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Preface

Since more than 30 years, I taught several courses of basic mathematics for beginners at the uni-
versity. This concerns students of engineering sciences, students of natural sciences and students
of economical sciences. In particular, since almost 20 years I taught a course ‘Mathematics of
Economics and Management’ at the Otto-von-Guericke University Magdeburg. The latter class
included all relevant subjects from calculus and algebra. Roughly 10 years ago, I jointly with
my co-author Yuri Sotskov from Minsk wrote a book ‘Mathematics of Economics and Business’
following exactly the structure of this lecture. This book appeared 2006 at Routledge, and 1
used it as the first item on my reading list for this class. However, this book explicitly includes
only some refreshments from school in a short form in Chapter 4, namely how to work with
real numbers. The foundations of calculus discussed in this book are, of course, also already
a subject of school education in the upper classes so that there is a larger overlapping with
mathematical subjects from secondary school education.

I noticed that at the beginning of their study, the majority of students has some partial knowledge
about the basic mathematical subjects from school, but not at the required extent. It seems so
that this tendency is even increasing currently. In any case, one can observe that beginners of a
university study enormously range in their mathematical skills and aptitudes. I know that for
many beginners at the university, mathematical subjects appear to be rather difficult. However,
if these gaps are not filled at the beginning of the study, this will definitively cause subsequent
difficulties in other courses. Without any doubt, nowadays a solid mathematical knowledge is
the base for most (almost all) study courses.

So, I felt that there is a need to present some necessary foundations from the mathematical
education at school in more detail and also some additional supplementary material, where I
wish that university beginners are familiar with. When writing this booklet, I also used the
experience collected in several classes of extra-occupational study courses, among them also
a bridge course, which refreshes the main subjects from mathematics in school. Typically,
the latter students have even more difficulties with mathematical subjects because their school
education finished already some years ago. Summarizing, I found that there is a need to write
such a booklet from my personal point of view, using the experience collected over the past
decades. The goal was roughly not to exceed 250 pages.

Sure, the content of the mathematical education in secondary school varies from country to
country a bit. So, I tried to cover a broad range of subjects which might be useful for a
university study from an overall point of view. The booklet consists of 12 chapters. Chapters 1
- 2 discuss some basics: some mathematical foundations as well as real numbers and arithmetic
operations. Chapters 3 - 5 deal with equations and inequalities. Chapter 6 surveys some basics
from analytic geometry in the plane. This is nowadays not so intensively taught as at the time
when I attended school, but nevertheless it addresses some useful subjects. Chapters 7 - 10
treat classical subjects from calculus. Chapter 11 presents some aspects of vectors. Chapter 12

discusses some foundations from combinatorics, probability theory and statistics.
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I tried to write the chapters as independent as possible. So, it is not necessary to read all
chapters beginning from the first one. Instead, the student can go immediately to a particular
subject. Sure, the chapters are not completely independent since in mathematics, there are
often specific relationships between different subjects. Nevertheless, there is no necessity to
study the chapters systematically one by one in the given sequence for the understanding of the
book. Moreover, since it is an repetition and summary of elementary material of mathematics,
I avoided the formal use of theorems and definitions. Instead of, the major notions are shaded
in grey and in addition, important formulas and properties are given in boxes.

Each chapter gives the learning objectives at the beginning. Moreover, every chapter finishes
with a number of exercises. The solutions to the exercises (i.e., the concrete results) are given on
my homepage so that the reader can verify whether to be able or not to solve typical problems
from a particular topic. They can be downloaded as a pdf file under:

http://www.math.uni-magdeburg.de/~werner /solutions-refresher-course.pdf

The author is grateful to many people for suggestions and comments. In particular, I would
like to thank Dr. Michael Hoding and my Ph.D. student Ms. Julia Lange from the Institute of
Mathematical Optimization of the Faculty of Mathematics at the Otto-von-Guericke-University
Magdeburg for their many useful hints during the preparation of this booklet and the support
in the preparation of the figures, respectively. I would also like to use this opportunity to thank
both for their long-term support in the teaching process at the Otto-von-Guericke-University
Magdeburg.

I hope that this small booklet will help the students to overcome their initial difficulties when
studying the required mathematical foundations at the university. Typically, the first term at
the university is the hardest one due to many changes compared with secondary school. I want to
finish this preface with a hint: Long time ago, I was told that learning mathematics is somehow
like learning swimming. Nobody learns it by looking how other people do it! One does not
learn mathematics by exclusively listening to the lecturer or tutor and copying notes from the
blackboard or slides. Only own practice contributes to a significant progress. The time necessary
for getting a sufficient progress varies for the individual students significantly, so everybody has
to find this out by solving a sufficient number of exercises. So, students in their first year at the
university should not be afraid of mathematics but should take into account that some (or even
a lot of) time is needed to get a sufficiently wide experience in applying mathematical tools.

The author is also grateful for all hints that improve further the content and the presentation
of this edition. All suggestions should be addressed preferably to the email address given below.
It is my pleasure to thank the publisher Bookboon for the delightful cooperation during the
preparation of this booklet.

Frank Werner Magdeburg, March 2016
Otto-von-Guericke-University Magdeburg

Faculty of Mathematics

PSF 4120

39016 Magdeburg / Germany

Internet: http://www.math.uni-magdeburg.de/~werner

email: frank.werner@ovgu.de
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Chapter 1

Some Mathematical Foundations

This chapter intends to refresh some basic mathematical foundations which are necessary to un-
derstand the elementary mathematics in first- or second-year classes on mathematically oriented
subjects at universities. We deal with

e sets and operations on sets,
e the use of the sum and product notations and

e mathematical proofs by induction.

Proofs by induction can be used e.g. for verifying certain sum and product formulas as well
as specific inequalities. They can also be used for particular combinatorial and geometrical
problems.

1.1 Sets

In this section, we introduce the basic notion of a set and discuss operations on sets. A set
is a fundamental notion of mathematics, and so there is no definition of a set by other basic
mathematical notions for a simplification. A set may be considered as a collection of distinct
objects which are called the elements of the set. For each object, it can be uniquely decided
whether it is an element of the set or not. We write:

a € A: ais an element of the set A;

b¢ A:  bisnot an element of the set A.

A set can be given either by enumeration or by description. In the first case, we give explicitly

the elements of the set, e.g.
A=1{1,3,5,7,9,11,13,15},

i.e., A is the set that contains the eight elements 1,3,5,7,9,11,13,15. Alternatively, we can
describe a set in the form
B = {b| b has property P }.
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A REFRESHER COURSE IN MATHEMATICS SOME MATHEMATICAL FOUNDATIONS

The set B is the set of all elements b which have the property P. In this way, we can describe
the above set A e.g. as follows:

A ={a]aisan odd integer and 1 < a < 15}.

For special subsets of real numbers, one often uses also the interval notation. In particular,
we have

b = {reR|a<z<b}
(a,b) = {zeR|a<z<b}
[a,b) = {zeR|a<z<b}

{reR|a<z<b},

—

S

=
I

where R is the set of all real numbers. The interval [a, b] is called a closed interval whereas (a, b)
is called an open interval. Accordingly, the intervals (a,b] and [a, b) are called half-open (left-
open and right-open, respectively) intervals. The set R of real numbers can also be described
by the interval (—oo, 00). Moreover, we use the following abbreviations:

Rza = [a’ OO), Rsq = (a7 OO), R<q = (—OO,(L] and Rey = (—OO, a’) .

Thus, R>( denotes the set of all non-negative real numbers.

Next, we introduce operations on sets: the union, the intersection and the difference of two sets.

Ijoined MITAS because e
I wanted real responsibility www.discovermitas.com
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Figure 1.1: Union, intersection and difference of two sets

Union of two sets:
The set of all elements which belong either only to a set A or only to a set B or to both sets A
and B is called the union of the two sets A and B (in symbols AU B, read: A union B):

AUB={z |z € Aorz € B}.

The set AU B contains all elements that belong at least to one of the sets A and B.

Intersection of two sets and disjoint sets:
The set of all elements belonging to both sets A and B is called the intersection of the two
sets A and B (in symbols AN B, read: A intersection B):

ANB={z |z € Aandz € B}.

Two sets A and B are called disjoint, if AN B = (.

Thus, the sets A and B are disjoint if they have no common elements.

Difference of two sets:
The set of all elements belonging to a set A but not to a set B is called the difference set of
A and B (in symbols A\ B, read: A minus B):

A\B={z|z € Aandx ¢ B}.

The union, intersection and difference of two sets A and B are illustrated in Fig. 1.1.

Next, we summarize some basic rules for working with sets.
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Rules for sets:
Let A, B, C be arbitrary sets. Then:

1. AnB=BnNA, AUB=BUA

(commutative laws of intersection and union);

2. (AnB)NC=ANn(BNCO), (AUB)UC =AU (BUCQC)
(associative laws of intersection and union);

3. (ANB)UC =(AuC)N(BUC), (AuB)NC =(AnC)u(BNC)
(distributive laws of intersection and union).

Note that the difference of two sets is not a commutative operation, i.e., in general we have

A\ B+ B\ A.

Example 1.1 Let A ={2,3,5,8,11,14} and B = {1,5,11,12,14,16}. Then
AUB ={1,2,3,5,8,11,12,14,16} and AN B = {5,11,14}.

Thus, the union of the sets A and B contains nine elements and the intersection contains three
elements. Moreover, we get

A\B=1{2,3,8} and B\A=/{1,1216}.

Notice that the elements of a set can be given in arbitrary order.

Example 1.2 Let E be the set containing the cities Berlin, London, Magdeburg, Madrid,
Moscow, Paris, Rom and Stockholm and A be the set containing the cities Chicago, Montreal,
New York, San Francisco, Toronto and Vancouver. Thus, the set A contains siz North American
cities and E contains eight European cities. Thus, there is no city contained in both sets and
therefore, we have AN B = 0. Moreover,

AUE = {Chicago, Montreal, New York, San Francisco, Toronto, Vancouver, Berlin,
London, Magdeburg, Madrid, Moscow, Paris, Rom, Stockholm}

Moreover, we have A\ E = A and E\ A = FE in this ezample.

Example 1.3 Let
A={a|1l<a<100,a is integer and divisable by 3}

and
B={b|1<b<100, b is integer and divisable by 5},

i.e., the set A contains 33 integers and the set B contains 20 integers. Obviously, we can rewrite
the sets A and B as follows:

A=1{3,6,9,12,...,90,93,96,99} and B = {5,10,15,20,...,85,90,95,100}.
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Then we obtain
AUB = {a]1l<a<100,a is integer and divisible by 3 or 5}
= {3,5,6,9,10,12,15,...,95,96,99,100}
and
ANB = {a]l1l<a<100,a is integer and divisible by 3 and 5}
= {15,30, 45,60, 75,90}.
This means that AN B contains all integers between 1 and 100 which are divisible by 3-5 = 15.
Moreover,
A\ B = {a|1<a<100,a is integer and divisible by 3 but not by 5}
— {3,6,9,12,18,21,...,87,93,96,99}
and
B\A = {a|1<a<100,a is integer and divisible by 5 but not by 3}
= {5,10,20,25,35,40,....,70,80,85,95, 100}.

To find A\ B, we exclude from A the numbers 15, 30, 45, 60, 75 and 90. To determine B\ A,
we exclude from B the same numbers.

Thus, the union AU B contains 47 integers, the intersection AN B contains 6 integers and the
difference sets A\ B and B\ A contain 27 and 14 integers, respectively.
Example 1.4 Consider the following intervals

I =[2,6), Ih=1[4,8 and I3=1(2,9].

Then we obtain

LhUL=[28, LUL=[29, LUL=I,
LNL=[46), ©LNI3=(26), LNI=1D,
I\ I = [2,4), I\ I3 = {2}, I\ I3 =0,
L\, =16,8], Is\ I, = [6,9], Is\ I = (2,4) U (8,9].

Example 1.5 In this example, we illustrate the distributive law for set operations. Let
A={1,2,4,7,8,10}, B={2,3,4,9} and C={3,8}.
One the one side, we obtain
(ANB)UC ={2,4} U{3,8} ={2,3,4,8}.
On the other side, we get
(AuC)Nn(BUC)=1{1,2,3,4,7,8,10} N {2,3,4,8,9} = {2, 3,4, 8}.
This illustrates the first distributive law given above. Moreover,
(AUB)NC =1{1,2,3,4,7,8,9,10} N {3,8} = {3, 8}

and
(ANnC)Uu(BNC)={8}uU{3}=1{3,8},

which illustrates the validity of the second distributive law given above.
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1.2 Sum and Product Notation

For writing a sum or product in short form, one often uses the Greek letters > and [], respec-
tively. In particular, we have

n n
g a;=a1+as+...+ay and Hai:al-ag-

The letter i below from the sum (product) symbol is denoted as summation (multiplication)
index. This index can be arbitrarily chosen. The number under the product symbol is denoted
as lower limit of summation and multiplication, respectively, and the number above the symbol
is denoted as the upper limit. So, the summation above is made from ¢ = 1 to ¢ = n. Note that
a sum and product, respectively, is defined to be equal to zero if the lower limit of summation
(multiplication) is greater than the upper limit of summation (multiplication).

Example 1.6 We illustrate the use of sums and products.

a) We have

Z ?=124+22 432442 =144+4+9+16=230

~
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and

50 50
13+23+33+...—|-503:Zz’3:Zk3.
=1 k=1

tototo= =

2
1 1 1 1 1 1 35 21 15 71
b) E = — 4+ — — — = I — ;
= 2k+3 -1 1 3 5 7 105 105 105 105

4
¢) > (3171 =2"45"+8° 411 =145+ 64+ 1331 = 1401 ;
j=1

3

d) H (an + bn) = (aog +bo) - (a1 +b1) - (a2 +b2) - (a3 + b3) ;
n=0

3
e) [T @-1)=(-3)-(-1)-1-3-5=45;

I=-—1

5
1
711 kk—3:1—2-2—1-30-41-52:15.1-4-25:50.
k=1

We summarize the following rules when using sum signs:
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Working with sums:

n n n
Z(aiibi) = ZaiiZbi;
=1 i=1 1=1
n n
Z ca; — ¢C Zai 3
1=1 i=1
n

c = nc;
=1

m n n

dout) a = ) a

=1 m+1 i=1

Similarly, we get the following rules when using product signs:

Working with products:

=1 m+1 i=1
Example 1.7 We rewrite
20
S=> (k¥ +3k-2)
k=1

in separate terms and obtain
20 20
S=> K +3> k-2-20.
k=1 k=1

For a sum or a product, there exist several representations. So, one can transform the summation
(multiplication) index. For instance, we have

8 4 3
a5+a6+a7+a8:zai:z Af+4 = Qn45
i=5 =1 n=0
or as another example,
5 4
B+54+T7+9+11=> (2k+1)=)> (2n+3).
k=1 n=0
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Observe again that the summation index can be chosen arbitrarily. In general, when shifting
the summation or multiplication index, we have the following rules for all integers j and n:

n n—j
Z a; = E Ak+j 5

=1 k=—j+1
n n—j
Mo = T @
=1 k=—j+1

The above transformation of the summation and multiplication indices corresponds to a shifting
according to i = k + j.

Example 1.8 We compute

This yields

8 6
s = K-
k=1 7j=2
= (P4+22+...+8) (22 +33+...+6%
13+ 7348 =1+ 343 + 512 = 856.

It is worth noting that for n > 1, we have in general

n

Z a; bz#ia@ibl (1.1)
=1 =1

i=1
Let e.g. n =3. Then (1.1) can be written in detail as follows:
a1b1 + asby + asbs 75 ((11 +as + a3) . (bl + by + bg).

Moreover, we have in general

n n n

I (ai+ i) # [ [ ai + I ] - (1.2)

i=1 i=1 =1

To illustrate (1.1) and (1.2), let again n = 3 and a1 = 2,a2 = 5,a3 = 3 as well as by = 1,by =
2,b3 = 7. Then we obtain

Zalb 7&24—10—1—21—337&2% Zb =(245+3)-(14+247)=10-10 = 100
= =1 =1

and

[T (ai+b) =@+1)-(5+2)-(3+7) =210 # [Jai+ ][ b = (2-5-3)+ (1-2-7) = 30+ 14 = 44,
=1 =1 =1
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A REFRESHER COURSE IN MATHEMATICS SOME MATHEMATICAL FOUNDATIONS

Often one uses also double sums of the form
m n

Qg ,

=1 j=1

where the inner summation is made over the second index j and the outer summation is made
over the first index . Thus, we have

3 4
E g aij = a11 + a2 + a3 + as
i=1 j=1

+ao1 + age + asg + asy
+as31 + a3z + ass + asq .

Note that we can interchange the order of the summations and have the following;:

D TED DI

i=1 j=1 j=1 i=1

1.3 Proof by Induction

In this section, we review proofs by induction which can be used e.g. to prove specific sum or
product formulas or also inequalities. This type of proof can e.g. be used when proving a par-
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ticular property for all natural numbers n > ng, i.e., for infinitely many numbers n. This proof
consists of two steps.

In the initial step (also denoted as base step), we prove that this property holds for the
first natural number n = ng considered. Often, one has ng = 1. Then, in the inductive
step, we prove that, if the property holds for a particular value n = k (this is the induction
assumption), then it also holds for the succeeding value n = k + 1 (this is the induction
hypothesis). This has to be proven only once. Now one can argue as follows. Since the
property holds for the initial number ng, it also holds by the inductive step for the next number
ng + 1. Applying now again the inductive step, we can conclude that, since the property holds
for ng + 1, it also holds for the next number ng + 2, and so on.

Example 1.9 We prove that the equality

n

=1

holds for all natural numbers. In the initial step, for n =1, we have

1
Zz = 22:1,

=1

e., the above formula is correct. Using now the induction assumption that the formula is correct
for some number n = k:

k
D i= k(k;D (1.3)
=1

we prove in the inductive step that the formula is also correct for the succeeding numbern = k+1,
i.e., we replace in the given formula k at every occurrence by k + 1 which means that we have

to show that the equality
k+1

Zi_ (k+1)(k+2)
=t 2
=1
holds. Using equality (1.3), we obtain
b k(k+1)
d it (k+1) = Tkt
i=1
k+1
S k(k+1) +2(k + 1)
- 2
=1
%i _ (et 1)(k+2)
—~ 2 ‘

Thus, the given formula is correct for all natural numbers n.

Example 1.10 We prove by induction that the equality

Zqzl 1_(]

-4
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holds for all natural numbers n. We begin with the initial step. For n =1, we have

i.e., the above formula is correct. Thus, we can use the induction assumption that the above
formula is correct for some n = k. Hence, we can use

4 1—
DT E— (1.4)
In the inductive step, we have to show that this formula is also correct for the next natural
number n = k + 1, i.e., we prove that
ktl k+1

- ]__q
qz 1_

q

Using equality (1.4), we obtain

k

i—1 (k+1)—1 1—¢" (k+1)—1
Y d Tt +g = T +a
i=1
k+1
Zqi—l _ 1—¢"+4¢*(1—q)
i=1 1- q
k41
St = 1—¢" +¢" — ¢!
=1 1- q
k41
Z qi—l _ 1— qk+1
; l1—gq
=1

Therefore, the given formula is correct for all natural numbers n.

Example 1.11 We prove by induction that the equality

° ~n(n+1)(2n+1)
2

holds for all natural numbers. In the initial step, we obtain for n =1

1-2-3

Y P=1"=1= =1.
: 6

=1

Thus, for the inductive step, we can assume that the above formula is correct for a specific
natural number n = k:

5 k(k+1)(2k +1)

(1.6)
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and we have to show that it is then also correct for the succeeding natural number k+1, i.e., we
have to show:

2o EADE+ D)+ 1R+ 1) +1] (k+ 1)k +2)(2k +3)
> it : - ' |

In the above equality, we replaced k in formula (1.6) at every place it occurs by k + 1 and
simplified the resulting term. In the inductive step, using the correctness of equality (1.6), we
obtain

§§ﬁ+wk+nzzz Mk+%fk+n4%k+n2
’:Z*:;Q _ k:(k+1)(2k:+61)+6(k:+1)2
’:Z?,Q _ (k+1)[k:(2/~c+61)+6(k+1)]
iiﬁ _ (k+1)(2k22§k+6k+6)'

Now we rewrite the expression k + 6k as 4k + 3k so that we are able to factor out k + 2 in two
steps (see what we want to prove above). This yields:

]ilz’? (k4 1)(2K% 4 4k + 3k +6)
i=1

6

k+1
2 _ (et DIk +2)2k + (k +2)3)

6

k+1
2 _ i DE+2)k+3)

6

Thus, the given formula is correct for all natural numbers n.

Example 1.12 We prove by induction that the inequality
3nl>p
holds for all natural numbers n. In the initial step, we get for n =1
3il=1>1.
In the inductive step, we can assume that
31>k (1.7)
is correct for some natural number n = k, and we have to show that it is also correct forn = k+1:

F>k+1. (1.8)
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From inequality (1.7), it follows that
31.3>k-3
and, due to 3k > k + 1, we get
3F>3k>k+1,

i.e., we obtain inequality (1.8).

EXERCISES

1.1 Let
A ={z|zis aprime number } and B = {z |z is integer and 10 < z < 30}.

Determine ANB;A\ Band B\ A .

1.2 Let
I =[-3,4, I,=(-1,4) and I3=(3,5).

Determine all possible unions, intersections and differences of any two of the above sets.

1.3 Let
X ={a,b,d,e, f}, Y ={be,g,h} and Z=/{a,h,i}

Determine X UY:; X NY; X\Y; (XuY)nZ; (Y\Z)UX.
1.4 Let X and Y be arbitrary sets. Determine

(a) XU(XNY); b)Y N(XUY); (o) X\Y)UY\X)u(XnY).
1.5 Let a; = 2i + 1 and b; = (i +1)2 for i = 1,2,...,10. Calculate

8

10 6
(@)Y ais () Y (ai+bi2); () [(ai+bita).
i=1

1=3 =1

1.6 Prove by induction that

n
D (2i—1)=n?
i=1
holds for all natural numbers n.
1.7 Prove by induction that

n

L (n+1)(2m+n)
Zz;(m—f—z)— 5

holds for all integers n > 0, where m is an arbitrary fixed integer.

1.8 Prove by induction that the equality

n

Yo
cj(i+1) n+1

=1

holds for all natural numbers n.
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1.9 Prove by induction that the inequality
nr+1<(z+1)"

holds for all natural numbers n, where z is a positive number.
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Chapter 2

Real Numbers and Arithmetic
Operations

This chapter reviews the major arithmetic operations for working with real numbers. In partic-
ular, we give an overview about

e number systems,
e rules for working with absolute values and fractions and

e rules for working with powers, roots and logarithms.

2.1 Real Numbers

In this section, we start with the set N of natural numbers, i.e., N = {1,2,...}. This set can
be illustrated on a straight line known as the number line (see Fig. 2.1). If we union this set
with number 0, we get the set

No=NU{0}={0,1,2,3,...}.

We can perform the operations of addition and multiplication within the set N of natural num-
bers, i.e., for a,b € N, we get that the number a+ b belongs to set N and the number a-b belongs
to set N. In other words, the sum and product of any two natural numbers is again a natural
number. However, the difference and the quotient of two natural numbers are not necessarily a
natural number.

Figure 2.1: Integers on the number line
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The first extension which we perform is to union the set of negative integers {—1,—2,-3,...}
with the set Ny which yields the set Z of integers (see Fig. 2.1), i.e.,

Z=Nou{-1,-2,-3,...}.

This allows us now to perform the three operations of addition, subtraction and multiplication
within the set of integers, i.e., for a,b € Z, we get that the number a + b belongs to set Z, the
number a — b belongs to set Z and the number a - b belongs to set Z.

To be able to perform the division of two integers, we introduce the set of all fractions p/q with
p € Z,q € N. The union of the integers and the fractions is denoted as the set Q of rational
numbers, i.e., we have

QZZU{ZH?EZ,QEN}.

Now all the four elementary operations of addition, subtraction, multiplication and division
(except by zero) can be performed within the set Q of rational numbers.

Consider next the equation 22 = 2. This equation cannot be solved within the set of rational
numbers, i.e., there exists no rational number p/q such that (p/q)? = 2. This leads to the
extension of the set Q of rational numbers by the irrational numbers. These are numbers
which cannot be written as the quotient of two integers. There are infinitely many irrational
numbers, e.g.

V2 & 1.41421, V3 ~1.73205, e~ 2.71828 and 7 ~ 3.14159.

Irrational numbers are characterized by decimal expansions that never end and by the fact that
their digits have no repeating pattern (i.e., any irrational number cannot be presented as a
periodic decimal number).

The union of the set Q of rational numbers and the set of all irrational numbers is denoted as the
set R of real numbers. We have the following property: There is a one-to-one correspondence
between real numbers and points on the number line, i.e., any real number corresponds to a
point on the number line and vice versa. Within the set of real numbers, we can perform
the operations of additions, subtraction, multiplication, division (except by zero), and we can
also compute logarithms of positive real numbers and roots of non-negative real numbers. The
stepwise extension of the set N of natural numbers to the set R of real numbers is illustrated in
Fig. 2.2.

2.2 Basic Arithmetic Rules and the Absolute Value

In the following, we often deal with terms. A mathematical term is composed of letters, numbers
and operational signs such as +, —,,: or NE Mathematical terms are e.g.

ax + by — c, 17, (z + )3, 23 —dx+ 7 or V2x + 5.

We start this section with summarizing some well-known properties of real numbers. These
properties are needed e.g. to transform mathematical terms or to solve equations.
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Natural numbers
N numbers
N 4 and number 0
\ z
Integers Z Fractions
S A \

Rational numbers Irrational

Q numbers

N 74

Real numbers
R

Figure 2.2: Number systems

Properties of real numbers with respect to addition (a,b,c € R):
l.a+b=b+a (commutative law of addition);

2. there exists a number 0 € R such that for all a

a+0=04+a=aq;

3. for all a, b, there exists a number x € R with

a+z=z+a=0b;

4. a+ (b+c)=(a+b)+c (associative law of addition).

Properties of real numbers with respect to multiplication (a,b,c € R):
l.a-b=b-a (commutative law of multiplication);

2. there exists a number 1 € R such that for all a

a-1=1-a=a;

3. for all a,b with a # 0, there exists a real number = € R such that

a-r=x-a=Db

4. (a-b)-c=a-(b-c) (associative law of multiplication).

The number 0 is the neutral element with respect to addition (i.e., for any a € R we have
a4+ 0 = a) and number 1 is the neutral element with respect to multiplication (i.e., for any
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a € R we have a = 1-a).

Moreover, we have the following rules (which can e.g. be used to transform a given sum or
difference into a product):

Distributive law and generalizations:
1. (a+b)-c=a-c+b-c (distributive law);
2.a-(b+c+d)=ab+ac+ad ;
3. (a+b)-(c+d)=ac+ad+bc+bd ;
4. (a+0b)-(c—d)=ac—ad+bc—bd .

We illustrate the process of factorizing a term by the following examples.

Example 2.1 We get the following factor representations:

a) 3a* +9a® = 3a® - (a + 3);

b) (a+2b)-(s+3t) — (25 —t)- (a+2b) = (a+2b) - [(s+3t) — (25 — t)]
= (a+2b)- (4t —s);

c) 4as — 10at + 12bs — 300t = 4s(a + 3b) — 10t(a + 3b) = (a + 3b) - (4s — 10¢)
=2-(a+3b)-(2s — 5t).

First, we have combined the first and third terms as well as the second and fourth terms.
Then we have factored out the term a + 3b.

Moreover, for all real numbers a and b, we get the following binomial formulas:

Binomial formulas:
1. (a+b)? = a®+ 2ab+ b?;
2. (a—b)?=a®—2ab+b?;

3. (a+b) - (a—0b)=a%—-b.

Example 2.2 Using the above binomial formulas, we get the following equalities:
a) (3z +4y)? = (32)% + 2 - 3w - 4y + (4y)? = 922 + 247y + 16y>.
b) (22 —ay)? = (22)%2 — 222 - ay + (ay)? = 422 — dazy + a®y?;
c) We wish to represent the difference
25s% — 3t°
in product form. Using the third binomial formula with a = 5s and b = /3 t, we get
2552 — 3t = (55 + V3 1) - (55 — V3 1).
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Next, we introduce the notion of the absolute value of a number, which can be used to express
the distance of numbers or more general terms.

Absolute value:
Let a € R. Then

la] = a fora>0
"]l —a fora<0

is called the absolute value of a.

From the above definition, it follows that the absolute value |a| is always a non-negative number
(note that, if @ < 0, then —a > 0). The absolute value of a real number represents the distance
of this number from point zero on the number line. For instance, we get |3| =3, | — 5| =5 and
|0] = 0. In the following, we review some properties of absolute values.

Properties of absolute values:

Let a,b € R and ¢ € R>g. Then:

L | —al=lal;
2. la]<c¢ <<= —c<a<cg;
3. la]>¢c <= (a<—c) or (a>c);

4. | lal = ol | < la+b] < Ja] + b;
5. Ja-b] = la] - |8l

a _lal

6.’7‘:—.

bl

According to the definition of the absolute value of a real number, we can give the following
generalization.

Let x,a € R. Then

T —a forxz > a
|z —al =
—(r—a)=a—z forzx<a

Thus, the non-negative value |x — a| gives the distance of the number x from the number a.
For instance, if a = —2 and z = 6, we get

[z —af =16 - (=2)| =8,

i.e., the number 6 has a distance of eight units from the number —2. Moreover, if a = —2 and
r = —4, we get
[z —al=[-4-(=2)[=[-4+2[=[-2|=2,

i.e., the number —4 has a distance of two units from the number —2.
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Example 2.3 We simplify the term
T =6x+2-|2a — 3z|
by ‘removing’ the absolute values and obtain

T_ 6z +2-|2a — 3z| = 4a for 2a—3x >0
| 62—2-(2a—3z) = —4a+12x  for 2a —3x <0

2.3 Calculations with Fractions

We recall that the term a

b
is denoted as a fraction (note that in the text, we write a fraction also as a/b). Here a € Z is
known as the numerator and b € N as the denominator. Thus, a fraction is only defined for
b # 0, but we can also write a negative integer in the denominator. So we have

3 -3 3

) ) -5

If a < b, then it is a proper fraction. If @ > b, it is an improper fraction. Obviously, we have
for ¢ # 0 (and b # 0) the following equality:
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If we transform the left representation into the right one, we expand the fraction. If we

transform the right representation into the left one, we reduce the fraction. Next, we review
the rules for fractions.

Rules for working with fractions (a,c € Z, b,d € N}):
a ¢ axc
1 —4+-= ;
b b b
a ¢ adxbc
2. - =2C270
b d bd ’
a ¢ ac
S5 d T bd
a ¢ ad
4. —: - = .
bid be (70
The term
a
b
¢
d
is known as a double fraction. According to the above rules, we obtain for a double fraction
a
b_a ¢c_ad
€ b'd  be
d
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We illustrate the above rules by some examples.

Example 2.4 We determine the following difference D of the given two fractions:

_3u—5v 2u —v
w420 u+20

Both denominators are equal and we obtain

D (Bu—5v) — (Qu—v) u—4v
B u+2v Cu+2v

Adding or subtracting two fractions requires that they have the same denominator (see rule (1)
above). If this is not the case, one has to determine a common denominator for both fractions.
A simple way is to take as the denominator the product of both denominators (see rule (2)
above). However, if several fractions have to be added or subtracted, the new dominator can be
rather large. Another way is to take the least common multiple of the fractions in order to
apply an analogue rule. We illustrate this by the following examples.

Example 2.5 We determine the number

8 5 n 1
15 16 36°
For all fractions, we determine the product representation by prime factors and the correspond-

ing expansion factors (by which the corresponding numerator has to be multiplied so that the
denominator is equal to the last common multiple). This yields:

prime factor expansion
representation | factors

15=3-5 21.3=48
16 = 24 32.5=45

36 = 22. 32 22.5 =20

The least common multiple (i.e., the common denominator for all fractions) is obtained as the
product of the prime factors with the largest exponents occurring in the above prime factor
representation. Thus, the least common multiple is

2%.32.5 =720,
from which the expansion factors for each of the three fractions given in the last column are
obtained. Hence, we get

N_8-48_5-45+10-20_384—225+200_@
720 720 720 720 720

Example 2.6 We want to compute the fraction

1 a—2 b—1

F=_— -
2ab+a2—|—2ab ab+ 202"’

where a,b # 0 and a # —2b. For all fractions, we again determine product representations and
the corresponding expansion factors. This yields:
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prime factor expansion
representation factors
2ab a4+ 2b

a? + 2ab = a(a + 2b) | 2b
ab+2b* = b(a +2b) | 2a

This yields the least common multiple
2-a-b-(a+2b)
from which the above expansion factors result (see the right column). Hence, we obtain

1-(a+2b0) (a—2)-20 (b—1)-2a
2ab(a +2b) ' 2ab(a +2b)  2ab(a + 2b)
(a+ 2b) + (2ab — 4b) — (2ab — 2a)

2ab(a + 2b)

F =

3a — 2b
2ab(a + 2b)

We note that the greatest common divisor can be found by means of these so-called prime
factor representations. Another possibility is to use the Euclidean algorithm.

Example 2.7 We compute

2 n 1
_3 6
DF = 1T 1
3 4
and transform the above term first into one double fraction. This yields
4 n 1 5
_ 6 6 _ 6
Prrw s T
12 12 12
Thus, we obtain
5 12 10
DF =-.— =
6 13 13

Example 2.8 We want to simplify the double fraction

2 3

_xr Yy
DF_l 2
r oy

assuming that x # 0,y # 0 and y # —2x. This term can be transformed as follows:

2y — 3z

_ ry
DE = Y+ 2

Ty
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This yields
2y — 3z xy  2y—3x

Ty y+2r  y+2z
Thus, if a double fraction has the same denominators, we get the fraction including both numer-
ators of the double fraction.

DF =

Example 2.9 We simplify the term

z+1 1
_x—1
DF_.T—l—l ’
+1
z—1
where x & {0,1}. This yields
r+1—(r—1)
r+14+(x—-1) 22 =z
z—1

2.4 Calculations with Powers and Roots

First, we review some important rules for working with powers and roots. These rules are
important e.g. for transforming terms or solving equations.

Rules for working powers (a,b,m,n € R):
1. am™-a"=a ;

2. a"- 0" = (ab)”;

3. —=a"" (a # 0);
LEQ e

—n 1 .
5. a = (a #0);

Rules for working with roots (a,b € R>g,m € Z,n € N):
1. Va-b= /a- Vb
a_ Ya

2. ¢ ;= 7 (b#0);
3. Yam =am™/" (@ #0orm/n>0).
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Using formula (3) for roots with m = 1, we obtain
Ya=a'lm",

i.e., a root can be written as a power with a rational exponent. Moreover, we can derive some
further rules for working with roots by using the corresponding rules for powers applied to
rational exponents:

%. {L/& — al/m . al/n — al/m+1/n — a(n+m)/mn — mW;
9w n Val/n = l/n)l/m — al/nm _ n%;
3. Ya = (@) = @/ = (@i = ()"

Example 2.10 First, we illustrate the use of powers and roots by the following computations.

1
(1,) 24 . 2—5 — 24—5 — 2—1 — 5’.

b) 4363 = (4-6)3 = 243 = 13,824;
C) (a2x3)4 — (a2)4 . (x3)4 =a3. x12;

$n+2 L a3n—1 n—4 . 2n—3

d) Y x z — (2 +(n—4) | (3n—1)—(2n+1) | (2n—3)—(2n+1)

2kl T gl Y
2n—2 n—2
T -y

_ ,2n—2 -2 -4 _

=gyt 2T = 1 ;

z
e) a_2/3 = 71 = 71 ;
a2/3 13/012

f) V50 -v2 =+/50-2=+/100 = 10;
g9) V343 =\/¥343 = VT = VT;
h) Vz? = |z

(notice that both x and —x satisfy the above equality, but |x| > 0 by definition);

i) (2v3+43v2) - (5v2 - 4V/3) = 10v2V3 — 8(v/3)? + 15(V2)? — 12v2V3
=15-2—8-3—2V2V3=6—2V6;

7)) (V14 +v8)2 = (V14)? + (V8)2 4+ 2V14 - /8 = 14 + 8 + 2/14 - 8 = 22 4 2\/112
=224+2V16-7T=22+2-4-/7=22+8/7;

k) {’/4+ﬂ-{’/4—\/§=§/(4+ﬂ)-(4—f \/42 = Y16—2=Y14.

[) We wish to write a3 + a2 4+ ab as a product. We can factor out the power with the
lowest exponent. This gives a®™3 + a2 + a® = a®=2 - (a® + 1 + d?).
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Example 2.11 We simplify the term

_ (6a%2)?  (12ax?y)®
" (5az?y)t (4adz)?

Transforming the numbers occurring above into a product representation of prime numbers and
combining both fractions into one fraction, we get

T (2-3-a%-2)%-(22-3-a-22y)°
Using now power rules and ordering the resulting terms according to common bases, we obtain

[23 .33 (a2)3 - ms] , [(22)5 3545 (22) - y5]
[(5%-at- (22)t-y4] - [(22)2 - (a%)2 - 2]

Summarizing further all powers with the same base, we get

93+2:5 | 33+5 | (2345 13425 5

T = i
222, 54 . a4+3-2 . $2-4+2 . y4

213 . 38 . all . 5[713 X y5
24'54'0,10'1'10'2/4
213—4 . 38 . all—l() . .’13‘13_10
54
9 8

Y

Example 2.12 We simplify the following term:

o (=N (z=v)"
2 —y? a+b
Applying power rules and the third binomial formula, we get

- EZ?):((QEJ;)%

b) m+m-<—w>"
b)
N Q+J

x+y) (a+b)
Example 2.13 We simplify the term

T:\/\5/(a2—2ab+62).

Using the second binomial formula and the rules for working with roots, we obtain

= ViR = .

(
(
(
(
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If in a fraction the denominator includes roots, one usually transforms the corresponding terms
in such a way that the denominator becomes rational. For a fraction N/D with

N__ N
D \at\b
this can be done as follows:

N-(VaFvh) _N-(VaFvh)

N
D V- Vi a—b

Example 2.14 Let us consider the following examples for rationalizing the denominator.

a a\/B _g‘ ]
Y we e Y
) 3 3-(5-v2) 15-3V2 15-3V2
5+vV2  (5+Vv2)-(5-v2) 52-(v2)2 23 7
) 10 10

V2HVB-VT T (V2+VB) - VT
_ 10- (V2+V3+V7)
(V2+V3) = V7| - [(V2+ VB) + VT

10- (V24 V3+V7)  10-(V2+V3+VT7)  10- (V2+V3+VT)

(V2+v3)72 -7  (2+2V6+3) -7 26 — 2 ’
10 (V24 V3+VT) - (V6+1)  10-(V2+V3+VT) - (VE+1)
o 2-(V6-1)-(vVB+1) 2-(6-1)

:%.(ﬂ+\/§+\f7+\/ﬁ+\/ﬁ+\/@)
=V24+V3+VT+3V2+2V3+ V42 =424 3V3+ VT + V42,

2.5 Calculations with Logarithms

Logarithm:
Let a®” = b with a,b > 0 and a # 1. Then
x =log, b

is defined as the logarithm of (number) b to the base a.

Thus, the logarithm of b to the base a is the power to which one must raise a to yield b. As a
consequence from the above definition of the logarithm, we have

'8t = p,
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Rules for working with logarithms (¢ >0, a# 1, 2 >0, y > 0,n € R):
1. log, 1 =0; log,a =1;
2. loga(x : y) = logal‘ + loga Y;

3. log, (m) = log, z — log, v;
Yy

4. log, (z") = n - log, z;

When using a pocket calculator, often only logarithms to base e and 10 can be computed. If
a logarithm to another base should be computed, one can use the change-of-base formula for
logarithms:

Change-of-base formula for logarithms:

As an example, if we wish to determine log, 12, we get

lg12  1.079181246

~ /2 1.792481251 .
lg4 0.602059991

log, 12 =
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When using base e instead of base 10, we get

In12  2.48490665
Ind " 1.386294361
In the above computations, we have used the 9-digit-numbers obtained by a pocket calculator.

These numbers have already been rounded because they are all irrational numbers. We illustrate
the use of logarithms by some small examples.

log, 12 =

~ 1.792481251 .

Example 2.15 The following logarithms can be immediately found by applying the definition of
the logarithm.

a) We get
log, 64 =3
since
43 =64
b) We get
1
1 4=—
0816 9
since
162 =16 =14.
c) We get
logy 4 43 = -3
since

Example 2.16 We apply the rules for logarithms to write the following terms in an equivalent
form:

a) logy(ab)* = 4 - log,(ab) = 4 - (logy a + logy b);
b) logy(2ay/b+ ¢) = logy 2 + logy a + logy vb + ¢ = 1 + logg a + logy (b + ¢)/?

1
=1+logya+ ;5 logy(b+c);

1 1 1
c) ln% =1Inl—1In(ab)"/® =0— 3 In(ab) = —g(lna +1Inb);

4] a? a? 1/4 1 5 3
d) logyg e logy <bgc> =1 [loglo a” — (logyg b° + logyg C)]

1
= 1 (2logyga — 3logyg b — logyg ¢);

e) The term
log, s + log, t

cannot be transformed since both logarithms have different bases. The term
log, (s +t?)

cannot be transformed since there is no rule for the logarithm of a sum.

Download free eBooks at bookboon.com



Example 2.17 We transform the term
1 232
Lzln(a—kb)—i-ln(a—b)—i-ln(a —b%)

into one logarithmic term. Using the rules for logarithms, we get

(a+0b)-(a—0b) a? —v?

\/a2 —b2-\/a2 —p2

L = In = In =In

(a2 — b2)1/2 a2 — b2 a

1
= Inva? -2 = In(a® —b*)Y? = 5 In(a? — b%) .

EXERCISES

2.1 Calculate:

(a) (2a —5b%)°; (b) (2% — 3y) (22 + 3y) .

2.2 Determine product representations for the following terms:
(a) 12a3 + 4a?; (b) 3az — 6ay — 15bx + 30by ;

2.3 Determine all real numbers z with

(a) |3z — 8| =5; (b) |22+ 7| =10.
2.4 Calculate the fraction
97 5 43
42 8 36

2.5 Combine into one fraction and simplify:

DF:1

2.6 Combine into one fraction and simplify:

x 2z
4 Y - Y _
r+y r—y T4 =y

2.7 Combine into one fraction and simplify:

u + 6v 1 9y —x
pourv L Wmr
u? —3uv  2v  2xy — 6y?

2.8 Combine into one fraction and simplify:

512 — 3z) 5y — 12
922 — 152y 3zy — 5y?

F:

2.9 Calculate and simplify as much as possible:

) G)
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2.10 Calculate the number (without the use of a calculator)

(63)3 . (84)2
(12)12 '

2.11 Calculate:

3ax?)? ax)?

2.12 Simplify
$n+1y2n—1 ‘ 3:.n—Zyn—i-l

n—1 : »n+3

2.13 Simplify the following terms (without use of a calculator):

V273
(3)6735; (b) V35 + v21)?; (¢) V2+V2-V2-V2.
2.14 Rationalize the following fractions:
a 2 1+2 a
(a) : :

T\/a ) ) (d)

V50 1—z 1—yax’

2.15 Calculate the following logarithms:

(a) logy g3 12; (b) logy 4 10; (c) log; /5 16.
2.16 Calculate the following logarithms (without the use of a calculator):
(a) lg 20 +1g 50 ; (b) Ine* —1n \/e.
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Chapter 3

Equations

Equation:
Let T7 and 75 be two mathematical terms. Then

T =15

is called an equation.

In general, finding all solutions of a given equation is a difficult but important problem in
mathematics. For instance, often the zero of a function has to be determined. Here we consider
several special classes of such equations and discuss some of their properties as well as how they
can be solved. In particular, we review

e linear equations and systems of two linear equations with two variables;
e quadratic, root, logarithmic, exponential equations and proportions and

e the approximate solution of equations (without use of differentiation).

First, we introduce the notion of an equivalent transformation.

Equivalent transformations:
Equivalent transformations of mathematical terms are characterized by

e combining several terms on one side,
e adding or subtracting the same number or term on both sides or

e multiplying or dividing both sides by the same non-zero number or term.
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3.1 Linear Equations

Linear equation:
An equation is called linear if it can be transformed by equivalent transformations into the
form ax + b = 0 with a # 0.

For instance ) . 5
3x+7=0, —r=— or =5
+ 3 11 z—1
are linear equations. In the latter case, it is assumed that £ — 1 # 0. To transform this equation
into the form ax 4+ b = 0, we have to multiply both sides of the equation by the term z — 1.
In the following, we often write the corresponding transformation after a vertical line on the

right-hand side (i.e., | «(x — 1) in the above case).

A linear equation is characterized by the occurrence of the first power of x, which is denoted
as the variable or unknown. a and b are called the parameters or constants, and they are
given fixed values. Since a # 0, we can solve the given linear equation for z and obtain the
unique solution

Example 3.1 Consider the equation
27x — 10 = 15x + 6.

Solving for x, we obtain

27x —10 = 15246 | —15z+ 10
12¢ = 16 - 12
16 4
€T = —:7’
12 3

i.e., x = 4/3 is the only solution of the given equation.

Example 3.2 Let the equation
dax — 2ab® = 3ax — 3dx + 6b%d

be given, where a,b,d are real parameters and it is assumed that a # —3d. This is a linear
equation in the variable x because x occurs only in the first power (while parameter b occurs in
the second power). We write all terms including the variable x on the left-hand side and all
other terms on the right-hand side. This gives

dax — 3ax + 3dxr = 2ab® + 6b%d

ar + 3dz = 2ab® + 6b%d
z(a+3d) = 2b%(a+ 3d) |: (a+3d) #0
r = 202
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According to the given assumption a # —3d, the term a+ 3d is different from zero and therefore,
we can divide both sides in the second-to-last row by this non-zero number. We can easily test
the correctness of our computations by substituting the solution obtained into the given equation.

This yields
4a - 20 — 2ab®> = 3a-2b> —3d- 20> + 6b3d
6ab®> = 6ab® — 6b%d + 6b2d.

The above identity 6ab® = 6ab® confirms the result obtained.
We continue with a few linear equations including fractions.

Example 3.3 Consider the equation

xr+3 r+1 x-—2
—1= .
8 3 + 4

First, we rewrite the above equation using the least common multiple of the numbers 3, 4 and 8,
which is 24. This yields

3xr+9 24_8a:+8+6:1:—12

24 24 24 24
(see also Section 2.3). Combining the fractions on both sides and solving for x, we obtain:
3z — 15 _ 14z — 4 |24
24 24
3x—15 = 14z —4 | —14x 4+ 15
—11lz = 11 |: (—1)
xr = -1

In the first row above, we can also use the property that two fractions with the same denominator
are equal if the numerators are equal (this gives the second row). We can easily test that our
computations are correct by substituting the result into the given equation:

—1+3 —141 —-1-2
-1 = +
8 3 4
2 8 3
. = 0-==
8 8 4
3 _ 3
4 4

Example 3.4 Consider the linear equation

z b d
S="r4—.
a c c

with a # 0 and ¢ # 0. We can combine the right-hand side into one fraction, which gives

x bxr +d
a c

After cross multiply, we obtain

cx =a- (br+d) = abx + ad.
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Then, we get

cx —abx = ad
(c—ab)x = ad.
When solving now for x, we have to distinguish three cases.
Case 1: c—ab=0 and ad # 0.
In this case, there does not exist a solution because 0 - x cannot be different from zero.
Case 2: c—ab=0 and ad = 0.

In this case, any real number x satisfies the given equation, i.e., there exist infinitely many
solutions.

Case 3: ¢ —ab # 0.

In this case, there exists a unique solution, and we obtain

ad
c—ab’

Example 3.5 If one adds a certain number to the numerator of the fraction 11/14 and subtracts
the half of the same number from the denominator, we obtain the fraction 17/11. Which is the
number we are looking for? Let us denote this number by x. We can setup an equation

1142 17

T 7

- 1
2

Using cross multiply, this yields

1n-(11+z) = 17- (14—f)

2
1214+ 11x = 238 — 8.5z
19.5z = 117
r = 6,

i.e., the number x = 6 satisfies the above property.
The next three examples consider some applications from physics, where linear equations occur.

Example 3.6 A swimming pool has two inflows and one outflow. It is known that, if only the
first inflow operates, the pool would be filled after 2 h. Moreover, it would also be filled after 3
h, if only the second inflow operates. On the other side, by means of the outflow the pool would
be empty after 1.5 h when there would be no inflow.

If both inflows and the outflow operate, what time is necessary to fill the pool completely? Let
F denote the inflow per hour, V be the volume of the pool, and t the required time to fill the
pool (in hours). The amount Fy of the first inflow per hour is Fy = V/2, the amount Fy of the
second inflow per hour is Fo = V/3, and the amount F3 of the outflow per hour is F3 = V/1.5.
Thus, the total inflow per hour into the pool is given by

v v V. Vv Vv 2V 3V+2V-4V V

FeF 4Py e Y Y 2V oV ey 730
1t -=gt s3T5 73 6 6
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Moreover, we have F -t =V which gives

ol <

=V

from which we obtain the solutiont = 6 h, i.e., if both inflows and the outflow of the pool operate,
it is completely filled after 6 h.

Example 3.7 A bus starts from Magdeburg to Munich with a constant speed of 95 km/h. At the
same time, a truck starts from Munich to Magdeburg with a constant speed of 80 km/h. When
and where will they meet?

It is known from physics that the velocity v is defined as the quotient of distance s and time t:

v = -
t

The distance between Magdeburg and Munich is equal to s = 525 km. Lett denote the time from
the start of the bus and the truck until they meet, s1 the driven distance of the bus starting from
Magdeburg and s9 be the distance of the truck starting from Munich till the meeting point. Then
we have

s1=wv1 -t and S9 =g - t.

Since s = s1 + s2, we get
s=wvy-t+uvy-t=(v1+ve)t.

Solving for t, we get

. s B 525 km a3
Cwur v (95480) km/h T
Thus, the distances driven by the bus and the truck are
km km
51:957-3h:285km and 52:807-3h:240k3m.

This means that they meet on the highway near the German town Bayreuth which is approxi-
mately 230 km far from Munich.

Example 3.8 We determine the time necessary for a car of 4.5 m length to drive past a truck
of 15.5 m length when the car has a constant speed of 100 km/h and the truck has a constant
speed of 80 km/h. Let v = 100 km/h be the speed of the car and lc = 4.5 m be the length of the
car, vp = 80 km/h be the speed of the truck and lp = 15.5 m be the length of the truck. During
driving past, the distance s¢ of the car is given by

sc=st+lc+Ilr =s74+45 m+ 155 m=sp + 20 m,

where s s the distance driven by the truck in time t required for driving past the truck. Then

we have
so o sT

ve vy’

which corresponds to
sp+20m sy

Ve v
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We determine s and obtain

sp sy 20m
vr ve  ve
1 1 20m
ST . _ — R
v vo ve
vo — UT 20m
spr——— = ;
v - Vo Vo

which yields
20 m-vr 20 m-80 km/h

5T = vo —vp 20 km/h =80 m
Thus, the distance driven by the car in time t is
st =80 m + 20 m=100 m.
Consequently, the required time for diving past is
ST 80 m 0.08 km:0.00lh.

~or 80 km/h 80 km/h
Using that 1 h corresponds to 3,600 s, we get the time
t=0.001-3,600 s=3.6 s,

i.e., 3.6 s are required for driving past the truck.

Finally, we generalize our considerations to the case of two linear equations with two variables
x and y.

System of two linear equations with two variables:
Let the equations

ar+by =

asx + by = ca

be given. This is called a system of two linear equations with two variables.

Such a system can be solved by eliminating one of the variables. If one wants to eliminate
variable x, we can multiply the first equation by —as/a; and add it to the second equation. We

get
a a
(—b1-2+b2>y:—01~2+02
ai ay

from which we can determine y. Then we can substitute this result into one of the original
equations, which gives a linear equation with the only variable x. For illustration, we consider
the following three examples:
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Example 3.9 Let the system
—x+3y = 4
3 —y = 12

be given. In order to eliminate x, we multiply the first equation by —as/ay = —3/(—1) = 3 and
add it to the second equation, which yields

8y =24
and therefore,
y=3.
Substituting this result e.g. into the first equation, we get
—x+3-3 = 4
r = b.
Example 3.10 Consider the system
dr+3y = -2

Tx —5y = 17.

Instead of multiplying the first equation by —as/ay = —7/4 and adding it to the second equation,
we can multiply the first equation by —7 and the second one by 4 (in this case we avoid fractions
in the resulting equation) and after adding the resulting equations, we get

(=21 — 20)y = 14 + 68,
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i.e.,
—41y = 82
and thus
y=—2.

Substituting this result for instance into the first equation, we get
dr=-2-3y=-2-3-(-2)=14
and thus
z=1.
A test confirms the correctness of our computations:
4-143-(-2) = =2
7-1-5-(=2) = 17.

Example 3.11 Consider the system
20 -3y = 4
—6x +9y =

o

Multiplying the first equation by —az/a; = —(—6)/2 = 3 and adding it to the second one, we get
0z + Oy = 18

This is a contradiction because the left-hand side is equal to zero while the right-hand side is
different from zero. Therefore, the given system of linear equations has no solution.
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In a similar solution approach, one can transform the equations so that both coincide in one
side and then uses that the other side of both equations must also coincide. We only mention
that a general procedure for solving systems of m linear equations with n variables is Gaussian
elimination.

3.2 Quadratic Equations

Quadratic equation and normal form:
An equation of the form
ax? +br+c=0 (3.1)

with a # 0 is called a quadratic equation. Dividing both sides by a gives the normal form
122 +pr+¢=0

with p = b/a and ¢ = ¢/a.

For presenting all solutions, we have to distinguish three cases.
Case 1: p?/4—q > 0.

In this case, there exist two distinct real solutions

(VRIS
3

+14/=—q and Ty = —

Case 2: p?/4—q=0.

In this case, there exists a real double solution

_ .. _ b
1‘1—5(52——5.

Case 3: p?/4—q < 0.

In this case, there does not exist a real solution of the given quadratic equation.

Example 3.12 Consider the quadratic equation
32% + 62 — 9 = 0.

After dividing both sides by 3, we get a quadratic equation in normal form with p = 2 and
q=—3:
2? +2r — 3 =0.

Since p?/4 —q=1—(=3) =4 >0, we get two distinct solutions

r1=-14+vV1+3=-14+V4=1 and 2o=—-1—-+vV1+3=-1—+vV4=-3.

Example 3.13 Let the quadratic equation
2?+10z+25=0
be given. Since p®/4 —q = 100/4 — 25 = 0, there exists a double solution

r1 =T = —5.
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Example 3.14 We solve the quadratic equation
2%+ 22 +5=0.
Since p=2 and q =5, we get p*/4 —q=1—5= —4 <0 and therefore, the above equation has

no real solution.

We only mention that in several books the solution formula for a quadratic equation refers to
equation (3.1). In this case, the sign of the term D = b — 4ac decides about the number of real
solutions. For instance, if D > 0, we get the two distinct real solutions

—b+ Vb2 —4ac —b—+b? —4ac
T = g and Ty = g .

We finish with some quadratic equations, where the application of the above solution formula is
not necessary.

Example 3.15 Let
422 —49=0

We can use the following transformations:

no
=5

2
Il
B | o
=B

Note that we have to use the absolute value on the left-hand side since otherwise one solution
gets lost. Therefore, we get the two solutions

x —§ and Ty = —§
1=5 2= 5
Example 3.16 We consider the equation
322 + 122 = 0.
Factoring out 3z, we get
3x(x+4)=0
which has the two solutions
z1 =0 and T9 = —4.

Example 3.17 Consider the quadratic equation
(B3x+T7)2 =25
Taking the square roots on both sides we get

|3z + 7| = 5.
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According to the definition of the absolute value, we have to consider two cases.
Case 1: 3+ 7> 0.

Then we have
Bxr +7|=3z+7=5

which gives the first solution

2
xr1 = —g

Case 2: 3z +7 < 0.

Then we have
32 +7=—-Bx+7)=-3x-7=5

which gives the second solution
T = —4.

A test confirms our computations. For x1 = —2/3, we obtain

b () e

[3-(—4) +7)> = (=5)* = 25.

For xo = —4, we obtain

We continue with a generalization of quadratic equations, called a biquadratic equation.
Such an equation is characterized by the occurrence of only the fourth and second powers of the
variable z, and it has the form:

art +ba? +c=0 (a #0).

In this case, we introduce a new variable z by means of the substitution z = 22 and solve
the resulting quadratic equation for the variable z. Then we substitute back and determine all
solutions for the variable x. We consider the following example.

Example 3.18 Consider the biquadratic equation

2t =222 -3 =0.

2

After substituting z = x*, we obtain the quadratic equation

22 —22-3=0.
Applying the solution formula for a quadratic equation, we obtain

z1=14++vV143=3 and zo0=1—+v143=-1.

2

After substituting back, we obtain from x= = z1 = 3 the two solutions

Ir = \/g and xTro = —\/g.

2 = 29 = —1 has no real solution and therefore, there exist only the real solutions

The equation x
z1 and x3.

Next, we consider an example which can be also reduced to a quadratic equation.
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Example 3.19 Given is the equation
r+4y/r —12=0.
Using the substitution z = \/x, we get the quadratic equation
2 442-12=0
which has the two solutions
21=-2+V4+12=2 and  zp=-2-V4+12=—6.

Substituting back, for z; we get \/x = 2 which yields the solution x1 = 4. For zy, there does not
exist a solution xo since we always have \/x # —6. A test confirms that

444-V4-12=4+8—-12=0.

Finally, we consider two systems of equations with two variables, where in one equation one
variable can be eliminated and plugged in the other equation (so that a quadratic equation

results).
Example 3.20 Let the system of equations

20 +5y = —12
zy = 2
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be given. From the second equation, we get for x # 0

y=—. (3.2)

x

Substituting this into the first equation we get

2
20+ 5. — = —12.
T

Multiplying both sides by x and dividing the resulting equation by 2, we get
z® + 6z +5=0.
This quadratic equation has the two solutions
x1:—3+\/9f=—1 and 332:—3—\/9f:—5.

Using equation (3.2), we get the corresponding solutions

yp=—=-2 and Y=—=—-.
1 x9 5

Thus, the given system has the two solutions (x1,y1) = (=1, —2) and (x2,y2) = (=5, —-2/5).
Example 3.21 Let us consider the system

r—2y = 0

2 —zy+y? = 48
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From the first equation, we immediately get
x =2y. (3.3)
Substituting this into the second equation, we obtain

(2y)* —2y-y+y> = 48

4y — 2P 497 = 48
P = 16
and thus the solutions
Yy =4 and Yo = —4.

Using equation (3.3), we get
1 =2y =8 and T9 = 2yg = —8.

Thus, the given system has the two solutions (x1,y1) = (8,4) and (x2,y2) = (-8, —4).

3.3 Root Equations

Root equation:
An equation in which the variable x occurs under the root sign is called a root equation.

/
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For instance,

V2z + 4 = 10, V3z +V6r —4—+Vz+2=20 or Vir +3-27=0

are root equations. One can solve such an equation by taking an appropriate power such that
the corresponding roots are removed. For a root equation, we always have to test whether the
solution(s) obtained indeed satisfy the given equation.

Example 3.22 Given is the root equation
V3r+4-7=0.
We can transform this equation as follows:

V3r+4 = 7 | ()2

3r+4 = 49 | —4
3r = 45 |: 3
r = 15.

Substituting the result into the given root equation, we get
V3-154+4—-7=+v49-7=0,

i.e., x = 15 s indeed a solution of the given root equation.

Let us now consider the equation

V35 +4+7=0. (3.4)

We get
V3r+4=-T.

After taking the square on both sides, we get the same result as in the calculations before.
However, x = 15 is not a solution of the given equation (3.4) since

V3 15+4+7=vV49+7=14#0.

It is immediately clear that equation (3.4) cannot have a solution since \/3x +4 > 0 for all real
numbers x.

Example 3.23 Next, we consider the root equation

Vr—1—+v2x—3=+3z—4.

Taking the square on both sides, we get by applying the second binomial formula

(r—1)+2r-3)—2-Vo—1-2r—3 =3z —4,

which corresponds to

3r—4—-2-vVr—1-v2x—3=3z—4.

Subtracting 3x — 4 on both sides, dividing the resulting equation by —2 and applying the rules
for roots, we get

ViEe—=1)-(2z-3)=0

Download free eBooks at bookboon.com



which has the two solutions

3
1 =1 and xz:i'

For x1 =1, the term «/2x — 3 is not defined since 2-1 —3 = —1 < 0. For o = 3/2, we get the

correct identity
3 3 3
——1—4/2-==3=14/3-=-—-4
a1y sy
\/T_\/T
2 V2

Thus, xo = 3/2 is the only solution of the given root equation.

i.e.,

Example 3.24 We determine all solutions of the root equation

\/x+\/2x+11+2:2.
Taking the square on both sides, we get
r+V2r4+114+2=22=4,

which can be written as

V2z+11 =2 — x.

Taking now again the square on both sides, we obtain
20 +11 = (2 — 2)? =4 — 4z + 22,

which corresponds to

22— 6x—T7=0.

This quadratic equation has the two solutions
r1=34+V9+7=7 and r9=3—vV9+7=—-1.

We test whether both solutions indeed satisfy the given root equation. For x1 =7, we obtain

\/7+\/2-7+11+2:\/7+5+ = V14 #£2.

For xo = —1, we obtain
\/—1+\/2~(—1)+11+2:\/—1+\/§+2:\/41:2.
This, only xo = —1 satisfies the given equation.

Example 3.25 Let us consider consider the root equation

</17—3\/5x—11 =2
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Transforming this equation, we get

17—-3-vbr—11 = 23=38

—3-v6r—11 = -9 | ()?
9-(5z—11) = 81
50 —11 = 9
r = 4

A test confirms the correctness of our computations:

{’/17—3-\/5.4—1 —{17-3 V5= ¥5=2.

Example 3.26 Finally, we determine all solutions of the root equation

{*/18—2-\3/395—2:2.
We consecutively apply the rules for working with powers and obtain
18-2-V3z—-2 = 2!
2-V3r—2 = 2 |: 2
V3z—2 = 1 1()?
3r-2 = 1°=1

r = 1.

A test gives

{‘/18—2.\3/3-1— = {‘/18—2-€’f1= Vi6=2.
3.4 Logarithmic and Exponential Equations

Logarithmic equation:
An equation in which the variable & occurs either in the base or the numerus of a logarithm is
called a logarithmic equation.

For instance,
In(2z —7) = 0.5,  logy, = 32 or lg3% 4 1g5* 1 =3 =0

are logarithmic equations. Simple logarithmic equations can be solved by writing the left-hand
and right-hand sides as exponent with an appropriately chosen base.

Example 3.27 Consider the logarithmic equation
logy 42 =5

Due to a8« ® = b and the property that for an exponential term the equality a™* = a™ is
equivalent to the equality Ty = Ty (in the subsequent examples, we use such a property also for
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other terms such as logarithmic terms), we transform the above equation into an exponential
term with base 2 and obtain:

2log2 4 — 25
4r = 32
r = 8.

We can test the correctness of the result by substituting into the original equation and obtain

logy (4-8) = logy 32 = log, 2° = 5.

Example 3.28 We consider the logarithmic equation
lg 20* + 1g 5% = 4.

We apply the rules for working with logarithms and obtain

z-lg20+x-1lghb = 4
xz-(lg20+1gh) = 4
x-1g(20-5) = 4
r-1g(10%) = 4
z-2-1g10 = 4

r-2 = 4

r = 2

A test confirms the correctness of our result:

1g 20% + 1g 5% = 1g 400 + 1g 25 = 1g 10,000 = 1g 10* = 4.

Example 3.29 Let us consider the logarithmic equation
Inz? = In(a® — b%) — In(a — b) — In(a® + ab + b?).

We assume that the positive parameters a and b satisfy the inequalities a < b and a® > b3. Under
these assumptions, all logarithms above are defined. We simplify the right-hand side and obtain

5 a3 _ b3
1 =1
n " @—b)- (@ +ab+b?)
2 a® — b3
~ (a—10)-(a%+ab+b?)
3 _ 13
2 a’>—b
a3 _ b3
2 = 1
From the last equation we obtain the two solutions 1 = 1 and x9 = —1. Both solutions satisfy

the given equation: In both cases the left-hand side has the value In1 = 0 which is equal to the
value of the right-hand side.
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A REFRESHER COURSE IN MATHEMATICS EQUATIONS

Example 3.30 Consider the logarithmic equation

2In(z — 1) = In(zx + 11).
We can use the rules for logarithms and rewrite the equation as an exponential term with base
e. This yields:

In(z —1)*> = In(z+11)
(z—-12 = z+11
2220 +1 = z+11
2 —3r—-10 = 0.

We note that the second equation above can also be skipped since from Iny = In z, it immediately
follows that y = z. The quadratic equation above has the two solutions

w—§+\/9+10—§+\/§—§+z—5

179 4 T2 4 22"
3 9 3 49 3 7

=g\ t0=s g =g =2

We have to test whether x1 and xo are indeed solutions of the given equation. For x1 =5, we

obtain

and

2In(5—-1) =In(5 - 1)* =1In 16 = In(5 + 11).

However, for xo = —2 the term In(x — 1) = In(—3) is not defined. Therefore, x1 =5 is the only
solution of the given logarithmic equation.

> Apply now
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Exponential equation:
An equation in which the variable x occurs in the exponent is called an exponential equation.

For instance,
37+ = 90, a® = p3Hl or V2.5 =12

are exponential equations. Only simple exponential equations can be solved, often one has to
look for approximative solutions. Simple exponential equations can be solved by taking on both
sides of the equation the logarithm to an appropriate base.

Example 3.31 Consider the exponential equation
—3.2% 4+ 47/2T = . g7t _ 37,

We rewrite the above equation in such a form that on the left-hand side only exponential terms
with power 2 and on the right-hand side only exponential terms with power 3 appear. Using
22 = 4, we get

—3.9% 4 (22)1/2+1 —92.3.3% _ 317

which gives
—3.9% 4 2%@/2+) — 5. 37,

Moreover, using
22($/2+1) — 2.1‘+2 — 9% . 22 —4.9%

9
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we get
-3-2"4+4.27
1-2%
oz
3:1:

X

EQUATIONS

53"
53"

5 e

Inb

Inb
In2—In3

—3.96936,

which indeed satisfies (approximately) the original equation (note that rounding differences may

occur):
_3.90-3.96936 | 4—3.06936/2+1

—0.191525 + 0.255366
0.063841

~
~

L

~

~
~

9. 3—3,96936-1—1 _ 3—3.96936

0.0776610 — 0.012768
0.063842.

Example 3.32 We determine all solutions of the exponential equation

x+1/ax_2 _ z+5 ax_l.
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Transforming this equation, we get

a®=2)/@+1)  _  (z=1)/(z+5)
T —2 rz—1
rz+1 - z+5
(x=2)-(z+5) = (x—=1)-(x+1)
2 4+3z-10 = 22 -1
3r = 9
r = 3.

A test confirms
341

a3—2 = {a=a'l*

and
3+5 8
Va3~ = Va2 a2/8 a1/4,

i.e., both sides of the given equation have the same value a'/*.

Example 3.33 Let the exponential equation
12 — 3e?* — 9¢e” = 0

be given. We can transform this equation into a quadratic equation by means of the substitution
z = €% by using that e** = (e%)2. Dividing the resulting equation by (—3), we get

22 4+32,—4=0.
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This quadratic equation has the two solutions

3 9 3 5 3 9 3 5

Substituting back, we get for z1 = 1 the equation e® = 1 which gives the solution
xr1 = Inl1=0.

For zo = —4, the resulting equation € = —4 has no solution since € is positive for all real
numbers x. Therefore, x1 = 0 is the only solution of the given exponential equation.

3.5 Proportions

Proportion:
If the two ratios a : b and ¢ : d have the same value, then

a:b=c:d (3.5)

with b # 0 and d # 0 is called a proportion.

If proportion (3.5) holds, then also the proportions
d:c=b:a, a:c=b:d and c:a=d:b
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hold. Moreover, proportion (3.5) is equivalent to the equalities
a=c-f and b=d- f,
where f is denoted as the factor of proportionality. We illustrate the use of proportions by

the following examples.

Example 3.34 A car consumes 6.25 litres of fuel per 100 km. How many kilometres can the car
go if the tank of this car is filled up with 48 litres. Thus, the ratios that the car consumes 6.25
liters per 100 km and 49 litres per x km are equal. We can establish the following proportion:

6.25: 100 =48 : x.
This gives

6.25-x = 48-100
4,810

= 768.
6.25

This means that the car can go 768 kilometres with a tank filled up with 48 litres.

Example 3.35 In an examination 6 students of a group fail. This corresponds to 18.75 % of
the participants in the examination. How many students took part in the examination? This
means that the ratio 6 : x is the same as 18.75 : 100. We obtain the following proportion:

6:2x=18.75:100
Solving for x, we get

18775 -z = 6-100
600

=32
18.75 ’

i.e., 32 students took part in the examination.

Example 3.36 A way of a length of 6.56 m should be divided according to the ratio 5 : 3. Let
x and y denote the lengths of the two parts, i.e., x and y have to satisfy the proportion

r:y=>5:3.
Using x 4+ y = 6.56 m, we get
T 6.56 m —y §
y y 3
Now, by cross multiply, we get
5y =3-(6.56 m —y)
from which we obtain

y:ifglizzmnz

and
=656 m —246 m =4.10 m .

Download free eBooks at bookboon.com



Example 3.37 A wire with a length Iy = 100 m and a diameter di = 3 mm has the weight
w1 = 8 kg. A second wire made from the same material has the diameter do =5 mm and the
weight wo = 20 kg. How long is the second wire?

From physics it is known that the ratio of the weights of the wires is identical to the ratio of the
volumes Vq : Vs, i.e., we obtain

wyrwe = Vi:Va
2 2
w1 wy = %ﬂ'lli%ﬂ'b
ﬂ _ d%ll
w9 N d%-lg

Solving for lo, we get

_wadily 20 kg - 3% mm? - 100 m
wndy 25 mm? - 8 kg

=90 m

i.e., the second wire has a length of 90 m.

3.6 Approximate Solution of Equations

Finding the zeroes of a function (see also Chapter 8) is often a hard problem in mathematics
which leads to the solution of an equation. If one is unable to find exactly the zeroes, one can
apply numerical procedures for finding a zero approximately. There are several procedures for
finding zeroes approximately without use of differential calculus, e.g. interval nesting and the
use of the fixed-point theorem. Here we describe a procedure known as Regula falsi, which
also does not use derivatives of a function. In this case, we approximate the continuous function
[ between z¢g = a and z1 = b with f(a)- f(b) < 0 by a straight line through the points (a, f(a))
and (b, f(b)). This yields:

b) —
v ) = 1O )
Since we look for a zero T of function f, we set y = 0, solve the equation for x and use the result

as an approximate value (xg2 = )

a

b_
2 =a= ) T T

for the zero. In general, we have f(z2) # 0 (in the other case, we have found the exact value
of the zero). Now we check which of both closed intervals [a,x2] and [z2,b] contains the zero.
If f(a) - f(x2) < 0, then there exists a zero in the interval [a,x2]. We replace b by z2, and
determine a new approximate value zs. Otherwise, i.e., if f(z2) - f(b) < 0, then interval [x2, b]
contains a zero. In this case, we replace a by x2 and determine then an approximate value
x3, too. Continuing in this way, we get a sequence {z,} converging to a zero T € [a,b]. This
procedure is illustrated in Fig. 3.1.

Example 3.38 Let a function f be given with

flz)=lgz —z+3.
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Figure 3.1: Illustration of Regula falsi

We are looking for one real zero (i.e., we wish to solve the equation lgx —x +3 = 0). Since
f(8) =0.47712 > 0 and f(4) = —0.39794 (and function f is continuous), there must be a zero
in the interval (3,4). Letting xo = a = 3 and 1 = b = 4, we get the results presented in Table
3.1 with a precision of three decimal places.

Table 3.1: Application of Regula falsi

n || Tn f(xn)
01 3 0.47712
1|4 —0.39794
2 || 3.5452 0.0044
3 || 3.5502 0.00005
4 || 3.550
EXERCISES

3.1 Determine the solutions of the following linear equations:

5 3x+5 3z+1 r+2 x+4
2 + o = : b —2=3- :
(a) 2247 2 (b) =3 STy
3r+4 x+6 1 a
—4=0;: da—-—14+-=—;
2 1 1 a’r+b  a(l —2x)
(e)3+l‘ %_%v () a b (CL 750)

3.2 Solve the following equation for g:

Lo
s:vot—igt .
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3.3 Determine all solutions of the following systems of linear equations:

r + 2y = =5
(2) dr — y = 77
r — 3y = 4

(b) —2r 4+ 6y = -2 °

3.4 Determine all real solutions of the following equations:

(a) 22+ 2 —12=0; (b) (ax + 2b)(a® — bz) = 0;

(c) 22 + 22 + 17 =0; (d) 522 — 102 = 40;

(e) ax® —1=1b+2?; () a(b—2)+ 22 —br=(a—1x)- x;
21

(g) 2*+322 -10=0; (h)x—7ﬁ+5:0.

3.5 Find the quadratic equation having the following roots:

(a) 21 =5 and x93 = —6; (b) 21 =2++v5and 29 =2 — /5.

3.6 Determine all solutions of the equation
9 a
*+—4+a=0 (a#0).
x
For which values of a does the equation have real solutions?

3.7 Determine all solutions of the following systems of equations:

2 + 2 = 13
(a) r 25
y 3
( (r-2)-(y—2) = 3
r+y = 8

3.8 Determine all solutions of the following root equations:

(8) VT 2+ vZ T Td=8: (b)igzé;
() (13— &) - (6 — @) = x +2; (@ VE+1=7-(Vo-1)
(e) Va—z+ b__“ —Vb—a (r<a, z<b).

vb—x

3.9 Determine all solutions of the following logarithmic equations:
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(a) logy(3x + 1) = 2; (b) 2Inz =41In3;

(c) lga™ — 12 =1ga?; (d) 1g25* +1g4* = 6;

(0) Togy(x + 4) — logy(22 — 1) = 1; () In <xi4 _ 1) 4 ln(z +4) = In (41_63:) .

3.10 Determine all solutions of the following exponential equations:

1 0.
256

(c) 23(+-2) = gl-2z, @ (§>2x+1 _ (i>3;

(e) at - a2r~1 = : +2 (f) V@i = gdrtH,
(g) “WadT = /a7t (a>0); (h) {/a =100 (a>0).

(a) 24775 — 128 = 0; (b) 4%

a-a®

2z ;

3.11 What is the interest payment if an amount of 2,500 EUR is given to a bank for a period
of 110 days when the interest rate per year, i.e., for 365 days, is equal to 5 %7

3.12 A bus with a constant speed required 75 minutes to drive a distance of 120 km. If the
speed does not change, what time is needed for a distance of 280 km?

3.13 A 3-day trip of a length of 456 km should be divided into three daily sub-trips according
to the ratio 5 : 4 : 3. What are the corresponding distances for the particular days?

3.14 Determine a solution of the equation
at +22°% —42® -3 =0
between a = 1 and b = 2 approximately by applying Regula falsi.
3.15 Determine a solution of the equation
3z —lnx—14=0

between a = 4 and b = 6 approximately by applying Regula falsi.
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Chapter 4

Inequalities

Inequalities are often obtained when comparing the values of different mathematical terms.
Often practical problems do not lead to equations but to inequalities. For instance, the amount
of an available resource or a financial budget may not be exceeded by the chosen production
program but it is not required to fully use the resource or the budget. Inequalities play also often
a role in estimations e.g. of the maximal possible error, or they may occur when determining
the domain of a function. The learning objectives of this chapter are

e to review the rules for working with inequalities and

e to discuss the most important types of inequalities.

Similar to equations, the main focus is on the determination of all feasible solutions of linear
and quadratic inequalities as well as inequalities with absolute values. We will also discuss the
solution of some more general inequalities.

4.1 Basic Rules

Inequality:

An inequality compares two mathematical terms by one of the inequality signs

< (smaller than), > (greater than), < (less than or equal to) and > (greater than or equal to),
respectively.

For instance, the mathematical terms 77 and T must satisfy the inequality
T <Ts.

For working with such inequalities, we first review the most important rules. We assume that
a,b,c and d are real numbers.
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Rules for inequalities:

1. If a < b, then
a+c<b+ec, a—c<b-—c¢

2. ifa < band b < ¢, then a < ¢;
3. if a < b and ¢ > 0, then

a
ac < be, - < -
c

4. if a < b and ¢ < 0, then
ac > be,

5. ifa<band c<d, thena+c<b+d;

6. if 0 < a < b, then

SHES

7. if a® < band b > 0, then

a>—Vb and a<Vb (or correspondingly, — vb < a < Vb).

[ ]
B By 2020, wind could provide one-tenth of our planet's
ra I n p O W e r electricity needs. Already today, SKF's innovative know-
how is crucial to running a large proportion of the
world's wind turbines.
Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
stems for on-line condition monitoring and automatic
jcation. We help make it more economical to create
eaper energy out of thin air.
our experience, expertise, and creativity,
industries ca st performance beyond expectations.
Therefore we'need the best employees who can
eet this challenge!
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As a special case of rule (4) above, we have for ¢ = —1:
If a < b, then —a > —b.

Rule (4) says that by multiplying or dividing both sides of an inequality by a negative number
¢, the inequality sign between the terms changes. For a positive number ¢, this is not the case
(see rule (3)). Rule (5) cannot be extended to the subtraction, i.e., if a < b and ¢ < d, then the
inequality sign between the terms a — ¢ and b — d may be <, >, < or >.

4.2 Linear Inequalities
Linear inequality:
An inequality of the form
ax+b>0 and ax+b>0,

respectively, is called a linear inequality.

Notice that this includes the cases of the inequality signs < or < since by multiplying the
inequality by —1, we get an inequality of the above type. We consider a few examples for
solving linear inequalities by applying the above rules.

Example 4.1 Let us consider the linear inequality
4(x +2) <6(x—5)+16

Applying the above rules for transforming inequalities, we can eliminate x and obtain

dr+8 < 6z —-30+16 | —6x — 8
-2z < =22 |1 (—2)
x > 11,

i.e., every real number x from the interval (11,00) satisfies the given inequality. Alternatively,
we can describe the set S of solutions in interval notation as

S = (11,00).
Example 4.2 We wish to determine all integers satisfying the inequality
11
r+4<2x+ CR

We disregard the integer requirement and solve the above inequality for x. This gives

11
3
_ < = (=1
vo< (1)
- 3
xT — .
2
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We emphasize that in the last row, the inequality sign changes because we have multiplied both
sides by the negative number —1. Hence, the set S of solutions is the set of all integers greater
than —3/2, i.e.,

S={-1,0,1,2,...}.

Example 4.3 We determine all solutions satisfying the inequality
2—x

<4
x+3

To solve for x, we want to multiply both sides of the inequality by x 4+ 3. Since this term can be
positive or negative, we have to consider the two cases: x < —3 and x > —3 (note that x = —3
has to be excluded).

Case 1: © < =3: In this case, the term x + 3 is negative, and we obtain
2—x>4(x+3)
from which we get

—-10 > bz
r < -2

This, in this case a solution must satisfy v < —3 and x < —2 which gives the set of solutions

S = (—OO, —3) .

Case 2: x > —3: In this case, the term x + 3 is positive, and we obtain
2—zr<4(x+3)
from which we get

—-10 < bz
r > -2

Thus, in this case a solution must satisfy x > —3 and x > —2 which gives the set of solutions
S = (—2,00).
The set S of solutions is the union of the sets obtained in the particular cases:
S=5U8 = (—007—3) U (—2,00) .
Example 4.4 We determine all real numbers satisfying the inequality

1 1
<

. 4.1
r+4 = 2x—2 (4.1)

In order to transform this inequality, we need to distinguish the cases, where the denominators are
positive and negative, respectively. We determine the real numbers for which the denominators
are equal to zero and obtain:

From the equation x + 4 = 0, we get x = —4.

From the equation 2x — 2 =0, we get x = 1.

Therefore, we have to distinguish the following three cases:
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e Case 1: x> 1.
In this case, both denominators in the given inequality are positive. After multiplying both
sides of inequality (4.1) by (x +4) - (2z — 2), we obtain the inequality
20 — 2 < x + 4,

which can be rewritten after subtracting x on both sides and then adding 2 on both sides
as
z < 6.

Since both inequalities x > 1 and © < 6 must be satisfied, we get the following set S1 of
solutions in case 1:
Si={zeR|1<z<6}=(1,6].
o Case 2: -4 <z <1.

In this case, the denominator x + 4 is positive, but the denominator 2x — 2 is negative.
Therefore, when multiplying both sides of the given inequality by (x + 4) - (22 — 2), we
multiply by a negative number and thus, the inequality sign changes. Hence, we get

20 —2 > x+ 4

which can be rewritten as
Tz > 6

Since we must have —4 < x < 1 and x > 6, no real number is a solution of the given
inequality in case 2, i.e., the set Sy of the solutions is the empty set: Sy = ().

o Case 3: x < —4.

In this case, both denominators of the given inequality are negative. Thus, the product
(x+4) - (2x —2) is positive and therefore, we can transform inequality (4.1) as in the first
case, i.e., we obtain

2 -2 < x+2

which again gives
z < 6.

Since both inequalities x < —4 and x < 6 must be satisfied, we get the set of solutions

Ss={zeR |z < —4}.

In order to give the complete set of solutions, we have to take into account that in each of the
above cases we get a solution. Therefore, the set S of all solutions is the union of the sets of
solutions for the particular cases, i.e., we obtain

S=5USUSs={zeR|z< -4 or 1 <z <6} = (—00,—4)U(L,6].

4.3 Inequalities with Absolute Values

Next, we consider inequalities including absolute values. Based on the definition of the absolute
value of a real number, we have the following properties:
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Properties of absolute values:
1. —la| <a < al;
2. Inequality |x| < a is equivalent to the inclusion z € (—a, a), (a>0);

3. Inequality |z| > a is equivalent to the inclusions z € (—o0, —a)
or z € [a,00), (a>0);

4. la+0b| < |a| + |b];

5. la| = [b] < la —b] < |af + [b].

Inequality (4) is also known as the triangle inequality. It says that the length of the third
side of a triangle (i.e., |a + b|) is never greater than the sum of the lengths of the other sides
(i.e., |a] +]0]).
Consider the inequality

|z —a|] <0. (4.2)

Here the set of solutions is the set of all real numbers z with a distance from the number a not
greater than b. This means that the set S of solutions contains the set of all real numbers x not
smaller than a — b but not greater than a + b, i.e.,

S =1[a—batb. (4.3)
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Formally, we can confirm this by using the definition of the absolute value of a number z. We
distinguish the following two cases.

Case 1: = > a.

Case 2: z < a.

Case 1: If © > a, then |x — a| = z — a. Thus, inequality (4.2) turns into
z—a <b,

which gives
z<a+b.

Thus, in this case, we get the set S of solutions with

S1 =la,a+b].
Case 2: If © < a, then |x — a] = —(z — a) = a — . Thus, inequality (4.2) turns into
a—x<b,
which gives
T >a—b.

Thus, in this case, we get the set Sy of solutions with

Sy = [a — b, al.
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To get the complete set .S of solutions, we have to consider the union of both sets, which gives
the set S =51 U Sy = [a—b,a+b] (see (4.3)).

Example 4.5 Let the inequality
lr —3] <5

be given. The set of solutions contains the set of all real numbers having from number —3
a distance not greater than 5, i.e., we immediately get

S =[-3-5,-3+5 =[-8,2].

Example 4.6 Consider the inequality
|z + 1| > 2.

The set of solutions is obtained as the set of all real numbers x having from the number —1
(notice that x +1 = x — (—1)) a distance greater than 2. Thus, all real numbers x smaller than
—1—2 = -3 or greater than —1 4+ 2 =1 satisfy the given inequality:

S = (—00,—3) U (1, 00).

Example 4.7 Let us consider the inequality

|3z — 6]
— <
z+1

2.

Here we also have to consider several cases. In order to transform the given inequality, we
have to distinguish the cases when the term within the absolute-value-signs is non-negative and
positive and when the denominator is positive and negative, respectively.

From 3z — 6 =0, we get x =2 and from x4+ 1 =0, we get x = —1.
Therefore, we have to consider the following three cases.

Case 1: z > 2.

Case 2: -1 <z < 2.

Case 3: z < —1.

Note that © = —1 must be excluded because the denominator would then be equal to zero. We
determine the set of all solutions for the individual cases.

Case 1: If x > 2, then 3x — 6 is positive for each x under consideration, which yields
|3z — 6] = 3z — 6.

Moreover, the denominator is positive. Thus, we can transform the given inequality as follows:

3xr—6
: 1) >0
x+1 e+ 1)
3r—6 < 2-(x+1) | =22 + 6
r < 8.

Since we must have x > 2 and x < 8, we get as the set S1 of all solutions in this case

S1=[2,9).
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Case 2: For all numbers x considered in case 2, the term 3x — 6 is negative and therefore,
|3z — 6] = —(3z — 6) = 6 — 3.

Consequently, since x + 1 is positive, we obtain

6 — 3z
1 < 2 | (x+1)>0
6—-3z < 2-(x+1) | +3x — 2
4 < Sz
v > o
5

From —1 <z <2 and x > 4/5, we obtain the set of solutions

4
SQZ <5, 2)

|3x — 6] = —(3z — 6) = 6 — 3x,

Case 3: In this case, we always have

and we can transform the given inequality as follows:

6 — 3x
oo 2 | (z+1)<0
6—-3z > 2-(x+1)
4 > bz
r < 2
5

From x < —1 and © < 4/5, we get the set S3 of solutions in case 3 as follows:
S3 = (—o0,—1).

In order to find the complete set of solutions of the given inequality, we have to combine the
individual sets of solutions since any of the three cases is possible, and so we obtain

S = (—o00,—1) U ( §8>

4.4 Quadratic Inequalities

Quadratic inequality:
An inequality which can be transformed into one of the forms

ax® +bxr+c>0 or a:c2+bas+620

weith a # 0 is called quadratic.
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X1 X2 x X1 1) x

(a) a>0 (b) a<0

Figure 4.1: Solving a quadratic inequality

Again, the case of opposite inequality signs can be reduced to the latter type of inequality by
multiplying both sides by the number —1, which changes the inequality sign.

We discuss two variants of solving such quadratic inequalities. The first way is to consider the
corresponding quadratic equation with the inequality sign replaced by the equality sign. We
determine the roots of this equation and check which of the resulting interval(s) satisfies(y) the
corresponding inequality (see Fig. 4.1).

The second way of solving a quadratic inequality is to transform the quadratic and linear terms
22+ ax into a complete square by using the binomial formula and taking then the square root
on both sides. For illustration, we first consider the following example, where we apply both
solution variants.

Example 4.8 We consider the inequality
2% — 6 — 20 < 0

and apply both solution strategies. Considering the corresponding quadratic equation and dividing
both sides by 2, we obtain
22 3z —-10=0

3 /9 3 149
= — — ]_ = — —_— =
T 2+ 4+0 2+ 1 5
3 /9 3 149
T 5 4+0 2 1

Now we take some arbitrary value, e.g. x = 0 and check whether it satisfies the given inequality.
Since 2-0% —6-0—10 < 0, all real numbers x between —2 and 5 satisfy the given inequality.

which has the two solutions

and

Applying the second approach, we divide the given inequality by 2 and rewrite it as follows:

22— 3z < 10.
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Transforming the left-hand side into a complete square, we use the binomial formula
(z —a)? = 2? — 2ax + a® .

From —2ax = —3x, we get a = 3/2 and then

3\2 3\ 2
~3 2) <104+ (2
x x—i—(z) < +<2>,
3\2 49
-] < =
<x 2) =7

Taking on both sides the square root, we get

which can be rewritten as

3
=

7
2 2

Thus, the set of solutions is given by the set of all real numbers x having from 3/2 a distance
not greater than 7/2:
S={zeR|-2<zx<5}=[-25].

Next, we present one other example where we apply the second solution variant while for all
other examples, the first solution variant will be used.

Example 4.9 We determine all real numbers x satisfying the inequality
z® + 4z < 5.
We write the left-hand side as a complete square (x + a)? by using the binomial formula
(z +a)? = 2% 4 2ax + a>.
From 4x = 2az, we obtain a = 2. Therefore, we add a®> = 22 =4 on both sides:
2?4+ 4z +22% < 5422,

which yields
(x+2)* < 0.

Now we take the square Toot on both sides and obtain

|z +2| < 3.

Note that, as mentioned before, we have to use the absolute value of x + 2 on the left-hand side
because there are two solutions when taking the square root of some number z%: namely +z and
—z, and these cases can be summarized to |z|. The set of solutions S of the inequality is given
by the set of all real numbers x having from the number —2 a distance not greater than 3, i.e.,

S={zeR|-5<z<1},

or in interval notation
S =[-5,1].
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Example 4.10 Consider the quadratic inequality
—22% — 4z 4+ 16 < 0.
Taking the resulting quadratic equation and dividing both sides by —2, we obtain
22 4+20—-8=0,
which gives the solutions
r1=-1+V1+8=2 and To=-1-V1+8=—4.

Now we test whether the given inequality is satisfied for an arbitrary trial value. For instance,
for x = 0 we obtain that —2- 0% —4 -0+ 16 is equal to 16 and therefore, the trial value x = 0
does not satisfy the given inequality. Therefore, all x from the interval [zo,x1] = [—4,2] do not
satisfy the given inequality. Consequently, the set S of solutions satisfying the given inequality
is given by the set of all real numbers that are smaller than —4 or greater than 2:

S = (—o00, —4) U (2, 00).

Example 4.11 Let us find all real numbers satisfying the quadratic inequality
2?4+ 6z 49 > 0.
Considering the corresponding quadratic equation, we have

22+ 6z +9=0,
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which has the solutions
1 =-34+v9—-9=-3 and r9=—-3—vV9—9=-3,

i.e., there is a real double solution r1 = x9. As a consequence, the sign of the quadratic term
22 4 6z + 9 does not change at the root —3. We test the sign of the quadratic term for an
arbitrary value of . Using for instance x = 0, we get 0> +6-0+9 > 0, i.e., the given inequality
is satisfied for x = 0 and therefore also for all real numbers except —3, i.e., we get

S = (—o00,—3) U (—3,00).

Example 4.12 We determine all real numbers satisfying the inequality
|2> 4+ 3z —4| <z +4.

First, we find the zeroes of the term within the absolute-value signs: From x? + 3z —4 = 0, we
get the solutions

3 9 3
T 2+ 4+ 2+2
and
3 9 3 5
2=\t 272

For x = 0, we obtain 0> +3 -0 —4 < 0. Since x = 0 is contained in the interval (—4,1), the
inequality 2 + 3z — 4 < 0 holds if and only if x € (—4,1), and x> + 3z — 4 > 0 holds if and only
if t < —4 orx > 1. Therefore, we consider the following two cases:

Download free eBooks at bookboon.com



A REFRESHER COURSE IN MATHEMATICS INEQUALITIES

Case l: < —4dorxz>1;
Case 2: -4 <z < 1.

Case 1: For x < —4 or x > 1, we have
|22 4+ 3z — 4| =22 + 3z — 4
and the given inequality turns into
2 +3r—4<z+4

which can be rewritten as
22 4+ 22 — 8 < 0.

Replacing the inequality sign the the equality sign and solving the resulting quadratic equation,
we get

r3=—14+vV1+8=-1+3=2

and

1z =-1-yV148=-1-3=—4.

Since the inequality 2% + 3z — 4 < 0 is satisfied for instance for x = 0 € [—4,2], the solutions in
case 1 must satisfy © < —4 or x > 1 (according to the assumption) and in addition, —4 < x < 2.
Therefore, the set S1 of solutions for case 1 is given by

Sy ={-4}U[1,2].
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Case 2: For —4 < z < 1, we have
|2 4 3z — 4| = —(2® + 3z — 4) = —2® — 3z + 4.
Thus, the given inequality turns into
—x2—3x+4§x+4

which can be rewritten as
22 +dr =z (x+4)>0.

This inequality is satisfied for v < —4 (both factors are non-positive) and x > 0 (both factors
are non-negative). Therefore, a solution in case 2 must satisfy v < —4 or x > 0, but according
to the assumption, additionally —4 < x < 1 must hold. Thus, the set Sa of solutions for case 2
s given by

S1=10,1).
Thus, the complete set S of real numbers satisfying the given inequality is given by

S=5USy={-4}U]0,2].

Example 4.13 We determine all real numbers satisfying the inequality

(1-xz)- (2> —2-6)<0.

Although this is not a quadratic inequality (the term with the highest occurring power is —x>

if we multiply out), we can nevertheless find all solutions using our knowledge about quadratic
inequalities. A solution x has to satisfy one of the following cases:
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Case 1: 1—x20andm2—:p—6§0;
Case 2: 1—z<0and a2’ —z—6>0.

Case 1: From 1 —x >0, we get x < 1. Setting now x> —x — 6 = 0, we obtain the two solutions
L re=ti 23
M= TV TP T2
and
1 1 1 5
2= 57V 2 2

We have 22 —x — 6 < 0 for x € [-2,3]. Since x < 1 by assumption, we get the set of solutions
S = [_27 1]
for case 1.

Case 2: In this case, we have x?> —x —6 > 0 for all ¥ € (—o00, —2] U [3,00). Since now x > 1 by
assumption, we get the set of solutions

Sy = [3,00)
for case 2.

Combining both cases, we get the complete set S of real numbers satisfying the given inequality:

S=5USy=[-2,1U[3,00) .
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Example 4.14 We determine all real numbers satisfying the inequality
|22 -9 < 2.
We have to distinguish the cases x> —9 > 0 and x> —9 < 0. This gives the following two cases:
Case 1: < -3 orz > 3;
Case 2: -3 <z < 3.
Case 1: In this case, we have |22 — 9| = 22 — 9 and thus, the given inequality turns into
2% —9<2

which can be written as
2?2 <11

This inequality is satisfied for all x € [—v/11,v/11]. Thus, in case 1, we get the set of solutions

Si = [-V11,-3] U [3,V11].

Case 2: In this case, we have |2% — 9| = —(2% — 9) = 9 — 2% and thus, the given inequality turns

nto
which can be written as

This inequality is satisfied for all x € (—o00, —/7| U [V/7,00). Taking the assumption of case 2
into account, we get the set of solutions

Sy = (=3, VT U [VT,V3).
For the complete set of all real numbers satisfying the given inequality, we get

S =8 U8, = [VII,—V7 U [V7,V11].

4.5 Further Inequalities

In this section, we consider some inequalities involving logarithmic, exponential or root terms.
For solving them, elementary knowledge about the monotonicity of the corresponding functions
is required (see also Chapter 8).

Example 4.15 We determine all real numbers satisfying the inequality
lg(z —1) < 2.

Since the logarithm is defined only for positive numbers, we first must require x > 1. We can
rewrite this inequality as
z —1 < 10% = 100.

Formally we have raised both sides of the given inequality to the exponent of an exponential term
with base 10. This can be done due to the monotonicity of the corresponding power function:
From x1 < x9, we obtain 10** < 10*2. Now we get x < 101 and thus, the set of all real numbers
satisfying the given inequality is given by

S =(1,101).
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Example 4.16 We determine all real numbers satisfying the inequality

In(z? —z—5)<0.

2 2

First, we must have x* —x — 5 > 0. Solving the corresponding equation = —x — 5 =0, we get

1 1 1 1
= — — — — — . 21
T 2+ 4+5 2+2 vV
and
1 1 1 1
= /= 45=2—-.21.
S A R

Note that ©1 > 3 while xo < —2. Next, similar to the previous example, we can rewrite the given
mequality as
:E2—$—5§60:1.

This is equivalent to
22— 2 —6 <0.

Considering the corresponding equation and finding the zeroes, we obtain

and

1 Log_l 5_ .,
=57\ 2 2~

Since 02 — 0 — 5 < 0, the latter inequality is satisfied for x € [—2,3]. At the same time, the
definition of the logarithm requires that

1 1 1 1
— —4/=-4+5==—=-V21 < -2
x<2 4+ 5 5 <

1 1 1 1
— 44/ =_+—-V21 )
a;>2+ 4+5 2+2 >3

Thus, the set of all real numbers satisfying the given inequality is empty: S = ().

or

Example 4.17 We determine all real numbers satisfying the inequality
72 _1>0.
Adding one to both sides and taking the natural logarithm on both sides, we obtain
4—-2x>Inl=0
which gives x < 2, i.e., the set of all real numbers satisfying the given inequality is given by

S =(-,2).
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Example 4.18 We determine all real numbers satisfying the inequality

Vr+1<2.

First, we must require x +1 > 0, i.e., © > —1. By taking both sides to the fourth power (again
it does mot change the inequality sign due to the monotonicity of this function for non-negative
values), we obtain

z+1<2'=16

which gives x < 15. Thus, the set of all real numbers satisfying the given inequality is obtained
as

S =[-1,15).

EXERCISES

4.1 Determine all real numbers satisfying the following linear inequalities:

1 3
(a) 3(z +4) <2(x—-2)—1; (b)§x+1§4—§x; (C)1+x23;
T+ 3 3T + 2
d <1; 2.
@ e =h ©) 375 <
4.2 Determine all real numbers satisfying the following inequalities:
15 3 10
(a) (x —3)(z+4) >0; (b)4x2+x2?; (c) v <2z +3;
l‘ fe—
2—x
d —2x; 3.
(@) =% > ~20; () —=>o+
4.3 Determine all real numbers satisfying the following inequalities:
(a) (x+3)(2®>+22-8) >0 ; (b) 23 — 522 + 62 > 0.
4.4 Determine all numbers satisfying the following inequalities:
(a) |22 — 25| > 11; (b) |22 - 7] <9; () 224+ 1 —2>x;
(d) [22 = 2] < [af 5 (e) [+ 3] —[2z — 5] = 2z; (f) |z =2+ |z +3] <5.

4.5 Determine all real numbers satisfying the following inequalities:

(a) |22 —x — 6] <6; (b) |3 — 2| > |22 — 22 — 3.

4.6 Determine all real numbers satisfying the following inequalities:

ORCE EES (b) lg(3+2) <2 ; (¢) #2 <1,

i
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Chapter 5

Trigonometry and Goniometric
Equations

Trigonometric terms and goniometric equations often play a role when analyzing geometric
problems. In trigonometry, triangles and other plane figures (which can be partitioned into
triangles) are investigated. In goniometry, one works with terms depending on angles. The
learning objectives of this chapter are to review

e some basic facts about trigonometric relationships and

e the solution of simple goniometric equations including trigonometric terms.

5.1 Trigonometry

Consider the right-angled triangle given in Fig. 5.1. Then we define the following trigonometric
terms (note that the angle « is less than 90°):

. a b a
simno = — , cosa = —, tan o =
c &

— and cota = é .
b a

The side c is called the hypotenuse and the sides a and b are the legs of the right-angled
triangle. One can extend the definition of trigonometric terms for angles a@ > 90° on a unit
circle, i.e., we have r = 1. In Fig. 5.2, we illustrate this for the case 90° < a < 180°.

C

Figure 5.1: Definition of trigonometric terms in a right-angled triangle
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cot «

tan «

Figure 5.2: Trigonometric terms in a unit circle for 90° < o < 180°

In the following, we review some trigonometric formulas when the sum or difference of two
angles is considered. These formulas are often useful when simplifying terms in problems from

differential calculus or integration.

Addition theorems for trigonometric terms:
1. sin(a &+ B8) = sinacos f + cos asin 3 ;

2. cos(a+ ) = cosacos 8 Fsinasin 3

tan o &= tan 8
3.t +p5)= ——;
an(a + §) 1 Ftanatans’

t t 1

4 cot(a+ g) = LLacotAFL

cot B+ cota

For the special case of a = 3, properties (1) and (2) turn into

2 2

sin 20 = 2sin o cos « and cos 2 = cos“ v — sin“ «x .
Accordingly, properties (3) and (4) turn into
2tan « cot2a — 1
tan2a = — and cot20 = ——
1 —tan“« 2cot o

Moreover, using 5 = 7/2 and 8 = —m/2, respectively, we get

sin(a:l:%)zj:cosoz, cos(aj:g)::Fsina.
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Further trigonometric formulas:

a—l—ﬁ.cosa—ﬁ_

1. sina+sinf8 =2 -sin

2
i . a+pB . a-p
sina —sin 8 = 2 - cos - sin ;
2 2
2. cosa—l—cosﬁzQ-cosa;ﬁ-COSQ;B;
at+B . a—f
cosa —cosf = —2-sin g s

3. sina+cos?a = 1;
1

4. 1+4tan’a = ;
cos? o

5. tanx-cotx =1.

Property (3) is also denoted as Pythagorean theorem for trigonometric terms. We can easily
convince that the identity given in property (4) above is correct and obtain

sin? o cos? a + sin? a 1

1+ tan’a =1+ 75— = 5 = 5
Ccos® av Ccos® av Ccos? av

The last equality follows from property (3) above.

Moreover, we can present formulas for the product of two sine and cosine terms:

Product formulas:

1. sina-sinfg =

- [cos(a — B) — cos(a + B)];
2. cosa-cosf =

- [cos(a — B) + cos(a + B)];

3. sina-cosf =

NI~ o= Nl

- [sin(a — B) + sin(a + 5)] .

Example 5.1 Consider the trigonometric term

_ sina +sinj
~ cosa +cosf3’

We want to simplify term T by using only one trigonometric expression. We obtain

_ 2sino‘2ﬂ-cos°‘7_6 . +5
2-(308%54305‘ﬂ 2

2

Consider now the oblique triangle given in Fig. 5.3. Then we can summarize the following
properties:
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Figure 5.3: Oblique triangle

Relationships in a triangle:
1. a4+ 8 +~v=180°;
2.a:b:c=sina:sinf :sinvy;

3. a® =b%+ % — 2bccosa.

Equality (1) expresses that in any triangle, the sum of the three angles is 180°. Equality (2) is
also known as the sine theorem. Equality (3) above is denoted as the cosine theorem.

Example 5.2 In an oblique triangle, the side b = 12 ¢m and the angles 5 = 32° and v = 85°
are given. We determine the angle o and the sides a and c. First, we obtain from relationship
(1) above

o =180° — (B4 ) = 180° — (32° — 85°) = 63°.

From the sine theorem, we obtain

b-sina 12 ¢m - sin 85° 12-0.9962
a=— = - = cm = 22.56 c¢cm.
sin 8 sin 32¢ 0.5299

Example 5.3 In an oblique triangle, the two side lengths b =14 c¢cm and ¢ = 17 c¢m are given.
The angle o between the two sides is given as o = 80°. We determine the length of the remaining
side a. We use the cosine theorem and obtain:

a=b2+c2—2bccosa =142 + 172 — 2. 14 - 17 - c0s 32° em = V/232.7676 cm = 15.24 em .

Finally, we present a possibility to compute the area A of a triangle by means of the lengths of
two sides and the angle formed by the two sides. We have the following formulas for determining
the area A (see Fig. 5.3):

1 1 1
A:§absin'y:§bcsina:§acsinﬂ.

Example 5.4 In a triangle, the lengths of the sides a = 16 c¢cm and b = 22 cm are known
together with the angle v = 98° of the angle formed by the two sides. We obtain the area A as
follows:

1 1
A= §ab siny = 3 16 - 22 - sin 98° cm? = 174.29 cm?.
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5.2 Goniometric Equations

An equation that includes trigonometric terms depending on an angle or a multiple of this angle
is denoted as a goniometric equation. Examples of such equations are e.g.

cosa+ 2cos 2 =cos 3a or sin25+2tan25=3.

In order to find all solutions of a goniometric equation, one tries to express all trigonometric
terms by means of one or several of the above formulas by one trigonometric term. Without
loss of generality, assume that it is some sine term of the form sin azx.

Now, we substitute z = sin az and determine all solutions of the equation ¢g(z) = g(sinaz) = 0.
Let 21, 2o, ..., 2z, be the solutions. By substituting back, we get

z1 = sinax, zp =sinax,..., Zp = sinax .

Finally, one has to check whether all solutions x obtained satisfy indeed the given equation.

We illustrate the solution of goniometric equations by the following examples, where we only
look for solutions in the interval [0, 27] in all subsequent problems.

Example 5.5 Let the goniometric equation

sinx 4+ cosx =1

360°
thinking
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be given. First, we substitute the cosine term by the sine term using sin’z + cos>x = 1. This
gives

cosz = +v1—sin?x.

Substituting now z = sinz, we get
zEV1—-22=1.

After eliminating the square root on one side and taking the square on both sides, we get a
quadratic equation in the new variable z:

+v1—-22 = 1—2

1—22 = 1-22+22
222 -2z = 0.
Factoring out, we obtain
2z-(z—1)=0
which has the two solutions
z1=0 and z9=1.

From z1 = sinxz = 0, we get the solutions
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From zo =sinx = 1, we get the solutions
m 3
Ty = 5, Ty — 5 .

A test confirms that x1,x3 and x4 are indeed a solution of the given equation while for xo and
5, we get sinx + cosx = —1 and thus, ro and x5 are not a solution. Note that, if we would be
looking for all solutions, we would get

w1y =2km,  wap = g 1 9%n, keZ.

Example 5.6 We consider the goniometric equation
4sin®z +4cosz=1.
Using sin® x + cos®> x = 1, we obtain

4(1 —cos®x) +4cosz = 1

dcos’r —4cosz—3 = 0

Substituting now z = cosx and dividing the equation by 4, we get

3
2
—2—2=0
z z 1
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which has the two solutions

1 3 1 1
21 2+ 5 an 22 5 5

For the first solution z1, we do not obtain a solution since the cosine values are in the interval
[—1,1]. After substituting back, we get from the second solution zy

COST = ——

2

which has the two solutions
r1 = 120° and T9 = 240°.

Inserting r1 and xo into the given goniometric equation, we confirm that both solutions satisfy
the original equation:

1 2 1 3
4. (£= 4.(=2)=4.2—2=1.
(4398) +1(-3) =17

Example 5.7 We determine all solutions of the equation

tan2x+ =6.

tanx

Multiplying both sides by tanx and putting all terms on the left-hand side, we obtain

tan?z — 6tanz +5=0.
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Substituting now z = tanx, we get the quadratic equation
22 —62+5=0
which has the two solutions
21=34+v9-5=5 and 29=3—-vV9—-5=1.

Substituting back, we get for z1 the equation

tanz =5
which gives the solutions

r1 = 78.69° and T9 = 258.69°.
They do not satisfy the given equation:
5
¥+5¢6.

Moreover, for zo we get

tanx =1

which gives the solutions
x3 = 45° and T4 = 225°.

Inserting these solutions into the original equation, we can confirm that they satisfy the given

equation:
5

124+ >=6.
+ 1
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Example 5.8 Consider the equation
cosr —sin2x =0 .
Using the double angle formula for the sine term, we get
cosx — 2sinxzcosx =0

which gives
cosx - (1 —2sinz) =0.

The product is equal to 0 if at least one of the factors is equal to zero. From cosx = 0, we obtain
the solutions

x1 = 90° and T9 = 270°.
From 1 —2sin2x = 0, we get

1
sin2x = —
2

and therefore,
2z € {30°,150°,390°,510°, 750°,8707, ...}

Therefore, in [0, 27|, we get the solutions
r3 =15° 14 =75° x5=195°, and xg = 255°.

A test confirms that all angles satisfy the given equation.

Example 5.9 We find all solutions of the equation
3sinz — v3cosz = 0.

One way to transform the above equation such that only one trigonometric term occurs is to
divide both sides by cosx. In this case, we have to discuss cosx = 0 separately. This equation
1s satisfied for

z1 = 90° and  x9 =270,

These angles do not satisfy the given equation. For cosx # 0, we obtain

\/3.811'1113‘_1 — 0

COsT

1
tanxz = g\/g

This gives the solution
x3 = 30° and x4 = 210°.

A test confirms that these angles satisfy the original equation.
EXERCISES

5.1 Determine all angles o between 0° and 360° for which the following equalities hold:
(a) sin a = 0.25; (b) cos a = —0.55;
(c) |[tana| = 2; (d) | cota| = V/3.
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5.2 In a right-angled triangle, the length of the hypotenuse ¢ = 20 cm and the angle o = 18°
are given. Determine the lengths of the remaining sides and angles.

5.3 In a right-angled triangle, the lengths of the legs ¢ = 2.5 m and b = 2.1 m are given.
Determine the angles a and 8 and the length of the hypotenuse.

5.4 In an oblique triangle, the lengths of the sides are a = 9 ¢m, b = 12 ¢cm and ¢ = 17 cm are
known. Determine the angles of the triangle.

5.5 Determine the area of the triangle with the lengths of the sides a = 12 cm and b = 14 cm
and the angle between the two sides v = 111°.

5.6 Find the solutions of the following goniometric equations:

(a) 2cos? x :%+2sinx; (b) 8cos2x =sinw;
(c) 4sin2z + cosx = 0; (d) ta:;’llel—tanx.

~
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Chapter 6

Analytic Geometry in the Plane

In analytic geometry, geometric investigations are done by means of analytic methods. It has
applications e.g. when working with vectors. Knowledge in geometry is also required for several
applications of differential calculus and integration when considering functions of one (or several)
variable(s).

The learning objectives of this chapter are to review
e properties of lines and their representations and

e the different forms of a curve of second order.

6.1 Lines

A line is determined by two points P = (z1,y1) and Q = (z2,y2) (see Fig. 6.1). For the angle
a, we have the equality

Y2 — Y1

Tr9 — T1 '

tana =

The term tan« is the slope of the line. By means of the two points P and @, we get the
two-point equation of a line:

Y2—UN

y—yi=-—_-(x—m1).

T9 — X1
Using the points P = (0,b) and @ = (z,y) and setting a = tan «, we obtain the normal form
(or point-slope form) of a line:

y=axr+b.

Thus, the value b gives the y-coordinate, where the line intersects the y-axis. If b = 0, the line
y = ax goes through the origin of the coordinate system. If a = 0, the line y = b is parallel to
the z-axis of the coordinate system. All equations of a line can be put into the form

Ax 4+ By+C =0,

where parameters A and B are not both equal to zero. This form is also known as the general
equation of a line.
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L1 Z2 x

Figure 6.1: Definition of a line

Next, we introduce the point-direction equation of a line in the plane. It uses one point
P = (z1,21) and a directional vector a (see also Chapter 11) which can be obtained by means

of a second point Q = (x2,y2):
(&)=(5=)
a= = .
Qy Y2 — Y1

Then the equation of the line is given by
<$>=<x1>+t-<%>, teR.
Yy Y1 Gy
If a line does not pass through the origin, its equation can be written in the intercept form:

x Yy
S4Z=1.
a+b

Here the parameters a and b give the intercepts with the z- and y-axis, respectively (see Fig.
6.2).

Example 6.1 We put a line through the point P = (3,4) which has an angle of 45° with the
x-axis. Thus, we have
a=tana =tan45’ = 1.

This gives
y—4 = 1-(x—3)
y = x+1.

For writing the equation of this line in point-direction form, we can use e.g. the second point
Q = (4,5), which gives the direction vector

(1)
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Figure 6.2: Intercept form of the equation of a line

Thus, the equation of this line is

T 3 1
<y>—<4)+t<l>, =
For instance, for t = 10, we get the point R = (13,14) from the above equation and for t = —5,
we get the point S = (=2, —1).
For writing the equation of this line in intercept form, we determine the intercepts with the x-

and y-azes. If y =0, we have x = —1 and if x = 0, we have y = 1. This gives

x oy
LA
1

Example 6.2 Let the line
5c —2y+6=0

be given. Solving for y, we get the normal form

1
y = —-(5x+6)
2
5
y = §x+3.

Writing this equation in the intercept form, we first find the intercepts with the axes at y = 3
and x = —6/5 which gives

In the plane, two points P = (x1,y1) and Q = (x2,y2) have the (Euclidean) distance

d=/(z2—21)2+ (2 — y1)2 .

If we consider a given point P = (zp,yo) and a given line (in the plane), the distance of the
point P from the line is determined by the smallest distance of this point P to some point @
belonging to the line. The distance d of point P from this line can be found according to the
following formula:
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_ Azg+ By +C

d ;
VA? + B?

where A, B, C are the parameters in the general form of the line.

Example 6.3 Consider the point P = (2,—4) and the line y = 3x + 2 or in the general form
3r—y+2=0.

We determine the distance d of the point P from this line and obtain with A =3, B = —1 and
C=2
C3-2—-1-(—4)+2 12

= ~ 3.7947 .
32+ (—1)2 V10

6.2 Curves of Second Order

A curve of second order has the equation

Az’ + By* +Cx+Dy+E=0.
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Both variables = and y occur at most with the second power, and we assume that the product
xy of both variables does not occur. Such a curve can be a circle, an ellipse, a parabola or a
hyperbola. We discuss the individual cases separately.

6.2.1 Circles

Circle:
A circle is the set of all points having from a midpoint (or center) M the same distance r.

A circle is determined by the midpoint (xo,yo) and the radius . The equation of the circle
is given by

(& —a0)? + (y —y0)* =1°.

For the special case when the origin of the coordinate system is the midpoint the equation

simplifies to

1‘2—|-y2:r2.

The equation of a circle is illustrated in Fig. 6.3.
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r — X

Figure 6.3: Definition of a circle
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Example 6.4 A circle has the midpoint M = (2,3) and it includes the point P = (5,7). We
determine the equation of this circle. Since the point P must satisfy the equation of the circle,
we obtain with x =5 and y =17

(5—22%+(7-3)?2 = r?
9+16 = r?

Therefore, the equation of the circle is
(z —2)* + (y — 3)* = 25,

i.e., the radius of the circle is r = 5.

6.2.2 Ellipses

Ellipse:
An ellipse is defined as the locus of points whose distances from two fixed points, called the
foci or focal points, have a constant sum.

The equation of an ellipse with the midpoint M = (z¢, yo) and the half axes a and b is given
by

(z — 560)2 (y — y0)2

2 TR =1

The equation of an ellipse is illustrated in Fig. 6.4. The focal points are F} and F>, and according
to the definition of an ellipse we have

PFy + PFy = 2a.

If a = b, we have the special case of a circle.

Example 6.5 We consider the equation
7?4+ 4y? — 28z + 8y +4=0.

Transforming the terms depending on the variables x and y, respectively, into complete squares,
we obtain

702 —28x = T(a? —4x)=T(@? —4x+4) -7 -4="T(x—2)* 28
A +8y = AW +2y) =4 +2y+1)—4-1=4y+1)* -4
Substituting this into the original equation, we obtain
T(x—2%—28+4(y+1)2—4+4=0
which turns into
T(z —2)? +4(y +1)* = 28
Dividing both sides by 28, we get the equation of an ellipse:
CEL UL
i.e., the midpoint of the ellipse is (2, —1), and the half azes are a =2 and b = /7.

Download free eBooks at bookboon.com



Figure 6.4: Definition of an ellipse
6.2.3 Parabolas

Parabola:
A parabola is the locus of points which are equidistant from a line (called the directrix) and
from a fixed point (called the focus or focal point).

The definition of a parabola is illustrated in Fig. 6.5. For the equation of a parabola we have
to distinguish two cases. If the parabola is parallel to the z-axis, the equation is given by

(y — o) = £2p(z — z) .

The point (zg, o) is called the apex (or vertex) of the parabola. The value 2p denotes the
parameter of the parabola. If a plus sign occurs in the equation, the parabola is open from the
right (with > xg). If the minus sign occurs, the parabola is open from the left (with x < z).
If the parabola is parallel to the y-axis, its equation is given by

(z — m0)* = £2p(y — %o) .

If the plus sign occurs in the equation, the parabola is open from above (with y > yo) while in
the other case, the parabola is open from below (with y < yy). A parabola open from the right
and one open from above are illustrated in Fig. 6.6.

Accordingly, one can consider parabolas which are open from the left or from below.

Example 6.6 Consider the equation

y? + 4y — 22 +10 = 0.
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Figure 6.5: Definition of a parabola
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Figure 6.6: A parabola, which is (a) open from the right and (b) open from above
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Putting all terms depending on y on the left-hand site and the rest on the right-hand side, we
get
y? + 4y = 2z — 10.

Transforming now the term on the left-hand side into a complete square of the form (y + a)?,
we get
(y+2)2—4=2x-10

which gives

(y+2)2=22-6=2(zx—3).

Therefore, the above parabola is open from the right, and the apex A has the coordinates (xg,xo) =
(3,-2).

6.2.4 Hyperbolas

Hyperbola:
A hyperbola is defined as the locus of all points whose difference of the distances from two
fixed points (call the foci or focal points) is constant.

A hyperbola consists of two branches. An illustration is given in Fig. 6.7 for the case, where the
center M of the hyperbola is the origin of the coordinate system. F; and F5 are the foci, and
we have for the difference of the distances between the points P and Fj as well as P and F5

|PFi| — |[PFy| = £2a,

where 2a denotes the principal axis of the hyperbola, and the minus sign holds for the left branch
of the hyperbola.

The equation of a hyperbola with the center M = (xg,yo) is given by

-wP _@—m? _,
a? b2 -

or
(.Z' wO)Q (y y0)2 1
a? B b2 -

In the first case, the hyperbola is symmetric to the line x = ¢ (i.e., parallel to the y-axis),
and we also say that it is a vertical hyperbola (see Fig. 6.8 (a)). In the second case, the
hyperbola is symmetric to the line y = yo (i.e., parallel to the z-axis), and we say that it is a
horizontal hyperbola (see Fig. 6.8 (b)). Here the parameters a and b denote the half axes
of the hyperbola, and 2a denotes the principal axis of the hyperbola.

For graphing a hyperbola, it is useful to determine the asymptotes L; and Lo of the hyperbola.
From the equation of a hyperbola, they are obtained as follows:

Ly y:ax; Ly : y:—gx.
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Figure 6.7: Definition of a hyperbola

Figure 6.8: (a) Vertical and (b) horizontal hyperbolas
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Example 6.7 Let us consider the equation

422 — 9y? + 322+ 18y +19 =0

Transforming the terms depending on x and y into a complete square, we obtain

dr? + 320 = 4(2® +82) =4(2® + 82 +16) —4-16 = 4(x + 4)* — 64
—9y2 +18y = —9(* —2y) =9 —2y+1)+9-1=-9(y—1)2+9

Substituting this into the original equation, we get

4z +4)?—64—9(y—1)2+9+19=0

which gives

Az +4)? -9y —-1)2*-36=0.

Dividing this equation by 36, we obtain the equation of a hyperbola:

(x+4? (y-1? _

1.
9 4
This hyperbola has the center (or midpoint) M = (—4,1) and the half azes a =3 and b= 2. It
1s horizontally open and symmetric to the line x = —4, and the asymptotes are
4 4
L1:§ and L2:—§a?.
EXERCISES
6.1 For the following lines, determine the normal form and the intercept form (if possible).:

6.2

6.3

6.4

6.5

6.6

6.7

6.8

(a) 3x + Ty —2=0; (b) =2z +5y+5=0; (¢) 3z + 11y =0.

Determine the normal form of the following lines going through point P and having the
angle o with the positive z-axis:

(a) P=(3,1), «a=60°; (b) P=(-1,-1), a=45%°; (c) P=(4,-2), a =135°.
Determine the normal form of the following lines going through the point P and Q:
(a) P:(_374)7 Q:(_17_3)7 (b) P:(177)7 Q:(479)

Determine the equation of the circle having the midpoint M = (1,1) and going through
the point P = (5,4).

Consider the parabola 82 — % + 162 — 80 = 0. Determine its apex and from which side it
is open.

Characterize the location of the following parabolas and graph them:

(a) z+y? +4y —24=0; (b) 22 — 8y + 10 = 0; (c) 2> 4+6z +5y+8=0.

An ellipse has the midpoint (0,0) and goes through the point P = (3,8). One of the half
axes is 5. Determine the equation of this ellipse.

Determine the equation of the hyperbola with the center M = (1,1) and the half axes
a=4and b="1.
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Chapter 7

Sequences and Partial Sums

Sequences play a role when listing infinitely many objects. For instance, sequences are used in
connection with time series. They are also important when giving construction instructions for
algorithms. We also discuss the fundamental notion of a limit of a sequence. In this chapter, we
briefly review

e some basic notions about sequences;

arithmetic and geometric sequences as important special sequences;

properties of a sequence and

partial sums of sequences.

7.1 Basic Notions

Sequence:
If a real number a,, is assigned to each natural number n € N, then

{an} =Q1,02,03,...,Qp, ...

is called a sequence.

The numbers a1, as, as, ... are called the terms of the sequence. In particular, the number a,,
is denoted as the nth term. One can define a sequence in two different forms:

e explicitly by giving a mathematical term how the nth term of the sequence can be
calculated;

e recursively by giving the first term(s) of the sequence and a recursive formula for calcu-
lating the remaining terms of the sequence.

We illustrate the calculations of the terms of a sequence by the following examples.
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Example 7.1 Consider the sequence

{an} = {37;;21} '

We determine the terms ai,as,...,ag and obtain

1-2 1 2—2 0 3—-2 1
al = — = —— aQy = ——— = aqaq = = —
Tl 1 >T 3241 7 573341 10’

4—2 2 5—2 3 6—2 4
ag=-—=—, a5 =—— = —, apg=——=—.
YT3a+1 13 T 3.5+1 16 °T3.6+1 19

Example 7.2 Consider the sequence
n+1 n2
bt =< (-1 — .
by = { et
Then we obtain for the first sixz terms:
12 1 22 4 32 9
b:—11+1‘7:*' b:_12+1'7:_7. b:_13+1.7:7.
1 ( ) 1+1 27 2 ( ) 241 37 3 ( ) 341 47
42 16 52 25 62 36
b:—14+1‘ — . b:_15+1_ _ =Y. b:_16+1. -
= DT 50 BT s e =G 5= D75 7

We observe that any two successive terms of the above sequence have a different sign. Such a
sequence is called an alternating sequence.

Example 7.3 Let a sequence {c,} be given by

c1 =3, cn:ci_1—5,n22.

In this case, the sequence is recursively defined and we can calculate a particular term if the
preceding term is known. We obtain for the first six terms:

c1 = 3; co=c2-5=3%-5=4
c3=c3—-5=42-5=11; cy=c2—5=11%2 -5 =116;
s =ci—5=1162-5=13,451; ¢ =c2 —5=(13,451)> — 5 = 180,929, 396 .

Example 7.4 Consider the sequence {d,} given by
dy =0, ds =1, dy=dp_o+dy,_1,n>2.

This is a recursively defined sequence with two initial terms. Notice here that the calculation of
a particular term requires to know the last two preceding terms. In particular, we get for the
first six recursively calculated terms dg,dy, ... ,ds:

d3=di+dy=0+1=1; dy=do+d3s=14+1=2;
ds=ds+ds=1+2=3; de =dy+ds =2+ 3 =25;
d7y =ds+dg=3+5=28; dg =dg+d7 =5+ 8=13;

This particular sequence is also known as Fibonacci sequence.
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7.2 Arithmetic Sequences

Arithmetic sequence:
A sequence {a,}, where the difference of any two successive terms is constant, is called an
arithmetic sequence, i.e., the equality

(n41 — Gn =d

holds for all n € N, where d is constant.

Thus, the terms of an arithmetic sequence with the first term a; are as follows:
ai, as=a1+d, a3=a1+2d, ag=a1+3d, ...,
and we obtain the following explicit formula for the nth term:

an=a1+(n—-1)d for n € N.

Example 7.5 We consider the sequence

{an} =1,

This is an arithmetic sequence with the first term a1 = 1 and the difference d = 1/3. Therefore,
the nth term is obtained by

W =~

;2

w3

g e e

w | ot

)

1
an:a1+(n—1)‘d:1+§‘(n—1).
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Example 7.6 We consider an arithmetic sequence with the third term as = 6 and the 14th term
a4 = 50. We get the difference d of this arithmetic sequence from the equality

a14—a3:11-d

which gives
50-6=44=11-d

and thus, d = 4. Since a3 = a1 + 2 - d, we obtain from 6 = a1 + 2 -d = a1 + 8 the first term
a; = —2.

7.3 Geometric Sequences

Geometric sequence:
A sequence {a, }, where the ratio of any two successive terms is the same number g # 0, is called
a geometric sequence, i.e., the equality

Gp41
Qnp

holds for all n € N, where ¢ is constant.

Thus, the terms of a geometric sequence with the first term a; are as follows:

2 3
ai, az = aj - g, az =a1-q, a4 =a1-4q-, )

Download free eBooks at bookboon.com



and we obtain the following explicit formula for the nth term:

an=ay-q" ! for all n € N.

Example 7.7 Consider the sequence
{an} =1, 3,9, 27, 81, 243, 729, ....

This is a geometric sequence with the first term a1 = 1 and the quotient ¢ = 3.

Example 7.8 A geometric sequence {b,} has the second term by = —8 and the fifth term
bs = 512. From by = by - q and bs = by - ¢*, we get

bs 512

by -8 1
which gives as the only real solution ¢ = —4. Thus, for the first term, we have
bp=1b1-¢
which yields
—8=0b1-(—4)

from which we obtain the first term by = 2.

Example 7.9 Let the sequence {c,} be given by

2
Cn = gn+2
Then we obtain
2 2 2
1= 3102 T 33~ 97
and
Cntl _ 2. 3n+2 _ gn+2-(n+3) _ g-1 _ 1 _
Cn 3(n+1)+2 .9 3

Thus, the sequence {cn} is a geometric sequence with the first term ¢y = 2/27 and the quotient
q=1/3.

7.4 Properties of Sequences

Often one wishes to find characteristic properties of a sequence, e.g. whether the terms of a
sequence can become arbitrarily small or large or whether each subsequent term of a sequence is
larger than the previous one. In this section, we discuss the monotonicity and the boundedness
of a sequence.
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Monotonicity of a sequence:
A sequence {a,} is called increasing (or equivalently, non-decreasing) if

an < Gpt1 for all n € N.

A sequence {a,} is called strictly increasing if
an < Qpt1 for all n € N.

A sequence {a,} is called decreasing (or equivalently, non-increasing) if
QA > Qpt1 for all n € N.

A sequence {a,} is called strictly decreasing if

Ap > Qpt1 for all n € N.

A sequence {a, } which is (strictly) increasing or (strictly) decreasing is also denoted as (strictly)
monotonic (or monotone).

When checking a sequence {ay} for monotonicity, we may investigate the difference
Dy, = a1 —ap

of two successive terms. Then:

e If D, >0 for all n € N, the sequence {a,} is increasing;
e If D, > 0 for all n € N, the sequence {a,} is strictly increasing;
e If D, <0 for all n € N, the sequence {a,} is decreasing;

e If D,, <0 for all n € N, the sequence {a,} is strictly decreasing.

Example 7.10 We investigate the sequence {a,} with
an =3(n+1)% — 2n, n e N,
for monotonicity, i.e., we investigate the difference of two successive terms and obtain
g1 —an = 3(n+22-2n+1)— [3(71 +1)% - 2n}

= 3n®+12n+12—2n—2— (3n® 4+ 6n+ 3 — 2n)
= 6n+T.

Since 6n+7 > 0 for all n € N, we get an+1 > ap, for all n € N. Therefore, the sequence {ay} is
strictly increasing.
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Boundedness of a sequence:
A sequence {a,} is called bounded if there exists a finite real constant C' such that

lan| < C for all n € N.

Such a constant C'is also denoted as a bound. According to the definition of the absolute value,
this means that the inequalities —C < a,, < C hold for all terms a,.

Example 7.11 Let us investigate the alternating sequence
n—1
p— —1 n .

o) = {0 25}

whether it is bounded. We estimate the absolute value of the nth term and obtain
n—1 n—1 n—1

— (=1 ‘: —1"-‘ ‘:’ <1
[an| (=1) n+2 =17 n+2 n+21
Therefore, the sequence {ay} is bounded, e.g., C =1 delivers such a bound.

7.5 Limit of a Sequence

We start with the introduction of a limit which is a central notion in mathematics. It is needed
for many considerations in analysis. In general, this notion is necessary in mathematics to make
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the step from ‘finiteness’ to ‘infiniteness’. The correct introduction of irrational numbers is also
only possible by means of limit considerations.

Limit of a sequence:
A finite number a is called the limit of a sequence {a,} if, for any given £ > 0, there exists an
index n(e) such that

lan, —a| <€ for all n > n(e).

Note that the above inequality with the absolute value is used for a simpler presentation of the
equivalent inequalities that

a—€e<ap<ap+e for all n > n(e)
To indicate that the number a is the limit of the sequence {a,}, we write

lim a, = a.
n—oo

The notion of the limit a is illustrated in Fig. 7.1. The sequence {a,} has the limit a, if there
exists some index n(e) (depending on the positive number ¢) such that the absolute value of the
difference between the term a, and the limit a becomes smaller than the given value ¢ for all
terms a,, with n > n(e), i.e., from some number n on, all terms of the sequence {a,} are very
close to the limit a. If € becomes smaller, the corresponding value n(e) becomes larger.

We note that a limit must be a finite real number. If the terms of a sequence tend e.g. to oo,
then we also write as an abbreviation

lim a, = 0o .
n—oo

However, in this case the limit of the sequence {a,} does not exist.

Next, we give a few rules for working with limits of sequences. Assume that the limits

lim a, =a and lim b, =b
n—oo n—oo

exist. Then the following limits exist, and we obtain:

Rules for working with limits of a sequence:
(1) lim(aniC):le(an)iC:aiC, (C eR);
(2) h_)m (C-a,)=C-a, (CeR);
(3) Jim (ap £bp) = a£b;
(4) Jim (ap - bp) = a-b;
(5) lim % =2 (b, #0 for all n, b £ 0)
nl—>Hgobn_b n or all n, b# 0).

In the formulas above, it is assumed that C' € R is constant. The use of the above formulas
requires the knowledge of some limits. Next, we summarize some known limits.
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Figure 7.1: Limit of a sequence
Some limits:
1
(1) lim — =0 for a > 0;
n—oo N
(2) lim a" =0 fora € R, |a|] < 1;
n—oo
(3) lim {/a=1 for a € Ry
n—oo
a’n
(4) lim — =0 for a € R;
n—oo n!
1 n
(5) lim (1 + ) =e
n—oo
We illustrate the calculation of limits by the following examples.
Example 7.12 Consider the sequence {a,} with
3
an — ﬁ
We can rewrite the term a,, as )
Ay — 3 - ﬁ
Using rule (2) and limit (1) above, we get
lim a, =3 - lim —-5=3-0=0.
n—oo n—oo N
Example 7.13 Let the sequences {a,} and {b,} with
3n?+n—4 6n2 + 2 cN
ap = ————— = n
n 4”2 _ 2 ) n n3 + n 9 9
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be given. Using the above rules and known limits, we obtain

lima, = lim ——— = lim n
n—oo n—oo  4n2 — 2 n—oo  p? (4 — %)

1 1

n—o00 n—oo N n—o00 n2 9
= i =-.
lim 4— 2 lim — i+ i
n—o00 n—oo n
Similarly, we get

6n2 + 2 n3 (¢ 4+ %

lim b, = lim o = _ limM

n—00 n—oo n3 +n n—oo n3 (1 + #)

1 1

o n—oo N n—o00 n3 _ -0

— 1 = —
lim 1+ lim — 1+0
n—o00 n—oo n

Consider now the sequence {c,} with ¢, = apn, + by, n € N. Applying the given rules for limits,
we immediately get

3 3
lim ¢, = lim a, + lim b, = - +0= -.
n—o00 n—o00 n—o00 4 4

One can generalize the result from the above example. Let p,q € N, then we obtain for such
special rational terms given as a fraction of two polynomial terms in n:

0 for p < q
. apnP +ap P L+ +ain+ag ap
im il =49 — for p=g¢q
n—00 bqnq + bq_lnq— +...+bin+ bo bq

+o0 for p > q.

This means that, in order to find the above limit, we have to check only the terms with the
largest exponent in the numerator and in the denominator.

Example 7.14 Using the previous formula, we immediate get (without calculations):

. ot +nd—2n
lim = 2
nsoo nt—n24+5m+7

—4An? +3n2+n—-3

nh—>r<(>lo n2—n-—1 = T
6n° 7
lim n°+n+ ~ 0

n—oo nt+2n3 —n? 4+ 2

7.6 Partial Sums

Next, we consider partial sums of sequences. They are often required in several applications,
e.g. in finance when one wishes to know the final amount in a saving account after some years
when depositing a monthly amount and interest is paid or in connection with loan repayments.
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nth partial sum:
Let {a,} be a sequence. Then the sum of the first n terms

n
sn:al—l—ag—l—...—i-an:Zak
k=1

is called the nth partial sum s,.

Example 7.15 Consider the sequence {an} with

1
an:2+(_1)n_1'*, nEN
n
This gives
1 1 3 1 7
-9 —1)90.Z = =9 .z == -9 ~1)2.2 = =
ai +( ) 1 35 a2 +( ) 92 9’ az +( ) 3 37
1 7 1 11
=94 (=1)3.2 == =24 (=14 .2 ==
aq +( ) 4 45 as +( ) 5 5a
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Then we get the following partial sums:

3 9 3 7 41
s1 =a; =3, 32:a1+a2:3—|—§:§, 53:a1—|—a2+a3:3—|—§+§:€,
3 7 7 82421 103
34:a1+a2+a3—|—a4:3+§—|—§—1—1: o 12
3 7 7 11 515+132 647
35:a1+a2+a3—|—a4+a5:3—1—5—1—54-14—3:T:E.
Of course, we can also use that s; = s;_1 + a; for ¢ = 2,3, ..., which simplifies the calculations.

For arithmetic and geometric sequences, one can easily calculate the corresponding partial sums
as follows.

The nth partial sum of an arithmetic sequence {a,} with a, =a; +(n—1)-d is given
by

sn:g-(al—i-an):g- 2a1+(n—1)d].

n—

The nth partial sum of a geometric sequence {a,} with a, = a; - ¢"~! and ¢ # 1 is given

by
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Notice that for ¢ = 1, we get a sequence having all the same term a; which gives the nth partial
sum s, = n-a1. Let us consider for illustration the following problems:

Example 7.16 We determine the sum of the first 50 even natural numbers, i.e., we calculate
S=24+44+6+...4+984100.

This can be done by calculating the 50th partial sum of an arithmetic sequence with a1 = 2 and
d = 2, which gives
asp = a1 +49-d=2+49 -2 = 100.

Thus, we obtain

50
s50 = = - (a1 + aso) = 25+ (2+100) = 2,550 .

Example 7.17 Let {a,} be an arithmetic sequence with the first term a; = 3, the difference

d = 3 and the nth partial sum s, = 45. We wish to determine the corresponding value n and

the nth term a,. From the formula for the nth partial sum of an arithmetic sequence, we obtain
n

2

n

2

n

45 = s, 5

201+ (n—1)-d==-(6+(n—1)-3) (3n +3).

This gives the quadratic equation 90 = 3n® + 3n or
n*+n—30=0

which has the two real solutions

1 /1 1 11
= —— - +30=—+-—"—=5
ni 2+ 4—|— 2+2

1 Dol L1
2=y 1 Ty T Y

Since ny < 0, the solution to our problem is n = ny = 5 which yields the 5th term

and

as=a1+4-d=3+4-3=15.

Example 7.18 Consider the sequence

9 27 81
b} =2 - —, —
{ n} 9 37 2a 4 9 8 )
This is a geometric sequence with the first term by = 2 and the quotient ¢ = 3/2. For the nth

partial sum, we obtain
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Example 7.19 We want to determine the sum

g_2 9.9 9 9 9
2 4 8 16 256 512°

This is the partial sum of a geometric sequence with the first term a1 = 9/2 and the quotient
q = —1/2. More precisely, it is the 9th partial sum since

oSl (N9 919
0TME =9 7)) T2 (28 2 256 512

Therefore, we obtain

1 9
1-¢ 9 1_(_2> 9 2 1 1 1533
S =s9=a- =5 7 =5 3 (17 ) =3 (1 =

512 512

Example 7.20 Let {s,} be given by

n

3
2k72'
k=1

Sn —

We determine the 20th partial sum seog. We have

3 3 apyr _ 3-28% o ey o1 L
CLl—P—F—ﬁ and O —2]{:_1'3—2 =2 —5

Therefore, the sequence {s,} gives the partial sums of a geometric sequence with a; = 6 and
q=1/2, and we obtain

1—gq 1— 1 2
2
EXERCISES

7.1 Determine the first six terms of the following sequences:

4 n—1
n} =142+ —1>%; b) {b,} =< (-1 . —— L. b= {14 2n2).
@iat={2+2h oo ={eo il @) =0
7.2 Determine the nth term of the sequence {a,} given by
3 2 5 12 7
n :477777777)77'
lan}=4.3.55 3518

7.3 Given is an arithmetic sequence {a,} with a first term a; = 15 and the difference d = 8.
Find the term aq01.

7.4 For an arithmetic sequence, the terms ag = 21 and a1; = 30 are known. Find the difference
d and the terms a; and a,,.
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7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

The first row in a football stadium has 376 seats and the last row has 1026 seats. Assuming
that the number of seats increases from row to row by the same number, how many rows
does the stadium have and what is the total number of seats?

(5]

for monotonicity! What is the largest term of the sequence? Is the sequence bounded?

Check the sequence

Let {a,} be a geometric sequence with the ratio of successive terms ¢ = —2/3 and the
term a7y = 64/243. Find the first term a;. Which of the terms is the first with an absolute
value less than 0.017

How many terms of the arithmetic sequence {a,} with
an=5+4(n—1)
are less than 7007

A geometric sequence has the terms a2 = 6 and a7 = 2/81. Find the first term a; and the
ratio ¢ of any successive terms.

Investigate the following sequences for monotonicity:

R = SRRV =i 8

n+1

© fa) = {5}

Are the following sequences monotonic and bounded? Find the limits of the sequences if
they exist:

@ {ab={2-6}: O @y={= @ ={5}-

Find the limits of the following sequences if they exist (n € N):

@t = {2 we-{Este ) aew

(n+1)n 3n3 +4n
(c) {en} with ¢, = ¢p—1/2. Check it for ¢; =1 and ¢; = 4.

Determine the first six partial sums sq, s9, ..., s¢ for the following sequences:

7

nd—2n?2+4+3n—1
2n2 + 4n

(a) {an} = {3+ 3 } ; @{%}:{2

© fen} = {0 21}

n+1

Determine the partial sum sig of the following arithmetic sequences:
9
(a) {an} =3, 5,6, ce (b) {bn} =25, 13, —1, ...;

(c) {en}=-2, 14, =26, ... .
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7.15 Determine the partial sum s12 of the following geometric sequences:

n—1
@)&m}zé,—%;gw.¢ @)gm}:{§.<%> };
)

7.16 Determine the following sums:

4
(a) 24+ 6+10+...+ 338; (b)4— =+

1
241 —
(c) 32+ 16 +8+. +64
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Chapter 8

Functions

Functions are widely applied in many disciplines to express a relationship between an indepen-
dent variable z and a dependent variable y, e.g. to express the production cost y in dependence
on the quantity = produced, or the profit y in dependence on the quantity x produced, or the
demand for a product y in dependence on its price x. The learning objectives of this chapter
are to review

e the basic notion of a function (of a real variable) and some properties,
e the major types of a function, and

e composite and inverse functions.

8.1 Basic Notions and Properties

We start with the fundamental notion of a function.

Function of a real variable:

A function f of a real variable assigns to any real number z € Dy C R a unique real number
y. The set Dy is called the domain of function f and includes all numbers z for which function
f is defined. The set

Ry = {yly=f(x), € Dy}

is called the range of function f.

The real number y € Ry denotes the function value of z, i.e., the value of function f at the
point x. The variable x is called the independent variable or the argument, and y is called
the dependent variable. The domain and range of a function are illustrated in Fig. 8.1, where
also the graph of function f is drawn in a coordinate system. Note that in mathematics, the
horizontal axis is always the x-axis, and the vertical axis is always the y-axis.

In contemporary mathematics, one also writes

f:Df =R or f:Dy— Ry
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graph of function f
Y2

Rf = [ylayz]

Yy +

x1 Df = [xl,xg] Z2 €

Figure 8.1: Domain, range and graph of a function

for a function of a real variable. We note that the second representation above is more precise
because it gives the exact range of the function. However, often the first representation is used
when it is not necessary to know the range explicitly. In this case, it simply expresses that the
values of function f are real numbers. If the domain Dy is not stated explicitly, it is assumed
that the largest possible domain is considered, i.e., the set of all real numbers x for which
the function value can be calculated.

A function can be given in the following ways:

e analytically by an equation y = f(z);
e by a table that gives for any « € D the resulting function value f(x) € Ry;
e graphically or

e by a verbal description.
Example 8.1 Consider the function f: Dy — R with

y:f(ac)zx/avfl—&-L

x—2

We first determine the domain Dy of function f. The term v/x — 1 is defined for non-negative
numbers x — 1 and therefore, for all real numbers x > 1. For the term 1/(x — 2), we have to
exclude the case when the denominator is equal to zero and thus, this term is defined for all real
numbers x # 2. Both previous conditions have to be satisfied. This gives the largest possible
domain

Di={zxecR|z>1 and x # 2},

or in interval notation
Dy = [1,2) U (2,00).

So, the domain Dy is the union of the above two intervals.
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Figure 8.2: Graph of function f in Example 8.2

Example 8.2 We consider the following function f:R — {0,1,2,3} described verbally:

0 if x is a non-positive integer
if x is an even positive integer
if x is an odd positive integer
otherwise

y=f(z) =

W N =

So, the function f is defined for all real numbers, and only four function values are possible.
The graph of this function is given in Fig. 8.2.

The next four notions deal with monotonicity properties of a function.

Increasing function:
A function f : Dy — R is said to be increasing (or equivalently, non-decreasing) on an
interval I C Dy if for arbitrary x1,zo € I with x1 < x2, the inequality

f(z1) < f(z2)
holds.

Strictly increasing function:
A function f: Dy — R is said to be strictly increasing on an interval I C Dy if for arbitrary
x1,x2 € I with z1 < x9, the inequality

flx1) < f(x2)
holds.

Decreasing function:
A function f: Dy — R is said to be decreasing (or equivalently, strictly decreasing) on an
interval I C Dy if for arbitrary xq, 29 € I with z1 < x2, the inequality

f(z1) > f(x2)
holds.

Download free eBooks at bookboon.com



f strictly
increasing
on [a, b]

f decreasing
on [b, ]

Figure 8.3: Monotonicity intervals of a function

Strictly decreasing function:
A function f : Dy — R is said to be strictly decreasing on an interval I C Dy if for arbitrary
1, T2 € I with x7 < x9, the inequality

f(x1) > f(x2)
holds.

If a function has one of the above four properties, we also say that it is monotonic (or mono-
tone). An illustration is given in Fig. 8.3. In part (c), where function f is strictly increasing
on the interval [a, b], but decreasing on the interval [b, c|.

Figure 8.3: Monotonicity intervals of a function

We note that a function f : Dy — Ry, which is strictly monotonic on the domain (i.e., either
strictly increasing on Dy or strictly decreasing on Dy, is a so-called one-to-one (or equivalently,
a bijective) function.

Example 8.3 We investigate the function f: Dy — R with

1
for monotonicity. This function is defined for all x # =2, i.e., Dy = R\ {—=2}. First, we
consider the interval [} = (—2,00). Let 11,29 € I} with x1 < x5. We get 0 < a3 +8 < x5 + 8
and thus,

1 1

f(xl):x:f+8>:c§+8:f(x2)

(note that the inequality sign changes when considering the reciprocal terms of positive terms).
Therefore, function f is strictly decreasing on the interval I.
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Figure 8.4: Graph of function f in Example 8.3

Consider now the interval Iy = (—oo,—2) and let x1 < x9 < —2. In this case, we first get
23 +8 < 23 +8 < 0 and then

1 1

f(wl):x§+8>x§+8:f(x2)'

Therefore, function f is also strictly decreasing on the interval (—oo, —2). The graph of function
f is given in Fig. 8.4.

Now we deal with the question whether the function value of a function can become arbitrarily
small (large) or not.

Bounded function:
A function f : Dy — R is said to be bounded from below (from above) if there exists a
real constant C' such that

f@>C  (resp. f(x) <C)

for all z € Dy.
A function f : Dy — R is said to be bounded from above if there exists a constant C' such
that

fl@) <0)

for all z € Dy.
Function f is said to be bounded if f(z) is bounded from below and from above, i.e., we have

|f(z)| <C

for all z € Dy.
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According to the definition of the absolute values, a function f is bounded if there exists a
constant C such that
—C < f(x) <C.

A bounded and an unbounded function are illustrated in Fig. 8.5.

Example 8.4 We consider the function f: R — R with
y = f(z) =€* +sin2x + 3.

The value of the term e* is always greater than zero, the value of the term sin2zx is in the
interval [—1,1]. Thus, the value of function f is always greater than 0 + (-1) + 8 = 2. Therefore,
function f is bounded from below since we can choose e.g. the constant C = 2 such that f(z) > C
for all x € R. Howewver, function f is not bounded from above since the function value f(x) can
become arbitrarily large when x becomes large because the wvalue of the term e® can become
arbitrarily large. Therefore, function f is also not bounded.

Example 8.5 We consider the function g : [3,00) — R with
y=g(x)=5—-+vzx—3.

First, the values of the term +/x — 3 are non-negative and therefore, the function values of f are
smaller than or equal to 5. Consequently, for C =5 we get g(x) < C for all x € R and thus,
function f is bounded from above. However, since the value of the term /x — 3 can become
arbitrarily large, the function values of g can become arbitrarily small and function g is not
bounded from below (and therefore also not bounded).
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(a) f bounded (b) g unbounded

Figure 8.5: Bounded and unbounded functions
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Example 8.6 We consider the function h : R — R with
y = h(x) =3cosx + 4.

First, the possible values of the term cosxz are in the interval [—1,1]. Thus, the values of the
term 3cosx are in the interval [—3,3], and hence the values of function h are in the interval
[-3+4,3+4] =[1,7]. Consequently, function h is bounded, e.g. for C =7, we have |h(z)| < C
for all x € R.

Next, we consider symmetry properties of a function.

Even/odd function:
A function f: Dy — R is called even if

f(—=z) = f(=) for all x € Dy.
A function f is called odd if
f(=x) = —f(z) for all z € Dy.

In both cases, the domain Dy has to be symmetric with respect to the origin of the coordinate
system.

An even and an odd function are illustrated in Fig. 8.6.

/

Leadiny
% Maastricht University s Learnin’

Join the best at
P 5. N - 33" place Financial Times worldwide ranking: MSc
the Maastricht University International Business

+ 1% place: MSc International Business
M + 1% place: MSc Financial Economics
SChOOI Of Bus' ness a nd . 2" place: MSc Management of Learning
. - 2" place: MSc Economics
Econom |CS! - 2" place: MSc Econometrics and Operations Research
- 2" place:MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is
the best specialist
university in the
Netherlands
(Elsevier)

Master’s Open Day: 22 February 2014

www.mastersopenday.nl

Download free eBooks at bookboon.com

Click on the ad to read more

138


http://www.mastersopenday.nl

g’ function f ’ function f
f(x) = f(-=) flx)T
. : . .
+ f(=2)
f(z) = f(-=) f(=z) = —f(z)
(a) even function (b) odd function

Figure 8.6: Even and odd functions
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An even function is symmetric to the y-axis. An odd function is symmetric with respect to the
origin of the coordinate system as a point. It is worth noting that a function f is not necessarily
either even or odd. To be even or odd is a specific symmetry property of a function.

Example 8.7 We consider the function f: R\ {0} — R with
5_ 3 2
f(z) =3z —2° + —.
x
We determine f(—x) and obtain

f(=2) = 3(—2)° - (—x)*+ 2 ~32° + 2% — 2

—X T

2
= — <3x5 — 2%+ ) = —f(x).
x
Thus, function f is an odd function.

Example 8.8 Let the function g : R — R with
g(x) = da* + 2 + 2 |z|
be given. Using the definition of the absolute value of a number, we obtain
g(—z) = 4(—2)* + (—2)? + 2| — 2| = 42t + 2% + 2|z| = g(z).

Hence, function g is an even function.

Example 8.9 Consider the function h : R — R with
h(z) = 2% 4 2z + 5.
This function is neither even nor odd because we get e.g.
h(1) =38 and h(—1) =4,
i.e., for the particular value v = 1, we get h(1) # h(—1) and h(1) # —h(1).
Periodic function:
A function f : Dy — R is called periodic if there exists a real number 7" such that for all

x € Dy with x +T € Dy, the equality

flz+T) = f(z)

holds. The smallest real number 7" with the above property is called the period of function f.

Two periodic functions are illustrated in Fig. 8.7.
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Figure 8.7: Periodic functions

Zero of a function:
A point z with
f(z)=0

is called a zero (or root) of function f.

We will give the zeroes of some functions in the subsequent sections. However, in general, the
problem of determining all zeroes of an arbitrary function is a difficult problem and often one
has to apply numerical procedures for an approximate calculation.

Convex/concave function:
A function f : Dy — R is called convex on an interval I C Dy, if for any choice of z; and z3
in I and 0 < A <1, inequality

fQz1 4+ (1= Nz2) < Af(z1) + (1= A)f(2) (8.1)

holds.

A function f: Dy — R is called concave on an interval I C Dy, if for any choice of z1 and x3
in [ and 0 < A < 1, inequality

FO1+ (1= N)aa) = () + (1= V) (22)) (8:2)

holds.

If for 0 < A < 1 and x; # x9, the sign < holds in inequality (8.1) (and the sign > holds in
inequality (8.2), respectively), function f is called strictly convex (strictly concave).

The definition of a convex function is illustrated in Fig. 8.8. A function f is convex on an
interval [ if for any choice of two points x; and xo from the interval and for any intermediate
point x from the interval [x1,x9], which can be written as x = Ax; + (1 — A)z2, the function
value of this point (i.e., the value f(Az; + (1 — A)z2)) is not greater than the function value of
the straight line through the points (z1, f(x1)) and (22, f(x2)) at the intermediate point 2. The
latter function value can be written as Af(x1) + (1 — A) f(z2).

Download free eBooks at bookboon.com



Figure 8.8: Definition of a convex function

Checking whether a function is convex or concave by applying the above definition can be rather
difficult. By means of differential calculus, we give criteria in Chapter 9 which are easier to use.

In the next sections, we consider classes of functions for which their properties are well known.

8.2 Linear Functions
Linear function:
A function f: R — R given by
y=f@)=amzr+a (a1 #0)
is called a linear function.
In this case, the graph is a (straight) line which is uniquely defined by any two distinct points

Py and P; belonging to this line. Assume that P; has the coordinates (x1,y;) and P, has the
coordinates (z2,y2), then the above parameter a; is given by

Y2 —W
T2 — X1

ay

and a; is denoted as the slope of the line. The parameter ag gives the y-coordinate of the
intersection of the line with the y-axis (see also Section 6.1). These considerations are illustrated
in Fig. 8.9 (a) for ap > 0 and a; > 0 and in Fig. 8.9 (b) for ap > 0 and a; < 0. Different linear
functions with the same parameter ag are illustrated in Fig. 8.10 (a), and different functions
with the same parameter a; are illustrated in Fig. 8.10 (b). In case (a), the graphs are lines
going through the same point (0, ag) while in case (b), the graphs are parallel lines.
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Figure 8.9: Linear functions with (a) ag > 0,a; > 0 and (b) ag > 0,a; <0

Yy fi ( fi
P! f2
/3
ao
7 f3
X X

(a) (b)

Figure 8.10: Linear functions with (a) identical ag and (b) identical a;
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The point-slope formula of a line passing through the point P; with the coordinates (x1,y;)
and having the slope a; is given by

y—y1=a1'($—331)-

A linear function f(x) = a1z + ag with a; # 0 has exactly one zero z( given by

Example 8.10 It is known that a line goes through the points (z1,y1) = (2,3) and (z2,y2) =
(6,11). We find the equation of the corresponding linear function represented by this line. First,
we determine the slope of this line and obtain

a

Tro — I1 6—2 4

> Apply now
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The equation of this line is given by

y—y1 = ar-(z—11)
y—3 = 2-(x—2)
y—3 = 2z—-4

y = 2z-—1,

i.e., the slope of this linear function is ay = 2 and the line intersects the y-axis at the point
y = ag = —1, and the zero is given by
a -1

8.3 Quadratic Functions

Quadratic function:
A function f : R — R given by

y = f(z) = a2® + 1% + ao, az #0

is called a quadratic equation.

The graph of a quadratic function is called a parabola. If as > 0, then the parabola is open
from above (upward parabola, see Fig. 8.11 (a)) while, if ag < 0, then the parabola is open
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YU+ \\LV/ z / Ty \ T

(a) ag >0 (b) a2 <0

Figure 8.11: A quadratic function and the apex

from below (downward parabola, see Fig. 8.11 (b)). The point V in Fig. 8.11 is called the
apex (or vertex), and its coordinates can be determined by rewriting the quadratic function
in the following form:

y—yv =az- (v —ay)? (8.3)
where (zy,yy) are the coordinates of the point V. The procedure of obtaining the vertex is
illustrated in Example 8.11. In general, we get

o and Yy = ——— + ap.

ry = ———
2a9 4ag

In the case of a% > 4asag, a quadratic function has the two real zeroes

—a1 \/a% — 4dasayg (8.4)

2a2

T12 =

In the case of a% = 4aqag, we get a zero x1 = xo occurring twice. In the case of a% < 4asag,
there does not exist a real zero (since there does not exist a real zero which is the square root of
a negative number). If a quadratic function is given in normal form y = 2 + pz + ¢, formula
(8.4) for finding the zeroes simplifies to

For the two zeroes z1 and z3 of the quadratic function y = f(z) = 22 + px + ¢, we have
1 +x2=—p and T1To = q.

If one knows the two zeroes z; and x2, one can easily determine the z-coordinate of the apex

as follows:
T+ T2
Ty = B .
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Example 8.11 Let the quadratic function f: R — R with
y = f(x) = 22? — 12z + 16.

be given. Since as = 2 > 0, the parabola is open from above. For determining the apex, we
rewrite function f as follows:

y = 2(2*>—6z)+16
y = 2(z*— 6x+9)+16 18
y = 2(z-3)*-

y+2 = 2(z—3)%

From the latter representation we find the apex
V= (zv,yv) = (3,-2).

In the above transformation, we have written the right-hand side as a complete square of the
form as(z — zv)? by adding 2 times the number 9 in parentheses and then we subtracted outside
18 so that the value of the right-hand side does not change. To determine the zeroes, we divide
the given equation by 2 and solve

22 —6x+8=0

which gives

r1=34+vV9-8=4 and To=3—vV9—-8=2.

8.4 Polynomials

Linear and quadratic functions are a special case of a so-called polynomial. Polynomials are
often used for approximating more complicated functions. They can be easily differentiated and
integrated, and their properties are well investigated. Polynomials are defined as follows.

Polynomial of degree n:
The function P, : R — R with

y = Py(x) = apz™ + 12" '+ .. 4 asx® + a1z + ao (8.5)

with a, # 0 is called a polynomial function (or polynomial) of degree n. The numbers
ag,ai, - - -,an are called the coefficients of the polynomial.

Example 8.12 The function f : R — R with
flz) =225+ 2% — 4 +2
is a polynomial of degree 5. The function g : R — R with
g(w) = -2 +1

is a polynomial of degree 3.
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Zero of multiplicity k:
Let f = P, : R — R be a polynomial of degree n with

Po(z) = (x — 20)* - Sp_p(z) and Sn—k(z0) # 0.
Then x is called a zero (or root) of multiplicity k of the polynomial P,.
If © = z¢ is a zero of multiplicity k of the polynomial, then the polynomial contains exactly k

times the factor z — xg. If a polynomial P,(x) according to (8.5) has the zeroes x1, 2, ..., Ty,
it can be written as a product in the form

However, we have to give two remarks. First, not all n zeroes of a polynomial need to be real
numbers. Second, finding the real zeroes of a polynomial is in general a difficult (but important)
problem. Often one has to apply numerical procedures for finding the zeroes approximately such
as Regula falsi (see Section 3.6) or Newton’s method (see Section 9.8).

Example 8.13 Let a polynomial Ps : R — R with
Ps(z) = 2%(x — 1)(2? — 22 — 3)
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be given. From the first two factors we see that
r1=22=0, x3=1.

are zeroes (note that x = 0 is a zero of multiplicity two). The remaining two zeroes are obtained
from x? — 2x — 3 = 0 which gives

z4=14+vV1+3=3 and rz5=1—+v1+3=-1.

8.5 Rational Functions

Next, we consider rational functions 1" which can be written as a quotient of polynomials P and

Q.

Rational function:
A function T : Dy — R with

T(z) = P(x)/Q(x) = (P/Q)(x)

is called a rational function. The rational function 7" is called proper if deg P < deg @ and
improper if deg P > deg @, where deg is an abbreviation for the degree.
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So,

23+ 4
T =
() 2 -3z +1
is an improper rational function, while
22 +4x+5
To(w) = x4 — 223 4+ 3

is a proper rational function.

By means of polynomial division, any improper rational function 7' = P/@Q can be written
as the sum of a polynomial and a proper rational function. For deg P > deg (@, the rational
function T'(x) can be written as

with Dy = {x € R| Q(x) # 0}. To get the latter representation, we consider the terms in both
polynomials P and @ in decreasing order of their powers and divide in each step the first term
of P by the first term of Q. Then the result is multiplied by @ and the product is subtracted
from P. This yields a new polynomial P; having a smaller degree than polynomial P,,. Now the
first term (with largest exponent) of polynomial P; is divided by the first term of polynomial @,
the resulting term is multiplied by polynomial () and subtracted from P; yielding a polynomial
P, and so on. The procedure stops if some resulting polynomial P; has a smaller degree than
the polynomial ). This procedure is illustrated by the following example.

Example 8.14 Let the two polynomials P and Q) with
P(z) =2 + 2% — 222 + 3z — 1 and Qz)=2"+x+4

be given. The function T with T'(z) = (P/Q)(x) is an improper rational function, and by
polynomzial division we obtain:

9z 4 23
(x* + 22 — 222 + 3z — 1) 1($2+$+4):$2—6+m
—(z* 4+ 22 4+  42?)
—62% + 3x — 1
— (=622 — 6r —
62 6 24
9 + 23

Recall that the terms in the polynomials have to be considered according to non-increasing expo-
nents. Thus, the rational function T can be written as the sum of a polynomial of degree 2 and
a proper rational function, where the polynomial in the numerator has the degree 1.
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Figure 8.12: Graphs of power and root functions
8.6 Power and Root Functions

Power function:
The function f : Dy — R with
f(z) =2a",

r e R,
is called a power function. In dependence on the exponent r, the domain Dy and the range

Ry are as follows:
1. r€{1,3,5,...} CN: Dy = (—00,00), Ry = (—00, 00);

2. re{2,4,6,...} CN: Dy = (—00,00), Ry = [0, 00);

3. re€R\ (NU{0}) : D = (0,00), Ry = (0,00).

In case (1), the function f is strictly increasing, unbounded and odd. In case (2), the function f
is strictly decreasing on the interval (—oo, 0], strictly increasing on the interval [0, c0), bounded
from below and even. If in case (3), we have r > 0, then the function is strictly increasing and
bounded from below. If we have r < 0 in case (3), the function is strictly decreasing and also
bounded from below. For all » € R+, the power function goes through the point (z,y) = (1,1).

The graphs of some power and root functions are given in Fig. 8.12.
Case (3) includes root functions as a special case when r is a positive value with r = 1/n, i.e.,

f(z) =" = Y.

In the case of a root function, the number zero belongs to the domain and also to the range,
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Figure 8.13: Graphs of exponential and logarithmic functions

ie, Dy =Ry =10,00).

8.7 Exponential and Logarithmic Functions
Exponential function:
The function f : R — (0, 00) with

f(x) =a", a>0,a#1,

is called an exponential function.

All exponential functions go through the point (0,1). If @ > 1, the exponential function is
strictly increasing. If 0 < a < 1, the corresponding exponential function is strictly decreasing.

Logarithmic function:
The function f : (0,00) — R with

f(x) =log, «, a>0,a#1,

is called a logarithmic function.

The graphs of some exponential and logarithmic functions are given in Fig. 8.13.

If the base a = e ~ 2.71828 is chosen, we use the abbreviation In which denotes the natural
logarithm, i.e.,
log, z =Inx.
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Figure 8.14: The graph of function h in Example 8.16

If the base a = 10 is chosen, often the abbreviation lg is used, i.e.,
logigz =1gx.

All logarithmic functions go through the point (1,0). If a > 1, the logarithmic function is strictly
increasing. If 0 < a < 1, the corresponding logarithmic function is strictly decreasing.

Example 8.15 Let the logarithmic function g : Dy — Ry with
y=g(x)=In(2z+5) -3

be given. Since any logarithmic function is defined only for positive real numbers, we must have
2z + 5 > 0 which gives the domain

)
Dg:{x€R|:U>—2}.

The range of function g corresponds to the range of an arbitrary logarithmic function (since the
modification in the argument and the subtraction of 8 from the logarithmic value do not change
the range). A logarithmic function has the only zero at the real number one. Thus the only zero
of function h is obtained from 2z + 5 = 1 which gives xg = —2.

Example 8.16 Let us consider the exponential function h : Dy — Ry with
y=nh(z)=e"2+1.

Since an exponential function is defined for all real numbers, function h has the domain Dy = R
too. The range of any exponential function is the interval (0,00). Therefore, the we get the
range Dy, = (1,00) of function h. As a consequence, function h has no zeroes. The graph of
function h is obtained from the graph of function y = f(x) = €* by shifting it two units to the
right (since the argument is x — 2 instead of x) and then one unit above (since we have to add
one to the function value). The graph of function h is given in Fig. 8.14.
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Figure 8.15: Definition of trigonometric functions

8.8 Trigonometric Functions

In this section, we repeat the four trigonometric functions and their properties. They can be
defined on a circle with the angle = being the variable (see Fig. 8.15).
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Sine and cosine functions:
The function f: R — [—1,1] with

_ v
f(z) =sinz = -
is called the sine function. The function f: R — [—1, 1] with

f(x) = cosx = g

is called the cosine function.

The zeroes of the sine function are given by

rp =k with keZ.

The zeroes of the cosine function are given by

xk:g+k7r with keZ.

The graphs of the sine and cosine functions are given in Fig. 8.16.
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Figure 8.16: Graphs of the sine and the cosine functions

Tangent and cotangent functions:
The function f : Dy — R with

f(x):tanx:i;r;i:% and Df:{xERM#g—Hm,kGZ}

is called the tangent function. The function f: D; — R with

h
f(as)zcota:zcosxz— and Dy ={zxeR|x#km kecZ}

sinx v

is called the cotangent function.
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The zeroes of the tangent function coincide with those of the sine function and thus are
given by

xp =km with keZ.

The zeroes of the cotangent function coincide with those of the cosine function and thus
are given by

xk:g—kkﬂ with kez.

The graphs of the tangent and cotangent functions are given in Fig. 8.17.
All trigonometric functions are periodic functions. In particular, the sine and cosine functions
have a period of 27, i.e., we have

sin(z + 2kw) = sinz, cos(z + 2kw) = cosx, ke Z.

Moreover, the tangent and cotangent functions have the period 7, i.e., we have

tan(x + 7) = tanx, cot(x + km) = cot x, keZ.

Example 8.17 Consider the function g with

yzg(x)zsin(:c—i-g).

The domain and range of function g do not change in comparison to f(xr) = sinz: Dy = R
and Ry = [—1,1]. To determine the zeroes, we use that function f has the zeroes xy, = km, € Z.
Therefore, for function g, we must have

x+g:k7r, ke

Hence, function g has the zeroes
op=kr -~ kel
2
Function g has the same period of 2w as function f. The graph of function g is obtained from
the graph of f by shifting it w/2 units left along the x axis.

Example 8.18 Given is the trigonometric function h : R — Ry, with

y = h(x) = 2cosazx, aeR.

First, if a = 0, function h is a constant function with h(x) = 2. Consider now the case a # 0.
Function h is defined for all real numbers x: Dyp = R. The range of the term cosax for a # 0 is
the interval [—1,1]. Therefore, the range of function h is given by Ry = [-2,2]. To determine
the zeroes of function h, we remember that the cosine function y = f(x) = cosx has the zeroes

xk:g+k7r:g-(2k+1), ke
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y = tanx

ol
vl
DO

Yy = cotx

Figure 8.17: Graphs of the tangent and the cotangent functions

Figure 8.18: Graph of function A in Example 8.18 for a = 2 (h1(z)) and a = 4 (ha(z))

For function h, we must therefore have

ar = —-(2k+1)

b | 3

which gives the zeroes
T
=—-(2k+1 keZ.
xk 2@ ( + )7

Moreover, function h has the period T with

T==
a

(since the term ax must be a multiple of 2w ). The graph of function h is given in Fig. 8.18 for
a=2 and a=4.
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Example 8.19 We consider the trigonometric function l : D; — Ry with
l(z) =1+ 3cot(x —1).
Since the cotangent function is defined for all x # kmw, k € Z, we get the domain
Di={zeR|z#kr+1,keZ}.

The range Ry of function | is the whole set R. Since the zeroes of function f(x) = cotx are
given by

mZ:g—i—lm:g(%—i—l), kel

we get the zeroes of function | as follows:
xk:g+kﬂ+1:g(2k+1)+1, keZ.

The period of function | is also w as for the function f(x) = cotx.

8.9 Composite and Inverse Functions

In this section, we review the definition of a composite and an inverse function and how to work
with them.

Composite function:
Let the two functions f : Dy — Ry and g : D, — Ry be given with Ry C D,. Then the
composite function g o f of the functions f and g is defined as follows:

gof:Df—R

with
y=g9(f(z)), =Dy

The function f is called the inside function, and the function g is called the outside function.
This means that first function f is applied to some number x € Dy, this gives the function value
f(z) which must belong to the domain D, of function g (otherwise the composite function would
not be defined). Finally, the function value is y = g(f(x)) € Ry C R. The determination of the
composite function is illustrated in Fig. 8.19.

If both compositions g o f and f o g are defined, this operation is not necessarily commutative,
i.e., in general, we have

(go f)(@) # (fog)(x).

Thus, in general, the inside and outside functions cannot be interchanged. We illustrate the use
of composite functions by the following examples.

Download free eBooks at bookboon.com



Figure 8.19: The composite function g o f

Example 8.20 Let the functions f: R — Ry and g : R — R, with
flz)=2x+5 and g(x) =322 —z +4
be given. We determine both composite functions f o g and go f and obtain

(fog)() = flg(x) = f(32®—x+4)
= 20322 —z+4)+5
= 622 —22+13
and
(go f)(z) =g(f(z)) = g(2z+5)

= 3(2z+5)2— (2 +5)+4

= 3(4a® +20x+25) — (22 +5) +4

= 122% + 58z + 74.

Both compositions are defined since the range of the inside function is either the set R (function
f) or a subset (function g) while in both cases the outside function is defined for all real numbers:
Dy =Dy =R.

Example 8.21 Given are the functions f : R — Ry and g : R — R, with

and

For the composite functions we obtain

2
(fog)(z) = flg(x)) = f(e" +1) = (e’” n 1) .

and ,

(9o N)(x) =g(f(2)) = g(z*) = " + 1.
The composition f o g is defined since the range Ry = (1,00) is a subset of the domain Dy = R,
and the composition go f is defined since the range Ry = R>q is a subset of the domain D, = R.
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Example 8.22 Given are the functions f : Dy — Ry and g : Dy — Ry with
flx) =+Vx+2, Dy =[-2,00)

and
g(x) =2cosx + 1, D, =R.

For the composite functions we obtain

(fog)(x) = f(g9(x)) = f(2cosz +1) = \/(2cosx+1)+2: V2cosz + 3.

and

(90 f)(#) = 9(f(@)) = g(VE F3) = 2c05 VT T 2+ 1.
The composition f o g is defined since the range Ry = [—1,3] is a subset of the domain Dy =
[—2,00), and the composition g o f is defined since the range Ry = [0,00) is a subset of the
domain Dy = R.

Example 8.23 Given are the functions f : Dy — Ry and g : Dy — Ry with
f(x) =3z —2, Dy =R

and )
g(x) = - + 2, Dy = Ryy.

For the composite function f o g, we obtain

(fog)(w)—f(g(w))—f<i+2> _3. <;+2) 2By

The composition fog is defined since the range Ry = R~9 is a subset of the domain Dy. However,
the composition g o f is not defined since we get the range Ry = R-_o and thus, Ry € D,.

Inverse function:

If a function f : Dy — Ry, Dy C R, is strictly monotonic (i.e., either strictly increasing or
strictly decreasing) on the domain Dy, then there exists a function f ~! which assigns to each
real number y € Ry a unique real value x € Dy with

z=f"y),

which is called the inverse function f~! of function f.

Here it should be mentioned that, if Ry C R but Ry # R (in this case we say that Ry is a
proper subset of R), the inverse function of f : Dy — R would not exist since there exist values
y € R for which = f~!(y) does not exist. Nevertheless, such a formulation is often used and,
in order to determine f~!, one must find the range R of function f (or, what is the same, the
domain Dy-1 of the inverse function f~! of f).

We write f~1 : R; — R or more precisely, 1 Ry — Dy. Since x usually denotes the
independent variable, we can exchange variables x and y and write
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Figure 8.20: Function f and the inverse function f~!

y=f"()

for the inverse function of function f with y = f(x). The graph of the inverse function f~!
is given by the mirror image of the graph of function f with respect to the line y = . We
emphasize that in general, we have

If there exists the inverse function f~! of a function f : R — R, we have
flof=fof,

i.e.,

U@ =f(f @)=z  forallzeR
A function f and its inverse function f~! are illustrated in Fig. 8.20.

We illustrate the determination of an inverse function by the following examples.

Example 8.24 We consider the linear function f : R — R given by
y=f(z)=3c+7.

Solving for x, we get

y—7 = 3z
L -7
r = = (y—
3?/
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Interchanging the variables = and y, we obtain the inverse function f~1 of function f with

1

?J:f_l(m)zg(ﬂ?—”

Hence, the inverse function of a linear function is a linear function as well, and we have D1 =
Ry =R.

Example 8.25 Let the power function f : Rsg — Rso with

y=x
be given. Using power rules when solving for x, we obtain
1/2.5
yl/25  — [xzs}
e =yl =04,

Interchanging the variables = and y, we get the inverse function f= of function f with

y=f""a) =2 (8.6)
For the inverse function, we have

Dy = Ry = Ryp.

Note than we can also use the logarithmic function for determining the inverse function. By
taking the natural logarithm, we obtain

In

5

<

Inz = =04Ilny = Iny**

[\V)

from which we also obtain (8.6).

Example 8.26 Let the function f: R — (5,00) with

1
y:f(x):§egx+5

be given. Solving for x, we obtain

1
Yy — 5 = 5 €2$
3(y—5) = €~

In [3@—5)} = 2
x = % In [3(y75)].

Note that y > 5 so that the argument of the logarithmic function is always positive. Interchanging
the variables x and y, we get the inverse function y = f~1(x) of function f with

y:%ln [3(%—5)},

where
Dy = (5,00) and Ry1=R.
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Example 8.27 Let the function f:R>q — [3,00) with
y= f(2) = 2% +3

be given. To determine the inverse function f~1, we solve the above equation for x and obtain

2% = y—3

3 y—3

T T
- 3y —3
-

Note that y > 3 so that the term under the root is always non-negative. Interchanging now both
variables, we obtain the inverse function f~1 of function f with

s/x—3

y=1f"@) ==

The domain of the inverse function f~' is the range of function f, and the range of function
=1 is the domain of function f, i.e.,

fol = [3, OO) and Rffl = RZO.
EXERCISES

8.1 Determine the domain Dy and the range R of the following functions:

(a) F(z) = 20 +5; (b) flw) - a® +2; (0) f@) = 50° + 57~ 3;
(d) z =+vx+3; (e) f(x) =2Inx+1; (f) f(x) =In(z? +1);

(g) f(z) = Va* —9; (h) f(z) =Ina®; (i) flz) = Vx| —=.

8.2 Graph the following functions:

(a) f(z) =22 +5; (b) f(z) = —a® +2; (c) f(z) =€ +2;

(d) f(z) = Va +3; (e) f(z)=2lnz +1; (f) f(x):tan<x_g> .
8.3 Give the following functions as the sum of a polynomial and a proper rational function:

_31’5—#21'4—2173—%—2217‘ =t 222+ 1

(a) () ) fa) = T

8.4 Determine the domain Dy, the range Ry, zeroes and periodicity of the following trigono-
metric functions:

(a) f(z) = 2sin (2334—%); (b) f(x):%cos (g—ﬂ);
(c) f(z) = mtan (z 4+ V3); (d) f(x) =scot(x+1) (se€R).

8.5 Determine the composite functions f o g and g o f for the following functions f and g
provided that they exist:

(a) f(x) =2+3, Dy=R; g(x)=¢e", Dy=R;

Download free eBooks at bookboon.com



A REFRESHER COURSE IN MATHEMATICS FUNCTIONS

(b) f(x) = (x—1)(a*+2), Dy=[l,00); g(x)=+x, Dyg=10,00);
(c) f() = (z+1)*, D;=R; g(z) =Ilnz, Dy=(0,00);

(d) f(z)=22+1, Df=R;  g(x)=2>+2-3, Dj=R;

8.6 Determine the inverse functions f~! of the following functions f : D ¢ — Ry provided that

they exist:

(a) flx) =2x -7, D;y=R;

(b) f@)=a®+3, Dy = [0,00);
() F&) =24 =1, Dy =[0,00);
(d) f(z) =e** -1, Dj=R;
@) fr) = Y222 Dy —Rao
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Chapter 9

Differentiation

Differentiation can be used for describing and modeling movement and alteration processes in
many disciplines. It can be applied e.g. in optimization for finding extreme points or as a base
for differential equations when simulating dynamic systems. The learning goals of this chapter
are as follows:

e refreshing the concepts of a limit, continuity and the derivative of a function;
e repeating the major rules of differentiation and getting practice in their application; and

e reviewing some applications of differential calculus like graphing functions, extremum prob-
lems and determining the zeroes of a function approximately.

9.1 Limit and Continuity of a Function

First, we formally introduce the notation of a limit and illustrate it then in Fig. 9.1.

Limit of a function:

The real number L is called the limit of the function f : Dy — R as x tends to x¢ if for any
sequence {xy,} with ,, # x9, £, € Dy, n=1,2,..., which converges to x¢, the sequence of the
function values { f(z,)} converges to L.

The limit of a function is closely related to the limit of a sequence. In the above description,
the sequence {x,} related to the independent variable x and the sequence of { f(x,)} related to
the dependent variable y = f(x) are considered. A function has the limit L as = tends to some
value zo (represented by a sequence, where the terms z,, are from some value n on very close to
x0), if the sequence of the function values {f(x,)} tends to the value L. Often, the J-¢ notation
is used in mathematics. This means that a function f is continuous at xq if for any positive real
number €, there exists a positive § = d(€) depending on € such that

|z — 0| < d(€) — |f(x) — f(zo| < €.

(see Fig. 9.1). Thus, for any positive (in particular, very small) €, one can give a positive number
d such that the function values f(z) are from the open interval (f(z)—e¢, f(x)+€) provided that

Download free eBooks at bookboon.com



L+ ‘
L; + , 7 (o
=1 /i /
flo) 7
T — 4
x o x
(a) limit L exists (b) limit L does not exist

Figure 9.1: The limit of a function

x is from the open interval (z¢g — 0, zo + 6). If € becomes smaller, then usually also § becomes
smaller. Notice that for a limit of a function at a point xg, it is not necessary that the function
value f(xg) exists.

Similarly, we can consider one-side limits. If for the sequence {z,}, we have x,, > x¢ for
n =1,2,..., (i.e., one approaches from the right side to xg), we obtain the right-side limit
L, and we indicate this by  — x¢ + 0. Analogously, if x,, < z¢ for all n = 1,2,..., (i.e.,
one approaches from the left side), we obtain the left-side limit I, and we indicate this by
x — xg—0. The limit L of a function f as x tends to xg exists if and only if both the right- and
left side limits exist and coincide: L, = L; = L. Next, we review some rules for working with
limits.

Assume that the limits

lim f(z)= L, and lim g(x) = Lo.

T—T0 Tr—xQ

exist. Then we have the following rules for determining limits:

Rules for limits:
(1) lim [f(@) +g(x)| = lm @)+ lim g(a) = L + La;
(2) lim [£(@) —g(2)] = lim f(@) = lim g(a) = Ly — Lo;
(3) lim [£(@)-g@)] = lim f()- lim g(@) = L1~ Lo
lim f(z)
. f(=) _ T - & . _
(4) xlgélo @) li_}m 0@ " I provided that Lg # 0;
r—T0
(5) li_>m V) = li_}rn flz) =11 provided that L; > 0;
Tr—x0 T—T0
© i = [ )| -
lim f(x)
: f@)| — ,|e—e — 4L
@) Jm, o ]—a[ )
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We illustrate the calculation of limits by the following examples.

Example 9.1 We calculate
L = lim m .
z—=0 X

Using the definition of the absolute value, we obtain for the one-side limits

. x . T
L, = lim u = lim —=1
z—0+0 X z—04+0 2
. T . x
L; = lim u = lim —-=-1
z—0-0 I z—0—-0 2

Due to the definition of the absolute value, it is necessary to consider the right- and left-side
limits separately. Since they are different, the limit L does not exist.

Example 9.2 We calculate

. 2 . .
L= fig & 372 _ TN 1432 21
z—1 x+7 limz + lim 7 147 8 4
z—1 r—1
Example 9.3 We determine
2
I — lim EHOE+2)

T—4 \/5

FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
RUN EASIER...
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This yields

lim x \/1

r—4

Example 9.4 We calculate
L=1lim (e’ +27) .

r—2

We obtain L )
L= er®) oM _ 192 gy

Example 9.5 We determine

If we consider the limit of the numerator and the demominator as x — 4, we observe that both
terms tend to zero so that we cannot find a result in this way. Later we discuss a way how to
treat such indeterminate forms (where both the numerator and denominator tend to zero) by
means of differential calculus. However, here we can expand the fraction by \/x + 3 and obtain

Lt EoOWEHD) @ 0WE )
=9 (\/5_3)(\/54-3) z—9 r—9

= lim (V7 +3) =6.
r—9
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(a) f continuous (b) f discontinuous at z¢ and z;

Figure 9.2: Continuous and discontinuous functions

Continuous function:
A function f : Dy — R is said to be continuous at x¢ € Dy if the limit of function f as = tends
to ¢ exists and if this limit coincides with the function value f(z), i.e., we have

lim f(z) = f(zo).

T—T0

In Fig. 9.2, examples of a continuous and a discontinuous function are given. We review some
types of discontinuities:

e jump: A function f has a (finite) jump at z¢ if both one-side limits as * — xp — 0 and
x — xo+ 0 exist but are different. The existence of the function value f(xg) does not play
a role.

e gap: A function f has a gap at xg if

252, 7@

exists but the function value f(xg) does not exist.

e pole: A rational function f = P/Q of two polynomials P and @ has a pole at zg if
P(x0) # 0 and Q(xg) = 0. Thus, the function value f(zp) does not exist and for x — x7+0
and x — zg — 0, the function values tend to +oc.

Example 9.6 Given is the function f: Dy — R with

2
x>+ —6
o) ===
Function f is continuous for all points x # 2 so that the only critical point is x = 2. The term
in the numerator has the zeroes x = 2 and x = —3. Therefore, we get
(x—2) - (z+3)

lim f(x) = lim

r—2 r—2 r—2 :iLIIlQ($+3):5
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f(zo + Az) 4

f(zo) 1

Zo xo + Az

Figure 9.3: The difference quotient of a function

Note that for the calculation of the limit, we can assume x # 2 so that the above transformation
is correct. However, the function value f(2) does not exist and so function f is discontinuous
at x = 2, i.e., it has a gap.

Example 9.7 Given is the function f: R — R with

(222 for x € (=00, 2]
f(z) = a+(x—2)2 foraxe (2,00),

where a s a real parameter. We determine the parameter a such that function f is continuous
at all points. Function f is obviously continuous at any point x # 2. For x = 2, we obtain

lim f(a) = f(2) =2

rz—2—0

and
. 9\2)
xhg}ro (a+(z—-2)°) =a.

Thus, function f is continuous at x = 2 for a = 2.

9.2 The Derivative of a Function
Difference quotient of a function:
Let f: Dy — R and o, z9 + Az € (a,b) € Dy. The ratio

Ay f(wo + Az) — f(z0)
Az Ax

is called the difference quotient of function f with respect to points zg + Ax and xp.

The difference quotient characterizes the average increase or decrease of a function f over
the interval [xg, zo + Az]. It gives the quotient of the change in the y variable over the change
in the x variable which corresponds to the slope of the line going through the points (zo, f(z0))
and (xo + Az, f(zo + Az)). The difference quotient is illustrated in Fig. 9.3.
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slope f'(z0)

flro+Ax) +------F/------—= =
iAy

T P ASS—
Az — 0

1
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!
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|
|
;
Zo zo + Az

Figure 9.4: The derivative of a function

We are now interested in the change of the value of function f when only a small change in the
independent variable x is allowed. This means that we look what happens if we determine the
limit of the difference quotient as Ax tends to zero. This leads to the derivative of a function
as follows.

Derivative of a function:
A function f : Dy — R with y = f(z) is said to be differentiable at the point ¢ € (a,b) C Dy

if the limit N
I— lim f(wo + Az) — f(z0)
Az—0 Az

exists. This limit L is called the derivative (or the differential quotient) of the function f
at point £y and denoted as

d
1 (o) or, equivalently, % (z0) -

Geometrically, the value f’(zg) gives the slope of the tangent to the curve y = f(z) at the point
(o, f(z0)). It describes the change in the function value of f when only a ‘very small’ change in
the independent variable is considered. Roughly, we can interpret it as the number of units by
which the variable y changes (i.e., increases if greater than zero or decreases if smaller than zero)
when the independent variable x increases by one unit (i.e., from xg to g + 1). The derivative
y' = f/(x) is illustrated in Fig. 9.4.

We consider the following example for finding the derivative of a function (at the moment still
by applying the definition).

Example 9.8 Let function f : R — R be given by
y=flae)=a>.

We determine the first derivative of function f at the point xg. Applying the above definition,
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this gives

f'(zo) = lim f(xo + Az) — f(20) - lim (zo + Ax)3 — 2}

Az—0 Az Az—0 Ax
—  lim x3 + 3x3Ax + 3z0(Ax)? + (Az)3 — 23
Az—0 Azx
. Az (323 + 3z0Az + (Ax)?
= lim
Az—0 Ax

_ 2
= 33 .

9.3 Elementary Rules
In this section, we review the derivatives of the major types of functions.

Table 9.1: Derivatives of elementary functions:

y = f(z) y = f'(z) Dy
C 0 —o00 <z < 00, C constant
z™ na ! —00 < x < 00, neN
% az®! 0 << oo, a€eR
er e’ —o0o < x <0
a® a®lna —o0 < x < 00, a>0
1
Inx — O0<z<oo
1
log, = 0 <z <oo, a>0
zlna
sinx cos T —oo <z <0
cosx —sinz —o0 < T <0
1 T
tanx 72:1+tan2x x # — + km, keZ
cols T 2
cot x - = —(1+cot?z) x # km, kel
sin“ x

Next, we review some more differentiation rules considering sums, differences, products and
quotients of two functions f and g.
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Derivative of a Sum, Difference, Product and Quotient:
(1) (f+9)(x)=f(2)+ 9 (2):
2) (f=9)(@)=f(x)—g(2);

3) (f-9)(x)=[f(2) g(x)+ f(x)-g'(z);

W (f) (r) = /@) 9@) = @) -g(x)

g [9(x)]?

Example 9.9 We illustrate the use of the above rules by the differentiation of the following
functions:

1. Let f : Dy — R with f(z) = /. Using v/ = 2'/2, we obtain

fl(:l,‘):§ X 23;1/2_%'

2. Let f: Dy — R with f(z) = 22" — 323 + 52 — 7. Then
fl(x) =823 — 922 + 5.
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3. Let f: Dy — R with f(x) = 2®sinz. Applying the product rule (3), we get
f'(x) =2zsinz + x? cosz = z(2sinx + z cos ) .
4. Let f: Dy — R with f(z) = 23 - a®. Using the product rule, we get
fl(z) =32 a® + 23 - a® Ina=2% a*(3+x-Ina) .

5. Let f: Dy — R with
2 +2
x—5 "

flx) =
Applying the quotient rule (4), we get

2z (z—5)—(2242)-1 22 —10z—2? -2 2*—10z -2

f@) @57 ~ T @ @o5p

6. Let f: Dy — R with

Inz
f(z) = 3
Then, using the quotient rule,

L.23 —Inz - 322 22 —32%2 -Inzx

f’(:n) =z (:L,?,)z - 16 -

2*(1-3lnz) 1-3lnz

26 xd

Let us now consider a composite function f = g o h. The rule for the differentiation of function
f is given by the following formula, known as the chain rule:
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Derivative of a composite function f = go h:

9@ = g'(=) - W(x) with z = h(x)

Example 9.10 Let us consider the following examples for illustrating the use of the chain rule.

1. Let f: Dy — R with

flz) =€
Then we have
g(z) =¢€* and z=h(z)=—2°
We obtain
g (z)=¢* and W (z) = —322

2. Let f: Dy — R with
We have
Then we obtain

Therefore, we obtain

f'(x) =g (h(z)) - B (z) = 4(22% + 3)3 - 4z = 162 (22% 4 3)3 .

3. Let f: Dy — R with

We have
9(z) =z and z=h(x)=2® -6z +5.
We obtain ) ]
J(z)==z"12= NE and h'(x) =27 —6.
Thus, we get
1 -3
f'(x) = g'(h(x)) - W (z) = (22 -6) =

2V/22 —6x + 5 Vaz+ 22 -3

An alternative formulation of the chain rule for f = go h with f = g(y) and y = h(x) is given

by

df dg dy

der dy dz’
The chain rule can also be applied if a function is composed of more than two functions. We
illustrate this by the following example.
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Example 9.11 Let f: Dy — R with

fla) = eVTH

Since the term under the square root must be negative, the function is only defined for x>4+3x > 0.
Solving this quadratic inequality, we have x < —3 or x > 0. Therefore, the domain Dy is given
by Dy = (=00, —3]U[0,00). Function f is of the type f = gohok, where

w=g(z)=¢* z=hy) =y, y=k(x)=az>+3z.

We get

Thus, we obtain
fle) = V20 ES
2 Va4 3z

Next, we review higher-order derivatives. If function f’ with ¢/ = f’(z) is again differentiable,
function
B df’ d2 f

V= ') = ) = @)

is called the second derivative of function f at point z. We can continue with this procedure
and obtain in general:

B dfnfl dnf

y™ = f") ()

which denotes the nth derivative of function f at the point x € D;. Notice that we use
f'(x), f"(x), f"(x), and for n > 4, we use the notation f(™(z). Higher-order derivatives are
used for instance in the rest of this chapter when investigating specific properties of functions.

Example 9.12 Let function f: Dy — R with

1
f(x) =62 + = + ¥ H1
T

be given. We determine all derivatives until fourth order and obtain

fl(z) = 122 — % + 2¢2vH!
f(x) = 24a+ % + 4?71
f"(z) = 24— % + 8e2otl
A 2) = % + 166271

Example 9.13 Let function f: Dy — R with

f(z) = 2sin(3z + 1) + 422
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flxo+ Az) +

f(@o) -

Figure 9.5: The differential of a function

be given. We determine all derivatives until the fourth order and obtain

f'(x) = 2cos(3z+1)-3+8x=6cos(3z+1)+ 8z
f"(z) = 6(—sin(B3x+1)-3+8=—18sin(3z+ 1) +8
f"(x) = —18cos(3z+1)-3 = —54cos(3z + 1)

f@(x) = b54sin(3z+1)-3=162sin(3z +1).

9.4 The Differential

Next, we introduce the notion of the differential which can be used for estimating the error when
calculating function values, i.e., what is the influence on the error in the y-value if the z-value
is only known with some possible deviations.

Differential of a function:
Let function f : Dy — R be differentiable at point zp € (a,b) C Dy. The differential of
function f at point xg is defined as

dy = f'(zo) - dw .

The differential is illustrated in Fig. 9.5.

The differential can be used e.g. for the estimation the change in the function value when a
small change in the independent variable z is considered. For small changes in the variable x,

we have
Ay~ dy = f'(xg) - do .
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Example 9.14 Let function f: Dy — R with
T 2
- 7_9
@)= (3

and xo = 25 be given. We compare Ay and dy for the case when Ax = dx = 1. Then we obtain

25 4 1 2 25 2 26 2 25 2
Ay = 1) — = 1) —([=Z=—1) =(=-1) = (= -1
v = S+ fao = (T2 -1) = (F-1) =(F-1) - (5-1)
= 122 —11.5> =144 — 132.25 = 11.75
Using
iy —o. (T_).1_2%_
“@_2(21)2_2 L
we get

2
F(25) = ?5 1—115

and therefore
dy = f'(25) -do =11.5-1 =115,

i.e., Ay and dy differ by 0.25.

Example 9.15 The radius R of a sphere has been measured as R = (4.502 £ 0.005) cm, i.e.,
we have |AR| = |dR| < 0.005. We estimate the absolute and relative error of the volume and
the surface of the sphere. The formula for the volume of a sphere is given by
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Differentiation gives
V'(R) = 47 R?

and thus
|dV| = 47 R?|dR) .

Using R = 4.502 and |dR| < 0.005, we get for the absolute error

|dV| < 47(4.502)2 - 0.005 = 1.2735 cm? .

Moreover, we get

4
V(4.502) = 37 (4.502)% = 382.2128 c¢m?

and therefore, we have for the relative error

‘ﬂ _Jav] _ 12735
==

VS 320108 0033

Thus, the relative error for the volume is estimated to be not larger than 0.33 %.

The formula for the surface of a sphere is given by
S(R) = 47R? .

Differentiation gives
S'(R) = 87R.
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Using again R = 4.502 and |AR| = |dR| < 0.005, we get
|dS| < 8 -4.502 - 0.005 = 0.5657 c¢m? .
Moreover, the surface is obtained as
S(4.502) = 4 - (4.502)% = 254.6952 cm? .

Therefore, we obtain

‘dS _|dS] < 0.5657
Sl 8 ~ 254.6952
i.e., the relative error for the surface can be estimated to be not larger than 0.22 %.

=0.0022,

9.5 Graphing functions

To get a quantitative overview on a function f : Dy — R and its graph, respectively, we
determine and investigate:

e domain Dy (if not given) and possibly the range Ry;
e zeroes and discontinuities;
e monotonicity of the function;

e extreme points and values;

360°
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e convexity and concavity of the function;
e inflection points;

e limits and asymptotic behavior, i.e., how does the function behave when x tends to foco.

Having the detailed information listed above, we can draw the graph of function f. In the
following, we discuss the above subproblems in detail.

In connection with functions of one variable, we have already discussed how to determine the
domain Dy and we have classified the different types of discontinuities. As far as the determina-
tion of zeroes is concerned, we have already considered special cases such as zeroes of a quadratic
function. For more complicated functions, where finding the zeroes is difficult or analytically
impossible, we give in addition to Regula falsi from Chapter 3 another numerical procedure for
the approximate determination of zeroes later in this chapter. We start with the investigation
of the monotonicity of a function.

9.5.1 Monotonicity

By means of the first derivative f/, we can determine intervals in which a function f is (strictly)
increasing or decreasing. In particular, the following property can be formulated.
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f'(x) >0 in (a,b) f(x) <0in (b,c)

f strictly
increasing

on (a,b)

f strictly
decreasing
on (b, c)

y = f(x)

S 4---
8

Figure 9.6: Monotonicity of a function

Check of a function for (strict) monotonicity:

Let function f : Dy — R be differentiable on the open interval (a,b) and let I = [a,b] C Dy.
Then:

(1) Function f is increasing on [ if and only if f'(z) > 0 for all z € (a, b).

(2) Function f is decreasing on [ if and only if f'(z) <0 for all = € (a, ).
(3) If f'(z) > 0 for all = € (a,b), then function f is strictly increasing on I.
(4)

4) If f'(z) < 0 for all z € (a,b), then function f is strictly decreasing on I.

We remind from Chapter 8 that, if a function is (strictly) increasing or (strictly) decreasing on
an interval I C Dy, we say that function f is (strictly) monotonic on the interval I. Checking a
function f for monotonicity requires to determine the intervals on which function f is monotonic
and strictly monotonic, respectively. Fig. 9.6 illustrates the determination of monotonicity
intervals by the first derivative.

9.5.2 Extreme Points

First we give the definition of a local and of a global extreme point which can be either a
minimum or a maximum.

Local extreme point:
A function f : Dy — R has a local maximum (minimum) at point zy € Dy if there is an
interval (a,b) C Dy containing xg such that

f(x) < f(=o) (f(x) > f(xo), respectively) (9.1)

for all points z € (a,b). Point zg is called a local maximum (minimum) point.

If inequality (9.1) holds for all points € Dy, function f has at point ¢ a global maximum
(minimum), and zg is called a global maximum (minimum) point.
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Figure 9.7: Local extreme points of a function

Necessary condition for local optimality:
Let function f : Dy — R be differentiable on the open interval (a,b) C Dy. If function f has
a local maximum or local minimum at point z¢ € (a,b), then f’(z() = 0.

Stationary point:
A point zg € (a,b) with f’(z¢) = 0 is called a stationary point (or critical point).

When searching global maximum and minimum points for a function f in a closed interval
I =[a,b] C Dy, we have to search among the following types of points:

(1) points in the open interval (a,b), where f’(x) = 0 (stationary points);

(2) end points a and b of I;

(3) points in (a,b), where f/(x) does not exist.

Local extreme points are illustrated in Fig. 9.7.

We note that only points according to (1) can be found by means of differential calculus. Points
according to (2) and (3) have to be checked separately. Returning to Fig. 9.7, there are two

stationary points g and x3. The local (and global) minimum point z; cannot be found by
differential calculus since the function drawn in Fig. 9.7 is not differentiable at the point ;.

The following two claims present sufficient conditions for so-called isolated local extreme points,
for which in Inequality (9.1) the strict inequality holds for all z € (a,b) different from zo.

First, we give a criterion for deciding whether a stationary point is a local extreme point in the
case of a differentiable function which uses only the first derivative of function f.
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Figure 9.8: First-order derivative test for local extrema

Sufficient condition for local optimality (first-order derivative test):

Let function f: Dy — R be differentiable on the open interval (a,b) € Dy and x¢ € (a,b) be
a stationary point of function f. Then:

(1) If f'(x) > 0 for all z € (a*,z0) C (a,b) and f'(x) < 0 for all x € (x,b*) C (a,b), then xq
is a local maximum point of function f.

(2) If f'(z) <0 for all z € (a*,z0) C (a,b) and f'(z) > 0 for all = € (x¢,b*) C (a,b), then
is a local minimum point of function f.

(3) If f'(x) > 0 for all z € (a*,20) C (a,b) and for all z € (z9,b*) C (a,b), then ¢ is not a
local extreme point of function f. The same conclusion holds if f/(z) < 0 on both sides of
Zo.

The first-order derivative test for local extreme points is illustrated in Fig. 9.8 (z; is a local
maximum point, zg is not a local extreme point, and x3 is a local minimum point).

Alternatively, one can use the subsequent criterion which uses higher-order derivatives.

Sufficient condition for local optimality (higher-order derivative test):
Let f: Dy — R be n times continuously differentiable on the open interval (a,b) C D; and
xo € (a,b) be a stationary point. If

F(xo) = f"(z0) = f"(xo) = ... = f™ D(zg) =0 and f(x) #£0,

where number n is even, then point xg is a local extreme point of function f, in particular:

(1) If (™ (24) < 0, then function f has at point zy a local maximum.

(2) If (™ (24) > 0, then function f has at point zy a local minimum.

Often the above sufficient condition works already for n = 2 and one only needs to check the
sign of the second derivative of all stationary points.
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Example 9.16 We determine all monotonicity intervals and local extreme points for the func-

tion f:[1,00) = R with
f(z) =Vir —4-e72.

Differentiation gives

1
flz) = 5 (4o = 4)TY2 4. 672 _9e7 % \Jag — 4
= 2¢72 |4z —4)"V2 — Az —4
L g L (a—d) o, 5-da

Vir — 4 Var — 4

From f'(x) = 0, we obtain the stationary point xg = 5/4. To investigate the sign of f'(x), we
need to investigate the sign of 5 — 4x (notice that both terms e=2* and \/4x — 4 are positive for
x >1). Thus, we have

f(z)>0 f0r1<x<g

and function f is strictly increasing on the interval [1,5/4]. Moreover, we have
, 5
fi(x) <0 foraz> 1

and thus, function f is strictly decreasing on the interval [5/4,00). Due to the signs of f’
around xq, this point is a local maximum (due to the monotonicity properties it is also a global
maximum). Alternatively, one could also check the sign of f” at the point xy which would give
17(5/4) < 0 and thus, it confirms that xq is a local mazimum point. Note also that the global
minimum point of function f is x1 = 1 with f(1) = 0 since all other points from the domain
Dy =[1,00) have a positive function value. Since x1 is a boundary point, this minimum cannot
be found by differential calculus, and one has to check such points separately.

9.5.3 Convexity and Concavity

Criterion for convexity/concavity of a function:
Let function f : Dy — R be twice differentiable on the open interval (a,b) C Dy and let
I = [a,b]. Then:

(1) Function f is convex on I if and only if f”(z) >0 for all z € (a,b).
(2) Function f is concave on I if and only if f”(z) <0 for all z € (a,b).
(3) It f"(x) > 0 for all z € (a,b), then function f is strictly convex on I.
(4) It f"(z) < 0 for all = € (a,b), then function f is strictly concave on I.

For deciding whether a function is convex or concave, the following notion of an inflection point
can be helpful.

Inflection point:
The point zg € (a,b) is called an inflection point of function f when f changes at zy from
being convex to being concave or vice versa.
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Figure 9.9: Convexity/concavity intervals of a function

Criterion for an inflection point:

f'(xo) = f"(@0) =...=f""D(z) =0  and

where n is odd.

Let function f : Dy — R be n times continuously differentiable on the open interval (a,b) C
Dy. Point xg € (a,b) is an inflection point of function f if and only if

f(n)(xO) 7é 07

Often the above criterion works already with n = 3, i.e.: f”(z9) =0, f”(xg) # 0. One can also
note that an inflection point can be interpreted as a local extreme point of the first derivative
y' = f’(x). The notions of convexity and concavity are illustrated in Fig. 9.9.

Example 9.17 We discuss the properties of function f : Dy — R given by

f(z) = 623 — 42 — 10z .

Function f is defined for all real numbers and therefore, we have Dy = R. In order to find all

zeroes, we may factor out 2x which gives
flz)=22-(32% =22 —5) =0
The first zero is x1 = 0 and the other zeroes can be obtained from
327 —2r —5=0

or, after dividing both sides by 3, from

_ xS =0
Y33
This gives
1 1 5 1 16
Y A T e
23=3 V373 Vg
which gives the solutions
1 N 4 5 p 1 4
To=-+-=- an T3 == — =
7373 3 °737 3
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f(z) = 62> — 422 — 102
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1 1 2 7
51
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Figure 9.10: Graph of function f in Example 9.17

Function f has no discontinuities, and we get

lim f(z)=—o0 and lim f(z) =o00.
T—r—00 T—r00

To find stationary points of function f, we determine zeroes of the first derivative:
fl(x) =182 — 82 —10=0.

Dividing both sides by 18, we get a quadratic equation in normal form:

4 5
2
——x—=-—=0.
9" g
Thus, we get the solutions
2 4 5 2 49
— 4 =24,/
TELE =5\ E1 9 T g 1
1.e., we get
2 7 2 7 5
El 9+9 an TE2 979 9

as stationary points for function f. We check the sufficient condition by means of the second
derivative and obtain

f"(x) =362 —38.
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This yields

5 5
f"(1)=36-1-8=28>0 and f”<9>:36~<9)8:28<0.
Therefore, xga = 1 is a local minimum point with f(1) = —8, and xga = —5/9 is a local
mazximum point with f(—5/9) ~ 3.75. For finding inflection points, we set f"(x) = 0 which

gives

f]f[:g

as a candidate for an inflection point. We check the sufficient condition by means of the deriva-
tive and obtain

1" (z) = 36,
i.e., f(2/9) # 0, and thus x1 is an inflection point of function f. We determine the sign of
the second derivation and find that for x > 2/9, we get f"(x) > 0, while for x < 2/9, we have
f"(x) < 0. Therefore, function f is strictly convex for x > 2/9 and strictly concave for x < 2/9.
The graph of function f is given in Fig. 9.10.

Example 9.18 We investigate the function f: Dy — R with
f(z) =In(1 + z?) .

Since 1 + 22 > 1, we get Dy = R. In order to find zeroes, the argument of the logarithmic
function must be equal to 1. From 1+ x?> = 1, we get the zero xo = 0. Function f has no
discontinuities. We get

lim In(1+2z%) = lim In(1+2%) = .
T—00 T—r—00

Moreover, function f is an even function:
f(=2) =In(1+ (=2)*) = In(1 +2%) = f() .

Determining stationary points, we obtain from

1 2x

1422 71522

/(@)
the only stationary point xp = 0. Since f'(z) <0 for x <0 and f'(x) > 0 for x > 0, the point
xp = 0 is a local minimum point with f(0) = 0. Alternatively, this can be confirmed by means
of the second derivative. We obtain

2(1+2%) —2z- 20 2+22* —42®  2— 227

f(z) = (1+ 22)2 T (14 22)2 - (1+x2)2°

For the stationary point xg = 0, we get

F'(zp) = £'(0) = 132 —92>0.

This confirms again that xp = 0 is a local minimum point. In order to find inflection points, we
set f"(x) = 0 which gives 2 — 2x® = 0. Thus, the candidates for an inflection point are

zrn =1 and T = —1.
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f(z) =In (14 2?)

Figure 9.11: Graph of function f in Example 9.18

We observe that f"(x) > 0 for x € (—1,1). Therefore, function f is strictly convex on the
interval [—1,1]. On the other hand, f"(z) < 0 for x € (—oc0,—1) and x € (1,00). Thus, the
function f is strictly concave for all x € (—oo, —1]U[1,00). Since the function f changes at the
point xy1 = —1 from being concave to convex and at the point xro = 1 from being convex to being
concave, both points are indeed inflection points. Alternatively, one may check that f"'(—1) #0
and f"(1) # 0. The graph of function f is given in Fig. 9.11.

Example 9.19 We investigate the function f: Dy — R with

_a;—l

fz) =

For finding the domain, we have to exclude points, where the denominator is equal to zero.
Therefore, we have Dy = R\ {0}. From x —1 = 0 we get the zero xo = 1 (observe that for the
denominator, we have x3 =1 #0). Moreover, zo = 0 is the only discontinuity (namely a pole),
and we get

3

lim f(z)= lim f(z)=0.

T—00 T—r—00
Nezxt, we determine stationary points. We get

23— (x—1)-322 22 (2 -3x4+3) —22+3
f’($): = = 1 .

26 26 x

From f'(x) =0, we get x1 = 3/2 as the only stationary point. Since f'(x) >0 for x < 3/2 and
f(x) <0 for x> 3/2, point tg = 3/2 is a local mazimum point with f(3/2) = 4/27. Moreover,
function f is strictly increasing on the interval (—oo,3/2] and function f is strictly decreasing
on the interval [3/2,00).

To find inflection points, we determine the second derivative:

() = —2x% — (=27 + 3) - 42® _ 23 (=27 + 8z — 12) _ 6z —12

a8 a8 x°

From f"(z) = 0 we get x; = 2 as the only candidate for a stationary point. Investigating the
sign of the second derivative, we obtain f"(x) > 0 for x < 0, f(z) < 0 for 0 < z < 2, and
f"(x) > 0 for x > 2. Therefore, function f is strictly convex for x € (—o00,0) U [2,00) and
function f is strictly concave for x € [0,2]. Thus, function f changes it sign as x; = 2 which is
indeed an inflection point (note that x = 0 is not an inflection point by definition). The graph
of function f is given in Fig. 9.12.
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Figure 9.12: Graph of function f in Example 9.19

Example 9.20 We investigate the function f: Dy — R given by
fla)=e 200

Since an exponential function is defined for all x € R, we have Dy — R. Moreover, any
exponential function does not have zeroes and discontinuities. We get

lim f(z)= lim f(x)=0.

T—r—00 T—r00

Next, we determine stationary points and obtain:
fl(z) = —dz - 72

Setting f'(x) = 0, we get xp = 0 as the only stationary point. Moreover, we have f'(x) < 0
for all x < 0 and f'(x) > 0 for all x > 0. Therefore, xg = 0 is a local mazimum point with
f(0) = e, and function f is strictly decreasing on the interval (—oo,0] and strictly decreasing on
the interval [0,00). Next, we determine the second derivative and obtain:

F'(x) = (—4z) - e 2 (—da) — 4e*H = (162% — 4) - e 20
Setting f"(x) =0, we get 1622 — 4 = 0 which has the two solutions

1 1
T = 3 and Ty = —3
as candidates for an inflection point. Investigating the sign of the second derivative, we see that
f"(x) >0 for x < —1/2 and for x > 1/2, while f"(x) < 0 for —1/2 < x < 1/2. Therefore,
function f is strictly convex for x € (—oo,—1/2]U[—1/2,00), and function f is strictly concave
for x € [—1/2,1/2]. Since the sign of the second derivative is changing at each of the points
xr = 1/2 and xr9 = —1/2, they are indeed both inflection points for function f. The graph of
function f is given in Fig. 9.13.
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Figure 9.13: Graph of function f in Example 9.20

Example 9.21 We investigate function f : Dy — R given by
f(:z):\/x—}—l—i—\/x—l.

For finding the domain, we have to take unto account that both terms under the roots must be
non-negative. Fromx+1>0 and x—12> 0, we get x > —1 and x > 1, which gives the domain
Dy = [1,00). This function has no zeroes because the range of function f is Ry = [V2, 00)
(observe that for x > 1 the right square root is at least v/2 and the first square root is non-
negative). Moreover, function f has no discontinuities and

xlingo f(z) =00.

To find stationary points, we determine the first derivative:

1 Ve —14Vr+1
2Vl 2V -1 2ya?—1
Since both the numerator and the denominator are greater than zero for x > 1, function f has

no stationary points and therefore no local extreme points. Looking for inflection points, we
determine the second derivative and obtain:

1 B 1 -V —-1-(z+1)Va+1
d(z+1)3/2  4(x—1)3/2 4(22 — 1)Va? 1

f'(@)

() = -

Since in the last term the numerator is negative but the denominator is positive, we obtain
f"(z) <0 for all x > 1. This means that function f is strictly concave on the domain Dy and
that there are no inflection points. The graph of function f is drawn in Fig. 9.14.

9.5.4 Limits

We have already discussed some rules for computing limits of sums, differences, products or
quotients of functions in Section 8.1. However, it was necessary that each of the limits exists,
i.e., each of the limits was a finite number. However, what happens when we wish to determine
the limit of a quotient of two functions, and both limits of the function in the numerator and the
function in the denominator tend to co as the variable x tends to a specific value xg. Similarly,
it is possible that both functions in the numerator and in the denominator tend to zero as x
approaches some value xg.
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Figure 9.14: Graph of function f in Example 9.21

Indeterminate form:
If in a quotient both the numerator and the denominator tend to zero as x tends to xg, we call
such a limit an indeterminate form of type “0/0”, and we write

tim L _ «q/0.

a0 g(z)

We only note that in addition to “0/0” and “oco/oc0” there exist five other indeterminate forms
of the type “0 - 00”, “co — 00”, “0°”, “00?” and “1°°” which all can be reduced to one of the
forms considered in the theorem below.

(Bernoulli - de I’'Hospital’s rule)
Let functions f : Dy — R and g : Dy — R both tend to zero as x tends to xg, or f and g
both tend to co as z tends to xg. Moreover, let f and g be continuously differentiable on the
open interval (a,b) € Dy N D, containing o and ¢'(x) # 0 for = € (a,b). Then
!
lim f(z) = lim Fx)

vos0 g(z)  am g(x)

Here either the limit exists (i.e., the value L is finite), or the limit does not exist.

Possibly, one needs to apply this rule repeatedly. We consider some examples.

Example 9.22 We determine the limit

L1 20% — 3z +1
= 11Im .
e—1 3 + 22+ 2x — 4
This is an indeterminate form of the type “0/0”. Applying Bernoulli- de I’Hospital’s rule, we

get
4 — 1
L = lim 3773:7.
a1 32 4+2x+2 7
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Example 9.23 We calculate the limit
2x —2x
et +e -2
L=lm-—F——.
a:g(l) 4{1,‘2
This is in indeterminate form of the type “0/0”. Using Bernoulli - de I’Hospital’s rule, we get
2 2x 2 —2x
L= lim 25 —2¢
z—0 8x

This is still an indeterminate form and we apply Bernoulli - de I’Hospital’s rule again:

42:p 472{17
L=lim=— %" _q
x—0 8

Example 9.24 We calculate the limit

. Viaxr — 4
L=1lm ——e—.

T—00 et

This is in indeterminate form of the type “oo/o0”. Applying Bernoulli-de I’Hospital’s rule, we

get
4

o 2 Am—d . 1 B
L=l T =M% V=1 o~

Example 9.25 We determine the limit

_1)3
L= lim 2@ L7
z—2 x4 —4
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This is an indeterminate form of the type “0/0”, and we obtain

3(z—1)2 3 3
—1)3
L=1lim 0 gy 2 =2
=2 2w a—2 2zx(z—1) 4

9.6 Extreme Points under Constraints

In this section, we discuss some problems of finding the extreme points of a function f(z,y)
subject to a constraint g(z,y) = b. Note that the function and constraint depend on two
variables. If possible, one eliminates one of the variables in the constraint, e.g. y = ¢*(x) and
then substitutes this term for y in the function f(z,y) so that a function f*(x) results depending
only on one variable (which we can treat). We illustrate this by the following examples.

Example 9.26 Given is a rectangle with the fized circumference C. Among these rectangles,
determine the lengths of the sides a and b of that rectangle having the largest area. The area A
of a rectangle is given by A = a-b. Moreover, we have the constraint 2a + 2b = C. Solving this
constraint e.g. for b, we obtain

1
b=-C-—a.
2
Using the above term to determine the area A, we get a function depending only on the variable
a:

o (to—a)=toa e
Aa) =a (20 a)—2Ca a”.
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Differentiation gives
Setting A'(a) = 0, we get

and then from the constraint
1 1 1
b==-C—--C=-C.
2 ¢ 4 ¢ 4
Since A"(a) = —2 < 0, a rectangle with the lengths

1
—bp=_
a = —40

has the maximal area, i.e., the desired rectangle is a square with the area A = %02.

Example 9.27 We determine the point (z,y) of the function f : (0,00) — 00) with f(x) =1/x
having the largest distance from the origin (0,0). According to the Pythagorean theorem, the
distance R of a point (z,y) from the origin is given by

R(z,y) = Va? +y2.

Using y = 1/x and plugging in R(z,y), we get

R(x) = /2% + <;)2
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Differentiating function R and looking for stationary points, we get

o0r — 2.1

2

R(x) = =0

2y/a2 + (

)

which corresponds to

—_
= [|8
no

r——=0.
3

After multiplying both sides by x3 > 0, we obtain
2t —1=0

which has the solution xp1 = 1 (note that xgs = —1 ¢ Dy). Since R'(x) > 0 for x > 1 and
R(x) <0 for0 <z <1, zg1 = 1 is a local and global minimum point with the distance

R(1,1) = /2.

Example 9.28 Gliven is an equilateral triangle with the length L of each side. It is desired to
put an rectangle with the side lengths x and y into this triangle such that the area of the rectangle
becomes mazimal (see Fig. 9.15). The area of the rectangle is given by A = x -y. Let H be the
height of the triangle. According to the intercept theorems, we get the proportion

L T

H:—=(H-y): =

5 =H-y): 5

which, after cross multiply, corresponds to
Hx L
o 2 (H -
5 =5 (H—Y)
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Solving for y, we obtain

Differentiation gives
From A'(z) =0, we obtain

which gives
Using the above term for y and the known fact that in an equilateral triangle, we have H =

L\/§/2, we get
x L 1 L

Since A" (x) = —2H/L < 0, the point (xg,yg) is a local mazimum. It is also a global mazimum
since A(x) is a quadratic function and the graph is a parabola open from below.
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Figure 9.15: Rectangle inside an equilateral triangle
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Figure 9.16: Illustration of Newton’s method

9.7 Zero Determination by Newton’s Method

In mathematics, it is often required to find the zeroes of a function. For instance, if we look
for stationary points or inflection points, some function has to be set to be equal to zero and
we need to determine the zeroes. However, for many functions this is a hard problem (although
one can easily see that for a continuous function on the interval [a, b], there must exist a zero in
the open interval (a,b) if two points x1,x2 € [a,b] exist with f(z1) < 0 and f(z2) > 0). As an
illustration, we have no formula for finding the zeroes of a polynomial of degree 4.

In this section, we refresh an algorithm for finding zeroes of a function approximately which is
known as Newton’s method. The idea is to approximate function f about xg by its tangent at
Zo:

f(x) = Py(x) = f(x0) + ['(x0) - (x — x0).

Let zy be an initial (approximate) value. Then we have f(z) ~ P;(z) = 0, from which we obtain

f(@o) + f'(z0) - (z — o) = 0.

We eliminate z and identify it with x; which yields:

_ f(=o)
O Flwo)

1 =X

Now we replace the value zg on the right-hand side by the new approximate value z1, and
we determine another approximate value x5. The procedure can be stopped if two successive
approximate values z,, and x, 1 are sufficiently close to each other which means that the function
value is close to zero.

Here we only mention that some assumptions must be satisfied to guarantee that this procedure
converges to a zero. We refer the reader e.g. to the textbook by Werner and Sotskov (Math-
ematics of Economics and Business, Routledge, 2006). Newton’s method is illustrated in Fig.
9.16.
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Example 9.29 We look for zeroes of the function f: R — R with
flz) =243,
We obtain
fllx)=1+3e>>0.

Since function f is continuous, f(—1) = —14+e73 < 0 and f(0) = 1 > 0, there does ezist a real
zero in the interval (—1,0). According to Newton’s method, we obtain

T, + e3%n

—m, n:O,1,2,...

Tn41 = Tn

We obtain the values given in Table 9.2 (with four decimal places) and thus, T = —0.3500 is the
approximate value for the only real zero of function f.

Table 10.1: Function values for Example 9.29

0 0.5 -0.2769 1.6694
1| -0.3341 0.0329 2.1011
21 -0.8489 0.0086 2.0533
31 -0.3531 -0.0064 2.0401
4| -0.3500 -0.0001 2.0500
51 -0.8500

EXERCISES

9.1 Find the left-side limit and the right-side limit of function f : Dy — R as z approaches
xg. Can we conclude from these answers that function f has a limit as « approaches xg?

(a)f(a:):{s for a:;éxo; (b)f(a:):{ﬁ for <4 o = 4:

s+1 for z=ux9 (r—2)2-2 for >4

r+2 for z<3

20 —2 for z>3° o = 3.

@ f0=le-2, w=2 @@=
9.2 Find the following limits provided that they exist:

2 3 2 3
z°—2x—3. b) 1 z° — 3x° . li T —x
B S Jim ST @ m eeye

9.3 Check the continuity of function f : Dy — R at point x = ¢ and in case of a discontinuity,
give its type:

(a) fla) = YEEOEL o =4;

(b) f(z) = [z + 3], zo = —3;

In(z—1) for z<1
(c) fz) = , zo = 1;

4 —2x for z>1
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9.4 Find the derivative of the following functions f : Dy — R given by:
(a) f(x) = 2% — 50 — 3cosx + sin(7/2) ; (b) f(z) = (2% — x) cosx;

(0) f(a) = §=sinz,

(e) f(x) = sin(x? + 4z + 1)3;

(g) f(x) = /sin(e?);

. _x+1 .
) fla) = SEL S

(d) f(x) = (223 — 3z +Inx)*;
(f) f(z) = cos® (2% + 4z + 1) ;

(h) f(x) =1In(222 — 1) ;

9.5 Find and simplify the derivative of the following functions f : Dy — R given by:
(c) f(z) =In/{ECO8L,

() f(x) = a2 e () flo) = S0

_ In*(3z)

(a) f(z) T (b) f(x) = (tanz + 2) cos x;

(@) f(z) =1 - V)’
(8) f(z) = /(2% +4x)3.
9.6 Find the third derivatives of the following functions f : Dy — R with:

(a) f(z) = 22 cos2x; b) f(x) = In(22?);

3(x—1)3 ‘

(c) f(@:m, d) f(x) = (z — 1)e?*.

9.7 Find all local extreme points of the following functions f : Dy — R given by:

(8) f(z) = (z —1) In*(z — 1);

(b) f(a) =3~ o +1];
() fla) = 325

(f) fla) = L5,

T

(h) f(z) =1g(15 — 2% — 2z) — 1.

9.8 Determine the following limits by Bernoulli-de I’'Hospital’s rule:

(o) Jim 5 (0) lim €
(©) Jim 5440 (0) lim 2

2 .
® fimy )l

9.9 For the following functions f : Dy — R, determine and investigate domains, zeros, dis-
continuities, monotonicity, extreme points and extreme values, convexity and concavity,
inflection points and limits as x tends to £oo. Graph the functions f with f(z) given as

follows:
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9.10

9.11

9.12

9.13

o

(@) f@) =@+ -2 () [)= 2

(z— 17
(0) f@) = 250 (d) f(x) = ele=D*/2;
(e) flz) =a2e?; () f(z) = V222 — 23;
(8) fl@) = 5 (e —e™); (h) f(x) = pe= 100

A 400 m path in a sports stadium consists of two parallel sections of a length L and two
added half spheres with a radius R. How must the values L and R be chosen such that the
area of the playing field (i.e., A = L - 2R) becomes maximal.

Among all cylinders with a given volume V* determine that cylinder having the smallest
surface.

Determine the zero T of function f: Dy — R with
f(z) =z +e* and -1<7<0

exactly to four decimal places. Use Newton’s method and compare the results with Regula
falsi.

Find one zero ¥ of the function f : Dy — R with
f(z)=2%-3z—4 and 2<T<3.

Use Newton’s method to find the value with an error less than 10~® and compare the
results with Regula falsi.
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Chapter 10

Integration

One can find many applications of integration, e.g. in physics, chemistry, engineering or eco-
nomical sciences. For instance, the area between curves or volumes can be determined by means
of integration. The learning objectives of this chapter are to refresh

e indefinite integrals and the basic integration methods and

e definite integrals including their approximate calculation.

10.1 Indefinite Integrals

We start with the introduction of an antiderivative of a function f.

Antiderivative:
A function F': Dr — R differentiable on an open interval I C Dp is called an antiderivative
of the function f: Dy —+ R on I C Dy if

F'(z) = f(x) for all z € I.

Looking for an antiderivative of a function f means that we are looking for a function F’ whose
derivative is equal to the given function f. If function F' : D — R is any antiderivative of
function f : Dy — R, then all the antiderivatives F'* of function f are of the form

where C' € R is an arbitrary constant. As a consequence, there exist infinitely many antideratives
to a function f. Using the notion of an antiderivative, the indefinite integral can be introduced
as follows.
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Indefinite Integral:
Let function F' : D — R be an antiderivative of function f. The indefinite integral of
function f, denoted by [ f(z)dx, is defined as

/f(x) dx = F(x) + C,

where C € R is any constant.

Function f is also called the integrand, and as we see from the above definition, the indef-
inite integral of function f gives the infinitely many antiderivatives of the integrand f. The
notation dz in the integral indicates that x is the variable of integration, and C denotes the
integration constant.

10.2 Basic Integrals

In general, it is a hard problem to find an antiderivative for an arbitrary function, often this is
even impossible. In contrast to differentiation, we do not have complete rules but only methods.
Integration as the reverse process of differentiation is much more difficult.

Table 10.1 gives some indefinite integrals which follow immediately from the differentiation rules.
One can easily check their validity by differentiating the right-hand side, where we must obtain
the integrand of the corresponding left-hand side integral.

Table 10.1: Some elementary indefinite integrals

anrl

n = Z -1
/;U dx n—|—1+C (n€Z, n#-1)

r " R 1 0
/Jidz: = 7“+1+ (reR, r# -1,z >0)
/xdzz: = Inlz|+C (x #0)

/emdx = e+ C

/amdzz: = L 40 (a>0,a#1)
Ina

/sinxdm = —cosz+C

/cosxdm = sinz+C

dx T
/cosQ:v = tanx+C (:c;é§—|—k:7r,k€Z>
/ _df = —cotx+C (x # km, k€Z)

sin® x

Next, we give two basic rules for indefinite integrals concerning the treatment of a constant
factor in the integral and the integral of a sum or difference of two functions:
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1. /C - f(z)dx=C- /f(m) dx (constant-factor rule);

2. / {f(a:) + g(m)] dx = /f(az) dx + /g(x) dz (sum-difference rule).

Rule (1) says that we can write a constant factor in front of the integral, and rule (2) says
that, if the integrand is the sum (or difference) of two functions, we can determine the indefinite
integral as the sum (or difference) of the corresponding two integrals. Using the above list of
elementary definite integrals and the two rules mentioned above, we are now able to find the
indefinite integral for some simple functions.

Example 10.1 We find the integral
/ (4:53 + 5% — 3cosz) da.

Applying the rules given above, we can split the integral into three integrals and solve each of
them by using the list of indefinite integrals given in Table 10.1. We obtain:

/(41}3—{—5:6—3008.%) dr = 4/m3d$—|—/5xdx—3/cosx dzx

4 T x

= 4. —+§1—5—3smx+0—x +155—3Sin$+0-

Example 10.2 We consider the integral

1 2 1
2.5
A d
/<x tTETe 300821’> v

Again, we can split the integral and obtain

1 2 1 1 1 1
/ e R R dr = /x2'5dm+/ac—3d:v+2/d:c—/
3 x  3cos?zx x 3 ) cos?x

235 1

= ﬁ—?ﬂs +21n\$|—§tanx+0
2 3 1

= = 3'5—7+21n\x|—§tanx+C’.

Example 10.3 We wish to find the integral

J (5 o

Using power rules and the indefinite integral for a power function as integrand (see Table 10.1),
we can transform the given integral as follows:

VT + 323 N 3 $1/2 333
_ / <x1/4 N 33511/4) e 1,5/4 x15/4

+3. 5 +C
4
= g-<\/4x5+\/4:x15)+0.

ot
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A REFRESHER COURSE IN MATHEMATICS INTEGRATION

10.3 Integration Methods

In this section, we discuss two integration methods: integration by substitution and inte-
gration by parts.

10.3.1 Integration by Substitution

Applying this method, one tries to transform the integral in such a way that an antiderivative
of the resulting integrand can be easily found. To this end, one introduces a new variable ¢
by means of an appropriate substitution ¢t = g(z) (or accordingly, = ¢g~'(¢)). We have the
following property.

Integration by substitution:

Suppose that function f : Dy — R has an antiderivative F' and function g : Dy — R with
R, C Dy is continuously differentiable on an open interval (a,b) € Dy. Then function z = fog
exists with z = (f o ¢)(x) = f(g(x)) and using the substitution ¢t = g(x), we obtain

/ f(9(2)) - ¢/ () de = / f(tydt = F(t) + C = F(g(x)) + C.

The symbol o stands for the composition of two functions as introduced in Chapter 8. The above
rule states that, if the integrand is the product of a composite function f o g and the derivative
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g’ of the inside function, then the antiderivative is given by the composite function F o g, where
function F' is an antiderivative of function f. The validity of the above rule can be easily proven
by differentiating the composite function F' o g (using the chain rule).

We illustrate the above method by the following examples.

Example 10.4 Let us find
/2 (2x +5)3 da.

Using the substitution t = g(x) = 2z + 5, we get
dt
de

and therefore, the derivative of the inside function is two (note that the outside function is

f(t) =t3). Thus, using the formula for integration by substitution, we obtain

2, de 2dr=dt

f f 1 1
/2(2x+5)5dx:/t5dt:4t4+0:4(2x+5)4+a

/ 322 %’ dr.

322, ie.: 3z%dx=dt.

Example 10.5 Consider the integral

Setting t = g(z) = 23, we obtain
dt
dr
The application of the above formula for integration yields

/3:626373 d$:/etdt:et+C:e$3+C.

Example 10.6 Consider the integral
/ cos zsin® z dx .

Introducing the substitution t = sinx, we obtain by differentiation
dt

— =cosx, i.e.: cosrdr=dt.

dx

Using the above substitution and replacing cos x dx by dt, this yields now

1 1
/cosxsingxdx:/tgdt: Zt4+C: 1 sinz +C.

Sometimes the integrand is not of the type f(g(z)) - ¢'(x) (or cannot be easily transformed into
this form). However, integration by substitution can often also be applied in a more general
form. If we try to use some substitution ¢ = g(z) and if, by using it and the differential
dt = ¢'(x) dx, it is possible to replace all terms with = and dz in the original integrand by some
terms depending on the new variable t and dt, then we can successfully apply integration by
substitution (provided one can find an antiderivative of the resulting function depending on ¢).
However, it is important that in the resulting integral only ¢ and dt occur (but no longer x or
dz). To illustrate, let us consider the following examples.
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A REFRESHER COURSE IN MATHEMATICS INTEGRATION

Example 10.7 We find the integral

/ cos(dz — 2) dz.

Applying the substitution t = 4x — 2, we get by differentiation
dt _dt
de 4

Using the above substitution and the term obtained for dx, we obtain

4, d.e: dx

dt 1 1 1
/cos(4x—2)d$=/cost-Zzz/costdtzZ—lsint—i—C:Z—lsin(4x—2)+C.

Example 10.8 Consider the integral

/ V2 —3zxdx.
We use the substitution t = 2 — 3x. Differentiation gives
dt dt
E:—g, 1.e.: d"L’:—g

Introducing the variable t and dt, we obtain:

/\/2—3xdx=—%/\/fdt:—é/tl/thz—%-§t3/2+0=—§\/(2—3x)3+0.
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Example 10.9 We find the integral

5
= [ —In(2z) dx.
/a: n(2z) dr
Trying the substitution t = In(2z), we obtain by differentiation
dt 1 1 d
Lo 2= e Z=dr
de 2z x x

Using the above terms and writing the factor 5 outside the integral, we get

/5ln(2x)dx:5/tdt:;t2+022ln2(2x)+C’.
T

Example 10.10 Let us consider the integral

[

We try the substitution t = \/x + 2. Differentiation gives

dt 1

— = .e.; dr=2yzxdt=2(t—2)dt.

dr  2y/z’ e v Ve ( )
Here we used \/x =t — 2. Now we are able to replace the integrand f(x) and dx and obtain an
integral only depending on t and dt:

/ VT e = ¥'2(t—2)dt

V42
t2 — 4t +4

[t

t2

Substituting back, we get the final result:
I=(z+2)?-8\z+2) +8In(yz+2)+C.

Note than we can skip the absolute values in the last term since \/x + 2 is always greater than
zero.

Example 10.11 We consider the integral

1
——dx.
/1+SU2 *

We try the substitution x = tant and obtain by differentiation

d
d—? =1+tan’t, d.e: dr=1+tan’tdt.
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This gives

1 1
——dx = — . (1+tan’t)dt= [ dt=t .
/1+x2 . /1+tan2t (1+ tan™t) / e

From the substitution we get t = tan™! x and therefore,

1
/da::tan_lx—i—C.
14 22

We only note that the inverse function tan™' = of the tangent function is also often denoted as
arctanx.

Example 10.12 We consider the integral
/l‘ va—1ldzx.
We apply the substitution x = t> + 1 which corresponds to t = v/x — 1. Differentiation gives

dz =2t, e: dr=2dt.
dt

Now we obtain

/x\/a:—ldx = /(t2+1)\/t2+1—1-2tdt
= 2/t2(t2+1)dt:2/(t4+t2)dt

1 1 2
= 2(t5+t3>+(]:

5 3 Vzr—-13+C.

10.3.2 Integration by Parts

The formula for this method is obtained from the formula for the differentiation of a product of
two functions v and v:

|:’LL(£L') . ’U(l’):|/ =/ (z) - v(x) +u(z) -0 (2).

Integrating now both sides of the above equation, we obtain the formula for integration by parts
as follows:

Integration by parts:
Let w : D, - R and v : D, — R be two functions differentiable on some open interval

I =(a,b) € D, N D,. Then:

To apply integration by parts, one must be able to find an antiderivative of function v’ and
an antiderivative of function v’ - v. If we are looking for an antiderivative of a product of two
functions, the successful use of integration by parts depends on an appropriate choice of the
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functions u and v’. Integration by parts can, for instance, be applied when one of the two
factors is a polynomial P, (x) and the other one is a logarithmic, trigonometric (sine / cosine) or
an exponential function. In most cases above, the polynomial P, is taken as function u which
has to be differentiated within the application of integration by parts (as a consequence, the
derivative u’ is a polynomial of smaller degree). We illustrate integration by parts by some
examples.

Example 10.13 Let us find

/x2 cosz dx.

and v'(x) = cos .

We apply integration by parts with
u(z) = 2°

Now we obtain
u'(z) = 2z and v(z) = sinz.

Hence,

/x2 cosx dr = xz?sinx — Z/xsinaz dx.
Applying now again integration by parts to the integral [ xsinx dx with
u(z) =x and v'(x) = sinzx,

we get
u'(z) =1 and v(xz) = —coszx.

This yields

/.I‘QCOSZL'dJ? = xQSin:U—2(—xcosx—/—cosxdw>

= a%sinx + 2z cosz + 2sinz + C

= (24 2)sinz + 2z cosz + C.

Notice that integration constant C' has to be written as soon as no further integral appears on
the right-hand side.

Example 10.14 Let us now consider the integral

/(a: + 4)e** dx .
Again, we apply integration by parts and use
u(x) =z +4 and v (z) = e,

Differentiation gives

1
u'(z) =1 and v(z) = ~e*®,
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According to the formula of integration by parts, this gives

1

1
/(az—}—4)e2x dex = 2e2m(93+4)—2/623” dx

1 1
= 5621‘(1’_}‘4)_162%—’-0

Example 10.15 Let us determine

/1n”2T dr.

Although the integrand f(z) = In(x/2) is here not written as a product of two functions, we can
nevertheless apply integration by parts by introducing factor one, i.e., we set

u(x) = ln% and v'(x) = 1.

Then we obtain

which leads to

T T €T T
/ln2dx:xln2—/dx:xln2—:E+C':x<ln2—1)+0.

Example 10.16 We find

Setting
u(z) =Inzx and v (x) = 22,
we obtain ) 1
'(z) = = d = _a°.
u'(x) . an v(z) 3%

It is worth to note that mostly the polynomial is taken as u(x) (which has to be differentiated)
while here it is taken as v'(x) (so that it has to be integrated). Then we get

1 11 1 1 1 1
/x21nx dx = 3x3lnx—/x . gcc?’dx: gx?’lnx— S/dea;: §m31nx— §$3+C.
Example 10.17 We determine
/0082 x dr.

Here we can set

u(z) = cosx and v'(x) = cos .
This yields

v (z) = —sinx and v(z) =sinz

Applying now integration by parts we get

/cos2$d:c:sinxcosx+/sin2azda:.
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Now one could try to apply again integration by parts to the integral on the right-hand side.
However, this does not yield a solution to the problem. Instead of this, we use the equality (see

Chapter 5)

2 2

sin“x =1 — cos” z,

and then the above integral can be rewritten as follows:
/cong: dx = sinzcosx + /(1 — cos® x) dx
= sinxcosx—l—x—/cos?x dx.

Adding now [ cos? x dx to both sides, dividing the resulting equation by two and introducing the
integration constant C, we finally obtain

1
/costd:c: i(sinxcos:z—i-x) + C.

We finish this section with an example, where both integration methods have to applied.

Example 10.18 We find
/cos V2x dx.

First, we apply integration by substitution using t = \/2x. Differentiation gives
dt 2 1

dv ~ 22r ¢
which can be rewritten as
der =t dt.

Replacing now v/ 2x and dx in the integral, we get

/cosx/ﬁdx—/tcost dt.

So, the above substitution was useful and the new integral depends only on t and dt. To solve
this integral, we now apply integration by parts. We set

u(t) =t and v'(t) = cost

which gives
u'(t) =1 and v(t) = sint.

/tcostdt = tsint—/sintdt

= tsint +cost + C.

Then we get

After substituting back, we finally obtain

/cosv2x dr = V2x -sinV2x + cosv2zx + C.
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A REFRESHER COURSE IN MATHEMATICS INTEGRATION

10.4 The Definite Integral

To introduce the definite integral, let us start with the following problem: Given is a function f
with y = f(x) > 0 for all z € [a,b] C Dy. How can we compute the area A under the graph of
function f from a to b assuming that function f is continuous on the closed interval [a, b]. First,
we split the interval [a, b] into n subintervals of equal length. Thus, we choose the points

a=20<11<20<...<Tp_1<xTpp =0b.

The idea is now to approximate the real area under the graph of function f by a sum of the areas
of rectangles. Denote by u; (and v;, respectively) the point of the i-th closed interval [x;_1, z;],
where the function f takes the minimum (maximum) value, i.e., we have

f(ui) = min{f(z) | v € [zi-1, 7]},
f(vi) = max{f(z) | z € [z;—1, 7]},

and let h = Ax; = x; — x;_1. For any interval, we consider the area of the rectangles with the
heights f(u;) and f(v;), respectively, all having the same width h. Then we can give a lower
bound A7 . and an upper bound A}, ... on the area A in dependence on the number n of intervals

for the area A as follows (see Fig. 10.1):

n
Al = flui) - Az,
=1
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Figure 10.1: The definite integral
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A:Lnaa: = if(vl) ' Axl
=1

Since we have f(l;) < f(x) < f(u;) for each z € [x;—1,2;] i € {1,2,...,n}, the inequalities
Ar. < A < A" _ hold, i.e., the real area A is between the values A" . and A? Now one

min max min max*
considers the limits of both values A . and A7, .. as the number of intervals tends to oo (or

equivalently, the widths h of the intervals tend to zero). If both limits of the sequences {A7. 1}
and {A7 ..} as n tends to oo exist and are equal, we say that the definite integral of function f

over the interval [a, b] exists. Formally, we can write the following.

Definite integral:
Let function f : Dy — R be continuous on the closed interval [a,b] € Dy. If the limits of the

sequences {A;.} and {A} ..} as n tends to oo exist and coincide, i.e.

2 n — g n —
3R Amin = 13, Aoz = 1,

then I is called definite integral of function f over the closed interval [a,b] C Dy.

We write
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for the definite integral of function f over the interval [a,b]. The numbers a and b, respectively,
are denoted as lower and upper limits of integration. Of course, the above definition is
not practical for evaluating definite integrals. For calculating the definite integral, the following
formula by Newton and Leibniz is useful.

Evaluation of the definite integral (Newton-Leibniz’s formula):

Let function f : Dy — R be continuous on the closed interval [a,b] € Dy and function F' be
an antiderivative of f. Then the definite integral of function f over [a,b] is given by the
change in the antiderivative between x = a and x = b:

b

/f(m)dx = [F(:c)]

According to Newton-Leibniz’s formula, the main difficulty is to find an antiderivative of the
integrand f. Therefore, we again have to apply one of the methods discussed before for finding
an antiderivative. The following properties of the definite integral are obvious.
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Properties of the definite integral:

(1) / f(a) d = 0;

(2)/bf($)d$=—/af(ﬂf)dw;
a b
(3) /bC~f(J:)d:U:C~/bf(:U)d:U (C e R);
b

(4) /bf(x> dw:jf(w) dw+/f<m) v (a<c<b);

[

When defining the definite integral, we assumed that function f is non-negative. However, for
the evaluation of the definite integral this assumption is not required. If function f is non-
positive, the value of the definite integral is negative: it corresponds to the area between the
x-axis and function f with negative sign. If a function f has one or several zeroes and we wish
to compute the area between the function f and the z-axis, we have to split the integral into
several sub-integrals: the first integration is from the left boundary point up to the smallest
zero, then from the smallest zero to the second smallest zero, and so on.

We continue with some examples for evaluating definite integrals.

Example 10.19 We evaluate
9
1 :/ (2% + ) dz
1

and obtain immediately by using the list of elementary integrals

09 1,4 2 —~ ‘9 729 2 1 2
‘1 [3x+3\/$]1 (3+3 7 3+3\f (243+18) 60

1 5 $3/2
3T T g
3 2

I =

Example 10.20 We determine the lower limit of integration a of the following integral I such
that it has the value 112/3:
4
112
I= / 222 dr = —= .
a 3
2

2 5 112
-z — 2 (64 — _ -z
{3”5]@ g 4-al) ==

Solving for a3, this gives a® = 8 from which we obtain the unique solution a = 2.

Then we obtain

Example 10.21 We evaluate the integral

7,
I = sin‘x cosx dx .

s
2
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We use the substitution t = sinx. By differentiation, we get

dt
— =cosx i.e: cosxdr=dt.
dx

When writing the definite integral now in dependence on f(t) and dt, one has to transform the
limits of integration. Since sin(—7n/2) = —1 and sin(7/2) = 1, we now have —1 and 1 as lower
and upper limits of integration, respectively. This gives

1
1 1 1 1 2
I= 2dt=|=¢ ‘ =——|—]==.
/_ 1 [3 ] -1 3 3 3
Example 10.22 We cevaluate the definite integral

e

1

We use the substitution

t=2+Inzx
and obtain by differentiation
dt 1 , dx
— =—, d.e: — =dt.
de x x

e t(e)

/ dx [ at
r(2+Inz) t
1 #(1)
Now we obtain
a © 3
7= ln|t| ‘ " [ln\2+lnx|” In(2 +1Ine) — ln(2+1n1):1n3—1n2:1n§.

#(1)

In the above computations, we did not transform the limits of the definite integral into the
corresponding t-values but we have used the above substitution again (in the opposite direction)
to the antiderivative in terms of x. In this case, it is not necessary to give the limits of integration
with respect to the variable t. Of course, we can also transform the limits of integration (in this
case, we get t(1) =2+ 1Inl =2 and t(e) =2+ Ine = 3) and insert the obtained values directly
into the obtained antiderivative In |t|.

Example 10.23 We evaluate the definite integral

us

2
I:/ e’ cosxdx.
0

First, we consider the indefinite integral and find an antiderivative using integration by parts.
Setting

T

u(xz) =e and v'(z) = coszx,
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we obtain
u'(z)=¢" and wv(r)=sinz.

According to the formula of integration by parts, this gives
/em cosxdr = e"sinz — /ew sinx dz .

Using again integration by parts for the integral [ e®sinx dx with

xT

u(z) =e and V' (z) =sinz,

we obtain

u'(z) = €e”

/6$COS$d$:6$SiH$— <—ezcosx—|—/excosmdx>

which, after putting the integrals on one side and introducing the integration constant, finally
gives

and v(x) = —cosx

and then

1
/excosz:dx = iem(sinx—i—cosm) +C.

Evaluating now the definitive integral, we obtain

Lo 3 _ 1= 0 _lrx
I—i[e(smx—i—cosx)]0—2[62(1—1—0) 6(04—1)}—2(62 1).

Example 10.24 We determine the area bounded by the curve f(x) = —x? + bx — 4 and the
x-axis. First we determine the zeroes of function f and obtain (after multiplying f by —1 and
applying the solution formula for a quadratic equation):

5
r1==-——4/——4=1 and $2:§+ 1—4:4-

Note that f(z) > 0 for all x € [1,4]. Thus, the required area A is obtained as follows:

4
1, 5 4 64 1 5 9
A= —25—4d:—7372—4‘:—— 40-16)—(—-+2-4) =2,
/1(x+x ) do {3x+2x 1 3" 513 2

Example 10.25 We want to compute the area enclosed by the graphs of the two functions
f:R—=>Rand g: R — R given by

f(x) =2%—16 and g(x) = —4x — 22,
We first determine the points of intercept of both functions and obtain from
22 — 16 = —dz — 22

the quadratic equation
20° +4r — 16 =0

or, after dividing by 2,
2’ +2r—-8=0
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This quadratic equation has the two real solutions
r1=—-1—-+vV1+8=-4 and To=—-14++v14+8=2.

The graphs of both functions are parabolas which intersect only in these two points (—4,0) and
(2,—12). To compute the enclosed area A, we therefore have to evaluate the definite integral

A= [ [o@) - f@)]ds.

-2

Note that the graph of function f is a parabola open from above while the graph of function g is
a parabola open from below. Therefore, the we have g(x) > f(x) for all x € [—2,4] and thus, the
integrand is the difference g(x) — f(x):

A = Z [(—43: —2?) — (2? - 16)] dx /42(2562 — 4z +16) dx

2 .3 ,
= 2/(—x2—2x+8)d:c:2(—3—x2+8x>‘ A

—4
8

- 2[(—3—4+16>—(6;—16—32)] —2.(60—24) =236 =T72.

Thus, the area enclosed by the graphs of the given functions is equal to 216/3 squared units.

Example 10.26 We wish to determine the area A enclosed by the function f with f(x) =sinz
with the x-azis between a = —m/2 and b = 7/2. Since the function f is non-positive in the
closed interval [—m/2,0] and non-negative in the closed interval [0,7/2] (note that x = 0 is a
zero of the sine function), we have to split the interval into two sub-intervals (from —m/2 to 0
and from 0 to w/2 and to find the two integrals separately. We obtain the area A as follows:

0 3
A = —/sinxdw—i—/sinxdm
0

If we would not take into account that function f has a zero and would integrate in one integral
from —7/2 until 7/2, the resulting value of the definite integral would be equal to zero (since
the area between the x-axis and the sine function in the first subinterval is equal to the area
between the sine function and the x-axis in the second subinterval, however, both the signs would
be opposite).
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10.5 Approximation of Definite Integrals

Often, one cannot evaluate a definite integral due to several reasons. For some functions, there
does not exist an antiderivative that can be determined analytically. As an example, we can
mention here e.g. the function f with f(z) = —2? which is often applied in probability theory
and statistics, or function g with g(z) = (sinz)/x. Moreover, a function f may be given only
as a set of points (z,y) which have been experimentally determined.

In such cases, we must be satisfied with determining the definite integral approximately by
applying numerical methods. Similar to the definition of the definite integral, approximate
methods divide the closed interval [a, b] into n subintervals of equal width h = (b—a)/n, and so
we get again the subintervals [xo, z1], [z1,22], ..., [*n—1,Zn], where a = ¢ and b = z,,. Within
each interval, we now replace function f by some other function which is ‘close to the original
one’ and for which the integration can be easily performed. In all approximation methods, one
replaces the function f by a polynomial of a small degree (mostly not greater than two). Here we
discuss only two methods, namely an approximation by trapeziums and Simpson’s rule.

Approximation by trapeziums

In this case, in each closed interval [x;_1, 2;], the function f is replaced by a line segment (i.e.,
a linear function) through the points (x;—1, f(x;—1)) and (z;, f(z;)). This gives the area

) + 5 fw)

If n =1, this gives an approximation by one trapezium:
/f e~ 30y LDEIO)

The quality of the approximation improves when we use n > 1 which is also known as the
composite trapezoidal rule. In this way, we get the following approximation formula for the
definite integral:

—a [f(a)+ f(b)
/f ' 2

n

+ f(21) + f(z2) + ... + f(@n-1)

Thus, by the above formula, we approximate the definite integral by the sum of the ar-
eas of n trapeziums, each with width (b — a)/n. Note also that any function value
f(z1), f(x2),..., f(zp_1) is taken with factor 1/2 as the right boundary point of an interval
and with factor 1/2 as a left boundary point of the succeeding interval. Approximation by
trapeziums is illustrated in Fig. 10.2.

Simpson’s rule

Here we consider the special case when the closed interval [a,b] is divided only into n = 2
subintervals [a, (a+b)/2] and [(a+b)/2, b] of equal length. Now we approximate function f by a

quadratic function which is uniquely defined by three points: (a, f(a)), ((a+b)/2, f((a—i—b)/Q))
and (b, f (b)) This leads to Simpson’s formula:

b

[ 1@y~ 50 @ v (C5F) + 10).

6

a
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Figure 10.2: Approximation of definite integrals by trapeziums
We note that this formula is also known as Kepler’s rule.

Example 10.27 We illustrate the composite trapezoidal rule with n = 6 subintervals and Simp-
son’s rule by evaluating numerically the integral

e2:p

I=[| —dx,
x
1
We get the function values given in Table 10.2.

Table 10.2: Function values for Example 10.27

0 1 7.53891
115 13.3904
2 2 27.2991
31 2.5 59.3653
4| 8 134.4763
51 85 813.3238
6| 4 745.2395

Using the composite trapezoidal rule with n = 6, we obtain

4
[rayar ~ 20 A0 ) )+ S
1

&

= % -1300.4835 = 650.2418.

Using Simpson’s rule with a =1 and b = 4, we obtain

%

4
[r@ar ~ P50 (@ ar (“50) 4 0] = 5 [r) + 525 + 1)
1

= % -990.0898 = 445.0449.
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We can see that the approzimations still differ rather much. This is caused by the use of only two
subintervals in the case of Simpson’s rule: One can refine the calculations by considering subse-
quently an even number of intervals and applying Simpson’s rule to the first and second intervals,
then to the third and fourth intervals and so on, which is known as composite Simpson’s rule.

EXERCISES
10.1 Find the following indefinite integrals
1 ot — x -3.5
()/<3x +2x> dx; (b) 57\/5615”5 (C)/(2 +27°°) dx.

10.2 Use the substitution rule for finding the following indefinite integrals:

Inx cosT - ‘ 2 ‘
/dw (b) /e sinz dzx; (c)/ 3$_1da:,
23 da

dx
(d)/64+3x§ (e) /Mdm; () m
],‘3 COS3CU
@) [ do: () o V2=, 0) [ 5" do

14 22
(‘)/in da ; (k)/em_ld
j sinz cosx dz ; w1
10.3 Use integration by parts to find the following indefinite integrals:
(a) /l’€4$ dz; (b)/ew sinz dzx; (c) / ac2 dz ;
cos”
(d)/SiHQLEdCL‘; (e) /mlnxdaj; (f) /3:2 sinz dzx .

10.4 Evaluate the following definite integrals:

4 e 3
d
/:U +4x +1)dx (b)/$; (c)/sing:rdx;
x
1 0
4 d 3 m
(d)/H; (e) /gpln(:ﬁz)dm; (f) /cosQJUsinxd:U;
x?+4
1 0
g
2 — 3cos’ x
(g) 2 d
cos” x

10.5 (a) Evaluate
27

/cosxd:r

0
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and compute the area enclosed by function f : R — R with f(z) = cosz and the
x-axis within the interval [0, 27].

(b) Compute the area of the triangle formed by the z-axis and the functions f : R — R
and g : R — R given by

fley=xz+2 and g(r)=—=+8.

L
2
(c) Compute the area enclosed by the two functions f : R — R and ¢g : R — R given by

flz)=—2® -4z —1 and g(x) =4—10z.

10.6 Determine the following definite integral numerically:

4

/ dzx
2+ 322

0

(a) Use approximation by trapeziums with n = 4.
(b) Use approximation by trapeziums with n = 8.

(c) Use Simpson’s rule.
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Chapter 11

Vectors

Vectors are used for denoting points in the plane or space (e.g. n-tuples of numbers) and they
describe (parallel) displacements. They are often applied for denoting e.g. physical variables.
The learning objectives of this chapter are

e to review the basics about vectors with at most three components and

e to summarize the major operations with vectors.

11.1 Definition and Representation of Vectors

Vector:
A 3-dimensional vector
(0%
a=| ay
az

is an ordered sequence of three real numbers a;,ay,a.. The numbers a;,ay,a. are called the
components (or coordinates) of the vector a.

az, Gy, a, are also called the scalar components of vector a. If we consider only vectors with
the z-coordinate equal to zero, we have a 2-dimensional vector, and we write

=(a)

In this chapter, we consider exclusively 2- or 3-dimensional vectors. In the following, we always
assume that the components of a vector are indexed by x,y and possibly z. We describe all
operations for 3-dimensional vectors, but they can also be applied if all vectors are 2-dimensional.

We can graph a vector as an arrow in the 3-dimensional space which can be interpreted as a
displacement of a starting point P resulting in a terminal point ). For instance, if point P
has the coordinates (p1,p2,p3) and point @ has the coordinates (g1, g2, q3), then

Ay q1 — P1
a= Qy :Fﬁ: q2 — P2
ay 43 — P3
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Figure 11.1: 2-dimensional vectors in the plane

It is often assumed that the starting point P is the origin of the coordinate system. In this case,
the components of vector a are simply the coordinates of point ) and, therefore, a row vector
a’ can be interpreted as a point (i.e., a location) in the 3-dimensional space. In the case of

2-dimensional vectors, we can illustrate them in the plane, e.g., the vectors

(1) m ()

are illustrated in Fig. 11.1. Finding the terminal point of vector a means that we are going
three units to the right from the origin and one unit up. Similarly, to find the terminal point of
b, we are going two units to the left from the origin and four units up. We can see that a vector
is characterized by the length, the direction and the orientation. The length is obtained by
the length of the arrow representing the vector, the direction is determined by its location in
the space, and the orientation is characterized by the direction of its arrowhead.

The vectors a and b are said to be equal if all their corresponding components are equal, i.e.,
we have
ag = by, ay = by, a, =b,.

We have a < b if the inequalities a, < b;, ay < by, a; < b, hold for the components. In a
similar way, we can introduce the inequalities a > b, a < b and a > b.

Finally, we introduce some special vectors. A unit vector is a vector with a length equal to
one. The special unit vectors pointing in the direction of one of the axes are denoted as e*,eY
and e”*:

1 0 0
eX = O s ey - 1 5 ez — 0
0 0 1

The zero vector is a vector containing only zeroes as components:

0:

e}
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11.2 Operations with Vectors

We start with the operations of adding and subtracting two vectors of the same dimension.

Sum of two vectors:
The sum of the two vectors a and b is the vector a + b obtained by adding each component of
vector a to the corresponding (i.e., at the same position) component of vector b:

o by az + by
at+b=|a, |+ b, | = ay+by
ay b, a, +b,

Difference of two vectors:
The difference between the vectors a and b is the vector a — b defined by

Qg by Az — by
a—-b=1|a, |- b | = ay,—0y
(¢ b, a, — b,

Thus, the difference vector is obtained by subtracting the components of the vector b from the
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corresponding components of the vector a.

If we multiply the vector a by a real number A, also denoted as a scalar, the vector b = Aa
whose components are A times the corresponding components of vector a is obtained :

Qg Aag
b=Xa=X-| aqa, = Aay
a @

If A > 0, the vector b has the same orientation as the vector a. If A < 0, the vector b has
the opposite orientation than the vector a. The operation of multiplying a vector by a scalar is
denoted as scalar multiplication.

Example 11.1 Let

Then we obtain

con (1) (2) (1) e e (D)-(1)(2)

Moreover, we obtain e.g.

s (£)-(1) e e (3)-(3)
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The sum and difference of the two vectors as well as the scalar multiplication are geometrically
tllustrated in Fig. 11.2. The sum of the two vectors a and b is the vector obtained when adding
vector b to the terminal point of vector a. The resulting vector from the origin to the terminal
point of vector b gives the sum a+b. Accordingly, the difference a —b is obtained by adding to
the terminal point of vector a the vector (—1) - b, i.e., the vector b with opposite orientation. If
we multiply a vector by a scalar, the direction of the vector does not change (but the orientation

may change).

Example 11.2 Let

2
a= -1 and b= 1
0 -3
Then we obtain
2 4 6 2 4 -2
a+b= -1 | + 1 = 0 and a—b= -1 — 1 = —2
0 -3 -3 0 -3 3
Moreover, we obtain e.g.
2 4 (=5)-2+3-4 2
(=5)a+3b=(-5)-| -1 | +3 1 = (-5)-(-1)+3-1 | = 8
0 -3 (=5)-0+3-(-3) -9
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Figure 11.2: Vector operations: Sum, difference and scalar multiplication
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The operation of adding two vectors is

e commutative, i.e., we have a+ b = b + a, and

e associative, i.e., we have (a+b)+c=a+ (b+c).

There exist further rules for the sum of two vectors and the multiplication by a number so that
one can interpret a vector in mathematics in a more general form as an element of a so-called
vector space.

Scalar product:
The scalar product of the vectors a and b is defined as follows:

Qg by
a-b=1| a, |- by = azb; + ayby + a,b,.
Gz b,

Note also that the scalar product of two vectors is not a vector, but a number (i.e., a scalar) and
that a- b is only defined if a and b are both of the same dimension, i.e., we cannot determine
the scalar product of a 2- and a 3-dimensional vector. The commutative and distributive laws
are valid for the scalar product, i.e., we have

a-b=b-a and a-(b+c)=a-b+a-c

for all vectors a, b, ¢ of the same dimension. It is worth noting that the associative law does not
necessarily hold for the scalar product, i.e., in general we have

a-(b-c)#(a-b)-c.

Notice that the vector on the left-hand side is parallel to vector a, while the vector on the right-
hand side is parallel to vector c. We emphasize that there is no operation that divides a vector
by another one. However, we can divide a vector by a non-zero number A, which corresponds to
a scalar multiplication with

1
=X
Example 11.3 Let the vectors

a— 3 and b= -1
-1 —6

be given. Then we obtain the scalar product a - b as follows:

a-b=2-4+3 (~1)+ (1) (-6) =8 — 3 +6 = 11.

Example 11.4 For the scalar products composed of two of the three unit vectors parallel to the
coordinate axes we obtain:
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e“.eX=1; e¥.e¥=1; e’.e?=1;

e“.-eY=0; e*.-e?=0, e¥.-e?=0.

Length of a vector:
The length of vector a, denoted by |a|, is defined as

la] = /a2 + a2 + a2.

A vector with length one is denoted as unit vector (remind that we have already introduced
the specific unit vectors e*, eY, e* which have obviously the length one). Each nonzero vector
a can be written as the product of its length |a|] and a unit vector e® pointing in the same
direction as the vector a itself, i.e.,

a=|al e®,

By means of the unit vectors e*, e¥ and e”, we can present any vector in vectorial components
as follows:
a=a,e* +aye¥ +ae”,

i.e., formally as the sum of three vectors.

Example 11.5 Let the vector
-2
a= 3
6

be given. We are looking for a unit vector pointing in the same direction as the vector a. Using

la| = /(-2)2+32+62 =49 =7,

we find the corresponding unit vector

—2 —2/7

1 1
e® =" .a="C. 3 = 3/7
2] 6 6/7

The distance between the two vectors a and b is obtained as follows:

ja—b| = \/(ar —be)? + (ay — by)? + (a: — )

Example 11.6 Let the vectors

3 -1
a= 2 and b= 1
-3 5

be given. The distance between both vectors is obtained as

la—bl=+v[B-(-D]2+2-1)2+(-3-52=V16+1+64=181=09.
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Next, we present an alternative possibility to calculate the scalar product:

a-b=|al|-|b|-cos(Z(a,b)); (11.1)

In Equation (11.1), cos(Z(a,b)) denotes the cosine value of the angle between the oriented
vectors a and b.

Example 11.7 Using Equation (11.1) above and the earlier definition of the scalar product,
one can easily determine the angle between two vectors a and b of the same dimension. Let

3 2
a= -1 and b= 1
2 2
Then we obtain
a-b
cos(Z(a,b)) = al b
3-24+(-1)-142-2 9 3

~ 0.80178.

VI (2t 2 VR E1 2 VA0 VI

We have to find the smallest positive argument of the cosine function which gives the value
0.80178. Therefore, the angle between vectors a and b is approzimately equal to 36.7°.

Next, we consider orthogonal vectors. Consider the triangle given in Fig. 11.3 formed by the
three 2-dimensional vectors a,b and ¢ = a — b. Denote the angle between vectors a and b by
~. From the Pythagorean theorem we know that the angle v is equal to 90° if and only if the
sum of the squared lengths of vectors a and b is equal to the squared length of vector c:

laj2 + |b|? = |]a — b|?. (11.2)

Using the rules for working with vectors, Equation (11.2) is satisfied if and only if the scalar
product of the vectors a and b is equal to zero. We say in this case that vectors a and b are
orthogonal (or perpendicular) and write a L b. Accordingly, two 3-dimensional vectors are
orthogonal if their scalar product is equal to zero.

Example 11.8 The 3-dimensional vectors

3 4
a—= -1 and b= 6
2 -3

are orthogonal since
a-b=3-44+(-1)-6+2-(-3)=0.

Vector product:
The vector product (or cross product) ¢ = a X b of the 3-dimensional vectors a and b is
defined as follows:
ayb, — a,by
c=axb=| ab,—a;b, |,
azby — ayby
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3Ak
2Ak

b

c=a—b

1Ak

v = 90°

2 3 5 7

—1 + a

Figure 11.3: Orthogonality of 2-dimensional vectors

or equivalently,

c=axb=(ayb, —a.by)e* + (a;b, — azb,)e¥ + (azby, — ayby)e”.

The vector product of two vectors is defined as a vector having the following properties:

1. The vector c is orthogonal to both vectors a and b.

2. The vectors a, b, ¢ form a right-handed coordinate system, i.e., the thumb points into the
direction of the vector a x b.

3. The length of the vector ¢ is equal to
o = [a x b| = [a] - [b] - sin(<(a, b)).
The length of the resulting vector c is equal to the area of the parallelogram spanned by the

two vectors a and b. As a consequence, the vector product of two parallel vectors a and b is
equal to the zero vector.

We obtain
e*xe*=0; e* x ey =e?; e* xe? =—eY;
eY x e = —e?; e¥ xe¥=0; eY x e% = e¥,;
e? xe*=¢eY; e’ x e¥y = —e¥,; e”?xe*=0.

The vector product is not commutative. In particular, we have
axb=-bxa

Moreover, the vector product is not associative:

(axb)xc#ax(bxc)
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Example 11.9 Let

a= 1 and b= -3

be given. We compute the vector product and obtain:

1-7—(=2)-(-3) 1
c=axb= (=2)-1—-4-7 =| —30
4.(=3)—1-1 ~13

Next, we compute the area of the parallelogram spanned by the vectors a and b. This area is
obtained as the length of the vector c:

lc| = /12 + (=30)2 + (—13)2 = V1 4 900 + 169 = V1070 ~ 32.71.

Example 11.10 We determine the area of the triangle spanned by the three points
P=1(2,0,3), Q@=(51,4) and R=(2,6,5).

Taking the vectors

5—2 3
4—-3 1
and
2—2 0
b=pPBE=|6-0|=(6],
5—-3 2
we first determine the vector product of both vectors and obtain:
1-2—-1-6 —4
axb= 1-0—-3-2 = —6
3:-6—1-0 18

Finally, we determine

1 1 1 1
A= faxbl =g V(A2 + (6 + 187 = 7 - V16436 + 324 = - V376 ~ 9.70,

i.e., the area of the triangle formed by the given three points is approximately equal to 9.70
squared units.

EXERCISES
11.1 Given are the vectors
4 -2 4
a=| -3 |, b= 5 and c= 0
2 7 —6

(a) Determine for all pairs of two of the above vectors the sum and the difference of these

vectors.
(b) Determine the vectors 6a — 3b + 2¢ and 5b — 3¢ — a.
(c) Determine the angle between any two of the above vectors.

Download free eBooks at bookboon.com



11.2

11.3

11.4

11.5

11.6

Determine the length of the vector

and a unit vector pointing in the same direction as the vector a.

Given are the vectors

-2 1
a— -3 and b= 2
z 2

For which values of z are the vectors a and b orthogonal?

Given are the vectors

-2 4 6
a=|[ —-11 |, b=| -3 and c=| -2
3 1 6

For which values of A is the vector a orthogonal to the vector Ab + c?

Determine the vector product of the vectors

Given are the points P = (—1,4,2),Q = (1,1,1) and R = (5,6,0). Determine the area of
the triangle formed by the points P, () and R.
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Chapter 12

Combinatorics, Probability Theory
and Statistics

Probability theory and mathematical statistics, which are both a part of stochastic theory, deal
with the analysis of random phenomena which play an important role practically everywhere in
daily life. Probability theory analyzes abstract models of random events. In statistics, models
are used for forecasts and further analyses and planning. Statistical methods transform big data
sets into useful compact information. Statistical methods are not only used in mathematics,
engineering or economics, but also to a large extent in empirical sciences. Some basic com-
binatorial relationships are needed e.g. for counting possible variants that may happen in an
experiment or investigation.

The learning objectives of this chapter are

e to review some basic formulas for combinatorial problems,
e to survey the main probability distributions and

e to review some basics about a statistical test.

12.1 Combinatorics

In this section, we summarize some basics about combinatorics. In particular, we investigate
two basic questions:

e How many possibilities do exist to sequence the elements of a given set?

e How many possibilities do exist to select a certain number of elements from a set?

Let us start with the determination of the number of possible sequences formed with a set of
elements. To this end, we first introduce the notion of a permutation.

Permutation:
Let M = {a1,as,...,a,} be a set of n elements. Any sequence (ap,, ap,,- .., ap,) of all elements
of the set M is called a permutation.

241
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For instance, if M = {1,2,3,4,5}, one of the possible permutations is the sequence (2, 1,4, 3,5).
Similarly, for the set M = {a,b, s, t,u,v}, one of the possible permutations is (b, s, ¢, a, v, u).

In order to determine the number of possible permutations, we introduce the number n! (read:
n factorial) which is defined as follows:

nl=1-2-...-(n—1)-n forn>1.

For n = 0, we define 0! = 1.

Number of permutations:
Let a set M consisting of n > 1 distinct elements be given. Then there exist P(n) = n!
permutations.

Example 12.1 We enumerate all permutations of the elements of set M = {1,2,a}. We can
form P(3) = 3! = 6 sequences of the elements from the set M :

(1,2,a), (1,a,2), (2,1,a), (2,a,1), (a,1,2), (a,2,1).

Example 12.2 Assume that nine jobs have to be processed on a single machine and that all job
sequences are feasible. Then there exist

PO =9'=1-2-...-9=362,880
feasible job sequences.
If there are some identical elements (which cannot be distinguished), the number of possible per-

mutations of such elements reduces in comparison with P(n). The number of such permutations
with allowed repetition of elements can be determined as follows.

Number of permutations with allowed repetition:
Let n elements consisting of k groups of ni, ns, ..., n, identical elements with n = nq +ng +
.-+ 4+ ng be given. Then there exist

n!

P(n; ni,na,...,ng) = (12.1)

permutations.

Example 12.3 How many distinct numbers with 10 digits can one form which contain two
times digit 1, three times digit 4, one time digit 5 and four times digit 979 We use formula (12.1)
with n =10,n1 = 2,n0 = 3,n4 = 1 and ngy = 4 and obtain

10! ~5:6-7-8-9-10

= 12,600

distinct numbers with these properties.
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Example 12.4 In a wardrobe, there are put 11 pants: five black ones, three blue ones, two
white ones and one brown one. How many different sequences do exist for arranging these 11
pants in the wardrobe when only the colors are distinguished (i.e., pants of the same color are
not distinguished). The problem is to find the number of possible permutations with identical
elements. We have n = 11,n1 = 5,ny = 3,n3 = 2 and ng = 1. Thus, due to formula (12.1),

there are
11! _7-8:-9-10-11

51-30-21-11 2
possibilities for arranging the pants in the wardrobe when they are only distinguished by their
color.

P(11; 5,3,2,1) = = 27,720

For the subsequent considerations, the notion of a binomial coefficient is useful.

Binomial coefficient:
Let k,n be integers with 0 < k < n. The term

e
+)

is called the binomial coefficient (read: from n choose k). For k > n, we define

()

/
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For instance, we get
8\ 8! 1-2-3-4-5-6-7-8 6-7-
3 1-2

31.(8—3) (1-2-3)-(1-2-3-4-5)

In order to determine the binomial coefficient (Z) with n > k, we have to compute the quotient
of the product of the k largest integers not greater than n, ie, (n—k+1)-(n—k+2)-... - n,
divided by the product of the first &k integers (i.e., 1-2-...-k). Then we have the following
properties for working with binomial coefficients.

Rules for binomial coefficients:
Let k and n be integers with 0 < k < n. Then we have:

-0 (-
> (Z)+<kil> - <ZID

Using the binomial coefficients, one can formulate the following equality for the computation of
the n-th power of a binomial term a + b:

(a+0)" =a" + (Tf) a" b+ (Z) a2 .+ ( " 1>ab"1 +T =) (Z) a" kv, (12.2)
n—
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where a,b are real numbers (or more general, mathematical terms) and n is a natural number.
The coefficients in formula (12.2) can be easily determined by using Pascal’s triangle which is

as follows:

Pascal’s triangle

(a+b)° 1

(a+b)! 11

(a +b)? 1 2 1
(a+b)3 13 3 1
(a+ b)* 1 4 6 4 1

‘(a + by n n n n n n
0 1 k k+1) 7 \n-1 n
. n+1 n+1 n+1 n+1 n+1
(a+b)"* 0 1 k+1 n n+1
In Pascal’s triangle, each inner number is obtained by adding the two numbers in the row above
which are standing immediately to the left and to the right of the number considered (see rule

(2) for binomial coefficients). For instance, the number 4 in the row for (a + b)? is obtained by
adding the number 3 and the number 1 both in the row of (a + b)3 (see the numbers in bold

> Apply now
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PROGRAM 2015
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face in rows four and five of Pascal’s triangle above). Moreover, the numbers in each row are
symmetric. In the case of n = 2, we obtain the well-known binomial formula

(a+b)? = a® + 2ab + b*.

Example 12.5 We determine the term
T = 2z + 3y)*.

Applying formula (12.2), we get

T - s (‘f) (20)? 3+ (;‘) (20) - (3)° + @ 20+ (3)° + (3y)*

= 16z +4-823 -3y +6-422-9y> +4 - 22 - 27y + 81y*
= 16z* + 9623y + 21622y? + 2162y + 81y* .

Next, we investigate how many possibilities do exist for selecting a certain number of elements
from some given set when the order in which the elements are chosen is important. We
distinguish the cases where a repeated selection of elements is allowed and forbidden, respectively.
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Number of variations without / with repeated selection:

The number of possible selections of k elements from n elements with consideration of the
sequence (i.e., the order in which the elements are selected), each of them denoted as a
variation, is equal to

n!

1. V(k,n) = =R

if repeated selection is forbidden;

2. V(k,n) =n* if repeated selection is allowed.

In the first case, every element may occur only once in each selection while in the second case,
an element may occur arbitrarily often in a selection.

Example 12.6 A dual number consists only of the digits 0 and 1. How many different dual
numbers can one form with eight digits? The answer is obtained by the number of variations of
8 elements when repeated selection is allowed. We get

V(2,8) = 2% = 256.

Next, we consider the special case when the order in which the elements are chosen is unim-
portant, i.e., it does not matter which element is selected first.

Number of combinations without / with repeated selection:

The number of possible selections of k elements from n elements without consideration of
the sequence (i.e., the order in which the elements are selected), each of them denoted as a
combination, is equal to

1. C(k,n) = (Z) if repeated selection of the same element is forbidden;

— kE—1
2. C(k,n) = (n + i > if repeated selection of the same element is allowed.

Example 12.7 In the German game Skat, 32 cards are distributed among three players. Fach
of them get 10 cards (and two are left for the skat, which one player can exchange later with
two own cards). How many possibilities do exist for one player to get different collections of
the initial 10 cards? This number is equal to the number of combinations C(10,32) without
repetitions:

= = 64,512,240 .
10 64,512,240

32\ 32.31-30-29-28-27-26-25-24-23
10,32) = =
¢(10,32) ( ) 1-2:3-4-5-6-7-8-9-10

If we determine the number of overall distributions of the cards to the players (i.e., how many
different distributions are possible), we have to take into account that the first player gets 10
cards out of 32 ones, the second player 10 out of 22 cards, and the third player gets 10 out of
12 cards. This gives on overall

32\ 22\ (12 32!
N = : : = 07— 688,323,602,126, 160
(10) (10) (10) (101)3 - 2! oS S A

possible distributions of the cards to the players.
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Example 12.8 In a small country, there are 10 major touristic attractions. One person can
visit only three attractions on one day. How many possibilities do exist to select three attractions?
This corresponds to the number of combinations without repeated selection:

1 10-9- 2
0(3710):<0> 0 29 38 720

= — =120.
3 1 6 0

If the tourist has chosen three attractions, he can visit them in different orders. Assume that
every possible variant is considered as a different sub-tour, how many sub-tours including three
different attractions are possible? This is the problem of determining the number of variations
when repeated selection is forbidden. Thus, we obtain

10! 10!
':—:8‘9'10:720

V310 = 531 = 7

different sub-tours with three attractions included.

Example 12.9 In a German lottery, there have to be chosen sixz numbers out of 49 numbers.
How many possibilities do exist to have exactly three out of the six right numbers chosen? There
are (g) possibilities to select from the 6 ‘right’ numbers exactly three numbers, and there are
(433) possibilities to choose from the 49 — 6 = 43 ‘false’ numbers exactly three ones. Since each
selection of three ‘right’ numbers can be combined with each selection of three ‘false’ numbers,

we get the number

6\ [43\ 6-5-4 43-42.41

of possible variants with exactly three right numbers in the lottery game.

Finally, we discuss some additional variants of combinations. Let Cp,(k,n) be the number of
combinations without repeated selection which contain m given elements and Cr(k,n) be the
number of combinations without repeated selection which do not contain m given elements
(m < k). Then we have

Cin(k,n) = C(k —m,n —m) = <”_m>

and

Crnl(ke,n) = Ck,n —m) = <” ;m) .

Example 12.10 How many 5-digit numbers without repeated selection can be formed by means
of 0,1, 2, 8, 4, 5, 6, 7, 8, 9 containing the digits 3 and 6. We haven =10,k =5 and m = 2.
This gives

Cy(5,10) = C(3,8) = <§) :f:;:§:8-7:56.

Next, we determine how many 5-digit numbers can be formed by means of 0, 1, 2, 3, 4, 5, 6, 7,
8, 9 without repeated selection containing at least one of the digits 3 or 6. This is the number
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C(5,10) reduced by the number of possible 5-digit numbers which do not contain one of the digits
3 or 6. This gives

C(5,10) — C5(5, 10)

Il
Q
—~
vCf‘
—_
(=)
S~—
|
Q
—~
vCf‘
o
Il
Y
—_
()

1-2-3-4-5
= 252 —56 =196

of such numbers.

12.2 Events

In this section, we introduce the notion of an event which is of fundamental importance in
probability theory and modeling aspects. An event is simply a collection of outcomes of a
random experiment. One deals with the occurrence and non-occurrence of events. If one tosses
a coin, there are two possible outcomes possible: either the obverse of a coin is visible or the
reverse. However, it cannot be said in advance what will result. So, when tossing a coin, there
are two random events possible, namely ‘obverse’ and ‘reverse’ of the coin. Similarly, if one
tosses a dice, there are six random events possible: each of the numbers 1, 2, 3, 4, 5, or 6 can
appear.

Impossible and certain event:
The event () that never happens is called the impossible event.
The event S that always occurs is called the certain event.

One can work with events similar to sets. In particular, we can introduce the following events.

Union and intersection of events:
The union A U B of the events A and B occurs if at least one of the events A or B happens.
The intersection A N B of the events A and B occurs if both events A and B happen.

We emphasize that the commutative, associative and distributive laws are valid when working
with events.

Exclusive events:

Two events A and B are called exclusive (or disjoint) if they cannot happen both:

ANB=10.
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Complementary event:
The complementary event A occurs if and only if the event A does not happen:

ANA=0, AUA=S.

Example 12.11 If one tosses a coin, one can consider the events:

O: The obverse of a coin appears.
R: The reverse of a coin appears.

The union O U R is the certain event while O and R are exclusive: the event R is the comple-
mentary event of O : R = O.

Example 12.12 An autonomous region of a country has three power stations. Let A; be the
event that power station i works without a failure (i = 1,2,3). Consequently, A; is the event
that power station i works with a failure. Moreover, introduce the following events:

B: All three power stations work without a failure;
C': Ezactly one of the power stations works without a failure;
D: At least one of the power stations works without a failure.

Then we get:

B = AinNAynNAs;
(A1NAyNA3)U (A1 NAsNA3)U (AN AN A3);
D = AjUA3U A3.

Q
Il

Example 12.13 Consider the events:

A: A person is younger than 30 years;
B: A person is between 30 and 50 years old;
C': A person is older than 50 years;

M : A person is male.

Then we can consider e.g. the following events:

(AUB)NM: A person is not older than 50 years and male.

ANDM: A person is younger than 30 years and female (i.e., not male).

(BNM)U(ANDM): A person is between 30 and 50 years old and male, or a person is younger
than 30 years old and female.

(AUBUC)NM: This event corresponds to event M.

(AN B)U M: This is the impossible event () since a person cannot be simultaneously younger
than 30 and between 30 and 50 years old.
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12.3 Relative Frequencies and Probability

Absolute and relative frequency of an event:

The absolute frequency H(A) of an event A is the number of times the event occurs in a
particular investigation.

The relative frequency h(A) of an event A is defined as the quotient of the absolute frequency
H(A) of an event and the total number n of events observed:

The relative frequency is also known as empirical probability. If relationships between two
events are considered, often a four-array table (which is a special case of a contingency table)
is used. We illustrate this for the case of relative frequencies (for absolute frequencies, it can be

done in a similar manner). We consider two events A and B and well as their complementary
events A and B.

Table 12.1: Four-array table for relative frequencies

B B b))
A | nANB) | h(ANB) | h(A)
A || W@ANB) | (ANB) || h(A)
> | n(B) h(B) 1

If a problem is given, one first fills the table with the known values and then computes the
remaining entries by using the calculation rules. For instance, we have

h(AN B)+ h(ANB) = h(A) and h(ANB)+ h(AN B) = h(B).

Moreover, we have

h(A) + h(A) = h(B)+ h(B) =1.

Example 12.14 200 persons took part in a qualifying test for entering a university. Among
them, there were 107 women. Moreover, it is known that 153 persons passed the test and that 2/
men failed. Using the events P (a person passed the test), P (a person failed, i.e., did not pass
the test), M (a person is male) and M (a person is female, i.e., not male), we get the following
four-array table, where the known numbers from the problem are given in bold face.

Table 12.2: Four-array table for Example 12.14.

M | M | X

Pl 82 | 84 | 153
200 | 200 || 200

24 | 23 || 47
200 200 200

!

93 | 107
% |l 200 | 200 || L
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From the problem, we know

— 107 153 — 24

To find the other values in Table 12.2, we calculate

107~ 93 — 153 47

=2 p(P)=1-hP)=1 =
200 2000 MP) h(F)

M)=1-h(M)=1 2 2
h(M) hM) 200 200

Using these values, we obtain further

47 24 23

) =300 " 200 ~ 200°

s o 10T 23 84
WPOM) = h(M)~h(PNM)= g5 — 506 = 50

153 84 69
R(POM) = h(P)=h(PNM)= 25— o = oo

]
>
=

WBAT) = h(P) - h

As a consequence, we found that 23 women did not pass the test, while 8/ women and 69 men
passed the test.

In a simplified manner, one can define the probability of an event A as follows.

Probability:
The probability P(A) of an event A is given by

number of the favorable outcomes for the event

P(A) =
(4) number of the possible outcomes

Example 12.15 Let A be the event that there appears at least number 3 when tossing a dice.
There are four favorable outcomes for the event (one of the numbers 3, 4, 5, or 6 appears) among
the possible siz outcomes. Therefore, we get

Example 12.16 Somebody tosses simultaneously two dice. Let A denote the event that both dice
display at least number 5. There are 2% favorable outcomes (namely each of the dice displays
one of the numbers 5 or 6) and 62 possible outcomes. Therefore, we obtain

4 1

12.4 Basic Probability Theorems

In this short section, we review the calculation of the probabilities of the complementary event
and the union of two events.
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Complementary event:

The probability of the complementary event A of an event A is given by

P(A)=1-P(4).

Addition rule:

The probability of the union of two events A and B is given by

P(AUB) = P(A) + P(B) — P(ANB) .

In the case when A and B are exclusive, the addition rule simplifies to

P(AUB) = P(A) + P(B) .

Example 12.17 Consider the events
A: A person is less than 18 years old;

B: A person is at least 18 years old but younger than 65;

C': A person is at least 65 years old.

Let for some country these probabilities given as P(A) = 0.21, P(B) = 0.56 and P(C) = 0.23.
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Any two events are mutually exclusive, and we have AUBUC = S5. We obtain

If two events are not exclusive,
elements requires in the general
introduced in the next section.

= 1-P(A)=1-021=0.79;
P(A) + P(B) = 0.21 + 0.56 = 0.77;
P(A) + P(C) = 0.21 + 0.23 = 0.44;
= P(B)+ P(C) =0.56 +0.23 = 0.79.

the calculation of the probability of the intersection of two
case the consideration of conditional probabilities which are

12.5 Conditional Probabilities and Independence of Events

In this section, we continue with some further rules for calculating probabilities of events.

Multiplication rule:

the two events A and B is

Let A and B be two events and P(B) # 0. Then the probability of the intersection of

where P(A|B) denotes the conditional probability of event A, given event B.

P(ANB) = P(A|B) - P(B)

Download free eBooks at bookboon.com



Note that we can interchange the events A and B, i.e., we have

P(A|B) - P(B) = P(B|A) - P(A).

If the events A and B are independent, we have P(A|B) = P(A) (i.e, the condition has no
influence), and we get the special case

P(ANB)=P(A)-P(B).

Example 12.18 12.19 Assume that one tosses simultaneously two distinguishable dice. Con-
sider the events

A; : The i-th dice displays an even number (i =1,2).

Hence, the complementary events are

A;: The i-th dice displays an odd number (i =1,2).

We have

P(Ar) = P(As) = P(A}) = P(A3) = .

Since A1 and As are independent, we obtain

1

P(AlﬁAQ):P(Al)P(AQ):Z
and 1 1 1 3
F’(z41Ux42):]3(141)—|-F)(142)—F)(A/4lﬁj42):§—|—§—1:Z

Similarly, we get

P(ANA) = P(A) - P(&) = ;  and P(AU7;) = P(AD) + P(d;) ~ P(A N ) = .

For calculating with probabilities in the case of considering only two events, one can also use a
four-array table as introduced before.

Example 12.19 [t is known that in a big company 60 % of the employees have an salary less
than 4000 EUR per month, 35 % of the employees have a university qualification, and 25 % of
the workers both have a university qualification and earn at least 4000 EUR per month,

Selecting a worker randomly, we can consider the above percentages as probabilities. Introducing
the events

U - the worker has a university qualification;
G - the worker has a salary of at leai 4000 EUR per month;

as well as the complementary events U and G, we have the following information (given in bold
face in Table 12.2):

P(G) = 0.6, P(U) = 0.35, P(GNU)=0.25.

Table 12.2: Four-array table for Example 12.19.

U U z

G| 025 0.15 || 0.4

Ql

0.1 0.5 0.6

3 11035]065 |1
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G G G G
P(GNU)=0.25 P(GNU)=0.1 P(GNU)=0.15 P(GNU)=0.5

Figure 12.1: Tree diagram for example 8.19

Using the known probabilities, we first get

P(G)=1-P(G)=1-06=04 and PU)=1-PU)=1-0.35=0.65.
Then we obtain further
P(GNU) = PWU)-P(GNU)=0.35-0.25=0.1;
P(GNU) = P(G)-P(GNU)=0.6-0.1=0.5;
P(GNU) = P(G)—P(GNU)=04-0.25=0.15

Using the above four-array table, one can also easily compute the conditional properties. We
obtain:

P(GNU) 025

P(GU) = PO = 0.3 = 0.714
PGIU) = P(PG(S)U) = 09515 = 0.286
PGIU) = P(PG(S)U) = 8:(152 —0.231
PGU) = Pf(;)[]) = 00_655 =0.769 .

For illustrating the above calculations, often a tree diagram is used which is illustrated in Fig.
12.1. At the second branching level, the conditional probabilities are given and at the end of the
tree, the probabilities of the intersections of two possible events are given: The leftmost node in
the second level displays the probability P(G NU) = 0.25 which is obtained as the product of the
probabilities at the arcs leading to this node.

12.6 Total Probability and Bayes’ Theorem

In this section, we review two results using conditional probabilities.
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Rule of total probability:
Let By, Bs, ..., Bx be mutually exclusive events and A = B U Bo U...U Bg. Then:

k
P(4) = Y P(AIB) - P(B)

Example 12.20 In a mass production, a company uses the three machines My, Ms and Ms3
which differ in their efficiency and precision. Machine My produces 40 % of the items with
an error rate of 8 %, machine Ms produces 85 % of the items with an error rate of 6 %, and
machine Ms produces 25 % of the items with an error rate of 8 %. Let A be the event that a
chosen item is faulty and B; be the event that it is produced on machine M; (i =1,2,3). Thus,
we have

P(B)) =04, P(By)=035,  P(Bs)=0.25,
P(A|By) = 0.08, P(A|By)=0.06, P(A|Bs)=0.03.

We determine the probability that an arbitrarily selected item is faulty. Using the rule of total
probability, we obtain

P(A) = P(A|B1)- P(Bi) + P(A|By) - P(Bz) + P(A|B3) - P(B3)
= 0.08-0.4+0.06-0.35 +0.03 - 0.25
= 0.0605 .

Thus, the probability of a randomly selected item being faulty is 6.05 %.

The following property gives a relationship between conditional probabilities of the form P(A|B)
and P(BJ|A).

Bayes’ theorem:
Let By, B, ..., Bx be mutually exclusive events and A = B; U B U ...U Bg. Then:
P(A|B;) - P(B;)
P(A[By) - P(B1) + P(ABy) - P(Ba) + ... + P(ABy) - P(By)
P(A|B;) - P(Bi)
iy P(A|B:) - P(B))

P(Bi|A) =

fori=1,2,...,k.

Example 12.21 We consider again the data given in FExample 12.20 and assume that a ran-
domly selected item is faulty. We determine the probability that this item was produced on
machine Ms, i.e., we look for P(Bs|A). Applying Bayes’ theorem, we get

P(A|Bs3) - P(B3)

P(B3|A) =
BslA) = paBy) - P(By) + P(AIB:) - P(Bs) + P(AIBy) - P(By)
B 0.03-0.25 ~0.075
~0.08-0.440.06-0.35+0.03-0.25 0.452

= 0.166 .
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12.7 Random Variables and Specific Distributions

12.7.1 Random Variables and Probability Distributions

In this section, we deal with random variables and their distribution. A random variable is a
variable whose value depends on random influences. We do not present here a measure-theoretic
definition of a random variable but mention only that some other formal properties are required
for a random variable. We denote random variables by capital letters and possible realizations
(i.e., values) by small letters.

Distribution function:
Let X be a random variable. The function F' : R — [0, 1] defined by

F(z)=P(X <)

is denoted as the distribution function of the random variable X.

Any distribution function has the properties

lim F(z)=0 and lim F(z)=1.

T—r—00 T—00

Moreover, any distribution function is an increasing, but not necessarily strictly increasing func-
tion, and all function values of a distribution function are from the interval [0, 1].
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0.2 +
o———0().15

Figure 12.2: Distribution function F'(z) for Example 12.22

By means of the distribution function F', one can determine the probability that a particular
random variable takes on a value from a specific interval (a,b] as follows:

Pla< X <b)=P(X <b)— P(X <a)=F(b) — F(a) .

Among the random variables, we distinguish discrete and continuous random variables. A
discrete random variable is characterized by the values x;, x2, ..., which it may take on and
the corresponding probabilities P(X = x;) = p;. The possible realizations of a discrete random
variable may include a finite or an infinite number of values (in the latter case, they need to be
‘countable’). For the distribution function of a discrete random variable, we have

Fz)=) PX=z)=> pi.

z;<T z; <z

Example 12.22 We consider a discrete random variable X which can take on the values 0, 2,
4, 7, 10 and 14 with the following probabilities:

P(X=0)=005  P(X=2)=01; P(X=4)=0.15;
P(X=7)=03; P(X=10)=025  P(X=14)=0.15.

The distribution function F' is a so-called step function given in Fig. 12.2. The discontinuities
of the function F are the possible value 0, 2, 4, 7, 10, and 14.

For instance, we have
P(X<5) = F(5)=03;
P(X>T7) = 1-P(X<T)=1-F(7)=04=> P(X =u);
z;>7
PA< X <10) = P(X <10)—P(X <4)
— P(X<10)—P(X <4)+ P(X =4)
= 085-030+015=07= Y P(X=u).

4<z;<10
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Note that for a discrete random variable, one must carefully distinguish between P(X < x) and
P(X <z). We have P(X <z)=P(X <z)+ P(X =x).

A random variable is called continuous if it can take on any value from an interval (a,b) (where
also R = (—o0, 00) is possible, note also that the boundary points a and b might be included or
not). Formally, we can define the following.

Density function:
A random variable X is said to be continuous if its distribution function F(z) can be written
in the following form:

F(z) = / £t) dt

where f is denoted as density function of the continuous random variable X.

We only note that the last integral with an infinite limit of integration is a so-called improper
integral which we do not consider in this book. However, we mention that it can be reduced
by limit considerations to a usual definite integral:

/:Of(t) dt:tgmoo/ff(t)dt.

Due to the properties of the distribution function F', we always have

/_O; f@)de=1.

Note also that for a continuous random variable X, we have
Pla<X<b)=Pla<X<b)=Pla<X<b)=Pla<X<bh),

i.e., it is not important, whether one or both of the boundary points are included or not.

12.7.2 Expected Value and Variance

In this section, we deal with the expectation value and the variance which are both fundamental

notions of stochastic theory. They describe the average value of a random variable and the mean

deviation of a value from this average value, respectively. Let us first consider discrete random
variables.

Expected value of a discrete variable:
The expected value E(X) of a discrete random variable X is defined as

BE(X)=> a- P(X =)

Here the summation is made over all possible values x; which the random variable X may take
on.
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Example 12.23 Let X be the discrete random variable giving the grade of a student in the
examination in mathematics. From previous years, one knows the probabilities for the grades 1,
2, ..., 5 which are as follows:

P(X =1)=0.1; P(X =2) =0.15; P(X =3) =0.35; P(X =4) = 0.25; P(X =5) = 0.15.

We determine the expected average grade FE(X):
5
E(X) = Y i-P(X=i)
1=

1
= 1-0142-0154+3-0.35+4-025+5-0.15=3.2.

Variance of a discrete variable:
The variance o%(X) of a discrete variable is defined as

Example 12.24 A discrete random variable X may take on the values v1 = 1,290 = 2,23 = 3
and x4 = 4. The probabilities are given as follows:

P1 :P<X:$1):02, pQZP(X:1'2):O.3; p3:P(X:I‘3):O.4; p4:P(X:1'4):0.1.
For the expected value E(X), we obtain
4
B(X)=> api=1-02+2-03+3-04+4-01=24.
i=1
For the variance o*(X), we obtain

4
o*(X) = Y [wi—EX)-p
=1

1-24)%-024(2-24)-03+ (3—24)*- 0.4+ (4—24)?-0.1
84

Il
O/~ =

Let us now consider a continuous random variable X with the density function f. In this case,
the expected value E(X) and the variance o2(X) of variable X are defined as follows:

Expected value of a continuous random variable X:

B(X) = / z f(z)dz .

—00
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Variance of a continuous random variable X:

2 = [~ - BOQOP - f(2) do.

—00

Often one works with the so-called standard deviation o which is defined as follows: o =

+Vol.
An equivalent but often easier way to compute the variance is as follows:
2 * o 2
o (X):/ - f(x) de — [E(X)]".
—0o0

In an analogous way, such a transformation can be also made for a discrete random variable.
If only values from some interval [a, b] are possible for a continuous random variable, we get a
usual definite integral with the limits of integration a and b as we demonstrate in the following
example.

Example 12.25 Consider a random variable with the density function

f(z) = a<zxz<b

(for all other values, we have f(x) =0). We determine E(X) and obtain

EQX)::Qébxf@ﬁmzzébx-biadx

1 2%
B b—a ?a
B 1 bv—a*> (b—a)b+a) b+a
" b—a 2 (b-a)-2 2

For the variance 0?(X), we obtain

b
(X)) = / 22 f(x) dz — [B(X)]?

a

b 2
1 b+a
_ 2 _
= /a T b—adw ( > )

1 2Bp (b+a)?

T b—a 3la 4

_a*+ab+b* (b+a)*  a®—2ab+ b  (a—b)?
- 3 4 12 12

Here we used that (b3 — a®) = (a® + ab+ b?) - (b — a).

Example 12.26 Consider a non-negative random variable X with the density function

f(z) =\ (x >0),
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where X > 0 s a given parameter. We only note that this distribution is called exponential
distribution. We determine P(0 < X < 1) and obtain:

PO<X<1) = / f(@) /Ae_/\tdt

—)t Y
-e 1—e 7.
—)\ ’

Note that to find the above integral, we applied integration by substitution.

12.7.3 Binomial Distribution

Bernoulli variable:
A random variable X is called a Bernoulli variable, if X can take on only the two values 0
and 1, and the corresponding probabilities are

P(X=0)=p and PX=1)=1-p.

Binomial random variable:
Let X1, Xo,...,X,, be n independent and identically distributed Bernoulli random variables.
The variable

X:Xl—l-XQ—i-Xn

is called a binomial random variable.

We say that the variable X = X, , is binomially distributed with the parameters n and p.
The probability that the variable X takes on the value k can be calculated as follows:

Pix =1 = () a-t

The cumulative probabilities can be determined as follows:
l
n
P(X <) = pF (1= p)R
(X<n=> ( k) p*-(1—p)
k=0

For the mean and the variance of a binomial random variable, we have

E(X)=np and o?(X) =np(l —p).

Example 12.27 In a mass production of a product, it is known that 1.5 % of the items are
faulty. We determine the probability that among n = 10 randomly selected items, there are
k = 2 faulty ones.

The discrete random variable X = X,, , describes the number of faulty items if one considers a
sample of n items. For n =10 and k = 2, we obtain

10
P(X1070,015 = 2) = <2> . 0.0152 . 0.9851072 = 0'0091’
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i.e., the probability of selecting exactly two faulty items is 0.91 %. Moreover, the probability that
among that 10 selected items, there are at most two faulty ones is obtained as follows:

2
10 10
Y P(Xio005 =Fk) = <0> -0.015% - 0985079 4 (1) -0.015% - 0985101
k=0

10
+< 2) -0.015% - 0.98510—2
= 0.8597 + 0.1309 + 0.0091 = 0.9997,

i.e., the probability of selecting at most two faulty items is 99.97 %.

12.7.4 Normal Distribution

Among the continuous distributions, the normal distribution is the most important one. Its
importance results from the central limit theorem, according to which random variables resulting
from the sum of a large number of independent variables are approximately normally distributed.

Normally distributed random variable X:
The density function of a normally distributed random variable X with the expected value
u and the variance o2 is given by

f(;[;) = 1 67% (%)2

Here the expectation value p and the variance o2 are the parameters of the normal distribution.

As an abbreviation, we write that the random variable X is N(u, 0?)-distributed. The density
function f is symmetric with respect to the point x = p. It has the maximum at x = p and two
inflection points at 1 = 4 — o and 2 = 4+ 0.

For the probability P(X < x), we get

Flo)=P(X <2)= —— /I il
xTr) = X)) = e 20 z.
o V2ro? J_so

If x =0 and 0 = 1, we have the standard normal distribution. In this case, the density

function simplifies to
1 1
z) = e 2%,
fle) = 7=

For transforming an N (u, 0?)-distributed random variable X into an N (0, 1)-distributed random
variable Z, one can use the substitution

z =
o

The distribution function of an N (0, 1)-distributed random variable Z is tabulated and often
denoted as ®(z). We have
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Figure 12.3: (a) Density function and (b) distribution function of an N (0, o?)-distributed random
variable X

Often, the following relationship for the standard normal distribution is useful in the computa-
tions which holds due to symmetry:

O(—2)=1-®(2).

In Fig. 12.3, the density and the distribution functions of an N(0,0?)-distributed random
variable X are given for 0 = 0.5 and o = 1.

Example 12.28 It is known that the length X of a workpiece is N (u, 0)-distributed with = 60
cm and 0 =2 c¢cm. We determine the probability that the length of the workpiece is

(a) not greater than 61 cm;

(b) less than 58 cm;

(c) in the interval [57 ¢cm, 62 cm] and

(d) does not deviate by more than 3 cm from the expectation value .

(a) We obtain
61 — 60

P(X <61) =& ( ) = ®(0.5) = 0.69146

which corresponds (approzimately) to 69.15 %.
(b) We get

58 — 60
P(X <58) =0 ( 5 ) =O(—1)=1— (1) =1 — 0.84134 = 0.15866

which corresponds to 15.87 %.
(¢) In this case, we obtain

9 _ _
PBT<X<62) = @ <6 5 60) .y (57 5 60) = ®(1) — B(—1.5)
— (1) 4+ ®(1.5) — 1 = 0.84134 4+ 0.93319 — 1 = 0.77453

corresponding to 77.45 %.
(d) Here we obtain

P(|X —60] <3) = P(57§x§63):c1><63_60>—¢><57_60>

2 2
= ®(1.5) — &(—1.5) = 2d(1.5) — 1 = 0.86638

corresponding to 86.64 %.
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Example 12.29 For an N(u,o?)-distributed random variable X with = 90 ¢cm and o = 5
cm, we determine the following probabilities:

(a) P(80 < X < 97);
(b) P(X > 100);
(c) P(|X — p| > 10.

(a) We obtain

PO X <97) = @ (97 ; 90) -0 <8O ; 90) = (1.4) — B(—2)

= &(1.4)+P(2) — 1 =0.91924 + 0.97725 — 1 = 0.89649 .

(b) We get

100 — 90

P(X>100):1—P(X§100):1—<I>< -

) =1—®(2) =1—0.97725 = 0.02275.

(c) Here we get

P(IX —pu/>10 = P(X >100) + P(X <80) =1 — P(X < 100) + P(X < 80)

()] e (25

= [1-®2)]+®(-2) =2-[1 — ®(2)] = 0.0455 .

Example 12.30 Determine the value a such that for an N(u,o?)-distributed random variable
X the interval [ — a,p + a] contains 80 % of all values. For a N(0,1)-distributed random

variable Z, we get
P(—2<Z <2z)=29(2) —1=0.80

from which we obtain
1.80

Using the inverse function ®~1 (or directly the table of the standard normal distribution), we get
z = 1.28. Consequently, for an N(0,1)-distributed random variable Z, 80 % of the realizations
are from the interval [—1.28,1.28] and therefore, for an N(u,o?)-distributed random variable,
80 % of the realizations are from the interval [pn — 1.280, u + 1.280].

12.8 Statistical Tests

Finally, we briefly review some knowledge about statistical tests. The objective of such a test is
to check a particular hypothesis Hy, called the null hypothesis. The opposite assumption is
called the alternative hypothesis H;.

In general, such a statistical hypothesis test includes the following steps:

1. Formulate the null hypothesis Hy and the alternative hypothesis Hi;
2. Fix the significance level «;

3. Determine the region of acceptance and the region of rejection (critical region);
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4. Take a sample;

5. Make a decision: either reject the null hypothesis or ‘accept’ it (i.e., Hy is not rejected).

In the following, we explain one statistical significance test concerning the parameter (proba-
bility) p in a binomial distribution. The first question arises in connection with the formulation
of the null and alternative hypotheses Hy and H;j. There exist different variants:

1. Hy:p = po; Hy : p # po;
2. Hy:p < po; Hy :p > po;

3. Ho:p > po; Hy :p < po.

In the first case, we have a two-side test because deviations in both directions are considered.
In the other two cases, we have one-side tests because only deviations in one direction are
relevant. The selection of a particular variant depends on the specific interest of different groups
of people interested in the results of the test. To illustrate, consider the following example.
A wine store claims that a particular type of wine contains pyg = 12% alcohol. A consumer
protection organization is doubtful and conjectures that it contains less than 12% alcohol. In
this case, it would be a test of the null hypotheses p > pg against the alternative hypothesis
p < po. On the other side, an organization for legal protection for young people might conjecture
that the alcoholic level is higher. In this case, one would test the null hypothesis p < py against
the alternative hypothesis p > pg. In a simplified manner, one can see that the null hypothesis
describes the ‘current state’ and in principle, one wishes to know whether there are reasons for
the alternative hypothesis. Independently of the chosen variant, the calculations in the test are
made for p = py.

Since statistical tests are based on probabilities, one has no guarantee to find in any case the
right decision, i.e., is the null hypothesis indeed true or not. However, one wants to limit the
risk of a wrong decision. There are two types of a possible error. First, one may reject the null
hypothesis although it is true. This is know as a type-1 error. The other error arises when
the null hypothesis is false but it is accepted. This kind of error is known as a type-2 error.
This is summarized in Table 12.1.

Table 12.1: Type-1 and type-2 error in statistical tests.

Hj is true Hi is true
Hy accepted | right decision type 2 error
(wrong decision)

Hy rejected | type 1 error right decision
(wrong decision)

The simplest case is when only two possible decisions exist. For instance, consider a criminal
trial where at the beginning the following two hypotheses are possible:

Hy: the defendant is innocent.
Hy: the defendant is guilty.

If the null hypothesis is rejected by the judge but the defendant is truly innocent, a type-1 error
arises. However, if the null hypothesis is accepted by the judge but the defendant is truly guilty,
a type-2 error occurs.
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Typically, the major focus is on the type-1 error, i.e., one wishes to avoid to reject a null
hypothesis although it is true. One introduces the probability

P(Hy rejected|Hy is true ) = .

This probability should be small, and often one settles & = 0.05 or &« = 0.01. The value of « is
denoted as significance level, i.e., often the chosen significance level is 5 % or 1 %.

We next illustrate the determination of the region of acceptance A and the region of re-
jection R first for a one-side and then for a two-side test. For the hypothesis Hy : p < po,
large values of the random variable do not confirm the null hypothesis. Therefore, for fixing the
regions of acceptance and rejection, we consider

PX>k)<a

and determine the smallest integer k satisfying the above inequality i.e., we determine the
smallest number k such that the probability that an integer of at least k is observed is at most
equal to the significance level a.. In this case, we apply a right-side test and select

A={0,1,...,k—1} and R={kk+1,k+2,....,n}.
Accordingly, for a left-side test, we consider
PX<k)<a

and determine the largest integer k satisfying the above inequality i.e., we determine the largest
number k such that the probability that an integer of at most k is observed is at most equal to

[ ]
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the significance level «. In this case, we fix the regions of acceptance (A) and rejection (R) as
follows:
A={k+1k+2...,n} and R={0,1,...,k}.

When applying a two-side test, both small and large values do not confirm the null hypothesis.
So we determine A and R such that the following two inequalities are satisfied:

P(X <kp) < g and  P(X >kg) < %

i.e., the significance level is split into equal parts for very small and large values. Again, we
choose the largest integer satisfying the first inequality as k7, and the smallest integer satisfying
the second inequality as kr. Then we get the region of acceptance

A:{k‘L—i-l,kiL—l-Q,...,k:R—l}
and the region of rejection

R,:{0,1,...,]€L,/€R,kR—|—1,...,77,}.

The region of acceptance A and the region of rejection R are illustrated in Fig. 12.4 for a
left-side and a two-side significance test. In Fig. 12.4, we used the binomial distribution with
the parameters n = 10 and p = 0.4.

We illustrate the above variants of a significance test on the following three examples.

Example 12.31 A car company gets parts from a supplier, where it is known that approximately
20 % of the parts are faulty (and must be reworked). Now a new supplier contacts the company
and claims that the company can produce the same parts such that only 10 % of the parts are
faulty. However, the car company would like to check and takes a sample of n = 50 parts among
which 7 are faulty. Here one applies a right-side test with the hypotheses

Hpy:p<0.1; Hy:p>0.1.

The random wariable X denotes the number of faulty parts. The sample size is n = 50 and
the chosen significance level is 5 % (o = 0.05). If the null hypothesis Hy is true, the random
variable is binomially distributed with the parameters n = 50 and p = 0.1. We use

P(X > k) <0.05.

From the table of the cumulative binomial distribution, we get the smallest integer k = 10
satisfying the above inequality. Thus, we get the regions of acceptance (A) and rejections (R)
as follows:

A=1{0,1,2,...,9} and ~ R={10,11,...50} .

(we find P(X > 10) = 0.025 < 0.05 while P(X > 9) = 0.058 > 0.05). The null hypothesis is
accepted since 7 € A.

Example 12.32 At the last elections, a particular party reached 30 % of the votes. However,
in a recent survey, only 21 out of 100 people confirmed that they will vote next time again for
this party. Can one conclude with a significance level of 5 % that the votes for this party will
decrease? We use the hypotheses

Hy:p>0.3; Hy:p<03.
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P(X <1)<0.05
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(a) Left-side test
P(X=k)1 pix <0) <0025 P(X >8) < 0.025
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R R
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0.1+

kr
(b) Two-side test

Figure 12.4: Region of acceptance (A) and region of rejection (R) of a significance test
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The sample size is n = 100 and a = 0.05. The random variable X denotes the number of votes
for the party. If the null hypothesis is true, the random variable X is binomially distributed with
the parameters n = 100 and p = 0.3. For this left-side test, we use

P(X <k)<0.05.

From the table of the cumulative binomial distribution, we obtain the largest integer k = 22
satisfying this inequality (we find P(X < 22) = 0.048 < 0.05 while P(X < 23) = 0.076 > 0.05).
Therefore, we have

A ={23,24,...,50} and R =1{0,1,...22}.

The null hypothesis is rejected since 21 € R.

Example 12.33 It is conjectured that in an urn, there are 40 % white spheres (while the other
60 % are assumed to be black spheres). A sample of 20 spheres included 6 white spheres. If
one chooses a significance level of 5%, will the hypothesis be rejected or not? Here we apply a
two-side test. We use

Hy:p=04 and Hi:p#04.

The random variable X denotes the number of white spheres. If the null hypothesis is correct,
the random variable X is binomially distributed with the parameters n = 20 and p = 0.4. For
this two-side test, we find from

P(X <kp) < % =002  and  P(X >kp) <

=0.025

| o

kr =3 (P(X <3)=0.016) and kr = 13 (P(X > 13 = 0.021). Then we obtain the regions of
acceptance
A={45,...,12}.

and the region of rejection
R =1{0,1,2,3,13,14,15,16,17,18,19,20} .

The null hypothesis is accepted since 6 € A.
EXERCISES

12.1 Four jobs Ji, Js, Js3, J4 have to be processed on a machine 1, and three jobs Js, Jg, J7 have
to be processed on machine 2. How many different processing sequences of the jobs on the
two machines are possible?

12.2 How many numbers containing each of the digits 1,2,...,9 exactly one can be formed
which start with the digits 35 and end with digit 87

12.3 How many distinct numbers of the eight digits {1,1,2,2,2,2,3,4,4} can be formed?

12.4 In an election of a commission in a school, 10 teachers, 25 pupils and 5 persons of the
remaining staff take part. How many possibilities of different commissions do exist if from
the 10 teachers exactly 5, from the 25 pupils exactly 3 and from the remaining staff exactly
2 persons have to be included into the commission?
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12.5

12.6

12.7

12.8

12.9

12.10

12.11

12.12

In a questionnaire, one has to answer eight questions either with ‘I agree’, ‘I partly agree’
or ‘I disagree’. How many different fillings of the questionnaire are possible?

A tourist has 12 exciting sights in the neighborhood of his resort. Unfortunately he can
only visit four of them on one day. How many possibilities do exist

(a) to select four sights out of the 12 possible ones;

(b) to form a 4-sight subtour (where the sequence in which the sights are visited is impor-
tant).

Consider a skat game with 32 cards. If one randomly selects one card, what is the proba-
bility

(a) to select a green card,;

(b) to select a card with a number (i.e., 7, 8, 9, or 10);

(c) to select a green card with a number;

(d) to select a green card or a card with a number.

A big city has three soccer teams denoted by 1, 2, and 3 in the first league who play all
at a particular weekend. Consider the events

A;: Team i wins (i = 1,2, 3).

Describe the events:

B: At least one of the three teams wins;

C: At most two of the three teams win;

D: None of the three teams wins.

A discrete random variable may take on the values x1 = —2,20 = —1,23 = 0,24 = 1,25 =
2, x¢ = 3 with the probabilities

P(X =) =005 P(X =) =008 P(X=ux3)=0.19;

P(X = w4) = 0.22; P(X = x5) = 0.35; P(X = 1‘6) = 0.11.

Determine the expectation value F(X) and the variance o?(X). Graph the distribution
function F'(z).

Consider a continuous random variable X with the density function
f(z) = 057057 (x>0).
Determine the probability P(0 < X < 2).

It is known that in a mass production, 80 % of the items are of good quality while the
other 20 % must be reworked. If 20 items are randomly selected, determine the probability
that

(a) at least 15 items are of good quality;

(b) at least 2 items are not of good quality;

(c) exactly 3 items are not of good quality.

Is is known that a sportsmen in biathlon has a probability of 90 % of hitting the target
with one shot. Determine the probability that with 10 shots

(a) at most eight times the target is hit;

(b) exactly seven times the target is hit;

(c¢) no more than five times the target is hit.
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12.13 It is known that the length X of a workpiece is N (u, 0?)-distributed with p = 32 cm and
o = 1.5 cm. Determine the probability that the length of the workpiece

(a) is not greater than 35 cm;

(b) is less than 26 cm;

(c) is in the interval [28 cm, 35 cm] and

(d) deviates by more than 6 cm from the expectation value p.

12.14 Determine the probability that a N (0, 1)-distributed random variable X is in the interval
[—2,2].

12.15 A machine engineering company gets parts from a supplier, where it is known that ap-
proximately 90 % of the parts are of good quality. Now an alternative supplier contacts
the company that the same parts with 95 % of the parts of good quality. The company
takes a sample of n = 30 parts among which 26 are of good quality. Apply a left-side test
with the hypotheses

Hy:p>0.95; Hy:p<0.95.

Will the null hypothesis be accepted or rejected?

12.16 It is conjectured that in an urn, there are 40 % blue (and 60 % red) spheres. A sample of
30 spheres included 10 blue spheres. Apply a two-side test with a significance level of 5%
and the hypotheses

Hyp:p=04 and Hy:p#04.

Will the null hypothesis be accepted or rejected?
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List of Notations

ac A
b¢ A

(a,b)
[a,b]

ACB
AUB
ANB
A\ B

Ao N Z

R>a
R>q

Q

a is element of set A

b is not an element of set A

empty set (also used for impossible event in probability theory)
open interval between a and b

closed interval between a and b

set A is a subset of the set B

union of the sets (or events) A and B

intersection of the sets (or events) A and B

difference of sets A and B

n
summation sign: E ai=ar+ax+...+ay

=1

n
product sign: Hai =ai1-as-...-ap

i=1
denotes two cases of a mathematical term: the first one with sign +
and the second one with sign —

set of all natural numbers: N = {1,2,3,...}

union of the set N with the set of all negative integers and number 0

set of all rational numbers, i.e., set of all fractions P with p € Z and ¢ € N
set of all real numbers !
set, of all real numbers greater than a

set of all real numbers greater than or equal to a
sign ‘not equal’

sign of approximate equality, e.g. V2 = 1.41
irrational number: 7 =~ 3.14159...

Fuler’s number: e = 2.71828...

infinity

absolute value of the number a € R

equalitiesn =1,n=2,...,n=%

square root of a
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log

In
{an}
{sn}

lim

gof

T — g
x—x9+0
z—29—0

i

f'(@), ' (x)
f'(@), ¥ (x)
Fo (@) y™ ()
dy, df

notation used for the logarithm: if y = log, x, then a¥ =«
notation used for the logarithm with base 10: lgx = loggz
notation used for the logarithm with base e: Ina = log, «
sequence: {a,} = ai,az,as,...,ay,...

nth partial sum of a sequence {a,}

limit sign

y € R is the function value of x € R

domain of a function f of a real variable

range of a function f of a real variable

inverse mapping or function of f

composite function of f and ¢

T tends to xg

x tends to xg from the right-side

T tends to xp from the left-side

derivative of the function f

derivative of the function f with y = f(x) at the point =
second derivative of the function f with y = f(x) at the point =
nth derivative of the function f with y = f(z) at the point x
differential of function f with y = f(z)

integral sign

vector: ordered n-tuple of real numbers

transposed vector of the vector a

length (or norm) of the vector a

distance between the vectors a and b

means that the vectors a and b are orthogonal

scalar product of the vectors a and b

vector product of the vectors a and b

n factorial: n!=1-2-...-(n—1)-n

number of permutations of n elements

number of variations (k out of n) with repeated selection
number of variations (k out of n)

n!
k! (n—k)!
number of combinations (k out of n) without repeated selection

binomial coefficient: (Z) =
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(k,mn)

number of combinations (k out of n) with repeated selection

event

certain event

complementary event

absolute frequency of the event A

relative frequency of the event A

probability of the event A

conditional probability of the event A, given event B

random variable

probability that the random variable X takes a value z

probability that the random variable X takes a value at most equal to x
expectation value of the random variable X

variance of the random variable X

the random variable X is binomially distributed with the parameters n and p

indicated that a random variable X is normally distributed with the
parameters p and o2

distribution function of the normal standard distribution
null hypothesis of a statistical test

alternative hypothesis of a statistical test
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Union, intersection and difference of two sets

Integers on the number line

Number systems

Illustration of Regula falsi

Solving a quadratic inequality

Definition of trigonometric terms in a right-angled triangle
Trigonometric terms in a unit circle for 90° < a < 180°
Oblique triangle

Definition of a line

Intercept form of the equation of a line

Definition of a circle

Definition of an ellipse

Definition of a parabola

A parabola, which is (a) open from the right and b) open from above

Definition of a hyperbola
(a) Vertical and (b) horizontal hyperbolas
Limit of a sequence
Domain, range and graph of a function
Graph of function f in Example 8.2
Monotonicity intervals of a function
Graph of function f in Example 8.3
Bounded and unbounded functions
Even and odd functions
Periodic functions
Definition of a convex function
Linear functions with (a) ap > 0,a; > 0 and (b) ap > 0,a; <0
Linear functions with (a) identical ag and (b) identical a;
A quadratic function and the apex
Graphs of power and root functions
Graphs of exponential and logarithmic functions
The graph of function h in Example 8.16
Definition of trigonometric functions
Graphs of the sine and cosine functions
Graphs of the tangent and cotangent functions

Graph of function h in Example 8.18 for a = 2 (hi(x)) and a = 4 (ha(z))

The composite function g o f

Function f and the inverse function f~!
The limit of a function
Continuous and discontinuous functions
The difference quotient of a function
The derivative of a function
The differential of a function
Monotonicity of a function
Local extreme points of a function
First-order derivative test for local extrema
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Fig. 9.9: Convexity/concavity intervals of a function

Fig. 9.10: Graph of function f in Example 9.17

Fig. 9.11: Graph of function f in Example 9.18

Fig. 9.12: Graph of function f in Example 9.19

Fig. 9.13: Graph of function f in Example 9.20

Fig. 9.14: Graph of function f in Example 9.21

Fig. 9.15: Rectangle inside an equilateral triangle

Fig. 9.16: Illustration of Newton’s method

Fig. 10.1: The definite integral

Fig. 10.2: Approximation of definite integrals by trapeziums

Fig. 11.1: 2-dimensional vectors in the plane

Fig. 11.2: Vector operations: sum, difference and scalar multiplications
Fig. 11.3: Orthogonality of vectors

Fig. 12.1: Tree diagram for Example 12.19

Fig. 12.2: Distribution function F'(z) for Example 12.22

Fig. 12.3: (a) Density function and (b) distribution function of an N (0, o%)-distributed random
variable X

Fig. 12.4: Region of acceptance (A) and region of rejection (R) for a significance test
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Index

absolute value, 29
addition rule, 253

addition theorem, 92
alternative hypothesis, 266
antiderivative, 205

apex, 146

approximation by trapeziums, 224

argument, 131
associative law, 235

Bayes’ theorem, 257

Bernoulli - de 'Hospital’s rule, 194

Bernoulli variable, 263
binomial coefficient, 243
binomial formula, 28

certain event, 249
chain rule, 177
circle, 107

equation of a, 107
combination, 247
commutative law, 235
complementary event, 250, 253
composite Simpson’s rule, 226
composite trapezoidal rule, 224
conditional probability, 254
constant-factor rule, 207
cosine function, 155
cosine theorem, 94
cotangent function, 156
critical point, 185
curve of second order, 107

denominator, 30
density function, 260
derivative, 173

nth, 178

second, 178
difference of two vectors, 231
difference quotient, 172
differentation rules, 175
differential, 179

differential quotient, 173
distribution function, 258

ellipse, 109
equation of an, 109
focal point of an, 109
equation, 43
biquadratic, 53
goniometric, 95
linear, 44
quadratic, 51
equations
system of, 48
event, 249
exclusive events, 249
expected value, 260, 261
exponential equation, 62
exponential function, 152

factor of proportionality, 66
Fibonacci sequence, 116
first-order derivative test, 186
four-array table, 251
fraction, 30
improper, 31
proper, 31
frequency
absolute, 251
relative, 251
function, 131
antisymmetric, 138
bijective, 134
bounded, 135
bounded from above, 135
bounded from below, 135
composite, 159
concave, 141, 187
continuous, 171
convex, 141, 187
decreasing, 133, 184

derivative of a composite, 177

differentiable, 173
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domain of a, 131

even, 138

improper rational, 149
increasing, 133, 184
inside, 159

inverse, 161

limit of a, 167

linear, 142

monotonic, 134
non-decreasing, 184
non-increasing, 184
nondecreasing, 133
nonincreasing, 133

odd, 138

one-to-one, 134

outside, 159

period of a, 140

periodic, 140
polynomial, 147

proper rational, 149
quadratic, 145

range of a, 131

rational, 149

root of a, 146

strictly concave, 141, 187
strictly convex, 141, 187
strictly decreasing, 134, 184
strictly increasing, 133, 184
symmetric, 138

zero of a, 141, 146

gap, 171

global maximum, 184
global maximum point, 184
global minimum, 184
global minimum point, 184

higher-order derivative test, 186
hyperbola, 112

focal point of a, 112
hypotenuse, 91

impossible event, 249
indeterminate form, 194
induction

inductive step, 19

initial step, 19
inequalities

rules for, 72
inequality, 71

linear, 73
quadratic, 80
inequality with absolute values, 76
inflection point, 187
integer, 26
negative, 26
integral
definite, 218
indefinite, 206
integrand, 206
integration by parts, 212
integration by substitution, 208
intersection of events, 249

jump, 171
Kepler’s rule, 225

law
associative, 12, 27
commutative, 12, 27
distributive, 12, 28
least common multiple, 32
leg, 91
limit, 194
limits
rules for, 168
line, 103
general equation of a, 103
intercept form of a, 104
normal form of a, 103

point-direction equation of a, 104

point-slope form of a, 103
point-slope formula of a, 144
slope of a, 103
two-point equation of a, 103
local maximum, 184
local maximum point, 184
local minimum, 184
local minimum point, 184
logarithm, 37
change-of-base formula, 38
logarithmic equation, 59
logarithmic function, 152

monotonicity of function, 184
multiplication rule, 254

Newton’s method, 201
Newton-Leibniz’s formula, 219
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normal distribution, 264
normal form, 51
null hypothesis, 266
number
irrational, 26
natural, 25
rational, 26
real, 26
numerator, 30

orthogonal vectors, 237

parabola, 110, 146
apex of a, 110, 146
downward, 146
equation of a, 110
upward, 146
vertex of a, 110

parameter, 44

partial sum, 125

Pascal’s triangle, 245

permutation, 242

permutations
number of, 242

pole, 171

polynomial, 147
coefficients of a, 147

power, 34

power function, 151

probability, 252

proportion, 65

Pythagorean theorem, 93, 237

random variable, 258
binomial, 263
continuous, 260
discrete, 259

region of acceptance, 268

region of rejection, 268

Regula falsi, 67

root, 35

root equation, 56

root function, 152

scalar multiplication, 232

scalar product, 235

sequence, 115
alternating, 116
arithmetic, 117
bounded, 121

decreasing, 120
geometric, 118
increasing, 120
limit of a, 122
rules for limits of a, 122
strictly decreasing, 120
strictly increasing, 120
term of a, 115
set, 9
sets
disjoint, 11
intersections of, 11
union of, 11
significance level, 268
Simpson’s formula, 224
sine function, 155
sine theorem, 94
stationary point, 185
statistical test, 266
sum of two vectors, 231
sum-difference rule, 207

tangent function, 156
total probability, 257
transformation
equivalent, 43
triangle inequality, 76
type-1 error, 267
type-2 error, 267

union of events, 249

variable, 44
dependent, 131
independent, 131
variance, 261, 262
variation, 247
vector, 229
components of a, 229
length of a, 236
vector product, 238

zero of multiplicity k, 148
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