
Hugh	Darwen

Exercises	on	Relational	Database
Theory

Download	free	books	at

2

Hugh Darwen

Exercises on Relational Database Theory

Download free eBooks at bookboon.com

3

Exercises on Relational Database Theory
2nd edition
© 2014 Hugh Darwen & bookboon.com
ISBN 978-87-403-0775-7

Download free eBooks at bookboon.com

http://bookboon.com

Exercises on Relational Database Theory

4

Contents

Contents

1	 Exercises	 5
1.1	 Exercise for Chapter 1, Introduction	 5
1.2	 Exercises for Chapter 2, Values, Types, Variables, Operators	 5
1.3	 Exercises for Chapter 3, Predicates and Propositions	 14
1.4	 Exercises for Chapter 4, Relational Algebra – The Foundation	 15
1.5	 Exercises for Chapter 5, Building on The Foundation	 20
1.6	 Exercises for Chapter 6, Constraints and Updating	 21
1.7	 Exercises for Chapter 7, Database Design I: Projection-Join Normalization	 22
1.8	 Additional Exercises Using Rel	 29

2	 Solutions (shown in blue)	 31
2.1	 Exercise for Chapter 1, Introduction	 31
2.2	 Exercises for Chapter 2, Values, Types, Variables, Operators	 31
2.3	 Exercises for Chapter 3, Predicates and Propositions	 38
2.4	 Exercises for Chapter 4, Relational Algebra – The Foundation	 40
2.5	 Exercises for Chapter 5, Building on The Foundation	 53
2.6	 Exercises for Chapter 6, Constraints and Updating	 57
2.7	 Exercises for Chapter 7, Database Design I: Projection-Join Normalization	 64
2.8	 Additional Exercises Using Rel	 81

Download free eBooks at bookboon.com

Click on the ad to read more

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

Exercises on Relational Database Theory

5

Exercises

1	 Exercises
With two exceptions, these exercises are copies of those given at the ends of Chapters 1-7 in An
Introduction to Relational Database Theory. The exercises using Rel given with some of those chapters
are also included. The first exception is Exercise 7 for Chapter 7, which I have replaced by a precise,
detailed specification for a comprehensive database design. The second is a set of additional exercises
using Rel, exploring virtual relvars and user-defined type definitions.

In this second edition the only changes are to use the syntax for Version 2 of Tutorial D, now supported
by Rel, and to correct a number of errors in the first edition (including some particularly bad ones in
Section 1.4, Exercise 2).

1.1	 Exercise for Chapter 1, Introduction

Consider the following table (from Figure 1.5 of the book)

A B A

1 2 3

4 5

6 7 8

9 9 ?

1 2 3

Give three reasons why it cannot possibly represent a relation.

1.2	 Exercises for Chapter 2, Values, Types, Variables, Operators

Complete sentences 1-10 below, choosing your fillings from the following:

=, :=, ::=, argument, arguments, body, bodies, BOOLEAN, cardinality, CHAR, CID, degree, denoted,
expressions, false, heading, headings, INTEGER, list, lists, literal, literals, operator, operators, parameter,
parameters, read-only, set, sets, SID, true, type, types, update, variable, variables.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

6

Exercises

In 1–5, consider the expression X = 1 OR Y = 2.

1.	 In the given expression, = and OR are _____ whereas X and Y are _____ references.

2.	 X and 1 denote _____ to an invocation of _____.

3.	 The value _____ by the given expression is of _____ BOOLEAN.

4.	 1 and 2 are both _____ of _____ INTEGER.

5.	 The operators used in the given expression are _____ operators.

In 6–10, consider the expression RELATION { X SID, Y CID } { }.

6.	 It denotes a relation whose _____ is zero and whose _____ is two.

7.	 It is a relation _____.

8.	 The declared type of Y is _____.

9.	 In general, the heading of a relation is a possibly empty _____ of attributes and its body is a
possibly empty _____ of tuples.

10.	 It is _____ that the assignment RV __ RELATION { X SID, Y CID } { }
is legal if the _____ of RV is { Y CID, X SID }, _____ that it is legal if the
_______ of RV is { A SID, B CID }, _____ that it is legal if the _____ of
RV is { X CID, Y SID }, and _____ that it is legal if the _____ of RV is
{ X CHAR, Y CHAR }.

Getting Started with Rel

After you have downloaded and installed Rel from http://dbappbuilder.sourceforge.net/Rel.html, work
through the following exercises. From number 7 onwards they involve constructs introduced in Chapter
4. You might prefer to wait until you have studied that chapter but on the other hand a little hands-on
experience might help you to understand that chapter when you come to it.

1.	 Start up Rel’s DBrowser. DBrowser is the general-purpose client application provided by
Rel for evaluating Tutorial D expressions and executing Tutorial D statements entered by
the user.

2.	 Familiarise yourself with the way of working and the things you can do in Rel. You should
be looking at a window something like this (which was obtained in Windows Vista):

Download free eBooks at bookboon.com

http://http://dbappbuilder.sourceforge.net/Rel.html

Exercises on Relational Database Theory

7

Exercises

	

•	 Note the layout of the window: a lower pane into which you can type statements to be
executed, an upper pane in which results are displayed, and the movable horizontal bar
between the panes.

•	 Note the  and  at the left-hand end of the horizontal bar, allowing you to let one or the
other pane occupy the whole window for a while.

•	 See what is available on the Tools menu and perhaps choose your preferred font.

•	 Note the < and > to the left of the menu on the input (lower) pane. These are greyed out
initially but after you have executed a couple of statements you will be able to use them to
recall previously executed statements to the input pane.

•	 Note the toolbars on both panes. As you do the exercises, decide which options suit you
best. Note that you can save the contents of either pane into a local file, and that you can
load the contents of a local file into the input area.

•	 Note the check boxes on the right of the toolbars. They are fairly self-explanatory, apart
from “Enhanced”, which we will examine later.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

8

Exercises

•	 The box at the top of the upper pane, labelled “Location:”, identifies the directory containing
the database you are working with. You can switch to another directory by clicking on the
little button to the right of the box, labelled with three dots (…).

•	 The button on the right, labelled “Backup”. This produces a Rel script that can be used to
recreate the entire database in its current state.

3.	 Type the following into the lower pane:

	 output 2+2 ;

Execute what you have typed, either by clicking on Evaluate (F5) shown at the bottom of the
window or by pressing F5.

Now delete the semicolon and try executing what remains. (If necessary, use the < button on
the lower pane to recall the statement.) You will see how Rel handles errors.

Now strike out the word output and do not put back the semicolon. What happens when
you execute that? (i.e., just 2+2).

You have now learned:

•	 that in Rel (as in Tutorial D) every executable command (or statement) is terminated by
a semicolon;

•	 that Rel allows you to obtain the result of evaluating an expression by using an output
statement;

•	 that Rel treats an attempt to ‘execute’ an expression x as shorthand for the statement
output x ; — the absence of the semicolon signals to Rel that you are using this
convenient shorthand.

4.	 This exercise is merely to alert you to a certain awkwardness in Rel that has no real
importance but might cause you to waste a lot of time if you are not warned about it. It’s the
same as Step 3 except that instead of 2+2 you type 2+2.0. Look closely at what happens. It
doesn’t work!

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

9

Exercises

Rel, like some other languages, treats INTEGER and RATIONAL as distinct types. If you
want to do arithmetic on rational numbers, both operands must be rational numbers. Literals
denoting rational numbers are distinguished from those denoting integers by the presence of
a decimal point, and Rel follows the convention in the English-speaking community of using
a full stop for this purpose (as opposed to the comma that is used throughout most of Europe,
for example).

Now try this: 1/2 (i.e., the integer 1 divided by the integer 2). And then this: 1.0/2.0.

You have now learned that (a) the operands of dyadic arithmetic operators in Rel must be of the
same type, and (b) the type of the result of an invocation of such an operator is always of the
same type as the operands. Tutorial D is silent on such issues, because they are orthogonal to
what Tutorial D is really intended for (teaching relational theory). But every implementation
of Tutorial D has to address them somehow.

Fortunately, arithmetic is orthogonal to relational theory and there is no need for us to be
bothered by Rel’s behaviour here. You have possibly already learned that the same problems
do not arise in SQL, where 1/2, 1/2.0 and 1.0/2.0 are all equivalent, in spite of the fact
that INTEGER and REAL (SQL’s counterpart of Tutorial D’s RATIONAL) are also distinct
types in SQL.

5.	 Now try the following compound statement:

	 begin ;

	 VAR x integer init(0) ;

	 x := x + 1 ;

	 output x ;

	 end ;

Why do we have to write output x ; in full here, instead of just x?

Now write the fourth line in uppercase: OUTPUT X ; What happens?

Try OUTPUT x ; instead. What have you learned about Rel’s rules concerning case sensitivity?

6.	 Now you can start investigating Rel’s support for relations (though not relational databases
yet). First, see how Rel displays a relation (i.e., the result of evaluating a relation expression)
in its upper pane. Rel supports two styles of presentation, depending on whether the
“Enhanced” option is checked.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

10

Exercises

With “Enhanced” unchecked (it is usually checked to start with), get Rel to evaluate the following
relation expression (a literal which we shall call enrolment):

	 RELATION {

	 TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' },

	 TUPLE { StudentId 'S1', CourseId 'C2', Name 'Anne' },

	 TUPLE { StudentId 'S2', CourseId 'C1', Name 'Boris' },

	 TUPLE { StudentId 'S3', CourseId 'C3', Name 'Cindy' },

	 TUPLE { StudentId 'S4', CourseId 'C1', Name 'Devinder' }

	 }

See Section 2.9. Look closely at the output. Is it identical to the input?

Next, without altering the contents of the lower pane, turn “Enhanced” back on. Note the effect
on the display in the output pane.

Now delete all the tuple expressions, leaving just RELATION { }. What happens when Rel
tries to evaluate that?

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

Exercises on Relational Database Theory

11

Exercises

Now use < to recall the original RELATION expression to the input pane and re-evaluate it
with “Enhanced” off. Use copy-and-paste to copy the result to the input pane, then delete all
the TUPLE expressions, to leave this:

	 RELATION {StudentId CHARACTER, CourseId CHARACTER,

	 Name CHARACTER} { }

Study the result of that in the output pane, first with “Enhanced” off, then with it on.

What conclusions do you draw from all this, about Rel and Tutorial D?

From now on you can run with “Enhanced” either on or off, according to your own preference.

Next, enter the following literal, perhaps by using the < button to recall enrolment and
editing it:

	 RELATION {

	 TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' },

	 TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' }

	 }

Before you press Evaluate (F5), think about what you expect to happen. Does the result meet
your expectation? How do you explain it?

Use < again to recall the enrolment literal. Insert WITH (enrolment := at the
beginning and add) : enrolment at the end, to give:

	 WITH (enrolment :=

	 RELATION {

	 TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' },

	 TUPLE { StudentId 'S1', CourseId 'C2', Name 'Anne' },

	 TUPLE { StudentId 'S2', CourseId 'C1', Name 'Boris' },

	 TUPLE { StudentId 'S3', CourseId 'C3', Name 'Cindy' },

	 TUPLE { StudentId 'S4', CourseId 'C1', Name 'Devinder' }

	 }) : enrolment

and evaluate that.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

12

Exercises

How do you understand what you have just done? (WITH isn’t described in the book. In case
you aren’t clear, try this in Rel: WITH (four := 2+2, eight := four+four) :
eight + four. Note carefully that the introduced names, four and eight, are local only.)

By inspection of enrolment only, write down all the cases you can find of two students such
that there is at least one course they are both enrolled on.

7.	 For this exercise you will need to continue using < to recall your previous command (now
including the definition of the introduced name enrolment) and overtype as necessary.
Use enrolment to investigate the relational operator known as projection (see Chapter 4,
Section 4.6). The projection of a given relation over a specified subset of its attributes yields
another relation. In Tutorial D a projection is specified by writing a list of attribute names,
enclosed in braces {} and separated by commas, after the operand relation. The key words
ALL BUT can optionally precede the list of attribute names, inside the braces.

How many distinct projections can be obtained from enrolment? Obtain as many of these
as you wish, trying both the ‘inclusion’ method and the ‘exclusion’ method using ALL BUT.

8.	 Still using enrolment, investigate the relational operator known as rename
(see Chapter 4, Section 4.5). The renaming of a given relation returns that relation with one
or more of its attributes renamed. In Tutorial D a renaming is specified by writing
RENAME { old AS new, ... } after the operand relation.

At the moment you should have this in your input pane:

	 WITH (enrolment :=

	 RELATION {

	 TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' },

	 TUPLE { StudentId 'S1', CourseId 'C2', Name 'Anne' },

	 TUPLE { StudentId 'S2', CourseId 'C1', Name 'Boris' },

	 TUPLE { StudentId 'S3', CourseId 'C3', Name 'Cindy' },

	 TUPLE { StudentId 'S4', CourseId 'C1', Name 'Devinder' }

	 }) : enrolment

Replace the single word (enrolment) that follows the colon by a renaming of enrolment
such that the result has attribute name SID1 instead of StudentId, N1 instead of Name,
and is otherwise the same as enrolment itself. Replace the : that ends the WITH specification
by E1 := and add : E1 at the end. The result should look like this:

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

13

Exercises

	 WITH (enrolment :=

	 RELATION {

	 TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' },

	 TUPLE { StudentId 'S1', CourseId 'C2', Name 'Anne' },

	 TUPLE { StudentId 'S2', CourseId 'C1', Name 'Boris' },

	 TUPLE { StudentId 'S3', CourseId 'C3', Name 'Cindy' },

	 TUPLE { StudentId 'S4', CourseId 'C1', Name 'Devinder' }

	 } , E1 := <your renaming of enrolment, as specified>) :

	 E1

Evaluate that to check that you wrote the renaming correctly.

9.	 Now replace the : by , E1 := and this time add a similar renaming of enrolment,
using SID2 and N2 instead of SID1 and N1 for the new attribute names, and add : E1
JOIN E2 at the end. You are investigating the operator called JOIN (see Chapter 4,
Section 4.4).

How do you interpret the result? How many tuples does it contain? Replace the key word JOIN
by COMPOSE (see Chapter 5, Section 5.2). How do you interpret this result? How many tuples
are there now? How do you account for the difference?

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read more

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

Exercises on Relational Database Theory

14

Exercises

10.	 Add WHERE NOT (SID1 = SID2) to end of the expression you evaluated in Step 9
(see Chapter 4, Section 4.7). Examine the result closely. Now place parentheses around E1
COMPOSE E2 and evaluate again. Confirm that you get the same result.

Repeat the experiment, replacing WHERE NOT (SID1 = SID2) by { SID1 }.
Do you get the same results this time? If not, why not?

What does all this tell you about operator precedence rules in Tutorial D?

Why was it probably a good idea to add that WHERE invocation? Did it completely solve the
problem? If not, can you think of a better solution?

What connection, if any, do you see between this exercise and Exercise 6?

11.	 Load the file OperatorsChar.d, provided in the Scripts subdirectory of the Rel program
directory, and execute it. Now you have the operators used in Example 2.4, among others.
Give appropriate type definitions for types NAME and CID. Notice that the operator
TO_UPPER_CASE is available for converting a given string to its upper-case counterpart.
You might like to try using this operator to define a constraint for type NAME to ensure that
all names begin with a capital letter.

12.	 Close Rel by clicking on File/Exit.

1.3	 Exercises for Chapter 3, Predicates and Propositions

Consider again the relation shown as the current value of ENROLMENT in Figure 1.2:

StudentId Name CourseId

S1 Anne C1

S1 Anne C2

S2 Boris C1

S3 Cindy C3

S4 Devinder C1

For each of the following propositions, state whether it is true or false, basing your conclusions on this
relation:

1.	 There exists a course CourseId such that some student named Anne is enrolled on CourseId.

2.	 Every student with StudentId S1 who is enrolled on some course is named Anne.

3.	 Every student who is enrolled on course C4 is named Anne.

4.	 Some student who is enrolled on course C4 is named Anne.

5.	 There are exactly 5 students who are enrolled on some course.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

15

Exercises

6.	 It is not the case that there is no course on which no student who is enrolled on some
course but is not named Boris is not enrolled.

7.	 There are exactly 10 pairs of StudentIds (SID1, SID2) such that there is some course on
which student SID1 is enrolled and student SID2 is enrolled.

8.	 There are exactly 3 pairs of StudentIds (SID1, SID2) such that there is some course on which
student SID1 is enrolled and student SID2 is enrolled.

9.	 If a student named Eve is enrolled on course C1, then student S1 is named Adam.

10.	 If student S1 is named Anne, then S1 is enrolled on course C2.

1.4	 Exercises for Chapter 4, Relational Algebra – The Foundation

1.	 Recall that r1 TIMES r2 requires r1 and r2 to have no common attributes, in which case it is
equivalent to r1 JOIN r2. Why would it be a bad idea to require TIMES to be used in place
of JOIN in such cases?

2.	 Given the following relvars:

VAR Cust BASE RELATION {C# CHAR, Discount RATIONAL} KEY {C#};

VAR Orders BASE RELATION {O# CHAR, C# CHAR, Date DATE}

	 KEY {O#};

VAR OrderItem BASE RELATION {O# CHAR, P# CHAR, Qty INTEGER }

	 KEY {O#, P#};

VAR Product BASE RELATION {P# CHAR, Unit_price RATIONAL}

	 KEY {P#};

The price of an order item can be calculated by the formula:

	 CAST_AS_RATIONAL(Qty)*Unit_price*(1.0-(Discount/100.0))

Write down a relation expression to yield a relation with attributes O#, P#, and PRICE,
giving the price of each order item.

3.	 Given:

VAR Exam_Marks BASE RELATION { StudentId SID,

	 CourseId CID,

	 Mark INTEGER}

	 KEY { StudentId, CourseId };

Write down a relational expression to give, for each pair of students sitting the same exam,
the absolute value of the difference between their marks. Assume you can write ABS(x) to
obtain the absolute value of x.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

16

Exercises

4.	 State the value of

(a)	 r NOT MATCHING TABLE_DEE
(b)	 r NOT MATCHING TABLE_DUM
(c)	 r NOT MATCHING r
(d)	 (r NOT MATCHING r) NOT MATCHING r
(e)	 r NOT MATCHING (r NOT MATCHING r)
Is NOT MATCHING associative? Is it commutative?

5.	 (Repeated from the body of the chapter) Which operator, in the list given in Section 4.11,
Concluding Remarks, can be dispensed with without sacrificing relational completeness?
How can it be defined in terms of the other operators?

6.	 (Repeated from the body of the chapter) Investigate the completeness of an algebra that
includes MINUS in place of NOT MATCHING by attempting to define NOT MATCHING in
terms of MINUS and the other operators.

7.	 The chapter briefly mentions the operator MATCHING but defers its detailed description to
Chapter 5. Before you read that chapter, define r1 MATCHING r2 in terms of the operators
described in Chapter 4.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

Exercises on Relational Database Theory

17

Exercises

Working with a Database in Rel

1.	 Start up Rel.

2.	 Figure 4.13 shows the supplier-and-parts database from Chris Date’s Introduction to
Database Systems (8th edition), as shown on the inside back cover of that book (except that
the attribute names there are in upper case).

S S# Sname Status City SP S# P# Qty

S1 Smith 20 London S1 P1 300
S2 Jones 10 Paris S1 P2 200
S3 Blake 30 Paris S1 P3 400
S4 Clark 20 London S1 P4 200
S5 Adams 30 Athens S1 P5 100

S1 P6 100
S2 P1 300
S2 P2 400

P P# Pname Color Weight City S3 P2 200
S4 P2 200

P1 Nut Red 12.0 London S4 P4 300
P2 Bolt Green 17.0 Paris S4 P5 400
P3 Screw Blue 17.0 Oslo
P4 Screw Red 14.0 London
P5 Cam Blue 12.0 Paris
P6 Cog Red 19.0 London

Figure 4.13: The suppliers-and-parts database

Execute a Tutorial D VAR statement for each of S, P and SP. Use INTEGER as the declared
type for STATUS and QTY, RATIONAL for WEIGHT, and CHAR for all the other attributes.
Feel free to use lower case or mixed case to suit your own taste for attribute and relvar names,
but do not otherwise change any of the given names.

Tutorial D requires at least one key constraint to be specified for each relvar. One key for each
for S, P and SP is shown by underlining the relevant attribute names in the table. No other
key constraints are needed.

“Populate” (as they say) each relvar with the values shown in Date’s tables. There are several
ways of achieving this. Choose whichever you prefer from the following:

a.	 Include an INIT (...) specification in the VAR statement, after the heading
and before the KEY specification. Inside the parens, write a RELATION {
... } expression, using a TUPLE expression for each required tuple, as in the
enrolment literal used in the Rel exercises for Chapter 2.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

18

Exercises

b.	 Execute the VAR statement without an INIT (...) specification. The
implied initial value is the empty relation of the appropriate type. You can see this
by asking Rel for the current value of the relvar. For example, to get the current
value of S, just type S into the lower pane and click Run (F5).
Now use an assignment statement of the form
varname := relation-expression
to populate the relvar. Check that Rel has indeed assigned the correct value to it.

c.	 Use Rel INSERT statements to populate the relvar piecemeal, perhaps one tuple at
a time. Having typed in the first INSERT statement. Here is the general form of
an INSERT statement to insert a single tuple:

		 INSERT varname RELATION { TUPLE { ... } } ;

Note that the source operand is still a relation, not just a tuple, hence the need to
enclose the TUPLE expression inside RELATION { }.

3.	 Informally, we refer to S as suppliers, P as parts and SP as shipments. Predicates for these
relvars are:

S: Supplier S# is named Sname, has status Status and is located in city City.
P: Part P# is named Pname, is coloured Color, weighs Weight and is located in city City.
SP: Supplier S# ships part P# in quantities of Qty.
What, then, is the predicate for the expression S JOIN SP JOIN P?
What do you expect to be the result of that expression?
What is its degree?
Does Rel give the result you expected? Explain what you see.

4.	 Attempt to insert a tuple into SP with supplier number S1, part number P1 and quantity
100. Explain the result of your attempt.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

19

Exercises

5.	 Get Rel to evaluate each of the following expressions. For each one, write down the
corresponding predicate and also give an informal interpretation of the query in the style of
those given in Exercise 6 below.

a.	 SP WHERE P# = 'P2'

b.	 S { ALL BUT Status }

c.	 SP { S#, Qty }

d.	 P NOT MATCHING (SP WHERE S# = 'S2')

e.	 S MATCHING (SP WHERE P# = 'P2')

f.	 S { City } UNION P { City }

g.	 S { City } MINUS P { City }

h.	 ((S RENAME { City AS SC }) { SC }) JOIN

	 ((P RENAME { City AS PC }) { PC })

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/IE

Exercises on Relational Database Theory

20

Exercises

6.	 Write Tutorial D expressions for the following queries and get Rel to evaluate them:

a.	 Get all shipments.
b.	 Get supplier numbers for suppliers who supply part P1.
c.	 Get suppliers with status in the range 15 to 25 inclusive.
d.	 Get part numbers for parts supplied by a supplier in Paris.
e.	 Get part numbers for parts not supplied by any supplier in Paris.
f.	 Get city names for cities in which at least two suppliers are located.
g.	� Get all pairs of part numbers such that some supplier supplies both of the indicated

parts.
h.	 Get supplier numbers for suppliers with a status lower than that of supplier S1.
i.	� Get supplier-number/part-number pairs such that the indicated supplier does not supply

the indicated part.

1.5	 Exercises for Chapter 5, Building on The Foundation

1.	 (Repeated from the body of the chapter) What can you say about the result of r1 COMPOSE
r2 when r1 and r2 have identical headings? For example, what is the result of IS_CALLED
COMPOSE IS_CALLED?

2.	 (Repeated from the body of the chapter) Is COMPOSE associative? In other words, is
(r1 COMPOSE r2) COMPOSE r3 equivalent to r1 COMPOSE (r2 COMPOSE r3)? If so, prove
it; if not, show why.

3.	 What can you say about the result of r1 MATCHING (r2 MATCHING r1)?

4.	 (Repeated from the body of the chapter) Does the aggregate operator AVG have a basis
operator? If so, define it.

5.	 Suppose an aggregate operator PRODUCT is defined, with arithmetic multiplication as its
basis operator. What is the result of PRODUCT(r,x) if r is empty?

6.	 (Repeated from the body of the chapter) Is it always the case that the cardinality of an
ungrouping is equal to the sum of the cardinalities of the relations being ungrouped on?

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

21

Exercises

7.	 Write Tutorial D expressions for the following queries and get Rel to evaluate them:

a.	 Get the total number of parts supplied by supplier S1.
b.	 Get supplier numbers for suppliers whose city is first in the alphabetic list of such cities.
c.	 Get part numbers for parts supplied by all suppliers in London.
d.	 Get supplier numbers and names for suppliers who supply all the purple parts.
e.	� Get all pairs of supplier numbers, Sx and Sy say, such that Sx and Sy supply exactly the

same set of parts each.
f.	 Write a truth-valued expression to determine whether all supplier names are unique in S.
g.	� Write a truth-valued expression to determine whether all part numbers appearing in

SP also appear in P.

1.6	 Exercises for Chapter 6, Constraints and Updating

1.	 (Repeated from the body of the chapter).

a.	� An implication of KEY { ALL BUT } is that no other key can possibly exist for the
relvar it applies to. Why is this so?

b.	� An implication of KEY { } is that no other key can possibly exist for the relvar it
applies to. Why is this so?

2.	 Suppose the relvar definition for COURSE is extended to include an attribute
MaxExamMark, whose value in each tuple is the maximum mark obtainable for that
course’s exam. {StudentId, CourseId} is a foreign key in EXAM_MARK, referencing
IS_ENROLLED_ON. A constraint is needed to ensure that no student is awarded a mark
greater than the relevant maximum.

a.	� Write a Tutorial D CONSTRAINT statement to address this requirement, where the
constraint condition is an invocation of IS_EMPTY.

b.	 Complete the following statement to make it equivalent to the one you wrote for part (a):

		 CONSTRAINT … AND(EXAM_MARK, …) ;

3.	 Now suppose that instead of there being a recorded maximum mark of each exam the
maximum score for each question in each exam is recorded in the following relvar:

		 VAR EX�AM_QUESTION BASE RELATION { CourseId CID,

Question# INTEGER, MaxMark INTEGER }

KEY { CourseId, Question# } ;

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

22

Exercises

For each course, the exam questions are supposed to be numbered sequentially, starting at 1.

a.	 Write a Tutorial D CONSTRAINT statement to address this requirement.
b.	� Suppose the questions are subdivided into parts, a, b, c and so on, up to a maximum of

six parts, and maximum marks are given for each part rather than for each question.
Again, the parts for each question must be “numbered” sequentially, starting at a. Write
a Tutorial D CONSTRAINT statement to address this requirement.

c.	� Devise shorthands, in the style of Tutorial D, for expressing constraints of the kinds
found in your solutions to a. and b.

4.	 Using Rel, with the suppliers-and-parts database set up for the Rel exercises given at the end
of Chapter 4, write Tutorial D integrity constraints to express the following requirements:

a.	 Every shipment tuple must have a supplier number matching that of some supplier tuple.
b.	 Every shipment tuple must have a part number matching that of some part tuple.
c.	 All London suppliers must have status 20.
d.	 No two suppliers can be located in the same city.
e.	 At most one supplier can be located in Athens at any one time.
f.	 There must exist at least one London supplier.
g.	 The average supplier status must be at least 10.
h.	 Every London supplier must be capable of supplying part P2.

1.7	 Exercises for Chapter 7, Database Design I: Projection-Join Normalization

1.	 (Repeated from the body of the chapter). The predicate for WIFE_OF_HENRY_VIII
is “The first name of the Wife#-th wife of Henry VIII is FirstName and her last name
is LastName and Fate is what happened to her.” Write an appropriate predicate for the
following expression:

		 WIFE_OF_HENRY_VIII { Wife#, FirstName }

		 JOIN

		 WIFE_OF_HENRY_VIII { LastName, Fate }

2.	 Consider the following declarations:

VAR C1_EXAM_MARK BASE

	 INIT (EXAM_MARK WHERE CourseId = CID('C1'))

	 KEY { StudentId } ;

CONSTRAINT C1_only

	 AND (C1_EXAM_MARK, CourseId = CID('C1')) ;

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

23

Exercises

(Recall that AND is the aggregate operator mentioned in Chapter 5, evaluating to TRUE if and
only if the given condition evaluates to TRUE for every tuple of the given relation.)

a.	 Explain why C1_EXAM_MARK is not in BCNF.
b.	� Assume that similar relvars are defined for every course, except that this time there are

no CourseId attributes. Describe how a query could be expressed to give the course
identifier and mark for every exam taken by student S1.

3.	 In Section 7.5 of the chapter, under the heading Functional Dependencies, the following
eight theorems are given concerning FDs.

1. Reflexivity: If B is a subset of A, then A → B
2. Augmentation: If A → B, then A 4 C → B 4 C
3. Transitivity: If A → B and B → C, then A → C
4. Self-determination: A → A
5. Decomposition: If A → B and C is a subset of B, then A → C and A → B – C
6. Union: If A → B and A → C, then A → B 4 C
7. Composition: If A → B and C → D, then A 4 C → B 4 D
8. Unification: If A → B and C → D, then A 4 (C – B) → B 4 D

Taking the first three as axioms, prove theorems 4 to 8.

4.	 (Repeated from the body of the chapter). Consider relvar SCDF with attributes S (for
student), C (for course), D (for department), and F (for faculty). Assuming that the set
{{C} → {D}, {D} → {F}} is a minimal cover for the FDs in SCDF, prove that {S,C} is a key of
SCDF.

5.	 (Repeated from the body of the chapter). Assume that {{W,X} → {Y,Z}, {Y} → {X}} is a
minimal FD cover for the FDs in relvar WXYZ. Prove that {W,X} and {W,Y} are both keys of
WXYZ.

6.	 The heading of relvar R1 consists of attributes named a, b, c, d, e, f, g, and h. The
following set of FDs is a cover for those that hold in R1:

	 FD1:	 {a,b} → {c}
	 FD2:	 {a,b} → {d}
	 FD3:	 {b} → {e}
	 FD4:	 {c} → {f}
	 FD5:	 {g} → {h}
	 FD6:	 {d} → {b, e}

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

24

Exercises

a.	 Describe the single change required to derive an irreducible cover from the given set.
b.	 Describe the single change required to derive a minimal cover from your answer to a.
c.	 Explain why R1 is not in Boyce-Codd normal form (BCNF).
d.	� Decompose R1 into an equivalent set of BCNF relvars. Name your relvars R2, R3,

and so on and for each one list its attribute names and state its key(s). For example:
R3{c,d,e} KEY{d} KEY{c,e} if you think this relvar with those two keys is part
of the solution.

7.	 This replaces the Exercise 7 given in Chapter 7, giving you a more precise and detailed
specification to work from. It’s best done after a study of Chapter 8, in particular Section 8.4,
Representing “Entity Subtypes”.

This exercise is based heavily on what I see when I use internet banking with a bank at which
I have several accounts. You are to develop a Tutorial D database definition, using VAR and
CONSTRAINT statements, to implement the specification given below. Assume that types DATE
and TIME are available for dates and times of day, and that the usual comparison operators are
defined for these types. Otherwise, use type RATIONAL for currency amounts and CHAR for
everything else (we are not concerned, here, with constraints defining formats for customer
numbers, phone numbers, e-mail addresses, and so on).

Scenario, Requirements, and Business Rules

The bank has customers. Each new customer is assigned a unique customer number. Each
customer’s name and address must be recorded.

	 BR1	� Every customer is uniquely identified by a customer number and has exactly
one name and exactly one address.

Optionally, one e-mail address for a customer can be recorded, as well as up to three phone
numbers—but no more than one phone number of each type (home, business, mobile).

	 BR2	 A customer can additionally have at most one e-mail address.
	 BR3	 A phone number is of exactly one type, home, business, or mobile.
	 BR4	� A customer can additionally have at most one home phone number, at most

one business phone number, and at most one mobile phone number.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

25

Exercises

To become a customer of the bank, one most open at least one account. Of course it is possible
for the same customer to have several accounts (for example, current, savings, mortgage, and
so on). Each account is uniquely identified by an account number. For each account, the
account holder’s customer number must be recorded and also the account type, and the date
on which the account was opened. The same customer is permitted to hold several accounts
of the same type.

	 BR5	� Every account is uniquely identified by an account number and has exactly
one customer number, exactly one type, and exactly one date on which it was
opened.

	 BR6	 The customer number of an account is that of an existing customer.

The recording of details of payments into and out of an account is complicated by the various
different methods of payment. Each transaction against a particular account is automatically
assigned a transaction number upon reception by the bank’s computer. Transaction numbers
are unique within an account.

	 BR7	� A transaction is uniquely identified by the combination of its account number
(identifying an existing account) and transaction number.

Every transaction is for an amount of money.

	 BR8	 Every transaction has exactly one amount.

Every transaction is somehow dated and the relevant date of no transaction can precede the
date on which the relevant account was opened.

In addition to the amount, the information associated with each transaction number varies
according to the kind of transaction, as follows.

Payments in:

For a payment into an account, the account number, date, time, and source.

	 BR9	� Every payment in has exactly one account number, exactly one date, exactly
one time of day, and exactly one source.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

26

Exercises

Payment by cheque:

A cheque on a particular account is uniquely identified within that account by its cheque
number. For a payment by cheque, the account number, cheque number, date written (as
shown on the cheque), date processed (by the bank), payee, and amount are recorded.

	 BR10	� Every payment by cheque has exactly one account number, exactly one cheque
number, exactly one date written (as shown on the cheque), exactly one date
processed (by the bank), and exactly one payee.

It is possible for more than one payment to be made by cheque to the same payee with the
same date written and date processed. It is assumed that cheque books are not issued to a
customer until the relevant account has been opened. A cheque cannot be processed before
the date written as shown on the cheque.

	 BR11	 The date processed of a cheque cannot precede its date written.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

STUDY AT A TOP RANKED
INTERNATIONAL BUSINESS SCHOOL

Reach your full potential at the Stockholm School of Economics,
in one of the most innovative cities in the world. The School
is ranked by the Financial Times as the number one business
school in the Nordic and Baltic countries.

Visit us at www.hhs.se

Sw
ed

en

Stockholm

no.1
nine years
in a row

http://s.bookboon.com/hhs2016

Exercises on Relational Database Theory

27

Exercises

Payment by direct debit:

For a payment by direct debit, the account number, date, time, payee, and amount are
recorded. Note that is theoretically possible for more than one payment to be made by direct
debit to the same payee at exactly the same time on the same day.

	 BR12	� Every payment by direct debit has exactly one account number, exactly one
date, exactly one time, and exactly one payee.

Payment by debit card:

This includes cash withdrawals from ATMs. A customer can be issued with any number of
debit cards. Each debit card is for a particular account and several debit cards can be issued for
the same account, perhaps for use by various family members. Each debit card is identified by
a card number. For every debit card, the relevant account number, cardholder’s name, and
expiry date are recorded. For a payment by debit card, the card number, date, time, payee
(which might refer to an ATM), and amount are recorded. It is not possible for the same debit
card to be used more than once at exactly the same time on the same day. It is not possible to
use a debit card for any payment on a date after the expiry date.

	 BR13	� Every debit card is uniquely identified by a card number and has exactly one
account number (identifying an existing account), exactly one cardholder’s
name, exactly one expiry date, and exactly one payee.

	 BR14	� Every payment by debit card is uniquely identified by the combination of
its transaction number and card number of an existing card, also by the
combination of its card number, date, and time, and has exactly one payee.

	 BR15	� The date of a payment by debit card cannot be later than the expiry date of the
relevant card.

	 BR16	� Every transaction is either a payment in, or a payment by cheque, or a payment
by direct debit, or a payment by debit card.

	 BR17	 No transaction is of more than one of the types mentioned in BR16.
	 BR18	� A transaction other than a payment by cheque cannot be dated earlier than the

date on which the relevant account was opened.

8.	 Based on your experiences with Exercise 7, suggest enhancements to Tutorial D to make it
easier to express any constraints you declared that struck you as being of a common enough
kind to warrant an additional shorthand.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

28

Exercises

9.	 (For students familiar with SQL). Consider the following SQL definitions:

	 CREATE TABLE SF (StudentId CHAR(4),

	 Faculty VARCHAR(50),

	 PRIMARY KEY (StudentId)

	 UNIQUE (StudentId, Faculty) ;

	 CREATE TABLE CF (CourseId CHAR(4),

	 Faculty VARCHAR(50),

	 PRIMARY KEY (CourseId)

	 UNIQUE (CourseId, Faculty);

	 CREATE TABLE SCF (StudentId CHAR(4),

	 CourseId CHAR(4),

	 Faculty VARCHAR(50),

	 PRIMARY KEY (StudentId, CourseId),

	 FOREIGN KEY (StudentId, Faculty)

	 REFERENCES SF (StudentId, Faculty),

	 FOREIGN KEY (CourseId, Faculty)

	 REFERENCES CF (CourseId, Faculty) ;

a.	 What problem was the designer solving here?
b.	 What possible problem remains in this solution?
c.	 Describe and comment on the particular features of SQL that make this solution possible.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

29

Exercises

1.8	 Additional Exercises Using Rel

1.	 Explore Rel’s catalogue. It consists of a relvar named sys.Catalog. Use the following
trick to see sys.Catalog’s heading only:

	 sys.Catalog WHERE FALSE

From their names, you might be able to guess which attributes are of most interest (possibly
Name, Owner, and isVirtual?).

Create a virtual relvar named myvars giving the Name, Owner, and isVirtual of every
relvar not owned by ‘Rel’. Virtual relvars are created like this:

	 VAR name VIRTUAL relation-expression ;

Test your virtual relvar definition by entering the queries

	 myvars

	 myvars WHERE isVirtual

	 (myvars WHERE NOT isVirtual){ALL BUT isVirtual}

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/liu

Exercises on Relational Database Theory

30

Exercises

2.	 If you haven’t already done so, load the file OperatorsChar.d, provided in the Scripts
subdirectory of the Rel program directory, and execute it. One of the relvars mentioned
in sys.Catalog is named sys.Operators. Display the contents of that relvar.
How many attributes does it have? What is the declared type of the attribute named
Implementations?

3.	 Evaluate the expression

(sys.Operators ungroup (Implementations)

where Language = 'JavaF')

{ ALL BUT Language, CreatedByType, Owner, CreationSequence}

What are the “ReturnsTypes” of LENGTH, IS_DIGITS, and SUBSTRING?

4.	 Note that if s is a value of type CHAR, then LENGTH(s) gives the number of characters
in s, IS_DIGITS(s) gives TRUE if and only if every character of s is a decimal digit.
SUBSTRING(s,0,l) gives the string consisting of the first l characters of s (note that
strings are considered to start at position 0, not 1). SUBSTRING(s,f) gives the string
consisting of all the characters of s from position f to the end.

What is the result of IS_DIGITS('')? Is it what you expected? Is it consistent with the
definition given above?

5.	 Using operators defined by OperatorsChar.d, define types for supplier numbers and
part numbers, following Example 2.4 from Chapter 2.

Define relvars Srev, Prev, and SPrev as replacements for S, P and SP, using the types you
have just defined as the declared types of attributes S# and P#.

Write relvar assignments to copy the contents of S, P and SP to Srev, Prev, and SPrev,
respectively. Note that if SNO is the type name for supplier numbers in S and Srev, then
SNO(S#) “converts” an S# value in S to one for use in Srev.

6.	 Using the relvars defined in Exercise 5, repeat Exercise 6 from the set headed “Working with
A Database in Rel” given with the exercises for Chapter 4. Which of your solutions need
revisions beyond the obvious changes in relvar names?

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

31

Solutions (shown in blue)

2	 Solutions (shown in blue)
2.1	 Exercise for Chapter 1, Introduction

Consider the following table (from Figure 1.5 of the book)

A B A

1 2 3

4 5

6 7 8

9 9 ?

1 2 3

Give three reasons why it cannot possibly represent a relation.

1.	� Two of the columns have the same name, A. The attributes of a relation have unique
names for identification purposes.

2.	� The first and last of the rows shown in green are identical. The same tuple cannot appear
more than once in the body of a relation.

3.	� The second row shown in green appears to have no entry for column B. Every tuple in
the body of a relation has exactly one value for each attribute of that relation’s heading.

Some students might think there is a fourth error, concerning the question mark in the last
column of the penultimate row. Each attribute of a relation has a defined type, and each tuple
in that relation must have for that attribute a value of its type. If the values shown in the third
column are all of the same type, then it is a type that contains a value that can be denoted by
the symbol “?” as well as several values denoted by numbers. That is perhaps an improbable type
but relational theory places no restrictions as to which types are permissible as attribute types.

2.2	 Exercises for Chapter 2, Values, Types, Variables, Operators

Complete sentences 1–10 below, choosing your fillings from the following:

=, :=, ::=, argument, arguments, body, bodies, BOOLEAN, cardinality, CHAR, CID, degree, denoted,
expressions, false, heading, headings, INTEGER, list, lists, literal, literals, operator, operators, parameter,
parameters, read-only, set, sets, SID, true, type, types, update, variable, variables.

In 1–5, consider the expression X = 1 OR Y = 2.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

32

Solutions (shown in blue)

1.	 In the given expression, = and OR are _____ whereas X and Y are _____ references.

operators, variable

2.	 X and 1 denote _____ to an invocation of _____.

arguments, =

3.	 The value _____ by the given expression is of _____ BOOLEAN.

denoted, type

4.	 1 and 2 are both _____ of _____ INTEGER.

literals, type

5.	 The operators used in the given expression are _____ operators.

read-only

In 6–10, consider the expression RELATION { X SID, Y CID } { }.

6.	 It denotes a relation whose _____ is zero and whose _____ is two.

cardinality, degree Explanation: the cardinality is the number of tuples in the body and the
degree is the number of attributes in the heading.

7.	 It is a relation _____.

literal

8.	 The declared type of Y is _____.

CID

9.	 In general, the heading of a relation is a possibly empty _____ of attributes and its body is a
possibly empty _____ of tuples.

set, set

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

33

Solutions (shown in blue)

10.	 It is _____ that the assignment RV __ RELATION { X SID, Y CID } { }
is legal if the _____ of RV is { Y CID, X SID }, _____ that it is legal if the
_______ of RV is { A SID, B CID }, _____ that it is legal if the _____ of
RV is { X CID, Y SID }, and _____ that it is legal if the _____ of RV is
{ X CHAR, Y CHAR }.

true, :=, heading, false, heading, false, heading, false, heading

Solutions to questions posed in exercises in Getting Started with Rel

5.	 Why do we have to write output x ; in full when it is part of a compound statement,
instead of just x?

	 �Because otherwise Rel might be looking at x end ; and that is not a valid statement
of any kind. The presence of a line break carries no significance.

What have you learned about Rel’s rules concerning case sensitivity?

	 Identifiers are case-sensitive, key words are not.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/EOT

Exercises on Relational Database Theory

34

Solutions (shown in blue)

6.	 When “Enhanced” is off, is the output of evaluating the given relation literal identical to the
input?

	� No. The output includes {CourseId CHAR, Name CHAR, StudentId CHAR}
in between the key word RELATION and the first opening brace. Also, the character
string literals are enclosed in double-quotes instead of single-quotes.

Now delete all the tuple expressions, leaving just RELATION { }. What happens when Rel
tries to evaluate that?

	� You get an error message saying that “{” is expected in place of <EOF>. In other words,
it expects another list enclosed in braces to follow the empty one.

Now use < to recall the original RELATION expression to the input pane and re-evaluate it
with “Enhanced” off. Use copy-and-paste to copy the result to the input pane, then delete all
the TUPLE expressions, to leave this:

	 RELATION {StudentId CHARACTER, CourseId CHARACTER,

	 Name CHARACTER} { }

Study the result of that in the output pane, first with “Enhanced” off, then with it on.

What conclusions do you draw from all this, about Rel and Tutorial D?

	� The text inserted after the key word RELATION can be recognized as a specification of
the heading of the relation: a list of the attribute names and their declared types (in this
example, CHARACTER for each attribute). Tutorial D allows the heading to be specified,
in which case each tuple specified in the body must be of that heading. Tutorial D also
allows the heading to be omitted, provided that the body is not empty. Each tuple must
of course be of the same heading, and that determines the heading of the relation.

	� Rel allows CHAR literals to be enclosed in either single-quotes or double-quotes. The
closing quote must match the opening one.

Next, enter the following literal, perhaps by using the < button to recall enrolment and
editing it:

	 RELATION {

	 TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' },

	 TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' }

	 }

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

35

Solutions (shown in blue)

Before you press Evaluate (F5), think about what you expect to happen. Does the result meet
your expectation? How do you explain it?

	� The body of a relation is a set of tuples. A set by definition contains exactly one appearance
of each of its elements. Rel would perhaps be justified in treating this expression as an
error, but it is equally justified in just ignoring any duplicate tuples. In conventional
mathematical notation, {1,2,3,1}, for example, is considered to denote the set consisting
of the elements 1, 2, and 3. The redundancy can sometimes be convenient when variables
are involved—the set {x, y}, for example, has cardinality 1 in the case where x=y.

Use < again to recall the enrolment literal. Insert WITH (enrolment := at the
beginning and add) : enrolment at the end, to give:

	� The WITH expression equates the name enrolment with the RELATION expression
preceding the key word AS. It is the expression following the colon (:) that Rel evaluates.
So in this simple case, WITH defines the name enrolment, and enrolment is then
the expression we ask Rel to evaluate when we click on Run (F5).

By inspection of enrolment only, write down all the cases you can find of two students such
that there is at least one course they are both enrolled on.

	 Anne and Boris
	 Boris and Devinder
	 Anne and Devinder

If you included all the cases where the two students are in fact the same student, such as “Anne
and Anne”, well, that’s a good pointthe question didn’t say “distinct students”.

7.	 How many distinct projections can be obtained from enrolment?

	� Eight. If you found less than eight, did you forget the empty projection, enrolment{}?
If you found more than eight, were you perhaps thinking that, for example,
enrolment{StudentId, Name} and enrolment{Name, StudentId} are
distinct projections? Recall that attribute order carries no significance.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

36

Solutions (shown in blue)

8.	 Your renaming should look like this:

	 WITH (enrolment :=

	 RELATION {

	 TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' },

	 TUPLE { StudentId 'S1', CourseId 'C2', Name 'Anne' },

	 TUPLE { StudentId 'S2', CourseId 'C1', Name 'Boris' },

	 TUPLE { StudentId 'S3', CourseId 'C3', Name 'Cindy' },

	 TUPLE { StudentId 'S4', CourseId 'C1', Name 'Devinder' }

	 } , E1 := enrolment RENAME

	 { StudentId AS SID1, Name AS N1 }) :

	 E1

9.	 Here is the expression you should have evaluated:

	 WITH (enrolment :=

	 RELATION {

	 TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' },

	 TUPLE { StudentId 'S1', CourseId 'C2', Name 'Anne' },

	 TUPLE { StudentId 'S2', CourseId 'C1', Name 'Boris' },

	 TUPLE { StudentId 'S3', CourseId 'C3', Name 'Cindy' },

	 TUPLE { StudentId 'S4', CourseId 'C1', Name 'Devinder' }

	 } , E1 := enrolment RENAME

	 				 {StudentId AS SID1, Name AS N1 },

	 E2 := enrolment RENAME

	 				 { StudentId AS SID2, Name AS N2 }

) :

	 E1 JOIN E2

How do you interpret the result? How many tuples does it contain? Replace the key word
JOIN by COMPOSE. How do you interpret this result? How many tuples are there now? How
do you account for the difference?

	� The result of the join gives pairs of students, shown by their names and ids, enrolled on
the same course, along with the course id of that course. There are 11 tuples, including
several in which the two students are in fact the same person!

	� The result of the compose gives pairs of students such that there is at least one course
they are both enrolled on. This time there are only 10 tuples, because Anne is enrolled
on two courses and therefore appears twice, paired with herself, in the join but only
once in the composition. (The composition is equivalent to the join followed by
{ ALL BUT CourseId }).

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

37

Solutions (shown in blue)

10.	 Add WHERE NOT (SID1 = SID2) to end of the expression you evaluated in
Step 9. Examine the result closely. Now place parentheses around E1 COMPOSE E2 and
evaluate again. Confirm that you get the same result.

Repeat the experiment, replacing WHERE NOT (SID1 = SID2) by { SID1 }.
Do you get the same results this time? If not, why not?

What does all this tell you about operator precedence rules in Rel?

	� Because presence of parentheses around e1 COMPOSE e2 makes no difference when
that is followed by an invocation of WHERE, it appears that COMPOSE takes precedence
over restriction. And so does JOIN. However, when we replace the restriction by a
projection that specifies an attribute of E1, we find that it fails unless the COMPOSE
invocation is enclosed in parentheses. We conclude that projection takes precedence over
COMPOSE (and JOIN). On the whole you are left to discover Rel’s operator precedence
rules for yourself. Of course you can always use parentheses to override them, as in most
computer languages.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

Exercises on Relational Database Theory

38

Solutions (shown in blue)

Why was it probably a good idea to add that WHERE invocation? Does it completely solve the
problem? If not, can you think of a better solution?

	� It eliminates the cases of the two students paired together being the very same student.
However, we are still left with Anne being paired with Boris in one tuple, and Boris being
paired with Anne in another tuple. Obviously if Anne and Boris are both enrolled on
some course, we don’t really want to be told so twice. It seems that the relation for the
predicate ‘x is enrolled on the same course as y’ is reflexive (true whenever x = y) and
symmetric (if it is true when x = a and y = b, then it is true when x = b and y = a).

	� We can eliminate the redundant cases by using the WHERE condition SID1 < SID2,
sneakily taking advantage of the fact that character strings are ordered (in Rel, as in
most programming languages, of course).

What connection, if any, do you see between this exercise and Exercise 6?

	 See the last paragraph of Exercise 6.

2.3	 Exercises for Chapter 3, Predicates and Propositions

Consider again the relation shown as the current value of ENROLMENT in Figure 1.2:

StudentId Name CourseId

S1 Anne C1

S1 Anne C2

S2 Boris C1

S3 Cindy C3

S4 Devinder C1

For each of the following propositions, state whether it is true or false, basing your conclusions on this
relation:

1.	 There exists a course CourseId such that some student named Anne is enrolled on CourseId.

True—C1 is such a course.

2.	 Every student with StudentId S1 who is enrolled on some course is named Anne.

True—we might guess that the students named Anne who are enrolled on both C1 and C2
are in fact the same student, but we are not actually told that. Even if for some strange reason
they are different people, they are both named Anne and no other enrolment is for somebody
with StudentId S1.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

39

Solutions (shown in blue)

3.	 Every student who is enrolled on course C4 is named Anne.

True—there does not exist a student who is enrolled on C4 and is not named Anne. Recall
that “for all x, P(x)” is logically equivalent to “there does not exist x such that NOT (P(x))”.

4.	 Some student who is enrolled on course C4 is named Anne.

False—as nobody at all is enrolled on C4 it cannot be possible for anybody named Anne to
be enrolled on it.

5.	 There are exactly 5 students who are enrolled on some course.

False—there are 4. However, this relies on the assumption that no two students have the same
StudentId, in which case those two S1’s are indeed the same student; so the answer “can’t tell”
is perhaps even more acceptable.

6.	 It is not the case that there is no course on which no student who is enrolled on some
course but is not named Boris is not enrolled.

False—Cindy is not enrolled on C1; Cindy and Devinder are not enrolled on C2; Anne and
Devinder are not enrolled on C3. If course C4 exists, then nobody is enrolled on it, so Anne,
Cindy and Devinder are each not enrolled on it. So for each course there is at least one student
who is not enrolled on it but is enrolled on some course and is not named Boris. So it is the
case there is no course having no such student.

7.	 There are exactly 10 pairs of StudentIds (SID1, SID2) such that there is some course on
which student SID1 is enrolled and student SID2 is enrolled.

True—the pairs in question are (Anne, Boris), (Anne, Devinder), (Boris, Devinder), (Devinder,
Boris), (Devinder, Anne), (Boris, Anne), (Anne, Anne), (Boris, Boris), (Devinder, Devinder),
and (Cindy, Cindy).

8.	 There are exactly 3 pairs of StudentIds (SID1, SID2) such that there is some course on which
student SID1 is enrolled and student SID2 is enrolled.

False—we have already shown that there are 10.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

40

Solutions (shown in blue)

9.	 If a student named Eve is enrolled on course C1, then student S1 is named Adam.

True—because “a student named Eve is enrolled on course C1” is false. Recall that a proposition
of the form “If p, then q” is defined to be False only when p is True and q is False. So, whenever
p is False, “If p, then q” is True.

10.	 If student S1 is named Anne, then S1 is enrolled on course C2.

True—because “S1 is named Anne” and “S1 is enrolled on course C1” are both true.

2.4	 Exercises for Chapter 4, Relational Algebra – The Foundation

1.	 Recall that r1 TIMES r2 requires r1 and r2 to have no common attributes, in which case it is
equivalent to r1 JOIN r2. Why would it be a bad idea to require TIMES to be used in place
of JOIN in such cases?

Consider relations R1 { A, B }, R2 { B, C }, and R3 { C, D }. We have seen that, thanks to the
commutativity and associativity of JOIN, we can join these three together in any order. For
example: (R1 JOIN R3) JOIN R2. But if we are required to use TIMES instead of JOIN for
the join of R1 and R3, that particular expression is illegal.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

89,000 km
In the past four years we have drilled

That’s more than twice around the world.

careers.slb.com

What will you be?

1 Based on Fortune 500 ranking 2011. Copyright © 2015 Schlumberger. All rights reserved.

Who are we?
We are the world’s largest oilfield services company1.
Working globally—often in remote and challenging locations—
we invent, design, engineer, and apply technology to help our
customers find and produce oil and gas safely.

Who are we looking for?
Every year, we need thousands of graduates to begin
dynamic careers in the following domains:
n Engineering, Research and Operations
n Geoscience and Petrotechnical
n Commercial and Business

http://s.bookboon.com/Schlumberger1

Exercises on Relational Database Theory

41

Solutions (shown in blue)

2.	 Given the following relvars:

VAR Cust BASE RELATION {C# CHAR, Discount RATIONAL} KEY {C#};

VAR Orders BASE RELATION {O# CHAR, C# CHAR, Date DATE}

	 KEY {O#};

VAR OrderItem BASE RELATION {O# CHAR, P# CHAR, Qty INTEGER }

	 KEY {O#, P#};

VAR Product BASE RELATION {P# CHAR, Unit_price RATIONAL}

	 KEY {P#};

The price of an order item can be calculated by the formula:

	 CAST_AS_RATIONAL(Qty)*Unit_price*(1.0-(Discount/100.0))

Write down a relation expression to yield a relation with attributes O#, P#, and Price,
giving the price of each order item.

WITH (COI := Cust JOIN Orders JOIN OrderItem JOIN Product) :

EXTEND COI : { Price := CAST_AS_RATIONAL(Qty)*Unit_price*

	 (1.0-(Discount/100.0))}

	 { O#, P#, Price }

3.	 Given:

VAR Exam_Marks BASE RELATION { StudentId SID,

	 CourseId CID,

	 Mark INTEGER}

	 KEY { StudentId, CourseId };

Write down a relational expression to give, for each pair of students sitting the same exam,
the absolute value of the difference between their marks. Assume you can write ABS(x) to
obtain the absolute value of x.

WITH (EM1 := EXAM_MARK RENAME { StudentId AS S1, Mark as M1 },

	 EM2 := EXAM_MARK RENAME { StudentId AS S2, Mark as M2 },

	 EM1_2 := EM1 JOIN EM2,

	 Sat_same_exam := EM1_2 WHERE S1 <> S2) :

EXTEND Sat_same_exam : { Diff := ABS (M1—M2))

{ S1, S2, Diff }

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

42

Solutions (shown in blue)

4.	 State the value of

(a)	 r NOT MATCHING TABLE_DEE

	 The empty relation with the heading of r (every tuple matches the 0-tuple)

(b)	 r NOT MATCHING TABLE_DUM

	 r (DUM has no tuples for the tuples of r to match with)

(c)	 r NOT MATCHING r

	� The empty relation with the heading of r (every tuple in r matches some tuple in r,
namely, itself)

(d)	 (r NOT MATCHING r) NOT MATCHING r

	� The empty relation with the heading of r (if the first operand of NOT MATCHING is
empty, then so is the result)

(e)	 r NOT MATCHING (r NOT MATCHING r)

	� r (if the second operand of NOT MATCHING is 	empty, then the result is the first
operand)

Is NOT MATCHING associative? Is it commutative?

Examples (d) and (e) above show that it is not associative. It is not commutative because the
heading of the result is that of the first operand.

5.	 (Repeated from the body of the chapter) Which operator, in the list given in Section 4.11,
Concluding Remarks, can be dispensed with without sacrificing relational completeness?
How can it be defined in terms of the other operators?

RENAME is redundant. r RENAME { a AS b } is equivalent to

	 (EXTEND r : { b := a }) { ALL BUT a }

6.	 (Repeated from the body of the chapter) Investigate the completeness of an algebra that
includes MINUS in place of NOT MATCHING by attempting to define NOT MATCHING in
terms of MINUS and the other operators.

r1 NOT MATCHING r2 is equivalent to

	 r1 JOIN (r1 { c } MINUS r2 { c })

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

43

Solutions (shown in blue)

where c is a commalist of the names of the attributes common to r1 and r2. Therefore an
algebra that contains the listed operators but with MINUS in place of NOT MATCHING is
indeed relationally complete. Note that no harm is done to the given expression is c happens
to be empty.

7.	 The chapter briefly mentions the operator MATCHING but defers its detailed description to
Chapter 5. Before you read that chapter, define r1 MATCHING r2 in terms of the operators
described in Chapter 4.

r1 MATCHING r2 , which yields the relation consisting of those tuples of r1 that match some
tuple in r2, is equivalent to

	 r1 JOIN (r1 { c } JOIN r2 { c })

where c is a commalist of the names of the attributes common to r1 and r2. It is also equivalent to

	 (r1 JOIN r2) { hr1 }

where hr1 is a commalist of the names of the attributes of r1.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

American online
LIGS University

▶▶ enroll by September 30th, 2014 and

▶▶ save up to 16% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

Exercises on Relational Database Theory

44

Solutions (shown in blue)

Working with a Database in Rel

1.	 Start up Rel.
2.	 Figure 4.13 shows the supplier-and-parts database from Chris Date’s Introduction to

Database Systems (8th edition), as shown on the inside back cover of that book (except that
the attribute names there are in upper case).

S S# Sname Status City SP S# P# Qty

S1 Smith 20 London S1 P1 300
S2 Jones 10 Paris S1 P2 200
S3 Blake 30 Paris S1 P3 400
S4 Clark 20 London S1 P4 200
S5 Adams 30 Athens S1 P5 100

S1 P6 100
S2 P1 300
S2 P2 400

P P# Pname Color Weight City S3 P2 200
S4 P2 200

P1 Nut Red 12.0 London S4 P4 300
P2 Bolt Green 17.0 Paris S4 P5 400
P3 Screw Blue 17.0 Oslo
P4 Screw Red 14.0 London
P5 Cam Blue 12.0 Paris
P6 Cog Red 19.0 London

Figure 4.13: The suppliers-and-parts database

Execute a Tutorial D VAR statement for each of S, P and SP. Use INTEGER as the declared
type for STATUS and QTY, RATIONAL for WEIGHT, and CHAR for all the other attributes.
Feel free to use lower case or mixed case to suit your own taste for attribute and relvar names,
but do not otherwise change any of the given names.

Tutorial D requires at least one key constraint to be specified for each relvar. One key for each
for S, P and SP is shown by underlining the relevant attribute names in the table. No other
key constraints are needed.

	 VAR S BASE RELATION { S# CHAR, Sname CHAR,

	 Status INTEGER, City CHAR}

	 KEY { S# } ;

	 VAR P BASE RELATION { P# CHAR, Pname CHAR,

	 Colour CHAR, Weight RATIONAL,

	 City CHAR}

	 KEY { P# } ;

	 VAR SP BASE RELATION {S# CHAR, P# CHAR, Qty INTEGER}

	 KEY { S#, P# } ;

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

45

Solutions (shown in blue)

“Populate” (as they say) each relvar with the values shown in Date’s tables. There are several
ways of achieving this. Choose whichever you prefer from the following:

a.	� Include an INIT (...) specification in the VAR statement, after the heading
and before the KEY specification. Inside the parens, write a RELATION { ... }
expression, using a TUPLE expression for each required tuple, as in the enrolment literal
used in the Rel exercises for Chapter 2.

	 VAR S BASE RELATION { S# CHAR, Sname CHAR,

	 Status INTEGER, City CHAR}

	 KEY { S# }

	 INIT (RELATION {

	 TUPLE { S# 'S1', Sname 'Smith',

	 City 'London',

	 Status 20 },

	 TUPLE { S# 'S2', etc. } }

) ;

b.	� Execute the VAR statement without an INIT (...) specification. The implied
initial value is the empty relation of the appropriate type. You can see this by asking Rel
for the current value of the relvar. For example, to get the current value of S, just type
S into the lower pane and click Run (F5).

	 Now use an assignment statement of the form
	 varname := relation-expression
	 to populate the relvar. Check that Rel has indeed assigned the correct value to it.

	 S := RELATION {

	 TUPLE { S# 'S1', Sname 'Smith',

	 City 'London', Status 20 },

	 TUPLE { S# 'S2', etc. } } ;

c.	� Use Rel INSERT statements to populate the relvar piecemeal, perhaps one tuple at a time.
Having typed in the first INSERT statement. Here is the general form of an INSERT
statement to insert a single tuple:

		 INSERT varname RELATION { TUPLE { ... } } ;

	� Note that the source operand is still a relation, not just a tuple, hence the need to enclose
the TUPLE expression inside RELATION { }.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

46

Solutions (shown in blue)

	 INSERT S RELATION {

	 TUPLE { S# 'S1', Sname 'Smith',

	 City 'London', Status 20 } } ;

	 and repeat for each tuple to be inserted.

3.	 Informally, we refer to S as suppliers, P as parts and SP as shipments. Predicates for these
relvars are:

S: Supplier S# is named Sname, has status Status and is located in city City.

P: Part P# is named Pname, is coloured Color, weighs Weight and is located in city City.

SP: Supplier S# ships part P# in quantities of Qty.

What, then, is the predicate for the expression S JOIN SP JOIN P?

	 �Supplier S# is named Sname, has status Status and is located in city City and part P# is
named Pname, is coloured Colour, weighs Weight and is located in city City and Supplier
S# ships part P# in quantities of Qty.

What do you expect to be the result of that expression?

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

 .

http://s.bookboon.com/AlcatelLucent

Exercises on Relational Database Theory

47

Solutions (shown in blue)

	 Rel gives this (with Enhanced not checked):

	� RELATION {S# CHAR, Sname CHAR, Status INTEGER, City CHAR, P#

CHAR, Qty INTEGER, Pname CHAR, Colour CHAR, Weight RATIONAL}

	 { TUPLE {S# "S1", Sname "Smith", Status 20, City "London",

	 P# "P1", Qty 300, Pname "Nut", Colour "Red", Weight 12.0},

	 TUPLE {S# "S1", Sname "Smith", Status 20, City "London",

	� P# "P4", Qty 200, Pname "Screw", Colour "Red", Weight 14.0},

	 TUPLE {S# "S4", Sname "Clark", Status 20, City "London",

	� P# "P4", Qty 300, Pname "Screw", Colour "Red", Weight 14.0},

	 TUPLE {S# "S1", Sname "Smith", Status 20, City "London",

	 P# "P6", Qty 100, Pname "Cog", Colour "Red", Weight 19.0},

	 TUPLE {S# "S3", Sname "Blake", Status 30, City "Paris",

	� P# "P2", Qty 200, Pname "Bolt", Colour "Green", Weight 17.0},

	 TUPLE {S# "S2", Sname "Jones", Status 10, City "Paris",

	� P# "P2", Qty 400, Pname "Bolt", Colour "Green", Weight 17.0}

	 }

	 In tabular form (i.e., with Enhanced checked):

S# Sname Status City P# Pname Colour Weight Qty

S1 Smith 20 London P1 Nut Red 12.0 300

S1 Smith 20 London P4 Screw Red 14.0 200

S2 Jones 10 Paris P2 Bolt Green 17.0 400

S3 Blake 30 Paris P2 Bolt Green 17.0 200

S4 Clark 20 London P4 Screw Red 14.0 300

S1 Smith 20 London P6 Cog Red 19.0 100

What is its degree? 9 (the number of attributes)

Does Rel give the result you expected? Explain what you see.

	 �S and P both have an attribute named City, so this is a common attribute for matching
purposes, as well as S# and P#. Note the two appearances of City in the predicate for
the join. They must both stand for the same city.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

48

Solutions (shown in blue)

4.	 Attempt to insert a tuple into SP with supplier number S1, part number P1 and quantity
100. Explain the result of your attempt.

Rel gives this:

	� INSERT SP RELATION { TUPLE { S# 'S1', P# 'P1', Qty 200 } } ;

	� ERROR: Inserting tuple would violate uniqueness constraint

of KEY {S#, P#}

	 Line 1, column 62 near '100'

The declaration of relvar SP includes the specification KEY { S#, P# }, which means
the same as, for example:

	 CONSTRAINT SPkey COUNT(SP{S#,P#})=COUNT(SP);

In other words, the cardinality of SP must always be the same as that of its projection over S#
and P#. In other words, for any given combination of S# and P# values, there must be at most
one tuple in SP. Successful insertion of TUPLE { S# 'S1', P# 'P1', Qty 200 }
would have resulted in SP containing two tuples with S# = 'S1' and P# = 'P1', thus
violating the constraint.

5.	 Get Rel to evaluate each of the following expressions. For each one, write down the
corresponding predicate and also give an informal interpretation of the query in the style of
those given in Exercise 6 below.

a.	 SP WHERE P# = 'P2'

	 Supplier S# ships part P# in quantities of Qty and P# is P2.

	� Note that although we have fixed the value for P#, we haven’t actually substituted P2 for
P# in the predicate!

	 Get shipments of part P2.

b.	 S { ALL BUT Status }

	 �There exists a status Status such that supplier S# is named Sname, has status Status and
is located in city City.

	 Get all information about suppliers, apart from their status.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

49

Solutions (shown in blue)

c.	 SP { S#, Qty }

	 There exists a part number P# such that Supplier S# ships part P# in quantities of Qty.

	 For each supplier, get the various quantities used for shipments.

d.	 P NOT MATCHING (SP WHERE S# = 'S2')

	 �Supplier S# is named Sname, has status Status and is located in city City and there exists
a quantity Qty such that S# ships part P2 in quantities of Qty.

	� In these predicates the parameters (free variables) are shown in bold to distinguish them
from the bound variable Qty. Qty is bound by use of the quantifier, “there exists”. You can
use the more formal mathematical notation for existential quantification if you prefer:

	� Qty (Supplier S# is named Sname, has status Status and is located in city City and S#
ships part P2 in quantities of Qty)

	 Get suppliers who supply part P2.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

Exercises on Relational Database Theory

50

Solutions (shown in blue)

e.	 S MATCHING (SP WHERE P# = 'P2')

	 �Part P# is named Pname, is coloured Colour, weighs Weight and is located in city City and
there does not exist a quantity Qty such that supplier S2 ships P# in quantities of Qty.

	 Get parts that supplier S2 cannot supply.

f.	 S { City } UNION P { City }

	 �There exist a supplier number S#, a name Sname, and a status Status such that Supplier
S# is named Sname, has status Status and is located in city City, or there exist a part
number P#, a name Pname, a colour Colour, and a weight Weight such that part P# is
named Pname, is coloured Colour, weighs Weight and is located in city City.

	 or, if you prefer,

	� S# Sname Status (supplier S# is named Sname, has status Status and is located in
city City)— P# Pname Colour Weight (part P# is named Pname, is coloured Colour,
weighs Weight and is located in city City)

	 Note the use of—to signify disjunction (“or”).

	 Get cities where either a supplier or a part is located.

g.	 S { City } MINUS P { City }

	 �There exist a supplier number S#, a name Sname, and a status Status such that Supplier
S# is named Sname, has status Status and is located in city City, and there do not exist
a part number P#, a name Pname, a colour Colour, and a weight Weight such that part
P# is named Pname, is coloured Colour, weighs Weight and is located in city City.

	 Get cities where a supplier is located but no part is located.

h.	 ((S RENAME { City AS SC }) { SC }) JOIN

	 ((P RENAME { City AS PC }) { PC })

	 �There exist a city City, a name Sname, a status Status, a name Pname, a colour Colour,
and a weight Weight such that Supplier S# is named Sname, has status Status and is
located in city City, and part P# is named Pname, is coloured Colour, weighs Weight
and is located in city City.

	� Sometimes it seems impossible to write an informal interpretation without having recourse
to the kind of variable symbols we use in predicates. Hence:

	 Get <S#, P#> pairs such that supplier S# and part P# are located in the same city.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

51

Solutions (shown in blue)

6.	 Write Tutorial D expressions for the following queries and get Rel to evaluate them:

a.	 Get all shipments.

	 SP

b.	 Get supplier numbers for suppliers who supply part P1.

	 S MATCHING (SP WHERE P# = 'P1') { S# }

c.	 Get suppliers with status in the range 15 to 25 inclusive.

	 S WHERE Status > 14 AND Status < 26

d.	 Get part numbers for parts supplied by a supplier in Paris.

	 (SP JOIN (S WHERE City = 'Paris')) { P# }

e.	 Get part numbers for parts not supplied by any supplier in Paris.

	 P { P# } NOT MATCHING

	 (SP JOIN (S WHERE City = 'Paris'))

f.	 Get city names for cities in which at least two suppliers are located.

	 ((S {S#, City} RENAME{S# AS S#1}

	 JOIN

	 S {S#, City} RENAME{S# AS S#2})

	 WHERE S#1 < S#2) {City}

	 or you can use SUMMARIZE:

	 ((SUMMARIZE S PER (S { City }) :

	 { No_of_Supps := COUNT() })

	 WHERE No_of_Supps > 1) { City }

g.	 Get all pairs of part numbers such that some supplier supplies both of the indicated parts.

	 ((SP { S#, P# } RENAME { P# AS Px })

	 JOIN

	 (SP { S#, P# } RENAME { P# AS Py })

) { Px, Py } WHERE Px < Py

	� The final restriction is optional. It assumes that only pairs of distinct part numbers are
required, and that we do not want the result to include both TUPLE { PX px, PY
py } and TUPLE { PX py, PY px } for any (px, py).

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

52

Solutions (shown in blue)

h.	 Get supplier numbers for suppliers with a status lower than that of supplier S1.

	 (S JOIN (((S WHERE S# = 'S1') { Status }

	 RENAME { Status AS S1_Status }

)

)

	 WHERE Status < S1_Status

) { S# }

i.	� Get supplier-number/part-number pairs such that the indicated supplier does not supply
the indicated part.

	 (S { S# } JOIN P { P# }) NOT MATCHING SP

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2015

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://s.bookboon.com/AXA

Exercises on Relational Database Theory

53

Solutions (shown in blue)

2.5	 Exercises for Chapter 5, Building on The Foundation

1.	 (Repeated from the body of the chapter) What can you say about the result of r1 COMPOSE
r2 when r1 and r2 have identical headings? For example, what is the result of IS_CALLED
COMPOSE IS_CALLED?

The result is a relation of degree zero: TABLE_DEE if some tuple in r1 matches some tuple in
r2, otherwise TABLE_DUM. All attributes are common and common attributes do not appear
in the result. When r1 = r2, the result is TABLE_DUM if and only if r1 is empty.

2.	 (Repeated from the body of the chapter) Is COMPOSE associative? In other words, is
(r1 COMPOSE r2) COMPOSE r3 equivalent to r1 COMPOSE (r2 COMPOSE r3)? If so, prove
it; if not, show why.

It is not associative. For let r1, r2, and r3 be defined as follows:

	 r1 = RELATION {TUPLE { X 2 } }

	 r2 = RELATION {TUPLE { X 1 } }

	 r3 = r2

Then r1 COMPOSE r2 yields TABLE_DUM and TABLE_DUM COMPOSE r3 yields the empty
relation with heading the heading of r3. However, r2 COMPOSE r3 yields TABLE_DEE
andr1 COMPOSE TABLE_DEE clearly yields r1, which is not empty.

3.	 What can you say about the result of r1 MATCHING (r2 MATCHING r1)?

The expression is equivalent to r1 MATCHING r2. The result of (r2 MATCHING r1) contains
exactly those tuples of r2 that match some tuple in r1. The loss of the unmatched tuples of r2
has no effect on the final result.

4.	 (Repeated from the body of the chapter) Does the aggregate operator AVG have a basis
operator? If so, define it.

No. However, the average of a list of values x1, …, xn (n¦1), can be computed iteratively,
as opposed to computing their sum and dividing by the number of elements, by letting
T be the tuple TUPLE{X 0, N 0} and then, for i = 1:n, replacing T by the tuple
TUPLE{X ((X FROM T) + xi)/N FROM T), N i}. Then the final result is given
by X FROM T.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

54

Solutions (shown in blue)

In other words, AVG per se does not have a basis operator, but an aggregate operator that yields
a 2-tuple giving the required average along with the number of elements contributing to that
average, does have a basis operator, as defined.

5.	 Suppose an aggregate operator PRODUCT is defined, with arithmetic multiplication as its
basis operator. What is the result of PRODUCT(r,x) if r is empty?

1, because 1 is the identity value under multiplication (∀x, x = x*1).

6.	 (Repeated from the body of the chapter) Is it always the case that the cardinality of an
ungrouping is equal to the sum of the cardinalities of the relations being ungrouped on?

No. For let r1 be

	 RELATION { TUPLE { X RELATION { TUPLE { Y 1 },

	 TUPLE { Y 2 } } },

	� TUPLE { X RELATION { TUPLE { Y 1 } } } }

Then the sum of the cardinalities of the X values in r1 is 2+1=3, whereas the result of
r1 UNGROUP (X) is

	 RELATION { TUPLE { Y 1 },

	 TUPLE { Y 2 } }

whose cardinality is just 2. The tuple TUPLE { Y 1 } appears in both X values but only
once (of course!) in the result of the ungrouping.

7.	 Write Tutorial D expressions for the following queries and get Rel to evaluate them:

a.	 Get the total number of parts supplied by supplier S1.

	 COUNT (SP WHERE S# = 'S1')

	� But that expression yields a scalar value. To obtain the result in the form of a relation,
one could write, for example,

	� RELATION { TUPLE { Parts_from_S1 COUNT (SP WHERE S# =

'S1') } }

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

55

Solutions (shown in blue)

	 or

	 SUMMARIZE (SP WHERE S# = 'S1')

	 PER (TABLE_DEE) :

	 { Parts_from_S1 := COUNT() }

b.	 Get supplier numbers for suppliers whose city is first in the alphabetic list of such cities.

	 (S WHERE City = MIN (S, City)) { S# }

c.	 Get part numbers for parts supplied by all suppliers in London.

	 WITH (LS := S WHERE City = 'London' ,

	 T := SP RENAME { P# AS X }) :

	 (P WHERE (

	 (T WHERE X = P#) { S# }) >= (LS { S# }))

	 { P# }

	� Note the use of relation comparison (>= is Rel’s notation for Tutorial D’s ⊇, “is a superset
of ”). Use of WITH is optional, of course. You might come up with a different solution,
but does it address the possibility of there being no suppliers at all in London?

	 Alternatively, just using the operators of the algebra:

	 WITH (LonSupp := S WHERE City = 'London',

	 LonSuppWithAllParts := LonSupp{S#} JOIN P,

	 PartNotSuppliedByLonSupp :=

	 LonSuppWithAllParts NOT MATCHING SP) :

	 P{P#} NOT MATCHING PartNotSuppliedByLonSupp

	� The second line pairs every London supplier’s supplier number with every part number.
The next two lines find (S#,P#) pairs such that London supplier S# doesn’t supply part
P#. The last line find part numbers that that aren’t part numbers of parts not supplied by
some London supplier. Unravelling the double negative makes that mean part numbers
of parts supplied by every London supplier. Note how the use of relation comparison
in the first solution avoids this double negative.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

56

Solutions (shown in blue)

d.	 Get supplier numbers and names for suppliers who supply all the purple parts.

	 WITH (t1 := EXTEND S :

	 { Parts_Supplied :=

	 (SP JOIN RELATION { TUPLE { S# S#} })

	 {P#}},

	 t2 := t1 WHERE Parts_Supplied >=

	 (P WHERE Colour = 'Purple'){P#}) :

	 t2 { S#, Sname }

	 An alternative solution in the style of the alternative given for 7c. is available here too.

e.	� Get all pairs of supplier numbers, Sx and Sy say, such that Sx and Sy supply exactly the
same set of parts each.

	� The following solution, using relation comparison, appeals directly to the exercise’s “the
same set”:

	 WITH (RX := S RENAME { S# AS SX },

	 RY := S RENAME { S# AS SY }) :

	 ((RX JOIN RY) WHERE

	 ((SP WHERE S# = SX) { P# })

	 = ((SP WHERE S# = SY) { P# })

) { SX, SY } WHERE SX < SY

	� Note the importance of referencing S and not SP in the definitions of RX and RY. If we
reference SP we might miss suppliers who supply no parts at all.

	� The final restriction is optional—see Exercise 6, part g, in the solutions to the exercise for
Chapter 4.

f.	 Write a truth-valued expression to determine whether all supplier names are unique in S.

	 COUNT(S) = COUNT(S{Sname})

g.	� Write a truth-valued expression to determine whether all part numbers appearing in
SP also appear in P.

	 P{P#} ⊇ SP{P#}

	 In Rel, of course, you write >= instead of ⊇.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

57

Solutions (shown in blue)

2.6	 Exercises for Chapter 6, Constraints and Updating

1.	 (Repeated from the body of the chapter).

a.	� An implication of KEY { ALL BUT } is that no other key can possibly exist for the
relvar it applies to. Why is this so?

	 �The specification { ALL BUT } denotes all the attributes—the entire heading—of the
relevant relvar. Thus, any additional key must be a proper subset of that heading. But
by definition no proper subset of a key is a key (the so-called irreducibility property).

b.	� An implication of KEY { } is that no other key can possibly exist for the relvar it
applies to. Why is this so?

	� The specified key is the empty set. Any additional key must be nonempty (there is only
one empty set) and therefore a proper superset of the specified key. But a proper superset
of a key is by definition not a key (though it is a superkey).

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/BI

Exercises on Relational Database Theory

58

Solutions (shown in blue)

2.	 Suppose the relvar definition for COURSE is extended to include an attribute
MaxExamMark, whose value in each tuple is the maximum mark obtainable for that
course’s exam. {StudentId, CourseId} is a foreign key in EXAM_MARK, referencing
IS_ENROLLED_ON. A constraint is needed to ensure that no student is awarded a mark
greater than the relevant maximum.

a.	� Write a Tutorial D CONSTRAINT statement to address this requirement, where the
constraint condition is an invocation of IS_EMPTY.

	 CONSTRAINT MarkAcceptable

	 IS_EMPTY ((EXAM_MARK JOIN COURSE)

	 WHERE Mark > MaxExamMark) ;

b.	 Complete the following statement to make it equivalent to the one you wrote for part (a):

		 CONSTRAINT … AND(EXAM_MARK, …) ;

		 CONSTRAINT MarkAcceptable AND (EXAM_MARK,

	 Mark <= (MaxExamMark FROM TUPLE FROM

	 COURSE RENAME { CourseId AS C }

	 WHERE C = CourseId));

		 but the question is a little unfair because of course one would prefer to write

		 CONSTRAINT MarkAcceptable AND(EXAM_MARK JOIN COURSE,

	 Mark <= MaxExamMark) ;

3.	 Now suppose that instead of there being a recorded maximum mark of each exam the
maximum score for each question in each exam is recorded in the following relvar:

		 VAR EX�AM_QUESTION BASE RELATION { CourseId CID,

Question# INTEGER, MaxMark INTEGER }

			 KEY { CourseId, Question# } ;

For each course, the exam questions are supposed to be numbered sequentially, starting at 1.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

59

Solutions (shown in blue)

a.	 Write a Tutorial D CONSTRAINT statement to address this requirement.

	 �The constraint is satisfied so long as each question number is between 1 and the number
of tuples in EXAM_QUESTION for the relevant course:

	 CONSTRAINT QuestionNumbersAcceptable

	 AND (EXAM_QUESTION, Question# >= 1 AND Question# <=

	 COUNT (EXAM_QUESTION RENAME { CourseId AS C }

	 WHERE CourseId = C)) ;

b.	� Suppose the questions are subdivided into parts, a, b, c and so on, up to a maximum of
six parts, and maximum marks are given for each part rather than for each question.
Again, the parts for each question must be “numbered” sequentially, starting at a. Write
a Tutorial D CONSTRAINT statement to address this requirement.

	 �Assuming the new attribute is named Part, I use a join with a relation literal to map the
letters a, b, c, d, e, f to 1, 2, 3, 4, 5, 6, respectively:

	 CONSTRAINT PartNumbersAcceptable

	 WITH (AN := RELATION { TUPLE { Part 'a', PN 1 },

	 TUPLE { Part 'b', PN 2 },

	 TUPLE { Part 'c', PN 3 },

	 TUPLE { Part 'd', PN 4 },

	 TUPLE { Part 'e', PN 5 },

	 TUPLE { Part 'f', PN 6 } }) :

	 AND (EXAM_QUESTION JOIN AN, PN >= 1 AND PN <=

	 COUNT (EXAM_QUESTION RENAME { CourseId AS C,

	 Question # AS Q }

	 WHERE CourseId = C AND Question# = Q)) ;

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

60

Solutions (shown in blue)

c.	� Devise shorthands, in the style of Tutorial D, for expressing constraints of the kinds
found in your solutions to a. and b.

	 �The requirement for monotonically increasing serial “numbers” arises quite commonly.
Usually, the attribute(s) in question are members of some key of the relevant relvar, and
the numbering is “within” other elements of the same key. For example, in part b. of the
present exercise question parts are numbered within question number and course id,
by which we mean that in the set of tuples having the same CourseId and Question#
values, Part values range from ‘a’ to the letter corresponding to the cardinality of that set
(e.g., ‘e’ if there are five such tuples). Similarly, questions are numbered within course id
and part, meaning that in the set of tuples having the same CourseId and Part values,
Question# values range from 1 to the cardinality of that set.

	� In general, we probably want our shorthand to allow the starting value and increment
each to be something other than 1, if desired. The key words WITHIN, FROM and BY
suggest themselves for such specifications, and perhaps the operator name SERIAL can
be used to identify the kind of shorthand we are after. Typically the constraint applies
to just a single relvar but we will allow it to be applied to a relational expression, if only
to support mappings such as the one used in the solution to part b.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

Exercises on Relational Database Theory

61

Solutions (shown in blue)

	� So, here is a suggested syntax for a truth-valued operator named SERIAL, in the style
of Tutorial D:

		 IN (<relation exp>)

	 SERIAL <attribute ref>

	 [WITHIN { <attribute ref commalist> }]

	 [FROM <integer exp>]

	 [BY <integer exp>]

	� The WITHIN specification defaults to WITHIN { } and the two <integer exp>s both
default to 1. So constraints required for question numbers and part numbers would be
expressed as follows:

	 CONSTRAINT QuestionNumbersAcceptable

	 IN (EXAM_QUESTION)

	 SERIAL Question# WITHIN { CourseId, Part } ;

	 CONSTRAINT PartNumbersAcceptable

	 WITH (AN := RELATION { TUPLE { Part 'a', PN 1 },

	 TUPLE { Part 'b', PN 2 },

	 TUPLE { Part 'c', PN 3 },

	 TUPLE { Part 'd', PN 4 },

	 TUPLE { Part 'e', PN 5 },

	 TUPLE { Part 'f', PN 6 } }) :

	 IN (EXAM_QUESTION JOIN AN)

	 SERIAL PN WITHIN { CourseId, Question# } ;

	� Note that the suggested IN syntax might be used for other kinds of constraint
shorthands too, for there is always going to be <relation exp> to which the desired
constraint is to be applied. Moreover, when the constraint applies to a simple relvar,
as in QuestionNumbersAcceptable, the constraint could perhaps be specified,
minus the IN specification, within the declaration of that relvar, as with KEY constraints
in Tutorial D.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

62

Solutions (shown in blue)

4.	 Using Rel, with the suppliers-and-parts database set up for the Rel exercises given at the end
of Chapter 4, write Tutorial D integrity constraints to express the following requirements:

a.	 Every shipment tuple must have a supplier number matching that of some supplier tuple.

	 CONSTRAINT Ca IS_EMPTY (SP NOT MATCHING S) ;

	 Relation comparison could alternatively be used:

	 CONSTRAINT Ca (SP { S# }) <= (S { S# }) ;

	� but note the need to state the matching attribute name explicitly—this might be thought
to be an advantage or a disadvantage. The first solution is neat and immune to changes in
attribute names, but exposed to the possibility of inappropriately chosen attribute names.
The second solution is exposed to the possible change in name of the S# attributes but
is immune to all other attribute name changes. A compromise could be:

	 CONSTRAINT Ca IS_EMPTY (SP { S# } NOT MATCHING S) ;

b.	 Every shipment tuple must have a part number matching that of some part tuple.

	 CONSTRAINT Cb IS_EMPTY (SP NOT MATCHING P) ;

c.	 All London suppliers must have status 20.

	 CONSTRAINT Cc IS_EMPTY

	 (S WHERE City = 'London' AND Status <> 20) ;

d.	 No two suppliers can be located in the same city.

	 Add the following to the declaration of the relvar S:

	 KEY { CITY }

	 or

	 CONSTRAINT Cd

	 COUNT (S { City }) = COUNT (S) ;

e.	 At most one supplier can be located in Athens at any one time.

	 CONSTRAINT Ce

	 COUNT (S WHERE City = 'Athens') <= 1 ;

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

63

Solutions (shown in blue)

f.	 There must exist at least one London supplier.

	 CONSTRAINT Cf

	 COUNT (S WHERE City = 'London') > 0 ;

g.	 The average supplier status must be at least 10.

	 One is tempted to write something like

	 CONSTRAINT Cg

	 AVG (S, Status) >= 10.0 ;

	 but AVG is undefined on the empty set. If it is permissible for S to be empty, we could write

	 CONSTRAINT Cg

	 AVG (S { S#, Status }

	 UNION

	 RELATION { TUPLE { S# 'S1', Status 10 } } ,

	 Status) >= 10.0 ;

	 but not

	 CONSTRAINT Cg

	 IS_EMPTY (S) OR AVG (S, Status) >= 10.0 ;

	� because Tutorial D assumes that (a) operands of OR can be evaluated in either order
and (b) the system is permitted to evaluate both operands even when it has discovered
one of them to be TRUE.

h.	 Every London supplier must be capable of supplying part P2.

	 CONSTRAINT Ch IS_EMPTY (

	 (S WHERE City = 'London') NOT MATCHING

	 (SP WHERE P# = 'P2')) ;

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

64

Solutions (shown in blue)

2.7	 Exercises for Chapter 7, Database Design I: Projection-Join Normalization

1.	 (Repeated from the body of the chapter). The predicate for WIFE_OF_HENRY_VIII
is “The first name of the Wife#-th wife of Henry VIII is FirstName and her last name
is LastName and Fate is what happened to her.” Write an appropriate predicate for the
following expression:

	 WIFE_OF_HENRY_VIII { Wife#, FirstName }

	 JOIN

	 WIFE_OF_HENRY_VIII { LastName, Fate }

	 �Note that the join is a Cartesian product—there are no common attributes. So the
LastName and Fate values in a given tuple do not necessarily represent the last name
and fate of the wife identified by the Wife# value. Bearing that in mind, the predicate
must be something like this:

		� FirstName is the first name of wife number Wife# and LastName and Fate are
the last name and fate, respectively, of some wife.

	 But “some wife” is not very precise. To clarify, we need to write

		� FirstName is the first name of wife number Wife# and there exists a wife number W#
such that LastName and Fate are the last name and fate, respectively, of wife W#.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

65

Solutions (shown in blue)

2.	 Consider the following declarations:

	 VAR C1_EXAM_MARK BASE

		 INIT (EXAM_MARK WHERE CourseId = CID('C1'))

		 KEY { StudentId } ;

	 CONSTRAINT C1_only

	 AND (C1_EXAM_MARK, CourseId = CID('C1')) ;

(Recall that AND is the aggregate operator mentioned in Chapter 5, evaluating to TRUE if and
only if the given condition evaluates to TRUE for every tuple of the given relation.)

a.	 Explain why C1_EXAM_MARK is not in BCNF.

	� Because CourseId necessarily has the same value in every tuple of C1_EXAM_MARK,
the nontrivial FD { } → { CourseId } holds. The determinant of this FD, being the
empty set, is a proper subset of the declared key, { StudentId } and is therefore not a
superkey. BCNF requires the determinant of every nontrivial FD to be a superkey.

b.	� Assume that similar relvars are defined for every course, except that this time there are
no CourseId attributes. Describe how a query could be expressed to give the course
identifier and mark for every exam taken by student S1.

	 EXTEND C1_EXAM_MARK WHERE StudentId = 'S1' :

	 { CourseId := 'C1' }

	 UNION

	 EXTEND C2_EXAM_MARK WHERE StudentId = 'S1' :

	 { CourseId := 'C2' }

	 UNION

	 EXTEND C3_EXAM_MARK WHERE StudentId = 'S1' :

	 { CourseId := 'C3' }

	 … (and so on, for each course)
	 { CourseId, Mark }

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

66

Solutions (shown in blue)

3.	 In Section 7.5 of the chapter, under the heading Functional Dependencies, the following
eight theorems are given concerning FDs.

	 1. Reflexivity: If B is a subset of A, then A → B
	 2. Augmentation: If A → B, then A 4 C → B 4 C
	 3. Transitivity: If A → B and B → C, then A → C
	 4. Self-determination: A → A
	 5. Decomposition: If A → B and C is a subset of B, then A → C and A → B – C
	 6. Union: If A → B and A → C, then A → B 4 C
	 7. Composition: If A → B and C → D, then A 4 C → B 4 D
	 8. Unification: If A → B and C → D, then A 4 (C – B) → B 4 D

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

Exercises on Relational Database Theory

67

Solutions (shown in blue)

Taking the first three as axioms, prove theorems 4 to 8.

	 4. Self-determination: A → A

	 	� This follows immediately from Theorem 1, Reflexivity, as every set is a subset
of itself.

	 5. Decomposition: If A → B and C is a subset of B, then A → C and A → B – C

		 1.	 C is a subset of B	 (given)
		 2.	 B → C			 (1, reflexivity)
		 3.	 A → B			 (given)
		 4.	 A → C			 (3,2, transitivity).
		 5.	 A → B – C		 (3, reflexivity)

	 6. Union: If A → B and A → C, then A → B 4 C

		 1.	 A → B			 (given)
		 2.	 A 4 A → A 4 B		 (1, augmentation)
		 3.	 A → A 4 B		 (2, A 4 A = A)
		 4.	 A → C			 (given)
		 5.	 A 4 B → B 4 C		 (4, augmentation)
		 6.	 A → B 4 C		 (3, 5, transitivity)

	 7. Composition: If A → B and C → D, then A 4 C → B 4 D

		 1.	 A → B			 (given)
		 2.	 A 4 C → B 4 C		 (1, augmentation)
		 3.	 B → D			 (given)
		 4.	 B 4 C → C 4 D		 (3, augmentation)
		 5.	 B 4 C → D		 (4, decomposition)
		 6.	 B 4 B 4 C → B 4 D	 (5, augmentation)
		 7.	 B 4 C → B 4 D		 (6, simplification)
		 8.	 A 4 C → B 4 D		 (2, 7, transitivity)

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

68

Solutions (shown in blue)

	 8. Unification: If A → B and C → D, then A 4 (C – B) → B 4 D

		 1.	 A → B			 (given)
		 2.	 C → D			 (given)
		 3.	 A → B  C		 (1, decomposition)
		 4.	 C – B → C – B		 (self-determination)
		 5.	 A 4 (C – B) → (B  C) 4 (C – B)
	 (3, augmentation)
		 6.	 A 4 (C – B) → C	 (5, simplification)
		 7.	 A 4 (C – B) → D	 (6, 2, transitivity)
		 8.	 A 4 (C – B) → B 4 D	 (6, 7, union)

4.	 (Repeated from the body of the chapter). Consider relvar SCDF with attributes S (for
student), C (for course), D (for department), and F (for faculty). Assuming that the set
{{C} → {D}, {D} → {F}} is a minimal cover for the FDs in SCDF, prove that {S,C} is a key of
SCDF.

	 1.	 {C} → {D}		 (given)
	 2.	 {S,C} → {S,D}		 (1, augmentation)
	 3.	 {D} → {F}		 (given)
	 4.	 {C} → {F}		 (1, 3, transitivity)
	 5.	 {S,C} → {S,F}		 (4, augmentation)
	 6.	 {S,C} → {S,D,F}	 (2, 6, union)
	 7.	 {S,C} → {S,C,D,F}	 (6, augmentation)
	 So {S,C} is a superkey (7).
	 To prove that {S,C} is a key it remains to show that neither {S} nor {C} is a key.
	 8.	� In the given cover {{C} → {D}, {D} → {F}}, S is not a member of any determinant,

so we cannot conclude, for example, that {S} → {F}. Therefore {S} is not a
superkey.

	 9.	� In the given cover {{C} → {D}, {D} → {F}}, S is not a member of any dependant,
so we cannot conclude, for example, that {C} → {S}. Therefore {C} is not a
superkey.

	 So {S,C} is a key (8, 9).

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

69

Solutions (shown in blue)

5.	 (Repeated from the body of the chapter). Assume that {{W,X} → {Y,Z}, {Y} → {X}} is a
minimal cover for the FDs in relvar WXYZ. Prove that {W,X} and {W,Y} are both keys of
WXYZ.

	 1.	 {W,X} → {Y,Z}		 (given)
	 2.	 {W,X} → {W,X,Y,Z}	 (1, augmentation, simplification)
	 So {W,X} is a superkey (2).
	 3.	 {Y} → {X}		 (given)
	 4.	 {W,Y} → {X,Y,Z}	 (3, 1, unification)
	 5.	 {W,Y} → {W,X,Y,Z}	 (4, augmentation, simplification)
	 So {W,Y} is a superkey (5).
	 6.	� From the given FDs we cannot conclude {W} → {X}, or {X} → {Z}, or {Y} → {W},

for example, from which it follows that none of {W}, {X}, and {Y} is a superkey,
from which it follows in turn that each of the superkeys {W,X} and {W,Y} is
indeed a key.

6.	 The heading of relvar R1 consists of attributes named a, b, c, d, e, f, g, and h. The
following set of FDs is a cover for those that hold in R1:

	 FD1:	 {a,b} → {c}
	 FD2:	 {a,b} → {d}
	 FD3:	 {b} → {e}
	 FD4:	 {c} → {f}
	 FD5:	 {g} → {h}
	 FD6:	 {d} → {b, e}

a.	 Describe the single change required to derive an irreducible cover from the given set.

	 �We can delete the attribute e from the dependant of FD6. This is because from FD6 we
have {d} → {b}, from FD3 {b} → {e}, from which {d} → {e} follows by transitivity.

b.	 Describe the single change required to derive a minimal cover from your answer to a.

	 �FD1 and FD2 Applying Theorem 6, Union to FD1 and FD2 we obtain the single FD
{a,b} → {c,d}, from which both FD1 and FD2 can be derived by Theorem 5,
Decomposition.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

70

Solutions (shown in blue)

c.	 Explain why R1 is not in Boyce-Codd normal form (BCNF).

	 �BCNF requires the determinant of every nontrivial FD to be a superkey. From the given
nontrivial FDs that hold in R1 we can see several whose determinants are not superkeys.
For example, consider FD5 {g} → {h}, As neither g nor h appears in any other given
FDs, we cannot conclude that {g} is a determinant for any attribute apart from itself
and h, so {g} is not a superkey.

d.	� Decompose R1 into an equivalent set of BCNF relvars. Name your relvars R2, R3,
and so on and for each one list its attribute names and state its key(s). For example:
R3{c,d,e} KEY{d} KEY{c,e} if you think this relvar with those two keys is part
of the solution.

	 R2{g,h} KEY {g}

	 R3{d,b} KEY {d}

	 R4{b,e} KEY {b}

	 R5{c,f} KEY {c}

	 R6{a,b,g} KEY{a,b,g}

	 R7{a,c,d} KEY{a,d}

	� Note that the decomposition loses FD2 {a,b} →{d}, so we would need an additional
constraint to the effect that {a,b} is a key for R7 JOIN R3.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/volvo

Exercises on Relational Database Theory

71

Solutions (shown in blue)

7.	 Exercise not repeated here.

In the solutions below the VAR and CONSTRAINT statements are shown below relevant
business rule(s). Sometimes the same business rule appears more than once, meaning that the
statement(s) shown below it only partially address it.

First, using Option 1 as described in Section 8.4:

BR1:

VAR customer BASE RELATION { Customer# CHAR,

	 Name CHAR,

	 Address CHAR }

	 KEY { Customer# } ;

BR2:

VAR cust_email BASE RELATION { Customer# CHAR,

	 EmailAddr CHAR }

	 KEY { Customer# } ;

CONSTRAINT FK_for_cust_email

	 IS_EMPTY (cust_email NOT MATCHING customer) ;

BR3:

VAR phone_type BASE RELATION { Phone# CHAR,

	 PhoneType CHAR }

	 KEY { Phone# } ;

CONSTRAINT HorBorM AND (phone_type,

	 PhoneType = 'home' OR

	 PhoneType = 'business' OR

	 PhoneType = 'mobile') ;

BR4:

VAR cust_phone BASE RELATION { Customer# CHAR,

	 Phone# CHAR }

	 KEY { ALL BUT } ;

Note that inclusion of a type attribute in cust_phone would violate BCNF because of the
FD {Phone#} → {PhoneType}

CONSTRAINT at_most_one_phone_per_type

	 WITH (CPT := cust_phone JOIN phone_type) :

	 COUNT (CPT) =

	 COUNT (CPT { Customer#, PhoneType }) ;

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

72

Solutions (shown in blue)

BR5:

VAR account BASE RELATION { Account# CHAR,

	 Customer# CHAR,

	 AccountType CHAR,

	 DateOpened DATE }

	 KEY { Account# } ;

BR6:

CONSTRAINT FK_for_account

	 IS_EMPTY (account NOT MATCHING customer) ;

BR13:

VAR debit_card BASE RELATION { Card# CHAR,

	 Account# CHAR,

	 Holder CHAR,

	 Expires DATE }

	 KEY { Card# } ;

CONSTRAINT FK_for_debit_card

	 IS_EMPTY (debit_card NOT MATCHING account) ;

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

Exercises on Relational Database Theory

73

Solutions (shown in blue)

BR7, BR8, BR9, BR16:

VAR payment_in BASE RELATION { Trans# CHAR,

	 Account# CHAR,

	 Tdate DATE,

	 Ttime TIME,

	 Source CHAR,

	 Amount RATIONAL }

	 KEY { Trans#, Account# } ;

CONSTRAINT FK_for_payment_in

	 IS_EMPTY (payment_in NOT MATCHING account) ;

BR7, BR8, BR10, BR16:

VAR by_cheque BASE RELATION { Trans# CHAR,

	 Account# CHAR,

	 Cheque# CHAR,

	 Wdate DATE,

	 Pdate DATE,

	 Payee CHAR,

	 Amount RATIONAL }

	 KEY { Trans#, Account# } ;

CONSTRAINT FK_for_by_cheque

	 IS_EMPTY (by_cheque NOT MATCHING account) ;

BR11:

CONSTRAINT written_before_processed

	 IS_EMPTY (by_cheque WHERE Wdate > Pdate) ;

BR7, BR8, BR12, BR16:

VAR by_DD BASE RELATION { Trans# CHAR,

	 Account# CHAR,

	 Tdate DATE,

	 Ttime TIME,

	 Payee CHAR,

	 Amount RATIONAL }

	 KEY { Trans#, Account# } ;

CONSTRAINT FK_for_by_DD

	 IS_EMPTY (by_DD NOT MATCHING account) ;

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

74

Solutions (shown in blue)

BR14, BR16:

VAR by_card BASE RELATION { Trans# CHAR,

	 Card# CHAR,

	 Tdate DATE,

	 Ttime TIME,

	 Payee CHAR,

	 Amount RATIONAL }

	 KEY { Card#, Trans# }

	 KEY { Tdate, Ttime, Card# } ;

Note that inclusion of an account# attribute in by_card would violate BCNF because of
the FD {Card#} → {Account#}

CONSTRAINT FK_for_by_card

	 IS_EMPTY (by_card NOT MATCHING debit_card) ;

BR7:

CONSTRAINT trans#_unique_within_account#

	 WITH (bc_dc := by_card JOIN debit_card) :

	 COUNT (BC_DC) =

	 COUNT (BC_DC { Trans#, Account# }) ;

BR15:

CONSTRAINT card_extant

	 IS_EMPTY ((by_card JOIN debit_card)

	 WHERE Tdate > Expires) ;

BR17:

CONSTRAINT transaction_is_of_only_one_type

	 WITH (bc_dc := by_card JOIN debit_card) :

	 IS_EMPTY (payment_in MATCHING

	 (by_cheque { Trans#, Account# } UNION

	 by_DD { Trans#, Account# } UNION

	 BC_DC { Trans#, Account# })) AND

	 IS_EMPTY (    by_cheque MATCHING

	 (  by_DD { Trans#, Account# } UNION

	 BC_DC { Trans#, Account# })) AND

	 IS_EMPTY (        by_DD MATCHING BC_DC) ;

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

75

Solutions (shown in blue)

BR18:

CONSTRAINT no_transaction_before_account_open

	 WITH (bc_dc := by_card JOIN debit_card) :

	 AND (payment_in JOIN account, DateOpened > Tdate)

	 AND

	 AND (by_DD JOIN account, DateOpened > Tdate)

	 AND

	 AND (BC_DC JOIN account, DateOpened > Tdate) ;

Now, using Option 2 instead:

Relvars customer, cust_email, phone_type, cust_phone, account, and
debit_card and their associated constraints are all as before.

BR7, BR8:

VAR transact BASE RELATION { Trans# CHAR,

	 Account# CHAR,

	 Amount RATIONAL }

	 KEY { Trans#, Account# } ;

CONSTRAINT FK_for_transact

	 IS_EMPTY (transact NOT MATCHING account) ;

BR10, BR16:

VAR by_cheque BASE RELATION { Trans# CHAR,

	 Account# CHAR,

	 Cheque# CHAR,

	 Wdate DATE,

	 Pdate DATE,

	 Payee CHAR }

	 KEY { Trans#, Account# } ;

CONSTRAINT FK_for_by_cheque

	 IS_EMPTY (by_cheque NOT MATCHING transact) ;

BR11:

CONSTRAINT written_before_processed

	 IS_EMPTY (by_cheque WHERE Wdate > Pdate) ;

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

76

Solutions (shown in blue)

BR9, BR12:

VAR not_by_cheque BASE RELATION { Trans# CHAR,

	 Account# CHAR,

	 Tdate DATE,

	 Ttime TIME }

	 KEY { Trans#, Account# } ;

CONSTRAINT FK_for_not_by_cheque

	 IS_EMPTY (not_by_cheque NOT MATCHING transact) ;

BR9:

VAR payment_in BASE RELATION { Trans# CHAR,

	 Account# CHAR,

	 Source CHAR }

	 KEY { Trans#, Account# } ;

CONSTRAINT FK_for_payment_in

	 IS_EMPTY (payment_in NOT MATCHING not_by_cheque) ;

Download free eBooks at bookboon.com

Click on the ad to read more

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

Exercises on Relational Database Theory

77

Solutions (shown in blue)

BR12:

VAR by_DD BASE RELATION { Trans# CHAR,

	 Account# CHAR,

	 Payee CHAR }

	 KEY { Trans#, Account# } ;

CONSTRAINT FK_for_by_DD

	 IS_EMPTY (by_DD NOT MATCHING not_by_cheque) ;

BR7, BR14:

VAR by_card BASE RELATION { Trans# CHAR,

	 Card# CHAR,

	 Payee CHAR }

	 KEY { Trans#, Card# } ;

CONSTRAINT FK_for_by_card

	 IS_EMPTY (by_card NOT MATCHING debit_card) ;

BR16:

CONSTRAINT relevant_transaction_exists

	 IS_EMPTY ((by_card JOIN debit_card)

	 NOT MATCHING not_by_cheque) ;

BR15:

CONSTRAINT card_extant

	 IS_EMPTY ((by_card JOIN not_by_cheque

	 JOIN debit_card)

	 WHERE Tdate > Expires) ;

BR16:

CONSTRAINT every_transaction_of_some_type

	 IS_EMPTY ((transact NOT MATCHING not_by_cheque)

	 NOT MATCHING by_cheque) ;

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

78

Solutions (shown in blue)

BR17:

CONSTRAINT transaction_is_of_only_one_type

	 WITH (bc_dc := by_card JOIN debit_card) :

	 IS_EMPTY (by_cheque MATCHING not_by_cheque) AND

	 IS_EMPTY (payment_in MATCHING

	 (by_DD { Trans#, Account# } UNION

	 BC_DC { Trans#, Account# })) AND

	 IS_EMPTY (by_DD MATCHING BC_DC) ;

BR18:

CONSTRAINT no_transaction_before_account_open

	 ALL (not_by_cheque JOIN account,

	 DateOpened > Tdate) ;

8.	 Based on your experiences with Exercise 7, suggest enhancements to Tutorial D to make it
easier to express any constraints you declared that struck you as being of a common enough
kind to warrant an additional shorthand.

The constraint at_most_one_phone_per_type could be expressed as a key constraint
if we allowed keys to be specified on relational expressions in general rather than just on base
relvars in particular. Here we would like to specify KEY { Customer#, PhoneType } on
cust_phone JOIN phone_type. The same shorthand could be used for the constraint
trans#_unique_within_account#, where we would specify KEY { Trans#,

Account# } on by_card JOIN debit_card.

In the Option 1 solution, the constraint transaction_is_of_only_one_type could be
expressed more succinctly if we could just specify that the projections of each of the transaction
type relvars on { Trans#, Account# } must be disjoint (have no tuples in common)—in
other words, that the same combination of Trans# and Account# values cannot appear in
more than one of those relvars. Thus, { Trans#, Account# } would become a kind of
key whose uniqueness scope covers more than one relvar.

Note that these shorthands, by raising the level of abstraction in each case, would make the
constraints easier to understand as well as perhaps easier to write. Furthermore, they give the
DBMS the opportunity to enforce those constraints much more efficiently than is very likely
the case if the longhands shown in the given solutions are used.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

79

Solutions (shown in blue)

9.	 (For students familiar with SQL). Consider the following SQL definitions:

	 CREATE TABLE SF (StudentId CHAR(4),

	 Faculty VARCHAR(50),

	 PRIMARY KEY (StudentId)

	 UNIQUE (StudentId, Faculty) ;

	 CREATE TABLE CF (CourseId CHAR(4),

	 Faculty VARCHAR(50),

	 PRIMARY KEY (CourseId)

	 UNIQUE (CourseId, Faculty);

	 CREATE TABLE SCF (StudentId CHAR(4),

	 CourseId CHAR(4),

	 Faculty VARCHAR(50),

	 PRIMARY KEY (StudentId, CourseId),

	 FOREIGN KEY (StudentId, Faculty)

	 REFERENCES SF (StudentId, Faculty),

	 FOREIGN KEY (CourseId, Faculty)

	 REFERENCES CF (CourseId, Faculty) ;

a.	 What problem was the designer solving here?

	� A constraint was needed to ensure that a combination of StudentId and Faculty
values appearing in SCF also appears in SF. A similar constraint was needed to ensure
that a combination of CourseId and Faculty values appearing in SCF also appears
in CF. The real world situation might, for example, be that each student at the university
belongs to exactly on of its faculties, each course is offered by exactly one of its faculties,
and a student enrolled on a course must belong to the faculty offering that course.

b.	 What possible problem remains in this solution?

	� SCF is not in 5NF and therefore is subject to redundancy. It is not in 5NF because it is
not in BCNF, and it is not in BCNF because of the FDs { StudentId } → { Faculty
} and { CourseId } → { Faculty }, each of whose determinants is a proper subset
of the primary key of SCF.

	� To normalize SCF all we need to do is drop the Faculty column from the table definition
and from each of the foreign keys. But then we would need a constraint to ensure that the
Faculty values in the SF and CF rows referenced by a row in SCF are equal. Again,
such constraints can be expressed in standard SQL but most SQL implementations do
not support any of the standard’s features that would make this possible.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

80

Solutions (shown in blue)

c.	 Describe and comment on the particular features of SQL that make this solution possible.

	 In standard SQL the required constraints could be expressed like this:

		 CREATE ASSERTION right_faculty_for_course

	 CHECK NOT EXISTS (SELECT StudentId, Faculty

	 FROM SCF

	 EXCEPT

	 SELECT StudentId, Faculty

	 FROM SCF)

	� and similarly for the other foreign key. However, most SQL implementations do not
support CREATE ASSERTION and in any case such a constraint is unlikely to be
enforced efficiently, as foreign key constraints are.

	� So, in practice the required constraints can only be expressed using the FOREIGN KEY
construct, probably taking advantage of special indexes created on the relevant columns.
But the FOREIGN KEY construct requires the referenced columns to constitute a key
of the referenced table, specified using either PRIMARY KEY or UNIQUE. Here our
referenced columns constitute a proper superkey in each case. Although the same indexes
could be used for efficiency purposes, standard SQL does not allow references to proper
superkeys, and nor do any SQL implementations we are aware of.

Download free eBooks at bookboon.com

Click on the ad to read more

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

Exercises on Relational Database Theory

81

Solutions (shown in blue)

	� The well-known “hack” to get around this problem is illustrated in the example. We take
advantage of another quirk in SQL, whereby one is permitted to specify a redundant
UNIQUE constraint. The columns of that redundant UNIQUE constraint can then be
used in a FOREIGN KEY declaration! One might ask, why does the system need to
be told that (student id, faculty) combinations are unique, when it already knows that
student ids are unique by themselves?

2.8	 Additional Exercises Using Rel

1.	 Create a virtual relvar named myvars giving the Name, Owner, and isVirtual of
every relvar not owned by ‘Rel’.

	 VAR myvars VIRTUAL (sys.Catalog WHERE Owner <> 'Rel')

	 { Name, Owner, isVirtual } ;

2.	 If you haven’t already done so, load the file OperatorsChar.d, provided in the Scripts
subdirectory of the Rel program directory, and execute it. One of the relvars mentioned
in sys.Catalog is named sys.Operators. Display the contents of that relvar.
How many attributes does it have? What is the declared type of the attribute named
Implementations?

	 Two attributes: Name and Implementations

	 The declared type of Implementations is:
	� RELATION {Signature CHARACTER, ReturnsType CHARACTER,

Definition CHARACTER, Language CHARACTER, CreatedByType

CHARACTER, Owner CHARACTER, CreationSequence INTEGER}

	� Relation types aren’t normally recommended for attributes of database relvars, but all
updates to the system catalog are performed “under the covers” by the system itself, which
should be capable of handling all the difficulties caused by relation-valued attributes.
That said, queries against such relvars can be difficult to express, unless you begin them
by ungrouping, as suggested in the next exercise.

3.	 Evaluate the expression

(sys.Operators ungroup (Implementations)

where Language = 'JavaF')

{ ALL BUT Language, CreatedByType, Owner, CreationSequence}

What are the “ReturnsTypes” of LENGTH, IS_DIGITS, and SUBSTRING?

INTEGER, BOOLEAN, and CHARACTER, respectively.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

82

Solutions (shown in blue)

4.	 Note that if s is a value of type CHAR, then LENGTH(s) gives the number of characters
in s, IS_DIGITS(s) gives TRUE if and only if every character of s is a decimal digit.
SUBSTRING(s,0,l) gives the string consisting of the first l characters of s (note that
strings are considered to start at position 0, not 1). SUBSTRING(s,f) gives the string
consisting of all the characters of s from position f to the end.

What is the result of IS_DIGITS('')? Is it what you expected? Is it consistent with the
definition given above?

TRUE. This is to be expected on the understanding that “everything is true of all elements of
the empty set”. The string '' contains no characters and therefore does not contain a character
that isn’t a digit. (∀x)P(x) is logically equivalent to ¬(∃x)¬P(x).

5.	 Using operators defined by OperatorsChar.d, define types for supplier numbers and
part numbers, following Example 2.4 from Chapter 2.

TYPE SNO POSSREP { c CHAR CONSTRAINT

	 SUBSTRING(c,0,1) = 'S' AND

	 IS_DIGITS(SUBSTRING(c,1)) } ;

TYPE PNO POSSREP { c CHAR CONSTRAINT

	 SUBSTRING(c,0,1) = 'P' AND

	 IS_DIGITS(SUBSTRING(c,1)) } ;

Define relvars Srev, Prev, and SPrev as replacements for S, P and SP, using the types you
have just defined as the declared types of attributes S# and P#.

VAR Srev BASE RELATION {S# SNO, Sname CHAR,

	 Status INTEGER, City CHAR}

	 KEY { S# } ;

VAR Prev BASE RELATION {P# PNO, Pname CHAR, Colour CHAR,

	 Weight RATIONAL, City CHAR}

	 KEY { P# } ;

VAR SPrev BASE RELATION {S# SNO, P# PNO, Qty INTEGER}

	 KEY { S#, P# } ;

Write relvar assignments to copy the contents of S, P and SP to Srev, Prev, and SPrev,
respectively. Note that if SNO is the type name for supplier numbers in S and Srev, then
SNO(S#) “converts” an S# value in S to one for use in Srev.

Download free eBooks at bookboon.com

Exercises on Relational Database Theory

83

Solutions (shown in blue)

We need to use EXTEND to add an attribute to contain the “converted” S# and/or P# values.
Happily, the exercise is much easier now, with Tutorial D Version 2, because we can use the
existing attribute names S# and P# in the “extensions”, which actually become replacements:

Srev := EXTEND S : { S# := SNO(S#) } ;

Prev := EXTEND P : { P# := PNO(P#) } ;

SPrev := EXTEND SP : { S# := SNO(S#), P# := PNO(P#) } ;

In each case the S# or P# attribute is replaced by one of type SNO or PNO, respectively, with
values in each tuple obtained by evaluation of the specified invocation of the SNO or PNO
selector. Thus, we are replacing an existing relvar attribute, rather than adding one.

6.	 Using the relvars defined in Exercise 5, repeat Exercise 6 from the set headed “Working with
A Database in Rel” given with the exercises for Chapter 4. Which of your solutions need
revisions beyond the obvious changes in relvar names?

b.	 Get supplier numbers for suppliers who supply part P1.

	 S MATCHING (SP WHERE P# = PNO('P1')) { S# }

h.	 Get supplier numbers for suppliers with a status lower than that of supplier S1.

	 (S JOIN (((S WHERE S# = SNO('S1')) { Status }

	 RENAME { Status AS S1_Status }

)

)

	 WHERE Status < S1_Status

) { S# }

Note that my solution to Exercise f. in this set uses “<” to compare supplier numbers. The fact
that this solution still works when supplier numbers are of type SNO instead of CHAR tells us
that Rel treats SNO as an ordered type, the ordering being based on that of the declared type,
CHAR, of its only possrep component.

Download free eBooks at bookboon.com

	1	Exercises
	1.1	Exercise for Chapter 1, Introduction
	1.2	Exercises for Chapter 2, Values, Types, Variables, Operators
	1.3	Exercises for Chapter 3, Predicates and Propositions
	1.4	Exercises for Chapter 4, Relational Algebra – The Foundation
	1.5	Exercises for Chapter 5, Building on The Foundation
	1.6	Exercises for Chapter 6, Constraints and Updating
	1.7	Exercises for Chapter 7, Database Design I: Projection-Join Normalization
	1.8	Additional Exercises Using Rel

	2	Solutions (shown in blue)
	2.1	Exercise for Chapter 1, Introduction
	2.2	Exercises for Chapter 2, Values, Types, Variables, Operators
	2.3	Exercises for Chapter 3, Predicates and Propositions
	2.4	Exercises for Chapter 4, Relational Algebra – The Foundation
	2.5	Exercises for Chapter 5, Building on The Foundation
	2.6	Exercises for Chapter 6, Constraints and Updating
	2.7	Exercises for Chapter 7, Database Design I: Projection-Join Normalization
	2.8	Additional Exercises Using Rel

