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STABILITY ANALYSIS OF STOCHASTIC SYSTEMS

4.1 Introduction

The impact estimation of perturbations, both determined and random ones,
is of a great importance for the functioning of real physical systems. There-
fore, it is reasonable to consider systems modeled by stochastic differential
equations. The present chapter deals with the various types of probabi-
lity stability for the above mentioned type of equations and develops the
method of matrix-valued Liapunov functions with reference to the system of
equations of Kats-Krasovskii’s form [82] and Ito’s form [78]. In the chapter
sufficient conditions are formulated for stability and asymptotic stability
with respect to probability, global stability with respect to probability, etc.

The notion of averaged derivative of matrix-valued Liapunov function
along solutions of the system that has the meaning of infinitesimal operator
[34] is crucial in the investigations of this chapter. In a large number of
cases this operator defines unequivocally a random Markov process that
models the perturbation in the system.

4.2 Stochastic Systems of Differential Equations in General

4.2.1 Notations

For the convenience of readers we collect the following additional nomen-
clature.

Let R™ be an n-dimensional Euclidean space with norm ||-||, V, = 9/0u,
Vus = 0?/0udv, where u and v can be either scalars or vectors. For
instance, if z € R" and v € R™ — R, then V,v denotes the gradient
of vector v and Vv is a matrix with elements 9%*v/dx;0x;, i, j € [1,n].
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Let 7T = Ry = [0,+00) and (9, A, P) denote a probability space with
probability measure P, defined on the o-algebra A of w-sets (w € ) in the
sample space (). Every A measurable function on € is said to be random
variable. A sequence of the random variables designated by {z(t), t € 7}
is called a random process with parameter value ¢t from 7. We designate by
R[T, R[2, R™]] the class of random processes defined on 7 with the values
in R[Q2, R"]. Random function x € R[[a, b]: R[S}, R"]] is called measurable
on the product, provided that z(¢,w) is a function measurable on (A" x A)
and defined on [a,b] x Q with the values in R™, where A’ designates the
o-algebra of measurable in the sense of Lebesque sets on [a, b].

For the set A € A, P(A) denotes the probability of event A and P(A/B)
means the conditional probability of event A under condition B € A. Func-
tion x(t,w) is called continuous with respect to ¢ € [a, b] if

PS U {limflate+9) -l £0} b =0,

t€la,b]

where 6 > (< 0) when t = a(b).

We designate by C[la,b], R[S, R™]] the class of continuous functions de-
fined on |[a, b].

Function z(t) admits derivative 2/(t) for ¢ € [a,b] provided

128y {lim {“x(t+5()5—x(t) —x'(t)H] %0} —0.

§—0
tela,b]

Let E denote the expectation operator and {z;, t € 7} be a Markov
process. Then E, ;z; denotes the expected value of x; at t € T if it is
known that z, = x.

4.2.2 The Motion Equations of Random Parameter Systems

4.2.2.1 Equations of Kats-Krasovskii Form. We consider a system modeled
by equations of the form

(4.2.1) Z—f = f(t,z,y(t))
with determined initial conditions

(4.2.2) x(tg) = o,
(4.2.3) y(to) = yo-
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Here x € R", t € T (or t € T, = [1,4+00),7 > 0), y(t) is a perturbation
vector that can take the values from Y C R™ for every t € 7.

We assume that the vector function f is continuous with respect to every
variable and satisfies Lipschitz condition in variable z, i.e.

I£tasy) = ft.a" )l < Llla’ = "]

in domain B(7,p,Y):t € T, ||z < p, y € Y (p = const or p = +00)
uniformly in t € 7 and y € Y, and is bounded for all (t,y) € 7 xY in
every bounded domain ||z| < p* (p* = const > 0).

Moreover, we assume that

(4.2.4) FH0,yt) =0 V(ty) eT xY,

i.e. the unperturbed motion of system (4.2.1) corresponds to the solution
x(t) = 0.

In system (4.2.1) the random perturbation y(¢) is considered to be a
random Markov process (see e.g. Doob [31] and Dynkin [34]). Further, two
main types of random Markov functions are under consideration.

Case A. The vector y(t) consists of components ys, s = 1,2,...,r
which are independent of each others pure discontinuous Markov processes,
the transition functions P{y, 7;A,t} of which admit the expansion

Plys(t + At) < B, ys(t + At) #n | ys(t) = n}
= qs(t,n, B)At + o(At),
Plys(r) =m, t <7 <t+ At |ys(t) =n}
=1—qs(t,n)At + o(At).

(4.2.5)

(4.2.6)

Here o(At) is an infinitesimal value of the highest order of smallness
relatively At, ¢s(t,n, ) and §s(t,n) are some known functions such that

CJs(taU»OO):st(t,n), s=1,2,...,r.

In general we assume almost all realizations y; (¢, w) of random process y(t)
to be piecewise constant functions continuous from the right.

It should be noted that if the set Y = {y1,...,yx} is one-dimensional
and finite, then the representation of functions ¢(¢,7, 3) and §(t,n) means
the representation of transition matrix

(4.2.7) pij(t + At) = q(t,1, j) At + o(At), i F£ ]
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where p;;(t,t + At) is a probability of transition y; — y; during the time
from ¢ to t + At.

The process y(t) is called a homogeneous Markov chain with a finite
number of states, if ¢(t,4,7) = ¢(i, j).

Case B. Vector y(t) is a solution of the generalized differential Ito equa-
tion (see e.g. Arnold [5] or Gikhman and Skorokhod [42]).

(4.2.8)  dy(t) = a(t,y(t))dt + b(t,y(t))dw(t) + / c(t,y(t),uw)v(dt,du)

Besides, a(t,y) and c(t,y,u) are r-component vectors with values in R",
y € R", uw€ R", b(t,y) is a r X m-matrix, w(t) is a standard m-dimensional
Wienner process with independent coordinates, 7(t, A) = v(t, A) — tA(A),
v(t, A) is a Poisson measure in R" having a compact carrier, Ev(t,A) =
tA(A), the process w(t) and the measure v(t, A) are independent of each
other.

For the existence conditions with only probability 1 and continuous from
the right solution of the equation (4.2.8) see Gikhman and Skorokhod [42].

Following Kats and Krasovskii [82] we shall use the following descriptive
interpretation of the solution of (4.2.1). Let almost every realization y(t,w)
of a random process y(t) and the initial condition (4.2.2), (4.2.3) generate
completely continuous realization z(t,w) of solutions to the equation

(429) X ()
lying in the domain B(7,p,Y) and continuable on 7, = [, +00).

Then, the set of these realizations forms an (n + r)-dimensional ran-
dom Markov process {x(t),y(t)} that will be referred to as the solution of
equations (4.2.1) satisfying conditions (4.2.2) and (4.2.3).

4.2.2.2 Equation of Ito Form. We consider the equation
(4.2.10) dx = f(t,z)dt + o(t, z)dy(t),

where t € T, z; € R", f: T x R" — R", 0: T x R" — R™™ and
{y(t), t € T} is a Markov process with independent increments. The sys-
tem of the equations (4.2.10) is perturbed by two specific types of stochastic
processes.

Case C. {y(t),t € T} £ {z¢,t € T} is a normed m-dimensional Wien-
ner process with independent components.
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Case D. {y(t),t € T} 2 {q:,t € T} is a normed m-dimensional dis-
continuous Poisson process with independent components.

For the physical interpretation of equation (4.2.10) see e.g. Arnold [5],
Kushner [90], et al. Functions f and o are assumed to be smooth enough
and there exists a separable and measurable Markov process {z;, t € T}
satisfying system (4.2.10), that is completely continuous with probability 1.

4.2.3 The Concept of Probability Stability

The notions of probability stability are obtained in terms of Definitions
1.2.1-1.2.3 by replacement of ordinary convergence = — 0, used there,
by various types of the probability convergence (convergence with respect
to probability, convergence in mean square or almost probable stability).
Before we introduce the definitions let us pay attention to the following.

Let the process y(t) be defined by Ito equation (4.2.8). Moreover, equa-
tions (4.2.1) and (4.2.8) and initial conditions (4.2.2) and (4.2.3) generate
(n + r)-dimensional Markov process {x¢, y(t)}.

If x(t9) = 0, then we have with probability 1 that x(t) =0 for all t € T
and, therefore, the vector function {0, y(¢)} is a solution of this system. Let
y(t) € Y forall t € T, and the set D = {0,Y} is a time-invariant set for
the process {x¢,y(t)} in the sense that

P{{z(t),y(t)} € D | x(to) = o, y(to) = yo} =1

for {xo,yo} eD.
Similar equality is valid for the processes {x(t),y(t)} generated by pure
discontinuous Markov functions y(t). Therefore, the notion of probability

stability discussed herein is based on the stability of an invariant set, for
instance D = {0,Y}.

DEFINITION 4.2.1. The state © = 0 of the system (4.2.1) is:

(i) stable in probability with respect to 7; if and only if for every to € 7;
and every ¢ > 0, and 1 > p > 0 there exists §(tg,e) > 0, such that

(4.2.11) |lxo|| < 0(to,e) and yo €Y
implies
(4.2.12) P{supHx(t;to,xo,yoH <el xo,yo} >1—p
t>to
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for all t € 7y;
(ii) uniformly stable in probability with respect to 7; if and only if both
(i) holds and for every € > 0 the corresponding maximal s obeying
(1) satisfies
inf [(5M(t0,8)t to € 7;] > 0;
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(iii) stable in probability in the whole with respect to 7; if and only if
both (i) holds and

on(to,e) = +oo0 as e — oo Vig € Tj;

(iv) wuniformly stable in probability in the whole with respect to 7; if and
only if both (ii) and (iii) holds.

(v) unstable in probability with respect to 7; if and only if there are
to€7;, >0, p>0 and 7 € 7y, T > to such that for every § > 0
there is xg: [|zo|| < § and yo € Y, for which

P{||z(7;to, z0,y0l|| > €| o, y0} > 1 —p.

The expression “with respect to 7;” is omitted from (i)—(v) if and only
if 7, = R.

DEFINITION 4.2.2. The state = 0 of the system (4.2.1) is:

(i) attractive in probability with respect to 7T; if and only if for every
to € 7; there exists A(tp) > 0 and for every ¢ > 0 there exists
7(to, o, Yo,s) € [0,+00) and p > 0 such that

[zol| < A(to) and yo €Y

implies

P{ sup ||z (t; to, Zo, yol| << | wo,yo} >1—p;
t>to+T

(ii) (xo0,yo)-uniformly attractive in probability with respect to 7T; if and
only if both (i) is true and for every ty € 7; there exists A(tg) > 0

and for ¢ € (0,400) there exists 7,[to, A(to),Y,s] € [0,+00) such
that

sup [7m (to, o, ¥0,5): o € Ba(to), yo € Y] = 7ulto, A(to), Y, <]
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(iii) to-uniformly attractive in probability with respect to 7; if and only
if (i) is true, there is A > 0 and for every (xo,¥0,s) € Ba X Y x
(0,4+00) there exists 7,(7;,x0,Y0,5) € [0,400) such that

sup [Tm (to, 0, Y0,5): to € T3, Yo € Y| = 1u[Zs, %0, Yo, SJ;

(iv) wniformly attractive in probability with respect to 7; if and only if
both (ii) and (iii) hold, that is, that (i) is true, there exists A > 0
and for every ¢ € (0,400) there is 7,[7;,A,Y,s) € [0,+00) such
that

sup [Tm(t07x07y07§): (to,.??o,y()) € Z X BA X Y] = Tu(Z,A,Y, §).

(v) The properties (i)—(iv) hold “in the whole” if and only if (i) is true
for every A(tg) € (0,+00) and every tg € 7;.

The expression “with respect to 7;” is omitted if and only if 7; = R.

DEFINITION 4.2.3. The state = 0 of the system (4.2.1) is:

(i) asymptotically stable in probability with respect to 7T; if and only if
it is both stable in probability with respect to 7; and attractive in
probability with respect to 7;;

(i) equi-asymptotically stable in probability with respect to 7; if and
only if it is both stable in probability with respect to 7; and
(20, yo)-uniformly attractive in probability with respect to 7;;

(iii) quasi-uniformly asymptotically stable in probability with respect
to 7; if and only if it is both uniformly stable in probability with
respect to 7; and tp-uniformly attractive in probability with respect
to 7;

(iv) wniformly asymptotically stable in probability with respect to 7T; if
it is both uniformly stable in probability with respect to 7; and
uniformly attractive in probability with respect to 7;;

(v) the properties (i)—(iv) hold “in the whole”’ if and only if both the
corresponding stability in probability of x = 0 and the correspond-
ing attraction in probability of z = 0 hold in the whole;

(vi) exponentially stable in probability with respect to 7; if and only if
there are A > 0 and real numbers a > 1, >0 and 0 <p < 1
such that ||zo|| < A and yo € Y implies

P {8;113 |z (t; to, o, yol| < al|zol| exp[—B(t —to)] | ﬂfo,yo} >1-p.
t>to

This holds in the whole if and only if it is true for A = 4oc.
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The expression “with respect to 7;” is omitted if and only if 7; = R.

REMARK 4.2.1. The definitions of stability in probability based on the
inequality

(4.2.13) P{||a:(t;t0,xo,yo|| <eg | 1‘(t0) = X, y(to) = yo} >1—p

under the condition
||I0|| <6 and Yo €Y
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does not characterize separate realizations of the process {z(t),y(t)}. Le.
the solution can satisfy the condition (4.2.13), though at the same time
almost all realizations may not leave the domain |z| < ¢ (at various
times). Therefore, following Kats and Krasovskii [82] we consider inequality
(4.2.12) instead of (4.2.13).

REMARK 4.2.2. The probabilities mentioned in Definitions 4.2.1-4.2.3
are not specified in the general case by the finite dimensional distributions
of the process {z(t),y(t)} and may not exist. However, it is known (see
Doob [31]) that a separable modification of the process {z(t),y(t)} can be
considered, having with probability 1 the realization continuous from the
right. In this case all realizations in question have the meaning.

4.2.4 Stochastic Matrix-Valued Liapunov Function

We relate with the system (4.2.1) the stochastic matrix-valued function
(4.2.14) I(t, x,y(t)) = [vk(t, z,y(t))], k,lel,s]

where (t,x,y) € B and vy (t,0,y(t)) =0 Vt € T and y € Y, and, besides,
’Ukl<t, ) = Ulk;(t, ) V(kﬁ 7é l) € [1, S], Vil € C(T X R"xXY,R [Y, R])

Similar to the determined case (see Chapter 2) the property of having a
fixed sign of matrix-valued stochastic function (4.2.14) is of importance in
the stability investigation of a stochastic system (4.2.1).

The concept of the property of having a fixed sign must correspond to

(1) the property of having a fixed sign of stochastic matrix;

(2) the property of having a fixed sign of scalar stochastic Liapunov
function;

(3) the construction of direct Liapunov method for stochastic systems.
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To achieve this we act as follows.
Let z € R® and function V € C(7 x R" xY*® x R*, R[Y, R]) be defined
by the formula

(4.2.15) V(t,x,y,2) = 2 T(t, z,y(t))z.

In view of Definitions 2.2.1-2.2.2 we present some definitions for stochastic
matrix-valued Liapunov function.

DEFINITION 4.2.4. The stochastic matrix-valued function II: Ry X
B(p) xY — R[Y, R°*"] is referred to as
(i) positive (negative) definite, if and only if there exists a time-inva-
riant connected neighborhood N of point z = 0 (N C R") and
positive definite in the sense of Liapunov function w(x) such that
(a) II is continuous, i.e. IT € C(Ry x N XY, R[Y, R5*%])
(b) II(¢,0,y) =0 Vt€ Ry and y €Y
(c) infV(t,z,y,2) =w(z) V(t,y,2) € Ry XY x R?
(supV(t,z,y,2) = —w(x) V(t,y,2) € Ry XY x R%);
(ii) positive (negative) definite on S, if and only if all conditions of
Definition 4.2.4 (i) are satisfied for N' = S;
(iii) positive (negative) definite in the whole, if and only if all conditions
of Definition 4.2.4 (i) are satisfied for N’ = R™.

REMARK 4.2.3. If function IT does not depend on t € Ry, then in
Definition 4.2.4 the requirement of function w(z) existence is omitted and
conditions (a)—(c) are modified, and condition (c) becomes

() V(z,y,2) = 2T1(z,y)2 >0 V(z #0, 2 #0,y) e N x R* x Y,

(V(z,y,2) <0 V(x#0, 2#0,y) e N x R* xY).

DEFINITION 4.2.5. The stochastic matrix-valued function II: Ry x B(p)
XY — R[Y, R°*®] is referred to as

(i) positive semi-definite, if and only if there exist a time-invariant con-
nected neighborhood N of point 2 =0 (N C R") such that
(a) II is continuous in (t,7) € Ry x N;
(b) II is non-negative on N: 2TTI(¢,z,9)2 > 0 V (t,z,y) € Ry X
N xY.
(¢) TI vanishes at the origin zTII(¢,0,4)z =0 V(2 # 0,y € Y);
(ii) positive semi-definite on Ry x S x Y if and only if (i) holds for

N =S;
(iii) positive semi-definite in the whole if and only if (i) holds for N =
R,
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(iv) negative semi-definite (in the whole) if and only if (—II) is positive
semi-definite (in the whole) respectively.

The following assertion is proved in the same manner as Proposition
2.6.1 from Chapter 2.
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PrROPOSITION 4.2.1. The stochastic matriz-valued function I1: Ry X
B(p) x Y — R[Y, R°*®] is positive definite, if and only if there ezists a
vector z € R® and a positive definite in the sense of Liapunov function
a € K such that

(4.2.16) ZIT(t, 2, y)z = 2T (t, 2, 9)2 + a(x),

where 11 (t,z,y) is a stochastic positive semi-definite matriz-valued func-
tion.

DEFINITION 4.2.6. The stochastic matrix-valued function II: R4 x B(p)
xY — R[Y, R®*®] is referred to as

(i) decreasing, if and only if there exists a time-invariant connected
neighborhood N of point z = 0 and a positive definite on N func-
tion b € K such that

V(t,z,y,z) = 2" 1(t,z,y)z < b(x)

for all (t,z,y) € R+ XN xY x R%;
(ii) decreasing on S if and only if (i) holds for N = S;
(iii) decreasing in the whole if and only if (i) holds for N'= R™.

PROPOSITION 4.2.2. The stochastic matriz-valued function 11: Ry X
B(p) x Y — R[Y, R®*%] is decreasing, if and only if there exists a vector
z € R® and a positive definite in the sense of Liapunov function ¢ € K
such that

(4.2.17) Itz y)z = 27Q (¢, x, y)z + c(x),

where Q_(t,x,y) is a stochastic negative semi-definite matriz-valued func-
tion.

DEFINITION 4.2.7. The stochastic matrix-valued function II: Ry x R"™ X
Y — RIY,R?*"] is referred to as radially unbounded if and only if
2TT(t, z,y)z — o as ||z]| — +o0 and y €Y, t € Ry.
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PROPOSITION 4.2.3. The stochastic matriz-valued function 11: Ry X
R" xY — R[Y,R**®| is radially unbounded, if and only if there exist a
vector z € R® and a function v € KR such that

(4.2.18) (2, y)z = 2'Qy (8, )z + (||

for all (t,xz,y) € Ry x R" XY, where Q+(t,z,y) is a positive semi-definite
in the whole matriz-valued function.

We indicate a class of auxiliary stochastic function wvg (¢, x,y(t)), k, | =
1,2,...,s using which it is possible to construct the function (4.2.15) sat-
isfying all conditions of Definitions 4.2.4—4.2.7.

State vector x € R™ of the system (4.2.1) is represented in the form
r=(p%,q%,rT)T, where p € R™, g € R™, r € R™ and nj+ns+n3 =n.

ASSUMPTION 4.2.1. There exists time-invariant connected neighbor-
hoods N, C R", N, C R™ and N, C R"™ of the equilibrium states
p=0, ¢g=0 and r =0 respectively, functions w;(|pl), ¥:(llal), x:(ll7|),
i=1,2 of class K (KR) and constants a;, @k, V(j, k) € [1,3] and aj;
and a;; >0, j € [1,3] are such that

(a) Qll@%(HpH < Ull(tvxvy) < allgp%(”pH (t,l‘,y) € R+ X NO X Y7
(

) )V

b) g ¥i(llall) < vaa(t, z,y) < @a2th3(l|ql]) V (¢, 2, y) € Ry x Np x Y

(¢) agsxi(lIrl]) < wvss(t,z,y) < assx3(|r]]) Y (¢, z,y) € Ry x Ng x Y

(d) agaper(lipl)vi(llgll) < via(t, o, y) < @zw2(llpl)v2(llqll) V(¢ z,y) €
Ry x Ny xY;

(e) ajzpi(llpxalllrll) < vis(t z,y) < @spa(llpl)x2(lr]) V(¢ 2, y) €
R, x Ny xY;

() asstr(llalDxa(llrll) < ves(t, z,y) < @asba(llgl)xa(lrl]) V(¢ z,y) €
Ry x Ny XY

(g) asrvr(llal)erllpl) < varlt,z,y) < @zba(llgl)e2(llpll) V(t,z,y) €
Ry x Ny XY

(h) agyxa(llrlDer(lpll) < vsi(t,z,y) < asixe(l[r])e=(lpll) V(¢ z,y) €
Ry x Ny xY;

(1) asaxa(llrDvi(llall) < vsa(t, z,y) < @sax2(llriDv2(llqll) V(¢ 2,y) €
Ry x Ny xY,

where Ny = NpO X NqO X NT0§ NpO = {p € Npa pF# O}a NqO = {q € Nq:
q# 0}, Noo ={r e N;., r #0}.
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PROPOSITION 4.2.4. If all conditions of Assumption 4.2.1 are satisfied,
then for the function
(4.2.19) V(t,z,y,m) =0 I(t, z,y)n,

with a constant positive vector n € R5 the bilateral estimate

s
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(4.2.20) wWHY A Hu < V(t,z,y,n) <w"H" AyHw

takes place for all (t,z,y) € Ry X Ny x Y, where

ut = (er(llpl), wallal), xalirl),
w' = (e2(llpll), w2llal), x2(lI71))

and Ay = [ayy], A2 = [aw], H = diag (n1,m2,m2).

Estimates (4.2.20) are proved by direct substitution by estimates (a)—(i)
from Assumption 4.2.1 into the form

s
V(tv%yﬂl) = Z nlnkvlk(tvxay)'
l,k=1

Estimates (4.2.20) imply

PROPOSITION 4.2.5. If in the bilateral estimate (4.2.20)

(1) the matriz HYA1 H is positive definite (semi-definite);

(2) the matriz HYAyH is positive definite;

(3) the condition (1) is satisfied and functions p1,11,x1 are of class
KR,

then stochastic function (4.2.19) is

(1) positive definite (semi-definite);
(2) decreasing;
(3) radially unbounded

respectively.

PROOF. Assertion (1) of Proposition 4.2.5 follows from the fact that

)\m([ll)uTu <uTHTA,Hu, Am (A1) >0,
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where A, = HTA H. In fact, since (p1,%1,x1) € K, then a function
®c K, & =(||z|) is found such that

O(lz]l) < eillpll) +ilall) +xElrl)-
Therefore, .
A (A1)@([|z])) < w' H A Hu < V(t, 2, y,7)

for all (t,z,y) € Ry x Ny x Y.
Assertions (2) and (3) of Proposition 4.2.5 are proved similarly.

4.2.5 Structure of the Stochastic Matrix-Valued Function
Averaged Derivative

The averaged derivative, that is computed as in determined case without
integrating system (2.2.1), is analogous to the total derivative of matrix-
valued function for the stochastic system (4.2.1).

Let (7,z,y) be a point in domain B(7,p,Y).

DEFINITION 4.2.8. Any of the limits
D* B[] = limsup {{E[I(t, z,y) | 2(1) =z, y(7) = y]
—II(r,z,y)}(t — 7)1t — 7+ O};

(4.2.21)
Dy E[] = liminf {{E[I(t,z,y) | z(7) =z, y(T) = Y]
— (7, z,y)}(t — T)_lzt — T+ O};
where E[ - | - | is a conditional mathematical expectation, is called an

averaged derivative of stochastic matriz-valued function I1(t,z,y(t)) along
the solution of system (4.2.1) at point (7,x,y). D*E[II] denotes the case,
when DY E[MI] and D, E[II] are applicable.

The value D*E[II] is an averaged value of the stochastic matrix-valued
function TI(¢,z,y) derivative along all realizations of process {z(t),y(t)}
initiating from point (x,y) at time 7. If

THII = /P{T,x,y;t, du, dz}T1(t, u, 2)

= E[lI(t, 2(t),y(t)) | z(7) = z, y() = y],

where P{---} is a transition function of solution to system (4.2.1) with the
initial conditions z(7) =z, y(7) =y, then

(4.2.22) DTE[M] = limsup {[TI — (r,z,y)|(t —7) " : t = 7+ 0};
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(4.2.23)  DiE[M] = liminf {[T/I — II(1,2,9)](t —7) "' : t = 7+ 0}
at the point (7, z,y).

The right-side part of (4.2.22) and (4.2.23) is a weak infinitesimal ope-
rator of process {xz(t),y(t)}.

We shall present the formulas for DT E/[II] computation for various reali-
zations of the random process y(t).

1. Let in the system (4.2.1) the process y(t) be pure discontinuous and be

dE|I1
described by the relations (4.2.5) and (4.2.6). Then dEﬁ ]

along solutions

of system (4.2.1) at point (7, z,y) is computed as

dE] =V, op (1, 2,y) + [Vevr (T, 2, y)]Tf(vaca y(t))

dt
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(4.2.24) .
+ /Wkl(ﬂ z,y + Bu) — via(T, 2, y)|dsq(T, y, B)

for all (k,l) € [1,s], where (3, is a vector, every p-th component of which
equals to (3, and the others are zero.

2. Let in the system (4.2.1) y(t) be a simple scalar Markov chain with a
finite or countable number of states and transition probabilities satisfying
the correlation

P{y(t) =y, | y(7) = yi} = qi;(t — 5) + ot — 5)

EIT
for all ¢ # j. We compute d dE& ] by the formula
dE[IT
P — 9 oua(r.2.9) + [Vavna (7, 2,9)]F (7,2, 0(1)

4.2.25
( ) +Z[Ukl(ﬂl‘,yj) — vu(T, %, Y5)|qij-

J#i

3. Let in the system (4.2.1) y(f) be a Markov process generated by
the generalized differential Ito equation (4.2.8). In this case we compute
dE|TT]

dt

at point (7, x,y) by the formula

dE[ _ Voou(r,2,y) + [Vevw (.2, 9)] f (1,2, y(t))

dt
+ [Vyor (7, 2,9)] a(r,y) — 9(1,9))

4.2.26
(4220 +/anmy+dﬂ%w»wwvww»Mm>

1
+ 5 tr [wavkl (7—7 €, y)b<7—7 y)bT(Tv y)]7 v ka S [17 S]'
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where g(7,y) = [ ¢(7,y, u)A(du).
dE[]

COROLLARY 4.2.1. Ifin the formula (4.2.26) c(t,y,u) = 0, then 7

corresponds to the case when y(t) is a diffusion process.

REMARK 4.2.4. Operator for ¢ # 0 is local in variable z, but

dt

non-local in y.

4. Let in the system (4.2.10) y(t) be a normalized Wienner process

EIT
with independent components. We compute # at point (7,z) by the
formula
dE|IT
# = V.o (7, 2) + [Vavp (1, 2)] f (1, x)
(4.2.27)

+ % tr[o(t,z) " Vv (1, 2)]o(t, )],

where k, [ € [1, s].
5. Let in the system (4.2.10) y(¢) be a normalized jump Poisson process

B[]
dt

with independent components ¢;. Then at point (7,x) is computed

by the formula
dE(T]

Tdt Voor (T, 2) + [Vevr (1, 2)] T f (1, 2)

(4.2.28) "
+ Z / [k (T, + 03 (t, 7)qi) — v (T, 2)|pid P; (dg;),

where k, [ € [1, s].

Here it is assumed that during the interval At the jumps take place with
the probability P;At + o(At) and the zero average of the jumps obeys the
probability P;(-).

We establish Liapunov correlation for stochastic matrix-valued function
II(t, z,y(t)). With this end we construct function (4.2.19) by means of
vector n € R%.. Let V(t,z,y,n) be such that for it there exists

E[V(tx(t),y(t),n) | (1) =z, y() =y

and

(4.2.29)
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on the trajectories of the Markov process {z(t),y(t)} at point (7,z,vy).
Moreover, we assume that

Jim B[H(t,2(0),4(0)) | 2(7) = 2, y(7) = y] = H(r,2.9).

Then we have

(4.2.30) t
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Formula (4.2.30) is valid for the homogeneous Markov processes and
functions V' independent of time (see Dynkin [34]) and for the processes
being considered here (see Kushner [90]).

Let Q@ C R™ be a bounded open set and U = @ x Y be a set from
which the process {z(t),y(t)} comes out for the first time at time 7. It is
easy to notice that 7,,(t) = min{¢, 7.} is a Markov momentum, such that
ET,,(t) < +00. Therefore, if {z(s),y(s)} € U, then

E[V(7om,a(tm), y(tm),n) | 2(7) = 2, 7) = 9]

—V(ra,ym)+ E [ [ st )du | ofr) = 2. 7) =y

is valid.
It is also clear that the process {x(7,,(t)), y(7m(t))} is strictly Markov.

d d
Between — E[II] and — E[V] it is true that
dt dt

(4.2.31) %E[V(t, z,y,n)] = nt— E[I(t,z,y)]n.

We return back to the system (4.2.1) and assume that y(t) is a sim-
ple scalar Markov chain with a finite number of states. System (4.2.1) is
decomposed into three subsystems

d
d_zz = X (,p,0,0,y(t)) + F(t,p,q,7, y(t));
d

(4.2.32) d—(j =Y (t,0,q,0,y(t) + G(t,p,q,7,y(t));
dr
= = Z(,0,0,r,y()) + H(t,p, ¢, 7 y(1));
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where pe R™, g€ R™, r€ R™, ny +ns+ns=n,

X € C(Rs x Bi(p), R[Y,R™]), Y € C(Ry x Ba(p), R[Y, R™)),
S C(R-l- X BS(IO)a R[Ya Rn3])7 Fe C(R+ X B> R[Y7 Rnl])a
G € C(Rs x B, R[Y, R™)), H e C(R; x B, RY,R™]),

and B = Bi(p) x Ba(p) x Bs(p).
Vector-functions X, Y and Z and F, G and H vanish, if and only if
p=q =r =0 respectively.

We introduce designation

A(vkzl) - Z&ij [Uk:l(t7 72) - vkl(tu '7j)]7 ku [ = ]-7 273
1£]

ASSUMPTION 4.2.2. There exist the real numbers pg,., £k = 1,2,3;
r=1,2,...,12 and comparison functions ¢(||pl|), ¥(llql]), x(||r||) of class
K(KR) such that

(a)

(h)
(i)

Vv + (Vpv11)TX + %A(Un) < pr1e®(|lpll) Y (¢, p,y) € Ry x N}, x
Y

Viviz + (Vpui2) ' X + 7A(v12) < prag(llplDv(llall) ¥ (tpa,y) €
Ry X Np X Ny XY

Vivis + (Vpuis)' X + 3A(vis) < pasellp)x(lIrl) ¥ (¢, p,7my) €
Ry X Np x N, xY;

Vivao+(Vaua2)TY +5A(v22) < prth?(lql)) V (. ¢, y) € R xNgxY;

Vivar + (Vgva)'Y + 3A(va1) < paaie(llpl)e(llall) ¥ (£ p.q.y) €
Ry X Np X Ny xY;

Vives + (Vquas) ™Y + 1A(v23) < pasto(llgl)x(lIrl) V(¢ q,7,y) €
Ry x Ny x Np xY;

th33+(vTU33)TZ+%A<’U33) < psiX (7D VY (t,7,y) € Ry XN, xY;

Vivst + (Vevs1)TZ + $A(vs1) < psee(llpl)x(I7]]) ¥V (& psry) €
Ry X Np x N, xY;

Vtv32+(vr’032)TZ+iA(U32) < pas¥([lal)x(llrl) V(¢ q,7y) € Ry
Ny X N, X Y.
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and for all (¢,p,q,7,y) € Ry X Ny x Ny X N, x Y=
(&) (Vo) " F + A (v11) < pra®(lpl) + prse(llplD e (llgll)
+ prse(llplD)xI7I);
(b)) (Vpui2) " F 4 3A(v12) < prrtb?(llall) + puse(llpl)w(llal)
+ prot(llall)x(lI[));
(") (Vpvis)TF + 1A(v13) < praox (7)) + pr.ace(llpl)x((I7])
+ prazy(lalDx ()
(d) (Vqva2)"G + §A(vaz) < p2atr®(llall) + pase(llplDx (Nl
+ p26¥([lglD)x [
(€) (Vqua1)'G + 7A(v21) < parg®(lIpll) + pase(llpv(llgll)
)
)

9

+ paoe(([pI)x (7]
(') (Vqua3) G + 1 A(va3) < pa1ox®(I7l) + pzase(lpIDx (N
+ p2.a29([lal)x(lI71);
(&) (Vrvss)TH + 5A(vs3) < paax([I7[]) + p3se (Il x(llr )
+ past(llglDx(llr]);
(W) (Vrvis)"H + 3 A(v13) < psr®(Ipll) + psse(llpIDv(llall)
+ pzoe(llpl)xI7]));
(i") (Vyvas)"H 4+ 3A(v23) < p3aot®(lqll) + ps.are(llplDv(lal)
+ ps.a2t([lal)x ()

Y

PROPOSITION 4.2.6. If for the system (4.2.1), decomposed to the form
of (4.2.32), there exists a stochastic matriz-valued function I1(t,z,y) the
elements of which satisfy the conditions of Assumption 4.2.1 and all con-
ditions of Assumption 4.2.2 are satisfied, then the structure of stochastic

ElV
matriz-valued function averaged derivative # is defined by the inequa-
lity
dE\V dE|11
(4.2.33) d[t ] = nT#n <utSu V(t,z,y) € Ry x No xY

where s X s-matriz S has the elements expressed by formulas
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Ckl = Clk, (k,1) € [1,3]:
c11 = 15 (p11 + p1a) + 21 (n2p27 + N3p3r),
oo = M5 (p21 + p2a) + 202 (M1p17 + N3p3.10),

C33 = 77?%(,031 + p3a) + 2n3(n1p1.10 + M202.10)s
1

1
C12 :577%,015 + 577%/)25 +mnz2(p12 + p22 + p1s + pas)

+ n3(m p3s + N2p3.11),

c13 =371 P16 + 3713035 + mns(piz + p32 + pr.11 + p3o)
+ n2(n1p20 + N3p2.11),
L, L,

C23 :57;2,026 + §U3P36 + 7]27]3(/)23 + p33 + p2.12 + /)3.12)

+ n1(n2p19 + N3p1.12)-
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THE PROOF of this proposition is similar to the proof of Proposition
2.7.3.

REMARK 4.2.5. Actually, the structure of the stochastic matrix-valued
function II(¢, z, y) averaged derivative is established by formula (4.2.33) and
is based on the stochastic S L-function (see Martynyuk [120]). The structure
of the stochastic matrix-valued function TI(¢,z,y) averaged derivative is
somewhat different provided the stochastic V L-function is applied, i.e.

(4.2.34) L(t,x,y) = All(t,z,y)b,

where A is a constant s X s-matrix and b is an s-vector.

4.3 Stability to Systems in Kats—Krasovskii Form

In terms of the stochastic matrix-valued function II(¢, x,y) constructed for
system (4.2.1), the criteria of stability with respect to probability are in
form similar to Theorems 2.3.1-2.3.3.
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THEOREM 4.3.1. Let the equations of perturbed motion (4.2.1) are such
that:

(1) there exists a matriz-valued function I1: Ry x B(p)xY — R[Y, R°*®]
in the time-invariant neighborhood N° C R™ of equilibrium state
z=0;

(2) there exists a vector n € R® (n € RY);

(3) stochastic scalar function (4.2.19) is positive definite;

(4) the averaged derivative (4.2.25) is negative definite or negative semi-
definite.

Then the equilibrium state x = 0 of system (4.2.1) is stable with respect to
probability.

PROOF. Let arbitrary numbers ¢ € (0,p), p € (0,1) and ¢y € R+ be
given. Under the conditions (1)—(2) of Theorem 4.3.1 we have the function

V(t,z,y,n) =0 1(t,z,y)n, n€R’ (ne R ),

that is positive definite by condition (3) of Theorem 4.3.1. Therefore, a
number ¢1 > 0 is found, such that

inf V(t,z,y,n) =e1 for te Ry, |z[[>e, yeVY, neR (neRy).

We designate B(e) = {(z,y) € R" xY: ||z < e,y € Y}. Let 7. be
the time of trajectory (x(t),y(t)) first leaving the domain B(e) and let
Te(7) = min (7, 7.). We have by condition (4)

(43.1) E[V(1.(1), 2(1o (7)), y(1- (7)), n) | (to) = z0, y(to) = vo]

< V(to, o, Y0, 1)
Now we take 6 > 0 so that

(4.3.2) sup V (to, z,y0) < pe

whenever ||z|| < 0.
The estimates (4.3.1) and (4.3.2) imply

pe1 > V(to, o, y0,m) = B[V (7e(7), 2(7= (1)), y(7=(7)), 1) | 20, Yol

> 61P{ sup |lz(t)|| > €| wo,yo}-

to<t<T

Hence we get for 7 — 400

p {sup )] = | a:y} <p.
t>to

This proves the theorem.
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THEOREM 4.3.2. Let the equations of perturbed motion (4.2.1) are such
that:
(1) hypotheses (1) and (2) of Theorem 4.3.1 are satisfied;
(2) the stochastic matriz-valued function I1(t,z,y) is positive definite
and decreasing;

(3) the averaged derivative is negative definite.

Then the equilibrium state x = 0 of the system (4.2.1) is asymptotically
stable with probability p(H), i.e. if ||zo|| < Ho and yo €Y, to >0 then

P {sgp ()] < H | my} S 1-p(H),  Ho<H.
t>to
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PROOF. Let a number p(H) < 1 be given. Theorem 4.3.1 implies that
under the conditions of Theorem 4.3.2 the equilibrium state = = 0 of
system (4.2.1) is stable with respect to probability. Therefore, for any
e€(0,p) and to >0 a 6 = d(tp,e) > 0 can be found such that

(4.3.3) P {sup lx(t)]] < e | mg,yo} >1—p(H),

t>to

whenever
HI()H <6 and Yo €Y.

Let us show that the number Hy mentioned in conditions of Theo-
rem 4.3.2 can be taken as Hy = 6. To this end we define for arbitrary
numbers v € (0,e) and 0 < ¢ < 400 the number ~; > 0 from the
inequality

(4.3.4)
sup [V (t,z,y,n) for t € Ry, ||z|| <,y €Y, ne R]

< %inf [V(t,x,y,n) for te Ry, v1 <|jz]| <e,y€Y and n € Ri]

The arguments similar to those used in the proof of Theorem 4.3.1 yield

1

435) P {swletl <y 2000 | > 1- 30
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whenever
|z(t)]| <y and y(t) €Y.

We claim that there exists a 7 > tg such that

1
(4.3.6) P{llz(to + )l <71 | @0, 90} > 1= ¢ = p(H).

If this is not true, then for trajectory {z(t),y(¢)} the inequality

1
P{fyl S HI’(t)H <, t > tO ’ zOvyO} > §q
holds, that yields by condition (3) of Theorem 4.3.2
(37)  lm BV (ra() 27 (1), y(7a(0)).n) | 20.50] = —cc.

Here 7,(t) = min (7*,t), where 7* is a time of trajectory (x(t),y(t)) first
leaving the set By = {(x,y): 11 < ||z|| <&,y € Y}.

Since the function II(¢, z,y) is positive definite, the correlation (4.3.7)
can not be satisfied. This proves inequality (4.3.6). The estimates (4.3.3),
(4.3.5) and (4.3.6) imply that for arbitrary ¢ >0 a 7 > 0 is found so that

P{ sup @)l <7 | y} o1 - q—p(H),
t>to+7

whenever ||zg]| < Hp and yo € Y.
This proves Theorem 4.3.2.

THEOREM 4.3.3. Let the equations of perturbed motion (4.2.1) are such
that:

(1) hypotheses (1), (2) and (3) of the Theorem 4.5.1 are satisfied for
N =R";

(2) the function I1(t,x,y) is positive definite in the whole and radially
unbounded;

v
o ] is negative definite in B(T,00,Y).

Then the equilibrium state x = 0 of the system (4.2.1) is stable with respect
to probability in the whole.

(3) the averaged derivative

A theorem allowing us to find asymptotic stability with respect to pro-
bability and stability with respect to probability in the whole on the basis
of negative semi-definite averaged derivative is considered.
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Let an open domain G containing the origin be definite in space R".
Function ¢(t,z,y): To x G x Y — R is referred to as positive definite on
G x Y if for any numbers r > ¢ > 0 there exists a number § > 0 such
that ¥(t,x,y) > 6 holds for all ¢t > tg, (z,y) € (N N{e <|z|| <r} xY).

Matrix-valued function ®(¢,z,y): To x G x Y — R™*™ gatisfies hy-
potheses A if:

(a) the function ® is bounded for all ¢ > ¢y in any finite domain ||z| <
p, YEY;

M|[®
(b) averaged derivative n* [ ]77 is bounded in any finite domain due

to system (4.2.1), i.e. there exists a constant K such that

dM ()]
T p| < K;

........................................................... seeseesssssssfAlcate]-Lucent @
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dM [P
[ ]77 is positive definite in domain G x Y.

(c) the function 7"

Then the following statement is valid.

THEOREM 4.3.4. Let the equations of perturbed motion (4.2.1) as defi-
nite in domain B(Ty,00,Y) and such that:

(1) hypotheses (1) and (2) of Theorem 4.53.3 are satisfied;
(2) averaged derivative (4.2.13) satisfies hypothesis

dM |11
nT#n < H(x) <0,

where H(x) is continuous in domain G;

(3) the set D = {x:x # 0, H(x) = 0} is non-empty and does not
possess mutual points with bound ON in domain N in the sense
that inf |z — 22| > K?* >0 21 € 0G, 22 € DN {e < |z| < r};

(4) there exists a matriz-valued function ®(t,x,y) satisfying hypotheses
A.

Then the equilibrium state x = 0 of the system (4.2.1) is stable with respect
to probability in the whole.
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4.4 Stability to Systems in Ito’s Form

4.4.1 Decomposition of perturbed motion equations

We consider a system of the equations with random parameters in the form
(4.4.1) dw(t) = f(t,w)dt + o(t,w)d&(t),

where t € 7, w € R", f: T xR" — R", 0: 7 x R — R"™™, and
{&(t), t € T} is an independent measurable random Markov process.

Assume that the system (4.4.1) allows decomposition into [ intercon-
nected subsystems that can be described by equations in the form

dw; =f; (t, wi)dt + 0 (t, wi)dfi

l
(4.4.2) +git,w)dt + Y oyt wy)dés, i€ [1,1).

j=1

Each interconnected subsystem (4.4.2) consists of the independent subsys-
tem

(4.4.3) dw; = f(t,wi)dt + 04 (t, wi)dfi, 1€ [1, l],

and link functions

l
(4.4.4) git,w)dt + > oy (t,w;)de;, i€ (L1,

Jj=1

Here w; € R", w € R", w = (w,woT,...,w})T, & € R™, fi: Ty x
R" — R", 0;;: T xXR"% — R"" ™ g;: T xR" x---x R™ — R"™, and
{&(t), t € T} are independent measurable Markov processes.

We assume on function f; and o;; that they satisfy the existence condi-
tion for solutions to subsystems (4.4.3), and link functions (4.4.4) vanish,
if and only if w; = 0 and w = 0. Thus, the points w = 0 and w; = 0,
j € [1,1] are the only equilibrium states of systems (4.4.1), (4.4.2) and
(4.4.3) respectively.
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The transformation of systems (4.4.1) to (4.4.2) is referred to as the
decomposition of stochastic Ito system of the first level. Suppose that from

system (4.4.1) couples (i, j) of interconnected subsystems are taken in the
form

dwi :fij(t wi,wj)dt + Jii(t wl)d& + Uij (t,wj)dé“j
!
+gij(twydt+ Y ou(t,wp)dés, i€ [1,1].
(k#_m)
dw; =fji(t,wj, wi)dt + 0 (t, w;)dE; + 0ji(t, wi)d;
!
+ g;i(t,w)dt + Z ok (t, wr)dg, (i # j) € [L,1].
k=1
(k#i,9)

(4.4.5)

/

Leadiny
% Maastricht University s Learniny’

Join the best at
P o4 N - 33" place Financial Times worldwide ranking: MSc
the Maastricht University International Business

+ 1% place: MSc International Business

School of Business and - 1%t place: MSc Financial Economics

. 2" place: MSc Management of Learning
° - 2" place: MSc Economics
1 25h
Econom 1CS: - 2" place: MSc Econometrics and Operations Research
- 2" place:MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is
the best specialist
university in the
Netherlands
(Elsevier)

Master’s Open Day: 22 February 2014

www.mastersopenday.nl

41

Click on the ad to read more

Download free eBooks at bookboon.com



http://www.mastersopenday.nl

Here fi;: 7 x R" x R" — R"™ x R", g;;: T x R" — R™ x R". We

introduce following designations w;; = (w], u);-F)T7 fij (t,wij) = ( 5, ji)T;

gij (taw) = (957 g;‘I‘i)T7 Ufj = [U;I];, o-jT}g]Tv dgl] = (df;r, dé;r)Ta and

o (cm Tij >
O'ij = .
Tji 0jj
Then the (7, j) couple (4.4.5) can be represented as
dwij =F;;(t, wig)dt +T35dEs; + G5 (t, w)dt
l

4.4.6 .
(449) +3 ohdg, (£ ell)

k=1

(k#i,5)

Besides, the free (i, ) couple has the form

(4.4.7) dwij = fi;(t, wij)dt +Tizd&; (i # j) € [L,1].
and the link functions are represented by the formulas

l
(4.4.8) gy (twydt+ Y olds, (i #4) €11
k=
(i)

Further we need the following assumptions.
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ASSUMPTION 4.4.1. There exists a time invariant open connected neigh-
borhood N; C R™, a function v (t,w;): 7 x N; — R4, the comparison
functions 1;1, ¥;2 and ;3 and the positive real numbers p; such that for
all i € [1,1] estimates

(a) vir(llwill) < vii(t, wi) < Paa(llwill);

(o) PN )

are satisfied for any w; € A; and t € 7.

DEFINITION 4.4.1. The isolated subsystems (4.4.3) possesses property
A(N;), provided all conditions of Assumption 4.4.1 are satisfied for each of
the subsystems.

DEFINITION 4.4.2. If in Assumption 4.4.1 ;1 (|wi]]) = callwil?,
i

Yia(||lwil]) = cizllws||?* and is(||wil]) = f”wiH% where ¢;; and c¢;o are
(3

positive constants, and c¢;; constants ¢ € [1,[], then isolated subsystem
(4.4.3) is said to possess property B(N).

DEFINITION 4.4.3. If in Assumption 4.4.1 N; = R™ for all i € [1,]]
and functions 11, 12 € KR, then isolated subsystems (4.4.3) are said to
possesses property B;(co).

ASSUMPTION 4.4.2. There exist a time-invariant open connected pro-
ducts of neighborhood N; x N; C R™ x R™ of point wi; = 0, functions

Vi (tywij): T X Ny x Nj — R+, a functions v};, ¥7; and ;3 of class K and

positive real numbers §;, 47, and §; such that for all (i < j) € [1,1] the
estimates
() ¥l (lwijll) < vig(t, wig) < 93 (llwisl));
dEij[Uij] 1/2 1/2
(b) —= i Visllwill) +265955 " (lwiles ™ (lws )+ 85bis (lwsl)

are satisfied for any w;; € N; x N; and t € 7.

DEFIINITION 4.4.4. Isolated couples (7,j) of subsystems (4.4.7) pos-
sesses property A(N; x Nj), if for every of them all conditions of Assump-
tion 4.4.2 are satisfied.

DEFINITION 4.4.5. If in Assumption 4.4.2 ¢}, = cj;l|lwi;||?, 7, = ¢

lwis 1> and  BLpi(lwil)) + 263 ”w|wmwm+ﬁ%wmn

><
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illwii|I?, (i < j) € [1,1], where ¢jj, ¢Z;, ¢}; are constant, then the in-

dependent couples (7, j) of subsystems (4.4.7) are said to possess property
B(N; x ;).

DEFINITION 4.4.6. If in Assumption 4.4.2 A; = R™ and the func-

tions \P}j, \Ilfj € KR, then the independent couples (i, j) of the subsystems
(4.4.7) are said to possess property A;;(00).

REMARK 4.4.1. In Assumptions 4.4.1 and 4.4.2 the constants p;, ¢ €
[1,1] and ¢; (i < j) € [1,1] are negative if independent subsystems (4.4.3)
and independent couples (i, j) of subsystems (4.4.7) are exponentially stable
with respect to probability.
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REMARK 4.4.2. The matrix B;;, defined by the expression

1 2,
Bz-j=(aﬂ ) G <j)e L]

ij i3

is negative semi-definite (negative definite), if the independent couples (3, 7)
of subsystems (4.4.7) are stable (asymptotically stable) with respect to
probability.

4.4.2 Structure of the Hierarchical Matrix-Valued Function
Averaged Derivative

We construct for subsystems (4.4.3) the functions v, (t,w;), i € [1,1] and for
couples (4, j) of subsystems (4.4.7) the functions v;;(¢,wi;) (¢ < j) € [1,1].
Let us construct from the above mentioned elements the matrix-valued
function.

(4.4.9) II(t, w) = [v; (L, )],

where II: T x R™ x R% x Y — R[Y, RI¥1].
The function (4.4.9) reflects the hierarchy of stochastic subsystems
(4.4.3) and (4.4.7) in the large-scale system (4.4.1).
The application of formula (4.2.27) to systems (4.4.2) and (4.4.6) yields
dE[]
dt

the following expressions for
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dE[U“ (t, w)]

!
dt ZUJ(t wj) + g5 (t, )] Vo, 034 (¢, wi)

J=1

1
+ itr[a};(t, Wi )V w0, Vi (t, wi o (E, w;)]

l
1
+t3 D tr[of(t W) Vi, vii (t i) oy (£, w;)]

j=1
1
+ itr[ (t, i )V, w; Vii (t, wi) o (, w;)]
1 l
— rlo (t Wi )0kiOmiVwsw, Vii (t, Wi )om (t,w;)]
(4.4.10 ) *3 ; k%::l kA I
(i

j=1
(3#1)
Ez 1t \by Ve
_ 4l df 2l S L
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Similarly we have

dE Vi (l, W — B
W - [fZJ (t’wij) + gij (t7w)]TVWij Vij (t, wij)

I _
STt wig) Vg vig (£, w3)Ti5 (1 wig )]

l
1
+§ Z tr[afj(t’wk)vaijWijvij(t7wij)afj(tawk)]

k=1
(k#i,5)
+ Vv (t, wij)
_ dEi[vi(t, wiy)]

(4.4.11)

k=1
(k#1,5)
(i <yg)eLl]

+§;l_;'(t?w)vwijvij(ta wij)

tr[of] (6, wi) Vo, w,, vij (6 wig ol (t we))],

Iy
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0
where V, = —, and §;; is the Kronecker symbol.

ou

REMARK 4.4.3. If, in particular, o;;(t,w) = 0 for all i # j, then
(4.4.10) and (4.4.11) become

dE[vi;(t, wi)] _ dE;[vii(t, wi)] + (gi(t C(.)))va-vii(t w;)

(4.4.12) dt di
i€ (1,1
(4'4'13) dE[Ui(Ji‘t(t,w)] _ dEij [Uiét(t,w'ij)] + (gm (tyw))vaij'Uij (t, Wij),
(t<j)e[L,]]

Thus, the structure of averaged derivative (4.4.10), (4.4.11) represents
adequately the hierarchical dependence of subsystems in large-scale system
(4.4.1).

4.4.3 Sufficient Conditions for Stability to Probability
of Stochastic Ito System

To formulate sufficient conditions for stability with respect to the probabi-
lity of system (4.4.1) we make some assumptions on the system.
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ASsuMPTION 4.4.3. The system (4.4.1) allows first and second level
decompositions and
(1) independent subsystems (4.4.3) possess property A(N;) Vi € [1,1];
(2) independent couples (i,j) of subsystems (4.4.7) possess property
AN; % N;) ¥ (i # ) € [1,1).

REMARK 4.4.4. If for the system (4.4.1) there exist p and ¢ (p < q) €
[1,1] for which no free couple (p,q) of (4.4.7) can be found, then we take
Upq(t, Tpg) = 0.

ASSUMPTION 4.4.4. There exist time-invariant neighborhoods N; C
R" and N; x N; C R x R"™ of states w; = 0 and w;; respectively,
constants bij, ds, v =31, cij, v, pf; and functions @3 € K such that
estimates

l
(1) IV, vii(twi) < V2 (lwil) Shey birtrri2 (lwr ),
(2) ¥y 03 (8 05) < Lz Vi Ueorl D5 oy )

(3)
(4)
(5) lloij(t, wi)lI* < aitja(llwsl));

6) llofs(t,we)ll* < ufivna(llwnl),
are satisfied for all ul, w; € R™, w;; € R" x R, t € T, (i # j) € [1,1],
p,k=1,2,...,10

Z) wiw; Vii(t, W@)u <d; HquQ

(u
(uf,) "V 0y Vi (t, wig g, < vl g |12

An important part in the structure of averaged derivative of the function
(4.2.15) is played by a symmetric [ x | matrix

—T

S=-(8+5),

l\'}l»—t

where S is an upper triangle matrix with elements 3, defined as

Spp =T (Pp +bpp + 5 E :d Qpi) + 2mp § 7715;1)@
i=p+1
%7510

l l l
‘ 1
+ 2 Y i+ 20 D B+ S Y MV
i=p+1 i=1 k,j=1
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l l

- 2 2 kj
Spg = Mpbpq + 4854 MpNg + Z Z Vpa TEN
k=1 j=k+1

gqp:Oa (p<Q)€ [17”, UERa-v 77>0

Sufficient conditions for stability with probability of the system (4.4.1)
are obtained in terms of the function (4.4.9) being applied in construction
of the function

(4.4.14) V(t,w)=n"T(t,w)y, neR,, n>0
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Namely, we shall prove the following result.

THEOREM 4.4.1. Let the perturbed motion of the equation (4.4.1) are
such that:

(1) {&(t),t € T} is a normalized Wienner process and o;;(t,w) # 0,
V(i,7) € [1,1];
(2) all conditions of Assumptions 4.4.1-4.4.4 are satisfied
(3) the matriz S is
(a) negative semi-definite;
(b) negative definite.
Then the equilibrium state w =0 of system (4.4.1) is

(a) stable in probability;
(b) asymptotically stable in probability.

PROOF. We take the functions v;;(¢,-) according to Assumption 4.4.1
and a vector n € RY, n > 0. The function (4.4.14) in coordinate form is

l l
V(t,w) = Zn?vii(t,wi) + Z nmjvij(t,wij)
=1

— ij—1
(4.4.15) (1)
z I
= moa(t,w) +2) Y mimjuist,wig)
i=1 i=1 j=it1
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Assumption 4.4.1 implies that at the presence of properties A(N;) and
A(N; x Nj) the bilateral estimate

l l
Y niva(lwil+ D mnd;(lwil) < V(E,w)
=1

ij=1
(i#3)
l l
< (el + Y mmyed (lwis)
i—1 ij=1
(i7#3)

is valid for function (4.4.15) when all w; € N;, w;j € N; x N and t € 7.

Since 1, Y2 € K and wilj, fj € K, then the function V (¢,w) is posi-
tive definite and decreasing. Moreover, functions ¥ (||w||) and Ws(||lw||) €
K can be found such that

(4.4.16) Ui([Jw]) <Vt w) < Ua(llwl))
forall we N =Ny x---xN;, teT.

E[V]
dt

d
For the function (4.4.14) the averaged derivative along the solu-

tions of (4.4.1) is

AEV ()] _ pdEMG ) inz (dEi (v (£, w)]

i + giTVwiUii(t,wi))

i=1

l
1 Z T

l
dEZUZ t,wi-

l
1
+5 > ot [(UZ)TVUJUWUUU@?wij)o_fj]) :
k

forall t € T and w; € N, wij € N; X Nj.
In view of conditions (c) of Assumptions 4.4.3 and 4.4.4 we get the
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estimate
l
dE|\V (t,w
L ()
=1
0w szk‘lfl/Q (lwrl) + Z doeie Vs (|lwe )]

=

l
1/2+.1/2
4.417) 2303 ma (8L Vs (lwsll) + 263047l
i=1 j=i+1

+ B30 ([lwjll) + Z YO w252 (lwpl)

k=1,p=k

l
1
5 Z ZJM'L]\IJ’C?J(Hwk“)]

(ksféy i)
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forall t €7 and w; € N,.
With regard to the structure of the matrix S we get from esti-
mate (4.4.12)

(1.4.18) BV < 1w (o)
where W(lo]) = (w52 (larl). .. vl

Since by condition (3)(a) of Theorem 4.4.1 the matrix S is negative
semi-definite, then Ap/(S) < 0 and

l
W < AM@);W(HM\D

for all t € 7 and w; € N,.
Since ;3 € K, there exists a comparison function ¥3(||w||) € K such
that

l
> dis(llwill) < Es(llwl)

=1

for all w; € N; and w e N = N7 x ... N,.
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Hence
(4.4.19)

is negative semi-definite for all t € 7 and w € N.

Thus all conditions of Theorem 4.3.1 from Section 4.3 are satisfied, and
the equilibrium state w = 0 of system (4.4.1) is stable in probability.

To verify assertion (b) of Theorem 4.4.1 it is sufficient to note that
under condition (3)(b) in the estimate (4.4.18) Ap; < 0. Then according
to inequality (4.4.19) all hypotheses of Theorem 4.3.2 are satisfied and
the equilibrium state w = 0 of system (4.4.1) is asymptotically stable in
probability.

The Theorem 4.4.1 is proved.

ASSUMPTION 4.4.5. The system (4.4.1) allows the first and the second
level decompositions and

(1) independent subsystems (4.4.3) possess the property Bj(oo), j €
[1,1];

(2) independent couples (i,j) of the subsystems (4.4.7) possess the
property A;;(o0), V(i # j) € [1,1].

THEOREM 4.4.2. Let the perturbed motion of the equations (4.4.1) are
such that
(1) {&(t),t € T} is a normalized process and o;;(t,w;) # 0 V(i,5) €
[1,1];
(2) all conditions of Assumption 4.4.5 are satisfied;
(3) the conditions of Assumption 4.4.4 are satisfied for N; = R™,
N; x Nj = R™ x R™ with functions p;3 € KR, i € [1,1];
(4) the matriz S is negative definite.
Then, the equilibrium state w = 0 of system (4.4.1) is asymptotically stable
in probability in the whole.

PROOF. Under the conditions of Assumption 4.4.5 the function (4.4.14)
satisfies estimates (4.2.20) and its averaged derivative (4.2.27) satisfies in-
equality (4.4.18) where functions ;3 € K R. In consequence of condition (4)

E
of Theorem 4.4.2 and estimate (4.4.19), dE[V(t,w)]

all t € 7T and w € R". Thus, all conditions of Theorem 4.3.3 are satisfied
and the equilibrium state w = 0 of system (4.4.1) is asymptotically stable
in probability in the whole.

is negative definite for
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REMARK 4.4.5. If for the perturbed motion the equations (4.4.1) are
such that o;;(t,w;) = 0 for all (i,5) € [1,1], i.e. random interconnec-
tions between the subsystems are absent, then the structure of matrix S is
simplified and its elements are:

l l l
Sop = M2(Pp Hbpp) F 2 > miBh A+ 20, D Abemi + 20, Y B,
i=p+1 i=p+1 i=1
l l

Spa = Mabpg + 480 + > > veameny,  V(p <q) € [L1];
k=1 j=k+1

Sqp = 0, p<gq.

Here 7,, p € [1,1] are components of vector n € R, .
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4.5 Applications

In this section general results on stochastic stability are applied in the
investigation of some real processes models.

4.5.1 Stochastic Version of the Lefschetz Problem

The following problem is a development of the Lefschetz [100] problem we
dealt with in Chapter 2.
Let us decompose system (4.2.1) into two subsystems

dp _ X(t,p,0,y(t)) + F(t,p,q,y(t)),
(4.5.1) gt
d_z = X(t,0,¢,5(1)) + G(t,p, ¢, y(t)),

where p € R™, ¢ € R", X € C[Ty x Bp, R, R"]], Y € C[Ty x By,
R[Qaan]L F e C[TO X BvR[QaRnl]]7 G e C[TO X BvR[Qaan]]7 Xa F7 Ya
G vanish if and only if p =0 and ¢ = 0 respectively.

ASSUMPTION 4.5.1. There exist time-invariant neighborhoods N, C
R™, N, C R™ of the equilibrium states p =0, ¢ = 0 respectively, and a
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matrix-valued function II(¢, z,y) with elements vy k, [ = 1,2 such that
oy, Glpll) < vt poy) <anG(llpll)  Vp € Npo,Vy € Y;
0 (lgll) < vaalt, g, y) < @225 (llall) Vg € Noo, Vy € Y;

a15C (e (llall) < vi2(t, p, q,y) < @r2C(llpl)v2(llqll)

V(p,q,y) € Npo X Ngo x Y

where Nyo={p € N, p # 0}, Nyo={q € Ny, ¢ # 0}, @, oy, =const > 0,
Qqq, 012 = const, k=1,2; (i, are functions of class K.

(4.5.2)

If conditions of the Assumption 4.5.1 are satisfied, properties of the func-
tion (4.4.14) (property of having a fixed sign, the existence of an infinitely
small upper bound; an infinitely large lower bound) are defined by proper-
ties of matrices A = HYA1H; B = HTA>H where

(453> Al = [le]ﬂ A2 = [akl}? H = dlag (7717772)7 k? l= 172

We introduce the designation

Alvg) =D aislona(t, 1) —oa(t, -, 9)], kb 1=1,2
i#j
ASSUMPTION 4.5.2. There exist constants px-, k=1,2;r=1,2,...,10
and functions ((||pl), ¥(||¢||) of class K (K R) such that

Vivi + (Vo) X + %A(Un) < p11C? + hia (¢, 0),

Vivas + (Vquay)Y + %A(’L)QQ) < p12Yp® + ha1 (¢, 1),
(Vpoip)F + %A(’Un) < p12C? + p13CY + pr1ap® + haa(C, ),
(V)G + 5 M) < paaC® + pasCih + past? + haalG. ),

Viviz + (Vpoip) X + %A(Uw) < p15¢% + preCe + prrY® + has(C, ¥),
(Vguia)Y + %A(Um) < p25C® + pasCep + part)® + has (¢, ),
(Vpuia)F + %A(Uw) < p18C% + p19Ct + pr1ot? + hia(C, 1),

(V,ol)G + iA(m) < pasC? + paoCth + par0®h? + haa((, 1),

where hgi((,9), k=1,2; s =1,2,3,4 are polynomials with respect to ,
1 containing additives of power higher than two.
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ProproSITION 4.5.1. If all hypotheses of Assumption 4.5.2 are satisfied
and

(a) the matriz C = [cij], cij = cji, @ # j; 4, j = 1,2 with elements
c11 = 77%(P11 + p12) + 775,022 + 2min2(p1s + p1s + p2s + p2s),
Coo = 77%P14 + 77% (p21 + p24a) + 2mn2(p17 + p110 + P27 + P210),

oo — 1, 9
12 = 2(771/713 + n5p23) + mn2(p1e + p1o + P26 + p29),

is negative definite, then due to system (4.5.1) averaged derivative
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vdB()  dE[V]
dt dt

(4.5.4) n ne€ R%

s a negative definite function.

If besides hypothesis (a), hypothesis (b) is satisfied, hypotheses of As-
sumptions 4.5.1 and 4.5.2 are satisfied

h(¢, ) =03 (hi1 + hi2) + 103 (hay + hao)

(4.5.5)
+ 2mna(his + hia + has + haa) <0

for p € R™, q € R™, n1 +n2 = n and for functions ((||p||) € KR,
¥(|lq||) € KR, then the averaged derivative (4.5.4) is negative definite in
the whole.

THEOREM 4.5.1. If the system of equations of perturbed motion (4.5.1)
is such that all hypotheses of Assumptions 4.5.1 and 4.5.2 (a) are satisfied
and matrices A and B are positive definite and matriz C' is negative definite,
the equilibrium state p =0, q = 0 of the system (4.5.1) is asymptotically
stable with respect to probability.

If in Assumption 4.5.1 and 4.5.2 N, = R™, N, = R"* the functions
C(llplh) and ¥ (]|ql|) are of class KR, the equilibrium state p =0, ¢ =0 is
asymptotically stable with respect to probability in the whole.

The assertions of Theorem 4.5.1 are implied by estimate

dE[V]

T
< €70+ h(e)

(4.5.6)

where & = ((,9)T and by the fact that if the hypotheses of Theorem 4.5.1
are satisfied, the hypotheses of Theorems 4.3.2 and 4.3.3 are satisfied re-
spectively.
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4.5.2 Stability in Probability of Oscillating System

Let us consider for an oscillating system the perturbed motion equations

which are of the form

dp
dt
dgq
dt
dr

(4.5.7)

dt

= Ai(y)p+ fi(p, g, 7, y(1)),

= Ag(y)q + f2(p, q,T, y(t))a

= Ag(y)T + f3(p7 q,7, y<t))

Here p, q, 7 € R?, f; € C(B, R[Y, R?),

Ai(y)

(

0
—bi(y)

1
—a;(y)

), i=1,2,3

The functions a;(y) and b;(y) are bounded and y(t) is a homogeneous

Markov chain with a finite number of states

transitional probabilities

pij(T) = iy T +

= const

o(7),

Oéij

Y = {yl,...

,yr} and with

(i # j) € [1,7].

We designate b;(yx) = b%, ai(yx) = al and assume that b} > 0. Matrix-
valued function II(p, ¢, r,y(t)) elements v;;(-) are taken in the form

. 1
Ull(pa yk) = pleag (]—7 b_l) b,

v22(q,yx) = ¢ diag ( 1 (

V33 (7»7 yk') = TTdiag (17

(4.5.8)

V13 (p7 r, yk

1
b2

by,

UlQ(pv q, yk =D dlag (17 1 )qa

k
0,1

= pldiag (1, 3 )
by,
0,1

v23(g, 7, yx) = ¢ diag (1, )2 >
k

i (+) = viz(+) # 7)€ 1,3].
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It is easy to notice that for functions (4.5.8) the following estimates are

valid
(a) if 0 < bl <1, i=1,2,3, then

vi1(p, ye) > |Ipl?;
vss(ryyk) > |71

via(p; 5 yk) = =0, 1ipllflr;
(b) if b} > 1, i =1,2,3, then

1
v11(p, yk) > b—1||P||23
k

1
v33 (T, yx) > b—3||7"||2;
k

0,1
= [pllrl;
b

U13(p7 T, ?ch) > —

vaa (g, k) > gl
v12(p, ¢, yx) > =0, 1|p|ll¢l;
v23(q, 7, yk) > —0, 1||q]|||r[];

1
v22(q, Yr) > b—2||‘J||23
i

0,1

v12(p, ¢, Yi) > —b—1Hp|H|QH;
k
0,1

023(%7', yk) > - b2 ||Q||||7°||
k
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For the function

(4.5.9) V(p,q,ry(t)) =n"T(p,q,r,y(t))n,
where n € R the matrix A; in the estimate of (4.2.20) has the form

(/1  -0,1 -0,1
—0,1 1 —0,1|, ifo<bi<1, i=1,23;
0,1 -0,1 1
Ar(yr) = U R
k k k
__%f- g% __%%- ’ if bz >1, 1=1,2,3.
0,1 0,1 1
Ny b

The matrix A; is positive definite, if

b  bi b
(4510) —3+—2+—1<99,8, k=1,2,...,r.

dE\v;;(- . .
For the averaged derivative % of the function II(p, q,r,y(t)) with

elements (4.5.8) it is easy to establish estimate in the form

(4.5.11) dE[V (p,q, 7, y(t))]

It < utSu
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where u = (||pll, ll¢ll, [|I7])T, 7= (1,1,1)T and matrix S elements are

(4.5.12)
Qa}C i .
cii(yr) = <b1 — Ab* — Zd“>, i=1,2,3; k=1,2,...,m;
k
1/ 0,1
ch(yk):_<Zd12+,—1|a11€+a’i|+071|Abl|)7 k:1,2,...,7";
2N T Oy
1/ 0,1
Cls(yk)z§<;dl3+b’—2|ai+ai|+0,1|Abg|)7 k=1,2,...,m
1/ 0,1
023(3/k):—<Zdé3+’—2]ai+ai\+0,1]Ab2\), E=1,2,...,m7,
2 — by,
where
i\~ 1 |
Ab —Z(bl i oy, i=1,23; k=1,2,...,%
j#k I
Here dfj, i,7 € [1,3], k € [1,6] are constants that are found when esti-
dEv;; (-
mating M

The matrix S with elements (4.5.12) is negative definite if

(a) 20”“ Abz>2d“7 103 k1o
®) ﬁl<2ak Abi—zdﬁi)>i<zd £ W] (a0 b b))
(¢) f[l( — Ab - Zd)
( 2+ Wi “k’“k’bk”’1>(zd W (a ol . 19))
( s + Wi (ai, @i, b )(;dlg+Ab2 2;5)
(3 Wit ) (3 e+ - )
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0 3
L 2 2a3
(S ettt ) (S 2)

k
k=1,2,...,r
where
1001 291 1y Ol 1
Wi (ag, ag, by, b7) = S 5-lay, + ag| + 0, 1AbT[;
k
0,1
(4.5.13) Wi (ai. ag, b, 0%) = b2 |ai; + ai| + 0, 1|Ab?[;
k
0,1
ng(allc’aivbgab:g): l;g |a,1€+ai|+0,1|Ab3|, k‘:172"”,7~.
k
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Thus, under conditions (4.5.10) the function (4.5.9) is positive definite,
and when inequalities (a)—(c) are satisfied its averaged derivative (4.5.11)
is negative definite.

Applying Theorem 4.3.3 we conclude that conditions (4.5.10) and
(a)—(c) are sufficient for stability in probability in the whole of the equilib-
rium state p = ¢ =r = 0 of oscillating system (4.5.7).

4.5.3 Stability in Probability of a Regulation System

We consider an autonomous stochastic regulation system

l
(4514) dw; = ZAijodt + Uz(wz)dzz -+ bzfz(Hz)dt, 1€ [1, l],

j=1

l
where 0, = > c;l;gwk, bi,w; € R™, c; € R™, A;; are constant matrices
k=1

of the corresponding to vector w; dimensions, {z;(t),t € 7}, is a m;-
dimensional Wienner process. Besides, f;(6;) = 0, if and only if §; = 0,
0 < fi(6;) < k;0? provided 6; # 0.

First level decomposition results in the system

l
(4.5.15) dw; = A w;dt + ai(wi)dzi + Z Aijwjdt + bifi(ei)dt, 1€ [1, l],

j=1
(7#1)
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with the independent subsystems
(4.5.16) dw; = Ajwidt + o;(w;)dz; i € [1,1],

and link functions

l
(4.5.17) giw) = Y Ajjwdt+b;fi(6:)dt, i€ [1,1].
i=1
()
The second level decomposition yields

dwi =Aiiwidt + Aijwjdt + o; (wz)dzl

!

+ Z Ajpwidt + b; fi(6;)dt;
k=1
(k#i,5)

4.5.18
( ) d(_,uj :Ajjwjdt + Ajiwidt —+ 0 (u)j)dzj

!
+ Y Ajpwidt + b f;(6;)dt.
k=1
(k#4,5)
Equations (4.5.18) are represented as

l
dwij = Zijwijdt + aijdzij + Z ijwkdt + Bijdt,

(4.5.19) s
(k#1,7)
(1 <j)elLl].

Here w;; = (w], w;r)T, w;j € R™ x R™ and matrices A;;, ij, oij, Bij

with dimensions (n;+n;) % (n;+n;), (n;+n;)xng, (n;+n;)x (m;+m;),
(n; +nj) x1 V(i,4,k) € [1,1] respectively, are defined by formulas

—k
Ay = (A AJ) By = (b; fi(0:),b; f;(65));
oo (o (. a1 [ Ad Ay
oi; = diag (o;(w;i), 05 (wj)); Aij = <Aji Ajj) .

Alongside the systems (4.5.15) and (4.5.19) we shall consider the matrix-
valued function
(4.5.20)
H(w) = [diag (vu(w,)) + (vij(wij))], 1< j € [1, l], 1=1,2,...,1

Download free eBooks at bookboon.com



with the elements
vii(wi) = w;rPiiwi 1€ [1, l],
vij(wij) = wiTjPijwij (Z < j) € [1,[].
Matrices P;; are found by Liapunov equations
(4.5.21) A;TZP” + P”A” = _Gii7 1€ [1, l]

where G;; are symmetric positive definite matrices of dimensions n; x n;.
Matrices P;; are also found by Liapunov equations

(4.5.22) APy + PyAy; =Gy, (i<j)€Ll]
where (;; are symmetric positive definite matrices of dimensions (n; +
nj) x (ni +n;).

The functions v;;(w;) and v;;(w;;) are positive definite if matrices A;;
and Zij are stable. We shall suppose that this condition is satisfied for the
systems (4.5.15) and (4.5.19).

Now we introduce symmetric matrices of dimensions n, x n,:
!
) 2 2 T p.% ]
Epp = My Gpp + 21,¢ppb, Ky Pop + 1 Z nj(ng + G;p)
j=1
(3#p)
!
T1x pT Ty+pL
+dnp, Y nileppbp kn P + cipb] kP,
J=p+1

+ejpba ki Py +cbT kIPL], pe (L],

and matrices of dimensions n, x ng, (p <q) € [1,1]:
= 2 4T 2p Tpx, T rel
Epq = Mg AgpPaq + 1y Popby kpcpy + 2npngGg

l l
—T — .
+ 1y Z 771<A:1Fppr?j + A;'Fpqu> + g an(AJT';Jij + A;FpPJJq)
j Jj=q

Jj=q
(i#p)
l - l T T
T L o .
+ Mp Z (ng qu +ijqu)77j + Mp Z nj(Pijjq +ijq qu)
Jj=p Jj=p
(J#9) (J#9)

l
20, Y (epbTkEPE, + cubT kP,

p P~ Pq q 97 pq
k=1
(k#p,q)
+ Cpk:bgk;?pq + qubgk;Pﬁq)Uqa mp € Ry, mp > 0.
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Here , _
ki, for > ., wgcikbiTP;qwi >0

ki = (or 0;b¥Pp,w; >0, or 0;bF Pyw; > 0);
0, in the other cases.
We designate by A (Z,,) and )\}\/{,Q(ququ) the maximal eigenvalue

T=

of matrix =,, and the norm of matrix quu

(4.5.14) the following result is valid.
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THEOREM 4.5.2. If system of the equations (4.5.14) is such that

(1) the first and second level decompositions are described by equations
(4.5.15) and (4.5.19) respectively;

(2) the matrices Ay; and A;; in systems (4.5.15) and (4.5.19) are stable;

(3) the matriz S with elements

)‘M(Epp) + Opp, P =¢;

1/2 —
Spg = )‘1\4 (EpeZpe),  P<G
qu7 p > Q7 (p7 q) S [17”7

(a) negative semi-definite;
(b) negative definite.
Then, the equilibrium state w = 0 of system (4.5.14) is
(a) uniformly stable in probability;
(b) wuniformly asymptotically stable in probability.

PRrROOF. We construct by means of the function (4.5.20) the function

(4.5.23) V(w)=n"Tl(w)y, neR,, n>0.

By condition (2) of Theorem 4.5.2 the function V(w) is positive definite
and radially unbounded. For the averaged derivative

dE[V(w)] _ pdE[Il(w)] z

w7 = g mER,

it is easy to obtain the estimate

dE[V(0)] <~
— o < E (A (Zii) + o) |lwi)?
(4.5.24) Zle
2 —T =
Z MPELE ) willlw;]| = u™Su,
i=1 j=i+1
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where u = (|lwi],- .., ||Jwi]])T. Under the condition (3) of Theorem 4.5.2 the
averaged derivative (4.5.24) is negative semi-definite or negative definite.
According to Theorem 4.3.4 the Theorem 4.5.2 is proved.

4.6 Notes

4.1. General outlines on probability theory and theory of stochastic pro-
cesses can be found in the books by Doob [31], Gikhman and Skorokhod [42],
Dynkin [34], etc. The problems of stochastic stability are presented in a
number of monographs (see e.g. Kushner [90], Arnold [5], Khasminskii [83],
Michel and Miller [143], Ladde and Lakshmikantham [91], etc.). In these
investigations the second Liapunov method is further developed with inter-
esting applications.

4.2. Stochastic system in the form of (4.2.1) is called here the Kats—
Krasovskii form with reference to Kats and Krasovskii [82] where it was
introduced.

Basic definitions of stochastic stability are formulated as the genera-
lization of Definitions 2.2.1—2.2.4 from Chapter 2 for stochastic systems.
Stochastic matrix-valued function is introduced according to Martynyuk
[115] and averaged derivative is due to Kats and Krasovskii [82] and Mar-
tynyuk [115].

4.3. Theorems 4.3.1-4.3.4 are due to Martynyuk [115].

4.4. Theorems 4.4.1, 4.4.2 are taken from Azimov and Martynyuk [§]
and Azimov [6].

4.5. Stochastic version of the Lefschetz [100] problem is presented ac-
cording to Martynyuk [115]. Oscillating system (4.5.7) was investigated by
Azimov and Martynyuk [8], and system of automatic control (4.5.14) was
considered by Azimov [7].
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SOME MODELS OF REAL WORLD PHENOMENA

5.1 Introduction

This chapter contains several examples of real world phenomena that illus-
trate the versatility and applicability of the matrix-valued Liapunov func-
tions in stability investigation of its equilibrium state.

Section 5.2 deals with mathematical models in population. The neigh-
borhood of the non-trivial equilibrium state is investigated in the general
case for a predator-prey system and estimates of stability, asymptotic sta-
bility and instability domains are found in this section.

In Section 5.3 the model of an orbital astronomical observatory is con-
sidered. Conditions are established under which the whole system is stable
even though its separate subsystem are unstable.

In Section 5.4 we discuss a power system model consisting of N gen-
erators. General conditions are specified for asymptotic stability of the
equilibrium state of such a system to be applicable in the case of 3,5
and 7 generators to obtain the system parameters such that the system
is asymptotically stable, while the method of scalar or vector Liapunov
functions have failed to work herein.

Finally, in Section 5.5 the motion in space of winged aircraft is treated.
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5.2 Population Models

We shall discuss in this section mathematical models in population dynam-
ics. In particular, we consider mathematical models of population growth
of competing as well as predator-prey species as prototype models of our
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analysis. The models are based on certain simplifying assumptions as stated
below.

(1) The density of a species, that is, the number of individuals per unit
area, can be represented by a single variable, when differences of
age, sex and genotype are ignored.

(2) Crowding affects all population members equally. This is unlikely
to be true if the members of the species occur in clumps rather than
being evently distributed throughout the available space.

(3) The affects of interactions within and between species are instanta-
neous. This means that there is no delayed action on the dynamics
of the population.

(4) Abiotic environmental factors are sufficiently constant.

(5) Population growth rate is density-dependent even at the lowest den-
sities. It may be more reasonable to suppose that there is some
threshold density below which individuals do not interfere with one
another.

(6) The females in a sexually reproducing population always find mates,
even though the density may be low.

The assumptions relative to density dependency and crowding affects
the fact that the growth of any species in a restricted environment must
eventually be limited by a shortage of resources.

5.2.1 Competition

For simplicity, let us first consider a two-species community model living
together and competing with each other for the same limiting resources.
Under assumptions (1)—(6), a mathematical model of population growth of
two competing species is described by

dx
d_l — xl(al — 511$1 — b12372)7
t
(5.2.1)
d.]?z
E — x2(a2 —bo1x1 — b22$2)7

where x; is the population density of species ¢ for ¢ = 1,2 and for 7,5 =
1,2, a;, b;; are positive constants. These equations are derived from the
Verhulst-Pearl logistic equation

dr; .
(522) ; = mi(ai - bmxz), 1 = 1, 2,
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by including the additional terms —b;;x; for 4,7 = 1,2 and 7 # j to
describe the inhibiting effects of each species on its competior. The logistic
equation is best regarded as a purely descriptive equation.

The important features of (5.2.2) are:

(a) The species increase exponentially whenever they are isolated.
(b) They approach their equilibrium without oscillations in the absence
of its competitor.

In (5.2.1), for ¢ = 1,2 a;z; can be interpreted as the potential rate of
increase that the i'" species would grow if the resources were unlimited
and intra/inter-specific effects are neglected. Here a; is the intrinsic rate of
natural increase of the ' species, a; /bii = k; is referred as the carrying
capacity if the i ' species. From this (5.2.2) can be written as

dl’i xX;

dx; . .
We observe that the per capita growth rate ( d—i) / x; will be negative

or positive depending on the population density x; > k; or x; < k;. Thus
the constants k; determine the saturation level of population densities.

5.2.2 Predator-Prey

In the community of competing species, each species inhibits the multiplica-
tion of the other species. In a community of two species in which one species
is a parasite or predator and the other its host or prey, a different form of in-
teraction between these two species takes place. The mathematical models
for host-parasite and predator-prey systems are equivalent. Obviously, the
more abundant the prey, the more opportunities there are for the predator
to breed. However, as the predator population grows, the number of prey
eaten by the predator increases. To formulate the mathematical model
describing the predator-prey interaction between two species, we assume
the following: (a) in the absence of a predator, the prey species satisfies
assumptions (1)—(6) and (b) the predator cannot survive without the pres-
ence of prey and the rate at which prey are eaten is proportional to the
product of the densities of predator and prey. Under these assumptions,
a mathematical model describing the predator-prey interaction between a
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prey and a predator in a given community is given by

dx

d—tl = z1(a1 — b11x1 — bi2x2),
(5.2.4)

dos _ x2(—az + ba121)

o 2(—az + b2171),

where x1 is prey density and z9 is predator density and ai, asz, b11,b21 are
positive constants.

From the foregoing discussion with regard to the two-species competi-
tion model and the predator-prey model, we can readily generalize to n
interacting species so that the general model is described by

dz; -
(5.2.5) CZ =x; (ai -+ E bijil}j), 372(0) =xi0 > 0,
j=1

where x; is density of the i ** species in the community, a;, —b;; are positive
constants and b;;, ¢ # j, are constants with any sign. Any arbitrary sign
for b;;, © # j, allows us a greater flexibility for the interactions between the
i ™" and j *" species in the community. For example, in a competitive model,
bij, bji, i # j, are both negative, while for a predator-prey model, b;;, bjs,
i # j, are of opposite signs. In a model for commensalism (symbiosis),
bij, bji, i # j, are both positive.
The system (5.2.5) is represented in the vector form

d
(5.2.6) d—": = X(a+ Bz), z(0) =29 <0

and decomposed into two subsystems

dz
(5.2.7) dt

— Xs(as + Aslxl + A32x2)7

z5(0) =2, <0, s=1,2.
Here z = (21,23)T € R?, s € R"*, (al,ad)T € R", B = [Ayj], s,j =
1,2; as = (as1,as2,...,05,, )" € R™, A,; are constant matrices ns x n;,

X = diag (X3, X2), X =diag(zs1,--.,%sn,), s =1,2.
Equilibrium population are determined by

(5.2.8) X(a + Bz) = 0.
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From (5.2.8) it is easy to conclude that = = 0 is an equilibrium which is
not interesting and so, we must assume that X # 0. In this case (5.2.8)
reduces to

(5.2.9) a+ Bx =0,

where B is an n by n matrix and a is an n-vector.
We assume that there exists an equilibrium population z* > 0 as a
positive solution

(5.2.10) v =—-Bla

of (5.2.9). This assumption is consistent with consideration of community
stability. In the case when b has all off-diagonal elements non-negative,
that is B is a Metzler matrix, then it is known that stability of B implies
x* > 0. It is possible to show that for a Metzler matrix B, the quasi-
dominant diagonal condition

n
(5.2.11) dj|bjj| > Zdz|b”|

i=1

i#£]
with d; > 0, is equivalent to saying that —B~! is non-negative and since
B~! cannot have a row of zeros, positivity of the vector a implies positivity
of x*.

If B is a Metzler matrix, then an elegant solution of the problem on

stability of state x* is obtained by means of the function

V(x):Zdi [xi—xf—mfln(%>}, d; > 0.
=1 ?

Our aim is to establish stability conditions for system (5.2.6) without
assuming matrix B being Metzler. This may be achived by decomposition
of system (5.2.6) with further application of the matrix-valued function.

By means of the Liapunov transformation

(5.2.12) y=x—z"
we reduce the system (5.2.7) to the form

dys
dt

(5.2.13) = X:(A31y1 + Aszyz) + Ys(As]_Y]_ + A32y2)
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where

X::diag{le,l':Z,...,l':ns}, 8:1527
Y;;:diag{yslays27---aysns}a s=1,2.

For the system (5.2.13) the matrix-valued function

(5.2.14) Uly) = [vsj(ys, ;)] » s,7=1,2,
is constructed with the elements

Uss(ys) :ysTPsys, s = 1727
(5.2.15)

vsj (Uss Y5) = Vis(Y5-Ys) = y1 Paye.
Here P, are positive definite symmetric matrices of the dimensions ng X ng,

s =1,2, and Ps is a constant matrix ny by no.
For the function

(5.2.16) V(y,n)=n"U(y)n, ne€ R,

the following estimates are valid
(5.2.17) w"HYD Hu < V(y,n) <uTHYDyHu,

where

ut = (lnall, lvl),  H = diag{m,n2},

D, — Am (P1) —sign (771772)>‘}\42(P3P3T)
—sign () Ay, (P3PY) A ((Po)

Dy — Aar(Pr) —sign (mn2) Ay (P PY)
—sign (72) Ay, (P3 P) At (Po)

We have for the function DTV (y,n) = nTDTU(y)n:

D*V(y,n) =n"D U (y)n = niD%vii(y1) + 2mme Dt viz(y1, y2)
(5.2.18) +n3 DV g (ya) = 45 [Fi1 + Gi1]v1 + 2y1 Fizyo
+ Yy [Fo2 + Gaa] y2 + 2y7 G12yo.
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Here
Fi=n3 |PLXTAL + (XfAll)T Pi| +mne | PsX5A21 + (XSAzl)T Pl

Fio =nmiPi XA + 13 (X§A21)T Ps 4 mima (XikAn)T Py + Py X3 Ag| ;

Foy =13 | Po X Ago + (X§A22)T Pyl +nim2 (XfAlz)T Py+ P X;Ap|;

G =ni |PY1 Ay + (Y1A11)T P1} +mn2 |PsY2Az + (Y2A21)T P3T} ;

Gia =i P1Y1A12 + 13 (Y2A21)T Py +ming | P3Y2 A, + (Y1A22)T P3] ;

Goo =13 [P2Y2A22 + (Y2Az2)T Pz} +mne |PFY1 A1 + (Y1A12)T Ps} .
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We have for (5.2.18) the estimate
(5.2.19) DV (y.m) <" [C + Cy)u

where

= ([lyall; lly21D),
C=lcsjl, s,7=1,2, c12=cau,
G(y) = losi(y)], o12(y) = 021(y).

Here c11, coo are maximal eigenvalues of the matrices Fiy, Fbo; c12 is the
norm of matrix Fio and o,;(y) is the norm of matrix Gy, s,j =1,2.
It follows from (5.2.18) that

(5.2.20) DYV (y,n) > u'[C* — G(y)]u,

where
C* = i1 —Ci2
- *
—C21  Coo

and cj;, ¢35 are minimal eigenvalues of the matrices Fi1, Fao respectively.
Let us introduce the following notations

I ={y € R} :011(y) +c11 <0, 022(y) + co2 <0,
(011 (y) + c11)(022(y) + c22) — (012(y) + c12)* > 0}
={y € R} :011(y) +c11 <0, o022(y) +c2 <0,
(011 (y) + c11)(022(y) + c22) — (012(y) + c12)* > 0};

={y € R} :ciy —on(y) >0, 5y —022(y) >0,
(ci1 — o11(y))(cho — 022(y)) — (912(y) + c12)* > 0}
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Estimates (5.2.17), (5.2.19) and (5.2.20) yield the following assertion.

PROPOSITION 5.2.1. The equilibrium state x* of the system (5.2.6) is:

(1) Stable (asymptotically) in the domain 11y (Il2) if the matriz Dy is
positive definite and the matrix C is negative definite.

(2) Unstable in the domain I3 if the matrices D1 and C* are positive
definite.

PrRoOOF. The fact that the matrix D; is positive definite yields that
the function V(y) if positive definite for all y € R’. Since the matrix
C' is negative definite, then by estimate (5.2.19) the function D1V (y) is
non-positive in the domain II;. Hence all conditions of Theorem 2.3.3 are
satisfied, and the equilibrium state z* is stable.

The other assertion of Proposition 5.2.1 follows from Theorem 2.3.7.

5.3 Model of Orbital Astronomic Observatory

According to Geiss, Cohen et al. [40] the orbital astronomic observatory
consists of following blocks:

(1) observatory vehicle

(2) observatory body

(3) compensation system

(4) engine

(5) system of data (error) processing.

The subsystems (1)—(4) are physycal and its states are characterized by
the variables y1, y2, ys and y4 respectively. Under some assumptions the
mathematical model of the motion control system for the observatory is
described by the equations

% = F1(y1)y2 + F1(y1)d1 + c1yo,

% =Y (y2)d2 — B1fa(0, y3) + Y (y2) fa(0, y3) + (Ba + c2)ya,
(5.3.1) % = —B5f1(0) — Bays,

% = —ﬁ1f2<0', y3> - 52947

o= Fy(y1)y1 + c2y1 + Fa(y1)ds.
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Here y1 = (y11, Y12, Y13, Y14) s ¥i = (Yi1, vi2, yis) -, i = 2,3,4

o= (01,09,03)",

0 fi2 fi3
fo2  fo3
fa2  f33
faz  fa3

5.3.2
>32) Fi(y1) =

o O O
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and

(5.3.3)

where

Furthermore

(5.3.4)

(5.3.5)

fi2 = sin(y13 + a3) — sin s,

fiz = cos(y13 + ag) — cos as,

f22 = —sin(y1a + a4) + sinay,

faz = —cos(y1a + a4) + cos oy,

f32 = —tg (y11 + a1) cos(y13 + a3) + tg oy cos az,

fas =tg (y11 + a1) sin(y13 + a3) — tg a1 sinas,

faz = tg (Y12 + a2) cos(y14 + ) — tg az cos au,

faz = —tg (y12 + a2) sin(y14 + o) + tg e sin ay,
0 0O 0 O

Fo(y1)=1 921 g2 0 0|,
g31 g2 0 O

g32 = —0[sin(y13 + a3) — sin as],
g21 = 0[cos(y14 + aq) — cos ayl,
922 = dlcos(y13 + a3) — cos as),

g31 = —0[sin(y14 + ) — sin ay].

0 Y23 —Y22
Y(y2) =J " [ —yos 0 Y21 |,
Yoo  —Y21 0

~ [ 100sign¢, [¢| > 100
zmo_( ¢, |<|3100)’
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(5.3.6) Zo(C) = (26signé, <l > 26) |

¢, I¢] <26
z1(01 + ag) — z1(as)
(5.3.7) filo) = z1(02 + ag) — z1(av9) |,

z1(o3 + a10) — z1(a10)
(5.3.8)

zo[P1z1(01 + ag) + y31 + a11] — 22[B121(as) + a11]
falo,y3) = | z2[Brz1(o2 + ag) 4+ ys2 + a12] — z2[frz1(a3) + 2] |,

22 B121(03 + o) + Y3z + aiz] — 22[B121 (o + aq3]
0 sin ag CoS (3
10 — sin ay — COS(yy
(5.3.9) G = 1 —tgajcosas tgajsinasg |’
1 tgascosay —tgassinay
Q14 a5 1 0
(5.3.10) Co=J1 | dcosay dcosaz 0 0],
—dsinay —dsinas 0 O
din
(5.3.11) di=|do|, i=1,223.
di3

In the neighborhood of the equilibrium state
(5,3,12) yi=0, 1=1,2,3,4, 0=0

under some additional assumptions the system (5.3.1) is reduced to the
form

dz;
e - Ainxy + Ajgze + Ajzzs +vB; f(2),

(5.3.13) dt
> =Cr, Vi=1,2,3,

besides, x;, 1 = 1,2, 3, is determined as

Ay Af Ay
Tr1 = Avap y To — AVQ y Ir3 = AV¢ y
Aw, Awg Awy,

and (@, 0,1) are Euler anglers specifying the rotating motion of the ob-
servatory, (w,,wg,wy) are the velocities of its changing, V., V,,, V,, are the
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components of vector V' that determines the velocity of plane-parallel mo-
tion, x1, T2, x3 specify the observatory deviation from the directed position

Ap=¢" =9, A =06" -9, AY =" =
AV, = Vi =V, AVy = Vi — Vp, AV} = Vy;
Aw, = wy, — w, Awp = wy — wy, Awy = wy, — wy.
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Here ¢, 0%, ¢"; wy, wy; wy; V¥, Vg, Vi) are the parameters of the
observatory directed position. The matrices A;; and B; are

0 ay 0 0 0 0
A= a2 —az as |, Aip=—-Aiz=|-a 0 0],
—as 0 —as —ar 0 0
0 0 0 0 —ai 0
Bi =161 di2 diz |, Agg = A3z = | 2a2 —a3z a4
0 0 0 —20,5 0 —as

di; is a Kronecker delta, A;; =0, i =2,3; j =1,2,3 V(i # j),
rii Tl i3

0 0 ri

ri = (Pl Pl pts), 1=1,2,3; 15 = (pj1,pja.pj3), J=2,3

f(z) = (<P1 (0-1)7 902(0-2)7903(0-3))T7 Y= (01702703)T7
i(0i)

0;

€ [0, 1] Yo, € R, QDZ'(O'i) € C(R, R)

The elements as, s =1,2,...,7, of the matrices A;; as well as the values
rk. (i.k) € [1,3], rik, i = 2,3, k € [1,3] are known real constants.

System (5.3.13) has a unique equilibrium state (z =0) € R3.

The problem is to establish conditions for asymptotic stability in the
whole of system (5.3.13).

Let us use the algorithm of constructing the hierarchical Liapunov func-
tion (see Martynyuk and Krapivny [124]). The first level decomposition of
system (5.3.13) results in the independent subsystems

d(Ei

5.3.14
( ) o

= A”wl + (1 — (311)I/Blf(2), 7, = 1, 2, 3
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and the relation functions

g1(x) = Ajoxe + Ajzzs + vB1 f(2),

5.3.15
( ) gi(x) =0, i=2,3.

The second level decomposition yields three couples of the independent
subsystems

(5.3.16) J = Az +vB, f(D), (i<j)=1,23,

T . -
where z;; = (a:ZT,x]T) and the matrices A;; and B;; are

1 (A Ay i _ (A2 O [ 02:B;
AZJ_(O A]])’ A23_<0 A33)7 B’LJ_(BJ)

The relation functions between them are

g1j(x) = AY; + VB f(2), (i #k)=2,3,
g23(x) =0,

e (A [ A = (B
o ()-(4). me(3)

We construct for the subsystem (5.3.14) the function

(5.3.17)

where

(5.3.18) vii(z5) = o} Hyxg,  i=1,2,3,
where H;; > 0 satisfy the algebraic Liapunov equations
(5.3.19) ALH; + Hiy Ay = Gy, i=1,2,3,
where G;; < 0 if and only if the subsystems

d:l?i
dt

= Ayw;
are asymptotically stable. For functions (5.3.18) the estimates

A (Hi) | 3]|* < i (@) < A (Hig) |||

(5.3.20) o
Ve, € R, 1=1,2,3, ny=no =n3=23,
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are known.

Assume that for all z; € R3 for the functions vj; (x;) time-derivative
along the solutions of subsystems (5.3.14) the estimates

3.21
(5.3.21) il

SP%H%HQa 1=1,2,3
(5.3.14)

are satisfied and for (5.3.15)

§ 1
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v (x;) T 1/2 - 1/2
(5.3.22) g1(w) < ||z Zﬂzkak” ,

61@
k=1

where

Pt = Aar(Gii) + 2(1 = dua)v|[ Hagll|mal, i =1,2,3;
pi1 = 2v|| Hyg || ||raaf;
(5.3.23) paz = 2[[Hul| [[[Ar2]] + v[rizll];
pas = 2| Hual| [[| Az + vlrisl];
wir =0, 1=2,3; k=1,2,3.

We construct for (i, j)-couples of subsystem (5.3.16) the functions
(5.3.24) vij (@) = o Hijayg, (i <j)=1,2,3,
where the matrices H;; > 0 satisfy the algebraic Liapunov equations
(5.3.25) ALHi; + HijAij = Gy, (i<j)=1,2,3,
for G;; <0 if and only if (7, j)-couples

d$i 7
dt

= Aisz‘ﬁ (i<j)=1,23,

are asymptotically stable.
For functions v;;(z;;) the estimates

A (Hij) @i |* < wij(wij) < A (Hij)||avi||?

(5.3.26) . o
Va,; € R"*™, (i<j)=1,2,3,
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take place.
We assume now that for the functions v;;(z;;) time-derivative along the
solutions of subsystems (5.3.16) the estimates

dvij(wi;)
dt

1/2

(5.3.27) 172

< pijllall + 205 il 21l 172 + o |51

(5.3.16)
are satisfied for all x; € R® and for (5.3.17)
(91)1' (:L‘Z T 3
(5:3:2%) ("57) Z 2 142
ij

The contstants p}j, pfj, p?j can be determined as follows

Pl = M (Gig) + 208 || Hy | |2,
(5.3.29) 02 = VI H | 73| + 02l Hos]| [[722]],
py; = A (Gig) + 20| HY |l Irjsll, (i <j)=1,2,3

and the constants V,i‘; as follows

v = 20| i, |,
vi? = 20| Hyl| (825 raall + 8511713,
vad = 20 Hj [ Avk + v(8s5 12l + 825113 1)
vip = 20 H (1 = 65) || Akl + w7kl ]
+ 2000 Hijl|lruall, Ky §=2,3,

vii = s = vip =0 V(k<p)=1,2,3.

(5.3.30)

Here the matrices HZJJ and H;;, (i <j)=1,2,3, of the dimensions 3 x 3
are the blocks of the matrix H;; so that

] Jj
Using the matrix-valued function U(x) with elements (5.3.18) and

(5.3.24), and by virtue of (5.3.21), (5.3.22), (5.3.27) and (5.3.28) we see
that

dV (z,n)

(5.3.31) <@ (l=zl)Se(ll=lD),

Download free eBooks at bookboon.com



Stability Analysis via Matrix Functions Method Some Models of Real World Phenomena

where

V(z,n) =n"U(x)y, neRy, n>0,
e(lall) = (272, sl ) -

The matrix S in (5.3.31) has the form

1
S = §(H + HT)7
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where II is the upper triangle matrix with the elements

k—1
Tk = i (Phk + Hak) + 27k Z nip
=1
3 3 Ny
(5.3.32) i=k+1 i,j=1
i7#]

S S
Thp = Mittkp + 40NpPip 2D > Wilivis, K <p,
i=1 j=it1

Tk = 0, k < p.

The matrix S in the estimate (5.3.31) is negative definite, if

(5333) s11 <0, 8020 <0, s33<0
and
(5334) 811822 — 8?2 >0, detS <0

since s;; >0 V(i # j) € [1,3].

Stability conditions (5.3.33), (5.3.34) are analyzed for two cases, first, for
the case when only the first level decomposition is made. This corresponds
to the approach based on the vector Liapunov function, applied by Gruji¢,
Martynyuk and Ribbens-Pavella [57].

In this case the elements of matrix II for system (5.3.13) are in view of
(5.3.23)~(5.3.30) and (5.3.32)

i = 7712 (A (Gii) + 2v||Hi| |74 ] 1 =1,2,3;
miy = 205 | Ha| (|| Assl| + vllri511], j=2,3;
7T23:7Tji:0 V(]>@):1,2,3
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We introduce the designations

Q = diag (n7,n3,73)

and the matrix D = [d;;] the elements of which are expressed via the
elements of matrix II as follows

7Tij

dij = —, (1,7) =1,2,3.
Therefore we have
1 = =t 1 T
(5.3.35) S:§(H+H ) = §(QD+D Q).

The matrix S is negative definite if and only if the matrix D is an M-
matrix. The matrix D is an upper triangular and d;; > 0 (4,7) = 1,2, 3,
hence, if d;; < 0, then D is the M-matrix. Therefore, the conditions for
matrix S being negative definite are

(5336) )\M(Gm) + 2I/||Hn“ HTMH <0 Vi=1,2,3.

These are the well-known conditions for the asymptotic stability in the
whole of system (5.3.13).

Let us show conditions (5.3.33), (5.3.34) for the asymptotic stability in
the whole of the system (5.3.13) to be more general than the conditions
(5.3.36).

The conditions (5.3.36) are satisfied if Ap;(G;;) < 0. This means that
the subsystems

dﬁCi
dt

(5337) = AHLL’Z, 1= 1, 2, 3,
obtained from (5.3.14) must be asymptotically stable.

Therefore, if one of the subsystems (5.3.37) is unstable, the conditions
(5.3.36) are not satisfied and the approach based on the vector function
does not work.

Assume the 3¢ subsystem from (3.5.37) is unstable, i.e. Ap(Gssz) > 0.
In view of the second level decomposition one of conditions (3.5.33), namely
s33 < 0 becomes

n3 (Anr(Gss) + 2v| Hssl| ||7ssll) + 2mnsAar (Gis)

(5.3.38) )
+ 2n2m3(Ane (Gss) + 2v| His | [Irss) < 0.
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It is clear that, if the 3" subsystem forms asymptotically stable couples
(2,3) and (1,3), then Ay (Gi3) <0 and Ap(Ges) < 0. This may prove to
be sufficient for inequality (5.3.36) to be satisfied. However this inequality
may be derived by means of the matrix-valued function only.

Thus, the application of the matrix-valued function and two-level decom-
position yields less strict conditions for the asymptotic stability in the whole
of the system (5.3.13) as compared with conditions (5.3.36) established by
means of the vector Liapunov function.
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5.4 Power System Model

The dynamical and structural complexity combined with the high order of
the power system make many methods developed in theory of differential
equations inapplicable in the investigation of these systems. The method of
Liapunov functions (scalar, vector or matrix) is one of the methods used in
the analysis of stability and the estimation of asymptotic stability domains.
In this section we shall show the application of the matrix-valued Liapunov
function to be advantageous as compared with the results by the vector
Liapunov function.

5.4.1 Description of the Power System

Considered is the N-machine power system with uniform mechanical damp-
ing A. The i *" machine motion is modeled by the equations

(5.4.1) M;6; + D;6 = Pp; — Py, i=1,2,...,N,

where

(5.4.2) Pei = E?Y;Z COS '97,1 + Z EZ'EJ'Y;;]' COS((SZ'J' — Hij),
j#i

and M, € R is the inertia coefficient of the i ** machine, D; € R is the
mechanical damping of the i *" machine, P,,; € R is the mechanical power
delivered by the i ** machine, E; € R is the modulus of the internal voltage,
Yi; € R is the magnitude of the (4, j)-th element of the reduced admittances
matrix Y, d; € R is the absolute rotor angle: d6;; = d; — 0; = d;n — din,
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0% = 0709, 0;; € R is the angle of the (i,7)-th element of the reduced

admittances matrix.
Let us take the N ** machine as a standard one and introduce (2N — 1)
state variables
oiN = 6in —Oin, i #N;

(5.4.3) .
wi:&-, i:1,2,...,N,

where o0;; € R is a subsidiary variable, w; € R is the absolute angular
speed of the i ®® machine rotor. Here &Yy are the solutions of the system of
equations

N
E?Yiicos0;+ Y E;E;Yi;cos(0hy — 09n — 0ii) = P,
1=1,2,...,N.

The motion of the whole N-machine system can be described by the

equations
OiN = WiN,
5.4.5 al
( ) d}i:_)\wi_Mi_leijfij(Uij)7 = 1,2,...,N,
J#i

where A;; = E;E;Y;;, A = A;n, fi; are non-linear functions

(5.4.6) fij (Oij) = COS(O’Z']' + U?j - (9”) - COS((S,?j — (91‘]‘),

satisfying the conditions

fij(0ij)

Uij

(547) fz‘j (0) = 0, 0 S S fz‘j, Oij 75 0,

as soon as o;; take the value on compact intervals J;;:
(548) Jij = {O’ij . —2(71' — Gij —|— (SZO]) S Uij S 2(9@' — (50) } .
The constants &;; in (5.4.7) are determined as follows

£ = 9 fij(0ij)
’ aaij oi;=0
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5.4.2 Mathematical Decomposition of the Power system
model

The state vector of the whole system is designated as
&= (01N, W1, OaN, W2, -+, ON_ 1N, WN—1,WN )
and the subvectors
(5.4.9) z; = (oin,win) T = (i1, 22) T, i=1,2,...,N—1

are introduced.
System (5.4.5) is represented as

dxi

— = Pixi + BiFi(0;) + hi(x),
(5.4.10) dt () + hi(e)

O'Z':CEZ‘Z', i:1,2,...,8.
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Each subsystem of (5.4.10) consist of free subsystems

de’i
= Px; + B;Fi(0;),
(5.4.11) g~ i+ Bikilow)
O'Z‘:C;Txi, i:1,2,...,8,
and relation functions
0
I ~ ~
(54.12)  hifw) = ; (=M Ay fij(oi) + My Anj i (ong))
YE)

The vector of nonlinearities Fj(o;) is a decomposition of two nonlinearities
(5 4 13) fil(Uil) = COS(O’iN + 5?N - H@N) - 608(520]\] — (97;N),
o fig(a'ig) = COS(UNi + 6?\/1 — eiN) — COS((S?W — eiN).

The other matrices and functions appearing in the system (5.4.14) are

0 1
Pi_(o —/\)’

A= DZ-MZ-_1 is a uniform damping, i — 1,2,..., N;

B 0 0 v (10
o= (i aia ) @ =(000)
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5.4.3 Application Algorithm of the Matrix-Valued Function

The elements v;; of the matrix-valued function U(x) are taken as

(5.4.14) e~

2 Oik
vii(2:) = o] Hiwg + > Vi / fir(oi) doik,
0

i=1,2,...,s,

vij (T, ) = g /fij(o'ij)do'ij
0
(i#7), 4,j=12,...,s.

Here H; are 2 x 2 symmetric positive definite matrices, 7;, and «;; are
arbitrary positive numbers.
Let n=(1,...,1)T € RS and

V(z,n)=n"U@)n,  Ulx) = by, ;).

The function v;; time-derivative along the solutions of the i *® intercon-
nected subsystem is

(5.4.15)

dvii  dvg dvy;
(5.4.16) = + ,
dt dt |5.411) At |(5.419
where
dvy; T
dt |(5.4.11)
2
(5.4.17) + ) Yinfie(oin) ik,
k=1
dvy; T
(5.4.18) = 2x; H;hi(z).
dt |(5.4.12)

Further we introduce the following matrices

(5.4.19) r; = diag{vy1,Vi2},
(5_4_2()) o, = diag{fil(dil), fil(O'il)} c [ai7bz’]7
Ji1 041
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where a; = diag{e;1,e:2} and b; = {&1,&i2} are prescribed valu
The expressions (5.4.18) and (5.4.18) are transformed as

dvn‘ T

dt -

(5.4.21) ]
(5.4.11)

(G — (aH;B; + P Ciry)®;C].

where
~G; = H;P, + P"H,
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and

dvi; -
(5.4.22) v = 2T H,Djz; + 22T H, Y Dy,
dt |(5.4.12) i
where
0 0
Pie =\ ity a8, 0
i
Do 0 0
BTN\ MIA @ — My An®y 0
and
®,;(0) =0,
;i(045) = %, oij # 0.
ij

Combining (5.4.21) and (5.4.22) yields

dvg;
ZZ)t = —a; {G;— (2H;B; + P Cir;)®;C]" — 2H;Djo } x;
(5.4.24) S

J#i
For functions v;; defined by (5.4.15) we have

dv;;
(5.4.25) dt

= aw@wl‘;rddTszz — ()zijq)z'j.’li;r(ddTPj + PJTddT)xj
+ o @) dd" Py, L F 7,
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where d = (1,0)7.
We have for function

(5.4.26) V(z,n) = — i z! Dyx; + i i z; Dyjz;,
i=1

i=1 j#i
where
Dy = Gy — (2H;B; + P Cl'ry)®;CF — 2H; Dy,
(5.4.27) — i(aijq%j + ;j®;i)ddT P;
J#i
and
(5.4.28) D;j =2H; Dy, — a;j®;;(dd" P; + P dd™").

Further we show that the right-hand part of (5.4.26) can be estimated by
the expression w? (z)Aw(x), i.e.

(5.4.29) V(z,n) <wt(z)Aw(zx),
where w(z) = (||z1]],..., |lzs])T, A =[ai;], i,j=1,2,...,s. Herea;; is a
computed in terms of estimate of the right-hand part of (5.4.26).

If we set W (x) = diag {||z1]], |z=2]],-- -, ||xs||}, then

V(z,n) < n"W(z)AW (z)n.

It should be noted that U (x) is not estimated by the expression
W (x)AW (z) in view of (5.4.24)—(5.4.28).
Then the matrices H; are taken in the form

Ay i
(5.4.30) H; = ; L+Fki |,

where k; are arbitrary positive constants and matrices GG; are computed

0 0
(5.4.31) Gi_<0 2k¢h§2)‘
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We take the constants
yi1 = 2M; P Ak,
(5.4.32) Yio = 2M ' Aihly,

-1
Oéij = Oéji = Mz Aijhzg

and transform the expression —zz:iTDii:ri as

—x] Dz = —2h§2{Ai <M¢_1M n MFM)
gil 02
(5.4.33) + M ZAiJ Dy }xgl — 2k;hiyad,

JFi

+ Z Mi_lhé2Aij (Pji + Pij)zinzio.
J#i
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The right-hand part of (5.4.33) may be estimated by the value
—Aim (Qa) |1

(5.4.34) —2 Dy < —Nim (Q4)]| 2|2, i=1,2,...,s,

where A, (Q;) is the minimal eigenvalue of the matrix @;, the elements of
which are determined as

@i =Gy = 2h§2{Az‘(Mi_15il + Myten) + M ZAijgij},
(5.4.35) 1 7

CJ%2 = _§Mi_1hé2 Z max(&;j, &ji)-
J#i

We note that ¢;; € (0,§;;) and the constants k; are taken according to

(5436) kl = Ai(M;lEil + M&lfig) + M;l Z Aijgij-
J#i
We have in view of (5.4.28)
(5.4.37)
x] Dijxy = 2hio(M; 1 Aj @i — My AN O )iz

— ;i PijxinTio

+ {2h5 (M Ay @iy — My' Anj®ny — @i | Tintji.
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To estimate the right-hand part of (5.4.37) the functions Z;: R> — R and
Zy: R® — R are introduced by the formulas

Zi(, B) =min { V2 max(|al, |8]), (o] + |3))}
Za(a 5.7) =nin{ VEmax(al. |8, ) (lal + 151 + 1)

Z1(,8) + Iy Z1( 8) + 18], Za(B7) + |a|}-

Having noted that the expressions x;12;1, Ti12;2, Ti2%;1 can be treated
as the components of the 3-dimensional subspace, where each of the expres-
sions may take either positive, negative or zero value, the estimate of the
righ-hand part of (5.4.37) can be obtained in the form

wi Dijrj < Zy {2hi max (M; " Ay&iy, My' Anjéng) |
(5438) MiilAij héQ&ija hz22 max (M;lAij&j,
2M M AnjEny) } llill ;-
In view of (5.4.34) and (5.4.38) we get for the elements a;; of matrix A:

Zo{2hip max(M; " Ajj&ij, My Anjén;,

(5.4.39) dij = 2 | -
’ M; ' Aijhby&is, Ry max(M; Ay,
My Aniénst (i # j)
and
1
(5.4.40) Qij = i(dw + flji), 1,7=1,2,...,s.

We formulate now the following assertion.

PROPOSITION 5.4.1. In order for the equilibrium state x = 0 of system
(5.4.10) to be asymptotically stable it is sufficient that the inequalities

(5.4.41) (=D)F | > 0, k=1,2,...,s,

be satisfied.
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PROOF. Let the matrix A in estimate (5.4.29) be constructed according
to (5.4.39) and (5.4.40). When inequalities (5.4.41) are satisfied, the matrix
A is negative definite, and by (5.4.40) A = AT. The function V(x,n) =
nTU(z)n is positive definite, since H; = H} is positive definite, ;. > 0
and o;; > 0 and the integral terms in (5.4.14) and (5.4.15) are non-negative
in the neighborhood of x = 0. Thus, function V(x,n) for system (5.4.10)
is positive definite and V(az, n) is negative definite in the neighborhood of
x =0 due to inequalities (5.4.41). By Theorem 2.3.3 the equilibrium state
x =0 of system (5.4.10) is asymptotically stable.

/
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5.4.4 Numerical examples

5.4.4.1 Example. The proposed algorithm of the power system stability
analysis is applicable to the 3-machine power system considered by Jocic,
Ribbens-Pavella and Siljak [79]. We admit the following parameter values
for the system (5.4.10):

N =3; E;=1.017; FE3=1.005 FE5=1.033; d12=25"
513 = 20; (523 = —30; Y12 =0.98 x 10_34860; Y13 = 0.1144880;
Yos3 = 0.106£89°; M; = M, = 0.01; M = 2.0.

Treating the third machine as a standard one we get two subsystems. Let
us take the constants A\ = 0.3, €11 = €21 = 0.06 and €15 = €93 = &2 =
£21 = 0.001. The matrix A = [a;;], defined by formula (5.4.39) is of the

form
A —1.1506 1.0814
o 1.0671 —1.0437 )

The matrix 24 = A + AT satisfies conditions (5.4.41) and therefore the
equilibrium state x = 0 is asymptotically stable. It is important to note
that in this case Joci¢, Ribbens-Pavella and Siljak [79] established the con-
ditions of asymptotic stability for A = 100, € = 0,99. In a paper by Shaa-
ban and Grujié¢ [164] the asymptotic stability of the system in question was
stated for A = 0.45, €11 = €21 = 0.10.

The asymptotic stability conditions for the equilibrium state = = 0
obtained herein are the least value for the parameters A and .
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5.4.4.2 Example. Let in system (5.4.10) N = 4 and the parameter values
are the following (see El-Abiad and Nagappan [35]):

E; =1.057/5.7°, FEo=1.152/14.4°, E3=1.095/2.3°, E,=1.0/0.1°,
Y11 = 0.88/ — 88.1°, Yay = 0.873/ —83.2°, Y33 = 1.014/ — 75.5°,
Yig = 2447/ — 69,7°,  Yio = 0.124/82.1°, Yi3 = 0.065/82.4°,

Ya3 = 0.064/88.2°,  Yay = 0.655/96.8°,

Y34 = 0.754/99°,  Yi4 = 0.658,/91.1°;

My = 1130, M, = 2260, M;s=1508, M, = 75350.

Choosing the fourth machine as a standard one we get three subsystems.
For the values A = 0.8, €11 = €91 = €31 = 0.5 the matrix A (see formula
(5.4.39)) is
—4.9087  3.7790 1.8484
A= 1.8109 —2.7037  0.9811
1.4073 1.4898 —4.8370

1 /- A
The matrix a = 3 (A + AT> satisfies the conditions (5.4.41) and therefore,

the state x = 0 of the system is asymptotically stable. Earlier it has been
stated (see Gruji¢ and Shaaban [61]) that the asymptotic stability of the
equilibrium state x = 0 of the system takes place provided that A = 1.0
and g1 = g9 = ¢35 = 0.60.

Therefore, this case as well the proposed algorithm allows us to establish
the conditions of asymptotic stability for smaller valies of A and e.

5.4.4.3 Example. Let in system (5.4.10) N =7 and the parameter values
are taken following Shaaban and Gruji¢ [164]. Taking the seventh machine
as a standard one we get six subsystems. For the values A = 2.0, ;1 = 0.80,
i=1,2,3; £j; = 0.85, j =4,5,6, the matrix A (see (5.4.39)) is

—2.0176 1.0286  0.2408 0.2521 0.2876  0.2730
1.3301 —2.3742  0.2660 0.2785  0.3177  0.2952
0.2944  0.3111 —1.8805 0.8070  0.2744  0.2594

A= 0.2910 0,2714 0.7547 —1.9315 0.2848 0.2577
0.3022 0.2949 0.2357 0.2505 —1.9757 0.7701
0.3155 0.2941 0.2461 0.2577 0.8847 —2.1405
1 /4 A
and a = 3 (A + AT> satisfies the conditions (5.4.41). Then the equilib-
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rium state x = 0 of the system is asymptotically stable. In the above
mentioned paper by Shaaban and Gruji¢ [164] the asymptotic stability of
the equilibrium state was established for A = 3.0 and &;; = 0.95, ¢ =

1,2,...

,6. This applies to the smaller values of A and ¢ as well as to the

asymptotic stability of the equilibrium state =z = 0.
The application of the approach to three—four and seven-machine system
enables us to conclude as follows (see Gruji¢ and Shaaban [61]):

(1)

We can decrease the value of the parameter A for which asymptotic
stability of © = 0 of the system is assured (value of \ is decreased
from 100 to only 0.3 for the three-machine system, and decreased by
33% of that in Shaaban and Gruji¢ [164] for the four and seven ma-
chine systems). Noting that the smaller value of A means that the
generator is less damped and that it is more difficult to assure sta-
bility, we can deduce that the developed approach is more powerful
then those developed so far via vector Liapunov functions.

Smaller value of the parameter € can be assumed and the asymptotic
stability assured by applying the developed approach (value of ¢ is
assumed to be 85% of that in Shaaban and Gruji¢ [164] for the four
and seven machine systems, and it is decreased from 0.10 to only
0.06 for the three-machine system). This essentially means that the
developed approach can lead to larger asymptotic stability domain
estimates.

Using the developed approach, we can decrease the conservativeness
of the decomposition-aggregation method.

The matrix-valued Liapunov function methodology leads to more
adequate scalar Liapunov functions for power systems and simplifies
their construction via the vector Liapunov function concept.

The stability test computation is reduced to only the negative defi-
niteness test of a single elementwise constant aggregation symmetric
matrix. Its dimension is reduced to the number s = N — 1 of the
subsystems of an N-machines power system.

5.5 The Motion in Space of Winged Aircraft

According to Aminov and Sirazetdinov [2] we will consider the case when
the aircraft, moving with fixed absolute value of the velocity, performs a
manouvre with constant load factor. Thus, to the undistrturbed motion
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there corresponds constant values of the angles of attack ag and of side-
slip 3,, and angular velocities of pitch w,g, yaw wy,o and rotation wgo.
Their deviations from the perturbed values will be called «, 3, w., wy, wy
respectively. The deviations of the angular velocities of side-slip, yaw and
rotation must not exceed given limits.

We consider the equations of the perturbed motion in the form (see
Byushgens and Studnev [18])
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da 1 1
— = Wy — SC o — pfwy — 502666,

dt 2
dw, o " 5
7 =mio+ mirw, — pAwgwy + m3ieoe,
d 1 1
(551) d_f = Hwy + 5656 + pow, + 50?57"7
dw "
d—ty = mgﬁ +mywy + pBwyw, + mffér,
dw,
;(; = mgﬁ + mgzwm - ,Ucwywz + mfﬁda,
where
Jy = J. J. = J. J. —J
A oy Yy x > 07 B — z xT > 07 C _ u > 07
Jz Jy Jm

and p is the aircraft relative density, ¢, are the coefficients of the aerody-
namic forces, m,, are the coefficients of the aerodynamic moments, dc, d,,
0, are the deviations of the elevator, aileron and rudder, and J,, J,, J, are
the aircraft moments of inertia with respect to the connected coordinate
system.

We take the law of stabilization in the form

Se = kla+kiw,, 0, =kPB+ klw,,

5.5.2
( ) 60 = k2B + k2w,

We substitute the values (5.5.2) into equations (5.5.1). We use the notations
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ay = mbP + k:gmi“, a5 =me® + kffmf;l,

a9y = mg + kfmgT, ass = m>v + k‘}!mff,
(55.3) asz =my + k;"mie, ags = m3* + kjmie,

g4 = L (cg‘ + ké"cge) , Q43 = L — %kécge,

2

Lis . 180 y 5
a55:§(02+krczr)a as2 = p+ Skl
by = —uC, b

Using this notation we can write system (5.5.1) as

dlL’l
= o + a1525 + bizoxs,
d.TQ
= 02272 + ag5Ts5 + bazi 3.
dx

(5.5.4) d—; = a33%3 + a3474 + b3z 72,
dl‘4
g = 04373 + aqax4 + baz1 25,
d$5
E = 522 + a55T5 + b5$13§'4.

We shall find the conditions connected to the coefficients of the system
(5.5.4) under which the solution of the system x = 0 is multistability, i.e.,
asymptotically stable with respect to (x4, %5), and stable with respect to
(.CC 1,22, .’L‘3) .

We use the Theorem 2.6.1. In our example N = 2, i.e., there are two
groups of variables (z1, z2, z3) and (x4, 25). We consider the matrix-valued
Liapunov function

1
U(x) = 5 diag[—bgng%, 2b1b3$’§, _blexga xzzla x%]’

and ne R, n; =1, i=1,2,...,5.
The function

(5.5.5) n U(z)n=V(z,n) = = (—bobsa} + 2b1b3x3 — b1boz} + 25 + 27)

N
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is positive definite, decreasing and radially unbounded.

Some Models of Real World Phenomena

In view of the

system (5.5.4) the derivative of the function (5.5.5) is

DV(.T, ?7) = — bgbgalle — b2b3a15x1x5 + 2()1()3@2233%

(5.5.6)

+ (21)153&25 + a52):c2:c5 - b1b2a33x§

2 2
+ (a43 — b1boasy)xszy + agaxy + assxs.

In order to solve our problem we have to find the conditions whereby
function (5.5.6) is non-positive with respect to (x1,x2,z3) and negative

definite with respect to (x4, x5).

The method of finding these conditions is given by Aminov and Sirazetdi-
nov [3] and is as follows. We equate the derivative DV (x,n) of (5.5.6) to

the function
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(5.5.7) W(x) = — (c1121 + c1525)% — (conxo + co525)?
o — (c33x3 + 634954)2 - (045134)2 - (05005)2

and, comparing coefficient of like terms of (5.5.6) and (5.5.7), we find the
conditions for the existence of the coefficients of function (5.5.7) which are
in fact the required conditions for the function (5.5.6) to be non-positive
with respect to (z1,x2,73) and negative definite with respect to (x4, zs).
These conditions are

(a43 - b1b2a34)2
bibaass
afsbobs  (2b1bzass + as2)?

ass + — < 0.
o a1l 2b1b3ass

a11 <0, a2 <0, a33<0, agqs+ < 0,

(5.5.8)

On substituting the values of the coeflicients (5.5.3) into inequality (5.5.8)
we obtain the sufficient conditions that solve the aircraft space manouvre
problem.

5.6 Notes

5.2. The basic result of this section (Proposition 5.2.1) is new. The descrip-
tion of model and the competition discussion is due to Lakshmikantham,
Leela and Martynyuk [94]. For the large number of references on this topic
see Freedman [36]. The application of the Metzler matrix theory and vector
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Liapunov functions in the investigation of thise problems is due to Siljak
[167], Gruji¢ and Burgat [56], etc.

5.3. The description of the model of an orbital astronomical observa-
tory is taken from Geiss, Cohen et al. [40] and Gruji¢ [55]. The results
of investigation of this model are cited following Krapivny supervised by
A. A. Martynyuk. The comparison of the obtained results with those by
Gruji¢, Martynyuk and Ribbens-Pavella [57] has displayed the advantages
of the matrix-valued function application. For other results on the subject
see Siljak [167], Abdullin, Anapolskii et al [1], etc.

5.4. The results of this section are due to Gruji¢ and Shaaban [61].
The scalar Liapunov functions are applied by El-Abiad and Nagappan [35],
Michel, Fouad and Vittal [142]. For the application of vector Liapunov
functions see Pai and Narayana [151], Gruji¢, Martynyuk and Ribbens-
Pavella [57], Gruji¢ and Ribbens-Pavella [58], [59], Gruji¢, Ribbens-Pavella
and Bouffioux [60], Joci¢, Ribbens-Pavella and Siljak [79], Michel, Nam
and Vittal [144], Shaaban and Gruji¢ [164], [165], etc. Matrix-valued Li-
apunov functions are applied by Miladzhanov [145] including the systems
with structural perturbations.

5.5. The results of this section are due to Martynyuk [111] and Aminov
and Sirazetdinov [2].
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