
William	John	Teahan

Artificial	Intelligence	–	Agent
Behaviour

Download	free	books	at

2

William John Teahan

Artificial Intelligence –
Agent Behaviour I

Download free eBooks at bookboon.com

3

Artificial Intelligence – Agent Behaviour I
1st edition
© 2010 William John Teahan & bookboon.com
ISBN 978-87-7681-559-2

Download free eBooks at bookboon.com

http://bookboon.com

Artificial Intelligence – Agent Behaviour I

4

Contents

Contents

	 Part 2 Agent Behaviour I	 8

6	 Behaviour	 9
6.1	 What is behaviour?	 10
6.2	 Reactive versus Cognitive Agents	 11
6.3	 Emergence, Self-organisation, Adaptivity and Evolution	 13
6.4	 The Frame of Reference Problem	 20
6.5	 Stigmergy and Swarm Intelligence	 22
6.6	 Implementing behaviour of Turtle Agents in NetLogo	 24
6.7	 Boids	 36
6.8	 Summary 	 52

7	 Communication	 54
7.1	 Communication, Information and Language	 55
7.2	 The diversity of human language	 56
7.3	 Communication via communities of agents 	 60
7.4	 Communicating Behaviour	 63

Download free eBooks at bookboon.com

Click on the ad to read more

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

Click on the ad to read moreClick on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://s.bookboon.com/osram
http://www.deloitte.ca/careers

Artificial Intelligence – Agent Behaviour I

5

Contents

7.5	 The Small World Phenomenon and Dijkstra’s algorithm	 67
7.6	 Using communicating agents for searching networks	 75
7.7	 Entropy and Information	 81
7.8	 Calculating Entropy in NetLogo	 82
7.9	 Language Modelling	 88
7.10	 Entropy of a Language	 90
7.11	 Communicating Meaning	 96
7.12	 Summary 	 102

8	 Search	 103
8.1	 Search Behaviour	 104
8.2	 Search Problems	 106
8.3	 Uninformed (blind) search	 109
8.4	 Implementing uninformed search in NetLogo	 117
8.5	 Search as behaviour selection	 124
8.6	 Informed search	 127
8.7	 Local search and optimisation	 135
8.8	 Comparing the search behaviours	 139
8.9	 Summary and Discussion	 144

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read more

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

Artificial Intelligence – Agent Behaviour I

6

Contents

9	 Knowledge	 147
9.1	 Knowledge and Knowledge-based Systems	 147
9.2	 Knowledge as justified true belief	 151
9.3	 Different types of knowledge	 153
9.4	 Some approaches to Knowledge Representation and AI	 156
9.5	 Knowledge engineering problems	 163
9.6	 Knowledge without representation	 164
9.7	 Representing knowledge using maps	 166
9.8	 Representing knowledge using event maps	 171
9.9	 Representing knowledge using rules and logic	 175
9.10	 Reasoning using rules and logic	 182
9.11	 Knowledge and reasoning using frames	 195
9.12	 Knowledge and reasoning using decision trees	 203
9.13	 Knowledge and reasoning using semantic networks	 206
9.14	 Summary and Discussion	 211

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

Artificial Intelligence – Agent Behaviour I

7

Contents

10	 Intelligence	 213
10.1	 The nature of intelligence	 213
10.2	 Intelligence without representation and reason	 217
10.3	 What AI can and can’t do	 218
10.4	 The Need for Design Objectives for Artificial Intelligence 	 224
10.5	 What are Good Objectives? 	 225
10.6	 Some Design Objectives for Artificial Intelligence	 225
10.7	 Towards believable agents	 232
10.8	 Towards computers with problem solving ability	 239
10.9	 Summary and Discussion	 246

11	 References	 248

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/IE

8

Part 2
Agent Behaviour I

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

9

Behaviour

6	 Behaviour

The frame-of-reference problem has three main aspects:

1.	 Perspective issue: We have to distinguish between the perspective of the observer and the
perspective of the agent itself. In particular, descriptions of behavior from an observer’s
perspective must not be taken as the internal mechanisms underlying the described
behavior.

2.	 Behavior-versus-mechanism issue: The behavior of an agent is always the result of
a system-environment interaction. It cannot be explained on the basis of internal
mechanisms only.

3.	 Complexity issue: The complexity we observe in a particular behavior does not always indicate
accurately the complexity of the underlying mechanisms.

Rolf Pfeifer and Christian Scheier. 2001.
Understanding Intelligence. Page 112. The MIT Press.

Part 1 of this volume has explored agents and environments and important aspects of agent-environment interaction,
including movement, and embodiment, and how it affects behaviour. Part 2 explores agent behaviour, including different
types of behaviour such as communication, searching, knowing (knowledge) and intelligence.

This chapter explores the topic of agent behaviour in more depth. The chapter is organised as follows. Section 6.1 provides
a definition of behaviour. Section 6.2 revisits the distinction between reactive versus cognitive agents from a behavioural
perspective. Sections 6.3 to 6.5 describe useful concepts related to behaviour: emergence, self-organisation, adaptivity,
evolution, the frame of reference problem, stigmergy, and swarm intelligence. Section 6.6 looks at how we can implement
various types of behaviour using turtle agents in NetLogo. One particular method called boids is discussed in Section 6.7.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

10

Behaviour

6.1	 What is behaviour?

The way an agent behaves is often used to tell them apart and to distinguish what and who they are,
whether animal, human or artificial. Behaviour can also be associated with groups of agents, not just
a single agent. For example, human cultural behaviour relates to behaviour that is associated with a
particular nation, people or social group, and is distinct from the behaviour of an individual human being
or the human body. Behaviour also has an important role to play in the survival of different species and
subspecies. It has been suggested, for example, that music and art formed part of a suite of behaviours
displayed by our own species that provided us with the evolutionary edge over the Neanderthals.

In the two preceding chapters, we have talked about various aspects concerning behaviours of embodied,
situated agents, such as how an agent’s behaviour from a design perspective can be characterised in terms
of its movement it exhibits in an environment, and how agents exhibit a range of behaviours from reactive
to cognitive. We have not, however, provided a more concrete definition of what behaviour is. From the
perspective of designing embodied, situated agents, behaviour can b defined as follows. A particular
behaviour of an embodied, situated agent is a series of actions it performs when interacting with an
environment. The specific order or manner in which the actions’ movements are made and the overall
outcome that occurs as a result of the actions defines the type of behaviour. We can define an action as
a series of movements performed by an agent in relation to a specific outcome, either by volition (for
cognitive-based actions) or by instinct (for reactive-based actions).

With this definition, movement is being treated as a fundamental part of the components that characterise
each type of behaviour – in other words, the actions and reactions the agent executes as it is performing
the behaviour. The distinction between a movement and an action is that an action comprises one or
more movements performed by an agent, and also that there is a specific outcome that occurs as a result
of the action. For example, a human agent might wish to perform the action of turning a light switch on.
The outcome of the action is that the light gets switched on. This action requires a series of movements
to be performed such as raising the hand up to the light switch, moving a specific finger up out of the
hand, then using that finger to touch the top of the switch, then applying pressure downwards until the
switch moves. The distinction between an action and a particular behaviour is that a behaviour comprises
one or more actions performed by an agent in a particular order or manner. For example, an agent may
prefer an energy saving type of behaviour by only switching lights on when necessary (this is an example
of a cognitive type of behaviour as it involves a conscious choice). Another agent may always switch on
the light through habit as it enters a room (this is an example of a mostly reactive type of behaviour).

Behaviour is the way an agent acts in a given situation or set of situations. The situation is defined by the
environmental conditions, its own circumstances and the knowledge the agent currently has available to
it. If the agent has insufficient knowledge for a given situation, then it may choose to search for further
knowledge about the situation. Behaviours can be made up of sub-behaviours. The search for further
knowledge is itself a behaviour, for example, and may be a component of the original behaviour.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

11

Behaviour

There are also various aspects to behaviour, including the following: sensing and movement (sensory-
motor co-ordination); recognition of the current situation (classification); decision-making (selection
of an appropriate response); performance (execution of the response).

Behaviours range from the fully conscious (cognitive) to the unconscious (reactive), from overt (done in
an open way) to covert (done in a secretive way), and from voluntary (the agent acts according to its own
free will) to involuntary (done without conscious control or done against the will of the agent). The term
‘behaviour’ also has different meanings depending on the context (Reynolds, 1987). The above definition
is applicable when the term is being used in relation to the actions of a human or animal, but it is also
applicable in describing the actions of a mechanical system, or the complex actions of a chaotic system,
if the agent-oriented perspective is considered (here the agents are humans, animals, mechanical systems
or complex systems). However, in virtual reality and multimedia applications, the term can sometimes be
used as a synonym for computer animation. In the believable agents and artificial life fields, behaviour is
used “to refer to the improvisational and life-like actions of an autonomous character” (Reynolds, 1987).
We also often anthropomorphically attribute human behavioural characteristics with how a computer
operates when we say that a computer system or computer program is behaving in a certain way based
on responses to our interaction with the system or program. Similarly, we often (usually erroneously)
attribute human behavioural characteristics with animals and inanimate objects such as cars.

6.2	 Reactive versus Cognitive Agents

In this section, we will further explore the important distinction between reactive and cognitive behaviour
that was first highlighted in the previous chapter. Agents can be characterised by where they sit on a
continuum as shown in Figure 6.1. This continuum ranges from purely reactive agents that exhibit no
cognitive abilities (such as ants and termites), to agents that exhibit cognitive behaviour or have an
ability to think. Table 6.1 details the differences between the two types of agents. In reality, many agents
exhibit both reactive and cognitive behaviours to varying degrees, and the distinction between reactive
and cognitive can be arbitrary.

Figure 6.1 The continuum of agents, from reactive to cognitive (based on Ferber, J. 1999; page 20).

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

12

Behaviour

Comparing the abilities of reactive agents with cognitive agents listed in Table 6.1, it is clear that reactive
agents are very limited in what they can do as they do not have the ability to plan, co-ordinate between
themselves or set and understand specific goals; they simply react to events when they occur. This does
not preclude them from having a role to play in producing intelligent behaviour. The reactive school of
thought is that it is not necessary for agents to be individually intelligent. However, they can work together
collectively to solve complex problems. Their power comes from the power of the many – for example,
colony based insects such as ants and termites have an ability to perform complex tasks such as finding
and communicating the whereabouts of food, fighting off invaders, and building complex structures. But
they do this at the population level, not at the individual level, using very rigid repetitive behaviours.

In contrast, the cognitive school of thought seeks to build agents that exhibit intelligence in some manner.
In this approach, individual agents have goals, and can develop plans on how to achieve them. They
use more sophisticated communication mechanisms, and can intentionally co-ordinate their activities.
They also map their environment in some manner using an internal representation or knowledge base
that they can refer to and update through learning mechanisms in order to help guide their decisions
and actions. As a result, they are much more flexible in their behaviour compared to reactive agents.

Reactive Agents Cognitive Agents

•	 Use simple behaviours. •	 Use complex behaviours.

•	 Have low complexity. •	 Have high complexity.

•	 Are not capable of foreseeing the future. •	 Anticipate what is going to happen.

•	 Do not have goals. •	 Have specific goals.

•	 Do not plan or co-ordinate amongst themselves. •	 Make plans and can co-ordinate with each other.

•	 Have no representation of the environment. •	 Map their environment (i.e. build internal
representations of their environment).

•	 Do not adapt or learn. •	 Exhibit learned behaviour.

•	 Can work together to resolve complex problems. •	 Can resolve complex problems both by working
together and by working individually.

Table 6.1 Reactive versus cognitive agents.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

13

Behaviour

In Artificial Intelligence, the behavioural approach to building intelligent systems is called Behaviour
Based Artificial Intelligence (BBAI). In this approach, first proposed by Rodney Brooks, intelligence
is decomposed into a set of independent semi-autonomous modules. These modules were originally
conceived of as running on a separate device with their own processing threads and can be thought of
as separate agents. Brooks advocated a reactive approach to AI and used finite state machines (similar to
those shown in Section 6.3 and below) to implement the behaviour modules. These finite state machines
have no conventional memory, and do not directly provide for higher-level cognitive functions such
as learning and planning. They specify the behaviour in a reactive way, with the agent reacting directly
with the environment rather than building a representation of it in some manner such as a map. The
behaviour-based approach to AI has become popular in robotics, but is also finding other applications
in the areas of computer animation and intelligent virtual agents, for example.

6.3	 Emergence, Self-organisation, Adaptivity and Evolution

This section discusses several features of autonomous agents that are important from a behavioural
perspective – emergent, self-organising, adaptive and evolving behaviour.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

STUDY AT A TOP RANKED
INTERNATIONAL BUSINESS SCHOOL

Reach your full potential at the Stockholm School of Economics,
in one of the most innovative cities in the world. The School
is ranked by the Financial Times as the number one business
school in the Nordic and Baltic countries.

Visit us at www.hhs.se

Sw
ed

en

Stockholm

no.1
nine years
in a row

http://s.bookboon.com/hhs2016

Artificial Intelligence – Agent Behaviour I

14

Behaviour

A complex system is a system comprising many components which when they interact with each other
produce activity that is greater than what is possible by the components acting individually. A multi-agent
system is a complex system if the agents exhibit behaviours that are emergent. Emergence in a complex
system is the appearance of a new higher-level property that is not a simple linear aggregate of existing
properties. For example, the mass of an aeroplane is not an emergent property as it is simply the sum
of the mass of the plane’s individual components. On the other hand, the ability to fly is an emergent
property as this property disappears when the plane’s parts are disassembled. Emergent properties are also
common in real life – for example, cultural behaviour in humans, food foraging behaviour in ants and
mound building behaviour in termites. Emergent behaviour is the appearance of behaviour of a multi-
agent system that was not previously observed and that is not the result of a simple linear combination
of the agents’ existing behaviour.

Some people believe that intelligence is an emergent property (see Chapter 10), the result of agent-agent
and agent-environment interactions of reactive, embodied, situated agents. If this is so, then this provides
an alternative path for producing intelligent behaviour – rather than building cognitive agents by explicitly
programming higher cognitive abilities such as reasoning and decision-making, the alternative is to build
agents with reactive abilities such as pattern recognition and learning, and this will lead to intelligent
behaviour as a result. This approach, however, has yet to bear fruit as the mechanisms behind humans’
pattern recognition and learning abilities is yet to be fully understood and we do not have sophisticated
enough algorithms in this area for agent’s to learn the way humans do, for example, such as a young
child’s ability to acquire language. However, the more traditional route to artificial intelligence – that of
designing agents with explicit higher-level cognitive abilities – also has yet to bear fruit.

A system is said to self-organise when a pattern or structure in the system emerges spontaneously that
was not the result of any external pressures. A multi-agent system displays self-organising behaviour as
a result of applying local rules when a pattern or structure forms as a result of its interaction that was
not caused by an external agent.

 Zebras in front of a termite mound in Tanzania.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

15

Behaviour

Self-organising systems typically display emergent properties. Many natural systems exhibit self-
organising behaviour. Some examples are: swarms of birds and fish, and herds of animals such as
cattle, sheep, buffalo and zebras (biology); the formation and structure of planets, stars, and galaxies
(from the field of astrophysics); cloud formations and cyclones (meteorology); surface structure of the
earth (geophysics); chemical reactions (chemistry); autonomous movements of robots (robotics); social
networks (Internet); computer and traffic networks (technology); naturally occurring fractal patterns
such as ferns, snowflakes, crystalline structures, landscapes, fiords (natural world); patterns occurring on
fur, butterfly wings, insect skin and blood vessels inside the body (biology); population growth (biology);
the collective behaviour of insect colonies such as termites and ants (biology); mutation and selection
(evolution); and competition, stock markets and financial markets (economics).

The NetLogo Models Library contains a number of models that simulate self-organisation. For example,
the Flocking model mimics flocking behaviour in birds – after running the model for some time, the
turtle agents will self-organise into a few flocks where the birds all head in a similar direction. This
is despite the individual agents’ behaviour only consisting of a few local rules (see further details in
Section 6.7 below). In the Fireflies model, the turtle agents are able to synchronise their flashing using
only interactions between adjacent agents; again only local rules define the individual agents’ behaviour.
The Termites model and the State Machine Example Model simulate the behaviour of termites. After
running these models for some time, the ‘wood chip’ patches will end up being placed in a few piles.
Three screenshots of the State Machine Example Model are shown in Figure 6.2. The leftmost image
shows the environment at the start of the simulation (number of ticks = 0). It shows agents placed
randomly throughout the environment, with the yellow patches representing the wood chips, and the
white shapes representing the termites. The middle and rightmost images shows the environment after
5,000 and 50,000 ticks, respectively. The orange shapes represent termites that are carrying wood chips,
the white shapes those that are not. The two images show the system of termite agents, wood chips and
the environment progressively self-organising so that the wood chips end up in a few piles.

Figure 6.2 The State Machine Example Model simulates self-organising behaviour for termites.

The code for the State Machine Example Model is shown in NetLogo Code 6.1.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

16

Behaviour

turtles-own [
task ;;procedure name (a string) the turtle will run during this tick
steps ;; …unless this number is greater than zero, in which

 ;; case this tick, the turtle just moves forward 1
]
to setup

clear-all
set-default-shape turtles "bug"
;; randomly distribute wood chips
ask patches [

if random-float 100 < density
[set pcolor yellow]

]
;; randomly distribute termites
crt number [

set color white
setxy random-xcor random-ycor
set task "search-for-chip"
set size 5 ;; easier to see

]
end
to go

ask turtles
[ifelse steps > 0

[set steps steps – 1]
[run task
wiggle]
fd 1]

tick
end
to wiggle ;; turtle procedure

rt random 50
lt random 50

end

to search-for-chip ;; turtle procedure – "picks up chip" by turning orange
if pcolor = yellow

[set pcolor black
set color orange
set steps 20
set task "find-new-pile"]

end
to find-new-pile ;; turtle procedure – look for yellow patches

if pcolor = yellow
[set task "put-down-chip"]

end

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

17

Behaviour

to put-down-chip ;; turtle procedure – finds empty spot & drops chip
if pcolor = black

[set pcolor yellow
set color white
set steps 20
set task "get-away"]

end
to get-away ;; turtle procedure – get out of yellow pile

if pcolor = black
[set task "search-for-chip"]

end

NetLogo Code 6.1 Code defining the State Machine Example model.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/liu

Artificial Intelligence – Agent Behaviour I

18

Behaviour

The setup procedure randomly distributes the yellow patch agents and the termite agents throughout
the environment. The ask command in the go procedure defines the behaviour of the termite agents.
The approach used is to represent the behaviour as a finite state machine consisting of four states with
a different action or task that the agent performs providing the transition to the next state. These tasks
are: searching for a wood chip; finding a new pile; putting down a wood chip; and getting out of the
pile. A simplified finite state machine for this model is depicted in Figure 6.3.

Figure 6.3 The behaviour of NetLogo Code 6.1 converted to a finite state machine.

 Charles Darwin

A system in general sense is said to evolve if it adapts or changes over time usually from a simple to a
more complex form. The term ‘evolve’ has different meanings in different contexts and this can cause
some confusion. A more specific meaning relates the term ‘evolve’ to Darwin’s theory of evolution – a
species is said to evolve when a change occurs in the DNA of its population from one generation to the
next. The change is passed down to offspring through reproduction. These changes may be small, but
over many generations, the combined effects can lead to substantial changes in the organisms.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

19

Behaviour

In order to differentiate the different meanings of the term ‘evolve’, we can define adaptive and evolving
behaviour separately in the following way. An agent exhibits adaptive behaviour when it has the ability
to change its behaviour in some way in response to changes in the environment. If the environment
changes, behaviour that is well-adapted to the previous environment may no longer be so well-adapted;
for example, in Section 5.4, it was shown how some behaviour suited to solving the Hampton Court
Palace maze environment is not so well suited to the Chevening House maze environment and vice versa.

Evolving behaviour, on the other hand, occurs in a population when its genetic makeup has changed
from one generation to the next. Evolution in a population is driven by two major mechanisms – natural
selection and genetic drift. Natural selection is a process whereby individuals with inheritable traits
that are helpful for reproduction and survival in the environment will become more common in the
population, whereas harmful traits will become more rare. Genetic drift is the change in the relative
frequency of inheritable traits due to the role of chance in determining which individuals survive and
reproduce.

 Mt. Everest as seen from the Rongbuk valley, close to base camp at 5,200m.

Evolution of humans and animal species occurs over hundreds of thousands of years, and sometimes
millions. To put these time scales into perspective, and to illustrate how small changes can have epoch-
changing effects, we can use the example of the Himalaya Mountain Range. A fault line stretches from one
end of the Himalayas to the other as it sits on the boundary between the Eurasian and Indo-Australian
tectonic plates, and as a consequence it is one of the most seismically active regions in the world. Studies
have shown that the Himalayas are still rising at the rate of about 1cm per year. Although a 1cm rise
per year may seem negligible, if we project this far into the future, then the accumulative effect can be
remarkable. After 100 years, it will have risen by only a metre; after 1000 years, 10m; after 10000 years,
just 100m, still not especially significant when compared to the overall average height of the mountain
range. However, after 100,000 years, it will have risen by 1 km – that is over 10% of the current height
of Mt. Everest which is 8,848 metres. After a million years, the rise in height will be 10 km, which more
than doubles the current height of Mt. Everest.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

20

Behaviour

A process that produces very little change from year to year, if continual, will produce dramatic changes
over the course of a million years. Mt. Everest rising constantly for a million years is clearly a hypothetical
situation because there are other forces at work such as erosion and tectonic plate movement. In contrast,
the rise of the seas, even by as small amount as 1cm per year, can result in dramatic change in a much
shorter period of time. Continental drift has also caused significant change in the world’s landscape.
The flight distance between Sydney, Australia and Wellington, New Zealand, for example, is 2220 km. If
New Zealand has been moving apart from Australia at the rate of 1 cm per year, then this has occurred
over a period of 222 million years.

No matter how well suited a particular species may be at surviving in its current environment, it will
need to adapt to epoch-level changes if it is to survive for a very long time.

6.4	 The Frame of Reference Problem

It is important not to attribute the wrong explanations from observations to the mechanisms behind
the behaviour of an embodied agent situated within an environment. The frame of reference problem
highlights the difference between the perspective of the observer and the perspective of the observed
due to their different embodiment. Each real-life agent is unique with its own body and brain, with a
unique set of sensing capabilities, and has a unique location within the environment (since in real-life
environments no two bodies can occupy the same space at the same time). Hence, each agent has a unique
perspective of its environment; therefore, the perspective of the agent doing the observing will be very
different to the perspective of the agent that is being observed. The disparity in frames of reference will
be most pronounced between species with vastly different embodiments, for example, between humans
and insects. Often humans as observers will make the mistake of attributing human-like capabilities when
describing the mechanisms behind the behaviour that is being observed. For example, magnetic termite
mounds in northern Australia all face north and from a distance look like tombstones in a graveyard. In
this case, it is easy to make the mistake that these were created according to some central plan, but the
termite mounds are the result of many individual agents applying simple reactive behaviour.

 Imagine what the world looks like to an ant making its way through long grass…

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

21

Behaviour

Rolf Pfeifer and Christian Scheier (1999) state there are three main aspects to the frame of reference
problem: the perspective issue; the behaviour-versus-mechanism issue; and the complexity issue (see
quote at the beginning of this chapter). The perspective issue concerns the need to distinguish between
the perspectives of the observer and the observed, and not to attribute descriptions of the mechanisms
from the observer’s point of view. The behaviour-versus-mechanism issue states that the behaviour of
an agent is not just the result of internal mechanisms only; the agent-environment interaction also has
an important role to play. The complexity issue points out that complex behaviour is not necessarily the
result of complex underlying mechanisms.

Rolf Pfeifer and Christian Scheier use the thought experiment of an ant on a beach first proposed by
Simon (1969) to illustrate these issues. A similar scenario is posed in Thought Experiment 6.1.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/EOT

Artificial Intelligence – Agent Behaviour I

22

Behaviour

Thought Experiment 6.1 An Ant on the Beach.

Imagine an ant returning to its nest on the edge of a beach close to a forest. It encounters obstacles along the way in
the forest, such as long grass (see image), fallen leaves and branches, and then it speeds up once it reaches the beach
that is near to its nest. It follows a specific trail along the beach and encounters further obstacles such as small rocks,
driftwood, dried seaweed and various trash such as discarded plastic bottles and jetsam washed up from the sea. The ant
seems to be following a specific path, and to be reacting to the presence of the obstacles by turning in certain directions,
as if guided by a mental map it has of the terrain. Most of the ants following the original ant also travel the same way.
Eventually, all the ants return to the nest, even the ones that seemed to have gotten lost along the way.

A boy walking down the beach notices the trail of ants. He decides to block their trail by building a small mound of sand
in their path. The first ant that reaches the new obstacle seems to immediately recognize that there is something new in
its path that wasn’t there before. It repeatedly turns right, then left, as if hunting for a path around the obstacle. Other
ants also arrive, and together they appear to be co-ordinating the hunt for a path around the obstacle. Eventually the
ants are able to find a path around the obstacle and resume their journey back to the nest. After some further time, one
particular path is chosen which is close to the shortest path back to the nest.

From an observer’s point of view, the ants seem to be exhibiting intelligent behaviour. Firstly, they appear to be following
a specific complex path, and seem to have the ability the recognize landmarks along the way. Secondly, they appear to
have the ability to communicate information amongst themselves. For example, they quickly transmit the location of a
new food source so that other ants can follow. Thirdly, they can find the shortest path between two points. And fourthly,
they can cope with a changing environment.

However, it would be a mistake to attribute intelligence to the ants’ behaviour. Studies have shown that the ants are
just executing a small set of rules in a reactive manner. They have no ability to create a map of their environment that
other ants can follow at a latter time. They are not aware of the context of their situation, such as they have come a long
way, but are now close to the nest, so can speed up as a result in order to get back quicker. They cannot communicate
information directly except by chemical scent laid down in the environment. They cannot discuss and execute a new
plan of attack when things don’t go according to plan, and there is no central co-ordinator. Contrast this with human
abilities such as an orienteer using a map to locate control flags placed by someone else in the forest or beach, or a
runner speeding up at the end of a long run because she knows it is nearing completion, or a hunter in a tribe returning
to the camp to tell other hunters where there is more game, or the chief of the tribe telling a group of hunters to go
out and search for more food.

Now further imagine that the ant has a giant body, the same size as a human’s. It is most likely that the behaviour of the
giant ant will be quite different to the normal sized ant as a result. Small objects that were obstacles for the ant with a
normal sized body would no longer pose a problem. In fact, these would be ignored in all likelihood and the giant ant
would return more directly back to the nest. Other objects that the normal sized ant would not have been aware of as
being distinct, such as a tree, would now pose a different problem for the giant ant in relation to its progress through the
terrain. And it may now be difficult for the giant ant to sense the chemical scent laid down on the ground. In summary,
the change in the ant’s body dramatically alters its perspective of its environment.

6.5	 Stigmergy and Swarm Intelligence

In the Termites and Ants models described previously, we have already seen several examples of how a
collection of reactive agents can perform complex tasks that are beyond the abilities of any of the agents
acting singly. From our own frame of reference, these agents appear collectively to be exhibiting intelligent
behaviour, although as explained in the previous section, this would be incorrect. The NetLogo models
illustrate how the mechanisms behind such behaviour are very simple – just a few rules defining how
the agents should interact with the environment.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

23

Behaviour

This section defines two important concepts related to the intelligence of a collection of agents: stigmergy,
and swarm intelligence.

A collection of agents exhibit stigmergy when they make use of the environment in some manner, and as
a result, are able to co-ordinate their activities to produce complex structures through self-organisation.
The key idea behind stigmergy is that the environment can have an important influence on the behaviour
of an agent and vice versa. In other words, the influence between the environment and agent is bi-
directional. In real-life, stigmergy occurs amongst social insects such as termites, ants, bees and wasps.
As we have seen with the Termites and Ants models, stigmergy can occur between very simple reactive
agents that only have the ability to respond in a localised way to local information. These agents lack
intelligence and mutual awareness in the traditional sense, they do not use memory, and do not have
the ability to plan, control or directly communicate with each other. Yet they have the ability to perform
higher-level tasks as a result of their combined activities.

Stigmergy is not restricted to natural life examples – the Internet is one obvious example. Many computer
systems also make use of stigmergy – for example, the ant colony optimization algorithm is a method for
finding optimal paths as solutions to problems. Some computer systems use shared data structures that
are managed by a distributed community of clients that supports emergent organization. One example
is the blackboard architecture as used in AI systems first developed in the 1980s. A blackboard makes
use of communication via a shared memory that can be written to independently by an agent then
examined by other agents much like a real-life blackboard can in a lecture room. Blackboards are now
being used in first-person shooter video games, and as a means of communication between agents in a
computer network (the latter is discussed in more detail in section 7.9).

A colony of ants, and a swarm of bees – both use stigmergic local knowledge to co-ordinate their activities.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

24

Behaviour

A collection of agents exhibit swarm intelligence when they make use of stigmergic local knowledge to
co-ordinate their activities and to produce complex structures through self-organisation. The mechanisms
behind swarm intelligence exhibited by social insects are robust since there is no centralised control.
They are also very effective – as demonstrated by the size of worldwide populations and the mirroring
of solutions across different species. A few numbers emphasize this point. Scientists estimate that there
are approximately 9000 species of ants and one quadrillion (1015) ants living in the world today (Elert,
2009). Also, it has been estimated that colonies of harvester ants, for example, have a similar number
of neurons as a human brain. Humans also make use of swarm intelligence in many ways. The online
encyclopaedia, Wikipedia, is just one example which results from the collective intelligence of humans
acting individually with minimal centralised control. Social networking via online websites is another.
Both of these make use of stigmergic local information laid down in the cloud.

6.6	 Implementing behaviour of Turtle Agents in NetLogo

In NetLogo, the behaviour of an agent is specified explicitly by the ask command. This defines the
series of commands that each agent or agentset executes, in other words, the procedure that the agent
is to perform. A procedure in a computer program is a specific series of commands that are executed
in a precise manner in order to produce a desired outcome. However, we have to be careful to make a
distinction between the actual behaviour of the agent and the mechanics of the NetLogo procedure that
is used to define the behaviour. The purpose of much of the procedural commands is to manipulate
internal variables including global variables and the agent’s own variables. The latter reflects the state of
the agent and can be represented as points in an n-dimensional space. However, this state is insufficient to
describe the behaviour of the agent. Its behaviour is represented by the actions the agent performs which
results in some change to its own state, to the state of other agents or to the state of the environment.
The type of change that occurs represents the outcome of the behaviour.

Some example behaviours that we have already seen exhibited by agents in Netlogo models are: the food
foraging behaviour of ant agents in the Ants model which results in the food being returned efficiently
to the nest as an outcome; the nest building behaviour of termite agents in the Termites and State
Machine Example models which results in the wood chips being placed in piles as an outcome; and the
wall following behaviour of the turtle agents in the Wall Following Example model which results in the
turtle agents all following walls in a particular direction as an outcome.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

25

Behaviour

The Models Library in NetLogo comes with many more examples where agents exhibit very different
behaviours. In most of these models, the underlying mechanisms are due to the mechanical application
of a few local rules that define the behaviour. For example, the Fireflies model simulates the ability
of a population of fireflies using only local interactions to synchronise their flashing as an outcome.
The Heatbugs model demonstrates how several kinds of emergent behaviour can arise as an outcome
from agents applying simple rules in order to maintain an optimum temperature around themselves.
The Flocking model mimics the behaviour of the flocking of birds, which is also similar to schooling
behaviour of fish and the herding behaviour of cattle and sheep. This outcome is achieved without a
leader, with each agent executing the same set of rules. The compactness of the NetLogo code in these
models reinforces that complexity of behaviour does not necessarily correlate with the complexity of
the underlying mechanisms.

Behaviour can be specified by various alternatives, such as by NetLogo procedures and commands, and by
finite state automata as outlined in Section 6.3. The latter is an abstract model of behaviour with a limited
internal memory. In this format, behaviour can be considered as the result of an agent moving from one
state to another state – or points in an n-dimensional space – as it can be represented as a directed graph
with states, transitions and actions. In order to make the link between a procedure implemented in a
programming language such as NetLogo and finite state automata (and therefore re-emphasize the analogy
between behaviour and movement of an agent situated in an environment), the wall following behaviour of
NetLogo Code 5.7, repeated below, has been converted to an equivalent finite state machine in Figure 6.4.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

Artificial Intelligence – Agent Behaviour I

26

Behaviour

to behaviour-wall-following
; classic 'hand-on-the-wall' behaviour

if not wall? (90 * direction) 1 and wall? (135 * direction) (sqrt 2)
[rt 90 * direction]

;; wall straight ahead: turn left if necessary (sometimes more than once)
while [wall? 0 1] [lt 90 * direction]

;; move forward
fd 1

end

NetLogo Code 6.2 The wall following behaviour extracted from NetLogo Code 5.7.

The code has been converted to a finite state machine by organising the states into the ‘sense – think –
act’ mode of operation as outlined in Section 5.5. Note that we are not restricted to doing the conversion
in this particular way – we are free to organise the states and transitions in whatever manner we wish.
In this example, the states and transitions as shown in the figure have been organised to reflect the type
of action (sensing, thinking or acting) the agent is about to perform during the next transition out of
the state. Also, regardless of the path chosen, the order that the states are traversed is always a sensing
state followed by a thinking state then an acting state. This is then followed by another sensing state and
so on. For example, the agent’s behaviour starts by a sensing state (labelled Sensing State 1) on the left
middle of the figure. There is only one transition out of this state, and the particular sense being used
is vision as the action being performed is to look for a wall on the preferred side (that is, the right side
if following right hand walls, and the left side if following left hand walls). The agent then moves onto
a thinking state (Thinking State 1) that considers the information it has received from what it has just
sensed. The thinking action the agent performs is to note whether there is a wall nearby or not. If there
wasn’t, then the agent moves to an acting state (Acting State 1) that consists of performing the action of
turning 90° in the direction of the preferred side. If there was a wall, then no action is performed (Acting
State 2). Note that doing nothing is considered an action, as it is a movement of zero length. The agent
will then move to a new sensing state (Sensing State 2) that involves the sensing action of looking for a
wall ahead. It will repeatedly loop through the acting state (Acting State 3) of turning 90° in the opposite
direction to the preferred side and back to Sensing State 2 until there is not a wall ahead. Then it will
move to the acting state (Acting State 4) of moving forward 1 step and back to the start.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

27

Behaviour

Figure 6.4 The wall following behaviour of NetLogo Code 6.2 converted to a finite state machine.

As pointed out in Section 5.5, the ‘Sense – Think – Act’ method of operation has limitations when
applied to modelling real-life intelligent or cognitive behaviour, and an alternative approach embracing
embodied, situated cognition was suggested. However, a question remains concerning how to implement
such an approach since it effectively entails sensing, thinking and acting all occurring at the same time
i.e. concurrently, rather than sequentially. Two NetLogo models have been developed to illustrate one
way this can be simulated. The first model (called Wall Following Example 2) is a modification of the
Wall Following Example model described in the previous chapter. The modified interface provides a
chooser that allows the user to select the standard wall following behaviour or a modified variant. The
modified code is shown in NetLogo Code 6.3.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

28

Behaviour

turtles-own
[direction ;; 1 follows right-hand wall, -1 follows left-hand wall
way-is-clear? ;; reporter – true if no wall ahead
checked-following-wall?] ;; reporter – true if checked following wall

to go
if-else (behaviour = "Standard")
[ask turtles [walk-standard]]
[ask-concurrent turtles

[walk-modified shuffle [1 2 3]]
]
tick

end

to walk-standard ;; standard turtle walk behaviour
;; turn right if necessary
if not wall? (90 * direction) and wall? (135 * direction)
[rt 90 * direction]
;; turn left if necessary (sometimes more than once)
while [wall? 0] [lt 90 * direction]
 ;; move forward
fd 1

end

to walk-modified [order] ;; modified turtle walk behaviour
ifelse (choose-sub-behaviours = "Choose-all-in-random-order")
[

foreach order
[if (? = 1) [walk-modified-1]
if (? = 2) [walk-modified-2]
if (? = 3) [walk-modified-3]]

]
[

let ord one-of order
if (ord = 1) [walk-modified-1]
if (ord = 2) [walk-modified-2]
if (ord = 3) [walk-modified-3]

]
end

to walk-modified-1 ;; modified turtle walk sub-behaviour 1
;; turn right if necessary
if not wall? (90 * direction) and wall? (135 * direction)
[rt 90 * direction]
set checked-following-wall? true

end
to walk-modified-2 ;; modified turtle walk sub-behaviour 2

;; turn left if necessary (sometimes more than once)
ifelse (wall? 0)
[lt 90 * direction

set way-is-clear? false]
[set way-is-clear? true]

end

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

29

Behaviour

to walk-modified-3 ;; modified turtle walk sub-behaviour 3
;; move forward
if way-is-clear? and checked-following-wall?
[fd 1

set way-is-clear? false
set checked-following-wall? false]

end

NetLogo Code 6.3 Code defining the modified wall following behaviour in the Wall Following Example 2 model.

In order to simulate the concurrent nature of the modified behaviour, the original wall following
behaviour has been split into three sub-behaviours – these are specified by the walk-modified-1,
walk-modified-2 and walk-modified-3 procedures in the above code. The first procedure checks
whether the agent is still following a wall, and turns to the preferred side if necessary. It then sets an
agent variable, checked-following-wall? to true to indicate it has done this. The second
procedure checks whether there is a wall ahead, turns in the opposite direction to the preferred side
if there is, and then sets the new agent variable way-is-clear? to indicate whether there is a wall
ahead or not. The third procedure moves forward 1 step but only if both the way is clear ahead and the
check for wall following has been done.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

89,000 km
In the past four years we have drilled

That’s more than twice around the world.

careers.slb.com

What will you be?

1 Based on Fortune 500 ranking 2011. Copyright © 2015 Schlumberger. All rights reserved.

Who are we?
We are the world’s largest oilfield services company1.
Working globally—often in remote and challenging locations—
we invent, design, engineer, and apply technology to help our
customers find and produce oil and gas safely.

Who are we looking for?
Every year, we need thousands of graduates to begin
dynamic careers in the following domains:
n Engineering, Research and Operations
n Geoscience and Petrotechnical
n Commercial and Business

http://s.bookboon.com/Schlumberger1

Artificial Intelligence – Agent Behaviour I

30

Behaviour

Essentially the overall behaviour is the same as before since all we have done is to split the original
behaviour into three sub-behaviours – in other words, just doing this by itself does not achieve anything
new. The reason for doing this is to allow us to execute the sub-behaviours in a non-sequential manner,
independently of each other, in order to simulate ‘sensing & thinking & acting’ behaviour where ‘&’
indicates each is done concurrently, in no particular order. This can be done in NetLogo using the ask-
concurrent command as shown in the go procedure in the code. This ensures that each agent takes
turns executing the walk-modified procedure’s commands. The main difference compared to the
standard behaviour is evident in this procedure. The interface to the model provides another chooser
that allows the user to set a choose-sub-behaviours variable that controls how the sub-behaviours
are executed. If this variable is set to ‘Choose-all-in-random order’, then all the three sub-
behaviours will be executed as with the standard behaviour, but this time in a random order; otherwise,
the variable is set to ‘Choose-one-at-random’, and only a single sub-behaviour is chosen.

Clearly the way the modified behaviour is executed is now discernibly different to the standard behaviour –
although the former executes the same sub-behaviours of the latter, this is either done in no particular
order, or only one out of three sub-behaviours is chosen each tick. And yet when running the model,
the same overall results are achieved regardless of which variant of the model is chosen – each agent
successfully manages to follow the walls that they find in the environment. There are minor variations
between each variant, such as repeatedly going back and forth down short cul-de-sacs for the modified
variants. The ability of the modified variants, however, to achieve a similar result as the original is
interesting since the modified method is both effective and robust – regardless of when, and in what
order the sub-behaviours are executed, the overall result is still the same.

A second NetLogo model, the Wall Following Events model, has been created to conceptualise and
visualise the modified behaviour. This model considers that an agent simultaneously recognizes and
processes multiple streams of ‘events’ that reflect what is happening to itself and in the environment
(in a manner similar to that adopted in Event Stream Processing (ESP) (Luckham, 1988). These events
occur in any order and have different types but are treated as being equivalent to each other in terms of
how they are processed. Behaviour is defined by linking together a series of events into a forest of trees
(one or more acyclic directed graphs) as shown in Figure 6.5. The trees link together series of events
(represented as nodes in the graph) that must occur in conjunction with each other. If a particular event
is not recorded on the tree, then that event is not recognized by the agent (i.e. it is ignored and has no
effect on the agent’s behaviour). The processing of the events is done in a reactive manner – that is, a
particular path in the tree is traversed by successively matching the events that are currently happening
to the agent against the outgoing transitions from each node. If there are no outgoing transitions or none
match, then the path is a dead end, at which point the traversal will stop. This is done simultaneously
for every event; in other words, there are multiple starting points and therefore simultaneous activations
throughout the forest network.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

31

Behaviour

Figure 6.5 Screenshot of the Wall Following Events model defining the modified wall following behaviour.

In the figure, the event trees have been defined in order to represent the modified wall following behaviour
defined above. Each node in the graph represents an event that is labelled by a stream identifier, separated
by an “=”, followed by an event identifier. For example, the node labelled [motor-event = move-
forward-1] identifies the motor event of moving forward 1 step. For this model of the behaviour,
there are four types of events – sensing events, where the agent begins actively sensing on a specific
sensory input stream (such as sight as in the figure); motor events, where the agent is performing some
motion or action; sensed-object-events, which occur when a particular object is recognised by the agent;
and abstract events, which are abstract situations that are the result of one or more sensory, motor and
abstract events, and which can also be created or deleted by the agent from its internal memory (which
records which abstract events are currently active). If a particular abstract event is found in memory,
then it can be used for subsequent matching by the agent along a tree path.

For example, the node labelled [sensing event = use-sight] towards the middle right of
the figure represents an event where the agent is using the sense of sight. Many events can occur on
this sensory input channel, but only two events in particular are relevant for defining the wall following
behaviour – these are both motor events, one being the action of looking ahead, and the other being
the action of looking to the right. Then depending on which path is followed, different sensed-object
events are encountered in the tree, either that a wall object is sensed, or nothing is sensed. These paths
continue until either a final motor event is performed (such as turning 90° to the non-preferred side at
the top right of the figure) or an abstract event is created (such as whether the wall is being followed
has been checked at the bottom of the figure).

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

32

Behaviour

Note that unlike the Sense – Think – Act model depicted in Figure 6.3, this model of behaviour is not
restricted to a particular order of events. Any type of event can ‘follow’ another, and two of the same
type are also possible – for example in the path that starts on the left of the figure there are two abstract
events after one another. Also note that use of the word ‘follow’ is misleading in this context. Although
it adequately describes that one link comes after another on a particular path in the tree model, the
event may in fact occur simultaneously, and the order as specified by the tree path is arbitrary and just
describes the order that the agent will recognize the presence of multiply occurring events. For example,
there is no reason why the opposite order cannot also be present in the tree; or an alternative order that
will lead to the same behaviour (e.g. swapping the two abstract events at the bottom of the left hand
path in the figure will have no effect on the agent’s resultant behaviour).

The code used to create the screenshot is shown in NetLogo Code 6.4 below.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

American online
LIGS University

▶▶ enroll by September 30th, 2014 and

▶▶ save up to 16% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

Artificial Intelligence – Agent Behaviour I

33

Behaviour

breed [states state]
directed-link-breed [paths path]

states-own
[depth ;; depth in the tree

stream ;; the name of the stream of sensory or motor events
event ;; the sensory or motor event

]

globals
[root-colour node-colour link-colour]
;; defines how the event tree gets visualised

to setup
clear-all ;; clear everything

set-default-shape states "circle 2"
set root-colour sky
set node-colour sky
set link-colour sky

add-events (list ["sensing-event" "use-sight"]
(list "motor-event" "look-to-right")
(list "sensed-object-event" "wall")
(list "motor-event" "turn-90-to-preferred-side")
(list "create-abstract-event" "checked-following-wall"))

add-events (list ["sensing-event" "use-sight"]
(list "motor-event" "look-to-right")
(list "sensed-object-event" "nothing")
(list "create-abstract-event" "checked-following-wall"))

add-events (list ["sensing-event" "use-sight"]
(list "motor-event" "look-ahead")
(list "sensed-object-event" "wall")
(list "motor-event" "turn-90-to-non-preferred-side"))

add-events (list ["sensing-event" "use-sight"]
(list "motor-event" "look-ahead")
(list "sensed-object-event" "nothing")
(list "create-abstract-event" "way-is-clear"))

add-events (list ["abstract-event" "checked-following-wall"]
(list "abstract-event" "way-is-clear")
(list "motor-event" "move-forward-1")
(list "delete-abstract-event" "way-is-clear")
(list "delete-abstract-event" "checked-following-wall"))

reset-layout
end
to reset-layout

repeat 500
[layout-spring states paths spring-constant spring-length
repulsion-constant]

 ;; leave space around the edges
 ask states [setxy 0.95 * xcor 0.95 * ycor]

end

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

34

Behaviour

to change-layout
reset-layout
display

end

to set-state-label
;; sets the label for the state

set label (word "[" stream " = " event "] ")
end

to add-events [list-of-events]
;; add events in the list-of-events list to the events tree.
;; each item of the list-of-events list must consist of a two itemed list.
;; e.g. [[hue 0.9] [brightness 0.8]]

let this-depth 0
let this-stream ""
let this-event ""
let this-state nobody
let next-state nobody
let these-states states
let matching-states []
let matched-all-so-far true

 foreach list-of-events
[set this-stream first ?

set this-event last ?

 ;; check to see if state already exists
 set matching-states these-states with
 [stream = this-stream and event = this-event]
 ifelse (matched-all-so-far = true) and (count matching-states > 0)
[

set next-state one-of matching-states
ask next-state [set-state-label]
set these-states [out-path-neighbors] of next-state]

[;; state does not exist – create it
set matched-all-so-far false
create-states 1

 [
set size 8
set depth this-depth
set stream this-stream
set event this-event
set-state-label
ifelse (depth = 0)

[set label-color root-colour]
[set label-color node-colour]

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

35

Behaviour

ifelse (depth = 0)
[set color root-colour]
[set color node-colour]
set next-state self
]
]
if (this-state != nobody)
[ask this-state
[create-path-to next-state [set color link-colour]]]

 ;; go down the tree
 set this-state next-state
 set this-depth this-depth + 1
]
 ask links [set thickness 1.3]
end

NetLogo Code 6.4 Code for the Wall Following Events model used to produce the screenshot in Figure 6.5.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

 .

http://s.bookboon.com/AlcatelLucent

Artificial Intelligence – Agent Behaviour I

36

Behaviour

The code first defines two breeds, states and paths, which represent the transitions between states. Each
state agent has three variables associated with it – depth, which is the distance from the root state for
the tree; stream, which identifies the name of the specific type of event it is; and event, which is
the name of the event. The event type is called a ‘stream’ as we are using an analogy of the appearance
of the events as being similar to the flow of objects down a stream. Many events can ‘flow’ past, some
appear simultaneously, but there is also a specific order for the arrival of the events in that if we choose
to ignore a particular event, it is lost – we need to deal with it in some manner.

The setup procedure initialises the event trees by calling the add-events procedure for each path.
This procedure takes a single parameter as input, which is a list of events, specified as pairs of stream
names and event names. For example, for the first add-events call, the list contains five events: the
first is a use-sight event on the sensing-event stream; the second is a look-to-right event
on the motor-event stream; and so on. A directed path containing all the events in the event list
is added to the event trees. If the first event in the list does not occur at the root of any existing tree,
then the root of a new tree is created, and a non-branching path from the root is added to include the
remaining events in the list. Otherwise, the first events on the list are matched against existing path,
with new states added at the end when the events no longer match.

The add-events procedure will also be used in The Language Modelling model discussed in Section
7.5, and in visualising the different methods of knowledge representation discussed in Chapter 9.

6.7	 Boids

In 1986, Craig Reynolds devised a distributed model for simulating animal behaviour that involves
co-ordinated motion such as flocking for birds, schooling for fish and herding for mammals. Reynolds
observed the flocking behaviour of blackbirds, and wondered whether it would be possible to get virtual
creatures to flock in the same way in a computer simulation in real-time. His hypothesis was that there
were simple rules responsible for this behaviour.

The model he devised uses virtual agents called boids that have a limited form of embodiment similar to
that used by the agents in the Vision Cone model described in Section 5.3. The behaviour of the boids is
divided into three layers – action selection, steering and locomotion – as shown in Figure 6.6. The highest
layer concerns action selection that controls behaviours such as strategy, goal setting, and planning. These
are made up from steering behaviours at the next level that relate to more basic path determination tasks
such as path following, and seeking and fleeing. These in turn are made up of locomotion behaviours
related to the movement, animation and articulation of the virtual creatures.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

37

Behaviour

To describe his model, Reynolds (1999) uses the analogy of cowboys tending a herd of cattle out on the
range when a cow wanders away from the herd. The trail boss plays the role of action selection – he tells
a cowboy to bring the stray back to the herd. The cowboy plays the role of steering, decomposing the
goal into a series of sub-goals that relate to individual steering behaviours carried out by the cowboy-
and-horse team. The cowboy steers his horse by control signals such as vocal commands and the use
of the spurs and reins that result in the team moving faster or slower or turning left or right. The horse
performs the locomotion that is the result of a complex interaction between the horse’s visual perceptions,
the movements of its muscles and joints and its sense of balance.

Figure 6.6 The hierarchy of motion behaviours used for the Boids model (Reynolds, 1987).

Note that the layers chosen by Reynolds are arbitrary and more of a design issue reflecting the nature of
the modelling problem. Reynolds himself points out that alternative structures are possible and the one
chosen for modelling simple flocking creatures would not be appropriate for a different problem such
as designing a conversational agent or chatbot.

The flocking behaviour of birds is similar to the schooling behaviour of fish and herding behaviour of mammals such as antelope, zebras,
bison, cattle and sheep.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

38

Behaviour

 Figure 6.7 A boid in NetLogo with an angle of 300°.

Just as for real-life creatures, what the boids can see at any one point in time is determined by the
direction they are facing and the extent of their peripheral vision as defined by a cone with a specific
angle and distance. The cone angle determines how large a ‘blind’ spot they have – i.e. the part that is
outside their range of vision directly behind their head opposite to the direction they are facing. If the
angle of the cone is 360°, then they will be able to see all around them; if less than that, then the size of
the blind spot is the difference between the cone angle and 360°.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

Artificial Intelligence – Agent Behaviour I

39

Behaviour

A boid can be easily implemented in NetLogo using the in-cone command as for the Vision Cone
model. Figure 6.7 is a screenshot of a boid implemented in NetLogo (see the Obstacle Avoidance 1
model, for example). The image shows the vision cone coloured sky blue with an angle of 300° (the size
of the blind spot is therefore 60°). The turtle is drawn using the “directional-circle” shape at
the centre of the image and coloured blue, with the white radius line pointing in the same direction as
the current heading of the turtle. The width of the cone is dependent on the length parameter passed to
the in-cone command and the patch size for the environment.

Reynolds devised a number of steering behaviours as summarised in Table 6.2.

Steering Behaviour Description

For individuals and pairs:

Seek and Flee A steering force is applied to the boid in relation to a specific target (towards the target for
seek, and away from the target for flee).

Pursue and Evade This is based on the underlying seeking and fleeing behaviours. Another boid becomes
the moving target.

Wander This is a form of random walking where the steering direction of the boid during one tick
of the simulation is related to the steering direction used during the previous tick.

Arrival The boid reduces its speed in relation to the distance it is from a target.

Obstacle Avoidance The boid tries to avoid obstacles while trying to maintain a maximum speed by applying
lateral and braking steering forces.

Containment This is a generalised form of obstacle avoidance. The boid seeks to remain contained
within the surface of an arbitrary shape.

Wall Following The boid maintains close contact with a wall.

Path Following The boid closely follows a path. The solution Reynolds devised was corrective steering by
applying the seek behaviour for a moving target point further down the path.

Flow Field Following The boid steers so that its motion is aligned to a tangent to a flow field (also called a force
field or vector field).

Combined behaviours and groups:

Crowd Path Following The boids combine path following behaviour with a separation behaviour that tries to
keep the boids from clumping together.

Leader Following This combines separation and arrival steering behaviours to simulate boids trying to
follow a leader.

Unaligned Collision
Avoidance

The boids try to steer a collision-free path while moving through a crowd. The boid
determines the nearest of any potential collisions, and will steer laterally to avoid it.

Queuing (at a doorway) This simulates boids slowing down and queuing to get through a doorway. Approaching
the door, each boid applies a braking steering behaviour when other boids are just
in front of itself and moving slower. This behaviour combines seeking (for the door),
avoidance (for the walls either side of door) and separation.

Flocking Groups of boids combine separation, alignment and cohesion steering behaviours and
flocking emerges as a result.

Table 6.2 Steering Behaviours devised by Craig Reynolds (1999).

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

40

Behaviour

We will now see how some of these behaviours can be implemented in NetLogo. Note that, as with all
implementations, there are various ways of producing each of these behaviours. For example, we have
already seen wall following behaviour demonstrated by the Wall Following Example model described in
the previous chapter, and by the Wall Following Example 2 model described in this chapter. Although
the behaviour is not exactly the same for both models, the outcome is effectively the same. Both models
have agents that use the vision cone method of embodiment of Figure 6.7 that is at the heart of the
boids behavioural model.

Two models have been developed to demonstrate obstacle avoidance. Some screenshots of the first
model, called Obstacle Avoidance 1, are shown in Figure 6.8. They show a single boid moving around an
environment trying to avoid the white rows of obstacles – an analogy would be a moth trying to avoid
bumping into walls as it flies around. The extent of the boids vision is shown by the sky coloured halo
surrounding the boid – it has been set at length 8 in the model with an angle of 300°. The image on the
left shows the boid just after the setup button in the interface has been pressed heading towards the
rows of obstacles. After a few ticks, the edge of the boid’s vision cone bumps into the tip of the middle
north-east pointing diagonal obstacle row (depicted by the change in the colour of the obstacle at the
tip from white to red), then it turns around to its left approximately 80° and heads towards the outer
diagonal. Its vision cone then hits near the tip of this diagonal as well, then finally the boid turns again
and heads away from the obstacles in a north east facing direction as shown in the second image on
the right.

Figure 6.8 Screenshots of the Obstacle Avoidance 1 model.

The code for this is shown in NetLogo Code 6.5.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

41

Behaviour

breed [wanderers wanderer] ; name of the breed of boids
to setup

clear-all
set-default-shape wanderers "directional-circle"; sets shapes for the boid

; create colour, size and random location of single wanderer
create-wanderers 1 [default blue]
draw-obstacles

end

to default [colour] ; creates default settings for boid
print "Got here"

set color colour			 ; sets colour using passed parameter
setxy random-xcor random-ycor ; sets an initial random position

set size 5 			 ; default turtle size
end

to draw-obstacles

ask patches with	 [pxcor = 0 and pycor <= 15 or

			 abs pxcor = (pycor + 40) and pycor < 40 or

			 abs pxcor = (pycor + 15) and pycor < 6]
[set pcolor white]
end

to make-obstacle
if mouse-down?
[ask patches

[if ((abs (pxcor – mouse-xcor)) < 1) and
((abs (pycor – mouse-ycor)) < 1)

[set pcolor white]
]

]
end
to go

ask wanderers ; wanderers instructions
[

rt random-float rate-of-random-turn
lt (rate-of-random-turn / 2)
; randomly turns by up to left or right as defined by the
; random-rate-of-turn variable in the interface
fd boid-speed
avoid-patches

]
end
to avoid-patches

ask patches with [pcolor = sky]
[set pcolor black]
ask patches in-cone radius-length radius-angle
[if pcolor = black

[set pcolor sky]
if pcolor = white
[set pcolor red]]

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

42

Behaviour

if count patches in-cone radius-length radius-angle with
[pcolor = white or pcolor = red] > 0

[
ask wanderer 0
[

bk boid-speed
lt 90

]
]

end

NetLogo Code 6.5 The code for the Obstacle Avoidance 1 model shown in Figure 6.8.

The setup procedure places the boid at a random location in the environment, and calls the draw-
obstacles procedure to draw the white obstacles in the bottom half of the environment. The ask
wanderers command in the go procedure defines the behaviour of the boid. The boid will do a right
and left turn of a random amount, then move forward a certain amount as specified by the variable
boid-speed defined in the interface.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2015

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://s.bookboon.com/AXA

Artificial Intelligence – Agent Behaviour I

43

Behaviour

Then the boid calls the avoid-patches procedure to perform the collision avoidance. In this
procedure, first the sky coloured halo surrounding the boid is erased by setting sky coloured patches to
black. Next, the vision halo is redrawn around the boid based on its current location – the rapid erasure
followed by redrawing causes the boid to flicker much like a butterfly rapidly flapping its wings. The boid
then performs the collision avoidance by backing away a distance equal to boid-speed, and does a
left turn. The last part of the procedure sets the patches that have been collided with to red.

The Obstacle Avoidance 2 model illustrates obstacle avoidance in the same environment as the Look
Ahead Model from the Models Library (discussed in Section 8.3). The screenshot of the model is shown
in Figure 6.9. The boid can be seen towards the middle left of the environment. The path the boid has
taken is plotted in red. This clearly shows that the boid has been successful in avoiding collisions with
the walls and obstacles. The length of the boid’s vision cone was set at 1, and angle 300°. The code is
similar to the Obstacle Avoidance 1 model.

Figure 6.9 Screenshot of the Obstacle Avoidance 2 model.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

44

Behaviour

The Follow and Avoid model implements seeking and fleeing behaviours. Three screenshots of the model
are shown in Figure 6.10. The left image shows when there is one wanderer agent coloured red, and
100 follower agents coloured green. It shows most of the agents pointing towards the wanderer agent.
During the simulation, the follower agents all actively pursue the wanderer agent as it wanders around.
The middle image shows 100 avoider agents coloured yellow that try to avoid the wanderer agent. In
this case, most of the avoider agents are pointed away from the wanderer agent and will actively move
away from it during the simulation. The right image shows the situation when 50 follower agents and
50 avoider agents are in the environment together with the wanderer agent. The image shows most of
the follower agents in green pointing towards the wanderer, and most of the avoider agents in yellow
pointing away from it. At the beginning, all agents are randomly spaced throughout the environment, but
after the simulation has run for a short number of ticks, what usually emerges is that both the follower
and avoider agents will start clumping together as shown in the image.

Figure 6.10 Screenshots of the Follow and Avoid model.

The code for the model is shown in NetLogo Code 6.6.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

45

Behaviour

breed [wanderers wanderer] ; wanders around
breed [followers follower] ; tries to follow the wanderer
breed [avoiders avoider] ; tries to avoid the wanderer

to setup

clear-all

; set shapes for the breeds
set-default-shape wanderers "directional-circle"
set-default-shape followers "directional-circle"
set-default-shape avoiders "directional-circle"

; create a wanderer, follower and an avoider at random locations
create-wanderers 1 [default red]
create-followers number-of-followers [default green]
create-avoiders number-of-avoiders [default yellow]

end

to-report number-of-agents
; used to show that number of turtle agents is constant even when
; all the followers clump on top of each other
report count turtles

end

to default [colour] ; creates default settings for boid
set color colour ; sets colour using passed parameter
setxy random-xcor random-ycor ; sets an initial random position
set size 3 ; default turtle size

end

to go
ask wanderers ; wanderer's instructions
[

lt random 30 ; randomly turn to the left
rt 15
fd boid-speed ; variable user defined speed

]
ask followers ; follower's instructions
[

fd boid-speed / speed-scale ; moves forward at user defined speed
; follower searches for wanderer in its radius
if any? wanderers in-radius radius-detection
[set heading (towards wanderer 0) – random boid-random-heading

+ random boid-random-heading
; adjusts heading to point towards wanderer]

]

ask avoiders ; avoiders' instructions
[

fd boid-speed / speed-scale ; moves forward at user defined speed
; avoider searches for wanderer in its radius

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

46

Behaviour

if any? wanderers in-radius radius-detection
[set heading (towards wanderer 0) + 180 – random boid-random-heading
+ random boid-random-heading]
; adjusts heading to point away from wanderer

]
end

NetLogo Code 6.6 The code for the Follow and Avoid model shown in Figure 6.10.

The behaviour of the three breeds of agents is defined by the wanderers, followers and
avoiders procedures. The first defines the behaviour for the wanderer agent so that it wanders around
in a semi-random fashion. The second defines the behaviour for the follower agent that consists of the
agent first moving forward a user-defined amount according to the interface variables boid-speed
and speed-scale. Then it uses the NetLogo in-radius reporter to detect whether the wanderer
is in its circular field of vision whose size is defined by the radius-detection Interface variable.
If there is, then it will move toward it. The avoider agent’s behaviour is defined in a similar manner, the
only difference being that it heads in the opposite direction (180°) away from the wanderer instead of
towards it.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/BI

Artificial Intelligence – Agent Behaviour I

47

Behaviour

The Flocking With Obstacles model is a modification of the Flocking model provided in the NetLogo
Models Library. The library model uses the standard method for implementing flocking behaviour devised
by Craig Reynolds. In this approach, the flocking emerges from the application of three underlying
steering behaviours. These are: separation, where the boid tries to avoid getting too close to other boids;
alignment, where the boid tries to move in the same direction as nearby boids; and cohesion, where the
boid tries to move towards other boids unless they are too close. With the modified model, the user
has the extra option of adding various objects into the environment, such as a coral reef, sea grass and
a shark. This is in order to simulate what happens when the flock encounters one or more objects, and
to better simulate the environment for a school of fish. Some screenshots of the modified model are
shown in Figure 6.11.

Figure 6.11 Screenshots of the Flocking With Obstacles model.

The top left image shows the model at the start after the setup button in the interface has been pressed.
The middle top image shows the model after it has been run for a short while and a school of turtle agents
has formed. The right top image shows the model with collision patches added in the middle in the shape
of a shark loaded immediately after the previous image was taken. These patches cause the turtle agents
to move away when they have collided with them. The bottom left image shows the background image
overlaid onto the same image. The middle bottom image shows the school approaching the object from
a different direction. The bottom right image shows the scene not long after – now the school has split
into two sub-schools after the collision and are heading away from the object.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

48

Behaviour

The collision patches work by the model stipulating that any patch that is not black is to be avoided; that
is, all colours excluding black forces the boids to turn around 180° in order to avoid a collision. Another
change to the model is that the speed of the boids can now be controlled from the interface to enable greater
testing of individual movements and this also provides a means of analysing the reactions of the boids.

The code for the relevant parts of the modified model that define the behaviour of the agents is listed
in NetLogo Code 6.7.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

Artificial Intelligence – Agent Behaviour I

49

Behaviour

turtles-own [
flockmates ;; agentset of nearby turtles
nearest-neighbor ;; closest one of our flockmates

]

to setup
clear-all
crt population

[set color blue – 2 + random 7
set size 1.5
setxy random-xcor random-ycor]

end
to go

ask turtles [flock]
repeat 5 [ask turtles [fd set-speed / 200] display]
tick

end

to flock
find-flockmates
if any? flockmates

[find-nearest-neighbor
ifelse distance nearest-neighbor < minimum-separation

[separate]
[align

cohere]]
avoid-obstacles

end

to avoid-obstacles
; avoid anything nearby that is not black

if (any? patches in-cone 2 300 with [pcolor != black])
[rt 180] ; head in opposite direction

end

to find-flockmates
set flockmates other turtles in-radius vision

end

to find-nearest-neighbor
set nearest-neighbor min-one-of flockmates [distance myself]

end

to separate
turn-away ([heading] of nearest-neighbor) max-separate-turn

end

to align
turn-towards average-flockmate-heading max-align-turn

end

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

50

Behaviour

to-report average-flockmate-heading
 report atan sum [sin heading] of flockmates

 sum [cos heading] of flockmates
end

to cohere
 turn-towards average-heading-towards-flockmates max-cohere-turn

end

to-report average-heading-towards-flockmates
 report atan mean [sin (towards myself + 180)] of flockmates

 mean [cos (towards myself + 180)] of flockmates
end

to turn-towards [new-heading max-turn]
turn-at-most (subtract-headings new-heading heading) max-turn

end

to turn-away [new-heading max-turn]
turn-at-most (subtract-headings heading new-heading) max-turn

end

to turn-at-most [turn max-turn]
ifelse abs turn > max-turn

[ifelse turn > 0
[rt max-turn]
[lt max-turn]]
[rt turn]

end

NetLogo Code 6.7 The code for the Flocking With Obstacles model shown in Figure 6.11.

The setup procedure creates a random population of turtle agents. The ask command in the go
procedure defines the behaviour of the agents – it simply calls the flock procedure. Here the agent first
checks to see if there are any other agents within its cone of vision, then if there are any, it looks for
the nearest neighbour, and then applies the separation steering behaviour as defined by the separate
procedure if it is too close. Otherwise it applies the alignment steering behaviour as defined by the align
procedure followed by the cohesion steering behaviour as defined by the cohere procedure. These
three procedures make use of either the turn-away or turn-towards procedures that make the
boid turn away from or towards a particular reference heading given the boid’s current heading. The
reference heading for the separation steering behaviour is the heading of the boid’s nearest neighbour, for
the alignment steering behaviour it is the average heading of the boid’s flock mates, and for the cohesion
steering behaviour it is the mean heading towards the boid’s flock mates.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

51

Behaviour

In the simulation, a number of emergent phenomena can be witnessed. The flock quickly forms at the
beginning when no obstacles have been loaded. A noticeable spinning effect can also be observed of
the boids within the flock if the initial interface parameters are set as minimum-separation =
1.25 patches, max-align-turn = 15.00 degrees, max-cohere-turn = 15.00 degrees and max-
separate-turn = 4.00 degrees. When the school encounters an obstacle, it changes direction as a
group with individual boids usually reacquiring the flock very quickly if they become separated. When
enough of the boids have altered their course, the remainder of the school follows suit without ever
having been in collision with the obstacle. Occasionally, the school will split into two separate schools
heading in different directions as shown in the bottom right image of Figure 6.10.

The Crowd Path Following model implements behaviour of boids in a crowd that are following a path. The
behaviour of the boids in the model can have two variations – a basic crowd path following behaviour,
and one with collision avoidance (this is set using the behaviour slider in the Interface). Figure
6.12 provides two screenshots of the model for the two different behaviours. The left image shows the
‘crowd’ of boids heading down the path roughly in the same direction from left to right. This occurred
after the simulation had been running for a short while. Note that some of the agents are very close to
each other – this is because there is no collision avoidance, unlike with the second behaviour shown
on the right. Although the core code for these behaviours is similar (for the code, follow URL link at
the bottom of this chapter) being based on using the in-cone command as with the other boid agent
implementations above, the resulting behaviour with obstacle avoidance is noticeably different. For
example, more sub-groups of agents now try to go against the flow, as shown in the right image.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

Artificial Intelligence – Agent Behaviour I

52

Behaviour

Figure 6.12 Screenshots of the Crowd Path Following model with population = 30: basic crowd following behaviour (left
image); with collision avoidance (right image).

A faithful implementation of Reynolds’ boids should include some form of steering force implemented
using point mass approximation where each boid has a mass and works in relation to forces. However,
these NetLogo implementations have shown how an approximation to Reynolds approach can be achieved
relatively easy, and in many cases, the resultant behaviour of the boids is as desired.

6.8	 Summary

Behaviour based Artificial Intelligence (BBAI) adopts the behavioural approach to building intelligent
systems. This approach decomposes intelligence into separate independent semi-autonomous modules
that describe distinct behaviours. Behaviour for an agent is a series of actions it performs when interacting
with an environment. The specific order or manner in which the movements are performed and the
overall outcome that occurs as a result of the actions defines the particular type of behaviour.

Different perspectives lead to different explanations, and different ways things are understood. The
frame of reference problem concerns the difficulty of understanding the behaviour in different species.
Not only do the points of view look different to each agent, they sound, feel, smell and taste different
as well, because of the different embodiment of the agent doing the observation compared to the agent
being observed. (For example, try to imagine being an ant.) It is important not to attribute the wrong
explanations from observations to the mechanisms behind the behaviour of an embodied agent situated
within an environment, and especially important to avoid attributing complicated mechanisms (e.g. some
form of “intelligence”) to the observed agent’s behaviour when it has a different frame of reference, i.e.
a different embodiment.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

53

Behaviour

A summary of important concepts to be learned from this chapter is listed below:

•	 Simple rules may lie at the heart of complex systems.
•	 Simple reactive behaviour may be behind complex phenomena.
•	 Adaptive behaviour is behaviour where the agent has changed its behaviour in response to a change in the

environment.
•	 Evolving behaviour is behaviour that has come about due to genetic evolution (i.e. this requires more than one

generation where genetic traits are passed down to offspring).
•	 Emergent behaviour is some property that emerges from agent-agent interactions or agent-environment

interactions that could not have arisen without those interactions and is not the result of a simple linear
combination of those interactions.

•	 Self-organising behaviour for a multi-agent system occurs when the agents applying local rules creates some
pattern or structure as an emergent property.

•	 Stigmergy is when agents use the environment to communicate and interact. For example, ants and bees use
the environment to tell each other where to find sources of food. Humans use it to build complex information
systems and tell each other where to find sources of information.

•	 Swarm intelligence is a collection of agents that use stigmergic local knowledge to self-organize and co-ordinate
their behaviours.

The code for the NetLogo models described in this chapter can be found as follows:

Model URL

Crowd Path Following http://files.bookboon.com/ai/Crowd-Path-Following.nlogo

Flocking With Obstacles http://files.bookboon.com/ai/Flocking-With-Obstacles.nlogo

Follow and Avoid http://files.bookboon.com/ai/Follow-And-Avoid.nlogo

Obstacle Avoidance 1 http://files.bookboon.com/ai/Obstacle-Avoidance-1.nlogo

Obstacle Avoidance 2 http://files.bookboon.com/ai/Obstacle-Avoidance-1.nlogo

Wall Following Events http://files.bookboon.com/ai/Wall-Following-Events.nlogo

Model NetLogo Models Library (Wilensky, 1999) and URL

Fireflies Biology > Fireflies
http://ccl.northwestern.edu/netlogo/models/Fireflies

Flocking Biology > Flocking
http://ccl.northwestern.edu/netlogo/models/Flocking

Heatbug0 Biology > Heatbugs
h000p://ccl.northwestern.edu/netlogo/models/Heatbugs

State Machine Example Code Examples > State Machine Example
http://ccl.northwestern.edu/netlogo/models/StateMachineExample

Termites Biology > Termites
http://ccl.northwestern.edu/netlogo/models/Termites

Wall Following Example Code Examples > Wall Following Example; see modified code at:
http://files.bookboon.com/ai/Wall-Following-Example-2.nlogo

Download free eBooks at bookboon.com

http://files.bookboon.com/ai/Crowd-Path-Following.nlogo
http://files.bookboon.com/ai/Flocking-With-Obstacles.nlogo
http://files.bookboon.com/ai/Follow-And-Avoid.nlogo
http://files.bookboon.com/ai/Obstacle-Avoidance-1.nlogo
http://files.bookboon.com/ai/Obstacle-Avoidance-1.nlogo
http://files.bookboon.com/ai/Wall-Following-Events.nlogo
http://ccl.northwestern.edu/netlogo/models/Fireflies
http://ccl.northwestern.edu/netlogo/models/Flocking
http://ccl.northwestern.edu/netlogo/models/Heatbugs
http://ccl.northwestern.edu/netlogo/models/StateMachineExample
http://ccl.northwestern.edu/netlogo/models/Termites
http://files.bookboon.com/ai/Wall-Following-Example-2.nlogo

Artificial Intelligence – Agent Behaviour I

54

Communication

7	 Communication

 Greek manuscript

In considering human history, the language community is a very natural unit. Languages,
by their nature as means of communication, divide humanity into groups; only through a
common language can a group of people act in concert, and therefore have a common history.
Moreover the language that a group shares is precisely the medium in which memories of their
joint history can be shared. Languages make possible both the living of a common history,
and also the telling of it.

Nicholas Ostler, Empires of the Word, 2005.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/volvo

Artificial Intelligence – Agent Behaviour I

55

Communication

The new method of estimating entropy exploits the fact that anyone speaking language possesses,
implicitly, an enormous knowledge of the statistics of the language. Familiarity with the words,
idioms, clichés and grammar enables him to fill in missing or incorrect letters in proof-reading,
or to complete an unfinished phrase in conversation.

C.E. Shannon, Prediction and entropy of printed English, 1951.

The purpose of this chapter is to introduce the important topics of communication and language, and the vital role they
play in agent-to-agent interaction. The chapter is organised as follows. Section 7.1 defines the relationship between
communication, information and language. Section 7.2 highlights the diversity of human language. Section 7.3 looks at
communication within communities of agents called social networks. Different types of communicating behaviour are
discussed in Section 7.4. An important hallmark of social and computer networks called the small world phenomenon
is described in Section 7.5, along with a method for measuring the average degree of separation in a network called
Dijkstra’s algorithm. Section 7.6 looks at how communicating agents can be used to search networks, and how different
communicating behaviours can be more effective than others at performing the search. Section 7.7 defines entropy,
a probabilistic method for measuring information, and Section 7.8 shows how to calculate it in NetLogo. Section 7.9
looks at a statistical approach to the modelling of language, and the entropy of a language is defined in Section 7.10.
Section 7.11 highlights how the purpose of communication is to transmit the meaning of the message, the problems
associated with defining what meaning is, and briefly looks at the complexities of meaning present in human language.

7.1	 Communication, Information and Language

Communication may be defined as the process of sharing or exchanging of information between agents.
An agent exhibits communicating behaviour when it attempts to transmit information to another agent.

A sender agent or agents transmits a message through some medium to a receiver agent or agents. The
term communication in common English usage can also refer to interactions between people that involve
the sharing of information, ideas and feelings. Communication is not unique to humans, though, since
animals and even plants also have the ability to communicate with each other.

Language can be defined as the set of symbols that agents communicate with in order to convey
information. In Artificial Intelligence, human language is often called ‘natural language’ in order
to distinguish it from computer programming languages. Communicating using language is often
considered to be a uniquely human behavioural trait. Human language, such as spoken, written or sign, is
distinguished from animal communication systems in that it is learned rather than inherited biologically.
Although various animals exhibit the ability to communicate, and some animals such as orangutans
and chimpanzees even have the ability to use certain features of human language, it is the degree of
sophistication and complexity in human language that distinguishes it from animal communication
systems. Human language is based on the unique ability of humans to think abstractly, using symbols
to represent concepts and ideas.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

56

Communication

Language is defined by a set of socially shared rules that define the commonly accepted symbols, their meaning
and their structural relationships specified by rules of grammar. These rules describe how the symbols can be
manipulated to create a potentially infinite number of grammatically correct symbol sequences. The specific
symbols chosen are arbitrary and can be associated with any particular phoneme, grapheme or sign.

Linguistics is the scientific study of language which can be split into separate areas of study: grammar
is the study of language structure; morphology is the study of how words are formed and put together;
phonology is the study of systems of sounds; syntax concerns the rules governing how words combine
into phrases and sentences; semantics is the study of meaning; and pragmatics concerns the study of
language and use and the contexts in which it is used.

7.2	 The diversity of human language

In all natural languages, there is a wide variation in usage as well as frequent lack of agreement amongst
language users. For example, Table 7.1 lists some examples of acceptable ‘English’ sentences from various
regions of the world (Newbrook, 2009). Each of the sentences is regarded as ‘normal’ English for the
region shown on the right, and yet most people outside those regions would argue differently, and in
many cases have difficulty in understanding their meaning.

‘English’ sentences Their origin

Let’s buy some food home! Singapore

Don’t smoke without causing an explosion! South Wales

AIDS is very popular in Africa. Hong Kong

My hair needs washed. Scotland, Northern Ireland, parts of USA

Whenever my baby was born I was 26. Northern Ireland

Her outlook is very beautiful. Hong Kong

John smokes a lot anymore. Mid-West USA

I am difficult to study. Hong Kong

I might could do it. Scotland, Northern England, India, parts of USA

My name is spelt with four alphabets. Singapore

You must beware of your handbag! Hong Kong

We’ll be there nine while ten. Lancashire, Yorkshire

He loves his car than his girlfriend. India, parts of Africa

Come here till I punch you! Ireland, Liverpool, Cumbria, parts of Scotland

I’m after losing my ticket. Ireland

My brother helps me with my studies and so do my car. Hong Kong

I been know your name. USA (Black)

I use to live there now. Singapore

My grandfather died for a long time. Hong Kong

I am having a nice car. India, Singapore

I’ll give it him. Northern England (standard)

Robots can do people not like jobs. Hong Kong (low proficiency)

Table 7.1 Some “English” sentences and their origin (Newbrook, 1996).

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

57

Communication

Concerning the English language, David Crystal (1988) states: “The English language stretches around
the world: from Australia to Zimbabwe, over 300 million people speak it as their mother tongue alone…
And yet, despite its astonishingly widespread use as a medium of communication, every profession and
every province – indeed, every individual person – uses a slightly different variant.” English has many
different regional dialects (such as American, British, Australian and New Zealand English), as well as
many sub-dialects within those regions. There are also dialects that cut across regional lines, for example,
“Public School English” in Britain, Black English in America and Maori English in New Zealand. And in
every country, there are countless social variations that “possess their own bewildering variety of cants,
jargons and lingoes” (Claiborne 1990, page 20). One of the more colourful examples is a dictionary on
Wall Street slang entitled High steppers, fallen angels, and lollipops (Odean, 1989). It illustrates how such
language can become almost unintelligible to the uninitiated. (For example, what is a ‘high stepper’ or
a ‘fallen angel’?)

Hudson (1983, page 69) writes the following in The language of the teenage revolution about the resentment
of older people to the language used by contemporary teenagers: “…perhaps, they dislike the fact that
teenagers speak another kind of language, using a considerable number of expressions which they
themselves find either incomprehensible or repulsive.”

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

Artificial Intelligence – Agent Behaviour I

58

Communication

As well as language being diverse, there are many different ways that language is expressed and used.
Spoken language is markedly different from written language, as illustrated from the following example
taken from Crystal (1981):

“This is part of a lecture, and I chose it because it shows that even a professional speaker uses
structure that would rarely if ever occur in written English, and displays a ‘disjointedness’ of
speech that would be altogether lacking there. (Everyday conversation provides even more
striking differences.) The dot (.) indicates a short pause, the dash a longer pause, and the erm
is an attempt to represent the noises the speaker made when he was audibly hesitating.

 … – and I want . very arbitrarily if I may to divide this into three headings --- and to ask .
erm . three questions . assessment why – assessment of what – and assessment how . so this is
really . means I want to talk about . first of all the purposes of assessment – why we are assessing
at all – erm secondly the kind of functions and processes that are being assessed – and thirdly I
want to talk about techniques – …”

Baugh (1957, page 17) reminds us that language is not just “the printed page” relatively uniform and
fixed, as many people think it to be. Language is “primarily speech” and writing “only a conventional
device for recoding sounds.” He further states that as the repeated muscular movements which generate
speech are subject to gradual alteration on the part of the speaker:

“each individual is constantly and quite unconsciously introducing slight changes in his speech.
There is no such thing as uniformity in language. Not only does the speech of one community
differ from that of another, but the speech of different individuals of a single community, even
different members of the same family, is marked by individual peculiarities.”

Some other distinctive forms of language are, for example, poetry, legal documents, newspaper reporting,
advertising, letter writing, office correspondence, telegrams, telephone conversations, electronic mail,
Usenet news articles, scientific papers and political speeches. Each has their own flavour, quirks and style.
And within each form there are individual authors who have their own distinctive styles of language.
The plays of Shakespeare and the science fiction novels of H.G. Wells are two examples of very distinct
literary styles. In fact, every single person has their own style of language, or idiolect with its own unique
characteristics that can be readily discerned by other people (Fromkin et al., 1990).

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

59

Communication

As well as the standard dialects there are many non-standard in use. Fromkin et al. (1990, page 253)
state that “though every language is a composite of dialects, many people talk and think about a language
as if it were a ‘well-defined’ fixed system with various dialects diverging from this norm’’. They state
that these non-standard dialects are often regarded as being “deficient, illogical and incomplete” when
compared to the standard dialects. They use the example of a prominent author on language, Mario
Pei (1964), who once accused the editors of Webster’s Third New International Dictionary (published in
1961) of confusing “to the point of obliteration the older distinction between standard, nonstandard,
colloquial, vulgar and slang”.

Crystal (1981), in Linguistics, states that “many people’s knowledge of normal language is very shaky;
and their ability to describe what it is they know is shakier still.” Quite often even experts argue over
the finer points of language use. There are numerous dictionaries explaining common usage or less
common usage such as jargon, slang, clichés, idioms and figures of speech, for example Up the boohai
shooting pukekas: a dictionary of Kiwi slang (McGill, 1988). Finding order in all this chaos has been a
goal of many people ever since Samuel Johnson compiled his dictionary of English in 1755, and the first
attempts were made to compile a grammar for English not long after (Crystal, 1988).

Download free eBooks at bookboon.com

Click on the ad to read more

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

Artificial Intelligence – Agent Behaviour I

60

Communication

7.3	 Communication via communities of agents

Communication is by definition conducted between two or more agents. An important aspect of human
communication is that it is conducted between communities and groups of agents. For human agents,
the type of communication via human language that is deemed appropriate in each community can
often be used to identify and distinguish that community or group. This is manifested by different
languages, dialects, sub-dialects and sociolects (language used amongst a particular social group) that
are distinguished by variations in vocabulary, grammar, and pronunciation often by the use of variations
in the lexicon such as jargons, and slang.

Social networking amongst communities of agents is an important aspect of human language. A social
network refers to a social structure made up of agents that are linked to each other by some common
shared trait. A social network can be represented by a graph, where nodes represent the agents and links
between nodes define the relationships between the agents. The term social networking has become
much more prevalent in common English usage because of the recent emergence of social networking
Web sites such as Facebook, Myspace and Twitter.

Language is defined by the members of the social network comprising the language community. Within
that community, there may be sub-networks for each of the dialects, sub-dialects and sociolects.

‘Living’ languages as opposed to ‘dead’ languages such as Latin are also dynamic, with new words and
phrases constantly being coined to describe new concepts and ideas, and these new words and phrases
are spread via the links in the social networks. The Language Change model provided in the Models
Library in NetLogo illustrates how the structure of the social network combined with the variations
of language users can affect language change. In this model, the nodes in the network represent the
language users, and there are two variants of the language generated by two different grammars (0 and
1) in competition within the network.

Language users interact with each other each iteration of the simulation by first speaking either grammar
0 or 1 to the neighbours they are connected with in the social network. During the subsequent listening
phase, they then adjust their grammar based on what was received during the speaking phase.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

61

Communication

Figure 7.1 Screenshot of sample output produced by the Language Change model.

A screenshot of sample output produced by the model is shown in Figure 7.1. The output was produced
using default settings and the reward update algorithm. The white nodes in the figure represent language
users who access grammar 1, the black nodes those who access grammar 0. The red shaded nodes represent
language users who have the ability to use both grammars. The colour represents the probability they
will access either grammar 1 or 0, the higher the probability, then the darker the shading. A selection
of the code in the model is shown in NetLogo Code 7.1.

Download free eBooks at bookboon.com

Click on the ad to read more

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

Artificial Intelligence – Agent Behaviour I

62

Communication

breed [nodes node]

nodes-own [
state ; current grammar state – [0,1]
orig-state ; save for resetting the original states
spoken-state ; stores output of agent's speech – 1 or 0

]

to communicate-via [algorithm] ; node procedure
;; *Probabilistic Grammar* ;;

;; speak and ask all neighbors to listen
if (algorithm = "reward") [
speak
ask link-neighbors [

listen [spoken-state] of myself
]

end

;;; listening uses a linear reward/punish algorithm
to listen [heard-state] ; node procedure

let gamma 0.01 ; for now gamma is the same for all nodes
;; choose a grammar state to be in
ifelse (random-float 1.0 <= state) [

;; if grammar 1 was heard
ifelse (heard-state = 1) [
set state (state + (gamma * (1 – state)))
][
set state (1 – gamma) * state
]

][
;; if grammar 0 was heard
ifelse (heard-state = 0) [
set state (1 – gamma) * state
][
set state gamma + ((1 – gamma) * state)
]

]
end

to update-color
set color scale-color red state 0 1

end

NetLogo Code 7.1 Selected parts of the code for the Language Change model.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

63

Communication

The language user is defined as a node breed at the beginning, and each node owns a state variable, a
number between 0 and 1 that is a weighting that reflects the user’s probability of accessing grammar 0 or
1. The communicate-via procedure lists the code associated with just the reward update algorithm
(there are two other update algorithms not included here – individual and threshold – that can be used
to produce different network behaviour). With the reward update algorithm, the current node agent
first speaks then listens to all its link neighbours in the network. The algorithm uses a linear reward/
punishment weighting scheme as shown in the listen procedure to set the node agent’s state variable.
At the bottom of the code listing, the update-color procedure has been included to show how the
colour of node agent is set depending on the current grammar weighting stored in the state variable.

Multiple runs of the model show that the language users in the simulation have a tendency to end up using
a single grammar that dominates throughout the social network. However, often the other grammar still
remains in pockets throughout the network, and this reflects the formation of dialects and sub-dialects
in human social networks in real life.

7.4	 Communicating Behaviour

Communicating behaviour comes in many forms. Table 7.2 lists some of the many different forms of
communicating behaviour in humans. The table lists the behaviour (speaking, writing, signing and so
on) and the medium in which the communication takes place (for example, for writing, the medium
is usually paper). This is closely related to the human sense(s) and language being used to decode the
information being communicated as listed in the table. Also listed is whether the communication is
one-to-one or one-to-many, whether the receiver agent needs to decode the information immediately
otherwise it will be lost or has the ability to delay the decoding, and whether the sender and receiver
agents need to be close to each other in order to carry out the form of communication, or whether it
can be performed remotely.

For much of history, human communication has been restricted to a few basic forms such as speaking
and writing, but over the last century or so, human communicating behaviour has undergone rapid
transformation due to technological advances enabling new forms of communication that were previously
not possible, for example, broadcasting, and more recently texting and blogging. Technology is also
blurring the nature of existing communication – whereas only one-to-one immediate delivery was
possible in some forms, advances have allowed us to expand to include variations such as 1-to-many
delayed delivery – for example, radio and TV is now being broadcast by streaming, and therefore it is
now no longer necessary to have to listen or watch these media immediately as alternative means of
communication are available where we can wait until a more convenient time. This is manifested in
Table 7.2 with the columns with empty cells gradually being filled in with ✓’s as technology enables a
previously unavailable option to become possible.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

64

Communication

Behaviour Sense Medium Language 1-to-1 1-to-
many

Immed. Delayed Close
Remote

Exam
ple(s)

Speaking
by word of
mouth

Hearing Sound Spoken

✓ ✓ ✓

Talking

Writing Vision Paper Written

✓ ✓ ✓

Books,
news
papers

Signing Vision Light Sign ✓ ✓ ✓ ASL

Writing
using
Braille

Touch Braille Braille

✓ ✓ ✓

Books
for the
blind

Phoning Hearing Sound Spoken ✓ ✓ ✓ Phone

Texting Vision Mixed Written ✓ ✓ ✓ Phone

Tweeting Vision Mixed Written ✓ ✓ ✓ Phone,
Web

Broad
casting

Mixed Mixed Mixed ✓ ✓ ✓ ✓ Radio,
TV

Lecturing
via ‘black
boards’

Vision Black-
board

Written

✓ ✓ ✓ ✓

Black
board,
white
board

Blogging Mixed Internet Mixed ✓ ✓ ✓ ✓ Web
pages

Table 7.2 The many forms of human communicating behaviour.

In order to illustrate how communicating behaviour affects how language is spread throughout a social
network, we can run some simulations using NetLogo models. The first, the Communication-T-T
Example model that comes with the NetLogo Models Library, provides a simple illustration of how ‘word
of mouth’ communication can be extremely effective at spreading a message throughout a network. A
screenshot of the model in action is shown in Figure 7.2.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

65

Communication

Figure 7.2 Screenshot of sample output produced by the Communication-T-T model.

The model works by first creating a number of agents at random positions in the environment, one of
which is designated to be the agent who starts spreading the message. Then during the simulation, these
agents move about randomly, and those who have the message will spread it via word-of-mouth to any
agents who are nearby. The figure shows the simulation at an early stage – the message has been spread
to only a small percentage of the agents (the ones coloured in red); eventually, the message will rapidly
get spread to all the agents in the environment. However, even at this stage of the simulation, it is readily
apparent the way the word-of-mouth method of communication works and why it is so effective. The
message has been transmitted to clusters of agents who are near to each other. These clusters will rapidly
grow and take over the whole network like the ripple effect of waves spreading out across a pond after
a stone has been thrown into it.

The code for the model is shown in NetLogo Code 7.2.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

66

Communication

turtles-own [
message? ;; true or false: has this turtle gotten the message yet?
]

to setup
clear-all
crt 400 [

set shape "Person"
set size 2
set message? false
setxy random-xcor random-ycor

]
ask one-of turtles
[set message? true] ;; give the message to one of the turtles
ask turtles [recolor]

end

to go
ask turtles [move]
ask turtles [communicate]
ask turtles [recolor]
tick

end

;; move randomly
to move ;; turtle procedure

fd random 4
;; turn a random amount between -40 and 40 degrees,
;; keeping the average turn at 0
rt random 40
lt random 40

end

;; the core procedure!
to communicate ;; turtle procedure

if any? other turtles-here with [message?]
[set message? true]

end

; color turtles with message red, and those without message blue
to recolor ;; turtle procedure

ifelse message?
[set color red]
[set color blue]

end

NetLogo Code 7.2 Code for the modified Communication-T-T model.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

67

Communication

The code has been slightly modified for visualisation purposes from that provided by the Models Library
by reducing the number of agents created and by changing the size and shape of the agents. The setup
procedure creates 400 turtle agents at random locations, with one of them designated as having the
message at the start. During the go procedure, each agent first moves in a random direction, then each
agent who has the message communicates the message to any other agents who are at the same patch
location, and finally the colours of each agent are reset to reflect whether they have the message or not.

7.5	 The Small World Phenomenon and Dijkstra’s algorithm

Another NetLogo model, the Being Kevin Bacon model has been created to find out how different forms
of communicating behaviour compare at spreading information throughout a social network. Before
explaining the model, however, we need to learn about an important hallmark of networks called the
‘small world phenomenon’ and the related phrase ‘six degrees of separation’. The small world phenomenon
was first investigated by Stanley Milgram, a social psychologist at Yale University.

He conducted an experiment to show we are on average only six “steps” away from anybody else on
Earth. In the experiment, letters were sent out to randomly selected people in Omaha and Wichita in
the USA. These people were asked if they knew a person X living in Boston. If not, they were then asked
to forward the letter onto someone who they thought might know X.

The results of the experiment were that 64 of the 256 letters sent did reach the target; some chains of
successful letters were only 1 or 2 long while others were over 10 long. Significantly, the average path
length was around 5.5 to 6 – this is where the phrase ‘six degrees of separation’ originated. The idea is
that even in a very large network, a simple method of spreading a message via word of mouth can be
extremely effective because of the ripple effect as the message is spread. Although the message in this
experiment was written down rather than spoken, the method can still be considered analogous to word
of mouth communication in humans as direct contact is still required to spread the message albeit via
a third transmitting agent, the postman.

The degree of separation is a useful means for measuring the connectivity of a network, whether it is
a social network or computer network. Many networks contain what are called ‘super-nodes’ – hubs
that are super-connected to many other nodes in the network. Here the number of connections that
the hub has with other nodes is substantially greater than the average number of connections per node.
These hubs can aid the speed at which communication is spread throughout the network, since once
the message has reached a hub, then the message can reach a greater part of the network immediately
without having to go through further intermediate nodes.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

68

Communication

In any network we can identify a hub and then work out the degree of separation a particular node has
from it – that is, how many nodes need to be visited along the shortest path from the node to the hub.
In a social network, this might be useful to determine how ‘close’ one person is to a famous person –
the closer one is to the celebrity, the greater the reflected glory. Mathematicians have in fact used a
number called the Erdös Number in order to measure the collaboration distance from the well-known
and prolific Hungarian mathematician, Paul Erdös, who had hundreds of collaborators and worked in
many fields including combinatorics, graph theory, number theory, set theory and probability theory.
The Erdös Number is calculated recursively in the following manner:

•	 If you have a paper co-authored by Erdös, you have an Erdös number of 1.
•	 Otherwise, if you have a paper published with a co-author who has an Erdös number of 1,

you have an Erdös number of 2.
•	 Otherwise, if you have a paper published with a co-author who has an Erdös number of n,

you have an Erdös number of n + 1.

This distance metric can readily be applied to other networks, not just networks of people who publish
academic papers. A very different network is the network of actors who have starred in films – here the
‘centre’ of the film actors’ universe has been chosen to be Kevin Bacon, an American film and theatre
actor who has starred in many films such as A Few Good Men, JFK, Apollo 13, and Footloose. The Kevin
Bacon number is calculated as follows:

Download free eBooks at bookboon.com

Click on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

Artificial Intelligence – Agent Behaviour I

69

Communication

•	 If you have starred in a film with Kevin Bacon, you have a Kevin Bacon number of 1.
•	 Otherwise, if you have starred in a film with a co-star who has a Kevin Bacon number of 1,

you have a Kevin Bacon number of 2.
•	 Otherwise, if you have starred in a film with a co-star who has a Kevin Bacon number of n,

you have a Kevin Bacon number of n + 1.

The Erdös and Kevin Bacon Numbers provide rough measures of the degree of belonging an individual
has to a particular community such as Mathematicians and/or film actors – the higher these numbers,
the less the involvement with that community. In any community, there are individuals who are also
members of other communities, and often, these individuals can help spread a message more quickly,
especially between mostly disjoint communities where interaction is minimal – that is, where inter-
community communication is much less than intra-community communication. Those individuals with
multiple memberships serve as the means for the spread of ideas or messages that may be well known
within one community to other communities where the same message may be less well known or even
completely unknown. In academic research, often important breakthroughs have been achieved through
interdisciplinary research, for example.

Just as we can measure the degree of separation from one well-known individual in a particular
community, we can measure the combined separation from two or more communities. For the
Mathematics and film actors’ communities, we have the Erdös-Bacon Number that is the sum of the
Erdös Number plus the Kevin Bacon Number. Not unexpectedly, not many people have both an Erdös
Number and a Kevin Bacon Number, reflecting that there is little interaction between mathematicians
and film actors. However, there are and have been some notable exceptions such as astronomer Carl
Sagan and theoretical physicist Stephen Hawking, and also Natalie Portman, an actress famous for her
role in the Star Wars movies. Natalie Portman has an Erdös Number of 5 due to authorship of psychology
papers during her Harvard degree in psychology. She also has a Kevin Bacon Number of 1 (she starred
in the movie New York, I Love You with Kevin Bacon). Her Erdös-Bacon Number is therefore 6 (5 + 1).

Figure 7.3 Screenshot of the Being Kevin Bacon model.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

70

Communication

We now have the background to look at the Being Kevin Bacon NetLogo model. A screenshot of the
model is shown in Figure 7.3. Shown in the NetLogo environment is a randomly generated network.
This is used to simulate the effectiveness of different communication methods at helping to spread a
message throughout the network. The network in this case contains 65 nodes, two of them being super-
nodes. Normal nodes have a random number of connections from one up to 5, and super-nodes have
a random number of connections up to 50.

Code used to generate the network is shown in NetLogo Code 7.3. Three types of nodes are generated –
nodes that belong to the Paul Erdös set (these are coloured lime), nodes that belong to the Kevin Bacon
set (coloured blue) and those that belong to both (coloured red). The slider percent-in-both is
used to determine the chance a node will be randomly generated to belong to both sets; otherwise a node
will be randomly chosen to belong to either of the Paul Erdös set or the Kevin Bacon set. The labels of
the nodes are shown next to the nodes in the environment with their agent who number prefixed by “e”
if they are in the Paul Erdös set, “b” if they are in the Kevin Bacon set and “eb” if they are in both. The
node associated with Paul Erdös is chosen to be the node from the Paul Erdös set with the minimum
who number (this is coloured magenta and labelled “e1” in the middle right of the environment), and
likewise for the Kevin Bacon node (coloured orange and labelled “b0” close to the bottom on the left).

Download free eBooks at bookboon.com

Click on the ad to read more

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

Artificial Intelligence – Agent Behaviour I

71

Communication

to create-network [number-of-nodes]
;; Creates number-of-nodes new nodes in the network.

create-nodes number-of-nodes
[

set blackboard table:make ;; used by walkers if applying the blackboard
;; knowledge sharing method

ifelse (random 100 < percent-in-both)
[set link-type 0 ;; both erdos and bacon node
set color red
set label (word "eb" who " ")]
;else
[ifelse (random 2 = 0)

[set link-type 1 ;; erdos node
set color lime
set label (word "e" who " ")]

[set link-type 2 ;; bacon-node
set color blue
set label (word "b" who " ")]]

]
set erdos-set nodes with [link-type = 1 or link-type = 0] ;; erdos nodes
set bacon-set nodes with [link-type = 2 or link-type = 0] ;; bacon nodes

end

to setup-network
clear-all
set-default-shape nodes "circle 2"
set-default-shape dwalkers "person"
;; create a random network

reset-counts

set max-distance 999999
;; this number must be greater than maximum path length in the network

if (network-update > 0)
[set network-update-count random network-update]

create-network no-of-nodes

set paul-erdos min-one-of erdos-set [who]
set kevin-bacon min-one-of bacon-set [who]
ask paul-erdos [set color magenta set paul-erdos-no who]
ask kevin-bacon [set color orange set kevin-bacon-no who]

create-network-links

reset-layout
end

NetLogo Code 7.3 Code to create the network for the Being Kevin Bacon model.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

72

Communication

Once we have created the network, we can get walker agents to ‘crawl’ through it performing various
tasks. One task might be to find out the average degree of separation of nodes in the network from a
particular node; in the model, this node is designated by the slider centre-of-the-universe
(in the example shown in Figure 7.3, this is set to the Kevin Bacon node). A well-known algorithm for
performing this calculation is Dijkstra’s algorithm. The algorithm has been implemented in the Being
Kevin Bacon model – the code is listed in NetLogo Code 7.4.

Download free eBooks at bookboon.com

Click on the ad to read more

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

Artificial Intelligence – Agent Behaviour I

73

Communication

to initialise-distances [initial-node]
;; initialises the shortest path distances between network nodes to 0

let number-of-nodes max [who] of nodes + 1

set dijkstra-distances array:from-list n-values number-of-nodes
[number-of-nodes + 1] ;; "infinity"

set dijkstra-directions array:from-list n-values number-of-nodes [nobody]
array:set dijkstra-distances initial-node 0
;; (sets distance to 0 for initial node)

end

to perform-dijkstra [initial-node nodes-to-visit]
;; calculates the distance array for the Dijkstra algorithm using
;; the initial node as the focal point

set nodes-visited 0

initialise-distances [who] of initial-node

let visited-set [] ;; this is the list of nodes that have been visited
let unvisited-set nodes-to-visit
;; this is the list of nodes yet to have been visited

let this-dwalker nobody
if (animate-dijkstra)

[create-dwalkers 1
[set color white
set size 2
set this-dwalker who]]

let current-node initial-node
while [count unvisited-set > 0]
[

if (animate-dijkstra)
[ask dwalker this-dwalker

[setxy [xcor] of current-node [ycor] of current-node
display
wait 0.1]]

ask current-node
[
set nodes-visited nodes-visited + 1
set visited-set fput who visited-set
set unvisited-set other unvisited-set
ask link-neighbors
[

let dist-thru-here
(array:item dijkstra-distances [who] of current-node) + 1

let dist-thru-to-there array:item dijkstra-distances who
if (dist-thru-here < dist-thru-to-there)

[array:set dijkstra-distances who dist-thru-here
array:set dijkstra-directions who [who] of current-node]

]

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

74

Communication

;; set the current-node to the remaining unvisited node that has
;; the smallest distance to the initial node
set current-node min-one-of unvisited-set

[array:item dijkstra-distances who]
]

]
;;

print array:to-list dijkstra-distances
if (animate-dijkstra)

[wait 0.2 ask dwalker this-dwalker [die]]
end

to go-dijkstra
;; Run directly by the interface button – calculates the distance array
;; for the Dijkstra algorithm

let initial-node nobody
ifelse (centre-of-the-universe = "Paul Erdos")

[set initial-node paul-erdos]
;; set the initial node to the node associated with Paul Erdos
[set initial-node kevin-bacon]
;; set the initial node to the node associated with Kevin Bacon

initialise-distances [who] of initial-node

let nodes-to-visit []
;; (this is the list of nodes yet to have been visited)
ifelse (centre-of-the-universe = "Paul Erdos")

[set nodes-to-visit erdos-set]
[set nodes-to-visit bacon-set]

perform-dijkstra initial-node nodes-to-visit
dump-dijkstra-directions

plot-dijkstra
end

NetLogo Code 7.4 Code to perform the Dijkstra algorithm in the Being Kevin Bacon model.

The algorithm works by having walker agents crawl the network updating shortest path distances as
they proceed. These distances are stored in an array data structure that is an extension to NetLogo. The
procedure perform-dijkstra performs the calculations that are returned in the distances array dijkstra-
distances. This array has a distance count associated with each node (indexed by node who number)
that is incrementally updated by the walker agents as they crawl through the network. The algorithm
maintains two sets – the set of nodes it has not yet visited, and the set of nodes it has. The initial node
first visited is chosen to be the node associated with the target node (i.e. the node associated with the
centre-of-the-universe or Kevin Bacon in this example). For each node being visited, it is first added
to the already visited set so it will not be visited again, then the algorithm updates the distance counts
for all its link neighbours where the distance to the target node would be shorter through the current
node. The current node is then set to the node in the unvisited set that has the smallest distance to the
initial target node.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

75

Communication

In the Being Kevin Bacon model, the Dijkstra algorithm is executed by clicking on the go-djijkstra
button in the interface. Upon completion it will then pop-up a dialog that says what the average shortest
path distance is (for the network shown in Figure 7.3 this was 3.41), then it will graph the shortest path
distances for each node in the bottom plot shown in the bottom right of the figure.

7.6	 Using communicating agents for searching networks

Another task we can get the walker agents to perform is to simulate network searching such as that which
occurs in real-life human social networks or computer peer-to-peer networks. This is where multiple
agents are searching the network simultaneously without any prior knowledge in order to find different
goal nodes from different starting points in the network. For example, in peer-to-peer networks, a problem
called ‘resource discovery’ occurs when a user needs to find a particular resource within the peer-to-
peer network. The resource may be a particular file he or she wishes to download or a computer with
the necessary compute power or memory that is required to perform execution of a program remotely.

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/IE

Artificial Intelligence – Agent Behaviour I

76

Communication

The simulation as implemented by the Being Kevin Bacon model works by creating walker agents who
walk around the network with the task of trying to reach a particular goal node chosen at random.
Knowledge concerning the location of the nodes in the network is relayed using different methods
of communication – the model implements five: a method called none where the agents do not
communicate anything when they cross each other; a method called word-of-mouth, which is
analogous to the word of mouth communicating behaviour described above in Table 7.2; a method called
blackboard which is analogous to the blackboard based communicating behaviour listed at the bottom
of this table (which makes use of stigmergy as discussed in Section 6.5); and two methods (combined
0 and combined 1) that combine the word of mouth and blackboard methods of communication.

The Blackboard method is based on an AI architecture of the same name where agents share and update
a common knowledge base. The blackboard architecture is analogous to how blackboards are used in
classrooms and during lectures. The blackboard serves as the medium through which the ideas are
being communicated. In human communication, those in the classroom or lecture theatre have the
choice to read at their leisure (or ignore) what has been written on the blackboard. The variation of
the blackboard architecture used in the simulation is that rather than using a single blackboard, each
node has its own blackboard. Any walker agent passing by can choose to read the information stored in
the node’s blackboard or they can choose to ignore it; however, in the model, the walker agents always
choose to read and update the nodes’ blackboards. The information that is stored is the distance it takes
to get to another node in the network by choosing to follow a particular path from the current node.
This is updated when a walker returns along the path to the node it started from. No other information
is stored in the blackboard – for example, the full path of how to get to the goal node is not stored – just
the information of how long it took if a particular path was chosen. If a later walker finds a shorter route
via a different path, then the smaller distance value gets written into the blackboard. If there is no prior
information in the blackboard, then the walker agents will make a random choice about where to go next.

The code for updating the blackboards is shown in NetLogo Code 7.5. The procedure update-along-
path updates the blackboards along the path of the walker this-walker if the path to the goal is
shorter.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

77

Communication

to update-along-path [this-walker value]
;; updates information along the path when the knowledge sharing method
;; is "Blackboard" or combined

let p 0
let val 0
let val1 0
let key-dist ""
let key-path ""

if knowledge-sharing = "Blackboard" or
knowledge-sharing = "Combined 1" or
knowledge-sharing = "Combined 2"

[
ask this-walker

[
;;type "goal = " type goal type " path = " show path
let this-goal goal
let prev first path
foreach but-first path
[
set key-dist (word this-goal " dist")
set key-path (word this-goal " path")

ifelse (value = "F")
[set val max-distance] ;; failure – node was not found
[set val p + 1] ;; calculate the position in the path

if is-turtle? ? ;; does the node exist? (it may have been deleted)
[

ask ?
;; update blackboards along the path if path to goal is shorter
[ifelse (not table:has-key? blackboard key-dist)

[set val1 max-distance + 1]
;; (no entry exists – make sure new entry is added)
[set val1 table:get blackboard key-dist]

if (val < val1)
[table:put blackboard key-dist val

table:put blackboard key-path prev]]
]
set prev ?
set p p + 1

]
]

]
end

NetLogo Code 7.5 The code to update the blackboards for the Being Kevin Bacon model.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

78

Communication

The code uses the table extension to NetLogo where values associated with lookup keys can be stored
and retrieved in a hash table. There are two types of keys used for the blackboard, the key to store the
path choice and the key to store its distance. The dump-blackboards button can be clicked in the
Interface to dump out the contents of all the nodes’ blackboards. A dump of a blackboard with entries
for two destination nodes might look as follows:

[[(node 59) dist 8] [(node 59) path (node 11)]

[(node 52) dist 6] [(node 52) path (node 11)]]

The key string comprises first a list containing the string “node” followed by the who number of the
destination node that can be found by following the link specified by the path key. In the example, the
two destination nodes are nodes 59 and 52. The former can be reached along a path with distance 8 by
following the link to node 11, the latter takes 6 steps if the same link to node 11 is followed.

The model’s simulation is started by clicking on the go-walkers button; a single iteration of the
simulation can be executed by clicking on the go-walkers once button. Repeated simulations
show that the Blackboard method of communication as implemented by the simulation consistently
outperforms the word-of-mouth method of communication. This reflects experimental results of
simulations for the resource discovery problem in peer-to-peer networks (Al Dmour and Teahan, 2004).

During the NetLogo model’s simulation, the path that the walkers are taking is shown by increasing the
width of the link being crossed over as shown by the fatter white lines in Figure 7.3. On the right of the
figure, there are some statistics that have been gathered while the simulation has been running. At the
bottom right there are four monitors that display the number of nodes (65 in the figure), the current
number of walker agents (12), the number of nodes the walkers have visited (30) and the percentage
success the walkers have had at finding the goal node (67.34%). The plot in the top right of the figure
graphs the number of walkers versus tick. The walker agents keep searching until either they find the
goal node or they exceed the time-to-live variable (set at 20 ticks in this case). The graph reflects
that initially the number of walkers grows until the time-to-live variable starts being exceeded
by the walker agents and then continues to drop as more and more walker agents start finding the goal
node more regularly as the knowledge contained in the blackboards and/or being transmitted via word
of mouth becomes more effective at reducing the search for new agents. The middle plot graphs the
percentage of successful searches versus total number of searches; a slight increase in the slope indicates
the learning effect as more knowledge is stored or transmitted. The bottom plot is output produced by
the Dijkstra algorithm as discussed above.

The code that gets executed when the go-walkers button is clicked is shown in NetLogo Code 7.6.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

79

Communication

to go-walkers
;; make the walkers continue the search

if (simulation-ticks > 0) and (ticks > simulation-ticks)
[stop]

update-network

setup-walkers
ask links [set thickness 0]
ask walkers
[

set nodes-visited nodes-visited + 1
ifelse (ticks-alive >= time-to-live)
;; lived too long without success – kill it off
[set unsuccessful-searches unsuccessful-searches + 1
update-along-path self "F"
;; update information along path if necessary; "F" means failure
]
[;; create new walkers to move to new location(s)
expand-walkers (next-locations location)
]
die ;; always die – the minions have already been sent out to

;; continue the search for me
]
plot-walkers
tick

end
to expand-walkers [new-locations-list]

let new-walkers-count length new-locations-list
let new-location 0

hatch-walkers new-walkers-count
[;; create a new walker at location to continue the search

;; and move to new location
set ticks-alive ticks-alive + 1
;; pop off the next location to visit:
set new-location first new-locations-list
set new-locations-list but-first new-locations-list
ifelse (not revisits-allowed and member? new-location path)
[die] ;; don't revisit nodes already visited unless allowed to
[
if (new-location != nobody) and
([link-with new-location] of location != nobody)
[
;; highlight link I am crossing
ask [link-with new-location] of location [set thickness 0.4]
face new-location
move-to new-location
set location new-location
set path fput new-location path

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

80

Communication

if new-location = goal ;; success-no need to hang around any longer
[set successful-searches successful-searches + 1

;; update information along path if necessary; "S" means success
update-along-path self "S"
die] ;; die happy

]
]

]
end

NetLogo Code 7.6 A selection of the code executed by the walker agents each tick for the Being Kevin Bacon model.

The go-walkers procedure first updates the network by adding or deleting random nodes in the
network if the network is dynamic. This is to simulate networks where the nodes are continually changing;
the rate of change is controllable by the network-update, nodes-to-add and nodes-to-
delete sliders in the model’s interface. If network-update is set to 0, then the network becomes
static with no new nodes added or deleted each tick.

Download free eBooks at bookboon.com

Click on the ad to read more

STUDY AT A TOP RANKED
INTERNATIONAL BUSINESS SCHOOL

Reach your full potential at the Stockholm School of Economics,
in one of the most innovative cities in the world. The School
is ranked by the Financial Times as the number one business
school in the Nordic and Baltic countries.

Visit us at www.hhs.se

Sw
ed

en

Stockholm

no.1
nine years
in a row

http://s.bookboon.com/hhs2016

Artificial Intelligence – Agent Behaviour I

81

Communication

The go-walkers procedure then resets all links’ line thickness to 0, and then asks each currently active
walker agent whether they have been taking too long (i.e. time-to-live has been exceeded). If it
has, the blackboards along the path the walker has visited are updated by writing a large number max-
distance to reflect that the path has been a failure (this number is initialised in NetLogo Code 7.3,
and must be a number much greater than the maximum length of any path in the network). Otherwise
the search is expanded by calling the expand-walkers procedure that hatches new walkers to move
to new locations in the network, and updates the blackboards if the search path has been successful.
Then the current walker is allowed to die since it has already delegated the remainder of the search to
the walkers created by the expand-walkers procedure.

We will now look at a probabilistic approach to characterising communication based on information
theory, to help us further explore the nature of communication and language.

7.7	 Entropy and Information

In information theory, entropy provides a means for measuring the information transmitted between
communicating agents down a communication channel. Entropy is the average number of bits required
to communicate a message between two agents down a communication channel.

The fundamental coding theorem (Shannon, 1948) states that the lower bound to the average number
of bits per symbol needed to encode a message (i.e. a sequence of symbols such as text) sent down a
communication channel is given by its entropy:

�

H P()= − p xi()
i=1

k

∑ log xi()

where there are k possible symbols with probability distribution and where the probabilities are
independent and sum to 1. If the base of the logarithm is 2, then the unit of measurement is given in
bits. For example, suppose that an alphabet contains five symbols White, Black, Red, Blue and Pink with
probabilities

�

2
7 , 2

7 , 1
7 , 1

7 and

�

1
7 . Then the average number of bits required to encode each symbol is given by:

�

H = −p White()− p Black()− p Red()− p Blue()− p Pink()
= − 2

7 log2
2
7()− 2

7 log2
2
7()− 1

7 log2
1
7()− 1

7 log2
1
7()− 1

7 log2
1
7()

= 2.24 bits.

The entropy is a measure of how much uncertainty is involved in the selection of a symbol – the greater
the entropy, the greater the uncertainty. It can also be considered a measure of the “information content”
of the message – more probable messages convey less information than less probable ones.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

82

Communication

Entropy can be directly related to compression. The entropy is a lower bound on the average number of
bits per symbol required to encode a long string of text drawn from a particular source language (Brown
et al. 1992, page 32). Bell, Cleary & Witten (1990) show that arithmetic coding, a method of assigning
codes to symbols with a known probability distribution, achieves an average code length arbitrarily close
to the entropy. Hence, compression can be used directly to estimate an upper bound to the entropy in
the following manner. Given a sequence of n symbols nxxx 21, , the entropy can be estimated by
summing the code lengths required to encode each symbol:

�

H = −log2 p xi()
i=1

n

∑ .

Here the code length for each symbol

�

xi is calculated by using the formula

�

−log2 p xi().

The entropy calculated in this manner is relevant as it provides a measure of how well the statistical
model is doing compared to other models. This is done by computing the entropy for each statistical
model, and the model with the smallest entropy is inferred to be the “best”.

7.8	 Calculating Entropy in NetLogo

A Cars Guessing Game model in NetLogo has been created to illustrate how entropy and compression
code lengths are calculated. A screenshot of the model’s interface is shown in Figure 7.4. The model
represents a variation of a game that people can play while travelling in a car. People select a colour
in advance – usually white, black, red or blue – and then they count how many cars with the selected
colour drive past them in the opposite direction. The person who has the highest count at the end of
the game wins. The variation of the game covered in the model is that instead of each person selecting
a single car, they specify counts of each colour in advance in order to define a probability distribution.
Their performance is measured by encoding the arrival of the cars (seen in the animation of Figure 7.4)
against their own distribution. The person with the smallest total code length (the sum of the log of the
probabilities of the colours of the cars that appear) is the one who wins the game.

In the figure, there are probability distributions for three agents to simulate three different people playing
the game. These are defined using the sliders on the left that are used to alter the counts for each colour
in the distribution, and the counts are used to calculate the probabilities by dividing by the total count.
Additionally, there are counts that define the source distribution that is used to generate the colour of
the cars that appear in the animation. A fourth computer agent is also playing the game by adaptively
updating the counts of each colour as the cars appear. These counts are shown in the white boxes
under the note “Adaptive Agent’s distribution” in the middle of the figure. As the source distribution is
equiprobable in this case – each of the colours have the same count of 1 – then this is reflected in the
adaptive counts which are very similar, either 214 or 215. That is, there have been either 214 or 215
cars with the observed colour that have been generated by the model since the animation was started.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

83

Communication

The entropy and code length calculations are shown in the right boxes in Figure 7.4. The entropy for all
the distributions remains the same except for the adaptive distribution until a slider is used to change a
count on the left, and then the entropy is immediately recalculated to reflect the change in the probability
distribution. The entropy for the adaptive distribution changes constantly to reflect that the adaptive
counts are continually being updated. The code lengths on the right of the figure are the cumulative
sums of the cost of encoding the information of the colour of the actual car according to each agent’s
distribution.

Usually the source code length total is smaller than the rest as it reflects the actual distribution that
is being used to generate the appearance of the cars. The adaptive code length is also usually close to
but slightly greater than the source code length, which is indicative of the usefulness of the strategy of
matching your distribution to the actual observations, rather than using a pre-defined set of probabilities
in advance. In some circumstances, however, due to randomness used to generate the sequence of cars
that appear, at various times the actual distribution does not exactly match the source distribution, in
which case the adaptive strategy can outperform the source predictions at guessing the colour of the cars.

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/liu

Artificial Intelligence – Agent Behaviour I

84

Communication

Figure 7.4 A screenshot of the Cars Guessing Game model.

For the three agents that use a semi-fixed strategy (i.e. the user can use the sliders to change the counts
on the fly, so the distribution is fixed only until a count is next changed), the code lengths reflect how
similar the counts are to the source counts. If there is a variation, then this will result in a larger encoding
cost. For example, in the figure, Agent 01’s counts are closest to the source counts, with only the white
and black counts being different. This results in a slight decrease in entropy – from 2.32 down to 2.24 as
the entropy indicates the average cost of encoding the colour of a single car, and some colours are now
expected to occur more frequently than others. However, this is not reflected in the observations as the
probability distributions now do not match, and therefore there is an increase in the overall code length
as a result (from 2479.82 to 2571.26). When the counts are significantly mismatched as for agent 02 and
03, then the code length totals are much greater than the source code length as a result.

Selected parts of the code for the model have been listed in NetLogo Code 7.7 and NetLogo Code 7.8.
(The full code can be downloaded by using the URL link shown at the bottom of this chapter). The first
code listing includes the setup-distribution procedure where the distributions are set based
on the slider counts. The distributions are represented as a list of five numbers – the white, black, red,
blue and pink counts, in that order. The adaptive distribution is initialised so that all counts are 1 at
the beginning. At the end of the setup procedure, the total count dist-total and entropy dist-
entropy is calculated for the distribution. The procedure neg-log-prob calculates the negative of
the log of the probability for each colour using the count and total counts, and this is used to calculate
the entropy for the distribution.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

85

Communication

to setup-distributions
;; sets the distributions for each agent

ask agents with [agent-id = 0]
[set distribution

(list source-white source-black source-red source-blue source-pink)]
ask agents with [agent-id = 1]
[set distribution

(list agent-01-white agent-01-black agent-01-red agent-01-blue
agent-01-pink)]

ask agents with [agent-id = 2]
[set distribution

(list agent-02-white agent-02-black agent-02-red agent-02-blue
agent-02-pink)]

ask agents with [agent-id = 3]
[set distribution

(list agent-03-white agent-03-black agent-03-red agent-03-blue
agent-03-pink)]

if (ticks = 0)
[ask agents with [agent-id = 4] ; initialise the adaptive distribution

[set distribution (list 1 1 1 1 1)]]
;; all colours are equiprobable at the beginning for the adaptive agent
;; the adaptive agent's distribution counts are updated subsequently
;; elsewhere in update-adaptive-count

ask agents
[set dist-total 0

set dist-entropy 0
foreach distribution
[set dist-total dist-total + ?] ; calculate total first
foreach distribution
[set dist-entropy dist-entropy + neg-log-prob ? dist-total]]

end

to-report neg-log-prob [p q]
;; returns the negative of the log to base 2 of the probability p/q.

report (- log (p / q) 2)
end

NetLogo Code 7.7: Code to set up each agent’s distribution and calculate its entropy.

The code length calculation is performed by the encode-this-car procedure in NetLogo Code 7.8.
The total code length to date, codelength-total, is updated by adding the negative log of the
probability for the colour of the car being encoded. The probability is the count of the colour stored in
the agent’s distribution list divided by the total count, dist-total.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

86

Communication

to encode-this-car [colour]
;; returns the cost of encoding this car's colour according to the
;; agent's distribution

let codelength 0
ask agents
[

set codelength 0
ifelse colour = white
[set codelength neg-log-prob (item 0 distribution) dist-total]
[ifelse colour = 1 ;almost black to make the car doors & windows visible
[set codelength neg-log-prob (item 1 distribution) dist-total]
[ifelse colour = red
[set codelength neg-log-prob (item 2 distribution) dist-total]
[ifelse colour = blue
[set codelength neg-log-prob (item 3 distribution) dist-total]
[set codelength neg-log-prob (item 4 distribution) dist-total]]]]
set codelength-total codelength-total + codelength

]
end

NetLogo Code 7.8: Code to encode the colour of a car according to an agent’s distribution.

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/EOT

Artificial Intelligence – Agent Behaviour I

87

Communication

Figure 7.5 Screenshots of the plot produced by the Cars Guessing Game model showing how the distributions vary with each tick.

We can represent the internal state of the agents in this simulation by their distributions. If we recast
the list of distribution counts as a single number by using the reporter procedure listed in NetLogo
Code 7.9, then we can plot how each distribution varies versus time. The purpose of this is to illustrate
how probability distributions can be depicted as single points in an n-dimensional space, and how their
change over time represents movement in that space (note that this uses a similar parallel co-ordinates
approach to that shown in the right plot of Figure 2.5 mentioned in Chapter 2). Figure 7.5 shows two
screenshots of the plots that the model produced for two configurations – one where the source counts
were all 1’s (the left plot) and one where the source counts were all 1000’s (the right plot). Only the
adaptive distribution is varying and the red lines in the plots reflect this. As the adaptive counts are
continually increasing, then we have to make sure that a maximum number is never exceeded, so this is
done using the remainder reporter in the code. The other distributions are static, and their lines are
horizontal as a result. If the user were to change a count for one of these distributions, the plots would
reflect the change by an alteration in the position of the relevant line.

to-report distribution-as-a-point [agent]
; return the agent's distribution represented as a single point

report ;; note that the maximum count for non-adaptive distributions is
;; 1000 so make sure that max. count does not exceed 1000 for
;; the adaptive distribution

(remainder (item 0 [distribution] of agent) 1000) +
(remainder (item 1 [distribution] of agent) 1000) * 1000 +
(remainder (item 2 [distribution] of agent) 1000) * 1000 * 1000 +
(remainder (item 3 [distribution] of agent) 1000) * 1000 * 1000 * 1000 +
(remainder (item 4 [distribution] of agent) 1000) * 1000 * 1000 * 1000 *

1000
end

NetLogo Code 7.9 Representing the agent’s distributions as single numbers.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

88

Communication

This model shows how agents can compare the quality of different statistical models. These models can
help to predict likely future events in order to make informed decisions. It is important to note that
unless you have some knowledge about the process producing future occurrences, then you can never
be certain which statistical model is the ‘best’ one at predicting what might happen next, especially in
a dynamic environment where forces that generate events can change from one moment to the next.

7.9	 Language Modelling

The method of making decisions based on which statistical model has been best at predicting the past
sequences of events (for example, using compression code length calculations as above) has a wide range
of applications for agent decision making. In this chapter, we have been focusing on communication
and language, and we can examine some further examples that illustrate this, specifically in the area of
language modelling.

In a statistical (or probabilistic) model of language, the assumption is made that the symbols (e.g.
words or characters) can be characterized by a set of conditional probabilities. A language model is
a computer mechanism for determining these conditional probabilities. It assigns a probability to all
possible sequences of symbols.

The most successful types of language models for sequences of symbols that occur in natural languages
such as English and Welsh are word n-gram models (which base the probability of a word on the preceding
n words) and part-of-speech n-gram models (which base the probability on the preceding words and parts
of speech; these are also called n-pos models). Character n-gram models (models based on characters)
have also been tried, although they do not feature as prominently in the literature as the other two classes
of model. The probabilities for the models are estimated by collecting frequency statistics from a large
corpus of text, called the training text, in a process called training. The size of the training text is usually
very large containing many millions (and in some cases billions) of words.

These models are often referred to as “Markov models” because they are based on the assumption that
language is a Markov source. An n-gram model is called an order n – 1 Markov model (for example,
a trigram model is an order 2 Markov model). In an n-gram model, the probabilities are conditioned
on the previous words in the text. Formally, the probability of a sequence S, of n words, nwww 21 ,
is given by:

() () () () ()
()∏

=
−=

=
n

i
ii

nn

wwwwp

wwwwpwwwpwwpwpSp

1
121

21213121

...,

...,...,

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

89

Communication

Here,

�

wi is called the prediction and 121 ,, −iwww  the history. Building a language model that uses the
full history can be computationally expensive. n-gram language models make the assumption that the
history is equivalent to the previous n – 1 words (called the conditioning context). For example, bigram
models make the following approximation:

�

p S()= p wi wi−1()
i=1

n

∏ .

In other words, only the previous word is used to condition the probability. Trigram models condition
the probability on the two previous words:

�

p S()= p wi wi−1,wi−2()
i=1

n

∏ .

The assumptions which these approximations are based upon are called “Markov assumptions.” For
example, the bigram model makes the following Markov assumption:

() ()., 1121 −− = iiii wwpwwwwp 

Download free eBooks at bookboon.com

Click on the ad to read more

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

Artificial Intelligence – Agent Behaviour I

90

Communication

It might seem that such drastic assumptions would adversely affect the performance of the statistical
models, but in practice, bigram and trigram models have been applied successfully to a wide range of
domains especially machine translation and speech recognition. Kuhn and De Mori (1990, page 572)
point out why this approach is so effective: “The novelty of [this] approach is that it considers it more
important to keep the information contained by the last few words than to concentrate on syntax, which
by definition involves the whole sentence. A high percentage of English speech and writing consists
of stock phrases that reappear again and again; if someone is halfway through one of them, we know
with near-certainty what his next few words will be”. The decision as to which assumptions yield better
performance is an empirical issue rather than a theoretical one.

7.10	 Entropy of a Language

The amount of information per word in some corpus of n words is given by:

�

H S,M()= −
1
n

log pM S().

This can be used to estimate the entropy of a language where a language model M as described in the
previous section is used to estimate the probabilities, and where the larger the number of words n in the
corpus, the better the estimate is. (Technically, H(S, M) is referred to as the cross-entropy of the language
as it is an estimate based on a model M rather than the true entropy.)

In a classic paper titled “Prediction and entropy of printed English” published in 1951, Shannon estimated
the entropy of English to be about 1 bit per character (Shannon, 1951). Shannon’s method of estimating
the entropy was to have human subjects guess upcoming characters based on the immediately preceding
text. He chose 100 random samples taken from Dumas Malone’s Jefferson the Virginian (Malone 1948).
From the number of guesses made by each subject, Shannon derived upper and lower bound estimates
of 1.3 and 0.6 bits per character (“bpc” for short). Cover & King (1978) noted that Shannon’s guessing
procedure gave only partial information about the probabilities for the upcoming symbol. A correct guess
only tells us which symbol a subject believes is the most probable, and not how much more probable it
is than other symbols. They developed a gambling approach where each subject gambled a proportion of
their current capital on the next symbol. Using a weighted average over all the subjects’ betting schemes
they were able to derive an upper bound of 1.25 bpc. The performance of individual subjects ranged
from 1.29 bpc to 1.90 bpc.

Cover and King discuss the meaning of the phrase ‘the entropy of English’: “It should be realized that
English is generated by many sources, and each source has its own characteristic entropy. The operational
meaning of entropy is clear. It is the minimum expected number of bits/symbol necessary for the
characterization of the text.” Both Shannon’s and Cover and King’s approaches were based on human
subjects guessing a text. Other approaches have been based on the statistical analysis of character and
word frequencies derived from text, and on the performance of computer models using compression
algorithms.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

91

Communication

The Shannon’s Guessing Game model has been created in NetLogo to illustrate how this works. The
model allows the user to first load in a training text to prime its statistical model, and then choose a
testing text to play Shannon’s Guessing Game on. This is done by first selecting the max depth of the tree
and maximum size of text to train on using the max-tree-depth and max-text-size sliders,
then using the which-text chooser on the mid-left of the NetLogo application to select the training
or testing text, then clicking on the load-training-text or load-testing-text buttons
as appropriate. The user then makes the application start playing Shannon’s Guessing Game by clicking
on the predict-text button. The application then repeatedly predicts each upcoming character one
at a time.

For example, we can first choose to load Jane Austen’s Pride and Prejudice as the training text. In this
case, the training text is the following characters taken from the beginning of Jane Austen’s book: “It is
a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a
wife. However little known the feelings or views of such a man may be on his first entering a neighbourhood,
this truth is so well fixed in the minds of the surrounding families, that he is considered the rightful property
of some one or other of their daughters.”

If we then choose Jane Austen’s Sense and Sensibility as the testing text, the NetLogo application will
predict the upcoming characters one by one using the following sequence taken from the beginning
of this book: “The family of Dashwood had long been settled in Sussex. Their estate was large, and their
residence was at Norland Park, in the centre of their property, where, for many generations, they had lived
in so respectable a manner as to engage the general good opinion of their surrounding acquaintance. The
late owner of this estate was a single man, who lived to a very advanced age, and who for many years of
his life, had a constant companion and housekeeper in his sister.”

The application lists the predictions for all the characters it has seen before, including their frequency
counts and estimated probabilities, according to the current context (i.e. immediate prior text) and
consequent depth in the training text’s tree model. For example, at the beginning, there is no prior
context, so only the predictions at the top of the tree (depth 0) are listed as shown in Figure 7.6. In this
example, the maximum depth of the tree has been set at 3. The space character has been encoded first,
and then the next character is encoded, the character “T”, followed by the character “h”, then “e” and so
on. The situation after the first character (a space) is processed is shown in the figure. All the predictions
are listed at depth 1 and 0 but no deeper than that as we have no further context to base our predictions
on. The depth 1 predictions list all the characters that have occurred after the single character context
consisting of a space. As space is a frequently occurring character in English text, then there are many
predictions – for example, after a space the character “o” has occurred 11 times after a space in the
training text, the character “t” has occurred 10 times, the character “a” has occurred 7 times and so on.
These predictions have been listed in decreasing frequency order.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

92

Communication

The situation that arises in this example is that we need to encode the character “T”, but this has never
occurred before in the training text. (Look in the training paragraph above shown in italics – the character
“T” never follows the space character. This is just a result of the shortness of the training text used in this
example; in reality, in a larger training text, there may be many occurrences when “T” follows a space
such as at the beginning of a sentence beginning with the word “The”.) The problem in this example is
that without a prediction in our model we have to assign a zero probability that will result in an infinite
code length since log(0) = ∞. This problem is called the zero frequency problem and in order to overcome
this, we need to assign some probability to events that have never occurred before. One method of doing
this is called ‘escaping’ or ‘backing off ’ – we back off to a shorter context where there are usually more
predictions. To do this, we assign a small probability for the occasions when we will need to escape – i.e.
when we encounter a sequence that we have never seen before. This process is also called ‘smoothing’ as
this tends to make the probability distributions more uniform (hence the reason for its name), with low
(including zero) probabilities typically adjusted upwards, and high probabilities adjusted downwards.
The purpose of smoothing is twofold: firstly, to ensure that the probability is never zero; and secondly,
to hopefully improve the accuracy of the statistical model.

Download free eBooks at bookboon.com

Click on the ad to read more

89,000 km
In the past four years we have drilled

That’s more than twice around the world.

careers.slb.com

What will you be?

1 Based on Fortune 500 ranking 2011. Copyright © 2015 Schlumberger. All rights reserved.

Who are we?
We are the world’s largest oilfield services company1.
Working globally—often in remote and challenging locations—
we invent, design, engineer, and apply technology to help our
customers find and produce oil and gas safely.

Who are we looking for?
Every year, we need thousands of graduates to begin
dynamic careers in the following domains:
n Engineering, Research and Operations
n Geoscience and Petrotechnical
n Commercial and Business

http://s.bookboon.com/Schlumberger1

Artificial Intelligence – Agent Behaviour I

93

Communication

Figure 7.6 Screenshot of the output produced by the Shannon’s Guessing Game model at the beginning of the test sequence.

The method used to estimate the escape probability in the example (as coded in the Shannon’s Guessing
Game NetLogo model) is to base it on the number of types that have occurred in the context. For a
given sequence of symbols, the number of types is the number of unique symbols that have occurred,
whereas the number of tokens is the total number of symbols. For example, in the character sequence
“aaaa bbb cc d” there are 5 character types – ‘a, ‘b’, ‘c’, ‘d’ and space – as opposed to 13 character tokens;
for the palindromic word sequence “a man a plan a canal panama” there are 5 word types – “a”, “man”,
“plan”, “canal” and “panama” – and 7 word tokens in total.

In Figure 7.6, for the context consisting of a single space, we can see there are 22 types and 69 tokens.
Therefore, the escape probability is estimated to be 22/91 and the probabilities for the other characters
have been adjusted accordingly to equal their count divided by 91 rather than 69. Formally, the probability
for a symbol s in a particular context C is calculated as follows:

�

p s C()=
count(s)

types(C) + tokens(C)
.

This method of smoothing, invented by Alistair Moffat for the PPMC compression scheme, is called
Witten-Bell smoothing in the language modelling literature.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

94

Communication

In the example, the statistical model has to back off to a default model where all characters are equiprobable
in order to be able to encode the character ‘T’ because in this case, it has never been seen anywhere in
the training sequence. Therefore the cost of encoding the character ‘T’ is

�

22 91× 28 400 ×1 256 with the
factor 28/400 being for encoding the escape for the null context (i.e. just using the character frequency
counts at depth 0 in the tree) and 1/256 for the default model (where 256 is the size of the alphabet).
This requires 13.88 bits to encode as

�

−log2 22 91× 28 400 ×1 256()=13.88 bits.

Figure 7.7 shows the output after we have encoded the first ten characters in the testing sequence
(“ The famil”). The next character we need to encode is ‘y’, and because it has not been seen in the depth
3 context in the training sequence, we need to escape from the context which is at depth 3 in the tree
(where there has only been a single previous occurrence so the probability is 1/2), then through depth
2 (where again there has only been a single previous occurrence so the probability is 1/2) to depth 1
(where we have seen the character ‘y’ before, and its probability is 1/16). This costs 6 bits to encode
since

�

−log2 1 2 ×1 2 ×1 16()= 6.

Figure 7.7 Screenshot of the output produced by the Shannon’s Guessing Game model after the sequence “ The famil” has
been processed.

Another Netlogo model called Language Modelling has been developed to help visualise the tree
models. Figure 7.8 shows a screenshot of a tree model that has been trained on the 32 characters at the
beginning of Jane Austen’s Sense and Sensibility shown above. For this example, the maximum tree depth
was set at 2. The figure shows that most two-character sequences are unique (i.e. outermost counts are
all 1’s), which is to be expected because of the shortness of the training text, apart from the sequence
“d” which occurs twice (this can be found upper left or at direction NNW in the figure). Some of the
single characters occur more than once, resulting in a fan-out affect at depth 2 – for example, “ ” occurs
5 times (see middle right of figure) and is followed by 5 different characters (“f ”, “o”, “D”, “h” and “l”).

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

95

Communication

Figure 7.8 Screenshot of the output produced by the Language Modelling model with maximum tree depth of 2 after
processing the first 32 characters of Jane Austen’s Sense and Sensibility.

Download free eBooks at bookboon.com

Click on the ad to read more

American online
LIGS University

▶▶ enroll by September 30th, 2014 and

▶▶ save up to 16% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

Artificial Intelligence – Agent Behaviour I

96

Communication

The Language Modelling application has been developed to handle the modelling of events on different
input streams using a similar approach to that used in the Wall Following Events model described
in Section 6.6. In the example depicted in the figure, only character events are being modelled. This
explains the re-appearance of the string “char” throughout the figure. The model also allows loading of
word events as well as character events, a longer size of text to train on and the setting of the maximum
tree depth up to 8, although the visualisation of these trees becomes much more problematic due to the
constraints of NetLogo’s environment and the complexity of the trees that are produced.

7.11	 Communicating Meaning

This chapter has focused on agent communication, the different types of communicating behaviour and
the important role that agent communication has to play in agent-to-agent interaction. This chapter has
had less to say about the content of the messages being communicated between agents. Language is used
to define the symbols that convey the meaning behind these messages. The purpose of the communication
for the sender is to convey the meaning of the message in such a way that the receiver can decode it
and respond accordingly. If the receiver is not able to do this, then the communication has failed and
the message has been wasted.

Meaning can be defined as follows. Meaning is the sense or significance behind the message expressed by
some language that an agent wishes to convey to another agent. As with all definitions, a closer inspection
of this working definition will reveal some inadequacies. One can ask further questions concerning the
definition such as “What is the meaning of the word ‘message’?” and “What is the meaning of ‘sense or
significance’?” Continuing this line of questioning results in an infinite regress of definitions where the
meaning of anything never seems to be pinned down precisely in the way that we can pin down the
meaning of mathematical symbols, for example.

The nature of meaning (and the related study of semantics in linguistics) has been discussed and debated
for centuries, and is the subject of many reams of written works and scholarly research. As humans, we
can readily understand the meanings of these words, so we could take the pragmatic viewpoint, like
Turing did when suggesting the Turing Test for intelligence, that although obtaining precise definitions of
the meaning of words and language is an interesting philosophical pursuit, it is not necessarily required
as humans can achieve successful communication without it. This is despite humans never being in
complete agreement about the precise meanings of the symbols they use to communicate with.

But what if we needed to convey the meaning of a message to someone or something that was not
human? This is the subject of Thought Experiment 7.1.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

97

Communication

Thought Experiment 7.1 Communicating with aliens.

Let us consider the problem of how to communicate a message with an alien. In this setting, let us assume that there
is no common basis for understanding the meaning of the message. That is, we need to communicate the meaning
of the symbols in the message as well as the symbols themselves. For example, we might wish to communicate the
following message: “Do not open”. Just such a scenario occurred in the movie Alien Hunter but with a slight twist – we
(the humans) were the ones that needed to decode the message, whereas the aliens were the ones that wished to
communicate it. A group of scientists had discovered a large metal object of alien origin frozen in the ice in Antarctica
that was sending out some kind of radio message. One of the scientists eventually decoded the message, but only
after some of the other scientists had already just opened the object – the phrase “Do not open” was being repeated
over and over again in the radio message.

The question is the following. How can we transmit even such a simple message as “Do not open”when we do not know
what language the creatures receiving the message will be capable of understanding? We may not know the cognitive
abilities of the receivers, their cultural background or even their sensory capabilities, and therefore have very little
common frames of reference with which to communicate with. Language involves the communication of concepts –
that is, the meaning behind the symbols being transmitted in the message. Specifically, how do we communicate the
concept of “open”, for example, or the concept “Do not”?

Astronomers Carl Sagan and Frank Drake were faced with this problem in the early 1970s when deciding what messages
to put on the Pioneer spacecraft, the first objects of human manufacture that have left the solar system. They chose to use
a pictorial message that included nude figures of human beings along with several symbols to convey information about
where the spacecraft came from. The messages have been criticised by other people for being too human-centric and
hard to understand, even for humans – see Gombrich (1972) in Scientific American, for example. Even parts of the pictures
that are easiest for humans to understand – an arrow showing the spacecraft trajectory – might be indecipherable to
an alien culture, since the arrow symbol is a product of hunter-gatherer societies that are common on Earth.

Communicating with aliens is clearly a hypothetical situation. It is uncertain whether any extra-terrestrials exist, or that
if they do exist, whether they have the ability to communicate with us – after all, we have found very little evidence
that supports existence of extra-terrestrials elsewhere in the universe even after decades of searching with powerful
computers. Seti@home is a distributed computing project that makes use of idle computers on the Internet to search
for evidence of extra-terrestrial intelligence. Since its launch date on May 17, 1999, it has logged over ten million years
of computer time and currently makes use of over 300,000 computers in over 200 countries. However, the project has
not produced any evidence despite running for over ten years.

However, all communication between human agents may be considered to have some degree of ‘alienness’ in the
following sense. Whenever we have a conversation with another human, we are often required to explain the meanings
of concepts that are unknown or foreign to us, or explain concepts that are being understood in different ways. If the
languages of the sender and receiver are different – for example, a conversation between someone from Wales who
mainly speaks Welsh and someone from Africa who mainly speaks Swahili, or a deaf person who knows sign language and
a person who does not – then longer explanations are required more often throughout the conversation. The difficulty
with aliens, however, is that we might be faced with the problem of having to explain the meanings of everything that
we wish to communicate.

The problem of how to communicate with an alien is similar to the problem of how to communicate with a newly
discovered tribe, for example in Papua New Guinea, that has been isolated from the rest of humanity. The problem
was considered by the twentieth century philosopher W. Quine who called it radical translation. The difficulty in
communication arises, whether it be with an isolated tribe or an alien species, when perhaps not even a single word
of the language the sender is using is understood in advance.

Essentially that is the problem faced by designers of text and speech understanding systems, because we can consider
the ‘alien’ agent to be the computer system, and the human agent the one who produced the text or speech that needs
to be understood.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

98

Communication

As stated in Section 1.4, much of language is made up of conceptual metaphor and analogy. Lakoff and
Johnson (1980) in their book Metaphors we live by highlight the important role that conceptual metaphor
plays in natural language and how it is linked with our physical experiences. They argue that metaphor
is not just a device of the poetic imagination but “is pervasive not just in everyday language, but in our
thoughts and action”, being a fundamental feature of the human conceptual system. They state that “The
essence of metaphor is understanding and experiencing one kind of thing in terms of another.” They claim
that most of our thought processing system is conceptual in nature and that people use metaphorical
concepts much more frequently than they think. The metaphors are related to our physical embodiment in
the real world. The purpose of the metaphorical device is to highlight similarities and hide dissimilarities
between related concepts.

Some examples of conceptual metaphor have already been provided in Tables 4.1 and 5.1. Further
examples are provided in Tables 7.3 and 7.4 below.

Download free eBooks at bookboon.com

Click on the ad to read more

 .

http://s.bookboon.com/AlcatelLucent

Artificial Intelligence – Agent Behaviour I

99

Communication

Conceptual Metaphor Sample Phrases

ARGUMENT is WAR. Your claims are indefensible.
He attacked every weak point in my argument.
His criticisms were right on target.
I demolished his argument.

TIME is MONEY. You’re wasting my time.
This gadget will save you hours.
I don’t have the time to give you.
How do you spend your time these days?

HAPPY is UP.
SAD is DOWN.

I’m feeling down.
That boosted my spirits.
My spirits rose.

CONSCIOUS is UP.
UNCONSCIOUS is DOWN.

Get up.
He rises early in the morning.
He sank into a coma.

HIGH STATUS is UP.
LOW STATUS is DOWN.

He has a lofty position.
She’ll rise to the top.
She’s at the bottom of the social hierarchy.
I look down at him.

Table 7.3 Some examples of conceptual metaphor and their use as identified by Lakoff and Johnson (1980).

We can examine the first example in Table 7.3 – ARGUMENT is WAR. Lakoff and Johnson devised a
simple thought experiment related to this metaphor to illustrate that our own personal points of view
are to some extent prescribed by the metaphors in the language we commonly use. Imagine an alien
culture quite different from our own. In this culture, an alternative metaphor ARGUMENT is DANCE
is predominantly used instead.

To these people, the concept that argument is related to the act of war is alien – instead, the emphasis
in any confrontation or argument is placed on an active co-operation of the participants. The goal is not
to destroy each other’s arguments but to actively enhance each other’s points of view and/or their own
knowledge and understanding. This is in a similar way that the result of two people dancing together
is artistically more appealing than two people dancing separately and independently. In conversation,
these people might say things such as “I combined with his argument”, “Our arguments were out of step”
and “I picked up his criticisms and swept them along”. For us, these would seem initially strange until we
understood the underlying conceptual metaphor.

Table 7.4 further illustrates the pervasive use of conceptual metaphor in language. The first fifteen lines
of the song “The Winner Takes It All ” by ABBA are shown along with the conceptual metaphors that
underlay their meaning.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

100

Communication

Line from the song Conceptual Metaphor(s)

I don’t wanna talk Not ‘INTERACTING’ is Not TALKING

About the things we’ve gone through ‘LIFE’ is a ‘JOURNEY’

Though it’s hurting me Not ‘INTERACTING’ is ‘PAIN’

Now it’s history ‘LIFE’ is a ‘JOURNEY’

I’ve played all my cards ‘LIFE’ is a ‘GAME’

And that’s what you’ve done too ‘RELATIONSHIP’ is ‘TWO-SIDED’

Nothing more to say ‘INTERACTING’ is ‘TALKING’

No more ace to play ‘LIFE’ is a ‘GAME’

The winner takes it all ‘LIFE’ is a ‘GAME’

The loser standing small ‘LOW STATUS’ is ‘BEING DOWN’

Beside the victory ‘LIFE’ is a ‘GAME’

That’s her destiny ‘LIFE’ is ‘FIXED’
‘FATE’ is an ‘IMMOVABLE OBJECT’

I was in your arms ‘BELONGING’ is ‘HOLDING’

Thinking I belonged there ‘BELONGING’ is ‘BEING THERE’

I figured it made sense ‘SENSING’ is `BUILDING SOMETHING’
‘THINKING’ is ‘VISUALISING’
‘THINKING’ is ‘BUILDING SOMETHING’

Table 7.4 Conceptual metaphor in the ABBA song “The Winner Takes It All”.

Download free eBooks at bookboon.com

Click on the ad to read more

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

Artificial Intelligence – Agent Behaviour I

101

Communication

Much of the meaning in the ABBA song is revealed by the stream of conceptual metaphors shown in
the table. However, the meaning of the song is richer than just the meaning of the individual words
and sentences. Context plays an important part – for example, the meaning of the song is richer if we
take into account the context of the group splitting up when the song was written and the powerful
performances of the lead singer as she sang the song reveals this.

Human language has the ability to convey multiple meanings at several levels. Each of these interacts
to provide something that is greater than the sum of its parts. Sometimes the reader or listener finds
meaning that not even the author(s) intended. Language also reveals a great deal about the thoughts
going on in the minds of the author(s) – what they know and what they don’t know; their beliefs; their
likes or dislikes; their opinions; their hopes and fears; what they respect and have high regard for or
what they disrespect and have contempt for; what they support or are opposed to; their desires/wants/
needs; and their intentions. The following excerpt (on page 418) from the autobiography My Life written
by the former president of the United States, Bill Clinton, illustrates this:

“[Mandela’s] visit was the beginning of a great friendship for all of us. Mandela plainly liked
Hillary, and I was really struck by the attention he paid to Chelsea. In the eight years I was
in the White House, he never talked to me without asking about her. Once, during a phone
conversation, he asked to speak to her too. I’ve seen him show the same sensitivity to children,
black and white, who crossed his path in South Africa. It speaks to his fundamental greatness.”

In the excerpt, Bill Clinton is revealing his thoughts about Nelson Mandela, the former president of the
Republic of South Africa. The words underlined above show that Clinton classes Mandela as his friend,
that he believes Mandela likes his wife, that he feels that Mandela is sensitive to children, and the overall
impression is that he believes Mandela to be a great person.

The purpose of these examples is to highlight the complexities that occur in human language
communication. Human language provides perhaps one of the greatest challenges in Artificial Intelligence
research, where there are many frontiers in research still being explored or still left to be explored. Some
of these will be discussed in Volume 2 of this book series.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

102

Communication

7.12	 Summary

Agents exhibit communicating behaviour when they attempt to convey information to other agents.
Language is the set of symbols agents use to communicate the information. Humans use many forms
of communicating behaviour, and their language is diverse and rich in meaning. The communication
between humans is spread via social networking.

A summary of important concepts to be learned from this chapter is shown below:

•	 Entropy is defined to be the sum of the probabilities multiplied by the log of the probabilities for a probability
distribution. It can be used as a means for measuring the information content in messages.

•	 Language is defined by a set of socially shared rules that define the commonly accepted symbols, their meaning
and their structural relationships specified by rules of grammar.

•	 Human language comes in many forms and is extremely diverse.
•	 Language modelling is a mechanism for determining the conditional probabilities for symbols in a language.
•	 The entropy of a language can be estimated from a large corpus of text representative of the language.
•	 Social networking plays a crucial role in how communication is spread between humans.
•	 The small world phenomenon is an important hallmark of social and computer networks.
•	 The purpose of communication is to convey the meaning of the message being communicated. The meaning

conveyed in human messages is complex and multi-layered, and an area that presents a continuing challenge for
Artificial Intelligence research.

The code for the NetLogo models described in this chapter can be found as follows:

Model URL

Being Kevin Bacon http://files.bookboon.com/ai/Being-Kevin-Bacon.nlogo

Cars Guessing Game http://files.bookboon.com/ai/Cars-Guessing-Game.nlogo

Language Modelling http://files.bookboon.com/ai/Language-Modelling.nlogo

Shannon Guessing Game http://files.bookboon.com/ai/Shannon-Guessing-Game.nlogo

Model NetLogo Models Library (Wilensky, 1999) and URL

Communication-T-T
Example

Code Examples > Communication-T-T Example; for modified model used here:
http://files.bookboon.com/ai/Communication-T-T.nlogo

Language Change Social Science > Language Change
http://ccl.northwestern.edu/netlogo/models/LanguageChange

Download free eBooks at bookboon.com

http://files.bookboon.com/ai/Being-Kevin-Bacon.nlogo
http://files.bookboon.com/ai/Cars-Guessing-Game.nlogo
http://files.bookboon.com/ai/Language-Modelling.nlogo
http://files.bookboon.com/ai/Shannon-Guessing-Game.nlogo
http://files.bookboon.com/ai/Communication-T-T.nlogo
http://ccl.northwestern.edu/netlogo/models/LanguageChange

Artificial Intelligence – Agent Behaviour I

103

Search

8	 Search

 Lewis and Clark expedition by Charles Marion Russell.

Search is fundamental for intelligent behavior. It is not just another method or cognitive
mechanism, but a fundamental process. If there is anything that AI has contributed to our
understanding of intelligence, it is discovering that search is not just one method among many
that might be used to attain ends but is the most fundamental method of all.

Allen Newell (1994).

Download free eBooks at bookboon.com

Click on the ad to read more

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2015

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://s.bookboon.com/AXA

Artificial Intelligence – Agent Behaviour I

104

Search

This chapter looks at searching behaviour. The chapter is organised as follows. Section 8.1 provides a definition of
searching behaviour. Section 8.2 describes some search problems that we use throughout this chapter to test out
different search behaviours on. Section 8.3 describes several uninformed (or blind) search behaviours and Section
8.4 shows how they can be implemented in NetLogo. Section 8.5 discusses how search from an embodied, situated
perspective can be thought of as a search of alternative behaviours rather than a search of alternative paths. Section
8.6 describes several informed search behaviours and how they can be implemented in NetLogo. Section 8.7 describes
local search and optimisation behaviours and their implementation. The different search behaviours are compared in
Section 8.8.

8.1	 Search Behaviour

It is generally acknowledged in Artificial Intelligence research that search is crucial to building intelligent
systems and for the design of intelligent agents. For example, Newell (1994) has stated that search is
fundamental for intelligent behaviour (see the quote at the beginning of this chapter). From a behavioural
perspective, search can be considered to be a meta-behaviour where the agent is making a decision on
which behaviour amongst a set of possible behaviours to execute in a given situation. In other words, it
can be defined as the behavioural process that the agent employs in order to make decisions about which
choice of actions it should perform in order to carry out a specific task. The task may include higher-
level cognitive behaviours such as learning, strategy, goal-setting, planning, and modelling (these were
called Action Selection in Reynold’s Boids model). If there are no decisions to be made, then searching
is not required. If the agent already knows that a particular set of actions, or behaviour, is appropriate
for a given situation, then there is no need to search for the appropriate behaviour, and therefore the
actions can be applied without coming to any decision.

Searching can be considered to be a behaviour that an agent exhibits when it has insufficient knowledge in
order to solve a problem. The problem is defined by the current situation of the agent, which is determined
by the environmental conditions, its own circumstances and the knowledge the agent currently has
available to it. If the agent has insufficient knowledge in order to solve a given problem, then it may
choose to search for further knowledge about the problem. If it already has sufficient knowledge, it will
not need to employ searching behaviour in order to solve the problem. An agent uses search behaviour
in order to answer a question it does not already know the answer to or complete a task it does not
know how to complete. The agent must explore an environment by following more than one path in
order to obtain that knowledge.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

105

Search

The exploration of the environment is carried out in a manner analogous to early explorers of the
American or Australian continents, or people exploring a garden maze such as the Hampton Court
Palace Maze or the Chevening House Maze. For the two garden mazes, the people trying to get to the
centre of the maze must employ search behaviour if they do not have the knowledge about where it is.
If they take a map with them, however, they no longer have to use search behaviour as the map provides
them with the knowledge of which paths to take to get to the centre. The early American explorers Lewis
and Clark were instructed by Thomas Jefferson to explore the Missouri and find a water route across
the continent to the Pacific. They did not already know how large the continent was or what was out
there and needed to physically explore the land. They chose to head in a westerly then north-westerly
direction following a path along the Missouri river. Similarly, the Australian explorers Burke and Wills
led an expedition starting from Melbourne with the goal of reaching the Gulf of Carpentaria. The land
at the time had yet to be explored by European settlers. The expedition were prevented from reaching
their ultimate goal just three miles short of the northern coastline due to mangrove swamps and, worse
still, the expedition leaders died on the return journey.

When performing a search, an agent can adopt different behaviours that determine the way the search
is performed. The search behaviour adopted can have a significant impact on the effectiveness of the
search. For example, poor leadership was blamed for the unsuccessful Burke and Wills expedition.
The behaviour can be thought of as a strategy the agent adopts when performing the search. We can
consider these search behaviours from an embodied agent perspective. The type of search behaviour is
determined both by the embodiment of the agent, and whether the agent employs a reactive or more
cognitive behaviour when executing the search.

We have already seen many examples of how an agent can perform a search of an environment as a side
effect of employing purely reactive behaviour (see Section 5.4 and Figures 5.2, 5.7 to 5.10 and 6.9). We
can term these types of search behaviours as reactive search. We can also use the term cognitive search
for cases when an agent has an ability to recognize that there is a choice to be made when a choice
presents itself in the environment (such as when the agent reaches a junction in the maze). As stated in
section 5.5, this act of recognition is a fundamental part of cognitive-based searching behaviour, and it
is related to the situation that the agent finds itself in, the way its body is moving and interacting with
the environment. It is also related to what is happening in the environment externally, and/or what is
happening with other agents in the same environment if there are any.

In addition, a single agent can be used to perform any given search, but there is nothing stopping us from
using more than one agent to perform the search. We can adopt a multi-agent perspective to describe
how each particular search can be performed in order to clarify how the searches differ. In this case, the
effectiveness of a particular search can be evaluated by comparing the number of agents that are needed
to perform the search and the amount of information that is communicated between them.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

106

Search

8.2	 Search Problems

There are many problems that require search with varying degrees of difficulty. Simplified or ‘toy’ problems
are problems that are to the most part synthetic and unrelated to real life. However, these problems can
be useful to designers in gaining insight into the problem of search. Once the properties of the different
search behaviours have been investigated on toy problems, then they can be adapted and/or scaled up
to real life problems. To illustrate different search problems, this section describes three problems in
particular that have been simulated in NetLogo – these are the Searching Mazes model, the Missionaries
and Cannibals model, and the Searching for Kevin Bacon model.

The garden maze problems introduced in Chapter 3 and depicted in Figures 3.6 and 3.7 can be thought
of as toy problems that have a corresponding problem in real-life. These are toy problems not because
they are artificial problems, but because of their relative simplicity. However, they provide useful test
beds when developing and evaluating the effectiveness of various search behaviours as we can use them
to compare how well each behaviour does on them. Then with this information we can go on to tackle
much larger or more difficult search problems.

A classic toy problem often used to demonstrate aspects of searching is the missionaries and cannibals
problem. In this dilemma, there are three missionaries and three cannibals. They wish to all get across a
river using a canoe that only holds two people, but the problem is that if the cannibals ever outnumber
the missionaries at any stage, then the cannibals will eat the missionaries.

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/BI

Artificial Intelligence – Agent Behaviour I

107

Search

Figure 8.1 Screenshots of the animated part of the Missionaries and Cannibals model.

Figure 8.1 shows some screenshots of an animation provided by the Missionaries and Cannibals NetLogo
model that demonstrates a solution to the problem. The top image represents the start state, with three
missionaries, three cannibals and the canoe on the left side of the river. The gray coloured persons
represent the missionaries and the red coloured persons represent the cannibals. The middle image
depicts an intermediate state where there is one missionary and one cannibal on the left side, there are two
missionaries in the canoe half way across the river, and there are two cannibals on the right of the river.
The bottom image represents the final desired or goal state where everybody ends up on the right side.

Searching for people is a problem that often occurs in real life. It also has a corollary to many computer
network problems, for example resource discovery in peer-to-peer networks where a particular resource
such as a file or computer with specific CPU requirements needs to be located. The Searching for Kevin
Bacon model simulates this problem by creating random networks as shown in Figure 8.2.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

108

Search

Figure 8.2 A screenshot of the Searching for Kevin Bacon model.

A particular node in the network is designated to be the desired or goal state – this is shown by a node
drawn as a star in the middle of the image. The search starts at a random node in the network – for the
image shown, the start node was node b154 in the middle right of the image. In this scenario, an analogy
with a real life problem is a classroom full of students where the objective is to pass a specific object such
as a note from person to person until it reaches the intended recipient. The divergence from the real life
problem occurs when the agents in the simulation (represented as nodes in the network) have specific
constraints placed on their sensory capabilities that make the simulation more analogous to searching
in computer networks. In this case, the agents are ‘blind’ in the sense they have no idea about the global
configuration of the network and only have local knowledge of what is immediately around them (i.e. they
only know the links to neighbouring nodes). In addition, the agents do not know where the star node is.

A search problem can be characterised as an agent exploring a finite state automaton in an n-dimensional
space. One or more states are designated as the start states – that is, the location where the agents
performing the search first head out on their search. These start states are connected to other intermediate
states which are in turn connected to further states and so on until eventually the connections will lead
to desired or goal states when the search completes, not unlike the situation modelled in the Searching
for Kevin Bacon model. Search is required when the agents do not know how to get to the desired states,
or wish to find the shortest path to the desired states. If they already know the path, then no search is
required. Otherwise, they must explore the finite state automaton until they find a desired state or until
they have found the shortest path.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

109

Search

8.3	 Uninformed (blind) search

Uninformed or blind search occurs when the agent has no information about the environment it is
searching. A real-life analogy to this type of search is a blind person searching a maze he has never been
inside before, with no prior knowledge of its dimensions or the whereabouts of the centre or exit of the
maze. One approach a ‘blind’ search agent can take is to keep on making one particular choice at each
junction he encounters, and continue until he either reaches the exit or centre (the goal) or until he
reaches a dead end. If the latter, he can then backtracks to the last junction he has visited that has paths
he hasn’t already searched, and then chooses one of those. He repeatedly applies this behaviour until the
goal is reached. This agent still has one further choice to make – the order that he chooses to follow the
paths. He could choose the paths at random, for example, or he could choose to always follow the first
branch on his right first, and then follow the subsequent branches in clockwise order.

Download free eBooks at bookboon.com

Click on the ad to read more

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

Artificial Intelligence – Agent Behaviour I

110

Search

This type of search is called depth first search. In order to simplify the discussion that follows, and in
order to explain the multi-agent based solutions that have been developed for the NetLogo models
described below, we will depart from the real-life analogy of a single agent performing the searching in
the following way. At each junction or decision point in the search, instead of the agent itself continuing
the search along a single path, we will provide the agent with the ability to send out clones of itself along
all the paths it finds. In the process of cloning itself, it will then die. For depth first search, one of the
newly cloned agents will then be chosen to continue the search while the others sit and wait, just in case
they are needed at a latter time. This process of clone creation followed by picking one of the clones to
further the search continues until a goal or a dead end is reached. If the latter, the clone will die without
creating any further clones of itself, and the search will continue with the clone that has been waiting
the shortest time.

This is illustrated in Figure 8.3, which shows depth first search for the Searching for Kevin Bacon model.
In the top right image, a single agent starts from the bottom left node labelled b26 and is trying to search
for the goal node drawn as a white star. This agent then moves to node b14 after cloning itself once,
then creates two clones of itself because there are a further two possible paths to follow (to nodes b5
and b23) as shown in the top right image. It then dies and the search is continued by one of the agents,
in this case the agent at node b5. The search continues along the b5 branch heading by luck in the
direction of the goal node until it reaches node b3 as shown in the bottom left image. Then one clone is
chosen to search the side path that heads north at b8, but once this path has been completely searched,
the clone at b1 takes over and finally the goal node is reached as shown in the bottom right image.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

111

Search

Figure 8.3 Screenshots of the depth first search for the Searching for Kevin Bacon model.

An obvious alteration to this type of search is to allow more than one agent clone to take on the search
simultaneously. In other words, instead of a single clone doing the search by itself, we can send out all
the clones to do the searching together in parallel. This type of search is called breadth first search. The
way the network is searched in the Searching for Kevin Bacon model using breadth first search is shown
in Figure 8.4. The left image is a screenshot during an intermediate part of the search. The right image
shows the search when it is complete.

Figure 8.4 Screenshots of the breadth first search for the Searching for Kevin Bacon model.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

112

Search

To understand the fundamental differences between these two different types of search, we can think
of the analogy of the Lewis and Clark expedition exploring the American continent following the
Missouri river and its tributaries. As they progressed, the ‘frontier’ of their knowledge would ‘expand’.
If this expedition adopted a depth first search behaviour, the frontier would expand by following one
particular branch of the river – they would keep on getting deeper and deeper down a single branch.
If the tributary stopped, then the expedition would return to the last junction and start searching the
alternative path. Referring to the analogy above, the clones can be thought of as locations of past selves
that are returned to when one path has been unsuccessful. For the breadth-first behaviour, on the other
hand, the expedition adopts a policy of splitting the team up to go searching the alternative branches at
the same time. In this case, the frontier expands outwards at the same rate not unlike a ripple expands
evenly outwards when a pebble is thrown into a pond.

Using another analogy, the expanding frontier can be thought of as a ‘tree’ with roots growing deeper
into the soil. For depth-first search, one root is grown at a time, and this keeps on getting deeper and
deeper (hence why this particular type of search is called depth-first search) until bedrock blocks it. For
breadth-first search, the roots all grow at a similar rate, and expand evenly downwards together.

We can look at the Searching Mazes model to further illustrate the differences between these two searches.
We can select the empty maze to search, then set the move-forward-behaviour and move-
forward-behaviour-after-turning choosers to Move-forward-n-steps-unless-
hit-wall, as well as setting the slider move-forward-step-amount to 2. This will ensure
that the search expands into the empty space only 2 steps at a time as shown in the screenshots of
Figure 8.5. These graphically illustrate the differences between the two searches. The depth-first search
is opportunistic, heading in whatever direction it randomly chooses, whereas the breadth-first search is
more thorough, with every possibility searched before moving on.

Figure 8.5 Screenshots of the depth-first search and the breadth-first search being performed on the empty maze
for the Searching Mazes model.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

113

Search

The terms ‘frontier’, ‘tree’ and ‘expanding the search’ are often used to describe searching. The possible
paths in the search can be thought of as a search tree using the analogy of branches and leaves – that is,
the analogy is of a tree growing above the ground rather than roots growing into the soil as above. In
this case, the frontier of the search can be thought of as the leaf nodes of the tree. These are the nodes
of the tree that need to be searched next. For each leaf node, there is a defined set of possible nodes
that can be expanded.

For example, for the left top image in Figure 8.3, the set of expanded nodes for node b14 is { b5, b23,
b26 }. Even though it has just come from node b26, there is nothing stopping the search returning
to where it came from unless the search specifically disallows revisiting of nodes. The advantage of
not revisiting nodes is that the search will not waste search time on something it has already searched;
however, the disadvantage is that it must record where it has been. In some applications where there are
a very large number of nodes to visit (for example, Web crawlers need to visit billions of nodes) then
storing the set of already visited nodes can be expensive and pose major engineering problems. The three
NetLogo models all provide an Interface switch that sets the variable allow-revisited-states
to turn on or off the revisiting of nodes. The models also maintain a global variable called visited-
nodes which is a list of all the nodes already visited.

Download free eBooks at bookboon.com

Click on the ad to read more

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

Artificial Intelligence – Agent Behaviour I

114

Search

Whether revisiting of nodes is allowed or not is an important factor affecting how well the various
searches perform. This is apparent with the Missionaries and Cannibals model, for example, with some
of the searches requiring substantially more searcher agents to complete the search, or in some cases,
the search not completing at all. Figure 8.6 shows a screenshot of the Missionaries and Cannibals model
for the breadth-first search with revisiting allowed. The model shows the execution of the search as it
proceeds – each iteration is displayed by pressing the go-once button in the Interface. For this problem,
we can represent the state that the search has reached using a tuple containing three numbers – the
number of missionaries on the left side of the river (0 to 3), the number of cannibals on the left side
(0 to 3), and the number of canoes on the left side (1 or 0). For example, the start state is represented
by the tuple (3, 3, 1) as there are 3 missionaries, 3 cannibals and 1 canoe on the left side of the river at
the start. The desired or goal state is represented by the tuple (0, 0, 0) with everybody and the canoe
now over on the right side. There are 32 possible states the search can reach but not all of them will be
allowable – for example, the tuple (1, 3, 0) is not an allowable state as this represents the case when the
number of cannibals is greater than the number of missionaries by 2.

Figure 8.6 Breadth-first search with revisiting allowed for the Missionaries and Cannibals model.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

115

Search

This representation allows us to visualise the search using a parallel co-ordinate system as shown in
Figure 8.6. The iteration of the search each time step is shown on the parallel axes, with the start of the
search shown at tick t=0 on the left. Then the search moves to three possible states at tick t=1: to (3, 2,
0), after one cannibal has rowed across to the right in the canoe; to (3, 1, 0), after two cannibals have
rowed across in the canoe; and to (2, 2, 0), after one missionary and one cannibal have rowed across. The
figure shows the paths the breadth-first search takes through the state space environment. The number
of agents significantly grows with each tick. The screenshot also shows one possible solution drawn in
red. This is drawn from left to right during the animation shown at the bottom once the go-animation
button is pressed in the Interface.

We can stop the search from revisiting states by setting the allowed-revisited-states switch
in the Interface to Off. This has a dramatic effect by eliminating most of the paths from the search as
shown in Figure 8.7.

Figure 8.7 Breadth-first search with revisiting not allowed for the Missionaries and Cannibals model.

A similar effect is seen with depth-first search. Figure 8.8 shows what happens with depth first search in
the Missionaries and Cannibals model with revisiting allowed. The screenshot shows the search repeatedly
choosing the same wrong paths that never lead to a solution. Eventually, the search is aborted since it
is taking too long.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

116

Search

Figure 8.8 Depth-first search with revisiting allowed for the Missionaries and Cannibals model.

Figure 8.9 shows what happens with depth first search when revisiting is not allowed. The search almost
immediately finds the correct path as the alternate wrong paths are eliminated as possibilities.

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/volvo

Artificial Intelligence – Agent Behaviour I

117

Search

Figure 8.9 Depth-first search with revisiting not allowed for the Missionaries and Cannibals model.

8.4	 Implementing uninformed search in NetLogo

The code for expanding the search frontier for the Searching for Kevin Bacon model is shown in NetLogo
Code 8.1 below.

to expand-paths [searcher-agent]
;; expands all the possible paths for the searcher-agent

foreach sort [link-neighbors] of [location] of searcher-agent
[expand-path searcher-agent ?]

end

to expand-path [searcher-agent node]
; the searcher-agent creates a new searcher-agent that draws a path in the
; network from its current position to the node

let xcor1 0
let ycor1 0
if not search-completed

[; create a new path by creating an agent to search it
; check to see if the path has already been visited
if allow-revisited-nodes or not member? node visited-nodes

[

set path-found true
if not allow-revisited-nodes

[set visited-nodes fput node visited-nodes]
; add to front of visited-nodes set

hatch-searchers 1
[; clone searcher
set searchers-used searchers-used + 1

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

118

Search

set size 2
set pen-size 5
set color magenta
set shape "person"
set xcor [xcor] of searcher-agent
set ycor [ycor] of searcher-agent
set xcor1 xcor ; copy xcor
set ycor1 ycor ; copy ycor

set heading [heading] of searcher-agent
set time [time] of searcher-agent + 1
set path-cost [path-cost] of searcher-agent
pen-down

; move to the node
 set location node
 move-to location
 set xcor [xcor] of self
 set ycor [ycor] of self
 ; increment path cost when executing the behaviour using
 ; Euclidean distance
 set path-cost path-cost +

euclidean-distance xcor1 ycor1 xcor ycor
set estimated-cost (heuristic-function xcor ycor)

set height hill-height xcor ycor

stamp
]

]
if goal-node node
[set search-completed true]
]

end

to-report goal-node [this-node]
;; returns true if the searcher agent has reached the goal

report this-node = kevin-bacon-node
end

NetLogo Code 8.1 How the paths are expanded for the Searching for Kevin Bacon model.

The procedure expand-paths calls the sub-procedure expand-path for each node adjacent to the
node at the current location of the searcher agent i.e. each node in the set of link-neighbours of the
searcher agent’s node. This sub-procedure creates a new path to each adjacent node (passed as a parameter)
by creating an agent to search it. It first makes a check, however, to see whether the path has already been
visited, and revisiting of nodes is not allowed, and if this is true then it will not create a new agent.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

119

Search

When a new agent is created, it is initially placed at the location of the current searcher agent, and then
it is moved to the adjacent node. This sub-procedure also maintains the path cost – the distance that
has been travelled so far in the search along the current path; in this model, the path cost is calculated
using Euclidean distance. When the new agent is cloned, it will copy across the path cost so far, and
this is incremented once the clone agent has moved to the new location. The estimated-cost of reaching
the goal and the height are also calculated (these are used for the informed and hill climbing searches
described below). At the end of the sub-procedure, a check is done to see if the goal node has been
reached by calling the goal-node procedure. This procedure simply checks to see if the node is the
Kevin Bacon node as defined at setup (represented by the star in the screenshots).

The breadth-first and depth-first search procedures are defined using the expand-paths procedure
as shown in NetLogo Code 8.2. The code is the same for all three of the models – for the Searching for
Kevin Bacon model and for the Searching Mazes and Missionaries and Cannibals models. The difference
occurs for each model in the way the paths are expanded – that is, the way the procedure expand-
paths is defined – as this depends on the nature of the problem and the way paths are defined in the
environment. Full code defining each of the different expand-paths procedures can be found using
the URLs at the bottom of this chapter.

Download free eBooks at bookboon.com

Click on the ad to read more

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

Artificial Intelligence – Agent Behaviour I

120

Search

to expand-breadth-first-search
; expand the search by adding more searcher-agents

ask searchers
[

expand-paths (searcher who)
die ; prune away parent agents used at lower time-steps

]
end

to expand-depth-first-search
; expand the search by following newest path
; do not follow the other paths in parallel; just follow one of them

set path-found false
ask first (sort-by [[time] of ?1 > [time] of ?2] searchers)
[

expand-paths (searcher who)
die ; this agent has done its work; it's children are now doing the work

]
end

NetLogo Code 8.2 How the breadth-first and depth-first searches are defined.

The breadth-first search expands the paths for all the current searcher agents via the ask command
by calling the expand-paths procedure before killing each of them off. The ask searchers
command ensures that the search is expanded in a random order each time. In contrast, the depth-first
search expands the paths for a single agent, the newest searcher that has the highest time variable as
determined by the sort-by reporter, before killing it off.

Simple variations of these two procedures lead to different search behaviours. One variation is to expand
the lowest cost path first. This is called uniform cost search, the code for which is shown in NetLogo
Code 8.3. The order that the searcher agents are expanded is determined by the sort-by reporter
which orders the agents in ascending path-cost order.

to expand-uniform-cost-search
 ; expand the search by following lowest cost paths first

set path-found false
ask first (sort-by [[path-cost] of ?1 < [path-cost] of ?2] searchers)
[

expand-paths (searcher who)
die ; this agent has done its work; it's children are now doing the work

]
end

NetLogo Code 8.3 How the uniform cost search is defined.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

121

Search

For depth-first search, we can ease the restriction that a single agent is doing the search, and allow more
than one agent to search in parallel at the same time. In the limit where there is no restriction placed on
the number of agents that can search at the same time, this will end up being equivalent to breadth-first
search. The multi-agent variation of depth-first search is shown in NetLogo Code 8.4 below. The only
changes from the depth-first code above is the use of the global variable max-agents-to-expand
to specify how many agents should simultaneously do the searching each iteration (this can be altered
in the Interface) and the use of the n-of reporter instead of the first reporter in the ask command.
The let command prior to the ask command is required when the number of agents is less than
the max-agents-to-expand which usually occurs at the start of the search, otherwise the n-of
reporter will cause a run-time error.

to expand-MA-depth-first-search
; expand the search by following longest path
; follow the other paths in parallel; but do not follow all of them set path-
found false
let agents ifelse-value (count searchers < max-agents-to-expand)

[count searchers]
[max-agents-to-expand]

ask n-of agents turtle-set
(sort-by [[time] of ?1 > [time] of ?2] searchers)

[
expand-paths (searcher who)
die ; this agent has done its work; it's children are now doing the work

]
end

NetLogo Code 8.4 How the multi-agent depth-first search is defined.

Another variation to depth-first search is to limit the depth of the search to a specified maximum depth.
This might be useful when the maximum depth of the search tree is unknown and we would like the
search to explore alternative shorter paths first. In this case, paths are expanded only for those agents
whose time variable is less than or equal to this limit. This is called depth-limited search, and the code
is shown in NetLogo Code 8.5.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

122

Search

to expand-depth-limited-search
; expand the search by following longest path
; do not follow the other paths in parallel; just follow one of them
; limit the search depth to max-depth

expand-depth-limited-search-1 max-depth
end

to expand-depth-limited-search-1 [maxdepth]
; expand the search by following longest path
; do not follow the other paths in parallel; just follow one of them
; limit the search depth to maxdepth

set path-found false
ask first (sort-by [[time] of ?1 > [time] of ?2] searchers)
[

if (time <= maxdepth)
[expand-paths (searcher who)]
; only expand if not exceeded depth limit
die ; this agent has done its work; it's children are now doing the work

]
end

NetLogo Code 8.5 How the depth-limited search is defined.

Download free eBooks at bookboon.com

Click on the ad to read more

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

Artificial Intelligence – Agent Behaviour I

123

Search

The expand-depth-limited-search procedure calls a sub-procedure expand-depth-
limited-search-1 with a parameter max-depth which is a variable defined in the Interface.
The sub-procedure is just a variation of the standard depth-first search procedure that stops expansion
of paths if the maximum depth cut-off has been reached.

A problem with depth-limited search is that there is no guarantee that the search will be successful. If we
choose a particular max-depth, then the desired or goal state may be just beyond the cut-off maximum
depth. A variation to overcome this problem is called Iterative Deepening Search. Here, depth limited
search is repeated to increasingly larger maximum depths as shown in NetLogo Code 8.6.

to expand-iterative-deepening-search
; expand the search by iteratively performing depth-limited-search
; to increasingly greater depths
set IDS-depth 1
set person-colour magenta
while [IDS-depth <= max-depth]
[

while [count searchers != 0]
[expand-depth-limited-search-1 IDS-depth]
set IDS-depth IDS-depth + 1
; change colour of person to reflect the increased maxdepth of search
if (person-colour > 5)
[set person-colour person-colour – 5]
create-searchers 1 [setup-searcher]

]
set person-colour magenta ; restore default colour

end

NetLogo Code 8.6 How the Iterative Deepening Search is defined.

The variable IDS-depth records what the current maximum depth for the depth limited search is set at.
This is set to 1 at the beginning, and then the code uses a while loop to execute the depth limited search
by repeatedly calling the expand-depth-limited-search-1 procedure until there are no more
searchers (this occurs when the depth-limited search has reached the maximum depth). The maximum
depth each iteration is increased when the variable IDS-depth is incremented by 1. A single searcher
is also recreated each iteration to re-start the depth-limited search from scratch and the colour of the
searcher agents is changed in order to show the search as it progresses over the previous search that is
shown in a different colour. The search will eventually stop when IDS-depth exceeds max-depth.

The NetLogo models also allow the search behaviours to be combined. The search strategy can be easily
switched mid-way through the search. For example, the search can start out as a depth first search, then
the user can switch the strategy to an alternative strategy such as breadth-first search via the search-
behaviour chooser in the Interface.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

124

Search

8.5	 Search as behaviour selection

We can think of the search process as one of an agent moving around the environment that represents
the search space. At each point where there are alternative paths to explore, the agent has to make a
decision about which path to explore. Once a particular path has been chosen, then this will lead to a
‘tree’ of future branches. This abstract view of the search process is based on an analogy with exploration
of unknown territory by selecting alternative paths. We can extend this abstract view by noting that the
search process usually involves behavioural selection rather than just path selection. The agent searches
for the sequence of behaviours that when executed will lead to the desired goal. The execution of the
behaviours will lead the agent down particular paths as an outcome.

We can apply this view of the search process to characterise the three search problems described above.
For example, in the searching mazes problem, the search process is more than just a search for a set of
paths that will allow the agent to travel to the exit or centre of the maze. In order to follow the paths,
the agent must execute specific behaviours such as turning left and right, moving ahead and turning
around. Hence, the search can be characterised instead as a search for the sequence of behaviours that
when executed in a specific order will lead to the desired goal. Specifically, the behaviour of turning left
or right requires a single action, but the behaviour of forward movement involves multiple actions if
we are to consider the embodiment and situated perspective outlined in chapter 5. Forward movement
needs to be combined with sensing, for example the agent might apply a different behaviour whenever
it senses a wall in front of it, or when it finds there is open space in front of it or to its side.

In the Searching Mazes model, in order to illustrate this behavioural approach to characterising the
search process, the agents have been given the ability to execute three different reactive behaviours – (i)
moving forward, (ii) turning left then moving forward, and (iii) turning right then moving forward. The
agents can also execute several different types of forward movement behaviour. These are controllable by
two choosers in the Interface: [1] the move-forward-behaviour; and [2] the move-forward-
behaviour-after-turning. The first defines the forward movement for reactive behaviour (i),
and the second defines the forward movement for the reactive behaviours (ii) and (iii). The types of
forward movement are as follows: (a) “Move forward n steps unless hit wall”, where
the agent moves forward n steps, and n is a number defined by the Interface variable move-forward-
step-amount; (b) “Move forward until hit wall”, where the agent will keep on moving
forward until it hits a wall; (c) “Move forward until any open space”, where the agent will
move forward until there is a wall in the way or there is open space on both sides of it; and (d) “Move
forward until open space after side wall”, where the agent will move forward until
there is a wall in the way or there is open space after a side wall.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

125

Search

Despite only being able to execute three basic reactive behaviours, the maze-searching agents can exhibit
a surprising variety of movements as a result. Figure 8.10 captures a few of these in screenshots taken
from the Searching Mazes model using breadth first search on the empty maze. Referring to the numbers
and letters in the previous paragraph to describe the four configurations: in the top left image, the agents
apply behaviours [1](a) and [2](a), both using a step of 10; in the top right image, the behaviours are
[1](a), using a step of 1, and [2](b); in the bottom left image, the behaviours are [1](a), using a step of
10, and [2](c); and in the bottom right image, the behaviours are [1](c) and [2](a), using a step of 10.
For example, the grid effect in the top left image is caused by the agents repeatedly moving 10 steps in
three directions – forward, left and right. How the grid is built up is best seen by continually pressing
the go-once button in the Interface at the start of each search.

Figure 8.10 Screenshots of different movement behaviours for the Searching Mazes model.

The important distinction is that the search as implemented in the Searching Mazes model is not just a
search for alternative paths – it is a search for the sequence of behaviours that the agent must execute in
order to get to the goal state. This distinction is most apparent in the definition of the expand-paths
procedure for the model as shown in NetLogo Code 8.7 where each “path” being expanded involves the
execution of a specific movement behaviour – forward, left-then-forward or right-then-forward.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

126

Search

to expand-paths [searcher-agent]
;; expands all the possible paths for the searcher-agent

expand-path searcher-agent "Move forward"
; new searcher agent moves forward until it hits a wall
expand-path searcher-agent "Move left"
; new searcher agent turns left then moves forward
expand-path searcher-agent "Move right"
; new searcher agent turns right then moves forward

end

NetLogo Code 8.7 The procedure defining how the paths are expanded for the Searching Mazes model.

The other two search problems can also be characterised as a behavioural selection process rather than
a path selection process. For the Searching for Kevin Bacon model (see the expand-paths procedure
defined in NetLogo Code 8.1), the agents are applying a single behaviour – they ‘look’ around them to
sense the surrounding nodes, and then they move to each in turn. In the search process implemented in
the model, the behaviour being applied by the agents is the same as each node is treated as equivalent,
but there is no reason why we could not vary the search by choosing between behaviours that take into
account different properties of the nodes in the network, such as whether it was a super-node or not, or
the distance away from adjacent nodes.

Download free eBooks at bookboon.com

Click on the ad to read more

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

Artificial Intelligence – Agent Behaviour I

127

Search

In contrast, for the Missionaries and Cannibals model, the behaviour selection process is more apparent.
In the model’s expand-paths procedure shown in NetLogo Code 8.8, there are five “paths” being
expanded. These correspond to the alternative actions of having two missionaries get in the row-boat,
two cannibals in the rowboat, one missionary and one cannibal get in the row-boat, one missionary by
itself and one cannibal by itself. According to the definition of behaviour described in Section 6.1, these
actions can be considered as separate behaviours. To further emphasize the behavioural aspect of these
actions, let us imagine, for example, a scenario where the missionaries exhibit the peculiar behaviour
of never getting in the row-boat by themselves. We can simulate this by simply commenting out the
“expand-path searcher-agent 1 0” line in the expands-path procedure. This results in
significantly different searches being performed as a result for each of the search methods, with some
of the searches failing while others, such as breadth-first search, perhaps surprisingly, still managing to
be successful at finding a solution, albeit different to the previous one.

to expand-paths [searcher-agent]
;; expands all the possible paths for search-agent

expand-path searcher-agent 2 0 ; two missionaries in row-boat
expand-path searcher-agent 0 2 ; two cannibals in row-boat
expand-path searcher-agent 1 1
; one missionary and one cannibal in row-boat
expand-path searcher-agent 1 0 ; one missionary in row-boat
expand-path searcher-agent 0 1 ; one cannibal in row-boat

end

NetLogo Code 8.8 The procedure defining how the paths are expanded for the Missionaries and Cannibals model.

8.6	 Informed search

Informed search occurs when the agent uses problem-specific information to help guide the search.
The information is used to determine which of the paths should be taken when there are alternatives.
One form the information can take is that of the agent using a heuristic evaluation function that ranks
alternative paths. Usually the path with the lowest value according to the heuristic function is chosen to
expand the search next. The purpose of the heuristic function is to make an informed guess as to which
path is likely to be the best. The agent needs to guess because if the agent already knew which path was
the best in advance, then there is no longer any need to perform any search.

However, what is a good heuristic function? The function should provide an estimate of the cost of
the cheapest path from the current node to the goal node. For example, one possible heuristic for the
Searching for Kevin Bacon model is straight-line (Euclidean) distance if we are measuring cost in terms
of distance travelled in the environment. A feature of this heuristic is that it will never overestimate the
actual cost since the shortest path between two points is always a straight line.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

128

Search

 Figure 8.11 Screenshot of Manhattan Distance model.

A heuristic function is said to be admissible if, as with Euclidean distance, it never overestimates the cost
of reaching the goal node from the current node. Another heuristic function, when we are measuring
cost in terms of distance moved in the environment, is Manhattan distance. Here the analogy is of
moving between two points as if we are constrained to moving along streets in Manhattan – we can only
move vertically and horizontally but never diagonally. Figure 8.11 shows a screenshot of the Manhattan
Distance model in NetLogo that illustrates how the measure is calculated and how it compares with
Euclidean distance. The length of the diagonal red line is the Euclidean distance that in the screenshot
is equal to

�

182 +182()= 25.46 . The Manhattan distance can be calculated based on the distance of the
many different combinations of horizontal and vertical paths that lead from the start point (bottom white
circle) to the goal (top right circle). There are two possibilities shown in the screenshot, but all such
paths will have the same overall distance of 36. The Manhattan distance is not an admissible heuristic
for the Searching for Kevin Bacon model (in cases where two points are not vertically or horizontally
apart from each other, the Manhattan distance is greater than the shortest distance between two points
which is the Euclidean distance). However, it is an admissible heuristic for the Searching Mazes model
because the movement in the three mazes provided by the model (the empty maze, the Hampton Court
Palace maze, and the Chevening Court maze) is always in either a horizontal or vertical direction, so the
length of the shortest traversable path between two points in the maze is always the Manhattan distance.

The code shown in NetLogo Code 8.9 shows how the heuristic function is calculated for the Searching
for Kevin Bacon model using either Euclidean distance or Manhattan distance. A third heuristic function
called Zero, which always returns the value 0, has also been included in the models for comparison
purposes. The Zero function is an admissible heuristic since it clearly never overestimates the path cost.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

129

Search

to-report euclidean-distance [x y x1 y1]
;; reports the euclidean distance between points (x,y) and (x1,y1)

report sqrt ((x1 – x) ^ 2 + (y1 – y) ^ 2)
end

to-report manhattan-distance [x y x1 y1]
;; reports the euclidean distance between points (x,y) and (x1,y1)
 report abs (x1 – x) + abs (y1 – y)
end

to-report heuristic-function [x y]
;; reports the heuristic evaluation function value

let goalx kevin-bacon-xcor
let goaly kevin-bacon-ycor

if (heuristic = "Zero")
[report 0]

if (heuristic = "Euclidean distance")
[report euclidean-distance x y goalx goaly]

if (heuristic = "Manhattan distance")
[report manhattan-distance x y goalx goaly]

end

NetLogo Code 8.9 The heuristic function used for the Searching for Kevin Bacon model.

Download free eBooks at bookboon.com

Click on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

Artificial Intelligence – Agent Behaviour I

130

Search

Devising a suitable heuristic function is more of an art than a science. We want the heuristic to provide a
good ranking of alternative paths, but at best it is just an educated guess based on some prior knowledge
of what works well within a particular search domain. Clearly, the Zero function will not provide a
good ranking of alternative paths as the cost will be always be underestimated (unless the goal node has
been reached) and every path will be ranked the same. (It is, however, useful for providing a baseline
comparison since when used in the greedy best first search described below, the search behaviour defaults
to random expansion of the frontier as all alternative paths are ranked equally).

Heuristic functions need to be tailored to each search problem. What may work well in one problem
domain may not work so well in another. For example, the Manhattan distance heuristic is suitable for
the Searching Mazes problem but would not be suitable for the Searching for Kevin Bacon problem for
reasons outlined above. Neither the Manhattan distance heuristic or the Euclidean distance metric would
be suitable for the Missionaries and Cannibals problem in its present form since the previous solutions
were only suitable for 2-dimensional space, and as described above and illustrated in Figure 8.6, the
Missionaries and Cannibals problem is more naturally represented in a 3-dimensional search space, where
the dimensions are the number of missionaries on the left side of the river, the number of cannibals on
the right side of the river and whether the row boat is on the left side or not. We can readily extend the
Euclidean distance and Manhattan distance functions to include 3 (or more) dimensions as shown in
NetLogo Code 8.10.

to-report euclidean-distance [x y z x1 y1 z1]
;; reports the euclidean distance between points (x,y,z) and (x1,y1,z1)
 report sqrt ((x1 – x) ^ 2 + (y1 – y) ^ 2 + (z1 – z) ^ 2)
end

to-report manhattan-distance [x y z x1 y1 z1]
;; reports the manhattan distance between points (x,y,z) and (x1,y1,z1)
 report abs (x1 – x) + abs (y1 – y) + abs (z1 – z)
end

to-report heuristic-function [mcount ccount rcount]
;; reports the heuristic evaluation function value

 if (heuristic = "Zero")
 [report 0]
 if (heuristic = "People on the left side")
 [report mcount + ccount]
 if (heuristic = "Min. no. boat trips needed")
 [report (mcount + ccount) / 2] ; 2 is the capacity of the boat
 if (heuristic = "Euclidean distance") ; goal is point (0,0,0)
 [report euclidean-distance mcount ccount rcount 0 0 0]
 if (heuristic = "Manhattan distance") ; goal is point (0,0,0)
 [report manhattan-distance mcount ccount rcount 0 0 0]
end

NetLogo Code 8.10 The heuristic function used for the Missionaries and Cannibals model.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

131

Search

Also defined are two further admissible heuristic functions that can be used for this problem. The first,
labelled “People on the left side”, simply counts the number of people that are on the left side of the
river. This is related to the second, labelled “Min. no. boat trips needed”, which works out the minimum
number of boat trips that would be needed to transfer the people across. These two are unrealistic
estimates of the true path cost because they ignore the added trips needed firstly to ensure that the
cannibals never outnumber the missionaries at any stage and secondly to return the canoe to pick up
the remaining people. However, they clearly never overestimate the number of boat trips needed so they
are admissible heuristics.

We can now look at how we can use these heuristic evaluation functions as the basis of different search
behaviours. “Best-first” search refers to searches that extend the “best” paths first as judged by a heuristic
function. One type of best-first search, called greedy best first search, orders the expansions of the search
paths by the estimated cost to the goal. The analogy is with the searcher agent being “greedy” as well
as short-sighted by wanting to pick what seems to be best at the moment, hence the name. The code
for the search is defined in NetLogo Code 8.11 below (the estimated cost is calculated by the heuristic
function in the expand-paths procedure in NetLogo Code 8.1.). The code for this search is very
similar to the code for depth-first search in NetLogo Code 8.2, the only difference being that the paths
are ordered by estimated-cost rather than time.

to expand-greedy-best-first-search
; expand the search using greedy best first search method

set path-found false
ask first (sort-by [[estimated-cost] of ?1 <

[estimated-cost] of ?2] searchers)
[

expand-paths (searcher who)
die ; this agent has done its work; it's children are now doing the work

]
end

NetLogo Code 8.11 How the Greedy Best First Search is defined.

A simple modification to greedy best first search is to re-order the search by the sum of both the estimated
cost and the path cost. This search is called A* search (pronounced “A star”); the code is defined in
NetLogo Code 8.12.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

132

Search

to expand-A-star-search
; expand the search using A* search method

set path-found false
ask first (sort-by [[estimated-cost + path-cost] of ?1 <

[estimated-cost + path-cost] of ?2] searchers)
[

expand-paths (searcher who)
die ; this agent has done its work; it's children are now doing the work

]
end

NetLogo Code 8.12 How the A* Search is defined.

Figure 8.12 shows how both the greedy best first search and A* search searches the network shown
earlier in Figures 8.3 and 8.4 for the Searching for Kevin Bacon model. In this case, both searches end
up following the same paths. However, for more complicated networks, this is generally not the case,
with A* usually taking a more direct route to the goal than greedy best first search.

Download free eBooks at bookboon.com

Click on the ad to read more

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

Artificial Intelligence – Agent Behaviour I

133

Search

Figure 8.12 Screenshot of both the greedy best first search and
A* search for the Searching for Kevin Bacon model.

This is shown by the two searches on the empty maze for the Searching Mazes model in Figure 8.13. In
this setup, the heuristic function is Euclidean distance, and the agent progresses forward 2 steps at a time
as was the case for Figure 8.5. The left image shows the slightly more erratic general path taken towards
the exit by the searcher agents for the greedy best first search, but overall, the searchers are ‘driven’
toward the goal by the heuristic function ranking better the positions nearer the goal. Similar behaviour
can be observed when the Manhattan heuristic function is used rather than Euclidean distance. When
the Zero function is used as the heuristic, however, the searcher agents expand outwards in a random
fashion, not necessarily towards the exit.

The right image shows the more direct and ordered progression taken by the A* searcher agents when
the Euclidean is used. The five middle columns of the army of searcher agents march directly from the
bottom of the maze towards the exit at the top. However, they suddenly stop a few steps away from
the exit, and the left outer column then moves forward, with the right outer column joining the search
not long after. The reason for this is the way the positions are being ranked by the sum of the path cost
combined with the estimated cost calculated using Euclidean distance. For the middle columns, this
combined sum is slightly greater then the vertical length of the maze since the direct line to the exit is
vertical, and the goal position used for the Euclidean distance calculation is a single point to the left
of the exit. This sum for the outer column exceeds the sum for the inner columns for most of the time
while the agents are marching forward, but as the inner column agents get very near the goal, this is no
longer true, and so the outer column agents take over. Eventually, the middle columns reach the exit.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

134

Search

Figure 8.13 Screenshots of the greedy best first search (left image) and A* search (right image) for the Searching Mazes model on
the empty maze using the Euclidean heuristic.

Figure 8.14 shows what happens with the A* search on the empty maze using the Manhattan distance
heuristic (left image) and the Zero distance heuristic (right image). The behaviour of the searcher agents
with the Manhattan distance heuristic is to march towards the goal point on the left side of the exit, but
the movement forward is patchier than for the Euclidean distance metric.

The x co-ordinate for the goal point for the case shown in the image is set to -5 within the code during
setup, so the leading searching agent at the tip of the marching column of agents tends to have the same
x co-ordinate. In contrast, the behaviour of the searcher agents when the Zero distance heuristic is used
is similar to the behaviour of breadth-first search.

Figure 8.14 Screenshots of the A* search using the Manhattan distance heuristic (left image) and the Zero distance heuristic
(right image) for the Searching Mazes model on the empty maze.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

135

Search

8.7	 Local search and optimisation

Another family of search behaviours is based on ‘local’ search where the agents performing the search
apply rules according to the local situation they find themselves in by examining the alternative paths
only in relation to the immediate neighbourhood. Therefore they do not need to record any information
such as which locations they have already visited, the paths they have taken or the path cost. This type
of search can be described using the analogy of a myopic person with a very localised field of vision.
The search uses a meta-heuristic that can be applied to solving general problems, rather than a specific
heuristic tailored for the problem domain.

One form of this type of search called hill climbing (also called greedy local search) is to make the choice
of where to move to based on maximising (or equivalently minimising) some criteria. The code for this
search is shown in NetLogo Code 8.13.

Download free eBooks at bookboon.com

Click on the ad to read more

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

Artificial Intelligence – Agent Behaviour I

136

Search

to expand-hill-climbing-search
; expand the search using hill-climbing search method

set path-found false
ask searchers ; there should always be only one searcher at this stage
[expand-paths (searcher who)] ; look to see where I can go next

foreach but-first (sort-by [[height] of ?1 < [height] of ?2] searchers)
[; kill off all but the first
ask ? [die]; only let the best of the new searchers continue
]

end

NetLogo Code 8.13 How the Hill Climbing Search is defined.

With hill climbing search, only one searcher agent is active at any time. This agent will create new
searcher agents for each path it can expand, but then only one of those is chosen to continue the search,
and the rest are killed off. The searcher agent chosen will be the one that has the minimum value for the
height variable stored with each agent. This is calculated in the expand-paths procedure (see
NetLogo Code 8.1). For the Searching Mazes module and the Searching for Kevin Bacon model, the
height is calculated using the heuristic function defined in NetLogo Code 8.14:

to-report hill-height [x y]
;; reports the "height" of the current search position
;; the zero height is the goal

report heuristic-function x y
end

NetLogo Code 8.14 How the height is calculated for the Searching mazes and Searching for Kevin Bacon models.

Using Euclidean distance or Manhattan distance from the goal point as the meta-heuristic for both
models ensures that the landscape of the environment is smooth throughout, and consists of a single
depression, with the lowest point (zero) being the epicentre. The hill-climbing search then tries to move
the agent in a direction towards the epicentre.

Figure 8.15 provides two screenshots of hill-climbing search on the empty maze for the Searching Mazes
model. The left image shows what happens when Euclidean distance is used as the meta-heuristic, the
right image when Manhattan distance is used. The explanation for the pronounced veering away of the
columns of searcher-agents at the beginning and end is that, as discussed above, the x co-ordinate of
the goal point is set at -5 which is slightly to the left of the x co-ordinate of the first searcher agent when
it enters the maze. Therefore, for Euclidean distance, the agent expanded in the forward direction will
always be closer to the goal point until right at the end (in contrast to the two other agents expanded
in the left and right directions). For Manhattan distance, the veering occurs at the beginning instead
because of the way the distance is calculated as a summation of vertical and horizontal lengths rather
than diagonally.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

137

Search

Figure 8.15 Screenshots of the hill climbing search using the Euclidean distance meta-heuristic (left image) and the Manhattan
distance meta-heuristic (right image) for the Searching Mazes model on the empty maze.

For the Missionaries and Cannibals model, we need another method for calculating the height variable
since the search space is three-dimensional. Referring to Figure 8.6, one obvious way for representing
height in the environment is the position of each state on the parallel y axes. For example, the highest
point is the start state at (3, 3, 1), and the lowest (zero) point is the goal state at (0, 0, 0). We therefore
can calculate the height proportionately to reflect the number of missionaries and cannibals, and the
current row-boat position as shown in NetLogo Code 8.15.

to-report hill-height [mcount ccount rcount]
;; reports the "height" of the current search position
;; the zero height is the goal; the maximum height is the start

report mcount * 8 + ccount * 2 + rcount
end

NetLogo Code 8.15 How the height is calculated for the Missionaries and Cannibals model.

A problem with hill climbing search is that it can easily get stuck in local maxima (or minima if we
are searching for a minimum as in NetLogo Code 8.10). Another problem is when there is an obstacle
blocking the way. This is illustrated by the screenshot in Figure 8.16 of hill climbing search used on the
Hampton Court Palace maze. The search heads directly in the direction to the global minimum at the
centre of the maze, but then gets prevented from moving forward by the long horizontal wall in the
way. What the search needs to do is head in a non-minimising direction to get around the obstacle.
One way of doing this is to include a random walking behaviour when the search has not made any
progress. However, the Hampton Court Palace Maze environment is still problematical even for such a
solution, as the walls present a series of obstacles parallel to each other that are very wide and difficult
to find a way around.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

138

Search

Figure 8.16 Screenshot showing how Hill Climbing Search gets stuck for the Searching Mazes model
on the Hampton Court Palace Maze.

Similarly, hill-climbing search used for the Searching for Kevin Bacon model can also get stuck in nodes
where adjacent nodes are all in directions that are further away from the goal node. This occurs in the
screenshot show in Figure 8.17 where the search starts at node b33, but then cannot proceed beyond
node b21 because the distances to the goal node (the white star) from adjacent nodes is longer than
the distance from node b25.

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/IE

Artificial Intelligence – Agent Behaviour I

139

Search

Figure 8.17 Screenshot showing how the Hill Climbing Search get stuck in some cases for the Searching for
Kevin Bacon model.

The same problem occurs for hill-climbing search on the Missionaries and Cannibals problem. The search
very quickly gets stuck when the only future paths all head away from the goal state.

Hill climbing is an example of a broader class of problem solving called optimisation. Optimisation
methods rely on making some form of guess, and then incrementally refining the guess until no further
refinements are possible. Some other forms of optimization are simulated annealing, beam search,
genetic search and particle swarm optimization. For the latter two, two models are provided with the
NetLogo Models Library – Simple Genetic Search and Particle Swarm Optimization. (These models will
be further discussed in Volume 2 of this book series.) Particle swarm optimisation search make use of
swarm intelligence and stigmergy. The use of the blackboards by communicating agents to help search
computer networks within the Being Kevin Bacon model described in the previous chapter is another
example of distributed agents using stigmergic local information to help improve search. The word of
mouth method of communication also implemented in the model is another example of local search,
but unlike the blackboard method, does not make use of stigmergy.

8.8	 Comparing the search behaviours

How can we compare the different search behaviours described above? In other words, what are some
suitable criteria we can use in order to make an objective evaluation as to which search behaviour is
‘better’? One obvious criterion is to determine whether the search is completed or not. In some cases,
we cannot be sure that the search is guaranteed to find a solution. Another criterion is whether the
search finds an optimal solution – that is, the solution that has the lowest path cost along the path
from the start state to the goal state. Further criteria relate to the time and memory required to find a
solution. Table 8.1 lists several criteria for evaluating search performance. The first four criteria are from
Russell and Norvig (2002). The last criterion was proposed by Yao (1979) and relates to the amount of
communication required between the distributed agents as they are executing the search.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

140

Search

Criterion Description

Completeness. Is the search guaranteed to find a solution if there is one?

Optimality. Does the search find the optimal solution?

Time complexity. How much total time for all agents does it take to find a solution?

Space complexity. How much total memory for all agents is required to find a solution?

Communication complexity. How much communication between agents is necessary to find a solution?

Table 8.1 Criteria for evaluating search performance.

Time and space complexity are usually measured in relation to the lengths of the paths searched. If search
is characterised using distributed agents as implemented by the code in this chapter, then time complexity
relates to the total number of searcher agents created during the search, and space complexity relates to
the maximum number of searcher agents that are ‘active’ during the execution of the search. For each
of the three NetLogo models described in this chapter (Searching for Kevin Bacon, Searching Mazes
and Missionaries and Cannibals), these two numbers are shown in the Interface monitors Maximum
Active Searcher Agents and Total Searcher Agents. We can use these monitors
to do an experimental comparison of the different search behaviours as shown in Table 8.2.

Download free eBooks at bookboon.com

Click on the ad to read more

STUDY AT A TOP RANKED
INTERNATIONAL BUSINESS SCHOOL

Reach your full potential at the Stockholm School of Economics,
in one of the most innovative cities in the world. The School
is ranked by the Financial Times as the number one business
school in the Nordic and Baltic countries.

Visit us at www.hhs.se

Sw
ed

en

Stockholm

no.1
nine years
in a row

http://s.bookboon.com/hhs2016

Artificial Intelligence – Agent Behaviour I

141

Search

Search problem Search behaviour Revisits
allowed?

Success Maximum
Active
Searchers

Total Searchers

Missionaries &
Cannibals

Breadth First Search ✓

✓

✓

✓

5015

3

9239

16
Uniform Cost Search ✓

×

✓

✓

7501

2

13032

16
Depth First Search ✓

×

×

✓

 –

3

 –

16
Multi-Agent Depth First
Search
(max-agents-to-expand = 2)

✓

×

×

✓

 –

3

 –

16

Greedy Best First Search
(heuristic = Euclidean)

✓

×

×

✓

 –

3

 –

16
A* Search
(heuristic = Euclidean)

✓

×

✓

✓

1035

2

1990

16
Hill Climbing Search ✓

×

×

×

 –

 –

 –

 –
Searching Mazes

on empty maze;

both move forward
behaviours = “Move
forward n steps unless
hit wall”

move-forward- step-
amount = 10

Breadth First Search ✓

×

✓

✓

2943

100

5095

469
Uniform Cost Search ✓

×

✓

✓

2660

114

4603

448
Depth First Search ✓

×

✓

✓

257

168

466

358
Multi-Agent Depth First
Search
(max-agents-to-expand = 2)

✓

×

✓

✓

445

167

754

361

Greedy Best First Search
(heuristic = Euclidean)

✓

×

✓

✓

38

24

61

40
A* Search
(heuristic = Euclidean)

✓

×

✓

✓

43

41

67

64

Hill Climbing Search ✓

×

✓

✓

1

1

25

25

Table 8.2 Comparing the performance of the search behaviours.

The table lists results for various searches for two of the models – Missionaries and Cannibals, and
Searching Mazes. For the latter, the empty maze was used as the environment, and the Interface variables
were set as shown in the first column of the table.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

142

Search

The second column lists the search behaviour that was tried out along with any relevant Interface variables
such as the heuristic that was used for the informed searches. The third column indicates whether states
were allowed to be revisited (✓) or not (×), the fourth column lists whether the search completed (✓)
or not (×), and the final two columns lists the maximum number of active searcher agents and the total
number of searcher agents that were used throughout the search. For these last two numbers, the ones
shown in italic font indicate that these are typical values only, since results vary from one simulation to
the next because of the way the NetLogo ask command operates, randomly choosing between agents
when breaking ties.

The table can be used to get a rough idea of the relative performances of the different search behaviours.
Clearly, not allowing revisits significantly improves all searches, and in some cases allows the search to
complete since the search no longer gets stuck revisiting the same nodes over and over again (as for
the depth-first, multi-agent depth-first and greedy best-first searches in the Missionaries and Cannibals
model). Another noticeable trend is the relative expense in terms of time and space complexity for
the breadth-first and uniform cost search compared to the other searches. A* is also expensive for the
Missionaries and Cannibals problem when revisits are allowed, but does relatively well on the empty maze
due to the heuristic being ideally suited to the nature of the problem. The other searches do relatively well
on the empty maze, but for the Missionaries and Cannibals model suffer the problem of not completing
the search in the max-depth cut-off time period that was imposed when revisits are not allowed.

Table 8.2 provides useful experimental evidence to help compare the effectiveness of the searches, but a
more theoretical analysis is required to gain further insight into the relative merits of each. We can use
computational complexity theory to estimate the time and space complexities for the different search
behaviours as shown in Table 8.3. The third and fourth columns list the time and space complexities –
for further details, see Russell and Norvig (2002). The second and third columns in the table indicate
whether the search behaviour leads to a complete search and whether the search will always find the
optimal solution. (Note, however, Russell and Norvig provide several caveats concerning completeness
and optimality for the breadth-first, uniform-cost and iterative deepening searches).

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

143

Search

Search Behaviour Complete? Optimal? Time Space

Breadth-first ✓ ✓ O(bd+1) O(bd+1)

Uniform cost ✓ ✓ See note (i). See note (i).

Depth first × × O(bm) O(bm)

Depth-limited × × O(bl) O(bl)

Iterative Deepening ✓ ✓ O(bd) O(bm)

Greedy best first × × O(bm) O(bm)

A* ✓ ✓ See note (ii). See note (ii).

Hill climbing × × See note (iii). O(1)

Table 8.3 Criteria for evaluating search performance (Russell and Norvig, 2002).

b is the branching factor; d is the length (in nodes) of the shortest path that is a solution; m is the length of the
maximum path searched; l is the cut-off path length beyond which the search does not continue. Note (i): The search
complexities are related to path costs rather than number of nodes in the path; if path costs are constant, then time
and space complexities are both O(bd). Note (ii): Exponential growth in the search tree if the error in the estimate
made by the heuristic function grows faster the logarithm of the path cost. Note (iii): Time complexity relates to the
state space landscape.

Note that in many cases, these complexities are an idealisation of the search or may not reflect actual
performance. For example, the time and space complexities for greedy best first search is based on a
worst-case analysis – with a good heuristic, the search can be reduced significantly. Note also that in
some cases, these complexities do not correspond to the different search behaviours as they have been
implemented in this chapter. The use of the sort-by reporter in many of the expand search procedures –
for example in expand-depth-first-search shown in NetLogo Code 8.2 – is not the most efficient
implementation possible. The reason they have been implemented this way is to draw attention to the
essential differences between the various searches by casting them within a common framework.

Communication complexity is also an important factor that needs to be taken into consideration,
especially if multi-agent solutions are being used. If there is a cost involved in communicating the state of
the search between agents – for example when the agents clone themselves as above – then this should be
factored into the evaluation as well. The communication complexity is related to the cost of transmitting
the information between agents; this can be measured using entropy as described in the previous chapter
(i.e. using compression code lengths). All of the above search behaviours have similar communication
complexities to the spaces complexities because information of a constant size is being transmitted
from the parent agent to the clone agents – that is, when the hatch-searchers command is
called as in NetLogo Code 8.1, the parent agent transmits the same constant-sized information to the
newly hatched clone (for example, the current path-cost and time of the search). Communication
complexity, however, can be an important factor that needs to be considered in other types of search,
such as the word of mouth and blackboard type searches described in the previous chapter.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

144

Search

The various complexities are also related to the information an agent or agents collect while performing
a search, as well as the information transmitted between agents. Obvious information an agent can
collect is whether the agent has already visited a particular state or been down a particular path. Further
information might be whether one state leads to another state, or the shortest path from a given state
to another state. The agent can use this information to guide the search but the cost of processing the
information most also be factored into the complexities. Also, sometimes the cost of obtaining the
information might be too high – it might mean that exploring the entire search space is required.
Alternatively, keeping the information may also be too expensive in terms of external storage.

8.9	 Summary and Discussion

One of the greatest joys known to man is to take a flight into ignorance in search of knowledge.

Robert Lynd.

The standard search algorithms covered in this chapter, such as depth-first, breadth-first, greedy best
first and A* search, have been implemented using an embodied, situated multi-agent framework. In this
framework, search is recast as a process performed by teams of agents co-operating together in order to
find a desired location in an n-dimensional space.

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/liu

Artificial Intelligence – Agent Behaviour I

145

Search

Many of the higher-level behaviours often associated with intelligence can also be recast as search in
this manner. Problem solving can be thought of as a search in solution space – there are many possible
solutions to a particular problem, and these are scattered throughout an n-dimensional space that needs
to be searched in order to solve the problem. Similarly, the processes of decision-making, planning
and learning can be recast as searches of n-dimensional spaces comprising decisions, plans and learnt
concepts.

Conversations also require search – during a conversation, agents must continually search to find the
most appropriate responses. The next chapter shows how reasoning can also be recast as a search problem.

Search can be considered as a behaviour that an embodied, situated agent exhibits in order to gain
knowledge that it does not already have. Search is fundamentally linked to knowledge – they can be
thought of as two sides of the same coin. This is reflected in the language we use to describe search. For
example, a common English expression we use is “search for knowledge” (as in the quote at the start of
this Section). We also often say when we do not ‘know’ whether something is true, that we need to ‘find’
out whether it is true, as in the expression “I need to find out if X is true”, where X is any statement.
The next chapter will explore what knowledge is, and the link between search and knowledge further.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

146

Search

A summary of important concepts to be learned from this chapter is shown below:

•	 Search from an embodied, situated perspective can be thought of as a search of alternative behaviours rather
than a search of alternative paths.

•	 Uninformed (blind) search does not use any information to guide the search. The analogy is of a blind man trying
to search a maze without any knowledge or map of the maze.

The following searches are uninformed searches:

•	 The following searches are uninformed searches:
depth-first – this is where only a single agent is active and often needs to back track;
depth-limited – this is where a maximum cut-off depth is imposed on depth-first search;
multi-agent depth-first – this is depth first search but with more than one active agent;
breadth-first – this is where teams of agents fan out in parallel;
uniform-cost – this is breadth-first search but lowest cost paths are expanded first;
Iterative Deepening – this uses repeated executions of depth limited search to increasing maximum depths;

•	 Informed search uses information to guide the search. The information is in the form of a guess about which way
is best.

•	 The function used to make the guess is called a heuristic function.
•	 An admissible heuristic function is one that never overestimates the cost of reaching the goal.
•	 The following searches are informed searches:

greedy best-first – this is where the path with the lowest estimated cost to the goal (calculated by the heuristic
function) is followed next;
A* – this is where the path with the lowest (estimated cost to the goal + path-cost) total is followed next.

•	 Local search and optimisation make a guess about which path to choose based on local information only.
•	 The following search is a local search:

hill-climbing – this is where the single agent always heads “up” the hill.

•	 Hill climbing search often gets stuck in local optima.
•	 The following criteria can be used to evaluate searches: completeness, optimality, time complexity, space

complexity and communication complexity.

The code for the NetLogo models described in this chapter can be found as follows:

Model URL

Missionaries and Cannibals http://files.bookboon.com/ai/Missionaries-and-Cannibals.nlogo

Searching Mazes http://files.bookboon.com/ai/Search-Mazes.nlogo

Searching for Kevin Bacon http://files.bookboon.com/ai/Searching-for-Kevin-Bacon.nlogo

Model NetLogo Models Library (Wilensky, 1999) and URL

Particle Swarm
Optimization

Computer Science > Particle Swarm Optimization
http://ccl.northwestern.edu/netlogo/models/ParticleSwarmOptimization

Simple Genetic
Algorithm

Computer Science > Simple Genetic Algorithm
http://ccl.northwestern.edu/netlogo/models/SimpleGeneticAlgorithm

Download free eBooks at bookboon.com

http://files.bookboon.com/ai/Missionaries-and-Cannibals.nlogo
http://files.bookboon.com/ai/Search-Mazes.nlogo
http://files.bookboon.com/ai/Searching-for-Kevin-Bacon.nlogo
http://ccl.northwestern.edu/netlogo/models/ParticleSwarmOptimization
http://ccl.northwestern.edu/netlogo/models/SimpleGeneticAlgorithm

Artificial Intelligence – Agent Behaviour I

147

Knowledge

9	 Knowledge

The question how knowledge should be defined is perhaps the most important and difficult of
the three [(1) the definition of knowledge, (2) data, (3) methods of inference] with which we
shall deal. This may seem surprising: at first sight it might be thought that knowledge might be
defined as belief which is in agreement with the facts. The trouble is that no one knows what
a belief is, no one knows what a fact is, and no one knows what sort of agreement between
them would make a belief true.

Bertrand Russell. 1926. Theory of Knowledge for the Encyclopaedia Britannica.

This chapter looks at the topic of knowledge. The chapter is organised as follows. Section 9.1 provides a definition of
knowledge and suggests some design principles for knowledge-based systems. Section 9.2 discusses how knowledge
can be defined as justified true belief, and highlights some problems with this definition. Section 9.3 describes different
types of knowledge such as declarative knowledge and procedural knowledge.

Section 9.4 discusses several approaches to the representation of knowledge – the symbolic approach based on the
processing of symbols, the sub-symbolic approach based on the processing of stimuli, and a hybrid approach called
conceptual spaces based on the processing of concepts. Section 9.5 lists some knowledge engineering problems, and
describes three classification problems used for testing out the knowledge representation and reasoning methods
described in Sections 9.7 to 9.13. Section 9.6 discusses whether we can have knowledge without representation.
Sections 9.7 to 9.13 discuss how we can represent knowledge and perform reasoning using: maps; event maps; rules
and logic; frames; decision trees; and semantic networks.

9.1	 Knowledge and Knowledge-based Systems

Knowledge is essential for intelligent behaviour. Without knowledge, an intelligent agent cannot make
informed decisions, and instead must rely on using some form of searching type behaviour involving
exploration and/or communication in order to gain the missing knowledge. Humans rely on knowledge
every moment of their life – knowledge of how to communicate with other humans, knowledge of
where they and other people live and work, knowledge of where things are, knowledge of how to behave
in different situations, knowledge of how to perform different tasks and so on. Without the ability to
store and process knowledge, the cognitive abilities of a human is seriously curtailed. An illness such
as Alzheimer’s, for example, can be debilitating when memory loss occurs such as the difficulty in
remembering recently learned facts.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

148

Knowledge

We all know (or think we know) what we mean when we use the term ‘knowledge’. But what exactly is
knowledge? Bertrand Russell (1926) acknowledged the difficult question of how to define the meaning
of ‘knowledge’:

“It is perhaps unwise to begin with a definition of the subject, since, as elsewhere in philosophical discussions,
definitions are controversial, and will necessarily differ for different schools”.

A definition of knowledge is the subject of ongoing philosophical debate and presently there are many
competing theories with no single definition universally agreed upon. Consequently, treatment of
knowledge from an Artificial Intelligence perspective has often consciously avoided the definition of what
knowledge is. However, this avoidance of providing a definition of knowledge upfront results in a lack of
preciseness in the literature and research. The following argument will illustrate why. A knowledge-based
system is a term used in Artificial Intelligence to refer to a system that processes knowledge in some
manner. We can make the analogy of a knowledge-based system as being a repository of knowledge,
whereas a database is a repository of data. However, in this definition, we have neglected to define the
meaning of the term ‘knowledge’ and how it is different to data. For example, we can ask ourselves the
following question – “What constitutes a knowledge-based system, and how does it differ from a database
system?” This is a difficult question that cannot readily be answered in a straightforward way.

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/EOT

Artificial Intelligence – Agent Behaviour I

149

Knowledge

A common approach taken in the literature is that a knowledge-based system can perform reasoning
using some form of inferencing (whether rule-based, frame-based; see below). Modern database systems,
however, now employ most of these standard ‘knowledge-based’ techniques and more. Clearly, the
addition of inferencing capabilities alone is not sufficient to define what a knowledge-based system is.
However, a great deal of A.I. literature makes such an assumption.

By avoiding a definition of knowledge, the problem becomes that it is no longer clear that what we are
building really is in fact ‘knowledge-based’. In Chapter 1, it was stated that early A.I. systems in the
1970s and 1980s suffered from a lack of evaluation – there was a rush to build new systems, but often
very little evaluation was undertaken of how well the systems worked. Without a working definition of
knowledge, the same problem occurs now with current knowledge-based systems – how can we evaluate
how effective our knowledge-base system might be if we do not have a definition of what it should be
(or even achieve or do)?

We can, however, avoid the philosophical pitfalls, and rather than attempting to define knowledge, and
making a claim that this definition is the “right” one, instead we can propose design principles for our
knowledge-based system. Hence, we can decide what principles we wish our knowledge-based system to
adhere to, and we, as designers, are free to change them as we see fit based on knowledge we gain during
the design process. Also, we are no longer standing on shaky ground in the sense that we do not have to
provide one particular definition of knowledge which is open to philosophical debate, although we are
still open to criticism about whether our principles are worthwhile from an engineering perspective (i.e.
whether they produce “good” programs, or aren’t as good as other approaches). But evaluation becomes
much simpler – all we need to do is evaluate whether our design principles are met.

The following are some design principles for knowledge-based systems.

Design Principle 9.1: A knowledge-based system must be an agent-oriented system.

The knowledge-based system must be an agent-oriented system which adheres to the following agent design principles –
it is autonomous; it is reactive; it is proactive (at least).

The argument for this design principle is that if we design from an embodied, situated agent perspective,
then all knowledge cannot exist independently of the agents. That is, knowledge cannot exist by itself – it
can only be found in the ‘minds’ of the agents that are embodied and situated in an environment. We
also wish to define and use the term ‘knowledge’ in a way similar to the way the term is used in natural
language. The root of the word ‘knowledge’ comes from the verb “to know”. From a natural language
perspective, ‘knowing’ and ‘knowledge’ are related. A rock, for example, does not ‘know’ anything. But
a dog can ‘know’ where it has buried a bone; and it makes sense to say in natural language that the dog
has ‘knowledge’ of where the bone is buried. The dog, in this case, is the agent, and the rock is an object
in the environment. In other words, knowing behaviour is associated with an agent who has knowledge.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

150

Knowledge

A knowledge-based system can then be thought of as an agent whose role is to convey the knowledge
that it contains to the users of the system. The interaction between the user agent and the system agent
can be characterised by the actions that determine each agent’s behaviour, and whether the user agent
perceives the system agent to be acting in a knowledgeable way. This leads to the next design principle.

Design Principle 9.2: A knowledge-based system must be able to answer our questions or perform a task in
what we deem to be a knowledgeable manner.

The knowledge-based system must seem to be knowledgeable at the task it performs.

The following design principles are based on properties of ‘good’ knowledge-base systems proposed by
Russell and Norvig (2002):

Design Principle 9.3: A knowledge-based system must be concise.

Parsimony should be an abiding principle.

Design Principle 9.3: A knowledge-based system must be concise.

Parsimony should be an abiding principle.

Design Principle 9.4: A knowledge-based system must be unambiguous.

The knowledge must have a clear meaning, and not open to more than one interpretation.

Design Principle 9.5: A knowledge-based system must be informed and up-to-date.

The knowledge-based system must not be out of date.

Design Principle 9.6: A knowledge-based system must strive to be as correct as possible.

The knowledge should not be erroneous, wrong, inaccurate or imprecise.

Design Principle 9.7: A knowledge-based system must be as complete as possible.

The knowledge should not be incomplete with details missing.

A behavioural approach to knowledge places the emphasis not on building a specific independent system,
but on building agents that exhibit behaviour that demonstrates they have knowledge of their environment
and of other agents. In this approach, the act of ‘knowing’ occurs when an agent has information that
might potentially aid the performance of an action taken by itself or by another agent. Further, an agent
can be considered to have ‘knowledge’ if it knows what the likely outcomes will be of an action it may
perform, or of an action another agent is performing, or what is likely to happen to an object in the
environment. In this definition, knowledge can be considered analogously to be the absence of the need
for search; that is, the agent does not need to employ searching behaviour to find out what is likely to
happen, since it already has knowledge of what is going to happen.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

151

Knowledge

9.2	 Knowledge as justified true belief

A standard definition of knowledge, attributed to Plato, is that there are three conditions required before
an agent can have knowledge – the knowledge must be justified, true and believed. Belief can be defined as
a psychological state of an agent that holds a particular statement to be true that is not yet fully supported
by the evidence. For the belief to become knowledge, the statement that the agent believes in must be
true, and the agent must also be justified in their belief – in other words, they must have a reason why
they think (i.e. why they ‘know’) a particular statement to be true. For example, an agent might believe
that the capital of the United Kingdom is London, with some justification. Another agent might instead
falsely believe that the capital of the United Kingdom is Edinburgh, not London. However, this is known
to be not true, and there is very little justification to support the belief.

A great deal of literature – in the fields of philosophy, mathematics, in the field of Artificial Intelligence
and the narrower sub-field of knowledge-based systems – often makes the pragmatic assumption that
defining whether something is either true or false is a useful thing to do. In reality, however, absolutes
are rare and very little of our knowledge is ever completely true, or completely false. This relates to our
existence as situated, embodied agents which provides each agent with a unique perspective of the world
it lives in, and which results in each agent never being in complete agreement with each other over the
meaning of concepts that form the basis of the knowledge (see Section 9.4 below).

Thought Experiment 9.1 illustrates some of the problems with absolute truths.

Download free eBooks at bookboon.com

Click on the ad to read more

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

Artificial Intelligence – Agent Behaviour I

152

Knowledge

Thought Experiment 9.1 A walk in the woods.

Everybody lies. Cops lie. Lawyers lie. Witnesses lie. The victims lie. A trial is a contest of lies.
And everybody in the courtroom knows this. Even the jury knows this.

Michael Connelly in The Brass Verdict.

Let us imagine the following scenario (referring to Figure 9.1). A man named Bill is standing at the foot of a large hill on
the outskirts of a small city. He has gone for a hike in the woods in the early evening, and has paused for a few moments
next to a clearing in the trees to look at the scenery. While he is there, he witnesses a crime down in the town, where
someone breaks into a red car, which is later used in a robbery. A few months latter, he is called to give evidence in a
court of law. He is asked at the beginning of questioning to tell “the truth, the whole truth, and nothing but the truth”.
He is expected to give truthful answers to the questions that are based on facts and not speculation.

Let us examine possible questions that might be put to him by the defence lawyer (who is defending the person accused
of the crimes of robbery and car theft). Importantly, just how “truthful” can Bill be, and how easy is it for him to provide
only “facts” in his answers?

Question 1: Where in the woods were you standing? The area he was walking in was relatively flat, and he is unsure of the
exact spot. Since he was walking off the trail, he might attempt to describe where he was standing as “somewhere not
far from the junction of the main trail and the smaller trail at the foot of the hill, about 200 to 300 yards away”. In reality, it
is more like 400 yards away, as he is a bad judge of distance. There are many hills in the area, none more distinguishable
than any other, except that local people like to distinguish one particular hill since that is where the trails start next to
the city and you can walk to the summit easily. The “foot” of the hill is in fact nowhere to be found, as the hill is circular,
with the city spread out over the lowest point on one side of the hill, and technically, Bill was standing in the middle
of the hill. The junction of the trail is also multi-faceted, with many small paths caused by thousands of people taking
short-cuts over the years, so it is impossible to give a more precise distance, as it is impossible to precisely pin down in
“fact” where the junction actually is (to within a dozen yards or so).

Question 2:Which clearing in the trees were you looking through? It transpires that there are many clearings, none any
more particularly distinguishable from the others. Like all people who have ever provided directions to lost travellers,
Bill has focused on features he thought were important for him, and ignored other features that were just as prominent
(that other people might notice).

Question 3: How long did you stop for? There is no absolute answer to this question since time is continuous. He can
answer “5 minutes”, “a few minutes”, “a few hundred seconds” and “not long”. If a more precise answer is required, then
“4 minutes 56.4” seconds might be closer to the “truth”, or even more precisely, “296.4317817819… seconds”. In a sense
all these answers reflect the truth, and could be deemed to be truthful.

Question 4: When did you stop? Bill did not have his watch with him, so he cannot pin down the exact time. “Sometime
in early evening, just before twilight, 30 minutes before sundown.” (All three are “true”).

Question 5: How dark was it? How dark is anything? It was the beginning of twilight, in the woods, but the city was still in
sunlight. In a sense, it was “relatively” dark (in the woods), but “relatively” bright (in the city), and so he had a “relatively”
good view of the proceedings he witnessed. Relatively speaking.

Question 6: In which direction were you looking? “Towards the city through the gap in the trees.” But the city is a big place –
it is difficult to pin-down the exact direction he is looking, and Bill’s field of vision is quite large.

Question 7: What colour was the car you saw being broken into? Bill thinks the colour was red, but his definition of “redness”
is subtly different to everybody else’s definitions (see below), and as it was the beginning of twilight, and with the
direction of the sunlight slanting down, the redness was shifted more towards red-orange.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

153

Knowledge

Clearly, for all of these questions, it is very difficult to give a precise answer. The court demands that only the facts of
the case should be considered, but what are the “facts”? He does not know exactly where he was standing, or where he
was looking, or how dark it was, or exactly what colour the car was. In this situation, how can there ever be any “facts”
at all? But it is expected of him that he provide only factual answers.

There is also another important factor to be considered. The colour of the car that was stolen is described as being ‘red’.
But what colour is ‘red’? Try describing it to a blind person. Or try playing the cars guessing game described in Section
7.8. In this game, each person in the car selects a colour they want to play with – white is a good colour, but red and blue
are also good. The game is won by the person who counts the greatest number of cars going in the opposite direction
with the same colour as what they have chosen. The most interesting thing about this game is the number of arguments
it causes such as how long the game should be played for, whether cars ‘stopped’ by the side of the road count, and
whether that colour was ‘red’, rather than ‘pink’ or ‘purple’, which do not count.

There is a very good reason why there are arguments over what colour some cars are. No two people have the exact
same definition of what ‘red’ or ‘blue’ means in their minds. (See Section 9.4 for a further discussion.)

Figure 9.1 Bill’s point of view.

9.3	 Different types of knowledge

Rather than trying to define what knowledge is, we can alternatively try to define different types of
knowledge which can sometimes be easier. For example, a cheetah and a tiger are two types of animals
with distinct characteristics that are relatively easier to define compared to trying to define what an
animal is. Defining different types of knowledge can help provide us with some insight into how we
might build agents that exhibit knowledge (including knowledge-based systems considered as agents).

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

154

Knowledge

 New Zealand moa. Artwork by Heinrich Harder.

We can define an agent as having declarative knowledge if it declares that some statement is true. To
determine whether specific knowledge is declarative or not, an agent can ask the following question: “Can
this knowledge be true or false?”; or put another way: “Is it true or false that X?” where X is the statement
in question. If the question is grammatical, then it can be deemed to be declarative knowledge. For
example, the following question makes sense: “Is it true or false that the New Zealand moa is extinct?”;
therefore the knowledge that the New Zealand moa is extinct is declarative. The following questions
do not make sense: “Can riding a bicycle be true or false?” and “Is it true or false that riding a bicycle?”
Contrast this question with the following that is grammatical and is therefore declarative knowledge if
an agent knew it: “Is it true or false that the New Zealand moa can ride a bicycle?” In other words, when
an agent declares that something is either true of false, then that knowledge is said to be declarative
knowledge, and whether that knowledge is false or does not makes sense in the real world still does not
stop it from being declarative knowledge.

Concerning truth (whether a declaration is either true and false), it should be noted that, in reality,
absolutes are rare and very little of our knowledge is ever completely true, or completely false (as was
pointed out in the previous section).

How does this definition of declarative knowledge fit with knowledge defined above as the absence of the
need for search? Consider the following: an agent without prior knowledge of whether a declaration is true
or false must first consult with another agent, or must explore or make observations of the environment
to find out what is true or false. Both are actions that the agent must take in order to find the answer.
The agent is said to know the answer already if it does not need to perform a searching action.

We can define an agent as having procedural knowledge if it knows how to perform a sequence of actions
in order to ensure that a declaration X will become true. To determine whether specific knowledge is
procedural or not, an agent can ask the following question: “What actions do I need to perform in order
that I can declare that X is true?” If the question makes sense, then it can be deemed to be procedural
knowledge. For example, the following question makes sense: “What actions do I need to perform in
order that I can declare that I am riding a bicycle is true”.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

155

Knowledge

The question about whether knowledge in knowledge-based systems should be declarative or procedural
has been a furious debate within the field of Artificial Intelligence. As often is the case with these “Is a
Platypus a mammal?” type debates, there is merit on both sides of the argument as some knowledge is
inherently declarative and other knowledge is inherently procedural – for example, when humans count
they are applying a procedure, but factual information concerning the names of people and the names
of locations on a map is declarative. The debate has provided insight into some of the issues concerning
the categorization of knowledge, but from a pragmatic design based perspective, AI researchers focus
more on building useful systems, and therefore will choose the most appropriate tool for the task at hand.

Task knowledge is sometimes distinguished from procedural knowledge. Task knowledge can be
considered to be a specialised form of procedural knowledge where the purpose of the actions is to solve
a task (e.g. find answers to a specific question). Behavioural knowledge is knowledge that an agent has
about the likely outcomes of behaviours (of itself and other agents). An agent has episodic knowledge if
it knows when a statement X became true. An agent has explanatory knowledge if it can explain what
caused the sequence of actions that led to the statement X becoming true. Finally, we can state that an
agent has inferred knowledge if it has used existing knowledge to determine new knowledge that was
not available by any other means.

Download free eBooks at bookboon.com

Click on the ad to read more

89,000 km
In the past four years we have drilled

That’s more than twice around the world.

careers.slb.com

What will you be?

1 Based on Fortune 500 ranking 2011. Copyright © 2015 Schlumberger. All rights reserved.

Who are we?
We are the world’s largest oilfield services company1.
Working globally—often in remote and challenging locations—
we invent, design, engineer, and apply technology to help our
customers find and produce oil and gas safely.

Who are we looking for?
Every year, we need thousands of graduates to begin
dynamic careers in the following domains:
n Engineering, Research and Operations
n Geoscience and Petrotechnical
n Commercial and Business

http://s.bookboon.com/Schlumberger1

Artificial Intelligence – Agent Behaviour I

156

Knowledge

We can distinguish between the different types of knowledge by the types of questions an agent can
answer correctly using their knowledge. Declarative knowledge can be used to answer “What is…?”
and “Where is…?” questions; episodic knowledge can be used to answer “When did…occur?” questions;
procedural and task knowledge can be used to help answer “How can I/you…?” questions; behavioural
knowledge can be used to answer “What if I/you…?” questions; and inferred knowledge can be used to
answer “If…is true, then is…true?” and “What if…were true?” questions.

We can also broaden the meaning of inferred knowledge beyond the traditional logic based definition
that involves the inference of whether some statement is true or false. Consider the situation where an
agent is having a conversation with another agent, such as when one person is talking to another, or
perhaps when a person is talking to a chatbot. Let us say that this conversation is being observed by
an outside agent (a third person, say, or perhaps a person observing the person-chatbot conversation
within a Turing Test situation). This observer will be able to judge how well she thinks each of the
agents have done in maintaining their side of the conversation. This will be determined by whether the
observer feels that the responses are appropriate. In a sense, the observer has used her own knowledge
of what is appropriate to make this judgement. The agents also have done the same thing in attempting
to maintain the conversation. This can be considered to be an example of inferred knowledge. In this
case, the knowledge of what is an appropriate response cannot be directly obtained by consulting some
lookup table of appropriate responses since the number of language statements can be considered to be
unbounded (the number of things a person can say, and the number of responses, is essentially infinite).
Instead, the appropriate response must be constructed (i.e. inferred) in some manner.

9.4	 Some approaches to Knowledge Representation and AI

Knowledge representation concerns the problem of how to express the knowledge in a knowledge base.
A primary purpose of knowledge representation is to model intelligent behaviour with the assumption
that intelligent behaviour for an agent requires knowledge of itself and other agents, of objects and their
relationships, of how to solve tasks, and of laws that govern the environment the agent finds itself in.

The ‘Knowledge Representation Hypothesis’ (attributed to Smith, 1985) makes the supposition that for
intelligent behaviour agents make use of a knowledge base that represents knowledge about the world in
some manner (Brachman and Levesque, 1985). The ‘Knowledge Representation Controversy’ concerns
how the knowledge should be represented, whether it should be by using primarily a symbol based
approach, or by a non-symbolic approach.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

157

Knowledge

The symbolic approach is the classical approach to AI, sometimes called “Good Old Fashioned AI” or
GOFAI. It is based on the ‘physical symbol system hypothesis’ that states that a system based on the
processing of symbols has the “necessary and sufficient means for general intelligent action” (Newell and
Simon, 1976). Symbols in this case are things that represent or stand for something else by association.
Human language consists of symbols; for example, the word ‘moa’ is a symbol that represents the concept
of the New Zealand bird depicted above. In the field of knowledge representation, symbols are usually
denoted by an identifier in a programming language.

The symbolic approach to AI is a “knowledge-based” approach requiring the building of knowledge bases
with substantial knowledge of each problem domain. It uses a top-down design philosophy consisting of
several levels: the “knowledge level” at the top, which specifies all the knowledge that the system needs;
the “symbol level”, where the knowledge is specified in symbolic structures and identifiers in some
programming language (for example, using lists or tables in NetLogo); and the “implementation level”,
which are the symbol processing operations that are actually implemented (Nilsson, 1998).

There are immediate problems with a symbolic approach to representing knowledge. For example, try
using symbols (e.g. words) to describe the following:

 The Mona Lisa, by Leonardo da Vinci.

•	 what the Mona Lisa painting on the right looks like (to a person blind from birth);
•	 the sound of bagpipes (to a person born deaf);
•	 the taste of milk;
•	 how sandpaper feels like;
•	 what coffee smells like.

Words seem inadequate for the task. Note that the five senses are all represented here – vision, hearing,
taste, feeling, and smell; and using words to describe what we sense can be problematic – we are often left
“struggling for words” is a common English expression often heard. Another common English expression
says “a picture paints a thousand words”. Concerning the problem of how to express a person’s face using
only symbols, for example the face in the painting of Mona Lisa, no amount of words seem to suffice,
although the painting has been the subject of countless essays and books.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

158

Knowledge

An opposing approach, called ‘connectionism’, rejects the classical symbolic approach, and instead
advocates that intelligent behaviour is the result of sub-symbolic processing – that is, the processing of
stimuli rather than symbols; for example, using artificial neural networks that comprise interconnected
networks of simple processing units. Here the knowledge is stored as a pattern of weights of neuron
connections. This approach uses a bottom-up design philosophy or ‘animat’ approach by first trying to
duplicate stimuli-processing abilities and control systems of simpler animals such as insects, then by trying
to proceed gradually up the evolutionary ladder with increasing complexity. This approach highlights the
‘symbol grounding problem’ – the problem of how symbols get their meaning and postulates the ‘physical
grounding hypothesis’ that states that the meaning of symbols need to be grounded within an agent’s
physical embodied experience through its interaction with the environment (Brooks, 1991a; 1991b).

The issue whether knowledge and intelligent behaviour should be represented symbolically or non-
symbolically has been an ongoing debate within the field of Artificial Intelligence ever since the sub-
symbolic approach to AI emerged with the revival of connectionism in the mid 1980s and with Brooks’
ideas on a bottom-up, embodied, situated, behaviour-based approach to AI. As often is the case with these
type of debates similar to the declarative-versus-procedural-knowledge debate mentioned above, there is
merit on both sides of the argument as some tasks such as answering queries and rule-based reasoning
are more naturally suited to a symbolic approach, and some types of knowledge present difficulties for
either approach, such as facial recognition for symbolic processing, and natural language information
for sub-symbolic processing using artificial neural networks.

Download free eBooks at bookboon.com

Click on the ad to read more

American online
LIGS University

▶▶ enroll by September 30th, 2014 and

▶▶ save up to 16% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

Artificial Intelligence – Agent Behaviour I

159

Knowledge

A number of other approaches have been devised, some proposing a combination of symbolic and sub-
symbolic processing, such as situated automata (Kaelbling & Rosenchein, 1990) and conceptual spaces
(Gärdenfors, 2004). We will examine the latter approach in more detail, as it is useful for highlighting some
important issues concerning knowledge representation. Gärdenfors postulates that what is fundamental
to our human cognitive abilities is our capacity for processing concepts and these emerge from a
distributed connectionist representation at the lowest level where stimuli from receptors are processed,
and combine to form symbolic structures at the highest level, as shown in Table 9.1.

Model level Representation Description

Symbolic Propositional Based on a given set of predicates with known denotation.
Representations are based on logical and syntactic operations.

Conceptual Geometric Based on a set of ‘quality dimensions’. Representations are based on
topological and geometrical notions.

Associationist
(sub-conceptual)

Connectionist Based on a (uninterpreted) inputs from receptors. Distributed
representations by dynamic connection weights.

Table 9.1. The conceptual spaces cognitive model (Gärdenfors, 2004).

Concepts form the basis of knowledge. A concept is a unit of meaning that represents an abstract idea or
category. We can think of concepts as being analogous to atoms – atoms are the basic building blocks of
matter, just as concepts are the basic building blocks of knowledge. In Gärdenfors approach, concepts are
represented as regions in n-dimensional space, in an analogous way that a topographical map represents
terrain, with similar concepts represented in geometric regions that are spatially located near to each
other as shown in Figure 9.2.

Figure 9.2 An example of concepts represented geometrically (Gärdenfors, 2004).

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

160

Knowledge

In this example, different types of animals such as mammals, reptiles and birds, are located in different
regions in the space. Gärdenfors uses a wide range of experimental evidence from many fields to support
his arguments. For example, from the field of cognitive psychology, there is empirical evidence that
humans make use of prototypes to provide a cognitive reference point for each concept. Gärdenfor’s
approach naturally lends itself to the representation of prototypes – a prototypical concept such as a
robin, for example, used as a reference point for the concept of a bird, will be located centrally within
the parent concept’s geometric space (i.e. a bird as in Figure 9.2). Concepts that aren’t used as prototypes
will end up further away such as penguins and emus.

We can do a simple thought experiment to illustrate this. Think of a bird. Now which bird did you
imagine? Experiments have shown that most people will think of a robin, sparrow or a similar bird
rather than an emu or penguin. The mechanism Gärdenfors proposes for the construction of concepts
is using a process based on Voronoi tessellation with the aid of prototypes to break the space up into
convex regions as shown by the straight lines in Figure 9.2.

The multi-dimensional geometry for a conceptual space is constructed from what Gärdenfors calls
‘quality dimensions’ which correspond to the different ways an agent’s stimuli are judged to be similar
or different. The primary function of the quality dimensions is to represent various qualities or features
of objects. Some examples are temperature, weight, brightness, pitch and the spatial dimensions such as
height, width and depth. Gärdenfors calls these ‘domains’. He uses the concept of an ‘apple’ to illustrate
the distinction between a domain and a region:

Domain Region

Fruit Values for skin, flesh and seed type.

Colour Red, green, yellow.

Taste Values for sweetness, sourness, etc.

Shape “Round” region of shape space.

Nutition Values for sugar, vitamin C, fibres etc.

Table 9.2 A representation of the concept ‘apple’ (Gärdenfors, 2004).

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

161

Knowledge

As a further example, experiments with human perception of the colour domain show that the colour
conceptual space is described using three quality dimensions – brightness, hue and saturation. (Taste for
humans, in comparison, has four quality dimensions – sweetness, sourness, bitterness and salinity). The
Colour Cylinder NetLogo model illustrates what this space looks like. This model draws a colour circle
comprising various hue and saturation values for a specific brightness value which can be adjusted using
an Interface slider between the integer range of 0 to 255, as shown in Figure 9.3. For lower brightness
values (see left image in the figure), the colours become progressively more darker in colour, with the
entire circle becoming black when the brightness value is set at 0, whereas the colours taper towards
white at the centre of the circle when the brightness slider is set at 255 (as in the right image).

Figure 9.3 Screenshots of the colour circles produced by the Colour Cylinder NetLogo model. Settings: hue-increment =
0.05 and saturation-increment = 0.05; brightness = 50 (left image), brightness = 100 (middle image),
brightness = 255 (right image).

Download free eBooks at bookboon.com

Click on the ad to read more

 .

http://s.bookboon.com/AlcatelLucent

Artificial Intelligence – Agent Behaviour I

162

Knowledge

The Colour Cylinder displays the full range of possible colours across all hue, stauration and brightness
values. Humans use a wide range of words in language to describe colour. Empirical evidence shows
that across different cultures and ethnic backgrounds, humans agree on similar areas of colour space to
refer to the basic colour terms such as red, green and blue. However, the Colour Cylinder model clearly
shows that there are no clear boundaries between the colours, with one colour gradually merging into
another. Therefore, it is impossible to be able to exactly demarcate the region associated with a specific
colour. For example, try drawing the boundary for the colour yellow in the right image of Figure 9.3.
We can clearly see where the colour yellow is, but the boundaries with the adjacent colours – red and
green either side of it, and white in the centre – are fuzzy. The task of determining what is yellow gets
even more difficult in three dimensions when we include the variation in brightness as well. This is
why disagreements occur (as with the cars guessing game described in Section 7.8 and mentioned in
Thought Experiment 9.1), since each human will have a slight variation in what they perceive the yellow
region to be.

Empirical evidence show that variations in conceptual regions occur not just for colour categories but
also for a variety of other basic categories such as taste. Gärdenfors also allows for abstract concepts,
and provides a compelling explanation of why defining categorical knowledge is so difficult, and why
a purely symbolic approach will never be completely satisfactory. The platypus, bat and archaeopteryx
depicted in Figure 9.2, for example, present difficulties in categorization, the latter particularly difficult
as it finds itself straddling the border between the category of reptiles and the category of birds.

Gärdenfors also explains how the meaning of combinations of concepts such as ‘wooden spoon’ are
determined from the correlations between the domains that are common to the separate concepts
‘wood’ and ‘spoon’. In this case the domains are size and material, and this results in us thinking of a
wooden spoon as being large rather than small when visualising what it may look like. In some cases,
the meaning of the concept is determined by the context in which it occurs. For example, tap water at
the same lukewarm temperature can be perceived to be hot if placed in a glass, and cold if placed in a
bathtub. A patch of blue sky will vary in ‘blueness’ depending on the time of day, how bright it is, the
cloudiness of the sky, whether it has been raining for the last month and so on. Gärdenfors also illustrates
the important role context plays in determing meaning by the following example. The colour red has
different meanings in the following concept combinations: ‘red book’ (the colour we think of is close
to a standard definition of the colour red); red wine (close to the colour purple?); red hair (close to the
colour copper?); red skin (tawny?); red soil (ochre?); and Redwood (pinkish brown?).

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

163

Knowledge

The conceptual spaces model overcomes some of the shortfalls of the previously disparate symbolic
and sub-symbolic approaches to knowledge representation and AI, by postulating a middle level of
representation. It provides a plausible explanation for aspects of human knowledge representation, such
as categorization using prototypes, concept combination, and the role of context in moulding concept
meaning, that present difficulties to the other models. It also is relevant for the design of embodied,
situated agents as it shows how we can build knowledge without the need for symbol-grounding semantics.
It also relates knowledge to locations in n-dimensional spaces so that we can characterise intelligent
behaviour (for example, thinking) as movement within that space in a manner analogous to using maps
to navigate and represent topographical terrain.

9.5	 Knowledge engineering problems

Knowledge engineering is the process of building knowledge-based systems. Negnevitsky (2002) has
identified a list of typical problems for intelligent systems shown in Table 9.3 that may require some
form of knowledge engineering to find effective solutions.

Problem type Problem description Some example(s).

Classification Assigning a class or classes to an object or agent that best suit its
characteristics.

See Table 9.4. Many others e.g.
spam filtering.

Clustering Using observations to grouping together unclassified objects or
agents into subsets (clusters) so that they have similar properties.

Cluster analysis in market
research, and of medical
images.

Control Controlling a system’s behaviour in real-time in order to meet
specific requirements.

Control systems in space flight.

Diagnosis Using symptoms or behaviour of an object or agent to identify
an illness, or other problem such as a malfunction, and
recommending possible solutions for overcoming the problem.

Mechanical repair. Medical
diagnosis. e.g. Mycin.

Optimisation The process of incrementally improving possible solutions to a
problem until an optimal or near optimal one is found.

Many problems e.g. in
economics; for rigid body
dynamics in physics.

Prediction Using observations of past behaviour of an object or agent to
make predictions about its future behaviour.

Political forecasting from
opinion polls.

Selection Choosing one or more of the best options from a list of
alternatives possibly by ranking the choices in some preferential
order.

Search engines. Information
Retrieval. Information Filtering.

Table 9.3 Typical types of problems for intelligent systems (from Negnevitsky, 2002).

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

164

Knowledge

The Knowledge Representation NetLogo model has been developed to illustrate and compare the different
methods of knowledge representation, and show how they can be used for various types of reasoning in
the classification problem domain. The model provides three sample knowledge engineering problems
as listed in Table 9.4. The Zoo Animals problem is a simplification by Kruger (1989) of a classic example
from Winston (1977). The New Zealand Birds problem was introduced earlier in Section 4.4; a decision
tree related to the problem is shown in Figure 4.4. The Sailing Boats problem is an example described
in Negnevitsky (2002, pages 312-317).

Problem name Problem description

Zoo Animals Identify the name of an animal in a zoo from observations.

New Zealand Birds Guess the name of a New Zealand bird.

Sailing Boats Identify the type of boat that is sailing past in a tall ships parade.

Table 9.4 Three classification problems requiring the use of knowledge.

These three example problems are ‘toy’ problems rather than real-world problems. Enumerating the full
knowledge involved and scaling up to a non-trivial real-world problem presents many difficulties and
is still an active area of research in Artificial Intelligence. However, the merit of these examples is their
simplicity and their usefulness in illustrating how the models differ.

9.6	 Knowledge without representation

In the remaining sections of this chapter, we will explore various methods for representing knowledge –
using maps, rules and logic, frames, decision trees and semantic networks. However, before we do this
we need to first ask an important question: “Is it possible to have knowledge without representation?” In
other words, can an agent or agents obtain knowledge without any explicit mechanism for representing
the knowledge they have obtained in a knowledge base? If this is possible, this seems initially at odds
to the Knowledge Representation Hypothesis. However, this hypothesis conjectures that for intelligent
behaviour, an agent or agents must represent knowledge about the world; therefore, if the agent or
agents can gain knowledge without representation, then by this definition, they do not exhibit intelligent
behaviour.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

165

Knowledge

We have already seen how knowledge without representation is possible in a number of NetLogo models
where the agents make use of stigmergy – the Ants model mentioned in Chapter 5; and the Termites
models in Chapter 6. In these cases, the ‘knowledge’ is stored in the environment within the complex
structures that emerge when the system of agents and the environment self-organises. Although any
one agent does not possess knowledge individually, the entire colony of agents possesses knowledge.
But can we say that these stigmergic-using agents have really gained knowledge? Under the definition
that knowledge is the absence of the need for search, then clearly the ants, for example, have gained
knowledge about the location of nearby food sources which they then are able to communicate back to
the colony, and therefore the other agents are able to follow the path back to the food source without
making a decision about which way to go. It can be argued, depending on your definition of intelligence
(see next chapter), that these ants also exhibit a rudimentary form of artificial intelligence because they
act and behave in an intelligent way, albeit in a limited sense.

Download free eBooks at bookboon.com

Click on the ad to read more

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

Artificial Intelligence – Agent Behaviour I

166

Knowledge

9.7	 Representing knowledge using maps

 Imago Mundi

Maps are one of the oldest methods used by people for representing knowledge. The earliest world maps,
for example, provide an illustration of the progress of human geographical knowledge throughout the ages.
The oldest known world map is the Imago Mundi, which is a 6th century BC clay tablet dated circa 600
BC residing at the British Museum that depicts the known Babylonian world showing Assyria, Babylonia
and Armeni (see image on the right). The image shows that the knowledge of the world’s geography at
the time was clearly limited as was the quality of the mapping. Figure 9.4 depicts two further early world
maps. The one on the left is a map produced by Posidonius (150–130 BC) showing a map comprising
mainly the Mediterranean, southern Europe, south-western Asia and northern Africa. The one on the
right is by Abraham Ortelius in 1570. They show a progression in knowledge and mapping quality, with
the ‘Typvs orbis terrarvm’ map produced by Ortelius closest in shape to modern day maps of the world.

Figure 9.4 Two early world maps depicting the progress of human knowledge: A map by Posidonius (150–130 BC)
(left image); and a map by Abraham Ortelius, 1570 (right image).

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

167

Knowledge

All three of these examples illustrate an important feature of geographical maps of this kind. By their
very nature, as a 2D representation of a 3D world, all maps have errors in representation – that is, they
do not fully represent the reality. This is evident when the maps shown in the images are compared
with modern-day world maps. For example, the Ortelius map departs most significantly from reality
in its depiction of the North American continent, reflecting the state of knowledge at the time since
Christopher Columbus had only just discovered America in 1492. Maps also diverge from reality if
they are a static representation of the environment that the map represents – for example, the world is a
dynamic and ever-changing place that has been transformed by humans over the centuries since these
early maps were first drawn.

Each map becomes more useful if it is a reliable reflection of real life, but in many cases, stylised depictions
occur where the relationships between adjacent objects on the map are warped to reflect a deliberate
emphasis on the part of the mapper, or due to other reasons such as a lack of knowledge, a deliberate
bias or an oversight. This inherent mapping error should be kept in mind in the discussion below of the
traditional forms of knowledge representation. Representing knowledge can be thought of as analogous
to mapping in the sense that an attempt is being made to accurately reflect an abstract n-dimensional
space environment, but the mapping process will result in there being inherent mapping errors due to
distortions, mistakes, deliberate emphasis, bias, oversight and lack of knowledge.

The importance of maps as a method of representing knowledge is often overlooked within the field
of Artificial Intelligence in the traditional discussion on the problem of how to represent knowledge.
Indisputably, however, maps contain a wealth of knowledge. The advent of Google Maps and Google
Earth has illustrated the ability of online maps to represent a wide range of knowledge. The map of
Central Park South in New York shown in Figure 9.5 produced using the NetLogo Map Drawing model
also contains a wealth of knowledge in the sense that a person visiting Central Park for the first time
can use the map to find their way around without knowing where everything is in advance. Factual or
declarative knowledge is represented explicitly by the place names depicted on the map such as Tavern
on the Green, Sheep Meadow, Cherry Hill and Wollman Rink. The relationships of these locations
with other locations are also represented, such as which locations are adjacent to each other and the
relative distances between them. Paths drawn on the map also provide explicit knowledge of how to
get between different places. These paths can be thought of as providing procedural knowledge of the
steps that need to be carried out (such as whether to turn left or right or go straight ahead) in order to
get between two or more points. The paths depicted on the map also provide further knowledge such
as their width and whether they are straight or winding i.e. they can be used to infer whether they are
easier or quicker to follow.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

168

Knowledge

Figure 9.5 Central Park South, New York: Tavern on the Green (top left); Sheep Meadow (bottom left);
a map produced by the Map Drawing NetLogo model (right).

Anyone who visits Central Park, or who uses Google Earth to zoom into the same location, will soon be
aware that there is a lot of information missing and many inaccuracies from the map shown in Figure 9.5.
However, just as Hampton Court Palace and Chevening House maps shown in previous chapters can
be used to navigate around the real-life garden mazes, the Central Park South map can also be useful to
help a person find their way around and not get lost despite these inadequacies. The map also depicts
primarily topographical information with other information missing – for example, the map does not
include historical facts such as that sheep were grazing in the Sheep Meadow up until 1934 (hence its
name), and the Tavern on the Green was converted from a sheep pen that housed the flock.

Flake (1998, pages 416–423) in his book “The Computational Beauty of Nature” notes that environments,
models for the environment, and search are inextricably bound up with each other. Noting that the
term “model” can mean different things in different contexts, he defines it as a well-defined process
that maps inputs to outputs that can be tuned by parameters. Search is then the process of choosing the
best parameters so that the model can be made to more closely approximate an environment. He uses
the example of the mathematical formula

�

f (x;a,b,c) = asin(bx − c) that could be used to model a
periodic process. This sine wave function may or may not be a good model for what is happening in the
environment where the periodic process is taking place. Obviously, such a model would be completely
inadequate as a representation for most environments that are usually much more complex.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

169

Knowledge

However, this simple sine wave model can be tuned by searching to find the three parameters a, b and
c that reflect the amplitude, frequency and phase of the sine wave that best suits the periodic process
environment. Using the analogy of a path in real life, the periodic process is generating a particular path
through the 2D graph environment. The path itself might be a rough approximation to the path generated
by real life observations that relate to a frictionless pendulum, the average seasonal temperature, or the
lunar cycle for example.

Models as defined by Flake can be considered analogous to topographical maps. Thinking of a model as
being a map of an environment more closely links the English language being used that is based on the
underlying topographical metaphor behind the concept of an environment. We can consider the search
that Flake refers to as related to the process of trying to draw a map that closely represents what is being
observed in the environment. The formula represents a class of maps of the path, and the parameters
a, b and c when enumerated will specify a particular instance of the class – that is, one particular map,
which may fit the actual path well, or it may not. If the map fits well, then we can use it as a useful aid
to help us model the environment and make predictions about it.

Download free eBooks at bookboon.com

Click on the ad to read more

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2015

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://s.bookboon.com/AXA

Artificial Intelligence – Agent Behaviour I

170

Knowledge

However, use of the term environment here conjures up the mental idea that we are able to search it in
some way and this can cause confusion. If we use the topographical map analogy, there is perhaps less
confusion over the two types of search that are possible – one being the search for a good model of the
environment or what is occurring in the environment, and the other being the search of the environment
itself. We will label these two types of search as follows: mapping search, and exploration search (or simply
just ‘mapping’ and ‘exploration’) to emphasize the analogies being made with their real-life equivalents.
During exploration, the agent has the freedom to refer to a map during execution of the search. The
map may or may not be a good reflection of what exists in the environment at the time the navigation
is being performed. Therefore, the agent has to continually correct or update its internal map in order
to make progress to its goal.

Figure 9.6 Venn diagram of the knowledge for the Zoo Animals classification problem.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

171

Knowledge

Conceptually, maps can be used to represent many different types of knowledge, not just topographical
knowledge, since maps can be used to visualise knowledge represented by multidimensional data within
an n-dimensional space environment. One such example is Venn diagrams devised by John Venn around
1880. Venn diagrams provide a means of representing logical relationships between sets, where regions
in the diagram represent the sets or classes, and overlapping regions the intersections between the
sets. These regions can be identified by labels as shown in Figure 9.6. The Venn diagram in this figure
represents knowledge concerning four zoo animals, cheetahs, tigers, zebras and giraffes, whether they are
mammals, carnivores, or ungulates, and features that distinguish them such as whether the animals have
dark spots, a tawny colour or a long neck. Although what is depicted in this diagram are the locations
of concepts such as mammals and their logical relationships instead of traditional geographical features
such as countries, roads, and places as with the Central Park South and world maps, it can nevertheless
be considered a map in the topological sense. There is also an obvious correlation between this method of
representing knowledge and between the conceptual spaces approach of Gärdenfors shown in Figure 9.2.

9.8	 Representing knowledge using event maps

A theme throughout this volume has been the use of maps to represent what is happening in different
environments, whether real, virtual or abstract (i.e. an n-dimensional space environment). In the
discussion of the different methods for representing knowledge (such as rules, logic, frames, and decision
trees) in the sections that follow, each method can be thought of as being analogous to the process of
representing topographical terrain using maps. The NetLogo model that has been developed to illustrate
and compare the different models, the Knowledge Representation model, uses the NetLogo display
environment to visualise in two dimensions the knowledge for each of the three toy problems listed
in Table 9.4. As discussed above, these visualisations can be thought of as being maps of the abstract
environment that represents the knowledge being described.

In order to help visualise the different types of knowledge representation, the Knowledge Representation
model makes use of the NetLogo code that was also used for both the Wall Following Events (Section 6.6)
and the Language Modelling Events (Section 7.10) models. It recasts the different forms of knowledge
representation within a common framework based on ‘events’, where an event could be a sensory event
(input from one of the senses), a motor event (movement of the agent’s body) or an abstract event (a
combination of sensory, motor or abstract events). The approach is similar to the approach adopted for
Event Stream Processing (ESP) and Complex Event Processing (CEP) (Luckham, 1988). The framework
used here considers that an agent simultaneously recognizes and processes multiple streams of events
that reflect what is happening to itself and in the environment. Each event is represented by a state in a
finite state machine that is labelled by a stream name followed by an event name.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

172

Knowledge

The transitions between states are not labelled – they just indicate that one event follows another.
Events occur in a specific order (path) as defined by the state transitions through the event network.
If a particular event does not occur after another event, then there is no particular transition between
states, and therefore that event is not recognized by the agent (i.e. it is ignored and has no effect on the
agent’s behaviour). The processing of the events is done in a reactive manner – that is, a particular path
is traversed by successively matching the events that are currently happening to the agent against the
outgoing transitions from each node. If there are no outgoing transitions or none match, then the path
is a dead end, at which point the traversal will stop. This is done simultaneously for every event; in other
words, there are multiple starting points and therefore simultaneous activations throughout the network.

We can consider the network is an ‘event map’ – the states represent points in an n-dimensional space,
with the multi-dimensionality of the points in the space reduced to two dimensions. This is done by
having each state represent a single dimension and its value, and then providing links to further states
along an ordered path through states representing each of the other dimensions. The reduction from
n-dimensional space to the two dimensional space for visualisation adds further information since it
imposes a specific ordering of dimensions defined by the paths to reach the final state that represents
the multi-dimensional point. A three dimensional point, represented by the tuple (D1 = value1,
D2 = value2, D3 = value3), for example, can be represented on an event map as three linked
states labelled [D1 = value1], [D2 = value2] and [D3 = value3], with the third state
representing the three dimensional point but only reachable through the two previous states.

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/BI

Artificial Intelligence – Agent Behaviour I

173

Knowledge

This specific ordering of dimensions did not exist with the original n-dimensional data. However, the
way states are linked provides us with an opportunity to represent the viability of a particular path – in
a similar manner analogous to the viable set of paths linking together two locations such as the Bethesda
Fountain and Columbus Circle in the Central Park South map of Figure 9.5. Also, there is no reason
why we cannot represent alternative viable paths on the event map with the other paths not depicted
simply being ignored.

When using a real map for navigation, such as the Central Park South map, a person will often create a
‘mental map’ in their mind that is a simplification from the actual map of how to perform the navigation.
For example, a glance at Figure 9.5 will show that the most straightforward way between the Zoo and
the Boat Pond is to go out in the direction of the nearest skyscrapers to 65th Street, turn left then keep
going until 74th Street and then turn left back into the park. This mental map focuses on the task in
hand – how best to reach the Boat Pond – and has substantially less detail and less accuracy than the
actual map, but is still good enough to aid the achievement of the goal.

Figure 9.7 Event map of the steps needed to travel from the Zoo to the Boat Pond in Central Park. (Screenshot from the
Central Park Events NetLogo model).

An event map representation of this mental map is shown in Figure 9.7. The event map depicts an ordered
sequence of events that need to occur before the goal of reaching the Boat Pond can be achieved. This
sequence will be successful regardless of the starting point within the Zoo as long as the agent heads
towards the nearest skyscrapers, and does not require the agent to work out her current orientation
with respect to north.

An event map of the knowledge for the Zoo Animals classification problem is shown in Figure 9.8.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

174

Knowledge

Figure 9.8 Event map of the knowledge for the Zoo Animals classification problem represented as a decision tree.

The knowledge in this case is laid out as a decision tree. The figure shows a network of events fanning out
from the central right state labelled animal = "Yes". The various leaf nodes are states representing
when a specific type of animal has been recognized such as a carnivore (middle bottom) or ungulate (e.g.
middle top), or a specific animal such as a cheetah (top left) or giraffe (bottom right). These states represent
the multidimensional points in the n-dimensional space that represent the concepts ‘carnivore’, ‘ungulate’,
‘cheetah’ and ‘giraffe’ as with Gärdenfors conceptual spaces. It is now clearer why this representation is
called an event ‘map’ – just as a topographical map represents 3D terrain in 2D, the event map represents
points in n-dimensional space in 2D as well. The Knowledge Representation NetLogo model produced
this particular event map by setting the KR-type Interface chooser to "decision tree", and the
select-problem Interface chooser to "Zoo animals".

We can animate event maps by showing how the agents move around the map during reasoning, similar
to how the searching algorithms in Chapters 7 and 8 were animated. What follows is a description of
the more traditional forms of knowledge representation, but from an embodied, situated perspective by
using the event mapping mechanism to visualise the knowledge, and animate the knowledge reasoning
process.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

175

Knowledge

9.9	 Representing knowledge using rules and logic

The classic methods of representing knowledge use either rules or logic. Table 9.5 displays the knowledge
for the zoo animals problem in two formats – using rules on the left as implemented within the Knowledge
Representation NetLogo model, and using first order logic on the right. Rules are often used in rule-based
expert systems, and are either specified explicitly by a knowledge engineer (usually through a process
called ‘knowledge acquisition’ from a human expert), or they are derived from data using a machine
learning or data mining algorithm. Rules use a logic-based form for reasoning. Logic is the use of symbolic
and mathematical techniques for deductive reasoning, and dates back as a discipline to Aristotle.

Download free eBooks at bookboon.com

Click on the ad to read more

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

Artificial Intelligence – Agent Behaviour I

176

Knowledge

Rule First-order logic

R1 IF animal has hair
THEN species is mammal

() ()xxx MammalHas_hair ⇒∀

R2 IF animal gives milk
THEN species is mammal

�

∀x Gives_milk x()⇒ Mammal x()

R3 IF animal eats meat
THEN species type is carnivore

�

∀x Eats_meat x()⇒ Carnivore x()

R4 IF animal has pointed teeth AND animal has claws
AND animal has forward eyes
THEN species type is carnivore

() ()
() ()xx

xx
Carnivored_eyesHas_forwar

xHas_clawsd_teethHas_pointe
⇒∧

∧∀

R5 IF animal is mammal AND animal has hooves
THEN mammal group is ungulate

�

∀x Mammal x()∧Has_hooves x()
⇒ Ungulate x()

R6 IF species is mammal AND animal chews cud
THEN mammal group is ungulate

�

∀x Mammal x()∧Chews_cud x()
⇒ Ungulate x()

R7 IF species is mammal AND species type is carnivore AND
animal has tawny colour AND animal has dark spots THEN
animal is cheetah

�

∀x Mammal x()∧Carnivore x()
∧ Has_tawny_colour x()∧ Has_dark_spots x()
⇒ Cheetah x()

R8 IF species is mammal AND species type is carnivore AND
animal has tawny colour AND animal has black stripes THEN
animal is tiger

�

∀x Mammal x()∧Carnivore x()
∧ Has_tawny_colour x()∧ Has_black_stripes x()
⇒ Tiger x()

R9 IF species is ungulate AND animal has dark spots
AND animal has long neck
THEN animal is giraffe

() ()
() ()xx

xxx
GiraffeeckHas_long_n

potsHas_dark_sUngulate
⇒∧

∧∀

R10 IF species is ungulate AND animal has black stripes
THEN animal is zebra

() ()
()x

xxx
Zebra

stripesHas_black_Ungulate
⇒

∧∀

Table 9.5: The rules in the Zoo Animals rules base and restated in first order logic.

The rule-based method of knowledge representation uses IF-THEN rules (sometimes called condition-
action rules) to specify the knowledge. All the rules for a particular problem form the rules-base, and the
knowledge-base comprises three components: the list of rules in the rules-base; the list of known facts in
the facts-base; and an inferencing system, which processes the rules to derive new facts via some form
of reasoning. A rule consists of an IF part which is a set of conditions (called the antecedents) that must
be met before the rule is said to ‘fire’ so that the set of actions in the THEN part (called the consequents)
are executed. For example, for Rule R1 in Table 9.5, if the condition ‘animal has hair’ is met – that is,
there is a known fact in the knowledge base that the animal being classified has hair, then the rule is
fired, and the action is to add a further fact ‘species is mammal’ to the knowledge-base.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

177

Knowledge

There may be multiple conditions in the IF part of the rule. For example, Rule R4 has three conditions that
must be met before it can be fired. These conditions are separated by the AND keyword, and therefore
these conditions are called ‘conjunctions’. If they were separated by the OR keyword, they would be
called ‘disjunctions’. For the Knowledge Representation NetLogo model, only rules with conjunctions
have been implemented. The set of rules and how they are defined for the zoo animals and New Zealand
birds problem is shown in NetLogo Code 9.1. The third set of rules for the Sailing boats problem can
be found by loading the model in NetLogo using the URL link below.

if (select-problem = "Zoo animals")
[

setup-rule ;; rule: IF animal has hair
;; THEN species is mammal

[["has hair" "Yes"]]
[["species" "mammal"]]
setup-rule ;; rule: IF animal gives milk

;; THEN species is mammal
[["gives milk" "Yes"]]
[["species" "mammal"]]
setup-rule ;; rule: IF animal eats meat

;; THEN species type is carnivore
[["eats meat" "Yes"]]
[["species type" "carnivore"]]
setup-rule ;; rule: IF animal has pointed teeth AND animal has claws

;; AND animal has forward eyes
;; THEN species type is carnivore

[["has pointed teeth" "Yes"] ["has claws" "Yes"]
["has forward eyes" "Yes"]]
[["species type" "carnivore"]]
setup-rule ;; rule: IF animal is mammal AND animal has hooves

;; THEN mammal group is ungulate
[["species" "mammal"] ["has hooves" "Yes"]]
[["species type" "ungulate"]]
setup-rule ;; rule: IF species is mammal AND animal chews cud

;; THEN mammal group is ungulate
[["species" "mammal"] ["chews cud" "Yes"]]
[["species type" "ungulate"]]
setup-rule ;; rule: IF species is mammal

;; AND species type is carnivore
;; AND animal has tawny colour
;; AND animal has dark spots
;; THEN animal is cheetah

[["species" "mammal"] ["species type" "carnivore"]
["has tawny colour" "Yes"] ["has dark spots" "Yes"]]
[["animal" "cheetah"]]
setup-rule ;; rule: IF species is mammal

;; AND species type is carnivore
 ;; AND animal has tawny colour
 ;; AND animal has black stripes
 ;; THEN animal is tiger

[["species" "mammal"] ["species type" "carnivore"]
["has tawny colour" "Yes"] ["has black stripes" "Yes"]]
[["animal" "tiger"]]

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

178

Knowledge

setup-rule ;; rule: IF species is ungulate AND animal has dark spots
;; AND animal has long neck
;; THEN animal is giraffe

[["species type" "ungulate"] ["has dark spots" "Yes"]
["has long neck" "Yes"]]
[["animal" "giraffe"]]
setup-rule ;; rule: IF species is ungulate

;; AND animal has black stripes
;; THEN animal is zebra

[["species type" "ungulate"] ["has black stripes" "Yes"]]
[["animal" "zebra"]]
]

if (select-problem = "New Zealand birds")
[

setup-rule ;; rule: IF bird can fly AND bird is a parrot
;; AND bird is alpine
;; THEN bird is a kea

[["can fly" "Yes"] ["parrot" "Yes"] ["alpine" "Yes"]]
[["bird" "Kea"]]

setup-rule ;; rule: IF bird can fly AND bird is a parrot
;; AND bird is not alpine
;; THEN bird is a kaka

[["can fly" "Yes"] ["parrot" "Yes"] ["alpine" "No"]]
[["bird" "Kaka"]]

setup-rule ;; rule: IF bird can fly AND bird is not a parrot
;; AND bird has white throat
;; THEN bird is a tui

[["can fly" "Yes"] ["parrot" "No"] ["has white throat" "Yes"]]
[["bird" "Tui"]]

setup-rule ;; rule: IF bird can fly AND bird is not a parrot
;; AND bird does not have a white throat
;; THEN bird is a pukeko

[["can fly" "Yes"] ["parrot" "No"] ["has white throat" "No"]]
[["bird" "Pukeko"]]

setup-rule ;; rule: IF bird cannot fly AND bird is an extinct bird
;; AND bird is large
;; THEN bird is a moa

[["can fly" "No"] ["extinct" "Yes"] ["large" "Yes"]]
[["bird" "Moa"]]

setup-rule ;; rule: IF bird cannot fly AND bird is extinct
;; AND bird is not large
;; THEN bird is a huia

[["can fly" "No"] ["extinct" "Yes"] ["large" "No"]]
[["bird" "Huia"]]

setup-rule ;; rule: IF bird cannot fly AND bird is not extinct
;; AND bird has long beak
;; THEN bird is a kiwi

[["can fly" "No"] ["extinct" "No"] ["has long beak" "Yes"]]
[["bird" "Kiwi"]]

setup-rule ;; rule: IF bird cannot fly AND bird is not extinct
;; AND bird does not have a long beak
;; THEN bird is a weta

[["can fly" "No"] ["extinct" "No"] ["has long beak" "No"]]
[["bird" "Weta"]]

]

NetLogo Code 9.1 How the rules are defined for the zoo animals and the New Zealand birds problem in the Knowledge Representation
model.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

179

Knowledge

The rules are defined using the setup-rule procedure that is listed in NetLogo Code 9.2 below.

breed [rules rule]
rules-own
[

antecedents ; if part of rule – list of necessary propositions for
; rule to be true

consequents ; then part of rule – list of propositions that are
; the conclusions of the rule

]
to setup-rule [alist clist]
;; Creates a new rule with the specified antecedents (alist)
;; and consequents (clist)

create-rules 1
[hide-turtle ; make invisible

set antecedents alist
set consequents clist]

end

NetLogo Code 9.2 The definition of the rules breed, and the setup-rule procedure that is used to define the rules in the Knowledge
Representation model.

Download free eBooks at bookboon.com

Click on the ad to read more

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

Artificial Intelligence – Agent Behaviour I

180

Knowledge

Rules are defined as a separate breed of agents that contain two variables: antecedents, which is a
list of the necessary propositions or facts for the rule to be true (this is the IF part of the rule); and
consequents, which is the list of conclusions (this is the THEN part of the rule). The procedure
setup-rule takes two lists of propositions as arguments – the alist as the list of antecedents and
the clist as the list of consequents. The propositions are represented using a two-element list which
contains an attribute and its value. This two-element list can be converted to an English description
by inserting an “is” between the two elements in the list. For example the list ["can fly" "Yes"]
represents the proposition “can fly is Yes”; that is, the proposition that the bird can fly. Similarly, the list
["species type" "mammal"] is the proposition that the species type for the animal is a mammal.

Specifying the rules in this format allows us to visualise them using event maps. The Knowledge
Representation does this by making use of the add-events procedure defined in Chapter 6 (NetLogo
Code 6.4) as shown in NetLogo Code 9.3 below.

to add-rule-to-event-map [this-rule]
; adds the rule as a set of linked states to the event map network

let events []

foreach [consequents] of this-rule
[

set events lput ? ([antecedents] of this-rule)
add-events events white white white

]
end

to setup-rules-event-map [problem]
;; setups an event map network of states from the rules

foreach sort rules
[

add-rule-to-event-map ?
]

repeat 5 [change-layout]
display

end

NetLogo Code 9.3 How the rules are used to create an event map.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

181

Knowledge

The add-rule-to-event-map procedure adds as a list of events to the event map the list of
antecedents in a specific rule for each of its consequents. It adds the particular consequent as an event
at the end of the list of antecedents so that the consequent will end up at the end of the path in the event
map. The setup-rules-event-map does this for all rules. This process will mean that rules with
common antecedents will end up on the same branch. The result for the New Zealand birds problem is
shown in Figure 9.9. This method of visualizing the rules allows us to see the relationships between the
rules – it shows that the rules separate into two networks as in the figure, with the birds that can fly on
the right (Tui, Pukeko, Kaka and Kea) and the birds that can’t on the left (Moa, Huia, Kiwi and Weta).

Figure 9.9 Event map of the knowledge for the New Zealand birds classification problem represented as rules.

These rules can easily be converted into first order logic form. For example, the rules shown on the
left in Table 9.5 are also specified as ‘sentences’ in first order logic on the right. Sentences in first
order logic represent statements about some world comprising of objects that have specific properties.
Sentences can be comprised of a number of constituents: constant symbols that refer to a specific
object in the world; terms which are logical expressions that refer to a specific object; predicate symbols
that refer to a particular relation (such as ‘Has_hair’ and ‘Mammal’); logical connectives ⇒, ∧, ∨
and ⇔ (that are pronounced as ‘implies’, ‘and’, ‘or’ and ‘is equivalent to’ respectively); the universal
quantifier ∀ (pronounced as ‘for all’); and the existential quantifier ∃ (pronounced as ‘there exists’). For
example, the statement ‘All mammals have hair’ can be represented in first order logic with the sentence

�

∀x Has_hair x()⇒ Mammal x(). This sentence can be read as ‘for all x, if x has hair, then this implies
that x is a mammal’. The universal quantifier is used for stating that a general condition holds for all
objects in the world, and the existential quantifier is used for stating a specific condition holds for at
least one object in the world. The symbol ⇒ is used for stating an implication (rule), with the premise
or antecedents on the left side of the symbol, and the conclusion or antecedents on the right side of the
symbol. The equivalence symbol (⇔) specifies that the left hand side of the symbol is equivalent to the
right hand side of the symbol. Negation is specified using — symbol (pronounced ‘not’).

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

182

Knowledge

9.10	 Reasoning using rules and logic

We can use the knowledge specified by the rules and logic sentences to infer new knowledge by a process
called ‘reasoning’. There are various ‘rules of inference’ that allows us to do this. For example, if we know
that an animal A1 has pointed teeth, has forward facing eyes and has claws, i.e. Has_pointed_teeth(A1)
and Has_forward_eyes(A1) and Has_claws(A1) are all true, then we can infer from Rule R4 that animal A1
is a carnivore, i.e. Carnivore(A1) This particular rule of inference is called ‘Modus Ponens’, or Implication
Elimination, as it creates a new sentence by removing the implication symbol, ⇒.

Some rules of inference are listed in Table 9.6. These rules are self-evident and follow directly from
the meanings of the different symbols. For example, the Modus Ponens rule follows directly from the
meaning of the ⇒ symbol. The And Elimination, And Introduction, Or Introduction and Double
Negation Elimination rules follow directly from the meanings of the ∧, ∨ and — symbols. Similarly, the
other three rules result from the meaning of the ∀ and ∃ symbols. Further rules and more details can
be found in Russell and Norvig (2002).

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/volvo

Artificial Intelligence – Agent Behaviour I

183

Knowledge

Rule of Inference Description

Modus Ponens or Implication
Elimination

If we know P, and P ⇒ Q, then we can infer Q.

And Elimination If we know P ∧ Q, then we can infer both P, and Q.

And Introduction If we know P, and we know Q, then we can infer P ∧ Q.

Or Introduction If we know P, then for any Q, we can infer

�

P∨Q.
Double Negation Elimination We can substitute P for ¬¬P and vice versa.

Universal Elimination e.g. If we know ∀x R(x) ⇒ S(x), we can infer S(T) if R(T) is true.

Existential Elimination e.g. If we know ∃x R(x) ∧ S(x) , we can infer both R(T1) and S(T) as long as T1 is
not already in the knowledge base.

Existential Introduction e.g. If we know R(S, T), we can infer ∃x R(x, T).

Table 9.6: Some rules of inference for first order logic (from Russell and Norvig, 2002).

An example proof showing how some of these rules of inference can be applied to the animal classification
problem is shown in Table 9.7.

Observations: The animal has hooves; it has hair; it has a tawny colour; and it has black stripes.
Goal: Find out what kind of animal it is.

Reasoning Explanation

P1 ∃x Has_hooves(A1) ∧ Has_Hair(A1)
Has_tawny_colour(A1) ∧ Has_black_stripes(A1)

From the observations.

P2 Has_hooves(A1) From P1 and Existential Elimination.

P3 Has_hair(A1) From P1 and Existential Elimination.

P4 Has_tawny_colour(A1) From P1 and Existential Elimination.

P5 Has_black_stripes(A1) From P1 and Existential Elimination.

P6 Has_hair(A1) ⇒ Mammal(A1) From rule R1 and Universal Elimination.

P7 Mammal(A1) From P6, P3 and Modus Ponens.

P8 Mammal(A1) ∧ Has_hooves(A1) ⇒ Ungulate(A1) From R5 and Universal Elimination.

P9 Ungulate(A1) From P8, P7, P2 and Modus Ponens.

P10 Ungulate(A1) ∧ Has_black_stripes(A1) ⇒ Zebra(A1) From R10 and Universal Elimination.

P11 Zebra(A1) From P10, P9, P5 and Modus Ponens.

Table 9.7: A sample proof in first order logic.

At the beginning, some observations have been noted concerning an animal being observed on the African
savannah. The goal is to determine which animal is being observed. The proof starts with converting
the observations into first order logic form using the existential quantifier (P1). P2 to P5 uses existential
elimination to infer individual predicates concerning an animal labelled

�

A1. The remaining part of the
proof uses Universal Elimination and Modus Ponens to arrive at the conclusion that the animal is a
zebra – that is, Zebra(A1) is proven to be true.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

184

Knowledge

Rule-based expert systems mainly make use of two forms of reasoning based on the automated application
of the Modus Ponens rule of inference. ‘Forward reasoning’ (also called ‘forward chaining’) works in a
forward direction by first starting with the known facts and then trying to derive a specific goal using a
chain of inference by repeated application of Modus Ponens (as in Table 9.7). ‘Backward reasoning’ (also
called ‘backward chaining’) works in the opposite direction, starting with the goal first, then working
backwards until it has been proved.

In the Knowledge Representation model, clicking on the go-reasoning button starts the reasoning
process. If the KR-type slider is set to "rules", the user will be asked to select which type of
reasoning they wish to use – whether forward or backward. Both of these types of reasoning use search
to explore an n-dimensional space that represents the knowledge. This n-dimensional space is shown
by the event map depicted in the NetLogo environment when the setup-knowledge button has
been clicked in the Interface (as shown in Figures 9.10 and 9.11). As the reasoning process proceeds,
the event map is animated with walker agents depicted using the person shape (in the same manner
that the walker agents were depicted exploring the search spaces related to the different search problems
described in the previous chapter). This animation of the reasoning process clearly reinforces the analogy
of reasoning as a search process.

Figure 9.10 provides two screenshots of how this looks for the New Zealand birds classification problem.
The left hand image shows a screenshot at the completion of forward reasoning, which has led to the
conclusion that the bird being classified is a Kea. The screenshot shows the path the reasoning process
has taken to get to the goal using thicker links. In this case the path has been direct. The first state visited
was the [can fly = "Yes] state in the middle right of the image. This caused the following question
to be asked of the user – “Can the bird fly?”. The path then goes to the next state labelled [parrot =
"Yes"]. This is shown by the link being slightly wider than other links that have not been traversed. This
caused the question “Is the bird a parrot?” to be asked. The path then goes to the state labelled [alpine
= "Yes"] which generates the question “Is the bird an alpine bird?”. Eventually, the path ends up at
the final state labelled [bird = "Kea"] which is a goal state, and so the conclusion is reached that
the bird is a Kea. This path is followed because a single rule is being matched – in this case, the rule is
the first one in the knowledge-base as defined in NetLogo Code 9.1, with antecedents list ["can fly"
"Yes"] ["parrot" "Yes"] ["alpine" "Yes"] and consequents list ["bird" "Kea"].

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

185

Knowledge

Figure 9.10 How the event map for the New Zealand birds rules-base is animated using forward reasoning (left image) and
backward reasoning (right image).

The right hand image in Figure 9.10 shows how the backward reasoning proceeds. At the beginning,
the user is asked which goal they wish to prove. If the user selects [bird Kea], then a walker agent is
drawn at the state labelled [bird = "Kea"] to show that it is the goal state. The reasoning process
then tries to prove the goal by asking the same questions as for the forward reasoning process. In the
image, the path has been traversed as far as the [alpine = "Yes"] state, with one more link yet to
be traversed needed to prove the goal.

Download free eBooks at bookboon.com

Click on the ad to read more

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

Artificial Intelligence – Agent Behaviour I

186

Knowledge

This particular example is relatively straightforward. For a more complicated example, such as classifying
a zoo animal as a cheetah, the reasoning process will result in the animation jumping around the event
map. The forward reasoning process, in particular, can result in many queries being asked before a
conclusion is reached, as shown in Figure 9.11.

Figure 9.11 How the event map for the zoo animals rules-base is animated using forward reasoning.

For forward reasoning, the process starts from the known facts and proceeds forward by trying to find
a rule in the rules-base for which the antecedents match against the facts. Each time a rule matches, it
is ‘fired’ and the consequents are added as new facts to the knowledge-base. A rule can only be matched
once. A complete ‘match-fire cycle’ occurs when all the rules in the rules-base have been processed. If
at least one rule has been fired, then a new cycle is started at the first rule in the rules-base. The process
continues until no further rules are fired during a cycle. The code that performs this is shown in NetLogo
Code 9.4.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

187

Knowledge

to go-rules-forward-reasoning
;; performs forward reasoning on the problem

let fired-count length fired-rules
print selected-problem
let goal-attrib [goal-attribute] of selected-problem

set cycle-count cycle-count + 1
output-number "Cycle " cycle-count

loop
[
foreach sort rules

[; for each rule in the rules base
if not member? ? fired-rules
[

if (match-rule? selected-problem ?)
[

fire-rule ?
output-fired-rule ?

]
if (attribute-found? goal-attrib)

[user-message (word "The " goal-attrib " is a "
fact-get goal-attrib ".")

stop]
]

]

if (fired-count = length fired-rules)
[user-message
 "No new rules fired this cycle. Sorry – I can't help you."
stop]

]
end

NetLogo Code 9.4 The procedure that performs forward reasoning.

The go-rules-forward-reasoning procedure has a loop that performs the match-fire cycle.
This loop processes in sorted order each rule in the rules-base (i.e. the rules agentset). It first checks
whether the rule has been fired previously, and if it hasn’t, then it tries to match the rule by calling
the match-rule? reporter (shown in NetLogo Code 9.5). If this reporter returns true, then it will
fire the rule by calling the fire-rule procedure. The procedure output-fired-rule will output
information to the Output area in the Interface as a trace of the reasoning process if the switch trace-
on has been set to On.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

188

Knowledge

to-report match-rule? [problem this-rule]
; tries to match this-rule to facts in the facts-base
; otherwise asks user for data if attribute is not in non-input-attributes list

let attribute ""
let val ""
let value ""
let question ""
let choices []
let this-walker nobody

set this-walker start-new-walker nobody "" ""
foreach [antecedents] of this-rule

[
set attribute first ?
set value last ?
update-walker this-walker attribute value

if not attribute-found? attribute
; not found, so need to ask user if we can
[ifelse (member? attribute [non-input-attributes] of problem)

[report false] ; no we can't ask user
[; ask user a question

set question get-input-question problem attribute value
set choices get-input-choices problem attribute
set val user-one-of question choices
fact-put attribute val
]

]
if not fact-found? attribute value
[report false]

]
report true

end

to fire-rule [this-rule]
; fires the matched rule this-rule

let attribute ""
let value ""
let new-walker nobody

foreach [consequents] of this-rule
[

set attribute first ?
set value last ?

ask active-walker
[hatch-walkers 1 [set new-walker self]] ; clone active walker

update-walker new-walker attribute value

fact-put attribute value
set fired-rules fput this-rule fired-rules

]
end

NetLogo Code 9.5 The code that defines how the rules are matched and fired.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

189

Knowledge

The match-fire? reporter processes each of the antecedents of the rule. It first extracts the attribute
and its value from the current item in the antecedent list; for example, for ["can fly" "Yes"],
the attribute is "can fly" and the value is "Yes". The attribute combined with its value
represents a specific proposition that needs to be true – in this case, that proposition that the bird can fly.
Representing the proposition as an event in an event map, the stream name is set to the attribute,
and the event that occurs on the stream is set to the value. The match-fire? reporter then checks to
see whether a value for the attribute has not already been allocated a value on the facts-base. If it hasn’t,
it will ask the user what the value is if the attribute is an input attribute. Then the reporter will finally
check whether the attribute’s value matches the one specified by the rule.

The fire-rule procedure processes each of the consequents of the rule. First it hatches a new walker
that moves to the new event state in the event map based using the update-walker procedure. This
is done to animate the event map visualisation to show how the reasoning process is proceeding. Then
the procedure puts a new fact consisting of the attribute and its value into the facts-base, and finally,
adds the rule to the list of fired rules so that it won’t be fired again.

The facts-base is implemented using the table extension as shown in NetLogo Code 9.6.

Download free eBooks at bookboon.com

Click on the ad to read more

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

Artificial Intelligence – Agent Behaviour I

190

Knowledge

to-report attribute-found? [attribute]
; reports true if the attribute is in the facts database
; reports false otherwise

report (table:has-key? facts-base attribute)
end

to-report fact-found? [attribute value]
; reports true if the attribute and value are in the facts database
; reports false otherwise

report (value = table:get facts-base attribute)
end

to-report fact-get [attribute]
; gets the value associated with the attribute from the facts-base.

report table:get facts-base attribute
end

to fact-put [attribute value]
; puts the attribute value pair into the facts-base.

table:put facts-base attribute value
end

 NetLogo Code 9.6 The code that defines various procedures and reporters for the facts-base.

The code implements three reporters: attribute-found?, which reports true if the attribute by
itself is found in the facts-base (i.e. regardless of whatever value is associated with it); fact-found?,
which reports true if the both the attribute and specific value is found in the facts-base; and fact-
get, which returns the value associated with the attribute. The procedure fact-put inserts a specific
attribute and its value into the table.

A problem with forward reasoning is that the search to find a particular goal can be inefficient as it
can fire many rules unrelated to the goal. In this case, backward or goal-driven reasoning may be more
appropriate. Backward reasoning employs a ‘find-prove’ process rather than a ‘match-fire’ process as for
forward reasoning. Given a specific goal, the backward reasoning process first searches the rules-base
to find rules that have the goal in their THEN parts (i.e. as consequents). If a rule is found, and the IF
part matches, then the rule is fired and the goal is proved. Otherwise, a new sub-goal is set up to try to
prove the IF part that does not match. The process then recursively repeats the reasoning process with
the new sub-goal, which may generate further sub-goals that need to be proved, until it has proven all
the IF parts for the original goal and subsequent sub-goals.

The code for backward reasoning implemented in the Knowledge Representation model is shown in
NetLogo Code 9.7.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

191

Knowledge

to go-rules-backward-reasoning
;; performs backward reasoning on the problem

let goal-choices []
let goal-attrib ""
let goal-value ""
let attribute ""
let value ""

set goal-attrib [goal-attribute] of selected-problem
foreach sort rules

[; add each goal in all the rules to the goal-choices
foreach [consequents] of ?
[

set attribute first ?
set value last ?

if (attribute = goal-attrib) and
(not member? value goal-choices)

[set goal-choices lput ? goal-choices]
]

]

let goal user-one-of "Which goal do you wish to proove?" goal-choices
set goal-value (last goal)
start-new-walkers goal-attrib goal-value

ifelse not find-prove? selected-problem goal-attrib goal-value
[user-message "No more rules found. The goal is not proven."]
[update-walker active-walker goal-attrib goal-value
user-message (word "The goal is proven! The " goal-attrib " is a "

goal-value ".")]
end

NetLogo Code 9.7 The procedure that performs backward reasoning.

The code first generates goal-choices which is the list of all the goals from all of the rules. The user
is then asked which goal they wish to prove. A walker is then drawn on the event map at the chosen
goal state, and the reasoning process starts by calling the find-prove? reporter. This returns true
if a rule can be found to prove the goal or false if not, and the procedure then informs the user of the
result. The code for the find-prove? reporter is shown in NetLogo Code 9.8.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

192

Knowledge

to-report find-goal? [this-rule goal-attrib goal-val]
;; reports if the goal is in the consequents of this_rule

let attribute ""
let val ""
let value ""
let response ""

foreach [consequents] of this-rule
[
set attribute first ?
set value last ?

if (attribute = goal-attrib) and (value = goal-val)
[report true]

]
report false

end

to-report prove-goal? [problem this-rule goal-attrib goal-val]
; tries to prove this-rule from facts in the facts-base
; otherwise asks user for data if attribute is not in non-input-attributes list
; otherwise recursively calls the procedure find-prove? to see if
; the non-input-attributes can be proved

let attribute ""
let val ""
let value ""
let question ""
 let choices []
let this-walker nobody

set this-walker start-new-walker nobody "" ""

foreach [antecedents] of this-rule
[
set attribute first ?
set value last ?
update-walker this-walker attribute value

if not attribute-found? attribute
; not found, so need to ask user if we can
[ifelse (member? attribute [non-input-attributes] of problem)

[ifelse not find-prove? problem attribute value
[report false] ; no we can't ask user
[fact-put attribute value]

]
[; ask user a question

set question get-input-question problem attribute value set
choices get-input-choices problem attribute
set val user-one-of question choices
fact-put attribute val

]
]

if not fact-found? attribute value
[report false]
]

update-walker this-walker goal-attrib goal-val

report true
end

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

193

Knowledge

to-report find-prove? [problem goal-attrib goal-val]
;; recursive procedure called by the go-backward-reasoning procedure

let this-walker nobody

output-goal goal-attrib goal-val
foreach sort rules

[; for each rule in the rules base
if (find-goal? ? goal-attrib goal-val)

[
if (prove-goal? problem ? goal-attrib goal-val)

[
start-new-walkers goal-attrib goal-val
output-fired-rule ?
report true

]
]

]
report false

end

NetLogo Code 9.8 The code that defines how the rules are found and proven.

Download free eBooks at bookboon.com

Click on the ad to read more

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

Artificial Intelligence – Agent Behaviour I

194

Knowledge

The find-prove? reporter calls two further reporters, find-goal? and prove-goal?. For each
rule in the rule-base, it first checks to see if the goal is found by calling the find-goal? reporter, then
if found, tries to prove it by calling the prove-goal? reporter. The find-goal? reporter returns true
if the attribute and value specified by the goal-attrib and goal-val parameters is found in one of
the consequents of a specific rule this-rule passed by parameter. The prove-goal? reporter tries
to first prove the specific rule this-rule is true from facts in the facts-base. Otherwise it checks each
of the antecedents of the rule to see if they are true, asking the user for data if the attribute is not an input
attribute, otherwise it recursively calls the reporter find-prove? to see if the non-input attribute can
be proved. The start-new-walker, start-new-walkers and update-walker procedures
are used to animate the event map to show how the reasoning process is proceeding.

Which type of reasoning should be used when designing a rule-based expert system? The best answer to
this question is for the knowledge engineer to observe the expert to see which type of reasoning they are
using. If the expert looks at the data first, and then infers new knowledge from it, then a forward reasoning
process is most appropriate. On the other hand, if the expert begins with a hypothetical solution first,
and then tries to find facts that will help prove the hypothesis, then backward reasoning is likely to be
the most appropriate. Analysis and interpretation type problems lend themselves to forward reasoning
solutions, whereas diagnosis type problems lend themselves to backward reasoning. DENDRAL, an
expert system that determines the molecular structure of unknown soil is an example of the former,
whereas MYCIN, an expert system for the diagnosis of infectious blood diseases is an example of the
latter (Negnevitsky, 2002).

Most expert systems today now use both forward and backward reasoning. The primary method of
inference used is the latter as it minimises the number of pointless queries which is a fault of the forward
reasoning approach. However, an expert system can switch to forward reasoning when a new fact is
added to the facts-base to make maximum use of the new data.

Expert systems such as DENDRAL and MYCIN have taken a lot of expense and effort to develop
(estimated at between 20 to 40 person years to complete). A contributory factor to this is the widely
acknowledged difficulty of acquiring the knowledge from human experts – this problem is called the
‘knowledge acquisition bottleneck’. However, there are now sophisticated expert system shells and
toolboxes for intelligent systems that use technologies such as machine learning, neural networks and
evolutionary computation that dramatically reduce the development time from years down to months.
For a more comprehensive discussion of rule-based expert systems and intelligent systems in general,
the reader should refer to Negnevitsky (2002).

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

195

Knowledge

9.11	 Knowledge and reasoning using frames

Frames are a form of knowledge representation proposed by Marvin Minsky (1975). A frame is a data
structure that stores prototypical information relating to a specific concept. Frames consists of ‘slots’
which can have ‘values’ that are either explicitly declared when the frame is declared, or they are inherited
from a parent frame. This form of knowledge representation is the one most reminiscent of Gärdenfors
conceptual spaces model, with slots being analogous to quality dimensions.

There are two types of frame: a class frame; and an individual or instance frame. The notions of class,
instance, and inheritance are analogous to those used in object oriented programming described in
Section 2.2 (also see Figure 2.1). Inheritance is usually specified using the ‘ako’ slot (this stands for ‘a
kind of ’). For example, in the zoo animals classification problem, a cheetah is a kind of mammal, and a
mammal is a kind of animal. As a further example, the frames for the Sailing boat classification problem
are shown in Table 9.8. The table shows the eight sailing boat frames in separate columns, with slot
names and values shown in the rows. For this particular problem, the knowledge is relatively regular,
with only a few table cells with missing values. Normally, missing values are the norm when the frames
are listed in tabular form because there is no requirement that each frame should have the same slots,
because frames represent different concepts with different properties, and can inherit information from
different parent frames.

Download free eBooks at bookboon.com

Click on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

Artificial Intelligence – Agent Behaviour I

196

Knowledge

The event map representation for this knowledge is shown in Figure 9.12. For clarity purposes, the figure
shows the event map for just the first four frames for the Sailing boat problem – the Jib-headed cutter
(top left), the Gaff-headed sloop (bottom left), the Jib-headed ketch (top right) and the Gaff-headed
ketch (bottom right). Each frame is depicted as a separate path, starting from the event state labelled by
the frame’s name (for example, name = "jib-headed-cutter" on the top left), then
proceeding to a state that declares what kind of frame the path represents (this state is always labelled
as ako = "[boat]" as all the frames are boat frames in this example). The path then proceeds
through the states that represent each frame’s specific slots and values.

Slot Jib-headed
Cutter

Gaff-
headed
Sloop

Jib-headed
Ketch

Gaff-
headed
Ketch

Jib-headed
Yawl

Gaff-
headed
Yawl

Gaff-
headed
Schooner

Staysail
Schooner

ako boat boat boat boat boat boat boat boat

number of
masts

1 1 2 2 2 2 2 2

shape of
mainsail

triangular quadri-
lateral

triangular quadri-
lateral

triangular quadri-
lateral

quadri-
lateral

triangular
with two
foresails

main mast
position

forward of
the short
mast

forward of
the short
mast

forward of
the short
mast

forward of
the short
mast

aft the short
mast

aft the
short mast

short mast
position

forward of
the helm

forward of
the helm

aft the
helm

aft the
helm

Table 9.8: The frames for the Sailing boat classification problem shown in tabular form.

Rather than declaring the frames separately from the rules based knowledge, the Knowledge Representation
model instead uses the approach of converting the rule-based knowledge into frame format. This is in
order to illustrate the correspondence between the two approaches when the propositions in the rules
are specified using attribute value pairs. This also allows the different methods to be visualised using
event maps. The code for doing this is shown in NetLogo Code 9.9.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

197

Knowledge

to convert-rules-to-frames-base [problem]
;; Converts the rules base to a frames base

let this-rule nobody
let this-frame nobody
let attribute ""
let value ""

ask frames [die] ; kill off any previous frames

foreach sort rules
[; for each rule in the rules base
set this-rule ?
foreach [consequents] of this-rule

[
set attribute (first ?)
set value (last ?)
set this-frame find-frame? attribute value
if (this-frame = nobody)

[; frame does not exist with that name and type
create-frames 1

[
hide-turtle ; make invisible
set this-frame self
set name value
set ako-list (list attribute)
set slots-table table:make

]
]

foreach [antecedents] of this-rule
[

ask this-frame
[

set attribute (first ?)
set value (last ?)
ifelse (member? attribute [input-attributes] of
problem)

[table:put slots-table attribute value]
[set ako-list

(lput value ako-list)] ; add value to ako-list
]

]
]
]

end

to-report find-frame? [this-ako this-name]
;; reports the frame that has slot value "ako" = ako and "name" = name.
;; reports nobody otherwise

report one-of frames with
[member? this-ako ako-list and name = this-name]

end

 NetLogo Code 9.9 How the rules-base is converted into a frames-base.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

198

Knowledge

The conversion procedure first kills off any existing frames, then processes each of the rules in the rule-
base in turn. For the consequents of each rule, it checks that a frame with the same name and ako
slot values do not already exist by calling the find-frame? reporter. If it does not exist, it will create
a new frame, otherwise it will use the one that was found. Then it will insert slots and their values into
the slots-table for the frame if the proposition attribute is an input attribute, otherwise it adds the
proposition’s value to the ako-list for the frame. The event map is created from these frames using
the add-events procedure as shown in NetLogo Code 9.10.

Download free eBooks at bookboon.com

Click on the ad to read more

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

Artificial Intelligence – Agent Behaviour I

199

Knowledge

to-report slots-events [table]
;; returns the list of events for the slots table

let events []
let keys []
let value ""

set keys table:keys table
foreach keys
[

set value table:get table ?
set events lput (list ? value) events

]
report events

end

to setup-frames
;; setups a network of states from the frames

init-problem ; initialise the selected problem

let events []

convert-rules-to-frames-base selected-problem
foreach sort frames
[
set events slots-events [slots-table] of ?
set events fput (fput "ako" (list [ako-list] of ?)) events
set events fput (list "name" [name] of ?) events

add-events events white white white
]
repeat 5 [change-layout]
display

end

NetLogo Code 9.10 How the frames are used to create an event map.

This code defines the setup-frames procedure that calls the convert-rules-to-frames-
base procedure defined above, then for each of the newly created frames, it generates a list of events for
each of the frame’s slots in its slots table (by calling the slots-events reporter), and then adds two
further events at the beginning of the events list, one for the ako-list and another for the name of
the frame, before calling the add-events procedure.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

200

Knowledge

There are two main types of reasoning with frames – reasoning via inheritance, and reasoning via
matching. The former fills in missing slot values for frames if there is a slot value specified for a parent
frame. For example, for the Sailing boat problem, a parent ‘boat’ frame could specify that the number of
sails by default for boats is two. Recall that the purpose of a frame is to represent a prototypical concept,
so in specifying that the boat frame has two sails, then this is defining that the prototypical boat will
have two sails. There are of course always exceptions to the rule, and therefore a default parent frame
value can easily be overridden in a child frame by inserting a specific value. Cars, for example, mostly
have four wheels, but some cars have three wheels such as the Reliant Robin manufactured in England
in the 1970s, and recent hybrid and electric cars that adopt the three wheel solution for aerodynamic
and performance reasons. So a parent ‘car’ frame might set the slot value for ‘number of wheels’ to 4,
but set the value to 3 instead for the ‘Reliant Robin car’ frame, for example.

The second form of reasoning for frames based on matching involves searching the frames-base for a
frame whose slots and values match the current known facts. This has been implemented in the Knowledge
Representation model. Figure 9.12 is a screenshot that provides an intermediate stage of the reasoning
process to show how it proceeds.

Download free eBooks at bookboon.com

Click on the ad to read more

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

Artificial Intelligence – Agent Behaviour I

201

Knowledge

Figure 9.12 The event map of the knowledge in the first four frames for the Sailing boats problem showing the progress of the
frame-matching reasoning process.

In the screenshot, the paths that have been followed are depicted by thicker white links. The first question
asked, due to the Jib-headed cutter being the first frame matched, is “How many masts are there?” because
the slot “number of masts” was being matched. The user replied with “two”, which resulted with both
the Jib-headed cutter frame and the next frame, the Gaff-headed sloop, failing to match. This is shown
by the walker agents stopping just short of the end of the two paths shown on the left of the screenshot.
The reasoning process then tried to match the next frame in the frames-base – the Jib-headed ketch
frame. The screenshot shows the stage after the question “What is the main mast position?” had been
answered with “forward of the short mast”, and the user is about to answer the next question “What is
the short mast position?” displayed in the centre of the screenshot.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

202

Knowledge

The code that performs the frame matching process is defined by the go-frames-reasoning
procedure within the Knowledge Representation model in NetLogo. Rather than reproduce the code
here, the reader can examine the code directly in NetLogo by selecting the Procedures button. The
code consists of a reporter, match-frame?, that returns true if a frame matches the current facts.
The match-frame? reporter first creates a new walker agent, and moves it along the beginning of
the frame’s path in the event map through the name and ako states. Then it processes each of the names
in the frame’s ako-list to make sure each of the parent frames match by recursively calling match-
frame?. This will also mean that the grandparent frames (and great-grandparent frames and so on)
will also need to be matched before the frame itself can match. Once all these parent frames have been
matched, the reporter then extracts the list of slot names from the frame’s slots-table, and then for
each of the slots, extracts their values and using similar code to that used in the rule-based reasoning
listed above in Section 9.10, will try to see if a fact with the slot name and value already exists in the
facts-base. If not, it will ask the user for input if the slot is an input attribute, otherwise it will return
false (the frame has not matched).

The go-frames-reasoning procedure calls the match-frame? reporter for each of the frames
that have the goal attribute in their ako-list which is set when the frames are created – for example,
for the Sailing boat frames-base the goal attribute is set to boat, and for the zoo animals frames-base
the goal attribute is set to animal, and therefore only those frames are matched for the problem.

There are many variations to the frame-based method of knowledge representation. An extension to the
basic slot-value type of representation is to allow the slots to have ‘facets’ to provide extended knowledge
about the attribute being described by the slot. Facets can be used for controlling user queries and guiding
the reasoning process, for example detailing how the slot should be matched. Methods (called ‘demons’)
can also be associated with attributes as facets that provide the frame-based system a mechanism for
expressing procedural knowledge. These methods perform actions that are triggered under certain
conditions. For example, two common types of methods are WHEN CHANGED and WHEN NEEDED,
which are triggered when a slot’s value is changed or when it is accessed.

Many expert and intelligent systems today are hybrid systems that combine two or more technologies;
for example, many systems use both frames and rules for representing knowledge and for reasoning. A
term often used to describe these hybrid systems is ‘soft computing’ which deals with systems that are
capable of reasoning with uncertainties and dynamic multiple-agent environments. Negnevitsky (2002)
provides several examples of hybrid intelligent systems that combine various technologies, not just the
symbolic-based technologies such as rules and frames, but also the sub-symbolic technologies such as
neural networks and evolutionary computing. These latter technologies will be described in Volume 2
of this book series.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

203

Knowledge

9.12	 Knowledge and reasoning using decision trees

Another method of representing knowledge is using decision trees. We have already seen some examples
of decision trees in Section 4.4, and in Figure 9.8 above, which provides a screenshot of the decision tree
for the zoo animals problem. NetLogo Code 9.11 shows how rules can be converted into a decision tree
using the event map representation discussed in Section 9.8.

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/IE

Artificial Intelligence – Agent Behaviour I

204

Knowledge

to convert-rules-to-decision-tree
;; Converts the rules base to a decision tree

init-problem ; initialise the selected problem

let this-rule nobody
let attribute ""
let value ""
let events []

foreach sort rules
[; for each rule in the rules base
set this-rule ?

set events (list (list [goal-attribute] of selected-problem "Yes"))
foreach [antecedents] of this-rule
[

ask this-rule
[

set attribute (first ?)
set value (last ?)
set events lput (list attribute value) events

]
]

foreach [consequents] of this-rule
[

set attribute (first ?)
set value (last ?)
add-events (lput (list attribute value) events) white white white

]
]
repeat 5 [change-layout]
display

end

NetLogo Code 9.11 How the rules-base is converted into a decision tree.

This procedure processes each rule in the rules-base by first initialising the list of events to contain a single
event comprising the goal attribute with the word "Yes". For the Sailing boats problem, for example, this
will set the events list to be [[boat "Yes"]]. The effect of this is that all the rules will be connected
to a central node at the centre of the decision tree. The procedure then appends all the antecedents as
events to the event-list, and then for each of the consequents, it will add the consequent onto the end
of this list, and will call add-events separately. This will result in a separate event path being created
for each separate consequent. The result for the Sailing boats problem is shown in Figure 9.13. Note that
there are eight leaf nodes to the tree, and these correspond to the eight rules in the rules-base.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

205

Knowledge

The reasoning process works by proceeding outwards from the central node asking questions and
following the relevant link until a leaf is reached in the same manner as the New Zealand birds NetLogo
model discussed in Chapter 4. The progress of the reasoning process at an intermediate stage is shown in
Figure 9.13. The process started at the central node labelled boat = "Yes". It highlighted the two
possible links it could follow – the link to the state labelled number of masts = "one", and
the link to the state labelled number of masts = "two". The internal ordering of the links (as a
result of when they were created) then resulted in the reasoning process moving to the first of those states
and caused the question “How many masts are there?” to be asked. The user replied with “two” which
meant that the traversal of the current path stopped, and the reasoning process then started following
the other path instead. The next question asked was “What is the main mast position?” and the reply
“forward of the short mast” forced the reasoning process to then move to the state labelled main mast
position = "forward of the short mast". The next question asked was “What is the
short mast position?” and the reply “forward of the helm” forced the reasoning process to end up at the
state shown in Figure 9.13. The answer to the current question “What is the shape of the mainsail?” will
result in the reasoning process ending up with the conclusion that the boat is a Jib-headed ketch if the
answer was “triangular”, and with the conclusion that it was a Gaff-headed ketch otherwise.

Figure 9.13 The event map of the Sailing boats decision tree showing the progress of the reasoning process.

The code that performs the decision tree reasoning process is defined by the go-decision-tree-
reasoning procedure within the Knowledge Representation model in NetLogo. This code calls the
match-tree procedure to walk the tree. It does this by calling itself recursively matching the tree
states against the facts in the facts-base until there are no more out-path neighbours – that is, when a
leaf node has been reached. The goal is achieved once a fact with the goal attribute (in this case boat)
has been added to the facts-base.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

206

Knowledge

9.13	 Knowledge and reasoning using semantic networks

The final method of knowledge representation we will examine is called semantic networks. Semantic
networks are made up of interlinked nodes connected by arcs. The nodes represent objects, and arcs the
relationships between objects. An example of a semantic network for the zoo animals problem is shown
in Figure 9.14. There are many variants of semantic networks, with its origins dating from 1909 with the
‘existential graphs’ of Pierce (cited by Russell and Norvig, 2002). Semantic networks became popular in
the 1970s, with important work done by Collins and Quillian (1969; for example). A prominent debate
in AI pertaining to semantic networks concerns its relative merits compared with logic. Russell and
Norvig point out, however, that semantic networks can also be considered a form of logic, as is the case
with the other forms of knowledge representation discussed above. A more recent example of a semantic
network is WordNet that is a large lexical database of English words that are grouped by synonyms.

NetLogo Code 9.12 shows how the semantic network for the zoo animals problem in the Knowledge
Representation model is declared.

to-report create-state [state-label]
;; creates and returns a new semantic node

let this-state nobody

create-states 1
[
set this-state self
set color sky
set label-color white
set label state-label
set size 8
set stream "state name"
set event state-label
]

report this-state
end

to create-slink [state1 slink-label state2]
;; creates a link between the two nodes state1 and state2 in the
;; semantic network

ask state1
[create-path-to state2
[set label slink-label
set label-color yellow
set color blue
]

]
end

to setup-animals-semantic-network
;; sets up the nodes and links in the Zoo Animals semantic network

let animal-state create-state "animal"
set goal-state animal-state

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

207

Knowledge

let mammal-state create-state "mammal"
let ungulate-state create-state "ungulate"
let carnivore-state create-state "carnivore"

let hair-state create-state "hair"
let milk-state create-state "milk"
let meat-state create-state "meat"
let pointed-teeth-state create-state "pointed teeth"
let claws-state create-state "claws"
let forward-eyes-state create-state "forward eyes"
let hooves-state create-state "hooves"
let cud-state create-state "cud"
let tawny-colour-state create-state "tawny colour"

let dark-spots-state create-state "dark spots"
let black-stripes-state create-state "black stripes"
let long-neck-state create-state "long neck"

let cheetah-state create-state "cheetah"
let tiger-state create-state "tiger"
let giraffe-state create-state "giraffe"
let zebra-state create-state "zebra"

create-slink cheetah-state "is a" animal-state
create-slink tiger-state "is a" animal-state
create-slink giraffe-state "is a" animal-state
create-slink zebra-state "is a" animal-state

create-slink ungulate-state "is a" mammal-state
create-slink cheetah-state "is a" mammal-state
create-slink tiger-state "is a" mammal-state
create-slink cheetah-state "is a" carnivore-state
create-slink tiger-state "is a" carnivore-state
create-slink giraffe-state "is a" ungulate-state
create-slink zebra-state "is a" ungulate-state

create-slink mammal-state "has" hair-state
create-slink mammal-state "gives" milk-state

create-slink carnivore-state "eats" meat-state
create-slink carnivore-state "has" pointed-teeth-state
create-slink carnivore-state "has" claws-state
create-slink carnivore-state "has" forward-eyes-state

create-slink ungulate-state "has" hooves-state
create-slink ungulate-state "chews" cud-state

create-slink cheetah-state "has" tawny-colour-state
create-slink cheetah-state "has" dark-spots-state
create-slink tiger-state "has" tawny-colour-state
create-slink tiger-state "has" black-stripes-state
create-slink giraffe-state "has" dark-spots-state
create-slink giraffe-state "has" long-neck-state
create-slink zebra-state "has" black-stripes-state

end

NetLogo Code 9.12 The code that sets up the knowledge for the semantic network for the zoo animals problem.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

208

Knowledge

The setup-animals-semantic-network makes use of a reporter, create-state, for
creating a state in the network and returning it, and a procedure, create-slink, for creating a link
between two states. The former takes a single argument state-label that specifies the label associated
with the state, and then a single state agent is created with the specified label, and this is then returned.
The latter takes three arguments, the originating state state1, the label slink-label for the arc,
and the destination state state2, and then a single link agent is created that links state1 to state2.
The semantic network is set up first by creating a state for the types of animals (mammal, ungulate,
carnivore), for the features of animals (e.g. hair, milk, meat, pointed teeth, claws), and for each of the
animals (tiger, cheetah, giraffe and zebra). Then the links between these states are set up one by one.

Although semantic networks are relatively easy to set up, the main problem is deciding on the type of
knowledge that goes into the network – that is, what type of knowledge should be represented by the
states and what type of knowledge by the arcs. A rule of thumb is that state labels should be nouns and
arc labels should be verbs (as with the zoo animals semantic network shown in Figure 9.14). Two labels
commonly used for arcs are “is a” and “has”. For example, in the centre of Figure 9.14, there is a state
labelled “tiger”, and it has two arcs labelled “has” and three arcs labelled “is a” linking to five states. This
represents the knowledge that a tiger has black stripes and a tawny colour, and that a tiger is an animal, a
mammal, and a carnivore. The arc label “is a”, as for frames, is used for performing inheritance and default
style reasoning. Note that multiple inheritance is allowed, unlike some object oriented programming
languages such as Java that only support single inheritance.

Download free eBooks at bookboon.com

Click on the ad to read more

STUDY AT A TOP RANKED
INTERNATIONAL BUSINESS SCHOOL

Reach your full potential at the Stockholm School of Economics,
in one of the most innovative cities in the world. The School
is ranked by the Financial Times as the number one business
school in the Nordic and Baltic countries.

Visit us at www.hhs.se

Sw
ed

en

Stockholm

no.1
nine years
in a row

http://s.bookboon.com/hhs2016

Artificial Intelligence – Agent Behaviour I

209

Knowledge

Frames can be thought of as a variation of semantic networks, since each node can represent a single
frame, and the arcs that lead out of the node are its slots, with the slot values being the nodes that the
slot values lead towards. A semantic network can also be converted into an equivalent event map. This
can be done in the Knowledge Representation model by setting the KR-type chooser in the Interface
to "semantic event network", and the model will initially draw the semantic network, and
then replace it with the equivalent semantic event network.

Figure 9.14 The zoo animals semantic network showing the progress of the reasoning process.

An important form of reasoning for semantic networks involves matching of states against the current
facts in a manner analogous to the way frames are matched. Figure 9.14 shows an intermediate stage of
the state matching process. In this case, the reasoning process started at the goal animal state shown
at the centre right of the image. One of the in-path neighbours to this state was chosen at random to
be the next state visited – in the case depicted in the image, the state chosen was the zebra state. The
reasoning process then tried to match all the states associated with this state – the first chosen was the
black stripes state which caused the question “Is the following statement true: The animal has
black stripes?” to be asked. As the answer was affirmative, the reasoning process then started trying to
match the ungulate state, with the cud state being chosen to be visited next, resulting in the question
“Is the following statement true: The animal chews cud?” being asked as shown in the image.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

210

Knowledge

The code that performs the semantic network reasoning process is defined by the go-semantic-
network-reasoning procedure within the Knowledge Representation model in NetLogo. This code
makes use of the match-network-state? reporter that returns true if a particular state in the
semantic network matches the current facts. The reporter works by processing all the out-path neighbours
in turn until a match is found. First it clones a walker agent to move to the particular neighbouring
state. If the label for the link to that state equals “is a” then it will recursively call itself with the newly
cloned walker to check that the neighbouring state also matches first since it is an “is a” (parent) state.
Otherwise it will use the link label and the label of the neighbouring state to construct a proposition in
order to verify whether it is true or not, in the process asking the user if necessary if the proposition’s
attribute is not already known (i.e. exists in the facts-base). This particular implementation allows link
labels to contain the keyword “not” inside them (for example, “is not” can be used instead of “is”, “can
not” instead of “can” and “has not” instead of “has”). This was done to accommodate the particular style
of knowledge in the New Zealand birds problem so that the semantic network form of representation
could be directly compared with the other forms of representation. The proposition is verified by checking
to see if it exists in the current facts-base, and the reporter will return false if it isn’t.

The main go-semantic-network-reasoning procedure works by calling match-network-
state? for all the in-path neighbours of the goal state whose link to it has the label “is a”. It continues
until it finds one of the neighbouring states that match. For example, for the zoo animals problem, it will
try (in no particular order) each of the four states – tiger, cheetah, giraffe and zebra –
that are linked to the animal state with the link label “is a”. If it cannot find a neighbouring “is a” state
that matches, it will return false. This particular implementation causes a different set of questions to be
asked each time the procedure is run (as a result of the ask command using in-path-neighbours).
If such behaviour confuses the user, then a more consistent behaviour for the expert system can be
obtained by using a foreach sort command instead to ensure that the neighbouring states are
visited in a specific order.

A problem with semantic network based reasoning, apparent when running the Knowledge Representation
model, is that it often can jump around the network asking seemingly unrelated questions and as a result
confusing the user of the system. There is also a loss of context as the reasoning process moves from
one state to the next. This is unlike the decision tree or event map representations that follow defined
paths where the location of the state reflects the state of the reasoning based on the prior sequence of
states visited.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

211

Knowledge

9.14	 Summary and Discussion

Knowledge representation is a fundamental task that is required for intelligent behaviour. This chapter
has looked at various ways of representing knowledge such as maps, rules, logic, frames, decision trees
and semantic networks. A representation based on event maps has been used to visualise the different
types of representation and to show how they can be converted from one form into another. The aim
has been to discuss knowledge from an embodied, situated perspective by showing that knowledge
and reasoning are related to the movement of an agent around an environment. Knowledge has been
recast using the event map representation as points in abstract n-dimensional space environments, and
reasoning as a search of that space.

We can also relate knowledge to behaviour in the following way. Agents that have knowledge can be said
to exhibit knowing behaviour, whereas agents without knowledge need to exhibit some form of searching
behaviour instead. From on observer’s frame of reference, if we see an agent searching for something, we
can infer the reason for this is due to a lack of knowledge of where what they are searching for may be
found. Hence, we can say that knowing behaviour is the opposite of searching behaviour (or to use another
analogy, two sides of the same coin). For example, a person exhibits knowing behaviour when she goes
straight from the Zoo to the Boat Pond in New York’s Central Park without having to look at a map. Another
person, perhaps an antipodean visitor from down under, will have to use the map to ‘find’ the way instead
(note the use of a searching metaphor here to describe the process). He will inevitably end up having to
physically search at some stage after he gets lost along the way when the map does not fit with reality.

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/liu

Artificial Intelligence – Agent Behaviour I

212

Knowledge

A summary of important concepts to be learned from this chapter is shown below:

•	 The symbolic ‘top-down’ approach to AI posits that we can represent knowledge using symbols.
•	 The sub-symbolic ‘bottom-up’ approach to AI emphasizes the processing of stimuli rather than symbols.
•	 Conceptual spaces theory posits a middle ground where concepts represented as regions in an n-dimensional

space are the central characteristic of human knowledge and reasoning.
•	 Maps represent topographical knowledge, but can also be used to represent other forms of knowledge in an

abstract way.
•	 Event maps can be used to represent and visualize n-dimensional data in two dimensions.
•	 Rules are a form of knowledge representation that uses IF-THEN (condition-action) statements.
•	 There are two main types of reasoning using rules: forward reasoning which starts from the facts and tries to

prove a specific goal is true; and backward reasoning which starts with the goal first, and works backwards to
show that the facts support the goal’s hypothesis.

•	 Logic is a mathematical form of reasoning.
•	 Frames represent knowledge using prototypical concepts and use inheritance and matching as two types of

reasoning.
•	 Decision trees represent knowledge graphically as a directed tree, with questions or decisions associated with

each node in the tree, and conclusions at the leaf nodes. Reasoning proceeds by using the facts to guide which
branch of the tree to follow.

•	 Semantic networks also use a graphical form for representing knowledge, with nodes representing concepts, and
arcs representing relations between concepts. Semantic networks are closely related to frames.

The code for the NetLogo models and the Central Park world described in this chapter can be found
as follows:

Model URL

Central Park Events http://files.bookboon.com/ai/NetLogo/Central-Park-Events.nlogo

Colour Cylinder http://files.bookboon.com/ai/Colour-Cylinder.nlogo

Knowledge Representation http://files.bookboon.com/ai/Knowledge-Representation.nlogo

Map Drawing http://files.bookboon.com/ai/Being-Map-Drawing.nlogo

World URL

Central Park http://files.bookboon.com/ai/Map-Drawing-Central-Park.csv

Download free eBooks at bookboon.com

http://files.bookboon.com/ai/NetLogo/Central-Park-Events.nlogo
http://files.bookboon.com/ai/Colour-Cylinder.nlogo
http://files.bookboon.com/ai/Knowledge-Representation.nlogo
http://files.bookboon.com/ai/Being-Map-Drawing.nlogo
http://files.bookboon.com/ai/Map-Drawing-Central-Park.csv

Artificial Intelligence – Agent Behaviour I

213

Intelligence

10	 Intelligence

HAL: I’m afraid. I’m afraid, Dave. Dave, my mind is going. I can feel it. I can feel it. My mind
is going. There is no question about it. I can feel it. I can feel it. I can feel it. I’m a…fraid.
Good afternoon, gentlemen. I am a HAL 9000 computer. I became operational at the H.A.L.
plant in Urbana, Illinois on the 12th of January 1992.

Stanley Kubrick and Arthur C. Clarke. 2001: A Space Odyssey.

Intelligence without Reason can be read as a statement that intelligence is an emergent property
of certain complex systems – it sometimes arises without an easily identifiable reason for arising.

Rodney A Brooks. 1987. Intelligence without reason.

The purpose of this chapter is to explore what intelligence is, and see how we might go about building systems that
exhibits intelligence. The chapter is organized as follows. Section 10.1 looks at the various ways people have defined
intelligence over the centuries. Section 10.2 explores whether we can have intelligence without representation or reason.
Section 10.3 looks at some of the remarkable achievements of AI systems, but points out there are many things these
systems still can’t do. Section 10.4 explains why we need design objectives for Artificial Intelligence and Section 10.5
looks at what makes good objectives in general. Section 10.6 suggests several design objectives for AI, and highlights
various issues with their formulation. Section 10.7 discusses how we can build believable agents in order to achieve
some of the design objectives. Section 10.8 continues the discussion with a specific focus on problem solving.

10.1	 The nature of intelligence

What is the nature of intelligence? That is a question that has been pondered, and debated for thousands
of years. Many people over the centuries have offered their own view on the matter, as illustrated by the
quotes provided in Table 10.1.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

214

Intelligence

Name Birth-
Death

Profession Quote

Lao Tzu Unknown;
6th century
BC

Chinese record-
keeper (in the Zhou
Dynasty court)

“Knowing others is intelligence; knowing yourself is true
wisdom. Mastering others is strength; mastering yourself
is true power. If you realize that you have enough, you are
truly rich.”

Socrates 469–399 BC Greek philosopher “I know that I am intelligent, because I know that I know
nothing.”

Leonado
da Vinci

1452–1519 Italian scientist,
sculptor, various
others

“Anyone who conducts an argument by appealing to
authority is not using his intelligence, he is just using his
memory.”

Abigail Adams 1744–1818 American First Lady “I’ve always felt that a person’s intelligence is directly
reflected by the number of conflicting points of view he can
entertain simultaneously on the same topic.”

Albert
Einstein

1879–1955 German physicist “The true sign of intelligence is not knowledge but
imagination.”

Bertolt Brecht 1898–1956 German Poet and
Playwright

“Intelligence is not to make no mistakes, but quickly to see
how to make them good.”

Arthur Samuel 1901–1990 American AI pioneer “[T]he aim [is] to get machines to exhibit behavior, which if
done by humans, would be assumed to involve the use of
intelligence.”

Alan Turing 1912–1954 British computer
scientist,
mathematician

“A computer would deserve to be called intelligent if it
could deceive a human into believing that it was human.”

Susan Sontag 1933–2004 American Writer “Intelligence is really a kind of taste: taste in ideas.”

Carl Sagan 1934–1996 American Astronomer,
Writer, Scientist

“Knowing a great deal is not the same as being smart;
intelligence is not information alone but also judgment, the
manner in which information is collected and used.”

Linus Torvalds 1969– Finnish software
engineer

“Intelligence is the ability to avoid doing work, yet getting
the work done.”

Table 10.1. Some quotes on the nature of intelligence.

It seems that everyone has their own opinion on what intelligence is or isn’t. Intelligence is a concept
that everyone knows about, but understands differently. As we have seen in the previous chapter, the
way each person understands a particular concept will have its own unique ‘flavour’. Perhaps one of the
most interesting quotes above is by Susan Sontag that uses an analogy between taste and intelligence.
Taste is a complex sensation in four dimensions – sweetness, sourness, bitterness and saltiness. Similarly,
intelligence is a complex concept, with multiple dimensions.

Download free eBooks at bookboon.com

http://thinkexist.com/quotation/intelligence_is_the_ability_to_avoid_doing_work/164410.html
http://thinkexist.com/quotation/intelligence_is_the_ability_to_avoid_doing_work/164410.html

Artificial Intelligence – Agent Behaviour I

215

Intelligence

Intelligence is multi-faceted – its nature cannot be defined using one of these quotes alone; it requires all
of them. As an analogy, try describing the Mona Lisa. One person’s description of the painting may be
anathema to another person. To imagine that we can distil the Mona Lisa down to a few written words,
and then naïvely believe other people will agree with us that it is the one and only definitive description, is
like believing that people should only ever eat one type of food, or enjoy looking at one type of painting,
or read one type of book. The Mona Lisa painting continues to inspire people to write more and more
words about it. Similarly, intelligence is not something we can elucidate definitively. But that will not
stop people from continuing to do so, since in so doing further insights can be gained into its nature.

Although definitions of intelligence are fraught with problems, we can look for desirable properties of
intelligence that we can help us to describe the nature of intelligence. In other words, we can help define
the nature of intelligence by describing what it ‘looks’ like or what it ‘tastes’ like. Using the taste analogy,
we can think of these properties as being ‘ingredients’ in a recipe for intelligence – we need to mix them
together in order to make a particular taste, which some people will like, while others may not, preferring
alternative tastes. For example, we can use the analogy of African and Australian explorers trying to
describe what a giraffe or platypus looks like to someone who has never seen it. These explorers will use
words (concepts) that they are familiar with, such as ‘long neck’ and ‘fish-like tail’, but their description
will be ‘flavoured’ by their own unique perspective. Whatever words they come up with, they will have
over-emphasized certain features and ignored other important ingredients.

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/EOT

Artificial Intelligence – Agent Behaviour I

216

Intelligence

Similarly, AI researchers with a background in knowledge engineering and the symbolic approach to AI
will describe intelligence using ingredients such as the following:

•	 the capacity to acquire and apply knowledge;
•	 the ability to perform reasoning; and
•	 the ability to make decisions and plan in order to achieve a specific goal.

AI researchers who prefer a behavioural-based approach will describe the intelligent behaviour of
embodied, situated agents using ingredients such as:

•	 the ability to perform an action that an external intelligent agent would deem to be intelligent;
•	 the ability to demonstrate knowledge of the consequences of its actions; and
•	 the ability to demonstrate knowledge of how to influence or change its environment in order

to affect outcomes and achieve its goals.

If we think of intelligence using an analogy of mapping, as discussed in the previous chapter, then we
might use the following ingredients to describe intelligence:

•	 the ability of an embodied, situated agent to map environments, both real and abstract (i.e.
recognize patterns to provide useful simplifications and/or characterizations of its environments);

•	 the ability to use maps to navigate around its environments;
•	 the ability to update its maps when it finds they do not fit reality; and
•	 the ability to communicate details of its maps to other agents.

It is important to realise, however, that these are not definitive descriptions, just ingredients in alternative
recipes for intelligence.

In the previous chapters, we have seen various examples (implemented as models in NetLogo) that have
demonstrated some of these ingredients. In some respects, these models have exhibited a small degree
of intelligence in the sense that if we observed a human agent with the same behaviour, we would deem
that to be a sign of intelligence. In the next volume of this book series, we will also see other models that
will demonstrate more advanced technologies. It can be argued, however, that these examples show no
true intelligence – but of course that depends on your own perspective, and the ingredients with which
you choose for your own recipe for intelligence.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

217

Intelligence

10.2	 Intelligence without representation and reason

In the last chapter, a question was asked about whether it was possible to have knowledge without
representation. Similarly, we can ask ourselves the following question: “Is it possible to have intelligence
without representation?” In a seminal paper, Rodney Brooks (1991) considered exactly this same question.
In another paper (Brooks, 1991), he also considered the related question: “Is it possible to have intelligence
without reasoning?” As discussed in the previous chapter, Brooks favours the embodied, situated approach
to AI – the sub-symbolic paradigm rather than the classical symbolic paradigm. When he talks about
the possibility of intelligence without ‘representation’, he means that an embodied, situated agent does
not need to explicitly represent its environment – it can simply react to it. There is no need for the agent
to have an explicit knowledge base about the world it is situated in since the agent can directly ‘consult’
it by interacting with it.

Brooks goes further and states that intelligence is an emergent property of certain complex systems (see
quote at the beginning of this chapter). Brook’s ideas are interesting in that it raises the possibility that,
in designing AI systems, we may not have to do all the work ourselves. If we can find the right way of
setting up the initial conditions of the system, the system itself will do the work for us, and through
self-organisation, intelligence will emerge as a result. Unfortunately, although this idea is very intriguing,
no one as yet has figured out how to set up the necessary initial conditions.

As pointed out by other researchers, Brook’s approach to AI is not necessarily free of representation
or reasoning. The ‘knowledge’ needed for the reactive-based insect-like robots that his team has built
to demonstrate his approach is in fact represented within the subsumption architecture and finite state
automata used to design the robots. (We will learn more about this in the next volume). It can also be
argued that this architecture does a basic form of reasoning, although this is not the same as the traditional
symbolic-based form of reasoning in classical AI terms. If we accept these arguments, however, then we
must also agree that the ants and termites described in previous chapters also use representation and
perform reasoning – since the ants’ ‘knowledge’ is defined by its instinctive behaviours and distributed
throughout the environment, not in some internal state that is dynamically updated within a single agent.

Brook’s embodied, situated approach focuses on specific ingredients for intelligence. Gärdenfors
conceptual spaces theory offers an alternative hybrid approach that tries to explain how further ingredients
for intelligence may arise, conceptual as well as symbolic and sub-symbolic. Further exploration of these
ideas is required if we are to achieve the necessary ingredients for human-level intelligence.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

218

Intelligence

10.3	 What AI can and can’t do

The field of Artificial Intelligence has come in for some criticism over the years for the grandiose
predictions with which it is often associated and the perceived failure of the field to deliver on them.
Many researchers in the past have made the mistake of seriously underestimating the difficulty of the
task. Herbert Simon predicted that by 1967 a computer would be world champion in chess – it took
until 1997 before the world champion was first beaten by a computer (see below). He also predicted
(again by 1967) that a computer would be able to discover a new mathematical theorem and prove it.
The discovery of mathematical theorems has proved difficult – an important new theorem has yet to be
discovered by a computer – although techniques for automated theorem proving have been around for
some time (again see below). Marvin Minsky, again in 1967, predicted that the problem of creating AI
would substantially be solved within a generation.

Download free eBooks at bookboon.com

Click on the ad to read more

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

Artificial Intelligence – Agent Behaviour I

219

Intelligence

The predictions of the early AI researchers provided inspiration for Stanley Kubrick and Arthur C.
Clarke’s HAL 9000 computer that became operational in their story in 1992 (see quote at the beginning
of this chapter). Almost two decades latter, their vision of computers with emotional and conversational
capabilities is still far from reality. Further claims have been made for more specific sub-fields of AI – it
was claimed back in 1957, for example, that machine translation would be solved within three to five
years. Anyone today using online machine translation services, or machine translation software, will
be aware this is far from the case. Present predictions claim that we will have computers with greater
processing power than the brain by 2020, and robots with human intelligence by 2050 (see Section 1.3),
and even robots with the ability to beat humans at football (also by 2050).

Ray Kurzweil (1990) in The Age of Intelligent Machines has made many predictions concerning computer
technology and AI specifically, many of which have come true, but some which have not (such as his
prediction that by 2009, users would rely mainly on speech recognition to communicate with their PCs
rather than using keyboards). In The Singularity is Near: When Humans Transcend Biology (Kurzweil,
2005), he postulates what he calls a ‘Singularity’ occurring within our lifetimes (in 2045). This will be a
disruptive world-altering event that will forever change the course of human history and will happen when
AIs surpass human beings as the most intelligent entities on the planet. From that time on, technological
development will be taken over by machines, and we, as humans, will no longer be able to keep up.

It is very difficult to predict the future, especially when it comes to technological advancement, and
whether Kurzweil’s predictions eventuate we will have to wait and see. Rather than predicting what AI
might be able to achieve in the future, we can instead examine what AI has achieved in the past, and
also have a look at the present. For example, Table 10.2 lists twelve tasks to which we can apply AI.

The first nine items on this list are from an exercise (1.7) by Russell and Norvig (2002). In all of these
tasks, there have been ‘successes’ for AI to varying degrees. The degree of success, however, is open to
debate. For example, what is a decent game of table tennis? The answer is subjective – the difference in
standard between a child or a complete novice and an Olympic champion is substantial. TOSY’s TOPIO
robot is capable of interacting with a human to play table tennis in a limited sense. But fully autonomous
competitive tournament play is well beyond its capabilities.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

220

Intelligence

1.	 Play a decent game of table tennis.

2.	 Drive in the centre of Cairo.

3.	 Buying a week’s worth of groceries at the market or on the Web.

4.	 Play a decent game of bridge at competitive level.

5.	 Discover and prove mathematical theorems.

6.	 Write an intentionally funny story.

7.	 Give competent legal advice in a specialized area of law.

8.	 Translate spoken English into spoken Swedish in real time.

9.	 Perform a complex surgical operation.

10.	 Recognize and aesthetically appreciate the Mona Lisa.

11.	 Create a virtual Elvis.

12.	 Do all of the above.

Table 10.2. Twelve things AI can and can’t do (based on Russell and Norvig, 2002).

The DARPA Grand Challenge for 2007 included an ‘Urban Challenge’ where self-driving vehicles had
to negotiate a 96 km course in less than 6 hours while obeying all traffic regulations, and avoiding
obstacles and other traffic. Six vehicles successfully completed the course. However, this test was done
within the controlled environment of the George Air Force Base – the centre of Cairo (and other major
cities) is another matter, which raises the difficulty to a whole new level due to the unpredictability of
other human drivers and pedestrians. General Motors have recently announced a computer controlled
system that uses lasers and a video camera for the 2008 Opel Vectra called ‘Traffic Assist’ that will be
able to autonomously drive the car in heavy traffic at up to 60 mph. It will have the ability to recognize
signs and avoid obstacles, control the accelerator, steering and braking, and make course and speed
changes as needed. Whether people would be willing to let such as system loose at the moment in the
middle of Cairo is another matter.

Buying groceries is a task that people do frequently. Most people without disabilities find the task relatively
easy to accomplish. And yet, even the most fundamental of tasks such as bagging your groceries (a
problem considered by Patrick Winston in 1992) or Internet shopping (Russell and Norvig) is difficult
for an AI system. Negotiating the way around a busy market place, recognizing and examining the
quality of the items that are for sale, and directly haggling with the stall owners over price, are still well
beyond current AI systems.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

221

Intelligence

A computer program GIB was able to outplay all but 11 of the world’s top players at the World Bridge
Championships in Lille, France back in 1998. The best computer programs, such as Jack, can play on
equal terms against mid-level human players. However, the field of computer bridge is still in its infancy.
AI has been successful playing chess against human components, most notably with IBM’s Deep Blue
beating the world champion Gary Kasparov in 1997, and more recently, Deep Fritz defeating the world
champion Vladimir Kramnik in 2006. For the game of Go, where the search space is much larger,
computer programs are beginning to play at the professional level, but the gap is still considerable to
the playing level of really strong human players.

Automatic theorem proving or automatic deduction has been well researched within AI. The theorem
prover OTTER by Art Quaife, for example, has proven over 400 theorems of set theory, over 1200 theorems
of number theory, as well as Euclidean geometry theorems and Gödel’s incompleteness theorems. The
more difficult challenge now beginning to be investigated is automated theorem discovery given a set
of axioms of a domain. A proviso that makes this particularly difficult is that the discovered theorems
should be both interesting to humans, and also difficult to prove for humans and automatic theorem
proving systems.

Natural language generation is a venerable sub-field of natural language processing that involves the
automatic generation of written text. Story generation deals exclusively with the problem of getting a
computer to automatically write a story. Often the output produced by some story-generating computer
programs is unintentionally funny, because of the absurdity of the combination of words and phrases
that often result from a random selection process. Generating intentional humour that is both novel
and unique is much more complex. Similarly, producing a story with the complexities of James Joyce’s
Ulysses, the ‘tactile brilliance’ and warmth of Harper Lee’s To Kill a Mockingbird, the satirical humour of
Joseph Heller’s Catch 22 and the wry absurdity of Douglas Adam’s Hitchhiker’s Guide to the Galaxy: A
Trilogy in Five Parts is far beyond anything a computer can presently produce.

Techniques from the AI fields of expert systems and information retrieval systems have been adapted
to build legal advice systems and reproduce legal reasoning of judges. An expert system is consulted in
order to solve a particular case, and an information retrieval system is used to search documentation
to find similar cases. Clearly these legal advice systems do not yet have the abilities of real-life lawyers
such as those arguing the legal complexities in the Bright Tunes Music v. Harrisongs Music case (where
it was successfully argued that George Harrison’s My Sweet Lord was a copyright infringement of the
Chiffon’s He’s So Fine). If these systems did have the same abilities, we would now be able to replace all
lawyers with computers.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

222

Intelligence

Speech recognition and machine translation software of varying capabilities have been around since
the early 1960s. Search engines are increasingly using the latter to help people read online documents
in another language. The automatic processing of natural language is an especially difficult problem for
computers because the tolerance of native speakers to errors is very low. For example, speech recognition
systems often advertise accuracy results above 90%. This sounds adequate enough, but we would find it
very difficult to tolerate listening to another person if he made as many as 10 errors for every 100 words
spoken. Results for machine translation are considerably lower in comparison, often as a result of a
mismatch between the two different conceptual systems expressed by the source and target languages (for
a discussion of some issues concerning concepts, see Section 9.4). Compounding this are the difficulties
of performing simultaneous translation of spoken language where there can be significant noise (for
example, see Section 7.2 for an example of the differences between written and spoken language). Also,
simultaneous translation requires conversational ability. Despite many websites claiming otherwise, no
current chatbot or conversational agent is capable of holding a believable conversation with a person,
or is capable of passing the Turing Test. These systems conduct only a resemblance of a conversation,
and their inadequacies are readily apparent after a short conversation.

Download free eBooks at bookboon.com

Click on the ad to read more

89,000 km
In the past four years we have drilled

That’s more than twice around the world.

careers.slb.com

What will you be?

1 Based on Fortune 500 ranking 2011. Copyright © 2015 Schlumberger. All rights reserved.

Who are we?
We are the world’s largest oilfield services company1.
Working globally—often in remote and challenging locations—
we invent, design, engineer, and apply technology to help our
customers find and produce oil and gas safely.

Who are we looking for?
Every year, we need thousands of graduates to begin
dynamic careers in the following domains:
n Engineering, Research and Operations
n Geoscience and Petrotechnical
n Commercial and Business

http://s.bookboon.com/Schlumberger1

Artificial Intelligence – Agent Behaviour I

223

Intelligence

Robotic surgery has made significant advances in recent years. It can be characterised by techniques that
employ increasing levels of robotic autonomy. Remote surgery (or telesurgery) uses robotics to allow
surgery to be performed remotely by a human operator. Minimally invasive surgery typically involves
using keyhole surgical devices with remote-control manipulation. Unmanned surgery involves the use
of fully autonomous robotic surgeons and has had recent success. The first unmanned robotic surgery
took place in May, 2006 in Italy on a 47 year old male to correct heart arrhythmia, and the operation
was rated as better than that performed by an above average human surgeon. In January 2009, the first
fully robotic-assisted kidney transplant was performed in New Jersey. These major advances in robotics
and medical procedures have resulted in much greater surgical precision, and smaller incisions, leading
to less pain, less blood loss and shorter healing times.

Facial recognition software has made substantial advances over the years. It is now being used in many
places such as airports to automatically recognize criminals and terrorists, and in security systems for
biometrics. Facial recognition software, for example, was used to identify 19 people with pending arrest
warrants at the Super Bowl in Tampa Bay Florida in 2001. However, the software is far from perfect,
struggling with low resolution images and poor lighting, there are issues with privacy and they can be
circumvented by people wearing sunglasses or using varied facial expressions such as a large smile.
There were problems with early systems – for example, deployment in the London borough of Newham
failed to recognize a single criminal over a period of several years. Recent advances have seen significant
improvement in accuracy, outperforming humans in some experiments including showing an ability
to differentiate between identical twins. Clearly, a straightforward application of this software would be
the recognition of a painting such as the Mona Lisa. Much more difficult is the classification of a large
number of images for image retrieval purposes on an Internet scale. Search engines still rely mostly on
surrounding text in online documents to help identify images since this achieves effective results, is
much faster and requires much less resources. A full aesthetic appreciation of artistic images, however,
such as the Mona Lisa, that produces a unique and critical analysis of the differences in painting style
and content, is also beyond current technology.

Motion capture (also called mocap) is a technique used for animation in movies and computer games
that captures the movement of a human or animal and then generates realistic movement virtually using
a digital model. Mocap techniques used for Peter Jackson’s King Kong movie, for example, enabled virtual
doubles to be created for the main characters that are so good they are difficult to tell apart from the real
thing. A virtual Elvis that improvises in real-time with the ability to sing new songs not pre-recorded
when he was alive (unlike the virtual Elvis that sang with Celine Dion on American Idol) is still beyond
the state-of-the-art.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

224

Intelligence

Collectively, humans are capable of doing all of the tasks listed in Table 10.2. However, it is unlikely
there is a single human who exists today who can do all of these tasks by herself, unless she is a bridge-
playing art-appreciating Swedish surgeon who is a grandmaster in chess dabbling in law, mathematics
and computer animation that writes funny stories in her spare time (if she has any). To expect an AI
to do all of these tasks is perhaps raising the bar too high on our expectations of what AI is or should
be capable of.

10.4	 The Need for Design Objectives for Artificial Intelligence

One of the major difficulties for Artificial Intelligence research is that it has yet to hit upon a workable
definition of what intelligence is (perhaps because one is not possible as alluded to in Section 10.1).
Defining intelligence is fraught with problems, and has been a source of philosophical debates for
centuries. Peter Norvig (2007), for example, has stated that in writing his AI textbook Artificial Intelligence:
A Modern Approach (Russell and Norvig, 2002), they tried to define Artificial Intelligence by avoiding
“philosophical debates” and instead concentrated on describing how to build the “best possible programs”.
From a pragmatic point of view, when designing systems that exhibit artificial intelligence, we can take
an engineering perspective – we know what intelligence is, we will know when our systems demonstrate
intelligence when we observe them, so we do not necessarily need to define what it is.

However, this avoidance of providing a definition of intelligence upfront results in a lack of preciseness in
the literature and research. The terms “artificial intelligence” and “intelligent systems” are often misused,
with very little justification as to why a system is “intelligent”. Without a definition of intelligence, the
problem becomes that it is no longer clear whether what has been built really is in fact “intelligent”.
Early AI systems in the 1970s and 1980s suffered from a lack of evaluation – there was a rush to build
new systems, but often very little evaluation was undertaken of how well the systems worked. Without
a working definition of intelligence, the same problem occurs now with current AI systems – how can
we evaluate how effective our AI system might be if we do not have a definition of what it should be
(or even achieve or do)?

We can, however, avoid the philosophical pitfalls, and rather than attempting to define intelligence, and
making a claim that this definition is the “right” one, instead we can propose design objectives for the AI
systems that we wish to build. We can state that, from a design perspective, these are the objectives that
we wish our AI system to achieve. We then are free to propose these objectives, add new ones and alter
existing ones as we see fit in order to improve the design because we ourselves are the designers. Other
people may criticize whether our objectives are worthwhile from an engineering perspective (i.e. they
do not produce “good” programs, or are not as good as other approaches), but the philosophical debate
is only relevant in the sense that it can help inform and improve our design. Evaluation now becomes
simpler – all we need to do is evaluate whether we have achieved our design objectives.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

225

Intelligence

10.5	 What are Good Objectives?

However, what are some good objectives? First, we need to look at what makes a good objective. In
project management, there is a well-known acronym that is used to guide the crafting of good objectives –
SMARTER (see Table 10.3) – where each letter in the acronym stands for desirable attributes. The designer
can ask questions about the suitability of an objective he or she has proposed – whether it is specific,
whether it can be measurable, whether it is achievable, whether it has a definite time-limit, and so on.
Devising good objectives, however, is more of an art than a science, and this is perhaps reflected by the
disagreement on the terms used for each of the letters. Perhaps the terms most relevant for Artificial
Intelligence research are the first four major terms – the need for the objectives to be specific, measurable,
achievable, and to a less extent realistic. The nature of these attributes will necessarily change with time
due to progress being made – as more knowledge is gained of what is achievable, of what is now realistic
compared to what was previously, and from improvements made in methods to evaluate or measure the
systems that have been built. The design objectives proposed in this book, based on existing literature
and insights of the author, should be considered more as a moving target rather than fixed in stone.

Letter Major Attribute Minor Attributes

S Specific Significant, Stretching, Simple

M Measurable Meaningful, Motivational, Manageable

A Achievable Attainable, Agreed, Assignable, Appropriate, Actionable, Action-oriented

R Realistic Relevant, Results/Results-focused/Results-oriented, Resourced, Rewarding

T Time-bound Time framed, Timed, Time-based, Timeboxed, Timely, Timebound, Time-Specific,
Timetabled, Trackable

E Exciting, Evaluated, Ethical

R Recorded, Rewarding, Reviewed

Table 10.3. SMARTER objectives, based on (SMART, 2008).

Perhaps the most famous objective in recent living memory, stated as a quote at the beginning of this
volume, was the objective “to go to the moon” set by President John F. Kennedy in 1961. This objective
is clearly specific, measurable and time-bound. Ultimately, it was shown to be achievable and realistic,
as the objective was met.

10.6	 Some Design Objectives for Artificial Intelligence

What, however, are some good design objectives for Artificial Intelligence? To devise suitable objectives,
we first need to propose an overall design goal. One design goal might be that we strive to mimic
human intelligence. The overall motivation for doing this is two-fold – first, in order that we can build
intelligent artefacts that might aid us in some manner, and secondly, in order that we might develop a
better understanding of own intelligence as a result.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

226

Intelligence

Yet our own intelligence is complex, puzzling and in many respects hidden from us. We have labels
for aspects of our intelligence that we often use to distinguish ourselves from other animals, such
as knowledgeable behaviour, intelligent behaviour, rationality, self-awareness, thoughtfulness and
consciousness, and perhaps we can use these for our design objectives, as shown below.

Design Principle 1:	 An AI system should be an agent-oriented system.
Design Goal 1:		 An AI system should mimic human intelligence.
Design Objective 1.1:	 An AI system should act in a knowledgeable way.
Design Objective 1.2:	 An AI system should act intelligently.
Design Objective 1.3:	 An AI system should act rationally.
Design Objective 1.4:	 An AI system should act as if it is self-aware.
Design Objective 1.5:	 An AI system should act as if it thinks.
Design Objective 1.6:	 An AI system should act as if it is conscious.

Design 10.1 Design for an Artificial Intelligence system.

Download free eBooks at bookboon.com

Click on the ad to read more

American online
LIGS University

▶▶ enroll by September 30th, 2014 and

▶▶ save up to 16% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

Artificial Intelligence – Agent Behaviour I

227

Intelligence

An obvious failing with these design objectives is that they clearly break the SMARTER objectives
mnemonic for all the major attributes:

•	 They are not specific enough since we currently have no workable definitions for knowledge,
intelligence, rationality, self-awareness, thoughtfulness and consciousness, at least in the
sense that they might help inform us as to how to build systems that exhibit such attributes.

•	 It is not at all clear whether these objectives are achievable – in the next decade, or our
lifetime, or even at all. Hence, these objectives may not even be realistic.

•	 And setting a definite time-bound on them is currently out of the question. We certainly do
not want to fall into the same trap that previous AI advocates fell into in previous decades
when they professed that all manner of solutions would be found in the “not too distant future”.

So, clearly, these do not seem to be very good objectives. Yet the objective that a system act in a
knowledgeable way (Design Objective 1.1), is the implicit objective for a knowledge-based system, Design
Objective 1.2 is the implicit objective for intelligent systems, and the others are key aspects of human
intelligence that we will need to mimic to achieve Design Goal 1.

Clearly, we need to be much more specific with our design objectives. In addition, it is not clear how
achievable each of these objectives is. At first glance, regarding the first objective, that of acting in a
knowledgeable way, one could argue that such systems already exist today. Therefore, this objective
might seem to be more readily achievable than the other objectives. But what does it really mean to act
in a knowledgeable way? Moreover, what do we mean by ‘knowledge’ for that matter? If we mean that
the agent-oriented system must have sufficient knowledge of its environment, itself and other agents in
order that it can act in an knowledgeable manner, and demonstrate understanding of that knowledge,
then achieving knowledge may be as difficult as achieving any of the other objectives. It may in fact be
the key to the other objectives, and once it is achieved, the others may perhaps be achieved more easily.

One could also argue that the objective that the system exhibit intelligent behaviour (Design Objective
1.2) already covers the other objectives – a system must already exhibit knowledge, rationality, self-
awareness, thoughtfulness and consciousness if it is to mimic intelligent human behaviour. However, it
depends on how we define these properties. If we wish to use the term ‘intelligence’ in a manner similar
to how we use it in English, this would suggest that a narrower definition might be more appropriate.

For example, we can say (in English) that a mathematician exhibits intelligence when solving an equation,
and an inventor exhibits intelligence when creating a new system design that is patentable. Yet, computer
systems have already demonstrated the ability to do both tasks in particular domains. So hence, one
can claim that computers have already exhibited intelligence, at least in the narrow sense that the term
is being used in this context. However, although everyone would agree that the mathematician and
inventor are thoughtful and conscious, very few people would agree that these computer systems exhibit
such properties.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

228

Intelligence

An important aspect of intelligence is the ability to solve problems. AI systems have demonstrated a
wide variety of problem-solving capabilities as described in Section 10.3, with varying degrees of success.
However, AI systems have not yet demonstrated the ability to make a decent effort at solving all of these
problems unaided, without the benefit of solutions devised by humans, by learning how to solve them
from scratch by either being taught by an external teacher or by progressive improvement through trial
and error. A mark of human intelligence is that we have the ability to solve complex tasks by starting
out as novices and learning through experience how to become experts. Importantly, we can also adapt
solutions from one problem domain to another, innovating as a result, and we also have the ability to
come up with completely novel solutions.

One way of making our design objectives more specific is to clearly state how we are going to measure
when they have been achieved. We can perhaps use the Turing Test as a candidate test for conversational
intelligence to make Design Objective 1.2 more specific. But what about the other design objectives?
Are there other tests we can use, or invent, that might help us out? Indeed there is – for example, there
exists a well-known test for self-awareness.

Download free eBooks at bookboon.com

Click on the ad to read more

 .

http://s.bookboon.com/AlcatelLucent

Artificial Intelligence – Agent Behaviour I

229

Intelligence

Thought Experiment 10.1: The Mirror Test for Self-Awareness.

The Mirror Test, proposed by Gordon Gallup Jr. in 1970, is a test for self-awareness in animals. The idea is to place
the animal in a room with a mirror. Two spots are surreptitiously marked on the animal using dye (perhaps while the
animal has been anesthetized) – one is the control spot placed in a hidden but accessible part of the body, the second
is only visible via a mirror (for example on the forehead between the eyes for primates). The animal is said to pass the
self-awareness test if it notices the second spot but ignores the first thereby demonstrating that the animal is able to
recognize its own reflection in the mirror. Animals said to have passed the mirror test are the great apes (bonobos,
chimpanzees, orangutans and gorillas), bottlenose dolphins, killer whales, elephants, and European Magpies.

Like the Turing Test for intelligence outlined in Thought Experiment 1.1, the Mirror Test for Self-Awareness has its critics.
Although extensively tested on primates, some argue that the test is not well-suited to animals who do not rely on vision
as their main sense, such as dogs who rely more on smell, or animals who do not have stereoscopic vision (rabbits and
deer), or animals who may shy away from threatening eye contact. Therefore, the test is only a test of abilities closely
matching that of humans.

Interestingly, a robot named Nico has already passed the Mirror Test. The robot was developed as part of the Yale Social
Robotics Project that seeks to build anthropomorphic robots that interact with people using natural social cues. Nico is
able to recognize its own reflection in a mirror, but it does this only by recognizing its own motion. However, perhaps
this is all that Chimpanzees do as well.

Nico seems similar to that of a self-aware being. If Nico was more human-like in appearance, how could we tell the
difference? Essentially, this is the same argument in favour of the Turing Test. If we are unable to tell the difference in
behaviour, then from an observational point of view (i.e. from the frame of reference of the agent making the observation)
the attribute of self-awareness – and similarly of intelligence for the Turing Test – has for all intents and purposes been
“achieved” in the agent being observed.

Although Nico is able to pass this test (i.e. it is able to mimic such behaviour), clearly it does not exhibit self-awareness
in the same way that humans do. Hence, our definition of self-awareness is too simple – we need to extend it in some
manner it to encompass the abilities of humans. When we have done this, we can then attempt to build robots that
exhibit behaviour according to the extended definition.

Although experiments such as these do have their critics, this example illustrates how they bring about a better
understanding of our own intelligence as a result.

What about the other design objectives? Rationality is an attribute often assigned to intelligent agents –
but what exactly do we mean when we use this term? Since our overall design goal is to mimic humans,
we can look at ourselves for inspiration on how to define what might be rational behaviour as opposed
to irrational behaviour. For example, it would not be rational for a person to harm himself or herself.
Neither would it be rational for that person, after finding out a cure for cancer, then to fail to tell other
people about it. That is, we can regard (by common use of the term in natural language) that sharing of
knowledge is a rational thing to do. Rationality is also associated with personal preferences – for example,
one person might think that being a vegetarian is irrational, yet a vegetarian might think the opposite,
that someone who ate meat is irrational instead.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

230

Intelligence

We could initially define that an agent acts rationally if it always acts to ensure its own survival and the
survival of its own family or others of its own kind. Then we could devise tests to see how the agent acts
in situations where it must decide between various courses of actions. We can create these situations in
some virtual environment or in a real environment for robotic agents. For example, does the robotic agent
act in a rational manner similar to humans when it is confronted with a choice between safely exiting
from a burning building or going through a wall of fire, to find out if there are other people still alive
in the building, when it knows that such an action will almost certainly lead to its probable death? A
rational being might consider its own survival first, whereas a robot without the ability to think in such
a manner is simply following a programmed sequence of actions (i.e. it is neither rational or irrational,
just a program).

Thoughtfulness and consciousness are considered by some to be the “holy grails” of Artificial Intelligence.
It is not at all clear how we might go about measuring for these attributes. Perhaps the best thing we can
do at the moment is to acknowledge the problem by leaving the design objectives for these attributes
as vague as they are in Design 10.1, and put aside the problem until we have a better understanding of
them, and how we might go about measuring when they have been achieved. Thought Experiment 10.2
proposes one possible way forward.

We can also consider an alternative test for intelligence. Often a term heard used in the games and movie
industries is “suspension of disbelief ”. That is, the goal of the creators is to suspend in the mind of the
person playing the game or watching the movie their belief that it is not real – the longer the suspension
of disbelief, the better the entertainment. In a sense, the games and movie designers are telling a story –
they want people to be immersed in the narrative they have created, just as an author of a novel wishes
her readers to be immersed in the story she has created.

For an adequate AI test for believability, however, suspension is not sufficient. We need to go further
and insist that the observer is not able to tell the difference to real life behaviour – even though, like the
Turing Test, they know in advance that at least one of the agents they are observing is artificial rather
than real. Hence, we can use these insights to propose another candidate test for intelligence, one based
on whether what is being observed is believable or not. If in a multi-player game, say – or a movie – the
animation of a virtual agent is so good that you cannot tell the difference to a real agent, even though
you know you are playing against or observing at least one computer agent, then the virtual agent is
said to have passed the test.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

231

Intelligence

Thought Experiment 10.2: Conversational Agents.

Let us assume that we have a computer chatbot (also called a “conversational agent”) that has the ability to pass the
Turing Test. If during a conversation with the chatbot it seemed to be “thoughtful” (i.e. thinking) and it could convince
us that it was “conscious”, how would we know the difference? Thus, we can use a variation of the Turing Test as a test
for thoughtfulness and consciousness, by asking the chatbot questions like the following:

1.	 “What are you thinking about?”
2.	 “What were you thinking about an hour ago?”
3.	 “How are you feeling at the moment?”
4.	 “Are you conscious?”

This test can be used to test for rationality by asking further questions as follows:

1.	 “Are you rational?”
2.	 “If your son was somewhere inside a burning building, but you knew you will probably die if you were to

go inside it to look for him, what would you do?”
3.	 “Do you think it would be rational for a person who found a cure for cancer to not tell anyone else about it?”

This illustrates the difficulty of passing the Turing Test, and why AI experts should be used to confirm when a
computer has truly passed the Turing Test for the first time (as they are the ones who understand how they are built
and can readily devise tests to trap the chatbot into revealing itself.)

Now imagine you are holding an imaginary conversation with another person in your own mind. We often do this
ourselves when we do mental rehearsals of a future situation, and perhaps this can be considered to be thought (at
least one manifestation of it). i.e. We can “think” of thought as being analogous to an imaginary conversation. Hence,
if we are able to build a truly “conversational” agent capable of passing the Turing Test, then we could get it to talk to
itself rather than a human. Would that then be like “thought”?

Download free eBooks at bookboon.com

Click on the ad to read more

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

Artificial Intelligence – Agent Behaviour I

232

Intelligence

We can now consider drafting variations to the original design objectives based on the above insights.
Note that the design objectives listed below are more a work in progress (we are trying to make them
measurable in some manner as a first step) rather than cast in stone; we should alter them using further
insights gained during the design process. Other designers will craft different objectives to meet their
specific needs. The real purpose for listing them here is to highlight that as potential AI designers
ourselves, we need to make such design objectives explicit – and stated upfront at the beginning of any
AI design project – rather than left unclear as has been a failing of many AI projects to date. We will
explore various agent technologies in the next volume of this book series to see how realistic they are.

Design Objectives for Believable Agents:

Design Objective 2.1:

An AI system should pass the believability test for acting in a knowledgeable way: it should have the ability to
acquire knowledge; it should also act in a knowledgeable manner, by exhibiting knowledge – of itself, of other
agents, and of the environment – and demonstrate understanding of that knowledge.

Design Objective 2.2:

An AI system should pass the believability test for acting in an intelligent and reasoning manner. It should be able
to solve problems for itself, through observation and learning, and through reasoning. It should also be able to
apply solutions from one problem domain to another without being shown how to do it.

Design Objective 2.3:

An AI system should pass the believability test for acting in a rational manner: firstly, by ensuring the best chances
for survival of itself and its own family or others of its kind; secondly, by sharing the knowledge it has gained with
other agents; and thirdly, by choosing to act according to its own personal preferences.

Design Objective 2.4:

An AI system should pass the Mirror Test and believability test for acting as if it is self-aware.

Design Objective 2.5:

An AI system should pass the believability test for acting as if it thinks and is conscious.

Design Objectives for Conversational Agents:

Design Objective 2.6:

An AI system should pass the Turing Test for intelligence, including a variation of the test outlined in Thought
Experiment 10.2 to test for rationality, thoughtfulness and consciousness.

Design 2 Modified design objectives for an Artificial Intelligence system.

10.7	 Towards believable agents

If we wish to design an AI system, the design criteria listed above in Section 10.6 provides us with some
possible paths forward. If our objective is to create a system that satisfies the believability criteria, then
we could proceed by following what we might call an ‘artificial life path’ to achieve our objective. In this
approach, the aim would be to create artificial life of increasing complexity and realism, whether real
(e.g. robotic) or virtual (i.e. virtual creatures and virtual humans). We will see how we might go about
doing this in Volume 2 of this book series.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

233

Intelligence

If our objective is to create a system with conversational ability, then we could follow an alternative
‘conversational path’ where we would try to design an AI with the ability to hold a believable conversation
with a human and therefore pass the Turing Test. Like with an artificial life approach, we could start
out with something simple, and then gradually increase its complexity until we are able to achieve our
design goal, or until we can show that the design goal is not achievable.

Many people have questioned whether conversational ability is a true test of intelligence. Whitby (1996)
has gone so far as to label the Turing Test as the biggest ‘blind alley’ in Artificial Intelligence. Whether one
agrees or disagrees with the Turing Test as a valid test for intelligence, when a computer passes the test this
will certainly become a milestone in AI research just as when a computer first beat the world champion
in chess has become a milestone. From a design perspective, we can consider these two endeavours
(beating the world champion at chess and passing the Turing Test) as being engineering challenges in the
same way as getting a computer to perform translation or play table tennis are engineering challenges.
The merit of having computers able to translate for us is obvious, while having them able to play table
tennis less so. As with translation and other important natural language processing tasks such as speech
recognition, the merit of having computers able to hold a believable conversation with us is also clear.

Joseph Weizenbaum devised an early conversational agent called Eliza in the mid-1960s that he described
as a ‘parody’ of a Rogerian psychotherapist (see Thought Experiment 1.2). Not long after, Kenneth
Colby devised another famous early conversational agent called Parry in 1972 that simulated a paranoid
schizophrenic. The NetLogo Chatbot model demonstrates how easy it is to create simple conversational
agents such as Eliza and Parry. A screenshot of the model is shown in Figure 10.1.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

234

Intelligence

Figure 10.1 Screenshot of the Chatbot model.

Two chatbots are implemented in the model – these are named Liza and Harry in deference to the two
early chatbots Eliza and Parry. They are not full implementations of these chatbots, although Harry
tries to be paranoid a bit like Parry. Their purpose is to show how easy it is to make a chatbot, but also
to show how difficult it is to get a chatbot to produce a sensible conversation. They can also serve as a
starting point for comparison. We will see how they can be improved in Volume 2 of this book series.

The screenshot shows a short transcript of a conversation with Harry. The conversation at first glance
seems reasonable, although Harry appears to be a bit insecure and possibly delusional. Anyone having
a conversation with Harry will soon realize that something is not quite right about him, and that this
has nothing to do with his perceived paranoia. Repeated execution of Harry will show that a believable
conversation is only possible in a small percentage of cases, and only for a short length of time. The
performance of Liza is even worse as there does not seem to be any common thread such as paranoia
that we can use to help us understand what she says.

The model uses an extension to NetLogo so that we can make use of regular expressions to define how
the agents respond to the user’s input. Regular expressions are a means for describing patterns that we
wish to identify in some text, and are used frequently in computer science, especially in natural language
processing. An extract of the code to define Harry’s responses is shown in NetLogo Code 10.1.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

235

Intelligence

extensions [re]
breed [rules rule]
breed [chatbots chatbot]
rules-own [regex responses]
chatbots-own [name rules-list failure-list]

globals [liza harry]

to setup
clear-all
create-chatbots 1
[set harry who

set name "Harry"
set shape "person"
set color red
set size 15
set label "Harry "
setxy 10 0
set rules-list
(list
;setup-rule regex unique-name list-of-responses
setup-rule "hello" (list "Who are you?" "Why are you speaking to me?"

"What do you want?" "How do you know me?")
setup-rule "bye" (list "bye" "yeah bye")
setup-rule "colou?r" (list "What about colour?" "I like blue"

"My favourite colour is blue… but don't tell anyone")
setup-rule "(\\w+)@(\\w+\\.)(\\w+)(\\.\\w+)*"

(list "I'm not giving you my address"
"I would rather not disclose my address")

setup-rule "sorry" (list "I still don't trust you"
"What do you want? Who are you really?")

setup-rule "(.+)bot(.+)"
(list "I am a bot. Why do you want to know? Who are you?"
"Whats with all the questions? Are you from MI5?")

setup-rule "(.+)did you(.+)"
(list "You will only use it against me if I tell you")

setup-rule "(.+)are you(.+)" (list "yes" "no" "maybe")
setup-rule "welcome(.+)" (list "Who are you?")
setup-rule "how are you(.+)"

(list "I'm ok. I will be much better when you leave me alone."
"Are you a doctor now?")

setup-rule "what do you think(.+) harry"
(list "Not very much to be honest" "meh")

setup-rule "go(.+)" (list "you first. I don't want to get caught"
"after you" "have you tried it yourself?"
"Are you trying to get me to do something illegal?")

setup-rule "have you(.+)" (list "should I?"
 "I don't know if I should do that. You might arrest me")

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

236

Intelligence

)
set failure-list
(list

"I think someone is watching me. This line may not be secure"
"uhu…"
"oh yeah I know. Do you ever get the feeling you are being watched?"
"continue…"
"Do you like beans? They give me gas!"
"Are you watching me?"
"Please stop watching me"
"I get nervous when people watch me"

)
]

end

to-report setup-rule [regex-str res]
; sets up a rule for matching a user's input

let me nobody
hatch-rules 1
[set regex regex-str

set responses res
set me who
hide-turtle] ; make it invisible in the environment

report me
end

 NetLogo Code 10.1 An extract of the code that defines the Harry chatbot in the Chatbot model.

The code first declares the regular expression extension re (see URL for Java code below), and then
defines two breeds, rules and chatbots. Rules agents own a regular expression (regex) and a list
of responses (responses). Chatbot agents own a name (name), a list of rules (rules-list), and
a list of responses (failure-list) used when it has failed to match any of the rules. The code then
lists an extract of the setup procedure that is used to load the chatbots in the Interface (see Figure 10.1).
This creates a new chatbot named "Harry" and then initialises the rules-list by repeatedly calling
the setup-rule procedure. This takes two arguments, a regular expression (regex-str) and then
a list of responses (res).

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

237

Intelligence

A look at the rules will show how the regular expressions are defined. The first rule has a simple text
string "hello" as its regular expression without any special characters with a specific meaning (these
are called ‘meta characters’). In this case, the rule will only match when the user enters the exact text
string “hello”. The response the chatbot will give is one picked randomly from the following list: “Who
are you?”, “Why are you speaking to me?”, “What do you want?” and “How do you know me?”. The
second rule also has a regular expression without any meta characters. It will only match the string
“bye” and responds with either “bye” or “yeah bye”. The third rule uses a regular expression with a single
meta character "?" that means that the previous character is optional, hence both the American and
British spellings of the same word, “color” and “colour”, will match. The fourth rule uses the regular
expression "(\\w+)@(\\w+\\.)(\\w+)(\\.\\w+)*" to detect when the user has typed in a
username (anything with the character ‘@’, some full-stops ‘.’ and intervening alphanumeric sequences or
underscores). The sixth rule uses the meta character sequence “(.+)” that is frequently used throughout
the rest of the rules. This meta sequence will match any sequence of intervening characters. Hence, this
specific rule will match the question “Are you a bot?” where the string “Are you a” is matched by the first
meta sequence, and “?” is matched by the second meta sequence. The way regular expressions work will
also mean that this rule will also match user input such as “I am a bot as well”, “I don’t like bots”, “-bot-”
and “=bot?”. This demonstrates how using regular expressions can be both curse and a blessing – a curse
when too many strings that we don’t want are matched, and a blessing because we can specify an infinite
variety of strings with just a few meta characters. For a full description of regular expressions and their
use in natural language processing, see Jurafsky and Martin (2008).

Download free eBooks at bookboon.com

Click on the ad to read more

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2015

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://s.bookboon.com/AXA

Artificial Intelligence – Agent Behaviour I

238

Intelligence

The code that defines what happens when the chat button is pressed in the Interface is listed in NetLogo
Code 10.2.

to chat
; chats with the user

if (bot = "liza") [chat-with liza]
if (bot = "harry") [chat-with harry]

end

to chat-with [this-chatbot]
; has a conversation with this-chatbot

let fired false
let pos 0
let this-chatbot-name [name] of chatbot this-chatbot

let user-reply user-input "Enter text: "
output-print "You say:"
output-print user-reply

ask chatbot this-chatbot
[set pos 0

while [pos < length rules-list]
[
if (fired = false)
[

ask rule item pos rules-list
[

re:clear-all
re:setup-regex regex user-reply
if (re:get-group-length > 0)
[output-type this-chatbot-name

output-print " says:"
output-print item random length responses responses
output-print ""
set fired true

]
]

]
set pos pos + 1
]

if (fired = false)
[

output-type this-chatbot-name
output-print " says:"
output-print one-of failure-list
output-print ""

]
]

end

NetLogo Code 10.2 What happens when the chat button in the Chatbot model is pressed.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

239

Intelligence

The chat procedure selects which chatbot to chat with (by calling the chat-with sub-procedure)
based on the value of the bot variable that is set using a slider in the Interface. This sub-procedure
has the user enter some text first, then it asks the relevant chatbot to process each of the rules in the
rules-list in increasing sequential order. Each rule is matched against the user input by using three
methods defined by the re extension: re:clear-all clears the current regular expression being
matched; re:setup-regex then sets up the regular expression and what it is being matched against;
and re:get-group-length is used to see if there has been a match. (These three methods call
methods defined in the Java API for regular expressions). If the rule matches, it will then choose one of
the responses at random. If no rule fires, it will choose one of the responses on the failure-list.

10.8	 Towards computers with problem solving ability

Conversational ability is only one ingredient of human intelligence. Another important ingredient is
problem-solving ability. Humans have a unique capability for solving problems. To illustrate, let us
examine seven problems that require intelligence for their solutions:

1.	 Searching for a better solution.

2.	 Representing knowledge.

3.	 Maintaining a conversation with a human.

4.	 Creating artificial life.

5.	 Creating artificial intelligence.

6.	 Making water flow uphill.

7.	 Finding a general method of problem solving that is applicable to all of these problems.

Table 10.4. Seven problems that require intelligence to solve.

These problems seem to be listed in increasing levels of difficulty (ignoring the last one for the time
being). The first five are problems discussed by this volume. The sixth seems to be insoluble, assuming we
are not allowed to use a pump. Some would argue the fifth one is as well. But are these problems really
increasingly more difficult? Perhaps they might be at the same level of difficulty. If we could devise a
general method of problem solving (as with the seventh item in the list), then we can use it to tackle all
of these problems. Humans already have that capability, since we have the ability to devise solutions to
each, evaluate where the solutions fail, repeatedly propose improvements or alternative solutions, until
we eventually reach a solution that satisfies us or we give up. This ability for problem solving is a key
ingredient of human intelligence.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

240

Intelligence

As stated in Chapter 8, searching behaviour is a fundamental component of intelligent behaviour.
Search algorithms in computer science and AI have been continuously developed and refined over the
last few decades by many people in a sustained programme of research. The word ‘research’ itself bears
testimony to the fundamental search process that is being carried out. Clearly, the ability to search for
alternative solutions to a problem, including the meta search problem of searching for a better search
method, is a fundamental component to human intelligence and to intelligence in general. The ability
to evaluate the ‘goodness’ of a solution, and to continually seek better solutions, is also a key ingredient
of problem solving.

We as humans are never satisfied. It is in our nature to strive to be better, both individually and collectively.
No matter how good we might have done in the past, there will always be someone who will want to do
better, for whatever reason. To illustrate, we only need to look at the ingenuity of solutions put forward
by past AI researchers in the search for methods to develop Artificial Intelligence.

We can characterise problem solving as a search of the solution space. Referring back to Chapter 4, where
the importance of movement to an agent was emphasized, we can think of improvement of a system
as movement performed by an agent from one part of the solution space to another. Progress is often
associated with forward movement. Commonly used English phrases reflect this analogy – for example,
“we have made forward progress”; “we have to take one step back to make two steps forward”; “we need
to make a breakthrough”; and “we are going down the wrong path”.

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/BI

Artificial Intelligence – Agent Behaviour I

241

Intelligence

We can try to improve the solutions that have been implemented as models in NetLogo in this volume.
Referring back to Table 10.4, the solutions described in Chapter 8 for the first item in the list – searching
for a better solution – implement only the basic algorithms, and there are many examples of other
search algorithms in the literature that lead to improved solutions in various circumstances. The solution
developed for the maze-searching problem, for example, that of searching between behaviours rather
than searching between paths, is inadequate if we wish to develop human level search capabilities for
an AI system. For that we need the agents to search the maze like a human would – the agent needs to
examine its environment from an embodied, situated perspective using sensory-motor co-ordination
and be cognitively aware of the choices when they occur, and also be aware of the past choices that have
been made. For the maze problem, for example, the agent needs to realise (i.e. be cognitively aware) that
there are alternative paths to follow when it reaches a junction in the maze.

Reviewing the solutions developed for the second item on the list – representing knowledge – the
Knowledge Representation model described in Chapter 9 implements only the basic methods of
representation and reasoning, and more sophisticated solutions exist in the literature. Substantial research
has been done in the field of knowledge representation over the last five decades, and researchers have
improved and are continuing to improve the solutions. More work is still required to solve some of the
deep problems associated with representing knowledge such as how symbols are grounded, and how
an embodied, situated agent can automatically acquire knowledge of non-trivial concepts. This work
can certainly benefit from insights from other fields such as cognitive science; Gärdenfors conceptual
spaces theory is one example.

Many people have attempted to build conversational agents in a vain attempt to pass the Turing Test but
to date all attempts have failed. The variety of these solutions is testament to the ingenuity of humans,
and of their problem solving abilities. The Chatbot model described in the previous section has obvious
limitations and can easily be improved in many ways. That essentially is the argument being put forward
here – this ability we have, as humans, to devise many different solutions to the same problem, is a
fundamental ingredient to our intelligence. For computers, however, there is no system yet devised that
is capable of generating the variety of solutions to a problem that humans can generate.

One of the holy grails in AI research has been to develop a general problem solver. Although evolutionary
algorithms such as Genetic Programming (see next volume) can generate novel solutions automatically,
these methods are not capable at the moment of generating solutions to highly complex open-ended
problems such as representing knowledge and building a conversational agent, or even creating artificial
life and artificial intelligence. If they were, then we could sit back and let them solve these problems
for us. Other solutions that have been devised, such as General Problem Solver (GPS) (Newell, Shaw
and Simon, 1959) and SOAR (Laird, Newell and Rosenbloom,1987), have attempted to solve this meta
problem – that of trying to get an agent to solve problems for itself – but to date, they have only been
capable of producing solutions to routine problems as opposed to complex real-world problems.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

242

Intelligence

Of course, we already have a “general problem solver” – ourselves. To illustrate how good we are at
problem solving, we can examine the sixth problem listed in Table 10.4 – making water flow uphill – in
order to defy gravity as a result. As stated above, at first glance this seems insoluble. However, history
is strewn with many examples where people have found solutions to problems once thought impossible
to solve – for example, flying, teleportation and invisibility, to name a few. As another example, the
Penrose triangle, a supposedly impossible shape, (shown on the left of Figure 10.2) was built and erected
in Gotschuchen, Austria in 2008 (shown on the right).

Figure 10.2 The Penrose triangle – an impossible shape?

James Dyson, a British industrial designer, was inspired by the drawing of the Dutch artist M.C. Escher
that depicts a scene containing an impossible waterfall (see image below). The drawing shows water
flowing uphill, defying logic and gravity, by going along four right angled turns at the same level, but
somehow ending up at a higher height to cascade down a waterfall ending back at the start. Dyson,
after looking at the drawing, started wondering whether it would be possible to make a similar waterfall.
After twelve months work, Derek Philips, a Dyson engineer, developed a method based on compressed
air bubbles that provided an illusion of water flowing uphill, and this was used in a garden fountain at
the Chelsea Garden Show in 2003.

 Escher’s Waterfall.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

243

Intelligence

Other examples of water flowing uphill can readily be found after a quick search in Google and youtube.
com. Some solutions include: making droplets of water creep uphill on a surface of polished silicon by
varying the degree of water resistance (developed by Manoj K. Chaudhury at LeHigh University); using
a magnetic field and a copper sulphate based solution (at the University of Bonn); and having liquids
suspended on a thin cushion of vapour over a superheated, ratcheted brass surface (at the University of
Oregon). Chaudhury’s solution is interesting as it has potential applications to other problems such as
microfluidic devices especially microchips equipped with miniature fuel cells, and heat transfer problems
involving systems in zero or microgravity.

The Water Flowing Uphill NetLogo model has been developed to illustrate our ability at problem solving.
The model includes various failed attempts at making water flow uphill in a simulated environment. The
overall solution, as depicted in Figure 10.3, is based on the idea of using reservoirs at increasing heights
arranged in a cascade, which is opposite to the usual downward cascade of a waterfall. Each reservoir
of water gradually fill ups, and then overflows through a pipe into the bottom of the next reservoir,
which then starts filling up, and so on. The key insight is that we need to use a one-way valve at the
end of the pipes to ensure that the water does not keep on filling the same reservoir as the height of
the water raises. In the simulation used in the NetLogo model, a small light blue line at the end of each
pipe depicts the one-way valve.

Download free eBooks at bookboon.com

Click on the ad to read more

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

Artificial Intelligence – Agent Behaviour I

244

Intelligence

None of the solutions implemented in the model successfully manage to get the virtual water to flow
upwards as intended. The problem is especially difficult if we wish to have a believable simulation since
we need to accurately simulate the way water flows, a non-trivial visualisation problem that is an active
area of research. The first solution provided in the model (shown on the top left of Figure 10.3) uses
basic turtle agents and can be run by selecting "turtle agents 1" in the Interface’s solution
chooser. The virtual water starts flowing downwards out of the pipe a bit like real water does, but when
it reaches the bottom of the first reservoir, it doesn’t spread out at the bottom properly. In fact, it seems
to just disappear into thin air, but this is because the turtle agents that represent the water droplets
just stay at the bottom and do not move. The same thing happens with the other turtle agent solution
("turtle agents 2"), but the difference this time is that the water droplets end up falling more
like snow flakes than real water.

Clearly, such solutions are nothing like real life, and need fixing. This ability to identify problems with
a particular solution, by matching the result of the simulation against what happens in real life, is a
key aspect of problem solving. A problem generates further problems that need to be solved. We can
choose to ignore these sub-problems for the time being, in the hope that we will be able to solve them
at a latter time, but they are going to have to be solved at some stage. Often these sub-problems can be
just as difficult if not more difficult than the original problem (such as the problem of how to simulate
water flow).

Figure 10.3 Screenshots of the failed attempts at making virtual water flow uphill in the Water Flowing Uphill model, using turtle
agents (left top), patch agents (right top), boid agents (left bottom), and particle agents (right bottom).

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

245

Intelligence

The second family of solutions provided by the model uses patch agents. The merit of this approach is
that the speed of the simulation now seems to be much faster than the turtle agent solutions. However,
the water droplets in the first patch agent solution ("patch agents 1") now behave nothing like
water does in real life (see image at the right top of Figure 10.3). Instead, they behave more like grains
of sand creating a rapidly increasing tower in the middle of the first reservoir. The other patch agent
solutions are an attempt to correct this problem, but end up as complete failures, although with interesting
results – "patch agents 2" covers the whole screen with water, "patch agents 3" fills the
reservoir with diagonal steps and "patch agents 3" creates a rectangle of water.

These solutions are obviously clear failures (at least to us; having a computer recognize this is much
more difficult). But sometimes failures, especially if they produce unexpected results, as these examples
do, can lead to unanticipated breakthroughs. Science is littered with serendipitous results – for example,
penicillin by Alexander Fleming, LSD by Albert Hofman, X-rays by Wilhelm Roentgen, the discovery of
the planet Uranus by William Herschel, and the microwave oven by Percy Spencer, to name a few. Perhaps
the following quote by Isaac Asimov best sums it up: “The most exciting phrase to hear in science, the
one that heralds new discoveries, is not ‘Eureka!’, but ‘That’s funny…’ ”. M.K. Stoskopf further states: “it
should be recognized that serendipitous discoveries are of significant value in the advancement of science
and often present the foundation for important intellectual leaps of understanding”. A computer, in
contrast, has yet to make a truly serendipitous discovery. This ability to recognize and exploit serendipity
is another key ingredient of intelligence.

The third family of solutions is based on using boids as discussed in Chapter 6. Recent research has
shown that boids are a useful solution for flow visualization, for example of blood flow (Hughes et al.,
2009). An attempt at using boids in the Netlogo model is made with the solution "boid agents 1"
(see image at the bottom left of Figure 10.3). The solution fails in the same way that the turtle agents fail,
but does produce some interesting results, with effects similar to spray-painting in some configurations.

The final family of solutions is based on using particle systems as implemented by the Particle System
Waterfall model that comes with the NetLogo Models Library. This model includes adjustments for
gravity, wind and viscosity in order to simulate falling water and water flow better. The code has been
adapted for the Water Flowing Uphill model in the solution "particle agents 1" (see image at
the bottom right of Figure 10.3). Although the water does now manage to flow uphill, it does this in a
very unexpected way, somehow managing to tunnel through the surrounding soil, nothing like real life.

Readers are encouraged to try to find a solution to this problem themselves, and in the process, observe
how they go about problem solving. The tricky aspect to this problem is not getting the model to work,
however, as that can be done readily enough with some effort. The real problem is getting a computer
to recognize for itself what this problem is, and generate solutions itself automatically. This ability needs
to be programmed into the next generation of AI systems if we are to take the next step towards AI
systems with human level intelligence. Perhaps the ultimate test for an AI system is whether it can create
an AI system itself.

Download free eBooks at bookboon.com

Artificial Intelligence – Agent Behaviour I

246

Intelligence

10.9	 Summary and Discussion

The importance of stating design criteria such as goals, principles and objectives for AI systems has been
emphasized and several design criteria have been proposed as a starting point for discussion. We do not
yet know, however, how to build an AI system despite some ingenuous solutions with impressive results
as discussed in Section 10.3. We need new researchers, current students of AI who will be researchers
of the future, to devise new solutions, or make them better, to critique them, to find out what’s wrong
with them, and to strive to devise better simulations closer and closer to reality.

One possibility is that a future AI system will do the work for us. Brooks’ embodied, situated approach
to intelligence offers the possibility that intelligence will emerge through the complex interactions
of agents with their environment. Or if we can build an AI system with similar problem solving
capability to humans, the system could figure out how to solve the problem for us, as it would have the
ability to generate and test solutions faster than we can. Either possibility, however, needs some major
breakthroughs before they can be realised.

Download free eBooks at bookboon.com

Click on the ad to read more

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

Artificial Intelligence – Agent Behaviour I

247

Intelligence

As a final word, we can make an analogy between designing AI systems and trying to get water to flow
uphill. We can spend a lot of scientific endeavour to find a solution that does not rely on changing the
problem. Or we can use an illusion, and make it look as if water is flowing uphill. Of course we can
always create a virtual environment where the laws of physics are what we decide ourselves. It is clear
that the solutions provided by the Water Flowing Uphill NetLogo model are inadequate, and do not
simulate real life well, and therefore need major improvement. Similarly, the current solutions for AI
systems are inadequate and require improvement, since we have not yet achieved the ultimate goal of
Artificial Intelligence, at least as defined according to the design objectives listed above.

Some people claim that it may be impossible to create an AI system that is intelligent the way we are
intelligent. But maybe we can create a system that has the illusion of intelligence. Or create intelligence in
a virtual world, or by having a robot embodied in the real world. For some people, this may be enough; for
others, not enough; and yet others, too much. But from our endeavours, we will certainly have explored
new places in the frontier of AI research, and gained new knowledge. The search will never be complete,
however, as it will simply suggest other paths to explore in a never-ending quest.

A summary of important concepts to be learnt from this chapter is shown below:

•	 There are many recipes for intelligence that require different ingredients.
•	 Conversational ability is an important ingredient for intelligence.
•	 Problem-solving ability is another important ingredient for intelligence.
•	 SMARTER objectives are needed first when designing AI systems.
•	 AI systems are beginning to produce excellent results in many fields, but for most of these systems, there is still

plenty of work to be done to achieve human competitive results and beyond.
•	 The Mirror Test is a contentious test for self-awareness.
•	 Believability is proposed as a criterion for testing an AI in virtual environments.

The code for the NetLogo models and extension described in this chapter can be found as follows:

Extension URL

Regular expressions http://aiia.cs.bangor.ac.uk/AI_Book/Java/RE/re.jar

Model URL

Chatbot http://files.bookboon.com/ai/Chatbot.nlogo

Water Flowing Uphill http://files.bookboon.com/ai/Water-Flowing-Uphill.nlogo

Model NetLogo Models Library (Wilensky, 1999) and URL

Particle System
Waterfall

Computer Science > Particle Systems > Particle System Waterfall
http://ccl.northwestern.edu/netlogo/models/ParticleSystemWaterfall

Download free eBooks at bookboon.com

http://aiia.cs.bangor.ac.uk/AI_Book/Java/RE/re.jar
http://files.bookboon.com/ai/Chatbot.nlogo
http://files.bookboon.com/ai/Water-Flowing-Uphill.nlogo
http://ccl.northwestern.edu/netlogo/models/ParticleSystemWaterfall

Artificial Intelligence – Agent Behaviour I

248

References

11	 References
Aglets. 2008. URL http://aglets.sourceforge.net/. Date accessed December 26, 2008.

Al-Dmour, Nidal and Teahan, William. 2005. “The Blackboard Resource Discovery Mechanism for
Distributed Computing over P2P Networks”. The International Conference on Parallel and Distributed
Computing and Networks (PDCN), Innsbruck, Austria, February 15–17, 2005.

ap Cenydd, L. and Teahan, W.J. 2005. “Arachnid Simulation: Scaling Arbitrary Surfaces”. EuroGraphics
UK, 2005.

Arnall, Alexander H. 2007. Future Technologies, Today’s Choices: Nanotechnology, Artificial Intelligence
and Robotics; A technical, political and institutional map of emerging technologies. Commissioned for
Greenpeace Environmental Trust. URL http://www.greenpeace.org.uk/node/599. Date accessed 23rd
August, 2009.

Baugh, A.C. 1957. A history of the English language. Routledge & Kegan Paul Ltd., London.

Bell, T.C., Cleary, J.G. and Witten, I.H. 1990. Text compression. Prentice Hall, New Jersey.

Bordini, Raphael H., Hübner, Jomi Fred and Wooldridge, Michael. 2007. Programming Multi-Agent
Systems in AgentSpeak using Jason. Wiley.

Brachman, Ronald J. and Levesque, Hector J. (editors) 1985. Readings in Knowledge Representation.
Morgan Kaufman Publishers.

Brockway, Robert. 2008. “The 7 Creepiest Real-Life Robots”.

URL http://www.cracked.com/article_16462_7-creepiest-real-life-robots.html. Date accessed November
6, 2008.

Brooks, Rodney A. 1991a. “Intelligence without representation”, in Artificial Intelligence, Volume 47,
pages 139–159.

Brooks, Rodney A. 1991b. “Intelligence without reason”, Proceedings of 12th International Joint Conference
on Artificial Intelligence, Sydney, Australia, August, pages 569–595.

Download free eBooks at bookboon.com

http://aglets.sourceforge.net/.
http://www.greenpeace.org.uk/node/599.
http://www.cracked.com/article_16462_7-creepiest-real-life-robots.html.

Artificial Intelligence – Agent Behaviour I

249

References

Brown, P.F., Della Pietra, S.A. Della Pietra, V.J., Lai, J.C. and Mercer, R.L. 1992. “An estimate of an
upper bound for the entropy of English”, Computational Linguistics, 18(1): 31–40.

Claiborne, R. 1990. English – It’s life and times. Bloomsbury, London.

Collins, M. and Quillian, M.R. 1969. “Retrieval time from semantic memory”. Journal of verbal learning
and verbal behavior, 8 (2): 240–248.

Cover, T.M. and King, R.C. 1978. “A convergent gambling estimate of the entropy of English”. IEEE
Transactions on Information Theory, 24(4): 413–421.

Crystal, D. 1981. Linguistics. Penguin Books, Middlesex, England.

Crystal, D. 1988. The English language. Penguin Books, Middlesex, England.

Dastani, Mehdi, Dignum, Frank and Meyer, John-Jules. 2003. “3APL – A Programming Language for
Cognitive Agents”. ERCIM News No. 53, April.

URL http://www.ercim.org/publication/Ercim_News/enw53/dastani.html. Date accessed December 25,
2008.

Download free eBooks at bookboon.com

Click on the ad to read more

http://www.ercim.org/publication/Ercim_News/enw53/dastani.html.
http://s.bookboon.com/volvo

Artificial Intelligence – Agent Behaviour I

250

References

D’Inverno, Mark, Luck, Michael, Georgeff, Michael, Kinny, David and Wooldridge, Michael. 2004.
“The dMARS Architecture: A Specification of the Distributed Multi-Agent Reasoning System”, Journal
of Autonomous Agents and Multi-Agents Systems, Volume 9, Numbers 1–2, pages 5–53.

Elert, Glen. 2009. The Physics factbook. URL http://hypertextbook.com/facts/. Date accessed June 13,
2009.

Etzioni, O. and Weld, D.S. 1995. “Intelligent agents on the Internet: Fact, Fiction, and Forecast”. IEEE
Expert, 10(4), August.

FIPA. 2008. URL http://www.fipa.org/. Date accessed December 27, 2008.

Ferber, J. 1999. Multi-Agent Systems – An Introduction to Distributed Artificial Intelligence. Addison-
Wesley. Pearson Education Limited. Edinburgh.

Fromkin, V., Rodman, R., Collins, P. and Blair, D. 1990. An introduction to language. Holt, Rinehart
and Winston, Sydney.

Gärdenfors, Peter. 2004. Conceptual Spaces: the geometry of thought. The MIT Press.

Gooch, A.A., & Willemsen, P. 2002. “Evaluating Space Perception in NPR Immersive Environments,
Proceedings Non-Photorealistic Animation and Rendering 2002 (NPA ‘02), Annecy, France, June 3–5.

Gombrich, E. 1972. “The visual image: Its place in communication”. Scientific American, 272, pages 82–96.

Grobstein, Paul. 2005. “Exploring Emergence. The World of Langton’s Ants: Thinking About Purpose”.
URL http://serendip.brynmawr.edu/complexity/models/langtonsant/index3.html. Date accessed
December 17, 2008.

Horn, Robert. 2008a. “Mapping Great Debates: Can Computers Think?”

URL http://www.macrovu.com/CCTGeneralInfo.html. Date accessed November 5, 2008.

Horn, Robert. 2008b. “The Cartographic Metaphor used in Mapping Great Debates: Can Computers
Think?” URL http://www.macrovu.com/CCTCartographicMtphr.html. Date accessed November 5, 2008.

Hudson, K. 1983. The language of the teenage revolution. Macmillan, London.

Download free eBooks at bookboon.com

http://hypertextbook.com/facts/.
http://www.fipa.org/.
http://serendip.brynmawr.edu/complexity/models/langtonsant/index3.html.
http://www.macrovu.com/CCTGeneralInfo.html.
http://www.macrovu.com/CCTCartographicMtphr.html.

Artificial Intelligence – Agent Behaviour I

251

References

Hughes, C.J. Pop, S.R. and John, N.W. 2009. “Macroscopic blood flow visualization using boids”, 23rd
International Congress of CARS – Computer Assisted Radiology and Surgery, Berlin, Germany, June.

Huget, Marc-Philippe. 2002. Desiderata for Agent Oriented Programming Languages. Technical Report
ULCS-02-010, University of Liverpool.

Ingrand, F.F., Georgeff, M.P. and Rao, A.S. “An architecture for real-time reasoning and system control”.
IEEEExpert, 7(6), 1992.

‘Intelligent Agents’ Wikipedia entry. 2008. URL http://en.wikipedia.org/wiki/Intelligent_agents. Date
accessed December 19, 2008.

JADE. 2008. URL http://jade.tilab.com/. Date accessed December 27, 2008.

Jobber, D. 1998. Principles and Practice of Marketing. McGraw-Hill.

Jurafsky, Daniel, and Martin, James H. 2008. Speech and Language Processing. (Second edition). Prentice-
Hall.

Download free eBooks at bookboon.com

Click on the ad to read more

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://en.wikipedia.org/wiki/Intelligent_agents.
http://jade.tilab.com/.
http://s.bookboon.com/Gaiteye

Artificial Intelligence – Agent Behaviour I

252

References

Kaelbling, L.P. and Rosenschein, S.J. 1990. Action and planning in embedded agents. In Maes, P., editor,
Designing Autonomous Agents, pages 35–48. The MIT Press: Cambridge, MA.

Knapik, Michael, and Johnson, Jay. 1998. Developing intelligent agents for distributed systems: Exploring
architecture, technologies, and applications. McGraw-Hill. New York.

Kruger, P.S. 1989. “Illustrative examples of Expert Systems”, South African Journal of Industrial
Engineering. Volume 3, number 1, pages 40–53, June.

Kuhn, R. and De Mori, R. 1990. “A cache-based natural language model”. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 12(6): 570–583.

Kumar, Sanjeev, and Cohen, Philip. 2004. “STAPLE: An Agent Programming Language Based on the
Joint Intention Theory”. Proceedings of the Third International Joint Conference on Autonomous Agents
and Multiagent Systems, pages: 1390–1391.

Kurzweil, Raymond. 1990. The Age of Intelligent Machines. MIT Press.

Kurzweil, Raymond. 2005. The Singularity is Near: When Humans Transcend Biology. Viking Penguin.

Lakoff, George. Conceptual Metaphors Home Page. 2009. URL http://cogsci.berkeley.edu/lakoff/. Date
accessed Jaunary 22, 2009.

Laird, John, Newell, Allen and Rosenbloom, Paul 1987. “Soar: An Architecture for General Intelligence”.
Artificial Intelligence, 33: 1–64.

Lakoff, George and Johnson, Mark. 1980. Metaphors we live by. Chicago University Press. (New edition
2003).

Lohn, Jason D., Hornby, Gregory S. and Linden, Derek S. 2008. “Human-competitive evolved antennas”,
AIEDAM: Artificial Intelligence for Engineering, Design, and Manufacturing (2008), 22:235–247
Cambridge University Press.

Luckham, D. 1988. The Power of Events: An Introduction to Complex Event Processing in Distributed
Enterprise Systems. Addison-Wesley Professional, Boston, MA.

Malcolm, Chris. 2000. “Why Robots won’t rule the world”.
URL http://www.dai.ed.ac.uk/homes/cam/WRRTW.shtml. Date accessed November 7, 2008.

Download free eBooks at bookboon.com

http://cogsci.berkeley.edu/lakoff/.
http://www.dai.ed.ac.uk/homes/cam/WRRTW.shtml.

Artificial Intelligence – Agent Behaviour I

253

References

Malone, D. 1948. Jefferson the Virginian. Little Brown and Co., Boston.

McBurney, P. et al. 2004. [co-ordinator] “AgentLink III: A Co-ordination Network for
Agent-Based Computing”, cited in IST Project Fact Sheet, URL http://dbs.cordis.lu/fepcgi/
srchidadb?ACTION=D&CALLER=PROJ_IST&QM_EP_RCN_A=71184.
Date accessed December 14, 2004.

McGill, D. 1988. Up the boohai shooting pukekos: a dictionary of Kiwi slang. Mills Publications, Lower
Hutt, New Zealand.

Metaphors and Space. 2009.
URL http://changingminds.org/techniques/language/metaphor/metaphor_space.htm. Date accessed
January 20, 2009.

Metaphors and Touch. 2009.
URL http://changingminds.org/techniques/language/metaphor/metaphor_touch.htm. Date accessed
January 22, 2009.

Minsky, Marvin. 1975. “A framework for representing knowledge”. In Winston, P.H., editor, The
Psychology of Computer Vision, pages 211–277. McGraw-Hill, New York.

Minsky, Marvin. 1985. The Society of Mind. New York: Simon & Schuster.

Moravec, Hans. 1998. Robot: Mere Machine to Transcendent Mind, Oxford University Press.
URL http://www.frc.ri.cmu.edu/~hpm/. Date accessed November 6, 2008.

Murch, Richard and Johnson, Tony. 1999. Intelligent Software Agents. Prentice-Hall, Inc.

Negnevitsky, M. 2002. Artificial Intelligence – A Guide to Intelligent Systems. Addison-Wesley Publishing
Company. Edinburgh.

Newbrook, M. 2009. Amazing English sentences. Linguistics Department, Monash University, Australia.
URL http://www.torinfo.com/justforlaughs/amazing_eng_sen.html. Date accessed August 25, 2009.

Newell, A. 1994. Unified Theories of Cognition, Harvard University Press.

Newell, A., Shaw, J.C. and Simon, H.A. 1959. Report on a general problem-solving program. Proceedings
of the International Conference on Information Processing. pages 256–264.

Download free eBooks at bookboon.com

http://dbs.cordis.lu/fepcgi/srchidadb?ACTION=D&CALLER=PROJ_IST&QM_EP_RCN_A=71184.
http://dbs.cordis.lu/fepcgi/srchidadb?ACTION=D&CALLER=PROJ_IST&QM_EP_RCN_A=71184.
http://changingminds.org/techniques/language/metaphor/metaphor_space.htm.
http://changingminds.org/techniques/language/metaphor/metaphor_touch.htm.
http://www.frc.ri.cmu.edu/~hpm/.
http://www.torinfo.com/justforlaughs/amazing_eng_sen.html.

Artificial Intelligence – Agent Behaviour I

254

References

Newell, A. and Simon, H.A. 1976. “Computer Science as Empirical Inquiry: Symbols and Search”,
Communications of the ACM, 19, pages 113–126.

North, M.N., and Macal, C.M. 2007. Managing Business Complexity with Agent-Based Modeling and
Simulation, Oxford University Press, New York, NY, USA.

Nwana, Hyacinth S. 1996. Knowledge Engineering Review, Vol. 11, No 3, pp. 1–40, September. Cambridge
University Press. URL http://agents.umbc.edu/introduction/ao/. Date accessed December 26, 2008.

Nilsson, Nils J. 1998. Artificial Intelligence: A New Synthesis. The Morgan Kaufmann Series in Artificial
Intelligence. Morgan Kaufmann Pub. Co.

Norvig, Peter. 2007. SIAI Interview Series – Peter Norvig.
URL http://www.acceleratingfuture.com/people-blog/?p=289. Date accessed October 12, 2008.

Odean, K. (editor). 1989. High steppers, fallen angels, and lollipops: Wall Street slang. Holt.

Odum, Eugene P. (1959). Fundamentals of Ecology (Second edition ed.). Philadelphia and London: W.B.
Saunders Co.

Download free eBooks at bookboon.com

Click on the ad to read more

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://agents.umbc.edu/introduction/ao/.
http://www.acceleratingfuture.com/people-blog/?p=289.
http://s.bookboon.com/Setasign

Artificial Intelligence – Agent Behaviour I

255

References

Pei, Mario. 1964. “A loss for words”, Saturday Review, November 14: 82–84.

Python. 2008. “What is Python good for?”. General Python FAQ. Python Foundation.
URL http://www.python.org/doc/essays/blurb/. Date accessed October 23, 2008.

Pfeifer, Rolf and Scheier, Christian. 1999. Understanding Intelligence. MIT Press.

van Rossum, Guido. 2008. “Glue It All Together With Python”.
URL http://www.python.org/doc/essays/omg-darpa-mcc-position.html. Date accessed October 24.
2008. Date accessed October 23, 2008.

Rao, A.S. 1996. “AgentSpeak(L): BDI agents speak out in a logical computable language”, in Agents
Breaking Away: Proceedings of the Seventh European Workshop on Modelling Autonomous Agents in a
Multi-Agent World, LNAI 1038, eds., W. Van de Velde and J.W. Perram, pages 42–55. Springer.

Reynolds, Craig. 1986. “Flocks, Herds and Schools: A Distributed Behavioral Model”, Computer Graphics,
21(4), pages 25–34.

Reynolds, Craig. 1999. “Steering Behaviors for Autonomous Characters”, Proceedings of the Game
Developers Conference, San Jose, California. Pages 763–782.

Reynolds, Craig. 2008. “Stylized Depiction in Computer Graphics – Non-Photorealistic, Painterly and
‘Toon Rendering: an annotated survey of online resources”, URL http://www.red3d.com/cwr/npr/. Date
accessed December 25, 2008.

Roussou, M. & Drettakis, G. 2003. Photorealism and Non-Photorealism in Virtual Heritage Representation.
Eurographics Workshop on Graphics and Cultural Heritage, 5–7, 46–57.

Russell, Bertrand. 1926. Theory of Knowledge for the Encyclopedia Britannica.

Russell, Stuart and Norvig, Peter, 2002. Artificial Intelligence: A Modern Approach. Second edition.
Prentice Hall.

Searle, John. 1980. “Minds, Brains and Programs”, Behavioral and Brain Sciences 3 (3): 417–457.

Searle, John. 1999. “The Chinese Room”, in Wilson, R.A. and F. Keil (eds.), The MIT Encyclopedia of the
Cognitive Sciences, Cambridge: MIT Press.

Segaran, Toby. 2007. Programming Collective Intelligence – Building Smart Web 2.0 Applications. O’Reilly
Media, Inc.

Download free eBooks at bookboon.com

http://www.python.org/doc/essays/blurb/.
http://www.python.org/doc/essays/omg-darpa-mcc-position.html.
http://www.red3d.com/cwr/npr/.

Artificial Intelligence – Agent Behaviour I

256

References

Segaran, Toby. 2008. blog.kiwitobes.com.
URL http://blog.kiwitobes.com/?gclid=CNewwd6WzJYCFQO11Aod2jAjxQ. Date accessed October
29, 2008.

Shannon, C.E. 1948. “A mathematical theory of communication”. Bell System Technical Journal, 27:
379–423, 623–656.

Shannon, C.E. 1951. “Prediction and entropy of printed English”. Bell System Technical Journal,
pages 50–64.

Simon, H.A. 1969. The sciences of the artificial (2nd ed.) Cambridge, MA. MIT Press.

Slocum, Terry. 2005. Thematic Cartography and Geographic Visualization. Second Edition. Upper Saddle
River, NJ: Prentice Hall.

SMART. 2008. SMART (Project Management) Wikipedia entry.
URL http://en.wikipedia.org/wiki/SMART_criteria. Date accessed October 12, 2008.

Smith, Brian C. 1985. Prologue to “Reflection and Semantics in a Procedural Language”, in Readings in
Knowledge Representation, edited by Brachman, R.J. & Levesque, H.J. Morgan Kaufmann.

Software Agent, 2008. Wikipedia entry for ‘Software Agent’.
URL http://en.wikipedia.org/wiki/Software_agent. Date accessed December 26, 2008.

SPADES FAQ. 2008. URL http://development.pracucci.com/wikidoc/index.php/SPADES_FAQ. Date
accessed December 25, 2008.

Taskin, H., Ergun, K., Ocaktan, M.A.B and Selvi, İ.H. 2006. “Agent based approach for manufacturing
enterprise strategies”. Proceedings of 5th International Symposium on Intelligent Manufacturing Systems,
May 29–31, 2006: 361–370.

Turing, Alan. 1950. “Computing Machinery and Intelligence”, Mind LIX(236): 433–460.

Whitby, Blay (1996), “The Turing Test: AI’s Biggest Blind Alley?”, in Millican, Peter & Clark, Andy,
Machines and Thought: The Legacy of Alan Turing, 1, pages 53–62, Oxford University Press.

Wilensky, U. 1999. NetLogo [computer software]. http://ccl.northwestern.edu/netlogo/. Center for
Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.

Download free eBooks at bookboon.com

http://blog.kiwitobes.com/?gclid=CNewwd6WzJYCFQO11Aod2jAjxQ.
http://en.wikipedia.org/wiki/SMART_criteria.
http://en.wikipedia.org/wiki/Software_agent.
http://development.pracucci.com/wikidoc/index.php/SPADES_FAQ
http://ccl.northwestern.edu/netlogo/.

Artificial Intelligence – Agent Behaviour I

257

References

Winston, P.H. 1977. Artificial Intelligence. Addison Wesley Publishing Company.

Wooldridge, Micheal. 2002. An Introduction to Multi-agent systems. John Wiley and Sons.

Wooldridge, Michael and Jennings, N.R. 1995. “Intelligent Agents: Theory and Practice”. Knowledge
Engineering Review, 10(2), June.

Xiaocong, Fan, Dianxiang, Xu; Jianmin, Hou; Guoliang, Zheng. 1998.“SPLAW: A computable agent-
oriented programming language”. Proceedings First International Symposium onObject-Oriented Real-time
Distributed Computing (ISORC 98), 20–22, pages:144–145.

Yao, A.C. 1979. “Some Complexity Questions Related to Distributed Computing”, Proceedings of 11th
ACM Symposium on Theory Of Computing (STOC), pp. 209–213.

Zhang, Yu, Lewis, Mark and Sierhuis, Maarten. 2009. “12 Programming Languages, Environments,
and Tools for Agent-Directed Simulation”.
URL: http://www.cs.trinity.edu/~yzhang/research/papers/2009/Wiely09/ADSProgrammingLanguages
EnvironmentsTools-Mark.doc. Date accessed 1st January, 2009.

Download free eBooks at bookboon.com

Click on the ad to read more

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://www.cs.trinity.edu/~yzhang/research/papers/2009/Wiely09/ADSProgrammingLanguages
http://s.bookboon.com/osram

	Part 2
Agent Behaviour I
	6	Behaviour
	6.1	What is behaviour?
	6.2	Reactive versus Cognitive Agents
	6.3	Emergence, Self-organisation, Adaptivity and Evolution
	6.4	The Frame of Reference Problem
	6.5	Stigmergy and Swarm Intelligence
	6.6	Implementing behaviour of Turtle Agents in NetLogo
	6.7	Boids
	6.8	Summary

	7	Communication
	7.1	Communication, Information and Language
	7.2	The diversity of human language
	7.3	Communication via communities of agents
	7.4	Communicating Behaviour
	7.5	The Small World Phenomenon and Dijkstra’s algorithm
	7.6	Using communicating agents for searching networks
	7.7	Entropy and Information
	7.8	Calculating Entropy in NetLogo
	7.9	Language Modelling
	7.10	Entropy of a Language
	7.11	Communicating Meaning
	7.12	Summary

	8	Search
	8.1	Search Behaviour
	8.2	Search Problems
	8.3	Uninformed (blind) search
	8.4	Implementing uninformed search in NetLogo
	8.5	Search as behaviour selection
	8.6	Informed search
	8.7	Local search and optimisation
	8.8	Comparing the search behaviours
	8.9	Summary and Discussion

	9	Knowledge
	9.1	Knowledge and Knowledge-based Systems
	9.2	Knowledge as justified true belief
	9.3	Different types of knowledge
	9.4	Some approaches to Knowledge Representation and AI
	9.5	Knowledge engineering problems
	9.6	Knowledge without representation
	9.7	Representing knowledge using maps
	9.8	Representing knowledge using event maps
	9.9	Representing knowledge using rules and logic
	9.10	Reasoning using rules and logic
	9.11	Knowledge and reasoning using frames
	9.12	Knowledge and reasoning using decision trees
	9.13	Knowledge and reasoning using semantic networks
	9.14	Summary and Discussion

	10	Intelligence
	10.1	The nature of intelligence
	10.2	Intelligence without representation and reason
	10.3	What AI can and can’t do
	10.4	The Need for Design Objectives for Artificial Intelligence
	10.5	What are Good Objectives?
	10.6	Some Design Objectives for Artificial Intelligence
	10.7	Towards believable agents
	10.8	Towards computers with problem solving ability
	10.9	Summary and Discussion

	11	References

