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4

STABILITY ANALYSIS OF STOCHASTIC SYSTEMS

4.1 Introduction

The impact estimation of perturbations, both determined and random ones,
is of a great importance for the functioning of real physical systems. There-
fore, it is reasonable to consider systems modeled by stochastic differential
equations. The present chapter deals with the various types of probabi-
lity stability for the above mentioned type of equations and develops the
method of matrix-valued Liapunov functions with reference to the system of
equations of Kats-Krasovskii’s form [82] and Ito’s form [78]. In the chapter
sufficient conditions are formulated for stability and asymptotic stability
with respect to probability, global stability with respect to probability, etc.

The notion of averaged derivative of matrix-valued Liapunov function
along solutions of the system that has the meaning of infinitesimal operator
[34] is crucial in the investigations of this chapter. In a large number of
cases this operator defines unequivocally a random Markov process that
models the perturbation in the system.

4.2 Stochastic Systems of Differential Equations in General

4.2.1 Notations

For the convenience of readers we collect the following additional nomen-
clature.

Let Rn be an n-dimensional Euclidean space with norm �·�, ∇u = ∂/∂u,
∇uv = ∂2/∂u∂v, where u and v can be either scalars or vectors. For
instance, if x ∈ Rn and v ∈ Rm → R, then ∇xv denotes the gradient
of vector v and ∇xxv is a matrix with elements ∂2v/∂xi∂xj , i, j ∈ [1, n].
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Let T = R+ = [0, +∞) and (Ω,A, P ) denote a probability space with
probability measure P , defined on the σ-algebra A of ω-sets (ω ∈ Ω) in the
sample space Ω. Every A measurable function on Ω is said to be random
variable. A sequence of the random variables designated by {x(t), t ∈ T }
is called a random process with parameter value t from T . We designate by
R[T , R[Ω, Rn]] the class of random processes defined on T with the values
in R[Ω, Rn]. Random function x ∈ R[[a, b]: R[Ω, Rn]] is called measurable
on the product, provided that x(t, ω) is a function measurable on (A′ ×A)
and defined on [a, b] × Ω with the values in Rn, where A′ designates the
σ-algebra of measurable in the sense of Lebesque sets on [a, b].

For the set A ∈ A, P (A) denotes the probability of event A and P (A/B)
means the conditional probability of event A under condition B ∈ A. Func-
tion x(t, ω) is called continuous with respect to t ∈ [a, b] if

P







�

t∈[a,b]

�

lim
δ→0

[�x(t + δ) − x(t)�] �= 0

�







= 0,

where δ > (< 0) when t = a(b).
We designate by C[[a, b], R[Ω, Rn]] the class of continuous functions de-

fined on [a, b].
Function x(t) admits derivative x′(t) for t ∈ [a, b] provided

P







�

t∈[a,b]

�

lim
δ→0

�

�

�

�

x(t + δ) − x(t)

δ
− x′(t)

�

�

�

�

�= 0

�







= 0.

Let E denote the expectation operator and {xt, t ∈ T } be a Markov
process. Then Ex,sxt denotes the expected value of xt at t ∈ T if it is
known that xs = x.

4.2.2 The Motion Equations of Random Parameter Systems

4.2.2.1 Equations of Kats-Krasovskii Form. We consider a system modeled
by equations of the form

(4.2.1)
dx

dt
= f(t, x, y(t))

with determined initial conditions

x(t0) = x0,(4.2.2)

y(t0) = y0.(4.2.3)
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Here x ∈ Rn, t ∈ T (or t ∈ Tτ = [τ, +∞), τ ≥ 0), y(t) is a perturbation
vector that can take the values from Y ⊂ Rn for every t ∈ T .

We assume that the vector function f is continuous with respect to every
variable and satisfies Lipschitz condition in variable x, i.e.

�f(t, x′, y) − f(t, x′′, y)� ≤ L�x′ − x′′�

in domain B(T , ρ, Y ) : t ∈ T , �x� < ρ, y ∈ Y (ρ = const or ρ = +∞)
uniformly in t ∈ T and y ∈ Y , and is bounded for all (t, y) ∈ T × Y in
every bounded domain �x� < ρ∗ (ρ∗ = const > 0).

Moreover, we assume that

(4.2.4) f(t, 0, y(t)) = 0 ∀ (t, y) ∈ T × Y,

i.e. the unperturbed motion of system (4.2.1) corresponds to the solution
x(t) ≡ 0.

In system (4.2.1) the random perturbation y(t) is considered to be a
random Markov process (see e.g. Doob [31] and Dynkin [34]). Further, two
main types of random Markov functions are under consideration.

Case A. The vector y(t) consists of components ys, s = 1, 2, . . . , r

which are independent of each others pure discontinuous Markov processes,
the transition functions P{y, τ ;A, t} of which admit the expansion

P{ys(t + ∆t) ≤ β, ys(t + ∆t) �= η | ys(t) = η}

= qs(t, η, β)∆t + o(∆t),
(4.2.5)

P{ys(τ) ≡ η, t < τ ≤ t + ∆t | ys(t) = η}

= 1 − q̃s(t, η)∆t + o(∆t).
(4.2.6)

Here o(∆t) is an infinitesimal value of the highest order of smallness
relatively ∆t, qs(t, η, β) and q̃s(t, η) are some known functions such that

qs(t, η,∞) = q̃s(t, η), s = 1, 2, . . . , r.

In general we assume almost all realizations ys(t, ω) of random process y(t)
to be piecewise constant functions continuous from the right.

It should be noted that if the set Y = {y1, . . . , yk} is one-dimensional
and finite, then the representation of functions q(t, η, β) and q̃(t, η) means
the representation of transition matrix

(4.2.7) pij(t + ∆t) = q(t, i, j)∆t + o(∆t), i �= j

Download free eBooks at bookboon.com
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where pij(t, t + ∆t) is a probability of transition yi → yj during the time
from t to t + ∆t.

The process y(t) is called a homogeneous Markov chain with a finite
number of states, if q(t, i, j) = q̃(i, j).

Case B. Vector y(t) is a solution of the generalized differential Ito equa-
tion (see e.g. Arnold [5] or Gikhman and Skorokhod [42]).

(4.2.8) dy(t) = a(t, y(t))dt + b(t, y(t))dω(t) +

∫

c(t, y(t), u)ν̃(dt, du)

Besides, a(t, y) and c(t, y, u) are r-component vectors with values in Rr,
y ∈ Rr, u ∈ Rr, b(t, y) is a r×m-matrix, ω(t) is a standard m-dimensional
Wienner process with independent coordinates, γ̃(t, A) = ν(t, A) − tλ(A),
γ(t, A) is a Poisson measure in Rr having a compact carrier, Eν(t, A) =
tλ(A), the process ω(t) and the measure ν(t, A) are independent of each
other.

For the existence conditions with only probability 1 and continuous from
the right solution of the equation (4.2.8) see Gikhman and Skorokhod [42].

Following Kats and Krasovskii [82] we shall use the following descriptive
interpretation of the solution of (4.2.1). Let almost every realization y(t, ω)
of a random process y(t) and the initial condition (4.2.2), (4.2.3) generate
completely continuous realization x(t, ω) of solutions to the equation

(4.2.9)
dx

dt
= f(t, x, y(t, ω))

lying in the domain B(T , ρ, Y ) and continuable on Tτ = [τ, +∞).
Then, the set of these realizations forms an (n + r)-dimensional ran-

dom Markov process {x(t), y(t)} that will be referred to as the solution of
equations (4.2.1) satisfying conditions (4.2.2) and (4.2.3).

4.2.2.2 Equation of Ito Form. We consider the equation

(4.2.10) dx = f(t, x)dt + σ(t, x)dy(t),

where t ∈ T , xt ∈ Rn, f : T × Rn → Rn, σ : T × Rn → Rn×m and
{y(t), t ∈ T } is a Markov process with independent increments. The sys-
tem of the equations (4.2.10) is perturbed by two specific types of stochastic
processes.

Case C. {y(t), t ∈ T }
∆
= {zt, t ∈ T } is a normed m-dimensional Wien-

ner process with independent components.
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Case D. {y(t), t ∈ T }
∆
= {qt, t ∈ T } is a normed m-dimensional dis-

continuous Poisson process with independent components.
For the physical interpretation of equation (4.2.10) see e.g. Arnold [5],

Kushner [90], et al. Functions f and σ are assumed to be smooth enough
and there exists a separable and measurable Markov process {xt, t ∈ T }
satisfying system (4.2.10), that is completely continuous with probability 1.

4.2.3 The Concept of Probability Stability

The notions of probability stability are obtained in terms of Definitions
1.2.1–1.2.3 by replacement of ordinary convergence x → 0, used there,
by various types of the probability convergence (convergence with respect
to probability, convergence in mean square or almost probable stability).
Before we introduce the definitions let us pay attention to the following.

Let the process y(t) be defined by Ito equation (4.2.8). Moreover, equa-
tions (4.2.1) and (4.2.8) and initial conditions (4.2.2) and (4.2.3) generate
(n + r)-dimensional Markov process {xt, y(t)}.

If x(t0) = 0, then we have with probability 1 that x(t) = 0 for all t ∈ T
and, therefore, the vector function {0, y(t)} is a solution of this system. Let
y(t) ∈ Y for all t ∈ T , and the set D = {0, Y } is a time-invariant set for
the process {xt, y(t)} in the sense that

P{ {x(t), y(t)} ∈ D | x(t0) = x0, y(t0) = y0} = 1

for {x0, y0} ∈ D.
Similar equality is valid for the processes {x(t), y(t)} generated by pure

discontinuous Markov functions y(t). Therefore, the notion of probability
stability discussed herein is based on the stability of an invariant set, for
instance D = {0, Y }.

Definition 4.2.1. The state x = 0 of the system (4.2.1) is:

(i) stable in probability with respect to Ti if and only if for every t0 ∈ Ti

and every ε > 0, and 1 > p > 0 there exists δ(t0, ε) > 0, such that

(4.2.11) �x0� < δ(t0, ε) and y0 ∈ Y

implies

(4.2.12) P

{

sup
t≥t0

�x(t; t0, x0, y0� < ε | x0, y0

}

> 1 − p
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for all t ∈ T0;
(ii) uniformly stable in probability with respect to Ti if and only if both

(i) holds and for every ε > 0 the corresponding maximal δM obeying
(i) satisfies

inf [δM (t0, ε) : t0 ∈ Ti] > 0;

(iii) stable in probability in the whole with respect to Ti if and only if
both (i) holds and

δM (t0, ε) → +∞ as ε → +∞ ∀ t0 ∈ Ti;

(iv) uniformly stable in probability in the whole with respect to Ti if and
only if both (ii) and (iii) holds.

(v) unstable in probability with respect to Ti if and only if there are
t0 ∈ Ti, ε > 0, p > 0 and τ ∈ T0, τ > t0 such that for every δ > 0
there is x0 : �x0� < δ and y0 ∈ Y , for which

P{ �x(τ ; t0, x0, y0� > ε | x0, y0} > 1 − p.

The expression “with respect to Ti” is omitted from (i)–(v) if and only
if Ti = R.

Definition 4.2.2. The state x = 0 of the system (4.2.1) is:

(i) attractive in probability with respect to Ti if and only if for every
t0 ∈ Ti there exists ∆(t0) > 0 and for every ς > 0 there exists
τ(t0, x0, y0, ς) ∈ [0, +∞) and p > 0 such that

�x0� < ∆(t0) and y0 ∈ Y

implies

P

{

sup
t≥t0+τ

�x(t; t0, x0, y0� < ς | x0, y0

}

> 1 − p;

(ii) (x0, y0)-uniformly attractive in probability with respect to Ti if and
only if both (i) is true and for every t0 ∈ Ti there exists ∆(t0) > 0
and for ς ∈ (0, +∞) there exists τu[t0, ∆(t0), Y, ς] ∈ [0, +∞) such
that

sup [τm(t0, x0, y0, ς) : x0 ∈ B∆(t0), y0 ∈ Y ] = τu[t0, ∆(t0), Y, ς]
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for all t ∈ T0;
(ii) uniformly stable in probability with respect to Ti if and only if both

(i) holds and for every ε > 0 the corresponding maximal δM obeying
(i) satisfies

inf [δM (t0, ε) : t0 ∈ Ti] > 0;

(iii) stable in probability in the whole with respect to Ti if and only if
both (i) holds and

δM (t0, ε) → +∞ as ε → +∞ ∀ t0 ∈ Ti;

(iv) uniformly stable in probability in the whole with respect to Ti if and
only if both (ii) and (iii) holds.

(v) unstable in probability with respect to Ti if and only if there are
t0 ∈ Ti, ε > 0, p > 0 and τ ∈ T0, τ > t0 such that for every δ > 0
there is x0 : �x0� < δ and y0 ∈ Y , for which

P{ �x(τ ; t0, x0, y0� > ε | x0, y0} > 1 − p.

The expression “with respect to Ti” is omitted from (i)–(v) if and only
if Ti = R.

Definition 4.2.2. The state x = 0 of the system (4.2.1) is:

(i) attractive in probability with respect to Ti if and only if for every
t0 ∈ Ti there exists ∆(t0) > 0 and for every ς > 0 there exists
τ(t0, x0, y0, ς) ∈ [0, +∞) and p > 0 such that

�x0� < ∆(t0) and y0 ∈ Y

implies

P

{

sup
t≥t0+τ

�x(t; t0, x0, y0� < ς | x0, y0

}

> 1 − p;

(ii) (x0, y0)-uniformly attractive in probability with respect to Ti if and
only if both (i) is true and for every t0 ∈ Ti there exists ∆(t0) > 0
and for ς ∈ (0, +∞) there exists τu[t0, ∆(t0), Y, ς] ∈ [0, +∞) such
that

sup [τm(t0, x0, y0, ς) : x0 ∈ B∆(t0), y0 ∈ Y ] = τu[t0, ∆(t0), Y, ς]
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(iii) t0-uniformly attractive in probability with respect to Ti if and only
if (i) is true, there is ∆ > 0 and for every (x0, y0, ς) ∈ B∆ × Y ×
(0, +∞) there exists τu(Ti, x0, y0, ς) ∈ [0, +∞) such that

sup [τm(t0, x0, y0, ς) : t0 ∈ Ti, y0 ∈ Y ] = τu[Ti, x0, y0, ς];

(iv) uniformly attractive in probability with respect to Ti if and only if
both (ii) and (iii) hold, that is, that (i) is true, there exists ∆ > 0
and for every ς ∈ (0, +∞) there is τu[Ti, ∆, Y, ς) ∈ [0, +∞) such
that

sup [τm(t0, x0, y0, ς) : (t0, x0, y0) ∈ Ti × B∆ × Y ] = τu(Ti, ∆, Y, ς).

(v) The properties (i)–(iv) hold “in the whole” if and only if (i) is true
for every ∆(t0) ∈ (0, +∞) and every t0 ∈ Ti.

The expression “with respect to Ti” is omitted if and only if Ti = R.

Definition 4.2.3. The state x = 0 of the system (4.2.1) is:

(i) asymptotically stable in probability with respect to Ti if and only if
it is both stable in probability with respect to Ti and attractive in
probability with respect to Ti;

(ii) equi-asymptotically stable in probability with respect to Ti if and
only if it is both stable in probability with respect to Ti and
(x0, y0)-uniformly attractive in probability with respect to Ti;

(iii) quasi-uniformly asymptotically stable in probability with respect
to Ti if and only if it is both uniformly stable in probability with
respect to Ti and t0-uniformly attractive in probability with respect
to Ti;

(iv) uniformly asymptotically stable in probability with respect to Ti if
it is both uniformly stable in probability with respect to Ti and
uniformly attractive in probability with respect to Ti;

(v) the properties (i)–(iv) hold “in the whole” if and only if both the
corresponding stability in probability of x = 0 and the correspond-
ing attraction in probability of x = 0 hold in the whole;

(vi) exponentially stable in probability with respect to Ti if and only if
there are ∆ > 0 and real numbers α ≥ 1, β > 0 and 0 < p < 1
such that �x0� < ∆ and y0 ∈ Y implies

P

{

sup
t≥t0

�x(t; t0, x0, y0� < α�x0� exp[−β(t − t0)] | x0, y0

}

> 1 − p.

This holds in the whole if and only if it is true for ∆ = +∞.
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The expression “with respect to Ti” is omitted if and only if Ti = R.

Remark 4.2.1. The definitions of stability in probability based on the
inequality

(4.2.13) P {�x(t; t0, x0, y0� < ε | x(t0) = x0, y(t0) = y0} > 1 − p

under the condition

�x0� < δ and y0 ∈ Y

does not characterize separate realizations of the process {x(t), y(t)}. I.e.
the solution can satisfy the condition (4.2.13), though at the same time
almost all realizations may not leave the domain �x� < ε (at various
times). Therefore, following Kats and Krasovskii [82] we consider inequality
(4.2.12) instead of (4.2.13).

Remark 4.2.2. The probabilities mentioned in Definitions 4.2.1–4.2.3
are not specified in the general case by the finite dimensional distributions
of the process {x(t), y(t)} and may not exist. However, it is known (see
Doob [31]) that a separable modification of the process {x(t), y(t)} can be
considered, having with probability 1 the realization continuous from the
right. In this case all realizations in question have the meaning.

4.2.4 Stochastic Matrix-Valued Liapunov Function

We relate with the system (4.2.1) the stochastic matrix-valued function

(4.2.14) Π(t, x, y(t)) = [vkl(t, x, y(t))], k, l ∈ [1, s]

where (t, x, y) ∈ B and vkl(t, 0, y(t)) ≡ 0 ∀ t ∈ T and y ∈ Y , and, besides,
vkl(t, ·) = vlk(t, ·) ∀ (k �= l) ∈ [1, s], vkl ∈ C(T × Rn × Y, R [Y, R]).

Similar to the determined case (see Chapter 2) the property of having a
fixed sign of matrix-valued stochastic function (4.2.14) is of importance in
the stability investigation of a stochastic system (4.2.1).

The concept of the property of having a fixed sign must correspond to

(1) the property of having a fixed sign of stochastic matrix;
(2) the property of having a fixed sign of scalar stochastic Liapunov

function;
(3) the construction of direct Liapunov method for stochastic systems.
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The expression “with respect to Ti” is omitted if and only if Ti = R.
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To achieve this we act as follows.
Let z ∈ Rs and function V ∈ C(T ×Rn ×Y s ×Rs, R [Y, R]) be defined

by the formula

(4.2.15) V (t, x, y, z) = zTΠ(t, x, y(t))z.

In view of Definitions 2.2.1–2.2.2 we present some definitions for stochastic
matrix-valued Liapunov function.

Definition 4.2.4. The stochastic matrix-valued function Π: R+×
B(ρ) × Y → R [Y, Rs×s] is referred to as

(i) positive (negative) definite, if and only if there exists a time-inva-
riant connected neighborhood N of point x = 0 (N ⊆ Rn) and
positive definite in the sense of Liapunov function w(x) such that
(a) Π is continuous, i.e. Π ∈ C(R+ ×N × Y, R [Y, Rs×s])
(b) Π(t, 0, y) = 0 ∀ t ∈ R+ and y ∈ Y ;
(c) inf V (t, x, y, z) = w(x) ∀ (t, y, z) ∈ R+ × Y × Rs;

(sup V (t, x, y, z) = −w(x) ∀ (t, y, z) ∈ R+ × Y × Rs);
(ii) positive (negative) definite on S, if and only if all conditions of

Definition 4.2.4 (i) are satisfied for N = S;
(iii) positive (negative) definite in the whole, if and only if all conditions

of Definition 4.2.4 (i) are satisfied for N = Rn.

Remark 4.2.3. If function Π does not depend on t ∈ R+, then in
Definition 4.2.4 the requirement of function w(x) existence is omitted and
conditions (a)–(c) are modified, and condition (c) becomes

(c′) V (x, y, z) = zTΠ(x, y)z > 0 ∀ (x �= 0, z �= 0, y) ∈ N × Rs × Y ,
(V (x, y, z) < 0 ∀ (x �= 0, z �= 0, y) ∈ N × Rs × Y ).

Definition 4.2.5. The stochastic matrix-valued function Π: R+×B(ρ)
×Y → R [Y, Rs×s] is referred to as

(i) positive semi-definite, if and only if there exist a time-invariant con-
nected neighborhood N of point x = 0 (N ⊆ Rn) such that
(a) Π is continuous in (t, x) ∈ R+ ×N ;
(b) Π is non-negative on N : zTΠ(t, x, y)z ≥ 0 ∀ (t, x, y) ∈ R+ ×

N × Y .
(c) Π vanishes at the origin zTΠ(t, 0, y)z = 0 ∀ (z �= 0, y ∈ Y );

(ii) positive semi-definite on R+ × S × Y if and only if (i) holds for
N = S;

(iii) positive semi-definite in the whole if and only if (i) holds for N =
Rn;
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(iv) negative semi-definite (in the whole) if and only if (−Π) is positive
semi-definite (in the whole) respectively.

The following assertion is proved in the same manner as Proposition
2.6.1 from Chapter 2.

Proposition 4.2.1. The stochastic matrix-valued function Π: R+ ×
B(ρ) × Y → R[Y, Rs×s] is positive definite, if and only if there exists a
vector z ∈ Rs and a positive definite in the sense of Liapunov function
a ∈ K such that

(4.2.16) zTΠ(t, x, y)z = zTΠ+(t, x, y)z + a(x),

where Π+(t, x, y) is a stochastic positive semi-definite matrix-valued func-
tion.

Definition 4.2.6. The stochastic matrix-valued function Π: R+×B(ρ)
×Y → R [Y, Rs×s] is referred to as

(i) decreasing, if and only if there exists a time-invariant connected
neighborhood N of point x = 0 and a positive definite on N func-
tion b ∈ K such that

V (t, x, y, z) = zTΠ(t, x, y)z ≤ b(x)

for all (t, x, y) ∈ R+ ×N × Y × Rs;
(ii) decreasing on S if and only if (i) holds for N = S;
(iii) decreasing in the whole if and only if (i) holds for N = Rn.

Proposition 4.2.2. The stochastic matrix-valued function Π: R+ ×
B(ρ) × Y → R [Y, Rs×s] is decreasing, if and only if there exists a vector
z ∈ Rs and a positive definite in the sense of Liapunov function c ∈ K

such that

(4.2.17) zTΠ(t, x, y)z = zTQ−(t, x, y)z + c(x),

where Q−(t, x, y) is a stochastic negative semi-definite matrix-valued func-
tion.

Definition 4.2.7. The stochastic matrix-valued function Π: R+×Rn×
Y → R [Y, Rs×s] is referred to as radially unbounded if and only if
zTΠ(t, x, y)z → ∞ as �x� → +∞ and y ∈ Y , t ∈ R+.
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(iv) negative semi-definite (in the whole) if and only if (−Π) is positive
semi-definite (in the whole) respectively.

The following assertion is proved in the same manner as Proposition
2.6.1 from Chapter 2.

Proposition 4.2.1. The stochastic matrix-valued function Π: R+ ×
B(ρ) × Y → R[Y, Rs×s] is positive definite, if and only if there exists a
vector z ∈ Rs and a positive definite in the sense of Liapunov function
a ∈ K such that

(4.2.16) zTΠ(t, x, y)z = zTΠ+(t, x, y)z + a(x),

where Π+(t, x, y) is a stochastic positive semi-definite matrix-valued func-
tion.

Definition 4.2.6. The stochastic matrix-valued function Π: R+×B(ρ)
×Y → R [Y, Rs×s] is referred to as

(i) decreasing, if and only if there exists a time-invariant connected
neighborhood N of point x = 0 and a positive definite on N func-
tion b ∈ K such that

V (t, x, y, z) = zTΠ(t, x, y)z ≤ b(x)

for all (t, x, y) ∈ R+ ×N × Y × Rs;
(ii) decreasing on S if and only if (i) holds for N = S;
(iii) decreasing in the whole if and only if (i) holds for N = Rn.

Proposition 4.2.2. The stochastic matrix-valued function Π: R+ ×
B(ρ) × Y → R [Y, Rs×s] is decreasing, if and only if there exists a vector
z ∈ Rs and a positive definite in the sense of Liapunov function c ∈ K

such that

(4.2.17) zTΠ(t, x, y)z = zTQ−(t, x, y)z + c(x),

where Q−(t, x, y) is a stochastic negative semi-definite matrix-valued func-
tion.

Definition 4.2.7. The stochastic matrix-valued function Π: R+×Rn×
Y → R [Y, Rs×s] is referred to as radially unbounded if and only if
zTΠ(t, x, y)z → ∞ as �x� → +∞ and y ∈ Y , t ∈ R+.
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Proposition 4.2.3. The stochastic matrix-valued function Π: R+ ×
Rn × Y → R [Y, Rs×s] is radially unbounded, if and only if there exist a
vector z ∈ Rs and a function γ ∈ KR such that

(4.2.18) zTΠ(t, x, y)z = zTQ+(t, x, y)z + γ(�x�)

for all (t, x, y) ∈ R+ ×Rn ×Y , where Q+(t, x, y) is a positive semi-definite
in the whole matrix-valued function.

We indicate a class of auxiliary stochastic function vkl(t, x, y(t)), k, l =
1, 2, . . . , s using which it is possible to construct the function (4.2.15) sat-
isfying all conditions of Definitions 4.2.4–4.2.7.

State vector x ∈ Rn of the system (4.2.1) is represented in the form
x = (pT, qT, rT)T, where p ∈ Rn1 , q ∈ Rn2 , r ∈ Rn3 and n1+n2+n3 = n.

Assumption 4.2.1. There exists time-invariant connected neighbor-
hoods Np ⊆ Rn1 , Nq ⊆ Rn2 and Nr ⊆ Rn3 of the equilibrium states
p = 0, q = 0 and r = 0 respectively, functions ϕi(�p�), ψi(�q�), χi(�r�),
i = 1, 2 of class K (KR) and constants αjk, αjk, ∀ (j, k) ∈ [1, 3] and αjj

and αjj > 0, j ∈ [1, 3] are such that

(a) α11ϕ
2
1(�p�) ≤ v11(t, x, y) ≤ α11ϕ

2
2(�p�) ∀ (t, x, y) ∈ R+ ×N0 × Y ,

(b) α22ψ
2
1(�q�) ≤ v22(t, x, y) ≤ α22ψ

2
2(�q�) ∀ (t, x, y) ∈ R+ ×N0 × Y ;

(c) α33χ
2
1(�r�) ≤ v33(t, x, y) ≤ α33χ

2
2(�r�) ∀ (t, x, y) ∈ R+ ×N0 × Y ;

(d) α12ϕ1(�p�)ψ1(�q�) ≤ v12(t, x, y) ≤ α12ϕ2(�p�)ψ2(�q�) ∀ (t, x, y) ∈
R+ ×N0 × Y ;

(e) α13ϕ1(�p�)χ1(�r�) ≤ v13(t, x, y) ≤ α13ϕ2(�p�)χ2(�r�) ∀ (t, x, y) ∈
R+ ×N0 × Y ;

(f) α23ψ1(�q�)χ1(�r�) ≤ v23(t, x, y) ≤ α23ψ2(�q�)χ2(�r�) ∀ (t, x, y) ∈
R+ ×N0 × Y ;

(g) α21ψ1(�q�)ϕ1(�p�) ≤ v21(t, x, y) ≤ α21ψ2(�q�)ϕ2(�p�) ∀ (t, x, y) ∈
R+ ×N0 × Y ;

(h) α31χ1(�r�)ϕ1(�p�) ≤ v31(t, x, y) ≤ α31χ2(�r�)ϕ2(�p�) ∀ (t, x, y) ∈
R+ ×N0 × Y ;

(i) α32χ1(�r�)ψ1(�q�) ≤ v32(t, x, y) ≤ α32χ2(�r�)ψ2(�q�) ∀ (t, x, y) ∈
R+ ×N0 × Y ,

where N0 = Np0 × Nq0 × Nr0; Np0 = {p ∈ Np, p �= 0}, Nq0 = {q ∈ Nq,

q �= 0}, Nr0 = {r ∈ Nr, r �= 0}.
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Proposition 4.2.4. If all conditions of Assumption 4.2.1 are satisfied,
then for the function

(4.2.19) V (t, x, y, η) = ηTΠ(t, x, y)η,

with a constant positive vector η ∈ Rs
+ the bilateral estimate

(4.2.20) uTHTA1Hu ≤ V (t, x, y, η) ≤ wTHTA2Hw

takes place for all (t, x, y) ∈ R+ ×N0 × Y , where

uT = (ϕ1(�p�), ψ1(�q�), χ1(�r�)),

wT = (ϕ2(�p�), ψ2(�q�), χ2(�r�))

and A1 = [αkl], A2 = [αkl], H = diag (η1, η2, η2).

Estimates (4.2.20) are proved by direct substitution by estimates (a)–(i)
from Assumption 4.2.1 into the form

V (t, x, y, η) =
s

∑

l,k=1

ηlηkvlk(t, x, y).

Estimates (4.2.20) imply

Proposition 4.2.5. If in the bilateral estimate (4.2.20)

(1) the matrix HTA1H is positive definite (semi-definite);
(2) the matrix HTA2H is positive definite;
(3) the condition (1) is satisfied and functions ϕ1, ψ1, χ1 are of class

KR,

then stochastic function (4.2.19) is

(1) positive definite (semi-definite);
(2) decreasing;
(3) radially unbounded

respectively.

Proof. Assertion (1) of Proposition 4.2.5 follows from the fact that

λm(Ã1)u
Tu ≤ uTHTA1Hu, λm(Ã1) > 0,
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Proposition 4.2.4. If all conditions of Assumption 4.2.1 are satisfied,
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wT = (ϕ2(�p�), ψ2(�q�), χ2(�r�))

and A1 = [αkl], A2 = [αkl], H = diag (η1, η2, η2).

Estimates (4.2.20) are proved by direct substitution by estimates (a)–(i)
from Assumption 4.2.1 into the form

V (t, x, y, η) =
s

∑

l,k=1

ηlηkvlk(t, x, y).

Estimates (4.2.20) imply

Proposition 4.2.5. If in the bilateral estimate (4.2.20)

(1) the matrix HTA1H is positive definite (semi-definite);
(2) the matrix HTA2H is positive definite;
(3) the condition (1) is satisfied and functions ϕ1, ψ1, χ1 are of class

KR,

then stochastic function (4.2.19) is

(1) positive definite (semi-definite);
(2) decreasing;
(3) radially unbounded

respectively.

Proof. Assertion (1) of Proposition 4.2.5 follows from the fact that

λm(Ã1)u
Tu ≤ uTHTA1Hu, λm(Ã1) > 0,
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where Ã1 = HTA1H . In fact, since (ϕ1, ψ1, χ1) ∈ K, then a function
Φ ∈ K, Φ = Φ(�x�) is found such that

Φ(�x�) ≤ ϕ2
1(�p�) + ψ2

1(�q�) + χ2
1(�r�).

Therefore,

λm(Ã1)Φ(�x�) ≤ uTHTA1Hu ≤ V (t, x, y, η)

for all (t, x, y) ∈ R+ ×N0 × Y .
Assertions (2) and (3) of Proposition 4.2.5 are proved similarly.

4.2.5 Structure of the Stochastic Matrix-Valued Function

Averaged Derivative

The averaged derivative, that is computed as in determined case without
integrating system (2.2.1), is analogous to the total derivative of matrix-
valued function for the stochastic system (4.2.1).

Let (τ, x, y) be a point in domain B(T , ρ, Y ).

Definition 4.2.8. Any of the limits

(4.2.21)

D+E[Π] = lim sup
{

{E[Π(t, x, y) | x(τ) = x, y(τ) = y]

− Π(τ, x, y)}(t − τ)−1: t → τ + 0
}

;

D+E[Π] = lim inf
{

{E[Π(t, x, y) | x(τ) = x, y(τ) = y]

− Π(τ, x, y)}(t − τ)−1: t → τ + 0
}

;

where E[ · | · ] is a conditional mathematical expectation, is called an
averaged derivative of stochastic matrix-valued function Π(t, x, y(t)) along
the solution of system (4.2.1) at point (τ, x, y). D∗E[Π] denotes the case,
when D+E[Π] and D+E[Π] are applicable.

The value D∗E[Π] is an averaged value of the stochastic matrix-valued
function Π(t, x, y) derivative along all realizations of process {x(t), y(t)}
initiating from point (x, y) at time τ . If

T +Π =

∫

P{τ, x, y; t, du, dz}Π(t, u, z)

= E[Π(t, x(t), y(t)) | x(τ) = x, y(τ) = y],

where P{· · ·} is a transition function of solution to system (4.2.1) with the
initial conditions x(τ) = x, y(τ) = y, then

(4.2.22) D+E[Π] = lim sup
{

[T t
τΠ − Π(τ, x, y)](t − τ)−1 : t → τ + 0

}

;

Download free eBooks at bookboon.com



Stability Analysis via Matrix Functions Method

25 

Stability Analysis of Stochastic Systems

190 4. STABILITY ANALYSIS OF STOCHASTIC SYSTEMS

(4.2.23) D+E[Π] = lim inf
{

[T t
τΠ − Π(τ, x, y)](t − τ)−1 : t → τ + 0

}

at the point (τ, x, y).
The right-side part of (4.2.22) and (4.2.23) is a weak infinitesimal ope-

rator of process {x(t), y(t)}.
We shall present the formulas for D+E[Π] computation for various reali-

zations of the random process y(t).

1. Let in the system (4.2.1) the process y(t) be pure discontinuous and be

described by the relations (4.2.5) and (4.2.6). Then
dE[Π]

dt
along solutions

of system (4.2.1) at point (τ, x, y) is computed as

(4.2.24)

dE[Π]

dt
= ∇τvkl(τ, x, y) + [∇xvkl(τ, x, y)]Tf(τ, x, y(t))

+

r
∑

µ=1

∫

[vkl(τ, x, y + βµ) − vkl(τ, x, y)]dβq(τ, y, β)

for all (k, l) ∈ [1, s], where βµ is a vector, every µ-th component of which
equals to β, and the others are zero.

2. Let in the system (4.2.1) y(t) be a simple scalar Markov chain with a
finite or countable number of states and transition probabilities satisfying
the correlation

P{y(t) = yj | y(τ) = yi} = qij(t − s) + o(t − s)

for all i �= j. We compute
dE[Π]

dt
by the formula

(4.2.25)

dE[Π]

dt
= ∇τvkl(τ, x, y) + [∇xvkl(τ, x, y)]Tf(τ, x, y(t))

+
∑

j �=i

[vkl(τ, x, yj) − vkl(τ, x, yi)]qij .

3. Let in the system (4.2.1) y(t) be a Markov process generated by
the generalized differential Ito equation (4.2.8). In this case we compute
dE[Π]

dt
at point (τ, x, y) by the formula

(4.2.26)

dE[Π]

dt
= ∇τvkl(τ, x, y) + [∇xvkl(τ, x, y)]Tf(τ, x, y(t))

+ [∇yvkl(τ, x, y)]T(a(τ, y) − g(τ, y))

+

∫

(vkl(τ, x, y + c(τ, y, u)) − vkl(τ, x, y))λ(du)

+
1

2
tr [∇xxvkl(τ, x, y)b(τ, y)bT(τ, y)], ∀ k, l ∈ [1, s].
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(4.2.23) D+E[Π] = lim inf
{

[T t
τΠ − Π(τ, x, y)](t − τ)−1 : t → τ + 0

}

at the point (τ, x, y).
The right-side part of (4.2.22) and (4.2.23) is a weak infinitesimal ope-

rator of process {x(t), y(t)}.
We shall present the formulas for D+E[Π] computation for various reali-

zations of the random process y(t).

1. Let in the system (4.2.1) the process y(t) be pure discontinuous and be

described by the relations (4.2.5) and (4.2.6). Then
dE[Π]

dt
along solutions

of system (4.2.1) at point (τ, x, y) is computed as

(4.2.24)

dE[Π]

dt
= ∇τvkl(τ, x, y) + [∇xvkl(τ, x, y)]Tf(τ, x, y(t))

+

r
∑

µ=1

∫

[vkl(τ, x, y + βµ) − vkl(τ, x, y)]dβq(τ, y, β)

for all (k, l) ∈ [1, s], where βµ is a vector, every µ-th component of which
equals to β, and the others are zero.

2. Let in the system (4.2.1) y(t) be a simple scalar Markov chain with a
finite or countable number of states and transition probabilities satisfying
the correlation

P{y(t) = yj | y(τ) = yi} = qij(t − s) + o(t − s)

for all i �= j. We compute
dE[Π]

dt
by the formula

(4.2.25)

dE[Π]

dt
= ∇τvkl(τ, x, y) + [∇xvkl(τ, x, y)]Tf(τ, x, y(t))

+
∑

j �=i

[vkl(τ, x, yj) − vkl(τ, x, yi)]qij .

3. Let in the system (4.2.1) y(t) be a Markov process generated by
the generalized differential Ito equation (4.2.8). In this case we compute
dE[Π]

dt
at point (τ, x, y) by the formula

(4.2.26)

dE[Π]

dt
= ∇τvkl(τ, x, y) + [∇xvkl(τ, x, y)]Tf(τ, x, y(t))

+ [∇yvkl(τ, x, y)]T(a(τ, y) − g(τ, y))

+

∫

(vkl(τ, x, y + c(τ, y, u)) − vkl(τ, x, y))λ(du)

+
1

2
tr [∇xxvkl(τ, x, y)b(τ, y)bT(τ, y)], ∀ k, l ∈ [1, s].
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where g(τ, y) =
∫

c(τ, y, u)λ(du).

Corollary 4.2.1. If in the formula (4.2.26) c(t, y, u) ≡ 0, then
dE[Π]

dt
corresponds to the case when y(t) is a diffusion process.

Remark 4.2.4. Operator
dE[Π]

dt
for c �= 0 is local in variable x, but

non-local in y.

4. Let in the system (4.2.10) y(t) be a normalized Wienner process

with independent components. We compute
dE[Π]

dt
at point (τ, x) by the

formula

(4.2.27)

dE[Π]

dt
= ∇τvkl(τ, x) + [∇xvkl(τ, x)]Tf(τ, x)

+
1

2
tr [σ(t, x)T∇xxvkl(τ, x)]σ(t, x)],

where k, l ∈ [1, s].

5. Let in the system (4.2.10) y(t) be a normalized jump Poisson process

with independent components qi. Then
dE[Π]

dt
at point (τ, x) is computed

by the formula

(4.2.28)

dE[Π]

dt
= ∇τvkl(τ, x) + [∇xvkl(τ, x)]Tf(τ, x)

+

m
∑

i=1

∫

qi

[vkl(τ, x + σi(t, x)qi) − vkl(τ, x)]pidPi(dqi),

where k, l ∈ [1, s].
Here it is assumed that during the interval ∆t the jumps take place with

the probability Pi∆t + o(∆t) and the zero average of the jumps obeys the
probability Pi(·).

We establish Liapunov correlation for stochastic matrix-valued function
Π(t, x, y(t)). With this end we construct function (4.2.19) by means of
vector η ∈ Rs

+. Let V (t, x, y, η) be such that for it there exists

E
[

V (t, x(t), y(t), η) | x(τ) = x, y(τ) = y
]

and

(4.2.29)
dE[V ]

dt
= H(τ, x, y)
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on the trajectories of the Markov process {x(t), y(t)} at point (τ, x, y).
Moreover, we assume that

lim
t→τ+0

E
[

H(t, x(t), y(t)) | x(τ) = x, y(τ) = y
]

= H(τ, x, y).

Then we have

(4.2.30)

E
[

V (t, x(t), y(t), η) | x(τ) = x, y(τ) = y
]

= V (τ, x, y, η)

+

∫ t

τ

E
[

H(u, x(u), y(u)) | x(τ) = x, y(τ) = y
]

du.

Formula (4.2.30) is valid for the homogeneous Markov processes and
functions V independent of time (see Dynkin [34]) and for the processes
being considered here (see Kushner [90]).

Let Q ⊂ Rn be a bounded open set and U = Q × Y be a set from
which the process {x(t), y(t)} comes out for the first time at time τ∗. It is
easy to notice that τm(t) = min {t, τ∗} is a Markov momentum, such that
Eτm(t) < +∞. Therefore, if {x(s), y(s)} ∈ U , then

E
[

V (τm,x(τm), y(τm), η) | x(τ) = x, τ) = y
]

= V (τ, x, y, η) + E

[
∫ τm

τ

H(u, x(u), y(u))du | x(τ) = x, τ) = y

]

is valid.
It is also clear that the process {x(τm(t)), y(τm(t))} is strictly Markov.

Between
d

dt
E[Π] and

d

dt
E[V ] it is true that

(4.2.31)
d

dt
E[V (t, x, y, η)] = ηT d

dt
E[Π(t, x, y)]η.

We return back to the system (4.2.1) and assume that y(t) is a sim-
ple scalar Markov chain with a finite number of states. System (4.2.1) is
decomposed into three subsystems

(4.2.32)

dp

dt
= X(t, p, 0, 0, y(t)) + F (t, p, q, r, y(t));

dq

dt
= Y (t, 0, q, 0, y(t)) + G(t, p, q, r, y(t));

dr

dt
= Z(t, 0, 0, r, y(t)) + H(t, p, q, r, y(t));
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on the trajectories of the Markov process {x(t), y(t)} at point (τ, x, y).
Moreover, we assume that

lim
t→τ+0

E
[

H(t, x(t), y(t)) | x(τ) = x, y(τ) = y
]

= H(τ, x, y).

Then we have

(4.2.30)

E
[

V (t, x(t), y(t), η) | x(τ) = x, y(τ) = y
]

= V (τ, x, y, η)

+

∫ t

τ

E
[

H(u, x(u), y(u)) | x(τ) = x, y(τ) = y
]

du.

Formula (4.2.30) is valid for the homogeneous Markov processes and
functions V independent of time (see Dynkin [34]) and for the processes
being considered here (see Kushner [90]).

Let Q ⊂ Rn be a bounded open set and U = Q × Y be a set from
which the process {x(t), y(t)} comes out for the first time at time τ∗. It is
easy to notice that τm(t) = min {t, τ∗} is a Markov momentum, such that
Eτm(t) < +∞. Therefore, if {x(s), y(s)} ∈ U , then

E
[

V (τm,x(τm), y(τm), η) | x(τ) = x, τ) = y
]

= V (τ, x, y, η) + E

[
∫ τm

τ

H(u, x(u), y(u))du | x(τ) = x, τ) = y

]

is valid.
It is also clear that the process {x(τm(t)), y(τm(t))} is strictly Markov.

Between
d

dt
E[Π] and

d

dt
E[V ] it is true that

(4.2.31)
d

dt
E[V (t, x, y, η)] = ηT d

dt
E[Π(t, x, y)]η.

We return back to the system (4.2.1) and assume that y(t) is a sim-
ple scalar Markov chain with a finite number of states. System (4.2.1) is
decomposed into three subsystems

(4.2.32)

dp

dt
= X(t, p, 0, 0, y(t)) + F (t, p, q, r, y(t));

dq

dt
= Y (t, 0, q, 0, y(t)) + G(t, p, q, r, y(t));

dr

dt
= Z(t, 0, 0, r, y(t)) + H(t, p, q, r, y(t));
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where p ∈ Rn1 , q ∈ Rn2 , r ∈ Rn3 , n1 + n2 + n3 = n,

X ∈ C(R+ × B1(ρ), R[Y, Rn1]), Y ∈ C(R+ × B2(ρ), R[Y, Rn2]),

Z ∈ C(R+ × B3(ρ), R[Y, Rn3]), F ∈ C(R+ × B, R[Y, Rn1 ]),

G ∈ C(R+ × B, R[Y, Rn2 ]), H ∈ C(R+ × B, R[Y, Rn3 ]),

and B = B1(ρ) × B2(ρ) × B3(ρ).

Vector-functions X , Y and Z and F , G and H vanish, if and only if
p = q = r = 0 respectively.

We introduce designation

∆(vkl) =
∑

i�=j

αij [vkl(t, ·, i) − vkl(t, ·, j)], k, l = 1, 2, 3.

Assumption 4.2.2. There exist the real numbers ρkr , k = 1, 2, 3;
r = 1, 2, . . . , 12 and comparison functions ϕ(�p�), ψ(�q�), χ(�r�) of class
K(KR) such that

(a) ∇tv11 +(∇pv11)
TX + 1

2∆(v11) ≤ ρ11ϕ
2(�p�) ∀ (t, p, y) ∈ R+ ×Np×

Y ;

(b) ∇tv12 + (∇pv12)
TX + 1

4∆(v12) ≤ ρ12ϕ(�p�)ψ(�q�) ∀ (t, p, q, y) ∈
R+ ×Np ×Nq × Y ;

(c) ∇tv13 + (∇pv13)
TX + 1

4∆(v13) ≤ ρ13ϕ(�p�)χ(�r�) ∀ (t, p, r, y) ∈
R+ ×Np ×Nr × Y ;

(d) ∇tv22+(∇qv22)
TY + 1

2∆(v22) ≤ ρ21ψ
2(�q�) ∀ (t, q, y) ∈ R+×Nq×Y ;

(e) ∇tv21 + (∇qv21)
TY + 1

4∆(v21) ≤ ρ22ϕ(�p�)ψ(�q�) ∀ (t, p, q, y) ∈
R+ ×Np ×Nq × Y ;

(f) ∇tv23 + (∇qv23)
TY + 1

4∆(v23) ≤ ρ23ψ(�q�)χ(�r�) ∀ (t, q, r, y) ∈
R+ ×Nq ×Nr × Y ;

(g) ∇tv33+(∇rv33)
TZ+ 1

2∆(v33) ≤ ρ31χ
2(�r�) ∀ (t, r, y) ∈ R+×Nr×Y ;

(h) ∇tv31 + (∇rv31)
TZ + 1

4∆(v31) ≤ ρ32ϕ(�p�)χ(�r�) ∀ (t, p, r, y) ∈
R+ ×Np ×Nr × Y ;

(i) ∇tv32+(∇rv32)
TZ+ 1

4∆(v32) ≤ ρ33ψ(�q�)χ(�r�) ∀ (t, q, r, y) ∈ R+×
Nq ×Nr × Y.
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and for all (t, p, q, r, y) ∈ R+ ×Np ×Nq ×Nr × Y :

(a′) (∇pv11)
TF + 1

2∆(v11) ≤ ρ14ϕ
2(�p�) + ρ15ϕ(�p�)ψ(�q�)

+ ρ16ϕ(�p�)χ(�r�);

(b′) (∇pv12)
TF + 1

4∆(v12) ≤ ρ17ψ
2(�q�) + ρ18ϕ(�p�)ψ(�q�)

+ ρ19ψ(�q�)χ(�r�);

(c′) (∇pv13)
TF + 1

4∆(v13) ≤ ρ1.10χ
2(�r�) + ρ1.11ϕ(�p�)χ(�r�)

+ ρ1.12ψ(�q�)χ(�r�);

(d′) (∇qv22)
TG + 1

2∆(v22) ≤ ρ24ψ
2(�q�) + ρ25ϕ(�p�)χ(�r�)

+ ρ26ψ(�q�)χ(�r�);

(e′) (∇qv21)
TG + 1

4∆(v21) ≤ ρ27ϕ
2(�p�) + ρ28ϕ(�p�)ψ(�q�)

+ ρ29ϕ(�p�)χ(�r�);

(f′) (∇qv23)
TG + 1

4∆(v23) ≤ ρ2.10χ
2(�r�) + ρ2.11ϕ(�p�)χ(�r�)

+ ρ2.12ψ(�q�)χ(�r�);

(g′) (∇rv33)
TH + 1

2∆(v33) ≤ ρ34χ
2(�r�) + ρ35ϕ(�p�)χ(�r�)

+ ρ36ψ(�q�)χ(�r�);

(h′) (∇rv13)
TH + 1

4∆(v13) ≤ ρ37ϕ
2(�p�) + ρ38ϕ(�p�)ψ(�q�)

+ ρ39ϕ(�p�)χ(�r�);

(i′) (∇rv23)
TH + 1

4∆(v23) ≤ ρ3.10ψ
2(�q�) + ρ3.11ϕ(�p�)ψ(�q�)

+ ρ3.12ψ(�q�)χ(�r�).

Proposition 4.2.6. If for the system (4.2.1), decomposed to the form
of (4.2.32), there exists a stochastic matrix-valued function Π(t, x, y) the

elements of which satisfy the conditions of Assumption 4.2.1 and all con-
ditions of Assumption 4.2.2 are satisfied, then the structure of stochastic

matrix-valued function averaged derivative
dE[V ]

dt
is defined by the inequa-

lity

(4.2.33 )
dE[V ]

dt
= ηT dE[Π]

dt
η ≤ uTSu ∀ (t, x, y) ∈ R+ ×N0 × Y

where s × s-matrix S has the elements expressed by formulas
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ckl = clk, (k, l) ∈ [1, 3] :

c11 = η2
1(ρ11 + ρ14) + 2η1(η2ρ27 + η3ρ37),

c22 = η2
2(ρ21 + ρ24) + 2η2(η1ρ17 + η3ρ3.10),

c33 = η2
3(ρ31 + ρ34) + 2η3(η1ρ1.10 + η2ρ2.10),

c12 =
1

2
η2
1ρ15 +

1

2
η2
2ρ25 + η1η2(ρ12 + ρ22 + ρ18 + ρ28)

+ η3(η1ρ38 + η2ρ3.11),

c13 =
1

2
η2
1ρ16 +

1

2
η2
3ρ35 + η1η3(ρ13 + ρ32 + ρ1.11 + ρ39)

+ η2(η1ρ29 + η3ρ2.11),

c23 =
1

2
η2
2ρ26 +

1

2
η2
3ρ36 + η2η3(ρ23 + ρ33 + ρ2.12 + ρ3.12)

+ η1(η2ρ19 + η3ρ1.12).

The proof of this proposition is similar to the proof of Proposition
2.7.3.

Remark 4.2.5. Actually, the structure of the stochastic matrix-valued
function Π(t, x, y) averaged derivative is established by formula (4.2.33) and
is based on the stochastic SL-function (see Martynyuk [120]). The structure
of the stochastic matrix-valued function Π(t, x, y) averaged derivative is
somewhat different provided the stochastic V L-function is applied, i.e.

(4.2.34) L(t, x, y) = AΠ(t, x, y)b,

where A is a constant s × s-matrix and b is an s-vector.

4.3 Stability to Systems in Kats–Krasovskii Form

In terms of the stochastic matrix-valued function Π(t, x, y) constructed for
system (4.2.1), the criteria of stability with respect to probability are in
form similar to Theorems 2.3.1–2.3.3.
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ckl = clk, (k, l) ∈ [1, 3] :
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1(ρ11 + ρ14) + 2η1(η2ρ27 + η3ρ37),

c22 = η2
2(ρ21 + ρ24) + 2η2(η1ρ17 + η3ρ3.10),

c33 = η2
3(ρ31 + ρ34) + 2η3(η1ρ1.10 + η2ρ2.10),
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1ρ15 +
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2
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c13 =
1

2
η2
1ρ16 +

1

2
η2
3ρ35 + η1η3(ρ13 + ρ32 + ρ1.11 + ρ39)

+ η2(η1ρ29 + η3ρ2.11),

c23 =
1

2
η2
2ρ26 +

1

2
η2
3ρ36 + η2η3(ρ23 + ρ33 + ρ2.12 + ρ3.12)

+ η1(η2ρ19 + η3ρ1.12).

The proof of this proposition is similar to the proof of Proposition
2.7.3.

Remark 4.2.5. Actually, the structure of the stochastic matrix-valued
function Π(t, x, y) averaged derivative is established by formula (4.2.33) and
is based on the stochastic SL-function (see Martynyuk [120]). The structure
of the stochastic matrix-valued function Π(t, x, y) averaged derivative is
somewhat different provided the stochastic V L-function is applied, i.e.

(4.2.34) L(t, x, y) = AΠ(t, x, y)b,

where A is a constant s × s-matrix and b is an s-vector.

4.3 Stability to Systems in Kats–Krasovskii Form

In terms of the stochastic matrix-valued function Π(t, x, y) constructed for
system (4.2.1), the criteria of stability with respect to probability are in
form similar to Theorems 2.3.1–2.3.3.
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Theorem 4.3.1. Let the equations of perturbed motion (4.2.1) are such
that:

(1) there exists a matrix-valued function Π: R+×B(p)×Y →R[Y, Rs×s]
in the time-invariant neighborhood N ⊆ Rn of equilibrium state
x = 0;

(2) there exists a vector η ∈ Rs (η ∈ Rs
+);

(3) stochastic scalar function (4.2.19) is positive definite;
(4) the averaged derivative (4.2.25) is negative definite or negative semi-

definite.

Then the equilibrium state x = 0 of system (4.2.1) is stable with respect to
probability.

Proof. Let arbitrary numbers ε ∈ (0, ρ), ρ ∈ (0, 1) and t0 ∈ R+ be
given. Under the conditions (1)–(2) of Theorem 4.3.1 we have the function

V (t, x, y, η) = ηTΠ(t, x, y)η, η ∈ Rs (η ∈ Rs
+),

that is positive definite by condition (3) of Theorem 4.3.1. Therefore, a
number ε1 > 0 is found, such that

inf V (t, x, y, η) = ε1 for t ∈ R+, �x� ≥ ε, y ∈ Y, η ∈ Rs (η ∈ Rs
+).

We designate B(ε) = {(x, y) ∈ Rn × Y : �x� < ε, y ∈ Y }. Let τε be
the time of trajectory (x(t), y(t)) first leaving the domain B(ε) and let
τε(τ) = min (τ, τε). We have by condition (4)

(4.3.1)
E[V (τε(τ), x(τε(τ)), y(τε(τ)), η) | x(t0) = x0, y(t0) = y0]

≤ V (t0, x0, y0, η).

Now we take δ > 0 so that

(4.3.2) sup V (t0, x, y0) < pε1

whenever �x� ≤ δ.
The estimates (4.3.1) and (4.3.2) imply

pε1 > V (t0, x0, y0, η) ≥ E[V (τε(τ), x(τε(t)), y(τε(τ)), η) | x0, y0]

≥ ε1P

{

sup
t0≤t≤τ

�x(t)� ≥ ε | x0, y0

}

.

Hence we get for τ → +∞

P

{

sup
t≥t0

�x(t)� ≥ ε | x0, y0

}

< p.

This proves the theorem.
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Theorem 4.3.2. Let the equations of perturbed motion (4.2.1) are such
that:

(1) hypotheses (1) and (2) of Theorem 4.3.1 are satisfied;
(2) the stochastic matrix-valued function Π(t, x, y) is positive definite

and decreasing;

(3) the averaged derivative
dE[V ]

dt
is negative definite.

Then the equilibrium state x = 0 of the system (4.2.1) is asymptotically
stable with probability p(H), i.e. if �x0� ≤ H0 and y0 ∈ Y , t0 ≥ 0 then

P

{

sup
t≥t0

�x(t)� < H | x0, y0

}

≥ 1 − p(H), H0 < H.

Proof. Let a number p(H) < 1 be given. Theorem 4.3.1 implies that
under the conditions of Theorem 4.3.2 the equilibrium state x = 0 of
system (4.2.1) is stable with respect to probability. Therefore, for any
ε ∈ (0, ρ) and t0 ≥ 0 a δ = δ(t0, ε) > 0 can be found such that

(4.3.3) P

{

sup
t≥t0

�x(t)� < ε | x0, y0

}

> 1 − p(H),

whenever
�x0� < δ and y0 ∈ Y.

Let us show that the number H0 mentioned in conditions of Theo-
rem 4.3.2 can be taken as H0 = δ. To this end we define for arbitrary
numbers γ ∈ (0, ε) and 0 < q < +∞ the number γ1 > 0 from the
inequality

(4.3.4)

sup
[

V (t, x, y, η) for t ∈ R+, �x� < γ1, y ∈ Y, η ∈ Rs
+

]

<
q

2
inf

[

V (t, x, y, η) for t ∈ R+, γ1 ≤ �x� ≤ ε, y ∈ Y and η ∈ Rs
+

]

.

The arguments similar to those used in the proof of Theorem 4.3.1 yield

(4.3.5) P

{

sup
τ>t

�x(τ)� < γ | x(t), y(t)

}

> 1 −
1

2
q,
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Theorem 4.3.2. Let the equations of perturbed motion (4.2.1) are such
that:

(1) hypotheses (1) and (2) of Theorem 4.3.1 are satisfied;
(2) the stochastic matrix-valued function Π(t, x, y) is positive definite

and decreasing;

(3) the averaged derivative
dE[V ]

dt
is negative definite.

Then the equilibrium state x = 0 of the system (4.2.1) is asymptotically
stable with probability p(H), i.e. if �x0� ≤ H0 and y0 ∈ Y , t0 ≥ 0 then

P

{

sup
t≥t0

�x(t)� < H | x0, y0

}

≥ 1 − p(H), H0 < H.

Proof. Let a number p(H) < 1 be given. Theorem 4.3.1 implies that
under the conditions of Theorem 4.3.2 the equilibrium state x = 0 of
system (4.2.1) is stable with respect to probability. Therefore, for any
ε ∈ (0, ρ) and t0 ≥ 0 a δ = δ(t0, ε) > 0 can be found such that

(4.3.3) P

{

sup
t≥t0

�x(t)� < ε | x0, y0

}

> 1 − p(H),

whenever
�x0� < δ and y0 ∈ Y.

Let us show that the number H0 mentioned in conditions of Theo-
rem 4.3.2 can be taken as H0 = δ. To this end we define for arbitrary
numbers γ ∈ (0, ε) and 0 < q < +∞ the number γ1 > 0 from the
inequality

(4.3.4)

sup
[

V (t, x, y, η) for t ∈ R+, �x� < γ1, y ∈ Y, η ∈ Rs
+

]

<
q

2
inf

[

V (t, x, y, η) for t ∈ R+, γ1 ≤ �x� ≤ ε, y ∈ Y and η ∈ Rs
+

]

.

The arguments similar to those used in the proof of Theorem 4.3.1 yield

(4.3.5) P

{

sup
τ>t

�x(τ)� < γ | x(t), y(t)

}

> 1 −
1

2
q,
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whenever
�x(t)� ≤ γ1 and y(t) ∈ Y.

We claim that there exists a τ > t0 such that

(4.3.6) P{�x(t0 + τ)� < γ1 | x0, y0} > 1 −
1

2
q − p(H).

If this is not true, then for trajectory {x(t), y(t)} the inequality

P{γ1 ≤ �x(t)� < ε, t ≥ t0 | x0, y0} >
1

2
q.

holds, that yields by condition (3) of Theorem 4.3.2

(4.3.7) lim
t→∞

E[V (τα(t), x(τα(t)), y(τα(t)), η) | x0, y0] = −∞.

Here τα(t) = min (τ∗, t), where τ∗ is a time of trajectory (x(t), y(t)) first
leaving the set B1 = {(x, y) : γ1 < �x� < ε, y ∈ Y }.

Since the function Π(t, x, y) is positive definite, the correlation (4.3.7)
can not be satisfied. This proves inequality (4.3.6). The estimates (4.3.3),
(4.3.5) and (4.3.6) imply that for arbitrary q > 0 a τ > 0 is found so that

P

{

sup
t≥t0+τ

�x(t)� < γ | x0, y0

}

> 1 − q − p(H),

whenever �x0� < H0 and y0 ∈ Y .
This proves Theorem 4.3.2.

Theorem 4.3.3. Let the equations of perturbed motion (4.2.1) are such
that:

(1) hypotheses (1), (2) and (3) of the Theorem 4.3.1 are satisfied for
N = Rn;

(2) the function Π(t, x, y) is positive definite in the whole and radially
unbounded;

(3) the averaged derivative
dE[V ]

dt
is negative definite in B(T ,∞, Y ).

Then the equilibrium state x = 0 of the system (4.2.1) is stable with respect
to probability in the whole.

A theorem allowing us to find asymptotic stability with respect to pro-
bability and stability with respect to probability in the whole on the basis
of negative semi-definite averaged derivative is considered.
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Let an open domain G containing the origin be definite in space Rn.
Function ψ(t, x, y) : T0 × G × Y → R is referred to as positive definite on
G × Y if for any numbers r > ε > 0 there exists a number δ > 0 such
that ψ(t, x, y) ≥ δ holds for all t ≥ t0, (x, y) ∈ (N ∩ {ε ≤ �x� ≤ r} × Y ).

Matrix-valued function Φ(t, x, y) : T0 × G × Y → Rm×m satisfies hy-
potheses A if:

(a) the function Φ is bounded for all t ≥ t0 in any finite domain �x� ≤
ρ, y ∈ Y ;

(b) averaged derivative ηT dM [Φ]

dt
η is bounded in any finite domain due

to system (4.2.1), i.e. there exists a constant K such that

∣

∣

∣

∣

ηT dM [Φ]

dt
η

∣

∣

∣

∣

≤ K;

(c) the function ηT dM [Φ]

dt
η is positive definite in domain G × Y .

Then the following statement is valid.

Theorem 4.3.4. Let the equations of perturbed motion (4.2.1) as defi-
nite in domain B(T0,∞, Y ) and such that:

(1) hypotheses (1) and (2) of Theorem 4.3.3 are satisfied;
(2) averaged derivative (4.2.13) satisfies hypothesis

ηT dM [Π]

dt
η ≤ H(x) ≤ 0,

where H(x) is continuous in domain G;
(3) the set D = {x : x �= 0, H(x) = 0} is non-empty and does not

possess mutual points with bound ∂N in domain N in the sense
that inf �x1 − x2� > K2 > 0 x1 ∈ ∂G, x2 ∈ D ∩ {ε ≤ �x� ≤ r};

(4) there exists a matrix-valued function Φ(t, x, y) satisfying hypotheses
A.

Then the equilibrium state x = 0 of the system (4.2.1) is stable with respect
to probability in the whole.
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Let an open domain G containing the origin be definite in space Rn.
Function ψ(t, x, y) : T0 × G × Y → R is referred to as positive definite on
G × Y if for any numbers r > ε > 0 there exists a number δ > 0 such
that ψ(t, x, y) ≥ δ holds for all t ≥ t0, (x, y) ∈ (N ∩ {ε ≤ �x� ≤ r} × Y ).

Matrix-valued function Φ(t, x, y) : T0 × G × Y → Rm×m satisfies hy-
potheses A if:

(a) the function Φ is bounded for all t ≥ t0 in any finite domain �x� ≤
ρ, y ∈ Y ;

(b) averaged derivative ηT dM [Φ]

dt
η is bounded in any finite domain due

to system (4.2.1), i.e. there exists a constant K such that

∣

∣

∣

∣

ηT dM [Φ]

dt
η

∣

∣

∣

∣

≤ K;

(c) the function ηT dM [Φ]

dt
η is positive definite in domain G × Y .

Then the following statement is valid.

Theorem 4.3.4. Let the equations of perturbed motion (4.2.1) as defi-
nite in domain B(T0,∞, Y ) and such that:

(1) hypotheses (1) and (2) of Theorem 4.3.3 are satisfied;
(2) averaged derivative (4.2.13) satisfies hypothesis

ηT dM [Π]

dt
η ≤ H(x) ≤ 0,

where H(x) is continuous in domain G;
(3) the set D = {x : x �= 0, H(x) = 0} is non-empty and does not

possess mutual points with bound ∂N in domain N in the sense
that inf �x1 − x2� > K2 > 0 x1 ∈ ∂G, x2 ∈ D ∩ {ε ≤ �x� ≤ r};

(4) there exists a matrix-valued function Φ(t, x, y) satisfying hypotheses
A.

Then the equilibrium state x = 0 of the system (4.2.1) is stable with respect
to probability in the whole.
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4.4 Stability to Systems in Ito’s Form

4.4.1 Decomposition of perturbed motion equations

We consider a system of the equations with random parameters in the form

(4.4.1) dω(t) = f(t, ω)dt + σ(t, ω)dξ(t),

where t ∈ T , ω ∈ Rn, f : T × Rn → Rn, σ : T × Rn → Rn×m, and
{ξ(t), t ∈ T } is an independent measurable random Markov process.

Assume that the system (4.4.1) allows decomposition into l intercon-
nected subsystems that can be described by equations in the form

(4.4.2)

dωi =fi(t, ωi)dt + σii(t, ωi)dξi

+ gi(t, ω)dt +

l
∑

j=1

σij(t, ωj)dξj , i ∈ [1, l].

Each interconnected subsystem (4.4.2) consists of the independent subsys-
tem

(4.4.3) dωi = f(t, ωi)dt + σii(t, ωi)dξi, i ∈ [1, l],

and link functions

(4.4.4) gi(t, ω)dt +

l
∑

j=1

σij(t, ωj)dξj , i ∈ [1, l].

Here ωi ∈ Rni , ω ∈ Rn, ω = (ωT
1 , ω2T, . . . , ωT

l )T, ξi ∈ Rmi , fi : T0 ×
Rni → Rni , σij : T ×Rnj → Rni×mj , gi : T ×Rn1 × · · · ×Rnl → Rni , and
{ξi(t), t ∈ T } are independent measurable Markov processes.

We assume on function fi and σii that they satisfy the existence condi-
tion for solutions to subsystems (4.4.3), and link functions (4.4.4) vanish,
if and only if ωj = 0 and ω = 0. Thus, the points ω = 0 and ωj = 0,
j ∈ [1, l] are the only equilibrium states of systems (4.4.1), (4.4.2) and
(4.4.3) respectively.
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The transformation of systems (4.4.1) to (4.4.2) is referred to as the
decomposition of stochastic Ito system of the first level. Suppose that from
system (4.4.1) couples (i, j) of interconnected subsystems are taken in the
form

(4.4.5)

dωi =fij(t, ωi, ωj)dt + σii(t, ωi)dξi + σij(t, ωj)dξj

+ gij(t, ω)dt +

l
∑

k=1
(k �=i,j)

σik(t, ωk)dξk, i ∈ [1, l].

dωj =fji(t, ωj , ωi)dt + σjj(t, ωj)dξj + σji(t, ωi)dξi

+ gji(t, ω)dt +

l
∑

k=1
(k �=i,j)

σjk(t, ωk)dξk, (i �= j) ∈ [1, l].

Here fij : T × Rni × Rnj → Rni × Rnj , gij : T × Rn → Rni × Rnj . We

introduce following designations ωij = (ωT
i , ωT

j )T, f ij(t, ωij) = (fT
ij, f

T
ji)

T;

gij(t, ω) = (gT
ij, g

T
ji)

T, σk
ij = [σT

ik, σ
T
jk]T, dξij = (dξT

i , dξT
j )T, and

σij =

(

σii σij

σji σjj

)

.

Then the (i, j) couple (4.4.5) can be represented as

(4.4.6)

dωij =f ij(t, ωij)dt + σijdξij + gij(t, ω)dt

+

l
∑

k=1
(k �=i,j)

σk
ijdξk, (i �= j) ∈ [1, l].

Besides, the free (i, j) couple has the form

(4.4.7) dωij = f ij(t, ωij)dt + σijdξij (i �= j) ∈ [1, l].

and the link functions are represented by the formulas

(4.4.8) gij(t, ω)dt +
l

∑

k=1
(k �=i,j)

σk
ijdξk, (i �= j) ∈ [1, l].

Further we need the following assumptions.
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The transformation of systems (4.4.1) to (4.4.2) is referred to as the
decomposition of stochastic Ito system of the first level. Suppose that from
system (4.4.1) couples (i, j) of interconnected subsystems are taken in the
form

(4.4.5)

dωi =fij(t, ωi, ωj)dt + σii(t, ωi)dξi + σij(t, ωj)dξj

+ gij(t, ω)dt +

l
∑

k=1
(k �=i,j)

σik(t, ωk)dξk, i ∈ [1, l].

dωj =fji(t, ωj , ωi)dt + σjj(t, ωj)dξj + σji(t, ωi)dξi

+ gji(t, ω)dt +

l
∑

k=1
(k �=i,j)

σjk(t, ωk)dξk, (i �= j) ∈ [1, l].

Here fij : T × Rni × Rnj → Rni × Rnj , gij : T × Rn → Rni × Rnj . We

introduce following designations ωij = (ωT
i , ωT

j )T, f ij(t, ωij) = (fT
ij, f

T
ji)

T;

gij(t, ω) = (gT
ij, g

T
ji)

T, σk
ij = [σT

ik, σ
T
jk]T, dξij = (dξT

i , dξT
j )T, and

σij =

(

σii σij

σji σjj

)

.

Then the (i, j) couple (4.4.5) can be represented as

(4.4.6)

dωij =f ij(t, ωij)dt + σijdξij + gij(t, ω)dt

+

l
∑

k=1
(k �=i,j)

σk
ijdξk, (i �= j) ∈ [1, l].

Besides, the free (i, j) couple has the form

(4.4.7) dωij = f ij(t, ωij)dt + σijdξij (i �= j) ∈ [1, l].

and the link functions are represented by the formulas

(4.4.8) gij(t, ω)dt +
l

∑

k=1
(k �=i,j)

σk
ijdξk, (i �= j) ∈ [1, l].

Further we need the following assumptions.

Download free eBooks at bookboon.com



Stability Analysis via Matrix Functions Method

43 

Stability Analysis of Stochastic Systems

202 4. STABILITY ANALYSIS OF STOCHASTIC SYSTEMS

Assumption 4.4.1. There exists a time invariant open connected neigh-
borhood Ni ⊆ Rni , a function vii(t, ωi) : T × Ni → R+, the comparison
functions ψi1, ψi2 and ψi3 and the positive real numbers ρi such that for
all i ∈ [1, l] estimates

(a) ψi1(�ωi�) ≤ vii(t, ωi) ≤ ψi2(�ωi�);

(b)
dEi[vii(t, ωi)]

dt
≤ piψi3(�ωi�)

are satisfied for any ωi ∈ Ni and t ∈ T .

Definition 4.4.1. The isolated subsystems (4.4.3) possesses property
A(Ni), provided all conditions of Assumption 4.4.1 are satisfied for each of
the subsystems.

Definition 4.4.2. If in Assumption 4.4.1 ψi1(�ωi�) = ci1�ωi�2,

ψi2(�ωi�) = ci2�ωi�2 and ψi3(�ωi�) =
cii

ρi

�ωi�2, where ci1 and ci2 are

positive constants, and cii constants i ∈ [1, l], then isolated subsystem
(4.4.3) is said to possess property B(Ni).

Definition 4.4.3. If in Assumption 4.4.1 Ni = Rni for all i ∈ [1, l]
and functions ψ11, ψ12 ∈ KR, then isolated subsystems (4.4.3) are said to
possesses property Bi(∞).

Assumption 4.4.2. There exist a time-invariant open connected pro-
ducts of neighborhood Ni × Nj ⊆ Rni × Rnj of point ωij = 0, functions
vij(t, ωij) : T ×Ni ×Nj → R+, a functions ψ1

ij , ψ2
ij and ψi3 of class K and

positive real numbers β1
ij , β2

ij and β3
ij such that for all (i < j) ∈ [1, l] the

estimates

(a) ψ1
ij(�ωij�) ≤ vij(t, ωij) ≤ ψ2

ij(�ωij�);

(b)
dEij [vij ]

dt
≤ β1

ijψi3(�ωi�) +2β2
ijψ

1/2
i3 (�ωi�)ψ

1/2
j3 (�ωj�)+β3

ijψi3(�ωj�)

are satisfied for any ωij ∈ Ni ×Nj and t ∈ T .

Defiinition 4.4.4. Isolated couples (i, j) of subsystems (4.4.7) pos-
sesses property A(Ni ×Nj), if for every of them all conditions of Assump-
tion 4.4.2 are satisfied.

Definition 4.4.5. If in Assumption 4.4.2 ψ1
ij = c1

ij�ωij�2, ψ2
ij = c2

ij×

�ωij�2 and β1
ijψi3(�ωi�) + 2β2

ijψ
1/2
i3 (�ωi�)ψ

1/2
j3 (�ωj�) + β3

ijψj3(�ωj�) =
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c3
ij�ωij�2, (i < j) ∈ [1, l], where c1

ij , c2
ij , c3

ij are constant, then the in-

dependent couples (i, j) of subsystems (4.4.7) are said to possess property
B(Ni ×Nj).

Definition 4.4.6. If in Assumption 4.4.2 Ni = Rni and the func-
tions Ψ1

ij , Ψ2
ij ∈ KR, then the independent couples (i, j) of the subsystems

(4.4.7) are said to possess property Aij(∞).

Remark 4.4.1. In Assumptions 4.4.1 and 4.4.2 the constants ρi, i ∈
[1, l] and c3

ij (i < j) ∈ [1, l] are negative if independent subsystems (4.4.3)

and independent couples (i, j) of subsystems (4.4.7) are exponentially stable
with respect to probability.

Remark 4.4.2. The matrix Bij , defined by the expression

Bij =

(

β1
ij β2

ij

β2
ij β3

i3

)

(i < j) ∈ [1, l]

is negative semi-definite (negative definite), if the independent couples (i, j)
of subsystems (4.4.7) are stable (asymptotically stable) with respect to
probability.

4.4.2 Structure of the Hierarchical Matrix-Valued Function

Averaged Derivative

We construct for subsystems (4.4.3) the functions vii(t, ωi), i ∈ [1, l] and for
couples (i, j) of subsystems (4.4.7) the functions vij(t, ωij) (i < j) ∈ [1, l].
Let us construct from the above mentioned elements the matrix-valued
function.

(4.4.9) Π(t, ω) = [vij(t, ·)],

where Π: T × Rni × Rnj × Y → R[Y, Rl×l].

The function (4.4.9) reflects the hierarchy of stochastic subsystems
(4.4.3) and (4.4.7) in the large-scale system (4.4.1).

The application of formula (4.2.27) to systems (4.4.2) and (4.4.6) yields

the following expressions for
dE[·]

dt
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c3
ij�ωij�2, (i < j) ∈ [1, l], where c1

ij , c2
ij , c3

ij are constant, then the in-

dependent couples (i, j) of subsystems (4.4.7) are said to possess property
B(Ni ×Nj).

Definition 4.4.6. If in Assumption 4.4.2 Ni = Rni and the func-
tions Ψ1

ij , Ψ2
ij ∈ KR, then the independent couples (i, j) of the subsystems

(4.4.7) are said to possess property Aij(∞).

Remark 4.4.1. In Assumptions 4.4.1 and 4.4.2 the constants ρi, i ∈
[1, l] and c3

ij (i < j) ∈ [1, l] are negative if independent subsystems (4.4.3)

and independent couples (i, j) of subsystems (4.4.7) are exponentially stable
with respect to probability.

Remark 4.4.2. The matrix Bij , defined by the expression

Bij =

(

β1
ij β2

ij

β2
ij β3

i3

)

(i < j) ∈ [1, l]

is negative semi-definite (negative definite), if the independent couples (i, j)
of subsystems (4.4.7) are stable (asymptotically stable) with respect to
probability.

4.4.2 Structure of the Hierarchical Matrix-Valued Function

Averaged Derivative

We construct for subsystems (4.4.3) the functions vii(t, ωi), i ∈ [1, l] and for
couples (i, j) of subsystems (4.4.7) the functions vij(t, ωij) (i < j) ∈ [1, l].
Let us construct from the above mentioned elements the matrix-valued
function.

(4.4.9) Π(t, ω) = [vij(t, ·)],

where Π: T × Rni × Rnj × Y → R[Y, Rl×l].

The function (4.4.9) reflects the hierarchy of stochastic subsystems
(4.4.3) and (4.4.7) in the large-scale system (4.4.1).

The application of formula (4.2.27) to systems (4.4.2) and (4.4.6) yields

the following expressions for
dE[·]

dt
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(4.4.10 )

dE[vii(t, ω)]

dt
=

l
∑

j=1

[fj(t, ωj) + gj(t, ω)]T∇ωj
vii(t, ωi)

+
1

2
tr[σT

ii(t, ωi)∇ωiωi
vii(t, ωi)σii(t, ωi)]

+
1

2

l
∑

j,k,m=1
(j �=i)

tr[σT
kj(t, ωj)∇ωkωm

vii(t, ωi)σmj(t, ωj)]

+ ∇tvii(t, ωi)

=

l
∑

j=1

[fj(t, ωj) + gj(t, ω)]Tδij∇ωj
vii(t, ωi)

+
1

2
tr[σT

ii(t, ωi)∇ωiωi
vii(t, ωi)σii(t, ωi)]

+
1

2

l
∑

j,k,m=1
(j �=i)

tr[σT
kj(t, ωj)δkiδmi∇ωiωi

vii(t, ωi)σmj(t, ωj)]

+ ∇tvii(t, ωi)

= [fi(t, ωi) + gi(t, ω)]T∇ωi
vii(t, ωi)

+
1

2
tr[σT

ii(t, ωi)∇ωiωi
vii(t, ωi)σii(t, ωi)]

+
1

2

l
∑

j=1
(j �=i)

tr[σT
ij(t, ωj)∇ωiωi

vii(t, ωi)σij(t, ωj)] + ∇tvii(t, ωi)

=
dEi[vii(t, ωi)]

dt
+ gT

i (t, ω)∇ωi
vii(t, ωi)

+
1

2

l
∑

j=1
(j �=i)

tr[σT
ij(t, ωj)∇ωiωi

vii(t, ωi)σij(t, ωj)],

(i �= j) ∈ [1, l].
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Similarly we have

(4.4.11)

dE[vij(t, ω)]

dt
= [f ij(t, ωij) + gij(t, ω)]T∇ωij

vij(t, ωij)

+
1

2
tr[σT

ij(t, ωij)∇ωijωij
vij(t, ωij)σij(t, ωij)]

+
1

2

l
∑

k=1
(k �=i,j)

tr[σk
ij(t, ωk)T∇ωijωij

vij(t, ωij)σ
k
ij(t, ωk)]

+ ∇tvij(t, ωij)

=
dEij [vij(t, ωij)]

dt
+ gT

ij(t, ω)∇ωij
vij(t, ωij)

+
1

2

l
∑

k=1
(k �=i,j)

tr[σkT
ij (t, ωk)∇ωijωij

vij(t, ωij)σ
k
ij(t, ωk)],

(i < j) ∈ [1, l],

where ∇u =
∂

∂u
, and δij is the Kronecker symbol.

Remark 4.4.3. If, in particular, σij(t, ω) = 0 for all i �= j, then
(4.4.10) and (4.4.11) become

(4.4.12)

dE[vii(t, ωi)]

dt
=

dEi[vii(t, ωi)]

dt
+ (gi(t, ω))T∇ωi

vii(t, ωi),

i ∈ [1, l];

(4.4.13)

dE[vij(t, ω)]

dt
=

dEij [vij(t, ωij)]

dt
+ (gij(t, ω))T∇ωij

vij(t, ωij),

(i < j) ∈ [1, l]

Thus, the structure of averaged derivative (4.4.10), (4.4.11) represents
adequately the hierarchical dependence of subsystems in large-scale system
(4.4.1).

4.4.3 Sufficient Conditions for Stability to Probability

of Stochastic Ito System

To formulate sufficient conditions for stability with respect to the probabi-
lity of system (4.4.1) we make some assumptions on the system.
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Similarly we have

(4.4.11)

dE[vij(t, ω)]

dt
= [f ij(t, ωij) + gij(t, ω)]T∇ωij

vij(t, ωij)

+
1

2
tr[σT

ij(t, ωij)∇ωijωij
vij(t, ωij)σij(t, ωij)]

+
1

2

l
∑

k=1
(k �=i,j)

tr[σk
ij(t, ωk)T∇ωijωij

vij(t, ωij)σ
k
ij(t, ωk)]

+ ∇tvij(t, ωij)

=
dEij [vij(t, ωij)]

dt
+ gT

ij(t, ω)∇ωij
vij(t, ωij)

+
1

2

l
∑

k=1
(k �=i,j)

tr[σkT
ij (t, ωk)∇ωijωij

vij(t, ωij)σ
k
ij(t, ωk)],

(i < j) ∈ [1, l],

where ∇u =
∂

∂u
, and δij is the Kronecker symbol.

Remark 4.4.3. If, in particular, σij(t, ω) = 0 for all i �= j, then
(4.4.10) and (4.4.11) become

(4.4.12)

dE[vii(t, ωi)]

dt
=

dEi[vii(t, ωi)]

dt
+ (gi(t, ω))T∇ωi

vii(t, ωi),

i ∈ [1, l];

(4.4.13)

dE[vij(t, ω)]

dt
=

dEij [vij(t, ωij)]

dt
+ (gij(t, ω))T∇ωij

vij(t, ωij),

(i < j) ∈ [1, l]

Thus, the structure of averaged derivative (4.4.10), (4.4.11) represents
adequately the hierarchical dependence of subsystems in large-scale system
(4.4.1).

4.4.3 Sufficient Conditions for Stability to Probability

of Stochastic Ito System

To formulate sufficient conditions for stability with respect to the probabi-
lity of system (4.4.1) we make some assumptions on the system.
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Assumption 4.4.3. The system (4.4.1) allows first and second level
decompositions and

(1) independent subsystems (4.4.3) possess property A(Ni) ∀ i ∈ [1, l];
(2) independent couples (i, j) of subsystems (4.4.7) possess property

A(Ni ×Nj) ∀ (i �= j) ∈ [1, l].

Remark 4.4.4. If for the system (4.4.1) there exist p and q (p < q) ∈
[1, l] for which no free couple (p, q) of (4.4.7) can be found, then we take
vpq(t, xpq) ≡ 0.

Assumption 4.4.4. There exist time-invariant neighborhoods Ni ⊆
Rni and Ni × Ni ⊆ Rni × Rnj of states ωi = 0 and ωij respectively,

constants bij , di, γij
qp = γji

qp, αij , νk
ij , µk

ij and functions ϕi3 ∈ K such that
estimates

(1) gT
i ∇ωi

vii(t, ωi) ≤ ψ
1/2
i3 (�ωi�)

∑l
k=1 bikψ

1/2
k3 (�ωk�),

(2) gT
ij∇ωij

vij(t, ωij) ≤
∑l

k=1
p=k

γ
ij
kpψ

1/2
k3 (�ωk�)ψ

1/2
p3 (�ωp�);

(3) (ui)T∇ωiωi
vii(t, ωi)u

i ≤ di�u
i�2;

(4) (ui
k)T∇ωijωij

vij(t, ωij)u
i
k ≤ νk

ij�u
i
k�

2;

(5) �σij(t, ωj)�2 ≤ αijψj3(�ωj�);

(6) �σk
ij(t, ωk)�2 ≤ µk

ijψk3(�ωk�),

are satisfied for all ui
k, ωi ∈ Rni , ωij ∈ Rni × Rnj , t ∈ T , (i �= j) ∈ [1, l],

p, k = 1, 2, . . . , l.

An important part in the structure of averaged derivative of the function
(4.2.15) is played by a symmetric l × l matrix

S =
1

2
(S + S

T
),

where S is an upper triangle matrix with elements spq defined as

spp = η2
p(ρp + bpp +

1

2

l
∑

i=1
i�=p

dpαpi) + 2ηp

l
∑

i=p+1

ηiβ
1
pi

+ 2ηp

l
∑

i=p+1

γpi
ppηi + 2ηp

l
∑

i=1

β3
piηi +

1

2
ηp

l
∑

k,j=1

µk
pjν

k
pjηk;
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spq = η2
pbpq + 4β2

pqηpηq +

l
∑

k=1

l
∑

j=k+1

γkj
pq ηkηj ,

sqp = 0, (p < q) ∈ [1, l], η ∈ Rl
+, η > 0.

Sufficient conditions for stability with probability of the system (4.4.1)
are obtained in terms of the function (4.4.9) being applied in construction
of the function

(4.4.14) V (t, ω) = ηTΠ(t, ω)η, η ∈ Rl
+, η > 0

Namely, we shall prove the following result.

Theorem 4.4.1. Let the perturbed motion of the equation (4.4.1) are
such that:

(1) {ξ(t), t ∈ T } is a normalized Wienner process and σij(t, ω) �= 0,

∀ (i, j) ∈ [1, l];
(2) all conditions of Assumptions 4.4.1–4.4.4 are satisfied
(3) the matrix S is

(a) negative semi-definite;

(b) negative definite.

Then the equilibrium state ω = 0 of system (4.4.1) is

(a) stable in probability;
(b) asymptotically stable in probability.

Proof. We take the functions vij(t, ·) according to Assumption 4.4.1

and a vector η ∈ Rl
+, η > 0. The function (4.4.14) in coordinate form is

(4.4.15)

V (t, ω) =

l
∑

i=1

η2
i vii(t, ωi) +

l
∑

i,j=1
(i�=l)

ηiηjvij(t, ωij)

=

l
∑

i=1

η2
i vii(t, ωi) + 2

l
∑

i=1

l
∑

j=i+1

ηiηjvij(t, ωij)
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spq = η2
pbpq + 4β2

pqηpηq +

l
∑

k=1

l
∑

j=k+1

γkj
pq ηkηj ,

sqp = 0, (p < q) ∈ [1, l], η ∈ Rl
+, η > 0.

Sufficient conditions for stability with probability of the system (4.4.1)
are obtained in terms of the function (4.4.9) being applied in construction
of the function

(4.4.14) V (t, ω) = ηTΠ(t, ω)η, η ∈ Rl
+, η > 0

Namely, we shall prove the following result.

Theorem 4.4.1. Let the perturbed motion of the equation (4.4.1) are
such that:

(1) {ξ(t), t ∈ T } is a normalized Wienner process and σij(t, ω) �= 0,

∀ (i, j) ∈ [1, l];
(2) all conditions of Assumptions 4.4.1–4.4.4 are satisfied
(3) the matrix S is

(a) negative semi-definite;

(b) negative definite.

Then the equilibrium state ω = 0 of system (4.4.1) is

(a) stable in probability;
(b) asymptotically stable in probability.

Proof. We take the functions vij(t, ·) according to Assumption 4.4.1

and a vector η ∈ Rl
+, η > 0. The function (4.4.14) in coordinate form is

(4.4.15)

V (t, ω) =

l
∑

i=1

η2
i vii(t, ωi) +

l
∑

i,j=1
(i�=l)

ηiηjvij(t, ωij)

=

l
∑

i=1

η2
i vii(t, ωi) + 2

l
∑

i=1

l
∑

j=i+1

ηiηjvij(t, ωij)
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Assumption 4.4.1 implies that at the presence of properties A(Ni) and
A(Ni ×Nj) the bilateral estimate

l
∑

i=1

η2
i ψi1(�ωi�)+

l
∑

i,j=1
(i�=j)

ηiηjψ
1
ij(�ωij�) ≤ V (t, ω)

≤
l

∑

i=1

η2
i ψi2(�ωi�) +

l
∑

i,j=1
(i�=j)

ηiηjψ
2
ij(�ωij�)

is valid for function (4.4.15) when all ωi ∈ Ni, ωij ∈ Ni ×Nj and t ∈ T .

Since ψi1, ψi2 ∈ K and ψ1
ij , ψ2

ij ∈ K, then the function V (t, ω) is posi-

tive definite and decreasing. Moreover, functions Ψ1(�ω�) and Ψ2(�ω�) ∈
K can be found such that

(4.4.16) Ψ1(�ω�) ≤ V (t, ω) ≤ Ψ2(�ω�)

for all ω ∈ N = N1 × · · · × Nl, t ∈ T .

For the function (4.4.14) the averaged derivative
dE[V ]

dt
along the solu-

tions of (4.4.1) is

dE[V (t, ω)]

dt
= ηT dE[Π(t, ω)]

dt
η =

l
∑

i=1

η2
i

(

dEi[vii(t, ω)]

dt
+ gT

i ∇ωi
vii(t, ωi)

)

+
1

2

l
∑

j=1
(j �=l)

tr
[

σT
ij(t, ωj)∇ωiωi

vii(t, ωi)σij(t, ωj)
]

+ 2
l

∑

i=1

l
∑

j=i+1

ηiηj

(

dEij [vij(t, ωij)]

dt

+
1

2

l
∑

k=1
(k �=i,j)

tr
[

(σk
ij)

T∇ωijωij
vij(t, ωij)σ

k
ij

]

)

.

for all t ∈ T and ωi ∈ Ni, ωij ∈ Ni ×Nj .

In view of conditions (c) of Assumptions 4.4.3 and 4.4.4 we get the
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estimate

(4.4.17)

dE[V (t, ω)]

dt
≤

l
∑

i=1

η2
i [PiΨi3(�ωi�)

+ Ψ
1/2
i3 (�ωi�)

l
∑

k=1

bikΨ
1/2
k3 (�ωk�) +

1

2

l
∑

k=1
(k �=i)

dkαikΨk3(�ωk�)]

+ 2

l
∑

i=1

l
∑

j=i+1

ηiηj [β
1
ijΨi3(�ωi�) + 2β2

ijΨ
1/2
i3 Ψ

1/2
j3

+ β3
ijΨj3(�ωj�) +

l
∑

k=1,p=k

γ
ij
kpΨ

1/2
k3 (�ωk�)Ψ

1/2
p3 (�ωp�)

+
1

2

l
∑

k=1
(k �=j,i)

νk
ijµ

k
ijΨk3(�ωk�)]

for all t ∈ T and ωi ∈ Ni.
With regard to the structure of the matrix S we get from esti-

mate (4.4.12)

(4.4.18)
dE[V (t, ω)]

dt
≤ ΨT(�ω�)SΨ(�ω�)

where Ψ(�ω�) =
(

ψ
1/2
13 (�ω1�), . . . , ψ

1/2
l3 (�ωl�)

)T

.

Since by condition (3)(a) of Theorem 4.4.1 the matrix S is negative
semi-definite, then λM (S) ≤ 0 and

dE[V (t, ω)]

dt
≤ λM (s)

l
∑

i=1

ψi3(�ωi�)

for all t ∈ T and ωi ∈ Ni.
Since ϕi3 ∈ K, there exists a comparison function Ψ3(�ω�) ∈ K such

that
l

∑

i=1

ψi3(�ωi�) ≤ Ψ3(�ω�)

for all ωi ∈ Ni and ω ∈ N = N1 × . . .Nl.
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estimate

(4.4.17)

dE[V (t, ω)]

dt
≤

l
∑

i=1

η2
i [PiΨi3(�ωi�)

+ Ψ
1/2
i3 (�ωi�)

l
∑

k=1

bikΨ
1/2
k3 (�ωk�) +

1

2

l
∑

k=1
(k �=i)

dkαikΨk3(�ωk�)]

+ 2

l
∑

i=1

l
∑

j=i+1

ηiηj [β
1
ijΨi3(�ωi�) + 2β2

ijΨ
1/2
i3 Ψ

1/2
j3

+ β3
ijΨj3(�ωj�) +

l
∑

k=1,p=k

γ
ij
kpΨ

1/2
k3 (�ωk�)Ψ

1/2
p3 (�ωp�)

+
1

2

l
∑

k=1
(k �=j,i)

νk
ijµ

k
ijΨk3(�ωk�)]

for all t ∈ T and ωi ∈ Ni.
With regard to the structure of the matrix S we get from esti-

mate (4.4.12)

(4.4.18)
dE[V (t, ω)]

dt
≤ ΨT(�ω�)SΨ(�ω�)

where Ψ(�ω�) =
(

ψ
1/2
13 (�ω1�), . . . , ψ

1/2
l3 (�ωl�)

)T

.

Since by condition (3)(a) of Theorem 4.4.1 the matrix S is negative
semi-definite, then λM (S) ≤ 0 and

dE[V (t, ω)]

dt
≤ λM (s)

l
∑

i=1

ψi3(�ωi�)

for all t ∈ T and ωi ∈ Ni.
Since ϕi3 ∈ K, there exists a comparison function Ψ3(�ω�) ∈ K such

that
l

∑

i=1

ψi3(�ωi�) ≤ Ψ3(�ω�)

for all ωi ∈ Ni and ω ∈ N = N1 × . . .Nl.
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Hence

(4.4.19)
dE[V (t, ω)]

dt
≤ λM (S)Ψ3(�ω�)

is negative semi-definite for all t ∈ T and ω ∈ N .
Thus all conditions of Theorem 4.3.1 from Section 4.3 are satisfied, and

the equilibrium state ω = 0 of system (4.4.1) is stable in probability.
To verify assertion (b) of Theorem 4.4.1 it is sufficient to note that

under condition (3)(b) in the estimate (4.4.18) λM < 0. Then according
to inequality (4.4.19) all hypotheses of Theorem 4.3.2 are satisfied and
the equilibrium state ω = 0 of system (4.4.1) is asymptotically stable in
probability.

The Theorem 4.4.1 is proved.

Assumption 4.4.5. The system (4.4.1) allows the first and the second
level decompositions and

(1) independent subsystems (4.4.3) possess the property Bj(∞), j ∈
[1, l];

(2) independent couples (i, j) of the subsystems (4.4.7) possess the
property Aij(∞), ∀ (i �= j) ∈ [1, l].

Theorem 4.4.2. Let the perturbed motion of the equations (4.4.1) are
such that

(1) {ξ(t), t ∈ T } is a normalized process and σij(t, ωj) �= 0 ∀ (i, j) ∈
[1, l];

(2) all conditions of Assumption 4.4.5 are satisfied;
(3) the conditions of Assumption 4.4.4 are satisfied for Ni = Rni ,

Ni ×Nj = Rni × Rnj with functions ϕi3 ∈ KR, i ∈ [1, l];
(4) the matrix S is negative definite.

Then, the equilibrium state ω = 0 of system (4.4.1) is asymptotically stable
in probability in the whole.

Proof. Under the conditions of Assumption 4.4.5 the function (4.4.14)
satisfies estimates (4.2.20) and its averaged derivative (4.2.27) satisfies in-
equality (4.4.18) where functions ψi3 ∈ KR. In consequence of condition (4)

of Theorem 4.4.2 and estimate (4.4.19),
dE[V (t, ω)]

dt
is negative definite for

all t ∈ T and ω ∈ Rn. Thus, all conditions of Theorem 4.3.3 are satisfied
and the equilibrium state ω = 0 of system (4.4.1) is asymptotically stable
in probability in the whole.
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Remark 4.4.5. If for the perturbed motion the equations (4.4.1) are
such that σij(t, ωj) = 0 for all (i, j) ∈ [1, l], i.e. random interconnec-
tions between the subsystems are absent, then the structure of matrix S is
simplified and its elements are:

spp = η2
p(ρp + bpp) + 2ηp

l
∑

i=p+1

ηiβ
1
pi + 2ηp

l
∑

i=p+1

γpi
ppηi + 2ηp

l
∑

i=1

β3
piηi,

spq = η2
pbpq + 4β2

pqηpηq +
l

∑

k=1

l
∑

j=k+1

γkj
pqηkηj , ∀ (p < q) ∈ [1, l];

sqp = 0, p < q.

Here ηp, p ∈ [1, l] are components of vector η ∈ Rl
+.

4.5 Applications

In this section general results on stochastic stability are applied in the
investigation of some real processes models.

4.5.1 Stochastic Version of the Lefschetz Problem

The following problem is a development of the Lefschetz [100] problem we
dealt with in Chapter 2.

Let us decompose system (4.2.1) into two subsystems

(4.5.1)

dp

dt
= X(t, p, 0, y(t)) + F (t, p, q, y(t)),

dq

dt
= X(t, 0, q, y(t)) + G(t, p, q, y(t)),

where p ∈ Rn1 , q ∈ Rn2 , X ∈ C[T0 × Bp, R[Ω, Rn1 ]], Y ∈ C[T0 × Bq,

R[Ω, Rn2 ]], F ∈ C[T0 ×B, R[Ω, Rn1 ]], G ∈ C[T0 ×B, R[Ω, Rn2 ]], X , F , Y ,
G vanish if and only if p = 0 and q = 0 respectively.

Assumption 4.5.1. There exist time-invariant neighborhoods Np ⊆
Rn1 , Nq ⊆ Rn2 of the equilibrium states p = 0, q = 0 respectively, and a
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Remark 4.4.5. If for the perturbed motion the equations (4.4.1) are
such that σij(t, ωj) = 0 for all (i, j) ∈ [1, l], i.e. random interconnec-
tions between the subsystems are absent, then the structure of matrix S is
simplified and its elements are:

spp = η2
p(ρp + bpp) + 2ηp

l
∑

i=p+1

ηiβ
1
pi + 2ηp

l
∑

i=p+1

γpi
ppηi + 2ηp

l
∑

i=1

β3
piηi,

spq = η2
pbpq + 4β2

pqηpηq +
l

∑

k=1

l
∑

j=k+1

γkj
pqηkηj , ∀ (p < q) ∈ [1, l];

sqp = 0, p < q.

Here ηp, p ∈ [1, l] are components of vector η ∈ Rl
+.

4.5 Applications

In this section general results on stochastic stability are applied in the
investigation of some real processes models.

4.5.1 Stochastic Version of the Lefschetz Problem

The following problem is a development of the Lefschetz [100] problem we
dealt with in Chapter 2.

Let us decompose system (4.2.1) into two subsystems

(4.5.1)

dp

dt
= X(t, p, 0, y(t)) + F (t, p, q, y(t)),

dq

dt
= X(t, 0, q, y(t)) + G(t, p, q, y(t)),

where p ∈ Rn1 , q ∈ Rn2 , X ∈ C[T0 × Bp, R[Ω, Rn1 ]], Y ∈ C[T0 × Bq,

R[Ω, Rn2 ]], F ∈ C[T0 ×B, R[Ω, Rn1 ]], G ∈ C[T0 ×B, R[Ω, Rn2 ]], X , F , Y ,
G vanish if and only if p = 0 and q = 0 respectively.

Assumption 4.5.1. There exist time-invariant neighborhoods Np ⊆
Rn1 , Nq ⊆ Rn2 of the equilibrium states p = 0, q = 0 respectively, and a
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matrix-valued function Π(t, x, y) with elements vkl k, l = 1, 2 such that

(4.5.2)

α11ζ
2
1 (�p�) ≤ v11(t, p, y) ≤ α11ζ

2
2 (�p�) ∀p ∈ Np0, ∀y ∈ Y ;

α22ζ
2
1 (�q�) ≤ v22(t, q, y) ≤ α22ζ

2
2 (�q�) ∀q ∈ Nq0, ∀y ∈ Y ;

α12ζ1(�p�)ψ1(�q�) ≤ v12(t, p, q, y) ≤ α12ζ2(�p�)ψ2(�q�)

∀(p, q, y) ∈ Np0 ×Nq0 × Y

where Np0 ={p ∈ Np, p �= 0}, Nq0 ={q ∈ Nq, q �= 0}, αkk, αkk =const > 0,
α12, α12 = const, k = 1, 2; ζk, ψk are functions of class K.

If conditions of the Assumption 4.5.1 are satisfied, properties of the func-
tion (4.4.14) (property of having a fixed sign, the existence of an infinitely
small upper bound; an infinitely large lower bound) are defined by proper-
ties of matrices A = HTA1H ; B = HTA2H where

(4.5.3) A1 = [αkl], A2 = [αkl], H = diag (η1, η2), k, l = 1, 2.

We introduce the designation

∆(vkl) =
∑

i�=j

αij [vkl(t, ·, i) − vkl(t, ·, j)], k, l = 1, 2

Assumption 4.5.2. There exist constants ρkr , k = 1, 2; r = 1, 2, . . . , 10
and functions ζ(�p�), ψ(�q�) of class K(KR) such that

∇tv11 + (∇pv
T
11)X +

1

2
∆(v11) ≤ ρ11ζ

2 + h11(ζ, ψ),

∇tv22 + (∇qv
T
22)Y +

1

2
∆(v22) ≤ ρ12ψ

2 + h21(ζ, ψ),

(∇pv
T
11)F +

1

2
∆(v11) ≤ ρ12ζ

2 + ρ13ζψ + ρ14ψ
2 + h12(ζ, ψ),

(∇qv
T
22)G +

1

2
∆(v22) ≤ ρ22ζ

2 + ρ23ζψ + ρ24ψ
2 + h22(ζ, ψ),

∇tv12 + (∇pv
T
12)X +

1

4
∆(v12) ≤ ρ15ζ

2 + ρ16ζψ + ρ17ψ
2 + h13(ζ, ψ),

(∇qv
T
12)Y +

1

4
∆(v12) ≤ ρ25ζ

2 + ρ25ζψ + ρ27ψ
2 + h23(ζ, ψ),

(∇pv
T
12)F +

1

4
∆(v12) ≤ ρ18ζ

2 + ρ19ζψ + ρ110ψ
2 + h14(ζ, ψ),

(∇qv
T
12)G +

1

4
∆(v12) ≤ ρ28ζ

2 + ρ29ζψ + ρ210ψ
2 + h24(ζ, ψ),

where hsk(ζ, ψ), k = 1, 2; s = 1, 2, 3, 4 are polynomials with respect to ζ,
ψ containing additives of power higher than two.

Download free eBooks at bookboon.com



Stability Analysis via Matrix Functions Method

59 

Stability Analysis of Stochastic Systems

4.5 APPLICATIONS 213

Proposition 4.5.1. If all hypotheses of Assumption 4.5.2 are satisfied
and

(a) the matrix C = [cij ], cij = cji, i �= j; i, j = 1, 2 with elements

c11 = η2
1(ρ11 + ρ12) + η2

2ρ22 + 2η1η2(ρ15 + ρ18 + ρ25 + ρ28),

c22 = η2
1ρ14 + η2

2(ρ21 + ρ24) + 2η1η2(ρ17 + ρ110 + ρ27 + ρ210),

c12 =
1

2
(η2

1ρ13 + η2
2ρ23) + η1η2(ρ16 + ρ19 + ρ26 + ρ29),

is negative definite, then due to system (4.5.1) averaged derivative

(4.5.4) ηT dE[Π]

dt
η =

dE[V ]

dt
, η ∈ R2

+

is a negative definite function.

If besides hypothesis (a), hypothesis (b) is satisfied, hypotheses of As-
sumptions 4.5.1 and 4.5.2 are satisfied

(4.5.5)
h(ζ, ψ) = η2

1(h11 + h12) + η2
2(h21 + h22)

+ 2η1η2(h13 + h14 + h23 + h24) ≤ 0

for p ∈ Rn1 , q ∈ Rn2 , n1 + n2 = n and for functions ζ(�p�) ∈ KR,
ψ(�q�) ∈ KR, then the averaged derivative (4.5.4) is negative definite in
the whole.

Theorem 4.5.1. If the system of equations of perturbed motion (4.5.1)
is such that all hypotheses of Assumptions 4.5.1 and 4.5.2 (a) are satisfied
and matrices A and B are positive definite and matrix C is negative definite,
the equilibrium state p = 0, q = 0 of the system (4.5.1) is asymptotically
stable with respect to probability.

If in Assumption 4.5.1 and 4.5.2 Np = Rn1 , Nq = Rn2 the functions
ζ(�p�) and ψ(�q�) are of class KR, the equilibrium state p = 0, q = 0 is
asymptotically stable with respect to probability in the whole.

The assertions of Theorem 4.5.1 are implied by estimate

(4.5.6)
dE[V ]

dt
≤ ξTCξ + h(ξ)

where ξ = (ζ, ψ)T and by the fact that if the hypotheses of Theorem 4.5.1
are satisfied, the hypotheses of Theorems 4.3.2 and 4.3.3 are satisfied re-
spectively.
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Proposition 4.5.1. If all hypotheses of Assumption 4.5.2 are satisfied
and

(a) the matrix C = [cij ], cij = cji, i �= j; i, j = 1, 2 with elements

c11 = η2
1(ρ11 + ρ12) + η2

2ρ22 + 2η1η2(ρ15 + ρ18 + ρ25 + ρ28),

c22 = η2
1ρ14 + η2

2(ρ21 + ρ24) + 2η1η2(ρ17 + ρ110 + ρ27 + ρ210),

c12 =
1

2
(η2

1ρ13 + η2
2ρ23) + η1η2(ρ16 + ρ19 + ρ26 + ρ29),

is negative definite, then due to system (4.5.1) averaged derivative

(4.5.4) ηT dE[Π]

dt
η =

dE[V ]

dt
, η ∈ R2

+

is a negative definite function.

If besides hypothesis (a), hypothesis (b) is satisfied, hypotheses of As-
sumptions 4.5.1 and 4.5.2 are satisfied

(4.5.5)
h(ζ, ψ) = η2

1(h11 + h12) + η2
2(h21 + h22)

+ 2η1η2(h13 + h14 + h23 + h24) ≤ 0

for p ∈ Rn1 , q ∈ Rn2 , n1 + n2 = n and for functions ζ(�p�) ∈ KR,
ψ(�q�) ∈ KR, then the averaged derivative (4.5.4) is negative definite in
the whole.

Theorem 4.5.1. If the system of equations of perturbed motion (4.5.1)
is such that all hypotheses of Assumptions 4.5.1 and 4.5.2 (a) are satisfied
and matrices A and B are positive definite and matrix C is negative definite,
the equilibrium state p = 0, q = 0 of the system (4.5.1) is asymptotically
stable with respect to probability.

If in Assumption 4.5.1 and 4.5.2 Np = Rn1 , Nq = Rn2 the functions
ζ(�p�) and ψ(�q�) are of class KR, the equilibrium state p = 0, q = 0 is
asymptotically stable with respect to probability in the whole.

The assertions of Theorem 4.5.1 are implied by estimate

(4.5.6)
dE[V ]

dt
≤ ξTCξ + h(ξ)

where ξ = (ζ, ψ)T and by the fact that if the hypotheses of Theorem 4.5.1
are satisfied, the hypotheses of Theorems 4.3.2 and 4.3.3 are satisfied re-
spectively.
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4.5.2 Stability in Probability of Oscillating System

Let us consider for an oscillating system the perturbed motion equations
which are of the form

(4.5.7)

dp

dt
= A1(y)p + f1(p, q, r, y(t)),

dq

dt
= A2(y)q + f2(p, q, r, y(t)),

dr

dt
= A3(y)r + f3(p, q, r, y(t)).

Here p, q, r ∈ R2, fi ∈ C(B, R[Y, R2]),

Ai(y) =

(

0 1
−bi(y) −ai(y)

)

, i = 1, 2, 3

.
The functions ai(y) and bi(y) are bounded and y(t) is a homogeneous

Markov chain with a finite number of states Y = {y1, . . . , yr} and with
transitional probabilities

pij(τ) = αijτ + o(τ), αij = const (i �= j) ∈ [1, r].

We designate bi(yk) = bi
k, ai(yk) = ai

k and assume that bi
k > 0. Matrix-

valued function Π(p, q, r, y(t)) elements vik(·) are taken in the form

(4.5.8)

v11(p, yk) = pTdiag

(

1,
1

b1
k

)

p,

v22(q, yk) = qTdiag

(

1,
1

b2
k

)

q,

v33(r, yk) = rTdiag

(

1,
1

b3
k

)

r,

v12(p, q, yk) = pTdiag

(

1,
0, 1

b1
k

)

q,

v13(p, r, yk) = pTdiag

(

1,
0, 1

b3
k

)

r,

v23(q, r, yk) = qTdiag

(

1,
0, 1

b2
k

)

r,

vij(·) = vij(·) ∀ (i �= j) ∈ [1, 3].
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It is easy to notice that for functions (4.5.8) the following estimates are
valid

(a) if 0 < bi
k ≤ 1, i = 1, 2, 3, then

v11(p, yk) ≥ �p�2; v22(q, yk) ≥ �q�2;

v33(r, yk) ≥ �r�2; v12(p, q, yk) ≥ −0, 1�p��q�;

v13(p, r, yk) ≥ −0, 1�p��r�; v23(q, r, yk) ≥ −0, 1�q��r�;

(b) if bi
k > 1, i = 1, 2, 3, then

v11(p, yk) ≥
1

b1
k

�p�2; v22(q, yk) ≥
1

b2
k

�q�2;

v33(r, yk) ≥
1

b3
k

�r�2; v12(p, q, yk) ≥ −
0, 1

b1
k

�p��q�;

v13(p, r, yk) ≥ −
0, 1

b3
k

�p��r�; v23(q, r, yk) ≥ −
0, 1

b2
k

�q��r�.

For the function

(4.5.9) V (p, q, r, y(t)) = ηTΠ(p, q, r, y(t))η,

where η ∈ R3
+ the matrix A1 in the estimate of (4.2.20) has the form

A1(yk) =





















































1 −0, 1 −0, 1

−0, 1 1 −0, 1

−0, 1 −0, 1 1






, if 0 < bi

k ≤ 1, i = 1, 2, 3;









1
b1

k

− 0,1
b1

k

− 0,1
b3

k

− 0,1
b1

k

1
b2

k

− 0,1
b2

k

− 0,1
b1

k

− 0,1
b2

k

1
b3

k









, if bi
k > 1, i = 1, 2, 3.

The matrix A1 is positive definite, if

(4.5.10)
b1
k

b3
k

+
b3
k

b2
k

+
b2
k

b1
k

< 99, 8, k = 1, 2, . . . , r.

For the averaged derivative
dE[vij(·)]

dt
of the function Π(p, q, r, y(t)) with

elements (4.5.8) it is easy to establish estimate in the form

(4.5.11)
dE[V (p, q, r, y(t))]

dt
≤ uTSu
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It is easy to notice that for functions (4.5.8) the following estimates are
valid

(a) if 0 < bi
k ≤ 1, i = 1, 2, 3, then

v11(p, yk) ≥ �p�2; v22(q, yk) ≥ �q�2;

v33(r, yk) ≥ �r�2; v12(p, q, yk) ≥ −0, 1�p��q�;

v13(p, r, yk) ≥ −0, 1�p��r�; v23(q, r, yk) ≥ −0, 1�q��r�;

(b) if bi
k > 1, i = 1, 2, 3, then

v11(p, yk) ≥
1

b1
k

�p�2; v22(q, yk) ≥
1

b2
k

�q�2;

v33(r, yk) ≥
1

b3
k

�r�2; v12(p, q, yk) ≥ −
0, 1

b1
k

�p��q�;

v13(p, r, yk) ≥ −
0, 1

b3
k

�p��r�; v23(q, r, yk) ≥ −
0, 1

b2
k

�q��r�.

For the function

(4.5.9) V (p, q, r, y(t)) = ηTΠ(p, q, r, y(t))η,

where η ∈ R3
+ the matrix A1 in the estimate of (4.2.20) has the form

A1(yk) =





















































1 −0, 1 −0, 1

−0, 1 1 −0, 1

−0, 1 −0, 1 1






, if 0 < bi

k ≤ 1, i = 1, 2, 3;









1
b1

k

− 0,1
b1

k

− 0,1
b3

k

− 0,1
b1

k

1
b2

k

− 0,1
b2

k

− 0,1
b1

k

− 0,1
b2

k

1
b3

k









, if bi
k > 1, i = 1, 2, 3.

The matrix A1 is positive definite, if

(4.5.10)
b1
k

b3
k

+
b3
k

b2
k

+
b2
k

b1
k

< 99, 8, k = 1, 2, . . . , r.

For the averaged derivative
dE[vij(·)]

dt
of the function Π(p, q, r, y(t)) with

elements (4.5.8) it is easy to establish estimate in the form

(4.5.11)
dE[V (p, q, r, y(t))]

dt
≤ uTSu
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where u = (�p�, �q�, �r�)T, η = (1, 1, 1)T and matrix S elements are

(4.5.12)

cii(yk) = −
(2ai

k

bi
k

− ∆bi −
3

∑

l=1

dl
ii

)

, i = 1, 2, 3; k = 1, 2, . . . , r;

c12(yk) =
1

2

(

6
∑

l=1

dl
12 +

0, 1

b1
k

|a1
k + a2

k| + 0, 1|∆b1|
)

, k = 1, 2, . . . , r;

c13(yk) =
1

2

(

6
∑

l=1

dl
13 +

0, 1

b3
k

|a1
k + a3

k| + 0, 1|∆b3|
)

, k = 1, 2, . . . , r;

c23(yk) =
1

2

(

6
∑

l=1

dl
23 +

0, 1

b2
k

|a2
k + a3

k| + 0, 1|∆b2|
)

, k = 1, 2, . . . , r,

where

∆bi =

r
∑

j �=k

(
1

bi
j

−
1

bi
k

)αkj , i = 1, 2, 3; k = 1, 2, . . . , r.

Here dk
ij , i, j ∈ [1, 3], k ∈ [1, 6] are constants that are found when esti-

mating
dE[vij(·)]

dt
.

The matrix S with elements (4.5.12) is negative definite if

(a)
2ai

k

bi
k

− ∆bi >

3
∑

l=1

dl
ii, i = 1, 2, 3; k = 1, 2, . . . , r;

(b)

2
∏

i=1

(2ai
k

bi
k

− ∆bi −
3

∑

l=1

dl
ii

)

>
1

4

(

6
∑

l=1

dl
12 + W 1

k (a1
k, a2

k, b1
k, b1)

)

;

(c)

3
∏

i=1

(2ai
k

bi
k

− ∆bi −
3

∑

l=1

dl
ii

)

+
1

4

(

6
∑

l=1

dl
12 + W 1

k (a1
k, a2

k, b1
k, b1)

)(

6
∑

l=1

dl
13 + W 3

k (a1
k, a3

k, b3
k, b3)

)

<
1

4

(

6
∑

l=1

dl
13 + W 3

k (a1
k, a3

k, b3
k, b3)

)(

3
∑

l=1

dl
22 + ∆b2 −

2a2
k

b2
k

)

+
1

4

(

6
∑

l=1

dl
23 + W 2

k (a2
k, a3

k, b2
k, b2)

)(

3
∑

l=1

dl
22 + ∆b1 −

2a1
k

b1
k

)
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+
1

4

(

6
∑

l=1

dl
12 + W 1

k (a1
k, a2

k, b1
k, b1)

)2( 3
∑

l=1

dl
33 + ∆b3 −

2a3
k

b3
k

)

,

k = 1, 2, . . . , r,

where

(4.5.13)

W 1
k (a1

k, a2
k, b1

k, b1) =
0, 1

b1
k

|a1
k + a2

k| + 0, 1|∆b1|;

W 2
k (a2

k, a3
k, b2

k, b2) =
0, 1

b2
k

|a2
k + a3

k| + 0, 1|∆b2|;

W 3
k (a1

k, a3
k, b3

k, b3) =
0, 1

b3
k

|a1
k + a3

k| + 0, 1|∆b3|, k = 1, 2, . . . , r.

Thus, under conditions (4.5.10) the function (4.5.9) is positive definite,
and when inequalities (a)–(c) are satisfied its averaged derivative (4.5.11)
is negative definite.

Applying Theorem 4.3.3 we conclude that conditions (4.5.10) and
(a)–(c) are sufficient for stability in probability in the whole of the equilib-
rium state p = q = r = 0 of oscillating system (4.5.7).

4.5.3 Stability in Probability of a Regulation System

We consider an autonomous stochastic regulation system

(4.5.14) dωi =
l

∑

j=1

Aijωjdt + σi(ωi)dzi + bifi(θi)dt, i ∈ [1, l],

where θi =
l

∑

k=1

cT
ikωk, bi, ωi ∈ Rni, cik ∈ Rnk, Aij are constant matrices

of the corresponding to vector ωj dimensions, {zi(t), t ∈ T }, is a mi-
dimensional Wienner process. Besides, fi(θi) = 0, if and only if θi = 0,
0 ≤ fi(θi) < kiθ

2
i provided θi �= 0.

First level decomposition results in the system

(4.5.15) dωi = Aiiωidt + σi(ωi)dzi +

l
∑

j=1
(j �=i)

Aijωjdt + bifi(θi)dt, i ∈ [1, l],
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+
1

4

(

6
∑

l=1

dl
12 + W 1

k (a1
k, a2

k, b1
k, b1)

)2( 3
∑

l=1

dl
33 + ∆b3 −

2a3
k

b3
k

)

,

k = 1, 2, . . . , r,

where

(4.5.13)

W 1
k (a1

k, a2
k, b1

k, b1) =
0, 1

b1
k

|a1
k + a2

k| + 0, 1|∆b1|;

W 2
k (a2

k, a3
k, b2

k, b2) =
0, 1

b2
k

|a2
k + a3

k| + 0, 1|∆b2|;

W 3
k (a1

k, a3
k, b3

k, b3) =
0, 1

b3
k

|a1
k + a3

k| + 0, 1|∆b3|, k = 1, 2, . . . , r.

Thus, under conditions (4.5.10) the function (4.5.9) is positive definite,
and when inequalities (a)–(c) are satisfied its averaged derivative (4.5.11)
is negative definite.

Applying Theorem 4.3.3 we conclude that conditions (4.5.10) and
(a)–(c) are sufficient for stability in probability in the whole of the equilib-
rium state p = q = r = 0 of oscillating system (4.5.7).

4.5.3 Stability in Probability of a Regulation System

We consider an autonomous stochastic regulation system

(4.5.14) dωi =
l

∑

j=1

Aijωjdt + σi(ωi)dzi + bifi(θi)dt, i ∈ [1, l],

where θi =
l

∑

k=1

cT
ikωk, bi, ωi ∈ Rni, cik ∈ Rnk, Aij are constant matrices

of the corresponding to vector ωj dimensions, {zi(t), t ∈ T }, is a mi-
dimensional Wienner process. Besides, fi(θi) = 0, if and only if θi = 0,
0 ≤ fi(θi) < kiθ

2
i provided θi �= 0.

First level decomposition results in the system

(4.5.15) dωi = Aiiωidt + σi(ωi)dzi +

l
∑

j=1
(j �=i)

Aijωjdt + bifi(θi)dt, i ∈ [1, l],

Download free eBooks at bookboon.com



Stability Analysis via Matrix Functions Method

67 

Stability Analysis of Stochastic Systems

218 4. STABILITY ANALYSIS OF STOCHASTIC SYSTEMS

with the independent subsystems

(4.5.16) dωi = Aiiωidt + σi(ωi)dzi i ∈ [1, l],

and link functions

(4.5.17) gi(ω) =

l
∑

j=1
(j �=i)

Aijωjdt + bifi(θi)dt, i ∈ [1, l].

The second level decomposition yields

(4.5.18)

dωi =Aiiωidt + Aijωjdt + σi(ωi)dzi

+
l

∑

k=1
(k �=i,j)

Aikωkdt + bifi(θi)dt;

dωj =Ajjωjdt + Ajiωidt + σj(ωj)dzj

+

l
∑

k=1
(k �=i,j)

Ajkωkdt + bjfj(θj)dt.

Equations (4.5.18) are represented as

(4.5.19)
dωij = Aijωijdt + σijdzij +

l
∑

k=1
(k �=i,j)

A
k

ijωkdt + Bijdt,

(i < j) ∈ [1, l].

Here ωij = (ωT
i , ωT

j )T, ωij ∈ Rni × Rnj and matrices Aij , A
k

ij , σij , Bij

with dimensions (ni +nj)×(ni +nj), (ni +nj)×nk, (ni +nj)×(mi +mj),
(ni + nj) × 1 ∀ (i, j, k) ∈ [1, l] respectively, are defined by formulas

A
k

ij = (AT
ik, A

T
jk)T; Bij = (bT

i fi(θi), b
T
jfj(θi));

σij = diag (σi(ωi), σj(ωj)); Aij =

(

Aii Aij

Aji Ajj

)

.

Alongside the systems (4.5.15) and (4.5.19) we shall consider the matrix-
valued function
(4.5.20)

Π(ω) = [diag (vii(ωi)) + (vij(ωij))], i < j ∈ [1, l], i = 1, 2, . . . , l
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with the elements

vii(ωi) = ωT
i Piiωi i ∈ [1, l];

vij(ωij) = ωT
ijPijωij (i < j) ∈ [1, l].

Matrices Pii are found by Liapunov equations

(4.5.21) AT
iiPii + PiiAii = −Gii, i ∈ [1, l]

where Gii are symmetric positive definite matrices of dimensions ni × ni.
Matrices Pij are also found by Liapunov equations

(4.5.22) A
T

ijPij + PijAij = −Gij , (i < j) ∈ [1, l]

where Gij are symmetric positive definite matrices of dimensions (ni +
nj) × (ni + nj).

The functions vii(ωi) and vij(ωij) are positive definite if matrices Aii

and Aij are stable. We shall suppose that this condition is satisfied for the
systems (4.5.15) and (4.5.19).

Now we introduce symmetric matrices of dimensions np × np:

Ξpp = η2
pGpp + 2η2

pcppb
T
p k∗

pPpp + ηp

l
∑

j=1
(j �=p)

ηj(G
p
pj + G

j
jp)

+ 4ηp

l
∑

j=p+1

ηj

[

cppb
T
p k∗

pPT
pj + cjpb

T
j k∗

j P
T

pj

+ cjpb
T
p k∗

pP pj + cjjb
T
j k∗

j P
j
jp

]

, p ∈ [1, l],

and matrices of dimensions np × nq, (p < q) ∈ [1, l]:

Ξpq = η2
qAT

qpPqq + η2
pPppb

T
p k∗

pcT
pq + 2ηpηqGpq

+ ηp

l
∑

j=q
(j �=p)

ηj(A
T
qpP

q
qj + AT

jpP
T

qj) + ηq

l
∑

j=q

ηj(A
T
jpP jq + AT

qpP
j
jq)

+ ηp

l
∑

j=p
(j �=q)

(P p
pj

T
Apq + P

T

pjAjq)ηj + ηp

l
∑

j=p
(j �=q)

ηj(P
T

jpAjq + P
j
jq

T
Apq)

+ 2ηp

l
∑

k=1
(k �=p,q)

(cpkbT
p k∗

pP p
pq + cqkbT

q k∗

qP
T

pq

+ cpkbT
p k∗

pP pq + cqkbT
q k∗

qP q
pq)ηq, ηp ∈ R+, ηp > 0.
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Here

k∗

i =











ki, for
�l

k=1 ωT
k cikbT

i P i
pqωi > 0

(or θib
T
i P pqωi > 0, or θib

T
i Piiωi > 0);

0, in the other cases.

We designate by λM (Ξpp) and λ
1/2
M (ΞpqΞpq) the maximal eigenvalue

of matrix Ξpp and the norm of matrix ΞT
pqΞpq respectively. For system

(4.5.14) the following result is valid.

Theorem 4.5.2. If system of the equations (4.5.14) is such that

(1) the first and second level decompositions are described by equations
(4.5.15) and (4.5.19) respectively;

(2) the matrices Aii and Aij in systems (4.5.15) and (4.5.19) are stable;
(3) the matrix S with elements

spq =











λM (Ξpp) + σpp, p = q;

λ
1/2
M (ΞpqΞpq), p < q;

sqp, p > q, (p, q) ∈ [1, l],

(a) negative semi-definite;
(b) negative definite.

Then, the equilibrium state ω = 0 of system (4.5.14) is

(a) uniformly stable in probability;
(b) uniformly asymptotically stable in probability.

Proof. We construct by means of the function (4.5.20) the function

(4.5.23) V (ω) = ηTΠ(ω)η, η ∈ Rl
+, η > 0.

By condition (2) of Theorem 4.5.2 the function V (ω) is positive definite
and radially unbounded. For the averaged derivative

dE[V (ω)]

dt
= ηT dE[Π(ω)]

dt
η, η ∈ Rl

+

it is easy to obtain the estimate

(4.5.24)

dE[V (ω)]

dt
≤

l
�

i=1

(λM (Ξii) + σii)�ωi�
2

+ 2

l
�

i=1

l
�

j=i+1

λ
1/2
M (ΞT

ijΞij)�ωi��ωj� = uTSu,
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Here

k∗

i =











ki, for
�l

k=1 ωT
k cikbT

i P i
pqωi > 0

(or θib
T
i P pqωi > 0, or θib

T
i Piiωi > 0);

0, in the other cases.

We designate by λM (Ξpp) and λ
1/2
M (ΞpqΞpq) the maximal eigenvalue

of matrix Ξpp and the norm of matrix ΞT
pqΞpq respectively. For system

(4.5.14) the following result is valid.

Theorem 4.5.2. If system of the equations (4.5.14) is such that

(1) the first and second level decompositions are described by equations
(4.5.15) and (4.5.19) respectively;

(2) the matrices Aii and Aij in systems (4.5.15) and (4.5.19) are stable;
(3) the matrix S with elements

spq =











λM (Ξpp) + σpp, p = q;

λ
1/2
M (ΞpqΞpq), p < q;

sqp, p > q, (p, q) ∈ [1, l],

(a) negative semi-definite;
(b) negative definite.

Then, the equilibrium state ω = 0 of system (4.5.14) is

(a) uniformly stable in probability;
(b) uniformly asymptotically stable in probability.

Proof. We construct by means of the function (4.5.20) the function

(4.5.23) V (ω) = ηTΠ(ω)η, η ∈ Rl
+, η > 0.

By condition (2) of Theorem 4.5.2 the function V (ω) is positive definite
and radially unbounded. For the averaged derivative

dE[V (ω)]

dt
= ηT dE[Π(ω)]

dt
η, η ∈ Rl

+

it is easy to obtain the estimate

(4.5.24)

dE[V (ω)]

dt
≤

l
�

i=1

(λM (Ξii) + σii)�ωi�
2

+ 2

l
�

i=1

l
�

j=i+1

λ
1/2
M (ΞT

ijΞij)�ωi��ωj� = uTSu,
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where u = (‖ω1‖, . . . , ‖ωl‖)T. Under the condition (3) of Theorem 4.5.2 the
averaged derivative (4.5.24) is negative semi-definite or negative definite.
According to Theorem 4.3.4 the Theorem 4.5.2 is proved.

4.6 Notes

4.1. General outlines on probability theory and theory of stochastic pro-
cesses can be found in the books by Doob [31], Gikhman and Skorokhod [42],
Dynkin [34], etc. The problems of stochastic stability are presented in a
number of monographs (see e.g. Kushner [90], Arnold [5], Khasminskii [83],
Michel and Miller [143], Ladde and Lakshmikantham [91], etc.). In these
investigations the second Liapunov method is further developed with inter-
esting applications.

4.2. Stochastic system in the form of (4.2.1) is called here the Kats–
Krasovskii form with reference to Kats and Krasovskii [82] where it was
introduced.

Basic definitions of stochastic stability are formulated as the genera-
lization of Definitions 2.2.1—2.2.4 from Chapter 2 for stochastic systems.
Stochastic matrix-valued function is introduced according to Martynyuk
[115] and averaged derivative is due to Kats and Krasovskii [82] and Mar-
tynyuk [115].

4.3. Theorems 4.3.1–4.3.4 are due to Martynyuk [115].
4.4. Theorems 4.4.1, 4.4.2 are taken from Azimov and Martynyuk [8]

and Azimov [6].
4.5. Stochastic version of the Lefschetz [100] problem is presented ac-

cording to Martynyuk [115]. Oscillating system (4.5.7) was investigated by
Azimov and Martynyuk [8], and system of automatic control (4.5.14) was
considered by Azimov [7].
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5
SOME MODELS OF REAL WORLD PHENOMENA

5.1 Introduction

This chapter contains several examples of real world phenomena that illus-
trate the versatility and applicability of the matrix-valued Liapunov func-
tions in stability investigation of its equilibrium state.

Section 5.2 deals with mathematical models in population. The neigh-
borhood of the non-trivial equilibrium state is investigated in the general
case for a predator-prey system and estimates of stability, asymptotic sta-
bility and instability domains are found in this section.

In Section 5.3 the model of an orbital astronomical observatory is con-
sidered. Conditions are established under which the whole system is stable
even though its separate subsystem are unstable.

In Section 5.4 we discuss a power system model consisting of N gen-
erators. General conditions are specified for asymptotic stability of the
equilibrium state of such a system to be applicable in the case of 3, 5
and 7 generators to obtain the system parameters such that the system
is asymptotically stable, while the method of scalar or vector Liapunov
functions have failed to work herein.

Finally, in Section 5.5 the motion in space of winged aircraft is treated.

5.2 Population Models

We shall discuss in this section mathematical models in population dynam-
ics. In particular, we consider mathematical models of population growth
of competing as well as predator-prey species as prototype models of our
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borhood of the non-trivial equilibrium state is investigated in the general
case for a predator-prey system and estimates of stability, asymptotic sta-
bility and instability domains are found in this section.

In Section 5.3 the model of an orbital astronomical observatory is con-
sidered. Conditions are established under which the whole system is stable
even though its separate subsystem are unstable.

In Section 5.4 we discuss a power system model consisting of N gen-
erators. General conditions are specified for asymptotic stability of the
equilibrium state of such a system to be applicable in the case of 3, 5
and 7 generators to obtain the system parameters such that the system
is asymptotically stable, while the method of scalar or vector Liapunov
functions have failed to work herein.

Finally, in Section 5.5 the motion in space of winged aircraft is treated.

5.2 Population Models

We shall discuss in this section mathematical models in population dynam-
ics. In particular, we consider mathematical models of population growth
of competing as well as predator-prey species as prototype models of our
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analysis. The models are based on certain simplifying assumptions as stated
below.

(1) The density of a species, that is, the number of individuals per unit
area, can be represented by a single variable, when differences of
age, sex and genotype are ignored.

(2) Crowding affects all population members equally. This is unlikely
to be true if the members of the species occur in clumps rather than
being evently distributed throughout the available space.

(3) The affects of interactions within and between species are instanta-
neous. This means that there is no delayed action on the dynamics
of the population.

(4) Abiotic environmental factors are sufficiently constant.
(5) Population growth rate is density-dependent even at the lowest den-

sities. It may be more reasonable to suppose that there is some
threshold density below which individuals do not interfere with one
another.

(6) The females in a sexually reproducing population always find mates,
even though the density may be low.

The assumptions relative to density dependency and crowding affects
the fact that the growth of any species in a restricted environment must
eventually be limited by a shortage of resources.

5.2.1 Competition

For simplicity, let us first consider a two-species community model living
together and competing with each other for the same limiting resources.
Under assumptions (1)–(6), a mathematical model of population growth of
two competing species is described by

(5.2.1)

dx1

dt
= x1(a1 − b11x1 − b12x2),

dx2

dt
= x2(a2 − b21x1 − b22x2),

where xi is the population density of species i for i = 1, 2 and for i, j =
1, 2, ai, bij are positive constants. These equations are derived from the
Verhulst-Pearl logistic equation

(5.2.2)
dxi

dt
= xi(ai − biixi), i = 1, 2,
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by including the additional terms −bijxj for i, j = 1, 2 and i �= j to
describe the inhibiting effects of each species on its competior. The logistic
equation is best regarded as a purely descriptive equation.

The important features of (5.2.2) are:

(a) The species increase exponentially whenever they are isolated.
(b) They approach their equilibrium without oscillations in the absence

of its competitor.

In (5.2.1), for i = 1, 2 aixi can be interpreted as the potential rate of
increase that the i th species would grow if the resources were unlimited
and intra/inter-specific effects are neglected. Here ai is the intrinsic rate of
natural increase of the i th species, ai/bii = ki is referred as the carrying
capacity if the i th species. From this (5.2.2) can be written as

(5.2.3)
dxi

dt
= aixi

(

1 −
xi

ki

)

.

We observe that the per capita growth rate

(

dxi

dt

)/

xi will be negative

or positive depending on the population density xi > ki or xi < ki. Thus
the constants ki determine the saturation level of population densities.

5.2.2 Predator-Prey

In the community of competing species, each species inhibits the multiplica-
tion of the other species. In a community of two species in which one species
is a parasite or predator and the other its host or prey, a different form of in-
teraction between these two species takes place. The mathematical models
for host-parasite and predator-prey systems are equivalent. Obviously, the
more abundant the prey, the more opportunities there are for the predator
to breed. However, as the predator population grows, the number of prey
eaten by the predator increases. To formulate the mathematical model
describing the predator-prey interaction between two species, we assume
the following: (a) in the absence of a predator, the prey species satisfies
assumptions (1)–(6) and (b) the predator cannot survive without the pres-
ence of prey and the rate at which prey are eaten is proportional to the
product of the densities of predator and prey. Under these assumptions,
a mathematical model describing the predator-prey interaction between a
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prey and a predator in a given community is given by

(5.2.4)

dx1

dt
= x1(a1 − b11x1 − b12x2),

dx2

dt
= x2(−a2 + b21x1),

where x1 is prey density and x2 is predator density and a1, a2, b11, b21 are
positive constants.

From the foregoing discussion with regard to the two-species competi-
tion model and the predator-prey model, we can readily generalize to n

interacting species so that the general model is described by

(5.2.5)
dxi

dt
= xi

(

ai +
n

∑

j=1

bijxj

)

, xi(0) = xi0 ≥ 0,

where xi is density of the i th species in the community, ai, −bii are positive
constants and bij , i �= j, are constants with any sign. Any arbitrary sign
for bij , i �= j, allows us a greater flexibility for the interactions between the

i th and j th species in the community. For example, in a competitive model,
bij , bji, i �= j, are both negative, while for a predator-prey model, bij , bji,
i �= j, are of opposite signs. In a model for commensalism (symbiosis),
bij , bji, i �= j, are both positive.

The system (5.2.5) is represented in the vector form

(5.2.6)
dx

dt
= X(a + Bx), x(0) = x0 ≤ 0

and decomposed into two subsystems

(5.2.7)

dxs

dt
= Xs(as + As1x1 + As2x2),

xs(0) = xs ≤ 0, s = 1, 2.

Here x = (xT
1 , xT

2 )T ∈ Rn
+, xs ∈ Rns

+ , (aT
1 , aT

2 )T ∈ Rn, B = [Asj ], s, j =

1, 2; as = (as1, as2, . . . , asns
)T ∈ Rns , Asj are constant matrices ns × nj ,

X = diag (X1, X2), Xs = diag (xs1, . . . , xsns
), s = 1, 2.

Equilibrium population are determined by

(5.2.8) X(a + Bx) = 0.
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From (5.2.8) it is easy to conclude that x = 0 is an equilibrium which is
not interesting and so, we must assume that X �= 0. In this case (5.2.8)
reduces to

(5.2.9) a + Bx = 0,

where B is an n by n matrix and a is an n-vector.
We assume that there exists an equilibrium population x∗ > 0 as a

positive solution

(5.2.10) x∗ = −B−1a

of (5.2.9). This assumption is consistent with consideration of community
stability. In the case when b has all off-diagonal elements non-negative,
that is B is a Metzler matrix, then it is known that stability of B implies
x∗ > 0. It is possible to show that for a Metzler matrix B, the quasi-
dominant diagonal condition

(5.2.11) dj |bjj | >

n
∑

i=1
i�=j

di|bij |

with di > 0, is equivalent to saying that −B−1 is non-negative and since
B−1 cannot have a row of zeros, positivity of the vector a implies positivity
of x∗.

If B is a Metzler matrix, then an elegant solution of the problem on
stability of state x∗ is obtained by means of the function

V (x) =

n
∑

i=1

di

[

xi − x∗

i − x∗

i ln

(

xi

x∗

i

)]

, di > 0.

Our aim is to establish stability conditions for system (5.2.6) without
assuming matrix B being Metzler. This may be achived by decomposition
of system (5.2.6) with further application of the matrix-valued function.

By means of the Liapunov transformation

(5.2.12) y = x − x∗

we reduce the system (5.2.7) to the form

(5.2.13)
dys

dt
= X∗

s (As1y1 + As2y2) + Ys(As1Y1 + As2y2)
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where

X∗

s = diag
{

x∗

s1, x
∗

s2, . . . , x
∗

sns

}

, s = 1, 2,

Ys = diag {ys1, ys2, . . . , ysns
} , s = 1, 2.

For the system (5.2.13) the matrix-valued function

(5.2.14) U(y) = [vsj(ys, yj)] , s, j = 1, 2,

is constructed with the elements

(5.2.15)
vss(ys) = yT

s Psys, s = 1, 2,

vsj(ys, yj) = vjs(yj .ys) = yT
1P3y2.

Here Ps are positive definite symmetric matrices of the dimensions ns×ns,
s = 1, 2, and P3 is a constant matrix n1 by n2.

For the function

(5.2.16) V (y, η) = ηTU(y)η, η ∈ R2,

the following estimates are valid

(5.2.17) uTHTD1Hu ≤ V (y, η) ≤ uTHTD2Hu,

where

uT = (�y1�, �y2�), H = diag {η1, η2},

D1 =

(

λm(P1) −sign (η1η2)λ
1/2
M (P3P

T
3 )

−sign (η1η2)λ
1/2
M (P3P

T
3 ) λm((P2)

)

,

D2 =

(

λM (P1) −sign (η1η2)λ
1/2
M (P3P

T
3 )

−sign (η1η2)λ
1/2
M (P3P

T
3 ) λM (P2)

)

.

We have for the function D+V (y, η) = ηTD+U(y)η:

(5.2.18)

D+V (y, η) = ηTD+U(y)η = η2
1D

+v11(y1) + 2η1η2D
+v12(y1, y2)

+ η2
2D

+v22(y2) = yT
1 [F11 + G11] y1 + 2yT

1 F12y2

+ yT
2 [F22 + G22] y2 + 2yT

1 G12y2.
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Here

F11 = η2
1

[

P1X
∗

1A11 + (X∗

1A11)
T

P1

]

+ η1η2

[

P3X
∗

2A21 + (X∗

2A21)
T

PT
3

]

;

F12 = η2
1P1X

∗

1A12 + η2
2 (X∗

2A21)
T

P2 + η1η2

[

(X∗

1A11)
T

P3 + PT
3 X∗

2A22

]

;

F22 = η2
2

[

P2X
∗

2A22 + (X∗

2A22)
T

P2

]

+ η1η2

[

(X∗

1A12)
T

P3 + PT
3 X∗

1A12

]

;

G11 = η2
1

[

P1Y1A11 + (Y1A11)
T

P1

]

+ η1η2

[

P3Y2A21 + (Y2A21)
T

PT
3

]

;

G12 = η2
1P1Y1A12 + η2

2 (Y2A21)
T

P2 + η1η2

[

P3Y2A22 + (Y1A22)
T

P3

]

;

G22 = η2
2

[

P2Y2A22 + (Y2A22)
T

P2

]

+ η1η2

[

PT
3 Y1A12 + (Y1A12)

T
P3

]

.

We have for (5.2.18) the estimate

(5.2.19) D+V (y, η) ≤ uT [C + G(y)] u,

where

uT = (�y1�, �y2�),

C = [csj ], s, j = 1, 2, c12 = c21,

G(y) = [σsj(y)], σ12(y) = σ21(y).

Here c11, c22 are maximal eigenvalues of the matrices F11, F22; c12 is the
norm of matrix F12 and σsj(y) is the norm of matrix Gsj , s, j = 1, 2.

It follows from (5.2.18) that

(5.2.20) D+V (y, η) ≥ uT[C∗ − G(y)]u,

where

C∗ =

(

c∗11 −c12

−c21 c∗22

)

and c∗11, c∗22 are minimal eigenvalues of the matrices F11, F22 respectively.
Let us introduce the following notations

Π1 ={y ∈ Rn
+ : σ11(y) + c11 ≤ 0, σ22(y) + c22 ≤ 0,

(σ11(y) + c11)(σ22(y) + c22) − (σ12(y) + c12)
2 ≥ 0};

Π2 ={y ∈ Rn
+ : σ11(y) + c11 < 0, σ22(y) + c22 < 0,

(σ11(y) + c11)(σ22(y) + c22) − (σ12(y) + c12)
2 > 0};

Π3 ={y ∈ Rn
+ : c∗11 − σ11(y) > 0, c∗22 − σ22(y) > 0,

(c∗11 − σ11(y))(c∗22 − σ22(y)) − (σ12(y) + c12)
2 > 0}.
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Here

F11 = η2
1

[

P1X
∗

1A11 + (X∗

1A11)
T

P1

]

+ η1η2

[

P3X
∗

2A21 + (X∗

2A21)
T

PT
3

]

;

F12 = η2
1P1X

∗

1A12 + η2
2 (X∗

2A21)
T

P2 + η1η2

[

(X∗

1A11)
T

P3 + PT
3 X∗

2A22

]

;

F22 = η2
2

[

P2X
∗

2A22 + (X∗

2A22)
T

P2

]

+ η1η2

[

(X∗

1A12)
T

P3 + PT
3 X∗

1A12

]

;

G11 = η2
1

[

P1Y1A11 + (Y1A11)
T

P1

]

+ η1η2

[

P3Y2A21 + (Y2A21)
T

PT
3

]

;

G12 = η2
1P1Y1A12 + η2

2 (Y2A21)
T

P2 + η1η2

[

P3Y2A22 + (Y1A22)
T

P3

]

;

G22 = η2
2

[

P2Y2A22 + (Y2A22)
T

P2

]

+ η1η2

[

PT
3 Y1A12 + (Y1A12)

T
P3

]

.

We have for (5.2.18) the estimate

(5.2.19) D+V (y, η) ≤ uT [C + G(y)] u,

where

uT = (�y1�, �y2�),

C = [csj ], s, j = 1, 2, c12 = c21,

G(y) = [σsj(y)], σ12(y) = σ21(y).

Here c11, c22 are maximal eigenvalues of the matrices F11, F22; c12 is the
norm of matrix F12 and σsj(y) is the norm of matrix Gsj , s, j = 1, 2.

It follows from (5.2.18) that

(5.2.20) D+V (y, η) ≥ uT[C∗ − G(y)]u,

where

C∗ =

(

c∗11 −c12

−c21 c∗22

)

and c∗11, c∗22 are minimal eigenvalues of the matrices F11, F22 respectively.
Let us introduce the following notations

Π1 ={y ∈ Rn
+ : σ11(y) + c11 ≤ 0, σ22(y) + c22 ≤ 0,

(σ11(y) + c11)(σ22(y) + c22) − (σ12(y) + c12)
2 ≥ 0};

Π2 ={y ∈ Rn
+ : σ11(y) + c11 < 0, σ22(y) + c22 < 0,

(σ11(y) + c11)(σ22(y) + c22) − (σ12(y) + c12)
2 > 0};

Π3 ={y ∈ Rn
+ : c∗11 − σ11(y) > 0, c∗22 − σ22(y) > 0,

(c∗11 − σ11(y))(c∗22 − σ22(y)) − (σ12(y) + c12)
2 > 0}.
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Estimates (5.2.17), (5.2.19) and (5.2.20) yield the following assertion.

Proposition 5.2.1. The equilibrium state x∗ of the system (5.2.6) is:

(1) Stable (asymptotically) in the domain Π1 (Π2) if the matrix D1 is
positive definite and the matrix C is negative definite.

(2) Unstable in the domain Π3 if the matrices D1 and C∗ are positive
definite.

Proof. The fact that the matrix D1 is positive definite yields that
the function V (y) if positive definite for all y ∈ Rn

+. Since the matrix

C is negative definite, then by estimate (5.2.19) the function D+V (y) is
non-positive in the domain Π1. Hence all conditions of Theorem 2.3.3 are
satisfied, and the equilibrium state x∗ is stable.

The other assertion of Proposition 5.2.1 follows from Theorem 2.3.7.

5.3 Model of Orbital Astronomic Observatory

According to Geiss, Cohen et al. [40] the orbital astronomic observatory
consists of following blocks:

(1) observatory vehicle
(2) observatory body
(3) compensation system
(4) engine
(5) system of data (error) processing.

The subsystems (1)–(4) are physycal and its states are characterized by
the variables y1, y2, y3 and y4 respectively. Under some assumptions the
mathematical model of the motion control system for the observatory is
described by the equations

(5.3.1)

dy1

dt
= F1(y1)y2 + F1(y1)d1 + c1y2,

dy2

dt
= Y (y2)d2 − β1f2(σ, y3) + Y (y2)f2(σ, y3) + (β2I + c2)y4,

dy3

dt
= −β3f1(σ) − β4y3,

dy4

dt
= −β1f2(σ, y3) − β2y4,

σ = F2(y1)y1 + c2y1 + F2(y1)d3.
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Here y1 = (y11, y12, y13, y14)
T, yi = (yi1, yi2, yi3)

T, i = 2, 3, 4

(5.3.2)

σ = (σ1, σ2, σ3)
T,

F1(y1) =







0 f12 f13

0 f22 f23

0 f32 f33

0 f42 f43







and

(5.3.3)

f12 = sin(y13 + α3) − sin α3,

f13 = cos(y13 + α3) − cosα3,

f22 = − sin(y14 + α4) + sinα4,

f23 = − cos(y14 + α4) + cosα4,

f32 = −tg (y11 + α1) cos(y13 + α3) + tg α1 cosα3,

f33 = tg (y11 + α1) sin(y13 + α3) − tg α1 sin α3,

f42 = tg (y12 + α2) cos(y14 + α4) − tg α2 cosα4,

f43 = −tg (y12 + α2) sin(y14 + α4) + tgα2 sinα4,

F2(y1) =





0 0 0 0
g21 g22 0 0
g31 g32 0 0



 ,

where

g32 = −δ[sin(y13 + α3) − sin α3],

g21 = δ[cos(y14 + α4) − cosα4],

g22 = δ[cos(y13 + α3) − cosα3],

g31 = −δ[sin(y14 + α4) − sin α4].

Furthermore

Y (y2) = J−1





0 y23 −y22

−y23 0 y21

y22 −y21 0



 ,(5.3.4)

Z1(ζ) =

�

100 sign ζ, |ζ| ≥ 100
ζ, |ζ| ≤ 100

�

,(5.3.5)
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Here y1 = (y11, y12, y13, y14)
T, yi = (yi1, yi2, yi3)

T, i = 2, 3, 4

(5.3.2)

σ = (σ1, σ2, σ3)
T,

F1(y1) =







0 f12 f13

0 f22 f23

0 f32 f33

0 f42 f43







and

(5.3.3)

f12 = sin(y13 + α3) − sin α3,

f13 = cos(y13 + α3) − cosα3,

f22 = − sin(y14 + α4) + sinα4,

f23 = − cos(y14 + α4) + cosα4,

f32 = −tg (y11 + α1) cos(y13 + α3) + tg α1 cosα3,

f33 = tg (y11 + α1) sin(y13 + α3) − tg α1 sin α3,

f42 = tg (y12 + α2) cos(y14 + α4) − tg α2 cosα4,

f43 = −tg (y12 + α2) sin(y14 + α4) + tgα2 sinα4,

F2(y1) =





0 0 0 0
g21 g22 0 0
g31 g32 0 0



 ,

where

g32 = −δ[sin(y13 + α3) − sin α3],

g21 = δ[cos(y14 + α4) − cosα4],

g22 = δ[cos(y13 + α3) − cosα3],

g31 = −δ[sin(y14 + α4) − sin α4].

Furthermore

Y (y2) = J−1





0 y23 −y22

−y23 0 y21

y22 −y21 0



 ,(5.3.4)

Z1(ζ) =

�

100 sign ζ, |ζ| ≥ 100
ζ, |ζ| ≤ 100

�

,(5.3.5)
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Z2(ζ) =

�

26 sign ζ, |ζ| ≥ 26
ζ, |ζ| ≤ 26

�

,(5.3.6)

f1(σ) =





z1(σ1 + α8) − z1(α8)
z1(σ2 + α9) − z1(α9)

z1(σ3 + α10) − z1(α10)



 ,(5.3.7)

f2(σ, y3) =





z2[β1z1(σ1 + α8) + y31 + α11] − z2[β1z1(α8) + α11]
z2[β1z1(σ2 + α9) + y32 + α12] − z2[β1z1(α3) + α12]
z2[β1z1(σ3 + α10) + y33 + α13] − z2[β1z1(α10 + α13]



 ,

(5.3.8)

C1 =







0 sinα3 cosα3

0 − sin α4 − cosα4

1 −tgα1 cosα3 tgα1 sinα3

1 tg α2 cosα4 −tgα2 sin α4






,(5.3.9)

C2 = J−1





α14 α15 1 0
δ cosα4 δ cosα3 0 0
−δ sinα4 −δ sin α3 0 0



 ,(5.3.10)

di =





di1

di2

di3



 , i = 1, 2, 3.(5.3.11)

In the neighborhood of the equilibrium state

(5,3,12) yi = 0, i = 1, 2, 3, 4, σ = 0

under some additional assumptions the system (5.3.1) is reduced to the
form

(5.3.13)

dxi

dt
= Ai1x1 + Ai2x2 + Ai3x3 + νBif(Σ),

Σ = Cx, ∀ i = 1, 2, 3,

besides, xi, i = 1, 2, 3, is determined as

x1 =





∆ϕ

∆Vϕ

∆ωϕ



 , x2 =





∆θ

∆Vθ

∆ωθ



 , x3 =





∆ψ

∆Vψ

∆ωψ



 ,

and (ϕ, θ, ψ) are Euler anglers specifying the rotating motion of the ob-
servatory, (ωϕ, ωθ, ωψ) are the velocities of its changing, Vϕ, Vω, Vψ are the
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components of vector V that determines the velocity of plane-parallel mo-
tion, x1, x2, x3 specify the observatory deviation from the directed position

∆ϕ = ϕ∗ − ϕ, ∆θ = θ∗ − θ, ∆ψ = ψ∗ − ψ;

∆Vϕ = V ∗

ϕ − Vϕ, ∆Vθ = V ∗

θ − Vθ, ∆V ∗

ψ − Vψ ;

∆ωϕ = ω∗

ϕ − ωϕ, ∆ωθ = ω∗

θ − ωθ, ∆ωψ = ω∗

ψ − ωψ.

Here ϕ∗, θ∗, ψ∗; ω∗

ϕ, ω∗

θ ; ω∗

ψ; V ∗

ϕ, V ∗

θ , V ∗

ψ are the parameters of the

observatory directed position. The matrices Aij and Bi are

A11 =





0 a1 0
a2 −a3 a4

−a5 0 −a5



 , A12 = −A13 =





0 0 0
−a6 0 0
−a7 0 0



 ,

Bi =





0 0 0
δi1 δi2 δi3

0 0 0



 , A22 = A33 =





0 −a1 0
2a2 −a3 a4

−2a5 0 −a5





δij is a Kronecker delta, Aij = 0, i = 2, 3; j = 1, 2, 3 ∀ (i �= j),

C =





rT
11 rT

12 rT
13

0 rT
22 0

0 0 rT
33



 ,

rT
1i =

�

ρ1
1i, ρ

2
1i, ρ

3
1i

�

, i = 1, 2, 3; rT
ji = (ρj1, ρj2, ρj3) , j = 2, 3;

f(Σ) = (ϕ1(σ1), ϕ2(σ2), ϕ3(σ3))
T, Σ = (σ1, σ2, σ3)

T,

ϕi(σi)

σi

∈ [0, 1] ∀σi ∈ R, ϕi(σi) ∈ C(R, R).

The elements as, s = 1, 2, . . . , 7, of the matrices Aij as well as the values

rk
1i (i.k) ∈ [1, 3], rik, i = 2, 3, k ∈ [1, 3] are known real constants.

System (5.3.13) has a unique equilibrium state (x = 0) ∈ R3.
The problem is to establish conditions for asymptotic stability in the

whole of system (5.3.13).
Let us use the algorithm of constructing the hierarchical Liapunov func-

tion (see Martynyuk and Krapivny [124]). The first level decomposition of
system (5.3.13) results in the independent subsystems

(5.3.14)
dxi

dt
= Aiixi + (1 − δ1i)νBif(Σ), i = 1, 2, 3
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components of vector V that determines the velocity of plane-parallel mo-
tion, x1, x2, x3 specify the observatory deviation from the directed position

∆ϕ = ϕ∗ − ϕ, ∆θ = θ∗ − θ, ∆ψ = ψ∗ − ψ;

∆Vϕ = V ∗

ϕ − Vϕ, ∆Vθ = V ∗

θ − Vθ, ∆V ∗

ψ − Vψ ;

∆ωϕ = ω∗

ϕ − ωϕ, ∆ωθ = ω∗

θ − ωθ, ∆ωψ = ω∗

ψ − ωψ.

Here ϕ∗, θ∗, ψ∗; ω∗

ϕ, ω∗

θ ; ω∗

ψ; V ∗

ϕ, V ∗

θ , V ∗

ψ are the parameters of the

observatory directed position. The matrices Aij and Bi are

A11 =





0 a1 0
a2 −a3 a4

−a5 0 −a5



 , A12 = −A13 =





0 0 0
−a6 0 0
−a7 0 0



 ,

Bi =





0 0 0
δi1 δi2 δi3

0 0 0



 , A22 = A33 =





0 −a1 0
2a2 −a3 a4

−2a5 0 −a5





δij is a Kronecker delta, Aij = 0, i = 2, 3; j = 1, 2, 3 ∀ (i �= j),

C =





rT
11 rT

12 rT
13

0 rT
22 0

0 0 rT
33



 ,

rT
1i =

�

ρ1
1i, ρ

2
1i, ρ

3
1i

�

, i = 1, 2, 3; rT
ji = (ρj1, ρj2, ρj3) , j = 2, 3;

f(Σ) = (ϕ1(σ1), ϕ2(σ2), ϕ3(σ3))
T, Σ = (σ1, σ2, σ3)

T,

ϕi(σi)

σi

∈ [0, 1] ∀σi ∈ R, ϕi(σi) ∈ C(R, R).

The elements as, s = 1, 2, . . . , 7, of the matrices Aij as well as the values

rk
1i (i.k) ∈ [1, 3], rik, i = 2, 3, k ∈ [1, 3] are known real constants.

System (5.3.13) has a unique equilibrium state (x = 0) ∈ R3.
The problem is to establish conditions for asymptotic stability in the

whole of system (5.3.13).
Let us use the algorithm of constructing the hierarchical Liapunov func-

tion (see Martynyuk and Krapivny [124]). The first level decomposition of
system (5.3.13) results in the independent subsystems

(5.3.14)
dxi

dt
= Aiixi + (1 − δ1i)νBif(Σ), i = 1, 2, 3
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and the relation functions

(5.3.15)
g1(x) = A12x2 + A13x3 + νB1f(Σ),

gi(x) = 0, i = 2, 3.

The second level decomposition yields three couples of the independent
subsystems

(5.3.16)
dxij

dt
= Āijxij + νBijf(Σ), (i < j) = 1, 2, 3,

where xij =
(

xT
i , xT

j

)T
and the matrices Āij and Bij are

Āij =

(

A11 A1j

0 Ajj

)

, Ā23 =

(

A22 0
0 A33

)

, Bij =

(

δ2iBi

Bj

)

.

The relation functions between them are

(5.3.17)
ḡ1j(x) = Ak

1j + νB1f(Σ), (i �= k) = 2, 3,

ḡ23(x) = 0,

where

Ak
1j =

(

A1k

Ak1

)

=

(

A1k

0

)

, B1 =

(

B1

0

)

.

We construct for the subsystem (5.3.14) the function

(5.3.18) vii(xi) = xT
i Hiixi, i = 1, 2, 3,

where Hii > 0 satisfy the algebraic Liapunov equations

(5.3.19) AT
iiHii + HiiAii = Gii, i = 1, 2, 3,

where Gii < 0 if and only if the subsystems

dxi

dt
= Aiixi

are asymptotically stable. For functions (5.3.18) the estimates

(5.3.20)
λm(Hii)�xi�

2 ≤ vii(xi) ≤ λM (Hii)�xi�
2

∀xi ∈ Rni , i = 1, 2, 3, n1 = n2 = n3 = 3,

Download free eBooks at bookboon.com



Stability Analysis via Matrix Functions Method

88 

Some Models of Real World Phenomena

5.3 MODEL OF ORBITAL ASTRONOMIC OBSERVATORY 235

are known.
Assume that for all xi ∈ R3 for the functions vii(xi) time-derivative

along the solutions of subsystems (5.3.14) the estimates

(5.3.21)
dvii(xi)

dt

∣

∣

∣

∣

(5.3.14)

≤ ρ0
ii�xi�

2, i = 1, 2, 3

are satisfied and for (5.3.15)

(5.3.22)

(

∂vii(xi)

∂xi

)T

g1(x) ≤ �xi�
1/2

3
∑

k=1

µik�xk�
1/2,

where

(5.3.23)

ρ0
ii = λM (Gii) + 2(1 − δ1i)ν�Hii��ri�, i = 1, 2, 3;

µ11 = 2ν�H11� �r11�;

µ12 = 2�H11� [�A12� + ν�r12�] ;

µ13 = 2�H11� [�A13� + ν�r13�] ;

µik = 0, i = 2, 3; k = 1, 2, 3.

We construct for (i, j)-couples of subsystem (5.3.16) the functions

(5.3.24) vij(xij) = xT
ijHijxij , (i < j) = 1, 2, 3,

where the matrices Hij > 0 satisfy the algebraic Liapunov equations

(5.3.25) ĀT
ijHij + HijĀij = Gij , (i < j) = 1, 2, 3,

for Gij < 0 if and only if (i, j)-couples

dxij

dt
= Āijxij , (i < j) = 1, 2, 3,

are asymptotically stable.
For functions vij(xij) the estimates

(5.3.26)
λm(Hij)�xij�

2 ≤ vij(xij) ≤ λM (Hij)�xij�
2

∀xij ∈ Rni×nj , (i < j) = 1, 2, 3,
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are known.
Assume that for all xi ∈ R3 for the functions vii(xi) time-derivative

along the solutions of subsystems (5.3.14) the estimates

(5.3.21)
dvii(xi)

dt

∣

∣

∣

∣

(5.3.14)

≤ ρ0
ii�xi�

2, i = 1, 2, 3

are satisfied and for (5.3.15)

(5.3.22)

(

∂vii(xi)

∂xi

)T

g1(x) ≤ �xi�
1/2

3
∑

k=1

µik�xk�
1/2,

where

(5.3.23)

ρ0
ii = λM (Gii) + 2(1 − δ1i)ν�Hii��ri�, i = 1, 2, 3;

µ11 = 2ν�H11� �r11�;

µ12 = 2�H11� [�A12� + ν�r12�] ;

µ13 = 2�H11� [�A13� + ν�r13�] ;

µik = 0, i = 2, 3; k = 1, 2, 3.

We construct for (i, j)-couples of subsystem (5.3.16) the functions

(5.3.24) vij(xij) = xT
ijHijxij , (i < j) = 1, 2, 3,

where the matrices Hij > 0 satisfy the algebraic Liapunov equations

(5.3.25) ĀT
ijHij + HijĀij = Gij , (i < j) = 1, 2, 3,

for Gij < 0 if and only if (i, j)-couples

dxij

dt
= Āijxij , (i < j) = 1, 2, 3,

are asymptotically stable.
For functions vij(xij) the estimates

(5.3.26)
λm(Hij)�xij�

2 ≤ vij(xij) ≤ λM (Hij)�xij�
2

∀xij ∈ Rni×nj , (i < j) = 1, 2, 3,
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take place.
We assume now that for the functions vij(xij) time-derivative along the

solutions of subsystems (5.3.16) the estimates

(5.3.27)
dvij(xij)

dt

∣

∣

∣

∣

(5.3.16)

≤ ρ1
ij�xi� + 2ρ2

ij�xi�
1/2�xj�

1/2 + ρ3
ij�xj�

are satisfied for all xi ∈ R3 and for (5.3.17)

(5.3.28)

(

∂vij(xij)

∂xij

)T

g1j(x) ≤
3

∑

k=1
p=k

ν
ij
kp�xk�

1/2�xp�
1/2.

The contstants ρ1
ij , ρ2

ij , ρ3
ij can be determined as follows

(5.3.29)

ρ1
ij = λM (Gij) + 2νδ2i�H

j
22� �r22�,

ρ2
ij = ν�Hij� �rij� + νδ2i�H23� �r22�,

ρ3
ij = λM (Gij) + 2ν�Hi

ij� �rjj�, (i < j) = 1, 2, 3

and the constants ν
ij
kp as follows

(5.3.30)

ν
1j
11 = 2ν�Hj

11��r11�,

ν
1j
jj = 2ν�Hij�(δ2j�r12� + δ31�r13�),

ν
1j
23 = 2�Hij�[�A1k + ν(δ3j�r12� + δ2j�r13�)];

ν
1j
1k = 2�Hj

11� [(1 − δjk)�A1k� + ν�r1k�]

+ 2δkjν�Hij��r11�, k, j = 2, 3,

ν12
33 = ν13

22 = ν23
kp = 0 ∀ (k ≤ p) = 1, 2, 3.

Here the matrices H
j
ij and Hij , (i < j) = 1, 2, 3, of the dimensions 3 × 3

are the blocks of the matrix Hij so that

Hij =

(

H
j
ii Hij

H
T

ij Hi
jj

)

.

Using the matrix-valued function U(x) with elements (5.3.18) and
(5.3.24), and by virtue of (5.3.21), (5.3.22), (5.3.27) and (5.3.28) we see
that

(5.3.31)
dV (x, η)

dt
≤ ϕT(�x�)Sϕ(�x�),
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where

V (x, η) = ηTU(x)η, η ∈ R3
+, η > 0,

ϕ(�x�) =
(

�x1�
1/2, . . . , �x3�

1/2
)

.

The matrix S in (5.3.31) has the form

S =
1

2
(Π + ΠT),

where Π is the upper triangle matrix with the elements

(5.3.32)

πkk = η2
k(ρ0

kk + µkk) + 2ηk

k−1
∑

i=1

ηiρ
3
ik

+ 2ηk

3
∑

i=k+1

ηiρ
1
ki +

3
∑

i,j=1
i�=j

ηiηjν
ij
kk,

πkp = η2
kµkp + 4ηkηpρ

2
kp + 2

s
∑

i=1

s
∑

j=i+1

ηiηjν
ij
kp, k < p,

πpk = 0, k < p.

The matrix S in the estimate (5.3.31) is negative definite, if

(5.3.33) s11 < 0, s22 < 0, s33 < 0

and

(5.3.34) s11s22 − s2
12 > 0, detS < 0

since sij > 0 ∀ (i �= j) ∈ [1, 3].
Stability conditions (5.3.33), (5.3.34) are analyzed for two cases, first, for

the case when only the first level decomposition is made. This corresponds
to the approach based on the vector Liapunov function, applied by Grujić,
Martynyuk and Ribbens-Pavella [57].

In this case the elements of matrix Π for system (5.3.13) are in view of
(5.3.23)–(5.3.30) and (5.3.32)

πii = η2
i [λM (Gii) + 2ν�Hii� �rii�] , i = 1, 2, 3;

π1j = 2η2
1�H1� [�A1j� + ν�r1j�] , j = 2, 3;

π23 = πji = 0 ∀ (j > i) = 1, 2, 3.
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where

V (x, η) = ηTU(x)η, η ∈ R3
+, η > 0,

ϕ(�x�) =
(

�x1�
1/2, . . . , �x3�

1/2
)

.

The matrix S in (5.3.31) has the form

S =
1

2
(Π + ΠT),

where Π is the upper triangle matrix with the elements

(5.3.32)

πkk = η2
k(ρ0

kk + µkk) + 2ηk

k−1
∑

i=1

ηiρ
3
ik

+ 2ηk

3
∑

i=k+1

ηiρ
1
ki +

3
∑

i,j=1
i�=j

ηiηjν
ij
kk,

πkp = η2
kµkp + 4ηkηpρ

2
kp + 2

s
∑

i=1

s
∑

j=i+1

ηiηjν
ij
kp, k < p,

πpk = 0, k < p.

The matrix S in the estimate (5.3.31) is negative definite, if

(5.3.33) s11 < 0, s22 < 0, s33 < 0

and

(5.3.34) s11s22 − s2
12 > 0, detS < 0

since sij > 0 ∀ (i �= j) ∈ [1, 3].
Stability conditions (5.3.33), (5.3.34) are analyzed for two cases, first, for

the case when only the first level decomposition is made. This corresponds
to the approach based on the vector Liapunov function, applied by Grujić,
Martynyuk and Ribbens-Pavella [57].

In this case the elements of matrix Π for system (5.3.13) are in view of
(5.3.23)–(5.3.30) and (5.3.32)

πii = η2
i [λM (Gii) + 2ν�Hii� �rii�] , i = 1, 2, 3;

π1j = 2η2
1�H1� [�A1j� + ν�r1j�] , j = 2, 3;

π23 = πji = 0 ∀ (j > i) = 1, 2, 3.
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We introduce the designations

Q = diag (η2
1 , η2

2 , η
2
3)

and the matrix D = [dij ] the elements of which are expressed via the
elements of matrix Π as follows

dij =
πij

η2
i

, (i, j) = 1, 2, 3.

Therefore we have

(5.3.35) S =
1

2
(Π + Π

T
) =

1

2
(QD + DTQ).

The matrix S is negative definite if and only if the matrix D is an M -
matrix. The matrix D is an upper triangular and dij ≥ 0 (i, j) = 1, 2, 3,
hence, if dii < 0, then D is the M -matrix. Therefore, the conditions for
matrix S being negative definite are

(5.3.36) λM (Gii) + 2ν�Hii� �rii� < 0 ∀ i = 1, 2, 3.

These are the well-known conditions for the asymptotic stability in the
whole of system (5.3.13).

Let us show conditions (5.3.33), (5.3.34) for the asymptotic stability in
the whole of the system (5.3.13) to be more general than the conditions
(5.3.36).

The conditions (5.3.36) are satisfied if λM (Gii) < 0. This means that
the subsystems

(5.3.37)
dxi

dt
= Aiixi, i = 1, 2, 3,

obtained from (5.3.14) must be asymptotically stable.
Therefore, if one of the subsystems (5.3.37) is unstable, the conditions

(5.3.36) are not satisfied and the approach based on the vector function
does not work.

Assume the 3rd subsystem from (3.5.37) is unstable, i.e. λM (G33) > 0.
In view of the second level decomposition one of conditions (3.5.33), namely
s33 < 0 becomes

(5.3.38)
η2
3(λM (G33) + 2ν�H33� �r33�) + 2η1η3λM (G13)

+ 2η2η3(λM (G33) + 2ν�H2
33� �r33�) < 0.
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It is clear that, if the 3rd subsystem forms asymptotically stable couples
(2, 3) and (1, 3), then λM (G13) < 0 and λM (G23) < 0. This may prove to
be sufficient for inequality (5.3.36) to be satisfied. However this inequality
may be derived by means of the matrix-valued function only.

Thus, the application of the matrix-valued function and two-level decom-
position yields less strict conditions for the asymptotic stability in the whole
of the system (5.3.13) as compared with conditions (5.3.36) established by
means of the vector Liapunov function.

5.4 Power System Model

The dynamical and structural complexity combined with the high order of
the power system make many methods developed in theory of differential
equations inapplicable in the investigation of these systems. The method of
Liapunov functions (scalar, vector or matrix) is one of the methods used in
the analysis of stability and the estimation of asymptotic stability domains.
In this section we shall show the application of the matrix-valued Liapunov
function to be advantageous as compared with the results by the vector
Liapunov function.

5.4.1 Description of the Power System

Considered is the N -machine power system with uniform mechanical damp-
ing λ. The i th machine motion is modeled by the equations

(5.4.1) Miδ̈i + Diδ̇ = Pmi − Pei, i = 1, 2, . . . , N,

where

(5.4.2) Pei = E2
i Yii cos θii +

n
∑

j �=i

EiEjYij cos(δij − θij),

and Mi ∈ R is the inertia coefficient of the i th machine, Di ∈ R is the
mechanical damping of the i th machine, Pmi ∈ R is the mechanical power
delivered by the i th machine, Ei ∈ R is the modulus of the internal voltage,
Yij ∈ R is the magnitude of the (i, j)-th element of the reduced admittances
matrix Y , δi ∈ R is the absolute rotor angle: δij = δi − δj = δiN − δiN ,
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It is clear that, if the 3rd subsystem forms asymptotically stable couples
(2, 3) and (1, 3), then λM (G13) < 0 and λM (G23) < 0. This may prove to
be sufficient for inequality (5.3.36) to be satisfied. However this inequality
may be derived by means of the matrix-valued function only.

Thus, the application of the matrix-valued function and two-level decom-
position yields less strict conditions for the asymptotic stability in the whole
of the system (5.3.13) as compared with conditions (5.3.36) established by
means of the vector Liapunov function.

5.4 Power System Model

The dynamical and structural complexity combined with the high order of
the power system make many methods developed in theory of differential
equations inapplicable in the investigation of these systems. The method of
Liapunov functions (scalar, vector or matrix) is one of the methods used in
the analysis of stability and the estimation of asymptotic stability domains.
In this section we shall show the application of the matrix-valued Liapunov
function to be advantageous as compared with the results by the vector
Liapunov function.

5.4.1 Description of the Power System

Considered is the N -machine power system with uniform mechanical damp-
ing λ. The i th machine motion is modeled by the equations

(5.4.1) Miδ̈i + Diδ̇ = Pmi − Pei, i = 1, 2, . . . , N,

where

(5.4.2) Pei = E2
i Yii cos θii +

n
∑

j �=i

EiEjYij cos(δij − θij),

and Mi ∈ R is the inertia coefficient of the i th machine, Di ∈ R is the
mechanical damping of the i th machine, Pmi ∈ R is the mechanical power
delivered by the i th machine, Ei ∈ R is the modulus of the internal voltage,
Yij ∈ R is the magnitude of the (i, j)-th element of the reduced admittances
matrix Y , δi ∈ R is the absolute rotor angle: δij = δi − δj = δiN − δiN ,
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δ0
ij = δ0

i δ0
j , θij ∈ R is the angle of the (i, j)-th element of the reduced

admittances matrix.
Let us take the N th machine as a standard one and introduce (2N − 1)

state variables

(5.4.3)
σiN = δiN − δ0

iN , i �= N ;

ωi = δ̇i, i = 1, 2, . . . , N,

where σij ∈ R is a subsidiary variable, ωi ∈ R is the absolute angular

speed of the i th machine rotor. Here δ0
iN are the solutions of the system of

equations

(5.4.4)
E2

i Yii cos θii +

N
∑

j �=i

EiEjYij cos(δ0
iN − δ0

jN − θij) = Pmi,

i = 1, 2, . . . , N.

The motion of the whole N -machine system can be described by the
equations

(5.4.5)

σ̇iN = ωiN ,

ω̇i = −λωi − M−1
i

N
∑

j �=i

Aijfij(σij), i = 1, 2, . . . , N,

where Aij = EjEiYij , Ai = AiN , fij are non-linear functions

(5.4.6) fij(σij) = cos(σij + σ0
ij − θij) − cos(δ0

ij − θij),

satisfying the conditions

(5.4.7) fij(0) = 0, 0 ≤
fij(σij)

σij

≤ ξij , σij �= 0,

as soon as σij take the value on compact intervals Jij :

(5.4.8) Jij =
{

σij : −2(π − θij + δ0
ij) ≤ σij ≤ 2(θij − δ0

ij)
}

.

The constants ξij in (5.4.7) are determined as follows

ξij =
∂fij(σij)

∂σij

∣

∣

∣

∣

σij=0

.
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5.4.2 Mathematical Decomposition of the Power system

model

The state vector of the whole system is designated as

x̂ = (σ1N , ω1, σ2N , ω2, . . . , σN−1,N , ωN−1, ωN )T,

and the subvectors

(5.4.9) xi = (σiN , ωiN )T = (xi1, xi2)
T, i = 1, 2, . . . , N − 1,

are introduced.
System (5.4.5) is represented as

(5.4.10)

dxi

dt
= Pixi + BiFi(σi) + hi(x),

σi = CT
i xi, i = 1, 2, . . . , s.

Each subsystem of (5.4.10) consist of free subsystems

(5.4.11)

dxi

dt
= Pixi + BiFi(σi),

σi = CT
i xi, i = 1, 2, . . . , s,

and relation functions

(5.4.12) hi(x) =





0
N−1
�

j �=i

(−M−1
i Aijfij(σij) + M−1

N ANjfNj(σNj))



 .

The vector of nonlinearities Fi(σi) is a decomposition of two nonlinearities

(5.4.13)
fi1(σi1) = cos(σiN + δ0

iN − θiN ) − cos(δ0
iN − θiN ),

fi2(σi2) = cos(σNi + δ0
Ni − θiN ) − cos(δ0

Ni − θiN ).

The other matrices and functions appearing in the system (5.4.14) are

Pi =

�

0 1
0 −λ

�

,

λ = DiM
−1
i is a uniform damping, i − 1, 2, . . . , N ;

Bi =

�

0 0
−M−1

i Ai M−1
N Ai

�

, CT
i =

�

1 0
−1 0

�

.
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5.4.2 Mathematical Decomposition of the Power system

model

The state vector of the whole system is designated as

x̂ = (σ1N , ω1, σ2N , ω2, . . . , σN−1,N , ωN−1, ωN )T,

and the subvectors

(5.4.9) xi = (σiN , ωiN )T = (xi1, xi2)
T, i = 1, 2, . . . , N − 1,

are introduced.
System (5.4.5) is represented as

(5.4.10)

dxi

dt
= Pixi + BiFi(σi) + hi(x),

σi = CT
i xi, i = 1, 2, . . . , s.

Each subsystem of (5.4.10) consist of free subsystems

(5.4.11)

dxi

dt
= Pixi + BiFi(σi),

σi = CT
i xi, i = 1, 2, . . . , s,

and relation functions

(5.4.12) hi(x) =





0
N−1
�

j �=i

(−M−1
i Aijfij(σij) + M−1

N ANjfNj(σNj))



 .

The vector of nonlinearities Fi(σi) is a decomposition of two nonlinearities

(5.4.13)
fi1(σi1) = cos(σiN + δ0

iN − θiN ) − cos(δ0
iN − θiN ),

fi2(σi2) = cos(σNi + δ0
Ni − θiN ) − cos(δ0

Ni − θiN ).

The other matrices and functions appearing in the system (5.4.14) are

Pi =

�

0 1
0 −λ

�

,

λ = DiM
−1
i is a uniform damping, i − 1, 2, . . . , N ;

Bi =

�

0 0
−M−1

i Ai M−1
N Ai

�

, CT
i =

�

1 0
−1 0

�

.
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5.4.3 Application Algorithm of the Matrix-Valued Function

The elements vij of the matrix-valued function U(x) are taken as

vii(xi) = xT
i Hixi +

2
∑

k=1

γik

σik
∫

0

fik(σik) dσik,

i = 1, 2, . . . , s,

(5.4.14)

vij(xi, xj) = αij

σij
∫

0

fij(σij) dσij

(i �= j), i, j = 1, 2, . . . , s.

(5.4.15)

Here Hi are 2 × 2 symmetric positive definite matrices, γik and αij are
arbitrary positive numbers.

Let η = (1, . . . , 1)T ∈ Rs
+ and

V̇ (x, η) = ηTU̇(x)η, U̇(x) = [v̇ij(xi, xj)].

The function vij time-derivative along the solutions of the i th intercon-
nected subsystem is

(5.4.16)
dvii

dt
=

dvii

dt

∣

∣

∣

∣

(5.4.11)

+
dvii

dt

∣

∣

∣

∣

(5.4.12)

,

where

dvii

dt

∣

∣

∣

∣

(5.4.11)

= 2xT
i Hi[Pixi + BiFi(σi)]

+

2
∑

k=1

γikfik(σik)σ̇ik,(5.4.17)

dvii

dt

∣

∣

∣

∣

(5.4.12)

= 2xT
i Hihi(x).(5.4.18)

Further we introduce the following matrices

ri = diag{γi1, γi2},(5.4.19)

Φi = diag

{

fi1(σi1)

σi1
,
fi1(σi1)

σi1

}

∈ [ai, bi],(5.4.20)
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where ai = diag {εi1, εi2} and bi = {ξi1, ξi2} are prescribed values.
The expressions (5.4.18) and (5.4.18) are transformed as

(5.4.21)
dvii

dt

�

�

�

�

(5.4.11)

= −xT
i [Gi − (aHiBi + PT

i Ciri)ΦiC
T
i ]xi,

where
−Gi = HiPi + PT

i Hi

and

(5.4.22)
dvii

dt

�

�

�

�

(5.4.12)

= 2xT
i HiDiaxi + 2xT

i Hi

s
�

j �=i

Dibxj ,

where

Dia =





0 0

−M−1
i

s
�

j �=i

AjjΦij 0



 ,

Dib =

�

0 0
M−1

i AijΦij − M−1
N ANΦN 0

�

and

(5.4.23)

Φij(0) = 0,

Φij(σij) =
fij(σij)

σij

, σij �= 0.

Combining (5.4.21) and (5.4.22) yields

(5.4.24)

dvii

dt
= −xT

i

�

Gi − (2HiBi + PT
i Ciri)ΦiC

T
i − 2HiDia

�

xi

+ 2xT
i Hi

s
�

j �=i

Dibxj .

For functions vij defined by (5.4.15) we have

(5.4.25)

dvii

dt
= αijΦijx

T
i ddTPixi − αijΦijx

T
i (ddTPj + PT

j ddT)xj

+ αijΦijx
T
j ddTPjxi, i �= j,
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where ai = diag {εi1, εi2} and bi = {ξi1, ξi2} are prescribed values.
The expressions (5.4.18) and (5.4.18) are transformed as

(5.4.21)
dvii

dt

�

�

�

�

(5.4.11)

= −xT
i [Gi − (aHiBi + PT

i Ciri)ΦiC
T
i ]xi,

where
−Gi = HiPi + PT

i Hi

and

(5.4.22)
dvii

dt

�

�

�

�

(5.4.12)

= 2xT
i HiDiaxi + 2xT

i Hi

s
�

j �=i

Dibxj ,

where

Dia =





0 0

−M−1
i

s
�

j �=i

AjjΦij 0



 ,

Dib =

�

0 0
M−1

i AijΦij − M−1
N ANΦN 0

�

and

(5.4.23)

Φij(0) = 0,

Φij(σij) =
fij(σij)

σij

, σij �= 0.

Combining (5.4.21) and (5.4.22) yields

(5.4.24)

dvii

dt
= −xT

i

�

Gi − (2HiBi + PT
i Ciri)ΦiC

T
i − 2HiDia

�

xi

+ 2xT
i Hi

s
�

j �=i

Dibxj .

For functions vij defined by (5.4.15) we have

(5.4.25)

dvii

dt
= αijΦijx

T
i ddTPixi − αijΦijx

T
i (ddTPj + PT

j ddT)xj

+ αijΦijx
T
j ddTPjxi, i �= j,
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where d = (1, 0)T.
We have for function

(5.4.26) V̇ (x, η) = −
s

∑

i=1

xT
i Diixi +

s
∑

i=1

s
∑

j �=i

xT
i Dijxj ,

where

(5.4.27)

Dii = Gi − (2HiBi + PT
i CT

i ri)ΦiC
T
i − 2HiDia

−
s

∑

j �=i

(αijΦij + αijΦji)ddTPi

and

(5.4.28) Dij = 2HiDib − αijΦij(ddTPj + PT
i ddT).

Further we show that the right-hand part of (5.4.26) can be estimated by
the expression wT(x)Aw(x), i.e.

(5.4.29) V̇ (x, η) ≤ wT(x)Aw(x),

where w(x) = (�x1�, . . . , �xs�)T, A = [aij ], i, j = 1, 2, . . . , s. Here aij is a
computed in terms of estimate of the right-hand part of (5.4.26).

If we set W (x) = diag {�x1�, �x2�, . . . , �xs�}, then

V̇ (x, η) ≤ ηTW (x)AW (x)η.

It should be noted that U̇(x) is not estimated by the expression
W (x)AW (x) in view of (5.4.24)–(5.4.28).

Then the matrices Hi are taken in the form

(5.4.30) Hi =

(

λhi
12 hi

12

hi
12

1 + ki

λ
hi

12

)

,

where ki are arbitrary positive constants and matrices Gi are computed

(5.4.31) Gi =

(

0 0
0 2kih

i
12

)

.
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We take the constants

(5.4.32)

γi1 = 2M−1
i Aih

i
22,

γi2 = 2M−1
N Aih

i
22,

αij = αji = M−1
i Aijh22

and transform the expression −xT
i Diixi as

(5.4.33)

−xT
i Diixi = −2hi

i2

{

Ai

(

M−1
i

fi1(σi1)

σi1
+ M−1

N

fi2(σi2)

σi2

)

+ M−1
i

s
∑

j �=i

AijΦij

}

x2
i1 − 2kih

i
i2x

2
i2

+
s

∑

j �=i

M−1
i hi

22Aij(Φji + Φij)xi1xi2.

The right-hand part of (5.4.33) may be estimated by the value
−λim(Qi)�xi�2:

(5.4.34) −xT
i Diixi ≤ −λim(Qi)�xi�

2, i = 1, 2, . . . , s,

where λim(Qi) is the minimal eigenvalue of the matrix Qi, the elements of
which are determined as

(5.4.35)

qi
11 = qi

22 = 2hi
i2

{

Ai(M
−1
i εi1 + M−1

N εi2) + M−1
i

s
∑

j �=i

Aijεij

}

,

qi
12 = −

1

2
M−1

i hi
22

s
∑

j �=i

max(ξij , ξji).

We note that εij ∈ (0, ξij) and the constants ki are taken according to

(5.4.36) ki = Ai(M
−1
i εi1 + M−1

N εi2) + M−1
i

s
∑

j �=i

Aijεij .

We have in view of (5.4.28)
(5.4.37)

xT
i Dijxj = 2hi2(M

−1
i AijΦij − M−1

N ANjΦNj)xi1xj1

− αijΦijxi1xi2

+
{

2hi
22(M

−1
i AijΦij − M−1

N ANjΦNj − αijΦij

}

xi2xj1.
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We take the constants

(5.4.32)

γi1 = 2M−1
i Aih

i
22,

γi2 = 2M−1
N Aih

i
22,

αij = αji = M−1
i Aijh22

and transform the expression −xT
i Diixi as

(5.4.33)

−xT
i Diixi = −2hi

i2

{

Ai

(

M−1
i

fi1(σi1)

σi1
+ M−1

N

fi2(σi2)

σi2

)

+ M−1
i

s
∑

j �=i

AijΦij

}

x2
i1 − 2kih

i
i2x

2
i2

+
s

∑

j �=i

M−1
i hi

22Aij(Φji + Φij)xi1xi2.

The right-hand part of (5.4.33) may be estimated by the value
−λim(Qi)�xi�2:

(5.4.34) −xT
i Diixi ≤ −λim(Qi)�xi�

2, i = 1, 2, . . . , s,

where λim(Qi) is the minimal eigenvalue of the matrix Qi, the elements of
which are determined as

(5.4.35)

qi
11 = qi

22 = 2hi
i2

{

Ai(M
−1
i εi1 + M−1

N εi2) + M−1
i

s
∑

j �=i

Aijεij

}

,

qi
12 = −

1

2
M−1

i hi
22

s
∑

j �=i

max(ξij , ξji).

We note that εij ∈ (0, ξij) and the constants ki are taken according to

(5.4.36) ki = Ai(M
−1
i εi1 + M−1

N εi2) + M−1
i

s
∑

j �=i

Aijεij .

We have in view of (5.4.28)
(5.4.37)

xT
i Dijxj = 2hi2(M

−1
i AijΦij − M−1

N ANjΦNj)xi1xj1

− αijΦijxi1xi2

+
{

2hi
22(M

−1
i AijΦij − M−1

N ANjΦNj − αijΦij

}

xi2xj1.
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To estimate the right-hand part of (5.4.37) the functions Z1 : R2 → R and
Z2 : R3 → R are introduced by the formulas

Z1(α, β) =min
�√

2max(|α|, |β|), (|α| + |β|)
�

,

Z2(α, β, γ) =min

�

√
2max(|α|, |β|, |γ|), (|α| + |β| + |γ|),

Z1(α, β) + |γ|, Z1(α, β) + |β|, Z2(β, γ) + |α|

�

.

Having noted that the expressions xi1xj1, xi1xj2, xi2xj1 can be treated
as the components of the 3-dimensional subspace, where each of the expres-
sions may take either positive, negative or zero value, the estimate of the
righ-hand part of (5.4.37) can be obtained in the form

(5.4.38)

xT
i Dijxj ≤ Z2

�

2hi
12 max (M−1

i Aijξij , M−1
N ANjξnj) ,

M−1
i Aijh

i
22ξij , hi

22 max (M−1
i Aijξij ,

2M−1ANjξNj)
�

�xi� �xj�.

In view of (5.4.34) and (5.4.38) we get for the elements aij of matrix A:

(5.4.39) âij =



















−λim (i = j);

Z2{2hi
12 max(M−1

i Aijξij , M−1
N ANjξNj ,

M−1
i Aijh

i
22ξij , hi

22 max(M−1
i Aijξij ,

2M−1
N ANjξNj} (i �= j)

and

(5.4.40) aij =
1

2
(âij + âji), i, j = 1, 2, . . . , s.

We formulate now the following assertion.

Proposition 5.4.1. In order for the equilibrium state x = 0 of system
(5.4.10) to be asymptotically stable it is sufficient that the inequalities

(5.4.41) (−1)k

�

�

�

�

�

�

a11 . . . a1s

. . . . . . . . . . . . .

as1 . . . ass

�

�

�

�

�

�

> 0, k = 1, 2, . . . , s,

be satisfied.
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Proof. Let the matrix A in estimate (5.4.29) be constructed according
to (5.4.39) and (5.4.40). When inequalities (5.4.41) are satisfied, the matrix
A is negative definite, and by (5.4.40) A = AT. The function V (x, η) =
ηTU(x)η is positive definite, since Hi = HT

i is positive definite, γik > 0
and αij > 0 and the integral terms in (5.4.14) and (5.4.15) are non-negative
in the neighborhood of x = 0. Thus, function V (x, η) for system (5.4.10)

is positive definite and V̇ (x, η) is negative definite in the neighborhood of
x = 0 due to inequalities (5.4.41). By Theorem 2.3.3 the equilibrium state
x = 0 of system (5.4.10) is asymptotically stable.

5.4.4 Numerical examples

5.4.4.1 Example. The proposed algorithm of the power system stability
analysis is applicable to the 3-machine power system considered by Jocić,
Ribbens-Pavella and Šiljak [79]. We admit the following parameter values
for the system (5.4.10):

N = 3; E1 = 1.017; E2 = 1.005; E3 = 1.033; δ12 = 5◦;

δ13 = 2◦; δ23 = −3◦; Y12 = 0.98 × 10−3∠86◦; Y13 = 0.114∠88◦;

Y23 = 0.106∠89◦; M1 = M2 = 0.01; M3 = 2.0.

Treating the third machine as a standard one we get two subsystems. Let
us take the constants λ = 0.3, ε11 = ε21 = 0.06 and ε12 = ε23 = ξ12 =

ξ21 = 0.001. The matrix Â = [âij ], defined by formula (5.4.39) is of the
form

Â =

(

−1.1506 1.0814
1.0671 −1.0437

)

.

The matrix 2A = Â + ÂT satisfies conditions (5.4.41) and therefore the
equilibrium state x = 0 is asymptotically stable. It is important to note
that in this case Jocić, Ribbens-Pavella and Šiljak [79] established the con-
ditions of asymptotic stability for λ = 100, ε = 0, 99. In a paper by Shaa-
ban and Grujić [164] the asymptotic stability of the system in question was
stated for λ = 0.45, ε11 = ε21 = 0.10.

The asymptotic stability conditions for the equilibrium state x = 0
obtained herein are the least value for the parameters λ and ε.
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Proof. Let the matrix A in estimate (5.4.29) be constructed according
to (5.4.39) and (5.4.40). When inequalities (5.4.41) are satisfied, the matrix
A is negative definite, and by (5.4.40) A = AT. The function V (x, η) =
ηTU(x)η is positive definite, since Hi = HT

i is positive definite, γik > 0
and αij > 0 and the integral terms in (5.4.14) and (5.4.15) are non-negative
in the neighborhood of x = 0. Thus, function V (x, η) for system (5.4.10)

is positive definite and V̇ (x, η) is negative definite in the neighborhood of
x = 0 due to inequalities (5.4.41). By Theorem 2.3.3 the equilibrium state
x = 0 of system (5.4.10) is asymptotically stable.

5.4.4 Numerical examples

5.4.4.1 Example. The proposed algorithm of the power system stability
analysis is applicable to the 3-machine power system considered by Jocić,
Ribbens-Pavella and Šiljak [79]. We admit the following parameter values
for the system (5.4.10):

N = 3; E1 = 1.017; E2 = 1.005; E3 = 1.033; δ12 = 5◦;

δ13 = 2◦; δ23 = −3◦; Y12 = 0.98 × 10−3∠86◦; Y13 = 0.114∠88◦;

Y23 = 0.106∠89◦; M1 = M2 = 0.01; M3 = 2.0.

Treating the third machine as a standard one we get two subsystems. Let
us take the constants λ = 0.3, ε11 = ε21 = 0.06 and ε12 = ε23 = ξ12 =

ξ21 = 0.001. The matrix Â = [âij ], defined by formula (5.4.39) is of the
form

Â =

(

−1.1506 1.0814
1.0671 −1.0437

)

.

The matrix 2A = Â + ÂT satisfies conditions (5.4.41) and therefore the
equilibrium state x = 0 is asymptotically stable. It is important to note
that in this case Jocić, Ribbens-Pavella and Šiljak [79] established the con-
ditions of asymptotic stability for λ = 100, ε = 0, 99. In a paper by Shaa-
ban and Grujić [164] the asymptotic stability of the system in question was
stated for λ = 0.45, ε11 = ε21 = 0.10.

The asymptotic stability conditions for the equilibrium state x = 0
obtained herein are the least value for the parameters λ and ε.
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5.4.4.2 Example. Let in system (5.4.10) N = 4 and the parameter values
are the following (see El-Abiad and Nagappan [35]):

E1 = 1.057/5.7◦, E2 = 1.152/14.4◦, E3 = 1.095/2.3◦, E4 = 1.0/0.1◦,

Y11 = 0.88/− 88.1◦, Y22 = 0.873/− 83.2◦, Y33 = 1.014/− 75.5◦,

Y44 = 2.447/− 69, 7◦, Y12 = 0.124/82.1◦, Y13 = 0.065/82.4◦,

Y23 = 0.064/88.2◦, Y24 = 0.655/96.8◦,

Y34 = 0.754/99◦, Y14 = 0.658/91.1◦;

M1 = 1130, M2 = 2260, M3 = 1508, M4 = 75 350.

Choosing the fourth machine as a standard one we get three subsystems.

For the values λ = 0.8, ε11 = ε21 = ε31 = 0.5 the matrix Â (see formula
(5.4.39)) is

Â =





−4.9087 3.7790 1.8484
1.8109 −2.7037 0.9811
1.4073 1.4898 −4.8370



 .

The matrix a =
1

2

�

Â + ÂT
�

satisfies the conditions (5.4.41) and therefore,

the state x = 0 of the system is asymptotically stable. Earlier it has been
stated (see Grujić and Shaaban [61]) that the asymptotic stability of the
equilibrium state x = 0 of the system takes place provided that λ = 1.0
and ε1 = ε2 = ε3 = 0.60.

Therefore, this case as well the proposed algorithm allows us to establish
the conditions of asymptotic stability for smaller valies of λ and ε.

5.4.4.3 Example. Let in system (5.4.10) N = 7 and the parameter values
are taken following Shaaban and Grujić [164]. Taking the seventh machine
as a standard one we get six subsystems. For the values λ = 2.0, εi1 = 0.80,

i = 1, 2, 3; εj1 = 0.85, j = 4, 5, 6, the matrix Â (see (5.4.39)) is

Â =















−2.0176 1.0286 0.2408 0.2521 0.2876 0.2730
1.3301 −2.3742 0.2660 0.2785 0.3177 0.2952
0.2944 0.3111 −1.8805 0.8070 0.2744 0.2594
0.2910 0, 2714 0.7547 −1.9315 0.2848 0.2577
0.3022 0.2949 0.2357 0.2505 −1.9757 0.7701
0.3155 0.2941 0.2461 0.2577 0.8847 −2.1405















and a =
1

2

�

Â + ÂT
�

satisfies the conditions (5.4.41). Then the equilib-
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rium state x = 0 of the system is asymptotically stable. In the above
mentioned paper by Shaaban and Grujić [164] the asymptotic stability of
the equilibrium state was established for λ = 3.0 and εi1 = 0.95, i =
1, 2, . . . , 6. This applies to the smaller values of λ and ε as well as to the
asymptotic stability of the equilibrium state x = 0.

The application of the approach to three–four and seven-machine system
enables us to conclude as follows (see Grujić and Shaaban [61]):

(1) We can decrease the value of the parameter λ for which asymptotic
stability of x = 0 of the system is assured (value of λ is decreased
from 100 to only 0.3 for the three-machine system, and decreased by
33% of that in Shaaban and Grujić [164] for the four and seven ma-
chine systems). Noting that the smaller value of λ means that the
generator is less damped and that it is more difficult to assure sta-
bility, we can deduce that the developed approach is more powerful
then those developed so far via vector Liapunov functions.

(2) Smaller value of the parameter ε can be assumed and the asymptotic
stability assured by applying the developed approach (value of ε is
assumed to be 85% of that in Shaaban and Grujić [164] for the four
and seven machine systems, and it is decreased from 0.10 to only
0.06 for the three-machine system). This essentially means that the
developed approach can lead to larger asymptotic stability domain
estimates.

(3) Using the developed approach, we can decrease the conservativeness
of the decomposition-aggregation method.

(4) The matrix-valued Liapunov function methodology leads to more
adequate scalar Liapunov functions for power systems and simplifies
their construction via the vector Liapunov function concept.

(5) The stability test computation is reduced to only the negative defi-
niteness test of a single elementwise constant aggregation symmetric
matrix. Its dimension is reduced to the number s = N − 1 of the
subsystems of an N -machines power system.

5.5 The Motion in Space of Winged Aircraft

According to Aminov and Sirazetdinov [2] we will consider the case when
the aircraft, moving with fixed absolute value of the velocity, performs a
manouvre with constant load factor. Thus, to the undistrturbed motion
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there corresponds constant values of the angles of attack α0 and of side-

slip βo, and angular velocities of pitch ωz0, yaw ωy0 and rotation ωx0.

Their deviations from the perturbed values will be called α, β, ωz, ωy, ωx

respectively. The deviations of the angular velocities of side-slip, yaw and

rotation must not exceed given limits.

We consider the equations of the perturbed motion in the form (see

Byushgens and Studnev [18])

(5.5.1)

dα

dt
= µωz −

1

2
cα
y α − µβωx −

1

2
cδe
y δe,

dωz

dt
= mα

z α + mωz

x ωz − µAωxωy + mδe

z δe,

dβ

dt
= µωy +

1

2
cβ
z β + µαωx +

1

2
cδr

z δr,

dωy

dt
= mβ

yβ + mωy

y ωy + µBωxωz + mδr

y δr,

dωx

dt
= mβ

xβ + mωx

x ωx − µCωyωz + mδa

x δa,

where

A =
Jy − Jx

Jz

> 0, B =
Jz − Jx

Jy

> 0, C =
Jz − Jy

Jx

> 0,

and µ is the aircraft relative density, cu are the coefficients of the aerody-

namic forces, mu are the coefficients of the aerodynamic moments, δe, δr,

δa are the deviations of the elevator, aileron and rudder, and Jx, Jy, Jz are

the aircraft moments of inertia with respect to the connected coordinate

system.

We take the law of stabilization in the form

(5.5.2 )
δe = kα

e α + kz
eωz, δr = kβ

r β + ky
rωy,

δa = kβ
a β + kx

aωx.

We substitute the values (5.5.2) into equations (5.5.1). We use the notations
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there corresponds constant values of the angles of attack α0 and of side-

slip βo, and angular velocities of pitch ωz0, yaw ωy0 and rotation ωx0.

Their deviations from the perturbed values will be called α, β, ωz, ωy, ωx

respectively. The deviations of the angular velocities of side-slip, yaw and

rotation must not exceed given limits.

We consider the equations of the perturbed motion in the form (see

Byushgens and Studnev [18])

(5.5.1)

dα

dt
= µωz −

1

2
cα
y α − µβωx −

1

2
cδe
y δe,

dωz

dt
= mα

z α + mωz

x ωz − µAωxωy + mδe

z δe,

dβ

dt
= µωy +

1

2
cβ
z β + µαωx +

1

2
cδr

z δr,

dωy

dt
= mβ

yβ + mωy

y ωy + µBωxωz + mδr

y δr,

dωx

dt
= mβ

xβ + mωx

x ωx − µCωyωz + mδa

x δa,

where

A =
Jy − Jx

Jz

> 0, B =
Jz − Jx

Jy

> 0, C =
Jz − Jy

Jx

> 0,

and µ is the aircraft relative density, cu are the coefficients of the aerody-

namic forces, mu are the coefficients of the aerodynamic moments, δe, δr,

δa are the deviations of the elevator, aileron and rudder, and Jx, Jy, Jz are

the aircraft moments of inertia with respect to the connected coordinate

system.

We take the law of stabilization in the form

(5.5.2 )
δe = kα

e α + kz
eωz, δr = kβ

r β + ky
rωy,

δa = kβ
a β + kx

aωx.

We substitute the values (5.5.2) into equations (5.5.1). We use the notations
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(5.5.3)

x1 = ωx, x2 = ωy, x3 = ωz, x4 = α, x5 = β,

a11 = mβ
x + kβ

a mδa

x , a15 = mωx

x + kx
amδa

x ,

a22 = mβ
y + kβ

r mδr

y , a25 = mωy

y + ky
rmδr

y ,

a33 = mα
z + kα

e mδe

z , a34 = mωz

z + kz
emδe

z ,

a44 =
1

2

(

cα
y + kα

e cδe

y

)

, a43 = µ −
1

2
kz

ecδe

y ,

a55 =
1

2

(

cβ
z + kβ

r cδr

z

)

, a52 = µ +
1

2
ky

r cδr

z ,

b1 = −µC, b2 = µB, b3 = −µA, b4 = −µ, b5 = µ.

Using this notation we can write system (5.5.1) as

(5.5.4)

dx1

dt
= a11x1 + a15x5 + b1x2x3,

dx2

dt
= a22x2 + a25x5 + b2x1x3.

dx3

dt
= a33x3 + a34x4 + b3x1x2,

dx4

dt
= a43x3 + a44x4 + b4x1x5,

dx5

dt
= a52x2 + a55x5 + b5x1x4.

We shall find the conditions connected to the coefficients of the system
(5.5.4) under which the solution of the system x = 0 is multistability, i.e.,
asymptotically stable with respect to (x4, x5), and stable with respect to
(x1, x2, x3).

We use the Theorem 2.6.1. In our example N = 2, i.e., there are two
groups of variables (x1, x2, x3) and (x4, x5). We consider the matrix-valued
Liapunov function

U(x) =
1

2
diag [−b2b3x

2
1, 2b1b3x

2
2, −b1b2x

2
3, x2

4, x2
5],

and η ∈ R5
+, ηi = 1, i = 1, 2, . . . , 5.

The function

(5.5.5) ηTU(x)η = V (x, η) =
1

2

(

−b2b3x
2
1 + 2b1b3x

2
2 − b1b2x

2
3 + x2

4 + x2
5

)
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is positive definite, decreasing and radially unbounded. In view of the
system (5.5.4) the derivative of the function (5.5.5) is

(5.5.6)

DV (x, η) = − b2b3a11x
2
1 − b2b3a15x1x5 + 2b1b3a22x

2
2

+ (2b1b3a25 + a52)x2x5 − b1b2a33x
2
3

+ (a43 − b1b2a34)x3x4 + a44x
2
4 + a55x

2
5.

In order to solve our problem we have to find the conditions whereby
function (5.5.6) is non-positive with respect to (x1, x2, x3) and negative
definite with respect to (x4, x5).

The method of finding these conditions is given by Aminov and Sirazetdi-
nov [3] and is as follows. We equate the derivative DV (x, η) of (5.5.6) to
the function

(5.5.7)
W (x) = − (c11x1 + c15x5)

2 − (c22x2 + c25x5)
2

− (c33x3 + c34x4)
2 − (c4x4)

2 − (c5x5)
2

and, comparing coefficient of like terms of (5.5.6) and (5.5.7), we find the
conditions for the existence of the coefficients of function (5.5.7) which are
in fact the required conditions for the function (5.5.6) to be non-positive
with respect to (x1, x2, x3) and negative definite with respect to (x4, x5).
These conditions are

(5.5.8)

a11 < 0, a22 < 0, a33 < 0, a44 +
(a43 − b1b2a34)

2

b1b2a33
< 0,

a55 +
a2
15b2b3

a11
−

(2b1b3a25 + a52)
2

2b1b3a22
< 0.

On substituting the values of the coefficients (5.5.3) into inequality (5.5.8)
we obtain the sufficient conditions that solve the aircraft space manouvre
problem.

5.6 Notes

5.2. The basic result of this section (Proposition 5.2.1) is new. The descrip-
tion of model and the competition discussion is due to Lakshmikantham,
Leela and Martynyuk [94]. For the large number of references on this topic
see Freedman [36]. The application of the Metzler matrix theory and vector
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is positive definite, decreasing and radially unbounded. In view of the
system (5.5.4) the derivative of the function (5.5.5) is

(5.5.6)

DV (x, η) = − b2b3a11x
2
1 − b2b3a15x1x5 + 2b1b3a22x

2
2

+ (2b1b3a25 + a52)x2x5 − b1b2a33x
2
3

+ (a43 − b1b2a34)x3x4 + a44x
2
4 + a55x

2
5.

In order to solve our problem we have to find the conditions whereby
function (5.5.6) is non-positive with respect to (x1, x2, x3) and negative
definite with respect to (x4, x5).

The method of finding these conditions is given by Aminov and Sirazetdi-
nov [3] and is as follows. We equate the derivative DV (x, η) of (5.5.6) to
the function

(5.5.7)
W (x) = − (c11x1 + c15x5)

2 − (c22x2 + c25x5)
2

− (c33x3 + c34x4)
2 − (c4x4)

2 − (c5x5)
2

and, comparing coefficient of like terms of (5.5.6) and (5.5.7), we find the
conditions for the existence of the coefficients of function (5.5.7) which are
in fact the required conditions for the function (5.5.6) to be non-positive
with respect to (x1, x2, x3) and negative definite with respect to (x4, x5).
These conditions are

(5.5.8)

a11 < 0, a22 < 0, a33 < 0, a44 +
(a43 − b1b2a34)

2

b1b2a33
< 0,

a55 +
a2
15b2b3

a11
−

(2b1b3a25 + a52)
2

2b1b3a22
< 0.

On substituting the values of the coefficients (5.5.3) into inequality (5.5.8)
we obtain the sufficient conditions that solve the aircraft space manouvre
problem.

5.6 Notes

5.2. The basic result of this section (Proposition 5.2.1) is new. The descrip-
tion of model and the competition discussion is due to Lakshmikantham,
Leela and Martynyuk [94]. For the large number of references on this topic
see Freedman [36]. The application of the Metzler matrix theory and vector
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Liapunov functions in the investigation of thise problems is due to Šiljak
[167], Grujić and Burgat [56], etc.

5.3. The description of the model of an orbital astronomical observa-
tory is taken from Geiss, Cohen et al. [40] and Grujić [55]. The results
of investigation of this model are cited following Krapivny supervised by
A. A. Martynyuk. The comparison of the obtained results with those by
Grujić, Martynyuk and Ribbens-Pavella [57] has displayed the advantages
of the matrix-valued function application. For other results on the subject
see Šiljak [167], Abdullin, Anapolskii et al [1], etc.

5.4. The results of this section are due to Grujić and Shaaban [61].
The scalar Liapunov functions are applied by El-Abiad and Nagappan [35],
Michel, Fouad and Vittal [142]. For the application of vector Liapunov
functions see Pai and Narayana [151], Grujić, Martynyuk and Ribbens-
Pavella [57], Grujić and Ribbens-Pavella [58], [59], Grujić, Ribbens-Pavella

and Bouffioux [60], Jocić, Ribbens-Pavella and Šiljak [79], Michel, Nam
and Vittal [144], Shaaban and Grujić [164], [165], etc. Matrix-valued Li-
apunov functions are applied by Miladzhanov [145] including the systems
with structural perturbations.

5.5. The results of this section are due to Martynyuk [111] and Aminov
and Sirazetdinov [2].
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