
Kjell	Bäckman

Structured	Programming	with
C++

Download	free	books	at

2

Kjell Bäckman

Structured Programming with C++

Download free eBooks at bookboon.com

3

Structured Programming with C++
© 2012 Kjell Bäckman & bookboon.com
ISBN 978-87-403-0099-4

Download free eBooks at bookboon.com

http://bookboon.com

Structured Programming with C++

4

Contents

 About the Book and the Course 11

1 Introduction to Programming 13
1.1 What Does It Mean to Program 13
1.2 Coding 15
1.3 Compiling and linking 16
1.4 The First Steps with Visual C++ 17

2 Variables 24
2.1 Introduction 24
2.2 Why Variables 24
2.3 Declaring Variables 25
2.4 Assignment 25
2.5 Initiating Variables 26
2.6 Constants 26
2.7 More about Assignment of Values 27
2.8 The main function 28
2.9 Input and Output 29
2.10 An Entry Program 31

Download free eBooks at bookboon.com
Click on the ad to read more

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

Structured Programming with C++

5

2.11 Formatted Output 33
2.12 Invoice Program 35
2.13 Time Conversion Program 37
2.14 Type Conversion 39
2.15 The Random Number Generator 40
2.16 Game Program 41
2.17 Summary 42
2.18 Exercises 42

3 Selections and Loops 45
3.1 Introduction 45
3.2 Selection 45
3.3 if statement 45
3.4 Price Calculation Program 46
3.5 Comparison Operators 48
3.6 Even or Odd 49
3.7 else if 49
3.8 and (&&), or (||) 50
3.9 Conditional Input 51
3.10 The switch statement 52
3.11 Menu Program 52
3.12 Loops 55

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

Structured Programming with C++

6

3.13 The while Loop 57
3.14 The for Loop 57
3.15 Addition Program 58
3.16 Double Loop 60
3.17 Roll Dice 61
3.18 Two Dice Roll 63
3.19 Breaking Entry with Ctrl-Z 64
3.20 Pools 65
3.21 Equation 67
3.22 Interrupting a Loop - break 69
3.23 Summary 70
3.24 Exercises 70

4 Arrays 73
4.1 Introduction 73
4.2 Why Arrays 73
4.3 Declaring an Array 74
4.4 Initiating an Array 75
4.5 Copying an Array 76
4.6 Comparing Arrays 76
4.7 Average 77
4.8 Sales Statistics 80

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read more

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

Structured Programming with C++

7

4.9 Product File, Search 85
4.10 Two-Dimensional Array 85
4.11 Sorting 87
4.12 Searching a Sorted Array 90
4.13 Summary 94
4.14 Exercises 94

5 Strings 96
5.1 Introduction 96
5.2 Data Type char 96
5.3 Menu Program 96
5.4 Menu Program with Loop 98
5.5 Christmas Tree 100
5.6 int - char 103
5.7 Å, Ä, Ö 103
5.8 String Array, char[] 103
5.9 Length of a String 105
5.10 Upper/Lower Case 106
5.11 Initials 106
5.12 Comparing Two Strings 108
5.13 Copying Strings 109
5.14 Array with String Arrays 109

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

Structured Programming with C++

8

5.15 Sorting Strings 110
5.16 Substring 112
5.17 Concatenating Strings 112
5.18 Interchanging First Name and Surname 112
5.19 Encryption 115
5.20 Random Password 116
5.21 Translation Table 117
5.22 Summary 120
5.23 Exercises 120

6 Functions 123
6.1 Introduction 123
6.2 What Is a Function 123
6.3 Average 124
6.4 Calling a Function 124
6.5 Several return Statements 126
6.6 Least of Three Numbers 127
6.7 Least Item of an Array 129
6.8 Array As Parameter 130
6.9 Function and Subfunction 132
6.10 Function without Return Value 135
6.11 Replacing Characters in a String 136

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/IE

Structured Programming with C++

9

6.12 Declaration Space 138
6.13 The Word Program 138
6.14 Override Functions 140
6.15 Declaration - Definition 141
6.16 Header Files 143
6.17 Reference Parameters 145
6.18 Parameters with Default Values 147
6.19 Recursive Functions 148
6.20 Summary 150
6.21 Exercises 150

7 Files 153
7.1 Introduction 153
7.2 Streams 154
7.3 Reading from a Stream 154
7.4 Writing to a Stream 155
7.5 Attaching a File to a Stream 155
7.6 A Complete Write Program 157
7.7 A Complete Reading Program 158
7.8 New Item at the End of the File 160
7.9 Products and Prices 161
7.10 Search for a Product Price 163
7.11 Sorting a File in Memory 165
7.12 Updating File Content 168
7.13 Copying Files 171
7.14 Summary 172
7.15 Exercises 172

8 Pointers 174
8.1 Introduction 174
8.2 What Is a Pointer 174
8.3 Declaring a Pointer 175
8.4 Assigning Values to Pointers 175
8.5 Addresses and char Pointers 177
8.6 cout and char Pointers 178
8.7 Price Program with Pointers 178
8.8 Pointer Arithmetics 179
8.9 Tax Program 181
8.10 Functions and Pointers 182
8.11 Dynamic Memory 186
8.12 Summary 190
8.13 Exercises 190

Download free eBooks at bookboon.com

Structured Programming with C++

10

9 Structures 192
9.1 Introduction 192
9.2 What Is a Structure 192
9.3 Defining a Structure 192
9.4 Declaring and Initiating Structure Variables 193
9.5 Assigning Values to Structure Members 193
9.6 A Structure Program 194
9.7 Array with Structure Variables 196
9.8 Pointer to Structure 197
9.9 Structures in the Dynamic Memory 198
9.10 Structure As Function Parameter 199
9.11 Summary 206
9.12 Exercises 206

10 Answers 207
10.1 Variables 207
10.2 Selections and Loops 219
10.3 Arrays 225
10.4 Strings 229
10.5 Functions 234
10.6 Files 240
10.7 Pointers 241
10.8 Structures 245

Download free eBooks at bookboon.com

Structured Programming with C++

11

About the Book and the Course

About the Book and the Course
This book is intended as course material for the course Structured Programming with C/C++ at university level. It contains
eight chapters, one for each lecture of the course. The chapters are:

1. Introduction to programming. Here we go through general principles about what programming means.
You will be introduced to the development tool Microsoft Visual C++ and build your first programs.

2. Variables. Here we start from the beginning and explain all details in the first programs. You will learn what
variables are and how they are used for storing of values needed in the program.

3. Selections and loops. This chapter will teach you to include intelligence into the programs, which will be
capable of doing different things depending on given conditions. The programs will also be able to repeat
operations any number of times.

4. Arrays. Arrays are very useful tools for storing of and working with information items of the same kind, like
for instance sampled measurement values, product files with prices, or customer data.

5. Strings. Texts (strings) are handled in a special and tricky way in C++. Because of that a special chapter is
dedicated for this subject.

6. Functions. In this chapter, when our programs are getting to some size, we divide the code into subroutines
or functions.

7. Files. Many times data needs to be stored or accessed. Here we will learn the basics of file management.
8. Pointers. This chapter goes deeper into the more advanced aspects of C++ programming and implies a

springboard to professional level.
9. Structures. Data is often organized into structures, which means easier input and output of structured data.

Here we also use pointers together with structures.

Each chapter contains theoretical parts and programming examples. At the end of each chapter there is a bunch of exercises
for your practice. At the end of the book you will find solutions to the exercises. Remember, though, that each problem
could in general be solved in different ways, and maybe your own solution is as good as, or even better than the one
presented. Therefore, my recommendation is that you as far as possible try to manage without the solutions.

The purpose of the course Structured Programming with C/C++ is primarily to teach how to ”think programming” and
secondarily to teach C++ code. Therefore, I will emphasize how to focus on the problem solution and prepare the coding.
JSP (Jackson Structured Programming) is a common tool within programming and is used to structure a problem. You will
learn how to use JSP to build your solution. Flow charts is an alternate tool to JSP, which we also will make some notice to.

Primarily, this is a beginner’s course in C, but we will utilize some C++ tools for e.g. input and output.

Learning to program is not made in short time. It requires long-term and patient work with reading, coding, testing and
debugging. There is no shortcut, but if you work with endurance, you will have many times of inspiration and nice experiences.

I would also like to stress that, when you write your programs, you will make many mistakes. This is normal. No
programmer writes the correct code already from the beginning. Error tracing and correction is a natural ingredience of
the development process.

Download free eBooks at bookboon.com

Structured Programming with C++

12

About the Book and the Course

Finally I would like to thank all who has encouraged me and supplied positive feed-back to make this book as pedagogic
as possible.

Kjell Bäckman
Department of Economy and Informatics
University West, Trollhättan
Sweden

Download free eBooks at bookboon.com

Structured Programming with C++

13

1 Introduction to Programming

1 Introduction to Programming
1.1 What Does It Mean to Program

1.1.1 Algorithm

Programming is not only coding. Primarily it implies structuring of the solution to a problem and then refine the solution
step by step. When refined to a level deep enough, you have created an algorithm. Then it is time to translate each step
of the algorithm to program code.

Suppose you have a problem that needs to be solved. Then you begin with writing a sequence of operations at an overview
level that need to be performed to solve the problem. Then you start from the beginning again and focus on one operation
at a time and find out whether the operation needs to be refined to more detailed steps. Then you proceed to the next
level and refine further. This refinement process goes on until you arrive at a level deep enough to start coding.

Creating an algorithm to solve a problem is in general the most laboursome task of the programming work. Many people
do the mistake of starting to code at once, which makes you focus on code details and forget the actual problem to be
solved. That gives an unstructured and inefficient code hard to understand and maintain.

That’s why we emphasize that you structure your logic train of thought and construct a good algorithm before starting
to code.

1.1.2 JSP

A JSP graph is a tool to create an algorithm. JSP is an abbreviation for Jackson Structured Programming and is a commonly
used instrument for logic structuring. Let’s take an example.

You are supposed to create a program that calculates the price of a product to be bought by a customer. The customer
specifies the product id and the requested quantity. The program should then calculate the relevant discount, add tax and
show the customer price. A JSP graph could look as follows:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 6

calculate the relevant discount, add tax and show the customer price.
A JSP graph could look as follows:

The upper box is the name of the program. We have split the solution
into four steps at an overview level. You read the steps from left to
right. As you probably realize the algorithm is too rough to be able to
write code. So we proceed by refining the solution to the next level:

The box ”Enter information” has been split into two steps, ”Show
instructions to the user” and “Read product id & quantity”. In the
same way we have refined the box “Deduct discount”.

Price

Enter information Deduct discount Add tax Print

Show
instructions

to the
user

Read
product id
& quantity

Calculate
gross
price

Deduct
10%

discount

Price

Enter information Deduct discount Add tax Print

The upper box is the name of the program. We have split the solution into four steps at an overview level. You read the
steps from left to right. As you probably realize the algorithm is too rough to be able to write code. So we proceed by
refining the solution to the next level:

Download free eBooks at bookboon.com

Structured Programming with C++

14

1 Introduction to Programming

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 6

calculate the relevant discount, add tax and show the customer price.
A JSP graph could look as follows:

The upper box is the name of the program. We have split the solution
into four steps at an overview level. You read the steps from left to
right. As you probably realize the algorithm is too rough to be able to
write code. So we proceed by refining the solution to the next level:

The box ”Enter information” has been split into two steps, ”Show
instructions to the user” and “Read product id & quantity”. In the
same way we have refined the box “Deduct discount”.

Price

Enter information Deduct discount Add tax Print

Show
instructions

to the
user

Read
product id
& quantity

Calculate
gross
price

Deduct
10%

discount

Price

Enter information Deduct discount Add tax Print

The box ”Enter information” has been split into two steps, “Show instructions to the user” and “Read product id &
quantity”. In the same way we have refined the box “Deduct discount”.

We could break down the box ”Calculate gross price” further:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 7

We could break down the box ”Calculate gross price” further:

We could refine the algorithm further, but let us say that we are
satisfied with the detail level. The shadowed boxes in the graph are
the end points at the lowest level, the “leaves of the tree”. These are
the boxes to be used for coding, from left to right.

We will work a great deal with JSP graphs in the program examples of
the course.

Sequence - Selection - Iteration
Each program is logically built up from three basic logic principles:

• Sequence – the program performs instructions in sequence, one
after the other.

• Selection – the program selects one of several operations
depending on the prerequisites. The program thus makes a
selection based on some condition.

• Iteration – the program repeats a series of instructions a certain
number of times.

The logic principles can also be combined. For instance, a sequence of
instructions can be repeated a number of times if a specific condition
is satisfied, otherwise another sequence of instructions should be
performed a specific number of times.

All programming languages use these three logic principles. If you
have built up your algorithm in a correct way, it is only a question of
selecting a programming language when the coding is to take place.
The price calculation algorithm above should consequently give the

Look for the
product in
product file

Pick the
product’s

price

Multiply by
quantity

Show
instructions

to the
user

Read
product id
& quantity

Calculate
gross
price

Deduct
10%

discount

Price

Enter information Deduct discount Add tax Print

We could refine the algorithm further, but let us say that we are satisfied with the detail level. The shadowed boxes in
the graph are the end points at the lowest level, the “leaves of the tree”. These are the boxes to be used for coding, from
left to right.

We will work a great deal with JSP graphs in the program examples of the course.

1.1.3 Sequence - Selection - Iteration

Each program is logically built up from three basic logic principles:

•	 Sequence – the program performs instructions in sequence, one after the other.

Download free eBooks at bookboon.com

Structured Programming with C++

15

1 Introduction to Programming

•	 Selection – the program selects one of several operations depending on the prerequisites. The program thus
makes a selection based on some condition.

•	 Iteration – the program repeats a series of instructions a certain number of times.

The logic principles can also be combined. For instance, a sequence of instructions can be repeated a number of times if a
specific condition is satisfied, otherwise another sequence of instructions should be performed a specific number of times.

All programming languages use these three logic principles. If you have built up your algorithm in a correct way, it is
only a question of selecting a programming language when the coding is to take place. The price calculation algorithm
above should consequently give the same result irrespective of whether the code is written in C++, Java or VisualBasic.

In the JSP graph above the box “Calculate gross price” is refined in a sequence of three operations, from left to right:

•	 Look for the product in product file
•	 Pick the product’s price
•	 Multiply by quantity

The box ”Look for the product in product file” could suggest an iteration, e.g. “Read next product id until we find the
product id stated by the user”.

The discount calculation in the price program above could imply a more differentiated discount situation:

•	 If the gross price is between 100:- and 500:- the customer will get 5% discount.
•	 If the gross price is between 500:- and 1000:- the customer will get 8% discount.
•	 If the gross price is above 1000:- the customer will get 10% discount.

Here the program must do a selection.

1.2 Coding

When you have refined your algorithm to a level detailed enough, it is time to write code. This written code is called
source code. The code must of course follow the rules in effect for the programming language in question, it must follow
the syntax. Each programming language has its own rules.

You can in principle use any word processor or text editor you like, such as the program Notepad, Wordpad or Word. If
you use word processors like Wordpad or Word, you must save the file as pure text file (.txt).

It is however recommended to use the text editor present in the program development package you are using. The advantage
is that you will get some support when coding. Microsoft Visual C++, which is the program development package used
in this course, contains an editor which:

•	 Shows key words in C++ in blue colour and comments in green colour,
•	 Provides IntelliSense, i.e. proposes code alternatives in certain situations,
•	 Supports context sensitive help, i.e. shows an explanation of a certain code item if you put the cursor on the

item and press F1,
•	 Provides extensive support at debugging by allowing you to execute the code up to a certain breakpoint,

where you can examine variable values at this particular position.

There are other development tools for C++ like Borland and Dev C++. The tools differ somewhat as concerns small details
of the code. You can use any tool, the important thing is that you learn to “think” structured programming. In this course
we have used Microsoft Visual C++ 2008, and all program examples are tested in this environment.

Download free eBooks at bookboon.com

Structured Programming with C++

16

1 Introduction to Programming

C++ is a very extensive language that can be used both within basic structured programming and object oriented
programming. Furthermore, windows programming in the graphic Windows environment is supported. C++ has, thanks
to its level of detail, its strength in digging deeply into the most obscure corners of the computer, control the operating
system, communicate with hardware, circuit boards and external equipment like measurement units and communication
devices. In this course, however, we will stick to basic structured programming.

C++ is a compact language with many symbols having their own meanings. This means that C++ code looks complicated
to the novice. On the other hand it provides many tools for efficient coding. Programs written in C++ are very rapid due
to the fact that the compiler optimizes them to each specific processor type. That is the reason why you mostly use C++
in situations where processor time and performance are ultimate.

1.3 Compiling and linking

When you have written the code of your program, it should be compiled, i.e. translate it to machine code consisting of 1’s
and 0’s. That is the level understood by the processor. Before reaching this level, there is an interim level of code, called
object code. Thus the compilation is made in two steps, first from source code to object code, and then from object code
to machine code. In Microsoft Visual C++ you don’t have to bother about these two steps, because the compilation from
source code to machine code is taken care of by just clicking a button.

When writing a program, you often split the code into several files of source code. The different files contain references
to each other. When all source code has been compiled the different parts of the program must be linked together to one
single executable program (exe file). In some environments the linking must be initiated manually. In Visual C++ the
linking is taken care of automatically directly after the compilation.

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

STUDY AT A TOP RANKED
INTERNATIONAL BUSINESS SCHOOL

Reach your full potential at the Stockholm School of Economics,
in one of the most innovative cities in the world. The School
is ranked by the Financial Times as the number one business
school in the Nordic and Baltic countries.

Visit us at www.hhs.se

Sw
ed

en

Stockholm

no.1
nine years
in a row

http://s.bookboon.com/hhs2016

Structured Programming with C++

17

1 Introduction to Programming

1.4 The First Steps with Visual C++

We will start with creating a program that prints ’Hello World’ on the screen.

Click the Start button and select:

1.4.1 All programs – Visual C++ 2008 Express Edition -Microsoft Visual C++ 2008 Express Edition

The Visual C++ Start Panel is displayed:

To create a new program, select from the menu:

Download free eBooks at bookboon.com

Structured Programming with C++

18

1 Introduction to Programming

1.4.2 File – New – New project

A window is displayed:

Select as shown by the window above.

Download free eBooks at bookboon.com

Structured Programming with C++

19

1 Introduction to Programming

1.4.3 Win32 – Win32 Console Application

Also specify the name of the program, for instance Hello, in the box after ’Name’, and indicate a suitable folder with the
’Browse’ button, where the programme is to be stored. A particular sub-folder will be created with that name.

Click ’OK’. A new window will be displayed:

Click on ’Application Settings’, check the box ’Empty project’ and click on ’Finish’.

The project is now created but contains no code files yet. Add one by selecting from the menu:

Download free eBooks at bookboon.com

Structured Programming with C++

20

1 Introduction to Programming

1.4.4 Project – Add New Item

A window is displayed:

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/liu

Structured Programming with C++

21

1 Introduction to Programming

Select ’Code’ in the left part and ‘C++ File (cpp)’ in the list of icons.

Enter a name of the file to be created in the box after ’Name’.

Click ’Add’.

A code window is displayed where you can enter code:

We will not explain all details in this program. That is done in the next chapter. The main thing is that you get started
with the system and are able to write and compile code and run programs.

The changes necessary in the code compared to previous versions of Visual C++ are:

•	 Do not use .h in include statements, it should be:
#include <iostream>

However, in some include statements the .h should be kept
•	 Insert the statement

using namespace std;

which indicates to the system where the standard library is
•	 Insert the following statement as the last statement in your programs:

cin.get();

which makes the program stop and you will get an opportunity to view the console window with the
displayed output. Sometimes two cin.get() –statements are needed:
cin.get();

cin.get();

Compile and run the program by clicking the arrow icon:

Download free eBooks at bookboon.com

Structured Programming with C++

22

1 Introduction to Programming

When you see the output in the console window you can stop the program by pressing Enter once or twice. It is the cin.
get () –statements at the end of the program that waits for this Enter press.

We will create another program that asks the user for the unit price of a product and the quantity, and then calculates
the total price.

Before you create a new program, you should close the project of the previous program, otherwise it will trouble the
new program Select:

File - Close Solution

and answer ’Yes’ to the question of closing all windows.

One thing you should remember is that each program takes 5-6 Mbyte disk space, due to that a lot of extra files and a Debug
folder is created, which is necessary for using the debug function. These extra files and the Debug folder is recommended
to be deleted after completion of a program, otherwise you might soon run out of disk space. The only thing to be saved
is the cpp file where your source code is stored, which in our example has the name Hello.cpp.

Start a new program like in the Hello example and enter the following code:

#include <iostream.h>

void main()

{

 int iNo;

 double dblPrice, dblTotal;

Download free eBooks at bookboon.com

Structured Programming with C++

23

1 Introduction to Programming

 cout << "Enter price per unit ";

 cin >> dblPrice;

 cout << "Enter quantity ";

 cin >> iNo;

 dblTotal = dblPrice * iNo;

 cout << "The total price is " <<dblTotal<< endl;

}

We will not explain all details in this program. That is done in the next chapter. We will only touch the main steps of the
program.

After the ‘void main’ line there are two lines where we declare some variables needed for storing of entered and calculated
values.

The cout-line outputs a text to the screen. The subsequent cin-line makes the program stop and wait for the user to enter
the price per unit and press Enter. This is repeated for the quantity of the product.

The dblTotal-line calculates the total price by multiplying the unit price by the quantity.

The last line outputs the total price.

When you compile the program it might happen that you have typed wrong. Then you will get a list of compilation errors
in the window at the bottom of the screen. Double-click the first error to make Visual C++ indicate the erroneous line.
Correct the error. Go on with the other errors and compile again. You might need to recompile a number of times.

Finally, when all errors have been corrected, run the program by clicking on the exclamation character button.

1.4.5 Where Is the Program

You can in Explorer examine the folder where you saved your program. During the compilation a sub-folder is automatically
created called Debug. If you open it you will find the exe-file. You can now run the program by double-clicking the exe-file.

You can also put your program at the start menu. This is preferably done with the drag and drop method. Push the mouse
button on the exe-file and hold it down, draw the mouse pointer to the Start button and release the mouse button. When
you then click the Start button you will find your program on the Start menu.

Download free eBooks at bookboon.com

Structured Programming with C++

24

2 Variables

2 Variables
2.1 Introduction

In this chapter you will learn what a variable is, how to declare a variable, i.e. tell the computer that there is a variable in
the program, and how to assign values to variables. You will also learn how to perform simple mathematic calculations,
how to read values from the keyboard, how to display information on the screen and control where on the screen the
information will be displayed. We will also present a number of programming examples with JSP graphs.

2.2 Why Variables

A variable is used by the program to store a calculated or entered value. The program might need the value later, and
must then be stored in the computer’s working memory. Example:

Variable name Variable value
dTaxpercent 0.25

Here we have selected the name ’dTaxpercent’ to hold the value 0.25. You can in principle use any variable name, but it is
recommended to use a name that corresponds to the use of the variable. When the variable name appears in a calculation
the value will automatically be used, for example:

1500 * dTaxpercent

means that 1500 will be multiplied by 0.25.

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/EOT

Structured Programming with C++

25

2 Variables

2.3 Declaring Variables

The purpose of declaring a variable is to tell the program to allocate space in the working memory for the variable. The
declaration:

int iNo;

tells that we have a variable with the name iNo and that is of integer type (int). You must always specify the data type to
allocate the correct memory space. An integer might for instance require 4 bytes while a decimal value might require 16
bytes. How many bytes to allocate depends on the operating system. Different operating systems use different amounts
of bytes for the different data types.

The variable name should tell something about the usage of the variable. Also, a standard used by many people is to
allocate 1-3 leading characters to denote the data type (i for integer).

Note that each program statement is ended by a semicolon.

Below we declare a variable of decimal type:

double dUnitPrice;

double means decimal number with double precision. Compare to float which has single precision. Since double
requires twice as many bytes, a double variable can of course store many more decimals, which might be wise in
technical calculations which require high precision.

The most common data types:

short integer Usually 2 bytes

int integer Usually 4 bytes

float decimal Usually 4 bytes

double decimal Usually 8 bytes

bool true or false Usually 1 byte

You can declare several variables of the same type in one single statement:

double dUnitPrice, dTotal, dToBePaid;

The variables are separated by commas.

Note that C++ is case sensitive, i.e. a ‘B’ and ‘b’ are considered different characters. Therefore the variables:

dTobepaid

dToBePaid

are two different variables.

2.4 Assignment

Now we have explained how to declare variables, but how do the variables get their values? Look at the following code:

dTaxpercent = 0.25;

iNo = 5;

dUnitprice = 12;

Download free eBooks at bookboon.com

Structured Programming with C++

26

2 Variables

Here the variable dTaxpercent gets the value 0.25, the variable iNo the value 5 and the variable dUnitprice the value 12.
The equal character (=) is used as an assignment operator. Suppose that the next statement is:

dTotal = iNo * dUnitprice;

In this statement the variable iNo represents the value 5 and dUnitprice the value 12. The right part is first calculated as 5 * 12 = 60.
This value is then assigned to the variable dTotal. Note that it is not the question of an equality in normal math like in the equation
x = 60, where x has the value 60. In programming the equal sign means that something happens, namely that the right
part is first calculated, and then the variable to the left is assigned that value.

C++ performs the math operations in correct order. In the statement:

dToBePaid = dTotal + dTotal * dTaxpercent;

the multiplication dTotal * dTaxpercent will first be performed, which makes 60 * 0.25 = 15. The value 15 will
then be added to dTotal which makes 60 + 15 = 75. The value 75 will finally be assigned to the variable dToBePaid.

If C++ would perform the operations in the stated order, we would get the erroneous value 60 + 60, which makes 120,
multiplied by 0.25, which makes 30.

If you need to perform an addition before a multiplication, you must use parentheses:

dToBePaid = dTotal * (1 + dTaxpercent);

Here the parenthesis is calculated first, which gives 1.25. This is then multiplied by 60, which gives the correct value 75.

Priority rules:

()
* /
+ -

2.5 Initiating Variables

It is possible to initiate a variable, i.e. give it a start value, directly in the declaration:

double dTaxpercent = 0.25;

Here we declare the variable dTaxpercent and simultaneously specify it to get the value 0.25.

You can mix initations and pure declarations in the same program statement:

double dTaxpercent = 0.25, dTotal, dToBePaid;

In addition to assigning the dTaxpercent a value, we have also declared the variables dTotal and dToBePaid, which not
yet have any values. In the statement:

int iNo = 5, iNox = 1, iNoy = 8, iSum;

we have initiated several variables and declared the variable iSum.

Download free eBooks at bookboon.com

Structured Programming with C++

27

2 Variables

2.6 Constants

Sometimes a programmer wants to ensure that a variable does not change its value in the program. A variable can of
course not change its value if you don’t write code that changes its value. But when there are several programmers in
the same project, or if a program is to be maintained by another programmer, it might be safe to declare a variable as a
constant. Example:

const double dTaxpercent = 0.25;

The key word const ensures that the constant dTaxpercent does not change its value. Therefore, a statement like
this is forbidden:

dTaxpercent = 0.26;

A constant must be initiated directly by the declaration, i.e. be given a value in the declaration statement. Consequently
the following declaration is also forbidden:

const double dTaxpercent;

2.7 More about Assignment of Values

We have seen how a variable can be initiated in the declaration and how the variable can be assigned a value in other
parts of the program. A variable can also get new values several times in the program.

A variable can furthermore be changed by originating from the current value of the variable. The following example shows
how the variable iNo is decreased by 2:

iNo = iNo - 2;

As we have previously said the right part will first be calculated and then be assigned to the variable on the left side. Suppose
that the variable iNo from the beginning has the value 5. The right part will then be 5-2 = 3. 3 is then assigned to the
variable to the left, i.e. iNo. The effect of this statement is thus that iNo changes its value from 5 to 3, i.e. is decreased by 2.

Download free eBooks at bookboon.com

Structured Programming with C++

28

2 Variables

A more compact way of coding giving the same result is:

iNo -= 2;

The operator -= means that the variable on the left side is decreased by the value on the right side. The operator += works
in the same way. Example:

dPrice += 10;

Here the value of the variable dPrice is increased by 10.

The operator *= implies that the variable on the left side is multiplied by the value on the right side. In the following
statement the variable dDiscount is multiplied by 1.10, i.e. it is increased by 10%:

dDiscount *= 1.10;

The operator /= works in the same way:

dNumber /= 2;

Here the variable dNumber is divided by 2.

In many situations the value of a variable should be increased by 1. We will give many examples of this in the following.
Here are two variants of code how this can be made:

iNo = iNo + 1;

iNo += 1;

Still another way:

iNo++;

Here we use the operator ++ which increases the value of the variable by 1. It is from this operator that C++ has got its name.

Increasing a value by 1 is called incrementation. In the same way you can use the operator -- for decrementation, i.e.
decrease a value by 1. Example:

iNo--;

2.8 The main function

So far we have described code details needed to be able to construct a program. Now we will step back a little and look
at the entire program. Look at the following program skeleton:

void main()

{

 …

 … Various program statements

 …

}

Download free eBooks at bookboon.com

Structured Programming with C++

29

2 Variables

To be able to run (execute) a program, a function called main()must exist. A function is a section of code that performs
a specific task. Usually a program consists of several functions, but one of them must have the name main(), and the
very execution is started in main(). In our first programs we only use one function in each program, and consequently
it must be named main(). The parenthesis after main indicates that it is a function. Each function has a parenthesis after
the function name, sometimes it is empty and sometimes it contains values or parameters.

A function is supposed to return a value, which could be the result of calculations or a signal that the function turned out
successfully or failed. The return value can then be used by the program section calling the function. In our environment it is
the operating system Windows that starts the function main(). Windows does not need any return value from our programs,
and as a consequence we use the key word void in front of main(). void means that the function will not return any value.

We will discuss functions in a later chapter and will then go deeper into these details. So for now you don’t need to bother
about all details, only that you write void main() in the beginning of your programs.

All code belonging to a function must be enclosed by curly brackets, one left curly bracket ({) as the first character and
one right (}) as the last. It is also good programming conventions to indent the code between the curly brackets as shown
by the example above. The editor in Visual C++ will assist you with the indentation. When you have typed a left curly
bracket and pressed Enter, the next and subsequent lines will be automatically indented.

2.9 Input and Output

A program mostly needs data to be entered from the keyboard and results to be displayed on the screen. We will write a
little program which displays a request for a value from the user and then reads this value:

#include <iostream>

using namespace std;

void main()

{

 int iNo;

 cout << "Specify quantity: ";

 cin >> iNo;

}

We will soon talk about the first #include statement.

The first thing to be done in this program is that the integer variable iNo is declared. We will need it later in the program.

Then, the text

Specify quantity:

will be displayed on the screen. cout is an abbreviation of console out. With console we mean the keyboard and screen
together. The text to be displayed on the screen (Specify quantity) must be surrounded by quote marks (“ “). The characters
<< are called stream operator and indicates that each character is streamed to the console. We will return to streams when
we work with files in a later chapter.

Download free eBooks at bookboon.com

Structured Programming with C++

30

2 Variables

It can be hard to remember in which direction to write the stream operator. You can regard it as an arrow directed towards
the console, i.e. the characters are streamed out to the console.

The next program statement (cin statement) implies that the program wants something from the console (cin = console
in). The program stops and waits for the user to enter a value and press Enter. The value is stored in the variable iNo.
The stream operator >> is here in the opposite direction and indicates that the entered value is streamed the other way,
i.e. in to the program.

You may have noticed that the text ”Specify quantity: ” in the cout statement contains an extra space after the colon. This
implies that also the space character is streamed to the screen. The visual effect of this is that, when the user enters the
number 24, it is not shown close to the text “Specify quantity: “ but appears at a distance of one space character. Write
the program and run it, and experiment with space characters and different texts.

2.9.1 #include

cout and cin are functions not automatically available. Therefore we must tell the compiler that these functions are defined in
an external file called iostream. When you compile the program, the compiler does not understand the words cout and cin. It
will then read iostream and insert the code for how cout and cin should be executed. This is the reason why you the statement

#include <iostream>

must be present first in your program.

Some external files use the extension .h, which is an abbreviation of header file. Another name of such a file is include
file. We will use other header files later on when we need particular functions.

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

Structured Programming with C++

31

2 Variables

2.9.2 namespace

Some development tools, like for instance modern versions of Visual C++, store their include files and classes with code
in namespaces. In object oriented programming (which is outside of this course) it is possible to store your own classes
in different namespaces. To notify Visual C++ about the include files to be used, reside in the standard namespace, we
use the statement

using namespace std;

2.10 An Entry Program

We will now write a program that prompts the user for a number and then shows a confirmation on the screen about
which number the user wrote.

To practice algorithm creation we will first write a JSP graph that shows the program steps before writing the code:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 24

Some external files use the extension .h, which is an abbreviation of
header file. Another name of such a file is include file. We will use
other header files later on when we need particular functions.

namespace
Some development tools, like for instance modern versions of Visual
C++, store their include files and classes with code in namespaces. In
object oriented programming (which is outside of this course) it is
possible to store your own classes in different namespaces. To notify
Visual C++ about the include files to be used, reside in the standard
namespace, we use the statement
using namespace std;

An Entry Program
We will now write a program that prompts the user for a number and
then shows a confirmation on the screen about which number the user
wrote.

To practice algorithm creation we will first write a JSP graph that
shows the program steps before writing the code:

The upper box shows the name of the program (Entry Program). The
program contains three steps corresponding to the three boxes which
are read from left to right. First we will show the user prompt. The
user will then have the opportunity to enter a number. Last, we will
show a confirmation about which number the user entered. The
program will look like this:

#include <iostream>
using namespace std;
void main()
{
 int iNo;
 cout << ”Specify quantity: ”;
 cin >> iNo;
 cout << ”You entered: ”;
 cout << iNo;
}

Entry Program

Show prompt Entry Show confirm.

The upper box shows the name of the program (Entry Program). The program contains three steps corresponding to the
three boxes which are read from left to right. First we will show the user prompt. The user will then have the opportunity
to enter a number. Last, we will show a confirmation about which number the user entered. The program will look like this:

#include <iostream>

using namespace std;

void main()

{

 int iNo;

 cout << "Specify quantity: ";

 cin >> iNo;

 cout << "You entered: ";

 cout << iNo;

}

First we must include iostream since we are going to read from and write to the console, and indicate the standard
namespace to be used. In the main() function we declare the integer variable iNo and then show the text “Specify quantity:
“. The cin statement implies that the program halts and waits for keyboard entry. When the user has entered a number
and pressed Enter, the number is stored in the variable iNo. Then the program continues with displaying the text “You
entered: “ followed by the value of the variable iNo. If the user for instance entered the value 24, the printed text will be
“You entered: 24”. Write the program and run it. Experiment with different entries and other texts.

Download free eBooks at bookboon.com

Structured Programming with C++

32

2 Variables

Note that, even if the program uses two cout statements for the printed confirmation, the result still is one printed line
on the screen.

We will now expand the program so that the user can enter a quantity and a price:

#include <iostream.h>

void main()

{

 int iNo;

 double dPrice;

 cout << "Specify quantity: ";

 cin >> iNo;

 cout << "Specify unit price: ";

 cin >> dPrice;

 cout << "You entered the quantity " << iNo <<

 " and the price " << dPrice;

}

We have used an integer variable for the quantity and a double variable for the unit price, since the price could require
decimals.

Note that, when entering a decimal value, you must use a decimal point, not decimal comma.

The last cout statement contains some news; you can combine several texts and variable values into one single statement,
provided that you use the stream operator between every text and variable. We have split the statement on two lines, but
you can write the whole statement on one single line. Blanks or line breaks in the code has no effect on the displayed result.

You could also combine the entry of quantity and price in the following way:

cout << "Specify quantity and unit price: ";

cin >> iNo >> dPrice;

First the text prompt is displayed to the user. When the program halts and waits for entry, you can enter a quantity and
unit price with a space character in between, or press Enter. The first entered value is stored in the variable iNo and the
second in dPrice.

If you press Enter after the first entered number, the program will still be waiting for yet another value. You must also
enter the unit price before the program can continue the execution.

If you want a line break in the displayed result, you can use the keyword endl:

cout << "You entered the quantity " << iNo <<

 endl << "and the price " << dPrice;

The statement implies that the printed result will look like this:

You entered the quantity 5

and the price 12.45

Download free eBooks at bookboon.com

Structured Programming with C++

33

2 Variables

2.11 Formatted Output

When programming for a DOS window, which we have done so far and will do during the rest of the course, there are very
limited possibilities for a nice layout of printed information, especially if you compare to common Windows environment.
C++ however offers a few functions for improved control of printed information. We will discuss the following:

•	 Fixed / floating decimal point. When printing large numbers, it might happen that C++ uses floating
decimal point. For instance the number 9 560 000 000 (fixed) might be printed as 9.56E+9, which
is interpreted as 9.56 x 109 (floating decimal point). C++ itself controls when to use either of these
representations. Many times we want to control this ourselves.

•	 Number of decimals for numeric data.
•	 Number of screen positions allocated for data.

To be able to use these possibilities we will have to include the file iomanip.h.

2.11.1 Fixed Decimal Point

To instruct the program to output values with fixed decimal points the function setiosflags() is used. It must reside in a
cout statement:

cout << setiosflags(ios::fixed);

The characters io in setiosflags represent input/output. A flag is a setting that can be switched on or off (0 or 1). The double
colon :: is a class operator and is used to refer to a value defined in a certain class. “fixed” is such a value. We will not go
further into classes in this course, but it does not hurt to have basic knowledge about classes.

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

89,000 km
In the past four years we have drilled

That’s more than twice around the world.

careers.slb.com

What will you be?

1 Based on Fortune 500 ranking 2011. Copyright © 2015 Schlumberger. All rights reserved.

Who are we?
We are the world’s largest oilfield services company1.
Working globally—often in remote and challenging locations—
we invent, design, engineer, and apply technology to help our
customers find and produce oil and gas safely.

Who are we looking for?
Every year, we need thousands of graduates to begin
dynamic careers in the following domains:
n Engineering, Research and Operations
n Geoscience and Petrotechnical
n Commercial and Business

http://s.bookboon.com/Schlumberger1

Structured Programming with C++

34

2 Variables

To return to letting C++ decide when to use fixed or float format, use the following statement:

cout << resetiosflags(ios::fixed);

2.11.2 Number of Decimals

To instruct the program to use a specific number of decimals, use the following statement:

cout << setprecision(2);

which specifies two decimals to be used in subsequent outputs.

Many times the statements are combined:

cout << resetiosflags(ios::fixed) <<

 setprecision(2);

2.11.3 Number of Positions

An efficient way of having numeric data printed in columns with the 1 unit digit straight below each other, is to use the
setw() function. ’w’ represents width. Example:

cout << setw(8) << dAverage;

This statement allocates eight positions for the value of the variable dAverage, and the value is printed right-aligned
within this space.

Remember that setw() only applies to the next value, which implies that it must be repeated for each value to be printed.
Example:

cout << setw(8) << dValue1 << endl;

cout << setw(8) << dValue2 << endl;

cout << setw(8) << dAverage << endl;

Here the three variable values will be printed below each other right aligned within eight screen positions, which implies
a nice column with the 1 unit digits right below each other.

Here is an example of how you can combine printed data with heading texts:

cout << "Number of units: " << setw(5) <<

 iNo << endl;

cout << setiosflags(ios::fixed) <<

 setprecision(2);

cout << "Price per unit: " << setw(8) <<

 dPrice << endl;

cout << "Total price: " << setw(8) <<

 dTotal;

This code will render an output like this:

Number of units: 10

Download free eBooks at bookboon.com

Structured Programming with C++

35

2 Variables

Price per unit: 12.25

Total price: 122.50

We presume that the variable iNo is declared as int, while dPrice and dTotal are double variables. That requires that the
number of positions for iNo is 3 less than for the others, which correspond to the decimal point and the two decimals.

Note that we in the cout statements have inserted blanks to make the heading texts be equal in length. That makes it easier
to calculate the number of positions required in the setw() function.

2.12 Invoice Program

We will now write a program where the user is prompted for quantity and unit price of a product, and the program should
respond with an invoice receipt like this:

INVOICE

=======

Quantity: 30

Price per unit: 42.50

Total price: 1593.75

Tax: 318.75

The program should thus calculate the total price and tax amount.

We start with a JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 28

Note that we in the cout statements have inserted blanks to make the
heading texts be equal in length. That makes it easier to calculate the
number of positions required in the setw() function.

Invoice Program
We will now write a program where the user is prompted for quantity
and unit price of a product, and the program should respond with an
invoice receipt like this:
INVOICE
=======
Quantity: 30
Price per unit: 42.50
Total price: 1593.75
Tax: 318.75

The program should thus calculate the total price and tax amount.

We start with a JSP graph:

First, the user will enter quantity and unit price of the product (the
Entry box). Then we will calculate the total price and tax amount (the
Calculations box). Last, the information will be printed (the Output
box).

The first and last boxes are pretty uncomplicated, but the Calculations
box requires that we go deeper before starting to code. Input data is
quantity and unit price. We multiply these, which gives the price
without tax. We then multiply this amount by the tax percent, which
gives the tax amount. Finally we add these amounts to get the
customer price.

The detailed JSP graph will then look:

Invoice

Entry Calculations Output

First, the user will enter quantity and unit price of the product (the Entry box). Then we will calculate the total price and
tax amount (the Calculations box). Last, the information will be printed (the Output box).

The first and last boxes are pretty uncomplicated, but the Calculations box requires that we go deeper before starting to
code. Input data is quantity and unit price. We multiply these, which gives the price without tax. We then multiply this
amount by the tax percent, which gives the tax amount. Finally we add these amounts to get the customer price.

The detailed JSP graph will then look:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 29

Here is the code:

/*Invoice program
The file iomanip.h is needed to be able to
format the output on the screen*/

#include <iostream>
#include <iomanip>
void main()
{
 //Declarations
 int iNo;
 double dUnitPr, dPriceExTax, dCustPrice, dTax;
 const double dTaxPerc = 25.0;

 //Entry of quantity and unit price
 cout<< "Specify quantity and unit price: ";
 cin >> iNo >> dUnitPr;

 //Calculations. First the price without tax
 dPriceExTax = dUnitPr * iNo;
 //then the tax amount
 dTax = dPriceExTax * dTaxPerc / 100;
 //and finally the customer price
 dCustPrice = dPriceExTax + dTax;

 //Output
 cout << endl << ”INVOICE”;
 cout << endl << ”=======” << endl;
 cout << ”Quantity: ” << setw(5) << iNo << endl;
 cout << setprecision(2) << setiosflags(ios::fixed);
 cout << ”Price per unit:” << setw(8) << dUnitPr << endl;
 cout << ”Total price: ” << setw(8) << dCustPrice <<endl;
 cout << ”Tax: ” <<setw(8) << dTax << endl;
}

Invoice

Entry Calculations Output

Calculate price
without tax

Calculate tax
amount

Calculate
customer price

Download free eBooks at bookboon.com

Structured Programming with C++

36

2 Variables

Here is the code:

/*Invoice program

The file iomanip.h is needed to be able to

format the output on the screen*/

#include <iostream>

#include <iomanip>

void main()

{

 //Declarations

 int iNo;

 double dUnitPr, dPriceExTax, dCustPrice, dTax;

 const double dTaxPerc = 25.0;

 //Entry of quantity and unit price

 cout<< "Specify quantity and unit price: ";

 cin >> iNo >> dUnitPr;

 //Calculations. First the price without tax

 dPriceExTax = dUnitPr * iNo;

 //then the tax amount

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

American online
LIGS University

 ▶ enroll by September 30th, 2014 and

 ▶ save up to 16% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

Structured Programming with C++

37

2 Variables

 dTax = dPriceExTax * dTaxPerc / 100;

 //and finally the customer price

 dCustPrice = dPriceExTax + dTax;

 //Output

 cout << endl << "INVOICE";

 cout << endl << "=======" << endl;

 cout << "Quantity: " << setw(5) << iNo << endl;

 cout << setprecision(2) << setiosflags(ios::fixed);

 cout << "Price per unit:" << setw(8) << dUnitPr << endl;

 cout << "Total price: " << setw(8) << dCustPrice <<endl;

 cout << "Tax: " <<setw(8) << dTax << endl;

}

As you can see we have inserted comments in the code. Comments don’t affect the final size of the program or performance.
Therefore, use comments frequently, partly to explain the operations to others, and partly as a check list at maintenance
of the program some years later.

Comments are surrounded by the characters /* and */. All text between these delimiters is treated as comments. You can
have as many lines as you want between these delimiters. Another way is to begin a comment line with //, Then only that
line will be treated as comment.

After the include statements the required variables are declared. The variable iNo is an integer, while all variables capable
of storing an amount have been declared as double. The tax percent is declared as constant, since it should not be amended
in the program.

Compare the code to the JSP graph and you will discover that we have followed the sequence of the boxes when coding.

2.13 Time Conversion Program

We will now examine a common technique, namely to use the modulus operator (%) to get the decimals of a
division, to check whether a number is evenly dividable by another number, to get an interval for random numbers
and much more.

The modulus operator % gives the remainder at integer division

For instance, if you divide 6 by 3, the division is even and there will be no remainder. The remainder is zero, i.e. 6%3
equals 0. If you divide 7 by 3 the result is 2 with the remainder 1. 7%3 equals 1.

A peculiarity at division with the / operator is that, if both the numerator and denominator are of the int type, then also
the quotient is an integer, i.e. the decimals will be discarded. For instance 7/3 equals 2.

We will use this in a program where the user enters a number of seconds, which the program converts to hours, minutes
and seconds.

Download free eBooks at bookboon.com

Structured Programming with C++

38

2 Variables

We start with a JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 31

Time Conversion Program
We will now examine a common technique, namely to use the
modulus operator (%) to get the decimals of a division, to check
whether a number is evenly dividable by another number, to get an
interval for random numbers and much more.

The modulus operator % gives the remainder at integer division

For instance, if you divide 6 by 3, the division is even and there will
be no remainder. The remainder is zero, i.e. 6%3 equals 0. If you
divide 7 by 3 the result is 2 with the remainder 1. 7%3 equals 1.

A peculiarity at division with the / operator is that, if both the
numerator and denominator are of the int type, then also the quotient
is an integer, i.e. the decimals will be discarded. For instance 7/3
equals 2.

We will use this in a program where the user enters a number of
seconds, which the program converts to hours, minutes and seconds.

We start with a JSP graph:

Entry and output are pretty uncomplicated, while the calculation of no.
of minutes and hours requires more details. Suppose the user enters 63
seconds. First we divide the entered number by 60, i.e. 63/60. Since
both are integers, the quotient is an integer = 1. Then we use the
modulus operator. 63%60 gives the remainder 3. We have calculated
that 63 seconds makes 1 minute and 3 seconds. If the user enters a
large number, we might have got so many minutes that hour
calculation could be done. We would then originate from the number
of minutes and in the same way divided by 60. The calculation is
shown in the JSP graph:

Time Conv

Entry Calculate no.
of minutes

Calculate no.
of hours

Output

Entry and output are pretty uncomplicated, while the calculation of no. of minutes and hours requires more details.
Suppose the user enters 63 seconds. First we divide the entered number by 60, i.e. 63/60. Since both are integers, the
quotient is an integer = 1. Then we use the modulus operator. 63%60 gives the remainder 3. We have calculated that 63
seconds makes 1 minute and 3 seconds. If the user enters a large number, we might have got so many minutes that hour
calculation could be done. We would then originate from the number of minutes and in the same way divided by 60. The
calculation is shown in the JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 32

Here is the code:

#include <iostream>
using namespace std;
void main()
{
 //Declarations
 int iNoOfSec, iSecLeft, iNoOfMin, iMinLeft, iNoOfHours;

 //Entry of no. of seconds to be converted
 cout << "Specify no. of seconds: ";
 cin >> iNoOfSec;

 //Number of entire minutes:
 iNoOfMin = iNoOfSec / 60;
 //Number of seconds left:
 iSecLeft = iNoOfSec % 60;

 // iNoOfMin is now the origin of the hours calculation:
 iNoOfHours = iNoOfMin / 60;
 //and no. of minutes left:
 iMinLeft = iNoOfMin % 60;

 //Output
 cout << "Number of hours = " << iNoOfHours << endl;
 cout << "Number of minutes = " << iMinLeft << endl;
 cout << "Number of seconds = " << iSecLeft << endl;
}

Compile and run the program with different input.

Time Conv

Entry Calculate no.
of minutes

Calculate no.
of hours

Output

sec/60 sec%60 min/60 min%60

Here is the code:

#include <iostream>

using namespace std;

void main()

{

 //Declarations

 int iNoOfSec, iSecLeft, iNoOfMin, iMinLeft, iNoOfHours;

 //Entry of no. of seconds to be converted

 cout << "Specify no. of seconds: ";

 cin >> iNoOfSec;

 //Number of entire minutes:

 iNoOfMin = iNoOfSec / 60;

 //Number of seconds left:

 iSecLeft = iNoOfSec % 60;

 // iNoOfMin is now the origin of the hours calculation:

Download free eBooks at bookboon.com

Structured Programming with C++

39

2 Variables

 iNoOfHours = iNoOfMin / 60;

 //and no. of minutes left:

 iMinLeft = iNoOfMin % 60;

 //Output

 cout << "Number of hours = " << iNoOfHours << endl;

 cout << "Number of minutes = " << iMinLeft << endl;

 cout << "Number of seconds = " << iSecLeft << endl;

}

Compile and run the program with different input.

2.14 Type Conversion

A problem with the division operator / is that it discards the decimals from the quotient if both the numerator and the
denominator are of integer type. For instance if you have summed some integers and want to calculate the average by
dividing by the number of integers. The precision will then be bad since the decimals will get lost:

int iNumerator = 7, iDenominator = 3;

cout << iNumerator / iDenominator;

This code section will give the output 2 and not 2.333 as expected.

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

 .

http://s.bookboon.com/AlcatelLucent

Structured Programming with C++

40

2 Variables

Compare with the following code:

double dNumerator = 7;

int iDenominator = 3;

cout << dNumerator / iDenominator;

Here the numerator is of double type, and then the compiler understands that it should perform a normal division and
include the decimals. The output will in this case be 2.333.

Many times you might have declared variables as int, but still want a division with the decimals kept. The solution is to
do a type conversion (type cast) to double for the numerator before the division is executed:

int iNumerator = 7, iDenominator = 3;

cout << (double) iNumerator / iDenominator;

Type cast is performed by specifying the new data type within parentheses immediately before the variable. Here we have
put double within parentheses before the variable numerator, which makes a decimal division to be performed with the
result 2.333.

2.15 The Random Number Generator

In situations where an unpredictable result is required, the random number generator is used. Examples of such situations
are game programs, pools, dice rolling etc.

The random number generator provides random numbers in the interval 0-32768. Why just 32768? It has to do with the
binary storage of numbers. Two bytes can contain 65536 different numbers (216). Half of these are dedicated for negative
numbers and half to positive = 32768.

The function rand() gives a number in the interval 0-32768. rand is an abbreviation of random. We use this number
with the modulus operator: rand()%6 which gives the remainder at integer division with 6, i.e. a number in the interval
0-5. The reason why it can’t be greater is that, if for instance the remainder had been 7, then 6 could be divided once
more and the remainder had been 1.

We now add 1:
rand()%6 + 1

which gives an integer in the interval 1-6, i.e. a random dice roll.

Each time you run a program using random numbers, it will start from the same “location”, i.e. you will always get the
same series of numbers. That is of course not acceptable. Therefore you must tell the generator to start at a random
position, which is done with the function:

srand(time(0))

srand means “start random”. The function uses the system clock (time) as origin for the calculation. The system clock
contains the number of milliseconds since Jan 1st 1970 (different for different processors). We can’t predict the millisecond
to be used when the generator gets its starting point.

To make this work, you must include the header files stdlib.h och time.h. Note that these include files require ‘.h’.

Download free eBooks at bookboon.com

Structured Programming with C++

41

2 Variables

2.16 Game Program

We will now write a program that uses the random number generator and rolls a dice 5 times. We will also calculate the
average score. First we will create a JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 34

greater is that, if for instance the remainder had been 7, then 6 could
be divided once more and the remainder had been 1.

We now add 1:
rand()%6 + 1
which gives an integer in the interval 1-6, i.e. a random dice roll.

Each time you run a program using random numbers, it will start from
the same “location”, i.e. you will always get the same series of
numbers. That is of course not acceptable. Therefore you must tell the
generator to start at a random position, which is done with the
function:

srand(time(0))

srand means “start random”. The function uses the system clock
(time) as origin for the calculation. The system clock contains the
number of milliseconds since Jan 1st 1970 (different for different
processors). We can’t predict the millisecond to be used when the
generator gets its starting point.

To make this work, you must include the header files stdlib.h och
time.h. Note that these include files require ‘.h’.

Game Program
We will now write a program that uses the random number generator
and rolls a dice 5 times. We will also calculate the average score. First
we will create a JSP graph:

The code will be:

#include <iostream>
#include <iomanip> //for formatting of output
#include <stdlib.h> //for random generator
#include <time.h> //for system clock
using namespace std;
void main()

Dice

Initiate
random no
generator

Roll 5 times Calculate
average

Output

The code will be:

#include <iostream>

#include <iomanip> //for formatting of output

#include <stdlib.h> //for random generator

#include <time.h> //for system clock

using namespace std;

void main()

{

 //Declarations

 int iRoll1, iRoll2, iRoll3, iRoll4, iRoll5;

 double dAverage;

 const int iNo = 5;

 //Initiate random number generator

 srand(time(0));

 //Roll 5 times

 iRoll1 = rand()%6+1;

 iRoll2 = rand()%6+1;

 iRoll3 = rand()%6+1;

 iRoll4 = rand()%6+1;

 iRoll5 = rand()%6+1;

 //Calculate average

 dAverage = (double)(iRoll1 + iRoll2 + iRoll3 + iRoll4

 + iRoll5) / iNo;

 //Output

 cout << "Number of rolls: " << iNo << endl;

 cout << setprecision(1) << setiosflags(ios::fixed);

 cout << "Average score: " << dAverage;

}

Download free eBooks at bookboon.com

Structured Programming with C++

42

2 Variables

In the statement where we calculate the average we have first added the five rolls and then made a type cast to double
before we divide with iNo to not loose decimals.

In the second last cout statement we have requested 1 decimal and fixed decimal point.

Run the programs several times. You will get different results each time. Also try to extend the program to also print the
5 rolls.

2.17 Summary

In this chapter we have taken our first stumbling steps in C++ programming. We have learnt what a variable is, how it is
declared and assigned a value. We have also learnt to read and write data, and in connection to that, also present data in
a more user-friendly way by means of formatted output. We have learnt how to include header files and we have written
some example programs utilizing specialties like the modulus operator, type casting and random number generation.

But above all we have practiced how to build a solution to a problem by means of algorithms and JSP graphs. And this
will be still more important when we enter into the subject of the next chapter, selections and loops.

2.18 Exercises

1. Originate from the Entry program and extend it so that the user can enter two numbers. Both numbers
should then be printed on the screen by the program.

2. Write a program that prompts the user for two numbers and prints their sum.

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

Structured Programming with C++

43

2 Variables

3. Extend the previous excercise so that the program prints the sum, difference, product and quotent of the two
numbers.

4. Write a program that prompts the user for 3 decimal numbers and then prints them on the screen with the
decimal points right below each other.

5. Originate from the Invoice program and amend it so that:
a) the user can enter a tax percent.
b) a 10% discount is deducted before the tax calculation
c) the last cout statement is organized in a more structured way
d) The price with tax excluded is printed
e) the discount amount is printed.

6. Write a program that prompts the user for the gas quantity and the gas price per litre. The program should
then print a gas receipt like this:
 RECEIPT

 =======

Volume: 45.24 l

Litre price: 9.56 kr/l

To be paid: 432.49 kr

7. Write a program that prompts the user for current and previous electricity meter value in kWh and the price
per kWh. The program should then calculate the total price of the current consumption.

8. Write a program that prompts the user for five integers. The program should then print:
a) the sum of the integers
b) average
c) the sum of the squared numbers
d) the sum of the cube of the numbers

9. Write a program that prompts the user for a number, divides it by 3 and prints the result in the form: “4 and
remainder 2”.

10. You want a program that converts a temperature in Celsius to Fahrenheit according to the formula:
tempF = 1.8 * tempC + 32

Create the conversation with the user in your own way.
11. Originate from the TimeConv program which converts a given number of seconds to hours, minutes and

seconds. Change it so that the user can enter a number of minutes and the program responds with a number
of hours and minutes.

12. Write a program that prompts the user for a number of days and responds with number of years, months
and days. For simplicity, you can treat all months as having 30 days.

13. Write a program that prompts the user for the distance between two cities and in what speed you intend to
drive. The program should print the time for the trip.

14. Change the previous program so that, instead of speed, it prompts for the time allocated for the trip. The
program should respond with the speed required for the trip.

15. Change the previous program so that you can enter the speed and the time for the trip. The program should
then respond with the driving distance.

Download free eBooks at bookboon.com

Structured Programming with C++

44

2 Variables

16. Write a program that converts a given number of Swedish ”öre” to the number of 50-öre coins, crowns,
5-crowns, 10-crowns, 20-crown notes, 50-crown notes and 100-crown notes.

17. A farmer wants to build a wooden fence around a rectangular field. He measures the length and the width of
the field and decides how high the fence should be. He also decides how wide the space between each board
of the fence should be. Each board is 10 cm wide. Help him with a program that calculates the total length
of all boards required to be bought.

18. Improve the previous program so that it also takes into account the amount of board waste (10%) at cutting
the boards to suitable length.

19. Extend the previous program so that you also can enter a price per meter of the boards and have the total
price printed.

20. Originate from the Game program which creates random rolls of a dice. Extend it so it also printes the
individual rolls.

21. Modify the previous program so that it rolls two dice at a time and prints the score sum of the two rolls.
Five such double-rolls should be made.

22. The ”lotto” game creates random numbers in the interval 1-35. A simple lotto game contains seven such
numbers. Create a program that provides a simple lotto game set of numbers. Don’t pay attention to
repetition of a single number.

23. So far we have used the random number generator to produce integers. Figure out how we could get random
numbers with one decimal. Then write a program that produces five temperatures in the interval 18.0 - 23.5.

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2015

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://s.bookboon.com/AXA

Structured Programming with C++

45

3 Selections and Loops

3 Selections and Loops
3.1 Introduction

In this chapter you will learn to incorporate intelligence into your programs, i.e. the program can do different things
depending on different conditions (selections). You will also learn how to repeat certain tasks a specific number of times
or until a specific condition is fulfilled (iteration, loop). We will introduce new symbols in our JSP graphs to illustrate
selections and loops.

3.2 Selection

A selection situation can be illustrated by the following figure:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 39

Selections and Loops
Introduction

In this chapter you will learn to incorporate intelligence into your
programs, i.e. the program can do different things depending on
different conditions (selections). You will also learn how to repeat
certain tasks a specific number of times or until a specific condition is
fulfilled (iteration, loop). We will introduce new symbols in our JSP
graphs to illustrate selections and loops.

Selection
A selection situation can be illustrated by the following figure:

If the condition is fulfilled (yes option) the program will do one thing,
else (no option) another thing.

if statement
The selection situation is in C++ coded according to the following
syntax:

Do this

Condition ?

Do that

yes no

If the condition is fulfilled (yes option) the program will do one thing, else (no option) another thing.

3.3 if statement

The selection situation is in C++ coded according to the following syntax:

if (condition)

 statement1;

else

 statement2;

The keyword if introduces the if statement. The condition is put within parentheses. If the condition is true statement1
will be performed, otherwise statement2. Here is a code example:

if (a>b)

 greatest = a;

else

 greatest = b;

The values of two variables are compared. If a is greater than b, the variable greatest will get a’s value. Otherwise, i.e. if b
is greater than or equal to a, greatest will get b’s value. The result from this code section is that the variable greatest will
contain the greatest of a and b.

Download free eBooks at bookboon.com

Structured Programming with C++

46

3 Selections and Loops

Sometimes you might want to perform more than one statement for an option. Then you must surround the statements
with curly brackets:

if (condition)

{

 statements

 …

}

else

{

 statements

 …

}

If the condition is true all statements in the first code section will be executed, otherwise all statements in the second
code section will be executed. Example:

if (a>b)

{

 greatest = a;

 cout << "a is greatest";

}

else

{

 greatest = b;

 cout << "b is greatest";

}

If a is greater than b, the variable greatest will get a’s value and the text “a is greatest” will be printed. Otherwise the variable
greatest will get b’s value and the text “b is greatest” will be printed.

Sometimes you don’t want to do anything at all in the else case. Then the else section is simply omitted like in the following
example:

if (sum>1000)

{

 dDiscPercent = 20;

 cout << "You will get 20 % discount";
}

If the variable sum is greater than 1000 the variable dDiscPercent will get the value 20 and the text “You will get 20%
discount” will be printed. Otherwise nothing will be executed and the program goes on with the statements after the last
curly bracket.

3.4 Price Calculation Program

We will now create a program that calculates the total price of a product. The user is supposed to enter quantity and price
per unit of the product. If the total exceeds 500:- you will get 10 % discount, otherwise 0 %. We start with a JSP graph:

Download free eBooks at bookboon.com

Structured Programming with C++

47

3 Selections and Loops

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 41

If a is greater than b, the variable greatest will get a’s value and the
text “a is greatest” will be printed. Otherwise the variable greatest will
get b’s value and the text “b is greatest” will be printed.

Sometimes you don’t want to do anything at all in the else case. Then
the else section is simply omitted like in the following example:

if (sum>1000)
{
 dDiscPercent = 20;
 cout << ”You will get 20 % discount”;
}

If the variable sum is greater than 1000 the variable dDiscPercent will
get the value 20 and the text “You will get 20 % discount” will be
printed. Otherwise nothing will be executed and the program goes on
with the statements after the last curly bracket.

Price Calculation Program
We will now create a program that calculates the total price of a
product. The user is supposed to enter quantity and price per unit of
the product. If the total exceeds 500:- you will get 10 % discount,
otherwise 0 %. We start with a JSP graph:

All boxes except ”Calculate discount” are rather simple to code.
“Calculate discount” requires a closer examination. It has a condition
included which says that the discount is different depending on
whether gross is less or greater than 500. We’ll break down that box:

Price

Entry Calculate
gross

Calculate
discount

Calculate
net

Print

All boxes except “Calculate discount” are rather simple to code. “Calculate discount” requires a closer examination. It
has a condition included which says that the discount is different depending on whether gross is less or greater than 500.
We’ll break down that box:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 42

A conditional situation in JSP is identified by a ring in the upper right
corner of the box. That implies that only one of the boxes will be
executed. Here is the code:

#include <iostream.h>
void main()
{
 const double dLimit = 500;
 int iNo;
 double dUnitPrice, dGross, dNet, dDisc;
 cout << ”Specify quantity and unit price”;
 cin >> iNo >> dUnitPrice;

 dGross = iNo * dUnitPrice;
 if (dGross > dLimit)
 dDisc = 10;
 else
 dDisc = 0;

 dNet = (100- dDisc) * dGross / 100;
 cout << ”Total price: ” << dNet;
}

The declaration shows a constant dLimit, which later is used to check
the gross value. The variable iNo is used to store the entered quantity
and dUnitPrice is used for the entered unit price.

It is common among programmers to use one or a few characters in
the beginning of the variable name to signify the data type of the
variable. The variable iNo has first character I (integer), and the
variable dUnitPrice has d (double).

After data entry the gross is calculated by multiplying the two entered
values (quantity * unit price). That value is stored in the variable
dGross.

Price

Entry Calculate
gross

Calculate
discount

Calculate
net

Print

gross > 500
disc = 10%

gross <= 500
disc = 0%

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/BI

Structured Programming with C++

48

3 Selections and Loops

A conditional situation in JSP is identified by a ring in the upper right corner of the box. That implies that only one of
the boxes will be executed. Here is the code:

#include <iostream.h>

void main()

{

 const double dLimit = 500;

 int iNo;

 double dUnitPrice, dGross, dNet, dDisc;

 cout << "Specify quantity and unit price";

 cin >> iNo >> dUnitPrice;

 dGross = iNo * dUnitPrice;

 if (dGross > dLimit)

 dDisc = 10;

 else

 dDisc = 0;

 dNet = (100- dDisc) * dGross / 100;

 cout << "Total price: " << dNet;

}

The declaration shows a constant dLimit, which later is used to check the gross value. The variable iNo is used to store
the entered quantity and dUnitPrice is used for the entered unit price.

It is common among programmers to use one or a few characters in the beginning of the variable name to signify the data
type of the variable. The variable iNo has first character I (integer), and the variable dUnitPrice has d (double).

After data entry the gross is calculated by multiplying the two entered values (quantity * unit price). That value is stored
in the variable dGross.

The if statement then checks the value of dGross. If greater than dLimit (i.e. 500) the variable dDisc will get the value 10,
otherwise 0. dDisc contains the discount percent to be applied.

The net is then calculated by subtracting the discount percent from 100, which then is multiplied by dGross and divided
by 100 (to compensate for the percent value).

Finally the total price is printed.

3.5 Comparison Operators

In the if statements in previous example codes we have so far only used the comparison operator > (greater than). Here
is a list of all comparison operators:

< less than

> greater than

<= less than or equal to

Download free eBooks at bookboon.com

Structured Programming with C++

49

3 Selections and Loops

>= greater than or equal to

== equal to

!= not equal to

3.6 Even or Odd

In some situations you will need to check whether a number is evenly dividable by another number. Then the modulus
operator % is used. Below are some code examples of how to check whether a number is odd or even, i.e. evenly dividable by 2.

//If iNo is even, the remainder of the integer

//division by 2 equals 0:

if (iNo%2 == 0)

 cout >> "The number is even";

//If the remainder of the integer division by 2

//does not equal 0, the number is not dividable

//by 2:

if (iNo%2 != 0)

 cout >> "The number is odd";

//Short way of codeing. An expression not equal

//to 0 is regarded as false, otherwise true.

//If iNo is odd, iNo%2 gives a non zero value:

if (iNo%2)

 cout >> "The number is odd";

3.7 else if

We will now study an example of a more complicated situation. Suppose the following conditions prevail:

If a customer buys more than 100 pieces, he will get 20% discount. Otherwise if the quantity exceeds 50, i.e. lies in the
interval 50-100, he will get 10%. Otherwise, i.e. if the quantity is below 50, no discount is given. The situation is shown
by the following JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 44

if (iNo%2)
 cout >> ”The number is odd”;

else if
We will now study an example of a more complicated situation.
Suppose the following conditions prevail:

If a customer buys more than 100 pieces, he will get 20% discount.
Otherwise if the quantity exceeds 50, i.e. lies in the interval 50-100, he
will get 10%. Otherwise, i.e. if the quantity is below 50, no discount is
given. The situation is shown by the following JSP graph:

The code for this will be:

if (iNo>100)
 dDisc = 20;
else if (iNo>50)
 dDisc = 10;
else
{
 dDisc = 0;
 cout << ”No discount”;
}

Here we use the keyword else if.

You can use any number of else if-s to cover many conditional cases.

qty > 100

Yes
disc = 20%

No
qty > 50

Yes
disc = 10%

No
disc = 0%
message

Download free eBooks at bookboon.com

Structured Programming with C++

50

3 Selections and Loops

The code for this will be:

if (iNo>100)

 dDisc = 20;

else if (iNo>50)

 dDisc = 10;

else

{

 dDisc = 0;

 cout << "No discount";

}

Here we use the keyword else if.

You can use any number of else if-s to cover many conditional cases.

3.8 and (&&), or (||)

The situation with different discount percentages for different quantity intervals can be solved in another way, namely by
combining two conditions. In common English it can be expressed like this:

If the quantity is less than 100 and the quantity is greater than 50, the customer will get 10% discount.

Here we combine two conditions:
- If the quantity is less than 100

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

Structured Programming with C++

51

3 Selections and Loops

and
- and the quantity is greater than 50

The combination of the conditions means that the quantity lies in the interval 50-100. Both conditions must be fulfilled
in order to get 10%. The conditions are combined with “and” which is a logical operator. It is written && in C++. The
code will then be:

if (iNo<100 && iNo>50)

 dDisc = 10;

Suppose the situation is this:

If the quantity is greater than 100 or the total order sum is greater than 1000, the customer will get 20% discount.

Here we combine the conditions:
- If the quantity is greater than 100
eller
- or the total order sum is greater than 1000

In both cases the customer has bought so much that he will get 20% discount. One of the conditions is sufficient to get
that discount. The conditions are combined with the logic operator “or”, which is written || in C++. The code for this
situation will be:

if (iNo>100 || dSum>1000)

 dDisc = 20;

3.9 Conditional Input

In many situations you cannot predict what a user is going to enter. It might happen that the user enters characters when the
program expects integers, or that he does not enter anything at all but just press Enter. Then you can use conditional input:

if (cin >> iNo)

 ...

To understand how this code works you must know that cin is a function that returns a value. If reading of the value to
the variable iNo succeeded, the return value from cin is true, otherwise false. Here is a code section that shows how it
can be used:

cout << "Specify quantity: ";

if (cin >> iNo)

 dTotal = iNo * dUnitPrice;

else

{

 cout << "Input error";

 cin.clear();

 cin.get();

}

First we prompt the user for a quantity. The the program halts (cin) and waits for a vlue. If data entry turned out well,
the whole condition is true, and the total price is calculated.

Download free eBooks at bookboon.com

Structured Programming with C++

52

3 Selections and Loops

If the data entry failed, i.e. if the user entered letters or just pressed Enter, the condition is false and the statements after else
are executed. The user will get a message about input error, the keayboard buffer is cleared (cin.clear()) and the next character
in the queue is read (cin.get()). This clean-up procedure must be performed to be able to enter new values to the program.

3.10 The switch statement

In addition to the if statement there is another tool that allows you to perform different tasks depending on the
circumstances. The tool is called switch statement and is best accommodated to the situation when checking a value
against several alternatives. A good example is a menu where the user enters a menu option (1, 2, 3 ... or A, B, C ...) to
make the program do different things depending on the user’s choice.

The switch statement has the following syntax:

switch (opt)

{

 case 'A':

 //statements

 break;

 case 'B':

 //statements

 break;

 …

 default:

 cout << "Wrong choice";

 break;

}

First comes the keyword switch. Within parenthesis after switch there is the variable to be checked. It is checked against
the values after the different case keywords. If for instance opt has the value ‘A’, i.e. opt is a char variable in the example
above, then the statements below case ‘A’ are executed. Note that the keyword break must be found at the end of each
case block. If break is omitted, the program will continue into the next case block. Note also that there must be a colon
(:) after each case line. The default block takes care of all other options, i.e. if the variable opt does not contain any of the
values ‘A’, ‘B’ etc. then the statements in the default block will be executed. The entire switch block should be surrounded
by curly brackets.

3.11 Menu Program

We will now write a menu program that illustrates how the switch statement can be used. First, the user is prompted
for two numbers, and then a menu is displayed where the user can select whether to view the greatest, the least, or the
average of the two numbers. The screen will look like this:

Enter 2 numbers: 7 5

1. Greatest

2. Least

3. Average

Select:

Download free eBooks at bookboon.com

Structured Programming with C++

53

3 Selections and Loops

First, the user has entered the numbers 7 and 5. Then a menu is displayed where the user has to select 1, 2 or 3, depending
on what he wants to view.

We will first draw a JSP graph that explains the process:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 47

is a char variable in the example above, then the statements below
case ‘A’ are executed. Note that the keyword break must be found at
the end of each case block. If break is omitted, the program will
continue into the next case block. Note also that there must be a colon
(:) after each case line. The default block takes care of all other
options, i.e. if the variable opt does not contain any of the values ‘A’,
‘B’ etc. then the statements in the default block will be executed. The
entire switch block should be surrounded by curly brackets.

Menu Program
We will now write a menu program that illustrates how the switch
statement can be used. First, the user is prompted for two numbers,
and then a menu is displayed where the user can select whether to
view the greatest, the least, or the average of the two numbers. The
screen will look like this:

Enter 2 numbers: 7 5

1. Greatest
2. Least
3. Average

Select:

First, the user has entered the numbers 7 and 5. Then a menu is
displayed where the user has to select 1, 2 or 3, depending on what he
wants to view.

We will first draw a JSP graph that explains the process:

First, the user enters two numbers. Then the menu is displayed on the
screen and the user selects an option. Finally the requested action is
performed.

The requested action can be one of four options, so we break down the
box ”Perform action”:

Menu Prog

Enter values Show menu Select Perform action

First, the user enters two numbers. Then the menu is displayed on the screen and the user selects an option. Finally the
requested action is performed.

The requested action can be one of four options, so we break down the box ”Perform action”:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 48

Since we have a selection situation where only one of the options
should be performed, we indicate this with a circle in the upper right
corner in each selection box.

The four options contain some logic, so we break down the JSP graph
further:

In the ”Show greatest” case we perform a check: if iNo1 is the
greatest, we print it, otherwise we print iNo2. The “Show least” is
analoguous. In the “Show average” case we add the two numbers and
divide by 2.

The code will be this:

Menu prog

Enter values

Show menu

Select

Perform action

Show
greatest

Show
least

Show
average

Err.
msg.

Menu prog

Enter values

Show menu

Select

Perform action

Show
greatest

Show
least

Show
average

Err.
msg.

dNo1 >
Show dNo1

dNo2 >
Show dNol2

dNo1 <
Show dNo1

dNo2 <
Show dNo2

dNo1+dNo2
/2

Download free eBooks at bookboon.com

Structured Programming with C++

54

3 Selections and Loops

Since we have a selection situation where only one of the options should be performed, we indicate this with a circle in
the upper right corner in each selection box.

The four options contain some logic, so we break down the JSP graph further:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 48

Since we have a selection situation where only one of the options
should be performed, we indicate this with a circle in the upper right
corner in each selection box.

The four options contain some logic, so we break down the JSP graph
further:

In the ”Show greatest” case we perform a check: if iNo1 is the
greatest, we print it, otherwise we print iNo2. The “Show least” is
analoguous. In the “Show average” case we add the two numbers and
divide by 2.

The code will be this:

Menu prog

Enter values

Show menu

Select

Perform action

Show
greatest

Show
least

Show
average

Err.
msg.

Menu prog

Enter values

Show menu

Select

Perform action

Show
greatest

Show
least

Show
average

Err.
msg.

dNo1 >
Show dNo1

dNo2 >
Show dNol2

dNo1 <
Show dNo1

dNo2 <
Show dNo2

dNo1+dNo2
/2

In the “Show greatest” case we perform a check: if iNo1 is the greatest, we print it, otherwise we print iNo2. The “Show
least” is analoguous. In the “Show average” case we add the two numbers and divide by 2.

The code will be this:

#include <stdlib.h>

#include <iostream.h>

void main()

{

 int iOpt;

 double dNo1, dNo2;

 cout << "Enter 2 numbers: ";

 cin >> dNo1 >> dNo2;

 system("cls");

 cout << "1. Greatest" << endl;

 cout << "2. Least" << endl;

 cout << "3. Average" << endl;

 cout << endl << "Select: ";

 cin >> iOpt;

 switch (iOpt)

 {

 case 1:

 if (dNo1>dNo2)

Download free eBooks at bookboon.com

Structured Programming with C++

55

3 Selections and Loops

 cout << dNo1;

 else

 cout << dNo2;

 cout << " is the greatest";

 break;

 case 2:

 if (dNo1<dNo2)

 cout << dNo1;

 else

 cout << dNo2;

 cout << " is the least";

 break;

 case 3:

 cout << "The average is " << (dNo1+dNo2)/2;

 break;

 default:

 cout << "Wrong choice";

 break;

 }

}

The header file stdlib.h is needed to be able to clean the screen with system(“cls”), which is done after the user has entered
the two values. Then we print the menu on the screen and the user enters his choice (1, 2 eller 3) to the variable iOpt.

The switch statement will then check the variable iOpt. If it is 1, the statements after “case 1” are executed. There we check
which of the two numbers are the greatest and print it. In the same way the least number is printed under “case 2”. In
case of 3, the average is calculated and printed. If the user has entered anything else, the default statements are executed.

3.12 Loops

We will now continue with another powerful tool within programming, that can make the program perform a series of
operations a specific number of times. Sometimes, the number of times, or the number of iterations, decided from start,
sometimes it depends on the circumstances. We begin with an example:

We want to print a list of the numbers 1-10 and their squares:

1 1
2 4
3 9
etc.

We have a variable, iNo, which first has the value 1. We print it and the square of it. Then we increase the value of iNo by 1
and repeat the process, i.e. we print iNo and the square of iNo. Then we increase iNo again etc. This goes on until iNo = 10.

Download free eBooks at bookboon.com

Structured Programming with C++

56

3 Selections and Loops

Thus, we have a series of operations (print iNo, print the square of iNo) which is repeated 10 times. A repetition is called
a loop. It is illustrated by the following JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 50

Loops
We will now continue with another powerful tool within
programming, that can make the program perform a series of
operations a specific number of times. Sometimes, the number of
times, or the number of iterations, decided from start, sometimes it
depends on the circumstances. We begin with an example:

We want to print a list of the numbers 1-10 and their squares:

1 1
2 4
3 9
etc.

We have a variable, iNo, which first has the value 1. We print it and
the square of it. Then we increase the value of iNo by 1 and repeat the
process, i.e. we print iNo and the square of iNo. Then we increase iNo
again etc. This goes on until iNo = 10.

Thus, we have a series of operations (print iNo, print the square of
iNo) which is repeated 10 times. A repetition is called a loop. It is
illustrated by the following JSP graph:

First the variable iNo is set = 1. Then a loop “Print values until
iNo=10” is started. The fact that it is a loop is shown by the
subordinate boxes having an asterix in the upper right corner.

The loop consists of three boxes, which in turn print the value of iNo,
the value of iNo * iNo (i.e. the square of iNo), and increase the value
of iNo by 1. The loop goes on until iNo has reached the value 10.

Squares

iNo = 1 Print values until iNo=10

Print iNo Print iNo * iNo Increase
iNo

* * *

First the variable iNo is set = 1. Then a loop “Print values until iNo=10” is started. The fact that it is a loop is shown by
the subordinate boxes having an asterix in the upper right corner.

The loop consists of three boxes, which in turn print the value of iNo, the value of iNo * iNo (i.e. the square of iNo), and
increase the value of iNo by 1. The loop goes on until iNo has reached the value 10.

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

Structured Programming with C++

57

3 Selections and Loops

3.13 The while Loop

Here is a code section that performs the task:

iNo = 1;

while (iNo <= 10)

{

 cout << iNo << " " << iNo * iNo << endl;

 iNo++;

}

First the variable iNo gets the value 1. Then the loop follows starting with the keyword while, followed by a condition
within parenthesis. The operations to be repeated are given within the curly brackets immediately after the while condition.

The while line can be read: ”As long as iNo is less than or equal to 10”. For each turn of the loop iNo and iNo*iNo are
printed on the screen, separated by a space and followed by a line break. At the end of the loop iNo is increased by 1.

3.14 The for Loop

The task was solved by the while loop above. The for loop is another type of loop:

for (iNo=1; iNo <= 10; iNo++)

{

 cout << iNo << " " << iNo * iNo << endl;

}

This loop does exactly the same thing, namely prints the numbers 1-10 and their squares. The code block however contains
only one statement. The actual increase of the iNo value is managed by the parenthesis after the keyword for.

The parenthesis contains three parts, separated by semicolons:

for (iNo=1; iNo <= 10; iNo++)

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 51

The while Loop
Here is a code section that performs the task:

iNo = 1;
while (iNo <= 10)
{
 cout << iNo << " " << iNo * iNo << endl;
 iNo++;
}

First the variable iNo gets the value 1. Then the loop follows starting
with the keyword while, followed by a condition within parenthesis.
The operations to be repeated are given within the curly brackets
immediately after the while condition.

The while line can be read: ”As long as iNo is less than or equal to
10”. For each turn of the loop iNo and iNo*iNo are printed on the
screen, separated by a space and followed by a line break. At the end
of the loop iNo is increased by 1.

The for Loop
The task was solved by the while loop above. The for loop is another
type of loop:

for (iNo=1; iNo <= 10; iNo++)
{
 cout << iNo << " " << iNo * iNo << endl;
}

This loop does exactly the same thing, namely prints the numbers 1-10
and their squares. The code block however contains only one
statement. The actual increase of the iNo value is managed by the
parenthesis after the keyword for.

The parenthesis contains three parts, separated by semicolons:
for (iNo=1; iNo <= 10; iNo++)

The initiation part sets a start value of a variable, often called loop
variable, since it controls when to interrupt the loop. The condition

initiation condition increase

The initiation part sets a start value of a variable, often called loop variable, since it controls when to interrupt the loop.
The condition part is checked for each turn of the loop. When the condition is false, the loop is interrupted. The increase
part changes the value of some variable; mostly it is the loop variable that is increased by 1.

However, you don’t have to start with 1 or increase by 1 for each turn of the loop. The following code example shows how
the variable iNo from start is set to 2. The increase part will add 2 for each turn of the loop:

for (iNo=2; iNo <= 10; iNo=iNo+2)

{

 cout << iNo << " " << iNo * iNo << endl;

}

Download free eBooks at bookboon.com

Structured Programming with C++

58

3 Selections and Loops

3.14.1 while or for

When should you use the while loop and when the for loop? Many times you can solve the problem with both loop
types, and many times it is a question about personal preference. In general, however, if you can predict the number of
turns of the loop, the for loop is the best one. If there is an unpredictable situation, e.g. if the loop goes on until the user
enters a specific value, or that the random number generator provides a specific number, use the while loop. We will use
both alternatives.

3.15 Addition Program

We will create a program that adds the integers 1 + 2 + 3 + 4 + … up to the limit specified by the user. The user should
first enter the requested limit. Then we will use a loop that goes from 1 to that limit and sums the numbers. We will then
need a variable, which is a kind of accumulater, which stores the sum.

We begin with a JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 52

part is checked for each turn of the loop. When the condition is false,
the loop is interrupted. The increase part changes the value of some
variable; mostly it is the loop variable that is increased by 1.

However, you don’t have to start with 1 or increase by 1 for each turn
of the loop. The following code example shows how the variable iNo
from start is set to 2. The increase part will add 2 for each turn of the
loop:

for (iNo=2; iNo <= 10; iNo=iNo+2)
{
 cout << iNo << " " << iNo * iNo << endl;
}

while or for
When should you use the while loop and when the for loop? Many
times you can solve the problem with both loop types, and many times
it is a question about personal preference. In general, however, if you
can predict the number of turns of the loop, the for loop is the best
one. If there is an unpredictable situation, e.g. if the loop goes on until
the user enters a specific value, or that the random number generator
provides a specific number, use the while loop. We will use both
alternatives.

Addition Program
We will create a program that adds the integers 1 + 2 + 3 + 4 + … up
to the limit specified by the user. The user should first enter the
requested limit. Then we will use a loop that goes from 1 to that limit
and sums the numbers. We will then need a variable, which is a kind
of accumulater, which stores the sum.

We begin with a JSP graph:

Addition

Enter limit Calculate sum 1-limit

Accumulate

Print

*

First the user is prompted for a limit. The following loop goes from 1 to limit with the loop variable i. For each turn of
the loop we add the value of i to the sum, i.e. we accumulate the numbers. Finally we print the accumulated sum. Note
that the operation to be repeated (Accumulate) in the loop is indicated by an asterix in the JSP graph.

#include <iostream.h>

void main()

{

 int i, iLimit, iSum = 0;

 cout << "Enter limit: ";

 cin >> iLimit;

 for (i=1; i<=iLimit; i++)

 iSum += i;

 cout << "The sum = " << iSum << endl;

}

First, a number of variables are declared. The variable i is used as loop variable, iLimit is used for storage of the user
specified limit, and iSum the accumulated sum. Note that, since iSum is increased by a value all the time, it must have a

Download free eBooks at bookboon.com

Structured Programming with C++

59

3 Selections and Loops

start value. A declared variable does not automatically get the value 0 or any other value. That is why we must initiate it
with 0. The other variables will get fix values during the execution of the program, so they need not be initiated.

The user will then enter a value to be stored in the variable iLimit. The loop then sets a start value = 1 to the loop variable
i. The for-condition is that i is not allowed to exceed iLimit. For each turn of the loop the loop variable is increased by 1.
That means that the value stated by the user controls the number of turns of the loop.

The repetition code block of the loop contains only one statement. Therefore we don’t need any curly brackets surrounding
the loop. If, however, the repetition code block contains several statements, they must be surrounded by curly brackets.
Compare the if statement, which works in the same way.

The repetition code block contains this statement:

iSum += i;

which implies that the variable iSum is increased by i for each turn of the loop. This means that the variable iSum will
contain the sum 1 + 2 + 3 + …

Finally the value of iSum is printed.

An optional way of writing the for line:

for (int i=1; i<=iLimit; i++)

Here we declare the variable i inside the for statement. The variable should then not be declared earlier in the program.

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/volvo

Structured Programming with C++

60

3 Selections and Loops

Still another way of coding:

for (int i=1; i<=iLimit; iSum+=i++);

Here the increase part of the for statement contains the code iSum+=i++. Here two things happen, namely that the
variable iSum is increased by the value of i, and then i is increased by 1 (i++). This means that we don’t need any repetition
code block, so we put a semicolon directly after the parenthesis. Consequently the loop consists of one single line.

3.16 Double Loop

We will now how to use a double loop, i.e. a loop inside another loop. The inner loop will then do all its loop turns for
each turn of the outer loop. Here is an example.

We will write a program that figures out all combinations of two integers whose product is 36:

1 x 36
2 x 18
3 x 12
etc.

We let the outer loop control the first factor, which runs from 1 to 36. For each value of the first factor we will go through
the values 1-36 for the second factor and check if the product equals 36. If so, the factors are printed.

First we give a JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 55

Under ”Check product” we have an outer loop with the loop variable i
and an inner loop with loop variable j. Inside the loop we check if the
product of i and j makes 36. If so, i and j are printed.

Here’s the code:

#include <iostream.h>
void main()
{
 int i, j;
 cout << "Calculation of produdt" << endl;
 for (i=1; i<=36; i++)
 {
 for (j=1; j<=36; j++)
 {
 if (i*j == 36)
 cout << i << " and " << j << endl;
 }
 }
}

In the double for loop the variable i gets the value 1. The inner loop
starts and lets j run through the values 1-36. For each value of j we
check if i*j makes 36. If so, we print the values of i and j. When the
inner loop has finished, the next turn of the outer loop will start where

Product

Write text Check product

i = 1-36
*

j = 1-36
*

Product = 36

Print factors ---
o o

Under “Check product” we have an outer loop with the loop variable i and an inner loop with loop variable j. Inside the
loop we check if the product of i and j makes 36. If so, i and j are printed.

Download free eBooks at bookboon.com

Structured Programming with C++

61

3 Selections and Loops

Here’s the code:

#include <iostream.h>

void main()

{

 int i, j;

 cout << "Calculation of produdt" << endl;

 for (i=1; i<=36; i++)

 {

 for (j=1; j<=36; j++)

 {

 if (i*j == 36)

 cout << i << " and " << j << endl;

 }

 }

}

In the double for loop the variable i gets the value 1. The inner loop starts and lets j run through the values 1-36. For each
value of j we check if i*j makes 36. If so, we print the values of i and j. When the inner loop has finished, the next turn of
the outer loop will start where i is set =2, and the inner loop starts once again and lets j run from 1 to 36.

3.17 Roll Dice

So far we have mainly used the for loop. We will now look at a few situations where the while loop is preferred. We will
write a program that rolls a dice until we get 6. Then the number of rolls is printed.

Here we cannot predict how long the loop will run. That depends on the numbers being generated. Therefore, the while
loop is perfect.

Let us first create a JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 56

i is set =2, and the inner loop starts once again and lets j run from 1 to
36.

Roll Dice
So far we have mainly used the for loop. We will now look at a few
situations where the while loop is preferred. We will write a program
that rolls a dice until we get 6. Then the number of rolls is printed.

Here we cannot predict how long the loop will run. That depends on
the numbers being generated. Therefore, the while loop is perfect.

Let us first create a JSP graph:

We begin with initiating the random number generator to a randomly
selected start position. Then the loop is repeated until we get 6. For
each turn of the loop we roll the dice once more and increase the
number of rolls by 1. When 6 has been achieved, the loop is
terminated and the number of rolls is printed. Here’s the code:

#include <iostream.h>
#include <stdlib.h>
#include <time.h>
void main()
{
 int iRoll=0, iNoOfRolls=0;
 srand(time(0));
 while (iRoll != 6)
 {
 iRoll = rand()%6+1;
 iNoOfRolls++;
 }
 cout << iNoOfRolls;
}

Dice

Initiate
random no
generator

Roll until 6

Roll

Print

* Increase no. *

We begin with initiating the random number generator to a randomly selected start position. Then the loop is repeated
until we get 6. For each turn of the loop we roll the dice once more and increase the number of rolls by 1. When 6 has
been achieved, the loop is terminated and the number of rolls is printed. Here’s the code:

Download free eBooks at bookboon.com

Structured Programming with C++

62

3 Selections and Loops

#include <iostream.h>

#include <stdlib.h>

#include <time.h>

void main()

{

 int iRoll=0, iNoOfRolls=0;

 srand(time(0));

 while (iRoll != 6)

 {

 iRoll = rand()%6+1;

 iNoOfRolls++;

 }

 cout << iNoOfRolls;

}

The header file stdlib.h is needed for the random number functions, and time.h is needed for the function time(0) at
initiation of the generator.

The variable iRoll is used to store each roll. The reason for initiating it with 0 at the declaration is that it must hold a
value when the while loop starts. The value must be something else than 6, otherwise the loop will not start. Any other
value will do.

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

Structured Programming with C++

63

3 Selections and Loops

The variable iNoOfRolls is used to count the number of rolls. It must be initiated to 0, since it is increased by 1 all the time.

The function srand() initiates the generator to a randomly selected start position.

The while loop contains the condition that iRoll must not be 6. As long as no 6 is achieved the loop runs one more turn.
For each turn we make another roll stored in iRoll, and the variable iNoOfRolls is increased by 1.

When we get 6, the while condition is false and the loop is terminated. The variable iNoOfRolls then contains the number
of rolls, which is printed.

A variant of the program looks like this:

#include <iostream.h>
#include <stdlib.h>

#include <time.h>

void main()

{

 int iRoll, iNoOfRolls=0;

 srand(time(0));

 do

 {

 iRoll = rand()%6+1;

 iNoOfRolls++;

 } while (iRoll != 6);

 cout << iNoOfRolls;

}

The big difference is that the loop has its condition after the loop body instead of before. The effect of this is that at
least one turn of the loop is executed before the condition is tested. This also means that the variable iRoll needs not be
initialized to 0. It will anyway get a new value during the first turn of the loop.

The keyword ’do’ is before the loop body, and ‘while’ followed by the condition right after the ending curly bracket. You
must have a semicolon immediately after the condition.

3.18 Two Dice Roll

We will now write a program which repeatedly rolls two dice and checks if the two rolls are equal. When two equal rolls
have been achieved, the process is terminated and the number of “double” rolls is printed. We start with a JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 58

Two Dice Roll
We will now write a program which repeatedly rolls two dice and
checks if the two rolls are equal. When two equal rolls have been
achieved, the process is terminated and the number of “double” rolls is
printed. We start with a JSP graph:

When having initiated the random number generator to a random start
position, the loop begins. For each turn, we roll the 1st and then the 2nd
dice, and then increase the counter by 1. When the two rolls are equal
the loop is terminated and the number of “double” rolls is printed.
Here is the code:

#include <iostream.h>
#include <stdlib.h>
#include <time.h>
void main()
{
 int iRoll1, iRoll2, iCounter=0;
 srand(time(0));
 do
 {
 iRoll1 = rand()%6+1;
 iRoll2 = rand()%6+1;
 iCounter++;
 } while (iRoll1 != iRoll2);
 cout << "The rolls were " << iRoll1 << endl;
 cout << "Number of attempts = " << iCounter << endl;
}

The program is similar to the previous with the difference that here we
have two variables which store the rolls. Inside the loop iRoll1 and
iRoll2 get their values and the number of “double” rolls is increased
by 1.

Initiate
random no.
generator

Roll until equal

Roll 2nd

Print

* Increase no. *

Dice2

Roll 1st *

Download free eBooks at bookboon.com

Structured Programming with C++

64

3 Selections and Loops

When having initiated the random number generator to a random start position, the loop begins. For each turn, we roll
the 1st and then the 2nd dice, and then increase the counter by 1. When the two rolls are equal the loop is terminated and
the number of “double” rolls is printed. Here is the code:

#include <iostream.h>

#include <stdlib.h>

#include <time.h>

void main()

{

 int iRoll1, iRoll2, iCounter=0;

 srand(time(0));

 do

 {

 iRoll1 = rand()%6+1;

 iRoll2 = rand()%6+1;

 iCounter++;

 } while (iRoll1 != iRoll2);

 cout << "The rolls were " << iRoll1 << endl;

 cout << "Number of attempts = " << iCounter << endl;

}

The program is similar to the previous with the difference that here we have two variables which store the rolls. Inside
the loop iRoll1 and iRoll2 get their values and the number of “double” rolls is increased by 1.

Since the while condition comes after the loop body, at least one loop turn will be executed. The condition is that iRoll1
is not equal to iRoll2. If they are equal the loop is terminated and the dice score and the number of rolls are printed.

3.19 Breaking Entry with Ctrl-Z

We will now use the while loop condition to contain a user input with cin. The program will prompt the user for repeated
entry of numbers. The entered numbers are summed. When the user presses Ctrl-Z the entry of numbers is interrupted
and their average is printed. Here is the code:

#include <iostream.h>

void main()

{

 int iSum=0, i=0, iNo;

 cout << "Enter a number: ";

 while (cin >> iNo)

 {

 iSum += iNo;

 i++;

 cout << "Enter one more number: ";

Download free eBooks at bookboon.com

Structured Programming with C++

65

3 Selections and Loops

 }

 cout << "Average = " << (double)iSum/i << endl;

}

The variable iSum is used to store the sum of the entered numbers. The variable i counts the number of numbers.

The while condition contains input of a number from the user. If the input succeeds, the cin function will return a true
value. One turn of the loop is then executed. In the loop the variable iSum is increased by the entered value and the
variable i, which counts the values, is increased by 1. At the end of the loop the user is prompted for yet another value.

When one turn of the loop has been run, the condition is tested again, i.e. the program halts and waits for a new entry. As
long as the user enters numbers, a new loop turn is run. If the user presses Ctrl-Z the function cin returns a false value,
which makes the loop to be terminated. Then the average is printed, which is calculated by dividing the sum by the number
of values. Since the variable iSum is an integer we must type cast it to double before the division to not loose the decimals.

3.20 Pools

Programming a pools line (1, X or 2) with 13 football matches is another example of how to use the random number
generator in a loop. Since we know that a pools line contains 13 matches, we use a for loop. First we create a JSP graph:

Download free eBooks at bookboon.com
Click on the ad to read more

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

Structured Programming with C++

66

3 Selections and Loops

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 60

Pools
Programming a pools line (1, X or 2) with 13 football matches is
another example of how to use the random number generator in a
loop. Since we know that a pools line contains 13 matches, we use a
for loop. First we create a JSP graph:

When having intitated the random number generator, the loop begins
which should create 1, X or 2 for 13 matches. We do that by create a
random number which is 0, 1 or 2. If it is 0, we print ‘1’. If it was 1,
we print ‘X’. If it was 2, we print ’2’. Here is the code:

#include <iostream.h>
#include <stdlib.h>
#include <time.h>
void main()
{
 int iNo;
 srand(time(0));
 for (int i=1; i <= 13; i++)
 {
 iNo = rand()%3;
 switch (iNo)
 {
 case 0:
 cout << "1" << endl;
 break;
 case 1:
 cout << " X" << endl;
 break;
 case 2:

1: print X

Initiate
random no.
generator

Write pools line (13 matches)

Print 1,X,2 *

2: print 2

Pools

Random 0,1,2 *

0: print 1
o o o

When having intitated the random number generator, the loop begins which should create 1, X or 2 for 13 matches. We
do that by create a random number which is 0, 1 or 2. If it is 0, we print ‘1’. If it was 1, we print ‘X’. If it was 2, we print
’2’. Here is the code:

#include <iostream.h>

#include <stdlib.h>

#include <time.h>

void main()

{

 int iNo;

 srand(time(0));

 for (int i=1; i <= 13; i++)

 {

 iNo = rand()%3;

 switch (iNo)

 {

 case 0:

 cout << "1" << endl;

 break;

 case 1:

 cout << " X" << endl;

 break;

 case 2:

 cout << " 2" << endl;

 break;

 }

 }

}

Download free eBooks at bookboon.com

Structured Programming with C++

67

3 Selections and Loops

When having initiated the random number generator with srand(), the for loop runs from 1 to 13.

For each loop turn we create a random number in the interval 0-2, which is stored in the variable iNo. It is then checked
by the switch statement. The different case blocks takes care of the cases 0, 1 and 2. For the value 0, we print ‘1’. For the
value 1, we print ‘X’ preceded by some blanks which makes the X’s appear in a separate column. For the value 2, we print
‘2’ preceded by some more blanks.

3.21 Equation

We will now solve a math problem, namely to solve an equation of 2nd degree. To simplify, we assume that the equation
has only integer roots. The equation is:

x2 - 6x + 8 = 0

Since it is of the 2nd degree it has two roots.

Finding the solution to an equation means to find x values such that the left part (LP) equals the right part (RP), i.e.
equal to 0 in our equation.

We create a loop which in turn tests the values 1, 2, 3 … up to 100. The test procedure is to replace x by 1 in LP and
calculate if LP equals 0. Then we replace x by 2 and repeat the process until we find two values that match the equation
or until 100 has been reached.

First, we create a JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 62

First, we create a JSP graph:

The variable iNo is used to count the number of roots to the equation
that we have got. The variable iRoot is the x value in the equation
which in each loop turn is used to calculate LP. The value of iRoot
starts with 1 and is increased by 1 for each loop turn. If the value of
LP = 0, we increase the value of iNo and print the root (x value).

Here is the code:

#include <iostream.h>
void main()
{
 int iNo=0, iRoot=1, LP;
 while ((iNo<2) && (iRoot<=100))
 {
 LP = iRoot * iRoot - 6 * iRoot + 8;
 if (LP==0)
 {
 iNo++;
 cout << iRoot << endl;
 }
 iRoot++;
 }
}

First, the value of iNo is set to 0, since it later will be increased by 1
for each found root. The first root value to be tested is 1 (iRoot=1)..

Incr. iNo,
print

LP = 0 ?

Initiate
variables

Calculate roots utnil
iNo=2 or iRoot>100

Equation

o

Calc. LP Incr. iRoot * * *

o

The variable iNo is used to count the number of roots to the equation that we have got. The variable iRoot is the x value
in the equation which in each loop turn is used to calculate LP. The value of iRoot starts with 1 and is increased by 1 for
each loop turn. If the value of LP = 0, we increase the value of iNo and print the root (x value).

Download free eBooks at bookboon.com

Structured Programming with C++

68

3 Selections and Loops

Here is the code:

#include <iostream.h>

void main()

{

 int iNo=0, iRoot=1, LP;

 while ((iNo<2) && (iRoot<=100))

 {

 LP = iRoot * iRoot - 6 * iRoot + 8;

 if (LP==0)

 {

 iNo++;

 cout << iRoot << endl;

 }

 iRoot++;

 }

}

First, the value of iNo is set to 0, since it later will be increased by 1 for each found root. The first root value to be tested
is 1 (iRoot=1)..

The loop has the condition that iNo should be less than 2, since the number of roots to an equation of 2nd degree is not
greater than 2, and iRoot must not exceed 100, since we don’t examine roots over 100.,

Download free eBooks at bookboon.com
Click on the ad to read more

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

Structured Programming with C++

69

3 Selections and Loops

The first statement in the loop body calculates the value of the left part (LP). This is the actual definition of the equation
(x2 - 6x + 8). If this value is = 0, we increase iNo by 1 and the root is printed.

Then we increase the root value by 1.

3.22 Interrupting a Loop - break

Many times you don’t want to set an upper limit on the number of loop turns. Then you can use a condition for the while
loop which always is true, for example:

while (1==1)

1 is obviously always equal to 1, so the loop will run an infinite number of turnes. Therefore we need a possibility to,
from inside the loop body, interrupt it, i.e. jump out of it and continue with the first statement after the loop. That is
accomplished with the keyword:

break;

We will give a little program example of this. We will write a program where the user repeatedly is prompted for a number,
and the program will respond with the square root of the number. Since you cannot calculate the square root of a negative
number, we will inside the loop body check whether the user has entered a negative value. If so, the loop is interrupted.
Here is the code:

#include <math.h>

#include <iostream.h>

void main()

{

 double dNo;

 while (1==1)

 {

 cout << "Enter a number ";

 cin >> dNo;

 if (dNo<=0)

 break;

 cout << "The square root of the number is " << sqrt(dNo)

 << endl;

 }

}

To be able to calculate the square root, we must include math.h, which contains code for a large number of math functions.

The while condition is that 1 equals 1, which always is true, i.e. we have created an infinite loop. Inside the loop body the
user is first prompted for a number. If the number is less than 0, the loop is interrupted with break. If the number is 0 or
positive, the loop goes on with calculating and printing the square root. The function sqrt() is used for this calculation.

Of course you could solve this problem without using an infinite loop, but regard this as an alternative to create loops.

Download free eBooks at bookboon.com

Structured Programming with C++

70

3 Selections and Loops

3.23 Summary

In this chapter we have learnt to incorporate intelligence into our programs by means of selections. We have also learnt
how if statements can be used to check different situations and perform different tasks depending on the circumstances.
We have showed how to combine various conditions in complex situations with the operators && and ||. We have also
learnt how to use the modulus operator % and how to perform conditional input of values from the user by placing the
input statement with cin inside the if condition.

An alternative to the if statement is the switch statement which is often used in connection with menu programs.

We have in this chapter also introduced loops, which are used to perform a series of operations a repeated number of
times. The main loops are the for loop and the while loop.

We have also extended our knowledge about the random number generator, which has been used to roll a dice and play
pools game. Finally we have spent some effort by solving mathematical equations by means of loops.

3.24 Exercises

1. Write a program that prompts the user for two values and prints the least of them.
2. Write a program that prompts the user for his age. If he is younger than 15, the text “You’ll got to stick to

the bike some more time” should be printed. Otherwise the text ”You are allowed to drive moped” should be
printed.

3. Improve the previous program so that it also pays attention to the driving license age of 18.
4. Write a program that prompts the user for three numbers and prints the greatest of them.
5. Start from the Price Calculation program earlier in this chapter and apply a new discount of 5% if the gross

value exceeds 250:- .
6. Continue with the previous program and write code for tax calculation, which is performed so that the user

is asked for whether it is food or other products that he has bought. Let the user enter 1 for food and 2 for
other products. The program should then add 12% tax for food, or 25% for other products. The tax amount
and the final customer price should also be printed.

7. Suppose that the following taxing rules apply:
a) Income below 10 000:- is not taxable.
b) For income of 10 000 and more the base tax is always 50%.
c) For income below 50 000 a tax reduction of 5 000:- is given.
d) For income over 100 000 there is an extra tax addition of
 20% of the portion exceeding 100 000.
Write a program that prompts the user for his income and calculates the total tax.

8. Write a program that defines whether an entered number is odd or even.
9. Improve the previous program so that it also defines whether the number could be evenly divided by 3.
10. Write a program that prompts the user for how many coins of values 0,50-crowns, 1-crown, 5-crowns and

10-crowns he has in his wallet. The program should then print the total value.
11. Write a program that prompts the user for a price. A discount percent should then be printed according to

the following table:
0-100 0%
100-500 5%

Download free eBooks at bookboon.com

Structured Programming with C++

71

3 Selections and Loops

500-1000 8%
1000-2000 10%
2000-5000 15%
over 5000 18%

12. Write a program that prompts the user for a quantity and a unit price of a product. If the quantity exceeds
20 and the total price exceeds 1000 kr, the user will get 20% discount. Otherwise, if either the quantity
exceeds 20 or the total price exceeds 1000, he will get 10% discount. In all other cases no discount will be
given. The total price and the discount should be printed.

13. Use the menu program with the switch statement earlier in this chapter and add the option:
9. Exit

14. Extend the previous program with the option:
4. Product
i.e. the numbers should be multiplied.

15. Write a menu program that prompts the user for three numbers and then displays the following menu:
1. Least
2. Greatest
3. Sum
The program should also print the requested information.

16. Write a program that prints the numbers 1-10 and their squares.
17. Extend the previous program to also print the cubes of the values.
18. Write a program that prompts the user for integers until the entered number = 0.
19. Extend the previous program so that it also prints the sum of all entered numbers.
20. Write a program that prompts the user for integers and prints a message for each integer whether it is

positive or negative. This is repeated until the entered value equals 0.
21. Write a program that prompts the user for integers until the entered value is evenly dividable by 3.
22. In many sports the competitors get scores which are the sum of the scores given by each judge after the

highest and lowest score has been deducted. Write a program that prompts for one score from a judge at a
time, adds the score and keeps track of the highest and lowest score. The entry is interrupted with Ctrl-Z.
Then the competitor’s total score should be printed after having deducted the highest and lowest score.

23. Start from the Double Loop program earlier in this chapter, which calculates pair of numbers whose product
equals 36. Change it to let the user enter the product to be used.

24. Write a program that calculates the quotient of two numbers. If the quotient = 5, the numbers should be
printed. All numbers up to and including 100 should be examined.

25. Start from the Roll Dice earlier in this chapter. Complete it with a printout of all rolls.
26. Change the previous program to roll the dice until it shows 5 or 6.
27. Start from the Two Dice Roll program that rolls two dice at a time. Complete it with a printout of all pair or rolls.
28. Change the previous program to roll the dice until the sum of two rolls is 12.
29. Start from the Pools program earlier in this chapter. Extend it to print 5 lines of pools beside each other, e.g.:

1 X 2 X 1

 X 2 1 1 X

1 1 X 2 2

etc.

Download free eBooks at bookboon.com

Structured Programming with C++

72

3 Selections and Loops

30. Write a program that randomly prints the numbers 0 and 1. It can for instance illustrate tossing of a coin,
where 0 and 1 represent the two sides of the coin.

31. Write a program that randomly pulls cards from a pack of cards and prints both colour (spades, diamonds,
clubs, hearts) and value (2-10, jack, queen, king, ace). The colour and value of the card should be printed.

32. Start from the equation program earlier in this chapter. Solve the equation:
x2 - 8x + 15 = 0

33. Write a program that solves the equation of 3rd degree (3 roots):
x3 - 9x2 + 23x - 15 = 0

Download free eBooks at bookboon.com
Click on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

Structured Programming with C++

73

4 Arrays

4 Arrays
4.1 Introduction

In this chapter you will learn what an array is, namely a method of storing many values under a single variable name,
instead of using a specific variable for each value. We will begin by declaring an array and assign values to it.

In connection with arrays you will have great use for loops, by means of which you can efficiently search for a value in
the array and sort the values.

Arrays is a fundamental concept within programming which will frequently be used in the future.

4.2 Why Arrays

An array is, as already mentioned, a method of storing many values of the same data type and usage under a single variable
name. Suppose you want to store temperatures measured per day during a month:

12.5

10.7

13.1

11.4

12.1

...

If you didn’t know about arrays, you would need 30 different variable names, for instance:

tempa = 12.5

tempb = 10.7

tempc = 13.1

tempd = 11.4

tempe = 12.1

...

This is a bad option, especially if you want to calculate the average temperature or anything else. Then you would need
to write a huge program statement for the sum of the 30 variables.

Instead, we use an array, i.e. one single variable name followed by an index within square brackets that defines which of
the temperatures in the array that is meant:

temp[1] = 12.5

temp[2] = 10.7

temp[3] = 13.1

temp[4] = 11.4

temp[5] = 12.1

...

Download free eBooks at bookboon.com

Structured Programming with C++

74

4 Arrays

The name of the array is temp. The different values in the array are called elements.

In this way we can use a loop, where the loop variable represents the index, and do a repeated calculation on each of the
temperatures:

for (i=1; i<=30; i++)

{

 //Do something with temp[i];

}

The loop variable i goes from 1 to 30. In the first turn of the loop i has the value 1, which means that temp[i] represents
temp[1], i.e. the first temperature. In the second turn of the loop i has the value 2 and temp[i] represents the second
temperature.

By using a loop the amount of code required will not increase with the number of temperatures to handle. The only thing
to be modified is the number of turns that the for loop must execute.

In the code below we calculate the average of all the temperatures:

iSum = 0;

for (i=1; i<=30; i++)

{

 iSum += temp[i];

}

dAvg = iSum / 30;

cout << dAvg;

The variable iSum is set to 0 since it later on will be increased by one temperature at a time. The loop goes from 1 to 30,
i.e. equal to the number of elements in the array. In the loop body the variable iSum is increased by one temperature at
a time. When the loop has completed, all temperatures have been accumulated in iSum. Finally we divide by 30 to get
the average, which is printed.

4.3 Declaring an Array

Like for all variables, an array must be declared. Below we declare the array temp:

double temp[31];

The number within square brackets indicates how many items the array can hold, 31 in our example. 31 positions will be
created in the primary memory each of which can store a double value. The indeces will automatically be counted from 0.
This means that the last index is 30. If you need temperatures for the month April, which has 30 days, you have two options:

1. Declare temp[30], which means that the indeces goes from 0 to 29. 1st of April will correspond to index 0,
2nd of April to index 1 etc. 30th of April will correspond to index 29. The index lies consequently one step
after the actual date.

2. Declare temp[31]. Then 1st of April can correspond to index 1, 2nd of April to index 2 etc. 30th of April will
correspond to index 30. The date and index are here equal all the time. This means that the item temp[0] is
created ”in vain” and will never be used.

Download free eBooks at bookboon.com

Structured Programming with C++

75

4 Arrays

It is no big deal which of the methods you use, but you will have to be conscious about the method selected, because it
affects the code you write. We will show examples of both methods.

Note that, in the declaration:

double temp[31];

all elements are of the same data type, namely double. For arrays all elements all items always have the same data type.

4.4 Initiating an Array

You can assign values to an array already at the declaration, e.g.:

int iNo[5] = {23, 12, 15, 19, 21};

Here the array iNo will hold 5 items, where the first item with index 0 gets the value 23, the second item with index 1
the value 12 etc.

The enumeration of the values must be within curly brackets, separated by commas.

As a matter of fact it is redundant information to specify the number of items to 5 in the declaration above, since the
number of enumerated values is 5. Therefore you could as well write:

int iNo[] = {23, 12, 15, 19, 21};

An enumeration within curly brackets can only be written in the declaration of an array. For instance, the following is
erroneous:

Download free eBooks at bookboon.com
Click on the ad to read more

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

Structured Programming with C++

76

4 Arrays

double dTemp[4];

dTemp = {12.3, 14.1, 11.7, 13.8};

In the following code section we declare an array of integers and assign values to the array in the loop:

int iSquare[11];

for (int i=0; i<=10; i++)

{

 iSquare[i] = i*i;

}

The array iSquare is declared to hold 11 items of integer type. The loop then goes from 0 to 10. In the first turn of the
loop i is =0 and the item iSquare[0] gets the value 0*0, i.e. 0. In the second turn of the loop i is =1 and iSquare[1] gets
the value 1*1, i.e. 1. In the third turn of the loop the item iSquare[2] gets the value 2*2, i.e. 4. Each item will contain a
value equal to the square of the index.

4.4.1 Index outside the Interval

As a C++ programmer you must yourself keep track of the valid index interval. The result could be disastrous if you wrote:

temp[35] = 23.5;

This means that we store the value 23.5 in the primary memory at an adress that does not belong to the array, but might
belong to a memory area used for other data or program code. If you run such a code the system might in worst case
break down and you will have to restart the computer.

4.5 Copying an Array

Suppose we want to copy the temperatures from the array with April’s values to an array with June’s values. You cannot
copy an entire array in this way:

dblTempJune = dblTempApr;

You will have to copy the values item by item by means of a loop:

for (int i=1; i<=30; i++)

{

 dblTempJune[i] = dblTempApr[i];

}

Here the loop goes from 1 to 30 and we copy item by item for each turn of the loop.

4.6 Comparing Arrays

What is meant by comparing whether two arrays are equal? They must contain item values that are equal in pairs. In the
following code section we compare the two arrays with April’s and June’s temperatures:

int eq = 1;

for (int i=1; i<=30; i++)

Download free eBooks at bookboon.com

Structured Programming with C++

77

4 Arrays

{

 if (dblTempJune[i] != dblTempApr[i])

 eq = 0;

}

Here we let the variable eq reflect whether the two arrays are equal, where the value 1 corresponds to ”equal” and 0 ”not
equal”. From the beginning we assign eq the value 1, i.e. we presume the arrays to be equal. Then in the loop we go through
item by item in the two arrays and checks if they are equal in pairs. The if statement checks if they are different. If so,
the variable eq is set to 0, otherwise nothing is changed. If two items happen to be different, the variable eq will have the
value 0 after the loop has completed. If however all pairs of items are equal, the statement:

eq = 0;

will never be executed, and the variable eq will remain =1. We could then complete our program with output about the
result:

if (eq == 1)

 cout << "The arrays are equal";

 else

 cout << "The arrays are different";

It is not possible to in one single statement check whether the arrays are equal:

if (dblTempJune == dblTempApr)

You must compare item by item like in the code above.

4.7 Average

We will now write a program that reads temperatures to an array from the user and then calculates the average of all
temperatures. The program should then print the average and all temperatures exceeding the average. We begin with a
JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 73

We have made an overview JSP that mainly describes the procedure.

Since we will calculate an average, we need the sum of all
temperatures. We choose to sum the temperatures at the time of entry,
which is made in a loop:

The average calculation is simple. We don’t have to detail it. However
the output is a little more complicated. First we print the calculated
average. Then we write a loop which in turn checks each item of the
array against the calculated average. If temperature number i is greater
than the average, we print temp no. i.

Here is the code:

Average

Enter temp Calculate
average

Print

Average

Enter temp Calculate
average

Print

Enter
temp no. i

Accumulate * * Print avg Print
all > avg

temp no. i
> avg ?

Print
temp no. i

*

o

We have made an overview JSP that mainly describes the procedure.

Since we will calculate an average, we need the sum of all temperatures. We choose to sum the temperatures at the time
of entry, which is made in a loop:

Download free eBooks at bookboon.com

Structured Programming with C++

78

4 Arrays

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 73

We have made an overview JSP that mainly describes the procedure.

Since we will calculate an average, we need the sum of all
temperatures. We choose to sum the temperatures at the time of entry,
which is made in a loop:

The average calculation is simple. We don’t have to detail it. However
the output is a little more complicated. First we print the calculated
average. Then we write a loop which in turn checks each item of the
array against the calculated average. If temperature number i is greater
than the average, we print temp no. i.

Here is the code:

Average

Enter temp Calculate
average

Print

Average

Enter temp Calculate
average

Print

Enter
temp no. i

Accumulate * * Print avg Print
all > avg

temp no. i
> avg ?

Print
temp no. i

*

o

The average calculation is simple. We don’t have to detail it. However the output is a little more complicated. First we print
the calculated average. Then we write a loop which in turn checks each item of the array against the calculated average.
If temperature number i is greater than the average, we print temp no. i.

Download free eBooks at bookboon.com
Click on the ad to read more

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

Structured Programming with C++

79

4 Arrays

Here is the code:

#include <iostream.h>

void main()

{

 // Deklarations

 const int iNoOfDays = 30;

 double dAvg, dSum = 0;

 double dblTempApr[iNoOfDays + 1];

 int i;

 // Entry and calculation

 for (i=1; i<= iNoOfDays; i++)

 {

 cout << "Temperature day " << i;

 cin >> dblTempApr[i];

 dSum += dblTempApr[i];

 }

 dAvg = dSum / iNoOfDays;

 // Printout

 cout << "Average temperature: " << dAvg << endl;

 cout << "Temperatures exceeding average: " << endl;

 for (i=1; i<= iNoOfDays; i++)

 {

 if (dblTempApr[i] > dAvg)

 cout << "Day no.: "<<i<<" temp:

 "<<dblTempApr[i]<<endl;

 }

}

First we declare a constant iNoOfDays which is set to 30 and is used later in loops and average calculation. The variable
dAvg is used for storing of the calculated average. The variable dSum is initiated to 0 since it will be increased by the
value of each entered temperature. The array dblTempApr is declared to hold 31 items, which means that we can let the
index values correspond to the day numbers of the month. The item with index 0 will consequently not be used. Finalyy
we declare the variable i, which is used as loop counter.

The first loop takes care of entry of the temperatures. The loop counter goes from 1 to 30 and each entered temperature
is stored in the array. The variable dSum is increased by the entered temperature.

At loop completion the variable dSum contains the accumulated total of all temperatures, which is divided by the number
of days, which gives the average.

The printout starts with the average. Then comes the last loop which goes from 1 to 30. For each turn of the loop we
check whether temperature number i exceeds the average. If so, the day number is printed, which is equal to the index
value, together with the corresponding temperature.

Download free eBooks at bookboon.com

Structured Programming with C++

80

4 Arrays

4.8 Sales Statistics

We will now give an example that shows how to use arrays and conditional input in a while statement. The situation is this:

A company has a number of salesmen, each with a salesman number in the interval 1-100. When a salesman has sold for
a specific amount, he enters his salesman number and the sales amount. This goes on until you terminate the entry with
Ctrl-Z. Then a summary should be printed with one line per salesman showing total sales amount.

Furthermore, a fee per salesman should be calculated. If the sales amount is below 50000:- the fee is 10% of the sales
amount. If the amount is greater, the salesman will get a fee which is 10% of the first 50000:- plus 15% of the amount
exceeding 50000:-. If for instance the sales amount is 70000:- the fee is 10% of 50000:- which gives 5000:- plus 15% of the
exceeding 20000:- which is 3000:-. The total fee will in this case be 8000:-.

An entry from different salesmen could look like this:

78 10000

32 500

2 12000

100 25000

78 60000

2 1000

5 60000

The printout will then be:

Number Amount Fee

====== ====== =====

 2 13000 1300

 5 60000 6500

 32 500 50

 78 70000 8000

 100 25000 2500

We begin with a JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 75

Sales Statistics
We will now give an example that shows how to use arrays and
conditional input in a while statement. The situation is this:

A company has a number of salesmen, each with a salesman number
in the interval 1-100. When a salesman has sold for a specific amount,
he enters his salesman number and the sales amount. This goes on
until you terminate the entry with Ctrl-Z. Then a summary should be
printed with one line per salesman showing total sales amount.

Furthermore, a fee per salesman should be calculated. If the sales
amount is below 50000:- the fee is 10% of the sales amount. If the
amount is greater, the salesman will get a fee which is 10% of the first
50000:- plus 15% of the amount exceeding 50000:-. If for instance the
sales amount is 70000:- the fee is 10% of 50000:- which gives 5000:-
plus 15% of the exceeding 20000:- which is 3000:-. The total fee will
in this case be 8000:-.

An entry from different salesmen could look like this:
78 10000
32 500
2 12000
100 25000
78 60000
2 1000
5 60000

The printout will then be:
Number Amount Fee
====== ====== =====
 2 13000 1300
 5 60000 6500
 32 500 50
 78 70000 8000
 100 25000 2500

We begin with a JSP graph:

Sales

Initialize sales Entry Print

We will use an array called sales with 100 items, where each item corresponds to a certain salesman. For each entered sales
amount the array item corresponding to the salesman number should be increased by the entered amount. Therefore we
must initialize the entire array, i.e. set all its items = 0 so each salesman’s accumulated amount starts with 0. Note that in
C++ the items of an array are not automatically set to 0 at the declaration. The declaration only allocates memory space.

Download free eBooks at bookboon.com

Structured Programming with C++

81

4 Arrays

Any unpredictable values present in these memory addresses will be retained until you initialize them.

Then we read salesman number and sales amount. This is made in a loop so that we can go on with entry of values as
long as we want. We break down the “Entry” box:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 76

We will use an array called sales with 100 items, where each item
corresponds to a certain salesman. For each entered sales amount the
array item corresponding to the salesman number should be increased
by the entered amount. Therefore we must initialize the entire array,
i.e. set all its items = 0 so each salesman’s accumulated amount starts
with 0. Note that in C++ the items of an array are not automatically set
to 0 at the declaration. The declaration only allocates memory space.
Any unpredictable values present in these memory addresses will be
retained until you initialize them.

Then we read salesman number and sales amount. This is made in a
loop so that we can go on with entry of values as long as we want. We
break down the “Entry” box:

We read a salesman number and sales amount, one at a time. In the
box “OK?” we check that the salesman number is between 1 and 100
and that the sales amount is not negative. If OK, we increase the
corresponding item in the sales array.

The box ”Print” has been detailed by first printing the heading and
then the sales values. In connection with the printing we check that the
sales amount is not 0. Salesmen having sold nothing should not be
included in the printed summary. We break down the box “Print sales”
further:

Sales

Initialize sales Entry Print

Read
no and
amount

OK?

Increase
sales

* *

o

Print
heading

Print
sales

We read a salesman number and sales amount, one at a time. In the box “OK?” we check that the salesman number is
between 1 and 100 and that the sales amount is not negative. If OK, we increase the corresponding item in the sales array.

Download free eBooks at bookboon.com
Click on the ad to read more

http://s.bookboon.com/IE

Structured Programming with C++

82

4 Arrays

The box ”Print” has been detailed by first printing the heading and then the sales values. In connection with the printing
we check that the sales amount is not 0. Salesmen having sold nothing should not be included in the printed summary.
We break down the box “Print sales” further:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 76

We will use an array called sales with 100 items, where each item
corresponds to a certain salesman. For each entered sales amount the
array item corresponding to the salesman number should be increased
by the entered amount. Therefore we must initialize the entire array,
i.e. set all its items = 0 so each salesman’s accumulated amount starts
with 0. Note that in C++ the items of an array are not automatically set
to 0 at the declaration. The declaration only allocates memory space.
Any unpredictable values present in these memory addresses will be
retained until you initialize them.

Then we read salesman number and sales amount. This is made in a
loop so that we can go on with entry of values as long as we want. We
break down the “Entry” box:

We read a salesman number and sales amount, one at a time. In the
box “OK?” we check that the salesman number is between 1 and 100
and that the sales amount is not negative. If OK, we increase the
corresponding item in the sales array.

The box ”Print” has been detailed by first printing the heading and
then the sales values. In connection with the printing we check that the
sales amount is not 0. Salesmen having sold nothing should not be
included in the printed summary. We break down the box “Print sales”
further:

Sales

Initialize sales Entry Print

Read
no and
amount

OK?

Increase
sales

* *

o

Print
heading

Print
sales

If the sales amount exceeds 0, we calculate the fee and print one line in the summary. At fee calculation we will now pay
attention to whether the amount exceeds the limit 50000:-, which gives still another detailed level:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 78

If the sales amount is below the limit 50000:- the lower percent 10%
will be applied. Otherwise the greater percent 15% will be applied to
the exceeding amount. When the fee calculation is finished, the fee
and sales amount are printed.

Here is the code:

#include <iostream.h>
#include <iomanip.h>
void main()
{
 const int iMaxNo=100;
 const double dLimit=50000, perc1=0.1, perc2=0.15;
 double sales[iMaxNo], dAmount, dFee;
 int i, nr;
 //Initialize array
 for (i=0;i<iMaxNo; i++)
 sales[i] = 0;
 //Enter salesman info

Sales

Initialize sales Entry Print

Read
no and
amount

OK?

Increase
sales

* *

o

Print
heading

Print
sales

sales[i]>0 *

Calculate fee
and print

o

sales[i]<limit Print fee
and sales

perc1 perc2
o o

Download free eBooks at bookboon.com

Structured Programming with C++

83

4 Arrays

If the sales amount is below the limit 50000:- the lower percent 10% will be applied. Otherwise the greater percent 15%
will be applied to the exceeding amount. When the fee calculation is finished, the fee and sales amount are printed.

Here is the code:

#include <iostream.h>

#include <iomanip.h>

void main()

{

 const int iMaxNo=100;

 const double dLimit=50000, perc1=0.1, perc2=0.15;

 double sales[iMaxNo], dAmount, dFee;

 int i, nr;

 //Initialize array

 for (i=0;i<iMaxNo; i++)

 sales[i] = 0;

 //Enter salesman info

 while (cin>>nr && cin>>dAmount)

 {

 if (nr<1 || nr>iMaxNo || dAmount<0)

 cout << "Input error" << endl;

 else

 sales[nr-1] += dAmount;

 }

 //Print summary

 cout << endl

 << "Number Amount Fee" << endl

 << "====== ====== =====" << endl;

 for (i=0; i<iMaxNo; i++)

 {

 if (sales[i] > 0)

 {

 if (sales[i] <= dLimit)

 dFee = perc1 * sales[i];

 else

 dFee = perc1*dLimit + perc2*(sales[i]-dLimit);

 cout << setw(4) << (i+1) <<

 setprecision(0) << setiosflags(ios::fixed) <<

 setw(13) << sales[i] << setw(10) <<

 dFee << endl;

 } // end if

 } // end for-loop

} // end main

Download free eBooks at bookboon.com

Structured Programming with C++

84

4 Arrays

The constant iMaxNo = 100 represents the number of salesmen and is used for loop control. The constand dLimit =
50000 is used for the fee calculation. The constants perc1 and perc2 are the two different percentages used for the fee.

The array is declared to contain 100 items with the index 0-99. Here, salesman no.1 will correspond to index 0, salesman
no. 2 index 1 etc.

The variable dAmount is used for entry of sales amounts and the variable dFee for fee calculation. The variable i is used
as loop counter and the variable nr to entry of salesman numbers.

Then the sales array is initialized, where we set all items to 0.

Entry of salesman numbers and amounts is done in a while statement. If entry is successful, the loop continues. If you
however you press Ctrl-Z, the while condition is false and the entry loop is interrupted, enabling the program to continue
with the next statement.

Inside the loop the program checks if the salesman number is less than 1 or greater than 100. This is for safety reason to
guarantee that we don’t go outside the index interval of the array, since the salesman number gives the index value of the
array. In addition, the program also checks if the sales amount is less than 0. If any of these conditions are true, the text
“Input error” is printed and the user can enter new values. If everything is OK, the sales item is increased by the entered
amount. Note that we decrease the salesman number by 1 to get the correct item in the array.

At loop completion (Ctrl-Z), the program goes on with printing the summary heading.

Then the last loop will calculate the fee and print one line per salesman. First in the loop, we check the sales total to be
greater than 0, otherwise no line for that salesman is printed. Then we check if the sales total is less than the limit 50000. If
so, the fee is calculated as the lower percent multiplied by the sales total. Otherwise the fee is calculated as the lower percent
times the limit 50000 plus the greater percent multiplied by the difference between the sales total and the limit 50000.

Download free eBooks at bookboon.com

Structured Programming with C++

85

4 Arrays

When the inner if statement has completed the fee calculation is complete and the program writes a line with salesman
number (i+1), sales total (sales[i]) and fee. Note that, when we print the salesman number, we must use the index value
increased by 1, since the index value all the time is 1 less than the salesman number.

We have also used the formatting functions from the header file iomanip.h to get a nice layout with straight columns.

4.9 Product File, Search

We will now examine a situation where we use several arrays in parallel. We will build a simple product file, where we use
an array for the product id:s and another array for the product prices. We will organize it so that a product in the product
id array with for instance index 73 has its price in the price array at the same index position, i.e. 73:

Prodid Price

2304 152,50

2415 75,40

3126 26,80

...

The array with product id:s is called iProdid and the price array dPrice.

Suppose we want to be able to enter a product id and get the corresponding price. Then we must search the iProdid array.
Look at the following code section:

while (cin >> iProd)

{

 for (i=1; i<=100; i++)

 {

 if (iProd == iProdid[i])

 cout << "The price is: " << dPrice[i] <<

 endl;

 }

}

In the while condition we read a product id to the variable iProd. This allows for repeated entry of product id:s until you
interrupt with Ctrl-Z.

The inner loop goes from 1 to 100 and checks one item at a time in the product id array to equal the entered product id.
The loop counter i going from 1 to 100 is used as index in the product id array and represents the different product id:s
in the array. Note that we use the same i-value in the price array as in the product id array. If for instance we encounter
equality for the 23rd product, also the 23rd price should be printed, since the variable i then has the value 23.

4.10 Two-Dimensional Array

In many business systems on the market customer discounts are based on the customer group that the customer belongs
to, and the product group for the bought product. Different customer segments will then get different discount profiles.

Download free eBooks at bookboon.com

Structured Programming with C++

86

4 Arrays

Example:

 Product group

 1 2 3

Customer 1 10 12 13

group 2 13 14 15

 3 14 16 17

If for example a customer of customer group 3 orders a product from product group 2, he will get 16% discount.

To store a discount matrix in this way in a program, you will need a two-dimensional array. Such an array has two indeces,
where the first index could be thought of as representing the lines in the matrix, and the second index the columns:

double dDiscount[5][8];

Here we have declared a two-dimensional array named dDiscount with 5 lines (index 0-4) and 8 columns (index 0-7).

To assign values to the different array items, we can write:

dDiscount[1][1] = 10;

dDiscount[1][2] = 12;

...

Note that we all the time must use two indeces for dDiscount.

Suppose that we want a program section where the user can enter customer group and product group and the program
should respond with the corresponding discount percent:

cout << "Enter customer group ";

cin >> cgrp;

cout << "Enter product group ";

cin >> pgrp;

cout << "Discount: " << dDiscount[cgrp][pgrp];

Suppose that, when this program section is run, the user enters 3 and 2. The variable cgrp will get the value 3 and pgrp
the value 2. These two values are used as indeces in the two-dimensional array. If we use the values from the discount
matrix above, we will get the printout:

Discount: 16

Let us now turn the problem the other way so that the user enters a discount percent and that the program responds
with corresponding customer group and product group. A prerequisite to this is that each percent only occurs once in
the matrix, which is not very likely, but it shows how to search a two-dimensional array. The code will be:

cout << "Enter percent: ";

cin >> dPerc;

for (i=1; i<=5; i++)

{

Download free eBooks at bookboon.com

Structured Programming with C++

87

4 Arrays

 for (j=1; j<=8; j++)

 {

 if (dDiscount[i][j] == dPerc)

 cout << "Product group " << i <<

 " and customer group " << j;

 }

}

First the user is prompted for a percent which is stored in the variable dPerc. A double loop then performs the search for
the entered percent, where the outer loop goes through the lines of the matrix and the inner loop through the columns
of the matrx. The loop counter i thus corresponds to line index and j to column index. The inner loop goes through all
its values before the outer loop changes its value, which means that the matrix is searched one line at a time, where all
items in the line are checked. The if statement checks if the matrix item equals the entered percent (the variable dPerc).
If equal, the corresponding loop counters i and j are printed, which correspond to customer group and product group.

4.11 Sorting

Many times it is easier to work with an array if the items are sorted, especially when searching for a specific value. For
instance, in the product id array in an earlier section, if the product id:s are sorted by size, the process of finding a certain
product, and consequently also its price, is much faster than for an unsorted array. We will therefore discuss array sorting.

We will as example use an array with 6 items named iNos:

int iNos[6] = {5,3,9,8,2,7};

Download free eBooks at bookboon.com
Click on the ad to read more

STUDY AT A TOP RANKED
INTERNATIONAL BUSINESS SCHOOL

Reach your full potential at the Stockholm School of Economics,
in one of the most innovative cities in the world. The School
is ranked by the Financial Times as the number one business
school in the Nordic and Baltic countries.

Visit us at www.hhs.se

Sw
ed

en

Stockholm

no.1
nine years
in a row

http://s.bookboon.com/hhs2016

Structured Programming with C++

88

4 Arrays

The items of the array are not yet sorted. We want to write a program that sorts them by size. The problem is that a
computer program is not capable of, like the human eye, scan the values and instantly sort them. We have to write code
that systematically compares two values in turn and interchange their positions in the array.

We will use two variables, l and r, which are indeces in the array and points to two items. l means “left” and r “right”. These
items are compared in pairs, and if the right item is less than the left, they will interchange their positions in the array:

 0 1 2 3 4 5

5 3 9 8 2 7

 l r

The indeces of the array have the interval 0-5. The variable l has from the beginning the value 0 and r the value 1, i.e. they
point on the two first items of the array. Since the right item is less than the left (3 is less than 5), they are interchanged:

 0 1 2 3 4 5

3 5 9 8 2 7

 l r

We then increase r by 1, so that it points to the value 9, while l remains. 9 is not less than 3, so no interchange is made.
r is again increased by 1:

 0 1 2 3 4 5

3 5 9 8 2 7

 l r

Neither this time there is no interchange, since 8 is greater than 3. We increase r by 1 again. Then r points to the value 2,
which is less than 3, so the items are interchanged:

 0 1 2 3 4 5

2 5 9 8 3 7

 l r

We increase r by 1 again. 7 is greater than 2, so the items remain:

 0 1 2 3 4 5

2 5 9 8 3 7

 l r

Now r has gone through all values, and as result we have got the least item on index position 0 in the array. We have
performed a series of comparisons.

Now we increase l by 1 and perform a new series of comparisons, where r goes from index position 2 to 5:

 0 1 2 3 4 5

2 5 9 8 3 7

 l r

Download free eBooks at bookboon.com

Structured Programming with C++

89

4 Arrays

Here 9 is not less than 5, so we increase r by 1 and so forth. When r arrives at index position 4, the right item (3) is less
than the lef t (5), so we interchange them.

When two series of comparisons have been completed, we have got the two least items on the two first positions:

 0 1 2 3 4 5

2 3 9 8 5 7

Once again we increase l by 1 and let r go from the item immediately to the right of l to the last item of the array. This is
repeated until we compare the two last items of the array:

 0 1 2 3 4 5

2 3 5 7 8 9

 l r

After completion of the last comparison, the entire array is sorted.

To summarize, l goes from 0 to the next last position of the array, while r goes from the position to the right of l to the
last position of the array. We use an outer loop for the l-values and an inner for the r-values:

for (l=0; l<=4; l++)

{

 for (r=l+1; r<=5; r++)

 {

 //Check if right is less than left

 //and in that case interchange

 }

}

l goes from 0 (first position of the array) to 4 (next last position), while r goes from l+1 (the position to the right of l) to
5 (last position).

The check whether the right is less than the left is made by an if statement:

if (iNos[r] < iNos[l])

The interchange is a little tricky. We cannot directly let two variables change values. We must use an intermediary storage,
a temporary variable that temporary stores one of the values:

temp = iNos[l];

iNos[l] = iNos[r];

iNos[r] = temp;

Here we let the variable temp get the value of the left item, then we let the left item get the value of the right item, and
finally we let the right item get the value of the temporary variable, i.e. the old left value. This triangular exchange has the
effect that the two array items interchange their values. After the triangular exchange the value of temp is of no concern.

Download free eBooks at bookboon.com

Structured Programming with C++

90

4 Arrays

Here is the complete code:

for (l=0; l<=4; l++)

{

 for (r=l+1; r<=5; r++)

 {

 if (iNos[h] < iNos[v])

 {

 temp = iNos[l];

 iNos[l] = iNos[r];

 iNos[r] = temp;

 }

 }

}

After completion of the double loop the array items are sorted.

4.12 Searching a Sorted Array

For a sorted array, when searching for a particular item, we don’t need to scan the entire array from the first to the last
position and check each single value. For a small array with only 6 items like in the previous example, there is no big deal.
But what if we have a product array with thousands of product id:s. Then the search time would be considerable and our
program would be regarded as having bad performance.

Download free eBooks at bookboon.com

Structured Programming with C++

91

4 Arrays

We will use a more refined method, namely to halve the index interval repeatedly. We go in to the middle item of the
array and check if the searched value is to left or right. When having selected which half to continue with, we halve that
part again. This is repeated until we find the searched value. The execution time will be reduced considerably.

Suppose we have a product array with 31 items (index 0-30)

 0 1 2 ... 15 ... 30

 2314 2345 3123 4526 6745

The index values are shown above the product id:s.

Suppose we are searching for product id 5321. We begin with checking whether 5231 is less than the middle item with
index position 15, namely 4526. If so we go on with the left interval, otherwise the right. In our case we use the right
interval, which we halve and get index position 22 (index must always be an integer). We check whether the searched
product id 5231 is greater or less than the product id on position 22, etc.

When having divided the interval enough number of times, we will have found the searched item, or otherwise it does
not exist in the array.

We will now discuss the code for this. First we declare some variables:

int l=0, r=30, iFound=0, iPos, iSrch;

The variables l and r are index positions of the array. l is the left end point of the interval, which from the beginning is
0. r is the right which from the beginning is 30.

The variable iFound is used to indicate whether or not the searched product id has been found. The value 0 means not
yet found, and the value 1 means that it has been found.

The variable iPos is the index for the found product id. The variable iSrch is the searched product id, which is read from
the keyboard:

cout << "Enter the searched product id: ";

cin >> iSrch;

We then perform some introductory checks to figure out if the searched product id is first or last in the array:

if (iSrch == iProdid[0])

{

 iPos = 0;

 iFound = 1;

}

if (iSrch == iProdid[30])

{

 iPos = 30;

 iFound = 1;

}

Download free eBooks at bookboon.com

Structured Programming with C++

92

4 Arrays

As long as the product id has not been found, we will divide the interval:

while (!iFound)

{

First we calculate the middle of the interval:

int iMid = l + (int)((r-l)/2);

From the beginning r is =30 och l=0. (r-l)/2 then makes 15. Since this division might give a decimal number, we perform
a type cast with (int) within parenthesis in front of the division. In that way we ensure that the index always is an integer.
This half interval is added to the value of l. Since l by the time not necessarily equals 0 all the time, this means that we
take the left endpoint of the interval and add half the interval, i.e. we calculate the middle point of the current interval,
which is stored in the variable iMid.

Then we check if there is a match to the middle item of the interval:

if (iSrch == iProdid[iMid])

{

 iFound = 1;

 iPos = iMid;

}

If the searched product id equals the product id at the position given by the variable iMid in the product array iProdid,
there is a match, and the variable iFound is set =1 and the found position is stored in the variable iPos.

In case of no match, we check if the searched product id is to the left or to the right of the middle point:

if (iSrch > iProdid[iMid])

 l=iMid;

 else

 r=iMid;

}

If the searched product id is greater than the product id at position iMid, we set the left endpoint (the variable l) to the
value of iMid, which means that we move the left endpoint to the new middle value, and we have a new interval which
is the right half of the previous interval. Otherwise we focus on the left half of the interval and we let the right endpoint
(the variable r) get the value of iMid. In both cases the loop performs another turn.

By the time the loop has divided the interval so many times that we certainly get a match in the statement:

if (iSrch == iProdid[iMid])

provided that the user has entered a product id that is present in the array.

Here is the entire program:

#include <iostream.h>

void main()

{

Download free eBooks at bookboon.com

Structured Programming with C++

93

4 Arrays

 int l=0, r=30, iFound=0, iPos, iSrch;

 int iProdid[31] = {2314, 2345, 3123, ... 6745};

 cout << "Enter the searched product id: ";

 cin >> iSrch;

 if (iSrch == iProdid[0])

 {

 iPos = 0;

 iFound = 1;

 }

 if (iSrch == iProdid[30])

 {

 iPos = 30;

 iFound = 1;

 }

 while (!iFound)

 {

 int iMid = l + (int)((r-l)/2);

 if (iSrch == iProdid[iMid])

 {

 iFound = 1;

 iPos = iMid;

 }

Download free eBooks at bookboon.com
Click on the ad to read more

http://s.bookboon.com/liu

Structured Programming with C++

94

4 Arrays

 if (iSrch > iProdid[iMid])

 l=iMid;

 else

 r=iMid;

 }

}

4.13 Summary

In this chapter we have learnt about arrays. We have learnt to declare arrays and assign values to them. We have also seen
the advantage with using loops in connection with arrays.

We have also studied an algorithm for sorting the items of an array. You should try to really understand the algorithm.
You should also remember how to write the sorting code in C++.

A sorted array is very efficient when searching for a particular value. We have studied how to do a smart search in an
array. The search method presented here is often called binary search.

4.14 Exercises

1. Write a program where you declare an array with 10 integers and then read both positive and negative
values to the array. The program should then:
a) print the first, the fifth and the tenth item.
b) print the sum of all items.
c) print the numbers in reversed order.
d) change sign of all negative numbers to positive, and then print them.
e) ask for a number and then print all numbers less than that number.
f) ask for an index and print the corresponding item.
g) ask for a number and print the index of that number. We assume that the user enters a number that
 exists in the array.
h) move the first item to the last position of the array.

2. Write a program that prompts the user for a month number and prints the number of days of that month.
Use an array like this:
const int iDaysInM[] = {31, 28, 31, 30, …};

3. Write a program that creates random temperatures between 15 and 25 degrees, one temperature per day of
the month July. The temperatures are stored in an array. The program should then create a new array for
August and copy the July values (see the section ’Copying an Array’). Finally the August values should be
printed.

4. Expand the previous program to compare the values of July and August and check if the arrays are equal.
5. Complete the previous program so that one of the August temperatures is changed before the comparison.
6. Complete the previous program with calculation of the average temperature during August. The program

should also print all temperatures greater than the average.
7. Declare an array that contains the following nine densities for metal alloys:

1.5 2.8 4.6

Download free eBooks at bookboon.com

Structured Programming with C++

95

4 Arrays

5.7 7.9 8.3
8.6 8.8 8.9
Write a program that prompts the user for a density and prints the one closest below the entered density.

8. Write a program that fills an array with 25 integers between 0-9. The program should then ask the user for a
number and print the number of occurrences of that number in the array.

9. Start with the Sales Statistics program earlier in this chapter and add logic so that if a salesman has sold for
more than 100000, he will get a fee also including 20% of the portion exceeding 100000.

10. Expand the previous program to also print the number of sales per salesman.
11. Expand the previous program to also print the average sales amount per salesman.
12. Declare an array containing some product id:s, and a price array with unit prices per product. Write a

program that prompts the user for a product id and prints the corresponding price. If the product id is not
found, a suitable message should be printed.

13. Complete the previous program so that the user also can enter a quantity of the product and get the total
price for the purchase.

14. Complete the previous program with a discount matrix according to the section ’Two-Dimensional Array’.
The user should be able to enter a product group and a customer group, and the corresponding discount
should be deducted.

15. Write a program that creates 10 random rolls of a dice and stores them in an array. The array should then be
sorted and printed.

16. Start with the program that searches a sorted array for a product id. Complete the program with
initialization of the array with as many product id:s as required, and run it.

17. Go on with the previous program and make it print the index position of the found product id.
18. Improve the previous program so that if you enter a product id not existing in the array, a suitable message

should be printed.
19. Expand the previous program with a price array that contains the prices of each product, and with a

printout of the price of the found product id.

Download free eBooks at bookboon.com

Structured Programming with C++

96

5 Strings

5 Strings
5.1 Introduction

A string is a text, i.e. a sequence of characters (letters, digits and other special characters). String handling is a little tricky
in C++, so we have dedicated an separate chapter to this subject.

Actually, a string is an array that consists of a number of items, where each item is a character in the string.

There are a number of string handling functions. We will in this chapter get acquainted with the most common and
usable string functions, like calculating the length of a string, copying a string, concatenating strings and picking out
parts of a string.

In programming, string handling is important, since a user often enters information in text form which is taken care of
by the program. We will go through several programming examples, where we will have use of our string knowledge.

5.2 Data Type char

We will first get to know the most simple of all strings, namely the one containing just one character. To store one character
in a variable we use the data type char. Below we declare a string variable of the char type:

char cLetter;

The variable cLetter can now contain any one character. We can assign a value to the variable:

cLetter = 'A';

Note that we use single quotes for the character.

We can also, like for all kinds of variables, assign a value directly in the declaration:

char cLetter = 'A';

5.3 Menu Program

Our first program shows how to handle entry of characters by the user to select a menu option. The program will first
display a menu:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 93

Menu Program
Our first program shows how to handle entry of characters by the user
to select a menu option. The program will first display a menu:

Here the user can enter one of the letters A, B, C or D to choose an
item. We will not build a full-featured order/invoice/warehouse/
finance system, but we will only let the program print a text about the
selected choice. We start with a JSP graph:

The first action is that the menu is displayed. Then the user is
prompted for a choice by means of the letters A-D. Finally the
requested option is executed, i.e. a simple text message will be
printed. If the user enters another character than A-D, an error
message is printed. Here is the code:

#include <iostream.h>
void main()
{
 char cSel;
 cout << " Menu" << endl <<" ===" << endl;
 cout << "A. Order" << endl;
 cout << "B. Invoice" << endl;
 cout << "C. Warehouse" << endl;
 cout << "D. Finance" << endl;

 Menu
 ====
A. Order
B. Invoice
C. Warehouse
D. Finance
Select:

Menu

Display menu Select option Perform task

A B C D Error
o o o o o

Here the user can enter one of the letters A, B, C or D to choose an item. We will not build a full-featured order/invoice/
warehouse/ finance system, but we will only let the program print a text about the selected choice. We start with a JSP graph:

Download free eBooks at bookboon.com

Structured Programming with C++

97

5 Strings

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 93

Menu Program
Our first program shows how to handle entry of characters by the user
to select a menu option. The program will first display a menu:

Here the user can enter one of the letters A, B, C or D to choose an
item. We will not build a full-featured order/invoice/warehouse/
finance system, but we will only let the program print a text about the
selected choice. We start with a JSP graph:

The first action is that the menu is displayed. Then the user is
prompted for a choice by means of the letters A-D. Finally the
requested option is executed, i.e. a simple text message will be
printed. If the user enters another character than A-D, an error
message is printed. Here is the code:

#include <iostream.h>
void main()
{
 char cSel;
 cout << " Menu" << endl <<" ===" << endl;
 cout << "A. Order" << endl;
 cout << "B. Invoice" << endl;
 cout << "C. Warehouse" << endl;
 cout << "D. Finance" << endl;

 Menu
 ====
A. Order
B. Invoice
C. Warehouse
D. Finance
Select:

Menu

Display menu Select option Perform task

A B C D Error
o o o o o

The first action is that the menu is displayed. Then the user is prompted for a choice by means of the letters A-D. Finally
the requested option is executed, i.e. a simple text message will be printed. If the user enters another character than A-D,
an error message is printed. Here is the code:

#include <iostream.h>

void main()

{

 char cSel;

 cout << " Menu" << endl <<" ===" << endl;

 cout << "A. Order" << endl;

 cout << "B. Invoice" << endl;

 cout << "C. Warehouse" << endl;

 cout << "D. Finance" << endl;

 cout << "Select: ";

 cin >> cSel;

 switch (cSel)

 {

 case 'A':

 cout << "You selected Order";

 break;

 case 'B':

 cout << "You selected Invoice";

 break;

 case 'C':

 cout << "You selected Warehouse";

 break;

 case 'D':

 cout << "You selected Finance";

 break;

 default:

 cout << "Erroneous choice";

 break;

 }

}

Download free eBooks at bookboon.com

Structured Programming with C++

98

5 Strings

First a char variable is declared named cSel, and then the menu is printed with a number of cout statements. The subsequent
cin statement reads a character from the user to the variable cSel, which then is checked in the switch statement. The
switch statement contains one case section for each option. Note that each case line has the character A-D within single
quotes, which is necessary since it is a char variable that is checked. The default section takes care of all characters other
than A, B, C or D.

5.4 Menu Program with Loop

We will now improve our menu program so that the user repeatedly can enter different options without terminating the
program. We then put the entire menu printing and switch statement in a loop. The JSP graph will then be:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 95

We complete the menu with still another option, X – Exit. As long as
the user does not enter X, the loop proceeds. Furthermore we also
clean the screen before the menu is displayed, which is the first
operation of the loop. Here is the code:

#include <iostream.h>
#include <stdlib.h>
void main()
{
 char cSel, temp;
 do
 {
 system("cls");
 cout << " Menu" << endl <<" ===" << endl;
 cout << "A. Order" << endl;
 cout << "B. Invoice" << endl;
 cout << "C. Warehouse" << endl;
 cout << "D. Finance" << endl;
 cout << "X. Exit" << endl;
 cout << "Select: ";
 cin >> cSel;
 switch (cSel)
 {
 case 'A':
 cout << "You selected Order";
 break;
 case 'B':
 cout << "You selected Invoice";
 break;
 case 'C':
 cout << "You selected Warehouse";
 break;
 case 'D':
 cout << "You selected Finance";
 break;

Loop until 'X'

Display menu Select option Perform task

A B C D Error
o o o o o

Menu

Clear screen

X
o

* * * *

Download free eBooks at bookboon.com
Click on the ad to read more

http://s.bookboon.com/EOT

Structured Programming with C++

99

5 Strings

We complete the menu with still another option, X – Exit. As long as the user does not enter X, the loop proceeds.
Furthermore we also clean the screen before the menu is displayed, which is the first operation of the loop. Here is the code:

#include <iostream.h>

#include <stdlib.h>

void main()

{

 char cSel, temp;

 do

 {

 system("cls");

 cout << " Menu" << endl <<" ===" << endl;

 cout << "A. Order" << endl;

 cout << "B. Invoice" << endl;

 cout << "C. Warehouse" << endl;

 cout << "D. Finance" << endl;

 cout << "X. Exit" << endl;

 cout << "Select: ";

 cin >> cSel;

 switch (cSel)

 {

 case 'A':

 cout << "You selected Order";

 break;

 case 'B':

 cout << "You selected Invoice";

 break;

 case 'C':

 cout << "You selected Warehouse";

 break;

 case 'D':

 cout << "You selected Finance";

 break;

 case 'X':

 cout << "You selected to exit";

 break;

 default:

 cout << "Erroneous choice";

 break;

 }

 cout << endl << "Press a key to continue";

Download free eBooks at bookboon.com

Structured Programming with C++

100

5 Strings

 cin >> temp;

 }while (cSel != 'X');

}

To be able to clear the screen we need the header file stdlib.h.

W use a do loop, where the condition is checked after the loop to ensure that the loop is run at least once.

The first action in the loop is to clear the screen with system(“cls”). Then the menu is printed and the user is prompted
for an option, i.e. a character to be stored in the variable cSel. That variable is checked in the switch statement, where a
text is printed corresponding the selected option. If the user enters ‘X’, the text ‘You selected to exit’ will be printed, and
the loop is terminated since the while condition specifies that cSel must not equal ‘X’.

The method of letting the user enter an extra character to the variable temp at the end of the loop is a relatively unconvenient
solution, but it has the advantage of avoiding to struggle with special C++ features regarding input, which we don’t go
into here.

5.5 Christmas Tree

We will now create a logically rather complex program that uses char variables to print a number of ’X’ on the screen
with the shape of a Christmas tree:

 X

 XXX

 XXXXX

 XXXXXXX

 XXXXXXXXX

 XXXXXXXXXXX

 XXXXXXXXXXXXX

 XXXXXXXXXXXXXXX

 XXXXXXXXXXXXXXXXX

 XXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXX

 X

 X

As you can see the tree has eleven branches and two ’X’:s to the trunk. We therefore need an outer loop that runs eleven
times, where each turn prints a branch. Each branch consists of a number of ‘X’:s, different depending on which branch
being printed. Furthermore we will have to print a suitable number of blanks before the ‘X’:s, so that the branches are
centered symmetrically around the middle trunk. We therefore need two inner loops, one that prints the leading blanks
and one that prints the ‘X’:s for each branch. After completion of the branches we need a loop that runs two turns and
that prints the ‘X’:s for the trunk. We start with a JSP graph:

Download free eBooks at bookboon.com

Structured Programming with C++

101

5 Strings

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 97

As you can see the tree has eleven branches and two ’X’:s to the
trunk. We therefore need an outer loop that runs eleven times, where
each turn prints a branch. Each branch consists of a number of ‘X’:s,
different depending on which branch being printed. Furthermore we
will have to print a suitable number of blanks before the ‘X’:s, so that
the branches are centered symmetrically around the middle trunk. We
therefore need two inner loops, one that prints the leading blanks and
one that prints the ‘X’:s for each branch. After completion of the
branches we need a loop that runs two turns and that prints the ‘X’:s
for the trunk. We start with a JSP graph:

The JSP graph tells us that there is one outer loop for the branches,
where each turn of the loop prints a branch. We then have one inner
loop that prints the correct number of blanks and one inner loop that
prints the ‘X’:s. The same is true for the trunk where we have an outer
loop where each turn of the loop prints one line of the trunk, and one
inner loop that prints the blanks before one single ‘X’ is printed. The
code is as follows:

#include <iostream.h>
void main()
{
 int i, j;
 char x = 'X', blank = ' ';
 for (i=10; i>=0; i--) //first outer for-loop
 {
 for (j=0; j<i; j++) //first inner for-loop
 cout << blank;
 cout << x;
 for (j=0; j<10-i; j++) //second inner for-loop
 cout << x << x;
 cout << endl;

Xmas tree

Branches Trunk

One branch One line * *

Blanks XXX… Blanks One X
* * * *

The JSP graph tells us that there is one outer loop for the branches, where each turn of the loop prints a branch. We then
have one inner loop that prints the correct number of blanks and one inner loop that prints the ‘X’:s. The same is true
for the trunk where we have an outer loop where each turn of the loop prints one line of the trunk, and one inner loop
that prints the blanks before one single ‘X’ is printed. The code is as follows:

Download free eBooks at bookboon.com
Click on the ad to read more

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

Structured Programming with C++

102

5 Strings

#include <iostream.h>

void main()

{

 int i, j;

 char x = 'X', blank = ' ';

 for (i=10; i>=0; i--) //first outer for-loop

 {

 for (j=0; j<i; j++) //first inner for-loop

 cout << blank;

 cout << x;

 for (j=0; j<10-i; j++) //second inner for-loop

 cout << x << x;

 cout << endl;

 }

 for (i=0; i<2; i++) //second outer for-loop

 {

 for (j=0; j<10; j++) //inner for-loop

 cout << blank;

 cout << x << endl;

 }

}

We declare a variable named x that correspond to the ’X’, and a variable named blank corresponding to the blank character.

The first outer for-loop has an i as loop counter and goes from 10 to 0 (11 turns). We have selected to let the values run
backwards to make the subsequent math easier. i is consequently a line counter for the branches of the tree.

The first inner loop has a j as loop counter and goes from 0 to i. It prints the correct number of blanks for each branch.
Since i is counted reversed, the number of blanks will decrease for each branch. Each turn of the loop prints one blank.

After completion of the blanks for a bransch, first an ’X’ is printed. Since the number of ’X’:s at each bransch is odd, the
remaining number of ’X’:s to be printed is even.

The second inner for-loop prints the ’X’:s with two ’X’:s for each turn of the loop. We again use j as loop counter, which
goes from 0 to 10-i. This means that according to the decrease of i, the number of printed ‘X’:s increases. And since two
‘X’:s are printed for each turn of the loop, there will always be an even number of ‘X’:s.

The second outer for-loop, which builds the trunk of the tree, has i as loop counter and goes from 0 to 1 (two turns). For
each of the two turns, there is an inner for-loop that goes from 0 to 9 and that prints 10 blanks. After the inner loop, an
‘X’ is printed.

This complex algorithm probably requires some thinking. You could preferably write a scheme of how i and j changes
their values, and in that way follow the progress of the program.

Download free eBooks at bookboon.com

Structured Programming with C++

103

5 Strings

5.6 int - char

Each character has an internal code of the integer type. E.g. the character A has the code 65, B has 66 tec. Therefore the
data types integer and char can cooperate. Here is an example:

int iNo = 65; //The code for A

char cChr;

cChr = iNo;

cout << cChr;

First we declare an integer variable, iNo, and give it the value 65. On the second line we declare a char bariable named
cChr. On the third line cChr gets the same value as iNo, i.e. 65. When we then print cChr on the fourth line, the program
understands that it is a char variable being printed, so the character corresponding to the code 65 will be printed, namely A.

5.7 Å, Ä, Ö

As you probably has guessed, the character codes follows the alphabetic order, i.e. A=65, B=66, C=67 etc. The Swedish
characters Å, Ä and Ö don’t follow that pattern. Therefore you can use the hexadecimal codes for these characters:

'\x86' å

'\x84' ä

'\x94' ö

'\x8F' Å

'\x8E' Ä

'\x99' Ö

The characters \x indicate that a hexadecimal value will follow. If you for instance want to print the word ’från’, write as
follows:

cout << "fr\x86n";

If you want to assign the char variable cChr the value Ö, write this:

cChr = '\x99';

5.8 String Array, char[]

A limitation with a char variable is that it can only store one single character. Many times you want to store a longer text
in a variable like a customer name or a product description. Then you will need a string array. A string array works in
the same way as any other array, i.e. it has a variable name and an index value that indicates an item of the array, i.e. a
specific character of the string.

Below we declare a string array called cName, which can hold up to 30 characters:

char cName[30];

The indeces can be any of 0-29.

Suppose we want the user to enter a name to the array cName:

Download free eBooks at bookboon.com

Structured Programming with C++

104

5 Strings

cout << "Enter your name: ";

cin >> cName;

Let’s say that the user enters ‘John’. These four characters are then stored in the cName array, where the first item cName[0]
contains the character ‘J’, the second item cName[1] the character ‘o’, cName[2] the character ‘h’ and cName[3] the
character ‘n’.

In addition, an extra character is always stored as the last character of a string. It is the so-called null character ‘\0’, which
is stored in the fifth position in the item cName[4].

The program should now print what the user entered:

cout << "Your name is " << cName;

In our case the text ‘Your name is John’ will be printed. Note that when an entire string array is printed, you don’t need
to specify any indeces in the cout statement. The procedure by cout is to print one character after the other in the string
array from the first position until the null character is found.

Suppose that the user in the program section above enters his entire name ’John Smith’. When the cout statement is executed,
still only the text ‘Your name is John’ is printed. The reason to this is that when text is entered from the keyboard, only
characters up to the first blank will be stored in the array. This is a limitation of the cin statement.

A solution to this problem is to use another input function instead of cin:

char cName[30];

cout << "Enter your name: ";

cin.getline(cName,29);

cout << "Your name is " << cName;

Download free eBooks at bookboon.com

Structured Programming with C++

105

5 Strings

Here we use the function cin.getline() instead of only cin. This has the effect that, if the user enters ‘John Smith’, the
printout from the cout statement will be ‘Your name is John Smith’. Blanks consequently work in the correct way. The
input is not interrupted at the first blank, but the entire text line entered by the user will be stored in the variable cName.

The function getline() must have two parameters in the parenthesis; the string array to receive the entered text, and the
maximum number of characters allowed to receive. The reason for using 29 is to allocate space for the null character at
the end of the string as the 30th character. If the user enters less than 30 characters, say 14, the null character will be stored
in position 15. If the user enters more than 29 characters, only the first 29 are accepted.

5.9 Length of a String

We will now create a little program that calculates the length of a string, i.e. the number of characters contained in the
string. For that purpose we use the function strlen():

#include <iostream.h>

#include <string.h>

void main()

{

 char cName[30];

 cout << "Enter your name: ";

 cin.getline(cName,29);

 cout << "Your name is " << cName << endl;

 cout << "Your name is " << strlen(cName) <<

 " characters long" << endl;

 cout << "The entire string is " << sizeof cName <<

 " characters long" << endl;

}

To be able to use string functions like strlen() we must include the header file string.h.

In the program we first declare a string array called cName with 29 positions plus the null character, totally 30 characters.
Then the user is prompted for his name, which is stored in the variable cName, and a confirmation is printed ‘Your name
is John Smith’.

In the next last cout statement the text ’Your name is 10 characters long’ is printed, provided that we have used a name
of 10 characters like ‘John Smith’.

In the last cout statement the text ’The entire string is 30 characters long’ is printed. Here we use the operator sizeof,
which gives the declared length of the string array cName, irrespective of how many characters actually have been stored.
Thus, note the difference between strlen() and sizeof.

Download free eBooks at bookboon.com

Structured Programming with C++

106

5 Strings

5.10 Upper/Lower Case

We have previously mentioned that the character codes for the letters A-Z start with 65 and go upwards. This applies to
the upper case characters. Lower case letters a-z have the same pattern starting with 97, i.e. 32 greater than the upper case
letters. An upper case is consequently achieved by subtracting 32 from the character code of the lower case character.

We will now create a program that reads a text in lower case and converts it to upper case and prints it:

#include <iostream.h>

#include <string.h>

void main()

{

 int i;

 char cName[30];

 cout << "Enter your name in lower case: ";

 cin >> cName;

 int iLen = strlen(cName);

 for (i=0; i<iLen; i++)

 cout << (char)(cName[i] - 32);

 cout << endl;

}

As usual in string handling we must include the header file string.h.

We declare the variable i to be used as loop counter, and a string array named cName with space for 29 characters. The
user is then prompted for his name in lower case, which is stored in the array cName.

We then calculate the length of the input string, which is stored in the variable iLen. This value is used as loop limit in
the subsequent loop, which performs as many turns as there are characters in the input string.

Inside the for-loop we take the ith character from the string cName (cName[i]) and decrease it by 32. Since this is a math
operation, the program understands that it is the character code for the ith character that is decreased by 32. This value is
then type cast to char by placing char within parenthesis in front of the subtraction. Then the program understands that
it is the corresponding character that is to be printed.

Thus, we have taken character by character from the input string, all in lower case, decreased the character code by 32,
which gives the corresponding upper case character, and printed it.

5.11 Initials

In most computer systems the programming work is to a large extent focused on checking and processing texts entered
by users. Therefore, we will study some text processing examples..

In our next program example we will extract the initials from a name entered by the user. The process is to extract the
first letter from the name. Then we search for the blank between the first name and the surname. In the next position
the first letter of the surname is found.

Download free eBooks at bookboon.com

Structured Programming with C++

107

5 Strings

We start with a JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 102

 int iLen = strlen(cName);
 for (i=0; i<iLen; i++)
 cout << (char)(cName[i] - 32);
 cout << endl;
}

As usual in string handling we must include the header file string.h.

We declare the variable i to be used as loop counter, and a string array
named cName with space for 29 characters. The user is then prompted
for his name in lower case, which is stored in the array cName.

We then calculate the length of the input string, which is stored in the
variable iLen. This value is used as loop limit in the subsequent loop,
which performs as many turns as there are characters in the input
string.

Inside the for-loop we take the ith character from the string cName
(cName[i]) and decrease it by 32. Since this is a math operation, the
program understands that it is the character code for the ith character
that is decreased by 32. This value is then type cast to char by placing
char within parenthesis in front of the subtraction. Then the program
understands that it is the corresponding character that is to be printed.

Thus, we have taken character by character from the input string, all in
lower case, decreased the character code by 32, which gives the
corresponding upper case character, and printed it.

Initials
In most computer systems the programming work is to a large extent
focused on checking and processing texts entered by users. Therefore,
we will study some text processing examples..

In our next program example we will extract the initials from a name
entered by the user. The process is to extract the first letter from the
name. Then we search for the blank between the first name and the
surname. In the next position the first letter of the surname is found.

We start with a JSP graph:

Initials

Entry 1st letter Search for blank,
take next

Print

To search for the blank implies taking one character at a time from the beginning of the input name and check if it is a
blank. We detail the ‘Search for blank, take next’ box:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 103

To search for the blank implies taking one character at a time from the
beginning of the input name and check if it is a blank. We detail the
‘Search for blank, take next’ box:

Searching for the blank is made in a loop. For each turn of the loop we
check if character no. i is blank. If so, we take character no. i+1 as the
second initial. Here is the code:

#include <iostream.h>
#include <string.h>
void main()
{
 int i;
 char cName[30], cInit[3];
 cout << "Enter your name: ";
 cin.getline(cName,29);
 int iLen = strlen(cName);
 cInit[0] = cName[0];
 for (i=1; i<iLen; i++)
 if (cName[i] == ' ')
 cInit[1] = cName[i+1];
 cInit[2] = '\0';
 cout << "Your initials are " << cInit << endl;
}

We declare the string array cName, which is to contain the input
name, and cInit to contain the initials. The reason for declaring 3
positions for cInit is to make space for the 2 initials plus the null
character.

Initials

Entry 1st letter Search for blank,
take next

Print

Char no. i
= blank ?

Take char
no i+1

*

o o

Searching for the blank is made in a loop. For each turn of the loop we check if character no. i is blank. If so, we take
character no. i+1 as the second initial. Here is the code:

#include <iostream.h>

#include <string.h>

void main()

{

 int i;

 char cName[30], cInit[3];

 cout << "Enter your name: ";

 cin.getline(cName,29);

 int iLen = strlen(cName);

 cInit[0] = cName[0];

 for (i=1; i<iLen; i++)

 if (cName[i] == ' ')

 cInit[1] = cName[i+1];

Download free eBooks at bookboon.com

Structured Programming with C++

108

5 Strings

 cInit[2] = '\0';

 cout << "Your initials are " << cInit << endl;

}

We declare the string array cName, which is to contain the input name, and cInit to contain the initials. The reason for
declaring 3 positions for cInit is to make space for the 2 initials plus the null character.

The user enters his name to the array cName, and its length is calculated and stored in the variable iLen.

The first character of cName (cName[0]) is stored in the first position of cInit.

Then we have the loop with the loop counter i, which represents the index in the input string, and goes from position 2
(index=1) to the end of the string. For each turn of the loop we check if the character is a blank. If so, we copy the next
character (cName[i+1]) to the second position of cInit.

At completion of the loop we put the null character in the third position of cInit and print cInit.

5.12 Comparing Two Strings

In the Arrays chapter you learnt that, when comparing two arrays, you must compare each item of the arrays. For strings
there is a special function, strcmp(), that can compare two string arrays. The function

strcmp(str1, str2)

•	 gives a negative result if str1 < str2, i.e. if str1 comes before str2 in alphabetic order

Download free eBooks at bookboon.com
Click on the ad to read more

89,000 km
In the past four years we have drilled

That’s more than twice around the world.

careers.slb.com

What will you be?

1 Based on Fortune 500 ranking 2011. Copyright © 2015 Schlumberger. All rights reserved.

Who are we?
We are the world’s largest oilfield services company1.
Working globally—often in remote and challenging locations—
we invent, design, engineer, and apply technology to help our
customers find and produce oil and gas safely.

Who are we looking for?
Every year, we need thousands of graduates to begin
dynamic careers in the following domains:
n Engineering, Research and Operations
n Geoscience and Petrotechnical
n Commercial and Business

http://s.bookboon.com/Schlumberger1

Structured Programming with C++

109

5 Strings

•	 gives 0 if str1 = str2
•	 gives a positive result if str1 > str2, i.e. if str1 comes after str2 in alphabetic order

We will now create a little program that prompts the user for two names and prints them in alphabetic order:

#include <iostream.h>

#include <string.h>

void main()

{

 char cName1[30], cName2[30];

 cout << "Enter a name: ";

 cin >> cName1;

 cout << "Enter another name: ";

 cin >> cName2;

 if (strcmp(cName1,cName2) < 0)

 cout << cName1 << endl << cName2;

 else

 cout << cName2 << endl << cName1;

 cout << endl;

}

First we declare two string arrays, cName1 and cName2, which can contain max 29 characters each (pos 30 is for the null
character). The user enters two names. A name must not contain blanks. How would you do to allow blanks?

The if statement checks if cName1 comes before cName2 in alphabetic order. If so, cName1 is printed first and then
cName2. Otherwise the names are printed in reversed order.

5.13 Copying Strings

In the Arrays chapter we copied an array’s values to another array by copying each item singly. For strings there is a special
function, strcpy(), that copies the entire string to another string. If for instance the string array str2 contains the string
‘John Smith’ and we execute the statement:

strcpy(str1, str2);

then str1 will also contain the string ’John Smith’.

5.14 Array with String Arrays

Suppose that we want to store a number of names in an array, where each name is itself a string array. Then we will need
a two-dimensional array. Below we declare a two-dimensional array with space for 5 names with 30 positions each (29
characters plus the null character):

char cNames[5][30];

Download free eBooks at bookboon.com

Structured Programming with C++

110

5 Strings

This two-dimensional string array could be represented like this:

0 1 2 3 4 5 …
0 J o h n \0
1 E d w a r d \0
2 B o b \0
3 E v E \0
4 A d a m \0

To print one of the names, e.g. the third name (indes=2), we code:

cout << cNames[2];

Note that when we print or read a sequence of characters to a string array, we don’t need to specify the index. The program
prints the characters from the beginning of the string until the null character is found. However, for a two-dimensional
array, we must specify which of the names to be printed, i.e. we must specify the first index. In the example above we
used indes=2, which gives the printout ‘Bob’.

To print a single character from the matrix we must use both indeces. The statement:

cout << cNames[1][4];

prints the character with index 4 from the name with index 1, i.e. ‘r’ in ‘Edward’.

5.15 Sorting Strings

We want to sort the string matrix above, i.e. the names should be reorganized into alphabetic order. Do you remember
the sorting algorithm from the Arrays chapter? If no, check it out. There we compared the items in pairs and interchanged
their positions if the right item was less than the left. The logic is the same for string arrays, but we will have to use our
special string functions to be able to compare and copy strings.

We first prompt the user for five names to be stored in the string matrix. Then we sort the strings in a double loop, and
finally we print the sorted list of names:

#include <iostream.h>

#include <string.h>

void main()

{

 char cNames[5][30], temp[30];

 cout << "Enter 5 names. Press Enter after each" << endl;

 for (int i=0; i<5; i++)

 cin >> cNames[i];

 for (i=0;i<4;i++)

 for (int j=i+1; j<5; j++)

Download free eBooks at bookboon.com

Structured Programming with C++

111

5 Strings

 if (strcmp(cNames[i],cNames[j]) > 0)

 {

 strcpy(temp,cNames[i]);

 strcpy(cNames[i],cNames[j]);

 strcpy(cNames[j],temp);

 }

 cout << endl << "Sorted names:" << endl;

 for (i=0; i<5; i++)

 cout << cNames[i] << endl;

}

First we declare a two-dimensional string array named cNames, and a string array named temp, which we will use for
the triangular exchange inside the double loop.

The first for-loop reads five names to the string matrix cNames.

Then we have the double loop. The outer for-loop goes from 0 to 3 (next last name) with the loop counter i. The inner
for-loop has the loop counter j which goes from 1 greater than i to 4 (last name).

The if statement compares the two names indicated by the indeces i and j. If the “left” name (i) is greater than the “right”
(j), then cNames[i] comes after cNames[j] in alphabetic order, and they should interchange their positions.

The interchange is made by means of strcpy() by copying cNames[i] to the temporary string array temp. Then we copy
the name in position j to position i. Finally we copy the temp name (the old name in position i) to position j. The names
now have been interchanged in the string matrix.

Download free eBooks at bookboon.com

Structured Programming with C++

112

5 Strings

At completion of the double loop, the names have been sorted in alphabetic order and we can with the last for-loop print
one name at a time from position 0 to 4.

5.16 Substring

Sometimes you will need to extract a number of characters from a string. Then we will get use of the strncpy() function,
which copies a given number of characters from one string to another. Example:

strncpy(cStr1, cStr2, iNo);

This statement copies the number of characters given by the variable iNo counted from the beginning of the string cStr2
and stores this substring in cStr1.

If you want to copy a number of characters from a given position and not from the beginning of cStr2, use this variant:

strncpy(cStr1, cStr2 + i, iNo);

This statement copies the number of characters given by the variable iNo counted from position i of cStr2 and stores this
substring in cStr1.

Here we for the first time get in touch with the similarity between strings and pointers. A pointer is a variable that points
to a certain memory address. When we write cStr2, it is interpreted as a pointer that points to the string starting with
the first character of cStr2, i.e. with index=0. If we write cStr2+1, it is interpreted as a pointer that points to the character
with index=1 in cStr2. If we write cStr2+i, it is interpreted as a pointer that points to the character with index=i of cStr2.
Enough with pointers for this time.

We will get use of this function in subsequent program examples.

5.17 Concatenating Strings

It is possible to add strings together (concatenate) with the strcat() function. The statement

strcat(cStr1, cStr2);

concatenates cStr1 and cStr2 and puts the result in cStr1, i.e. cStr2 is added at the end of cStr1.

We will get use of this function in subsequent program examples.

5.18 Interchanging First Name and Surname

We will now create a program that prompts the user for his first name and surname separated by a blank. The program
will then interchange them so that the surname is printed first.

The way of doing this is to search for the position of the blank. With the strncpy() function we can then separate the
first name and surname, and then with the strcat() function put the substrings together with the surname first. We start
with a JSP graph:

Download free eBooks at bookboon.com

Structured Programming with C++

113

5 Strings

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 108

Concatenating Strings
It is possible to add strings together (concatenate) with the strcat()
function. The statement
strcat(cStr1, cStr2);

concatenates cStr1 and cStr2 and puts the result in cStr1, i.e. cStr2 is
added at the end of cStr1.

We will get use of this function in subsequent program examples.

Interchanging First Name and Surname
We will now create a program that prompts the user for his first name
and surname separated by a blank. The program will then interchange
them so that the surname is printed first.

The way of doing this is to search for the position of the blank. With
the strncpy() function we can then separate the first name and
surname, and then with the strcat() function put the substrings together
with the surname first. We start with a JSP graph:

First we read the name from the user input. Then we search for the
position of the blank by looping through the characters and checking
if any of them is blank. When a blank is found we save its position.

By means of the position of the blank we can now extract the two
substrings consisting of first name and surname. Finally we put them
together in reversed order and print them.

Here is the code:

Reverse

Input Search
blank

Extract
first name

Extract
surname

Concatenate,
 print

Character
no i=blank?

Keep i ---

*

o o

First we read the name from the user input. Then we search for the position of the blank by looping through the characters
and checking if any of them is blank. When a blank is found we save its position.

By means of the position of the blank we can now extract the two substrings consisting of first name and surname. Finally
we put them together in reversed order and print them.

Here is the code:

#include <iostream.h>

#include <string.h>

void main()

{

 char cName[30], cFirst[15], cSur[30];

 cout << "Enter your name: " << endl;

 cin.getline(cName,29);

 for (int i=0; i<29; i++)

 if (cName[i] == ' ')

 break;

 strncpy(cFirst,cName,i);

 cFirst[i] = '\0';

 strcpy(cSur, cName + i + 1);

 strcat(cSur, " ");

 strcat(cSur, cFirst);

 cout << cSur << endl;

 cout << strrev(cSur) << endl; //reversed name

}

Download free eBooks at bookboon.com

Structured Programming with C++

114

5 Strings

First we declare a string array called cName which will contain the name entered by the user (both first and surname).
The string array cFirst will be used for the first name and the string array cSur to the surname. The reason for using 30
positions instead of 15 for the surname is that we will concatenate the final result in that string array.

The user is prompted for his name to be stored in the array cName.

The for-loop searchees for the blank. It goes from 0 to 28, i.e. it takes character by character from the name. If a character
equals blank, we interrupt the loop with break, which has the effect that the loop counter i is not incremented any more.
If the user enters ‘John Smith’, i will have the value 4 when the loop is interrupted, and that is the position of the blank.

The function strncpy() then copies the first i characters from cName to cFirst. In the case of John Smith the first 4
characters will be copied, i.e. ‘John’.

The string cFirst is completed with a null character as the fifth character (index=4).

Then we use the function strcpy() to copy the characters from cName to cSur starting on position i+1. cName+i+1 is
interpreted as a pointer that points to i+2nd character of cName. In the case of John Smith i is =4. cName+i+1 consequently
points to the string starting in position with index 5, i.e. ‘Smith’. Note that the copy is performed character by character
until the null character is found.

Then we use the strcat() function to concatenate the surname with the string ‘ ‘, i.e. we add a blank to the surname. Then
we concatenate surname + blank with the first name. The string cSur now contains surname + blank + first name, which
is printed.

The last statement has actually nothing to do with our task. We have only included it for curiosity. It prints the entire
name in reversed order. The function strrev() reverses a string.

Download free eBooks at bookboon.com

Structured Programming with C++

115

5 Strings

5.19 Encryption

We will now write a program that encrypts a text, i.e. distorts it to unreadability. The way of doing this is to take character
by character of the text entered by the user and increase the character code by 1. A becomes B, B becomes C etc. This is
a very simple encryption algorithm, but gives a hint about how different encryption algorithms work when encrypting
mail and other information.

We start with a JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 110

The last statement has actually nothing to do with our task. We have
only included it for curiosity. It prints the entire name in reversed
order. The function strrev() reverses a string.

Encryption
We will now write a program that encrypts a text, i.e. distorts it to
unreadability. The way of doing this is to take character by character
of the text entered by the user and increase the character code by 1. A
becomes B, B becomes C etc. This is a very simple encryption
algorithm, but gives a hint about how different encryption algorithms
work when encrypting mail and other information.

We start with a JSP graph:

The user is first prompted for a text. The encryption takes character by
character from the string array and increases the character code by 1.
Finally we print the encrypted message. Here is the code:

#include <iostream.h>
#include <string.h>
void main()
{
 int iLen;
 char cName[30], cEncrypt[30];
 cout << "Enter your name: " << endl;
 cin.getline(cName,29);
 iLen = strlen(cName);
 for (int i=0; i<iLen; i++)
 cEncrypt[i] = cName[i] + 1;
 cEncrypt[iLen] = '\0';
 cout << "Encrypted: " << cEncrypt << endl;
}

Encrypt

Input Encrypt text Print

Increase
char no. i by 1

*

The user is first prompted for a text. The encryption takes character by character from the string array and increases the
character code by 1. Finally we print the encrypted message. Here is the code:

#include <iostream.h>

#include <string.h>

void main()

{

 int iLen;

 char cName[30], cEncrypt[30];

 cout << "Enter your name: " << endl;

 cin.getline(cName,29);

 iLen = strlen(cName);

 for (int i=0; i<iLen; i++)

 cEncrypt[i] = cName[i] + 1;

 cEncrypt[iLen] = '\0';

 cout << "Encrypted: " << cEncrypt << endl;

}

We declare the string array cName to be used for the entered name, and cEncrypt to be used for the encrypted text. The
user is prompted for his name, which is stored in the string array cName. The length of the text is calculated and stored
in the variable iLen.

The for-loop goes from the first to the last character of the entered string and increases the character code for each
character with 1. The character is stored in the string array cEncrypt.

Download free eBooks at bookboon.com

Structured Programming with C++

116

5 Strings

As the last character we insert the null character at the correct position in cEncrypt, which then is printed.

5.20 Random Password

Passwords should, as you probably know, be difficult to guess to prevent unauthorized access to a computer system. A
good way of creating passwords is to let the computer randomly create them. We will write a program that makes the
computer able to create passwords only consisting of upper case letters (A-Z). This is of course a limitation, but indicates
the logic to be followed. You can then improve it to include lower case letters and digits. We start with a JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 111

We declare the string array cName to be used for the entered name,
and cEncrypt to be used for the encrypted text. The user is prompted
for his name, which is stored in the string array cName. The length of
the text is calculated and stored in the variable iLen.

The for-loop goes from the first to the last character of the entered
string and increases the character code for each character with 1. The
character is stored in the string array cEncrypt.

As the last character we insert the null character at the correct position
in cEncrypt, which then is printed.

Random Password
Passwords should, as you probably know, be difficult to guess to
prevent unauthorized access to a computer system. A good way of
creating passwords is to let the computer randomly create them. We
will write a program that makes the computer able to create passwords
only consisting of upper case letters (A-Z). This is of course a
limitation, but indicates the logic to be followed. You can then
improve it to include lower case letters and digits. We start with a JSP
graph:

We begin with creating a random length of the password, which we in
this example will limit to between 5-7 characters. Then we create as
many characters in the interval A-Z (character codes 65-90). The
password is then printed. Here is the code:

Password

Random Random word Print

Random
character no i

*

We begin with creating a random length of the password, which we in this example will limit to between 5-7 characters. Then
we create as many characters in the interval A-Z (character codes 65-90). The password is then printed. Here is the code:

#include <iostream.h>

#include <string.h>

#include <stdlib.h>

#include <time.h>

void main()

{

 int iLen, i;

 char cPw[30];

 srand(time(0));

 iLen = rand() % 3 + 5;

 for (i=0; i<iLen; i++)

 cPw[i] = rand() % 26 + 65;

 cPw[iLen] = '\0';

 cout << "Password: " << cPw << endl;

}

We declare the loop variable i, the variable iLen to contain the length of the password, and the string array cPw to contain
the random password. We have declared 30 characters, but 9 would suffice in this example.

Download free eBooks at bookboon.com

Structured Programming with C++

117

5 Strings

The random number generator is initiated with the function srand(). Then we create the random length of the password
with the modulus operator %, which gives a length in the interval 5-7. rand()%3 gives a random number in the interval
0-2. By adding 5 we transform the interval to 5-7. The number is stored in the variable iLen.

The for-loop then goes from 0 to iLen-1, i.e. as many turns as the number of letters in the password. For each turn of the
loop a random number in the interval 65 to 65+25 is created, which corresponds to the character codes for A-Z. Each
character code is stored in the string array cPw at position i, i.e. cPw is built up with one more character for each turn of
the loop. At the end of cPw we add the null character. cPw is then printed.

5.21 Translation Table

We will now show another method of encrypting a message, namely by means of a translation table. It consists of a set
of the characters A-Z, very well mixed up. Thus, the characters are not in alphabetic order. We use the random number
generator to mix the characters.

Suppose we have got the following translation table:

DGZCW…

where D is in position 0, G in position 1 etc. We use the table to translate a A to D, B to G etc. each character in the
original message will consequently be translated to another character:

ABCDE…

Download free eBooks at bookboon.com
Click on the ad to read more

American online
LIGS University

 ▶ enroll by September 30th, 2014 and

 ▶ save up to 16% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

Structured Programming with C++

118

5 Strings

DGZCW…
The JSP graph below shows the logic:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 113

ABCDE…

DGZCW…
The JSP graph below shows the logic:

'Define key' means that we define a string containing the characters
A-Z.

‘Random order of key’ implies that we mix the characters of the key,
which is done by looping through the characters and create a random
position for another character of the key. These two characters will
then interchange their positions. In that way all characters will
interchange its position with some other character.

The user is then prompted for the message in upper case.

’Translate acc. to key’ is made by taking the character code for one
character at a time in the entered message and decreasing the code by
65. A will then get the value 0, B the value 1 etc. This value gives the
index in the key for the character to substitute the original character.

If we use the key:
DGZCW…

like in the introductory example, D has index 0 in the key, G index 1
etc. If the original message contains a B (character code 66), it is
decreased by 65 to the value 1. This value is used as index in the key,
which gives the character G.

Key

Define
key

Random order
of key

Entry Translate
acc. to key

Print

Replace char
no. i with

random char.

Random
char no.

Triangular
interchange

Char code
for char no i

Decr.
by 65

Take corr.
position -
no

* *

* * *

‘Define key’ means that we define a string containing the characters A-Z.

‘Random order of key’ implies that we mix the characters of the key, which is done by looping through the characters and
create a random position for another character of the key. These two characters will then interchange their positions. In
that way all characters will interchange its position with some other character.

The user is then prompted for the message in upper case.

’Translate acc. to key’ is made by taking the character code for one character at a time in the entered message and decreasing
the code by 65. A will then get the value 0, B the value 1 etc. This value gives the index in the key for the character to
substitute the original character.

If we use the key:

DGZCW…

like in the introductory example, D has index 0 in the key, G index 1 etc. If the original message contains a B (character
code 66), it is decreased by 65 to the value 1. This value is used as index in the key, which gives the character G.

Here is the code:

#include <iostream.h>

#include <string.h>

#include <stdlib.h>

#include <time.h>

void main()

{

Download free eBooks at bookboon.com

Structured Programming with C++

119

5 Strings

 int i, j, iLen;

 char cTemp, cText[50], cEncrypt[50];

 char cKey[27] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

 srand(time(0));

 for (i=0; i<26; i++)

 {

 j = rand() % 26;

 cTemp = cKey[i];

 cKey[i] = cKey[j];

 cKey[j] = cTemp;

 }

 cout << "Write a text in upper case: " << endl;

 cin.getline(cText,49);

 iLen = strlen(cText);

 for (i=0; i<iLen; i++)

 cEncrypt[i] = cKey[cText[i] - 65];

 cEncrypt[iLen] = '\0';

 cout << "Encrypted: " << cEncrypt << endl;

}

First we declare some supporting variables; i, j and iLen, the latter being used for the length of the entered message. The
string array cText will store the entered text, and cEncrypt for the encrypted message. The string array cKey is initated
with the characters A-Z. Then the random number generator is initiated.

The first for-loop performs the mixing of the characters of the array cKey. The loop counter i goes from 0 to 25 and points
to character by character in cKey. A j value is randomly created to be used as index to the character to be interchanged
with the i-character. Then the triangular exchange of these two characters is performed. At completion of the loop all
characters in cKey has been interchanged with some other character, which makes cKey now be well-mixed.

The user is prompted for a message that is stored in the string array cText. The length of the message is calculated and
stored in the variable iLen.

The second for-loop performs the translation to an encrypted message. The loop counter i goes from 0 to iLen-1, i.e. as
many turns as there are characters in the input string. In the statement

cEncrypt[i] = cKey[cText[i] - 65];

a character is taken from cText (cText[i]).. This value is decreased by 65, and since it is a math operation, the result is of
integer type. If the character is B (character code 66), the calculation 66-65 is performed which gives 1. This value is now
used as index in cKey and gives the character from cKey that corresponds to the original position of B, for instance G.
This character is stored in the string array cEncrypt at position i. The array cEncrypt is thus built up by one character at
a time from the array cText, translated via cKey. At completion of the loop all characters in cText have been translated
via cKey and been stored in cEncrypt.

Download free eBooks at bookboon.com

Structured Programming with C++

120

5 Strings

After the last character in cEncrypt we add the null character. The array cEncrypt containing the encrypted message is
then printed.

5.22 Summary

In this chapter we have introduced the char data type. A char variable can contain only one character. We have also learnt
how to use string arrays or string variables to store texts consisting of more than one character.

We have also shown how to use character codes to manipulate texts, for instance to convert between upper and lower case.

Blanks is a problem at entry of texts, which is solved by using the function getline().

The header file string.h contains a number of nice functions for text management, for instance to calculated the length of
a text, copy texts, concatenate texts and extract substrings of texts. We have also created a primary relation to pointers,
which we will return to more in detail in a later chapter.

We have also worked through a number of programming examples to extract initials from a name, sort a list of names,
where we got use of two-dimensional arrays (matrices), interchange first name and surname, encrypt messages and create
random passwords.

5.23 Exercises

1. Start from the menu program earlier in this chapter and add an extra option to the menu:
E. Statistics

Complete the switch statement with a suitable text.

Download free eBooks at bookboon.com
Click on the ad to read more

 .

http://s.bookboon.com/AlcatelLucent

Structured Programming with C++

121

5 Strings

2. Write a menu program where you by means of entry of a character can select to get either your name,
address, postal address or telephone number printed. It should be performed with a loop so that you
repeatedly can select from the menu until you enter X to exit the program.

3. Write a program that asks for a character and then prints the character 10 times at the same line.
4. Change the previous program so that the program prints the character once at the first line, twice at the

second line etc. to 10 times at the tenth line.
5. Write a program that prompts the user for a character and an integer. The program should then print the

character as many times as given by the entered integer.
6. Change the Christmas Tree program in this chapter so that it prints 15 branches instead of 11.
7. Write a program that prompts the user for a character and prints the corresponding character code.
8. Complete the previous program with entry of a character code and a printout of the corresponding

character.
9. Write a program that prints the text ‘Här går vi över ån efter vatten’ with the Swedish characters å, ä and ö in

a correct way.
10. Write a program that reads a text from the keyboard and prints the length of the text as well as the entire

declared size of the string variable.
11. Start with the Upper/Lower Case program and change it so that it reads a text in upper case and prints it in

lower case. What happens if you enter other characters. Explain why the printout is the way it is.
12. Write a program that prompts the user for a word and prints each character doubled (twice).
13. Write a program that prompts the user for a word and prints it reversed, first by using the strrev() function,

and then without strrev().
14. Start from the Initials program in this chapter and complete it so that the user can enter first name, middle

name and surname and get all three initials printed.
15. Complete the previous program so that, if you enter the names with leading lower case characters, the

printout will still be with the initials in upper case.
16. Write a program that prompts the user for two characters and prints all characters in between. For instance,

if you enter F and K, the printout should be FGHIJK.
17. Write a program that prompts the user for two words and prints the one first in alphabetic order.
18. Write a program that prompts the user for a word in lower case. The program should respond with the

number of vowels in the word, Don’t include å, ä or ö.
19. The Robbery language is spoken by doubling each consonant and putting an ‘o’ in between. For instance the

word ’bug’ becomes ’bobugog’. Write a program that reads a word and prints it in the Robbery language.
20. Write a program where the user can enter 6 product names. Sort the list and print it.
21. Complete the previous program so that the user also can enter the prices of the 6 products. The printout

should contain the correct price for each product, right-aligned with two decimals.
22. Write a program where the user can enter his first name and surname. The program should then print only

the surname.
23. Write a program where the user can enter his e-mail address. The program should then check whether there

is an @ in the address.
24. Complete the previous program so that, if there is no @, the text ’@htu.se’ is added and the address is printed.
25. Suppose that a person enters his e-mail address with a period between the first name and the surname, e.g.:

john.smith@htu.se

Download free eBooks at bookboon.com

Structured Programming with C++

122

5 Strings

Write a program that reads an e-mail address and prints the name in the correct way, e.g.:
John Smith
with upper case first character in both first and surname and with a blank in between.

26. Start with the Encryption program in this chapter. Change so that B becomes A, C becomes B etc.
27. Change the previous program so that a character is replaced by the one 3 positions earlier in the alphabet.
28. Write a program that decrypts instead of encrypts according to the method in the previous exercise.
29. Write a program that encrypts a text by reversing the alphabet, i.e. A becomes Z, B becomes Y etc.
30. Start with the Random Password program in this chapter. Complete it with also taking lower case characters

and digits into account.
31. Change the previous program so that the password will be 6-10 characters in size.
32. Originate from the Translation Table program in this chapter. Complete it with also taking lower case

characters into account.
33. Use your imagination to construct an own encryption algorithm and write a program for it.

Download free eBooks at bookboon.com
Click on the ad to read more

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

Structured Programming with C++

123

6 Functions

6 Functions
6.1 Introduction

When working with bigger programs, or programs performing many different tasks, it is important to divide the code
into small limited pieces, which makes it easier to grasp and maintain. Functions are used for this purpose. A function
is a part of the program well marked off that performs a particular task. A function can be reused several times in a
program or in many different programs.

A function, when completed and tested, is like a black box that always works as expected. You don’t need to bother any
more about what is inside. You give it a number of input values, and it does its job.

Think for instance of a car driver who wants to increase the speed. He pushes the accelerator and the car accelerates. He
doesn’t have to bother about fuel injection, gear ratio, engine compression and the like. He knows that the same thing
always happens when pushing the accelerator. It is the same with functions. The programmer initiates the function from
his code and the function always performs the same task without having to bother about the details.

To summarize, the advantages with functions are:

•	 Small well marked off program sections
•	 Well-structured programs
•	 Easier to debug and maintain
•	 Reusage of code

In this chapter we will learn to write functions, supply input values (parameters) and receive the result from a function.
We will learn how to declare and define functions and we will study how to use header files in connection with functions.
We will also learn about reference parameters – an efficient tool to save memory and improve program performance. We
will also get in touch with recursive functions, i.e. functions calling themselves.

6.2 What Is a Function

A function is written to perform a specific task. It might need input values and it returns the result from the task being
performed:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 120

What Is a Function
A function is written to perform a specific task. It might need input
values and it returns the result from the task being performed:

The programmer to make the function perform its task must supply
required input and receive the supplied output.

Examples of function tasks are:
• Calculate average – here you will have to supply the detailed

values for the average calculation, and receive the average value
delivered by the function.

• Sort an array – here the function must know which array to sort.
It returns the sorted array.

• Search for an item in an array – here the function also must
know which array to search. It returns the item found.

• Calculate order price – here the input may consist of quantity,
unit price and a discount factor. The output is the calculated
order price.

Average
We will write a function which calculates the average of two numbers.
The two numbers form the input, and the calculated average is the
output.

The task is to add the two numbers and divide the sum by 2. Suppose
that the two variables x1 and x2 contain the input values. The
statement to calculate the average is then:
av = (x1 + x2) / 2;

The variable av now contains the calculated average.

The entire function is coded in this way:

Function Input Output

The programmer to make the function perform its task must supply required input and receive the supplied output.

Examples of function tasks are:

•	 Calculate average – here you will have to supply the detailed values for the average calculation, and receive
the average value delivered by the function.

•	 Sort an array – here the function must know which array to sort. It returns the sorted array.

Download free eBooks at bookboon.com

Structured Programming with C++

124

6 Functions

•	 Search for an item in an array – here the function also must know which array to search. It returns the item
found.

•	 Calculate order price – here the input may consist of quantity, unit price and a discount factor. The output is
the calculated order price.

6.3 Average

We will write a function which calculates the average of two numbers. The two numbers form the input, and the calculated
average is the output.

The task is to add the two numbers and divide the sum by 2. Suppose that the two variables x1 and x2 contain the input
values. The statement to calculate the average is then:

av = (x1 + x2) / 2;

The variable av now contains the calculated average.

The entire function is coded in this way:

double dAverage(double x1, double x2)

{

 double av;

 av = (x1 + x2)/2;

 return av;

}

The function has a name, dAverage. The required input values are enumerated within parenthesis after the function name.
They are called formal parameters and are named x1 and x2. Furthermore, you specify the data type in question. Both x1
and x2 are of the double type. The data type is given in front of each parameter, and the parameters are separated by comma.

At the first line we also specify the data type for the result value in front of the function name. In our case the result is
of the double type.

Thus, the first line specifies the name of the function, the required input and the output. The first line is called function
header.

The task to be performed by the function is described by the code inside the curly brackets. This section is called the
function body and consists of three statements. First we declare a variable av, which is required inside the function. At
the second line we perform the average calculation. The average is stored in the variable av. At the third line we return
that value to the caller. The statement

return av;

means that the value in the variable av is delivered as output. A return statement also has the effect that the function is
terminated. The task has been completed.

6.4 Calling a Function

The function dAverage is complete, but it does not perform anything yet. Furthermore, the parameters x1 and x2 don’t
have any values, so the statement with the average calculation is meaningless so far. We must make the function start.

Download free eBooks at bookboon.com

Structured Programming with C++

125

6 Functions

We must call the function.

Calling a function means three things:

•	 Write the function name
•	 Supply input to the function
•	 Receive the return value

The following statement calls the function dAverage:

dAvg = dAverage(dNo1, dNo2);

This statement implies that the function dAverage is initiated and that the values contained by the variables dNo1 and
dNo2 are supplied as input to the function. A prerequisite for this is of course that the variables dNo1 and dNo2 have
been assigned values prior to the function call. The variables dNo1 and dNo1 are called actual parameters, since they
contain actual values.

The execution is now passed over to the function. The function header:

double dAverage(double x1, double x2)

tells us that there are two formal parameters x1 and x2. The actual parameter values are copied to the formal parameters
in the specified sequence. x1 will get the value of dNo1 and x2 the value of dNo2. Now that the formal parameters have
got their values the statements of the function body are meaningful and can be executed.

In the function body the variable av is declared, the average is calculated and stored in av, which is returned. Then the
function has completed.

Download free eBooks at bookboon.com
Click on the ad to read more

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2015

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://s.bookboon.com/AXA

Structured Programming with C++

126

6 Functions

The execution is now passed over to the calling statement:

dAvg = dAverage(dNo1, dNo2);

The entire right part is now replaced by the returned value, which is assigned to the variable dAvg. At completion of the
statement the variable dAvg has got the value returned by the function, namely the average of dNo1 and dNo1.

Here is the entire program

#include <iostream.h>

double dAverage(double x1, double x2)

{

 double av;

 av = (x1 + x2)/2;

 return av;

}

void main()

{

 double dNo1, dNo2, dAvg;

 cout << "Enter two numbers: ";

 cin >> dNo1 >> dNo2;

 dAvg = dAverage(dNo1, dNo2);

 cout << "The average is " << dAvg;

}

The execution of a program always starts with the main() function, and here the variables dNo1, dNo2 and dAvg are declared.
Then the user is prompted for two numbers to be stored in the variables dNo1 and dNo2. Then comes the statement:

dAvg = dAverage(dNo1, dNo2);

which calls the function dAverage and supplies the two entered values. The function does its job and returns the average,
which is stored in the variable dAvg. The last statement prints the calculated average.

You may ask why we don’t write the main() function first, since it is the starting point of the execution. The reason is that
the compiler must know about the function dAverage before it is called from the main() function. Therefore the compiler
must first process dAverage. We will discuss this more later in this chapter.

6.5 Several return Statements

A function might need to return different values depending on the circumstances. Consequently, a function can contain
several return statements. However, it is always only one return statement performed by the function at execution. As soon
as a return statement is executed, the function completes. Here is an example of a function with two return statements:

int min(int x, int y)

{

Download free eBooks at bookboon.com

Structured Programming with C++

127

6 Functions

 if (x<y)

 return x;

 else

 return y;

}

The function returns the least of two integers. By examining the function header (the first line) we figure out that the
function takes two integers stored in the formal parameters x and y and that it returns an integer.

The function body contains an if statement that checks whether x is less than y. If so, x is returned, otherwise y is returned.
This implies that the function always returns the least of the two numbers.

6.6 Least of Three Numbers

We will now use the function min() in a program that reads three integers from the keyboard and prints the least of them.

Since the function min() only can compare two numbers, we will have to call it twice. We compare the two first integers
entered by the user and get as a result the least of these two. That integer is then compared to the third number, which
again gives the least of them. As a result we get the least of all three integers. Here is the code:

int a, b, c, m;

cout << "Enter three integers: ";

cin >> a >> b >> c;

m = min(a,b);

m = min(m,c);

cout << m;

We declare the three variables a, b and c for storing of the input values, and a variable m used for storing of the value
returned from the function min().

The function min() is called with a and b as actual parameters. The least of these two is returned and stored in the variable
m. The function min() is again called with m and c as actual parameters. The least of these two is returned and stored in
the variable m, which now contains the least of the three integers. Finally that value is printed.

Here is the entire program:

#include <iostream.h>

int min(int x, int y)

{

 if (x<y)

 return x;

 else

 return y;

}

void main()

{

Download free eBooks at bookboon.com

Structured Programming with C++

128

6 Functions

 int a, b, c, m;

 cout << "Enter three integers: ";

 cin >> a >> b >> c;

 m = min(a,b);

 m = min(m,c);

 cout << m;

}

As mentioned, the execution starts in main(). The reason for placing the function min() before main() is for the compiler
to recognize it when calling it from main().

An alternative to calling the function min() in two different statements is given here:

cout << min(min(a,b),c) << " is the least";

This statement replaces the three last statements of the preceding program. First the program tries to execute the outer
min() call. But since the first actual parameter is not an ordinary variable value, the program must calculate it, and is then
forced to execute the inner min() call. As a result it returns the least of a and b, which now can be used as actual parameter
to the outer min(). The second actual parameter to the outer min() call is the variable c. The outer min() returns the least
of the three integers, which is printed by the cout statement.

Download free eBooks at bookboon.com
Click on the ad to read more

http://s.bookboon.com/BI

Structured Programming with C++

129

6 Functions

6.7 Least Item of an Array

We will now use the min() function in a program that finds the least of the items of an integer array. The logic is similar
to that of the previous program. The first two items of the array are sent to min(), which returns the least of these two
integers. This integer and the next item of the array is again sent to min() which returns the least of them. This process is
repeated until all items of the array have been processed. As a result we will get the least of the array items.

First we give a JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 125

parameter to the outer min() call is the variable c. The outer min()
returns the least of the three integers, which is printed by the cout
statement.

Least Item of an Array
We will now use the min() function in a program that finds the least of
the items of an integer array. The logic is similar to that of the
previous program. The first two items of the array are sent to min(),
which returns the least of these two integers. This integer and the next
item of the array is again sent to min() which returns the least of them.
This process is repeated until all items of the array have been
processed. As a result we will get the least of the array items.

First we give a JSP graph:

Entry of values is made in a loop. Then we set the variable m equal to
the first item of the array. In the loop ‘Find least’ we send m and the
next item to the function min(). The return value is stored in the
variable m. Since we use m to store the returned value, m will all the
time contain the least of the items compared so far. At completion of
the loop we print the m value, which now is the least of all array
items.

We have used thicker border lines to the box with the function call to
indicate that it is a function. We create a separate JSP graph for the
function:

Least

Read array
values

Read value
no. i

Let m=
first item

Find least

Send m and
next item to

min()

Print m

* *

Entry of values is made in a loop. Then we set the variable m equal to the first item of the array. In the loop ‘Find least’
we send m and the next item to the function min(). The return value is stored in the variable m. Since we use m to store
the returned value, m will all the time contain the least of the items compared so far. At completion of the loop we print
the m value, which now is the least of all array items.

We have used thicker border lines to the box with the function call to indicate that it is a function. We create a separate
JSP graph for the function:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 126

As shown by the JSP the function takes two parameters, x and y, and
checks whether x is less than y. If so, x is returned, otherwise y.

Here is the program code:

#include <iostream.h>
int min(int x, int y)
{
 if (x<y)
 return x;
 else
 return y;
}
void main()
{
 int iNos[5], i, m;
 for (i=0; i<=4; i++)
 {
 cout << "Enter integer no. " << i+1 << ": ";
 cin >> iNos[i];
 }
 m=iNos[0];
 for (i=1; i<=4; i++)
 {
 m=min(iNos[i],m);
 }
 cout << m << ” is the least integer” << endl;
}

In main() we declare the array iNos with 5 items. The first for-loop
reads the integers from the user to the array. Then we assign the first
array item to the variable m.

The second for-loop calls the function min() repeatedly with m and
next array item as actual parameters. The returned value is stored in
m. Finally we print the value of m.

min(x,y)

x < y ?

Return x Return y
o o

As shown by the JSP the function takes two parameters, x and y, and checks whether x is less than y. If so, x is returned,
otherwise y.

Here is the program code:

#include <iostream.h>

int min(int x, int y)

{

Download free eBooks at bookboon.com

Structured Programming with C++

130

6 Functions

 if (x<y)

 return x;

 else

 return y;

}

void main()

{

 int iNos[5], i, m;

 for (i=0; i<=4; i++)

 {

 cout << "Enter integer no. " << i+1 << ": ";

 cin >> iNos[i];

 }

 m=iNos[0];

 for (i=1; i<=4; i++)

 {

 m=min(iNos[i],m);

 }

 cout << m << " is the least integer" << endl;

}

In main() we declare the array iNos with 5 items. The first for-loop reads the integers from the user to the array. Then we
assign the first array item to the variable m.

The second for-loop calls the function min() repeatedly with m and next array item as actual parameters. The returned
value is stored in m. Finally we print the value of m.

6.8 Array As Parameter

Sometimes you want to send an entire array as parameter to a function, especially when working with strings. The function
header for such a function could look like this:

int iLgth(char s[])

The function iLgth takes a parameter of char type. The formal parameter name is s. The empty square bracket indicates
that it is an array. Note that the square bracket does not contain any value indicating the number of items of the array.
The reason is that the function should be able to manage arrays of any size, so we don’t want to lock the function to any
fixed array size.

The function header also shows that the function returns a value of integer type, namely the length of the string array.
The calculation of the length is made by the function body:

int iLgth(char s[])

{

 int n=0;

Download free eBooks at bookboon.com

Structured Programming with C++

131

6 Functions

 while (s[n] != '\0')

 n++;

 return n;

}

First a variable n is declared initialized to 0, which is to count the number of characters in the string s. The while loop
has the condition that the nth character must not be the null character, i.e. it proceeds until the end of the string. When
the nth character equals the null character, the string end has been reached and n then contains the number of characters
in the string, which is returned.

When the function iLgth is called with an array as actual parameter, you don’t specify any square brackets:

iLen = iLgth(cWord);

Here, cWord is a string array that contains a number of characters. The returned length of the string is stored in the
variable iLen.

Below is a program that tests the function iLgth:

#include <iostream.h>

int iLgth(char s[])

{

 int n=0;

 while (s[n] != '\0')

 n++;

Download free eBooks at bookboon.com

Structured Programming with C++

132

6 Functions

 return n;

}

void main()

{

 char cWord[30];

 int iLen;

 cout << "Enter a word: ";

 cin.getline(cWord,29);

 iLen = iLgth(cWord);

 cout << "The length of the word is " << iLen << endl;

}

In main() we declare the string array cWord with max 30 characters, and the integer variable iLen, which later will contain
the string length. A text is read from the keyboard. Then the function iLgth() is called with the entered string as actual
parameter. The function returns the length of the string which is stored in the variable iLen and printed.

6.9 Function and Subfunction

It is possible to write functions to be called by other functions providing a hierarchy of functions and subfunctions. This
is rather common in bigger programs and provides well-structured programs, where each function performs a limited
and well defined task.

We will now write a function, dPrice(), which calculates the price of a product and also calls another function, dDiscount(),
which calculates and returns a discount percent. The percent is then used by dPrice() to calculate the discounted price.

First we write a JSP graph for the function dPrice():

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 128

void main()
{
 char cWord[30];
 int iLen;
 cout << "Enter a word: ";
 cin.getline(cWord,29);
 iLen = iLgth(cWord);
 cout << "The length of the word is " << iLen << endl;
}

In main() we declare the string array cWord with max 30 characters,
and the integer variable iLen, which later will contain the string
length. A text is read from the keyboard. Then the function iLgth() is
called with the entered string as actual parameter. The function returns
the length of the string which is stored in the variable iLen and
printed.

Function and Subfunction
It is possible to write functions to be called by other functions
providing a hierarchy of functions and subfunctions. This is rather
common in bigger programs and provides well-structured programs,
where each function performs a limited and well defined task.

We will now write a function, dPrice(), which calculates the price of a
product and also calls another function, dDiscount(), which calculates
and returns a discount percent. The percent is then used by dPrice() to
calculate the discounted price.

First we write a JSP graph for the function dPrice():

The function takes two parameters, number of units and the unit price.

The function defines the tax factor to 0.25. The line price is calculated
as number of units times unit price. The discount is then calculated by
sending the quantity and line price. Later, the discount will be
dependent of both the quantity and line price. The function dDiscount
returns a discount percent to be used for calculation of the discounted
net price, which is returned by dPrice().

There are some thicker side lines indicating functions.

dPrice(iNo,dUnitPrice)

Define tax Calculate line price Calculate
discount

Calculate and
return net

The function takes two parameters, number of units and the unit price.

The function defines the tax factor to 0.25. The line price is calculated as number of units times unit price. The discount
is then calculated by sending the quantity and line price. Later, the discount will be dependent of both the quantity and
line price. The function dDiscount returns a discount percent to be used for calculation of the discounted net price, which
is returned by dPrice().

There are some thicker side lines indicating functions.

The JSP graph for the dDiscount() function looks like this:

Download free eBooks at bookboon.com

Structured Programming with C++

133

6 Functions

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 129

The JSP graph for the dDiscount() function looks like this:

The function dDiscount() takes the quantity and line price as
parameters. If the line price exceeds 1000, the discount 15 % is
returned. Otherwise (i.e. the line price is less than or equal to 1000),
we check if the line price exceeds 500 or the quantity exceeds 10.
Then 10 % is returned. In other cases there will be no discount and
0 % is returned.

We begin the coding with the dDiscount() function. When writing
programs with functions it is convenient to start with the functions at
the bottom of the hierarchy.

double dDiscount(int iQty, double dLinePrice)
{
 if (dLinePrice>1000)
 return 0.15;
 else if (dLinePrice>500 || iQty>10)
 return 0.10;
 else
 return 0;
}

The function dDiscount() takes the quantity as parameter, which is
stored in the formal parameter iQty, and the line price stored in the
parameter dLinePrice. The if statement checks the values and returns a
percentage of the double type.

dDiscount(iQty, dLinePrice)

dLinePrice > 1000

Return 15% Line price > 500
or iQty > 10

Return 10% Return 0%

o o

o o

The function dDiscount() takes the quantity and line price as parameters. If the line price exceeds 1000, the
discount 15 % is returned. Otherwise (i.e. the line price is less than or equal to 1000), we check if the line price
exceeds 500 or the quantity exceeds 10. Then 10 % is returned. In other cases there will be no discount and
0 % is returned.

We begin the coding with the dDiscount() function. When writing programs with functions it is convenient to start with
the functions at the bottom of the hierarchy.

double dDiscount(int iQty, double dLinePrice)

{

 if (dLinePrice>1000)

 return 0.15;

 else if (dLinePrice>500 || iQty>10)

 return 0.10;

 else

 return 0;

}

The function dDiscount() takes the quantity as parameter, which is stored in the formal parameter iQty, and the line
price stored in the parameter dLinePrice. The if statement checks the values and returns a percentage of the double type.

Below is the code for the dPrice() function:

double dPrice(int iNo, double dUnitPrice)

{

 const double dTax = 0.25;

 double dLinePr, dDiscPerc;

 dLinePr = iNo * dUnitPrice;

 dDiscPerc = dDiscount(iNo, dLinePr);

 return dLinePr * (1-dDiscPerc)*(1+dTax);

}

Download free eBooks at bookboon.com

Structured Programming with C++

134

6 Functions

The function dPrice() takes the quantity and unit price as parameters. First a constant named dTax is declared. Then
variables for the line price and discount percent are declared. The line price is calculated as quantity times unit price.

Then the function dDiscount() is called with quantity and line price as actual parameters. The returned discount percentage
is stored in the variable dDiscPerc. Finally, the discounted net price of double type is returned, where we deduct the
discount percentage and add the tax percentage.

Here is an entire program that tests the functions:

#include <iostream.h>

double dDiscount(int iQty, double dLinePrice)

{

 if (dLinePrice>1000)

 return 0.15;

 else if (dLinePrice>500 || iQty>10)

 return 0.10;

 else

 return 0;

}

double dPrice(int iNo, double dUnitPrice)

{

 const double dTax = 0.25;

 double dLinePr, dDiscPerc;

Download free eBooks at bookboon.com
Click on the ad to read more

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

Structured Programming with C++

135

6 Functions

 dLinePr = iNo * dUnitPrice;

 dDiscPerc = dDiscount(iNo, dLinePr);

 return dLinePr * (1-dDiscPerc)*(1+dTax);

}

void main()

{

 int iQuantity;

 double dUnitPrice;

 cout << "Enter quantity and unit price: ";

 cin >> iQuantity >> dUnitPrice;

 cout << "To be paid: "

 << dPrice(iQuantity, dUnitPrice)<<endl;

}

In main() we declare the variables iQuantity and dUnitPrice, which store the entered values. The cout statement calls the
dPrice() function with the entered values as actual parameters. As return value we get the discounted net price, which is
printed by the cout statement.

6.10 Function without Return Value

Some functions are supposed to perform a task but don’t need to return any value. An example could be a function that
prints a message or performs some string manipulation.

We will create a function that prints the character ‘=’ a specific number of times. It can be used to print a number of
equality signs acting as underlining a text. We use the name underline for the function:

void underline(int n)

{

 for (int i=1; i<=n; i++)

 cout << "=";

}

A function that does not return any value has ’void’ in front of the function name. Compare the function main() which
does not have to return any value to the operating system, and which consequently has been defined as ‘void main()’.

The function underline() takes an integer as parameter. It has a for-loop that prints the character ‘=’ as many times as
given by the integer.

We can now use this function in a program to underline a text:

char s[7] = "Prices";

cout << s << endl;

underline(strlen(s));

This code section defines a string array s with the string ‘Prices’. The string is printed at the second code line and then we
call the function underline() with the length of the string as actual parameter. This gives the output:

Download free eBooks at bookboon.com

Structured Programming with C++

136

6 Functions

Priser

======

An alternative to the function underline is given here:

void underline(char text[])

{

 for (int i=1; i<=strlen(text); i++)

 cout << "=";

}

Here, the function instead takes the string itself as parameter. The for-loop goes from 1 to the number of characters in
the string and prints as many equality signs. The call to this variant of the function should be:

char s[7] = "Prices";

cout << s << endl;

underline(s);

Here we send the string variable as actual parameter instead of the length of the string.

6.11 Replacing Characters in a String

We will create still another void function that replaces an arbitrary character in a string and prints the modified string.
We call it replace:

void replace(char s[], char c, char cnew)

{

 int n = 0;

 while (s[n] != '\0')

 {

 if (s[n] == c)

 s[n] = cnew;

 n++;

 }

 cout << s << endl;

}

The function takes three parameters, a string array - s, the character to be replaced – c, and the replacing character – cnew.

The function first defines a variable n to be used for indication of one character at a time in the string. The while loop
has the condition that the character must not be the null character, i.e. we proceed from the first to the last character of
the string.

The if statement checks whether the character in the string equals the character to be replaced (c). If so, that character iw
replaced by cny. In the while loop we finally increase n by 1 to point out the next character in the string.

Finally the modified string is printed by the cout statement.

Download free eBooks at bookboon.com

Structured Programming with C++

137

6 Functions

Here is an entire program that tests the replace() function:

#include <iostream.h>

void replace(char s[], char c, char cnew)

{

 int n= 0;

 while (s[n] != '\0')

 {

 if (s[n] == c)

 s[n] = cnew;

 n++;

 }

 cout << s << endl;

}

void main()

{

 char a[100] = "C:/Mydocuments/Sheets";

 cout << a << endl;

 replace(a, '/', '-');

}

Download free eBooks at bookboon.com
Click on the ad to read more

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

Structured Programming with C++

138

6 Functions

In main() we define a string array a which is printed. Then the replace() function is called with the actual parameters a,
the character ‘/’ and the character ‘-‘. The printout will be:

C:/Mydocuments/Sheets

C:-Mydocuments-Sheets

6.12 Declaration Space

A variable declared inside a function is only valid within the function. The same applies to the formal parameters. In the
previous program you can for instance not use the variable s outside the replace() function, like printing s from main().

You can neither use a variable in replace() that is declared in main(). For instance, you can’t print the variable a from
inside of replace().

A variable is valid only in the function where it is declared.

There are however workarounds, but that is beyond the scope of this course.

6.13 The Word Program

We will now create a function which checks if a string is a word, i.e. only contains the characters a-z or A-Z. The function
should be used in a program where the usere repeatedly can enter a word and get it checked. We start with a JSP graph
for the function:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 134

The Word Program
We will now create a function which checks if a string is a word, i.e.
only contains the characters a-z or A-Z. The function should be used
in a program where the usere repeatedly can enter a word and get it
checked. We start with a JSP graph for the function:

The function begins by calculating the string length. The loop ‘Check
character’ goes through character by character and checks if it is in the
interval a-z or A-Z. If so, we increase the loop counter i by 1.
Otherwise we return the value 0 and the function is terminated. If all
characters are letters, the loop will complete and we return 1.

We now give a JSP graph for the program calling the word() function:

word(char s[])

Calculate
string length

Check
character

Char no. i
letter ?

Increase i Return 0

Return 1

*

o o

The function begins by calculating the string length. The loop ‘Check character’ goes through character by character and
checks if it is in the interval a-z or A-Z. If so, we increase the loop counter i by 1. Otherwise we return the value 0 and
the function is terminated. If all characters are letters, the loop will complete and we return 1.

We now give a JSP graph for the program calling the word() function:

Download free eBooks at bookboon.com

Structured Programming with C++

139

6 Functions

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 135

The program has a loop ’Check string’. For each turn of the loop we
read a string from the keyboard. The string is sent to the function
word(). If 1 is returned by the function, we print ‘A word’. If 0 is
returned, we print ‘No word’.

Here is the code:

#include <iostream.h>
#include <string.h>
int word (char s[])
{
 int i=0, j;
 j = strlen(s);
 while (i<j)
 {
 char c = s[i];
 if ((c>='a' && c<='z') || (c>='A' && c<='Z'))
 i++;
 else
 return 0;
 }
 return 1;
}
void main()
{
 char str[10];
 while (cin >> str)
 if (word(str))
 cout << "A word" << endl;
 else
 cout << "No word" << endl;
}

Wordprog

Check string

Enter string Is it a word?

Print "A word" Print "No word"

* *

o o

The program has a loop ’Check string’. For each turn of the loop we read a string from the keyboard. The string is sent to
the function word(). If 1 is returned by the function, we print ‘A word’. If 0 is returned, we print ‘No word’.

Here is the code:

#include <iostream.h>

#include <string.h>

int word (char s[])

{

 int i=0, j;

 j = strlen(s);

 while (i<j)

 {

 char c = s[i];

 if ((c>='a' && c<='z') || (c>='A' && c<='Z'))

 i++;

 else

 return 0;

 }

 return 1;

}

void main()

{

 char str[10];

 while (cin >> str)

 if (word(str))

 cout << "A word" << endl;

 else

 cout << "No word" << endl;

}

Download free eBooks at bookboon.com

Structured Programming with C++

140

6 Functions

The function word() begins by calculating the length of the string s and storing it in the variable j.

The while loop has the condition that the loop counter i should be less than the string length j. Character number i is
copied to the char variable c.

The if statement checks if c is greater than ’a’ and less than ’z’ or greater than ’A’ and less than ’Z’. If this condition is satisfied,
the character is a letter and i is increased by 1. If it is another character, 0 is returned and the function is terminated.

If the while loop is allowed to complete, all characters are letters and the value 1 is returned.

In main() the string array str is declared. The while loop has the condition of a successful string entry, i.e. the user has
not pressed Ctrl-Z.

The if statement in main() has a call to word() and sends the entered string as actual parameter. If the function returns
1 (it is a word), the condition is true and the text ‘A word’ is printed. If 0 is returned, the condition is false and the else
statement provides the output ‘No word’.

6.14 Override Functions

A function can appear in different shapes. For instance, it can perform a task with different data sets. What differs between
the various shapes is the parameter set. If the number of parameters or the data types of the parameters are different, it
is considered different function shapes, or override functions. The function header defines the difference. Here are two
examples of override functions:

void prt(int i, int width)

void prt(char s[])

Download free eBooks at bookboon.com
Click on the ad to read more

http://s.bookboon.com/volvo

Structured Programming with C++

141

6 Functions

The functions have the same name (prt), but different parameter sets. The purpose of the functions is to print something
on the screen. The first function should print the number i with as many positions as given by the width parameter (using
the setw() function). The second function should print the string s.

Here is the code for the two functions:

void prt(int i, int width)

{

 cout << setw(width) << i;

}

void prt(char s[])

{

 cout << s;

}

The first function uses the number width as parameter to the setw() function, which assigns that number of positions on
the screen for the number i.

The second function prints the string sent to the function.

We can now use the function prt() in a program to print a number or a text. Depending on the actual parameters sent
to the function, the program will select the appropriate function variant.

For instance, the statement:

prt("The number:");

will select the second function, while the statements:

int k = 8;

prt(k, 3);

will select the first function. If we combine these statements:

prt("The number:");

int k = 8;

prt(k, 3);

we will get the printout:

The number: 8

with two blanks in front of the 8, since we set width to 3, totally three positions.

Writing override functions in this way provides a flexibility to programming, where the program selects the function
variant applicable for the moment.

6.15 Declaration - Definition

We have previously stated that a function should be positioned in front of main() in the program to make the compiler
be able to recognize it when called from main(). Here is an example of this:

Download free eBooks at bookboon.com

Structured Programming with C++

142

6 Functions

double dAvg(double x1, double x2)

{

 return (x1 + x2)/2;

}

main()

{

 //…

 mv = dAvg(no1, no2);

 //…

}

Here, the function dAvg() calculates the average of the two numbers sent to the function. In main() we call dAvg() with
the actual parameters no1 and no2, which we assume to have been assigned values previously in the program.

An alternative is to write only the function declaration before main() and let the definition of the function appear after
main():

double dAvg(double x1, double x2);

main()

{

 //…

 mv = dAvg(no1, no2);

 //…

}

double dAvg(double x1, double x2)

{

 return (x1 + x2)/2;

}

The first line declares the function dAvg(). It is exactly identical to the function header, followed by a semicolon. Having
declared the function, the compiler knows about it and is recodgnized when called from main().

The definition of the function, i.e. the function header plus the function body, can then be positioned anywhere in the
program. If you have several functions declared before main(), you can write the function declarations in any order after
main().

This way of first declaring functions and placing the definitions afterwards is common by programmers and provides the
advantage of having main() first, which is logical since the execution starts there.

You can declare a function in an abbreviated way:

double dAvg(double, double);

Here we exclude the formal parameter names and specify only their data types. However, the function header of the
function definition must be complete with formal parameter names.

Download free eBooks at bookboon.com

Structured Programming with C++

143

6 Functions

6.16 Header Files

Function declarations are often stored in a separate header file and the function definitions in the corresponding cpp file.
The header file must then be included in the program using the functions.

For instance, you can create a cpp file with all your function definitions. Suppose we name it myfunc.cpp. The function
declarations are stored in the header file myfunc.h.

When writing the program in still another cpp file, which will call the functions, myfunc.h must be included in the
program file.

Here is a set of functions that we have used previously in this chapter:

// myfunc.cpp

#include <iostream.h> // Necessary for cout

void underline(int n)

{

 for (int i=1; i<=n; i++)

 cout << "=";

}

double dDiscount(int iQty, double dLinePrice)

{

 if (dLinePrice>1000)

 return 0.15;

Download free eBooks at bookboon.com
Click on the ad to read more

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

Structured Programming with C++

144

6 Functions

 else if (dLinePrice>500 || iQty>10)

 return 0.10;

 else

 return 0;

}

double dPrice(int iNo, double dUnitPrice)

{

 const double dTax = 0.25;

 double dLinePr, dDiscPerc;

 dLinePr = iNo * dUnitPrice;

 dDiscPerc = dDiscount(iNo, dLinePr);

 return dLinePr * (1-dDiscPerc)*(1+dTax);

}

// myfunc.h

void underline(int n);

double dDiscount(int iQty, double dLinePrice);

double dPrice(int iNo, double dUnitPrice);

// price.cpp

#include <iostream.h>

#include "myfunc.h"

void main()

{

 //…

 cout << "To be paid: " << dPrice(iQty, dUnitPr)<<endl;

 //…

}

In the price.cpp program we have included the file myfunc.h. The compiler will look in myfunc.h to ensure that all
functions called by the program are declared in myfunc.h.

Note that we include own header files with double quotes instead of the characters < and >. That implies that the compiler
looks in different folders to find the header files. The files myfunc.h and myfunc.cpp should be stored in the same folder
as price.cpp, while iostream.h is stored in a particular folder created at installation of Visual C++.

Download free eBooks at bookboon.com

Structured Programming with C++

145

6 Functions

6.16.1 Project

When working with several files in this way, you must create a project in Visual C++ and add all files to the project. Do
as follows:

•	 Select File - New and indicate the Projects tab.
•	 Mark the option Win32 Console Application and enter a name of the project in the box Project name. Click

OK.
•	 A window is displayed. Click Finish.
•	 A confirmation window is displayed. Click OK.

When creating a new cpp file, do as follows:

•	 Select File - New and indicate the Files tab.
•	 Mark the option C++ Source File and enter a name of the cpp file. Click OK.
•	 The code window is displayed. Enter your code and click the Save button.
•	 Add the file to the project by selecting Project - Add To Project - Files. Mark the file and click OK.

When creating a new header file, do as follows:

•	 Select File - New and indicate the Files folder.
•	 Mark the option C/C++ Header File and enter a name of the header file (the same name as the

corresponding cpp file). Click OK.
•	 The code window is displayed. Enter your code and click the Save button.
•	 Add the file to the project by selecting Project - Add To Project - Files. Mark the file and click OK.

Compile the entire project by clicking the Build button (the same button as used for compilation so far).

Run the program by clicking the Execute Program button (the same button as used for running a program so far).

6.17 Reference Parameters

When calling a function with actual parameters, the value for the acutal parameter is copied from its memory area to
another memory area used by the function’s formal parameter:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 141

Reference Parameters
When calling a function with actual parameters, the value for the
acutal parameter is copied from its memory area to another memory
area used by the function’s formal parameter:

The variable x has the value 5 stored in a memory location. When
func1() is called, that value is copied to another memory location used
by the function. If a statement in the function would change the value
to 6, the memory location of the function is affected, but not the
original value of x:

Sometimes this is good, but sometimes you also want the original
value to be changed.

Another disadvantage is when a lot of data is to be transferred to the
function, e.g. at object oriented programming when an object
consisting of many Mbyte of data is to be transferred to a function. A

x=5;
func1(x);

5

5

x=5;
func1(x);

5

6

Download free eBooks at bookboon.com

Structured Programming with C++

146

6 Functions

The variable x has the value 5 stored in a memory location. When func1() is called, that value is copied to another memory
location used by the function. If a statement in the function would change the value to 6, the memory location of the
function is affected, but not the original value of x:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 141

Reference Parameters
When calling a function with actual parameters, the value for the
acutal parameter is copied from its memory area to another memory
area used by the function’s formal parameter:

The variable x has the value 5 stored in a memory location. When
func1() is called, that value is copied to another memory location used
by the function. If a statement in the function would change the value
to 6, the memory location of the function is affected, but not the
original value of x:

Sometimes this is good, but sometimes you also want the original
value to be changed.

Another disadvantage is when a lot of data is to be transferred to the
function, e.g. at object oriented programming when an object
consisting of many Mbyte of data is to be transferred to a function. A

x=5;
func1(x);

5

5

x=5;
func1(x);

5

6

Sometimes this is good, but sometimes you also want the original value to be changed.

Another disadvantage is when a lot of data is to be transferred to the function, e.g. at object oriented programming when
an object consisting of many Mbyte of data is to be transferred to a function. A lot of memory is then consumed and it
takes time to copy huge amounts of data.

The solution is to use a reference parameter. No copying of data is then made, but the original actual parameter and the
function’s formal parameter point to the same memory location:

Download free eBooks at bookboon.com
Click on the ad to read more

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

Structured Programming with C++

147

6 Functions

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 142

lot of memory is then consumed and it takes time to copy huge
amounts of data.

The solution is to use a reference parameter. No copying of data is
then made, but the original actual parameter and the function’s formal
parameter point to the same memory location:

If the function func1() changes the value, it also affects the value of
the original variable x:

Defining a function parameter as reference parameter is made by
placing an & character after the data type:
void underline(int& n)
{
 //…
}

The parameter n is here a reference parameter.

You call the function in the usual way:
underline(iNo);

Parameters with Default Values
Sometimes it would be convenient to exclude an actual parameter
when calling a function. The function must then itself be capable of
assigning a value to the formal parameter. This is accomplished by
defining the formal parameter with a default value, i.e. if no value is
supplied by the function call, the formal parameter gets a standard
value. Here is an example:

x=5;
func1(x);

5

x=5;
func1(x);

6

If the function func1() changes the value, it also affects the value of the original variable x:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 142

lot of memory is then consumed and it takes time to copy huge
amounts of data.

The solution is to use a reference parameter. No copying of data is
then made, but the original actual parameter and the function’s formal
parameter point to the same memory location:

If the function func1() changes the value, it also affects the value of
the original variable x:

Defining a function parameter as reference parameter is made by
placing an & character after the data type:
void underline(int& n)
{
 //…
}

The parameter n is here a reference parameter.

You call the function in the usual way:
underline(iNo);

Parameters with Default Values
Sometimes it would be convenient to exclude an actual parameter
when calling a function. The function must then itself be capable of
assigning a value to the formal parameter. This is accomplished by
defining the formal parameter with a default value, i.e. if no value is
supplied by the function call, the formal parameter gets a standard
value. Here is an example:

x=5;
func1(x);

5

x=5;
func1(x);

6

Defining a function parameter as reference parameter is made by placing an & character after the data type:

void underline(int& n)

{

 //…

}

The parameter n is here a reference parameter.

You call the function in the usual way:

underline(iNo);

6.18 Parameters with Default Values

Sometimes it would be convenient to exclude an actual parameter when calling a function. The function must then itself
be capable of assigning a value to the formal parameter. This is accomplished by defining the formal parameter with a
default value, i.e. if no value is supplied by the function call, the formal parameter gets a standard value. Here is an example:

void print_many (char c, int iNo=1)

{

 for (int i=1; i<=iNo; i++)

 cout << c;

}

The function print_many() prints a character a specified number of times. It takes a character c and an integer iNo as
parameters. The character c is printed iNo times.

The for-loop goes from 1 to iNo and prints c for each turn of the loop.

Download free eBooks at bookboon.com

Structured Programming with C++

148

6 Functions

The parameter iNo has the default value 1, which means that if no integer value is sent to the function, iNo will get the
value 1. Thus, you specify the default value in the function header:

int iNo=1

The call to the function can be in two different ways. Here is one:

print_many ('x', 4);

This call sends the character ‘x’ and the number 4 to the function. Since we specify a value in the call, the default value
for the parameter iNo will be ignored and the value 4 will be used. The output will be:

xxxx

Here is the other way of calling the function:

print_many ('y');

Here, we don’t send any integer value, so the default value 1 will be used. The character ‘y’ will be printed once:

y

One thing you should remember when using a function declaration first and a function definition later, is that the default
value for a parameter should only be specified in the declaration of the function, and not be repeated in the function
header of the function definition. This is the way it should be written:

void print_many (char c, int iNo=1);

void main()

{

 //…

}

void print_many (char c, int iNo)

{

 //…

}

Furthermore, the parameter with the default value must be the last one in the parameter list. You can’t interchange the
parameters c and iNo.

6.19 Recursive Functions

A recursive function is a function that calls itself, i.e. from inside of the function body you call the same function in a
program statement. This may sound as an infinite loop. The code must of course be constructed with a condition to make
the series of calls be interrupted.

Here is the basic logic for a recursive function:

func()

{

 //misc code

Download free eBooks at bookboon.com

Structured Programming with C++

149

6 Functions

 if (…)

 return func();

 else

 return 1;

}

The function func() has a call to itself in the first return statement. This call will be performed as long the if condition is
true, repeatedly. But some time the statements before the if statement must imply that the if condition is false. Then the
value 1 is returned and the recursive function calls are interrupted.

Recursive functions are mostly used in mathematical applications. We will create a recursive function which calculates
the faculty of the number sent to the function.

Some repetition of your math knowledge. Faculty is identified by !. For instance 5! (faculty of 5) = 5 x 4 x 3 x 2 x 1. You
start with the number and repeatedly multiply by the number that is 1 less until you arrive at 1.

The function has the following header:

int nfac(int n)

The function name is nfac and it takes an integer as parameter. We will consequently multiply n by n-1, n-2, n-3 etc.
down to 1. We will call nfac() with the number that is 1 less than the number used in the previous call. So the function
must have an if statement which checks if the parameter n is = 1. If so, the number 1 should be returned, otherwise the
function should be called again, this time with n-1 as actual parameter.

Download free eBooks at bookboon.com
Click on the ad to read more

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

Structured Programming with C++

150

6 Functions

Here is the code:

int nfac(int n)

{

 if (n<=1)

 return 1;

 else

 return n * nfac(n-1);

}

The function has an if statement which checks if the supplied parameter is 1 or less. If so, 1 is returned. Otherwise the
product of n and the result of the call to the same function with parameter n-1 is returned.

Suppose we use this call:

iFaculty = nfac(4);

The number 4 is sent as parameter.
Since 4 is greater than 1, this multiplication is performed: 4 * nfac(3).
The call nfac(3) accordingly gives the multiplication 3 * nfac(2).
The call nfac(2) gives the multiplication 2 * nfac(1).
The call nfac(1) now has the actual parameter 1 and since it provides a true condition in the if statement, 1 is returned,
and no more calls are made.

Thus, the resulting multiplication is 4 * 3 * 2 * 1, which is stored in the receiving variable iFaculty.

6.20 Summary

In this chapter we have learnt to write functions. Functions are used in professional programs to split up the code into
well-defined sections and to achieve a structure easy to grasp, which facilitates program maintenance.

We have learnt how to send values to, and receive the result from a function. We have also learnt how to use header files
in connection with declaration and definition of functions.

We have made a brief introduction to reference parameters – an efficient tool to save memory and improve program
performance. You have also seen how to write recursive functions to make the code more efficient.

6.21 Exercises

1. Write a function which calculates and returns the average of three numbers. Call the function from main()
and create convenient printouts, so you can check the correctness of the function.

2. Write a function max() which returns the greatest of two numbers. Test the function with a call from main()
and complete with suitable printouts.

3. Complete the previous program so that it can calculate the greatest of three numbers by means of the
function max().

4. Start from the program ’Least Item of an Array’ and complete it with printing of the greatest item of the
array by means of the function max().

Download free eBooks at bookboon.com

Structured Programming with C++

151

6 Functions

5. Write three functions which calculate
- circumference of a rectangle with the sides as parameters
- area of a rectangle with the sides as parameters
- price for building a fence around a rectangular field, where the price per meter is 145:- and a gate of
 650:-
Then, write a program that reads the sides of the rectangle from the user and displays the circumference,
area and fence price by means of the three functions.

6. Write a function that takes an integer n and prints a list of the squares and cubes of the numbers 1-n. From
main(), read the number n from the user.

7. Write a function printLine(int n, char c) which prints the character c at a line as many times as specified by
the integer n. Use the function in a program which prints a frame consisting of asterixes (*) on the screen.

8. Write a function expandWord(char cWord[]) which prints the text in the parameter ’cWord’ with one blank
between each character. E.g. the word Data is printed as D a t a. Also write a main() program which
reads a text from the user and calls the function.

9. Write the following functions:
- void initial(char str[]) which prints the initials of the name str.
- void revers(char str[]) which interchanges the first and surname of str and prints it.
- int lgth(char str[]) which returns the length of str.
- void back(char str[]) which prints the name backwards.
- void upper(char str[]) which prints the name in upper case.
Use the functions in a main() program.

10. Start from the program with the price calculation in the section ’Function and Subfunction’. Write one more
subfunction which is used by the function dPrice() and which reads a customer category from the user and
returns still another discount percent (A=5%, B=7%, C=9%). Ensure that the function takes erroneous entry
into account. Modify the function dPrice() to provide a correct price calculation. Save this program, we will
use it in later exercises.

11. Write a program for calculation of car rent. The program should contain a function that calculates the daily
charge (500:-) plus kilometer charge (1:40 per km) plus the fuel price. The calculation of the kilometerage is
made by a subfunction which prompts the user for start and end odometer value and returns the number of
kilometers driven. The fuel price is calculated by another subfunction which reads the fuel consumption and
returns the fuel charge (9.27 per litre). Save this program, we will use it in later exercises.

12. Suppose you want to create a function that prints the letters å, ä and ö correctly. The function takes a string
as parameter, searches for the letter combinations aa, ae and oe, end replaces them by å, ä and ö respectively.
In main() you read a string from the user and call the function. To make it work, the user must enter the
word ‘båda’ as ‘baada’.

13. Start from the ‘Word program’ earlier in this chapter. Change it to a digit program, i.e. the program should
check an entered string to only contain digits and decimal point.

14. Write a ”playing card” function which takes a card value (1-13) and prints the correct value (2-10, ‘jack’,
‘queen’, ‘king’, ‘Ace’). Use the function in a main() program.

15. Improve the previous function to also take a colour parameter (1-4) and prints ’hearts’, ’clubs’, ’diamonds’ or
’spades’.

Download free eBooks at bookboon.com

Structured Programming with C++

152

6 Functions

16. Write the following boolean functions:
- bool odd(int n) which gives the value true if n is odd.
- bool divable(int a, int b) which returns true if a is evenly dividable by b.
- bool digit(char c[]) which returns true if the first character of c is a digit.
- bool letter(char c[]) which returns true if the first character of c is a letter.
Use the functions in if statements which print the results.

17. Write a program which works as a calculator. There should be one main() function which reads the
calculation, for instance 5 * 3, and four functions, one for each type of calculation + - * /.

18. Write a program that calculates the average score for a student. The program should prompt the user for
course scores (MVG=20, VG=15, G=10, IG=0) and number of hours that the course comprises. These two
values are multiplied. The entry goes on until all courses are complete. The course scores of all courses are
added. The sum is divided by the total number of hours for all courses, which gives the average score. The
transfer between score (for instance VG) to value (15) is made by a function.

19. Change the price calculation program in exercise 10 above, so that you get two override functions for
discount calculation with the same function names. One of them takes the total price and quantity as
parameters and the other takes a customer group as parameter. The entry of customer group from the user
must then be made in the dPrice() function.

20. Modify the previous program so that you place the function declarations first and the function definitions
after main().

21. Start from exercise 11 and put all code in a project with the function definitions in a separate cpp file, the
function declarations in corresponding header file and main() in a separate cpp file.

22. Modify the previous exercise so that the parameters of the functions are used as reference parameters.
23. Change the function for calculation of the fuel price in the previous exercise so that it takes the litre price as

parameter. It should have the default value 9.32.
24. Write a function which creates a number of random rolls of a dice. The number of rolls should be taken as

a parameter with the default value 5. The function should return the average of the rolls. Use this function
in a program where the user can enter a number of rolls and get the average printed. Store the program in a
project with separate cpp files for the function and main() and a header file with the function declaration.

25. Expand the previous exercise so that the program runs the function using the default value, i.e. without
sending the number of rolls to the function.

26. Improve the previous exercise so that you play against the computer and the program informs you about
who won. The comparison between your and the program’s score should be made by a function.

27. Change the previous exercise so that the function uses reference parameters.
28. Start from the function nfac() in the ’Recursive Functions’ section and place it in a program where the user

can enter the integer and get the faculty of it printed.
29. Write a recursive function which sums the integers n, n-1, n-2,… 1. Use it in a main() program.
30. Change the previous function so that it every other time adds and subtracts, for instance 6-5+4-3+2-1.

Download free eBooks at bookboon.com

Structured Programming with C++

153

7 Files

7 Files
7.1 Introduction

You have probably noticed when running our programs during the course so far, each run has started from the same
origin as previous run. The data entered to the program is gone when running the program the next time. This is of course
unacceptable. We must have the possibility to save data entered or calculated during one run, so we can continue where
we stopped last time. The solution to this is to save the data on disk in files.

In this chapter we will go through the basic concepts about file management and how to read from and write to files in C++.

In professional programming relational databases of some kind are mostly used for data storage. A lot of special code is
however required in C++ to do that, which is outside the scope of this course. Here, we will only store data in the simpliest
format, namely text files which can be read and updated with a simple text editor like the Notepad program.

To be able to handle files in C++ we need some knowledge about streams, which we will first go through in this chapter.
We will then show how to declare a file, open it, save data in it, read from it and close it.

You should normally open the file as late as possible in the program and close it as early as possible, since you want to
minimize the risk for loss of data by keeping the files open as short time as possible. If the system would break down
while a file is open, the result might be a corrupt file not possible to read from. You will then have to return to the last
backup of the file.

Download free eBooks at bookboon.com
Click on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

Structured Programming with C++

154

7 Files

7.2 Streams

When files are processed in C++ the communication goes between hard disk file and program via a stream:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 151

When data is to be read from a disk file (infile) to a program, it goes
via an intermediary store (instream) which works as a buffer between
the hard disk and the program, where data is queued to be read to the
program.

Similarly, when data is to be written from the program to a disk file
(outfile), it is first stored in an intermediary store (outstream) before it
is finally written to the file.

As programmer you only have to bother about reading from the
instream and writing to the outstream. The operating system takes care
of the physical reading and writing on the disk file.

Reading from a Stream
So far, you have read data from the keyboard with statements like:
cin >> cName;

We have said that cin stands for ’console in’, i.e. reading from the
keyboard. But actually, the data has been transferred via an instream
called cin.

The same applies to reading from an instream. Suppose that we have
an instream called is and that it is connected to a particular disk file.
Then we read data from the instream with statements like:
is >> cName;
is >> dAmount;

Reading data from an instream with the >> operator is called
'formatted input', because the data from the instream is

Program

Outstream

Instream

Infile

Outfile

When data is to be read from a disk file (infile) to a program, it goes via an intermediary store (instream) which works
as a buffer between the hard disk and the program, where data is queued to be read to the program.

Similarly, when data is to be written from the program to a disk file (outfile), it is first stored in an intermediary store
(outstream) before it is finally written to the file.

As programmer you only have to bother about reading from the instream and writing to the outstream. The operating
system takes care of the physical reading and writing on the disk file.

7.3 Reading from a Stream

So far, you have read data from the keyboard with statements like:

cin >> cName;

We have said that cin stands for ’console in’, i.e. reading from the keyboard. But actually, the data has been transferred
via an instream called cin.

The same applies to reading from an instream. Suppose that we have an instream called is and that it is connected to a
particular disk file. Then we read data from the instream with statements like:

is >> cName;

is >> dAmount;

Reading data from an instream with the >> operator is called ‘formatted input’, because the data from the instream is
automatically accommodated to the data type of the receiving variable.

In some situations it is not possible to accommodate the data to a specific data type, for instance if you try to read letters
to an integer variable. A run-time error will then occur.

You can also use ‘unformatted input’, which means that characters are read from the file exactly as they are stored,
without any accommodation. Here is an example:

Download free eBooks at bookboon.com

Structured Programming with C++

155

7 Files

char cName[30];

is.getline(cName, 29);

The last statement reads up to 29 characters from the instream, and the null character is put after the last read character.
The read operation continues until the end line character is reached. Suppose the data in the file is stored linewise (for
instance if data has been entered using Notepad and Enter has been pressed after each line). Then one line at a time is read.

If there happens to be fewer characters than 29 at the current line in the file, for instance 17 characters, the null character
is stored in the 18th position.

If there are more than 29 characters at the line in question in the file, the input is interrupted after 29 characters.

Thus, the programmer must carefully check how data is stored in the file, so as not to loose important information.

7.4 Writing to a Stream

Writing data to an outstream can also be done in two ways:

Formatted output is done with statements like:

os << cName;

Here we presume that an outstream named os has been created and been connected to a specific disk file. The statement
implies that the characters in the variable cName are written to the outstream.

Formatted output also implies that you have the opportunity to control the layout of the data, for instance with the function
width(). Compare the ‘Variables’ chapter, where we discussed formatted output.

Unformatted output means that the characters in the variable are written to the outstream exactly in the format they
are stored in the variable, for instance:

os.put(c);

os.write(cName, 30);

The put() function prints a character, namely the character represented by the variable c, to the outstream os. The write()
function writes 30 characters from the variable cName to the outstream os.

7.5 Attaching a File to a Stream

Before being able to use an instream or outstream, it must be declared and attached to a disk file. The statement:

ifstream infile("address.txt");

declares the instream infile and attaches it to the disk file named address.txt.

ifstream is the short for ‘input file stream’. You can regard ifstream as a data type similarly to integer or double. But actually,
ifstream is a class from which we derive an object of the ifstream type with the object name infile.

When this statement has been executed the stream is ready for read operations.

Download free eBooks at bookboon.com

Structured Programming with C++

156

7 Files

Below we declare an outstream:

ofstream outfile("newadr.txt");

The stream is called outfile and is connected to a disk file named newadr.txt. ofstream is short for ‘output file stream’.
ofstream is also a class from which we create the object outfile.

At completion of this statement the outstream is ready for write operations.

If the file newadr.txt exists, it will be deleted and a new file with the same name is created. Many times you want to add
data to the end of an existing file without destroying existing information. The outstream is then declared as follows:

ofstream outfile("newadr.txt", ios::app);

app is short for ‘append’.

To make the stream declarations above work you must include the file fstream.h:

#include <fstream.h>

To allow for reading from and writing to streams, you must as usual include the file iostream.h:

#include <iostream.h>

At completion of reading from or writing to the streams, you close the streams::

infile.close();

outfile.close();

Download free eBooks at bookboon.com
Click on the ad to read more

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

Structured Programming with C++

157

7 Files

7.6 A Complete Write Program

To summarize our experiences we will now create a simple program for writing of data to file. The program will read
product names from the user (keyboard) and store them in a file named prodfile.txt

We begin with a JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 154

A Complete Write Program
To summarize our experiences we will now create a simple program
for writing of data to file. The program will read product names from
the user (keyboard) and store them in a file named prodfile.txt

We begin with a JSP graph:

First we declare an outstream and attach it the the file prodfile.txt.
Entry of product names from the keyboard is made in a loop. As soon
as a product name has been entered by the user, it is written to the
outstream. At entry completion, we close the outstream.

Here is the code:

#include<iostream.h>
#include<fstream.h>
void main()
{
 char cProd[30] = "";
 ofstream outfile("prodfile.txt");
 cout << endl << ”Enter product, (only Enter to exit): ";
 cin.getline(cProd,29);
 while(cProd[0]!='\0')
 {
 outfile << cProd << endl;
 cout << endl << ”Enter product: ";
 cin.getline(cProd,29);
 }
 outfile.close();
}

First we include the two header files iostream.h (to allow for input and
output) and fstream.h (to allow for stream management).

Writing

Create outstream Read products

Enter product Write to outstream

Close outstream

* *

First we declare an outstream and attach it the the file prodfile.txt. Entry of product names from the keyboard is made
in a loop. As soon as a product name has been entered by the user, it is written to the outstream. At entry completion,
we close the outstream.

Here is the code:

#include<iostream.h>

#include<fstream.h>

void main()

{

 char cProd[30] = "";

 ofstream outfile("prodfile.txt");

 cout << endl << "Enter product, (only Enter to exit): ";

 cin.getline(cProd,29);

 while(cProd[0]!='\0')

 {

 outfile << cProd << endl;

 cout << endl << "Enter product: ";

 cin.getline(cProd,29);

 }

 outfile.close();

}

First we include the two header files iostream.h (to allow for input and output) and fstream.h (to allow for stream
management).

Download free eBooks at bookboon.com

Structured Programming with C++

158

7 Files

In main() we declare the string variable cProd used for storage of product names in the program. Then we declare the
outstream outfile and attach it to the disk file prodfile.txt.

Entry and output is made by first reading the first product from the keyboard with the cin.getline() function before the
while loop starts. Since the while condition checkst the variable cProd to actually hold a string, the string variable cProd
must contain a string.

The while condition checks that the first character of the string variable cProd (cProd[0]) is not the null character. If
it were, the user would have pressed Enter without having entered any product name, and the loop is then terminated.

The first statement in the loop prints the product name to the outstream outfile. The two subsequent statements read a
new product name from the user.

The loop is terminated when the user presses Enter without entering any product name. The outstream is then closed and
the file operation is complete. The file prodfile.txt now contains a number of product names.

When having run the program you would probably like to examine the result. Start ‘Explore’ and find the file prodfile.txt,
which is in the project folder where the cpp file is saved, or maybe in the ‘Debug’ subfolder, depending on your Visual
Studio settings. Double-click the file to make the Notepad program be started and the file content be shown:

7.7 A Complete Reading Program

We will now create a new program that reads data from prodfile.txt and prints the information on the screen. We start
with a JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 156

A Complete Reading Program
We will now create a new program that reads data from prodfile.txt
and prints the information on the screen. We start with a JSP graph:

First we declare the instream and attach it the the prodfile.txt file.
Reading and printing on the screen is made in a loop where we read
one product at a time from the instream and print it on the screen. At
completion, we close the instream.

Here is the program:

#include<iostream.h>
#include<fstream.h>
void main()
{
 char cProd[30] = "";
 ifstream infile("prodfile.txt");
 while(infile.getline(cProd,29))
 cout << cProd << endl;
 infile.close();
}

We include the same header files as in the previous progarm.

In main() we declare the string variable cProd used for holding
product names in the program. Then we declare the instream infile and
attach it to the disk file prodfile.txt.

The while loop has the condition of a successful reading from the
instream. If so, the read product is printed on the screen. When there is
no more data in the file, the read operation is unsuccessful and the
loop is terminated. The instream is closed.

Reading

Create instream Print products

Read product Print on screen

Close instream

* *

Download free eBooks at bookboon.com

Structured Programming with C++

159

7 Files

First we declare the instream and attach it the the prodfile.txt file. Reading and printing on the screen is made in a loop
where we read one product at a time from the instream and print it on the screen. At completion, we close the instream.

Here is the program:

#include<iostream.h>

#include<fstream.h>

void main()

{

 char cProd[30] = "";

 ifstream infile("prodfile.txt");

 while(infile.getline(cProd,29))

 cout << cProd << endl;

 infile.close();

}

We include the same header files as in the previous progarm.

In main() we declare the string variable cProd used for holding product names in the program. Then we declare the
instream infile and attach it to the disk file prodfile.txt.

The while loop has the condition of a successful reading from the instream. If so, the read product is printed on the screen.
When there is no more data in the file, the read operation is unsuccessful and the loop is terminated. The instream is closed.

Download free eBooks at bookboon.com
Click on the ad to read more

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

Structured Programming with C++

160

7 Files

7.8 New Item at the End of the File

We will now show how to add one more product at the end of the file prodfile.txt. The solution is given by the following
JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 157

New Item at the End of the File
We will now show how to add one more product at the end of the file
prodfile.txt. The solution is given by the following JSP graph:

This program reads only one more product. But, by placing the input
from the keyboard and printing to the outstream in a loop, you could
make the program more flexible to allow for entry of any number of
products.

First we read the product name from the user, then we create the
outstream and attach it to the file prodfile.txt, print the product to the
outstream, and close the outstream.

Here is the program code:

#include<iostream.h>
#include<fstream.h>
void main()
{
 char cProd[30] = "";
 cout << "Enter new product: ";
 cin.getline(cProd,29);
 ofstream outfile("prodfile.txt",ios::app);
 outfile << cProd << endl;
 outfile.close();
}

We use the same include files as previously. In main() we prompt the
user for a new product. Then we declare the outstream outfile and
attach it to the disk file prodfile.txt. Note that we use ios::app to make
existing data be kept and new data be added at the end of the file.
Then we print the entered product to the outstream and close the
outstream.

If you check the file prodfile.txt in Notepad, you will see one more
product having been added at the end:

New item

Create outstream Print product Read product Close outstream

This program reads only one more product. But, by placing the input from the keyboard and printing to the outstream
in a loop, you could make the program more flexible to allow for entry of any number of products.

First we read the product name from the user, then we create the outstream and attach it to the file prodfile.txt, print the
product to the outstream, and close the outstream.

Here is the program code:

#include<iostream.h>

#include<fstream.h>

void main()

{

 char cProd[30] = "";

 cout << "Enter new product: ";

 cin.getline(cProd,29);

 ofstream outfile("prodfile.txt",ios::app);

 outfile << cProd << endl;

 outfile.close();

}

We use the same include files as previously. In main() we prompt the user for a new product. Then we declare the outstream
outfile and attach it to the disk file prodfile.txt. Note that we use ios::app to make existing data be kept and new data be
added at the end of the file. Then we print the entered product to the outstream and close the outstream.

If you check the file prodfile.txt in Notepad, you will see one more product having been added at the end:

Download free eBooks at bookboon.com

Structured Programming with C++

161

7 Files

7.9 Products and Prices

We will now recreate the prodfile.txt to store both product id:s and prices for a number of products. The structure of the
file will be:

Product id
Price
Product id
Price
etc.

The price of each product comes after the product id.

The program will be similar to the one used for writing to file:

#include<iostream.h>

#include<fstream.h>

void main()

{

 int iProdId = 1;

 double dPrice;

 ofstream outfile("prodfile.txt");

 while(iProdId !=0)

 {

 cout << endl << "Enter product id: ";

 cin >> iProdId;

 cout << " ...and price: ";

 cin >> dPrice;

 if(iProdId > 0)

 outfile << iProdId << endl << dPrice << endl;

 }

 outfile.close();

}

We use the same include files as previously.

In main() we declare the variable iProdId used for storage of the product id:s in the program. It is initialized to 1 for the
sake of making the while loop start with a valid value of iProdId. The variable dPrice will hold the product prices. We
also declare the outstream outfile and attach it to the disk file prodfile.txt.

The while loop reads product id:s and prices from the user and prints them to the outstream. The while condition checks
that there is a valid product id different from zero. If so, the user is prompted for a product id and a price. If the product
id is greater than zero, the information is written to the outstream outfile. Note that we also print endl after each value,
which makes each information item be printed on a separate line. This way of storing data in a file facilitates printing and
reading from a programming point of view. Avoid several values per line!

Download free eBooks at bookboon.com

Structured Programming with C++

162

7 Files

At completion of the loop the outstream is closed.

By looking at the file in Notepad, you can figure out the structure:

First there is the product id 2345 and then the price of that product 245.5. Then comes the next product etc.

Download free eBooks at bookboon.com
Click on the ad to read more

http://s.bookboon.com/IE

Structured Programming with C++

163

7 Files

7.10 Search for a Product Price

We will now use the new prodfile.txt to find the price of a product specified by the user. The laboursome thing about this
kind of files is that we always must start reading from the beginning of the file until we find the correct product. Then
we also easily can find the corresponding price.

First we give a JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 160

Search for a Product Price
We will now use the new prodfile.txt to find the price of a product
specified by the user. The laboursome thing about this kind of files is
that we always must start reading from the beginning of the file until
we find the correct product. Then we also easily can find the
corresponding price.

First we give a JSP graph:

First we create an instream, and then the user is prompted for the
searched product id.

The loop ’Search prod’ reads one product id and price at a time from
the instream. If it is the searched product id, the price is printed.

After the loop we check if the correct product id was found. If not, an
error text is printed. Finally we close the instream.

Here is the program code:

#include <iostream.h>
#include <fstream.h>
void main()
{
 int iProdId, iSrch, iFound=0;
 double dPrice;
 ifstream infile("prodfile.txt");
 cout << "Enter product id: ";

Search

Create
 instream

Search prod

Read prod id
and price

Prod =
searched prod ?

Found ?

* *

Enter searched
product id

Print price o

Close
 instream

Print
"Product missing"

o

N

J

First we create an instream, and then the user is prompted for the searched product id.

The loop ’Search prod’ reads one product id and price at a time from the instream. If it is the searched product id, the
price is printed.

After the loop we check if the correct product id was found. If not, an error text is printed. Finally we close the instream.

Here is the program code:

#include <iostream.h>

#include <fstream.h>

void main()

{

 int iProdId, iSrch, iFound=0;

 double dPrice;

 ifstream infile("prodfile.txt");

 cout << "Enter product id: ";

 cin >> iSrch;

 while(infile >> iProdId >> dPrice)

 {

 if (iProdId == iSrch)

 {

 cout << "The price is " << dPrice;

Download free eBooks at bookboon.com

Structured Programming with C++

164

7 Files

 iFound=1;

 break;

 }

 }

 if (!iFound)

 cout << "Product missing";

 infile.close();

}

First in the program we declare the variables iProdId used for storage of the product id:s read from the instream, iSrch
for the searched product id, iFound which is an indicator to remember whether or not the product id was found. The
value 0 means that we have not found the correct product, and 1 means that we have found it. The variable dPrice is used
for the price read from the instream.

Then the instream is created and attached to the disk file prodfile.txt.

The searched product id is read from the user and stored in the variable iSrch.

The while loop reads products and prices from the instream. The while condition reads one product id and the corresponding
price from the instream. As long as there is data to be read, the loop continues.

When a product and a price has been read, the if statement checks if it equals the searched product id. If so, the price is
printed, the variable iFound is set to 1 and the loop is terminated.

Download free eBooks at bookboon.com
Click on the ad to read more

STUDY AT A TOP RANKED
INTERNATIONAL BUSINESS SCHOOL

Reach your full potential at the Stockholm School of Economics,
in one of the most innovative cities in the world. The School
is ranked by the Financial Times as the number one business
school in the Nordic and Baltic countries.

Visit us at www.hhs.se

Sw
ed

en

Stockholm

no.1
nine years
in a row

http://s.bookboon.com/hhs2016

Structured Programming with C++

165

7 Files

If the loop is allowed to complete, i.e. if all products have been read without finding the correct id, the variable iFound
will still have the value 0.

After the loop the if statement checks if iFound still is 0. iFound=1 means ‘true’, iFound=0 means ‘false’, !iFound=1 (not
found) means ‘true’. Thus, if ‘not found’ is true, the error message about missing product is printed.

Finally the instream is closed.

7.11 Sorting a File in Memory

We can’t presume the products to be sorted in the file. But in a printout on the screen we want a sorted list of products.
We will create a program which reads all products in the file to an array, sorts the array, and then prints the sorted array.

We now return to the first product file, namely the one only containing product names. You will probably with smaller
amendments achieve the same result with the later file version.

The program will read all product names to an array (two-dimensional char array). The sorting is performed by a function.
After the sorting by the function, the main() function will print the sorted list.

Here is first a JSP graph for the main() function:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 162

Sorting a File in Memory
We can’t presume the products to be sorted in the file. But in a
printout on the screen we want a sorted list of products. We will create
a program which reads all products in the file to an array, sorts the
array, and then prints the sorted array.

We now return to the first product file, namely the one only
containing product names. You will probably with smaller
amendments achieve the same result with the later file version.

The program will read all product names to an array (two-dimensional
char array). The sorting is performed by a function. After the sorting
by the function, the main() function will print the sorted list.

Here is first a JSP graph for the main() function:

First we create the instream.

Reading of products to the array is made in a loop, where we increase
the number of items for each single read. By doing so we keep track
of the number of products read. This number is needed by the function
Sort to be able to sort.

The printing of the sorted array is also made in a loop.

Sorting

Create instream Read to array

Read product Increase no.

Sort

* *

Print array

Print prod no. i * *

First we create the instream.

Reading of products to the array is made in a loop, where we increase the number of items for each single read. By doing
so we keep track of the number of products read. This number is needed by the function Sort to be able to sort.

The printing of the sorted array is also made in a loop.

Download free eBooks at bookboon.com

Structured Programming with C++

166

7 Files

The JSP graph for the function Sort looks like this:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 163

The JSP graph for the function Sort looks like this:

You probably recognize the sort algorithm from the Arrays chapter.

Here is the program code.

#include <iostream.h>
#include <fstream.h>
#include <string.h>
void sort(char cList[][30], int n);
void main()
{
 int i=0, j, iNo;
 char cProd[50][30];
 ifstream infile("prodfile.txt");
 while(infile.getline(cProd[i],29))
 i++;
 iNo=i;
 infile.close();
 sort(cProd,iNo);
 for(j=0; j<iNo; j++)
 cout << cProd[j] << endl;
}
void sort(char cList[][30], int n)
{
 int v,h;
 char temp[30];
 for(v=0; v<n-1; v++)

Sort

v = 0 to no.-1

h = v+1 to no. *

cProd[h] < cProd[v] ? *

Exchange pos.

You probably recognize the sort algorithm from the Arrays chapter.

Here is the program code.

#include <iostream.h>

#include <fstream.h>

#include <string.h>

void sort(char cList[][30], int n);

void main()

{

 int i=0, j, iNo;

 char cProd[50][30];

 ifstream infile("prodfile.txt");

 while(infile.getline(cProd[i],29))

 i++;

 iNo=i;

 infile.close();

 sort(cProd,iNo);

 for(j=0; j<iNo; j++)

 cout << cProd[j] << endl;

}

void sort(char cList[][30], int n)

{

 int v,h;

Download free eBooks at bookboon.com

Structured Programming with C++

167

7 Files

 char temp[30];

 for(v=0; v<n-1; v++)

 {

 for(h=v+1; h<n; h++)

 if(strcmp(cList[h],cList[v])<0)

 {

 strcpy(temp, cList[v]);

 strcpy(cList[v], cList[h]);

 strcpy(cList[h],temp);

 }

 }

}

The include files are iostream.h for input and output, fstream.h for streams and string.h for the string functions.
Furthermore, we also declare the function sort().

In main() we declare the variable i, which is initialized to 0 and which will accumulate the number of products read, the
variable j used as loop counter, and the variable iNo which finally stores the number of products. In addition, we declare
the two-dimensional array cProd, which will be used for storage of the product names. We also create the instream infile,
which is attached to the disk file prodfile.txt.

Download free eBooks at bookboon.com
Click on the ad to read more

http://s.bookboon.com/liu

Structured Programming with C++

168

7 Files

The while loop manages reading of product names to the array. The while condition is true as long as there is data to
read from the instream. In the first turn of the loop i is = 0 according to the initiation in the beginning of the program.
Therefore, the first product is stored in the item cProd[0]. The loop increases the value of i to 1, and the next product is
stored in cProd[1] etc.

After the loop we save the value of i, i.e. the number of products read, in the variable iNo, and then we close the instream.

Then we call the function sort() and send the array and iNo. After the sort operation we print the array in the last for-loop.

The function sort() takes the array and number of products as parameters. Note that n is the index of the last item of
the array.

In the function we declare v and h to be used as indeces in the array when two items are compared. We also declare the
string array temp, which is used in the triangular exchange of array items.

The outer for-loop with v as loop counter goes from 0 to n-1, i.e. from the first to the next last position of the array. The
inner for-loop goes from the position after v to the last position of the array.

Inside the inner for-loop we compare item h to item v by means of the function strcmp(), which gives a negative result
if item h is less than item v. In that case the items will exchange positions, which is made in the triangular exchange by
means of the string array temp.

At completion of the loop, the array has been sorted.

Remember that, when an array is sent as parameter to a function, it is always done as reference parameter, so the function
operates on the same memory area as used by the array in main(). As a consequence, the array does not need to be
returned from the function.

7.12 Updating File Content

Changing the content of a file of the type used in our programs is rather troublesome. The reason is that you can only
read a file from start to end. You cannot jump into the requested position in the file and change information.

As a consequence you will have the original file as input file and a new file as output file. You read data from the infile
and prints to the outfile. When arriving at the position in the file to be changed, after having read the input information,
you change the value and print to the outfile. Then you will have to continue item by item from the infile and print to the
outfile until all information has been transferred. Finally you delete the original file and change the name of the new file
to equal the name of the original file. The information has then been updated.

We now presume that our product file contains product id:s and prices for each product. The user is prompted for a
product id and a new price for that product.

Download free eBooks at bookboon.com

Structured Programming with C++

169

7 Files

We draw a JSP graph for this:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 165

same memory area as used by the array in main(). As a consequence,
the array does not need to be returned from the function.

Updating File Content
Changing the content of a file of the type used in our programs is
rather troublesome. The reason is that you can only read a file from
start to end. You cannot jump into the requested position in the file
and change information.

As a consequence you will have the original file as input file and a
new file as output file. You read data from the infile and prints to the
outfile. When arriving at the position in the file to be changed, after
having read the input information, you change the value and print to
the outfile. Then you will have to continue item by item from the
infile and print to the outfile until all information has been transferred.
Finally you delete the original file and change the name of the new
file to equal the name of the original file. The information has then
been updated.

We now presume that our product file contains product id:s and prices
for each product. The user is prompted for a product id and a new
price for that product.

We draw a JSP graph for this:

First we create the instream for the original file and the outstream for
the new, which by now is empty. The user is then prompted for the
product id to be updated.

Then we use a loop to read product id:s and prices from the original
file. The product id is compared to the one entered by the user. If

Update file

Create instream
and outstream

Enter
searched prod.

Prod id=
searched?

Read,
update, print

Read id
and price

* *

Enter new price o

Print prod.
and price

*

Close
streams

Delete old,
rename

new

First we create the instream for the original file and the outstream for the new, which by now is empty. The user is then
prompted for the product id to be updated.

Then we use a loop to read product id:s and prices from the original file. The product id is compared to the one entered
by the user. If equal, the user is prompted for a new price, otherwise the old price will be used. The product id and price
are then printed to the outstream.

The streams are closed and at the end of the program we delete the old file and rename the new file to the old name.

Here is the program code:

#include <iostream.h>

#include <fstream.h>

#include <stdio.h>

void main()

{

 int iSrch, iProdId;

 double dPrice;

 ifstream infile("prodfile.txt");

 ofstream outfile("temp.txt");

 cout << "Specify product id: ";

 cin >> iSrch;

 while(infile >> iProdId >> dPrice)

 {

 if (iProdId == iSrch)

 {

 cout << "Specify the new price: ";

 cin >> dPrice;

Download free eBooks at bookboon.com

Structured Programming with C++

170

7 Files

 }

 outfile << iProdId << endl << dPrice << endl;

 }

 infile.close();

 outfile.close();

 remove("prodfile.txt");

 rename("temp.txt", "prodfile.txt");

}

The include files are the usual ones, except that we also need stdio.h to be able to delete and rename files.

In main() we declare the variable iSrch to be used for the product id entered by the user, iProdId for product id:s read
from the file, and dPrice for prices from the file.

Then we create the instream, which is attached to the original file prodfile.txt, and the outstream, which is attached to a
new file, temp.txt. Then the user is prompted for the searched product id.

The while loop reads product id and price from the instream as long as there is data. Each product id is checked in the if
statement against the product id specified by the user. If equal, the user is prompted for a new price, which is stored in the
variable dPrice, i.e. the old price is replaced by the new one. Then the product id and price are written to the outstream. At
completion of the while loop all products have been transferred to the new file and the requested price has been updated.

After the while loop the streams are closed, the old file is deleted by the remove() function and the new file temp.txt is
renamed to prodfile.txt by the rename() function.

Download free eBooks at bookboon.com
Click on the ad to read more

http://s.bookboon.com/EOT

Structured Programming with C++

171

7 Files

7.13 Copying Files

Copying a file could be done according to the same method as used by the previous program with the exception that no
price is updated and that the original file is not deleted. We will however show a shortcut of copying a file with the file
name specified by the user.

The copy of data is made by the function rdbuf(), which in one single operation reads all data from the original file without
the need of picking item by item in a loop.

First we give a JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 167

After the while loop the streams are closed, the old file is deleted by
the remove() function and the new file temp.txt is renamed to
prodfile.txt by the rename() function.

Copying Files
Copying a file could be done according to the same method as used by
the previous program with the exception that no price is updated and
that the original file is not deleted. We will however show a shortcut
of copying a file with the file name specified by the user.

The copy of data is made by the function rdbuf(), which in one single
operation reads all data from the original file without the need of
picking item by item in a loop.

First we give a JSP graph:

First the user is prompted for the new file name. Then we create the
instream for the original file and the outstream for the new file.

We then check if the outstream creation was successful. It might
happen that the user enters characters not allowed in file names. If so,
we would get a run time error. In case of an error, we print an error
message. If, however, everything is OK, we copy all data. Finally we
close the streams.

Here is the program code:

#include <iostream.h>
#include <fstream.h>
#include <stdio.h>
void main()
{
 char cNewName[12];
 cout << "Specify new file name: ";
 cin >> cNewName;

Copy file

Create instream
and outstream

Enter new
file name

Is the file name
incorrect?

Error msg o

Close
stream

Copy data o

First the user is prompted for the new file name. Then we create the instream for the original file and the outstream for
the new file.

We then check if the outstream creation was successful. It might happen that the user enters characters not allowed in
file names. If so, we would get a run time error. In case of an error, we print an error message. If, however, everything is
OK, we copy all data. Finally we close the streams.

Here is the program code:

#include <iostream.h>

#include <fstream.h>

#include <stdio.h>

void main()

{

 char cNewName[12];

 cout << "Specify new file name: ";

 cin >> cNewName;

 ifstream infile("prodfile.txt");

 ofstream outfile(cNewName);

 if (!outfile)

 {

 cout << "The file could not be created";

 }

Download free eBooks at bookboon.com

Structured Programming with C++

172

7 Files

 else

 {

 outfile << infile.rdbuf();

 }

 outfile.close();

 infile.close();

}

The include files are iostream.h for input and output, fstream.h for stream management, and stdio.h to allow for using
the function rdbuf().

In main() we prompt the user for the new file name, which is stored in the variable cNewName. Then we create the
instream, which is attached to the disk file prodfile.txt, and the outstream, which is attached to a disk file with the user
supplied name. Note that cNewName is not enclosed in quotes, since it is a variable and not a specific string.

The if statement checks if the outstream creation succeeded. If so, the variable outfile contains an address to the outfile
object. If it didn’t succeed, the address is = 0. That means that !outfile is true if the address is 0. In that case we print an
error message to the user. Otherwise, i.e.if the outstream could be created, we use the function rdbuf() to copy all data
in one single operation from the infile to the outfile.

Finally the streams are closed.

Having run the program you can by means of ’Explore’ check the new file.

7.14 Summary

In this chapter we have learnt the basics of file management. You have learnt how to use streams and attach them to
physical disk files. You have also learnt that you communicate with the streams, and not directly with the disk files.

We have discussed the meaning of formatted and unformatted input and output. You are now able to write programs
where the user can enter information to be stored in a file, and read information from a file and present it on the screen.

We have also studied examples of how to search for information in a file, read and sort file information before presentation
on the screen, update file information and copy files.

7.15 Exercises

1. Start with the program in the section ‘A Complete Write Program’. Expand the program so that it is also
possible to specify warehouse location (for instance EH23) for each product. Check with the Notepad
program that the file contains the expected information.

2. Start with the program in the section ‘A Complete Reading Program’ and modify it so it also will be capable
of reading the warehouse locations entered in the previous exercise.

3. Start with the program in the section ‘New Item at the End of the File’ and modify it so that you also can
enter the warehouse location of the new product. Use the same file as in the two previous exercises. Then
run the program in exercise and check the existence of the new product in the output.

Download free eBooks at bookboon.com

Structured Programming with C++

173

7 Files

4. Start with the program in the section ‘Products and Prices’ and modify it so that you also can enter quantity
in stock for each product.

5. Start with the program in the section ‘Search for a Product Price’ and modify it so that also quantity in stock
is printed on the screen. Use the same file as created in the previous exercise.

6. Start with the program in the section ‘Sorting a File in Memory’ and accommodate it to also be able to
manage the file with product names and warehouse locations created in the first exercise.

7. Start with the program in the section ‘Updating File Content’ and modify it so that the user will be able to
update the quantity in stock. Use the file with product id, price and quantity in stock created in a previous
exercise.

8. Create a program where you can enter
- first name
- surname
- city
for some of your course mates. These should be saved in a file. The program should be possible to run
several times while keeping existing file information.

9. Create a program which reads the course mate information from the file created in the previous exercise and
prints it on the screen.

10. Create a program which can update the city of a person. The first and surname must then be entered from
the keyboard. The new city should also be possible to specify.

11. Create a program which can remove a person from the file. The first and surname of the person must then
be entered.

12. Create a program which sorts the names of the file by surname. Then use the program from exercise 9 to
check the result of the sorting.

13. Create a program which copies the file to a new file. The new file name should be entered by the user.
14. Write a menu program where you gather the tasks from the latest exercises. The menu could look like this:

1. Enter information
2. Print
3. Update city
4. Remove
5. Sort
6. Copy
0. Exit

Select 0-6:

Download free eBooks at bookboon.com

Structured Programming with C++

174

8 Pointers

8 Pointers
8.1 Introduction

A pointer is a special kind of variable which contains a memory address to for instance a number instead of directly refer
to the number. That implies a detour to the value via the memory address.

This might sound unnecessarily complicated, but implies a number of advantages like for instance more efficient program
code, faster execution and memory saving. Especially in object oriented programming you get these advantages when
copying objects or sending objects to functions. Object oriented programming is however beyond the scope of this course.

The pointer concept is unique for C++. It is for instance not present in the programming languages Visual Basic or Java.
As a consequence C++ might be felt more complicated than other languages.

In this chapter we will aqcuire basic knowledge about pointers. We will learn how to use pointers to different data types,
how to declare pointers and assign values. We will examine the anology between pointers and arrays and how to use
pointers as parameters to functions.

Finally we will touch the subject dynamic memory allocation, which actually does not closely relate to pointers, but still
often is used in connection with pointers.

8.2 What Is a Pointer

A pointer is a variable of a special kind which only can contain a memory address of the primary memory. This memory
location in turn contains a value of some kind.

Download free eBooks at bookboon.com
Click on the ad to read more

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

Structured Programming with C++

175

8 Pointers

Le tus first study the situation for a common variable:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 171

Pointers
Introduction

A pointer is a special kind of variable which contains a memory
address to for instance a number instead of directly refer to the
number. That implies a detour to the value via the memory address.

This might sound unnecessarily complicated, but implies a number of
advantages like for instance more efficient program code, faster
execution and memory saving. Especially in object oriented
programming you get these advantages when copying objects or
sending objects to functions. Object oriented programming is however
beyond the scope of this course.

The pointer concept is unique for C++. It is for instance not present in
the programming languages Visual Basic or Java. As a consequence
C++ might be felt more complicated than other languages.

In this chapter we will aqcuire basic knowledge about pointers. We
will learn how to use pointers to different data types, how to declare
pointers and assign values. We will examine the anology between
pointers and arrays and how to use pointers as parameters to functions.

Finally we will touch the subject dynamic memory allocation, which
actually does not closely relate to pointers, but still often is used in
connection with pointers.

What Is a Pointer
A pointer is a variable of a special kind which only can contain a
memory address of the primary memory. This memory location in
turn contains a value of some kind.

Le tus first study the situation for a common variable:

34
iNumber

In the figure above we have the variable iNumber which contains the actual value of the variable, in our example 34.

Let us now focus on the corresponding pointer:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 172

In the figure above we have the variable iNumber which contains the
actual value of the variable, in our example 34.

Let us now focus on the corresponding pointer:

In the figure above we have a pointer named pNumber. It contains an
address in the primary memory. If we go to that address, there is a
number, 23 in our example.

Declaring a Pointer
Below we declare the pointer variable pNumber:
int* pNumber;

The asterisc (*) indicates that it is a pointer. int* means that it is a
pointer to an integer value. You must always specify the data type
pointed to by the pointer variable. Below we declare a pointer to a
double value:
double* pPrice;

Below we declare a pointer to a char value:
char* pChr;

You can as well place the space in front of the asterisc. The
declarations above could be written:
int *pNumber;
double *pPrice;
char *pChr;

You can use both variants.

Assigning Values to Pointers
An ordinary variable, say iNo, is assigned a value in the usual way:
int iNo = 23;

23

pNumber

Address to value

In the figure above we have a pointer named pNumber. It contains an address in the primary memory. If we go to that
address, there is a number, 23 in our example.

8.3 Declaring a Pointer

Below we declare the pointer variable pNumber:

int* pNumber;

The asterisc (*) indicates that it is a pointer. int* means that it is a pointer to an integer value. You must always specify
the data type pointed to by the pointer variable. Below we declare a pointer to a double value:

double* pPrice;

Below we declare a pointer to a char value:

char* pChr;

You can as well place the space in front of the asterisc. The declarations above could be written:

int *pNumber;

double *pPrice;

char *pChr;

You can use both variants.

8.4 Assigning Values to Pointers

An ordinary variable, say iNo, is assigned a value in the usual way:

int iNo = 23;

To get the address to the variable iNo, we use the & operator. The expression &iNo gives the address to the variable iNo.

In the declaration you can specify the memory location to be pointed at by a pointer variable:

Download free eBooks at bookboon.com

Structured Programming with C++

176

8 Pointers

int* pNumber = &iNo;

Here we create a pointer variable named pNumber and assign the address of the variable iNo to it. The variable iNo and
the pointer variable pNumber now points to the same memory location, which means the value 23.

Note that in a pointer declaration you can’t directly assign a fixed value:

int* pNumber = 23; //wrong

since currently there is no specific memory location pointed to by pNumber. However, when pNumber has got its memory
address, we can change the value in the location indicated by pNumber:

*pNumber = 25;

Here we must remember to use the asterisc together with the name of the pointer variable. The program then understands
that it is the value that is to be changed.

Compare this to this erroneous statement:

pNumber = 25; //wrong

This would mean that we updated the address pointed to by pNumber. The address 25 would be pointed to, which of
course is erroneous.

We have introduced two operators in connection with pointers:

* means ‘the content of ’
& means ‘the address to’

In the same way we can write:

//ordinary variable:

double dPrice = 34.75;

//pointer variable with the same address as

//dPrice:

double* pPrice = &dPrice;

//change the price:

*pPrice = 45.25;

// ordinary variable:

char cChr = 'x';

//pointer with the same address as cChr:

char* pChr = &cChr;

//change the character:

*pChr = 'y';

When printing a value pointed to by a pointer variable, you use:

cout << *pNumber; //prints 25

This means ‘print the content of pNumber’.

Download free eBooks at bookboon.com

Structured Programming with C++

177

8 Pointers

To print the address pointed to by a pointer variable you write:

cout << pNumber;

//prints the address, e.g. 0x0066FDF0

The printed address is in hexadecimal format. Normally we don’t have to bother about the exact address. The only thing
to remember is whether we mean ‘the address to’ or ‘the content of ’.

8.5 Addresses and char Pointers

We will now take a look at how pointers work in connection with string variables, i.e. arrays of char type. We declare a
string array named cName:

char cName[] = "John Smith";

We then declare a char pointer named pName which points to the same text as the content of cName.

char* pName = cName;

Why didn’t we use the & operator in front of cName like in the previous example? The explanation is that an array actually
is a pointer. When using the name of the array, cName, it is interpreted as a pointer to the first item of the array. So when
writing the statement:

pName = cName;

it means that we let the pointer pName get the same address as the pointer (array) cName.

Download free eBooks at bookboon.com
Click on the ad to read more

89,000 km
In the past four years we have drilled

That’s more than twice around the world.

careers.slb.com

What will you be?

1 Based on Fortune 500 ranking 2011. Copyright © 2015 Schlumberger. All rights reserved.

Who are we?
We are the world’s largest oilfield services company1.
Working globally—often in remote and challenging locations—
we invent, design, engineer, and apply technology to help our
customers find and produce oil and gas safely.

Who are we looking for?
Every year, we need thousands of graduates to begin
dynamic careers in the following domains:
n Engineering, Research and Operations
n Geoscience and Petrotechnical
n Commercial and Business

http://s.bookboon.com/Schlumberger1

Structured Programming with C++

178

8 Pointers

8.6 cout and char Pointers

The print function cout has some peculiarities you ought to know when printing strings. The statement:

cout << pName;

should actually print the address in hexadecimal format of pName. But cout performs a reinterpretation. It takes the
content in the memory location pointed to by pName, i.e. the character ‘J’, and prints character by character until the null
character is found. This means that the entire name ‘John Smith’ is printed. Compare the statement:

cout << cNamn;

which gives the same result, which we discussed in the Strings chapter.

The statement:

cout << *pName;

correctly prints the content of the memory location pointed to by pName, but it only takes that character. This means
that only ‘J’ is printed.

The statement:

cout << &pName;

prints the address of the memory location in which pName is stored.

The statement

cout << &cName;

prints the address of the memory location where the name ’John Smith’ is stored.

8.7 Price Program with Pointers

We will now create a program which reads quantity and unit price of a product from the user, and the name of the user.
The program will then calculate the total price of the product and print a personal price note on the screen. We will use
pointer variables.

The logical process is given by the following JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 175

cout << *pName;

correctly prints the content of the memory location pointed to by
pName, but it only takes that character. This means that only ‘J’ is
printed.

The statement:
cout << &pName;

prints the address of the memory location in which pName is stored.

The statement
cout << &cName;

prints the address of the memory location where the name ’John
Smith’ is stored.

Price Program with Pointers
We will now create a program which reads quantity and unit price of a
product from the user, and the name of the user. The program will
then calculate the total price of the product and print a personal price
note on the screen. We will use pointer variables.

The logical process is given by the following JSP graph:

Here is the code:

#include <iostream.h>
void main()
{
 //Declare variables and corresponding pointers
 //Set the pointers to point to the address of the
 //corresponding variable
 int iNo;
 int* pNo = &iNo;
 double dPrice, dTotal;
 double* pPrice = &dPrice;
 double* pTotal = &dTotal;
 char cName[20];

Price

Enter name,
qty and price

Calculate
total

Print price
note

Download free eBooks at bookboon.com

Structured Programming with C++

179

8 Pointers

Here is the code:

#include <iostream.h>

void main()

{

 //Declare variables and corresponding pointers

 //Set the pointers to point to the address of the

 //corresponding variable

 int iNo;

 int* pNo = &iNo;

 double dPrice, dTotal;

 double* pPrice = &dPrice;

 double* pTotal = &dTotal;

 char cName[20];

 char* pName = cName;

 //Read data and store in the pointer variables

 cout << "Enter your name: ";

 cin.getline(pName, 19);

 cout << "Enter quantity and unit price: ";

 cin >> *pNo >> *pPrice;

 //Calculate total

 *pTotal = *pNo * *pPrice;

 //Printout of personal price note

 cout << "Dear " << pName << ", your price is " <<

 *pTotal << " kr." << endl;

}

Let us say that we enter ‘John Smith’, quantity 5 and unit price 12. Then the printout will be:

Dear John Smith, your price is 60 kr.

8.8 Pointer Arithmetics

By pointer arithmetics we mean how to increment and decrement a pointer, i.e. how to make a pointer to an array move
stepwise from item to item.

Let’s say that we have an array of integers:

int iNos[] = {5, 12, 3, 24, 125, 8};

Download free eBooks at bookboon.com

Structured Programming with C++

180

8 Pointers

Here we have declared the array iNos to contain six items. Suppose an integer takes 4 bytes in the working memory. If
the first integer (5) is stored in memory address 2000, then the next integer (12) will be stored in memory address 2004,
the third in 2008 etc.

Now we declare an integer pointer to point to the first item of the array:

int* pNos = iNos;

pNos now has the value 2000 (the address of the first item in the array).

We can now perform the following pointer arithmetic:

pNos++;

which means that pNos is increased by 1. You might then be fooled to beleive that pNos now has the value 2001. But
that is not the case. Since we have declared pNos as a pointer to integer, the system knows that each integer requires
four bytes, and pNos is consequently increased by 4 making the new value of pNos be 2004. This implies that pNos now
points to the second item of the array.

If the array would have been declared as double and pNos declared as a pointer to double, the system knows that each
double number takes 16 bytes, and a stepwise increase would add 16 to pNos.

As a consequence the data type pointed to by a pointer is of ultimate importance when using pointer arithmetics.

Download free eBooks at bookboon.com
Click on the ad to read more

American online
LIGS University

 ▶ enroll by September 30th, 2014 and

 ▶ save up to 16% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

Structured Programming with C++

181

8 Pointers

The situation with integers is summarized by the following figure:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 177

If the array would have been declared as double and pNos declared as
a pointer to double, the system knows that each double number takes
16 bytes, and a stepwise increase would add 16 to pNos.

As a consequence the data type pointed to by a pointer is of ultimate
importance when using pointer arithmetics.

The situation with integers is summarized by the following figure:

To print the numbers you can use the statement:

cout << *pNos << *(pNos+1) << *(pNos+2) …

Note that, when printing the second, third item etc. we must enclose
pNos+1, pNos+2, etc. with a parenthesis, so the address is calculated
first before taking the asterisk (‘the content of’) into account,
otherwise the content of pNos, i.e. the first item of the array, would be
increased by 1, 2 etc.

We may as well use a loop for the printout:
for (int i=0; i<6; i++)
 cout << *pNos++ << endl;

Here we use the loop counter i, which goes from 0 to 5, i.e. as many
turns as there are items in the array. For each turn of the loop the
content of the memory address pNos is printed, and the pointer is
increased by 1, i.e. it moves to the next item of the array.

Tax Program
We will not create a full-featured tax calculation program, but only
calculate the tax deduction for a number of monthly salaries based on
fix tax percentages.

We store a number of monthly salaries in an array and corresponding
tax percentages in another. We multiply each salary by corresponding
tax percentage, which gives the tax deduction amount. Each salary and
tax percent are then printed in table format.

We will use pointer arithmetics to move from item to item in the
arrays.

5 12 3 24 125 8

2000 2004 2008 2012 2016 2020

pNos pNos+1 pNos+2

To print the numbers you can use the statement:

cout << *pNos << *(pNos+1) << *(pNos+2) …

Note that, when printing the second, third item etc. we must enclose pNos+1, pNos+2, etc. with a parenthesis, so the
address is calculated first before taking the asterisk (‘the content of ’) into account, otherwise the content of pNos, i.e. the
first item of the array, would be increased by 1, 2 etc.

We may as well use a loop for the printout:

for (int i=0; i<6; i++)

 cout << *pNos++ << endl;

Here we use the loop counter i, which goes from 0 to 5, i.e. as many turns as there are items in the array. For each turn
of the loop the content of the memory address pNos is printed, and the pointer is increased by 1, i.e. it moves to the next
item of the array.

8.9 Tax Program

We will not create a full-featured tax calculation program, but only calculate the tax deduction for a number of monthly
salaries based on fix tax percentages.

We store a number of monthly salaries in an array and corresponding tax percentages in another. We multiply each salary
by corresponding tax percentage, which gives the tax deduction amount. Each salary and tax percent are then printed
in table format.

We will use pointer arithmetics to move from item to item in the arrays.

The program logic is explained by the following JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 178

The program logic is explained by the following JSP graph:

First we initiate the arrays with salaries and tax percentages. When
printing the table we go through one item at a time of the arrays and
print salary and corresponding tax, which is calculated by multiplying
salary by tax percentage. Then we increase both pointers to proceed to
the next salary and tax percentage.

Here is the code

#include <iostream.h>
#include <iomanip.h>
void main()
{
 int iSal[] = {14000, 15000, 16000, 17000, 18000, 19000};
 int* pSal = iSal;
 double dTax[] = {0.32, 0.34, 0.35, 0.36, 0.365, 0.37};
 double* pTax = dTax;
 cout << setiosflags(ios::fixed) << setprecision(2);
 cout << " Salary Tax" << endl;
 for (int i=0; i<6; i++)
 {
 cout << setw(8) << *pSal << setw(10) << (*pSal *
 *pTax) << endl;
 pTax++;
 pSal++;
 }
}

The include files are iostream.h for input and output, and iomanip.h to
be able to format the printout into a nice table.

In main() we initiate the array iSal with a number of salaries and the
array dTax with a number of tax percentages. We also declare a
pointer pSal which is set to point to the first item of the array iSal, and
a pointer pTax for the dTax array.

Tax

Initiate salary
and tax %

Print table

Print
salary no. i

Calculate and
print tax no. i

Increase
pointers

* * *

Download free eBooks at bookboon.com

Structured Programming with C++

182

8 Pointers

First we initiate the arrays with salaries and tax percentages. When printing the table we go through one item at a time
of the arrays and print salary and corresponding tax, which is calculated by multiplying salary by tax percentage. Then
we increase both pointers to proceed to the next salary and tax percentage.

Here is the code

#include <iostream.h>

#include <iomanip.h>

void main()

{

 int iSal[] = {14000, 15000, 16000, 17000, 18000, 19000};

 int* pSal = iSal;

 double dTax[] = {0.32, 0.34, 0.35, 0.36, 0.365, 0.37};

 double* pTax = dTax;

 cout << setiosflags(ios::fixed) << setprecision(2);

 cout << " Salary Tax" << endl;

 for (int i=0; i<6; i++)

 {

 cout << setw(8) << *pSal << setw(10) << (*pSal *

 *pTax) << endl;

 pTax++;

 pSal++;

 }

}

The include files are iostream.h for input and output, and iomanip.h to be able to format the printout into a nice table.

In main() we initiate the array iSal with a number of salaries and the array dTax with a number of tax percentages. We
also declare a pointer pSal which is set to point to the first item of the array iSal, and a pointer pTax for the dTax array.

The first cout statement fixes the decimal point and states two decimals. The second cout statement prints the heading
of the table.

The for-loop goes from 0 to 5, i.e. as many turns as there are items in the arrays. The cout statement sets the width of the
printed numbers with the setw() function, prints the salary by means of the pointer, and multiplies the salary by the tax
percentage and prints the result. Note that we use asterixes in front of the pointers to get ‘the content of ’.

After the cout statement we increase the two pointers by 1, i.e. we move the pointers to the next item of the arrays. The
program automatically remembers that one of the pointers is an integer pointer and the other a double, and moves them
the corresponding number of bytes in the primary memory.

8.10 Functions and Pointers

Many times you use pointers as parameters to functions. That means that you send the memory address to the function
instead of sending all data. Especially in object oriented programming when you want to send an object to a function
which is several Mbytes big, it is a great advantage to only send a memory address instead. It saves both memory and time.

Download free eBooks at bookboon.com

Structured Programming with C++

183

8 Pointers

You may remember from the Functions chapter that it was possible to send reference parameters to a function, which
means that you send the address to the value instead of the value itself. It is very similar to sending pointers. An advantage
with pointers is however that it is possible to use pointer arithmetics, which gives more compact code.

You should however keep in mind that if you send a pointer to a function, and the function updates the value, the value
will be updated also after completion of the function. Unintentional update of a value can however be prevented by means
of the keyword const. More about this later.

We will create a function which searches for a particular character, for instance @, in a string to check if it is an email
address. The string is sent as pointer to the function find(). A for-loop in the function goes through the string, character
by character, and checks if it is an @. If @ is found, a suitable text is printed on the screen.

We begin with a JSP graph:

Download free eBooks at bookboon.com
Click on the ad to read more

 .

http://s.bookboon.com/AlcatelLucent

Structured Programming with C++

184

8 Pointers

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 180

Here is the code:

void find(char* str)
{
 for (int p=0; p<8; p++)
 {
 if (*str == '@')
 cout << "It is an email address";
 str++;
 }
}

The function takes a parameter str which is a pointer to a char
variable. That means that we don’t send the entire string but only the
address to the first character of the string. The for-loop goes from 0 to
7, which is a limitation, but we have done it as simple as possible to
illustrate the use of pointers.

The if statement checks if the content of the address str is the @
character. If so, the suitable text is printed. At the end of the loop the
pointer is increased by 1, i.e. it is set to point to the next character.

We will now write an entire program, where the user is prompted for a
text that is sent to the function. First a JSP graph:

find

Search char.

Correct char ? Incr. pointer * *

Yes, print msg o

Here is the code:

void find(char* str)

{

 for (int p=0; p<8; p++)

 {

 if (*str == '@')

 cout << "It is an email address";

 str++;

 }

}

The function takes a parameter str which is a pointer to a char variable. That means that we don’t send the entire string
but only the address to the first character of the string. The for-loop goes from 0 to 7, which is a limitation, but we have
done it as simple as possible to illustrate the use of pointers.

The if statement checks if the content of the address str is the @ character. If so, the suitable text is printed. At the end of
the loop the pointer is increased by 1, i.e. it is set to point to the next character.

We will now write an entire program, where the user is prompted for a text that is sent to the function. First a JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 181

Here is the code:

#include <iostream.h>
void find(char* str);
void main()
{
 char cString[9];
 char* pString=cString;
 cout << "Enter a text: ";
 cin.getline(cString, 8);
 find(pString);
}
void find(char* str)
{
 for (int p=0; p<8; p++)
 {
 if (*str == '@')
 cout << "It is an email address";
 str++;
 }
}

The program first declares a string array named cString. The pointer
pString is set to point to the first character of the string. When the user
has entered a text (maximum 8 characters), the function find() is run.

We will now illustrate the risk of having the value outside the function
be changed. We will modify the function find() so that it replaces @
by a blank:
void find(char* str)
{
 for (int p=0; p<18; p++)
 {
 if (*str == '@')
 *str = ' ';
 str++;
 }
}

find

find-prog

Enter a string

Download free eBooks at bookboon.com

Structured Programming with C++

185

8 Pointers

Here is the code:

#include <iostream.h>

void find(char* str);

void main()

{

 char cString[9];

 char* pString=cString;

 cout << "Enter a text: ";

 cin.getline(cString, 8);

 find(pString);

}

void find(char* str)

{

 for (int p=0; p<8; p++)

 {

 if (*str == '@')

 cout << "It is an email address";

 str++;

 }

}

The program first declares a string array named cString. The pointer pString is set to point to the first character of the
string. When the user has entered a text (maximum 8 characters), the function find() is run.

We will now illustrate the risk of having the value outside the function be changed. We will modify the function find()
so that it replaces @ by a blank:

void find(char* str)

{

 for (int p=0; p<18; p++)

 {

 if (*str == '@')

 *str = ' ';

 str++;

 }

}

Thus, the function chages the value of the string. If we would print the email address in main() after completion of the
function find() with the purpose of having the original email address printed, then we would get a wrong result. The
statement

cout << "The email address is " << pString << endl;

will give a printout with a blank instead of @.

Download free eBooks at bookboon.com

Structured Programming with C++

186

8 Pointers

One way of preventing modification of a value in the function is to use the keyword const in front of the parameter in
the function header:

void find(const char* str)

If we still would write a statement in the function that tries to modify the value, we will get a compilation error. Many
programmers use const in this way to clearly indicate that the value is not changed in the function.

8.11 Dynamic Memory

When declaring an array in Visual C++ we have until now been forced to specify the number of items of the array to
allocate the correct memory space. That is called static memory.

Many times we cannot in advance predict the number of items needed for the array, for instance when reading a number
of product id:s to an array from a file, where the number of products is unknown.

The solution to this problem is to use dynamic memory. The dynamic memory area is capable of assigning space during
the execution of the program and not at the compilation. Different amounts of memory might be needed at different
execution occasions. A disadvantage is however that the program cannot guarantee that the requested amount of memory
is available. Therefore, you must in the code insert a check that the requested memory could be allocated.

To allocate dynamic memory you use the keyword new. Look at the following statements:

int* pNo;

int iNumber;

Download free eBooks at bookboon.com
Click on the ad to read more

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

Structured Programming with C++

187

8 Pointers

cout << "How many products will be entered? ";

cin >> iNumber;

pNo = new int[iNumber];

Here we declare a pointer to int, pNo, and a common int variable iNumber. The user enters an integer which is stored in
iNumber. This value is used as the number of items of the array declared in the last statement.

This is however a dangerous way of coding since there might be a lack of memory, and the program will crash. Therefore,
we insert a check by means of the following:

if ((pNo = new int[iNumber]) == 0)

{

 cerr << "Not sufficient memory. The program

 will exit!";

 exit(1);

}

//program continues

Here we put the declaration of the array as a condition in an if statement. If there is not enough memory, the result of the
declaration will be equal to 0. Then the warning text is printed and the program is terminated with exit(1).

If there is enough memory the value of the condition is not 0, and the program continues with subsequent statements.

You can run the code above and enter different numbers to figure out how the code behaves in different situations. Don’t
forget to include the header file stdlib.h, which is needed for the exit(1) function.

After the if statement we can now continue with product entry to the array:

for (int i=0; i<iNumber; i++)

{

 cin >> *pNo ;

 pNo++;

}

The loop performs as many turns as the number of items of the array. For each turn a product id is read from the user,
which is stored in the memory address given by pNo. pNo is increased by 1, i.e. the pointer moves on to the next item
of the array.

If we want to print the products, we must reset the pointer to the original position, i.e. to the first item of the array, and
then perform a new loop which prints the products:

pNo = pNo - iNumber;

for (i=0; i<iNumber; i++)

{

 cout << *pNo << endl;

 pNo++;

}

When having used dynamic memory it is common by programmers to release the memory when it is not needed any
more, thus freeing memory for other tasks of the program. We release the memory for the array with the statements:

Download free eBooks at bookboon.com

Structured Programming with C++

188

8 Pointers

pNo=pNo-iNumber;

delete[] pNo;

First we reset the pointer to its original position and then we use the delete statement to release the dynamic memory.

We now give a JSP graph that shows the process:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 184

When having used dynamic memory it is common by programmers to
release the memory when it is not needed any more, thus freeing
memory for other tasks of the program. We release the memory for
the array with the statements:

pNo=pNo-iNumber;
delete[] pNo;

First we reset the pointer to its original position and then we use the
delete statement to release the dynamic memory.

We now give a JSP graph that shows the process:

Here is the entire program:

#include <iostream.h>
#include <stdlib.h>
void main()
{
 int* pNo;
 int iNumber;
 cout << "How many products will be entered? ";
 cin >> iNumber;
 if ((pNo = new int[iNumber]) == 0)
 {
 cerr << "Not sufficient memory. The program will exit!";
 exit(1);
 }
 for (int i=0; i<iNumber; i++)
 {
 cin >> *pNo ;
 pNo++;

Products

Enter
no. of
items

Incr.
pointer

*
No: exit o

Decl.
dyn.

 array

Memory
OK?

Read
products

Read
prod
no. i

Reset
pointer

Print
products

*

Reset
pointer

Release
memory

* * Incr.
pointer

Print
prod
no. i

* *

Here is the entire program:

#include <iostream.h>

#include <stdlib.h>

void main()

{

 int* pNo;

 int iNumber;

 cout << "How many products will be entered? ";

 cin >> iNumber;

 if ((pNo = new int[iNumber]) == 0)

 {

 cerr << "Not sufficient memory. The program will exit!";

 exit(1);

 }

 for (int i=0; i<iNumber; i++)

 {

 cin >> *pNo ;

 pNo++;

 }

 pNo = pNo - iNumber;

 for (i=0; i<iNumber; i++)

 {

Download free eBooks at bookboon.com

Structured Programming with C++

189

8 Pointers

 cout << *pNo << endl;

 pNo++;

 }

 pNo = pNo - iNumber;

 delete[] pNo;

}

We will now create still another program where we instead of product id:s enter a number of names of char type and store
the names in arrays in the dynamic memory. You should then remember that each name is itself an array of char type.
We will then create a new char array with the new keyword for each name. Each char array will be exactly of the length
required by the entered name, with the purpose of saving memory space. Here is the code:

#include <iostream.h>

#include <string.h>

void main()

{

 const int iNo = 5; // Number of strings to be stored

 char temp[30]; // Tempory storage of entered name

 char *cNames[iNo]; // Space for 5 string pointers with

 // arbitrary number of characters

 cout << "Enter the names of 5 course mates" << endl;

Download free eBooks at bookboon.com
Click on the ad to read more

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2015

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://s.bookboon.com/AXA

Structured Programming with C++

190

8 Pointers

 for (int i = 0; i < iNo; i++)

 {

 cout << "Mate no. " << i + 1 << " ";

 cin.getline(temp, 30); // Temporary storage in temp

 // Don't waiste memory! strlen() gives exactly the

 // number of characters required plus 1 for null:

 cNames[i] = new char[strlen(temp) + 1];

 // Copy the name to the pointer array:

 strcpy(cNames[i], temp);

 }

 // Print the names

 for (int j = 0; j < iNo; j++)

 //cNames is an array of pointers:

 cout << cNames[j] << endl;

 // Release memory for each separate string array:

 for (int k = 0; k < iNo; k++)

 delete [] cNames[k];

}

8.12 Summary

In this chapter we have learnt the basics of one of the areas that makes C++ unique compared to other programming
languages. Pointer management is complicated but offers opportunities to efficient coding at professional level.

We have learnt to declare and assign values to pointers of different data types. One of the great advantages with pointers
is pointer arithmetics, where you can step through the items of an array in an efficient way.

We have also learnt to send pointers as parameters to functions and we have learnt some about dynamic memory
allocation. C++ programmers must often pay attention to memory allocation at a detailed level not required by other
language programmers. This might seem to be unnecessarily complicated from the beginner’s point of view, but provides
rich opportunities to effective programming aiming at memory minimizing programs with high performance.

We will experience further advantages of pointers in the next chapter about structures.

8.13 Exercises

1. Write a little program which declares an integer variable and initiates it to the value 25. Then declare a
pointer to that value. Print the value by means of the pointer.

2. Write a program similar to the previous applying it to a string with your own name instead of an integer.
3. Start from the program in the section ’Price Program with Pointers’. Complete it with a facility to enter a

discount percentage to be deducted from the total price. Use a pointer for the discount.
4. Write a program which prompts the user for a driven number of miles and the fuel consumption for the

trip. The program should then calculate and print the fuel consumption per mile. Use pointers like in the
previous programs.

Download free eBooks at bookboon.com

Structured Programming with C++

191

8 Pointers

5. Complete the previous program to also allow entry of the car brand, which should be included in the
printout in a suitable way.

6. Write a program that reads 5 integers to an array. The integers should then be printed. Use pointer
arithmetics.

7. Complete the program to also calculate the sum of the integers. Use a pointer variable for the sum.
8. Start from the program in the section ‘Tax Program’ and modify it so that the user enters the salaries and

tax percentages.
9. Modify the previous program to instead read the information from a file instead of from the keyboard.
10. Write a program which reads product id:s and prices from a file and stores them in arrays, one array for the

product id:s and one for the prices. Use pointers. The program should then print a nice table of products
and prices.

11. Modify the program in the previous exercise so that the user can enter a product id and get the
corresponding price printed. Use a pointer also for the product id entered by the user.

12. Start from the last version of the program with the find() function in the section ‘Functions and Pointers’,
where the @ character is replaced by a blank. Modify the function so that it prints the updated string from
inside of the function. Use the main() program to test the function.

13. Change the previous program so that both the original and the updated email adress is printed.
14. Write a function which replaces lower case characters in a string to upper case. The string should be sent

to the function as a pointer. Test the function in a program which prompts the user for his name and then
sends the name to the function. The program should print the updated string.

15. Write a function which takes a pointer to an integer array and the number of items of the array as
parameters, finds the greatest item and returns it. In the main() program the user should enter 8 numbers to
be stored in the array. The function is called and the returned greatest item is printed.

16. Modify the previous exercise so that the user first enters the number of integers being entered. The array
should be stored in the dynamic memory.

17. Start from the last program of the section ’Dynamic Memory’ where you entered the names of 5 course
mates. Since telephon numbers can contain blanks and hyphen (e.g. 0522-23 23 23) they are of char type.
Use a second two-dimensional array with pointers to the dynamic memory exactly as for the names.

18. Expand the previous program with checks about enough memory available.

Download free eBooks at bookboon.com

Structured Programming with C++

192

9 Structures

9 Structures
9.1 Introduction

When working with data from files and databases it is often convenient to process big portions of data in one lump, for
instance an entire customer record in a customer file. A good tool for this is the structure concept. A structure is a set of
data that in some way has an intermediary relation.

In connection with structures we will be using pointers and pointer arithmetics that we learnt in the previous chapter.

Structures are a pre-state to classes within object oriented programming. Therefore, this chapter is a bridge to the next
step of your programmer education, object oriented programming.

In this chapter we will learn how to define structures, handle information stored in structures, work with arrays of structures
and files in connection with structures. We will also learn how to use pointers to structures, how to sent structures to a
function and store structures in the dynamic memory.

9.2 What Is a Structure

Think of a customer record in a customer file that contains name, address, telephone, email, discount profile, terms of
delivery, terms of payment and so forth. All this information is stored for each customer in the customer file.

When reading, processing and saving this information to a file or database it is convenient to be able to handle all data for
a customer in a uniform way. It is then gathered into a structure, which provides better organization of the program code.

A structure is like a template for all information per customer. A structure behaves in the code like a data type such as
int, double or char. You declare a variable of the structure type defined. In the structure variable you can then store all
information for a particular customer.

You can also create an array of structure items, where each item of the array is a structure with all information per
customer. The array will thus contain all information for all customers.

9.3 Defining a Structure

First we will learn to define a structure template, i.e. specify the shape of the structure, the structure members and the
data type of each member of the structure. Suppose we want to work with a product file with:

•	 Product name
•	 Product id
•	 Price
•	 Quantity in stock
•	 Supplier

This means that each product in the file will contain these five members.

Download free eBooks at bookboon.com

Structured Programming with C++

193

9 Structures

Here is the code for definition of the structure:

struct Prod

{

 char cName[20];

 int iId;

 double dPrice;

 int iNo;

 char cSupp[25];

};

First there is the keyword struct, and then the name of the structure or data type (Prod). Within curly brackets you then
enumerate the members of the structure, where each member is declared in the usual way of declaring variables. Each
member is ended with a semicolon. After the last right curly bracket there must also be a semicolon.

The structure above shows that the different members can be of different data types (char, int, double) and also arrays
like cName. You can also have other structures as members of the structure, if applicable.

The names of the structure and members are of course arbitrarily selected, but they should in some way correspond to
their usage.

9.4 Declaring and Initiating Structure Variables

To declare a structure variable, i.e. a variable of the data type Prod, you write:

Prod prodOne;

Here we declare a variable prodOne which is of the Prod type. You can also initiate it with values already in the declaration:

Prod prodOne = {"Olive Oil", 1001, 120.50, 250, "Frescati Oil S/A"};

Within curly brackets we enumerate values for the structure members in the correct sequence, separated by commas. The
data types of the values must correspond to the definition of the members.

9.5 Assigning Values to Structure Members

When updating, copying or in other ways processing the value of a structure member, you use the following way of coding:

prodOne.iNo = 251;

You write the name of the structure variable, followed by a period and the name of the member in question. Here the
quantity in stock will be set to 251 for the ‘Oliv Oil’ product. Or:

strcpy(prodOne.cSupp, cString);

This requires that cString is a string array whose content is copied to the cSupp member.

Download free eBooks at bookboon.com

Structured Programming with C++

194

9 Structures

9.6 A Structure Program

We will now create an entire program using structures. We will create a product structure according to the previous example
and two structure variables with product information. One of them should be initiated directly in the declaration and the
other is supposed to be supplied with information from the user. Finally the program should print a table of the products.

We start with a JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 191

The logic is simple. The most difficult task is to handle the structure in
the correct way. Here is the code:

#include <iostream.h>
struct Prod
{
 char cName[20];
 int iId;
 double dPrice;
 int iNo;
 char cSupp[25];
};
void main()
{
 // Declare and initiate a variable of type Prod
 Prod prodOne = {"Olive Oil", 1001, 120.50, 250,
 "Frescati Oil S/A"};
 // Declare a new Prod variable
 Prod prodTwo;
 // Prompt the user for product information
 cout << "Enter information for a product:" << endl;
 cout << "Start with the product name: ";
 cin.getline(prodTwo.cName, 20);
 cout << "The product id: ";
 cin >> prodTwo.iId;
 cout << "The price: ";
 cin >> prodTwo.dPrice;
 cout << "How many items are there in stock? ";
 cin >> prodTwo.iNo;
 cin.get(); // clear in-buffer from new line char
 cout << "Who supplies the product: ";
 cin.getline(prodTwo.cSupp, 25);
 cout <<"Prodname \tProduct id \tPrice \tQuantity
 \tSupplier" << endl; // tab with \t
 cout << prodOne.cName << '\t' << prodOne.iId
 << "\t\t" << prodOne.dPrice << '\t' <<
 prodOne.iNo << '\t' << prodOne.cSupp <<
 endl << endl;

Products

Declare
structure variables
and initiate one of

them

Enter to
the second

Print a
table

The logic is simple. The most difficult task is to handle the structure in the correct way. Here is the code:

#include <iostream.h>

struct Prod

{

 char cName[20];

Download free eBooks at bookboon.com
Click on the ad to read more

http://s.bookboon.com/BI

Structured Programming with C++

195

9 Structures

 int iId;

 double dPrice;

 int iNo;

 char cSupp[25];

};

void main()

{

 // Declare and initiate a variable of type Prod

 Prod prodOne = {"Olive Oil", 1001, 120.50, 250,

 "Frescati Oil S/A"};

 // Declare a new Prod variable

 Prod prodTwo;

 // Prompt the user for product information

 cout << "Enter information for a product:" << endl;

 cout << "Start with the product name: ";

 cin.getline(prodTwo.cName, 20);

 cout << "The product id: ";

 cin >> prodTwo.iId;

 cout << "The price: ";

 cin >> prodTwo.dPrice;

 cout << "How many items are there in stock? ";

 cin >> prodTwo.iNo;

 cin.get(); // clear in-buffer from new line char

 cout << "Who supplies the product: ";

 cin.getline(prodTwo.cSupp, 25);

 cout <<"Prodname \tProduct id \tPrice \tQuantity

 \tSupplier" << endl; // tab with \t

 cout << prodOne.cName << '\t' << prodOne.iId

 << "\t\t" << prodOne.dPrice << '\t' <<

 prodOne.iNo << '\t' << prodOne.cSupp <<

 endl << endl;

 cout << prodTwo.cName << '\t' << prodTwo.iId <<

 "\t\t" << prodTwo.dPrice << '\t' << prodTwo.iNo <<

 '\t' << prodTwo.cSupp << endl << endl;

}

The definition of the structure is before main(), which makes it valid for the entire program, also inside functions. You
can also define the structure inside main(), but then it is only valid in main() and not in other functions.

The first structure variable prodOne is initiated with values directly in the declaration. Then there are a number of heading
texts and entry of values to the structure members of the second structure variable. Note that we use a period between
the structure variable and member.

Download free eBooks at bookboon.com

Structured Programming with C++

196

9 Structures

The output is done by means of tabs \t. You might need to accommodate the length of the entered texts to make the
information be printed in the correct column. We could have done that more flexible by means of the text formatting
functions from chapter 1, but we used a rough method for simplicity’s sake.

9.7 Array with Structure Variables

A disadvantage with the previous program is that we needed a separate structure variable (prodOne, prodTwo) for each
product. A more convenient solution is to use an array with structure variables allowing the use of a loop to process the
structure variables in a uniform way.

Below we declare a structure array sProds of the type Prod with three items:

Prod sProds[3];

We have allocated memory space for three products, but we have not yet assigned values to the structure members. That
could be made directly at the declaration:

Prod sProds[3] = {

 {"Food Oil", 101, 12.50, 100, "Felix Ltd"},

 {"Baby Oil", 102, 23.75, 25, "Baby Prod"},

 {"Boiler Oil", 103, 6100, 123000, "Shell"},

};

Note that the values for each structure variable are surrounded by curly brackets, and that the values are enumerated in the
usual way within each pair of curly brackets. All three pair of brackets are surrounded by an extra pair of curly brackets
delimiting the initiation list of values. After the last bracket there must be a semicolon.

If you want to let the user enter values, this is preferably done in a loop:

for (int i=0; i<3; i++)

{

 cout << "Enter values for product no. "

 << i+1 << endl;

 cout << "Start with the product name: ";

 cin.getline(sProds[i].cName, 20);

 cout << "The product id: ";

 cin >> sProds[i].iId;

 cout << "The price: ";

 cin >> sProds[i].dPrice;

 cout << "How many in stock? ";

 cin >> sProds[i].iNo;

 cin.get(); //clear in-buffer newline char

 cout << "Who supplies the product: ";

 cin.getline(sProds[i].cSupp, 25);

}

Download free eBooks at bookboon.com

Structured Programming with C++

197

9 Structures

9.8 Pointer to Structure

You can declare pointers to structures in the same way as declaring pointers to other data types:

Prod *pProd;

To instead make the pointer point to the structure variable prodOne we write:

Prod* pProd = &prodOne;

This means that pProd equals the address to prodOne.

The advantage is to be able to use pointer arithmetics to step through the different structure variables:

pProd++;

This statement moves to the next structure variable.

With a pointer to a structure you are not allowed to use the period (.) as delimiter between the variable and member.
You must use the -> characters:

pProd->iNo = 25;

For instance, to print the information for the structure pointed to by pProd, we can use the following statement:

cout << pProd->cName << endl <<

 pProd->iId << endl <<

 pProd->dPrice << endl <<

 pProd->iNo << endl <<

 pProd->cSupp;

Download free eBooks at bookboon.com

Structured Programming with C++

198

9 Structures

Suppose we have declared and initiated an array sProds with space for three structure variables and with values like in
the previous section:

Prod sProds[3] = {

 {"Food Oil", 101, 12.50, 100, "Felix Ltd"},

 {"Baby Oil", 102, 23.75, 25, "Baby Prod"},

 {"Boiler Oil", 103, 6100, 123000, "Shell"},

};

Then we can declare a pointer of Prod type which points to the first item of the array:

Prod* pProd = &sProds[0];

Then we can use a loop to print for example the product id:s for the three products:

for (int i=0; i<3; i++)

{

 cout << pProd->iId << endl;

 pProd++;

}

Note that we have used pointer arithmetics to step from product to product.

9.9 Structures in the Dynamic Memory

When we at the compilation cannot predict the number of products to be stored in the array, it is convenient like for
other arrays (see the ‘Pointer’ chapter) put the structure array in the dynamic memory area. As usual, we accomplish this
with the new keyword.

In the following code we prompt the user for the number of products to be entered, and then declare a pointer to an
array in the dynamic memory space:

int iQty;

cout << "How many products should be

 entered? ";

cin >> iQty;

Prod *pProd = new Prod[iQty];

In the declaration of the array we must specify the number of structures to allocate memory for. This is done by means
of the variable iQty.

Then, with a loop, we can let the user enter information to the requested number of products:

for (int i=0; i<iQty; i++)

{

 cin >> pProd->iId;

 // … and the remaining structure members

Download free eBooks at bookboon.com

Structured Programming with C++

199

9 Structures

 pProd++;

}

The loop runs the number of turns as stated by the variable iQty. For each turn of the loop we increase the pointer by 1,
thus making it point to the next structure variable of the array.

To print the product information we create a new loop. But first we must reset the pointer to the position of the first
item of the array:

pProd = pProd - iQty;

for (i=0; i<iQty; i++)

{

 cout << pProd->iId << endl;

 // … and the remaining structure members

 pProd++;

}

Also here, we use pointer arithmetics to proceed from item to item of the array.

Finally we have to free the dynamic memory area when it will not be used any more to not block other parts of the program:

pProd = pProd - iQty;

delete[] pProd;

Innan vi använder delete, ställer vi tillbaka pekaren till sin ursprungsplats så att rätt minnesområde frigörs.

9.10 Structure As Function Parameter

9.10.1 Reference Parameter

We will now show some examples of how to send structures as parameters to functions. Suppose we want to create a
function which prints the content of the structure sent to the function. We give the function the name printOnScreen().

The first example of printOnScreen() takes a parameter that is a reference parameter (see the ’Functions’ chapter) of a
structure:

void printOnScreen(Prod & rProd)

{

 cout << rProd.cName << '\t' <<

 rProd.iId << "\t\t\t" <<

 rProd.dPrice << '\t' <<

 rProd.iNo << '\t' <<

 rProd.cSupp << endl << endl;

}

The function does not return any value (void) and takes a parameter of Prod type, which is a reference parameter (&
character). It is no pointer, so we use a period as delimiter between the structure variable and member. We have used \t
to tab.

Download free eBooks at bookboon.com

Structured Programming with C++

200

9 Structures

We will create a simple program to test the function. Here is the JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 196

void printOnScreen(Prod & rProd)
{
 cout << rProd.cName << '\t' <<
 rProd.iId << "\t\t\t" <<
 rProd.dPrice << '\t’ <<
 rProd.iNo << '\t' <<
 rProd.cSupp << endl << endl;
}

The function does not return any value (void) and takes a parameter of
Prod type, which is a reference parameter (& character). It is no
pointer, so we use a period as delimiter between the structure variable
and member. We have used \t to tab.

We will create a simple program to test the function. Here is the JSP
graph:

We initiate a structure variable, which is sent to the function, where
the members are printed.

Here is the code:

#include <iostream.h>
struct Prod
{
 char cName[20];
 int iId;
 double dPrice;
 int iNo;
 char cSupp[25];
};
void printOnScreen(Prod & rProd)
{
 cout << rProd.cName << '\t' <<
 rProd.iId << "\t\t\t" <<

Product 1

Initiate
structure variable

printOnScreen

Print
members

We initiate a structure variable, which is sent to the function, where the members are printed.

Here is the code:

#include <iostream.h>

struct Prod

{

 char cName[20];

 int iId;

 double dPrice;

Download free eBooks at bookboon.com
Click on the ad to read more

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

Structured Programming with C++

201

9 Structures

 int iNo;

 char cSupp[25];

};

void printOnScreen(Prod & rProd)

{

 cout << rProd.cName << '\t' <<

 rProd.iId << "\t\t\t" <<

 rProd.dPrice << '\t' <<

 rProd.iNo << '\t' <<

 rProd.cSupp << endl << endl;

}

void main()

{

 Prod prodOne = {"Olive Oil", 1001, 120.50, 250, "Frescati

 Oil S/A"};

 printOnScreen(prodOne);

}

First we define the structure Prod. Then there is the function printOnScreen(). In main() we declare a structure variable
prodOne of the Prod type and initiate it with values. The the function printOnScreen() is called, to which we send
prodOne as actual parameter.

9.10.2 Array Parameter

Next variant of the function printOnScreen() takes a parameter which is a structure array and a parameter to the number
of items in the array.

Remember that, when sending an array as a parameter to a function, it is always made on reference basis. Therefore, you
should not explicitly specify that it is a reference parameter by using the & character.

Here is the JSP graph for the function:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 197

 rProd.dPrice << '\t’ <<
 rProd.iNo << '\t' <<
 rProd.cSupp << endl << endl;
}
void main()
{
 Prod prodOne = {"Olive Oil", 1001, 120.50, 250, "Frescati
 Oil S/A"};
 printOnScreen(prodOne);
}

First we define the structure Prod. Then there is the function
printOnScreen(). In main() we declare a structure variable prodOne of
the Prod type and initiate it with values. The the function
printOnScreen() is called, to which we send prodOne as actual
parameter.

Array Parameter
Next variant of the function printOnScreen() takes a parameter which
is a structure array and a parameter to the number of items in the
array.

Remember that, when sending an array as a parameter to a function, it
is always made on reference basis. Therefore, you should not
explicitly specify that it is a reference parameter by using the &
character.

Here is the JSP graph for the function:

Here is the code:

Print structure
variables

printOnScreen

Print members
of structure

no. n

*

Download free eBooks at bookboon.com

Structured Programming with C++

202

9 Structures

Here is the code:

void printOnScreen(const Prod p[],

 const int n)

{

 for (int i = 0; i < n; i++)

 cout << p[i].cName << '\t' <<

 p[i].iId << '\t' <<

 p[i].dPrice << '\t' <<

 p[i].iNo << '\t' <<

 p[i].cSupp << endl << endl;

}

The first parameter is of Prod type and has the name p with a subsequent square bracket to indicate array. The second
parameter is called n and corresponds to the number of items of the array. Both have been given the const keyword to
ensure that the information is not updated in the function.

The loop has the counter i and performs as many turns as there are items in the array. The variable i is used as index in
the array to indicate specific items.

We create a simple program to test the function. The JSP graph is:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 198

void printOnScreen(const Prod p[],
 const int n)
{
 for (int i = 0; i < n; i++)
 cout << p[i].cName << '\t' <<
 p[i].iId << '\t' <<
 p[i].dPrice << '\t' <<
 p[i].iNo << '\t' <<
 p[i].cSupp << endl << endl;
}

The first parameter is of Prod type and has the name p with a
subsequent square bracket to indicate array. The second parameter is
called n and corresponds to the number of items of the array. Both
have been given the const keyword to ensure that the information is
not updated in the function.

The loop has the counter i and performs as many turns as there are
items in the array. The variable i is used as index in the array to
indicate specific items.

We create a simple program to test the function. The JSP graph is:

Here is the entire code:

#include <iostream.h>
struct Prod
{
 char cName[20];
 int iId;
 double dPrice;
 int iNo;
 char cSupp[25];
};
void printOnScreen(const Prod p[],
 const int n)
{
 for (int i = 0; i < n; i++)
 cout << p[i].cName << '\t' <<

Product 2

Initiate structure
variables

printOnScreen

Here is the entire code:

#include <iostream.h>

struct Prod

{

 char cName[20];

 int iId;

 double dPrice;

 int iNo;

 char cSupp[25];

};

void printOnScreen(const Prod p[],

 const int n)

{

Download free eBooks at bookboon.com

Structured Programming with C++

203

9 Structures

 for (int i = 0; i < n; i++)

 cout << p[i].cName << '\t' <<

 p[i].iId << '\t' <<

 p[i].dPrice << '\t' <<

 p[i].iNo << '\t' <<

 p[i].cSupp << endl << endl;

}

void main()

{

 Prod sProds[3] = {

 {"Food Oil", 101, 12.50, 100, "Felix Ltd"},

 {"Baby Oil", 102, 23.75, 25, "Baby Prod"},

 {"Boiler Oil", 103, 6100, 123000, "Shell"},

 };
 printOnScreen(sProds, 3);
}

In main() we declare an array of Prod type with three items, which are initiated with values. The function printOnScreen()
is called, to which we send the structure array and the number 3 as actual parameters.

Download free eBooks at bookboon.com
Click on the ad to read more

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

Structured Programming with C++

204

9 Structures

9.10.3 Pointer Parameter

The last example of the function printOnScreen() takes a pointer to the Prod structure and the number of products as
parameters.

Here is the JSP graph and the code:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 199

 p[i].iId << '\t' <<
 p[i].dPrice << '\t' <<
 p[i].iNo << '\t' <<
 p[i].cSupp << endl << endl;
}
void main()
{
 Prod sProds[3] = {
 {”Food Oil”, 101, 12.50, 100, ”Felix Ltd”},
 {”Baby Oil”, 102, 23.75, 25, ”Baby Prod”},
 {”Boiler Oil”, 103, 6100, 123000, ”Shell”},
 };

 printOnScreen(sProds, 3);
}

In main() we declare an array of Prod type with three items, which are
initiated with values. The function printOnScreen() is called, to which
we send the structure array and the number 3 as actual parameters.

Pointer Parameter
The last example of the function printOnScreen() takes a pointer to the
Prod structure and the number of products as parameters.

Here is the JSP graph and the code:

Print structure
variables

printOnScreen

Print members
of structure

no. n

*

Here is the code of the function:

void printOnScreen(Prod *p , const int n)

{

 for (int j=0; j<n; j++)

 {

 cout << p->cName << '\t' <<

 p->iId << '\t' <<

 p->dPrice << '\t' <<

 p->iNo << '\t' <<

 p->cSupp << endl << endl;

 p++;

 }

}

The pointer parameter has the name p and the number of products n. The loop performs as many turns as given by the
number of products. In the loop we print the members of the structure. Note that, since p is a pointer, we use -> between
pointer and member. At the end of the loop we use pointer arithmetics and increase p by 1, i.e. moves p to the next structure.

Download free eBooks at bookboon.com

Structured Programming with C++

205

9 Structures

We create a simple program to test the function. Here is the JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 200

Here is the code of the function:

void printOnScreen(Prod *p , const int n)
{
 for (int j=0; j<n; j++)
 {
 cout << p->cName << '\t' <<
 p->iId << '\t' <<
 p->dPrice << '\t' <<
 p->iNo << '\t' <<
 p->cSupp << endl << endl;
 p++;
 }
}

The pointer parameter has the name p and the number of products n.
The loop performs as many turns as given by the number of products.
In the loop we print the members of the structure. Note that, since p is
a pointer, we use -> between pointer and member. At the end of the
loop we use pointer arithmetics and increase p by 1, i.e. moves p to
the next structure.

We create a simple program to test the function. Here is the JSP
graph:

Product 3

Initiate structure
variables

printOnScreen

Here is the entire code:

#include <iostream.h>

struct Prod

{

 char cName[20];

 int iId;

 double dPrice;

 int iNo;

 char cSupp[25];

};

void printOnScreen(Prod *p , const int n)

{

 for (int j=0; j<n; j++)

 {

 cout << p->cName << '\t' <<

 p->iId << '\t' <<

 p->dPrice << '\t' <<

 p->iNo << '\t' <<

 p->cSupp << endl << endl;

 p++;

 }

}

void main()

{

 Prod sProds[3] = {

 {"Food Oil", 101, 12.50, 100, "Felix Ltd"},

 {"Baby Oil", 102, 23.75, 25, "Baby Prod"},

 {"Boiler Oil", 103, 6100, 123000, "Shell"},

 };
 Prod *pProd = &sProds[0];
 printOnScreen(pProd, 3);
}

Download free eBooks at bookboon.com

Structured Programming with C++

206

9 Structures

In main() we declare an array of Prod type with three items and initiate it with values. Then we declare a Prod pointer
to point to the first item of the array (the & character means ‘the address to’). The pointer and the number 3 is sent as
parameters to the function.

9.11 Summary

In this chapter we have learnt what a structure is, namely a tool to handle items of different information that in some way
belong together, for instance all data for a customer, all data for a product etc. We have learnt to define structures and
declare structure variables and fill the structure with values.

We have also seen how to use arrays with structures and pointers to structures. When unable to predict the number of
items to be contained by the array, we have stored it in the dynamic memory area with the new keyword.

Finally you have learnt how to send structures as parameters to functions, either as reference parameters, array parameters
or pointer parameters.

You will now try your new knowledge in a number of exercises.

9.12 Exercises

1. Define a structure with customer information: name, address, customer category (one letter), discount
percent, total invoice amount year-to-date. Then write a program that declares a structure variable and
initiates it with some values according to your preference. Then print the information on the screen.

2. Change the previous program so that the user can enter the customer information.
3. Change the previous program to declare a structure array with 3 customers and initiates the structure

members directly at the declaration. All three customers should then be printed.
4. Change the previous program so that the user can enter an order total to be added to the member ’total

invoice amount year-to-date’. Then print all information.
5. Change the previous program to let the user enter information for the three customers.
6. Write a program that uses the structure definition for customers according to the previous exercises and

declares a pointer to a customer. It should then be possible to enter information for the customer. The
program should finally print the customer information by using the pointer.

7. Change the previous program to let the pointer point to an array with three customers. Entry and printing
as before.

8. Change the previous program to let the user first specify the number of customers to be entered. The array
should reside in the dynamic memory area.

9. Write a function that stores a Prod structure in a file. Use the Prod definition given previously in the
chapter. Each time the function is called a new structure is written to the file without destroying previous
information. Use reference parameters. Also write a main() program to test the function. Examine the file
content afterwards by means of the Notepad program.

10. Change the function in the previous example to print an array of structures to the file. The array and
number of items in the array should be sent as parameters.

11. Change the function in the previous example to take a pointer to the structure array and the number of
products as parameters.

12. Complete the previous program with a function that reads from the file and presents the information on the
screen.

Download free eBooks at bookboon.com

Structured Programming with C++

207

10 Answers

10 Answers
10.1 Variables

Exc. 1

#include <iostream>

using namespace std;

void main()

{

 int iNo1, iNo2;

 cout << "Specify 2 numbers: ";

 cin >> iNo1 >> iNo2;

 cout << "You entered: " << iNo1 << " and " << iNo2 << endl;

}

Exc. 2

#include <iostream>

using namespace std;

void main()

{

 int iNo1, iNo2;

Download free eBooks at bookboon.com
Click on the ad to read more

http://s.bookboon.com/volvo

Structured Programming with C++

208

10 Answers

 cout << "Specify 2 numbers: ";

 cin >> iNo1 >> iNo2;

 cout << "Total = " << iNo1 + iNo2 << endl;

}

Exc. 3

#include <iostream>

using namespace std;

void main()

{

 int iNo1, iNo2;

 cout << "Specify 2 numbers: ";

 cin >> iNo1 >> iNo2;

 cout << "Total = " << iNo1 + iNo2 << endl;

 cout << "Difference = " << iNo1 - iNo2 << endl;

 cout << "Product = " << iNo1 * iNo2 << endl;

 cout << "Quotient = " << (double)iNo11/iNo2 << endl;

}

Exc. 4

#include <iostream>

#include <iomanip>

using namespace std;

void main()

{

 double iNo1, iNo2, iNo3;

 cout << "Enter 3 decimal numbers: ";

 cin >> iNo1 >> iNo2 >> iNo3;

 cout << "Below are the entered numbers: " << endl;

 cout << setiosflags(ios::fixed) << setprecision(2);

 cout << setw(10) << iNo1 << endl;

 cout << setw(10) << iNo2 << endl;

 cout << setw(10) << iNo3 << endl;

}

Exc. 5

#include <iostream>

#include <iomanip>

using namespace std;

void main()

{

 //Declarations

Download free eBooks at bookboon.com

Structured Programming with C++

209

10 Answers

 int iNo;

 double dUnitPr, dPriceExTax, dCustPrice, dTax, dTaxPerc,

 dDisc;

 //Entry of quantity and unit price

 cout<< "Specify quantity and unit price: ";

 cin >> iNo >> dUnitPr;

 //Entry of tax

 cout << "Specify tax percent: ";

 cin >> dTaxPerc;

 //Calculations. First the price without tax

 dPriceExTax = dUnitPr * iNo;

 //Discount:

 dDisc = dPriceExTax * 0.1;

 dPriceExTax -= dDisc;

 //then the tax amount

 dTax = dPriceExTax * dTaxPerc / 100;

 //and finally the customer price

 dCustPrice = dPriceExTax + dTax;

 //Output.

 cout << endl << "INVOICE" << endl << "=======" << endl;

Download free eBooks at bookboon.com
Click on the ad to read more

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

Structured Programming with C++

210

10 Answers

 cout << "Quantity:" << setw(11) << iNo << endl;

 cout << setprecision(2) << setiosflags(ios::fixed);

 cout << "Price per unit:" << setw(8) << dUnitPr << endl;

 cout << "Excl. tax: " << setw(12) << dPriceExTax << endl;

 cout << "Discount: " << setw(12) << dDisc << endl;

 cout << "Total price:" << setw(11) << dCustPrice << endl;

 cout << "Tax:" << setw(19) << dTax << endl;

}

Exc. 6

#include <iostream>

#include <iomanip>

using namespace std;

void main()

{

 //Declarations

 double dNoOfLit, dLitPrice, dTotal;

 //Entry of quantity and unit price

 cout<< "Enter no. of litres and price per litre: ";

 cin >> dNoOfLit >> dLitPrice;

 //Calculations. First the price excl tax

 dTotal = dNoOfLit * dLitPrice;

 //Printout

 cout << endl << " RECEIPT" << endl;

 cout << setprecision(2) << setiosflags(ios::fixed);

 cout << "Volume: " << setw(9) << dNoOfLit << " l" <<

 endl;

 cout << "Lit.price: " << setw(9) << dLitPrice << " kr/l"

 <<endl;

 cout << "To be paid:" << setw(9) << dTotal << " kr" <<

 endl;

}

Exc. 7

#include <iostream>

using namespace std;

void main()

{

 double dPrev, dCur, dPricekwh, dTotal;

Download free eBooks at bookboon.com

Structured Programming with C++

211

10 Answers

 cout << "Enter current meter value: ";

 cin >> dCur;

 cout << "Enter previous meter value: ";

 cin >> dPrev;

 cout << "Enter price per kWh: ";

 cin >> dPricekwh;

 dTotal = (dCur-dPrev)*dPricekwh;

 cout << "Electricity charge: " << dTotal << endl;

}

Exc. 8

#include <iostream>

using namespace std;

void main()

{

 int t1, t2, t3, t4, t5;

 cout << "Specify 5 numbers: ";

 cin >> t1 >> t2 >> t3 >> t4 >> t5;

 cout << "Sum = " << t1 + t2 + t3 + t4 + t5 << endl;

 cout << "Average = " << (double)(t1 + t2 + t3 + t4 +

 t5)/5 << endl;

 cout << "Sum of squares ="<<t1*t1+t2*t2+t3*t3

 +t4*t4+t5*t5<<endl;

 cout << "Sum of cubes = " << t1*t1*t1 + t2*t2*t2 +

 t3*t3*t3 + t4*t4*t4 + t5*t5*t5 << endl;

}

Exc. 9

#include <iostream>

using namespace std;

void main()

{

 int iNo;

 cout << "Enter a number: ";

 cin >> iNo;

 cout << iNo/3 << " and remainder " << iNo%3 << endl;

}

Exc. 10

#include <iostream>

using namespace std;

void main()

Download free eBooks at bookboon.com

Structured Programming with C++

212

10 Answers

{

 double dTempC, dTempF;

 cout << "Enter temperature in Celsius: ";

 cin >> dTempC;

 dTempF = 1.8 * dTempC + 32;

 cout << "Corresponding temperature in Fahrenheit is " <<

 dTempF << endl;

}

Exc. 11

#include <iostream>

using namespace std;

void main()

{

 //Declarations

 int iNoOfMin, iMinLeft, iNoOfHours;

 //Entry of minutes to be converted

 cout << "Enter number of minutes: ";

 cin >> iNoOfMin;

 //Calculate whole hours:

Download free eBooks at bookboon.com
Click on the ad to read more

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

Structured Programming with C++

213

10 Answers

 iNoOfHours = iNoOfMin / 60;

 //and number of minutes left:

 iMinLeft = iNoOfMin % 60;

 //Printout

 cout << "No. of hours = " << iNoOfHours << endl;

 cout << "No. of minutes = " << iMinLeft << endl;

}

Exc. 12

#include <iostream>

using namespace std;

void main()

{

 //Declarations

 int iNoOfDays, iDaysLeft, iNoOfMon, iMonLeft, iNoOfYears;

 //Entry of number of days to be converted

 cout << "Enter number of days: ";

 cin >> iNoOfDays;

 //Calculate whole months:

 iNoOfMon = iNoOfDays / 30;

 //and number of days left:

 iDaysLeft = iNoOfDays % 30;

 //Similarly with years:

 iNoOfYears = iNoOfMon / 12;

 iMonLeft = iNoOfMon % 12;

 //Printout

 cout << "No. of years = " << iNoOfYears << endl;

 cout << "No. of months = " << iMonLeft << endl;

 cout << "No. of days = " << iDaysLeft << endl;

}

Exc. 13

#include <iostream>

using namespace std;

void main()

{

 double s, v, t; //distance, velocity, time

 cout << "Enter distance in km and velocity in km/h: ";

Download free eBooks at bookboon.com

Structured Programming with C++

214

10 Answers

 cin >> s >> v;

 t = s/v;

 cout << "The trip takes " << t << " hours" << endl;

}

Exc. 14

#include <iostream>

using namespace std;

void main()

{

 double s, v, t; // distance, velocity, time

 cout << "Enter distance in km and time in hours: ";

 cin >> s >> t;

 v = s/t;

 cout << "You must drive with " << v << " km/h" << endl;

}

Exc. 15

#include <iostream>

using namespace std;

void main()

{

 double s, v, t; // distance, velocity, time

 cout << "Enter average speed in km/h and time in hours: ";

 cin >> v >> t;

 s = t*v;

 cout << "The distance is " << s << " km" << endl;

}

Exc. 16

#include <iostream>

using namespace std;

void main()

{

 int iOre,iOreLeft,iOre50,iOre50Left,iKr,iKrLeft,iKr5,

 iKr5Left,iKr10,iKr10Left,iKr20,iKr50,iKr50Left,iKr100;

 cout << "Enter number of Swedish ore: ";

 cin >> iOre;

 iOre50 = iOre/50;

 iOreLeft = iOre%50;

 iKr = iOre50/2;

Download free eBooks at bookboon.com

Structured Programming with C++

215

10 Answers

 iOre50Left = iOre50%2;

 iKr5 = iKr/5;

 iKrLeft = iKr%5;

 iKr10 = iKr5/2;

 iKr5Left = iKr5%2;

 //Take 50kr values before 20, since 20 is not possible

 //to evenly divide in 50

 iKr50 = iKr10/5;

 iKr10Left = iKr10%5;

 iKr20 = iKr10Left / 2;

 iKr10Left -= (iKr20 * 2);

 iKr100 = iKr50/2;

 iKr50Left = iKr50%2;

 cout << "No. of 100 kr notes = " << iKr100 << endl;

 cout << "No. of 50 kr notes = " << iKr50Left << endl;

 cout << "No. of 20 kr notes = " << iKr20 << endl;

 cout << "No. of 10 kr coins = " << iKr10Left << endl;

 cout << "No. of 5 kr coins = " << iKr5Left << endl;

 cout << "No. of 1 kr coins = " << iKrLeft << endl;

 cout << "No. of 50 ore coins = " << iOre50Left << endl;

 cout << "No. of ore = " << iOreLeft << endl;

}

Download free eBooks at bookboon.com

Structured Programming with C++

216

10 Answers

Exc. 17

#include <iostream>

using namespace std;

void main()

{

 double dLen, dWidth, dHeight, dSpace, dFenceLen,

 dNoOfSticks, dTotMeters;

 cout << "Enter length and width of the field: ";

 cin >> dLen >> dWidth;

 cout << "Enter face height and space between boards

 in m: ";

 cin >> dHeight >> dSpace;

 dFenceLen = dLen * 2 + dWidth * 2;

 //Each board takes its width 0.10 + one space

 dNoOfSticks = dFenceLen / (0.10 + dSpace);

 dTotMeters = dNoOfSticks * dHeight;

 cout << "Total board length = " << dTotMeters << endl;

}

Exc. 18

 //Before the last cout statement:

 dTotMeters /= 0.9;

Exc. 19

 //In the beginning of the program:

 double dMeterPrice;

 cout << "Enter price per meter: ";

 cin >> dMeterPrice;

 //After the last cout statement:

 cout << "Price = " << dTotMeters * dMeterPrice <<

 " kr"<<endl;

Exc. 20

#include <iostream>

#include <iomanip> //for formatting of printouts

#include <stdlib.h> //for random numbers

#include <time.h> //for system clock

using namespace std;

void main()

{

Download free eBooks at bookboon.com

Structured Programming with C++

217

10 Answers

 //Declarations

 int iRoll1, iRoll2, iRoll3, iRoll4, iRoll5;

 double dAvg;

 const int iNo = 5;

 //Initiate random number generator

 srand(time(0));

 //Roll 5 times

 iRoll1 = rand()%6+1;

 iRoll2 = rand()%6+1;

 iRoll3 = rand()%6+1;

 iRoll4 = rand()%6+1;

 iRoll5 = rand()%6+1;

 //Calculate average

 dAvg = (double)(iRoll1+ iRoll2+ iRoll3+ iRoll4+ iRoll5) /

 iNo;

 //Printout

 cout << "No. of rolls: " << iNo << endl;

 cout << setprecision(1) << setiosflags(ios::fixed);

 cout << "Average score: " << dAvg << endl;

 cout << "Roll scores: " << iRoll1 << iRoll2 << iRoll3 <<

 iRoll4 << iRoll5;

}

Exc. 21

#include <iostream>

#include <stdlib.h> //for random numbers

#include <time.h> //for system clock

using namespace std;

void main()

{

 //Declarations

 int iRoll11, iRoll21, iRoll31, iRoll41, iRoll51;

 int iRoll12, iRoll22, iRoll32, iRoll42, iRoll52;

 //Initiate radom number generator

 srand(time(0));

 //Roll 5 times

 iRoll11 = rand()%6+1;

 iRoll21 = rand()%6+1;

 iRoll31 = rand()%6+1;

 iRoll41 = rand()%6+1;

 iRoll51 = rand()%6+1;

 iRoll12 = rand()%6+1;

Download free eBooks at bookboon.com

Structured Programming with C++

218

10 Answers

 iRoll22 = rand()%6+1;

 iRoll32 = rand()%6+1;

 iRoll42 = rand()%6+1;

 iRoll52 = rand()%6+1;

 //Printout

 cout << "The double rolls are: " <<endl<<

 iRoll11+iRoll12<<endl<<iRoll21+iRoll22<<endl<<

 iRoll31+iRoll32<<endl<<iRoll41+iRoll42<<endl<<

 iRoll51+iRoll52<<endl;

}

Exc. 22

#include <iostream>

#include <stdlib.h> //for random numbers

#include <time.h> //for system clock

using namespace std;

void main()

{

 int L1, L2, L3, L4, L5, L6, L7;

 srand(time(0));

 L1 = rand()%35+1;

 L2 = rand()%35+1;

Download free eBooks at bookboon.com
Click on the ad to read more

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

Structured Programming with C++

219

10 Answers

 L3 = rand()%35+1;

 L4 = rand()%35+1;

 L5 = rand()%35+1;

 L6 = rand()%35+1;

 L7 = rand()%35+1;

 cout << "The Lotto scores are: " <<endl

 <<L1<<endl<<L2<<endl<<L3<<endl<<L4<<endl

 <<L5<<endl<<L6<<endl<<L7<<endl;

}

Exc. 23

#include <iostream>

#include <stdlib.h> //for random numbers

#include <time.h> //for system clock

using namespace std;

void main()

{

 double t1, t2, t3, t4, t5;

 srand(time(0));

 t1 = (double)(rand()%56+180)/10;

 t2 = (double)(rand()%56+180)/10;

 t3 = (double)(rand()%56+180)/10;

 t4 = (double)(rand()%56+180)/10;

 t5 = (double)(rand()%56+180)/10;

 cout << "The temperatures are: "<<endl<<

 t1<<endl<<t2<<endl<<

 t3<<endl<<t4<<endl<<t5<<endl;

}

10.2 Selections and Loops

Exc. 1

See the outline of the program in the introductory section about if

statements.

Exc. 2

Declare an integer variable to be used for storage of the user entered number.

The if statement should then check if the number is less than 15. If so, one

of the texts should be printed, otherwise the other text.

Exc. 3

//Complete with the followin code

Download free eBooks at bookboon.com

Structured Programming with C++

220

10 Answers

if (iNo<15)

 cout << "You'll got to stick to the bike some more time ";

else if (tal<18)

 cout << "You are allowed to drive moped";

else

 cout << "You may drive the car";

Exc. 4

if (iNo1>iNo2 && iNo1>iNo3)

 cout << "The greatest is " << iNo1;

else if (iNo2>iNo1 && iNo2>iNo3)

 cout << "The greatest is " << iNo2;

else

 cout << "The greatest is " << iNo3;

Exc. 5

if (dGross > 500)

 dDisc = 10;

 else if (dGross > 250)

 dDisc = 5;

 else

 dDisc = 0;

Exc. 6

cout << "Enter product type (1=food, 2=misc): ";

cin >> iProdType;

if (iProdType == 1)

 dTaxAmount = dGross * 0.12;

 else if (iProdType == 2)

 dTaxAmount = dGross * 0.25;

 else

 cout << "Wrong product type";

Exc. 7

Use else if to locate different intervals. For 0-10000 the tax is 0.

For 10000-50000 the tax is 0.5*income-5000. For 50000-100000 the tax is

0.5*income. For >100000 the tax is income*0.5 +(income-100000)*0.2.

Exc. 8

See the code proposal in the 'Even or Odd' section.

Download free eBooks at bookboon.com

Structured Programming with C++

221

10 Answers

Exc. 9

Repeat the code so that you divide by 3 instead of 2 and print a suitable

text.

Exc. 10

Declare a variable for each type of value and read the quantity of each. The

sum of the crown types is:

iNoOf1kr + iNoOf5kr * 5 + iNoOf10kr * 10

For the 50-ore coins the number of whole crowns will be:

iNoOf50ore / 2

provided that iNoOf50Ore is declared as integer. If iNoOf50ore is odd, there

will be an extra 50-ore coin:

if (iNoOf50ore%2 == 1)

 cout << " and 50 ore";

Exc. 11

Use else if repeatedly to locate the various intervals and print corresponding

discount.

Exc. 12

if (iNo>20 && iTotal>1000)

 dDisc = 0.2;

else if (iNo>20 || iTotal>1000)

 dDisc = 0.1;

else

 dDisc = 0;

Exc. 13

case 9:

 cout << "You selected to exit";

 break;

Download free eBooks at bookboon.com

Structured Programming with C++

222

10 Answers

Exc. 14

case 4:

 cout << "The product is " << iNo1*iNo2;

 break;

Exc. 15

Combine the method for the previous menu program and the method to compare

three numbers in a previous exercise.

Exc. 16

See the first program in the section about loops.

Exc. 17

Also print iNo*iNo*iNo inside the loop.

Exc. 18

do

{

 cout << "Enter a number: ";

 cin >> iNo;

}while (iNo!=0);

Exc. 19

Initiate a variable to 0 to keep track of the sum. Inside the loop you

increase the sum variable by the entered value. After the loop you print the

sum variable.

Exc. 20

Use the program structure from the previous program. Inside the loop you write

an if statement which checks if iNo is less than 0 and print a suitable text.

Exc. 21

do

{

 cout << "Enter a number: ";

 cin >> iNo;

}while (iNo%3 != 0);

Download free eBooks at bookboon.com

Structured Programming with C++

223

10 Answers

Exc. 22

Use input of the score in the while condition:

while (cin>>iScore)

Use a sum variable to store the accumulated sum of all scores entered so far.

The accumulation is made inside the loop.

Also declare two variables, iGreatest and iLeast, which store the greatest and

the least score respectively. Inside the loop you will have to check if the

recently entered score is greater than iGreatest. If so, assign this new value

to iGreatest. Do the same with iLeast.

After the loop you subtract iGreatest and iLeast from the sum before printing

the sum.

Exc. 23

Insert a statement which reads the requested product from the keyboard.

Exc. 24

Start from the program in the previous exercise. Let the loops go to 100

instead. Inside the first loop you check if the division numerator/denominator

is 5 and if

numerator%denominator is 0. Is so, you print the numerator and the

denominator.

Exc. 25

Print iRoll inside the loop.

Exc. 26

while (iRoll!=5 && iRoll!=6)

Exc. 27

Print iRoll1 and iRoll2 from inside of the loop.

Exc. 28

while ((iRoll1 + iRoll2) != 12)

Exc. 29

Write an outer loop which goes from 1-13 and an inner which goes from 1-5.

In the inner loop you create the random scores for the first match in the 5

different pools. You will have to accommodate the printout by means of the

proper number of blanks to get the 5 pools separated from each other in 5

nice columns.

Download free eBooks at bookboon.com

Structured Programming with C++

224

10 Answers

Exc. 30

rand()%2 gives a random number between 0-1.

Inside the loop you check if the number is 0. If so, you print "heads",

otherwise "tails".

Exc. 31

You can solve this in different ways. One way is to first create a random

number in the interval 0-3, where the 4 different numbers correspond to colour

(hearts, spades etc.). Then you can create a new random number between 1-13,

where 2-10 is the corresponding value, 11 is jack, 12 is queen, 13 is king

and 1 is ace.

Exc. 32

Change the calculation of LP to:

LP = iRoot * iRoot - 8 * iRoot + 15;

Exc. 33

Change the calculation of LP to:

LP = iRoot * iRoot * iRoot - 9 * iRoot * iRoot + 23 * iRoot - 15;

The while condition should check that iNo<3.

Download free eBooks at bookboon.com
Click on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

Structured Programming with C++

225

10 Answers

10.3 Arrays

Exc. 1

int iNos[10];

for (int i=0; i<10; i++)

{

 cout << "Enter integer: ";

 cin >> iNos[i];

}

a)

cout << iNos[0] << " " << iNos[4] << " " << iNos[9];

b)

In the for-loop you increase a sum variable by the recently entered number:

iSum += iNos[i];

After the for-loop you print iSum.

c)

for (i=9; i>=0; i--)

{

 cout << iNos[i] << " ";

}

d)

Create a loop which checks:

if (iNos[i] < 0)

 iNos[i] = -iNos[i];

e)

Read a number from the user to a variable iUserNo. In a loop you check:

if (iNos[i] < iUserNo)

 cout << iNos[i] << " ";

f)

Read a number from the user between 0-9 to the variable k. Then print

iNos[k].

Download free eBooks at bookboon.com

Structured Programming with C++

226

10 Answers

g)

Read a number from the user. Then write a loop which checks:

if (iNos[i] == iUserNo)

 cout << i;

h)

Copy iNos[0] to a variable temp. Then write a loop which goes from 0-8 and

shifts location to the left:

iNos[i] = iNos[i+1];

Then you copy:

iNos[9] = temp;

Exc. 2

Complete the declaration of iDaysInM. Then let the user enter a month number

to be used as index in the array (decreased by 1).

Exc. 3

Create a loop from 0-30 which creates random temperatures for the array:

dblTempJuly[i] = rand()%11 + 15;

Copy item by item to the array dblTempAug in a loop.

Then print dblTempAug in a loop.

Exc. 4

Code example is given in the "Comparing Arrays" section.

Exc. 5

Assign another value to one of the items of dblTempAug, e.g.:

dblTempAug[12] += 1;

Exc. 6

See code example in the "Average" section.

Exc. 7

Initiate the array dDens with the densities. Read one density from the user.

Then write a loop which goes through all densities and checks if dDens[i] is

greater than the entered value. If so, print dDens[i-1] and break the loop,

so that only one value is printed.

Exc. 8

Create a loop from 0-24 which assigns values to the items:

iNos[i] = rand()%10;

Download free eBooks at bookboon.com

Structured Programming with C++

227

10 Answers

Read a value from the user and create a loop which increments a variable each

time an item equals the entered value:

int iNo = 0;

for (i=0; i<25; i++)

 if (iEntryValue == iNos[i])

 iNo++;

Then print iNo.

Exc. 9

if (sales[i] <= dLimit5)

 dFee = perc1 * sales[i];

 else if (sales[i] <= dLimit10)

 dFee = perc1*dLimit5 + perc2*(sales[i]-dLimit5);

 else

 dFee = perc1*dLimit5 + perc2*(dLimit10-dLimit5) +

 perc3*(sales[i]-dLimit10);

Exc. 10

Declare a new array iNoOfSales[100] which should hold the number of sales per

salesman. Initiate the array to 0 values. When a salesman enters a value, you

increase:

iNoOfSales[nr-1]++;

Download free eBooks at bookboon.com
Click on the ad to read more

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

Structured Programming with C++

228

10 Answers

The printout should contain an additional column where you print

iNoOfSales[i].

Exc. 11

Add one more column to the output where you print sales[i]/iNoOfSales[i].

Exc. 12

See code example in the "Product File, Search" section.

Exc. 13

Read a quantity from the user and multiply it by the achieved price.

Exc. 14

Declare and initiate a two-dimensional array according to the code example

in the "Two-Dimensional Array" section. Let the user enter product group and

customer group and use these values as indeces in the discount matrix to get

a discount percent. Calculate the discount amount by multiplying the discount

percent by the total price, and subract the discount amount from the total

price.

Exc. 15

Code example for random dice rolls is given in the chapter about Selections

and Loops. Code example for sorting is given in the "Sorting" section.

Exc. 16

Code example is given in the "Searching a Sorted Array" section.

Exc. 17

if (iSrch == iProdid[iMid])

{

 iFound = 1;

 iPos = iMid;

 cout << iMid;

}

Exc. 18

if (r == l+1 && iFound == 0)

 cout << "The product id was not found";

In this situation you have enclosed an interval with the distance 1 between l

and r. If then not found, the product id is not stored in the array.

Exc. 19

Declare and initiate a price array with prices for the products. Use the value

of the variable iMid to get the corresponding price of the price array.

Download free eBooks at bookboon.com

Structured Programming with C++

229

10 Answers

10.4 Strings

Exc. 1

Add the following statements:

cout << "E. Statistics" << endl;

and:

case 'E':

 cout << "You selected Statistics";

 break;

Exc. 2

Start from the program 'Menu Program with Loop'.

Exc. 3

Read a character from the keyboard to a char variable. Then create a loop

which goes from 1 to 10 and prints:

cout << cChar;

Exc. 4

Create an outer loop which goes from 1 to 10 with the loop variable i. Then

create an inner loop which goes from 1 to i. Print the character i in the

inner loop. After the inner loop, but inside the outer you print endl for

line feed.

Exc. 5

Read the character to a char variable for instance named cChar. Read the

number to an integer variable for instance named i. Then create a loop which

goes from 1 to i. Inside the loop you print cChar.

Exc. 6

The first outer loop goes from 14 to 0. The second inner loop goes from 0 to

14-i. The last inner loop goes from 0 to 13.

Exc. 7

Read the character to a char variable. Then assign this value to an integer

variable and print it.

Exc. 8

Read the character code to an integer variable. Assign this value to a char

variable and print it.

Download free eBooks at bookboon.com

Structured Programming with C++

230

10 Answers

Exc. 9

Use the character codes in the section about å, ä and ö in this chapter.

Exc. 10

Read the text to a string array with cin.getline(). Then use the functions

strlen() and sizeof.

Exc. 11

Increase by 32 instead of decrease.

If you enter other characters, an increase by 32 gives a character that does

not correspond to the relation between upper and lower case.

Exc. 12

Read the word to a char array. Then create a loop which goes from 0 to the

length of the string minus 1. In each turn of the loop you print a character

twice:

cout << cWord[i] << cWord[i];

Exc. 13

Read the word to a char array. Then create a loop which goes from 0 to the

length of the string minus 1. In each turn of the loop you print a character:

cout << cWord[i];

Download free eBooks at bookboon.com
Click on the ad to read more

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

Structured Programming with C++

231

10 Answers

The other alternative is solved with:

cout << strrev(cWord);

Exc. 14

Change to the following code:

index = 1;

for (i=1; i<iLen; i++)

 if (cName[i] == ' ')

 {

 cInit[index] = cName[i+1];

 index = 2;

 }

cInit[3] = '\0';

Also adjust the declarations of the variables.

Exc. 15

Write a new if statement where you check whether a character is greater than

90. If so, decrease the character code by 32 before inserting the character

into the initials string.

Exc. 16

Create a loop which goes from character1 to character2 and prints the

character corresponding to each character code.

Exc. 17

Use the strcmp() function which compares strings.

Exc. 18

Create a loop which goes from 0 to number of characters minus 1. Inside the

loop you check whether cWord[i] equals a, o, u, e, i or y. If so, increase a

counter (integer variable) by 1.

Exc. 19

Do like in the previous exercise when checking if the character is a

consonant. It it is, you print:

cout << cWord[i] << "o" << cWord[i];

Exc. 20

See the code example in the 'Sorting Strings' section.

Exc. 21

Declare a new array with prices:

Download free eBooks at bookboon.com

Structured Programming with C++

232

10 Answers

double dPrices[5];

and read values to it.

Use the formatting functions setiosflags(), setprecision() and setw() for the

printout.

Exc. 22

See the example code in the "Interchanging First Name and Surname" section.

Exc. 23

Create a loop which goes through all characters of the entered string and

checks if cEmailadr[i] == '@'. Print a suitable text in both cases.

Exc. 24

Use the strcat() function to concatenate two strings.

Exc. 25

Create a loop which searches for the period in the email address and a loop

which searches for @. Save the positions of these characters. Then use the

functions strcpy() and strncpy() to extract first name and surname. Then

decrease the character codes of the first characters by 32 in the first and

surnames.

Exc. 26

Change to:

cEncrypt[i] = cName[i] - 1;

Exc. 27

Change to:

cEncrypt[i] = cName[i] - 3;

Exc. 28

Increase by 3 instead of decrease.

Exc. 29

Find out the code of a character and decrease by 65, so that A corresponds

to 0, B corresponds to 1 etc. (the variable iCode). The encrypted character

should then have the code 90-iCope, i.e. the code for 'Z' decreased by the

value of iCode.

Exc. 30

Insert all characters into one bit string array:

char cKey[63] = "ABCD…Zabcd…z0123…9";

Then create a random position in this array:

iPos = rand() % 63;

Download free eBooks at bookboon.com

Structured Programming with C++

233

10 Answers

The character cKey[iPos] is then used for the password:

cPw[i] = cKey[iPos];

Exc. 31

Change to:

iLen = rand() % 5 + 6;

Exc. 32

Insert also lower cases in the string cKey. Change the limit of the first for-

loop to 52. Let j get the value:

j = rand() % 52;

In the last for-loop you will have to check whether to subtract 65 or 71

from the character code, since there is a gap of 6 characters in the interval

between upper case Z and lower case a.

if(cText[i]<97)

 cEncrypt[i] = cKey[cText[i] - 65];

else

 cEncrypt[i] = cKey[cText[i] - 71];

Download free eBooks at bookboon.com
Click on the ad to read more

http://s.bookboon.com/IE

Structured Programming with C++

234

10 Answers

10.5 Functions

Exc. 1

double dAvg(double x1, double x2, double x3)

{

 double mv;

 mv = (x1 + x2 + x3)/3;

 return mv;

}

Exc. 2

Start from the min() function at the beginning of this chapter and modify the

if condition.

Exc. 3

See the code proposal in the "Least of Three Numbers" section.

Exc. 4

Add this statement:

n=max(iNos[i],n);

and

cout << n << " is the greatest number" << endl;

Exc. 5

double dCirc(double dLen, double cWid)

{

 return 2 * (dLen + dWid);

}

double dArea(double dLen, double dWid)

{

 return dLen * dWid;

}

double dPrice(double l, double b)

{

 return dCirc(l, b) * 145 + 650;

}

Exc. 6

Write a for-loop in the function which goes from 1 to n and prints i, i*i and

i*i*i.

Download free eBooks at bookboon.com

Structured Programming with C++

235

10 Answers

Exc. 7

Write a for-loop in the function which goes from 1 to n and prints c.

Exc. 8

Write a for-loop in the function which goes from 0 strlen(cWord)-1 and prints:

cout << cWord[i] << " ";

Exc. 9

In the chapter about Strings you will find code that solves these tasks.

Exc. 10

The new function header without parameters will be:

double dCustDisc()

Inside the function you read a character from the user. A switch statement

can then return the correct factor (0.05, 0.07 or 0.09). Also use a default

section providing a en error message about "wrong customer category" and

returns 0.

In the dPrice() function you change to:

return dLinePr * (1-dDiscPerc)*(1-dCustPerc)*(1+dTax);

Exc. 11

In main() you read the number of days, which is sent to the function

dayCost(). That function calls kmInput() which reads start and end value.

The difference between these values is returned to dayCost(). The function

litrePrice() is called, which reads the fuel consumption in litres and returns

that value * 9.27. The function dayCost() then returns the number of days *

500 plus number of km * 1.4 plus the fuel cost.

Exc. 12

Create a for-loop in the function which goes from 0 to strlen(cWord)-1 and

checks if strcat(cWord[i], cWord[i+1]) equals "aa". If so, the character 'å'

is printed, otherwise cWord[i] is printed. In the same way you check the

characters "ae" and "oe". The character codes for å, ä and ö are given in the

"Strings" chapter.

Try to solve this problem without looking at the code proposal below:

void check (char s[])

{

 int len=strlen(s);

 char p[3];

 for (int i=0; i<len; i++)

 {

 p[0]=s[i];

Download free eBooks at bookboon.com

Structured Programming with C++

236

10 Answers

 p[1]=s[i+1];

 p[2]='\0';

 if (strcmp(p, "aa") == 0)

 {

 i++;

 cout << "\x86";

 }

 else if (strcmp(p, "ae") == 0)

 {

 i++;

 cout << "\x84";

 }

 else if (strcmp(p, "oe") == 0)

 {

 i++;

 cout << "\x94";

 }

 else

 cout << s[i];

 }

}

Download free eBooks at bookboon.com
Click on the ad to read more

STUDY AT A TOP RANKED
INTERNATIONAL BUSINESS SCHOOL

Reach your full potential at the Stockholm School of Economics,
in one of the most innovative cities in the world. The School
is ranked by the Financial Times as the number one business
school in the Nordic and Baltic countries.

Visit us at www.hhs.se

Sw
ed

en

Stockholm

no.1
nine years
in a row

http://s.bookboon.com/hhs2016

Structured Programming with C++

237

10 Answers

Exc. 13

Change to:

if ((c>='0' && c<='9') || (c=='.'))

Exc. 14

if ((val>=2) && (val<=10))

 cout << val;

else

 switch val

 {

 case 1:

 cout "Ace";

 break;

 case 11:

 cout << "Jack";

 break;

 etc.

Exc. 15

Create another switch statement which tests the other parameter and prints the

correct colour of the card.

Exc. 16

In the functions odd() and divable() you use the modulus operator %. In the

other functions you check if the character code of c[0] is in the correct

interval.

Exc. 17

In main() you read values to three different variables, which means that the

user has to enter a blank between each character. The three variables must be

of type int, char and int. In a switch statement you then check if the char

variable is +, -, * or / and send the two integer variables to the respective

function. The functions return int (+ - *) or double (/). The returned values

are a+b, a-b, a*b and (double)a/b.

Exc. 18

The function takes a char[] parameter and returns 0, 10, 15 or 20. Use a

switch statement that compares the first character of the parameter against

the first character of "G", "VG", "MVG" and "IG". In main() you use a loop for

entry of score and number of hours. In the loop you accumulate the score *

number of hours for each course. Also accumulate the total number of hours.

After the loop you divide the total score by the total number of hours.

Download free eBooks at bookboon.com

Structured Programming with C++

238

10 Answers

Exc. 19

double dDiscount(int iNo, double dTotPrice)

double dDiscount(char cCustGroup)

Exc. 20

See the section 'Declaration - Definition'.

Exc. 21

See the section 'Project'.

Exc. 22

Use & after the data type, for instance:

double dayCost(int& iNo)

Exc. 23

double fuelPrice(double dLitrePrice=9.32)

Exc. 24

double dRoll(int iNo=5)

In the function you write a loop which goes from 1 to iNo and create random

dice scores with rand()%6+1. These are accumulated in the loop. After the loop

you divide the sum by iNo.

Exc. 25

In main() you need one variable which stores the user score and one that

stores the computer's score.

Exc. 26

The user and computer scores are sent as parameters to the function, where you

compare them and print a suitable text.

Exc. 27

Use & for the parameters.

Exc. 28

See the section 'Recursive Functions'.

Exc. 29

int nsum(int n)

{

 if (n<=1)

 return 1;

Download free eBooks at bookboon.com

Structured Programming with C++

239

10 Answers

 else

 return n + nsum(n-1);

}

Exc. 30

int nsum(int n)

{

 if (n<=1)

 return -1;

 else

 {

 int k;

 if ((n%2)==0) //If the number is even, k is set =1

 k=1;

 else

 k=-1;

 k *= n; //Here odd numbers will be negative

 return (k + nsum(n-1));

}

Download free eBooks at bookboon.com
Click on the ad to read more

http://s.bookboon.com/liu

Structured Programming with C++

240

10 Answers

10.6 Files

Exc. 1

Add the statement:

cin.getline(cWhloc,8);

at two different locations in the program

Also change the file output statement:

outfile << cProd << endl << cWhloc << endl;

Exc. 2

Change to:

while(infile.getline(cProd,29) &&

 infile.getline(cWhloc,8))

 cout << cProd << " " << cWhloc << endl;

Exc. 3

Read the warehouse location from the user in the same way as the product

name. Also write the warehouse location to the file with endl in between.

Exc. 4

Add:

cout << " ...and stock quantity: ";

cin >> iQty;

Change to:

outfile << iProdId << endl << dPrice << endl << iQty << endl;

Exc. 5

Change to:

while(infile >> iProdId >> dPrice >> iQty)

Add:

cout << "Stock quantity is " << iQty;

Exc. 6

You will need another two-dimensional array, where you store the warehouse

locations. The sort function must have an additional parameter for the

warehouse location array. When interchanging position of two product names,

you must also interchange corresponding warehouse location items.

Exc. 7

You will need additional statements to read the new stock quantity value. In

the file output statement you must also print the stock quantity to the file.

Download free eBooks at bookboon.com

Structured Programming with C++

241

10 Answers

Exc. 8

Start from the program where you print product name and warehouse location.

You should modify it to print first name, surname and city. Use ios::app to

prevent cancellation of previous information in the file.

Exc. 9

Start from the program reading products and warehouse locations from a

previous exercise, and modify it to conform to the file created in the previous

exercise.

Exc. 10

Compare to the program where you were able to change price and stock quantity

(exc. 7). Remember to read with getline since it is strings and not numeric

values in this program.

Exc. 11

The program has a similar structure as the previous program. The only

difference is that, when the name from the file equals the one entered by the

user, you don't print that name to the file.

Exc. 12

Start from the program in Exc. 6 which sorted products and warehouse

locations. You will however need an additional two-dimensional array, so

that you have one for first names, one for surnames and one for cities.

When interchanging positions of two surnames, you must also interchange

corresponding positions in the two other arrays.

Exc. 13

You can use the code example in the 'Copying Files' section.

Exc. 14

You need one additional while loop where the menu is printed and where

the user can enter a menu choice. By means of a switch statement you can

perform the requested task. Utilize the code already created in the previous

exercises.

10.7 Pointers

Exc. 1

See the code example in the "Assigning Values to Pointers" section.

Exc. 2

See the code example in the sections "Addresses and char Pointers" and "cout

and char Pointers".

Download free eBooks at bookboon.com

Structured Programming with C++

242

10 Answers

Exc. 3

Add this code:

 double dDisc;

 double* pDisc = &dDisc;

and

 cout << "Enter discount in percent: ";

 cin >> *pDisc;

Change the calculation statement to:

 *pTotal = *pNo * *pPrice * (1 - *pDisc/100);

Exc. 4

It should be possible to use the program in the section "Price Program with

Pointers" as the starting point. The number of litres should be divided by the

number of km to get the fuel consumption.

Exc. 5

See the code example in the section "Price Program with Pointers".

Exc. 6

Declare the array as shown in the section "Pointer Arithmetics". Then write a

for-loop which reads the values from the user. Increment the pointer variable

Download free eBooks at bookboon.com
Click on the ad to read more

http://s.bookboon.com/EOT

Structured Programming with C++

243

10 Answers

with the ++ operator. Write another for-loop which prints the values. Don't

forget to reset the pointer to the first item of the array before the last

for-loop.

Exc. 7

Declare a sum variable and initiate it to 0. Declare a pointer (pSum) which

points to the sum variable. In the first for-loop you accumulate the read

values with a statement like this:

*pSum += *pNumber;

Exc. 8

Delete the initiation lists for iSal and dTax. Write a for loop which reads

one salary and one tax percent at a time by means of the pointers. Don't

forget to increment the pointers with the ++ operator inside the loop. Before

printing the table you must reset both pointers to point to the first item of

each array by decreasing them by 6:

 pSal = pSal - 6;

 pTax = pTax - 6;

Exc. 9

First, prepare the file by writing in Notepad each second salary and each

second tax percent. Press Enter after each item. You might also need to take

a look in the Files chapter to be able to declare an instream correctly.

Exc. 10

First prepare the file like in the previous exercise. Then it should be

possible to accommodate the code from the previous exercise.

Exc. 11

Delete the printout code of the table. First read the product id from the

user. Then write a loop which goes through the items of the product array

and checks if the entered id equals the one in the array. If so, the

corresponding price is printed:

 for (int i=0; i<iNoOfProducts; i++)

 {

 if (*pEnteredProdId == *pProdId)

 cout << "The price is: " << *pPrice;

 pProdId++;

 pPrice++;

 }

Download free eBooks at bookboon.com

Structured Programming with C++

244

10 Answers

Exc. 12

First reset the pointer to the beginning of the string and then print it in

the cout statement.

Exc. 13

Before sending the pointer to the function you can create a copy of the

string, so that the copy is not modified by the function. The copy can be

printed, which gives the original email address.

Exc. 14

The function should go from character to character in the string by means

of pointer arithmetics and check if the character code exceeds 96. If so,

decrease it by 32. The new character should replace the original in the

string.

Exc. 15

The function should use pointer arithmetics when stepping through the items of

the array. Create a local variable, iMax, in the function to which you assign

the value of the first item. Then a loop will step through the remaining items

and compare them to iMax. If any item exceeds iMax, you set iMax equal to

that item. Return iMax.

In the main() program you declare an array of 8 items and a pointer which

points to the first item of the array. In a for-loop you let the user enter

values to be stored in the location pointed at by the pointer. Don't forget

to increment the pointer for each turn of the loop. Before calling the

function you must decrease the pointer by 8 to make it point to the beginning

of the array. Send the pointer and the number 8. Print the returned value.

Exc. 16

In the main() program you first let the user enter the number quantity. Then

declare the array dynamicly. Also check that the requested memory space could

be allocated as described in the section "Dynamic Memory". Don't forget to

release the dynamic memory with delete at the end of the program.

Exc. 17

You should in principle be able to copy some of the lines in the program and

accommodate them to the telephone numbers:

 char cTeltemp[15]; //Temporary storage of entered tel no

 char *cTel[iNo]; // Pointer array with telno:s

 cout << "Telephone number " << i + 1 << " ";

Download free eBooks at bookboon.com

Structured Programming with C++

245

10 Answers

 cin.getline(cTeltemp, 15); // Temporary storage

 cTel[i] = new char[strlen(cTeltemp) + 1];

 // Copy the telno to the pointer array:

 strcpy(cTel[i], cTeltemp);

 cout << cNames[j] << " " << cTel[j] << endl;

 delete [] cTel[k];

Exc. 18

A checking example is given in the first program of the section "Dynamic

Memory". A similar check is inserted at each usage of the new keyword.

10.8 Structures

Exc. 1

Start from the Prod structure given in the chapter text and modify data types

and names of the members.

Exc. 2

See the code example of the section "A Structure Program", where entry to a

structure variable is given.

Download free eBooks at bookboon.com
Click on the ad to read more

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

Structured Programming with C++

246

10 Answers

Exc. 3

See the section "Array with Structure Variables" where code examples are

given.

Exc. 4

Create a loop which goes through each customer and prompts the user for the

invoice total. It is added to the structure member which contains invoice

total year-to-date.

Exc. 5

See the section "Array with Structure Variables" where code examples are

given.

Exc. 6

See the section "Pointer to Structure" where code examples are given.

Exc. 7

See the section "Pointer to Structure" where code examples are given.

Exc. 8

Use the code example in the section "Structures in the Dynamic Memory".

Exc. 9

See the section "Structure as Function Parameter – Reference Parameter".

Declare an outstream with ios::app. You might need to take a look in the

Files chapter.

Exc. 10

See the section "Structure as Function Parameter – Array Parameter".

Exc. 11

See the section "Structure as Function Parameter – Pointer Parameter".

Exc. 12

Declare an instream from which you read. The input goes to a structure

which is printed on the screen. The function is of void type and takes no

parameters.

Download free eBooks at bookboon.com

	About the Book and the Course
	1	Introduction to Programming
	1.1	What Does It Mean to Program
	1.2	Coding
	1.3	Compiling and linking
	1.4	The First Steps with Visual C++

	2	Variables
	2.1	Introduction
	2.2	Why Variables
	2.3	Declaring Variables
	2.4	Assignment
	2.5	Initiating Variables
	2.6	Constants
	2.7	More about Assignment of Values
	2.8	The main function
	2.9	Input and Output
	2.10	An Entry Program
	2.11	Formatted Output
	2.12	Invoice Program
	2.13	Time Conversion Program
	2.14	Type Conversion
	2.15	The Random Number Generator
	2.16	Game Program
	2.17	Summary
	2.18	Exercises

	3	Selections and Loops
	3.1	Introduction
	3.2	Selection
	3.3	if statement
	3.4	Price Calculation Program
	3.5	Comparison Operators
	3.6	Even or Odd
	3.7	else if
	3.8	and (&&), or (||)
	3.9	Conditional Input
	3.10	The switch statement
	3.11	Menu Program
	3.12	Loops
	3.13	The while Loop
	3.14	The for Loop
	3.15	Addition Program
	3.16	Double Loop
	3.17	Roll Dice
	3.18	Two Dice Roll
	3.19	Breaking Entry with Ctrl-Z
	3.20	Pools
	3.21	Equation
	3.22	Interrupting a Loop - break
	3.23	Summary
	3.24	Exercises

	4	Arrays
	4.1	Introduction
	4.2	Why Arrays
	4.3	Declaring an Array
	4.4	Initiating an Array
	4.5	Copying an Array
	4.6	Comparing Arrays
	4.7	Average
	4.8	Sales Statistics
	4.9	Product File, Search
	4.10	Two-Dimensional Array
	4.11	Sorting
	4.12	Searching a Sorted Array
	4.13	Summary
	4.14	Exercises

	5	Strings
	5.1	Introduction
	5.2	Data Type char
	5.3	Menu Program
	5.4	Menu Program with Loop
	5.5	Christmas Tree
	5.6	int - char
	5.7	Å, Ä, Ö
	5.8	String Array, char[]
	5.9	Length of a String
	5.10	Upper/Lower Case
	5.11	Initials
	5.12	Comparing Two Strings
	5.13	Copying Strings
	5.14	Array with String Arrays
	5.15	Sorting Strings
	5.16	Substring
	5.17	Concatenating Strings
	5.18	Interchanging First Name and Surname
	5.19	Encryption
	5.20	Random Password
	5.21	Translation Table
	5.22	Summary
	5.23	Exercises

	6	Functions
	6.1	Introduction
	6.2	What Is a Function
	6.3	Average
	6.4	Calling a Function
	6.5	Several return Statements
	6.6	Least of Three Numbers
	6.7	Least Item of an Array
	6.8	Array As Parameter
	6.9	Function and Subfunction
	6.10	Function without Return Value
	6.11	Replacing Characters in a String
	6.12	Declaration Space
	6.13	The Word Program
	6.14	Override Functions
	6.15	Declaration - Definition
	6.16	Header Files
	6.17	Reference Parameters
	6.18	Parameters with Default Values
	6.19	Recursive Functions
	6.20	Summary
	6.21	Exercises

	7	Files
	7.1	Introduction
	7.2	Streams
	7.3	Reading from a Stream
	7.4	Writing to a Stream
	7.5	Attaching a File to a Stream
	7.6	A Complete Write Program
	7.7	A Complete Reading Program
	7.8	New Item at the End of the File
	7.9	Products and Prices
	7.10	Search for a Product Price
	7.11	Sorting a File in Memory
	7.12	Updating File Content
	7.13	Copying Files
	7.14	Summary
	7.15	Exercises

	8	Pointers
	8.1	Introduction
	8.2	What Is a Pointer
	8.3	Declaring a Pointer
	8.4	Assigning Values to Pointers
	8.5	Addresses and char Pointers
	8.6	cout and char Pointers
	8.7	Price Program with Pointers
	8.8	Pointer Arithmetics
	8.9	Tax Program
	8.10	Functions and Pointers
	8.11	Dynamic Memory
	8.12	Summary
	8.13	Exercises

	9	Structures
	9.1	Introduction
	9.2	What Is a Structure
	9.3	Defining a Structure
	9.4	Declaring and Initiating Structure Variables
	9.5	Assigning Values to Structure Members
	9.6	A Structure Program
	9.7	Array with Structure Variables
	9.8	Pointer to Structure
	9.9	Structures in the Dynamic Memory
	9.10	Structure As Function Parameter
	9.11	Summary
	9.12	Exercises

	10	Answers
	10.1	Variables
	10.2	Selections and Loops
	10.3	Arrays
	10.4	Strings
	10.5	Functions
	10.6	Files
	10.7	Pointers
	10.8	Structures

