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Hilbert Spaces and Operators on Hilbert Spaces 1. Hilbert Spaces

1 Hilbert Spaces

1.1 Inner product spaces

Example 1.1 Prove that in a real vector space with inner product we have

1
(@) =7 (le+yl* = lle—yl*),
and in a complex vector space with inner product we have
1 . . . )
(@y) =7 (le+yl” = lle =yl +ille +iy|* +illz - iy]) .

These are the so-called polarization identities. They tell us that in a Hilbert space, the inner product
1s determined by the norm.

Let V be a real vector space with an inner product. It follows straightforward that
1 1
7 (= +yl? = llz —yl?} = 1 (etyz+y) — (2 —yz—y)}
1
= g l@a)+y2) + (2.9) + () = (@.2) + (y.2) + (2,9) = (4, 9)}

= R 2w = 5 1)+ @0} = (@),

and we have proved the claim concerning real vector spaces.

5
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Hilbert Spaces and Operators on Hilbert Spaces 1. Hilbert Spaces

Let V be a complex vector space with an inner product. Then we get analogously,
i {le + 9l = llz = ylI* +ille + iyl* —i[|lz —ayl*}
= i {@t+y,z+y)—(@—yz—y) +ile+iy,z+iy) —i(z —iy,z —iy)}
= i {[(z,2) + (2,9) + (v, 2) + (v, 9)] = [(z,2) = (2,9) — (v, 2) + (3,9)]
= | (209) + 20,2) + 2, iy) + 2iCig, )}
= @)+ o) i (<)) +i i)
= (@) + (5. 2)0(y) — (5.))

1

= 5-2($,y)=(3&,y),

and the claim is proved in the complex case.

Example 1.2 Let V be a real normed vector space, and assume that the norm satisfies
o +yl* + e —ylI> =2 (=] + ly|*) ~ forallz,yeV.
Show that
1
(@) =7 {lz+yI” — ll= - y[?}

defines an inner product in V and that the norm is induced by this inner product.

The task is to prove that in general
1) (xl + I27y) = (xlvy) + (IQ,ZJ),
2) (ax,y) = alz,y).

In order to prove (1) we start by proving

(1) Go1.0) + (o29) =2 (5 (@1 + 0200

This is done below.

In order to prove (2) we start by assuming that o € Z is an integer, then we assume that « € Q is
rational, and finally we let o € R be real. This task is also postponed.

Define the bilinear form (-,-) by
1 2 2
(@,9) = 7 {llz+l” = ll= —vl”}-
The vector space is real, so the condition of symmetry

(z,y) = (y —z)

6
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Hilbert Spaces and Operators on Hilbert Spaces

1. Hilbert Spaces

is trivial. Furthermore,

1 1
2) (@2) = 7 {llz+2]* = llz =2} = 7 [22]* = [|z* > 0.

We conclude from (2) that

(z,z) = [|z||70, if and only if = =0,

and if (-,-) is an inner product, then the norm is defined by this inner product.

We see that the claim will be proved if we can prove (1) and (2) above.

1) As mentioned above we first prove (1), i.e.

(o190 + (o) =2 (31 + 22,0

We get by computing the left hand side,

(1‘173/) + (.ng,y)

N N

{llzx +yl? = llox = yl* + llw2 + yll* — llz2 — ylI*}

1
{llzr + 9% + lwa 4+ 9l*} = 7 {llza = yl® + oo = wl*}-

The latter two terms are treated separately by means of the law of parallelograms. (We shall
somewhere use the assumption).

If we put u+v =21 +y and u— v = x5 + y, then

1
U:§($1+$2)+y

1
og v= §(m1 — Ty).

Then apply the law of parallelograms to get

lz1 + yH2 + ||z + yH2

= Ju+ol® + lu—ol* =2 (lu] + ]*)
1 2
= 2{“5(:51—&—m2)+y

1
[ -e

When vy is replaced by —y, we get analogously

1
21—yl + llz2 — yl* = 2 {H§ (x1+x2) —y

2

1
3 (z1 — x2)

4

\

\

These two expressions are then inserted into the expression above for (z1,y) + (z2,y). Thus, by

the definition of (-, ),

(z1,y) + (22, 9)

2

1
+ HE (21 — @2)

e~ =

)

1
'2{H§(1‘1+$2)+y

1 2

_1.2{”%(3714-:62)—3/ L

(B
_"§(x1 +:Jc2)—y

1 1
21{"5(951 +x2) +y

> G(m +x2),y>,

+ H§ (.%‘1 —.Z‘Q)

/)
}
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Hilbert Spaces and Operators on Hilbert Spaces 1. Hilbert Spaces

and the auxiliary result is proved.

We use again the law of parallelograms in the following computation,

(@ey) = 3 {12z +yl? -2z —yll?)
{llz+ G+ =1+ (= )17}
(=4 )l + 2= G} - I+ G-I+ G =9I}

1
2{ll2” + Nz +l*} = - 2402017 + Nz = wll*}

N s, AR,

1
7 4l =Nz = lP} = 2(2,9),
where we get for the underlined terms that

—yl* = llyl* =o0.

Iz = G+l = llz = (z = y)l* = |

1
Finally, use the result above with z = 5 (z1 + x2), to obtain

(3) (mlay) + (x27y) =2 (% (xl +$2),y> = (xl +$23y)'

2) Let n € N. Then we get by repeatedly applying (3),
(nz,y) = (x+ - +2,y) = (x,9) + -+ (z,y) = n(z,y),

thus (2) holds for « =n € N.
If o« = —1, then by the definition of (-, ),
1 2 2 1 2 2
(—zy) =7 {l—z+ulP =l —e—yl*} = =7 {llz+l* = o = v’} = —(2,y).
Composing this result with the previous one for n € N we get

(—nw,y) = —(nz,y) = —n(z,y),

and the formula holds for o € Z.

1
Then let o = ekl € N. We shall prove that

(2o0) =2 ),

or, equivalently,

n (%xy) — ().

8
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Hilbert Spaces and Operators on Hilbert Spaces 1. Hilbert Spaces

x
Put z = —. Then it follows by the previous results that
n

n(Ley) =nzy) = @y = (n-22.y) = @),

and we have extended the formula.

Ifa="2 €Q, p€Z and q € N, then it follows from the previous results that
q

(az,y) = <p~ éfﬂy> :pr,y) :p%(x,y) = a(z,y),

and the formula is proved for a € Q.

Now, Q is dense in R, so we shall only show that the mapping (-,yo) is continuous in z for every
fixed yo. First notice that

I?

1
(= = z0,90)| = 7 ||z = 20 + yoll® = [l — zo — yoll?|

= 1 llso+@—20) | +lvo— (= —20) I} - o+ (& —20)]| - lyo— (&~ I

360°
thinking.

Deloitte.

Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affliated entities.

9
Click on the ad to read more

Download free eBooks at bookboon.com


http://www.deloitte.ca/careers

Hilbert Spaces and Operators on Hilbert Spaces 1. Hilbert Spaces

If || — zg|| < 4, then it follows by the triangle inequality that
o + (z = o)l + llyo — (# — @o)|| < 2{llyoll + 0},

and
llyo + (2 = zo)ll = llyo — (z — mo) Il < 2[lz — o]l < 26,

hence by insertion

(=20, 90)] < 7 - 2(lgoll +6) - 20 = {llyoll + 6} -6 <&

I

for sufficiently small §. Since (-, y0) is continuous, the formula for Q is extended by the continuity
to all of R, and the claim is proved.

Remark 1.1 The most difficult part of the example is that the notation (-,-) is a little confusing.
One shall always be aware of distinguishing between what is given and what shall be proved. ¢

Remark 1.2 If also the complex law of parallelograms holds in a normed complex vector space,
then it is possible to prove the analogous result. Only the computations become much larger. ¢

Example 1.3 Show that the sup-norm on C([a,b]) is not induced by an inner product.

We know already that if a norm is defined by an inner product, then we the law of parallelograms
holds,

1f + gl +11F = gll* = 2 {IIFI1* + lgll*} -

Hence, it suffices to prove that the law of parallelograms does not hold for
£l = sup{[f ()] |t € [a,0]}  in C([a,b]).

We may assume that [a,b] = [0, 1].

Choose f(t) =1 and g(t) =t for t € [0,1]. Then ||f|| =1 and ||g|| = 1, and

If+gll= sup 1+t[=2, |[f—gll= sup [1—t]=1
te[0,1] te(0,1]

Hence
If+gl*+1f—gl?=4+1=5
and
2(IIFI1* + llgl*) = 2(1 +1) = 4.
It follows from
If + gl +1f —gl* =5#4=2(IfI +lg]*),

that the law of parallelograms is not satisfied, so the sup-norm is not defined by an inner product.

10
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Hilbert Spaces and Operators on Hilbert Spaces 1. Hilbert Spaces

Example 1.4 Prove that in a real vector space with inner product we have that ||z| = ||y|| implies
that

(r+y,z—y)=0.

In the case V = R? this is a well-known geometric statement — which one?

X+Y

Xy 0

It fJzf| = [yl], then

(@ +y.e—y)=(v,2) + (,2) = (2,9) = (,9) = ||lz]* = |ylI* = 0.

If we sketch the parallelogram of forces, then we have just proved that in a rhomb the diagonals are
perpendicular to each other.

Example 1.5 Let V;, I =1, ..., k be vector spaces equipped with inner products (-,-);, respectively.
We define the product space ®f:1V7; as in EXAMPLE 2.16 in VENTUS, FUNCTIONAL ANALYSIS,
TOPOLOGICAL AND METRIC SPACES, BANACH SPACES AND BOUNDED OPERATORS.

Show that we can define an inner product in @, Vi by

k
((.’131,1'2, DRI xk)a (ylvaa R 7yk?)) = Z(mi, yl)lv
i=1
and that ®f:1 Vi with this inner product is a Hilbert space if V;, i =1, ..., k are Hilbert spaces.

Due to the structure of the suggested inner product it suffices to prove the claim for k = 2, because
the general result then follows by induction. In this way we avoid the usual mess of notation.

Consider two vector spaces V1, i = 1, 2, each one with an inner product (-,-);. We shall prove that

((z1,22), (Y1,92)) = (T1,y1)1 + (T2,92)2

11
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Hilbert Spaces and Operators on Hilbert Spaces 1. Hilbert Spaces

defines an inner product on V x V.

First note that

((y1,92), (z1,22)) = (Y1, 21)1 + (Y2, T2)2 = (T1,y1)1 + (T2,92)2 = ((¥1,72), (y1,2)).
Then
(a(z1,2) + (y1,92), (21, 22))
((wy + y1, w2 +12), (21, 22))
= (az1+y1,21)1 + (az2 + Y2, 22)2
= oz, 21)1 + (Y1, 21)1 + (@2, 22)2 + (Y2, 22)2
= a{(z1,21)1 + (22, 22)2} + {(y1,21)1 + (Y2, 22)2}
= a((z1,22), (21,22)) + ((y1,92), (21, 22)) -
Finally,
((x1,22), (x1,22)) = (1, 21)1 + (22, T2)2 > 0,
where we have equality, if and only if both ||z|; = 0 and [|z||s = 0, thus if and only if ;1 = 0 and
29 = 0, which again is the same as saying that (x1,22) = (0,0).

We have now proved that (-,-) is an inner product on V; x V5.

Then assume that ®f:1 V; for some k € N is given an inner product by

k
((xla T2y 7xk)7 (yl;y27 .. 7xk‘)) = Z(‘rla yl)w
i=1
whenever each V; is equipped with an inner product (-,-);, ¢ = 1, ..., k. We proved above that this

is true for k£ = 2.

Consider k + 1 vector spaces (U;, (-,-);), ¢ = 1, ...,k + 1, each equipped with an inner product. We
define

k
Vl :®§=1U’i and ((xlw")mk)’(y17'-'7yk))1 :Z<xi7yi>ia
i=1
and
Vo=Ugrsr and (g1, Uks1)2 = (Trats Y1) ka1

It follows by using the assumption of induction that both (Vi, (+,-)1) and (V3, (+,-)2) are vector spaces
with inner products. Then it follows from the result above that

k+1
Vix Vo =QU;
i=1

is also a vector space, equipped with the inner product

((1‘1; e axk7xk+1)7 (yla cee 7yk:ayk+1)) = (<x17 .. -;xk:)a (917 e 7yk))1 + (‘Tk+17yk:+1)2

k k+1
= Z<xuyz>z + (Tht1, Yo 1) k1 = Z<x17y1>17
i=1 i=1

12
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Hilbert Spaces and Operators on Hilbert Spaces 1. Hilbert Spaces

and the first claim is proved.

Then assume (for k = 2) that (V;, (+,);), ¢ = 1, 2, are both Hilbert spaces. We shall prove that V; x V5
becomes a Hilbert space when it is given the inner product which has been constructed her, in other
words, we shall prove that V; x V5 is complete.

Let ((z7, %)),y be a Cauchy sequence in V; x Va, which means that to every e > 0 there exists an
N € N, such that for all m, n > N,

(27", 25") — (7, 25)[| = [[(27" — a7, 25" — 25)|| <e.
This can also be written

(27" —af, 2" —af); + (25" — 25,25 — a}), <.
Both terms on the left hand side are > 0, so

2" —afll<e  og  [lag" — a3 <e,

which shows that (z7) is a Cauchy sequence in Vi, and that (z%) is a Cauchy sequence in V2. They
are both convergent by the assumption,

= a1 €WV and xhy — x9 € Va.

SIMPLY CLEVER SKODA
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Hilbert Spaces and Operators on Hilbert Spaces

1. Hilbert Spaces

It follows that if (z1,22) € V1 x Va, then

2 2
17 = (21— 27,22 — 23)|

I?

||(;C1,$2) - (x’f,x;‘)
= o1 —a}|® + [lo2 — 25

— 0 for n — oo.

We have proved that every Cauchy sequence in V; x V5 is convergent, hence V7 x V; is a Hilbert space.

Finally, if all (Vi,(-,-);), ¢ = 1, ..., k, are Hilbert spaces, then it follows in the same way as in the
previous proof of the inner product that ®f:1 V; becomes a Hilbert space, when it is equipped with

the here constructed inner product.

Example 1.6 Let x and y be vectors in a vector space with an inner product. Show that (x,y) = 0 if

and only if
|z + ay|| = ||z — ayl| for all scalars.
Moreover, show that (x,y) =0, if and only if

|z + ay|| > ||z for all scalars.

Figure 1: The case a = 1.

1) First compute the difference ||z + ay||? — ||z — ay||>. We get

e+ ayl? - ay|?
— (2 +ay,2+ay) — (v — ay,z — ay)

= (1‘,56‘) +a(m,y) + Oz(y,x) + ‘04|2(y,y) - (1‘,56‘) +a(x,y) + Oz(y,x) - |O“2(y7y)

=2 {a(x,y) + a@} = 2Re {@(z,y)} .

14
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Hilbert Spaces and Operators on Hilbert Spaces 1. Hilbert Spaces

a) If (z,y) = 0, then we immediately get that
|z 4+ ay|® = ||z — ay||? for all a.
b) Assume that (z,y) # 0. Choosing o = (z,y), we get
H’I} + (x’y)yHQ - ||(17 - (Iay)yHQ - 4|(:C,y)|2 > 07
and it follows that ||z 4+ ay| # ||l — ay for a = (z,y).
2) Since ||z + ay|| > ||z|| and ||z + ay||? > ||z||* are equivalent, we first compute ||z + ayl|? — ||z[]?.
This gives
lz+ayl? =[] = (z+ay,z+ay) - (z,2)
(z,2) +aly, ) +a(z,y) +|al*(y,y) - (z,2)
= lof’lly|* + 2Re{a(z, y)} -
a) If (z,y) =0, then
lz + ayl® = [l]* = laf?[ly]* > 0.

b) If (z,y) # 0, if in particular y # 0, then choose

1
a=—i—0s (2,9).
lyl?
We get
2

lz — ay||* — = = lllf?

1

H " e @YY
1 2 2 1 2

= w“%y)\ [yl* +2Re —W\(%yﬂ
1 1

= WK%?J)P_Q.W'(%MF

” H2 |(£L’ y)|2 < 0

hence ||z + ay|| < ||z||, and the claim is proved.

Remark 1.3 Hilbert spaces are the natural generalization of Euclidean spaces. This means that if
we only consider a subspace of a Hilbert space spanned by two vectors (like in the present situation),
then we might as well give a geometric proof in the usual 2-dimensional plane, because a 2-dimensional
Hilbert space is isomorphic to Fs. Analogously in 3-dimensional subspaces. However, only very few
have a geometrical understanding of what is going on in Euclidean spaces of higher dimensions. I only
remember the late professor Fabricius Bjerre once told me that he himself had some sense of E; as
being described as “shadows”. ¢

15
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Example 1.7 Let x and y be vectors in a complex vector space with an inner product, and assume
that

lz +yl* = [l + lly]1*.

Does this imply that (z,y) =09

1 27(1/2)

Figure 2: Vectors in (C,+, -, C).

The answer is “no”! In fact, choose V = (C, +,-,C), and

r=1 and Yy =1.
Then

eyl =1 +iff =12+ 12 = 1 + [i* = [o]* + [y*  (=2),
and

(x,y) = (1,i) = —i(1,1) = —i[1]> = =i #0.

16
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Example 1.8 Let V be a complex vector space with an inner product and assume that T € B(V).
Show that (Ty,z) =0 for all x, y € V if and only if T is the zero operator.

Show next that (Tz,x) =0 for all x € V if and only if T is the zero operator.

If the vector space is assumed to be real, do these results hold?

1) Assume that (T'z,y) =0 for all z, y € V. Choosing y = Tz € V we get
|Tz|? = (Tx,Tz) = 0, thus Tz = 0.

Since this is true for every x, we infer that T is the zero operator.

Of course this argument also holds if the vector space is real.

Ty) = (¥, x)

Figure 3: Rotation T" of g around (0,0) in the plane Es, cf. (3).

2) Assume that (T'z,z) = 0 for every € V. Then

0 = (T(z+ay),z+ay) = (Tzr+alyz+ ay)
(Tx,z) + (Tz,oy) + a(Ty, ) + |o|*(Ty, y)
= a(Txz,y) +a(Ty,x).

We infer that
a(Tz,t) = —a(Ty, x) for alle z, y € V og a € C.
Choosing a = 1 we get
(4) (Tz,y) = —(Ty,z).
If we instead choose oo = 4, then

—i(Tx,y) = —i(Ty,x),

17
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hence

() (Tz,y) = +(Ty,z).

By combining (4) and (5) we get
(Tz,y) =0 for all z, y € V.

Then it follows from (1) that T is identically 0.

3) The last result is not true for real vector spaces.
Let V = E» be the Euclidean plane, and let T' denote the rotation around (0,0) of the angle g

Expressed in coordinates we have

T(x,y) = (—y,x) for (z,y) € Es.
Clearly, the mapping T is linear, and || T|| =1 # 0, hence T # 0.
Finally,

(T(z,9), (x,9)) = (=y,2), (2,9)) = —yx + 2y = 0.

Remark 1.4 We see that it is essential for the proof that we in the derivation of (5) can choose

a=1 O
Ijoined MITAS because o e e it

I wanted real responsibility www.discovermitas.com
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Hilbert Spaces and Operators on Hilbert Spaces 1. Hilbert Spaces

Example 1.9 Prove the law of parallelograms.

We shall prove that in a vector space of inner product,
2+ ylI* + lle = ylI* = 2 (Jl=]* + [ly]]*) -
A direct computation of the left hand side gives

lz+yl> +llz—ylI* = (@ +y,2+y) + (z -y, —y)
= (z,2)+ (2, y)+ (v, 2)+ (v, y) +(z,2) = (z,y) — (v, 2) + (¥, )
=2(z,x) + 2(y,y) = 2 {||z[|* + [ly]*} ,

and the claim is proved.
Example 1.10 Denote by M the set of all random variables on a probability space (Q, A, P) of finite
second moment. Define

(X,Y)= Cov(X,Y), X, Y e M.

Does this define an inner product on M ?

It is well-known that the covariance is defined by
Cov(X,Y) = E{(X — 1) (Y — p2)},
where
E{X} =, V(X)=o0l og E{Y}=ps, V(V)=0l
We shall check if we get an inner product.
We have
(X,Y)= Cov(X,Y) = Cov(Y,X) = (Y, X),
and
(X, Y)= Cov(a X,Y)=a Cov(X,Y) = a(X,Y),
and
(X+Y,Z)= Cov(X+Y,Z) = Cov(X,Z)+ Cov(Y,Z)=(X,Z2)+ (Y, Z).

It follows from

X, X X, X
:g(X,X):COV(Q7 >:( ) >, for oy # 0,

o7 07

and (X, X) = o7 in general, that (X, X) = 07 > 0 for every X, and that (X, X) = 0, if and only if
V(X) =0? =0, i.e. if and only if X is causally distributed.

We conclude that (X,Y) = Cov(X,Y) is not an inner product in M, because we cannot distinguish
between causal distributions and O.

19
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1.2 Hilbert spaces

Example 1.11 Let [a,b] be a finite interval.
Show that L?([a,b]) C L'([a,b]).

The interval [a, b] is bounded, so the constant 1 € L?([a,b]). In fact,
b
113 = / 1%2dt =b—a < +oo0.
Let f € L?([a,b]). Then we get by the Cauchy-Schwarz inequality

b b
/ \f(t)ldt=/ FO-1dE < [ fll2- 12 = VE—a- [[f]}2 < +oo,

proving that f € L'([a,b]), and thus
L*([a,0]) € L'([a,0])  with  [[f[lh <Vb—a-[/f]2.

Remark 1.5 We can find f € L!([a,b]), which does not lie in L?([a,b]). An example is

1
— for x €]0,1],
fay=q V7
0 for x = 0.
In fact,
|| - [ o= 2vals -
Vel Jo Vo o

hence f € L'([0,1]).
On the other hand,

hence f ¢ L%(]0,1]).

20
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Example 1.12 Let T be a linear operator T : L*(R) — L?(R?) satisfying that f > 0 implies that
Tf > 0.
Show that

1D = NI

for all f € L*(R).
Show that T is bounded.

1) We first assume that f is real. Then
[fl=f=0 and |f|+f >0,
s0
TIf|—~Tf>0 and T|f|+Tf>0
according to the assumption. We conclude that |T'f| < T|f| for real f € L*(R). This estimate

implies that

+oo “+o0
||Tf||§=/ ITfIdeS/ (TIf)*de = | T(F) 113,

o0 — 00

and we conclude that for every reelle f € L*(R),

1T fllz < [T fDIl2-

Then assume that f is complex, f = g+ h. This case is far more difficult than one would imagine.
We present below one proof among several ones. First apply the result above on the real and the
imaginary part separately,

17113

+o0 Foo
/ |Tg+iTh|2dx=/ {[TgP + |Th[*} dx

— 00 —

/+OO(T|g|)2d:c + /+OO(T|h|)2da:.

— 00 —00

IN

The trick of the present proof is that we choose constants o and g € R, such that 0 < a < 3, and
then consider the set

Qop={z eR|alf(z)] < |g(=)] < Blf ()]},

where a and 3 are to be fixed later.
If x € Q4 g, it follows from the above that

oT|f| < Tlgl < ATIf| and T= FTIf < TIh| < VI— a2 TIf],
so by a squaring and an addition, (still for x € Q4 ),

(1=5%+a?) (TIf)? < (TIg)* + (TIA)* < (1+ 5% = a) (TIf])*.
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Choose any € > 0. Defining
wn::Q\/ﬁl’\/m:{meRh/ndf( ) < g(x)] < V(n+ De|f(x

it follows that R = Uiozo Wy, where the union is disjoint. Then

n=0"%n

IN

+oo
T2 < [ (@) + @)} dz =S [ {(Tlg)? + (Th)?} de
>
0

/ {1+ (n+1)e —ne} - (T|f|(3da

n=

=+ @i = ) ITAIE

n=0

This holds for every € > 0, so we conclude by taking the limit ¢ — 0+ that

ITfllz < IT(SDI2,
even if f € L?(R) is a function of complex values.

2) Then we prove that T is bounded. It follows from (1) that it suffices to consider non-negative

functions.

Assume that T is not bounded. Then there exists a sequence f, € L%*(R), where f, > 0 and
[l fnll2 = 1, such that

1T fallz > n?| fall2 = n* for all n € N.

N\
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If we put
+00 1
f: Z:lﬁf’ru

then f >0 and

+001

+oo 2
1 T
[£ll2 < E EanHz: E w2 :E < +o00,
n=1

n=1
hence f € L?(R), i.e. Tf € L*(R) by the assumption. In particular,
1712 < +o0.

On the other hand, for every n € N,

szT(%h) =inn20,

n2
and it follows that

1 1 4 9

1Tfll2 > o 1T full2 > 3N | full2 = n?.

This is true for every n € N, hence || T'f||2 = +oo contradicting that 7'f € L?(IR). This means that
our assumption that 7" is not bounded, is wrong, so we conclude that 7" is bounded.

Example 1.13 Let (e,,) be an orthonormal basis for the Hilbert space H .
Show that

T (Z aiei> = (al,ag, .. )
i=1
defines an isomorphism from H onto (%, satisfying (Tz,Ty) = (z,y) for all z, y € H.

Let x =), ane, and y = bye,. Using that (e,) is an orthonormal basis we get
(.’I/',y) = Zangm(enaem) = Zangn = (T%va

where we have put Tr = (a,,) € €'i? and Ty = (b,) € (2.

It is obvious that T is linear.

Choosing y = z in the above we get || Tz||? = ||z||?, thus ||Tz| = ||z||, and T is isometric.

If in particular T = 0, then we infer that ||| = ||Tz|| = 0, so « = 0, and it follows that T is injective.
Finally, T is also surjective. In fact, if (a,) € £2, then > |a,|? < +oc. If we therefore put

00
T = E Ap€n,
n=1
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then
o0
2> = D lanf* < 400,
n=1
and x € H, and it is obvious that Tz = (a,).

Example 1.14 Let M be a subset of a Hilbert space H. Show that M~ is a closed subspace of H.

Show that M C (ML)L, and show that (ML)l is the smallest closed subspace containing M. It is
called the orthogonal complement of M.

By the definition,

Mt ={ycH|VzecM: (z,y) =0} = ﬂ{yEHHx,y):O}.
reM

The mapping ¢..(y) = (x,y) is continuous for every fixed x, hence
{y € H|(z,y) =0} =27 ({0})
is closed, i.e.

M* = () ¢2'({o))

xeM

is closed as the intersection of a class of closed sets.
If 2, y € M+, and « is a scalar, then
(x+ay,z)=(z,2)+a(y,z) =0+a-0=0
for every z € M. Then = + ay € M+, and it follows that M is a subspace.

Let z € M and y € M+. Then of course (z,y) = 0, so we conclude that
MCS{zeH|VyeM:(z,y)=0}= (M),

Clearly, (M l)l is a closed subspace. We shall prove that (M L)L is the smallest closed subspace
which contains M.

Any closed subspace V' of H containing M will of course also contain M, so we may assume that M
is closed, M = M. Then it suffices to prove that if 2 € (MJ-)J' \ {0}, then there exists a A # 0, such
that Ax € M. Then by the definition, x € (ML)L, if and only if

Vye M™*:(z,y) =0.
By the definition, y € M=, if and only if
Vze M: (y,z)=0.
Assuming that = # 0 satisfies all conditions, that Az ¢ M for all A # 0, and that

(z,y) = (\z,y) for all y € M,
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we infer that there exist a A # 0 and a sequence (z,,) & M, such that x,, — Az. Since M was assumed
to be closed, we infer that Ax € M, which contradicts the assumption.

We conclude that there exists y € M=, such that (x,y) # 0. This shows precisely that = ¢ (M L)L.

Hence, if V is any closed subspace of H, containing M, then V 2 (M L)l, and (M l)l is therefore
the smallest closed subspace with this property.

Example 1.15 Let (e,,) be an orthogonal sequence in a Hilbert space H, satisfying

o0
Z |2 < oo.
n=1

Show that the series Y .- |y, is convergent in H.
Is this still true if we drop the orthogonality assumption?

Because (x,) is an orthogonal sequence and H is complete, it suffices to prove that the sectional
sequence

n
Sp = E In
j=1

is a Cauchy sequence, i.e.
Ve>03aNVm,n>N:|s,—s.| <e.

Using that (z,,) is an orthogonal sequence, we get for m > n that

2

m m
lsm = sall> =1 D 2| = D lal*
j=n+1 j=n+1

By the assumption, the series 3% | [|2,,[|* < oo. Thus there exists an N, such that

(oo}
Z llz;||* < & for every n > N.
j=n+1

If m >n > N, then

m o0
Ism = sall® = > lail> < Y llayl® < &2,
j=n+1 j=n+1

and we have proved that (s,) is a Cauchy sequence. The first claim then follows from that H is
complete and (s,,) is convergent.

We now construct a simple example, which shows that if (x,) is just a sequence of vectors in H
satisfying that >~ | [|z,||? < co, then the series Y 7 | z,, is not necessarily convergent in H.

1
Choose H = R, and let x,, = —. It is well-known that the harmonic series
n

) oo
1

D Tn=) =0
n

n=1 n

=1
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is divergent. It is also well-known that

2 _ _
g |z, || = E =G < 00
n=1 n=1

is convergent.

Example 1.16 Let H be a Hilbert space (infinite dimensional). Show that there is a sequence of
vectors (xy,) such that ||z,|| =1 for all n and (x,,2z) — 0 for all x € H.

When H is infinite dimensional, then there exists an orthonormal sequence (x,,), thus ||z,| = 1, and
(Tm,xn) = 0 for m # n.

Let « € H. It follows from Bessel’s inequality that Y - | (2,2, )z, is convergent in H with
o0
D @, za)* < .
n=1

The series on the left hand side is convergent, hence |(z,z,)*> — 0 for n — +o00 according to the
necessary condition of convergence of a series. This shows that

(x,2,) — 0 for n — +o0

for every x € H.
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Example 1.17 Let H be a Hilbert space. Show that
|z = 2]l = [lz = yll + [ly — =||

if and only if y = ax + (1 — )z for some « € [0, 1].

Figure 4: “The smallest detour”.

First assume that y = az + (1 — )z for some « € C. Then

le =yl +lly -zl = llz—ar—(1-a)zl+az+(1-a)z -2
= 0 =a)(@=2)l+llalz = 2)ll = (1 = o +[a))]|z - z]|.

If o € ]0,1], then
l-al+]of=1-a+a=1,
hence the equation is fulfilled in this case
If a € C\ [0,1], then |1 — «| + |a| > 1, and the equation is not fulfilled.

Then assume that y cannot be written in this way. If x = z, there is nothing to prove, because
|z — z|| = 0, and the right hand side is > 0. Therefore, assume that x # z. Then

y=oa(r—z)+w, where (w,z — 2) = 0.
Using a translation we see that we can put z = 0, thus

y=ar+w, where (w,z) = 0 and w # 0.
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We shall prove that

(6) ll=ll # llz = yll + llll-

In fact,

11 = @)z —wl| + [Jazx + w]|

VL= aPllz]? + [wl? + v]aPllz]? + [w]?
1 —al -zl + ol - ]

(1 —a+alz] = [z,

[l =yl + [yl

AVARAYS

and (6) is proved.

Example 1.18 It is well-known that any continuous function defined on [0, 7] can be approximated
uniformly by linear combinations of cosines. Is this also true if we instead approximate with sines?

The answer is “no”, because every function sin jt has the value 0 at ¢ = 0 and ¢ = 7, so no continuous
function f with either f(0) # 0 or f(7) # 0 can be uniformly approximated by linear combinations

of the form

k
Z bj sin jt.
j=1

Example 1.19 Let (e,) be an orthonormal basis for L*([0,1]). Construct from this an orthonormal

basis for L*(I), where I is a finite interval.

s=(t) = , t=¢" " Y(s)=a+s(b—a).

Then [a, b] is mapped linearly and bijectively into [0, 1].

Then put

il = a0l = = (=2 )

t—
It follows bye the change og variable s = ﬁ that

(Fmfn) = /abfmu)fn—(t)dt/abem(z_z) e (=2 ) a

= / em(s) eb(s) ds = (em,en) = 5mn7
0

proving that (fy) is an orthonormal sequence in L?(]a, b]).
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Now, L%([0,1]) is in a bijective correspondence with L?([a,b]) by

g(t) = (gow° ) (s), forge L*([a,b]),
h(s) = (hop)(t), for h € L*([0,1]),

and because (ey) is a basis for L?([0,1]), we conclude that (fy) is a basis for L?([a, b]).

Example 1.20 Let (e,) be an orthonormal sequence in L*(I), where I is a finite interval, with the
property that for any continuous f € L?(I) and any ¢ > 0 we can find N € N and constants ay, as,
.., an such that

N
Hf— S o
k=1

Show that (ey,) is an orthonormal basis for L*(I).

< E.

It is well-known that there is an orthonormal basis () in L?([a, b]) consisting of continuous functions
(e.g. some trigonometric system).

Let € > 0 be given, and consider any f € L?([a,b]), There exist constants by, ..., by, such that
P
=2 b
k=1
We may assume that the i have been arranged such that by # 0 for k = 1, ..., p. It follows from
the assumption that there exist N, € N and constants a1, ..., ar,n,, such that
Ny,
Pk Q€ < = ]-7 p
P |
Then

P N P P N
=D Y arges|| = (F =D beer+ D b | 0= arje;
k=1 Jj=1 k=1 k=1 Jj=1

IN

P Ny,
Z Kok || + Z bkl - {[or — > ax.je;
k= j=1

AN

P
13 I3 13
AU e A

The sum > p_, bk Z 2 ay je; is a finite linear combination of the e; for every € > 0, hence the claim
is proved.
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Example 1.21 Let S, T € B(H), where H is a complex Hilbert space.
Prove that if (Sx,x) = (Tz,x) for every x € H, then S =T.
This result is not true for real Hilbert spaces. Give an example.

We first produce an example which shows that the claim is not true in real Hilbert spaces.
Let H = (R2,+,',R), and let

S(x1,22) = (—2,71),
denote a rotation of the angle g around O, and let T'= 0. Then
(S(z1,22), (71, 72)) = ((—32,21), (21, 22)) = 0 = (T'(1,22), (21, 72))
for all (x1,22) € R?, and it is obvious that S # T.

We have in a complex Hilbertrum (cf. the polarization identity)

1 8@y +y) — (5@ -y )

+ (S(ix+y),i$+y)—%(S(ix—y),ix—y)

i
1
1
1

+£ {(Sz,2)—(Sz,y)+(Sy, 2)+(Sy,y) — (Sx, ) — (Sz,y)+(Sy, z) - (Sy,y) }

{(S:z:,:z:)+(Sx,y)+(Sy,x)+(Sy,y)—(S:r,ac)+(Sm,y)+(Sy, m)—(Sy,y)}
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Then it follows from the assumption that

(Sp,2) = (S +y)a+y) - (S—y)x—y)
—&-E(S(ix—i—y),ix—i—y)——(S(wc—y),ix—y)
= @@ty ety) - (T —y),e-y)
4 (Tl + y) iz +y) - § (Tliz — y),iv ~y)
= (Ty,x),

hence

(Sy—Ty,z) =((S—T)y.x)=0 for all x, y € H.

Choosing = = (S — T)y, we get ||(S — T)x||?> = 0, thus Sz = Tz for all z € H, and hence S = T.
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1.3 Fourier series

Example 1.22 Find the Fourier series (with respect to the usual trigonometric orthogonal system)
for the function

f(l') - ‘xlv HS [77(;’”[7
1

and then find the sum of the series Z:g —-
n

The function f(x) = |z| is even, so we have in the sense of L? that

1 =
|z| = 5 a0 + E ap, COS NI,
n=1

where

2/“ 2 [IQ]”
ag = — vdr=— |—| =m,
T Jo T 2],

and where for n € N,

1 T 2 g 2 1 . g 4 1 .

p = — |x| cosnzdx = = xcosnrdr =—< |x-— sinnx| — — sinnzdx
i - T 0 i n 0 0 n
2 1 o201

4
We conclude that ag, = 0 and that as,+1 = —m, thus
+oo
a0 4 1
S - 2n + 1)x).
2l =5 ;}W Gy (@t D2)

Remark 1.6 This holds in the sense of L2. However, the periodic continuation of f is continuous
and piecewise C'!, so one can prove that the result also holds pointwise. ¢

Using Parseval’s equation we get

+o0 2 too g 87
Do 4 3 agmpaF = T 4 18 1 1 2gp = L[Z] 220
L " — _— = - d == — =3 ?
5 ol +n:o‘a2 =g o — (2n+ 1) ﬂ/_wm T LJW 3"

hence by a rearrangementoraf ved omordning,

*f 1 (2 , 1,0 = 1 xt
= = (T — T === —.
2n+1)% 16 |3 2 16 6 96

n=0
Then finally,
+oo +o00 4 4 4
1 1 1 1 1 16
I R DIt gt B
n:ln (2) n:O( n+ 11— —
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Example 1.23 Find the Fourier series (with respect to the usual trigonometric orthogonal system)
for the function

0, —r<x <0,
f(a:)—{ cos, 0<zx<m,
n2
and then find the sum of the series Z:z m
Let k # 1. Then
1 (7 1 ["
ap = — f(z) coskxda::—/ cosz - cos kx dx
™) _x ™ Jo
1 ™
= —/ {cos(k + 1)z + cos(k — 1)z} dx
2 0
11 (I "
= 5 [kJrl sin(k + 1)z + 1 sin(k — 1)40 =0,

which for k£ =1 is supplied with

1 [" 1
al:%/o {c052x+1}dm:§.
Furthermore, for k # 1,
1 (7 . 1 [7 .
by = — f(z) smk;xdx:—/ cosx - sin kx dx
™) _x ™ Jo
1 ™
= —/ {sin(k + 1) + sin(k — 1)z} dzx
21 0
1 1 1 T
= 5 [k+1cos(k+1)xk_lcos(kl)x]o
L[ (=1)-(=DFt (=1) (=1)k? 1 1
B R ) e Ve e
27 k41 E—1 E+1 k-1
1 1+(—1)k+1+(—1)k
o2 | k+1 k-1 f°

If £ # 1 is odd, then by = 0. If k = 2n is even, then

y 1 2 2 1 dn
T or \2m+1l  2m—1f 7w 4n2—1

Finally,

1 [ 1
by = %/0 sin 2z dr = —E[COSQx]g =0.

We have proved that f(x) has the Fourier series

1 +oo oo

. 1 4
flx) = Zaop +Z{akcoskx+bksmkx} =35 cosx+z —

. - sin 2nx
2 T 4n? —1 ’
k=1 n=1
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where the equalities are in the sense of L2.

We deduce from Parseval’s equation

“+o0 T

1 1

pa Y it =1 [ 1@l
k=1 -

that
+o00 2 s T
116 n 1 ) 1 ) 1
§ iy WP L [eotede—o =
n=1

hence by a rearrangement,

f n? _7r2 {1 1}_7T2
2_12 1612 4 64
Ze(an2—1)7 16 |2 4f 64
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Example 1.24 Consider the Hilbert space H = w|) with the orthonormal basis (ey,) defined by

en(t) = \/12_71_ et n e Z.
For f € H we define f by
(0 f) =5 [ Feyean

—T

Show that f exists for all x € R.
Use the function f to express the Fourier expansion of f € H in terms of the orthogonal basis

(V2 en).

Let v € R and f € H be given and define the function g by
g(t) = f(t)e "

Show that for any v € R and f € H we have

“+o00

> i+ )P = oo 1513

n=—oo

0
Toake f =1 andy= —, 0 ¢ {pr | p € Z}, and show that
T
1 i‘" 1
sinf = (nm+0)

1) Tt follows from the estimate

f@l < 52 [ 17011t < e 1) =

1
Nor Il f1l2,

that (7) is convergent for every & € R, thus f(z) exists according to Lebesgue’s majorizing theorem.
2) The Fourier series is given by
> , 1 7 . .
Z cret*e, where ¢;, = o ft)e *tat = f(k),
k=—oc0 -
hence the Fourier series is

Z f(n)e™m® for f € L*([—m,7]).

n=-—oo

3) Then we compute

RIS T —imt iat gy L[ i@t g = f
g(z) = o /_Trg(t)e dt = o /_ﬂf(t)e e dt = o _Wf(t)e dt = f(z + 7).
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4) We shall only apply Parseval’s equation,

[e e} oo 1

S fm )l = 3 P = o ol = o [ Lrere = o1

n=—oo n=—oo —00

5) Let f=1¢€ L?([~m,n]) and v = 2, where 0 ¢ {pr | p € Z}. If x # 0, then
T

:% 2 T Tr 20 T

—T

f(x) 1 /ﬂ' 1. et gy — i [_i e—imt:|7r _ 1 1 gl _ e—izﬂ} _ Sinﬂ'x-
1
s

We note that if z = 0, then trivially,

£(0) i/ 1-1dt=1=lim ——

2 z—0 X

—T

We shall, however, not use this result.

It follows from (4) that

f(n+§)

(o]

2.

n—=—oo

¥ Sm(”(“g» > ‘u)”siner

n=-—o0o T <n + g) n=-—oo nm + 0
™

oo ) T
sin® 6 1 1
> g =g =g [ a1,

—T

hence by a rearrangement, because nw 4 0 # 0 for every n € Z, and because the series trivially is

convergent,

> 1
22
0 — =1
sin®0 D,
n=-—oo

Because sinf # 0 for every § € R\ {pr | p € Z}, we finally get that

e}

L1
= (mn+0)?  sin?6’
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Example 1.25 Let H denote a Hilbert space, (e,) an orthonormal basis and 0 < A < 1 a constant.
We define a sequence (g,,) in H by

gn =V 1—Ae,, n € N.

Find limy,, || f + gnl| for f € H.
Define the unction & by

) =1 forllfl <1,

and

&f)=0  for|fll>1

Show that im,, {(f + gn) = 1 if || f|| < A and lim,, £(f + g,) = 0 if | f]] > A
(The case || f]| = A is omitted.)

If we put f = Z;:l) frew, then f + g, = Z;;’j frer + V1 — A2e,, thus

2
I+ gnll® =D 1fsl> + |fu+ V1= v] =D AP+ +1= X +2V1—M\Re fo.

k#n k#n

It follows from f,, — 0 for n — 400, that

lim |If +gnll® = [I£]” +1 - 2%
n—-—+o0

If || f]] < A, then there exists N (A, f) € N, such that we for every n > N (A, f) have ||f + g.| < 1, i.e.
§(f+gn) =1 forn=N(A,f),

hence

lim &(f+gn)=1 for || f]] < A

n—-+oo

If | f]| > A, then we find quite analogously N (A, f) € N, such that ||f + g,|| > 1 for all n > N(X, f),
hence

§f+9.)=0 forn> NS,
from which follows that

lim {(f+gn)=1  for [[f[|> A

n—-+oo

37

Download free eBooks at bookboon.com



Hilbert Spaces and Operators on Hilbert Spaces 1. Hilbert Spaces

1.4 Construction of Hilbert spaces
Example 1.26 Prove that

2

1Pl = ;
2n+1

form=0,1,2,...,

where P, are the Legendre polynomials and the space is L*([—1,1]).

It is well-known that

1@
Pult) = gy g (5 =D

Using that we have the factorization (2 — 1)" = (¢t + 1)"(t — 1)" we get

dk

ﬁ((t%m):o at t=+1 fork=0,1,...,n—1

In the past four years we have drilled

89,000 km

That's more than twice around the world.

Who are we?

We are the world’s largest oilfield services company.

Working globally—often in remote and challenging locations—
we invent, design, engineer, and apply technology to help our
customers find and produce oil and gas safely.

Who are we looking for?
Every year, we need thousands of graduates to begin
dynamic careers in the following domains:

‘ ‘ m Geoscience and Petrotechnical

m Commercial and Business

What will you be?

a1 careers.slb.com Schiumberger
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Then by partial integration,

[ 11 (Pat)}2dt

1 ar

= way { i 0 g ]

1 n+1
— / d_l (t* —

/1 L 4 (t* —1)" (t* — )" dt
1 27n! dtn 2npl din

dn—l

dnfl 5
[ [ 2
" s (P 1

—1\" 1
= {(QTL:L)!}Q [1(t2 ) (- ) de
_ e /1 (£~ 1)" - (2n)ldt

{2mnl}? )y

N CI)) /1 (1— )" dt

{27nl}2

-1

2. {2(22?;2/() (1— 3 dt.

Then apply the monotonous substitution ¢ =

/01(1 —tHrdt =

™

0

us

sinu to get

x .
3 T
/ cos?" Ty du = / cos®™ u - cosudu
0 0

pi
s 2
[cos®™ u - sinu] 2 —|—/ o2n - cos?” L u - sin? udu
0

2
= 2n/ cos®™ Ly - (1 — cos? u) du
0

hence by a rearrangement and recursion,

™

3
/ cos?™ ™ udu
0

2n 2n — 2
2n+1 2n—1

Finally, we get by insertion,

(2n
{2

/1 {P,(t)}*dt =2-

) Z
n / cog2n 1
2n+1 Jo

2 [z onplln
.._/ cosudy — 2"
0

3 3
2n/ cos?™ L udu — 2n/ cos?" u du,
0 0

uduy = ---

|

3 (2n+ 1)1

(2n)!  {2"nl}* 2

)! j(g 2n+1
oy du =2 - = .
a2 Jo cosT T uau {2} (2n+ 1) 2n+1
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Example 1.27 Show that the Legendre polynomials are orthogonal in L?([—1,1]), and show that even
normalized Legendre functions (pp), n =0, 2, 4, ... is an orthonormal basis for the closed subspace
of even functions in L*([—1,1]).

By the way, why is this subspace closed?

We note that

1 dm m
Pnl®) = gt g (€07

is a polynomial of degree m,
P, (t) =ao+art+ -+ ant™.
Then clearly the Legendre polynomials are orthogonal, if we can prove that
1
/ th P, (t)dt =0, fork=0,1,..., mand m < n.
-1
We get by partial integration for £ < m < n,

! k 1 ! kA" 2
t'P,(t)dt = t t 1)) dt
/ ®) 2nn! / dtm (( ))

1 1
1 dt 2 2 ! k b dn! 2

= -1 - —1)") dt

|:2n,n!t dtnfl ((t ) ) . oanpl [1t dtnfl ((t ) ) d

Kot gk .
= "':(‘”kgnm/ L g (1)) de

—1

k! |:dn—k—1 ) 1
“ont | (=17 ] =0.
2npl | dtn—k—1 ( ) .

In fact, from k& < n, follows that n — k —1 > 0, so

= (1

dn—k—l N
T (@ =1)")

is a polynomial, which at least contains the factor 2> — 1, hence the boundary values are 0.

Combining this result with EXAMPLE 1.26 we obtain that the Legendre polynomials form an orthog-
onal system.

Denote by U € L?([—1,1]) the closed subspace of all even functions.

2 1
We have proved above that nt P, (t) is an orthonormal sequence, and since we get them from
1, t, t2, ... by Gram-Schmidt’s orthogonalizing method, they form an orthonormal basis for all of
L2([-1,1)).

Every function from L?([—1,1]) can uniquely be written as a sum of an even and an odd function.
Thus the next claim will be solved if we can prove that P, (t) is an even function, when n is even, and
an odd function for n odd.
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Clearly, (> —1)" is always an even polynomial, no matter the choice of n € Ny. By n differentiations
we either lower the degree of each term by n, or, the term totally disappears, because its degree is
smaller than n. Therefore, if n is even, then all terms of P, (¢) is of even degree, and if n is odd, then
all terms of P, (t) are of odd degree, and the claim follows,

Finally, we notice that it follows from
2n+1 L
U={t""|neNy},

that U is closed.

Example 1.28 Show that the Hermite polynomial H,,(t) can be written in the form

n—2k
2 n—2k

k:o(_1> k!(n — 2k)! ’

where [z] denotes the integer part of x.
Show that

Hypa(t) = 2t Hy, (t) — Hp (1),
and that
H(t) =2nH,_1(t).
Use these results to show that H,, is a solution to the Hermite differential equation:

d%x dx
— —2t— +2nx =0 teR.
a2 at T =0 <

By the definition,

e G (),

&

-~

=
|

H(0) = (<17 0 (o) () s cayret S () = 2t H(h) — Ho )

and hence by a rearrangement,
(8) Hosa(t) = 2t - Hy(t) — H, (1),

Putting

w3

] X 2n—2k
=n! _ -
on(t) =n! k:O( V™ =2

n—2k
t )

it follows that

¢o(t) =1 = Ho(t),
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and

21—2-0

e1(t) =1(-1)° 0 =2t = Hy ().

0!(1-0)

If we can prove that @, fulfills (8), then it follows by induction that ¢,, = H,,, and the claim is proved.

First we get

(5] 2n+172k [z] 2n72k

2t - pn(t) — @ (1) = n! ’;)(_1)16 } m grt1=2k _ kzo(_l)k . m (n—2k) - 4172k,

Then we have to split the investigation into the cases of n being even or odd.

American online
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If n = 2p, then
2tpap(t) — Py (1)
P 2p+1-2k
92p
— 2 ] _1 k . t2p+1—2k
2p) kzzo( ) f2p = om!
p—l 2p—2k
22p
—(2 | -1 k,o_ =  42p—1-2k
(2p) k:o( )y =1 =2

p 2p+1—2Fk
2P 2 1-2k
_ (2]7)! § :(_1)k . ( P+ ) _t2p+1—2k

2 Kl(2p + 1 — 2Kk)!
p 2p+2—2k
24P k
—(2 ! -1 k—1 . t2p+1—2k L
(2p) ;;( R T Ty s T Y k
p 2p+1—-2k
= (2 )l Z(_l)k . L . (2 +1—2k+ 2k)t2p+1_2k
P K(2p+1—2k) P
p 2p+1—2k
24P _
=@2p+ 1)) (-1)F- W2p+1—2k) PP = o ().
~ ! !
If n = 2p + 1, then analogously,
2t - api1(t) — w1 (t)
p L 22p+2—2k tpt2—2k
—2pr IS (m)k S e
(2p+ )kz:%( ) Hep i 2n)
p 2p+1—2k
24P
—2p+ 1Y (-1 2
2p+1) kz=0( AR TA T
22p+2=2k . (2p 4+ 2 — 2k)
= (2 1)! -1 k. 2p+2—2k
(2p+ )k;)( ) M(2p+ 2 2k)!
ptl 2p+3—2k
24P k
—(2 1 ] 1 k—1 L. t2p+272k
(2p+ );( N e T F e To TR
pt1 92p+2—2k
=@2p+ 1)) (-1 Hop T2 om (2p + 2 — 2k + 2k) - P22k
~ ! !
ptl 2p+2-2k
24P _
=(2p+2)! ) (-1)*- W(2p+2 = 2k)! PPN — oo a (1),
~ ! !

Then it follows by induction that o, (t) = H,(t).
We have already proved above that

H,1(t) =2t Hy(t) — H, ().
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ALTERNATIVELY,

(—1)" C‘;t—z (e_tz) = et H, (1),

hence

e Hyn (1) = (~1) () = . {e7 B} =2t Hat) = e H, (1),

dtn+1 dt
If we multiply by etz, we get precisely

H,1(t) =2t H,(t) — H.(t).

Using the previous result on the series expansion, we get for n = 2p even that

- k 2P ok
H,(t) = Hoy(t) = (2p)! 1) P,
hence
- k 22p—2k 2p—1—2k
H\(t) = H,t)=2p)!Y (-1)f —FF—?1~
[%] X 9. 2n7172k ok
= n-(n—1)! Z(fl) ~mt"7 TN =2nH,_1(t).
= ! !
If instead n = 2p + 1 is odd, then
p 2p+1-2k
22p
H,(t)=H (2 1)! —t2p+1_2k
(t) = Hopya(t) = (2p + kgo H2p 1ok :
hence
H/ _ HI _ 1 | [%] 1 k 2 i 2”7172’6 n—1-2k
W) = Hyp () =n-(n-1) (=1( mt

k=0
= 2m Hn,1 (t),

and the claim is proved.
It follows from the above that
H! (t) =2t H,(t) — Hp11(1), H (t) =2n H,_1(t).
When we differentiate the former equation, we get
HY(8) = 2 HL(t) + 2 Hy(t) — Hip (8),
and we have by the latter equation that

HT/L+1(t) = 2(” + I)Hn(t) = (2n + Z)Hn(t)a
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hence by insertion
H//(t) =2t H, (t) — 2n H,(t), teR,
and we get by a rearrangement,

H)/(t) — 2t H,,(t) 4+ 2n H,(t) = 0.

Example 1.29 Consider in L?([0,1]) the sequence of Rademacher functions:

en(t) = Z(—l)jl]% (1), n € N.

1) Draw the graphs for e1, ea, es and ey.
2) Show that (ey,) is an orthonormal sequence in L?([0,1]).

3) Show that (ey) is not an orthonormal basis.

1) For some strange reason I have not been able to let MAPLE sketch the graph of e4(t) — at least
not within 4 minutes. The former three graphs look as follows:

e
01702 04 o6 08 1

Figure 5: The graph of e (¢).

2) Tt follows from |e,(t)] = 1 for almost every ¢ € [0, 1] that

1 1
(en,en) = / en(t)2dt = / dt = 1.
0 0

If m > n, then

2" 1 (21 i
(emsen) = Z(—l)ﬂ{z / (—1)’6-1]2%,%[@)&}:0,
k=0 v 2™

Jj=0

because a simple consideration of the graph shows that the expression inside {---} is 0, when
m > n, hence {e,} is an orthonormal sequence.
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0.5

et
01702 04 06 08 1
x

05

0.5

07702 04 08 08 1

-05

4 —_ = = —

Figure 7: The graph of es(t).

3) We prove that {e,} is not total. If e(t) = 1j,17(t) # 0, then
(en,e) =0 for every n € N,

thus {e,, } is not total, and hence not an orthonormal basis either. We see by a parallel translation to

x = — that with respect to this coordinate all functions e, () are odd, explaining the phenomenon.
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Example 1.30 Consider in L*([0,1]) the sequence of Haar functions:

hi(t) =1,
and
k—1 2k — 1
h2m+k(t): v2m fO’f’ %m sts W’
2k — 1 k
hom 1 (t) = —v/2™  for omi1 <k< om?

hom () =0 else,
where k=1, 2, ...,2™ andm =20, 1, 2, ....
1) Sketch the graphs of hy, ha, ..., hs.
2) Show that (h,) is an orthonormal sequence in L?([0,1]).
3) Show that (hy,) is an orthonormal basis in L*([0,1]).

08

0.6

02

02 0 02 04 06 08 1 12

Figure 8: The graph of hy(t).

2) Let n # m, e.g. n > m. If hy(t) - hyp(t) = 0, there is nothing to prove. If instead h,, - hy # 0,
then hy,(t) - h,,(t) is piecewise constant, and h,,(t), n > m must be an odd function with respect
to the midpoint of {¢ | hy(t) - hm(t) # 0}, where we ignore the values at the midpoint and at the
endpoints. It follows that

1
(hs o) = / hn(t) - hn(t)dt =0, for n > m.
0

Finally,
1
/ hi(t)?dt =1,
0
and
1 ) o 2 o 1
/ {ham 4k (t)} dt:/ {i\/2m} dt:/ 2t =2" =1
0 k— —1

27T 27T

Hence we have proved that (h,) is an orthonormal sequence.
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0.5

0.2 02 04 06 08 1 12
x

05

Figure 9: The graph of ha(t).

-020]704 70406708 1 12
X

Figure 10: The graph of hs(¢).

-020]702704 06 ¢8| 12

Figure 11: The graph of hy(t).

3) Assume that

(f,hn) =0  for every n € N.
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0.2 | 9.20.40.60.8 112
X

Figure 12: The graph of hs(t).

-0.2 | 0.2004D.60.8 11.2

Figure 13: The graph of hg(t).

-0.2 | 0.20.40.50.8 11.2

Figure 14: The graph of h7(t).

We shall prove that f = 0 almost everywhere. Put

F(t):/o f(u) du.
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-0.2 | 0.20.40.60. 1.2
X

Figure 15: The graph of hg(t).

Since f € L%([0,1]) € L'([0,1]), we infer that F(t) is continuous, and that F(0) = 0. It follows
from

(. h1) :/O F(#)dt = F(1) = 0,

that F(1) = 0. Furthermore,

1 1
(f.ha) = / F(tydt - / f(t)ydt =0,

sssssssssssssvsssssassssssssssssssssnssssssssssnnsssssssssssssssssssssssfilcgte]-Lucent @
www.alcatel-lucent.com/careers

2%

One gerrmer:;trion’s transform;tio; is the next's status quo.
In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there

needs to be “The Shift".
E E Y
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thus

F(3)- / Py dt = /;f(t)dt,

and hence

F(t)—()—/oéf(t)dtJr/llf(t)dt—QF(%),

1
proving that F' (5) = 0. It follows from

<f,h3>=ﬂ{/ff<t>dt—/jf<t>dt}=o,

that

F(%) =/(ff<t>dt=/; Ftydt,

hence

2F<i) :/Oif(t)dt—k/}ff(t)dt—F(%) 0.

We continue in this way, so we conclude that

F(%)—O forall k=0, 1, ..., 2™ and all m € Ng.

The function F'(t) is continuous, and the set

k
{2—m ‘ k=0, 1,...,2m;meN0}

is dense in [0, 1], hence F'(t) = 0. This implies that f = 0 almost everywhere, and we have proved
that the (h,) form an orthonormal basis.
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Example 1.31 Prove that the k-th Laguerre polynomial can be written

n=3 50 (5) ¢

Jj=

and then prove that

+oo
t
ZLk(t)wk: T P (—%) for|lw| <1, t>0.

By the definition of the Laguerre polynomials,

1, dr -
Ly(t) = 7y ¢ o5 (tFe™).

We first prove Leibniz’s formula as an auxiliary result. First note that if f, g € C*® (possibly only of
class C" for n sufficiently large)7 then

d df
E(f'g) g+rf—

& d2f df dg > /2 . B
m (9= "5 g2+ dtz—Z(j)f(“(t)~g(2 ().

j=0
We now prove Leibniz’s formula for differentiation of a product,
n
n - n—i
¢ a=3 (1) 1000
o\ 7
According to the above this holds at least for n =0, 1, 2.

Assume that the formula is true for some n € N. Then
n

dn+1 d ' 4
qptt (f-9) = g Z( ;L ) f(])(t) ~g(”_])(t)

j=0
_ g (" ) FI (0 (1) + : ( " ) FO (09" (1)

— ( Z )f("+1)(t)g(t) + ( g )f(t)g("“)(f)

+Z{( il ) ( 7]1 )}f(j)(t)g(nﬂ—j)(t)

- (2]) f<"+1><t>g<t> ¥ ( Hh) s
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because
< n )+(n) B n! N n!
j—1 i) G=Din+1-5) " jin—j)!
n! . n+1
- (Jtn+1l-n)= . .
jln+1—j) (G +n n) ( J >
Then Leibniz’s formula follows by induction.
When we apply Leibniz’s formula on Ly (t), we get
1,db o 1 e~k dT
W) = e =gl G) @ @) g )
Lo~ ( K - k= (k=) jo—t
= Hez ; Eo(k—=1)---(j+1)-t (—1)e
§=0
SR RE=D G EC) (kL
= > (" o (—1)elet =) — )
o\ k! = 7 J

/
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Then by formal computations,

St = ELG(5)er-EEGE (§)
(

We have for |w| < 1,

1 1 dﬂ . 1d‘7 +00 . 1+OO ' o
(I—w)yitt ﬁw(l—w) :szw :ﬁzk(k_l)"'(k+1—J)w J
k=0 k=j
+o0 +o00 too )
! R ki <k) - ki) o«
= =Y k=S et =3 (Tt
E o (k—j)! = J ot j

hence formally,

+§L (t) k io (—tw)j 1 i+ 1 = 1 tw J 1 o tw
- = . = — — _—— = X _—— .
- v ;1 1—w T—w i\ 1w T—w P\ "1 0w

0

[

These computations are, however, legal, if |w| < 1 (an assumption which was used above), and if
furthermore it is allowed to interchange the summations. It follows from

(5)el=s (4 m-aem

mate) =[S

k
Jj=0 J

that E:ﬁg Ly (t)w" is convergent for all |w| < and we conclude that all the formal computa-

1
1+t
tions above are indeed valid in every closed subset of |w| < 1. Hence

= 1 tw 1
Li(tw" = U f <
kz_o k(thw 1weXp( 1w) or |wl < 357

Now, for every fixed ¢ the right hand side is analytic in all of |w| < 1, thus

“+o0
1 t
T P (—%) = kz_oaj(t)wk for |w| < 1.

Then it follows from the uniqueness theorem that ax(t) = Li(t), hence the formula holds for every
t > 0 and every w € C satistying |w| < 1.

54

Download free eBooks at bookboon.com



Hilbert Spaces and Operators on Hilbert Spaces

1. Hilbert Spaces

Example 1.32 Prove that

+oo
/ e 'Ly (t) Ly(t)dt =0 for0 <m < n.
0

The Laguerre polynomials L(t) are given by

k
Lo & ety hen,

Using a combinatorial argument on the differentiation of the product it follows that L,,(¢) is a poly-

nomial of precisely degree m. Then clearly the condition
+oo
/ e "tPL,(t)dt =0  fork=0,1,...,m,
0

implies that [,
of 1, ¢, t2, ..., t™.

T2 et Ly (t) Ly (t) dt = 0, because Ly, (t) can be written as a finite linear combination

We get by partial integration (note that the exponential function secures that the contribution of the

“boundary” at +o0o becomes 0),

+o00o
/ et th L, (t) dt
0

“+o0 mn
1 d 1
:/ e_ttk-—et—(t"e_t) dt:—/
0 n!  dt? n! Jo

1 |: L dn—l » :|+°° k +oo b1 dn—l
=— |t (t"e —— it
) o dtnfl

n! dgn—1 n! Jy

n! Cdtn—k

+00kdn

dtn

klotee o gnk Kl [ dnkt
_ k n  — _ k
(—1) /0 1 (tme”t) dt = (-1) g [rnkl (t

n—k—1

and the claim is proved. Here we have applied that T

1) is defined (because k < n),

(t"e™)

(t"e™") dt

(the ) dt=---

+oo
n e—t) — 0’
0

2) contains at least one factor ¢, (thus the contribution of the boundary is zero at 0),

3) has the form P(t)e~!, where P(t) is a polynomial, hence the boundary contribution at +oo is 0

due to the difference of magnitude.
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Example 1.33 Prove that

“+00
/ e {L,(t)}? dt =1, neN,.
0

It follows from the fact that

1, d"
Lnt — St +m —t
®) nl © din ( ¢ )
is a polynomial of degree n that the integral is convergent. We get by insertion followed by partial
integration,
+oo 1 +oo dm dm
L.} dt = —/ P (t"e ™) — (t"e") dt
| et e g ) g ()
1 . dn dn—1 too
— _ tn —t . tTL —t
(n!)2 [e din (t"e™) din—1 (t"e )L
1 +oo d . dm . qr—1 .
— — — (t"e” t" et dt.
(n!)2/0 dt{e a (e )} T ()
m—1
From ] (t"e~t) = t-{ -} follows that the lower boundary contribution is 0, and since the

boundary term is of the form e=*P(t), where P(t) is a polynomial, the upper boundary contribution
is also 0. Hence

+<>Od

[Tt a=— [T A et eyl S et a
o " (nh2 J,  dt dtn dtn—1 '

> Apply now

REDEFINE YOUR FUTURE
AXA GLOBAL GRADUATE
PROGRAM 2015

redefining / standards M

N
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Repeating the argument above we get after n steps that

/OH>o e tH{L, ()} dt = % /;OO 577; {et % (t e_t)} et dt.

mn

d
Then notice that e i (t"e~t) is a polynomial of degree n. When we differentiate n times, all terms
of lower degree have disappeared, and the only contribution comes from the term of highest degree,

which is given by
dTL
et T dt_n (e—t) — (_1)net " e—t — (_1)n .

When this is differentiated n times, we get (—1)"n!, thus

dr d" n _— n
dt—"{et% (t"e t)} =(-1)"nl

Then by insertion into the above,

+oo 5 (_1)n +oo 1 +oo 1
/ e H{L,(t)} dt = / (=)™ -nlt"e tdt = — t"etdt =~ -nl =1,
0 (n')g 0 n! 0 n!
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where we have applied that

+oo
M(n+1) :/ t" e tdt = nl.
0

Example 1.34 1) Prove for |w| <1, t >0 that

“+o0
t 1 114w
k _— = e =
kg_ow exp( 2) Ly (t) T~ exp( 5 1—wt> g(t,w).

2) Prove for every w €] —1,1] that

+o00 N " 2 1 N
/ g(tw) = w'exp (——) Li(t) p dt = ——5 — > w?.
0 k=0 2 1-w® =
. 1 14w .
3) Prove that the image of « = 31 is 10,400 | for the range w € —1,1].
—w

4) Prove that every function e=** (where a > 0) can be approzimated in the sense of L? over |0, 400 |
by a finite linear combination of the form

kz:)ak exp (-%) La(t).

1) Let |w| <1 and ¢t > 0. Then it follows from EXAMPLE 1.31 that
k

Ly =3 Y ( : ) o

1l
=0 I

and we get the following crude estimate,

exp (—%) Lk(t)‘ < exp <—%> f:( I; ) ) = exp (—%) (L+t)F < (1 +1)k,

=0

from which we conclude that the series
+oo n
Zwk exp (—§> Lyi(t)
k=0

1
is at least convergent for |w| < 71 We restrict ourselves in the following to a closed disc
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1
contained in |w| < ——. Then
1+1¢

il |
k=0 =0 I k—0j—0 7
400 + ; +o0 +o0
_ (=1 [k K _ t 1 k+3j ket
= exp <2> ZZ i J t7 w” = exp —3 i (—t)’ Z j J
j=0 k=j j=0 k=0
+oo i too
—tw)’ k+j k
=exp|—= w
p( ) — ! Z ( J
7=0 k=0
We get from ExaAMPLE 1.31 that
+oo .
1
z:<l</l—i_'j>'l,l}l<:::l‘7_"_1 f0r|w‘<1,
k=0 J (1= w)
. 1
so if jw| < ——, t > 0, then
14+t
+oo +oo
Swtesp( 1) Lelt) = exp(—5) D T (~twy
2 ) £~ 4! (1 —w)itt
k=0 7=0
1 ( t) =1 ( tw )J
1—w 2 = 1—w
1 t y w
= exp| —= |exp| —t- ——
1—w P\ 7o )P 1—w
1 ; 1 n w
= X — p— —_
1—w P 2 1w
1 t(1—w 2w
= e _—— _ —_—
1 AT 1w 1w
t 14w

1
This is true for all |w| < ¢ However, the right hand side is an analytic function for |w| < 1,

and since the series expansion exists and is unique in this domain, the formula holds for |w| < 1
and t > 0.
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t
2) Now exp <—§> Li(t), k € Ny, so an orthonormal system on L?([0, +-oo[)for w €] — 1,1[ is given

2

+oo "
w” exp (—2) L (t)
k=N-+1

t
)

+o0 +o0 N N
>

k=N+1 k=0 k=0 k=0

3) Tt follows from

da 1 1 1
«@ s 1—w+1 - f ~1.1
dw 3 (-2 1-w+14+w) A=)y >0 orwe]—1,1],

that o(w) is increasing, and a(—1) = 0, and a(w) — +oo for w — 1—. Hence « runs through

10,400 [, when w runs through | — 1,1].
1 1
4) Putting a = — - —tw we get
2 1—w
w—+1 —2a+1 200 — 1
— =2 th = =
w1 @ BT T Tl T 2a 1
and
200 — 1 20+ 1 —2a+ 1 2
l-w=1- = = .
200+ 1 200+ 1 200+ 1

It follows from the above that

I
&
8
[\
o)
_|_l\D
—_
N
DO | DO
[SHRe]
+
=] =
N———
]
k]
i)
/T\
|
N———
b(
e
=

k=0
Then by (2),
too N k
2 200 — 1 t
ot —— | Li(t) p dt
/0 {6 kZ:OQa—i—l (2a+1> eXp( 2> k()}
Too 2N+2
_ Z 2%k _ ’lU2N+2 - 1 ) <2OZ 1>
— w2 2
et 1—w B 200 — 1 200+1
20 +1

e (o) (o
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2
200 —1
Now ( ) < 1 for every a > 0, so to every € > 0 there exists an IV, such that

200+ 1
(402 = 1)2 (20 —1\*" B
4o 2 + 1 ©

and the claim is proved.

t
Example 1.35 Prove that the functions exp <—§> Li(t), k € Ny, form an orthonormal basis for

L2(]0, 400]).
Given € > 0 and f € L*([0, +oc]), i.e.

—+oo
112 = / (@) di < +oo.

The set C([0, +oc0]) is dense in L2([0, +00]), so there exists a ¢ € C([0, +00[), such that

€
ILf—ell2 < 3

From ¢ € C([0,400[) follows that there exists an A € R, such that ¢(x) = 0 for every x > A. Define

1 1
o) — 7 (ln ?) for t €]0,1],

0 for t = 0.

Iy

" >rnationalgg
ELTEE] Businesgs )
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Then ¢ (t) = 0 for t € [0,e4], and t(t) is continuous in [0, 1].

Given any § > 0. (We shall later choose § depending on € and A). It follows from Weierstraf’s
Approximation Theorem that there exists a polynomial ZZ:O ax t¥, such that

‘w(t) = axt
k=0

&
5= <.
<073

1
It follows from the above that ¢ (ln ;) = t)(t), thus

1 n L 1 n k+1 c
w(ln;)—tZakt = w(ln;)—Zakt <§.
k=0 k=0
. 1. _ dt
Then we get by the change of variable x = In r ie.t=e"" and dzr = 5
—(k+1)z /+OO (x) Z —(k+D)z| 4 /1 tp(t) tz ok dt
— ar e x) — ar e X = — ar —
: kz:O 2 0 il k=1 0 k=0 t

1 n 2 1
/0 t w(t)—kzzoakt’“ dt < (%)2/0 tdt < (%)2

Using the result of EXAMPLE 1.34 it follows that to every £ = 0, ..., n, there exist constants by ;,
j=0,1, ..., Ng, such that

Ny,
e t+1z _ AN e 1t

lak| - ||e Zbk’] exp( 2) Li(z)|| < 3 nr1

Jj=0 2
Putting

n Ny, x N T

o} by e (=3) Luw) = 3 e e (=3) L),

k=0 7=0 7=0

where N = max { Ny, Ny, ..., N, }, we get
a x

) =3 s exp (-5) Li@)

= 2

+
2

< If—el2+

<p(ac) _ Zak e~ (k+D)z
k=0

n Ny,

_ X
> ape”FFDT N Ty exp (_5) L;(x)
k=0 k=0

2

n Ny,
e € _ - x
< 3 + 3 + E laj| - ||le”R+Dz g bi.; exp (—5) Li(z)
k=0

=0 )
Zn € 1
Jrkzog.n—i—l -

+ +5+5 =5

Wl M
Wl M
Wl ™
Wl M

<
3

62

Download free eBooks at bookboon.com



Hilbert Spaces and Operators on Hilbert Spaces 1. Hilbert Spaces

and we have proved that there to every f € L2([0,+oc[) and every ¢ > 0 exists a finite linear
combination

N
Y exp (—;) Lj(x),
j=0

such that

N
x
flx) = —ch exp (—5) Lj(z)|]| <e.
=0 )
x
Because {exp (— 5) L; (.13)} is also an orthonormal sequence, we conclude that it is an ortonormal

J€Ng
basis.

Example 1.36 Prove for the n-th Chebyshev polynomial T, (x) that the coefficient of x™ is 2"71,

n € N.

We know that T),(z) is a polynomial of degree n, hence it follows from the recursion formula,
Tni1(x) =22 T, (x) — Tho1(x), n €N,

that the coefficient of 2"+ in T}, (z) is equal twice the coefficient of 2™ in T),(x). In fact, the term
—T,—1(x) is only of degree n — 1.

It follows by induction that if the claim holds for T),(x), then it is also true for T,,+1(x).

Clearly, the claim is true for T} =1 = 27! where n = 1, so it follows in general by induction.

Example 1.37 Prove that the n-th Chebyshev polynomial T, (x) has its n roots lying in the interval
[—1,1].

The polynomial Ty, () is of degree n, so it has at most n roots in [—1, 1]. According to the Fundamental
Theorem of Algebra the polynomial has n complex roots. The problem is that some of them might
lie outside the given real interval.

In order to find the roots we apply the definition
T, (z) = cos(n - Arccos x).

From cost = 0, if and only if ¢t = g + pm, p € Z, we get the condition

1
Arccosmzﬁ{——i—p}, pEZ.
n 2
T (1 1
Now Arccos z € [0, 7], so — 3 +pp €]0,7]. For the relevant values of p € Z we get 3 +p € [0,n],
n
thus p=0, 1, ..., n — 1. These values correspond to

(1
aczcos(—{——l—p}), p=0,1,...,n—1.
n 2
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On the other hand, it is easily seen that these n numbers, which are mutually different and all lie in
the in the [—1, 1], indeed are roots in T, ().
Example 1.38 Prove that T, is a solution of the differential equation

A’z dx
2 2
(17t)dt2 ftdtJrnx:O, te]—1,1[

From the definition of T},,
x(t) = T, (t) = cos(n - Arccos t),

follows by direct computation,

x = cos(n - Arccos t),
dx in(n - A n < 1 > in(n - A "
— = —sin(n-Arccost) n- | ——— | =n- ——— - sin(n - Arccos t),
dt V1 —t2 1—¢2
d? 1 —2t
—f = n-{ -5 ————3 -sin(n - Arccos t)
dt 2 (VI—B)
+ ! (n-A t)( - )
n- -cos(n - Arccos ) - | —
V1—1t? V1—1t2
- Sin(n - Arccos 1) — 1 - cos(n-con(n - Arccos 1)
= —————— -sin(n- Arccos t) — —— - cos(n - cos(n - Arccos t).
(1—12)V1 -2 12
Then by insertion
d*x dx
1—t%) =5 —t— +n?
(=) G ~tgg e
t
= 1n = -sin(n - Arccos t) — n? - cos(n - Arccos t)

-sin(n - Arccos t) +n? - cos(n - Arccos t)

1—¢2

and the claim is proved.

Example 1.39 Prove that

max
te[—1,1]

1
Qn—_lTn(t)‘ = oot

Let Py be any other polynomial of degree n and of coefficient 1 to t"™. Prove that

1
on—1"

P, (t
té}lafiﬂ ()] >

From T, (t) = cos(n - Arccos t) follows that |T,,(t)] < 1. For t = 1 we get

T, (1) = cos(n - Arccos 1) = cos(n - 0) =1,
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thus

1
—TL(t)| = .
N P (>' ST

Let P, be a polynomial of degree n and of coefficient 1 of ™. Then
Tni1(t) =2t T (t) — Tr1 (2), n € N,

and Ty(t) = 1, Ty(t) = t. Since T,_1(t) only has degree n — 1, it follows by induction that the
coefficient of " in T),(¢) is 2"~ . This means that

1

Qn—l(t) = F

Ta(t) — Pa(t)
is a polynomial of at most degree n — 1.

The latter claim is now proved INDIRECTLY. Thus assume that P, (¢) has been chosen, such that

P,(t)] < .
tén[_affl]| Ol < 5o

2k
Now T, (t) = cos(n - Arccos t) = 1 for n-Arccos t = 2k, i.e. for t = cos (%), and T),(t) = —1 for

2 1
t = cos ( k: 71'). We therefore conclude that

n

Qn-1(t) > 0 for t = cos (%—W> , and Q,_1(t) <0 for t = cos <2k +1 7T> .
n

Need help with your
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Get in-depth feedback & advice from experts in your
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Because |T,,(0)] = |T,,(1)] = 1, it follows from the continuity that @,—1(t) has at least as many

1
zeros in [0,1] as T,,. Now, T,(t) = 0 for n-Arccos t = [k + 5)™ i.e. for n different values tj, =

2k +1
cos ( 2+ 77) € [0,1], hence @,,—1(t) must have at least n roots in [0,1]. However, Q,_1(t) is at
n

most of degree grad n — 1, hence @Q,,—1(t) = 0. We conclude that

Pu(t) = 27%_1 T, ().

It follows that if the coefficient of t™ in P, (t) is 1, and P, (t) # T,,(t), then

1
Po(t :
[ 1P ()] > 5o

Remark 1.7 It is easily seen for a general polynomial
Pn(t):Zaktkv an#ov
k=0

that

66

Download free eBooks at bookboon.com



Hilbert Spaces and Operators on Hilbert Spaces 1. Hilbert Spaces

1.5 Orthogonal projections and complement

Example 1.40 Let H be a Hilbert space and let P and @ denote the orthogonal projections on the
closed subspaces M and N, respectively. Show that if M L N, then P+ @ is the orthogonal projection
on M & N.

When M | N, then
MeN={z€H|z=ax+y,x€ M,ye N}.
Then

(P+Q)z,y) = (Pz,y) + (Qz,y) = (z, Py) + (z,Qy) = (z,(P + Q)y)
for x, y € H, implies the first condition for that P 4 @ is a projection.

Now, PQx = 0 for all x € H, because Qz € N | M, and analogously QPz = 0, because Px € M 1
M. This shows that PQ = QP = 0. We shall apply this result by the reduction below of (P + Q)2.
In fact,

(P+Q)P=P+Q)(P+Q) =P +PQ+QP+Q*=P+0+0+Q=P+Q.
We have now proved that P 4 @ is the orthogonal projection onto the closed subspace

{zreH|(P+Q)z=Pz+Qz=z}={z€H|z=ax+y,z€M,yc N} =M&N.

Example 1.41 Let P and @) denote the orthogonal projections in a Hilbert space, and assume that
PQ = QP. Show that P+ @Q — PQ is an orthogonal projection and find the image of P+ @Q — PQ.

Using that P and @) are projections, we get

(Pr,y) = (z,Py)  and  (Qz,y) = (2,Qy),
and P? = P and Q? = (). We shall prove that assuming that PQ = QP then the same conditions
hold for R = P + @ — PQ. By a computation,
= (z,Py) + (z,Qy) — (Qz, Py) = (v, Py + Qy) — (z,QPy)
= (Jc,Py—l—Qy) - ($7PQZ/) = (‘rv(P+Q_PQ)y) = (iE,Ry),

and the first condition is proved.

Then by another simple computation,
R = (P+Q-PQ)(P+Q-PQ)
= (P*+PQ-P’Q)+(QP+Q*-QPQ)+(-PQP—-PQ*+PQPQ)
= P+PQ-PQ+PQ+Q-pQ*—PQ—PQ+PQ
= P+PQ+Q—-PQ—-PQ—-—PQ+PQ=P+Q—PQ=R,
and we have proved that R = P + Q — PQ is a projection.
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Remark 1.8 We note that
R=1I—-(I-P)I-Q).

It follows from the assumption PQ = QP that also
(I-P)I-Q)=(I-Q)I-P).

With more theory at hand it is possible to prove that if

PH)=M  and  Q(H)=N,
(I-P)(H)=M" and (I-Q)(H)=N",

(I-P)(I-Q)H)=M"nN".
Then we get

R(H) = {I— (I-P)(I-Q)}(H) = (M*nNY)" = M+t 4 N = M+ N,
where

M+N={zeH|JzeM3IyeN:z=z+y}.
Note that the splitting z = x + y is not necessarily unique. ¢

The proof of the remark above requires a little more of the reader than can be expected. Therefore,
we give below an alternative proof.

Let P(H) = M and Q(H) = N. It follows from PQ = QP that for every x € H,
PQz € MNN.
In fact, PQz = P(Qz) € M, and PQz = QPx = Q(Px) € N. Conversely, if x € M N N, then clearly
PQx = P(Qx)r = Pz =z,
and we infer from
(PQ)* = PQPQ = P(QP)Q = P(PQ)Q = P*Q* = PQ,
that when PQ = QP, then PQ is the orthogonal projection onto M N N.
We shall prove that the image of R = P + @ — PQ is
RH) =M+ N:={zcH|JeeM3Iye N:z=zx+y}.
Clearly, R(H) € M + N. In fact, Px € M, Qz € N and PQxz € M NN, from which we conclude that

Rxr=Pr+ Qr — PQx e M+ N.
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Now, M and N are closed subspaces of the Hilbert space H, so they can also be considered as Hilbert
spaces. They both contain the closed subspace M N N, hence there exist a subspace M; of M and a
subspace N7 of N, such that

M=M @& (MNN) and N=N,&(MnN),

and we conclude that

(9) M+N=M; &N & (MnNN).

Let z € M + N. We shall only prove that Rz = z. By (9) we can write z uniquely in the form
z=ux1+y1 + 21, where z1 € My, y1 € N1, 2z € MNN.

In particular,
ry = Pxy, y1 = Qu, Pz1 = Qz = PQz1 = QPz = 21,

and we get by insertion that

Rz = (P4+Q—PQ)(x1+y1+2)

(Pz1+Pyi+Pz1)+(Qr1+Qy1 +Q21) — (PQr1+PQyr + PQz1)
(T1+PQy1+21) +(QPr1+y1+21) = (QPx1+ PQy1+21)

= x1+Y+21 =2

We have proved that R is the orthogonal projection onto M + N.

Example 1.42 Consider C([a,b]) with the sup-norm, (here we take only real functions and consider
it as a real vector space) and consider the functionals

a(f) = max f(t),  B(f) = min f(7).

t€la,b] te(a,b]

Are these functionals linear and/or bounded?

None of the functionals is linear. It follows from max{— f(¢)} = —min f(¢) that it suffices to consider
= t
o(f) = max f(¢),

even in the interval [a, b] = [0, 1].
Choosing f(t) =t and g(t) =1—1t,t € [0,1] we get

a(f) = alg) = 1.
From f + g =1 follows that

al(f+g)=1#2=a(f)+alg),

and we have proved that « is not linear.

We have in general

la(f) =

max f(t)‘ < max [£()] = | £l oo

t€la,b] t€la,b]

and analogously for (f). Hence, both functionals are bounded in (C([a, b)), || - ||)-
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Example 1.43 Let ¢ denote a linear function on a vector space V, and assume that ker(p) # V.

Let xg € V\ker(p). Show that any vector x € V' can be written in the form x = axg + y, where y €
ker(¢p).
Is this expansion unique?

ANALYSIS: If © = axg + y has the right form, where y € ker(p), then

p(x) = ap(xo) +¢(y) = ap(wo),
because ¢(y) = 0 for y € ker(p).

From xg ¢ ker(p) follows that ¢(z¢) # 0. Thus, the only possibility is

hence y € ker(y).
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Thus, for any given x and x,

r=azy+y= o(z) .x0+{x_ p(z) 960}
o(0) ¢(xo)
is of the wanted type with
o(x)
¢(z0)

xo € ker(yp).

is uniquely determined by the above, so the expansion is unique.

Example 1.44 Let ¢ and ) denote linear functionals on a vector space V', and assume that ker(varphi) =ker(v)).
Show that there is a constant o € C such that o = .
If ker(¢) = ker(v) =V, then ¢ = ¢ = 0, and there is nothing to prove.

Assume that ker(¢) = ker(¢)) # V, and let @ € V\ker(y). Then ¢(x) and ¢(x) € C\ {0}. Hence,
there exists ant a € C\ {0}, such that

ap(z) = (),
for this particular = € V'\ker(y).

If y € V\ker(p), y # x, is any other element, then there exists analogously a b € C\ {0}, such that

bo(y) =¥(y).

The task is to prove that a = b.

Putting
a=1¢(@) [=ap(@)]eC\{0} and F=14(y) [=be(y)]eC\{0},

we get
V(Bz—ay)=pF-ap(x) —a-bpy) = ab- p(z)p(y) — ab- p(z)e(y) =0,

thus Sz — ay € ker(yp) = ker(p), where the latter follows from the assumption. This means that also
0=p(Bz—ay)=bey)er) —ap(@)py) = (b - a)p(@)ey).

From ¢(z) # 0 and ¢(y) # 0 follows that b —a = 0, hence a = b.

The claim follows from that = and y are arbitrarily chosen in V\ker(y), and that there is nothing to
prove in ker(¢ = ker(z)).
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Example 1.45 LetV denote a normed vector space with norm ||-||. Recall that V* denotes the vector
space of bounded, linear functionals on V. On V* we define the dual norm ||¢||*, which is just the
operator norm of ¢ as an element of B(V,C).

Let x € V. Show that

9:(p) = p(z), peV”,

determines an element g, € V**.

Show that the mapping x — g, is a linear and injective mapping from V to V**, and that || g, |
If x — g, is also surjective, V is said to be reflexive.

Show that a Hilbert space is reflexive.

" = [l]]-

Let g.(¢) = ¢(x), ¢ € V*. We shall prove that g, is linear and bounded. It follows from the definition
of g, that

gz (p + X)) = (0 + M) (z) = p(z) + Mp(z) = gz () + A g2 (),

which shows that g, is linear. Furthermore,

X
(10) llg=l"™" = sup |g.(¢)| = sup [p(z)|= sup ||w||"90 (—)‘Slﬂ' sup | fI* = [|l=||,
Il <1 Il <1 el <1 ] £l <1

hence ||g.||** < ||z||, and g, is bounded. We have proved that g, € V**.

Then we prove that the mapping x — g, is linear: V — V**,
Assuming that  + Ay — gz4)y, we shall prove that g,4ry = go + A - gy
For every p € V*,

Goirg(0) = o(z + \y) = @(z) + Ao(y) = gu(0) + A gy (),
and the linearity follows.

Next we prove that the mapping x — g, is injective. Therefore, let x # y.

1) If 2 and y are linearly dependent, then there exists A # 1, such that y = Az. Choose ¢ € V*, such
that @(x) = 1. Then p(y) = A # 1, and

92(p) = () # 9(y) = gy(¢),  thus g, # gy

2) If z and y are linearly independent, we choose ¢ € V*, such that ¢(z) =1 and ¢(y) = 0. Then
92(p) = ¢(x) =1 # 0= 0(y) = gy ().

Summing up, it follows that = +— g, is injective.

It only remains to prove that ||g,||** = ||z||. According to (10) we have already proved that ||g.|** <
lz||. Therefore, it suffices to prove that we can choose ¢ € V*, such that

lolF =1 and ‘w (—)| -
Bl

Choose any closed subspace U of V' of codimension 1, such that « ¢ U.

72

Download free eBooks at bookboon.com



Hilbert Spaces and Operators on Hilbert Spaces 1. Hilbert Spaces

Remark 1.9 The codimension is 1, if dimV/U = 1, where V/U denotes the space of classes in V
modulo U, i.e. if z1, zo € V/U, then 21 = x5 in V/U, if 21 + U = a2 + U, i.e. if there exists an u € U,
such that v1 — 2o =u € U. §

From dim V/U =1 follows that every element y € V' has a unique expansion in the form
y=Az+u, where A € C and wueU.
Define ¢ € V* by

py) = Allzll, e ker(p) =U.

) x
Then p(z) = ||z, i.e. ¢ (m) =1, and

Al

(11) o(y) = Allz|| = [yl - Tzt

It follows that the subspace U must be chosen, such that 0 € U is the closed point in U to x, because
in that case if follows from (11) that |¢(y)| < ||y||, where we obtain equality, if y = x, and the claim
is proved.

Finally, let V"= H be a Hilbert space.
According to Riesz’s Representation Theorem, every continuous linear functional ¢ on H can be
written

p(z) = (z, f),

where f € H is uniquely determined by ¢ € H*.
This means that H* is mapped bijectively onto H by ¢ +— f. Consequently, H and H* are isomorphic,
and we identify f = ¢, hence

p(z) = (z,9).

By repeating this argument we get that H* and H** are isomorphic, and we may consider H** as it
was H itself.

Finally, if g € H** and ¢ € H*, then

9() = (¢, 9) = (9,) = ¥(9),

hence z — g, is surjective, and every Hilbert space H is reflexive.
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Example 1.46 Let (V.| - ||) be a normed space of dimV = n. Show that dim V'’ = n, and that V is
reflexive.

Let ey, ..., e, form a basis for V. Define f; € V' by
n
(12) fj (Zmlel) =Ty, jzl, ey N
i=1
We claim that fi, ..., f, are linearly independent. Hence, assume that Ay f; +---+ A\, f, = 0. Then

in particular,
(A1f1+---+)\nfn)(ej)=/\j=0, 7=0,...,n,
so we conclude that all coefficients are 0, and the claim is proved.

Then we claim that fi, ..., f, form a basis for V'. Let f € V’ be any element. Then by (12),

F@)y=f Y we; | =D zfle;)=>_ fle)) £ (Z miéi) =Y Nfi),
J=1 -1 j i—1 i=1

J= Jj=1

where we have put A; = f (e;). This is true for every x € V, so

F=>Y X\t
j=1

Vowo Toucxs | Rewanr Tovcks | Mack Toueks | Vowo Buses | Vowo Coxsteucrion Ecuresent | Wowo Pesm | Vowo Aemo | Vowo IT

Vowo Fieskcer Sepaces | Vowo 3P | Vowo Powemreaim | Vowo Paers | Vowo Techwowosy | Vowo Loasncs | Busieess Anes Asie
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and we have proved that fi, ..., f, form a basis. We therefore infer that dim V' = n. Then, by
repeating the argument, we also get that dim V"' = n.

It follows from EXAMPLE 1.45 that the mapping = — g, is injective, SO ge,, ..., ge, are linearly
independent in V| because ey, ..., e, are linearly independent in V. Consequently, ge,, .., e,
form a basis for V", and the mapping = — g, is also surjective, and we have proved that V is a
reflexive space.

1 1
Example 1.47 We consider the space of sequences (P, where p > 1. Let y € ¢, where — + — = 1.
p q

(If p=1 then y € £>°, the space of bounded sequences).
Show that

o0
T = E Y
i=1

defines an element y* € (€7)* with norm ||y*!||* = ||yl|,-

1 1
If y € £, where — + — =1, then by Hdlder’s inequality
P q

< llzllp - llyllq

+oo
E iy,
i=1

for every = € (P, proving that the linear mapping

+oo
y'(z) = Z Y,
i=1

is bounded, y* € (y*), and that ||y*|* < ||lyll4-

Then choosing x € /P by z; = sign y; - \yi|%7 we get

+00 L +o00 (141 400 a(141) q

+3 t3 pTq P

y @) =D lwil T =Yl =yl = lld = Nl T = Hlylla - il
=1 i=1 i=1

Notice that
+oo % +oo % 1 q
2], = {Z xilp} = {Zlyiq} = {llyla}" = lvlls,
i=1 i=1
from which follows that
y*(z)

and we conclude that ||y*||* > |ly|l;- When this is combined with the previous estimate, then ||y*|* =
llyllqs as required.

™ (@)] = [lyllg - 1]l
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Example 1.48 Let ¢ denote a bounded, linear functional on a Hilbert space H, and assume that the
domain D(p) is a proper subspace of H. Show that there is exactly one extension p1 of ¢ to H with
the property that ||¢1] = |||l

Since ¢ is bounded, it can by continuity be extended to the closure D(p) of its domain. Hence we
may from the beginning assume that D(y) is closed.

The orthogonal complement D(y)* makes sense in the Hilbert space H, i.e. it is defined. Hence, every
element z € H has a unique expansion of the form

z=z+y, where 2 € D(p) and y € D(p)*.
Therefore, any bounded extension ¢ of ¢ is given by

p1(2) = ¢(x) + 9 (y),
where 1) is a bounded and linear functional with D(v)) = D(p)*.

Both D(4) and D(p) are closed subspaces of a Hilbert space. We may therefore consider them as
Hilbert spaces. According to Riesz’s Representation Theorem there exist f € D(p) and g € D(p)*
(hence also h € H), such that

p(z) = (z, f) for all z € D(¢),  ¥(y) = (y,g) for all y € D(p) ",
hence

p1(2) = (2,h) = (x +y,h) = (z,f) + (1, 9)-
The spaces D(y) and D(yp)* being orthogonal, it follows that

leal® = 1hl1* = [LFI1* + llg* = 1% = llell,

so the equality holds, if and only if ||g||> = 0, i.e. if and only if g = 0. This shows that the requirement
1] = |||l uniquely fixes the extension to a Hilbert space, and that

p1(2) = p1(z +y) = (),

where z = z + y is the unique splitting given by z € D(y) and y € D(p)*.
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Example 1.49 Let H be a Hilbert space. A mapping h : H x H — C 1is called sesquilinear if, for all
xr, x1, o € H and o € C we have

h(z1,x) + h(xa, x),

Wz, z1) + h(z, z2),

ah(xy,xa),

h(z1 + x2, x)
h(z,x1 + x2)
h(axy,x2)

)

h(z1, o xo

ah(xy,z2).

We say that h is bounded if there is a constant ¢ > 0 such that

(w1, 22)| < el - |2,

for all xy, xo € H. The norm ||h|| is defined as the smallest possible c.
Show that there is an S € B(H) such that

h(z1,22) = (Sx1,x2),

and that this representation is unique. Show also that ||h|| = ||S]|.
A sesquilinear form is called Hermitian if

h(z,y) = h(y, z),

)

for all x, y € H. If, moreover, h(x,x) > 0 the form is called positive semidefinite.
Show that in this case we have the Schwarz’s inequality:

|h(z,y)|* < h(z,z)h(y,y),

forallx, ye H.

For every fixed z; the mapping

X9 — h(x1,x2)

is a linear bounded functional. Then by Riesz’s Representation Theorem there exists an element

x3 € H, such that

h(xl,xQ) = (anx3)a

i.e.

h(.’l?l,mg) = (1‘3, 31‘2).

Now, x5 is uniquely determined, so we can define a mapping S : H — H by Sz; = x3, i.e.

h(l‘l,diz) = (133,132) =

(Sx1,2).

We shall prove that S is linear. It follows from the definition of a sesquilinear form that

(S(.’El + )\332),

x)

This is true for all z, so

S(l‘l +>\l‘2) =

hz1 + Azo,x) = H(z1,2) + Ah(z2, )
(Sz1,2) + A (Szo,x) = (Sx1 + X Sxo, 7).

SIl + )\SZEQ,
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and S er lineser.
It follows from

|(Sz1, 22)| = [Py, z2)| < [|B] - [l - [l22]],
and Sz, € H for xo = Sz that

ISz ]* < [IR] - o]l - Sz,

so either [[Sx1]| = 0 or ||Sz1]| < ||h]| - ||z1]]. Now, ||S]| is the smallest constant, for which || Sz| <
IIS] - ||z1|| for all 3 € H. It therefore follows that ||.S|| < |||

On the other hand,
h(@1, 22)] = [(Sw1,m2)| < (Sl - w2l < S| - o]l - 2],

and because ||k is the smallest possible constant in such an estimate, we conclude that ||h] < ||S]],
hence [[h]] = S]]

Assume that h is sesquilinear, Hermitian and positive semidefinite. Then

0 < hiz+Ay,z+Ay)
h(z,x) + Ah(y, ) + Ah(z,y) + |A*h(y, y)
= h(z,z)+2Re{Ah(y,2)} + |A*h(y, ).

Let ;1 € R be a real constant. Then choosing
A = tsign(h(y,x)) - p = Esign(h(z,y)) - p,

we infer from the above for every u € R that
0 < p®-h(y,y) + 2 [h(y, x)| + h(z,z).

The right hand side is a polynomial of second degree in p € R of real coefficients. It then follows from
the usual condition of the discriminant that

hence by a rearrangement
[h(2,y)|* < (@, ) - h(y,y).

Remark 1.10 The example is a natural generalization of the inner product in a Hilbert space. This
can be seen by choosing h = (,-). ¢
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1.6 Weak convergence

Example 1.50 Let V and W be Hilbert spaces and let T € B(V,W). Show that the image of a weakly
convergent sequence in 'V is a weakly convergent sequence in W.

Let (z,) C V be a weakly convergent sequence in V', thus there exists an x, such that for every y € V,

(xn,y) - (% ?J) for n — +oo0.

Let (z,) C V and T € B(V,W). Then we have for the adjoint operator that T* € B(W,V), so for
every z € W,

(Tzp,2) = (X0, T 2) — (2, T"2) = (Tx, 2),

and (Tx,) converges weakly towards Tz in W.

EXPERIENCE THE POW

FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
RUN EASIER...
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2 Operators on Hilbert spaces

2.1 Operators on Hilbert spaces, general

Example 2.1 In the Hilbert space {? we define an operator T : D(T) — (% by

T ((z5)) = (ans) ,
where (ay) is a complex sequence.
Find the mazimal possible D(T) and show that T is linear.

Show that D(T) is dense in €.
Show that if (ay) is bounded, then D(T) = (% and T is bounded.

It is obvious that

D(T) = {z €

+oo

Z |a"|2 ’ |xn|2 < +OO} .

n=1

We shall show that D(T) is a subspace. If 2, y € D(T'), then

(20 + Ynl® = [@nl? + lynl® + 2l@n] - lynl < 2 (Jzal® + |yal?) |

hence
+00 +o00 +oo
> lanl?|zn + yal* <2 {Z Janl?|zal® + |an|2yn|2} < oo,
n=1 n=1 n=1

from which follows that « +y € D(T).
If z € D(T) and X € C, then trivially Az € D(T), and we have proved that D(T) is a subspace of ¢2.
It is now obvious that 7" is linear.

Next we prove that D(T) is dense in /2. Let x € ¢?. Then

+o00
Z |z, ]? < +00.
n=1

Hence, to every ¢ > 0 there is an N € N, such that

“+o0
Z lzn|? < €2
n=N+1
Putting 2V = (21, 29, ..., 0,0, ...), we get ||z — 2" ||z < e. It only remains to prove that ¥ € D(T)

for every N € N. This condition is the same as saying that

N
Z |an|2|xn|2 < 400,

n=1

which clearly is fulfilled, because the sum only contains a finite number of terms.
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Finally, assume that (a,) is a bounded sequence, thus there exists an M > 0, such that |a,| < M for

every n € N. Let o € ¢2. Then

—+oo +oo
(13) > lanl?lzal® < MY~ fwnl* = M?|l2[|3 < +oc,
n=1 n=1

which shows that every x € £2 is also an element of D(T).

It follows from (13) that

“+oo
T3 =" lan*|znl* < M?||z]|3,
n=1
hence
[Tzll2 < M ||z,

and we have proved that T" is bounded.

Example 2.2 Consider in L*(R) the operator Q defined by

DQ) ={feL’R)|Qf € L*R)}.

Show that Q is linear but not bounded. Show that D(Q) is dense in L*(R).
In quantum mechanics Q is called the position operator.

Let A € C and f € D(Q). Then trivially, A f € D(Q).
If f, g € D(Q), then it follows from the inequality

[f(2) +g(2)? < 2{2f(2)* +|g(x)]} ,

that

—+o0

“+o0 +oo
/ 2| (2) +g(a) P < 2 / 2| f (2) P42 / 2|g(a)|2dz < +oo,

and we conclude that f + g € D(Q), thus D(Q) is a subspace of L2(R).
If f, g € L?>(R) and )\ € C, then

QUf +Ag) =z -{f(x) + Ag(x)} =z f(z) + Xz g(x) = Qf(x) + AQg(),
thus

QUf +Ag) =Qf +AQg,

and we have proved that @ is linear.
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Let fn = 1jo,5). Then

= [ Vdr=n ths fal= R
0

and
@nig= [ e ="5. ths Q5 = e viI= Tl
0 3 V3 V3
We conclude that (1) f, € D(Q) for every n € N, and (2) ||Q] > % for every n € N, hence @ is

unbounded.
Finally, let f € L%(R), i.e. fj:: |f(2)|?dr < +00. Then to every £ > 0 there is an N € N, such that

_N too
/ (@) de + / ) < 22,

N

If we put

| f(z) for|z| <N,
(@) = { 0 for |z| > N,

then it follows that ||f — full2 <e.
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It only remains to prove that fx € D(Q). This follows from

N N +oo
@l = [ l@Pde<N? [ (f@)Pd <N [ 15@)Pde = N7 513,

-N —00

hence

Qf N2 < N ||fll2 < 400,

and the last claim is proved.

Example 2.3 Consider in L*(R) the operator P defined by

_ %
‘Pf-—'—ZEE,

with
D(P)={f e L*(R)| Pf € L*(R)}.

Show that P is linear but not bounded.
Show that D(P) is dense in L*(R).
In quantum mechanics P is called the momentum operator.

Let f € D(P) and X € C. Then clearly, A f € D(P).
If f, g € D(P), then f and g are differentiable almost everywhere, hence f + ¢ is also differentiable
almost everywhere. From f’, ¢’ € L*(R), follows that also f' + ¢’ € L*(R), so D(P) is a vector space.

d
Then clearly, Pf(x) = —i d_f (z) is linear.
T
Then we shall show that P is not bounded. Let

sinnz for x € |0, 27|,
fn(m):{ [0, 27]

0 otherwise.
Then
27 2 27
I full3 = / sin? nx dr = / cos® nz dr = 3 {sin? nz+cos® nx} dr = T,
0 0 0
thus ||fn]l2 = /7 for every n € N.
It follows that
n-cosnr  for x €]0,27],
fl(z) =< not defined for z € {0,27},
0 otherwise.
where {0, 27} clearly is a null-set. Then
2
IPRIE= =i fi@IB = [ - conud = = nPm = n| ol
0

S0 ||Pfnll2 = n || fnll2, and it follows that P is not bounded.
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Finally, we shall show that D(P) is dense in L?(R). Choose any f € L*(R), thus fj;o |f(z)Pdz < +oc.
There exists to every € > 0 an N € N, such that

[ weras [T irera< (5)°

— 00

If we therefore put

(@) = { f(z) forx< N,

0 otherwise,

then f € L2(R) and ||f — f 2 < .

3
Furthermore, there exists a continuous function g on R, such that g(x) = 0 for |x| > N, and such that
€
IFn = gll2 < 3

It follows from Weierstrafy’s Approximation Theorem that there exists a polynomial P(x) with P(—N) =
P(N) =0, such that

€ 1
- P P ——
Rt l9(z) = P(2)] < 5 TN
If we put
| P(z) for|z| <N,
h(z) = { 0 otherwise.
then

lo— iz = [ o) - Ppar < (5) ok [ ar=(5)",

and we infer that

e e €
If = hll2 < [[f=fnll2 + [ fv—gll2 + [lg—hll2 < 3 + 3 + 3=¢

The function A is differentiable, if only « # + N, and since h is continuous at + N, we conclude that
P'(x) for|x] < N,

h/(z) = { not defined for x = +N,
0 otherwise,

which of course belongs to L?(R), because {—N, N} is a null-set- This proves that h € D(P), and
D(P) is therefore dense in L*(R).
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Example 2.4 Let V be a normed vector space. Show that no pair of operators S, T € B(V') satisfies
the canonical commutator relation:

[S,T]=8ST-TS=1.

HINT: Show by induction that ST™ — T"S = nT"" 1, n € N, and use this to estimate ||S|| and ||T|.
Indirect proof. Assume that S and T are two operators from B(V'), which satisfy the canonical
commutator relation
(14) ST - TS =1.

We first prove that these assumptions imply that
ST™ —T"S = nT" 1, n €N.

First method. It is actually not necessary to use induction, because adding and subtracting some
suitable terms will de the job. We find

ST —TST" ' 4+TST" ' —T?ST" 2+ T2ST" 2 —.. . 4T 'ST-T"S
= {ST-TSYT" ' 41{ST-TS}T" 4. 41" {ST-TS}
IT A4 TIT" 24 T = Tt

ST —T"S

and the claim is proved.

Second method. INDUCTION. The claim is trivial for n = 1.
Assume that ST" — T"X = nT™ !, thus by a rearrangement, ST" = T™S +nT""!. Then we get
for the successor that

ST’n—‘rl _ Tn+1S

(ST™T — T"S =T"ST +nT" —T"*S
= nT"+T"{ST - TS} = (n+1)T",

which is the same formula, only with n replaced by n + 1. The claim then follows by induction.
We have assumed that S, T' € B(V), so ||S]| and ||T'|| < +oo. Hence it follows from the formula
nI" 1t = 8T" —T"S, n €N,
that
I = s = sl < (S0 T s
= Zysi- - .
This inequality implies that either
IneN: ||| =0,
or

VneN:|S|-|T| > g
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Because the proof is given INDIRECTLY, we shall prove that none of these two possibilities can be
fulfilled.

Because we have assumed that ||S] - ||T|| < 400, the latter possibility is excluded.

Then assume that ||[7"7!|| = 0 for some n > 2. Then T"~! = 0, which implies that
(n—1)T"2=8T"1-T"1S=80-0S =0,

hence T"~2 = 0. We get by recursion after a finite number of steps that 7! = T' = O, from which
follows that

1=8T-ST=0.
This relation is only satisfied in the not so interesting case of V' = {0}.
No matter which one we choose of our two possibilities, we obtain a contradiction. Therefore, our

(indirect) assumption is wrong, and the original claim is proved.

Example 2.5 Let V be a normed space and assume that T € B(V) is bijective. Show that if T—1 is
bounded, then

(=

We have tacitly assumed that V' # {0}.

If T € B)(V) is bijective, then 7! exists and D (T~!) = V.
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Hilbert Spaces and Operators on Hilbert Spaces 2. Operators on Hilbert spaces

If V is a Banach space, we prove below that also T~ € B(V). If V, however, is just a normed space,
then T~! needs not being bounded, a statement we shall also give an example of below.

If 7' is unbounded, then it follows from the definition of the norm that ||T*1H = 400, and the
inequality above is trivial. Therefore, we now assume that 7-! € B(V). It follows from I = TT~!
for every z € V that

el = N 2zll = |77~ | < |70 (|7~ | < |70 1770 - flel-
We have assumed that V' # {0}, so we conclude that
17177 = 1,
and we get the wanted inequality.
If V is a Banach space, then it follows from the theorem of a bounded inverse that 7—! € B(V).

If V is not a Banach space, then T~! needs not be bounded. Let {p, | n € N} be an orthonormal
basis in a Hilbert space H, and let

V = span{p, | n € N}.

Then V is dense in H, though V itself is not complete.
We define a bijective and linear operator T' € B(V) by

n

T Zajgoj = Z;aj ©j, with || T|| = 1.
j=1

j=1
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Then T is bijective, and clearly

n n
T D aie | =D daje;
j=1 j=1

is unbounded. Since every element of V' can be written as a finite linear combination of ¢;, j € N,
we get D (T71) =V,

Example 2.6 Let (e,,) denote an orthonormal basis in a Hilbert space H, and define the operator T
by

o0 oo
T Zxkek = Z'xkek-i-l'
k=1 k=1

Show that T € B(H) and find ||T||.
Show that T is injective and find T~'.

From (e,) being an orthonormal basis we get

oo 2 oo
Saver| =Yl
k=1 k=1

It follows that T is defined on all of H, and that

l)|* =

2

o0 2 o0 o0
e = T(z) B S P S ST
k=1 k=1 k=1

We infer that ||T'|| = 1 and that T is linear and defined everywhere in H, hence T' € B(H).

If

T (Z xkek> = Zxk@kJrl =0,
k=1 k=1

then x; = 0 for every k € N, hence 22021 rrer = 0, and T is injective.
Then the inverse operator 7! exists and its domain is
D(T™")=TD(T)={z € H |z = (2,e1) =0}.

When x € D (T‘l), i.e. the first coordinate is z1 = 0, then

o0 o0 o0
-1 -1
T 'x=T (E xkek> = E Tpep_1 = E Th+1€k-
k=2 k=2 k=1

This can also be written alternatively in the following way:
T_l (073:2’ T3, T4, ) - ($2,$3,$4, o ) )

i.e. we just delete the zero and move the rest of the sequence one step to the left.
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Example 2.7 Let (ey) be an orthonormal basis in a Hilbert space H, and let T € B(H). Define for
J, k € N the numbers

tjk = (Tej, ek) .

Show that
o0
Te; = Z tikek,
k=1
and that

o
tixl® < 00 for j e N.
J

k=1

The matriz (t;1) is called the matrix form for T with respect to the orthonormal basis (ey).
Let A, B € B(H) have the forms (aji) and (bji) respectively. Find the forms for A+ B and AB.

From t;;, = (Te;, ex) follows that

+oo —+o0

Te; = Te:,er)er = tirer for every j € N.
J J J
k=1 k=1

Hence for every j € N,

+oo +o0 +00
I Te;||* = <Z tikek, Z%‘k%) = Z |ti|* < +o0.
k=1 k=1 k=1

From
—+oo
=3 e
j=1

follows that

“+o0 +oo —+o0 +o0 —+oo
Tx = Z(m,ej)Tej)Z(x,ej)thkek = Z thk(x,ej) ek
Jj=1 j=1 k=1 k=1 | j=1

Let A = (aj) and B = (b;) be the infinite matrices, which are constructed this way corresponding
to the two linear mappings A, B € B(H). Then

+oo +oo
(A+B);L~:Z Z{ajk+bjk} (x,€j) ¢ ek,
k=1 | j=1

and we conclude that (a;x + b;) is the matrix corresponding to A + B.

Furthermore,
+oo | +00 +oo [ +o0 +o0
ABx = A Z ijk(w,ej) ex :Z Zakg ijk(m,ej) er
k=1 | j=1 =1 \k=1 j=1

—+oo +oo +oo
z{zbjkau} o) | er
k=1

=1 \j=1
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from which we derive that

+oo
> bikake
k=1 gl

is the infinite matrix corresponding to the composite mapping AB.

Example 2.8 Let (ex) be an orthonormal basis in a Hilbert space H, and let T : D(T) — K be a
linear operator from the Hilbert space H into the Hilbert space K. Show that if e, € D(T') for all
k € N, then D(T) is dense in H.

This example is trivial. In fact, (ey) is an orthonormal basis, so the set of finite linear combinations
of (er) is dense H, and because this set is contained in the subspace D(T'), we conclude that D(T) is
also dense in H.

Example 2.9 Let [a,b] be a bounded interval. We equip the vector space C([a,b]) with the two norms

1
q

b % b
Hﬂp={/‘M®Pﬁ}, Iﬂh={/1U®Pﬂ},

where 1 < p < g < +00.
Let V,, = (C([a,b]), || - lIp) and Vi = (C([a,b]), || - llq). Prove that

1) the identity operator from V, to V), is bounded,
2) the identity operator from V,, to Vy is not bounded

Remark 2.1 If the interval [a, b] is not bounded, then one can prove that both “identity operators”
are unbounded. ¢

1) First note that
b b
I = [ 1spar= [ isre-vae
From ¢ > p > 1 follows that p; = g > 1. Let ¢; denote the conjugate of py, given by
p

_ b1
p1—1

_ 4
1 qg-»p

| |=ie

q1 q
p

Then apply Holder’s inequality with p; and ¢; on the integral above,
p a—-p

b b > b 7
/’uwwuﬁ<Mfwmomql={/‘U@P%m}q-{/lﬁﬁ}

p

{Lﬂfmww}a Ao-o% ) ={e-ap i1}

17115
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When we extract the “p-th root”, then for every f € C([a, b)),
1171l =11 1lp < (b= a)» ™7 - || ],

which shows that I : V, — V), is bounded with
1 < (b —a)r~7.

Remark 2.2 By a continuous extensions we get

Li([a,b]) C LP([a,b]), for1<p<g<+4oo. ¢

2) In order to prove that I : V,, — V; is not bounded we only have to choose a sequence (f,) of
functions from C([a, b]), such that (|| f|p) is bounded, while || f,|l; — +o00. Using that 1 <p < ¢,
we can choose a constant « €10, 1], such that ap < 1 < aq. Then choose

1

—a> te
(t=e+3)
t—a+ —

n

We get that f, € C([a,b]), and (f,) is an increasing sequence. Hence

b b—a
dt dt 1
fnp__/ % </ — = b—a)l=or,
|| ||p " ( 1) P 0 top 1 Oép( )

t—a+ —
n

fn(t) = [a7b]'

360°
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On the other hand, it follows from ag > 1 that

b dt
||fn||Z=/ ﬁ—hkoo for n — +o0.
G
n
We conclude that I : V,, — V, is unbounded.

Remark 2.3 The example shows that continuity depends essentially on the structures we give the
spaces as normed spaces. {

Example 2.10 Let k be a continuous function in [a,b] X [a,b], and define the operator K by

b
x)z/ K, t) (), feCllab).

Prove that K f € C([a,b]) and that K is a bounded and linear operator of (C([a,b]), | - |leo) into itself.
Prove that

< (b— .
1K) < (b= a) max [k(z,1)

First note that if f = 0, then K f = 0. Then let f # 0, thus || f||s > 0. It follows that

Kf(r+y)— / {k(z +y,t) — k(z,y) }f(t) dt
hence

[Kf(z+y) - Kf(z)| < max [k(z+y,t) = k(z,0)] - [|flloc - (b—a).

t€la,b]

The function k is continuous in a closed and bounded, i.e. compact, domain, so k is uniformly contin-
uous. Then we can find a § > 0, such that

Kz, y) — k(y,u) < :

[flloc - (b —a)
Therefore, if |y| < 0, then |K f(x 4+ y) — K f(z)| < &, proving that K f € C([a,b]).

for [|(z,y) = (y,u)|| <.

Clearly

b b b
K(f+\g)x) = /k(m,t)-{f(t)—l—)\g(t)}dt:/ k:(x,t)f(t)dt—l—)\/ k(2. 1) g(t) dt
= Kf(z)+AKg(x),

shows that K is linear.

/k:a:t b dt /|m¢ JOldr < e kG0 \|f||oc/ dt

= (b—a)- max [k(z, )] - [| floo

a

We have

[Kf ()]
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where the right hand side is independent of z. Thus we conclude that

< — . .
1Kl < (=) max (ke 0)|- /]

and K is bounded. Because ||K]|| is defined as the smallest possible constant in such an estimate, we
conclude that

<((b—-a)- .
IKN < (b =a)- max [k,

Example 2.11 Let H denote a Hilbert space, and let T € B(H). Show that

1T} = sup{|(Tz, y)| | [l«]| <1, [lyl] <1}

We infer from

|(Tz,y)| < Tl - llyll < NN - NIl - [lwll,
that

sup{[(Tz,y)| | llz[| < 1, [lyll <1} < |IT1].

If T'= O, there is nothing to prove. Thus, let T' # O, and consider the set of x € H, for which Tz # 0.

Putting y = we get

Tx

1]
Tx

1T = (Tx, —) < sup{|(Te, )] | Iyl < 1},
7]

hence

1Tl = sup{||Tz|| | [z} <1}
= sup{[(Tz,y)| | =[]l <1, [lyll <1} < [T,

and we infer that we have equality as wanted.

Example 2.12 Let (eg) be an orthonormal basis of a Hilbert space H, and let T : D(T) — H be a
closed, linear operator in H, for which ey, € D(T) for all k € N.

Let x = Z::.i ager, € H, and let z,, = Y ;_; ayer, n € N. Prove that if (Tx,) is convergent, then
x € D(T) and Tz = Z::i apTey,.

It follows from the assumptions that x,, — x. Therefore, if (Tx,), = (3_,_; axTex), is convergent,
we infer that x € D(T) and

n +oo
Tr = lim Z ai ey = Z aiTey.
k=1 k=1

n—-+oo
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Example 2.13 Let H denote a Hilbert space and define for a, b € H the mapping Ty, : H — H by
Topr = (x,b)a.

1) Show that T, € B(H) and find dim (T, ,(H)) (when a, b # 0) as well as the norm of T, .

2) Find Tj,.

3) Let T € B(H) have a one dimensional range. Show that there exist a, b € H such that T =T, .

1) I T, px = (z,b) a, then
[Tapll = I(2,0)] lall < lall - o]l - [l]],
hence || To |l < llal - ||0ll, and T, € B(H).
Choose in particular x = b # 0. Then
| Tapzll = 61 all = llall - 6] - [l2l,
and we get equality in the estimate above, thus || Ty || = [|la|| - ||b]|-

Finally, T, »(H) is generated by the vector a # 0. Since also b # 0, we get

dim (T, 4(H)) = 1.

2) By a direct computation,

(Tosr,y) = ((@.b)a,y) = @.0)(a.y) = (2. (@,9)b) = (@, (v a)b),
hence
15y = (y,a)b.
3) Let dim(T'(H)) = 1, thus T(H) is generated by a vector a # 0,
T(H)={\a|XeC},
and Tz is determined by a scalar function A(z) by the relation
Tz = \z)a.

Then

a 1 1 g
Aw) = (Mo 5 ) = s (T0) = 1oz (0 T"a),

so T = Tg, where a # 0 generates T'(H),and b is given by

1

= T*a.
Jal2 " ¢
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Example 2.14 Let H = L?([a,b]), a, b finite and T the operator

b
zb_a/af(t)dt, forxz €la,b] and fe€H.

1) Show that T € B(H).

2) Show that T is a projection.

1) The constants a and b are finite, so 1f,; € H. Let f € H. An application of Cauchy-Schwarz’s

inequality gives
1 b
1-f(t)dt
/RN

7)== < st Va= bl < oo,

showing that 7' is indeed defined. Since T'f(z) = c¢ is constant for all = € [a, b], we get
ITfllz = lel - 1]}z = le] - Vb — a < 400,

thus T'f € H, and it follows that T' € B(H).
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2. Operators on Hilbert spaces

2) We shall only check the two conditions,

(Tf,9)=(f,Tqg) for all f, g € H,

and
T?f=Tf  foralle f € H.

Now, T'f(z) and Tg(t) are constant, hence

(Tfg) = /bbia/bf(t)dt.mdx_/bf(t)dt~bia/abg(z)dx

I
\
k‘ﬁ
E:
'ﬂ
tm
\
"\h
?
~
s

Furthermore,

b
T2 = T(T)) = (b_ /f dt) (1) <1):Tf~bfa/adt:

Tf.
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Because T is linear, we conclude that T is a projection on the closed subspace
M={feH|Tf=[}

Finally, it follows from T'f = ¢ constant, and
T()=c-T(1)=c¢,

that M is the subspace consisting of all constants.

Example 2.15 Let H = L?([—7,7]) be the Hilbert space with the usual orthonormal basis

en(z) = elne, n € Z.

Let A\, n € N be complex numbers satisfying

M =sup |\, —n| < log27
nez ™
and let
L e
J‘n(ar)z\/—Z_?Te’”7 neZz
1. Show that

o0 . k
Fule) —eale) = ea() S P g ey
k=1

2. Show that for any k € Z we have that

[a*g| < *llgll.

Now, let D : (*(Z) — H be the linear operator given by

o0

San)= Y an(fo—en),  (an) € ().

n=—oo
3. Assuming that the order of summation can be reversed, prove that

S]] < ™ —1.

Let the linear operator K : H — H be given by

oo

Kf:S((f,en)): Z (f7€n) {fn_en}’ fEH

n=-—oo

4. Show that ||K|| < 1 and deduce that T = I + K € B(H) has an inverse T~ € B(H). Calculate
Te,, and infer that

span {f,}" = {0}.
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5. Define
gn = (T’l)* €n, n € 7,
and show that (fm, gn) = Omn (Kronecker delta).

6. Finally, use the decomposition

oo

T f= ) (T 'fen)en

n=-—oo

to show that

1 o0
E Z (f:gn) €, for f e H.
—
. 1 . . . .
1) First put ¢, (x) = \/T outside as a factor. By a simple series expansion we get for every n € Z,
s
k
1 iApx 1 inx 1 znx{ i(Ap—n)z } { )‘ _n

n(x)—pn(z) = et — et = e e'hn —
Jn(@) = n(@) = —= or o Z

Ijoined MITAS because e e
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(11
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2) This follows from a simple estimate

lotolli= [ aipiae < 2 [ s = (1ol

—T

hence
|2*g]|, < 7 llgll2-

3) This is not an easy question. We get

1) ISGadly = || S anlie— o)
e p
(16) = io angon(:c)f{i(/\nki!n)}kxk
e = .
a7 _ fx{ 3 anwmm}
= L
(18) S x{ 3 an%il””kmm}
et = L
(19) < iow’“ io anwﬂiln)}kwn(x)
= .= p
(20) < gwk{iu%}
(21) < fw'ff—f{ 5 W};
(22) Y

The complicated estimate above needs some comments:

In
In
In
In
In
In
In
In

(15) we apply the definition of S.
(16) we apply the result from (1).
(17) we reverse the summations.

(18) we apply Minkowski’s inequality.

(19) we apply the result of (2).

(20) we apply Parseval’s equation.

(21) we use the definition of M and then take the square root.
(22)

22) we use the exponential series.
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Remark 2.4 We note for later use that
eMm—1<1,

This follows from

In2
eM”—1<exp<n—~7r>—1=elﬂ2—1=2—1:1. 0O
i

4) Then
(23) (K fllez = [[S((f,00)ll12
(24) < LM =1} 1((fren)) 2
(25) - {eMﬂfl} Hf||L277
where we

e in (23) use the definition,
e in (24) use the result of (3),
e in (25) apply Parseval’s equation.

It follows from the remark above that

K |leM™ —1 < 1.

We have K € B(H), so T = I + K has an inverse in B(H), given by the Neumann series

—+oo
T7'=(I+K)"'=> (-1)"K"  [e B(H)].
n=0
Then
+oo
Ty, =on+ Ko = on + Z (QDn,SDk) {fk _SDk} :(Pn+1'{fn _@n} = fn,
k=—o0
hence
Ty, = fn.

Let g L span{f,}, i.e.
(g, fn) = (9, Tpn) = (T*g,0n) =0 for all n € Z.

Because {p,, | n € Z} is an orthonormal system, we must have T*g = 0.

On the other hand, (T’l)* exists and is equal to (T*)_l. In particular, 7™ is injective. This
means that T*g = 0 implies that g = 0, and we have proved that

(span {f,})™ = {0}.

100

Download free eBooks at bookboon.com



Hilbert Spaces and Operators on Hilbert Spaces 2. Operators on Hilbert spaces

5) By a simple computation,

(o) = (T (1) ) = (T T ) = S

6) From
+oo
Tilf: Z (Tﬁlfﬁﬁn)@m

and T continuous we get by termwise to apply 7" and by using that Tp,, = f, that for f € H,

400 +o0 +00
f:T(T_lf) = Z (.ﬂ (T_l)*(pn) T(pn: Z (f7gn) fn = \/% Z (f7gn) ei)\nx.

n=-—oo n=—oo n=-—oo

Remark 2.5 This example shows that if
In2
A —n| < M < — = 0.2206, for all n € Z,
™

where A, is allowed to be complex, then we still have a uniquely determined series expansion

o0
(26) f= > ane™”, i L*([-m,7)),

(fvgn)'

where we put a, =

1
V2

D
&
&

In2
Figure 16: Illustration of ),, inside the circle of centre n and radius M = 0.2 < il
s

If every A\, € R, then the series expansion (26) gives a very realistic model from a technical point of
view, where we include some “noise”, i.e. oscillations which are not commensurable with the usual
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harmonic eigen-oscillations. One explicit example is the description of the oscillating string of variable
density.

It is very natural to call (26) a non-harmonic Fourier series.

1
It is possible to prove ( “Kadec’s 1 Theorem”), which states that the best possible result is obtained,

when
1
|)\n—n|§]W<Z for all n € Z.
The proof of this Theorem is far more difficult, and Kade¢’s first proof was even wrong.

Finally, it is possible to prove that there exists a sequence (\,) such that

sup |\, —n| ==
ne”Z

and such that the result (26) does not hold for the sequence (A,). ¢

~
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2.2 Closed operators
Example 2.16 Consider in (% the operator T, defined by

T(xy) = (nxy,).
Prove that T is a closed and densely defined operator, and prove that

T(D(T)) = ¢2.

We shall start by first proving the latter claim. Then notice that
Tx = (11‘1,2%2,3%‘3,---) = (0,0,0,' s ),

if and only if x = 0, proving that T is injective, thus the inverse T~! exist. Then it immediately
follows that

1 1
Tﬁl(xlax%x&"') - (xla_:r?a —fﬂg,"'> )

2 3
hence
5 +0o0 1 +oo
7t = 30 5 hof < 3l =
n=1 n=1

and 7! is bounded,

}T‘l H < 1. We even conclude from
T_1(170707"') = (1707()’"')’
that HT‘1 H =1, even if this is not essential for the example.

It is, however, very important that 7! € B (62), so T~ is in particular a closed operator. This means
that the graph G (T’l) is a closed set. However, G(T') is obtained from G (fl) by interchanging the
two coordinates. Hence it follows that the graph G(T') for T is also closed, and we have proved that
T is a closed operator.

Note, however, that 7" is an unbounded operator. We have e.g.

ITen| =n and llen ]| = 1.

Even if the task have been totally solved above, we continue by giving a direct proof of that T is
closed.

The domain D(T) contains the subspace consisting of all sequences from £2, which are 0 eventually.
The latter subspace is already dense in ¢2, so D(T) is also dense in 2.

Choose z(™ € D(T) such that (™) — 0 and Tz(™) — 5. If we can prove that y = 0, then it follows
that T is closed.

Choose any z € D(T). Then z + (z,2) is continuous in £2, and we infer that

(T:E("), z) — (y,2) for n — +oc.
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On the other hand,
—+oo +oo
(ng;(")7 z) = ij?”@ = ng-n){j zi} = (x("),Tz) —0 for n — oo,
j=1 j=1

because = +— (x,Tz) also is continuous for every fixed z € D(T). We conclude for every z € D(T)
(which we have shown above is dense in ¢2) that

(Zvy):(yvz>:620'

Then it follows from Riesz’s Representation Theorem that this is only possible, if y = 0.

Example 2.17 Let T be a closed linear operator T : D(T) C V. — V, where V is a Banach space,
and let A € B(V).
Show that A+ T and T A are closed, linear operators.
By the definition, T': D(T') — V is closed, if the graph
G(T) ={(z,y) e VxV]zeDT),y=Tx}

is a closed set.
Let A € B(V). We shall prove that

GT+A) ={(z,y) eVxV|zeDT),y=Tz+ Ax}

is closed. It suffices to prove that if (z,) & D(T + A) and z, — z and Tz, + Az, — y, then
zreDT+A) and (T + Az =y.

Let (z,) €S D(T+ A) = D(T) and z,, — x and Tz, + Az, — y. Then
Tz, —y—limAz, =y — Ax.

Since T is closed. = € D(T), and Tx = y— Az, hence by a rearrangement, Tx + Az = y, and it follows
that 7'+ A is closed.

Finally, choose a sequence (z,) & D(TA), such that
Ty — T and TAxz, —y.

Then (Az,) € D(T), and
Az, — Az and T(Az,) — y.

Using that T is closed, we get Az € D(T) and T Az = y. However, Az € D(T') means that © € D(TA),
and we have proved that T A is closed.
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Example 2.18 Consider in (? the operator T defined as
T(x1,22,...) = (v2,223,3%4,...).
Show that T is closed, densely defined operator.
Clearly, T is linear, T : D(T) — ¢?, where D(T') C ¢? is dense in ¢2. (All sequences which are zero
eventually lie in D(T'), and this subspace is dense in ¢2).
Let (x(”)) C D(T), and assume that 2™ — 2 € (2 and Tz(™ — y € (2. If we write
x(”):(x?,xg,xg,) and y:(y17y2ay27"')7
then
y_Tx(n):(yl—$37y2—2$g7y3_3$2a>_>0 in 62'

In particular,

n n n
Ty — Y1, :C3—>§y2, ey kaHEyk, ey for n — 400,

hence the only possible limit value is

1 1
L= ngr_{looxlaylv§y27"'7gyk7"' .

Because y € £2 it is obvious that 2 € ¢2. Finally, it is trivial that To = y, so € D(T), and we have
proved that T is closed.
Example 2.19 Let X, Y be Banach spaces, and let
T:DT)CcX—Y
be a closed linear operator. Assume that the sequences (uy), (v,) C D(T') satisfy the condition

limu,, = limv,.
n n
Show that if (Tuy,) and (Tv,) are both convergent, then lim,, Tw,, = lim, Tv,,.

From the assumption that T is a closed operator and

z= lim w,, wu,€DT), and lim Tu, =z,
n—-+4oo n—-+o0o

then z € D(T), and Tz = z.
Similarly it follows from

x= lim v,, wv,€ D(T), and lim Tw, = q,

n—-—+o0o n—-+o0o

and from T being closed that also Tx = q. Now, x € D(T'), and the mapping is uniquely defined, so

lim Tu,=z=q= lim Twv,.
n—-+00 n—-+00
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Example 2.20 Let T : X — Y be a closed linear operator between two normed spaces and let A C X
be compact. Show that T(A) is closed.
Let (y,) € T(A), and assume that y, — y € Y. We shall prove that y € T'(A).

Since y,, € T'(A), there exists at least one x,, € A (possibly more), such that Tz, = y,. Choose
for each such y,, one z, € A of this property. Then (x,,) defines a sequence on a compact set A. It
therefore contains a convergent subsequence (z,), where z, — x € A. We have now proved that

(z,) CACD(T), zo—axz€A and Tz, —yev.

Now, T is a closed operator, so it follows that © € D(T) and y = T'z. Since x € A, we have y € T(A).
This proves that T'(A) is closed.

Example 2.21 Let T : D(T) C X — Y be a closed linear operator between two normed spaces. Show
that ker(T) is a closed subspace of X.

It is obvious that
ker(T) = {xz € D(T) | Tx = 0}

is a subspace, so we shall only prove that it is closed.

STUDY AT A TOP RANKED
INTERNATIONAL BUSINESS SCHOOL

no.l

nine years
in a row
Reach your full potential at the Stockholm School of Economics,
in one of the most innovative cities in the world. The School

$ is ranked by the Financial Times as the number one business
& school in the Nordic and Baltic countries.

Stockholm
(]

Visit us at www.hhs.se

106

Click on the ad to read more
Download free eBooks at bookboon.com


http://s.bookboon.com/hhs2016

Hilbert Spaces and Operators on Hilbert Spaces 2. Operators on Hilbert spaces

Let (x,,) € ker(T) be a sequence, such that =, — xz € X. We shall prove that = € ker(7").
We infer from T,, =0 — 0, and T being closed that € D(T) and

Tr= lim Tx, =0,

n—-+o0o

thus « € ker(T), and the claim is proved.

Example 2.22 Let V and W be two Banach spaces (over the same scalar field), and let T : D(T) —
W be a bounded linear operator, where D(T') is a subspace of V.

Prove that there exists precisely one bounded extension Ty of T, such that D(Ty) = D(T), and prove
that || T}y = | T].

If D(T) is closed, there is of course nothing to prove. We assume that D(T) is not closed. Let
x € D(T). Then there exists a sequence (x,,) & D(T), such that x,, — . Because T is bounded, we
see that (T'z,,) is a Cauchy sequence on W. In fact,

[TTm — Tapl| = [|T(@m — @)l < [T - |@m — 2l — 0 for m, n — +o0.

Now, W is a Banach space, so (T'z,) is convergent with some limit value, which we call w, thus
Tz, — w for n — +oo.

If (yn) € D(T) is another sequence, for which y,, — z, then x,, —y, € D(T), and x,, —y, — z—2 =0
for n — +o0. Furthermore, T is bounded, so Tz, — Ty, rightarrow0, and we get that (T'z,) and
(T'y,,) have the same limit value w, whenever (z,,) and (y,) converge towards the same x.

Then put w = Tz, i.e.

Tr= lim Tx forx = lim =,, =z,¢c D(T).

n—-+4oo n—-+oo

Then clearly T is an extension of T to D(T).

Then we prove that T is linear. Let z, y € D(T), and let (z,,) and (y,,) be sequences from D(t), for
which z, — z and y,, — y. If a, 8 € L, then ax,, + Sy, € D(T), and

axy, + By, — ax+ fy € D(T).
Using the linearity of 7" on D(T') we get
T(ax+By) = lim T(az,+ By, = lim {aTx,+BTy,}
n—-+400 n—-+400
= « lirf Tx, + lirf Ty, =aTx + 3Ty,

and it follows that T is linear.

Finally, we shall prove that T is bounded. Let z € D(T), and let (z,,) € D(T), x, — 2. Then we
have the estimates
Tzl < |T = Tan|| + 1Tzl < [Tz — Tzl + [T - [l

From Tz = lim,,_, { o, Tx,,, follows that || T — T'z,,|| — 0 and ||z, || — ||z|| for n — +o00. We infer that

[Tz < 7] - [l
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which shows that || < [|T|. On the other hand, T is an extension of T, so trivially || > [T
Summing up, ||| = || T].

If T, : D(T) — W were another bounded extension, then T — T : D(T) — W would be a bounded
operator, and

(T> = T1) (D(T)) = O(D(T)).

However, the only continuous extension of the zero operator on D(T') to the closure D(T) is of course
the zero operator, hence we conclude that T = T7. Thus the uniqueness is also proved.
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