
value is set to zero. Use the counter number to reference both the current value and the counter bit of
that counter.

Table 6-22 Operations of the Counter Instructions

Type Operation Counter Bit Power Cycle/First Scan

CTU CU increments the current value.

Current value continues to increment
until it reaches 32,767.

The counter bit turns on when:

Current value >= Preset

Counter bit is off.

Current value can be retained.1

CTUD CU increments the current value.
CD decrements the current value.

Current value continues to increment or
decrement until the counter is reset.

The counter bit turns on when:

Current value >= Preset

Counter bit is off.

Current value can be retained.1

CTD CD decrements the current value until
the current value reaches 0.

The counter bit turns on when:

Current value = 0

Counter bit is off.

Current value can be retained.1

1 You can select that the current value for the counter be retentive. See Chapter 4 for information about memory retention
for the S7-200 CPU.

Example: SIMATIC Count Down Counter Instruction

Network 1 //Count down counter C1 current value counts from 3 to 0
//with I0.1 off,
//I0.0 Off–on decrements C1 current value
//I0.1 On loads countdown preset value 3

LD I0.0
LD I0.1
CTD C1, +3

Network 2 //C1 bit is on when counter C1 current value = 0

LD C1
= Q0.0

Timing Diagram

6

S7-200 Programmable Controller System Manual

108

Example: SIMATIC Count Up/Down Counter Instruction

Network 1 //I0.0 counts up
//I0.1 counts down
//I0.2 resets current value to 0

LD I0.0
LD I0.1
LD I0.2
CTUD C48, +4

Network 2 //Count Up/Down counter C48 turns on C48 bit
//when current value >= 4

LD C48
= Q0.0

Timing Diagram

6

S7-200 Instruction Set Chapter 6

109

IEC Counter Instructions
Up Counter
The Count Up instruction (CTU) counts up from the current value to
the preset value (PV) on the rising edges of the Count Up (CU)
input. When the current value (CV) is greater than or equal to the
preset value, the counter output bit (Q) turns on. The counter resets
when the reset input (R) is enabled. The Up Counter stops counting
when it reaches the preset value.

Down Counter
The Count Down instruction (CTD) counts down from the preset
value (PV) on the rising edges of the Count Down (CD) input. When
the current value (CV) is equal to zero, the counter output bit (Q)
turns on. The counter resets and loads the current value with the
preset value when the load input (LD) is enabled. The Down
Counter stops counting when it reaches zero.

Up/Down Counter
The Count Up/Down instruction (CTUD) counts up or down from the
current value (CV) on the rising edges of the Count Up (CU) or
Count Down (CD) input. When the current value is equal to preset,
the up output (QU) turns on. When the current value is equal to zero,
the down output (QD) turns on. The counter loads the current value
with the preset value (PV) when the load (LD) input is enabled.
Similarly, the counter resets and loads the current value with 0 when
the reset (R) is enabled. The counter stops counting when it reaches
preset or 0.

Table 6-23 Valid Operands for the IEC Counter Instructions

Inputs/Outputs Data Types Operands

Cxx CTU, CTD, CTUD Constant (C0 to C255)

CU, CD, LD, R BOOL I, Q, V, M, SM, S, T, C, L, Power Flow

PV INT IW, QW, VW, MW, SMW, SW, LW, AC, AIW, *VD, *LD, *AC, Constant

Q, QU, QD BOOL I, Q, V, M, SM, S, L

CV INT IW, QW, VW, MW, SW, LW, AC, *VD, *LD, *AC

Tip
Since there is one current value for each counter, do not assign the same number to more than one
counter. (Up Counters, Down Counters, and Up/Down Counters access the same current value.)

6

S7-200 Programmable Controller System Manual

110

Example: IEC Counter Instructions

Timing Diagram

I4.0
CU – Up

I3.0
CD – Down

I2.0
R – Reset

I1.0
LD – Load

VW0
CV –
Current Value

Q0.0
QU – Up

Q0.1
QD – Down

0
1

2
3

4 4

2
3 3

4

0

4

6

S7-200 Instruction Set Chapter 6

111

High-Speed Counter Instructions

High-Speed Counter Definition
The High-Speed Counter Definition instruction (HDEF) selects the
operating mode of a specific high-speed counter (HSCx). The mode
selection defines the clock, direction, start, and reset functions of the
high-speed counter.

You use one High-Speed Counter Definition instruction for each
high-speed counter.

Error conditions that set ENO = 0

� 0003 (input point conflict)

� 0004 (illegal instruction in interrupt)

� 000A (HSC redefinition)

High-Speed Counter
The High-Speed Counter (HSC) instruction configures and controls
the high-speed counter, based on the state of the HSC special
memory bits. The parameter N specifies the high-speed counter
number.

The high-speed counters can be configured for up to twelve different modes of operation. See Table
6-25.

Each counter has dedicated inputs for clocks, direction control, reset, and start, where these functions
are supported. For the two-phase counters, both clocks can run at their maximum rates. In quadrature
modes, you can select one times (1x) or four times (4x) the maximum counting rates. All counters run at
maximum rates without interfering with one another.

Error conditions that set ENO = 0

� 0001 (HSC before HDEF)

� 0005 (simultaneous HSC/PLS)

Table 6-24 Valid Operands for the High-Speed Counter Instructions

Inputs/Outputs Data Types Operands

HSC, MODE BYTE Constant

N WORD Constant

Refer to the Tips and Tricks on the documentation CD for programs that use high-speed counters. See
Tip 4 and Tip 29.

High-speed counters count high-speed events that cannot be controlled at S7-200 scan rates. The
maximum counting frequency of a high-speed counter depends upon your S7-200 CPU model. Refer to
Appendix A for more information.

Tip
CPU 221 and CPU 222 support four high-speed counters: HSC0, HSC3, HSC4, and HSC5. These
CPUs do not support HSC1 and HSC2.

CPU 224, CPU 226, and CPU 226XM support six high-speed counters: HSC0 to HSC5.

Tips and Tricks

6

S7-200 Programmable Controller System Manual

112

Typically, a high-speed counter is used as the drive for a drum timer, where a shaft rotating at a constant
speed is fitted with an incremental shaft encoder. The shaft encoder provides a specified number of
counts per revolution and a reset pulse that occurs once per revolution. The clock(s) and the reset pulse
from the shaft encoder provide the inputs to the high-speed counter.

The high-speed counter is loaded with the first of several presets, and the desired outputs are activated
for the time period where the current count is less than the current preset. The counter is set up to provide
an interrupt when the current count is equal to preset and also when reset occurs.

As each current-count-value-equals-preset-value interrupt event occurs, a new preset is loaded and the
next state for the outputs is set. When the reset interrupt event occurs, the first preset and the first output
states are set, and the cycle is repeated.

Since the interrupts occur at a much lower rate than the counting rates of the high-speed counters, precise
control of high-speed operations can be implemented with relatively minor impact to the overall PLC scan
cycle. The method of interrupt attachment allows each load of a new preset to be performed in a separate
interrupt routine for easy state control. (Alternatively, all interrupt events can be processed in a single
interrupt routine.)

Understanding the Different High-Speed Counters
All counters function the same way for the same counter mode of operation. There are four basic types of
counters: single-phase counter with internal direction control, single-phase counter with external direction
control, two-phase counter with 2 clock inputs, and A/B phase quadrature counter. Note that every mode
is not supported by every counter. You can use each type: without reset or start inputs, with reset and
without start, or with both start and reset inputs.

� When you activate the reset input, it clears the current value and holds it clear until you deactivate
reset.

� When you activate the start input, it allows the counter to count. While start is deactivated, the
current value of the counter is held constant and clocking events are ignored.

� If reset is activated while start is inactive, the reset is ignored and the current value is not changed.
If the start input becomes active while the reset input is active, the current value is cleared.

Before you use a high-speed counter, you use the HDEF instruction (High-Speed Counter Definition) to
select a counter mode. Use the first scan memory bit, SM0.1 (this bit is turned on for the first scan and is
then turned off), to call a subroutine that contains the HDEF instruction.

Programming a High-Speed Counter
You can use the HSC Instruction Wizard to configure the counter. The wizard uses the following
information: type and mode of counter, counter preset value, counter current value, and initial counting
direction. To start the HSC Instruction Wizard, select the Tools > Instruction Wizard menu command and
then select HSC from the Instruction Wizard window.

To program a high-speed counter, you must perform the following basic tasks:

� Define the counter and mode.

� Set the control byte.

� Set the current value (starting value).

� Set the preset value (target value).

� Assign and enable the interrupt routine.

� Activate the high-speed counter.

Instruction
Wizard

6

S7-200 Instruction Set Chapter 6

113

Defining Counter Modes and Inputs
Use the High-Speed Counter Definition instruction to define the counter modes and inputs.

Table 6-25 shows the inputs used for the clock, direction control, reset, and start functions associated with
the high-speed counters. The same input cannot be used for two different functions, but any input not
being used by the present mode of its high-speed counter can be used for another purpose. For example,
if HSC0 is being used in mode 1, which uses I0.0 and I0.2, I0.1 can be used for edge interrupts or for
HSC3.

Tip
Note that all modes of HSC0 always use I0.0 and all modes of HSC4 always use I0.3, so these points
are never available for other uses when these counters are in use.

Table 6-25 Inputs for the High-Speed Counters

Mode Description Inputs

HSC0 I0.0 I0.1 I0.2

HSC1 I0.6 I0.7 I0.2 I1.1

HSC2 I1.2 I1.3 I1.1 I1.2

HSC3 I0.1

HSC4 I0.3 I0.4 I0.5

HSC5 I0.4

0 Single-phase counter with internal Clock

1
direction control

Clock Reset

2 Clock Reset Start

3 Single-phase counter with external Clock Direction

4
direction control

Clock Direction Reset

5 Clock Direction Reset Start

6 Two-phase counter with 2 clock inputs Clock Up Clock Down

7 Clock Up Clock Down Reset

8 Clock Up Clock Down Reset Start

9 A/B phase quadrature counter Clock A Clock B

10 Clock A Clock B Reset

11 Clock A Clock B Reset Start

6

S7-200 Programmable Controller System Manual

114

Examples of HSC Modes
The timing diagrams in Figure 6-21 through Figure 6-25 show how each counter functions according to
mode.

Clock 0
1

Internal
Direction
Control
(1 = Up)

0

1

0

Current value loaded to 0, preset loaded to 4, counting direction set to up.
Counter enable bit set to enabled.

Counter
Current
Value

PV=CV interrupt generated
Direction changed within interrupt routine

1
2

3
4

3
2

1
0

–1

Figure 6-21 Operation Example of Modes 0, 1, or 2

2
1

Clock 0
1

External
Direction
Control
(1 = Up)

0

1

0

Current value loaded to 0, preset loaded to 4, counting direction set to up.
Counter enable bit set to enabled.

Counter
Current
Value

PV=CV interrupt generated

1
2

PV=CV interrupt generated and
Direction Changed interrupt generated

3
4

5
4

3

Figure 6-22 Operation Example of Modes 3, 4, or 5

6

S7-200 Instruction Set Chapter 6

115

When you use counting modes 6, 7, or 8, and rising edges on both the up clock and down clock inputs
occur within 0.3 microseconds of each other, the high-speed counter could see these events as
happening simultaneously. If this happens, the current value is unchanged and no change in counting
direction is indicated. As long as the separation between rising edges of the up and down clock inputs is
greater than this time period, the high-speed counter captures each event separately. In either case, no
error is generated and the counter maintains the correct count value.

Count
Up
Clock 0

1

Count
Down
Clock

0

1

0

Current value loaded to 0, preset loaded to 4, initial counting direction set to up.
Counter enable bit set to enabled.

Counter
Current
Value

PV=CV interrupt generated

PV=CV interrupt generated and
Direction Changed interrupt generated

3

1
2

4

5

4

3

2

1

Figure 6-23 Operation Example of Modes 6, 7, or 8

Phase A
Clock 0

1

Phase B
Clock

0

1

0

Current value loaded to 0, preset loaded to 3, initial counting direction set to up.
Counter enable bit set to enabled.

Counter
Current
Value

PV=CV interrupt
generated

PV=CV interrupt generated and
Direction Changed interrupt generated

1
2

3
4

3
2

Figure 6-24 Operation Example of Modes 9, 10, or 11 (Quadrature 1x Mode)

6

S7-200 Programmable Controller System Manual

116

6

Phase A
Clock 0

1

Phase B
Clock

0

1

0

Current value loaded to 0, preset loaded to 9, initial counting direction set to up.
Counter enable bit set to enabled.

Counter Current
Value

PV=CV interrupt generated

1
2

3

4
5

PV=CV
interrupt generated

6
7

8
9
10

12

Direction Changed
interrupt generated

11

7
8

9
10

11

Figure 6-25 Operation Example of Modes 9, 10, or 11 (Quadrature 4x Mode)

Reset and Start Operation
The operation of the reset and start inputs shown in Figure 6-26 applies to all modes that use reset and
start inputs. In the diagrams for the reset and start inputs, both reset and start are shown with the active
state programmed to a high level.

Reset
(Active High)

–2,147,483,648

0

+2,147,483,647

1

0

Reset interrupt
generated

Counter
Current Value

Start
(Active High)

1

Reset
(Active High)

–2,147,483,648

0

+2,147,483,647

Reset interrupt
generated

1

0

Counter
enabled

Counter
disabled

Counter
Current Value

Counter
disabled

Reset interrupt
generated

Counter
enabled

Current
value
frozen

Current
value
frozen

0

Example with Reset
and without Start

Counter value is somewhere in this range.

Example with Reset
and Start

Counter value is somewhere in this range.

Figure 6-26 Operation Examples Using Reset with and without Start

6

S7-200 Instruction Set Chapter 6

117

Four counters have three control bits that are used to configure the active state of the reset and start
inputs and to select 1x or 4x counting modes (quadrature counters only). These bits are located in the
control byte for the respective counter and are only used when the HDEF instruction is executed. These
bits are defined in Table 6-26.

Tip
You must set these three control bits to the desired state before the HDEF instruction is executed.
Otherwise, the counter takes on the default configuration for the counter mode selected.

Once the HDEF instruction has been executed, you cannot change the counter setup unless you first
place the S7-200 in STOP mode.

Table 6-26 Active Level for Reset, Start, and 1x/4x Control Bits

HSC0 HSC1 HSC2 HSC4 Description (used only when HDEF is executed)

SM37.0 SM47.0 SM57.0 SM147.0
Active level control bit for Reset1:
0 = Reset is active high 1 = Reset is active low

––– SM47.1 SM57.1 –––
Active level control bit for Start1:
 0 = Start is active high 1 = Start is active low

SM37.2 SM47.2 SM57.2 SM147.2
Counting rate selection for quadrature counters:
0 = 4X counting rate 1 = 1X counting rate

1 The default setting of the reset input and the start input are active high, and the quadrature counting rate is 4x (or four
times the input clock frequency).

Example: High-Speed Counter Definition Instruction

M
A
I
N

Network 1 //On the first scan:
//1. Select the start and reset inputs
// to be active high and select 4x mode.
//2. Configure HSC1 for quadrature mode
 // with reset and start inputs

LD SM0.1
MOVB 16#F8, SMB47
HDEF 1, 11

6

S7-200 Programmable Controller System Manual

118

Setting the Control Byte
After you define the counter and the counter mode, you can program the dynamic parameters of the
counter. Each high-speed counter has a control byte that allows the following actions:

� Enabling or disabling the counter

� Controlling the direction (modes 0, 1, and 2 only), or the initial counting direction for all other modes

� Loading the current value

� Loading the preset value

Examination of the control byte and associated current and preset values is invoked by the execution of
the HSC instruction. Table 6-27 describes each of these control bits.

Table 6-27 Control Bits for HSC0, HSC1, HSC2, HSC3, HSC4, and HSC5

HSC0 HSC1 HSC2 HSC3 HSC4 HSC5 Description

SM37.3 SM47.3 SM57.3 SM137.3 SM147.3 SM157.3
Counting direction control bit:
0 = Count down 1 = Count up

SM37.4 SM47.4 SM57.4 SM137.4 SM147.4 SM157.4
Write the counting direction to the HSC:
0 = No update 1 = Update direction

SM37.5 SM47.5 SM57.5 SM137.5 SM147.5 SM157.5
Write the new preset value to the HSC:
0 = No update 1 = Update preset

SM37.6 SM47.6 SM57.6 SM137.6 SM147.6 SM157.6
Write the new current value to the HSC:
0 = No update 1 = Update current value

SM37.7 SM47.7 SM57.7 SM137.7 SM147.7 SM157.7
Enable the HSC:
0 = Disable the HSC 1 = Enable the HSC

Setting Current Values and Preset Values
Each high-speed counter has a 32-bit current value and a 32-bit preset value. Both the current and the
preset values are signed integer values. To load a new current or preset value into the high-speed
counter, you must set up the control byte and the special memory bytes that hold the current and/or preset
values, and also execute the HSC instruction to cause the new values to be transferred to the high-speed
counter. Table 6-28 lists the special memory bytes used to hold the new current and preset values.

In addition to the control bytes and the new preset and current holding bytes, the current value of each
high-speed counter can only be read using the data type HC (High-Speed Counter Current) followed by
the number (0, 1, 2, 3, 4, or 5) of the counter. The current value is directly accessible for read operations,
but can only be written with the HSC instruction.

Table 6-28 Current and Preset Values of HSC0, HSC1, HSC2, HSC3, HSC4, and HSC5

Value to be Loaded HSC0 HSC1 HSC2 HSC3 HSC4 HSC5

New current SMD38 SMD48 SMD58 SMD138 SMD148 SMD158

New preset SMD42 SMD52 SMD62 SMD142 SMD152 SMD162

6

S7-200 Instruction Set Chapter 6

119

Addressing the High-Speed Counters (HC)
To access the count value for the high-speed counter, specify the address of the high-speed counter,
using the memory type (HC) and the counter number (such as HC0). The current value of the high-speed
counter is a read-only value that can be addressed only as a double word (32 bits), as shown in
Figure 6-27.

HC 2
31
MSB

0
LSB

High-speed counter number
Area identifier (high-speed counter)

Least significantMost significant

Byte 0Byte 1Byte 2Byte 3

Figure 6-27 Accessing the High-Speed Counter Current Values

Assigning Interrupts
All counter modes support an interrupt on current value equal to the preset value. Counter modes that use
an external reset input support an interrupt on activation of the external reset. All counter modes except
modes 0, 1, and 2 support an interrupt on a change in counting direction. Each of these interrupt
conditions can be enabled or disabled separately. For a complete discussion on the use of interrupts, see
the section on Communications and Interrupt instructions.

Notice
A fatal error can occur if you attempt either to load a new current value or to disable and then re-enable
the high-speed counter from within the external reset interrupt routine.

Status Byte
A status byte for each high-speed counter provides status memory bits that indicate the current counting
direction and whether the current value is greater or equal to the preset value. Table 6-29 defines these
status bits for each high-speed counter.

Tip
Status bits are valid only while the high-speed counter interrupt routine is being executed. The purpose
of monitoring the state of the high-speed counter is to enable interrupts for the events that are of
consequence to the operation being performed.

Table 6-29 Status Bits for HSC0, HSC1, HSC2, HSC3, HSC4, and HSC5

HSC0 HSC1 HSC2 HSC3 HSC4 HSC5 Description

SM36.0 SM46.0 SM56.0 SM136.0 SM146.0 SM156.0 Not used

SM36.1 SM46.1 SM56.1 SM136.1 SM146.1 SM156.1 Not used

SM36.2 SM46.2 SM56.2 SM136.2 SM146.2 SM156.2 Not used

SM36.3 SM46.3 SM56.3 SM136.3 SM146.3 SM156.3 Not used

SM36.4 SM46.4 SM56.4 SM136.4 SM146.4 SM156.4 Not used

SM36.5 SM46.5 SM56.5 SM136.5 SM146.5 SM156.5 Current counting direction status bit:

0 = Counting down
1 = Counting up

SM36.6 SM46.6 SM56.6 SM136.6 SM146.6 SM156.6 Current value equals preset value status bit:

0 = Not equal
1 = Equal

SM36.7 SM46.7 SM56.7 SM136.7 SM146.7 SM156.7 Current value greater than preset value status bit:

0 = Less than or equal
1 = Greater than

6

S7-200 Programmable Controller System Manual

120

Sample Initialization Sequences for the High-Speed Counters
HSC1 is used as the model counter in the following descriptions of the initialization and operation
sequences. The initialization descriptions assume that the S7-200 has just been placed in RUN mode,
and for that reason, the first scan memory bit is true. If this is not the case, remember that the HDEF
instruction can be executed only one time for each high-speed counter after entering RUN mode.
Executing HDEF for a high-speed counter a second time generates a run-time error and does not change
the counter setup from the way it was set up on the first execution of HDEF for that counter.

Tip
Although the following sequences show how to change direction, current value, and preset value
individually, you can change all or any combination of them in the same sequence by setting the value
of SMB47 appropriately and then executing the HSC instruction.

Initialization Modes 0, 1, or 2
The following steps describe how to initialize HSC1 for Single Phase Up/Down Counter with Internal
Direction (Modes 0, 1, or 2).

1. Use the first scan memory bit to call a subroutine in which the initialization operation is performed.
Since you use a subroutine call, subsequent scans do not make the call to the subroutine, which
reduces scan time execution and provides a more structured program.

2. In the initialization subroutine, load SMB47 according to the desired control operation. For example:

SMB47 = 16#F8 Produces the following results:
Enables the counter
Writes a new current value
Writes a new preset value
Sets the direction to count up
Sets the start and reset inputs to be active high

3. Execute the HDEF instruction with the HSC input set to 1 and the MODE input set to one of the
following: 0 for no external reset or start, 1 for external reset and no start, or 2 for both external reset
and start.

4. Load SMD48 (double-word-sized value) with the desired current value (load with 0 to clear it).

5. Load SMD52 (double-word-sized value) with the desired preset value.

6. In order to capture the current value equal to preset event, program an interrupt by attaching the
CV = PV interrupt event (event 13) to an interrupt routine. See the section that discusses the
Interrupt Instructions for complete details on interrupt processing.

7. In order to capture an external reset event, program an interrupt by attaching the external reset
interrupt event (event 15) to an interrupt routine.

8. Execute the global interrupt enable instruction (ENI) to enable interrupts.

9. Execute the HSC instruction to cause the S7-200 to program HSC1.

10. Exit the subroutine.

6

S7-200 Instruction Set Chapter 6

121

Initialization Modes 3, 4, or 5
The following steps describe how to initialize HSC1 for Single Phase Up/Down Counter with External
Direction (Modes 3, 4, or 5):

1. Use the first scan memory bit to call a subroutine in which the initialization operation is performed.
Since you use a subroutine call, subsequent scans do not make the call to the subroutine, which
reduces scan time execution and provides a more structured program.

2. In the initialization subroutine, load SMB47 according to the desired control operation. For example:

SMB47 = 16#F8 Produces the following results:
Enables the counter
Writes a new current value
Writes a new preset value
Sets the initial direction of the HSC to count up
Sets the start and reset inputs to be active high

3. Execute the HDEF instruction with the HSC input set to 1 and the MODE input set to one of the
following: 3 for no external reset or start, 4 for external reset and no start, or 5 for both external reset
and start.

4. Load SMD48 (double-word-sized value) with the desired current value (load with 0 to clear it).

5. Load SMD52 (double-word-sized value) with the desired preset value.

6. In order to capture the current-value-equal-to-preset event, program an interrupt by attaching the
CV = PV interrupt event (event 13) to an interrupt routine. See the section that discusses the
Interrupt Instructions for complete details on interrupt processing.

7. In order to capture direction changes, program an interrupt by attaching the direction changed
interrupt event (event 14) to an interrupt routine.

8. In order to capture an external reset event, program an interrupt by attaching the external reset
interrupt event (event 15) to an interrupt routine.

9. Execute the global interrupt enable instruction (ENI) to enable interrupts.

10. Execute the HSC instruction to cause the S7-200 to program HSC1.

11. Exit the subroutine.

Initialization Modes 6, 7, or 8
The following steps describe how to initialize HSC1 for Two Phase Up/Down Counter with Up/Down
Clocks (Modes 6, 7, or 8):

1. Use the first scan memory bit to call a subroutine in which the initialization operations are
performed. Since you use a subroutine call, subsequent scans do not make the call to the
subroutine, which reduces scan time execution and provides a more structured program.

2. In the initialization subroutine, load SMB47 according to the desired control operation. For example:

SMB47 = 16#F8 Produces the following results:
Enables the counter
Writes a new current value
Writes a new preset value
Sets the initial direction of the HSC to count up
Sets the start and reset inputs to be active high

3. Execute the HDEF instruction with the HSC input set to 1 and the MODE set to one of the following:
6 for no external reset or start, 7 for external reset and no start, or 8 for both external reset and start.

4. Load SMD48 (double-word-sized value) with the desired current value (load with 0 to clear it).

5. Load SMD52 (double-word-sized value) with the desired preset value.

6. In order to capture the current-value-equal-to-preset event, program an interrupt by attaching the
CV = PV interrupt event (event 13) to an interrupt routine. See the section on interrupts.

6

S7-200 Programmable Controller System Manual

122

7. In order to capture direction changes, program an interrupt by attaching the direction changed
interrupt event (event 14) to an interrupt routine.

8. In order to capture an external reset event, program an interrupt by attaching the external reset
interrupt event (event 15) to an interrupt routine.

9. Execute the global interrupt enable instruction (ENI) to enable interrupts.

10. Execute the HSC instruction to cause the S7-200 to program HSC1.

11. Exit the subroutine.

Initialization Modes 9, 10, or 11
The following steps describe how to initialize HSC1 for A/B Phase Quadrature Counter (for modes 9, 10,
or 11):

1. Use the first scan memory bit to call a subroutine in which the initialization operations are
performed. Since you use a subroutine call, subsequent scans do not make the call to the
subroutine, which reduces scan time execution and provides a more structured program.

2. In the initialization subroutine, load SMB47 according to the desired control operation.

Example (1x counting mode):
SMB47 = 16#FC Produces the following results:

Enables the counter
Writes a new current value
Writes a new preset value
Sets the initial direction of the HSC to count up
Sets the start and reset inputs to be active high

Example (4x counting mode):
SMB47 = 16#F8 Produces the following results:

Enables the counter
Writes a new current value
Writes a new preset value
Sets the initial direction of the HSC to count up
Sets the start and reset inputs to be active high

3. Execute the HDEF instruction with the HSC input set to 1 and the MODE input set to one of the
following: 9 for no external reset or start, 10 for external reset and no start, or 11 for both external
reset and start.

4. Load SMD48 (double-word-sized value) with the desired current value (load with 0 to clear it).

5. Load SMD52 (double-word-sized value) with the desired preset value.

6. In order to capture the current-value-equal-to-preset event, program an interrupt by attaching the
CV = PV interrupt event (event 13) to an interrupt routine. See the section on enabling interrupts
(ENI) for complete details on interrupt processing.

7. In order to capture direction changes, program an interrupt by attaching the direction changed
interrupt event (event 14) to an interrupt routine.

8. In order to capture an external reset event, program an interrupt by attaching the external reset
interrupt event (event 15) to an interrupt routine.

9. Execute the global interrupt enable instruction (ENI) to enable interrupts.

10. Execute the HSC instruction to cause the S7-200 to program HSC1.

11. Exit the subroutine.

6

S7-200 Instruction Set Chapter 6

123

Change Direction in Modes 0, 1, or 2
The following steps describe how to configure HSC1 for Change Direction for Single Phase Counter with
Internal Direction (Modes 0, 1, or 2):

1. Load SMB47 to write the desired direction:

SMB47 = 16#90 Enables the counter
Sets the direction of the HSC to count down

SMB47 = 16#98 Enables the counter
Sets the direction of the HSC to count up

2. Execute the HSC instruction to cause the S7-200 to program HSC1.

Loading a New Current Value (Any Mode)
Changing the current value forces the counter to be disabled while the change is made. While the counter
is disabled, it does not count or generate interrupts.

The following steps describe how to change the counter current value of HSC1 (any mode):

1. Load SMB47 to write the desired current value:

SMB47 = 16#C0 Enables the counter
Writes the new current value

2. Load SMD48 (double-word-sized value) with the desired current value (load with 0 to clear it).

3. Execute the HSC instruction to cause the S7-200 to program HSC1.

Loading a New Preset Value (Any Mode)
The following steps describe how to change the preset value of HSC1 (any mode):

1. Load SMB47 to write the desired preset value:

SMB47 = 16#A0 Enables the counter
Writes the new preset value

2. Load SMD52 (double-word-sized value) with the desired preset value.

3. Execute the HSC instruction to cause the S7-200 to program HSC1.

Disabling a High-Speed Counter (Any Mode)
The following steps describe how to disable the HSC1 high-speed counter (any mode):

1. Load SMB47 to disable the counter:

SMB47 = 16#00 Disables the counter

2. Execute the HSC instruction to disable the counter.

6

S7-200 Programmable Controller System Manual

124

Example: High-Speed Counter Instruction

M
A
I
N

Network 1 //On the first scan, call SBR_0.

LD SM0.1
CALL SBR_0

S
B
R

0

Network 1 //On the first scan, configure HSC1:
//1. Enable the counter.
// – Write a new current value.
// – Write a new preset value.
// – Set the initial direction to count up.
// – Select the start and reset inputs to be active high.
// – Select 4x mode.
//2. Configure HSC1 for quadrature mode
// with reset and start inputs.
//3. Clear the current value of HSC1.
//4. Set the HSC1 preset value to 50.
//5. When HSC1 current value = preset value,
// attach event 13 to interrupt routine INT_0.
//6. Global interrupt enable.
//7. Program HSC1.

LD SM0.1
MOVB 16#F8, SMB47
HDEF 1, 11
MOVD +0, SMD48
MOVD +50, SMD52
ATCH INT_0, 13
ENI
HSC 1

I
N
T

0

Network 1 //Program HSC1:
//1. Clear the current value of HSC1.
//2. Select to write only a new current
// and leave HSC1 enabled.

LD SM0.0
MOVD +0, SMD48
MOVB 16#C0, SMB47
HSC 1

6

S7-200 Instruction Set Chapter 6

125

Pulse Output Instruction

The Pulse Output instruction (PLS) is used to control the Pulse Train
Output (PTO) and Pulse Width Modulation (PWM) functions
available on the high-speed outputs (Q0.0 and Q0.1).You can use
the Position Control wizard to configure the pulse outputs.

PTO provides a square wave (50% duty cycle) output with user
control of the cycle time and the number of pulses.

PWM provides a continuous, variable duty cycle output with user
control of the cycle time and the pulse width.

The S7-200 has two PTO/PWM generators that create either a
high-speed pulse train or a pulse width modulated waveform. One
generator is assigned to digital output point Q0.0, and the other
generator is assigned to digital output point Q0.1. A designated
special memory (SM) location stores the following data for each
generator: a control byte (8-bit value), a pulse count value (an
unsigned 32-bit value), and a cycle time and pulse width value (an
unsigned 16-bit value).

The PTO/PWM generators and the process-image register share the use of Q0.0 and Q0.1. When a PTO
or PWM function is active on Q0.0 or Q0.1, the PTO/PWM generator has control of the output, and normal
use of the output point is inhibited. The output waveform is not affected by the state of the process-image
register, the forced value of the point, or the execution of immediate output instructions. When the
PTO/PWM generator is inactive, control of the output reverts to the process-image register. The
process-image register determines the initial and final state of the output waveform, causing the waveform
to start and end at a high or low level.

Table 6-30 Valid Operands for Pulse Output Instruction

Inputs/Outputs Data Types Operands

Q0.X WORD Constant: 0 (= Q0.0) or 1 (= Q0.1)

Tip
Before enabling PTO or PWM operation, set the value of the process-image register for Q0.0 and Q0.1
to 0.

Default values for all control bits, cycle time, pulse width, and pulse count values are 0.

The PTO/PWM outputs must have a minimum load of at least 10% of rated load to provide crisp
transitions from off to on, and from on to off.

Refer to the Tips and Tricks on the documentation CD for programs that use the PLS instruction for
PTO/PWM operation. See Tip 7, Tip 22, Tip 23, Tip 30, and Tip 50.

Position
Control

Tips and Tricks

6

S7-200 Programmable Controller System Manual

126

Pulse Train Operation (PTO)
PTO provides a square wave (50% duty cycle) output for a specified number of pulses and a specified
cycle time. (See Figure 6-28.) PTO can produce either a single train of pulses or multiple trains of pulses
(using a pulse profile). You specify the number of pulses and the cycle time (in either microsecond or
millisecond increments):

� Number of pulses: 1 to 4,294,967,295

� Cycle time: 50 µs to 65,535 µs or
2 ms to 65,535 ms.

Specifying an odd number of microseconds or milliseconds
for the cycle time (such as 75 ms), causes some distortion in

Cycle Time

50%
Off

50%
On

50%
Off

50%
On

the duty cycle. Figure 6-28 Pulse Train Output (PTO)

See Table 6-31 for pulse count and cycle time limitations.

Table 6-31 Pulse Count and Cycle Time in the PTO function

Pulse Count/Cycle TIme Reaction

Cycle time < 2 time units Cycle time defaults to 2 time units.

Pulse count = 0 Pulse count defaults to 1 pulse.

The PTO function allows the “chaining” or “pipelining” of pulse trains. When the active pulse train is
complete, the output of a new pulse train begins immediately. This allows continuity between subsequent
output pulse trains.

Single-Segment Pipelining of PTO Pulses
In single-segment pipelining, you are responsible for updating the SM locations for the next pulse train.
After the initial PTO segment has been started, you must modify immediately the SM locations as required
for the second waveform and execute the PLS instruction again. The attributes of the second pulse train
are held in a pipeline until the first pulse train is completed. Only one entry at a time can be stored in the
pipeline. When the first pulse train completes, the output of the second waveform begins, and the pipeline
is made available for a new pulse train specification. You can then repeat this process to set up the
characteristics of the next pulse train.

Smooth transitions between pulse trains occur unless there is a change in the time base or the active
pulse train completes before a new pulse train setup is captured by the execution of the PLS instruction.

Multiple-Segment Pipelining of PTO Pulses
In multiple-segment pipelining, the S7-200 automatically reads the characteristics of each pulse train
segment from a profile table located in V memory. The SM locations used in this mode are the control
byte, the status byte, and the starting V memory offset of the profile table (SMW168 or SMW178). The
time base can be either microseconds or milliseconds, but the selection applies to all cycle time values in
the profile table, and cannot be changed while the profile is running. Execution on the PLS instruction
starts multiple segment operation.

Each segment entry is 8 bytes in length, and is composed of a 16-bit cycle time value, a 16-bit cycle time
delta value, and a 32-bit pulse count value. Table 6-32 shows the format of the profile table. You can
increase or decrease the cycle time automatically by programming a specified amount for each pulse. A
positive value in the cycle time delta field increases cycle time, a negative value in the cycle time delta
field decreases cycle time, and 0 results in an unchanging cycle time.

While the PTO profile is operating, the number of the currently active segment is available in SMB166 (or
SMB176).

6

S7-200 Instruction Set Chapter 6

127

Table 6-32 Profile Table Format for Multiple-Segment PTO Operation

Byte Offset Segment Description of Table Entries

0 Number of segments: 1 to 2551

1 #1 Initial cycle time (2 to 65,535 units of the time base)

3 Cycle time delta per pulse (signed value) (–32,768 to 32,767 units of the time base)

5 Pulse count (1 to 4,294,967,295)

9 #2 Initial cycle time (2 to 65,535 units of the time base)

11 Cycle time delta per pulse (signed value) (–32,768 to 32,767 units of the time base)

13 Pulse count (1 to 4,294,967,295)

(Continues) #3 (Continues)

1 Entering a value of 0 for the number of segments generates a non-fatal error. No PTO output is generated.

Pulse Width Modulation (PWM)
PWM provides a fixed cycle time output with a variable duty
cycle. (See Figure 6-29.) You can specify the cycle time and
the pulse width in either microsecond or millisecond
increments:

� Cycle time: 50 µs to 65,535 µs or

Cycle Time

Pulse Width
Time

Pulse Width
Time

� µ µ
2 ms to 65,535 ms Figure 6-29 Pulse Width Modulation (PWM)

� Pulse width time: 0 µs to 65,535 µs or
0 ms to 65,535 ms

As shown in Table 6-33, setting the pulse width equal to the cycle time (which makes the duty cycle
100 percent) turns the output on continuously. Setting the pulse width to 0 (which makes the duty cycle
0 percent) turns the output off.

Table 6-33 Pulse Width Time and Cycle Time and Reactions in the PWM Function

Pulse Width Time/ Cycle Time Reaction

Pulse width time >= Cycle time value The duty cycle is 100%: the output is turned on continuously.

Pulse width time = 0 The duty cycle is 0%: the output is turned off.

Cycle time < 2 time units The cycle time defaults to two time units.

There are two different ways to change the characteristics of a PWM waveform:

� Synchronous Update: If no time base changes are required, you can use a synchronous update.
With a synchronous update, the change in the waveform characteristics occurs on a cycle
boundary, providing a smooth transition.

� Asynchronous Update: Typically with PWM operation, the pulse width is varied while the cycle time
remains constant so time base changes are not required. However, if a change in the time base of
the PTO/PWM generator is required, an asynchronous update is used. An asynchronous update
causes the PTO/PWM generator to be disabled momentarily, asynchronous to the PWM waveform.
This can cause undesirable jitter in the controlled device. For that reason, synchronous PWM
updates are recommended. Choose a time base that you expect to work for all of your anticipated
cycle time values.

6

S7-200 Programmable Controller System Manual

128

Tip
The PWM Update Method bit (SM67.4 or SM77.4) in the control byte specifies the update type used
when the PLS instruction is executed to invoke changes.

If the time base is changed, an asynchronous update occurs regardless of the state of the PWM Update
Method bit.

Using SM Locations to Configure and Control the PTO/PWM Operation
The PLS instruction reads the data stored in the specified SM memory locations and programs the
PTO/PWM generator accordingly. SMB67 controls PTO 0 or PWM 0, and SMB77 controls PTO 1 or
PWM 1. Table 6-34 describes the registers used to control the PTO/PWM operation. You can use Table
6-35 as a quick reference to determine the value to place in the PTO/PWM control register to invoke the
desired operation.

You can change the characteristics of a PTO or PWM waveform by modifying the locations in the SM area
(including the control byte) and then executing the PLS instruction. You can disable the generation of a
PTO or PWM waveform at any time by writing 0 to the PTO/PWM enable bit of the control byte (SM67.7 or
SM77.7) and then executing the PLS instruction.

The PTO Idle bit in the status byte (SM66.7 or SM76.7) is provided to indicate the completion of the
programmed pulse train. In addition, an interrupt routine can be invoked upon the completion of a pulse
train. (Refer to the descriptions of the Interrupt instructions and the Communications instructions.) If you
are using the multiple segment operation, the interrupt routine is invoked upon completion of the profile
table.

The following conditions set SM66.4 (or SM76.4) and SM66.5 (or SM76.5):

� Specifying a cycle time delta value that results in an illegal cycle time after a number of pulses
generates a mathematical overflow condition that terminates the PTO function and sets the Delta
Calculation Error bit (SM66.4 or SM76.4) to 1. The output reverts to image register control.

� Manually aborting (disabling) a PTO profile in progress sets the User Abort bit (SM66.5 or SM76.5)
to 1.

� Attempting to load the pipeline while it is full sets the PTO overflow bit (SM66.6 or SM76.6) to 1. You
must clear this bit manually after an overflow is detected if you want to detect subsequent overflows.
The transition to RUN mode initializes this bit to 0.

Tip
When you load a new pulse count (SMD72 or SMD82), pulse width (SMW70 or SMW80), or cycle time
(SMW68 or SMW78), also set the appropriate update bits in the control register before you execute the
PLS instruction. For a multiple segment pulse train operation, you must also load the starting offset
(SMW168 or SMW178) of the profile table and the profile table values before you execute the PLS
instruction.

6

S7-200 Instruction Set Chapter 6

129

Table 6-34 SM Locations of the PTO / PWM Control Registers

Q0.0 Q0.1 Status Bits

SM66.4 SM76.4 PTO profile aborted (delta calculation error): 0 = no error 1 = aborted

SM66.5 SM76.5 PTO profile aborted due to user command: 0 = no abort 1 = aborted

SM66.6 SM76.6 PTO pipeline overflow/underflow: 0 = no overflow 1 = overflow/underflow

SM66.7 SM76.7 PTO idle: 0 = in progress 1 = PTO idle

Q0.0 Q0.1 Control Bits

SM67.0 SM77.0 PTO/PWM update the cycle time: 0 = no update 1 = update cycle time

SM67.1 SM77.1 PWM update the pulse width time: 0 = no update 1 = update pulse width

SM67.2 SM77.2 PTO update the pulse count value: 0 = no update 1 = update pulse count

SM67.3 SM77.3 PTO/PWM time base: 0 = 1 µs/tick 1 = 1 ms/tick

SM67.4 SM77.4 PWM update method: 0 = asynchronous 1 = synchronous

SM67.5 SM77.5 PTO single/multiple segment operation: 0 = single 1 = multiple

SM67.6 SM77.6 PTO/PWM mode select: 0 = PTO 1 = PWM

SM67.7 SM77.7 PTO/PWM enable: 0 = disable 1 = enable

Q0.0 Q0.1 Other PTO/PWM Registers

SMW68 SMW78 PTO/PWM cycle time value range: 2 to 65,535

SMW70 SMW80 PWM pulse width value range: 0 to 65,535

SMD72 SMD82 PTO pulse count value range: 1 to 4,294,967,295

SMB166 SMB176 Number of the segment in progress Multiple-segment PTO operation only

SMW168 SMW178 Starting location of the profile table Multiple-segment PTO operation only
 (byte offset from V0)

Table 6-35 PTO/PWM Control Byte Reference

Control Result of Executing the PLS InstructionControl
Register
(Hex
Value)

Enable
Select
Mode

PTO
Segment
Operation

PWM
Update
Method

Time Base
Pulse
Count

Pulse
Width

Cycle
Time

16#81 Yes PTO Single 1 µs/cycle Load

16#84 Yes PTO Single 1 µs/cycle Load

16#85 Yes PTO Single 1 µs/cycle Load Load

16#89 Yes PTO Single 1 ms/cycle Load

16#8C Yes PTO Single 1 ms/cycle Load

16#8D Yes PTO Single 1 ms/cycle Load Load

16#A0 Yes PTO Multiple 1 µs/cycle

16#A8 Yes PTO Multiple 1 ms/cycle

16#D1 Yes PWM Synchronous 1 µs/cycle Load

16#D2 Yes PWM Synchronous 1 µs/cycle Load

16#D3 Yes PWM Synchronous 1 µs/cycle Load Load

16#D9 Yes PWM Synchronous 1 ms/cycle Load

16#DA Yes PWM Synchronous 1 ms/cycle Load

16#DB Yes PWM Synchronous 1 ms/cycle Load Load

6

S7-200 Programmable Controller System Manual

130

Calculating Profile Table Values
The multiple-segment pipelining capability of the PTO/PWM
generators can be useful in many applications, particularly in
stepper motor control.

For example, you can use PTO with a pulse profile to control
a stepper motor through a simple ramp up, run, and ramp
down sequence or more complicated sequences by defining
a pulse profile that consists of up to 255 segments, with
each segment corresponding to a ramp up, run, or ramp
down operation.

Figure 6-30 illustrates sample profile table values required to
generate an output waveform that accelerates a stepper
motor (segment 1), operates the motor at a constant speed

10 kHz

2 kHz

Frequency

Time

Segment #1
200 pulses

Segment #3
400 pulses

4,000 pulses

21 3

1 3Segment #2
3400 pulses

2

motor (segment 1), operates the motor at a constant speed
(segment 2), and then decelerates the motor (segment 3). Figure 6-30 Frequency/Time Diagram

For this example: The starting and final pulse frequency is 2 kHz, the maximum pulse frequency is 10 kHz,
and 4000 pulses are required to achieve the desired number of motor revolutions. Since the values for the
profile table are expressed in terms of period (cycle time) instead of frequency, you must convert the given
frequency values into cycle time values. Therefore, the starting (initial) and final (ending) cycle time is
500 µs, and the cycle time corresponding to the maximum frequency is 100 µs. During the acceleration
portion of the output profile, the maximum pulse frequency should be reached in approximately 200
pulses. The deceleration portion of the profile should be completed in approximately 400 pulses.

You can use the following formula to determine the delta cycle time value for a given segment that the
PTO/PWM generator uses to adjust the cycle time of each pulse:

Delta cycle time for a segment = | End_CTseg – Init_CTseg | / Quantityseg

where: End_CTseg = Ending cycle time for this segment
Init_CTseg = Initial cycle time for this segment
Quantityseg = Quantity of pulses in this segment

Using this formula to calculate the delta cycle
time values for the sample application:

Segment 1 (acceleration):
 Delta cycle time = –2

Segment 2 (constant speed):
 Delta cycle time = 0

Segment 3 (deceleration):
 Delta cycle time = 1

Table 6-36 lists the values for generating the
example waveform (assumes that the profile
table is located in V memory, starting at V500).
You can include instructions in your program to
load these values into V memory, or you can
define the values of the profile in the data block.

Table 6-36 Profile Table Values

Address Value Description

VB500 3 Total number of segments

VW501 500 Initial cycle time

VW503 –2 Initial delta cycle time Segment 1

VD505 200 Number of pulses

VW509 100 Initial cycle time

VW511 0 Delta cycle time Segment 2

VD513 3400 Number of pulses

VW517 100 Initial cycle time

VW519 1 Delta cycle time Segment 3

VD521 400 Number of pulses

6

S7-200 Instruction Set Chapter 6

131

In order to determine if the transitions between waveform segments are acceptable, you need to
determine the cycle time of the last pulse in a segment. Unless the delta cycle time is 0, you must
calculate the cycle time of the last pulse of a segment, because this value is not specified in the profile.
Use the following formula to calculate the cycle time of the last pulse:

Cycle time of the last pulse for a segment = Init_CTseg + (Deltaseg * (Quantityseg – 1))

where: Init_CTseg = Initial cycle time for this segment

Deltaseg = Delta cycle time for this segment

Quantityseg = Quantity of pulses in this segment

While the simplified example above is useful as an introduction, real applications can require more
complicated waveform profiles. Remember that the delta cycle time can be specified only as an integer
number of microseconds or milliseconds, and the cycle time modification is performed on each pulse.

The effect of these two items is that calculation of the delta cycle time value for a given segment could
require an iterative approach. Some flexibility in the value of the ending cycle time or the number of pulses
for a given segment might be required.

The duration of a given profile segment can be useful in the process of determining correct profile table
values. Use the following formula to calculate the length of time for completing a given profile segment:

Duration of segment = Quantityseg * (Init_CT + ((Deltaseg/2) * (Quantityseg – 1)))

where: Quantityseg = Quantity of pulses in this segment

Init_CTseg = Initial cycle time for this segment

Deltaseg = Delta cycle time for this segment

6

S7-200 Programmable Controller System Manual

132

Sample Operation of a PWM Output

Tip
The following description of the PWM initialization and operation sequences recommends using the First
Scan bit (SM0.1) to initialize the pulse output. Using the First Scan bit to call an initialization subroutine
reduces the scan time because subsequent scans do not call this subroutine. (The First Scan bit is set
only on the first scan following a transition to RUN mode.) However, your application could have other
constraints that require you to initialize (or re-initialize) the pulse output. In that case, you can use
another condition to call the initialization routine.

Initializing the PWM Output
Typically, you use a subroutine to initialize the PWM for the pulse output. You call the initialization
subroutine from the main program. Use the first scan memory bit (SM0.1) to initialize the output used by
the PWM to 0, and call a subroutine to perform the initialization operations. When you use the subroutine
call, subsequent scans do not make the call to the subroutine, which reduces the scan time execution and
provides a more structured program.

After creating the call to the initialization subroutine from the main program, use the following steps to
create the control logic for configuring pulse output Q0.0 within the initialization subroutine:

1. Configure the control byte by loading one of the following values to SMB67: 16#D3 (to select
microsecond increments) or 16#DB (to select millisecond increments).

Both of these values enable the PTO/PWM function, select PWM operation, set the update pulse
width and cycle time values, and select the time base (microseconds or milliseconds).

2. Load a word-sized value for the cycle time in SMW68.

3. Load a word-sized value for the pulse width in SMW70.

4. Execute the PLS instruction (so that the S7-200 programs the PTO/PWM generator).

5. To preload a new control byte value for subsequent pulse width changes (optional), load one of the
following values in SMB67: 16#D2 (microseconds) or 16#DA (milliseconds).

6. Exit the subroutine.

Changing the Pulse Width for the PWM Output
If you preloaded SMB67 with 16#D2 or 16#DA (see step 5. above), you can use a subroutine that
changes the pulse width for the pulse output (Q0.0). After creating the call to this subroutine, use the
following steps to create the control logic for changing the pulse width:

1. Load a word-sized value for the new pulse width in SMW70.

2. Execute the PLS instruction (so that the S7-200 programs the PTO/PWM generator).

3. Exit the subroutine.

6

S7-200 Instruction Set Chapter 6

133

Example: Pulse Width Modulation (PWM)

M
A
I
N

Network 1 //On the first scan,
//set the image register bit low and call SBR_0.

LD SM0.1
R Q0.1, 1
CALL SBR_0

Network 2 //Set M0.0 elsewhere in the program
//to change pulse width to 50% duty cycle.

LD M0.0
EU
CALL SBR_1

S
B
R
0

Network 1 //Start of subroutine 0:
//1. Set up the control byte.
// – Select PWM operation.
// – Select ms increments and
// synchronous updates.
// – Enable the loading of the pulse width
// and cycle time values.
// – Enable the PWM function.
//2. Set the cycle time to 10,000 ms.
//3. Set pulse width to 1,000 ms.
//4. Invoke PWM operation: PLS1=>Q0.1.
//5. Preload the control byte for subsequent
// pulse width changes

LD SM0.0
MOVB 16#DB, SMB77
MOVW +10000, SMW78
MOVW +1000, SMW80
PLS 1
MOVB 16#DA, SMB77

S
B
R
1

Network 1 //Start of subroutine 1:
//Set the pulse width to 5000 ms.
//Assert pulse width change.

LD SM0.0
MOVW +5000, SMW80
PLS 1

10% duty cycle
Q0.1

10% duty cycle 50% duty cycle 50% duty cycle

Cycle time = 10,000 ms Subroutine 1 executed here

Timing Diagram

6

S7-200 Programmable Controller System Manual

134

Sample Operation of a PTO Output

Tip
The following description of the PTO initialization and operation sequences recommends using the First
Scan memory bit (SM0.1) to initialize the pulse output. Using the First Scan bit to call an initialization
subroutine reduces the scan time because subsequent scans do not call this subroutine. (The First
Scan bit is set only on the first scan following a transition to RUN mode.) However, your application
could have other constraints that require you to initialize (or re-initialize) the pulse output. In that case,
you can use another condition to call the initialization routine.

Initializing the PTO Output for a Single-Segment Operation
Typically, you use a subroutine to configure and initialize the PTO for the pulse output. You call the
initialization subroutine from the main program. Use the first scan memory bit (SM0.1) to initialize the
output used by the PTO to 0, and call a subroutine to perform the initialization operations. When you use
the subroutine call, subsequent scans do not make the call to the subroutine, which reduces the scan time
execution and provides a more structured program.

After creating the call to the initialization subroutine from the main program, use the following steps to
create the control logic for configuring pulse output Q0.0 within the initialization subroutine:

1. Configure the control byte by loading one of the following values in SMB67: 16#85 (to select
microsecond increments) or 16#8D (to select millisecond increments).

Both of these values enable the PTO/PWM function, select PTO operation, set the update pulse
count and cycle time values, and select the time base (microseconds or milliseconds).

2. In SMW68, load a word-sized value for the cycle time.

3. In SMD72, load a double-word-sized value for the pulse count.

4. (Optional) To perform a related function as soon as the pulse train output is complete, you can
program an interrupt by attaching the pulse train complete event (interrupt event 19) to an interrupt
subroutine. Use the ATCH instruction and execute the global interrupt enable instruction ENI.

5. Execute the PLS instruction (so that the S7-200 programs the PTO/PWM generator).

6. Exit the subroutine.

Changing the PTO Cycle Time (Single-Segment Operation)
For a single-segment PTO operation, you can use an interrupt routine or a subroutine to change the cycle
time. To change the PTO cycle time in an interrupt routine or subroutine when using a single-segment
PTO operation, follow these steps:

1. Set the control byte (to enable the PTO/PWM function, to select PTO operation, to select the time
base, and to set the update cycle time value) by loading one of the following values in SMB67:
16#81 (for microseconds) or 16#89 (for milliseconds).

2. In SMW68, load a word-sized value for the new cycle time.

3. Execute the PLS instruction (so that the S7-200 programs the PTO/PWM generator). The S7-200
completes any PTO that is in process before starting to generate the PTO waveform with the
updated cycle time.

4. Exit the interrupt routine or the subroutine.

6

S7-200 Instruction Set Chapter 6

135

Changing the PTO Pulse Count (Single-Segment Operation)
For a single-segment PTO operation, you can use an interrupt routine or a subroutine to change the pulse
count. To change the PTO pulse count in an interrupt routine or a subroutine when using a single-segment
PTO operation, follow these steps:

1. Set the control byte (to enable the PTO/PWM function, to select PTO operation, to select the time
base, and to set the update pulse count value) by loading either of the following values in SMB67:
16#84 (for microseconds) or 16#8C (for milliseconds).

2. In SMD72, load a double-word-sized value for the new pulse count.

3. Execute the PLS instruction (so that the S7-200 programs the PTO/PWM generator). The S7-200
completes any PTO that is in process before starting to generate the waveform with the updated
pulse count.

4. Exit the interrupt routine or the subroutine.

Changing the PTO Cycle Time and the Pulse Count (Single-Segment Operation)
For a single-segment PTO operation, you can use an interrupt routine or a subroutine to change the cycle
time and pulse count. To change the PTO cycle time and pulse count in an interrupt routine or a
subroutine when using a single-segment PTO operation, follow these steps:

1. Set the control byte (to enable the PTO/PWM function, to select PTO operation, to select the time
base, and to set the update cycle time and pulse count values) by loading either of the following
values in SMB67: 16#85 (for microseconds) or 16#8D (for milliseconds).

2. In SMW68, load a word-sized value for the new cycle time.

3. In SMC72, load a double-word-sized value for the new pulse count.

4. Execute the PLS instruction (so that the S7-200 programs the PTO/PWM generator). The S7-200
completes any PTO that is in process before starting to generate the waveform with the updated
pulse count and cycle time.

5. Exit the interrupt routine or the subroutine.

Initializing the PTO Output for a Multiple-Segment Operation
Typically, you use a subroutine to configure and initialize the PTO for the pulse output for multiple-segment
operation. You call the initialization subroutine from the main program. Use the first scan memory bit
(SM0.1) to initialize the output used by the PTO to 0, and call a subroutine to perform the initialization
operations. When you use the First Scan bit to call the initialization subroutine, the subsequent scans do
not make the call to the subroutine, which reduces scan time execution.

After creating the call to the initialization subroutine from the main program, use the following steps to
create the control logic for configuring pulse output Q0.0 within the initialization subroutine:

1. Configure the control byte by loading one of the following values in SMB67: 16#A0 (to select
microsecond increments) or 16#A8 (to select millisecond increments).

Both of these values enable the PTO/PWM function, select PTO operation, select multiple-segment
operation, and select the time base (microseconds or milliseconds).

2. In SMW168, load a word-sized value for the starting V memory offset of the profile table.

3. Use V memory to set up the segment values in the profile table. Ensure that the Number of
Segment field (the first byte of the table) is correct.

4. (Optional) To perform a related function as soon as the PTO profile is complete, you can program an
interrupt by attaching the pulse train complete event (interrupt event 19) to an interrupt subroutine.
Use the ATCH instruction and execute the global interrupt enable instruction ENI.

5. Execute the PLS instruction (so that the S7-200 programs the PTO/PWM generator).

6. Exit the subroutine.

6

S7-200 Programmable Controller System Manual

136

Example: Single-Segment Pulse Train Operation (PTO)

M
A
I
N

Network 1 //On the first scan,
//set the image register bit low and call subroutine 0.

LD SM0.1
R Q0.0, 1
CALL SBR_0

S
B
R
0

Network 1 //Start of subroutine 0: Configure PTO
//1. Set up the control byte:
// – Select PTO operation.
// – Select single segment operation.
// – Select ms increments.
// – Enable the loading of the pulse count
// and cycle time value.
// – Enable the PTO function.
//2. Set cycle time to 500ms.
//3. Set pulse count to 4 pulses.
//4. Define interrupt routine 0 to be the interrupt
// for processing PTO complete interrupts.
//5. Global interrupt enable.
//6. Invoke PTO operation, PLS0 => Q0.0.
//7. Preload the control byte for subsequent cycle time
//changes.

LD SM0.0
MOVB 16#8D, SMB67
MOVW +500, SMW68
MOVD +4, SMD72
ATCH INT_0, 19
ENI
PLS 0
MOVB 16#89, SMB67

6

S7-200 Instruction Set Chapter 6

137

Example: Single-Segment Pulse Train Operation (PTO), continued

I
N
T
0

Network 1 //If current cycle time is 500 ms:
//Set the cycle time to 1000 ms and generate 4 pulses.

LDW= SMW68, +500
MOVW +1000, SMW68
PLS 0
CRETI

Network 2 //If current cycle time is 1000 ms:
//Set the cycle time to 500 ms and generate 4 pulses.

LDW= SMW68, +1000
MOVW +500, SMW68
PLS 0

Timing Diagram

500 ms
1 cycle

4 cycles or 4 pulses

1000 ms
1 cycle

4 cycles or 4 pulses

Q0.0

Interrupt 0 occurs Interrupt 0 occurs

6

S7-200 Programmable Controller System Manual

138

Example: Multiple-Segment Pulse Train Operation (PTO)

M
A
I
N

Network 1 //On the first scan,
//set the image register bit low and call subroutine 0

LD SM0.1
R Q0.0, 1
CALL SBR_0

S
B
R
0

Network 1 //Preload the PTO profile table:
//Set number of profile table segments to 3.
//Configure each of the 3 segments.
//
//1. Configure segment 1:
// – Set the initial cycle time = 500 ms.
// – Set the delta cycle time to –2 ms.
// – Set the number of pulses to 200.
//2. Configure segment 2:
// – Set the initial cycle time to 100 ms.
// – Set the delta cycle time to 0 ms.
// – Set the number of pulses to 3400.
//3. Configure segment 3:
// – Set the initial cycle time to 100 ms.
 // – Set the delta cycle time to 1 ms.
// – Set the number of pulses to 400.

LD SM0.0
MOVB 3, VB500
MOVW +500, VW501 //Segment 1
MOVW –2, VW503
MOVD +200, VD505
MOVW +100, VW509 //Segment 2
MOVW +0, VW511
MOVD +3400, VD513
MOVW +100, VW517 //Segment 3
MOVW +1, VW519
MOVD +400, VD521

6

S7-200 Instruction Set Chapter 6

139

Example: Multiple-Segment Pulse Train Operation (PTO) , continued

S
B
R
0

c
o
n
t
i
n
u
e
d

Network 2 //1. Set up the control byte:
// – Select PTO operation
// – Select multiple segment operation
// – Select ms increments
// – Enable the PTO function
//2. Set the start address of the profile table to V500.
//3. Define interrupt routine 0 to be the interrupt
// for processing PTO complete interrupts.
//4. Global interrupt enable
//5. Invoke PTO operation, PLS0 => Q0.0.

LD SM0.0
MOVB 16#A8, SMB67
MOVW +500, SMW168
ATCH INT_0, 19
ENI
PLS 0

I
N
T
0

Network 1 //When the PTO output profile is complete,
//Turn on output Q0.5

LD SM0.0
= Q0.5

6

S7-200 Programmable Controller System Manual

140

Math Instructions

Add, Subtract, Multiply, and Divide Instructions
Add Subtract
IN1 + IN2 = OUT IN1 – IN2 = OUT LAD and FBD
IN1 + OUT = OUT OUT – IN1 = OUT STL

The Add Integer (+I) or Subtract Integer (–I) instructions add or
subtract two 16-bit integers to produce a 16-bit result. The Add
Double Integer (+D) or Subtract Double Integer (–D) instructions add
or subtract two 32-bit integers to produce a 32-bit result. The Add
Real (+R) and Subtract Real (–R) instructions add or subtract two
32-bit real numbers to produce a 32-bit real number result.

Multiply Divide

IN1 * IN2 = OUT IN1 / IN2 = OUT LAD and FBD
IN1 * OUT = OUT OUT / IN1 = OUT STL

The Multiply Integer (*I) or Divide Integer (/I) instructions multiply or
divide two 16-bit integers to produce a 16-bit result. (For division, no
remainder is kept.) The Multiply Double Integer (*D) or Divide Double
Integer (/D) instructions multiply or divide two 32-bit integers to
produce a 32-bit result. (For division, no remainder is kept.) The
Multiply Real (*R) or Divide Real (/R) instructions multiply or divide
two 32-bit real numbers to produce a 32-bit real number result.

SM Bits and ENO
SM1.1 indicates overflow errors and illegal values. If SM1.1 is set,
then the status of SM1.0 and SM1.2 is not valid and the original
input operands are not altered. If SM1.1 and SM1.3 are not set, then
the math operation has completed with a valid result and SM1.0 and
SM1.2 contain valid status. If SM1.3 is set during a divide operation,
then the other math status bits are left unchanged.

Error conditions that set ENO = 0

� SM1.1 (overflow)

� SM1.3 (divide by zero)

� 0006 (indirect address)

Special Memory bits affected

� SM1.0 (zero)

� SM1.1 (overflow, illegal value generated during the operation, or illegal
input parameter found)

� SM1.2 (negative)

� SM1.3 (divide by zero)

Table 6-37 Valid Operands for Add, Subtract, Multiply, and Divide Instructions

Inputs/Outputs Data Types Operands

IN1, IN2 INT

DINT

REAL

IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *AC, *LD, Constant

ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, Constant

ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC, Constant

OUT INT

DINT, REAL

IW, QW, VW, MW, SMW, SW, LW, T, C, AC, *VD, *AC, *LD

ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

Real (or floating-point) numbers are represented in the format described in the ANSI/IEEE 754–1985 standard
(single-precision). Refer to that standard for more information.

6

S7-200 Instruction Set Chapter 6

141

Example: Integer Math Instructions

Network 1

LD I0.0
+I AC1, AC0
*I AC1, VW100
/I VW10, VW200

VW200

4000

VW10

40

VW200

/

Divide

AC1

40

VW100

20

VW100

800* =

Multiply

AC1

40

AC0

60

AC0

100+ =

Add

= 100

Example: Real Math Instructions

Network 1

LD I0.0
+R AC1, AC0
*R AC1, VD100
/R VD10, VD200

AC1

4000.0

AC0

6000.0

AC0

10000.0+ =

Add

AC1

400.0

VD100

200.0

VD100

80000.0* =

Multiply

VD200

4000.0

VD10

41.0

VD200

97.5609/ =

Divide

6

S7-200 Programmable Controller System Manual

142

Multiply Integer to Double Integer and Divide Integer with Remainder

Multiply Integer to Double Integer

IN1 * IN2 = OUT LAD and FBD
IN1 * OUT = OUT STL

The Multiply Integer to Double Integer instruction (MUL) multiplies
two 16-bit integers and produces a 32-bit product. In the STL MUL
instruction, the least-significant word (16 bits) of the 32-bit OUT is
used as one of the factors.

Divide Integer with Remainder

IN1 / IN2 = OUT LAD and FBD
OUT / IN1 = OUT STL

The Divide Integer with Remainder instruction (DIV) divides two
16-bit integers and produces a 32-bit result consisting of a 16-bit
remainder (the most-significant word) and a 16-bit quotient (the
least-significant word).

In STL, the least-significant word (16 bits) of the 32-bit OUT is used as the dividend.

SM Bits and ENO
For both of the instructions on this page, Special Memory (SM) bits indicate errors and illegal values. If
SM1.3 (divide by zero) is set during a divide operation, then the other math status bits are left
unchanged. Otherwise, all supported math status bits contain valid status upon completion of the math
operation.

Error conditions that set ENO = 0

� SM1.1 (overflow)

� SM1.3 (divide by zero)

� 0006 (indirect address)

Special Memory bits affected

� SM1.0 (zero)

� SM1.1 (overflow)

� SM1.2 (negative)

� SM1.3 (divide by zero)

Table 6-38 Valid Operands for Multiply Integer to Double Integer and Divide Integer with Remainder

Inputs/Outputs Data Types Operands

IN1, IN2 INT IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant

OUT DINT ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

Example: Multiply Integer to Double Integer Instruction and Divide Integer with Remainder Instruction

Network 1

LD I0.0
MUL AC1, VD100
DIV VW10, VD200

VW202

4000

VW10

41

VD200

/ =Divide Integer
with Remainder

VW202VW200

97

quot.rem.

23

AC1

400

VW102

200

VD100

80000* =Multiply Integer to
Double Integer

Note: VD100 contains: VW100 and VW102, and VD200 contains: VW200 and VW202.

6

S7-200 Instruction Set Chapter 6

143

Numeric Functions Instructions

Sine, Cosine, and Tangent
The Sine (SIN), Cosine (COS), and Tangent (TAN) instructions
evaluate the trigonometric function of the angle value IN and place the
result in OUT. The input angle value is in radians.

SIN (IN) = OUT COS (IN) = OUT TAN (IN) = OUT

To convert an angle from degrees to radians: Use the MUL_R (*R)
instruction to multiply the angle in degrees by 1.745329E–2
(approximately by π/180).

Natural Logarithm and Natural Exponential
The Natural Logarithm instruction (LN) performs the natural logarithm
of the value in IN and places the result in OUT.

The Natural Exponential instruction (EXP) performs the exponential
operation of e raised to the power of the value in IN and places the
result in OUT.

LN (IN) = OUT EXP (IN)= OUT

To obtain the base 10 logarithm from the natural logarithm: Divide the natural logarithm by 2.302585
(approximately the natural logarithm of 10).

To raise any real number to the power of another real number, including fractional exponents: Combine the
Natural Exponential instruction with the Natural Logarithm instruction. For example, to raise X to the Y
power, enter the following instruction: EXP (Y * LN (X)).

Square Root
The Square Root instruction (SQRT) takes the square root of a real number (IN) and produces a real
number result OUT.

SQRT (IN)= OUT

To obtain other roots: 5 cubed = 5^3 = EXP(3*LN(5)) = 125
The cube root of 125 = 125^(1/3) = EXP((1/3)*LN(125))= 5
The square root of 5 cubed = 5^(3/2) = EXP(3/2*LN(5)) = 11.18034

SM Bits and ENO for the Numeric Functions Instructions
For all of the instructions that are described on this page, SM1.1 is used to indicate overflow errors and
illegal values. If SM1.1 is set, then the status of SM1.0 and SM1.2 is not valid and the original input
operands are not altered. If SM1.1 is not set, then the math operation has completed with a valid result and
SM1.0 and SM1.2 contain valid status.

Error conditions that set ENO = 0

� SM1.1 (overflow)

� 0006 (indirect address)

Special Memory bits affected

� SM1.0 (zero)

� SM1.1 (overflow)

� SM1.2 (negative)

Table 6-39 Valid Operands for Numeric Functions

Inputs/Outputs Data Types Operands

IN REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC, Constant

OUT REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

Real (or floating-point) numbers are represented in the format described in the ANSI/IEEE 754–1985 standard
(single-precision). Refer to that standard for more information.

6

S7-200 Programmable Controller System Manual

144

Increment and Decrement Instructions

Increment
IN + 1 = OUT LAD and FBD
OUT + 1 = OUT STL

Decrement
IN – 1 = OUT LAD and FBD
OUT – 1 = OUT STL

The Increment and Decrement instructions add or subtract 1 to or
from the input IN and place the result into the variable OUT.

Increment Byte (INCB) and Decrement Byte (DECB) operations are
unsigned.

Increment Word (INCW) and Decrement Word (DECW) operations
are signed.

Increment Double Word (INCD) and Decrement Double Word
(DECD) operations are signed.

Error conditions that set ENO = 0:

� SM1.1 (overflow)

� 0006 (indirect address)

Special Memory bits affected:

� SM1.0 (zero)

� SM1.1 (overflow)

� SM1.2 (negative) for Word and Double Word operations

Table 6-40 Valid Operands for the Increment and Decrement Instructions

Inputs/Outputs Data Types Operands

IN BYTE

INT

DINT

IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant

ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, Constant

OUT BYTE

INT

DINT

IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

IW, QW, VW, MW, SMW, SW, T, C, LW, AC,*VD, *LD, *AC

ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

Example: Increment and Decrement Instructions

Network 1

LD I4.0
INCW AC0
DECD VD100

125 + 1 =

AC0

Increment Word 126

AC0

128000 – 1 =

VD100

Decrement Double Word 127999

VD100

6

S7-200 Instruction Set Chapter 6

145

Proportional/Integral/Derivative (PID) Loop Instruction

The PID Loop instruction (PID) executes a PID loop calculation on
the referenced LOOP based on the input and configuration
information in Table (TBL).

Error conditions that set ENO = 0:

� SM1.1 (overflow)

� 0006 (indirect address)

Special Memory bits affected:

� SM1.1 (overflow)

The PID loop instruction (Proportional, Integral, Derivative Loop) is
provided to perform the PID calculation. The top of the logic stack
(TOS) must be ON (power flow) to enable the PID calculation. The
instruction has two operands: a TABLE address which is the starting
address of the loop table and a LOOP number which is a constant
from 0 to 7.

Eight PID instructions can be used in a program. If two or more PID instructions are used with the same
loop number (even if they have different table addresses), the PID calculations will interfere with one
another and the output will be unpredictable.

The loop table stores nine parameters used for controlling and monitoring the loop operation and includes
the current and previous value of the process variable, the setpoint, output, gain, sample time, integral
time (reset), derivative time (rate), and the integral sum (bias).

To perform the PID calculation at the desired sample rate, the PID instruction must be executed either
from within a timed interrupt routine or from within the main program at a rate controlled by a timer. The
sample time must be supplied as an input to the PID instruction via the loop table.

Table 6-41 Valid Operands for the PID Loop Instruction

Inputs/Outputs Data Types Operands

TBL BYTE VB

LOOP BYTE Constant (0 to 7)

STEP 7-Micro/WIN offers the PID Wizard to guide you in defining a PID algorithm for a closed-loop control
process. Select the Tools > Instruction Wizard menu command and then select PID from the Instruction
Wizard window. Instruction

Wizard

6

S7-200 Programmable Controller System Manual

146

Understanding the PID Algorithm
In steady state operation, a PID controller regulates the value of the output so as to drive the error (e) to
zero. A measure of the error is given by the difference between the setpoint (SP) (the desired operating
point) and the process variable (PV) (the actual operating point). The principle of PID control is based
upon the following equation that expresses the output, M(t), as a function of a proportional term, an
integral term, and a differential term:

Output = Proportional term + Integral term + Differential term

M(t) = KC * e + KC�
t

0

e dt � Minitial
+ KC * de/dt

where: M(t) is the loop output as a function of time
KC is the loop gain
e is the loop error (the difference between setpoint and process variable)
Minitial is the initial value of the loop output

In order to implement this control function in a digital computer, the continuous function must be quantized
into periodic samples of the error value with subsequent calculation of the output. The corresponding
equation that is the basis for the digital computer solution is:

Mn = Kc * en + KI * + Minitial

n

1
� + KD * (en–en–1)

output = proportional term + integral term + differential term
where: Mn is the calculated value of the loop output at sample time n

KC is the loop gain
en is the value of the loop error at sample time n
en – 1 is the previous value of the loop error (at sample time n – 1)
KI is the proportional constant of the integral term
Minitial is the initial value of the loop output
KD is the proportional constant of the differential term

From this equation, the integral term is shown to be a function of all the error terms from the first sample to
the current sample. The differential term is a function of the current sample and the previous sample, while
the proportional term is only a function of the current sample. In a digital computer, it is not practical to
store all samples of the error term, nor is it necessary.

Since the digital computer must calculate the output value each time the error is sampled beginning with
the first sample, it is only necessary to store the previous value of the error and the previous value of the
integral term. As a result of the repetitive nature of the digital computer solution, a simplification in the
equation that must be solved at any sample time can be made. The simplified equation is:

Mn = Kc * en + KI * en + MX + KD * (en–en–1)
output = proportional term + integral term + differential term
where: Mn is the calculated value of the loop output at sample time n

KC is the loop gain
en is the value of the loop error at sample time n
en – 1 is the previous value of the loop error (at sample time n – 1)
KI is the proportional constant of the integral term
MX is the previous value of the integral term (at sample time n – 1)
KD is the proportional constant of the differential term

6

S7-200 Instruction Set Chapter 6

147

The S7-200 uses a modified form of the above simplified equation when calculating the loop output value.
This modified equation is:

Mn = MPn + MIn + MDn

output = proportional term + integral term + differential term

where: Mn is the calculated value of the loop output at sample time n
MPn is the value of the proportional term of the loop output at sample time n
MIn is the value of the integral term of the loop output at sample time n
MDn is the value of the differential term of the loop output at sample time n

Understanding the Proportional Term of the PID Equation
The proportional term MP is the product of the gain (KC), which controls the sensitivity of the output
calculation, and the error (e), which is the difference between the setpoint (SP) and the process variable
(PV) at a given sample time. The equation for the proportional term as solved by the S7-200 is:

MPn = KC * (SPn – PVn)

where: MPn is the value of the proportional term of the loop output at sample time n
KC is the loop gain
SPn is the value of the setpoint at sample time n
PVn is the value of the process variable at sample time n

Understanding the Integral Term of the PID Equation
The integral term MI is proportional to the sum of the error over time. The equation for the integral term as
solved by the S7-200 is:

MIn = KC * TS / TI * (SPn – PVn) + MX

where: MIn is the value of the integral term of the loop output at sample time n
KC is the loop gain
TS is the loop sample time
TI is the integration period of the loop (also called the integral time or reset)
SPn is the value of the setpoint at sample time n
PVn is the value of the process variable at sample time n
MX is the value of the integral term at sample time n – 1 (also called the integral sum or the bias)

The integral sum or bias (MX) is the running sum of all previous values of the integral term. After each
calculation of MIn, the bias is updated with the value of MIn which might be adjusted or clamped (see the
section “Variables and Ranges” for details). The initial value of the bias is typically set to the output value
(Minitial) just prior to the first loop output calculation. Several constants are also part of the integral term,
the gain (KC), the sample time (TS), which is the cycle time at which the PID loop recalculates the output
value, and the integral time or reset (TI), which is a time used to control the influence of the integral term in
the output calculation.

6

S7-200 Programmable Controller System Manual

148

Understanding the Differential Term of the PID Equation
The differential term MD is proportional to the change in the error. The S7-200 uses the following equation
for the differential term:

MDn = KC * TD / TS * ((SPn – PVn) – (SPn – 1 – PVn – 1))

To avoid step changes or bumps in the output due to derivative action on setpoint changes, this equation
is modified to assume that the setpoint is a constant (SPn = SPn – 1). This results in the calculation of the
change in the process variable instead of the change in the error as shown:

MDn = KC * TD / TS * (SPn – PVn – SPn + PVn – 1)

or just:

MDn = KC * TD / TS * (PVn – 1 – PVn)

where: MDn is the value of the differential term of the loop output at sample time n
KC is the loop gain
TS is the loop sample time
TD is the differentiation period of the loop (also called the derivative time or rate)
SPn is the value of the setpoint at sample time n
SPn–1 is the value of the setpoint at sample time n–1
PVn is the value of the process variable at sample time n
PVn–1 is the value of the process variable at sample time n–1

The process variable rather than the error must be saved for use in the next calculation of the differential
term. At the time of the first sample, the value of PVn – 1 is initialized to be equal to PVn.

Selecting the Type of Loop Control
In many control systems, it might be necessary to employ only one or two methods of loop control. For
example, only proportional control or proportional and integral control might be required. The selection of
the type of loop control desired is made by setting the value of the constant parameters.

If you do not want integral action (no “I” in the PID calculation), then a value of infinity should be specified
for the integral time (reset). Even with no integral action, the value of the integral term might not be zero,
due to the initial value of the integral sum MX.

If you do not want derivative action (no “D” in the PID calculation), then a value of 0.0 should be specified
for the derivative time (rate).

If you do not want proportional action (no “P” in the PID calculation) and you want I or ID control, then a
value of 0.0 should be specified for the gain. Since the loop gain is a factor in the equations for calculating
the integral and differential terms, setting a value of 0.0 for the loop gain will result in a value of 1.0 being
used for the loop gain in the calculation of the integral and differential terms.

6

S7-200 Instruction Set Chapter 6

149

Converting and Normalizing the Loop Inputs
A loop has two input variables, the setpoint and the process variable. The setpoint is generally a fixed
value such as the speed setting on the cruise control in your automobile. The process variable is a value
that is related to loop output and therefore measures the effect that the loop output has on the controlled
system. In the example of the cruise control, the process variable would be a tachometer input that
measures the rotational speed of the tires.

Both the setpoint and the process variable are real world values whose magnitude, range, and
engineering units could be different. Before these real world values can be operated upon by the PID
instruction, the values must be converted to normalized, floating-point representations.

The first step is to convert the real world value from a 16-bit integer value to a floating-point or real number
value. The following instruction sequence is provided to show how to convert from an integer value to a
real number.

ITD AIW0, AC0 //Convert an input value to a double word
DTR AC0, AC0 //Convert the 32-bit integer to a real number

The next step is to convert the real number value representation of the real world value to a normalized
value between 0.0 and 1.0. The following equation is used to normalize either the setpoint or process
variable value:

RNorm = ((RRaw / Span) + Offset)

where: RNorm is the normalized, real number value representation of the real world value
RRaw is the un-normalized or raw, real number value representation of the real world value

Offset is 0.0 for unipolar values
is 0.5 for bipolar values

Span is the maximum possible value minus the minimum possible value:
= 32,000 for unipolar values (typical)
= 64,000 for bipolar values (typical)

The following instruction sequence shows how to normalize the bipolar value in AC0 (whose span is
64,000) as a continuation of the previous instruction sequence:

/R 64000.0, AC0 //Normalize the value in the accumulator
+R 0.5, AC0 //Offset the value to the range from 0.0 to 1.0
MOVR AC0, VD100 //Store the normalized value in the loop TABLE

6

S7-200 Programmable Controller System Manual

150

Converting the Loop Output to a Scaled Integer Value
The loop output is the control variable, such as the throttle setting of the cruise control on an automobile.
The loop output is a normalized, real number value between 0.0 and 1.0. Before the loop output can be
used to drive an analog output, the loop output must be converted to a 16-bit, scaled integer value. This
process is the reverse of converting the PV and SP to a normalized value. The first step is to convert the
loop output to a scaled, real number value using the formula given below:

RScal = (Mn – Offset) * Span

where: RScal is the scaled, real number value of the loop output
Mn is the normalized, real number value of the loop output

Offset is 0.0 for unipolar values
is 0.5 for bipolar values

Span is the maximum possible value minus the minimum possible value
= 32,000 for unipolar values (typical)
= 64,000 for bipolar values (typical)

The following instruction sequence shows how to scale the loop output:

MOVR VD108, AC0 //Moves the loop output to the accumulator
–R 0.5, AC0 //Include this statement only if the value is bipolar
*R 64000.0, AC0 //Scales the value in the accumulator

Next, the scaled, real number value representing the loop output must be converted to a 16-bit integer.
The following instruction sequence shows how to do this conversion:

ROUND AC0, AC0 //Converts the real number to a 32-bit integer
DTI AC0, LW0 //Converts the value to a 16-bit integer
MOVW LW0, AQW0 //Writes the value to the analog output

Forward- or Reverse-Acting Loops
The loop is forward-acting if the gain is positive and reverse-acting if the gain is negative. (For I or ID
control, where the gain value is 0.0, specifying positive values for integral and derivative time will result in
a forward-acting loop, and specifying negative values will result in a reverse-acting loop.)

Variables and Ranges
The process variable and setpoint are inputs to the PID calculation. Therefore the loop table fields for
these variables are read but not altered by the PID instruction.

The output value is generated by the PID calculation, so the output value field in the loop table is updated
at the completion of each PID calculation. The output value is clamped between 0.0 and 1.0. The output
value field can be used as an input by the user to specify an initial output value when making the transition
from manual control to PID instruction (auto) control of the output. (See the discussion in the “Modes”
section below).

If integral control is being used, then the bias value is updated by the PID calculation and the updated
value is used as an input in the next PID calculation. When the calculated output value goes out of range
(output would be less than 0.0 or greater than 1.0), the bias is adjusted according to the following
formulas:

MX = 1.0 – (MPn + MDn) when the calculated output Mn > 1.0

��

MX = – (MPn + MDn) when the calculated output Mn < 0.0

where: MX is the value of the adjusted bias
MPn is the value of the proportional term of the loop output at sample time n
MDn is the value of the differential term of the loop output at sample time n
Mn is the value of the loop output at sample time n

6

S7-200 Instruction Set Chapter 6

151

By adjusting the bias as described, an improvement in system responsiveness is achieved once the
calculated output comes back into the proper range. The calculated bias is also clamped between 0.0 and
1.0 and then is written to the bias field of the loop table at the completion of each PID calculation. The
value stored in the loop table is used in the next PID calculation.

The bias value in the loop table can be modified by the user prior to execution of the PID instruction in
order to address bias value problems in certain application situations. Care must be taken when manually
adjusting the bias, and any bias value written into the loop table must be a real number between 0.0 and
1.0.

A comparison value of the process variable is maintained in the loop table for use in the derivative action
part of the PID calculation. You should not modify this value.

Modes
There is no built-in mode control for S7-200 PID loops. The PID calculation is performed only when power
flows to the PID box. Therefore, “automatic” or “auto” mode exists when the PID calculation is performed
cyclically. “Manual” mode exists when the PID calculation is not performed.

The PID instruction has a power-flow history bit, similar to a counter instruction. The instruction uses this
history bit to detect a 0-to-1 power-flow transition. When the power-flow transition is detected, it will cause
the instruction to perform a series of actions to provide a bumpless change from manual control to auto
control. In order for change to auto mode control to be bumpless, the value of the output as set by the
manual control must be supplied as an input to the PID instruction (written to the loop table entry for Mn)
before switching to auto control. The PID instruction performs the following actions to values in the loop
table to ensure a bumpless change from manual to auto control when a 0-to-1 power-flow transition is
detected:

� Sets setpoint (SPn) = process variable (PVn)

� Sets old process variable (PVn–1) = process variable (PVn)

� Sets bias (MX) = output value (Mn)

The default state of the PID history bits is “set” and that state is established at startup and on every
STOP-to-RUN mode transition of the controller. If power flows to the PID box the first time that it is
executed after entering RUN mode, then no power-flow transition is detected and the bumpless mode
change actions are not performed.

Alarm Checking and Special Operations
The PID instruction is a simple but powerful instruction that performs the PID calculation. If other
processing is required such as alarm checking or special calculations on loop variables, these must be
implemented using the basic instructions supported by the S7-200.

Error Conditions
When it is time to compile, the CPU will generate a compile error (range error) and the compilation will fail
if the loop table start address or PID loop number operands specified in the instruction are out of range.

Certain loop table input values are not range checked by the PID instruction. You must take care to ensure
that the process variable and setpoint (as well as the bias and previous process variable if used as inputs)
are real numbers between 0.0 and 1.0.

If any error is encountered while performing the mathematical operations of the PID calculation, then
SM1.1 (overflow or illegal value) is set and execution of the PID instruction is terminated. (Update of the
output values in the loop table could be incomplete, so you should disregard these values and correct the
input value causing the mathematical error before the next execution of the loop’s PID instruction.)

6

S7-200 Programmable Controller System Manual

152

Loop Table
The loop table is 36 bytes long and has the format shown in Table 6-42.

Table 6-42 Loop Table

Offset Field Format Type Description

0 Process variable
(PVn)

Double word
– REAL

In Contains the process variable, which must be scaled
between 0.0 and 1.0.

4 Setpoint
(SPn)

Double word
– REAL

In Contains the setpoint, which must be scaled between
0.0 and 1.0.

8 Output
(Mn)

Double word
– REAL

In/Out Contains the calculated output, scaled between 0.0
and 1.0.

12 Gain
(KC)

Double word
– REAL

In Contains the gain, which is a proportional constant.
Can be a positive or negative number.

16 Sample time
(TS)

Double word
– REAL

In Contains the sample time, in seconds. Must be a
positive number.

20 Integral time or reset
(TI)

Double word
– REAL

In Contains the integral time or reset, in minutes. Must be
a positive number.

24 Derivative time or rate
(TD)

Double word
– REAL

In Contains the derivative time or rate, in minutes. Must
be a positive number.

28 Bias
(MX)

Double word
– REAL

In/Out Contains the bias or integral sum value between 0.0
and 1.0.

32 Previous process
variable (PVn–1)

Double word
– REAL

In/Out Contains the previous value of the process variable
stored from the last execution of the PID instruction.

PID Program Example
In this example, a water tank is used to maintain a constant water pressure. Water is continuously being
taken from the water tank at a varying rate. A variable speed pump is used to add water to the tank at a
rate that will maintain adequate water pressure and also keep the tank from being emptied.

The setpoint for this system is a water level setting that is equivalent to the tank being 75% full. The
process variable is supplied by a float gauge that provides an equivalent reading of how full the tank is
and that can vary from 0% (or empty) to 100% (or completely full). The output is a value of pump speed
that allows the pump to run from 0% to 100% of maximum speed.

The setpoint is predetermined and is entered directly into the loop table. The process variable is supplied
as a unipolar, analog value from the float gauge. The loop output is written to a unipolar, analog output
which is used to control the pump speed. The span of both the analog input and analog output is 32,000.

Only proportional and integral control are employed in this example. The loop gain and time constants
have been determined from engineering calculations and can be adjusted as required to achieve optimum
control. The calculated values of the time constants are: KC = 0.25, TS = 0.1 seconds, and TI = 30
minutes.

The pump speed is controlled manually until the water tank is 75% full, then the valve is opened to allow
water to be drained from the tank. At the same time, the pump is switched from manual to auto control
mode. A digital input is used to switch the control from manual to auto. This input (I0.0) is
manual/automatic control: 0 = manual and 1 = automatic. While in manual control mode, the pump speed
is written by the operator to VD108 as a real number value from 0.0 to 1.0.

6

S7-200 Instruction Set Chapter 6

153

Example: PID Loop Instruction

M
A
I
N

Network 1 //On the first scan,
//Call the initialization subroutine

LD SM0.1
CALL SBR_0

S
B
R
0

Network 1 //Load PID parameters and
//attach the PID interrupt routine:
//1. Load the loop setpoint = 75% full.
//2. Load the loop gain = 0.25.
//3. Load the loop sample time = 0.1 seconds.
//4. Load the integral time = 30 minutes.
//5. Set no derivative action.
//6. Set the timed interval (100ms)
// for timed interrupt INT_0.
//7. Set up a timed interrupt to invoke

 // the PID execution.
//8. Enable interrupts

LD SM0.0
MOVR 0.75, VD104
MOVR 0.25, VD112
MOVR 0.1, VD116
MOVR 30.0, VD120
MOVR 0.0, VD124
MOVB 100, SMB34
ATCH INT_0, 10
ENI

6

S7-200 Programmable Controller System Manual

154

Example: PID Loop Instruction, continued

I
N
T
0

Network 1 //Scale the PV to a normalized real number:
//1. Convert the integer value to a double integer.
//2. Convert the double integer to a real number.
//3. Normalize the value.
//4. Store the normalized PV in the loop table.

LD SM0.0
ITD AIW0, AC0
DTR AC0, AC0
/R 32000.0, AC0
MOVR AC0, VD100

Network 2 //Execute the loop when placed in auto mode.

LD I0.0
PID VB100, 0

Network 3 //Scale the Output Mn to an integer.
//Mn is a unipolar value and cannot be negative.
//1. Move the loop output to the accumulator.
//2. Scale the value in the accumulator.
//3. Convert the real number to a double integer.
//4. Convert the double integer to an integer.
//5. Write the value to the analog output.

LD SM0.0
MOVR VD108, AC0
*R 32000.0, AC0
ROUND AC0, AC0
DTI AC0, AC0
MOVW AC0, AQW0

6

S7-200 Instruction Set Chapter 6

155

Interrupt Instructions

Enable Interrupt and Disable Interrupt
The Enable Interrupt instruction (ENI) globally enables processing of
all attached interrupt events. The Disable Interrupt instruction (DISI)
globally disables processing of all interrupt events.

When you make the transition to RUN mode, interrupts are initially
disabled. In RUN mode, you can enable interrupt processing by
executing the Enable Interrupt instruction. Executing the Disable
Interrupt instruction inhibits the processing of interrupts; however,
active interrupt events will continue to be queued.

Error conditions that set ENO = 0:

� 0004 (attempted execution of ENI, DISI, or HDEF instructions in an
interrupt routine)

Conditional Return from Interrupt
The Conditional Return from Interrupt instruction (CRETI) can be
used to return from an interrupt, based upon the condition of the
preceding logic.

Attach Interrupt
The Attach Interrupt instruction (ATCH) associates an interrupt event
EVNT with an interrupt routine number INT and enables the interrupt
event.

Error conditions that set ENO = 0:

� 0002 (conflicting assignment of inputs to an HSC)

Detach Interrupt
The Detach Interrupt instruction (DTCH) disassociates an interrupt event EVNT from all interrupt routines
and disables the interrupt event.

Table 6-43 Valid Operands for the Attach Interrupt and Detach Interrupt Instructions

Inputs/Outputs Data Types Operands

INT BYTE Constant (0 to 127)

EVNT BYTE Constant CPU 221 and CPU 222: 0 to 12, 19 to 23, and 27 to 33
CPU 224: 0 to 23 and 27 to 33
CPU 226 and CPU 226XM: 0 to 33

Operation of the Attach Interrupt and Detach Interrupt Instructions
Before an interrupt routine can be invoked, an association must be established between the interrupt
event and the program segment that you want to execute when the event occurs. Use the Attach Interrupt
instruction to associate an interrupt event (specified by the interrupt event number) and the program
segment (specified by an interrupt routine number). You can attach multiple interrupt events to one
interrupt routine, but one event cannot be concurrently attached to multiple interrupt routines.

When you attach an interrupt event to an interrupt routine, that interrupt is automatically enabled. If you
disable all interrupts using the global disable interrupt instruction, each occurrence of the interrupt event is
queued until interrupts are re-enabled, using the global enable interrupt instruction, or the interrupt queue
overflows.

6

S7-200 Programmable Controller System Manual

156

You can disable individual interrupt events by breaking the association between the interrupt event and
the interrupt routine with the Detach Interrupt instruction. The Detach Interrupt instruction returns the
interrupt to an inactive or ignored state. Table 6-44 lists the different types of interrupt events.

Table 6-44 Interrupt Events

Event Description
CPU 221
CPU 222

CPU 224
CPU 226
CPU 226XM

0 I0.0 Rising edge Y Y Y

1 I0.0 Falling edge Y Y Y

2 I0.1 Rising edge Y Y Y

3 I0.1 Falling edge Y Y Y

4 I0.2 Rising edge Y Y Y

5 I0.2 Falling edge Y Y Y

6 I0.3 Rising edge Y Y Y

7 I0.3 Falling edge Y Y Y

8 Port 0 Receive character Y Y Y

9 Port 0 Transmit complete Y Y Y

10 Timed interrupt 0 SMB34 Y Y Y

11 Timed interrupt 1 SMB35 Y Y Y

12 HSC0 CV=PV (current value = preset value) Y Y Y

13 HSC1 CV=PV (current value = preset value) Y Y

14 HSC1 Direction changed Y Y

15 HSC1 External reset Y Y

16 HSC2 CV=PV (current value = preset value) Y Y

17 HSC2 Direction changed Y Y

18 HSC2 External reset Y Y

19 PLS0 PTO pulse count complete interrupt Y Y Y

20 PLS1 PTO pulse count complete interrupt Y Y Y

21 Timer T32 CT=PT interrupt Y Y Y

22 Timer T96 CT=PT interrupt Y Y Y

23 Port 0 Receive message complete Y Y Y

24 Port 1 Receive message complete Y

25 Port 1 Receive character Y

26 Port 1 Transmit complete Y

27 HSC0 Direction changed Y Y Y

28 HSC0 External reset Y Y Y

29 HSC4 CV=PV (current value = preset value) Y Y Y

30 HSC4 Direction changed Y Y Y

31 HSC4 External reset Y Y Y

32 HSC3 CV=PV (current value = preset value) Y Y Y

33 HSC5 CV=PV (current value = preset value) Y Y Y

6

S7-200 Instruction Set Chapter 6

157

Understanding How the S7-200 Processes Interrupt Routines
The interrupt routine is executed in response to an associated internal or external event. Once the last
instruction of the interrupt routine has been executed, control is returned to the main program. You can exit
the routine by executing a Conditional Return from Interrupt instruction (CRETI). Table 6-45 emphasizes
some guidelines and restrictions for using interrupt routines in your program.

Table 6-45 Guidelines and Restrictions for Using Interrupt Routines

Guidelines

Interrupt processing provides quick reaction to special internal or external events. You should optimize interrupt
routines to perform a specific task, and then return control to the main routine.

By keeping the interrupt routines short and to the point, execution is quick and other processes are not deferred for
long periods of time. If this is not done, unexpected conditions can cause abnormal operation of equipment controlled
by the main program. For interrupts, the axiom, ‘‘the shorter, the better,’’ is definitely true.

Restrictions

You cannot use the Disable Interrupt (DISI), Enable Interrupt (ENI), High-Speed Counter Definition (HDEF), and End
(END) instructions in an interrupt routine.

System Support for Interrupts
Because contact, coil, and accumulator logic can be affected by interrupts, the system saves and reloads
the logic stack, accumulator registers, and the special memory bits (SM) that indicate the status of
accumulator and instruction operations. This avoids disruption to the main user program caused by
branching to and from an interrupt routine.

Sharing Data Between the Main Program and Interrupt Routines
You can share data between the main program and one or more interrupt routines. Because it is not
possible to predict when the S7-200 might generate an interrupt, it is desirable to limit the number of
variables that are used by both the interrupt routine and elsewhere in the program. Problems with the
consistency of shared data can result due to the actions of interrupt routines when the execution of
instructions in your main program is interrupted by interrupt events. Use the local variable table of the
interrupt routine to ensure that your interrupt routine uses only the temporary memory and does not
overwrite data used somewhere else in your program.

There are a number of programming techniques you can use to ensure that data is correctly shared
between your main program and interrupt routines. These techniques either restrict the way access is
made to shared memory locations or prevent interruption of instruction sequences using shared memory
locations.

� For an STL program that is sharing a single variable: If the shared data is a single byte, word, or
double word variable and your program is written in STL, then correct shared access can be
ensured by storing the intermediate values from operations on shared data only in non-shared
memory locations or accumulators.

� For a LAD program that is sharing a single variable: If the shared data is a single byte, word, or
double word variable and your program is written in LAD, then correct shared access can be
ensured by establishing the convention that access to shared memory locations be made using
only Move instructions (MOVB, MOVW, MOVD, MOVR). While many LAD instructions are
composed of interruptible sequences of STL instructions, these Move instructions are composed of
a single STL instruction whose execution cannot be affected by interrupt events.

� For an STL or LAD program that is sharing multiple variables: If the shared data is composed of a
number of related bytes, words, or double words, then the interrupt disable/enable instructions (DISI
and ENI) can be used to control interrupt routine execution. At the point in your main program where
operations on shared memory locations are to begin, disable the interrupts. Once all actions
affecting the shared locations are complete, re-enable the interrupts. During the time that interrupts
are disabled, interrupt routines cannot be executed and therefore cannot access shared memory
locations; however, this approach can result in delayed response to interrupt events.

6

S7-200 Programmable Controller System Manual

158

Calling Subroutines from Interrupt Routines
You can call one nesting level of subroutines from an interrupt routine. The accumulators and the logic
stack are shared between an interrupt routine and a subroutine that is called.

Types of Interrupts Supported by the S7-200
The S7-200 supports the following types of interrupt routines:

� Communications port interrupts: The S7-200 generates events that allow your program to control
the communications port.

� I/O interrupts: The S7-200 generates events for different changes of state for various I/O. These
events allow your program to respond to the high-speed counters, the pulse outputs, or to rising or
falling states of the inputs.

� Time-based interrupts: The S7-200 generates events that allow your program to react at specific
intervals.

Communications Port Interrupts
The serial communications port of the S7-200 can be controlled by your program. This mode of operating
the communications port is called Freeport mode. In Freeport mode, your program defines the baud rate,
bits per character, parity, and protocol. The Receive and Transmit interrupts are available to facilitate your
program-controlled communications. Refer to the Transmit and Receive instructions for more information.

I/O Interrupts
I/O interrupts include rising/falling edge interrupts, high-speed counter interrupts, and pulse train output
interrupts. The S7-200 can generate an interrupt on rising and/or falling edges of an input (either I0.0, I0.1,
I0.2, or I0.3). The rising edge and the falling edge events can be captured for each of these input points.
These rising/falling edge events can be used to signify a condition that must receive immediate attention
when the event happens.

The high-speed counter interrupts allow you to respond to conditions such as the current value reaching
the preset value, a change in counting direction that might correspond to a reversal in the direction in
which a shaft is turning, or an external reset of the counter. Each of these high-speed counter events
allows action to be taken in real time in response to high-speed events that cannot be controlled at
programmable logic controller scan speeds.

The pulse train output interrupts provide immediate notification of completion of outputting the prescribed
number of pulses. A typical use of pulse train outputs is stepper motor control.

You can enable each of the above interrupts by attaching an interrupt routine to the related I/O event.

Time-Based Interrupts
Time-based interrupts include timed interrupts and the timer T32/T96 interrupts. You can specify actions to
be taken on a cyclic basis using a timed interrupt. The cycle time is set in 1-ms increments from 1 ms to
255 ms. You must write the cycle time in SMB34 for timed interrupt 0, and in SMB35 for timed interrupt 1.

The timed interrupt event transfers control to the appropriate interrupt routine each time the timer expires.
Typically, you use timed interrupts to control the sampling of analog inputs or to execute a PID loop at
regular intervals.

A timed interrupt is enabled and timing begins when you attach an interrupt routine to a timed interrupt
event. During the attachment, the system captures the cycle time value, so subsequent changes to
SMB34 and SMB35 do not affect the cycle time. To change the cycle time, you must modify the cycle time
value, and then re-attach the interrupt routine to the timed interrupt event. When the re-attachment occurs,
the timed interrupt function clears any accumulated time from the previous attachment and begins timing
with the new value.

6

S7-200 Instruction Set Chapter 6

159

After being enabled, the timed interrupt runs continuously, executing the attached interrupt routine on each
expiration of the specified time interval. If you exit RUN mode or detach the timed interrupt, the timed
interrupt is disabled. If the global disable interrupt instruction is executed, timed interrupts continue to
occur. Each occurrence of the timed interrupt is queued (until either interrupts are enabled or the queue is
full).

The timer T32/T96 interrupts allow timely response to the completion of a specified time interval. These
interrupts are only supported for the 1-ms resolution on-delay (TON) and off-delay (TOF) timers T32 and
T96. The T32 and T96 timers otherwise behave normally. Once the interrupt is enabled, the attached
interrupt routine is executed when the active timer’s current value becomes equal to the preset time value
during the normal 1-ms timer update performed in the S7-200. You enable these interrupts by attaching an
interrupt routine to the T32/T96 interrupt events.

Interrupt Priority and Queuing
Interrupts are serviced by the S7-200 on a first-come-first-served basis within their respective priority
group. Only one user-interrupt routine is ever being executed at any point in time. Once the execution of
an interrupt routine begins, the routine is executed to completion. It cannot be pre-empted by another
interrupt routine, even by a higher priority routine. Interrupts that occur while another interrupt is being
processed are queued for later processing.

Table 6-46 shows the three interrupt queues and the maximum number of interrupts they can store.

Table 6-46 Maximum Number of Entries per Interrupt Queue

Queue CPU 221, CPU 222, CPU 224 CPU 226 and CPU 226XM

Communications queue 4 8

I/O Interrupt queue 16 16

Timed Interrupt queue 8 8

Potentially, more interrupts can occur than the queue can hold. Therefore, queue overflow memory bits
(identifying the type of interrupt events that have been lost) are maintained by the system. Table 6-47
shows the interrupt queue overflow bits. You should use these bits only in an interrupt routine because
they are reset when the queue is emptied, and control is returned to the main program.

Table 6-48 shows all interrupt events, with their priority and assigned event number.

Table 6-47 Interrupt Queue Overflow Bits

Description (0 = No Overflow, 1 = Overflow) SM Bit

Communications queue SM4.0

I/O Interrupt queue SM4.1

Timed Interrupt queue SM4.2

6

S7-200 Programmable Controller System Manual

160

Table 6-48 Priority Order for Interrupt Events

Event Description Priority Group Priority in Group

8 Port 0 Receive character Communications 0

9 Port 0 Transmit complete
Highest Priority

0

23 Port 0 Receive message complete 0

24 Port 1 Receive message complete 1

25 Port 1 Receive character 1

26 Port 1 Transmit complete 1

19 PLS0 PTO pulse count complete interrupt Discrete 0

20 PLS1 PTO pulse count complete interrupt
Medium Priority

1

0 I0.0 Rising edge 2

2 I0.1 Rising edge 3

4 I0.2 Rising edge 4

6 I0.3 Rising edge 5

1 I0.0 Falling edge 6

3 I0.1 Falling edge 7

5 I0.2 Falling edge 8

7 I0.3 Falling edge 9

12 HSC0 CV=PV (current value = preset value) 10

27 HSC0 Direction changed 11

28 HSC0 External reset 12

13 HSC1 CV=PV (current value = preset value) 13

14 HSC1 Direction changed 14

15 HSC1 External reset 15

16 HSC2 CV=PV (current value = preset value) 16

17 HSC2 Direction changed 17

18 HSC2 External reset 18

32 HSC3 CV=PV (current value = preset value) 19

29 HSC4 CV=PV (current value = preset value) 20

30 HSC4 Direction changed 21

31 HSC4 External reset 22

33 HSC5 CV=PV (current value = preset value) 23

10 Timed interrupt 0 SMB34 Timed 0

11 Timed interrupt 1 SMB35
Lowest Priority

1

21 Timer T32 CT=PT interrupt 2

22 Timer T96 CT=PT interrupt 3

6

S7-200 Instruction Set Chapter 6

161

Example: Interrupt Instructions

M
A
I
N

Network 1 //On the first scan:
//1. Define interrupt routine INT_0 to be a falling-edge interrupt for I0.0
//2. Globally enable interrupts.

LD SM0.1
ATCH INT_0, 1
ENI

Network 2 //If an I/O error is detected,
//disable the falling-edge interrupt for I0.0.
//This network is optional.

LD SM5.0
DTCH 1

Network 3 //When M5.0 is on,
//disable all interrupts.

LD M5.0
DISI

I
N
T
0

Network 1 //I0.0 falling-edge interrupt routine:
//Conditional return based on an I/O error.

LD SM5.0
CRETI

Example: Timed Interrupt for Reading the Value of an Analog Input

M
A
I
N

Network 1 //On the first scan, call subroutine 0.

LD SM0.1
CALL SBR_0

S
B
R
0

Network 1 //1. Set the interval for the timed interrupt 0 to 100 ms.
//2. Attach timed interrupt 0 (Event 10) to INT_0.
//3. Global interrupt enable.

LD SM0.0
MOVB 100, SMB34
ATCH INT_0, 10
ENI

I
N
T
0

Network 1 //Read the value of AIW4 every 100 ms

LD SM0.0
MOVW AIW4, VW100

6

S7-200 Programmable Controller System Manual

162

Logical Operations Instructions

Invert Instructions
Invert Byte, Word, and Double Word
The Invert Byte (INVB), Invert Word (INVW), and Invert Double Word
(INVD) instructions form the one’s complement of the input IN and
load the result into the memory location OUT.

Error conditions that set ENO = 0

� 0006 (indirect address)

SM bits affected:

� SM1.0 (zero)

Table 6-49 Valid Operands for the Invert Instructions

Inputs/Outputs Data Types Operands

IN BYTE

WORD

DWORD

IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant

ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, Constant

OUT BYTE

WORD

DWORD

IB, QB, VB, MB, SMB, SB, LB, AC,*VD, *LD, *AC

IW, QW, VW, MW, SMW, SW, T, C, LW, AC, *VD, *LD, *AC

ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

Example: Invert Instruction

Network 1

LD I4.0
INVW AC0

1101 0111 1001 0101AC0

complement

0010 1000 0110 1010AC0

Invert Word

6

S7-200 Instruction Set Chapter 6

163

AND, OR, and Exclusive OR Instructions

AND Byte, AND Word, and AND Double Word
The AND Byte (ANDB), AND Word (ANDW), and AND Double Word
(ANDD) instructions AND the corresponding bits of two input values
IN1 and IN2 and load the result in a memory location OUT.

OR Byte, OR Word and OR Double Word
The OR Byte (ORB), OR Word instruction (ORW), and OR Double
Word (ORD) instructions OR the corresponding bits of two input
values IN1 and IN2 and load the result in a memory location OUT.

Exclusive OR Byte, Exclusive OR Word, and
Exclusive OR Double Word
The Exclusive OR Byte (XROB), Exclusive OR Word (XORW), and
Exclusive OR Double Word (XORD) instruction XOR the
corresponding bits of two input values IN1 and IN2 and load the
result in a memory location OUT.

SM Bits and ENO
For all of the instructions described on this page, the following
conditions affect SM bits and ENO.

Error conditions that set ENO = 0

� 0006 (indirect address)

SM bits affected:

� SM1.0 (zero)

Table 6-50 Valid Operands for the AND, OR, and Exclusive OR Instructions

Inputs/Outputs Data Types Operands

IN1, IN2 BYTE

WORD

DWORD

IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant

ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, Constant

OUT BYTE

WORD

DWORD

IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

IW, QW, VW, MW, SMW, SW, T, C, LW, AC, *VD, *AC, *LD

ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD

6

S7-200 Programmable Controller System Manual

164

Example: AND, OR, and Exclusive OR Instructions

Network 1

LD I4.0
ANDW AC1, AC0
ORW AC1, VW100
XORW AC1, AC0

0001 1111 0110 1101AC1

1101 0011 1110 0110AC0

0001 0011 0110 0100AC0

AND

equals

0001 1111 0110 1101AC1

1101 0011 1010 0000VW100

1101 1111 1110 1101VW100

OR

equals

0001 1111 0110 1101AC1

AC0

0000 1100 0000 1001AC0

XOR

equals
0001 0011 0110 0100

Exclusive OR Word

AND Word OR Word

6

S7-200 Instruction Set Chapter 6

165

Move Instructions

Move Byte, Word, Double Word, or Real
The Move Byte (MOVB), Move Word (MOVW), Move Double Word
(MOVD), and Move Real (MOVR) instructions move a value from a
memory location IN to a new memory location OUT without
changing the original value.

Use the Move Double Word instruction to create a pointer. For more
information, refer to the section on pointers and indirect addressing
in Chapter 4.

For the IEC Move instruction, the input and output data types can
vary, but must be of the same size.

Error conditions that set ENO = 0

� 0006 (indirect address)

Table 6-51 Valid Operands for the Move Instructions

Inputs/Outputs Data Types Operands

IN BYTE

WORD, INT

DWORD, DINT

REAL

IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *AC, *LD, Constant

ID, QD, VD, MD, SMD, SD, LD, AC, HC, &IB, &QB, &VB, &MB, &SB, &T,
&C, *VD, *LD, *AC, Constant

ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC, Constant

OUT BYTE

WORD, INT

DWORD, DINT, REAL

IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC

IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AQW, *VD, *LD, *AC

ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

6

S7-200 Programmable Controller System Manual

166

Move Byte Immediate (Read and Write)
The Move Byte Immediate instructions allow you to immediately
move a byte between the physical I/O and a memory location.

The Move Byte Immediate Read (BIR) instruction reads physical
input (IN) and writes the result to the memory address (OUT), but
the process-image register is not updated.

The Move Byte Immediate Write instruction (BIW) reads the data
from the memory address (IN) and writes to physical output (OUT),
and the corresponding process image location.

Error conditions that set ENO = 0

� 0006 (indirect address)

� Unable to access expansion module

Table 6-52 Valid Operands for the Move Byte Immediate Read Instruction

Inputs/Outputs Data Types Operands

IN BYTE IB, *VD, *LD, *AC

OUT BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC

Table 6-53 Valid Operands for the Move Byte Immediate Write Instruction

Inputs/Outputs Data Types Operands

IN BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

OUT BYTE QB, *VD, *LD, *AC

6

S7-200 Instruction Set Chapter 6

167

Block Move Instructions
Block Move Byte, Word, or Double Word
The Block Move Byte (BMB), Block Move Word (BMW), and Block
Move Double Word (BMD) instructions move a specified amount of
data to a new memory location by moving the number of bytes,
words, or double words N starting at the input address IN to a new
block starting at the output address OUT.

N has a range of 1 to 255.

Error conditions that set ENO = 0

� 0006 (indirect address)

� 0091 (operand out of range)

Table 6-54 Valid Operands for the Block Move Instructions

Inputs/Outputs Data Types Operands

IN BYTE

WORD, INT

DWORD, DINT

IB, QB, VB, MB, SMB, SB, LB, *VD, *LD, *AC

IW, QW, VW, MW, SMW, SW, T, C, LW, AIW, *VD, *LD, *AC

ID, QD, VD, MD, SMD, SD, LD, *VD, *LD, *AC

OUT BYTE

WORD, INT

DWORD, DINT

IB, QB, VB, MB, SMB, SB, LB, *VD, *LD, *AC

IW, QW, VW, MW, SMW, SW, T, C, LW, AQW, *VD, *LD, *AC

ID, QD, VD, MD, SMD, SD, LD, *VD, *LD, *AC

N BYTE IB, QB, VB, MB, SMB, SB, LB, AC, Constant, *VD, *LD, *AC

Example: Block Move Instruction

Network 1 //Move array 1 (VB20 to VB23)
//to array 2 (VB100 to VB103)

LD I2.1
BMB VB20, VB100, 4

Array 1

Array 2

30
VB20

31
VB21

32
VB22

33
VB23

30
VB100

31
VB101

32
VB102

33
VB103

6

S7-200 Programmable Controller System Manual

168

Program Control Instructions

Conditional End
The Conditional End instruction (END) terminates the current scan
based upon the condition of the preceding logic. You can use the
Conditional End instruction in the main program, but you cannot use
it in either subroutines or interrupt routines.

Stop
The Stop instruction (STOP) terminates the execution of your
program by causing a transition of the S7-200 CPU from RUN to
STOP mode.

If the Stop instruction is executed in an interrupt routine, the interrupt
routine is terminated immediately, and all pending interrupts are
ignored. Remaining actions in the current scan cycle are completed,
including execution of the main user program, and the transition
from RUN to STOP mode is made at the end of the current scan.

Watchdog Reset
The Watchdog Reset instruction (WDR) retriggers the system watchdog timer of the S7-200 CPU to
extend the time that the scan is allowed to take without getting a watchdog error.

You should use the Watchdog Reset instruction carefully. If you use looping instructions either to prevent
scan completion or to delay excessively the completion of the scan, the following processes are inhibited
until the scan cycle is completed:

� Communications (except Freeport Mode)

� I/O updating (except Immediate I/O)

� Force updating

� SM bit updating (SM0, SM5 to SM29 are not updated)

� Run-time diagnostics

� 10-ms and 100-ms timers will not properly accumulate time for scans exceeding 25 seconds

� STOP instruction, when used in an interrupt routine

� Expansion modules with discrete outputs also include a watchdog timer that turns off outputs if the
module is not written by the S7-200. Use an immediate write to each expansion module with
discrete outputs to keep the correct outputs on during extended scan times. Refer to the example
that follows this description.

Tip
If you expect your scan time to exceed 500 ms, or if you expect a burst of interrupt activity that could
prevent returning to the main scan for more than 500 ms, you should use the Watchdog Reset
instruction to retrigger the watchdog timer.

Each time you use the Watchdog Reset instruction, you should also use an immediate write to one
output byte (QB) in each discrete expansion module to reset each expansion module watchdog.

If you use the Watchdog Reset instruction to allow the execution of a program that requires a long scan
time, changing the mode switch to the STOP position causes the S7-200 to transition to STOP mode
within 1.4 seconds.

6

S7-200 Instruction Set Chapter 6

169

Example: Stop, End, and Watchdog Reset Instructions

Network 1 //When an I/O error is detected:
//Force the transition to STOP mode.

LD SM5.0
STOP

Network 2 //When M5.6 is on, allow the scan to be extended:
//1. Retrigger the Watchdog Reset for the S7-200.
//2. Retrigger the watchdog for the first output module.

LD M5.6
WDR
BIW QB2, QB2

Network 3 //When I0.0 is on, terminate the current scan.

LD I0.0
END

6

S7-200 Programmable Controller System Manual

170

For–Next Loop Instructions
Use the For (FOR) and Next (NEXT) instructions to delineate a loop
that is repeated for the specified count. Each For instruction requires
a Next instruction. You can nest For–Next loops (place a For–Next
loop within a For–Next loop) to a depth of eight.

The For instruction executes the instructions between the For and
the Next instructions. You specify the index value or current loop
count INDX, the starting value INIT, and the ending value FINAL.

The Next instruction marks the end of the FOR loop.

Error conditions that set ENO = 0

� 0006 (indirect address)

If you enable the For–Next loop, it continues the looping process
until it finishes the iterations, unless you change the final value from
within the loop itself. You can change the values while the For–Next
loop is in the looping process. When the loop is enabled again, it
copies the initial value into the index value (current loop number).

The For–Next instruction resets itself the next time it is enabled.

For example, given an INIT value of 1 and a FINAL value of 10, the instructions between the For
instruction and the Next instruction are executed 10 times with the INDX value being incremented:
1, 2, 3, ...10.

If the starting value is greater than the final value, the loop is not executed. After each execution of the
instructions between the For instruction and the Next instruction, the INDX value is incremented and the
result is compared to the final value. If the INDX is greater than the final value, the loop is terminated.

If the top of stack is 1 when your program enters the For–Next loop, then the top of stack will be 1 when
your program exits the For–Next loop.

Table 6-55 Valid Operands for the For and Next Instructions

Inputs/Outputs Data Types Operands

INDX INT IW, QW, VW, MW, SMW, SW, T, C, LW, AC, *VD, *LD, *AC

INIT, FINAL INT VW, IW, QW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant

6

S7-200 Instruction Set Chapter 6

171

Example: For–Next Loop Instructions

2

1

Network 1 //When I2.0 comes on, the outside loop
//(arrow 1) is executed 100 times

LD I2.0
FOR VW100, +1, +100

Network 2 //The inside loop (arrow 2) is executed twice
//for each execution of the outside loop
//when I2.1 is on.

LD I2.1
FOR VW225, +1, +2

Network 3 //End of Loop 2.

NEXT

Network 4 //End of Loop 1 .

NEXT

6

S7-200 Programmable Controller System Manual

172

Jump Instructions
The Jump to Label instruction (JMP) performs a branch to the
specified label N within the program.

The Label instruction (LBL) marks the location of the jump
destination N.

You can use the Jump instruction in the main program, in
subroutines, or in interrupt routines. The Jump and its corresponding
Label instruction must always be located within the same segment
of code (either the main program, a subroutine, or an interrupt
routine).

You cannot jump from the main program to a label in either a
subroutine or an interrupt routine. Likewise, you cannot jump from a
subroutine or interrupt routine to a label outside that subroutine or
interrupt routine.

You can use a Jump instruction within an SCR segment, but the
corresponding Label instruction must be located within the same
SCR segment.

Table 6-56 Valid Operands for the Jump Instructions

Inputs/Outputs Data Types Operands

N WORD Constant (0 to 255)

Example: Jump to Label Instruction

Network 1 //If the retentive data has not been lost, Jump to LBL4

LDN SM0.2
JMP 4

Network 2

LBL 4

6

S7-200 Instruction Set Chapter 6

173

Sequence Control Relay (SCR) Instructions

SCR instructions provide you with a simple yet powerful state control
programming technique that fits naturally into a LAD, FBD, or STL
program.

Whenever your application consists of a sequence of operations that
must be performed repetitively, SCRs can be used to structure your
program so that it corresponds directly to your application. As a
result, you can program and debug your application more quickly
and easily.

The Load SCR instruction (LSCR) loads the SCR and logic stacks
with the value of the S bit referenced by the instruction N.

The SCR segment is energized or de-energized by the resulting
value of the SCR stack. The value of the SCR stack is copied to the
top of the logic stack so that boxes or output coils can be tied directly
to the left power rail without an intervening contact.

Restrictions
When using SCRs, be aware of the following restrictions:

� You cannot use the same S bit in more than one routine. For
example, if you use S0.1 in the main program, do not use it in
a subroutine.

� You cannot jump into or out of an SCR segment; however, you
can use Jump and Label instructions to jump around SCR
segments or to jump within an SCR segment.

� You cannot use the END instruction in an SCR segment.

Table 6-57 Valid Operands for the Sequence Control Relay Instructions

Inputs/Outputs Data Types Operands

S_bit BOOL S

6

S7-200 Programmable Controller System Manual

174

Figure 6-31 shows the S stack and the logic stack and the effect of executing the Load SCR instruction.
The following is true of Sequence Control Relay instructions:

� The Load SCR instruction (LSCR) marks the beginning of an SCR segment, and the SCR End
instruction (SCRE) marks the end of an SCR segment. All logic between the Load SCR and the
SCR End instructions are dependent upon the value of the S stack for its execution. Logic between
the SCR End and the next Load SCR instruction is not dependent on the value of the S stack.

� The SCR Transition instruction (SCRT)
provides the means to transfer control from
an active SCR segment to another SCR
segment.

Execution of the SCR Transition instruction
when it has power flow will reset the S bit
of the currently active segment and will set
the S bit of the referenced segment.
Resetting the S bit of the active segment
does not affect the S stack at the time the
SCR Transition instruction executes.
Consequently, the SCR segment remains

S stack

Logic stack

S bit

Before After iv8

Sx.y
iv1
iv2
iv3
iv4
iv5
iv6
iv7

iv8

iv0
iv1
iv2
iv3
iv4
iv5
iv6
iv7

ivS Sx.y

Load the value of Sx.y onto the SCR and logic stacks.

energized until it is exited.
Figure 6-31 Effect of LSCR on the Logic Stack

� The Conditional SCR End instruction (CSCRE) provides a means to exit an active SCR segment
without executing the instructions between the Conditional SCR End and the SCR End instructions.
The Conditional SCR End instruction does not affect any S bit nor does it affect the S stack.

In the following example, the first scan bit SM0.1 sets S0.1, which will be the active State 1 on the first
scan. After a 2-second delay, T37 causes a transition to State 2. This transition deactivates the State 1
SCR (S0.1) segment and activates the State 2 SCR (S0.2) segment.

6

S7-200 Instruction Set Chapter 6

175

Example: Sequence Control Relay Instruction

Network 1 //On the first scan enable State 1.

LD SM0.1
S S0.1, 1

Network 2 //Beginning of State 1 control region.

LSCR S0.1

Network 3 //Control the signals for Street 1:
//1. Set: Turn on the red light.
 //2. Reset: Turn off the yellow and green lights.
//3. Start a 2–second timer.

LD SM0.0
S Q0.4, 1
R Q0.5, 2
TON T37, +20

Network 4 //After a 2 second delay, transition to State 2.

LD T37
SCRT S0.2

Network 5 //End of SCR region for State 1.

SCRE

Network 6 //Beginning of State 2 control region.

LSCR S0.2

Network 7 //Control the signals for Street 2:
//1. Set: Turn on the green light.
//2. Start a 25–second timer.

LD SM0.0
S Q0.2, 1
TON T38, +250

Network 8 //After a 25 second delay, transition to State 3.

LD T38
SCRT S0.3

Network 9 //End of SCR region for State 2.

SCRE

6

S7-200 Programmable Controller System Manual

176

Divergence Control
In many applications, a single stream of sequential states must be split into two or more different streams.
When a control stream diverges into multiple streams, all outgoing streams must be activated
simultaneously. This is shown in Figure 6-32.

State L

State M State N

Transition Condition

Figure 6-32 Divergence of a Control Stream

The divergence of control streams can be implemented in an SCR program by using multiple SCRT
instructions enabled by the same transition condition, as shown in the following example.

Example: Divergence of Control Streams

Network 1 //Beginning of State L control region.

LSCR S3.4

Network 2

LD M2.3
A I2.1
SCRT S3.5 //Transition to State M
SCRT S6.5 //Transition to State N

Network 3 //End of the State region for State L.

SCRE

Convergence Control
A situation similar to divergence control arises when two or more streams of sequential states must be
merged into a single stream. When multiple streams merge into a single stream, they are said to
converge. When streams converge, all incoming streams must be complete before the next state is
executed. Figure 6-33 depicts the convergence of two control streams.

The convergence of control streams can be implemented in an SCR program by making the transition
from state L to state L’ and by making the transition from state M to state M’. When both SCR bits
representing L’ and M’ are true, state N can the enabled as shown in the following example.

6

S7-200 Instruction Set Chapter 6

177

State N

State L State M

Transition Condition

Figure 6-33 Convergence of a Control Stream

Example: Convergence of Control Streams

Network 1 //Beginning of State L control region

LSCR S3.4

Network 2 //Transition to State L’

LD V100.5
SCRT S3.5

Network 3 //End of SCR region for State L

SCRE

Network 4 //Beginning of State M control region

LSCR S6.4

Network 5 //Transition to State M’

LD C50
SCRT S6.5

Network 6 //End of SCR region for State M

SCRE

Network 7 //When both State L’ and State M’ are activated:
//1. Enable State N (S5.0)
//2. Reset State L’ (S3.5)
//3. Reset State M’ (S6.5)

LD S3.5
A S6.5
S S5.0, 1
R S3.5, 1
R S6.5, 1

6

S7-200 Programmable Controller System Manual

178

In other situations, a control stream might be directed into one of several possible control streams,
depending upon which transition condition comes true first. Such a situation is depicted in Figure 6-34,
which shows an equivalent SCR program.

State L

State M State N

Transition ConditionTransition Condition

Figure 6-34 Divergence of a Control Stream, Depending on the Transition Condition

Example: Conditional Transitions

Network 1 //Beginning of State L control region

LSCR S3.4

Network 2 //Transition to State M

LD M2.3
SCRT S3.5

Network 3 //Transition to State N

LD I3.3
SCRT S6.5

Network 4 //End of SCR region for State L

SCRE

6

S7-200 Instruction Set Chapter 6

179

Shift and Rotate Instructions

Shift Right and Shift Left Instructions
The Shift instructions shift the input value IN right or left by the shift
count N and load the result in the output OUT.

The Shift instructions fill with zeros as each bit is shifted out. If the
shift count (N) is greater than or equal to the maximum allowed (8 for
byte operations, 16 for word operations, and 32 for double word
operations), the value is shifted the maximum number of times for
the operation. If the shift count is greater than 0, the overflow
memory bit (SM1.1) takes on the value of the last bit shifted out. The
zero memory bit (SM1.0) is set if the result of the shift operation is
zero.

Byte operations are unsigned. For word and double word
operations, the sign bit is shifted when you use signed data types.

Error conditions that set ENO = 0

� 0006 (indirect address)

SM bits affected:

� SM1.0 (zero)

� SM1.1 (overflow)

Rotate Right and Rotate Left Instructions
The Rotate instructions rotate the input value (IN) right or left by the
shift count (N) and load the result in the memory location (OUT). The
rotate is circular.

If the shift count is greater than or equal to the maximum for the
operation (8 for a byte operation, 16 for a word operation, or 32 for a
double-word operation), the S7-200 performs a modulo operation on
the shift count to obtain a valid shift count before the rotation is
executed. This result is a shift count of 0 to 7 for byte operations, 0
to 15 for word operations, and 0 to 31 for double-word operations.

If the shift count is 0, a rotate operation is not performed. If the rotate
operation is performed, the value of the last bit rotated is copied to
the overflow bit (SM1.1).

If the shift count is not an integer multiple of 8 (for byte operations), 16 (for word operations), or 32 (for
double-word operations), the last bit rotated out is copied to the overflow memory bit (SM1.1). The zero
memory bit (SM1.0) is set when the value to be rotated is zero.

Byte operations are unsigned. For word and double word operations, the sign bit is shifted when you use
signed data types.

Error conditions that set ENO = 0

� 0006 (indirect address)

SM bits affected:

� SM1.0 (zero)

� SM1.1 (overflow)

Table 6-58 Valid Operands for the Shift and Rotate Instructions

Inputs/Outputs Data Types Operands

IN BYTE

WORD

DWORD

IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant

ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, Constant

OUT BYTE

WORD

DWORD

IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC

IW, QW, VW, MW, SMW, SW, T, C, LW, AC, *VD, *LD, *AC

ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

N BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

6

S7-200 Programmable Controller System Manual

180

Example: Shift and Rotate Instructions

Network 1

LD I4.0
RRW AC0, 2
SLW VW200, 3

Before rotate

AC0

Zero Memory Bit (SM1.0) = 0
Overflow Memory Bit (SM1.1) = 0

x

Overflow

1010 0000 0000 0000

After first rotate

AC0 1

Overflow

0101 0000 0000 0000

After second rotate

AC0 0

Overflow

0100 0000 0000 0001

Rotate
Before shift

VW200

Zero Memory Bit (SM1.0) = 0
Overflow Memory Bit (SM1.1) = 1

x

Overflow

1100 0101 0101 1010

After first shift

VW200 1

Overflow

1000 1010 1011 0100

After second shift

VW200 1

Overflow

1110 0010 1010 1101

0001 0101 0110 1000

After third shift

VW200 1

Overflow

Shift

6

S7-200 Instruction Set Chapter 6

181

Shift Register Bit Instruction

The Shift Register Bit instruction shifts a value into the Shift Register.
This instruction provides an easy method for sequencing and
controlling product flow or data. Use this instruction to shift the entire
register one bit, once per scan.

The Shift Register Bit instruction shifts the value of DATA into the
Shift Register. S_BIT specifies the least significant bit of the Shift
Register. N specifies the length of the Shift Register and the
direction of the shift (Shift Plus = N, Shift Minus = –N).

Each bit shifted out by the SHRB instruction is placed in the overflow
memory bit (SM1.1).

This instruction is defined by both the least significant bit (S_BIT)
and the number of bits specified by the length (N).

Error conditions that set ENO = 0

� 0006 (indirect address)

� 0091 (operand out of range)

� 0092 (error in count field)

SM bits affected:

� SM1.1 (overflow)

Table 6-59 Valid Operands for the Shift Register Bit Instruction

Inputs/Outputs Data Types Operands

DATA, S_Bit BOOL I, Q, V, M, SM, S, T, C, L

N BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

Use the following equation to compute the address of the most significant bit of the Shift Register (MSB.b):

MSB.b = [(Byte of S_BIT) + ([N] – 1 + (bit of S_BIT)) / 8].[remainder of the division by 8]

For example: if S_BIT is V33.4 and N is 14, the following
calculation shows that the MSB.b is V35.1.

MSB.b = V33 + ([14] – 1 +4)/8
= V33 + 17/8
= V33 + 2 with a remainder of 1
= V35.1

On a Shift Minus, indicated by a negative value of length
(N), the input data shifts into the most significant bit of the
Shift Register, and shifts out of the least significant bit
(S_BIT). The data shifted out is then placed in the overflow
memory bit (SM1.1).

On a Shift Plus, indicated by a positive value of length (N),
the input data (DATA) shifts into the least significant bit of the
Shift Register, specified by the S_BIT, and out of the most
significant bit of the Shift Register. The data shifted out is
then placed in the overflow memory bit (SM1.1).

The maximum length of the shift register is 64 bits, positive
or negative. Figure 6-35 shows bit shifting for negative and
positive values of N.

7 4 0V33

MSB LSB
Shift Minus,
Length = –14

S_BIT

7 0V34

7 0V35 1

MSB of Shift Register

7 4 0V33

MSB LSB
Shift Plus,
Length = 14

S_BIT

7 0V34

7 0V35 1

MSB of Shift Register

Figure 6-35 Shift Register Entry and Exit

6

S7-200 Programmable Controller System Manual

182

Example: Shift Register Bit Instruction

Network 1

LD I0.2
EU
SHRB I0.3, V100.0, +4

Timing Diagram

I0.2

I0.3

1V100

7 (MSB) S_BIT

I0.3010

0 (LSB)

Overflow (SM1.1) x

1V100
S_BIT

I0.3101

Overflow (SM1.1) 0

0V100
S_BIT

I0.3110

Overflow (SM1.1) 1

First shift Second shift

Before first shift

After first shift

After second shift

Positive
transition (P)

6

S7-200 Instruction Set Chapter 6

183

Swap Bytes Instruction

The Swap Bytes instruction exchanges the most significant byte with
the least significant byte of the word IN.

Error conditions that set ENO = 0

� 0006 (indirect address)

Table 6-60 Valid Operands for the Swap Bytes Instruction

Inputs/Outputs Data Types Operands

IN WORD IW, QW, VW, MW, SMW, SW, T, C, LW,AC, *VD, *LD, *AC

Example: Swap Instructions

Network 1

LD I2.1
SWAP VW50

VW50 VW50 C3 D6D6 C3Swap

6

S7-200 Programmable Controller System Manual

184

String Instructions

String Length
The String Length instruction (SLEN) returns the length of the string
specified by IN.

Copy String
The Copy String instruction (SCPY) copies the string specified by IN
to the string specified by OUT.

Concatenate String
The Concatenate String instruction (SCAT) appends the string
specified by IN to the end of the string specified by OUT.

SM Bits and ENO
For the String Length, Copy String, and Concatenate String
instructions, the following conditions affect ENO.

Error conditions that set ENO = 0

� 0006 (indirect address)

� 0091 (range error)

Table 6-61 Valid Operands for the String Length Instruction

Inputs/Outputs Data Types Operands

IN BYTE (String) VB, LB, *VD, *LD, *AC

OUT BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC

Table 6-62 Valid Operands for the Copy String and Concatenate String Instructions

Inputs/Outputs Data Types Operands

IN, OUT BYTE (String) VB, LB, *VD, *LD, *AC

6

S7-200 Instruction Set Chapter 6

185

Example: Concatenate String, Copy String, and String Length Instructions

Network 1 //1. Append the string at VB20
// to the string at VB0
//2. Copy the string at VB0
// to a new string at VB100
//3. Get the length of the string
// that starts at VB100

LD I0.0
SCAT VB20, VB0
STRCPY VB0, VB100
STRLEN VB100, AC0

VB0

6 ’H’ ’E’ ’L’ ’L’

VB6

’ ’’O’

VB20

5 ’W’ ’O’ ’R’ ’L’

VB25

’D’

VB0

11 ’H’ ’E’ ’L’ ’L’ ’ ’’O’

After executing the program

’W’ ’O’ ’R’ ’L’

VB11

’D’

VB100

11 ’H’ ’E’ ’L’ ’L’ ’ ’’O’ ’W’ ’O’ ’R’ ’L’

VB111

’D’

Before executing the program

AC0

11

6

S7-200 Programmable Controller System Manual

186

Copy Substring from String
The Copy Substring from String instruction (SSCPY) copies the
specified number of characters N from the string specified by IN,
starting at the index INDX, to a new string specified by OUT.

Error conditions that set ENO = 0

� 0006 (indirect address)

� 0091 (range error)

� 009B (index=0)

Table 6-63 Valid Operands for the Copy Substring from String Instructions

Inputs/Outputs Data Types Operands

IN, OUT BYTE (String) VB, LB, *VD, *LD, *AC

INDX, N BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

Example: Copy Substring Instruction

Network 1 //Starting at the seventh character in the string at VB0,
//copy 5 characters to a new string at VB20

LD I0.0
SSCPY VB0, 7, 5, VB20

VB20

5 ’W’ ’O’ ’R’ ’L’

VB25

’D’

VB0

11 ’H’ ’E’ ’L’ ’L’ ’ ’’O’

After executing the program

’W’ ’O’ ’R’ ’L’

VB11

’D’

Before executing the program

6

S7-200 Instruction Set Chapter 6

187

Find String Within String
The Find String Within String instruction (SFND) searches for the
first occurrence of the string IN2 within the string IN1. The search
begins at the starting position specified by OUT. If a sequence of
characters is found that matches exactly the string IN2, the position
of the first character in the sequence for the string is written to OUT.
If the string IN2 was not found in the string IN1, the instruction OUT
is set to 0.

Error conditions that set ENO = 0

� 0006 (indirect address)

� 0091 (range error)

� 009B (index=0)

Find First Character Within String
The Find First Character Within String instruction (CFND) searches
the string IN1 for the first occurrence of any character from the
character set described in the string IN2. The search begins at
starting position OUT. If a matching character is found, the position
of the character is written to OUT. If no matching character is found,
OUT is set to 0.

Error conditions that set ENO = 0

� 0006 (indirect address)

� 0091 (range error)

� 009B (index=0)

Table 6-64 Valid Operands for Find String Within String and Find First Character Within String Instructions

Inputs/Outputs Data Types Operands

IN1, IN2 BYTE (String) VB, LB, *VD, *LD, *AC

OUT BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC

6

S7-200 Programmable Controller System Manual

188

Example: Find String Within String Instruction

The following example uses a string stored at VB0 as a command for turning a pump on or off. A string ’On’ is stored at
VB20, and a string ’Off’ is stored at VB30. The result of the Find String Within String instruction is stored in AC0 (the
OUT parameter). If the result is not 0, then the string ’On’ was found in the command string (VB12).

Network 1 //1. Set AC0 to 1.
// (AC0 is used as the OUT parameter.)
//2. Search the string at VB0 for the string
// at VB20 (’On’), starting at the first
// position (AC0=1).

LD I0.0
MOVB 1, AC0
SFND VB0, VB20, AC0

VB20

2 ’O’

VB22

’n’

VB30

3 ’O’ ’f’

VB33

’f’

VB0

12 ’T’ ’u’ ’r’ ’n’ ’P’’ ’ ’u’ ’m’ ’p’ ’ ’ ’O’

AC0

11

VB12

’n’

AC0

0

If the string in VB20
is found:

If the string in VB20
is not found:

Example: Find Character Within String Instruction

In the following example, a string stored at VB0 contains the temperature. The string at VB20 stores all the numeric
characters (and the + and –) that can identify a temperature in a string. The sample program finds the starting position
for a number in that string and then converts the numeric characters into a real number. VD200 stores the real-number
value of the temperature.

Network 1 //1. Set AC0 to 1.
// (AC0 is used as the OUT parameter
// and points to the first position of the string.)
//2. Find the numeric character
// in the string at VB0.
//3. Convert the string to a real number.

LD I0.0
MOVB 1, AC0
CFND VB0, VB20, AC0
STR VB0, AC0, VD200

VB0

11 ’T’ ’e’ ’p’ ’ ’ ’9’’ ’ ’8’ ’.’ ’6’’m’

VD200

98.6

VB11

’F’

AC0

7

Starting position of the temperature
stored in VB0:

VB20

12 ’1’ ’2’ ’4’ ’5’ ’7’’6’ ’8’ ’9’ ’0’’3’ ’+’

VB32

’–’

Real-number value of the
temperature:

6

S7-200 Instruction Set Chapter 6

189

Table Instructions

Add To Table
The Add To Table instruction adds word values (DATA) to a table
(TBL). The first value of the table is the maximum table length (TL).
The second value is the entry count (EC), which specifies the
number of entries in the table. New data are added to the table after
the last entry. Each time new data are added to the table, the entry
count is incremented.

A table can have up to 100 data entries.

Error conditions that set ENO = 0

� SM1.4 (table overflow)

� 0006 (indirect address)

� 0091 (operand out of range)

SM bits affected:

� SM1.4 is set to 1 if you try to overfill the table

Table 6-65 Valid Operands for the Table Instructions

Inputs/Outputs Data Types Operands

DATA INT IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant

TBL WORD IW, QW, VW, MW, SMW, SW, T, C, LW, *VD, *LD, *AC

Example: Add to Table Instruction

Network 1 //Load maximum table length

LD SM0.1
MOVW +6, VW200

Network 2

LD I0.0
ATT VW100, VW200

0006

0002

5431

8942
xxxx

xxxx

xxxx

xxxx

VW200

VW202

VW204

VW206
VW208

VW210

VW212

VW214

TL (max. no. of entries)

EC (entry count)

d0 (data 0)

d1 (data 1)

1234VW100

0006

0003

1234

5431

8942

xxxx

xxxx

xxxx

VW200

VW202

VW204

VW206

VW208
VW210

VW212

VW214

d2 (data 2)

Before execution of ATT After execution of ATT

TL (max. no. of entries)

EC (entry count)

d0 (data 0)

d1 (data 1)

6

S7-200 Programmable Controller System Manual

190

First-In-First-Out and Last-In-First-Out
A table can have up to 100 data entries.

First-In-First-Out
The First-In-First-Out instruction (FIFO) moves the oldest (or first)
entry in a table to the output memory address by removing the first
entry in the table (TBL) and moving the value to the location
specified by DATA. All other entries of the table are shifted up one
location. The entry count in the table is decremented for each
instruction execution.

Last-In-First-Out
The Last-In-First-Out instruction (LIFO) moves the newest (or last)
entry in the table to the output memory address by removing the last
entry in the table (TBL) and moving the value to the location
specified by DATA. The entry count in the table is decremented for
each instruction execution.

Error conditions that set ENO = 0

� SM1.5 (empty table)

� 0006 (indirect address)

� 0091 (operand out of range)

SM bits affected:

� SM1.5 is set to 1 if you try to remove an entry from an empty table

Table 6-66 Valid Operands for the First-In-First-Out and Last-In-First-Out Instructions

Inputs/Outputs Data Types Operands

TBL WORD IW, QW, VW, MW, SMW, SW, T, C, LW, *VD, *LD, *AC

DATA INT IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AQW, *VD, *LD, *AC

Example: First-In-First-Out Instruction

Network 1

LD I4.1
FIFO VW200, VW400

5431VW400

0006

0003

8942
1234

xxxx

xxxx

xxxx

VW200

VW202

VW204

VW206
VW208

VW210

VW212

VW214

TL (max. no. of entries)

EC (entry count)

d0 (data 0)

d1 (data 1)

TL (max. no. of entries)

EC (entry count)

d0 (data 0)

d2 (data 2)

0006

0002

8942

1234
xxxx

xxxx

xxxx

xxxx

VW200

VW202

VW204

VW206
VW208

VW210

VW212

VW214

d1 (data 1)

5431

Before execution of FIFO After execution of FIFO

6

S7-200 Instruction Set Chapter 6

191

Example: Last-In-First-Out Instruction

Network 1

LD I0.1
LIFO VW200, VW300

1234VW300

0006

0003

8942
1234
xxxx

xxxx

xxxx

VW200

VW202

VW204

VW206
VW208
VW210

VW212

VW214

TL (max. no. of entries)

EC (entry count)

d0 (data 0)

d1 (data 1)

TL (max. no. of entries)

EC (entry count)

d0 (data 0)

d2 (data 2)

0006

0002

5431

8942
xxxx
xxxx

xxxx

xxxx

VW200

VW202

VW204

VW206
VW208
VW210

VW212

VW214

d1 (data 1)

5431

Before execution of LIFO After execution of LIFO

6

S7-200 Programmable Controller System Manual

192

Memory Fill
The Memory Fill instruction (FILL) writes N consecutive words,
beginning at address OUT, with the word value contained in address
IN.

N has a range of 1 to 255.

Error conditions that set ENO = 0

� 0006 (indirect address)

� 0091 (operand out of range)

Table 6-67 Valid Operands for the Memory Fill Instruction

Inputs/Outputs Data Types Operands

IN INT IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant

N BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

OUT INT IW, QW, VW, MW, SMW, SW, T, C, LW, AQW, *VD, *LD, *AC

Example: Memory Fill Instruction

Network 1

LD I2.1
FILL +0, VW200, 10

0 0
VW200

FILL . . .0
VW202

0
VW218IN

6

S7-200 Instruction Set Chapter 6

193

Table Find
The Table Find instruction (FND) searches a table for data that
matches certain criteria. The Table Find instruction searches the
table TBL, starting with the table entry INDX, for the data value or
pattern PTN that matches the search criteria defined by CMD. The
command parameter CMD is given a numeric value of 1 to 4 that
corresponds to =, <>, <, and >, respectively.

If a match is found, the INDX points to the matching entry in the
table. To find the next matching entry, the INDX must be incremented
before invoking the Table Find instruction again. If a match is not
found, the INDX has a value equal to the entry count.

A table can have up to 100 data entries. The data entries (area to be
searched) are numbered from 0 to a maximum value of 99.

Error conditions that set ENO = 0

� 0006 (indirect address)

� 0091 (operand out of range)

Table 6-68 Valid Operands for the Table Find Instruction

Inputs/Outputs Data Types Operands

TBL WORD IW, QW, VW, MW, SMW, T, C, LW, *VD, *LD, *AC

PTN INT IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant

INDX WORD IW, QW, VW, MW, SMW, SW, T, C, LW, AC, *VD, *LD, *AC

CMD BYTE (Constant) 1: Equal (=), 2: Not Equal (<>), 3: Less Than (<), 4: Greater Than (>)

Tip
When you use the Table Find instruction with tables generated with the Add to Table, Last-In-First-Out,
and First-In-First-Out instructions, the entry count and the data entries correspond directly. The
maximum-number-of-entries word required for the Add to Table, Last-In-First-Out, or First-In-First-Out
instructions is not required by the Table Find instruction. See Figure 6-36.

Consequently, you should set the TBL operand of a Find instruction to one-word address (two bytes)
higher than the TBL operand of a corresponding the Add to Table, Last-In-First-Out, or First-In-First-Out
instruction.

0006
0006
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx

VW200
VW202
VW204
VW206
VW208
VW210
VW212
VW214

TL (max. no. of entries)
EC (entry count)
d0 (data 0)
d1 (data 1)
d2 (data 2)

Table format for ATT, LIFO, and FIFO

d5 (data 5)

d3 (data 3)
d4 (data 4)

0006
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx

VW202
VW204
VW206
VW208
VW210
VW212
VW214

EC (entry count)
d0 (data 0)
d1 (data 1)
d2 (data 2)

d5 (data 5)

d3 (data 3)
d4 (data 4)

Table format for TBL_FIND

Figure 6-36 Different Table Formats between the Table Find Instruction and the ATT, LIFO, and FIFO Instructions

6

S7-200 Programmable Controller System Manual

194

Example: Table Find Instruction

Network 1

LD I2.1
FND= VW202, 16#3130, AC1

0006VW202

3133VW204

VW206

VW208
VW210

VW212

VW214

EC (entry count)

d0 (data 0)

If the table was created using ATT,
LIFO, and FIFO instructions, VW200
contains the maximum number of
allowed entries and is not required by
the Find instructions.

0AC1 AC1 must be set to 0 to search from the top of
table.

2AC1 AC1 contains the data entry number
corresponding to the first match found in the
table (d2).

Execute table search

3AC1 Increment the INDX by one, before searching
the remaining entries of the table.

4AC1 AC1 contains the data entry number
corresponding to the second match found in
the table (d4).

Execute table search

5AC1 Increment the INDX by one, before searching
the remaining entries of the table.

6AC1 AC1 contains a value equal to the entry count.
The entire table has been searched without
finding another match.

Execute table search

0AC1 Before the table can be searched again, the
INDX value must be reset to 0.

4142

3130

3030

3130

4541

d1 (data 1)

d2 (data 2)

d3 (data 3)

d4 (data 4)

d5 (data 5)

When I2.1 is on, search the table for
a value equal to 3130 HEX.

6

S7-200 Instruction Set Chapter 6

195

Example: Creating a Table

The following program creates a table with 20 entries. The first memory location of the table contains the length of the
table (in this case 20 entries). The second memory location shows the current number of table entries. The other
locations contain the entries. A table can have up to 100 entries. It does not include the parameters defining the
maximum length of the table or the actual number of entries (here VW0 and VW2). The actual number of entries in the
table (here VW2) is automatically incremented or decremented by the CPU with every command.
Before you work with a table, assign the maximum number of table entries. Otherwise, you cannot make entries in the
table. Also, be sure that all read and write commands are activated with edges.

To search the table, the index (VW106) must set to 0 before doing the find. If a match is found, the index will have the
table entry number, but if no match is found, the index will match the current entry count for the table (VW2).

Network 1 //Create table with 20 entries starting with memory
//location 4.
//1. On the first scan, define the maximum length
//of the table.

LD SM0.1
MOVW +20, VW0

Network 2 //Reset table with input I0.0
//On the rising edge of I0.0,
//fill memory locations from VW2 with ”+0” .

LD I0.0
EU
FILL +0, VW2, 21

Network 3 //Write value to table with input I0.1
//On the rising edge of I0.1,
//copy value of memory location VW100 to table.

LD I0.1
EU
ATT VW100, VW0

Network 4 //Read first table value with input I0.2
//Move the last table value to location VW102.
//This reduces the number of entries.
//On the rising edge of I0.2,
//Move last table value to VW102

LD I0.2
EU
LIFO VW0, VW102

Network 5 //Read last table value with input I0.3
//Move the first table value to location VW102.
//This reduces the number of entries.
//On the rising edge of I0.0,
//Move first table value to VW104

LD I0.3
EU
FIFO VW0, VW104

Network 6 //Search table for the first location that has a
 //value of 10.

//1. On the rising edge of I0.4,
// reset index pointer.
//2. Find a table entry that equals 10.

LD I0.4
EU
MOVW +0, VW106
FND= VW2, +10, VW106

6

S7-200 Programmable Controller System Manual

196

Timer Instructions

SIMATIC Timer Instructions
On-Delay Timer
Retentive On-Delay Timer
The On-Delay Timer (TON) and Retentive On-Delay Timer (TONR)
instructions count time when the enabling input is on. The timer
number (Txx) determines the resolution of the timer.

Off-Delay Timer
The Off-Delay Timer (TOF) is used to delay turning an output off for
a fixed period of time after the input turns off. The timer number
(Txx) determines the resolution of the timer.

Table 6-69 Valid Operands for the SIMATIC Timer Instructions

Inputs/Outputs Data Types Operands

Txx WORD Constant (T0 to T255)

IN BOOL I, Q, V, M, SM, S, T, C, L, Power Flow

PT INT IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant

Tip
You cannot share the same timer number (Txx) for an off-delay timer (TOF) and an on-delay timer
(TON). For example, you cannot have both a TON T32 and a TOF T32.

As shown in Table 6-70, the three types of timers perform different types of timing tasks:

� You can use a TON for timing a single interval.

� You can use a TONR for accumulating a number of timed intervals.

� You can use a TOF for extending time past an off (or false) condition, such as for cooling a motor
after it is turned off.

Table 6-70 Operations of the Timer Instructions

Type Current >= Preset State of the Enabling Input (IN) Power Cycle/First Scan

TON Timer bit on
Current continues counting
to 32,767

ON: Current value counts time

OFF: Timer bit off, current value = 0

Timer bit off

Current value = 0

TONR Timer bit on
Current continues counting
to 32,767

ON: Current value counts time

OFF: Timer bit and current value maintain last
state

Timer bit off

Current value can be
maintained1

TOF Timer bit off
Current = Preset, stops
counting

ON: Timer bit on, current value = 0

OFF: Timer counts after on-to-off transition

Timer bit off

Current value = 0

1 The retentive timer current value can be selected for retention through a power cycle. See Chapter 4 for information about
memory retention for the S7-200 CPU.

Refer to the Tips and Tricks on the documentation CD for a sample program that uses the on-delay timer
(TON). See Tip 31

Tips and Tricks

6

S7-200 Instruction Set Chapter 6

197

The TON and TONR instructions count time when the enabling input is on. When the current value is
equal to or greater than the preset time, the timer bit is on.

� The current value of a TON timer is cleared when the enabling input is off, whereas the current
value of the TONR timer is maintained when the input is off.

� You can use the TONR timer to accumulate time when the input turns on and off. Use the Reset
instruction (R) to clear the current value of the TONR.

� Both the TON and the TONR timers continue counting after the preset is reached, and they stop
counting at the maximum value of 32,767.

The TOF instruction is used to delay turning an output off for a fixed period of time after the input turns off.
When the enabling input turns on, the timer bit turns on immediately, and the current value is set to 0.
When the input turns off, the timer counts until the elapsed time reaches the preset time.

� When the preset is reached, the timer bit turns off and the current value stops incrementing;
however, if the input turns on again before the TOF reaches the preset value, the timer bit remains
on.

� The enabling input must make an on-to-off transition for the TOF to begin counting time intervals.

� If the TOF timer is inside an SCR region and the SCR region is inactive, then the current value is set
to 0, the timer bit is turned off, and the current value does not increment.

Tip
You can reset a TONR only by using the Reset (R) instruction. You can also use the Reset instruction to
reset any TON or TOF. The Reset instruction performs the following operations:

� Timer Bit = off

� Timer Current = 0

After a reset, TOF timers require the enabling input to make the transition from on to off in order for the
timer to restart.

Determining the Resolution of the Timer
Timers count time intervals. The resolution (or time base) of the timer determines the amount of time in
each interval. For example, a TON with a resolution of 10 ms counts the number of 10-ms intervals that
elapse after the TON is enabled: a count of 50 on a 10-ms timer represents 500 ms. The SIMATIC timers
are available in three resolutions: 1 ms, 10 ms, and 100 ms. As shown in Table 6-71, the timer number
determines the resolution of the timer.

Tip
To guarantee a minimum time interval, increase the preset value (PV) by 1. For example: To ensure a
minimum timed interval of at least 2100 ms for a 100-ms timer, set the PV to 22.

Table 6-71 Timer Numbers and Resolutions

Timer Type Resolution Maximum Value Timer Number

TONR 1 ms 32.767 s (0.546 min.) T0, T64
(retentive)

10 ms 327.67 s (5.46 min.) T1 to T4, T65 to T68

100 ms 3276.7 s (54.6 min.) T5 to T31, T69 to T95

TON, TOF 1 ms 32.767 s (0.546 min.) T32, T96
(non-retentive)

10 ms 327.67 s (5.46 min.) T33 to T36, T97 to T100

100 ms 3276.7 s (54.6 min.) T37 to T63, T101 to T255

6

S7-200 Programmable Controller System Manual

198

Understanding How Resolution Affects the Timer Action
For a timer with a resolution of 1 ms, the timer bit and the current value are updated asynchronous to the
scan cycle. For scans greater than 1 ms, the timer bit and the current value are updated multiple times
throughout the scan.

For a timer with a resolution of 10 ms, the timer bit and the current value are updated at the beginning of
each scan cycle. The timer bit and current value remain constant throughout the scan, and the time
intervals that accumulate during the scan are added to the current value at the start of each scan.

For a timer with a resolution of 100 ms, the timer bit and current value are updated when the instruction is
executed; therefore, ensure that your program executes the instruction for a 100-ms timer only once per
scan cycle in order for the timer to maintain the correct timing.

Example: SIMATIC On-Delay Timer

Network 1 //100 ms timer T37 times out after (10 x 100 ms = 1s)
//I0.0 ON=T37 enabled, I0.0 OFF=disable and reset T37

LD I0.0
TON T37, +10

Network 2 //T37 bit is controlled by timer T37

LD T37
= Q0.0

Timing Diagram

6

S7-200 Instruction Set Chapter 6

199

Tip
To guarantee that the output of a self-resetting timer is turned on for one scan each time the timer
reaches the preset value, use a normally closed contact instead of the timer bit as the enabling input to
the timer.

Example: SIMATIC Self-Resetting On-Delay Timer

Network 1 //10 ms timer T33 times out after (100 x 10 ms = 1s)
//M0.0 pulse is too fast to monitor with Status view

LDN M0.0
TON T33, +100

Network 2 //Comparison becomes true at a rate that is visible
//with Status view. Turn on Q0.0 after (40 x 10 ms)
//for a 40% OFF/60% ON waveform

LDW>= T33, +40
= Q0.0

Network 3 //T33 (bit) pulse too fast to monitor with Status view
//Reset the timer through M0.0 after the (100 x 10 ms) period

LD T33
= M0.0

Timing Diagram

Example: SIMATIC Off-Delay Timer

Network 1 //10-ms timer T33 times out after (100 x 10 ms = 1s)
//I0.0 ON–to–OFF=T33 enabled
//I0.0 OFF–to–ON=disable and reset T33

LD I0.0
TOF T33, +100

Network 2 //Timer T33 controls Q0.0 through timer contact T33

LD T33
= Q0.0

Timing Diagram

6

S7-200 Programmable Controller System Manual

200

Example: SIMATIC Retentive On-Delay Timer

Network 1 //10 ms TONR timer T1 times out at PT=(100 x 10 ms=1s)

LD I0.0
TONR T1, +100

Network 2 //T1 bit is controlled by timer T1.
//Turns Q0.0 on after the timer accumulates a total
//of 1 second

LD T1
= Q0.0

Network 3 //TONR timers must be reset by a Reset instruction
//with a T address.
//Resets timer T1 (current and bit) when I0.1 is on.

LD I0.1
R T1, 1

Timing Diagram

6

S7-200 Instruction Set Chapter 6

201

IEC Timer Instructions
On-Delay Timer
The On-Delay Timer (TON) instruction counts time when the
enabling input is on.

Off-Delay Timer
The Off-Delay Timer (TOF) delays turning an output off for a fixed
period of time after the input turns off.

Pulse Timer
The Pulse Timer (TP) generates pulses for a specific duration.

Table 6-72 Valid Operands for the IEC Timer Instructions

Inputs/Outputs Data Types Operands

Txx TON, TOF, TP Constant (T32 to T63, T96 to T255)

IN BOOL I, Q, V, M, SM, S, T, C, L, Power Flow

PT INT IW, QW, VW, MW, SMW, SW, LW, AC, AIW, *VD, *LD, *AC, Constant

Q BOOL I, Q, V, M, SM, S, L

ET INT IW, QW, VW, MW, SMW, SW, LW, AC, AQW, *VD, *LD, *AC

Tip
You cannot share the same timer numbers for TOF, TON, and TP. For example, you cannot have both a
TON T32 and a TOF T32.

� The TON instruction counts time intervals up to the preset value when the enabling input (IN)
becomes true. When the elapsed time (ET) is equal to the Preset Time (PT), the timer output bit (Q)
turns on. The output bit resets when the enabling input turns off. When the preset is reached, timing
stops and the timer is disabled.

� The TOF instruction delays setting an output to off for a fixed period of time after the input turns off.
It times up to the preset value when the enabling input (IN) turns off. When the elapsed time (ET) is
equal to the preset time (PT), the timer output bit (Q) turns off. When the preset is reached, the timer
output bit turns off and the elapsed time is maintained until the enabling input makes the transition
to on. If the enabling input sets the transition to off for a period of time shorter than the preset time,
the output bit remains on.

� The TP instruction generates pulses for a specific duration. As the enabling input (IN) turns on, the
output bit (Q) turns on. The output bit remains on for the pulse specified within the preset time (PT).
When the elapsed time (ET) reaches preset (PT), the output bit turns off. The elapsed time is
maintained until the enabling input turns off. When the output bit turns on, it remains on until the
pulse time has elapsed.

Each count of the current value is a multiple of the time base. For example, a count of 50 on a 10-ms timer
represents 500 ms. The IEC timers (TON, TOF, and TP) are available in three resolutions. The resolution
is determined by the timer number, as shown in Table 6-73.

Table 6-73 Resolution of the IEC Timers

Resolution Maximum Value Timer Number

1 ms 32.767 s (0.546 minutes) T32, T96

10 ms 327.67 s (5.46 minutes) T33 to T36, T97 to T100

100 ms 3276.7 s (54.6 minutes) T37 to T63, T101 to T255

6

S7-200 Programmable Controller System Manual

202

Example: IEC On-Delay Timer Instruction

Timing Diagram

Input

VW100 (current)

Output (Q)

PT = 3 PT = 3

Example: IEC Off-Delay Timer Instruction

Timing Diagram

Input

VW100 (current)

Output (Q)

PT = 3PT = 3

Example: IEC Pulse Timer Instruction

Timing Diagram

Input

VW100 (current)

Output

PT = 3

6

S7-200 Instruction Set Chapter 6

203

Subroutine Instructions

The Call Subroutine instruction (CALL) transfers control to the
subroutine SBR_N. You can use a Call Subroutine instruction with or
without parameters. After the subroutine completes its execution,
control returns to the instruction that follows the Call Subroutine.

The Conditional Return from Subroutine instruction (CRET)
terminates the subroutine based upon the preceding logic.

To add a subroutine, select the Edit > Insert > Subroutine menu
command.

Error conditions that set ENO = 0

� 0008 (maximum subroutine nesting exceeded)

� 0006 (indirect address)

From the main program, you can nest subroutines (place a
subroutine call within a subroutine) to a depth of eight. From an
interrupt routine, you cannot nest subroutines.

A subroutine call cannot be placed in any subroutine called from an interrupt routine. Recursion (a
subroutine that calls itself) is not prohibited, but you should use caution when using recursion with
subroutines.

Table 6-74 Valid Operands for the Subroutine Instructions

Inputs/Outputs Data Types Operands

SBR_N WORD Constant for CPU 221, CPU 222, CPU 224, and CPU 226: 0 to 63
for CPU 226XM: 0 to 127

Tip
STEP 7–Micro/WIN automatically adds an unconditional return from each subroutine.

When a subroutine is called, the entire logic stack is saved, the top of stack is set to one, all other stack
locations are set to zero, and control is transferred to the called subroutine. When this subroutine is
completed, the stack is restored with the values saved at the point of call, and control is returned to the
calling routine.

Accumulators are common to subroutines and the calling routine. No save or restore operation is
performed on accumulators due to subroutine use.

Calling a Subroutine With Parameters
Subroutines can contain passed parameters. The parameters are defined in the local variable table of the
subroutine. The parameters must have a symbol name (maximum of 23 characters), a variable type, and
a data type. Sixteen parameters can be passed to or from a subroutine.

The variable type field in the local variable table defines whether the variable is passed into the subroutine
(IN), passed into and out of the subroutine (IN_OUT), or passed out of the subroutine (OUT). Table 6-75
describes the parameter types for a subroutine. To add a parameter entry, place the cursor on the variable
type field of the type (IN, IN_OUT, or OUT) that you want to add. Click the right mouse button to get a
menu of options. Select the Insert option and then the Row Below option. Another parameter entry of the
selected type appears below the current entry.

6

S7-200 Programmable Controller System Manual

204

Table 6-75 Parameter Types for a Subroutine

Parameter Description

IN Parameters are passed into the subroutine. If the parameter is a direct address (such as VB10), the
value at the specified location is passed into the subroutine. If the parameter is an indirect address
(such as *AC1), the value at the location pointed to is passed into the subroutine. If the parameter is a
data constant (16#1234) or an address (&VB100), the constant or address value is passed into the
subroutine.

IN_OUT The value at the specified parameter location is passed into the subroutine, and the result value from
the subroutine is returned to the same location. Constants (such as 16#1234) and addresses (such as
&VB100) are not allowed for input/output parameters.

OUT The result value from the subroutine is returned to the specified parameter location. Constants (such
as 16#1234) and addresses (such as &VB100) are not allowed as output parameters.

TEMP Any local memory that is not used for passed parameters can be used for temporary storage within the
subroutine.

As shown in Figure 6-37, the data type field in the local variable table defines the size and format of the
parameter. The parameter types are listed below:

� BOOL: This data type is used for single bit
inputs and outputs. IN3 in the following
example is a Boolean input.

� BYTE, WORD, DWORD: These data types
identify an unsigned input or output
parameter of 1, 2, or 4 bytes, respectively.

� INT, DINT: These data types identify signed
input or output parameters of 2 or 4 bytes,input or output parameters of 2 or 4 bytes,
respectively. Figure 6-37 Local Variable Table

� REAL: This data type identifies a single precision (4 byte) IEEE floating-point value.

� Power Flow: Boolean power flow is allowed only for bit (Boolean) inputs. This declaration tells
STEP 7-Micro/WIN that this input parameter is the result of power flow based on a combination of
bit logic instructions. Boolean power flow inputs must appear first in the local variable table before
any other type input. Only input parameters are allowed to be used this way. The enable input (EN)
and the IN1 inputs in the following example use Boolean logic.

Example: Subroutine Call

There are two STL examples provided. The first set of STL instructions can be displayed only in the STL editor since
the BOOL parameters used as power flow inputs are not saved to L memory.

The second set of STL instructions can be displayed also in the LAD and FBD editors because L memory is used to
save the state of the BOOL inputs parameters that are shown as power flow inputs in LAD and FBD.

STL only:

Network 1

LD I0.0
CALL SBR_0, I0.1, VB10, I1.0, &VB100, *AC1, VD200

To display correctly in LAD and FBD:

Network 1

LD I0.0
= L60.0
LD I0.1
= L63.7
LD L60.0
CALL SBR_0, L63.7, VB10, I1.0, &VB100, *AC1, VD200

6

S7-200 Instruction Set Chapter 6

205

Address parameters such as IN4 (&VB100) are passed into a subroutine as a DWORD (unsigned double
word) value. The type of a constant parameter must be specified for the parameter in the calling routine
with a constant descriptor in front of the constant value. For example, to pass an unsigned double word
constant with a value of 12,345 as a parameter, the constant parameter must be specified as DW#12345.
If the constant describer is omitted from the parameter, the constant can be assumed to be a different
type.

There are no automatic data type conversions performed on the input or output parameters. For example,
if the local variable table specifies that a parameter has the data type REAL, and in the calling routine a
double word (DWORD) is specified for that parameter, the value in the subroutine will be a double word.

When values are passed to a subroutine, they are placed into the local memory of the subroutine. The
left-most column of the local variable table shows the local memory address for each passed parameter.
Input parameter values are copied to the subroutine’s local memory when the subroutine is called. Output
parameter values are copied from the subroutine’s local memory to the specified output parameter
addresses when the subroutine execution is complete.

The data element size and type are represented in the coding of the parameters. Assignment of
parameter values to local memory in the subroutine is as follows:

� Parameter values are assigned to local memory in the order specified by the call subroutine
instruction with parameters starting at L.0.

� One to eight consecutive bit parameter values are assigned to a single byte starting with Lx.0 and
continuing to Lx.7.

� Byte, word, and double word values are assigned to local memory on byte boundaries (LBx, LWx,
or LDx).

In the Call Subroutine instruction with parameters, parameters must be arranged in order with input
parameters first, followed by input/output parameters, and then followed by output parameters.

If you are programming in STL, the format of the CALL instruction is:

CALL subroutine number, parameter 1, parameter 2, ... , parameter

Example: Subroutine and Return from Subroutine Instructions

M
A
I
N

Network 1 //On the first scan, call subroutine 0 for initialization.

LD SM0.1
CALL SBR_0

S
B
R
0

Network 1 //You can use a conditional return to leave
//the subroutine before the last network.

LD M14.3
CRET

Network 2 //This network will be skipped if M14.3 is on.

LD SM0.0
MOVB 10, VB0

6

S7-200 Programmable Controller System Manual

206

207

Communicating over a Network
The S7-200 is designed to solve your communications and networking needs by supporting not only the
simplest of networks but also supporting more complex networks. The S7-200 also provides tools that
allow you to communicate with other devices, such as printers and weigh scales which use their own
communications protocols.

STEP 7–Micro/WIN makes setting up and configuring your network simple and straightforward.

In This Chapter
Understanding the Basics of S7-200 Network Communications 208.

Selecting the Communications Protocol for Your Network 211.

Installing and Removing Communications Interfaces 216.

Building Your Network 218.

Creating User-Defined Protocols with Freeport Mode 222.

Using Modems and STEP 7–Micro/WIN with Your Network 224.

Advanced Topics 228.

7

S7-200 Programmable Controller System Manual

208

Understanding the Basics of S7-200 Network Communications

Using Master and Slave Devices on a Network
The S7-200 supports a master-slave network and can function as either a master or a slave in a network,
while STEP 7–Micro/WIN is always a master.

Tip
If you use Windows NT and a PC/PPI cable, no other master can be present on the network.

Masters
A device that is a master on a network can initiate a request to another device on the network. A master
can also respond to requests from other masters on the network. Typical master devices include
STEP 7–Micro/WIN, human-machine interface devices such as a TD 200, and S7-300 or S7-400 PLCs.
The S7-200 functions as a master when it is requesting information from another S7-200 (peer-to-peer
communications).

Tip
A TP070 will not work on a network with another master device.

Slaves
A device that is configured as a slave can only respond to requests from a master device; a slave never
initiates a request. For most networks, the S7-200 functions as a slave. As a slave device, the S7-200
responds to requests from a network master device, such as an operator panel or STEP 7–Micro/WIN.

Setting the Baud Rate and Network Address
The speed that data is transmitted across the network is the baud rate, which is typically measured in
units of kilobaud (kbaud) or megabaud (Mbaud). The baud rate measures how much data can be
transmitted within a given amount of time. For example, a baud rate of 19.2 kbaud describes a
transmission rate of 19,200 bits per second.

Every device that communicates over a given
network must be configured to transmit data at
the same baud rate. Therefore, the fastest baud
rate for the network is determined by the
slowest device connected to the network.

Table 7-1 lists the baud rates supported by the
S7-200.

The network address is a unique number that
you assign to each device on the network. The
unique network address ensures that the data
is transferred to or retrieved from the correct
device. The S7-200 supports network
addresses from 0 to 126. For an S7-200 with
two ports, each port can have a network
address. Table 7-2 lists the default (factory)
settings for the S7-200 devices.

Table 7-1 Baud Rates Supported by the S7-200

Network Baud Rate

Standard Network 9.6 kbaud to 187.5 kbaud

Using an EM 277 9.6 kbaud to 12 Mbaud

Freeport Mode 1200 baud to 115.2 kbaud

Table 7-2 Default Addresses for S7-200 Devices

S7-200 Device Default Address

STEP 7–Micro/WIN 0

HMI (TD 200, TP, or OP) 1

S7-200 CPU 2

7

Communicating over a Network Chapter 7

209

Setting the Baud Rate and Network Address for STEP 7–Micro/WIN
You must configure the baud rate and network address for STEP 7–Micro/WIN. The baud rate must be the
same as the other devices on the network, and the network address must be unique.

Typically, you do not change the network address (0) for STEP 7–Micro/WIN. If your network includes
another programming package, such as STEP 7, then you might need to change the network address for
STEP 7–Micro/WIN.

As shown in Figure 7-1, configuring the baud rate and
network address for STEP 7–Micro/WIN is simple. After you
click the Communications icon in the Navigation bar, you
perform the following steps:

1. Double-click the icon in the Communications Setup
window.

2. Click the Properties button on the Set PG/PC Interface
dialog box.

3. Select the network address for STEP 7–Micro/WIN.

4. Select the baud rate for STEP 7–Micro/WIN.

1.

2.

3.

4.

Figure 7-1 Configuring STEP 7–Micro/WIN

Setting the Baud Rate and Network Address for the S7-200
You must also configure the baud rate and network address for the S7-200. The system block of the
S7-200 stores the baud rate and network address. After you select the parameters for the S7-200, you
must download the system block to the S7-200.

The default baud rate for each S7-200 port is 9.6 kbaud, and
the default network address is 2.

As shown in Figure 7-2, use STEP 7–Micro/WIN to set the
baud rate and network address for the S7-200. After you
select the System Block icon in the Navigation bar or select
the View > Component > System Block menu command,
you perform the following steps:

1. Select the network address for the S7-200.

2. Select the baud rate for the S7-200.

3. Download the system block to the S7-200.

1.

2.

Figure 7-2 Configuring the S7-200 CPU

7

S7-200 Programmable Controller System Manual

210

Setting the Remote Address
Before you can download the updated settings to the S7-200, you must set both the communications
(COM) port of STEP 7–Micro/WIN and the remote address of the S7-200 to match the current setting of
the remote S7-200. See Figure 7-3.

After you download the updated settings, you must
reconfigure the COM port (if different from the setting used
to download the settings for the remote S7-200). To display
the Communications dialog box, either click the
Communications icon in the Navigation bar or select the
View > Component >Communications menu command.

1. Select the remote address.

2. Ensure that the parameters (baud rate) for the COM
port, the remote S7-200 port, and the PC/PPI cable

1.

match. Otherwise, the communications fail.
Figure 7-3 Configuring the S7-200 CPU

Searching for the S7-200 CPUs on a Network
You can search for and identify the S7-200 CPUs that are attached to your network. You can also search
the network at a specific baud rate or at all baud rates when looking for S7-200s.

If you are using a PC/PPI cable, STEP 7–Micro/WIN can
only search at 9.6 kbaud and 19.2 kbaud. For a CP card,
STEP 7–Micro/WIN searches 9.6 kbaud, 19.2 kbaud and
187.5 kbaud. The search starts at the baud rate that is
currently selected.

1. Open the Communications dialog box and
double-click the Refresh icon to start the search.

2. To search all baud rates, select the Search All Baud
Rates check box. 2.

1.

Figure 7-4 Searching for CPUs on a Network

7

Communicating over a Network Chapter 7

211

Selecting the Communications Protocol for Your Network
The S7-200 CPUs support one or more of the following communications capabilities that allow you to
configure your network for the performance and functionality that your application requires:

� Point-to-Point Interface (PPI)

� Multi-Point Interface (MPI)

� PROFIBUS

Based on the Open System Interconnection (OSI) seven-layer model of communications architecture,
these protocols are implemented on a token ring network which conforms to the PROFIBUS standard as
defined in the European Standard EN 50170. These protocols are asynchronous, character-based
protocols with one start bit, eight data bits, even parity, and one stop bit. Communications frames depend
upon special start and stop characters, source and destination station addresses, frame length, and a
checksum for data integrity. The protocols can run on a network simultaneously without interfering with
each other, as long as the baud rate is the same for each protocol.

PPI Protocol
PPI is a master-slave protocol: the master devices send
requests to the slave devices, and the slave devices
respond. See Figure 7-5. Slave devices do not initiate
messages, but wait until a master sends them a request or
polls them for a response.

Masters communicate to slaves by means of a shared
connection which is managed by the PPI protocol. PPI does
not limit the number of masters that can communicate with
any one slave; however, you cannot install more than 32

STEP 7–Micro/WIN:
Master

S7-200

HMI: Master

masters on the network. Figure 7-5 PPI Network

Selecting PPI Advanced allows network devices to establish a logical connection between the devices.
With PPI Advanced, there are a limited number of connections supplied by each device. See Table 7-3 for
the number of connections supported by the S7-200.

S7-200 CPUs can act as master devices while they are in RUN mode, if you enable PPI master mode in
the user program. (See the description of SMB30 in Appendix D.) After enabling PPI master mode, you
can use the Network Read or the Network Write instructions to read from or write to other S7-200s. While
the S7-200 is acting as a PPI master, it still responds as a slave to requests from other masters.

You can use PPI protocol to communicate with all S7-200 CPUs. To communicate with an EM 277, you
must enable PPI Advanced.

Table 7-3 Number of Connections for the S7-200 CPU and EM 277 Modules

Module Baud Rate Connections

S7-200 CPU Port 0 9.6 kbaud, 19.2 kbaud, or 187.5 kbaud 4

Port 1 9.6 kbaud, 19.2 kbaud, or 187.5 kbaud 4

EM 277 Module 9.6 kbaud to 12 Mbaud 6 per module

7

S7-200 Programmable Controller System Manual

212

MPI Protocol
MPI allows both master-master and master-slave
communications. See Figure 7-6. To communicate with an
S7-200 CPU, STEP 7–Micro/WIN establishes a
master–slave connection. MPI protocol does not
communicate with an S7-200 CPU operating as a master.

Network devices communicate by means of separate
connections (managed by the MPI protocol) between any
two devices. Communication between devices is limited to
the number of connections supported by the S7-200 CPU or
EM 277 modules. See Table 7-3 for the number of

STEP 7–Micro/WIN:
Master S7-200: Slave

S7-300: Master

EM 277 modules. See Table 7-3 for the number of
connections supported by the S7-200. Figure 7-6 MPI Network

For MPI protocol, the S7-300 and S7-400 PLCs use the XGET and XPUT instructions to read and write
data to the S7-200 CPU. For information about these instructions, refer to your S7-300 or S7-400
programming manual.

PROFIBUS Protocol
The PROFIBUS protocol is designed for high-speed
communications with distributed I/O devices (remote I/O).
There are many PROFIBUS devices available from a variety
of manufacturers. These devices range from simple input or
output modules to motor controllers and PLCs.

PROFIBUS networks typically have one master and several
slave I/O devices. See Figure 7-7. The master device is
configured to know what types of I/O slaves are connected
and at what addresses. The master initializes the network
and verifies that the slave devices on the network match the
configuration. The master continuously writes output data to

S7-200 (EM 277): Slave

S7-300: Master

ET 200: Slave

configuration. The master continuously writes output data to
the slaves and reads input data from them. Figure 7-7 PROFIBUS Network

When a DP master configures a slave device successfully, it then owns that slave device. If there is a
second master device on the network, it has very limited access to the slaves owned by the first master.

7

Communicating over a Network Chapter 7

213

Sample Network Configurations Using Only S7-200 Devices

Single-Master PPI Networks
For a simple single-master network, the programming
station and the S7-200 CPU are connected by either a
PC/PPI cable or by a communications processor (CP) card
installed in the programming station.

In the sample network at the top of Figure 7-8, the
programming station (STEP 7–Micro/WIN) is the network
master. In the sample network at the bottom of Figure 7-8, a
human-machine interface (HMI) device (such as a TD 200,
TP, or OP) is the network master.

In both sample networks, the S7-200 CPU is a slave that

STEP 7–Micro/WIN

S7-200

HMI (such as a TD 200) S7-200

responds to requests from the master. Figure 7-8 Single-Master PPI Network

For a single-master PPI configuration, you configure STEP 7–Micro/WIN to use PPI protocol: select either
single-master, multi-master, or PPI Advanced.

Multi-Master PPI Networks
Figure 7-9 shows a sample network of multiple masters with one slave. The programming station
(STEP 7–Micro/WIN) uses either a CP card or a PC/PPI cable, and STEP 7–Micro/WIN and the HMI
device share the network.

Both STEP 7–Micro/WIN and the HMI device are masters
and must have separate network addresses. The S7-200
CPU is a slave.

For a network with multiple masters accessing a single
slave, you configure STEP 7–Micro/WIN to use PPI protocol
with the multi-master driver enabled. PPI Advanced is
optimal.

STEP 7–Micro/WIN

S7-200

HMI

Figure 7-9 Multiple Masters with One Slave

Figure 7-10 shows a PPI network with multiple masters
communicating with multiple slaves. In this example, both
STEP 7–Micro/WIN and the HMI can request data from any
S7-200 CPU slave. STEP 7–Micro/WIN and the HMI device
share the network.

All devices (masters and slaves) have different network
addresses.

For a PPI network with multiple masters and multiple slaves,
you configure STEP 7–Micro/WIN to use PPI protocol with

STEP 7–Micro/WIN

HMI

S7-200

S7-200

you configure STEP 7–Micro/WIN to use PPI protocol with
the multi-master driver enabled. PPI Advanced is optimal. Figure 7-10 Multiple Masters and Slaves

Complex PPI Networks
Figure 7-11 shows a sample network that uses multiple
masters with peer-to-peer communications.

STEP 7–Micro/WIN and the HMI device read and write over
the network to the S7-200 CPUs, and the S7-200 CPUs use
the Network Read and Network Write instructions to read
and write to each other (peer-to-peer communications).

For this type of complex PPI network, you configure
STEP 7–Micro/WIN to use PPI protocol with the multi-master

STEP 7–Micro/WIN

HMI

S7-200

S7-200

driver enabled. PPI Advanced is optimal. Figure 7-11 Peer-to-Peer Communications

7

S7-200 Programmable Controller System Manual

214

Figure 7-12 shows another example of a complex PPI
network that uses multiple masters with peer-to-peer
communications. In this example, each HMI monitors one
S7-200 CPU.

The S7-200 CPUs use the NETR and NETW instructions to
read and write to each other (peer-to-peer communications).

For this network, you configure STEP 7–Micro/WIN to use
PPI protocol with the multi-master driver enabled. PPI
Advanced is optimal.

HMI HMI

S7-200 S7-200

STEP 7–Micro/WIN

Advanced is optimal.
Figure 7-12 HMI Devices and Peer-to-Peer

Sample Network Configurations Using S7-200, S7-300, and S7-400 Devices

Networks with Baud Rates Up to 187.5 kbaud
In the sample network shown in Figure 7-13, the S7-300
uses the XPUT and XGET instructions to communicate with
an S7-200 CPU. The S7-300 cannot communicate with an
S7-200 CPU in master mode.

For baud rates above 19.2 kbaud, STEP 7–Micro/WIN must
be connected by a communications processor (CP) card.

To communicate with the S7-200 CPUs, you configure
STEP 7–Micro/WIN to use PPI protocol with the multi-master

S7-300
HMI

S7-200 S7-200

STEP 7–Micro/WIN

STEP 7–Micro/WIN to use PPI protocol with the multi-master
driver enabled. PPI Advanced is optimal. Figure 7-13 Baud Rates Up to 187.5 Kbaud

Networks with Baud Rates Above 187.5 kbaud (Up to 12 Mbaud)
For baud rates above 187.5 kbaud, the S7-200 CPU must use an EM 277 module for connecting to the
network. See Figure 7-14. STEP 7–Micro/WIN must be connected by a communications processor (CP)
card.

In this configuration, the S7-300 can communicate with the
S7-200s, using the XPUT and XGET instructions, and the
HMI can monitor either the S7-200s or the S7-300.

The EM 277 is always a slave device.

STEP 7–Micro/WIN can program or monitor either S7-200
CPU through the EM 277. To communicate with an EM 277,
you configure STEP 7–Micro/WIN to use PPI protocol with
the PPI Advanced driver enabled.

S7-300

S7-200

STEP 7–Micro/WIN

HMI

S7-200 EM 277EM 277

Figure 7-14 Baud Rates Above 187.5 Kbaud

7

Communicating over a Network Chapter 7

215

Sample PROFIBUS-DP Network Configurations

Networks with S7-315–2 DP as PROFIBUS Master and EM 277 as PROFIBUS Slave
Figure 7-15 shows a sample PROFIBUS network that uses
an S7-315–2 DP as the PROFIBUS master. An EM 277
module is a PROFIBUS slave.

The S7-315–2 DP can read data from or write data to the
EM 277, from 1 byte up to 128 bytes. The S7-315–2 DP
reads or writes V memory locations in the S7-200.

This network supports baud rates from 9600 baud to
12 Mbaud.

S7-315-2 DP

S7-200 EM 277ET 200 ET 200

PROFIBUS-DP

Figure 7-15 Network with S7-315–2 DP

Networks with STEP 7–Micro/WIN and HMI
Figure 7-16 shows a sample network with an S7-315–2 DP
as the PROFIBUS master and EM 277 as a PROFIBUS
slave. In this configuration, the HMI monitors the S7-200
through the EM 277. STEP 7–Micro/WIN programs the
S7-200 through the EM 277.

This network supports baud rates from 9600 baud to
12 Mbaud. STEP 7–Micro/WIN requires a CP card for baud
rates above 19.2 kbaud.

You configure STEP 7–Micro/WIN to use PROFIBUS
protocol for the CP card. If there are only DP devices
present on the network, select the DP or Standard profile. If
there are non-DP devices on the network, then select the
Universal (DP/FMS) profile for all PROFIBUS master
devices.

S7-315–2 DP

S7-200 EM 277ET 200

PROFIBUS-DP

STEP 7–Micro/WIN

HMI

devices.
Figure 7-16 PROFIBUS Network

7

S7-200 Programmable Controller System Manual

216

Installing and Removing Communications Interfaces
From the Set PG/PC Interface dialog box, you use the Installing/Uninstalling Interfaces dialog box to install
or remove communications interfaces for your computer

1. In the Set PG/PC Interface dialog box, click Select to access the Installing/Uninstalling Interfaces
dialog box.

The Selection box lists the interfaces that are available, and the Installed box displays the interfaces
that have already been installed on your computer.

2. To add a communications interface: Select the communications hardware installed on your
computer and click Install. When you close the Installing/Uninstallling Interfaces dialog box, the Set
PG/PC Interface dialog box displays the interface in the Interface Parameter Assignment Used box.

3. To remove a communications interface: Select the interface to be removed and click Uninstall.
When you close the Installing/Uninstallling Interfaces dialog box, the Set PG/PC Interface dialog
box removes the interface from the Interface Parameter Assignment Used box.

1. 2. 3.

Figure 7-17 Set PG/PC Interface and Installing/Uninstalling Interfaces Dialog Boxes

Tip
Special Hardware Installation Information for Windows NT Users

Installing hardware modules under the Windows NT operating system is slightly different from installing
hardware modules under Windows 95. Although the hardware modules are the same for either
operating system, installation under Windows NT requires more knowledge of the hardware that you
want to install. Windows 95 tries automatically to set up system resources for you, but Windows NT
does not. Windows NT provides you with default values only. These values may or may not match the
hardware configuration. These parameters can be modified easily to match the required system
settings.

When you have installed a piece of hardware, select it from the Installed list box and click the
Resources button. The Resources dialog box appears. The Resources dialog box allows you to modify
the system settings for the actual piece of hardware that you installed. If this button is unavailable (gray),
you do not need to do anything more.

At this point you may need to refer to your hardware manual to determine the setting for each of the
parameters listed in the dialog box, depending on your hardware settings. You might need to try several
different interrupts in order to establish communications correctly.

7

Communicating over a Network Chapter 7

217

Adjusting the Port Settings of Your Computer for PPI Multi-Master
If you are using the PC/PPI cable with an operating system that supports the PPI Multi-Master
configuration (Windows NT does not support the PPI Multi-Master), you might need to adjust the port
settings on your computer:

1. Right-click the My Computer icon on the desktop and select the Properties menu command.

2. Select the Device Manager tab. For Windows 2000, select first the Hardware tab and then Device
Manager button.

3. Double-click the Ports (COM & LPT).

4. Select the communications port that you are currently using (for example, COM1).

5. On the Port Settings tab, click the Advanced button.

6. Set the Receive Buffer and the Transmit Buffer controls to the lowest value (1).

7. Click OK to apply the change, close all the windows, and reboot the computer to make the new
settings active.

7

S7-200 Programmable Controller System Manual

218

Building Your Network

General Guidelines
Always install appropriate surge suppression devices for any wiring that could be subject to lightning
surges.

Avoid placing low-voltage signal wires and communications cables in the same wire tray with AC wires
and high-energy, rapidly switched DC wires. Always route wires in pairs, with the neutral or common wire
paired with the hot or signal-carrying wire.

The communications port of the S7-200 CPU is not isolated. Consider using an RS-485 repeater or an
EM 277 module to provide isolation for your network.

Caution
Interconnecting equipment with different reference potentials can cause unwanted currents to flow
through the interconnecting cable.

These unwanted currents can cause communications errors or can damage equipment.

Be sure all equipment that you are about to connect with a communications cable either shares a
common circuit reference or is isolated to prevent unwanted current flows. See the information about
grounding and circuit reference points for using isolated circuits in Chapter 3.

Determining the Distances, Transmission Rate, and Cable for Your Network
As shown in Table 7-4, the maximum length of a network segment is determined by two factors: isolation
(using an RS-485 repeater) and baud rate.

Isolation is required when you connect devices at different ground potentials. Different ground potentials
can exist when grounds are physically separated by a long distance. Even over short distances, load
currents of heavy machinery can cause a difference in ground potential.

Table 7-4 Maximum Length for a Network Cable

Baud Rate Non-Isolated CPU Port1 CPU Port with Repeater or EM 277

9.6 kbaud to 187.5 kbaud 50 m 1,000 m

500 kbaud Not supported 400 m

1 Mbaud to 1.5 Mbaud Not supported 200 m

3 Mbaud to 12 Mbaud Not supported 100 m

1 The maximum distance allowed without using an isolator or repeater is 50 m. You measure this distance from the first
node to the last node in the segment.

Using Repeaters on the Network
An RS-485 repeater provides bias and termination for the network segment. You can use a repeater for
the following purposes:

� To increase the length of a network: Adding a repeater to your network allows you to extend the
network another 50 m. If you connect two repeaters with no other nodes in between (as shown in
Figure 7-18), you can extend the network to the maximum cable length for the baud rate. You can
use up to 9 repeaters in series on a network, but the total length of the network must not exceed
9600 m.

� To add devices to a network: Each segment can have a maximum of 32 devices connected up to
50 m at 9600 baud. Using a repeater allows you to add another segment (32 devices) to the
network.

� To electrically isolate different network segments: Isolating the network improves the quality of the
transmission by separating the network segments which might be at different ground potentials.

A repeater on your network counts as one of the nodes on a segment, even though it is not assigned a
network address.

7

Communicating over a Network Chapter 7

219

RS-485
Repeater

RS-485
Repeater

50 m 50 mUp to 1000 m

Segment Segment Segment

Figure 7-18 Sample Network with Repeaters

Selecting the Network Cable
S7-200 networks use the RS-485 standard on twisted pair cables. Table 7-5 lists the specifications for the
network cable. You can connect up to 32 devices on a network segment.

Table 7-5 General Specifications for Network Cable

Specifications Description

Cable type Shielded, twisted pair

Loop resistance �115 Ω/km

Effective capacitance 30 pF/m

Nominal impedance Approximately 135 Ω to 160 Ω (frequency =3 MHz to 20 MHz)

Attenuation 0.9 dB/100 m (frequency=200 kHz)

Cross-sectional core area 0.3 mm2 to 0.5 mm2

Cable diameter 8 mm ±0.5 mm

Connector Pin Assignments
The communications ports on the S7-200 CPU are RS-485 compatible on a nine-pin subminiature D
connector in accordance with the PROFIBUS standard as defined in the European Standard EN 50170.
Table 7-6 shows the connector that provides the physical connection for the communications port and
describes the communications port pin assignments.

Table 7-6 Pin Assignments for the S7-200 Communications Port

Connector Pin Number PROFIBUS Signal Port 0/Port 1

1 Shield Chassis ground

2 24 V Return Logic common

Pin 1 3 RS-485 Signal B RS-485 Signal B
Pin 6

4 Request-to-Send RTS (TTL)

5 5 V Return Logic common

Pin 9
6 +5 V +5 V, 100 Ω series resistor

Pin 9

Pin 5 7 +24 V +24 V

8 RS-485 Signal A RS-485 Signal A

9 Not applicable 10-bit protocol select (input)

Connector shell Shield Chassis ground

7

S7-200 Programmable Controller System Manual

220

Biasing and Terminating the Network Cable
Siemens provides two types of network connectors that you can use to easily connect multiple devices to
a network: a standard network connector (see Table 7-6 for the pin assignments), and a connector that
includes a programming port, which allows you to connect a programming station or an HMI device to the
network without disturbing any existing network connections. The programming port connector passes all
signals (including the power pins) from the S7-200 through to the programming port, which is especially
useful for connecting devices that draw power from the S7-200 (such as a TD 200).

Both connectors have two sets of terminal screws to allow you to attach the incoming and outgoing
network cables. Both connectors also have switches to bias and terminate the network selectively.
Figure 7-19 shows typical biasing and termination for the cable connectors.

Ô
Ô

A B A B

Ô
Ô
Ô
Ô

A B A B

On On

Ô
Ô

A B A B

Off

Switch position = On
Terminated and biased

Switch position = Off
No termination or bias

Switch position = On
Terminated and biased

Cable must be terminated
and biased at both ends.

390 Ω

220 Ω

390 Ω

B

A

TxD/RxD +

TxD/RxD -

Cable shield

6

3

8

5

1

Network
connector

Pin #

B

A

TxD/RxD +

TxD/RxD -

Cable shield

A

BTxD/RxD +

TxD/RxD -
Cable shield

Bare shielding: approximately 12 mm (1/2 in.) must contact the metal guides of all locations.

6

3

8

5

1

Pin #
Switch position = Off:
No termination or bias

Switch position = On:
Terminated and biased

Figure 7-19 Bias and Termination of the Network Cable

Choosing the CP Card or PC/PPI Cable for Your Network
As shown in Table 7-7, STEP 7–Micro/WIN supports several CP cards that allow the programming station
(your computer or SIMATIC programming device) to act as a network master.

The CP cards contain dedicated hardware to assist the programming station in managing a multi-master
network and can support different protocols at several baud rates. The PC/PPI cable also allows you to
enable multiple masters.

Each CP card provides a single RS-485 port for connection to the network. The CP 5511 PCMCIA card
has an adapter that provides the 9-pin D port. You connect one end of the cable to the RS-485 port of the
card and connect the other end to a programming port connector on your network.

If you are using a CP card with PPI communications: STEP 7–Micro/WIN does not support two different
applications running on the same CP card at the same time. You must close the other application before
connecting STEP 7–Micro/WIN to the network through the CP card.

Caution
Using a non-isolated RS-485-to-RS-232 converter can damage the RS-232 port of your computer.

The Siemens PC/PPI cable (order number 6ES7 901–3BF21–0XA0) provides electrical isolation
between the RS-485 port on the S7-200 CPU and the RS-232 port that connects to your computer. If
you do not use the Siemens PC/PPI cable, you must provide isolation for the RS-232 port of your
computer.

7

Communicating over a Network Chapter 7

221

Table 7-7 CP Cards and Protocols Supported by STEP 7–Micro/WIN

Configuration Baud Rate Protocol

PC/PPI cable1

Connected to the COM port on the programming station
9.6 kbaud or
19.2 kbaud

PPI

CP 5511
Type II, PCMCIA card (for a notebook computer)

9.6 kbaud to
12 Mbaud

PPI, MPI, and PROFIBUS

CP 5611 (version 3 or greater)
PCI card

9.6 kbaud to
12 Mbaud

PPI, MPI, and PROFIBUS

MPI
Either an integrated port on a SIMATIC programming device or a CP card
for your computer (ISA card)

9.6 kbaud to
12 Mbaud

PPI, MPI, and PROFIBUS

1 The PC/PPI cable provides electrical isolation between the RS-485 port (on the S7-200 CPU) and the RS-232 port that
connects to your computer. Using a non-isolated RS-485-to-RS-232 converter could damage the RS-232 port of your
computer.

Using HMI Devices on Your Network
The S7-200 CPU supports many types of HMI devices from Siemens and also from other manufacturers.
While some of these HMI devices (such as the TD 200 or TP070) do not allow you to select the
communications protocol used by the device, other devices (such as the OP7 and TP170) allow you to
select the communications protocol for that device.

If your HMI device allows you to select the communications protocol, consider the following guidelines:

� For an HMI device connected to the communications port of the S7-200 CPU, with no other devices
on the network, select either the PPI or the MPI protocol for the HMI device.

� For an HMI device connected to an EM 277 PROFIBUS module, select either the MPI or the
PROFIBUS protocol.

– If the network with the HMI device includes S7-300 or S7-400 PLCs, select the MPI protocol
for the HMI device.

– If the network with the HMI device is a PROFIBUS network, select the PROFIBUS protocol for
the HMI device and select a profile consistent with the other masters on the PROFIBUS
network.

� For an HMI device connected to the communications port of the S7-200 CPU which has been
configured as a master, select the PPI protocol for the HMI device. PPI Advanced is optimal. The
MPI and PROFIBUS protocols do not support the S7-200 CPU as a master.

7

S7-200 Programmable Controller System Manual

222

Creating User-Defined Protocols with Freeport Mode
Freeport mode allows your program to control the communications port of the S7-200 CPU. You can use
Freeport mode to implement user-defined communications protocols to communicate with many types of
intelligent devices. Freeport mode supports both ASCII and binary protocols.

To enable Freeport mode, you use special memory bytes SMB30 (for Port 0) and SMB130 (for Port 1).
Your program uses the following to control the operation of the communications port:

� Transmit instruction (XMT) and the transmit interrupt: The Transmit instruction allows the S7-200 to
transmit up to 255 characters from the COM port. The transmit interrupt notifies your program in the
S7-200 when the transmission has been completed.

� Receive character interrupt: The receive character interrupt notifies the user program that a
character has been received on the COM port. Your program can then act on that character, based
on the protocol being implemented.

� Receive instruction (RCV): The Receive instruction receives the entire message from the COM port
and then generates an interrupt for your program when the message has been completely received.
You use the SM memory of the S7-200 to configure the Receive instruction for starting and stopping
the receiving of messages, based on defined conditions. The Receive instruction allows your
program to start or stop a message based on specific characters or time intervals. Most protocols
can be implemented with the Receive instruction.

Freeport mode is active only when the S7-200 is in RUN mode. Setting the S7-200 to STOP mode halts all
Freeport communications, and the communications port then reverts to the PPI protocol with the settings
which were configured in the system block of the S7-200.

Table 7-8 Using Freeport Mode

Network Configuration Description

Using Freeport over
an RS-232 connection

S7-200

Scale
PC/PPI
Cable

Example: Using an S7-200 with an electronic scale
that has an RS-232 port.

� PC/PPI cable connects the RS-232 port on the
scale to the RS-485 port on the S7-200 CPU.

� S7-200 CPU uses Freeport to communicate with
the scale.

� Baud rate can be from 1200 baud to 115.2 kbaud.

� User program defines the protocol.

Using USS protocol

MicroMaster

MicroMaster

S7-200

Example: Using an S7-200 with SIMODRIVE
MicroMaster drives.

� STEP 7–Micro/WIN provides a USS library.

� S7-200 CPU is a master, and the drives are
slaves.

MicroMaster Refer to the Tips and Tricks on the
documentation CD for a sample USS
program. See Tip 28.Tips and Tricks

Creating a user
program that emulates
a slave device on
another network

Modbus Network

Modbus
Device

Example: Connecting S7-200 CPUs to a Modbus
network.

� User program in the S7-200 emulates a Modbus
slave.

� STEP 7–Micro/WIN provides a Modbus library.
S7-200 S7-200

Refer to the Tips and Tricks on the
documentation CD for a sample Modbus
program. See Tip 41.Tips and Tricks

7

Communicating over a Network Chapter 7

223

Using the PC/PPI Cable and Freeport Mode with RS-232 Devices
You can use the PC/PPI cable and the Freeport communications functions to connect the S7-200 CPUs to
many devices that are compatible with the RS-232 standard.

The PC/PPI cable is in Transmit mode when data is transmitted from the RS-232 port to the RS-485 port.
The cable is in Receive mode when it is idle or is transmitting data from the RS-485 port to the RS-232
port. The cable changes from Receive to Transmit mode immediately when it detects characters on the
RS-232 transmit line.

The PC/PPI cable supports baud rates between 1200 baud and 115.2 kbaud. Use the DIP switches on the
housing of the PC/PPI cable to configure the cable for the correct baud rate. Table 7-9 shows the baud
rates and switch positions.

The cable switches back to Receive mode
when the RS-232 transmit line is in the idle
state for a period of time defined as the
turnaround time of the cable. The baud rate
selection of the cable determines the
turnaround time, as shown in Table 7-9.

If you are using the PC/PPI cable in a system
where Freeport communications are used, the
program in the S7-200 must comprehend the
turnaround time for the following situations:

Table 7-9 Turnaround Time and Settings

Baud Rate Turnaround Time Settings (1 = Up)

38400 to 115200 0.5 ms 000

19200 1.0 ms 001

9600 2.0 ms 010

4800 4.0 ms 011

2400 7.0 ms 100

1200 14.0 ms 101

� The S7-200 responds to messages transmitted by the RS-232 device.

After the S7-200 receives a request message from the RS-232 device, the S7-200 must delay the
transmission of a response message for a period of time greater than or equal to the turnaround
time of the cable.

� The RS-232 device responds to messages transmitted from the S7-200.

After the S7-200 receives a response message from the RS-232 device, the S7-200 must delay the
transmission of the next request message for a period of time greater than or equal to the
turnaround time of the cable.

In both situations, the delay allows the PC/PPI cable sufficient time to switch from Transmit mode to
Receive mode so that data can be transmitted from the RS-485 port to the RS-232 port.

7

S7-200 Programmable Controller System Manual

224

Using Modems and STEP 7–Micro/WIN with Your Network
STEP 7–Micro/WIN version 3.2 uses the standard Windows Phone and Modem Options for selecting and
configuring telephone modems. The Phone and Modem Options are under the Windows Control Panel.
Using the Windows setup options for modems allows you to:

� Use most internal and external modems
supported by Windows.

� Use the standard configurations for most
modems supported by Windows.

� Use the standard Windows dialing rules for
selection of locations, country and area
code support, pulse or tone dialing, and
calling card support.

� Use higher baud rates when
communicating to the EM 241 Modem
module.

Use the Windows control panel to display the
Modem Properties dialog box. This dialog box
allows you to configure the local modem. You
select your modem from the list of modems
supported by Windows. If your modem type is
not listed in the Windows modem dialog box,
select a type that is the closest match for your
modem, or contact your modem vendor to
acquire the modem configuration files for
Windows.Windows.

Figure 7-20 Configuring the Local Modem

STEP 7–Micro/WIN also lets you use radio and cellular modems. These modem types do not appear in
the Windows Modem Properties dialog box, but are available when configuring a connection for
STEP 7–Micro/WIN.

Configuring a Modem Connection
A connection associates an identifying name with the physical properties of the connection. For a
telephone modem these properties include the type of modem, 10 or 11 bit protocol selections, and
timeouts. For cellular modems the connection allows setting of a PIN and other parameters. Radio
modem properties include selections for baud rate, parity, flow control and other parameters.

Adding a Connection
Use the Connection wizard to add a new connection, remove, or edit a connection as shown in
Figure 7-21.

1. Double-click the icon in the Communications Setup window.

2. Double-click the PC/PPI cable to open the PG/PC interface. Select the PPI cable and click the
Properties button. On the Local Connection tab, check the Modem Connection box.

3. Open the Communications dialog box again, and double-click the modem Connect icon.

4. Click the Settings button to display the Modem Connections Settings dialog box.

5. Click the Add button to start the Add Modem Connection wizard.

6. Configure the connection as prompted by the wizard.

Connection
Wizard

7

Communicating over a Network Chapter 7

225

1. 5. 6.

Figure 7-21 Adding a Modem Connection

Connecting to the S7-200 with a Modem
After you have added a modem connection, you
can connect to an S7-200 CPU.

1. Open the Communications dialog box and
double-click on the Connect icon to display
the Modem Connection dialog box.

2. In the Modem Connection dialog box, click
Connect to dial the modem.

1.

2.

Figure 7-22 Connecting to the S7-200

Configuring a Remote Modem
The remote modem is the modem that is
connected to the S7-200. If the remote modem is
an EM 241 Modem module, no configuration is
required. If you are connecting to a stand-alone
modem or cell modem, you must configure the
connection.

The Modem Expansion wizard configures the
remote modem which is connected to the S7-200
CPU. Special modem configurations are required
in order to properly communicate with the
RS-485 half duplex port of the S7-200 CPU.
Simply select the type of modem, and enter the
information as prompted by the wizard. For moreinformation as prompted by the wizard. For more
information, refer to the online help. Figure 7-23 Modem Expansion Wizard

Modem
Expansion

Wizard

7

S7-200 Programmable Controller System Manual

226

Using a Modem with the PC/PPI Cable
You can use a PC/PPI cable to connect the RS-232 communications port of a modem to an S7-200 CPU.
See Figure 7-24. Switches 1, 2, and 3 on the PC/PPI cable set the baud rate. Switch 4 selects either a
10-bit or 11-bit PPI protocol. Switch 5 selects either the Data Communications Equipment (DCE) or Data
Terminal Equipment (DTE) mode. Switch 6 (if present) selects the operation of the RTS signal on the
RS-232 port of the PC/PPI cable.

Isolated
PC/PPI Cable

1 2 3 4 5

1

0

Dipswitch # 123 4 1= 10 BIT
115.2–38.4K 000 0= 11 BIT
19.2K 001 5 1= DTE
9.6K 010 0= DCE
2.4K 100 6 1= RTS for XMT
1.2K 101 0= RTS Always

6

P
P

I

P
C

Figure 7-24 Settings for the PC/PPI Cable

Modems normally use the RS-232 control signals (such as RTS, CTS, and DTR) to allow a computer to
control the modem. When you use a modem with a PC/PPI cable, you must configure the modem to
operate without these signals. To determine the commands required for configuring the modem, consult
the documentation for your specific modem.

Switch 4 of the PC/PPI cable selects either a 10-bit or 11-bit mode for PPI protocol. Use switch 4 only
when the S7-200 is connected to STEP 7–Micro/WIN with a modem. Otherwise, set switch 4 for 11-bit
mode to ensure proper operation with other devices.

Switch 5 of the PC/PPI cable allows you to set the RS-232 port of the cable to either DCE or DTE mode. If
you are using the PC/PPI cable with STEP 7–Micro/WIN or if the PC/PPI cable is connected to a
computer, set the PC/PPI cable to DCE mode. If you are using the PC/PPI cable with a modem (which is a
DCE device), set the PC/PPI cable to DTE mode. This eliminates the need to install a null modem adapter
between the PC/PPI cable and the modem. Depending on the connector on the modem, you might still
need to use a 9-pin-to-25-pin adapter.

Switch 6 of the PC/PPI cable selects the operation of the
RTS signal on the RS-232 connector. Selecting “RTS for
XMT” causes the RTS signal to be active when the S7-200
is transmitting on the RS-485 port, and the RTS signal to be
inactive when the S7-200 is receiving data. Selecting “RTS
Always” causes the RTS signal to always be active on the
RS-232 port of the PC/PPI cable, regardless of whether the
S7-200 is transmitting or receiving. Switch 6 affects only the
RTS signal when the PC/PPI cable is set for DTE mode.

Figure 7-25 shows the pin assignment for a common
modem adapter.

Modem

RS-232

S7-200

9-pin-to-25-pin adapter

RS-485

RD 2
TD 3

RTS 7
GND 5

2 TD
3 RD
4 RTS
7 GND

9-pin 25-pin

Figure 7-25 Pin Assignments for Adapters

7

Communicating over a Network Chapter 7

227

Table 7-10 shows the pin numbers and functions for the RS-485 and RS-232 ports of the PC/PPI cable in
DTE mode. Table 7-11 shows the pin numbers and functions for the RS-485 and RS-232 ports of the
PC/PPI cable in DCE mode. The PC/PPI cable supplies RTS only when it is in DTE mode.

Table 7-10 Pin-outs for RS-485 and RS-232 DTE Connector

RS-485 Connector Pin-out RS-232 DTE Connector Pin-out1

Pin Signal Description Pin Signal Description

1 Ground (RS-485 logic ground) 1 Not used: Data Carrier Detect (DCD)

2 24 V Return (RS-485 logic ground) 2 Receive Data (RD) (input to PC/PPI cable)

3 Signal B (RxD/TxD+) 3 Transmit Data (TD) (output from PC/PPI cable)

4 RTS (TTL level) 4 Not used: Data Terminal Ready (DTR)

5 Ground (RS-485 logic ground) 5 Ground (RS-232 logic ground)

6 NC (No connect) 6 Not used: Data Set Ready (DSR)

7 24 V Supply 7 Request To Send (RTS) (switch selectable)

8 Signal A (RxD/TxD–) 8 Not used: Clear To Send (CTS)

9 Protocol select 9 Not used: Ring Indicator (RI)

1 A conversion from female to male, and a conversion from 9-pin to 25-pin, might be required for modems

Table 7-11 Pin-outs for RS-485 and RS-232 DCE Connector

RS-485 Connector Pin-out RS-232 DCE Connector Pin-out

Pin Signal Description Pin Signal Description

1 Ground (RS-485 logic ground) 1 Not used: Data Carrier Detect (DCD)

2 24 V Return (RS-485 logic ground) 2 Receive Data (RD) (output from PC/PPI cable)

3 Signal B (RxD/TxD+) 3 Transmit Data (TD) (input to PC/PPI cable)

4 RTS (TTL level) 4 Not used: Data Terminal Ready (DTR)

5 Ground (RS-485 logic ground) 5 Ground (RS-232 logic ground)

6 NC (No connect) 6 Not used: Data Set Ready (DSR)

7 24 V Supply 7 Not used: Request To Send (RTS)

8 Signal A (RxD/TxD–) 8 Not used: Clear To Send (CTS)

9 Protocol select 9 Not used: Ring Indicator (RI)

7

S7-200 Programmable Controller System Manual

228

Advanced Topics

Optimizing the Network Performance
The following factors affect network performance (with baud rate and number of masters having the
greatest effect):

� Baud rate: Operating the network at the highest baud rate supported by all devices has the greatest
effect on the network.

� Number of masters on the network: Minimizing the number of masters on a network also increases
the performance of the network. Each master on the network increases the overhead requirements
of the network; having fewer masters lessens the overhead.

� Selection of master and slave addresses: The addresses of the master devices should be set so
that all of the masters are at sequential addresses with no gaps between addresses. Whenever
there is an address gap between masters, the masters continually check the addresses in the gap
to see if there is another master wanting to come online. This checking requires time and increases
the overhead of the network. If there is no address gap between masters, no checking is done and
so the overhead is minimized. You can set the slave addresses to any value without affecting
network performance, as long as the slaves are not between masters. Slaves between masters
increase the network overhead in the same way as having address gaps between masters.

� Gap update factor (GUF): Used only when an S7-200 CPU is operating as a PPI master, the GUF
tells the S7-200 how often to check the address gap for other masters. You use STEP 7–Micro/WIN
to set the GUF in the CPU configuration for a CPU port. This configures the S7-200 to check
address gaps only on a periodic basis. For GUF=1, the S7-200 checks the address gap every time
it holds the token; for GUF=2, the S7-200 checks the address gap once every two times it holds the
token. If there are address gaps between masters, a higher GUF reduces the network overhead. If
there are no address gaps between masters, the GUF has no effect on performance. Setting a large
number for the GUF causes long delays in bringing masters online, because the addresses are
checked less frequently. The default GUF setting is 10.

� ����������	��
��	��
�����������Used only when an S7-200 CPU is operating as a PPI master, the
HSA defines the highest address at which a master should look for another master. You use
STEP 7–Micro/WIN to set the HSA in the CPU configuration for a CPU port. Setting an HSA limits
the address gap which must be checked by the last master (highest address) in the network.
Limiting the size of the address gap minimizes the time required to find and bring online another
master. The highest station address has no effect on slave addresses: masters can still
communicate with slaves which have addresses greater than the HSA. As a general rule, set the
highest station address on all masters to the same value. This address should be greater than or
equal to the highest master address. The default value for the HSA is 31.

Calculating the Token Rotation Time for a Network
In a token-passing network, the only station that can initiate communications is the station that holds the
token. The token rotation time (the time required for the token to be circulated to each of the masters in the
logical ring) measures the performance of your network.

Figure 7-26 provides a sample network as an example for calculating the token rotation time for a
multiple-master network. In this example, the TD 200 (station 3) communicates with the CPU 222
(station 2), the TD 200 (station 5) communicates with the CPU 222 (station 4), and so on. The two
CPU 224 modules use the Network Read and Network Write instructions to gather data from the other
S7-200s: CPU 224 (station 6) sends messages to stations 2, 4, and 8, and the CPU 224 (station 8) sends
messages to stations 2, 4, and 6. In this network, there are six master stations (the four TD 200 units and
the two CPU 224 modules) and two slave stations (the two CPU 222 modules).

Refer to the Tips and Tricks on the documentation CD for a discussion about token rotation. See Tip 42.

Tips and Tricks

7

Communicating over a Network Chapter 7

229

CPU 222
Station 2

CPU 224
Station 6

CPU 224
Station 8

TD 200
Station 9

TD 200
Station 7

CPU 222
Station 4

TD 200
Station 5

TD 200
Station 3

Figure 7-26 Example of a Token-Passing Network

In order for a master to send a message, it must hold the token. For example: When station 3 has the
token, it initiates a request message to station 2 and then it passes the token to station 5. Station 5 then
initiates a request message to station 4 and then passes the token to station 6. Station 6 then initiates a
message to station 2, 4, or 8, and passes the token to station 7. This process of initiating a message and
passing the token continues around the logical ring from station 3 to station 5, station 6, station 7,
station 8, station 9, and finally back to station 3. The token must rotate completely around the logical ring
in order for a master to be able to send a request for information. For a logical ring of six stations, sending
one request message per token hold to read or write one double-word value (four bytes of data), the token
rotation time is approximately 900 ms at 9600 baud. Increasing the number of bytes of data accessed per
message or increasing the number of stations increases the token rotation time.

The token rotation time is determined by how long each station holds the token. You can determine the
token rotation time for your multiple-master network by adding the times that each master holds the token.
If the PPI master mode has been enabled (under the PPI protocol on your network), you can send
messages to other S7-200s by using the Network Read and Network Write instructions with the S7-200. If
you send messages using these instructions, you can use the following formula to calculate the
approximate token rotation time, based on the following assumptions: each station sends one request per
token hold, the request is either a read or write request for consecutive data locations, there is no conflict
for use of the one communications buffer in the S7-200, and there is no S7-200 that has a scan time
longer than about 10 ms.

Token hold time (Thold) = (128 overhead + n data char) x 11 bits/char x 1/baud rate

Token rotation time (Trot) = Thold of master 1 + Thold of master 2 + . . . + Thold of master m

where n is the number of data characters (bytes)
m is the number of masters

The following equations calculate the rotation times (one “bit time” equals the duration of one signaling
period) for the example shown in Figure 7-26:

T (token hold time) = (128 + 4 char) x 11 bits/char x 1/9600 bit times/s
= 151.25 ms per master

T (token rotation time) = 151.25 ms per master � 6 masters
= 907.5 ms

Tip
SIMATIC NET COM PROFIBUS software provides an analyzer to determine network performance.

7

S7-200 Programmable Controller System Manual

230

Comparing Token Rotation Times
Table 7-12 shows comparisons of the token rotation time versus the number of stations, amount of data,
and the baud rate. The times are figured for a case where you use the Network Read and Network Write
instructions with the S7-200 CPU or other master devices.

Table 7-12 Token Rotation Time (in Seconds)

Bytes Number of Masters
Baud Rate Bytes

Transferred 2 3 4 5 6 7 8 9 10

1 0.30 0.44 0.59 0.74 0.89 1.03 1.18 1.33 1.48
9.6 kbaud

16 0.33 0.50 0.66 0.83 0.99 1.16 1.32 1.49 1.65

1 0.15 0.22 0.30 0.37 0.44 0.52 0.59 0.67 0.74
19.2 kbaud

16 0.17 0.25 0.33 0.41 0.50 0.58 0.66 0.74 0.83

1 0.009 0.013 0.017 0.022 0.026 0.030 0.035 0.039 0.043
187.5 kbaud

16 0.011 0.016 0.021 0.026 0.031 0.037 0.042 0.047 0.052

Understanding the Connections That Link the Network Devices
Network devices communicate through individual connections, which are private links between the master
and slave devices. As shown in Figure 7-27, the communications protocols differ in how the connections
are handled:

� The PPI protocol utilizes one shared connection among all of the network devices.

� The PPI Advanced, MPI, and PROFIBUS protocols utilize separate connections between any two
devices communicating with each other.

When using PPI Advanced, MPI, or PROFIBUS, a second master cannot interfere with a connection that
has been established between a master and a slave. S7-200 CPUs and EM 277s always reserve one
connection for STEP 7–Micro/WIN and one connection for HMI devices. Other master devices cannot use
these reserved connections. This ensures that you can always connect at least one programming station
and at least one HMI device to the S7-200 CPU or EM 277 when the master is using a protocol that
supports connections, such as PPI Advanced.

PPI ConnectionPPI Connection PPI Connection

Connection 1Connection 1 Connection 1

Connection 2

PPI

All devices share a common
connection

PPI Advanced
MPI
PROFIBUS

Each device communicates
through a separate connection

Figure 7-27 Managing the Communications Connections

7

Communicating over a Network Chapter 7

231

As shown in Table 7-13, the S7-200 CPU or EM 277 provide a specific number of connections. Each port
(Port 0 and Port 1) of an S7-200 CPU supports up to four separate connections. (This allows a maximum
of eight connections for the S7-200 CPU.) This is in addition to the shared PPI connection. An EM 277
supports six connections.

Table 7-13 Capabilities of the S7-200 CPU and EM 277 Modules

Module Baud Rate Connections Protocols Supported

S7-200 CPU Port 0 9.6 kbaud, 19.2 kbaud,
or 187.5 kbaud

4 PPI, PPI Advanced, MPI, and PROFIBUS1

Port 1 9.6 kbaud, 19.2 kbaud,
or 187.5 kbaud

4 PPI, PPI Advanced, MPI, and PROFIBUS1

EM 277 Module 9.6 kbaud to 12 Mbaud 6 per module PPI Advanced, MPI, and PROFIBUS

1 For Port 0 and Port 1 of the S7-200 CPU, you can use MPI and PROFIBUS only when communicating with an S7-200
device which is a slave.

Working with Complex Networks
For the S7-200, complex networks typically have multiple S7-200 masters that use the Network Read
(NETR) and Network Write (NETW) instructions to communicate with other devices on a PPI network.
Complex networks typically present special problems that can block a master from communicating with a
slave.

If the network is running at a lower baud rate (such as 9.6 kbaud or 19.2 kbaud), then each master
completes the transaction (read or write) before passing the token. At 187.5 kbaud, however, the master
issues a request to a slave and then passes the token, which leaves an outstanding request at the slave.

Figure 7-28 shows a network with potential communications conflicts. In this network, Station 1, Station 2,
and Station 3 are masters, using the Network Read or Network Write instructions to communicate with
Station 4. The Network Read and Network Write instructions use PPI protocol so all of the S7-200s share
the single PPI connection in Station 4.

In this example, Station 1 issues a request to Station 4. For
baud rates above 19.2 kbaud, Station 1 then passes the
token to Station 2. If Station 2 attempts to issue a request to
Station 4, the request from Station 2 is rejected because the
request from Station 1 is still present. All requests to
Station 4 will be rejected until Station 4 completes the
response to Station 1. Only after the response has been

Station 4 Slave

Station 1 Master Station 2 Master Station 3 Master

completed can another master issue a request to Station 4. Figure 7-28 Communications Conflict

To avoid this conflict for the communications port on
Station 4, consider making Station 4 the only master on the
network, as shown in Figure 7-29. Station 4 then issues the
read/write requests to the other S7-200s.

Not only does this configuration ensure that there is no
conflict in communications, but it also reduces the overhead
caused by having multiple masters and allows the network

Station 1 Slave Station 2 Slave Station 3 Slave

Station 4 Master

to operate more efficiently.
Figure 7-29 Avoiding Conflict

7

S7-200 Programmable Controller System Manual

232

For some applications, however, reducing the
number of masters on the network is not an
option. When there are several masters, you
must manage the token rotation time and
ensure that the network does not exceed the
target token rotation time. (The token rotation
time is the amount of time that elapses from
when a master passes the token until that
master receives the token again.)

Table 7-14 HSA and Target Token Rotation Time

HSA 9.6 kbaud 19.2 kbaud 187.5 kbaud

HSA=15 0.613 s 0.307 s 31 ms

HSA=31 1.040 s 0.520 s 53 ms

HSA=63 1.890 s 0.950 s 97 ms

HSA=126 3.570 s 1.790 s 183 ms

If the time required for the token to return to the master is greater than a target token rotation time, then
the master is not allowed to issue a request. The master can issue a request only when the actual token
rotation time is less than the target token rotation time.

The highest station address (HSA) and the baud rate settings for the S7-200 determine the target token
rotation time. Table 7-14 lists target rotation times.

For the slower baud rates, such as 9.6 kbaud and 19.2 kbaud, the master waits for the response to its
request before passing the token. Because processing the request/response cycle can take a relatively
long time in terms of the scan time, there is a high probability that every master on the network can have a
request ready to transmit every time it holds the token. The actual token rotation time would then increase,
and some masters might not be able to process any requests. In some situations, a master might only
rarely be allowed to process requests.

For example: Consider a network of 10 masters that transmit 1 byte at 9.6 kbaud that is configured with an
HSA of 15. For this example, each of the masters always has a message ready to send. As shown in
Table 7-14, the target rotation time for this network is 0.613 s. However, based on the performance data
listed in Table 7-12, the actual token rotation time required for this network is 1.48 s. Because the actual
token rotation time is greater than the target token rotation time, some of the masters will not be allowed to
transmit a message until some later rotation of the token.

You have two basic options for improving a situation where the actual token rotation time is greater than
the target token rotation time:

� You can reduce actual token rotation time by reducing the number of masters on your network.
Depending on your application, this might not be a feasible solution.

� You can increase the target token rotation time by increasing the HSA for all of the master devices
on the network.

Increasing the HSA can cause a different problem for your network by affecting the amount of time that it
takes for a S7-200 to switch to master mode and enter the network. If you use a timer to ensure that the
Network Read or Network Write instruction completes its execution within a specified time, the delay in
initializing master mode and adding the S7-200 as a master on the network can cause the instruction to
time out. You can minimize the delay in adding masters by reducing the Gap Update Factor (GUF) for all
masters on the network.

Because of the manner in which requests are posted to and left at the slave for 187.5 kbaud, you should
allow extra time when selecting the target token rotation time. For 187.5 kbaud, the actual token rotation
time should be approximately half of the target token rotation time.

To determine the token rotation time, use the performance data in Table 7-12 to determine the time
required for completing the Network Read and Network Write operations. To calculate the time required for
HMI devices (such as the TD 200), use the performance data for transferring 16 bytes. Calculate the token
rotation time by adding the time for each device on the network. Adding all of the times together describes
a worst-case scenario where all devices want to process a request during the same token rotation. This
defines the maximum token rotation time required for the network.

7

Communicating over a Network Chapter 7

233

For example: Consider a network running at 9.6 kbaud with four TD 200s and four S7-200s, with each
S7-200 writing 10 bytes of data to another S7-200 every second. Use Table 7-12 to calculate the specific
transfer times for the network:

4 TD 200 devices transferring 16 bytes of data = 0.66 s
4 S7-200s transferring 10 bytes of data = 0.63 s
Total token rotation time = 1.29 s

To allow enough time for this network to process all requests during one token rotation, set the HSA to 63.
(See Table 7-14.) Selecting a target token rotation (1.89 s) that is greater than the maximum token rotation
time (1.29 s) ensures that every device can transfer data on every rotation of the token.

To help improve the reliability of a multi-master network, you should also consider the following actions:

� Change the update rate for the HMI devices to allow more time between updates. For example,
change the update rate for a TD 200 from “As fast as possible” to “Once per second.”

� Reduce the number of requests (and the network overhead for processing the requests) by
combining the operations of Network Read or Network Write operations. For example, instead of
using two Network Read operations that read 4 bytes each, use one Network Read operation that
reads 8 bytes. The time to process the two requests of 4 bytes is much greater than the time to
process one request for 8 bytes.

� Change the update rate of the S7-200 masters so that they do not attempt to update faster than the
token rotation time.

7

S7-200 Programmable Controller System Manual

234

235

Hardware Troubleshooting Guide and
Software Debugging Tools

STEP 7–Micro/WIN provides software tools to help you debug and test your program. These features
include viewing the status of the program as it is executed by the S7-200, selecting to run the S7-200 for a
specified number of scans, and forcing values.

Use Table 8-1 as a guide for determining the cause and possible solution when troubleshooting problems
with the S7-200 hardware.

In This Chapter
Features for Debugging Your Program 236.

Displaying the Program Status 238.

Using a Status Chart to Monitor and Modify the Data in the S7-200 239.

Forcing Specific Values 240.

Running Your Program for a Specified Number of Scans 240.

Hardware Troubleshooting Guide 241.

8

S7-200 Programmable Controller System Manual

236

Features for Debugging Your Program
STEP 7–Micro/WIN provides several features to help you debug your program: bookmarks, cross
reference tables, and run-time edits.

Using Bookmarks for Easy Program Access
You can set bookmarks in your program to make it easy to move back and forth between designated
(bookmarked) lines of a long program. You can move to the next or the previous bookmarked line of your
program.

Using the Cross Reference Table to Check Your Program References
The cross reference table allows you to display the cross references and element usage information for
your program.

The cross reference table identifies all operands
used in the program, and identifies the program
block, network or line location, and instruction
context of the operand each time it is used.

You can toggle between symbolic and absolute
view to change the representation of all
operands.

Figure 8-1 Cross Reference Table

Tip
Double-clicking on an element in the cross reference table takes you to that part of your program or
block.

Editing Your Program in RUN Mode
CPU 224 Rel. 1.10 (and higher) and CPU 226 Rel. 1.00 (and higher) models support RUN mode edits.
The RUN mode edit capability is intended to allow you to make small changes to a user program with
minimal disturbance to the process being controlled by the program. However, implementing this capability
also allows massive program changes that could be disruptive or even dangerous.

Warning
When you download changes to an S7-200 in RUN mode, the changes immediately affect process
operation. Changing the program in RUN mode can result in unexpected system operation, which could
cause death or serious injury to personnel, and/or damage to equipment.

Only authorized personnel who understand the effects of RUN mode edits on system operation should
perform a RUN mode edit.

To perform a program edit in RUN mode, the online S7-200 CPU must support RUN mode edits and must
be in RUN mode.

1. Select the Debug > Program Edit in RUN menu command.

2. If the project is different than the program in the S7-200, you are prompted to save it. The RUN
mode edit can be performed only on the program in the S7-200.

3. STEP 7–Micro/WIN alerts you about editing your program in RUN mode and prompts you to either
continue or to cancel the operation. If you click Continue, STEP 7–Micro/WIN uploads the program
from the S7-200. You can now edit your program in RUN mode. No restrictions on edits are
enforced.

Tip
Positive (EU) and Negative (ED) transition instructions are shown with an operand. To view information
about edge instructions, select the Cross Reference icon in the View. The Edge Usage tab lists numbers
for the edge instructions in your program. Be careful not to assign duplicate edge numbers as you edit
your program.

Cross
Reference

8

Hardware Troubleshooting Guide and Software Debugging Tools Chapter 8

237

Downloading the Program in RUN Mode
RUN-mode editing allows you to download only your program block while the S7-200 is in RUN mode.
Before downloading the program block in RUN mode, consider the effect of a RUN-mode modification on
the operation of the S7-200 for the following situations:

� If you deleted the control logic for an output, the S7-200 maintains the last state of the output until
the next power cycle or transition to STOP mode.

� If you deleted a high-speed counter or pulse output functions which were running, the high-speed
counter or pulse output continues to run until the next power cycle or transition to STOP mode.

� If you deleted an Attach Interrupt instruction but did not delete the interrupt routine, the S7-200
continues to execute the interrupt routine until a power cycle or a transition to STOP mode.
Likewise, if you deleted a Detach Interrupt instruction, the interrupts are not shut down until the next
power cycle or transition to STOP mode.

� If you added an Attach Interrupt instruction that is conditional on the first scan bit, the event is not
activated until the next power cycle or STOP-to-RUN mode transition.

� If you deleted an Enable Interrupt instruction, the interrupts continue to operate until the next power
cycle or transition from RUN to STOP mode.

� If you modified the table address of a receive box and the receive box is active at the time that the
S7-200 switches from the old program to the modified program, the S7-200 continues to write the
data received to the old table address. Network Read and Network Write instructions function in the
same manner.

� Any logic that is conditional on the state of the first scan bit will not be executed until the next power
cycle or transition from STOP to RUN mode. The first scan bit is set only by the transition to RUN
mode and is not affected by a RUN-mode edit.

Tip
Before you can download your program in RUN mode, the S7-200 must support RUN mode edits, the
program must compile with no errors, and the communications between STEP 7–Micro/WIN and the
S7-200 must be error-free.

You can download only the program block.

To download your program in RUN mode, click on the Download button or select the File > Download
menu command. If the program compiles successfully, STEP 7–Micro/WIN downloads the program block
to the S7-200.

Exiting RUN-Mode Edit
To exit RUN-mode editing, select the Debug > Program Edit in RUN menu command and deselect the
checkmark. If you have changes that have not been saved, STEP 7–Micro/WIN prompts you either to
continue editing, to download changes and exit RUN-mode editing, or to exit without downloading.

8

S7-200 Programmable Controller System Manual

238

Displaying the Program Status
STEP 7–Micro/WIN allows you to monitor the status of the user program as it is being executed. When
you monitor the program status, the program editor displays the status of instruction operand values.

To display the status, click the Program Status button or select the Debug > Program Status menu
command.

Displaying the Status of the Program in LAD and FBD
STEP 7–Micro/WIN provides two options for displaying the status of LAD and FBD programs:

� End of scan status: STEP 7–Micro/WIN acquires the values for the status display across multiple
scan cycles and then updates the status screen display. The status display does not reflect the
actual status of each element at the time of execution. The end-of-scan status does not show status
for L memory or for the accumulators.

For end of scan status, the status values are updated in all of the CPU operating modes.

� Execution status: STEP 7–Micro/WIN displays the values of the networks as the elements are
executed in the S7-200. For displaying the execution status, select the Debug > Use Execution
Status menu command.

For execution status, the status values are updated only when the CPU is in RUN mode.

Tip
STEP 7–Micro/WIN provides a simple method for changing the state of a variable. Simply select the
variable and right-click to display a menu of options.

Configuring How the Status is Displayed in the LAD and FBD Program
STEP 7–Micro/WIN provides a variety of options
for displaying the status in the program.

To configure the display option for the status
screen, select the Tools > Options menu
command and then select the Program Editor
tab, as shown in Figure 8-2.

Figure 8-2 Options for the Status Display

8

Hardware Troubleshooting Guide and Software Debugging Tools Chapter 8

239

Displaying the Status of the Program in STL
You can monitor the execution status of your STL program on an instruction-by-instruction basis. For an
STL program, STEP 7–Micro/WIN displays the status of the instructions that are displayed on the screen.

STEP 7–Micro/WIN gathers status information from the S7-200, beginning from the first STL statement at
the top of the editor window. As you scroll down the editor window, new information is gathered from the
S7-200.

STEP 7–Micro/WIN continuously updates values
on the screen. To halt the screen updates, select
the Triggered Pause button. The current data
remains on the screen until you deselect the
Triggered Pause button.

Configuring Which Parameters Are
Displayed in the STL Program
STEP 7–Micro/WIN allows you to display the
status of a variety of parameters for the STL
instructions. Select the Tools > Options menu
command and then select the STL Status tab.
See Figure 8-3.

Figure 8-3 Options for Displaying STL Status

Using a Status Chart to Monitor and Modify the Data in the S7-200
The Status Chart allows you to read, write, force,
and monitor variables while the S7-200 is
executing your program. Select the View >
Component > Status Chart menu command to
create a status chart. Figure 8-4 shows a sample
status chart.

You can create multiple status charts.

STEP 7–Micro/WIN provides toolbar icons for
manipulating the status chart: Sort Ascending,
Sort Descending, Single Read, Write All, Force,
Unforce, Unforce All, and Read All Forced.

To select a format for a cell, select the cell and
click the right mouse button to display the contextclick the right mouse button to display the context
menu. Figure 8-4 Status Chart

8

S7-200 Programmable Controller System Manual

240

Forcing Specific Values
The S7-200 allows you to force any or all of the I/O points (I and Q bits). In addition, you can also force up
to 16 memory values (V or M) or analog I/O values (AI or AQ). V memory or M memory values can be
forced in bytes, words, or double words. Analog values are forced as words only, on even-numbered byte
boundaries, such as AIW6 or AQW14. All forced values are stored in the permanent EEPROM memory of
the S7-200.

Because the forced data might be changed during the scan cycle (either by the program, by the I/O
update cycle, or by the communications- processing cycle), the S7-200 reapplies the forced values at
various times in the scan cycle.

� Reading the inputs: The S7-200 applies the forced values to the inputs as they are read.

� Executing the control logic in the program: The
S7-200 applies the forced values to all immediate I/O
accesses. Forced values are applied for up to
16 memory values after the program has been
executed.

� Processing any communications requests: The
S7-200 applies the forced values to all read/write
communications accesses.

� Writing to the outputs: The S7-200 applies the forced
values to the outputs as they are written.

You can use the Status Chart to force values. To force a
new value, enter the value in the New Value column of the
Status Chart, then press the Force button on the toolbar. To
force an existing value, highlight the value in the Current

Execute the Program

Process any Communications
Requests

Perform the CPU Diagnostics

Writes to the outputs

Reads the inputs

Scan Cycle

Value column, then press the Force button.
Figure 8-5 S7-200 Scan Cycle

Tip
The Force function overrides a Read Immediate or Write Immediate instruction. The Force function also
overrides the output table that was configured for transition to STOP mode. If the S7-200 goes to STOP
mode, the output reflects the forced value and not the value that was configured in the output table.

Running Your Program for a Specified Number of Scans
To help you debug your program, STEP 7–Micro/WIN allows you to run the program for a specific number
of scans.

You can have the S7-200 execute only the first scan. This allows you to monitor the data in the S7-200
after the first scan. Select the Debug > First Scan menu command to run the first scan.

You can have the S7-200 execute your program for a limited number of scans (from 1 scan to 65,535
scans). This allows you to monitor the program as it changes variables. Select the Debug > Multiple
Scans menu command to specify the number of scans to be executed.

8

Hardware Troubleshooting Guide and Software Debugging Tools Chapter 8

241

Hardware Troubleshooting Guide

Table 8-1 Troubleshooting Guide for the S7-200 Hardware

Symptom Possible Causes Possible Solution

Outputs stop working

� The device being controlled has
caused an electrical surge that
damaged the output

� User program error

� Wiring loose or incorrect

� Excessive load

� Output point is forced

� When connecting to an inductive load (such as a
motor or relay), a proper suppression circuit
should be used. Refer to Chapter 3.

� Correct user program

� Check wiring and correct

� Check load against point ratings

� Check the S7-200 for forced I/O

SF (System Fault) light on the
S7-200 turns on

The following list describes the most
common error codes and causes:

� User programming error

– 0003 Watchdog error

– 0011 Indirect addressing

– 0012 Illegal floating-point
value

– 0014 Range error

� Electrical noise
(0001 through 0009)

� Component damage
(0001 through 0010)

Read the fatal error code number and refer to
Appendix C for information about the type of error:

� For a programming error, check the usage of the
FOR, NEXT, JMP, LBL, and Compare instructions.

� For electrical noise:

– Refer to the wiring guidelines in Chapter 3. It is
very important that the control panel is
connected to a good ground and that high
voltage wiring is not run in parallel with low
voltage wiring.

– Connect the M terminal on the 24 VDC Sensor
Power Supply to ground.

None of the LEDs turn on � Blown fuse

� Reversed 24 V power wires

� Incorrect voltage

Connect a line analyzer to the system to check the
magnitude and duration of the over-voltage spikes.
Based on this information, add the proper type arrestor
device to your system.

Refer to the wiring guidelines in Chapter 3 for
information about installing the field wiring.

Intermittent operation
associated with high energy
devices

� Improper grounding

� Routing of wiring within the control
cabinet

� Too short of a delay time for the
input filters

Refer to the wiring guidelines in Chapter 3.

It is very important that the control panel is connected
to a good ground and that high voltage wiring is not run
in parallel with low voltage wiring.

Connect the M terminal on the 24 VDC Sensor Power
Supply to ground.

Increase the input filter delay in the system data block.

Communications network is
damaged when connecting to
an external device

Either the port on the
computer, the port on the
S7-200, or the PC/PPI cable is
damaged

The communications cable can provide
a path for unwanted currents if all
non-isolated devices, such as PLCs,
computers, or other devices that are
connected to the network do not share
the same circuit common reference.

The unwanted currents can cause
communications errors or damage to
the circuits.

� Refer to the wiring guidelines in Chapter 3 and to
the network guidelines in Chapter 7.

� Purchase the isolated PC/PPI cable.

� Purchase the isolated RS-485-to-RS-485 repeater
when you connect machines that do not have a
common electrical reference.

Refer to Appendix E for information about order
numbers for S7-200 equipment.

Other communications
problems (STEP 7–Micro/WIN)

Refer to Chapter 7 for information about network communications.

Error handling Refer to Appendix C for information about error codes.

8

S7-200 Programmable Controller System Manual

242

243

Creating a Program for the
Position Module

The EM 253 Position module is an S7-200 special function module that generates the pulse trains used
for open-loop control of the speed and position for either stepper motors or servo motors. It communicates
with the S7-200 over the expansion I/O bus and appears in the I/O configuration as an intelligent module
with eight digital outputs.

Based upon configuration information that is stored in the V memory of the S7-200, the Position module
generates the pulse trains required to control motion.

To simplify the use of position control in your application, STEP 7–Micro/WIN provides a Position Control
wizard that allows you to completely configure the Position module in minutes. STEP 7–Micro/WIN also
provides a control panel that allows you to control, monitor and test your motion operations.

In This Chapter
Features of the Position Module 244.

Configuring the Position Module 246.

Position Instructions Created by the Position Control Wizard 257.

Sample Programs for the Position Module 269.

Monitoring the Position Module with the EM 253 Control Panel 274.

Error Codes for the Position Module and the Position Instructions 276.

Advanced Topics 278.

9

S7-200 Programmable Controller System Manual

244

Features of the Position Module
The Position module provides the functionality and performance that you need for single-axis, open-loop
position control:

� Provides high-speed control, with a range from 12 pulses per second up to 200,000 pulses per
second

� Supports both jerk (S curve) or linear acceleration and
deceleration

� Provides a configurable measuring system that allows
you to enter data either as engineering units (such as
inches or centimeters) or as a number of pulses

� Provides configurable backlash compensation

� Supports absolute, relative, and manual methods of
position control

� Provides continuous operation

� Provides up to 25 motion profiles, with up to 4 speed
changes per profile

� Provides four different reference-point seek modes,
with a choice of the starting seek direction and the
final approach direction for each sequence

� Provides removable field wiring connectors for easy� Provides removable field wiring connectors for easy
installation and removal Figure 9-1 EM 253 Position Module

You use STEP 7–Micro/WIN to create all of the configuration and profile information used by the Position
module. This information is downloaded to the S7-200 with your program blocks. Because all the
information required for position control is stored in the S7-200, you can replace a Position module without
having to reprogram or reconfigure the module.

The S7-200 reserves 8 bits of the process image output register (Q memory) for the interface to the
Position module. Your application program in the S7-200 uses these bits to control the operation of the
Position module. These 8 output bits are not connected to any of the physical field outputs of the Position
module.

The Position module provides five digital inputs and four digital outputs that provide the interface to your
motion application. See Table 9-1. These inputs and outputs are local to the Position module. Appendix A
provides the detailed specifications for the Position module and also includes wiring diagrams for
connecting the Position module to some of the more common motor driver/amplifier units.

Table 9-1 Inputs and Outputs of the Position Module

Signal Description

STP The STP input causes the module to stop the motion in progress. You can select the desired operation
of STP within the Position Control wizard.

RPS The RPS (Reference Point Switch) input establishes the reference point or home position for absolute
move operations.

ZP The ZP (Zero Pulse) input helps establish the reference point or home position. Typically, the motor
driver/amplifier pulses ZP once per motor revolution.

LMT+
LMT–

LMT+ and LMT– inputs establish the maximum limits for motion travel. The Position Control wizard
allows you to configure the operation of LMT+ and LMT– inputs.

P0
P1
P0+, P0–
P1+, P1–

P0 and P1 are open drain transistor pulse outputs that control the movement and direction of
movement of the motor. P0+, P0– and P1+, P1– are differential pulse outputs that provide the identical
functions of P0 and P1, respectively, while providing superior signal quality. The open drain outputs
and the differential outputs are all active simultaneously. Based upon the interface requirements of
motor driver/amplifier, you choose which set of pulse outputs to use.

DIS DIS is an open drain transistor output used to disable or enable the motor driver/amplifier.

CLR CLR is an open drain transistor output used to clear the servo pulse count register.

9

Creating a Program for the Position Module Chapter 9

245

Programming the Position Module
STEP 7–Micro/WIN provides easy-to-use tools for configuring and programming the Position module.
Simply follow these steps:

1. Configure the Position module. STEP 7–Micro/WIN provides a Position Control wizard for creating
the configuration/profile table and the position instructions. See page 246 for information about
configuring the Position module.

2. Test the operation of the Position Module. STEP 7–Micro/WIN provides an EM 253 control panel for
testing the wiring of the inputs and outputs, the configuration of the Position module, and the
operation of the motion profiles. See page 274 for information about the EM 253 control panel.

3. Create the program to be executed by the S7-200. The Position Control wizard automatically
creates the position instructions that you insert into your program. See page 257 for information
about the position instructions. Insert the following instructions into your program:

– To enable the Position module, insert a POSx_CTRL instruction. Use SM0.0 (Always On) to
ensure that this instruction is executed every scan.

– To move the motor to a specific location, use a POSx_GOTO or a POSx_RUN instruction.
The POSx_GOTO instruction move to a location specified by the inputs from your program.
The POSx_RUN instruction executes the motion profiles you configured with the Position
Control wizard.

– To use absolute coordinates for your motion, you must establish the zero position for your
application. Use the a POSx_RSEEK or a POSx_LDPOS instruction to establish the zero
position.

– The other instructions that are created by the Position Control wizard provide functionality for
typical applications and are optional for your specific application.

4. Compile your program and download the system block, data block, and program block to the
S7-200.

Tip
Refer to Appendix A for information about connecting the Position module to several common stepper
motor controllers.

Tip
To match the default settings in the Position Control wizard, set the DIP switches on the stepper motor
controller to 10,000 pulses per revolution.

9

S7-200 Programmable Controller System Manual

246

Configuring the Position Module
You must create a configuration/profile table for the Position module in order for the module to control your
motion application. The Position Control wizard makes the configuration process quick and easy by
leading you step-by-step through the configuration process. Refer to the Advanced Topics on page 278 for
detailed information about the configuration/profile table.

The Position Control wizard also allows you to
create the configuration/profile table offline. You
can create the configuration without being
connected to an S7-200 CPU with a Position
module installed.

To run the Position Control wizard, your project
must have been compiled and set to symbolic
addressing mode.

To start the Position Control wizard, either click
the Tools icon in the navigation bar and then
double-click the Position Control Wizard icon, or
select the Tools> Position Control Wizard
menu command. Figure 9-2 Position Control Wizard

The Position Control wizard allows you to configure either the operation of the Position module or the
PTO/PWM operation of the Pulse Output instruction. After you select the option for the Position module
and click Next, the wizard guides you through the steps required for configuring the Position module.

Entering the Location of the Position Module
You must define the parameters for your module and the set of motion profiles for your application by
entering the module type and location. The Position Control wizard simplifies this task by automatically
reading the position of the intelligent module. You only have to click the Read Modules button.

For an S7-200 CPU with firmware prior to version 1.2, you must install the intelligent module next to the
CPU in order for the Position Control wizard to configure the module.

Selecting the Type of Measurement
You must select the measurement system to be used throughout the configuration. You can select to use
either engineering units or pulses. If you select pulses, you do not have to specify any other information. If
you select engineering units, you must enter the following data: the number of pulses required to produce
one revolution of the motor (refer to the data sheet for your motor or drive), the base unit of measurement
(such as inch, foot, millimeter, or centimeter), and the amount of motion (or “units”) provided by one
revolution of the motor.

STEP 7–Micro/WIN provides an EM253 Control Panel that allows you to modify the number of units per
revolution after the Position module has been configured.

If you change the measurement system later, you must delete the entire configuration including any
instructions generated by the Position Control wizard. You must then enter your selections consistent with
the new measurement system.

Position
Control

9

Creating a Program for the Position Module Chapter 9

247

Editing the Default Input and Output Configurations
The Position Control wizard provides an Advanced Options selection that allows you to view and edit the
default input and output configurations for the Position module:

� The Input Active Levels tab changes the activation level settings. When the level is set to High, a
logic 1 is read when current is flowing in the input. When the level is set to Low, a logic 1 is read
when there is no current flow in the input. A logic 1 level is always interpreted as meaning the
condition is active. The LEDs are illuminated when current flows in the input, regardless of
activation level. (Default = active high)

� The Input Filter Times tab allows you to specify a delay time (range of 0.20 ms to 12.80 ms) for
filtering the STP, RPS, LMT+, and LMT– inputs. This delay helps to filter noise on the input wiring
that could cause inadvertent changes to the state of the inputs. (Default = 6.4 ms)

� The Pulse and Directional Outputs tab allows you to specify the method of controlling direction. First
you must specify the polarity of the outputs.

Selecting Positive Polarity
For an application that uses positive polarity, select one of the following methods (shown in Figure 9-3) to
accommodate your drive and the orientation of your application:

� The Position module emits pulses from the P0 output for positive rotation and pulses from the P1
output for negative rotation.

� The Position module emits pulses from the P0 output. The module turns on the P1 output for
positive rotation and turn off the P1 output for negative rotation. (This is the default setting.)

P0

P1

Positive Rotation Negative Rotation

P0

P1

Positive Rotation Negative Rotation

Figure 9-3 Rotation Options for Positive Polarity

Selecting Negative Polarity
For an application that uses negative polarity, select one of the following methods (shown in Figure 9-4) to
accommodate your drive and the orientation of your application:

� The Position module emits pulses from the P0 output for negative rotation and pulses from the P1
output for positive rotation.

� The Position module emits pulses from the P0 output. The module turns off the P1 output for
positive rotation and turn on the P1 output for negative rotation.

P0

P1

Positive Rotation Negative Rotation

P0

P1

Positive Rotation Negative Rotation

Figure 9-4 Rotation Options for Negative Polarity

9

S7-200 Programmable Controller System Manual

248

Configuring the Response of the Module to the Physical Inputs
You must specify how the Position module responds to each of the LMT+ switch, the LMT– switch, and
the STP input: no action (ignore the input condition), decelerate to a stop (default), or immediate stop.

Warning
Control devices can fail in unsafe conditions, and can result in unpredictable operation of controlled
equipment. Such unpredictable operations could result in death or serious personal injury, and/or
equipment failure.

The limit and stop functions in the Position Module are electronic logic implementations that do not
provide the level of protection provided by electromechanical controls. Consider using an emergency
stop function, electromechanical overrides, or redundant safeguards that are independent of the
Position module and the S7-200 CPU.

Entering the Maximum and Start/Stop Speeds
You must specify the maximum speed (MAX_SPEED) and Start/Stop Speed (SS_SPEED) for your
application:

� MAX_SPEED: Enter the value for the optimum operating speed of your application within the torque
capability of your motor. The torque required to drive the load is determined by friction, inertia, and
the acceleration/deceleration times. The Position Control wizard calculates and displays the
minimum speed that can be controlled by the Position module for a specified MAX_SPEED.

� SS_SPEED: Enter a value within the
capability of your motor to drive your load
at low speeds. If the SS_SPEED value is
too low, the motor and load could vibrate or
move in short jumps at the beginning and
end of travel. If the SS_SPEED value is too
high, the motor could lose pulses on start
up, and the load could overdrive the motor
when attempting to stop.

Speed

Distance

MAX_SPEED

SS_SPEED

when attempting to stop.
Figure 9-5 Maximum Speed and Start/Stop Speed

Motor data sheets have different ways of specifying the start/stop (or pull-in/pull-out) speed for a motor
and given load. Typically, a useful SS_SPEED value is 5% to 15% of the MAX_SPEED value. The
SS_SPEED value must be greater than the minimum speed displayed from your specification of
MAX_SPEED.

To help you select the correct speeds for your application, refer to the data sheet for your motor.
Figure 9-6 shows a typical motor torque/speed curve.

Motor Speed

Motor torque versus
speed characteristic

Start/Stop speed versus torque

This curve moves towards lower
speed as the load inertia increases.

Maximum speed that the motor can drive the load

MAX_SPEED should not exceed this value.

Torque required
to drive the load

Start/Stop speed
(SS_SPEED) for this load

Motor
Torque

Figure 9-6 Typical Torque–Speed Curve for a Motor

9

Creating a Program for the Position Module Chapter 9

249

Entering the Jog Parameters
The Jog command is used to manually move the tool to a desired location. Using the Position Control
wizard, you specify the following Jog parameters values:

� JOG_SPEED: The JOG_SPEED (Jog speed for the motor) is the maximum speed that can be
obtained while the JOG command remains active.

� JOG_INCREMENT: Distance that the tool is moved by a momentary JOG command.

Figure 9-7 shows the operation of the Jog command. When the Position module receives a Jog
command, it starts a timer. If the Jog command is terminated before 0.5 seconds has elapsed, the Position
module moves the tool the amount specified in the JOG_INCREMENT at the speed defined by
SS_SPEED. If the Jog command is still active when the 0.5 seconds have elapsed, the Position module
accelerates to the JOG_SPEED. Motion continues until the Jog command is terminated. The Position
module then performs a decelerated stop. You can enable the Jog command either from the EM 253
control panel or with a position instruction.

Speed

Distance

JOG_SPEED

SS_SPEED

MAX_SPEED

JOG command terminated

JOG_INCREMENT
JOG command active for
less than 0.5 seconds

JOG command active for
more than 0.5 seconds

Figure 9-7 Representation of a JOG Operation

Entering the Acceleration and Deceleration Times
As part of the configuration for the Position module, you set the acceleration and deceleration times. The
default setting for both the acceleration time and the deceleration time is 1 second. Typically, motors can
work with less than 1 second. You specify the following times in milliseconds:

� ACCEL_TIME: Time required for the motor
to accelerate from SS_SPEED to
MAX_SPEED.
Default = 1000 ms

� DECEL_TIME: Time required for the motor
to decelerate from MAX_SPEED to
SS_SPEED.
Default = 1000 ms

Speed

Distance

MAX_SPEED

SS_SPEED

ACCEL_TIME DECEL_TIME

Figure 9-8 Acceleration and Deceleration Times

Tip
Motor acceleration and deceleration times are determined by trial and error. You should start by entering
a larger value with the Position Control wizard. As you test your application, you can then use the EM
253 Control Panel to adjust the values as required. Optimize these settings for the application by
gradually reducing the times until the motor starts to stall.

9

S7-200 Programmable Controller System Manual

250

Entering the Jerk Time
Jerk compensation provides smoother position control by reducing the jerk (rate of change) in acceleration
and deceleration parts of the motion profile. See Figure 9-9. Reducing jerk improves position tracking
performance. Jerk compensation is also known as “S curve profiling.” Jerk compensation can only be
applied to simple one-step profiles. This compensation is applied equally to the beginning and ending
portions of both the acceleration and deceleration curve. Jerk compensation is not applied to the initial and
final step between zero speed and SS_SPEED.

You specify the jerk compensation by entering a
time value (JERK_TIME). This is the time
required for acceleration to change from zero to
the maximum acceleration defined by
MAX_SPEED, SS_SPEED, and ACCEL_TIME,
or equivalently for DECEL_TIME. A longer jerk
time yields smoother operation with a smaller
increase in total cycle time than would be
obtained by simply increasing the ACCEL_TIME
and DECEL_TIME. A value of zero indicates that
no compensation should be applied.

Speed

Distance

MAX_SPEED

SS_SPEED

JERK_TIME

(Default = 0 ms) Figure 9-9 Jerk Compensation

Tip
A good first value for JERK_TIME is 40% of ACCEL_TIME.

Configuring a Reference Point and the Seek Parameters
If your application specifies movements from an absolute position, you must establish a zero position that
fixes the position measurements to a known point on the physical system. One method is to provide a
reference point (RP) on your physical system. The Position module provides an external reference point
switch (RPS) input that is used when seeking the RP.

You can configure the Reference Point Seek (RP seek) parameters that control how your motion
application seek the RP. The RP can be centered in the RPS Active zone, the RP can be located on the
edge of the RPS Active zone, or the RP can be located a specified number of zero pulse (ZP) input
transitions from the edge of the RPS Active zone. To configure the RP, you enter the following information:

� You specify the RP seek speeds for the motor:

– RP_FAST is the initial speed the module uses when performing an RP seek command.
Typically, the RP_FAST value is approximately 2/3 of the MAX_SPEED value.

– RP_SLOW is the speed of the final approach to the RP. A slower speed is used on approach
to the RP, so as not to miss it. Typically, the RP_SLOW value is the SS_SPEED value.

� You specify the initial seek direction (RP_SEEK_DIR) and the final approach direction
(RP_APPR_DIR) for the RP Seek. These directions are specified as negative or positive.

– RP_SEEK_DIR is the initial direction for the RP seek operation. Typically, this is the direction
from the work zone to the vicinity of the RP. Limit switches play an important role in defining
the region that is searched for the RP. When performing a RP seek operation, encountering a
limit switch can result in a reversal of the direction, which allows the search to continue.
(Default = Negative)

– RP_APPR_DIR is the direction of the final approach to the RP. To reduce backlash and
provide more accuracy, RP_APPR_DIR moves in the same direction as the normal work
cycle. (Default = Positive)

9

Creating a Program for the Position Module Chapter 9

251

The Position Control wizard provides advanced reference point options that allow you to specify a RP
offset (RP_OFFSET), which is the distance from the RP to the zero position. See Figure 9-10. The RP is
identified by a method of locating an exact position with respect to the RPS. To configure the RP offset,
you enter the following values:

� RP_OFFSET: Distance from the RP to the
zero position of the physical measuring
system. Default = 0

� Backlash compensation: Distance that the
motor must move to eliminate the slack
(backlash) in the system on a direction
change. Backlash compensation is always

RP_OFFSET

RP Zero Position

Work
Zone

a positive value. Default = 0
Figure 9-10 Relationship Between RP and Zero Position

Configuring the RP Seek Sequence
You can configure the sequence that the Position module uses to search for the reference point.
Figure 9-11 shows a simplified diagram of the default RP seek sequence. You can select the following
options for the RP search sequence:

� RP Seek mode 0: Does not perform a RP seek sequence

� RP Seek mode 1: The RP is where the RPS input goes active on the approach from the work zone
side. (Default)

� RP Seek mode 2: The RP is centered
within the active region of the RPS input.

� RP Seek mode 3: The RP is located
outside the active region of the RPS input.
RP_Z_CNT specifies how many ZP (Zero
Pulse) input counts should be received
after the RPS becomes inactive.

� RP Seek mode 4: The RP is generally
within the active region of the RPS input.
RP_Z_CNT specifies how many ZP (Zero
Pulse) input counts should be received

RP Seek Direction

Work Zone

LMT–
Active

RPS
Active RP Approach Direction

RP Seek Mode 1

after the RPS becomes active. Figure 9-11 Default RP Search Sequence (Simplified)

Tip
The RPS Active region (which is the distance that the RPS input remains active) must be greater than
the distance required to decelerate from the RP_FAST speed to the RP_SLOW speed. If the distance is
too short, the Position module generates an error.

For more information about the different RP seek sequences for the Position module, see Figures 9-14
through 9-17 on pages 254 through 255.

9

S7-200 Programmable Controller System Manual

252

Configuring the Motion Profiles for the Position Module
A profile is a pre-defined motion description consisting of one or more speeds of movement that effect a
movement from a starting point to an ending point. You do not have to define a profile in order to use the
module. The Position Control wizard provides an instruction subroutine (POSx_GOTO) for you to use to
control moves.

� Number of profiles: You can select up to a maximum of 25 profiles.

� Address for the command byte: You must enter the output (Q) memory address of the command
byte for the Position module. See Figure 4-10 on page 31 for a description of the I/O numbering.

� Address for the configuration/profile table: You must enter the starting memory address for the
configuration/profile table that stores the configuration data for the Position module and the data for
all of the profiles. The configuration data for the Position module requires 92 bytes of V memory,
and each profile requires 34 bytes of V memory. For example, the amount of memory required for
the configuration/profile table for a Position module with one profile is 126 bytes of V memory.

The Position Control wizard can suggest an unused V memory block address of the correct size.

Defining the Motion Profile
The Position Control wizard provides a Motion Profile Definition where you define each motion profile for
your application. For each profile, you select the operating mode and define the specifics of each
individual step for the profile. The Position Control wizard also allows you to define a symbolic name for
each profile by simply entering the symbol name as you define the profile. After you have finished
configuring the profile, you can save to configuration and print a copy of the parameters.

Selecting the Mode of Operation for the Profile
You configure the profile according the the mode of operation, either an absolute position, a relative
position, a single-speed continuous rotation, or a two-speed continuous rotation. Figure 9-12 shows the
different modes of operation.

Starting
Position

Ending
Position

0
Zero

Position

Absolute Position

Starting
Position

Ending Position
Measured from the
starting point

Relative Position

Controlled by your program until
another command (such as Abort)
is issued

Single-Speed
Continuous Rotation

Target Speed
Reached

RPS signals
Stop

Single-Speed Continuous Rotation
with Triggered Stop

Target Speed with
RPS Inactive

Target Speed with
RPS Active

Two-Speed Continuous Rotation

Figure 9-12 Mode Selections for the Position Module

9

Creating a Program for the Position Module Chapter 9

253

Creating the Steps for the Profile
A step is a fixed distance that a tool moves, including the distance covered during acceleration and
deceleration times. Each profile can have up to 4 individual steps.

You specify the target speed and ending position
for each step. If you have more than one step,
simply click the New Step button and enter the
information for each step of the profile.
Figure 9-13 shows four possible profiles;
however, there are other possible combinations.

By simply clicking the Plot Step button, you can
view a graphical representation of the step, as
calculated by the Position Control wizard. This
allows you to easily and interactively review and
edit each step.

One-Step Profile Two-Step Profile

Three-Step Profile Four-Step Profile

Figure 9-13 Sample Motion Profiles

Finishing the Configuration for the Position Module
After you have configured the operation of the Position module, you simply click Finish, and the Position
Control wizard performs the following tasks:

� Inserts the module configuration and profile table into the data block for your S7-200 program

� Creates a global symbol table for the motion parameters

� Adds the motion instruction subroutines into the project program block for you to use in your
application

You can run the Position Control wizard again in order to modify any configuration or profile information.

Tip
Because the Position Control wizard makes changes to the program block, the data block and the
system block, be sure to download all three blocks to the S7-200 CPU. Otherwise, the Position module
might not have all the program components that it needs for proper operation.

Understanding the RP Seek Modes Supported by the Position Module
The following figures provide diagrams of the different options for each RP seek mode.

� Figure 9-14 shows two of the options for RP seek mode 1. This mode locates the RP where the
RPS input goes active on the approach from the work zone side.

� Figure 9-15 shows two of the options for RP seek mode 2. This mode locates the RP in the center
within the active region of the RPS input.

� Figure 9-16 shows two of the options for RP seek mode 3. This mode locates the RP a specified
number of zero pulses (ZP) outside the active region of the RPS input.

� Figure 9-17 shows two of the options for RP seek mode 4. This mode locates the RP a specified
number of zero pulses (ZP) within the active region of the RPS input.

For each mode, there are four combinations of RP Seek direction and RP Approach direction. (Only two of
the combinations are shown.) These combinations determine the pattern for the RP seek operation. For
each of the combinations, there are also four different starting points:

The work zones for each diagram have been located so that moving from the reference point to the work
zone requires movement in the same direction as the RP Approach Direction. By selecting the location of
the work zone in this way, all the backlash of the mechanical gearing system is removed for the first move
to the work zone after a reference point seek.

9

S7-200 Programmable Controller System Manual

254

Default configuration :

RP Seek Direction: Negative

RP Approach Direction: Positive Work Zone

LMT–
Active

RPS Active

Positive motion

Negative motion

RP Seek Direction: Positive

RP Approach Direction: Positive

Work Zone

LMT+
Active

RPS Active

RP

RP

Positive motion

Negative motion

Figure 9-14 RP Seek Mode 1

Work Zone

LMT–
Active

RPS Active

RP

Default configuration :

RP Seek Direction: Negative

RP Approach Direction: Positive

RP Seek Direction: Positive

RP Approach Direction: Positive

Work Zone

LMT+
Active

RPS Active

RP

Positive motion

Negative motion

Positive motion

Negative motion

Figure 9-15 RP Seek: Mode 2

9

Creating a Program for the Position Module Chapter 9

255

ÍÍ

ÍÍ

Work Zone

LMT–
Active

RPS
Active RP

Default configuration :

RP Seek Direction: Negative

RP Approach Direction: Positive

RP Seek Direction: Positive

RP Approach Direction: Positive

Number of ZP pulses

Work Zone

LMT+
Active

RPS
Active

RP

Number of
ZP pulses

Positive motion

Negative motion

Positive motion

Negative motion

Figure 9-16 RP Seek: Mode 3

ÍÍÍ

ÍÍÍ

Work Zone

LMT–
Active

Work Zone

LMT+
Active

RPS Active

RP

RPS Active

RP

Default configuration :

RP Seek Direction: Negative

RP Approach Direction: Positive

RP Seek Direction: Positive

RP Approach Direction: Positive

Number of ZP pulses

Number of
ZP pulses

Positive motion

Negative motion

Positive motion

Negative motion

Figure 9-17 RP Seek: Mode 4

9

S7-200 Programmable Controller System Manual

256

Selecting the Location of the Work Zone to Eliminate Backlash
Figure 9-18 shows the work zone in relationship to the reference point (RP), the RPS Active zone, and the
limit switches (LMT+ and LMT–) for an approach direction that eliminates the backlash. The second part of
the illustration places the work zone so that the backlash is not eliminated. Figure 9-18 shows RP seek
mode 3. A similar placement of the work zone is possible, although not recommended, for each of the
search sequences for each of the other RP seek modes.

Work Zone

LMT–
Active

RPS
ActiveRP

Work Zone

LMT–
Active

RPS
ActiveRP

Backlash is not eliminated

Backlash is eliminated
RP Seek Direction: Negative

RP Approach Direction: Negative

RP Seek Direction: Negative

RP Approach Direction: Negative

Positive motion

Negative motion

Positive motion

Negative motion

Figure 9-18 Placement of the Work Zone with and without the Elimination of Backlash

9

Creating a Program for the Position Module Chapter 9

257

Position Instructions Created by the Position Control Wizard
The Position Control wizard makes controlling the Position module easier by creating unique instruction
subroutines based on the position of the module and configuration options you selected. Each position
instruction is prefixed with a ”POSx_” where x is the module location. Because each position instruction is
a subroutine, the 11 position instructions use 11 subroutines.

Tip
The position instructions increase the amount of memory required for your program by up to 1700 bytes.
You can delete unused position instructions to reduce the amount of memory required. To restore a
deleted position instruction, simply run the Position Control wizard again.

Guidelines for Using the Position Instructions
You must ensure that only one position instruction is active at a time.

You can execute the POSx_RUN and POSx_GOTO from an interrupt routine. However, it is very important
that you do not attempt to start an instruction in an interrupt routine if the module is busy processing
another command. If you start an instruction in an interrupt routine, then you can use the outputs of the
POSx_CTRL instruction to monitor when the Position module has completed the movement.

The Position Control wizard automatically configures the values for the speed parameters (Speed and
C_Speed) and the position parameters (Pos or C_Pos) according to the measurement system that you
selected. For pulses, these parameters are DINT values. For engineering units, the parameters are REAL
values for the type of unit that you selected. For example: selecting centimeters (cm) stores the position
parameters as REAL values in centimeters and stores the speed parameters as REAL values in
centimeters per second (cm/sec).

The following position instructions are required for specific position control tasks:

� Insert the POSx_CTRL instruction in your program and use the SM0.0 contact to execute it every
scan.

� To specify motion to an absolute position, you must first use either an POSx_RSEEK or a
POSx_LDPOS instruction to establish the zero position.

� To move to a specific location, based on inputs from your program, use the POSx_GOTO
instruction.

� To run the motion profiles you configured with the Position Control wizard, use the POSx_RUN
instruction.

The other position instructions are optional.

9

S7-200 Programmable Controller System Manual

258

POSx_CTRL Instruction
The POSx_CTRL instruction (Control) enables and initializes the
Position module by automatically commanding the Position module
to load the configuration/profile table each time the S7-200 changes
to RUN mode.

Use this instruction only once in your project, and ensure that your
program calls this instruction every scan. Use SM0.0 (Always On)
as the input for the EN parameter.

The EN parameter must be on to enable the other position
instructions to send commands to the Position module. If the EN
parameter turns off, then the Position module aborts any command
that is in progress.

The output parameters of the POSx_CTRL instruction provide the
current status of the Position module.

The Done parameter turns on when the Position module completes
any instruction.

The Error parameter contains the result of this instruction. See
Table 9-13 on page 276 for definitions of the error codes.

The C_Pos parameter is the current position of the module. Based of the units of measurement, the value
is either a number of pulses (DINT) or the number of engineering units (REAL).

The C_Speed parameter provides the current speed of the module. If you configured the measurement
system for the Position module for pulses, C_Speed is a DINT value containing the number of
pulses/second. If you configured the measurement system for engineering units, C_Speed is a REAL
value containing the selected engineering units/second (REAL).

The C_Dir parameter indicates the current direction of the motor.

Table 9-2 Parameters for the POSx_CTRL Instruction

Inputs/Outputs Data Type Operands

MOD_EN BOOL I, Q, V, M, SM, S, T, C, L, Power Flow

Done, C_Dir BOOL I, Q, V, M, SM, S, T, C, L

Error BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

C_Pos, C_Speed DINT, REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD

Tip
The Position module reads the configuration/profile table only at power-up or when commanded to load
the configuration.

� If you use the Position Control wizard to modify the configuration, then the POSx_CTRL instruction
automatically commands the Position module to load the configuration/profile table every time the
S7-200 CPU changes to RUN mode.

� If you use the EM 253 Control Panel to modify the configuration, clicking the Update Configuration
button commands the Position module to load the new configuration/profile table.

� If you use another method to modify the configuration, then you must also issue a Reload the
Configuration command to the Position module to load the configuration/profile table. Otherwise, the
Position module continues to use the old configuration/profile table.

9

Creating a Program for the Position Module Chapter 9

259

POSx_MAN Instruction
The POSx_MAN instruction (Manual Mode) puts the Position
module into manual mode. This allows the motor to be run at
different speeds or to be jogged in a positive or negative direction.
While the POSx_MAN instruction is enabled, only the POSx_CTRL
and POSx_DIS instructions are allowed.

You can enable only one of the RUN, JOG_P, or JOG_N inputs at a
time.

Enabling the RUN (Run/Stop) parameter commands to the Position
module to accelerate to the specified speed (Speed parameter) and
direction (Dir parameter). You can change the value for the Speed
parameter while the motor is running, but the Dir parameter must
remain constant. Disabling the RUN parameter commands the
Position module to decelerate until the motor comes to a stop.

Enabling the JOG_P (Jog Positive Rotation) or the JOG_N (Jog
Negative Rotation) parameter commands the Position module to jog
in either a positive or negative direction. If the JOG_P or JOG_N
parameter remains enabled for less than 0.5 seconds, the Position
module issues pulses to travel the distance specified in
JOG_INCREMENT. If the JOG_P or JOG_N parameter remains
enabled for 0.5 seconds or longer, the motion module begins to
accelerate to the specified JOG_SPEED.

The Speed parameter determines the speed when RUN is enabled.
If you configured the measuring system of the Position module for
pulses, the speed is a DINT value for pulses/second. If you
configured the measuring system of the Position module for
engineering units, the speed is a REAL value for units/second. You
can change this parameter while the motor is running.

The Dir parameter determines the direction to move when RUN is enabled. You cannot change this value
when the RUN parameter is enabled.

The Error parameter contains the result of this instruction. See Table 9-13 on page 276 for definitions of
the error codes.

The C_Pos parameter contains the current position of the module. Based of the units of measurement
selected, the value is either a number of pulses (DINT) or the number of engineering units (REAL).

The C_Speed parameter contains the current speed of the module. Based of the units of measurement
selected, the value is either the number of pulses/second (DINT) or the engineering units/second (REAL).

The C_Dir parameter indicates the current direction of the motor.

Table 9-3 Parameters for the POSx_MAN Instruction

Inputs/Outputs Data Type Operands

RUN, JOG_P, JOG_N BOOL I, Q, V, M, SM, S, T, C, L, Power Flow

Speed DINT, REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD, Constant

Dir, C_Dir BOOL I, Q, V, M, SM, S, T, C, L

Error BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

C_Pos, C_Speed DINT, REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD

9

S7-200 Programmable Controller System Manual

260

POSx_GOTO Instruction
The POSx_GOTO instruction commands the Position Module to go
to a desired location.

Turning on the EN bit enables the instruction. Ensure that the EN bit
stays on until the DONE bit signals that the execution of the
instruction has completed.

Turning on the START parameter sends a GOTO command to the
Position module. For each scan when the START parameter is on
and the Position module is not currently busy, the instruction sends
a GOTO command to the Position module. To ensure that only one
GOTO command is sent, use an edge detection element to pulse
the START parameter on.

The Pos parameter contains a value that signifies either the location
to move (for an absolute move) or the distance to move (for a
relative move). Based of the units of measurement selected, the
value is either a number of pulses (DINT) or the engineering units
(REAL).

The Speed parameter determines the maximum speed for this
movement. Based of the units of measurement, the value is either a
number of pulses/second (DINT) or the engineering units/second
(REAL).

The Mode parameter selects the type of move:
0 – Absolute position
1 – Relative position
2 – Single–speed, continuous positive rotation
3 – Single–speed, continuous negative rotation

The Done parameter turns on when the Position module completes this instruction.

The Error parameter contains the result of this instruction. See Table 9-13 on page 276 for definitions of
the error codes.

The C_Pos parameter contains current position of the module. Based of the units of measurement, the
value is either a number of pulses (DINT) or the number of engineering units (REAL).

The C_Speed parameter contains the current speed of the module. Based of the units of measurement,
the value is either a number of pulses/second (DINT) or the engineering units/second (REAL).

Table 9-4 Parameters for the POSx_GOTO Instruction

Inputs/Outputs Data Type Operands

START BOOL I, Q, V, M, SM, S, T, C, L, Power Flow

Pos, Speed DINT, REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD, Constant

Mode BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD, Constant

Abort, Done BOOL I, Q, V, M, SM, S, T, C, L

Error BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

C_Pos, C_Speed DINT, REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD

9

Creating a Program for the Position Module Chapter 9

261

POSx_RUN Instruction
The POSx_RUN instruction (Run Profile) commands the Position
module to execute the motion operation in a specific profile stored in
the configuration/profile table.

Turning on the EN bit enables the instruction. Ensure that the EN bit
stays on until the Done bit signals that the execution of the
instruction has completed.

Turning on the START parameter sends a RUN command to the
Position module. For each scan when the START parameter is on
and the Position module is not currently busy, the instruction sends
a RUN command to the Position module. To ensure that only one
command is sent, use an edge detection element to pulse the
START parameter on.

The Profile parameter contains the number or the symbolic name for
the motion profile. You can also select the advanced motion
commands (118 to 127). For information about the motion
commands, see Table 9-19 on page 284.

Turning on the Abort parameter commands to the Position module
to stop the current profile and decelerate until the motor comes to a
stop.

The Done parameter turns on when the module completes this
instruction.

The Error parameter contains the result of this instruction. See
Table 9-13 on page 276 for definitions of the error codes.

The C_Profile parameter contains the profile currently being executed by the Position module.

The C_Step parameter contains the step of the profile currently being executed.

The C_Pos parameter contains the current position of the module. Based of the units of measurement, the
value is either a number of pulses (DINT) or the number of engineering units (REAL).

The C_Speed parameter contains the current speed of the module. Based of the units of measurement,
the value is either a number of pulses/second (DINT) or the engineering units/second (REAL).

Table 9-5 Parameters for the POSx_RUN Instruction

Inputs/Outputs Data Type Operands

START BOOL I, Q, V, M, SM, S, T, C, L, Power Flow

Profile BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD, Constant

Abort, Done BOOL I, Q, V, M, SM, S, T, C, L

Error, C_Profile, C_Step BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

C_Pos, C_Speed DINT, REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD

9

S7-200 Programmable Controller System Manual

262

POSx_RSEEK Instruction
The POSx_RSEEK instruction (Seek Reference Point Position)
initiates a reference point seek operation, using the search method
in the configuration/profile table. When the Position module locates
the reference point and motion has stopped, the Position module
loads the RP_OFFSET parameter value into the current position
and generates a 50-millisecond pulse on the CLR output.

The default value for RP_OFFSET is 0. You can use the Position
Control wizard, the EM253 Control Panel, or the POSx_LDOFF
(Load Offset) instruction to change the RP_OFFSET value.

Turning on the EN bit enables the instruction. Ensure that the EN bit
stays on until the Done bit signals that the execution of the
instruction has completed.

Turning on the START parameter sends a RSEEK command to the
Position module. For each scan when the START parameter is on
and the Position module is not currently busy, the instruction sends
a RSEEK command to the Position module. To ensure that only one
command is sent, use an edge detection element to pulse the
START parameter on.

The Done parameter turns on when the module completes this instruction.

The Error parameter contains the result of this instruction. See Table 9-13 on page 276 for definitions of
the error codes.

Table 9-6 Parameters for the POSx_RSEEK Instruction

Inputs/Outputs Data Type Operands

START BOOL I, Q, V, M, SM, S, T, C, L, Power Flow

Done BOOL I, Q, V, M, SM, S, T, C, L

Error BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

9

Creating a Program for the Position Module Chapter 9

263

POSx_LDOFF Instruction
The POSx_LDOFF instruction (Load Reference Point Offset)
establishes a new zero position that is at a different location from
the reference point position.

Before executing this instruction, you must first determine the
position of the reference point. You must also move the machine to
the starting position. When the instruction sends the LDOFF
command, the Position module computes the offset between the
starting position (the current position) and the reference point
position. The Position module then stores the computed offset to the
RP_OFFSET parameter and sets the current position to 0. This
establishes the starting position as the zero position.

In the event that the motor loses track of its position (such as on
loss of power or if the motor is repositioned manually), you can use
the POSx_RSEEK instruction to re-establish the zero position
automatically.

Turning on the EN bit enables the instruction. Ensure that the EN bit
stays on until the Done bit signals that the execution of the
instruction has completed.

Turning on the START parameter sends a LDOFF command to the Position module. For each scan when
the START parameter is on and the Position module is not currently busy, the instruction sends a LDOFF
command to the Position module. To ensure that only one command is sent, use an edge detection
element to pulse the START parameter on.

The Done parameter turns on when the module completes this instruction.

The Error parameter contains the result of this instruction. See Table 9-13 on page 276 for definitions of
the error codes.

Table 9-7 Parameters for the POSx_LDOFF Instruction

Inputs/Outputs Data Type Operands

START BOOL I, Q, V, M, SM, S, T, C, L, Power Flow

Done BOOL I, Q, V, M, SM, S, T, C, L

Error BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

9

S7-200 Programmable Controller System Manual

264

POSx_LDPOS Instruction
The POSx_LDPOS instruction (Load Position) changes the current
position value in the Position module to a new value. You can also
use this instruction to establish a new zero position for any absolute
move command.

Turning on the EN bit enables the instruction. Ensure that the EN bit
stays on until the Done bit signals that the execution of the
instruction has completed.

Turning on the START parameter sends a LDPOS command to the
Position module. For each scan when the START parameter is on
and the Position module is not currently busy, the instruction sends
a LDPOS command to the Position module. To ensure that only one
command is sent, use an edge detection element to pulse the
START parameter on.

The New_Pos parameter provides the new value to replace the
current position value that the Position module reports and uses for
absolute moves. Based of the units of measurement, the value is
either a number of pulses (DINT) or the engineering units (REAL).

The Done parameter turns on when the module completes this
instruction.

The Error parameter contains the result of this instruction. See Table 9-13 on page 276 for definitions of
the error codes.

The C_Pos parameter contains the current position of the module. Based of the units of measurement, the
value is either a number of pulses (DINT) or the number of engineering units (REAL).

Table 9-8 Parameters for the POSx_LDPOS Instruction

Inputs/Outputs Data Type Operands

START BOOL I, Q, V, M, SM, S, T, C, L, Power Flow

New_Pos, C_Pos DINT, REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD

Done BOOL I, Q, V, M, SM, S, T, C, L

Error BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

9

Creating a Program for the Position Module Chapter 9

265

POSx_SRATE Instruction
The POSx_SRATE instruction (Set Rate) commands the Position
module to change the acceleration, deceleration, and jerk times.

Turning on the EN bit enables the instruction. Ensure that the EN bit
stays on until the Done bit signals that the execution of the
instruction has completed.

Turning on the START parameter copies the new time values to the
configuration/profile table and sends a SRATE command to the
Position module. For each scan when the START parameter is on
and the Position module is not currently busy, the instruction sends
a SRATE command to the Position module. To ensure that only one
command is sent, use an edge detection element to pulse the
START parameter on.

The ACCEL_Time, DECEL_Time, and JERK_Time parameters
determine the new acceleration time, deceleration time, and jerk
time in milliseconds (ms).

The Done parameter turns on when the module completes this
instruction.

The Error parameter contains the result of this instruction. See
Table 9-13 on page 276 for definitions of the error codes.

Table 9-9 Parameters for the POSx_SRATE Instruction

Inputs/Outputs Data Type Operands

START BOOL I, Q, V, M, SM, S, T, C, L

ACCEL_Time, DECEL_Time,
JERK_Time

DINT ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD, Constant

Done BOOL I, Q, V, M, SM, S, T, C, L

Error BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

9

S7-200 Programmable Controller System Manual

266

POSx_DIS Instruction
The POSx_DIS instruction turns the DIS output of the Position
module on or off. This allows you to use the DIS output for disabling
or enabling a motor controller. If you use the DIS output on the
Position module, then this instruction can be called every scan or
only when you need to change the value of the DIS output.

When the EN bit turns on to enable the instruction, the DIS_ON
parameter controls the DIS output of the Position module. For more
information about the DIS output, see Table 9-1 on page 244 or
refer to the specifications for the Position module in Appendix A.

The Error parameter contains the result of this instruction. See
Table 9-13 on page 276 for definitions of the error codes.

Table 9-10 Parameters for the POSx_DIS Instruction

Inputs/Outputs Data Type Operands

DIS_ON BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD, Constant

Error BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

9

Creating a Program for the Position Module Chapter 9

267

POSx_CLR Instruction
The POSx_CLR instruction (Pulse the CLR Output) commands the
Position module to generate a 50-ms pulse on the CLR output.

Turning on the EN bit enables the instruction. Ensure that the EN bit
stays on until the Done bit signals that the execution of the
instruction has completed.

Turning on the START parameter sends a CLR command to the
Position module. For each scan when the START parameter is on
and the Position module is not currently busy, the instruction sends
a CLR command to the Position module. To ensure that only one
command is sent, use an edge detection element to pulse the
START parameter on.

The Done parameter turns on when the module completes this
instruction.

The Error parameter contains the result of this instruction. See
Table 9-13 on page 276 for definitions of the error codes.

Table 9-11 Parameters for the POSx_CLR Instruction

Inputs/Outputs Data Type Operands

START BOOL I, Q, V, M, SM, S, T, C, L, Power Flow

Done BOOL I, Q, V, M, SM, S, T, C, L

Error BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

9

S7-200 Programmable Controller System Manual

268

POSx_CFG Instruction
The POSx_CFG instruction (Reload Configuration) commands the
Position module to read the configuration block from the location
specified by the configuration/profile table pointer. The Position
module then compares the new configuration with the existing
configuration and performs any required setup changes or
recalculations.

Turning on the EN bit enables the instruction. Ensure that the EN bit
stays on until the Done bit signals that the execution of the
instruction has completed.

Turning on the START parameter sends a CFG command to the
Position module. For each scan when the START parameter is on
and the Position module is not currently busy, the instruction sends
a CFG command to the Position module. To ensure that only one
command is sent, use an edge detection element to pulse the
START parameter on.

The Done parameter turns on when the module completes this
instruction.

The Error parameter contains the result of this instruction. See Table 9-13 on page 276 for definitions of
the error codes.

Table 9-12 Parameters for the POSx_CFG Instruction

Inputs/Outputs Data Type Operands

START BOOL I, Q, V, M, SM, S, T, C, L, Power Flow

Done BOOL I, Q, V, M, SM, S, T, C, L

Error BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

9

Creating a Program for the Position Module Chapter 9

269

Sample Programs for the Position Module
The first sample program shows a simple relative move that uses the POSx_CTRL and POSx_GOTO
instructions to perform a cut-to-length operation. This program does not require an RP seek mode or a
motion profile, and the length can be measured in either pulses or engineering units. Enter the length
(VD500) and target speed (VD504). When I0.0 (Start) turns on, the machine starts. When I0.1 (Stop) turns
on, the machine finishes the current operation and stops. When I0.2 (E_Stop) turns on, the machine
aborts any motion and immediately stops.

The second sample program provides an example of the POSx_CTRL, POSx_RUN, POSx_RSEEK, and
POSx_MAN instructions. You must configure the RP seek mode and a motion profile.

Sample Program 1: Simple Relative Move (Cut to Length application)

Network 1 //Control instruction (module in slot 0).

LD SM0.0
= L60.0
LDN I0.2
= L63.7
LD L60.0
CALL POS0_CTRL, L63.7, M1.0, VB900, VD902, VD906,

V910.0

Network 2 //Start puts machine into automatic mode

LD I0.0
AN I0.2
EU
S Q0.2, 1
S M0.1, 1

Network 3 //E_Stop: stops immediately and
//turns off automatic mode.

LD I0.2
R Q0.2, 1

Network 4 //Move to a certain point:
//Enter the length to cut.
//Enter the target speed into Speed.
//Set the mode to 1 (Relative mode).

LD Q0.2
= L60.0
LD M0.1
EU
= L63.7
LD L60.0
CALL POS0_GOTO, L63.7, VD500, VD504, 1, I0.2, Q0.4,

VB920, VD922, VD926

Network 5 //When in position, turn on the cutter
//for 2 seconds to finish the cut.

LD Q0.2
A Q0.4
TON T33, +200
AN T33
= Q0.3

9

S7-200 Programmable Controller System Manual

270

Sample Program 1: Simple Relative Move (Cut to Length application) , continued

Network 6 //When the cut is finished then restart
//unless the Stop is active.

LD Q0.2
A T33
LPS
AN I0.1
= M0.1
LPP
A I0.1
R Q0.2, 1

Sample Program 2: Program with POSx_CTRL, POSx_RUN, POSx_SEEK, and POSx_MAN

Network 1 //Enable the Position module

LD SM0.0
= L60.0
LDN I0.1
= L63.7
LD L60.0
CALL POS0_CTRL, L63.7, M1.0, VB900, VD902,

VD906, V910.0

Network 2 //Manual mode if not in auto mode

LD I1.0
AN M0.0
= L60.0
LD I1.1
= L63.7
LD I1.2
= L63.6
LD I1.4
= L63.5
LD L60.0
CALL POS0_MAN, L63.7, L63.6, L63.5, +100000,

I1.5, VB920, VD902, VD906, V910.0

Network 3 //Enable auto mode

LD I0.0
EU
S M0.0, 2
S S0.1, 1
R S0.2, 8

9

Creating a Program for the Position Module Chapter 9

271

Sample Program 2: Program with POSx_CTRL, POSx_RUN, POSx_SEEK, and POSx_MAN, continued

Network 4 //Emergency Stop
//Disable the module and auto mode

LD I0.1
R M0.0, 1
R S0.1, 9
R Q0.3, 3

Network 5 //When in auto mode:
//Turn on the Running light

LD M0.0
= Q0.1

Network 6

LSCR S0.1

Network 7 //Find the reference point (RP)

LD S0.1
= L60.0
LD S0.1
= L63.7
LD L60.0
CALL POS0_RSEEK, L63.7, M1.1, VB930

Network 8 //When at reference point (RP):
//Clamp the material and
//Go to the next step.

LD M1.1
LPS
AB= VB930, 0
S Q0.3, 1
SCRT S0.2
LPP
AB<> VB930, 0
SCRT S1.0

Network 9

SCRE

Network 10

LSCR S0.2

9

S7-200 Programmable Controller System Manual

272

Sample Program 2: Program with POSx_CTRL, POSx_RUN, POSx_SEEK, and POSx_MAN, continued

Network 11 //Use profile 1 to move into position.

LD S0.2
= L60.0
LD S0.2
= L63.7
LD L60.0
CALL POS0_RUN, L63.7, VB228, I0.1, M1.2, VB940,

VB941, VB942, VD944, VD948

Network 12 //When positioned, turn on the cutter
//and go to the next step.

LD M1.2
LPS
AB= VB940, 0
S Q0.4, 1
R T33, 1
SCRT S0.3
LPP
AB<> VB940, 0
SCRT S1.0

Network 13

SCRE

Network 14 //Wait for the cut to finish

LSCR S0.3

Network 15

LD S0.3
TON T33, +200

9

Creating a Program for the Position Module Chapter 9

273

Sample Program 2: Program with POSx_CTRL, POSx_RUN, POSx_SEEK, and POSx_MAN, continued

Network 16 //Unless STOP is on, restart
//when the cut is finished.

LD T33
LPS
R Q0.3, 1
R Q0.4, 1
AN I0.2
SCRT S0.1
LPP
A I0.2
R M0.0, 4

Network 17

SCRE

Network 18

LSCR S1.0

Network 19 //Reset the outputs.

LD S1.0
R Q0.3, 2

Network 20 //Flash the error light.

LD SM0.5
= Q0.5

Network 21 //Exit the error routine if STOP is on.

LD I0.2
R M0.0, 9
R S0.1, 8

Network 22

SCRE

9

S7-200 Programmable Controller System Manual

274

Monitoring the Position Module with the EM 253 Control Panel
To aid you in the development of your Position Control solution, STEP 7–Micro/WIN provides the EM 253
Control Panel. The Operation, Configuration and Diagnostics tabs make it easy for you to monitor and
control the operation of the Position module during the startup and test phases of your development
process.

Use the EM 253 Control Panel to verify that the Position module is wired correctly, to adjust the
configuration data, and to test each movement profile.

Displaying and Controlling the Operation of the Position Module
The Operation tab of the control panel allows you to interact with the operations of the Position Module.
The control panel displays the current speed, the current position and the current direction of the Position
module. You can also see the status of the input and output LEDs (excluding the Pulse LEDs).

The control panel allows you to interact with the
Position module by changing the speed and
direction, by stopping and starting the motion,
and by jogging the tool (if the motion is stopped).

You can also generate the following motion
commands:

� Enable Manual Operation. This command
allows you to use the manual controls for
positioning the tool.

� Run a Motion Profile. This command allows
you to select a profile to be executed. The
control panel displays the status of the
profile which is being executed by the
Position module.

� Seek to a Reference Point. This command
finds the reference point by using the
configured search mode.

Figure 9-19 Operation Tab of the EM 253 Control Panel

� Load Reference Point Offset. After you use the manual controls to jog the tool to the new zero
position, you then load the Reference Point Offset.

� Reload Current Position. This command updates the current position value and establishes a new
zero position.

� Activate the DIS output and Deactivate the DIS output. These commands turn the DIS output of the
Position module on and off.

� Pulse the CLR output. This command generates a 50 ms pulse on the CLR output of the Position
module.

� Teach a Motion Profile. This command allows you to save the target position and speed for a motion
profile and step as you manually position the tool. The control panel displays the status of the profile
which is being executed by the Position module.

� Load Module Configuration. This command loads a new configuration by commanding the Position
module to read the configuration block from the V memory of the S7-200.

� Move to an Absolute Position. This command allows you to move to a specified position at a target
speed. Before using this command, you must have already established the zero position.

� Move by a Relative Amount. This command allows you to move a specified distance from the
current position at a target speed. You can enter a positive or negative distance.

� Reset the Command Interface. This command clears the command byte for the Position module
and sets the Done bit. Use this command if the Position module appears to not be responding to
commands.

9

Creating a Program for the Position Module Chapter 9

275

Displaying and Modifying the Configuration of the Position Module
The Configuration tab of the control panel allows
you to view and modify the configuration settings
for the Position module that are stored in the data
block of the S7-200.

After you modify the configuration settings, you
simple click a button to update the settings in
both the STEP 7–Micro/Win project and the data
block of the S7-200.

Figure 9-20 Configuration Tab of the EM 253 Control Panel

Displaying the Diagnostics Information for the Position Module
The Diagnostics tab of the control panel allows
you to view the diagnostic information about the
Position module.

You can view specific information about the
Position module, such as the position of the
module in the I/O chain, the module type and
firmware version number, and the output byte
used as the command byte for the module.

The control panel displays any error condition
that resulted from a commanded operation. Refer
to Table 9-13 on page 276 for the instruction
error conditions.

You can also view any error condition reported
by the Position module. Refer to Table 9-14 on
page 277 for the module error conditions.

Figure 9-21 Diagnostics Tab of the EM 253 Control Panel

9

S7-200 Programmable Controller System Manual

276

Error Codes for the Position Module and the Position Instructions

Table 9-13 Instruction Error Codes

Error Code Description

0 No error

1 Aborted by user

2 Configuration error
Use the EM 253 Control Panel Diagnostics tab to view error codes

3 Illegal command

4 Aborted due to no valid configuration
Use the EM 253 Control Panel Diagnostics tab to view error codes

5 Aborted due to no user power

6 Aborted due to no defined reference point

7 Aborted due to STP input active

8 Aborted due to LMT– input active

9 Aborted due to LMT+ input active

10 Aborted due to problem executing motion

11 No profile block configured for specified profile

12 Illegal operation mode

13 Operation mode not supported for this command

14 Illegal number of steps in profile block

15 Illegal direction change

16 Illegal distance

17 RPS trigger occurred before target speed reached

18 Insufficient RPS active region width

19 Speed out of range

20 Insufficient distance to perform desired speed change

21 Illegal position

22 Zero position unknown

23 to 127 Reserved

128 Position module cannot process this instruction: either the Position module is busy with another
instruction, or there was no Start pulse on this instruction

129 Position module error:

� The location of the Position module or the Q memory address that was configured with the
Position Control wizard does not match the actual location or memory address

� Refer to SMB8 to SMB21 (I/O Module ID and Error Register) for other error conditions

130 Position module is not enabled

131 Position module is not available due to a module error or module not enabled
(See the POSx_CTRL status)

9

Creating a Program for the Position Module Chapter 9

277

Table 9-14 Module Error Codes

Error Code Description

0 No error

1 No user power

2 Configuration block not present

3 Configuration block pointer error

4 Size of configuration block exceeds available V memory

5 Illegal configuration block format

6 Too many profiles specified

7 Illegal STP_RSP specification

8 Illegal LMT–_RPS specification

9 Illegal LMT+_RPS specification

10 Illegal FILTER_TIME specification

11 Illegal MEAS_SYS specification

12 Illegal RP_CFG specification

13 Illegal PLS/REV value

14 Illegal UNITS/REV value

15 Illegal RP_ZP_CNT value

16 Illegal JOG_INCREMENT value

17 Illegal MAX_SPEED value

18 Illegal SS_SPD value

19 Illegal RP_FAST value

20 Illegal RP_SLOW value

21 Illegal JOG_SPEED value

22 Illegal ACCEL_TIME value

23 Illegal DECEL_TIME value

24 Illegal JERK_TIME value

25 Illegal BKLSH_COMP value

9

S7-200 Programmable Controller System Manual

278

Advanced Topics

Understanding the Configuration/Profile Table
The Position Control wizard has been developed to make motion applications easy by automatically
generating the configuration and profile information based upon the answers you give about your position
control system. Configuration/profile table information is provided for advanced users who want to create
their own position control routines.

The configuration/profile table is located in the V memory area of the S7-200. As shown in Table 9-15, the
configuration settings are stored in the following types of information:

� The configuration block contains information used to set up the module in preparation for executing
motion commands.

� The interactive block supports direct setup of motion parameters by the user program.

� Each profile block describes a predefined move operation to be performed by the Position module.
You can configure up 25 profile blocks.

Tip
To create more than 25 motion profiles, you can exchange configuration/profile tables by changing the
value stored in the configuration/profile table pointer.

Table 9-15 Configuration/Profile Table
Offset Name Function Description Type

Configuration Block

0 MOD_ID Module identification field ––

5 CB_LEN The length of the configuration block in bytes (1 byte) ––

6 IB_LEN The length of the interactive block in bytes (1 byte) ––

7 PF_LEN The length of a single profile in bytes (1 byte) ––

8 STP_LEN The length of a single step in bytes (1 byte) ––

9 STEPS The number of steps allowed per profile (1 byte) ––

10 PROFILES Number of profiles from 0 to 25 (1 byte) ––

11 Reserved Set to 0x0000 ––

13 IN_OUT_CFG Specifies the use of the
module inputs and outputs
(1 byte)

MSB

P/D This bit specifies the use of P0 and P1.

Positive Polarity (POL=0):
0 – P0 pulses for positive rotation

P1 pulses for negative rotation
1 – P0 pulses for rotation

P1 controls rotation direction (0 – positive, 1 – negative)

Negative Polarity (POL=1):
0 – P0 pulses for positive rotation

P1 pulses for negative rotation
1 – P0 pulses for rotation

P1 controls rotation direction (0 – positive, 1 – negative)

POL This bit selects the polarity convention for P0 and P1.
(0 – positive polarity, 1 – negative polarity)

STP This bit controls the active level for the stop input.

RPS This bit controls the active level for the RPS input.

LMT– This bit controls the active level for the negative travel limit input.

LMT+ This bit controls the active level for the positive travel limit input

0 – Active high
1 – Active low

P/D 0 STP RPS LMT– LMT+

7 6 5 4 3 2 1 0
LSB

POL 0

––

9

Creating a Program for the Position Module Chapter 9

279

Table 9-15 Configuration/Profile Table, continued
TypeFunction DescriptionNameOffset

14 STP_RSP Specifies the response of the drive to the STP input (1 byte)

0 No action. Ignore the input condition.
1 Decelerate to a stop and indicate that the STP input is active.
2 Terminate the pulses and indicate STP input
3 to 255 Reserved (error if specified)

––

15 LMT–_RSP Specifies the response of the drive to the negative limit input (1 byte)

0 No action. Ignore the input condition.
1 Decelerate to a stop and indicate that the limit has been reached.
2 Terminate the pulses and indicate that the limit has been reached.
3 to 255 Reserved (error if specified)

––

16 LMT+_RSP Specifies the response of the drive to the positive limit input (1 byte)

0 No action. Ignore the input condition.
1 Decelerate to a stop and indicate that the limit has been reached.
2 Terminate pulses and indicate that the limit has been reached.
3 to 255 Reserved (error if specified)

––

17 FILTER_TIME Specifies the filter time for the
STP, LMT–, LMT+, and RPS
inputs (1 byte)

’0000’ 200 µsec ’0101’ 3200 µsec
’0001’ 400 µsec ’0110’ 6400 µsec
’0010’ 800 µsec ’0111’ 12800 µsec
’0011’ 1600 µsec ’1000’ No filter
’0100’ 1600 µsec ’1001 ’ to ’1111’ Reserved (error if specified)

MSB

STP, LMT–, LMT+ RPS

7 6 5 4 3 2 1 0
LSB ––

18 MEAS_SYS Specifies the measurement system (1 byte)

0 Pulses (speed is measured in pulses/second, and the position values are
measured in pulses). Values are stored as DINT.

1 Engineering units (speed is measured in units/second, and the position values are
measured in units). Values are stored as single-precision REAL.

2 to 255 Reserved (error if specified)

––

19 –– Reserved (Set to 0) ––

20 PLS/REV Specifies the number of pulses per revolution of the motor (4 bytes)
Only applicable when MEAS_SYS is set to 1.

DINT

24 UNITS/REV Specifies the engineering units per revolution of the motor (4 bytes)
Only applicable when MEAS_SYS is set to 1.

REAL

28 UNITS Reserved for STEP 7–Micro/WIN to store a custom units string (4 bytes) ––

32 RP_CFG Specifies the reference point
search configuration (1 byte)

RP_SEEK_DIR This bit specifies the starting direction for a reference point search.
(0 – positive direction, 1 – negative direction)

RP_APPR_DIR This bit specifies the approach direction for terminating the reference
point search.
(0 – positive direction, 1 – negative direction)

MODE Specifies the reference point search method.

’0000’ Reference point search disabled.
’0001’ The reference point is where the RPS input goes active.
’0010’ The reference point is centered within the active region of the RPS input.
’0011’ The reference point is outside the active region of the RPS input.
’0100’ The reference point is within the active region of the RPS input.
’0101’ to ’1111’ Reserved (error if selected)

MSB

0 MODE

7 6 5 4 3 2 1 0
LSB

RP_SEEK_DIR

0

RP_ADDR_DIR

––

33 –– Reserved (Set to 0) ––

34 RP_Z_CNT Number of pulses of the ZP input used to define the reference point (4 bytes) DINT

9

S7-200 Programmable Controller System Manual

280

Table 9-15 Configuration/Profile Table, continued
TypeFunction DescriptionNameOffset

38 RP_FAST Fast speed for the RP seek operation: MAX_SPD or less (4 bytes) DINT
REAL

42 RP_SLOW Slow speed for the RP seek operation: maximum speed from which the motor can
instantly go to a stop or less (4 bytes)

DINT
REAL

46 SS_SPEED Start/Stop Speed. (4 bytes)
The starting speed is the maximum speed to which the motor can instantly go from a
stop and the maximum speed from which the motor can instantly go to a stop. Operation
below this speed is allowed, but the acceleration and deceleration times do not apply.

DINT
REAL

50 MAX_SPEED Maximum operating speed of the motor (4 bytes) DINT
REAL

54 JOG_SPEED Jog speed. MAX_SPEED or less (4 bytes)

58 JOG_INCREMENT The jog increment value is the distance (or number of pulses) to move in response to a
single jog pulse. (4 bytes)

DINT
REAL

62 ACCEL_TIME Time required to accelerate from minimum to maximum speed in milliseconds (4 bytes) DINT

66 DECEL_TIME Time required to decelerate from maximum to minimum speed in milliseconds (4 bytes) DINT

70 BKLSH_COMP Backlash compensation: the distance used to compensate for the system backlash on a
direction change (4 bytes)

DINT
REAL

74 JERK_TIME Time during which jerk compensation is applied to the beginning and ending portions of
an acceleration/deceleration curve (S curve). Specifying a value of 0 disables jerk
compensation. The jerk time is given in milliseconds. (4 bytes)

DINT

Interactive Block

78 MOVE_CMD Selects the mode of operation (1 byte)
0 Absolute position
1 Relative position
2 Single-speed, continuous operation, positive rotation
3 Single-speed, continuous operation, negative rotation
4 Manual speed control, positive rotation
5 Manual speed control, negative rotation
6 Single-speed, continuous operation, positive rotation with triggered stop

(RPS input signals stop)
7 Single-speed, continuous operation, negative rotation with triggered stop

(RPS input signals stop)
8 to 255 – Reserved (error if specified)

––

79 –– Reserved. Set to 0 ––

80 TARGET_POS Target position to go to in this move (4 bytes) DINT
REAL

84 TARGET_SPEED Target speed for this move (4 bytes) DINT
REAL

88 RP_OFFSET Absolute position of the reference point (4 bytes) DINT
REAL

Profile Block 0

92
 (+0)

STEPS Number of steps in this move sequence (1 byte) ––

93
(+1)

MODE Selects the mode of operation for this profile block (1 byte)

0 Absolute position
1 Relative position
2 Single-speed, continuous operation, positive rotation
3 Single-speed, continuous operation, negative rotation
4 Reserved (error if specified)
5 Reserved (error if specified)
6 Single-speed, continuous operation, positive rotation with triggered stop

(RPS selects speed)
7 Single-speed, continuous operation, negative rotation

with triggered stop (RPS input signals stop)
8 Two-speed, continuous operation, positive rotation (RPS selects speed)
9 Two-speed, continuous operation, negative rotation (RPS selects speed)
10 to 255 – Reserved (error if specified)

––

9

Creating a Program for the Position Module Chapter 9

281

Table 9-15 Configuration/Profile Table, continued
TypeFunction DescriptionNameOffset

94
 (+2)

0 POS Position to go to in move step 0 (4 bytes) DINT
REAL

98
(+6)

0 SPEED Target speed for move step 0 (4 bytes) DINT
REAL

102
(+10)

1 POS Position to go to in move step 1 (4 bytes) DINT
REAL

106
(+14)

1 SPEED Target speed for move step 1 (4 bytes) DINT
REAL

110
(+18)

2 POS Position to go to in move step 2 (4 bytes) DINT
REAL

114
(+22)

2 SPEED Target speed for move step 2 (4 bytes) DINT
REAL

118
(+26)

3 POS Position to go to in move step 3 (4 bytes) DINT
REAL

122
(+30)

3 SPEED Target speed for move step 3 (4 bytes) DINT
REAL

Profile Block 1

126
(+34)

STEPS Number of steps in this move sequence (1 byte) ––

127
(+35)

MODE Selects the mode of operation for this profile block (1 byte) ––

128
(+36)

0 POS Position to go to in move step 0 (4 bytes) DINT
REAL

132
(+40)

0 SPEED Target speed for move step 0 (4 bytes) DINT
REAL

...

Special Memory Locations for the Position Module
The S7-200 allocates 50 bytes of special memory (SM) to each intelligent module, based on the physical
position of the module in the I/O system. See Table 9-16. When the module detects an error condition or a
change in status of the data, the module updates these SM locations. The first module updates SMB200
through SMB249 as required to report the error condition, the second module updates SMB250 through
SMB299, and so on.

Table 9-16 Special Memory Bytes SMB200 to SMB549

SM Bytes for an intelligent module in:

Slot 0 Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6

SMB200 to
SMB249

SMB250 to
SMB299

SMB300 to
SMB349

SMB350 to
SMB399

SMB400 to
SMB449

SMB450 to
SMB499

SMB500 to
SMB549

Table 9-17 shows the structure of the SM data area allocated for an intelligent module. The definition is
given as if this were the intelligent module is located in slot 0 of the I/O system.

9

S7-200 Programmable Controller System Manual

282

Table 9-17 Special Memory Area Definition for the EM 253 Position Module
SM Address Description

SMB200 to
SMB215

Module name (16 ASCII characters). SMB200 is the first character: “EM253 Position”

SMB216 to
SMB219

Software revision number (4 ASCII characters). SMB216 is the first character.

SMW220 Error code for the module. See Table 9-14 for a description of the error codes.

SMB222 Input/output status. Reflects the status of the inputs
and outputs of the module.

DIS Disable outputs 0 = No current flow 1 = Current flow
STP Stop input 0 = No current flow 1 = Current flow
LMT– Negative travel limit input 0 = No current flow 1 = Current flow
LMT+ Positive travel limit input 0 = No current flow 1 = Current flow
RPS Reference point switch input 0 = No current flow 1 = Current flow
ZP Zero pulse input 0 = No current flow 1 = Current flow

DIS 0 0 STP LMT– LMT+ RPS ZP

7 6 5 4 3 2 1 0
MSB LSB

SMB223 Instantaneous module status. Reflects the status of
the module configuration and rotation direction status.

OR Target speed out of range 0 = In range 1 = Out of range
R Direction of rotation 0 = Positive rotation 1 = Negative rotation
CFG Module configured 0 = Not configured 1 = Configured

0 0 0 0 0 OR R CFG

7 6 5 4 3 2 1 0
MSB LSB

SMB224 CUR_PF is a byte that indicates the profile currently being executed.

SMB225 CUR_STP is a byte that indicates the step currently being executed in the profile.

SMD226 CUR_POS is a double-word value that indicates the current position of the module.

SMD230 CUR_SPD is a double-word value that indicates the current speed of the module.

SMB234

D

Result of the instruction. See Table 9-13 for descriptions of the
error codes. Error conditions above 127 are generated by the
instruction subroutines created by the wizard.

MSB

D Done bit 0= Operation in progress
1= Operation complete (set by the module during initialization)

ERROR

7 6 0
LSB

SMB235 to
SMB244

Reserved

SMB245 Offset to the first Q byte used as the command interface to this module. The offset is supplied by the S7-200
automatically for the convenience of the user and is not needed by the module.

SMD246 Pointer to the V memory location of the configuration/profile table. A pointer value to an area other than
V memory is not valid. The Position module monitors this location until it receives a non-zero pointer value.

9

Creating a Program for the Position Module Chapter 9

283

Understanding the Command Byte for the Position Module
The Position module provides one byte of discrete outputs which is used as the command byte.
Figure 9-22 shows the command byte definition. Table 9-18 shows the Command_code definitions.

A write to the command byte where the R bit
changes from 0 to 1 is interpreted by the module
as a new command.

If the module detects a transition to idle (R bit
changes state to 0) while a command is active,
then the operation in progress is aborted and, if a
motion is in progress, then a decelerated stop is

R Command_code

MSB
7 6 5 4 3 2 1 0

LSB

QBx

R 0 = Idle
1 = Execute the command specified

in Command_code (See Table 9-18)

performed. Figure 9-22 Definition of the Command Byte

After an operation has completed, the module must see a transition to idle before a new command is
accepted. If an operation is aborted, then the module must complete any deceleration before a new
command is accepted. Any change in the Command_code value while a command is active is ignored.

The response of the Position module to a
change in the operating mode of the S7-200 or
to a fault condition is governed by the effect that
the S7-200 exerts over the discrete outputs
according to the existing definition of the
S7-200 function:

� If the S7-200 changes from STOP to
RUN: The program in the S7-200
controls the operation of the Position
module.

� If the S7-200 changes from RUN to
STOP: You can select the state that the
discrete outputs are to go to on a
transition to STOP or that the outputs are
to retain their last state.

– If the R bit is turned off when going
to STOP: The Position module
decelerates any motion in
progress to a stop

Table 9-18 Command_code Definitions
Command_code Command

000 0000 to
000 1111

0 to
24

Execute motion specified in
Profile Blocks 0 to 24

100 0000 to
111 0101

25 to
117

Reserved
(Error if specified)

111 0110 118 Activate the DIS output

111 0111 119 Deactivate the DIS output

111 1000 120 Pulse the CLR output

111 1001 121 Reload current position

111 1010 122 Execute motion specified in the
Interactive Block

111 1011 123 Capture reference point offset

111 1100 124 Jog positive rotation

111 1101 125 Jog negative rotation

111 1110 126 Seek to reference point position

111 1111 127 Reload configuration

– If the R bit is turned on when going to STOP: The Position module completes any command
that is in progress. If no command is in progress, the Position module executes the command
which is specified by the Command_code bits.

– If the R bit is held in its last state: The Position module completes any motion in progress.

� If the S7-200 detects a fatal error and turns off all discrete outputs: The Position module decelerates
any motion in progress to a stop.

The Position module implements a watchdog timer that turns the outputs off if communications with the
S7-200 are lost. If the output watchdog timer expires, the Position module decelerates any motion in
progress to a stop.

If a fatal error in the hardware or firmware of the module is detected, the Position module sets the P0, P1,
DIS and CLR outputs to the inactive state.

9

S7-200 Programmable Controller System Manual

284

Table 9-19 Motion Commands

Command Description

Commands 0 to 24:

Executes the motion specified in
profile blocks 0 to 24

When this command is executed, the Position module performs the motion operation
specified in the MODE field of the profile block indicated by the Command_code portion of
the command.

� In Mode 0 (absolute position), the motion profile block defines from one to four steps with
each step containing both the position (POS) and speed (SPEED) that describes the
move segment. The POS specification represents an absolute location, which is based
on the location designated as reference point. The direction of movement is determined
by the relationship between the current position and the position of the first step in the
profile. In a multi-step move a reversal of direction of travel is prohibited and results in an
error condition being reported.

� In Mode 1 (relative position), the motion profile block defines from one to four steps with
each step containing both the position (POS) and the speed (SPEED) that describes the
move segment. The sign of the position value (POS) determines the direction of the
movement. In a multi-step move, a reversal of direction of travel is prohibited and results
in the reporting of an error condition.

� In Modes 2 and 3 (single-speed, continuous operation modes), the position (POS)
specification is ignored and the module accelerates to the speed specified in the SPEED
field of the first step. Mode 2 is used for positive rotation, and Mode 3 is used for negative
rotation. Movement stops when the command byte transitions to Idle.

� In Modes 6 and 7 (single-speed, continuous operation modes with triggered stop), the
module accelerates to the speed specified in the SPEED field of the first step. If and
when the RPS input becomes active, movement stops after completing the distance
specified in the POS field of the first step. (The distance specified in the POS field must
include the deceleration distance.) If the POS field is zero when the RPS input becomes
active, the Position module decelerates to a stop. Mode 6 is used for positive rotation,
and Mode 7 is used for negative rotation.

� In Modes 8 and 9, the binary value of the RPS input selects one of two speed values as
specified by the first two steps in the profile block.

– If the RPS is inactive: Step 0 controls the speed of the drive.

– If the RPS is active: Step 1 controls the speed of the drive.

Mode 8 is used for positive rotation, and Mode 9 is used for negative rotation. The
SPEED value controls the speed of movement. The POS values are ignored in this
mode.

Command 118

Activates the DIS output

When this command is executed, the Position module activates the DIS output.

Command 119

Deactivates the DIS output

When this command is executed, the Position module deactivates the DIS output.

Command 120

Pulses the CLR output

When this command is executed, the Position module generates a 50-millisecond pulse on
the CLR output.

Command 121

Reloads the Current Position

When this command is executed, the Position module sets the current position to the value
found in the TARGET_POS field of the interactive block.

Command 122

Execute the motion specified in
the interactive block

When this command is executed, the Position module performs the motion operation
specified in the MOVE_CMD field of the interactive block.

� In Modes 0 and 1 (absolute and relative motion modes), a single step motion is
performed based upon the target speed and position information provided in the
TARGET_SPEED and TARGET_POS fields of the interactive block.

� In Modes 2 and 3 (single-speed, continuous operation modes), the position specification
is ignored, and the Position module accelerates to the speed specified in the
TARGET_SPEED field of the interactive block. Movement stops when the command byte
transitions to Idle.

� In Modes 4 and 5 (manual speed control modes), the position specification is ignored and
your program loads the value of speed changes into the TARGET_SPEED field of the
interactive block. The Position module continuously monitors this location and responds
appropriately when the speed value changes.

9

Creating a Program for the Position Module Chapter 9

285

Table 9-19 Motion Commands, continued

DescriptionCommand

Command 123

Capture the Reference Point
offset

When this command is executed, the Position module establishes a zero position that is at a
different location from the reference point position.

Before issuing this command, you must have determined the position of the reference point
and must also have jogged the machine to the work starting position. After receiving this
command, the Position module computes the offset between the work starting position (the
current position) and the reference point position and writes the computed offset to the
RP_OFFSET field of the Interactive Block. The current position is then set to 0 to establish
the work starting position as the zero position.

In the event that the stepper motor loses track of its position (for example, if power is lost or
the stepper motor is repositioned manually) the Seek to Reference Point Position command
can be issued to re-establish the zero position automatically.

Command 124

Jog positive rotation

This command allows you to manually issue pulses for moving the stepper motor in the
positive direction.

If the command remains active for less than 0.5 seconds, the Position module issues pulses
to travel the distance specified in JOG_INCREMENT.

If the command remains active for 0.5 seconds or longer, the motion module begins to
accelerate to the specified JOG_SPEED.

When a transition to idle is detected, the Position module decelerates to a stop.

Command 125

Jog negative rotation

This command allows you to manually issue pulses for moving the stepper motor in the
negative direction.

If the command remains active for less than 0.5 seconds, the Position module issues pulses
to travel the distance specified in JOG_INCREMENT.

If the command remains active for 0.5 seconds or longer, the Position module begins to
accelerate to the specified JOG_SPEED.

When a transition to idle is detected, the Position module decelerates to a stop.

Command 126

Seek to Reference Point position

When this command is executed, the Position module initiates a reference point seek
operation using the specified search method. When the reference point has been located and
motion has stopped, the Position module loads the value read from the RP_OFFSET field of
the interactive block into the current position and pulses the CLR output on for
50 milliseconds.

Command 127

Reload the configuration

When this command is executed, the Position module reads the configuration/profile table
pointer from the appropriate location in SM memory and then reads the configuration block
from the location specified by the configuration/profile table pointer. The Position module
compares the configuration data just obtained against the existing module configuration and
performs any required setup changes or recalculations. Any cached profiles are discarded.

Understanding the Profile Cache of the Position Module
The Position module stores the execution data for up to 4 profiles in cache memory. When the Position
module receives a command to execute a profile, it checks to see if the requested profile is stored in the
cache memory. If the execution data for the profile is resident in the cache, the Position module
immediately executes the profile. If the the execution data for the profile is not resident in the cache, the
Position module reads the profile block information from the configuration/profile table in the S7-200 and
calculates the execution data for the profile before executing the profile.

Command 122 (Execute the motion specified in the interactive block) does not use cache memory to
store the execution data, but always reads the interactive block from the configuration/profile table in the
S7-200 and calculates the execution data for the motion.

Reconfiguring the Position module deletes all of the execution data stored in the cache memory.

9

S7-200 Programmable Controller System Manual

286

Creating Your Own Position Control Instructions
The Position Control wizard creates the position instructions for controlling the operation of the Position
module; however, you can also create your own instructions. The following STL code segment provides
an example of how you might create your own control instructions for the Position module.

This example uses an S7-200 CPU 224 with a Position module located in slot 0. The Position module is configured on
power-up. CMD_STAT is a symbol for SMB234, CMD is a symbol for QB2, and NEW_CMD is a symbol for the profile.

Sample Program: Controlling the Position Module

Network 1 //New move command state

LSCR State_0

Network 2 //CMD_STAT is a symbol for SMB234
//CMD is a symbol for QB2
//NEW_CMD is a symbol for the profile.
//
//1. Clear the Done bit of the Position module.
//2. Clear the command byte of the Position module.
//3. Issue the new command.
//4. Wait for the command to be executed.

LD SM0.0
MOVB 0, CMD_STAT
BIW 0, CMD
BIW NEW_CMD, CMD
SCRT State_1

Network 3

SCRE

Network 4 //Wait for the command to be completed.

LSCR State_1

Network 5 //If the command is complete without error, go to the idle state.

LDB= CMD_STAT, 16#80
SCRT Idle_State

Network 6 //If the command is complete with an error, go to the error handling state.

LDB> CMD_STAT, 16#80
SCRT Error_State

Network 7

SCRE

287

Creating a Program for the
Modem Module

The EM 241 Modem module allows you to connect your S7-200 directly to an analog telephone line, and
supports communications between your S7-200 and STEP 7–Micro/WIN. The Modem module also
supports the Modbus slave RTU protocol. Communications between the Modem module and the S7-200
are made over the Expansion I/O bus.

STEP 7–Micro/WIN provides a Modem Expansion wizard to help set up a remote modem or a Modem
module for connecting a local S7-200 to a remote device.

In This Chapter
Features of the Modem Module 288.

Using the Modem Expansion Wizard to Configure the Modem Module 294.

Overview of Modem Instructions and Restrictions 298.

Instructions for the Modem Module 299.

Sample Program for the Modem Module 303.

S7-200 CPUs that Support Intelligent Modules 303.

Special Memory Location for the Modem Module 304.

Advanced Topics 306.

Messaging Telephone Number Format 308.

Text Message Format 309.

CPU Data Transfer Message Format 310.

10

S7-200 Programmable Controller System Manual

288

Features of the Modem Module
The Modem module allows you to connect your S7-200 directly to an analog telephone line and provides
the following features:

� Provides international telephone line
interface

� Provides a modem interface to
STEP 7–Micro/WIN for programming and
troubleshooting (teleservice)

� Supports the Modbus RTU protocol

� Supports numeric and text paging

� Supports SMS messaging

� Allows CPU-to-CPU or CPU-to Modbus
data transfers

� Provides password protection

�

Country Code
Switches

� Provides security callback Figure 10-1 EM 241 Modem Module

� The Modem module configuration is stored in the CPU

You can use the STEP 7–Micro/WIN Modem Expansion wizard to configure the Modem module. Refer to
Appendix A for the specifications of the Modem module.

International Telephone Line Interface
The Modem module is a standard V.34
(33.6 kBaud), 10-bit modem, and is compatible
with most internal and external PC modems. The
Modem module does not communicate with

Pin Description
 3 Ring
 4 Tip

123456
Reverse connection
is allowed.

11-bit modems. Figure 10-2 View of RJ11 Jack

You connect the Modem module to the
telephone line with the six-position four-wire
RJ11 connector mounted on the front of the
module. See Figure 10-2.

An adapter may be required to convert the
RJ11 connector for connection to the standard
telephone line termination in the various
countries. Refer to the documentation for your
adapter connector for more information.

The modem and telephone line interface is
powered from an external 24 VDC supply. This
can be connected to the CPU sensor supply or
to an external source. Connect the ground
terminal on the Modem module to the system
earth ground.

The Modem module automatically configures
the telephone interface for country-specific
operation when power is applied to the module.
The two rotary switches on the front of the
module select the country code. You must set
the switches to the desired country selection
before the Modem module is powered up. Refer
to Table 10-1 for switch settings for the
countries supported.

Table 10-1 Countries Supported by the EM 241
Switch Setting Country

01 Austria

02 Belgium

05 Canada

08 Denmark

09 Finland

10 France

11 Germany

12 Greece

16 Ireland

18 Italy

22 Luxembourg

25 Netherlands

27 Norway

30 Portugal

34 Spain

35 Sweden

36 Switzerland

38 U.K.

39 U.S.A.

10

Creating a Program for the Modem Module Chapter 10

289

STEP 7–Micro/WIN Interface
The Modem module allows you to communicate with STEP 7–Micro/WIN over a telephone line
(teleservice). You do not need to configure or program the S7-200 CPU to use the Modem module as the
remote modem when used with STEP 7–Micro/WIN.

Follow these steps to use the Modem module with STEP 7–Micro/WIN:

1. Remove the power from the S7-200 CPU and attach the Modem module to the I/O expansion bus.
Do not attach any I/O modules while the S7-200 CPU is powered up.

2. Connect the telephone line to the Modem module. Use an adapter if necessary.

3. Connect 24 volts DC to the Modem module terminal blocks.

4. Connect the Modem module terminal block ground connection to the system ground.

5. Set the country code switches.

6. Power up the S7-200 CPU and the Modem module.

7. Configure STEP 7–Micro/WIN to communicate to a 10-bit modem.

Modbus RTU Protocol
You can configure the Modem module to respond as a Modbus RTU slave. The Modem module receives
Modbus requests over the modem interface, interprets those requests and transfers data to or from the
CPU. The Modem module then generates a Modbus response and transmits it out over the modem
interface.

Tip
If the Modem module is configured to respond as a Modbus RTU slave, STEP 7–Micro/WIN is not able
to communicate to the Modem module over the telephone line.

The Modem module supports the Modbus functions shown in Table 10-2.

Modbus functions 4 and 16 allow reading or
writing a maximum of 125 holding registers
(250 bytes of V memory) in one request.
Functions 5 and 15 write to the output image
register of the CPU. These values can be
overwritten by user program.

Modbus addresses are normally written as 5 or
6 character values containing the data type and
the offset. The first one or two characters
determine the data type, and the last four
characters select the proper value within the
data type. The Modbus master device maps the
addresses to the correct Modbus functions.

Table 10-2 Modbus Functions Supported by Modem Module
Function Description

Function 01 Read coil (output) status

Function 02 Read input status

Function 03 Read holding registers

Function 04 Read input (analog input) registers

Function 05 Write single coil (output)

Function 06 Preset single register

Function 15 Write multiple coils (outputs)

Function 16 Preset multiple registers

10

S7-200 Programmable Controller System Manual

290

Table 10-3 shows the Modbus addresses
supported by the Modem module, and the
mapping of Modbus addresses to the S7-200
CPU addresses.

Use the Modem Expansion wizard to create a
configuration block in for the Modem module to
support Modbus RTU protocol. The Modem
module configuration block must be
downloaded to the CPU data block before you
can use the Modbus protocol.

Table 10-3 Mapping Modbus Addresses to the S7-200 CPU
Modbus Address S7-200 CPU Address

000001
000002
000003

...
000127
000128

Q0.0
Q0.1
Q0.2

...
Q15.6
Q15.7

010001
010002
010003

...
010127
010128

I0.0
I0.1
I0.2
...

I15.6
I15.7

030001
030002
030003

...
030032

AIW0
AIW2
AIW4

...
AIW62

040001
040002
040003

...
04xxxx

VW0
VW2
VW4

...
VW 2*(xxxx–1)

Paging and SMS Messaging
The Modem module supports sending numeric and text paging messages, and SMS (Short Message
Service) messages to cellular phones (where supported by the cellular provider). The messages and
telephone numbers are stored in the Modem module configuration block which must be downloaded to the
data block in the S7-200 CPU. You can use the Modem Expansion wizard to create the messages and
telephone numbers for the Modem module configuration block. The Modem Expansion wizard also
creates the program code to allow your program to initiate the sending of the messages.

Numeric Paging
Numeric paging uses the tones of a touch tone telephone to send numeric values to a pager. The Modem
module dials the requested paging service, waits for the voice message to complete, and then sends the
tones corresponding to the digits in the paging message. The digits 0 through 9, asterisk (*), A, B, C and D
are allowed in the paging message. The actual characters displayed by a pager for the asterisk and A, B,
C, and D characters are not standardized, and are determined by the pager and the paging service
provider.

Text Paging
Text paging allows alphanumeric messages to be transmitted to a paging service provider, and from there
to a pager. Text paging providers normally have a modem line that accepts text pages. The Modem
module uses Telelocator Alphanumeric Protocol (TAP) to transmit the text messages to the service
provider. Many providers of text paging use this protocol to accept messages.

Short Message Service (SMS)
Short Message Service (SMS) messaging is supported by some cellular telephone services, generally
those that are GSM compatible. SMS allows the Modem module to send a message over an analog
telephone line to an SMS provider. The SMS provider then transmits the message to the cellular
telephone, and the message appears on the text display of the telephone. The Modem module uses the
Telelocator Alphanumeric Protocol (TAP) and the Universal Computer Protocol (UCP) to send messages
to the SMS provider. You can send SMS messages only to SMS providers that support these protocols on
a modem line.

10

Creating a Program for the Modem Module Chapter 10

291

Embedded Variables in Text and SMS Messages
The Modem module can embed data values from the CPU in the text messages and format the data
values based on a specification in the message. You can specify the number of digits to the left and right
of the decimal point, and whether the decimal point is a period or a comma. When the user program
commands the Modem module to transmit a text message, the Modem module retrieves the message
from the CPU, determines what CPU values are needed within the message, retrieves those values from
the CPU, and then formats and place the values within the text message before transmitting the message
to the service provider.

The telephone number of the messaging provider, the message, and the variables embedded within the
message are read from the CPU over multiple CPU scan cycles. Your program should not modify
telephone numbers or messages while a message is being sent. The variables embedded within a
message can continue to be updated during the sending of a message. If a message contains multiple
variables, those variables are read over multiple scan cycles of the CPU. If you want all of the embedded
variables within a message to be consistent, the you must not change any of the embedded variables
after you send a message.

Data Transfers
The Modem module allows your program to transfer data to another CPU or to a Modbus device over the
telephone line. The data transfers and telephone numbers are configured with the Modem Expansion
wizard, and are stored in the Modem module configuration block. The configuration block is then
downloaded to the data block in the S7-200 CPU. The Modem Expansion wizard also creates program
code to allow your program to initiate the data transfers.

A data transfer can be either a request to read data from a remote device, or a request to write data to a
remote device. A data transfer can read or write between 1 and 100 words of data. Data transfers move
data to or from the V memory of the attached CPU.

The Modem Expansion wizard allows you to create a data transfer consisting of a single read from the
remote device, a single write to the remote device, or both a read from and a write to the remote device.

Data transfers use the configured protocol of the Modem module. If the Modem module is configured to
support PPI protocol (where it responds to STEP 7–Micro/WIN), the Modem module uses the PPI protocol
to transfer data. If the Modem module is configured to support the Modbus RTU protocol, data transfers
are transmitted using the Modbus protocol.

The telephone number of the remote device, the data transfer request and the data being transferred are
read from the CPU over multiple CPU scan cycles. Your program should not modify telephone numbers or
messages while a message is being sent. Also, you should not modify the data being transferred while a
message is being sent.

If the remote device is another Modem module, the password function can be used by the data transfers
by entering the password of the remote Modem module in the telephone number configuration. The
callback function cannot be used with data transfers.

Password Protection
The password security of the Modem module is optional and is enabled with the Modem Expansion
wizard. The password used by the Modem module is not the same as the CPU password. The Modem
module password is a separate 8-character password that the caller must supply to the Modem module
before being allowed access to the attached CPU. The password is stored in the V memory of the CPU as
part of the Modem module configuration block. The Modem module configuration block must be
downloaded to the data block of the attached CPU.

If the CPU has the password security enabled in the System Data Block, the caller must supply the CPU
password to gain access to any password protected functions.

10

S7-200 Programmable Controller System Manual

292

Security Callback
The callback function of the Modem module is optional and is configured with the Modem Expansion
wizard. The callback function provides additional security for the attached CPU by allowing access to the
CPU only from predefined telephone numbers. When the callback function is enabled, the Modem module
answers any incoming calls, verifies the caller, and then disconnects the line. If the caller is authorized, the
Modem module then dials a predefined telephone number for the caller, and allows access to the CPU.

The Modem module supports three callback modes:

� Callback to a single predefined telephone number

� Callback to multiple predefined telephone numbers

� Callback to any telephone number

The callback mode is selected by checking the appropriate option in the Modem Expansion wizard and
then defining the callback telephone numbers. The callback telephone numbers are stored in the Modem
module configuration block stored in the data block of the attached CPU.

The simplest form of callback is to a single predefined telephone number. If only one callback number is
stored in the Modem module configuration block, whenever the Modem module answers an incoming call,
it notifies the caller that callback is enabled, disconnects the caller, and then dials the callback number
specified in the configuration block.

The Modem module also supports callback for multiple predefined telephone numbers. In this mode the
caller is asked for a telephone number. If the supplied number matches one of the predefined telephone
numbers in the Modem module configuration block, the Modem module disconnects the caller, and then
calls back using the matching telephone number from the configuration block. The user can configure up
to 250 callback numbers.

Where there are multiple predefined callback numbers, the callback number supplied when connecting to
the Modem module must be an exact match of the number in the configuration block of the Modem
module except for the first two digits. For example, if the configured callback is 91(123)4569999 because
of a need to dial an outside line (9) and long distance (1), the number supplied for the callback could be
any of the following:

� 91(123)4569999

� 1(123)4569999

� (123)4569999

All of the above telephone number are considered to be a callback match. The Modem module uses the
callback telephone number from its configuration block when performing the callback, in this example
91(123)4569999. When configuring multiple callback numbers, make sure that all telephone numbers are
unique excluding the first two digits. Only the numeric characters in a telephone number are used when
comparing callback numbers. Characters such as commas or parenthesis are ignored when comparing
callback numbers.

The callback to any telephone number is set up in the Modem Expansion wizard by selecting the “Enable
callbacks to any phone number” option during the callback configuration. If this option is selected, the
Modem module answers an incoming call and requests a callback telephone number. After the telephone
number is supplied by the caller, the Modem module disconnects and dials that telephone number. This
callback mode only provides a means to allow telephone charges to be billed to the Modem module’s
telephone connection and does not provide any security for the S7-200 CPU. The Modem module
password should be used for security if this callback mode is used.

The Modem module password and callback functions can be enabled at the same time. The Modem
module requires a caller to supply the correct password before handling the callback.

10

Creating a Program for the Modem Module Chapter 10

293

Configuration Table for the Modem Module
All of the text messages, telephone numbers, data transfer information, callback numbers and other
options are stored in a Modem module configuration table which must loaded into the V memory of the
S7-200 CPU. The Modem Expansion wizard guides you through the creation of a Modem module
configuration table. STEP 7–Micro/WIN then places the Modem module configuration table in the Data
Block which is downloaded to the S7-200 CPU.

The Modem module reads this configuration table from the CPU on startup and within five seconds of any
STOP-to-RUN transition of the CPU. The Modem module does not read a new configuration table from the
CPU as long the Modem module is online with STEP 7–Micro/WIN. If a new configuration table is
downloaded while the Modem module is online, the Modem module reads the new configuration table
when the online session is ended.

If the Modem module detects an error in the configuration table, the Module Good (MG) LED on the front
of the module flashes on and off. Check the PLC Information screen in STEP 7–Micro/WIN, or read the
value in SMW220 (for module slot 0) for information about the configuration error. The Modem module
configuration errors are listed in Table 10-4. If you use the Modem Expansion wizard to create the Modem
module configuration table, STEP 7–Micro/WIN checks the data before creating the configuration table.

Table 10-4 EM 241 Configuration Errors (Hexadecimal)
Error Description

0000 No error

0001 No 24 VDC external power

0002 Modem failure

0003 No configuration block ID – The EM 241 identification at the start of the configuration table is not valid
for this module.

0004 Configuration block out of range – The configuration table pointer does not point to V memory, or some
part of the table is outside the range of V memory for the attached CPU.

0005 Configuration error – Callback is enabled and the number of callback telephone numbers equals 0 or it
is greater than 250. The number of messages is greater than 250. The number of messaging
telephone numbers is greater than 250, or if length of the messaging telephone numbers is greater
than 120 bytes.

0006 Country selection error – The country selection on the two rotary switches is not a supported value.

0007 Phone number too large – Callback is enabled and the callback number length is greater than the
maximum.

0008 to 00FF Reserved

01xx Error in callback number xx – There are illegal characters in callback telephone number xx. The value
xx is 1 for the first callback number, 2 for the second, etc.

02xx Error in telephone number xx – One of the fields in a message telephone number xx or a data transfer
telephone number xx contains an illegal value. The value xx is 1 for the first telephone number, 2 for
the second, etc.

03xx Error in message xx – Message or data transfer number xx exceeds the maximum length. The value
xx is 1 for the first message, 2 for the second, etc.

0400 to FFFF Reserved

10

S7-200 Programmable Controller System Manual

294

Status LEDs of the Modem Module
The Modem module has 8 status LEDs on the front panel. Table 10-5 describes the status LEDs.

Table 10-5 EM 241 Status LEDs
LED Description

MF Module Fail – This LED is on when the module detects a fault condition such as:

� No 24 VDC external power

� Timeout of the I/O watchdog

� Modem failure

� Communications error with the local CPU

MG Module Good – This LED is on when there is no module fault condition. The Module Good LED flashes
if there is a error in the configuration table, or the user has selected an illegal country setting for the
telephone line interface. Check the PLC Information screen in STEP 7–Micro/WIN or read the value in
SMW220 (for module slot 0) for information about the configuration error.

OH Off Hook – This LED is on when the EM 241 is actively using the telephone line.

NT No Dial Tone – This LED indicates an error condition and turns on when the EM 241 has been
commanded to send a message and there is no dial tone on the telephone line. This is only an error
condition if the EM 241 has been configured to check for a dial tone before dialing. The LED remains
on for approximately 5 seconds after a failed dial attempt.

RI Ring Indicator –This LED indicates that the EM 241 is receiving an incoming call.

CD Carrier Detect – This LED indicates that a connection has been established with a remote modem.

Rx Receive Data – This LED flashes on when the modem is receiving data.

Tx Transmit Data – This LED flashes on when the modem is transmitting data.

Using the Modem Expansion Wizard to Configure the Modem Module
Start the Modem Expansion wizard from the STEP 7–Micro/WIN Tools menu or from the Tools portion of
the Navigation Bar.

To use this wizard, the project must be compiled and set to Symbolic Addressing Mode. If you have not
already compiled your program, compile it now.

1. On first screen of the Modem Expansion wizard, select Configure an EM 241 Modem module and
click Next>.

2. The Modem Expansion wizard requires the Modem module’s position relative to the S7-200 CPU in
order to generate the correct program code. Click the Read Modules button to automatically read
the positions of the intelligent modules attached to the CPU. Expansion modules are numbered
sequentially starting at zero. Double-click the Modem module that you want to configure, or set the
Module Position field to the position of the Modem module. Click Next>.

For an S7-200 CPU with firmware prior to version 1.2, you must install the intelligent module next to
the CPU in order for the Modem Expansion wizard to configure the module.

3. The password protection screen allows you to enable password protection for the Modem module
and assign a 1 to 8 character password for the module. This password is independent of the
S7-200 CPU password. When the module is password-protected, anyone who attempts to connect
with the S7-200 CPU through the Modem module is required to supply the correct password. Select
password protection if desired, and enter a password. Click Next>.

4. The Modem module supports two communications protocols: PPI protocol (to communicate with
STEP 7–Micro/WIN), and Modbus RTU protocol. Protocol selection is dependent on the type of
device that is being used as the remote communications partner. This setting controls the
communications protocol used when the Modem module answers a call and also when the Modem
module initiates a CPU data transfer. Select the appropriate protocol and click Next>.

10

Creating a Program for the Modem Module Chapter 10

295

5. You can configure the module to send numeric and text messages to pagers, or Short Message
Service (SMS) messages to cellular telephones. Check the Enable messaging checkbox and click
the Configure Messaging... button to define messages and the recipient’s telephone numbers.

6. When setting up a message to be sent to a pager or cellular phone, you must define the message
and the telephone number. Select the Messages tab on the Configure Messaging screen and click
the New Message button. Enter the text for the message and specify any CPU data values to insert
into the message. To insert a CPU data value into the message, move the cursor to the position for
the data and click the Insert Data... button. Specify the address of the CPU data value (i.e. VW100),
the display format (i.e. Signed Integer) and the digits left and right of the decimal point. You can also
specify if the decimal point should be a comma or a period.

– Numeric paging messages are limited to the digits 0 to 9, the letters A, B, C and D, and the
asterisk (*). The maximum allowed length of a numeric paging message varies by service
provider.

– Text messages can be up to 119 characters in length and contain any alphanumeric
character.

– Text messages can contain any number of embedded variables.

– Embedded variables can be from V, M, SM, I, Q, S, T, C or AI memory in the attached CPU.

– Hexadecimal data is displayed with a leading ‘16#’. The number of characters in the value is
based on the size of the variable. For example, VW100 displays as 16#0123.

– The number of digits left of the decimal must be large enough to display the expected range
of values, including the negative sign, if the data value is a signed integer or floating point
value.

– If the data format is integer and the number of digits right of the decimal point is not zero, the
integer value is displayed as a scaled integer. For example, if VW100 = 1234 and there are 2
digits right of the decimal point, the data is displayed as ‘12.34’.

– If the data value is greater than can be displayed in the specified field size, the Modem
module places the # character in all character positions of data value.

7. Telephone numbers are configured by selecting the Phone Numbers tab on the Configure
Messaging screen. Click the New Phone Number... button to add a new telephone number. Once a
telephone number has been configured it must be added to the project. Highlight the telephone
number in the Available Phone Numbers column and click the right arrow box to add the telephone
number to the current project. Once you have added the telephone number to the current project,
you can select the telephone number and add a symbolic name for this number to use in your
program.

The telephone number consists of several fields which vary based on the type of messaging
selected by the user.

– The Messaging Protocol selection tells the Modem module which protocol to use when
sending the message to the message service provider. Numeric pagers support only numeric
protocol. Text paging services usually require TAP (Telelocator Alphanumeric Protocol). SMS
messaging providers are supported with either TAP or UCP (Universal Computer Protocol).
There are three different UCP services normally used for SMS messaging. Most providers
support command 1 or 51. Check with the SMS provider to determine the protocol and
commands required by that provider.

– The Description field allows you to add a text description for the telephone number.

10

S7-200 Programmable Controller System Manual

296

– The Phone Number field is the telephone number of the messaging service provider. For text
messages this is the telephone number of the modem line the service provider uses to accept
text messages. For numeric paging this is the telephone number of the pager itself. The
Modem module allows the telephone number field to be a maximum of 40 characters. The
following characters are allowed in telephone numbers that the Modem module uses to dial
out:

0 to 9 allowed from a telephone keypad
A, B, C, D, *, # DTMF digits (tone dialing only)
, pause dialing for 2 seconds
! commands the modem to generate a hook flash
@ wait for 5 seconds of silence
W wait for a dial tone before continuing
() ignored (can be used to format the telephone number)

– The Specific Pager ID or Cell Phone Number field is where you enter the pager number or
cellular telephone number of the message recipient. This number should not contain any
characters except the digits 0 through 9. A maximum of 20 characters is allowed.

– The Password field is optional for TAP message. Some providers require a password but
normally this field should be left blank. The Modem module allows the password to be up to
15 characters.

– The Originating Phone Number field allows the Modem module to be identified in the SMS
message. This field is required by some service providers which use UCP commands. Some
service providers might require a minimum number of characters in this field. The Modem
module allows up to 15 characters.

– The Modem Standard field is provided for use in cases where the Modem module and the
service provider modem cannot negotiate the modem standard. The default is V.34
(33.6 kBaud).

– The Data Format fields allow you to adjust the data bits and parity used by the modem when
transmitting a message to a service provider. TAP normally used 7 data bits and even parity,
but some service providers use 8 data bits and no parity. UCP always uses 8 data bits with
no parity. Check with the service provider to determine which settings to use.

8. You can configure the Modem module to transfer data to another S7-200 CPU (if PPI protocol was
selected) or to transfer data to a Modbus device (if Modbus protocol was selected). Check the
Enable CPU data transfers checkbox and click the Configure CPU-to... button to define the data
transfers and the telephone numbers of the remote devices.

9. When setting up a CPU-to-CPU or a CPU-to-Modbus data transfer you must define the data to
transfer and the telephone number of the remote device. Select the Data Transfers tab on the
Configure Data Transfers screen and click the New Transfer button. A data transfer consists of a
data read from the remote device, a data write to the remote device, or both a read from and a write
to the remote device. If both a read and a write are selected, the read is performed first and then the
write.

Up to 100 words can be transferred in each read or write. Data transfers must be to or from the
V Memory in the local CPU. The wizard always describes the memory locations in the remote
device as if the remote device is an S7-200 CPU. If the remote device is a Modbus device, the
transfer is to or from holding registers in the Modbus device (address 04xxxx). The equivalent
Modbus address (xxxx) is determined as follows:

Modbus address = 1 + (V memory address / 2)
V memory address = (Modbus address – 1) * 2

10

Creating a Program for the Modem Module Chapter 10

297

10. The Phone Numbers tab on the Configure CPU Data Transfers screen allows you to define the
telephone numbers for CPU-to-CPU or a CPU-to-Modbus data transfers. Click the New Phone
Number... button to add a new telephone number. Once a telephone number has been configured it
must be added to the project. Highlight the telephone number in the Available Phone Numbers
column and click the right arrow box to add the telephone number to the current project. Once you
have added the telephone number to the current project, you can select the telephone number and
add a symbolic name for this telephone number to use in your program.

The Description and Phone Number fields are the same as described earlier for messaging. The
Password field is required if the remote device is a Modem module and password protection has
been enabled. The Password field in the local Modem module must be set to the password of the
remote Modem module. The local Modem module supplies this password when it is requested by
the remote Modem module.

11. Callback causes the Modem module to automatically disconnect and dial a predefined telephone
number after receiving an incoming call from a remote STEP 7–Micro/WIN. Select the Enable
callback checkbox and click the Configure Callback... button to configure callback telephone
numbers. Click Next>.

12. The Configure Callback... screen allows you enter the telephone numbers the Modem module uses
when it answers an incoming call. Check the ‘Enable callbacks to only specified phone numbers’ if
the callback numbers are to be predefined. If the Modem module is to accept any callback number
supplied by the incoming caller (to reverse the connection charges), check the ‘Enable callbacks to
any phone number’ selection.

If only specified callback telephone numbers are allowed, click the New Phone Number button to
add callback telephone numbers. The Callback Properties screen allows you to enter the
predefined callback telephone numbers and a description for the callback number. The callback
number entered here is the telephone number that the Modem module uses to dial when performing
the callback. This telephone number should include all digits required to connect to an outside line,
pause while waiting for an outside line, connect to long distance, etc.

After entering a new callback telephone number, it must be added to the project. Highlight the
telephone number in the Available Callback Phone Numbers column and click the right arrow box to
add the telephone number to the current project.

13. You can set the number of dialing attempts that the Modem module makes when sending a
message or during a data transfer. The Modem module reports an error to the user program only
when all attempts to dial and send the message are unsuccessful.

Some telephone lines do not have a dial tone present when the telephone receiver is lifted.
Normally, the Modem module returns an error to the user program if a dial tone is not present when
the Modem module is commanded to send a message or perform a callback. To allow dialing out on
a line with no dial tone, check the box, Enable Dialing Without Dial Tone Selection.

14. The Modem Expansion wizard creates a configuration block for the Modem module and requires
the user to enter the starting memory address where the Modem module configuration data is
stored. The Modem module configuration block is stored in V Memory in the CPU.
STEP 7–Micro/WIN writes the configuration block to the project Data Block. The size of the
configuration block varies based on the number of messages and telephone numbers configured.
You can select the V Memory address where you want the configuration block stored, or click the
Suggest Address button if you want the wizard to suggest the address of an unused V Memory
block of the correct size. Click Next>.

15. The final step in configuring the Modem module is to specify the Q memory address of the
command byte for the Modem module. You can determine the Q memory address by counting the
output bytes used by any modules with discrete outputs installed on the S7-200 before the Modem
module. Click Next>.

16. The Modem Expansion wizard now generates the project components for your selected
configuration (program block and data block) and makes that code available for use by your
program. The final wizard screen displays your requested configuration project components. You
must download the Modem module configuration block (Data Block) and the Program Block to the
S7-200 CPU.

10

S7-200 Programmable Controller System Manual

298

Overview of Modem Instructions and Restrictions
The Modem Expansion wizard makes controlling the Modem module easier by creating unique instruction
subroutines based on the position of the module and configuration options you selected. Each instruction
is prefixed with a “MODx_” where x is the module location.

Requirements for Using the EM 241 Modem Module Instructions
Consider these requirements when you use Modem module instructions:

� The Modem module instructions use three subroutines.

� The Modem module instructions increase the amount of memory required for your program by up to
370 bytes. If you delete an unused instruction subroutine, you can rerun the Modem Expansion
wizard to recreate the instruction if needed.

� You must make sure that only one instruction is active at a time.

� The instructions cannot be used in an interrupt routine.

� The Modem module reads the configuration table information when it first powers up and after a
STOP-to-RUN transition. Any change that your program makes to the configuration table is not
seen by the module until a mode change or the next power cycle.

Using the EM 241 Modem Module Instructions
To use the Modem module instructions in your S7-200 program, follow these steps:

1. Use the Modem Expansion wizard to create the Modem module configuration table.

2. Insert the MODx_CTRL instruction in your program and use the SM0.0 contact to execute it every
scan.

3. Insert a MODx_MSG instruction for each message you need to send.

4. Insert a MODx_XFR instruction for each data transfer.

10

Creating a Program for the Modem Module Chapter 10

299

Instructions for the Modem Module

MODx_CTRL Instruction
The MODx_CTRL (Control) instruction is used to enable and
initialize the Modem module. This instruction should be called every
scan and should only be used once in the project.

MODx_XFR Instruction
The MODx_XFR (Data Transfer) instruction is used to command the
Modem module to read and write data to another S7-200 CPU or a
Modbus device. This instruction requires 20 to 30 seconds from the
time the START input is triggered until the Done bit is set.

The EN bit must be on to enable a command to the module, and
should remain on until the Done bit is set, signaling completion of
the process. An XFR command is sent to the Modem module on
each scan when START input is on and the module is not currently
busy. The START input can be pulsed on through an edge detection
element, which only allows one command to be sent.

Phone is the number of one of the data transfer telephone numbers.
You can use the symbolic name you assigned to each data transfer
telephone number when the number was defined with the Modem
Expansion wizard.

Data is the number of one of the defined data transfers. You can
use the symbolic name you assigned to the data transfer when the
request was defined using the Modem Expansion wizard.

Done is a bit that comes on when the Modem module completes the data transfer.

Error is a byte that contains the result of the data transfer. Table 10-4 defines the possible error conditions
that could result from executing this instruction.

Table 10-6 Parameters for the MODx_XFR Instruction

Inputs/Outputs Data Type Operands

START BOOL I, Q, M, S, SM, T, C, V, L, Power Flow

Phone, Data BYTE VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD, *AC, *LD

Done BOOL I, Q, M, S, SM, T, C, V, L

Error BYTE VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD

10

S7-200 Programmable Controller System Manual

300

MODx_MSG Instruction
The MODx_MSG (Send Message) instruction is used to send a
paging or SMS message from Modem module. This instruction
requires 20 to 30 seconds from the time the START input is
triggered until the Done bit is set.

The EN bit must be on to enable a command to the module, and
should remain on until the Done bit is set, signaling completion of
the process. A MSG command is sent to the Modem module on
each scan when START input is on and the module is not currently
busy. The START input can be pulsed on through an edge detection
element, which only allows one command to be sent.

Phone is the number of one of the message telephone numbers.
You can use the symbolic name you assigned to each message
telephone number the when the number was defined with the
Modem Expansion wizard.

Msg is the number of one of the defined messages. You can use the
symbolic name you assigned to the message when the message
was defined using the Modem Expansion wizard.

Done is a bit that comes on when the Modem module completes the sending of the message to the
service provider.

Error is a byte that contains the result of this request to the module. Table 10-8 defines the possible error
conditions that could result from executing this instruction.

Table 10-7 Parameters for the MODx_MSG Instruction

Inputs/Outputs Data Type Operands

START BOOL I, Q, M, S, SM, T, C, V, L, Power Flow

Phone, Msg BYTE VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD, *AC, *LD

Done BOOL I, Q, M, S, SM, T, C, V, L

Error BYTE VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD

10

Creating a Program for the Modem Module Chapter 10

301

Table 10-8 Error Values Returned by MODx_MSG and MODx_XFR Instructions

Error Description

0 No error

Telephone line errors

1 No dial tone present

2 Busy line

3 Dialing error

4 No answer

5 Connect timeout (no connection within 1 minute)

6 Connection aborted or an unknown response

Errors in the command

7 Numeric paging message contains illegal digits

8 Telephone number (Phone input) out of range

9 Message or data transfer (Msg or Data input) out of range

10 Error in text message or data transfer message

11 Error in messaging or data transfer telephone number

12 Operation not allowed (i.e. attempts set to zero)

Service provider errors

13 No response (timeout) from messaging service

14 Message service disconnected for unknown reason

15 User aborted message (disabled command bit)

TAP – Text paging and SMS message errors returned by service provider

16 Remote disconnect received (service provider aborted session)

17 Login not accepted by message service (incorrect password)

18 Block not accepted by message service (checksum or transmission error)

19 Block not accepted by message service (unknown reason)

UCP – SMS message errors returned by service provider

20 Unknown error

21 Checksum error

22 Syntax error

23 Operation not supported by system (illegal command)

24 Operation not allowed at this time

25 Call barring active (blacklist)

26 Caller address invalid

27 Authentication failure

28 Legitimization code failure

29 GA not valid

30 Repetition not allowed

31 Legitimization code for repetition, failure

32 Priority call not allowed

33 Legitimization code for priority call, failure

34 Urgent message not allowed

35 Legitimization code for urgent message, failure

36 Reverse charging not allowed

37 Legitimization code for reverse charging, failure

10

S7-200 Programmable Controller System Manual

302

Table 10-8 Error Values Returned by MODx_MSG and MODx_XFR Instructions, continued

DescriptionError

UCP – SMS message errors returned by service provider (continued)

38 Deferred delivery not allowed

39 New AC not valid

40 New legitimization code not allowed

41 Standard text not valid

42 Time period not valid

43 Message type not supported by system

44 Message too long

45 Requested standard text not valid

46 Message type not valid for pager type

47 Message not found in SMSC

48 Reserved

49 Reserved

50 Subscriber hang up

51 Fax group not supported

52 Fax message type not supported

Data transfer errors

53 Message timeout (no response from remote device)

54 Remote CPU busy with upload or download

55 Access error (memory out of range, illegal data type)

56 Communications error (unknown response)

57 Checksum or CRC error in response

58 Remote EM 241 set for callback (not allowed)

59 Remote EM 241 rejected the provided password

60 to 127 Reserved

Instruction use errors

128 Cannot process this request. Either the Modem module is busy with another request, or there was
no START pulse on this request.

129 Modem module error:

� The location of the Modem module or the Q memory address that was configured with the
Modem Expansion wizard does not match the actual location or memory address

� Refer to SMB8 to SMB21 (I/O Module ID and Error Register)

10

Creating a Program for the Modem Module Chapter 10

303

Sample Program for the Modem Module

Example: Modem Module

Network 1 // Call the MOD0_CTRL subroutine
// on every scan.

LD SM0.0
CALL MOD0_CTRL, M0.0, VB10

Network 2 // Send a text message to a cell phone.

LD I0.0
EU
= L63.7
LD I0.0
CALL MOD0_MSG, L63.7, CellPhone, Message1,

M0.0, VB10

Network 3 // Transfer data to a remote CPU.

LD I0.1
EU
= L63.7
LD I0.1
CALL MOD0_XFR, L63.7, RemoteCPU, Transfer1,
M0.0,

VB10

S7-200 CPUs that Support Intelligent Modules
The Modem module is an intelligent expansion module designed to work with the S7-200 CPUs shown in
Table 10-9.

Table 10-9 EM 241 Modem Module Compatibility with S7-200 CPUs
CPU Description

CPU 222 DC/DC/DC
CPU 222 Rel. 1.10 or greater

CPU 222 AC/DC/Relay

CPU 224 DC/DC/DC
CPU 224 Rel. 1.10 or greater

CPU 224 AC/DC/Relay

CPU 226 DC/DC/DC
CPU 226 Rel. 1.00 or greater

CPU 226 AC/DC/Relay

CPU 226XM DC/DC/DC
CPU 226XM Rel. 1.00 or greater

CPU 226XM AC/DC/Relay

10

S7-200 Programmable Controller System Manual

304

Special Memory Location for the Modem Module
Fifty bytes of special memory (SM) are allocated to each intelligent module based on its physical position
in the I/O expansion bus. When an error condition or a change in status is detected, the module indicates
this by updating the SM locations corresponding to the module’s position. If it is the first module, it updates
SMB200 through SMB249 as needed to report status and error information. If it is the second module, it
updates SMB250 through SMB299, and so on. See Table 10-10.

Table 10-10 Special Memory Bytes SMB200 to SMB549

Special Memory Bytes SMB200 to SMB549

Intelligent
Module in

Slot 0

 Intelligent
Module in

Slot 1

Intelligent
Module in

Slot 2

Intelligent
Module in

Slot 3

Intelligent
Module in

Slot 4

Intelligent
Module in

Slot 5

Intelligent
Module in

Slot 6

SMB200 to
SMB249

SMB250 to
SMB299

SMB300 to
SMB349

SMB350 to
SMB399

SMB400 to
SMB449

SMB450 to
SMB499

SMB500 to
SMB549

Table10-11 shows the Special Memory data area allocated for the Modem module. This area is defined as
if this were the intelligent module located in Slot 0 of the I/O system.

Table 10-11 SM Locations for the EM 241 Modem Module

SM Address Description

SMB200 to
SMB215

Module name (16 ASCII characters) SMB200 is the first character.
“EM241 Modem”

SMB216 to
SMB219

S/W revision number (4 ASCII characters) SMB216 is the first character.

SMW220 Error code
0000 – No error
0001 – No user power
0002 – Modem failure
0003 – No configuration block ID
0004 – Configuration block out of range
0005 – Configuration error
0006 – Country code selection error
0007 – Phone number too large
0008 – Message too large
0009 to 00FF – Reserved

01xx – Error in callback number xx
02xx – Error in pager number xx
03xx – Error in message number xx
0400 to FFFF – Reserved

SMB222

F – EM_FAULT 0 – no fault 1 – fault
G – EM_GOOD 0 – not good 1 – good
H – OFF_HOOK 0 – on hook, 1 – off hook
T – NO DIALTONE 0 – dial tone 1 – no dial tone
R – RING 0 – not ringing 1 – phone ringing
C – CONNECT 0 – not connected 1 – connected

Module status – reflects the LED status

MSB

 F G H R C 0 T 0

7 6 5 4 3 2 1 0
LSB

SMB223 Country code as set by switches (decimal value)

SMW224 Baud rate at which the connection was established (unsigned decimal value).

10

Creating a Program for the Modem Module Chapter 10

305

Table 10-11 SM Locations for the EM 241 Modem Module, continued

DescriptionSM Address

SMB226

MSB

 D 0

7 6 5 0
LSB

D – Done bit;
0 – operation in progress
1 – operation complete

ERROR : Error Code Description, see Table 10-8

Result of the user command

 ERROR

SMB227 Telephone number selector – This byte specifies which messaging telephone number to use when
sending a message. Valid values are 1 through 250.

SMB228 Message selector – This byte specifies which message to send. Valid values are 1 through 250.

SMB229 to
SMB244

Reserved

SMB245 Offset to the first Q byte used as the command interface to this module. The offset is supplied by the
CPU for the convenience of the user and is not needed by the module.

SMD246 Pointer to the configuration table for the Modem module in V memory. A pointer value to an area other
than V memory is not accepted and the module continues to examine this location, waiting for a
non-zero pointer value.

10

S7-200 Programmable Controller System Manual

306

Advanced Topics

Understanding the ConfigurationTable
The Modem Expansion wizard has been developed to make modem applications easy by automatically
generating the configuration table based upon the answers you give about your system. Configuration
table information is provided for advanced users who want to create their own Modem module control
routines and format their own messages.

The configuration table is located in the V memory area of the S7-200. In Table 10-12, the Byte Offset
column of the table is the byte offset from the location pointed to by the configuration area pointer in SM
memory. The configuration table information is divided into four sections.

� The Configuration Block contains information to configure the module.

� The Callback Telephone Number Block contains the predefined telephone numbers allowed for
callback security.

� The Message Telephone Number Block contains the telephone numbers used when dialing
messaging services or CPU data transfers.

� The Message Block contains the predefined messages to send to the messaging services.

Table 10-12 Configuration Table for the Modem Module

Configuration Block

Byte Offset Description

0 to 4 Module Identification – Five ASCII characters used for association of the configuration table to an
intelligent module. Release 1.00 of the EM 241 Modem module expects “M241A”.

5 The length of the Configuration Block – Currently 24.

6 Callback telephone number length – Valid values are 0 through 40.

7 Messaging telephone number length – Valid values are 0 through 120.

8 Number of callback telephone numbers – Valid values are 0 through 250.

9 Number of messaging telephone numbers – Valid values are 0 through 250.

10 Number of messages – Valid values are 0 through 250.

11 to 12 Reserved (2 bytes)

13 This byte contains the enable bits for the features supported.

MSB

PD – 0 = tone dialing 1 = pulse dialing
CB – 0 = callback disabled 1 = callback enabled
PW – 0 = password disabled 1 = password enabled
MB – 0 = PPI protocol enabled 1 = Modbus protocol enabled
BD – 0 = blind dialing disabled 1 = blind dialing enabled

Bits 2, 1 and 0 are ignored by the module

PD CB PW BD 0 0MB 0

7 6 5 4 3 2 1 0
LSB

14 Reserved

15 Attempts – This value specifies the number of times the modem is to attempt to dial and send a
message before returning an error. A value of 0 prevents the modem from dialing out.

16 to 23 Password – Eight ASCII characters

10

Creating a Program for the Modem Module Chapter 10

307

Table 10-12 Configuration Table for the Modem Module, continued

Callback Telephone Number Block (optional)

Byte Offset Description

24 Callback Telephone Number 1 – A string representing the first telephone number that is authorized for
callback access from the EM 241 Modem module. Each callback telephone number must be allocated
the same amount of space as specified in the callback telephone number length field (offset 6 in the
Configuration Block).

24+ callback
number

Callback Telephone Number 2

: :

: Callback Telephone Number n

Messaging Telephone Number Block (optional)

Byte Offset Description

M Messaging Telephone Number 1 – A string representing a messaging telephone number which
includes protocol and dialing options. Each telephone number must be allocated the same amount of
space as specified in the messaging telephone number length field (offset 7 in the Configuration
Block).

The messaging telephone number format is described below

M +
messaging

number length

Messaging Telephone Number 2

: :

: Messaging Telephone Number n

Message Block (optional)

Byte Offset Description

N V memory offset (relative to VB0) for the first message (2 bytes)

N+2 Length of message 1

N+3 Length of message 2

:

: Length of message n

P Message 1 – A string (120 bytes max.) representing the first message. This string includes text and
embedded variable specifications or it could specify a CPU data transfer.

See the Text Message Format and the CPU Data Transfer Format described below.

P + length of
message 1

Message 2

: :

: Message n

The Modem module re-reads the configuration table when these events occur:

� Within five seconds of each STOP-to-RUN transition of the S7-200 CPU (unless the modem is
currently online)

� Every five seconds until a valid configuration is found (unless the modem is currently online)

� Every time the modem transitions from an online to an offline condition

10

S7-200 Programmable Controller System Manual

308

Messaging Telephone Number Format
The Messaging Telephone Number is a structure which contains the information needed by the Modem
module to send a message. The Messaging Telephone Number is an ASCII string with a leading length
byte followed by ASCII characters. The maximum length of a Messaging Telephone Number is 120 bytes
(which includes the length byte).

The Messaging Telephone Number contains up to 6 fields separated by a forward slash (/) character.
Back-to-back slashes indicate an empty (null) field. Null fields are set to default values in the Modem
module.

Format: <Telephone Number>/<ID>/<Password/<Protocol>/<Standard>/<Format>

The Telephone Number field is the telephone number that the Modem module dials when sending a
message. If the message being sent is a text or SMS message, this is the telephone number of the
service provider. If the message is a numeric page, this field is the pager telephone number. If the
message is a CPU data transfer, this is the telephone number of the remote device. The maximum
number of characters in this field is 40.

The ID is the pager number or cellular telephone number. This field should consist of the digits 0 to 9 only.
If the protocol is a CPU data transfer, this field is used to supply the address of the remote device. Up to
20 characters are allowed in this field.

The Password field is used to supply the a password for messages sent via TAP if a password is required
by the service provider. For messages sent via UCP this field is used as the originating address or
telephone number. If the message is a CPU data transfer to another Modem module, this field can be
used to supply the password of the remote Modem module. The password can be up to 15 characters in
length.

The Protocol field consists of one ASCII character which tells the Modem module how it should format and
transmit the message. The following values are allowed:

1 – Numeric paging protocol (default)
2 – TAP
3 – UCP command 1
4 – UCP command 30
5 – UCP command 51
6 – CPU data transfer

The Standard field forces the Modem module to use a specific modem standard. The standard field is one
ASCII character. The following values are allowed:

1 – Bell 103
2 – Bell 212
3 – V.21
4 – V.22
5 – V.22 bit
6 – V.23c
7 – V.32
8 – V.32 bit
9 – V.34 (default)

The Format field is three ASCII characters which specify the number of data bits and parity to be used
when transmitting the message. This field does not apply if the protocol is set to numeric paging. Only the
following two settings are allowed:

8N1 – 8 data bits, no parity, one stop bit (default)
7E1 – 7 data bits, even parity, one stop bit

10

Creating a Program for the Modem Module Chapter 10

309

Text Message Format
The Text Message Format defines the format of text paging or SMS messages. These types of messages
can contain text and embedded variables. The text message is an ASCII string with a leading length byte
followed by ASCII characters. The maximum length of a text message is 120 bytes (which includes the
length byte).

Format: <Text><Variable><Text><Variable>...

The Text field consists of ASCII characters.

The Variable field defines an embedded data value which the Modem module reads from the local CPU,
formats, and places in the message. The percent (%) character is used to mark the start and the end of a
variable field. The address and the left fields are separated with a colon. The delimiter between the Left
and Right fields can be either a period or a comma and is used as the decimal point in the formatted
variable. The syntax for the variable field is:

%Address:Left.Right Format%

The Address field specifies the address, data type and size of the embedded data value (i.e. VD100,
VW50, MB20 or T10). The following data types are allowed: I, Q, M, S, SM, V, T, C, and AI. Byte, word
and double word sizes are allowed.

The Left field defines the number of digits to display left of the decimal point. This value should be large
enough to handle the expected range of the embedded variable including a minus sign if needed. If Left is
zero the value is displayed with a leading zero. The valid range for Left is 0 to 10.

The Right field defines the number of digits to display right of the decimal point. Zeros to the right of the
decimal point are always displayed. If Right is zero the number is displayed without a decimal point. The
valid range for Right is 0 to 10.

The Format field specifies the display format of the embedded value. The following characters are allowed
for the format field:

i – signed integer
u – unsigned integer
h – hexadecimal
f – floating point/real

Example: “Temperature = %VW100:3.1i% Pressure = %VD200:4.3f%”

10

S7-200 Programmable Controller System Manual

310

CPU Data Transfer Message Format
A CPU data transfer, either a CPU-to-CPU or a CPU-to-Modbus data transfer, is specified using the CPU
Data Transfer Message Format. A CPU Data Transfer Message is an ASCII string which can specify any
number of data transfers between devices, up to the number of specifications that fit in the maximum
message length of 120 bytes (119 characters plus a length byte). An ASCII space can be used to
separate the data transfer specifications, but is not required. All data transfer specifications are executed
within one connection. Data transfers are executed in the order defined in the message. If an error is
detected in a data transfer, the connection to the remote device is terminated and subsequent
transactions are not processed.

If the operation is specified as a read, Count number of words are read from the remote device starting at
the Remote_address, and then written to V Memory in the local CPU starting at the Local_address.

If the operation is specified as a write, Count number of words are read from the local CPU starting at the
Local_address, and then written to the remote device starting at Remote_address.

Format: <Operation>=<Count>,<Local_address>,<Remote_address>

The Operation field consists of one ASCII character and defines the type of transfer.

R – Read data from the remote device
W – Write data to the remote device

The Count field specifies the number of words to be transferred. The valid range for the count field is 1 to
100 words.

The Local_address field specifies the V Memory address in the local CPU for the data transfer (i.e.
VW100).

The Remote_address field specifies the address in the remote device for the data transfer (i.e. VW500).
This address is always specified as a V Memory address even if the data transfer is to a Modbus device. If
the remote device is a Modbus device, the conversion between V Memory address and Modbus address
is as follows:

Modbus address = 1 + (V Memory address / 2)
V Memory address = (Modbus address – 1) * 2

Example: R=20,VW100, VW200 W=50,VW500,VW1000 R=100,VW1000,VW2000

311

Using the USS Protocol Library to Control
a MicroMaster Drive

STEP 7–Micro/WIN Instruction Libraries makes controlling MicroMaster drives easier by including
preconfigured subroutines and interrupt routines that are specifically designed for using the USS protocol
to communicate with the drive. With the USS instructions, you can control the physical drive and the
read/write drive parameters.

You find these instructions in the Libraries folder of the STEP 7–Micro/WIN instruction tree. When you
select a USS instruction, one or more associated subroutines (USS1 through USS7) are added
automatically.

In This Chapter
Requirements for Using the USS Protocol 312.

Calculating the Time Required for Communicating with the Drive 313.

Using the USS Instructions 314.

Instructions for the USS Protocol 315.

Sample Programs for the USS Protocol 322.

USS Execution Error Codes 323.

Connecting and Setting Up the MicroMaster Series 3 Drive 324.

Connecting and Setting Up the MicroMaster Series 4 Drive 327.

11

S7-200 Programmable Controller System Manual

312

Requirements for Using the USS Protocol
The STEP 7–Micro/WIN Instruction Libraries provides 14 subroutines, 3 interrupt routines, and 8
instructions to support the USS protocol. The USS instructions use the following resources in the S7-200:

� Initializing the USS protocol dedicates Port 0 for the USS communications.

You use the USS_INIT instruction to select either USS or PPI for Port 0. (USS refers to the USS
protocol for SIMOTION MicroMaster drives.) After selecting to use the USS protocol for
communicating with drives, you cannot use Port 0 for any other purpose, including communicating
with STEP 7–Micro/WIN.

During the development of the program for an application using the USS protocol, you should use a
CPU 226, CPU 226XM, or EM 277 PROFIBUS–DP module connected to a PROFIBUS CP card in
your computer. This second communications port allows STEP 7–Micro/WIN to monitor the
application while USS protocol is running.

� The USS instructions affect all of the SM locations that are associated with Freeport
communications on Port 0.

� The USS instructions use 14 subroutines and 3 interrupt routines.

� The USS instructions increase the amount of memory required for your program by up to
3450 bytes. Depending on the specific USS instructions used, the support routines for these
instructions can increase the overhead for the control program by at least 2150 bytes, up to
3450 bytes.

� The variables for the USS instructions require a 400-byte block of V memory. The starting address
for this block is assigned by the user and is reserved for USS variables.

� Some of the USS instructions also require a 16-byte communications buffer. As a parameter for the
instruction, you provide a starting address in V memory for this buffer. It is recommended that a
unique buffer be assigned for each instance of USS instructions.

� When performing calculations, the USS instructions use accumulators AC0 to AC3. You can also
use the accumulators in your program; however, the values in the accumulators will be changed by
the USS instructions.

� The USS instructions cannot be used in an interrupt routine.

Tip
To change the operation of Port 0 back to PPI so that you can communicate with STEP 7–Micro/WIN,
use another USS_INIT instruction to reassign Port 0.

You can also set the mode switch on the S7-200 to STOP mode. This resets the parameters for Port 0.
Be aware that stopping the communications to the drives also stops the drives.

11

Using the USS Protocol Library to Control a MicroMaster Drive Chapter 11

313

Calculating the Time Required for Communicating with the Drive
Communications with the drive are asynchronous to the S7-200 scan. The S7-200 typically completes
several scans before one drive communications transaction is completed. The following factors help
determine the amount of time required: the number of drives present, the baud rate, and the scan time of
the S7-200.

Some drives require longer delays when using
the parameter access instructions. The amount
of time required for a parameter access is
dependent on the drive type and the parameter
being accessed.

After a USS_INIT instruction assigns Port 0 to
use the USS Protocol, the S7-200 regularly
polls all active drives at the intervals shown in
Table 11-1. You must set the time-out
parameter of each drive to allow for this task.

Table 11-1 Communications Times

Baud
Rate

Time Between Polls of Active Drives
(with No Parameter Access Instructions Active)

1200 240 ms (maximum) times the number of drives

2400 130 ms (maximum) times the number of drives

4800 75 ms (maximum) times the number of drives

9600 50 ms (maximum) times the number of drives

19200 35 ms (maximum) times the number of drives

38400 30 ms (maximum) times the number of drives

57600 25 ms (maximum) times the number of drives

115200 25 ms (maximum) times the number of drives

Tip
Only one USS_RPM_x or USS_WPM_x instruction can be active at a time. The Done output of each
instruction should signal completion before user logic initiates a new instruction.

Use only one USS_CTRL instruction for each drive.

11

S7-200 Programmable Controller System Manual

314

Using the USS Instructions
To use the USS protocol instructions in your S7-200 controller program, follow these steps:

1. Insert the USS_INIT instruction in your program and execute the USS_INIT instruction for one scan
only. You can use the USS_INIT instruction either to initiate or to change the USS communications
parameters.

When you insert the USS_INIT instruction, several hidden subroutines and interrupt routines are
automatically added to your program.

2. Place only one USS_CTRL instruction in your program for each active drive.

You can add as many USS_RPM_x and USS_WPM_x instructions as required, but only one of
these can be active at a time.

3. Allocate the V memory for the library instructions by
right-clicking (to get the menu) on the Program Block
node in the instruction tree.

Select the Library Memory option to display the Library
Memory Allocation dialog box.

4. Configure the drive parameters to match the baud rate
and address used in the program.

Figure 11-1 Allocating V Memory for the
Instruction Library

5. Connect the communications cable between the S7-200 and the drives.

Ensure that all of the control equipment, such as the S7-200, that is connected to the drive be
connected by a short, thick cable to the same ground or star point as the drive.

Caution
Interconnecting equipment with different reference potentials can cause unwanted currents to flow
through the interconnecting cable. These unwanted currents can cause communications errors or
damage equipment.

Ensure that all equipment that is connected with a communications cable either shares a common
circuit reference or is isolated to prevent unwanted current flows.

The shield must be tied to chassis ground or pin 1 on the 9-pin connector. It is recommended that you
tie wiring terminal 2–0V on the MicroMaster drive to chassis ground.

11

Using the USS Protocol Library to Control a MicroMaster Drive Chapter 11

315

Instructions for the USS Protocol

USS_INIT Instruction
The USS_INIT instruction is used to enable and initialize, or to
disable MicroMaster Drive communications. Before any other USS
instruction can be used, the USS_INIT instruction must be executed
without errors. The instruction completes and the Done bit is set
immediately, before continuing to the next instruction.

The instruction is executed on each scan when the EN input is on.

Execute the USS_INIT instruction only once for each change in
communications state. Use an edge detection instruction to pulse
the EN input on. To change the initialization parameters, execute a
new USS_INIT instruction.

The value for Mode selects the communications protocol: an input
value of 1 assigns port 0 to USS protocol and enables the protocol,
and an input value of 0 assigns port 0 to PPI and disables the USS
protocol.

Baud sets the baud rate at 1200, 2400, 4800, 9600, 19200, 38400,
57600, or 115200.

Active indicates which drives are active. Some drives only support addresses 0 through 30.

Table 11-2 Parameters for the USS_INIT Instruction

Inputs/Outputs Data Type Operands

Mode BYTE VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD, *AC, *LD

Baud, Active DWORD VD, ID, QD, MD, SD, SMD, LD, Constant, AC *VD, *AC, *LD

Done BOOL I, Q, M, S, SM, T, C, V, L

Error BYTE VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD

Figure 11-2 shows the description and format of
the active drive input. Any drive that is marked as
Active is automatically polled in the background
to control the drive, collect status, and prevent
serial link time-outs in the drive.

Refer to Table 11-1 to compute the time between

D0 Drive 0 active bit; 0 – drive not active, 1 – drive active
D1 Drive 1 active bit; 0 – drive not active, 1 – drive active
...

MSB LSB

30 29 28 3 2 1 0

D0D1D2D30 D29D31

31

status polls. Figure 11-2 Format for the Active Drive Parameter

When the USS_INIT instruction completes, the Done output is turned on. The Error output byte contains
the result of executing the instruction. Table 11-6 defines the error conditions that could result from
executing the instruction.

Example: USS_INIT Subroutine

Network 1

LD I0.0
EU
CALL USS_INIT, 1, 9600, 16#00000001, M0.0, VB10

11

S7-200 Programmable Controller System Manual

316

USS_CTRL Instruction
The USS_CTRL instruction is used to control an active MicroMaster
drive. The USS_CTRL instruction places the selected commands in
a communications buffer, which is then sent to the addressed drive
(Drive parameter), if that drive has been selected in the Active
parameter of the USS_INIT instruction.

Only one USS_CTRL instruction should be assigned to each drive.

Some drives report speed only as a positive value. If the speed is
negative, the drive reports the speed as positive but reverses the
D_Dir (direction) bit.

The EN bit must be on to enable the USS_CTRL instruction. This
instruction should always be enabled.

RUN (RUN/STOP) indicates whether the drive is on (1) or off (0).
When the RUN bit is on, the MicroMaster drive receives a command
to start running at the specified speed and direction. In order for the
drive to run, the following must be true:

� Drive must be selected as Active in USS_INIT.

� OFF2 and OFF3 must be set to 0.

� Fault and Inhibit must be 0.

When RUN is off, a command is sent to the MicroMaster drive to
ramp the speed down until the motor comes to a stop. The OFF2 bit
is used to allow the MicroMaster drive to coast to a stop. The OFF3
bit is used to command the MicroMaster drive to stop quickly.

The Resp_R (response received) bit acknowledges a response
from the drive. All the Active drives are polled for the latest drive
status information. Each time the S7-200 receives a response from
the drive, the Resp_R bit is turned on for one scan and all the
following values are updated.

The F_ACK (fault acknowledge) bit is used to acknowledge a fault in the drive. The drive clears the fault
(Fault) when F_ACK goes from 0 to 1.

The DIR (direction) bit indicates in which direction the drive should move.

The Drive (drive address) input is the address of the MicroMaster drive to which the USS_CTRL command
is to be sent. Valid addresses: 0 to 31

The Type (drive type) input selects the type of drive. For a MicroMaster 3 (or earlier) drive, set Type to 0.
For a MicroMaster 4 drive, set Type to 1.

Table 11-3 Parameters of the USS_CTRL Instruction

Inputs/Outputs Data Types Operands

RUN, OFF 2, OFF 3, F_ACK, DIR BOOL I, Q, M, S, SM, T, C, V, L, Power Flow

Resp_R, Run_EN, D_Dir, Inhibit,
Fault

BOOL I, Q, M, S, SM, T, C, V, L

Drive, Type BYTE VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD, Constant

Error BYTE VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD

Status WORD VW, T, C, IW, QW, SW, MW, SMW, LW, AC, AQW, *VD, *AC, *LD

Speed_SP REAL VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *AC, *LD, Constant

Speed REAL VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *AC, *LD

11

Using the USS Protocol Library to Control a MicroMaster Drive Chapter 11

317

Speed_SP (speed setpoint) is drive speed as a percentage of full speed. Negative values of Speed_SP
cause the drive to reverse its direction of rotation. Range: –200.0% to 200.0%

Error is an error byte that contains the result of the latest communications request to the drive. Table 11-6
defines the error conditions that could result from executing the instruction.

Status is the raw value of the status word returned by the drive. Figure 11-3 shows the status bits for
Standard Status Word and Main Feedback.

Speed is drive speed as a percentage of full speed. Range: –200.0% to 200.0%

Run_EN (RUN enable) indicates whether the drive is running (1) or stopped (0).

D_Dir indicates the drive’s direction of rotation.

Inhibit indicates the state of the inhibit bit on the drive (0 – not inhibited, 1 – inhibited). To clear the inhibit
bit, the Fault bit must be off, and the RUN, OFF2, and OFF3 inputs must also be off.

Fault indicates the state of the fault bit (0 – no fault, 1 – fault). The drive displays the fault code. (Refer to
the manual for your drive). To clear the Fault bit, correct the cause of the fault and turn on the F_ACK bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

High byte Low byte

1 = Ready to start
1 = Ready to operate

1 = Operation enabled
1 = Drive fault present

0 = OFF2 (Coast stop command present)
0 = OFF3 (Quick stop command present)

1 = Switch-on inhibit

1 = Drive warning present
1 = Not used (always 1)

1 = Serial operation allowed
0 = Serial operation blocked – local operation only

1 = Frequency reached
0 = Frequency not reached

1 = Converter output is clockwise
1 = Converter output is counter-clockwise

Reserved for future use: These bits might not always be zero

Figure 11-3 Status Bits for Standard Status Word for MicroMaster 3 and Main Feedback

11

S7-200 Programmable Controller System Manual

318

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

High byte Low byte

1 = Ready to start
1 = Ready to operate

1 = Operation enabled
1 = Drive fault present

0 = OFF2 (Coast stop command present)
0 = OFF3 (Quick stop command present)

1 = Switch-on inhibit

1 = Drive warning present
1 = Not used (always 1)

1 = Serial operation allowed
0 = Serial operation blocked – local operation only

1 = Frequency reached
0 = Frequency not reached

0= Warning: Motor current limit

0= Motor holding brake active

0= Motor overload

1 = Motor running direction right
0= Inverter overload

Figure 11-4 Status Bits for Standard Status Word for MicroMaster 4 and Main Feedback

Example: USS_CTRL Subroutine

To display in STL only:

Network 1 //Control box for drive 0

LD SM0.0
CALL USS_CTRL, I0.0, I0.1, I0.2, I0.3, I0.4, 0, 1,
100.0, M0.0, VB2, VW4, VD6, Q0.0, Q0.1, Q0.2, Q0.3

To display in LAD or FBD:

Network 1 //Control box for drive 0

LD SM0.0
= L60.0
LD I0.0
= L63.7
LD I0.1
= L63.6
LD I0.2
= L63.5
LD I0.3
= L63.4
LD I0.4
= L63.3
LD L60.0
CALL USS_CTRL, L63.7, L63.6, L63.5, L63.4,
L63.3, 0, 1, 100.0, M0.0, VB2, VW4, VD6, Q0.0, Q0.1,
Q0.2, Q0.3

11

Using the USS Protocol Library to Control a MicroMaster Drive Chapter 11

319

USS_RPM_x Instruction
There are three read instructions for the USS protocol:

� USS_RPM_W instruction reads an unsigned word parameter.

� USS_RPM_D instruction reads an unsigned double word
parameter.

� USS_RPM_R instruction reads a floating-point parameter.

Only one read (USS_RPM_x) or write (USS_WPM_x) instruction
can be active at a time.

The USS_RPM_x transactions complete when the MicroMaster
drive acknowledges receipt of the command, or when an error
condition is posted. The logic scan continues to execute while this
process awaits a response.

The EN bit must be on to enable transmission of a request, and
should remain on until the Done bit is set, signaling completion of
the process. For example, a USS_RPM_x request is transmitted to
the MicroMaster drive on each scan when XMT_REQ input is on.
Therefore, the XMT_REQ input should be pulsed on through an
edge detection element which causes one request to be transmitted
for each positive transition of the EN input.

The Drive input is the address of the MicroMaster drive to which the
USS_RPM_x command is to be sent. Valid addresses of individual
drives are 0 to 31.

Param is the parameter number. Index is the index value of the parameter that is to be read. Value is the
parameter value returned. The address of a 16-byte buffer must be supplied to the DB_Ptr input. This
buffer is used by the USS_RPM_x instruction to store the results of the command issued to the
MicroMaster drive.

When the USS_RPM_x instruction completes, the Done output is turned on and the Error output byte and
the Value output contain the results of executing the instruction. Table 11-6 defines the error conditions
that could result from executing the instruction. The Error and Value outputs are not valid until the Done
output turns on.

Table 11-4 Valid Operands for the USS_RPM_x

Inputs/Outputs Data Type Operands

XMT_REQ BOOL I, Q, M, S, SM, T, C, V, L, Power Flow conditioned by a rising edge detection
element

Drive BYTE VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD, Constant

Param, Index WORD VW, IW, QW, MW, SW, SMW, LW, T, C, AC, AIW, *VD, *AC, *LD, Constant

DB_Ptr DWORD &VB

Value WORD

DWORD, REAL

VW, IW, QW, MW, SW, SMW, LW, T, C, AC, AQW, *VD, *AC, *LD

VD, ID, QD, MD, SD, SMD, LD, *VD, *AC, *LD

Done BOOL I, Q, M, S, SM, T, C, V, L

Error BYTE VB, IB, QB, MB, SB, SMB, LB, AC. *VD, *AC, *LD

11

S7-200 Programmable Controller System Manual

320

USS_WPM_x Instruction
There are three write instructions for the USS protocol:

� USS_WPM_W instruction writes an unsigned word parameter.

� USS_WPM_D instruction writes an unsigned double word
parameter.

� USS_WPM_R instruction writes a floating-point parameter.

Only one read (USS_RPM_x) or write (USS_WPM_x) instruction
can be active at a time.

The USS_WPM_x transactions complete when the MicroMaster
drive acknowledges receipt of the command, or when an error
condition is posted. The logic scan continues to execute while this
process awaits a response.

The EN bit must be on to enable transmission of a request, and
should remain on until the Done bit is set, signaling completion of
the process. For example, a USS_WPM_x request is transmitted to
the MicroMaster drive on each scan when XMT_REQ input is on.
Therefore, the XMT_REQ input should be pulsed on through an
edge detection element which causes one request to be transmitted
for each positive transition of the EN input.

The Drive input is the address of the MicroMaster drive to which the
USS_WPM_x command is to be sent. Valid addresses of individual
drives are 0 to 31.

Param is the parameter number. Index is the index value of the
parameter that is to be written. Value is the parameter value to be
written to the RAM in the drive. For MicroMaster 3 drives, you can
also write this value to the EEPROM of the drive, based on how you
have configured P971 (EEPROM Storage Control).

The address of a 16-byte buffer must be supplied to the DB_Ptr input. This buffer is used by the
USS_WPM_x instruction to store the results of the command issued to the MicroMaster drive.

When the USS_WPM_x instruction completes, the Done output is turned on and the Error output byte
contains the result of executing the instruction. Table 11-6 defines the error conditions that could result
from executing the instruction.

When the EEPROM input is turned on, the instruction writes to both the RAM and the EEPROM of the
drive. When the the input is turned off, the instruction writes only to the RAM of the drive. Because the
MicroMaster 3 drive does not support this function, you must ensure that this input is off in order to use
this instruction with a MicroMaster 3 drive.

Table 11-5 Valid Operands for the USS_WPM_x Instructions

Inputs/Outputs Data Type Operands

XMT_REQ BOOL I, Q, M, S, SM, T, C, V, L, Power Flow conditioned by a rising edge detection
element

EEPROM BOOL I, Q, M, S, SM, T, C, V, L, Power Flow

Drive BYTE VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD, Constant

Param, Index WORD VW, IW, QW, MW, SW, SMW, LW, T, C, AC, AIW, *VD, *AC, *LD, Constant

DB_Ptr DWORD &VB

Value WORD

DWORD, REAL

VW, IW, QW, MW, SW, SMW, LW, T, C, AC, AQW, *VD, *AC, *LD

VD, ID, QD, MD, SD, SMD, LD, *VD, *AC, *LD

Done BOOL I, Q, M, S, SM, T, C, V, L

Error BYTE VB, IB, QB, MB, SB, SMB, LB, AC. *VD, *AC, *LD

11

Using the USS Protocol Library to Control a MicroMaster Drive Chapter 11

321

Caution
When you use an USS_WPM_x instruction to update the parameter set stored in drive EEPROM, you
must ensure that the maximum number of write cycles (approximately 50,000) to the EEPROM is not
exceeded.

Exceeding the maximum number of write cycles will result in corruption of the stored data and
subsequent data loss. The number of read cycles is unlimited.

If frequent writes to the drive parameters are required, then you should first set the EEPROM storage
control parameter in the drive to zero (for MicroMaster 3 drives) and turn off the EEPROM input for
MicroMaster 4 drives.

Example: USS_RPM_x and USS_WPM_x

Network 1 //The two contacts must have the same address.

LD I0.0
= L60.0
LD I0.0
EU
= L63.7
LD L60.0
CALL USS_RPM_W, L63.7, 0, 3, 0, &VB100, M0.0, VB10, VW200

Network 2 //The two contacts must have the same address

LD I0.1
= L60.0
LD I0.1
EU
= L63.7
LDN SM0.0
= L63.6
LD L60.0
CALL USS_WPM_W, L63.7, L63.6, 0, 971, 0, 1, &VB120, M0.1, VB11

11

S7-200 Programmable Controller System Manual

322

Sample Programs for the USS Protocol

Example: USS Instructions Sample Program that Correctly Displays in STL

Network 1 //Initialize USS Protocol:
//On the first scan, enable USS protocol
//for port 0 at 19200 with drive address
//”0” active.

LD SM0.1
CALL USS_INIT, 1, 19200, 16#00000001, Q0.0,
VB1

Network 2 //Control parameters for Drive 0

LD SM0.0
CALL USS_CTRL, I0.0, I0.1, I0.2, I0.3, I0.4, 0, 1,
100.0, M0.0, VB2, VW4, VD6, Q0.1, Q0.2, Q0.3, Q0.4

Network 3 //Read a Word parameter from Drive 0.
//Read parameter 5 index 0.
//1. Save the state of I0.5 to a temporary
// location so that this network displays
// in LAD.
//2. Save the rising edge pulse of I0.5
// to a temporary L location so that
// it can be passed to the subroutine.

LD I0.5
= L60.0
LD I0.5
EU
= L63.7
LD L60.0
CALL USS_RPM_W, L63.7, 0, 5, 0, &VB20, M0.1,
VB10, VW12

Network 4 //Write a Word parameter to Drive 0.
//Write parameter 2000 index 0.

LD I0.6
= L60.0
LD I0.6
EU
= L63.7
LDN SM0.0
= L63.6
LD L60.0
CALL USS_WPM_R, L63.7, L63.6, 0, 2000, 0, 50.0,
&VB40, M0.2, VB14

Note: This STL code does not compile to LAD or FBD.

11

Using the USS Protocol Library to Control a MicroMaster Drive Chapter 11

323

USS Execution Error Codes

Table 11-6 Execution Error Codes for the USS Instructions

Error Codes Description

0 No error

1 Drive did not respond

2 A checksum error in the response from the drive was detected

3 A parity error in the response from the drive was detected

4 An error was caused by interference from the user program

5 An illegal command was attempted

6 An illegal drive address was supplied

7 The communications port was not set up for USS protocol

8 The communications port is busy processing an instruction

9 The drive speed input is out of range

10 The length of the drive response is incorrect

11 The first character of the drive response is incorrect

12 The length character in the drive response is not supported by USS instructions

13 The wrong drive responded

14 The DB_Ptr address supplied is incorrect

15 The parameter number supplied is incorrect

16 An invalid protocol was selected

17 USS is active; change is not allowed

18 An illegal baud rate was specified

19 No communications: the drive is not ACTIVE

20 The parameter or value in the drive response is incorrect or contains an error code

21 A double word value was returned instead of the word value requested

22 A word value was returned instead of the double word value requested

11

S7-200 Programmable Controller System Manual

324

Connecting and Setting Up the MicroMaster Series 3 Drive

Connecting the MicroMaster 3 Drive
You can use the standard PROFIBUS cable and connectors to connect the S7-200 to the MicroMaster
Series 3 (MM3) drive. See Figure 11-5 for the proper cable bias and termination of the interconnecting
cable.

Caution
Interconnecting equipment with different reference potentials can cause unwanted currents to flow
through the interconnecting cable.

These unwanted currents can cause communications errors or damage equipment.

Be sure all equipment that you are about to connect with a communications cable either shares a
common circuit reference or is isolated to prevent unwanted current flows.

The shield must be tied to chassis ground or pin 1 on the 9-pin connector. It is recommended that you
tie wiring terminal 2–0V on the MicroMaster drive to chassis ground.

Ó
Ó

A B A B

Ó
Ó
Ó
Ó

A B A B

On On

Ó
Ó

A B A B

Off

Switch position = On
Terminated and biased

Switch position = Off
No termination or bias

Switch position = On
Terminated and biased

Cable must be terminated
and biased at both ends.

390 Ω

220 Ω

390 Ω

B

A

TxD/RxD +

TxD/RxD -

Cable shield

6

3

8

5

1

Network
connector

Pin #

B

A

TxD/RxD +

TxD/RxD -

Cable shield

Network
connector

A

BTxD/RxD +

TxD/RxD -
Cable shield

Bare shielding: approximately 12 mm (1/2 in.) must contact the
metal guides of all locations.

6

3

8

5

1

Pin #

Switch position = Off: No termination or biasSwitch position = On: Terminated and biased

Figure 11-5 Bias and Termination of the Network Cable

11

Using the USS Protocol Library to Control a MicroMaster Drive Chapter 11

325

Setting Up the MicroMaster 3 Drive
Before you connect a drive to the S7-200, you must ensure that the drive has the following system
parameters. Use the keypad on the drive to set the parameters:

1. Reset the drive to factory settings (optional). Press the P key: P000 is displayed. Press the up or
down arrow key until the display shows the P944. Press P to enter the parameter.

P944=1

2. Enable the read/write access to all parameters. Press the P key. Press the up or down arrow key
until the display shows P009. Press P to enter the parameter.

P009=3

3. Check motor settings for your drive. The settings will vary according to the motor(s) being used.
Press the P key. Press the up or down arrow key until the display shows the motor setting for your
drive. Press P to enter the parameter.

P081=Nominal frequency of motor (Hz)
P082=Nominal speed of motor (RPM)
P083=Nominal current of motor (A)
P084=Nominal voltage of motor (V)
P085=Nominal power of motor (kW/HP)

4. Set the Local/Remote control mode. Press the P key. Press the up or down arrow key until the
display shows P910. Press P to enter the parameter.

P910=1 Remote control mode

5. Set the Baud Rate of the RS–485 serial interface. Press the P key. Press the up or down arrow key
until P092 appears. Press P to enter the parameter. Press the up or down arrow key until the
display shows the number that corresponds to the baud rate of your RS–485 serial interface. Press
P to enter.

P092 3 (1200 baud)
4 (2400 baud)
5 (4800 baud)
6 (9600 baud – default)
7 (19200 baud)

6. Enter the Slave address. Each drive (a maximum of 31) can be operated over the bus. Press the P
key. Press the up or down arrow key until P091 appears. Press P to enter the parameter. Press the
up or down arrow key until the display shows the slave address you want. Press P to enter.

P091=0 through 31.

7. Ramp up time (optional). This is the time in seconds that it takes the motor to accelerate to
maximum frequency. Press the P key. Press the up or down arrow key until P002 appears. Press P
to enter the parameter. Press the up or down arrow key until the display shows the ramp up time
you want. Press P to enter.

P002=0–650.00

8. Ramp down time (optional). This is the time in seconds that it takes the motor to decelerate to a
complete stop. Press the P key. Press the up or down arrow key until P003 appears. Press P to
enter the parameter. Press the up or down arrow key until the display shows the ramp down time
you want. Press P to enter.

P003=0–650.00

11

S7-200 Programmable Controller System Manual

326

9. Serial Link Time-out. This is the maximum permissible period between two incoming data
telegrams. This feature is used to turn off the inverter in the event of a communications failure.

Timing starts after a valid data telegram has been received. If a further data telegram is not received
within the specified time period, the inverter will trip and display fault code F008. Setting the value to
zero switches off the control. Use Table 11-1 to calculate the time between the status polls to the
drive.

Press the P key. Press the up or down arrow key until P093 appears. Press P to enter the
parameter. Press the up or down arrow key until the display shows the serial link time-out you want.
Press P to enter.

P093=0–240 (0 is default; time is in seconds)

10. Serial Link Nominal System Setpoint. This value can vary, but will typically correspond to 50 Hz or
60 Hz, which defines the corresponding 100% value for PVs or SPs. Press the P key. Press the up
or down arrow key until P094 appears. Press P to enter the parameter. Press the up or down arrow
key until the display shows the serial link nominal system setpoint you want. Press P to enter.

P094=0–400.00

11. USS Compatibility (optional). Press the P key. Press the up or down arrow key until P095 appears.
Press P to enter the parameter. Press the up or down arrow key until the display shows the number
that corresponds to the USS compatibility you want. Press P to enter.

P095 = 0 0.1 Hz resolution (default)
1 0.01 Hz resolution

12. EEPROM storage control (optional). Press the P key. Press the up or down arrow key until P971
appears. Press P to enter the parameter. Press the up or down arrow key until the display shows
the number that corresponds to the EEPROM storage control you want. Press P to enter.

P971 = 0 Changes to parameter settings (including P971) are lost when power is removed.
1 (default) Changes to parameter settings are retained during periods when power is

removed.

13. Operating display. Press P to exit out of parameter mode.

11

Using the USS Protocol Library to Control a MicroMaster Drive Chapter 11

327

Connecting and Setting Up the MicroMaster Series 4 Drive

Connecting the MicroMaster 4 Drive
To make the connection to the MicroMaster Series 4 (MM4) drive, insert the ends of the RS-485 cable into
the two caged clamp, screwless terminals provided for USS operation. The standard PROFIBUS cable
and connectors can be used to connect the S7-200.

Caution
Interconnecting equipment with different reference potentials can cause unwanted currents to flow
through the interconnecting cable.

These unwanted currents can cause communications errors or damage equipment.

Be sure all equipment that you are about to connect with a communications cable either shares a
common circuit reference or is isolated to prevent unwanted current flows.

The shield must be tied to chassis ground or pin 1 on the 9-pin connector. It is recommended that you
tie wiring terminal 2–0V on the MicroMaster drive to chassis ground.

As shown in Figure 11-6, the two wires at the
opposite end of the RS-485 cable must be
inserted into the MM4 drive terminal blocks. To
make the cable connection on a MM4 drive,
remove the drive cover(s) to access the terminal
blocks. See the MM4 user manual for details
about how to remove the covers(s) of your
specific drive.

The terminal block connections are labeled
numerically. Using a PROFIBUS connector on
the S7-200 side, connect the A terminal of the
cable to the drive terminal 15 (for an MM420) or
terminal 30 (MM440). Connect the B terminal of
the cable connector to terminal 14 (MM420) or

B (P) A (N)

terminal 29 (MM440). Figure 11-6 Connecting to the MM420 Terminal Block

If the S7-200 is a terminating node in the network, or if the connection is point-to-point, it is necessary to
use terminals A1 and B1 (not A2 and B2) of the connector since they allow the termination settings to be
set (for example, with DP connector type 6ES7 972–0BA40–0X40).

Caution
Make sure the drive covers are replaced properly before supplying power to the unit.

If the drive is configured as the terminating node in the
network, then termination and bias resistors must be also be
wired to the appropriate terminal connections. For example,
Figure 11-7 shows an example of the connections
necessary for termination and bias for the MM4, model
6SE6420 drive.

14

15

2

1

120 ohm

1K ohm
1K ohm

Figure 11-7 Sample Termination and Bias

11

S7-200 Programmable Controller System Manual

328

Setting Up the MM4 Drive
Before you connect a drive to the S7-200, you must ensure that the drive has the following system
parameters. Use the keypad on the drive to set the parameters:

1. Reset the drive to factory settings (optional): P0010=30
P0970=1

If you skip this step, ensure that the following parameters are set to these values:
USS PZD length: P2012 Index 0=2
USS PKW length: P2013 Index 0=127

2. Enable the read/write access to all parameters (Expert mode): P0003=3

3. Check motor settings for your drive: P0304=Rated motor voltage (V)
P0305=Rated motor current (A)
P0307=Rated motor power (W)
P0310=Rated motor frequency (Hz)
P0311=Rated motor speed (RPM)

The settings will vary according to the motor(s) being used.

In order to set the parameters P304, P305, P307, P310, and P311, you must first set parameter
P010 to 1 (quick commissioning mode). When you are finished setting the parameters, set
parameter P010 to 0. Parameters P304, P305, P307, P310, and P311 can only be changed in the
quick commissioning mode.

4. Set the local/remote control mode: P0700 Index 0=5

5. Set selection of frequency setpoint to USS on COM Link: P1000 Index 0=5

6. Ramp up time (optional): P1120=0 to 650.00

This is the time in seconds that it takes the motor to accelerate to maximum frequency.

7. Ramp down time (optional): P1121=0 to 650.00

This is the time in seconds that it takes the motor to decelerate to a complete stop.

8. Set the serial link reference frequency: P2000=1 to 650 Hz

9. Set the USS normalization: P2009 Index 0=0

10. Set the baud rate of the RS–485 serial interface: P2010 Index 0= 4 (2400 baud)
5 (4800 baud)
6 (9600 baud)
7 (19200 baud
8 (38400 baud)
9 (57600 baud)
12 (115200 baud)

11. Enter the Slave address: P2011 Index 0=0 to 31

Each drive (a maximum of 31) can be operated over the bus.

12. Set the serial link timeout: P2014 Index 0=0 to 65,535 ms
(0=timeout disabled)

This is the maximum permissible period between two incoming data telegrams. This feature is used
to turn off the inverter in the event of a communications failure. Timing starts after a valid data
telegram has been received. If a further data telegram is not received within the specified time
period, the inverter will trip and display fault code F0070. Setting the value to zero switches off the
control. Use Table 11-1 to calculate the time between the status polls to the drive.

13. Transfer the data from RAM to EEPROM:

P0971=1 (Start transfer) Save the changes to the parameter settings to EEPROM

329

Using the Modbus Protocol Library

STEP 7–Micro/WIN Instruction Libraries makes communicating to Modbus master devices easier by
including pre-configured subroutines and interrupt routines that are specifically designed for Modbus
communications. With the Modbus Slave Protocol Instructions, you can configure the S7-200 to act as a
Modbus RTU slave device and communicate to Modbus master devices.

You find these instructions in the Libraries folder of the STEP 7–Micro/WIN instruction tree. With these
new instructions you can make the S7-200 act as a Modbus slave. When you select a Modbus Slave
instruction, one or more associated subroutines are automatically added to your project.

In This Chapter
Requirements for Using the Modbus Protocol 330.

Initialization and Execution Time for the Modbus Protocol 330.

Modbus Addressing 331.

Using the Modbus Slave Protocol Instructions 332.

Instructions for the Modbus Slave Protocol 333.

12

S7-200 Programmable Controller System Manual

330

Requirements for Using the Modbus Protocol
The Modbus Slave Protocol instructions use the following resources from the S7-200:

� Initializing the Modbus Slave Protocol dedicates Port 0 for Modbus Slave Protocol communications.

When Port 0 is being used for Modbus Slave Protocol communications, it cannot be used for any
other purpose, including communications with STEP 7–Micro/WIN. The MBUS_INIT instruction
controls assignment of Port 0 to Modbus Slave Protocol or PPI.

� The Modbus Slave Protocol instructions affect all of the SM locations associated with Freeport
communications on Port 0.

� The Modbus Slave Protocol instructions use 3 subroutines and 2 interrupts.

� The Modbus Slave Protocol instructions require 1857 bytes of program space for the two Modbus
Slave instructions and the support routines.

� The variables for the Modbus Slave Protocol instructions require a 779-byte block of V memory. The
starting address for this block is assigned by the user and is reserved for Modbus variables.

Tip
To change the operation of Port 0 back to PPI so that you can communicate with STEP 7-Micro/WIN,
use another MBUS_INIT instruction to reassign Port 0.

You can also set the mode switch on the S7-200 to STOP mode. This resets the parameters for Port 0.

Initialization and Execution Time for the Modbus Protocol
Modbus communications utilize a CRC (cyclic redundancy check) to insure the integrity of the
communications messages. The Modbus Slave Protocol uses a table of precalculated values to decrease
the time required to process a message. The initialization of this CRC table requires about 425
milliseconds. This initialization is done inside the MBUS_INIT subroutine and is normally done in the first
scan of the user program after entering RUN mode. You are responsible for resetting the watchdog timer
and keeping the outputs enabled (if required for expansion modules) if the time required by the
MBUS_INIT subroutine and any other user initialization exceeds the 500 millisecond scan watchdog. The
output module watchdog timer is reset by writing to the outputs of the module. See the Watchdog Reset
Instruction in Chapter 6.

The scan time is extended when the MBUS_SLAVE subroutine services a request. Since most of the time
is spent calculating the Modbus CRC, the scan time is extended by about 650 microseconds for every
byte in the request and in the response. A maximum request/response (read or write of 120 words)
extends the scan time by approximately 165 milliseconds.

12

Using the Modbus Protocol Library Chapter 12

331

Modbus Addressing
Modbus addresses are normally written as 5 or 6 character values containing the data type and the offset.
The first one or two characters determine the data type, and the last four characters select the proper
value within the data type. The Modbus master device then maps the addresses to the correct functions.
The following addresses are supported by the Modbus Slave instructions:

� 000001 to 000128 are discrete outputs mapped to Q0.0 - Q15.7

� 010001 to 010128 are discrete inputs
mapped to I0.0 - I15.7

� 030001 to 030032 are analog input
registers mapped to AIW0 to AIW62

� 040001 to 04xxxx are holding registers
mapped to V memory.

All Modbus addresses are one-based.
Table 12-1 shows the mapping of Modbus
addresses to the S7-200 addresses.

The Modbus Slave Protocol allows you to limit
the amount of inputs, outputs, analog inputs,
and holding registers (V memory) accessible to
a Modbus master.

The MaxIQ parameter of the MBUS_INIT
instruction specifies the maximum number of
discrete inputs or outputs (Is or Qs) the Modbus
master is allowed to access.

The MaxAI parameter of the MBUS_INIT
instruction specifies the maximum number of
input registers (AIWs) the Modbus master is
allowed to access.

The MaxHold parameter of the MBUS_INIT
instruction specifies the maximum number of
holding registers (V memory words) the
Modbus master is allowed to access.

See the description of the MBUS_INIT
instruction for more information on setting up
the memory restrictions for the Modbus slave.

Table 12-1 Mapping Modbus Address to the S7-200

Modbus Address S7-200 Address

000001 Q0.0

000002 Q0.1

000003 Q0.2

000127 Q15.6

000128 Q15.7

010001 I0.0

010002 I0.1

010003 I0.2

... ...

010127 I15.6

010128 I15.7

030001 AIW0

030002 AIW2

030003 AIW4

... ...

030032 AIW62

040001 HoldStart

040002 HoldStart+2

040003 HoldStart+4

... ...

04xxxx HoldStart+2 x (xxxx–1)

Configuring the Symbol Table
After you enter an address for the first symbol, the table automatically calculates and assigns the
remainder of the symbols in the table.

You should assign a starting V location for the table which occupies 779 bytes. Be sure that the
assignment of the Modbus Slave symbols do not overlap with the V memory assigned to the Modbus
holding registers with the HoldStart and MaxHold parameters on the MBUS_INIT instruction. If there is any
overlap of the memory areas, the MBUS_INIT instruction returns an error.

12

S7-200 Programmable Controller System Manual

332

Using the Modbus Slave Protocol Instructions
To use the Modbus Slave Protocol instructions in your S7-200 program, follow these steps:

1. Insert the MBUS_INIT instruction in your program and execute the MBUS_INIT instruction for one
scan only. You can use the MBUS_INIT instruction either to initiate or to change the Modbus
communications parameters.

When you insert the MBUS_INIT instruction, several hidden subroutines and interrupt routines are
automatically added to your program.

2. Assign a starting address for the 779 bytes of consecutive V memory required for Modbus Slave
Protocol instructions.

3. Place only one MBUS_SLAVE instruction in your program. This instruction is called every scan to
service any requests that have been received.

4. Connect the communications cable between Port 0 on the S7-200 and the Modbus master devices.

Caution
Interconnecting equipment with different reference potentials can cause unwanted currents to flow
through the interconnecting cable. These unwanted currents can cause communications errors or
damage equipment.

Ensure that all equipment that is connected with a communications cable either shares a common
circuit reference or is isolated to prevent unwanted current flows.

The accumulators (AC0, AC1, AC2, AC3) are utilized by the Modbus slave instructions and appear in the
Cross Reference listing. Prior to execution, the values in the accumulators of a Modbus Slave instruction
are saved and restored to the accumulators before the Modbus Slave instruction is complete, ensuring
that all user data in the accumulators is preserved while executing a Modbus Slave instruction.

The Modbus Slave Protocol instructions support the Modbus RTU protocol. These instructions utilize the
Freeport utilities of the S7-200 to support the most common Modbus functions. The following Modbus
functions are supported:

Table 12-2 Modbus Slave Protocol Functions Supported

Function Description

1 Read single/multiple coil (discrete output) status. Function 1 returns the on/off status of any number of
output points (Qs).

2 Read single/multiple contact (discrete input) status. Function 2 returns the on/off status of any number of
input points (Is).

3 Read single/multiple holding registers. Function 3 returns the contents of V memory. Holding registers are
word values under Modbus and allow you to read up to 120 words in one request.

4 Read single/multiple input registers. Function 4 returns Analog Input values.

5 Write single coil (discrete output). Function 5 sets a discrete output point to the specified value. The point
is not forced and the program can overwrite the value written by the Modbus request.

6 Write single holding register. Function 6 writes a single holding register value to the V memory of the
S7-200.

15 Write multiple coils (discrete outputs). Function 15 writes the multiple discrete output values to the Q image
register of the S7-200. The starting output point must begin on a byte boundary (for example, Q0.0 or
Q2.0) and the number of outputs written must be a multiple of eight. This is a restriction for the Modbus
Slave Protocol instructions. The points are not forced and the program can overwrite the values written by
the Modbus request.

16 Write multiple holding registers. Function 16 writes multiple holding registers to the V memory of the
S7-200. There can be up to 120 words written in one request.

12

Using the Modbus Protocol Library Chapter 12

333

Instructions for the Modbus Slave Protocol

MBUS_INIT Instruction
The MBUS_INIT instruction is used to enable and initialize, or to
disable Modbus communications. Before the MBUS_SLAVE
instruction can be used, the MBUS_INIT instruction must be
executed without errors. The instruction completes and the Done
bit is set immediately, before continuing to the next instruction.

The instruction is executed on each scan when the EN input is on.

The MBUS_INIT instruction should be executed exactly once for
each change in communications state. Therefore, the EN input
should be pulsed on through an edge detection element, or
executed only on the first scan.

The value for the Mode input selects the communications protocol:
an input value of 1 assigns port 0 to Modbus protocol and enables
the protocol, and an input value of 0 assigns port 0 to PPI and
disables Modbus protocol.

The parameter Baud sets the baud rate at 1200, 2400, 4800, 9600,
19200, 38400, 57600, or 115200.

The parameter Addr sets the address at inclusive values between 1
and 247.

Table 12-3 Parameters for the MBUS_INIT Instruction

Inputs/Outputs Data Type Operands

Mode, Addr, Parity BYTE VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD, *AC, *LD

Baud, HoldStart DWORD VD, ID, QD, MD, SD, SMD, LD, AC, Constant, *VD, *AC, *LD

Delay, MaxIQ, MaxAI, MaxHold WORD VW, IW, QW, MW, SW, SMW, LW, AC, Constant, *VD, *AC, *LD

Done BOOL I, Q, M, S, SM, T, C, V, L

Error BYTE VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD

The parameter Parity is set to match the parity of the Modbus master. The accepted values are:

� 0-no parity

� 1-odd parity

� 2-even parity

The parameter Delay extends the standard Modbus end-of-message timeout condition by adding the
specified number of milliseconds to the standard Modbus message timeout. The typical value for this
parameter should be 0 when operating on a wired network. If you are using modems with error correction,
set the delay to a value of 50 to 100 milliseconds. If you are using spread spectrum radios, set the delay to
a value of 10 to 100 milliseconds. The Delay value can be 0 to 32767 milliseconds.

The parameter MaxIQ sets the number of I and Q points available to Modbus addresses 00xxxx and
01xxxx at values of 0 to 128. A value of 0 disables all reads and writes to the inputs and outputs. The
suggested value for MaxIQ is 128, which allows access to all I and Q points in the S7-200.

12

S7-200 Programmable Controller System Manual

334

The parameter MaxAI sets the number of word input (AI) registers available to Modbus address 03xxx at
values of 0 to 32. A value of 0 disables reads of the analog inputs. The suggested value for MaxAI to allow
access to all of the S7-200 analog inputs, is as follows:

� 0 for CPU 221

� 16 for CPU 222

� 32 for CPU 224, 226, and 226XM

The parameter MaxHold sets the number of word holding registers in V memory available to Modbus
address 04xxx. For example, to allow the master to access 2000 bytes of V memory, set MaxHold to a
value of 1000 words (holding registers).

The parameter HoldStart is the address of the start of the holding registers in V memory. This value is
generally set to VB0, so the parameter HoldStart is set to &VB0 (address of VB0). Other V memory
addresses can be specified as the starting address for the holding registers to allow VB0 to be used
elsewhere in the project. The Modbus master has access to MaxHold number of words of V memory
starting at HoldStart.

When the MBUS_INIT instruction completes, the Done output is turned on. The Error output byte contains
the result of executing the instruction. Table 12-5 defines the error conditions that could result from
executing the instruction.

12

Using the Modbus Protocol Library Chapter 12

335

MBUS_SLAVE Instruction
The MBUS_SLAVE instruction is used to service a request from the
Modbus master and must be executed every scan to allow it to
check for and respond to Modbus requests.

The instruction is executed on each scan when the EN input is on.

The MBUS_SLAVE instruction has no input parameters.

The Done output is on when the MBUS_SLAVE instruction
responds to a Modbus request. The Done output is turned off if
there was no request serviced.

The Error output contains the result of executing the instruction.
This output is only valid if Done is on. If Done is off, the error
parameter is not changed. Table 12-5 defines the error conditions
that could result from executing the instruction.

Table 12-4 Parameters for the MBUS_SLAVE Instruction

Parameter Data Type Operands

Done BOOL I, Q, M, S, SM, T, C, V, L

Error BYTE VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD

Table 12-5 Modbus Slave Protocol Execution Error Codes

Error Codes Description

0 No Error

1 Memory range error

2 Illegal baud rate or parity

3 Illegal slave address

4 Illegal value for Modbus parameter

5 Holding registers overlap Modbus Slave symbols

6 Receive parity error

7 Receive CRC error

8 Illegal function request/function not supported

9 Illegal memory address in request

10 Slave function not enabled

12

S7-200 Programmable Controller System Manual

336

Example of Programming the Modbus Slave Protocol

Network 1

//Initialize the Modbus Slave Protocol on the
//first scan. Set the slave address to 1, set
// port 0 to 9600 baud with even parity, all
//access to all I, Q and AI values, allow
//access to 1000 holding registers (2000
// bytes) starting at VB0.

LD SM0.1
CALL MBUS_INIT,1,1,9600,2,0,128,32,1000,

&VB0,M0.1,MB1

Network 2

//Execute the Modbus Slave Protocol on
//every scan.

LD SM0.0
CALL MBUS_SLAVE,M0.2,MB2

337

Technical Specifications

In This Chapter
General Technical Specifications 338.

CPU Specifications 340.

Digital Expansion Modules Specifications 346.

Analog Expansion Modules Specifications 351.

Thermocouple and RTD Expansion Modules Specifications 361.

EM 277 PROFIBUS–DP Module Specifications 373.

EM 241 Modem Module Specifications 385.

EM 253 Position Module Specifications 387.

AS–Interface (CP 243–2) Module Specifications 393.

Optional Cartridges 395.

I/O Expansion Cable 395.

PC/PPI Cable 396.

Input Simulators 398.

A

S7-200 Programmable Controller System Manual

338

General Technical Specifications

Standards Compliance
The national and international standards listed below were used to determine appropriate performance
specifications and testing for the S7-200 family of products. Table A-1 defines the specific adherence to
these standards.

� European Community (CE) Low Voltage Directive 73/23/EEC
EN 61131–2: Programmable controllers – Equipment requirements

� European Community (CE) EMC Directive 89/336/EEC

Electromagnetic emission standard
EN 50081–1: residential, commercial, and light industry
EN 50081–2: industrial environment

Electromagnetic immunity standards
EN 61000–6–2: industrial environment

� Underwriters Laboratories, Inc.: UL 508 Listed (Industrial Control Equipment)
Registration number E75310

� Canadian Standards Association: CSA C22.2 Number 142 Certified (Process Control Equipment)

� Factory Mutual Research: FM Class I, Division 2, Groups A, B, C, & D Hazardous Locations, T4A
and Class I, Zone 2, IIC, T4.

Maritime Approvals
The following table identifies the maritime
agency and the associated certificate number
at the time this manual was printed.

For the latest product approvals, contact your
local Siemens distributor or sales office.

Agency Certificate Number

Lloyds Register of Shipping (LRS) 99 / 20018(E1)

American Bureau of Shipping (ABS) 01–HG20020–PDA

Germanischer Lloyd (GL) 12 045 – 98 HH

Det Norske Veritas (DNV) A–8071

Bureau Veritas (BV) 09051 / A2 BV

Nippon Kaiji Kyokai (NK) A–534

Technical Specifications
All S7-200 CPUs and expansion modules conform to the technical specifications listed in Table A-1.

Notice
When a mechanical contact turns on output power to the S7-200 CPU, or any digital expansion module,
it sends a “1” signal to the digital outputs for approximately 50 microseconds. You must plan for this,
especially if you are using devices which respond to short duration pulses.

Relay Electrical Service Life
The typical performance data supplied by relay
vendors is shown in Figure A-1. Actual
performance may vary depending upon your
specific application.

An external protection circuit that is adapted to
the load will enhance the service life of the
contacts.

0 1 2 3 4 5 6 7

4000

250 VAC resistive load
30 VDC resistive load

250 VAC inductive load (p.f.=0.4)
30 VDC inductive load (L/R=7ms)

Rated Operating Current (A)

S
er

vi
ce

 li
fe

 (
x

10
3

op
er

an
ds

)

Figure A-1 Relay Electrical Service Life

A

Technical Specifications Appendix A

339

Table A-1 Technical Specifications

Environmental Conditions — Transport and Storage

IEC 68–2–2, Test Bb, Dry heat and
IEC 68–2–1, Test Ab, Cold

–40° C to +70° C

IEC 68–2–30, Test Db, Damp heat 25° C to 55° C, 95% humidity

IEC 68–2–31, Toppling 100 mm, 4 drops, unpacked

IEC 68–2–32, Free fall 1 m, 5 times, packed for shipment

Environmental Conditions — Operating

Ambient Temperature Range
(Inlet Air 25 mm below unit)

0° C to 55° C horizontal mounting, 0° C to 45° C vertical mounting
95% non-condensing humidity

IEC 68–2–14, Test Nb 5° C to 55° C, 3° C/minute

IEC 68–2–27 Mechanical shock 15 G, 11 ms pulse, 6 shocks in each of 3 axis

IEC 68–2–6 Sinusoidal vibration Panel mount: 0.30 mm from 10 to 57 Hz; 2 G from 57 to 150 Hz
DIN rail mount: 0.15 mm from 10 to 57 Hz; 1 G from 57 to 150 Hz
10 sweeps each axis, 1 octave/minute

EN 60529, IP20 Mechanical protection Protects against finger contact with high voltage as tested by standard probes. External
protection is required for dust, dirt, water, and foreign objects of less than 12.5 mm in
diameter.

Electromagnetic Compatibility — Immunity per EN61000–6–21

EN 61000–4–2 Electrostatic discharge 8 kV air discharge to all surfaces and communications port,
4kV contact discharge to exposed conductive surfaces

EN 61000–4–3 Radiated electromagnetic field 80 MHz to 1 GHz 10 V/m, 80% modulation with 1 kHz signal

EN 61000–4–4 Fast transient bursts 2 kV, 5 kHz with coupling network to AC and DC system power
2 kV, 5 kHz with coupling clamp to digital I/O
1 kV, 5 kHz with coupling clamp to communications

EN 61000–4–5 Surge immunity Power supply: 2 kV asymmetrical, 1 kV symmetrical
I/O 1 kV symmetrical
(24 VDC circuits require external surge protection)

EN 61000–4–6 Conducted disturbances 0.15 to 80 MHz 10 V RMS 80% amplitude modulation at 1kHz

EN 61000–4–11 Voltage dips, short interruptions and
voltage variations

>95% reduction for 8.3 ms, 83 ms, 833 ms, and 4167 ms

VDE 0160 Non-periodic overvoltage At 85 VAC line, 90° phase angle, apply 390 V peak, 1.3 ms pulse
At 180 VAC line, 90° phase angle, apply 750 V peak, 1.3 ms pulse

Electromagnetic Compatibility — Conducted and Radiated Emissions per EN50081 –12 and –2

EN 55011, Class A, Group 1, conducted1

0.15 MHz to 0.5 MHz
0.5 MHz to 5 MHz
5 MHz to 30 MHz

< 79 dB (µV) Quasi-peak; < 66 dB (µV) Average
< 73 dB (µV) Quasi-peak; < 60 dB (µV) Average
< 73 dB (µV) Quasi-peak; < 60 dB (µV) Average

EN 55011, Class A, Group 1, radiated1

30 MHz to 230 MHz
230 MHz to 1 GHz

30 dB (µV/m) Quasi-peak; measured at 30 m
37 dB (µV/m) Quasi-peak; measured at 30 m

EN 55011, Class B, Group 1, conducted2

0.15 to 0.5 MHz

0.5 MHz to 5 MHz
5 MHz to 30 MHz

< 66 dB (µV) Quasi-peak decreasing with log frequency to 56 dB (µV);
< 56 dB (µV) Average decreasing with log frequency to 46 dB (µV)
< 56 dB (µV) Quasi-peak; < 46 dB (µV) Average
< 60 dB (µV) Quasi-peak; < 50 dB (µV) Average

EN 55011, Class B, Group 1, radiated2

30 MHz to 230 kHz
230 MHz to 1 GHz

30 dB (µV/m) Quasi-peak; measured at 10 m
37 dB (µV/m) Quasi-peak; measured at 10 m

High Potential Isolation Test

24 V/5 V nominal circuits

115/230 V circuits to ground

115/230 V circuits to 115/230 V circuits

230 V circuits to 24 V/5 V circuits

115 V circuits to 24 V/5 V circuits

500 VAC (optical isolation boundaries)

1,500 VAC

1,500 VAC

1,500 VAC

1,500 VAC

1 Unit must be mounted on a grounded metallic frame with the S7-200 ground connection made directly to the mounting metal. Cables are routed along metallic supports.
2 Unit must be mounted in a grounded metal enclosure. AC input power line must be equipped with a EPCOS B84115–E–A30 filter or equivalent, 25 cm max. wire length

from filters to the S7-200. The 24 VDC supply and sensor supply wiring must be shielded.

A

S7-200 Programmable Controller System Manual

340

CPU Specifications

Table A-2 CPU Order Numbers

Order Number CPU Model CPU Power Supply
(Nominal)

CPU Inputs CPU Outputs Removable
Connector

6ES7 211–0AA22–0XB0 CPU 221 24 VDC 6 x 24 VDC 4 x 24 VDC No

6ES7 211–0BA22–0XB0 CPU 221 120 to 240 VAC 6 x 24 VDC 4 x Relay No

6ES7 212–1AB22–0XB0 CPU 222 24 VDC 8 x 24 VDC 6 x 24 VDC No

6ES7 212–1BB22–0XB0 CPU 222 120 to 240 VAC 8 x 24 VDC 6 x Relay No

6ES7 214–1AD22–0XB0 CPU 224 24 VDC 14 x 24 VDC 10 x 24 VDC Yes

6ES7 214–1BD22–0XB0 CPU 224 120 to 240 VAC 14 x 24 VDC 10 x Relay Yes

6ES7 216–2AD22–0XB0 CPU 226 24 VDC 24 x 24 VDC 16 x 24 VDC Yes

6ES7 216–2BD22–0XB0 CPU 226 120 to 240 VAC 24 x 24 VDC 16 x Relay Yes

6ES7 216–2AF22–0XB0 CPU 226XM 24 VDC 24 x 24 VDC 16 x 24 VDC Yes

6ES7 216–2BF22–0XB0 CPU 226XM 120 to 240 VAC 24 x 24 VDC 16 x Relay Yes

Table A-3 CPU General Specifications

Order Number Module Name and Description Dimensions (mm)
(W x H x D)

Weight Dissipation VDC Available
+5 VDC +24 VDC

6ES7 211–0AA22–0XB0 CPU 221 DC/DC/DC 6 Inputs/ 4 Outputs 90 x 80 x 62 270 g 3 W 0 mA 180 mA

6ES7 211–0BA22–0XB0 CPU 221 AC/DC/Relay 6 Inputs/ 4 Relays 90 x 80 x 62 310 g 6 W 0 mA 180 mA

6ES7 212–1AB22–0XB0 CPU 222 DC/DC/DC 8 Inputs/ 6 Outputs 90 x 80 x 62 270 g 5 W 340 mA 180 mA

6ES7 212–1BB22–0XB0 CPU 222 AC/DC/Relay 8 Inputs/ 6 Relays 90 x 80 x 62 310 g 7 W 340 mA 180 mA

6ES7 214–1AD22–0XB0 CPU 224 DC/DC/DC 14 Inputs/ 10 Outputs 120.5 x 80 x 62 360 g 7 W 660 mA 280 mA

6ES7 214–1BD22–0XB0 CPU 224 AC/DC/Relay14 Inputs/ 10 Relays 120.5 x 80 x 62 410 g 10 W 660 mA 280 mA

6ES7 216–2AD22–0XB0 CPU 226 DC/DC/DC 24 Inputs/16 Outputs 196 x 80 x 62 550 g 11 W 1000 mA 400 mA

6ES7 216–2BD22–0XB0 CPU 226 AC/DC/Relay 24 Inputs/16 Relays 196 x 80 x 62 660 g 17 W 1000 mA 400 mA

6ES7 216–2AF22–0XB0 CPU 226XM DC/DC/DC 24 Inputs/16 Outputs 196 x 80 x 62 550 g 11 W 1000 mA 400 mA

6ES7 216–2BF22–0XB0 CPU 226XM AC/DC/Relay 24 Inputs/16 Relays 196 x 80 x 62 660 g 17 W 1000 mA 400 mA

Table A-4 CPU Specifications
CPU 221 CPU 222 CPU 224 CPU 226 CPU 226XM

Memory

User program size (EEPROM) 2048 words 4096 words 4096 words 8192 words

User data (EEPROM) 1024 words (stored permanently) 2560 words
(stored permanently)

2560 words
(stored
permanently)

5120 words
(stored
permanently)

Backup (super cap)
(optional battery)

50 hours typical (8 hours min. at 40°C)
200 days typical

190 hours typical (120 hours min. at 40°C)
200 days typical

I/O

Built-in digital inputs/outputs 6 inputs/4 outputs 8 inputs/6 outputs 14 inputs/10 outputs 24 inputs/16 outputs

Digital I/O image size 256 (128 In/128 Out)

Analog I/O image size None 32 (16 In/16 Out) 64 (32 In/32 Out)

Max. expansion modules
allowed

None 2 modules 7 modules

Max. intelligent modules allowed None 2 modules 7 modules

Pulse Catch inputs 6 8 14

High-Speed Counters
Single phase
Two phase

4 counters total
4 at 30 kHz
2 at 20 kHz

6 counters total
6 at 30 kHz
4 at 20 kHz

Pulse outputs 2 at 20 kHz (DC outputs only)

A

Technical Specifications Appendix A

341

CPU 226XMCPU 226CPU 224CPU 222CPU 221

General

Timers 256 total timers; 4 timers (1 ms); 16 timers (10 ms); 236 timers (100 ms)

Counters 256 (backed by super capacitor or battery)

Internal memory bits
Stored on power down

256 (backed by super capacitor or battery)
112 (stored to EEPROM)

Timed interrupts 2 with 1 ms resolution

Edge interrupts 4 up and/or 4 down

Analog adjustment 1 with 8 bit resolution 2 with 8 bit resolution

Boolean execution speed 0.37 µs per instruction

Time-of-Day clock Optional cartridge Built-in

Cartridge options Memory, battery and Time-of-Day Clock Memory and battery

Communications Built-in

Ports 1 RS–485 port 2 RS–485 ports

PPI, DP/T baud rates 9.6, 19.2, 187.5 kbaud

Freeport baud rates 1.2 kbaud to 115.2 kbaud

Max. cable length per segment With isolated repeater: 1000 m up to 187.5 kbaud, 1200 m up to 38.4 kbaud
Without isolated repeater: 50 m

Max. number of stations 32 per segment, 126 per network

Max. number of masters 32

Peer to Peer (PPI Master Mode) Yes (NETR/NETW)

MPI connections 4 total, 2 reserved (1 for a PG and 1 for an OP)

Table A-5 CPU Power Specifications

DC AC

Input Power

Input voltage 20.4 to 28.8 VDC 85 to 264 VAC (47 to 63 Hz)

Input current

CPU 221

CPU 222

CPU 224

CPU 226/CPU 226XM

CPU only at
24 VDC

80 mA

85 mA

110 mA

150 mA

Max. load at
24 VDC

450 mA

500 mA

700 mA

1050 mA

CPU only

30/15 mA at 120/240 VAC

40/20 mA at 120/240 VAC

60/30 mA at 120/240 VAC

80/40 mA at 120/240 VAC

Max. load

120/60 mA at120/240 VAC

140/70 mA at 120/240 VAC

200/100 mA at 120/240VAC

320/160 mA at 120/240VAC

Inrush current 10 A at 28.8 VDC 20 A at 264 VAC

Isolation (field to logic) Not isolated 1500 VAC

Hold up time (loss of power) 10 ms at 24 VDC 20/80 ms at 120/240 VAC

Fuse (non-replaceable) 3 A, 250 V Slow Blow 2 A, 250 V Slow Blow

24 VDC Sensor Power

Sensor voltage L+ minus 5 V 20.4 to 28.8 VDC

Current limit 1.5 A peak, thermal limit non-destructive

Ripple noise Derived from input power Less than 1 V peak-to-peak

Isolation (sensor to logic) Not isolated

Table A-6 CPU Input Specifications

General 24 VDC Input

Type Sink/Source (IEC Type 1 Sink)

Rated voltage 24 VDC at 4 mA typical

Max. continuous permissible voltage 30 VDC

Surge voltage 35 VDC for 0.5 s

Logic 1 (min.) 15 VDC at 2.5 mA

Logic 0 (max.) 5 VDC at 1 mA

Input delay Selectable (0.2 to 12.8 ms)
CPU 226, CPU 226XM: points I1.6 to I2.7 have fixed delay (4.5 ms)

A

S7-200 Programmable Controller System Manual

342

Table A-6 CPU Input Specifications, continued

24 VDC InputGeneral

Connection of 2 wire proximity sensor
(Bero)

Permissible leakage
current (max.)

1 mA

Isolation (field to logic)

Optical (galvanic)

Isolation groups

Yes

500 VAC for 1 minute

See wiring diagram

High speed input rate (max.)

Logic1 = 15 to 30 VDC

Logic1 = 15 to 26 VDC

Single phase

20 kHz

30 kHz

Two phase

10 kHz

20 kHz

Inputs on simultaneously All at 55° C

Cable length (max.)

Shielded

Unshielded

500 m normal inputs, 50 m HSC inputs

300 m normal inputs

Table A-7 CPU Output Specifications

General 24 VDC Output Relay Output

Type Solid State-MOSFET1 Dry contact

Rated voltage 24 VDC 24 VDC or 250 VAC

Voltage range 20.4 to 28.8 VDC 5 to 30 VDC or 5 to 250 VAC

Surge current (max.) 8 A for 100 ms 7 A contacts closed

Logic 1 (min.) 20 VDC at maximum current –

Logic 0 (max.) 0.1 VDC with 10 K Ω Load –

Rated current per point (max.) 0.75 A 2.0 A

Rated current per common (max.) 6 A 10 A

Leakage current (max.) 10 µ A –

Lamp load (max.) 5 W 30 W DC; 200 W AC

Inductive clamp voltage L+ minus 48 VDC, 1 W dissipation –

On State resistance (contact) 0.3 Ω max. 0.2 Ω (maximum when new)

Isolation

Optical (galvanic, field to logic)

Logic to contact

Contact to contact

Resistance (logic to contact)

Isolation groups

500 VAC for 1 minute

–

–

–

See wiring diagram

–

1500 VAC for 1 minute

750 VAC for 1 minute

100 M Ω

See wiring diagram

Delay Off to On/On to Off (max.)

Switching (max.)

2/10 µs (Q0.0 and Q0.1)
15/100 µs (all other)

–

–

10 ms

Pulse frequency (max.) Q0.0 and Q0.1 20 kHz 1 Hz

Lifetime mechanical cycles – 10,000,000 (no load)

Lifetime contacts – 100,000 (rated load)

Outputs on simultaneously All at 55° C All at 55° C

Connecting two outputs in parallel Yes No

Cable length (max.)
Shielded
Unshielded

500 m
150 m

500 m
150 m

1 When a mechanical contact turns on output power to the S7-200 CPU, or any digital expansion module, it sends a “1” signal to the digital outputs for approximately
50 microseconds. You must plan for this, especially if you are using devices which respond to short duration pulses.

A

Technical Specifications Appendix A

343

Wiring Diagrams

24 VDC Input

Used as Sinking Inputs

1M .0 .1 .2 .3

+

1M .0 .1 .2 .3

24 VDC Input

Used as Sourcing Inputs

+

Relay Output

1L .0 .1 .2

L(+)

N(–)

24 VDC Output

1M 1L+ .0 .1 .2

+

Figure A-2 CPU Inputs and Outputs

24 VDC Sensor
Power Output

24 VDC
Sensor Power
Output

120/240 VAC Power

CPU 221 DC/DC/DC
(6ES7 211–0AA22–0XB0)

24 VDC Power

CPU 221 AC/DC/Relay
(6ES7 211–0BA22–0XB0)

M L+ 0.0 0.1 0.2 0.3 L+ DC

0.0 0.1 0.2 0.3 2M 0.4 0.5 M L+1M

+

+

+

M

+

1L 0.0 0.1 0.2 2L 0.3 N L1

0.1 0.2 0.3 2M 0.4 0.5 M L+

+

L(+)

N(–)

0.01M

L(+)

N(–)

AC

+

Figure A-3 CPU 221 Wiring Diagrams

A

S7-200 Programmable Controller System Manual

344

CPU 224 DC/DC/DC
(6ES7 214–1AD22–0XB0)

CPU 224 AC/DC/Relay
(6ES7 214–1BD22–0XB0)

24 VDC Power

24 VDC Sensor
Power Output

24 VDC Sensor
Power Output

CPU 222 DC/DC/DC
(6ES7 212–1AB22–0XB0) 24 VDC Power

24 VDC Sensor
Power Output

120/240 VAC Power

24 VDC Sensor
Power Output

CPU 222 AC/DC/Relay
(6ES7 212–1BB22–0XB0)

120/240 VAC Power

M L+ 0.0 0.1 0.2 0.3 L+ DC

0.0 0.1 0.2 0.3 2M 0.4 0.5 M L+1M

+

+

+

M

+

0.4 0.5

0.6 0.7

1L 0.0 0.1 0.2 2L 0.3 0.4 N L1

0.1 0.2 0.3 2M 0.4 0.5 0.6 0.7 M L+

+

L(+)

N(–)

0.01M

L(+)

N(–)

AC0.5

1M 1L+ 0.0 0.1 0.2 0.3 L+ DC

0.0 0.1 0.2 0.3 0.4 0.5 L+1M

+

+

+

M

+

0.4 2M

+

0.6 0.7 1.0 1.1 1.2 1.3 1.4 1.5 M2M

2L+ 0.5 0.6 0.7 1.0 1.1

1L 0.0 0.1 0.2 0.3 L1 AC

0.0 0.1 0.2 0.3 0.4 0.5 L+1M

+ +

N0.42L

0.6 0.7 1.0 1.1 1.2 1.3 1.4 1.5 M2M

3L0.5 0.6 0.7 1.0 1.1

L(+)

N(–)

L(+)

N(–)

L(+)

N(–)

+

Figure A-4 CPU 222 and CPU 224 Wiring Diagrams

A

Technical Specifications Appendix A

345

+ +

1L 0.0 0.1 0.2 0.3 0.7 1.02L 0.4 0.5 0.6 3L 1.1 1.2 1.3 1.4 1.5 1.6 1.7 M DCL+

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.71M 1.0 1.2 1.2 1.3 1.4 1.5 1.6 1.7 2.0 2.1 2.2 2.3 2.42M 2.5 2.6 2.7 M L+

CPU 226 DC/DC/DC (6ES7 216–2AD22–0XB0)

CPU 226XM DC/DC/DC (6ES7 216–2AF22–0XB0)

CPU 226 AC/DC/Relay (6ES7 216–2BD22–0XB0)

CPU 226XM AC/DC/Relay (6ES7 216–2BF22–0XB0)

24 VDC Power

24 VDC
Sensor Power Output

120/240 VAC
Power

24 VDC
Sensor Power Output

+ +

++ +

M 1L+ 0.0 0.1 0.2 0.3 2M 2L+0.4 0.5 0.6 0.7 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 M DCL+

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.71M 1.0 1.2 1.2 1.3 1.4 1.5 1.6 1.7 2.0 2.1 2.2 2.3 2.42M 2.5 2.6 2.7 M L+

N(–)

L(+)

N(–) N(–)

L(+) L(+)

Figure A-5 CPU 226 and CPU 226XM Wiring Diagrams

Table A-8 Pin Assignments for the S7-200 Communications Port

Connector Pin Number PROFIBUS Signal Port 0/Port 1

1 Shield Chassis ground

2 24 V Return Logic common

Pin 1 3 RS-485 Signal B RS-485 Signal B
Pin

4 Request-to-Send RTS (TTL)

5 5 V Return Logic common

Pin
6 +5 V +5 V, 100 Ω series resistor

Pin

Pin 5 7 +24 V +24 V

8 RS-485 Signal A RS-485 Signal A

9 Not applicable 10-bit protocol select (input)

Connector shell Shield Chassis ground

A

S7-200 Programmable Controller System Manual

346

Digital Expansion Modules Specifications

Table A-9 Digital Expansion Modules Order Numbers

Order Number Expansion Model EM Inputs EM Outputs Removable
Connector

6ES7 221–1BF22–0XA0 EM 221 Digital Input 8 x 24 VDC 8 x 24 VDC – Yes

6ES7 221–1EF22–0XA0 EM 221 Digital Input 8 x AC 120/230 V 8 x AC 120/230V – Yes

6ES7 222–1BF22–0XA0 EM 222 Digital Output 8 x 24 VDC – 8 x 24 VDC Yes

6ES7 222–1HF22–0XA0 EM 222 Digital Output 8 x Relays – 8 x Relay Yes

6ES7 222–1EF22–0XA0 EM 222 Digital Output 8 x AC 120/230 V – 8 x AC 120/230 V Yes

6ES7 223–1BF22–0XA0 EM 223 24 VDC Digital Combination 4 Inputs/4 Outputs 4 x 24 VDC 4 x 24 VDC Yes

6ES7 223–1HF22–0XA0 EM 223 24 VDC Digital Combination 4 Inputs/4 Relay Outputs 4 x 24 VDC 4 x Relay Yes

6ES7 223–1BH22–0AX0 EM 223 24 VDC Digital Combination 8 Inputs/8 Outputs 8 x 24 VDC 8 x 24 VDC Yes

6ES7 223–1PH22–0XA0 EM 223 24 VDC Digital Combination 8 Inputs/8 Relay Outputs 8 x 24 VDC 8 x Relay Yes

6ES7 223–1BL22–0XA0 EM 223 24 VDC Digital Combination 16 Inputs/16 Outputs 16 x 24 VDC 16 x 24 VDC Yes

6ES7 223–1PL22–0XA0 EM 223 24 VDC Digital Combination 16 Inputs/16 Relay
Outputs

16 x 24 VDC 16 x Relay Yes

Table A-10 Digital Expansion Modules General Specifications

Order Number Module Name and Description Dimensions (mm)
(W x H x D)

Weight Dissipation VDC Requirements
+5 VDC +24 VDC

6ES7 221–1BF22–0XA0 EM 221 DI 8 x 24 VDC 46 x 80 x 62 150 g 2 W 30 mA –

6ES7 221–1EF22–0XA0 EM 221 DI 8 x AC 120/230 V 71.2 x 80 x 62 160 g 3 W 30 mA –

6ES7 222–1BF22–0XA0 EM 222 DO 8 x 24 VDC 46 x 80 x 62 150 g 2 W 50 mA –

6ES7 222–1HF22–0XA0 EM 222 DO 8 x Relays 46 x 80 x 62 170 g 2 W 40 mA ON: 9 mA/output,
20.4 to 28.8 VDC

6ES7 222–1EF22–0XA0 EM 222 DO 8 x AC 120/230 V 71.2 x 80 x 62 165 g 4 W 110 mA –

6ES7 223–1BF22–0XA0 EM 223 24 VDC 4 In/4 Out 46 x 80 x 62 160 g 2 W 40 mA –

6ES7 223–1HF22–0XA0 EM 223 24 VDC 4 In/4 Relays 46 x 80 x 62 170 g 2 W 40 mA ON: 9 mA/output,
20.4 to 28.8 VDC

6ES7 223–1BH22–0AX0 EM 223 24 VDC 8 In/8 Out 71.2 x 80 x 62 200 g 3 W 80 mA –

6ES7 223–1PH22–0XA0 EM 223 24 VDC 8 In/8 Relays 71.2 x 80 x 62 300 g 3 W 80 mA ON: 9 mA/output,
20.4 to 28.8 VDC

6ES7 223–1BL22–0XA0 EM 223 24 VDC 16 In/16 Out 137.3 x 80 x 62 360 g 6 W 160 mA –

6ES7 223–1PL22–0XA0 EM 223 24 VDC 16 In/16 Relays 137.3 x 80 x 62 400 g 6 W 150 mA ON: 9 mA/output,
20.4 to 28.8 VDC

Table A-11 Digital Expansion Modules Input Specifications

General 24 VDC Input 120/230 VAC Input (47 to 63 HZ)

Type Sink/Source (IEC Type 1 sink) IEC Type I

Rated voltage 24 VDC at 4 mA 120 VAC at 6 mA or 230 VAC at 9 mA nominal

Maximum continuous permissible
voltage

30 VDC 264 VAC

Surge voltage (max.) 35 VDC for 0.5 s –

Logic 1 (min.) 15 VDC at 2.5 mA 79 VAC at 2.5 mA

Logic 0 (max.) 5 VDC at 1 mA 20 VAC or 1 mA AC

Input delay (max.) 4.5 ms 15 ms

Connection of 2 wire proximity sensor
(Bero)

Permissible leakage
current (max.)

1 mA 1 mA AC

Isolation
Optical (galvanic, field to logic)
Isolation groups

500 VAC for 1 minute
See wiring diagram

1500 VAC for 1 minute
1 point

A

Technical Specifications Appendix A

347

Table A-11 Digital Expansion Modules Input Specifications, continued

120/230 VAC Input (47 to 63 HZ)24 VDC InputGeneral

Inputs on simultaneously All at 55° C All at 55° C

Cable length (max.)
Shielded
Unshielded

500 m
300 m

500 m
300 m

Table A-12 Digital Expansion Modules Output Specifications

General 24 VDC Output Relay Output 120/230 VAC Output

Type Solid state-MOSFET1 Dry contact Triac, zero-cross turn-on2

Rated voltage 24 VDC 24 VDC or 250 VAC 120/230 VAC

Voltage range 20.4 to 28.8 VDC 5 to 30 VDC or 5 to 250 VAC 40 to 264 VAC (47 to 63 Hz)

24 VDC coil power voltage range – 20.4 to 28.8 VDC –

Surge current (max.) 8 A for 100 ms 7 A with contacts closed 5 A rms for 2 AC cycles

Logic 1 (min.) 20 VDC – L1 (–0.9 V rms)

Logic 0 (max.) 0.1 VDC – –

Rated current per point (max.) 0.75 A 2.00 A 0.5 A AC3

Rated current per common (max.) 6 A 8 A 0.5 A AC

Leakage current (max.) 10 µA – 1.1 mA rms at 132 VAC and
1.8 mA rhesus at 264 VAC

Lamp load (max.) 5 W 30 W DC/200 W AC 60 W

Inductive clamp voltage L+ minus 48 V – –

On state resistance (contact) 0.3 Ω (maximum) 0.2 Ω maximum when new 410 Ω maximum when load
current is less than 0.05 A

Isolation

Optical (galvanic, field to logic)

Coil to logic

Coil to contact

Contact to contact

Resistance (coil to contact)

Isolation groups

500 VAC for 1 minute

–

–

–

–

See wiring diagram

–

None

1500 VAC for 1 minute

750 VAC for 1 minute

100 M Ω min. when new

4 points

1500 VAC for 1 minute

–

–

–

–

1 point

Delay Off to On/On to Off (max.)

Switching (max.)

50 µs max./200 µs

–

–

10 ms

0.2 ms + 1/2 AC cycle

–

Switching frequency (max.) – 1 Hz 10 Hz

Lifetime mechanical cycles – 10,000,000 (no load) –

Lifetime contacts – 100,000 (rated load) –

Output on simultaneously All at 55 °C All at 55 °C All at 55 °C

Connecting two outputs in parallel Yes No No

Cable length (max.)

Shielded
Unshielded

500 m
150 m

500 m
150 m

500 m
150 m

1 When a mechanical contact turns on output power to the S7-200 CPU, or any digital expansion module, it sends a “1” signal to the digital outputs for approximately
50 microseconds. You must plan for this, especially if you are using devices which respond to short duration pulses.

2 When a mechanical contact turns on output power to the AC expansion module, it sends a “1” signal to the AC outputs for approximately 1/2 AC cycle. You must plan
for this.

3 Load current must be full wave AC and must not be half-wave because of the zero-cross circuitry. Minimum load current is 0.05 A AC. With a load current between 5 mA
and 50 mA AC, the current can be controlled, but there is an additional voltage drop due to series resistance of 410 Ohms.

A

S7-200 Programmable Controller System Manual

348

24 VDC Output

1M 1L+ .0 .1 .2

+

0N .00N

N

L1

0L .00L

L1

N

120/230 AC Input 120/230 AC Output

24 VDC Input

Used as Sinking Inputs

1M .0 .1 .2 .3

+

Relay Output

1L .0 .1 .2

L(+)

N(–)

1M .0 .1 .2 .3

24 VDC Input

Used as Sourcing Inputs

+

Figure A-6 S7-200 Digital Expansion Modules Inputs and Outputs

A

Technical Specifications Appendix A

349

Wiring Diagrams

EM 223 24 VDC Digital Combination 4 Inputs/ 4 Outputs
(6ES7 223–1BF22–0CAB0)

EM 223 24 VDC Digital Combination 4 Inputs/4 Relay Outputs
(6ES7 223–1HF22–0CAB0)

24 VDC Coil
Power

EM 222 Digital Output 8 x AC 120/230 V
(6ES7 222–1EFF22–0CAB0)

EM 221 Digital Input 8 x AC 120//230 V
(6ES7 221–1EFF22–0XA0)

0L 0L .0 1L 1L 2L.1 .2 3L 3L .3

.4 5L 5L .5 6L 6L .6 7L 7L .74L

2L0N 0N .0 1N 1N .1 2N 2N .2 3N 3N .3

.4 5N 5N .5 6N 6N .6 7N 7N .74N

1M 1L+ .0 .1 .2 .3

1M .0 .1 .2 .3

+

+

.0 .1 .2 .3

1M .0 .1 .2 .3

+

L(+)

N(–)

L+M

1L

+
EM 222 Digital Output 8 x 24 VDC
(6ES7 222–1BF22–0XA0)

EM 221 Digital Input 8 x 24 VDC
(6ES7 221–1BF22–0XA0)

24 VDC Coil
power

.0 .1 .2 .3

2M .4 .5 .6 .7

+

1M

+

1M 1L+ .0 .1 .2 .3

2L+ .4 .5 .6 .7

+

+

2M

.0 .1 .2 .3

2L .4 .5 .6 .7

L(+)

N(–)

L+M

1L

+

N
(–)

L
(+)

EM 222 Digital Output 8 x Relay
(6ES7 222 1HF22–0XA0)

L1

N

N

L1

L1

N

L1

N

Figure A-7 Wiring Diagrams for EM 221, EM 222, and EM 223 Expansion Modules

A

S7-200 Programmable Controller System Manual

350

1M 1L+ .0 .1 .2 .3 2M 2L+ .4 .5 .6 .7

1M .0 .1 .2 .3 2M .4 .5 .6 .7

++

+

EM 223 24 VDC Digital Combination 16 Inputs/16 Outputs
(6ES7 223–1BL22–0XA0)

EM 223 24 VDC Digital Combination 16 Inputs/16 Relay Outputs
(6ES7 223–1PL22–0XA0)

EM 223 24 VDC Digital Combination 8 Inputs/8 Outputs
(6ES7 223–1BH22–0XA0)

EM 223 24 VDC Digital Combination 8 Inputs/8 Relay Outputs
(6ES7 223–1PH22–0XA0)

24VDC
Coil
Power

1M .0 .1 .2 .3 2L .4 .5 .6 .7

1M .0 .1 .2 .3 2M .4 .5 .6 .7

+
+

L(+)

N(–)

L+M

1L

+

3M 3L+ .0 .1 .2 .3 .4 .5 .6 .7

.0 .1 .2 .32M .4 .5 .6 .7

+
+++

+

1M 1L+ .0 .1 .2 .3 .4 .5 .6 .72M 2L+

.0 .1 .2 .31M .4 .5 .6 .7

L(+)

N(–)

3L .0 .1 .2 .3 .4 .5 .6 .7

2M .0 .1 .2 .3 .4 .5 .6 .7

L(+)

N(–)

L(+)

N(–)

++ +

1M .0 .1 .2 .3 .4 .5 .6 .7M L+

4L1L .0 .1 .2 .3 .4 .5 .6 .72L

N(–)

L(+)

+

24VDC
Coil
Power

N(–)

L(+)

Figure A-8 Wiring Diagrams for EM 223 Expansion Modules

A

Technical Specifications Appendix A

351

Analog Expansion Modules Specifications

Table A-13 Analog Expansion Modules Order Numbers

Order Number Expansion Model EM Inputs EM Outputs Removable
Connector

6ES7 231–0HC22–0XA0 EM 231 Analog Input, 4 Inputs 4 – No

6ES7 232–0HB22–0XA0 EM 232 Analog Output, 2 Outputs – 2 No

6ES7 235–0KD22–0XA0 EM 235 Analog Combination 4 Inputs/1 Output 4 11 No

1 The CPU reserves 2 analog output points for this module.

Table A-14 Analog Expansion Modules General Specifications

Order Number Module Name and Description Dimensions (mm)
(W x H x D)

Weight Dissipation VDC Requirements
+5 VDC +24 VDC

6ES7 231–0HC22–0XA0 EM 231 Analog Input,
4 Inputs

71.2 x 80 x 62 183 g 2 W 20 mA 60 mA

6ES7 232–0HB22–0XA0 EM 232 Analog Output,
2 Outputs

46 x 80 x 62 148 g 2 W 20 mA 70 mA (with both
outputs at 20 mA)

6ES7 235–0KD22–0XA0 EM 235 Analog Combination
4 Inputs/1 Output

71.2 x 80 x 62 186 g 2 W 30 mA 60 mA (with
output at 20 mA)

Table A-15 Analog Expansion Modules Input Specifications

General 6ES7 231–0HC22–0XA0 6ES7 235–0KD22–0XA0

Data word format

Bipolar, full-scale range

Unipolar, full-scale range

(See Figure A-11)

–32000 to +32000

0 to 32000

(See Figure A-11)

–32000 to +32000

0 to 32000
DC Input impedance ≥10 MΩ voltage input,

250 Ω current input
≥ 10 MΩ voltage input,
250 Ω current input

Input filter attenuation –3 db at 3.1 Khz –3 db at 3.1 Khz

Maximum input voltage 30 VDC 30 VDC
Maximum input current 32 mA 32 mA
Resolution 12 bit A/D converter 12 bit A/D converter

Isolation (field to logic) None None
Input type Differential Differential

Input ranges

Voltage (unipolar)

Voltage (bipolar)

Current

0 to 10 V, 0 to 5 V

±5 V, ± 2.5 V

0 to 20 mA

0 to 10 V, 0 to 5 V
0 to 1 V, 0 to 500 mV,
0 to 100 mV, 0 to 50 mV

±10 V, ±5V, ±2.5 V, ±1 V, ±500 mV, ±250 mV,
±100 mV, ±50 mV, ±25 mV

0 to 20 mA

Input resolution

Voltage (unipolar)

Voltage (bipolar)

Current

See Table A-18 See Table A-19

Analog to digital conversion time < 250 µs < 250 µs

Analog input step response 1.5 ms to 95% 1.5 ms to 95%
Common mode rejection 40 dB, DC to 60 Hz 40 dB, DC to 60 Hz
Common mode voltage Signal voltage plus common mode voltage

must be ≤ ±12 V
Signal voltage plus common mode voltage
must be ≤ ±12 V

24 VDC supply voltage range 20.4 to 28.8 20.4 to 28.8

A

S7-200 Programmable Controller System Manual

352

Table A-16 Analog Expansion Modules Output Specifications

General 6ES7 232–0HB22–0XA0 6ES7 235–0KD22–0XA0

Isolation (field to logic) None None
Signal range

Voltage output

Current output

± 10 V

0 to 20 mA

± 10 V

0 to 20 mA
Resolution, full-scale

Voltage

Current

12 bits

11 bits

12 bits

11 bits
Data word format

Voltage

Current

–32000 to +32000

0 to +32000

–32000 to +32000

0 to +32000
Accuracy

Worst case, 0° to 55° C

Voltage output

Current output

Typical, 25° C

Voltage output

Current output

± 2% of full-scale

± 2% of full-scale

± 0.5% of full-scale

± 0.5% of full-scale

± 2% of full-scale

± 2% of full-scale

± 0.5% of full-scale

± 0.5% of full-scale
Setting time

Voltage output

Current output

100 µS

2 mS

100 µS

2 mS
Maximum drive

Voltage output

Current output

5000 Ω minimum

500 Ω maximum

5000 Ω minimum

500 Ω maximum

EM 231 Analog Input,
4 Inputs
(6ES7 231–0HC22–0XA0)

EM 232 Analog Output,
2 Outputs
(6ES7 232–0HB22–0XA0)

EM 235 Analog Combination
4 Inputs/1 Output
(6ES7 235–0KD22–0XA0)

RA A+ A– RB B+ B– RC C+ C– RD D+ D–

M L+

+–

+

Gain Configuration

M0 V0 I0 M1 V1 L1

M L+

24
VDC
Power

24
VDC
Power

+

24
VDC
Power

I L
O

A
D

I L
O

A
D

V
 L

O
A

D

V
 L

O
A

D

L+

D–

M

RA A+ A– RB B+ B– RC C+ C– RD D+

+–

Gain ConfigurationM0 Offset

V
 L

O
A

D

I L
O

A
D+

V0 I0

Figure A-9 Wiring Diagrams for Analog Expansion Modules

A

Technical Specifications Appendix A

353

Analog LED Indicators
The LED indicators for the analog modules are shown in Table A-17.

Table A-17 Analog LED Indicators

LED Indicator ON OFF

24 VDC Power Supply Good No faults No 24 VDC power

Input Calibration
The calibration adjustments affect the instrumentation amplifier stage that follows the analog multiplexer
(see the Input Block Diagram for the EM 231 in Figure A-12 and EM 235 in Figure A-13). Therefore,
calibration affects all user input channels. Even after calibration, variations in the component values of
each input circuit preceding the analog multiplexer will cause slight differences in the readings between
channels connected to the same input signal.

To meet the specifications, you should enable analog input filters for all inputs of the module. Select 64 or
more samples to calculate the average value.

To calibrate the input, use the following steps.

1. Turn off the power to the module. Select the desired input range.

2. Turn on the power to the CPU and module. Allow the module to stabilize for 15 minutes.

3. Using a transmitter, a voltage source, or a current source, apply a zero value signal to one of the
input terminals.

4. Read the value reported to the CPU by the appropriate input channel.

5. Adjust the OFFSET potentiometer until the reading is zero, or the desired digital data value.

6. Connect a full-scale value signal to one of the input terminals. Read the value reported to the CPU.

7. Adjust the GAIN potentiometer until the reading is 32000, or the desired digital data value.

8. Repeat OFFSET and GAIN calibration as required.

Calibration and Configuration Location for EM 231 and EM 235
Figure A-10 shows the calibration potentiometer and configuration DIP switches located on the right of the
bottom terminal block of the module.

A

S7-200 Programmable Controller System Manual

354

Fixed Terminal Block Gain Configuration Offset

↑On
↓Off

↑On
↓Off

Fixed Terminal Block Gain Configuration

EM 231 EM 235

Figure A-10 Calibration Potentiometer and Configuration DIP Switch Location for the EM 231 and EM 235

Configuration for EM 231
Table A-18 shows how to configure the EM 231 module using the configuration DIP switches. Switches 1,
2, and 3 select the analog input range. All inputs are set to the same analog input range. In this table, ON
is closed, and OFF is open.

Table A-18 EM 231 Configuration Switch Table to Select Analog Input Range

Unipolar

SW1 SW2 SW3
Full-Scale Input Resolution

OFF ON 0 to 10 V 2.5 mV

ON 0 to 5 V 1.25 mVON
ON OFF

0 to 20 mA 5 µA

Bipolar

SW1 SW2 SW3
Full-Scale Input Resolution

OFF ON ±5 V 2.5 mV
OFF

ON OFF ± 2.5 V 1.25 mV

A

Technical Specifications Appendix A

355

Configuration for EM 235
Table A-19 shows how to configure the EM 235 module using the configuration DIP switches. Switches 1
through 6 select the analog input range and resolution. All inputs are set to the same analog input range
and format. Table A-20 shows how to select for unipolar/bipolar (switch 6), gain (switches 4 and 5), and
attenuation (switches 1, 2, and 3). In these tables, ON is closed, and OFF is open.

Table A-19 EM 235 Configuration Switch Table to Select Analog Range and Resolution

Unipolar

SW1 SW2 SW3 SW4 SW5 SW6
Full-Scale Input Resolution

ON OFF OFF ON OFF ON 0 to 50 mV 12.5 �V

OFF ON OFF ON OFF ON 0 to 100 mV 25 �V

ON OFF OFF OFF ON ON 0 to 500 mV 125 �V

OFF ON OFF OFF ON ON 0 to 1 V 250 �V

ON OFF OFF OFF OFF ON 0 to 5 V 1.25 mV

ON OFF OFF OFF OFF ON 0 to 20 mA 5 �A

OFF ON OFF OFF OFF ON 0 to 10 V 2.5 mV

Bipolar

SW1 SW2 SW3 SW4 SW5 SW6
Full-Scale Input Resolution

ON OFF OFF ON OFF OFF +25 mV 12.5 �V

OFF ON OFF ON OFF OFF +50 mV 25 �V

OFF OFF ON ON OFF OFF +100 mV 50 �V

ON OFF OFF OFF ON OFF +250 mV 125 �V

OFF ON OFF OFF ON OFF +500 mV 250 �V

OFF OFF ON OFF ON OFF +1 V 500 �V

ON OFF OFF OFF OFF OFF +2.5 V 1.25 mV

OFF ON OFF OFF OFF OFF +5 V 2.5 mV

OFF OFF ON OFF OFF OFF +10 V 5 mV

Table A-20 EM 235 Configuration Switch Table to Select Unipolar/Bipolar, Gain, Attenuation

EM 235 Configuration Switches Unipolar/Bipolar
SW1 SW2 SW3 SW4 SW5 SW6

Unipolar/Bipolar
Select

Gain Select Attenuation Select

ON Unipolar

OFF Bipolar

OFF OFF x1

OFF ON x10

ON OFF x100

ON ON invalid

ON OFF OFF 0.8

OFF ON OFF 0.4

OFF OFF ON 0.2

A

S7-200 Programmable Controller System Manual

356

Input Data Word Format for EM 231 and EM 235
Figure A-11 shows where the 12-bit data value is placed within the analog input word of the CPU.

15 3
MSB LSB

0AIW XX

0

0 0 0

214
Data value 12 Bits

Unipolar data

15 3
MSB LSB

AIW XX

0

0 0 0Data value 12 Bits

Bipolar data

4

0

Figure A-11 Input Data Word Format for EM 231 and EM 235

Tip
The 12 bits of the analog-to-digital converter (ADC) readings are left-justified in the data word format.
The MSB is the sign bit: zero indicates a positive data word value.

In the unipolar format, the three trailing zeros cause the data word to change by a count of eight for
each one-count change in the ADC value.

In the bipolar format, the four trailing zeros cause the data word to change by a count of sixteen for each
one count change in the ADC value.

Input Block Diagram for EM 231 and EM 235

C
C

A+

RA

A–

Rloop

C

C
C

B+

RB

B–

Rloop

C

C
C

C+

RC

C–

Rloop

A=1

A=2

A=3

Input filter MUX 4 to 1

BUFFER

011

A/D Converter

A=4

C

C
C

D+

RD

D–

Rloop

GAIN ADJUST

Instrumentation
AMP

+

–

EM 231
C

R

R

R

R

R

R

R

R

Figure A-12 Input Block Diagram for the EM 231

A

Technical Specifications Appendix A

357

REF_VOLT

C

C
C

A+

RA

A–

Rloop

C

C
C

B+

RB

B–

Rloop

C

C
C

C+

RC

C–

Rloop

A=1

A=2

A=3

Buffer
+

–

Input filter MUX 4 to 1

BUFFER

DATA
011

A/D Converter

EM 235

A=4

C

C
C

D+

RD

D–

Rloop

GAIN ADJUST

Instrumentation
AMP

+

–

Offset Adjust

R

R

R

R

R

R

R

R

Figure A-13 Input Block Diagram for the EM 235

Output Data Word Format for EM 232 and EM 235
Figure A-14 shows where the 12-bit data value is placed within the analog output word of the CPU.

15 4
MSB LSB

0AQW XX
0

0 0 0
314

Data value 11 Bits
Current output data format

15 3
MSB LSB

AQW XX
0

0 0 0Data value 12 Bits
Voltage output data format

4
0

0

Figure A-14 Output Data Word Format for EM 232 and EM 235

Tip
The 12 bits of the digital-to-analog converter (DAC) readings are left-justified in the output data word
format. The MSB is the sign bit: zero indicates a positive data word value. The four trailing zeros are
truncated before being loaded into the DAC registers. These bits have no effect on the output signal
value.

A

S7-200 Programmable Controller System Manual

358

Output Block Diagram for EM 232 and EM 235

DATA 11 0

Vref
D/A converter

Digital-to-analog converter

+

–

R

R

Vout
–10.. +10 Volts

M

Voltage output buffer

+/– 2V

+

–

+

–

R

Iout

0..20 mA

100

+24 Volt

Voltage-to-current converter

1/4

R

Figure A-15 Output Block Diagram for the EM 232 and EM 235

Installation Guidelines
Use the following guidelines to ensure accuracy and repeatability:

� Ensure that the 24-VDC Sensor Supply is free of noise and is stable.

� Use the shortest possible sensor wires.

� Use shielded twisted pair wiring for sensor wires.

� Terminate the shield at the Sensor location only.

� Short the inputs for any unused channels, as shown in Figure A-9.

� Avoid bending the wires into sharp angles.

� Use wireways for wire routing.

� Avoid placing signal wires parallel to high-energy wires. If the two wires must meet, cross them at
right angles.

� Ensure that the input signals are within the common mode voltage specification by isolating the
input signals or referencing them to the external 24V common of the analog module.

Tip
The EM 231 and EM 235 expansion modules are not recommended for use with thermocouples.

A

Technical Specifications Appendix A

359

Understanding the Analog Input Module: Accuracy and Repeatability
The EM 231 and EM 235 analog input modules are low-cost, high-speed 12 bit analog input modules. The
modules can convert an analog signal input to its corresponding digital value in 149 µsec. The analog
signal input is converted each time your program accesses the analog point. These conversion times
must be added to the basic execution time of the instruction used to access the analog input.

The EM 231 and EM 235 provide an unprocessed digital
value (no linearization or filtering) that corresponds to the
analog voltage or current presented at the module’s input
terminals. Since the modules are high-speed modules, they
can follow rapid changes in the analog input signal
(including internal and external noise).

You can minimize reading-to-reading variations caused by
noise for a constant or slowly changing analog input signal
by averaging a number of readings. Note that increasing the
number of readings used in computing the average value
results in a correspondingly slower response time to

Repeatability limits
(99% of all readings fall within these limits)

Average Value

Mean
(average)
Accuracy

Signal Input

changes in the input signal.
Figure A-16 Accuracy Definitions

Figure A-16 shows the 99% repeatability limits, the mean or average value of the individual readings, and
the mean accuracy in a graphical form.

The specifications for repeatability describe the reading-to-reading variations of the module for an input
signal that is not changing. The repeatability specification defines the limits within which 99% of the
readings will fall. The repeatability is described in this figure by the bell curve.

The mean accuracy specification describes the average value of the error (the difference between the
average value of individual readings and the exact value of the actual analog input signal).

Table A-21 gives the repeatability specifications and the mean accuracy as they relate to each of the
configurable ranges.

A

S7-200 Programmable Controller System Manual

360

Definitions of the Analog Specifications
� Accuracy: deviation from the expected value on a given point

� Resolution: the effect of an LSB change reflected on the output.

Table A-21 EM 231 and EM 235 Specifications

Repeatability1 Mean (average) Accuracy1,2,3,4

Full Scale Input Range
% of Full Scale Counts % of Full Scale Counts

EM 231 Specifications

0 to 5 V

0 to 20 mA ± 24 ± 0.1%
0 to 10 V ± 0.075%

± 24 ± 0.1%

± 32
± 2.5 V

± 0.075%

± ±

± 32

± 5 V
± 48 ± 0.05%

EM 235 Specifications

0 to 50 mV ± 0.25% ± 80

0 to 100 mV ± 0.2% ± 64

0 to 500 mV

0 to 1 V ± 0.075% ± 24
0 to 5 V

± 0.075% ± 24

± 0.05% ± 16
0 to 20 mA

± 0.05% ± 16

0 to 10 V

± 25 mV ± 0.25% ± 160

± 50 mV ± 0.2% ± 128

± 100 mV ± 0.1% ± 64

± 250 mV

± 500 mV ± 0.075% ± 48
± 1 V

± 0.075% ± 48

± ±± 2.5 V
± 0.05% ± 32

± 5 V

± 10 V

1 Measurements made after the selected input range has been calibrated.
2 The offset error in the signal near zero analog input is not corrected, and is not included in the accuracy specifications.
3 There is a channel-to-channel carryover conversion error, due to the finite settling time of the analog multiplexer. The maximum carryover error is 0.1%

of the difference between channels.
4 Mean accuracy includes effects of non-linearity and drift from 0 to 55 degrees C.

A

Technical Specifications Appendix A

361

Thermocouple and RTD Expansion Modules Specifications

Table A-22 Thermocouple and RTD Modules Order Numbers

Order Number Expansion Model EM Inputs EM Outputs Removable
Connector

6ES7 231–7PD22–0XA0 EM 231 Analog Input Thermocouple, 4 Inputs 4 Thermocouple – No

6ES7 231–7PB22–0XA0 EM 231 Analog Input RTD, 2 Inputs 2 RTD – No

Table A-23 Thermocouple and RTD Modules General Specifications

Order Number Module Name and Description Dimensions (mm)
(W x H x D)

Weight Dissipation VDC Requirements
+5 VDC +24 VDC

6ES7 231–7PD22–0XA0 EM 231 Analog Input
Thermocouple, 4 Inputs

71.2 x 80 x 62 210 g 1.8 W 87mA 60 mA

6ES7 231–7PB22–0XA0 EM 231 Analog Input RTD, 2 Inputs 71.2 x 80 x 62 210 g 1.8 W 87 mA 60 mA

Table A-24 Thermocouple and RTD Modules Specifications

General 6ES7 231–7PD22–0XA0
Thermocouple

6ES7 231–7PB22–0XA0
RTD

Isolation

Field to logic
Field to 24 VDC
24 VDC to logic

500 VAC
500 VAC
500 VAC

500 VAC
500 VAC
500 VAC

Common mode input range
(input channel to input channel)

120 VAC 0

Common mode rejection > 120 dB at 120 VAC > 120 dB at 120 VAC
Input type Floating TC Module ground referenced RTD

Input ranges1 TC types (select one per module)

S, T, R, E, N, K, J

Voltage range : +/– 80 mV

RTD types (select one per module):

Pt –100Ω, 200Ω, 500Ω, 1000Ω
(with α = 3850 ppm, 3920 ppm,
3850.55 ppm, 3916 ppm, 3902 ppm)

Pt –10000Ω (α = 3850 ppm)
Cu –9.035Ω (α = 4720 ppm)
Ni –10Ω, 120Ω, 1000Ω
(with α = 6720 ppm, 6178 ppm)
R –150Ω, 300Ω, 600Ω FS

Input resolution

Temperature

Voltage

Resistance

0.1° C / 0.1° F

15 bits plus sign

–

0.1° C / 0.1° F

–

15 bits plus sign
Measuring Principle Sigma-delta Sigma-delta

Module update time: All channels 405 ms 405 ms (700 ms for Pt10000)
Wire length 100 meters to sensor max. 100 meters to sensor max.
Wire loop resistance 100Ω max. 20Ω, 2.7Ω for Cu max.

Suppression of interference 85 dB at 50 Hz/60 Hz/ 400 Hz 85 dB at 50 Hz/60 Hz/400 Hz
Data word format Voltage: –27648 to + 27648 Resistance: –27648 to +27648
Maximum sensor dissipation – 1m W

Input impedance ≥1 MΩ ≥ 10 MΩ
Maximum input voltage 30 VDC 30 VDC (sense), 5 VDC (source)

Input filter attenuation –3 db at 21 kHz –3 db at 3.6 kHz
Basic error 0.1% FS (voltage) 0.1% FS (resistance)
Repeatability 0.05% FS 0.05% FS

Cold junction error ±1.5 ° C –
24 VDC supply voltage range 20.4 to 28.8 VDC 20.4 to 28.8 VDC

1 The input range selection (temperature, voltage on resistance) applies to all channels on the module.

A

S7-200 Programmable Controller System Manual

362

EM 231
AI 2 x RTD

EM 231 Analog Input RTD, 2 Inputs
(6ES7 231–7PB22–0XA0)

A+ A – B+ B– C+ C– D+

24 VDC
power

D–

EM 231
AI 4

EM 231 Analog Input Thermocouple, 4 Inputs
(6ES7 231–7PD22–0XA0)

+ –+– + +– –

A+ A – a+ a– B+ B– b+ b–

M L+M L+

+

24 VDC
power

Configuration Configuration

–
+

–

Figure A-17 Connector Terminal Identification for EM 231 Thermocouple and EM 231 RTD Modules

Compatibility
The RTD and Thermocouple modules are designed to work with the CPU 222, CPU 224, CPU 226 and
CPU 226XM.

Tip
The RTD and Thermocouple modules are designed to give maximum performance when installed in a
stable temperature environment.

The EM 231 Thermocouple module, for example, has special cold junction compensation circuitry that
measures the temperature at the module connectors and makes necessary changes to the
measurement to compensate for temperature differences between the reference temperature and the
temperature at the module. If the ambient temperature is changing rapidly in the area where the EM 231
Thermocouple module is installed, additional errors are introduced.

To achieve maximum accuracy and repeatability, Siemens recommends that the S7-200 RTD and
thermocouple modules be mounted in locations that have stable ambient temperature.

Noise Immunity
Use shielded wires for best noise immunity. If a thermocouple input channel is not used, short the unused
channel inputs, or connect them in parallel to another channel.

A

Technical Specifications Appendix A

363

EM 231 Thermocouple Module
The EM 231 Thermocouple module provides a convenient, isolated interface for the S7-200 family to
seven thermocouple types: J, K, E, N, S, T, and R. It allows the S7-200 to connect to low level analog
signals, ±80mV range. All thermocouples attached to the module must be of the same type.

Thermocouple Basics
Thermocouples are formed whenever two dissimilar metals are electrically bonded to each other. A
voltage is generated that is proportional to the junction temperature. This voltage is small; one microvolt
could represent many degrees. Measuring the voltage from a thermocouple, compensating for extra
junctions, and then linearizing the result forms the basis of temperature measurement using
thermocouples.

When you connect a thermocouple to the EM 231 Thermocouple Module, the two dissimilar metal wires
are attached to the module at the module signal connector. The place where the two dissimilar wires are
attached to each other forms the sensor thermocouple.

Two more thermocouples are formed where the two dissimilar wires are attached to the signal connector.
The connector temperature causes a voltage that adds to the voltage from the sensor thermocouple. If this
voltage is not corrected, then the temperature reported will deviate from the sensor temperature.

Cold junction compensation is used to compensate for the connector thermocouple. Thermocouple tables
are based on a reference junction temperature, usually zero degrees Celsius. The cold junction
compensation compensates the connector to zero degrees Celsius. The cold junction compensation
restores the voltage added by the connector thermocouples. The temperature of the module is measured
internally, then converted to a value to be added to the sensor conversion. The corrected sensor
conversion is then linearized using the thermocouple tables.

Configuring the EM 231 Thermocouple Module
Configuration DIP switches located on the bottom of the module allow you to select the thermocouple
type, open wire detect, temperature scale, and cold junction compensation. For the DIP switch settings to
take effect, you need to power cycle the PLC and/or the user 24V power supply.

DIP switch 4 is reserved for future use. Set DIP switch 4 to the 0 (down or off) position. Table A-25 shows
other DIP switch settings.

A

S7-200 Programmable Controller System Manual

364

Table A-25 Configuring the Thermocouple Module DIP Switches

Switches 1,2,3 Thermocouple Type Setting Description

SW1, 2, 3
J (Default) 000 Switches 1 to 3 select the thermocouple type

SW1, 2, 3
K 001

(or mV operation) for all channels on the
module. For example, for an E type,

Configuration
↑

T 010 thermocouple SW1 = 0, SW2 = 1, SW3 = 1.

1 2 3 4* 5 6 7 8 ↑1 – On
↓0 – Off E 011

R 100

* Set DIP switch 4
 to the 0 (down) position.

S 101
 to the 0 (down) position.

N 110

+/–80mV 111

Switch 5 Open Wire Detect
Direction

Setting Description

↑

SW5

Configuration

Upscale
(+3276.7 degrees)

0 0 indicates positive on open wire
1 indicates negative on open wire

1 2 3 4 5 6 7 8
↑1 – On
↓0 – Off

Configuration

Downscale
(–3276.8 degrees)

1

Switch 6 Open Wire Detect
Enable

Setting Description

1 2 3 4 5 6 7 8
↑1 – On
↓0 – Off

SW6

Configuration

Enable 0 Open wire detection is performed by injecting
a 25 µA current onto the input terminals. The
open wire enable switch enables or disables
the current source. The open wire range
check is always performed, even when the

Disable 1
current source is disabled. The EM 231
Thermocouple module detects open wire if
the input signal exceeds approximately
±200mV. When an open wire is detected, the
module reading is set to the value selected
by the Open Wire Detect.

Switch 7 Temperature Scale Setting Description

↑

SW7

Configuration

Celsius (�C) 0 The EM 231 Thermocouple module can
report temperatures in Celsius or Fahrenheit.
The Celsius to Fahrenheit conversion is

1 2 3 4 5 6 7 8
↑1 – On
↓0 – Off

Configuration
Fahrenheit (�F) 1

performed inside the module.

Switch 8 Cold Junction Setting Description

↑1 – On
↓

SW8

Configuration

Cold junction
compensation enabled

0 Cold junction compensation must be enabled
when you are using thermocouples. If cold
junction compensation is not enabled, the
conversions from the module will be in error

1 2 3 4 5 6 7 8 ↓0 – Off
Cold junction
compensation disabled

1
because of the voltage that is created when
the thermocouple wire is connected to the
module connector. Cold junction is
automatically disabled when you select the
±80mV range.

A

Technical Specifications Appendix A

365

Tip
� The open wire current source could interfere with signals from some low level sources such as

thermocouple simulators.

� Input voltages exceeding approximately ±200mV will trigger open wire detection even when the
open wire current source is disabled.

Tip
� Module error could exceed specifications while the ambient temperature is changing.

� Exceeding the module ambient temperature range specification could cause the module cold
junction to be in error.

Using the Thermocouple: Status Indicators
The EM 231 Thermocouple module provides the PLC with data words that indicate temperatures or error
conditions. Status bits indicate range error and user supply/module failure. LEDs indicate the status of the
module. Your program should have logic to detect error conditions and respond appropriately for the
application. Table A-26 shows the EM 231 Thermocouple status indicators.

Table A-26 EM 231Thermocouple Status Indicators

Error Condition Channel Data SF LED
Red

24 V LED
Green

Range Status Bit1 24 VDC User
Power Bad2

No errors Conversion data OFF ON 0 0

24 V missing 32766 OFF OFF 0 1

Open wire and current source enabled –32768/32767 BLINK ON 1 0

Out of range input –32768/32767 BLINK ON 1 0

Diagnostic error3 0000 ON OFF 0 note 3

1 Range status bit is bit 3 in module error register byte (SMB9 for Module 1, SMB11 for Module 2, etc.)
2 User Power Bad status bit is bit 2 in module error register byte (SMB 9, SMB 11, etc., refer to Appendix D)
3 Diagnostic errors cause a module configuration error. The User Power Bad status bit may or may not be set before the module configuration error.

Tip
The channel data format is two’s complement, 16-bit words. Temperature is presented in 0.1 degree
units. For example, if the measured temperature is 100.2 degrees, the reported data is 1002. Voltage
data are scaled to 27648. For example, –60.0mV is reported as –20736 (=–60mV/80mV * 27648).

All four channels are updated every 405 milliseconds if the PLC has read the data. If the PLC does not
read the data within one update time, the module reports old data until the next module update after the
PLC read. To keep channel data current, it is recommended that the PLC program read data at least as
often as the module update rate.

Tip
When you are using the EM 231 Thermocouple module, you should disable analog filtering in the PLC.
Analog filtering can prevent error conditions from being detected in a timely manner.

A

S7-200 Programmable Controller System Manual

366

Table A-27 Temperature Ranges (°C) and Accuracy for Thermocouple Types

Data Word (1 digit = 0.1�C)
�

Dec Hex
Type J Type K Type T Type E Type R, S Type N �80mV

32767 7FFF >1200.0 �C >1372.0 �C >400.0 �C >1000.0�C >1768.0�C >1300.0�C >94.071mV OF

↑ ↑ ↑ ↑

32511 7EFF 94.071mV

: :

94.071mV

 OR

27649 6C01 80.0029mV
27648 6C00 ↑ 80mV

: :

17680 4510 ↑ 1768.0�C

: : NR
13720 3598 1372.0�C ↑

NR

: : overrange

13000 32C8 ↑ 1300.0�C 1300.0�C

: :

12000 2EE0 1200.0�C ↑

: :

10000 2710 ↑ 1000.0�C

: :

4000 0FA0 400.0�C 400.0�C

: :

1 0001 0.1�C 0.1�C 0.1�C 0.1�C 0.1�C 0.1�C 0.0029mV

0 0000 0.0�C 0.0�C 0.0�C 0.0�C 0.0�C 0.0�C 0.0mV

–1 FFFF –0.1�C –0.1�C –0.1�C –0.1�C –0.1�C –0.1�C –0.0029mV

: : underrange

–500 FE0C –50.0�C

–1500 FA24 –150.0�C �

: :

–2000 F830 underrange –200.0�C

: :

–2100 F7CC –210.0�C

: : underrange

–2550 F60A –255.0�C –255.0�C

: : underrange underrange

–2700 F574 � –270.0�C –270.0�C –270.0�C –270.0�C

: :

–27648 9400 � � � � –80.mV

–27649 93FF –80.0029mV

: :

–32512 8100
–94.071mV UR

� � � �

–32768 8000 <–210.0�C <–270.0�C <–270.0�C <–270.0�C <–50.0�C <–270.0�C <–94.071mV UF

Accuracy over full span ±0.1% ±0.3% ±0.6% ±0.1% ±0.6% ±0.1% ±0.1%

Accuracy (nominal range
without cold junction)

±1.5�C ±1.7�C ±1.4�C ±1.3�C ±3.7�C ±1.6�C ±0.10%

Cold junction error ±1.5�C ±1.5�C ±1.5�C ±1.5�C ±1.5�C ±1.5�C N/A

*OF = Overflow; OR = Overrange; NR = Nominal range; UR = Underrange; UF = Underflow

↑ indicates that all analog values greater than this and below the open wire threshold report the overflow data value, 32767 (0x7FFF).
� indicates that all analog values less than this and greater than the open wire threshold report the underflow data value, –32768 (0x8000).

A

Technical Specifications Appendix A

367

Table A-28 Temperature Ranges (°F) for Thermocouple Types
Data Word

(1 digit = 0.1°F) Type J Type K Type T Type E Type R, S Type N �80 mV
Dec Hex

Type J Type K Type T Type E Type R, S Type N �80 mV

32767 7FFF >2192.0 �F >2502.0 �F >752.0 �F >1832.0�F >3214.0�F >2372.0�F >94.071mV OF

↑ ↑ ↑ ↑ ↑

32511 7EFF 94.071mV

32140 7D90 3214.0�F OR

27649 6C01 80.0029mV

27648 6C00 ↑ 2764.8�F 80mV

: :

25020 61B8 2502.0�F ↑

: : overrange
NR

23720 5CA8 ↑ 2372.0�F 2372.0�F

: :

21920 55A0 2192.0�F ↑

: :

18320 4790 ↑ 1832.0�F

: :

7520 1D60 752.0�F 752.0�F

: :

320 0140 underrange 32.0�F

: :

1 0001 0.1�F 0.1�F 0.1�F 0.1�F 0.1�F 0.1�F 0.0029mV

0 0000 0.0�F 0.0�F 0.0�F 0.0�F 0.0�F 0.0�F 0.0mV

–1 FFFF –0.1�F –0.1�F –0.1�F –0.1�F –0.1�F –0.1�F –0.0029mV

: :

–580 FDBC –58.0�F

: :

–2380 F6B4 –238.0�F

: :

–3280 F330 underrange –328.0�F underrange

: :

–3460 F27C –346.0�F �

: : underrange

–4270 EF52 –427.0�F –427.0�F

: : underrange underrange

–4540 EE44 � –454.0�F –454.0�F –454.0�F –454.0�F

: :

–27648 9400 � � � � –80mV

–27649 93FF –80.0029mV

: :

–32512 8100 –94.071mV OR
� � � �

–3268 8000 <–346.0° F <–454.0° F <–454.0° F <–454.0° F <–58.0° F <–454.0° F <–94.07 mV UF

*OF = Overflow; OR = Overrange; NR = Normal range; UR = Underrange; UF = Underflow
↑ indicates that all analog values greater than this and below the open wire threshold report the overflow data value, 32767 (0x7FFF).
� indicates that all analog values less than this and greater than the open wire threshold report the underflow data value, –32768 (0x8000).

A

S7-200 Programmable Controller System Manual

368

EM 231 RTD Module

The EM 231 RTD module provides a convenient interface for the S7-200 family to several different RTDs.
It also allows the S7-200 to measure three different resistance ranges. Both RTDs attached to the module
must be of the same type.

Configuring the EM 231 RTD Module
DIP switches enable you to select RTD type, wiring
configuration, temperature scale, and burnout direction. The
DIP switches are located on the bottom of the module as
shown in Figure A-18. For the DIP switch settings to take
effect, you need to power cycle the PLC and/or the user 24V
power supply.

Select RTD type by setting DIP switches 1, 2, 3, 4, and 5 to
correspond to the RTD as shown in Table A-29. Refer to

↑1 – On
↓0 – Off

Configuration

1 2 3 4 5 6 7 8

correspond to the RTD as shown in Table A-29. Refer to
Table A-30 for other DIP switch settings. Figure A-18 DIP Switches for the EM 231

RTD Module

Table A-29 Selecting the RTD Type: DIP Switches 1 to 5

RTD Type and Alpha SW1 SW2 SW3 SW4 SW5 RTD Type and Alpha SW1 SW2 SW3 SW4 SW5

100Ω Pt 0.003850
(Default)

0 0 0 0 0 100Ω Pt 0.00302 1 0 0 0 0

200Ω Pt 0.003850 0 0 0 0 1 200Ω Pt 0.003902 1 0 0 0 1

500Ω Pt 0.003850 0 0 0 1 0 500Ω Pt 0.003902 1 0 0 1 0

1000Ω Pt 0.003850 0 0 0 1 1 1000Ω Pt 0.003902 1 0 0 1 1

100Ω Pt 0.003920 0 0 1 0 0 SPARE 1 0 1 0 0

200Ω Pt 0.003920 0 0 1 0 1 100Ω Ni 0.00672 1 0 1 0 1

500Ω Pt 0.003920 0 0 1 1 0 120Ω Ni 0.00672 1 0 1 1 0

1000Ω Pt 0.003920 0 0 1 1 1 1000Ω Ni 0.00672 1 0 1 1 1

100Ω Pt 0.00385055 0 1 0 0 0 100Ω Ni 0.006178 1 1 0 0 0

200Ω Pt 0.00385055 0 1 0 0 1 120Ω Ni 0.006178 1 1 0 0 1

500Ω Pt 0.00385055 0 1 0 1 0 1000Ω Ni 0.006178 1 1 0 1 0

1000Ω Pt 0.00385055 0 1 0 1 1 10000Ω Pt 0.003850 1 1 0 1 1

100Ω Pt 0.003916 0 1 1 0 0 10Ω Cu 0.004270 1 1 1 0 0

200Ω Pt 0.003916 0 1 1 0 1 150Ω FS Resistance 1 1 1 0 1

500Ω Pt 0.003916 0 1 1 1 0 300Ω FS Resistance 1 1 1 1 0

1000Ω Pt 0.003916 0 1 1 1 1 600Ω PHYS
Resistance

1 1 1 1 1

A

Technical Specifications Appendix A

369

Table A-30 Setting RTD DIP Switches

Switch 6 Open Wire Detect Setting Description

↑
Configuration

SW6 Upscale
(+3276.7 degrees)

0 Indicates positive on open wire

↑1 – On
↓0 – Off

Configuration

1 2 3 4 5 6 7 8
Downscale
(–3276.8 degrees)

1 Indicates negative on open wire

Switch 7 Temperature Scale Setting Description

↑

SW7

Configuration

Celsius (�C) 0 The RTD module can report temperatures in
Celsius or Fahrenheit. The Celsius to
Fahrenheit conversion is performed inside

1 2 3 4 5 6 7 8
↑1 – On
↓0 – Off Fahrenheit (�F) 1

the module.

Switch 8 Wiring Scheme Setting Description

↑1 – On
Configuration

SW8 3-wire 0 You can wire the RTD module to the sensor
in three ways (shown in the figure). The most
accurate is 4 wire). The least accurate is 2↑1 – On

↓0 – Off
1 2 3 4 5 6 7 8

2-wire or 4-wire 1
wire, which is only recommended if errors
due to wiring can be ignored in your
application.

A+ Sense +

A– Sense –

a+ Source +

a– Source –
RTD

RTD 4 Wire
(most accurate)

A+ Sense +

A– Sense –

a+ Source +

a– Source –
RTD

If RL1=RL2, error is minimal.

RTD 3 Wire

RL1+RL2=Error

A+ Sense +

A– Sense –

a+ Source +

a– Source –
RTD

RL1

RL2

Set switch to
4-wire mode.

RTD 2 Wire

RL1

RL2

Note: RL1 = Lead resistance from a+ terminal to the RTD
RL2 = Lead resistance from a– terminal to the RTD

RL1

RL2

Figure A-19 Wiring the RTD to the Sensor by 4, 3, and 2 Wire

A

S7-200 Programmable Controller System Manual

370

EM 231 RTD Status Indicators
The RTD module provides the PLC with data words that indicate temperatures or error conditions. Status
bits indicate range error and user supply/module failure. LEDs indicate the status of the module. Your
program should have logic to detect error conditions and respond appropriately for the application.
Table A-31 shows the status indicators provided by the EM 231 RTD module.

Tip
The channel data format is twos complement, 16-bit words. Temperature is presented in 0.1 degree
units. (For example, if the measured temperature is 100.2 degrees, the reported data is 1002.)
Resistance data are scaled to 27648. For example, 75% of full scale resistance is reported as 20736.

(225Ω / 300Ω * 27648 = 20736)

Table A-31 EM 231 RTD Status Indicators

Error Condition Channel Data SF LED
Red

24 V LED
Green

Range Status Bit1 24 VDC User Power Bad2

No errors Conversion data OFF ON 0 0

24 V missing 32766 OFF OFF 0 1

SW detects open wire –32768/32767 BLINK ON 1 0

Out of range input –32768/32767 BLINK ON 1 0

Diagnostic error3 0000 ON OFF 0 note3

1 Range status bit is bit 3 in module error register byte (SMB9 for Module 1, SMB11 for Module 2, etc.)
2 User Power Bad status bit is bit 2 in module error register byte (such as SMB 9, SMB 11, refer to Appendix D.)
3 Diagnostic errors cause a module configuration error. The User Power Bad status bit may or may not be set before the module

configuration error.

Channel data is updated every 405 milliseconds, if the PLC has read the data. If the PLC does not read
the data within one update time, the module reports old data until the next module update after the PLC
read. To keep channel data current, it is recommended that the PLC program read data at least as often
as the module update rate.

Tip
When you are using the RTD module, be sure to disable analog filtering in the PLC. Analog filtering can
prevent error conditions from being detected in a timely manner.

Open wire detection is performed by software internal to the RTD module. Out of range inputs are
declared and open wire data is reported as burnout data. Open wire detection takes a minimum of three
module scan cycles and can take longer, depending on which wire(s) are open. Open Source+ and/or
Source– wires are detected in the minimum time. Open Sense+ and/or Sense– wires can take 5 seconds
or more to detect. Open sense lines can randomly present valid data, with open wire detected
intermittently, especially in electrically noisy environments. Electrical noise can also extend the time it
takes to detect the open wire condition. It is recommended that open wire/out of range indications be
latched in the application program after valid data has been reported.

A

Technical Specifications Appendix A

371

EM 231 RTD Module Ranges
EM 231 RTD temperature ranges and accuracy for each type of RTD module ar shown in Tables A-32 and
A-33.

Table A-32 Temperature Ranges (°C) and Accuracy for RTD Types

System Word
(1 digit = 0.1 �C) Pt10000 Pt100, Pt200, Ni100, Ni120, Cu9.035 0 – 150Ω 0 – 300Ω 0 – 600Ω
Decimal Hex

 Pt10000
Pt500, Pt1000 Ni1000

Cu9.035 0 – 150Ω 0 – 300Ω 0 – 600Ω

32767 7FF.

32766 7FFE ↑ ↑ ↑
32511 7EFF 176.383Ω 352.767Ω 705.534Ω

29649 6C01 150.005Ω 300.011Ω 600.022Ω

27648 6C00 150.000Ω 300.000Ω 600.000Ω
25000 61A8 ↑
18000 4650 OR

15000 3A98

13000 32C8 ↑ ↑
10000 2710 1000.0�C 1000.0�C

8500 2134 850.0�C

6000 1770 600.0�C ↑
3120 0C30 ↑ 312.0�C

2950 0B86 295.0�C

2600 0A28 260.0�C

2500 09C4 250.0�C

1 0001 0.1�C 0.1�C 0.1�C 0.1�C 0.005Ω 0.011Ω 0.022Ω

0 0000 0.0�C 0.0�C 0.0�C 0.0�C 0.000Ω 0.000Ω 0.000Ω

–1 FFFF –0.1�C –0.1� –0.1�C –0.1�C (negative values are not possible)

↓ ↓ ↓ N
–600 FDA8 –60.0�C

N
R

–1050 FBE6 –105.0�C

↓

–2000 F830 –200.0�C –200.0� –200.0�C

–2400 F6A0 –240.0�C

–2430 F682 –243.0�C –243.0�C ↓
↓ ↓

–5000 EC78

–6000 E890 UR

–10500 D6FC ↓
–12000 D120

–20000 4E20

–32767 8001

–32768 8000

Accuracy over full span ±0.4% ±0.1% ±0.2% ±0.5% ±0.1% ±0.1% ±0.1%

Accuracy (nominal range) ±4�C ±1�C ±0.6�C ±2.8�C ±0.15Ω ±0.3Ω ±0.6Ω

*OF = Overflow; OR = Overhang; KNURL = Nominal range; OUR = Underhung; OUI = Underflow

↑ or ↓ indicate that all analog values exceeding the limits report the selected burnout value, 32767 (0x7FF.) or –32768 (0x8000).

A

S7-200 Programmable Controller System Manual

372

Table A-33 Temperature Ranges (°F) for RTD Types

System Word (1 digit = 0.1 �F) PT100, Pt200, Ni100, Ni120,
Decimal Hexadecimal

PT1000 PT100, Pt200,
Pt500, Pt1000

Ni100, Ni120,
Ni1000

Cu 9.035

32767 7FF.

32766 7PHAGE

↑

Overhang

↑ ↑

18320 4790 1832.0�F 1832.0 �F

15620 3D04 1562.0�F

11120 2B70 1112.0�F

↑

5936 1730 ↑ 593.6�F

5630 15FE 563.0�F

5000 1388 500.0�F

4820 12D4 482.0�F

Normal Range

1 0001 0.1�F 0.1�F 0.1�F 0.1�F

0 0000 0.0�F 0.0�F 0.0�F 0.0�F

–1 FFFF –0.1�F –0.1�F –0.1�F –0.1�F

–760 FD08 –76.0�F

–1570 F9DE –157.0�F

↓

–3280 F330 –328.0�F –328.0�F –328.0�F

–4000 F060 –400.0�F

–4054 F02A –405.4�F –405.4�F ↓

↓ ↓

–5000 EC78

–6000 E890 Underrange

–10500 D6FC ↓

–32767 8001

–32768 8000

↑ or ↓ indicate that all analog values exceeding the limits report the selected burnout value, 32767 (0x7FFF) or –32768 (0x8000).

A

Technical Specifications Appendix A

373

EM 277 PROFIBUS–DP Module Specifications

Table A-34 EM 277 PROFIBUS–DP Module Order Number

Order Number Expansion Model EM Inputs EM Outputs Removable
Connector

6ES7 277–0AA22–0XA0 EM 277 PROFIBUS–DP – – No

Table A-35 EM 277 PROFIBUS–DP Module General Specifications

Order Number Module Name and Description Dimensions (mm)
(W x H x D)

Weight Dissipation VDC Requirements
+5 VDC +24 VDC

6ES7 277–0AA22–0XA0 EM 277 PROFIBUS–DP 71 x 80 x 62 175 g 2.5 W 150mA See below

Table A-36 EM 277 PROFIBUS–DP Module Specifications

General 6ES7 277–0AA22–0XA0

Number of Ports 1

Electrical interface RS–485
PROFIBUS–DP/MPI baud rates
 (set automatically)

9.6, 19.2, 45.45, 93.75, 187.5, and 500 kbaud; 1, 1.5, 3, 6, and
12 Mbaud

Protocols PROFIBUS–DP slave and MPI slave

Cable Length
Up to 93.75 kbaud 1200 m
187.5 kbaud 1000 m

500 kbaud 400 m
1 to 1.5 Mbaud 200 m
3 to 12 Mbaud 100 m

Network Capabilities
Station address settings 0 to 99 (set by rotary switches)

Maximum stations per segment 32
Maximum stations per network 126, up to 99 EM 277 stations
MPI Connections 6 total, 2 reserved (1 for PG and 1 for OP)

24 VDC Input Power Requirements
Voltage range 20.4 to 28.8 VDC (Class 2 or sensor power from PLC)
Maximum current

Module only with port active
Add 90 mA of 5V port load
Add 120 mA of 24V port load

30 mA
60 mA
180 mA

Ripple noise (<10 MHz) <1 V peak to peak (maximum)
Isolation (field to logic)1 500 VAC for 1 minute
5 VDC Power on Communications Port
Maximum current per port 90 mA
Isolation (24 VDC to logic) 500 VAC for 1 minute
24 VDC Power on Communications Port
Voltage range 20.4 to 28.8 VDC
Maximum current per port 120 mA

Current limit 0.7 to 2.4 A
Isolation Not isolated, same circuit as input 24 VDC

1 No power is supplied to module logic by the 24 VDC supply. 24 VDC supplies power for the communications port.

A

S7-200 Programmable Controller System Manual

374

S7-200 CPUs that Support Intelligent Modules
The EM 277 PROFIBUS–DP slave module is an intelligent expansion module designed to work with the
S7-200 CPUs shown in Table A-37.

Table A-37 EM 277 PROFIBUS–DP Module Compatibility with S7-200 CPUs
CPU Description

CPU 222 DC/DC/DC
CPU 222 Rel. 1.10 or greater

CPU 222 AC/DC/Relay

CPU 224 DC/DC/DC
CPU 224 Rel. 1.10 or greater

CPU 224 AC/DC/Relay

CPU 226 DC/DC/DC
CPU 226 Rel. 1.00 or greater

CPU 226 AC/DC/Relay

CPU 226XM DC/DC/DC
CPU 226XM Rel. 1.00 or greater

CPU 226XM AC/DC/Relay

Address Switches and LEDs
The address switches and status LEDs are located on the front of the module as shown in Figure A-20.
The pin-out for the DP slave port connector is also shown.

Address Switches:
x10=sets the most significant digit of the address
x1= sets the least significant digit of the address

DP Slave Port Connector

Front View of EM 277 PROFIBUS–DP

9-Pin Sub D Connector Pin-out

5

1

9

6

9-pin D
Female
Connector

Pin # Description

1 Chassis ground, tied to the connector shell
2 24V Return (same as M on terminal block)
3 Isolated Signal B (RxD/TxD+)
4 Isolated Request to Send (TTL level)
5 Isolated +5V Return
6 Isolated +5V (90 mA maximum)
7 +24V (120 mA maximum, with reverse

voltage protection diode)
8 Isolated Signal A (RxD/TxD–)
9 No Connection

Note: Isolated means 500V of isolation from
digital logic and 24V input power.

Figure A-20 EM 277 PROFIBUS–DP

Distributed Peripheral (DP) Standard Communications
PROFIBUS–DP (or DP Standard) is a remote I/O communications protocol defined by the European
Standard EN 50170. Devices that adhere to this standard are compatible even though they are
manufactured by different companies. DP stands for distributed peripherals, that is, remote I/O.
PROFIBUS stands for Process Field Bus.

A

Technical Specifications Appendix A

375

The EM 277 PROFIBUS–DP module has implemented the DP Standard protocol as defined for slave
devices in the following communications protocol standards:

� EN 50 170 (PROFIBUS) describes the bus access and transfer protocol and specifies the
properties of the data transfer medium.

� EN 50 170 (DP Standard) describes the high-speed cyclic exchange of data between DP masters
and DP slaves. This standard defines the procedures for configuration and parameter assignment,
explains how cyclic data exchange with distributed I/O functions, and lists the diagnostic options
which are supported.

A DP master is configured to know the addresses, slave device types, and any parameter assignment
information that the slaves require. The master is also told where to place data that is read from the slaves
(inputs) and where to get the data to write to the slaves (outputs). The DP master establishes the network
and then initializes its DP slave devices. The master writes the parameter assignment information and I/O
configuration to the slave. The master then reads the diagnostics from the slave to verify that the DP slave
accepted the parameters and the I/O configuration. The master then begins to exchange I/O data with the
slave. Each transaction with the slave writes outputs and reads inputs. The data exchange mode
continues indefinitely. The slave devices can notify the master if there is an exception condition and the
master then reads the diagnostic information from the slave.

Once a DP master has written the parameters and I/O configuration to a DP slave, and the slave has
accepted the parameters and configuration from the master, the master owns that slave. The slave only
accepts write requests from the master that owns it. Other masters on the network can read the slave’s
inputs and outputs, but they cannot write anything to the slave.

Using the EM 277 to Connect an S7-200 as a DP Slave
The S7-200 CPU can be connected to a PROFIBUS–DP network through the EM 277 PROFIBUS–DP
expansion slave module. The EM 277 is connected to the S7-200 CPU through the serial I/O bus. The
PROFIBUS network is connected to the EM 277 PROFIBUS–DP module through its DP communications
port. This port operates at any PROFIBUS baud rate between 9600 baud and 12 Mbaud. See the
Specifications for EM 277 PROFIBUS–DP Module for the baud rates supported.

As a DP slave device, the EM 277 module accepts several different I/O configurations from the master,
allowing you to tailor the amount of data transferred to meet the requirements of the application. Unlike
many DP devices, the EM 277 module does not transfer only I/O data. Inputs, counter values, timer
values, or other calculated values can be transferred to the master by first moving the data to the variable
memory in the S7-200 CPU. Likewise, data from the master is stored in variable memory in the S7-200
CPU and can be moved to other data areas.

The DP port of the EM 277 PROFIBUS–DP module can be attached to a DP master on the network and
still communicate as an MPI slave with other master devices such as SIMATIC programming devices or
S7-300/S7-400 CPUs on the same network. Figure A-21 shows a PROFIBUS network with a CPU 224
and an EM 277 PROFIBUS–DP module.

� The CPU 315–2 is the DP master and has
been configured by a SIMATIC
programming device with STEP 7
programming software.

� The CPU 224 is a DP slave owned by the
CPU 315–2. The ET 200 I/O module is
also a slave owned by the CPU 315–2.

� The S7-400 CPU is attached to the
PROFIBUS network and is reading data
from the CPU 224 by means of XGET
instructions in the S7-400 CPU user
program.

ET 200B
S7-300 with
CPU 315-2 DP

SIMATIC
programming
device

CPU 400

CPU 224

EM 277
PROFIBUS–DP

Figure A-21 EM 277 PROFIBUS–DP Module and CPU
224 on a PROFIBUS Network

A

S7-200 Programmable Controller System Manual

376

Configuration
To use the EM 277 PROFIBUS–DP as a DP
slave, you must set the station address of the DP
port to match the address in the configuration of
the master. The station address is set with the
rotary switches on the EM 277 module. You must
power cycle the CPU after you have made a
switch change in order for the new slave address
to take effect.

The master device exchanges data with each of
its slaves by sending information from its output
area to the slave’s output buffer (called a
“Receive mailbox”). The slave responds to the
message from the master by returning an input
buffer (called a “Send mailbox”) which the master

ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ

ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ

CPU 224
V memory

Offset:
5000 bytes

Output buffer
(Receive mail-
box):16 bytes
Input buffer
(Send mailbox):
16 bytes

CPU 315-2 DP
I/O address areas

I/O input area:
16 bytes

VB0

VB5000

VB5015
VB5016

VB5031

VB5119

VB5032

P000

PI256

PI271

PQ271

VB: variable memory byte
P: peripheral
PI: peripheral input
PQ: peripheral output

VB4999

EM 277
PROFIBUS–DP
Module

PQ256
I/O output area:
16 bytes

buffer (called a “Send mailbox”) which the master
stores in an input area. Figure A-22 V Memory and I/O Address Area

Figure A-22 shows an example of the V memory and I/O address area of a PROFIBUS–DP Master.

The EM 277 PROFIBUS–DP can be configured by the DP master to accept output data from the master
and return input data to the master. The output and input data buffers reside in the variable memory (V
memory) of the S7-200 CPU. When you configure the DP master, you define the byte location in V
memory where the output data buffer should start as part of the parameter assignment information for the
EM 277. You also define the I/O configuration as the amount of output data to be written to the S7-200
CPU and amount of input data to be returned from the S7-200 CPU. The EM 277 determines the size of
the input and output buffers from the I/O configuration. The DP master writes the parameter assignment
and I/O configuration information to the EM 277 PROFIBUS DP module. The EM 277 then transfers the V
memory address and input and output data lengths to the S7-200 CPU.

Figure A-22 shows a memory model of the V memory in a CPU 224 and the I/O address areas of a DP
master CPU. In this example, the DP master has defined an I/O configuration of 16 output bytes and 16
input bytes, and a V memory offset of 5000. The output buffer and input buffer lengths in the CPU 224
(determined from the I/O configuration) are both 16 bytes long. The output data buffer starts at V5000; the
input buffer immediately follows the output buffer and begins at V5016. The output data (from the master)
is placed in V memory at V5000. The input data (to the master) is taken from the V memory at V5016.

Tip
If you are working with a data unit (consistent data) of three bytes or data units greater than four bytes,
you must use SFC14 to read the inputs of the DP slave and SFC15 to address the outputs of the DP
slave. For more information, see the System Software for S7-300 and S7-400 System and Standard
Functions Reference Manual.

A

Technical Specifications Appendix A

377

Table A-38 lists the configurations that are supported by the EM 277 PROFIBUS–DP module. The default
configuration for the EM 277 module is two words of input and two words of output.

Table A-38 EM 277 Configuration Options
Configuration Inputs to Master Outputs from Master Data Consistency

1 1 word 1 word

2 2 words 2 words

3 4 words 4 words

4 8 words 8 words

5 16 words 16 words

6 32 words 32 words

7 8 words 2 words
Word Consistency

8 16 words 4 words

9 32 words 8 words

10 2 words 8 words

11 4 words 16 words

12 8 words 32 words

13 2 bytes 2 bytes

14 8 bytes 8 bytes

15 32 bytes 32 bytes
Byte Consistency

16 64 bytes 64 bytes

17 4 bytes 4 bytes

18 8 bytes 8 bytes

19 12 bytes 12 bytes
Buffer Consistency

20 16 bytes 16 bytes

You can configure the location of the input and output buffers to be anywhere in the V memory of the
S7-200 CPU. The default address for the input and output buffers is VB0. The location of the input and
output buffers is part of the parameter assignment information that the master writes to the S7-200 CPU.
You configure the master to recognize its slaves and to write the required parameters and I/O
configuration to each of its slaves.

Use the following tools to configure the DP master:

� For SIMATIC S5 masters, use COM PROFIBUS Windows software

� For SIMATIC S7 masters, use STEP 7 programming software

� For SIMATIC 505 masters, use COM PROFIBUS and either TISOFT2 or SoftShop

For detailed information about using these configuration and programming software packages, refer to the
manuals for these devices. For detailed information about the PROFIBUS network and its components,
refer to the ET 200 Distributed I/O System Manual.

A

S7-200 Programmable Controller System Manual

378

Data Consistency
PROFIBUS supports three types of data consistency:

� Byte consistency ensures that bytes are
transferred as whole units.

� Word consistency ensures that word
transfers cannot be interrupted by other
processes in the CPU (the two bytes
composing the word are always moved
together and cannot be split). Use Word
consistency if the data values being
transferred are integers.

� Buffer consistency ensures that the entire
buffer of data is transferred as a single
unit, uninterrupted by any other process in
the CPU. Buffer consistency should be
used if the data values are double words
or floating point values or when a group of

Byte 0
Byte 1
Byte 2
Byte 3

Master Slave

Byte 0
Byte 1
Byte 2
Byte 3

Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7

Byte consistency

Word consistency

Buffer consistency

Byte 0
Byte 1
Byte 2
Byte 3

Byte 0
Byte 1
Byte 2
Byte 3

Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7

values all relate to one calculation or item. Figure A-23 Byte, Word, and Buffer Data Consistency

You set the data consistency as part of the I/O configuration in the master. The data consistency selection
is written to the DP slave as part of the initialization of the slave. Both the DP master and the DP slave use
the data consistency selection to be sure that data values (bytes, words, or buffers) are transferred
uninterrupted within master and slave. The different types of consistency are shown in Figure A-23.

User Program Considerations
Once the EM 277 PROFIBUS–DP module has been successfully configured by a DP master, the EM 277
and the DP master enter data exchange mode. In data exchange mode, the master writes output data to
the EM 277 PROFIBUS–DP module, the EM 277 module then responds with most current S7-200 CPU
input data. The EM 277 module continuously updates its inputs from the S7-200 CPU in order to provide
the most recent input data to the DP Master. The module then transfers the output data to the S7-200
CPU. The output data from the master is placed into V memory (the output buffer) starting at the address
that the DP master supplied during initialization. The input data to the master is taken from the V memory
locations (the input buffer) immediately following the output data.

The output data from the master must be moved by the user program in the S7-200 CPU from the output
buffer to the data areas where it is to be used. Likewise, the input data to the master must be moved from
the various data areas to the input buffer for transfer to the master.

Output data from the DP master is placed into V memory immediately after the user program portion of the
scan has been executed. Input data (to the master) is copied from V memory to the EM 277 for transfer to
the master at the same time.

Output data from the master is only written into V memory when there is new data available from the
master.

Input data to the master are transmitted to the master on the next data exchange with the master.

The starting address of the data buffers in V memory and the size of the buffers must be known at the time
the user program for the S7-200 CPU is created.

Status Information
There are 50 bytes of special memory (SM) allocated to each intelligent module based on its physical
position. The module updates the SM locations corresponding to the modules’ relative position to the CPU
(with respect to other modules). If it is the first module, it updates SMB200 through SMB249. If it is the
second module, it updates SMB250 through SMB299, and so on. See Table A-39.

A

Technical Specifications Appendix A

379

Notice
The manner of assigning SM locations for Intelligent modules changed for Version 2.2 and later.

If you are using a CPU prior to version 2.2, you should place all intelligent modules in slots adjacent to
the CPU and before all non-intelligent modules to ensure compatibility.

Table A-39 Special Memory Bytes SMB200 to SMB549

Special Memory Bytes SMB200 to SMB549

Intelligent
Module in

Slot 0

 Intelligent
Module in

Slot 1

Intelligent
Module in

Slot 2

Intelligent
Module in

Slot 3

Intelligent
Module in

Slot 4

Intelligent
Module in

Slot 5

Intelligent
Module in

Slot 6

SMB200 to
SMB249

SMB250 to
SMB299

SMB300 to
SMB349

SMB350 to
SMB399

SMB400 to
SMB449

SMB450 to
SMB499

SMB500 to
SMB549

These SM locations show default values if DP communications have not been established with a master.
After a master has written parameters and I/O configuration to the EM 277 PROFIBUS–DP module, these
SM locations show the configuration set by the DP master. You should check the protocol status byte (for
example SMB224 for slot 0) to be sure that the EM 277 is currently in data exchange mode with the
master before using the information in the SM locations shown in Table A-40, or data in the V memory
buffer.

Tip
You cannot configure the EM 277 PROFIBUS–DP I/O buffer sizes or buffer location by writing to SM
memory locations. Only the DP master can configure the EM 277 PROFIBUS–DP module for DP
operation.

Table A-40 Special Memory Bytes for the EM 277 PROFIBUS–DP

Intelligent
Module in

Slot 0

... Intelligent
Module in

Slot 6
Description

SMB200 to
SMB215

... SMB500 to
SMB515

Module name (16 ASCII characters)
“EM277 ProfibusDP”

SMB216 to
SMB219

... SMB516 to
SMB519

S/W revision number (4 ASCII characters)
xxxx

SMW220 ... SMW520 Error code
16#0000 No error
16#0001 No user power
16#0002 to 16#FFFF Reserved

SMB222 ... SMB522 DP slave module’s station address as set by address switches (0 – 99 decimal)

SMB223 ... SMB523 Reserved

SMB224 ... SMB524 DP standard protocol status byte

S1 S0 DP Standard status byte description
0 0 DP communications not initiated since power on
0 1 Configuration/parameterization error detected
1 0 Currently in data exchange mode
1 1 Dropped out of data exchange mode

S00 0 0 0 0

MSB LSB

0 S1

SMB225 ... SMB525 DP standard protocol – address of the slave’s master (0 to 126)

SMW226 ... SMW526 DP standard protocol – V memory address of the output buffer as an offset from VB0.

SMB228 ... SMB528 DP standard protocol – number of bytes of output data

SMB229 ... SMB529 DP standard protocol – number of bytes of input data

SMB230 to
SMB249

... SMB530 to
SMB549

Reserved – cleared on power up

Note: SM locations are updated each time the DP slave module accepts configuration/ parameterization information. These locations
are updated even if a configuration/parameterization error is detected. The locations are cleared on each power up.

A

S7-200 Programmable Controller System Manual

380

LED Status Indicators for the EM 277 PROFIBUS–DP
The EM 277 PROFIBUS–DP module has four status LEDs on the front panel to indicate the operational
state of the DP port:

� After the S7-200 CPU is turned on, the DX MODE LED remains off as long as DP communications
are not attempted.

� Once DP communications have been successfully initiated (the EM 277 PROFIBUS–DP module
has entered data exchange mode with the master), the DX MODE LED turns green and remains on
until data exchange mode is exited.

� If DP communications are lost, which forces the EM 277 module to exit data exchange mode, the
DX MODE LED turns OFF and the DP ERROR LED turns red. This condition persists until the
S7-200 CPU is powered off or data exchange is resumed.

� If there is an error in the I/O configuration or parameter information that the DP master is writing to
the EM 277 module, the DP ERROR LED flashes red.

� If user 24 VDC is not provided, the POWER LED will be off.

Table A-41 summarizes the status indications signified by the EM 277 status LEDs.

Table A-41 EM 277 PROFIBUS–DP Module Status LEDs
LED OFF RED FLASHING RED GREEN
CPU FAULT Module is good Internal Module Failure –– ––

POWER No 24 VDC User Power –– –– 24 VDC User Power Good

DP ERROR No Error Left Data Exchange
Mode

Parameterization/
Configuration Error

––

DX MODE Not in Data Exchange Mode –– –– In Data Exchange Mode

Note: When the EM 277 PROFIBUS–DP module is used exclusively as an MPI slave, only the green Power LED is on.

Additional Configuration Features
The EM 277 PROFIBUS–DP module can be used as a communications interface to other MPI masters,
whether or not it is being used as a PROFIBUS–DP slave. The module can provide a connection from the
S7-300/400 to the S7-200 using the XGET/XPUT functions of the S7-300/400. STEP 7–Micro/WIN and a
network card (such as the CP5611) using the MPI or PROFIBUS parameter set, an OP device or the TD
200 (Rel. 2.0 or greater, order number 6ES7 272–0AA20–0YA0) can be used to communicate with the
S7-200 through the EM 277 PROFIBUS–DP module.

A maximum of six connections (six devices) in addition to the DP master can be connected to the EM 277
PROFIBUS–DP module. One connection is reserved for a programming device (PG) and one is reserved
for an operator panel (OP). The other four connections can be used by any MPI master. In order for the
EM 277 PROFIBUS–DP module to communicate with multiple masters, all masters must be operating at
the same baud rate. See the Figure A-24 for one possible network configuration.

When the EM 277 PROFIBUS–DP module is used for MPI communications, the MPI master must use the
station address of the module for all messages that are sent to the S7-200 to which the module is
connected. MPI messages sent to the EM 277 PROFIBUS–DP module are passed on to the S7-200.

The EM 277 PROFIBUS–DP module is a slave module and cannot be used for communications between
S7-200 PLCs using the NETR and NETW functions. The EM 277 PROFIBUS–DP module cannot be used
for Freeport communications.

A

Technical Specifications Appendix A

381

PROFIBUS–DP
Master

MPI MPI

PROFIBUS–DP
MPI

PROFIBUS–DP/MPI

S7-300
XPUTS/XGETS
Functions

PROFIBUS–DP MPI

STEP 7–Micro/WIN1

EM 277
PROFIBUS–DP
Module

TD 2001,2

1) Communications are possible only to the
S7-200 CPUs and the EM 277.

2) TD 200 must be Rel 2.0 or greater.
S7-22x CPU

Figure A-24 PROFIBUS–DP/MPI Network

Device Database File: GSD
Different PROFIBUS devices have different performance characteristics. These characteristics differ with
respect to functionality (for example, the number of I/O signals and diagnostic messages) or bus
parameters, such as transmission speed and time monitoring. These parameters vary for each device
type and vendor, and are usually documented in a technical manual. To help you achieve a simple
configuration of PROFIBUS, the performance characteristics of a particular device are specified in an
electronic data sheet called a device database file, or GSD file. Configuration tools based on GSD files
allow simple integration of devices from different vendors in a single network.

The device database file provides a comprehensive description of the characteristics of a device in a
precisely defined format. These GSD files are prepared by the vendor for each type of device and made
available to the PROFIBUS user. The GSD file allows the configuration system to read in the
characteristics of a PROFIBUS device and use this information when configuring the network.

The latest versions of the COM PROFIBUS or STEP 7 software include configuration files for the EM 277
PROFIBUS–DP Module. If your version of software does not include a configuration file for the EM 277,
you can access the latest GSD file (SIEM089D.GSD) at website www.profibus.com.

If you are using a non-Siemens master device, refer to the documentation provided by the manufacturer
on how to configure the master device by using the GSD file.

www.profibus.com

A

S7-200 Programmable Controller System Manual

382

;==
; GSD File for the EM 277 PROFIBUS–DP with a DPC31
; MLFB : 6ES7 277–0AA2.–0XA0
; DATE : 26–March–2001
;==
#Profibus_DP
;General parameters
GSD_Revision = 1
Vendor_Name = ”Siemens”
Model_Name = ”EM 277 PROFIBUS–DP”
Revision = ”V1.02”
Ident_Number = 0x089D
Protocol_Ident = 0
Station_Type = 0
FMS_supp = 0
Hardware_Release = ”1.00”
Software_Release = ”1.02”
9.6_supp = 1
19.2_supp = 1
45.45_supp = 1
93.75_supp = 1
187.5_supp = 1
500_supp = 1
1.5M_supp = 1
3M_supp = 1
6M_supp = 1
12M_supp = 1
MaxTsdr_9.6 = 60
MaxTsdr_19.2 = 60
MaxTsdr_45.45 = 250
MaxTsdr_93.75 = 60
MaxTsdr_187.5 = 60
MaxTsdr_500 = 100
MaxTsdr_1.5M = 150
MaxTsdr_3M = 250
MaxTsdr_6M = 450
MaxTsdr_12M = 800
Redundancy = 0
Repeater_Ctrl_Sig = 2
24V_Pins = 2

; Slave–Specification:
OrderNumber=”6ES7 277–0AA2.–0XA0”
Periphery=”SIMATIC S5”
Slave_Family=10@TdF@SIMATIC

Freeze_Mode_supp = 1
Sync_Mode_supp = 1
Set_Slave_Add_Supp = 0
Auto_Baud_supp = 1
Min_Slave_Intervall = 1
Fail_Safe = 0
Max_Diag_Data_Len = 6
Modul_Offset = 0
Modular_Station = 1
Max_Module = 1
Max_Input_len = 128
Max_Output_len = 128
Max_Data_len = 256

; UserPrmData–Definition
ExtUserPrmData=1 ”I/O Offset in the V–memory”
Unsigned16 0 0–10239
EndExtUserPrmData
; UserPrmData: Length and Preset:
User_Prm_Data_Len=3
User_Prm_Data= 0,0,0
Max_User_Prm_Data_Len=3
Ext_User_Prm_Data_Const(0)=0x00,0x00,0x00
Ext_User_Prm_Data_Ref(1)=1

;==
; Continuation of GSD File
;==

; Module Definition List
Module = ”2 Bytes Out/ 2 Bytes In –” 0x31
EndModule
Module = ”8 Bytes Out/ 8 Bytes In –” 0x37
EndModule
Module = ”32 Bytes Out/ 32 Bytes In –”
0xC0,0x1F,0x1F
EndModule
Module = ”64 Bytes Out/ 64 Bytes In –”
0xC0,0x3F,0x3F
EndModule
Module = ”1 Word Out/ 1 Word In –” 0x70
EndModule
Module = ”2 Word Out/ 2 Word In –” 0x71
EndModule
Module = ”4 Word Out/ 4 Word In –” 0x73
EndModule
Module = ”8 Word Out/ 8 Word In –” 0x77
EndModule
Module = ”16 Word Out/ 16 Word In –” 0x7F
EndModule
Module = ”32 Word Out/ 32 Word In –”
0xC0,0x5F,0x5F
EndModule
Module = ”2 Word Out/ 8 Word In –”
0xC0,0x41,0x47
EndModule
Module = ”4 Word Out/ 16 Word In –”
0xC0,0x43,0x4F
EndModule
Module = ”8 Word Out/ 32 Word In –”
0xC0,0x47,0x5F
EndModule
Module = ”8 Word Out/ 2 Word In –”
0xC0,0x47,0x41
EndModule
Module = ”16 Word Out/ 4 Word In –”
0xC0,0x4F,0x43
EndModule
Module = ”32 Word Out/ 8 Word In –”
0xC0,0x5F,0x47
EndModule
Module = ”4 Byte buffer I/O –” 0xB3
EndModule
Module = ”8 Byte buffer I/O –” 0xB7
EndModule
Module = ”12 Byte buffer I/O –” 0xBB
EndModule
Module = ”16 Byte buffer I/O –” 0xBF
EndModule

Figure A-25 Listing of the GSD File for the EM 277 PROFIBUS Module

A

Technical Specifications Appendix A

383

Sample Program for DP Communications to a CPU
A sample program in Statement List for the PROFIBUS–DP module in slot 0 for a CPU that uses the DP
port information in SM memory is shown below. The program determines the location of the DP buffers
from SMW226 and the sizes of the buffers from SMB228 and SMB229. This information is used to copy
the data in the DP output buffer to the process-image output register of the CPU. Similarly, the data in the
process-image input register of the CPU are copied into the V memory input buffer.

Notice
The manner of assigning SM locations for Intelligent modules changed for Version 2.2 and later.

If you are using a CPU prior to version 2.2, you should place all intelligent modules in slots adjacent to
the CPU and before all non-intelligent modules to ensure compatibility.

In the following sample program for a DP module in position 0, the DP configuration data in the SM
memory area provides the configuration of the DP slave. The program uses the following data:

SMW220 DP Module Error Status
SMB224 DP Status
SMB225 Master Address
SMW226 V memory offset of outputs
SMB228 Number of bytes of output data
SMB229 Number of bytes of input data
VD1000 Output Data Pointer
VD1004 Input Data Pointer

A

S7-200 Programmable Controller System Manual

384

Example of DP Communications to a CPU

Network 1 //Calculate the Output data pointer. If in data exchange
//mode:
//1. Output buffer is an offset from VB0
//2. Convert Vmem offset to double integer
//3. Add to VB0 address to get output data pointer.

LDB= SMB224, 2
MOVD &VB0, VD1000
ITD SMW226, AC0
+D AC0, VD1000

Network 2 //Calculate the Input data pointer. If in data exchange
//mode:

 //1. Copy the output data pointer
 //2. Get the number of output bytes

//3. Add to output data pointer to get starting input data
// pointer.

LDB= SMB224, 2
MOVD VD1000, VD1004
BTI SMB228, AC0
ITD AC0, AC0
+D AC0, VD1004

Network 3 //Set amount of data to be copied. If in data exchange
//mode:
//1. Get number of output bytes to copy
//2. Get number of input bytes to copy

LDB= SMB224, 2
MOVB SMB228, VB1008
MOVB SMB229, VB1009

Network 4 //Transfer Master outputs to CPU outputs. Copy CPU
//inputs to the Master inputs. If in data exchange mode:
//1. Copy Master outputs to CPU outputs
//2. Copy CPU inputs to Master inputs

LDB= SMB224, 2
BMB *VD1000, QB0, VB1008
BMB IB0, *VD1004, VB1009

A

Technical Specifications Appendix A

385

EM 241 Modem Module Specifications

Table A-42 EM 241 Modem Module Order Number

Order Number Expansion Model EM Inputs EM Outputs Removable
Connector

6ES7 241–1AA22–0XA0 EM 241 Modem Module – 81 No
1 Eight Q outputs are used as logical controls of the modem function and do not directly control any external signals.

Table A-43 EM 241 Modem Module General Specifications

Order Number Module Name and Description Dimensions (mm)
(W x H x D)

Weight Dissipation VDC Requirements
+5 VDC +24 VDC

6ES7 241–1AA22–0XA0 EM 241 Modem Module 71.2 x 80 x 62 190 g 2.1 W 80 mA 70 mA

Table A-44 EM 241 Modem Module Specifications

General 6ES7 241–1AA22–0XA0

Telephone Connection

Isolation

(phone line to logic and field power) 1500 VAC (Galvanic)
Physical connection RJ11 (6 position, 4 wire)
Modem standards Bell 103, Bell 212, V.21, V.22, V.22 bis, V.23c, V.32, V.32 bis,

V.34 (default)
Security features Password

Callback
Dialing Pulse or Tone
Messaging Protocols Numeric

TAP (alphanumeric)
UCP commands 1, 30, 51

Industrial Protocols Modbus
PPI

24 VDC Input Power Requirements
Voltage range

Isolation (field power to logic)

20.4 to 28.8 VDC

500 VAC for 1 minute

The EM 241 Modem Module replaces the function of an
external modem connected to the communications port
of the CPU. With an EM 241 installed in your S7-200
system, all you need to communicate with your CPU
from a remote location is a personal computer with an
external modem and STEP 7–Micro/WIN.

See Chapter 7, Communicating over a Network, for
information on configuring. See Chapter 10, Creating a
Program for the Modem Module for programming and
advanced features of the module.

Country Code Switch

Figure A-26 EM 241 Modem Module Terminal Block
Diagram

A

S7-200 Programmable Controller System Manual

386

S7-200 CPUs that Support Intelligent Modules
The EM 241 Modem module is an intelligent expansion module designed to work with the S7-200 CPUs
shown in Table A-45.

Table A-45 EM 241 Modem Module Compatibility with S7-200 CPUs
CPU Description

CPU 222 Rel. 1.10 or greater CPU 222 DC/DC/DC and CPU 222 AC/DC/Relay

CPU 224 Rel. 1.10 or greater CPU 224 DC/DC/DC and CPU 224 AC/DC/Relay

CPU 226 Rel. 1.00 or greater CPU 226 DC/DC/DC and CPU 226 AC/DC/Relay

CPU 226XM Rel. 1.00 or greater CPU 226XM DC/DC/DC and CPU 226XM AC/DC/Relay

Installing the EM 241
Follow these steps to install the EM 241:

1. Snap the EM 241 on the DIN rail and plug
in the ribbon cable.

2. Connect 24 VDC from the CPU sensor
supply or external source, and connect the
ground terminal to your system earth
ground.

3. Plug the phone line into the RJ11 jack.

4. Set the country code switches according to
Table A-46. You must set the switches
before power is applied to the CPU for the
correct country code to be read.

5. Power the CPU. The green MG (Module
Good) light should come on.

Your EM 241 is now ready to communicate.

Table A-46 Country Codes Supported by the
EM 241

Code Country Telecom Standard

01 Austria CTR21

02 Belgium CTR21

05 Canada IC CS03

08 Denmark CTR21

09 Finland CTR21

10 France CTR21

11 Germany CTR21

12 Greece CTR21

16 Ireland CTR21

18 Italy CTR21

22 Luxembourg CTR21

25 Netherlands CTR21

27 Norway CTR21

30 Portugal CTR21

34 Spain CTR21

35 Sweden CTR21

36 Switzerland CTR21

38 U.K. CTR21

39 U.S.A. FCC Part 68

RJ11 Jack
Figure A-27 shows the details of the RJ11 Jack.
You can use adaptors to other standard
telephone connectors. Refer to your adaptor
connector documentation for more information.

1 2 3 64 5

Pin Description
 3 Ring
 4 Tip

Reverse connection is allowed.

Figure A-27 View of RJ11 Jack

Caution
Lightning surges or other unexpected high voltages on the telephone line can damage your EM 241
Modem Module.

Use a commercially available telephone line surge protector, such as are commonly sold for protection
of personal computer modems. Surge protectors can be damaged as they protect your EM 241 Modem
Module. Choose a surge protector with a positive indicator that shows it is functional.

Check your surge protector regularly to ensure that your EM 241 Modem Module continues to be
protected.

A

Technical Specifications Appendix A

387

EM 253 Position Module Specifications

Table A-47 EM 253 Position Module Order Number

Order Number Expansion Model EM Inputs EM Outputs Removable
Connector

6ES7 253–1AA22–0XA0 EM 253 Position Module – 81 Yes

1 Eight Q outputs are used as logical controls of the motion function and do not directly control any external signals.

Table A-48 EM 253 Position Module General Specifications

Order Number Module Name and Description Dimensions (mm)
(W x H x D)

Weight Dissipation VDC Requirements
+5 VDC +24 VDC

6ES7 253–1AA22–0XA0 EM 253 Position Module 71.2 x 80 x 62 0.190 kg 2.5 W 190 mA See below

Table A-49 EM 253 Position Module Specifications

General 6ES7 253–1AA22–0XA0

Input Features

Number of inputs 5 points

Input type Sink/Source (IEC Type 1 sink, except ZP)

Input Voltage

Maximum Continuous permissible
STP, RPS, LMT+, LMT–
ZP

Surge (all inputs)

Rated Value
STP, RPS, LMT+, LMT–
ZP

Logic “1” signal (minimum)
STP, RPS, LMT+, LMT–
ZP

Logic “0” signal (maximum)
STP, RPS, LMT+, LMT–
ZP

30 VDC
30 VDC at 20 mA, maximum

35 VDC for 0.5 sec.

24 VDC at 4 mA, nominal
24 VDC at 15 mA, nominal

15 VDC at 2.5 mA, minimum
3 VDC at 8.0 mA, minimum

5 VDC at 1 mA, maximum
1 VDC at 1 mA, maximum

Isolation (field to logic)

Optical Isolation (Galvanic)

Isolation groups of

500 VAC for 1 minute

1 point for STP, RPS, and ZP
2 points for LMT+ and LMT–

Input Delay Times

STP, RPS, LMT+, LMT–
ZP (countable pulse width)

0.2 ms to 12.8 ms, user selectable
2 µsec minimum

Connection of 2 Wire Proximity Sensor (Bero)

Permissible leakage current 1 mA, maximum

Cable Length

Unshielded
STP, RPS, LMT+, LMT–
ZP

Shielded
STP, RPS, LMT+, LMT–
ZP

30 meters
Not recommended

100 meters
10 meters

Number of inputs on simultaneously

55 Degrees C 5

A

S7-200 Programmable Controller System Manual

388

Table A-49 EM 253 Position Module Specifications, continued

6ES7 253–1AA22–0XA0General

Output Features

Number of integrated outputs

Output type
P0+, P0–, P1+, P1–
P0, P1, DIS, CLR

6 points (4 signals)

RS422/485 driver
Open drain

Output voltage

P0, P1, RS–422 drivers, differential output voltage
Open circuit

Into optocoupler diode with 200Ω series resistance

100Ω load

54Ω load

P0, P1, DIS, CLR open drain
recommended voltage, open circuit
permissible voltage, open circuit

Sink current

On state resistance

Off state leakage current, 30 VDC
Internal Pull up resistor, output drain to T1

3.5 V typical

2.8 V minimum

1.5 V minimum

1.0 V minimum

5 VDC, available from module
30 VDC1

50 mA maximum

15Ω maximum

10 µA maximum
3.3K Ω2

Output current

Number of output groups

Number of outputs ON (maximum)

Leakage current per point
P0, P1, DIS, CLR

Overload Protection

1

6

10 µA maximum

No

Isolation (field to logic)

Optical Isolation (Galvanic) 500 VAC for 1 minute

Output delay

DIS, CLR: Off to On / On to Off 30 µs, maximum

Pulse Distortion

P0, P1, outputs, RS–422 drivers, 100 Ω external
load

P0, P1 outputs, open drain, 5 V / 470 Ω external
load

75 ns maximum

300 ns maximum

Switching frequency

P0+, P0–, P1+, P1–, P0 and P1 200 kHz

Cable length

Unshielded

Shielded

Not recommended

10 meters

Power Supply

L+ supply voltage

Logic supply output

11 to 30 VDC

+5 VDC +/– 10%, 200 mA maximum

L+ supply current vs. 5 VDC load

Load current

0 mA (no load)

200 mA (rated load)

12 VDC Input

120 mA

300 mA

24 VDC Input

70 mA

130 mA

Isolation
L+ power to logic
L+ power to inputs
L+ power to outputs

500 VAC for 1 minute
500 VAC for 1 minute
None

Reverse Polarity L+ input and +5V output are diode-protected. Placing a positive voltage on any M terminal
with respect to output point connections can result in potentially damaging current flow.

1 Operation of open drain outputs above 5 VDC may increase radio frequency emissions above permissible limits. Radio frequency containment measures may be required
for your system or wiring.

2 Depending on your pulse receiver and cable, an additional external pull up resistor may improve pulse signal quality and noise immunity.

A

Technical Specifications Appendix A

389

S7-200 CPUs that Support Intelligent Modules
The EM 253 Position module is an intelligent expansion module designed to work with the S7-200 CPUs
shown in Table A-50.

Table A-50 EM 253 Position Module Compatibility with S7-200 CPUs
CPU Description

CPU 222 Rel. 1.10 or greater CPU 222 DC/DC/DC and CPU 222 AC/DC/Relay

CPU 224 Rel. 1.10 or greater CPU 224 DC/DC/DC and CPU 224 AC/DC/Relay

CPU 226 Rel. 1.00 or greater CPU 226 DC/DC/DC and CPU 226 AC/DC/Relay

CPU 226XM Rel. 1.00 or greater CPU 226XM DC/DC/DC and CPU 226XM AC/DC/Relay

EM 253 Position Module Status LEDs
The Status LEDs for the Position Modules are shown in Table A-51.

Table A-51 Position Module Status LEDs
Local I/O LED Color Function Description

– MF Red Illuminated when module detects a fatal error

– MG Green Illuminated when there is no module fault, and flashes at 1 Hz rate when a configuration error is
detected

– PWR Green Illuminated when 24 VDC is supplied on the L+ and M terminals of the module

Input STP Green Illuminated when the stop input is on

Input RPS Green Illuminated when the reference point switch input is on

Input ZP Green Illuminated when the zero pulse input is on

Input LMT– Green Illuminated when the negative limit input is on

Input LMT + Green Illuminated when the positive limit input is on

Output P0 Green Illuminated when the P0 output is pulsing

Output P1 Green Illuminated when the P1 output is pulsing or when this output indicates positive motion

Output DIS Green Illuminated when the DIS output is active

Output CLR Green Illuminated when the clear deviation counter output is active

Figure A-28 EM 253 Position Module

A

S7-200 Programmable Controller System Manual

390

Wiring Diagrams
In the following schematic figures, the terminals are not in order. See Figure A-28 for terminal
arrangement.

P/S 3.3K

3.3K

3.3K

T1

P0

P1

3.3K

DIS

CLR

L+

M

M

P0–

P0+

P1–

P1+

M

STOP5.6K

1M

1K

RPS 5.6K

2M

1K

ZP

3M

LMT+
5.6K

1K

LMT–
5.6K

4M

1K

+5VDC

Figure A-29 Internal Schematic for the Inputs and Outputs of the EM 253 Position Module

P/S 3.3K

3.3K

3.3K

T1

P0

P1

3.3K

DIS

CLR

L+

M

M

P0–

P0+

P1–

P1+

M

STOP

1M

RPS

2M

ZP

3M

LMT+

LMT– 5.6K

4M

1K

+5VDC

EM253 Motion Module FM Step Drive

DIR

DIR_N

PULSE

PULSE_N

GATE_N

GND

GND

GND

24V_RTN

ENABLE

ENABLE_N

+24V+24V

24V_RTN

Terminals are not in order.
See Figure A-28 for terminal
arrangement.

Figure A-30 Connecting an EM 253 Position Module to a SIMATIC FM Step Drive

A

Technical Specifications Appendix A

391

SD

P/S 3.3K

3.3K

3.3K

T1

P0

P1

3.3K

DIS

CLR

L+

M

M

P0–

P0+

P1–

P1+

M

STOP

1M

RPS

2M

ZP

3M

LMT+

LMT–

4M

+5VDC

EM253 Motion Module Industrial Devices Corp. (Next Step)

+

+

+

+24V

24V_RTN

STP

DIR

Terminals are not in order.
See Figure A-28 for terminal
arrangement.

Figure A-31 Connecting an EM 253 Position Module to a Industrial Devices Corp. (Next Step)

P/S 3.3K

3.3K

3.3K

T1

P0

P1

3.3K
DIS

CLR

L+

M

M

P0–

P0+

P1–

P1+

M

STOP

1M

RPS

2M

ZP

3M

LMT+

LMT–

4M

+5VDC

EM253 Motion Module Oriental Motor UPK Standard

+

SD

+24V

24V_RTN

+

+

–

–

–

Pulse

CW/CCW

Terminals are not in order.
See Figure A-28 for terminal
arrangement.

Figure A-32 Connecting an EM 253 Position Module to an Oriental Motor UPK Standard

A

S7-200 Programmable Controller System Manual

392

P/S 3.3K

3.3K

3.3K

T1

P0

P1

3.3K

DIS

CLR

L+

M

M

P0–

P0+

P1–

P1+

M

STOP

1M

RPS

2M

ZP

3M

LMT+

LMT–

4M

+5VDC

EM253 Motion Module+24V

24V_RTN

Parker/Compumotor OEM 750

Step

DIR

Terminals are not in order.
See Figure A-28 for terminal
arrangement.

Figure A-33 Connecting an EM 253 Position Module to a Parker/Compumotor OEM 750

A

Technical Specifications Appendix A

393

AS–Interface (CP 243–2) Module Specifications

Table A-52 AS-Interface (CP 243–2) Module Order Number

Order Number Expansion Model EM Inputs EM Outputs Removable
Connector

6GK7 243–2AX01–0XA0 AS–Interface (CP 243–2) Module 8 Digital and
8 Analog

8 Digital and
8 Analog

Yes

Table A-53 AS-Interface (CP 243–2) Module General Specifications

Order Number Module Name and Description Dimensions (mm)
(W x H x D)

Weight Dissipation
 VDC Requirements

+5 VDC From
AS–Interface

6GK7 243–2AX01–0XA0 AS–Interface (CP 243–2) Module 71 x 80 x 62 approx.
250 g

3.7 W 220 mA 100 mA

Table A-54 AS-Interface (CP 243–2) Module Specifications

General 6GK7 243–2AX01–0XA0

Cycle time 5 ms with 31 slaves
10 ms with 62 AS–I slaves using the extended addressing mode

Configuration Set button on the front panel, or use the total configuration command (refer to the
description of the AS–I commands in the CP 243–2 AS–I Interface Master manual)

AS–I master profiles supported M1e

Attachment to the AS–I cable Via an S7-200 terminal block. Permitted current loading from terminal 1 to 3 or from
terminal 2 to 4 maximum 3 A.

Address range One digital module with 8 digital inputs and 8 digital outputs, and
One analog module with 8 analog inputs and 8 analog outputs

Features
You can operate up to two AS–Interface modules on the S7-200 at the same time, significantly increasing
the number of available digital and analog inputs/outputs (maximum 124 digital input/124 digital output on
AS–Interface per CP). Setup times are reduced because of the ability to configure at the touch of a button.
LEDs reduce downtime in the event of an error by displaying status of the CP and of all connected slaves,
and by monitoring AS–Interface main voltage.

The AS–Interface Module has the following features:

� Supports analog modules

� Supports all master functions and allows connections for up to 62 AS–Interface slaves

� LEDs in the front plate display operating status and availability of connected slaves.

� LEDs in the front plate display errors (including AS–Interface voltage error, configuration error)

� Two terminals allow direct connection of the AS–Interface cable.

� Two buttons display the status information of the slaves, switch operating mode, and adopt the
existing configuration as the SET configuration.

A

S7-200 Programmable Controller System Manual

394

Operation
In the process image of the S7-200, the AS–Interface Module occupies a digital input byte (status byte), a
digital output byte (control byte), 8 analog input and 8 analog output words. The AS–Interface Module
uses two logical module positions. You can use the status and the control byte to set the mode of the
AS–Interface Module using a user program. Depending on its mode, the AS–Interface stores either the I/O
data of the AS–Interface slave, diagnostics values, or enables master calls (for example, changing a slave
address) in the analog address area of the S7-200.

All the connected AS–Interface slaves can be configured at the touch of a button. Further configuration of
the CP is not necessary.

Caution
When you use the AS–Interface Module, you must disable analog filtering in the CPU.

If analog filtering is not disabled in the CPU, the digital point data will be destroyed, and error conditions
will not be returned as bit values in the analog word.

Ensure that analog filtering in the CPU is disabled.

Functions
The CP 243–2 is the AS–Interface master for the M1e master class, which means that it supports all the
specified functions. This makes it possible to operate up to 31 digital slaves on the AS–Interface by
means of double address assignment (A–B). The CP 243–2 can be set to two different modes:

� Standard mode: access to the I/O data of
the AS–Interface slave

� Extended mode: master calls (for
example, write parameters) or diagnostic
value request

Connections
The AS–Interface Module has the following
connections:

� Two connections to the AS–Interface
Module cable (bridged internally)

� One connection for functional ground

The terminals are located under the cover of the AS–I Cables

Functional Ground

+ –

+ –

front panel as shown in Figure A-34. Figure A-34 Connecting the As–Interface Module Cable

Caution
The load capacity of the AS–Interface Module contacts is a maximum of 3 A. If this value is exceeded
on the AS–Interface Module cable, the AS–Interface must not be looped into the AS–I cable, but must
be connected by a separate cable (in this case, only one pair of terminals of the AS–Interface Module is
used). The AS–Interface must be connected to the grounding conductor via the ground terminal.

Tip
The AS–Interface Module has a connection for functional ground. This connector should be connected
to the PE conductor with as little resistance as possible.

Additional Information
For more information about the CP 243–2 AS–Interface Master, refer to the SIMATIC NET CP 243–2
AS-Interface Master manual.

A

Technical Specifications Appendix A

395

Optional Cartridges

Cartridge Description Order Number

Memory cartridge Memory cartridge storage: Program, Data, and Configuration 6ES7 291–8GE20–0XA0

Real-Time Clock with battery Clock cartridge accuracy:
2 minutes/month at 25°C,
7 minutes/month at 0°C to 55°C

6ES7 297–1AA20–0XA0

Battery cartridge Battery cartridge (data retention time): 200 days, typical 6ES7 291–8BA20–0XA0

General Features Dimensions

Battery

Size

Type

3 V, 30 mA hour, Renata CR 1025

9.9 mm x 2.5 mm

Lithium < 0.6 g 18 mm

18 mm

10 mm

The Memory cartridge stores the complete program and data block for all CPUs (CPU 221, CPU 222,
CPU 224, CPU 226 and CPU 226XM).

I/O Expansion Cable

General Features (6ES7 290–6AA20–0XA0)

Cable length 0.8 m

Weight 25 g

Connector type 10 pin ribbon

Female Connector

Male Connector

Figure A-35 Typical Installation of the I/O Expansion Cable

Tip
Only one expansion cable is allowed in a CPU/expansion module chain.

A

S7-200 Programmable Controller System Manual

396

PC/PPI Cable

PC/PPI Cable (6ES7 901–3BF21–0XA0)
General Characteristics

Supply voltage 14.4 to 28.8 VDC

Supply current at 24 V nominal supply 50 mA RMS max.

Direction change delay: RS–232 start bit edge received to RS–485
start bit edge transmitted

1.2 µS max.

Direction change delay: RS–232 stop bit edge received to RS–485
transmission disabled

1.4 character times max.
(1.4 x 11/baud) = 1.6 ms at 9600 baud

Propagation delay 4 µS max., RS–485 to RS–232,
1.2 µS max., RS–232 to RS–485

Isolation (RS–485 to RS–232) 500 VDC

RS–485 Side Electrical Characteristics

Common mode voltage range –7 V to +12 V, 1 second, 3 V RMS continuous

Receiver input impedance 5.4K Ω min., including termination

Termination/bias 10K Ω to +5V on B, PROFIBUS pin 3
10K Ω to GND on A, PROFIBUS pin 8

Receiver threshold/sensitivity +/– 0.2 V, 60 mV typical hysteresis

Transmitter differential output voltage 2 V min. at RL = 100 Ω, 1.5 V min. at RL = 54 Ω

RS–232 Side Electrical Characteristics

Receiver input impedance 3K Ω min., minimum

Receiver threshold/sensitivity 0.8 V min. low, 2.4 V max. high,
0.5 V typical hysteresis

Transmitter output voltage +/– 5 V min. at RL = 3K Ω

0.1 m

0.3 m

RS-232 COMM RS-485 COMM

4.6 m

40 mm

Isolated
PC/PPI Cable

1 2 3 4 5

1

0

Dipswitch # 123 4 1= 10 BIT
115.2–38.4K 000 0= 11 BIT
19.2 001 5 1= DTE
9.6K 010 0= DCE
2.4K 100 6 1= RTS for XMT
1.2K 101 0= RTS Always

6

P
P

I

P
C

Figure A-36 PC/PPI Cable Dimensions

A

Technical Specifications Appendix A

397

Table A-55 Switch Selections on the PC/PPI Cable

Baud Rate Switches 1,2,3* Modem Operation Switch 4* DCE/DTE Selection Switch 5* RTS Selection for DTE Switch 6*

115200 – 38400 000 11-bit modem 0 DCE 0 RTS always active 0

19200 001 10-bit modem 1 DTE 1 RTS active when PLC transmits 1

9600 010

4800 011

2400 100

1200 101

600 110

* Switch : 1 = Up; 0 = Down

Table A-56 Pin-outs for the RS–485 to RS–232 DCE Connector

RS-485 Connector Pin-out RS-232 DCE Connector Pin-out

Pin Number Signal Description Pin Number Signal Description

1 Ground (RS-485 logic ground) 1 Data Carrier Detect (DCD) (not used)

2 24 V Return (RS-485 logic ground) 2 Receive Data (RD) (output from PC/PPI cable)

3 Signal B (RxD/TxD+) 3 Transmit Data (TD) (input to PC/PPI cable)

4 RTS (TTL level) 4 Data Terminal Ready (DTR)(not used)

5 Ground (RS-485 logic ground) 5 Ground (RS-232 logic ground)

6 No connect 6 Data Set Ready (DSR) (not used)

7 24 V Supply 7 Request To Send (RTS) (not used)

8 Signal A (RxD/TxD–) 8 Clear To Send (CTS) (not used)

9 Protocol select 9 Ring Indicator (RI) (not used)

Table A-57 Pin-outs for RS–485 to RS–232 DTE Connector

RS-485 Connector Pin-out RS-232 DTE Connector Pin-out1

Pin Number Signal Description Pin Number Signal Description

1 Ground (RS-485 logic ground) 1 Data Carrier Detect (DCD) (not used)

2 24 V Return (RS-485 logic ground) 2 Receive Data (RD) (input to PC/PPI cable)

3 Signal B (RxD/TxD+) 3 Transmit Data (TD) (output from PC/PPI cable)

4 RTS (TTL level) 4 Data Terminal Ready (DTR) (not used)

5 Ground (RS-485 logic ground) 5 Ground (RS-232 logic ground)

6 No connect 6 Data Set Ready (DSR) (not used)

7 24 V Supply 7 Request To Send (RTS)
(output from PC/PPI cable) (switch selectable)

8 Signal A (RxD/TxD–) 8 Clear To Send (CTS) (not used)

9 Protocol select 9 Ring Indicator (RI) (not used)

1 A conversion from female to male, and a conversion from 9-pin to 25-pin is required for modems

A

S7-200 Programmable Controller System Manual

398

Input Simulators

Order Number 8 Position Simulator
6ES7 274–1XF00–0XA0

14 Position Simulator
6ES7 274–1XH00–0XA0

24 Position Simulator
6ES7 274–1XK00–0XA0

Size (L x W x D) 61 x 36 x 22 mm 91 x 36 x 22 mm 147 x 36 x 25 mm

Weight 0.02 Kg 0.03 Kg 0.04 Kg

Points 8 14 24

1
0

DC 24V

INPUTS

DC SENSOR

SUPPLY

23 mm

1M 0.0 0.1 0.2 0.3 2M 0.4 0.5 M0.6 0.7 L
+

Figure A-37 Installation of the Input Simulator

Caution
These input simulators are not approved for use in Class I DIV 2 or Class I Zone 2 hazardous locations. The switches
present a potential spark hazard.

Do not use input simulators in Class I DIV 2 or Class I Zone 2 hazardous locations.

399

Calculating a Power Budget

The S7-200 CPU has an internal power supply that provides power for the CPU itself, for any expansion
modules, and for other 24 VDC user power requirements. Use the following information as a guide for
determining how much power (or current) the S7-200 CPU can provide for your configuration.

Power Requirements
Each S7-200 CPU supplies both 5 VDC and 24 VDC power:

� Each CPU has a 24 VDC sensor supply that can supply 24 VDC for local input points or for relay
coils on the expansion modules. If the power requirement for 24 VDC exceeds the power budget of
the CPU, you can add an external 24 VDC power supply to provide 24 VDC to the expansion
modules. You must manually connect the 24 VDC supply to the input points or relay coils.

� The CPU also provides 5 VDC power for the expansion modules when an expansion module is
connected. If the 5 VDC power requirements for expansion modules exceeds the power budget of
the CPU, you must remove expansion modules until the requirement is within the power budget.

The specifications in Appendix A provide information about the power budgets of the CPUs and the power
requirements of the expansion modules.

Warning
Connecting an external 24 VDC power supply in parallel with the S7-200 DC Sensor Supply can result
in a conflict between the two supplies as each seeks to establish its own preferred output voltage level.

The result of this conflict can be shortened lifetime or immediate failure of one or both power supplies,
with consequent unpredictable operation of the PLC system. Unpredictable operation could result in
death or serious injury to personnel, and/or damage to equipment.

The S7-200 DC Sensor Supply and any external power supply should provide power to different points.
A single connection of the commons is allowed.

B

S7-200 Programmable Controller System Manual

400

Calculating a Sample Power Requirement
Table B-1 shows a sample calculation of the power requirements for an S7-200 that includes the following:

� S7-200 CPU 224 AC/DC/Relay

� 3 each EM 223 8 DC In/8 Relay Out

� 1 each EM 221 8 DC In

This installation has a total of 46 inputs and 34 outputs.

The S7-200 CPU in this example provides sufficient 5 VDC current for the expansion modules, but does
not provide enough 24 VDC current from the sensor supply for all of the inputs and expansion relay coils.
The I/O requires 400 mA and the S7-200 CPU provides only 280 mA. This installation requires an
additional source of at least 120 mA at 24 VDC power to operate all the included 24 VDC inputs and
outputs.

Table B-1 Power Budget Calculations for a Sample Configuration

CPU Power Budget 5 VDC 24 VDC

CPU 224 AC/DC/Relay 660 mA 280 mA

minus

System Requirements 5 VDC 24 VDC

CPU 224, 14 inputs 14 * 4 mA = 56 mA

3 EM 223, 5 V power required 3 * 80 mA = 240 mA

1 EM 221, 5V power required 1 * 30 mA = 30 mA

3 EM 223, 8 inputs each 3 * 8 * 4 mA = 96 mA

3 EM 223, 8 relay coils each 3 * 8 * 9 mA = 216 mA

1 EM 221, 8 inputs each 8 * 4 mA = 32 mA

Total Requirements 270 mA 400 mA

equals

Current Balance 5 VDC 24 VDC

Current Balance Total 390 mA [120 mA]

B

Calculating a Power Budget Appendix B

401

Calculating Your Power Requirement
Use the table below to determine how much power (or current) the S7-200 CPU can provide for your
configuration. Refer to Appendix A for the power budgets of your CPU model and the power requirements
of your expansion modules.

Power Budget 5 VDC 24 VDC

minus

System Requirements 5 VDC 24 VDC

Total Requirements

equals

Current Balance 5 VDC 24 VDC

Current Balance Total

B

S7-200 Programmable Controller System Manual

402

403

Error Codes
The information about error codes is provided to help you identify problems with your S7-200 CPU.

In This Chapter
Fatal Error Codes and Messages 404.

Run-Time Programming Problems 405.

Compile Rule Violations 406.

C

S7-200 Programmable Controller System Manual

404

Fatal Error Codes and Messages
Fatal errors cause the S7-200 to stop the execution of your program. Depending on the severity of the
error, a fatal error can render the S7-200 incapable of performing any or all functions. The objective for
handling fatal errors is to bring the S7-200 to a safe state from which the S7-200 can respond to
interrogations about the existing error conditions.

The S7–200 performs the following tasks when a fatal error is detected:

� Changes to STOP mode

� Turns on both the System Fault LED and the Stop LED

� Turns off the outputs

The S7-200 remains in this condition until the fatal error is corrected. To view the error codes, select the
PLC > Information menu command from the main menu bar. Table C-1 provides a list with descriptions
for the fatal error codes that can be read from the S7-200.

Table C-1 Fatal Error Codes and Messages Read from the S7–200

Error Code Description

0000 No fatal errors present

0001 User program checksum error

0002 Compiled ladder program checksum error

0003 Scan watchdog time-out error

0004 Internal EEPROM failed

0005 Internal EEPROM checksum error on user program

0006 Internal EEPROM checksum error on configuration (SDB0) parameters

0007 Internal EEPROM checksum error on force data

0008 Internal EEPROM checksum error on default output table values

0009 Internal EEPROM checksum error on user data, DB1

000A Memory cartridge failed

000B Memory cartridge checksum error on user program.

000C Memory cartridge checksum error on configuration (SDB0) parameters

000D Memory cartridge checksum error on force data

000E Memory cartridge checksum error on default output table values

000F Memory cartridge checksum error on user data, DB1

0010 Internal software error

00111 Compare contact indirect addressing error

00121 Compare contact illegal floating point value

0013 Memory cartridge is blank, or the program is not understood by this S7-200

00141 Compare contact range error

1 The compare contact errors are the only errors that generate both fatal and non-fatal error conditions. The reason for
the generation of the non-fatal error condition is to save the program address of the error.

C

Error Codes Appendix C

405

Run-Time Programming Problems
Your program can create non-fatal error conditions (such as addressing errors) during the normal
execution of the program. In this case, the S7-200 generates a non-fatal run-time error code. Table C-2
lists the descriptions of the non-fatal error codes.

Table C-2 Run-Time Programming Problems

Error Code Description

0000 No fatal errors present; no error

0001 HSC box enabled before executing HDEF box

0002 Conflicting assignment of input interrupt to a point already assigned to a HSC

0003 Conflicting assignment of inputs to an HSC already assigned to input interrupt or other HSC

0004 Attempted execution of ENI, DISI, SPA, or HDEF instructions in an interrupt routine

0005 Attempted execution of a second HSC/PLS with the same number before completing the first
(HSC/PLS in an interrupt routine conflicts with HSC/PLS in main program)

0006 Indirect addressing error

0007 TODW (Time-of-Day Write) or TODR (Time-of-Day Read) data error

0008 Maximum user subroutine nesting level exceeded

0009 Simultaneous execution of XMT/RCV instructions on Port 0

000A Attempt to redefine a HSC by executing another HDEF instruction for the same HSC

000B Simultaneous execution of XMT/RCV instructions on Port 1

000C Clock cartridge not present for access by TODR, TODW, or communications

000D Attempt to redefine pulse output while it is active

000E Number of PTO profile segment was set to 0

000F Illegal numeric value in compare contact instruction

0091 Range error (with address information): check the operand ranges

0092 Error in count field of an instruction (with count information): verify the maximum count size

0094 Range error writing to non-volatile memory with address information

009A Attempt to switch to Freeport mode while in a user interrupt

009B Illegal index (string operation in which a starting position value of 0 is specified)

C

S7-200 Programmable Controller System Manual

406

Compile Rule Violations
When you download a program, the S7-200 compiles the program. If the S7-200 detects that the program
violates a compile rule (such as an illegal instruction), the S7-200 aborts the download and generates a
non-fatal, compile-rule error code. Table C-3 lists the descriptions of the error codes that are generated by
violations of the compile rules.

Table C-3 Compile Rule Violations

Error Code Compile Errors (Non-Fatal)

0080 Program too large to compile; reduce program size

0081 Stack underflow; split network into multiple networks.

0082 Illegal instruction; check instruction mnemonics.

0083 Missing MEND or instruction not allowed in main program: add MEND instruction, or remove incorrect
instruction.

0084 Reserved

0085 Missing FOR; add FOR instruction or delete NEXT instruction.

0086 Missing NEXT; add NEXT instruction or delete FOR instruction.

0087 Missing label (LBL, INT, SBR); add the appropriate label.

0088 Missing RET or instruction not allowed in a subroutine: add RET to the end of the subroutine or remove
incorrect instruction.

0089 Missing RETI or instruction not allowed in an interrupt routine: add RETI to the end of the interrupt
routine or remove incorrect instruction.

008A Reserved

008B Illegal JMP to or from an SCR segment

008C Duplicate label (LBL, INT, SBR); rename one of the labels.

008D Illegal label (LBL, INT, SBR); ensure the number of labels allowed was not exceeded.

0090 Illegal parameter; verify the allowed parameters for the instruction.

0091 Range error (with address information); check the operand ranges.

0092 Error in the count field of an instruction (with count information); verify the maximum count size.

0093 FOR/NEXT nesting level exceeded.

0095 Missing LSCR instruction (Load SCR)

0096 Missing SCRE instruction (SCR End) or disallowed instruction before the SCRE instruction

0097 User program contains both unnumbered and numbered EV/ED instructions

0098 Illegal edit in RUN mode (edit attempted on program with unnumbered EV/ED instructions)

0099 Too many hidden program segments (HIDE instructions)

009B Illegal index (string operation in which a starting position value of 0 is specified)

009C Maximum instruction length exceeded

407

Special Memory (SM) Bits
Special memory bits provide a variety of status and control functions, and also serve as a means of
communicating information between the S7-200 and your program. Special memory bits can be used as
bits, bytes, words, or double words.

In This Chapter
SMB0: Status Bits 408.

SMB1: Status Bits 408.

SMB2: Freeport Receive Character 409.

SMB3: Freeport Parity Error 409.

SMB4: Queue Overflow 409.

SMB5: I/O Status 410.

SMB6: CPU ID Register 410.

SMB7: Reserved 410.

SMB8 to SMB21: I/O Module ID and Error Registers 411.

SMW22 to SMW26: Scan Times 412.

SMB28 and SMB29: Analog Adjustment 412.

SMB30 and SMB130: Freeport Control Registers 412.

SMB31 and SMW32: Permanent Memory (EEPROM) Write Control 413.

SMB34 and SMB35: Time Interval Registers for Timed Interrupts 413.

SMB36 to SMB65: HSC0, HSC1, and HSC2 Register 413.

SMB66 to SMB85: PTO/PWM Registers 415.

SMB86 to SMB94, and SMB186 to SMB194: Receive Message Control 416.

SMW98: Errors on the Expansion I/O Bus 417.

SMB130: Freeport Control Register (see SMB30) 417.

SMB131 to SMB165: HSC3, HSC4, and HSC5 Register 417.

SMB166 to SMB185: PTO0, PTO1 Profile Definition Table 418.

SMB186 to SMB194: Receive Message Control (see SMB86 to SMB94) 418.

SMB200 to SMB549: Intelligent Module Status 419.

D

S7-200 Programmable Controller System Manual

408

SMB0: Status Bits
As described in Table D-1, SMB0 contains eight status bits that are updated by the S7-200 at the end of
each scan cycle.

Table D-1 Special Memory Byte SMB0 (SM0.0 to SM0.7)

SM Bits Description (Read Only)

SM0.0 This bit is always on.

SM0.1 This bit is on for the first scan cycle. One use is to call an initialization subroutine.

SM0.2 This bit is turned on for one scan cycle if retentive data was lost. This bit can be used as either an error
memory bit or as a mechanism to invoke a special startup sequence.

SM0.3 This bit is turned on for one scan cycle when RUN mode is entered from a power-up condition. This bit
can be used to provide machine warm-up time before starting an operation.

SM0.4 This bit provides a clock pulse that is on for 30 seconds and off for 30 seconds, for a duty cycle time of 1
minute. It provides an easy-to-use delay, or a 1-minute clock pulse.

SM0.5 This bit provides a clock pulse that is on for 0.5 seconds and then off for 0.5 seconds, for a duty cycle
time of 1 second. It provides an easy-to-use delay or a 1-second clock pulse.

SM0.6 This bit is a scan cycle clock which is on for one scan cycle and then off for the next scan cycle. This bit
can be used as a scan counter input.

SM0.7 This bit reflects the position of the Mode switch (off is TERM position, and on is RUN position). If you
use this bit to enable Freeport mode when the switch is in the RUN position, normal communications
with the programming device can be enabled by switching to the TERM position.

SMB1: Status Bits
As described in Table D-2, SMB1 contains various potential error indicators. These bits are set and reset
by instructions at execution time.

Table D-2 Special Memory Byte SMB1 (SM1.0 to SM1.7)

SM Bits Description (Read Only)

SM1.0 This bit is turned on by the execution of certain instructions when the result of the operation is zero.

SM1.1 This bit is turned on by the execution of certain instructions either when an overflow results or when an
illegal numeric value is detected.

SM1.2 This bit is turned on when a negative result is produced by a math operation.

SM1.3 This bit is turned on when division by zero is attempted.

SM1.4 This bit is turned on when the Add to Table instruction attempts to overfill the table.

SM1.5 This bit is turned on when either LIFO or FIFO instructions attempt to read from an empty table.

SM1.6 This bit is turned on when an attempt to convert a non-BCD value to binary is made.

SM1.7 This bit is turned on when an ASCII value cannot be converted to a valid hexadecimal value.

D

Special Memory (SM) Bits Appendix D

409

SMB2: Freeport Receive Character
SMB2 is the Freeport receive character buffer. As described in Table D-3, each character received while in
Freeport mode is placed in this location for easy access from the ladder logic program.

Tip
SMB2 and SMB3 are shared between Port 0 and Port 1. When the reception of a character on Port 0
results in the execution of the interrupt routine attached to that event (interrupt event 8), SMB2 contains
the character received on Port 0, and SMB3 contains the parity status of that character. When the
reception of a character on Port 1 results in the execution of the interrupt routine attached to that event
(interrupt event 25), SMB2 contains the character received on Port 1 and SMB3 contains the parity
status of that character.

Table D-3 Special Memory Byte SMB2

SM Byte Description (Read Only)

SMB2 This byte contains each character that is received from Port 0 or Port 1 during Freeport communications.

SMB3: Freeport Parity Error
SMB3 is used for Freeport mode and contains a parity error bit that is set when a parity error is detected
on a received character. As shown in Table D-4, SM3.0 turns on when a parity error is detected. Use this
bit to discard the message.

Table D-4 Special Memory Byte SMB3 (SM3.0 to SM3.7)

SM Bits Description (Read Only)

SM3.0 Parity error from Port 0 or Port 1 (0 = no error; 1 = error was detected)

SM3.1 to
SM3.7

Reserved

SMB4: Queue Overflow
As described in Table D-5, SMB4 contains the interrupt queue overflow bits, a status indicator showing
whether interrupts are enabled or disabled, and a transmitter-idle memory bit. The queue overflow bits
indicate either that interrupts are happening at a rate greater than can be processed, or that interrupts
were disabled with the global interrupt disable instruction.

Table D-5 Special Memory Byte SMB4 (SM4.0 to SM4.7)

SM Bits Description (Read Only)

SM4.01 This bit is turned on when the communications interrupt queue has overflowed.

SM4.11 This bit is turned on when the input interrupt queue has overflowed.

SM4.21 This bit is turned on when the timed interrupt queue has overflowed.

SM4.3 This bit is turned on when a run-time programming problem is detected.

SM4.4 This bit reflects the global interrupt enable state. It is turned on when interrupts are enabled.

SM4.5 This bit is turned on when the transmitter is idle (Port 0).

SM4.6 This bit is turned on when the transmitter is idle (Port 1).

SM4.7 This bit is turned on when something is forced.

1 Use status bits 4.0, 4.1, and 4.2 only in an interrupt routine. These status bits are reset when the queue is emptied,
and control is returned to the main program.

D

S7-200 Programmable Controller System Manual

410

SMB5: I/O Status
As described in Table D-6, SMB5 contains status bits about error conditions that were detected in the I/O
system. These bits provide an overview of the I/O errors detected.

Table D-6 Special Memory Byte SMB5 (SM5.0 to SM5.7)

SM Bits Description (Read Only)

SM5.0 This bit is turned on if any I/O errors are present.

SM5.1 This bit is turned on if too many digital I/O points have been connected to the I/O bus.

SM5.2 This bit is turned on if too many analog I/O points have been connected to the I/O bus.

SM5.3 This bit is turned on if too many intelligent I/O modules have been connected to the I/O bus.

SM5.4 to
SM5.7

Reserved.

SMB6: CPU ID Register
As described in Table D-7, SMB6 is the identification register for the S7-200 CPU. SM6.4 to SM6.7 identify
the type of S7-200 CPU. SM6.0 to SM6.3 are reserved for future use.

Table D-7 Special Memory Byte SMB6

SM Bits Description (Read Only)

Format
CPU ID register

LSB
0

MSB
7

rrrrxxxx

SM6.0 to
SM6.3

Reserved

SM6.4 to
SM6.7

xxxx = 0000 = CPU 222
0010 = CPU 224
0110 = CPU 221
1001 = CPU 226/CPU 226XM

SMB7: Reserved
SMB7 is reserved for future use.

D

Special Memory (SM) Bits Appendix D

411

SMB8 to SMB21: I/O Module ID and Error Registers
SMB8 through SMB21 are organized in byte pairs for expansion modules 0 to 6. As described in
Table D-8, the even-numbered byte of each pair is the module-identification register. These bytes identify
the module type, the I/O type, and the number of inputs and outputs. The odd-numbered byte of each pair
is the module error register. These bytes provide an indication of any errors detected in the I/O for that
module.

Table D-8 Special Memory Bytes SMB8 to SMB21

SM Byte Description (Read Only)

Format Even-Number Byte: Module ID Register
LSB

0

Odd-Number Byte: Module Error Register

c: Configuration error

b: Bus fault or parity error

r: Out-of-range error

p: No user power error

f: Blown fuse error

t: Terminal block loose error

m: Module present 0 = Present
1 = Not present

tt: Module type
00 Non-intelligent I/O module
01 Intelligent module
10 Reserved
11 Reserved

a: I/O type 0 = Discrete
1 = Analog

ii: Inputs
00 No inputs
01 2 AI or 8 DI
10 4 AI or 16 DI
11 8 AI or 32 DI

qq: Outputs
00 No outputs
01 2 AQ or 8 DQ
10 4 AQ or 16 DQ
11 8 AQ or 32 DQ

LSB
0

MSB
7

MSB
7

0 = no error
1 = error

qqiiattm tfprb00c

SMB8
SMB9

Module 0 ID register
Module 0 error register

SMB10
SMB11

Module 1 ID register
Module 1 error register

SMB12
SMB13

Module 2 ID register
Module 2 error register

SMB14
SMB15

Module 3 ID register
Module 3 error register

SMB16
SMB17

Module 4 ID register
Module 4 error register

SMB18
SMB19

Module 5 ID register
Module 5 error register

SMB20
SMB21

Module 6 ID register
Module 6 error register

D

S7-200 Programmable Controller System Manual

412

SMW22 to SMW26: Scan Times
As described in Table D-9, SMW22, SMW24, and SMW26 provide scan time information: minimum scan
time, maximum scan time, and last scan time in milliseconds.

Table D-9 Special Memory Words SMW22 to SMW26

SM Word Description (Read Only)

SMW22 Scan time of the last scan cycle in milliseconds

SMW24 Minimum scan time in milliseconds recorded since entering the RUN mode

SMW26 Maximum scan time in milliseconds recorded since entering the RUN mode

SMB28 and SMB29: Analog Adjustment
As described in Table D-10, SMB28 holds the digital value that represents the position of analog
adjustment 0. SMB29 holds the digital value that represents the position of analog adjustment 1.

Table D-10 Special Memory Bytes SMB28 and SMB29

SM Byte Description (Read Only)

SMB28 This byte stores the value entered with analog adjustment 0. This value is updated once per scan in
STOP/RUN.

SMB29 This byte stores the value entered with analog adjustment 1. This value is updated once per scan in
STOP/RUN.

SMB30 and SMB130: Freeport Control Registers
SMB30 controls the Freeport communications for port 0; SMB130 controls the Freeport communications
for port 1. You can read and write to SMB30 and SMB130. As described in Table D-11, these bytes
configure the respective communications ports for Freeport operation and provide selection of either
Freeport or system protocol support.

Table D-11 Special Memory Byte SMB30

Port 0 Port 1 Description

Format of
SMB30

Format of
SMB130

Freeport mode control byte

p p d b b b m m

LSB
0

MSB
7

SM30.0 and
SM30.1

SM130.0 and
SM130.1

mm: Protocol selection 00 =Point-to-Point Interface protocol (PPI/slave mode)
01 =Freeport protocol
10 =PPI/master mode
11 =Reserved (defaults to PPI/slave mode)

Note: When you select code mm = 10 (PPI master), the S7-200 will become a master
on the network and allow the NETR and NETW instructions to be executed. Bits 2
through 7 are ignored in PPI modes.

SM30.2 to
SM30.4

SM130.2 to
SM130.4

bbb: Freeport Baud rate 000 =38,400 baud 100 =2,400 baud
001 =19,200 baud 101 =1,200 baud
010 =9,600 baud 110 =115,200 baud
011 =4,800 baud 111 =57,600 baud

SM30.5 SM130.5 d: Data bits per character 0 =8 bits per character
1 =7 bits per character

SM30.6 and
SM30.7

SM130.6 and
SM130.7

pp: Parity select 00 =no parity 10 =odd parity
01 =even parity 11 =odd parity

D

Special Memory (SM) Bits Appendix D

413

SMB31 and SMW32: Permanent Memory (EEPROM) Write Control
You can save a value stored in V memory to permanent memory (EEPROM) under the control of your
program. To do this, load the address of the location to be saved in SMW32. Then, load SMB31 with the
command to save the value. Once you have loaded the command to save the value, you do not change
the value in V memory until the S7-200 resets SM31.7, indicating that the save operation is complete.

At the end of each scan, the S7-200 checks to see if a command to save a value to permanent memory
was issued. If the command was issued, the specified value is saved to permanent memory.

As described in Table D-12, SMB31 defines the size of the data to be saved to permanent memory and
provides the command that initiates a save operation. SMW32 stores the starting address in V memory for
the data to be saved to permanent memory.

Table D-12 Special Memory Byte SMB31 and Special Memory Word SMW32

SM Byte Description

Format SMB31:
Software
command

V memory address

LSB
0SMW32:

V memory
address

MSB
15

c 0 0 0 0 0 s s

LSB
0

MSB
7

SM31.0 and
SM31.1

ss: Size of the data 00 =byte 10 =word
01 =byte 11 =double word

SM31.7 c: Save to EEPROM 0 =No request for a save operation to be performed
1 =User program requests to save data

The S7-200 resets this bit after each save operation.

SMW32 The V memory address for the data to be saved is stored in SMW32. This value is entered as an offset
from V0. When a save operation is executed, the value in this V memory address is saved to the
corresponding V memory location in the permanent memory (EEPROM).

SMB34 and SMB35: Time Interval Registers for Timed Interrupts
As described in Table D-13, SMB34 specifies the time interval for timed interrupt 0, and SMB35 specifies
the time interval for timed interrupt 1. You can specify the time interval (in 1-ms increments) from 1 ms to
255 ms. The time-interval value is captured by the S7-200 at the time the corresponding timed interrupt
event is attached to an interrupt routine. To change the time interval, you must reattach the timed interrupt
event to the same or to a different interrupt routine. You can terminate the timed interrupt event by
detaching the event.

Table D-13 Special Memory Bytes SMB34 and SMB35

SM Byte Description

SMB34 This byte specifies the time interval (in 1-ms increments from 1 ms to 255 ms) for timed interrupt 0.

SMB35 This byte specifies the time interval (in 1-ms increments from 1 ms to 255 ms) for timed interrupt 1.

SMB36 to SMB65: HSC0, HSC1, and HSC2 Register
As described in Table D-14, SMB36 through SM65 are used to monitor and control the operation of
high-speed counters HSC0, HSC1, and HSC2.

D

S7-200 Programmable Controller System Manual

414

Table D-14 Special Memory Bytes SMB36 to SMD62

SM Byte Description

SM36.0 to SM36.4 Reserved

SM36.5 HSC0 current counting direction status bit: 1 = counting up

SM36.6 HSC0 current value equals preset value status bit: 1 = equal

SM36.7 HSC0 current value is greater than preset value status bit: 1 = greater than

SM37.0 Active level control bit for Reset: 0= Reset is active high, 1 = Reset is active low

SM37.1 Reserved

SM37.2 Counting rate selection for quadrature counters: 0 = 4x counting rate; 1 = 1 x counting rate

SM37.3 HSC0 direction control bit: 1 = count up

SM37.4 HSC0 update the direction: 1 = update direction

SM37.5 HSC0 update the preset value: 1 = write new preset value to HSC0 preset

SM37.6 HSC0 update the current value: 1 = write new current value to HSC0 current

SM37.7 HSC0 enable bit: 1 = enable

SMD38 HSC0 new current value

SMD42 HSC0 new preset value

SM46.0 to SM46.4 Reserved

SM46.5 HSC1 current counting direction status bit: 1 = counting up

SM46.6 HSC1 current value equals preset value status bit: 1 = equal

SM46.7 HSC1 current value is greater than preset value status bit: 1 = greater than

SM47.0 HSC1 active level control bit for reset: 0 = active high, 1 = active low

SM47.1 HSC1 active level control bit for start: 0 = active high, 1 = active low

SM47.2 HSC1 quadrature counter rate selection: 0 = 4x rate, 1 = 1x rate

SM47.3 HSC1 direction control bit: 1 = count up

SM47.4 HSC1 update the direction: 1 = update direction

SM47.5 HSC1 update the preset value: 1 = write new preset value to HSC1 preset

SM47.6 HSC1 update the current value: 1 = write new current value to HSC1 current

SM47.7 HSC1 enable bit: 1 = enable

SMD48 HSC1 new current value

SMD52 HSC1 new preset value

SM56.0 to SM56.4 Reserved

SM56.5 HSC2 current counting direction status bit: 1 = counting up

SM56.6 HSC2 current value equals preset value status bit: 1 = equal

SM56.7 HSC2 current value is greater than preset value status bit: 1 = greater than

SM57.0 HSC2 active level control bit for reset: 0 = active high, 1 = active low

SM57.1 HSC2 active level control bit for start: 0 = active high, 1 = active low

SM57.2 HSC2 quadrature counter rate selection: 0 = 4x rate, 1 = 1x rate

SM57.3 HSC2 direction control bit: 1 = count up

SM57.4 HSC2 update the direction: 1 = update direction

SM57.5 HSC2 update the preset value: 1 = write new preset value to HSC2 preset

SM57.6 HSC2 update the current value: 1 = write new current value to HSC2 current

SM57.7 HSC2 enable bit: 1 = enable

SMD58 HSC2 new current value

SMD62 HSC2 new preset value

D

Special Memory (SM) Bits Appendix D

415

SMB66 to SMB85: PTO/PWM Registers
As described in Table D-15, SMB66 through SMB85 are used to monitor and control the pulse train output
and pulse width modulation functions. See the information on pulse output high-speed output instructions
in Chapter 6 for a complete description of these bits.

Table D-15 Special Memory Bytes SMB66 to SMB85

SM Byte Description

SM66.0 to SM66.3 Reserved

SM66.4 PTO0 profile aborted: 0 = no error, 1 = aborted due to a delta calculation error

SM66.5 PTO0 profile aborted: 0 = not aborted by user command, 1 = aborted by user command

SM66.6 PTO0 pipeline overflow (cleared by the system when using external profiles, otherwise must be
reset by user): 0 = no overflow, 1 = pipeline overflow

SM66.7 PTO0 idle bit: 0 = PTO in progress, 1 = PTO idle

SM67.0 PTO0/PWM0 update the cycle time value: 1 = write new cycle time

SM67.1 PWM0 update the pulse width value: 1 = write new pulse width

SM67.2 PTO0 update the pulse count value: 1 = write new pulse count

SM67.3 PTO0/PWM0 time base: 0 = 1 µs/tick, 1 = 1 ms/tick

SM67.4 Update PWM0 synchronously: 0 = asynchronous update, 1 = synchronous update

SM67.5 PTO0 operation: 0 = single segment operation (cycle time and pulse count stored in SM
memory), 1 = multiple segment operation (profile table stored in V memory)

SM67.6 PTO0/PWM0 mode select: 0 = PTO, 1 = PWM

SM67.7 PTO0/PWM0 enable bit: 1 = enable

SMW68 PTO0/PWM0 cycle time value (2 to 65,535 units of time base);

SMW70 PWM0 pulse width value (0 to 65,535 units of the time base);

SMD72 PTO0 pulse count value (1 to 232 –1);

SM76.0 to SM76.3 Reserved

SM76.4 PTO1 profile aborted: 0 = no error, 1 = aborted because of delta calculation error

SM76.5 PTO1 profile aborted: 0 = not aborted by user command, 1 = aborted by user command

SM76.6 PTO1 pipeline overflow (cleared by the system when using external profiles, otherwise must be
reset by the user): 0 = no overflow, 1 = pipeline overflow

SM76.7 PTO1 idle bit: 0 = PTO in progress, 1 = PTO idle

SM77.0 PTO1/PWM1 update the cycle time value: 1 = write new cycle time

SM77.1 PWM1 update the pulse width value: 1 = write new pulse width

SM77.2 PTO1 update the pulse count value: 1 = write new pulse count

SM77.3 PTO1/PWM1 time base: 0 = 1 µs/tick, 1 = 1 ms/tick

SM77.4 Update PWM1 synchronously: 0 = asynchronous update, 1 = synchronous update

SM77.5 PTO1 operation: 0 = single segment operation (cycle time and pulse count stored in SM
memory), 1 = multiple segment operation (profile table stored in V memory)

SM77.6 PTO1/PWM1 mode select: 0 = PTO, 1 = PWM

SM77.7 PTO1/PWM1 enable bit: 1 = enable

SMW78 PTO1/PWM1 cycle time value (2 to 65,535 units of the time base);

SMW80 PWM1 pulse width value (0 to 65,535 units of the time base);

SMD82 PTO1 pulse count value (1 to 232 –1);

D

S7-200 Programmable Controller System Manual

416

SMB86 to SMB94, and SMB186 to SMB194: Receive Message Control
As described in Table D-16, SMB86 through SMB94 and SMB186 through SMB194 are used to control
and read the status of the Receive Message instruction.

Table D-16 Special Memory Bytes SMB86 to SMB94, and SMB186 to SMB194

Port 0 Port 1 Description

SMB86 SMB186 Receive Message status byte MSB LSB

n r e 0 t c p

07

0

n: 1 = Receive message terminated by user disable command

r: 1 = Receive message terminated: error in input parameters
or missing start or end condition

e: 1 = End character received

t: 1 = Receive message terminated: timer expired

c: 1 = Receive message terminated: maximum character count achieved

p 1 = Receive message terminated because of a parity error

SMB87 SMB187 Receive Message control byte MSB LSB

en sc ec c/m tmr bk 0

7

il

0

en: 0 =Receive Message function is disabled.
1 =Receive Message function is enabled.
The enable/disable receive message bit is checked each time
the RCV instruction is executed.

sc: 0 =Ignore SMB88 or SMB188.
1 =Use the value of SMB88 or SMB188 to detect start of message.

ec: 0 =Ignore SMB89 or SMB189.
1 =Use the value of SMB89 or SMB189 to detect end of message.

il: 0 =Ignore SMW90 or SMW190.
1 =Use the value of SMW90 or SMW190 to detect an idle line condition.

c/m: 0 =Timer is an inter-character timer.
1 =Timer is a message timer.

tmr: 0 =Ignore SMW92 or SMW192.
1 =Terminate receive if the time period in SMW92 or SMW192 is exceeded.

bk: 0 =Ignore break conditions.
1 =Use break condition as start of message detection.

SMB88 SMB188 Start of message character

SMB89 SMB189 End of message character

SMW90 SMW190 Idle line time period given in milliseconds. The first character received after idle line time has
expired is the start of a new message.

SMW92 SMW192 Inter-character/message timer time-out value (in milliseconds). If the time period is exceeded,
the receive message is terminated.

SMB94 SMB194 Maximum number of characters to be received (1 to 255 bytes).

Note: This range must be set to the expected maximum buffer size, even if the character count
message termination is not used.

D

Special Memory (SM) Bits Appendix D

417

SMW98: Errors on the Expansion I/O Bus
As described in Table D-17, SMW98 gives you information about the number of errors on the expansion
I/O bus.

Table D-17 Special Memory Bytes SMW98

SM Byte Description

SMW98 This location is incremented each time a parity error is detected on the expansion I/O bus. It is cleared
upon power up, and can be cleared by the user.

SMB130: Freeport Control Register (see SMB30)

Refer to Table D-11.

SMB131 to SMB165: HSC3, HSC4, and HSC5 Register
As described in Table D-18, SMB131 through SMB165 are used to monitor and control the operation of
high-speed counters HSC3, HSC4, and HSC5.

Table D-18 Special Memory Bytes SMB131 to SMB165

SM Byte Description

SMB131 to SMB135 Reserved

SM136.0 to SM136.4 Reserved

SM136.5 HSC3 current counting direction status bit: 1 = counting up

SM136.6 HSC3 current value equals preset value status bit: 1 = equal

SM136.7 HSC3 current value is greater than preset value status bit: 1 = greater than

SM137.0 to SM137.2 Reserved

SM137.3 HSC3 direction control bit: 1 = count up

SM137.4 HSC3 update direction: 1 = update direction

SM137.5 HSC3 update preset value: 1 = write new preset value to HSC3 preset

SM137.6 HSC3 update current value: 1 = write new current value to HSC3 current

SM137.7 HSC3 enable bit: 1 = enable

SMD138 HSC3 new current value

SMD142 HSC3 new preset value

SM146.0 to SM146.4 Reserved

SM146.5 HSC4 current counting direction status bit: 1 = counting up

SM146.6 HSC4 current value equals preset value status bit: 1 = equal

SM146.7 HSC4 current value is greater than preset value status bit: 1 = greater than

SM147.0 Active level control bit for Reset: 0 = Reset is active high, 1 = Reset is active low

SM147.1 Reserved

SM147.2 Counting rate selection for quadrature counters: 0 = 4x counting rate, 1 = 1x counting rate

SM147.3 HSC4 direction control bit: 1 = count up

SM147.4 HSC4 update direction: 1 = update direction

SM147.5 HSC4 update preset value: 1 = write new preset value to HSC4 preset

SM147.6 HSC4 update current value: 1 = write new current value to HSC4 current

SM147.7 HSC4 enable bit: 1 = enable

SMD148 HSC4 new current value

SMD152 HSC4 new preset value

D

S7-200 Programmable Controller System Manual

418

Table D-18 Special Memory Bytes SMB131 to SMB165, continued

DescriptionSM Byte

SM156.0 to SM156.4 Reserved

SM156.5 HSC5 current counting direction status bit: 1 = counting up

SM156.6 HSC5 current value equals preset value status bit: 1 = equal

SM156.7 HSC5 current value is greater than preset value status bit: 1 = greater than

SM157.0 to SM157.2 Reserved

SM157.3 HSC5 direction control bit: 1 = count up

SM157.4 HSC5 update direction: 1 = update direction

SM157.5 HSC5 update preset value: 1 = write new preset value to HSC5 preset

SM157.6 HSC5 update current value: 1 = write new current value to HSC5 current

SM157.7 HSC5 enable bit: 1 = enable

SMD158 HSC5 new current value

SMD162 HSC5 new preset value

SMB166 to SMB185: PTO0, PTO1 Profile Definition Table
As described in Table D-19, SMB166 through SMB185 are used to show the number of active profile
steps and the address of the profile table in V memory.

Table D-19 Special Memory Bytes SMB166 to SMB185

SM Byte Description

SMB166 Current entry number of the active profile step for PTO0

SMB167 Reserved

SMD168 V memory address of the profile table for PTO0 given as an offset from V0.

SMB170 to SMB175 Reserved

SMB176 Current entry number of the active profile step for PTO1

SMB177 Reserved

SMD178 V memory address of the profile table for PTO1 given as an offset from V0.

SMB180 to SMB185 Reserved

SMB186 to SMB194: Receive Message Control (see SMB86 to SMB94)

Refer to Table D-16.

D

Special Memory (SM) Bits Appendix D

419

SMB200 to SMB549: Intelligent Module Status
As shown in Table D-20, SMB200 through SMB549 are reserved for information provided by intelligent
expansion modules, such as the EM 277 PROFIBUS–DP module. For information about how your module
uses SMB200 through SMB549, refer to Appendix A for the specifications of your specific module.

The manner of assigning SM locations for Intelligent modules changed for Version 2.2 and later.

For an S7-200 CPU with firmware prior to version 1.2, you must install the intelligent module next to the
CPU in order to ensure compatibility.

Table D-20 Special Memory Bytes SMB200 to SMB549

Special Memory Bytes SMB200 to SMB549

Intelligent
Module in

Slot 0

Intelligent
Module in

Slot 1

Intelligent
Module in

Slot 2

Intelligent
Module in

Slot 3

Intelligent
Module in

Slot 4

Intelligent
Module in

Slot 5

Intelligent
Module in

Slot 6
Description

SMB200 to
SMB215

SMB250 to
SMB265

SMB300 to
SMB315

SMB350 to
SMB365

SMB400 to
SMB415

SMB450 to
SMB465

SMB500 to
SMB515

Module name (16
ASCII characters)

SMB216 to
SMB219

SMB266 to
SMB269

SMB316 to
SMB319

SMB366 to
SMB369

SMB416 to
SMB419

SMB466 to
SMB469

SMB516 to
SMB519

S/W revision number
(4 ASCII characters)

SMW220 SMW270 SMW320 SMW370 SMW420 SMW470 SMW520 Error code

SMB222 to
SMB249

SMB272 to
SMB299

SMB322 to
SMB349

SMB372 to
SMB399

SMB422 to
SMB449

SMB472 to
SMB499

SMB522 to
SMB549

Information specific to
the particular module
type

D

S7-200 Programmable Controller System Manual

420

421

S7-200 Order Numbers

CPUs Order Number

CPU 221 DC/DC/DC 6 Inputs/4 Outputs 6ES7 211–0AA22–0XB0

CPU 221 AC/DC/Relay 6 Inputs/4 Relays 6ES7 211–0BA22–0XB0

CPU 222 DC/DC/DC 8 Inputs/6 Outputs 6ES7 212–1AB22–0XB0

CPU 222 AC/DC/Relay 8 Inputs/6 Relays 6ES7 212–1BB22–0XB0

CPU 224 DC/DC/DC 14 Inputs/10 Outputs 6ES7 214–1AD22–0XB0

CPU 224 AC/DC/Relay 14 Inputs/10 Relays 6ES7 214–1BD22–0XB0

CPU 226 DC/DC/DC 24 Inputs/16 Outputs 6ES7 216–2AD22–0XB0

CPU 226 AC/DC/Relay 24 Inputs/16 Relays 6ES7 216–2BD22–0XB0

CPU 226XM DC/DC/DC 24 Inputs/16 Relays 6ES7 216–2AF22–0XB0

CPU 226XM AC/DC/Relay 24 Inputs/16 Relays 6ES7 216–2BF22–0XB0

Expansion Modules Order Number

EM 221 24 VDC Digital 8 Inputs 6ES7 221–1BF22–0XA0

EM 221 Digital 8 AC Inputs (8 x 120/230 VAC) 6ES7 221–1EF22–0XA0

EM 222 24 VDC Digital 8 Outputs 6ES7 222–1BF22–0XA0

EM 222 Digital Output 8 x Relay 6ES7 222–1HF22–0XA0

EM 222 Digital 8 AC Outputs (8 x 120/230 VAC) 6ES7 222–1EF22–0XA0

EM 223 24 VDC Digital Combination 4 Inputs/4 Outputs 6ES7 223–1BF22–0XA0

EM 223 24 VDC Digital Combination 4 Inputs/4 Relay Outputs 6ES7 223–1HF22–0XA0

EM 223 24 VDC Digital Combination 8 Inputs/8 Outputs 6ES7 223–1BH22–0XA0

EM 223 24 VDC Digital Combination 8 Inputs/8 Relay Outputs 6ES7 223–1PH22–0XA0

EM 223 24 VDC Digital Combination 16 Inputs/16 Outputs 6ES7 223–1BL22–0XA0

EM 223 24 VDC Digital Combination 16 Inputs/16 Relay Outputs 6ES7 223–1PL22–0XA0

EM 231 Analog Input, 4 Inputs 6ES7 231–0HC22–0XA0

EM 231 Analog Input RTD, 2 Inputs 6ES7 231–7PB22–0XA0

EM 231 Analog Input Thermocouple, 4 Inputs 6ES7 231–7PD22–0XA0

EM 232 Analog Output, 2 Outputs 6ES7 232–0HB22–0XA0

EM 235 Analog Combination 4 Inputs/1 Output 6ES7 235–0KD22–0XA0

EM 241 Modem Module 6ES7 241–1AA22–0XA0

EM 253 Position Module 6ES7 253–1AA22–0XA0

EM 277 PROFIBUS–DP 6ES7 277–0AA22–0XA0

CP 243–2 AS Interface Communications Processor 6GK7 243–2AX01–0XA0

E

S7-200 Programmable Controller System Manual

422

Cartridges and Cables Order Number

MC 291, 32K x 8 EEPROM Memory Cartridge 6ES7 291–8GE20–0XA0

CC 292, CPU 22x Real-Time Clock with Battery Cartridge 6ES7 297–1AA20–0XA0

BC 293, CPU 22x Battery Cartridge 6ES7 291–8BA20–0XA0

Cable, I/O Expansion, .8 meters, CPU 22x/EM 6ES7 290–6AA20–0XA0

Cable, PC/PPI, Isolated, 90 deg connector, RTS switch 6ES7 901–3BF21–0XA0

Programming Software Order Number

STEP 7–Micro/WIN 32 (V3.2) Individual License (CD-ROM) 6ES7 810–2BC02–0YX0

STEP 7–Micro/WIN 32 (V3.2) Upgrade License (CD-ROM) 6ES7 810–2BC02–0YX3

S7-200 Toolbox: TP–Designer for TP070, Version 1.0 (CD-ROM) 6ES7 850–2BC00–0YX0

STEP 7–Micro/WIN Add-on: STEP 7–Micro/WIN 32 Instruction Library, V1.1 (CD-ROM) 6ES7 830–2BC00–0YX0

Communications Cards Order Number

CP 5411: Short AT ISA 6GK 1 541–1AA00

CP 5511: PCMCIA, Type II 6GK 1 551–1AA00

CP 5611: PCI card (version 3.0 or greater) 6GK 1 561–1AA00

Manuals Order Number

TD 200 Operator Interface User Manual 6ES7 272–0AA20–8BA0

TP 070 Touch Panel User Manual (English) 6AV6 591–1DC01–0AB0

S7-200 Point-to-Point Interface Communication Manual (English/German) 6ES7 298–8GA00–8XH0

CP 243–2 SIMATIC NET AS-Interface Master Manual (English) 6GK7 243–2AX00–8BA0

S7-200 Programmable Controller System Manual (German) 6ES7 298–8FA22–8AH0

S7-200 Programmable Controller System Manual (English) 6ES7 298–8FA22–8BH0

S7-200 Programmable Controller System Manual (French) 6ES7 298–8FA22–8CH0

S7-200 Programmable Controller System Manual (Spanish) 6ES7 298–8FA22–8DH0

S7-200 Programmable Controller System Manual (Italian) 6ES7 298–8FA22–8EH0

Cables, Network Connectors, and Repeaters Order Number

MPI Cable 6ES7 901–0BF00–0AA0

PROFIBUS Network Cable 6XVI 830–0AH10

Network Bus Connector with Programming Port Connector, Vertical Cable Outlet 6ES7 972–0BB11–0XA0

Network Bus Connector (no programming port connector), Vertical Cable Outlet 6ES7 972–0BA11–0XA0

RS-485 Bus Connector with 35° Cable Outlet (no programming port connector) 6ES7 972–0BA40–0XA0

RS-485 Bus Connector with 35° Cable Outlet (with programming port connector) 6ES7 972–0BB40–0XA0

CPU 22x/EM Connector Block, 7 Terminal, Removable 6ES7 292–1AD20–0AA0

CPU 22x/EM Connector Block, 12 Terminal Removable 6ES7 292–1AE20–0AA0

CPU 22x/EM Connector Block, 14 Terminal Removable 6ES7 292–1AF20–0AA0

CPU 22x/EM Connector Block, 18 Terminal Removable 6ES7 292–1AG20–0AA0

RS-485 IP 20 Repeater, Isolated 6ES7 972–0AA00–0XA0

E

S7-200 Order Numbers Appendix E

423

Operator Interfaces Order Number

TD 200 Operator Interface 6ES7 272–0AA20–0YA0

OP3 Operator Interface 6AV3 503–1DB10T

OP7 Operator Interface 6AV3 607–1JC20–0AX1

OP17 Operator Interface 6AV3 617–1JC20–0AX1

TP070 Touch Panel 6AV6 545–0AA15–2AX0

TP170A Touch Panel 6AV6 545–0BA15–2AX0

Miscellaneous Order Number

DIN Rail Stops 6ES5 728–8MAll

12-Position Fan Out Connector (CPU 221, CPU 222) 10-pack 6ES7 290–2AA00–0XA0

Spare Door Kit, contains 4 each of the following: terminal block covers for 7, 12, 14, 18,
2x12, 2x14 terminals; CPU access door, EM access door

6ES7 291–3AX20–0XA0

8 Position Simulator 6ES7 274 1XF00–0XA0

14 Position Simulator 6ES7 274 1XH00–0XA0

24 Position Simulator 6ES7 274 1XK00–0XA0

E

S7-200 Programmable Controller System Manual

424

425

Execution Times for STL Instructions

Instruction execution times are very important if your application has time-critical functions. The instruction
execution times are shown in Table F-3.

Tip
When you use the execution times in Table F-3, you should consider the effect of power flow to the
instruction, the effect of indirect addressing, and the use of certain memory areas on these execution
times. These factors can directly effect the listed execution times.

Effect of Power Flow
Table F-3 shows the time required for executing the logic or function of the instruction when power flow is
present (Top of Stack = 1 or ON) for that instruction.

When power flow is not present, then the execution time for that instruction is 3 µs.

Effect of Indirect Addressing
Table F-3 shows the time required for executing the logic, or function, of the instruction when you use
direct addressing of the operands and constants.

When instructions use indirectly addressed operands, the execution time for the instruction increases by
22 µs for each indirectly addressed operand used in the instruction.

Effect of Accessing Certain Memory Areas
Accessing certain memory areas, such as AI,
AQ, L, and accumulators require additional
execution time.

Table F-1 shows the additional time that must
be added to an instruction’s execution time
when these memory areas are specified in an
operand.

Table F-1 Adder for Accessing Memory Areas

Memory Area Execution Time Adder

Analog Inputs (AI)

Without analog filtering enabled:

With analog filtering enabled:

149 µs

0 µs

Analog Outputs (AQ) 73 µs

Local memory (L) 5.4 µs

Accumulators (AC) 4.4 µs

Effect of Using Certain CPU 226XM Instructions
Executing certain branching-type instructions
on a CPU 226XM requires additional execution
time.

Table F-2 provides a factor to be added to the
basic execution time for each of the listed
instructions.

Table F-2 Adder for CPU 226XM Instructions

Instruction Execution Time Adder

ATCH 1.0 µs

CALL 4.3 µs

CSCRE 3.1 µs

FOR (adder to base)
(adder to loop multiplier)

3.1 µs
3.1 µs

INT 1.7 µs

JMP 3.1 µs

RET 2.8 µs

F

S7-200 Programmable Controller System Manual

426

Table F-3 Instruction Execution Times

Instruction µs

= Using: I
SM, T, C, V, S, Q, M
L

0.37
1.8
19.2

+D 55

–D 55

*D 92

/D 376

+I 46

–I 47

*I 71

/I 115

=I Using: Local outputs
Expansion outputs

29
39

+R 110
163 Max

–R 113
166 Max

*R 100
130 Max

/R 300
360 Max

A Using: I
SM, T, C, V, S, Q, M
L

0.37
1.1
10.8

AB < =, =, >=, >, <, <> 35

AD < =, =, >=, >, <, <> 53

AENO .6

AI Using: Local inputs
Expansion inputs

27
35

ALD 0.37

AN Using: I
SM, T, C, V, S, Q, M
L

0.37
1.1
10.8

ANDB 37

ANDD 55

ANDW 48

ANI Using: Local inputs
Expansion inputs

27
35

AR <=, =, >=, >, <, <> 54

AS=, <> Time = Base + (LM * N)
Base
Length multiplier (LM)
N is the number of characters
 compared

51
9.2

ATCH 20

ATH Time = Base + (length�LM)
Base (constant length)
Base (variable length)
Length multiplier (LM)

41
55
20

Instruction µs

ATT 70

AW < =, =, >=, >, <, <> 45

BCDI 66

BIR Using: Local inputs
Expansion inputs

45
53

BIW Using: Local outputs
Expansion outputs

46
56

BMB Time = Base + (length�LM)
Base (constant length)
Base (variable length)
Length multiplier (LM)

21
51
11

BMD Time= Base + (length�LM)
Base (constant length)
Base (variable length)
Length multiplier (LM)

21
51
20

BMW Time= Base + (length�LM)
Base (constant length)
Base (variable length)
Length multiplier (LM)

21
51
16

BTI 27

CALL Using no parameters:
Using parameters:
Time = Base + Σ (operand time)
Base
Operand time

bit (input, output)
byte (input, output)
word (input, output)
Dword (input, output)

Note: processing of output operands occurs
during the return from the subroutine

15

32

23, 21
21, 14
24, 18
27, 20

CFND Max Time = Base +
 N1 * ((LM1 * N2) + LM2)
Base
Length multiplier 1 (LM1)
Length multiplier 2 (LM2)
N1 is the length of the source string
N2 is the length of the character set
string

79

79
9.2
4.4

COS 1525
1800 Max

CRET 13

CRETI 23

CSCRE 0.9

CTD On transition of count input
Otherwise

48
36

CTU On transition of count input
Otherwise

53
35

CTUD On transition of count input
Otherwise

64
45

DECB 30

DECD 42

DECO 36

F

Execution Times for STL Instructions Appendix F

427

Instruction µs

DECW 37

DISI 18

DIV 119

DTA 540

DTI 36

DTCH 18

DTR 60
70 Max

DTS 540

ED 15

ENCO 39
43 Max

END 0.9

ENI 53

EU 15

EXP 1170
1375 Max

FIFO Time = Base + (length�LM)
Base
Length multiplier (LM)

70
14

FILL Time= Base + (length�LM)
Base (constant length)
Base (variable length)
Length multiplier (LM)

29
50
7

FND <, =, >, <> Time = Base + (length�LM)
Base
Length multiplier (LM)

85
12

FOR Time = Base+ (Number of loops�LM)
Base
Loop multiplier (LM)

64
50

GPA 31

HDEF 35

HSC 37

HTA Time= Base+ (length�LM)
Base (constant length)
Base (variable length)
Length multiplier (LM)

38
48
11

IBCD 114

INCB 29

INCD 42

INCW 37

INT Typical with 1 interrupt 47

INVB 31

INVD 42

INVW 38

ITA 260

ITB 27

ITD 36

Instruction µs

ITS 260

JMP 0.9

LBL 0.37

LD Using: I, SM0.0
SM, T, C, V, S, Q, M
L

0.37
1.1
10.9

LDB <=, =, >=, >, <, <> 35

LDD <=, =, >=, >, <, <> 52

LDI Using: Local inputs
Expansion inputs

26
34

LDN Using: I
SM, T, C, V, S, Q, M
L

0.37
1.1
10.9

LDNI Using: Local inputs
Expansion inputs

26
34

LDR<=, =, >=, >, <, <> 55

LDS 0.37

LDS=, <> Time = Base + (LM * N)
Base
Length multiplier (LM)
N is the number of characters
compared

51
9.2

LDW <=, =, >=, >, <, <> 42

LIFO 70

LN 1130
1275 Max

LPP 0.37

LPS 0.37

LRD 0.37

LSCR 12

MEND 0.5

MOVB 29

MOVD 38

MOVR 38

MOVW 34

MUL 70

NEXT 0

NETR 179

NETW Time = Base + (length�LM)
Base
Length multiplier (LM)

175
8

NOP 0.37

NOT 0.37

O Using: I
SM, T, C, V, S, Q, M
L

0.37
1.1
10.8

OB < =, =, >=, >, <, <> 35

OD < =, =, >=, >, <, <> 53

F

S7-200 Programmable Controller System Manual

428

Instruction µs

OI Using: Local inputs
Expansion inputs

27
35

OLD 0.37

ON Using: I
SM, T, C, V, S, Q, M
L

0.37
1.1
10.8

ONI Using: Local inputs
Expansion inputs

27
35

OR<=, =, >=, >, <, <> 55

ORB 37

ORD 55

ORW 48

OS=, < > Time + Base + (LM * N)
Base
Length multiplier (LM)
N is the number of characters
compared

51
9.2

OW < =, =, >=, >, <, <> 45

PID Base
Adder for recalculation of integral
and differential proportional constants

750
1000

PLS: Using: PWM
PTO single segment
PTO multiple segment

57
67
92

R Length=1 and specified as a constant
Using operand = C, T
Using all other operands
Otherwise, Time=Base + (length�LM)
Base for operand = C, T
Base for all other operands
LM for operand = C, T
LM for all other operands

If length is stored as a variable, add to
Base

17, 24
5

19, 19
28
8.6, 16.5
0.9

29

RCV 80

RET 13

RETI 23

RI Total = Base + (length�LM)
Base
LM using local outputs
LM using expansion outputs

If length is stored as a variable, add
to Base

18
22
32

30

RLB Total = Base + (length + LM)
Base
Length multiplier (LM)

42
0.6

RLD Total = Base + (length�LM)
Base
Length multiplier (LM))

52
2.5

RLW Total = Base + (length�LM)
Base
Length multiplier (LM)

49
1.7

Instruction µs

ROUND 108
183 Max

RRB Total = Base + (length�LM)
Base
Length multiplier (LM)

42
0.6

RRD Total = Base + (length�LM)
Base
Length multiplier (LM))

52
2.5

RRW Total = Base + (length�LM)
Base
Length multiplier (LM)

49
1.7

RTA Time = Base + (LM * N)
Base (for first digit in result)
Length multiplier (LM)
N is the number of additional digits in
result

1000
240

RTS Time = Base + (LM * N)
Base (for first digit in result)
Length multiplier (LM)
N is the number of additional digits in
result

1000
240

S For length = 1 and specified as a
constant

Otherwise:
Time = Base + (length�LM)
Base
Length multiplier (LM)

If length is stored as a variable, add to
Base

5

27
0.9

29

SBR 0

SCAT Time = Base + (LM * N)
Base
Length multiplier (LM)
N is the number of appended
characters

55
8.8

SCPY Time = Base + (LM * N)
Base
Length multiplier (LM)
N is the number of copied characters

43
8.8

SCRE 0.37

SCRT 17

SEG 30

SFND Max Time = Base +
 (N1–N2) * ((LM1*N2)+LM2)
Base
Length multiplier 1 (LM1)
Length multiplier 2 (LM2)
N1 is the length of the source string
N2 is the length of the search string

79
11.5
17.8

SHRB Total = Base + (length�LM1) +
 ((length /8) * LM2)
Base (constant length)
Base (variable length)
Length multiplier 1 (LM1)
Length multiplier 2 (LM2)

76
84
1.6
4

F

Execution Times for STL Instructions Appendix F

429

Instruction µs

SI Total = Base + (length�LM)
Base
LM using local output
LM using expansion output

If length is stored as a variable, add to
Base

18
22
32

30

SIN 1525
1800 Max

SLB Total = Base + (length�LM)
Base
Length multiplier (LM)

43
0.7

SLD Total = Base + (length�LM)
Base
Length multiplier (LM)

53
2.6

SLEN 46

SLW Total = Base + (length�LM)
Base
Length multiplier (LM))

51
1.3

SPA 243

SQRT 725
830 Max

SRB Total = Base + (length�LM)
Base
Length multiplier (LM)

43
0.7

SRD Total = Base + (length�LM)
Base
Length multiplier (LM)

53
2.6

SRW Total = Base + (length�LM)
Base
Length multiplier (LM)

51
1.3

SSCPY Time = Base + (LM * N)
Base
Length multiplier (LM)
N is the number of copied characters

82
8.8

Instruction µs

STD Time = Base + (LM*N)
Base (for 1st source character)
Length multiplier (LM)
N is the number of additional source
 characters

84
59

STI Time = Base + (LM*N)
Base (for 1st source character)
Length multiplier (LM)
N is the number of additional source
 characters

84
59

STOP 16

STR Time = Base + (LM*N)
Base (for 1st source character)
Length multiplier (LM)
N is the number of additional source
 characters

100
120

SWAP 32

TAN 1825
2100 Max

TODR 2400

TODW 1600

TOF 64

TON 64

TONR 56

TRUNC 103
178 Max

WDR 16

XMT 78

XORB 37

XORD 55

XORW 48

F

S7-200 Programmable Controller System Manual

430

431

S7-200 Quick Reference Information

To help you find information more easily, this section summarizes the following information:

� Special Memory Bits

� Descriptions of Interrupt Events

� Summary of S7-200 CPU Memory Ranges and Features

� High-Speed Counters HSC0, HSC1, HSC2, HSC3, HSC4, HSC5

� S7-200 Instructions

Table G-1 Special Memory Bits

Special Memory Bits

SM0.0 Always On SM1.0 Result of operation = 0

SM0.1 First Scan SM1.1 Overflow or illegal value

SM0.2 Retentive data lost SM1.2 Negative result

SM0.3 Power up SM1.3 Division by 0

SM0.4 30 s off / 30 s on SM1.4 Table full

SM0.5 0.5 s off / 0.5 s on SM1.5 Table empty

SM0.6 Off 1 scan / on 1 scan SM1.6 BCD to binary conversion error

SM0.7 Switch in RUN position SM1.7 ASCII to hex conversion error

G

S7-200 Programmable Controller System Manual

432

Table G-2 Interrupt Events in Priority Order

Event Number Interrupt Description Priority Group Priority in Group

8 Port 0: Receive character 0

9 Port 0: Transmit complete 0

23 Port 0: Receive message complete Communications 0

24 Port 1: Receive message complete
Communications

(highest) 1

25 Port 1: Receive character 1

26 Port 1: Transmit complete 1

19 PTO 0 complete interrupt 0

20 PTO 1 complete interrupt 1

0 I0.0, Rising edge 2

2 I0.1, Rising edge 3

4 I0.2, Rising edge 4

6 I0.3, Rising edge 5

1 I0.0, Falling edge 6

3 I0.1, Falling edge 7

5 I0.2, Falling edge 8

7 I0.3, Falling edge 9

12 HSC0 CV=PV (current value = preset value) 10

27 HSC0 direction changed 11

28 HSC0 external reset
 Discrete (middle)

12

13 HSC1 CV=PV (current value = preset value) 13

14 HSC1 direction input changed 14

15 HSC1 external reset 15

16 HSC2 CV=PV 16

17 HSC2 direction changed 17

18 HSC2 external reset 18

32 HSC3 CV=PV (current value = preset value) 19

29 HSC4 CV=PV (current value = preset value) 20

30 HSC4 direction changed 21

31 HSC4 external reset 22

33 HSC5 CV=PV (current value = preset value) 23

10 Timed interrupt 0 0

11 Timed interrupt 1 1

21 Timer T32 CT=PT interrupt
Timed (lowest)

2

22 Timer T96 CT=PT interrupt 3

G

S7-200 Quick Reference Information Appendix G

433

Table G-3 Summary of S7-200 CPU Memory Ranges and Features

Description CPU 221 CPU 222 CPU 224 CPU 226 CPU 226XM

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

User program size ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

2 Kwords ÑÑÑÑÑ
ÑÑÑÑÑ

2 Kwords ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

4 Kwords ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

4 Kwords ÑÑÑÑÑ
ÑÑÑÑÑ

8 Kwords

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

User data size ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

1 Kwords ÑÑÑÑÑ
ÑÑÑÑÑ

1 Kwords ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

2.5 Kwords ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

2.5 Kwords ÑÑÑÑÑ
ÑÑÑÑÑ

5 Kwords

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Process-image input registerÑÑÑÑÑÑ
ÑÑÑÑÑÑ

I0.0 to I15.7 ÑÑÑÑÑ
ÑÑÑÑÑ

I0.0 to I15.7 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

I0.0 to I15.7 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

I0.0 to I15.7 ÑÑÑÑÑ
ÑÑÑÑÑ

I0.0 to I15.7

ÑÑÑÑÑÑÑÑProcess-image output registerÑÑÑÑÑÑQ0.0 to Q15.7 ÑÑÑÑÑQ0.0 to Q15.7 ÑÑÑÑÑÑQ0.0 to Q15.7 ÑÑÑÑÑÑQ0.0 to Q15.7 ÑÑÑÑÑQ0.0 to Q15.7ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Analog inputs (read only)
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

––
ÑÑÑÑÑ
ÑÑÑÑÑ

AIW0 to AIW30
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

AIW0 to AIW62
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

AIW0 to AIW62
ÑÑÑÑÑ
ÑÑÑÑÑ

AIW0 to AIW62
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Analog outputs (write only)
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

––
ÑÑÑÑÑ
ÑÑÑÑÑ

AQW0 to AQW30
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

AQW0 to AQW62
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

AQW0 to AQW62
ÑÑÑÑÑ
ÑÑÑÑÑ

AQW0 to AQW62

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Variable memory (V) ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

VB0 to VB2047 ÑÑÑÑÑ
ÑÑÑÑÑ

VB0 to VB2047ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

VB0 to VB5119 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

VB0 to VB5119 ÑÑÑÑÑ
ÑÑÑÑÑ

VB0 to VB10239

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Local memory (L)1 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

LB0 to LB63 ÑÑÑÑÑ
ÑÑÑÑÑ

LB0 to LB63 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

LB0 to LB63 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

LB0 to LB63 ÑÑÑÑÑ
ÑÑÑÑÑ

LB0 to LB63

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Bit memory (M) ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

M0.0 to M31.7 ÑÑÑÑÑ
ÑÑÑÑÑ

M0.0 to M31.7 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

M0.0 to M31.7 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

M0.0 to M31.7 ÑÑÑÑÑ
ÑÑÑÑÑ

M0.0 to M31.7

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Special Memory (SM)

Read only
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

SM0.0 to SM179.7

SM0.0 to SM29.7
ÑÑÑÑÑ
ÑÑÑÑÑ

SM0.0 to SM299.7

SM0.0 to SM29.7
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

SM0.0 to SM549.7

SM0.0 to SM29.7
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

SM0.0 to SM549.7

SM0.0 to SM29.7
ÑÑÑÑÑ
ÑÑÑÑÑ

SM0.0 to SM549.7

SM0.0 to SM29.7
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Timers

Retentive on-delay 1 ms

10 ms

100 ms

On/Off delay 1 ms

10 ms

100 ms

ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

256 (T0 to T255)

T0, T64

T1 to T4, and
T65 to T68

T5 to T31, and
T69 to T95

T32, T96

T33 to T36, and
T97 to T100

T37 to T63, and
T101 to T255

ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ

256 (T0 to T255)

T0, T64

T1 to T4, and
T65 to T68

T5 to T31, and
T69 to T95

T32, T96

T33 to T36, and
T97 to T100

T37 to T63, and
T101 to T255

ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

256 (T0 to T255)

T0, T64

T1 to T4, and
T65 to T68

T5 to T31, and
T69 to T95

T32, T96

T33 to T36, and
T97 to T100

T37 to T63, and
T101 to T255

ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

256 (T0 to T255)

T0, T64

T1 to T4, and
T65 to T68

T5 to T31, and
T69 to T95

T32, T96

T33 to T36, and
T97 to T100

T37 to T63, and
T101 to T255

ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ

256 (T0 to T255)

T0, T64

T1 to T4, and
T65 to T68

T5 to T31, and
T69 to T95

T32, T96

T33 to T36, and
T97 to T100

T37 to T63, and
T101 to T255

ÑÑÑÑÑÑÑÑCounters ÑÑÑÑÑÑC0 to C255 ÑÑÑÑÑC0 to C255 ÑÑÑÑÑÑC0 to C255 ÑÑÑÑÑÑC0 to C255 ÑÑÑÑÑC0 to C255ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

High-speed counter
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

HC0, HC3, HC4,
and HC5

ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ

HC0, HC3, HC4,
and HC5

ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

HC0 to HC5
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

HC0 to HC5
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ

HC0 to HC5

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Sequential control relays (S)ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

S0.0 to S31.7 ÑÑÑÑÑ
ÑÑÑÑÑ

S0.0 to S31.7 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

S0.0 to S31.7 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

S0.0 to S31.7 ÑÑÑÑÑ
ÑÑÑÑÑ

S0.0 to S31.7

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Accumulator registers ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

AC0 to AC3 ÑÑÑÑÑ
ÑÑÑÑÑ

AC0 to AC3 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

AC0 to AC3 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

AC0 to AC3 ÑÑÑÑÑ
ÑÑÑÑÑ

AC0 to AC3

ÑÑÑÑÑÑÑÑJumps/Labels ÑÑÑÑÑÑ0 to 255 ÑÑÑÑÑ0 to 255 ÑÑÑÑÑÑ0 to 255 ÑÑÑÑÑÑ0 to 255 ÑÑÑÑÑ0 to 255ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Call/Subroutine
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

0 to 63
ÑÑÑÑÑ
ÑÑÑÑÑ

0 to 63
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

0 to 63
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

0 to 63
ÑÑÑÑÑ
ÑÑÑÑÑ

0 to 127
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Interrupt routines
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

0 to 127
ÑÑÑÑÑ
ÑÑÑÑÑ

0 to 127
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

0 to 127
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

0 to 127
ÑÑÑÑÑ
ÑÑÑÑÑ

0 to 127
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Positive/negative transitions ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

256 ÑÑÑÑÑ
ÑÑÑÑÑ

256 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

256 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

256 ÑÑÑÑÑ
ÑÑÑÑÑ

256

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

PID loops ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

0 to 7 ÑÑÑÑÑ
ÑÑÑÑÑ

0 to 7 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

0 to 7 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

0 to 7 ÑÑÑÑÑ
ÑÑÑÑÑ

0 to 7

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Ports ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

Port 0 ÑÑÑÑÑ
ÑÑÑÑÑ

Port 0 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

Port 0 ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

Port 0, Port 1 ÑÑÑÑÑ
ÑÑÑÑÑ

Port 0, Port 1

1 LB60 to LB63 are reserved by STEP 7–Micro/WIN, version 3.0 or later.

G

S7-200 Programmable Controller System Manual

434

Table G-4 High-Speed Counters HSC0, HSC3, HSC4, and HSC5

HSC0 HSC3 HSC4 HSC5
Mode

I0.0 I0.1 I0.2 I0.1 I0.3 I0.4 I0.5 I0.4

0 Clk Clk Clk Clk

1 Clk Reset Clk Reset

2

3 Clk Direction Clk Direction

4 Clk Direction Reset Clk Direction Reset

5

6 Clk Up Clk Down Clk Up Clk Down

7 Clk Up Clk Down Reset Clk Up Clk Down Reset

8

9 Phase A Phase B Phase A Phase B

10 Phase A Phase B Reset Phase A Phase B Reset

11

Table G-5 High-Speed Counters HSC1 and HSC2

HSC1 HSC2
Mode

I0.6 I0.7 I1.0 I1.1 I1.2 I1.3 I1.4 I1.5

0 Clk Clk

1 Clk Reset Clk Reset

2 Clk Reset Start Clk Reset Start

3 Clk Direction Clk Direction

4 Clk Direction Reset Clk Direction Reset

5 Clk Direction Reset Start Clk Direction Reset Start

6 Clk Up Clk Down Clk Up Clk Down

7 Clk Up Clk Down Reset Clk Up Clk Down Reset

8 Clk Up Clk Down Reset Start Clk Up Clk Down Reset Start

9 Phase A Phase B Phase A Phase B

10 Phase A Phase B Reset Phase A Phase B Reset

11 Phase A Phase B Reset Start Phase A Phase B Reset Start

G

S7-200 Quick Reference Information Appendix G

435

Boolean Instructions

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

LD Bit

LDI Bit

LDN Bit

LDNI Bit

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Load

Load Immediate

Load Not

Load Not Immediate

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

A Bit

AI Bit

AN Bit

ANI Bit

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

AND

AND Immediate

AND Not

AND Not Immediate

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

O Bit

OI Bit

ON Bit

ONI Bit

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

OR

OR Immediate

OR Not

OR Not Immediate
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

LDBx IN1, IN2 ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Load result of Byte Compare
IN1 (x:<, <=,=, >=, >, <>I) IN2ÑÑÑÑÑÑÑÑ

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

ABx IN1, IN2
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

AND result of Byte Compare
IN1 (x:<, <=,=, >=, >, <>) IN2

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

OBx IN1, IN2 ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

OR result of Byte Compare
IN1 (x:<, <=,=, >=, >, <>) IN2

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

LDWx IN1, IN2 ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Load result of Word Compare
IN1 (x:<, <=,=, >=, >, <>) IN2ÑÑÑÑÑÑÑÑ

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

AWx IN1, IN2
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

AND result of Word Compare
IN1 (x:<, <=,=, >=, >, <>)I N2

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

OWx IN1, IN2 ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

OR result of Word Compare
IN1 (x:<, <=,=, >=, >, <>) IN2

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

LDDx IN1, IN2 ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Load result of DWord Compare
IN1 (x:<, <=,=, >=, >, <>) IN2ÑÑÑÑÑÑÑÑ

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

ADx IN1, IN2
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

AND result of DWord Compare
IN1 (x:<, <=,=, >=, >, <>)IN2

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

ODx IN1, IN2 ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

OR result of DWord Compare
IN1 (x:<, <=,=, >=, >, <>) IN2

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

LDRx IN1, IN2 ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Load result of Real Compare
IN1 (x:<, <=,=, >=, >, <>) IN2

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

ARx IN1, IN2
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

AND result of Real Compare
IN1 (x:<, <=,=, >=, >, <>) IN2

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

ORx IN1, IN2 ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

OR result of Real Compare
IN1 (x:<, <=,=, >=, >, <>) IN2

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

NOT ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Stack Negation

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

EU

ED
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Detection of Rising Edge

Detection of Falling Edge
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

= Bit

=I Bit

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Assign Value

Assign Value Immediate

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

S Bit, N

R Bit, N

SI Bit, N

RI Bit, N

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Set bit Range

Reset bit Range

Set bit Range Immediate

Reset bit Range Immediate

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

LDSx IN1, IN2

ASx IN1, IN2

OSx IN1, IN2

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Load result of String Compare
IN1 (x: =, <>) IN2

AND result of String Compare
IN1 (x: =, <>) IN2

OR result of String Compare
IN1 (x: =, <>) IN2

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

ALD

OLD
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

And Load

Or LoadÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

LPS

LRD

LPP

LDS N

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Logic Push (stack control)

Logic Read (stack control)

Logic Pop (stack control)

Load Stack (stack control)ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

AENO
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

And ENO

Math, Increment, and Decrement instructions

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

+I IN1, OUT

+D IN1, OUT

+R IN1, OUT

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Add Integer, Double Integer or Real

IN1+OUT=OUT

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

–I IN1, OUT

–D IN1, OUT

–R IN1, OUT

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Subtract Integer, Double Integer, or
Real

OUT–IN1=OUT

ÑÑÑÑÑÑÑÑMUL IN1, OUT ÑÑÑÑÑÑÑÑÑMultiply Integer (16*16–>32)ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

*I IN1, OUT

*D IN1, OUT

*R IN1, IN2

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Multiply Integer, Double Integer, or
Real

IN1 * OUT = OUT

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

DIV IN1, OUT ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Divide Integer (16/16–>32)

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

/I IN1, OUT

/D, IN1, OUT

/R IN1, OUT

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Divide Integer, Double Integer, or Real

OUT / IN1 = OUT

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

SQRT IN, OUT ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Square Root

ÑÑÑÑÑÑÑÑLN IN, OUT ÑÑÑÑÑÑÑÑÑNatural LogarithmÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

EXP IN, OUT
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Natural Exponential
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

SIN IN, OUT
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Sine

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

COS IN, OUT ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Cosine

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

TAN IN, OUT ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Tangent

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

INCB OUT

INCW OUT

INCD OUT

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Increment Byte, Word or DWord

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

DECB OUT

DECW OUT

DECD OUT

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Decrement Byte, Word, or DWord

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

PID TBL, LOOP
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

PID Loop

Timer and Counter Instructions

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

TON Txxx, PT

TOF Txxx, PT

TONR Txxx, PT

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

On-Delay Timer

Off-Delay Timer

Retentive On-Delay Timer
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

CTU Cxxx, PV

CTD Cxxx, PV

CTUD Cxxx, PV

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Count Up

Count Down

Count Up/Down

Real Time Clock InstructionsÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

TODR T

TODW T

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Read Time of Day clock

Write Time of Day clock

Program Control Instructions

ÑÑÑÑÑÑÑÑEND ÑÑÑÑÑÑÑÑÑConditional End of ProgramÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑSTOP

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑTransition to STOP ModeÑÑÑÑÑÑÑÑ

ÑÑÑÑÑÑÑÑ
WDR

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

WatchDog Reset (300 ms)

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

JMP N

LBL N

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Jump to defined Label

Define a Label to Jump to

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

CALL N [N1,...]

CRET

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Call a Subroutine [N1, ... up to 16
optional parameters]

Conditional Return from SBR

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

FOR INDX,INIT,FINAL

NEXT
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

For/Next Loop

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

LSCR N

SCRT N

CSCRE

SCRE

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Load, Transition, Conditional End, and
End Sequence Control Relay

G

S7-200 Programmable Controller System Manual

436

Move, Shift, and Rotate Instructions

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

MOVB IN, OUT

MOVW IN, OUT

MOVD IN, OUT

MOVR IN, OUT

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Move Byte, Word, DWord, Real

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

BIR IN, OUT

BIW IN, OUT

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Move Byte Immediate Read

Move Byte Immediate Write

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

BMB IN, OUT, N

BMW IN, OUT, N

BMD IN, OUT, N

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Block Move Byte, Word, DWord

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

SWAP IN ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Swap Bytes

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

SHRB DATA, S_BIT, N ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Shift Register Bit

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

SRB OUT, N

SRW OUT, N

SRD OUT, N

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Shift Right Byte, Word, DWord

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

SLB OUT, N

SLW OUT, N

SLD OUT, N

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Shift Left Byte, Word, DWord

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

RRB OUT, N

RRW OUT, N

RRD OUT, N

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Rotate Right Byte, Word, DWord

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

RLB OUT, N

RLW OUT, N

RLD OUT, N

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Rotate Left Byte, Word, DWord

Logical Instructions

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

ANDB IN1, OUT

ANDW IN1, OUT

ANDD IN1, OUT

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Logical AND of Byte, Word, and
DWord

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

ORB IN1, OUT

ORW IN1, OUT

ORD IN1, OUT

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Logical OR of Byte, Word, and DWord

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

XORB IN1, OUT

XORW IN1, OUT

XORD IN1, OUT

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Logical XOR of Byte, Word, and
DWord

INVB OUT

INVW OUT

INVD OUT

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Invert Byte, Word and DWord

(1’s complement)

String Instructions

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

SLEN IN, OUT

SCAT IN, OUT

SCPY IN, OUT

SSCPY IN, INDX, N, OUT

CFND IN1, IN2, OUT

SFND IN1, IN2, OUT

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

String Length

Concatenate String

Copy String

Copy Substring from String

Find First Character within String

Find String within String

Table, Find, and Conversion Instructions

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

ATT DATA, TBL ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Add data to table

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

LIFO TBL, DATA

FIFO TBL, DATA
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Get data from table

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

FND= TBL, PTN, INDX

FND<> TBL, PTN, INDX

FND< TBL, PTN, INDX

FND> TBL, PTN, INDX

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Find data value in table that matches
comparison

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

FILL IN, OUT, N
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Fill memory space with pattern
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

BCDI OUT

IBCD OUT

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Convert BCD to Integer

Convert Integer to BCD

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

BTI IN, OUT

ITB IN, OUT

ITD IN, OUT

DTI IN, OUT

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Convert Byte to Integer

Convert Integer to Byte

Convert Integer to Double Integer

Convert Double Integer to Integer

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

DTR IN, OUT

TRUNC IN, OUT

ROUND IN, OUT

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Convert DWord to Real

Convert Real to Double Integer

Convert Real to Double Integer
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

ATH IN, OUT, LEN

HTA IN, OUT, LEN

ITA IN, OUT, FMT

DTA IN, OUT, FM

RTA IN, OUT, FM

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Convert ASCII to Hex

Convert Hex to ASCII

Convert Integer to ASCII

Convert Double Integer to ASCII

Convert Real to ASCII

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

DECO IN, OUT

ENCO IN, OUT

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Decode

Encode

ÑÑÑÑÑÑÑSEG IN, OUT ÑÑÑÑÑÑÑÑÑGenerate 7–segment patternÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

ITS IN, FMT, OUT

DTS IN, FMT, OUT

RTS IN, FMT, OUT

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Convert Integer to String

Convert Double Integer to String

Convert Real to String

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

STI STR, INDX, OUT

STD STR, INDX, OUT

STR STR, INDX, OUT

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Convert Substring to Integer

Convert Substring to Double Integer

Convert Substring to Real

Interrupt Instructions

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

CRETI ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Conditional Return from Interrupt

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

ENI

DISI
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Enable Interrupts

Disable Interrupts

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

ATCH INT, EVNT

DTCH EVNT

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Attach Interrupt routine to event

Detach event

Communications InstructionsÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

XMT TBL, PORT

RCV TBL, PORT

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Freeport transmission

Freeport receive message

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

NETR TBL, PORT

NETW TBL, PORT

ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Network Read

Network Write

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

GPA ADDR, PORT

SPA ADDR, PORT
ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Get Port Address

Set Port Address

High-Speed Instructions

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

HDEF HSC, MODE ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Define High-Speed Counter mode

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

HSC N ÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑ

Activate High-Speed Counter

ÑÑÑÑÑÑÑPLS Q ÑÑÑÑÑÑÑÑÑPulse Output

437

Index
Symbols
&, 32
*, 32

A
AC installation guidelines, 19
AC outputs and relays, 20
ACCEL_TIME (Acceleration Time), EM 253 Position

Module, 249
Access restriction, 44
Accessing

direct addressing, 24
S7--200 data, 24, 32
status chart, 59

Accumulators, 27
Add instruction, 140
Add to table instruction, 189

example, 189
Address

assigning, 58
high--speed counters, 119
Modbus, 331
network, 208
setting remote, 210
symbolic, 58

Address switches, EM 277 PROFIBUS--DP, 374
Addressing

accumulators, 27
analog inputs, 29
analog outputs, 29
bit memory, 25
byte:bit, 24
counter memory, 26
direct, 24
expansion I/O, 31
high--speed counters, 27
indirect (pointers), 32
local I/O, 31
local memory, 28
memory areas, 25–28
process--image input register, 25
process--image output register, 25
S7--200 memory, 24
sequence control relay (SCR) memory, 29
special memory (SM) bits, 28
timer memory, 26
variable memory, 25

AENO instruction, 70
Agency approvals, 338
AI. See Analog input (AI)
Alarm checking, PID loop, 151
American Bureau of Shipping (ABS) Maritime Agency,

338
Analog adjustment

potentiometers, 45
SMB28 and SMB29, 412

Analog input (AI)
addressing, 29
filtering, 42

Analog modules, 3
EM 231 analog input, 354
EM 231 RTD, 361
EM 231 thermocouple, 361
EM 232 analog output, 358
EM 235 analog input/output, 355

Analog output (AQ), addressing, 29
AND instruction, 163

example, 164
AND load instruction, 70
AQ. See Analog output (AQ)
AS--interface modules, order numbers for manuals, 422
ASCII conversion instructions, 96
ASCII to hex instruction, 96

example, 99
Assigning

addresses, 58
initial values, 58
interrupts to HSC, 119
network addresses, 208

Asynchronous updates, PWM instruction, 127
Attach interrupt instruction, 155
Automatic mode, PID loop, 151
Avoiding, network conflicts, 231

B
Backlash

compensation, 251
selecting work zone, 256

Battery cartridge, 34, 395
order number, 422

Baud rates
network, 218
optimal, 228
setting, 208
switch selections, PC/PPI cable, 6, 210, 221, 223,

226, 397
BCD to integer instruction, 93
Biasing

network cable, 220
PID loop, 145, 147

Bit logic instructions
coil instructions, 68
contact instructions, 66
logic stack instructions, 70
reset dominant bistable, 72
set/reset bistable, 72

Bit memory area (M), 25
saving on power loss, 35

Block diagram, EM 241 modem, 385
Block move byte instruction, 167
Block move double word instruction, 167
Block move instructions, example, 167

S7-200 Programmable Controller System Manual

438

Block move word instruction, 167
Bookmarks, 236
Boolean instructions

coils, 68
contacts, 66
logic stack, 70
set/reset bistable, 72

Break detection, 83
Buffer consistency, PROFIBUS, 378
Building, network, 218
Bureau Veritas (BV) Maritime Agency, 338
Byte address format, 24
Byte and integer range, 24
Byte consistency, PROFIBUS, 378
Byte to integer instruction, 93

C
C memory, 26
Cables

biasing, 220
I/O expansion, 395
network, 218, 219
order numbers, 422
PC/PPI, 396
terminating, 220

Calculating
power requirements, 399–401
token rotation time, 228

Calibration
EM 231, 353
EM 235, 353
inputs, 353

Call subroutine instruction, 203
example, 204

Callback, EM 241 Modem module, 292
Cartridges

memory, 395
order numbers, 422

Changing
current value in HSC, 123
high--speed counter direction, 123
preset value in HSC, 123
PTO cycle time, 134
PTO cycle time and pulse count, 135
PTO pulse count, 135
pulse width, 132

Character interrupt control, 85
Clearance requirements, 14
Clock

cartridge, 395
status bits, 408

Clock instructions
read real--time clock, 73
set real--time clock, 73

Coil instructions
no operation, 68
output, 68
output immediate, 68
reset, 68
reset immediate, 68
set, 68
set immediate, 68

Command Byte, EM 253 Position Module, 283
Communication

S7--200, 7
with MicroMaster drives, 312

Communication processors, CP 243--2, 393
Communication protocol

multi--point interface (MPI), 212, 230
point--to--point interface (PPI), 230
PROFIBUS, 230
selecting, 211
user--defined, 222

Communication requests, processing, 23
Communication settings, STEP 7--Micro/WIN, 7
Communications, 208

baud rate, 226
conflicts, 231
Modbus Slave Protocol, 330
modem, 226–227
protocols supported, 211

Communications cards, order numbers, 422
Communications instructions

get port address, 88
network read, 74
network write, 74
receive, 79
set port address, 88
transmit, 79

Communications port
connector pin assignments, 219
Freeport mode, 222
interrupts, 158

Communications processing, 40
Communications processors. See CP cards
Communications protocol

point--to--point interface (PPI), 211
PROFIBUS, 212

Communications queue, 159
Compare byte instruction, 89
Compare double word instruction, 89
Compare instructions, 55

compare byte, 89
compare double word, 89
compare integer, 89
compare real, 89
compare string, 91
example, 89

Compare integer instruction, 89

Index

439

Compare real instruction, 89
Compare string instruction, 91
Comparing, token rotation times, 230
Compatibility

EM 231 RTD, 362
EM 231 thermocouple, 362
EM 277 PROFIBUS--DP, 374

Compile errors, 56
Compile rule violations, 406
Complex PPI network, 213
Concatenate string instruction, 184
Conditional end instruction, 168

example, 169
Conditional inputs, 55
Conditional return from interrupt instruction, 155
Conditional return from subroutine instruction, 203
Conditional sequence control relay end instruction, 173
Conditional transitions, example, 178
Configuration

EM 231, 354
EM 231 RTD, 368
EM 231 thermocouple, 363
EM 235, 355
EM 253 Position Module, 275
EM 277 PROFIBUS--DP, 376–377
output states, 40
retentive ranges of memory, 41
symbol table for Modbus, 331

Configuration drawings, 49
Configuration table, EM 241 Modem module, 293, 306
Configuration/Profile table, EM 253 Position Module, 278
Configuring

FBD and LAD status display, 238
network, 218
password, 44
PTO/PWM operation, 128
STL status display, 239

Conflicts, avoiding network, 231
Connecting

MM3 drive, 324
MM4 drive, 327
modem to S7--200, 226
network devices, 230
PC/PPI cable, 6
with S7--200, 7

Connections, CP 243--2, 394
Connector pins, communications port assignments, 219
Connector terminals

CPU 221 AC/DC/Relay, 343
CPU 221 DC/DC/DC, 343
CPU 222 AC/DC/Relay, 344
CPU 222 DC/DC/DC, 344
CPU 224 AC/DC/Relay, 344
CPU 224 DC/DC/DC, 344
CPU 226 AC/DC/Relay, 345
CPU 226 DC/DC/DC, 345
CPU 226XM AC/DC/Relay, 345
CPU 226XM DC/DC/DC, 345

Connector terminals (continued)
EM 221 DI 8 x AC, 349
EM 221 DI 8x24 VDC, 349
EM 222 DO 8 x Relay, 349
EM 223 DI 16/DO 16 x 24 VDC Relay, 350
EM 222 DO 8x24 VDC, 349
EM 223 4x24 VDC In/4x24 VDC Out, 349
EM 223 DI 16/DO 16 x DC 24V, 350
EM 223 DI 4/DO 4 x DC 24V/Relay, 349
EM 223 DI 8/ DO 8 x 24 VDC/Relay, 350
EM 223 DI 8/DO 8 x 24 VDC, 350
EM 231 AI 4 x 12 Bit, 352
EM 231 RTD, 362
EM 231 thermocouple, 362
EM 232 AQ 2 x 12 Bit, 352
EM 235 AI 4/AQ 1 x 12 Bit, 352

Connectors, order numbers, 422
Constant values, 30
Contact instructions, 66

example, 67
Control byte, setting for HSC, 118
Control logic, 22
Conventions

program editors, 54
S7--200 programming, 55

Convergence control
example, 177
sequence control relay instructions, 176

Conversion instructions
ASCII, 96
ASCII to hex, 96
decode, 105
encode, 105
example, 94
hex to ASCII, 96
round, 94
segment, 95
standard, 92
string, 100, 103
truncate, 94

Convert double integer to string instruction, 100, 103
Convert integer to string instruction, 100, 103
Convert real to string instruction, 100, 103
Convert substring to double integer instruction, 100, 103
Convert substring to integer instruction, 100, 103
Convert substring to real instruction, 100, 103
Converting

loop inputs, 149
loop outputs to scaled integer, 150

Copy string instruction, 184
Copy substring from string instruction, 186
Copying, program to memory cartridge, 36
Cosine instruction, 143
Count down counter instruction, 106

example, 108
Count up counter instruction, 106
Count up/down counter instruction, 106

example, 108

S7-200 Programmable Controller System Manual

440

Counter instructions
high--speed counter (HSC), 111
high--speed counter definition (HDEF), 111
IEC

down counter, 109
up counter, 109
up/down counter, 109

SIMATIC
count down counter, 106
count up counter, 106
count up/down counter, 106

Counter memory area (C), 26
Counters, high--speed, 46
Country codes, supported by EM 241, 288
CP 243--2 communications processor

connections, 394
features, 393
functions, 394
operation, 394
order number, 393

CP cards
order numbers, 422
selecting, 220

CP242, CP243 modules, order numbers for manuals,
422

CP5411, 422
CP5511, 422
CP5611, 422
CPU

backup, 2
comm ports, 2
digital I/O, 2
dimensions, 2
error handling, 56
execution speed, 2
expansion modules, 2
ID register (SMB6), 410
input simulators, 398
memory, 2
password protection, 44
power requirements, 15, 399
real--time clock, 2
scan cycle, 22
screw sizes for installation, 16

CPU 224, sample DP program, 383
CPU Data Transfer Message Format, EM 241 Modem

module, 310
CPU modules

features, 64, 461
input specifications, 341
installing, 16
memory ranges, 64, 433, 461
order numbers, 340, 421
output specifications, 342
power specifications, 341
removing, 17
self--test diagnostics, 23
specifications, 340
wiring diagrams, 343–345

CPUs, supporting intelligent modules, 303
CRC table, Modbus Slave Protocol, 330

Creating
configuration drawings, 49
program, 8
program with Micro/WIN, 51
symbolic name list, 49
user--defined protocols, 222

Cross reference table, 236
Current value

changing in HSC, 123
setting for HSC, 118

Cycle time (PTO function), 125

D
Data

receiving, 80, 85
saving and restoring, 34
transmitting, 80

Data block, 50
Data block editor

assigning addresses, 58
assigning initial values, 58

Data consistency, PROFIBUS, 378
Data exchange mode, EM 277 PROFIBUS--DP, 378
Data transfers, EM 241 Modem module, 291
Data types, subroutine parameters, 204
Date, setting, 73
DC installation guidelines, 19
DC outputs and relays, 20
DC transistor, protecting, 20
Debugging

editing in RUN mode, 236
features, 236
forcing values, 240
multiple scans, 240

DECEL_TIME (Deceleration Time), EM 253 Position
Module, 249

Decode instruction, 105
example, 105

Decrement instruction, 144
example, 144

Designing
Micro PLC system, 48
safety circuits, 48

Det Norske Veritas (DNV) Maritime Agency, 338
Detach interrupt instruction, 155
Device database file (GSD), EM 277 PROFIBUS--DP,

381–382
Diagnostics, CPU self--test, 23
Diagnostics information, EM 253 Position Module, 275
Differential term, PID algorithm, 148
Digital expansion module, addressing, 31
Digital inputs

filtering, 41
pulse catch, 41
reading, 39

Digital outputs, configuring states, 40
Dimensions, CPU, 2
DIN rail mounting, 16
Diode suppression, 20
DIP switch settings, PC/PPI cable, 6, 223

Index

441

DIP switches
RTD, 368–369
thermocouple, 364

Direction, changing in HSC, 123
Disable interrupt instruction, 155
Disabling, high--speed counters, 123
Discrete modules, 3
Display panels

TD 200 text display, 4
TP070 touch panel, 4

Displaying
program elements, 51
program status, 238

Divergence control
example, 176
sequence control relay instructions, 176

Divide instruction, 140
Divide integer with remainder instruction (DIV), 142

example, 142
Double integer to ASCII instruction, 97
Double integer to integer instruction, 93
Double integer to real instruction, 93
Down counter instruction, 109
Downloading, program, 11, 34
Drawings, creating configuration, 49
Drive communication, calculating time requirement, 313
Drives. See MicroMaster drives

E
Editing, in RUN mode, 236
Editors

Function Block Diagram (FBD), 52
Ladder Logic (LAD), 52
Statement List (STL), 51

EEPROM, 34
error codes, 404
saving bit memory (M), 35
saving variable memory (V), 38, 413

Electric service life, 338
Electromagnetic

compatibility, S7--200, 339
emission standards, 339
immunity standards, 339

EM 231 analog input module
accuracy and repeatablity, 359
calibration, 353
configuration, 354
input block diagram, 356
input data word format, 356
installation, 358
specifications, 360

EM 231 RTD module
configuring, 368
connector terminals, 362
CPU compatibility, 362
selecting DIP switches, 368–369
specifications, 361
status indicators, 370
temperature ranges and accuracy, 371–372

EM 231 thermocouple module
basics, 363
configuring, 363
connector terminals, 362
CPU compatibility, 362
selecting DIP switches, 364
specifications, 361
status indicators, 365
temperature ranges and accuracy, 366–367

EM 232 analog output module
output block diagram, 358
output data word format, 357

EM 235 analog input/output module
accuracy and repeatablity, 359
calibration, 353
configuration, 355
input block diagram, 357
input data word format, 356
installation, 358
output block diagram, 358
output data word format, 357
specifications, 360

EM 241 Modem Module
block diagram, 385
configuration table, 293, 306
countries supported, 288
CPU Data Transfer Message Format, 310
Data transfers, 291
errors from instructions, 301
example, 303
features, 288
installing, 386
instructions, 298
International telephone line interface, 288
Messaging Telephone Number, 308
MOD_XFR instruction, 299
Modbus addresses, 290
Modbus RTU protocol, 289
Modem Expansion wizard, 294
MODx_CTRL instruction, 299
MODx_MSG instruction, 300
numeric paging, 290
paging, 290
password protection, 291
RJ11 jack, 288
security callback, 292
Short Message Service (SMS), 290
special memory locations, 304
specifications, 385
status LEDs, 294
STEP 7--Micro/WIN Interface, 289
text paging, 290

EM 253 Control Panel, 274–276

S7-200 Programmable Controller System Manual

442

EM 253 Position Module
ACCEL_TIME, 249
command byte, 283
configuration, 275
Configuration/Profile table, 278
configuring, 246
creating instructions, 286
DECEL_TIME, 249
diagnostics information, 275
displaying and controlling operation, 274
eliminating backlash, 256
EM 253 Control Panel, 274–276
error codes, 276
Features, 244
Input Active Levels, 247
Input Filter Times, 247
inputs and outputs, 244
instruction error codes, 276
instruction guidelines, 257
instructions, 257
jerk time, 250
jog parameters, 249
maximum and Start/Stop speeds, 248
measurement type, selecting, 246
module error codes, 277
motion commands, 284
Motion Control wizard, 246
motion profile, defining, 252
Negative Polarity, 247
Positive Polarity, 247
POSx_CFG, 268
POSx_CLR, 267
POSx_CTRL, 258
POSx_DIS, 266
POSx_GOTO, 260
POSx_LDOFF, 263
POSx_LDPOS, 264
POSx_MAN, 259
POSx_RSEEK, 262
POSx_RUN, 261
POSx_SRATE, 265
profile mode of operation, 252
profile steps, 253
profiles, 252
programming, 245
Pulse and Directional Outputs, 247
Reference point (RP), 250
Reference Point Seek (RS seek), 250
response to physical inputs, 248
RP seek modes, 253–257
RP Seek Sequence, 251
sample program to control module, 286
examples, 269–273
special memory, 281
SS_SPEED, 248
wiring diagram, 391–392

EM 277 PROFIBUS--DP module
additional features, 380
address switches, 374
as DP slave, 375
configuration file, 381–382
configuration options, 377
configuring, 376–377
CPU compatibility, 374
data exchange mode, 378
DP protocol, 375
LED status indicators, 380
on PROFIBUS network, 375
special memory bytes, 379
specifications, 373
status LEDs, 374

Embeded variables, in text and SMS messages, 291
EN, 55, 63
Enable in (EN), 55
Enable interrupt instruction, 155
Enable out (ENO), 55
Encode instruction, 105

example, 105
End character detection, 84
End instruction, 168
ENO, 55, 63
Entering, instruction, 9
Environmental specifications

operating, 339
transport and storage, 339

Equipment requirements, 3
Error codes, 404

compile rule violations, 406
EM 253 Position module, 276
fatal errors, 404
instructions for EM 253 Position Module, 276
module errors for EM 253 Position Module, 277
run--time programming problems, 405
USS protocol instructions, 323

Errors
EM 241 Modem module configuration, 293
EM 241 Modem module instructions, 301
fatal, 57
handling, 56
I/O, 57
Modbus Slave Protocol execution, 335
network read and write instructions, 75
non--fatal, 56
PID loop, 151
program compile, 56
program execution, 57
run--time, 57
SMB1, execution errors, 408
viewing, 56

Index

443

Examples
add to table instruction, 189
AND instruction, 164
ASCII to hex instruction, 99
block move instruction, 167
calculating power requirements, 399
compare instructions, 89
conditional end instruction, 169
conditional transitions, 178
contact instructions, 67
convergence of control streams, 177
count down counter instruction, 108
count up/down counter instruction, 108
decode instructions, 105
decrement instruction, 144
DIV instruction, 142
divergence of control streams, 176
EM 241 Modem module, 303
encode instructions, 105
first--in--first--out instruction, 190
for--next loop instructions, 171
Freeport mode, 222
high--speed counter instructions, 124
high--speed counter modes, 114
IEC counter instructions, 109
IEC timers, 201
increment instruction, 144
integer math instructions, 141
integer to ASCII instruction, 99
interrupt instructions, 161
interrupt routines, 49
invert instructions, 162
jump to label instruction, 172
last--in--first--out instruction, 191
logic stack instructions, 71
memory fill instruction, 192
Modbus Slave Protocol, programming, 336
move instructions, 183
MUL instruction, 142
multiple--segment PTO, 138
network read/write instructions, 77
off--delay timer instruction, 199
on--delay timer instruction, 198
OR instruction, 164
PID loop instruction, 153
PID program, 152
Position module, 269–273
pulse width modulation (PWM), 132
real math instructions, 141
real to ASCII instruction, 99
receive instructions, 86
reset instruction, 68
retentive on--delay timer instruction, 200
return from subroutine instructions, 205
rotate instructions, 180
segment instruction, 95
sequence control relay instructions, 173
set instruction, 68
shift instructions, 180
shift register bit instruction, 182
SIMATIC counters, 108

SIMATIC timers, 198, 199, 200
single--segment PTO, 136
standard conversion instructions, 94
stop instruction, 169
subroutine, 49
subroutine call, 204
subroutine instructions, 205
swap instructions, 183

Examples
table find instruction, 195
timed interrupt routine, 161
token--passing network, 229
transmit instructions, 86
USS protocol program, 322
watchdog reset instruction, 169
XOR instruction, 164

Exclusive OR instruction, 163
example, 164

Executing
control logic, 22
instructions, 23

Execution error codes, USS protocol instructions, 323
Execution errors, 57
Execution times, STL instructions, 425
Expansion cable, 395
Expansion I/O, 31

bus errors (SMW98), 417
Expansion modules, 3

addressing I/O points, 31
dimensions, 16
ID and error register, 411
installing, 16
order numbers, 421
power requirements, 15, 399
removing, 17

Expansion modules (EM)
analog

input specifications, 351
order numbers, 351, 361
output specifications, 352
specifications, 351
wiring diagrams, 352

digital, order numbers, 346
discrete

general specifications, 346
input specifications, 346
output specifications, 347
wiring diagrams, 349–350

F
Fatal errors, 57

viewing, 404
FBD editor

conventions, 54
description, 52
features, 52

Features
CPU modules, 64, 461
EM 241 Modem module, 288
EM 253 Position Module, 244

S7-200 Programmable Controller System Manual

444

Fill instruction, 192
Filtering

analog inputs, 42
digital inputs, 41

Find first character within string instruction, 187
Find instruction, 193
Find string within string instruction, 187
First--in--first--out instruction, 190

example, 190
Floating point values, 29, 149
For--next loop instructions

example, 171
for, 170
next, 170

Forcing values, 239, 240
Forward--acting loops, 150
Freeport communication, 409

SMB30 and SMB130, 412
Freeport control registers (SMB30 and SMB130), 412
Freeport mode

changing from PPI, 80
character interrupt control, 85
definition, 158
enabling, 79
example, 222
parity error (SMB3), 409
receive character (SMB2), 409
RS--232 standard, 223
transmit and receive instructions, 79
user--defined protocols, 222

Function Block Diagram. See FBD editor
Functions, Modbus, 332

G
Gap update factor (GUF), 228
Germanisher Lloyd (GL) Maritime Agency, 338
Get port address instruction, 88
Global variable table, 58
Grounding, 18, 19
GSD file, EM 277 PROFIBUS--DP, 381–382
Guidelines

designing a Micro PLC system, 48
grounding and circuit, 18
grounding and wiring, 19
high--vibration environment, 17
installation, 14
instructions for EM 253 Position Module, 257
interrupt routines, 50, 157
isolation, 18
modifying pointers for indirect addressing, 32
network configuration, 218
subroutines, 50
suppression circuits, 20
vertical installation, 17
wiring, 18

H
Handling

complex communications, 231
errors, 56

Hardware, troubleshooting, 241
Hex to ASCII instruction, 96
High potential isolation test, 339
High--speed counter (HSC) instruction, 111

example, 124
High--speed counter definition (HDEF) instruction, 111
High--speed counters, 46

addressing, 119
assigning interrupts, 119
changing current value, 123
changing direction, 123
changing preset value, 123
control byte, 112
defining modes and inputs, 113
disabling, 123
initialization sequence, 120
interrupts, 113
memory area, addressing, 27
modes, 114, 434
programming, 112
reset and start operations, 116
selecting active state, 117
setting control byte, 118
setting current and preset values, 118
SMB36--SMB65, 413
status byte, 119
timing diagrams, 114–116
understanding, 112

High--speed pulse output
changing pulse width, 132
operation, 125
SMB66--SMB85, 415

High--speed pulse outputs, 46
Highest station address (HSA), 228
HMI devices, 221
HSC, 46
HSC0, HSC1, HSC2 register (SMB36 to SMB65), 413
HSC3, HSC4, HSC5 register (SMB131 to SMB165), 417

I
I memory, 25
I/O, reading and writing, 39
I/O addressing, 31
I/O errors, 57
I/O expansion cable, installation, 395
I/O interrupt queue, 159
I/O interrupts, 158
I/O module identification and error register, 411
I/O status (SMB5), 410
Idle line detection, 82

Index

445

IEC 1131--3 instruction set, 53
IEC counter instructions

down counter, 109
example, 109
up counter, 109
up/down counter, 109

IEC timer instructions, 201
example, 201

Immediate contact instruction, 66
Increment instruction, 144

example, 144
Incrementing pointers, 32
Indirect addressing, 32

& and *, 32
modifying pointers, 32

Initial values, assigning, 58
Initializing

high--speed counters, 120
Modbus Protocol, 330
PTO for multiple--segment operation, 135
PTO for single--segment operation, 134
PWM output, 132

Input Active Levels, EM 253 Position Module, 247
Input block diagram

EM 231, 356
EM 235, 357

Input configurations, editing defaults in EM 253 Position
Module, 247

Input data word format
EM 231, 356
EM 235, 356

Input Filter Times, EM 253 Position Module, 247
Input image register, 23
Input simulators, 398
Input specifications

analog expansion module, 351
CPU modules, 341
discrete expansion module, 346

Inputs, 22, 23
calibration, 353
conditional/unconditional, 55
CPU module, 343
discrete expansion module, 348
EM 253 Position Module, 244
filtering analog, 42
filtering digital, 41
high--speed counters, 113
start and reset (HSC), 116

Installation
clearance requirements, 14
CPU module, 16
electrical noise, 14
EM 231, 358
EM 235, 358
expansion module, 16
guidelines, 14

heat--generating devices, 14
high voltage devices, 14
I/O expansion cable, 395
memory cartridge, 36
mounting requirements, 16
power supply, 15
S7--200, 15
STEP 7--Micro/WIN, 4

Instruction, entering, 9
Instruction error codes, EM 253 Position Module, 276
Instruction Libraries, 60
Instruction sets

IEC 1131--3, 53
selecting, 53
SIMATIC, 53

Instruction tree, 9, 51
Instructions

add, 140
add to table, 189
AENO, 70
AND, 163
AND load, 70
ASCII to hex, 96
attach interrupt, 155
BCD to integer, 93
bit logic, 66
block move byte, 167
block move double word, 167
block move word, 167
byte to integer, 93
call subroutine, 203
compare, 55
concatenate string, 184
conditional end, 168
conditional return from interrupt, 155
conditional return from subroutine, 203
conditional sequence control relay end, 173
convert double integer to string, 100, 103
convert integer to string, 100, 103
convert real to string, 100, 103
convert substring to double integer, 100, 103
convert substring to integer, 100, 103
convert substring to real, 100, 103
copy string, 184
copy substring from string, 186
cosine, 143
count down counter, 106
count up counter, 106
count up/down counter, 106
creating motion, 286
decode, 105
decrement, 144
detach interrupt, 155
disable interrupt, 155
divide, 140
divide integer with remainder (DIV), 142
double integer to ASCII, 97
double integer to integer, 93

S7-200 Programmable Controller System Manual

446

Instructions (continued)
double integer to real, 93
down counter, 109
EM 241 Modem module, 298
EM 253 Position Module, 257
enable interrupt, 155
encode, 105
End, 168
exclusive OR, 163
executing, 23
find first character within string, 187
find string within string, 187
first--in--first--out, 190
for, 170
get port address, 88
hex to ASCII, 96
high--speed counter (HSC), 111
high--speed counter definition (HDEF), 111
high--speed pulse output (PLS), 125
immediate contact, 66
increment, 144
integer to ASCII, 96
integer to BCD, 93
integer to byte, 93
integer to double integer, 93
interrupt, 155–161
invert byte, 162
invert double word, 162
invert word, 162
jump to label, 172
label, 172
last--in--first--out, 190
load sequence control relay, 173
load stack, 70
logic pop, 70
logic push, 70
logic read, 70
loop control (PID), 145
MBUS_INIT, 333
MBUS_SLAVE, 335
memory fill, 192
Modbus Slave Protocol, 332
MODx_CTRL, 299
MODx_MSG, 300
MODx_XFR, 299
move byte, 165
move byte immediate read, 166
move byte immediate write, 166
move double word, 165
move real, 165
move word, 165
multiply, 140
multiply integer to double integer (MUL), 142
natural exponential, 143
natural logarithm, 143
negative transition, 66
network read, 74
network write, 74
next, 170
no operation, 68
NOT, 66

off--delay timer (TOF), 196, 201
on--delay timer (TON), 196, 201
OR, 163
OR load, 70
output, 68
output immediate, 68
PID loop, 145
positive transition, 66
POSx_CFG, 268
POSx_CLR, 267
POSx_CTRL, 258
POSx_DIS, 266
POSx_GOTO, 260
POSx_LDOFF, 263
POSx_LDPOS, 264
POSx_MAN, 259
POSx_RSEEK, 262
POSx_RUN, 261
POSx_SRATE, 265
pulse output (PLS), 125
pulse timer (TP), 201
pulse train output (PTO), 125
pulse width modulation (PWM), 125
read real--time clock, 73
real to ASCII, 98
real--time clock, 73
receive, 79
reset, 68
reset dominant bistable, 72
reset immediate, 68
retentive on--delay timer (TONR), 196
return from interrupt, 155
return from subroutine, 203
rotate left byte, 179
rotate left double word, 179
rotate left word, 179
rotate right byte, 179
rotate right double word, 179
rotate right word, 179
round, 94
segment, 95
sequence control relay end, 173
sequence control relay transition, 173
set, 68
set dominant bistable, 72
set immediate, 68
set port address, 88
set real--time clock, 73
shift left byte, 179
shift left double word, 179
shift left word, 179
shift register bit, 181
shift right byte, 179
shift right double word, 179
shift right word, 179
sine, 143
square root, 143
standard contact, 66
stop, 168
string length, 184
subtract, 140

Index

447

Instructions (continued)
swap bytes, 183
table, 190–195
table find, 193
tangent, 143
transmit, 79
truncate, 94
up counter, 109
up/down counter, 109
USS protocol, 314
watchdog reset, 168
without outputs, 55

Instructions, quick reference guide, 435
Integer math instructions, example, 141
Integer to ASCII instruction, 96

example, 99
Integer to BCD instruction, 93
Integer to byte instruction, 93
Integer to double integer instruction, 93
Integral term, PID algorithm, 147
Intelligent modules, 3

CPUs that support, 303
status (SMB200 to SMB549), 419

Intercharacter timer, 84
International standards, 338
Interrupt events

priority, 160
quick reference, 432
types, 156

Interrupt instructions
attach interrupt, 155
conditional return from interrupt, 155
detach interrupt, 155
disable interrupt, 155
enable interrupt, 155
example, 161

Interrupt routines, 23, 39
calling subroutines from, 158
communication port, 158
example, 49
guidelines, 50, 157
I/O, 158
priority, 159
queues, 159
rising/falling edge, 158
sharing data with main program, 157
system support, 157
time--based, 158
types supported by S7--200, 158
understanding, 157

Interrupts
assigning to HSC, 119
high--speed counters, 113

Invert byte instruction, 162
Invert double word instruction, 162
Invert instructions, example, 162
Invert word instruction, 162

Isolation
network, 218
wiring guidelines, 18

J
Jerk Time, EM 253 Position Module, 250
Jog parameters

EM 253 Position Module, 249
jog operation, 249

JOG_INCREMENT, EM 253 Position Module, 249
JOG_SPEED, EM 253 Position Module, 249
Jump instructions

jump to label, 172
label, 172

Jump to label instruction, 172
example, 172

L
L memory, 28
Label instruction, 172
LAD editor

conventions, 54
description, 52
features, 52

Ladder Logic. See LAD editor
Last--in--first--out instruction, 190

example, 191
LEDs, EM 241 Modem module, 294
Libraries, Instruction, 60
Lloyds Register of Shipping (LRS) Maritime Agency, 338
Load sequence control relay instruction, 173
Load stack instruction, 70
Loading

new current value in HSC, 123
new preset value in HSC, 123

Local I/O, 31
Local memory area (L), 28
Local variable table, 51, 59
Logic pop instruction, 70
Logic push instruction, 70
Logic read instruction, 70
Logic stack instructions

AENO, 70
AND load, 70
example, 71
load stack, 70
logic pop, 70
logic push, 70
logic read, 70
OR load, 70

Logic, control, 22
Logical connections

MPI, 212
PPI, 211

S7-200 Programmable Controller System Manual

448

Logical operations instructions
AND, OR, XOR, 163
invert, 162

Loop control
(PID) instructions, 145–156
adjusting bias, 150
converting inputs, 149
converting outputs, 150
error conditions, 151
forward/reverse, 150
modes, 151
program example, 152–154
ranges/variables, 150
selecting type, 148

Loop inputs
converting, 149
normalizing, 149

Loop outputs, converting to scaled integer, 150
Loop table, 152
Lost password, 45

M
M memory, 25
Manual mode, PID loop, 151
Manuals, order numbers, 422
Mapping address to S7--200, Modbus, 331
Maritime Agency approvals, 338
Master devices, 208
Math instructions

add, 140
decrement, 144
divide, 140
divide integer with remainder (DIV), 142
increment, 144
multiply, 140
multiply integer to double integer (MUL), 142
subtract, 140

MAX_SPEED, EM 253 Position Module, 248
Maximum character count, 85
MBUS_INIT instruction, 333
MBUS_SLAVE instruction, 335
Measurement type, EM 253 Position Module, 246
Memory

accessing, 24
CPU, 2
restoring from EEPROM, 35
retentive, 41

Memory areas
clearing, 45
operand ranges, 65

Memory cartridge, 34, 36, 395
copying program, 36
error codes, 404
installing, 36
order number, 422
restoring program, 37

Memory fill instruction, 192
example, 192

Memory functions
block move instructions, 167
move instructions, 165
rotate instructions, 179
shift instructions, 179
shift register bit instruction, 181
swap instructions, 183

Memory ranges
CPU modules, 64, 461
quick reference, 433

Memory retention, 34–37
battery cartridge (optional), 34
EEPROM, 34–36
power on, 35–37
ranges, 41

Message timer, 84
Messages, token--passing network, 229
Messaging Telephone Number Format, EM 241 Modem

module, 308
Micro PLC system, designing, 48
Micro/WIN. See STEP 7--Micro/WIN
MicroMaster drive

communication, 312
connecting, 324
controlling, 311
reading and writing, 319, 320

MM3 drive
connecting, 324
setup, 325

MM4 drive
connecting, 327
setup, 328

Modbus Protocol Library, 329
Modbus RTU Protocol, 332

EM 241 Modem module, 289
functions supported by Modem module, 289
mapping addresses, 290

Modbus Slave Protocol
addresses, 331
configuring symbol table, 331
CRC table, 330
example of programming, 336
execution error codes, 335
execution time, 330
functions supported, 332
initialization, 330
instructions, 332
mapping aadresses to S7--200, 331
MBUS_INIT, 333
MBUS_SLAVE, 335
resources used, 330
special memory, 330

Mode switch, 37
Modem, with PC/PPI cable, 226
Modem Expansion Wizard, EM 241 Modem module, 294

Index

449

Modem module, 385
configuration table, 293
CPU Data Transfer Message Format, 310
data transfers, 291
errors from instructions, 301
example, 303
features, 288
instructions, 298
International telephone line interface, 288
Messaging Telephone Number, 308
Modem Expansion wizard, 294
MODx_CTRL instruction, 299
MODx_MSG instruction, 300
MODx_XFR instruction, 299
numeric paging, 290
paging, 290
password protection, 291
RJ11 jack, 288
security callback, 292
Short Message Service, 290
SMS messaging, 290
status LEDs, 294
Text Message Format, 309
text paging, 290

Modes
high--speed counters, 113
PID loop, 151

Modifying, pointers, 32
Module error codes, EM 253 Position Module, 277
MODx_CTRL instruction, EM 241 Modem module, 299
MODx_XFR instruction, EM 241 Modem module, 299
MODx_MSG instruction, EM 241 Modem module, 300
Monitoring, 11

process variables, 59
program status, 238
variables with status chart, 239

Motion commands, EM 253 Position Module, 284
Motion Control wizard, 246

PTO/PWM, 125
Motion Profile, defining for EM 253 Position Module, 252
Motors, torque speed curve, typical, 248
Mounting

clearance requirements, 16
dimensions, 16
DIN rail, 16
panel, 16

Move byte immediate read instruction, 166
Move byte immediate write instruction, 166
Move byte instruction, 165
Move double word instruction, 165
Move instructions, example, 183
Move real instruction, 165
Move word instruction, 165
MPI cable, 4
MPI network

greater than 187.5 Kbaud, 214
less than 187.5 Kbaud, 214

MPI protocol, 212, 230
Multi--master PPI network, 213
Multiple--segment operation, initializing PTO, 135
Multiply instruction, 140

Multiply integer to double integer instruction (MUL), 142
example, 142

N
National standards, 338
Natural exponential instruction, 143
Natural logarithm instruction, 143
Navigation bar, 51
Negative Polarity, EM 253 Position Module, 247
Negative transition instruction, 66
Nesting, subroutines, 203
Network

addresses, 208
baud rate, 218
biasing cable, 220
building, 218
cable, 218, 219
calculating distances, 218
communications port, 219
communications setup, 208–219
complex, 231
complex PPI, 213
components, 218–221
configuration guidelines, 218
CP card, 220
device addresses, 211
gap update factor (GUF), 228
highest station address (HSA), 228
HMI devices, 221
isolation, 218
master devices, 208
modem, 226
MPI, greater than 187.5 Kbaud, 214
MPI, less than 187.5 Kbaud, 214
multi--master PPI, 213
optimizing performance, 228
PC/PCI cable, 220
PROFIBUS--DP, 215
repeaters, 218
sample configurations, 213, 214, 215
single--master PPI, 213
slave devices, 208
terminating cable, 220
token rotation time, 228
transmission rate, 218

Network read instruction, 74, 75
error codes, 75
example, 77

Network write instruction, 74, 75
error codes, 75
example, 77

Next instruction, 170
example, 171

Nippon Kaiji Kyokai (NK) Maritime Agency, 338
No operation instruction, 68
Noise rejection, input filter, 41
Non--fatal errors, 56
Normalizing, loop inputs, 149
NOT instruction, 66
Null modem adapter, 226

S7-200 Programmable Controller System Manual

450

Number, representation, 29
Numbers, representation, 24, 30
Numeric instructions

cosine, 143
natural exponential, 143
natural logarithm, 143
sine, 143
square root, 143
tangent, 143

Numeric paging, EM 241 Modem module, 290

O
Off--delay timer instruction (TOF), 196, 201

example, 199
On--delay timer instruction (TON), 196, 201

example, 198
OP3, OP7, OP17, order numbers, 423
Opening, program editor, 9
Operand ranges, 65
Operation modes, CPU

changing, 37
Freeport protocol, 222
status bits, 408

Operator interfaces, order number, 423
Operator stations, specifying, 48
Optimizing, network performance, 228
OR instruction, 163

example, 164
OR load instruction, 70
Order, of interrupt events, 160
Order numbers, 421

CP 243--2, 393
CPU modules, 340
digital expansion module, 346
analog expansion module, 351, 361
input simulators, 398
PC/PPI cable, 396

Output block diagram
EM 232, 358
EM 235, 358

Output configurations, editing default in Position Module,
247

Output data word format
EM 232, 357
EM 235, 357

Output image register, 22
Output immediate instruction, 68
Output instruction, 68
Output specifications

analog expansion module, 352
CPU modules, 342
discrete expansion module, 347

Outputs, 22
configuring states, 40
CPU module, 343
discrete expansion module, 348
EM 253 Position Module, 244
instructions without, 55

Outputs and relays, 20

P
Paging, Modem module, 290
Panel mounting, 16
Parameters

in subroutines, 203
types for subroutines, 204

Parity errors
SMB3, 409
SMB30 and SMB130, 85

Password
clearing, 45
configuring, 44
CPU functions, 44
recovering lost, 45
restricting access, 45

Password protection, EM 241 Modem module, 291
PC/PPI cable, 4, 6

baud rate switch selections, 226, 397
Freeport mode, 223
order number, 396
RS--232 standard, 223
selecting, 220
specifications, 396
with modem, 226

Peer--to--peer communications, 213–214
Performance, optimizing network, 228
Permanent program storage, 38
Physical Inputs, response of EM 253 Position Module,

248
PID loop instruction, 145

alarm checking, 151
automatic mode, 151
converting loop inputs, 149
converting loop outputs to scaled integer, 150
derivative term, 148
error conditions, 151
example, 153
forward--acting, 150
integral term, 147
loop control, 148
loop control types, 148
loop table, 152
manual mode, 151
modes, 151
normalizing loop inputs, 149
program example, 152
proportional term, 147
ranges, 150
reverse--acting, 150
understanding, 146
variables, 150
wizard, 145

Pin assignment, communications port, 219
Pipelining, PTO pulses, 126
PLC Information dialog box, 56
Pointers, indirect addressing, 32

Index

451

Position module
ACCEL_TIME, 249
configuration, 275
Configuration/Profile table, 278
configuring, 246
creating instructions, 286
DECEL_TIME, 249
diagnostics information, 275
displaying and controlling operation, 274
eliminating backlash, 256
EM 253 Control Panel, 274–276
error codes, 276
Features, 244
Input Active Levels, 247
input and output configurations, 247
Input Filter Times, 247
inputs and outputs, 244
instruction error codes, 276
instruction guidelines, 257
instructions, 257
jerk time, 250
jog parameters, 249
MAX_SPEED, 248
measurement type, selecting, 246
module error codes, 277
motion commands, 284
Motion Control wizard, 246
motion profile, defining, 252
Negative Polarity, 247
Positive Polarity, 247
POSx_CFG, 268
POSx_CLR, 267
POSx_CTRL, 258
POSx_DIS, 266
POSx_GOTO, 260
POSx_LDOFF, 263
POSx_LDPOS, 264
POSx_MAN, 259
POSx_RSEEK, 262
POSx_RUN, 261
POSx_SRATE, 265
profile mode of operation, 252
profile steps, 253
profiles, 252
programming, 245
Pulse and Directional Outputs, 247
reference point, 250
reference point seek, 250
RP seek modes, 253–257
RP Seek Sequence, 251
sample program to control, 286
special memory, 281
SS_SPEED, 248

Positive Polarity, EM 253 Position Module, 247
Positive transition instruction, 66
POSx_CFG, 268

POSx_CLR, 267
POSx_CTRL, 258
POSx_DIS, 266
POSx_GOTO, 260
POSx_LDOFF, 263
POSx_LDPOS, 264
POSx_MAN, 259
POSx_RSEEK, 262
POSx_RUN, 261
POSx_SRATE, 265
Potientiometers, analog adjustment, 45
Power flow, subroutine parameter, 204
Power loss, retentive memory, 35, 41
Power requirements, 15

calculating, 399, 401
CPU, 399
expansion module, 399
sample, 400
table for calculating, 401

Power specifications, CPU modules, 341
Power supply, 6, 15
Power--on, memory retention, 35–37
PPI communications, changing to Freeport mode, 80
PPI protocol, 211, 230

complex network, 213
multi--master network, 213
single--master network, 213

Preset value
changing in HSC, 123
setting for HSC, 118

Priority
interrupt events, 160
interrupt routines, 159

Process image register, 39
Process--image input register (I), 25
Process--image output register (Q), 25
Processing, communication requests, 23
PROFIBUS protocol, 212, 230
PROFIBUS--DP

data consistency, 378
module (EM 277), 375
sample program, 383
standard communications, 374

PROFIBUS--DP network
cable specifications, 218
pin assignments, 219
repeaters, 218
S7--315--2 and EM 277, 215
STEP 7--Micro/WIN and HMI, 215

Profile mode of operation, EM 253 Position Module, 252
Profile of motion description, EM 253 Position Module,

252
Profile Steps, EM 253 Position Module, 253
Profile table, EM 253 Position Module, 278
Profile table values, PTO/PWM generators, 130

S7-200 Programmable Controller System Manual

452

Program
analog inputs, 22
basic elements, 49
compile errors, 56
copying to memory cartridge, 36
creating, 8
creating with STEP 7--Micro/WIN, 51
debugging features, 236
downloading, 11, 34
editing in RUN mode, 236
execution errors, 57
monitoring, 11
monitoring status, 238
PID example, 152
restoring from memory cartridge, 37
running, 11
saving, 11
sharing data with interrupt routines, 157
specifying number of scans, 240
status chart, 59
storage, 34–38
structuring, 49
subroutines, 50
uploading, 34

Program control instructions
basic program control, 168
conditional end, 168
for--next loop, 170
jump instructions, 172
sequence control relay (SCR), 173
stop, 168
watchdog reset, 168

Program editors, 51
conventions, 54
Function Block Diagram (FBD), 51
Ladder Logic (LAD), 51
opening, 9
selecting, 51
Statement List (STL), 51

Program, sample, controlling Position module, 286
Programming

EM 253 Position Module, 245
high--speed counters, 112

Programming cable, 4
Programming software, order numbers, 422
Proportional term, PID algorithm, 147
Protection circuit, 338
Protocol, communication

selecting, 211
user--defined, 222

Protocols, PROFIBUS--DP, 374
PTO/PWM functions, registers (WMB66 to SMB85), 415
PTO0, PTO1 Profile Definition Table (SMB166 to

SMB185), 418
Pulse and Directional Outputs, EM 253 Position Module,

247

Pulse catch, 41
Pulse catch feature, 42
Pulse output instruction (PLS), 125
Pulse outputs

high--speed, 46
pulse output instruction (PLS), 125
pulse train output instruction (PTO), 125
pulse width modulation instruction (PWM), 125

Pulse timer instruction (TP), 201
Pulse train output instruction (PTO), 46, 125

changing cycle time, 134
changing cycle time and pulse count, 135
changing pulse count, 135
configuring with SM memory, 128
cycle time, 126
examples, 136, 138
initializing for multiple--segment operation, 135
initializing for single--segment operation, 134
Motion Control wizard, 125
multiple--segment pipelining, 126
profile table values, 130
single--segment pipelining, 126
stepper motor control, 130
understanding, 126

Pulse width modulation instruction (PWM), 46, 125
changing pulse width, 132
configuring with SM memory, 128
cycle time, 127
example, 132
initializing, 132
Motion Control wizard, 125
profile table values, 130
stepper motor control, 130
understanding, 127
update methods, 127

Q
Q memory, 25
Queue overflow (SMB4), 409
Queues, interrupt routines, 159
Quick reference information, 431

R
Rail

dimensions, 16
mounting, 16

Ranges, PID loop, 150
Read real--time clock instruction, 73
Reading data from inputs, 22, 23
Real math instructions, example, 141
Real number values, 24, 29
Real to ASCII instruction, 98

example, 99

Index

453

Real--time clock instructions, 73
Receive instruction, 79

break detection, 83
end character detection, 84
end conditions, 82
example, 86
Freeport mode, 79
idle line detection, 82
intercharacter timer, 84
maximum character count, 85
message timer, 84
parity errors, 85
receiving data, 80
SMB86 to SMB94, SMB186 to SMB194, 416
start character detection, 82
start conditions, 82
user termination, 85

Receiving data, 85
Recovering, lost password, 45
Reference point (RP), 250

RP seek
RP_APPR_DIR, 250
RP_FAST, 250
RP_SEEK_DIR, 250
RP_SLOW, 250
seek direction, 250

RP seek sequence, modes, 251
RP_OFFSET, 251

Reinstalling, terminal block connector, 17
Relays, 20

service life, 338
Remote address, setting for S7--200, 210
Removing

CPU module, 17
expansion module, 17
memory cartridge, 36
terminal block connector, 17

Repeaters
network, 218
order numbers, 422

Requirements, Modbus Slave Protocol, 330
Reset, high--speed counter, 116
Reset dominant bistable instruction, 72
Reset immediate instruction, 68
Reset instruction, 68

example, 68
Resolution, timer, 197, 198
Restarting, after fatal error, 57
Restoring

data from EEPROM, 35
program from memory cartridge, 37

Retentive bit memory, 35
Retentive memory, 41
Retentive on--delay timer instruction (TONR), 196

example, 200
Return from interrupt instruction, 155
Return from subroutine instruction, 203

example, 205
Reverse--acting loops, 150
RJ11 jack, EM 241 Modem module, 288, 386

Rotate instructions, 179
example, 180
types, 179

Rotate left byte instruction, 179
Rotate left double word instruction, 179
Rotate left word instruction, 179
Rotate right byte instruction, 179
Rotate right double word instruction, 179
Rotate right word instruction, 179
Round instruction, 94
RP Seek mode options, 253–257

EM 253 Position Module, 253–257
RS--232 standard

Freeport mode, 223
PC/PPI cable, 223

RS--485 standard, 219
RTD module (EM 231), 368
RUN mode, 11, 37

editing program, 236
Run--time errors, 57
Run--time programming, error codes, 405
Running, program, 11

S
S memory, 29
S7--200

accessing data, 24
accumulators, 27
addressing, 24
analog inputs (AI), 29
analog outputs (AQ), 29
as slave device, 208, 375
baud rates, 208, 209–211
bit memory area (M), 25
C memory, 26
communications, 208
communications processing, 40
connecting with STEP 7--Micro/WIN, 7
constant values, 30
counter memory area (C), 26
CPU modules, 2
dimensions, 2
downloading, 34
electromagnetic compatibility, 339
environmental conditions, 339
error codes, 404
error handling, 56
executing control logic, 22
expansion modules, 3
grounding guidelines, 19
hardware troubleshooting, 241
high--speed counters, 27
I memory, 25
installation guidelines, 14
installing, 15
interrupt routines, 157
L memory, 28
local memory area (L), 28
M memory, 25
memory, 24

S7-200 Programmable Controller System Manual

454

S7--200 (continued)
memory cartridge, 36
memory ranges, 64, 461
modem, 226
network address, 209–211
password protection, 44
power supply, 6
process image register, 39
process--image input register (I), 25
process--image output register (Q), 25
programming conventions, 55
pulse catch feature, 42
Q memory, 25
reading and writing data, 22
response to fatal error, 404
retentive memory, 41
RS--232 standard, 223
RUN mode, 11, 37
S memory, 29
sample network configurations, 213, 214, 215
saving data, 34
scan cycle, 22, 39
sequence control relay memory area (S), 29
SM memory, 28
special features, 39
special memory area (SM), 28
status chart, 239
STOP mode, 11, 37
supported interrupt routines, 158
system components, 2
T memory, 26
technical specifications, 339
timer memory area (T), 26
troubleshooting, 241
uploading, 34
V memory, 25
variable memory area (V), 25
wiring diagrams, 343–345
wiring guidelines, 19

S7--200 system manual, order numbers, 422
S7--300, sample network configurations, 214
S7--400, sample network configurations, 214
Safety circuits, designing, 48
Sample program, 8
Saving

bit memory (M) to EEPROM, 35
program, 11
S7--200 program data, 34
value to EEPROM, 413
variable memory (V) to EEPROM, 38

Scaled integer, converting loop outputs, 150
Scan cycle, 22

specifying number, 240
timers, 198

Scan times: SMW22 to SMW26, 412
Security, passwords, 44
Security callback, EM 241 Modem module, 292
Seek Parameters, EM 253 Position Module, 250
Segment instruction, 95

example, 95

Selecting
communication protocol, 211
CP card, 220
instruction sets, 53
PC/PPI cable, 220
program editor, 51
RTD DIP switches, 368–369
S7--200 operating mode, 37
thermocouple DIP switches, 364

Sequence control relay end instruction, 173
Sequence control relay instructions

conditional sequence control relay end, 173
convergence control, 176
divergence control, 176
example, 173
load sequence control relay, 173
restrictions, 173
sequence control relay end, 173
sequence control relay transition, 173

Sequence control relay memory area (S), 29
Sequence control relay transition instruction, 173
Set dominant bistable instruction, 72
Set immediate instruction, 68
Set instruction, 68

example, 68
Set port address instruction, 88
Set real--time clock instruction, 73
Setting

baud rate, 208
control byte (HSC), 118
current and preset values for HSC, 118
date, 73
remote address for S7--200, 210
time, 73

Setting up
MM3 drive, 325
MM4 drive, 328

Seven--segment display, 95
Shift instructions

example, 180
types, 179

Shift left byte instruction, 179
Shift left double word instruction, 179
Shift register bit instruction, 181

example, 182
Shift right byte instruction, 179
Shift right double word instruction, 179
Shift right word instruction, 179
Short Message Service, EM 241 Modem module, 290
SIMATIC counter instructions

count down, 106
count up, 106
count up/down, 106
examples, 108

SIMATIC instruction set, 53
SIMATIC timer instructions, 196

example, 198, 199, 200
Simulators, order numbers, 423
Simulators, input, 398
Sine instruction, 143

Index

455

Single--master PPI network, 213
Single--segment operation

changing PTO cycle time, 134
changing PTO cycle time and pulse count, 135
changing PTO pulse count, 135
initializing PTO, 134

Slave device, 208
EM 277 PROFIBUS--DP, 375
S7--200, 375

SM memory, 28
Modbus Slave Protocol, 330
PTO/PWM operation, 128

SM0.2 retentive data lost memory bit, 35
SMB0: status bits, 408
SMB1: status bits, 408
SMB130: freeport control registers, 412
SMB131 to SMB165: HSC3, HSC4, HSC5 register, 417
SMB166 to SMB185: PTO0, PTO1 Profile Definition

Table, 418
SMB186 to SMB194: receive message control, 416
SMB2: freeport receive character, 409
SMB200 to SMB549: intelligent module status, 419
SMB28, SMB29 analog adjustment, 45, 412
SMB3: freeport parity error, 409
SMB30 and SMB130: freeport control registers, 412
SMB31 and SMW32: EEPROM write control, 413
SMB34 and SMB35: timed interrupt registers, 413
SMB36 to SMB65: HSC0, HSC1, HSC2 register, 413
SMB4: queue overflow, 409
SMB5: I/O status, 410
SMB6: CPU ID register, 410
SMB66 to SMB85: PTO/PWM registers, 415
SMB7: reserved, 410
SMB8 to SMB21: I/O module identification and error

registers, 411
SMB86 to SMB94, SMB186 to SMB194: receive

message control, 416
SMS, Modem module, 290
SMW22 to SMW26: scan times, 412
SMW98: expansion I/O bus errors, 417
Software debugging, 235
Special memory

EM 241 Modem module, 304
Modbus Slave Protocol, 330

Special memory area (SM), 28
analog adjustment potentiometers, 45

Special memory bits, 408–416
quick reference, 431

Special memory bytes, EM 277 PROFIBUS--DP, 379
Special memory locations, EM 253 Position Module, 281
Specifications

analog expansion module, 351
CPU module, 340
discrete expansion module, 346
EM 231 RTD, 361
EM 231 thermocouple, 361
EM 241 modem, 385
EM 277 PROFIBUS--DP, 373
Micro PLC system, 48
PC/PPI cable, 396

Square root instruction, 143

SS_SPEED, EM 253 Position Module, 248
Standard contact instruction, 66
Standard conversion instructions, 92
Standard DIN rail, 15
Standards, national and international, 338
Start, high--speed counter, 116
Start character detection, 82
Starting, STEP 7--Micro/WIN, 7
Statement List. See STL Editor
Status

displaying in LAD and FBD, 238
displaying in STL, 239
end of scan, 238
execution, 238
monitoring program, 238

Status byte, high--speed counter, 119
Status chart, 59

forcing values, 240
monitoring values, 239

Status LEDs
EM 231 RTD, 370
EM 231 thermocouple, 365
EM 253 position module, 389
EM 277 PROFIBUS--DP, 374, 380

STEP 7--Micro/WIN
as master device, 208
baud rate, 209–211
communication settings, 7
computer requirements, 3
connecting with S7--200, 7
CP card, 221
creating programs, 51
debugging tools, 235
equipment requirements, 3
installation, 4
instruction sets

IEC 1131--3, 53
selecting, 53
SIMATIC, 53

Interface for EM 241, 289
network address, 209–211
opening, 51
order numbers, 422
PC/PPI cable, 221
program editors, 51
programming package, 3
sample network configurations, 213–216
starting, 7

STEP 7--Micro/WIN 32 Instruction Libraries, 422
Stepper motor control, PTO/PWM generators, 130
STL editor

description, 51
features, 51

STL instructions
execution times, 425
quick reference, 435

Stop instruction, 168
example, 169

STOP mode, 11, 37
Storing, S7--200 program data, 34

S7-200 Programmable Controller System Manual

456

String instructions
concatenate string, 184
copy string, 184
copy substring from string, 186
find first character within string, 187
find string within string, 187
string length, 184

String length instruction, 184
Structuring, program, 49
Subroutine instructions

call subroutine, 203
conditional return from subroutine, 203
example, 205

Subroutines
calling from interrupt routines, 158
data types, 204
example, 49
guidelines, 50
nesting, 203
parameter types, 204
power flow parameter, 204
with parameters, 203

Subtract instruction, 140
Suppression circuits, 20
Surge suppression, 20
Swap bytes instruction, 183

example, 183
Symbol table, 58

addressing, 58
configure for Modbus, 331

Symbolic addressing, 58
Symbolic names, creating list, 49
Synchronous updates, PWM instruction, 127
System block, 50
System design, Micro PLC, 48
System support, for interrupt routines, 157

T
T memory, 26
Table find instruction, 193

example, 195
Table instructions

add to table, 189
first--in--first--out, 190
last--in--first--out, 190
memory fill, 192
table find, 193

Tangent instruction, 143
TD 200 text display unit

order number, 423
order number for manual, 422

Telephone line interface, international, EM 241 Modem
module, 288

Teleservice, 289
Temperature ranges

EM 231 RTD, 371–372
EM 231 thermocouple, 366–367

Terminal block connector
reinstalling, 17
removing, 17

Terminating, network cable, 220
Text Message Format, EM 241 Modem module, 309
Text paging, EM 241 Modem module, 290
Thermocouple module (EM 231)

basics, 363
configuring, 363
status indicators, 365
temperature ranges, 366–367

Time, setting, 73
Time--based interrupts, 158
Time--of--Day (TOD) clock, 73
Timed interrupt queue, 159
Timed interrupt routine, example, 161
Timed interrupts, time interval registers (SMB34,

SMB35), 413
Timer instructions

IEC
off--delay timer (TOF), 201
on--delay timer (TON), 201
pulse timer (TP), 201

interrupts, 158
SIMATIC

off--delay timer (TOF), 196
on--delay timer (TON), 196
retentive on--delay timer (TONR), 196

Timer memory area (T), 26
Timer resolution, 197, 198
TOD clock, 73
Token rotation time, 228

comparing, 230
Token--passing network, example, 229
Toolbars, 51
Torque Speeds, typical for motors, 248
TP--Designer for TP070, Version 1.0, 422
TP070 touch panel unit, 4

order number for manual, 422
order numbers, 423

Transition instructions, 66
Transmission rate, network, 218
Transmit instruction, 79

example, 86
Freeport mode, 79
transmitting data, 80

Troubleshooting
error codes, 404
fatal errors, 57
guide, 241
non--fatal errors, 56
S7--200 hardware, 241

Truncate instruction, 94

U
Unconditional inputs, 55
Up counter instruction, 109
Up/down counter instruction, 109
Updating, PWM waveform, 127
Uploading, program, 34
User Libraries, 60
User termination, 85
User--defined protocol, Freeport mode, 222

Index

457

USS protocol, requirements, 312
USS protocol instructions

execution errror codes, 323
guidelines for using, 314
sample program, 322
USS4_DRV_CTRL, 316
USS4_INIT, 315
USS4_RPM_x and USS4_WPM_x, 319, 320

USS Protocol Library, controlling MicroMaster drives, 311
USS4_DRV_CTRL instruction, 316
USS4_INIT instruction, 315
USS4_RPM_x instruction, 319, 320
USS4_WPM_x instruction, 319, 320

V
V memory, 25

assigning addresses, 58
restoring from EEPROM, 35
saving to EEPROM, 38

Variable memory area (V), 25
Variables

monitoring, 59
monitoring with status chart, 239
PID loop, 150
symbolic addressing, 58

Viewing, errors, 56

W
Watchdog reset instruction, 168

example, 169
Wiring, 18, 19
Wiring diagrams

analog expansion modules, 352
CPU inputs and outputs, 343
CPU modules, 343–345
discrete expansion modules, 349–350
EM 253 position module, 391–392

Wizards
Modem Expansion, 294
Motion Control, 246
PID, 145

Word access, 24
Word consistency, PROFIBUS, 378
Work zone location, EM 253 Position Module, 256

S7-200 Programmable Controller System Manual

458

S7-200 Programmable Controller System Manual

✄

To

SIEMENS ENERGY & AUTOMATION INC

ATTN: TECHNICAL COMMUNICATIONS M/S 519

3000 BILL GARLAND ROAD

PO BOX 1255

JOHNSON CITY TN USA 37605--1255

From

Name: _

Job Title: _

Company Name: _

Street: _

City and State: _

Country: _

Telephone: _

Please check any industry that applies to you:

❒ Automotive

❒ Chemical

❒ Electrical Machinery

❒ Food

❒ Instrument and Control

❒ Non-electrical Machinery

❒ Petrochemical

❒ Pharmaceutical

❒ Plastic

❒ Pulp and Paper

❒ Textiles

❒ Transportation

❒ Other ___________________________

S7-200 Programmable Controller System Manual

Additional comments:

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

Please give each of the following questions your own personal mark within a range from 1 (very
good) to 5 (very poor).

1. Do the contents meet your requirements?

2. Is the information you need easy to find?

3. Is the text easy to understand?

4. Does the level of technical detail meet your requirements?

5. Please rate the quality of the graphics and tables.

Remarks Form

Your comments and recommendations will help us to improve the quality and usefulness of our
publications. Please take the first available opportunity to fill out this questionnaire and return it
to Siemens.

S7-200 Memory Ranges and Features

Description CPU 221 CPU 222 CPU 224 CPU 226 CPU 226XM

User program size 2 Kwords 2 Kwords 4 Kwords 4 Kwords 8 Kwords

User data size 1 Kwords 1 Kwords 2.5 Kwords 2.5 Kwords 5 Kwords

Process-image input register I0.0 to I15.7 I0.0 to I15.7 I0.0 to I15.7 I0.0 to I15.7 I0.0 to I15.7

Process-image output register Q0.0 to Q15.7 Q0.0 to Q15.7 Q0.0 to Q15.7 Q0.0 to Q15.7 Q0.0 to Q15.7

Analog inputs (read only) ---- AIW0 to AIW30 AIW0 to AIW62 AIW0 to AIW62 AIW0 to AIW62

Analog outputs (write only) ---- AQW0 to AQW30 AQW0 to AQW62 AQW0 to AQW62 AQW0 to AQW62

Variable memory (V) VB0 to VB2047 VB0 to VB2047 VB0 to VB5119 VB0 to VB5119 VB0 to VB10239

Local memory (L)1 LB0 to LB63 LB0 to LB63 LB0 to LB63 LB0 to LB63 LB0 to LB63

Bit memory (M) M0.0 to M31.7 M0.0 to M31.7 M0.0 to M31.7 M0.0 to M31.7 M0.0 to M31.7

Special Memory (SM)

Read only

SM0.0 to
SM179.7

SM0.0 to SM29.7

SM0.0 to
SM299.7

SM0.0 to SM29.7

SM0.0 to
SM549.7

SM0.0 to SM29.7

SM0.0 to
SM549.7

SM0.0 to SM29.7

SM0.0 to
SM549.7

SM0.0 to SM29.7

Timers

Retentive on-delay 1 ms

10 ms

100 ms

On/Off delay 1 ms

10 ms

100 ms

256 (T0 to T255)

T0, T64

T1 to T4, and
T65 to T68

T5 to T31, and
T69 to T95

T32, T96

T33 to T36, and
T97 to T100

T37 to T63, and
T101 to T255

256 (T0 to T255)

T0, T64

T1 to T4, and
T65 to T68

T5 to T31, and
T69 to T95

T32, T96

T33 to T36, and
T97 to T100

T37 to T63, and
T101 to T255

256 (T0 to T255)

T0, T64

T1 to T4, and
T65 to T68

T5 to T31, and
T69 to T95

T32, T96

T33 to T36, and
T97 to T100

T37 to T63, and
T101 to T255

256 (T0 to T255)

T0, T64

T1 to T4, and
T65 to T68

T5 to T31, and
T69 to T95

T32, T96

T33 to T36, and
T97 to T100

T37 to T63, and
T101 to T255

256 (T0 to T255)

T0, T64

T1 to T4, and
T65 to T68

T5 to T31, and
T69 to T95

T32, T96

T33 to T36, and
T97 to T100

T37 to T63, and
T101 to T255

Counters C0 to C255 C0 to C255 C0 to C255 C0 to C255 C0 to C255

High-speed counter HC0, HC3, HC4,
and HC5

HC0, HC3, HC4,
and HC5

HC0 to HC5 HC0 to HC5 HC0 to HC5

Sequential control relays (S) S0.0 to S31.7 S0.0 to S31.7 S0.0 to S31.7 S0.0 to S31.7 S0.0 to S31.7

Accumulator registers AC0 to AC3 AC0 to AC3 AC0 to AC3 AC0 to AC3 AC0 to AC3

Jumps/Labels 0 to 255 0 to 255 0 to 255 0 to 255 0 to 255

Call/Subroutine 0 to 63 0 to 63 0 to 63 0 to 63 0 to 127

Interrupt routines 0 to 127 0 to 127 0 to 127 0 to 127 0 to 127

Positive/negative transitions 256 256 256 256 256

PID loops 0 to 7 0 to 7 0 to 7 0 to 7 0 to 7

Port Port 0 Port 0 Port 0 Port 0, Port 1 Port 0, Port 1

1 LB60 to LB63 are reserved by STEP 7--Micro/WIN, version 3.0 or later.

STL Page

= 68

+D 140

--D 140

* D 140

/ D 140

+I 140

--I 140

=I 68

* I 140

/ I 140

+R 140

--R 140

*R 140

/R 140

A 66

AB < = 89

AB = 89

AB > 89

AB< 89

AB > = 89

AB <> 89

AD < 89

AD < = 89

AD = 89

AD > 89

AD > = 89

AD <> 89

AENO 70

AI 66

ALD 70

AN 66

ANDB 163

ANDD 163

ANDW 163

ANI 66

AR= 89

AR < 89

AR<= 89

AR > 89

AR>= 89

AR <> 89

AS= 91

AS<> 91

ATCH 155

ATH 96

ATT 189

AW < 89

AW < = 89

STL Page

AW= 89

AW > 89

AW > = 89

AW <> 89

BCDI 92

BIR 166

BIW 166

BMB 167

BMD 167

BMW 167

BTI 92

CALL 203

CFND 187

COS 143

CRET 203

CRETI 155

CSCRE 173

CTD 106

CTU 106

CTUD 106

DECB 144

DECD 144

DECO 105

DECW 144

DISI 155

DIV 142

DTA 96

DTCH 155

DTI 92

DTR 92

DTS 100

ED 66

ENCO 105

END 168

ENI 155

EU 66

EXP 143

FIFO 190

FILL 192

FND < 193

FND <> 193

FND = 193

FND > 193

FOR 170

GPA 88

HDEF 111

HSC 111

HTA 96

STL Page

IBCD 92

INCB 144

INCD 144

INCW 144

INVB 162

INVD 162

INVW 162

ITA 96

ITB 92

ITD 92

ITS 100

JMP 172

LBL 172

LD 66

LDB <= 89

LDB = 89

LDB >= 89

LDB > 89

LDB < 89

LDB <> 89

LDD >= 89

LDD < 89

LDD <= 89

LDD = 89

LDD > 89

LDD <> 89

LDI 66

LDN 66

LDNI 66

LDR= 89

LDR < 89

LDR<= 89

LDR > 89

LDR>= 89

LDR <> 89

LDS 70

LDS= 91

LDS<> 91

LDW <= 89

LDW < 89

LDW = 89

LDW > 89

LDW >= 89

LDW <> 89

LIFO 190

LN 143

LPP 70

LPS 70

STL Page

LRD 70

LSCR 173

MOVB 165

MOVD 165

MOVR 165

MOVW 165

MUL 142

NEXT 170

NETR 74

NETW 74

NOT 66

O 66

OB = 89

OB > = 89

OB > 89

OB < 89

OB < = 89

OB <> 89

OD < 89

OD < = 89

OD = 89

OD > 89

OD > = 89

OD <> 89

OI 66

OLD 70

ON 66

ONI 66

OR= 89

OR < 89

OR<= 89

OR > 89

OR >= 89

OR <> 89

ORB 163

ORD 163

ORW 163

OS= 91

OS<> 91

OW < 89

OW < = 89

OW = 89

OW > 89

OW > = 89

OW <> 89

PID 145

PLS 125

R 68

STL Page

RCV 79

RI 68

RLB 179

RLD 179

RLW 179

ROUND 92

RRB 179

RRD 179

RRW 179

RTA 96

RTS 100

S 68

SCAT 184

SCPY 184

SCRE 173

SCRT 173

SEG 92

SFND 187

SHRB 181

SI 68

SIN 143

SLB 179

SLD 179

SLEN 184

SLW 179

SPA 88

SQRT 143

SRB 179

SRD 179

SRW 179

SSCPY 186

STD 100

STI 100

STOP 168

STR 100

SWAP 183

TAN 143

TODR 73

TODW 73

TOF 196

TON 196

TONR 196

TRUNC 92

WDR 168

XMT 79

XORB 163

XORD 163

XORW 163XORW 163XORW 163

	Title
	Preface
	Contents
	Ch1 Product Overview
	S7- 200 CPU
	S7- 200 Expansion Modules
	STEP 7-- Micro/WIN Programming Package
	Communications Options
	Display Panels

	Ch2 Getting Started
	Connecting the S7- 200 CPU
	Creating a Sample Program
	Downloading the Sample Program
	Placing the S7- 200 in RUN Mode

	Ch3 Installing the S7-200
	Guidelines for Installing S7- 200 Devices
	Installing and Removing the S7- 200 Modules
	Guidelines for Grounding and Wiring

	Ch4 PLC Concepts
	Understanding How the S7- 200 Executes Your Control Logic
	Accessing the Data of the S7- 200
	Understanding How the S7- 200 Saves and Restores Data
	Storing Your Program on a Memory Cartridge
	Selecting the Operating Mode for the S7- 200 CPU
	Using Your Program to Save V Memory to the EEPROM
	Features of the S7- 200

	Ch5 Programming Concepts, Conventions, and Features
	Guidelines for Designing a Micro PLC System
	Basic Elements of a Program
	Using STEP 7-- Micro/WIN to Create Your Programs
	Choosing Between the SIMATIC and IEC 1131-- 3 Instruction Sets
	Understanding the Conventions Used by the Program Editors
	Using Wizards To Help You Create Your Control Program
	Handling Errors in the S7- 200
	Assigning Addresses and Initial Values in the Data Block Editor
	Using the Symbol Table for Symbolic Addressing of Variables
	Using Local Variables
	Using the Status Chart to Monitor Your Program
	Creating an Instruction Library
	Features for Debugging Your Program

	Ch6 S7-200 Instruction Set
	Conventions Used to Describe the Instructions
	S7- 200 Memory Ranges and Features
	Bit Logic Instructions
	Clock Instructions
	Communications Instructions
	Compare Instructions
	Conversion Instructions
	Counter Instructions
	High- Speed Counter Instructions
	Pulse Output Instruction
	Math Instructions
	Proportional/Integral/Derivative (PID) Loop Instruction
	Interrupt Instructions
	Logical Operations Instructions
	Move Instructions
	Program Control Instructions
	Shift and Rotate Instructions
	String Instructions
	Table Instructions
	Timer Instructions
	Subroutine Instructions

	Ch7 Communicating over a Network
	Understanding the Basics of S7- 200 Network Communications
	Selecting the Communications Protocol for Your Network
	Installing and Removing Communications Interfaces
	Building Your Network
	Creating User- Defined Protocols with Freeport Mode
	Using Modems and STEP 7-- Micro/WIN with Your Network
	Advanced Topics

	Ch8 Hardware Troubleshooting Guide and Software Debugging Tools
	Features for Debugging Your Program
	Displaying the Program Status
	Using a Status Chart to Monitor and Modify the Data in the S7- 200
	Forcing Specific Values
	Running Your Program for a Specified Number of Scans
	Hardware Troubleshooting Guide

	Ch9 Creating a Program for the Position Module
	Features of the Position Module
	Configuring the Position Module
	Position Instructions Created by the Position Control Wizard
	Sample Programs for the Position Module
	Monitoring the Position Module with the EM 253 Control Panel
	Error Codes for the Position Module and the Position Instructions
	Advanced Topics

	Ch10 Creating a Program for the Modem Module
	Features of the Modem Module
	Using the Modem Expansion Wizard to Configure the Modem Module
	Overview of Modem Instructions and Restrictions
	Instructions for the Modem Module
	Sample Program for the Modem Module
	S7- 200 CPUs that Support Intelligent Modules
	Special Memory Location for the Modem Module
	Advanced Topics
	Messaging Telephone Number Format
	Text Message Format
	CPU Data Transfer Message Format

	Ch11 Using the USS Protocol Library to Control a MicroMaster Drive
	Requirements for Using the USS Protocol
	Calculating the Time Required for Communicating with the Drive
	Using the USS Instructions
	Instructions for the USS Protocol
	Sample Programs for the USS Protocol
	USS Execution Error Codes
	Connecting and Setting Up the MicroMaster Series 3 Drive
	Connecting and Setting Up the MicroMaster Series 4 Drive

	Ch12 Using the Modbus Protocol Library
	Requirements for Using the Modbus Protocol
	Initialization and Execution Time for the Modbus Protocol
	Modbus Addressing
	Using the Modbus Slave Protocol Instructions
	Instructions for the Modbus Slave Protocol

	AppA Technical Specifications
	General Technical Specifications
	CPU Specifications
	Digital Expansion Modules Specifications
	Analog Expansion Modules Specifications
	Thermocouple and RTD Expansion Modules Specifications
	EM 277 PROFIBUS-- DP Module Specifications
	EM 241 Modem Module Specifications
	EM 253 Position Module Specifications
	AS- Interface (CP 243- 2) Module Specifications
	Optional Cartridges
	I/O Expansion Cable
	PC/PPI Cable
	Input Simulators

	AppB Calculating a Power Budget
	AppC Error Codes
	Fatal Error Codes and Messages
	Run- Time Programming Problems
	Compile Rule Violations

	AppD Special Memory (SM) Bits
	SMB0: Status Bits
	SMB1: Status Bits
	SMB2: Freeport Receive Character
	SMB3: Freeport Parity Error
	SMB4: Queue Overflow
	SMB5: I/O Status
	SMB6: CPU ID Register
	SMB7: Reserved
	SMB8 to SMB21: I/O Module ID and Error Registers
	SMW22 to SMW26: Scan Times
	SMB28 and SMB29: Analog Adjustment
	SMB30 and SMB130: Freeport Control Registers
	SMB31 and SMW32: Permanent Memory (EEPROM) Write Control
	SMB34 and SMB35: Time Interval Registers for Timed Interrupts
	SMB36 to SMB65: HSC0, HSC1, and HSC2 Register
	SMB66 to SMB85: PTO/PWM Registers
	SMB86 to SMB94, and SMB186 to SMB194: Receive Message Control
	SMW98: Errors on the Expansion I/O Bus
	SMB130: Freeport Control Register
	SMB131 to SMB165: HSC3, HSC4, and HSC5 Register
	SMB166 to SMB185: PTO0, PTO1 Profile Definition Table
	SMB186 to SMB194: Receive Message Control
	SMB200 to SMB549: Intelligent Module Status

	AppE S7-200 Order Numbers
	AppF Execution Times for STL Instructions
	AppG S7-200 Quick Reference Information
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	S7- 200 Memory Ranges and Features

