
Arild	Wikan

Discrete	Dynamical	Systems
with	an	Introduction	to	Discrete	Optimization	Problems

Download	free	books	at



2 

 

Arild Wikan

Discrete Dynamical Systems with an 
Introduction to Discrete Optimization 
Problems

Download free eBooks at bookboon.com



3 

 

Discrete Dynamical Systems with an Introduction to Discrete Optimization Problems
1st edition
© 2013 Arild Wikan & bookboon.com
ISBN 978-87-403-0327-8

Download free eBooks at bookboon.com

http://bookboon.com


Discrete Dynamical Systems with an 
Introduction to Discrete Optimization

4 

Contents

Contents

	 Acknowledgements 	 6

	 Introduction	 7

	 Part 1 �One-dimensional maps f : R → R x → f(x) 	 11
1.1	 Preliminaries and definitions	 12
1.2	 One-parameter family of maps	 16
1.3	 Fixed points and periodic points of the quadratic map	 19
1.4	 Stability	 24
1.5	 Bifurcations	 30
1.6	 The flip bifurcation sequence	 35
1.7	 Period 3 implies chaos. Sarkovskii’s theorem	 38
1.8	 The Schwarzian derivative	 42
1.9	 Symbolic dynamics I	 45
1.10	 Symbolic dynamics II	 50
1.11	 Chaos	 60
1.12	 Superstable orbits and a summary of the dynamics of the quadratic map	 64

Download free eBooks at bookboon.com

Click on the ad to read more

www.sylvania.com

We do not reinvent  
the wheel we reinvent 
light.
Fascinating lighting offers an infinite spectrum of 
possibilities: Innovative technologies and new  
markets provide both opportunities and challenges. 
An environment in which your expertise is in high 
demand. Enjoy the supportive working atmosphere 
within our global group and benefit from international 
career paths. Implement sustainable ideas in close 
cooperation with other specialists and contribute to 
influencing our future. Come and join us in reinventing 
light every day.

Light is OSRAM

http://s.bookboon.com/osram


Discrete Dynamical Systems with an 
Introduction to Discrete Optimization

5 

Contents

	 Part II �n-dimensional maps f : Rn → R
n x → f (x)	 68

2.1	� Higher order difference equations	 69
2.2	 Systems of linear difference equations. Linear maps from Rn  to Rn 	 86

2.3	 The Leslie matrix	 97
2.4	 Fixed points and stability of nonlinear systems	 106
2.5	 The Hopf bifurcation	 115
2.6	 Symbolic dynamics III (The Horseshoe map)	 132
2.7	 The center manifold theorem	 138
2.8	 Beyond the Hopf bifurcation, possible routes to chaos	 147
2.9	 Difference-Delay equations	 173

	 Part III Discrete Time Optimization Problems	 187
3.1	 The fundamental equation of discrete dynamic programming	 188
3.2	 The maximum principle (Discrete version)	 198
3.3	 Infinite horizon problems	 206
3.4	 Discrete stochastic optimization problems	 218

	 Appendix (Parameter Estimation)	 234

	 References	 247

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

http://www.deloitte.ca/careers


Discrete Dynamical Systems with an 
Introduction to Discrete Optimization

6 

Acknowledgements

Acknowledgements 
My special thanks goes to Einar Mjølhus who introduced me to the fascinating world of discrete dynamical 
systems. Responses from B. Davidsen, A. Eide, O. Flaaten, A. Seierstad, A. StrØm, and K. Sydsæter are 
also gratefully acknowledged. 

I also want to thank Liv Larssen for her excellent typing of this manuscript and Ø. Kristensen for his 
assistance regarding the figures.

Financial support from Harstad University College is also gratefully acknowledged.

Finally I would like to thank my family for bearing over with me throughout the writing process.

Autumn 2012 
Arild Wikan

Download free eBooks at bookboon.com



Discrete Dynamical Systems with an 
Introduction to Discrete Optimization

7 

Introduction

Introduction
In most textbooks on dynamical systems, focus is on continuous systems which leads to the study of 
differential equations rather than on discrete systems which results in the study of maps or difference 
equations. This fact has in many respects an obvious historical explanation. If we go back to the time of 
Newton (1642–1727), Leibniz (1646–1716), and some years later to Euler (1709–1783), many important 
aspects of the theory of continuous dynamical systems were established. Newton was interested in 
problems within celestial mechanics, in particular problems concerning the computations of planet 
motions, and the study of such kind of problems lead to differential equations which he solved mainly 
by use of power series method. Leibniz discovered in 1691 how to solve separable differential equations, 
and three years later he established a solution method for first order linear equations as well. Euler (1739) 
showed how to solve higher order differential equations with constant coefficients. Later on, in fields 
such as fluid mechanics, relativity, quantum mechanics, but also in other scientific branches like ecology, 
biology and economy, it became clear that important problems could be formulated in an elegant and 
often simple way in terms of differential equations. However, to solve these (nonlinear) equations proved 
to be very difficult. Therefore, throughout the years, a rich and vast literature on continuous dynamical 
systems has been established.

Regarding discrete systems (maps or difference equations), the pioneers made important contributions 
here too. Indeed, Newton designed a numerical algorithm, known as Newton’s method, for computing 
zeros of equations and Euler developed a discrete method, Euler’s method (which often is referred to as a 
first order Runge–Kutta method), which was applied in order to solve differential equations numerically.

Modern dynamical system theory (both continuous and discrete) is not that old. It began in the last 
part of the nineteenth century, mainly due to the work of Poincaré who (among lots of other topics) 
introduced the Poincaré return map as a powerful tool in his qualitative approach towards the study of 
differential equations. Later in the twentieth century Birkhoff (1927) too made important contributions 
to the field by showing how discrete maps could be used in order to understand the global behaviour 
of differential equation systems. Julia considered complex maps and the outstanding works of Russian 
mathematicians like Andronov, Liapunov and Arnold really developed the modern theory further.

In this book we shall concentrate on discrete dynamical systems. There are several reasons for such a 
choice. As already metioned, there is a rich and vast literature on continuous dynamical systems, but 
there are only a few textbooks which treat discrete systems exclusively.
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Secondly, while many textbooks take examples from physics, we shall here illustrate large parts of the 
theory we present by problems from biology and ecology, in fact, most examples are taken from problems 
which arise in population dynamical studies. Regarding such studies, there is a growing understanding 
in biological and ecological communities that species which exhibit birth pulse fertilities (species that 
reproduce in a short time interval during a year) should be modelled by use of difference equations 
(or maps) rather than differential equations, cf. the discussion in Cushing (1998) and Caswell (2001). 
Therefore, such studies provide an excellent ground for illuminating important ideas and concepts from 
discrete dynamical system theory.

Another important aspect which we also want to stress is the fact that in case of “low-dimensional 
problems” (problems with only one or two state variables) the possible dynamics found in nonlinear 
discrete models is much richer than in their continuous counterparts. Indeed, let us briefly illustrate this 
aspect through the following example:

Let N = N(t)  be the size of a population at time t. In 1837 Verhulst suggested that the change of  
N  could be described by the differential equation (later known as the Verhulst equation) 

Ṅ = rN

(
1− N

K

)
� (I1)

where the parameter r  (r > 0 ) is the intrinsic growth rate at low densities and K  is the carrying 
capacity. Now, define x = N/K . Then (I1) may be rewritten as 

	 ẋ = rx(1− x) � (I2)

which (as (I1) too) is nothing but a separable equation. Hence, it is straightforward to show that its 
solution becomes 

	 x(t) =
1

1− x0−1
x0

e−rt
� (I3)

where we also have used the initial condition x(0) = x0 > 0 . From (I3) we conclude that x(t) → 1  as 
t → ∞  which means that x∗ = 1  is a stable fixed point of (I2). Moreover, as is true for (I1) we have 
proved that the population N  will settle at its carrying capacity K .

Next, let us turn to the discrete analogue of (I2). From (I2) it follows that 

xt+1 − xt

∆t
≈ rxt(1− xt) � (I4)
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which implies 

xt+1 = xt + r∆txt − r∆tx2
t = (1 + r∆t)xt

(
1− r∆t

1 + r∆t
xt

)
� (I5)

and through the definition y = r∆t(1 + r∆t)−1x  we easily obtain 

yt+1 = µyt(1− yt)� (I6)

where µ = 1 + r∆t .

The “sweet and innocent-looking” equation (I6) is often referred to as the quadratic or the logistic map. 
Its possible dynamical outcomes were presented by Sir Robert May in an influential review article called 
“Simple mathematical models with very complicated dynamics” in Nature (1976). There, he showed, 
depending on the value of the parameter µ , that the asymptotic behaviour of (I6) could be a stable 
fixed point (just as in (I2)), but also periodic solutions of both even and odd periods as well as chaotic 
behaviour. Thus the dynamic outcome of (I6) is richer and much more complicated than the behaviour 
of the continuous counterpart (I2).

Hence, instead of considering continuous systems where the number of state variables is at least 3 (the 
minimum number of state variables for a continuous system to exhibit chaotic behaviour), we find it much 
more convenient to concentrate on discrete systems so that we can introduce and discuss important definitions, 
ideas and concepts without having to consider more complicated (continuous) models than necessary. 

— 

The book is divided into three parts. In Part I, we will develop the necessary qualitative theory which will 
enable us to understand the complex nature of one-dimensional maps. Definitions, theorems and proofs 
shall be given in a general context, but most examples are taken from biology and ecology. Equation 
(I6) will on many occasions serve as a running example throughout the text. In Part II the theory will 
be extended to n-dimensional maps (or systems of difference equations). A couple of sections where 
we present various solution methods of higher order and systems of linear difference equations are also 
included. As in Part I, the theory will be illustrated and exemplified by use of population models from 
biology and ecology. In particular, Leslie matrix models and their relatives, stage structured models 
shall frequently serve as examples. In Part III we focus on various aspects of discrete time optimization 
problems which include both dynamic programming as well as discrete time control theory. Solution 
methods of finite and infinite horizon problems are presented and the problems at hand may be of both 
deterministic and stochastic nature. We have also included an Appendix where we briefly discuss how 
parameters in models like those presented in Part I and Part II may be estimated by use of time series. 
The motivation for this is that several of our population models may or have been applied on concrete 
species which brings forward the question of estimation. Hence, instead of referring to the literature we 
supply the necessary material here.

—
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Finally, we want to repeat and emphasize that although we have used lots of examples and problems taken 
from biology and ecology this is a Mathematics text so in order to be well prepared, the potential reader 
should have a background from a calculus course and also a prerequisite of topics from linear algebra, 
especially some knowledge of real and complex eigenvalues and associated eigenvectors. Regarding 
section 2.5 where the Hopf bifurcation is presented, the reader would also benefit from a somewhat 
deeper comprehension of complex numbers. This is all that is necessary really in order to establish the 
machinery we need in order to study the fascinating behaviour of nonlinear maps.
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One-dimensional maps

Part 1 
� One-dimensional maps 

f : R → R x → f(x)
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1.1	 Preliminaries and definitions

Let I ⊂ R  and J ⊂ R  be two intervals. If f  is a map from I  to J  we will express that as f : I → J ,  
x → f(x) . Sometimes we will also express the map as a difference equation xt+1 = f(xt) . If the map 
f  depends on a parameter u  we write fu(x) and say that f  is a one-parameter family of maps.

For a given x0, successive iterations of map f  (or the difference equation xt+1 = f(xt) ) give: 
x1 = f(x0) , x2 = f(x1) = f(f(x0)) = f 2(x0) , x3 = f(x2) = f(f 2(x0)) = f 3(x0) . . ., so after 
n  iterations xn+1 = fn(x0) . Thus, the orbit of a map is a sequence of points {x0, f(x0), . . . , f

n(x0)}  
which we for simplicity will write as {fn(x0)} . This is in contrast to the continuous case (differential 
equation) where the orbit is a curve.

As is true for differential equations it is a well-known fact that most classes of equations may not be 
solved explicitly. The same is certainly true for maps. However, the map x → f(x) = ax+ b where 
a  and b  are constants is solvable.

Theorem 1.1.1. The difference equation 

		  xt+1 = axt + b � (1.1.1)

has the solution 

		  xt = at
(
x0 −

b

1− a

)
+

b

1− a
, a �= 1 � (1.1.2a)

		  xt = x0 + bt , a = 1� (1.1.2b)

where x0 is the initial value. 

Proof. From (1.1.1) we have x1 = ax0 + b ⇒ x2 = ax1 + b = a(ax0 + b) + b = a2x0 + (a + 1)b ⇒ x3 = ax2 + b =
. . . = a3x0 + (a2 + a+ 1)b

x1 = ax0 + b ⇒ x2 = ax1 + b = a(ax0 + b) + b = a2x0 + (a + 1)b ⇒ x3 = ax2 + b =
. . . = a3x0 + (a2 + a+ 1)b

 
x1 = ax0 + b ⇒ x2 = ax1 + b = a(ax0 + b) + b = a2x0 + (a + 1)b ⇒ x3 = ax2 + b =

. . . = a3x0 + (a2 + a+ 1)b. Thus assume  xk = akx0 + (ak−1 + ak−2 + . . .+ a+ 1)b  

xk = akx0 + (ak−1 + ak−2 + . . .+ a+ 1)b . Then by induction: xk+1 = axk + b = a
[
akx0 + (ak−1 + ak−2 + . . .+ a+ 1)b

]
+ b = ak+1x0 + (ak + ak−1 +

. . .+ a+ 1)b
 xk+1 = axk + b = a

[
akx0 + (ak−1 + ak−2 + . . .+ a+ 1)b

]
+ b = ak+1x0 + (ak + ak−1 +

. . .+ a+ 1)b
xk+1 = axk + b = a

[
akx0 + (ak−1 + ak−2 + . . .+ a+ 1)b

]
+ b = ak+1x0 + (ak + ak−1 +

. . .+ a+ 1)b

xk+1 = axk + b = a
[
akx0 + (ak−1 + ak−2 + . . .+ a+ 1)b

]
+ b = ak+1x0 + (ak + ak−1 +

. . .+ a+ 1)b . If a �= 1: 1 + a + . . .+ ak = (1− at)(1− a)−1

1 + a + . . .+ ak = (1− at)(1− a)−1 so the solution becomes 

		  xt = atx0 +
1− at

1− a
b = at

(
x0 −

b

1− a

)
+

b

1− a

If a = 1: 1 + a + . . .+ at−1 = t · 1 = t  

		  xt = x0 + bt

☐ 
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Regarding the asymptotic behaviour (long-time behaviour) we have from Theorem 1.1.1: If 
|a| < 1 limt→∞ xt = b/(1− a) . (If x0 = b/(1 − a)  this is true for any a �= 1.) If a > 1 and 
x0 �= b/(1 − a)  the result is exponential growth or decay, and finally, if a < −1  divergent oscillations 
is the outcome.

If b = 0 , (1.1.1) becomes 

		  xt+1 = axt � (1.1.2)

which we will refer to as the linear difference equation. The solution is 

		  xt = atx0 � (1.1.3)

Hence, whenever |a| < 1 , xt → 0  asymptotically (as a convergent oscillation if −1 < a < 0). a > 1 
or a < −1  gives exponential growth or divergent oscillations respectively.

Exercise 1.1.1. Solve and describe the asymptotic behaviour of the equations: 

a)	 xt+1 = 2xt + 4 , x0 = 1 , 

b)	 3xt+1 = xt + 2 , x0 = 2 . � ☐ 

Exercise 1.1.2. Denote x∗ = b/(1 − a)  where a �= 1 and describe the asymptotic behaviour of 
equation (1.1.1) in the following cases: 

a)	 0 < a < 1  and x0 < x∗ , 

b)	 −1 < a < 0  and x0 < x∗ , 

c)	 a > 1 and x0 > x∗ .� ☐ 

Equations of the form xt+1 + axt = f(t), for example xt+1 − 2xt = t2 + 1 , may be regarded as 
special cases of the more general situation 

		  xt+n + a1xt+n−1 + a2xt+n−2 + · · ·+ anxt = f(t) , n = 1, 2, ...

Such equations are treated in Section 2.1 (cf. Theorem 2.1.6, see also examples following equation (2.1.6) 
and Exercise 2.1.5). 

— 
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When the map x → f(x)  is nonlinear (for example x → 2x(1− x) ) there are no solution methods 
so information of the asymptotic behaviour must be obtained by use of qualitative theory.

Definition 1.1.1. A fixed point x∗  for the map x → f(x)  is a point which satisfies the equation
x∗ = f(x∗) .� ☐ 

Fixed points are of great importance to us and the following theorem will be very useful.

Theorem 1.1.2. 

a)	 Let I = [a, b]  be an interval and let f : I → I  be continuous. Then f  has at least one fixed 
point in I . 

b)	 Suppose in addition that |f ′(x)| < 1 for all x ∈ I . Then there exists a unique fixed point 
for f  in I , and moreover 

		  |f(x)− f(y)| < |x− y|
☐

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

www.discovermitas.com

http://s.bookboon.com/mitas


Discrete Dynamical Systems with an 
Introduction to Discrete Optimization

15 

One-dimensional maps

Proof. 

a)	 Define g(x) = f(x)− x . Clearly, g(x) too is continuous. Suppose f(a) > a  and 
f(b) < b . (If f(a) = a  or f(b) = b  then a  and b  are fixed points.) Then g(a) > 0 and 
g(b) < 0  so the intermediate value theorem from elementary calculus directly gives the 
existence of c  such that g(c) = 0. Hence, c = f(c) . 

b)	 From a) we know that there is at least one fixed point. Suppose that both x  and y  (x �= y )  
are fixed points. Then according to the mean value theorem from elementary calculus there 
exists c  between x  and y  such that f(x)− f(y) = f ′(c)(x− y). This yields (since 
x = f(x) , y = f(y)) that 

f ′(c) =
f(x)− f(y)

x− y
= 1

This contradicts |f ′(x)| < 1. Thus x = y  so the fixed point is unique. Further from the mean 
value theorem: 

		  |f(x)− f(y)| = |f ′(c)| |x− y| < |x− y|
☐ 

Definition 1.1.2. Consider the map x → f(x) . The point p  is called a periodic point of period 
n  if p = fn(p) . The least n > 0  for which p = fn(p)  is referred to as the prime period of p .

Note that a fixed point may be regarded as a periodic point of period one. � ☐ 

Exercise 1.1.3. Find the fixed points and the period two points of f(x) = x3 . � ☐ 

Definition 1.1.3. If f ′(c) = 0 , c  is called a critical point of f . c  is nondegenerate if f ′′(c) �= 0,  
degenerate if f ′′(c) = 0. � ☐  

The derivative of the n -th iterate fn(x)  is easy to compute by use of the chain rule. Observe that 
fn(x) = f(fn−1(x)) , fn−1(x) = f(fn−2(x)) . . . , f 2(x) = f(f(x)) . Consequently: 

		  fn′(x) = f ′(fn−1(x))f ′(fn−2(x)) . . . f ′(x) � (1.1.5)

(1.1.5) enables us to compute the derivative at points on a periodic orbit in an elegant way. Indeed, suppose 
the three cycle {p0, p1, p2}  where p1 = f(p0) , p2 = f(p1) = f 2(p0)  and f 3(p0) = p0 . . . . Then 

		  f 3′(p0) = f ′(p2)f
′(p1)f

′(p0) � (1.1.6)
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Obviously, if we have n  periodic points {p0, . . . , pn−1}  the corresponding formulae is 

		  fn′(p0) =
n−1∏

i=0

f ′(pi)� (1.1.7)

(Later on we shall use the derivative in order to decide whether a periodic orbit is stable or not. (1.1.7) 
implies that all points on the orbit is stable (unstable) simultaneously.)

We will now proceed by introducing some maps (difference equations) that have been frequently applied 
in population dynamics. Examples that show how to compute fixed points, periodic points, etc., will be 
taken from these maps. Some computations are performed in the next section, others are postponed to 
Section 1.3.

1.2	 One-parameter family of maps

Here we shall briefly present some one-parameter family of maps which have often been applied in 
population dynamical studies. Since x  is supposed to be the size of a population, x ≥ 0 .

The map 

		  x → fµ(x) = µx(1− x) � (1.2.1)

is often referred to as the quadratic or the logistic map. The parameter µ  is called the intrinsic growth 
rate. Clearly x ∈ [0, 1], otherwise xt > 1 ⇒ xt+1 < 0 . If µ ∈ [0, 4]  any iterate of fµ  will remain in 
[0, 1] . Further we may notice that fµ(0) = fµ(1) = 0  and x = c = 1/2 is the only critical point. 

Definition 1.2.1. A map f : I → I  is said to be unimodal if a) f(0) = f(1) = 0 , and  
b) f  has a unique critical point c  which satisfies 0 < c < 1 . � ☐ 

Hence (1.2.1) is a unimodal map on the unit interval. Note that unimodal maps are increasing on the 
interval [0, c〉  and are decreasing on (c, 1].

The map 

		  x → fr(x) = xer(1−x) � (1.2.2)

is called the Ricker map. Unlike the quadratic map, x ∈ [0,∞〉 . The parameter r  is positive.

Exercise 1.2.1. Show that the fixed points of (1.2.2) are 0 and 1 and that the critical point  
is 1/r .� ☐ 
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The property that x ∈ [0,∞〉  makes (1.2.2) much more preferable to biologists than (1.2.1). Indeed, 
let µ > 4  in (1.2.1). Then most points contained in [0, 1]  will leave [0, 1]  after a finite number of 
iterations (the point x0 = 1/2 will leave the unit interval after only one iteration), and once xt > 1, 
xt+1 < 0  which, of course, is unacceptable from a biological point of view. Such problems do not arise 
by use of (1.2.2).

The map 

		  x → fa,b(x) =
ax

(1 + x)b
� (1.2.3)

where a > 1, b > 1  is a two-parameter family of maps and is called the Hassel family.

Exercise 1.2.2. Show that x = 0  and x = a1/b − 1  are the fixed points of (1.2.3) and that 
c = 1/(b− 1)  is the only critical point for x > 0 . � ☐

The map 

		  x → Ta(x) =






ax 0 ≤ x ≤ 1/2

a(1− x) 1/2 < x ≤ 1
� (1.2.4)
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where a > 0 is called the tent map for obvious reasons. We will pay special attention to the case 
a = 2. Note that Ta(x)  attains its maximum at x = 1/2  but that T ′(1/2)  does not exist. Since 
Ta(0) = Ta(1) = 0  the map is unimodal on the unit interval.

 Figure 1: The graphs of the functions: (a) f(x) = 4x(1 − x)  and (b) the tent function (cf. (1.2.4) where a = 2).

All functions defined in (1.2.1)–(1.2.4) have one critical point only. Such functions are often referred to 
as one-humped functions. In Figure 1a we show the graph of the quadratic functions (1.2.1) (µ = 4) 
and in Figure 1b the “tent” function (1.2.4) (a = 2). In both figures we have also drawn the line y = x  
and we have marked the fixed points of the maps with dots.

As we have seen, maps (1.2.1)–(1.2.4) share much of the same properties. Our next goal is to explore 
this fact further.

Definition 1.2.2. Let f : U → U  and g : V → V  be two maps. If there exists a homeomorphism 
h : U → V  such that h ◦ f = g ◦ h , then f  and g  are said to be topological equivalent.� ☐ 

Remark 1.2.1. A function h  is a homeomorphism if it is one-to-one, onto and continuous and 
that h−1  is also continuous.� ☐ 

The important property of topological equivalent maps is that their dynamics is equivalent. Indeed, suppose 
that x = f(x) . Then from the definition, h(f(x)) = h(x) = g(h(x)) , so if x  is a fixed point of f , h(x)  is a 
fixed point for g . In a similar way, if p  is a periodic point of f  of prime period n  (i.e. fn(p) = p ) we have 
from Definition 1.2.2 that f = h−1 ◦ g ◦ h ⇒ f 2 = (h−1 ◦ g ◦ h) ◦ (h−1 ◦ g ◦ h) = h−1 ◦ g2 ◦ h  
so clearly fn = h−1 ◦ gn ◦ h . Consequently, h(fn(p)) = h(p) = gn(h(p))  so h(p)  is a periodic 
point of prime period n  for g .
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Proposition 1.2.1. The quadratic map f : [0, 1] → [0, 1]  x → f(x) = 4x(1− x)  is topological 
equivalent to the tent map 

T : [0, 1] → [0, 1] x → T (x) =






2x 0 ≤ x ≤ 1/2

2(1− x) 1/2 < x ≤ 1

☐ 

Proof. We must find a function h  such that h ◦ f = T ◦ h . Note that this implies that we also 
have f ◦ h−1 = h−1 ◦ T  where h−1  is the inverse of h .

Now, define h−1(x) = sin2(πx)/2 . Then

f ◦ h−1 = f
(
sin2 πx

2

)
= 4 sin2 πx

2

(
1− sin2 πx

2

)

= 4 sin2 πx

2
cos2

πx

2
=

(
2 sin

πx

2
cos

πx

2

)2

= sin2 πx

h−1 ◦ T = h−1(2x) = sin2 πx 0 ≤ x ≤ 1

2

h−1 ◦ T = h−1(2(1− x)) = sin2(π − πx) = sin2 πx
1

2
< x ≤ 1

Thus, f ◦ h−1 = h−1 ◦ T  which implies h ◦ f = T ◦ h  so f  and T  are topological  
equivalent.� ☐ 

1.3	 Fixed points and periodic points of the quadratic map

Most of the theory that we shall develop in the next sections will be illustrated by use of the quadratic 
map (1.2.1). In many respects (1.2.1) will serve as a running example. Therefore, in order to prepare the 
ground we are here going to list some main properties.

The fixed points are obtained from x = µx(1− x) . Thus the fixed points are x∗ = 0  (the trivial fixed 
point) and x∗ = (µ− 1)/µ  (the nontrivial fixed point). Note that the nontrivial fixed point is positive 
whenever µ > 1 . Assuming that (1.2.1) has periodic points of period two they must be found from 
p = f 2

µ(p)  and since 

		  f 2
µ(p) = f(µp(1− p)) = µ2p[1− (µ+ 1)p+ 2µp2 − µp3]

the two nontrivial periodic points must satisfy the cubic equation 

		  µ3p3 − 2µ3p2 + µ2(µ+ 1)p+ 1− µ2 = 0 � (1.3.1)
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Since every periodic point of prime period 1 is also a periodic point of period 2 we know that 
p = (µ− 1)/µ  is a solution of (1.3.1). Therefore, by use of polynomial division we have 

		  µ2p2 − (µ2 + µ)p+ µ+ 1 = 0 � (1.3.2)

Thus, the periodic points are 

		  p1,2 =
µ+ 1±

√
(µ+ 1)(µ− 3)

2µ � (1.3.3)

where µ > 3  is a necessary condition for real solutions.

Period three points are obtained from p = f 3
µ(p)  and must be found by means of numerical methods. 

(It is possible to show after a somewhat cumbersome calculation that the three periodic points do not 
exist unless µ > 1 +

√
8.)

In general, it is a hopeless task to compute periodic points of period n  for a given map when n  becomes 
large. Therefore, it is in many respects a remarkable fact that it is possible when µ = 4  in the quadratic 
map. We shall now demonstrate how such a calculation may be carried out, and in doing so, we find it 
convenient to express (1.2.1) as a difference equation rather than a map. 
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Thus consider 

		  xt+1 = 4xt(1− xt) � (1.3.4)

Let xt = sin2 ϕt . Then from (1.3.4): 

		
sin2 ϕt+1 = 4 sin2 ϕt cos

2 ϕt = sin2 2ϕt

Further: 

		

sin2 ϕt+2 = 4 sin2 ϕt+1(1− sin2 ϕt+1)

= 4 sin2 2ϕt cos
2 2ϕt = sin2 22ϕt

Thus, after n  iterations 

		  sin2 ϕt+n = sin2 2nϕt

which implies: 

		  ϕt+n = ±2nϕt + lπ

Now, if we have a period n  orbit (xt+n = xt ) 

		
sin2 ϕt+n = sin2 ϕt

Hence: 

		

ϕt+n = ±ϕt +mπ ⇔ ±2nϕt + lπ = ±ϕt +mπ

⇔ (2n ± 1)ϕt = (m− l)π

so 

		
ϕt =

kπ

2n ± 1

where k = m− l . Consequently, the periodic points are given by 

		  pi = sin2 kπ

2n ± 1
� (1.3.5)

Example 1.3.1. Compute all the period 1, period 2 and period 3 points of f(x) = 4x(1− x) . 
The period 1 points (which of course are the same as the fixed points) are 

		
sin2 π

2− 1
= 0 sin2 π

2 + 1
= 0.75
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The period 2 points are the period 1 points (which do not have prime period 2) plus the prime 
period 2 points. 

		  sin2 π

5
= 0.34549 sin2 2π

5
= 0.904508

(The latter points may of course also be obtained from (1.3.3).)

There are six points of prime period 3. The points 

		  sin2 π

7
= 0.188255 , sin2 2π

7
= 0.611260 sin2 4π

7
= 0.950484

are the periodic points in one 3-cycle, while the points 

		  sin2 π

9
= 0.116977 , sin2 2π

9
= 0.4131759 sin2 4π

9
= 0.969846

are the periodic points on another orbit. (The reason why it is one 2-cycle but two 3-cycles is 
strongly related to how they are created.)� ☐ 

Exercise 1.3.1. Use (1.3.5) to find all the period 4 points of f(x) = 4x(1− x) . How many 
periodic points are there? � ☐

Since f(x) = 4x(1− x)  is topological equivalent to the tent map we may use (1.3.5) 

together with Proposition 1.2.1 to find the periodic points of the tent map. Indeed, since 

h−1(x) = sin2(πx/2) ⇒ h(x) = (2/π) arcsin
√
x  (cf. the proof of Proposition 1.2.1) the periodic 

points p  of T (x)  may be found from T (h(p)) = T ((2/π) arcsin
√
p) . Thus the fixed points of the 

tent map are 

		

T

(
2

π
arcsin

√
0

)
=

4

π
arcsin 0 = 0

T

(
2

π
arcsin

√
3

4

)
= 2

(
1− 2

π
arcsin

√
3

4

)
= 0.6666

Exercise 1.3.2. Find the period 2 points of the tent map (a = 2).� ☐ 

We shall close this section by computing numerically some orbits of the quadratic map for different 
values of the parameter µ : 

µ = 1.8 and x0 = 0.8  gives the orbit 

{0.8 0.2880 0.3691 0.4192 0.4382 0.4431 0.4442 0.4444 0.4444 . . .}  

Download free eBooks at bookboon.com



Discrete Dynamical Systems with an 
Introduction to Discrete Optimization

23 

One-dimensional maps

Thus the orbit converges towards the point 0.4444 which is nothing but the fixed point (µ− 1)/µ . In 
this case the fixed point is said to be locally asymptotic stable. (A precise definition will be given in the 
next section.) 

µ = 3.2 and x0 = 0.6  gives: 
{0.6 0.7680 0.5702 0.7842 0.5415 0.7945 0.5225 0.7984 0.5151  
0.7993 0.5134 0.7994 0.5131 0.7995 0.5130 0.7995 0.5130 . . .}  

Thus in this case the orbit does not converge towards the fixed point. Instead we find that the asymptotic 
behaviour is a stable periodic orbit of prime period 2. The points in the two-cycle are given by (1.3.3). 

µ = 4.0 and x0 = 0.30  gives 

{0.30 0.84 0.5376 0.9943 0.02249 0.0879 0.3208 0.8716 0.4476 0.9890 . . .}  

Although care should be taken by drawing a conclusion after a few iterations only, the last example suggests 
that there are no stable periodic orbit when µ = 4 . (A formal proof of this fact will be given later.)
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Exercise 1.3.3. Use a calculator or a computer to repeat the calculations above but use the initial 
values 0.6, 0.7 and 0.32 instead of 0.8, 0.6 and 0.3, respectively. Establish the fact that the long-
time behaviour of the map when µ = 1.8 or µ = 3.2 is not sensitive to a slightly change of the 
initial conditions but that there is a strong sensitivity in the last case.� ☐ 

1.4	 Stability

Referring to the last example of the previous section we found that the equation xt+1 = 1.8xt(1− xt) 
apparently possessed a stable fixed point and that the equation xt+1 = 3.2xt(1− xt) did not. Both 
these equations are special cases of the quadratic family (1.2.1) so what the example suggests is that by 
increasing the parameter µ  in (1.2.1) there exists a threshold value µ0  where the fixed point of (1.2.1) 
loses its stability.

Now, consider the general first order nonlinear equation 

		  xt+1 = fµ(xt)� (1.4.1)

where µ  is a parameter. The fixed point x∗  satisfies x∗ = fµ(x
∗) .

In order to study the system close to x∗  we write xt = x∗ + ht  and expand fµ  in its Taylor series 
around x∗  taking only the linear term. Thus: 

		  x∗ + ht+1 ≈ fµ(x
∗) +

df

dx
(x∗)ht � (1.4.2)

which gives 

		  ht+1 =
df

dx
(x∗)ht � (1.4.3)

We call (1.4.3) the linearization of (1.4.1). The solution of (1.4.3) is given by (1.1.4). Hence, if 
|(df/dx)(x∗)| < 1 , limt→∞ ht = 0  which means that xt  will converge towards the fixed point x∗ .

Now, we make the following definitions:

Definition 1.4.1. Let x∗  be a fixed point of equation (1.4.1). If |λ| = |(df/dx)(x∗)| �= 1 then 
x∗  is called a hyperbolic fixed point. λ  is called the eigenvalue.� ☐

Definition 1.4.2. Let x∗  be a hyperbolic fixed point. If |λ| < 1  then x∗  is called a locally 
asymptotic stable hyperbolic fixed point.� ☐

Example 1.4.1. Assume that µ > 1  and find the parameter interval where the fixed point 
x∗ = (µ− 1)/µ  of the quadratic map is stable.
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Solution: fµ(x) = µx(1− x) implies that f ′(x) = µ(1− 2x) ⇒ |λ| = |f ′(x∗)| = |2− µ| . 
Hence from Definition 1.4.2, 1 < µ < 3  ensures that x∗  is a locally asymptotic stable fixed point 
(which is consistent with our finding in the last example in the previous section).� ☐

It is clear from Definition 1.4.2 that x∗  is a locally stable fixed point. A formal argument that there exists an 
open interval U  around x∗  so that whenever |f ′(x∗)| < 1  and x ∈ U  and that limn→∞ fn(x) = x∗  
goes like this:

By the continuity of f  (f  is C ′ ) there exists an ε > 0  such that |f ′(x)| < K < 1  for 
x ∈ [x∗ − ε, x∗ + ε]. Successive use of the mean value theorem then implies 

		

|fn(x)− x∗| = |fn(x)− fn(x∗)| = |f(fn−1(x))− f(fn−1(x∗))|

≤ K|fn−1(x)− fn−1(x∗)| ≤ K2|fn−2(x)− fn−2(x∗)|

≤ . . . ≤ Kn|x− x∗| < |x− x∗| < ε

so fn(x) → x∗  as n → ∞ .

Motivated by the preceding argument we define:

Definition 1.4.3. Let x∗  be a hyperbolic fixed point. We define the local stable and unstable 
manifolds of x∗ , W s

loc(x
∗) , W u

loc(x
∗)  as 

W s
loc(x

∗) = {x ∈ U | fn(x) → x∗ n → ∞ fn(x) ∈ U n ≥ 0}

W u
loc(x

∗) = {x ∈ U | fn(x) → x∗ n → −∞ fn(x) ∈ U n ≤ 0}

where U  is a neighbourhood of the fixed point x∗ .� ☐

The definition of a hyperbolic stable fixed point is easily extended to periodic points.

Definition 1.4.4. Let p  be a periodic point of (prime) period n  so that |fn′(p)| < 1. Then p  
is called an attracting periodic point.� ☐

Example 1.4.2. Show that the periodic points 0.5130 and 0.7995 of xt+1 = 3.2xt(1− xt) are 
stable and thereby proving that the difference equation has a stable 2-periodic attractor.
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Solution: Since f(x) = 3.2x(1− x) ⇒ f ′(x) = 3.2(1− 2x)  we have from the chain rule 
(1.1.7) that f 2′(0.5130) = f ′(0.7995)f ′(0.5130) = −0.0615 . Consequently, according to 
Definition 1.4.4, the periodic points are stable. � ☐ 

Exercise 1.4.1. Use formulae (1.3.3) and compute the two-periodic points of the quadratic map 
in case of µ = 3.8. Is the corresponding two-periodic orbit stable or unstable?� ☐

Exercise 1.4.2. When µ = 3.839  the quadratic map has two 3-cycles. One of the cycles consists 
of the points 0.14989, 0.48917 and 0.9593 while the other consists of the points 0.16904, 0.53925 
and 0.95384. Show that one of the 3-cycles is stable and that the other one is unstable.� ☐
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An alternative way of investigating the behaviour of a one-dimensional map x → f(x)  is to use 
graphical analysis. The method is illustrated in Figures 2a,b, where we have drawn the graphs of a) 
f(x) = 2.7x(1− x) , and b) f(x) = 3.2x(1− x)  together with the diagonal(s) y = x . Now, 
considering Figure 2a, let x0 (= 0.2) be an initial value. A vertical line from x0 to the diagonal gives the 
point (x0, x0) , and if we extend the line to the graph of f  we arrive at the point (x0, f(x0)) . Then 
a horizontal line from the latter point to the diagonal gives the point (f(x0), f(x0)) . Hence, by first 
drawing a vertical line from the diagonal to the graph of f  and then a horizontal line back to the diagonal 
we actually find the image of a point x0 under f  on the diagonal. Continuing in this fashion by drawing 
line segments vertically from the diagonal to the graph of f  and then horizontally from the graph to 
the diagonal generate points (x0, x0) , (f(x0), f(x0)) , (f 2(x0), f

2(x0)), ..., (f
n(x0), f

n(x0)) on the 
diagonal which is nothing but a geometrical visualization of the orbit of the map x → f(x) . Referring to 
Figure 2a we clearly see that the orbit converges towards a stable fixed point (cf. Example 1.4.1). On the 
other hand, in Figure 2b our graphical analysis shows that the fixed point is a repellor (cf. Exercise 1.3.2), 
and if we continue to iterate the map the result is a stable period 2 orbit, which is in accordance with 
Example 1.4.2. In Figure 2c all initial transitions have been removed and only the period 2 orbit is plotted.

Exercise 1.4.3. Let x ∈ [0, 1] and perform graphical analyses of the maps x → 1.8x(1− x), 
x → 2.5x(1− x)  and x → 4x(1− x) . In the latter map use both a) x0 = 0.2 , and b) x0 = 0.5  
as initial values.� ☐

 Figure 2: Graphical analyses of a) x → 2.7x(1− x) and b), c) x → 3.2x(1− x).
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Exercise 1.4.4. Consider the map f : R → R x → x3 . 

a)	 The map has three fixed points. Find these. 
b)	 Use Definition 1.4.2 and discuss their stability properties. 
c)	 Verify the results in a) and b) by performing a graphical analysis of f .� ☐ 

Let us close this section by discussing the concept structural stability. Roughly speaking, a map f  is said 
to be structurally stable if a map g  which is obtained through a small perturbation of f  has essentially 
the same dynamics as f , so intuitively this means that the distance between f  and g  and the distance 
between their derivatives should be small.

Definition 1.4.5. The C1  distance between a map f  and another map g  is given by 

		  sup
x∈R

(|f(x)− g(x)|, |f ′(x)− g′(x)|) � (1.4.4)
☐ 

By use of Definition 1.4.5 we may now define structural stability in the following way:

Definition 1.4.6. The map f  is said to be C1  structurally stable on an interval I  if there exists 
ε > 0  such that whenever (1.4.4) < ε  on I , f  is topological equivalent to g . � ☐

To prove that a given map is structurally stable may be difficult, especially in higher dimensional systems. 
However, our main interest is to focus on cases where a map is not structurally stable. In many respects 
maps with nonhyperbolic fixed points are standard examples of such maps as we now will demonstrate.

Example 1.4.3. When µ = 1  the quadratic map is not structurally stable.

Indeed, consider x → f(x) = x(1− x)  and the perturbation x → g(x) = x(1− x) + ε . 
Obviously, x∗ = 0  is the fixed point of f  and since |λ| = |f ′(0)| = 1 , x∗  is a nonhyperbolic 
fixed point. Moreover, the C1  distance between f  and g  is |ε| . Regarding g , the fixed points 
are easily found to be x = ±

√
ε . Hence, for ε > 0  there are two fixed points and ε < 0  gives 

no fixed points. Consequently, f  is not structurally stable.� ☐

Example 1.4.4. When µ = 3  the quadratic map is not structurally stable.
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Let x → f(x) = 3x(1− x)  and x → g(x) = 3x(1− x) + ε  and again we notice that their  
C1  distance is ε . Regarding f , the fixed points are x∗

1 = 0  and x∗
2 = 2/3. Further, 

|λ1| = |f ′(0)| = 3 , |λ2| = |f ′(2/3)| = 1 . Thus x∗
1  is a repelling hyperbolic fixed point 

while x∗
2  is nonhyperbolic. Considering g , the fixed points are x1 = (1/3)(1−

√
1 + 3ε) 

and x2 = (1/3)(1 +
√
1 + 3ε). Note that ε = 0 ⇒ x1 = x∗

1 , x2 = x∗
2 .) Further, 

|σ1| = |g′(x1)| = |1 + 2
√
1 + 3ε|  and |σ2| = |g′(x2)| = |1− 2

√
1 + 3ε| . Whatever the 

sign of ε , x1 is clearly a repelling fixed point (just as x∗
1 ) since σ1 > 1 . Regarding x2 it is stable 

in case of ε < 0  and unstable if ε > 0 .

The equation x = g2(x) may be expressed as 

		  −27x4 + 54x3 + (18ε− 36)x2 + (8− 18ε)x+ 4ε− 3ε2 = 0 � (1.4.5)

and since x1 and x2 are solutions of (1.4.5) we may use polynomial division to obtain 

		  9x2 − 12x− 3e + 4 = 0 � (1.4.6)

which has the solutions x1,2 = (2/3)(1±
√
3ε) . Thus there exists a two- periodic orbit in case 

of ε > 0 .
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Moreover, cf. (1.1.7) g2
′
= g′(x1)g

′(x2) = 9(1− 2x1)(1− 2x2) = 1− 48ε  which implies 
that the two-periodic orbit is stable in case of ε > 0 , ε  small. Consequently, when ε > 0  there 
is a fundamental structurally difference between f  and g  so f  cannot be structurally stable. 
(Note that the problem is the nonhyperbolic fixed point, not the hyperbolic one.)� ☐

As suggested by the previous examples a major reason why a map may fail to be structurally stable is 
the presence of the nonhyperbolic fixed point. Therefore it is in many respects natural to introduce the 
following definition:

Definition 1.4.7. Let x∗  be a hyperbolic fixed point of a map f : R → R . If there exists a 
neighbourhood U  around x∗  and an ε > 0  such that a map g  is C1 − ε  close to f  on U  
and f  is topological equivalent to g  whenever (1.4.4) < ε  on this neighbourhood, then f  is 
said to be C1  locally structurally stable.� ☐ 

There is a major general result on topological equivalent maps known under the name Hartman and 
Grobman’s theorem. The “one-dimensional” formulation of this theorem (cf. Devaney, 1989) is:

Theorem 1.4.1. Let x∗  be a hyperbolic fixed point of a map f : R → R  and suppose that 
λ = f ′(x∗) such that |λ| �= 0, 1 . Then there is a neighbourhood U  around x∗  and a 
neighbourhood V  of 0 ∈ R  and a homeomorphism h : U → R  which conjugates f  on U  to 
the linear map l(x) = λx  on V .� ☐ 

For a proof, cf. Hartman (1964).

Example 1.4.5. Consider x → f(x) = (5/2)x(1− x) . The fixed point is x∗ = 3/5  and is 
clearly hyperbolic since λ = f ′(x∗) = −1/2 . Therefore, according to Theorem 1.4.1, f(x) on 
a neighbourhood about 3/5 is topological equivalent to l(x) = −(1/2)x  on a neighbourhood 
about 0.� ☐

1.5	 Bifurcations

As we have seen, the map x → fµ(x) = µx(1− x)  has a stable hyperbolic fixed point x∗ = (µ− 1)/µ  
provided 1 < µ < 3 . If µ = 3 , λ = f ′(x∗) = −1 , hence x∗  is no longer hyperbolic. If µ = 3.2 we 
have shown that there exists a stable 2- periodic orbit. Thus x∗  experiences a fundamental change of 
structure when it fails to be hyperbolic which in our running example occurs when µ = 3 . Such a point 
will from now on be referred to as a bifurcation point. When λ = −1 , as in our example, the bifurcation 
is called a flip or a period doubling bifurcation. If λ = 1  it is called a saddle-node bifurcation. Generally, 
we will refer to a flip bifurcation as supercritical if the eigenvalue λ  crosses the value −1  outwards 
and that the 2-periodic orbit just beyond the bifurcation point is stable. Otherwise the bifurcation is 
classified as subcritical.
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Theorem 1.5.1. Let fµ : R → R , x → fµ(x)  be a one-parameter family of maps and assume 
that there is a fixed point (x∗, µ0)  where the eigenvalue equals −1 . Assume 

a =

(
∂fµ
∂µ

∂2fµ
∂x2

+ 2
∂2fµ
∂x∂µ

)
=

∂fµ
∂µ

∂2fµ
∂x2

−
(
∂fµ
∂x

− 1

)
∂2f

∂x∂µ
�= 0 at (x∗, µ0)

and 

b =

(
1

2

(
∂2fµ
∂x2

)2

+
1

3

(
∂3fµ
∂x3

))
�= 0 at (x∗, µ0)

Then there is a smooth curve of fixed points of fµ  which is passing through (x∗, µ0)  and which 
changes stability at (x∗, µ0) . There is also a curve consisting of hyperbolic period-2 points 
passing through (x∗, µ0) . If b > 0  the hyperbolic period-2 points are stable, i.e. the bifurcation 
is supercritical.� ☐

Proof. Through a coordinate transformation it suffices to consider fµ  so that for µ = µ0 = 0  
we have f(x∗, 0) = x∗  and f ′(x∗, 0) = −1 .

First we show that one without loss of generality may assume that x∗ = 0  in some neighbourhood 
of µ = 0 . To this end, define F (x, µ) = f(x, µ)− x . Then F ′(x∗, µ) = −2 �= 0  and by 
use of the implicit function theorem there exists a solution x(µ) of F (x, µ) = 0. Next, define 
g(y, µ) = f(y + x(µ), µ)− x(µ) . Clearly, g(0, µ) = 0 for all µ . Consequently, y = 0 
is a fixed point so in the following it suffices to consider x → f(x)  where x∗(µ) = 0  and 
f ′(0, 0) = −1.

The Taylor expansion around (x∗, µ) = (0, 0) of the latter map is 

gη(ξ) = −ξ +
∂f

∂µ
η +

1

2

(
∂2f

∂x2
ξ2 + 2

∂2f

∂x∂µ
ξη

)
+

1

6

∂3f

∂x3
ξ3 +

= −ξ + αη + βξ2 + cηξ + dξ3 +

where the parameter η  has the same weight as ξ2. The composite (g ◦ g)(ξ)  may be 
expressed as 

g2η(ξ) = ξ + αηξ + βξ3 +

Thus, in order to have a system to study we must assume α, β �= 0  which is equivalent to 

α = −(2c+ 2ab) = −
(
2

∂2f

∂x∂µ
+ 2

∂f

∂µ
· 1
2

∂2f

∂x2

)
�= 0

β = −(2d+ 2b2) = −
(
2 · 1

6

∂3f

∂x3
+ 2

(
1

2

∂2f

∂x2

)2
)

�= 0
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 Figure 3: The possible configurations of ξ2 → h(ξ) = ξ + αηξ + βξ3

and we recognize the derivative formulaes as nothing but what is stated in the theorem.
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Next, consider the truncated map 

		  ξ2 → h(ξ) = ξ + αηξ + βξ3

Clearly, the fixed points are 

		

ξ1 = 0 , ξ2,3 = ±
√

− α

β
η

Further, h′(ξ) = 1 + αη + 3βξ2 so h′(ξ1) = 1 + αη  and h′(ξ2,3) = 1− 2αη . Thus we have 
the following configurations (see Figure 3), and we may conclude that the stable period-2 orbits 
corresponds to β < 0, i.e. 

		
1

2

(
∂2f

∂x2

)2

+
1

3

∂3f

∂x3
> 0

☐ 

Example 1.5.1. Show that the fixed point of the quadratic map undergoes a supercritical flip 
bifurcation at the threshold µ = 3 .

Solution: From the previous section we know that x∗ = 2/3 and f ′(x∗) = −1  when µ = 3 .  
We must show that the quantities a  and b  in Theorem 1.5.1 are different from zero and larger 
than zero respectively. By computing the various derivatives at (x∗, µ0) = (2/3, 3)  we obtain: 

a =
2

9
(−6) + 2

(
− 1

3

)
= −2 �= 0 and b =

1

2
(−6)2 +

1

3
· 0 = 18 > 0

Thus the flip bifurcation is supercritical. When x∗  fails to be stable, a stable period-2 orbit is 
established. � ☐

Exercise 1.5.1. Show that the Ricker map x → x exp[r(1− x)] , cf. (1.2.2), undergoes a 
supercritical flip bifurcation at (x∗, r) = (1, 2) .� ☐

Exercise 1.5.2. Consider the two parameter family of maps x → −(1− µ)x− x2 + αx3 . Show 
that the map may undergo both a sub- and supercritical flip bifurcation.� ☐

As is clear from Definition 1.4.1 a fixed point will also lose its hyperbolicity if the eigenvalue λ equals 
1. The general case then is that x∗  will undergo a saddle-node bifurcation at the threshold where 
hyperbolicity fails. We shall now describe the saddle-node bifurcation.
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Consider the map 

		  x → fµ(x) = x+ µ− x2� (1.5.1)

whose fixed points are x∗
1,2 = ±√

µ . Hence, when µ > 0 there are two fixed points 
which equals when µ = 0. If µ < 0 there are no fixed points. In case of µ > 0, µ  small, 
we have f ′

µ(x
∗
1 =

√
µ) = 1− 2

√
µ < 1 , hence x∗

1 =
√
µ  is stable. On the other hand: 

f ′
µ(x

∗
2 = −√

µ) = 1 + 2
√
µ > 1 , consequently x∗

2  is unstable. Thus a saddle-node bifurcation is 
characterized by that there is no fixed point when the parameter µ  falls below a certain threshold µ0 . 
When µ  is increased to µ0 , λ = 1 , and two branches of fixed points are born, one stable and one unstable 
as displayed in the bifurcation diagram, see Figure 4a.

 Figure 4: (a) The bifurcation diagram (saddle node) for the map x → x+µ−x2   
(b) The bifurcation diagram (transcritical) for the map x → µx(1− x)

The other possibilities at λ = 1  are the pitchfork and the transcritical bifurcations. The various 
configurations for the pitchfork are given at the end of the proof of Theorem 1.5.1 (see Figure 3). A 
typical configuration in the transcritical case is shown in Figure 4b as a result of considering the quadratic 
map at (x∗, µ0) = (0, 1) .

Exercise 1.5.3. Do the necessary calculations which leads to Figure 4b.� ☐ 

Exercise 1.5.4. 

a)	 Show that the map x → µ− x2 undergoes a supercritical flip bifurcation at 
(x∗, µ0) = (1/2, 3/4). 

b)	 Perform a graphical analysis of the map in the cases µ = 1/2  and µ = 1 . � ☐ 

Exercise 1.5.5. Find possible bifurcation points of the map x → µ+ x2 . If you detect a flip 
bifurcation decide whether it is sub- or supercritical. � ☐ 

Exercise 1.5.6. Analyze the map x → µx− x3 .� ☐ 
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1.6	 The flip bifurcation sequence

We shall now return to the flip bifurcation. First we consider the quadratic map. In the previous section 
we used Theorem 1.5.1 to prove that the quadratic map x → µx(1− x)  undergoes a supercritical flip 
bifurcation at the threshold µ = µ0 = 3 . This means that in case of µ > µ0 , |µ− µ0|  small, there 
exists a stable 2-periodic orbit and according to our findings in Section 1.3 the periodic points are given 
by (1.3.3), namely 

		  p1,2 =
µ+ 1±

√
(µ+ 1)(µ− 3)

2µ

The period 2 orbit will remain stable as long as 

		  |f ′(p1)f
′(p2)| < 1

cf. Section 1.4. Thus, in our example, 

		
|µ(1− 2p1)µ(1− 2p2)| < 1

i.e. 

		  |1− (µ+ 1)(µ− 3)| < 1 � (1.6.1)
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from which we conclude that the 2-periodic orbit is stable as long as 

		  3 < µ < 1 +
√
6 � (1.6.2)

Since λ = f 2′ = f ′(p1)f
′(p2) = −1 when µ1 = 1 +

√
6  there is a new flip bifurcation taking place at 

µ1  which in turn leads to a 4-periodic orbit. We also notice that while the fixed point x∗ = (µ− 1)/µ  
is stable in the open interval I = (2, 3), the length of the interval where the 2-periodic orbit is stable is 
roughly (1/2)I . In Figure 5a we show the graphs of the quadratic map in the cases µ = 2.7 (curve a) 
and µ = 3.4 (curve b) respectively, together with the straight line xt+1 = xt . µ = 2.7 gives a stable 
fixed point x∗  while µ = 3.4 gives an unstable fixed point. These facts are emphasized in the figure by 
drawing the slopes (indicated by dashed lines). The steepness of the slope at the fixed point of curve a 
is less than −45◦ , |λ| < 1 , while λ < −1  at the unstable fixed point located on curve b. In general, 
if fµ(x)  is a single hump function (just as the quadratic map displayed in Figure 5a) the second iterate 
f 2
µ(x)  will be a two-hump function. In Figures 5b and 5c we show the relation between xt+2  and xt . 

Figure 5b corresponds to µ = 2.7, Figure 5c corresponds to µ = 3.4. Regarding 5b the steepness of 
the slope is still less than 45◦  so the fixed point is stable. However, in 5c the slope at the fixed point is 
steeper than 45◦ , the fixed point is unstable and we see two new solutions of period 2.

 Figure 5: (a) The quadratic map in the cases µ  = 2.7 and µ  = 3.4. (b) and (c)  
The second iterate of the quadratic map in the cases µ  = 2.7 and µ  = 3.4, respectively.

Let us now explore this mechanism analytically: Suppose that we have an n -periodic orbit consisting 
of the points p0, p1 . . . pn−1  such that 

		  pi = fn
µ (pi) � (1.6.3)
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Then by the chain rule (cf. (1.1.7)) 

		  fn
µ
′(p0) =

n−1∏

i=0

f ′
µ(pi) = λn(p0) � (1.6.4)

Hence, if |λn(p0)| < 1  the n -periodic orbit is stable, if |λn(p0)| > 1  the orbit is unstable.

Next, consider the 2n -periodic orbit 

		
pi = f 2n

µ (pi) = fn
µ (f

n
µ (pi))

By appealing once more to the chain rule we obtain 

		  f 2n
µ

′
(p0) =

(
n−1∏

i=0

f ′
µ(pi)

)2

= λ2n(p0) � (1.6.5)

This allows us to conclude that if the n -point cycle is stable (i.e. |λn| < 1) then λ2n < 1  too. On 
the other hand, when the n -cycle becomes unstable (i.e. |λn| > 1) then λ2n > 1  too. So what this 
argument shows is that when a periodic point of prime period n  becomes unstable it bifurcates into 
two new points which are initially stable points of period 2n  and obviously there are 2n  such points. 
This is the situation displayed in Figure 5c. So what the argument presented above really says is that as 
the parameter µ  of the map x → fµ(x)  is increased periodic orbits of period 2, 22, 23, . . .  and so on 
are created through successive flip bifurcations. This is often referred to as the flip bifurcation sequence. 
Initially, all the 2k  cycles are stable but they become unstable as µ  is further increased. 

— 

As already mentioned, if fµ(x)  is a single-hump function, then f 2
µ(x)  is a two-hump function. In the 

same way, f 3
µ(x)  is a four-hump function and in general f p

µ  will have 2p−1 humps. This means that the 
parameter range where the period 2p  cycles are stable shrinks through further increase of µ . Indeed, 
the µ  values at successive bifurcation points act more or less as terms in a geometric series. In fact, 
Feigenbaum (1978) demonstrated the existence of a universal constant δ  (known as the Feigenbaum 
number or the Feigenbaum geometric ratio) such that 

		  lim
n→∞

µn+1 − µn

µn+2 − µn+1
= δ = 4.66920 � (1.6.6)

where µn , µn+1  and µn+2  are the parameter values at three consecutive flip bifurcations. From this 
we may conclude that there must exist an accumulation value µa  where the series of flip bifurcations 
converge. (Geometrically, this may happen as a “valley” of some iterate of fµ  deepens and eventually 
touches the 45◦  line (cf. Figure 5c), then a saddle-node bifurcation (λ = 1) will occur.)
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As is true for our running example x → µx(1− x)  we have proved that the first flip bifurcation occurs 
at µ = 3  and the second at µ = 1 +

√
6. The point of accumulation for the flip bifurcations µa  is 

found to be µa = 3.56994 .

Exercise 1.6.1. Identify numerically the flip bifurcation sequence for the Ricker map (1.2.2).�  ☐ 

In the next sections we will describe the dynamics beyond the point of accumulation µa  for the flip 
bifurcations.

1.7	 Period 3 implies chaos. Sarkovskii’s theorem

Referring to our running example (1.2.1), x → µx(1− x)  we found in the previous section that the 
point of accumulation for the flip bifurcation sequence µa ≈ 3.56994 . We urge the reader to use a 
computer or a calculator to identify numerically some of the findings presented below. µ ∈ [µa, 4] .
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When µ > µa , µ− µa  small, there are periodic orbits of even period as well as aperiodic orbits. 
Regarding the periodic orbits, the periods may be very large, sometimes several thousands which make 
them indistinguishable from aperiodic orbits. Through further increase of µ  odd period cycles are 
detected too. The first odd cycle is established at µ = 3.6786 . At first these cycles have long periods 
but eventually a cycle of period 3 appears. In case of (1.2.1) the period-3 cycle occurs for the first time 
at µ = 3.8284 . This is displayed in Figure 6. (The point marked with a cross is the initially fixed point 
x∗ = (µ− 1)/µ  which became unstable at µ = 3 . It is also clear from the figure that the 3-cycle is 
established as the third iterate of (1.2.1) undergoes a saddle-node bifurcation.

Figure 6: A 3-cycle generated by the quadratic map.

An excellent way in order to present the dynamics of a map is to draw a bifurcation diagram. In such a 
diagram one plots the asymptotic behaviour of the map as a function of the bifurcation parameter. If we 
consider the quadratic map one plots the asymptotic behaviour as a function of µ . If a map contains several 
parameters we fix all of them except one and use it as bifurcation parameter. In somewhat more detail a 
bifurcation diagram is generated in the following way: (A) Let µ  be the bifurcation parameter. Specify 
consecutive parameter values µ1, µ2, ..., µn  where the distance |µi − µi+1|  should be very small. (B) 
Starting with µ1 , iterate the map from an initial condition x0 until the orbit of the map is close to the 
attractor and then remove initial transients. (C) Proceed the iteration and save many points of the orbit 
on the attractor. (D) Plot the orbit over µ1  in the diagram. (E) Repeat the procedure for µ2, µ3, ..., µn .

Now, if the attractor is an equilibrium point for a given bifurcation value µi  there will be one point only 
over µi  in the bifurcation diagram. If the attractor is a two-period orbit there will be two points over 
µi , and if the attractor is a k  period orbit there are k  points over µi . Later on we shall see that an 
attractor may be an invariant curve as well as being chaotic. On such attractors there are quasiperiodic 
orbits and if either of these two types of attractors exist we will recognize them as line segments provided 
a sufficiently number of iteration points. The same is also true for periodic orbits when the period k  
becomes large. (In this context one may in fact think of quasiperiodic and chaotic orbits as periodic 
orbits where k → ∞ .) Hence, it may be a hopeless task to distinguish these types of attractors from 
each other by use of the bifurcation diagram alone.
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Figure 7: The bifurcation diagram of the quadratic map in the parameter range 2.9 ≤ µ ≤ 4

In the bifurcation diagram, Figure 7, we display the dynamics of the quadratic map in the interval 
2.9 ≤ µ ≤ 4 . The stable fixed point (µ < 3) as well as the flip bifurcation sequence is clearly identified. 
Also the period-3 “window” is clearly visible. Our goal in this and in the next sections is to give a 
thorough description of the dynamics beyond µa .

We start by presenting the Li and Yorke theorem (Li and Yorke, 1975).

Theorem 1.7.1. Let fµ : R → R , x → fµ(x)  be continuous. Suppose that fµ  has a periodic 
point of period 3. Then fµ  has periodic points of all other periods. � ☐ 

Remark 1.7.1: Theorem 1.7.1 was first proved in 1975 by Li and Yorke under the title “Period 
three implies chaos”. Since there is no unique definition of the concept chaos many authors today 
prefer to use the concept “Li and Yorke chaos” when they refer to Theorem 1.7.1. The essence of 
Theorem 1.7.1 is that once a period-3 orbit is established it implies periodic orbits of all other 
periods. Note, however, that Theorem 1.7.1 does not address the question of stability. We shall 
deal with that in the next section. � ☐ 

We will now prove Theorem 1.7.1. Our proof is based upon the proof in Devaney (1989), not so much 
upon the original proof by Li and Yorke (1975).
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Proof. First, note that (1): If I  and J  are two compact intervals so that I ⊂ J  and J ⊂ fµ(I)  
then fµ  has a fixed point in I . (2): Suppose that A0, A1, . . . , An  are closed intervals and that 
Ai+1 ⊂ fµ(Ai)  for i = 0, . . . , n− 1 . Then there is at least one subinterval J0  of A0  which 
is mapped onto A1 . There is also a similar subinterval in A1  which is mapped onto A2  so 
consequently there is a J1 ⊂ J0 so that f(J1) ⊂ A1  and f 2

µ(J1) ⊂ A2 . Continuing is this 
fashion we find a nested sequence of intervals which map into the various Ai  in order. Therefore 
there exists a point x ∈ A0  such that f i

µ(x) ∈ Ai  for each i . We say that fµ(Ai)  covers Ai+1 .

Now, let a , b  and c ∈ R  and suppose fµ(a) = b , fµ(b) = c  and fµ(c) = a . We further 
assume that a < b < c . Let I0 = [a, b]  and I1 = [b, c] , cf. Figure 6. Then from our assumptions 
I1 ⊂ f(I0) and I0 ∨ I1 ⊂ f(I1) . The graph of fµ , cf. Figure 6, shows that there must be a 
fixed point of fµ  between b  and c . Similarly, f 2

µ  must have fixed points between a  and b  
and at least one of them must have period 2. Therefore we let n ≥ 2. Our goal is to produce 
a periodic point of prime period n > 3 . Inductively, we define a nested sequence of intervals 
A0, A1, . . . , An−2 ⊂ I1  as follows. Let A0 = I1 . Since I1 ⊂ f(I1) there is a subinterval 
A1 ⊂ A0  such that fµ(A1) = A0 = I1 . Then there is also a subinterval A2 ⊂ A1  such that 
fµ(A2) = A1 which implies f 2

µ(A2) = fµ(fµ(A2)) = fµ(A1) = A0 = I1 . Continuing in 
this way there exists An−2 ⊂ An−3 such that fµ(An−2) = fµ(An−3)  so according to (2), if 
x ∈ An−2  then fµ(x), f 2

µ(x), . . . , f
n−1
µ (x) ∈ A0  and indeed fn−2

µ (An−2) = A0 = I1 . 
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Now, since I0 ⊂ fµ(I1)  there exists a subinterval An−1 ⊂ An−2 such that fn−1
µ (An−1) = I0 . 

Finally, since I1 ⊂ fµ(I0)  we have I1 ⊂ fn
µ (An−1) so that fn

µ (An−1)  covers An−1. Therefore, 
according to (1) fn

µ  has a fixed point p  in An−1.

Finally, we claim that p  has prime period n . Indeed, the first n− 2  interations of p  is in I1 , the 
(n− 1)st lies in I0  and the n -th is p  again. If fn−1

µ (p)  lies in the interior of I0  it follows that p  
has prime period n . If fn−1

µ (p)  lies on the boundary, then n = 2 or 3 and again we are done. � ☐ 

Theorem 1.7.1 is a special case of Sarkovskii’s theorem which came in 1964. However, it was written in 
Russian and published in an Ukrainian mathematical journal so it was not discovered and recognized 
in Western Europe and the U.S. prior to the work of Li and Yorke. We now state Sarkovskii’s theorem:

Theorem 1.7.2. We order the positive integers as follows: 

1� 2� 22 � . . .� 2m � 2k(2n+ 1)� . . .� 2k · 3� . . . 2 · 3� 2n− 1� . . .� 9� 7� 5� 3

Let fµ : I → I  be a continuous map of the compact interval I  into itself. If fµ  has a periodic 
point of prime period p , then it also has periodic points for any prime period q � p . � ☐ 

Proof. Cf. Devaney (1989) or Katok and Hasselblatt (1995). � ☐ 

Clearly, Theorem 1.7.1 is a special case of Theorem 1.7.2. Also note that the first part in the Sarkovskii 
ordering (1� 2� 22 . . .� 2m) corresponds to the flip bifurcation sequence as demonstrated through 
our treatment of the quadratic map. As the parameter µ  in (1.2.1) is increased beyond the point of 
accumulation for the flip bifurcations. Sarkovskii’s theorem says that we approach a situation where there 
are an infinite number of periodic orbits.

1.8	 The Schwarzian derivative

In the previous section we established through Theorems 1.7.1 and 1.7.2 that a map may have an infinite 
number of periodic orbits. Our goal in this section is to prove that in fact only a few of them are attracting 
(or stable) periodic orbits.

Definition 1.8.1. Let f : I → I  be a C3  function. The Schwarzian derivative Sf  of f  is defined 
as 

		  Sf(x) =
f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2

� (1.8.1)

� ☐ 
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Considering fµ(x) = µx(1− x) we easily find that Sfµ(x) = −6/(1− 2x)2 . Note that Sfµ < 0 
everywhere except at the critical point c = 1/2 . (However, we may define Sfµ(1/2) = −∞ .)

The main result in this section is the following theorem which is due to Singer (1978):

Theorem 1.8.1. Lef f  be a C3  function with negative Schwarzian derivative. Suppose that f  has 
one critical point c . Then f  has at most three attracting periodic orbits. � ☐ 

Proof. The proof consists of three steps. 

(1) First we prove that if f  has negative Schwarzian derivative then all fn  iterates also have 
negative Schwarzian derivatives.

To this end, assume Sf < 0  and Sg < 0 . Our goal is to show that S(f ◦ g) < 0 . Successive 
use of the chain rule gives: 

	

(f ◦ g)′(x) = f ′(g(x))g′(x)

(f ◦ g)′′(x) = f ′′(g(x))(g′(x))2 + f ′(g(x))g′′(x)

(f ◦ g)′′′(x) = f ′′′(g(x))(g′(x))3 + 3f ′′(g(x))g′(x)g′′(x) + f ′(g(x))g′′′(x)

Then (omitting function arguments) Definition 1.8.1 gives 

		
S(f ◦ g) = f ′′′g′3 + 3f ′′g′g′′ + f ′g′′′

f ′g′
− 3

2

(
f ′′g′2 + f ′g′′

f ′g′

)2

which after some rearrangements may be written as 

	

(
f ′′′

f ′ − 3

2

(
f ′′

f ′

)2
)
g′2 +

g′′′

g′
− 3

2

(
g′′

g′

)2

= Sf(g(x))(g′(x))2 + Sg(x)

Thus S(f ◦ g)(x) < 0 which again implies Sfn < 0 .

(2) Next we show that if Sf < 0  then f ′(x)  cannot have a positive local minimum.
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To this end, assume that d  is a critical point of f ′(x) . Then f ′′(d) = 0, and since Sf < 0  
it follows from Definition 1.8.1 that f ′′′/f ′ < 0 so f ′′′(d) and f ′(d)  have opposite signs. 
Graphically, it is then obvious that f ′(x)  cannot have a positive local minimum, and in the same 
way it is also clear that f ′(x)  cannot have a negative local maximum. Consequently, between any 
two consecutive critical points d1  and d2  of f ′  there must be a critical point c  of f  such that 
f ′(c) = 0  and moreover, (1) and (2) together imply that between any two consecutive critical 
points of fn′

 there must be a critical point of fn .

(3) By considering fn′(x) = 0 it follows directly from the chain rule that if f(x) has a critical 
point then fn(x)  will have a critical point too. Finally, let p  be a point of period k  on the 
attracting orbit and let I = (a, b)  be the largest open interval around p  where all points approach 
p  asymptotically. Then f(I) ⊂ I  and fk(I) ⊂ I . Regarding the end points a  and b  we have: 
If f(a) = f(b)  then of course there exists a critical point. If f(a) = a  and f(b) = b  (i.e. that 
the end points are fixed points) it is easy to see graphically that there exist points u  and v  such 
that a < u < p < v < b  with properties f ′(u) = f ′(v) = 1 . Then from (2) and the fact that 
f ′(p) < 1  there must be a critical point in (u, v) . In the last case f(a) = b  and f(b) = a  we 
arrive at the same conclusion by considering the second iterate f 2 . Thus in the neighbourhood 
of any stable periodic point there must be either a pre-image of a critical point or an end point 
of the interval and we are done. � ☐ 
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Example 1.8.1. Assume x ∈ [0, 1] and let us apply Theorem 1.8.1 on the quadratic map 
x → fµ(x) = µx(1− x) . For a fixed µ ∈ (1, 3) the fixed point x∗ = (µ− 1)/µ  is stable, 
and since fµ(0) = fµ(1) = 0  and the fact that 0 is repelling there is one periodic attractor, 
namely the period-1 attractor x∗  which attracts the critical point c = 1/2 .

When µ ∈ [3, 4]  both x∗  and 0 are unstable fixed points. Thus according to Theorem 1.8.1 there 
is at most one attracting periodic orbit in this case. (Prior to µa  there is exactly one periodic 
attractor.) When µ = 4  the critical point is mapped on the origin through two iterations so there 
are no attracting periodic orbits in the case. � ☐ 

Example 1.8.2. Let us close this section by giving an example which shows that Theorem 1.8.1 
fails if the Schwarzian derivative is not negative. The following example is due to Singer (1978). 
Consider the map 

		  x → g(x) = −13.30x4 + 28.75x3 − 23.31x2 + 7.86x � (1.8.2)

The map has one fixed point x∗ = 0.7263986 , and by considering g2(x) = x  there is also one 
2-periodic orbit which consists of the points p1 = 0.3217591  and p2 = 0.9309168 .

Moreover: λ1 = g′(x∗) = −0.8854  and σ = g′(p1)g
′(p2) = −0.06236 . Thus both the fixed 

point and the 2-periodic orbit are attracting.

The critical point of g  is c = 0.3239799 and is attracted to the period-2 orbit so it does not belong 
to W s

loc(x
∗) , cf. Definition 1.4.3. The reason that x∗  is not attracting c  is that Sg(x∗) = 8.56 > 0  

thus the assumption Sg(x) < 0  in Theorem 1.8.1 is violated. � ☐ 

Exercise 1.8.1. Compute the Schwarzian derivative when f(x) = xn . � ☐ 

Exercise 1.8.2. Show that Sf(x) < 0  when f  is given by (1.2.2) (the Ricker case). � ☐ 

1.9	 Symbolic dynamics I

Up to this point we have mainly been concerned with fixed points and periodic orbits. The main goal 
of this section is to introduce a useful tool called symbolic dynamics which will help us to describe 
and understand dynamics of other types than we have discussed previously. To be more concrete, we 
shall in this section analyse the quadratic map x → µx(1− x)  where µ > 2 +

√
5 on the interval 

I = [0, 1] , and as it will become clear, although almost all points in I  eventually will escape I , there 
exists an invariant set Λ  of points which will remain in I . We shall use symbolic dynamics to describe 
the behaviour of these points.
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First we need some definitions. Consider x → f(x) . Suppose that f(x) can take its values on two 
disconnected intervals I1  and I2  only. Define an infinite forward-going sequence of 0’s and 1’s {ak}∞k=0 
so that 

		  ak = 0 if f k(x0) ∈ I1 � (1.9.1a)

		  ak = 1 if f k(x0) ∈ I2 � (1.9.1b)

Thus what we really do here is to represent an orbit of a map by an infinite sequence of 0’s and 1’s.

Definition 1.9.1. 

		  Σ2 = {a = (a0a1a2 . . .)|ak = 0 or 1} � (1.9.2)

� ☐ 

We shall refer to Σ2  as the sequence space.

Definition 1.9.2. The itinerary of x  is a sequence φ(x) = a0a1 . . .  where ak  is given by (1.9.1). ☐ 

We now define one of the cornerstones of the theory of symbolic dynamics.

Definition 1.9.3. The shift map σ : Σ2 → Σ2  is given by 

		  σ(a0a1a2a3 . . .) = a1a2a3 . . . � (1.9.3

� ☐ 

Hence the shift map deletes the first entry in a sequence and moves all the other entries one place to 
the left.

Example 1.9.1. a = (1111 . . .)  represents a fixed point under σ  since σ(a) = σn(a) = (111 . . .)  . 
Suppose a = (001, 001, 001, . . .) . Then σ(a) = (010, 010, 010, . . .)   , σ2(a) = (100, 100, 100, . . .) 

σ2(a) = (100, 100, 100, . . .)  and σ3(a) = (001, 001, 001, . . .) = a . Thus a = (001, 001, 001, . . .)  represents a 
periodic point of period 3 under the shift map. � ☐ 

The previous example may obviously be generalized. Indeed, if a =  (a0a1 . . . an−1, a0a1 . . . an−1, . . .)  
there are 2n  periodic points of period n  under the shift map since each entry in the sequence may have 
two entries 0 or 1.

Definition 1.9.4. Let U  be a subset of a set S . U  is dense in S  if the closure U = S . � ☐ 
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Definition 1.9.5. If a set S  is closed, contains no intervals and no isolated points it is called a 
Cantor set. � ☐ 

Proposition 1.9.1. The set of all periodic orbits Per(σ) = 2n  is dense in Σ2 . � ☐ 

Figure 8: The quadratic map in the case µ > 2 +
√
5  Note the subintervals I1  and I2  where fµ(x) = µx(1− x) ≤ 1

Proof. Let a = (a0a1a2 . . .)  be in Σ2  and suppose that b = (a0 . . . an−1, a0 . . . an−1 . . .)  
represent the 2n  periodic points. Our goal is to prove that b  converges to a . By use of the 
usual distance function in a sequence space, d[a, b] = Σ(|ai − bi|/2i)  we easily find that 
d[a, b] < 1/2n . Hence b → a . � ☐ 
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We now have the necessary machinery we need in order to analyse the quadratic map in case of 
µ > 2 +

√
5.

Let x → f(x) = µx(1− x) where µ > 2 +
√
5. From the equation µx(1− x) = 1  we 

find x = 1/2 + 1/2
√
1− 4µ . Hence in the intervals I1 = [0, 1/2− 1/2

√
1− 4µ]  and 

I2 = [1/2 + 1/2
√
1− 4µ] , f ≤ 1, cf. Figure 8. Moreover, |f ′(x)| = |µ− 2µx|  and whenever 

µ > 2 +
√
5 we find that |f ′(x)| ≥ λ > 1 .

Denote I = [0, 1] . Then I ∩ f−1(I) = I1 ∪ I2  so if x ∈ I − (I ∩ f−1(I))  we have f > 1  (cf. 
Figure 8) which implies f 2 < 0  and consequently fn → −∞ . All the other points will remain in I  
after one iteration. The second observation is that f(I1) = f(I2) = I  so there must be a pair of open 
intervals, one in I1  and one in I2 , which is mapped into I − (I1 ∪ I2) such that all points in these two 
intervals will leave I  after two iterations. Continuing in this way by removing pairs of open intervals 
(i.e. first the interval I − (I1 ∪ I2), then two intervals, one in I1  (J1) and one in I2  (J2), then 22  open 
intervals, two from I1 − J1 , two from I2 − J2 . . .  and finally 2n  intervals) from closed intervals we are 
left with a closed set Λ  which is I  minus the union of all the 2n+1 − 1 open sets. Hence Λ  consists of 
the points that remain in I  after n  iterations, Λ ⊂ I ∩ f−1(I)  and Λ  consists of 2n+1 closed intervals.

Now, associate to each x ∈ Λ  a symbol sequence {ai}∞i=1  of 0’s and 1’s such that ak = 0 if fk(x) ∈ I1 
and ak = 1 if fk(x) ∈ I2.

Next, define 

		  Ia0...an = {x ∈ I/x ∈ Ia0 , f(x) ∈ Ia1 . . . f
n(x) ∈ Ian} � (1.9.4)

as one of the 2n+1 closed subintervals in Λ . Our first goal is to show that Ia0...an  is non-empty when 
n → ∞ . Indeed, 

		
Ia0...an = Ia0 ∩ f−1(Ia1) ∩ . . . ∩ f−n(Ian)

= Ia0 ∩ f−1(Ia1...an)
� (1.9.5)

Ia1  is nonempty. Then by induction Ia1...an  is non-empty, and moreover, since f−1(Ia1...an)  consists 
of two closed subintervals it follows that Ia0 ∩ f−1(Ia1...an)  consists of one closed interval. A final 
observation is that 

Ia0...an = Ia0 ∩ . . . ∩ f−(n−1)(Ian−1) ∩ f−n(Ian)

= Ia0...an−1 ∩ f−n(Ian) ⊂ Ia0...an−1

Consequently, Ia0...an  is non-empty. Clearly the length of all sets Ia0...an  approaches zero as n → ∞  
which allows us to conclude that the itinerary φ(x) = a0a1 . . .  is unique.
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We now proceed by showing that Λ  is a Cantor set. Assume that Λ  contains an interval [a, b] where 
a �= b . For x ∈ [a, b]  we have |f ′(x)| > λ > 1  and by the chain rule |fn′x)| > λn . Let n  be so 
large that λn|b− a| > 1 . Then from the mean value theorem |fn(b)− fn(a)| ≥ λn|b− a| > 1  
which means that fn(b) or fn(a) (or both) are located outside I . This is of course a contradiction so 
Λ  contains no intervals.

To see that Λ  contains no isolated points it suffices to note that any end point of the 2n+1 − 1 open 
intervals eventually goes to 0 and since 0 ∈ Λ  these end points are in Λ  too. Now, if y ∈ Λ is isolated 
all points in a neighbourhood of y  eventually will leave I  which means that they must be elements 
of one of the 2n+1 − 1 open sets which are removed from I . Therefore, the only possibility such that 
y ∈ Λ is that there is a sequence of end points converging towards y  so y  cannot be isolated.

From the discussion above we conclude that the quadratic map where µ > 2 +
√
5 possesses an invariant 

set Λ , a Cantor set, of points that never leave I  under iteration. Λ  is a repelling set. Our final goal is to 
show that the shift map σ  defined on Σ2  is topological equivalent to f  defined on Λ .

Let f : Λ → Λ, f(x) = µx(1− x) , σ : Σ2 → Σ2 , σ(a0a1a2 . . .) = a1a2 . . .  and φ : Λ → Σ2 , 
φ(x) = a0a1a2 . . . . We want to prove that φ ◦ f = σ ◦ φ .

Observe that 

		

φ(x) = a0a1a2 . . . =
⋂

n≥0

Ia0a1a2...an...

Further 

		  Ia0a1...an = Ia0 ∩ f−1(Ia1) ∩ . . . ∩ f−n(Ian)

so 

	 f(Ia0a1...an) = f(Ia0) ∩ (Ia1) ∩ . . . ∩ f−n+1(Ian) = Ia1 ∩ . . . ∩ f−n+1(Ian) = Ia1...an

This implies that 

		

φ(f(x)) = φ

(
f

(
⋂

n≥0

Ia0...an

))
= φ

(
⋂

n≥1

Ia1...an

)
= σ(φ(x))

Thus, f  and σ  are topological equivalent maps.
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1.10	 Symbolic dynamics II

In Section 1.8 we proved that if a map f : I → I  with negative Schwarzian derivative possessed an 
attracting periodic orbit then there was a trajectory from the critical point c  to the periodic orbit. Our 
goal here is to extend the theory of symbolic dynamics by assigning a symbol sequence to c  or more 
precisely to f(c) . We will assume that f  is unimodal. The theory will mainly be applied on periodic 
orbits. 

Note, however, that the purpose of this section is somewhat different than the others so readers who are 
not too interested in symbolic dynamics may skip this section and proceed directly to the next where 
chaos is treated.

Definition 1.10.1. Let x ∈ I . Define the itinerary of x  as φ(x) = a0a1a2 . . .  where 

		  aj =






0 f j(x) < c
1 f j(x) > c
C f j(x) = c

� (1.10.1)

� ☐ 

What is new here really is that we associate a symbol C  to the critical point c . Also note that we may 
define two intervals I0 = [0, c〉  and I1 = 〈c, 1] such that f  is increasing on I0  and decreasing on I1 .
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Definition 1.10.2. The kneading sequence is defined as the itinerary of f(c) , i.e. 

		  K(f) = φ(f(c)) � (1.10.2)

� ☐ 

Example 1.10.1.

1)	 Suppose that x → f(x) = 2x(1− x) . Then c = 1/2  and f(c) = 1/2 , f 2(c) = 1/2 . . . f j(c) = 1/2  
f 2(c) = 1/2 . . . f j(c) = 1/2 so the kneading sequence becomes K(f) = (C C C C . . .)  which also may 

be written as (C C C . . .)  where the bar refers to repetition.

2)	 Suppose that x → f(x) = 4x(1− x) . c = 1/2 , f(c) = 1, f 2(c) . . . = f j(c) = 0  so 
K(f) = (1 0 0 0 . . .) . � ☐ 

An unimodal map may of course have several itineraries.

Example 1.10.2. By use of a calculator we easily find that the possible itineraries of x → 2x(1− x)  
are 

(0 0 . . . 0C C C . . .) (C C C . . .) (1 0 . . . 0C C C . . .) (0 0 0 . . .) (1 0 0 0 . . .)

(The last two itineraries correspond to the orbits of x0 = 0  and x0 = 1  respectively. Note that 
the critical point is the same as the stable fixed point x∗  in this example.

In case of x → 3x(1− x)  we obtain the sequences 

(0 0 . . . 0 1 1 1 . . .) (C 1 1 1 . . .)(1 1 1 . . .)

(1 0 . . . 0 1 1 1 . . .) (0 0 0 . . .) (1 0 0 0 . . .)

(0C 1 1 1 . . .) (1C 1 1 1 . . .)

where the last two itineraries correspond to the orbits of x0 = (1/6)(3−
√
3)  and 

x0 = (1/6)(3 +
√
3)  respectively. � ☐ 

The reader should also have in mind that periodic orbits with different periods may share the same 
itinerary.
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Indeed, consider x → 3.1x(1− x) . Then x∗ = 0.6774 > c = 1/2 so the itinerary of the fixed point 
becomes φ(x∗) = (1 1 1 . . .) . However, there is also a two-periodic orbit whose periodic points are (cf. 
formulae (1.3.3)) p1 = 0.7645, p2 = 0.5581. Again we observe that pi > c  so the itinerary of any of 
the two-periodic points is also (1 1 1 . . .) . (When µ  becomes larger than 3.1 one of the periodic points 
eventually will become smaller than c  which results in the itinerary (1 0 1 0 1 0 . . .) or (0 1 0 1 0 1 . . .) .)

Our next goal is to establish an ordering principle of the possible itineraries of a given map. Let 
a = (a0a1a2 . . .)  and b = (b0b1b2 . . .). If ai = bi  for 0 ≤ i < n  and an �= bn  we say that the 
sequences have discrepancy n . Let Sn(a)  be the number of 1’s among a0a1 . . . an  and assume 
0 < C < 1 .

Definition 1.10.3. Suppose that a  and b  have discrepancy n . We say that a ≺ b  if 

		  Sn−1(a) an < bn � (1.10.3a)

		  Sn−1(a) an > bn � (1.10.3b)

� ☐ 

Example 1.10.3. Due to a) we have the following order: 

		  (1 1 0 . . .) ≺ (1 1C . . .) ≺ (1 1 1 . . .)

Due to b) we have 

		
(1 1 0 . . .) ≺ (1 0 1 . . .) ≺ (1 0 0 . . .)

� ☐ 

Also note that any two sequences with discrepancy 0 are ordered such that the sequence which has 0 as 
the first entry is of lower order than the one with C  or 1 as the first entry. Thus: 

		  (0 1 . . .) ≺ (C 1 . . .) ≺ (1 1 . . .)

Exercise 1.10.1. Let a = (0 1 1 0 1 1 . . .) be a repeating sequence. Compute σ(a)  and σ2(a)  
and verify the ordering a ≺ σ(a) ≺ σ2(a) . � ☐ 

The following theorem (due to Milner and Thurston) relates the ordering of two symbol sequences to 
the values of two points in an interval.
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Theorem 1.10.1. Let x, y ∈ I  

		

φ(x) ≺ φ(y) x < y

x < y φ(x) � φ(y)

� ☐ 

Proof. Suppose that φ(x) = (a0a1a2 . . .) and φ(y) = (b0b1b2 . . .) and let n  be the discrepancy 
of φ(x)  and φ(y) . First, suppose n = 0 . Then x < y  since 0 < C < 1 . Next, suppose that a) is 
true with discrepancy n− 1 . Our goal is to show that a) also is true with discrepancy n . By use 
of the shift we have φ(f(x)) = (a1a2a3 . . .)  and φ(f(y)) = (b1b2b3 . . .) . Suppose a0 = 0 . 
Then φ(f(x)) ≺ φ(f(y))  since the number of 1’s before the discrepancy is as before. Therefore 
f(x) < f(y) but since f  is increasing on [0, c〉  it follows that x < y .

Next, assume a0 = 1 . Then φ(f(x)) � φ(f(y))  since the number of 1’s among the ai ’s (i ≥ 1) 
has been reduced by one. Therefore f(x) > f(y) which implies that x < y  since f  decreases on 
(c, 1]. If a0 = C  we have x = y = c .
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Regarding b) suppose x < y  and assume that φ(x)  and φ(y)  has discrepancy n . First, note 
that if x < c < y  we have directly φ(x) < φ(y). Otherwise (i.e. x < y < c  or c < x < y ) 
note that f i  is monotone in [x, y]  for i ≤ n . Since the number of 1’s (cf. the chain rule) directly 
says if fn  is increasing or decreasing it is easily verified that φ(x) ≤ φ(y).� ☐ 

Theorem 1.10.2. Let x = ϕ(a) = a0a1a2 . . .  and suppose that x → f(x)  unimodal. Then 
φ(σnϕ(a)) � K(f(c)) for n ≥ 1. � ☐ 

Proof. Since the maximum of f  is f(c)  we have f(x) < f(c) and fn(x) ≤ f(c) . Moreover, 
σx = σ(ϕ(a)) = a1a2 . . . = ϕ(f(x))  so inductively σnx = ϕ(fn(x)) . Therefore, according 
to Theorem 1.10.1 

		  φ(σnϕ(a)) � φ(f(c)) = K(f(c))

� ☐ 

The essence of Theorem 1.10.2 is that any sequence a  such that φ(x) = a  has lower order than the 
kneading sequence.

Now, consider periodic orbits. In order to simplify notation, repeating sequences (corresponding to 
periodic points) of the form a = (a0a1 . . . an a0a1 . . . an a0a1 . . . an . . .) = (a0a1 . . . an a1a1 . . . an) 
will from now on be written as a = (a0a1 . . . an) .

We also define a sequence â = (a0 . . . an−1ân)  where ân = 1  if an = 0  or ân = 0  if an = 1 . If 
b = (b0b1 . . . bm), a · b = (a0a1 . . . an b0b1 . . . bm) .

Suppose that there exists a parameter value µ  such that there are two periodic orbits γ1  and γ2  of the 
same prime period. We say that the orbit γ1  is larger than the orbit γ2  if γ1  contains a point pm  which 
is larger than all the points of γ2 . Note that, according to Theorem 1.10.1, the itinerary of pm  satisfies 
φ(pi) � φ(pm)  where pi  are any of the other periodic points contained in γ1 .

Our main interest is the ordering of itineraries of periodic points p  which satisfy: 

(A)	 The periodic point p  shall be the largest point contained in the orbit. 

(B)	� Every other periodic orbit of the same prime period must have a periodic point which is 
larger than p . 

Before we continue the discussion of (A) and (B) let us state a useful lemma.
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Lemma 1.10.1. Given two symbol sequences a = (a0a1a2 . . .)  and b = (b0b1b2 . . .).

Suppose that a0 = b0 = 1 and a1 = b1 = 0. aj = bj = 1  for 2 ≤ j ≤ l , al = 0, bl = 1 .

If l  is even then b ≺ a . If l  is odd then a ≺ b . � ☐

Proof. Assume l  even. Then the number of 1’s before the discrepancy is odd and since bl > al  
Definition 1.10.3 gives that b ≺ a .

If l  is odd the number of 1’s before the discrepancy is even and since al = 0 < bl = 1 , a ≺ b  
according to the definition. � ☐ 

A consequence of this theorem is that sequences than begin with 1 0 are of larger order than sequences 
which begin with 1 1. In the same way, a sequence which first entries are 1 0 0  is larger than one which 
begins with 1 0 1 .

Now, consider the quadratic map x → µx(1− x) . Whenever µ > 2  the fixed point 
x∗ = (µ− 1)/µ > c = 1/2 so the (repeating) itinerary becomes φ(x∗) = (1) . When x∗  bifurcates 
at the threshold µ = 3 , the largest point p1  contained in the 2-cycle is always larger than c , hence 
the itinerary of p1  starts with 1 in the first entry. Therefore, when µ > 3 , there may be two possible 
itineraries (1 0) and (1 1) and clearly (1 1) ≺ (1 0) . We are interested in (1 0). Considering the 4-cycle 
which is created through another flip bifurcation the itinerary of the largest point contained in the cycle 
which we seek is (1 0 1 1) which is of larger order than the other alternatives.

Turning to odd periodic orbits, remember that they are established through saddle-node bifurcations, 
thus two periodic orbits, one stable and one unstable, are established at the bifurcation. Considering the 
stable 3-cycle at µ = 3.839  (see Exercise 1.4.2 or the bifurcation diagram, Figure 7) two of the points 
in the cycle 0.14989 and 0.48917 are smaller than c  while the third one 0.95943 is larger. Hence the 
itinerary of largest order of 0.95493 is (1 0 0). Referring to Exercise 1.4.2 the largest point contained 
in the unstable 3-cycle is 0.95384 and the other points are 0.16904 and 0.53392. Hence the itinerary of 
0.95384 of largest order is (1 0 1) and according to (A) and (B) this is the itinerary we are looking for, 
not the itinerary (1 0 0).

Therefore, the itineraries we seek are the ones that satisfy (A) and (B) and correspond to periodic points 
which are established through flip or saddle-node bifurcations as the parameter in the actual family is 
increased. (A final observation is that sequences which contain the symbol C  are out of interest since 
they violate (B).)
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Now, cf. our previous discussion, define the repeating sequences: 

S0 = (1) S1 = (1 0) S2 = (1 0 1 1) S3 = (1 0 1 1 1 0 1 0)

and 

		  Sj+1 = Sj · Ŝj � (1.10.4)

Clearly, the sequence Sj  has prime period 2j  so it represents a periodic point with the same prime period.

Another important property is that Sj  has an odd number of 1’s. To see this, note that S0 = (1)  
has an odd number of 1’s. Next, assume that Sk = (S0 . . . Sk−1 1) has an odd number of 1’s. Then 
Ŝk = (S0 . . . Sk−10) has an even number of 1’s so the concatenation Sk+1 = Sk · Ŝk  clearly has an 
odd number of 1’s. (If Sk  has a 0 at entry Sk  we arrive at the same conclusion.) We have also that 

		  Ŝj+1 = Sj · Sj = Sj � (1.10.5)

Indeed, suppose Sk = (S0 . . . Sk) . Then Sk+1 = Sk · Ŝk = (S0 . . . Sk S0 . . . Ŝk)  so Ŝk+1 = (S0 . . . Sk S0 . . . Sk) = Sk · Sk = Sk 
Ŝk+1 = (S0 . . . Sk S0 . . . Sk) = Sk · Sk = Sk .
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Lemma 1.10.2. The sequences defined through (1.10.4) have the ordering 

		  S0 ≺ S1 ≺ S2 ≺ S3 ≺ . . .

� ☐

Proof. Assume that Sj = (S0 . . . Sj−1Sj) . If Sj = 1  there must be an even number of 1’s among 
(S0 . . . Sj−1)  so according to Definition 1.10.3a Ŝj ≺ Sj . If Sj = 0  there is an odd number 
of 1’s among (S0 . . . Sj−1)  so according to Definition 1.10.3b Ŝj ≺ Sj  also here. Therefore, by 
use of (1.10.5), we have Sj � Ŝj = Sj−1 · Sj−1 = Sj−1. � ☐ 

Let us now turn to periodic orbits of odd period. The following lemma is due to Guckenheimer.

Lemma 1.10.3. The largest point pm  in the smallest periodic orbit of odd period n  has itinerary 
φ(pm) = a  such that ai = 0  if i = 1(modn)  and ai = 1  otherwise. � ☐ 

Example 1.10.4. If n = 3 , φ(pm) = (1 0 1 1 0 1 1 0 1 . . .) = (1 0 1)  which is in accordance 
with our previous discussion of 3-cycles. � ☐

Proof. Suppose that we have a sequence a  and that there exists a number k  such that ak = 1 
and ak+1 = ak+2 = 0 . Then by applying the shift map k  times we arrive at σk(a) = (1 0 0 . . .)  
which according to Lemma 1.10.1 has larger order than any sequence with isolated 0’s. Hence the 
sequence σk(a)  violates (A) and (B).

Therefore, the argument above shows that the sequence we are looking for in this lemma must 
satisfy that if ak = 0 then both ak−1  and ak+1  must equal 1. Consequently there are blocks in 
a  of even length where the first and last entry of the blocks consist of 0 and the intermediate 
elements of 1’s. As a consequence of Lemma 1.10.1 the longer these blocks are the smaller is the 
order of the sequence. Note that the blocks in this lemma have maximum length n + 1  for a 
periodic sequence of period n . � ☐ 

Example 1.10.5. (1 0 1 1 0︸ ︷︷ ︸ 1 1 0 1) is a 3-cycle where the length of the block is 4.

(1 0 1 1 1 1 0︸ ︷︷ ︸ 1 1 1) is a 5-cycle where the length of the block is 6. Clearly, the order of the 5-cycle 
is smaller than the order of the 3-cycle. � ☐ 

Lemma 1.10.4. Let n > 1  be an odd number. Then there is a periodic orbit of period n + 2  
which is smaller than all periodic orbits of period n . � ☐
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Proof. The lemma is an immediate consequence of how the itinerary in Lemma 1.10.3 is defined 
combined with the results of Lemma 1.10.1. � ☐ 

We now turn to orbits of even period where the period is 2n ·m  where m > 1 is an odd number. 
The fundamental observation regarding the associated symbol sequences is that they may be written as 
Sj+1Sj . . . Sj  or SjŜjSj . . . Sj  where the number of Sj  blocks following Sj+1 (or Ŝj ) is m− 2 . 
(See Guckenheimer (1977) for further details.)

Example 1.10.6. If n = 2  (cf. 1.10.4) and m = 3 we have the sequence (1 0 1 1 1 0 1 0 1 0 1 1) 
and if n = 1  and m = 5 we arrive at (1 0 1 1 1 0 1 0 1 0). � ☐ 

Lemma 1.10.5. Let P  be a periodic orbit of odd period k. Then there exists a periodic orbit of 
even period l = 2n ·m  where m > 1 is odd which is smaller than any odd period orbit. � ☐

Proof. From Lemma 1.10.4 we have that the longer the odd period is the smaller is the ordering of 
the associated symbol sequence. From Lemma 1.10.3 it follows that such a symbol sequence may 
be written as (1 0 1 1 1 . . . 1 1 1 0 1 1 1 . . .). Therefore by comparing an even period sequence 
with the odd one above it is clear that the even period sequence has 0 as entry at the discrepancy. 
If the even period is 2 it is two 1’s before the discrepancy. If the even period is larger there are 
three consecutive 1’s just prior to the 0 and since the first entry of the sequence is 1 there is an 
even number of 1’s before the discrepancy also here and the result of the lemma follows. � ☐ 

We need one more lemma which deals with periodic orbits of even period.

Lemma 1.10.6. Let u = 2n · l , v = 2n · k  and w = 2m · r  where l , k  and r  are odd numbers. 

a)	 Provided 1 < k < l  there are repeating symbol sequences of period u  which has smaller 
order than any repeating symbol sequence of period v. 

b)	 Provided m > n  there are repeating symbol sequences of period w  which has smaller 
order than any repeating symbol sequence of period v . � ☐ 

Sketch of proof. Regarding a) consider Sj  such that j  is odd. Then by carefully examining the 
various sequences we find that the discrepancy occurs at entry 2j(k + 2)  in the repeating sequence 
of the 2n · k  periodic point and it happens as the last entry of the Ŝj  block (which of course 
is 1 since j  is odd) differs from the same entry in the 2n · l  sequence. Now, since SjŜj  has an 
odd number of 1’s the number of 1’s before the discrepancy is even, so according to Definition 
1.10.3a we have that sequences of period 2n · l  are smaller than any sequence of period 2n · k . 
(The case that j  is even is left to the reader.)
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Turning to b) and scrutinizing sequences a  of period 2m · k  it is clear that all of them have 
1 0 1 1  as the first entries and that ai = 1  if i  is even and ai = 0  if i = 1(mod 4) . Moreover, 
assuming k > r  whenever m > n  we find that at discrepancy the sequence of period w  has 1 
as its element and in fact it is the last 1 in 1 0 1 1 . Now, since SjŜjSj . . . Sj  has an even number 
of 1’s the observation above implies that the sequence of period 2n · k  must have an even number 
of 1’s before the discrepancy so the result follows. � ☐ 

Now at last, combining the results from Lemmas 1.10.1–1.10.6 we have established the following ordering 
for the itineraries of periodic points that satisfy (A) and (B): 

2 ≺ 22 ≺ 23 ≺ . . . ≺ 2n ≺ 2n(2l+1) ≺ 2n(2l−1) ≺ . . . ≺ 2n ·5 ≺ 2n ·3 ≺ 2n−1(2l+1) ≺
. . . ≺ 2n−1 · 3 ≺ . . . ≺ (2l + 1) ≺ (2l − 1) . . . ≺ 5 ≺ 3  

which is nothing but the ordering we find in Sarkovskii’s theorem.

We do not claim that we actually have proved the theorem in all its details, our main purpose here have 
been to show that symbolic dynamics is a powerful tool when dealing with periodic orbits. For further 
reading, also of other aspects of symbolic dynamics we refer to Guckenheimer and Holmes (1990), 
Devaney (1989) and Collet and Eckmann (1980).
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1.11	 Chaos

As we have seen, the dynamics of x → µx(1− x)  differs substantially depending on the value of 
the parameter µ . For 2 < µ < 3  there is a stable nontrivial fixed point, and in case of larger values 
of µ  we have detected periodic orbits both of even and odd period. If µ > 2 +

√
5 the dynamics 

is aperiodic and irregular and occurs on a Cantor set Λ  and points x ∈ (I � Λ) approaches −∞ .  
(I  is the unit interval.)

In this section we shall deal with the concept chaos. Chaos may and has been defined in several ways. 
We have already used the concept when we stated “Period three implies chaos”.

Referring to the examples and exercises at the end of Section 1.3 we found that whenever the long-
time behaviour of a system was a stable fixed point or a stable periodic orbit there was no sensitive 
dependence on the initial condition x0. However, when x → f(x) = 4x(1− x)  we have proved that 
there is no stable periodic orbit and moreover, we found a strong sensitivity on the initial condition. 
Assuming x ∈ [0, 1] and that x0 = 0.30  is one initial condition and x00 = 0.32  is another we 
have |x0 − x00| = 0.02 but most terms |fk(x0)− fk(x00)| > 0.02  and for some k  (k = 9 ) 
|fk(x0)− fk(x00)| ≈ 1−  which indeed shows a strong sensitivity.

Motivated by the example above, if an orbit of a map f : I → I  shall be denoted as chaotic it is natural 
to include that f  has sensitive dependence on the initial condition in the definition. It is also natural to 
claim that there is no convergence to any periodic orbit which is equivalent to, say, that periodic orbits 
must be dense in I . Our goal is to establish a precise definition of the concept chaos but before we do 
that let us first illustrate what we have discussed above by two examples.

Example 1.11.1. This is a “standard” example which may be found in many textbooks. Consider 
the map h : S ′ → S ′ , θ → h(θ) = 2θ . (h  is a map from the circle to the circle.) Clearly, h  
is sensitive to initial conditions since the arc length between nearby points is doubled under 
h . Regarding the dense property, observe that hn(θ) = 2nθ  so any periodic points must be 
obtained from the relation 2nθ = θ + 2kπ  or θ = 2kπ/(2n − 1) where the integer k  satisfies 
0 ≤ k ≤ 2n . Hence in any neighbourhood of a point in S  there is a periodic point so the periodic 
points are dense so h  does not converge to any stable periodic orbit. Consequently, h  is chaotic 
on S ′ . � ☐ 

Example 1.11.2. Consider x → f(x) = µx(1− x) where µ > 2 +
√
5. We claim that f  is 

chaotic on the Cantor set Λ . In order to show sensitive dependence on the initial condition let δ  
be less than the distance between the intervals I0  and I1  (cf. Figure 7). Next, assume x, y ∈ Λ 
where x �= y . Then the itineraries φ(x) �= φ(y) so after, say, k  iterations fk(x) is in I0 (I1 ) 
and fk(y)  is in I1 (I0) . Thus |fk(x)− fk(y)| > δ  which establishes the sensitive dependence.
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Since f : Λ → Λ is topological equivalent to the shift map σ : Σ2 → Σ2  it suffices to show that 
the periodic points of σ  are dense in Σ2 . Let a = (a1 . . . an)  be a repeating sequence of a periodic 
point and let b = (a1a2a3 . . .)  be the sequence of an arbitrary point and note that σn(a) = a . 
By use of the distance d  between two symbol sequences one easily obtains d[a, b] < 1/2n  so in 
any neighbourhood of an arbitrary sequence (point) there is a periodic sequence (periodic point). 
Hence periodic points of f  are dense (and unstable). � ☐ 

In our work towards a definition of chaos we will now focus on the sensitive dependence on the initial 
condition.

If a map f : R → R  has a fixed point we know from Section 1.4 that if the eigenvalue λ  of the 
linearized system satisfies −1 < λ < 1  the fixed point is stable and not sensitive to changes of the initial 
condition. If |λ| > 1  one may measure the degree of sensitivity by the size of |λ| . We may use the 
same argument if we deal with periodic orbits of period k  except that we on this occasion consider the 
eigenvalue of every periodic point contained on the orbit. If a system is chaotic it is natural to consider 
the case k → ∞  since we may think of a chaotic orbit as one having an infinite period. Therefore, define 

		  η = lim
k→∞

∣∣∣∣
d

dx
fk(x)x=x0

∣∣∣∣
1/k

� (1.11.1)

where we have used the k ’th root in order to avoid problems in order to obtain a well defined limit. If 
x0 is a fixed point λ = |(df/dx)(x = x0)| . For a general orbit starting at x0 we may think of η  as 
an average measure of sensitivity (or insensitivity) over the whole orbit. Let L = ln η , that is 

		  L = lim
k→∞

ln

∣∣∣∣
d

dx
fk(x0)

∣∣∣∣
1/k

= lim
k→∞

1

k

k−1∑

n=0

ln |f ′(x = xn)| � (1.11.2)

The number L  is called the Lyapunov exponent and if L > 0  (which is equivalent to |λ| > 1 ) we have 
sensitive dependence on the initial condition. By use of L  we may now define chaos.

Definition 1.11.1. The orbit of a map x → f(x)  is called chaotic if 

1)	 It possesses a positive Lyapunov exponent, and 

2)	 it does not converge to a periodic orbit (that is, there does not exist a periodic orbit 
yt = yt+T  such that limt→∞ |xt − yt| = 0 .) � ☐ 

Note that 2) is equivalent to, say, that periodic orbits are dense.

In most cases the Lyapunov exponent must be computed numerically and in cases where L  is slightly 
larger than zero such computations have to be performed by some care due to accumulation effects 
of round-off errors. Note, however, that there exists a theorem saying that L  is stable under small 
perturbations of an orbit.
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Example 1.11.3. Compute L  for the map h : S ′ → S ′ , h(θ) = 2θ . In this case h′ = 2  for all 
points on the orbit so 

		

L = lim
k→∞

1

k

k−1∑

n=0

ln |h′(x = xn)| = lim
k→∞

1

k
· k ln 2 = ln 2 > 0

and since the periodic orbits are dense h  is chaotic. � ☐ 

Example 1.11.4. Compute L  for the two periodic orbit of x → f(x) = µx(1− x) where 
3 < µ < 1 +

√
6 . Referring to formulae (1.3.3) the periodic points are 

		

p1,2 =
µ+ 1±

√
(µ+ 1)(µ− 3)

2µThus, 

L = lim
k→∞

1

k
{ln |f ′(x = p1)|+ ln |f ′(x = p2)|+ ln |f ′(x = p1)|+ . . .+ ln |f ′(x = p2)|}

= lim
k→∞

1

k

{
k

2
ln |f ′(x = p1)|+

k

2
ln |f ′(x = p2)|

}

=
1

2
ln |f ′(x = p1)f

′(x = p2)|
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Since 

f ′(x = p1)f
′(x = p2) = µ(1− 2p1)µ(1− 2p2) = 1− (µ+ 1)(µ− 3)

it follows that L = (1/2) ln |1− (µ+ 1)(µ− 3)|  and as expected L < 0  whenever 
3 < µ < 1 +

√
6 . (Note that if µ > 1 +

√
6 then L > 0  but the map is of course not chaotic 

since there in this case (provided |µ− (1 +
√
6)|  small) exists a stable 4-periodic orbit with 

negative L .) � ☐ 

Example 1.11.5. Show that the Lyapunov exponents of almost all orbits of the map 
f : [0, 1] → [0, 1]  , x → f(x) = 4x(1− x)  is ln 2 .

Solution: From Proposition 1.2.1 we know that f(x) is topological equivalent to the tent map 
T (x) . The “nice” property of T (x)  which we shall use is that T ′(x) = 2  for all x �= c = 1/2. 
Moreover, h ◦ f = T ◦ h  implies that h′(f(x))f ′(x) = T ′(h(x))h′(x)  so 

f ′(x) =
T ′(h(x))h′(x)

h′(f(x))

We are now ready to compute the Lyapunov exponent: 

L = lim
n→∞

1

n

n−1∑

i=0

ln |f ′(x = xi)|

= lim
n→∞

1

n

n−1∑

i=0

ln

∣∣∣∣
T ′(h(xi))h

′(xi)

h′(f(xi))

∣∣∣∣

= lim
n→∞

1

n

n−1∑

i=0

ln |T ′(h(xi))|+ lim
n→∞

1

n

n−1∑

i=0

{ln |h′(xi)| − ln |h′(f(xi))|}

Since xi+1 = f(xi) the latter sum may be written as 

		
lim
n→∞

1

n
{ln |h′(x0)| − ln |h′(xn)|}

which is equal to zero for almost all orbits. Thus, for almost all orbits: 

		

L = lim
n→∞

1

n

n−1∑

i=0

ln |T ′(h(xi))| = lim
n→∞

1

n
· n ln 2 = ln 2

� ☐ 
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For comparison reasons we have also computed L  numerically with initial value x0 = 0.30  in the 
example above. Denoting the Lyapunov exponent of n  iterations for Ln  we find L100 = 0.67547 , 
L1000 = 0.69227  and L5000 = 0.69308  so in this example we do not need too many terms in order 
to show that L > 0 .

A final comment is that since we have proved earlier (cf. Example 1.8.1) that the quadratic map does 
not possess any stable orbits in case of µ = 4 , Definition 1.11.1 directly gives that almost all orbits of 
the map are chaotic. Other properties of Lyapunov exponents may be obtained in the literature. See for 
example Tsujii (1993) and Thieullen (1994).

1.12	 Superstable orbits and a summary of the dynamics of the quadratic map

The quadratic map has two fixed points. One is the trivial one x∗ = 0  which is stable if µ < 1  and 
unstable if µ > 1 . If µ > 1  the nontrivial fixed point is x∗ = (µ− 1)/µ  and as we have shown this 
fixed point is stable whenever 1 < µ < 3 . Whenever µ > 2  the fixed point is larger than the critical point 
c . At µ = 3  the map undergoes a supercritical flip bifurcation and in the interval 3 < µ < 1 +

√
6  the 

quadratic map possesses a stable period-2 orbit which has a negative Lyapunov exponent. The periodic 
points are given by formulae (1.3.3).

At the threshold µ = 1 +
√
6 there is a new (supercritical) flip bifurcation which creates a stable orbit 

of period 22  and through further increase of µ  stable orbits of period 2k  are established. However, the 
parameter intervals where the period 2k  cycles are stable shrinks as µ  is enlarged so the µ  values at the 
bifurcation points act more or less as terms in a geometric series. By use of the Feigenbaum geometric ratio 
one can argue that there exists an accumulation value µa  for the series of flip bifurcations. Regarding the 
quadratic map, µa = 3.56994 . In the parameter interval µa < µ ≤ 4  we have seen that the dynamics 
is much more complicated.

Still considering periodic orbits, Sarkovskii’s theorem tells us that periodic orbits occur in a definite order 
so beyond µa  there are periodic orbits of periods given by Theorem 1.7.2 (see also Section 1.10). Even 
in cases where such orbits are stable they may be difficult to distinguish from non-periodic orbits due 
to the long period. In many respects the ultimate event occurs at the threshold µ = 1 +

√
8 where a 

3-periodic orbit is created because period 3 implies orbits of all other periods which is the content both 
in Li and Yorke and in Sarkovskii’s theorem.
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Chaotic orbits may be captured by use of Lyapunov exponents. In Figure 9 we show the value of the 
Lyapunov exponent L  for µ ∈ [µa, 4] . L < 0  corresponds to stable periodic orbits, L > 0  corresponds 
to chaotic orbits. (Figure 9 should be compared to the bifurcation diagram, Figure 7.) The regions where 
we have periodic orbits are often referred to as windows. The largest window found in Figure 7 (or 9) 
is the period 3 window. The periodic orbits in the interval 3 < µ < µa  are created through a series of 
flip bifurcations. However, the period-3 orbit is created through a saddle-node bifurcation. In fact, every 
window of periodic orbits beyond µa  is created in this way so just beyond the bifurcation value there is 
one stable and one unstable orbit of the same period. (If µ  is slightly larger than 1 +

√
8  there is one 

stable and one unstable orbit of period 3.) Within a window there may be flip bifurcations before chaos 
is established again, cf. Figure 7. Since the quadratic map has negative Schwarzian derivative there is at 
most one stable periodic orbit for each value of µ .
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Figure 9: The value of the Lyapunov exponent for µ ∈ [µa, 4] . L < 0  corresponds to stable periodic orbits.  

L > 0  corresponds to chaotic orbits.

There is a way to locate the periodic windows. The vital observation is that at the critical point c , 
f ′(c) = 0 , so accordingly ln |f ′(c)| = −∞  which implies L < 0  and consequently a stable periodic 
orbit. Also, confer Singer’s theorem (Theorem 1.8.1).

Definition 1.12.1. Given a map f : I → I  with one critical point c . Any periodic orbit π  passing 
through c  is called a superstable orbit. � ☐ 

Hence, by searching for superstable orbits one may obtain a representative value of the location of a 
periodic window. Indeed, any superstable orbit of period n  must satisfy the equation 

		  fn
µ (c) = c � (1.12.1)

Example 1.12.1. Consider the quadratic map and let us find the value of µ  such that 
f 3
µ(1/2) = 1/2.

We have 

c =
1

2
⇒ fµ(c) =

1

4
µ ⇒ f 2

µ(c) =
1

4
µ2 − 1

16
µ3

⇒ f 3
µ(c) =

(
1

4
µ3 − 1

16
µ4

){
1−

(
1

4
µ2 − 1

16
µ3

)}

Hence, the equation f 3
µ(1/2) = 1/2 becomes 

		  µ7 − 8µ6 + 16µ5 + 16µ4 − 64µ3 + 128 = 0 � (1.12.2)
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By inspection, µ = 2  is a solution of (1.12.2) so after dividing by µ− 2  we arrive at 

		  µ6 − 6µ5 + 4µ4 + 24µ3 − 16µ2 − 32µ− 64 = 0� (1.12.3)

This equation may be solved numerically by use of Newton’s method and if we do that we find 
that the only solution in the interval µa ≤ µ ≤ 4 is µ = 3.83187 . Therefore, there is only one 
period-3 window and the location clearly agrees both with the bifurcation diagram, Figure 7 and 
Figure 9. In the same way, by solving f 4

µ(1/2) = 1/2 one finds that the only solution which 
satisfies µa < µ < 4  is µ = 3.963  which shows that there is also only one period-4 window. 
However, if one solves f 5

µ(1/2) = 1/2 one obtains three values which means that there exists 
three period-5 windows. The first one occurs around µ1 = 3.739  and is visible in the bifurcation 
diagram, Figure 7. The others have almost no widths, the values that correspond to the superstable 
orbits are µ2 = 3.9057  and µ3 = 3.9903 . � ☐ 

Referring to the numerical examples given at the end of Section 1.3 where µ < µa  we observed a rapid 
convergence towards the 2-period orbit independent on the choice of initial value. Within a periodic 
window in the interval [µa, 4] the dynamics may be much more complicated. Indeed, still considering 
the period-3 window, we have according to the Li and Yorke theorem that there are also periodic orbits 
of any period, although invisible to a computer. (The latter is a consequence of Singer’s theorem.) If we 
consider an initial point which is not on the 3-periodic orbit we may see that it behaves irregularly through 
lots of iterations before it starts to converge, and moreover, if we change the initial point somewhat it may 
happen that it is necessary to perform an even larger amount of iterations before we are able to detect 
any convergence towards the 3-cycle. Hence, the dynamics within a periodic window in the interval 
[µa, 4] is in general much more complex than in the case of periodic orbits in the interval [3, µa]  due 
to the presence of an (infinite) number of unstable periodic points.

By carefully scrutinizing the periodic windows one may find numerically that the sum of the widths of 
all the windows is roughly 10% of the length of the interval [µa, 4]. In the remaining part of the interval 
the dynamics is chaotic. If we want to give a thorough description of chaotic orbits we may use symbolic 
dynamics in much of a similar way as we did in Sections 1.9 and 1.10. Here we shall give a more heuristic 
approach only. If µ  is not close to a periodic window, orbits are irregular and there is almost no sign of 
periodicity. However, if µ  is close to a window, for example, if µ  is smaller but close to 1 +

√
8  (the 

threshold value for the period-3 window) one finds that an orbit seems to consist of two parts, one part 
with appears to be almost 3-periodic and another irregular part where the point x  may take almost any 
value in (0, 1) . The almost 3-periodic part of the orbit is established when the orbit becomes close to 
the diagonal line xt+1 = xt . Then, since µ  is close to 1 +

√
8  the orbit may stay close to the diagonal 

for several iterations before it moves away. Therefore, a typical orbit close to a periodic window consists 
of an irregular part which after a finite number of iterations becomes almost periodic and again turns 
irregular in a repeating fashion. For further reading on this topic we refer to Nagashima and Baba (1999), 
Thunberg (2001), and Jost (2005). We also recommend the books by Iooss (1979), Bergé et al. (1984), 
Barnsley (1988), Devaney (1989), Saber et al. (1998), and Iooss and Adelmeyer (1999).
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Part II 
� n-dimensional maps 

f : Rn → R
n x → f (x)
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2.1	� Higher order difference equations

Consider the second order difference equation

		  xt+2 + atxt+1 + btxt = f(t)  � (2.1.1)

If f(t) �= 0 , (2.1.1) is called a nonhomogeneous difference equation. If f(t) = 0 , that is

		  xt+2 + atxt+1 + btxt = 0  � (2.1.2)

we have the associated homogeneous equation.

Theorem 2.1.1. The homogeneous equation (2.1.2) has the general solution

		  xt = C1ut + C2vt

where ut  and vt  are two linear independent solutions and C1, C2  arbitrary constants.

Proof. Let xt = C1ut + C2vt . Then xt+1 = C1ut+1 + C2vt+1  and xt+2 = C1ut+2 + C2vt+2  

and if we substitute into (2.1.2) we obtain

C1(ut+2 + atut+1 + btut) + C2(vt+2 + atvt+1 + btvt) = 0

which clearly is correct since ut  and vt  are linear independent solutions. � ☐

Regarding (2.1.1) we obviously have:

Theorem 2.1.2. The nonhomogeneous equation (2.1.1) has the general solution

		  xt = C1ut + C2vt + u∗
t

where C1ut + C2vt  is the general solution of the associated homogeneous equation (2.1.2) and 

u∗
t  is any particular solution of (2.1.1).

Just as in case of differential equations there is no general method of how to find two linear independent 
solutions of a second order difference equation. However, if the coefficients at  and bt  are constants then 

it is possible.

Indeed, consider

		  xt+2 + axt+1 + bxt = 0  � (2.1.3)
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where a  and b  are constants. Suppose that there exists a solution of the form xt = mt  where m �= 0 . 

Then xt+1 = mt+1 = mmt  and xt+2 = m2mt  so (2.1.3) may be expressed as

		  (m2 + am+ b)mt = 0

which again implies that

		  m2 + am+ b = 0  � (2.1.4)

(2.1.4) is called the characteristic equation and its solution is easily found to be

		  m1,2 = − a

2
±

√
a2

4
− b  � (2.1.5)

Now we have the following result regarding the solution of (2.1.3) which we state as a theorem:

Theorem 2.1.3.

1)	 If (a2/4)− b > 0, the characteristic equation have two real solutions m1  and m2 . Moreover, 

mt
1  and mt

2  are linear independent so according to Theorem 2.1.1 the general solution of 

(2.1.3) is

xt = C1m
t
1 + C2m

t
2 where m1,2 = − a

2
±
√

a2

4
− b

2)	 The case (a2/4)− b = 0 implies that m = −a/2 . Then mt  and tmt  are two linear 

independent solutions of (2.1.3) so the general solution becomes:

xt = C1m
t + C2tm

t = (C1 + C2t)m
t where m = −a/2

(In order to see that tmt  really is a solution of (2.1.3) note that if a2/4 = b , then (2.1.3) may 

be expressed as (*) xt+2 + axt+1 + (a2/4)xt = 0 . Now, assuming that xt = t(−a/2)t  we 

have xt+1 = −(a/2)(t+ 1)(−a/2)t , xt+2 = (a2/4)(t+ 2)(−a/2)t  and by inserting into 

(*) we obtain (a2/4)[t+ 2− 2(t+ 1) + t](−a/2)t = 0 which proves what we want.)

3)	 Finally, if (a2/4)− b < 0 we have

m = − a

2
±

√
−(b− (a2/4) = − a

2
±
√

b− (a2/4) i = α + βi

From the theory of complex numbers we know that

α+ βi = r(cos θ + i sin θ)
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where

		  r =
√

α2 + β2 =

√
(−a/2)2 +

√
b− (a2/4)

2
=

√
b

and

		  cos θ =
−a/2√

b
sin θ =

√
b− (a2/4)√

b

which implies that

mt = [r(cos θ + i sin θ)]t = rt(cos θ + i sin θ)t = rt(cos θ t + i sin θ t)

where we have used Moivre’s formulae (cf. Exercise 2.1.2) in the last step. Since the real and 
imaginary parts of mt  are linear independent functions we express the general solution of 
(2.1.3) as

		  xt = C1r
t cos θ t+ C2r

t sin θ t

� ☐
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Example 2.1.1. Find the general solution of the following equations:

a)	 xt+2 − 7xt+1 + 12xt = 0 ,

b)	 xt+2 − 6xt+1 + 9xt = 0 ,

c)	 xt+2 − xt+1 + xt = 0.

Solutions:

a)	 Assuming xt = mt  the characteristic equation becomes m2 − 7m+ 12 = 0 ⇔ m1 = 4 , 

m2 = 3  so according to Theorem 2.1.3 the general solution is xt = C1 · 4t + C2 · 3t .

b)	 The characteristic equation is m2 − 6m+ 9 = 0 ⇔ m1 = m2 = 3 . Thus 

xt = C1 · 3t + C2t · 3t = (C1 + C2t)3
t .

c)	 The characteristic equation becomes m2 −m+ 1 = 0 ⇔ m = (1±
√
−3)/2 = 1

2
± 1

2

√
3 i  .

Further

		  r =

√(
1

2

)2

+

(
1

2

√
3

)2

= 1

		  cos θ =
1
2

1
=

1

2
sin θ =

1
2

√
3

1
=

1

2

√
3 ⇒ θ =

π

3

Thus

		  xt = C11
t cos

π

3
t+ C21

t sin
π

3
t = C1 cos

π

3
t+ C2 sin

π

3
t

� ☐

Exercise 2.1.1. Find the general solution of the homogeneous equations:

a)	 xt+2 − 12xt+1 + 36xt = 0 ,

b)	 xt+2 + xt = 0 ,

c)	 xt+2 + 6xt+1 − 16xt = 0 . � ☐

Exercise 2.1.2. Prove Moivre’s formulae: (cos θ + i sin θ)t = cos θ t+ i sin θ t .

(Hint: Use induction and trigonometric identities.) � ☐
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Definition 2.1.1. The equation xt+2 + axt+1 + bxt = 0 is said to be globally asymptotic stable if the 

solution xt  satisfies limt→∞ xt = 0 . � ☐

Referring to Example 2.1.1 it is clear that none of the equations considered there are globally asymptotic 
stable. The solutions of the equations (a) and (b) tend to infinity as t → ∞  and the solution of (c) does 
not tend to zero either.

However, consider the equation xt+2 − (1/6)xt+1 − (1/6)xt = 0 . The characteristic equation is 

m2 − (1/6)m− (1/6)m = 0 ⇔ m1 = 1/2 , m2 = −(1/3)  so the general solution becomes 

xt = C1(1/2)
t + C2(−1/3)t .

Here, we obviously have limt→∞ xt = 0  so according to Definition 2.1.1 the equation 

xt+2 + (1/6)xt+1 − (1/6)xt = 0  is globally asymptotic stable.

Theorem 2.1.4. The equation xt+2 + axt+1 + bxt = 0 with associated characteristic equation 

m2 + am+ b = 0 is globally asymptotic stable if and only if all the roots of the characteristic 

equation have moduli strictly less than 1. � ☐

Proof. Referring to Theorem 2.1.3, the cases (1) and (3) are clear (remember |m| = r  in (3)).

Considering (2): If |m| < 1

		  lim
t→∞

tmt = lim
t→∞

t

st

where s = 1/|m|  and s > 1 . Then by L‘hopital’s rule

		  lim
t→∞

t

st
= lim

t→∞

1

st ln s
→ 0

and the results of Theorem 2.1.4 follows.

As we shall see later on, Theorem 2.1.4 will be useful for us when we discuss stability of nonlinear systems.

—

We close this section by considering the nonhomogeneous equation

		  xt+2 + axt+1 + bxt = f(t)  � (2.1.6)
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According to Theorem 2.1.2 the general solution of (2.1.6) is the sum of the general solution of the 
homogeneous equation (2.1.3) and a particular solution u∗

t  of (2.1.6).

If f(t)  is a polynomial, say f(t) = 2t2 + 4t  it is natural to assume a particular solution of the form 

u∗
t = At2 + Bt + C .

If f(t)  is a trigonometric function, for example f(t) = cos u t  we assume that 

u∗
t = A cosu t+ B sin u t .

If ft = ct , assume u∗
t = Act  (but see the comment following (2.1.7)).

Example 2.1.2. Solve the following equations:

a)	 xt+2 + xt+1 + 2xt = t2 ,

b)	 xt+2 − 2xt+1 + xt = 2 sin(π/2)t ,
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Solutions:

a)	 The characteristic equation of the homogeneous equation becomes 
m2 −m− 2 = 0 ⇔ m1 = 2  and m2 = −1 so the general solution of the homogeneous 

equation is xt = C1 · 2t + C2(−1)t . Assume u∗
t = At2 + Bt + C . Then 

u∗
t+1 = A(t+ 1)2 + B(t+ 1) + C , u∗

t+2 = A(t+ 2)2 + B(t+ 2) + C  which inserted 

into the original equation gives

A(t + 2)2 + B(t+ 2) + C − [A(t + 1)2 + B(t+ 1) + C]− 2 [At2 + Bt + C] = t2

⇔

−2At2 + (2A− 2B)t+ (3A+ B − 2C) = t2 + 0t+ 0

and by equating terms of equal powers of t  we have (1) −2A = 1 , (2) 2A− 2B = 0 , and (3) 

3A+ B − 2C = 0 from which we easily obtain A = −1/2 , B = −1/2  and C = −1 . Thus 

u∗
t = −(1/2)t2 − (1/2)t− 1  and the general solution is xt = C12

t + C2(−1)t − (1/2)t2 − (1/2)t− 1 

xt = C12
t + C2(−1)t − (1/2)t2 − (1/2)t− 1 .

b)	 The solution of the characteristic equation becomes m1 = m2 = 1 ⇒  homogeneous 

solution (C1 + C2t)1
t = C1 + C2t . Assume u∗

t = A cos(π/2)t+ B sin(π/2)t . Then, 

u∗
t+1 = A cos[(π/2)(t+1)]+B sin[(π/2)(t+1)] = A[cos(π/2)t cos(π/2)−sin(π/2)t sin(π/2)]+

B[sin(π/2)t cos(π/2)+

 

u∗
t+1 = A cos[(π/2)(t+1)]+B sin[(π/2)(t+1)] = A[cos(π/2)t cos(π/2)−sin(π/2)t sin(π/2)]+

B[sin(π/2)t cos(π/2)+

 
u∗
t+1 = A cos[(π/2)(t+1)]+B sin[(π/2)(t+1)] = A[cos(π/2)t cos(π/2)−sin(π/2)t sin(π/2)]+

B[sin(π/2)t cos(π/2)+ sin(π/2) cos(π/2)] = −A sin(π/2)t+ B cos(π/2)t 

sin(π/2) cos(π/2)] = −A sin(π/2)t+ B cos(π/2)t . In the same way, u∗
t+2 = −A cos(π/2)t− B sin(π/2)t  so after inserting 

u∗
t+2 , u∗

t+1  and u∗
t  into the original equation we arrive at

		  −2B cos
π

2
t+ 2A sin

π

2
t = 0 cos

π

2
t+ 2 sin

π

2
t

Thus −2B = 0  and 2A = 2 ⇔ A = 1  and B = 0  so u∗
t = cos(π/2)t . Hence, the general 

solution is xt = C1 + C2t + cos(π/2)t .� ☐

Finally, if xt+2 + axt+1 + bxt = ct  we assume a particular solution of the form u∗
t = Act . Then 

u∗
t+1 = Acct  and u∗

t+2 = Ac2ct  which inserted into the original equation yields

		  A(c2 + ac + b)ct = ct
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Thus, whenever c2 + ac+ b �= 0  the particular solution becomes

		  u∗ =
1

c2 + ac+ b
ct  � (2.1.7)

Note, however, that if c  is a simple root of the characteristic equation, i.e. c2 + ac+ b = 0 , then we 

try a solution of the form u∗
t = Btct  and if c  is a double root, assume u∗

t = Dt2ct .

Example 2.1.3. Solve the equations:

a)	 xt+2 − 4xt = 3t ,

b)	 xt+2 − 4xt = 2t ,

Solutions:

a)	 The characteristic equation is m2 − 4 = 0 ⇔ m1 = 2 , m2 = −2 thus the homogeneous 

solution is C12
t + C2(−2)t . Since 3 is not a root of m2 − 4 = 0  we have directly from (2.1.7) 

that u∗
t = (1/5)3t  so the general solution becomes xt = C12

t + C2(−2)t + (1/5)3t .

b)	 The homogeneous solution is of course C12
t + C2(−2)t  but since 2 is a simple root of 

m2 − 4 = 0  we try a particular solution of the form u∗
t = Bt2t . Then 

u∗
t+2 = 4B(t+ 2)2t  and by inserting into the original equation we arrive at

		  4B(t+ 2)2t − 4Bt · 2t = 2t

which gives B = 1/8. Thus xt = C12
t + C2(−2)t + (1/8)t · 2t . � ☐

Exercise 2.1.3. Solve the problems:

a)	 xt+2 + 2xt+1 − 3xt = 2t+ 5

b)	 xt+2 − 10xt+1 + 25xt = 5t 	 c)	 xt+2 − xt+1 + xt = 2t

d)	 xt+2 + 9xt = 2t 	 e)	xt+2 − 5xt+1 − 6xt = t · 2t

(Hint: Assume a particular solution of the form (At + B) · 2t .) � ☐
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In the examples and exercises presented above we found a particular solution u∗
t  of the nonhomogeneous 

equation in a way which at best may be called heuristic. We shall now focus on a general method 
(sometimes referred to as variation of parameters) which enables us to find u∗

t  of any nonhomogeneous 

equation provided the general solution of the associated homogeneous equation is known.

Theorem 2.1.5 (Variation of parameters). Let x1,t  and x2,t  be two linear independent solutions 

of (2.1.3) and let

		  wt =

∣∣∣∣
x1,t x2,t

x1,t−1 x2,t−1

∣∣∣∣

Then a particular solution u∗
t  of the nonhomogeneous equation

		  xt+2 + axt+1 + bxt = ft

may be calculated through

		

u∗
t =

t∑

m=0

∣∣∣∣
x1,t x2,t

x1,m−1 x2,m−1

∣∣∣∣
wm

fm−2 t ≥ 0

� ☐
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Proof. The elements u∗
t  must be linear functions of the preceding elements of the sequence {ft} . 

Hence,

		
u∗
t =

t∑

m=0

dt,mfm−2

which inserted into the nonhomogeneous equation gives

		

t∑

m=0

(dt+2,m + adt+1,m + bdt,m)fm−2 + (dt+2,t+1 + adt+1,t+1)ft−1 + dt+2,t+2ft = ft

The equation above must hold for any t > 0. Consequently, for each m, the coefficients of fm  

on both sides of the equation must be equal. Therefore,

		
dt+2,m + adt+1,m + bdt,m = 0 t > m− 1

dt+2,t+1 + adt+1,t+1 = 0

dt+2,t+2 = 1

The first of the three equations above expresses that the sequence {dt,m}  is a solution of the 

homogeneous equation in case of t > m− 1. Moreover, by imposing the initial condition 

dm,m−1 = 0  the second equation may be replaced by the first if t ≥ m− 1 and we have the 

initial conditions dm,m−1 = 0 , dm,m = 1 . Now, since x1,t  and x2,t  are two linear independent 

solutions of the homogeneous equations there are constants c  such that

		  dt,m = c1,mx1,t + c2,mx2,t

and the initial conditions are satisfied whenever

		  c1,mx1,m + c2,mx2,m = 1

c1,mx1,m−1 + c2,mx2,m−1 = 0

from which we easily obtain

		  c1,m =
x2,m−1

wm

c2,m = −x1,m−1

wm

Consequently,

		  dt,m =
x1,tx2,m−1 − x2,tx1,m−1

wm

and the formulae in the theorem follows. � ☐

Example 2.1.4. Use Theorem 2.1.5 and find a particular solution of

xt+2 − 5xt+1 + 6xt = 2t
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Solution. Clearly, two linear independent solutions of the associated homogeneous equation are 
x1,t = 2t  and x2,t = 3t . Moreover,

	 wt =

∣∣∣∣
2t 3t

2t−1 3t−1

∣∣∣∣ = −6t−1

∣∣∣∣
x1,t x2,t

x1,m−1 x2,m−1

∣∣∣∣ = 6m−1[2t−(m−1) − 3t−(m−1)]

Thus

u∗
t =

t∑

m=0

6m−1[2t−(m−1) − 3t−(m−1)]

−6m−1
2m−2

= −
t∑

m=0

[
2t−1 − 1

4
3t+1

(
2

3

)m]
= −

{
(t+ 1)2t−1 − 3

4
(3t+1 − 2t+1)

}

=
9

4
3t − (t+ 4)

2
2t

Note that the particular solution found here is not the same as u∗
t = −1

2
t · 2t  which would be 

the result by use of a heuristic method (see Example 2.1.3b). However, the general solutions match. 
Indeed,

xt = C1x1,t + C2x2,t + u∗
t = C1 · 2t + C2 · 3t +

9

4
3t −

(
t+ 4

2

)
2t

= (C1 − 2)2t +

(
C2 +

9

4

)
3t − 1

2
t · 2t = D1 · 2t +D2 · 3t −

1

2
t · 2t

which is in accordance with the heuristic method. � ☐

Example 2.1.5. Find the general solution of

		  xt+2 − 5xt+1 + 6xt = ln(t+ 3)

Solution. By use of the findings from the previous example:

		

u∗
t = −

t∑

m=0

[
2t−(m−1) − 3t−(m−1)

]
ln(m+ 1)

= 3t+1
t∑

m=0

3−m ln(m+ 1)− 2t+1
t∑

m=0

2−m ln(m+ 1)

Hence, the general solution becomes

		  xt = C1 · 2t + C2 · 3t + 3t+1
t∑

m=0

3−m ln(m+ 1)− 2t+1
t∑

m=0

2−m ln(m+ 1)
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Note that the solution above (in contrast to all our previous examples and exercises) contains 
sums which may not be expressed in any simple forms. However, in a somewhat more cumbersome 
way, we have obtained the general solution for any t ≥ 0 . Moreover, the constants C1  and C2  

may be determined in the usual way if we know the initial conditions. Indeed, assuming x0 = 0  

and x1 = 1  we arrive at the equations (A) C1 + C2 = 0  and (B) 2C1 + 3C2 + ln 2 = 1  from 

which we obtain C1 = ln 2− 1 and C2 = 1− ln 2. � ☐

Exercise 2.1.4. Use Theorem 2.1.5 and find the general solution of the equations

		
a) xt+2 − 7xt+1 + 10xt = 5t

b) xt+2 − (a+ b)x1,t + abxt = at

(Hint: distinguish between the cases a �= b  and a = b .)� ☐

Exercise 2.1.5. Consider the equation xt+2 = xt+1 + xt  with initial conditions x0 = 0 , x1 = 1 .

a)	 Solve the equation.
b)	 Use a) and induction to prove that xt · xt+2 − x2

t+1 = (−1)t+1, t = 0, 1, 2, ... .�  ☐
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Let us now turn to equations of order n , i.e. equations of the form

	 xt+n + a1(t)xt+n−1 + a2(t)xt+n−2 + · · ·+ an−1(t)xt+1 + an(t)xt = f(t) �  (2.1.8)

In the homogeneous case we have the following result:

Theorem 2.1.6. Assuming an(t) �= 0, the general solution of

		  xt+n + a1(t)xt+n−1 + · · ·+ an(t)xt = 0 �  (2.1.9)

is xt = C1u1,t + · · ·+ Cnun,t  where u1,t . . . un,t  are linear independent solutions of the 

equation and C1 . . . Cn  arbitrary constants.� ☐

Proof. Easy extension of the proof of Theorem 2.1.1. We leave the details to the reader. � ☐

Regarding the nonhomogeneous equation (2.1.8) we have

Theorem 2.1.7. The solution of the nonhomogeneous equation (2.1.8) is

		  xt = C1u1,t + · · ·+ Cnun,t + u∗
t

where u∗
t  is a particular solution of (2.1.8) and C1u1,t + · · ·+ Cnun,t  is the general solution of 

(2.1.9).� ☐

If a1(t) = a1, ..., an(t) = an  constants we arrive at

		  xt+n + a1xt+n−1 + · · ·+ anxt = f(t)�  (2.1.10)

and as in the second order case we may assume a solution xt = mt  of the homogeneous equation. This 

yields the n -th order characteristic equation

		  mn + a1m
n−1 + · · ·+ an−1m+ an = 0�  (2.1.11)

Appealing to the fundamental theorem of algebra we know that (2.1.11) has n  roots. If a root is real 

with multiplicity 1 or complex we form linear independent solutions in exactly the same way as explained 
in Theorem 2.1.3. In case of real roots with multiplicity p , linear independent solutions are 

mt, tmt, ..., tp−1mt .
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Example 2.1.5. Solve the equations:

a)	 xt+3 − 2xt+2 + xt+1 − 2xt = 2t− 4,

b)	 xt+3 − 6xt+2 + 12xt+1 − 8xt = 0 .

Solutions:

a)	 The characteristic equation is m3 − 2m2 +m− 2 = 0 . Clearly, m1 = 2  is a solution and 

m3 − 2m2 +m− 2 = (m− 2)(m2 + 1) = 0 . Hence the other roots are complex, 

m2,3 = ±i . Following Theorem 2.1.3 r =
√
02 + 12 = 1 , cos θ = 0/1 = 0 , 

sin θ = 1/1 = 1 ⇒ θ = π/2  which implies the homogeneous solution 

C1 · 2t + C2 cos(π/2)t+ C3 sin(π/2)t . Assuming a particular solution u∗
t = At+ B  

we find after inserting into the original equation, −2At− 2B = 2t− 4  so A = −1  and 

B = 2 . Consequently, according to Theorem 2.1.7, the general solution is 

xt = C1 · 2t + C2 cos(π/2)t+ C3 sin(π/2)t− t + 2 .
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b)	 The characteristic equation becomes m3 − 6m2 + 12m− 8 = 0 ⇔ (m− 2)3 = 0 . 

Hence, there is only one root, m = 2, with multiplicity 3. Consequently, 

xt = C1 · 2t + C2t · 2t + C3t
2 · 2t .� ☐

Exercise 2.1.6. Find the general solution of the equations:

xt+3 − 2xt+2 − 5xt+1 + 6xt = 0 xt+1 − 2xt = 1 + t2

xt+4 − xt = 2t xt+1 − 2xt = 2t + 3t

� ☐

Definition 2.1.2. The equation xt+n + a1xt+n−1 + · · ·+ anxt = 0  is said to be globally 

asymptotic stable if the solution xt  satisfies limt→∞ xt = 0 .� ☐

Theorem 2.1.8. The equation xt+n + a1xt+n−1 + · · ·+ anxt = 0  is globally asymptotic stable 

if all solutions of the characteristic equation (2.1.11) have moduli less than 1.� ☐

It may be a difficult task to decide whether all roots of a given polynomial equation have moduli less 
than unity or not. However, there are methods and one of the most frequently used is the Jury criteria 
which we now describe.

Let

		  P (x) = xn + a1x
n−1 + a2x

n−2 + · · ·+ an �  (2.1.12)

be a polynomial with real coefficients a1 . . . an . Define

bn = 1− a2n , bn−1 = a1 − anan−1, · · · bn−j = aj − anan−j, b1 = an−1 − ana1

cn = b2n − b21 , cn−1 = bnbn−1 − b1b2, · · · cn−j = bnbn−j − b1bj+1, c2 = bnb2 − b1bn−1

dn = c2n − c22 , · · · dn−j = cncn−j − c2cj+2 . . . d3 = cnc3 − c2cn−1

and proceed in this way until we have only three elements of the type

wn = v2n − v2n−3 , wn−1 = vnvn−1 − vn−3vn−2 , wn−2 = vnvn−2 − vn−3vn−1
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Theorem 2.1.9 (The Jury criteria). All roots of the polynomial equation P (x) = 0  where P (x) 

is defined through (2.1.12) have moduli less than 1 provided:

P (1) > 0 (−1)nP (−1) > 0

|an| < 1 , |bn| > |b1| , |cn| > |c2| , |dn| > |d3| , · · · |wn| > |wn−2| .� ☐

Remark 2.1.1. Instead of saying that all roots have moduli less than 1, an alternative formulation 
is to say that all roots are located inside the unit circle in the complex plane.� ☐

Regarding the second order equation

x2 + a1x+ a2 = 0 �  (2.1.13)

the Jury criteria become

1 + a1 + a2 > 0

1− a1 + a2 > 0

1− |a2| > 0

 �  (2.1.14)

If we have a polynomial equation of order 3

x3 + a1x
2 + a2x+ a3 = 0 �  (2.15)

the Jury criteria may be cast in the form

1 + a1 + a2 + a3 > 0

1− a1 + a2 − a3 > 0

1− |a3| > 0

|1− a23| − |a2 − a3a1| > 0

�  (2.16)

Evidently, the higher the order, the more complicated are the Jury criteria. Therefore, unless the coefficients 
are very simple or on a special form the method does not work is the order of the polynomial becomes 
large.

Later, when we shall focus on stability problems of nonlinear maps (which often leads to a study of 
polynomial equations), we will also face the fact that the coefficients a1 . . . an  do not consist of numbers 

only but a mixture of numbers and parameters. In such cases, even (2.1.16) may be difficult to apply.
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However, let us give one simple example of how the Jury criteria works.

Example 2.1.6. Show that  xt+3 − (2/3)xt+2 + (1/4)xt+1 − (1/6)xt = 0  is globally 

asymptotic stable.

Solution: According to Theorem 2.1.8 we must show that the roots of the associated characteristic 
equation m3 − (2/3)m2 + (1/4)m− (1/6) = 0  are located inside the unit circle. Defining 

a1 = −(2/3) , a2 = 1/4 , a3 = −(1/6)  the four left-hand sides of (2.1.16) become 1/12, 25/12, 

5/6 and 5/6, respectively. Consequently, all the roots are located inside the unit circle so the 
difference equation is globally asymptotic stable.� ☐

Another theorem (from complex function theory) that may be useful and which applies not only to 
polynomial equations is Rouche’s theorem. (In the theorem below, z = α + βi  is a complex number.)

Theorem 2.1.10 (Rouche’s theorem). If f(z)  and g(z)  are analytic inside and on a simple closed 

curve C  and if |g(z)| < |f(z)|  on C  then f(z) + g(z)  and f(z)  and the same number of 

zeros inside C.� ☐

Remark 2.1.2. If we take the simple closed curve C  to be the unit circle |z| = 1 , then we may 

use Theorem 2.1.10 in order to decide if all the roots of a given equation have moduli less than 
one or not.� ☐

Example 2.1.7. Suppose that a > e  and show that the equation azn − ez = 0  has n  roots 

located inside the unit circle |z| = 1 .

Solution: Define f(z) = azn , g(z) = −ez  and consider f(z) + g(z) = 0 . Clearly, the 

equation f(z) = 0 has n  roots located inside the unit circle. On the boundary of the unit circle 

we have |g(z)| = | − ez| ≤ e < a = |f(z)| . Thus, according to Theorem 2.1.10, f(z)  and 

f(z) + g(z)  have the same number of zeros inside the unit circle, i.e. n  zeros.� ☐
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2.2	 Systems of linear difference equations. Linear maps from Rn  to Rn

In this section our purpose is to analyse linear systems. There are several alternatives when one tries 
to find the general solution of such systems. One possible method is to transform a system into one 
higher order equation and use the theory that we developed in the previous section. Other methods 
are based upon topics from linear algebra, and of particular relevance is the theory of eigenvalues and 
eigenvectors. Later when we turn to nonlinear systems and stability problems it will be useful for us 
to have a broad knowledge of linear systems so therefore we shall deal with several possible solution 
methods in this section.

Consider the system

		  x1,t+1 = a11x1,t + a12x2,t + · · ·+ a1nxn,t + b1(t)

		  x2,t+1 = a21x1,t + a22x2,t + · · ·+ a2nxn,t + b2(t) �  (2.2.1)

			 

		  xn,t+1 = an1x1,t + an2x2,t + · · ·+ annxn,t + bn(t)

Here, all coefficients a11 . . . ann  are constants and if bi(t) = 0  for all 1 ≤ i ≤ n  we call (2.2.1) a 

linear autonomous system.
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It is often convenient to express (2.2.1) in terms of vectors and matrices. Indeed, let 
x = (x1, ..., xn)

T  , b = (b1, ..., bn)
T  and

		  A =





a11 · · · a1n
a21 · · · a2n

an1 · · · ann



 �  (2.2.2)

Then, (2.2.1) may be written as

		  xt+1 = Axt + bt �  (2.2.3)

or in map notation

		  x → Ax + b �  (2.2.4)

First, let us show how one may solve a system by use of the theory from the previous section.

Example 2.2.1. Solve the system

		

(1) xt+1 = 2yt + t

(2) yt+1 = xt + yt

Replacing t  by t + 1  in (1) gives

		  xt+2 = 2yt+1 + t+ 1 =
(2)

2(xt + yt) + t+ 1 = 2xt + 2yt + t + 1

Further, from (1): 2yt = xt+1 − t . Hence

		  xt+2 − xt+1 − 2xt = 1

Thus, we have transformed a system of two first order equations into one second order equation, 
and by use of the theory from the previous section the general solution of the latter equation is 
easily found to be

		  xt = C1 · 2t + C2(−1)t − 1/2

Download free eBooks at bookboon.com



Discrete Dynamical Systems with an 
Introduction to Discrete Optimization

88 

n-dimensional maps 

yt  may be obtained from (1):

		

yt =
1

2
(xt+1 − t) =

1

2

(
C12

t+1 + C2(−1)t+1 − 1

2
− t

)

= C12
t − 1

2
C2(−1)t − 1

2
t− 1

4

The constants C1  and C2  may be determined if we know the initial values x0 and y0 . For example, 

if x0 = y0 = 1  we have from the general solution above that

		

1 = C1 + C2 − 1/2

1 = C1 −
1

2
C2 − 1/4

which implies that C1 = 4/3  and C2 = 1/6  so the solution becomes

		  xt =
4

3
· 2t + 1

6
(−1)t − 1

2
yt =

4

3
· 2t + 1

12
(−1)t − 1

2
t− 1

4

� ☐

Exercise 2.2.1. Find the general solution of the systems

		  xt+1 = 2yt + t xt+1 = xt + 2yt

yt+1 = −xt + 3yt yt+1 = 3xt

� ☐

Another way to find the solution of a system is to use the matrix formulation (2.2.3). Indeed, suppose 
that the initial vector x0  is known. Then:

	  

x1 = Ax0 + b(0)

x2 = Ax1 + b(1) = A(Ax0 + b(0)) + b(1) = A2x0 + Ab(0) + b(1)

and by induction (we leave the details to the reader)

		  xt = Atx0 + At−1b(0) + At−2b(1) + · · ·+ b(t− 1) �  (2.2.5)

In the important special case b = 0  we have the result:

			   xt+1 = Axt ⇔ xt = Atx0
 � (2.2.6)
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where A0  is equal to the identity matrix I .

Exercise 2.2.2. Consider the matrix

A =

(
1 −1
0 1

)

a)	 Compute A2  and A3 .

b)	 Let t  be a positive integer and use induction to find a formulae for At .

c)	 Let x = (x1, x2)
T  and solve the difference equation xt+1 = Axt  where x0 = (a, b)T .

� ☐

Our next goal is to solve the linear system

		  xt+1 = Axt  � (2.2.7)
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in terms of eigenvalues and (generalized) eigenvectors. Recall that if there exists a scalar λ such that 
Au = λu , u �= 0 , λ is said to be an eigenvalue of A, and u  is called the associated eigenvector. Moreover, 

we call a vector v  satisfying (A− λI)v = u a generalized eigenvector of A. (Note that the definitions 

above imply (A− λI)u = 0  and (A− λI)2v = 0.) Thus, consider (2.2.7) and assume a solution of 

the form xt = λtu  where λ �= 0 . Then

λt+1u−Aλtu = 0

						      ⇔ �  (2.2.8)

(A− λI)u = 0

so λ is nothing but an eigenvalue belonging to A and u  is the associated eigenvector. As is well known, 

the eigenvalues may be computed from the relation

		  |A− λI| = 0 �  (2.2.9)

There are two cases to consider.

(A) �If the n× n  matrix A is diagonalizable over the complex numbers, then A has n  distinct 

eigenvalues λ1, ..., λn  and moreover, the associated eigenvectors u1, ...,un  are linear 

independent. Consequently, the general solution of the linear system (2.2.7) may be cast in 
the form

		  xt = C1λ
t
1u1 + C2λ

t
2u2 + · · ·+ Cnλ

t
nun �  (2.2.10)

(B) �If A is not diagonalizable (which may occur when A has multiple eigenvalues) we may proceed 
in much of the same way as in the corresponding theory for continuous systems, see Grimshaw 
(1990) and express the general solution in terms of eigenvalues and (generalized) eigenvectors. 
Suppose that λ is an eigenvalue with multiplicity m  and let u1, ...,up  be a basis for the 

eigenspace of λ. If p = m  we are done. If p < m  we seek a solution of the form 

xt = λt(v + tu)  where u  is one of the ui ’s.

Then from (2.2.7) one easily obtains

		  (A− λI)v = λu �  (2.2.11a)

		  (A− λI)u = 0 �  (2.2.11b)
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and after multiplying (2.2.11a) with (A− λI)  from the left we arrive at

		  (A− λI)2v = 0 �  (2.2.12)

Now suppose that we can find v1, ...,vq  such that v1, ...,vq , u1, ...,up  are linear independent. 

Now, if p+ q = m  we are done. If p+ q < m  we continue in the same fashion by seeking a 

solution of the form xt = λt(w + tv + (1/2!)t2u) . In this case (2.2.7) implies

		  (A− λI)w = λ

(
v +

1

2!
u

)
�  (2.2.13a)

		  (A− λI)v = λu �  (2.2.13b)

		  (A− λI)u = 0 �  (2.2.13c)

which again leads to

		  (A− λI)3w = 0 �  (2.2.14)

and we proceed in the same way as before. Either we are done or we keep on seeking solutions 
where cubic terms of t  are included. Sooner or later we will obtain the necessary number of linear 

independent eigenvectors, cf. Meyer (2000).� ☐

Exercise 2.2.3.

a)	 Referring to the procedure outlined above suppose a cubic solution of the form 
xt = λt(y + tw + (1/2!)t2v + (1/3!)t3u) . Use (2.2.7) and deduce the following 

relations: (A− λI)y = λ(w + (1/2!)v + (1/3!)u) , (A− λI)w = λ(v + (1/2!)u) , 

(A− λI)v = λu, (A− λI)u = 0 , and moreover that (A− λI)4y = 0.

b)	 In general, assume a solution of degree m− 1  on the form

		

xt = λt
m∑

i=1

1

(m− i)!
tm−ivi

and show that vi  may be obtained from

		
(A− λI)v1 = 0

Download free eBooks at bookboon.com



Discrete Dynamical Systems with an 
Introduction to Discrete Optimization

92 

n-dimensional maps 

and

		  (A− λI)vi+1 = λ

i∑

k=1

1

(i− (k − 1))!
vk , i = 1, 2, ..., m− 1 .

� ☐

Remark 2.2.1. A complete treatment of case (B) should include a proof of linear independence of 
the set of eigenvectors and generalized eigenvectors. However, such a proof requires a somewhat 
deeper insight of linear algebra than assumed here and is therefore omitted.� ☐

Let us now illustrate the theory presented above through three examples. In Example 2.2.2 we deal with 
the easiest case where the coefficient matrix A has distinct real eigenvalues. In Example 2.2.3 we consider 
eigenvalues with multiplicity larger than one, and finally, in Example 2.2.4, we analyse the case where 
the eigenvalues are complex conjugated.
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Example 2.2.2. Let

		

x = (x1, x2)
T , A =

(
2 1
−3 6

)

and solve xt+1 = Axt .

Assuming x = λtu  the eigenvalue equation (2.2.9) becomes
∣∣∣∣
2− λ 1
−3 6− λ

∣∣∣∣ = 0 ⇔ λ2 − 8λ+ 15 = 0 ⇔ λ1 = 5 , λ2 = 3

The eigenvector u1 = (u1, u2)
T  belonging to λ1 = 5  satisfies (cf. (2.2.8))

		

(
2− 5 1
−3 6− 5

)(
u1

u2

)
=

(
0
0

)

Hence, we choose u1 =

(
1
3

)
.

In the same way, the eigenvector u2 = (u1, u2)
T  belonging to λ2 = 3  satisfies

		

(
−1 1
−3 3

)(
u1

u2

)
=

(
0
0

)

Thus u2 =

(
1
1

)
. Therefore, according to (2.2.10), the general solution is

		
xt =

(
x1

x2

)

t

= C15
t

(
1
3

)
+ C23

t

(
1
1

)

� ☐

Example 2.2.3. Let

		

x = (x1, x2, x3)
T , A =




2 1 1
0 2 2
0 0 2





and solve xt+1 = Axt .

Assuming xt = λtu , we arrive at the eigenvalue equation

		

∣∣∣∣∣∣

2− λ 1 1
0 2− λ 2
0 0 2− λ

∣∣∣∣∣∣
= 0 ⇔ (2− λ)3 = 0
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so we conclude that λ = 2  is the only eigenvalue and that it has multiplicity 3. Therefore, according 

to (B) the general solution of the problem is

		
xt = C1λ

tu+ C2λ
t(v + tu) + C3λ

t

(
w + tv +

1

2
t2u

)

where λ = 2  and u , v  and w  must be found from (2.2.13a,b,c). Let u = (u1, u2, u3)
T , 

v = (v1, v2, v3)
T  and w = (w1, w2, w3)

T . (2.2.13c) implies

		




0 1 1
0 0 2
0 0 0








u1

u2

u3



 =




0
0
0



 ⇔ u2 + u3 = 0
2u3 = 0

so u3 = 0 ⇒ u2 = 0  and u1 is arbitrary so let u1 = 1 . Therefore u = (1, 0, 0)T . (2.2.13b) 

implies

		




0 1 1
0 0 2
0 0 0








v1
v2
v3



 = 2




1
0
0



 ⇔ v2 + v3 = 2
2v3 = 0

thus, v3 = 0 , v2 = 2  and v1 may be chosen arbitrary so we let v1 = 0 . This yields v = (0, 2, 0)T .

Finally, from (2.2.13a):



0 1 1
0 0 2
0 0 0








w1

w2

w3



 = 2

(
v +

1

2
u

)
=




1
4
0



 ⇔ w2 + w3 = 1
2w3 = 4

Hence, w3 = 2, w2 = −1  and we may choose w1 = 0 so w = (0,−1, 2)T . Consequently, the 

general solution may be written as

		

xt =




x1

x2

x3





t

= C12
t




1
0
0



+ C22
t








0
2
0



+ t




1
0
0









+ C32
t








0
−1
2



 + t




0
2
0



 +
1

2
t2




1
0
0









� ☐
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Example 2.2.4. Let

		  x = (x1, x2)
T , A =

(
−2 1
−1 −2

)

and solve xt+1 = Axt .

Suppose xt = λtv. (2.2.9) implies

		

∣∣∣∣
−2 − λ 1
−1 −2 − λ

∣∣∣∣ = 0 ⇔ λ2 + 4λ+ 5 = 0

⇔ λ1 = −2 + i , λ2 = −2− i  (distinct complex eigenvalues).

Further: |λ1| =
√

(−2)2 + 12 =
√
5 cos θ = (−2)/

√
5 sin θ = 1/

√
5  so 

λ1 =
√
5(cos θ + i sin θ) λ1 =

√
5(cos θ + i sin θ) .

The eigenvector u = (u1, u2)
T  corresponding to λ1  may be found from

(
−2− (−2 + i) 1

−1 −2− (−2 + i)

)(
u1

u2

)
=

(
0
0

)
⇔ −iu1 + u2 = 0

−u1 − iu2 = 0
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Let u2 = t , u1 = −it  so 
(

u1

u2

)
= t

(
−i
1

)
, so we choose 

(
u1

u2

)
=

(
−i
1

)
 as 

eigenvector. Therefore (by use of Moivre’s formulae), the solution in complex form becomes

xt =
√
5
t
(cos θt + i sin θt)

(
−i
1

)
=

( √
5
t{−i cos θt + sin θt}√
5
t{cos θt+ i sin θt}

)

Two linear independent real solutions are found by taking the real and imaginary parts 
respectively:

		

(
x1r

x2r

)

t

=
√
5
t
(

sin θt
cos θt

)

(
x1i

x2i

)

t

=
√
5
t
(

− cos θt
sin θt

)

Thus, the general solution may be written as

xt =

(
x1

x2

)

t

= C1

(
x1r

x2r

)

t

+ C2

(
x1i

x2i

)

t

=

( √
5
t{C1 sin θt− C2 cos θt}√
5
t{C1 cos θt+ C2 sin θt}

)

� ☐

Exercise 2.2.4. Let x = (x1, x2)
T , A =

(
1 2
3 2

)
, B =

(
1 −1
2 −1

)
 and find the 

general solution of

a)	 	xt+1 = Axt ,

b)	 	xt+1 = Bxt ,

c)	 	Let x = (x1, x2, x3)
T  and find the general solution of xt+1 = Cxt  where

		  C =




−3 1 −1
−7 5 −1
−6 6 −2





� ☐

We close this section by a definition and an important theorem about stability of linear systems.

Definition 2.2.1. The linear system (2.2.7) is globally asymptotic stable if limt→∞ xt = 0 . � ☐

Download free eBooks at bookboon.com



Discrete Dynamical Systems with an 
Introduction to Discrete Optimization

97 

n-dimensional maps 

Theorem 2.2.1. The linear system (2.2.7) is globally asymptotic stable if and only if all the 
eigenvalues λ of A are located inside the unit circle |z| = 1  in the complex plane.

Proof: In case of distinct eigenvalues the result follows immediately from (2.2.10).

Eigenvalues with multiplicity m  lead according to our previous discussion to terms in the solution 

of form tqλt  where q ≤ m− 1 .

Now, if |λ| < 1 , let |λ| = 1/s  where s > 1 . Then by L‘Hopital’s rule: limt→∞(tq/st) = 0  so 

the result follows here too. � ☐

2.3	 The Leslie matrix

In Part I of this book we illustrated many aspects of the theory which we established by use of the 
quadratic map. Here in Part II we will use Leslie matrix models which are nothing but maps on the form 
f : Rn → Rn  or f : Rn+1 → Rn+1 .

Leslie matrix models are age-structured population models. They were independently developed in 
the 1940s by Bernardelli (1941), Lewis (1942) and Leslie (1945, 1948) but were not widely adopted by 
human demographers until the late 1960s and by ecologists until the 1970s. Some frequently quoted 
papers where the use of such models plays an important role are: Guckenheimer et al. (1977), Levin and 
Goodyear (1980), Silva and Hallam (1993), Wikan and Mjølhus (1996), Behncke (2000), Davydova et al. 
(2003), Mjølhus et al. (2005), and Kon (2005). The ultimate book on matrix population models which 
we refer to is “Matrix population models” by Hal Caswell (2001). Here we will deal with only a limited 
number of aspects of these models.

Let xt = (x0,t, ..., xn,t)
T  be a population with n + 1  nonoverlapping age classes at time t . 

x = x0 + · · ·+ xn  is the total population.

Next, introduce the Leslie matrix

A =





f0 f1 · · · fn
p0 0 · · · 0

0

0 · · · pn−1 0





�  (2.3.1)
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The meaning of the entries in (2.3.1) is as follows: fi  is the average fecundity (the average number of 

daughters born per female) of a member located in the i ’th age class. pi  may be interpreted as the 

survival probability from age class i  to age class i+ 1  and clearly 0 ≤ pi ≤ 1. The relation between 

x  at two consecutive time steps (years) may then be expressed as

xt+1 = Axt �  (2.3.2)

or in map notation

h : Rn+1 → Rn+1 , x → Ax �  (2.3.3)

Hence, what (2.3.2) really says is that all individuals xi  (i > 1) in age class i  at time t + 1  are the 

survivors of the members of the previous age class xi−1  at time t  (i.e. xi,t+1 = pi−1xi−1,t ), and since 

the individuals in the lowest age class cannot be survivors of any other age class they must have originated 
from reproduction (i.e. x0,t+1 = f0x0,t + · · ·+ fnxn,t ).
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Depending on the species under consideration, nonlinearities may show up on different entries in the 
matrix. For example, in fishery models it is often assumed that density effects occur mainly through the 
first year of life so one may assume fi = fi(x). It is also customary to write fi(x) as a product of a 

density independent part Fi  and a density dependent part f̂i(x) so fi(x) = Fif̂i(x) . In the following 

we shall assume that every fertile age class has the same fecundity. Thus, we may drop the subscript i  

and write fi(x) = f(x) . Frequently used fecundity functions are:

		  f(x) = F e−αx �  (2.3.4)

which is often referred to as the overcompensatory Ricker relation and

		  f(x) =
F

1 + αx
�  (2.3.5)

the compensatory Beverton and Holt relation.

Instead of assuming f = f(x)  one may alternatively suppose f = f(y)  where y = α0x0 + · · ·+ αnxn  

is the weighted sum of the age classes. If only one age class, say xi , contributes to density effects one 

writes f = f(xi) . In the case where an age class xi  is not fertile we simply write Fi = 0 . (Species 

where most age classes are fertile are called iteroparous. Species where fecundity is restricted to the last 
age class only are called semelparous.)

The survival probabilities may of course also be density dependent so in such cases we adopt the same 
strategy as in the fecundity case and write p(·) = P p̂(·)  where P  is a constant.

A final but important comment is that one in most biological relevant situations supposes p′(·) ≤ 0 

and f ′(·) ≤ 0 . The standard counter example is when the Allé effect (cf. Caswell, 2001) is modelled. 

Then one may use f ′(x) ≥ 0  and/or p′(x) ≥ 0  in case of small populations x. (Allé effects will not 

be considered here.)

In the subsequent sections we shall analyse nonlinear maps and as already mentioned the theory will 
be illustrated by use of (2.3.2), (2.3.3). However, if both fi = Fi  and pi = Pi  the Leslie matrix is linear 

and we let

		  M =





F0 · · · Fn

P0 0 · · · 0
0

0 · · · 0 Pn−1 0




�  (2.3.6)
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We close this section by a study of the linear case

		  h : Rn+1 → Rn+1 , x → Mx �  (2.3.7)

The eigenvalues of M may be obtained from |M − λI| = 0 .

Exercise 2.3.1.

a)	 Assume that M is 3× 3  and show that the eigenvalue equation becomes

		
λ3 − F0λ

2 − P0F1λ− P0P1F2 = 0

b)	 Generalize and show that if M is a (n + 1)× (n+ 1)  matrix then the eigenvalue equation 

may be written

		  λn+1 − F0λ
n − P0F1λ

n−1 − · · · − P0P1 · · ·Pn−1Fn = 0 �  (2.3.8)

� ☐

Next, we need some definitions:

Definition 2.3.1. A matrix A  is nonnegative if all its elements are greater or equal to zero. It is 

positive if all elements are positive.

Clearly, the Leslie matrix is nonnegative.� ☐

Definition 2.3.2. Let N0, ..., Nn  be nodes representing the n + 1  age classes in a population 

model. Draw a directed path from Ni  to Nj  if individuals in age class i  at time t  contribute to 

individuals of age j  at time t + 1  including the case that a path may go from Ni  to itself. A 

diagram where all such nodes and paths are drawn is called a life cycle graph.� ☐

Definition 2.3.3. A nonnegative matrix A and its associated life cycle graph is irreducible if its 
life cycle graph is strongly connected (i.e. if between every pair of distinct nodes Ni, Nj  in the 

graph there is a directed path of finite length that begins at Ni  and ends at Nj ).� ☐

Definition 2.3.4. A reducible life cycle graph contains at least one age group that cannot contribute 
by any developmental path to some other age group.� ☐

Examples of two irreducible Leslie matrices and one reducible one with associated life cycle graphs are 
given in Figure 10.
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Exercise 2.3.2. Referring to Figure 10 write down the matrix and associated life cycle graph in 
the case of four age classes where only the two in the middle are fertile.� ☐




F0 F1 F2

P0 0 0
0 P1 0








0 0 F2

P0 0 0
0 P1 0








F0 F1 0
P0 0 0
0 P1 0





Figure 10: Two irreduible and one reduible matries with corresponding life cycle graphs.
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Definition 2.3.5. An irreducible matrix A is said to be primitive if it becomes positive when raised 
to sufficiently high powers. Otherwise A is imprimitive (cyclic) with index of imprimity equal to 
the greatest common divisor of the loop lengths in the life cycle graph.� ☐

Exercise 2.3.3. Show by direct calculation that the first irreducible Leslie matrix in Figure 10 is 
primitive and that the second one is imprimitive (cyclic) with index of imprimity equal to 3.�  ☐

Regarding nonnegative matrices the main results may be summarized in the following theorem which 
is often referred to as the Perron-Frobenius theorem.

Theorem 2.3.1 (Perron-Frobenius).

1)	 If A  is positive or nonnegative and primitive, then there exists a real eigenvalue λ0 > 0  which 

is a simple root of the characteristic equation |A− λI| = 0 . Moreover, the eigenvalue is 

strictly greater than the magnitude of any other eigenvalue, λ0 > |λi|  for i �= 0 . The 

eigenvector u0  corresponding to λ0  is real and strictly positive. λ0  may not be the only positive 

eigenvalue but if there are others they do not have nonnegative eigenvectors.

2)	 If A  is irreducible but imprimitive (cyclic) with index of imprivity d+ 1  there exists a real 

eigenvalue λ0 > 0  which is a simple root of |A− λI| = 0  with associated eigenvector 

u0 > 0 . The eigenvalues λi  satisfy λ0 ≥ |λi|  for i �= 0  but there are d  complex eigenvalues 

equal in magnitude to λ0  whose values are λ0 exp(2kπi/(d+ 1)) , k = 1, 2, ..., d .

For a general proof of Theorem 2.3.1 we refer to the literature. See for example Horn and Johnson (1985).

Concerning the Leslie matrix M  (2.3.6) we shall study two cases in somewhat more detail: (I) the case 

where all fecundities Fi > 0 , and (II) the semelparous case where Fi = 0 , i = 0, ..., n− 1  but 

Fn > 0 . In both cases it is assumed that 0 < Pi ≤ 1  for all i .

Let us prove Theorem 2.3.1 assuming (I):

Since Fn > 0 and 0 < Pi ≤ 1  it follows directly from (2.3.8) that λ = 0  is impossible. Therefore, we 

may divide (2.3.8) by λn+1 to obtain

		  f(λ) =
F0

λ
+

P0F1

λ2
+ · · ·+ P0P1 · · ·Pn−1Fn

λn+1
= 1�  (2.3.9)
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Clearly, limλ→0 f(λ) = ∞ , limλ→∞ f(λ) = 0 , and since f ′(λ) < 0  for λ > 0  it follows that there 

exists a unique positive λ0  which satisfies f(λ0) = 1 . Therefore, assume λ−1
0 = eγ  and rewrite (2.3.9) 

as

		  f(λ) = F0e
γ + P0F1e

2γ + · · ·+ P0P1 · · ·Pn−1Fne
(n+1)γ = 1�  (2.43)

Next, let λ−1
j = exp(α + βi) = eα(cosβ + i sin β)  for j = 1, ..., n  and since λ0  is unique and 

positive we may assume β  real and positive and β �= 2kπ , k = 1, 2, . . . . Then 

λ−p
j = eαp(cos pβ + i sin pβ)  which inserted into f(λ) , considering the real part only, gives

F0e
α cos β + P0F1e

2α cos 2β + · · ·+ P0P1 · · ·Pn−1Fne
(n+1)α cos(n+ 1)β = 1�  (2.3.11)

Now, since β  is not a multiple of 2π  it follows that cos jβ  and cos(j + 1)β  cannot both be equal 

to unity. Consequently, by comparing (2.3.10) and (2.3.11), we have eα > eγ ⇔ |λj| < λ0  for 

j = 1, ..., n .

Finally, in order to see that the eigenvector u0 corresponding to λ0  has only positive elements, recall that 

u0 must be computed from Mu0 = λ0u0, and in order to avoid u0 = 0 we must choose one of the 

components of u0 = (u00, ..., un0)
T  free, so let u00 = 1 . Then from Mu0 = λ0u0: P0 · 1 = λ0u10 , 

P1u10 = λ0u20, ..., Pn−1un−10 = λ0un0 which implies

	
u10 =

P0

λ0
, u20 =

P1u10

λ0
=

P0P1

λ2
0

· · ·un0 =
P0 · · ·Pn−1

λn
0

which proves what we want.� ☐

(This proof is based upon Frauenthal (1986).) The proof of Theorem 2.3.1 under the assumption (II) is 
left to the reader.

—

Let us now turn to the asymptotic behaviour of the linear map (2.3.7) in light of the results of Theorem 
2.3.1.

In the case where all Fi > 0  we may express the solution of (2.3.7) (cf. (2.2.10)) as

	 xt = coλ
t
0u0 + c1λ

t
1u1 + · · ·+ cnλ

t
nun �  (2.3.12)
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where λi  (real or complex, λ0  real) are the eigenvalues of M numbered in order of decreasing magnitude 

and ui  are the corresponding eigenvectors. Further,

		
xt

λt
0

= c0u0 + c1

(
λ1

λ0

)t

u1 + · · ·+ cn

(
λn

λ0

)t

un

and since λ0 > |λi| , i �= 0

		  lim
t→∞

xt

λt
0

= c0u0 �  (2.3.13)

Consequently, if  M is nonnegative and primitive, the long term dynamics of the population are described 
by the growth rate λ0  and the stable population structure u0 . Thus λ0 > 1  implies an exponential 

increasing population, 0 < λ0 < 1 an exponential decreasing population, where we in all cases have 

the stable age distribution u0 .

If M is irreducible but imprimitive with index of imprimity d+ 1  it follows from part 2 of the Perron-

Frobenius theorem that the limit (2.3.13) may be expressed as

lim
t→∞

xt

λt
0

= c0u0 +

d∑

k=1

cke
(2kπ/(d+1))itui �  (2.3.14)
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As opposed to the dynamical consequences of 1) in the Perron-Frobenius theorem we now conclude 
from (2.3.14) that u0  is not stable in the sense that an initial population not proportional to u0  will 

converge to it. Instead, the limit (2.3.14) is periodic with period d+ 1 .

Figure 11: The hypothetical ”beetle” population of Bernardelli as function of time. ∆ is the total population  
☐, + and ◊ correspond to the zeroth, first and second age classes respectively. Clearly, there is no stable age distribution.

Example 2.3.1 (Bernardelli 1941). The first paper where the matrix M was considered came in 
1941. There, Bernardelli considered a hypothetical beetle population obeying the equation

		

xt+1 = Bxt where B =




0 0 6
1/2 0 0
0 1/3 0





Clearly, B is irreducible and imprimitive with index of imprimity equal to 3 (cf. Exercise 2.3.2). 
Moreover, the eigenvalues of B are easily found to be λ1 = 1  and λ2,3 = exp(±2πi/3) and it 

is straightforward to show that B3 = I  so each initial age distribution will repeat itself in a regular 
manner every third year as predicted by (2.3.14). In Figure 11 we show the total hypothetic beetle 
population together with the three age classes as function of time, and clearly there is no stable 
age distribution.� ☐
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2.4	 Fixed points and stability of nonlinear systems

In this section we turn to the nonlinear case x → f(x)  which in difference equation notation may 

be cast in the form

		

x1,t+1 = f1(x1,t, ..., xn,t)

xn,t+1 = fn(x1,t, ..., xn,t)

 � (2.4.1)

Definition 2.4.1. A point x∗ = (x∗
1, ..., x

∗
n)  which satisfies x∗ = f(x∗)  is called a fixed point 

for (2.4.1). � ☐

Example 2.4.1. Assume that F0 + P0F1 > 1, x = x0 + x1  and find the nontrivial fixed point 

(x∗
0, x

∗
1)  of the two-dimensional Leslie matrix model (the Ricker model)

		
(

x0

x1

)
−→

(
F0e

−x F1e
−x

P0 0

)(
x0

x1

)
�  (2.4.2)

According to Definition 2.4.1 the fixed point satisfies

		  x∗
0 = F0e

−x∗
x∗
0 + F1e

−x∗
x∗
1

�  (2.4.3a)

		  x∗
1 = P0x

∗
0

�  (2.4.3b)

and if we insert (2.4.3b) into (2.4.3a) we obtain 1 = e−x∗
(F0 + P0F1), hence the total equilibrium 

population becomes x∗ = ln(F0 + P0F1) . Further, since x∗ = x∗
0 + x∗

1  and x∗
1 = P0x

∗
0  we 

easily find

		  (x∗
0, x

∗
1) =

(
1

1 + P0
x∗,

P0

1 + P0
x∗
)

 � (2.4.4)

(Note that F0 + P0F1 > 1 is necessary in order to obtain a biological acceptable solution.)� ☐

Exercise 2.4.1. Still assuming F0 + P0F1 > 1, show that the fixed point (x∗
0, x

∗
1)  of the 

two-dimensional Beverton and Holt model

		
(

x0

x1

)
−→

(
F0

1+x
F1

1+x

P0 0

)(
x0

x1

)
 � (2.4.5)
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becomes

		  (x∗
0, x

∗
1) =

(
1

1 + P0
x∗,

P0

1 + P0
x∗
)

�  (2.4.6)

where x∗ = F0 + P0F1 − 1. � ☐

Example 2.4.2. Find the nontrivial fixed point of the general Ricker model:

		




x0

x1



 −→





F0e
−x · · · Fne

−x

P0 0 · · · 0

0 · · · 0 Pn−1 0








x0

xn



  � (2.4.7)

The fixed point x∗ = (x∗
0, ..., x

∗
n)  obeys

		

x∗
0 = e−x∗

(F0x
∗
0 + · · ·+ Fnx

∗
n)

x∗
1 = P0x

∗
0

x∗
n = Pn−1x

∗
n−1
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From the last n  equations we have x∗
1 = P0x

∗
0 , x∗

2 = P1x
∗
1 = P0P1x

∗
0 , x∗

n = P0 · · ·Pn−1x
∗
0  

which inserted into the first equation give

		  1 = e−x∗
(F0 + P0F1 + P0P1F2 + · · ·+ P0 · · ·Pn−1Fn) � (2.4.8)

Hence,

		
x∗ = ln(F0 + P0F1 + · · ·+ P0 · · ·Pn−1Fn) = ln

(
n∑

i=0

FiLi

)

where Li = P0P1 · · ·Pi−1 and by convention L0 = 1 . From 
∑

x∗
i = x∗  and 

x∗
1 = P0x

∗
0 = L1x

∗
0 , x∗

2 = P0P1x
∗
0 = L2x

∗
0  and x∗

i = Lix
∗
0  we obtain

		  (x∗
0, ..., x

∗
n) =

(
L1∑n
i=0 Li

x∗ , · · · Li∑n
i=0 Li

x∗ , · · · Ln∑n
i=0 Li

x∗
)

�  (2.4.9)

Again, 
∑n

i=0 FiLi > 1 is required in order to have an acceptable biological equilibrium. � ☐

Exercise 2.4.2. Generalize Exercise 2.4.1 in the same way as in Example 2.4.2 and obtain a formulae 
for the fixed point of the n + 1  dimensional Beverton and Holt model. A detailed analysis of the 

Beverton and Holt model may be obtained in Silva and Hallam (1992).� ☐

In order to reveal the stability properties of the fixed point x∗  of (2.4.1) we follow the same pattern as 
we did in Section 1.4. Let x = x∗ + ξ , then expand fi(x)  in its Taylor series about x∗ , taking the 

linear terms only in order to obtain

		   

x∗
1,t+1 + ξ1,t+1 ≈ fi(x

∗
t ) +

∂f1
∂x1

ξ1,t + · · ·+ ∂f1
∂xn

ξn,t

x∗
n,t+1 + ξn,t+1 ≈ fn(x

∗
t ) +

∂fn
∂x1

ξ1,t + · · ·+ ∂fn
∂xn

ξn,t

where all derivatives are evaluated at x∗ . Moreover, x∗
i,t+1 = fi(x

∗
t ) . Consequently, the linearized 

map (or linearization) of (2.4.1) becomes

		




ξ1

ξn



 −→





∂f1
∂x1

(x∗) · · · ∂f1
∂xn

(x∗)

∂fn
∂x1

(x∗) · · · ∂fn
∂xn

(x∗)








ξ1

ξn



  � (2.4.10)

where the matrix is called the Jacobian.
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If the fixed point x∗  of (2.4.1) shall be locally asymptotic stable we clearly must have

		  lim
t→∞

ξt → 0  � (2.59)

and according to Theorem 2.2.1 this is equivalent to say:

Theorem 2.4.1. The fixed point x∗  of the nonlinear system (2.4.1) is locally asymptotic stable if 

and only if all the eigenvalues λ  of the Jacobian matrix are located inside the unit circle |z| = 1  

in the complex plane. � ☐

Example 2.4.3.

a)	 Define F̂ x̂ = F0x
∗
0 + F1x

∗
1  and show that the fixed point (2.4.4) of the Ricker map (2.4.2) 

is locally asymptotic stable provided

		  F̂ x̂(1 + P0) > 0 � (2.4.12a)

		  2F0 + F̂ x̂(P0 − 1) > 0  � (2.4.12b)

		  2P0F1 + F0 − P0F̂ x̂ > 0  � (2.4.12c)

b)	 Assume that F0 = F1 = F  (same fecundity in both age classes) and show that (2.4.12b), 

(2.4.12c) may be expressed as

		  F <
1

1 + P0
e2/(1−P0)  � (2.4.13b)

		  F <
1

1 + P0
e(1+2P0)/P0  � (2.4.13c)

Solution:

a)	 Rewrite (2.4.2) as

		   

x0 → f1(x0, x1) = F0e
−xx0 + F1e

−xx1

x1 → f2(x0, x1) = P0x0

Then the Jacobian becomes

		  J =

(
e−x∗

(F0 − F̂ x̂) e−x∗
(F1 − F̂ x̂)

P0 0

)
 � (2.4.14)
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and the eigenvalue equation |J − λI| = 0  may be cast in the form

		  λ2 − F0 − F̂ x̂

F0 + P0F1
λ− P0

F1 − F̂ x̂

F0 + P0F1
= 0  � (2.4.15)

where we have used e−x∗
= (F0 + P0F1)

−1 .

(2.4.15) is a second order polynomial and |λ| < 1  if the corresponding Jury criteria (2.1.14) 

are satisfied. Therefore, by defining

		
a1 = − F0 − F̂ x̂

F0 + P0F1
a2 = −P0

F1 − F̂ x̂

F0 + P0F1

we easily obtain from (2.1.14) that the fixed point is locally asymptotic stable provided the 
inequalities (2.4.12a)-(2.4.12c) hold.
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Remark 2.4.1: Scrutinizing the criteria, it is obvious that (2.4.12a) holds for any (positive) 
equilibrium population x∗ . It is also clear that in case of F̂ x̂  sufficiently small the same is true 

for both (2.4.12b,c) as well which allow us to conclude that (x∗
0, x

∗
1)  is stable in case of “small” 

equilibrium population x∗ . However, if F̂ x̂  becomes large, both (2.4.12b) and (2.4.12c) contain 

a large negative term so evidently there are regions in parameter space where (2.4.12b) or (2.4.12c) 
or both are violated and consequently regions where (x∗

0, x
∗
1)  is no longer stable.

b)	 If F0 = F1 = F , then F̂ x̂ = Fx∗ , thus (2.4.15) may be expressed as

		  λ2 − 1− x∗

1 + P0
λ− P0

1− x∗

1 + P0
= 0 � (2.4.16)

and the criteria (2.4.12b), (2.4.12c) simplify to

		   

2 + x∗(P0 − 1) > 0

2P0 + 1− Px∗ > 0

(2.4.13b) and (2.4.13c) are now established by use of x∗ = ln[F (1 + P0)] .

A final but important observation is that whenever 0 < P0 < 1/2 , (2.4.13b) will be violated 

prior to (2.4.13c) if F is increased. On the other hand, if 1/2 < P0 ≤ 1 , (2.4.13c) will be 

violated first through an increase of F. (As we shall see later, this fact has a crucial impact of 
the possible dynamics in the unstable parameter region.) � ☐

Example 2.4.4 (Example 2.4.2 continued). Let the fecundities be equal (i.e. F0 = · · · = Fn = F ) 

in the general n + 1  dimensional Ricker model that we considered in Example 2.4.2. Then, 

x∗ = ln(FD) , D =
∑n

i=0 Li  and the fixed point x∗  may be written as x∗ = (x∗
0, ..., x

∗
i , ..., x

∗
n)  

where x∗
i = (Li/D)x∗ .

The eigenvalue equation (cf. (2.4.16)) may be cast in the form

		  λn+1 − 1

D
(1− x∗)

n∑

i=0

Liλ
n−i = 0 � (2.4.17)

Our goal is to show that the fixed point x∗  is locally asymptotic stable whenever x∗ < 2  (i.e. 

that all the eigenvalues λ  of (2.4.17) are located inside the unit circle.)
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In contrast to Example 2.4.3, Theorem 2.1.9 obviously does not work here so instead we appeal 
to Theorem 2.1.10 (Rouché’s theorem). Therefore, assume |1− x∗| < 1 , let f(λ) = λn+1 , 

g(λ) = −(1/D)(1− x∗)
∑n

i=0 Liλ
n−i  and rewirite (2.4.17) as f(λ) + g(λ) = 0 . Clearly, f  

and g  are analytic functions on and inside the unit circle C and the equation f(λ) = 0  has 

n + 1  roots inside C.

On the boundary we have

 

|g(λ)| =
∣∣∣∣∣−

1

D
(1− x∗)

n∑

i=0

Liλ
n−i

∣∣∣∣∣

≤
∣∣∣∣
L0

D
(1− x∗)λn

∣∣∣∣ +
∣∣∣∣
L1

D
(1− x∗)λn−1

∣∣∣∣+ · · ·+
∣∣∣∣
Ln

D
(1− x∗)

∣∣∣∣
≤ |1− x∗| < |f(λ)|

Thus, according to Theorem 2.1.10, f(λ) + g(λ)  and f(λ)  have the same number of zeros inside 

C, hence (2.4.17) has n + 1  zeros inside the unit circle which proves that x∗ < 2  is sufficient to 

guarantee a stable fixed point. Other properties of the Ricker model (2.4.7) may be obtained in 
Wikan and Mjølhus (1996). � ☐

Exercise 2.4.2 (Exercise 2.4.1 continued).

a)	 Consider the two-dimensional Beverton and Holt model (see Exercise 2.4.1) and show that 
the fixed point (x∗

0, x
∗
1)  is always stable. (F0 = F1 = F .)

b)	 Generalize to n + 1  age classes. (F0 = · · · = Fn = F .) � ☐

Exercise 2.4.3: Assume P0 < 1 and consider the two-dimensional semelparous Ricker model:

		
x0,t+1 = F1e

−xtx1

x1,t+1 = P0x0

� (2.4.18)

a)	 Compute the nontrivial fixed point (x∗
0, x

∗
1) .

b)	 Show that the eigenvalue equation may be written as

λ2 +
x∗
1

P0
λ− (1− x∗

1) = 0

and use the Jury criteria to conclude that (x∗
0, x

∗
1)  is always unstable.
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c)	 Show that

		  x0,t+2 = (P0F1)e
−xt+1x0,t

 � (2.4.19)

		  x1,t+2 = (P0F1)e
−xtx1,t

d)	 Assume that there exists a two-cycle where the points in the cycle are on the form (A, 0) , 

(0, B) and show that the cycle is ((1/P0) ln(P0F1), 0), (0, ln(P0F1)) .

e)	 Show that the two cycle in d) is stable provided 0 < P0F1 < e2 . � ☐

—

Next, consider the general system (2.4.1) and its linearization (2.4.10) and let λ  be the eigenvalues of 

the Jacobian. We now define the following decompositions of Rn .
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Definition 2.4.2.

Es  �is the subspace which is spanned by the (generalized) eigenvectors whose eigenvalues satisfy 

|λ| < 1 .

Ec  �is the subspace which is spanned by the (generalized) eigenvectors whose eigenvalues satisfy 

|λ| = 1 .

Eu  �is the subspace which is spanned by the (generalized) eigenvectors whose corresponding 

eigenvalues satisfy |λ| > 1 .

Rn = Es ⊕ Ec ⊕ Eu  and the subspaces Es , Ec  and Eu  are called the stable, the center and 

the unstable subspace respectively. � ☐

By use of the definition above, the stability result stated in Theorem 2.4.1 may be reformulated as follows:

x∗ = (x∗
0, ..., x

∗
n)  is locally asymptotic stable if Eu = {0}  and Ec = {0} .

x∗  is unstable if Eu �= {0} .

x∗ = (x∗
0, ..., x

∗
n)  is called a hyperbolic fixed point if Ec = {0}  (cf. Section 1.4). (x∗  is attracting if 

|λ| < 1 , repelling if |λ| > 1 .)

We close this section by stating two general theorems which link the nonlinear behaviour close to a 
fixed point to the linear behaviour.

Theorem 2.4.2 (Hartman-Grobman). Let f : Rn → Rn  be a C1  diffeomorphism with a 

hyperbolic fixed point x∗  and let Df  be the linearization. Then there exists a homeomorphism 

h  defined on some neighbourhood U on x∗  such that

		  (h ◦ f)(ξ) = Df(x∗) ◦ h(ξ) � (2.4.20)

for ξ ∈ U . � ☐

Theorem 2.4.3. There exists a stable manifold W s
loc(x

∗)  and an unstable manifold W u
loc(x

∗)  

which are a) invariant, and b) is tangent to Es  and Eu  at x∗  and have the same dimension as 

Es  and Eu . � ☐
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2.5	 The Hopf bifurcation

There are three ways in which the fixed point x∗ = (x∗
0, ..., x

∗
1) of a nonlinear map, fµ : Rn → Rn  

may fail to be hyperbolic. One way is that an eigenvalue λ  of the linearization crosses the unit circle 

(sphere) through 1. Then, in the generic case, a saddle-node bifurcation occurs. Another possibility is 
that λ crosses the unit circle at −1  which in turn leads generically to a flip bifurcation. The third 

possibility is that a pair of complex eigenvalues λ, λ  cross the unit circle. In this case the fixed point 

will undergo a Hopf bifurcation which we will now describe. Note that the saddle-node and the flip 
bifurcations may occur in one-dimensional maps, fµ : R → R . The Hopf bifurcation may take place 

when the dimension n  of the map is equal or larger than two. In this section we will restrict the analysis 

to the case n = 2  only. Later on in section 2.7 we will show how both the flip and the Hopf bifurcation 

may be analysed in case of n > 2 .

Theorem 2.5.1. Let fµ : R2 → R2  be a C3  two-dimensional one-parameter family of maps 

whose fixed point is x∗ = (x∗
0, x

∗
1). Moreover, assume that the eigenvalues λ(µ) , λ(µ)  of the 

linearization are complex conjugates. Suppose that

		  |λ(µ0)| = 1 but λi(µ0) �= 1 for i = 1, 2, 3, 4 � (2.5.1)

and

		
d|λ(µ0)|

dµ
= d �= 0  � (2.5.2)

Then, there is a sequence of near identity transformations h  such that hfµh−1  in polar coordinates 

may be written as

		  hfµh
−1(r, ϕ) = ((1 + dµ)r + ar3, ϕ+ c+ br2) +  � (2.5.3)

Moreover, if a �= 0 there is an ε > 0  and a closed curve ξµ  of the form r = rµ(ϕ)  for 0 < µ < ε  

which is invariant under fµ . � ☐

Before we sketch a proof of the theorem let us give a few remarks.

Remark 2.5.1. Performing near identity transformations as stated in the theorem is also called 
normal form calculations. Hence, formulae (2.5.3) is nothing but the original map written in 
normal form.
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Remark 2.5.2. If d > 0 (cf. (2.5.2)) then the complex conjugated eigenvalues cross the unit circle 

outwards which of course means that (x∗
0, x

∗
1)  loses its stability at bifurcation threshold µ = µ0 . 

If d < 0 the eigenvalues move inside the unit circle. � ☐

Remark 2.5.3. λ(µ0) = 1  or λ2(µ0) = 1  (cf. 2.5.1)) correspond to the well known saddle-node 

or flip bifurcations respectively. λ3(µ0) = 1  and λ4(µ0) = 1  are special and are referred to as 

the strong resonant cases. If λ is third or fourth root of unity there will be additional resonant 
terms in formulae (2.5.3).� ☐

Remark 2.5.4. As is well known, if a saddle node bifurcation occurs at µ = µ0  it means that in 

case of µ < µ0  there are no fixed points but when µ  passes through µ0  two branches of fixed 

points are born, one branch of stable points, one branch of unstable points.

If the fixed point undergoes a flip bifurcation at µ = µ0  we have (in the supercritical case) that 

the fixed point loses its stability at µ = µ0  and that a stable period 2 orbit is created.

Theorem 2.5.1 says that when (x∗
0, x

∗
1)  undergoes a Hopf bifurcation at µ = µ0  a closed invariant 

curve surrounding (x∗
0, x

∗
1)  is established whenever µ > µ0 , |µ− µ0|  small. � ☐
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Remark 2.5.5. Much of the theory of Hopf bifurcations for maps have been established by 
Neimark and Sacker, cf. Sacker (1964, 1965) and Neimark and Landa (1992). Therefore, following 
Kuznetsov (2004), the Hopf bifurcation is often referred to as the Neimark-Sacker bifurcation, see 
for example Van Dooren and Metz (1998), King and Schaffer (1999), Kuznetsov (2004), Zhang 
and Tian (2008), and Moore (2008). � ☐

Sketch of proof, Theorem 2.5.1. Let (x∗
0, x

∗
1)  be the fixed point of the two-dimensional map 

x → f(x)  (x = (x0, x1)
T ) and assume that the eigenvalues of the Jacobian Df(x∗

0, x
∗
1)  are 

λ, λ = a1 ± a2i . Next, define the 2× 2  matrix T which columns are the real and imaginary 

parts of the eigenvectors corresponding to the eigenvalues at the bifurcation. Then, after expanding 
the right-hand side of the map in a Taylor series, applying the change of coordinates 
(x̂0, x̂1) = (x0 − x∗

0, x1 − x∗
1)  (in order to bring the bifurcation to the origin) together with 

the transformations

		

(
x̂0

x̂1

)
= T

(
x
y

) (
x
y

)
= T−1

(
x̂0

x̂1

)

our original map may be cast into standard form at the bifurcation as

		
(

x
y

)
→

(
cos 2πθ − sin 2πθ
sin 2πθ cos 2πθ

)(
x
y

)
+

(
R1(x, y))
R2(x, y)

)
 � (2.5.4)

where λ, λ  equal exp(2πiθ) , exp(−2πiθ)  respectively, and θ = arctan(a2/a1). Our next 

goal is to simplify the higher order terms R1  and R2 . This will be done by use of normal form 

calculations (near identity transformations). The calculations are simplified if they first are 
complexified. Thus we introduce

		   

x′ = cos 2πθx− sin 2πθy +R1(x, y)

y′ = sin 2πθx+ cos 2πθy +R2(x, y)

z = x+ yi z′ = x′ + y′i R = R1 +R2i
		  z = x+ yi z′ = x′ + y′i R = R1 +R2i

and rewrite (2.5.4) as

		  f : C → C , z → f(z, z) = e2πθiz +R(z, z)  � (2.5.5)

where the remainder is on the form

		  R(z, z) = R(k)(z, z) +O(|z|k+1)
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Here, R(k) = r
(k)
1 zk + r

(k)
2 zk−1z + · · ·+ r

(k)
k+1z

k .

Next, define

		  z = Z(w) w = W (z) = Z−1(z)  � (2.5.6)

Then

		  z′ = f(z))f(Z(w))  � (2.5.7)

which in turn implies

		  w′ = f̂(w) = Z−1(z′) = (Z−1 ◦ f ◦ Z)(w) � (2.5.8)

Now, we introduce the near identity transformation

		  z = Z(w) = w + P (k)(w)  � (2.5.9)

and claim that

		  w = z − P (k)(z) +O(|z|k+1) = W (z)  � (2.5.10)

This is nothing but a consequence of (2.5.9). Indeed we have

		   

w = z − P (k)(w) = z − P (k)(W (z))

= w + P (k)(w)− P (k)(w + P (k)(w))

= w + k

Thus, we may now by use of the relations

		   

f(z) = e2πθiz +R(k)(z) + h.o.

Z(w) = w + P (k)(w)

Z−1(z′) = z′ − P (k)(z′) + h.o.

(where h.o. means higher order) compute f̂(w). This is done in two steps. 

First,

		  z′ = (f ◦ Z)(w) = e2πθiw + e2πθiP (k)(w) +R(k)(w + ...)
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Then

		  f̂(w) = (Z−1 ◦ f ◦ Z)(w) = z′ − P (k)(z′) + h.o.  � (2.5.11)

	 = e2πθiw + e2πθiP (k)(w) +R(k)(w + ...)− P (k)(e2πθiw) + h.o.

Next, we want to choose constants in order to remove as many terms in R(k)(w)  as possible. To 

this end let Hk  be polynomials of homogeneous degree k  in w,w  and consider the map

		  K : Hk → Hk K(P ) = e2πθiP (w)− P (e2πθiw)  � (2.5.12)

Clearly, wlwk−l  is a basis for Hk  and we have

		   

K(wlwk−l) = e2πθiwlwk−l − e2πθilwl e−2πθi(k−l)wk−l

=
[
e2πθi − e2πθi(2l−k)

]
wlwk−l

= λwlwk−l

where k = 2, 3, 4, ... , 0 ≤ l ≤ k .

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/volvo


Discrete Dynamical Systems with an 
Introduction to Discrete Optimization

120 

n-dimensional maps 

From this we conclude that terms in R(k)(w)  of the form wlwk−l  such that λ(θ, k, l) = 0  

cannot be removed by near identity transformations. There are two cases to consider: (A) θ  

irrational, and (B) θ rational.

(A) Assume θ irrational. Then λ = 0 ⇔ 2l = k + 1  thus k  is an odd number. Here k = 1  

corresponds to the linear term and the next unremoval terms are proportional to w2w  and w|w|4  

(i.e. third and fifth order terms).

(B) Supppose θ = µ/r  rational, µ, r ∈ N , µ/r . Then λ = 0 ⇔ (2l − (k + 1))µ/r = m  

where m ∈ Z . This implies (2l − (k + 1))µ = mr . Therefore r  must be a factor in 

(2l − (k + 1)) . Thus the smallest k  (l = 0), equals r − 1  which means that the first unremoval 

terms are proportional to wr−1 . When r = 2  the flip occurs. The cases r = 3, 4  which 

corresponds to eigenvalues of third and fourth root of unity respectively are special (cf. Remark 
2.5.3 after Theorem 2.5.1.)

Now, considering the generic case, θ  irrational, we may through normal form calculations remove 

all terms in R(k)  except from those which are proportional to w2w  and w|w|4 , hence (2.5.5) 

may be cast into normal form as

		  z′ = f(z) = e2πθiz(1 + αµ+ β|z|2) +O(5)  � (2.5.13)

where α  and β  are given complex numbers. Now introducing polar coordinates (r, ϕ) , (2.5.13) 

may after first neglecting terms of O(5) and higher and then neglecting terms of O(µ2, µr2, r4) 

be expressed as

		  r′ = r(1 + dµ+ ar2)  � (2.5.14a)

		  ϕ′ = ϕ+ c+ br2  � (2.5.14b)

which is nothing but formulae (2.5.3) in the theorem.

Finally, observe that the fixed point r∗  of (2.5.14a) is

		  r∗ =

√
− dµ

a
 � (2.5.15)
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Figure 12: The outcome of a supercritical Hopf bifurcation. A point close to the unstable fixed point x  moves away from x  and 

approaches the attracting curve (indicated by a solid line). In the same way an initial point located outside the curve is also attracted.

Thus, if a  and d  have opposite signs we obtain an invariant curve for µ > 0 . In case of equal 

signs the curve exists for µ < 0 . Hence, the truncated map (2.5.14a) possesses an invariant curve. 

Moreover, the eigenvalue of the linearization of (2.5.14a) is σ = 1− 2dµ . Consequently, 

whenever a < 0, µ > 0, d > 0  and dµ  small, r∗  is an attracting curve which corresponds to a 

supercritical bifurcation. This is displayed in Figure 12. � ☐

Remark 2.5.6. To complete the proof of Theorem 2.5.1 we must show that the full system (2.5.13) 
possesses an invariant closed curve too. The basic idea here is to set up a graph transform of any 
closed curve (containing higher order terms) near r∗  and show that this graph transform has a 
fixed graph close to r∗ . However, in this procedure there are technical difficulties involved which 
are beyond the scope of this book, cf. the original work by Sacker (1964). � ☐

Referring to section 1.5 where we treated the flip bifurcation we stated and proved a theorem (Theorem 
1.5.1) where we gave conditions for the flip to be supercritical. Regarding the Hopf bifurcation there 
exists a similar theorem which was first proved by Wan (1978).

Theorem 2.5.2 (Wan). Consider the C3  map K : R2 → R2  on standard form

		

(
x
y

)
→

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
+

(
f(x, y)
g(x, y)

)

 � (2.5.16)

with eigenvalues λ, λ = e±iθ . Then the Hopf bifurcation is supercritical whenever the quantity 

d  (cf. (2.5.2)) in Theorem 2.5.2 is positive and the quantity a  (cf. (2.5.14a)) is negative. a  may 

be expressed as

		  a = −Re

[
(1− 2λ)λ

2

1− λ
ξ11ξ20

]
− 1

2
|ξ11|2 − |ξ02|2 +Re(λξ21) � (2.5.17)
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where

 

ξ20 =
1

8
[(fxx − fyy + 2gxy) + i(gxx − gyy − 2fxy)]

ξ11 =
1

4
[(fxx + fyy) + i(gxx + gyy)]

ξ02 =
1

8
[(fxx − fyy − 2gxy) + i(gxx − gyy + 2fxy)]

ξ21 =
1

16
[(fxxx + fxyy + gxxy + gyyy) + i(gxxx + gxyy − fxxy − fyyy)]

� ☐

For a formal proof we refer to Wan’s original paper (Wan, 1978).

(The idea of the proof is simple enough: we start with the original map, write it on standard form (i.e. 
(2.5.16)) and for each of the near identity transformations we then perform we express the new variables 
in terms of the original ones, thereby obtaining a  in (2.5.14a) expressed in terms of the original quantities. 

The problem of course is that the calculations involved are indeed cumbersome and time-consuming as 
formulae (2.5.17) suggests.)
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Example 2.5.1. Consider the stage-structured cod model proposed by Wikan and Eide (2004).

		  x1,t+1 = F e−βx2,tx2,t + (1− µ1)x1,t  � (2.5.18)

		  x2,t+1 = Px1,t + (1− µ2)x2,t

Here the cod stock x  is split into one immature part x1 and one mature part x2. F is the density 

independent fecundity of the mature part while β  measures the “strength” of cannibalism from 

the mature population upon the immature population. P is the survival probability from the 
immature stage to the mature stage and µ1, µ2  are natural death rates. We further assume: 

0 < P ≤ 1 , 0 < µ1, µ2 < 1 , β > 0, F > 0 and FP > µ1µ2 .

Assuming x∗
1 = x1,t+1 = x1,t  and x∗

2 = x2,t+1 = x2,t  the fixed point of (2.5.18) is found to be

		  (x∗
1, x

∗
2) =

[
µ2

βP
ln

(
FP

µ1µ2

)
,
1

β
ln

(
FP

µ1µ2

)]
 � (2.5.19)

The eigenvalue equation of the linearized map becomes (we urge the reader to work through the 
details)

		  λ2 − (2− µ1 − µ2)λ+ (1− µ1)(1− µ2)− µ1µ2(1− βx∗
2) = 0  � (2.5.20)

Now, defining a1 = −(2 − µ1 − µ2), a2 = (1− µ1)(1− µ2)− µ1µ2(1− βx∗
2) and appealing 

to the Jury criteria (2.1.14) it is straightforward to show that the fixed point is stable as long as 
the inequalities

		  βµ1µ2x
∗
2 > 0  � (2.5.21a)

		  2(2− µ1 − µ2) + µ1µ2βx
∗
2 > 0  � (2.5.21b)

		  µ1 + µ2 − βµ1µ2x
∗
2 > 0  � (2.5.21c)

hold. Clearly, (2.5.21a) and (2.5.21b) hold for any positive x∗
2 . Thus, there will never be a transfer 

from stability to instability through a saddle-node or a flip bifurcation. (2.5.21c) is valid in case 
of x∗

2  sufficiently small. Hence, the fixed point is stable in case of small equilibrium populations. 

However, if x∗
2  is increased, as a result of increasing F  which we from now on will use as our 

bifurcation parameter, it is clear that (x∗
1, x

∗
2)  will lose its stability at the threshold

		  x∗
2 =

µ1 + µ2

βµ1µ2
 � (2.5.22a)
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or alternatively when

		  F =
µ1µ2

P
e(µ1+µ2)/µ1µ2  � (2.5.22b)

Consequently, the fixed point will undergo a Hopf bifurcation at instability threshold and the 
complex modulus 1 eigenvalues become

		  λ, λ =
2− µ1 − µ2

2
± b

2
i  � (2.5.23)

where b =
√

4(µ1 + µ2)− (µ1 + µ2)2 .

In order to show that the Hopf bifurcation is supercritical we have to compute d  (defined through 

(2.5.2)) and a  (defined through (2.5.17)) and verify that d > 0  and a < 0.

By first computing λ from (2.5.20) we find

		  |λ| =
√

(1− µ1)(1− µ2)− µ1µ2(1− βx∗
2)  � (2.5.24)

which implies

d

dF
|λ| = 1

2
√
(1− µ1)(1− µ2)− µ1µ2(1− βx∗

2)
· µ1µ2

F

and since the square root is equal to 1 at bifurcation and F is given by (2.5.22b) we obtain

		
d

dF
|λ| = 1

2
P e−(µ1+µ2)/µ1µ2 = d > 0  � (2.5.25)

which proves that the eigenvalues leave the unit circle through an enlargement of the bifurcation 
parameter F.

In order to compute a  we first have to express (2.5.18) on standard form (2.5.16). At bifurcation 

the Jacobian may be written as

		  J =

(
1− µ1

1
P
[(µ1µ2 − (µ1 + µ2)]

P 1− µ1

)
 � (2.5.26)

so by use of standard techniques the eigenvector (z1, z2)T  belonging to λ is found to be

		  (z1, z2)
T =

(
µ1 − µ2

2P
+

b

2P
i , 1 + 0i

)T

 � (2.5.27)
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and the transformation matrix T and its inverse may be cast in the form

		  T =

(
µ2−µ1

2P
− b

2P

1 0

)
T−1 =

(
0 1

− 2P
b

µ2−µ1

b

)
 � (2.5.28)

The next step is to expand f(x2) = Fe−βx2  up to third order. Then (2.5.18) becomes

		   

x1,t+1 =

{
f(x∗

2) + f ′(x∗
2)(x2,t − x∗

2) +
1

2
f ′′(x∗

2)(x2,t − x∗
2)

2

+
1

6
f ′′′(x∗

2)(x2,t − x∗
2)

3

}
x2,t + (1− µ1)x1,t

x2,t+1 = Px,t + (1− µ2)x2,t

and by introducing the change of coordinates (x̂1, x̂2) = (x1 − x∗
1, x2 − x∗

2) , in order to 

bring the bifurcation to the origin, the result is

x̂1,t+1 = (1− µ1)x̂1,t +
1

P
µ1µ2(1− βx∗

2)x̂2,t −
β

P
µ1µ2

(
1− β

2
x∗
2

)
x̂2
2,t

		  +
β2

P
µ1µ2

(
1

2
− β

6
x∗
2

)
x̂3
2,t  � (2.5.29a)

		  x̂2,t+1 = P x̂1,t + (1− µ2)x̂2,t  � (2.5.29b)

where all terms of higher order than three have been neglected.
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Finally, by applying the transformations

		
(

x̂1

x̂2

)
= T

(
u
v

) (
u
v

)
= T−1

(
x̂1

x̂2

)
 � (2.5.30)

we obtain after some algebra that the original map (2.5.18) may be cast into standard form as

		

ut+1 =
2− µ1 − µ2

2
ut −

b

2
vt

ut+1 =
b

2
ut +

2− µ1 − µ2

2
vt + g(ut, vt)  � (2.5.31)

where

g(u, v) =
2β

b
µ1µ2

(
1− β

2
x∗
2

)
u2 − 2β2

b
µ1µ2

(
1

2
− β

6
x∗
2

)
u3

Now at last, we are ready to compute the terms in formulae (2.5.17)

		
guu =

4β

b
µ1µ2A guuu = − 12β2

b
µ1µ2B

where A = 1− (β/2)x∗
2 , B = (1/2)− (β/6)x∗

2 . This yields:

ξ20 =
1

8
iguu ξ11 =

1

4
iguu ξ02 =

1

8
iguu ξ21 =

1

16
iguuu

and

 

Re

[
(1− 2λ)λ

2

1− λ
ξ11ξ20

]
=− g2uu

256(µ1 + µ2)
×

[
3(µ1 + µ2)

[
(2− u1 − u2)

2 − b2
]
− 2(2− µ1 − µ2)b

2
]

so finally, by computing |ξ11|2 = (1/16)g2uu , |ξ02|2 = (1/64)g2uu , Re(λξ21) = (1/32)bguuu  

and inserting into (2.5.17) we eventually arrive at

a = − β2

16(µ1 + µ2)

{
(2µ1µ2)

2 + (µ1 + µ2)
[
(2µ1µ2 − (µ1 + µ2))

2 − µ1µ2

]}
 � (2.5.32)
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which is negative for all 0 < µ1, µ2 < 1 . Consequently, the fixed point (2.5.19) undergoes a 

supercritical Hopf bifurcation at the threshold (2.5.22a,b) (i.e. when (x∗
1, x

∗
2)  fails to be stable 

through an increase of F, a closed invariant attracting curve surrounding (x∗
1, x

∗
2)  is established). 

For further analysis of (2.5.18) we refer to the original paper by Wikan and Eide (2004) but also 
confer Govaerts and Ghaziani (2006) where a numerical study of the model may be obtained. ☐

In the next exercise most of the cumbersome and time-consuming calculations we had to perform in 
Example 1.5.1 are avoided.

Exercise 2.5.1. Assume that the parameter µ > 1  and consider the map

		
(

x
y

)
→

(
y

µy(1− x)

)
 � (2.5.33)

a)	 Show that the nontrivial fixed point

		

(x∗, y∗) =

(
µ− 1

µ
,
µ− 1

µ

)

b)	 Compute the Jacobian and show that the eigenvalue equation may be expressed as

		  λ2 − λ+ µ− 1 = 0

c)	 Use the Jury criteria (2.1.14) and show that the fixed point is stable whenever 1 < µ < 2  

and that a Hopf bifurcation occurs at the threshold µ = 2 .

d)	 Show that |λ| =
√
µ− 1  and moreover that

		

d

dµ
|λ|µ=2 > 0

which proves that the eigenvalues leave the unit circle at bifurcation threshold.

e)	 Assuming µ = 2 , apply the change of coordinates (x̂, ŷ) = (x− (1/2), y − (1/2)) 

together with the transformations

		

(
x̂
ŷ

)
= T

(
u
v

) (
u
v

)
= T−1

(
x̂
ŷ

)
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where

		

T =

(
1
2

√
3
2

1 0

)

(verify that the columns in T are the real and imaginary parts of the eigenvectors belonging to 
the eigenvalues of the Jacobian respectively) and show that (2.5.33) may be written on standard 
form at bifurcation threshold as

		
(

u
v

)
→

(
1
2

−
√
3
2√

3
2

1
2

)(
u
v

)
+

(
f(u, v)
g(u, v)

)
 � (2.110)

where f(u, v) = −u2 −
√
3 uv  and g(u, v) = (1/

√
3)u2 + uv .

f)	 Referring to Theorem 2.5.2 show that the quantity a  defined in (2.5.17) is negative, hence that 

in case of µ > 2 , |µ− 2|  small, there exists an attracting curve surrounding the unstable 

fixed point (x∗, y∗) . � ☐
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Exercise 2.5.2 (Strong resonant case I). Consider the two-age structured population model

		  (x1, x2) → (F2x2, P e−x1x1)  � (2.5.35)

where 0 < P ≤ 1 , F2 > 0 and PF2 > 1 .

a)	 Show that the fixed point (x∗
1, x

∗
2) = (ln(PF2), (1/F2) ln(PF2)) .

b)	 Show that the eigenvalue equation may be cast in the form λ2 + x∗
1 − 1 = 0  and further that 

a Hopf bifurcation takes place at the threshold x∗
1 = 2  (or equivalently when 

F2 = (1/P ) exp(2)) .

c)	 Show that λ  equals fourth root of unity at bifurcation threshold.

Note that the result obtained in c) violates assumption (2.5.1) in Theorem 2.5.1 which of course 
means that neither Theorem 2.5.1 nor Theorem 2.5.2 applies on map (2.5.35). We urge the reader 
to perform numerical experiments where F2 > (1/P ) exp(2) in order to show that when 

(x∗
1, x

∗
2)  fails to be stable, an exact 4-periodic orbit with small amplitude is established. (For 

further reading, cf. Wikan (1997.) � ☐

Exercise 2.5.3 (Strong resonant case II). Repeat the analysis from the previous exercise on the map

		  (x1, x2) →
(
F e−(x1+x2)(x1 + x2), x1

)
 � (2.5.36)

Hint: λ  equals third root of unity at bifurcation threshold. � ☐

As is shown in the sketch of proof of Theorem 2.5.1 most terms in (2.5.5) may be removed by a series 
of near identity transformations. In the next exercise the reader is actually asked to perform such 
transformations.

Exercise 2.5.4. Let λj �= 1, j = 1, 2, 3, 4, 5 and consider

		  (i) zt+1 = λzt + α1z
2
t + α2ztzt + α3z

2
t +O(3)

a)	 Apply the near identity transformation (cf. (2.5.9))

		  z = w + β1w
2 + β2ww + β3w

2
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together with (cf. (2.5.10))

		  w = z − (β1z
2 + β2zz + β3z

2)

and show that (i) may be written as

		   

(ii) wt+1 = λwt + (λβ1 + α1 − β1λ
2)w2

t

+ (λβ2 + α2 − β2λλ)wtwt + (λβ3 + α3 − β3λ
2
)w2

t +O(3)

b)	 Show that if we choose

β1 = − α1

λ(1− λ)
β2 = − α2

λ(1− λ)
β3 = − α3

λ− λ
2

then all second order terms in (ii) will disappear. Thus, after one near identity transformation 
we have a system on the form (where we for notational convenience still use z  as variable)

	 (iii) zt+1 = λzt + β1z
3
t + β2z

2
tzt + β3ztz

2
t + β4z

3
t +O(4)

c)	 Apply

		  z = w + a1w
3 + a2w

2w + a3ww
2 + a4w

3

		  w = z − (a1z
3 + a2z

2z + a3zz
2 + a4z

3)

on (iii) and show that if we choose

		

a1 = − β1

λ(1− λ2)
a3 = − β2

λ(1− λ
2
)

a4 = − β4

λ− λ
3

then the w3, ww2  and w3 terms will disappear. Note that we cannot use

		
a2 = − β2

λ(1− λλ)

because 1− λλ = 0 for any λ located on the boundary of the unit circle.

d)	 After two near identity transformations our system is on the form

		  (iv) zt+1 = λzt + β2z
2
tzt +O(4)
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Write out all fourth order elements and perform a new near identity transformation in the 
same way as in a) and c) and show that all fourth order terms may be removed, hence that 
our system may be cast in the form (normal form!)

		  (v) zt+1 = λzt + β2z
2
tzt +O(5)

� ☐

Remark 2.5.7. Note that Exercise 2.5.4 in many respects offers an equivalent way of establishing the 
normal form (2.5.13). Moreover, if λ3 = 1 , the denominator in the expression for β3 becomes zero, 

hence the terms w2
t  in (ii) is not removable. Consequently, there will be an additional resonant term 

on the form αz2t  in (v). In case of λ4 = 1  or λ5 = 1  the additional terms are γz3t  and δz4t  respectively. 

For further reading we refer to Kuznetsov (2004) and Kuznetsov and Meijer (2005). � ☐

We close this section by once again emphasizing that the outcome of a supercritical Hopf bifurcation is 
that when the fixed point fails to be stable an attracting invariant curve which surrounds the fixed point 
is established. In section 2.8 we shall focus on the nonstationary dynamics on such a curve as well as 
possible routes to chaos. However, before we turn to those questions we shall in section 2.6 present an 
analysis of the Horseshoe map where we once again invoke symbolic dynamics and in section 2.7 we 
shall explain how we may analyse the nature of bifurcations in higher dimensional problems.
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2.6	 Symbolic dynamics III (The Horseshoe map)

As we have seen maps may possess both fixed points and periodic points, and through Theorem 2.5.1 we 
have established that the dynamics may be restricted to invariant curves as well. However, in Part I our 
analysis also revealed other types of invariant hyperbolic sets. To be more concrete we showed in Section 
1.9 that whenever µ > 2 +

√
5 the quadratic map possessed an invariant set of points Λ (a Cantor set) 

that never left the unit interval through iterations. Our next goal is to discuss a similar phenomenon in 
case of a two- dimensional map, the Horseshoe map, which is due to Smale (1963, 1967). There are several 
ways of visualizing the Horseshoe. We prefer the way presented in Guckenheimer and Holmes (1990),

(a)

−1 )(f HUf(H)

2

HUf(H)

H

−1

−1

−1

1

0

1

0

f

f

α

α

H

H

H

H

Uf(H)

β

α

H

(c)

(b)

Figure 13: a) The Horseshoe map f . b) The inverse f−1. c) The image of four thin horizontal strips under f 2.
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Example 2.6.1 (The Horseshoe map). Consider the unit square H = [0, 1]× [0, 1], see Figure 

13a, and assume that we perform two operations on H: (1) a linear expansion of H  by a factor 

α , α > 2 , in the vertical direction and a horizontal contraction by a factor β , 0 < β < 1/2 . 

(2) A folding in such a way that the folding part falls outside H. The whole process is displayed 
in Figure 13a. We call this a map f : H → R2  and restricted to H we may express the two vertical 

strips as f(H) ∩H .

If we reverse the process (folding, stretching and contracting) we see from Figure 13b that we 
obtain two horizontal strips H0 and H1 and each of them has thickness α−1 . Also note that the 

inverse image may be expressed as f−1(f(H) ∩H) = f−1(H) ∩H . Thus we conclude that 

on each of the horizontal strips H0 and H1, f  stretches by a factor α  in the vertical direction 

and contracts by a factor β  in the horizontal direction.

As is clear from Figures 13a,b and the text above, when f  is iterated most points will leave H 

after a finite number of iterations. However, as we shall see (just as we did in the corresponding 
“one-dimensional example” in Section 1.9) there is a set

		  Λ = {x | f i(x) ∈ H} i ∈ Z
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which never leaves H. Now, let us describe the structure of Λ. First, observe that f  stretches both 

H0 and H1 vertically by α  so that f(H0)  and f(H1)  both intersect H0 and H1 (Figure 13b). 

Therefore, points in H0 must have been mapped into H0 by f  from two thinner strips, each of 

width α−2  contained in H0. The same is of course true for points in H1, so after applying f  

twice on the four horizontal strips of widths α−2  in Figure 13c the result is four thin vertical 

strips each of width β2  as displayed in Figure 13c. (Note, that after only one iteration of f  the 

result is four rectangles, each of height α−1  and width β .) Moreover, since 

H0 ∪H1 = f−1(H ∩ f(H))  the union of the four thinner strips may be written as 

f−2(H ∩ f(H) ∩ f 2(H)), and proceeding in this way f−n(H ∩ f(H) ∩ · · · ∩ fn(H))  must 

be the union of 2n  such strips where each strip has a thickness of α−n . Since α > 2  the thickness 

of each of the 2n  strips goes to zero when n → ∞ . Now, consider one of the 2n  horizontal strips. 

Each time f  is applied on the strip it is stretched by α  in the vertical direction and contracted 

by β  in the horizontal direction so the image under fn  must be a strip of length 1 in the vertical 

direction and width βn  in the horizontal direction, and since 0 < β < 1/2  the latter tends to 

zero as n → ∞ . Thus, the 2n  horizontal strips are mapped into 2n  vertical strips. The points 

that will remain in H forever are those points which are located both in the horizontal and the 
vertical strips, hence Λ is nothing but the intersection of the horizontal and vertical strips. 
Moreover, Λ is a Cantor set. Indeed, when n → ∞ , Λ contains just points (no intervals) and 

these points are not isolated but they are accumulation points of Λ (cf. Definition 1.9.5).

In order to describe the dynamics on Λ let us invoke symbolic dynamics in much of the same 
way as we did in Section 1.9 and assign a sequence a = {ai}∞i=−∞  to every point x ∈ Λ . We 

also define another sequence b  through bi = ai+1 . Thus σ : Σ2 → Σ2 . σ(a) = b  is the shift 

map. The itinerary of x , φ : Λ → Σ2  is defined as φ(x) = . . . a−2a−1a0a1a2 . . .  and we let 

ai = 0  if f i(x) ∈ H0 and ai = 1  if f i(x) ∈ H1 which means that x ∈ Λ  if and only if 

f i(x) ∈ Hai  for every i .
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First, observe that since f i+1(x) = f i(f(x))  then φ(f(x)) = b  which proves that φ  acts in 

the same way as σ . Consequently, if we are able to prove that φ  is a homeomorphism then 

(according to Definition 1.2.1), f  and σ  are topological equivalent maps on Λ. The 1− 1  and 

continuity properties of φ  may be proved along the following line. Let 

SV = SV (b−m, b−m+1, ..., b−1)  be the central set of x ’s such that f i(x)  is contained in one of 

the 2m  vertical strips in H ∩ f(H) ∩ · · · ∩ fm(H)  and let SH(b0, ..., bn) be the central set of 

x ’s contained in a horizontal strip. Then S = S(b−m, ..., b0, ...bn) = SV ∩ SH  is the set of x ’s 

such that f i(x) ∈ Hbi  and clearly S  must be a rectangle with height α−(n+1)  and width βm  . 

When n,m → ∞  all areas → 0 . Consequently, φ  is both continuous and 1− 1 .

Regarding the onto property, following Guckenheimer and Holmes (1990), it suffices to prove that 
S  is nonempty. To see this, observe that fn+1(SH(b0, ..., bn))  fills the entire S  in the vertical 

direction. In particular it intersects both S0  and S1  so that SH(b0, ..., bn, bn+1)  must be a 

nonempty horizontal strip. Moreover, every vertical strip SV  intersects every SH  which 

immediately implies that S = SV ∩ SH  is nonempty. Consequently,

		  φ ◦ f = σ ◦ φ � (2.6.1)

whenever f  is restricted to Λ. � ☐

Before we leave the Horseshoe map let us emphasize and comment on a few more topics. First, note the 
difference between the symbol sequence {ai}∞i=−∞  defined for the horseshoe and the sequence {ai}∞i=0  

we used in our study of the quadratic map in case of µ > 2 +
√
5 (see Section 1.9). Unlike the quadratic 

map (1.2.1), the two-dimensional horseshoe map is invertible (Figure 13b) so it makes sense to consider 
backward iteration. Therefore we may use negative indices in order to say which vertical strip f(x) is 

located in and positive indices in order to say which horizontal strip f(x) is contained in. If we glue 

together {ai}−1
i=−∞  and {ai}∞i=0  we have a description of the whole orbit.

The shift map σ  which in this context often is referred to as the two-sided shift, may be defined as in 

Example 2.6.1 or in the usual manner as

		  σ(...a−2a−1 · a0a1a2...) = (...a−2a−1a0 · a1a2...)  � (2.6.2)
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(cf. Definition 1.9.3). The inverse is defined through

		  σ−1(...a−2a−1a0 · a1a2...) = (...a−2a−1 · a0a1a2...)  � (2.6.3)

Periodic points of period N for σ  may be expressed as before. For example, a 3-period orbit may be 

expressed by the sequence c = {...010010010...}  and σ3(c) = c . Moreover, since each element of 

{ai}  may take two values (0 or 1) a period n  orbit for σ  corresponds to 2n  periodic points. From this 

we may conclude that if σn  has 2n  periodic points in Σ2 , then from (3.6.1) fn = φ−1 ◦ σn ◦ φ  has 

2n  periodic points in Λ. Actually, these periodic points are unstable points of the saddle type. In order 

to see this, observe that segments contained in H0  and H1  are compressed horizontally by β  

(0 < β < 1/2 ) and stretched by α  (α > 2 ) in the vertical direction. This means that f  

restricted to H ∩ f−1(H)  is linear so the Jacobian becomes J = diag(β, α)  and if we apply fn  on 

one of the 2n  horizontal strips described in Example 2.5.2 the resulting Jacobian may be expressed as 

Dfn = diag(βn, αn) . Consequently, the eigenvalues are λ1 = β  and λ2 = α , and since λ1,2  are real 

and λ1  is located on the inside of the unit circle and λ2  on the outside the periodic points are saddle 

points.
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The distance function (cf. Proposition 1.9.1) between two sequences a  and b  in Σ2  is defined as

		  d[a, b] =
∞∑

i=−∞

|ai − bi|
2|i|

 � (2.6.4)

where |ai − bi| = 0 if ai = bi  and |ai − bi| = 1 if ai �= bi . The fact that periodic points for σ  are 

dense in Σ2  may be obtained from (2.6.4) and by use of the same method as in the proof of Proposition 

1.9.1. We leave the details to the reader. There are also nonperiodic points for σ  in Σ2  which are dense 

in Σ2 . In order to show this we must prove that the orbit of such a point comes arbitrarily close to any 

given sequence in Σ2 . Thus, let a = (...a−k...a0...ak...)  be a given sequence and let b  be a sequence 

whose central block equals the central block of a  (i.e. a−k = b−k, ...a0 = b0, ...ak = bk) . Then, from 

(2.6.4):

d[a, b] =
∞∑

i=−∞

|ai − bi|
2|i|

=
−k−1∑

i=−∞

|ai − bi|
2|i|

+
∞∑

i=k+1

|ai − bi|
2i

≤ 1

2k
+

1

2k
= 21−k

Hence, when k  becomes large, b → a  so according to Definition 1.9.4, b  represents a dense orbit in 

Σ2 .

Finally, let us give a few comments on stable and unstable sets of points in Λ. In general, two points x1 

and x2 are said to be forward asymptotic in a set S  if fn(x1) ∈ S , fn(x2) ∈ S  for all n  and

		  lim
n→∞

|fn(x1)− fn(x2)| = 0 � (2.6.5a)

If f−n(x1) ∈ S , f−n(x2) ∈ S  for all n  and

		  lim
n→∞

|f−n(x1)− f−n(x2)| = 0  � (2.6.5b)

then x1, x2  are said to be backward asymptotic in S . By use of (2.6.5a,b) we may define the stable set 

of a point x  in S  as

		  W S(x) = {y || fn(x)− fn(y)| → 0 n → ∞}  � (2.6.6a)

and the unstable set as

		  WU(x) = {z || f−n(x)− f−n(z)| → 0 n → ∞}  � (2.6.6b)
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The shift map makes it easy to describe W S(x)  and WU(x) . For example, if x∗  is a fixed point of f  

and φ(x∗) = (...a∗−2a
∗
−1a

∗
0a

∗
1a

∗
2...)  then any point y  whose itinerary is the same as the itinerary of 

x∗  to the right of an entry a∗i  is contained in W S(x∗) . (2.6.6a) allows us to describe the stable set of 

points in Λ. Indeed, let x∗  be a fixed point of f  which lies in H0. Then φ(x∗) = {...0000...} . Then, 

since f  contracts in the horizontal direction, any point which is located in a horizontal segment through 

x∗  must be in W S(x∗) . But there are also additional points in W S(x∗) . In fact, any point p  which 

eventually is mapped into the horizontal segment through x∗  after a finite number of iterations k  is 

also contained in W S(x∗)  because |fk+n(p)− x∗| < βn . This implies that the union of all horizontal 

intervals given by f−n(l) , n = 1, 2, 3, ... , (where l  is a horizontal segment) lies in W S(x∗) . We leave 

to the reader to describe the set WU(x∗) .

—

2.7	 The center manifold theorem

Recall that in our treatment of the flip bifurcation (cf. section 1.5) we considered one-dimensional maps 
of the form f : R → R  and when we studied the Hopf bifurcation in section 2.5 the main theorems 

were stated for two-dimensional maps f : R2 → R2. Let us now turn to higher-dimensional maps, 

f : Rn → Rn . Of course, |λ| = 1  at bifurcation in these cases too but how do we determine the nature 

of the bifurcation involved when the fixed point fails to be hyperbolic?

The main conclusion is that there exists a method which applied to a map on the form f : Rn → Rn  

reduces the bifurcation problem to a study of a map g : R2 → R2 (Hopf), or g : R → R  (flip). The 

cornerstone in the theory which allows this conclusion is the center manifold theorem for maps which 
we now state.

Theorem 2.7.1 (Center manifold theorem). Let f : Rn → Rn  be a Ck , k ≥ 2  map and assume 

that the Jacobian Df(0)  has a modulus 1 eigenvalue and, moreover, that all eigenvalues of Df(0)  

splits into two parts αc, αs  such that

		
|λ| =

{
1 if λ ∈ αc

< 1 if λ ∈ αs
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Further, let Ec  be the (generalized) eigenspace of αc , dimEc = d < ∞ . Then there exists a 

domain V about 0 in Rn  and a Ck  submanifold W c  of V of dimension d passing through 0 

which is tangent to Ec  at 0 which satisfies:

I) If x ∈ W c  and f(x) ∈ V  then f(x) ∈ W c .

II) �If f (n)(x) ∈ V  for all n = 0, 1, 2, ...  then the distance from f (n)(x)  to W c  approaches 

zero as n → ∞ . � ☐

For a proof of Theorem 2.7.1, cf. Marsden and McCracken (1976, p. 28 →  43). Also cf. the book by 

Iooss (1979) and the paper by Vanderbauwhede (1987).

When Ec  has dimension two, as it does for the Neimark-Sacker case at criticality, the essence of Theorem 

2.7.1 is that there exists an invariant manifold of dimension 2 ⊂ Rn  which has the eigenspace belonging 

to the complex eigenvalues as tangent space at the bifurcating nonhyperbolic fixed points. In case of flip 
bifurcation problems, dimWC = 1. Thus close to the bifurcation, our goal is to restrict the original 
map to the invariant center manifold WC  and then proceed with the analysis by using the results in 

Theorems 2.5.1 and 2.5.2 in case of Hopf bifurcation problems and Theorem 1.5.1 in the flip case.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

www.discovermitas.com

http://s.bookboon.com/mitas


Discrete Dynamical Systems with an 
Introduction to Discrete Optimization

140 

n-dimensional maps 

Let us now in general terms describe how such a restriction may be carried out. To this end, consider 
our discrete system written in the form

		  xt+1 = Axt + F (xt,yt)

yt+1 = Byt +G(xt,yt)

�  (2.7.1)

where all the eigenvalues of A are on the boundary of the unit circle and those of B within the unit circle. 
(If the system we want to study is not on the form as in (2.7.1) we first apply the procedure in Example 
2.5.1, see also the proof of Theorem 2.5.1.)

Now, since the center manifold WC  is tangent to the (generalized) eigenspace Ec , we may represent 

it as a local graph

		  WC = {(x,y)/y = h(x)} h(0) = Dh(0) = 0  � (2.7.2)

and by substituting (2.7.2) into (2.7.1) we have

yt+1 = h(xt+1) = h(Axt + F (xt, h(xt)) = Bh(xt) +G(xt, h(xt))

or equivalently

		  h(Ax+ F (x, h(x)))− Bh(x)−G(x, h(x)) = 0  � (2.7.3)

An explicit expression of h(x)  is out of reach in most cases, but one can approximate h by its Taylor 

series at the bifurcation as

		  h(x) = ax2 + bx3 +O(x4)  � (2.7.4)

where the coefficients a, b  are determined through (2.7.3), and finally the restricted map is obtained 

by inserting the series of h into (2.7.1).

Example 2.7.1. Consider the Leslie matrix model

f : R2 → R2

(
x1

x2

)
→

(
F (1− γx)1/γ F (1− γx)1/γ

P 0

)(
x1

x2

)
 � (2.125)

where x = x1 + x2  is the total population. � ☐
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(2.7.5) is often referred to as the Deriso-Schnute population model. Note that if γ → 0 , (2.7.5) is nothing 

but the Ricker model (see (2.3.4) and Examples 2.4.1 and 2.4.3). If γ = −1  we are left with the Beverton 

and Holt model (see (2.3.5) and Exercise 2.4.1).

Our goal is to show that under the assumptions F (1 + P ) > 1 , 0 < P < 1/2 , γ > −(1− P )/2  

the fixed point (x∗
1, x

∗
2)  of (2.7.5) will undergo a supercritical flip bifurcation at instability threshold.

We urge the reader to verify the following properties:

		  (x∗
1, x

∗
2) =

(
1

1 + P
x∗,

1

1 + P
x∗
)

 � (2.7.6)

where x∗ = (1/γ)[1− (P + PF )−γ] . Defining f(x) = F (1− γx)1/γ  the Jacobian becomes

		

(
f ′x∗ + f f ′x∗ + f

P 0

)

where f = f(x∗) = 1/(1 + P )  and f ′ = f ′(x∗).

—

Show by use of the Jury criteria (2.1.14) that whenever 0 < P < 1/2 , γ > −(1− P )/2  the fixed 

point (2.7.6) will undergo a flip bifurcation when f ′x∗ = −2/(1− P 2)  and that the Jacobian at 

bifurcation threshold equals

		
(

− 1
1−P

− 1
1−P

P 0

)
 � (2.7.7)

and moreover, that the eigenvalues of (2.7.7) are λ1 = −1  and λ2 = −P/(1− P ).

Now, in order to show that the flip bifurcation is of supercritical nature we must appeal to Theorem 1.5.1 
but since that theorem deals with one-dimensional maps, we first have to express (2.7.5) on the appropriate 
form (2.7.1) and then perform a center manifold restriction as explained through (2.7.2)-(2.7.4).

The form (2.7.1) is achieved by performing the same kind of calculations as in Example 2.5.1. The 
eigenvectors belonging to λ1  and λ2  are easily found to be (−1/P, 1)T  and (−1/(1− P ), 1)T  

respectively so the transformation matrix T and its inverse become

		  T =

(
− 1

P
− 1

1−P

1 1

)
T−1 =

(
P (1−P )
2P−1

P
2P−1

− P (1−P )
2P−1

− 1−P
2P−1

)
 � (2.7.8)
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Further, by expanding f  up to third order, i.e.

		
f(x) ≈ f(x∗) + f ′(x∗)(x− x∗) +

1

2
f ′′(x∗)(x− x∗)2 +

1

6
f ′′′(x∗)(x− x∗)3

and applying the change of coordinates (x̂1, x̂2) = (x1 − x∗
1, x2 − x∗

2) , using the fact that 

f ′x∗ = −2/(1− P 2)  at bifurcation threshold gives

		  x̂1,t+1 = − 1

1− P
x̂1,t −

1

1− P
x̂2,t + {1}x̂2

t + {2}x̂3
t  � (2.7.9)

		  x̂2,t+1 = P x̂1,t

where all terms of higher order than 3 have been neglected and {1}  and {2}  are defined through

		
{1} = f ′ +

1

2
f ′′x∗ {2} =

1

2
f ′′ +

1

6
f ′′′x∗

Now, performing the transformations

		

(
x̂1

x̂2

)
= T

(
u
v

) (
u
v

)
= T−1

(
x̂1

x̂2

)
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on (2.7.9) we arrive at

		  ut+1 = −ut + g(ut, vt)  � (2.7.10)

		  vt+1 = − P

1− P
vt − g(ut, vt)

where g(u, v) = A[(1− P )2u+ P 2v]2 + B[(1− P )2 + P 2v]3

		

A =
1

P (2P − 1)(1− P )
{1} B = − 1

P 2(2P − 1)(1− P )2
{2}

and we observe that (2.7.10) is nothing but the original map (2.7.5) written on the desired form (2.7.1).

The next step is to restrict (2.7.10) to the center manifold. Thus, assume

		  v = i(u) = Ku2 + Lu3  � (2.7.11)

By use of (2.7.3) we now have

		
i(−ut + g(ut, vt)) +

P

1− P
i(ut) + g(ut, i(ut)) = 0

which is equivalent to

		

[
K +

PK

1− P
+ (1− P )4A

]
u2+

[
PL

1− P
− 2KA(1− P )4 − L+ 2AP 2(1− P )2K + B(1− P )6

]
u3 = 0

from which we obtain

		  K = −(1 − P )5A L = (1− P )7[B + 2A2(1− P )(1− 2P )]

Finally, by inserting v = Ku2 + Lu3  into the first component of (2.7.10) the restricted map may be 

cast in the form

		  ut+1 = h(ut) = −ut + A(1− P )4u2
t

		  + (1− P )6[B − 2A2P 2(1− P )]u3
t +O(u4)  � (2.7.12)
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Since u → h(u) is a one-dimensional map we may now proceed by using Theorem 1.5.1 in order to 

show that the flip bifurcation is supercritical. A time-consuming but straightforward calculation now 
yields that the quantity b  defined in Theorem 1.5.1 becomes

b =
1

2

(
∂2h

∂u2

)2

+
1

3

∂3h

∂u3

	 =

[
2γ

1− P
+ 1

]2
2(1− P )3

P 2(1 + P )(1− 2P )

{
(P − γ)2 +

1

6
(1− γ)(4γ − 3P + 1)

}
 � (2.7.13)

at bifurcation. Here we may observe that W (γ) = { }  attains its minimum when γ = (9/4)P − 3/4  

and that W ((9/4)P − 3/4) > 0  whenever 0 < P < 1/2 . Hence b > 0 .

Regarding the nondegeneracy condition a  defined in Theorem 1.5.1, it may be expressed as

	

a =
∂h

∂F

∂2h

∂u2
−
(
∂h

∂u
− 1

)
∂2h

∂u∂F
�= 0 (u, v) = (0, 0)

Now, since the bifurcation is transformed to the origin it follows that ∂h/∂u = −1 and ∂h/∂F = 0 . 

Therefore the condition a �= 0 simplifies to

a = 2
∂2h

∂u∂F
�= 0 ⇔ 2

∂λ

∂F
�= 0

since in general ∂h/∂u = λ . From the Jacobian:

λ =
1

2

(
w −

√
w2 + 4Pw

)

where

w = f ′x∗ + f =
1

1 + P

{
− 1

γ
[(F + FP )γ − 1] + 1

}

it follows that

 2
∂λ

∂F
=

dw

dF
− 1

2
√
w2 + 4Pw

(
2w

dw

dF
+ 4P

dw

dF

)

=
dw

dF

[
1− 1√

w2 + 4Pw
(w + 2P )

]
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At bifurcation, w = −(1− P )−1  which inserted into the expression above gives

		  2
∂λ

∂F
= −2

[
2γ

1− P
+ 1

]1−(1/γ)
(1− P )2

1− 2P
 � (2.7.14)

and clearly, (2.7.14) is nonzero whenever 0 < P < 1/2 . Consequently, the flip bifurcation is 

supercritical, which means that when the fixed point fails to be stable, a stable two-periodic orbit is 
established.

—

We close this section by showing the dynamics beyond the flip bifurcation threshold for the Ricker 
map

		  (x0, x1) → (F e−x(x0 + x1), Px0) � (2.7.15)

which is a special case of map (2.7.5) (the case γ → 0 ). Assuming F (1 + P ) > 1  the nontrivial 

fixed point of (2.7.15) is

		

(x∗
0, x

∗
1) =

(
1

1 + P
ln(F (1 + P )) ,

P

1 + P
ln(F (1 + P ))

)
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Figure 14: The bifurcation diagram of map (2.7.14) in the case P = 0.2. For small F values we see the stable xed point of (2.7.14) which 
undergoes a supercritical flip bifurcation when F = 10.152. Through further increase of F stable orbits of period 2k are created until an 

accumulation value Fa for the flip bifurcations is reached. Beyond Fa the dynamics is chaotic.

and whenever 0 < P < 1/2  we have according to the preceding example that the fixed point undergoes 

a supercritical flip bifurcation at the threshold F = (1/(1 + P )) exp(2/(1− P )).

Now, consider the value P = 0.2. Under this choice the fixed point is stable in the F interval 

0.834 < F < 10.152 and in Figure 14 we have plotted the bifurcation diagram of (2.7.15) in the range 

5 < F < 80 . We clearly identify the supercritical flip at the threshold F = 10.152  and beyond that 

stable periodic orbits of period 2k  are established through further increase of F so what we recognize 

is essentially the same kind of dynamical behaviour as we found when we considered one-dimensional 
maps. Beyond the point of accumulation for the flip bifurcation sequence the dynamics becomes chaotic 
as displayed in Figure 15. Note that the chaotic attractor consists of 4 disjoint subsets (branches) that 
are visited once every fourth iteration so a certain kind of four periodicity is preserved in the chaotic 
regime. In case of higher F values the branches merge together.
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 Figure 15: The chaotic attractor consisting of four separate branches just beyond the point of accumulation  
for the ip bifurcations in the case P = 0.2, F = 58.5. The dynamics goes in the direction A → B → C → D

2.8	 Beyond the Hopf bifurcation, possible routes to chaos

As we proved in section 2.5, the outcome of a supercritical Hopf bifurcation is that when the fixed 
point of a discrete map fails to be stable, an attracting invariant curve which surrounds the fixed point 
is created. Our goal in this section is to describe the dynamics on such an invariant curve. We will also 
discuss possible routes to chaos and as it will become clear, the dynamics may be much richer than in 
the one-dimensional cases discussed in Part I.

In general terms, the dynamics on an invariant curve (circle) created by a Hopf bifurcation may be 
analysed by use of equation (2.5.14b). Indeed, if we substitute the fixed point r∗  of (2.5.14a) into (2.5.14b) 
we arrive at

		  ϕ → ϕ+ c− bd

a
µ = ϕ+ σ(µ)  � (2.8.1)

where c = arg λ . Also recall that when we derived (2.5.14a,b) we first transformed the bifurcation to 

the origin. If the Hopf bifurcation occurs at a threshold µ0 �= 0 , σ(µ) = c+ (bd/a)(µ0 − µ) .

Now, the essential feature is that successive iterations of (2.8.1) simply “move” or rotate points from one 
location to another on the invariant curve. Hence, the original map fµ : R2 → R2  may be regarded as 

being topological equivalent to a circle map g : S ′ → S ′  once the invariant curve is established. 

Moreover, considering g , one may define its rotation number as the average amount that points are 

rotated by an iteration of the map. Therefore, we may (to leading order, recall that (2.8.1) is a truncated 
map) regard (2.8.1) as a circle map with rotation number σ(µ) .
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Remark 2.8.1. A more precise definition of the rotation number may be achieved along the 
following line: Given a circle map g : S → S  we first “lift” g  to the real line R  by use of 

π : R → S , π(x) = cos(2πx) + i sin(2πx)  and then define the lift F  as F : R → R , 

π ◦ F = g ◦ π . Next, let σ0(F ) = limn→∞ F n(x)/x  and finally define the rotation number 

of g, σ(g) , as the unique number in [0, 1〉  such that σ0(F )− σ(g)  is an integer. In Devaney’s 

book there is an excellent introduction to circle maps.� ☐ 
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Returning to map (2.8.1) the rotation number may be irrational or rational. In the former case this 
means that as the number of iterations of the map tends to infinity, the invariant curve will be filled with 
points. Whenever σ  irrational, an orbit of a point is often referred to as a quasistationary orbit. If 

σ = 1/n , rational, the dynamic outcome is an n -period orbit. It is of great importance to realize that 

whenever the rotation number is rational for a given parameter value µ = µr , it follows from the implicit 

function theorem that there exists an open interval about µr  where the periodicity is maintained. This 

phenomenon is known as frequency locking of periodic orbits. Consequently, periodic dynamics will 
occur in parameter regions, not at isolated parameter values only. As we shall see, such regions (or 
intervals) may in fact be large. So in order to summarize: beyond the Hopf bifurcation (and outside the 
strongly resonant cases where λ is third or fourth root of unity) there are quasistationary orbits restricted 
to an invariant curve and there may also be orbits of finite period established through frequency locking 
as the value of the parameter µ  in the model is increased.

Our next goal is by way of examples to study in more detail the interplay between these cases as well as 
studying possible routes to chaos. We start by scrutinizing a population model first presented in Wikan 
and Mjølhus (1995).

—

Example 2.8.1. First, consider the two-age class population model

		  (x0, x1) → (Fx1, P e−αxx0)  � (2.8.2)

which is a semelparous species model where the fecundity F  is constant while the survival 

probability p(x) = P exp(−αx)  is density dependent. α  is a positive number (scaling constant) 

and we assume that PF > 1 .

It is easy to verify that (2.8.2) possesses the following properties: The fixed point may be expressed as

		  (x∗
0, x

∗
1) =

(
F

1 + F
x∗,

1

1 + F
x∗
)

 � (2.8.3)

where x∗ = x∗
0 + x∗

1 = α−1 ln(PF ) . Moreover, the eigenvalue equation may be cast in the form

		  λ2 +
ln(PF )

1 + F
λ+

F ln(PF )

1 + F
− 1 = 0  � (2.8.4)

and from the Jury criteria one obtains that the fixed point is stable in case of PF small but undergoes 
a Hopf bifurcation at the threshold
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e)	 		 P = Pc =
1

F
e2(1+F )/F  � (2.8.5)

Figure 16: The dynamics of map (2.8.2) (a quasistationary orbit), just beyond the Hopfbifurcation threshold.

Note that α  drops out of (2.8.4), (2.8.5) which simply means that stability properties are 

independent of α . At bifurcation threshold (2.8.5) the solution of the eigenvalue equation becomes

		  λ = − 1

F
±

√
1− 1

F 2
i  � (2.8.6)

A final observation is that by rewriting (2.8.2) on standard form (as in Example 2.5.1) and then 
apply Theorem 2.5.2, it is possible to prove that the bifurcation is supercritical.

Now, let us scrutinize a numerical example somewhat closer. Assume P = 0.6. Then from (2.8.5) 
the F value at bifurcation threshold is numerically found to be F = Fc = 14.1805. We want to 

investigate the dynamics when F > Fc . In Figure 16 we show the dynamics just beyond the 

instability threshold in the case (α, P, F ) = (0.02, 0.6, 15) . From an initial state (x00, x10)  500 

iterations have been computed and the last 20 together with the (unstable!) fixed point are plotted. 
The invariant curve is indicated by the dashed line so clearly the original map (2.8.2) does nothing 
but rotate points around that curve, i.e. (2.8.2) acts as a circle map.
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Figure 17: A 4-periodi orbit generated by map (2.8.2).

Moreover, Figure 16 demonstrates a clear tendency towards 4-periodic dynamics. This is as 
expected due to the location of the eigenvalues. Indeed, when Fc = 14.1805 it follows from 

(2.7.6) that the eigenvalues are located very close to the imaginary axis  
(λ1,2 = −0.0750±

√
0.9975 i ), and since the rotation number (up to leading order! ) has the 

form σ(F ) = c+ (bd/a)(Fc − F )  where c = arg λ  it follows that σ  must be close to 1/4 in 

case of F close to 

Fc = 14.1805

λ1,2 = −0.0750 ±
√
0.9975 i

σ(F ) = c+ (bd/a)(Fc − F )

c = arg λ σ F Fc

F

(α, P, F ) = (0.02, 0.6, 20)

F

F = 21.190

F

Fa ≈ 25.07

F > Fa
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If we increase F beyond 15 we observe (due to frequency locking! ) that an exact 4-periodic orbit 
is established. This is shown in Figure 17 in the case (α, P, F ) = (0.02, 0.6, 20)  and further, it 

is possible to verify numerically that the exact 4-periodicity is maintained as long as F does not 
exceed the value 21.190.

At F = 21.190  the fourth iterate of (2.8.2) undergoes a flip bifurcation, thus an 8-periodic orbit 

is established, and through further enlargement of F we find that new flip bifurcations take place 
at the parameter values 24.232 and 24.883 which again result in orbits of period 16 and 32 
respectively. Hence we oberve nothing but the flip bifurcation sequence which we discussed in 
Part I. The point of accumulation for the flip bifurcation is found to be Fa ≈ 25.07  and in case 

of F > Fa  the dynamics becomes chaotic.

These findings are shown in Figures 18, 19 and 20. In Figures 18 and 19 periodic orbits of period 8 
and 32 are displayed. In Figure 20 we show the chaotic attractor. Note that the attractor is divided 
in 4 disjoint subsets and that each of the subsets are visited once every fourth iteration so there 
is a kind of 4-periodicity preserved, even in the chaotic regime. � ☐

Figure 18: An 8-periodic orbit generated by map (2.8.2).
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Figure 19: A 32-periodic orbit generated by map (2.8.2).

Figure 20: Map (2.8.2) in the chaotic regime.

Example 2.8.2. The next example (which rests upon the findings in Wikan (1997)) is basically 
the same as the previous one but the dimension of the map has been extended by 1 and we consider 
a general survival probability p(x) , 0 < p(x) ≤ 1 , p′(x) ≤ 0 , instead of p(x) = P exp(−x) . 

Hence we consider the problem

		  (x1, x2, x3) → (F3x3, p(x)x1, p(x)x2)  � (2.8.7)

Skipping computational details (which are much more cumbersome here than in our previous 
example) we find that the nontrivial fixed point is

		  (x∗
1, x

∗
2, x

∗
3) =

(
x∗

K
, p(x∗)

x∗

K
, p2(x∗)

x∗

K

)
 � (2.8.8)
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where K =
∑3

i=1 p
i−1(x∗)  and x∗ = p−1(F

−1/(n−1)
3 ). (p−1  denotes the inverse of p .)

Moreover, by first computing the Jacobian and then use the Jury criteria, it is possible to show 
that (2.8.8) is stable as long as

		  −p′(x∗)
x∗

K
< p(x∗)

1 + p(x∗)− 2p2(x∗)

(1 + p(x∗))(1− p2(x∗))
 � (2.8.9)

(2.8.8) becomes unstable when F3 is increased to a level FH1  where (2.8.9) becomes an equality. 

At that level a (supercritical) Hopf bifurcation occurs and the complex modulus 1 eigenvalues 
may be expressed as

		  λ1,2 = − p2(x∗)

1 + p(x∗)
±

√

1− p4(x∗)

(1 + p(x∗))2
i  � (2.8.10)
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Now, for comparison reasons, assume that p(x) = P exp(−x)  just as in Example 2.8.1. Then it 

easily follows that F3 is a “large” number at bifurcation threshold FH1  and further that p(x∗) � 1 . 

Consequently, λ1,2  are located very close to the imaginary axis, in fact even closer than the 

eigenvalues from Example 2.8.1. When we increase F3 beyond FH1  we observe the following 

dynamics: In case of F3 − FH1  small we find an almost 4-periodic orbit restricted on an invariant 

curve and through further enlargement of F3 we once again find (through frequency locking) 

that an exact 4-periodic orbit is the outcome. Thus the dynamics is qualitatively similar to what 
we found in Example 2.8.1. However, if we continue to increase F3 we do not experience the flip 

bifurcation sequence. Instead we find that the fourth iterate of map (2.8.7) undergoes a (supercritical) 
Hopf bifurcation at a threshold F3 = FH2 . Therefore, beyond that threshold, and in case of 

F3 − FH2  small, the dynamics is restricted on 4 disjoint invariant attracting curves which are 

visited once every fourth iteration. This is displayed in Figure 21. At an even higher value, F3 = Fs

, map (2.8.7) undergoes a subcritical bifurcation which implies that whenever F3 > Fs  there is 

no attractor at all so in this part of parameter space we simply find that points (x1, x2, x3) are 

randomly distributed in state space. � ☐

So far we have demonstrated that although the dynamics is a quasistationary orbit just beyond the 
original Hopf bifurcation threshold, the dynamical outcome may be a periodic orbit as we penetrate 
deeper into the unstable parameter region. Such a phenomenon may happen when | arg λ|  is close to 

π/4 at bifurcation threshold (4-periodicity). Another possibility (among others! ) is that | arg λ|  is 

close to 2π/3  (3-periodicity).

Figure 21: Map (2.8.7) after the secondary Hopf bifurcation.

Download free eBooks at bookboon.com



Discrete Dynamical Systems with an 
Introduction to Discrete Optimization

156 

n-dimensional maps 

Note, however, that if arg λ  is close to a “critical” value, say π/2, at bifurcation it does not necessarily 

imply that a periodic orbit is created when we continue to increase the bifurcation parameter. In fact, 
when the parameter is enlarged the location of the eigenvalues may move away from the imaginary axis, 
hence the periodicity will be less pronounced as the bifurcation parameter growths. In our next example 
there is no periodicity at all.

Example 2.8.3. Consider the two-dimensional population map

		  (x1, x2) → (F e−x2x1 + F e−x2x2, Px1) � (2.8.11)

Hence, only the second age class x2 contributes to density effects. As before, F > 0, 

0 < P ≤ 1  and F (1 + P ) > 1 .

We urge the reader to verify that the fixed point (x∗
1, x

∗
2)  may be written as

		  (x∗
1, x

∗
2) =

(
1

P
x∗
2, ln[(1 + P )F ]

)
 � (2.8.12)

Figure 22: Dynamics generates by map (2.8.11). Parameter values: (a) (P, F) = (0.6, 2.5); (b) (P, F) = (0.6, 5.0).

and further that a (supercritical) Hopf bifurcation occurs at the threshold

		  F = FH =
1

1 + P
e(1+2P )/(1+P )  � (2.8.13)
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and finally that the solution of the eigenvalue equation at threshold (2.7.13) becomes

		  λ =
1

2(1 + P )

{
1±

√
4(1 + P )2 − 1 i

}
 � (2.8.14)

Now, assume that P is not close to zero. Then, the location of λ clearly suggests that frequency 
locking into an orbit of finite period will not take place. In Figure 22a we show the invariant curve 
just beyond the bifurcation threshold (P, F ) = (0.6, 2.5)  and on that curve we find no tendency 

towards periodic dynamics.

As we continue to increase F (P  fixed) the “radius” of the invariant curve becomes larger. Eventually, 
the invariant curve becomes kinked and signals that the attractor is not topological equivalent to a 
circle anymore and finally the curve breaks up and a chaotic attractor is born. This is exemplified 
in Figure 22b. � ☐

In our final example (cf. Wikan and Mjølhus (1996) or Wikan (2012b)) all bifurcations that we have 
previously discussed are present.
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Example 2.8.4. Referring to section 2.4, Examples 2.4.1 and 2.4.3 we showed that the fixed point 
(x∗

0, x
∗
1)  of map (2.4.2), i.e. 

		  (x0, x1) → (F0 e
−αxx0 + F1 e

−αxx1, P0x0)

is stable in case of small equilibrium populations x∗ = x∗
0 + x∗

1  but eventually will undergo a 

supercritical Hopf bifurcation at the threshold

		  F = FH =
1

1 + P0
e(1+2P0)/P0

provided 1/2 < P0 < 1  and equal fecundities F0 = F1 = F . In Figure 23 we have generated 

the bifurcation of the map in the case P0 = 0.9 , α = 0.01 . The bifurcation parameter F is along 

the horizontal axis, the total population x  along the vertical. Omitting computational details 
(which may be obtained in Wikan and Mjølhus (1996)) we shall now use Figure 23 in order to 
reveal the dynamics of (2.4.2).

In case of 5.263 < F < 10.036 there is one attractor, namely the stable fixed point (x∗
0, x

∗
1) . 

(The lower limit 5.263 is a result of the requirement F (1 + P ) > 1 .) At the threshold Fs = 10.036  

a 3-cyclic attractor with large amplitude is created. Thus beyond Fs  there exists a parameter (F )  

interval where there are two coexisting attractors and the ultimate fate of an orbit depends on the 
initial condition. It is a well known fact that multiple attractors indeed may occur in nonlinear 
systems. What happens in our case is that the third iterate of the original map (2.4.2) undergoes 
a saddle-node bifurcation at Fs . 

Figure 23: The bifurcation diagram generated by map (2.4.2).
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This may be verified numerically by computing the Jacobian of the third iterate and show that the 
dominant eigenvalue of the Jacobian equals unity. Moreover (referring to section 1.5, see also 
Exercise 1.4.2 in section 1.4), a 3-cycle consisting of unstable points is also created through the 
saddle node at threshold Fs . This repelling 3-cycle is of course invisible to the computer. 

In the interval 10.036 < F < 11.81 the large amplitude 3-cycle and the fixed point are coexisting 

attractors. At FH = 11.81  the fixed point undergoes a supercritical Hopf bifurcation (for a proof, 

cf. Wikan and Mjølhus (1996)), thus in case of F > FH , F − FH  small, there is coexistence 

between the 3-cylic attractor and a quasistationary orbit restricted to an invariant curve. The 
coexistence takes place in the interval 11.81 < F < 12.20 . In somewhat more detail we also 

find that since arg λ  (where λ  is the eigenvalue of the Jacobian of (2.4.2)) is close to 2π/3  at 

FH  there is a clear tendency towards 3-periodic dynamics on the invariant curve but there is no 

frequency locking into an exact 3-periodic orbit.

At FK = 12.20  the invariant curve disappears. Consequently, in case of F > FK , there is again 

only one attractor, namely the attracting 3-cycle. The reason that the invariant curve disappears 
at threshold FK  is that it is “hit” by the three branches of the repelling 3-cycle. This phenomenon 

is somewhat akin to what is called a crisis in the chaos literature.

As we continue to increase F  successive flip bifurcations occur, creating orbits of period 3 · 2k  , 

k = 1, 2, ... , in much of the same way as we have seen in earlier examples. Eventually an 

accumulation value Fa  for the flip bifurcations is reached, and beyond that value the dynamics 

becomes chaotic. At first the chaotic attractor consists of three separate branches which are visited 
once every third iteration. When F  is even more increased the branches merge together. � ☐

Through our previous examples, which all share the common feature that the original (first) bifurcation 
is a Hopf bifurcation, we have experienced that the nonstationary dynamics beyond the instability 
threshold may indeed be different from map to map. In the following exercises even more possible 
dynamical outcomes are demonstrated.

Exercise 2.8.1. Consider the map (cf. Wikan (1998))

(x0, x1) → (F1x1, P0(1− γβx)1/γx0)

where β > 0, γ ≤ 0 .
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a)	 Compute the nontrivial fixed point (x∗
0, x

∗
1) .

b)	 Assume that γ > γc = −(F1/2(1 + F1)  and show that the fixed point undergoes a Hopf 

bifurcation at the threshold

		
P0 =

1

F1

[
1 + γ

2(1 + F1)

F1

]1/γ

c)	 Assume that γ > γc  but γ − γc  small. Investigate numerically the dynamical outcomes when 

P0 is fixed and F1 is increased beyond the bifurcation threshold.

d)	 (difficult!) Show that the Hopf bifurcation is supercritical. � ☐

Exercise 2.8.2. Consider the semelparous population model

		




x0

x1

x2





t+1

=




0 0 F2e

−x

P0 0 0
0 P1 0








x0

x1

x2





t
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a)	 Show that the fixed point is

		
(x∗

0, x
∗
1, x

∗
2) =

(
1

1 + P0 + P0P1
x∗,

P0

1 + P0 + P0P1
x∗,

P0P1

1 + P0 + P0P1
x∗
)

where x∗ = ln(P0P1F2).

b)	 Compute the Jacobian and show that the eigenvalue equation may be cast in the form

		  λ3 + ελ2 + P0ελ+ P0P1ε− 1 = 0

where ε = x∗/(1 + P0 + P0P1) .

c)	 Use the Jury criteria (2.1.16) and show that the fixed point is stable whenever

		  ε4 < ε < ε2

where

		  ε4 =
1 + P0 − 2P0P1

P0P1(1− P0P1)
and ε2 =

2

1− P0 + P0P1

d)	 Use the result in c) and show that the fixed point is stable provided

		

1

2
< P0 < 1 P1 >

1 + P0

3P0

e)	 The results from c) and d) are special in the sense that they imply that the fixed point is unstable 
in case of x∗  (or F2) small, becomes stable for larger values of x∗  (or F2) and then becomes 

unstable again through further enlargement of x∗  (or F2). Note that ε4 and ε2 are Hopf and 

flip bifurcation thresholds respectively. Investigate (numerically the dynamics in case of ε < ε4 

(i.e. x∗  small) and ε < ε2 (i.e. x∗  large). (Hint: cf. Exercise 2.4.3.) Other properties of this 

model as well as properties of more general semelparous population models may be obtained 
in Mjølhus et al. (2005). � ☐

Exercise 2.8.3 (Coexistence of age classes). Consider the two age class map (Wikan 2012a)

		  (x1, x2) → (Fe−αxx2, P e−βxx1)

cf. (2.3.1) where x = x1 + x2 , 0 < P ≤ 1 , F > 0 and α, β > 0 .
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a)	 Show that the nontrivial fixed point of the map is

		  (x∗
1, x

∗
2) =

(
1

1 + aP
x∗,

aP

1 + aP
x∗
)

where a = R
−(β/(α+β))
0 , x∗ = (α + β)−1 lnR0  and R0 = PF > 1 .

b)	 Use the Jury criteria and show that if β > α  then there exists a parameter region where 

(x∗
1, x

∗
2)  is stable and, moreover, that when R0  increases there will occur a Hopf bifurcation 

at the threshold

		  R0 = exp

[
2(α+ β)(1 + aP )

β + αaP

]

c)	 Investigate numerically the behaviour of the map beyond instability threshold. (Hint: the cases 
β − α  small, β − α  large should be treated separately.)

d)	 The parameters α  and β  may be interpreted as “strength” of density dependence. Show that 

if the strength of density dependence in the fecundity α  is equal or larger than the strength 

of density dependence in the survival β  then (x∗
1, x

∗
2)  will always be unstable.

e)	 What kind of dynamic outcome do you find in the case β < α ? � ☐

Exercise 2.8.4 (Permanence in stage-structured models). In Example 2.5.1 we analysed a stage-
structured cod model. A slightly more general form of such a model is

		  (i) xt+1 = Axxt

where x = (x1, x2)
T  and

		  Ax =

(
(1− µ1)S(x) f(x)

p(x) (1− µ2)

)

Here, x1,t  and x2,t  are the immature and mature part of the population respectively and just as 

in the age-structured case f(x) is the fecundity. p(x)  is the fraction of the immature population 

that survives to become mature, and µ1  and µ2  are (natural) death rates. Finally, it is also assumed 

that the remaining part of the immature population (1− µ1)x1  is reduced by a nonlinear factor 

s(x) .
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Further, let s(x) = Sŝ(x) , f(x) = F f̂(x) , p(x) = P p̂(x)  where 0 ≤ S ≤ 1 , 0 < P ≤ 1 , 

F > 0, 0 ≤ µ1, µ2 < 1 , 0 < ŝ(x), p̂(x), f̂(x) ≤ 1 , ŝ(0) = p̂(0) = f̂(0) = 1 . A final but 

important restriction in such models is (1− µ1)S + P ≤ 1 . Otherwise, the fraction of juveniles 

that survives to become adults plus the fraction that survives but remain juveniles may be larger 
than 1 even in case of zero fecundity which of course is unacceptable from a biological point of 
view.

Definition. Let xt = x1,t + x2,t  be the total population at time t . Model (i) is said to be permanent 

if there exists δ > 0  and D > 0  such that

		
δ < lim

t→∞
inf xt ≤ lim

t→∞
sup xt < D

� ☐

Thus, if a population model is permanent, the total population density neither explodes nor goes 
to zero (see Kon et al. (2004)). Define the net reproductive number R0  as

		  R0 =
PF

µ2[1− (1− µ1)S]
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Our goal is to prove the following theorem:

Theorem: Suppose that model (i) is continuous and that one of p̂(x)x1  or f̂(x)x2  is bounded 

from above. Further assume that the matrix A0  is irreducible and R2
+ \ {0}  forward invariant 

(i.e. that Axx ∈ R2
+ \ {0}  for all x ∈ R2

+ \ {0} ). Then model (i) is permanent provided 

R0 > 1 . � ☐

a)	 Clearly, (x̃1, x̃2) = (0, 0) is a fixed point of (i). Use the Jury criteria and show that (0, 0)  is 

unstable provided R0 > 1 .

b)	 Explain why A0  is irreducible and R2
+ \ {0}  forward invariant.

—

It remains to prove that the population density does not explode, i.e. that (i) is a dissipative model. 
From Kon et al. (2004), see also Cushing (1998), we apply the following definition of dissipativeness:

Definition: Model (i) is said to be dissipative if there exists a compact set X ⊂ R2
+ such that for 

all xt ∈ R2
+  there exists a tM = tM(x0)  satisfying xt ∈ X  for all t ≥ tM . � ☐

c)	 Assume p̂(x)x1 ≤ K0  where K0  is a constant. Use (i) and induction to establish the relations

		  x2,t+1 ≤ PK0 + (1− µ2)x2,t

and

		  x2,t ≤ (1− µ2)
tx2,0 +

PK0

µ2

d)	 Use c) to conclude that there exists tA = tA(x2,0)  such that for t > tA

		  x2,t ≤
2PK0

µ2
= K1

e)	 Use the previous result together with (i) and induction to show that

		  x1,t+1 ≤ (1− µ1)Sx1,t + FK1

		
x1,t ≤ (1− µ1)

tStx1,0 +
FK1

1− (1− µ1)S

� ☐
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f)	 Show that there exists tB = tB(x1,0) such that for t > tB(x1,0)

		  x1,t ≤
2FK1

1− (1− µ1)S
= K2

g)	 Take tM = max{tA, tB}  and K = max{K1, K2}  and conclude that x1,t ≤ K  and 

x2,t ≤ K , hence (i) is dissipative if p̂(x)x1  is bounded from above.

h)	 Assume f̂(x)x2 ≤ K0  and show in a similar manner that (i) is dissipative in this case too. 

� ☐

Remark 2.8.2. In Leslie matrix models nonoverlapping age classes are assumed. This is not the 
case in the stage-structured model from the previous exercise (or the model presented in Example 
2.5.1). Moreover, while Leslie matrix models are maps from Rn → Rn  (or Rn+1 → Rn+1)  

where n  may be a large integer, stage-structured models are mainly maps from R2 → R2 where 

we do not have the possibility to study the dynamic behaviour of age classes in detail. Some stage-
structured models are maps from R3 → R3. Typically, they are insect models where the population 

is divided into three stages: larvae (L), pupae (P), and adult insects (A). In fact, such models are 
fully capable of describing and even predicting nonstationary and chaotic behaviour in laboratory 
insect poulations, see Cushing et al. (1996), Costantino et al. (1997), Dennis et al. (1997), and 
Cushing et al. (1998). � ☐

Exercise 2.8.5 (Prey-Predator systems). In 1920 Lotka introduced a system of differential 
equations which described the interaction between a prey species x and a predator species y . 

These equations were rediscovered by Volterra in 1926 and today they are often referred to as the 
Lotka-Volterra equations. A discrete version of the equations (written as a map) is

		  (i) (x, y) → [((1 + r)− ay)x, (−c + bx)y]

The first component of the map expresses that the growth rate of the prey is a constant (1 + r)  

due to the species itself minus a term proportional to the number of predators. In the same way, 
the growth rate of the predator is proportional to the number of prey minus a term c  which is 
due to the predator species itself. All constants are assumed to be positive.

a)	 Find the nontrivial fixed point of the map and show that it is always unstable.

b)	 Consider the prey-predator map

		  (ii) (x, y) → (f(y)x, g(x)y)
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where ∂f/∂y < 0  and ∂g/∂x > 0. Show that |λ| > 1  where λ  is the solution of the 

eigenvalue equation. (See Maynard Smith (1979) for computational details.) What is the 
qualitative dynamic behaviour of maps like (i) and (ii)?

c)	 Next, consider the two parameter family prey-predator maps

		  (iii) (x, y) → [((1 + r)− rx− ay)x, axy]

where r > 0 , a > 0 (Maynard Smith, 1968). Show that (iii) has three fixed points, 

(x̂, ŷ) = (0, 0), (x̃, ỹ) = (1, 0) and (x∗, y∗) = (1/a, r(a− 1)/a2) .

d)	 Following Neubert and Kot (1992) who perform a detailed analysis of (iii) show that 1) (x̂, ŷ)  

is always unstable, 2) (x̃, ỹ)  is stable whenever 0 < r < 1 and 0 < a < 1 , and 3) (x∗, y∗)  

is stable provided 1 < a < 2  and 0 < r < 4a/(3− a) .

e)	 Still referring to Neubert and Kot (1992), show that (iii) undergoes a transcritical bifurcation 
when a = 1 and draw a bifurcation diagram similar to Figure 4b in Section 1.5.
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((iii) has several other interesting properties. It should be easy for the reader to verify that in 
case of 1 < a < 2 , r = 4a/(3− a) gives birth to a flip bifurcation, but unlike most of the 

cases treated so far (however, see Exercise 1.5.2), this bifurcation is of the subcritical type and 
the predator goes extinct at instability threshold. (Formally, this may be proved by using the 
same procedure as in Example 2.7.1.) Moreover, when a = 2 and r �= 4, r �= 6  a Hopf 

bifurcation occurs and whenever a > 2, |a− 2|  small the dynamics is restricted on an 

invariant curve. In the strong resonant cases r = 4, r = 6  we find the same qualitative picture 

as we did in Exercises 2.5.1 and 2.5.2. For further reading of this fascinating map we refer to 
the original paper by Neubert and Kot (1992).)

f)	 Finally, consider the age-structured prey-predator map

		  (x1, x2, y1, y2) →
(
F2x2, P e−(x+β1y)x1, G2x2,

Q

1 + y

β2x

1 + β2x
y1

)

where F2 and G2  are the fecundities of the second age classes of the prey and predator 

respectively. P  and Q  are survival probabilities from the first to the second age classes, β1 

and β2 are positive interaction parameters and x = x1 + x2, y = y1 + y2 . Find the nontrivial 

fixed point (x∗
1, x

∗
2, y

∗
1, y

∗
2)  and show that it may not undergo a saddle node or a flip bifurcation 

at instability threshold. Thus stability or dynamics governed by Hopf bifurcations are the only 
possible dynamic outcomes.

g)	 If P = 0.6 and F2 = 25 then the prey in absence of the predator exhibits chaotic oscillations. 

Now, suppose Q = 0.6 , G2 = 12  and assume β = β1 = β2 . Investigate numerically how 

the prey-predator system behaves in the following cases: β ∈ [0.1, 0.22]  (weak interaction), 

β ∈ [0.4, 0.6] („normal” interaction), β ∈ [0.85, 1.00]  (strong interaction) (see Wikan 

(2001)). � ☐

Exercise 2.8.6 (Host-Parasitoid models). Following Kot (2001), see also the original work by 
Nicholson (1933), Nicholson and Bailey (1935), the books of Hassel (1978), and Edelstein-Keshet 
(1988), most host-parasitoid models are on the form

		  xt+1 = af(xt, yt)xt

		  yt+1 = c[1− f(xt, yt)]xt
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Here xt  and yt  are the number of hosts and parasitoids at time t  respectively. f(x, y)  is the 

fraction of hosts that avoids parasitoids at time t  and a  is the net reproductive rate of hosts. c  

may be interpreted as the product of the number of eggs laid per female which survive to pupate 
times the probability that a pupae will survive the winter and give rise to an adult next year 
(Maynard Smith, 1979). Kot (2001) simply refers to c  as the clutch size of parasitoids.

a)	 Assume that f(x, y) = f(y) = e−βy  where β > 0 and find the nontrivial fixed point of the 

map. Use the Jury criteria and discuss its stability properties. What are the possible dynamic 
outcomes of this model?

b)	 A slightly modified version of the Nicholson and Bailey model in a) which also contains a 
self-regulatory prey term was proposed by Beddington et al. (1975)

		  x1,t+1 = er(1−xt)−βytxt

		  yt+1 = c[1− e−βyt ]xt

Denoting the nontrivial fixed point for (x∗, y∗) , show that

		  x∗ = 1− β

r
y∗ 0 < y∗ <

r

β

and that y∗  is the unique solution of

		

ry∗

r − βy∗
− c[1− e−βy∗ ] = 0

Moreover, show (numerically) that there exists a parameter region where (x∗, y∗)  is stable. 

� ☐

Remark 2.8.3. As is clear from Exercises 2.8.5a,b and 2.8.6a, if prey-predator models or host-
parasitoid models shall possess a stable nontrivial equilibrium where both species exist we may 
not assume that one of the species is a function of only the other species. Thus, the function f  

in the exercises above should be on the form f = f(x, y)  with properties ∂f/∂x < 0 , 

∂f/∂y < 0 . In prey-predator systems self-limitational effects are often assumed to be crowdening 

or cannibalistic effects (the latter is typically the case in fish populations). However, what the 
self-regulatory effects in parasitoid species are, is far from obvious, cf. the discussion in 
Beddington et al. (1975), Hassel (1978), Edelstein-Keshet (1988), Murdoch (1994), and Mills 
and Getz (1996). � ☐
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Exercise 2.8.7 (Competition models). Suppose that two species x  and y  compete on the same 

resource. From a biological point of view the competitive interaction between the two species 
would be that an increase of one of the species should reduce the growth of the other and vice 
versa. Hence, in a model of the form

		  (i)
xt+1 = α(xt, yt)xt

yt+1 = β(xt, yt)yt

where also self-regulatory effects are included, we should regard all partial derivatives of the 
functions α  and β  as negative. (Note that these sign restrictions differ from the prey-predator 

models we studied in Exercise 2.8.5.)

a)	 Consider the competition model

		  (ii)
xt+1 = (a− bxt − c1yt)xt

yt+1 = (d− eyt − c2xt)yt

where all constants are positive and a > 1, d > 1 . Find all the fixed points of (ii). (There are 

four of them.)
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b)	 (x̃, ỹ) = ((a− 1)/b, 0) is one of the fixed points. Use the Jury criteria and find conditions 

for (x̃, ỹ)  to be stable.

c)	 (i) has a nontrivial fixed point (x∗, y∗) , (x∗ > 0, y∗ > 0) which is a solution of the equations 

α(x∗, y∗) = 1  and β(x∗, y∗) = 1 . Show that the solutions λ1,2  of the linearization of (i) 

may be expressed as (Maynard Smith, 1979)

		  λ1,2 =
1

2

{
2− (a+ d)±

√
(a+ d)2 − 4(ad− bc)

}

where

		  a = −x∗ ∂α

∂x
d = −y∗

∂β

∂y

and

		  ad− bc = x∗y∗
(
∂α

∂x

∂β

∂y
− ∂α

∂y

∂β

∂x

)

Note that since all partial derivatives are supposed to be negative, a , b , c  and d  are positive.

d)	 Explain that (∂α/∂x)(∂β/∂y) > (∂α/∂y)(∂β/∂x)  (i.e. that the product of changes in α  

and β  due to self-regulatory effects are larger than the product of changes in α  and β  due 

to the competitive species) is necessary in order for (x∗, y∗)  to be stable.

e)	 Discuss the possibility of having oscillatory behaviour in model (i).

For further reading of discrete competition models we refer to Adler (1990). � ☐

Exercise 2.8.8 (The Hénon map). Consider the two parameter family of maps (the Hénon map)

		  Ha,b : R2 → R2 (x, y) → (y, 1 + bx− ay2)

where 0 < b < 1 .

Ha,b  (in a slightly different version), was constructed and analysed by Hénon (1976), and is one 

of the first two-dimensional maps where there was found numerical evidence of a chaotic attractor. 
(Hénon’s paper may also be obtained in Cvitanović (1996) where several classical papers on 
dynamical systems are collected.)
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a)	 Let V  be a region elongated along the y -axis in the R2 plane and consider the following 

maps:

		

h1 : (x, y) → (bx, y) V y

h2 : (x, y) → (1 + x− ay2, y) x

h3 : (x, y) → (y, x)

Show that Ha,b = h3 ◦ h2 ◦ h1.

b)	 Let a0 = −((1− b)/2)2  and show that Ha,b  has two fixed points if a > a0 , one fixed 

point if a = a0  and no fixed points if a < a0 .

c)	 Show that Ha,b  undergoes a saddle node bifurcation at the threshold a = a0 .

d)	 Let a1 = −3a0  and show that in the interval a0 < a < a1 there is one stable fixed point 

(x∗
+, y

∗
+) and one unstable fixed point (x∗

−, y
∗
−).

e)	 Show by use of the Jury criteria that (x∗
+, y

∗
+) undergoes a flip bifurcation at a = a1 .

f)	 Show that the second iterate of Ha,b  may be written as

		  xt+2 = 1 + bxt − ay2t

		  yt+2 = 1 + byt − a(1 + bxt − ay2t )
2

and verify that whenever a > a1  there is a two-period orbit where the points are

		  (x̃1, ỹ1) =

(
1− aỹ21
1− b

,
1− b+

√
4a− 3(1− b)2

2a

)

		  (x̃2, ỹ2) =

(
1− aỹ22
1− b

,
1− b−

√
4a− 3(1− b)2

2a

)

g)	 Show that

		  lim
a→a1

(x̃1, ỹ1) = lim
a→a1

(x̃2, ỹ2) = lim
a→a1

(x∗
+, y

∗
+) =

(
2

3(1− b)
,

2

3(1− b)

)
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h)	 Assume b = 1/2  and let a > a1 . Investigate numerically if Ha,1/2  possesses a chaotic 

attractor.

i)	 Still assuming b = 1/2 , generate a bifurcation diagram in case of a > a0 .

j)	 Show that Ha,b  has an inverse and compute H−1
a,b .

—

Next, let b = 0 . Then Ha,0 contracts the entire R2 plane onto the curve fa(y) = 1− ay2 and 

since the value of Ha,0 is independent of the x  coordinate we may study the dynamics through 

the one-dimensional map

		  y → fa(y) = 1− ay2

k)	 Show that the map undergoes a saddle node bifurcation when a = −1/4 and find a parameter 

interval where the map possesses a unique nontrivial fixed point.
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l)	 Show that fa(y)  is topologically equivalent to the quadratic map gµ(y) = µy(1− y) .)

(Hint: Use Definition 1.2.2 and assume that h  is a linear function of y . Moreover, show that 

the relation between a  and µ  is given through µ2 − 2µ = 4a  and µ > 1 .)

(The case b = 1  will be considered in the next exercise.) � ☐

Exercise 2.8.9 (Area preserving maps). Consider the map (x, y) → f(x, y). If the area of a region 

in R2 is preserved under f  we say that f  is an area preserving map. In order to decide whether 

a map is area preserving or not we may apply the following theorem:

Theorem. Let f : R2 → R2 be a two-dimensional map. f  is area preserving if and only if 

|J | = 1 where J  is the Jacobian corresponding to f .� ☐

A formal proof may be obtained in Stuart and Humphries (1998).

a)	 Let b = 1  in the Hénon map (cf. Exercise 2.8.8), and show that Ha,1 is area preserving.

b)	 Show that the map (x, y) → (−xy, ln x)  is area preserving too.

c)	 Compute all nontrivial fixed points of the maps in a) and b) and decide whether the fixed 
points are hyperbolic or not.

d)	 In general, what can you say about the eigenvalues of the linearization of an area preserving 
map? � ☐

2.9	 Difference-Delay equations

Difference-Delay equations are equations of the form

		  xt+1 = f(xt, xt−T ) � (2.9.1)

where T is called the delay.

Referring to population dynamical studies, equation (2.9.1) is often used when one considers species 
where there is a substantial time T from birth to sexual maturity. Hence, instead of using a detailed Leslie 
matrix model where the fecundities Fi = 0  for several age classes, the more aggregated form (2.9.1) is 

often preferred.
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One frequently quoted example is Colin Clark’s Baleen whale model (Clark, 1976)

		  xt+1 = uxt + F (xt−T ) � (2.9.2)

where xt  is the adult breeding population. u  (0 ≤ u ≤ 1 ) may be interpreted as a survival coefficient 

and the term F (xt−T )  is the recruitment which takes place with a delay of T years. In case of the Baleen 

whale, 5 ≤ T ≤ 10.

A slightly modified version of (2.9.2) was presented by the International Whaling Commission (IWC) as

		  xt+1 = (1− u)xt +R(xt−T )  � (2.9.3)

Here (just as in (2.9.2)), (1− u)xt , 0 < u < 1, is the fraction of the adult whales that survives at 

time t  and enters the population one time step later.

		  R(xt−T ) =
1

2
(1− u)Txt−T

{
P +Q

[
1−

(xt−T

K

)z]}
 � (2.9.4)

and regarding the parameters in (2.9.4) we refer to IWC report no. 29, Cambridge (1979). Other models 
where a variety of different species are considered may be obtained in Botsford (1986), Tuljapurkar et 
al. (1994), Higgins et al. (1997), see also Kot (2001) and references therein.

—

Now, returning to the general nonlinear equation (2.9.1), the fixed point x∗  is found by letting 

xt+1 = xt = xt−T = x∗ . The stability analysis follows the same pattern as in section 2.4. Let 

xt = x∗ + ξt  where |ξt| � 1. Then from (2.9.1)

		  x∗ + ξt+1 ≈ f(x∗, x∗) +
∂f

∂xt
(x∗)ξt +

∂f

∂xt−T
(x∗)ξt−T  � (2.9.5)

Thus the linearization becomes

		  ξt+1 = aξt + bξt−T  � (2.9.6)

where a  and b  are ∂f/∂xt , ∂f/∂xt−T  evaluated at equilibrium respectively.
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The solution of (2.9.6) is found by letting ξt = λt  which after some rearrangements result in the 

eigenvalue equation

		  λT+1 − aλT − b = 0  � (2.9.7)

which we recognize as a polynomial equation of degree T + 1. As before, |λ| < 1  guarantees that x∗  

is locally asymptotic stable. The transfer from stability to instability occurs when x∗  fails to be hyperbolic 

which means that λ  crosses the unit circle through 1, through −1  or crosses the unit circle at the 

location exp(iθ) .
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Example 2.9.1. Compute the nontrivial fixed point x∗  and derive the eigenvalue equation of the 

model

		  xt+1 = xt exp
[
r
(
1− xt−T

K

)]
 � (2.9.8)

where r  and K  both are positive. ((2.9.8) is often called the delayed Ricker model and the 

parameters may be interpreted as the intrinsic growth rate (r ) and the carrying capacity (K ).) 

The fixed point obeys

		  x∗ = x∗ exp

[
r

(
1− x∗

K

)]

so clearly, x∗ = K .

The coefficients a  and b  in (2.9.7) become

		   

a =
∂f

∂xt
(x∗) = 1 · exp

[
r

(
1− K

K

)]
= 1

b =
∂f

∂xt−T

(x∗) = K
(
− r

K

)
exp

[
r

(
1− K

K

)]
= −r

Hence, the eigenvalue equation may be cast in the form

		  λT+1 − λT + r = 0  � (2.9.9)

� ☐

Exercise 2.9.1. Consider the difference-delay equation

		  xt+1 = xt

[
1 + r

(
1− xt−T

K

)]
 � (2.9.10)

and repeat the calculations from the previous example. � ☐

Exercise 2.9.2. Repeat the calculations in Exercise 2.9.1 for the equation

		  xt+1 =
αxt

1 + βxt−T
 � (2.9.11)

� ☐

—
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Let us now turn back to the general eigenvalue equation (2.9.7). Although it is a polynomial equation 
of degree T + 1, its structure is simpler than most of the equations which we studied in Part II. Therefore, 

unless the delay T  becomes too large, the Jury criteria work excellent when one tries to reveal stability 

properties. (The “Baleen whale equations” (2.9.4), (2.9.5) were analyzed by use of Theorem 2.1.9.) It is 
also possible to use (2.9.7) in order to give a thorough description of the dynamics in parameter regions 
where the fixed point is stable.

Our next goal is to demonstrate this by use of the difference-delay equation (2.9.8) and its associated 
eigenvalue equation (2.9.9).

As a prelude to the general situation, suppose that T = 0  (no delay) in (2.9.8), (2.9.9). Then, from 

(2.9.9), λ = 1− r  from which we may draw the following conclusions: (i) If 0 < r < 1, then 

0 < λ < 1 , hence from a given initial condition we will experience a monotonic damping towards the 

fixed point x∗ = K . (ii) 1 < r < 2 implies that −1 < λ < 0 , thus in this case there will be oscillatory 

damping towards x∗ . (iii) At instability threshold r = 2  it follows that λ = −1  and a supercritical flip 

bifurcation occurs (cf. Exercise 1.5.1). Consequently, in case of r > 2  but |r − 2|  small, the dynamics 

is a stable period-2 orbit.

Next, consider the small delay T = 1 . Then (2.9.9) becomes λ2 − λ+ r = 0  and by use of (2.1.14) 

stability of x∗ = K  is ensured whenever the inequalities r > 0 , r + 2 > 0  and r < 1  are satisfied. 

Hence, at instability threshold r = 1  but in contrast to the case T = 0  it also follows from (2.1.14) that 

λ  is a complex number at bifurcation threshold.

If T = 2  the eigenvalue equation may be written as λ3 − λ2 + r = 0  and the four Jury criteria (2.1.16) 

simplify to r > 0 , 2− r > 0, r < 1  and r < (1/2)(
√
5− 1) ≈ 0.6180 respectively. Clearly, 

r = (1/2)(
√
5− 1)  at bifurcation threshold and again we observe that λ  is a complex number.

Now, consider the general case T ≥ 1 . From our findings above it is natural to assume that λ = exp(iθ)  

when the fixed point x∗ = K  loses its hyperbolicity. Moreover, the value of r  at instability threshold 

becomes smaller as T  increases which suggests that an increase of T  acts as a destabilizing effect. 

Substituting λ = exp(iθ)  into (2.9.9) gives

		  ei(T+1)θ = eiT θ − r  � (2.9.12)
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which after multiplication by exp(−i(T + 1)θ) may be written as

		  1 = e−iθ − r e−i(T+1)θ  � (2.9.13)

Therefore

		  1 = cos θ − i sin θ − r cos(T + 1)θ + ir sin(T + 1)θ

and by separating into real and imaginary parts we arrive at

		  1 = cos θ − r cos(T + 1)θ  � (2.9.14a)

		  0 = − sin θ + r sin(T + 1)θ  � (2.9.14b)

Finally, by squaring both equations (2.9.14) and then add we obtain the relation between r  and θ  as

		  r = 2 [cos θ cos(T + 1)θ + sin θ sin(T + 1)θ] = 2 cosTθ  � (2.9.15)
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Substituting back into (2.9.13) then implies

		  1 = e−iθ − 2

(
eiT θ + e−iT θ

2

)
e−i(T+1)θ

and through multiplication by exp(iθ)  we get

		  eiθ = −e−i2Tθ = ei(π−2Tθ)  � (2.9.16)

Thus

		  θ = π − 2Tθ + 2kπ  � (2.9.17)

Hence

		  θ =
(2k + 1)π

2T + 1
 � (2.9.18)

From this we may draw the following conclusion. Since r = 2 cosTθ  there are several values of r  

which result in modulus 1 solutions of the eigenvalue equation (2.9.9). The smallest r  which results in 

a modulus 1 solution is clearly when k = 0 , i.e.

		  r2 = 2 cos
Tπ

2T + 1  � (2.9.19)

Let us now focus on possible real solutions of the eigenvalue equation (2.9.9). Assume λ = R  (R  –  

real). Then from (2.9.9):

		  r = RT − RT+1 � (2.9.20)

and since r > 0 , T > 0  it follows that R < 1 . Moreover,

		
dr

dR
= RT−1 [T − (T + 1)R]

such that the maximum value of r  occurs when

		  R =
T

T + 1
 � (2.9.21)

Hence, R  is a positive number and the corresponding maximum value of the intrinsic growth rate r 

is

		  r1 =
T T

(T + 1)T+1
 � (2.9.22)
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Exercise 2.9.3. Show that limT→∞ r1 = 1/Te . � �

Figure 24: The graph of r(T ) = RT − RT+1 T = 2

In Figure 24 we have drawn the graph of (2.9.20) in the case T = 2 . (The graph has a similar form for 

other T ≥ 1  values.) Thus, when R  is increasing from 0 to T/(T + 1), r  will increase from 0 to r1  

and when R  increases from T/(T + 1) to 1, r  will decrease from r1  to 0. Clearly, if 0 < r < r1 , 

(2.9.20) has two positive roots. If r > r1, there are no positive roots.

Following Levin and May (1976) we now have

		  r1 =
T T

(T + 1)T+1
≤ 1

2
r2 = cos

Tπ

2T + 1
 � (2.9.23)

Indeed, first observe that

	 cos
Tπ

2T + 1
= − sin

(
Tπ

2T + 1
− π

2

)
= sin

π

2(2T + 1)
>

2

π
· π

2(2T + 1)
=

1

2T + 1

Next, by rewriting r1 :

		  r1 =
1

(T + 1)(1 + 1
T
)T

≤ 1

(T + 1)2
<

1

2T + 1

which establishes (2.9.23).

—
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Figure 25: 30 iterations of xt+1 = xt exp[r(1− xt−1)] . Monotonic orbit, r  = 0.24. Oscillatory orbit, r  = 0.90.
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Now, considering an orbit starting from an initial value x0 �= K , we may from the findings above 

conclude that in case of 0 < r < r1  the orbit may approach x∗ = K  monotonically. If r1 < r < r2  

the orbit will always approach x∗  as a convergent oscillation. If r > r2, x∗  is unstable and an orbit will 

act as a divergent oscillation towards a limit cycle (provided the bifurcation is supercritical). These cases 
are demonstrated in Figure 25 and Figure 26. In Figure 25 we show the behaviour of the map 
xt+1 = xt exp[r(1− xt−1)]  (i.e. K = T = 1  in (2.9.8)) in case of r = 0.24  (< r1) and r = 0.90  

(r1 < r < r2) respectively and clearly, one orbit (r = 0.24 ) approaches the fixed point x∗ = 1  

monotonically while the other orbit (r = 0.90 ) approaches x∗  in an oscillatory way. In Figure 26 

r = 1.02  and r = 1.10  (r > r2) and there is no convergence towards x∗ . Note that the orbit with 

small amplitude (r = 1.02 ) is almost 6-periodic.

Figure 26: 30 iterations of xt+1 = xt exp[r(1 − xt−1)] . Small amplitude orbit, r  = 1.02. Large amplitude orbit, r  = 1.10.

Remark 2.9.1. Note that in the case 0 < r < r1  we have not actually proved that an orbit must 

approach x∗  monotonically. After all (2.9.9) may have complex solutions with magnitudes larger 

than λ = R = T/(T + 1) . However, this is not the case as is proved in Levin and May (1976). 

(The proof is not difficult, it involves the same kind of computations as we did when (2.9.19) was 
derived.) � ☐

—
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Let us now comment on possible periodic dynamics. Referring to section 2.8 “Beyond the Hopf 
bifurcation” we learned that although the dynamics was a quasistationary orbit just beyond the Hopf 
bifurcation threshold, the dynamics could be periodic (exact or approximate) as we penetrated deeper 
into the unstable parameter region. Periodic phenomena may of course also occur in difference-delay 
equations. Indeed, consider

		  xt+1 = xt exp[1− r(1− xt−1)]  � (2.9.24)

which is nothing but (2.9.8) where T = K = 1 . At bifurcation threshold the dominant eigenvalue 

becomes (see (2.9.18))

		  λD = exp(iθ) = exp
(
i
π

3

)
 � (2.9.25)

and since λ6
D = exp(2πi) = 1, λD  is equal to 6th root of unity at bifurcation threshold. Therefore, in 

case of λ > λD  but |λ− λD|  small, arg λ  is still close to π/3 which definitely signals 6-periodic 

dynamics. That the dynamics is almost 6-periodic is clearly demonstrated in Figure 26 (r = 1.02 ). 

Through an enlargement of r  (r = 1.10 ) the periodicity is not so profound as the other orbit in Figure 

26 shows. More about periodic phenomena in difference delay equations may be obtained in Diekmann 
and Gils (2000).

—

In one way the results presented above are somewhat special in the sense that we were able to find the 
complex eigenvalues at bifurcation threshold on closed form (cf. (2.9.18)). Typically, this is not the case. 
However, the method we used may still be fruitful in order to bring equations where it is difficult to 
locate modulus 1 solutions numerically to a form where it is much more simple. This fact will now be 
demonstrated through one example and one exercise.

Example 2.9.2. In Example 2.4.4 (section 2.4) we studied a (n× 1)× (n× 1) Leslie matrix 

model with equal fecundities F . If we in addition assume that the year to year survival probabilities 

are equal, i.e. P0 = P1 = ... = Pn−1 = P , 0 < P < 1 , the eigenvalue equation (2.4.17) may 

be cast in the form

		  λn+1 − 1

D
(1− x∗)

n∑

i=0

P iλi = 0  � (2.9.26)

where

		  x∗ = ln(FD) and D = 1 + P + P 2 + ...+ P n =
1− P n+1

1− P
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Our goal is to locate complex modulus 1 solutions of (2.9.26) for given values of P. Using the fact 
that 

∑
P iλi  is nothing but a geometric series, it is straightforward to rewrite (2.9.26) as

		  λn+2 + Aλn+1 − B = 0  � (2.9.27)

where

		  A =
(1− P )(x∗ − 1)

1− P n+1
− P and B =

(1− P )(x∗ − 1)

1− P n+1
P n+1

By inspection, (2.9.27) has a root λ = P  which is located inside the unit circle. The n + 1  other 

roots of (2.9.27) are the same roots as of (2.9.26). Hence, assume that λ = exp(iθ)  in (2.9.27). 

Then (we urge the reader to perform the necessary calculations), by using the same method as 
we did when we derived (2.9.14) from (2.9.12) we find that

		  sin θ = −B sin(n+ 1)θ  � (2.9.28a)

		  cos θ =
B2 − A2 − 1

2A
 � (2.9.28b)
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We know from Example 2.4.4 that the fixed point of (2.4.7) is stable in case of small equilibrium 
populations x∗ . Therefore, numerically it is now easy to find the solutions of (2.9.27) (and (2.9.26)) 

at bifurcation threshold for given values of n  and P by simply increasing F which means that x∗  

is increased too and compute B up to the point where (2.9.28a) is satisfied. Then we compute the 
corresponding value of A and finally θ  through (2.9.28b) as

		  θ = arccos

(
B2 − A2 − 1

2A

)
 � (2.9.29)

� ☐

Exercise 2.9.4. Consider the eigenvalue equation

		  λT − (1 + a)b λT−1 + ab2λT−2 = D  � (2.9.30)

where D  is real, 0 < a ≤ 1 , a < 1/b .

a)	 Show that (2.9.30) may be written as

		  λT−2(λ− ab)(λ− b) = D

b)	 Assume that D = 0  and conclude that the dominant root of the eigenvalue equation is 

λ = b  if 0 < a < 1  or λ = ab  if 1 < a < 1/b .

c)	 Suppose D �= 0  and assume that λ = R  is real and positive. Show that the maximum 

value of D  is

		  RT − (1 + a)bRT−1 + ab2RT−2

where

		  R =
(1 + a)b(T − 1)

2T
+

√
(1 + a)2b2(T − 1)2

4T 2
− ab2(T − 2)

T

d)	 Assume that λ = exp(iθ)  and separate (2.9.30) in its real and imaginary parts respectively. 

Explain how θ  and D  may be found numerically in case of given values of a , b  and T.

(Equation (2.9.30) arises in an analysis of the general Deriso-Schute model. A thorough 
discussion of the model may be obtained in Bergh and Getz (1988).) � ☐
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In this section we have used a variety of different techniques in order to find the roots of polynomial 
equations. We close by stating Descartes‘ rule of signs which is a theorem that also may give valuable 
insight of location of the roots.

Theorem 2.9.1 (Descartes‘ rule of signs). Consider the polynomial equation

		  a0λ
n + a1λ

n−1 + a2λ
n−2 + ... + an−1λ+ an = 0

where an > 0 .

Let k  be the number of sign changes between the coefficients an, an−1, ..., a0  disregarding any 

which are zero. Then there are at most k  roots which are real and positive and, moreover, there 

are either k  or k − 2  or k − 4  ... real positive roots. � ☐

Example 2.9.3. Consider

		  λT+1 − λT + r = 0

where r > 0 . Here k = 2 , hence there are at most 2 real positive roots and, moreover, there are 

either 2 or 0 such roots.

Next, suppose that λ = −σ .

1)	 If T  is an even number, the equation may be written as −σT+1 − σT + r = 0. Thus there 

is only one change of sign, consequently there is exactly 1 negative root λ  of λT+1 − λT + r = 0. 

(From our previous analysis of (2.9.9) this means that if 0 < r < r1 , there are 2 positive roots, 

1 negative root and T − 2  complex roots. If r1 < r , there are T  complex roots and 1 negative 

root.)

2)	 If T  is an odd number, the equation may be cast in the form σT+1 + σT + r = 0 . Hence, 

there are no sign changes so there are no negative roots λ . (Thus 0 < r < r1  implies 2 positive 

roots and T − 1  complex roots. If r1 < r , all T + 1 roots are complex.) � ☐
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Part III 
Discrete Time  

Optimization Problems
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3.1	 The fundamental equation of discrete dynamic programming

In the following sections we shall give a brief introduction to discrete dynamic optimization. When one 
wants to solve problems within this field there are mainly two methods (together with several numerical 
alternatives which we will not treat here) available. Here, in section 3.1, we shall state and prove the 
fundamental equation of discrete dynamic programming which perhaps is the most frequently used 
method. In section 3.2 we shall solve optimization problems by use of a discrete version of the maximum 
principle.

Dynamic optimization is widely used within several scientific branches like economy, physics and biology. 
As an introduction to the kind of problems that we want to study, let us consider the following example:

Example 3.1.1. Let xt  be the size of a population at time t. Further, assume that x  is a species 

of commercial interest so let ht ∈ [0, 1]  be the fraction of the population that we harvest at each 

time. Therefore, instead of expressing the relation between x  at two consecutive time steps as 

xt+1 = f(xt)  or (if the system is nonautonomous) xt+1 = f(t, xt) , we shall from now on 

assume that 

		  xt+1 = f(t, xt, ht) � (3.1.1)

If the function f  is the quadratic or the Ricker function which we studied in Part I, (3.1.1) may 

be written as 

		  xt+1 = r(1− ht)xt[1− (1− ht)xt] � (3.1.2)

or 

		  xt+1 = (1− ht)xt exp[r(1− (1− ht)xt)] � (3.1.3)

respectively. In case of an age-structured population model (cf. the various examples treated in 
part II) the equation xt+1 = f(t,xt,ht) may be expressed as 

		  x1,t+1 = F1e
−xtx1,t(1− h1,t) + F2e

−xtx2,t(1− h1,t) � (3.1.4)

		  x2,t+1 = Px1,t(1− h2,t)

(For simplicity, it is often assumed that ht = h  and hi,t = hi  which means that the population 

or the age classes are exposed to harvest with constant harvest rate(s).)
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Now, returning to equation (3.1.1), assume that πt = f0(t, xt, ht) is the profit we can make of 

the harvested part of the population at time t . Our ultimate goal is to maximize the profit over 

a time period from t = 0 to t = T , i.e. we want to maximize the sum of the profits at times 

t = 0, 1, ..., T . This leads to the problem 

		  maximize
h0,h1,...,hT

T∑

t=0

f0(t, xt, ht) � (3.1.5)

subject to equation (3.1.1) given the initial condition x0 and ht ∈ [0, 1] .

To be somewhat more precise, we have arrived at the following situation: Suppose that we at time 
t = 0 apply the harvest rate h0 . Then, according to (3.1.1) x1 = f(0, x0, h0)  is known at time 

t = 1. Further, assume that we at time t = 1 choose the harvest h1 . Then x2 = f(1, x1, h1)  is 

known and continuing in this fashion, applying (different) harvest rates ht  at each time we also 

know the value of xt  at each time. Consequently, we also know the profit πt = f0(t, xt, ht) at 

each time. As stated in (3.1.5) our goal is to choose h0, h1, ..., hT  in such a way that 
∑T

t=0 f0(t, xt, ht) is maximized. � ☐ 

— 

Let us now formulate the situation described in Example 3.1.1 in a more general context. Suppose that the 
state variable x  evolves according to the equation xt+1 = f(t, xt, ut)  where x0 is known. At each time 

t  the path that x  follows depends on discrete control variables u0, u1, ..., uT . (In Example 3.1.1 we used 

harvest rates as control variables.) We assume that ut ∈ U  where U  is called the control region. The sum 
∑T

t=0 f0(t, xt, ut) where f0  is the quantity we wish to maximize is called the objective function.

Definition 3.1.1. Suppose that xs = x . Then we define the value function as 

		  Js(x) = maximize
us,us+1,...,uT

T∑

t=s

f0(t, xt, ut) � (3.1.6)

� ☐ 

Hence, a more general formulation of the problem we considered in Example 3.1.1 is: maximize Js(x)  

subject to xt+1 = f(t, xt, ut) , xs = x  and ut ∈ U .

We now turn to the question of how to solve the problem.
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Suppose that we know the optimal control (optimal with respect to maximizing (3.1.6)) u∗
s  at s = 0 . 

Then, according to the findings presented in Example 3.1.1, we find the corresponding x∗
1  as 

x∗
1 = f(0, x0, u

∗
0(x0)) and if we succeed in finding the optimal control u∗

1(x
∗
1) at time t = 1 we have 

x∗
2 = f(1, x∗

1, u
∗
1(x

∗
1)) and so on. Thus, suppose that xs = x  at time t = s , how shall we choose us  

in the best optimal way? Clearly, if we choose us = u  as the optimal control we achieve the immediate 

benefit f0(s, x, u) and also xs+1 = f(s, x, u) . This consideration simply means that the highest total 

benefit which is possible to get from time s+ 1 to T  is Js+1(xs+1) = Js+1(f(s, x, u)). Hence, the 

best choice of us = u  at time s  is the one that maximizes f0(s, x, u) + Js+1(f(s, x, u)). Consequently, 

we have the following theorem:

Theorem 3.1.1. Let Js(x)  defined through (3.1.6) be the value function for the problem 

		

maximize
u

T∑

t=0

f0(t, xt, ut) xt+1 = f(t, xt, ut)

where ut ∈ U  and x0 are given. Then 

		  Js(x) = max
u∈U

[f0(s, x, u) + Js+1(f(s, x, u))] , s = 0, 1, ..., T − 1 � (3.1.7)

		  JT (x) = max
u∈U

f0(T, x, u) � (3.1.8)

� ☐ 

Theorem 3.1.1 is often referred to as the fundamental equation(s) of dynamical programming and serves 
as one of the basic tools for solving the kind of problems that we considered in Example 3.1.1. As we 
shall demonstrate through several examples, the theorem works “backwards” in the sense that we start 
to find u∗

T (x)  and JT (x) from (3.1.8). Then we use (3.1.7) in order to find JT−1(x)  together with 

u∗
T−1(x) and so on. Hence, all value functions and optimal controls are found recursively.

Example 3.1.2. 

		

maximize
u

T∑

t=0

(xt + ut) xt+1 = xt − 2ut , ut ∈ [0, 1] , x0

Solution: From (3.1.8), JT (x) = maxu(x+ u)  so clearly, the optimal value of u  is u = 1 . 

Hence at time t = T , JT (x) = x+ 1  and u∗
T (x) = 1 .
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Further, from (3.1.7):  
JT−1(x) = maxu[x+ u+ JT (x− 2u)] = maxu[x+ u+ (x− 2u+1)] = maxu[2x− u+1]JT−1(x) = maxu[x+ u+ JT (x− 2u)] = maxu[x+ u+ (x− 2u+1)] = maxu[2x− u+1] . 

Consequently, u = 0  is the optimal choice, thus at t = T − 1 we have JT−1(x) = 2x+ 1  

and u∗
T−1(x) = 0 . 

This implies: JT−2(x) = maxu[x+ u+ JT−1(x− 2u)] = maxu[3x− 3u+ 1]  so again 

u = 0  is the best choice and JT−2(x) = 3x+ 1  and u∗
T−2(x) = 0 .

From the findings above it is natural to suspect that in general 

		  JT−k(x) = (k + 1)x+ 1 , u∗
T−k(x) = 0 , k = 1, 2, ..., T

The formulae is obviously correct in case of k = 1  and by induction we have from (3.1.7) that 

	

JT−(k+1) = max
u

[x+ u+ JT−k(x− 2u)]

= max
u

[x+ u+ (k + 1)(x− 2u) + 1] = max
u

[(k + 2)x− 2(k + 1)u+ 1]

= (k + 2)x+ 1 = [(k + 1) + 1]x+ 1

hence the formulae is correct at time T − (k + 1)  as well. Therefore 

		

JT−k(x) = (k + 1)x+ 1 , u∗
T−k(x) = 0 , k = 1, 2, ..., T

JT (x) = x+ 1 u∗
T (x) = 1

� ☐ 

Example 3.1.3. 

maximize

T∑

t=0

(−u2
t + ut − xt) xt+1 = xt + ut , ut ∈ 〈−∞,∞〉 , x0 maximize

T∑

t=0

(−u2
t + ut − xt) xt+1 = xt + ut , ut ∈ 〈−∞,∞〉 , x0

Solution: From (3.1.8), JT (x) = maxu(−u2 − x+ u) and since the function 

h(u) = −u2 − x+ u h(u) = −u2 − x+ u clearly is concave in u  the optimal choice of u  must be the solution of 

h′(u) = 0, i.e. u = 1/2 . Hence, at time t = T , u∗
T (x) = 1/2  and 

JT (x) = −(1/4)− x+ (1/2) = −x+ (1/4) JT (x) = −(1/4)− x+ (1/2) = −x+ (1/4).
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Further, (3.1.7) gives 
JT−1(x) = maxu[−u2 − x+ u+ JT (x+ u)] = maxu[−u2 − x+ u − (x+ u) + (1/4)] =

maxu[−u2 − 2x+ (1/4)]
 

JT−1(x) = maxu[−u2 − x+ u+ JT (x+ u)] = maxu[−u2 − x+ u − (x+ u) + (1/4)] =
maxu[−u2 − 2x+ (1/4)]

JT−1(x) = maxu[−u2 − x+ u+ JT (x+ u)] = maxu[−u2 − x+ u − (x+ u) + (1/4)] =
maxu[−u2 − 2x+ (1/4)] and again since h1(u) = −u2 − 2x+ (1/4) 

is concave in u  we find that u = 0  is the optimal choice. Thus JT−1(x) = −2x+ (1/4)  and 

u∗
T−1(x) = 0 .

Proceeding in the same way (we urge the reader to work through the details) we find that 
JT−2(x) = −3x+ (1/2) , u∗

T−2(x) = −(1/2)  and JT−3(x) = −4x+ (3/2) , u∗
T−3(x) = −1 

u∗
T−3(x) = −1.

Therefore, it is natural to suppose that 

		  JT−k(x) = −(k + 1)x+ bk

where b0 = 1/4  and u∗
T−k(x) = − k−1

2 , k = 1, 2, ..., T . The formulae is obviously correct 

when k = 0  and by induction 

		

JT−(k+1) = max
u

[−u2 + u− x+ JT−k(x+ u)]

= max
u

[−(k + 2)x− u2 − ku+ bk]

Again, we observe that the function inside the bracket is concave in u  so its maximum occurs at 

u = −(k/2)  which means that the corresponding value function becomes 

		  JT−(k+1)(x) = −[(k + 1) + 1]x+ bk + k2/4 = −[(k + 1) + 1]x+ bk+1

It remains to find bk . The equation bk+1 − bk = k2/4  has the homogeneous solution C · 1k = C . 

Referring to the remark following Example 3.1.4 we assume a particular solution of the form 
pk = (A+ Bk +Dk2)k . Hence, after inserting into the equation and equating terms of equal 

power of k  we find that A = 1/24, B = −(1/8)  and D = 1/12  so the general solution 

becomes bk = C + (1/24)k − (1/8)k2 + (1/12)k3. Finally, using the fact that b0 = 1/4  

which implies that C = 1/4 , we obtain 

		
JT−k(x) = −(k + 1)x+

1

24
(6 + k − 3k2 + 2k3) u∗

T−k(x) = − k − 1

2

� ☐ 
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Example 3.1.4 (Exam exercise, UiO). 

		

maximize
u

T∑

t=0

(xt − ut) xt+1 = utxt , ut ∈ [0, 2] , x0

Solution: JT (x) = maxu(x− u). Clearly, u = 0  is the optimal choice so JT (x) = x  and 

u∗
T (x) = 0 , JT−1(x) = maxu[x− u+ JT (ux)] = maxu[x+ (x− 1)u] . Thus, if x ≥ 1  

we choose u = 2  and if x < 1  we choose u = 0 . Consequently, 

		

JT−1(x) =

{
x+ (x− 1)2 = 3x− 2 if x ≥ 1 and u∗

T−1(x) = 2
x+ (x− 1)0 = x if x < 1 and u∗

T−1(x) = 0

(Note that JT−1(x)  is a convex function which is continuous at x = 1 .)

In order to compute JT−2(x)  we must consider the cases JT−1(x) = 3x− 2  and 

JT−1(x) = x  separately.
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Assuming JT−1(x) = 3x− 2  we obtain 

	
JT−2(x) = max

u
[x− u+ 3ux− 2] = max

u
[x+ (3x− 1)u− 2]

Figure 27: JT−2(x) possibilities.

so if x ≥ 1/3  our optimal choice is u = 2  and if x < 1/3  we choose u = 0 .

In the same way, using JT−1(x) = x , we find 

		
JT−2(x) = max

u
[x− u+ ux] = max

u
[x+ (x− 1)u]

so whenever x ≥ 1 , u = 2  and if x < 1  our best choice is u = 0 .

Hence, the possibilities are 

		

JT−2(x) =






x+ (3x− 1) · 2− 2 = h1(x) = 7x− 4 if x ≥ 1/3
x+ (3x− 1) · 0− 2 = h2(x) = x− 2 if x < 1/3
x+ (x− 1) · 2 = h3(x) = 3x− 2 if x ≥ 1
x+ (x− 1) · 0 = h4(x) = x if x < 1

In Figure 27 we have drawn the graphs of the hi  functions in their respective domains. The point 

of intersection between h1(x)  and h4(x)  is x = 2/3  so clearly, if x ≥ 2/3 , h1(x)  is the largest 

function. If x < 2/3 , h4(x)  is the largest function.
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Consequently, we conclude that 

		

JT−2(x) =

{
7x− 4 if x ≥ 2/3 and u∗

T−2(x) = 2
x if x < 2/3 and u∗

T−2(x) = 0

and again we notice that JT−2(x)  is a convex function which is continuous at x = 2/3 .

Now at last, let us try to find the general expression JT−k(x) . The formulaes for JT−1  and JT−2  

suggest that our best assumption is 

		

JT−k(x) =

{
akx+ bk x ≥ bk

1−ak
= c

x x < bk
1−ak

= c

k = 1, 2, ..., T  and that u∗
T−k(x) = 2 if x ≥ c  and u∗

T−k(x) = 0 if x < c .

The formulae is certainly correct in case of k = 1 . Further, by using the same kind of considerations 

as in the computation of JT−2(x)  and induction there are two separate cases. 

		
JT−(k+1)(x) = max

u
[x− u+ akux+ bk] = max

u
[x+ (akx− 1)u+ bk]

Hence x ≥ 1/ak ⇒ u = 2  and x < 1/ak ⇒ u = 0 , and 

		
JT−(k+1)(x) = max

u
[x− u+ ux] = max

u
[x+ (x− 1)u]

Thus x ≥ 1 ⇒ u = 2  and x < 1 ⇒ u = 0 .

This yields (just as in the JT−2(x)  case) the following 

		

JT−(k+1)(x) =






(2ak + 1)x+ bk − 2 = ak+1x+ bk+1 = g1(x) x ≥ 1/ak
x+ bk = g2(x) x < 1/ak
3x− 2 = g3(x) x ≥ 1
x = g4(x) x < 1

and we recognize that the forms of g1(x)  and g4(x)  are in accordance with our assumption and 

moreover that the point of intersection between g1(x)  and g4(x)  is bk(1− ak)
−1 which also 

is consistent with the assumption.
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Further, ak  obeys the difference equation ak+1 = 2ak + 1 . Therefore, the general solution is 

ak = D · 2k − 1  and since a1 = 3 ⇒ D = 2 we have ak = 2k+1 − 1 . In the same way, 

bk+1 = bk − 2  (see the remark following this example, see also (1.1.2b)) has the general solution 

bk = K − 2k  and since b1 = −2 ⇒ K = 0  we obtain bk = −2k .

Finally, since (1) g1(1) ≥ g3(1)  and ak+1 > 3. (2) g4(x) > g2(x) and (3) g1(x) > g4(x) 

when x > bk+1(1− ak+1)
−1 (recall that ak+1 > 3) we obtain the general solution 

		  JT−k(x) =

{
(2k+1 − 1)x− 2k x ≥ k

2k−1
u∗
T−k = 2

x x < k
2k−1

u∗
T−k = 0

� ☐ 
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Remark 3.1.1: Referring to section 2.1, Exercise 2.1.3, the difference equation 
xt+2 − 5xt+1 − 6xt = t · 2t  has the homogeneous solution C1(−1)t + C26

t  and since the 

exponential function 2t  on the right-hand side of the equation is different from both exponential 

functions contained in the homogeneous solution it suffices to assume a particular solution of the 
form (At + B)2t  in this case. In Example 3.1.3 we had to solve an equation of the form 

xt+1 − xt = at2 . The homogeneous solution is C · 1t = C  but since at2 = at2 · 1t  we have 

the same exponential function on both sides of the equation. Therefore, we must in this case 
assume a particular solution of the form (A + Bt+Dt2)t . In the same way, if xt+1 − xt = bt  

we assume a particular solution (A + Bt)t  and finally, in the case xt+1 − xt = K , assume a 

particular solution A + Bt  (cf. (1.1.2b)). � ☐ 

Exercise 3.1.1. Let a  be a positive constant and solve the problem 

		

max
u

T∑

t=0

(xt + ut) xt+1 = xt − aut , ut ∈ [0, 1] , x0

� ☐ 

Exercise 3.1.2. Solve the problem (Exam Exercise, UiO): 

		

max
u

T∑

t=0

(xt − ut) xt+1 = xt + ut , ut ∈ [0, 1] , x0

(Hint: Use Remark 3.1.1.) � ☐ 

Exercise 3.1.3. Solve the problem: 

		  max
u

T∑

t=0

(xt + 1) xt+1 = utxt , ut ∈ [0, 1] , x0

� ☐ 
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3.2	 The maximum principle (Discrete version)

When t is a continuous variable, most optimization problems are formulated and solved by use of the 
maximum principle which was developed by Russian mathematicians about 60 years ago. The maximum 
principle, sometimes referred to as Pontryagin’s maximum principle, is the cornerstone in the discipline 
called optimal control theory which may be regarded as an extension of the classical calculus of variation. 
An excellent treatment of various aspects of control theory may be found in Seierstad and Sydsæter (1987), 
see also Sydsæter et al. (2005). In this section we shall briefly discuss a discrete version of the maximum 
principle which offers an alternative way of dealing with the kind of problems presented in section 3.1.

Consider the problem 

		  maximize

T∑

t=0

f0(t, xt, ut) , ut ∈ U , U � (3.2.1)

		  xt+1 = f(t, xt, ut) t = 0, 1, ..., T − 1 x0

together with one of the following terminal conditions 

		  xT xT ≥ XT xT = XT � (3.2.2)

Thus, the problem that we consider here is somewhat more general than the one presented in section 
3.1 due to the terminal conditions (3.2.2b,c).

Next, define the Hamiltonian by 

		  H(t, x, u, p) =

{
f0(t, x, u) + pf(t, x, u) t < T
f0(t, x, u) t = T

� (3.2.3)

where p  is called the adjoint function.

Then we have the following:

Theorem 3.2.1 (The maximum principle, discrete version). Suppose that (x∗
t , u

∗
t )  is an optimal 

sequence for problem (3.2.1), (3.2.2). Then there are numbers p0, ..., pT  such that 

		  u∗
t H ′

u(t, x
∗
t , u

∗
t , pt)u u ∈ U � (3.2.4)

Moreover, 

		  pt−1 = H ′
x(t, x

∗
t , u

∗
t , pt) , t = 1, ..., T − 1 � (3.2.5a)

		  pT−1 = f ′
0x(T, x

∗
T , u

∗
T ) + pT � (3.2.5b)
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and to each of the terminal conditions (3.2.2) we have the following transversal conditions 

a)	 pT = 0. � (3.2.6a)

b)	 pT ≥ 0 x∗
T > XT � (3.2.6b)

c)	 pT � (3.2.6c)

� ☐ 

Theorem 3.2.1 gives necessary conditions for optimality. Regarding sufficient conditions we have:

Theorem 3.2.2. Suppose that (x∗
t , u

∗
t )  satisfies all the conditions in Theorem 3.2.1 and in addition 

that H(t, x, u, p) is concave in (x, u)  for every t . Then (x∗
t , u

∗
t )  is optimal. � ☐ 

Proof. Our goal is to show that 

		

K =

T∑

t=0

f0(t, x
∗
t , u

∗
t )−

T∑

t=0

f0(t, xt, ut) ≥ 0
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Introducing the notation f0 = f0(t, x, u), f ∗
0 = f0(t, x

∗, u∗)  and so on, it follows from 

(3.2.3) that 

		

K =

T∑

t=0

(H∗
t −Ht) +

T∑

t=0

pt(ft − f ∗
t )

Now, since H is concave in (x, u) we also have that H −H∗ ≤ H ′
x
∗(x− x∗) +H ′

u
∗(u− u∗). 

Thus 

		

K ≥
T∑

t=0

H ′
u
∗
(u∗

t − ut) +

T∑

t=0

H ′
x
∗
(x∗

t − xt) +

T−1∑

t=0

pt(ft − f ∗
t )

Due to (3.2.4) and the concavity of H the first of the three sums above are equal or larger than 

zero. Indeed, suppose ut ∈ [u0, u1] . If u∗
t ∈ (u0, u1)  then H ′

u
∗ = 0 . If u∗

t = u0 , then H ′
u
∗ ≤ 0  

and u∗
t − ut ≤ 0  and finally, if u∗

t = u1 , H ′
u
∗ ≥ 0  and u∗

t − ut ≥ 0 , hence in all cases 

H ′
u
∗(u∗

t − ut) ≥ 0 .

Regarding the second and the third sum they may by use of (3.2.5a), (3.2.5b) and (3.2.1) be written as 

		

T−1∑

t=0

pt−1(x
∗
t − xt) + (pT−1 − pT )(x

∗
T − xT ) +

T−1∑

t=0

pt(xt+1 − x∗
t+1)

= pT (xT − x∗
T ) = K1

Next, assume xT  free. Then from (3.2.6a), pT = 0  which implies K1 = 0 . If xT ≥ XT , (3.2.6b) 

gives pT ≥ 0  and since xT ≥ XT  we must have K1 ≥ 0  if x∗
T = XT . If x∗

T > XT , pT = 0 , 

thus in either case K1 ≥ 0 . Finally, if xT = XT , K1 = 0 . Therefore, whatever terminal condition 

(3.2.2), K1 ≥ 0  which implies K ≥ 0  so we are done. � ☐ 

Example 3.2.1. Solve the problem given in Example 3.1.2 by use of Theorems 3.2.1 and 3.2.2.

Solution: From (3.2.3) it follows 

		

H(t, x, u, p) =

{
x+ u+ p(x− 2u) t < T
x+ u t = T

Consequently, whenever t < T , H ′
x = 1 + p  and H ′

u = −2p  and if t = T , H ′
x = H ′

u = 1 .
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By use of the results above, (3.2.5a,b) gives 

		  pt−1 = 1 + pt t < T , pT−1 = 1 + pT

and since xT  is free, (3.2.6a) implies that pT = 0  so pT−1 = 1.

The equation pt−1 = 1 + pt  may be rewritten as pt+1 − pt = −1  and its general solution is 

easily found to be pt = C − t . Further, since PT−1 = 1  it follows that 1 = C − (T − 1) . Thus 

C = T  so pt = T − t  and we observe that pt > 0  for every t < T .

From the preceding findings, (3.2.4) may be formulated as 

		

u = u∗
t −2(T − t)u t < T

u = u∗
T 1u t = T

Accordingly, we make the following choices: If t = T , choose u∗
T = 1. If t < T  (recall that 

−2(T − t) < 0 ), choose u∗
t = 0  for every t . Hence, we have arrived at the same conclusion 

as we did in Example 3.1.2.

A final observation is that the Hamiltonian is linear in (x, u)  so H  is also concave in (x, u) . 

Consequently, (x∗
t , u

∗
t )  solves the problem (x∗

t  is found at each t  from the equation 

x∗
t+1 = x∗

t − 2u∗
t  and x0 is given). � ☐ 

Example 3.2.2. Solve the problem 

			 

maximize
u

T∑

t=0

(xt − ut) xt+1 = xt + ut

		  x0 = 1 , xT = XT , 1 < XT < T + 1 , ut ∈ [0, 1] .

Solution: 

		

H(t, x, u, p) =

{
x− u+ p(x+ u) t < T
x− u t = T

Therefore, whenever t < T , H ′
x = 1 + p , H ′

u = −1 + p  and if t = T , H ′
x = 1 and H ′

u = −1 .
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Further, (3.2.5b) gives pT−1 = 1 + pT  and (3.2.5a) gives pt−1 = 1 + pt  if t < T . Clearly (cf. 

our previous example), the latter difference equation has the general solution pt = C − t  so pt  

is a decreasing sequence of points.

From (3.2.4) it follows 

		

u = u∗
t (−1 + pt)u t < T

u = u∗
T −1u t = T

Thus at t = T  the optimal control is u∗
T = 0. In the case t < T  we have that if pt − 1 ≥ 0 , 

then u = u∗
t = 1  and if pt − 1 < 0 , we choose u∗

t = 0 .

First, assume pt − 1 ≥ 0  for all t < T . Then u∗
t = 1  and x∗

t+1 = x∗
t + 1  which has the general 

solution x∗
t = K + t . x∗

0 = 1 ⇒ K = 1 , which means that x∗
t = t + 1 . This implies that 

x∗
T = T + 1 but this is a contradiction since XT < T + 1. Next, assume pt − 1 < 0  for all 

t ≤ T . Then u∗
t = 0 . Thus, x∗

t+1 = x∗
t  which has the constant solution x∗

t = M . Again we 

have reached a contradiction since 1 < XT .
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Finally, let us suppose that there exists a time tc  such that whenever t ≤ tc , then pt − 1 ≥ 0  

and in case of tc < t ≤ T , pt − 1 < 0 .

First, consider the case t ≤ tc . Then x∗
t+1 = x∗

t + 1  so x∗
t = K + t . x0 = 1 ⇒ K = 1 , hence 

x∗
t = t + 1 . If t > tc  we have x∗

t+1 = x∗
t . Hence, x∗

t  is a constant, say x∗
t = M , and since 

x∗
t = XT  it follows that x∗

t = XT .

Thus, 

		

t ≤ tc , pt − 1 = C − t− 1 ≥ 0 x∗
t = t+ 1 u∗

t = 1
t > tc , pt − 1 = C − t− 1 < 0 x∗

t = XT u∗
t = 0

It remains to determine tc  and the constant C . At time tc , C − tc − 1 = 0  so C = tc + 1. 

Therefore, pt = tc − t . Further, from xtc+1 = xtc + utc  we obtain XT = tc + 1 + 1  so 

tc = XT − 2. Consequently, by use of the conditions in the maximum principle we have 

arrived at 

		

x∗
t = t+ 1 u∗

t = 1 0 ≤ t ≤ XT − 2
x∗
t = XT u∗

t = 0 XT − 2 < t ≤ T

and pt = XT − 2− t  for every t . Finally, since H  is linear and concave in (x, u)  it follows 

from Theorem 3.2.2 that we have obtained the solution. � ☐ 

— 

We close this section by looking at one extension only.

If we have a problem which involves several state variables x1, ..., xn  and several controls u1, ..., um  

we may organize them in vectors, say x = (x1, ..., xn), u = (u1, ..., um)  and reformulate problem 

(3.2.1), (3.2.2) as 

		
T∑

t=0

f0(t,xt,ut) � (3.2.7)

subject to xt+1 = f(t,xt,ut) , x0  given, ut ∈ U , and terminal conditions on the form 

		  xi,T xi,T ≥ Xi,T xi,T = Xi,T � (3.2.8)

The associated Hamiltonian may in case of so-called “normal” problems be defined as 

		  H(t,x,u,p) =

{
f0(t,x,u) +

∑n
i=1 pifi(t,x,u) t < T

f0(t,x,u) t = T
� (3.2.9)
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where p = (p1, ..., pn) is the adjoint function.

Then we may formulate necessary and sufficiently conditions for an optimal solution in the same way 
as we did in the one-dimensional case.

Theorem 3.2.3. Suppose that (x∗
t ,u

∗
t )  is an optimal sequence for problem (3.2.7), (3.2.8) with 

Hamiltonian defined as in (3.2.9). Then there exists p  such that 

		  u = u∗
t

m∑

i=1

∂H

∂ui

(t,x∗
t ,u

∗
t ,pt)ui � (3.2.10)

Moreover 

		  pi,t−1 = H ′
xi
(t,x∗

t ,u
∗
t ,pt) , t = 1, ..., T − 1� (3.2.11a)

		  pi,T−1 =
∂f0
∂xi

(T,x∗
t ,u

∗
t ) + pi,T � (3.2.11b)

and 

a)	 pi,T = 0  if the terminal condition is (3.2.9a). 

b)	 pi,T ≥ 0  (= 0 if x∗
i,T > Xi,T ) (3.2.12) 

if the condition is (3.2.9b). 

c)	 pi,T  free if condition (3.2.9c) applies. 

Finally, if H  is concave in (x,u) for each t  then (x∗
t ,u

∗
t )  solves problem (3.2.7), (3.2.8). � ☐ 

As usual, we end with an example.

Example 3.2.3. Solve the problem 

		

max

T∑

t=0

(−u2
t − 2xt) xt+1 =

1

2
yt , yt+1 = ut + yt

x0 = 2 , y0 = 1 , ut ∈ R , xT  free, yT  free.

Solution: Denoting the adjoint functions by p  and q  respectively, the Hamiltonian becomes 

Download free eBooks at bookboon.com



Discrete Dynamical Systems with an 
Introduction to Discrete Optimization

205 

Discrete Time Optimization Problems

		

H(t, x, y, u, p, q) =

{
−u2 − 2x+ 1

2
py + q(u+ y) t < T

−u2 − 2x t = T

which implies 

		

H ′
x = −2 H ′

y =
1
2
p+ q H ′

u = −2u+ q t < T
H ′

x = −2 H ′
y = 0 H ′

u = −2u t = T

Then, from (3.2.11a) it follows that pt−1 = −2 , qt−1 = (1/2)pt + qt  and since xT , yT  is free, 

(3.2.12a) implies pT = qT = 0 . Thus (3.2.11b) reduces to pT−1 = −2  and qT−1 = 0 .

Consequently, pt = −2  for each t  and if we insert this result into the difference equation for q  

we easily obtain the general solution qt = C + t . Moreover, since qT−1 = 0  it follows that 

0 = C + T − 1  so C = 1− T  which means that qt = t− T + 1 .

Now, since the control region is open, it follows from (3.2.10) that H ′
u
∗ = 0 , thus −2u∗

t + qt = 0  

if t < T  and 2u∗
T = 0 whenever t = T . Hence at time t = T , u∗

T = 0 and in case of t < T , 

u∗
t = (1/2)qt = 1/2(t− T + 1) .
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Therefore, the problem is in many respects already solved. Indeed, y∗t  is now uniquely determined 

from the relation y∗t+1 = u∗
t + y∗t  (recall that y0 = 1 ) and x∗

t  is subsequently found from 

x∗
t+1 = (1/2)y∗t . We leave the details to the reader.

Finally, observe that the Hesse determinant of H  (t < T ) may be written as 

		

∣∣∣∣∣∣

0 0 0
0 0 0
0 0 −2

∣∣∣∣∣∣

so clearly (−1)1∆1 ≥ 0 , (−1)2∆2 = 0 , (−1)3∆3 = 0  where ∆i  is all possible principal 

minors of order i  respectively. Consequently H  is concave in (x, y, u) . (At time t = T  the 

result is clear.) � ☐ 

Exercise 3.2.1. Solve Exercises 3.1.2 and 3.1.3 by use of the maximum principle. � ☐ 

3.3	 Infinite horizon problems

In the previous two sections we considered discrete dynamic optimization problems where the planning 
period T  was finite. Our goal here is to study problems where T → ∞ . Such problems are called 

infinite horizon problems. Note that the extension from the finite to the infinite case is by no means 
straightforward. Indeed, since the sum we want to maximize now consists of an infinite number of terms 
we may obviously face convergence problems which were absent in sections 3.1 and 3.2.

There are mainly two different solution methods available (along with some numerical alternatives) when 
we deal with infinite horizon problems. The first method which we will describe is based upon Theorem 
3.1.1 (The fundamental equation of discrete dynamic programming).

Consider the problem 

		  maximize
u

∞∑

t=0

βtf0(xt, ut) � (3.3.1)

subject to xt+1 = f(xt, ut) , β ∈ (0, 1), x0 given, ut ∈ U . Clearly (3.3.1) is an autonomous system 

and it serves in many respects as a “standard” problem in the infinite horizon case. Especially economists 
study systems like (3.3.1). Indeed, they often assume that β = 1/(1 + r) is a discount factor where r  

is the interest rate. Under this assumption, (3.3.1) may be interpreted as maximizing the present value 
of a quantity like a profit or a utility function f0(x, u)  subject to xt+1 = f(xt, ut)  over all times 

regardless of any terminal conditions.
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Now, returning to (3.3.1), in order to ensure convergence of the series, we impose the restriction: 

		  K1 ≤ f0(x, u) ≤ K2 � (3.3.2a)

where K1  and K2  are constants, or 

		  f0(xt, ut) ≤ c θt � (3.3.2b)

where θ ∈ (0, β−1)  and 0 < c < ∞ .

Next (compare with section 3.1), define the (optimal) value function at time t = s  as 

		  Js(x) = max
u

∞∑

t=s

βtf0(xt, ut) = βsJs(x) � (3.3.3)

where 

		  Js(x) = max
u

∞∑

t=s

βt−sf0(xt, ut)� (3.3.4)

Denoting J0(x) = J(x)  we now have the following result:

Theorem 3.3.1 (Bellman’s equation). Consider problem (3.3.1) under the restriction(s) (3.3.2). 
Then the (optimal) value function J0(x) = J(x)  defined through (3.3.3) satisfies 

		  J(x) = max
u

[f0(x, u) + βJ(f(x, u))] � (3.3.5)

� ☐ 

Proof. Since the horizon is infinite, Js+1(x) = Js(x) . Hence, 

		  Js+1(x) = βs+1(x)Js+1(x) = ββsJs(x) = βJs(x)

Now, using the same argument as we did in the last paragraph before Theorem 3.3.1 was 
established it now follows: 

		

J(x) = J0(x) = max
u

[
f0(x0, u0) + max

u1,...

∞∑

t=1

βtf0(xt, ut)

]

= max
u

[f0(x0, u0) + J1(x)] = max
u

[f0(x0, u0) + J1(f(x0, u0))]

= max
u

[f0(x0, u0) + βJ0(f(x0, u0))]
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� ☐ 

Remark 3.3.1. Note the fundamental difference between equations (3.1.7), (3.1.8) in Theorem 
3.1.1 and equation (3.3.5) in Theorem 3.3.1. (3.1.7) relates the value function J  at different times 

T, T − 1, ...  and as we have demonstrated, the (finite) optimization problem could then be solved 

recursively. Regarding (3.3.5), this is not the case. Bellman’s equation is a functional equation and 
there are no general solution methods for such equations. Therefore, often the best one can do is 
to “guess” the appropriate form of J(x)  for a given problem. � ☐ 

Remark 3.3.2. In the proof of Theorem 3.3.1 it is implicitly assumed that the maximum exists at 
each time step. This is not necessarily true but (3.3.5) still holds if we use the supremum notation 
instead of the max notation. � ☐ 

Let us now by way of examples show how Theorem 3.3.1 applies.

Example 3.3.1. Solve the problem 

		

max
u

∞∑

t=0

βt√xtut
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subject to xt+1 = (1− ut)xt , β ∈ (0, 1), u ∈ (0, 1) , x0 given. � ☐ 

Solution. First, consider f0(xt, ut) =
√
xt
√
ut . Clearly, 0 <

√
ut < 1  and since xt+1 < xt  it 

follows that 0 < f0(xt, ut) < x0 . Hence, (3.3.2a) is satisfied.

Next, from Theorem 3.3.1: 

		
J(x) = max

u

[√
xu+ βJ((1− u)x)

]

Assume that J(x) = α
√
x . α > 0 . Then 

		
α
√
x = max

u

[√
x
√
u+ αβ

√
1− u

√
x
]

Thus 

		  α = max
u

[√
u+ αβ

√
1− u

]
� (3.3.6)

Defining g(u) =
√
u+ αβ

√
1− u , the maximum of [ ]  occurs when g′(u) = 0 , i.e. when 

		  u =
1

1 + (αβ)2
� (3.3.7)

and by inserting into (3.3.6) we eventually arrive at 

		  α =
√
(1− β2)−1 � (3.3.8)

Finally, by substituting (3.3.8) back into (3.3.7) we obtain u = 1− β2  so consequently the 

solution is 

		  J(x) = α
√
x =

√
x

1− β2 � (3.3.9)

with associated optimal control u∗ = 1− β2 .

For comparison reasons let us also compute the maximum value of the infinite series in 
another way. From the constraint it follows that 

		  x∗
t+1 = (1− u∗

t )x
∗
t = β2x∗

t

Thus x∗
t = β2tx0 . Consequently, the series becomes 
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∞∑

t=0

β2t
√
1− β2

√
x0 =

√
(1− β2)x0

∞∑

t=0

β2t =

√
x0

1− β2

in accordance with (3.3.9) (x0 = x ). � ☐ 

Example 3.3.2. Assuming J(x) = −αx2, α > 0 , solve the problem: 

		

max
u

∞∑

0

βt(−x2
t − u2

t )

subject to xt+1 = xt + ut , β ∈ (0, 1), u ∈ (−∞,∞), x0 > 0  given. � ☐ 

Solution. From Theorem 3.3.1 

		
J(x) = max

u

[
−x2 − u2 + βJ(x+ u)

]

Thus (due to the assumption) 

−αx2 = max
u

[
−x2 − u2 − αβ(x+ u)2

]
= max

u

[
−x2 − u2 − αβx2 − 2αβxu− αβu2

]

The function g(u) = −u2 − 2αβxu− αβu2  is clearly concave in u , hence [ ]  attains its 

maximum where g′(u) = 0  which gives 

		  u = − αβx

1 + αβ
� (3.3.10)

Consequently, 

		

−αx2 = −x2 − α2β2

(1 + αβ)2
x2 − αβx2 +

2α2β2

1 + αβ
x2 − α3β3

(1 + αβ)2
x2

so after cancelling by x2 and rearranging we eventually arrive at 

		  (1 + αβ)
[
−βα2 + (2β − 1)α+ 1

]
= 0� (3.3.11)

Now, since α > 0 , the only acceptable solution of (3.3.11) is 

		  α =
2β − 1

2β
+

√
1 + 4β2

2β
� (3.3.12)
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Hence, 

		  J(x) = − 1

2β

[
2β − 1 +

√
1 + 4β2

]
x2 � (3.3.13)

It is still no yet clear that we have solved the problem. We must check if (3.3.2a) is satisfied. Clearly, 
f0(xt, yt) = −x2

t − y2t ≤ 0  so if the sum shall be maximized it is natural to assume that 

|xt+1| ≤ |xt| . Hence |xt| ≤ x0 . In the same way |ut+1| ≤ |xt| ≤ x0 . Under this assumption 

(3.3.13) will solve the problem. � ☐ 

Exercise 3.3.1. Solve the problem 

		

max
u

∞∑

0

βt(−xt − ut)

subject to xt+1 =
1
2
xt +

1
2
ut , β ∈ (0, 1), u ≥ 0 , x0 given. � ☐ 

Exercise 3.3.2. Consider the problem 
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max
u

∞∑

0

βt(−u2
txt)

subject to xt+1 = (1− ut)xt , β ∈ 〈0, 1〉 , u ∈ 〈−∞,∞〉 , x0 given. 

a)	 Suppose that J(x) = αx  and use Bellman’s equation to show that 

		
J(x) =

4(1− β)

β2
x

with associated optimal control 

		
u∗ =

2(β − 1)

β

b)	 Try to evaluate the sum of the series in the same way as we did at the end of Example 3.3.1 
and conclude whether the found J(x)  solves the problem or not. � ☐ 

Exercise 3.3.3. Find J(x)  and u∗
t  for the problem 

		

max
u

∞∑

0

βt(−e−2xt)

subject to xt+1 = xt − 2ut , β ∈ (0, 1), u ∈ [−1, 1] , x0 given. � ☐ 

— 

Our next goal is to show how infinite horizon problems may be solved by use of the maximum 
principle.

Consider the problem 

		  maximize
u

∞∑

t=0

f0(t, xt, ut)dt � (3.3.14)

subject to xt+1 = f(t, xt, ut) , x0 given together with one of the following terminal conditions: 

		  lim
T→∞

x(T ) = x � (3.3.15a)

		  limT→∞x(T ) ≥ x � (3.3.15b)
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		  limT→∞x(T ) free� (3.3.15c)

Remark 3.3.3. Recall the definition of limt→∞ : 

		
limt→∞f(t) = lim

t→∞
inf {f(s)|s ∈ [t,→)}

which means that limt→∞f(t) ≥ a  implies that for each ε > 0  there exists a t′  such that 

t > t′  implies that f(t) ≥ a− ε . � ☐ 

Remark 3.3.4. Note that both f0  and f  may depend explicitly on t  in problem (3.3.14), (3.3.15) 

which is in contrast to the case covered by Bellman’s equation. Also note the more general terminal 
conditions (3.3.15a,b,c). � ☐ 

Let the Hamiltonian H be defined just as in section 3.2. Then we have the following:

Theorem 3.3.2 (Maximum principle, infinite horizon). Suppose that ({x∗
t}, {u∗

t})  is an optimal 

sequence for problem (3.3.14), (3.3.15). Then there exist numbers pt  such that for t = 0, 1, 2, ...  

		  H ′
u(t, x

∗
t , u

∗
t , pt)(ut − u∗

t ) ≤ 0 � (3.3.16)

		  pt−1 = H ′
x(t, x

∗
t , u

∗
t , pt) � (3.3.17)

� ☐ 

Theorem 3.3.3. Assume that all conditions in Theorem 3.3.2 are satisfied and moreover, that 
H(t, x, u, p) is concave in (x, u)  for every t  and that 

		  limt→∞pt(xt − x∗
t ) ≥ 0� (3.3.18)

Then ({xt}, {ut}) is optimal. � ☐ 

Example 3.3.3. 

		

max
u

∞∑

t=0

βt√xtut

subject to xt+1 = (1− ut)xt , x0 given, limt→∞ xt = x  where 0 < x < x0, β ∈ (0, 1) and 

u ∈ (0, 1) . � ☐ 
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Solution. Let H(t, xt, ut, pt) = βt√xtut + pt(1− ut)xt . Since u ∈ (0, 1)  is an interior point, 

(3.3.16) simplifies to H ′
u(t, x

∗
t , u

∗
t , pt) = 0 , thus 

		
1

2
βt

√
x∗
t

u∗
t

= ptx
∗
t � (3.3.19)

Further, from (3.3.17) it follows that 

		
1

2
βt

√
u∗
t

x∗
t

= pt−1 − pt(1− u∗
t ) � (3.3.20)

and through division 

		

x∗
t

u∗
t

=
ptx

∗
t

pt−1 − pt(1− u∗
t )

which again implies that pt−1 − pt = 0. Hence, pt = K  and clearly K > 0  (cf. (3.3.19)). 

Further from (3.3.19) 

		

u∗
t =

1

4K2x∗
t

β2t
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Thus 

		

x∗
t+1 =

(
1− 1

4K2x∗
t

β2t

)
x∗
t

which gives 

		
x∗
t+1 − x∗

t = − 1

4K2
β2t

The general solution becomes 

		

x∗
t = C − 1

4K2(β2 − 1)
β2t

and moreover (since x0 is given) 

		

x∗
t = x0 −

1

4K2(1− β2)

(
1− β2t

)

Finally, from the terminal condition limT→∞ xT = x  it follows that 

		
x0 −

1

4K2(1− β2)
= x

so 

		  K2 =
1

4(x0 − x)(1− β2)

Consequently, 

		

x∗
t = x+ (x0 − x)β2t u∗

t =
(x0 − x)(1− β2)β2t

x+ (x0 − x)β2t

Note that if we substitute these solutions back into the original series we obtain 

		

∞∑

t=0

βt
√
(x0 − x)(1− β2)βt =

√
x0 − x

√
1− β2

∞∑

t=0

β2t =

√
x0 − x

1− β2

(This example should be compared with Example 3.3.1.) �  
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Example 3.3.4. 

		

max
u

∞∑

t=0

βt(−e2xt)

subject to xt+1 = xt + 2ut , x0 given, limT→∞xT  free, u ∈ [0, 1], β ∈ (0, 1). � ☐ 

Solution. The Hamiltonian becomes H = −βte−2xt + pt(xt + 2ut)  and evidently H is concave 

in (x, u) . Moreover, (3.3.16), (3.3.17) may be expressed as 

		  2pt(ut − u∗
t ) ≤ 0 � (3.3.21)

and 

		  pt−1 = 2βte−2xt + pt � (3.3.22)

Consequently (from (3.3.21)) we conclude that u∗
t = 1  whenever pt ≥ 0  and u∗

t = 0  if pt < 0 .

First, suppose u∗
t = 1 . Then x∗

t+1 = x∗
t + 2 . Thus x∗

t = C + 2t  and the corresponding pt  may 

be obtained from (3.3.22) as 

		  pt = K +
2βe−2(C+2)

1− βe−4
(βe−4)t � (3.3.23)

and we observe that pt  is a decreasing sequence of points.

Next, assume u∗
t = 0 . Then x∗

t+1 = x∗
t ⇒ x∗

t = M  and (3.3.22) implies that 

		  pt = W +
2βe−2M

1− β
βt � (3.3.24)

and again we recognize that pt  is a decreasing sequence.

We are now left with three possibilities: (A) u∗
t = 1  for every t , (B) u∗

t = 0  for every t , or (C) 

there exists t = t∗  such that u∗
t  takes the value 1 (or 0) if t < t∗  and the value 0 (or 1) if t ≥ t∗ .

Suppose (A). Then u∗
t = 1 , x∗

t = x0 + 2t  and (3.3.23) may be expressed as 

		
pt = K +

2βe−2(x0+2)

1− βe−4
(βe−4)t
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Further, since limT→∞xT  is free, (3.3.18) implies that limT→∞ pT = 0. Thus K = 0  so clearly 

pt > 0 . Hence, possibility (A) satisfies both Theorem 3.3.2 and Theorem 3.3.3.

Next, consider (B). Then u∗
t = 0 , x∗

t = x0  and (3.3.24) becomes 

		
pt = W +

2βe−2x0

1− β
βt

and just as in the treatment of (A), (3.3.18) implies that W = 0 , hence pt > 0  which contradicts 

(3.3.21).

Finally, assume (C), i.e. that there exists a t = t∗  such that for t = 0, 1, ..., t∗ − 1 we have u∗
t = 0 , 

x∗
t = x0  and for t = t∗, t∗ + 1, ... we have u∗

t = 1 , x∗
t = C + 2t . The relation 

x∗
t∗ = x∗

t∗−1 + u∗
t∗−1 now implies C + 2t∗ = x0 + 0. Thus C = x0 − 2t∗ . But then (from 

(3.3.22)) 

		  pt∗−1 = 2βt∗e−2x∗
t + p∗t > 0
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(recall that p∗t > 0 ) which contradicts u∗
t = 0 .

Consequently, x∗
t = x0 + 2t , u∗

t = 1  and 

		
pt =

2βe−2(x0+2)

1− βe−4
(βe−4)t

solves the problem. The maximum value becomes 

		

∞∑

0

βt(−e−2(x0+2t)) = −e−2x0

∞∑

0

(βe−4)t = − e−2x0

1− βe−4

� ☐ 

3.4	 Discrete stochastic optimization problems

In sections 3.1–3.3 we discussed various aspects of discrete deterministic optimization problems. The 
theme in this section is to include stochasticity in such problems, so, instead of assuming a relation of 
the form xt+1 = f(t, xt, ut)  between the deterministic state variable x  and the control u  (cf. (3.1.1), 

see also Theorem 3.1.1), we shall from now on suppose that 

		  Xt+1 = f(t, Xt, ut, Vt+1) X0 = x0 , V0 = v0 � (3.4.1)

where x0 and v0 are given, and ut ∈ U .

The use of capital letters X  and V  indicates that they are stochastic variables. Indeed, X  will in general 

depend on the values of V . V  is a random variable which may be interpreted as environmental noise 

or some other kind of disturbances. Regarding V , we may in some cases know the distribution of V  

explicitly, for example that Vt+1 , is identically normal distributed with expected value E(Vt+1) = µ . 

Alternatively, we may know the probability P (Vt+1 = v) , for example P (Vt+1 = 1) = p , and a third 

possibility is that we have a knowledge of the conditional probability P (Vt+1 | Vt). (Later, when we 

turn to examples, all cases mentioned above will be considered.) A final comment is that the control u  

may depend on both X  and V , thus ut = ut(Xt, Vt)  and from now on we shall refer to ut  as a Markov 

control. We further assume that we actually can observe the value of Xt  before we choose ut . (If we 

have to choose ut  before observing the value of Xt , that may lead to a different value of the optimal 

Markov control.)

Download free eBooks at bookboon.com



Discrete Dynamical Systems with an 
Introduction to Discrete Optimization

219 

Discrete Time Optimization Problems

Now, referring to section 3.1, in the deterministic case we studied optimization problems of the form 

		

max
u

T∑

t=0

f0(t, xt, ut)

subject to xt+1 = f(t, xt, ut)  where ut ∈ U, x0 given. In the stochastic approach which we consider 

here, it does not make sense to maximize f0  at each time t , so instead we have to maximize the 

expected value of f0  at each time. Consequently, we study the problem 

		  maximize
u0,u1,...,uT

E

(
T∑

t=0

f0(t, Xt, ut, Vt)

)

� (3.4.2)

subject to Xt+1 = f(t, Xt, ut, Vt+1)  where X0 = x0 , V0 = v0  and ut ∈ U .

Define 

		  Js(t, xt, vt) = max
u

E

(
T∑

t=s

f0(s,Xs, us(Xs, Vs) | xt, vt

)

� (3.4.3)

Then, somewhat roughly, we have by the same argument that eventually lead to Theorem 3.1.1 the 
following:

Theorem 3.4.1. Let Js(t, xt, vt)  defined through (3.4.3) be the value function for problem (3.4.2). 

Then 

		
J(t− 1, xt−1, vt−1) = max

ut−1

{f0(t− 1, xt−1, ut−1) + E [J(t, Xt, Vt)]}

		  = max
ut−1

{f0(t− 1, xt−1, ut−1)

		  +E [J(t, f(t− 1, xt−1, ut−1, Vt), Vt)]}� (3.4.4a)

and 

		  J(T, xT , vT ) = J(T, xT ) = max
uT

f0(T, xT , uT )� (3.4.4b)

� ☐ 
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Remark 3.4.1. Note that Theorem 3.4.1 works backwards in the same way as Theorem 3.1.1. First, 
we find the optimal Markov control u∗

T (xT , vT )  and the associated value function J(T, xT )  

from (3.4.4b). Then, through (3.4.4a) the Markov controls and corresponding optimal value 
functions at times T − 1, T − 2, ...  are found recursively. � ☐ 

Example 3.4.1. Solve the problem 

		

max
u

E

(
T∑

t=0

(ut +Xt)

)

subject to Xt+1 = Xt − 2ut + Vt+1, where ut ∈ [0, 1] , x0 given, and Vt+1 ≥ 0  is Rayleigh 

distributed with probability density h(v) = (v/θ2) exp[−v2/2θ2]  and θ > 0 .

Solution: From (3.4.4b): J(T, xT ) = maxu(x+ u) so obviously we choose u = 1 . Hence: 

J(T, xT ) = xT + 1  and u∗
T = 1.
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Now, using the fact that E(Vt+1) = θ
√

π/2 = K  it follows from (3.4.4a): 

		

J(T − 1, x) = max
u

{x+ u+ E(Xt + 1)}

= max
u

{x+ u+ x− 2u+K + 1} = max
u

{2x− u+K + 1}

so clearly, the optimal Markov control is 0 which implies 

		  J(T − 1, xT−1) = 2xT−1 + 1 +K and u∗
T−1 = 0

Proceeding in the same way, (3.4.4a) gives 

		

J(T − 2, x) = max
u

{u+ x+ E(2XT +K + 1)}

= max
u

{u+ x+ 2(x− 2u+K) +K + 1}

= max
u

{3x− 3u+ 3K + 1}

Again, the optimal Markov control is u = 0 , so consequently: 

		  J(T − 2, xT−2) = 3xT−2 + 3K + 1 u∗
T−2 = 0

From the findings above it is natural to suspect that in general: 

		  J(T − k, x) = (k + 1)x+ αkK + 1 α0 = 0

The formulae is certainly correct in case of k = 0  and by induction 

		
J(T − k, x) = (k + 1)x+ αkK + 1 α0 = 0

Clearly, the optimal Markov control is u = 0  so 

		  J(T − (k + 1), x) = (k + 2)x+ (αk + k + 1)K + 1 = (k + 2)x+ αk+1K + 1

which proves what we want. αk  obeys the difference equation αk+1 − αk = k + 1 . The 

homogeneous solution is C , and by assuming a particular solution of the form (Ak + B)k  

together with the fact that α0 = 0 it follows that αk = (k/2)(k + 1) . Thus 

		  J(T, xT ) = xT + 1 u∗
T = 1

		
J(T − k, xT−k) = (k + 1)xT−k +

1

2
(k2 + k)K + 1 u∗

T−k = 0, k ≥ 1
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or alternatively: 

		  J(T, x) = x+ 1 u∗
T = 1

		
J(t, x) = (T − t+ 1)x+

1

2
(T − t)(T − t + 1)K + 1 u∗

t = 0, t < T

� ☐ 

Example 3.4.2. Solve the problem: 

		

max
u

E

(
T−1∑

t=0

−u2
t −X2

T

)

subject to Xt+1 = (Xt + ut)Vt+1 . Vt+1 ∈ {0, 1} , P (Vt+1 = 1) = 1
2 , P (Vt+1 = 0) = 1

2 , 

xt > 0, x0 given and u ∈ R . (Note that an alternative way of expressing the probabilities above 

is to say that Xt+1 = Xt + ut  with probability 1/2 and Xt+1 = 0  with probability 1/2.)

Solution: 

		
J(T, xT ) = max

u
(−x2

T ) = −x2
T u∗

T arbitrary

	

J(T − 1, x) = max
u

{
−u2 + E(−X2

T )
}
= max

u

{
−u2 − (x+ u)2 · 1

2
+O2 · 1

2

}

= max
u

{
−u2 − 1

2
(x+ u)2

}

Denoting g1(u) = −u2 − (1/2)(x+ u)2, the equation g′1(u) = 0  gives u = −(1/3)x . 

(Note that g1 is concave.) Thus 

		
J(T − 1, x) = −

(
−1

3
x

)2

− 1

2

(
2

3
x

)2

= −1

3
x2 and u∗

T−1 = −1

3
x

In the same way: 

	

J(T − 2, x) = max
u

{
−u2 + E

(
−1

3
X2

T−1

)}

= max
u

{
−u2 − 1

3

[
(x+ u)2 · 1

2
+O2 · 1

2

]}
= max

u

{
−u2 − 1

6
(x+ u)2

}
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Letting g2(u) = −u2 − (1/6)(x+ u)2, we easily obtain the solution of g′2(u) = 0  as 

u = −(1/7)x , hence 

		
J(T − 2, x) = −

(
−1

7
x

)2

− 1

6

(
x− 1

7
x

)2

= −1

7
x2 u∗

T−2 = −1

7
x

Now, assume that J(T − k, x) = −αkx
2  where α0 = 1. Then: 

		

J(T − (k + 1), x) = max
u

{
−u2 + E

(
−αkX

2
T−k

)}

= max
u

{
−u2 − αk

[
(x+ u)2 · 1

2
+O2 · 1

2

]}

= max
u

{
−u2 − 1

2
αk(x+ u)2

}
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The equation g′(u) = 0  (where g(u) is the concave function inside the { }  bracket) has the 

solution u = −αk(2 + αk)
−1x . Thus, 

		

J(T − (k + 1), x) = −
(
− αk

2 + αk

x

)2

− 1

2
αk

(
x− αk

2 + αk

x

)2

= − αk

2 + αk

x2 = −αk+1x
2

which is in accordance with the assumption. Consequently, 

		  J(T, xT ) = −x2
T u∗

T arbitrary

		
J(T − k, xT−k) = −αkx

2
T−k u∗

T−k = − αk

2 + αk

x k ≥ 1

where 

		
αk+1 =

αk

2 + αk

� ☐ 

In the previous examples we have considered the cases that Vt+1  is from a known distribution (Example 

3.4.1) and P (Vt+1 = v)  is known (Example 3.4.2). In the next example we present the solution of a 

problem found in Sydsæter et al. (2005), which incorporates conditional probabilities.

Example 3.4.3. Solve the problem 

		

maxE

(
T−1∑

t=0

−u2
t −X2

T

)

subject to Xt+1 = XtVt+1 + ut , x0 > 0  given, ut ∈ R , Vt+1 ∈ {0, 1} , 

P (Vt+1 = 1 | Vt = 1) = 3
4  , P (Vt+1 = 1 | Vt = 0) = 1

4 .

Solution: First, note that the conditional probabilities above also imply 
P (Vt+1 = 0 | Vt = 1) = 1/4  and P (Vt+1 = 0 | Vt = 0) = 3/4 . Clearly: 

		
J(T, xT ) = max

u
(−x2

T ) = −x2
T u∗

T arbitrary
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Regarding J(T − 1, xT−1, vT−1)  there are two cases to consider, the case vT−1 = 1  and the 

case vT−1 = 0 . The former yields: 

		

J(T − 1, x, 1) = max
u

{
−u2 + E(−x2

T )
}

= max
u

{
−u2 − 3

4
(x · 1 + u)2 − 1

4
(x · 0 + u)2

}

		

= max
u

{
−5

4
u2 − 3

4
(x+ u)2

}

Defining g1(u) = −(5/4)u2 − (3/4)(x+ u)2 , the solution of g′1(u) = 0  is u = −(3/8)x  

which after some algebra gives 

		
J(T − 1, xT−1, 1) = −15

32
x2
T−1 u∗

T−1 = −3

8
xT−1

In the same way, the latter yields 

		
J(T − 1, xT−1, 0) = − 7

32
x2
T−1 u∗

T−1 = −1

8
xT−1

Now, assume: 

		  J(T − k, x, 1) = −αkx
2 J(T − k, x, 0) = −βkx

2 � (3.4.5)

Then, by induction: 

	

J(T − (k + 1), x, 1) = max
u

{
−u2 − αk

[
(x · 1 + u)2 · 3

4

]
− βk

[
(x · 0 + u)2 · 1

4

]}

= max
u

{
−u2 − 3

4
αk(x+ u)2 − 1

4
βku

2

}

Letting g(u) = −u2 − (3/4)αk(x+ u)2 − (1/4)βku
2 , the equation g′(u) = 0  implies 

u = −3αk(3αk + βk + 4)−1x . Substituting back into J(T − (k + 1), x, 1) then gives after 

some algebra 

		
J(T − (k + 1), x, 1) = −3

4

αk

3αk + βk + 4
(βk + 4)x2 = −αk+1x

2
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and 

		
u∗
T−(k+1)(1) = − 3αk

3αk + βk + 4
xT−(k+1)

By applying the same technique as above: 

		

J(T − (k + 1), x, 0) = max
u

{
−u2 − 1

4
αk(x · 1 + u)2 − 3

4
βk(x · 0 + u)2

}

= max
u

{
−u2 − 1

4
αk(x+ u)2 − 3

4
βku

2

}

and we easily conclude that u = −αk(αk + 3βk + 4)−1x  is the optimal Markov control. 

Inserting back into J(T − (k + 1), x, 0) gives 

		

J(T − (k + 1), x, 0) = − αk(3βk + 4)

4(αk + 3βk + 4)
x2 = −βk+1x

2

and 

		
u∗
T−(k+1)(0) = − αk

αk + 3βk + 4
xT−(k+1)
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Finally, since α0 = β0 = 1, we may by iteration find αk, βk  for any k < T  through the equations 

		

αk+1 =
3αk(βk + 4)

4(3αk + βk + 4)
βk+1 =

αk(3βk + 4)

4(αk + 3βk + 4)

so the solution is given by (3.4.5) and associated optimal Markov controls.	� ☐ 

Exercise 3.4.1. Solve the problem 

		

max
u

E

(
T∑

t=0

Xt

)

subject to Xt+1 = utXtVt+1 , where ut ∈ [0, 1] , x0 given, P (Vt+1 = 1) = 1/3 , 

P (Vt+1 = 0) = 2/3 . � ☐ 

Exercise 3.4.2. Solve the problem 

		

max
u

E

(
T∑

t=0

βt(−u2
t −X2

t )

)

subject to Xt+1 = Xt + ut + Vt+1, β ∈ 〈0, 1〉 , ut ∈ R , x0 given, Vt+1  is normal distributed 

where E(Vt+1) = µ = 0  and Var(Vt+1) = σ2 > 0 . 

Hint: referring to Remark 3.4.3, E(V 2
t+1) = v . � ☐ 

Exercise 3.4.3. Solve the problem 

		

max
u

E

(
T∑

t=0

(Xt − ut)

)

subject to Xt+1 = Xt + ut + Vt+1, ut ∈ [0, 1] , x0 given, Vt+1 ≥ 0  is exponential distributed 

and E(Vt+1) = 1/λ , λ > 0  for all t . � ☐ 

Exercise 3.4.4. Show that the solution of the problem 

		

max
u

E

(
T∑

t=0

Xt

)
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subject to Xt+1 = utXtVt+1 , ut ∈ [0, 1] , Vt+1 ∈ {0, 1} , P (Vt+1 = 1) | Vt = 1) = 2/3, 

P (Vt+1 = 1 | Vt = 0) = 1/3  may be written as 

		

J(t, x, 1) =

(
−2

(
2

3

)T−t

+ 3

)
x J(t, x, 0) =

(
−1

2

(
1

3

)T−t

+
3

2

)
x

� ☐ 

— 

Next, let us briefly comment on the case T → ∞ , i.e. the infinite horizon case. As explained in 

section 3.3, the extension from T  finite to T  infinite is by no means straightforward (mainly due to 

convergence problems). Therefore, adopting the same strategy as in section 3.3 we now restrict the 
analysis to the autonomous problem 

		  max
u

E

( ∞∑

t=0

βtf0(Xt, ut(Xt, Vt)

)

� (3.4.6)

subject to Xt+1 = f(Xt, ut(Xt, Vt), Vt+1) , x0 given. β ∈ (0, 1), ut ∈ R  and where all probabilities 

P (Vt+1 = v)  are time independent. Moreover, cf. (3.3.2a), we also impose the boundedness condition 

K1 ≤ f0(x, u) ≤ K2.

Now, define (se Remark 3.3.2) 

		  J(s, xs, vs) = supE

( ∞∑

t=s

βtf0(Xt, u(Xt, Vt)

)
� (3.4.7)

Then, (roughly) by using the same kind of arguments that lead to Theorem 3.3.1 we may formulate the 
stochastic version of the Bellman equation as:

Theorem 3.4.2. Consider problem (3.4.6) and let J(s, xs, vs) be defined through (3.4.7). Then 

		  J(x, v) = max
u

{f0(x, u) + βE(J(X1, V1))} � (3.4.8)

where J(x, v) = J(t = 0, x, v)  and X1 = f(X, u, V1) . � ☐ 

Remark 3.4.2. Just as in section 3.3, note the fundamental difference between (3.4.4a,b) and (3.4.8). 
The latter is a functional equation which may not be solved recursively. Therefore, often the best 
we can do is to “guess” the appropriate form of J(x, v)  in (3.4.8). � ☐ 

Download free eBooks at bookboon.com



Discrete Dynamical Systems with an 
Introduction to Discrete Optimization

229 

Discrete Time Optimization Problems

Remark 3.4.3. Before we turn to an example, let us briefly state a useful result. Suppose that V is 
a continuous stochastic variable with expected value 

		

E(V ) =

∫ ∞

−∞
vf(v)dv = µ

where f(v)  is the probability density. Then: 

		

Var(V ) =

∫ ∞

−∞

(v − µ)2f(v)dv

=

∫ ∞

−∞

v2f(v)dv − 2µ

∫ ∞

−∞

vf(v)dv + µ2

∫ ∞

−∞

f(v)dv

=

∫ ∞

−∞

v2f(v)dv − µ2 = E(V 2)− µ2

Thus, 

		  E(V 2) = Var(V ) + µ2 � (3.4.9)

� ☐ 

Example 3.4.4 (Stochastic extension of Example 3.3.2). Find J(x)  for the problem 
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max
u

E

( ∞∑

t=0

βt(−u2
t −X2

t )

)

subject to Xt+1 = Xt + ut + Vt+1, where β ∈ (0, 1), x0 given, ut ∈ R  and Vt+1  is normal 

distributed with expected value E(Vt+1) = µ = 0  and variance Var(Vt+1) = σ2 = v .

Solution: Referring to the deterministic case (Example 3.3.2), we supposed a solution on the form 
J(x) = −αx2. Regarding our problem here, we shall assume that J(x)  is on the form 

J(x) = −ax2 + b  since E(X2
t+1)  will contain terms where neither X  nor u  will occur. Thus, 

from (3.4.8): 

		

−ax2 + b = max
u

{
−u2 − x2 + βE

[
−a(X + u+ V1)

2 + b
]}

= max
u

{
−u2 − x2 − βaE

[
(X + u)2 − 2(X + u)V1 + V 2

1

]
+ βb

}

Now, since E(V1) = 0 , it follows from (3.4.9) that E(V 2
1 ) = v . Hence, 

		  −ax2 + b = max
u

{
−u2 − x2 − βa(x+ u)2 − βav + βb

}

Clearly, u = −βa(1 + βa)−1x  maximizes the expression within the bracket, so 

		
−ax2 + b = − 1 + 2βa

1 + βa
x2 − βav + βv

Equating terms of equal powers yields 

		  −a(1 + βa) = −(1 + 2βa) � (3.4.10a)

		  b = −βav + βb � (3.4.10b)

The solution of (3.7.10a) is easily found to be 

		
a =

−(1− 2β) +
√

1 + 4β2

2β

which implies 

		
b = − βav

1− β
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Consequently 

		

J(x) = −
[
−(1 − 2β) +

√
1 + 4β2

2β

]
x2 − v

1− β

[
−(1 − 2β) +

√
1 + 4β2

2

]

with associated optimal Markov control u = −βa(1 + βa)−1x . � ☐ 

Exercise 3.4.5. Find J(x, v)  for the problem: 

		

max
u

E

( ∞∑

t=0

βt(−e−2Xt)

)

subject to Xt+1 = Xt − 2ut + Vt+1. β ∈ (0, 1), x0 given, ut ∈ [−1, 1] , Vt+1 ≥ 0  is 

identically distributed with E(e−2tVt+1) < ∞ . � ☐ 

Now, referring to Example 3.4.4 as well as Exercise 3.4.5, it is still not clear if the optimal value functions 
J(x)  which we found really solve the given optimization problems. The problem is the boundedness 

condition. Neither of the f0(x, u)  functions from the example nor the exercise satisfy 

K1 ≤ f0(x, u) ≤ K2 (cf. Theorem 3.4.2). Still, there exists a few ways to show that J(x)  can solve a 

given problem even if the boundedness condition fails (Bertsekas, 1976; Hernández–Lerma, 1996; 
Sydsæter et al., 2005). One way to proceed is to argue along the following line:

Suppose that f0(x, u) ≤ 0  and β ∈ (0, 1) (which is the case both in Example 3.4.4 and Exercise 3.4.5). 

Moreover, assume that we have succeeded in solving the corresponding finite horizon problem (i.e. T  

finite), and that U  is compact and f0(x, u), f(x, u)  are continuous functions of (x, u) . Denote the 

optimal value function in the finite case by J(0, x, v, T ) . Then limT→∞ J(0, x, v, T )  (if it exists! ) is 

the optimal function which solves the infinite horizon problem. We shall now demonstrate (partly as 
an exercise) that J(x)  found in Exercise 3.4.5 really solves the given optimization problem.

The optimal value function of the infinite horizon problem given in Exercise 3.4.5 is found to be 

	
J(x) = −ae−2x = − 1

1− βKe−4
e−2x

where K = E(e−2Vt+1) .
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Now, consider the corresponding finite horizon problem 

	

max
u

E

(
T∑

t=0

βt(−e−2Xt)

)

We leave it as an exercise to the reader to show that the solution of this problem is: 

	 J(T, x) = −βT e−2x

u∗
T  arbitrary and J(T − k, x) = −βT−kαke

−2x , u∗
T−k = 1 , where αk+1 = 1 + βKe−4αk  and 

αT = 1 , or alternatively 

	 J(t, x) = −βtαte
−2x

where αt−1 = 1 + βKe−4αt . Clearly, J(0, x, T ) = −α0e
−2x  (and α0 = α0(T )). Our goal is to 

find limT→∞ J(0, x, T )  which is the same as finding limT→∞(−α0(T ))  which again is the same 

as finding limt→−∞(−αt) when T is fixed.

Note that (−αt−1) < (−αt)  and when t → −∞ , α = 1 + βKe−4α , thus 
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α =

1

1− βKe−4

which is nothing but the quantity a  in J(x)  obtained in the infinite horizon problem. Consequently, 

the optimal value function found in Exercise 3.4.5 really solves the optimization problem.
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Referring to both the linear and nonlinear population models presented in Part I and Part II, most of them 
share the common feature that they contain one or several parameters. Hence, if we want to apply such 
models on a concrete species (for example a fish stock) we have to use available data in order to estimate 
these parameters. In this appendix we shall briefly discuss how such estimations may be carried out.

Suppose that we know the size of a population x  at times t = 0, 1, 2, . . . , n , i.e. that x0, x1, . . . , xn  

is known, how do we for example estimate the growth rate r  if the population obeys the difference 

equation 

		  xt+1 = xte
r(1−xt) � (A.1)

(the Ricker model)?  The usual way to perform such an estimation is first to convert the deterministic 
model like (A.1) into a stochastic model. Now, following Dennis et al. (1995), ecologists draw a major 
distinction between different classes of factors which may influence the values of vital parameters 
and thereby impose stochastic variations in ecological models. Demographic factors such as intrinsic 
chance of variation of birth and death processes among population inhabitants are factors that occur 
at an individual level. Environmental factors, chance variations from extrinsic factors occur mainly at 
population (or age or stage class) level.

Moreover, it appears as a general ecological principle that stochastic fluctuations due to the latter type 
of factors seem to affect population persistence in a much more serious way than those of demographic 
type (Dennis et al., 1991).

Now, as is true for the analysis of almost all population models in Part I and Part II, we typically were 
interested in the population as a whole, not at individual levels. Thus, for our purposes we want to build 
stochasticity into models like (A.1) of the environmental type. Therefore, we consider the stochastic 
version of (A.1) 

		  xt+1 = xte
r(1−xt)eEt � (A.2)

where Et  is a normal distributed stochastic variable with expected value µ = 0  and variance σ2 .

(Recall that if Z  is normal distributed with expected value µ  and variance σ2  the probability density 

is given by 

		  f(z) =
1√
2π

1

σ
exp

{
−1

2

(
z − µ

σ

)2
}

� (A.3)
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and if Z1, . . . , Zn  are all normal distributed stochastic variables with expected values and variances 

µ1, . . . , µn  and σ2
1 , . . . , σ

2
n  respectively we may express the joint probability density function as 

		  f(z1, . . . , zn) =
1√
2π

n

1√
|Σ|

exp

{
−(z− µ)TΣ−1(z− µ)

2

}
� (A.4)

where (z− µ) = (z1 − µ1, . . . , zn − µn)  and the variance covariance matrix Σ  is given by 

		

Σ =





σ2
1 Cov(Z1, Z2) · · · · · · Cov(Z1, Zn)

Cov(Z1, Z2) σ2
2 · · · · · · Cov(Z2, Zn)

Cov(Z1, Zn) Cov(Zn, Z2) σ2
n





� (A.5)

Now, before we turn to (A.1), (A.2) let us first study the estimation problem in a more general 
context.

Consider 

		  x1,t+1 = f1(x1,t, ..., xn,t, θ1, ..., θq)e
E1,t

		  x2,t+1 = f2(x1,t, ..., xn,t, θ1, ..., θq)e
E2,t

			   � (A.6)

		  xn,t+1 = fn(x1,t, ..., xn,t, θ1, ..., θq)e
En,t

Hence, there are n  state variables x = (x1, ..., xn)
T , q  parameters θ = (θ1, ..., θq)  and 

Et = (E1,t, ..., En,t)
T  is a stochastic “environmental noise” vector which is multivariate normal 

distributed with expected value 0  and variance, covariance matrix 
∑

. (If there is one variable only, all 

covariance terms vanish so we are left with µ = 0  and variance v = σ2 .)

Now, defining 

Mt+1 = (ln x1,t+1, ..., lnxn,t+1)
T Mt = (ln x1,t, ..., ln xn,t)

T

we may reformulate (A.6) on a logarithmic scale as 

		  Mt+1 = h(Mt) + Et � (A.7)
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where h(Mt) = (ln f1(x1,t, ..., xn,t, θ1, ..., θq), ..., ln fn(x1,t, ..., xn,t, θ1, ..., θq))
T  and we may 

observe that the environmental noise is added to the original model on a logarithmic scale.

Next, assuming that yt , t = 0, ..., k  is k + 1 consecutive time observations of xt , it follows that the 

conditional expected value E(Mt+1 | xt = yt)  may be expressed as 

		  E(lnxt+1 | xt = yt) = ln f(yt, θ) = h(mt) = ht � (A.8)

Hence, referring to Tong (1995), (A.8) expresses that the nonlinear deterministic skeleton xt+1 = f(xt, θ) 

is preserved on a logarithmic scale.

The likelihood function for our problem now becomes 

		  I(θ,Σ) =

k∏

t=1

p(mt | mt−1) � (A.9)

(where m  (as in (A.8)) contains the observation values y ) and we may interpret I  as a measure of the 

likelihood of the observations at each time as functions of the unknown parameters.
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Now, following Dennis et al. (1995), the probability p(mt | mt−1)  is the joint probability density for 

Mt  conditional of Mt−1 = mt−1 . It is a multivariate normal probability density which according to 

(A.8) possesses the expected value E(Mt) = h(mt−1) and variance, covariance matrix given by Σ . 

Therefore, by use of (A.8) and (A.4) we may express the joint probability distribution as 

		  p(mt | mt−1) =
1

(2π)n/2
√

|Σ|
exp

{
(mt − ht−1)

TΣ−1(mt − ht−1)

−2

}
� (A.10

The maximum likelihood parameters are now obtained by computing zeros of derivatives of (A.9) with 
respect to θ1, ..., θq  and Σ . Moreover, calculations are simplified if we first apply the logarithm. Thus, 

instead of computing the derivatives directly from (A.9) we compute the derivatives of 

		  ln I(θ,Σ) =
k∑

t=1

ln p(mt | mt−1) � (A.11)

		  = − nk

2
ln 2π − k

2
ln |Σ| − 1

2

k∑

t=1

(mt | ht−1)
TΣ−1(mt | ht−1)

Estimates obtained from (A.9), (A.11) are often referred to as maximum likelihood estimates. Evidently, 
the log-likelihood function (A.11) is complicated in case of several state variables x1, ..., xn . Therefore, 

most estimations must be done by use of numerical algorithms. One such frequently used algorithm 
which has several desired statistical properties is the Nelder–Mead simplex algorithm which is described 
in Press et al. (1992). Here, we shall concentrate on cases where it is possible to estimate parameters 
without using numerical methods.

To this end, consider the stochastic difference equation with one state variable 

		  xt+1 = f(xt, θ)e
Et � (A.12)

which we may interpret as the stochastic version of almost all nonlinear maps considered in Part I. Now, 
since n = 1 , the variance, covariance matrix Σ  degenerates to only one term, namely the variance v . 

(We prefer v  instead of σ2  for notation convenience.) If we in addition have k + 1 observation points 

yt  of xt  at times 0, 1, ..., k , the log- likelihood function (A.11) may be cast in the form 

		  ln I(θ1, ..., θq, v) = − k

2
ln 2π − k

2
ln v − 1

2v

k∑

t=1

u2
t (θ1, ..., θq) � (A.13)

where the log-residuals ut = ln yt − ln f(yt−1, θ1, ..., θq) .
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The maximum likelihood parameter estimators are then obtained from 

		
∂ ln I

∂θi
= − 1

v

k∑

t=1

ut(θ1, ..., θq)
∂ut

∂θi
(θ1, ..., θq) = 0 � (A.14a)

		  ∂ ln I

∂v
= − k

2v
+

1

2v2

k∑

t=1

u2
t (θ1, ..., θq) = 0 � (A.14b)

or equivalently (by use of the definition of ut ) from 

		
k∑

t=1

ut(θ1, ..., θq)

∂f
∂θi

(yt−1, θ1, ..., θq)

f(yt−1, θ1, ..., θq)
= 0 � (A.15a)

where i = 1, 2, ..., q  and 

		  v =
1

k

k∑

t=1

u2
t (θ1, ..., θq) � (A.15b)

Example A.1. Suppose that we have observations yt  of xt  at times t = 0, 1, ..., k  (i.e. k + 1 

observations yt ) and estimate r  in the nonlinear equation (A.1).

Solution: Consider the stochastic version of (A.1) 

		  xt+1 = f(xt, r)e
Et = xte

r(1−xt)eEt

(which is nothing but (A.2)). The log-residuals become 

		  ut = ln yt − ln(yt−1e
r(1−yt−1)) = ln yt − ln yt−1 − r(1− yt−1)

Thus, according to (A.15a) 

		

k∑

t=1

{ln yt − ln yt−1 − r(1− yt−1)}
yt−1(1− yt−1)e

r(1−yt−1)

yt−1er(1−yt−1)
= 0

or 

		

k∑

t=1

{ln yt − ln yt−1 − r(1− yt−1)} (1− yt−1) = 0

from which we obtain 

		  r =

∑k
t=1(1− yt−1) ln

(
yt

yt−1

)

∑
(1− yt−1)2

� (A.16)
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The variance v  may be estimated from (A.15b) as 

		

v =
1

k

k∑

t=1

u2
t (θ1, ..., θq) =

1

k

k∑

t=1

{
ln

(
yt
yt−1

)
− r(1− yt−1)

}2

after we have first estimated r  from (A.16). � ☐ 

Example A.2. Suppose that we have observations yt  of xt  at consecutive times t = 0, ..., k  

and estimate the parameters F  and r  in the equation 

		  xt+1 = f(xt, F, r) = Fxte
−rxt � (A.17)

Solution: The stochastic version of (A.17) becomes 

		  xt+1 = Fxte
−rxteEt

so the log-residuals may be expressed as 

		

ut = ln yt − ln(Fyt−1e
−ryt−1) = ln

(
yt
yt−1

)
− lnF + ryt−1
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Hence equation(s) (A.15a) may be cast in the form 

		

k∑

t=1

{
ln

(
yt
yt−1

)
− lnF + ryt−1

}
yt−1e

−ryt−1

Fyt−1e−ryt−1
= 0

		

k∑

t=1

{
ln

(
yt
yt−1

)
− lnF + ryt−1

}
(−F )y2t−1e

−ryt−1

Fyt−1e−ryt−1
= 0

or equivalently 

		  k lnF −Ar = B � (A.18a)

		  A lnF − Cr = D � (A.18b)

where 

		

A =
k∑

t=1

yt−1 , B =
k∑

t=1

ln

(
yt
yt−1

)

C =

k∑

t=1

y2t−1 , D =

k∑

t=1

yt−1 ln

(
yt
yt−1

)

Consequently, from (A.18) 

		
lnF =

AD − BC

A2 − kC
r =

kD − AB

A2 − kC

Finally, (A.15b) implies 

		

v =
1

k

k∑

i=1

{
ln

(
yt
yt−1

)
− lnF + ryt−1

}2

=
1

k

{
G− 2B lnF + 2rD − k(lnF )2 − 2rA lnF + r2C

}

where 

		

G =

k∑

i=1

ln2

(
yt
yt−1

)

� ☐ 
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Remark A.1. Cushing (1998) considers a similar model as (A.17) where he generates data points 
at 60 consecutive times. There, he obtains estimates of parameters b  and c  (corresponding to F 

and r  in (A.17)) which accurately recover the correct parameters used in the generation of data 

with seven significant digits. For further details, see Cushing (1998). � ☐ 

Exercise A.1. Suppose that we have observations yt  of xt  at k + 1 consecutive times t = 0, ..., k  

and estimate µ  in equation (1.2.1) (the quadratic map). � ☐ 

Exercise A.2. Use (A.15) and estimate parameters a  and b  in the Hassel family 

		
xt+1 =

axt

(1 + xt)b
a > 1, b > 1

by use of observation points yt  of xt  at times t = 0, ..., k . � ☐ 

— 

In the previous examples (and exercises) the estimations have been carried out by use of the log-likelihood 
function (A.11). Another possibility is to apply conditional least squares and we close this appendix by 
giving a brief overview of the method. (We still denote state variables by x , observations by y  and 

parameters by θ .)

Now, suppose that we have k + 1 consecutive time observations y0, . . . ,yk , the purpose of the method 

is to minimize log-residuals (recall that environmental noise is additive on a logarithmic scale, cf. (A.7)) 
so if we are dealing with a map x → f(x, θ)  we search for parameter estimates that minimize 

		  D =

k∑

i=1

(lnyt − ln f(yt−1, θ))
2� (A.19)

Estimates found through (A.19) are often referred to as conditional least squares estimates because they 
are found (on a logarithmic scale) through a minimization of conditional sums of squares. We shall now 
by way of examples show how the method works.

Example A.3. Assuming k + 1 time observations y0, ..., yk , estimate parameter r  in map (A.1).

Solution: In this case (A.19) becomes 

		

D =

k∑

i=1

(ln yt − ln(yt−1e
r(1−yt−1)))2 =

∑(
ln

(
yt
yt−1

)
− r(1− yt−1)

)2
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Hence, 

		

∂D

∂r
= 0 ⇔

∑
2

[
ln

(
yt
yt−1

)
− r(1− yt−1)

]
(yt−1 − 1) = 0

which yields 

		

r =

∑
(1− yt−1) ln

(
yt

yt−1

)

∑
(1− yt−1)2

in accordance with the result we obtained by use of (A.15). (Also note that 
∂2D/∂r2 =

∑
(1− yt−1)

2 > 0 , hence the r  estimate really corresponds to a minimum.) � ☐ 

Exercise A.3. Given k + 1 time observations y0, ..., yk  of xt , estimate F  and r  in equation 

(A.17). (Compare with the results of Example A.2,) � ☐ 
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Referring to the n-dimensional nonlinear population models considered in Part II, most of them have 

from an estimation point of view a desired property, namely that the various parameters in the model 
occur in one equation only. (See for example the three- dimensional model presented in Exercise 2.8.2. 
Here the fecundity F2 is in the first equation, parameter P0 is in the second equation only and P1 shows 

up in the third equation only.) In such cases the method of conditional least squares is particularly 
convenient to use because we may apply the method on each equation in the model separately. As an 
illustration, consider the following example:

Example A.4. Consider the nonlinear map or difference equation model 

		  x1,t+1 = Fx2,t � (A.20)

		  x2,t+1 = Pe−(x1,t+x2,t)x1,t

Note that (A.20) is a special case of (2.8.2), (α = 1) , which was extensively studied in Example 

2.8.1. Since α  acts as a scaling factor only, (A.20) possesses the same dynamics as (2.8.2). In case 

of “small” values of F  the dynamics is a stable nontrivial equilibrium. Nonstationary dynamics 

is introduced through a supercritical Hopf bifurcation and when F  is increased beyond instability 

threshold, the various dynamical outcomes are displayed in Figures 16–20 (cf. Example 2.8.1).

Now, suppose a time series of k + 1 observation points (y1,0, y2,0), ..., (y1,k, y2,k) of (x1,t, x2,t). 

Our goal is to use these points in order to estimate F  and P  by applying conditional least squares. 

To this end (cf. (A.19)), define 

		

D1 =

k∑

t=1

[ln y1,t − ln(Fy2,t−1)]
2 =

∑[
ln

(
y1,t
y2,t−1

)
− lnF

]2

		

D2 =

k∑

t=1

[
ln

(
y2,t
y1,t−1

)
− lnP + y1,t−1 + y2,t−1

]2

The equations ∂D1/∂F = 0, ∂D2/∂P = 0 give respectively 

		

∑
ln

(
y1,t
y2,t−1

)
− k lnF = 0

		

∑(
ln

(
y2,t
y1,t−1

)
+ y1,t−1 + y2,t−1

)
− k lnP = 0
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Consequently, we may estimate F  and P  through 

		  lnF =
1

k

k∑

t=1

ln

(
y1,t
y2,t−1

)
� (A.21a)

		  lnP =
1

k

k∑

t=1

(
y1,t−1 + y2,t−1 + ln

(
y2,t
y1,t−1

))
� (A.21b)

In order to investigate how good the estimates really are we have performed the following 
“experiment”. Let F = 27.0 and P = 0.6. Then, from (A.20) we have generated a time series of 

50 “observation points” (y1,t, y2,t) . The points are located on a chaotic attractor as displayed in 

Figure 20. Next, “pretending” that F and P are unknown we have used the “observations” in (A.21) 
in order to estimate F and P. The result is, F = 27.00003065 and P = 0.6000000143 so the 

estimation appears to be excellent. � ☐ 

Still considering the map (A.20) let us for comparison reasons also find the maximum likelihood estimates 
of F and P. Suppose that 

		

Σ2 =

(
σ2
1 c
c σ2

2

)

Then, by use of (A.4), (A.5) we may express (A.11) as 

ln I(F, P,Σ2) = −k ln 2π − k

2
ln |σ2

1σ
2
2 − c2|

− 1

2(1− ρ2)

k∑

t=1









ln
(

y1,t
y2,t−1

)
− lnF

σ1




2

+




ln
(

y2,t
y1,t−1

)
+ yt−1 − lnP

σ2




2

−2ρ

[
ln
(

y1,t
y2,t−1

)
− lnF

] [
ln
(

y2,t
y1,t−1

)
+ yt−1 − lnP

]

σ1σ2






where yt−1 = y1,t−1 + y2,t−1  and ρ = c/σ1σ2 .

The equations ∂(ln I)/∂F = 0  and ∂(ln I)/∂P = 0  may be cast in the forms 

		
k

σ1
lnF − kρ

σ2
lnP =

A

σ1
− ρB

σ2
� (A.22a)

		  − kρ

σ1
lnF +

k

σ2
lnP =

B

σ2
− ρA

σ1

� (A.22b)
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where 

	

A =
∑

ln

(
y1,t
y2,t−1

)
B =

∑[
ln

(
y2,t
y1,t−1

)
+ yt−1

]

The solution of (A.22a,b) is easily found to be 

	
lnF =

1

k
A and lnP =

1

k
B

which is the same as we obtained by use of conditional least squares.

Exercise A.4. Given k + 1 time observations (y1,0, y2,0), ..., (y1,k, y2,k) of (x1,t, x2,t) and 

find the conditional least squares estimates of F , P  and α  in the age structured Ricker model 

		

x1,t+1 = Fx1,te
−αxt + Fx2,te

−αxt

x2,t+1 = Px1,t

where x = x1 + x2 . � ☐ 

Exercise A.5. Given k + 1 consecutive time observations, find the conditional least squares 

estimates of all parameters in the map 

		  (x1, x2) → (Fe−αxx2, P e−βxx1)

� ☐ 
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