bookboon.com

Download free books at

bookbooncom




Poul Klausen

C#1

Introduction to programming and the C# language

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language
© 2012 Poul Klausen & bookboon.com
ISBN 978-87-403-0250-9

Download free eBooks at bookboon.com



Contents

Foreword 11
Part1 Introduction to C# 13
1 Introduction 14
Hello World 14
2 Basic program architecture 18
Print a book 18
3 Variables 21
The sum of two numbers 23
Operators 24
4 Console programs 27
Perimeter and area of a circle 27
Product calculation 29
Date and time 30
Arguments on the command line 32

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.

Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

OSRAM
Light is OSRAM SYLVANIA

:\“'\
P!

Download free eBooks at bookboon.com


http://s.bookboon.com/osram

C# 1 Introduction to programming and the C# language Contents

5 Program control 34
if 34
Sort two numbers 35
if-else 38
A quadratic equation 39
while 42
The sum of the positive number less than 100 43
for 45
Sum of positive integers 46
do 47
switch 47
Weekday 48
The cross-sum 50
The biggest and the smallest number 52
6 Strings 55
The class string 56
Palindrome 58
7 Arrays 62
Two arrays of the type int 62

360°
thinking.

Deloitte.

Discover thC truth at WWW.dClOitte,CalcareerS © Deloitte & Touche LLP and affiliated entities.

)

5 Click on the ad to read more

Download free eBooks at bookboon.com


http://www.deloitte.ca/careers

C# 1 Introduction to programming and the C# language Contents

Array of strings 64
Yatzy 64
Craps 66
Part2  Object Oriented Programming 70
8 Classes 73
Coins 73
9 Design of classes 81
Dice 82
10 Methods 88
Methods names 88
Function overriding 89
Methods return values 90
Properties 91
A point 91
Parameters 93
Methods parameters 99
SIMPLY CLEVER SKODA

We will turn your CV into
an opportunity of a lifetime

B I
(T -n
i fﬁi 3

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

6 Click on the ad to read more

Download free eBooks at bookboon.com


http://www.employerforlife.com

C# 1 Introduction to programming and the C# language Contents

11 Inheritance 100
Points 100
Persons 102
12 The class Object 109
13 Abstract classes 113
Abstract points 113
Loan 115
14 Interfaces 122
Points again 122
Money 123
15 Static members 132
StringBuilder 133
16 More about arrays 137
Multi-dimensional arrays 139
17 Types 143
18 Enum 151
2 8 The Graduate Programme
I ]Olned MITAS because_ . for Engineers and Geoscientists
I wanted real responsibility www.discovermitas.com

I'was a construction
SUPErvisor in

the North Sea
advising and

e Lelping foremen
% solve problems

MAERSK

7 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/mitas

19 Struct 153

20 Generic types 158
Generic methods 158
Sorting an array 160
Parameterized types 164
The class Set 166
21 Exception handling 174
22 Comments 181
23 Extension methods 187
Part3  Collection classes 190
24 List<T> 192
A List of strings 192
Enter sale of products 194
25 Stack<T> and Queue<T> 199
Stack of integers 200
StackSort 201

.

UROPEAN
# BUS INESS
SCHOOL

FINANCIAL TIMES

#2obevond

MASTER IN MANAGEMENT

~ - Beeause achieving your dreams is your greatest challenge. IE Business School's Master in Management taught in English,
Spanish or bilingually, trains young high performance professionals at the beginning of their career through an innovative
and stimulating program that will help them reach their full potential.

Choose your area of specialization.
Customize your master through the different options offered.
Global Immersion Weeks in locations such as London, Silicon Valley or Shanghai.

Because you change, we change with you.

Download free eBooks at bookboon.com


http://s.bookboon.com/IE

C# 1 Introduction to programming and the C# language

26

27

Part 4

28

29

LinkedList<T>

LinkedList of names

Dictionary<K,V> and SortedDictionary<K,V>

Table of job titles
User defined key

A sorted dictionary
Comparable keys
Cue list

10

Text files
Write and read text

Write a comma separated file

Read a comma separated file

Binary files

Print 100 numbers in a fil

Read a binary file
Seek

Contents

205
207

209
210
212
213
214
215

221

222
222
225
229

231
231
232
233

no.l

nine years
in a row

<
)
<
5

Stockholm
(]

STUDY AT A TOP RANKED

INTERNATIONAL BUSINESS SCHOOL

Reach your full potential at the Stockholm School of Economics,
in one of the most innovative cities in the world. The School
is ranked by the Financial Times as the number one business

school in the Nordic and Baltic countries.

Visit us at www.hhs.se

9 Click on the ad to read more

Download free eBooks at bookboon.com



http://s.bookboon.com/hhs2016

C# 1 Introduction to programming and the C# language Contents

30 Info about directories and files 236
FileInfo 236
Directrorylnfo 236

31 Object serialization 238
Datatypes 238
Binary serialization 240
Binary deserialization 244
XML serialization 245
SOAP serialization 247
Serialization of a collection 250

32 User defined serialization 252

Part 5 Final examples 258
Lottery 258
Expression 270

L, =
[:: = _,JI ‘\
1-..<| .1 i.-‘ o S\j
’ = caendh
neco e

At

STUDY AT

LINKOPING UNIVERSITY, SWEDEN
RANKED AMONG TOP 50 UNIVERSITIES UNDER 50
Interested in Strategy and Management in International

Organisations? Kick-start your career with a master’s degree
from Linkoping University, Sweden.

3&2 Linkdping University

10 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/liu

Foreword

Thisbook s the first in a series of books on software development for the NET platform. The programming
language is C#, and although the books thus focuses on the language C# and the selected platform, then
programming in general play a large role, and the books has also focused on concepts such as algorithms,
design and program quality. I have sought that each book must be read independent of each other, but
the current book or similar substance may be regarded as a prerequisite for the subsequent, and that

applies to some extent also C# 2.

The books is aimed at anyone who wants to deal with programming and the .NET platform, but because
of selection of the examples the books are primarily intended as either teaching or supplemental materials
in higher education. The books are not directed at any particular education, but it can be used in all
courses which include courses in programming. Finally, the books could be used by professional software

developers either as inspiration or as a reference regarding specific technologies.

The books have a practical purpose, so that the primary goal is to show how to do. Of course there are
also more theoretical explanations, but I have tried to minimize the theoretical material in order to quickly
reach what you need to write a program. Most of the material is presented through a large number of
examples and the explanations, which are associated therewith, and the books are largely divided into
corresponding to these examples. All examples have a bland name, that is name of the project for which
they were created during the development tool, but in the book each example has a subtitle in the form
of a word or phrase which briefly explains what the example shows, explains or deals with. There are

references to these titles in the table of content.

All examples are developed using Visual Studio, but the tool is only considered to the extent necessary to
be able to write programs using Visual Studio. Although the books may well be read with profit, if you
use another development tool I would recommend that you have Visual Studio available. All the books
examples are as complete Visual Studio projects for download from publisher’s website. The projects

related to a specific book are downloaded together as a zip file.

The current book is, as the title suggests, an introduction to programming and the language C#. The
book requires no special assumptions of the reader and is aimed at anyone who wants or needs to learn
about programming. It is thus not a prerequisite that the reader has knowledge of programming, but only
that the reader is interested in programming and would have Visual Studio installed on his computer.

All the book’s examples are written using Visual Studio 11 beta.

The aim of the book is the language and programming in general and to consider the basics and what
is necessary knowledge for being able to write programs. Therefore, all examples are simple console

programs. When you have to give an introduction to programming, you can choose

Download free eBooks at bookboon.com



« only to look at console programs as a way to keep focus on the basics regarding substance of
programming and the language
o quickly to introduce the necessary to be able to write programs with a graphical user

interface and thus to arrive quickly to write more interesting and realistic programs

I chose the first way because the other has a tendency to obscure the basic and almost drown all the basic
ingredients in the incredible number of concepts and details related to the development of a program
with a graphical user interface. It is simply my experience that it is the right way, and what it takes to
write Windows programs has got its own book. The price is that the examples in this book seems a little
boring — depending on the eye of the beholder. You have to start somewhere, and I would recommend
that you have the basics in place before tackling the more advanced topics. It should be added that you

can easily work with the material in C# 3 after reading this book Parts 1 and 2.

The book is divided into 5 parts:

o The first part is a brief introduction to programming and C#. The goal is to introduce all the
basic concepts without taking every detail. Stated slightly differently, the goal is that after
part 1 you should be in a position to be able to write simple console programs.

o Part 2 deals with object oriented programming which masks the way to program today
and the concepts associated with them. The substance of part 2 must be regarded as basic
knowledge which should be in place, before you are able to develop complete applications in
practice.

o Part 3 deals with collection classes that are part of every modern language. The book has
only at a limited extent focus on the individual classes implementation, including the
advantages and disadvantages, but focuses instead on how the classes are used. For a more
detailed discussion of the classes characteristics, see C# 7.

o The book’s fourth part deals with files. Files do not play the same role in practice
programming as before, yet there are situations where it is necessary to work with files. The
book focuses primarily on the treatment of text files and object serialization. If a program
needs to deal with major external data volumes, it will in practice always be in the form of
databases, and here refers to C# 4.

« Finally I am closing the book with part 5 as two slightly larger examples. Part 5 illustrates
not new substances, and in order to continue reading the other books you can very well
skip this part. The goal is to show the many concepts that are discussed in the book, in a
slightly larger context, while also showing a little bit about how to work with application
development in a larger perspective and in relation to issues that are more complex than it is

in the booK’s other examples.

Poul Klausen

Download free eBooks at bookboon.com



Part 1 Introduction to C#

A computer program is a family of commands executed in a specific order that together solves a specific
task. A program is written as a text document that contains all the necessary commands. This document
is called the programs code or source code. The individual commands must be written in a very precise
way, that the computer can understand them, and it is here a programming language comes into the
picture. A programming language provides precise rules for how the commands should be written.
There are many programming languages, and although they are different, each with their advantages and
disadvantages, the similarities outweighs the differences, and once you have learned one language, it is
easy to learn the next. Throughout this book the programming language C# is used, which is a widely

used language in the Microsoft world.

As mentioned above, you write a program as a text document (in practice several or many) and the
program is thus a simply document with commands. Commands are also called statements. Because
these commands or statements are just text, the machine can not immediately execute the commands,
but they must first be translated into an internal format that the computer understands. This process is
called translation or compilation and executed by a program that can convert statements written in a
particular programming language for the computer’s internal commands. The program is usually called
a compiler. During the translation the program is controlled for errors, and if there are errors, you get
an error message and the error must be corrected before the program is translated anew. Not all errors
are found during compilation, but only syntax errors that are errors where a statement is not written in
accordance with the programming language rules. A compiled program can easily contain other errors,

for example a wrong calculation.

To write a program, you naturally have to learn the programming language chosen, but you also must
learn how to solve a task and formulate your solution using the language’s statements. It is the latter that
is the hardest, and there is rarely a unique solution. Solving a problem and formulating your solution by
using a program language is also called writing an algorithm. Programming is therefore largely a matter

of writing algorithms, something which I will return to repeatedly.

When you have to write a program, you need a tool that can be used for entering the program code,
and in principle one could do that with Notepad and the compiler, but in practice you will always use a
specific development tool, because it makes the job much easier. In the following I will use throughout
Visual Studio, that is Microsoft’s general development tool for a wide variety of tasks, including writing
code in C#. It is an integrated package that contains all the tools necessary for the development of a

number of different program types.

Download free eBooks at bookboon.com



1 Introduction

C# is an object-oriented programming language. The fundamental architectural element of a program is
a class, and from a programmer’s perspective is a C# program a family of classes, that collectively define
all the application’s properties and functionality. Writing a program is thus to define — design — and write
the code for the program’s classes. Nothing in C# exists outside a class. A program will also operate by
many other classes that are not written by the programmer, but classes that are coming from the NET

framework, and thus is available to the programmer as finished components.

One of the program’s classes have a special role as the program’s “entry point” and the place where the
program starts, and this class must be written with a particular naming scheme, but it is almost the only

formal requirements for the architecture of a C# program.

ExamO1
Hello World

A good place to start with a new programming language is the classic Hello World program that just prints
a text on the screen. This program has become a mandatory part of any exposition of a programming

language. The program can be written as follows:

using System;
namespace ExamOl

{

class Program

{

static void Main(string[] args)

{
Console.WritelLine ("Hello World"):;

}

If you run the program the result is:

The program runs in a command window (prompt), where it prints the text Hello World on the screen.

The program is not doing much, but it is a full-fledged program.

Download free eBooks at bookboon.com



How to

Open Visual Studio and choose File | New | Project from the menu:

Here you must be sure:

« that you have selected the language C#

« that you have selected the project type Console Application

o selecting the directory where to create the program files (here F:\Home\Prog01)
o that you have typed the program name (above Exam01)

Now when you click OK, Visual Studio will create a skeleton for an application:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace Exam0Ol

{

class Program

{
static void Main(string[] args)
{
}

Actually it is a full-fledged program that you can run on the machine - it made just nothing. You must
write the program code, as shown in the introduction to this example. In this case, you only write a

single line - a single statement:

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Introduction

static void Main(string[] args)

{
Console.WriteLine (“Hello World”) ;

}

Thereafter, the program is finished and can be tested. From the menu you select
Debug | Start Without Debugging

Explanation

Note first that C# is case-sensitive, so that everywhere you have to distinguish between uppercase letters

and lowercase letters.

Every C# program consists of at least one class, here called Program (the name chosen by Visual Studio).
A class consists of variables and methods. In this case, the class has only one method called Main(), which
is the method called when the program starts. A method consists of statements that can be perceived
as commands that are performed on the machine. That a method is called means that its statements are
executed. Note that the method Main() must be preceded by the word static. The explanation of that
comes later. In this case, Main() has only a single statement, writing a text on the screen. WriteLine() is

actually a method in the class Console. When the program runs, there is nothing else than the WriteLine

statement in Main() which print a text on the screen.

*I studied
English for 16 p
years but... -
...I finally
learned to
speak it in jus
Six lessons”

Jane, Chinese architect

OUT THERE

Click to hear me talking

before and after my

unique course download

e

|

— — Jl

16 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/EOT

Note that in C#, every statement ends with a semicolon - above, there is a semicolon after the WriteLine

statement. It tells the compiler where the statement ends.

In C# classes are grouped in so-called namespaces. System is a namespace that contains many classes
including the class Console. A class’s full name consists of the namespace where the class is grouped,
and the class name, for example System.Console. In a program using defines a namespace and classes in

this namespace can be referenced by the class name alone. Thus, one can write

Console.WritelLine ("Hello World"):;

instead of the full name

System.Console.WriteLine ("Hello World");

Visual Studio automatically inserts 5 using statements in the code and thus 5 namespaces. In this case,
only the System namespace is needed, and you are allowed to delete the 4 others (I have done that in
the final version shown initially of the chapter). In principle there is no particular reason to delete
unnecessary using statements as they do not have any bearing on the final program, so the only reason

to delete them is to make the code more readable.

Comment

Visual Studio will automatically place the program in its own namespace, here called Exam01. If you
wrote the program using a plain text editor, it is not necessary to include this namespace. Actually the
program can be written simpler than the above. The following version of the program is written in

Notepad and saved as a file named Hello.cs:

class Program

{

static void Main ()

{
System.Console.WritelLine ("Hello World");

}

If you then open a .NET prompt, the program can be translated with the command

csc Hello.cs
and then forming an executable file that can be tested. All program examples in this book is written in

Visual Studio, since the gain from bigger programs are considerable - in fact it is the only reasonable

tool for developing .NET applications.

Download free eBooks at bookboon.com



2 Basic program architecture

The above example shows in principle the overall architecture of a C# program which is a class that has
a Main() method as a starting point. The example was very simple, since the program consisted of only
a single statement in Main(). In this section I will write a program where there are several statements,
but also several methods. In this example, there is no special justification for splitting the code into
methods - just to show how a method is called and written in C#. Methods are useful (necessary) for

many reasons, but partly the methods can be used to subdivide the code into more manageable parts.

Exam02
Print a book

The goal is to write a program that on the screen can print information about a book

How to

Open Visual Studio and create in the same way as in Exam01I a Console Application project. This time I

have called the project Exam02, but otherwise all options are as above.

Visual Studio creates again a skeleton for a program, and the resulting code is shown below:

using System;

namespace Exam02
{
class Program
{
static void Main(string[] args)
{
Title();
More () ;

}

private static void Title()
{
Console.WriteLine
Console.WriteLine
Console.WriteLine
Console.WriteLine

"Vine fra Alsace");
"Sgren Frank");

"ISBN: 87-7901-152-7");
"Mgntergarden") ;

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Basic program architecture

private static void More ()

{
Console.WriteLine("2. edition");
Console.WritelLine ("Published 2003");
Console.WriteLine ("179 pages");

The program can then be translated and run, and the result is a console window as shown above.

Explanation

In principle, it does the same as Exam01: It write text on the screen, just is the text in this example printed

on several lines. In addition, the print statements are placed in methods that are called from Main().
A method has - so far - the form:

private static void MethodName()
{

// statemens

/

Excellent Economics and Business programmes at:

7

university of e AACSB
groningen b (e

N A

| -
“The perfect start
of a successful,

_- . international career.”
: .

| to discover why both socially
and academically the University

of Groningen is one of the best
places for a student to be

L~

www.rug.nl/feb/education

19 Click on the ad to read more

Download free eBooks at bookboon.com


http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

For example the method Title() consists of four statements that everyone writes a text. A method has a
name, for example Title(), and it’s the parentheses that tells, that it is a method. A method is called by
typing its name. When the program starts, the two statements in Main() are executed, each of which

calls a method.

Comment

It is obviously not a particularly interesting program because it every time print information for the same

book. The program does not perform any data processing, but it comes in the next examples.

Comment

When you create a project in Visual Studio, it creates several directories and files:

The project create a directory, which is here called Exam02, including a subdirectory with the same
name, and it is the directory that contains the project files. There are many files, but for a simple console
application, there are only two that really is interesting for the programmer. The rest is for the sake of Visual
Studio. The file Program.cs (see above) contains the program’s source code, and hence the statements

that the programmer has entered. Stated differently, it is the file you are working with in Visual Studio.

If you open the bin directory, and here the Debug directory you find the following files:

Here are the top the translated program called Exam02.exe (note that explorer by default does not display
the extension exe and the second file is really called Exam02.exe.config). If you wish, you can take Exam02.
exe file and copy it somewhere else (on the same machine or another machine), and the program can

then be run by opening it in a prompt in the same manner as any other program.

Download free eBooks at bookboon.com



3 Variables

Applications must process data, and to do this they need a way to save or store the data. For this programs

has variables, which may have or store a value. A variable is characterized by

e aname

e atype
e operators

Variables must have a name, so you can refer to them in the program. C# is similar to other modern
programming languages relatively flexible in regards to the naming of variables, but shall (should) be

complied with:

« the name of a variable should always start with a small letter
« then there may follow any number of characters consisting of letters and digits

* aname must not contain spaces

If you follow these simple rules, you have never problems with names of variables, but some other

characters are actually allowed.

Variables have a type that indicates which values can be stored in them, and how much a variable use
of the machine’s memory. The type also determines the operations that can be performed on a variable
that is what can be done with it.

Variables must be created or declared before they can be used. This is done by a statement of the form:

type name = value;

First you write the type, then the variable name, and finally assigned it a value, for example:

int number = 23;

Here is declared a variable called number that has the type int and the value 23. Variables should always

be initialized otherwise you get an error in the translation.

When the variables must be declared, it is because the compiler allocates space in the machine’s memory,
and that when the name appears somewhere in the code, the translator must know the name’s meaning
in order to check if the variable is used in a proper context. Is it not the case, the compiler give an error

message. The program can only be tested when it is translated without error.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Variables

C# has the following built-in or simple data types:

bool Boolean true, false

char 16 bit unicode character ‘A, "\x0041,\u0041’
sbyte 8 bit signed integer

byte 8 bit unsigned integer

short 16 bit signed integer

ushort 16 bit unsigned integer

int 32 bit signed integer

uint 32 bit unsigned integer Suffix: U

long 64 bit signed integer Suffix: L/I

ulong 64 bit unsigned integer Suffix: U/u eller L/I
float 32 bit floating-point number Suffix: F/f

double 64 bit floating-point number Suffix: D/d

decimal 96 bit decimal number Suffix: M/m

string Charater string (text) “C:\\test.txt”, @"C:\test.txt"

The first column tells the type, the second how much a variable of that type fills in the machine memory,

and what values it may contain. The last column shows how to declare values of that type.

In the past four years we have drilled

39,000 km

That's more than twice around the world.

Who are we?

We are the world’s largest oilfield services company’.

Working globally—often in remote and challenging locations—
we invent, design, engineer, and apply technology to help our
customers find and produce oil and gas safely.

Who are we looking for?
Every year, we need thousands of graduates to begin
dynamic careers in the following domains:

‘ ‘ m Geoscience and Petrotechnical

m Commercial and Business

What will you be?

a1 careers.slb.com Schiumberger

22 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/Schlumberger1

The last type string is slightly different than the others and the type is called a reference type, which is
explained later. A value of a string can start with a @ character, that means that escape characters are
not interpreted. Escape characters are characters in a string that has a special meaning, and they always

start with \ followed by a character. For example means \n line break.

ExamO03
The sum of two numbers

Below is a program that calculates the sum of two numbers and prints the result:

using System;

namespace Exam03

{

class Program

{

static void Main ()

{

int numl = 17;

int num2 = 23;

int sum = numl + num?2;

Console.WriteLine ("The sum of " 4+ numl + " and " + num2 + " is " + sum);

How to

In the same way as in the first two examples create a Console Application project in Visual Studio, and

the code is entered as shown above. Then the program can be translated and tested:

This is a program that performs a data processing in the form of a calculation and is thus not simply a

program that prints some text on the screen.

Explanation

First, the program declares two variables num1 and num2 that are initialized respectively with 17 and 23.
The type is int, which means that the two variables may contain integer values. They are local variables, as
they are created in the Main(), and they are only known in the Main() method. Then the sum of the two
variables is stored in the variable sum. Note that the value stored in sum, is the result of an expression.
WriteLine() writes the result. In this case, it builds a string from a number of parts or elements. Note that
the individual elements are separated by + which here means string concatenating, and integer values

automatically are converted to a string.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Variables

Operators

C# has a number of operators, which acts on variables or values. The above program used the + operator.
Note that the significance of the operator is dependent on the type of the variables or constants the
operator acts on. In the first case where both operands are integers, the meaning is addition and in the
second case (in the WriteLine statement), the meaning are string concatenating. Note that the above

program also used the = operator, called the assignment operator and is used to assign a variable a value.

C# has the following operators in order of priority, and with decreasing priority downwards:

(). [1 function(...) new typeof sizeof checked unchecked

+ - | ~ 4+ - (Unary operatorer)
*/ %

+ -

<K< >>

<><=>=jsas

&

N

= ¥= /: %: =-=<L<<L=>>= &: N= |=

The individual operators are explained as they are used. The priority is of importance in expressions
that involve multiple operators. The general rule is that you first evaluate the operators with the highest
priority and in the case where there are several operators with the same priority they are evaluated from

left. In for example the expression
at+b=*c

b * ¢ is calculated first, since * has higher precedence than +. If instead you writes
(a+b)*c

a+bare first calculated as parentheses have higher precedence than *. In most cases the use of operators are
without much difficulties, but some operators requires a little explanation. Note particularly assignment

operators, for example =+. For example means the following

int a = 11;
a += 2;

24

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Variables

that the variable a gets the value 13. Thus, it is just shorthand for the following:

Another operator you should make special attention to is ++, which counts a variable up by 1. For
example means

int n = 7;
++n;

that the variable # has the value 8. ++ may be written on both sides of the variable, and these can also
be written as follows:

int n = 7;
n++;

The result in this case is the same. If the last statement, however, is included in an expression, it has
significance on which side you write the operator. The rule is that if the operator is first (left), the variable
incremented, after which the expression value is calculated, and is the operator after the variable the

expression is calculated first, and then the variable is incremented. The result of the following statements

7 .

int n ;
0;

int a
a = ++n;

American online

is currently enrolling in the
Interactive Online
programs:

enroll by September 30th, 2014 and
save up to 16% on the tuition!

pay in 10 installments / 2 years
Interactive Online education

visit to
find out more!

vvyvVvyyVvyy

Note: LIGS University is not accredited by an

nationally recognized accrediting agency listed

by the US Secretary of Education.
ore info here.

—

25 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/LIGS

is such that n gets the value 8 and a gets the value of 8 (n is incremented by 1 and the result assigned

to a), while the result of the following

int n = 7;
int a = 0;
a = nt+;

is that n gets the value 8 and a value of 7 (a is given value of n, and then » is counted up by 1).

Operator — operates in the same manner, but the value is decremented by 1. If you run the following

example:

namespace Exam04

{
class Program
{
static void Main(string[] args)

{

int n = 7;

Console.WriteLine (n++) ;
Console.WriteLine (++n) ;
Console.WriteLine (n--);
Console.WriteLine (--n);

}
you got the result:

Download free eBooks at bookboon.com



4 Console programs

As mentioned in the foreword this book treats only console applications. It is programs that are executed
from a command line that writes the results to a text screen and the user can input data to a prompt. In this

section I will look at how the user can enter data into the program and how to format the program’s output.

ExamO05
Perimeter and area of a circle

As an example I will show an application, where the user must enter the radius of a circle, and the program

calculates and writes the circle’s circumference and area. Below is an example of a running program:

How to

The code can be written as follows (where I have not included the program’s using statements and the
program’s namespace):

static void Main(string[] args)
{
Console.Write ("Enter radius: ");
string text = Console.ReadLine();
double r = Convert.ToDouble (text);
double p = r * 2 * Math.PI;
double a = r * r * Math.PI;
Console.WriteLine (
"Perimeter and area of a circle with radius {0:F4}: {1:F4}, {2:F4}", r, p, a);

Explanation

The program has in principle the same structure as the first example and consists only of a Main()

method. The program writes a help text, then the user must enter a number (radius):

string text = Console.ReadLine();

Note that the help text is written with the method Write(). The difference between this method and
WriteLine() is that the Write() does not end with a newline. ReadLine() is a method in the class Console
that collects user input until the user type Enter. Then the entries are returned as a string — a variable of

type string. Note that ReadLine() always returns a string, and it is then the programs task to convert the

input to a different type as needed. In this case, the input is converted to a double with the statement:

double r = Convert.ToDouble (text);

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Console programs

Convert is a class in the namespace System which defines a family of conversion functions. Note that
these — here ToDouble() - requires that the user has actually entered a legitimate number. If not, the

program stops with an exception, there is an error handling. Next the perimeter and area are calculated:

double p r * 2 * Math.PI;
double a = r * r * Math.PI;

Here Math.PI is a constant in the class Math which is a class in the System namespace. Finally the program
write the result with WriteLine(), but this time the function has several arguments. The first argument
is called a format string and is followed by three variables. The values of the variables are inserted into
the format string determined by the so-called placeholders. For example is {0: F4} a placeholder that
indicates that here, the first variable after the format string is added, that is the value of the r. The next
placeholder is called {1: F4}. It indicates that here the variable p is added - variable number 2 after the
format string. F4 means that the value is added as a decimal number (F) with 4 places after the decimal
point. Similarly, states {2: F4} to be inserted a value formatted as a decimal number with 4 digits. It is

in this case, the variable a.

v---v--------v---v---v---vv--vv--vvv--vv--ov--vv--vv--vvv--vv-cv--co--coAlcateluLUcent @
www.alcatel-lucent.com/careers

l"

<

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".

28 Click on the ad to read more
Download free eBooks at bookboon.com



http://s.bookboon.com/AlcatelLucent

C# 1 Introduction to programming and the C# language

Comment

There are following options to format a placeholder:

Console programs

C Currency (depends on the local setting)
D Integer
E Exponential form (float, double)

F Fixed decimal (float, double)

G General (F or E)

N Numeric with thousands

X Hexadecimal

Exam06
Product calculation

The next example performs a calculation. The user must enter the unit price and number of units of an

item. Then the program calculates the total price excl. VAT, VAT, total price incl. VAT and writes the

result on the screen. If you run the program, the result could be the following:

How to

The starting point is again a Console Application project:

static void Main(stringl[]

{

args)

Console.Write ("Enter the unit price:
string text = Console.ReadLine();
double price = Convert.ToDouble (text);

")

Console.Write ("Enter the number of units:

text = Console.ReadLine () ;
int quantity = Convert.ToInt32 (text);

double amount = price * quantity;
double vat = amount * 0.25;

double total = amount + wvat;
Console.WriteLine("{0, -15} {1, 10:r}",
Console.WriteLine("{0, -15} {1, 10:D}",
Console.WriteLine("{0, -15} {1, 10:r}",
Console.WriteLine("{0, -15} {1, 10:r}",
Console.WriteLine("{0, -15} {1, 10:r}",

29

"Unit price", price);

"Number of units", quantity);
"Total excl. VAT", amount);
"VAT", wvat);
"Total incl.

VAT", total);

Download free eBooks at bookboon.com



Explanation

The program works just like the previous program, only this time you must enter two values. Moreover,

the placeholders are more complex. If for example you look at the statement:

Console.WriteLine ("{0, -15} {1, 10:F}", "Unit price", price);

There are two placeholders. {0, -15} is the first, and insert the words “Unit price” -15 means that the
field is 15 characters wide, and when the number is negative, the value must be left justified. Note that
there is no format character, and then it is the data type of the element that determines the format type.
The next placeholder {1, 10:F} means that the next item to be formatted right-justified in a field of 10
characters and as a decimal number. As the number of decimal places is not specified the default value

is used, which is 2.

ExamO07
Date and time

This program will print how much the time is:

The program will primarily show the formatting of the result, but also the use of type DateTime.

How to

The code can be written as shown below. Note that this time there are two methods that are called from
Main():

static void Main(string[] args)
{
DateTime dt = DateTime.Now;
Timel (dt) ;
Time2 (dt) ;
}

static void Timel (DateTime t)

{
Console.WriteLine ("{0:D2} {1:D2} {2:D2} {3:D3}", t.Hour, t.Minute, t.Second,
t.Millisecond) ;

}

static void Time2 (DateTime t)
{

Console.WritelLine (t.ToLongDateString()) ;
Console.WritelLine (t.ToLongTimeString()) ;

Note that I did not show the whole code, but only the methods.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Console programs

Explanation

In Main() the machine clock is read and its value is stored in a variable:

DateTime dt = DateTime.Now;

DateTime is a class that contains a number of methods to date and time. Now is a property, which always
contains the current value of the hardware clock. This value is stored in a variable called dt and which
type is DateTime. Next, a method Timel() is called, where the variable dt is sent as a parameter. This
means that it is known and can be used in the method Timel() with the name t. The method prints the
time in terms of hours, minutes, seconds and milliseconds, each part separated by spaces. Please note the
placeholders. For example means {0: D2} that the first variable to be formatted in a field as an integer,
and that the field should be two characters in order to insert a leading 0, if there is only one digit. You
will also notice how you refer to the values. t is a variable whose type is DateTime, which is a class.
The class defines a number of properties, for example t. Hour for hours, and you refers to the individual

characteristics by the variables name followed by a period and the feature name.

The class DateTime provides other opportunities. The method Time2() writes the current date and time,

but here I used methods from the DateTime class that formats the result as a string.

/

Leadiny
% Maastricht University o Learnin:

Join the best at
P i N - 33" place Financial Times worldwide ranking: MSc
the Maastricht University International Business

+ 1% place: MSc International Business
M + 1% place: MSc Financial Economics
SChOOI Of Bus' ness a nd « 2" place: MSc Management of Learning
. - 2" place: MSc Economics
Econom ICS! - 2" place: MSc Econometrics and Operations Research
- 2" place:MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is
the best specialist
university in the
Netherlands
(Elsevier)

Master’s Open Day: 22 February 2014

www.mastersopenday.nl

31 Click on the ad to read more

Download free eBooks at bookboon.com


http://www.mastersopenday.nl

Comment

DateTime is a class (actually a struct), and as you can see, there are some new things such as properties
etc. All this will be dealt with in detail later. The same applies to parameters that are also used in this
example without going into detail on the meaning, but you can think of a parameter as a variable that
specifies the value a method has to work on. In the examples here, the methods use the value of the
variable dt, but it exists and is only known in Main() and is thus not known in the other two methods. We
need a mechanism that can transfer dt, when the methods are called, and that’s exactly what parameters

are used to.

ExamO08
Arguments on the command line

When you create an application using Visual Studio, the Main() method has a parameter, that I have not
used so far. It is used on the command line to transfer the arguments to a program. That is if you have

a program called Exam08.exe, you can execute the program from the command line by typing

Exam08 a b c

where a, b and ¢ are arguments to the program and are arbitrary strings separated by at least one space.
There are no restrictions on the number of arguments and an argument need not be a single character
as above, but may be any string. If the program does not do anything by the arguments they are ignored,

and it is up to the program to address these arguments.

The example shows an application where the user must transfer two integers as arguments on the
command line, and the program will then print out the quotient and modulus. The result could, for

example be the following:

How to

The program is written in the same way as the other examples, and code for the Main() method is as

follows:

static void Main(string[] args)

{
long tl = Convert.ToInt64 (args[0]);
long t2 = Convert.ToInt64 (argsl[l]);

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Console programs

Console.WriteLine ("Quotient of {0} and {1} is {2}", tl1, t2, tl / t2);
Console.WriteLine ("Modulus of {0} and {1} is {2}", tl1, t2, tl % t2);

Explanation

The Main() method has a parameter which is an array (arrays are discussed below), and which may
represent arguments on the command line. Since the arguments from the command line are always
strings, they are converted to integers (in this case of the type long) before the result can be calculated,
which is the quotient and modulus of the two numbers. Note specially the operator % which is the

modulus operator (remainder of division).

Note that if you run the program and do not specify two arguments, or if there is one of the arguments

that is not an integer the program will crash with an error message. But if you specify more than two

arguments, the last are just ignored.

> Apply now

REDEFINE YOUR FUTURE
AXA GLOBAL GRADUATE
PROGRAM 2015

o
S
S
17}
=
S
=
S
S
s}
e
o
©

dg

redefining / standards

33 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/AXA

5 Program control

The above examples are all sequential so that the statements may be carried out in the order they are
written. In practice, all programs need to make the execution of statements depending on a condition that

occurs when using control statements. C# has the following fundamental statements for program control

. if

o while
e do

o for

o switch

Control statements are best illustrated through examples in the form of simple methods, which are the

subject of this section.

Control statements are used in methods in the same manner as the other statements, for example
WriteLine, but a control statement makes the execution of one or more other statements depending on
a condition. Thus, it needs to refer to multiple statements as a whole, which is done by means of a block,

which is just a number of statements in brackets:

statement];

statement2;

For example are the statements in a method a block, but it will be apparent hereinafter, that one can
have blocks within a block. You've actually already seen examples, where a class is also a kind of block

which instead of statements contains methods.

Control statements are needed to be able to write programs that do something interesting. First with
control statements available, you can begin to work on algorithms and hence write programs that solve

a specific problem. The following will therefore also to some extent focus on algorithms.

if

An if statement has the form:

if (condition) block

Download free eBooks at bookboon.com



and the meaning is that if the condition is true, then perform the block (the block’s statements). Otherwise,
nothing happens. A condition is an expression whose value is a bool and hence an expression that is true
or false. If only a single statement has to be controlled by a condition, you must omit the parentheses

and simply write:

if (condition) statement;

ExamOQ9
Sort two numbers

The task is to write a program where the user can enter two integers. The program will then print the

two numbers in ascending order. An example of an operation of the program might be:

How to

The task can be decomposed into two sub problems:

» Enter two integers

 Print the numbers in ascending order

To solve the first problem one has to perform the same operation (enter an integer) twice, and it is

therefore worthwhile to write this operation as a method:

static int Enter ()

{
Console.Write ("Enter an integer: ");
string text = Console.ReadLine();
return Convert.ToInt32 (text);

Note that the method has a type, but it is explained below.

To print the results you have to find the smallest number, and it is here the if statement comes at the
track. I will use the approach that if the first number is greater than the last, I will swap the two numbers,
and in one way or another I have in C# to determine (test) if the first number is greater than the other.

That’s exactly what an if statement is used to.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language

Program control

One can define a method for the printing of the results follows:

static void Sortl (int a,
{
if a > b then
{
save a in a help variable t
a = b
b =t
}

Console.WriteLine ("{0}

int b)

(11", a, b);

Strictly speaking it is not a method, but it is a solution formulated by using an informal language - it is

an algorithm. The task is therefore to write this algorithm in C#:

static void Sortl(int a, int b)
{

if (a > Db)

{

int t = a;
a = b;
b = t;

}

Console.WriteLine ("{0} {1}", a, b);

Iy

. inancial
conomics

/

Shipping ‘

>rnatlonalsie
Business.

TTe—

Leadership &8
Organisationgi
Psyelglog

e
s,
\

"// g ageetl A\ N

o

NORWEGIAN L erwo
BUSINESS SCHOOL ~ ~ £9Uss

ACEREDITED

Empowering People.
Improving Business.

Bl Norwegian Business School is one of Europe’s
largest business schools welcoming more than 20,000
students. Our programmes provide a stimulating
and multi-cultural learning environment with an
international outlook ultimately providing students
with professional skills to meet the increasing needs
of businesses.

Bl offers four different two-year, full-time Master of
Science (MSc) programmes that are taught entirely in
English and have been designed to provide professional
skills to meet the increasing need of businesses. The
MSc programmes provide a stimulating and multi-
cultural leaming environment to give you the best
platform to launch into your career.

* MSc in Business

* MSc in Financial Economics

* MSc in Strategic Marketing Management

* M5Sc in Leadership and Organisaticnal Psychology

www.bi.edu/master

36

Download free eBooks at bookboon.com

Click on the ad to read more



http://s.bookboon.com/BI

Then the program itself can be written as follows:

static void Main(string[] args)
{

int a = Enter();

int b = Enter();

Sortl (a, b);

Explanation

The method Sort1() has a condition in the form of an if statement that tests whether the value of a
is greater than the value of b, and when it is true, the next block, which reverses the two numbers, is
executed. Since the block is only executed if the value of a is greater than the value of b, the value of a
will always be less than the value of b after the block is executed. The result is that the two numbers are

printed in ascending order.

You should note how to write a condition in an if statement, and that it is an expression whose value
is either true or false. It is an expression whose type is bool. Also note that the expression should be in

parentheses.

You should also note the method Enter(), which is a method with a return value. Return values are
addressed later in the section on methods, but until then you can think of a return value as a value
attached to the name of the method with a return statement. That way you can get the value transferred

to the place where the method is called such by writing:

int a = Enter();
This means that the value attached to the name of the method by return is stored in variable a.

Comment

A method’s statements are an algorithm or a solution. The biggest challenge in writing programs is to
learn to write algorithms, because a given problem can often be solved in several ways. Above I have
shown an algorithm to swap two numbers and it can often be a good idea to start writing an algorithm in
an informal language, because in this way frees the solution from the many details of the programming
language and thus can focus on the problem itself and how it is solved. Once you have formulated the
algorithm in an informal language, it is typically an easy task to translate the algorithm to the specific

programming language, which here is C#.

Note especially the algorithm to swap the two numbers. It is a simple algorithm, but it’s really important

and it is an algorithm that you will meet many times.

Download free eBooks at bookboon.com



if-else

An if statement can be combined with an else part:

if (condition)
block_1

else
block_2

where both block_1 and block_2 can be simple statements. The significance is that block_I is executed if
condition is true, and if not then block_2 is executed. As an example, the preceding method that prints

two numbers in ascending order can be written in the following way:

static void Sort2(int a, int b)
{
if (a < b)
Console.WriteLine ("{0} {1}", a, b);
else
Console.WriteLine ("{0} {1}", b, a);

Note also that the method can be written as follows:

static void Sort2(int a, int b)

{
if (a < b)
Console.WriteLine ("{0} {1}", a, b); else Console.WriteLine("{0} {1}", b, a);

and as another example could be written as:

static void Sort2(int a, int b)
{
if (a < b)
{
Console.WriteLine ("{0} {1}", a, b);
}

else

{
Console.WriteLine ("{0} {1}", b, a);

}

Seen from the machine, the three versions are equally good, and the choice is solely a matter of what

you think is most readable.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language

Exam10
A quadratic equation

Program control

I'll show a program that can solve a quadratic equation, and therefore a program that solves a classical

task from school and mathematics teaching. A quadratic equation is expressed as:

ax’ +bx+c=0

The solution formula is:

Given the discriminant : J = b —4qc

no solutions if d <0
Solution: =0 if d=0
2a
b+
b+Jd i d>0
2a

The task is to write a program where the user must enter the equation’s coefficients (that is a, b and c).

The program will then determine the equation’s solutions using the above formula and print the result

on the screen.

Need help with your
dissertation?

Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

Get Help Now

Go to www.helpmyassignment.co.uk for more info

E:/Helpmyassignment

39

Download free eBooks at bookboon.com

Click on the ad to read more



http://www.helpmyassignment.co.uk

C# 1 Introduction to programming and the C# language Program control

An example of an operation of the program might be:

How to

The solution of the equation can be informally described as follows:

calculate the discriminant d

if d < 0 then no solutions

else if d > 0 then calculate two solutions
else calculate one solution

Immediately there is not much solution in that, but it breaks down the task into three sub problems,
each of which is simpler than the original problem. This kind of problem decomposition is a principle
that recurs in many tasks and is an important step towards a complete solution. Each of the three sub-

problems is relatively simple, and the program can be written as follows:

class Program

{

static void Main(string[] args)

{

double a = Enter ("Enter a");
double b = Enter ("Enter b");
double ¢ = Enter ("Enter c");

Solve(a, b, c):

}

static double Enter (string text)
{

Console.Write (text + ": ");
string line = Console.ReadLine();
return Convert.ToDouble (line);

}

static void Solve (double a, double b, double c)
{
double d = b * b - 4 * a * ¢c;
Console.WriteLine ("The equation {0:F4}x"2 + {1:F4}x + {2:F4} = 0", a, b, c);
if (d < 0) Result();
else 1if (d > 0) Result(a, b, d);
else Result(a, b);

}

static void Result ()

{

Console.WritelLine ("has no solution");

}

static void Result (double a, double Db)

{
Console.WritelLine ("has the solution {0:F4}", -b / (2 * a));

40

Download free eBooks at bookboon.com



static void Result (double a, double b, double d)
{
double y = Math.Sqgrt(d);
Console.WriteLine ("has the solutions {0:F4} and {1:F4}",
(<b - y) / (2 * a), (b +y) / (2 * a));

}
Explanation

Note first the method Enter() which is substantially the same as in the previous example. There are
two differences. The guiding text that tells the user what needs to be transmitted, are this time sent as
a parameter. The second difference is that the method this time converts the input to a double, and the

method must also return a double - the method’s type is double.
The method Solve() solves the equation, and it performs three things:

o calculates the discriminant
« print the equation
« implement the above algorithm, which divides up into three sub problems, and here you

mainly observe how the if-else statements is used

The three methods to print the result does not require much explanation, but note the last, and how
to determine the square root of a number. This is done by the method Sgrt(), which is a method in the
class Math.

Comment

The method Solve() includes if-else statements:

if (d < 0) Result();
else if (d > 0) Result(a, b, d);
else Result(a, b);

and when each condition control only a single statement, I have used, that it is not necessary to place
the statement in a block. It’s something you can discuss, and many will prefer to write the code in the

following way, as they think it gives a more readable code:

if (d < 0)
{

Result ()
}
else if (d > 0)
{

Result(a, b, d);
}
else
{

Result (a, b);
}

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Program control

Seen from the finished program and the machine it is irrelevant, and the two codes are translated into
the same and the one is neither more nor less effective than the other. The choice is the programmer’s
and is only a question of readability, and you should simply choose the version that you think is most

readable. I think the first version is the most readable, but it’s far from all who agree in that.

That a program is readable is actually more important than that, and here one must bear in mind that
programs often require maintenance by anyone other than the one who originally wrote the program,

and for it to be possible, it should be easy both to read and understand the program.

while

It is often needed to carry out a statement or a block several times until a condition occurs. Here you

can use a while statement, which has the following form:

while (condition)
block

The significance is that the block and its statements are performed as long as the condition after while

is true. Then the program continues with the next statement after the while construct.

(]
B By 2020, wind could provide one-tenth of our planet's

ra I n p O W e r electricity needs. Already today, SKF's innovative know-

how is crucial to running a large proportion of the

world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
stems for on-line condition monitoring and automatic

tion. We help make it more economical to create

Therefore we'need the best employees who can
eet this challenge!

T@f Power of Knowledge Engineering

'-r?a-.i

Plug into The Power of Knowlé: ngineering.
Visit us at www.skf.com/know1edg.\a

» .
VRS

42 Click on the ad to read more

Download free eBooks at bookboon.com


http://www.skf.com/knowledge

Exam11
The sum of the positive number less than 100

As an example is shown a program which determines the sum of all positive integers less than or equal

to 100, that is the sum [+2+3+...+100.

How to

The program can be written as follows:

class Program

{
const int N = 100;

static void Main(string[] args)
{
long s = 0;
int n = 1;
while (n <= N)
{
s += n;
++n;

}

Console.WriteLine(s);

Explanation

Note first that in the beginning of the program there is defined a constant, which is the largest number

to be included in the sum:

const int N = 100;

It is not necessary, but it makes it easy to modify the program if, for example instead it must determine

the sum of the numbers from 1 to 1000.

Note the algorithm. First define a variable s to the result. Next, define a variable n to the number
to be added to the sum and initialize it to 1, which is the first number. Then repeat the subsequent
block as long as n is less than or equal to 100 (the constant N). In the block two things happens:
The value of the variable n is added to s and » is incremented by 1. Note that the last statement
means that # is 1 more for each repetition, and thus the condition for the while, sooner or later becomes

false.

Download free eBooks at bookboon.com



Comment

Initially it may be difficult to see through an algorithm as above and see that it does the right thing
and here it may be a good idea to implement a desktop test where you try to manually keep track of
what happens to the variables. For example, suppose that N = 10. The program must determine the
sum 1+2+3+...4+10=55.. When the algorithm is performed the following happens, where the first

column shows what happens to the variable s, and the second column shows what happens variable :

s n
0 1 The two variables after they are initialized (created)
1 2 Variables after the 1. while statement is executed
3 3 Variables after the 2. while statement is executed
6 4 Variables after the 3. while statement is executed

10 5 Variables after the 4. while statement is executed

15 6 Variables after the 5. while statement is executed

21 7 Variables after the 6. while statement is executed

28 8 Variables after the 7. while statement is executed

36 9 Variables after the 8. while statement is executed

45 10 Variables after the 9. while statement is executed

55 11 Variables after the 10. while statement is executed

This means that the loop stops when 7 is 11, and at that moment, the variable s has the value 55.

Is it a large program that has many variables and iterations with many repetitions, the above is obviously
not a viable option, but in simpler cases, it may be a good way to convince itself that an algorithm

works — and to find a fault.

Visual Studio provides a better opportunity of using the Debugger, but I show it later.

Comment

The while statement is also called a loop, an iteration or a repetition. If the block contains only a single
statement, you can in the same manner as for if omit the parentheses. For example the above program

can be written as:

static void Main(string[] args)
{
long s = 0;
int n = 1;
while (n <= N) s += n++;
Console.WriteLine(s) ;

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Program control

Note it here is important that ++ stands after #, because n must be incremented by 1 after the calculation

is done.
Again it is up to you and readability, if you will omit the parentheses or not.

Comment

The task is to determine the sum of a row of integers 1+2+3+...+ N, and above, it is solved by means
of a loop. Seen in relation to programming it is perhaps the most obvious solution, but there are other
options, since the sum is an example of a difference serie, and mathematics has a formula to calculate
this sum. I mention this only to point out that a giving problem often can be solved in several ways, and

it is not always the most obvious solution that is the best.

for

The for statement has three parts separated by semicolons: initialization, condition and expression:

for (initialization; condition; expression)

block;

Each of the three parts of the for statement can actually be empty. When the statement is carried out,

the following occurs:

ant to do”?

Vouwro Touexs | Resanr Toocks | Macs Toveks | Vowo Buses | Vowo Cowsteucnion Esumsest | Wowo Pesm | Vowo Aeno | Wowo IT
Vowo Fimswcer Sepnces | Vowo 3P | Vowo Powerream | Vowo Pasrs | Vowo Techwowoer | Wowo Loasncs | Busisess Anes Asie

45 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/volvo

Perform the initialization part (if there is one)

Test whether the condition is true (if the condition is empty it is true)
If the condition is true executes the following block

Otherwise the for statement is interrupted

Execute the expression part

S A S o o

Continue with step 2
Note that the initialization part is done only once. Note also that the block can be a single statement.

Exam12
Sum of positive integers

This example has the same purpose as above, but this time I will solve the task using a for statement.

How to

With use of the for statement, the program can be written as follows, where the constant N is as above:

static void Main(string[] args)

{
long s = 0;
for (int 1 = 1; 1 <= N; ++1i) s += 1i;
Console.WritelLine(s) ;

Note that the code resembles the previous example.

Explanation

The for statement have a counter — here the variable i - which counts the number of iterations. For each

repetition the following statement is executed

Note that the counter i is incremented by 1 after each pass, and that repetition continues until i reaches

an upper limit.

Comment

The for statement is very flexible. The initialization part is usually used to initialize variables, and it is

permissible to have multiple initializations when separated by commas:

for (a = 2, b= 3, ¢ = 5;

Download free eBooks at bookboon.com



When, as above a variable is declared in the initialization part, the variable is not known outside the

for statement and the corresponding block. You can declare multiple variables in the initialization part:

for (int i = 0, 3 = 1;

but they must have the same type. As for the condition there is no other requirement than it should be a
legal boolean expression. That can include boolean operators, function calls, etc. The expressions section
is typically used to control a controlling variable in the condition, but generally it can be anything that
is an expression and also a function call. The expression section can have multiple expressions if they

are separated by a comma, for example:

for (...; ...; ++i, 3 +=T7)

In the above cases there is no advantage in applying for instead of while, and seen from the program, it
has seldom the great importance of which loop structure is used. The choice is usually determined by
the nature of the task, where one of the structures may be more appropriate to the other. However, for

is the most flexible and the most frequently used.

do

There is another variant of the while statement, called a do loop that has the form:

do
{

statement;

/

while (condition);

The significance is that the statements in the block are performed and then the condition is tested. Is
it true, repeat the block and it continues until the condition becomes false. Compared with the while
statement is the difference that do always will perform the block at least once, since the condition is first

tested after the block is executed. The do loop is not used as often as the other loops.

switch

while, for and do are control structures for loops or iterations, while if is a control structure for branching
or selection. In most cases, if is used for selections, but there is an alternative, called switch. It is best

explained by an example.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Program control

Exam13
Weekday

The task is to write a program where the user must enter an integer. If the number is 1, 2, 3, 4, or 5, the
program will print the name of the corresponding day of the week, if the number is 6 or 7, the program
will print the text Weekend, and otherwise the program will print an error message. Below is an example

of a running program:

How to

The program can be written as follows, where in Man() the user must enter the number for the day of
the week:

static void Main(string[] args)
{
Console.Write ("Enter the day number in week: ");
string text = Console.ReadLine();
switch (Convert.ToInt32 (text))
{

EXPERIENCE THE POW

FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
RUN EASIER...

48 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/Gaiteye

case 1:
Console.WritelLine ("Monday") ;
break;

case 2:
Console.WritelLine ("Tuesday") ;
break;

case 3:
Console.WritelLine ("Wednesday") ;
break;

case 4:
Console.WriteLine ("Thursday") ;
break;

case 5:
Console.WritelLine ("Friday");
break;

case 6:

case 7:
Console.WritelLine ("Weekend") ;
break;

default:
Console.WritelLine("Illegal day...");
break;

Explanation

After the word switch is an expression:

switch (Convert.ToInt32 (text))

The construction also has a number of case entries where the case is a constant followed by a colon. The
constant must have the same type as the expression:

case 1:

When the statement is executed, the expression is evaluated, and the control is transferred to the case
entry that is identical to the value of the expression. The statements after the case entry are then executed,
until you meet a break-statement, a return statement or the switch statement ends. If there is no case entry,
which corresponds to the value of the expression after switch, there are two possibilities. Has the switch
statement a default entry, the control is transferred to that entry. Otherwise the entire switch statement
is skipped. Note that a switch does not need to have a default entry.

In the above if the input is 6 or 7, the program in both cases the print

Weekend

If, for example the user enters 6, the program will continue with the statement after the case 7, as there

is no break after the case entry for 6.

A switch statement is kind of multi-branching, and it can sometimes be a reasonable solution, but is not

as often used as the other control statements.

Download free eBooks at bookboon.com



Exam14
The cross-sum

To conclude the use of control statements from this section, I will show two additional programs.

The first program calculates the cross-sum of a number, the user enters. If the user enters 123456 the

cross-sum is 3:

1+2+3+4+5+6=21
2+1=3

The program will show how one can have two while-statements inside each other, but is also an example

of an algorithm that are bit harder to solve than other algorithms shown so far.

How to

Solving the task can be decomposed into three sub problems:

« Enter the number
o Determine the cross-sum

o Print the result

Here the solution of the first and last problem are what I have done previously, and are simple problems,

and the task is reduced to determine the cross-sum of a number. This task can be described as follows:

o determine the sum of the number’s digits

o repeat until the sum is less than 10

A little more formally the task can be formulated as an algorithm in the following manner:

while number > 9 do

{
let sum = sum of the numbers digits
number = sum

}

number is now the cross-sum

The problem can be solved with a loop, but yet it is not entirely clear how to determine the sum of the

digits of a number. This can be done with a second loop:

while number > 0 do

{

)

add number % 10 to sum
divide number by 10

where the first operation in the loop adds the last digit of the number to the sum, while the second

operation throws the last digit off.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Program control

With these considerations in place, you can write a method that determines and returns the cross-sum

of a number:

static uint DigitSum(ulong n)
{
while (n > 9)
{
ulong s = 0;
while (n > 0)
{

}
n = s;
}

return (uint)n;

The program itself can now be written as, where the method Enter() is as before:

static void Main(string[] args)
{
ulong number = Enter();
Console.WriteLine ("The reduced sum of digits in {0} is {1}",
number, DigitSum (number)) ;

This e-book Y o N
ismadewith SETASIGN

SetaPDF h Y 4

\7\‘ PDF components for PHP developers

www.setasign.com

51 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/Setasign

If you run the program the result could be:

Explanation

The inner loop determines the sum of the numbers digits. Note the operator % which is the modulus

operator. For example means

)

number % 10

residue by dividing by 10, which is the rear digit of the number. Note also the result of

number /= 10;

where the division by 10 (integer division) “throw” the last digit off. The outer loop is repeated as long

as the sum of digits is greater than 9 - it is more than one digit.

Note also the data types. The parameter to the method DigitSum/() has the type ulong. I chose a long to
work with large numbers, and here again an ulong, because the number should not be negative. Similarly,
the method returns an uint, which is a non-negative integer. Unsigneds are used less often, and I've mostly
used them here to show how they are used. # is an ulong, and the method returns an uint. In the return
statement is thus a need to put a large number (an ulong) into a smaller (an uint). You can't just do that

without telling the compiler that you mean the business. You do that with a type cast:

return (uint)n;

which tells the compiler that it should convert » to an wuint.

Exam15
The biggest and the smallest number

This example is a program that uses the control structures while and if. if is the most frequently used
control statement at general, and in practice, one can’t imagine a program that does not apply if. In the

program you must enter an arbitrary number of numbers and the method then prints

« number of entered numbers

« the sum of numbers entered

 the smallest of the numbers entered
« the largest of the numbers entered

« the average of the numbers entered

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language

An example of an execution of the program might be:

How to

The program can be written as follows:

namespace Examl)5

{

class Program

{

static void Main(string[] args)

{

double sum = O0;

int count = 0;

double min = double.MaxValue;
double max = double.MinValue;
double number;

while ((number = Enter()) != 0)

{

sum += number;

++count;
if (min > number) min = number;
if (max < number) max = number;

}
Print (count, sum, min, max);

}

static double Enter ()

{
Console.Write ("Enter a number (enter 0 to stop):
string line = Console.ReadLine();
return Convert.ToDouble (line);

}

static void Print (int count, double sum, double min,

{

if (count > 0)

{
"Number of entered numbers:
"The sum of the numbers: {0,

Console.WriteLine
Console.WriteLine

Program control

")

double max)

{0, 10:D}", count);

10:F}", sum);

Console.WriteLine ("The highest number: {0, 10:F}", max);

(
(
Console.WriteLine ("The smallest number: {0, 10:F}", min);
(
(

Console.WriteLine ("Average: {0, 10:F}", sum / count);

}

else

Console.Writeline ("There are no numbers entered...");

53

Download free eBooks at bookboon.com



Explanation

The method starts to declare and initialize some variables. The type double has two constants, and
MaxValue and MinValue that is respectively the largest and the smallest occurring numbers of the type
double. Note that this means that the variable min is initialized with a value that is too large, while the
variable max is initialized with the value that is too small. This is followed by a while loop. Here you

must particularly note the condition:

while ((number = Enter()) != 0)

Enter() is the same input method, which I have previously looked at. It returns a double, which is stored
in the variable number. The value of the assignment is the value of the variable number after the method
Enter() is executed, and it is this value that is compared with 0. Note that it is necessary with parentheses
around the assignment, as the comparison operator != has higher precedence than the assignment. The

result is that the while loop is repeated until the user enter 0.

Inside the while loop is what happens:

« the entered number is added to the sum

« the counter count is incremented by 1

o if the entered number is a new smallest number (less than that which before was the
smallest), the variable min is changed

o if the entered number is a new largest numbers (greater than that which before was the

largest), the variable max is changed

After the loop is completed, the Print() method are called to print the result. Here it is tested whether

the variable count is greater than 0 to ensure that the program will not divide by 0.

Download free eBooks at bookboon.com



6 Strings

A string is a type that represents text, and it is an alias for the System.String class. A string is in contrast
to the other types which have been treated so far, a reference type, but it is explained in detail in a
later section. In C# a string contains Unicode characters, that is characters of the type char. Strings are
important in practical programming, and you can't really imagine a program where you do not use

strings. A string literal is specified as a sequence of characters in double quotation marks, for example:

string navn = "Volmer";

Often you need to specify special characters in a string. This is done by means of escape sequences, for

example:

string navn = "\"Volmer\"";

if you want to specify the text “Volmer” incl. quotes. There are following escape sequences:

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.

Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

OSRAM
Light is OSRAM SYLVANIA

0

Download free eBooks at bookboon.com


http://s.bookboon.com/osram

C# 1 Introduction to programming and the C# language Strings

\' Single quotation marks 0x0027
\” Double quotation marks 0x0022
\\ Backslash 0x005C
\0 Zero 0x0000
\a Alert 0x0007
\b Backspace 0x0008
\f Formfeed 0x000C
\n New line 0x000A
\r Carriage return 0x000D
\t Horizontal tab 0x0009
\v Vertical tab 0x000B

Variables of the type string generally do not result in major problems as they - although it is a reference

type — are widely used as variables of the other simple types. However, one should be aware of statements

of the form:
string strl = null;
string strz2 = "";

where the first is a null reference, that is a string that does not refer to anything, while the second refers

to the empty string, a string with no content.

If you have a string object as

string text = "Volmer";

one can refer to individual characters with a 0-based index. If, for example you write

char ch = text[3];

the variable ch will have the value ‘m’

Exam16
The class string

The class string has a number of methods that are useful for the treatment of the strings. The following

program provides examples of some of these methods:

56

Download free eBooks at bookboon.com



static void Main(string[] args)

{

string text = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

Console.
Console.
Console.
Console.
Console.
Console.
Console.
Console.
Console.
Console.

WriteLine (text.ToLower ()) ;
WriteLine (text);

WriteLine (text[3]);

WritelLine (text.Length);
WritelLine (text.Substring (3, 7));
WritelLine (text.Substring(12));
WriteLine (text.IndexOf ("KLMN")) ;
WriteLine (text.IndexOf ("KMLN")) ;
WriteLine (
WriteLine (

String.Compare (text, 9, "1234567891234jklmnopg56789", 13,
string textl = "Peter";
string text2 = "Anders";

Console.
Console.

Explanation

First, initialize a variable fext. The method text.ToLower() returns a string where all letters in text is
converted to lowercases. Length is a property that returns the number of characters in a string. Substring()
is a method that returns a substring. For example returns text.Substring(3, 7) a substring of 7 characters
from position 3 onwards, that is “DEFGHIJ”. If you only specify one argument to Substring() the method
returns a substring starting from that position until the end of the string. IndexOf() is a method that return
the start position of the first occurrence of a partial string. For example returns text.Indexof (“KLMN”)

the value 10. If the substring is not found, it returns -1. CompareTo() is a method that compares the

WritelLine (String.Compare (textl, text2));
Writeline (String.Compare (text2, textl));

strings. If, you for example write

text.CompareTo ("xyz")

it returns the value 0 if the two strings are equal, -1 if text is less than “xyz” and otherwise 1. There is

also a static version for comparison of strings. For example will String. Compare(textl, text2) return 1,

since the text] is greater than text2.

There are other methods for treatment of the strings, but the methods that are shown in this example,

are the most

important.

Download free eBooks at bookboon.com

text.Substring (3, 7).CompareTo ("DEFGHIJ")) ;

8,

true)) ;



Exam17
Palindrome

As another example of a program about strings are the following a program which tests whether a string
is a palindrome. A palindrome is a phrase that is spelled in the same way front and back, however, spaces
and special characters are ignored, and there is no distinction between uppercase and lowercase letters.

Examples of the palindromes are

o Baby Bab
o Dennis, Eve saw Eden if as a fine dew, as Eve sinned
e Madam, I'm Adam

o A man, a plan, a cat, a ham, a yak, a yam, a hat, a canal-Panama!

The program must act in the sense that the user inputs a sentence, then the program prints, whether it

is a palindrome.

The example will partly show about characters and strings, but will also demonstrate several applications

of control statements and conditions.

How to

The program can be described in the following manner:

1. enter a string

2. test whether it is a palindrome
3. print the result
4

. repeat the above until the user keys Enter

Entering is a simple task, as I have seen on several times. Print the result does not require much, and

slightly more formal the solution can be formulated as follows:

repeat enter a line as long as the line is not empty
{
if the line is a palindrome then
print line is a palindrome
else
print line is not a palindrome

Download free eBooks at bookboon.com


Dennis, Eve saw Eden if as a fine dew, as Eve sinned 
A man, a plan, a cat, a ham, a yak, a yam, a hat, a canal-Panama! 

C# 1 Introduction to programming and the C# language Strings

Here is the biggest challenge to test if your line is a palindrome:

=
o

et i = 0
et j = index of the last character

as long as i < j repeat
{

=
o

if both i and j refers to a character who must be ignored then

—~—

increment i by 1
decrement J by 1
}

else if i reference to a character to be ignored then
increment i by 1
else if j reference to a character to be ignored then

decrement J by 1
else if character number i is different from character number j then

it is not a palidrome
ellers

{
increment i by 1
decrement J by 1

}

it is a palidrome

360°
thinking.

Deloitte.

DiSCOVCI‘ thC truth at WWW.dClOitte,Ca/CaI‘CCI‘S © Deloitte & Touche LLP and affiliated entities.

59 Click on the ad to read more

Download free eBooks at bookboon.com


http://www.deloitte.ca/careers

C# 1 Introduction to programming and the C# language

This algorithm can be written in C# as follows:

static bool IsPalindrom(string text)

{

for (int 1 = 0, j = text.Length -
{
if (!CharOk(text[i]) &&
{
++1i;
-=Ji
}
else 1f (!CharOk(text[i]))
++1;
else i1if (!CharOk(text[]j]))
-=Ji
else 1if (text[i] != text[j])
return false;
else
{
++1;
-=Ji
}
}
return true;
}
static bool CharOk (char ch)
{
return (ch >= 'a' && ch <= 'z'") ||
ch == '"g' || ch == 'a';

Then you can write the Main() method:

static void Main ()

{
while (true)

{

string line Enter () ;
if (IsPalindrom(line.ToLower()))
else Console.WritelLine(line +

Back is the input function:

static string Enter()

{

")
Console.ReadLine () ;
0)

Console.Write ("?

string text
if (text.Length
return text;

1;

i< 35 )

!'CharOk (text[j]))

(ch >= '0'" && ch <= '9")

Console.WritelLine(line +

er ikke et palindrom");

Environment.Exit (0);

60

Download free eBooks at bookboon.com

Strings

er et palindrom");



Explanation

First, notice the condition in the while loop in Main(). It is always true, and it is thus an infinite loop. This
means that the loop and thus the program must stop in some other way. It occurs in the input method.

If the user simply keys enter and thus do not enter anything, the statement is executed:

Environment.Exit (0);

which stops the program. One can discuss whether it is the way to do it, and it is also primarily included

here to demonstrate that it is possible.

The check for palindrome is performed by the method IsPalindrom(). The idea is to have an index to
both the start and the end of the string. The characters are compared in pairs, and an auxiliary method

CharOk() is used to test whether it is a character that must be included.

In the case of conditions, there are three major operators, which as arguments have one or two conditions:

o && takes two arguments of type bool and is a mathematical conjunction. This means that it
is true if both its arguments are true.

+ | | takes two arguments of type bool and is a mathematical disjunction. This means that it is
true, if at least one of its arguments is true.

« !'has an argument of type bool and is a mathematical negation. That is, it has the opposite

truth value of the argument.

The method CharOk() is used to test whether its parameter is a character to be counted: Whether it
is a letter or a digit. The characters are arranged in natural order, but the three Danish letters are for
themselves, which complicates the control a bit. You will notice how the complex expression is built with
the operators && and | |. && has higher precedence than | |, so strictly speaking, the parentheses can be

omitted, but they increase readability. The check may be expressed in text something like:

if (ch is at least a and ch is lower than z) or
(ch at least 0 and ch is lower than 9) or
ch is @ or ch is @ or ch is & then ...

The method IsPalindrom() use the ! operator to test the opposite value of the CharOk(), for example:

if not CharOk (text[i]) then ...

Note that when the method IsPalindrom() is called in the Main() method the text (the string entered)
are first converted to lowercase with the method ToLower(). It is therefore, it is sufficient to test for the
small letters in the method CharOk().

Download free eBooks at bookboon.com



/ Arrays

An array is a number of objects of a particular type that can be referenced with a common name and
the individual objects are referenced by that name and an index. The first element always has index 0,

and you can have the following picture of an array with 10 objects

where each box has space for an object of that type. In C# you can create an array with space for 10 int

objects as follows:

int[] number = new int[10];

It is the brackets [] which says that number is an array. Notice how an array is created with new. It is
necessary and explains that an array is a reference type. If, for example you will place numbers in the

first four places, it could be done as follows:

number
number
number
number

~N 0w N

(0]
[1]
[2]
[3]

The following is also a legal statement:

int sum = number[l] + number[3];

and the variable sum will have the value 10. A single element like number[2] can simply be used anywhere

where one can use an int variable.

Exam18
Two arrays of the type int

As an example, the following program creates two arrays with elements of the type int and prints them

on the screen:

static void Main(string[] args)

{

int[] vl = new int[10];
int{] v2 = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };
for (int i = 0; 1 < vl.Length; ++i) wv1[i] = 1 + 1;

Print (vl);
Print (v2);

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Arrays

static void Print (int[] t)

{
for (int 1 = 0; 1 < t.Length; ++i) Console.Write("{O0} ", t[i]);
Console.WriteLine () ;

If you run the program, you get the result:

Explanation

You must note how the array v2 is defined by a list of numbers. It simply means that the compiler can
create the array and directly initialize it with the list elements. Also, note how the array v1I is initialized
in a for loop. Note here especially how Length can be used to refer to the number of elements. Note,
finally, how to transfer an array as a parameter to a method, and specifically how you in the method

Print() write that ¢ is an array.

SIMPLY CLEVER

We will turn your CV into
an opportunity of a lifetime

f’ {f_

e =i ) s u
___ﬁ_-'.:‘-'-‘-‘-";-ﬂ s S

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

63 Click on the ad to read more

Download free eBooks at bookboon.com


http://www.employerforlife.com

Exam19
Array of strings

In the above example, the type of the arrays is int, but the type of an array can generally be anything.

Below is a program that creates an array with 5 objects of the type string:

static void Main(string[] args)

{

string[] names = new string([5];

names[0] = "Svend";

names[1l] = "Knud";

names[2] = "Valdemar";

Console.WriteLine("- - - - ———————————--—————————— "y ;

for (int 1 = 0; 1 < names.lLength; ++i) Console.WritelLine (names[i]);
Console.WriteLine("- - - - -—————————————————————— "y

Note that only the first three elements are initialized. The latter two are not initialized and has the value

null, equivalent to that string is a reference type. If the method is executed, one gets the result:

Note the two blank lines corresponding to the printing of null.

Exam20
Yatzy

There should be written a program to simulate where you throw 5 cubes until they all show the same

value - until you get yatzy.

How to

The program can be written as follows:

class Program

{

static Random rand = new Random() ;

static void Main(string[] args)

{

int[] beaker = new 1int[5];
int count = 0;
do

{

Download free eBooks at bookboon.com



Cast (beaker) ;
Show (beaker) ;
++count;
}
while (!Equals (beaker));
Console.WritelLine ("You've got yatzy after {0} attempts", count);

}

static void Cast (int[] beaker)
{
for (int i = 0; 1 < beaker.Length; ++i) beaker([i] = rand.Next(l, 7);
}
static void Show(int[] beaker)

{
Console.Write ("[");
for (int 1 = 0; 1 < beaker.Length; ++i) Console.Write(" {0}", beaker[i]);
Console.WriteLine ("™ 1");

}

static bool Equals(int[] beaker)

{
for (int i = 1; 1 < beaker.Length; ++1)
if (beaker[i] != beaker[0]) return false;
return true;

Explanation

In order to simulate the game is a need for a random number generator. NET has a class Random to
that purpose and the program starts therefore, to create a random number generator called rand. Note
that it is created outside of all methods. This means that there is access to it anywhere in the program,

and hence that all methods know it.

The program will simulate a dice cup with 5 dice (cubes). In Main() is defined an array of 5 int elements
to simulate the cup. There is also defined a variable count, which will be used to count how many times

you have to toss the cup until you get yatzy.

In addition to Main() there are three methods. The first simulates that you toss with the cup. Here especially
note how the random number generator is used: rand.Next (1, 7) means that one will have a random
number which is greater than or equal to 1 and less than 7, and thus a random of the numbers 1, 2, 3, 4,

5 and 6. The method Show() does nothing more than to the print the contents of the cup on the screen.

The method Equals() is used to test whether the 5 dice in the cup are the same. Here you should note two
things: The algorithm and the return value. Regarding the latter is the methods return value something
discussed in a later section, but a method that has a value, can for example be used in a condition as
here in the Main() method. Note also how the method’s value is assigned with a return statement. The
algorithm consists in comparing all the cubes from index 1 and up to the first cube - cube with index
0. If you find one that differs from the first, all the cubes are not identical, and the method returns false.

If in contrast you go throughout the loop, all the dice are the same, and the method returns true.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Arrays

Exam21
Craps

This example show a program that simulates a simple dice game called craps:

A player throws two dice, then the sum of the eyes are noted. If the sum is 7 or 11, the player has won.
If the sum is 2, 3 or 12, the player has lost (the house has won). If the sum in contrast is 4, 5, 6, 8, 9 or
10, you record the sum as the player’s points. The player then proceeds to throw the dice until the sum
of the eyes either is the player points or until the sum is 7. Is the sum are the player’s points the player

has won. Is the sum is 7, the player has lost, and the house wins.

The program will operate in the way that the user must first enter how many games you want to play.
Then the program simulates the desired number of games and finally prints, how many times a player

has won and how many times the house has won.

How to

This time, the solution is not quite simple, and there are several options. I will try with a kind of

decomposition of the task into smaller parts, and the Main() method can be written as follows:

Ijoined MITAS because e e

I wanted real responsibility www.discovermitas.com

I'was a construction
SUPErvisor in

the North Sea
advising and

e Lelping foremen
% solve problems

MAERSK

66 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/mitas

Main ()
{
let count = the number of games
repeat count times
{
Play
if player has won then add 1 to the variable won
print who is the winder
}
print the result

From this sketch of the Main() method, it is clear that the most important is Play(), which is a method
that simulates a single game, and thus the method to implement the rules for craps. The algorithm can

be written as follows:

Play()
{
bg is a cup with two dice
toss with bg and notes the sum of the dice eyes as points
if points is 7 or points is 11 then the player has won
else if points is 2 or points is 3 or points is 12 then the house has won
else

{
toss with bg and note the sum of the eyes as sum

as _long as sum is different from the points and the sum varies from 7 repeat
{

toss with bg and note the sum of the eyes as sum

}

}
if sum is equal to points then the player has won elllers the house has won

The algorithm for Play() basically consists of simple operations, except perhaps the toss with the cup

that can be described as follows:

1.Roll the dice
2.Print the content of the cup

3.Determine the sum of the eyes of the dice

With everything in place, there essentially only remains to translate the above algorithms to C#, and I

will start with the latter and thus to simulate how you toss with the cup:

static int Throw(int[] beaker)
{

Cast (beaker) ;

Show (beaker) ;

return Sum(beaker);

}

static void Cast (int[] beaker)
{
for (int i = 0; 1 < beaker.Length; ++1i) beaker([i] = rand.Next(l, 7);

Download free eBooks at bookboon.com



static void Show(int[] beaker)

{
Console.Write (" [");
for (int i = 0; i < beaker.Length; ++i) Console.Write(" {0}", beaker[i]);
Console.WriteLine (" 1");

}

static int Sum(int[] beaker)
{
int sum = 0;
for (int i =
return sum;

0; 1 < beaker.Length; ++1i) sum += beaker[i];

where rand is a random number generator. As shown above, it consists of three operations:

1. Roll the dice is implemented as the method Cast()

2. Print the content of the cup is implemented as the method Show()

3. Determine the sum of the eyes of the dice and return the value is implemented as the
method Sum()

Note that the three methods are relatively simple and all are written so they are independent of the

number of cubes in the cup.

Using this method Throw(), you can write the algorithm for Play() in C#:

static bool Play()
{

int[] beaker = new int[2];

int point = Throw (beaker);

if (point == 7 || point == 11) return true;

if (point == 2 || point == 3 || point == 12) return false;
int sum = Throw (beaker);

while (sum != point && sum != 7) sum = Throw(beaker);
return sum == point;

Note that the method is essentially a direct copy of the above algorithm.

Next the Main() method:

static void Main ()

{

int count = Enter();
int won = ;
for (int i = 0; i < count; ++1i)
if (Play())
{
Console.WritelLine ("Player has won...");
++won;
}
else
Console.WriteLine ("The house has won...");

Result (count, won);

Download free eBooks at bookboon.com



static int Enter ()

{
Console.Write ("Enter the numbers of games: ");
string text = Console.ReadLine();
return Convert.ToInt32 (text);

Explanation

I will not systematically review the entire code, but merely pointing out things that you should special to

be aware of. The program does not contain anything new compared to what is shown in earlier examples.

Note therefore that several methods have a return value. Note for example the Enter() method that returns

an int. Notice how the method’s return value in Main() is stored in the variable count.

The method Play() performs a game. It creates a cup as an array with two cubes (a cube is again
represented as an int). You throw the dice the first time and note what the dice show (variable point).
Then test whether the player has won, or whether the house has won. If the player has won, the method
returns true, and if the house has won the method returns false. If the game is not decided after the first

roll, roll again and repeat until the game is decided.

Note also that the methods Cast() and Show() are direct copies of the corresponding methods from the

previous program.

Comment

The above version of the game is somewhat simplified, and there are more rules associated with the
game. If you play the game, as described above, the player and the house is almost the same probability
of winning with a slight predominance for the house - and it should also like to be if the house should

not go bankrupt.

Download free eBooks at bookboon.com



Part 2 Object Oriented
Programming

Applications must process data, and data must be represented and stored, and that is what variables are
used for. A language like C# has a number of built-in types for variables, but often would you need to
define your own data types that better reflect the job that the program must solve. That is where the
class concept comes into play. A class is something that defines a concept or thing within the program’s
area of concern, and there can be said a lot about what are classes and what not, but basically is a class a
type. It’s a bit more than just a simple type as a class partly defines how data should be represented, but
also what you can do with the data of that type. A class defines both how the type should be represented

and what operations you can perform on the variables of that type.

When you create variables whose type is a class, we talk about objects, so that a variable of a class type
is called an object, but really there is no much difference between a variable and an object, and there
is a good piece of the road no reason to distinguish between the two. But dig a little deeper, there is a

reason that has to do with how the variables and objects are allocated in the machine’s memory.

- s
=

UROPEAN
# BUS INESS
SCHOOL

FINANCIAL TIMES

R #gobeyond

MASTER IN MANAGEMENT

.~ Because achieving your dreams is your greatest challenge. IE Business School's Master in Management taught in English,
Spanish or bilingually, trains young high performance professionals at the beginning of their career through an innovative
and stimulating program that will help them reach their full potential.

Choose your area of specialization.
Customize your master through the different options offered.
Global Immersion Weeks in locations such as London, Silicon Valley or Shanghai.

Because you change, we change with you.

Download free eBooks at bookboon.com


http://s.bookboon.com/IE

Variables of types such as int, double, bool, char, etc. are called variables of simple types. For a running program
is allocated a stack, that is a memory area used by the application to store variables. The stack is very effective
so it is very effective to the program continuously setting up and removal of variables if necessary. This is

known as a stack, because one can think of a stack as a data structure illustrated in the following manner:

When the program creates a new variable, it happens at the top of the stack — where the arrow points,
and when a variable is removed, it is the one that lies at the top of the stack. All of the simple data types
have the property that a variable always have the same size. For example fills an int the same regardless
of what value it has. Therefore, such variables are stored directly on the stack, because the compiler

knows how much they fill. If, for example you write as follows

int a = 23;

then there will on the stack be created a variable of the type int with the space that an int requires and
the value 23 are stored there. Variables that are stored directly on the stack in this way are called value

types, and all the built-in types — except string — are value types.

Things are different with variables of reference types such as variables that have a class type. They must
be explicitly created with new. If, for example you have a class named Coin (see below) and you want to

create such an object, you must write

Coin ¢ = new Coin{();

It looks like, how to create a simple variable. The variable is named c. When new are performed what
happens is that on the so-called heap there are created an object on the basis of the type Coin. One can
think of the heap as a memory pool from which the machine can allocate memory as needed. On the
stack is created as usual, a variable with the type of Coin, but what it is saved on the stack, is not the
value of the Coin object, but instead a reference to the object on the heap. All references have the same
size regardless of the type and can therefore be stored on the stack. That's why we call it a reference
type. How exactly one object is created on the heap is determined by a so-called heap manager, there is
a program that constantly runs and manages the heap. It is also the heap manager, which automatically

removes an object when there is no longer needed.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Part 2 Object Oriented Programming

For the foregoing reasons, it is clear that the variables of value types are more efficient than objects of
reference types. It does not mean that objects of reference types are ineffective, and in most cases it is not
a difference which one needs to take care of, but conversely, there are also situations where the difference
matters. It is thus important to know that there is a big difference in how value types and reference types
are handled by the system and that in some contexts it have a major impact on how the program will
behave, but there’ll be many examples which clarify the difference. So far it is enough to know that the
data elements can be grouped into two categories depending on their data type, so that data of value
types are allocated on the stack and usually called variables, while data of the reference types are allocated

on the heap and are called objects — even if there is not complete consistency between the two names.

STUDY AT A TOP RANKED
INTERNATIONAL BUSINESS SCHOOL

no.l

n_ine years
In a row
Reach your full potential at the Stockholm School of Economics,

in one of the most innovative cities in the world. The School

$ is ranked by the Financial Times as the number one business
S school in the Nordic and Baltic countries.
Stockholm

{ ]
Visit us at www.hhs.se

72 Click on the ad to read more
Download free eBooks at bookboon.com


http://s.bookboon.com/hhs2016

8 C(lasses

After this rather technical explanation it is time to deal with classes in C#.

Exam?22
Coins

You must write a program to simulate that you throw two coins. The program will throw the coins until

they both show crown (Head). If you run the program, the result could be the following:

How to

There is a need for a type which can represent a coin. In this case, the coin’s value will be head or tail

and it must provide the following services available:

« one should be able to throw the coin (simulating that it gets a random value)

« one should be able to read the coin’s value (see what the coin shows)

The type is called Coin and may be illustrated as follows:

Coin

value: char

Value: char
Throw()

The code can be written as follows:

class Program

{

static void Main(string[] args)

{

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Classes

Coin ¢l = new Coin{();
Coin c2 = new Coin{();
do

cl.Throw () ;

c?2.Throw () ;

Console.WritelLine(cl.Value + " " + c2.Value);
}
while (cl.Value != 'H' || c2.Value != 'H');

}

public class Coin

{
private static Random rand = new Random() ;
private char value;

public Coin()
{
Throw () ;

}

public char Value
{
get { return value; }

}

public void Throw ()

{
value = (rand.Next(2) == 0) 2 'H' : 'T';
}

public override string ToString/()
{

return "" + value;

Explanation

You should represent a concept that here is a coin, and you can do that with a class, here named Coin.
Note first that the class Coin has no Main() method and the methods are not declared static. A class is

a concept — a type — which may be used in a program.
In C# a class contains four elements:

« instance variables
o constructors
e properties

« methods

and all four elements are present in the above class. The class has two variables:

private static Random rand = new Random() ;
private char value;

74

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Classes

The first is called rand and the type is Random. It has been declared static and is a bit special, so it
is explained shortly. The second is called value and has the type char. It is the member variable that
represents the coin. Note that both variables are declared private. This means that there is only access
to these variables from the classs own methods - they can't be directly referenced from other classes

that use the class Coin.

The class has a method called Throw(). When the method is performed, it simulate that the coin is

thrown, thus giving it a new value:

value = (rand.Next(2) == 0) 2 'H' : 'T';

The method assigns the variable value a new random value. To that purpose it use the ? operator. It is

an operator which has the form
condition ? expressionl : expression2;

and the meaning is that if the condition is true, the value is the value of expressionl and else the value

of expression2.

STUDY AT

LINKOPING UNIVERSITY, SWEDEN
RANKED AMONG TOP 50 UNIVERSITIES UNDER 50
Interested in Strategy and Management in International

Organisations? Kick-start your career with a master’s degree
from Linkoping University, Sweden.

Al;; Linkdping University

75 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/liu

Random is a class in the namespace System, and it has a method Next() that returns a random non
negative integer. If you specify a parameter as Next(n), you gets a random value between 0 and n-1,
both incl. Therefore

rand.Next (2)

is a random value 0 or 1, and equivalent thereto assigned to the member variable value a random
character H and T.

The member variable value is private and can only be used inside the class Coin. The program, that
should use the Coin class, has to know the value of a coin that is read the variable value. For that the

class Coin has a property:

public char Value

{

get { return value; }

}

The property has the same type and same name as a member variable - just you write the name in
uppercase. Note that a property is not syntactically a method (there are no parentheses after the name).

The property has a get part that returns the value of the current member variable.

When creating an object of class Coin, the machine also creates an instance variable value. The coin can
have only two legal values (H, T), and when the coin’s value is the value of the variable value, the coin will
have an illegal value until it is thrown. It's unfortunate, because that coins in the real world will always
have a legal value, but also because a program that uses Coin class would fail. This problem is solved with

a constructor. Syntactic is a method that does not have any type and which has the name of the class:

public Coin()

{
Throw () ;

}

A constructor is a method that is automatically executed when creating an object of a class, and it is
typically used to initialize instance variables. In this case, the constructor throws the coin and thus
ensures that a coin has a legal value once it is created. Note also that the only way a Coin can change its

value is by throwing it. It is guaranteed by the member variable value is private.

When you have the class, you can create objects whose type is the Coin. You do it with the new operator,

for example:

Coin ¢l = new Coin{();

Download free eBooks at bookboon.com



It creates an object named cI whose type is Coin. When the new operator is performed, then the class’s
non-static member variables are created, and the class’s constructor is automatically performed. The
static member variables are created in a different way, and they are created only once. This means that

static members are shared between all objects of the class.

In this case the member variable rand is static and all objects of the class Coin will therefore apply the
same rand variable. It is important, because otherwise all Coin objects initialize their own random number
generator (which is initialized by reading the hardware clock) and the result would be that two objects

created in the same place in the program would always have the same values.

In Main() the program creates two objects, called cI and c2. After they are created the program goes
into a do loop that throws the coins, and displays them on the screen. The loop runs until both coins

show the value H. Notice how you throw a coin:

cl.Throw() ;

cl is an object, and Throw() is a method in the class that defines the object. You execute the method on

the current object using the dot operator. Note also how to refer to the coin’s value:

cl.Value

Here you use the class’s property, which returns the coin’s value. Note that in this case, the class Coin
has a property which is read only. Classes may also have properties that are read write, which will be

apparent from other examples.

The class has also a method which is called ToString(), and which are not used in this example. Classes
should generally have a ToString() method that returns a string that is a text representation of a concrete
object. This means that an object can be printed with the method System.WriteLine(). Note that the

method is defined as override. I will explained the meaning later.

Comment

A class has a type of visibility that is either public or internal. The class Coin has public visibility. This

means that anyone can create objects of this type. Visibility can also be specified as internal:

internal class Coin

Such a class can be instantiated from classes in the same assembly (dll or exe) as the class itself. If you
do not set visibility for a class the default is internal. Class members also have a visibility that is one of

the following:

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Classes

o public

e private

o internal
o protected

o protected internal

Preliminary I will mention only the first three. public means that a member can be referenced by methods
in other classes, while private means that a member can only be referenced from the class’s own methods.
internal means that a member can be referenced by all methods in the same assembly. Members visibility
can not override the type visibility. If, for example a class has internal visibility, you can not reference a

public method from another assembly.

Both variables and methods can be assigned visibility, but usually instance variables are defined private
(or protected). It is a principle often called data encapsulation and ensure that it is the one who writes
the class that determines what access the outside world, have to the class’s instance variables. There
is only access to instance variables through the class’s methods and properties, and thus through the
services that the class provides. If, for example you look at the class Coin above, the variable value are
only changed in the method Throw(), and hence we can be sure that a Coin always have a legal value. If

the value was published, a user could write some thing like

Coin ¢ = new Coin{();
c.value = 'X';

*I studied
English for 16 :
years but... .
...I finally
learned to
speak it in jus
Six lessons”

Jane, Chinese architect

OUT THERE

Click to hear me talking

before and after my

unique course download

78 Click on the ad to read more

Download free eBooks at bookboon.com



http://s.bookboon.com/EOT

That would mean both that the object now has illegal value, but what is worse, such an error can be very
difficult to find. Another reason to always declare a instance variable as private is that a variable in this
way, is an internal characteristic of the class, as users of the class, in principle, does not know. In the class
Coin has variable value the type char. If for one reason or another you want to change this type to a string:

public class Coin

{

private string value;

you can do it without affecting the applications that use the class. There are no directly refer to the

variable value.

The conclusion is that it is a principle OOP to define instance variables private (or protected).

Comment

When you create an object of a class, the class’s instance variables are created, and then the class’s
constructor are executed. If a class has no constructor, a default constructor will automatically be created,
that is a constructor without parameters. A constructor is characterized by the fact that it is a method
which has the same name of the class and do not have any type. A constructor is a method, but it can’t be
called explicitly and are executed only when an object are instantiated. The Coin class has a constructor,
a default constructor, but a class may well have several constructors, as applicable to the general rules

for overriding the methods.

Coin is a reference type, and the following statements create two objects:

Coin ¢l = new Coin();
Coin ¢2 = new Coin();

They are as mentioned, not pushed on the stack, but are created on the heap. cI and ¢2 are usual variables
on the stack, but does not contain the objects, but instead references to the objects on the heap. It’s
rare that you as a programmer have to think about it, but in some situations it is important to know
the difference between an object allocated on the stack and the heap. The picture below illustrate how

it looks in the machine’s memory with the two variables on the stack that refer to objects on the heap:

Coin objekt

value

c1

c2

Coin objekt

value

Download free eBooks at bookboon.com



If, for example you writes

cl = c2;

this means that there is no longer any reference to the object before referring to as c1, but there are two

references to the object referring to by c2.

Coin objekt

value

c1

c2

Coin objekt

value

If then you writes

cl.Throw () ;
c2.Throw () ;

this means that the you throw the same coin twice, because both references refer to the same object.

When there no longer are any references to an object, it also means that the object is automatically

removed of the heap manager and the memory that the object has used, is released.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Design of classes

9 Design of classes

A class is a type, but it is also a design concept. The class defines the objects in the form of instance
variables, how objects are created and what memory that is allocated to objects. Objects have at any
given time a value in form of the instance variables content and an object’s value is usually referred to as
its state. The class also defines in terms of its methods, what you can do with the object, and thus how
to read and modify the object’s state.

Every C# program consists of a family of classes that together define how the program would operate
and a running program consists of a number of objects instantiated in the context of the programs
classes, objects that work together to accomplish the thing which the program must do. The work of
writing a program is thus to write the classes that the program will consist of. Which classes are, on
the other hand not very clear, and the same program can typically be written in many ways built up of
classes that are completely different. Work to determine which classes a program should consist of and
how these classes should look like in terms of variables and methods is called design. In principle, one
can say that if a program gets the job done correctly, it may be irrelevant, which classes it consists of,

but inappropriate classes means

Excellent Economics and Business programmes at: =
o ' &
university of E AACSB
4% groningen k. {\CCREDITED
N~

| - .

|
“The perfect start
of a successful,
international career’

I

-, . 4 CLICKHERE
® F to discover why both socially
and academically the University

of Groningen is one of the best

i laces for a student to be
www.rug.nl/feb/education P

81 Click on the ad to read more

Download free eBooks at bookboon.com


http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

« that it becomes difficult to understand the program and thus to identify and correct errors
o that in the future it will be difficult to maintain and modify the program

o that it becomes difficult to reuse the program’s classes in other contexts

Therefore are design and choice of classes a very central issue in the context of programming and one are
speaking of program quality (or lack of the same). A class is more than just a type, but it is a definition
or description of a concept within the program area of concern. When you have to define which classes
the program will consist of, one must therefore largely be focusing on classes as a tool to define the

essential concepts more than on classes as a type in a programming language.

An object is characterized by four things:

« aunique identifier that identifies a particular object in relation to all other
o a state that is the object’s current value
 abehavior that tells what you can do with the object

« alife cycle from where the object are created to it again are deleted

An object is created from a class, and assigned at that time a reference that identifies the object. The
class’s instance variables determine which variables to be created for the object and the value of these
variables is state of the object. The class's methods define what can be done with the object and hence
the object’s behavior. The last point of concerning is object’s life cycle linked to the concept of scope, as

explained later.

Exam23
Dice

The task is to write a program that simulates that you throw 5 cubes until they are all alike. Finally the
program will print out how many times the cubes is thrown - an example which, incidentally, I've seen

in the past (Exam20), but by that time I had no concept of class available.

How to

The first task is to find (decide) the program’s classes, and basically we need a class that can represent
a die (a cube), where a die is characterized by a number of eyes, and it should be possible to throw the

die and get knowing what it shows.

Another obvious class is a cup with 5 dice, and here it must be possible to toss the cup and get to know

what the dice show.

Download free eBooks at bookboon.com



Finally, I will write a class that can represent the actual game. That is, a class which has a cup and a

method which carries out the game.

This corresponds to the following design:

Program 1 Game 1 Cup
Main() Yatzy() Coint: int
Play() Dicel[]
Toss()
5
Dice
eyes: int
Eyes: int
Throw()

Note that the design is somehow arbitrarily in the sense that I have not followed certain guidelines, but
the choice of classes is made by the developer, and there could be other solutions that could be just as
good. Design is largely an activity, based on experience and by watching and relate to what others have
done, and it is seldom possible to decide exactly what is the best design but a design can be more or

less appropriate.

It should be added that there are methods and techniques that can help developers to find a program’s
classes. These are just issues which fall outside the scope of this book, but for larger projects are that

kind of systems development methodologies not only useful but also necessary.

If T were to attempt a justification of the above design, then the task is to write a program that can simulate
a simple dice game. The term I first catch sight of, is a die, as something of what all the fuss is about.
Therefore a class Dice, which may represent a die. In the game, you could throw 5 dice and inspired by
the way, you for example plays Yatzy, it is natural to think of a cup, which you can toss with. Therefore
I have a class Cup. Finally the game rules and logic to play must be somewhere and it is not properties
of a cup, because in the real world one does not produce cups for certain games - a cup is general and

can be applied to many kinds of games. Then the game itself is represented by a class Game.

With this design in place, it is relatively simple to write each class. The class of a die can be written as

follows:

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Design of classes

public class Dice

{
private static Random rand = new Random() ;
private int eyes;

public Dice()

{
Throw () ;
}
public void Throw ()
{
eyes = rand.Next(l, 7);
}
public int Eyes
{
get { return eyes; }
}
public override string ToString()
{
return "" + eyes;
}

In the past four years we have drilled

89,000 km

That's more than twice around the world.

Who are we?

We are the world’s largest oilfield services company’.

Working globally—often in remote and challenging locations—
we invent, design, engineer, and apply technology to help our
customers find and produce oil and gas safely.

Who are we looking for?

Every year, we need thousands of graduates to begin
dynamic careers in the following domains:

‘ ‘ m Geoscience and Petrotechnical

m Commercial and Business

What will you be?

a1 careers.slb.com Schiumberger

84 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/Schlumberger1

C# 1 Introduction to programming and the C# language Design of classes

Then there is the class for a cup that can best be characterized as an encapsulation of an array with Dice

objects:

public class Cup
{

private Dice[] dice;

public Cup(int n)
{
dice = new Dicel[n];
for (int i = 0; i < n; ++1i) dice[i] = new Dice();

}

public int Count
{

get { return dice.Length; }
}

public Dice this[int 1]
{
get { return dicel[i]; }

}

public virtual void Toss ()

{

for (int 1 = 0; 1 < dice.lLength; ++i) dice[i].Throw();
}

public override string ToString()

{

string text = "";

for (int i = 0; 1 < dice.Length; ++i)
{

if (1 > 0) text += " ";

text += dicel[i].Eyes;
}

return text;

}

The class to the game itself is very simple and is basically a question that the code from Exam20 has

moved into its own class:

public class Game

{

private Cup cup;

public Game (int n)
{
cup = new Cup(n);

}

public void Play()
{
int count = 0;
do
{
cup.Toss () ;
++count;
Console.WriteLine (cup) ;

85

Download free eBooks at bookboon.com



while (!Yatzy());
Console.WritelLine ("You've got yatzy after {0} attempts", count);

}

private bool Yatzy ()
{

for (int i = 1; 1 < cup.Count; ++i)
if (cupl[i].Eyes != cupl[0].Eyes) return false;
return true;

Finally, there is the Main() method:

class Program
{
static void Main(string[] args)
{
Game game = new Game (5);
game.Play () ;

Explanation

If you compare the class Dice with the class Coin you will note that in principle they are similar and
there is not much to explain except that the data representation this time is an int.

The class Cup represents a dice cup, which is implemented as a class with a container for Dice objects.
The container is an array:

private Dice []dice;

but to make the cup more flexible and allow it to be used in other contexts (where it does not necessarily
have to contain 5 cubes) the number of cubes is a parameter to the constructor. Dice is a reference type,

and when you create an array of reference types, you get an array that contains references, but not objects

of that type. They must be created explicit:

for (int i = 0; 1 < n; ++1i) dice[i] = new Dice();

Since the class has a constructor with a parameter, it has no default constructor. It means that you can’t
create a cup in the following way:

Cup cup = new Cup(); // illegal

The class has a read only property that returns the number of cubes in the cup. It is necessary for users
of the class. Otherwise they can’t get to know how many cubes the cup contains.

In addition, the class has a read only property that returns the cube that has index i:

public Dice this[int 1]

{

get { return dice[i]; }

}

Download free eBooks at bookboon.com



This is a somewhat special syntax that uses this as a property name, and I will not go into detail here,
but it means that in a program you can write the following:

Cup cup = new Cup(b5);
Dice d = cupl[l];

and refer to the individual cubes via an index - that is as if a cup was an array. The user can then use the
class as if it were an array, but the user can't see (or need not have knowledge about) whether the internal
representation in the class is an array or something else. In this case, these are a read only property. The

fact that it is read only, means that a user for example can’t write:

cup[l] = new Dice(); // ulovligt

The user can not put another cube in the cup, but since the operator returns a reference the user can do
anything with the cubes in the cup, for example

Dice d = cupl[l];
d.Throw () ;

The method Toss() is simple and consists merely of a loop that runs over all cubes and throwing them.

With the class Cup is the class Game simple and it has a constructor with a parameter, and based on
that parameter it creates a Cup with the number of cubes that you want to play with. The game itself is
carried out by the method Play().

Note here especially the method Yatzy() that tests that all cubes are the same. It is a private method,

since it only should be used in class Game.

Comment

The class Dice has a property that tells what the cube show:

public int Eyes
{
get { return eyes; }

}

Technically speaking, this means that there automatically is created the following method:

public int get Eyes()
{

return eyes;

}

A property is thus basically the same as a method but with a different syntax. The goal of a property is
that the user uses a property as it was a variable, but still with the security that it is the programmer of
the class that determines what is possible. Above it is thus the programmer of the class Dice, who has

determined that the user must read a cube eyes, but not change the value.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Methods

10 Methods

This section elaborates on issues relating class methods, and it is primarily about four things:

« methods names
« methods return value
e properties

o methods parameters
and here it is about methods parameters which are most to say.

Methods names

About methods names there are not much to say beyond that is the same as names for variables. However,
it has been a convention in C# that the name of a method always starts with an uppercase letter. A
method is identified by its name and its parameters. A class may well have multiple methods with the

same name as long as they have different parameters, either in terms of number or types.

American online

is currently enrolling in the
Interactive Online
programs:

enroll by September 30th, 2014 and
save up to 16% on the tuition!

pay in 10 installments / 2 years
Interactive Online education

vvyvVvyyVvyy

visit to
find out morel

Note: LIGS University is not accredited by an

nationally recognized accrediting agency listed

by the US Secretary of Education.
ore info here.

—

88 Click on the ad to read more

Download free eBooks at bookboon.com



http://s.bookboon.com/LIGS

Exam24
Function overriding

This example shows a program and a class with three methods of the same name.

How to

The class Program has the following methods, all with the same name:

static int Max(int a, int b)

{

return a < b ? b : a;

}

static double Max (double a, double Db)
{

return a < b ? b : a;

}

static int Max(int a, int b, int c)
{

return Max (Max(a, b), Max(b, c));

}

Explanation

The compiler may separate the two first, when the two parameters that are of different type, and may

also separate the last when it has three parameters.
Notice how the ? operator is used. Also note how the last method actually calls the first.
Note that methods can’t be separated on return type, but only on the parameters.

The fact that a method can't be identified by the name only, but also of its parameters, are sometimes
called function overloading. Note also that it is not something that is special to methods, but also applies

to operators. If, for example you write

it means something different depending on which types of variables a and b are - for instance if the

type is an int or a string.

Comment

In this example I have used the question operator. I have previously discussed this operator, but since
it is an operator, which some feel is hard to understand, it must have an additional comment here. In a

program you can write something like the following:

if (a < b)

m = a;
else
m = b;

Download free eBooks at bookboon.com



that assigns the variable m the smallest of the variables a and b. That means that if the condition a < b is

true, given m value of a, otherwise the value of b. You can also write the same with the question operator

m=a < b ? a : b;

and the meaning is exactly the same. The question operator starts with a condition and if it is true, the
value of the expression is the value of the expression (variable) after the question mark and if not the

value of the expression is the value after the colon. In this example the statement

return a < b ? b : a;

will return the largest of the variables a and b. The question operator is often an alternative to an if
statement, but it is of course the difference that it is an operator and thus can be included in expression
as in the above return statement. As mentioned, there are some who think that the operator’ is hard to

read, but with practice it is as natural as all other operators.

Methods return values

The methods described in the previous example, all have a return type which is either int or double.
When a method has a return type, it has a value after it has been executed. The method can therefore

be part of an expression in the same way as a variable. For example one can write the following:

double x = Max(3.14, 1.41);

which means that the return value of method Max() is stored in the variable x. Once a method has a
return type, it ends with a return statement, which determines the return value - often as a result of
an expression. There is not much to say concerning methods return types, except that the return type
can be anything - including reference types — and that a method can have only one return value. As an

example is shown a simple input method that returns a string:

static string Indtast(string text)
{

Console.Write (text + ": ");
return Console.ReadLine();

As a last remark concerning return types it must also include void that is not a type, but simply a term
for a method that has no return value. Although the method is void, it may well have an empty return

statement, which did not gives the method a value, but only terminate the method.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Methods

Properties

A property is, as mentioned earlier really just a method with a different syntax and, in principle, a property
can do anything. The idea of a property is, however, that it read (returns) the value of an instance variable
and possible changes its value. In addition, you should use the convention that the name of a property

is the variable’s name written in uppercase.

Exam25
A point

This example illustrates a simple class representing a point in a coordinate system.

How to

class Point

{
private int x;
private int y;

public Point (int x, int y)
{

this.x = x;

this.y yi

v---vv-------v---v---vv--vv--vv--vvv--vv--ov--vv--vv--vvv--vv-cv---o--coAlcateluLUcent @
www.alcatel-lucent.com/careers

"5

o

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".

1 Click on the ad to read more
Download free eBooks at bookboon.com



http://s.bookboon.com/AlcatelLucent

public int X

{
get { return x; }
set { x = wvalue; }

}

public int Y

{
get { return y; }
set { y = value; }

}

public override string ToString()

{

return string.Format (" ({0}, {1})", x, V),
}
}

Explanation

The coordinates are private, and for that you can't access them from outside the class. To do so you must
define get properties. If it also should be possible to modify an object’s coordinates, the class must also

define set properties, for example

set { x = wvalue; }

The meaning is that you can change the value of the variable x, but the syntax is a bit special, corresponding
to the value to be assigned to x is represented by the reserved word value. The result is that, in a program

you can be write as follows:

Point p = new Point (2, 3);
p.X = 5;

where the x-coordinate gets a different value.

When a class as above offers both get and set properties, and set properties do nothing more than to
assign the value of value, so there is no difference to simply define both variables as public. It is advisable,
nevertheless, to comply with the definition of variables private and then the necessary properties, since,
as mentioned that means, that it is up to the programmer, for unlocking the protection. There will often
be assigned limitations to set properties in a class. If, for example you assume that the x-coordinate in the

above example must always be between 0 and 1023, you could possibly write the set method as follows:

set { if (value >= 0 && value <= 1023) x = value; }

As a final comment on the above class, you should note the constructor. The class has two instance
variables named, respectively x and y, and the constructor has two parameters which are also called the
x and y. It gives inside the constructor a name coincidence problem, since there are two things (instance
variable and parameter) with the same name. The problem is solved with the word this, where this.x

means the instance variable, while x (with nothing) means the parameter.

Download free eBooks at bookboon.com



Parameters

A method’s parameters can be of any type, but there are several kinds of parameter passing. When you define
a method that you specify the parameters the method should have, and these parameters are called the formal
parameters and specify the values that the method should operate on. When you call the method, you must

specify the values (parameters) to be transferred to the method, and they are called for the actual parameters.

Value parameters
In general the parameters are value parameters, for example

static int Max(int a, int b)

{

return a < b ? b : a;

}

When this method is called, there must be transmitted two actual parameters. Exactly what happens is

that on the stack the system creates a so-called activation block, which contains four basic things:

o the return address, so the system knows where the program will continue after the method
is terminated

« acopy of each actual parameter

« aplace to the return value corresponding to the method’s type

« the method’s local variables, if it has local variables

One can outline it as follows:

retur-

{
. adresse metode
Max (3, 7);
) 3 int Max(int a, int b) { ... }
}
7
program /
7

aktiveringsblok

When the program calls the method Max() it creates an activation block on the stack, and the return
address and the actual parameters are copied to it. Next the method takes the control and starts its work.
The method then always works on the copies (a and b) located on the stack, and it also means that if
the method changes these values it alters the copies on the stack, and these changes has no effect in the
program. When the method performs its return statement, the return value is copied to the activation
block, then the method terminates and the control is given back to the program and it continues its
work. Immediately after the program has gained back the control, it can read the return value from the
activation block, which will then be removed from the stack. Note that this also means that if the method

creates local variables (which are not the case in this example) they are also gone.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Methods

Consider as another example, the following method:

public void Swap(int a, int b)
{

int t = a;
a = b;
b = t;

When done, it swap the values of the two parameters a and b. If you test the method Swap(), you will

see that the current parameters are not reversed:

static void Test2()
{
int tl1 = 2;
int t2 = 3;
Swap (tl, t2);
Console.WriteLine ("{0} {1}", tl1, t2);

If you look at what Swap() creates on the stack, it will swap the a and b

t=a a=b b=t

/

Leadiny
% Maastricht University o Learnin:

Join the best at
P i N - 33" place Financial Times worldwide ranking: MSc
the Maastricht University International Business

+ 1% place: MSc International Business

School Of Business and « 1% place: MSc Financial Economics

« 2" place: MSc Management of Learning
° - 2" place: MSc Economics
] 2k
Econom ICS: - 2" place: MSc Econometrics and Operations Research
- 2" place:MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is
the best specialist
university in the
Netherlands
(Elsevier)

Master’s Open Day: 22 February 2014

www.mastersopenday.nl

94 Click on the ad to read more

Download free eBooks at bookboon.com


http://www.mastersopenday.nl

but when it happens in the activation block on the stack, the two variables tI and ¢2 are unchanged after

the Swap() is executed.

It should however be aware of what it means to reference types, since the result here may be different
than expected. Consider the example of the class Point, and the following method, which has a Point

as a parameter:

static void Mul (Point p, int t)
{

*

p.X t;
p.Y t

*

’

If you execute the following statements:

Point p = new Point (2, 3);
Mul (p, 2);
Console.WriteLine (p) ;

you get the result
(4,6)

and thus the method Mul() has changed the Point object. Just it does not seem as the parameter is
transferred as copy on the stack. The method Mul() has two parameters, and here is the type of the first
parameter Point and thus a class. The actual parameter is thus a reference, and is placed on the stack,
which means that the Mul() method refers to the same object as the program. As a result, it is this object

that is changed.

If you change the Mul() method to the following

public void Mul (Point p, int t)
{

p = new Point(p.X, p.Y);
p.X *= t;
p.Y *= t;

the method will create a new Point object and the reference on the stack will refer to this object. When
Mul() terminates, its activation block is removed, and the reference to the new object is gone, and thus
the change that Mul() performs. The result is that the object to which the program refers to is unchanged,

and the program will write
(2.3)

So there is reason to pay attention to what happens if you transfer references as parameters to a general

value parameter.

Download free eBooks at bookboon.com



Reference parameters

In .NET you can also use true reference parameters. For example you can change the method Swap()
for the following:

public void Swap(ref int a, ref int b)

= a;

V)
I
+ o

~.

If you then change the method Test2() so that the actual parameters are references

static void Test3()

{
int tl = 2;
int t2 = 3;
Swap (ref tl, ref t2);
Console.WriteLine ("{0} {1}", tl, t2);

it are references to the actual parameters that are placed on the stack, and Swap() will swap the values of
the variables ¢1 and ¢2. That means that the changes Swap() performs, is on the objects that the references

on the stack applies to.

Reference parameters are used instead of value parameters when the changes that a method do on its

parameters must be maintained in the calling code.

Note that you can combine value parameters and reference parameters so that the method may have

parameters for both references and values.

out-parameters

In .NET, there is a possibility of using out parameters, which are parameters which may not be initialized
before a method is called, and instead are assigned a value in the method. The following method creates

two Point objects assigned to references that are passed as out parameters to the method:

static void Points2(int x1, int yl, int x2, int y2, out Point pl, out Point p2)
{

pl = new Point(xl, vyl);

p2 = new Point(x2, y2);

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Methods

If the method is performed as follows:

static void Test4()

{
Point pl;
Point p2;
Points2(2, 5, 7, 3, out pl, out p2);
Console.WritelLine (pl);
Console.WriteLine (p2);

then pI and p2 refer to the objects that are created in the method Points2(). Note that pI and p2 is not
initialized in the program, which is not necessary, since they are used as actual out parameters. A method
can have only one return value and out parameters solves a problem, where it is desirable that a method
must return multiple values. For example the method Points2() returns two values, which is not possible,

and the problem can then be solved by giving the method two out parameters.

Default parameters

It is also possible to set default values for the parameters. The following method has three parameters:

static double Calculate (double price, int units = 1, double discount = 5)

{

return price * units * (100 - discount) / 100;

}

> Apply now

REDEFINE YOUR FUTURE
AXA GLOBAL GRADUATE
PROGRAM 2015

o
S
S
17}
=
S
=
S
S
s}
e
o
©

dg

redefining / standards

97 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/AXA

The method calculates the price of goods excl. discount. The number of units is by default set to 1, and
discount rates are as default 5 percent. This means that the method can be called without specifying

values for these parameters:

static void Test5()

{
Console.WriteLine (Calculate (20));
Console.WriteLine (Calculate (20, 5));
Console.WriteLine (Calculate (20, 10));

and if you don’t, the default values are used. In principle, all parameters can have a default value, but

the parameters that have a default value must be last.

Variable number of parameters

As alast remark concerning parameters, I will show how it is possible to have a method with a variable
number of parameters. The following method has an array of the type string as a parameter, and the

method returns a string consisting of all strings in the array separated by spaces:

static string Concat (params string[] text)
{
if (text.Length == 0) return "";
string temp = text[0];
for (int i = 1; i < text.Length; ++i) temp += " " + text[i];

return temp;

What is important is the word params, which means that one can set a variable number of actual

parameters. For example the method can be called as follows:

static void Test6()
{
Console.WriteLine
Console.WriteLine
Console.WriteLine
Console.WriteLine

Concat ("One", "Two", "Three"));

Concat ("One")) ;

Concat());

Concat ("One", "Two", "Three", "Four", "Five"));

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language

Exam26
Methods parameters

Methods

All of the above test methods about methods parameters are combined in the example Exam26 and if

you run this example, you get the following results:

Iy

L | / / .
1
) stfatedic Marketili
| Management,

inancial

—

B conomics
Leadership &8
Organisationgli

/
Psyelglog

Shipping ‘
g ageetl . N

W
W
| " B
|
|

Iy

NORWEGIAN L erwo
BUSINESS SCHOOL ~ ~ £9Uss

ACEREDITED

ornationa g
Business.

Empowering People.
Improving Business.

Bl Norwegian Business School is one of Europe’s
largest business schools welcoming more than 20,000
students. Our programmes provide a stimulating
and multi-cultural learning environment with an
international outlook ultimately providing students
with professional skills to meet the increasing needs
of businesses.

Bl offers four different two-year, full-time Master of
Science (MSc) programmes that are taught entirely in
English and have been designed to provide professional
skills to meet the increasing need of businesses. The
MSc programmes provide a stimulating and multi-
cultural leaming environment to give you the best
platform to launch into your career.

* MSc in Business

* MSc in Financial Economics

* MSc in Strategic Marketing Management

* M5Sc in Leadership and Organisaticnal Psychology

www.bi.edu/master

29

Download free eBooks at bookboon.com

Click on the ad to read more



http://s.bookboon.com/BI

11 Inheritance

A class must, as mentioned several times represent a thing in the program’s problem domain, and in
the design you decide which properties a class must have. When a class is first completed, tested and
put into operation one must be careful to open it again and make changes when there is a significant
risk that changes may have unintended consequences for programs that use the class. But no matter
how careful you are under design, there is a high probability that it is necessary to extend a class with
new properties, and this is where inheritance comes into play as a technique to extend a class without
changing the existing class. Another thing that inheritance must address is the situation where you have
two classes that are similar but also have differences. You can sometimes put what they have shared in

a base class that the other must inherit

Exam31
Points

This example is merely to show the syntax, but is not an example of where inheritance is used in practice.

The following class defines a point in a coordinate system:

public class Point
{
private int x;
private int vy;

public Point(int x, int vy)
{

this.x = x;

this.y yi

}

public int X

{
get { return x; }
set { x = value; }

}

public int Y
{
get { return y; }
set { y = value; }

}

public override string ToString()
{
return string.Format (" ({0}, {1}H)", x, V):

}

Download free eBooks at bookboon.com



The class is simple and requires no further explanation. I will now write a class that inherits Point, and
one can think of it as a class that extends the class Point with new methods or properties - in this case

only a single method:

public class NewPoint : Point

{
public NewPoint (int x, int y) : base(x, V)
{
}

public void Add(Point p)
{
X +
Y +

p.X;
p.Y

’

The syntax for inheritance is:

public class NewPoint : Point

which means that NewPoint inherits or extends Point. The result is that a NewPoint object has the pubilc
properties (properties and methods) as NewPoint defines, together with the public characteristics the
Point class defines. The idea is that if a class needs some new features, then you inherit rather than
modify the existing class. That way you avoid changing the classes that are already created and in use

and that you know works.

When you create a NewPoint object, it must transfer values to the class that it inherited from, what is
done with base after the constructor. In fact, it corresponds to that the constructor of the class Point is

performed.

Below is a program which uses the NewPoint class:

static void Main(string[] args)

{

NewPoint pl = new NewPoint (2, 3);

NewPoint p2 = new NewPoint (1, 4);

pl.Add(p2); // metode defineret i NewPoint
pl.X = pl.X * 3; // property defineret i Point
Console.WriteLine (pl); // ToString() metoden fra Point

Download free eBooks at bookboon.com



Exam27
Persons

As an example, I will start with a class that represents a person by a first and last name:

public class Person

{
private string firstName;
private string lastName;

public Person(string firstName, string lastName)

{

this.firstName firstName;
this.lastName = lastName;

}

public string FirstName

{

get { return firstName; }

}

public string LastName

{

get { return lastName; }

}

public override string ToString()

{

return firstName + " " + lastName;

The class is very simple and does not require many comments.

I will then define a class that represents an employee (in a company) when an employee is a person with
two additional properties in the form of a title and a salary. The class Employee can be written in several
ways, and you can for example think of it as an extension of the class Person with two new properties.
The solution is not just to extend the Person class, as you can imagine this class is used in contexts in
which concepts such as title and salary are not meaningful. Instead, you can write a class that inherits

the Person class:

public class Employee : Person

{
private string position;
private int monthly;

public Employee (string firstName, string lastName, string position, int monthly)
base (firstName, lastName)

this.position = position;
this.monthly = monthly;
}

public string Position

{

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Inheritance

get { return position; }

}

public int Monthly

{
get { return monthly; }

}

public override string ToString()

{

return base.ToString() + "\n" + position;

}

First, notice after the name of the class Employee I have written

Person

It is telling that Employee inherits Person. That Employee inherits Person means an Employee gets (inherits)
all the properties that a Person has and expands with new properties. In this case extends an Employee a
Person with two new instance variables and associated properties. The Employee class has a constructor
that initializes the two new instance variables, position and monthly, but it must also initialize the instance
variables firstname and lastname in the base class. This requires that the constructor in Person is called,
but when as a programmer you can't call it directly, it is necessary to have a syntax that performs the

constructor in the base class. It happens in the following:

base (firstName, lastName)

Need help with your
dissertation?

Get in-depth feedback & advice from experts in your

topic area. Find out what you can do to improve
the quality of your dissertation! ' PRU
@ o
OO P\I@Pp"
Get Help Now OV‘C’O% 3
h cp\"“‘“t‘j x -

Go to www.helpmyassignment.co.uk for more info E:/Helpmyassignment

103 Click on the ad to read more

Download free eBooks at bookboon.com


http://www.helpmyassignment.co.uk

Here, the colon and base() after constructor declaration means that the constructor in the Person is
performed by firstName and lastName as the actual parameters. Specifically, what happens is when you
create an Employee object the constructor in Person is performed, and then the constructor in Employee
is performed. When an Employee is specifically a Person, one can say that Person has to be created first,
before the Employee can be created. An Employee object can then refer to the two properties FistName
and LastName. An Employee object can refer to FirstName, since it is a public property in Person and
because Employee inherits Person. Employee objects can refer to all public members in both Person and
Employee. Private members can still only be referenced from within the class where they are defined.

For example the variable firstname in Person can’t be referred from methods in Employee.

I will then define a class that represents a director. A Director is just a special kind of Employee, and the

class can be defined as a class that inherits Employee:

public class Director : Employee
{
public Director(string firstName, string lastName, int monthly)
base (firstName, lastName, "Director", monthly)
{
}

The class is very simple and consists solely of a constructor, which transmit parameters to the constructor
in the Employee class. All the other services as a director does occur (inherited) come from Employee

and Person.

At exactly the same way one can define a class that represents a bookkeeper:

public class Bookkeeper : Employee
{
public Bookkeeper (string firstName, string lastName, int monthly)
base (firstName, lastName, "Bookkeeper", monthly)
{
}

Now consider the following method:

static void Print (Employee e)

{
Console.WritelLine (e);
Console.WriteLine ("Monthly: {0}", e.Monthly);
Console.WriteLine ("{0}, {1}", e.LastName, e.FirstName);

The first statement prints the result of ToString() from the class Employee. The next one is not much
mystery in, but you should note the last, which uses two properties, both of which are defined in Person.

The parameter e has the type Employee, and you can thus especially use what is defined public in Person.

Download free eBooks at bookboon.com



Consider also the following method, which creates two objects, respectively of the types Director and
Bookkeeper:

static void Testl ()

{
Director d = new Director ("Olga", "Jensen", 8000);
Bookkeeper b = new Bookkeeper ("Karlo", "Hansen", 5000);
Print (d) ;
Print (b) ;

You should particularly note that the method calls Print() with the two objects d and b as actual parameters.

It makes sense for d have the type Director, which specifically is an Employee.

Above, there are defined four classes that are linked in a hierarchy, as you can illustrate in the following

way:

Person

i

Employee

Ay
| |

Director Bookkeeper

When a class inherits another class, the class you inherit from is called the base class and the inheriting
class is called a derived class. For example is Person the base class for Employee while Employee derives
from Person. Sometimes Person instead of is called a super class, while the Employee is called a subclass.
We say also that Person is a generalization of Employee and that Employee is a specialization of Person. This
saying better reflected the relationship between Employee, Director and Bookkeeper in which Employee is
a generalization of the Director and Bookkeeper and Director are specializations of Employee. Sometimes
we talk also about the class that inherits as an extension of the base class corresponding to Employee

extends Person with new properties.

I will write another class, representing a consultant that is an Employee whose salary is calculated as a

fixed monthly salary and a commission on the sale:

public class Consultant : Employee
{
private double commission;
private double sale;

public Consultant (string firstName, string lastName, int monthly,
double commission) : base(firstName, lastName, "Consultant", monthly)
{
this.commission = commission;

}

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Inheritance

public double Commission

{

get { return commission; }

}

public double Sale
{

get { return sale; }
set { sale = value; }

}

public override int Monthly
{

get { return monthly + (int) (sale * commission / 100); }

Note first that a Consultant extends the class Employee with two new variables. One is initialized in the
constructor, whereas the other gets a value by means of a property. There is not much to say. But if you
look at the property Monthly, you should note two things: the word override, and that it refers to the
variable monthly in the base class Employee — which is not possible because it is private. The problem is

solved by changing the class Employee and instead defines the variable monthly as protected:

public class Employee : Person

{
protected int monthly;

(]
B By 2020, wind could provide one-tenth of our planet's

ra I n p O W e r electricity needs. Already today, SKF's innovative know-

how is crucial to running a large proportion of the

world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
stems for on-line condition monitoring and automatic

tion. We help make it more economical to create

Therefore we'need the best employees who can
eet this challenge!

Tr)_af Power of Knowledge Engineering

'-r:-‘%.i

e
Plug into The Power of Knowle‘ngineering.
Visit us at www.skf.com/knowledge

106 Click on the ad to read more
Download free eBooks at bookboon.com



http://www.skf.com/knowledge

If a member of a class is protected, it can be referenced by derived classes, as it was public while it from
objects of this class looks as private. protected is a visibility between private and public, which allows
derived classes to refer to members in the base class, while the base class maintains protection against
other classes. Stated differently, then variable monthly may be referenced by subclasses of Employee, but
not from classes that do not inherit Employee. A class should not make all of its variables protected, but
only those variables that one must expect that the derived classes need to refer to. When you make a

member protected you also are opening up the protection in relation to derived classes.

In this case, protected is only included to explain the concept, the problem could be solved in another
way:

public override int Monthly

{

get { return base.Monthly + (int) (sale * commission / 100); }

}
where you with base refers to the property Monthly, which is defined in the base class.

There is now a definition of the property Monthly in both Employee and Consultant, and the meaning is
that in Consultant shall override the property in Employee - give it a different meaning. For that to be

possible, you must in Employee open up for it by declaring the property virtual:

public virtual int Monthly
{

get { return monthly; }
}

When that is the case, a derived class — here Consultant - can choose to override the property by entering

the keyword override. If you do not, you get a warning that it hides the base class version.

It was the class Consultant, and below is shown a method that uses the class:

static void Test2 ()

{
Consultant ¢ = new Consultant ("Gudrun", "Madsen", 2000, 10);
c.Sale = 30000;
Print (c);

If you run the method, you get the result:

Download free eBooks at bookboon.com



It is not entirely obvious. Note that the property that is executed for Monthly, is the one in the class
Consultant, even though the parameter to the Print() method is of the type Employee. This means that the
system “remembers” the type of the current object, even if the object in Print() is known as an Employee.

It is an extremely important option known as polymorphism.

When you write a class, you have no guarantee that there not in the future is one that inherits the class and
extends it with new features — and that is exactly also the idea of inheritance. However, there may be situations
where you do not want this option and you can then declare the class sealed, meaning that it can’t be inherited.

If for example you do not want it to be possible to inherit the class Director, you can define it as follows:

public sealed class Director : Employee
{
public Director(string firstName, string lastName, int monthly)
base (firstName, lastName, "Director", monthly)
{
}

Comment

Inheritance is not an especially difficult concept - at least not when you've seen it a few times - but there

are certain things one must be aware of:

o A class - for example Employee — may have one or more derived classes, but a class can
inherit only one class.

o Polymorphism - that the runtime system remembers the specific type of an object (the type
which is used when the new object is created - is one of the most important concepts of

object oriented programming.
Moreover, there are some names associated with inheritance, that it is important to understand:
o base
o protected
o virtual

o override

You can in the above examples to see how these words are used.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language The class Object

12 The class Object

I have above seen on some classes such as Coin, Dice, Cup etc. and these classes have not used
inheritance - apparently, but actually, they have indirectly inherits a class called Object. If you do not
write anything, then any class automatically inherit this class, and thus all classes without exception,
directly or indirectly inherit Object. It is actually more than that, for any type whether it is a value type

or reference type inherits Object.

C# defines an alias object of class System.Object, which is a reserved word, exactly the same way as the

string is an alias for the class System.String.

The class Object does not contain much, and its primary purpose is to be a common base class for all
types. The class defines a few methods that I will mention below. First I will mention ToString() which

returns the value of an object as a string. Consider the following class:

class ZipCode

{
private string code;
private string name;

Vouwro Touexs | Resanr Toocks | Macs Toveks | Vowo Buses | Vowo Cowsteucnion Esumsest | Wowo Pesm | Vowo Aeno | Wowo IT

Vowo Fimswcer Sepnces | Vowo 3P | Vowo Powerream | Vowo Pasrs | Vowo Techwowoer | Wowo Loasncs | Busisess Anes Asie

109 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/volvo

public ZipCode (string code, string name)
{

this.code = code;

this.name = name;

}

public string Code
{
get { return code; }

}

public string Name

{

get { return name; }

}

When not specified otherwise, the class ZipCode inherits the class Object. Consider the following method:

static void Testl ()

{
ZipCode z = new ZipCode ("7800", "Skive");
Console.WriteLine (z) ;

which created an object of type ZipCode, and this object is printed on the screen. Note that when the
object is printed with WriteLine (), then it is the result of the object’s ToString() method that is printed.
In this case there is no ToString() method in class ZipCode, but the program can be translated and run,

and the result is the following:

The ToString() method that is carried out, comes from the class Object, and print the full name of the
object’s type, here is the class’s namespace and class name. One can thus state that all objects without
exception has a ToString() method, but it is the one who writes the object’s class, which is responsible
for override the method so that it returns a meaningful result. As a class always inherits Object, that is
why I've written override in all the classes that have defined a ToString() method - ToString() is a virtual
method in the class Object.

Object also defines a method called Equals() that have an object as a parameter. It is a method that

returns true if the current object and the parameter are the same. If you execute the following method

static void Test2 ()

{
ZipCode zl1 = new ZipCode ("7800", "Skive");
ZipCode z2 = new ZipCode ("7800", "Skive");
Console.WritelLine(zl.Equals(z2));

Download free eBooks at bookboon.com



it will write False on the screen, and it was not what one would expect. The two objects zI and z2 have
the same value, but they are two different objects, each of which refers to their own object on the heap.
The method Equals() as defined in the class Object, compares the object references, and as zI and z2
are two different objects will Equals() returns false, even if the two objects have the same value. Should
it be otherwise, it is up to the programmer to override the method Equals(), so it compares the values

rather than references. If you want to override Equals() in the class ZipCode you can do the following:

public override bool Equals (object obj)
{
if (obj is ZipCode)
{
ZipCode z = (ZipCode)obi;
return code.Equals(z.code) && name.Equals(z.name);

}

return false;

Note first the is operator that may be used to test whether an object has a particular type. For Equals()
should return true, obj must be at least of the type ZipCode. If so, you can type cast it to a ZipCode. Then
obj is equal to the current object if both the zip code and the city name are the same. Note that this test

is in fact based on that the string class overrides Equals() with value semantic.

I will mention another method in the class Object called GetHashCode(). It is a method of an object that returns
an integer that can be perceived as an identification of the object. In general, this code is determined from
the reference to the object, but it is in the same manner as for ToString(), and Equals() up to the programmer
to override the method, if it has to return a code determined from the value of the object. There are different
guidelines for how this code is to be determined, but you can observe that it is not a requirement that two
different objects return different hash codes. However, it should be the case that if you have two objects obj1
and obj2 and obj1.Equals(obj2) is true, then must obj1.GetHashCode() be equal to obj2.GetHashCode(). I will
not at this point to give examples of applying this method, but the examples will come later. Another reason
to mention GetHashCode() on this point is that if you overrides Equals() without having to override GetHash-

Code(), you get a warning from the compiler. In most cases, this warning could be ignored.

Consider the following method, where you should be especially noted that the method has an object

as a parameter:

static void Print (object obj)

{
Console.WriteLine (obj.GetType());
Console.WriteLine (obj.GetHashCode ()) ;
Console.WriteLine (obj);

Download free eBooks at bookboon.com



You should also note the method GetType(), which is also a method in the class Object, which in this
case is used to print the name of the object’s type. The following method creates an array of the type

object and prints its elements on the screen:

static void Test3 ()

{
object[] t = { 23, 3.14, "Volmer", new Postnummer ("7800", "Skive") };
for (int 1 = 0; 1 < t.Length; ++i) Print(t[i]);

If you run the method you get the following result:

You should primarily note two things:

o amethod that as a formal parameter has an object may have an actual parameter of any type

o an array which type is object may contain anything irrespective of the type

At first glance it sounds smart, but you should be aware that this means that the compiler can't type

check, and thus a code based on the type object can very easily contain errors.

The above example concerning the class Object is called Exam28.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Abstract classes

13 Abstract classes

In this chapter I will introduce the concept of an abstract class. It is a class that can’t be instantiated —
you can't create objects of an abstract class, but abstract classes can for example be base classes for other

concrete classes.

Exam32
Abstract points

I will again start with an example that has the sole purpose of showing the syntax and the example is

essentially the same as Exam31. The class Point is now abstract:

public abstract class Point
{

private int x;

private int y;

public Point (int x, int vy)
{
this.x
this.y
}

Xy
yi

EXPERIENCE THE POV

FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
RUN EASIER...

113 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/Gaiteye

public int X

get { return x; }
set { x = value; }

}

public int Y

{
get { return y; }
set { y = value; }

}

public override string ToString()

{
return string.Format (" ({0}, {1}H)", x, V);

}

public abstract void Dec();
public abstract void Inc();

There are two differences. The class now has two abstract methods Dec() and Inc(). These methods have
no code and thus are merely definitions. This means that those who use the class Point knows that these
methods exist, but not how they work. The second difference is that the class itself is defined abstract.

It must be, and that means that the class can’t be instantiated — you can’t create objects of the type Point

The class NewPoint inherits Point, and must therefore implement the two abstract methods, so they are

specific methods that perform something:

public class NewPoint : Point

{
public NewPoint (int x, int y) : base(x, V)

{
}

public override void Dec()

public override void Inc ()

Note that an abstract method that is implemented in a derived class has to be preceded with the word

override.

Download free eBooks at bookboon.com



Below is a Main() method, which uses the class NewPoint:

static void Main(string[] args)
{

Point p = new NewPoint (2, 3);

Console.WriteLine (p) ;

p.Inc();

Console.WriteLine (p) ;

p.Dec();

Console.WriteLine (p) ;

p is a NewPoint object, but it is in the program defined as a Point. It is possible as a NewPoint specifically

is a Point, but you should particularly note that even if p is a Point, you can still write

p.Inc();

Since Point has an abstract method Inc(), the compiler knows that a Point object has such a method

(although it is defined in a derived class), so the above statement makes sense.

Loan

As an example I will write a class that can represent a loan in a bank. A loan is (in this example)
characterized by a principal, a number of periods and an interest rate. I would assume that the interest
rate remains constant throughout the payment period, and there is one payment every period on due
date and that the payment falls one period after the loan inception. I would also assume that you are

interested in the following information

« the nth payment
« repayment at the nth payment
o interest at the nth payment

 outstanding after the nth payment have been paid

The finished program must print a plan for the loan’s amortization that is an overview of how the loan

looks after each period.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Abstract classes

How to

Corresponding to this a loan could be represented by the following class:

Loan

principal: double
rate: double
periods: int

Principal: double
Rate: double

Periods: int
Payment(n): double
Interest(n): double
Repayment(n): double
Outstanding(n):double

Now there are several kinds of loans, and as an example one can look at a serial loan that is characterized
by the fact that you for each payment pays the same in repayment plus interest on it at any time due. At
such a loan the payment decreases over the repayment period. If, for example you have a serial loan of

$1000 and there are 10 periods, you have to pay 10 payments where the repayment each time is $100.

This e-book Y o N
ismadewith SETASIGN

SetaPDF h Y 4

\7\‘ PDF components for PHP developers

www.setasign.com

116 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/Setasign

You can also look at an annuity, which is characterized in that the payment is constant throughout the
repayment period. This means that the relationship between interest and repayment are so that in the
beginning the interest is a big part of the payment and the repayment is only a small part, and towards
the end of the period, the situation is reversed. The relationship between the loans principal, payment

and the interest rate can be expressed in the following formula:

1—(1+ rate) 7*

1+ rate

principal = payment

Finally, the outstanding immediately after the payment of the nth payment is calculated as:

. " (1+ rate)" —1
restloan = principal(l + rate)" — payment ———
rate
If you look at the above class Loan there is a need for two versions: One for a serial loan and one for
an annuity. When two classes have much in common, it is natural to think of a design with a common

base class and two derived classes:

Loan

principal: double
rate: double
periods: int

Principal: double
Rate: double

Periods: int
Payment(n): double
Interest(n): double
Repayment(n): double
Outstanding(n):double

SerialLoan

AnnuityLoan

Payment(n): double
Interest(n): double
Repayment(n): double
Outstanding(n):double

Payment(n): double
Interest(n): double
Repayment(n): double
Outstanding(n):double

The three classes can be implemented in the following manner:

public abstract class Loan

{
protected double principal;
protected double rate;
protected int periods;

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language

}

public Loan(double principal, double rate, int periods)

{

this.principal = principal;
this.rate =
this.periods

}

rate;
periods;

public double Principal

{
get {
}

public double Rate

{
get {
}

return rate; }

public int Periods

{

get { return periods;

}

abstract
abstract
abstract
abstract

public
public
public
public

return principal; }

}

double Payment (int n);
double Interest (int n);
double Repayment (int n);
double Outstanding(int n);

public class Serialloan

{

}

Loan

public Serialloan (double principal, double rate, int periods)
base (principal, rate,

{
}

periods)

public override double Repayment (int n)

{

return principal / periods;

}

public override double Outstanding(int n)

{

return Repayment (0) *

}

(periods - n);

public override double Interest (int n)

{

return Outstanding (n

}

- 1) * rate;

public override double Payment (int n)

{

return Repayment (n) +

public class AnnuityLoan

{

Interest (n);

Loan

public AnnuityLoan (double principal, double rate, int periods)
base (principal, rate,

periods)

118

Download free eBooks at bookboon.com

Abstract classes



public override double Payment (int n)

{

return principal * rate / (1 - Math.Pow(l + rate, -periods));

}

public override double Outstanding(int n)

{

return principal * Math.Pow(l + rate, n) - Payment(0) *
(Math.Pow (1l + rate, n) - 1) / rate;
}

public override double Interest(int n)

{

return Outstanding(n - 1) * rate;

}

public override double Repayment (int n)

{

return Payment (n) - Interest(n);

The program must print a plan for the loan’s amortization, which is a table showing the status of the

loan each payment:

public class Amortisation

{

private Loan loan;

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.

Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

OSRAM
Light is OSRAM SYLVANIA

0

Download free eBooks at bookboon.com


http://s.bookboon.com/osram

public Amortisation (Loan loan)

{

this.loan = loan;

}

public void Print()
{
Console.WritelLine ("Principal: {0, 10:F}", loan.Principal);
Console.WriteLine ("Rate of interest: {0, 10:F}", loan.Rate);
Console.WriteLine ("Number of periods: {0, 10:D}\n", loan.Periods);
Console.WriteLine (
"Periods Payment Repayment Interest Outstanding");
for (int n = 1; n <= loan.Periods; ++n)
Console.WriteLine ("{0, 7:D}{1, 15:F}{2, 15:F}{3, 15:F}{4, 15:F}", n,
loan.Payment (n), loan.Repayment (n), loan.Interest (n), loan.Outstanding(n)) ;

Explanation

Note first that the class Loan is defined abstract. It must be because it has abstract methods. An abstract
method is a method that is not defined - its code is not written. In this case there are four abstract
methods. The reason that the methods are abstract is that how for example the payment is calculated
depends on what kind of loan it is. The method can only be implemented when you know what kind
of loan you are talking about. An abstract method is simply a prototype definition in which a method

is defined by its name, return type and parameters, but its body is missing.

Loan is a type, and even though it is abstract, and you thus can’t create objects of type Loan, the type
can for example be used as a type of an argument to a method. Everybody who gets the informed that
they are dealing with something of the type Loan knows that it is something that beyond the three
properties have four methods, Payment(), Interest(), Repayment() and Outstanding(), and you can use
the four abstract methods as if they existed.

The class SerialLoan inherits Loan, and thus it is up to class SerialLoan to implement the four abstract
methods so that SerialLoan is a concrete class. The class SerialLoan can implement the abstract methods,
because it has the needed knowledge - a knowledge not known in the class Loan. The implementations

of the abstract methods are trivial, but note that a SerialLoan is specifically a Loan.

The class AnnuityLoan is also easy to implement, and it consists simply of writing the above formulas
in C#. Here you should note the method Pow(), which is a static method of the Math class, which raises

an argument in a power.

Finally, there is class Amortisation, which can print a plan for a loan’s amortization. Here you should
note that the class has an instance variable of type Loan, which is initialized in the constructor. So you
can have a variable whose type is an abstract class, since concrete objects of types respectively SerialLoan
and AnnuityLoan also is of the type Loan. Please note that the class Amortisation know nothing about
the specific loan type, but nevertheless one can write method Print(), since all methods are defined for
the abstract type of Loan. The class Amortisation will also support and work on new types of loans as

long as they inherit the class Loan.

Download free eBooks at bookboon.com



Test

If you test the above classes with the following program:

class Program
{
static void Main(string[] args)
{
Amortisation tablel
Amortisation table?2
tablel.Print () ;
table2.Print () ;

new Amortisation(new SeriallLoan (10000, 0.02, 10));
new Amortisation(new AnnuityLoan (10000, 0.02, 10));

you get the following result:

Comment

In the last examples, there typically have been a number of classes and in this case four classes in addition
to the Main program. In all examples, the classes code have been in the same file, but as the examples
become larger, there is not a viable option for the sake of clarity. Many choose to consistently place each
a class in its own file and it is quite a sensible strategy, since it is a way for small source files, which are

much easier to understand.

Comment

Note in particular that a class may be abstract, although it has not abstract methods. It can be used if

you want to ensure that a class can not be instantiated.

Download free eBooks at bookboon.com



14 Interfaces

An abstract class is a type that can contain everything that a class can have. That is variables, constructors,
methods, etc. Just may some of the methods be abstract, corresponding to those not yet been encoded -
it is deferred to the concrete classes that have the requisite knowledge. In contrast, an interface is a type

which can contain only abstract methods.

Exam33
Points again

The following interface defines a point:

public interface IPoint

{
int X { get; set; }
int Y { get; set; }

Basically it looks like a class, just stands there instead the word interface. An interface defines the methods
and properties, and in this case two properties. One can think of an interface as a class that can only
contain abstract methods. Note especially that in an interface has no method visibility - they are by
default public.

Below is a class that implements the interface:

public class Point : IPoint
{

private int x;

private int y;

public Point(int x, int vy)
{

this.x = x;

this.y Vi

}

public int X

{
get { return x; }
set { x = value; }

}

public int Y

{
get { return y; }
set { y = value; }

}

public override string ToString/()
{
return string.Format (" ({0}, {1})", x, Vy):

}

Download free eBooks at bookboon.com



Note that you are using the same syntax as for inheritance:

public class Point : IPoint

When a class implements an interface, the class must implement the methods and properties that are

defined in the interface.

The following Main() method uses the interface:

static void Main(string[] args)
{
IPoint p = new Point (2, 3);
Console.WriteLine (p);

p is a Point object, but in the program it is known by its defining interface.

Exam30
Money

In this example I will write a program that creates a purse with bank notes. The purse must provide the

following services available:

« one can place a bank note in the purse

« one can ask whether the purse is empty

« one can ask about the purse is full

« one can ask about the purse has (contains) a particular bank note
« one can take (pay with) a bank note with a specified value

« one can get to know, how much money is in the purse

When the purse is implemented, it must be tested by a program, which is cash in some money in the

purse and then uses some of the notes.

How to

The first step is to define a bank note and I will work with Danish bank notes that have values 50, 100,
200, 500 and 1000 and thus 5 different notes.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Interfaces

A bank note is a very simple concept which mainly is characterized by a value (one of the above), and

can be defined by an interface:

public interface IBankNote

{
int Value { get; }

}

which is merely a definition that says that a bank note — a IBankNote object - is something that has a

get property, which returns an int.

I will then define an abstract class that implements the above interface and the methods that must be

applied to all notes:

public abstract class BankNote : IBankNote

{
public abstract int Value { get; }

public override bool Equals (object obj)
{
if (! (obj is IBankNote)) return false;
return ((IBankNote)obij).Value == Value;
}

public override int GetHashCode ()
{

return Value;

}

360°
thinking.

Deloitte.

Discover thC truth at WWW.dClOitte,CalcareerS © Deloitte & Touche LLP and affiliated entities.

124

Click on the ad to read more

Download free eBooks at bookboon.com



http://www.deloitte.ca/careers

public override string ToString()

{

return Value + " Danish Crowns";

}

With this class available, you can define concrete classes for the different notes, for example:

public class BankNote50 : BankNote
{

public override int Value

{
get { return 50; }

}

This means that there are defined the following class hierarchy:

IBankNote
JAN

BankNote

BankNote50 BankNote100 BankNote200 BankNote500 BankNote1000

Explanation

Before I look at the implementation of the purse I will make a few comments on the diagram above and

what an interface is.

The interface IBankNote defines only a single read only property to return the value of a bank note. Note
that it has no visibility. It is by default public, and we can’t provide any visibility as it provides a translation
error. An interface is a very simple concept, which only defines that a type has certain properties, but

the interface does not implement this features.

You should be particularly aware that an interface is a type like a class, and as such you can have a
variable whose type is an interface, but you can - naturally enough - not instantiate an object with that

type. For example would the following be an illegal statement:

IBankNote note = new IBankNote(); // illegal, an interface can't be instantiated

As a last remark concerning interfaces, it is customary in C# to let the name of an interface start with a

capital I, that is, for example IBankNote and it is advisable to keep to this practice.

Download free eBooks at bookboon.com



Interfaces must be implemented by classes and the class BankNote implements the interface IBankNote.

Note that the syntax is the same as for inheritance:

public abstract class BankNote : IBankNote

that is a colon followed by the interface name. The class BankNote does not contain anything new, because
it primarily overrides three methods from the class Object. Although it is not specified, the BankNote

class inherits Object, and it is actually allowed (but unnecessary) to write:

public abstract class BankNote : Object, IBankNote

Since the class implements the interface IBankNote, it must implement the interface’s properties and
methods. It can’t, because the class does not know what value the note should have, so instead it must

make the property Value abstract. BankNote is then an abstract class.

Note also that the implementation of methods such as ToString() uses the property Value, and there is
nothing wrong with that, although it has not yet been implemented.

Then finally there are the concrete classes, and they are extremely simple and do not require special

explanation, but note that, for example a BankNote50 is also a BankNote and thereby also an IBankNote.

The class Purse

The task was to implement a purse for notes where the purse should have 6 properties. Since this example

deals with interfaces, I will define a purse in the form of an interface:

public interface IPurse

{
bool Put (IBankNote note);
bool IsEmpty();
bool IsFull();
bool Has (IBankNote note);
IBankNote Pay(int wvalue);
int Value();

The interface defines that a purse must have six methods and hence the properties that a purse should
have and what you can do with a purse, but the interface defines nothing about how the purse will be

implemented. It requires a class that implements the interface:

public class Purse : IPurse

{
private IBankNote[] list;
private int count;

public Purse (int size)

{

list = new IBankNote[size];

}

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Interfaces

public bool Put (IBankNote note)
{

if (count >= list.Length) return false;
list[count++] = note;
return true;

}

public bool IsEmpty ()
{

return count == 0;

}

public bool IsFull()
{

return count == list.Length;

}

public bool Has (IBankNote note)
{

for (int i = 0; 1 < count; ++i) if (list[i].Equals(note)) return true;

return false;

}

public IBankNote Pay(int wvalue)
{

for (int i = 0; 1 < count; ++1i)
if (list[i].Value == value)
{
IBankNote note = 1list[i];
list[i] = list[--count];
return note;

SIMPLY CLEVER

We will turn your CV into
an opportunity of a lifetime

= &;

A

3
e

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

127 Click on the ad to read more

Download free eBooks at bookboon.com


http://www.employerforlife.com

return null;

public int Value()
{
int sum = 0;
for (int i =
return sum;

0; 1 < count; ++i) sum += list[i].Value;

Explanation

Note first that the class implements the interface IPurse. Note then that there is defined an array with
name list to the bank notes of the purse, and the type of the array is IBankNote, that is an interface. The
array is created in the constructor that has a parameter that tells how many notes the purse must have
room for. There is also a variable count, which keeps track of how many notes there are in the purse.

After the purse is created it is empty.

Most of the methods are simple. The method Put() must leave a note in the purse, but it can only do
it if there is room. Therefore it must test, if it is. If there is not space, the method returns false without
doing anything. Otherwise, it put the note in the purse and returns true. The two methods IsEmpty() and
IsFull() is quite trivial. The method Has() go through the notes in the purse with a for loop to check if
you have the bank note, which is queried. Note that this is a requirement that the note class implements

the method Equals() correctly with value semantic. It’s something that the abstract class BankNote solves.

The method where there is most to note is the method Pay(). Basically it consists of a loop that runs
through the notes in the purse to find a note with the correct value. If you find a note, there are two
things to do: the note must be removed from the purse, and the method must return the note. The first
thing is solved by putting the note on the last place onto the place where the note should be removed.
Note that this requires that you first save a copy of the note to be returned. Also note that the variable
count is counted down with the one. If the purse does not have a bank note with the desired value,
there is a problem because that the method should return something. It has been solved by letting the
method returns a null reference. It is a solution that can be discussed much, but conversely a solution

that is widely used, and at least gives the user the ability to test whether the purses had the desired note.

It is important to note that both the interface IPurse and the implementation Purse know nothing about
the actual banknote classes, but only knows the interface IBankNote. It means that you with no problems

can add new banknotes classes and without the need to modify the code for Purse.

The last method requires no special comment, and consists merely of a simple pass through the notes

to calculate the total value.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language

The program

Interfaces

There remains then the program itself, which should create a purse, put banknotes into it and then

spends some money:

class Program

{

static Random rand = new Random() ;

static void Main(string[] args)

{

}

IPurse purse = new Purse(10);
Init (purse);
Console.WritelLine (purse.Value());

for

(int 1

= 0; i < 20; ++i) Buy(purse, Create());

Console.WritelLine (purse.Value());

static void Buy(IPurse purse, IBankNote note)

{

if
{

}

(purse.Has (note))

purse.Pay(note.Value) ;
Console.WriteLine ("Bought for {0} crones", note.Value);

else
Console.WriteLine ("Does not have a " + note);

}

static void Init (IPurse purse)

{

}

while

(!'purse.IsFull()) purse.Put(Create());

static IBankNote Create ()

{

switch

{

case
case
case
case
case
case
case
case
case
case

(rand.Next (15))

O J o Ul b WP O

9:
default:

return new BankNotelOO0O () ;

return new BankNote500 () ;

return new BankNote200 () ;

return new BankNotelOO();
return new BankNote5O0 () ;

129

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Interfaces

Explanation

Note first the method Init(), which fills the purse with bank notes.

Notes are created by the method Create() which creates a random bank note. Note that this is the only
place in the entire program, where the concrete bank note classes appear - all else is a bank note only
known as the interface IBankNote. In fact, one could usefully move the code for the method Create() to its

own factory class, so you got an even better separation of the program and the specific bank note classes.

The method Buy() simulates that you pay with a particular banknote. This method asks where the purse
has a particular note, and if it’s true the method “buy for the amount”. Otherwise it may say “sorry”.
Please note that this method only knows the purse through the interface IPurse, and the method will

work even if a purse was implemented in a different way, as long as it implements the interface.
The program is as follows:
static void Main(string[] args)

{
Pung pung = new ArrPung(10);

Init (pung) ;
Console.WritelLine (pung.Ialt());
for (int 1 = 0; 1 < 20; ++1i) Koeb(pung, Create());

Console.WritelLine (pung.Ialt());

and below is an example of a test of the program.

Ijoined MITAS because L,
I wanted real responsibility www.discovermitas.com

I'was a construction
SUPErvisor in

the North Sea
advising and
ern  Nelping foremen

& solve problems

MAERSK

130 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/mitas

Comment

There are basically two objectives for interfaces. In the first place this is a good programming principle
is to define a subject in the form of an interface, that is, for example IPurse above. It is said that one
should program to an interface. In this way, the definition and implementation is separated, and the
important thing is that the code that uses the subject only knows it through the interface and thus is
completely independent of the implementation. This ensures that you can change the implementation
without the need to modify the code that use the subject. Programming to an interface may therefore
help to ensure that you get a code that is easier to modify. The above program is “almost” independent
of the implementation of the interface IPurse and there is also only a place where the implementation

is clear, namely, where the Main() creates the purse:
IPurse pung = new Purse(10);
Another objective of an interface is to allow for on the design level to work with multiple inheritance.

As mentioned above, a class can only have a single base class — a class inheritance only from one class.

It is called sometimes for linear inheritance. You can’t have a design as shown below:

where a class C inherits both the class A and the class B. There are several reasons why it is not possible.
Firstly, there are difficulties in implementing the concept in a programming language in a meaningful
way, and secondly, one can discuss whether it is an appropriate design, as it expresses that C is both
an A and B. There are examples where it is reasonable, and in C# a class can inherit a single class, but

implement all the interfaces, it may have wanted or needed. You’ll have seen many examples of that later.

Download free eBooks at bookboon.com



15 Static members

I would like once again to look at static members in a class. Both variables and methods can be static,

and indeed can a class be static.

When you create an object of a class, you create simultaneously the data elements as simple variables
and other objects that the class’s instance variables define. Each object of the class has its own copy of
all instance variables, and if an object changes the value of an instance variable it only concerns the

object itself.

Things are different with static variables as a static variable is created only for the first time an object
of the class is created. This means that all objects created from the same class share a static variable, or

said differently that a static variable is not tied to a particular object.

A good example of using a static variable is a random number generator — an object of type Random -
as in the classes Coin and Dice. Here it is important that all objects (for example all Dice objects) are
using the same random number generator. The static random number generator is initialized in the

declaration of the static variable:

private static Random rand = new Random() ;

It is not always possible or desirable, and one can instead initialize static variables in a static constructor
that has no other purpose than to initialize static variables. For example you could write the class Dice,

as follows:

public class Dice

{
private static Random rand;
private int oejne;

static Dice ()

{
rand = new Random() ;

}

There is no justification for it in this case, but a static constructor is executed the first time a program
creates an object of the class. You can’t override a static constructor — there are no options to transfer

parameters.

Also, methods can be static. If you have a static method, you can use it without having an object of the

class, and the method is referenced by setting the class name before method name.

Download free eBooks at bookboon.com



Exam34
StringBuilder

In this example I will show a class that contains only static methods. The class will consist of methods
to manipulate the strings, and is a class which may be useful in practice. I should also mention the class
StringBuilder, a class that can give increased efficiency in situations with many operations on strings.

Finally, the example has a test program that tests the class.

How to

The starting point is a class Str with 4 static methods:

public static class Str

{
public static string Cut(string text, int width)

{
if (text.Length > width) return text.Substring (0, width);

return text;

}

public static string FillRight(string text, int width, char ch)
{

StringBuilder builder = new StringBuilder (text);

while (builder.Length < width) builder.Append(ch);

return builder.ToString();

i
- |

UROPEAN
# BUS INESS
SCHOOL

FINANCIAL TIMES

Ae | N e
ve ! R #gobeyond

- e ' ¥ |
MASTER IN MANAGEMENT 3 ~ »

«Beecause achieving your dreams is your greatest challenge. IE Business School's Master in Management taught in English,
Spanish or bilingually, trains young high performance professionals at the beginning of their career through an innovative
and stimulating program that will help them reach their full potential.

Choose your area of specialization.
Customize your master through the different options offered.
Global Immersion Weeks in locations such as London, Silicon Valley or Shanghai.

Because you change, we change with you.

www.ie.edu/master-management mim.admissions@ie.edu

0

Download free eBooks at bookboon.com



http://s.bookboon.com/IE

C# 1 Introduction to programming and the C# language

public static string Fillleft(string text,
{

int width,

if (text.Length >= width)
StringBuilder builder
for (int i 0;
return builder.ToString()

return text;
new StringBuilder (width
i < builder.Capacity; ++1)
+ text;

}

public static string FillCenter (string text,
{
return FillRight (FillLeft (text,
width, ch);

text.Length + (width

int width,

Static members

char ch)

text.Length) ;
builder.Append (ch) ;

char ch)

text.Length) / 2, ch),

In this case, the class Str is located in its own file. This provides better opportunities to use the class in

other programs.

Below is a test program:

class Program

{

static void Main(string[] args)
{

Testl (),

Test2 () ;

}

static void Testl ()

{
Console.WriteLine (Str.
Console.WriteLine (Str.

}

Cut ("1234567890",
Cut ("1234567890",

8));
12));

static void Test2()

{
Console.WriteLine (Str.
Console.WriteLine (Str.
Console.WriteLine (Str.

FillRight ("abc", 10,
FillLeft ("abc", 10,
FillCenter ("abc", 10,

134

Download free eBooks at bookboon.com



Explanation

The first method cut of the string, so that it has a maximum width (number of characters):

public static string Cut(string text, int width)

{
if (text.Length > width) return text.Substring (0, width);
return text;

It is a static method (in fact a very simple but useful method), and it may, for example be used as follows:

Console.WriteLine (Str.Cut ("1234567890", 8));

You should note that the method referenced by typing class name Str in front.

Basically, a static method can do the same as other methods, and it is important that it can be used without
an object. In turn, a static method can’t refer to instance variables, but there are also many examples of
methods, that does not. A good example is the Math class, which contains a number of mathematical

functions. They are all implemented as static methods.

The second method is a method that extends a string to a minimum width, such that it is filled out to

the right with a specific character ch. The method uses a StringBuilder, but it could be written differently:

public static string FillRight(string text, int width, char ch)

{
while (text.Length < width) text += ch;
return text;

A string object can’t change state — you can’t change the content of a string. If you look at the expression

text += ch;

it means to create a string object that contains the previous content of text and expanded it with value
ch. That means, the creation of an object on the heap, and the old string have to be copied to it. In most
cases it is not essential, but if there is to be added number of filler characters corresponding to the loop
is repeated many times, it may affect the performance and be detectable. It is here the type StringBuilder
comes into the picture. There is a kind of buffer for characters that can expand dynamically and when

needed. The statement

StringBuilder builder = new StringBuilder (text);

creates a new StringBuilder with the content of text. The second loop adds the characters until the builder

contains the desired number of characters, and note that it automatically expands as needed.

Download free eBooks at bookboon.com



It’s hard to say exactly when to use a StringBuilder, but if there are more than 10 extensions you should

consider whether it is worthwhile to take this class in use.

The third method is similar to FillRight(), but it fill character in from the left. It also uses a StringBuilder,
but the parameter to the builder’s constructor is this time is a number: the number of fill characters to
be used. This means that the builder from the start can accommodate the required number of characters,
and thus should not be expanded. Note also how, in the loop there are used a property Capacity to

determine how many characters to be added.

If one considers the class Str, then all the methods are static. If so, you can also define the class as static:

public static class Str

{
If so, it is not possible to create objects of the type Str, and also it gives the no opinion in this case.

Comment

When you in Visual Studio creates a new console application it automatically creates a class with a
Main() method. It is a static method and it must be, as it must be called by the runtime system without

having an object. In most testing programs the class with Main() had only static methods, for example.

static void Test2 ()

{
Console.WriteLine (Str.FillRight ("abc", 10, 'x
Console.WriteLine (Str.FillLeft ("abc", 10, 'x'
Console.WriteLine (Str.FillCenter ("abc", 10, '

and the method is usually called from Main(). When you in such situations has no object, the methods

must be static, and that is why the methods in the Main() class has always been static.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language More about arrays

16 More about arrays

I have previously defined an array as a number of elements of a particular type that can be referenced

via a common name. The picture of an array is a structure like the following

where each box has room for an element of the arrays type. The individual elements can be referenced
using the array name and an index that always starts from 0. The type can be anything, and in the class
Cup it was a Dice, while in the class Purse it was an IBankNote. The only thing to note is that if the type
is a value type, the boxes directly contains the value that is attached to the individual indices, but if the
type is a reference type, the boxes contains only references to the objects that are linked to the individual
objects. It is rare that it means so much in practice, but you should be aware that if you write something

like the following

Dice[] t = new Dice[5];

then there is created an array, but there it is not yet filled with Dice objects. The array is empty

corresponding to each position contains null. There is not yet created any Dice objects.

STUDY AT A TOP RANKED

no.l INTERNATIONAL BUSINESS SCHOOL

nine years
in a row

Reach your full potential at the Stockholm School of Economics,
in one of the most innovative cities in the world. The School

$ is ranked by the Financial Times as the number one business
S school in the Nordic and Baltic countries.
Stockholm

{ ]
Visit us at www.hhs.se

Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/hhs2016

An array as above is a 1-dimensional array. One can also work with arrays of multiple dimensions. For
example is a 2-dimensional array a structure organized into rows and columns, and each element can
be referenced using the array name and an index pair. For example you can define a two-dimensional

array of elements of the type int having 4 rows and five columns in the following manner:

int[,] t = new int([4, 5];
t[2, 3] = 43;

This can be illustrated in the figure below. Please note that as with a 1-dimensional array indices start

with 0 - for both rows and columns.

It is seldom you are using arrays with more than two dimensions, but there is no upper limit to the
number of dimensions, but for us humans it is difficult to give the array a geometric interpretation. For

example you can define a 3-dimensional array as:

int[,,] t = new int([3, 4, 2];

This can be illustrated as a cube (or more 2-dimensional arrays, lying behind each other):

Then it is easy to guess the syntax of how to define arrays of dimension greater than 3.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language More about arrays

Exam35
Multi-dimensional arrays

In this example I will show some examples of multidimensional arrays.
How to
The examples are as follows:

static void Testl ()
{

char[,] t = new char[5, 4];
char ch = 'A'";
for (int 1 = 0; 1 < t.GetLength(0); ++1i)
for (int 7 = 0; J < t.GetLength(l); ++3j) tf[i, J] = ch++;
Print (t);
}
static void Test2()
{
char([,,] t = new char([3, 5, 4];
char ch = 'A';
for (int 1 = 0; 1 < t.GetLength(0); ++1)
for (int j = 0; j < t.GetLength(l); ++3j)
for (int k = 0; k < t.GetlLength(2); ++k) t[i, 3, k] = ch++;
Print (t);

}

static void Test3()

{
int[,] t = { { 2, 3, 5, 7%}, { 11, 13, 17, 19 }, { 23, 29, 31, 37 } };
Print (t);

}

static void Testd ()
{

char[][] t = new char[4]][];
t[0] = new char[3];

t[1l] = new char[5];

t[2] = new char([2];

t[3] = new char[7];

char ch = 'A';

for (int i = 0; 1 < t.Length; ++i)
for (int 3 = 0; J < t[i].Length; ++3j) t[i][j] = ch++;
Print (t):;
}

static void Testb5 ()

{
int(] t = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };
foreach (int n in t) Console.WriteLine (n);

}

static void Test6 ()

{
int(] t = { 23, 7, 5, 11, 3, 17, 29, 2, 19, 13 };
Array.Sort (t);
foreach (int n in t) Console.WriteLine (n);

139

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language More about arrays

static void Print (char[,] t)

{

}

for (int 1 = 0; 1 < t.GetLength(0); ++1)

{
for (int j = 0; j < t.GetLength(l); ++j) Console.Write("{0} ", tI[i, J1):
Console.WriteLine () ;

static void Print(char([,,] t)

{

}

for (int i = 0; i < t.GetLength(0); ++1i)
{
for (int § = 0; j < t.GetLength(l); ++3)
{
for (int k = 0; k < t.GetLength(2); ++k) Console.Write("{O0} "™, t[i, 73, k]l);
Console.WritelLine () ;
}

Console.WriteLine () ;

static void Print (int[,] t)

{

for (int i = 0; i1 < t.GetLength(0); ++1i)

{
for (int j = 0; j < t.GetLength(l); ++j) Console.Write("{0, 3:D} ", t[i, j1);
Console.WritelLine() ;

STUDY AT

LINKOPING UNIVERSITY, SWEDEN
RANKED AMONG TOP 50 UNIVERSITIES UNDER 50
Interested in Strategy and Management in International

Organisations? Kick-start your career with a master’s degree
from Linkoping University, Sweden.

gt

;3 Linkdping University

" o
§
‘&.}m

140

Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/liu

static void Print(char[][] t)

{
for (int i = 0; i < t.Length; ++1i)

{
for (int j = 0; j < t[i].Length; ++3j) Console.Write("{0} ", t[il[j]);
Console.WriteLine () ;

Explanation

The first example creates a 2-dimensional array of the type char and prints it. You should particularly
note how one refers to the number of elements in each dimension with the method GetLength(), where

the parameter indicates the dimension that you refer.

The next example is similar, but here is instead talking about a 3-dimensional array. You should be
especially aware of how to create a 3-dimensional array — here with 5 rows, 4 columns and 3 layers. Note

also how to refer to an element using three indices.

It is also possible to initialize a multidimensional array in the declaration using a list. The third example

shows how to create a 2-dimensional array consisting of 3 rows and 4 columns.
The type of an array can be anything and thus specially also another array. This makes it possible to

define the arrays, where each row has a different number of elements. The fourth example creates an

array of four rows where the numbers of elements per array are respectively 3, 5, 2 and 7:

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language More about arrays

As a further remark concerning arrays, let me mention another loop construction. Indeed, it has not
specifically to do with arrays, but it may be useful in the context of arrays. The fifth example defines a
generally 1-dimensional array of 10 elements. The array is printed on the screen pass it with a loop, but
this time using a foreach loop. The syntax is simply to define a variable of the same type as the array, and
this variable will then run through all array elements. The advantage of foreach rather than a simple for

statement is simply that it may be more readable.

As a last remark concerning arrays, I will mention the class Array, which is the base class for any array,
and thus also provides a range of methods and properties available. Specific the class provides multiple

static methods available to manipulate arrays. It is worthwhile to investigate this class and see what there

is to work with. The last example defines an array and sorts it.

“I studied
English for 16 p
years but... -
...I finally
learned to
speak it in jus
Six lessons”

Jane, Chinese architect

OUT THERE

Click to hear me talking

before and after my

unique course download

142 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/EOT

C# 1 Introduction to programming and the C# language Types

17 Types

C# has several categories of types, including class types and interface types, but also simple types like
int and double. Characteristics of these types and how variables / objects of these types are allocated,

are, as mentioned above, generally divided into value types and reference types.

A variable of a value type allocates space on the stack to its data, and one can say that the variable has
its own copy of or contains the data stored in it. The variable is automatically destroyed (removed from
the stack) when the program finishes the block where the variable is declared. A variable of a value type
uses thus the number of bytes of the stack, which the type indicates.

A variable of a reference type does not contain data directly, but contains instead a reference to data that
is allocated on the heap. This means that one can have several variables that relate to the same data. This
means also that a reference variable always has the same size of the stack that is the size of a reference
(4 bytes). A reference can specifically have the value null, which means it does not refer to anything.

Reference types can be classified into class types, arrays, and interface types.

The next sections deals more on the types and value types primarily, but also dealt with generic types

and exception handling, but I will start with a few more remarks on the simple types.

The simple or built-in types are, for example int, char, double, etc. Each type has a name that is a reserved
word, but these names are really just an alias for a similar struct in the Systemn namespace. This means
that there are also associated methods to the simple types. For example is int an alias for the System.

Int32, which is a 4 byte integer.

The following table shows the simple types in the namespace System:

sbyte SByte 8 bit signed integer
byte Byte 8 bit unsigned integer
short Int16 16 bit signed integer
ushort Uint16 16 bit unsigned integer
int Int32 32 bit signed integer
uint Uint32 32 bit unsigned integer
long Int64 64 bit signed integer
ulong Uint64 64 bit unsigned integer
char Char 16 bit Unicode character
float Single 32 floating-point number
double Double 64 floating-point number
bool Boolean 8 bit that is true or false
decimal Decimal 96 bit decimal number with 28 significant digits
143

Download free eBooks at bookboon.com



The simple types are all derived from the type ValueType (which is a struct, and the term struct is explained
below) and which is in turn derived from the Object. The types can basically be divided as

o char
o bool
« types to integers (sbyte, byte, short, ushort, int, uint, long, ulong)

o types to decimal numbers (float, double, decimal)

The type char is simple, since it represents the individual characters as a 16-bit numeric code in the
unicode system. There are tables that show which encodes each character has. Below is shown a method

that prints the characters with codes from 32 up to and including 255:

static void Testl ()
{

for (char ¢ = ' '; ¢ <= 255; ++c) Console.WriteLine("{0}{1, 4:D}", ¢, (int)c);

}

Note especially the comparison in the for statement where a char is compared with an int, and that the
+ + operator also makes sense for a char. By comparison, the characters code number is compared, and

+ + works because it is the code that counted.

To the type bool can’t be made more comments, but the number types are worth a closer look. A sbyte fill
1 byte, and thus 8 bits. It can therefore represent any integer that binary can be written with 8 bits, which
are the numbers from -128 to 127. The slightly oblique zone has to do with the internal representation
where a negative integer is represented by its 2-complement. If instead you have a byte, its values range
from 0 to 255. The difference between a sbyte and a byte is thus simply a parallel shift of the range
which is representative of the type in which the one is a symmetrical range of 0, while the other is the
non-negative integers starting with 0. The same is true for the types short, int and long the difference is
only the size of the range of integers, which are available. The following method prints these intervals

for all 8 integer types:

static void Test2 ()

{
Console.WriteLine ("sbyte {0, 25:D} {1, 25:D}", sbyte.MinValue, sbyte.MaxValue);
Console.WriteLine ("byte {0, 25:D} {1, 25:D}", byte.MinValue, byte.MaxValue);
Console.WriteLine ("short {0, 25:D} {1, 25:D}", short.MinValue, short.MaxValue);
Console.WriteLine ("ushort {0, 25:D} {1, 25:D}", wushort.MinValue, ushort.MaxValue);
Console.WriteLine ("int {0, 25:D} {1, 25:D}", int.MinValue, int.MaxValue)
Console.WriteLine ("uint {0, 25:D} {1, 25:D}", wuint.MinValue, uint.MaxValue);
Console.WriteLine ("ulong {0, 25:D} {1, 25:D}", long.MinValue, long.MaxValue);
Console.WriteLine ("ulong {0, 25:D} {1, 25:D}", ulong.MinValue, ulong.MaxValue);

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Types

You can't just copy an integer of one type into another type without making a type cast, but the general

rule is that you can copy a smaller type into a larger type. If you try to translate the following code

static void Test3 ()

{
sbyte bl = 2;
1;

byte b2 = b
int n = 3;
short s = n;

long t = n;

you will get two translation errors. The statement

byte b2 = bl;

Excellent Economics and Business programmes at:

7

university of e AACSB
groningen b (e

N A

| 4

| .
“The perfect start

of a successful,
international career.”

-, . 4 CLICKHERE
® F to discover why both socially
and academically the University

of Groningen is one of the best

i laces for a student to be
www.rug.nl/feb/education P

145 Click on the ad to read more

Download free eBooks at bookboon.com


http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

gives an error because you try to copy an integer which may be negative in a variable that can only

contain no negative numbers. Similarly, the statement

short s = n;

cause an error when trying to copy 4 bytes into 2 bytes. In both cases the problem is solved with an

explicit type cast:

static void Test3()

{
sbyte bl = 2;

byte b2 = (byte)bl;
int n = 3;
short s = (short)n;

long t = n;

As a last remark concerning integers, I will mention the possibility of statements that with integers as

hexadecimal digits:

int a = Oxlabc23;
where 0x tells the compiler that the value should be interpreted as a hexadecimal number.

Back there are the decimal numbers that are represented by the types float, double and decimal. The first
two is so-called floating-point numbers, while the latter is a decimal number. The difference is that the
float and double meets a very large interval with fewer significant digits, while the latter supports many
significant digits and return a more limited range. Common to the three types is that they represent
only a portion of data within the intervals that they span, simply because that every interval contains
infinitely many real numbers, and an infinite amount can’t be represented with a finite number of bits.
It is therefore important to realize that when working with decimal numbers, many of the results are
rounded off and approximates the values, a relationship which is also known from an ordinary calculator.

Especially in the context of comparisons it is important to be aware of this fact.

The difference between float and double are, how big a range, they span. The internal representation

comprises of a sign, a mantissa with the digits and an exponent. If for example you calculates 3.14%

Console.WriteLine (Math.Pow (3.14, 50));

you get the result

Download free eBooks at bookboon.com



that means 7.02234890660125*10*. This means that a double works with approximate 15 significant digits.

The above is thus a rounded result.

Note that you can also use that notation for a constant, for example

double x = 1234.678E+20;

The types float and double defines several constants and some of them are used in the following method:

static void Test4 ()
{
Console.WritelLine (
"float {0, 30:E20}{1, 30:E20}", float.MinValue, float.MaxValue);
Console.WritelLine (float.Epsilon) ;
Console.WritelLine (
"double {0, 30:E20}{1, 30:E20}", double.MinValue, double.MaxValue);
Console.WriteLine (double.Epsilon);

Here you can see the intervals the two types of spans, but you should also notice the constant Epsilon,

which indicates the smallest positive number. Values are also available which do not represent numbers:

[l double.PositiveInfinity representing the plus infinity

[1 double.NegativeInfinity representing minus infinity

[ double.NaN that means a value that does not represent a
number

The type decimal spans a smaller range, but in return for up to 29 significant digits:

static void Testb5()

{
Console.WriteLine (decimal.MinValue) ;
Console.WriteLine (decimal.MaxValue) ;
Console.WriteLine (decimal.Zero) ;
Console.WriteLine (decimal.One) ;
Console.WriteLine (decimal.MinusOne) ;
decimal x = 2;
Console.WritelLine (Sgrt (x));

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Types

Note that the type defines several constants. Also note the last statement that prints the square root of 2.
The square root function in the class Math is not implemented for variables of type decimal then if you

want to determine the square root of a decimal as a decimal, you have to write the function:

static decimal Sqgrt(decimal x)
{

decimal y = x;

while (true)

{

decimal v =y + x / y;

decimal z = v / 2;

if (Math.Abs(y - ) <= decimal.Zero) break;
y = z;

}

return y;

In general, the simple types are unchecked. That is, that they are not tested for overflow if a value is too

large. If, for example you performs the following method

In the past four years we have drilled

89,000 km

That's more than twice around the world.

Who are we?

We are the world’s largest oilfield services company’.

Working globally—often in remote and challenging locations—
we invent, design, engineer, and apply technology to help our
customers find and produce oil and gas safely.

Who are we looking for?
Every year, we need thousands of graduates to begin
dynamic careers in the following domains:

‘ ‘ m Geoscience and Petrotechnical

m Commercial and Business

What will you be?

a1 careers.slb.com Schiumberger

148 Click on the ad to read more
Download free eBooks at bookboon.com



http://s.bookboon.com/Schlumberger1

static void Test6 ()

{
int a = 1234567;
int b = 1234567;
Console.WritelLine(a * b);

you get the following result which is obviously not correct (the result can’t be within the range as an

int span):

When it is so, it is because it takes time to test for overflow, and if it should happen for all calculations
in a program, it could reduce the program’s effectiveness. Instead they have left it to the programmer to

deal with situations that can cause overflow. This can be done as follows:

static void Test6 ()

{
checked

{
int a = 1234567;
int b = 1234567;
Console.WriteLine(a * Db);

If you execute the method now, the program will stop with an error message — an exception. It is also
possible to set an option to the compiler that all code should be checked. If this is done, there is also an

unchecked, which can be used to select the blocks of which one does not wish to be checked.

In most cases, the difference between value types and reference types are not particularly important,
but a variable of a value type and therefore especially also a variable of a simple type will always have a
value. This is in contrast to a variable of a reference type, which may be null, and means that the variable
do not have value. Sometimes it is useful also to operate with variables of value types that do not have
a value, and therefore there are some special value types that can be null. The syntax is simple and you

just need to write a ? after the type, that is, for example

long? n;
double? x;

Such types are said to be nullable. It's simply means that the type is extended with a possibility that it

may be null. Consider the following code:

Download free eBooks at bookboon.com



static void Test7()
{

int a = 0;

int? b = null;
Console.WriteLine("a = " + a)
Console.WriteLine("b = " + Db)
b = 3;

Console.WriteLine("b = " + Db)
int?[] t = new 1nt?[5];

for (int i = 0; i < t.Length;
Print (t);
for (int i = 0; i < t.Length;
Print (t);

}

static void Print (int?[] t)

{

foreach (int? n in t) Console
Console.WriteLine () ;

}

static 1nt? Number ()

{
if (rand.Next(2) == 1) return
return null;

First the method declares two variables

’

++i) t[i] = Number();

++i) t[i] = Number () ?? 0;

Write("{0, -=-3}I", n);

rand.Next (1, 10);

: A common int and a nullable int. The first time b is printed it

is null, but the second time it has been given a value. It serves to illustrate that apart from a nullable

variable can be null it is used just like any other variables. int? is a type as all other types, and therefore

one can specially create an array with elements of this type. Similarly the type can be used both as a

return type and as a parameter. The method Number() returns a value that is either an integer or is null,

and the method Print() prints a nullable array. Note also the operator 2?2, which means that the value is

the expression after ?? if the value before is null.

All of the above test methods are found in the example Exam35.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Enum

18 Enum

The value type enum assigns names to constants of one of the types byte, short, int and long. As default
are assigned constants values from 0 onwards, but you can also explicitly assign a constant a value. An

enumeration is declared in the following manner:

public enum Ugedag : byte
{

Monday,

Tuesday,

Wednesday,

Thursday,

Friday,

Saturday,

Sunday,

Error = 10

which declared 8 constants. The type is here byte and the constant Monday has the value 0, Tuesday has

the value 1, etc. The constant Error is initialized explicitly with the value 10.

In the following method, the user must enter a text: Mo, Tu, We, Th, Fr, Sa or Su. This text is then

converted to an enum that is printed on the screen.

American online

is currently enrolling in the
Interactive Online
programs:

enroll by September 30th, 2014 and
save up to 16% on the tuition!

pay in 10 installments / 2 years
Interactive Online education

vvyvVvyyVvyy

visit to
find out morel

Note: LIGS University is not accredited by an
nationallg' recognized accrediting agency listed
by the US Secretary of Education.

ore info here.

—

151 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/LIGS

static void Testl ()
{

Ugedag dag;
Console.Write (" (Mo, Tu, We, Th, Fr, Sa, Su)? ");
string text = Console.ReadLine();

switch (text)
{

case "Mo":

dag = Ugedag.Monday; break;
se "Tu":

dag = Ugedag.Tuesday; break;
case "We":

dag = Ugedag.Wednesday; break;
case "Th":

dag = Ugedag.Thursday; break;
case "Fr":

dag = Ugedag.Friday; break;
case "Sa":

dag = Ugedag.Saturday; break;
case "Su":

dag = Ugedag.Sunday; break;
default:

dag = Ugedag.Error; break;
}

Console.WriteLine (dag) ;

Note the switch statement that switches on a string. It is allowed in C#. Note also that the program writes

Sunday, that is the name of the constant.

An enum as above define 8 values, but that does not mean that a variable of that type takes up 8 bytes.
It takes up only one byte, and it is only a question that there is assigned a name determined by the

variable’s value.

The default type is int, and you can simply write:

public enum Color

{

Diamonds, Hearts, Spades, Clubs

Enum types are effective and it is a better solution than to define a number of constants for a concept,

and enum types can be used to increase readability.

The above examples concerning enums are found in Exam36.

Download free eBooks at bookboon.com



19 Struct

The last value type is a struct that is a structure that resembles a class to the confusion. The main difference

is that a struct is a value type. Below is a struct which represents a point in a coordinate system:

struct Point

{
public double x;
public double y;

public Point (double x, double vy)
{

this.x = x;

this.y = y;
}

public double Length
{

get { return Math.Sgrt(x * x + y * vy); }
}

public override string ToString()
{
return string.Format (" ({0}, {1}H)", x, Vy);

}

The type is called Point, and there are two instance variables of the type double. This means that every time
you create a Point there is allocated 16 bytes on the stack. The type have a constructor, which initializes
the two coordinates, and there is a single property, which returns the distance from the (0,0) to the point.
In addition there is a ToString() method. Actually, there is also an implicit default constructor that sets

both variables to 0 - this constructor can’t be overridden. Below is a method that uses the type Point:

static void Testl ()
{

Point pl;

Point p2 = new Point (4, 5);
pl.x = 2;

pl.y = 3;

Point p3 = pl;

p3.y = 8;

Show (pl) ;

Show (p2) ;

Show (p3) ;

Console.WritelLine (p3.Length);
}

private static void Show (Point p)
{

Console.WriteLine (" ({0}, {1})", p.X, pP.V);
}

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Struct

If you run the program you get:

Explanation

First the method create a Point

Point pl;

That means creating a variable pI on the stack and the default constructor is executed. Note that it is

not a reference, but a variable on the stack takes up 16 bytes. Then the method create another variable

P2, but this time with the new operator:

Point p2 = new Point (4, 5);

and even if p2 is created with new, it is still created on the stack. The new operator is used here to get
the constructor executed and therefore has a different meaning than it has with a class. As the next point

values are assigned to the coordinates of p1. Note that it is possible, since both variables are public. Then

the program create a third variable:

Point p3 = pl;

v---vv-------v---v---vv--vv--vv--vvv--vv--ov--vv--vv--vvv--vv-cv---o--coAlcateluLUcent @
www.alcatel-lucent.com/careers

"5

o

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".

154 Click on the ad to read more

Download free eBooks at bookboon.com



http://s.bookboon.com/AlcatelLucent

This means that the program create another variable on the stack, which is a copy of pI. Note that p3
is a new variable, which has the same value as pI, but this is not a reference to p1. It can be seen by

changing the value of p3, and that this change does not affect p1.

Comment

The syntax for a struct which is as for a class other than that the word class is replaced by the word struct.
A struct can have constructors just as a class, properties and methods, and the only difference here is
that a struct always have a default constructor, which can’t be overwritten. A struct can also implement

an interface, but a struct can’t inherit. Aside from that there is no difference.

The difference between a struct and a class is thus on the application. Typically, a struct is used to
encapsulate a few simple data types to achieve a better performance equivalent to that it is a value type.
Therefore you will often skip properties, making variables public, as is the case in the type Point. When an
object is allocated on the stack, there can be only one reference to it, and the need for data encapsulation

is not the same as for heap-allocated objects.

Copying struct’s

When a struct type is a value type, it means that if you assign a variable to another variable, it is a really

copy

Point pl = new Point(2, 3);
Point p2 = pl;

where p1 is copied to p2. You must be special aware of that if a struct has instance variables of reference
type, since it is only the references there are copied and not the objects which they refer. If you are not

aware of that, it can sometimes produce unexpected results. As an example, consider the class Dice:

class Dice

{
private static Random rand = new Random() ;
private int eyes;

public Dice()

{
Throw () ;

}

public int Eyes
{
get { return eyes; }

}

public void Throw ()

{
eyes = rand.Next(l, 7);
}

Download free eBooks at bookboon.com



There is nothing to note about it, besides it is a reference type. The following type defines a pair of die -

a cup with two Dice objects:

struct Par

{
public Dice dl;
public Dice d2;

public void Throw ()
{
dl.Throw () ;
d2.Throw () ;
}

public override string ToString()

{
return dl.Eyes + " " + d2.Eyes;
}

It is a value type with two instance variables, both types of reference. This means that if you copy a Par,

it’s these references that will be copied:

static void Test2 ()

{
Par pl;
pl.dl = new Dice();
pl.d2 = new Dice();
Console.WriteLine (pl);
Par p2 = pl;
Console.WritelLine (p2);
pl.Throw () ;
Console.WriteLine (pl);
Console.WritelLine (p2);

The first line creates a Par object, and then the variables are initialized to new Dice objects. This is
necessary because the default constructor does not create these objects and can’t be overridden. In the
fourth line another Par object is created, which is set equal to pI1. Note that this means that the object
p1is copied to p2, but what is copied, is the two instance variables, and they thus references to two Dice
objects. The result is that the two Par objects, each has their own reference variables, but they refer to

the same Dice objects. It becomes clear if you throw with one Par (pI):

Download free eBooks at bookboon.com



Nullable struct’s

A struct is a value type, and therefore can't be null, but as shown above, a simple type may be nullable,

and the same applies for a struct. If Point is the same type as above, consider the following:

static void Test3 ()

{
Nullable<Point> p = null;

Console.WriteLine(": " + p);

p = new Point(3.14, 1.41);
Console.WriteLine(": " + p);
Console.WritelLine (p.Value.Length);
Point v = p.Value;

v.x = 11;

v.y = 13;

Console.WriteLine(": " + p);

Here, p is not a Point but a Nullable<Point>, a Point, which may be null. What happens is that the value
type is encapsulated in a reference type. Above, p is initially null. Next, p is set to a new Point object, but
you now have hidden the properties of thetype Point. Instead, we can refer to the encapsulated object

with the property Value. Note especially that when you write

Point v = p.Value;

you get a copy of the encapsulated object.

One should therefore not make nullable variables, unless you have special needs. Note especially that

int? a

only is a short notation for

Nullable<int> a

The above examples concerning. struct’s are found in Exam37.

Download free eBooks at bookboon.com



20 Generic types

Generic types are attached to the so-called collection classes that are dealt with later, but the goal here
is to show how to write custom generic types. Short it can be said that the aim is to write types that are
general and can be used in many contexts. Instead of the generic type one also refers to parameterized

types corresponding to that it is types that depend on one or more parameters.

Generic methods

Before I show how to write a custom generic type, I will look at a related issue, namely what we mean

by a generic method. As an example is shown a method to swap two integers of the type int:

static void Swap(ref int a, ref int D)

= a;

)]
I
+ o

It is a very simple method but a method of great use, for example if you have to sort an array. The method
has a problem that is closely related to the type int in that way that if you also need a method that can
swap two objects of the type double, then it is necessary to write a new Swap() method acting on double
and similarly for all the other types in which there is a need for a Swap() method. It may therefore be

desirable to write a general method that can handle all types. This is where generic methods come into

play:

static void Swap<T>(ref T a, ref T b)
{
T
a
b:

Il
o |

ay
’

’

It’s also called a parameterized method similar to that of the method is associated with a type parameter,
here called T. In addition to that there after the method name is a <T> it is equivalent to that int
everywhere is replaced with type parameter T. For example the method can be used as follows, where

it exchanges two strings:

string sl = "Svend";
string s2 = "Knud";
Swap (ref sl, ref s2);
Console.WriteLine(sl);
Console.WriteLine (s2);

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Generic types

As another example is below shown a generic method that prints an array:

static void Print<T> (T[] arr)

{
foreach (T t in arr) Console.Write(t + " ");
Console.WriteLine () ;

Note that the code is written entirely as T was an existing type — a concrete type. However, it has its
limitations since the only thing you can do with objects of the type T is what you can with an object —
the compiler can’t impossible have knowledge of other properties of the type T. However, there are
possibilities to impose restrictions on the type parameter T, so that the compiler can assume certain

methods or properties.

/

Leadiny
% Maastricht University o Learnin:

Join the best at
P i N - 33" place Financial Times worldwide ranking: MSc
the Maastricht University International Business

+ 1% place: MSc International Business
M + 1% place: MSc Financial Economics
SChOOI Of Bus' ness a nd « 2" place: MSc Management of Learning
. - 2" place: MSc Economics
ECOHOm |CS! - 2" place: MSc Econometrics and Operations Research
- 2" place:MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is
the best specialist
university in the
Netherlands
(Elsevier)

Master’s Open Day: 22 February 2014

www.mastersopenday.nl

159 Click on the ad to read more

Download free eBooks at bookboon.com


http://www.mastersopenday.nl

Exam38
Sorting an array

It should be written as a method which can sort an array of objects of any type.

How to

There are many different sorting methods, and here I will use a method that can be described as follows

 loop over the array and find the smallest element

o swap the smallest element with the element in position 0 — now the first item is correct
 loop over the last n-1 elements and find the smallest among these

o swap that element with the element in position 1 — now the first two elements are correct

+ loop over the last n-2 elements and find the smallest among these

« swap that element with the element in position 2 — now the first three elements are in place
« continue now until the array is sorted - for each pass find the smallest of the elements that

are not already in place and swap it to the right position

The result is that after k passes are the first k elements sorted while you still have to sort the last n-k
elements. It is a very simple sorting method, but it is however not the most effective — at least not for

large arrays.

Writing a method for sorting an array of any type, is a too large requirement, since a sorting of the
elements will always include that the elements can be compared and ranked in order of size. Many of
the built-in types can be, for example the simple types and the type string that can be compared with
the comparison operators, but other types can also be compared, and it usually happens in that they
implement an interface called IComparable. This interface defines only one method called CompareTo(),
which has an object as a parameter. The protocol is that the method must return -1 if the current
object is less than the parameter, 1 if the current object is greater than the parameter and otherwise 0.
The interface is also available in a generic version and the method CompareTo() is thus also a generic
parameterized with the kind of elements to be compared. The sum of all this is that the sorting method

can be written as follows:

static void Sort<T>(T[] arr) where T : IComparable<T>
{
for (int i = 0; i < arr.Length - 1; ++1)
{
int k = 1i;
for (int j = i + 1; j < arr.Length; ++7j)
if (arr([j].CompareTo(arr[k]) < 0) k = 7j;
if (1 != k) Swap(ref arr[i], ref arrlk]);

Download free eBooks at bookboon.com



Explanation

The method is simple and expresses the above algorithm, but there are a few important things to note.
Note first that it is a generic method parameterized with T, and that it has a parameter arr that is an
array of the type T. Next, note you should note the where part that expresses that the parameter type T
must implement the interface IComparable<T> - thus a parameterized version of IComparable. Stated
somewhat differently, the method can only work on arrays of types that implement this interface. If you
try to apply the method to other types, you get a translation error. Note also how the method CompareTo()

is used to compare elements, and note finally how the generic method Swap() is used.

Test

Below is an example of how the method can be used to sort an array with elements of the type int:

static void Testl ()
{
int[] t = { 17, 13, 29, 3, 19, 11, 5, 2, 7, 23 };
Print (t);
Sort (t) ;
Print (t);

static void Print<T> (T[] arr)

{
foreach (T t in arr) Console.Write("{0} ", t.ToString());
Console.WriteLine () ;

Note that also the method Print() is generic.

When things go well, this is due to the type int which implements the interface IComparable<int>.

I will once again return to the type Dice, but this time with an extension so that it implements the

IComparable interface:

class Dice : IComparable<Dice>

{
private static Random rand = new Random() ;
private int eyes;

public Dice()
{

Throw () ;
}

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Generic types

public int Eyes
{
get { return eyes; }

}

public void Throw ()

{
eyes = rand.Next(l, 7);
}

public override string ToString()

{

return "" + eyes;

}

public int CompareTo (Dice d)

{

return eyes < d.eyes ? -1 : eyes > d.eyes ? 1 : 0;

}

This means that the cubes can now be arranged as such a two is less than a three, etc. Note that how
they are ranked, is something that the programmer has specified in the implementation of the method

CompareTo(), and that in principle one could have chosen any other arrangements.

As the next point I would like to create an array of cubes, but for this I will write a generic method that

as a parameter has the size of the array:

> Apply now

REDEFINE YOUR FUTURE
AXA GLOBAL GRADUATE
PROGRAM 2015

o
S
S
17}
=
S
=
S
S
s}
e
o
©

redefining / standards

162 Click on the ad to read more

Download free eBooks at bookboon.com



http://s.bookboon.com/AXA

static T[] Create<T>(int n) where T : new()

{
T[] arr = new T[n];
for (int i = 0; i < arr.Length; ++i) arr[i] = new T();
return arr;

Note first the use of where. It means that the parameter type T must have a default constructor - if it is
not the case, one gets a translation error. The result is that when the array elements are created in the
loop, you can be sure that they are properly initialized. Note that the class Dice satisfies that and has a

default constructor.

Below is a code that creates an array with cubes, and sort it:

static void Test2()
{
Dice[] b = Create<Dice>(10);
Print (b) ;
Sort (b) ;
Print (b) ;

Here you should note that the method Create() is generic and that the parameter does not depend on
the parameter type. If you just write the Create(10), the translator can’t know what Create() you wish
to perform, and one must therefore set the parameter type after the method’s name. In other examples,
it is unnecessary (but legally) because the translator from the actual parameter can see what type it is.

When, for example you write

Print (b) ;

the compiler can from the type of b to see what type the argument have, but it is legal to write

Print<Dice> (b) ;

Comment

In the examples above, I have shown two applications of the use of where to place restrictions on the

type parameter. There are a few other cases:

o where T : struct

o where T: class
where the first means that the type parameter must be a value type, while the other means that the type

should be a reference type. Finally I have in the method Sort() used that the type must implement an

interface, but you can with the same syntax indicate that the type must inherit a class.

Download free eBooks at bookboon.com



Parameterized types

Also types can be generic, and just to show the syntax, I will start with a type that represents a pair of

objects:

class Par<Tl, T2>
{
private T1 argl;
private T2 arg2;

public Par ()
{
}

public Par(T1 tl, T2 t2)
{

argl = tl1;

arg2 = t2;
}

public Tl Argl

{
get { return argl; }
set { argl = value; }

}

public T2 Arg2
{
get { return arg2; }
set { arg2 = value; }

}

public override string ToString()
{

return string.Format (" ({0}, {1})", Argl.ToString(), Arg2.ToString());
}

It is an extremely simple type which is parameterized with the two type parameters. The class defines
properties of the two variables and besides these properties the class have two constructors and a
ToString().

You should primarily note the syntax of a parameterize type, and that there may be one or more type

parameters (this also applies to a parameterized method).

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language

Below is a program that uses the type:

class Program

{

static void Main(string[] args)

{

Par<int, int> pl = new Par<int, int>(2, 3);

Generic types

Par<int, double> p2 = new Par<int, double>();

p2.Argl = 23;
p2.Arg2 = Math.PI;

Par<string, Dice> p3 = new Par<string, Dice>("Red", new Dice());

Console.WriteLine (pl);
Console.WritelLine (p2);
Console.WriteLine (p3);

There is not much to explain and if the method is executed, the result is the following:

The example is called Exam39.

| I J, o 1 -
1
) stfatedic Marketili
| Management,

-inancial BI Business

conomjcs
Organlsatlo

/
Psyelglog

Shipping ‘
g ageetl . N

—

Leadership 55

W
W

| " B

|

|

Iy

NORWEGIAN L erwo
BUSINESS SCHOOL ~ ~ £9Uss

ACEREDITED

>rnatlonalk=gi

Empowering People.
Improving Business.

Bl Norwegian Business School is one of Europe’s
largest business schools welcoming more than 20,000
students. Our programmes provide a stimulating
and multi-cultural learning environment with an
international outlook ultimately providing students
with professional skills to meet the increasing needs
of businesses.

Bl offers four different two-year, full-time Master of
Science (MSc) programmes that are taught entirely in
English and have been designed to provide professional
skills to meet the increasing need of businesses. The
MSc programmes provide a stimulating and multi-
cultural leaming environment to give you the best
platform to launch into your career.

* MSc in Business

* MSc in Financial Economics

* MSc in Strategic Marketing Management

* M5Sc in Leadership and Organisaticnal Psychology

www.bi.edu/master

165

Download free eBooks at bookboon.com

Click on the ad to read more



http://s.bookboon.com/BI

Exam40
The class Set

In this example I will show a type Set that implements the mathematical concept of a set. A set is a
collection of objects which basically allows you to ask whether an object is in the set or not. Finally, the

class should implements the basic set operations such as intersection, union and set difference. Exactly

the type must have the following properties:

It should be a generic type, so that it is a set which can be applied to arbitrary objects.

« that you can get to know how many elements the set contains
« that you can read the element in position n

o that you can add an element to the set

« that you can remove a particular element from the set
« that you can ask whether a certain element is in the set
« that you can form the union of the two sets

« that you can form the intersection of two sets

« that you can form the set difference of two sets

How to

A set is defined as follows:

public interface ISet<T>

{

int Count { get; }

T this[int n] { get; }

void Add (T elem);

void Remove (T elem) ;

bool Contains (T elem) ;

ISet<T> Union (ISet<T> set);
ISet<T> Intersection (ISet<T> set);
ISet<T> Difference (ISet<T> set);

A set can then be defined as a class that implements this interface:

public class Set<T> : ISet<T>

{

private T[] elems = new T[10];
private int count 0;

public int Count
{

get { return count; }

}

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Generic types

public T this[int n]
{
get { return elems[n]; }

}

public void Add(T elem)

{
if (IndexOf (elem) >= 0) return;
if (count == elems.Length) Expand():;
elems [count++] = elem;

}

public void Remove (T elem)
{
int n = IndexOf (elem);
if (n >= 0) elems[n] = elems[--count];

}

public bool Contains (T elem)
{
return IndexOf (elem) >= 0;

}

public ISet<T> Union (ISet<T> set)
{
Set<T> tmp = new Set<T>();
for (int 1 = 0; 1 < set.Count; ++i) tmp.Add(set[i]);
for (int 1 = 0; 1 < count; ++i) if (!set.Contains(elems[i])) tmp.Add(elems[i]);
return tmp;

}

public ISet<T> Intersection (ISet<T> set)

{
Set<T> tmp = new Set<T>();
for (int 1 = 0; 1 < count; ++i) if (set.Contains(elems[i])) tmp.Add(elems[i]);
return tmp;

}

public ISet<T> Difference (ISet<T> set)

{
Set<T> tmp = new Set<T>();
for (int 1 = 0; 1 < count; ++i) if (!set.Contains(elems[i])) tmp.Add(elems[i]);
return tmp;

}

public override string ToString()

{

StringBuilder builder = new StringBuilder();
builder.Append ("{");
for (int 1 = 0; 1 < count; ++i)
{
builder.Append (' '");

builder.Append(elems[i]) ;

}
builder.Append (" }");
return builder.ToString();

}

private int IndexOf (T elem)
{

for (int i = 0; i < count; ++i) if (elems[i].Equals(elem)) return i;
return -1;

167

Download free eBooks at bookboon.com



private void Expand()

{
T[] temp = new T[2 * elems.Length];

for (int i = 0; i < count; ++i) temp[i] = elems[i];
elems = temp;
}
}
Explanation

Note, first, that the interface is generic, and hence that an interface in the same manner as a class can be
defined generic. There is not much to explain about it, apart from that one anywhere use the parameter

type T as if it were a concrete type.

The implementation has only a default constructor, which creates an empty set. In addition, the Add()
method tests that the same item is not added twice, and if the item is already there, nothing happens.
The same applies to Remove(), that if you try to delete an element not found in the set, the operation
is just ignored. One can discuss these choices and you could instead have chosen a solution where the
user is in one way or another (for example as a return value) could be notified if the operation was not
performed correctly. The goal with my implementation is mainly to make the code simple and easy to

read, but it is not very efficient algorithms.

The type is generic, parameterized by the type parameter T, and a set can then contain elements of the
type T. There are no requirements of the type parameter - there is no where part. That is that the type
Set<T> can be used for all types of objects. Note, however, the method IndexOf(), which is a private
method that finds the location of a particular element in the array. It uses the method Equals() to compare
elements. That means that if everything should works as intended, the parameter type T must implement

the method Equals() with value semantic.

Most of the code is directly out of the road, but there is one thing that you should note. The type is
implemented by means of an array, as the container that contains the elements of the set. When a set
is created, is allocated space for 10 elements, which seem rather arbitrary, but this is also what it is and
the question is what should happen if you try to add more than 10 elements to the set. Here a used a
principle where the capacity is doubled if you try to add elements beyond the current capacity. It consists
in create an array of double size, and copy the old array to the new. It is handled by the method Expand(),
which possibly is called from the Add() method. It is a simple implementation which means that a set in

principle has no upper limit on the number of elements — and which is also used by the collection classes.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Generic types

Comment

If you look at the methods for union, intersection and set difference they are not very effective. There
are simply too many loops inside each other. It is perhaps not entirely obvious, but if you examine more
closely what is happening, the problem comes to light. The problem is in fact the method IndexOf(),
which consisting of a loop which passes through all the elements of the set. Consider as an example the

following statement (from the method Union()):

for (int i = 0; 1 < count; ++i) if (!set.Contains(elems[i])) tmp.Add(elems[i]);

It consists of a loop, which runs through the sets elements. In principle it is ok, but for each element
the statement called Contains() which calls IndexOf(), which then performs a second loop, and it gives

a bad performance. It is said that the algorithm has a poor time complexity.

It is possible to do it better if organizing the elements more clever than just adding them to an array, but it
overshoots the target for this book and is not the theme for this example. The goal here is to give an example

of a generic type with some utility, and contains the set not too many elements, it works very well indeed.

Need help with your
dissertation?

Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

Get Help Now

Go to www.helpmyassignment.co.uk for more info E:/Helpmyassignment

169 Click on the ad to read more

Download free eBooks at bookboon.com



http://www.helpmyassignment.co.uk

C# 1 Introduction to programming and the C# language Generic types

Comment

As explained above, the class Set<T> is implemented so that its methods are not quite as effective as
we would wish. That’s exactly why you should program to an interface. If you respect it, and if one in
its program everywhere know and use the type by the defining interface, so you can later implement

the Set class in a different and more efficient manner, without affecting the applications that use a Set.

Test

Below is a method used to test the class:

static void Testl ()
{

ISet<int> A = new Set<int>();
LAdd(2) ;

11);

13);
LAdd(17) ;
.Add (19)
.Add (23)
.Add (29) ;
Set<int> B = new Set<int>();
LAdd (2) ;
.Add (4) ;
.Add (8) ;
LAdd (7)) ;
.Add (16) ;
Console.WriteLine (A);
Console.WriteLine (B) ;
ISet<int> C = A.Union(B);
ISet<int> D = A.Difference (B);
ISet<int> E = A.Intersection(B);
Console.WriteLine (C) ;
Console.WriteLine (D) ;
Console.WriteLine (E) ;
B.Remove (2) ;
B.Remove (4) ;
B.Remove (6) ;
Console.WriteLine (B) ;
for (int 1 0; 1 < 28; ++1i) B.Add(i);
Console.WriteLine (B) ;

WwwwwH

170

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Generic types

Also a struct may be generic. Below is a type that implements a generic point, but in which the coordinates

must be a value type:

public struct Point<T> where T : struct
{

public T x;

public T vy;

public Point(T x, T vy)
{

this.x = x;

this.y vi
}

public override string ToString()

{

return string.Format (" ({0}, {1}H)", x, V);

}

public override bool Equals (object obj)

{
if (! (obj is Point<T>)) return false;
Point<T> p = (Point<T>)obj;
return p.x.Equals(x) && p.y.Equals(y);

Note also that the Equals() method is overloaded, so the type can be applied to elements of a Set.

Below is a simple application of the class:

static void Test2()
{
Point<int> pl = new Point<int> (2, 3);
Point<double> p2 = new Point<double>(1.41, 3.14);
Point<Point<int>> p3 =
new Point<Point<int>>(new Point<int> (1, 4), new Point<int>(2, 5));
Console.WriteLine (pl);
Console.WritelLine (p2);
Console.WritelLine (p3);

Here you must particularly note the point p3, whose coordinates are of type Point<int>, which is legal,

but perhaps hardly makes any sense.

171

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Generic types

As a final example below shows a method that creates a Set of points:

static void Test3()

{
ISet<Point<int>> A = new Set<Point<int>>();
A.Add (new Point<int> (2, 3));
A.Add (new Point<int> (4, 5));
A.Add (new Point<int>(6, 7));
Console.WriteLine (A) ;

Efficiency

I mentioned above, that the class is not very efficient. To examine the effectiveness, I would try the

following method:

(]
B By 2020, wind could provide one-tenth of our planet's

ra I n p O W e r electricity needs. Already today, SKF's innovative know-

how is crucial to running a large proportion of the

world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
stems for on-line condition monitoring and automatic
jcation. We help make it more economical to create

Therefore we'need the best employees who can
eet this challenge!

Tr)_af Power of Knowledge Engineering

'-r:-‘%.i

e
Plug into The Power of Knowle‘ngineering.
Visit us at www.skf.com/knowledge

172 Click on the ad to read more

Download free eBooks at bookboon.com


http://www.skf.com/knowledge

static void Test4 ()
{
int N = 10000;
ISet<int> A = Create(N, 2 * N);
ISet<int> B = Create(N, 2 * N);
Stopwatch sw = new Stopwatch();
sw.Start () ;
ISet<int> C = A.Union(B);
sw.Stop () ;
Console.Writeline (sw.ElapsedMilliseconds) ;
sw.Start () ;
ISet<int> D = A.Intersection (B);
sw.Stop () ;
Console.Writeline (sw.ElapsedMilliseconds) ;

}

static ISet<int> Create(int n, int m)

{
Set<int> S = new Set<int>();
while (n-- > 0) S.Add(rand.Next (m));
return S;

Here is Create() a method that creates a set of n elements of the type int, which lies between 0 and 2n.

The method Test4() uses this method to create two sets each with 10000 elements. Then it use the class

Stopwatch (defined in the namespace System.Diagnostics) to measure how long (in milliseconds) it takes

to form the union, and finally repeats the method on intersection. If the method is executed, the result

could be as follows:

This means that each operation takes between 2 to 3 seconds (on my machine).

Download free eBooks at bookboon.com



21 Exception handling

When writing a program, there may be errors. For example you can write the program code incorrectly,
so the program can’t be translated. This is because the program is written with an incorrect syntax, and
that kind of mistake is rarely unproblematic, as they are caught by the compiler. One speaks therefore
also of a compiler error. These errors must obviously be addressed, which - until you get trained - can
be difficult enough, but when I call them unproblematic, it is because the compiler can find them, and

the program can’t execute before they are corrected.

Another type of errors are logical errors where the program can be translated and run, but when it does
something else than the idea was. It may, for example be a calculation that gives a wrong result or an
incorrect value that is stored in a database. It's the hardest errors because they can’'t be caught by the
compiler, and because the program can actually run for a period before the error is acknowledged, but
also because it may be errors that are difficult to locate. The user of the program detects the symptom, but
it can be hard to find where in the code it is that it goes wrong. The remedy for this kind of errors is test,

test and test again. To test a program is by no means simple, and it requires both time and procedures.

A third kind of error is caused by environmental conditions and are errors you as a programmer can't
really guard against, but conversely also errors that you in one way or another must take care of. As an
example, it may be a user who enters something — for example a number - and you have no control
over what the user enters. As another example, one can imagine a program that will use a file that does
not exist. In those situations, the program will handle the error, which means that it must be able to
find that there is an error and if so, decide what is to happen. Typically it will be such that a method can
capture that there is an error, but the method can’t know how the error is handled, but it must instead
let the place from where it was called, know that there has been an error and leave the error handling to
the calling code. One way to solve the problem is to let the method that can detect the error return an
error code and the calling code can then test the error code and take an appropriate action determined
by the error code. This strategy is really good, but it can only be used in situations where the method

would not else have a return value.

Another strategy is to use exception handling. The idea is pretty simple. A method can, in the case of a
fault throw an exception, and if it does so, the method is immediately interrupted. The place from where
the method was called can then choose to catch the exception and take an appropriate action. Consider

as an example (labeled Exam41) the following method that calculates the ratio of two integers:

static int Div(int a, int b)

{
if (b == 0) throw new ApplicationException("Division med 0...");
return a / b;

Download free eBooks at bookboon.com



One can, as we know not divide by 0. If b is 0, the method can’t perform the calculation, but it may also
not know what to do. It can’t just return something, because it could by the calling code be interpreted
as a result that it was illegal. The method may test the value of b, and if it is 0 it raise an exception. This
means that the method stops with an exception that is sent to the calling code. Below is a code that

uses the above:

static void Testl ()
{
try
{
Console.WriteLine (Div (23, 5));
Console.WriteLine (Div (23, 0));
}
catch (ApplicationException ex)
{
Console.WritelLine (ex.Message) ;
Console.WriteLine ("The method is completed with an error...");

The code that may raise an exception - here the method Div() - is placed in a try block. If Div() raises
an exception, the control is transferred to the subsequent catch handler that then performs en error

handling, which here is merely to print a message on the screen.

An exception is a type, which is a class. Above is the type ApplicationException, but there are other
options. For an exception can be caught in the calling code, there must be consistency between the type

of the exception that is raised - the type after the throw — and type after catch.

The calling code does not need to catch an exception. Is it the case and an exception are not treated at

any level, the program will be terminated with a default exception handling:

static void Test2 ()

{
Console.WriteLine (Div (23, 5));
Console.WriteLine (Div (23, 0));

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Exception handling

As mentioned, there are multiple exception types, actually many and most of them are classes in the
NET Framework that may raise a variety of exceptions. The fundamental base class is called Exception,
and belongs to the System namespace. ApplicationException is a derived class, and although a custom
code may as well raise an Exception (and often do), it is the thought that the type of an exception raised

by a custom method must either be an ApplicationException or a type derived there from.

As an example of how the exception handling works in C#, I will use the generic class, defined above.
The class has a method Add(), and a method Remove(), both of which is inappropriate. The problem is
that for both methods it is possible that they can’t perform the requested operation (an element can’t be
added to the set, if it is already there, and an element can’t be removed if it is not in the set), and if it is
the case nothing happens. It is an unfortunate solution, since the user does not receive a notification if the
operation is not performed. The main problem is that the two methods may test whether the operation
can be performed, but they can’t know what to do, if the operation could not be done. The solution is

to let the methods raise an exception if the operation can’'t be performed.

I will start with the following exception type:

public class SetException : ApplicationException
{
public SetException(string message)
base (message)

}

176 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/volvo

Here you should note that the type inherits ApplicationException and the only thing that happens is that
there is a constructor that sends a text on to the base class’s constructor. It is a very simple type, which in
reality does not extend ApplicationException and the only purpose is to get a type that is specific for the
current problem. I will define two additional types of exceptions, both types that inherit SetException:

public class AddException : SetException
{
public AddException ()
base ("The element already exists in the set and can not be added")
{
}
}

public class RemoveException : SetException
{

public RemoveException ()
base ("The element 1s not found in the set and can not be removed")

{
}

From the names and the text it is clear what they should be used for and the important thing is that

there is the following class hierarchy are available:

Exception

i

ApplicationException

i

SetException

Ay
| |

AddException RemoveException

I will now extend the code in the class Set, so it possibly raises an exception, but I have only shown the
methods that have been changed:

public class Set<T> : ISet<T>

{
private T[] elems = new T[10];
private int count = 0;

public void Add(T elem)

{
if (IndexOf(elem) >= 0) throw new AddException();
if (count == elems.Length) Expand():;
elems [count++] = elem;

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Exception handling

public void Remove (T elem)

{

int n = IndexOf (elem);
if (n < 0) throw new RemoveException();
elems[n] = elems[--count];

The methods Add() and Remove() now raise an exception if the operation can’t be performed. Note that

the exceptions there are raised, is of a different type.

Below is a method that uses the class Set and catch any exceptions:

static void Test3()
{
ISet<int> A = new Set<int>();
try
{
for (int i = 0; i < 20; ++i)
{
try
{
int t = rand.Next (30);
A.Add(t);
t = rand.Next (30);
A.Remove (t) ;
}
catch (AddException ex)
{
Console.WritelLine (ex.Message) ;
}
catch (RemoveException ex)
{
Console.WritelLine (ex.Message) ;
}
catch (SetException ex)
{
Console.WritelLine (ex.Message) ;
}
finally
{

Console.WriteLine (A);

}
Print (A, A.Count);

}
catch

{

Console.WriteLine ("There was an error");

178

Download free eBooks at bookboon.com



Here are some things to be explained. First, notice that there are two try blocks: An outer outside the for
loop, and an inner encapsulating the body of the for loop. So please note that you can have try blocks

inside each other. In the loop, two things happens:

1. adding a random number (between 0 and 29) the set A

2. a random number is removed from the set

In both cases there may be an exception. Therefore, the code is placed in a try block. After the try block,
there are three catch handlers, which are intended to illustrate that there may be several catch handlers
for a try block. If the block raises an exception, the program control is transferred to the catch handler
that matches the type of the exception raised. It is, therefore, that exceptions may have a different type,

so that multiple catch handlers can control what happens in different situations.

Also note that the innermost try block has an associated finally handler. This will - if it is there what is

not necessary — be performed regardless of whether there is an exception or not.

Finally, there is the outer try block. This is an example of an anonymous catch handler, and thus a catch

handler that is executed when there is an exception and regardless of type - it catch anything.

SystemException

When an application raises an exception, it should always be of type ApplicationException or a type that
is directly or indirectly derived from ApplicationException. The class is, as mentioned derived from the
class Exception and there is nothing that prevents that one can raise an exception of the type Exception.
When you should not do it, it is because there is another exception class called SystemException that are
also derived from Exception. Exceptions of this type are intended for exceptions raised by the runtime
system or the basic classes from the framework, and they indicate fundamental and serious problems
where the typical handling is to terminate the program with an error message. The following hierarchy
separates the exceptions into two categories, one category indicate failure, which typically results in that
the program exits with an error message while the second category indicates the error caused by the

program’s environment or use, and thus an error that should be handled by the program.

Exception

I

SystemException ApplicationException

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Exception handling

As an example is below shown a method which results in an error, because it are indexing outside an array:

static void Test4 ()

{
int(] t = { 2, 3, 5, 7, 11, 13, 17, 19 };

try
{
int s = 0;
for (int i = 0; i < 10; ++i) s += t[i];

Console.WritelLine (s);

}

catch (Exception ex)

{
Console.WritelLine (ex.GetType () .Name) ;
Console.Writeline (ex.GetType () .BaseType.Name) ;
Console.WritelLine (ex.GetType () .BaseType.BaseType.Name) ;

The result is as follows:

EXPERIENCE THE POW

FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
RUN EASIER...

180 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/Gaiteye

C# 1 Introduction to programming and the C# language Comments

22 Comments

Consider as an example the following class, which you have also seen in Exam34:

using System;
using System.Text;

/%
This namespace contains several classes with miscellaneous methods.
One can perceive the namespace as a custom class library.
*/
namespace Examé?2
{
/// <summary>
/// Class with static methods for text operations.
/// </summary>
public static class String
{
/// <summary>
/// Method, which cuts off a string to a maximum width.
/// If the width does not exceed the desired width,
/// the method simply returns the string unchanged.
/// </summary>
/// <param name="text">The string that must be cut</param>
/// <param name="length">The maximum width of the return string</param>
/// <returns>A string whose width is less than or equal to the length</returns>
public static string Cut(string text, int length)
{
if (text.Length > length) return text.Substring(0, length);
return text;

}

/// <summary>
/// Method to adjust a text string within a given field with the width length.
/// If the length of the text is larger than length, the method simply
/// returns the text.
/// Otherwise the method returns a string of length length, where text
/// 1is left-aligned, and where the field is filled with the character fill.
/// </summary>
/// <param name="text">The text to be adjusted</param>
/// <param name="length">Field width</param>
/// <param name="fill">Fill character</param>
/// <returns>Justifyed text</returns>
public static string FillRight(string text, int length, char fill)
{

if (text.Length >= length) return text;

StringBuilder builder = new StringBuilder (text, length);

while (builder.Length < length) builder.Append(fill) ;

return builder.ToString();

}

/// <summary>

/// Method to adjust a text string within a given field with the width length.
/// If the length of the text is larger than length, the method simply

/// returns the text.

/// Otherwise the method returns a string of length length, where text

/// 1is right-aligned, and where the field is filled with the character fill.
/// </summary>

181

Download free eBooks at bookboon.com



/// <param name="text">The text to be adjusted</param>

/// <param name="length">Field width</param>

/// <param name="fill">Fill character</param>

/// <returns>Justifyed text</returns>

public static string FilllLeft(string text, int length, char fill)

{

}

if (text.Length >= length) return text;
// here are created a StringBuilder with the required capacity to the fill

// characters you could instead have used the method Insert(), but it has a
// worse complexity than Add()
length —-= text.Length;

StringBuilder builder = new StringBuilder (length);
while (builder.Length < length) builder.Append(fill) ;
return builder.ToString() + text;

/// <summary>

/// Method to adjust a text string within a given field with the width length.
/// If the length of the text is larger than length, the method simply
/// returns the text.

/// Otherwise the method returns a string of length length, where text

/// 1s center-aligned, and where the field is filled with the character fill.
/// </summary>

/// <param name="text">The text to be adjusted</param>

/// <param name="length">Field width</param>

/// <param name="fill">Fill character</param>

/// <returns>Justifyed text</returns>

public static string FillCenter(string text, int length, char fill)

{

1.

if (text.Length >= length) return text;
return
FillRight (FillLeft (text, (text.Length + length) / 2, fill), length, fill);

I have this time inserted comments in the code. Comments have no effect on the translated program, but
will only have affect for us humans to read and understand the code. Much can be said about comments,

so some words about it.

It is important with comments in the code, and more than that - it should actually be a permanent part

of the programming task quite on pair with writing the code itself, and there are at least two reasons:

All program code must be maintained over time, and often by other than the one who wrote
the code. Therefore it is extremely important that the code has comments that tell about
important decisions, and why the code is written as it is. Comments are important not only
for others but also because you do not remember your own code even if it is just a few
months old.

The actual process of commenting the code is important because during this process, you
think through the code and wonder why the code is written as it is. It is an extremely

efficient method to find errors and discrepancies in the code — and get them corrected.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Comments

If you see my examples, you will in most cases not see any comments. This is partly because they are
small examples and not actual applications that must solve practical everyday problems, and secondly,
that the code is precisely explained in this book. It is true to say that a part of the books content could

instead be comments in the examples.

In C# you have three kinds of comments. Above I have written a comment before the namespace:

/*
This namespace contains several classes with miscellaneous methods.
One can perceive the namespace as a custom class library.

*/

It’s a little older kind of comment that has been inherited from the C programming language, but the
characters /* start a comment and it will continue until you meet the characters */ and between these
two markers can be all the text that you may have like on a single line or spread over several lines. This
kind of comment is not used as often anymore, but there’s nothing wrong with it, and if you need at

the beginning of a source file to write a lengthy documentation, it is an excellent form of commentary.

The most common type of comment in C# is used in front of each method. This is partly due that Visual
Studio auto generate a skeleton, which you must complete. If, for example you place the cursor in front
of the method FillCenter() and press the / three times, Visual Studio generates the following skeleton

to a comment:

This e-book Y o N
ismadewith SETASIGN

SetaPDF h Y 4

\7\‘ PDF components for PHP developers

www.setasign.com

183 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/Setasign

/// <summary>

/77

/// </summary>

/// <param name="text"></param>
/// <param name="length"></param>
/// <param name="fill"></param>
/// <returns></returns>

Here, the programmer has to comment the following:

o A description of the method and what it does and including generally what the user of the
method needs to know.

« An explanation of the method’s parameters, including which rules (pre-conditions) that the
parameters must satisfy.

+ An explanation of the method’s return value.
The advantage of using this kind of documentation — not just to methods, but for all program elements - is

o that the documentation has a standard form and that you remember to document all
important elements as parameters and return value

« that the documentation is used by IntelliSense in Visual Studio

o that the documentation is in XML form, and therefore can use of a tool to form a complete

documentation for an entire program, for example as HTML

The last type of comment is simpler and consists of everything after // and to the end of the line is a
comment (see the method FillLeft() above). This comment is typically used to document the individual

statements in for example a method, or the description of a variable or its equivalent.

It is easy to write comments, but quite another thing is what you should write, and there are many
attitudes, and the following must then be mine. Generally, you should write what you believe that others
and including even you self needs to know to read and understand the code and thus could maintain it.
You should not write what is clear. You must assume that who must read the code knows the language,
and you should not document the language itself, but the explanations for the choices made - you
must explain how the algorithms are used and how they work. Are there solutions that are difficult to
comprehend, then you should add explanatory comments. It is also wise to always document the variables
and what they used for - at least instance variables. It can also be a good idea to add a comment, telling

about modification of the code, when changes are made, to whom and why, and of course what’s changed.

Download free eBooks at bookboon.com



You should special be consistent about the auto-generated comments and include them - at least for
all public program elements. It is especially important for class libraries, which often must be used by
anyone other than the programmer who wrote the classes. It can be hard to write that kind of evidence
simply because it can be hard to find something to write (many methods and properties are obvious and
self explanatory) and you often think that you do not have anything to write. Yet it is a place where you
should be consistent and include these comments. One should be aware that this kind of comments is

intended for those who must use the code, and not to those who need to maintain the code.

The program’s code readability is extremely important, and you can even go so far that the code that is
not easy to read is worthless. However, you can do many things to make the code readable than writing

comments and including the following few guidelines:

« ablock starts on a new line containing only the character {

 from the next line makes an indentation of two characters

o when a block ends repealed the indentation, and you move two characters to the left
« ablock always end on a new line containing only the character }

 add always a space on either side of an operator

+ avariable name always starts with a lowercase letter

« aname of a method, property, and a user-defined type always starts with a capital letter

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.

Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

OSRAM
Light is OSRAM SYLVANIA

0

Download free eBooks at bookboon.com


http://s.bookboon.com/osram

« be consistent in capitalization
 use good and explanatory names, but not for long names - they are hard to read

o use blank lines where you think it increases the readability

And so be consistent and have a style. Guidelines are good, but there will always be places where you
may depart from them, but if you do it consistently, it is excellent. The above guidelines are to make the

code self-documenting, and one can say that the comments should be used if the code can't explain itself.

One can hardly say enough about the importance of writing readable program code, but in terms of
comments, you can also go too far. Generally I feel that a comment inside a method makes the code
harder to read. It can be difficult to see what is program code and what’s comments - the comments
shadows the code. Comments inside the code I include only where I think they are absolutely necessary -
and it is certainly often the case. The conclusion is that documentation is important, but exaggeration

may have the opposite effect.

Download free eBooks at bookboon.com



23 Extension methods

If you want to extend a class with new methods, the approach is to write a derived class that adds the
new methods. It is still the “right” strategy, but it is not always possible, for example if the class is sealed —

it is a class that you can’t inherit. One can however achieve the same thing with an extension method.

Consider the following class that defines three static methods to integers:

public static class Integer

{
public static long DiffSum(this int n)

{

return (n + 1L) * n / 2;

}

public static int Add(this int n, params int[] t)
{

int s = n;
for (int 1 = 0; 1 < t.Length; ++i) s += t[i];
return s;

}

public static bool IsPrim(this int n)
{

if (n == 2 || n == 3 || n == [l n == ) return true;

if (n < 11 || n % 2 == 0) return false;

for (int k = 3, m = (int)Math.Sqgrt(n) + 1; k <= m; k += 2)
if (n % == 0) return false;

return true;

The first determines the sum of the numbers 1 + 2 + 3 + 4 + ... + N. This can be done with a loop, but
you can also use a formula as has been done above. The second method returns the sum of a series of
integers, while the latter method tests whether an integer is a prime. Since all the methods are static,

they may be carried out as follows:

Console.WritelLine (Integer.Add (2, 3, 5, 7, 11, 13, 17, 19));
Console.WritelLine (Integer.DiffSum(100)) ;
Console.WritelLine (Integer.IsPrim(97));

which is not strange. You should however note that the class is static, and that the first parameter to
each of the three methods is of the type int, and the declarations of these parameters are prefixed with
the word this. It is the two factors that make that make the methods to extension methods. This means

that methods can be performed as if they were instance methods defined for type int:

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Extension methods

int a = 2;

Console.WriteLine(a.Add (3, 5, 7, 11, 13, 17, 19));
int b = 100;

Console.WriteLine (b.DiffSum()) ;

int ¢ = 97;

Console.WritelLine(c.IsPrim());

and not only that - the methods are known to Intellisense in Visual Studio.

Apparently the type int is extended with new methods, but it is obviously not the case. An extension method
is a usual static method, and it should be written in the same way as other static methods and can't refer
for instance members of the class to which it is an extension. There are only talking about that with the
word this in front of the first parameter it allows to use a method with same syntax as if it were an instance
method. If you compare the above applications of the methods in the class Integer, it is clear that it is only

a question of how to specify the first parameter — as a normal value or by using dot notation.

Extension methods have their uses, and is as such used by Microsoft a great in relation to LINQ.

In the previous section I showed a class String. It was a static class with static methods, where the first
parameter in all methods has the type string (that is the type System.String). It is therefore extremely

simple to modify these methods to extension methods for the String class - it’s just adding the word this

in front of the first parameter to all methods:

360°
thinking

Deloitte

Discover the truth at WWW.dClOittC,CalcareerS © Deloitte & Touche LLP and affiliated entities.

188 Click on the ad to read more

Download free eBooks at bookboon.com


http://www.deloitte.ca/careers

C# 1 Introduction to programming and the C# language Extension methods

public static class Str
{
public static string Cut(this string text, int length)
{
if (text.Length > length) return text.Substring(0, length);
return text;

}

public static string FillRight(this string text, int length, char fill)
{

if (text.Length >= length) return text;

StringBuilder builder = new StringBuilder (text, length);

while (builder.Length < length) builder.Append (fill) ;

return builder.ToString();

}

public static string FillLeft (this string text, int length, char f{ill)
{

if (text.Length >= length) return text;

length -= text.Length;

StringBuilder builder = new StringBuilder (length);

while (builder.Length < length) builder.Append(fill) ;

return builder.ToString () + text;
}

public static string FillCenter(this string text, int length, char fill)

{
if (text.Length >= length) return text;

return
FillRight (FillLeft (text, (text.Length + length) / 2, fill), length, fill);

189

Download free eBooks at bookboon.com



Part 3 Collection classes

All modern languages, including C# has a selection of collection classes. A collection class can be thought
of as a container that can contain objects. The individual collection classes differ in how they organize
objects, and what you can do with them, ie which access there is to the content of the container. The

following describes the most important collection classes that are contained within the NET framework.

NET is born with commonly used collection classes fully implemented and ready to use. They are all

implemented as generic classes, and I will in this part of the book mention the following:

o List<T>

o Stack<T>

o Queue<T>

o LinkedList<T>

e Dictionary<K, V>

o SortedDictionary<K, V>

I will only focus on how the classes can be used, and for a full documentation of the classes and their

methods, I will refer to the documentation on MSDN.

Before addressing it, I will briefly recall an array, which also is a container. Consider as an example the

following program:

using System;

namespace Examé4
{
class Program
{
static void Main(string[] args)
{
intf(] t = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };

string[] s = new stringl[6];
s[0] = "Svend";

s[1l] = "Valborg";

s[2] = "Knud";

s[3] = "Abelone";

s[4] = "Valdemar";

s[5] = "Gudrun";

Array.Reverse (t);

Array.Sort (s);

foreach (int n in t) Console.Write("{0} ", n);
Console.WriteLine () ;

foreach (string v in s) Console.Write("{O0} ", wv);
Console.WriteLine () ;

Download free eBooks at bookboon.com



If you run the program you get the following result:

There is not much mystery in it, and you should especially note the class Array, which make a number

of static methods available to manipulate arrays.

In most cases, an array could be an alternative to a collection class, and the most collection classes are actually
an encapsulation of an array. There is no problem in using arrays instead of collection classes, but conversely
gives collection classes are great advantages. For example has an array a fixed size and it is up to the programmer
to keep track of where each element is and whether there is room for it. Is there not room, it is necessary to
create a larger array and copy the content of the old array to the new one. It is all that logic that is encapsulated
in a collection class, and thus something that happens automatically behind the programmer’s back. Besides

that, the collection classes make different services available that fits typical applications.

As mentioned above, the collection classes are generic and thus have a strong type. That is, the objects
as a concrete collection may contain, must be of a certain type. However, there is also a selection of

non-generic collection classes:

o ArrayList
o Stack

¢ Queue

o SortedList
o Hashtable

which are collections where objects have the type object. These classes are derived from the first versions
of the .NET framework, which had not generic types available. The classes are still available and can
be used, but it can be recommended to use the newer generic versions, since the result is a more stable

code, because the compiler can test the type of the objects.

Download free eBooks at bookboon.com



24 List<T>

This type can best be interpreted as a dynamic array that is a type which in many ways can be used as
an array, but may grow dynamically as needed. This is in contrast to an ordinary array, where you have
to specify how many elements there must be room for when the array is created. One must not draw
the comparison too far, and another interpretation is to think of the type as a sequence of elements,
where you can always add elements to the end of the list. A List is a structure that at a given time has
a capacity, and then you can add elements to the end of the list. The picture could be as shown below,

where the capacity is 15, while there are 8 places that are used:

2 13|57 |11]13[17]19

You can add elements where the arrow is pointing, and if at some point you exceed the capacity, it will

automatically be extended. This is done by doubling the capacity.

Besides that you can add elements to the end of a List, the class offers a number of other methods, for
example that one can delete an item, inserting an item in a certain place, etc. Internally, a List is an
array, and it also means that you should be aware of the complexity of different methods. A List can
not have empty places, and that means that if, for example you delete an item, all elements to the right
of the deleted element must be moved one place to the left. Similarly, if you insert an element all the
elements to the right of the location where the element is inserted, must be moved one place to the right
to make room for the new element. In contrast the Add() that adds one element to the end of the list,
is particularly effective since it can immediately place the element where the arrow is pointing — except

in the situation where it is necessary to double the capacity.

Exam45
A List of strings

As an example the below program shows a method that creates a list of strings:

static void Main(string[] args)

{
List<string> navne = new List<string>();
Console.WritelLine (navne.Capacity);
navne.Add ("Svend") ;
Console.WriteLine (navne.Capacity);
navne.Add ("Knud") ;
navne.Add ("Valdemar") ;
Console.WritelLine (navne.Capacity);
Console.WriteLine (navne.Count) ;

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language List<T>

navne.Insert (0, "Olga");

navne.Insert (0, "Gudrun");

Console.Writeline (navne.Capacity);

Console.WriteLine (navne.Count) ;

navne.Remove ("Knud") ;

navne.RemoveAt (1) ;

Console.Writeline (navne.Capacity);

Console.WriteLine (navne.Count) ;

for (int i = 0; i < navne.Count; ++1i) Console.WriteLine(navnel[i]);

SIMPLY CLEVER SKODA

We will turn your CV into
an opportunity of a lifetime

et

{il

| ﬁi; i - A
i !b ili - | ; - =1 .' = % |z -
W NP en, &

= == =

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

193 Click on the ad to read more

Download free eBooks at bookboon.com


http://www.employerforlife.com

Explanation

First the program print the capacity of the list that at the start is 0. However, it is possible to create a list,
using as a parameter to the constructor that sets the starting capacity. After the addition of an element,
the program prints the capacity again. It is now 4, which means that the first time you add an item to
the list it allocates space for 4 elements. After added two more elements and prints the capacity again
and the number of elements, they are respectively 4 and 3, which is not surprising. As a next step the
program insert two elements at the beginning of the list (in position 0) with the method Insert(). The
capacity is then 8 (is doubled), and the number of elements is 5. Then the program deletes two elements,
and the capacity is still 8. It should be noted that a list not automatically shrinks. The last for loop print

all elements in the list, and the important thing here is to note that one can use the index operator.

Comment

Of the collection classes that are mentioned above, is a List the most commonly used and it is applied

basically when you do not have the ability to estimate the size of an array.

Exam68
Enter sale of products

The aim of this example is to show a further application of a List.

The task is to write a program where the user can enter information about a product sale. The user must
enter some information (records) consisting of a monthly number, and an amount and it is repeated

until there is no more information. As an example the user could enter:

Month Amount
800
1000
120
200
700
1500

vmiwliuvm|iw]|o | uvn

This means that the numbers can come in any order for months, and there may be several amounts for

the same month.

After entering, the program must print a listing that for each month shows a line for each product sale

and the total sale — that is the sum of all item amounts for the current month.

Download free eBooks at bookboon.com



How to

Basically, the task can be broken down into two sub-problems:

« Entering of sales items

o Print the result

A record consists of a monthly number and an amount, and I will therefore start with a type that can

represent a single record:

struct Sale : IComparable<Sale>

{
public int month;
public double value;

public int CompareTo (Sale sale)

{

return month.CompareTo (sale.month) ;

As records come in any order, they must be stored somewhere, before the result can be counted together,
and here I will use a List. Every time you enter a new record, I'll add it to the List. The list may be defined

as follows:

static List<Sale> sales = new List<Sale>();

The first sub-problem can be described as:

repeat
{

enter mounth number

if month == 0 then terminate
enter amount

add a Sale object to the list

The entering routine can now be written in C# as:

static void AddSales ()
{
while (true)
{
Sale sale;
sale.month = Enter.EnterInt ("Enter 1, 2, ..., 12 for month or 0 for stop");
if (sale.month == 0) break;
if (sale.month >= 1 && sale.month <= 12)
{
sale.value = Enter.EnterDouble ("Enter item amount");
sales.Add (sale) ;
}

else Console.WriteLine ("Ulovlig verdi for méned...");

Download free eBooks at bookboon.com



Then there is the other sub-problem. The numbers should be printed in order of the months, so I will
start by sorting the content of the List for months, so I know when the list is traversed that one comes
to numbers in the right order. Then the task is in principle simple and mainly consists in summarizing

month totals and print product amounts. The hardest part is to print the totals at the right time:

let sum = 0

as _long as there are more records in the list repeat
{

if the record is from the same month then
{

add the amount to sum

}

or

{
print the total for the month
start with a new month

}

print the product amount

The algorithm can be written in C# as follows:

static void Print ()
{
int month = 0;
double sum = 0;
foreach (Sale sale in sales)

{

if (sale.month == month)
sum += sale.value;
else

{
if (month > 0) Console.WriteLine ("Month {0, 2}{1, 12:F2}"
sum = sale.value;
month = sale.month;

, month, sum);

}
Console.WriteLine ("{0, 20:F2}", sale.value);
}
Console.WriteLine ("Month {0, 2}{1, 12:F2}", month, sum);

Then there is the Main() method, and here is the only one outstanding to sort the list, but the List class
has a method for that purpose, that does it all, as long as the list’s objects implements the IComparable
interface, but that is precisely the case for the type of Sale:

static void Main(string[] args)
{

AddSales () ;

sales.Sort () ;

Print () ;

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language List<T>

Explanation

Regarding the type of Sale there is not much to explain beyond, once again noting that it implements the
IComparable interface so that Sale objects can be compared and thus sorted. The type is a struct instead
of a class, and there is no specific justification for that only once again to remind you of a struct, and to
show that a struct can implement an interface. Although that in this connection there is no particular
advantage of using a struct, then Sale indeed is a good candidate for a struct as the type consisting solely

of two simple variables.

Ijoined MITAS because e e

I wanted real responsibility www.discovermitas.com

I'was a construction
SUPErvisor in

the North Sea
advising and

e Lelping foremen
% solve problems

MAERSK

197 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/mitas

The list itself is defined as a static variable in the class and you should primarily observe how the list is

defined to contain Sale items. Also note how it is sorted in Main().

The most important in the method AddSales() is how to create Sale objects (as Sale is a struct, it is not
necessary to create an object with new) and adds them to the list. Most of the method has to do with
the input, using two input methods, which are not shown above. You can find them in the final code.

The method Print() has two local variables:

o month to keep track of the number of the current month

o sum to summing the total for a particular month
Otherwise, the method consists of a loop over the list’s elements, and here it is important to keep track

of whether there is a change of month. If applicable, the total is printed, and the two auxiliary variables

must be initialized for a new month.

Download free eBooks at bookboon.com



25 Stack<T> and Queue<T>

A stack is a collection which has two basic operations

« one can put an item on the stack, an operation that is called push

« one can remove the element that was last placed on the stack, an operation that is called pop

For variables, I have several times mentioned the program stack. This is an example of a data structure that
is a stack. You also sometimes call the data structure a LIFO (Last In First Out) structure, corresponding
to that there only is access to the element that last are put on the stack. One think typical of the structure
as a container where you can place an element at the top, where the arrow is pointing and where you
can only remove the item that the arrow is pointing at — it stacks elements on top of each other and

hence the name.

A concrete implementation of the type and that includes the type Stack<T> in C#, will usually also define
other methods. For example a method to refer to the element at the top of the stack without removing

it, and a method in order to test whether the stack is empty.

Download free eBooks at bookboon.com



Exam46
Stack of integers

As an example is shown a program that creates a stack of integers and places 8 numbers on the stack.

Then the program empties the stack, and the numbers are printed on the screen:

static void Main ()
{
Stack<int> s = new Stack<int>();
.Push (2);
.Push (3);
.Push (5) ;
.Push (7);
.Push (11);
.Push (13);
.Push (17);
.Push (19);
while (s.Count > 0) Console.WriteLine(s.Pop()):

n 0 n n O n n n

One should note that the numbers are printed in reverse order of how they are put on the stack - the

number that was last placed on the stack is printed first.

.

UROPEAN
# BUS INESS
SCHOOL

FINANCIAL TIMES

-

7 g R #gobeyond
u( -_ |

;
I

i
|

r j;b

MASTER IN MANAGEMENT ~

~ - Beeause achieving your dreams is your greatest challenge. IE Business School's Master in Management taught in English,
Spanish or bilingually, trains young high performance professionals at the beginning of their career through an innovative
and stimulating program that will help them reach their full potential.

Choose your area of specialization.
Customize your master through the different options offered.
Global Immersion Weeks in locations such as London, Silicon Valley or Shanghai.

Because you change, we change with you.

Download free eBooks at bookboon.com


http://s.bookboon.com/IE

Exam69
StackSort

There are many uses of a stack, and in the booK’s last part I will show a typical application. In this

example, I show how a stack may be used to sort an array.

How to

Given two stacks — hereinafter referred to as the left and the right stack — one can sort the array in the

following manner:

for each element t in the array repeat

{ as _long as t is less than the top of the left stack repeat
{ pop the left stack and push the element on the right stack
;s long as t is greater than the top of the right stack repeat
{ pop the right stack and push the element on the left stack
;ush t on the left stack

}
as_long as the left stack is not empty repeat

{
pop the left stack and push the element on the right stack

}
loop over the array from start to end

{

pop the right stack and insert the element in the array

}

It’s not so easy to understand that the algorithm actually is a sort, and the easiest is to do a desktop test

with a simple example. For this given an array with 8 elements:

117131952173

Below are illustrated what happens with the two stacks when the array is traversed from left to right:

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Stack<T> and Queue<T>

19
13 13
11 11
11 7 11 7 7
venstre hajre venstre hajre venstre hgjre venstre hgjre
1. gennemlgb 2. gennemlgb 3. gennemlgb 4. gennemlgb
17 5
5 13 7
7 7 11 11
11 11 7 13
13 13 5 3 17
5 19 2 19 2 19 2 19
venstre hgjre venstre hgjre venstre hgjre venstre hgjre
5. gennemlgb 6. gennemlgb 7. gennemlgb 8. gennemlgb

If we empty the left stackt over on the right stack, it contains all the elements sorted in ascending order.

Below is shown how the algorithm can be implementet as a generic method in C#:

class Program

{

static void Main(string[] args)

STUDY AT A TOP RANKED
INTERNATIONAL BUSINESS SCHOOL

no.l

n_ine years
In a row
Reach your full potential at the Stockholm School of Economics,

in one of the most innovative cities in the world. The School

$ is ranked by the Financial Times as the number one business
S school in the Nordic and Baltic countries.
Stockholm

{ ]
Visit us at www.hhs.se

Click on the ad to read more
Download free eBooks at bookboon.com


http://s.bookboon.com/hhs2016

int(] v = { 23, 17, 7, 19, 29, 2, 11, 5, 3, 13 };
Print (v);
Sort (v) ;
Print (v);

}

static void Sort<T> (T[] arr) where T : IComparable<T>
{

Stack<T> sl = new Stack<T>();

Stack<T> s2 = new Stack<T>();

foreach (T t in arr)

{
while (sl.Count > 0 && sl.Peek().CompareTo(t) > 0) s2.Push(sl.Pop());
while (s2.Count > 0 && s2.Peek().CompareTo(t) < 0) sl.Push(s2.Pop());
sl.Push(t);

}
while (sl.Count > 0) s2.Push(sl.Pop());
for (int 1 = 0; 1 < arr.Length; ++i) arr[i] = s2.Pop();

}

static void Print<T>(T[] arr)
{

Console.Write (arr[0]);
for (int 1 = 1; 1 < arr.Length; ++i) Console.Write(" " + arr[i]);
Console.WriteLine () ;

Explanation

The algorithm is implemented by method Sort(). You should note that it is a generic method and that
the parameter type is IComparable. It is necessary that the elements can be compared. Note also that
the class Stack has a Count property that indicates the number of elements on the stack. All collection
classes have this property. In this example the Count property is used to investigate whether the stack
is empty. A stack has also a method which is called Peek(). It is used to refer to the element, which is

located at the top of the stack, but without removing it.

Comment

The above sorting method is simple and takes up very little, but it is not very efficient, and is included
here only as an example of the use of a stack and for the sake of the algorithm. The problem of the

algorithm is that there are many movements of the elements between the two stacks.

Queue

If a stack is a LIFO data structure, a queue is a FIFO (First In First Out) data structure in which it is
always the first (the oldest) element which is removed from the queue. The picture of a queue is something

like the following

2 (35| 7 (1113|1719

f head f tail

Download free eBooks at bookboon.com



where one inserts (adds to the queue) at the place as tail arrow points, and removes from the queue at
the place as head arrow is pointing. The class Queue<T> represents a queue, and the two basic operations
for inserting and removing elements is called respectively Enqueue() and Dequeue(). As an example is

shown a program that creates a queue:

static void Main ()
{

Queue<int> g = new Queue<int>();
.Enqueue (2) ;
.Enqueue (3) ;
.Enqueue (5) ;
.Enqueue (7) ;
.Enqueue (11) ;
.Enqueue (13) ;
.Enqueue (17) ;
.Enqueue (19) ;
while (g.Count > 0) Console.WriteLine (g.Dequeue());

Q Q9 Q9 Q9 .Q.Q.Q.Q

In practice there are not so many applications of a queue as a stack.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language LinkedList<T>

26 LinkedList<T>

Above I have discussed the type List<T> as a sequence of elements. Its main feature is that you can add
items to it and it will expand as needed, and it is even the case that adding elements to the end of the
list is very effective. But it does have a few drawbacks. Firstly, the insertion or deletion of elements in
the middle of the list is not particularly effective, since all the remaining elements have to be moved.
Second, it is that the list is expanding by doubling mean that there can be a great space wastage and it
takes time to create a new array and copy the contents of the old to the new. Consider as an example

the following method:

static void Main ()

{

List<int> list = new List<int>();

for (int 1 = 0; 1 <= 1048576; ++i) list.Add(i);
Console.WritelLine(list.Capacity);
Console.WritelLine(list.Count);

STUDY AT

LINKOPING UNIVERSITY, SWEDEN
RANKED AMONG TOP 50 UNIVERSITIES UNDER 50
Interested in Strategy and Management in International

Organisations? Kick-start your career with a master’s degree
from Linkoping University, Sweden.

Al;; Linkdping University

205 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/liu

The list contains the elements 1048577, but also has 1048575 slots that are not used. This is where a
LinkedList enters the picture as a list that allocates memory in another way. The idea is that, for each
element there are attached two references, which can refer to, respectively the foregoing and the following

element. One can think of a linked list as the following structure

A

A

A
Y

11

A
A
A

A

start end

where there is a reference to the start of the list and a reference to the end of the list. Each element (box)
in the list is usually called a node. This structure solves the problem of insertion and deletion, as you can
insert a new element in the middle of the list by simply changing some references, and in the same way
you can remove an item. The figure below shows how it looked, if you insert an element with a value of

13 between 3 and 11 - it is necessary to change 4 references:

7 > | 3 11

start L \ \ j end
13

Below is in the same manner shown how it looks if you remove the 3th element. It is necessary to change

\
N

A\
o

A

A
A

two references, and there are now no references to the 3th element, so it automatic is destroyed by the

grabage collector.

A
A
A

start end

On the other hand, the problem of space consumption is not solved. There is no longer allocated space

for items that are not used, but to each element there is attached two additional references, which also

takes place.

A linked list solves the problem of insertion and deletion in the middle of the list, but one can not directly
refer to the individual elements with an index. There is a need to seek from the beginning (or end) of

the list until you find the item you are interested in.

The class LinkedList implements a linked list, and it differs from the class List of having other methods.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language LinkedList<T>

Exam48
LinkedList of names

Below is shown how to create a LinkedList and place some elements in it:

static void Main(string[] args)
{
LinkedList<string> list = new LinkedList<string>();
list.AddLast ("Svend") ;
list.AddLast ("Knud") ;
list.AddLast ("Valdemar") ;
list.AddAfter (list.Find ("Knud"), "Karlo");
list.AddBefore(list.Find ("Karlo"), "Frede");
list.AddFirst ("Gudrun") ;
Printl (list);
list.AddFirst ("Olga");
list.AddFirst ("Abelone");
Print2 (list);
Print3(list);
}

static void Printl (LinkedList<string> list)
{

foreach (string name in list) Console.WriteLine (name) ;
Console.WritelLine ("-—-—=-=-—=-—==—-—-——-——- ")

}

static void Print2(LinkedList<string> list)
{

for (LinkedListNode<string> node = list.Last; node != null; node = node.Previous)
Console.Writeline (node.Value);
Console.WriteLine ("---—-——-=————————-—- ")

}

static void Print3(LinkedList<string> list)
{

for (int i = 0; i < list.Count; ++i) Console.WritelLine(list.ElementAt (i));
Console.WriteLine("--———=========——— ")

}

Explanation

There are four ways to insert an element

Insert it at the end of the list
Insert it at the beginning of the list

Insert it after an existing element

L .

Insert it before an existing element

You should note how the method Find() finds the element to be inserted relative to. It returns a

LinkedListNode, which is a structure similar to a node.

207

Download free eBooks at bookboon.com



Note the three Print() methods. The first there is not much to tell, since it prints the list with a normal
foreach loop. The second method use a property to obtain a reference to the last node - note again the
type LinkedListNode. Then the list is traversed from behind. In a LinkedList you can not reference the
elements with an index, but there is a method ElementAt(), which gives the same result. It is shown in
the last printing method. Note that ElementAt() really counts from the beginning of the list and forward,

so it’s not a fair solution to the printing problem.

Comment

Whether to use a LinkedList or a List is determined by the task, since both data structures have their

advantages and disadvantages. There is no doubt that a List is used more often.

Download free eBooks at bookboon.com



27 Dictionary<K,V> and
SortedDictionary<K,V>

A dictionary is a collection where each element is identified by a key. Therefore, also sometimes one
refers to a dictionary as a collection of key / value pairs, where each value is identified by a key. You
could compare a dictionary with a list, because in a list, the elements are identified by an index. When
you have to find an item in the list, you not search for the item, but its position is calculated from the
index. In the same way it is with a dictionary, when you need to find an item, then one calculates the
element’s position based on the key value - you do not search for the item. The following figure can be

used to illustrate some of the technique, which stores key / value pair as zip code and city:

0 | 9500 Hobro
1
2

9492 Blokhus
3 | gss3 Gjern
4
5

8765 Klovborg
6
7
8 1808 Frederiksberg
9

There needs a function that convert a zip code to a place in the container. Such a function is usually
called a hash function, and instead of a dictionary you often refer to the structure as a hash table. In
this case, the hash function should be simple, and consists simply in taking the last digit. For example
are (9492, Blokhus) stored at position 2, since the zip code ends with 2. Similarly (8765, Klovborg) are

stored in position 5, and (8883, Gjern) are stored on position 3.
The above is obviously very simplistic, but it illustrates two very fundamental problems:
o What to do if the structure is filled out and needs to be expanded - above, there’s only room
for 10 elements.

o What to do if there will be a collision — with the above hash function, (8543, Hornslet) are

stored in the same place as Gjern.

Download free eBooks at bookboon.com



I shall not here explains, how to solve these problems, but just mention that it’s problems that an

implementation of the structure must necessarily solve.

The class Dictionary is a collection class to a dictionary or a hash table.

Exam49
Table of job titles

Below is an example where the key is a name, while the value is a job title:

static void Main ()

{
Dictionary<string, string> map = new Dictionary<string, string>();
map.Add ("Knud", "Konge");
map.Add ("Gudrun", "Heks");
map.Add ("Svend", "Kriger");
map.Add ("Olga", "Spakone");
map.Add ("Valdemar", "Skarpretter");
map.Add ("Abelone", "Klog kone");
Printl (map) ;
map ["Gudrun"] = "Sin mands kone";
Printl (map) ;
Print2 (map) ;
Print3 (map) ;

}

static void Printl (Dictionary<string, string> map)

{
for (int i = 0; 1 < map.Count; ++i) Console.WritelLine (map.ElementAt(i));
Console.WriteLine("-—--—-=———=———————-— ")

}

static void Print2 (Dictionary<string, string> map)

{
foreach (string name in map.Keys) Console.WriteLine (map[name]) ;
Console.WritelLine ("--—==-==-—==——————- ")

}

static void Print3(Dictionary<string, string> map)

{
foreach (string job in map.Values) Console.WritelLine (job);
Console.WriteLine ("-—--—-——-——-———————-—- ")

Explanation

Note first how to add values to a dictionary. Note then the first print method and how to print the key
/ value pairs. The keys must be unique, and if you try to add a value with an existing key, you get an

exception. However, you can change a value using the key as the index:

map ["Gudrun"] = "Sin mands kone";

Note finally the last two printing methods, where the first method runs over all keys and the other runs
over all values. Here you should note how to get a collection of all keys (using Print2()) and a collection

of all values (using Print3()).

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Dictionary<K,V> and SortedDictionary<K,V>

If you execute the method you get the following result:

“I studied
English for 16 -
LJ

years but... »
...1 finally o
learned to 5=
speak it in just
six lessons”

Jane, Chinese architect

OUT THERE

Click to hear me talking

before and after my

unique course download

211 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/EOT

C# 1 Introduction to programming and the C# language Dictionary<K,V> and SortedDictionary<K,V>

Exam50
User defined key

In a dictionary the type for both key and value may be anything — almost. Consider the following type:

public class Name

{

private string firstname;
private string lastname;

public Name (string firstname, string lastname)

{
this.firstname = firstname;
this.lastname = lastname;

}

public override string ToString()

{

return firstname + " " 4+ lastname;

Consider then a dictionary that has the type Name as key:

static void Main(string[] args)

{

Dictionary<Name, string> map = new Dictionary<Name, string>();
map.Add (new Name ("Knud", "Madsen"), "Konge");

map.Add (new Name ("Gudrun", "Jensen"), "Heks");

map.Add (new Name ("Svend", "Andersen"), "Kriger");

map.Add (new Name ("Olga", "Olesen"), "Spakone");

map.Add (new Name ("Gudrun", "Jensen"), "Sin mands kone");

Print (map) ;

}

static void Print (Dictionary<Name, string> map)

{

for (int i = 0; 1 < map.Count; ++i) Console.WriteLine (map.ElementAt (i));
Console.WritelLine("-——=-———=-————-———-—-— ")

Note that the program can be translated and executed, but the result is not as expected as key Gudrun

Jensen occurs twice:

212

Download free eBooks at bookboon.com



The reason is that the type Name not overrides GetHashCode(). As mentioned builds a dictionary of a
hash function to calculate the individual elements position, which in turn uses this type’s GetHashCode()

method. The key type must then always override GetHashCode():

public class Name

{

public override int GetHashCode ()
{

return firstname.GetHashCode () + lastname.GetHashCode () :;

}

Exam51
A sorted dictionary

A dictionary generally guarantees nothing about how the elements are arranged and in which order
they are meet at a traversal of the structure. In contrast, a SortedDictionary is a dictionary, where the

elements are sorted by key order:

static void Main ()
{
SortedDictionary<string, string> map = new SortedDictionary<string, string>();
map.Add ("Knud", "Konge");
map.Add ("Gudrun", "Heks");
map.Add ("Svend", "Kriger");
map.Add ("Olga", "Spakone");
map.Add ("Valdemar", "Skarpretter");
map.Add ("Abelone", "Klog kone");
foreach (string navn in map.Keys) Console.WriteLine("{0}, {1}", navn, map[navn]);

That is, the result is ordered by the key which is name and note that this is not the same order as objects

are added to the structure.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Dictionary<K,V> and SortedDictionary<K,V>

Exam52
Comparable keys

The following can’t be executed (you get an exception):

static void Testll ()
{

SortedDictionary<Name, string> map = new SortedDictionary<Name, string>();
map.Add (new Navn ("Knud", "Madsen"), "Konge");

map.Add (new Navn ("Gudrun", "Jensen"), "Heks");

map.Add (new Navn ("Svend", "Andersen"), "Kriger");

map.Add (new Navn ("Olga", "Olesen"), "Spakone");

foreach (Navn navn in map.Keys) Console.WriteLine("{0}, {1}", navn, map[navn]);

In order that the keys can be sorted, they must be comparable and it will say that the key type must

implement the IComparable interface:

public class Name : IComparable<Name>

{

public int CompareTo (Name name)
{
if (lastname.CompareTo (name.lastname) == 0)
return firstname.CompareTo (name.firstname) ;
return lastname.CompareTo (name.lastname) ;

Excellent Economics and Business programmes at:

N

. 77T
university of e AACSB
groningen b f\CCREDITED

N A

| -
“The perfect start
of a successful,

_- . international career’
-- >
: .
Sy 7 ; ff ..:II (:{[JI]::

| to discover why both socially
and academically the University

of Groningen is one of the best
places for a student to be

I

L~

www.rug.nl/feb/education

214 Click on the ad to read more

Download free eBooks at bookboon.com


http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

Here the keys is sorted so that the keys are first compared on the last name, and if the last names are

the same, the keys are compared on the first name.

Comment

A SortedDictionary is internally a binary search tree, and without in this place to elaborate on what it
is, can I mention that it is a structure that optimizes the search of elements. There are actually another

collection class

SortedList<K, V>

that seen from the programmer is the same as a SortedDictionary, but also internally is a binary search
tree. The difference is that a SortedList uses less memory than a SortedDictionary, and vice versa is a

SortedDictionary more efficient at inserting and deleting of items.

Exam70
Cue list

In this example I will show how to represent a cue list for a book. The purpose is mainly to show how

to use a SortedDictionary, but also a LinkedList.

A cue consists of a name and a number of page references where a name is a string, while a page reference
is an integer and a cue list is a list of items of that kind. The task is to write a program that can create a

cue list and print out the list on the screen.

How to

I will start by defining a class that can represent an element to the list consisting of a name and page

references:

public class PageReferences

{
private string name;
private LinkedList<int> list = new LinkedList<int>();

public PageReferences(string name, int page)

{
this.name = name;
list.AddFirst (page) ;

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language

public string Name
{
get { return name; }

}

public int Count
{
get { return list.Count; }

}

public int this[int n]
{

get { return list.ElementAt(n); }
}

public int[] References
{

get { return list.ToArray(); }
}

public void Add(int page)
{

Dictionary<K,V> and SortedDictionary<K,V>

for (LinkedListNode<int> node = list.First; node != null; node = node.Next)
if (node.Value == page) return;
else 1f (node.Value > page)
{
list.AddBefore (node, page);
return;
}
list.AddLast (page) ;
}
public override string ToString()
{
StringBuilder builder = new StringBuilder (name + ",");
for (LinkedListNode<int> node = list.First; node != null; node = node.Next)
builder.Append(" " + node.Value);

return builder.ToString();

I will keep the key words in a SortedDictionary with name as the key. This provides two advantages:

o The list can be traversed, and thus printed sorted by name

« one can find siderefenrencer to a particular cue without searching, but by direct lookup

When the keys are compared, 'm not interested in making a distinction between uppercase and lowercase

letters. Therefore I have written my own key type:

class PageKey
{

private string name;

IComparable<PageKey>

public PageKey(string name)
{

this.name = name;

216

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Dictionary<K,V> and SortedDictionary<K,V>

public string Value
{

get { return name; }

}

public override bool Equals (object obj)
{
if (! (obj is string)) return false;
return name.Equals ((string)obj, StringComparison.CurrentCulturelgnoreCase);

}

public override int GetHashCode ()

{
return name.ToUpper () .GetHashCode () ;

}

public int CompareTo (PageKey key)
{

return string.Compare (name, key.name, true);

After that the class to the cue list can be written:

class Index

{
private SortedDictionary<PageKey, PageReferences> table =
new SortedDictionary<PageKey, PageReferences>();

In the past four years we have drilled

89,000 km

That's more than twice around the world.

Who are we?

We are the world’s largest oilfield services company’.

Working globally—often in remote and challenging locations—
we invent, design, engineer, and apply technology to help our
customers find and produce oil and gas safely.

Who are we looking for?
Every year, we need thousands of graduates to begin
dynamic careers in the following domains:

‘ ‘ m Geoscience and Petrotechnical

m Commercial and Business

What will you be?

a1 careers.slb.com Schiumberger

217 Click on the ad to read more
Download free eBooks at bookboon.com



http://s.bookboon.com/Schlumberger1

public bool Add(string name, int page)
{

name = name.Trim();
if (name.Length == 0) return false;
PageKey key = new PageKey (name);

if (table.ContainsKey(key)) tablelkey].Add(page);
else table.Add(key, new PageReferences (name, page));
return true;

}

public int[] Pages(string name)

{
PageKey key = new PageKey (name) ;
if (table.ContainsKey(key)) return tablel[key].References;
else return new int[0];

}

public void Print()
{
char ch = ' ';
foreach (PageKey key in table.Keys)
{
PageReferences pages = tablelkeyl];
if (ch != char.ToUpper (pages.Name[0]))
{
ch = char.ToUpper (pages.Name[0]) ;
Console.WritelLine (ch);

}

Console.WritelLine (pages) ;

Explanation

There is this many things to note. If starting with the class PageReferences, note that the list of page references
is a LinkedList. The reason is that I want to insert page numbers in ascending order, which happens in the
Add() method. The list is created in the constructor, and when the Add() method is performed, the list will
always contain at least one page reference. The Add() method traverses the page references for the current
cue. If the page reference is already there, there is nothing more than the insertion is ignored (the same
page reference should not occur more than once). If you find a page reference that is greater than the new
reference, it should be inserted before the element that you have reached, and we have thus obtained the
list of page references are sorted. If you reach through the list without the new reference was inserted, it is

because the reference should to be inserted as the last reference in the list.

Besides the method Add(), the class PageReferences has different properties. Note in particular that
there is an override of the index soperator (which are not used in the example). Note also the property
References, which returns an array with page numbers. This array is formed with the method ToArray()

in the class LinkedList. All the collection classes have this method.

Download free eBooks at bookboon.com



The class PageKey defines the key as an encapsulation of a string. Notice how the class implements the
IComparable interface, so the comparison does not distinguish between uppercase and lowercase letters
(it indicates the last parameter). Note also that Equals() does not distinguish between uppercase and

lowercase letters, and that GetHashCode() is also implemented.

Finally, there is a class Index, which represents key words from the list. The class provides three services

available:

+ You can add new keywords to the list that either insert a new cue, or update an existing one.

« You can get an array with page references to a particular cue, and here you must particularly
note the syntax for how to create an empty array if the cue does not exist.

« You can print the list on the screen, which in principle is merely a matter to traverse the list

in the order in which the keys specify.

Test

Finally, | show a test program:

class Program
{
static Random rand = new Random() ;
static string[] words = { "Write", "if", "for", "while", "Variable", ..... };

static void Main(string[] args)
{
Index index = new Index();
for (int i = 0; 1 < 50; ++1)
index.Add (words[rand.Next (words.Length) ], rand.Next (200));
index.Print () ;
Console.WriteLine();

Print ("Variable", index.Pages ("Variable"));
Print ("variable", index.Pages("variable"));
Print ("Variables", index.Pages("Variables"));

}

static void Print(string name, int[] pages)
{
Console.Write (name) ;
if (pages.Length > 0)
{
Console.Write (", ");
for (int i = 0; i1 < pages.Length; ++i) Console.Write(" " + pages[i]);
}

Console.WriteLine () ;

In the beginning of the program there is defined a few words. These are then inserted randomly into a

cue list with random page references:

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Dictionary<K,V> and SortedDictionary<K,V>

American online

is currently enrolling in the
Interactive Online
programs:

enroll by September 30th, 2014 and
save up to 16% on the tuition!

pay in 10 installments / 2 years
Interactive Online education

visit to
find out more!

vvyvVvyyVvyy

Note: LIGS University is not accredited by an
nationallg' recognized accrediting agency listed
by the US Secretary of Education.

ore info here.

—

220 Click on the ad to read more

Download free eBooks at bookboon.com



http://s.bookboon.com/LIGS

Part4 10O

Previously, files was a central concept in programming, and even if it does not play the same role as

before, it is still important to know how to write to and read from a file.

When IO and files does not play the same role as before, it is because that applications that need to
manipulate persistent data stored on disk usually use database products, and anything relating to access
to files and access to data is thus left to the current database system. Nevertheless, there are still situations
where there is a need to be able to access regular files, and it is mainly in two situations: How to read

and write a plain text file, and how to serialize and deserialize an object.

As everywhere in .NET is access to files relieved the programmer through a number of finished classes,
which are primarily found in the System.IO namespace. It is a comprehensive namespace with many
classes, but fortunately it is not necessary to know them all, so I will concentrate on those that as a

minimum is required.

From a program a file is basically a sequence of bytes, and in many ways one can think of a file as a
1-dimensional array with no upper limit (the size is obviously limited by the space available on disk).
The place where the next file operation (reading or writing) is performed is determined by a so-called file
pointer, which is really just a counter relative to the strat of the file. Correspondingly, one can illustrate

a file in the following manner, wherein each box is a byte:

Offset of the next read/write operation

In a program, the challenge is to control where to read from and write to the file and to interpret the
result that is readed and convert it to the correct data format. It’s actually all that the classes in the IO

system and their methods encapsulate.

Download free eBooks at bookboon.com



28 Text files

A text file is a file containing a number of lines, where each line is a string. Since the strings in .NET are
represented as unicode sequences of characters, each character is written as 2 bytes to the file, but it is
enclosed by IO system. Text files are still important. For example text files are often used for exchanging
data in the form of comma delimited files or similar. One should also note that, for example HTML files
or XML files are text files.

Exam51
Write and read text

I will write a program that shows how to write and read a simple text file. When the program runs, the
user must enter text lines, and they are saved in a file. The entry is terminated when the user simply

presses Enter, and the program will then read the file and print the content on the screen.

How to

To create a text file and write to it can be described as the following algorithm:

open/create the file
get data

as long as there are data

write a line in the file
get data
close the file

and the important thing is that it is actually happening in the same way every time, and it is just the
operation get data which may vary. In the same way, reading a text file can be written as the following

algorithm:

open the file
read a line

as _long as there is a line

use the line
read a line
close the file

and here it is again important to note that the procedure is the same regardless of the content of the file,

and only the operation use the line varies.

The program can be written as follows:

using System;
using System.IO;

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Text files

namespace Exam53

{
class Program
{
static void Main(string[] args)
{
Write () ;
Read () ;
}

public static string GetLine()
{

Console.Write ("2 ");

return Console.ReadLine () ;

}

public static void PutLine(string line)
{

Console.WritelLine (line);

}

public static void Write ()
{
StreamWriter writer = new StreamWriter ("Tekst.txt");
string line = GetLine();
while (line.Length > 0)
{
writer.WriteLine (line);
line = GetLine();
}

writer.Close () ;

sssssssssssssvssssssssssssssssssssssssssssesssssnsssssssssssssssssssssssfilcgte]-Lucent @
www.alcatel-lucent.com/careers

hb

o

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".

223 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/AlcatelLucent

public static void Read()
{
StreamReader reader = new StreamReader ("Tekst.txt");
string line = reader.ReadLine();
while (line != null)
{
PutLine (line) ;
line = reader.ReadLine();

}

reader.Close () ;

Explanation

Note first that there is a using statement for System.IO. It will typically be the case in all applications
that use files.

The method GetLine() corresponds to get data in the algorithm, and it writes a simple prompt in the
form of a question mark on the screen and then performing a ReadLine(). The method returns a string

with the user’s input.

The method Write() creates and opens a text file for writing:

StreamWriter writer = new StreamWriter ("Tekst.txt"):;

The file is named Tekst.txt and is created in the same directory as the program’s exe file. The file name
is a parameter to the constructor for a class of the type Stream Writer, which represents a text file which
you can write to. You can specify a full path to the file if you want it to be placed somewhere else. After

the user enters a line, it is written to the file using the writer and the method WriteLine():

writer.WriteLine (line);

Note that this method has the same properties (the same overrides) as the corresponding method in the

Console class and, therefore, also can print a formatted text to a file.

After the loop is terminated, the file is closed.

There are a few things you should be aware of. When the file is opened by creating a StringWriter object,
the file is created if it does not exist. If the file however, has already been created, it will be overwritten.

If you do not want the file is overwritten, you can specify a second parameter to the constructor, which

opens the file in append mode.

Download free eBooks at bookboon.com



There is then added to the end of the file. When you write a line in the file with the WriteLine(), the
string’s characters are written to the file followed by a newline. Finally, you should notice the last Close()
statement. It is necessary because in fact the data are not written physical to the file for each WriteLine(),
but instead to a buffer in the memory. Close() causes, in addition to free the connection to the file, that

the content of the buffer is written to the file.

The method Read() shows how to read the content of a text file and print it on screen. Here corresponds
the method PutLine() to apply the algorithm’s use line, and in this case the method is tedious and do
nothing more than to write the string as a line on the screen. The method Read() starts to open the file

for reading with a StreamReader object:

StreamReader reader = new StreamReader ("Tekst.txt");

Then the method trys to read a line in the file:

string line = reader.ReadLine();

If it goes well - line is different from null - the method PutLine() is executed with line as a parameter
and then the program attempts to read the file again. The result is that the loop is repeated until there

are no more data in the file. Finally, the file is closed.

This is actually what there is to say about text files, but it is clear that how to get data, and how to treat

a line that is read from the file depends on the specific task.

Exam54
Write a comma separated file

The following example is in principle identical to the above, but the treatment of data is not quite so
simple, and it is also a slightly more realistic example of how you can meet text files. Actually, there are

two programs, and the next program is concerning the same example.

A comma separated file is a text file that contains a number of lines where each line consists of several
elements, and where the individual elements are separated by a delimiter. The delimiter will often be a
comma (hence the name) but it can in principle be anything, just to be a symbol that does not occur in

the individual text elements. In this case a semicolon is used as a delimiter.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Text files

The first program will create a text file where the user enters a phone number followed by one or more
product amounts as you can think of sales and thus indicate sales to a particular phone number. For
each phone number the program writes a line in the file consisting of the telephone number and product

amounts and with the fields separated by semicolons. The result could be the following file:

Note that the same telephone number might well appear several times, and that there may be lines with

just a phone and no amounts.

The code is as follows:

class Program
{
static void Main(string[] args)
{
StreamWriter writer = new StreamWriter ("F:\\Temp\\Salg.txt", true);
string line = PhoneNumber () ;
while (line.Length > 0)

/

Leadiny
% Maastricht University o Learnin:

Join the best at
P i N - 33" place Financial Times worldwide ranking: MSc
the Maastricht University International Business

+ 1% place: MSc International Business
M + 1% place: MSc Financial Economics
SChOOI Of Bus' ness a nd « 2" place: MSc Management of Learning
. - 2" place: MSc Economics
ECOHOm |CS! - 2" place: MSc Econometrics and Operations Research
- 2" place:MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is
the best specialist
university in the
Netherlands
(Elsevier)

Master’s Open Day: 22 February 2014

www.mastersopenday.nl

226 Click on the ad to read more

Download free eBooks at bookboon.com


http://www.mastersopenday.nl

C# 1 Introduction to programming and the C# language

}

writer.WritelLine (line);
line = PhoneNumber () ;

writer.Close () ;

}

static string PhoneNumber ()

{

while (true)

{

}

Console.Write ("Enter phone no. as 8 digits: ");
string phone = Console.ReadLine().Trim();
if (phone.Length == 0) return "";
if (PhoneOk(ref phone))
{
StringBuilder builder = new StringBuilder (phone);
double amount = Amount ()
while (amount > 0)

{

builder.Append (string.Format ("; {0:F2}", amount));

amount = Amount () ;
}
return builder.ToString();
}

Console.WriteLine("Illegal phone no.");

static bool PhoneOk(ref string tlfnr)

{

tlfnr = tlfnr.Trim();
StringBuilder builder = new StringBuilder();
for (int i = 0; 1 < tlfnr.Length; ++1)

}

if (tlfnr[i] >= '0' && tlfnr[i] <= '9")
builder.Append (tlfnr[i]);

else if (tlfnr[i] !'= "' ")
return false;

tlfnr = builder.ToString() ;

return tlfnr.Length == 8;

static double Amount ()

{

while (true)

{

Console.Write ("Enter the amount: ");

try

{
string text = Console.ReadLine().Trim();
if (text.Length == 0) return O0;

return Convert.ToDouble (text) ;
}

catch
{

Console.WritelLine("Illegal amount");

227

Download free eBooks at bookboon.com

Text files



C# 1 Introduction to programming and the C# language Text files

Explanation

The method PhoneOk() checks whether a string is a legitimate phone number: It must consist of 8 digits.
The method skipp any spaces (so it is permitted to enter spaces in a phone number), but since I do not want

these spaces saved in the file the parameter to PhoneOk() is a reference parameter, so the spaces are removed.

The method PhoneNumber() is the input method, which returns a string consisting of the telephone and
sales amounts that are separated by semicolons - or an empty string if the user just press Enter. Actually

it is a relatively complex method that calls the method Amount() to enter an amount.

The program writes to the file in Main() and you should note that it is exactly the same algorithm as in

the previous example. Generally, the example is somewhat more complex than the previous example,

but it caused only the entry of data, and it’s not the file handling, which complicates the task.

> Apply now

REDEFINE YOUR FUTURE
AXA GLOBAL GRADUATE
PROGRAM 2015

redefining / standards M

[=%
S
]
17}
=
S
=
S
2
°
=
o
©
0
o
3
2
9
&

228 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/AXA

Exam55
Read a comma separated file

It is a continuation of the example above, but where the task instead is to read the comma-separated file
created in Exam54, summing the results for each phone number and print it on the screen. Since the
same phone number can occur several times, it is necessary to read the entire file before the results can
be printed. The individual numbers must be stored somewhere, and since we do not know the number
of telephone numbers the program use a Dictionary with the phone number as key, while the value is

a List of amounts:

private static Dictionary<string, List<double>> table =
new Dictionary<string, List<double>>();

Reading the file is done in the the same way as in the first example of text files, and the difference is only
that the treatment of a line that is read in the file this time is more complex. The program is written as

follows:

class Program
{
private static Dictionary<string, List<double>> table =
new Dictionary<string, List<double>>();

static void Main(string[] args)
{
StreamReader reader = new StreamReader ("F:\\Temp\\Salg.txt");
string line = reader.ReadLine();
while (line != null)
{
ParselLine (line);
line = reader.ReadLine();
}
reader.Close();
Print () ;
}

static void Parseline(string line)

{

string[] elem = line.Split(';");
try
{
if (elem.Length == 0)
Console.WriteLine ("Empty line...");
else
{
string phone = elem[0];

List<double> 1list;
if (table.ContainsKey (phone))
list = table[phone];
else
{
list = new List<double>();
table.Add (phone, list);
}

for (int i = 1; i < elem.Length; ++1i)

Download free eBooks at bookboon.com



try
{

list.Add (Convert.ToDouble (elem[i])) ;
}

catch
{
Console.WriteLine ("Illegal ammount:" + line);
}
}
}
}
catch
{
Console.WritelLine ("Error: " + line);

}

static void Print ()
{

foreach (string phone in table.Keys)
{
Console.WritelLine (phone) ;
List<double> list = table[phone];
double total = 0;
foreach (double number in list)

{
total += number;
Console.WriteLine ("{0, 12:F2} ", number);

}
Console.WriteLine ("Ialt: {0, 12:F2}", total);

Explanation

The treatment takes place in the method ParseLine(). It splits a line at semicolons. The rest consists merely
to test whether a phone number is already in the table, or whether it is a new number to be added to the
table. Then the method parses the amounts. Note that they must be converted, and if there is an error

an error message is written on the screen.

The last method Print() is a simple traversal of the input data, which writes the result on the screen.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language

29 Binary files

Binary files

Just as there are classes for working with text files, there are classes for the treatment of binary files, that

is files that contains numbers or other binary data.

Exam56
Print 100 numbers in a fil

Write a program that writes 100 random numbers of the type double in a file named Number.dat.

How to

class Program

{

static Random rand = new Random() ;

static void Main(string[] args)

{

FileStream stream = new FileStream("F:\\Temp\\Numbers.dat",

FileMode.OpenOrCreate, FileAccess.Write);

BinaryWriter writer = new BinaryWriter (stream);

for (int i = 0;
writer.Close();
stream.Close();

i < 100; ++i) writer.Write (rand.NextDouble () * 10000);

Iy

atedic MArkeiNg?
Management,

>rnatlonalsie
Business.

TTe—

. inancial
conomics

/

Leadership &5
Shipping ‘

Organlsationg
Psychalog

R
\

"/, 3 ageetl N\

o

NORWEGIAN L erwo
BUSINESS SCHOOL ~ ~ £9Uss

ACEREDITED

Empowering People.
Improving Business.

Bl Norwegian Business School is one of Europe’s
largest business schools welcoming more than 20,000
students. Our programmes provide a stimulating
and multi-cultural learning environment with an
international outlook ultimately providing students
with professional skills to meet the increasing needs
of businesses.

Bl offers four different two-year, full-time Master of
Science (MSc) programmes that are taught entirely in
English and have been designed to provide professional
skills to meet the increasing need of businesses. The
MSc programmes provide a stimulating and multi-
cultural leaming environment to give you the best
platform to launch into your career.

* MSc in Business

* MSc in Financial Economics

* MSc in Strategic Marketing Management

* M5Sc in Leadership and Organisaticnal Psychology

www.bi.edu/master

231

Download free eBooks at bookboon.com

Click on the ad to read more



http://s.bookboon.com/BI

Explanation

This time the file is represented by a FileStream. The constructor in addition to the file name has two
additional parameters. The file mode indicates how the file should be opened. Here you specify that it

must be opened if it exists, or else it is created. As an alternative, you can specify

o CreateNew, that creates a new file, but if it already exists, you get an exception

o Create, that creates a new file and if it already exists, it is overwritten

o Open, that opens a file and if it does not exist, you get an exception

o Truncate, that opens a file and empty it

o Append, that opens a file and places the file pointer at the end of the file - if the file does not

exist, it is created

The last parameter specifies the access to the file, and this opens the file for writing. Alternatively, the

file can be opened for reading or for both reading and writing.

After the file has been opened the program creates a Binary Writer that is used to write numbers to the file.

Note the method Write(), which has 18 overrides and then an override to each of the built-in data types.

Exam57
Read a binary file

Write a program that reads the content of the file generated by the above program and print the number
of numbers that is read from til file, the sum of the numbers, the average and the smallest and largest

number.

How to

class Program

{

static void Main(string[] args)

{

double sum = 0;
double min = double.MaxValue;
double max = double.MinValue;
int count = 0;

FileStream stream =
new FileStream("F:\\Temp\\Numbers.dat", FileMode.Open, FileAccess.Read);
BinaryReader reader = new BinaryReader (stream) ;
try
{
while (true)
{
double tal = reader.ReadDouble ()
sum += tal;
++count;
if (min > tal) min = tal;
if (max < tal) max tal;

Download free eBooks at bookboon.com



}

catch (EndOfStreamException)

{

}

reader.Close () ;

stream.Close () ;

if (count > 0) Result(sum, min, max, count);

}

private static void Result (double sum, double min, double max, int count)

{

Console.WriteLine ("It has been read {0} numbers", count);

(
Console.WriteLine ("The sum of the numbers are {0}", sum);
Console.WriteLine ("The average is {0}", sum / count);
Console.WriteLine ("The minimum number is {0}", min);
Console.WriteLine ("The maximum number is {0}", max);

Explanation

Basically there is not much new, but there are two things to be aware of. One is how to handle end-of-
file, and therefore when there are not more numbers in the file. To read the file you use a BinaryReader,
and if you try to read beyond the end of the file, you get an exception. The other thing to consider is
how to read the file with the method ReadDouble().

This method reads the next 8 bytes and converts them into a double regardless of the content. It is
the responsibility of the user (the user must know) that these 8 bytes actually represent a double. This

information is not stored in the file. The BinaryReader class has similar methods to read other built-in

types.

Exam58
Seek

A FileStream is always a sequence of bytes, and it is up to the program that reads the file, to interpret
the content correctly. To a FileStream is associated a so-called file pointer, which is simply an integer
that indicates the position in the file where the next read or write operation takes place. The program
can manipulate the file pointer with a method Seek(), which can set the position of the file pointer
anywhere - again it is up to the program to ensure that it is a meaningful position. The next example

shows how to move the file pointer.

How to

public static void Main ()

{

FileStream stream = new FileStream("Tal.dat", FileMode.Create,
FileAccess.ReadWrite);

BinaryWriter writer = new BinaryWriter (stream);

BinaryReader reader = new BinaryReader (stream);

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Info about directories and files

for (int i = 0; 1 < 10; ++1i) writer.Write(Math.Sqgrt(i)):;
stream.Seek (5 * sizeof (double), SeekOrigin.Begin);
writer.Write (Math.PI);
Console.WriteLine (reader.ReadDouble());
stream.Seek (5 * sizeof (double), SeekOrigin.End);
writer.Write (Math.E);
stream.Seek (0, SeekOrigin.Begin);
try
{
while (true) Console.WriteLine (reader.ReadDouble())
}
catch (EndOfStreamException)
{
}
reader.Close();
writer.Close () ;
stream.Close () ;

Need help with your
dissertation?

Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

Get Help Now“h

Go to www.helpmyassignment.co.uk for more info E/Helpmyassignment

234 Click on the ad to read more

Download free eBooks at bookboon.com


http://www.helpmyassignment.co.uk

Explanation

First you open a FileStream, but this time with readwrite access. Note also that the mode is Create, so that
the file is created each time the method is performed. As a next step the stream are associated with both
a writer and a reader, and then the program writes 10 numbers in the file. Then the program writes the
number pi in the file, but first it positions file pointer, so the number is written as the 5th number (the
first number is the Oth number). Since a double fills 8 bytes, the value must start with the byte number
40. After the number pi is written the program read a number, but when writing is moving the file
pointer 8 bytes, it will be the next number that is read. Now move the file pointer 40 bytes, but this time
from the end of the file. This means that the file pointer is positioned 40 bytes after the end of the file
and the program writes the number e. The question is what happens to the intermediate places, which
in principle are empty. The answer is that they are set to 0 — all bytes are 0. Finally the entire content of

the file are read. Notice how the file pointer is first moved to the beginning of the file.

If the method is executed, the result is as follows:

Download free eBooks at bookboon.com



30 Info about directories and files

System.IO contains two classes that are useful to determine information about files and directories:

« Filelnfo
o Directorylnfo

The first represents a file, while the other represents a library or directory. There is not much to say
about them, but they both have a number of properties that specifies information about a specific file

or directory.

Exam59
FileInfo

Below is a program that prints information about a file:

static void Main(string[] args)
{
string filename = "E:\\USA\\001l.jpg";
FileInfo info = new FileInfo (filename) ;
Console.WriteLine (info.FullName) ;
Console.Writeline (info.Name) ;
info.CreationTime) ;
info.Attributes.ToString()) ;
info.Length) ;
info.Extension);
info.DirectoryName) ;

Console.WriteLine
Console.WriteLine
Console.WriteLine
Console.WriteLine

(
(
(
(
(
(

Console.WriteLine

Explanation

There is not much to explain, but the program requires that the file exists.

Exam60
Directrorylnfo

The next example is in principle identical to the foregoing but it print the information about a directory:

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Info about directories and files

static void Main(string[] args)
{
string dirname = "F:\\Temp";
DirectoryInfo info = new DirectoryInfo (dirname);
Console.WritelLine (info.FullName) ;
Console.WritelLine (info.Name) ;
Console.WriteLine (info.CreationTime) ;
Console.WritelLine (info.Attributes.ToString());
Console.WriteLine (info.Root) ;
Console.WritelLine ("Subdirectories:");
foreach (DirectoryInfo dir in info.GetDirectories()) Console.WriteLine (dir.Name) ;
Console.WriteLine ("Files:");
foreach (FileInfo file in info.GetFiles()) Console.WriteLine (file.Name) ;

(]
B By 2020, wind could provide one-tenth of our planet's

ra I n p O W e r electricity needs. Already today, SKF's innovative know-

how is crucial to running a large proportion of the

world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
stems for on-line condition monitoring and automatic
jcation. We help make it more economical to create

Therefore we'need the best employees who can
eet this challenge!

Tr)_af Power of Knowledge Engineering

-

ey

Plug into The Power of Knowle‘ngineering.
Visit us at www.skf.com/knowlet

237 Click on the ad to read more

Download free eBooks at bookboon.com


http://www.skf.com/knowledge

31 Object serialization

Object serialization is the process by which the state of an object is converted into a sequence of bytes,
and thus as data that can be send to a stream, such as a file or over a communication line. It is possible
to serialize arbitrary objects to a stream, and for that we can again read a serialized object, it is necessary
together with the serialization of the object’s data also to store information about the type. When you

read a serialized object, it is call to deserialize the object.

Seen from the programmer is serialization and deserialization of objects simple and one should not write
much, but if you think a little about it, it’s a relatively complex process. An object is defined on the basis
of a class and can contain simple variables, arrays and references to other objects, and not only that,
so the class can also inherit variables from a base class. When an object must be serializable, all these
elements are saved with all the information needed to build the whole structure again when the object
is deserialized. The conclusion is that although the following examples show that it is simple to serialize

objects, there are going on a lot behind, which is handled by the classes that underlie serialiseringen.

Datatypes

Before I show some examples of serialization I will create a class library. Open Visual Studio and select

Class Library as a project template:

Visual Studio will then create a dll with classes. In this case the name is Datatypes.dIl. After the project

is created, it contains a class called Class1. I typically delete this class.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Object serialization

I then add a new class, which I have called Person:

using System;

namespace Datatypes

{
[Serializable]
public class Person

{
private string name;
private string position;

public Person()

{
name = "";
position = "";
}

public Person(string name, string position)

{

this.name = name;
this.position = position;

}

public string Name

{
get { return name; }
set { name = value; }

}

public string Position

{
get { return position; }
set { position = wvalue; }

}

public override string ToString()

{

return name + ", " + position;

Then the project is translated.

Explanation

The class is quite simple and there is not much to explain, but the class is defined Serializable:

[Serializable]
public class Person

{

wand it is a necessary prerequisite that an object of the type Person can be serialized.

239

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Object serialization

Comment

A class library is not a program, and thus it is not something you can immediately try out, but it is a
dll that can be used in other applications. What you should do is explained in the next example. A class
library can hold more stuft, but will typically contain user-defined classes. The goal is a dll with classes
that you often need and which are completed, tested and found free of errors. Such a dll can then be
made available to other programs, and its classes will be used the same way as all other classes from
NET framework.

Exam61
Binary serialization

You should be writes a program that create a Person object and serialize it to a file.

How to

The start is as usual a Console Application project. This time I will start to associate the above dll to the

project. In Solution Explorer, you right click on References and choose Add Reference...

Vouwro Touexs | Resanr Toocks | Macs Toveks | Vowo Buses | Vowo Cowsteucnion Esumsest | Wowo Pesm | Vowo Aeno | Wowo IT
Vowo Fimswcer Sepnces | Vowo 3P | Vowo Powerream | Vowo Pasrs | Vowo Techwowoer | Wowo Loasncs | Busisess Anes Asie

240 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/volvo

In the next window you click on the Browse button at the bottom of the window. You get a file browser

and can browse through to the dll (Datatypes.dll in the project Datatypes):

When you then click OK, the dll is copied to the current project and its classes are now available for the
program. If you then open the References in Solution Explorer, you can see which dllI's the program has
access to and it now include Datatypes. The other dll's are some that Visual Studio has automatically

added references to, and they contain all the main classes in the .NET fra mework.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Object serialization

After the dll with the class Person is attached to the program, the code is written in the following way:

using System;

using System.IO;

using System.Runtime.Serialization.Formatters.Binary;
using Datatypes;

namespace Exam6l

{

class Program

{

static void Main(string[] args)

{
Person pers = new Person("Valborg Kristensen", "Klog kone");
Serialiser (pers);

}

private static void Serialiser (Person pers)
{
BinaryFormatter bf = new BinaryFormatter();
FileStream stream = File.Create ("F:\\Temp\\Person.dat");
bf.Serialize(stream, pers, null);
stream.Close();

Explanation

Note first the program’s using statements. In addition to System.IO there is also defined a namespace

using System.Runtime.Serialization.Formatters.Binary;

which contains the classes that are necessary to be able to serialize an object. Note also that there is a

definition of the namespace with the Person class:

242

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Object serialization

using Datatypes;

I Main() there is an object

Person pers = new Person("Valborg Kristensen", "Klog kone");

and the task is to write this object to a file. This means that it is necessary to store the two member variables
name and position and the are themselves objects of the type string. One thing is to save the object, but then
you also must be able to read the object again, and as is mentioned above you need also store information
about the object’s type. The object is stored as raw bytes, and for it again can be loaded as a Person object -
consisting of two objects of the type string — should this information be saved with the object’s data bytes. It
is this process that is called serialization, and for this to be possible, both the object’s type must be defined
Serializable and, secondly, all the object’s instance varaibler must be Serializable. In this case, all are met, as
the Person class is defined Serializable, and the member variables has the type string, which is Serializable.

The same is the case for all the simple types and many of the types NET framework.

To serialize an object you must use a so-called Formatter. There are several options, and the different
Formatter types are defined in the namespace System.Runtime.Formatters, but common to them is that
they serialize an object with the information necessary for the object can be deserialized. They differ,
however, regarding the format in which the object is stored in. In this case I use a binary formatter that

store an object in a binary format.

EXPERIENCE THE PC
FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
RUN EASIER...

243 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/Gaiteye

The method Serialiser() serialize an object of the type Person to the file F:\ Temp\Person.dat. First you create
a BinaryFormatter and then a file called F:\Temp\Person.dat. Finally, the formatter is used to serialize
the object. It is thus relatively simple to serialize an object. One should be aware that when writing to a

file, the code should usually be placed in a try block and a possible exception should be handled.

Exam62
Binary deserialization

The purpose of this example is to write a program that reads the object that is stored in the previous

example and then print the object on the screen.

How to

First, is added in the same manner as above, a reference to the dll with the class Person. Then the program

can be written as:

using System;

using System.IO;

using System.Runtime.Serialization.Formatters.Binary;
using Datatypes;

namespace Exam62

{
class Program
{
static void Main(string[] args)
{
Person pers = DeSerialiser();
if (pers != null) Console.Writeline (pers);

}

private static Person DeSerialiser()

{

Person pers = null;
try
{
BinaryFormatter bf = new BinaryFormatter();

FileStream stream = File.OpenRead ("F:\\Temp\\Person.dat");
pers = (Person)bf.Deserialize(stream);
stream.Close();

}

catch

{

}

return pers;

Download free eBooks at bookboon.com



Explanation

The method DeSerialiser() tries to deserialize an object of the type Person saved in the file F:\Temp\
Person.dat. First the program creates a BinaryFormatter. Next, it creates a stream to the file and the object
is deserialized. The method returns the object if it is possible to deserialize a Person object (if the file
exists and if it contains a Person object). If not, the method returns null. Note that it is necessary with

a type cast to a Person object.

Comment

When you deserialize an object, it may be as the same type as the type the object is serialized as. Here
we must remember that an object’s type is also identified by the namespace that contains its type. That
is why I in the above examples have placed the class Person in a class library so that Person is the same

type in both programs.

Exam63
XML serialization

This example is, in principle, exactly the same as the previous two, but instead of using a BinaryFormatter

the program use a XmlSerializer, so that the object is stored as XML, instead of binary data.

How to

Again, start with putting a reference to the dll with the class Person. The code is as follows:

using System;

using System.IO;

using System.Xml.Serialization;
using Datatypes;

namespace Exam63
{
class Program
{
static void Main(string[] args)
{
Save () ;
Load () ;
}
public static void Save()
{
Person pers = new Person ("Knud Andersen", "Skarpretter");
Serialiser (pers);

}

public static void Load()
{

Person pers = DeSerialiser();
if (pers != null) Console.WritelLine (pers);

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Object serialization

private static void Serialiser (Person pers)

{

XmlSerializer xs = new XmlSerializer (typeof (Person));
FileStream stream = File.Create ("F:\\Temp\\Person.xml");
xs.Serialize (stream, pers);

stream.Close() ;

}

private static Person DeSerialiser()

{

Person pers = null;

try

{
XmlSerializer xs = new XmlSerializer (typeof (Person));
FileStream stream = File.OpenRead ("F:\\Temp\\Person.xml") ;
pers = (Person)xs.Deserialize(stream);

stream.Close () ;

}

catch
{
}

return pers;

Explanation
The code is realy unchanged and the main difference is that the program uses a different namespace and

thus also other serialization objects.

This e-book Y o N
ismadewith SETASIGN

SetaPDF h Y 4

\7\‘ PDF components for PHP developers

www.setasign.com

246 Click on the ad to read more

Download free eBooks at bookboon.com



http://s.bookboon.com/Setasign

The advantage to serialize an object as xml is that everyone who can read a text file can read and interpret

it. It does not require knowledge of the binary format which is used of a BinaryFormatter.

The content of the file Person.xml are as follows:

<?xml version="1.0"7?>

<Person xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<Name>Knud Andersen</Name>
<Position>Skarpretter</Position>

</Person>

If you look at the xml that is generated, you can almost see that it is not enough that you can deserialize

the object. For an object can be xml serializable’s a there are few more things that must be met:

o there must be a default constructor

o there must be get and set properties for all instance variables

and both are satisfied of the class Person. Although binary serialization (and SOAP serialization as
shown below) does not require it, it’s a good idea to attach both a default constructor and the necessary

properties to classes that are defined serializable.

Exam64
SOAP serialization

This example is exactly identical to the above example with the difference that this time the object is

serialized by the SOAP protocol.

How to

As in other examples there must be a reference to the dll with the type Person, but this time there is a

little extra observation. The class to soap formatting is in the namespace:

using System.Runtime.Serialization.Formatters.Soap;

but this namespace is not included in the dlls that Visual Studio makes references to as default. It is

therefore necessary to set a reference to the namespace manually (see below). Then the code can be written:

using System;

using System.IO;

using System.Runtime.Serialization.Formatters.Soap;
using Datatypes;

namespace Exam64

{

class Program

{

static void Main(string[] args)

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Object serialization

Save () ;
Load () ;
}

public static void Save()

{

Person pers = new Person ("Gudrun Mortensen", "Heks");
Serialiser (pers);

}

public static void Load()
{

Person pers = DeSerialiser();
if (pers != null) Console.Writeline (pers);

}

private static void Serialiser (Person pers)
{
SoapFormatter sf = new SoapFormatter();
FileStream stream = File.Create ("F:\\Temp\\Person.txt");
sf.Serialize(stream, pers);
stream.Close () ;

}

private static Person DeSerialiser()

{

Person pers = null;

try

{
SoapFormatter sf = new SoapFormatter();
FileStream stream = File.OpenRead ("F:\\Temp\\Person.txt");
pers = (Person)sf.Deserialize(stream);

stream.Close () ;

}

catch
{
}

return pers;

248

Download free eBooks at bookboon.com



Explanation

I will not interpret the result (ie explain the SOAP protocol), but it is important to note that it is XML,

and thus is text and thus in principle that everyone can read the content.

<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:clr="http://schemas.microsoft.com/soap/encoding/clr/1.0"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<al:Person id="ref-1" xmlns:al=
"http://schemas.microsoft.com/clr/nsassem/Datatypes/
Datatypes$2C%20Version%$3D1.0.0.0%2C%20Cultures3Dneutral%2C%
20PublicKeyToken%3Dnull">
<name id="ref-3">Gudrun Mortensen</name>
<position id="ref-4">Heks</position>
</al:Person>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.

Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

OSRAM
Light is OSRAM SYLVANIA

0

Download free eBooks at bookboon.com


http://s.bookboon.com/osram

C# 1 Introduction to programming and the C# language Object serialization

Exam65
Serialization of a collection

The aim of this example is to show that you can also serializes a collection of objects, and in this case

a collection of Person objects.

namespace Exam65
{
class Program
{
static void Main(string[] args)
{
Save () ;
Load () ;
}

public static void Save()

{
List<Person> list = CreatelList();
Serialiser (list);

}

public static void Load()

{
List<Person> list = DeSerialiser();
if (list != null) Show(list);

}

private static List<Person> CreatelList ()

{
List<Person> list = new List<Person>();
list.Add (new Person ("Frede Andersen", "Mestersvend"));
list.Add (new Person ("Gudrun Knudsen", "Spakone"));
list.Add(new Person ("Karl Petersen", "Natmand")):;
list.Add (new Person ("Maren Hansen", "Sin mands kone"));
return list;

(
(
(
(

}

private static void Show (List<Person> list)
{
for (int i = 0; i < list.Count; ++1i) Console.WriteLine(list[i]);

}

private static void Serialiser (List<Person> list)

{
BinaryFormatter bf = new BinaryFormatter();
FileStream stream = File.Create ("F:\\Temp\\List.dat");
bf.Serialize(stream, list);
stream.Close () ;

}

private static List<Person> DeSerialiser ()
{
List<Person> list = null;
try
{
BinaryFormatter bf = new BinaryFormatter();
FileStream stream = File.OpenRead ("F:\\Temp\\List.dat");
list = (List<Person>)bf.Deserialize (stream);
stream.Close () ;

250

Download free eBooks at bookboon.com



}

catch
{
}

return list;

Explanation

There is really not much to explain, and the only thing to point out is that the various collection classes

generally are Serializable, and a list of Serializable objects (objects of the type Person) can therefore

immediately be serialized.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language User defined serialization

32 User defined serialization

The serialization process as described is generally seen by the programmer simple and there is rarely
reason to do more than are described above. However, there is the possibility to intervene in the process

if there are special needs.

As an example one can imagine that a class has variables that you, for one reason or another, do not
want to be serialized. Below is a class Employee which inherits the class Person and expands it with two
variables, the first being the date of employment, while the second is the current year. The class has a
method Seniority(), which - somewhat simplified - returns an employee’s seniority as the number of
years between year of employment and the current year. The class is Serializable, but it makes no sense
to serialize the variable year, since its value depends on when the program is run. However, one can

mark a variable with the attribute NonSerialized, which says that it should not be serialized.

[Serializable]
public class Employee : Person

{

private DateTime date;

[NonSerialized]
protected int year = DateTime.Now.Year;
360°
thinki
Deloitte
DiSCOVCI‘ the truth at WWW.dClOittC,CalcarCCrS © Deloitte & Touche LLP and affiliated entities.

252 Click on the ad to read more

Download free eBooks at bookboon.com


http://www.deloitte.ca/careers

C# 1 Introduction to programming and the C# language User defined serialization

[OnDeserialized]
public void InitYear (StreamingContext context)
{

year = DateTime.Now.Year;

}

public Employee (string name, string position, DateTime date)
base (name, position)

this.date = date;
}

public int Seniority()
{

return year - date.Year;

}

It does provide a small problem with getting this variable initialized when an object is deserialized. This is
handled by the method InitYear(), which is a method which is performed after the deserialization process.
Here you must note the attribute, which tells that it is a method to be performed after deserialization
and the method’s signature and the parameter type StreamingContext that is an enum that is rarely used

for anything.

The following program serializes and deserializes an Employee object:

namespace Exam66
{
class Program
{
static void Main(string[] args)
{
Save () ;
Load() ;
}

public static void Save()
{
Employee employee = new Employee ("Karlo Andersen", "Tater",
new DateTime (2002, 03, 15));
Serialiser (employee) ;

}

public static void Load()
{
Employee employee = DeSerialiser();
if (employee != null) Console.WritelLine (employee) ;

}

private static void Serialiser (Employee employee)

{
BinaryFormatter bf = new BinaryFormatter();
FileStream stream = File.Create ("Employee.dat");
bf.Serialize(stream, employee, null);
stream.Close();

253

Download free eBooks at bookboon.com



private static Employee DeSerialiser()
{
Employee employee = null;

try

{
BinaryFormatter bf = new BinaryFormatter();
FileStream stream = File.OpenRead("Employee.dat");
employee = (Employee)bf.Deserialize (stream);

stream.Close () ;
}
catch
{
}

return employee;

There are other corresponding attributes that can be used to decorate the methods of performing a

similar signature:

o OnDeserializing to provide a method which is carried out before the deserialization process
o OnSerialized specifies a method that is performed immediately after the serialization process

o OnSerializing which specifies a method being carried out before the serialization process

In addition to that as illustrated above where you can define methods which are performed before and
after, respectively serialization and deserialization, it is also possible to directly control the process in
terms of how data is serialized and deserialized. The principle is illustrated by the following class that

represents a member who is a specialization of the class Person:

[Serializable]
public class Member : Person, ISerializable
{

private string ssn;

private string phone;

private string email;

public Member (string ssn, string name, string position, string
phone, string email)
base (name, position)

this.ssn = ssn;
this.phone = phone;
this.email = email;

}

public Member (SerializationInfo info, StreamingContext context)

{

ssn = info.GetString("ssn");

Name = info.GetString("name");

Position = info.GetString("position");
phone = info.GetString ("phone");

email = info.GetString("email") .ToLower () ;

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language User defined serialization

public string Ssn

{
get { return ssn; }
set { ssn = value; }

public string Phone

get { return phone; }
set { phone = value; }

}

public string Email

{
get { return email; }
set { email = value; }

}

public void GetObjectData(SerializationInfo info, StreamingContext context)
{

info.AddValue ("ssn", FormatSsn());

info.AddValue ("name", Name) ;

info.AddValue ("position", Position);

info.AddValue ("phone", FormatPhone());
info.AddValue ("email", email.ToUpper()):

}

private string Format Ssn()
{
StringBuilder builder = new StringBuilder();

for (int 1 = 0; i < ssn.Length; ++1)
if (ssn[i] >= '0' && ssn[i] <= '9")
{
SIMPLY CLEVER SKODA

We will turn your CV into
an opportunity of a lifetime

1;1 i 11,1 -

et e )

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

255

Click on the ad to read more

Download free eBooks at bookboon.com


http://www.employerforlife.com

builder.Append(ssn[i]);
if (builder.Length == 6) builder.Append('-");
}

return builder.ToString();

}

private string FormatPhone ()
{
StringBuilder builder = new StringBuilder();
for (int 1 = 0, J = 0; 1 < phone.Length; ++i)
if (phone[i] >= '0' && phone[i] <= '9'")
{
builder.Append (phone[i]) ;
++3;
if (3 == 2)
{
builder.Append (' '");
3 = 0;
}
}

return builder.ToString();

}

public override string ToString()

{
return string.Format ("{0}\n{1}\n{2}\n{3}", ssn, base.ToString (), phone, email);

}

It is important to note that the class implements the interface ISerializable, which is an interface that
defines a single method: GetObjectData(). If a serializable class implements this interface, a formatter
will call the method GetObjectData(), and here you can so in the form of key / value pairs define how
each element should be serialized. A key is a string, and often you will use the name of a variable, but it
is not a requirement. In this case - just to do something — the method will ensure that a social security
number is saved as 6 digits, a hyphen and 4 digits and a phone number is stored as pairs of digits separated
by spaces, and that your email address only has capital letters. Note that this method does not check if
the social security number and the telephone number are legitimate. In practice, it should be checked

somewhere, but it’s not here not to make the code more complex than necessary.

The class also has a new constructor there among other things has a SerializationInfo parameter. This
constructor is needed to deserialize an ISerializable object, and here you can with a series of get methods

gets the values which are serialized in the method GetObjectDatal().

namespace Examé67

{

class Program

{

static void Main(string[] args)

{
Save () ;
Load () ;

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language

public static void Save()

{

User defined serialization

Member member = new Member ("1234567890", "Nikoline Frederiksen",

"SinMandsKone", "87654321", "niko.Frede@mail.DK"):;

Serialiser (member) ;

}

public static void Load()
{
Member member = DeSerialiser();
if (member != null) Console.WriteLine (member);

}

private static void Serialiser (Member member)

{
BinaryFormatter bf = new BinaryFormatter();
FileStream stream = File.Create ("Member.dat"):;
bf.Serialize (stream, member, null);
stream.Close () ;

}

private static Member DeSerialiser()

{

Member member = null;

try

{
BinaryFormatter bf = new BinaryFormatter();
FileStream stream = File.OpenRead ("Member.dat");
member = (Member)bf.Deserialize (stream);

stream.Close () ;

}

catch
{
}

return member;

257

Download free eBooks at bookboon.com



Part5 Final examples

I will finish the book by showing two programs, which is slightly larger than the book’s other examples,
and the goal is to have a little more focus on the development process and to demonstrate the use of
the book’s many concepts in some larger context. The goal is therefore to focus on the use of the book’s

substance, and examples such as adding nothing new.

Lottery

This example has primarily focused on classes and the choice of classes and how these classes interact

to solve the specific task.

The task

The task is to write a console application that can print lottery tickets, but also can be used from this week’s
lottery numbers to determine the number of correct rows. The program must be used as a command

from a prompt, where you with using of options can specifie what to do.

A typical use of the program is that you use the program to form the rows that you want to play. After

this week’s winning numbers are drawn, you use that program to determine the game’s outcome.

There are several kinds of lottery, and as an example you have the normal lottery with 36 numbers and
the Wednesday lottery with 48 numbers. The program should be prepared in such a way that it can be
applied to all of the lotto games, which is of that nature.

Comment

The above description does not describe the job adequately. There are several things that must be addressed
before one can tackle the task and especially the user’ interaction with the program and thus the format

of the individual commands, like the need for a clarification of the format of the programs result.

The development of a program may start with such a clarification of the task, a job which is usually
called for analysis and the result is a requirements specification, where the final requirements for the
finished program are established. The work can be anything from simple clarification of issues related to
the task to a phase that extends over time and where one might only specify parts of the task at a time.
For very large programs, especially if there is uncertainty attaching to the solution, experience shows
that it is impossible to specify all requirements in advance, but that we must continually work with
the requirements as to get greater insight into and understanding of the task to be solved. The result
is that the analysis is important and necessary, and in practice the analysis can be extensive and time
consuming. On the other hand one must not underestimate the importance, since wrong decisions can

be disastrous for the finished product.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Part 5 Final examples

Analysis

In this task, I will define a lottery game as a number of lottery rows, and in which a lottery row consists
of a number of different lotto numbers, which are integers within a range. A lotto game is characterized

by the following parameters:

-a the smallest allowable number 1
-b  the largest allowable number 36
-1 number of lotto numbers per row 7

-n  number of rows to be played

where the last column is a default value. This means that I have chosen a normal (Danish) lottery as

default. These values can be provided as options on the command line.
You can also set the following options:

-0 output file for the result, which as default is the screen
-i input file with numbers of the week’s lottery game that must be checked

-u  this week’s lotto (winning) numbers separated by spaces

The two latter options are used to control the lotto numbers for the current week, while the other five

options are relating to form the rows for a new lottery game.

Ijoined MITAS because e e

I wanted real responsibility www.discovermitas.com

I'was a construction
SUPErvisor in

the North Sea
advising and

e Lelping foremen
% solve problems

MAERSK

259 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/mitas

The program will be called lotto, and below are examples of legal commands:

lotto -n 20

lotto -a 1 -b 48 -r 6 -n 20 -o uged2.txt

lotto -i uged2.txt -u 2 13 18 22 34 35

lotto -i uged2.txt -u 2 13 18 22 34 35 -o uge4d42Res.txt

Generally there are the following requirements for the arguments on the command line:

« All options that have a default value (a, b, 1, 0) may be omitted.
« Options may appear in any order.

 There must be no conflicting options (eg. -r and -i) on the same command line.

The concept of a lottery coupon is not included in the program because it does not make sense - a lottery

game is in principle one big coupon that can have an arbitrary number of rows.
There are following requirements to the lotto rows:

o The numbers in each lotto row must be sorted in ascending order.

« The same number must not occur more than once.

o The rows must each be sorted in ascending order (after the first number after the next
number, etc.).

o The first row defines the game and contains the date, the smallest and largest legal lottery

number and the number of lottery numbers per. row.

The result of the verification must be a file (the screen by default) that contains all rows, but for each
row is added a number indicating the number of correct lottery numbers. The result should be sorted

by this number in descending order.

A particular issue is error handling. If you enter an illegal command, for example because it is incorrect,
missing or conflicting options, illegal lotto numbers, illegal files, etc., the program will terminate with

an error message and the program’s syntax. It is standard action for commands.

If in a check of the week’s lottery there is an illegal row, the number of correct lottery numbers are

replaced with a short error message, and possibly illegal rows must be placed last in the result.

One last thing concerning the program parameters:

a>1Ara<100
b>2a+5Ab<100
r>2Ar<hb

r<b-a

Download free eBooks at bookboon.com



Stated slightly differently, a lottery number can't exceed two digits, and a lottery row can have up to
15 numbers. Similarly, there are proposed some minimum requirements. There are not really so many
reasons for these requirements except that it makes it easier to format the result, and it avoids some
special cases, such as that the game can be empty, which in practice is uninteresting. The requirements

are based on practical games, so the program can play typically occurring lottery games.

Comment

Above, I have in an analysis defined the requirements for the program and then you can start the work to
write the program, but one should also start with some thoughts about how the program should be made

including which classes the program will consist of. It is a work which in practice is called for design.

When making an application, it is important that the program is error free and meets the requirements. Is
it the case, the task is in principle solved, but there are also other goals that are important. In particular, it
is important that the program is designed in such a way that in future it is easy to maintain the program.
All programs must be maintained and modified over time and therefore the program must be designed
such that it is easy to read and understand, and it must be designed so that a change in one place does
not mean that the change is spreading across the whole program, so very large parts of the code should
be changed. That’s why you should spend time on design, so you do the necessary considerations of
program architecture. One can think of design as a place where you make working drawings, something

you do in every other places where you have to build or produce anything.

In addition to maintenance performance can also be important, and it is a matter of algorithms. To write

good algorithms is also a design activity.

Design

The centerpiece of the above program is a lottery row, which consists of lottery numbers corresponding

to the current lottery game. A program must therefore be associated with an object that defines the game:

Lotto

min: int
max: int
size: int

and the program must have exactly one of those objects which are available for the program’s other classes.

Download free eBooks at bookboon.com



A lottery number is not much more than an integer with a random value within the range defined by
the Lotto object

LottoNumber

rand: Random
number: int

and an object of the type LottoNumber should not be able to change value. A LottoRow consists of a

number of LottoNumber objects and an integer that indicates how many there are correct:

LottoRow

correct: int

Validate(LottoRow)

It is a relatively complex class. The method Validate() will validate the row from the weekly lottery and
determine the number of right numbers. Moreover, the class should have a constructor, which aims to

ensure that all LottoNumber objects are different, and the row is sorted in ascending order.

.

UROPEAN
# BUS INESS
SCHOOL

FINANCIAL TIMES

-

7 g R #gobeyond
u( -_ |

v
o
]

|
j;b

MASTER IN MANAGEMENT ~

~ - Beeause achieving your dreams is your greatest challenge. IE Business School's Master in Management taught in English,
Spanish or bilingually, trains young high performance professionals at the beginning of their career through an innovative
and stimulating program that will help them reach their full potential.

Choose your area of specialization.
Customize your master through the different options offered.
Global Immersion Weeks in locations such as London, Silicon Valley or Shanghai.

Because you change, we change with you.

Download free eBooks at bookboon.com


http://s.bookboon.com/IE

The game itself is defined as a class that has a number of lottery rows, and is the program’s most important

class:

LottoGame

Create()
Validate()

The class should have two methods, that respectively create lottery rows and validate an existing game
up against this week’s lottery numbers. Both methods are relatively complex and must include sorting
of the lottery rows, but each on there own criteria. It is also these methods that must print the result to

a file and read an existing game from a file.

The relation between the above classes can be illustrated in the following figure:

LottoFile

A 0.2

1
1 \
Program > Lotto
1
\ n n
LottoGame > LottoRow > LottoNumber

Here the class LottoFile is a text file that contains lottery rows. Actually there are two kinds of files:
 one containing lottery rows for a new game - formed by the method Create() in LottoGame
« one containing lottery rows that are validated against this week’s lottery numbers - formed

by the method Validate() in LottoGame

One can therefore consider whether, instead of to use a design that is a specialization:

LottoFile

LottoResult

Download free eBooks at bookboon.com



Finally there is the class Program, which is the class with the Main() method. It is indeed a complex

class, since it is that class that must validate the parameters from the command line.

With the above, it is the essentials regarding the programs classes and hence the program’s architecture

is in place.
Then there are the algorithms, and immediately the following algorithms are not trivial:

 Sorting the lottery rows and a collections / arrays of lottery rows
 Validating the command line in Main()

o The method Create() in LottoGame

o The method Validate() in LottoGame

Sorting is generally not straightforward and there are several algorithms, each with their advantages and
disadvantages, but sorting is actually a complete method in the .NET framework, so there is no need

to write your own sorting method.

Then there is the validation of the command line, which should be done as follows:

if option -i occurs then Check for Validate or Check for Create
if there is an error then
{

print an error message
terminate the program

Check for Create until there is an error or all arguments are ok
validate option -a, -b, -r

if ok then create a Lotto object

validate n, that must be greater than 0

if there is an -o option then validate the filename or let the name
be the screen

if ok then create a LottoFile object

Check for Validate until there is an error or all arguments are ok

validate input file and check that it is a LottoFile

if ok then create a Lotto object from the first line in the input file

Validate the week's lottery numbers

if ok then Create a LottoRow object for the week's lottery

if there is an -o option then validate the filename or let the name be the screen
if ok then create a LottoFile object

The algorithm to create lottery rows consists primarily of a loop that creates rows in accordance with

the requirements and prints the finished result in a file:

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Part 5 Final examples

Metoden Validate()

Create a container (array, list) for the lottery rows
repeat until all rows are created
{
create a new row
if the row not already are in the container then add it to then container
}
Sort the container in increasing order
for each row in the container

{
print the row to the output file

}

Finally you have from the weekly lottery numbers (winning numbers) to validate a game for the number

of correct numbers and print the result in a file:

Metoden Validate()

Create a contain (array, list) to the lottery rows
repeat for each row i the input file

{

if row is a legal row then

—~—

validate row against the weekly lottery

O -
R

—~—

mark the row as illegal

_-

STUDY AT A TOP RANKED
INTERNATIONAL BUSINESS SCHOOL

no.l

n_ine years
In a row
Reach your full potential at the Stockholm School of Economics,

in one of the most innovative cities in the world. The School

$ is ranked by the Financial Times as the number one business
S school in the Nordic and Baltic countries.
Stockholm

{ ]
Visit us at www.hhs.se

265 Click on the ad to read more
Download free eBooks at bookboon.com


http://s.bookboon.com/hhs2016

add the row to the container

}
Sort the container in descending order
for each row in the container

{
print the row to the output file

}

Comment

After you have completed a design, you have an overall architecture for the program and have made
important decisions for the finished program. You are now ready to write program’s code, but no matter
how careful you were during both the analysis and the design, it may happen that there will be new
things, and perhaps you even have to create new requirements, and then the requirements specification
must be updated. In the same way, the programming often lead to the occurrence of changes to the
design, with possible new classes which influence the application architecture. Where applicable, the

design must also be updated.

There are essentially two reasons to make a design. The key is that the design work is a necessary process
to ensure that important decisions are in place before tackling the programming process and the other
is that the result of a design can later serve as documentation of how the application is made. For the
sake of the final reason the design should be updated with significant changes as the documentation

value would not exist.

Regarding the first with the design as an important activity towards the final program, you should
be aware of the level of detail. Design is referred to as a process whose purpose is to make important
decisions about the program architecture and make choices regarding algorithms etc. The design must
not be too detailed, and there’s nothing wrong with that there in the programming are created classes that
do not appear in the original design. It is typical classes that do not represent the key concepts within
the program area of concern, but are classes as a programmer establish, because they are useful to get
a good, maintainable code out of it. Conversely, there may also happen that programming has created
new classes of important concepts, and is it the case, the design must be updated. Regarding the level of
detail you should always keep in mind that a design must provide an oversight and establish the basic
architecture, but a design must not be so detailed that it begins to resemble the finished program, written
using diagrams and pseudo code. If so, you have created something that still does not fit on the finished

result, and at best you have not been achieved other than to spend your time in an inappropriate manner.

Programming

I will not show the code here because it is relatively extensive, but I will refer to the finished code,
which, incidentally, is fully documented with comments. I will instead focus on what’s happened with

the requirements and design after the code is finished.

Download free eBooks at bookboon.com



Requirements are extended with a mention that the game should not take into account the concept

supplementary lottery numbers.

Moreover, there is a single addition. Once you've created a lottery game and want to validate it against
this week’s lottery, the result should be followed by a distribution that shows how many rows there are

with 1 right how many rows there are 2 right, etc. The result could, for example be the following:

In the design I have only made one important change. Originally, I worked with a LottoFile and possible
a specialization of it. I have changed the design so that there instead are two File types. Its overall

architecture is therefore:

OutputFile InputFile
A A
1 1
1
Program > Lotto
1
Y n n
LottoGame » LottoRow > LottoNumber

You can get Visual Studio to create a class diagram. In Solution Explorer, you choose

Add | New Item

and here you choose Class Diagram. You can then drag classes from Solution Explorer into the chart and
get a picture that resembles the following (see next page). One should not overestimate the importance

of this facility, but the chart can be used as a documentation of how the program is built.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Part 5 Final examples

Test

When the program is written, it must be tested, and possibly errors must be corrected. It sounds simple,
but it’s not, and if not you do it systematically, you will almost certainly come to overlook some situations
and have the risk that the program comes with errors. Even this program, which after all is not very

large, requires that you must do some considerations concerning tests.
I will split the test in three parts:
« That options are handled properly

o That the result is correct

o How the program behaves at a large number of rows

STUDY AT

LINKOPING UNIVERSITY, SWEDEN
RANKED AMONG TOP 50 UNIVERSITIES UNDER 50
Interested in Strategy and Management in International

Organisations? Kick-start your career with a master’s degree
from Linkoping University, Sweden.

;&;; Linkdping University

268 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/liu

C# 1 Introduction to programming and the C# language Part 5 Final examples

For testing, be sure to test both for a legitimate input and an illegal input, and in all cases, check whether

you get the expected result.

269

Download free eBooks at bookboon.com



In this case it is the possibility for 7 different options, which can either be there or not be there and if
one adds an extra possibility as an illegal option there are 8 options. For each of these options, there are
three possibilities corresponding to that which may be a legal value, an illegal value or the value may
be missing, and therefore there are somewhat similar to 3-2°* =768 possibilities for arguments on the
command line. Since you also must test whether the sequence of each option means something, you
can see that there will be an exceedingly large number of cases to test — so great that in practice it is
impossible to verify all cases by simple testing. This should be compared with that when a test fails, the
error must be corrected, and all tests should in principle go on again to be sure that the changes you

have made does not have unintended side effects.

In such a situation, sometimes I write a bat file with commands:

lotto

lotto -n 5

lotto -n 5 -a 1 -b 48 -r 6
lotto -n 5 -a 1 -b 48 -r 16
lotto -n 5 -a 1 -b 48 -x 5 -r 6
lotto -n 5 -a 1 48 -b -r 6

lotto -n 20 -o testl.txt

lotto -o resultl.txt -1 testl.txt

lotto -o resultl.txt -1 testl.txt -u 2 5 10 15 20 25 30 35
lotto -o resultl.txt -i testl.txt -u 5 10 15 20 25 30 35
lotto -o resultl.txt -u 5 10 15 20 25 30 35 -i testl.txt
lotto -b 48 -r 6 -n 10000 -o test2.txt

lotto -1 test2.txt -o result2.txt -u 8 16 24 32 40 48

Here are some commands are legitimate, others are illegal. If the file is called Test.bat and you then run

the commands like:

Test > test.txt

you get a file with the results, where it is easy to verify that the commands are executed correctly, and

above all it is easy to repeat the testing.

Expression

The program Lotto has primarily focused on classes and choice of classes, while the next program has

greater focus on algorithms.

The task

The task is to write a program where you can enter a mathematical expression that depends on one or

more variables, for example:

2*sin(x0) + sqrt(5* x1+3)

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Part 5 Final examples

which depends on two variables. Then, you can enter values for the expression’s variables and the program

must then evaluate the expression of these values.
If there is an error:
« you enter an expression that is not syntactically correct
+ you enter arguments that are not legal for the current expression
o an error occurs when the expression is evaluated
the program must print an error message.
In the example above, the expression includes sinus and square root. The program must support the most
common mathematical functions somewhat similar to what is possible with a mathematical calculator,

but it is a desire that it should be easy to expand the program with new functions, if the need arises.

In this case, the program is a console application, but it’s a wish that the basal parts of the code concerning

expressions can be used in other applications and, therefore, as well as possible is separated from the

part which has to do with the user’s input.

“I studied
English for 16 p
years but... -
...I finally
learned to
speak it in jus
Six lessons”

Jane, Chinese architect

OUT THERE

Click to hear me talking

before and after my

unique course download

271 Click on the ad to read more

Download free eBooks at bookboon.com



http://s.bookboon.com/EOT

Analysis

Before you can solve the task there are a few things to be clarified:

« what is an expression exactly — what is the syntax for an expression
o what is meant by evaluating an expression

o how should the user interaction to be

Regarding the first, the requirements are the following:

o An expression is not case sensitive and it should not matter if you write it with small or big
letters.

« An expression may contain any number of variables, referred to as x0, xI, x2, ..., that is an
x followed by a non-negative integer. There should be no requirement that the numbering is
consecutive. Finally, it should be allowed simply to write x as an alias for x0.

» You should always indicate numbers (constants) with a period as decimal point.

o An expression must support the four general operators +, -, * and /.

o It should be allowed to use parentheses.

o If a mathematical function has multiple arguments, they are separated by commas.

A mathematical function is identified by a name, and after the name there may be a parameter list given

in parentheses. In an expression, you can use the following functions:

 constant functions (functions without parameters)
° pl
. e

o functions in 1 variable

e sin

e asin
e (COS
e acos
e tan
e atan
e cot
e acot
e In

o exp
« log
« alog
e sQr

Download free eBooks at bookboon.com



o sqrt

e abs
o frac
o floor

« functions in 2 variables
o pow

e root

These are the basic requirements for an expression, but it is necessary to be more precise and to detail

the terms that may occur. I will do so using syntax diagrams.

Overall, an expression is as follows:

expression

——» argument

\

»  operator > expression

That is, an expression may be a single argument, or it may be an argument, followed by an operator,
which in turn is followed by a new expression. Note that it is a recursive definition in which a concept -

here an expression - that is defined by means of its self.
There remains to define what is understood by, respectively an argument and an operator. I will start
with the latter, which is merely a symbol for one of the four arithmetical operations. It can also be

described as follows:

operator

®
>
\J

P96

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Part 5 Final examples

Then there is an argument which is a somewhat more complex concept:

argument /—\
y = eonst ) }

A

function

4@—> expression —»@—

An argument can start with one or more signs (plus or minus). Then there are four possibilities

\

Y

Y

Y

o const, there will always be a non negative number - a string that can be converted to a
positive double

o var, that is a variable and thereby a string of the form X», where # is an index

o function, that is a mathematical function

 an expression in parentheses

Excellent Economics and Business programmes at:

N

&

university of E AACSB
groningen - f\CCREDITED

N A

| .
| |
“The perfect start
of a successful,

| ., international career’
‘- >
. K HERE
sy A CLIC

to discover why both socially
and academically the University

of Groningen is one of the best
places for a student to be

I

www.rug.nl/feb/education

274 Click on the ad to read more

Download free eBooks at bookboon.com


http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

Finally there is to define what a function can be and it can be described as follows:

function
a@—» argumentlist 4>@—

and where the name is one of the functions mentioned above.

\J

I also must define what an argumentlist is:

argumentlist

\/

—— > Expression

—»@—» argumentlist

Note that it is again a recursive definition, and an argument list is one or more expressions separated

by commas.
Thus, I have quite accurately described what we mean by a legitimate expression.

Regarding the evaluation of an expression is a matter of inserting values for the expression’s variables,

after then the expression’s value can be determined. The value of an expression should always be a double.

The latter problem is the user interaction. It can be described as follows:

enter expression

as _long as expression is not empty repeat
{

if expression is syntactically correct then
{

enter arguments
as long as there are entered arguments repeat
{

if the arguments are legal then
{

evaluate expression
print the result
}
or print an error message
enter arguments

}

or print an error message
enter expression

This means that entering either an expression or arguments ends when you just typed enter. Arguments

are entered as numbers on the command line separated by spaces.

Download free eBooks at bookboon.com



Design

Basically, I think of an expression as a class, and apart from a constructor that creates the expression from
a string the class should really only have a single method that can evaluate the expression. Equivalent

and based on the above outline concerning the user interaction you can outline the program as:

Program > Expression

Main()
EnterExpression()
EnterArguments()
Print()

Expression(string)
Value(arguments)

Here is the program and thus the class Program in principle simple and basically consists of

o the user interaction corresponding to the outline from the analysis

« entry and parsing an expression with checking whether an expression is legal
« entry and parsing of arguments to an expression

o print the result of evaluating an expression

« error handling

Regarding the first, is the sketch from the analysis actually an algorithm for the Main() method, and

there is not much to consider.

Entering an expression is simply entering a string, but parsing and checking whether an expression is
legal is by no means simple and the whole challenge of the task. However, I will defer this task to the
constructor in the Expression class, so it gets a string as a parameter and it is so constructor’s task based
on the syntax diagrams from the analysis to check whether the string represents a legal expression. If

not, the constructor should throw an exception.

When an expression should be evaluated, the user must enter one or more arguments separated by spaces.
Each of these arguments must be parsed into a double, and it must be done in the Program class, so

the method Value() in the Expression class has as argument an array of the type double as a parameter.

Print() is a simple method which will print the expression, arguments and what the expression is evaluated

to, for example something like

2*sin(x0) + sqrt(5* x1+ 3)
1.41

3.14

=06.2985498411563

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Part 5 Final examples

When the result is written in several lines, it is because and expresses incl. arguments can be long.

Finally, there is the error handling. When there is an error, there the program must print an explanatory

error message on the screen, and in principle errors can arise in three situations:

o The user enters an expression which is not syntactically correct. In this case the constructor
of the class Expression raises an exception.

o The user enters arguments to an expression that is not legal. In this case it is the class
Program which must capture and process the error.

« An expression can not be validated because there is an error in the calculations (eg. division

by 0). Here the Expression class must throw an exception.

In class Expression, there are two challenges in form of the constructor and the method Value(), and
here the first challenge is the largest. The constructor has a parameter in the form of a string and must

perform three operations:

 Scanning the expression which means that the string should be split into the elements
(tokens) that the expression consists of.

« Parse the expression that means to control that the expression’s syntax is correct according
to the syntax diagrams from the analysis.

o Converting the expression to postfix form, meaning that the expression elements must be

reorganized into a sequence of tokens in postfix form.

In the past four years we have drilled

89,000 km

That's more than twice around the world.

Who are we?

We are the world’s largest oilfield services company’.

Working globally—often in remote and challenging locations—
we invent, design, engineer, and apply technology to help our
customers find and produce oil and gas safely.

Who are we looking for?
Every year, we need thousands of graduates to begin
dynamic careers in the following domains:

‘ ‘ m Geoscience and Petrotechnical

m Commercial and Business

What will you be?

a1 careers.slb.com Schiumberger

277 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/Schlumberger1

To solve the first problem, the parameter string is divided into elements which are usually called tokens.
A token is thus an object that indicates an element that can be part of an expression. If you for example

consider the expression

(123+56)*789

it consists of 7 tokens:

( 123 + 6 ) * 789

When the string is divided you have a number of tokens, each of which is a string. The individual tokens
must be treated differently and have different properties, so I will write a class to each token that can
occur, and the classes are arranged in a hierarchy (see next page). All types are exceedingly simple, and
the cause of the hierarchy is partly that it allows one to treat all tokens in the same way and second, that

in that way it is easy to expand with new tokens, if such an expression must support a new function.

After the scanning, you have a list of tokens, and parsing has to investigate whether this list of tokens
is in accordance with the syntax rules. In the code it corresponds to write a method corresponding to
each of the above diagrams, and it is in principle simple, but requires a technique called recursion, that

is described below.

Usually you write an expression on infix form which means that one writes the operator between two

operands, ie for example.

2+3

which means the sum of 2 and 3. If there are several operators, we need rules for how the expression

must be evaluated. For example means

2*%3+4

that you first calculate the product of 2 and 3 and then adds this result to 4 — the result is 10. In contrast,

means

2+3%4

that you first calculates the product of 3 and 4, since one attaches multiplication higher precedence than
addition - the result is therefore 14. If you wish to suppress this rule, so the addition is first performed,

it is necessary to insert parentheses:

(2+3)*4

having the value of 20.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language

Part 5 Final examples

If in an expression there are several operators of equal priority, the rule is that the operators are evaluated

from left. Below is first computed the sum of 2 and 3 and then subtract 4 because addition and subtraction

have the same priority:

2+3-4

Token

ArgToken

ConstToken

A4

»  VarToken

OprToken

Y

AddToken

» SubToken

»  MulToken

»  DivToken

A

SignToken

\ 4

LeftToken

\

RightToken

\4

SepToken

A4

FuncToken

Download free eBooks at bookboon.com

PiToken

A\

»  SinToken

AsinToken

\ 4

» RootToken

279



C# 1 Introduction to programming and the C# language Part 5 Final examples

An expression may be more complex, for example

1+2*(3+4) /((5+6)*7)

where there are parentheses within the parentheses. The value of the expression is, moreover, 0.194805.
When an expression contains parentheses, the parentheses are evaluated first, starting with the innermost
parentheses. It is certainly possible to write a method that does it, but if the expression becomes more
complex with mathematical functions and many parentheses, it is not simple, and therefore one will
typically go on a second path and instead convert the expression to postfix form. This means that
an operator is assigned in accordance with the arguments that it should operate on. Thus, the above

expression is written as

23+

23%4 +

234*+

23 +4%*

23+4—

1234 +*4+56+7%*/

American online

is currently enrolling in the
Interactive Online
programs:

enroll by September 30th, 2014 and
save up to 16% on the tuition!

pay in 10 installments / 2 years
Interactive Online education

vvyvVvyyVvyy

visit to
find out morel

Note: LIGS University is not accredited by an

nationally recognized accrediting agency listed

by the US Secretary of Education.
ore info here.

—

280 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/LIGS

If for example you must calculate the value 3 *4 +, it works as

23*%4 +
64 +
10

The idea is that any expression can be written in postfix form without using of parentheses. When
the expression should be evaluated, it is traversed just from left to right. Every time you come to an
operand, put it on a stack. Coming to an operator you pop the stack twice (if it is an operator with two
arguments) calculates the result and put it on the stack. Finally the stack will contain only one element
which is the result. The method may based on the last of the above expressions be is illustrated in the

following manner:

4
3 3 7 6 7
2 2 2 2 14 5 5 11 11 77
1 1 1 1 1 1 15 15 15 15 15 15 0.1948
1 2 3 4 + * + 5 6 + 7 * /

The conclusion is that it is much easier to evaluate an expression in postfix form than one in infix form
and it is therefore worthwhile to seek a strategy (an algorithm) to convert an expression from infix to

postfix form. It may be done in the following manner by using a stack:

the expresseion is traversed from left and for every element
1. if it is a sign push it on the stack
if it is a funtion push it on the stack
if it is a variable push it on the stack
if it is a number push it on the stack
if it is a left parenthes push it on the stack
if it is a right parenthes, then pop the stack and add the top of the
stack to the resultat until you get a left parenthes
7. if it is an operator then pop the stack and add the top of the stack to
the resultat as long as the priority of the top of the stack is less than
or equal to the priority of the element, push the element on the stack
pop the stack and add the top of stack to the result until the stack is empty

o U1 W W N

As you can see, it is crucial in the algorithm that there are assigned the right priorities for the individual
elements. It is the priorities that determine when to move from the stack to the result, which is just a
list. The two important points in the algorithm are 6 and 7. If you get to an operator - for example a
multiplication - you must first move everything on the stack with a better priority than multiplication
to the result list. It will be numbers, variables and functions, and then the multiplication operator is
put on the stack. So, if the expression tokens are converted to postfix form, it is simple to implement

method Value() in the class Expression.

Download free eBooks at bookboon.com



If you look at the expression

1+2*(3+4) /((5+6)*7)

it can be converted to postfix form in the following manner:

1
12
123
1234+
1234+« +
1234+ +5
1234+ +56+
1234+« +56+7 =~
1234+« +56+7~x]/
4
3 + +
( ( ( (
2 * * * * * *
1 + + + + + + + +
( ( ( ( ( ( ( ( ( (
( 1 + 2 * ( 3 + 4 )
6
5 + + 7
( ( ( ( * *
( ( ( ( ( ( ( (
/ / / / / / / / /
( ( 5 + 6 ) * 7 )

In this particular task, I will apply the following priorities:

« numbers, variables 0
e sign 1
« function 2
« multiplication, division 3
 addition, subtraction 4
o left parenthes 9
o right parenthes, comma 99

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Part 5 Final examples

Comment

To write the code (syntax checking) I need recursion and therefore a few words about what it is.

A method in a class can be seen as an isolated code that performs a specific operation on the basis of
parameters and possibly returns a value. The method’s statements are the commands it performs, and
there are no limitations on what it can be. It may, for example be calling another method, and a method
thus especially can also call itselves. If so, one says that the method is recursive. As an example of a
recursive method - and a method which does not relate to the specific task - is shown a method that
determines the factorial of n:

static ulong Factorial (uint n)

{
if (n == 0 |] n == 1) return 1;
return n * Fakultet(n - 1);

At first glance, recursive methods are difficult to comprehend, but if first one is familiar with the principle,
it is not particularly difficult. Above if n is 0 or 1, one can directly determine the result. If n is greater than
1, one can determine the factorial of # as n times the factorial of #-1. One can think of it in that manner
that to determine the factorial of  is reduced to determining the factorial of n-1 which is a smaller problem
than the starting problem: To determine the factorial of n. If you repeat that operation a sufficient number

of times, to get to the simple case where 7 is 0 or 1 and where one can directly determine the result.

v---v--------v---v---v---vv--vv--vvv--vv--ov--vv--vv--vvv--vv-cv--co--coAlcateluLUcent @
www.alcatel-lucent.com/careers

"5

<

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".

283 Click on the ad to read more
Download free eBooks at bookboon.com



http://s.bookboon.com/AlcatelLucent

The principle of a recursive method is such that a problem may be divided into two problems: A simple
problem which can immediately be overcome, and a simpler (smaller) problem, of the same kind as

the original.

Formally, the factorial of # is defined as follows:

| 1 for n=0o0rn=1
nl=
n*(n-1)! for n>1

It is by a recursive definition, and in such situations is recursion often a good solution. In this case, the

method Factorial() is simply only a rewrite of the mathematical definition to a method in C#.

It is clear that in this case, the method also can be written iteratively by means of a simple loop, and this
solution would even be preferable, while in other situations, the recursion is a good solution that can
provide simple solutions and even a code that is easier to read and understand than a corresponding

iterative solution.

However, there are reasons to always be aware of recursive methods because each recursive call creates
an activation block on the stack. There is therefore a danger that the recursive methods use the whole

stack, with the result that the program will crash.

Programming

This time there are no changes for either the analysis or the design, and the program is written entirely

in accordance with the above design.
According to the task, there were two specific requests:

o That it should be easy to expand an expression with new functions.

o That an expression could be used in contexts other than the specific task.
I will therefore examine to what extent these goals have been met.

The program consists primarily of a class Expression, combined with a large number of other types in
terms of interfaces and classes for the individual tokens. Finally, there is a static class Tokens with only
one method, which will translate the name of a token to a Token object, as well as a static class Tokenizer

with two static auxiliary methods to scan the input string.

In order to better reuse these classes in other contexts, they are placed in a class libray, and the result
is a dll that is used in the main program - and thus in the same way can be used in other applications
that may need the type Expression. Since I only once previously have shown how to make a class libray

I will go through the process.

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Part 5 Final examples

I'll start with a new Console Application project that I've called Expression. This creates a Solution named
Expression and including is a project also called Expression. A Solution in Visual Studio can have multiple
projects, and in this case I right click on the Solution name in Solution Explorer and select Add | New

Project:

/

Leadiny
% Maastricht University o Learnin:

Join the best at
P i N - 33" place Financial Times worldwide ranking: MSc
the Maastricht University International Business

+ 1% place: MSc International Business
M + 1% place: MSc Financial Economics
SChOOI Of Bus' ness a nd « 2" place: MSc Management of Learning
. - 2" place: MSc Economics
ECOHOm |CS! - 2" place: MSc Econometrics and Operations Research
- 2" place:MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is
the best specialist
university in the
Netherlands
(Elsevier)

Master’s Open Day: 22 February 2014

www.mastersopenday.nl

285 Click on the ad to read more

Download free eBooks at bookboon.com


http://www.mastersopenday.nl

Then you get the usual project window, and I create a Class Library project, which I have called

MathExpression:

I delete the auto-generated class called Class1, and then adding and writing the classes as my library

should contain.

I made another little step in terms of creating a reusable class library. The class Expression is the primary
class, and it is to be used by the program itself and must therefore be defined public. The same applies
to the class Tokenizer since it also may have an interest in contexts other than the current program, but
all the other classes are defined internal (which, incidentally, is the default), indicating that they can
only be used within the dll that contains the classes. Of course it is not necessary, but it is classes, all
of which can be thought of as auxiliary classes to Expression, and therefore should in principle not be
available outside the dll. With Visual Studio terms one can think of an internal type, as a type that can

only be used for the project that it is a part of.

With the dll finished you must set a reference to it in the main program. It is easy, since both projects

are in the same Solution. In the project Expression right click on References:

Download free eBooks at bookboon.com



C# 1 Introduction to programming and the C# language Part 5 Final examples

and here you choose Add Reference. You can now find the dll in the Solution page:

After this the dll is added to the program’s project and can be used.

Then there is the problem that it should be possible to expand the program with new functions, and it is
only partially solved. As an example, I will expand the class Expression with a function that determines

a factorial. This requires two changes in the dll. First, adding a new token:

internal class FactorialToken : FuncToken

{

public override int Count

{
get { return 1; }
}

public override double Value (params double[] x)
{
if (x.Length != Count || x[0] < 0)
throw new ExpressionException("Factorial(x), x >= 0: Ulovligt argument...");
uint n = (uint)x[0];
ulong u = 1;
for (uint 1 = 2; 1 <= n; ++1i) u *= 1i;

return u;

}

public override string ToString()
{

return "Factorial";

}

287

Download free eBooks at bookboon.com



Next, add a new entry in the switch statement in class Tokens:

case "factorial": return new FactorialToken():;

It is also far and Expression now has a new function. Note that it is necessary to modify the code, but

only in two places and only in the internal classes, and the code of the class Expression is unchanged.

Comment

To conclude this book, I will mention the Debugger, which is an important tool in Visual Studio. The

following is by no means a complete review of the debugger, but it is a hint of what it can do.

Once you've written a program and will test it, it will often be such that it fails. Maybe you get a wrong
result, or the program crashes. The task is then to find the error and correct it, and here the debugger
can help. You can set a breakpoint, which means that the running stops when the program reaches this
point in the code, and you can then see the value of variables and examine whether they have the right
value. One can also go forward in the code statement for statement and all the time follow what happens
with the variables. The debugger is an excellent tool to find where a program fails, but generally the

debugger can be used to analyze the code.

As an example this application has a method ParseArguments(), which is used to parse the arguments
for the expression. Here I put a breakpoint in the method’s first statement, which you do by simply

clicking the mouse:

Download free eBooks at bookboon.com



If you now run the program as Start Debugging, enter an expression and then enter the arguments for
the expression the run will stop on the line where there is set a breakpoint. At the same time one can
see the local variables and parameters and their values. One can then by pressing F10 go through the
program and see what happens with variables. By selecting the tab Watch is also possible to keep track

of instance variables.

Download free eBooks at bookboon.com



	Foreword
	Part 1	Introduction to C#
	1	Introduction
	Hello World

	2	Basic program architecture
	Print a book

	3	Variables
	The sum of two numbers
	Operators

	4	Console programs
	Perimeter and area of a circle
	Product calculation
	Date and time
	Arguments on the command line

	5	Program control
	if
	Sort two numbers
	if-else
	A quadratic equation
	while
	The sum of the positive number less than 100
	for
	Sum of positive integers
	do
	switch
	Weekday
	The cross-sum
	The biggest and the smallest number

	6	Strings
	The class string
	Palindrome

	7	Arrays
	Two arrays of the type int
	Array of strings
	Yatzy
	Craps

	Part 2	�Object Oriented Programming
	8	Classes
	Coins

	9	Design of classes
	Dice

	10	Methods
	Methods names
	Function overriding
	Methods return values
	Properties
	A point
	Parameters
	Methods parameters

	11	Inheritance
	Points
	Persons

	12	The class Object
	13	Abstract classes
	Abstract points
	Loan

	14	Interfaces
	Points again
	Money

	15	Static members
	StringBuilder

	16	More about arrays
	Multi-dimensional arrays

	17	Types
	18	Enum
	19	Struct
	20	Generic types
	Generic methods
	Sorting an array
	Parameterized types
	The class Set

	21	Exception handling
	22	Comments
	23	Extension methods
	Part 3	Collection classes
	24	List<T>
	A List of strings
	Enter sale of products

	25	Stack<T> and Queue<T>
	Stack of integers
	StackSort

	26	LinkedList<T>
	LinkedList of names

	27	�Dictionary<K,V> and SortedDictionary<K,V>
	Table of job titles
	User defined key
	A sorted dictionary
	Comparable keys
	Cue list

	Part 4	IO	
	28	Text files
	Write and read text
	Write a comma separated file
	Read a comma separated file

	29	Binary files
	Print 100 numbers in a fil
	Read a binary file
	Seek

	30	Info about directories and files
	FileInfo
	DirectroryInfo

	31	Object serialization
	Datatypes
	Binary serialization
	Binary deserialization
	XML serialization
	SOAP serialization
	Serialization of a collection

	32	User defined serialization
	Part 5	Final examples
	Lottery
	Expression


