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Preface

Preface

Since more than 30 years, I taught several courses of basic mathematics for beginners at the uni-
versity. This concerns students of engineering sciences, students of natural sciences and students
of economical sciences. In particular, since almost 20 years I taught a course ‘Mathematics of
Economics and Management’ at the Otto-von-Guericke University Magdeburg. The latter class
included all relevant subjects from calculus and algebra. Roughly 10 years ago, I jointly with
my co-author Yuri Sotskov from Minsk wrote a book ‘Mathematics of Economics and Business’
following exactly the structure of this lecture. This book appeared 2006 at Routledge, and I
used it as the first item on my reading list for this class. However, this book explicitly includes
only some refreshments from school in a short form in Chapter 4, namely how to work with
real numbers. The foundations of calculus discussed in this book are, of course, also already
a subject of school education in the upper classes so that there is a larger overlapping with
mathematical subjects from secondary school education.

I noticed that at the beginning of their study, the majority of students has some partial knowledge
about the basic mathematical subjects from school, but not at the required extent. It seems so
that this tendency is even increasing currently. In any case, one can observe that beginners of a
university study enormously range in their mathematical skills and aptitudes. I know that for
many beginners at the university, mathematical subjects appear to be rather difficult. However,
if these gaps are not filled at the beginning of the study, this will definitively cause subsequent
difficulties in other courses. Without any doubt, nowadays a solid mathematical knowledge is
the base for most (almost all) study courses.

So, I felt that there is a need to present some necessary foundations from the mathematical
education at school in more detail and also some additional supplementary material, where I
wish that university beginners are familiar with. When writing this booklet, I also used the
experience collected in several classes of extra-occupational study courses, among them also
a bridge course, which refreshes the main subjects from mathematics in school. Typically,
the latter students have even more difficulties with mathematical subjects because their school
education finished already some years ago. Summarizing, I found that there is a need to write
such a booklet from my personal point of view, using the experience collected over the past
decades. The goal was roughly not to exceed 250 pages.

Sure, the content of the mathematical education in secondary school varies from country to
country a bit. So, I tried to cover a broad range of subjects which might be useful for a
university study from an overall point of view. The booklet consists of 12 chapters. Chapters 1
- 2 discuss some basics: some mathematical foundations as well as real numbers and arithmetic
operations. Chapters 3 - 5 deal with equations and inequalities. Chapter 6 surveys some basics
from analytic geometry in the plane. This is nowadays not so intensively taught as at the time
when I attended school, but nevertheless it addresses some useful subjects. Chapters 7 - 10
treat classical subjects from calculus. Chapter 11 presents some aspects of vectors. Chapter 12

7
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discusses some foundations from combinatorics, probability theory and statistics.

I tried to write the chapters as independent as possible. So, it is not necessary to read all
chapters beginning from the first one. Instead, the student can go immediately to a particular
subject. Sure, the chapters are not completely independent since in mathematics, there are
often specific relationships between different subjects. Nevertheless, there is no necessity to
study the chapters systematically one by one in the given sequence for the understanding of the
book. Moreover, since it is an repetition and summary of elementary material of mathematics,
I avoided the formal use of theorems and definitions. Instead of, the major notions are shaded
in grey and in addition, important formulas and properties are given in boxes.

Each chapter gives the learning objectives at the beginning. Moreover, every chapter finishes
with a number of exercises. The solutions to the exercises (i.e., the concrete results) are given on
my homepage so that the reader can verify whether to be able or not to solve typical problems
from a particular topic. They can be downloaded as a pdf file under:

http://www.math.uni-magdeburg.de/∼werner/solutions-refresher-course.pdf

The author is grateful to many people for suggestions and comments. In particular, I would
like to thank Dr. Michael Höding and my Ph.D. student Ms. Julia Lange from the Institute of
Mathematical Optimization of the Faculty of Mathematics at the Otto-von-Guericke-University
Magdeburg for their many useful hints during the preparation of this booklet and the support
in the preparation of the figures, respectively. I would also like to use this opportunity to thank
both for their long-term support in the teaching process at the Otto-von-Guericke-University
Magdeburg.

I hope that this small booklet will help the students to overcome their initial difficulties when
studying the required mathematical foundations at the university. Typically, the first term at
the university is the hardest one due to many changes compared with secondary school. I want to
finish this preface with a hint: Long time ago, I was told that learning mathematics is somehow
like learning swimming. Nobody learns it by looking how other people do it! One does not
learn mathematics by exclusively listening to the lecturer or tutor and copying notes from the
blackboard or slides. Only own practice contributes to a significant progress. The time necessary
for getting a sufficient progress varies for the individual students significantly, so everybody has
to find this out by solving a sufficient number of exercises. So, students in their first year at the
university should not be afraid of mathematics but should take into account that some (or even
a lot of) time is needed to get a sufficiently wide experience in applying mathematical tools.

The author is also grateful for all hints that improve further the content and the presentation
of this edition. All suggestions should be addressed preferably to the email address given below.
It is my pleasure to thank the publisher Bookboon for the delightful cooperation during the
preparation of this booklet.

Frank Werner Magdeburg, March 2016
Otto-von-Guericke-University Magdeburg
Faculty of Mathematics
PSF 4120
39016 Magdeburg / Germany
Internet: http://www.math.uni-magdeburg.de/∼werner
email: frank.werner@ovgu.de

Download free eBooks at bookboon.com
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Some Mathematical Foundations

Chapter 1

Some Mathematical Foundations

This chapter intends to refresh some basic mathematical foundations which are necessary to un-
derstand the elementary mathematics in first- or second-year classes on mathematically oriented
subjects at universities. We deal with

• sets and operations on sets,

• the use of the sum and product notations and

• mathematical proofs by induction.

Proofs by induction can be used e.g. for verifying certain sum and product formulas as well
as specific inequalities. They can also be used for particular combinatorial and geometrical
problems.

1.1 Sets

In this section, we introduce the basic notion of a set and discuss operations on sets. A set
is a fundamental notion of mathematics, and so there is no definition of a set by other basic
mathematical notions for a simplification. A set may be considered as a collection of distinct
objects which are called the elements of the set. For each object, it can be uniquely decided
whether it is an element of the set or not. We write:

a ∈ A: a is an element of the set A;

b /∈ A: b is not an element of the set A.

A set can be given either by enumeration or by description. In the first case, we give explicitly
the elements of the set, e.g.

A = {1, 3, 5, 7, 9, 11, 13, 15},

i.e., A is the set that contains the eight elements 1, 3, 5, 7, 9, 11, 13, 15. Alternatively, we can
describe a set in the form

B = {b | b has property P }.

9
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The set B is the set of all elements b which have the property P . In this way, we can describe
the above set A e.g. as follows:

A = {a | a is an odd integer and 1 ≤ a ≤ 15}.

For special subsets of real numbers, one often uses also the interval notation. In particular,
we have

[a, b] = {x ∈ R | a ≤ x ≤ b};

(a, b) = {x ∈ R | a < x < b};

[a, b) = {x ∈ R | a ≤ x < b};

(a, b] = {x ∈ R | a < x ≤ b},

where R is the set of all real numbers. The interval [a, b] is called a closed interval whereas (a, b)
is called an open interval. Accordingly, the intervals (a, b] and [a, b) are called half-open (left-
open and right-open, respectively) intervals. The set R of real numbers can also be described
by the interval (−∞,∞). Moreover, we use the following abbreviations:

R≥a = [a,∞), R>a = (a,∞), R≤a = (−∞, a] and R<a = (−∞, a) .

Thus, R≥0 denotes the set of all non-negative real numbers.

Next, we introduce operations on sets: the union, the intersection and the difference of two sets.
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Figure 1.1: Union, intersection and difference of two sets

Union of two sets:
The set of all elements which belong either only to a set A or only to a set B or to both sets A
and B is called the union of the two sets A and B (in symbols A ∪B, read: A union B):

A ∪B = {x | x ∈ A or x ∈ B}.

The set A ∪B contains all elements that belong at least to one of the sets A and B.

Intersection of two sets and disjoint sets:
The set of all elements belonging to both sets A and B is called the intersection of the two
sets A and B (in symbols A ∩B, read: A intersection B):

A ∩B = {x | x ∈ A and x ∈ B}.

Two sets A and B are called disjoint, if A ∩B = ∅.

Thus, the sets A and B are disjoint if they have no common elements.

Difference of two sets:
The set of all elements belonging to a set A but not to a set B is called the difference set of
A and B (in symbols A \B, read: A minus B):

A\B = {x | x ∈ A and x /∈ B}.

The union, intersection and difference of two sets A and B are illustrated in Fig. 1.1.

Next, we summarize some basic rules for working with sets.
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Rules for sets:
Let A,B,C be arbitrary sets. Then:

1. A ∩B = B ∩A, A ∪B = B ∪A

(commutative laws of intersection and union);

2. (A ∩B) ∩ C = A ∩ (B ∩ C), (A ∪B) ∪ C = A ∪ (B ∪ C)

(associative laws of intersection and union);

3. (A∩B)∪C = (A∪C)∩ (B ∪C), (A∪B)∩C = (A∩C)∪ (B ∩C)

(distributive laws of intersection and union).

Note that the difference of two sets is not a commutative operation, i.e., in general we have

A \B �= B \A.

Example 1.1 Let A = {2, 3, 5, 8, 11, 14} and B = {1, 5, 11, 12, 14, 16}. Then

A ∪B = {1, 2, 3, 5, 8, 11, 12, 14, 16} and A ∩B = {5, 11, 14}.

Thus, the union of the sets A and B contains nine elements and the intersection contains three
elements. Moreover, we get

A \B = {2, 3, 8} and B \A = {1, 12, 16}.

Notice that the elements of a set can be given in arbitrary order.

Example 1.2 Let E be the set containing the cities Berlin, London, Magdeburg, Madrid,
Moscow, Paris, Rom and Stockholm and A be the set containing the cities Chicago, Montreal,
New York, San Francisco, Toronto and Vancouver. Thus, the set A contains six North American
cities and E contains eight European cities. Thus, there is no city contained in both sets and
therefore, we have A ∩B = ∅. Moreover,

A ∪ E = {Chicago, Montreal, New York, San Francisco, Toronto, Vancouver, Berlin,

London, Magdeburg, Madrid, Moscow, Paris, Rom, Stockholm}

Moreover, we have A \ E = A and E \A = E in this example.

Example 1.3 Let

A = {a | 1 ≤ a ≤ 100, a is integer and divisable by 3}

and
B = {b | 1 ≤ b ≤ 100, b is integer and divisable by 5},

i.e., the set A contains 33 integers and the set B contains 20 integers. Obviously, we can rewrite
the sets A and B as follows:

A = {3, 6, 9, 12, . . . , 90, 93, 96, 99} and B = {5, 10, 15, 20, . . . , 85, 90, 95, 100}.
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Then we obtain

A ∪B = {a | 1 ≤ a ≤ 100, a is integer and divisible by 3 or 5}
= {3, 5, 6, 9, 10, 12, 15, . . . , 95, 96, 99, 100}

and

A ∩B = {a | 1 ≤ a ≤ 100, a is integer and divisible by 3 and 5}
= {15, 30, 45, 60, 75, 90}.

This means that A∩B contains all integers between 1 and 100 which are divisible by 3 · 5 = 15.
Moreover,

A \B = {a | 1 ≤ a ≤ 100, a is integer and divisible by 3 but not by 5}
= {3, 6, 9, 12, 18, 21, . . . , 87, 93, 96, 99}

and

B \A = {a | 1 ≤ a ≤ 100, a is integer and divisible by 5 but not by 3}
= {5, 10, 20, 25, 35, 40, . . . , 70, 80, 85, 95, 100}.

To find A \B, we exclude from A the numbers 15, 30, 45, 60, 75 and 90. To determine B \A,
we exclude from B the same numbers.

Thus, the union A ∪B contains 47 integers, the intersection A ∩B contains 6 integers and the
difference sets A \B and B \A contain 27 and 14 integers, respectively.

Example 1.4 Consider the following intervals

I1 = [2, 6), I2 = [4, 8] and I3 = (2, 9].

Then we obtain

I1 ∪ I2 = [2, 8], I1 ∪ I3 = [2, 9], I2 ∪ I3 = I3,

I1 ∩ I2 = [4, 6), I1 ∩ I3 = (2, 6), I2 ∩ I3 = I2,

I1 \ I2 = [2, 4), I1 \ I3 = {2}, I2 \ I3 = ∅,
I2 \ I1 = [6, 8], I3 \ I1 = [6, 9], I3 \ I2 = (2, 4) ∪ (8, 9].

Example 1.5 In this example, we illustrate the distributive law for set operations. Let

A = {1, 2, 4, 7, 8, 10}, B = {2, 3, 4, 9} and C = {3, 8}.

One the one side, we obtain

(A ∩B) ∪ C = {2, 4} ∪ {3, 8} = {2, 3, 4, 8}.

On the other side, we get

(A ∪ C) ∩ (B ∪ C) = {1, 2, 3, 4, 7, 8, 10} ∩ {2, 3, 4, 8, 9} = {2, 3, 4, 8}.

This illustrates the first distributive law given above. Moreover,

(A ∪B) ∩ C = {1, 2, 3, 4, 7, 8, 9, 10} ∩ {3, 8} = {3, 8}

and
(A ∩ C) ∪ (B ∩ C) = {8} ∪ {3} = {3, 8},

which illustrates the validity of the second distributive law given above.
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1.2 Sum and Product Notation

For writing a sum or product in short form, one often uses the Greek letters
∑

and
∏
, respec-

tively. In particular, we have

n∑
i=1

ai = a1 + a2 + . . .+ an and
n∏

i=1

ai = a1 · a2 · . . . · an .

The letter i below from the sum (product) symbol is denoted as summation (multiplication)
index. This index can be arbitrarily chosen. The number under the product symbol is denoted
as lower limit of summation and multiplication, respectively, and the number above the symbol
is denoted as the upper limit. So, the summation above is made from i = 1 to i = n. Note that
a sum and product, respectively, is defined to be equal to zero if the lower limit of summation
(multiplication) is greater than the upper limit of summation (multiplication).

Example 1.6 We illustrate the use of sums and products.

a) We have
4∑

i=1

i2 = 12 + 22 + 32 + 42 = 1 + 4 + 9 + 16 = 30
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and

13 + 23 + 33 + . . .+ 503 =

50∑
i=1

i3 =

50∑
k=1

k3 .

b)

2∑
k=−2

1

2k + 3
=

1

−1
+

1

1
+

1

3
+

1

5
+

1

7
=

35

105
+

21

105
+

15

105
=

71

105
;

c)
4∑

j=1

(3j − 1)j−1 = 20 + 51 + 82 + 113 = 1 + 5 + 64 + 1331 = 1401 ;

d)

3∏
n=0

(an + bn) = (a0 + b0) · (a1 + b1) · (a2 + b2) · (a3 + b3) ;

e)

3∏
l=−1

(2l − 1) = (−3) · (−1) · 1 · 3 · 5 = 45 ;

f)
5∏

k=1

kk−3 = 1−2 · 2−1 · 30 · 41 · 52 = 1 · 1
2
· 1 · 4 · 25 = 50 .

We summarize the following rules when using sum signs:
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Working with sums:

n∑
i=1

(ai ± bi) =

n∑
i=1

ai ±
n∑

i=1

bi ;

n∑
i=1

c ai = c
n∑

i=1

ai ;

n∑
i=1

c = n c ;

m∑
i=1

ai +
n∑

m+1

ai =
n∑

i=1

ai .

Similarly, we get the following rules when using product signs:

Working with products:

n∏
i=1

(ai bi) =

n∏
i=1

ai ·
n∏

i=1

bi ;

n∏
i=1

c ai = cn
n∏

i=1

ai ;

n∏
i=1

c = cn ;

m∏
i=1

ai ·
n∏

m+1

ai =
n∏

i=1

ai .

Example 1.7 We rewrite

S =

20∑
k=1

(k3 + 3k − 2)

in separate terms and obtain

S =

20∑
k=1

k3 + 3

20∑
k=1

k − 2 · 20.

For a sum or a product, there exist several representations. So, one can transform the summation
(multiplication) index. For instance, we have

a5 + a6 + a7 + a8 =
8∑

i=5

ai =
4∑

k=1

ak+4 =
3∑

n=0

an+5

or as another example,

3 + 5 + 7 + 9 + 11 =
5∑

k=1

(2k + 1) =
4∑

n=0

(2n+ 3) .

Download free eBooks at bookboon.com



A REFRESHER COURSE IN MATHEMATICS

17

Some Mathematical Foundations
1.2. SUM AND PRODUCT NOTATION 17

Observe again that the summation index can be chosen arbitrarily. In general, when shifting
the summation or multiplication index, we have the following rules for all integers j and n:

n∑
i=1

ai =

n−j∑
k=−j+1

ak+j ;

n∏
i=1

ai =

n−j∏
k=−j+1

ak+j .

The above transformation of the summation and multiplication indices corresponds to a shifting
according to i = k + j.

Example 1.8 We compute

S =

8∑
k=1

k3 −
8∑

i=4

(i− 2)3.

This yields

S =
8∑

k=1

k3 −
6∑

j=2

j3

= (13 + 23 + . . .+ 83)− (23 + 33 + . . .+ 63)

= 13 + 73 + 83 = 1 + 343 + 512 = 856.

It is worth noting that for n > 1, we have in general

n∑
i=1

ai bi �=
n∑

i=1

ai ·
n∑

i=1

bi. (1.1)

Let e.g. n = 3. Then (1.1) can be written in detail as follows:

a1b1 + a2b2 + a3b3 �= (a1 + a2 + a3) · (b1 + b2 + b3).

Moreover, we have in general

n∏
i=1

(ai + bi) �=
n∏

i=1

ai +
n∏

i=1

bi. (1.2)

To illustrate (1.1) and (1.2), let again n = 3 and a1 = 2, a2 = 5, a3 = 3 as well as b1 = 1, b2 =
2, b3 = 7. Then we obtain

3∑
i=1

ai bi �= 2 + 10 + 21 = 33 �=
3∑

i=1

ai ·
3∑

i=1

bi = (2 + 5 + 3) · (1 + 2 + 7) = 10 · 10 = 100

and
n∏

i=1

(ai+ bi) = (2+1) · (5+2) · (3+7) = 210 �=
n∏

i=1

ai+

n∏
i=1

bi = (2 ·5 ·3)+(1 ·2 ·7) = 30+14 = 44.
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Often one uses also double sums of the form

m∑
i=1

n∑
j=1

aij ,

where the inner summation is made over the second index j and the outer summation is made
over the first index i. Thus, we have

3∑
i=1

4∑
j=1

aij = a11 + a12 + a13 + a14

+a21 + a22 + a23 + a24

+a31 + a32 + a33 + a34 .

Note that we can interchange the order of the summations and have the following:

m∑
i=1

n∑
j=1

aij =

n∑
j=1

m∑
i=1

aij .

1.3 Proof by Induction

In this section, we review proofs by induction which can be used e.g. to prove specific sum or
product formulas or also inequalities. This type of proof can e.g. be used when proving a par-
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ticular property for all natural numbers n ≥ n0, i.e., for infinitely many numbers n. This proof
consists of two steps.

In the initial step (also denoted as base step), we prove that this property holds for the
first natural number n = n0 considered. Often, one has n0 = 1. Then, in the inductive
step, we prove that, if the property holds for a particular value n = k (this is the induction
assumption), then it also holds for the succeeding value n = k + 1 (this is the induction
hypothesis). This has to be proven only once. Now one can argue as follows. Since the
property holds for the initial number n0, it also holds by the inductive step for the next number
n0 + 1. Applying now again the inductive step, we can conclude that, since the property holds
for n0 + 1, it also holds for the next number n0 + 2, and so on.

Example 1.9 We prove that the equality

n∑
i=1

i =
n(n+ 1)

2

holds for all natural numbers. In the initial step, for n = 1, we have

1∑
i=1

i = 1 =
1 · 2
2

= 1,

i.e., the above formula is correct. Using now the induction assumption that the formula is correct
for some number n = k:

k∑
i=1

i =
k(k + 1)

2
, (1.3)

we prove in the inductive step that the formula is also correct for the succeeding number n = k+1,
i.e., we replace in the given formula k at every occurrence by k + 1 which means that we have
to show that the equality

k+1∑
i=1

i =
(k + 1)(k + 2)

2

holds. Using equality (1.3), we obtain

k∑
i=1

i+ (k + 1) =
k(k + 1)

2
+ k + 1

k+1∑
i=1

i =
k(k + 1) + 2(k + 1)

2

k+1∑
i=1

i =
(k + 1)(k + 2)

2
.

Thus, the given formula is correct for all natural numbers n.

Example 1.10 We prove by induction that the equality

n∑
i=1

qi−1 =
1− qn

1− q

to show that the equality
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holds for all natural numbers n. We begin with the initial step. For n = 1, we have

1∑
i=1

qi−1 = q1−1 = q0 = 1 =
1− q1

1− q
= 1,

i.e., the above formula is correct. Thus, we can use the induction assumption that the above
formula is correct for some n = k. Hence, we can use

k∑
i=1

qi−1 =
1− qk

1− q
. (1.4)

In the inductive step, we have to show that this formula is also correct for the next natural
number n = k + 1, i.e., we prove that

k+1∑
i=1

qi−1 =
1− qk+1

1− q
.

Using equality (1.4), we obtain

k∑
i=1

qi−1 + q(k+1)−1 =
1− qk

1− q
+ q(k+1)−1

k+1∑
i=1

qi−1 =
1− qk + qk(1− q)

1− q

k+1∑
i=1

qi−1 =
1− qk + qk − qk+1

1− q

k+1∑
i=1

qi−1 =
1− qk+1

1− q
.

Therefore, the given formula is correct for all natural numbers n.

Example 1.11 We prove by induction that the equality

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
(1.5)

holds for all natural numbers. In the initial step, we obtain for n = 1

1∑
i=1

i2 = 12 = 1 =
1 · 2 · 3

6
= 1.

Thus, for the inductive step, we can assume that the above formula is correct for a specific
natural number n = k:

k∑
i=1

i2 =
k(k + 1)(2k + 1)

6
, (1.6)
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and we have to show that it is then also correct for the succeeding natural number k+1, i.e., we
have to show:

k+1∑
i=1

i2 =
(k + 1)[(k + 1) + 1][2(k + 1) + 1]

6
=

(k + 1)(k + 2)(2k + 3)

6
.

In the above equality, we replaced k in formula (1.6) at every place it occurs by k + 1 and
simplified the resulting term. In the inductive step, using the correctness of equality (1.6), we
obtain

k∑
i=1

i2 + (k + 1)2 =
k(k + 1)(2k + 1)

6
+ (k + 1)2

k+1∑
i=1

i2 =
k(k + 1)(2k + 1) + 6(k + 1)2

6

k+1∑
i=1

i2 =
(k + 1) [k(2k + 1) + 6(k + 1)]

6

k+1∑
i=1

i2 =
(k + 1) (2k2 + k + 6k + 6)

6
.

Now we rewrite the expression k + 6k as 4k + 3k so that we are able to factor out k + 2 in two
steps (see what we want to prove above). This yields:

k+1∑
i=1

i2 =
(k + 1)(2k2 + 4k + 3k + 6)

6

k+1∑
i=1

i2 =
(k + 1)[(k + 2)2k + (k + 2)3]

6

k+1∑
i=1

i2 =
(k + 1)(k + 2)(2k + 3)

6
.

Thus, the given formula is correct for all natural numbers n.

Example 1.12 We prove by induction that the inequality

3n−1 ≥ n

holds for all natural numbers n. In the initial step, we get for n = 1

31−1 = 1 ≥ 1.

In the inductive step, we can assume that

3k−1 ≥ k (1.7)

is correct for some natural number n = k, and we have to show that it is also correct for n = k+1:

3k ≥ k + 1 . (1.8)
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From inequality (1.7), it follows that

3k−1 · 3 ≥ k · 3

and, due to 3k ≥ k + 1, we get
3k ≥ 3k ≥ k + 1,

i.e., we obtain inequality (1.8).

EXERCISES

1.1 Let

A = {x | x is a prime number } and B = {x | x is integer and 10 ≤ x ≤ 30}.

Determine A ∩B ;A \B and B \A .

1.2 Let
I1 = [−3, 4], I2 = (−1, 4) and I3 = (3, 5).

Determine all possible unions, intersections and differences of any two of the above sets.

1.3 Let
X = {a, b, d, e, f}, Y = {b, e, g, h} and Z = {a, h, i}

Determine X ∪ Y ; X ∩ Y ; X \ Y ; (X ∪ Y ) ∩ Z; (Y \ Z) ∪X.

1.4 Let X and Y be arbitrary sets. Determine

(a) X ∪ (X ∩ Y ) ; (b) Y ∩ (X ∪ Y ) ; (c) (X \ Y ) ∪ (Y \X) ∪ (X ∩ Y ) .

1.5 Let ai = 2i+ 1 and bi = (i+ 1)2 for i = 1, 2, . . . , 10. Calculate

(a)

10∑
i=1

ai ; (b)

8∑
i=3

(ai + bi−2) ; (c)

6∏
i=1

(ai + bi+3) .

1.6 Prove by induction that
n∑

i=1

(2i− 1) = n2

holds for all natural numbers n.

1.7 Prove by induction that
n∑

i=0

(m+ i) =
(n+ 1)(2m+ n)

2

holds for all integers n ≥ 0, where m is an arbitrary fixed integer.

1.8 Prove by induction that the equality

n∑
i=1

1

i(i+ 1)
=

n

n+ 1

holds for all natural numbers n.
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1.9 Prove by induction that the inequality

nx+ 1 ≤ (x+ 1)n

holds for all natural numbers n, where x is a positive number.
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Chapter 2

Real Numbers and Arithmetic
Operations

This chapter reviews the major arithmetic operations for working with real numbers. In partic-
ular, we give an overview about

• number systems,

• rules for working with absolute values and fractions and

• rules for working with powers, roots and logarithms.

2.1 Real Numbers

In this section, we start with the set N of natural numbers, i.e., N = {1, 2, . . .}. This set can
be illustrated on a straight line known as the number line (see Fig. 2.1). If we union this set
with number 0, we get the set

N0 = N ∪ {0} = {0, 1, 2, 3, . . .}.

We can perform the operations of addition and multiplication within the set N of natural num-
bers, i.e., for a, b ∈ N, we get that the number a+b belongs to set N and the number a ·b belongs
to set N. In other words, the sum and product of any two natural numbers is again a natural
number. However, the difference and the quotient of two natural numbers are not necessarily a
natural number.

... -5 -4 -3 -2 -1 0 1 2 3 4 5 ...
︸ ︷︷ ︸

N

Figure 2.1: Integers on the number line

25
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The first extension which we perform is to union the set of negative integers {−1,−2,−3, . . .}
with the set N0 which yields the set Z of integers (see Fig. 2.1), i.e.,

Z = N0 ∪ {−1,−2,−3, . . .}.

This allows us now to perform the three operations of addition, subtraction and multiplication
within the set of integers, i.e., for a, b ∈ Z, we get that the number a + b belongs to set Z, the
number a− b belongs to set Z and the number a · b belongs to set Z.

To be able to perform the division of two integers, we introduce the set of all fractions p/q with
p ∈ Z, q ∈ N. The union of the integers and the fractions is denoted as the set Q of rational
numbers, i.e., we have

Q = Z ∪
{
p

q
| p ∈ Z, q ∈ N

}
.

Now all the four elementary operations of addition, subtraction, multiplication and division
(except by zero) can be performed within the set Q of rational numbers.

Consider next the equation x2 = 2. This equation cannot be solved within the set of rational
numbers, i.e., there exists no rational number p/q such that (p/q)2 = 2. This leads to the
extension of the set Q of rational numbers by the irrational numbers. These are numbers
which cannot be written as the quotient of two integers. There are infinitely many irrational
numbers, e.g.

√
2 ≈ 1.41421,

√
3 ≈ 1.73205, e ≈ 2.71828 and π ≈ 3.14159.

Irrational numbers are characterized by decimal expansions that never end and by the fact that
their digits have no repeating pattern (i.e., any irrational number cannot be presented as a
periodic decimal number).

The union of the set Q of rational numbers and the set of all irrational numbers is denoted as the
set R of real numbers. We have the following property: There is a one-to-one correspondence
between real numbers and points on the number line, i.e., any real number corresponds to a
point on the number line and vice versa. Within the set of real numbers, we can perform
the operations of additions, subtraction, multiplication, division (except by zero), and we can
also compute logarithms of positive real numbers and roots of non-negative real numbers. The
stepwise extension of the set N of natural numbers to the set R of real numbers is illustrated in
Fig. 2.2.

2.2 Basic Arithmetic Rules and the Absolute Value

In the following, we often deal with terms. A mathematical term is composed of letters, numbers
and operational signs such as +,−, ·, : or √ . Mathematical terms are e.g.

ax+ by − c, 17, (x+ y)3, 2x3 − 4x+ 7 or
√
2x+ 5.

We start this section with summarizing some well-known properties of real numbers. These
properties are needed e.g. to transform mathematical terms or to solve equations.
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Natural numbers
N

Negative
numbers

and number 0

Integers Z Fractions

Rational numbers
Q

Irrational
numbers

Real numbers
R

Figure 2.2: Number systems

Properties of real numbers with respect to addition (a, b, c ∈ R):

1. a+ b = b+ a (commutative law of addition);

2. there exists a number 0 ∈ R such that for all a

a+ 0 = 0 + a = a;

3. for all a, b, there exists a number x ∈ R with

a+ x = x+ a = b;

4. a+ (b+ c) = (a+ b) + c (associative law of addition).

Properties of real numbers with respect to multiplication (a, b, c ∈ R):

1. a · b = b · a (commutative law of multiplication);

2. there exists a number 1 ∈ R such that for all a

a · 1 = 1 · a = a;

3. for all a, b with a �= 0, there exists a real number x ∈ R such that

a · x = x · a = b;

4. (a · b) · c = a · (b · c) (associative law of multiplication).

The number 0 is the neutral element with respect to addition (i.e., for any a ∈ R we have
a + 0 = a) and number 1 is the neutral element with respect to multiplication (i.e., for any
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a ∈ R we have a = 1 · a).

Moreover, we have the following rules (which can e.g. be used to transform a given sum or
difference into a product):

Distributive law and generalizations:

1. (a+ b) · c = a · c+ b · c (distributive law);

2. a · (b+ c+ d) = ab+ ac+ ad ;

3. (a+ b) · (c+ d) = ac+ ad+ bc+ bd ;

4. (a+ b) · (c− d) = ac− ad+ bc− bd .

We illustrate the process of factorizing a term by the following examples.

Example 2.1 We get the following factor representations:

a) 3a4 + 9a3 = 3a3 · (a+ 3);

b) (a+ 2b) · (s+ 3t)− (2s− t) · (a+ 2b) = (a+ 2b) · [(s+ 3t)− (2s− t)]

= (a+ 2b) · (4t− s);

c) 4as− 10at+ 12bs− 30bt = 4s(a+ 3b)− 10t(a+ 3b) = (a+ 3b) · (4s− 10t)

= 2 · (a+ 3b) · (2s− 5t).

First, we have combined the first and third terms as well as the second and fourth terms.
Then we have factored out the term a+ 3b.

Moreover, for all real numbers a and b, we get the following binomial formulas:

Binomial formulas:

1. (a+ b)2 = a2 + 2ab+ b2 ;

2. (a− b)2 = a2 − 2ab+ b2 ;

3. (a+ b) · (a− b) = a2 − b2 .

Example 2.2 Using the above binomial formulas, we get the following equalities:

a) (3x+ 4y)2 = (3x)2 + 2 · 3x · 4y + (4y)2 = 9x2 + 24xy + 16y2.

b) (2x− ay)2 = (2x)2 − 2 · 2x · ay + (ay)2 = 4x2 − 4axy + a2y2;

c) We wish to represent the difference

25s2 − 3t2

in product form. Using the third binomial formula with a = 5s and b =
√
3 t, we get

25s2 − 3t2 = (5s+
√
3 t) · (5s−

√
3 t).
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Next, we introduce the notion of the absolute value of a number, which can be used to express
the distance of numbers or more general terms.

Absolute value:
Let a ∈ R. Then

|a| =
{

a for a ≥ 0
−a for a < 0

is called the absolute value of a.

From the above definition, it follows that the absolute value |a| is always a non-negative number
(note that, if a < 0, then −a > 0). The absolute value of a real number represents the distance
of this number from point zero on the number line. For instance, we get |3| = 3, | − 5| = 5 and
|0| = 0. In the following, we review some properties of absolute values.

Properties of absolute values:

Let a, b ∈ R and c ∈ R≥0. Then:

1. | − a| = |a| ;

2. |a| ≤ c ⇐⇒ −c ≤ a ≤ c ;

3. |a| > c ⇐⇒ (a < −c) or (a > c) ;

4.
∣∣∣ |a| − |b|

∣∣∣ ≤ |a+ b| ≤ |a|+ |b| ;

5. |a · b| = |a| · |b| ;

6.
∣∣∣a
b

∣∣∣ = |a|
|b|

.

According to the definition of the absolute value of a real number, we can give the following
generalization.

Let x, a ∈ R. Then

|x− a| =
{

x− a for x ≥ a
−(x− a) = a− x for x < a

Thus, the non-negative value |x − a| gives the distance of the number x from the number a.
For instance, if a = −2 and x = 6, we get

|x− a| = |6− (−2)| = 8,

i.e., the number 6 has a distance of eight units from the number −2. Moreover, if a = −2 and
x = −4, we get

|x− a| = | − 4− (−2)| = | − 4 + 2| = | − 2| = 2,

i.e., the number −4 has a distance of two units from the number −2.
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Example 2.3 We simplify the term

T = 6x+ 2 · |2a− 3x|

by ‘removing’ the absolute values and obtain

T =

{
6x+ 2 · |2a− 3x| = 4a for 2a− 3x ≥ 0

6x− 2 · (2a− 3x) = −4a+ 12x for 2a− 3x < 0
.

2.3 Calculations with Fractions

We recall that the term
a

b

is denoted as a fraction (note that in the text, we write a fraction also as a/b). Here a ∈ Z is
known as the numerator and b ∈ N as the denominator. Thus, a fraction is only defined for
b �= 0, but we can also write a negative integer in the denominator. So we have

−3

5
=

−3

5
=

3

−5
.

If a < b, then it is a proper fraction. If a ≥ b, it is an improper fraction. Obviously, we have
for c �= 0 (and b �= 0) the following equality:

a

b
=

a · c
b · c

.
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If we transform the left representation into the right one, we expand the fraction. If we
transform the right representation into the left one, we reduce the fraction. Next, we review
the rules for fractions.

Rules for working with fractions (a, c ∈ Z, b, d ∈ N}):

1.
a

b
± c

b
=

a± c

b
;

2.
a

b
± c

d
=

a d± b c

b d
;

3.
a

b
· c
d
=

a c

b d
;

4.
a

b
:
c

d
=

a d

b c
(c �= 0) .

The term
a

b
c

d
is known as a double fraction. According to the above rules, we obtain for a double fraction

a

b
c

d

=
a

b
:
c

d
=

a d

b c
.
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We illustrate the above rules by some examples.

Example 2.4 We determine the following difference D of the given two fractions:

D =
3u− 5v

u+ 2v
− 2u− v

u+ 2v
.

Both denominators are equal and we obtain

D =
(3u− 5v)− (2u− v)

u+ 2v
=

u− 4v

u+ 2v
.

Adding or subtracting two fractions requires that they have the same denominator (see rule (1)
above). If this is not the case, one has to determine a common denominator for both fractions.
A simple way is to take as the denominator the product of both denominators (see rule (2)
above). However, if several fractions have to be added or subtracted, the new dominator can be
rather large. Another way is to take the least common multiple of the fractions in order to
apply an analogue rule. We illustrate this by the following examples.

Example 2.5 We determine the number

N =
8

15
− 5

16
+

1

36
.

For all fractions, we determine the product representation by prime factors and the correspond-
ing expansion factors (by which the corresponding numerator has to be multiplied so that the
denominator is equal to the last common multiple). This yields:

prime factor expansion
representation factors

15 = 3 · 5 24 · 3 = 48
16 = 24 32 · 5 = 45
36 = 22 · 32 22 · 5 = 20

The least common multiple (i.e., the common denominator for all fractions) is obtained as the
product of the prime factors with the largest exponents occurring in the above prime factor
representation. Thus, the least common multiple is

24 · 32 · 5 = 720,

from which the expansion factors for each of the three fractions given in the last column are
obtained. Hence, we get

N =
8 · 48
720

− 5 · 45
720

+
10 · 20
720

=
384− 225 + 200

720
=

359

720
.

Example 2.6 We want to compute the fraction

F =
1

2ab
+

a− 2

a2 + 2ab
− b− 1

ab+ 2b2
,

where a, b �= 0 and a �= −2b. For all fractions, we again determine product representations and
the corresponding expansion factors. This yields:
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prime factor expansion
representation factors

2ab a+ 2b
a2 + 2ab = a(a+ 2b) 2b
ab+ 2b2 = b(a+ 2b) 2a

This yields the least common multiple

2 · a · b · (a+ 2b)

from which the above expansion factors result (see the right column). Hence, we obtain

F =
1 · (a+ 2b)

2ab(a+ 2b)
+

(a− 2) · 2b
2ab(a+ 2b)

− (b− 1) · 2a
2ab(a+ 2b)

=
(a+ 2b) + (2ab− 4b)− (2ab− 2a)

2ab(a+ 2b)

=
3a− 2b

2ab(a+ 2b)

We note that the greatest common divisor can be found by means of these so-called prime
factor representations. Another possibility is to use the Euclidean algorithm.

Example 2.7 We compute

DF =

2

3
+

1

6
4

3
− 1

4

and transform the above term first into one double fraction. This yields

DF =

4

6
+

1

6
16

12
− 3

12

=

5

6
13

12

.

Thus, we obtain

DF =
5

6
· 12
13

=
10

13
.

Example 2.8 We want to simplify the double fraction

DF =

2

x
− 3

y
1

x
+

2

y

assuming that x �= 0, y �= 0 and y �= −2x. This term can be transformed as follows:

DF =

2y − 3x

xy
y + 2x

xy

.
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This yields

DF =
2y − 3x

xy
· xy

y + 2x
=

2y − 3x

y + 2x
.

Thus, if a double fraction has the same denominators, we get the fraction including both numer-
ators of the double fraction.

Example 2.9 We simplify the term

DF =

x+ 1

x− 1
− 1

x+ 1

x− 1
+ 1

,

where x �∈ {0, 1}. This yields

DF =

x+ 1− (x− 1)

x− 1
x+ 1 + (x− 1)

x− 1

=
2

2x
=

1

x
.

2.4 Calculations with Powers and Roots

First, we review some important rules for working with powers and roots. These rules are
important e.g. for transforming terms or solving equations.

Rules for working powers (a, b,m, n ∈ R):

1. am · an = am+n ;

2. an · bn = (a b)n ;

3.
am

an
= am−n (a �= 0);

4.
an

bn
=

(a
b

)n
(b �= 0) ;

5. a−n =
1

an
(a �= 0) ;

6. (an)m = an·m = (am)n .

Rules for working with roots (a, b ∈ R≥0,m ∈ Z, n ∈ N):

1. n
√
a · b = n

√
a · n

√
b ;

2. n

√
a

b
=

n
√
a

n
√
b

(b �= 0) ;

3. n
√
am = am/n (a �= 0 or m/n > 0) .
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Using formula (3) for roots with m = 1, we obtain

n
√
a = a1/n ,

i.e., a root can be written as a power with a rational exponent. Moreover, we can derive some
further rules for working with roots by using the corresponding rules for powers applied to
rational exponents:

1. m
√
a · n

√
a = a1/m · a1/n = a1/m+1/n = a(n+m)/mn =

mn
√
an+m;

2. m
√

n
√
a =

m
√
a1/n = (a1/n)1/m = a1/nm = nm

√
a;

3. n
√
am = (am)1/n = am/n = (a1/n)m = ( n

√
a)

m
.

Example 2.10 First, we illustrate the use of powers and roots by the following computations.

a) 24 · 2−5 = 24−5 = 2−1 =
1

2
;

b) 43 · 63 = (4 · 6)3 = 243 = 13, 824;

c) (a2x3)4 = (a2)4 · (x3)4 = a8 · x12;

d)
xn+2 · y3n−1

z2n+1
· x

n−4 · z2n−3

y2n+1
= x(n+2)+(n−4) · y(3n−1)−(2n+1) · z(2n−3)−(2n+1)

= x2n−2 · yn−2 · z−4 =
x2n−2 · yn−2

z4
;

e) a−2/3 =
1

a2/3
=

1
3
√
a2

;

f)
√
50 ·

√
2 =

√
50 · 2 =

√
100 = 10;

g)
3
√√

343 =
√

3
√
343 =

√
3
√
73 =

√
7;

h)
√
x2 = |x|

(notice that both x and −x satisfy the above equality, but |x| ≥ 0 by definition);

i) (2
√
3 + 3

√
2) · (5

√
2− 4

√
3) = 10

√
2
√
3− 8(

√
3)2 + 15(

√
2)2 − 12

√
2
√
3

= 15 · 2− 8 · 3− 2
√
2
√
3 = 6− 2

√
6;

j) (
√
14 +

√
8)2 = (

√
14)2 + (

√
8)2 + 2

√
14 ·

√
8 = 14 + 8 + 2

√
14 · 8 = 22 + 2

√
112

= 22 + 2
√
16 · 7 = 22 + 2 · 4 ·

√
7 = 22 + 8

√
7;

k)
3
√

4 +
√
2 · 3

√
4−

√
2 = 3

√
(4 +

√
2) · (4−

√
2) = 3

√
42 − (

√
2)2 = 3

√
16− 2 = 3

√
14 .

l) We wish to write ab+3 + ab−2 + ab as a product. We can factor out the power with the
lowest exponent. This gives ab+3 + ab−2 + ab = ab−2 · (a5 + 1 + a2).
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Example 2.11 We simplify the term

T =
(6a2x)3

(5ax2y)4
· (12ax

2y)5

(4a3x)2
.

Transforming the numbers occurring above into a product representation of prime numbers and
combining both fractions into one fraction, we get

T =
(2 · 3 · a2 · x)3 · (22 · 3 · a · x2 · y)5

(5 · a · x2 · y)4 · (22 · a3 · x)2
.

Using now power rules and ordering the resulting terms according to common bases, we obtain

T =

[
23 · 33 · (a2)3 · x3

]
·
[
(22)5 · 35 · a5 · (x2)5 · y5

]

[(54 · a4 · (x2)4 · y4] ·
[
(22)2 · (a3)2 · x2

]

Summarizing further all powers with the same base, we get

T =
23+2·5 · 33+5 · a2·3+5 · x3+2·5 · y5

22·2 · 54 · a4+3·2 · x2·4+2 · y4

=
213 · 38 · a11 · x13 · y5

24 · 54 · a10 · x10 · y4

=
213−4 · 38 · a11−10 · x13−10 · y

54

=
29 · 38

54
· a · x3 · y .

Example 2.12 We simplify the following term:

T =

(
a2 − b2

x2 − y2

)n

·
(
x− y

a+ b

)n

.

Applying power rules and the third binomial formula, we get

T =

(
(a2 − b2) · (x− y)

(x2 − y2) · (a+ b)

)n

=

(
(a− b) · (a+ b) · (x− y)

(x− y) · (x+ y) · (a+ b)

)n

=

(
a− b

x+ y

)n

.

Example 2.13 We simplify the term

T =

√
5
√
(a2 − 2ab+ b2) .

Using the second binomial formula and the rules for working with roots, we obtain

T =
5

√√
(a− b)2 = 5

√
|a− b| .
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If in a fraction the denominator includes roots, one usually transforms the corresponding terms
in such a way that the denominator becomes rational. For a fraction N/D with

N

D
=

N
√
a±

√
b
,

this can be done as follows:

N

D
=

N · (
√
a∓

√
b)√

a2 −
√
b2

=
N · (

√
a∓

√
b)

a− b
.

Example 2.14 Let us consider the following examples for rationalizing the denominator.

a)
a√
b
=

a
√
b

(
√
b)2

=
a

b
·
√
b;

b)
3

5 +
√
2
=

3 · (5−
√
2)

(5 +
√
2) · (5−

√
2)

=
15− 3

√
2

52 − (
√
2)2

=
15− 3

√
2

23
;

c)
10√

2 +
√
3−

√
7
=

10

(
√
2 +

√
3)−

√
7

=
10 · (

√
2 +

√
3 +

√
7)[

(
√
2 +

√
3)−

√
7
]
·
[
(
√
2 +

√
3) +

√
7
]

=
10 · (

√
2 +

√
3 +

√
7)(√

2 +
√
3
)2 − 7

=
10 · (

√
2 +

√
3 +

√
7)

(2 + 2
√
6 + 3)− 7

=
10 · (

√
2 +

√
3 +

√
7)

2
√
6− 2

;

=
10 · (

√
2 +

√
3 +

√
7) · (

√
6 + 1)

2 · (
√
6− 1) · (

√
6 + 1)

=
10 · (

√
2 +

√
3 +

√
7) · (

√
6 + 1)

2 · (6− 1)

=
10

2 · 5
· (
√
2 +

√
3 +

√
7 +

√
12 +

√
18 +

√
42)

=
√
2 +

√
3 +

√
7 + 3

√
2 + 2

√
3 +

√
42 = 4

√
2 + 3

√
3 +

√
7 +

√
42 .

2.5 Calculations with Logarithms

Logarithm:
Let ax = b with a, b > 0 and a �= 1. Then

x = loga b

is defined as the logarithm of (number) b to the base a.

Thus, the logarithm of b to the base a is the power to which one must raise a to yield b. As a
consequence from the above definition of the logarithm, we have

aloga b = b.
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Rules for working with logarithms (a > 0, a �= 1, x > 0, y > 0, n ∈ R):

1. loga 1 = 0; loga a = 1;

2. loga(x · y) = loga x + loga y;

3. loga

(
x

y

)
= loga x − loga y;

4. loga (x
n) = n · loga x;

When using a pocket calculator, often only logarithms to base e and 10 can be computed. If
a logarithm to another base should be computed, one can use the change-of-base formula for
logarithms:

Change-of-base formula for logarithms:

logb c =
loga c

loga b
.

As an example, if we wish to determine log4 12, we get

log4 12 =
lg 12

lg 4
≈ 1.079181246

0.602059991
≈ 1.792481251 .
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When using base e instead of base 10, we get

log4 12 =
ln 12

ln 4
≈ 2.48490665

1.386294361
≈ 1.792481251 .

In the above computations, we have used the 9-digit-numbers obtained by a pocket calculator.
These numbers have already been rounded because they are all irrational numbers. We illustrate
the use of logarithms by some small examples.

Example 2.15 The following logarithms can be immediately found by applying the definition of
the logarithm.

a) We get
log4 64 = 3

since
43 = 64 .

b) We get

log16 4 =
1

2
since

161/2 =
√
16 = 4 .

c) We get
log1/4 43 = −3

since (
1

4

)−3

=
1

4−3
= 43 .

Example 2.16 We apply the rules for logarithms to write the following terms in an equivalent
form:

a) log2(ab)
4 = 4 · log2(ab) = 4 · (log2 a+ log2 b);

b) log2(2a
√
b+ c) = log2 2 + log2 a+ log2

√
b+ c = 1 + log2 a+ log2 (b+ c)1/2

= 1 + log2 a+
1

2
log2(b+ c);

c) ln
1

3
√
ab

= ln 1− ln(ab)1/3 = 0− 1

3
ln(ab) = −1

3
(ln a+ ln b);

d) log10
4

√
a2

b3c
= log10

(
a2

b3c

)1/4

=
1

4
·
[
log10 a2 − (log10 b3 + log10 c)

]

=
1

4
· (2 log10 a− 3 log10 b− log10 c);

e) The term
loga s+ logb t

cannot be transformed since both logarithms have different bases. The term

loga(s+ t2)

cannot be transformed since there is no rule for the logarithm of a sum.
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Example 2.17 We transform the term

L = ln(a+ b) + ln(a− b)− 1

2
· ln(a2 − b2)

into one logarithmic term. Using the rules for logarithms, we get

L = ln
(a+ b) · (a− b)

(a2 − b2)1/2
= ln

a2 − b2√
a2 − b2

= ln

√
a2 − b2 ·

√
a2 − b2√

a2 − b2
=

= ln
√
a2 − b2 = ln(a2 − b2)1/2 =

1

2
· ln(a2 − b2) .

EXERCISES

2.1 Calculate:
(a)

(
2a− 5b2

)2
; (b) (x2 − 3y)(x2 + 3y) .

2.2 Determine product representations for the following terms:
(a) 12a3 + 4a2 ; (b) 3ax− 6ay − 15bx+ 30by ; (c) xa − xa+3 − xa−1 .

2.3 Determine all real numbers x with
(a) |3x− 8| = 5 ; (b) |2x+ 7| = 10 .

2.4 Calculate the fraction
97

42
− 5

8
− 43

36
.

2.5 Combine into one fraction and simplify:

DF =
1

1

a
− 1

a− 1
− 1

a− 2

.

2.6 Combine into one fraction and simplify:

x

x+ y
+

y

x− y
+

2xy

x2 − y2
.

2.7 Combine into one fraction and simplify:

F =
u+ 6v

u2 − 3uv
− 1

2v
− 9y − x

2xy − 6y2
.

2.8 Combine into one fraction and simplify:

F =
5(12− 3x)

9x2 − 15xy
+

5y − 12

3xy − 5y2
.

2.9 Calculate and simplify as much as possible:

(
3

x
− 5

y

)
:

(
5

x
− 3

y

)
.

Download free eBooks at bookboon.com



A REFRESHER COURSE IN MATHEMATICS

41

Real Numbers and Arithmetic Operations

41

2.5. CALCULATIONS WITH LOGARITHMS 41

2.10 Calculate the number (without the use of a calculator)

(63)3 · (84)2

(12)12
.

2.11 Calculate:

(a) (x2y3z)5 ; (b)
(3ax2)2

(4a2x)3
· (ax)3

(5a3x)2
.

2.12 Simplify
xn+1y2n−1

zn−1
:
xn−2yn+1

zn+3
.

2.13 Simplify the following terms (without use of a calculator):

(a)

√
273

6
√
35

; (b)
√
35 +

√
21)2 ; (c)

3
√

2 +
√
2 · 3

√
2−

√
2 .

2.14 Rationalize the following fractions:

(a)
a
5
√
a
; (b)

2√
50

; (c)
1 + x√
1− x

; (d)
a

1−
√
ax

.

2.15 Calculate the following logarithms:
(a) log1.03 12 ; (b) log1.1 10 ; (c) log1/2 16 .

2.16 Calculate the following logarithms (without the use of a calculator):
(a) lg 20 + lg 50 ; (b) ln e4 − ln

√
e .
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Equation:
Let T1 and T2 be two mathematical terms. Then

T1 = T2

is called an equation.

In general, finding all solutions of a given equation is a difficult but important problem in
mathematics. For instance, often the zero of a function has to be determined. Here we consider
several special classes of such equations and discuss some of their properties as well as how they
can be solved. In particular, we review

• linear equations and systems of two linear equations with two variables;

• quadratic, root, logarithmic, exponential equations and proportions and

• the approximate solution of equations (without use of differentiation).

First, we introduce the notion of an equivalent transformation.

Equivalent transformations:
Equivalent transformations of mathematical terms are characterized by

• combining several terms on one side,

• adding or subtracting the same number or term on both sides or

• multiplying or dividing both sides by the same non-zero number or term.

43
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3.1 Linear Equations

Linear equation:
An equation is called linear if it can be transformed by equivalent transformations into the
form ax+ b = 0 with a �= 0.

For instance

3x+ 7 = 0,
1

3
x =

7

11
or

2

x− 1
= 5

are linear equations. In the latter case, it is assumed that x−1 �= 0. To transform this equation
into the form ax + b = 0, we have to multiply both sides of the equation by the term x − 1.
In the following, we often write the corresponding transformation after a vertical line on the
right-hand side (i.e., | ·(x− 1) in the above case).

A linear equation is characterized by the occurrence of the first power of x, which is denoted
as the variable or unknown. a and b are called the parameters or constants, and they are
given fixed values. Since a �= 0, we can solve the given linear equation for x and obtain the
unique solution

x = − b

a
.

Example 3.1 Consider the equation

27x− 10 = 15x+ 6.

Solving for x, we obtain

27x− 10 = 15x+ 6 | −15x+ 10

12x = 16 |: 12

x =
16

12
=

4

3
,

i.e., x = 4/3 is the only solution of the given equation.

Example 3.2 Let the equation

4ax− 2ab2 = 3ax− 3dx+ 6b2d

be given, where a, b, d are real parameters and it is assumed that a �= −3d. This is a linear
equation in the variable x because x occurs only in the first power (while parameter b occurs in
the second power). We write all terms including the variable x on the left-hand side and all
other terms on the right-hand side. This gives

4ax− 3ax+ 3dx = 2ab2 + 6b2d

ax+ 3dx = 2ab2 + 6b2d

x(a+ 3d) = 2b2(a+ 3d) |: (a+ 3d) �= 0

x = 2b2.
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According to the given assumption a �= −3d, the term a+3d is different from zero and therefore,
we can divide both sides in the second-to-last row by this non-zero number. We can easily test
the correctness of our computations by substituting the solution obtained into the given equation.
This yields

4a · 2b2 − 2ab2 = 3a · 2b2 − 3d · 2b2 + 6b2d

6ab2 = 6ab2 − 6b2d+ 6b2d.

The above identity 6ab2 = 6ab2 confirms the result obtained.

We continue with a few linear equations including fractions.

Example 3.3 Consider the equation

x+ 3

8
− 1 =

x+ 1

3
+

x− 2

4
.

First, we rewrite the above equation using the least common multiple of the numbers 3, 4 and 8,
which is 24. This yields

3x+ 9

24
− 24

24
=

8x+ 8

24
+

6x− 12

24

(see also Section 2.3). Combining the fractions on both sides and solving for x, we obtain:

3x− 15

24
=

14x− 4

24
| ·24

3x− 15 = 14x− 4 | −14x+ 15

−11x = 11 |: (−1)

x = −1.

In the first row above, we can also use the property that two fractions with the same denominator
are equal if the numerators are equal (this gives the second row). We can easily test that our
computations are correct by substituting the result into the given equation:

−1 + 3

8
− 1 =

−1 + 1

3
+

−1− 2

4

2

8
− 8

8
= 0− 3

4

−3

4
= −3

4
.

Example 3.4 Consider the linear equation

x

a
=

b

c
x+

d

c
.

with a �= 0 and c �= 0. We can combine the right-hand side into one fraction, which gives

x

a
=

bx+ d

c
.

After cross multiply, we obtain

cx = a · (bx+ d) = abx+ ad.
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Then, we get

cx− abx = ad

(c− ab)x = ad.

When solving now for x, we have to distinguish three cases.

Case 1: c− ab = 0 and ad �= 0.

In this case, there does not exist a solution because 0 · x cannot be different from zero.

Case 2: c− ab = 0 and ad = 0.

In this case, any real number x satisfies the given equation, i.e., there exist infinitely many
solutions.

Case 3: c− ab �= 0.

In this case, there exists a unique solution, and we obtain

x =
ad

c− ab
.

Example 3.5 If one adds a certain number to the numerator of the fraction 11/14 and subtracts
the half of the same number from the denominator, we obtain the fraction 17/11. Which is the
number we are looking for? Let us denote this number by x. We can setup an equation

11 + x

14− x

2

=
17

11
.

Using cross multiply, this yields

11 · (11 + x) = 17 ·
(
14− x

2

)

121 + 11x = 238− 8.5x

19.5x = 117

x = 6 ,

i.e., the number x = 6 satisfies the above property.

The next three examples consider some applications from physics, where linear equations occur.

Example 3.6 A swimming pool has two inflows and one outflow. It is known that, if only the
first inflow operates, the pool would be filled after 2 h. Moreover, it would also be filled after 3
h, if only the second inflow operates. On the other side, by means of the outflow the pool would
be empty after 1.5 h when there would be no inflow.

If both inflows and the outflow operate, what time is necessary to fill the pool completely? Let
F denote the inflow per hour, V be the volume of the pool, and t the required time to fill the
pool (in hours). The amount F1 of the first inflow per hour is F1 = V/2, the amount F2 of the
second inflow per hour is F2 = V/3, and the amount F3 of the outflow per hour is F3 = V/1.5.
Thus, the total inflow per hour into the pool is given by

F = F1 + F2 − F3 =
V

2
+

V

3
− V

1.5
=

V

2
+

V

3
− 2V

3
=

3V + 2V − 4V

6
=

V

6
.
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Moreover, we have F · t = V which gives

V

6
· t = V

from which we obtain the solution t = 6 h, i.e., if both inflows and the outflow of the pool operate,
it is completely filled after 6 h.

Example 3.7 A bus starts from Magdeburg to Munich with a constant speed of 95 km/h. At the
same time, a truck starts from Munich to Magdeburg with a constant speed of 80 km/h. When
and where will they meet?

It is known from physics that the velocity v is defined as the quotient of distance s and time t:

v =
s

t
.

The distance between Magdeburg and Munich is equal to s = 525 km. Let t denote the time from
the start of the bus and the truck until they meet, s1 the driven distance of the bus starting from
Magdeburg and s2 be the distance of the truck starting from Munich till the meeting point. Then
we have

s1 = v1 · t and s2 = v2 · t .

Since s = s1 + s2, we get

s = v1 · t+ v2 · t = (v1 + v2) t.

Solving for t, we get

t =
s

v1 + v2
=

525 km

(95 + 80) km/h
= 3 h.

Thus, the distances driven by the bus and the truck are

s1 = 95
km

h
· 3 h = 285 km and s2 = 80

km

h
· 3 h = 240 km .

This means that they meet on the highway near the German town Bayreuth which is approxi-
mately 230 km far from Munich.

Example 3.8 We determine the time necessary for a car of 4.5 m length to drive past a truck
of 15.5 m length when the car has a constant speed of 100 km/h and the truck has a constant
speed of 80 km/h. Let vC = 100 km/h be the speed of the car and lC = 4.5 m be the length of the
car, vT = 80 km/h be the speed of the truck and lT = 15.5 m be the length of the truck. During
driving past, the distance sC of the car is given by

sC = sT + lC + lT = sT + 4.5 m+ 15.5 m = sT + 20 m,

where sT is the distance driven by the truck in time t required for driving past the truck. Then
we have

sC
vC

= t =
sT
vT

,

which corresponds to
sT + 20 m

vC
=

sT
vT

.
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We determine sT and obtain

sT
vT

− sT
vC

=
20m

vC

sT ·
(

1

vT
− 1

vC

)
=

20m

vC

sT · vC − vT
vT · vC

=
20m

vC
,

which yields

sT =
20 m · vT
vC − vT

=
20 m · 80 km/h

20 km/h
= 80 m .

Thus, the distance driven by the car in time t is

sT = 80 m + 20 m = 100 m .

Consequently, the required time for diving past is

t =
sT
vT

=
80 m

80 km/h
=

0.08 km

80 km/h
= 0.001 h .

Using that 1 h corresponds to 3,600 s, we get the time

t = 0.001 · 3, 600 s = 3.6 s,

i.e., 3.6 s are required for driving past the truck.

Finally, we generalize our considerations to the case of two linear equations with two variables
x and y.

System of two linear equations with two variables:
Let the equations

a1x+ b1y = c1

a2x+ b2y = c2

be given. This is called a system of two linear equations with two variables.

Such a system can be solved by eliminating one of the variables. If one wants to eliminate
variable x, we can multiply the first equation by −a2/a1 and add it to the second equation. We
get (

−b1 ·
a2
a1

+ b2

)
y = −c1 ·

a2
a1

+ c2

from which we can determine y. Then we can substitute this result into one of the original
equations, which gives a linear equation with the only variable x. For illustration, we consider
the following three examples:
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Example 3.9 Let the system

−x+ 3y = 4

3x− y = 12

be given. In order to eliminate x, we multiply the first equation by −a2/a1 = −3/(−1) = 3 and
add it to the second equation, which yields

8y = 24

and therefore,
y = 3.

Substituting this result e.g. into the first equation, we get

−x+ 3 · 3 = 4

x = 5.

Example 3.10 Consider the system

4x+ 3y = −2

7x− 5y = 17.

Instead of multiplying the first equation by −a2/a1 = −7/4 and adding it to the second equation,
we can multiply the first equation by −7 and the second one by 4 (in this case we avoid fractions
in the resulting equation) and after adding the resulting equations, we get

(−21− 20)y = 14 + 68 ,
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i.e.,
−41y = 82

and thus
y = −2.

Substituting this result for instance into the first equation, we get

4x = −2− 3y = −2− 3 · (−2) = 4

and thus
x = 1.

A test confirms the correctness of our computations:

4 · 1 + 3 · (−2) = −2

7 · 1− 5 · (−2) = 17.

Example 3.11 Consider the system

2x− 3y = 4

−6x+ 9y = 6.

Multiplying the first equation by −a2/a1 = −(−6)/2 = 3 and adding it to the second one, we get

0x+ 0y = 18

This is a contradiction because the left-hand side is equal to zero while the right-hand side is
different from zero. Therefore, the given system of linear equations has no solution.
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In a similar solution approach, one can transform the equations so that both coincide in one
side and then uses that the other side of both equations must also coincide. We only mention
that a general procedure for solving systems of m linear equations with n variables is Gaussian
elimination.

3.2 Quadratic Equations

Quadratic equation and normal form:
An equation of the form

ax2 + bx+ c = 0 (3.1)

with a �= 0 is called a quadratic equation. Dividing both sides by a gives the normal form

1x2 + px+ q = 0

with p = b/a and q = c/a.

For presenting all solutions, we have to distinguish three cases.

Case 1: p2/4− q > 0.

In this case, there exist two distinct real solutions

x1 = −p

2
+

√
p2

4
− q and x2 = −p

2
−

√
p2

4
− q.

Case 2: p2/4− q = 0.

In this case, there exists a real double solution

x1 = x2 = −p

2
.

Case 3: p2/4− q < 0.

In this case, there does not exist a real solution of the given quadratic equation.

Example 3.12 Consider the quadratic equation

3x2 + 6x− 9 = 0.

After dividing both sides by 3, we get a quadratic equation in normal form with p = 2 and
q = −3:

x2 + 2x− 3 = 0.

Since p2/4− q = 1− (−3) = 4 > 0, we get two distinct solutions

x1 = −1 +
√
1 + 3 = −1 +

√
4 = 1 and x2 = −1−

√
1 + 3 = −1−

√
4 = −3.

Example 3.13 Let the quadratic equation

x2 + 10x+ 25 = 0

be given. Since p2/4− q = 100/4− 25 = 0, there exists a double solution

x1 = x2 = −5.
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Example 3.14 We solve the quadratic equation

x2 + 2x+ 5 = 0.

Since p = 2 and q = 5, we get p2/4− q = 1− 5 = −4 < 0 and therefore, the above equation has
no real solution.

We only mention that in several books the solution formula for a quadratic equation refers to
equation (3.1). In this case, the sign of the term D = b2 − 4ac decides about the number of real
solutions. For instance, if D > 0, we get the two distinct real solutions

x1 =
−b+

√
b2 − 4ac

2a
and x2 =

−b−
√
b2 − 4ac

2a
.

We finish with some quadratic equations, where the application of the above solution formula is
not necessary.

Example 3.15 Let
4x2 − 49 = 0

We can use the following transformations:

x2 =
49

4
| √

√
x2 =

√
49

4

|x| =
5

2
.

Note that we have to use the absolute value on the left-hand side since otherwise one solution
gets lost. Therefore, we get the two solutions

x1 =
5

2
and x2 = −5

2
.

Example 3.16 We consider the equation

3x2 + 12x = 0.

Factoring out 3x, we get
3x(x+ 4) = 0

which has the two solutions
x1 = 0 and x2 = −4.

Example 3.17 Consider the quadratic equation

(3x+ 7)2 = 25

Taking the square roots on both sides we get

|3x+ 7| = 5.
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According to the definition of the absolute value, we have to consider two cases.

Case 1: 3x+ 7 ≥ 0.

Then we have
|3x+ 7| = 3x+ 7 = 5

which gives the first solution

x1 = −2

3
.

Case 2: 3x+ 7 < 0.

Then we have
|3x+ 7| = −(3x+ 7) = −3x− 7 = 5

which gives the second solution
x2 = −4.

A test confirms our computations. For x1 = −2/3, we obtain

[
3 ·

(
−2

3

)
+ 7

]2
= 52 = 25.

For x2 = −4, we obtain
[3 · (−4) + 7]2 = (−5)2 = 25.

We continue with a generalization of quadratic equations, called a biquadratic equation.
Such an equation is characterized by the occurrence of only the fourth and second powers of the
variable x, and it has the form:

ax4 + bx2 + c = 0 (a �= 0) .

In this case, we introduce a new variable z by means of the substitution z = x2 and solve
the resulting quadratic equation for the variable z. Then we substitute back and determine all
solutions for the variable x. We consider the following example.

Example 3.18 Consider the biquadratic equation

x4 − 2x2 − 3 = 0.

After substituting z = x2, we obtain the quadratic equation

z2 − 2z − 3 = 0.

Applying the solution formula for a quadratic equation, we obtain

z1 = 1 +
√
1 + 3 = 3 and z2 = 1−

√
1 + 3 = −1.

After substituting back, we obtain from x2 = z1 = 3 the two solutions

x1 =
√
3 and x2 = −

√
3.

The equation x2 = z2 = −1 has no real solution and therefore, there exist only the real solutions
x1 and x2.

Next, we consider an example which can be also reduced to a quadratic equation.
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Example 3.19 Given is the equation

x+ 4
√
x− 12 = 0 .

Using the substitution z =
√
x, we get the quadratic equation

z2 + 4z − 12 = 0

which has the two solutions

z1 = −2 +
√
4 + 12 = 2 and z2 = −2−

√
4 + 12 = −6 .

Substituting back, for z1 we get
√
x = 2 which yields the solution x1 = 4. For z2, there does not

exist a solution x2 since we always have
√
x �= −6. A test confirms that

4 + 4 ·
√
4− 12 = 4 + 8− 12 = 0.

Finally, we consider two systems of equations with two variables, where in one equation one
variable can be eliminated and plugged in the other equation (so that a quadratic equation
results).

Example 3.20 Let the system of equations

2x+ 5y = −12

x y = 2
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be given. From the second equation, we get for x �= 0

y =
2

x
. (3.2)

Substituting this into the first equation we get

2x+ 5 · 2
x
= −12.

Multiplying both sides by x and dividing the resulting equation by 2, we get

x2 + 6x+ 5 = 0.

This quadratic equation has the two solutions

x1 = −3 +
√
9− 5 = −1 and x2 = −3−

√
9− 5 = −5.

Using equation (3.2), we get the corresponding solutions

y1 =
2

x1
= −2 and y2 =

2

x2
= −2

5
.

Thus, the given system has the two solutions (x1, y1) = (−1,−2) and (x2, y2) = (−5,−2/5).

Example 3.21 Let us consider the system

x− 2y = 0

x2 − xy + y2 = 48.
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From the first equation, we immediately get

x = 2y. (3.3)

Substituting this into the second equation, we obtain

(2y)2 − 2y · y + y2 = 48

4y2 − 2y2 + y2 = 48

y2 = 16

and thus the solutions
y1 = 4 and y2 = −4.

Using equation (3.3), we get

x1 = 2y1 = 8 and x2 = 2y2 = −8.

Thus, the given system has the two solutions (x1, y1) = (8, 4) and (x2, y2) = (−8,−4).

3.3 Root Equations

Root equation:
An equation in which the variable x occurs under the root sign is called a root equation.
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For instance,

√
2x+ 4 = 10,

√
3x+

√
6x− 4−

√
x+ 2 = 20 or 3

√
4x+ 3− 27 = 0

are root equations. One can solve such an equation by taking an appropriate power such that
the corresponding roots are removed. For a root equation, we always have to test whether the
solution(s) obtained indeed satisfy the given equation.

Example 3.22 Given is the root equation

√
3x+ 4− 7 = 0.

We can transform this equation as follows:

√
3x+ 4 = 7 | ( )2

3x+ 4 = 49 | −4

3x = 45 |: 3
x = 15.

Substituting the result into the given root equation, we get

√
3 · 15 + 4− 7 =

√
49− 7 = 0,

i.e., x = 15 is indeed a solution of the given root equation.

Let us now consider the equation √
3x+ 4 + 7 = 0. (3.4)

We get √
3x+ 4 = −7.

After taking the square on both sides, we get the same result as in the calculations before.
However, x = 15 is not a solution of the given equation (3.4) since

√
3 · 15 + 4 + 7 =

√
49 + 7 = 14 �= 0.

It is immediately clear that equation (3.4) cannot have a solution since
√
3x+ 4 ≥ 0 for all real

numbers x.

Example 3.23 Next, we consider the root equation

√
x− 1−

√
2x− 3 =

√
3x− 4.

Taking the square on both sides, we get by applying the second binomial formula

(x− 1) + (2x− 3)− 2 ·
√
x− 1 ·

√
2x− 3 = 3x− 4,

which corresponds to
3x− 4− 2 ·

√
x− 1 ·

√
2x− 3 = 3x− 4.

Subtracting 3x − 4 on both sides, dividing the resulting equation by −2 and applying the rules
for roots, we get √

(x− 1) · (2x− 3) = 0
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which has the two solutions

x1 = 1 and x2 =
3

2
.

For x1 = 1, the term
√
2x− 3 is not defined since 2 · 1− 3 = −1 < 0. For x2 = 3/2, we get the

correct identity √
3

2
− 1−

√
2 · 3

2
− 3 =

√
3 · 3

2
− 4,

i.e., √
1

2
=

√
1

2
.

Thus, x2 = 3/2 is the only solution of the given root equation.

Example 3.24 We determine all solutions of the root equation

√
x+

√
2x+ 11 + 2 = 2.

Taking the square on both sides, we get

x+
√
2x+ 11 + 2 = 22 = 4,

which can be written as √
2x+ 11 = 2− x.

Taking now again the square on both sides, we obtain

2x+ 11 = (2− x)2 = 4− 4x+ x2,

which corresponds to

x2 − 6x− 7 = 0.

This quadratic equation has the two solutions

x1 = 3 +
√
9 + 7 = 7 and x2 = 3−

√
9 + 7 = −1.

We test whether both solutions indeed satisfy the given root equation. For x1 = 7, we obtain

√
7 +

√
2 · 7 + 11 + 2 =

√
7 + 5 + 2 =

√
14 �= 2.

For x2 = −1, we obtain

√
−1 +

√
2 · (−1) + 11 + 2 =

√
−1 +

√
9 + 2 =

√
4 = 2.

This, only x2 = −1 satisfies the given equation.

Example 3.25 Let us consider consider the root equation

3

√
17− 3

√
5x− 11 = 2.
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Transforming this equation, we get

17− 3 ·
√
5x− 11 = 23 = 8

−3 ·
√
5x− 11 = −9 | ( )2

9 · (5x− 11) = 81

5x− 11 = 9

x = 4

A test confirms the correctness of our computations:

3

√
17− 3 ·

√
5 · 4− 11 =

3

√
17− 3 ·

√
9 =

3
√
8 = 2.

Example 3.26 Finally, we determine all solutions of the root equation

4

√
18− 2 · 3

√
3x− 2 = 2.

We consecutively apply the rules for working with powers and obtain

18− 2 · 3
√
3x− 2 = 24

2 · 3
√
3x− 2 = 2 |: 2

3
√
3x− 2 = 1 | ( )3

3x− 2 = 13 = 1

x = 1.

A test gives
4

√
18− 2 · 3

√
3 · 1− 2 =

4

√
18− 2 · 3

√
1 =

4
√
16 = 2 .

3.4 Logarithmic and Exponential Equations

Logarithmic equation:
An equation in which the variable x occurs either in the base or the numerus of a logarithm is
called a logarithmic equation.

For instance,

ln(2x− 7) = 0.5, log2x = 32 or lg 32x + lg 5x−1 − 3 = 0

are logarithmic equations. Simple logarithmic equations can be solved by writing the left-hand
and right-hand sides as exponent with an appropriately chosen base.

Example 3.27 Consider the logarithmic equation

log2 4x = 5

Due to aloga b = b and the property that for an exponential term the equality aT1 = aT2 is
equivalent to the equality T1 = T2 (in the subsequent examples, we use such a property also for
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other terms such as logarithmic terms), we transform the above equation into an exponential
term with base 2 and obtain:

2log2 4x = 25

4x = 32

x = 8.

We can test the correctness of the result by substituting into the original equation and obtain

log2 (4 · 8) = log2 32 = log2 25 = 5.

Example 3.28 We consider the logarithmic equation

lg 20x + lg 5x = 4.

We apply the rules for working with logarithms and obtain

x · lg 20 + x · lg 5 = 4

x · (lg 20 + lg 5) = 4

x · lg(20 · 5) = 4

x · lg(102) = 4

x · 2 · lg 10 = 4

x · 2 = 4

x = 2.

A test confirms the correctness of our result:

lg 202 + lg 52 = lg 400 + lg 25 = lg 10, 000 = lg 104 = 4.

Example 3.29 Let us consider the logarithmic equation

lnx2 = ln(a3 − b3)− ln(a− b)− ln(a2 + ab+ b2).

We assume that the positive parameters a and b satisfy the inequalities a < b and a3 > b3. Under
these assumptions, all logarithms above are defined. We simplify the right-hand side and obtain

lnx2 = ln
a3 − b3

(a− b) · (a2 + ab+ b2)

x2 =
a3 − b3

(a− b) · (a2 + ab+ b2)

x2 =
a3 − b3

a3 − b3

x2 = 1.

From the last equation we obtain the two solutions x1 = 1 and x2 = −1. Both solutions satisfy
the given equation: In both cases the left-hand side has the value ln 1 = 0 which is equal to the
value of the right-hand side.
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Example 3.30 Consider the logarithmic equation

2 ln(x− 1) = ln(x+ 11).

We can use the rules for logarithms and rewrite the equation as an exponential term with base
e. This yields:

ln(x− 1)2 = ln(x+ 11)

(x− 1)2 = x+ 11

x2 − 2x+ 1 = x+ 11

x2 − 3x− 10 = 0 .

We note that the second equation above can also be skipped since from ln y = ln z, it immediately
follows that y = z. The quadratic equation above has the two solutions

x1 =
3

2
+

√
9

4
+ 10 =

3

2
+

√
49

4
=

3

2
+

7

2
= 5

and

x2 =
3

2
−

√
9

4
+ 10 =

3

2
−

√
49

4
=

3

2
− 7

2
= −2.

We have to test whether x1 and x2 are indeed solutions of the given equation. For x1 = 5, we
obtain

2 ln(5− 1) = ln(5− 1)2 = ln 16 = ln(5 + 11).

However, for x2 = −2 the term ln(x− 1) = ln(−3) is not defined. Therefore, x1 = 5 is the only
solution of the given logarithmic equation.
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Exponential equation:
An equation in which the variable x occurs in the exponent is called an exponential equation.

For instance,

3x+4 = 20, ax = b3x+1 or
x
√
2.5 = 12

are exponential equations. Only simple exponential equations can be solved, often one has to
look for approximative solutions. Simple exponential equations can be solved by taking on both
sides of the equation the logarithm to an appropriate base.

Example 3.31 Consider the exponential equation

−3 · 2x + 4x/2+1 = 2 · 3x+1 − 3x.

We rewrite the above equation in such a form that on the left-hand side only exponential terms
with power 2 and on the right-hand side only exponential terms with power 3 appear. Using
22 = 4, we get

−3 · 2x + (22)x/2+1 = 2 · 3 · 3x − 3x,

which gives

−3 · 2x + 22·(x/2+1) = 5 · 3x.

Moreover, using

22(x/2+1) = 2x+2 = 2x · 22 = 4 · 2x,
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we get

−3 · 2x + 4 · 2x = 5 · 3x

1 · 2x = 5 · 3x

2x

3x
= 5

(
2

3

)x

= 5 | ln( )

ln

(
2

3

)x

= x ln
2

3
= ln 5

x =
ln 5

ln 2− ln 3

x = −3.96936,

which indeed satisfies (approximately) the original equation (note that rounding differences may
occur):

−3 · 2−3.96936 + 4−3.96936/2+1 ≈ 2 · 3−3.96936+1 − 3−3.96936

−0.191525 + 0.255366 ≈ 0.0776610− 0.012768

0.063841 ≈ 0.063842.

Example 3.32 We determine all solutions of the exponential equation
x+1
√
ax−2 =

x+5
√
ax−1.
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Transforming this equation, we get

a(x−2)/(x+1) = a(x−1)/(x+5)

x− 2

x+ 1
=

x− 1

x+ 5
(x− 2) · (x+ 5) = (x− 1) · (x+ 1)

x2 + 3x− 10 = x2 − 1

3x = 9

x = 3.

A test confirms
3+1
√
a3−2 = 4

√
a = a1/4

and
3+5
√
a3−1 =

8
√
a2 = a2/8 = a1/4,

i.e., both sides of the given equation have the same value a1/4.

Example 3.33 Let the exponential equation

12− 3e2x − 9ex = 0

be given. We can transform this equation into a quadratic equation by means of the substitution
z = ex by using that e2x = (ex)2. Dividing the resulting equation by (−3), we get

z2 + 3z − 4 = 0.
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This quadratic equation has the two solutions

z1 = −3

2
+

√
9

4
+ 4 = −3

2
+

5

2
= 1 and z2 = −3

2
−

√
9

4
+ 4 = −3

2
− 5

2
= −4.

Substituting back, we get for z1 = 1 the equation ex = 1 which gives the solution

x1 = ln 1 = 0.

For z2 = −4, the resulting equation ex = −4 has no solution since ex is positive for all real
numbers x. Therefore, x1 = 0 is the only solution of the given exponential equation.

3.5 Proportions

Proportion:
If the two ratios a : b and c : d have the same value, then

a : b = c : d (3.5)

with b �= 0 and d �= 0 is called a proportion.

If proportion (3.5) holds, then also the proportions

d : c = b : a, a : c = b : d and c : a = d : b
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hold. Moreover, proportion (3.5) is equivalent to the equalities

a = c · f and b = d · f,

where f is denoted as the factor of proportionality. We illustrate the use of proportions by
the following examples.

Example 3.34 A car consumes 6.25 litres of fuel per 100 km. How many kilometres can the car
go if the tank of this car is filled up with 48 litres. Thus, the ratios that the car consumes 6.25
liters per 100 km and 49 litres per x km are equal. We can establish the following proportion:

6.25 : 100 = 48 : x.

This gives

6.25 · x = 48 · 100

x =
4, 810

6.25
= 768.

This means that the car can go 768 kilometres with a tank filled up with 48 litres.

Example 3.35 In an examination 6 students of a group fail. This corresponds to 18.75 % of
the participants in the examination. How many students took part in the examination? This
means that the ratio 6 : x is the same as 18.75 : 100. We obtain the following proportion:

6 : x = 18.75 : 100

Solving for x, we get

18.75 · x = 6 · 100

x =
600

18.75
= 32,

i.e., 32 students took part in the examination.

Example 3.36 A way of a length of 6.56 m should be divided according to the ratio 5 : 3. Let
x and y denote the lengths of the two parts, i.e., x and y have to satisfy the proportion

x : y = 5 : 3 .

Using x+ y = 6.56 m, we get
x

y
=

6.56 m − y

y
=

5

3
.

Now, by cross multiply, we get

5y = 3 · (6.56 m − y)

from which we obtain

y =
3 · 6.56 m

8
= 2.46 m

and

x = 6.56 m − 2.46 m = 4.10 m .
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Example 3.37 A wire with a length l1 = 100 m and a diameter d1 = 3 mm has the weight
w1 = 8 kg. A second wire made from the same material has the diameter d2 = 5 mm and the
weight w2 = 20 kg. How long is the second wire?

From physics it is known that the ratio of the weights of the wires is identical to the ratio of the
volumes V1 : V2, i.e., we obtain

w1 : w2 = V1 : V2

w1 : w2 =
d21
4

π l1 :
d22
4

π l2

w1

w2
=

d21 · l1
d22 · l2

Solving for l2, we get

l2 =
w2 d

2
1 l1

w1 d22
=

20 kg · 32 mm2 · 100 m

25 mm2 · 8 kg
= 90 m ,

i.e., the second wire has a length of 90 m.

3.6 Approximate Solution of Equations

Finding the zeroes of a function (see also Chapter 8) is often a hard problem in mathematics
which leads to the solution of an equation. If one is unable to find exactly the zeroes, one can
apply numerical procedures for finding a zero approximately. There are several procedures for
finding zeroes approximately without use of differential calculus, e.g. interval nesting and the
use of the fixed-point theorem. Here we describe a procedure known as Regula falsi, which
also does not use derivatives of a function. In this case, we approximate the continuous function
f between x0 = a and x1 = b with f(a) · f(b) < 0 by a straight line through the points (a, f(a))
and (b, f(b)). This yields:

y − f(a) =
f(b)− f(a)

b− a
· (x− a).

Since we look for a zero x of function f , we set y = 0, solve the equation for x and use the result
as an approximate value (x2 = x)

x2 = a− f(a) · b− a

f(b)− f(a)

for the zero. In general, we have f(x2) �= 0 (in the other case, we have found the exact value
of the zero). Now we check which of both closed intervals [a, x2] and [x2, b] contains the zero.
If f(a) · f(x2) < 0, then there exists a zero in the interval [a, x2]. We replace b by x2, and
determine a new approximate value x3. Otherwise, i.e., if f(x2) · f(b) < 0, then interval [x2, b]
contains a zero. In this case, we replace a by x2 and determine then an approximate value
x3, too. Continuing in this way, we get a sequence {xn} converging to a zero x ∈ [a, b]. This
procedure is illustrated in Fig. 3.1.

Example 3.38 Let a function f be given with

f(x) = lg x− x+ 3 .
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x

y

f(x1)

x1 = b

x0 = a x2 x3

x̄

Figure 3.1: Illustration of Regula falsi

We are looking for one real zero (i.e., we wish to solve the equation lg x − x + 3 = 0). Since
f(3) = 0.47712 > 0 and f(4) = −0.39794 (and function f is continuous), there must be a zero
in the interval (3, 4). Letting x0 = a = 3 and x1 = b = 4, we get the results presented in Table
3.1 with a precision of three decimal places.

Table 3.1: Application of Regula falsi

n xn f(xn)

0 3 0.47712
1 4 −0.39794
2 3.5452 0.0044
3 3.5502 0.00005
4 3.550

EXERCISES

3.1 Determine the solutions of the following linear equations:

(a) 2x+
5

4
=

3x+ 5

2
; (b)

3x+ 1

4
− 2 = 3− x+ 2

3
+

x+ 4

5
;

(c)
3x+ 4

5
+

x+ 6

4
− 4 = 0 ; (d) a− 1 +

1

x
=

a

x
;

(e)
2

3
+

1

x
=

1
3
2 − 1

6

; (f)
a2x+ b

a
− a(1− x)

b
= 2 (ab �= 0) .

3.2 Solve the following equation for g:

s = v0 t−
1

2
g t2 .
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3.3 Determine all solutions of the following systems of linear equations:

(a)
x + 2y = −5

4x − y = 7
;

(b)
x − 3y = 4

−2x + 6y = −2
.

3.4 Determine all real solutions of the following equations:

(a) x2 + x− 12 = 0 ; (b) (ax+ 2b)(a2 − bx) = 0 ;

(c) x2 + 2x+ 17 = 0 ; (d) 5x2 − 10x = 40 ;

(e) ax2 − 1 = b+ x2 ; (f) a(b− x) + x2 − bx = (a− x) · x ;

(g) x4 + 3x2 − 10 = 0 ; (h) x− 21

2

√
x+ 5 = 0 .

3.5 Find the quadratic equation having the following roots:

(a) x1 = 5 and x2 = −6 ; (b) x1 = 2 +
√
5 and x2 = 2−

√
5 .

3.6 Determine all solutions of the equation

x2 +
a

x
+ a = 0 (a �= 0) .

For which values of a does the equation have real solutions?

3.7 Determine all solutions of the following systems of equations:

(a)

x2 + y2 = 13

x

y
=

2

3

;

(b)
(x− 2) · (y − 2) = 3

x + y = 8
.

3.8 Determine all solutions of the following root equations:

(a)
√
x− 2 +

√
x+ 14 = 8 ; (b)

1−
√
x

1 +
√
x
=

1

2
;

(c) (13−
√
x) · (6−

√
x) = x+ 2 ; (d)

√
x+ 1 =

a

b
· (
√
x− 1) (b �= 0) ;

(e)
√
a− x+

b− a√
b− x

=
√
b− x (x ≤ a, x < b) .

3.9 Determine all solutions of the following logarithmic equations:
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(a) log4(3x+ 1) = 2 ; (b) 2 lnx = 4 ln 3 ;

(c) lg x7 − 12 = lg x3 ; (d) lg 25x + lg 4x = 6 ;

(e) log2(x+ 4)− log2(2x− 1) = 1 ; (f) ln

(
8

x+ 4
− 1

)
+ ln(x+ 4) = ln

(
16

4− x

)
.

3.10 Determine all solutions of the following exponential equations:

(a) 24x−5 − 128 = 0 ; (b) 4x − 1

256
= 0 ;

(c) 23(x−2) = 81−2x ; (d)

(
4

3

)2x+1

=

(
3

4

)3

;

(e) a4 · a2x−1 =
a · ax+2

a2x
; (f)

√
a3−x = a3x+4 ;

(g)
x+1
√
a3x−1 =

5−x
√
ax+3 (a > 0) ; (h) x

√
a = 10b (a > 0) .

3.11 What is the interest payment if an amount of 2,500 EUR is given to a bank for a period
of 110 days when the interest rate per year, i.e., for 365 days, is equal to 5 %?

3.12 A bus with a constant speed required 75 minutes to drive a distance of 120 km. If the
speed does not change, what time is needed for a distance of 280 km?

3.13 A 3-day trip of a length of 456 km should be divided into three daily sub-trips according
to the ratio 5 : 4 : 3. What are the corresponding distances for the particular days?

3.14 Determine a solution of the equation

x4 + 2x3 − 4x2 − 3 = 0

between a = 1 and b = 2 approximately by applying Regula falsi.

3.15 Determine a solution of the equation

3x− lnx− 14 = 0

between a = 4 and b = 6 approximately by applying Regula falsi.
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Inequalities

Inequalities are often obtained when comparing the values of different mathematical terms.
Often practical problems do not lead to equations but to inequalities. For instance, the amount
of an available resource or a financial budget may not be exceeded by the chosen production
program but it is not required to fully use the resource or the budget. Inequalities play also often
a role in estimations e.g. of the maximal possible error, or they may occur when determining
the domain of a function. The learning objectives of this chapter are

• to review the rules for working with inequalities and

• to discuss the most important types of inequalities.

Similar to equations, the main focus is on the determination of all feasible solutions of linear
and quadratic inequalities as well as inequalities with absolute values. We will also discuss the
solution of some more general inequalities.

4.1 Basic Rules

Inequality:
An inequality compares two mathematical terms by one of the inequality signs
< (smaller than), > (greater than),≤ (less than or equal to) and ≥ (greater than or equal to),
respectively.

For instance, the mathematical terms T1 and T2 must satisfy the inequality

T1 ≤ T2.

For working with such inequalities, we first review the most important rules. We assume that
a, b, c and d are real numbers.

71
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Rules for inequalities:

1. If a < b, then
a+ c < b+ c, a− c < b− c;

2. if a < b and b < c, then a < c;

3. if a < b and c > 0, then

ac < bc,
a

c
<

b

c
;

4. if a < b and c < 0, then

ac > bc,
a

c
>

b

c
;

5. if a < b and c < d, then a+ c < b+ d;

6. if 0 < a < b, then
1

a
>

1

b
;

7. if a2 ≤ b and b > 0, then

a ≥ −
√
b and a ≤

√
b (or correspondingly, −

√
b ≤ a ≤

√
b).

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

By 2020, wind could provide one-tenth of our planet’s 
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the 
world’s wind turbines. 

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our 
systems for on-line condition monitoring and automatic 
lubrication. We help make it more economical to create 
cleaner, cheaper energy out of thin air. 

By sharing our experience, expertise, and creativity, 
industries can boost performance beyond expectations. 

Therefore we need the best employees who can 
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering. 

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge


A REFRESHER COURSE IN MATHEMATICS

73

Inequalities
4.2. LINEAR INEQUALITIES 73

As a special case of rule (4) above, we have for c = −1:

If a < b, then − a > −b.

Rule (4) says that by multiplying or dividing both sides of an inequality by a negative number
c, the inequality sign between the terms changes. For a positive number c, this is not the case
(see rule (3)). Rule (5) cannot be extended to the subtraction, i.e., if a < b and c < d, then the
inequality sign between the terms a− c and b− d may be <,>,≤ or ≥.

4.2 Linear Inequalities

Linear inequality:
An inequality of the form

ax+ b > 0 and ax+ b ≥ 0,

respectively, is called a linear inequality.

Notice that this includes the cases of the inequality signs < or ≤ since by multiplying the
inequality by −1, we get an inequality of the above type. We consider a few examples for
solving linear inequalities by applying the above rules.

Example 4.1 Let us consider the linear inequality

4(x+ 2) < 6(x− 5) + 16

Applying the above rules for transforming inequalities, we can eliminate x and obtain

4x+ 8 < 6x− 30 + 16 | −6x− 8

−2x < −22 |: (−2)

x > 11,

i.e., every real number x from the interval (11,∞) satisfies the given inequality. Alternatively,
we can describe the set S of solutions in interval notation as

S = (11,∞).

Example 4.2 We wish to determine all integers satisfying the inequality

x+ 4 < 2x+
11

2
.

We disregard the integer requirement and solve the above inequality for x. This gives

x+ 4 < 2x+
11

2
| −2x− 4

−x <
3

2
| ·(−1)

x > −3

2
.
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We emphasize that in the last row, the inequality sign changes because we have multiplied both
sides by the negative number −1. Hence, the set S of solutions is the set of all integers greater
than −3/2, i.e.,

S = {−1, 0, 1, 2, . . .}.

Example 4.3 We determine all solutions satisfying the inequality

2− x

x+ 3
< 4

To solve for x, we want to multiply both sides of the inequality by x+ 3. Since this term can be
positive or negative, we have to consider the two cases: x < −3 and x > −3 (note that x = −3
has to be excluded).

Case 1: x < −3: In this case, the term x+ 3 is negative, and we obtain

2− x > 4 (x+ 3)

from which we get

−10 > 5x

x < −2

This, in this case a solution must satisfy x < −3 and x < −2 which gives the set of solutions

S1 = (−∞,−3) .

Case 2: x > −3: In this case, the term x+ 3 is positive, and we obtain

2− x < 4 (x+ 3)

from which we get

−10 < 5x

x > −2

Thus, in this case a solution must satisfy x > −3 and x > −2 which gives the set of solutions

S2 = (−2,∞) .

The set S of solutions is the union of the sets obtained in the particular cases:

S = S1 ∪ S2 = (−∞,−3) ∪ (−2,∞) .

Example 4.4 We determine all real numbers satisfying the inequality

1

x+ 4
≤ 1

2x− 2
. (4.1)

In order to transform this inequality, we need to distinguish the cases, where the denominators are
positive and negative, respectively. We determine the real numbers for which the denominators
are equal to zero and obtain:
From the equation x+ 4 = 0, we get x = −4.
From the equation 2x− 2 = 0, we get x = 1.
Therefore, we have to distinguish the following three cases:
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• Case 1: x > 1.

In this case, both denominators in the given inequality are positive. After multiplying both
sides of inequality (4.1) by (x+ 4) · (2x− 2), we obtain the inequality

2x− 2 ≤ x+ 4,

which can be rewritten after subtracting x on both sides and then adding 2 on both sides
as

x ≤ 6.

Since both inequalities x > 1 and x ≤ 6 must be satisfied, we get the following set S1 of
solutions in case 1:

S1 = {x ∈ R | 1 < x ≤ 6} = (1, 6].

• Case 2: −4 < x < 1.

In this case, the denominator x + 4 is positive, but the denominator 2x − 2 is negative.
Therefore, when multiplying both sides of the given inequality by (x + 4) · (2x − 2), we
multiply by a negative number and thus, the inequality sign changes. Hence, we get

2x− 2 ≥ x+ 4

which can be rewritten as
x ≥ 6

Since we must have −4 < x < 1 and x ≥ 6, no real number is a solution of the given
inequality in case 2, i.e., the set S2 of the solutions is the empty set: S2 = ∅.

• Case 3: x < −4.

In this case, both denominators of the given inequality are negative. Thus, the product
(x+4) · (2x− 2) is positive and therefore, we can transform inequality (4.1) as in the first
case, i.e., we obtain

2x− 2 ≤ x+ 2

which again gives
x ≤ 6.

Since both inequalities x < −4 and x ≤ 6 must be satisfied, we get the set of solutions

S3 = {x ∈ R | x < −4}.

In order to give the complete set of solutions, we have to take into account that in each of the
above cases we get a solution. Therefore, the set S of all solutions is the union of the sets of
solutions for the particular cases, i.e., we obtain

S = S1 ∪ S2 ∪ S3 = {x ∈ R | x ≤ −4 or 1 < x ≤ 6} = (−∞,−4) ∪ (1, 6].

4.3 Inequalities with Absolute Values

Next, we consider inequalities including absolute values. Based on the definition of the absolute
value of a real number, we have the following properties:
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Properties of absolute values:

1. −|a| ≤ a ≤ |a|;

2. Inequality |x| < a is equivalent to the inclusion x ∈ (−a, a), (a ≥ 0);

3. Inequality |x| ≥ a is equivalent to the inclusions x ∈ (−∞,−a)
or x ∈ [a,∞), (a ≥ 0);

4. |a+ b| ≤ |a|+ |b|;

5. |a| − |b| ≤ |a− b| ≤ |a|+ |b|.

Inequality (4) is also known as the triangle inequality. It says that the length of the third
side of a triangle (i.e., |a + b|) is never greater than the sum of the lengths of the other sides
(i.e., |a|+ |b|).

Consider the inequality

|x− a| ≤ b. (4.2)

Here the set of solutions is the set of all real numbers x with a distance from the number a not
greater than b. This means that the set S of solutions contains the set of all real numbers x not
smaller than a− b but not greater than a+ b, i.e.,

S = [a− b, a+ b]. (4.3)
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Formally, we can confirm this by using the definition of the absolute value of a number x. We
distinguish the following two cases.

Case 1: x ≥ a.

Case 2: x < a.

Case 1: If x ≥ a, then |x− a| = x− a. Thus, inequality (4.2) turns into

x− a ≤ b,

which gives
x ≤ a+ b.

Thus, in this case, we get the set S1 of solutions with

S1 = [a, a+ b].

Case 2: If x < a, then |x− a| = −(x− a) = a− x. Thus, inequality (4.2) turns into

a− x ≤ b,

which gives
x ≥ a− b.

Thus, in this case, we get the set S2 of solutions with

S2 = [a− b, a].
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To get the complete set S of solutions, we have to consider the union of both sets, which gives
the set S = S1 ∪ S2 = [a− b, a+ b] (see (4.3)).

Example 4.5 Let the inequality
|x− 3| ≤ 5

be given. The set of solutions contains the set of all real numbers having from number −3
a distance not greater than 5, i.e., we immediately get

S = [−3− 5,−3 + 5] = [−8, 2].

Example 4.6 Consider the inequality

|x+ 1| > 2.

The set of solutions is obtained as the set of all real numbers x having from the number −1
(notice that x+ 1 = x− (−1)) a distance greater than 2. Thus, all real numbers x smaller than
−1− 2 = −3 or greater than −1 + 2 = 1 satisfy the given inequality:

S = (−∞,−3) ∪ (1,∞).

Example 4.7 Let us consider the inequality

|3x− 6|
x+ 1

< 2.

Here we also have to consider several cases. In order to transform the given inequality, we
have to distinguish the cases when the term within the absolute-value-signs is non-negative and
positive and when the denominator is positive and negative, respectively.

From 3x− 6 = 0, we get x = 2 and from x+ 1 = 0, we get x = −1.

Therefore, we have to consider the following three cases.

Case 1: x ≥ 2.

Case 2: −1 < x < 2.

Case 3: x < −1.

Note that x = −1 must be excluded because the denominator would then be equal to zero. We
determine the set of all solutions for the individual cases.

Case 1: If x ≥ 2, then 3x− 6 is positive for each x under consideration, which yields

|3x− 6| = 3x− 6.

Moreover, the denominator is positive. Thus, we can transform the given inequality as follows:

3x− 6

x+ 1
< 2 | ·(x+ 1) > 0

3x− 6 < 2 · (x+ 1) | −2x+ 6

x < 8.

Since we must have x ≥ 2 and x < 8, we get as the set S1 of all solutions in this case

S1 = [2, 8).
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Case 2: For all numbers x considered in case 2, the term 3x− 6 is negative and therefore,

|3x− 6| = −(3x− 6) = 6− 3x.

Consequently, since x+ 1 is positive, we obtain

6− 3x

x+ 1
< 2 | ·(x+ 1) > 0

6− 3x < 2 · (x+ 1) | +3x− 2

4 < 5x

x >
4

5
.

From −1 < x < 2 and x > 4/5, we obtain the set of solutions

S2 =

(
4

5
, 2

)
.

Case 3: In this case, we always have

|3x− 6| = −(3x− 6) = 6− 3x,

and we can transform the given inequality as follows:

6− 3x

x+ 1
< 2 | ·(x+ 1) < 0

6− 3x > 2 · (x+ 1)

4 > 5x

x <
4

5
.

From x < −1 and x < 4/5, we get the set S3 of solutions in case 3 as follows:

S3 = (−∞,−1).

In order to find the complete set of solutions of the given inequality, we have to combine the
individual sets of solutions since any of the three cases is possible, and so we obtain

S = (−∞,−1) ∪
(

4

5
, 8

)
.

4.4 Quadratic Inequalities

Quadratic inequality:
An inequality which can be transformed into one of the forms

ax2 + bx+ c > 0 or ax2 + bx+ c ≥ 0

weith a �= 0 is called quadratic.
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y

x

(a) a > 0

x1 x2

−

+ +

y

x

(b) a < 0

x1 x2

+

− −

Figure 4.1: Solving a quadratic inequality

Again, the case of opposite inequality signs can be reduced to the latter type of inequality by
multiplying both sides by the number −1, which changes the inequality sign.

We discuss two variants of solving such quadratic inequalities. The first way is to consider the
corresponding quadratic equation with the inequality sign replaced by the equality sign. We
determine the roots of this equation and check which of the resulting interval(s) satisfies(y) the
corresponding inequality (see Fig. 4.1).

The second way of solving a quadratic inequality is to transform the quadratic and linear terms
x2+ax into a complete square by using the binomial formula and taking then the square root
on both sides. For illustration, we first consider the following example, where we apply both
solution variants.

Example 4.8 We consider the inequality

2x2 − 6x− 20 ≤ 0

and apply both solution strategies. Considering the corresponding quadratic equation and dividing
both sides by 2, we obtain

x2 − 3x− 10 = 0

which has the two solutions

x1 =
3

2
+

√
9

4
+ 10 =

3

2
+

√
49

4
= 5

and

x2 =
3

2
−

√
9

4
+ 10 =

3

2
−

√
49

4
= −2

Now we take some arbitrary value, e.g. x = 0 and check whether it satisfies the given inequality.
Since 2 · 02 − 6 · 0− 10 ≤ 0, all real numbers x between −2 and 5 satisfy the given inequality.

Applying the second approach, we divide the given inequality by 2 and rewrite it as follows:

x2 − 3x ≤ 10.
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Transforming the left-hand side into a complete square, we use the binomial formula

(x− a)2 = x2 − 2ax+ a2 .

From −2ax = −3x, we get a = 3/2 and then

x− 3x+

(
3

2

)2

≤ 10 +

(
3

2

)2

,

which can be rewritten as (
x− 3

2

)2

≤ 49

4
.

Taking on both sides the square root, we get

∣∣∣x− 3

2

∣∣∣ ≤ 7

2
.

Thus, the set of solutions is given by the set of all real numbers x having from 3/2 a distance
not greater than 7/2:

S = {x ∈ R | −2 ≤ x ≤ 5} = [−2, 5].

Next, we present one other example where we apply the second solution variant while for all
other examples, the first solution variant will be used.

Example 4.9 We determine all real numbers x satisfying the inequality

x2 + 4x ≤ 5.

We write the left-hand side as a complete square (x+ a)2 by using the binomial formula

(x+ a)2 = x2 + 2ax+ a2.

From 4x = 2ax, we obtain a = 2. Therefore, we add a2 = 22 = 4 on both sides:

x2 + 4x+ 22 ≤ 5 + 22,

which yields
(x+ 2)2 ≤ 9.

Now we take the square root on both sides and obtain

|x+ 2| ≤ 3.

Note that, as mentioned before, we have to use the absolute value of x+ 2 on the left-hand side
because there are two solutions when taking the square root of some number z2: namely +z and
−z, and these cases can be summarized to |z|. The set of solutions S of the inequality is given
by the set of all real numbers x having from the number −2 a distance not greater than 3, i.e.,

S = {x ∈ R | −5 ≤ x ≤ 1},

or in interval notation
S = [−5, 1].
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Example 4.10 Consider the quadratic inequality

−2x2 − 4x+ 16 < 0.

Taking the resulting quadratic equation and dividing both sides by −2, we obtain

x2 + 2x− 8 = 0,

which gives the solutions

x1 = −1 +
√
1 + 8 = 2 and x2 = −1−

√
1 + 8 = −4.

Now we test whether the given inequality is satisfied for an arbitrary trial value. For instance,
for x = 0 we obtain that −2 · 02 − 4 · 0 + 16 is equal to 16 and therefore, the trial value x = 0
does not satisfy the given inequality. Therefore, all x from the interval [x2, x1] = [−4, 2] do not
satisfy the given inequality. Consequently, the set S of solutions satisfying the given inequality
is given by the set of all real numbers that are smaller than −4 or greater than 2:

S = (−∞,−4) ∪ (2,∞).

Example 4.11 Let us find all real numbers satisfying the quadratic inequality

x2 + 6x+ 9 > 0.

Considering the corresponding quadratic equation, we have

x2 + 6x+ 9 = 0,
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which has the solutions

x1 = −3 +
√
9− 9 = −3 and x2 = −3−

√
9− 9 = −3,

i.e., there is a real double solution x1 = x2. As a consequence, the sign of the quadratic term
x2 + 6x + 9 does not change at the root −3. We test the sign of the quadratic term for an
arbitrary value of x. Using for instance x = 0, we get 02+6 · 0+9 > 0, i.e., the given inequality
is satisfied for x = 0 and therefore also for all real numbers except −3, i.e., we get

S = (−∞,−3) ∪ (−3,∞) .

Example 4.12 We determine all real numbers satisfying the inequality

|x2 + 3x− 4| ≤ x+ 4 .

First, we find the zeroes of the term within the absolute-value signs: From x2 + 3x− 4 = 0, we
get the solutions

x1 = −3

2
+

√
9

4
+ 4 = −3

2
+

5

2
= 1

and

x2 = −3

2
−

√
9

4
+ 4 = −3

2
− 5

2
= −4.

For x = 0, we obtain 02 + 3 · 0 − 4 < 0. Since x = 0 is contained in the interval (−4, 1), the
inequality x2 +3x− 4 < 0 holds if and only if x ∈ (−4, 1), and x2 +3x− 4 ≥ 0 holds if and only
if x ≤ −4 or x ≥ 1. Therefore, we consider the following two cases:
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Case 1: x ≤ −4 or x ≥ 1;

Case 2: −4 < x < 1.

Case 1: For x ≤ −4 or x ≥ 1, we have

|x2 + 3x− 4| = x2 + 3x− 4

and the given inequality turns into

x2 + 3x− 4 ≤ x+ 4

which can be rewritten as

x2 + 2x− 8 ≤ 0.

Replacing the inequality sign the the equality sign and solving the resulting quadratic equation,
we get

x3 = −1 +
√
1 + 8 = −1 + 3 = 2

and

x4 = −1−
√
1 + 8 = −1− 3 = −4.

Since the inequality x2 + 3x− 4 ≤ 0 is satisfied for instance for x = 0 ∈ [−4, 2], the solutions in
case 1 must satisfy x ≤ −4 or x ≥ 1 (according to the assumption) and in addition, −4 ≤ x ≤ 2.
Therefore, the set S1 of solutions for case 1 is given by

S1 = {−4} ∪ [1, 2] .
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Case 2: For −4 < x < 1, we have

|x2 + 3x− 4| = −(x2 + 3x− 4) = −x2 − 3x+ 4.

Thus, the given inequality turns into

−x2 − 3x+ 4 ≤ x+ 4

which can be rewritten as
x2 + 4x = x (x+ 4) ≥ 0.

This inequality is satisfied for x ≤ −4 (both factors are non-positive) and x ≥ 0 (both factors
are non-negative). Therefore, a solution in case 2 must satisfy x ≤ −4 or x ≥ 0, but according
to the assumption, additionally −4 < x < 1 must hold. Thus, the set S2 of solutions for case 2
is given by

S1 = [0, 1).

Thus, the complete set S of real numbers satisfying the given inequality is given by

S = S1 ∪ S2 = {−4} ∪ [0, 2] .

Example 4.13 We determine all real numbers satisfying the inequality

(1− x) · (x2 − x− 6) ≤ 0.

Although this is not a quadratic inequality (the term with the highest occurring power is −x3

if we multiply out), we can nevertheless find all solutions using our knowledge about quadratic
inequalities. A solution x has to satisfy one of the following cases:
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Case 1: 1− x ≥ 0 and x2 − x− 6 ≤ 0;

Case 2: 1− x ≤ 0 and x2 − x− 6 ≥ 0.

Case 1: From 1− x ≥ 0, we get x ≤ 1. Setting now x2 − x− 6 = 0, we obtain the two solutions

x1 =
1

2
+

√
1

4
+ 6 =

1

2
+

5

2
= 3

and

x2 =
1

2
−

√
1

4
+ 6 =

1

2
− 5

2
= −2 .

We have x2 − x− 6 ≤ 0 for x ∈ [−2, 3]. Since x ≤ 1 by assumption, we get the set of solutions

S1 = [−2, 1]

for case 1.

Case 2: In this case, we have x2 − x− 6 ≥ 0 for all x ∈ (−∞,−2] ∪ [3,∞). Since now x ≥ 1 by
assumption, we get the set of solutions

S2 = [3,∞)

for case 2.

Combining both cases, we get the complete set S of real numbers satisfying the given inequality:

S = S1 ∪ S2 = [−2, 1] ∪ [3,∞) .
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Example 4.14 We determine all real numbers satisfying the inequality

|x2 − 9| ≤ 2 .

We have to distinguish the cases x2 − 9 ≥ 0 and x2 − 9 < 0. This gives the following two cases:

Case 1: x ≤ −3 or x ≥ 3;

Case 2: −3 < x < 3.

Case 1: In this case, we have |x2 − 9| = x2 − 9 and thus, the given inequality turns into

x2 − 9 ≤ 2

which can be written as
x2 ≤ 11

This inequality is satisfied for all x ∈ [−
√
11,

√
11]. Thus, in case 1, we get the set of solutions

S1 = [−
√
11,−3] ∪ [3,

√
11] .

Case 2: In this case, we have |x2 − 9| = −(x2 − 9) = 9− x2 and thus, the given inequality turns
into

9− x2 ≤ 2

which can be written as
x2 ≥ 7 .

This inequality is satisfied for all x ∈ (−∞,−
√
7] ∪ [

√
7,∞). Taking the assumption of case 2

into account, we get the set of solutions

S2 = (−3,−
√
7] ∪ [

√
7,
√
3) .

For the complete set of all real numbers satisfying the given inequality, we get

S = S1 ∪ S2 = [
√
11,−

√
7] ∪ [

√
7,
√
11] .

4.5 Further Inequalities

In this section, we consider some inequalities involving logarithmic, exponential or root terms.
For solving them, elementary knowledge about the monotonicity of the corresponding functions
is required (see also Chapter 8).

Example 4.15 We determine all real numbers satisfying the inequality

lg(x− 1) < 2.

Since the logarithm is defined only for positive numbers, we first must require x > 1. We can
rewrite this inequality as

x− 1 < 102 = 100.

Formally we have raised both sides of the given inequality to the exponent of an exponential term
with base 10. This can be done due to the monotonicity of the corresponding power function:
From x1 < x2, we obtain 10x1 < 10x2. Now we get x < 101 and thus, the set of all real numbers
satisfying the given inequality is given by

S = (1, 101) .
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Example 4.16 We determine all real numbers satisfying the inequality

ln(x2 − x− 5) ≤ 0 .

First, we must have x2 − x− 5 > 0. Solving the corresponding equation x2 − x− 5 = 0, we get

x1 =
1

2
+

√
1

4
+ 5 =

1

2
+

1

2
·
√
21

and

x2 =
1

2
−

√
1

4
+ 5 =

1

2
− 1

2
·
√
21 .

Note that x1 > 3 while x2 < −2. Next, similar to the previous example, we can rewrite the given
inequality as

x2 − x− 5 ≤ e0 = 1 .

This is equivalent to

x2 − x− 6 ≤ 0 .

Considering the corresponding equation and finding the zeroes, we obtain

x1 =
1

2
+

√
1

4
+ 6 =

1

2
+

5

2
= 3

and

x2 =
1

2
−

√
1

4
+ 6 =

1

2
− 5

2
= −2 .

Since 02 − 0 − 5 ≤ 0, the latter inequality is satisfied for x ∈ [−2, 3]. At the same time, the
definition of the logarithm requires that

x <
1

2
−

√
1

4
+ 5 =

1

2
− 1

2
·
√
21 < −2

or

x >
1

2
+

√
1

4
+ 5 =

1

2
+

1

2
·
√
21 > 3 .

Thus, the set of all real numbers satisfying the given inequality is empty: S = ∅.

Example 4.17 We determine all real numbers satisfying the inequality

e4−2x − 1 > 0 .

Adding one to both sides and taking the natural logarithm on both sides, we obtain

4− 2x > ln 1 = 0

which gives x < 2, i.e., the set of all real numbers satisfying the given inequality is given by

S = (−∞, 2) .
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Example 4.18 We determine all real numbers satisfying the inequality

4
√
x+ 1 < 2 .

First, we must require x+ 1 ≥ 0, i.e., x ≥ −1. By taking both sides to the fourth power (again
it does not change the inequality sign due to the monotonicity of this function for non-negative
values), we obtain

x+ 1 < 24 = 16

which gives x < 15. Thus, the set of all real numbers satisfying the given inequality is obtained
as

S = [−1, 15) .

EXERCISES

4.1 Determine all real numbers satisfying the following linear inequalities:

(a) 3(x+ 4) ≤ 2(x− 2)− 1 ; (b)
1

3
x+ 1 ≤ 4− 3

2
x ; (c)

4

1 + x
≥ 3 ;

(d)
x+ 3

2x+ 2
≤ 1 ; (e)

3x+ 2

3− 2x
< 2 .

4.2 Determine all real numbers satisfying the following inequalities:

(a) (x− 3)(x+ 4) ≥ 0 ; (b) 4x2 + x ≥ 15

2
; (c)

3x+ 10

x− 2
≤ 2x+ 3 ;

(d)
2− x

x+ 3
> −2x ; (e)

9

x− 7
> x+ 3 .

4.3 Determine all real numbers satisfying the following inequalities:

(a) (x+ 3)(x2 + 2x− 8) > 0 ; (b) x3 − 5x2 + 6x ≥ 0 .

4.4 Determine all numbers satisfying the following inequalities:

(a) |x2 − 25| ≥ 11 ; (b) |x2 − 7| ≤ 9 ; (c) |2x+ 1| − 2 > x ;

(d) |2x− 2| ≤ |x| ; (e) |x+ 3| − |2x− 5| ≥ 2x ; (f) |x− 2|+ |x+ 3| ≤ 5 .

4.5 Determine all real numbers satisfying the following inequalities:

(a) |x2 − x− 6| ≤ 6 ; (b) |3− x| > |x2 − 2x− 3| .

4.6 Determine all real numbers satisfying the following inequalities:

(a)
√
x− 2 ≤ 1

4
; (b) lg(3 + x) < 2 ; (c) e3x−2 ≤ 1 ;

(d) ln(x2 + 4x+ 3) ≥ 0 .
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Chapter 5

Trigonometry and Goniometric
Equations

Trigonometric terms and goniometric equations often play a role when analyzing geometric
problems. In trigonometry, triangles and other plane figures (which can be partitioned into
triangles) are investigated. In goniometry, one works with terms depending on angles. The
learning objectives of this chapter are to review

• some basic facts about trigonometric relationships and

• the solution of simple goniometric equations including trigonometric terms.

5.1 Trigonometry

Consider the right-angled triangle given in Fig. 5.1. Then we define the following trigonometric
terms (note that the angle α is less than 90o):

sinα =
a

c
, cosα =

b

c
, tanα =

a

b
and cotα =

b

a
.

The side c is called the hypotenuse and the sides a and b are the legs of the right-angled
triangle. One can extend the definition of trigonometric terms for angles α ≥ 900 on a unit
circle, i.e., we have r = 1. In Fig. 5.2, we illustrate this for the case 90o ≤ α ≤ 180o.

A B

C

c

ab
·

α

Figure 5.1: Definition of trigonometric terms in a right-angled triangle

91
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α

tanα

cotα

cosα

sinα

r = 1

Figure 5.2: Trigonometric terms in a unit circle for 90o ≤ α ≤ 180o

In the following, we review some trigonometric formulas when the sum or difference of two
angles is considered. These formulas are often useful when simplifying terms in problems from
differential calculus or integration.

Addition theorems for trigonometric terms:

1. sin(α± β) = sinα cosβ ± cosα sinβ ;

2. cos(α± β) = cosα cosβ ∓ sinα sinβ ;

3. tan(α± β) =
tanα± tanβ

1∓ tanα tanβ
;

4. cot(α± β) =
cotα cotβ ∓ 1

cotβ ± cotα
.

For the special case of α = β, properties (1) and (2) turn into

sin 2α = 2 sinα cosα and cos 2α = cos2 α− sin2 α . (5.1)

Accordingly, properties (3) and (4) turn into

tan 2α =
2 tanα

1− tan2 α
and cot 2α =

cot2 α− 1

2 cotα
. (5.2)

Moreover, using β = π/2 and β = −π/2, respectively, we get

sin
(
α± π

2

)
= ± cosα, cos

(
α± π

2

)
= ∓ sinα .
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Further trigonometric formulas:

1. sinα+ sinβ = 2 · sin α+ β

2
· cos α− β

2
;

sinα− sinβ = 2 · cos α+ β

2
· sin α− β

2
;

2. cosα+ cosβ = 2 · cos α+ β

2
· cos α− β

2
;

cosα− cosβ = −2 · sin α+ β

2
· sin α− β

2
;

3. sin2 α+ cos2 α = 1 ;

4. 1 + tan2 α =
1

cos2 α
;

5. tanx · cotx = 1 .

Property (3) is also denoted as Pythagorean theorem for trigonometric terms. We can easily
convince that the identity given in property (4) above is correct and obtain

1 + tan2 α = 1 +
sin2 α

cos2 α
=

cos2 α+ sin2 α

cos2 α
=

1

cos2 α
.

The last equality follows from property (3) above.

Moreover, we can present formulas for the product of two sine and cosine terms:

Product formulas:

1. sinα · sinβ =
1

2
· [cos(α− β)− cos(α+ β)] ;

2. cosα · cosβ =
1

2
· [cos(α− β) + cos(α+ β)] ;

3. sinα · cosβ =
1

2
· [sin(α− β) + sin(α+ β)] .

Example 5.1 Consider the trigonometric term

T =
sinα+ sinβ

cosα+ cosβ
.

We want to simplify term T by using only one trigonometric expression. We obtain

T =
2 sin α+β

2 · cos α−β
2

2 · cos α+β
2 · cos α−β

2

= tan
α+ β

2
.

Consider now the oblique triangle given in Fig. 5.3. Then we can summarize the following
properties:
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A B

C

c

a
b

α
β

γ

Figure 5.3: Oblique triangle

Relationships in a triangle:

1. α+ β + γ = 180o ;

2. a : b : c = sinα : sinβ : sin γ ;

3. a2 = b2 + c2 − 2bc cosα .

Equality (1) expresses that in any triangle, the sum of the three angles is 180o. Equality (2) is
also known as the sine theorem. Equality (3) above is denoted as the cosine theorem.

Example 5.2 In an oblique triangle, the side b = 12 cm and the angles β = 32o and γ = 85o

are given. We determine the angle α and the sides a and c. First, we obtain from relationship
(1) above

α = 180o − (β + γ) = 180o − (320 − 85o) = 63o .

From the sine theorem, we obtain

a =
b · sinα
sinβ

=
12 cm · sin 85o

sin 32o
=

12 · 0.9962
0.5299

cm = 22.56 cm .

Example 5.3 In an oblique triangle, the two side lengths b = 14 cm and c = 17 cm are given.
The angle α between the two sides is given as α = 80o. We determine the length of the remaining
side a. We use the cosine theorem and obtain:

a =
√

b2 + c2 − 2bc cosα =
√
142 + 172 − 2 · 14 · 17 · cos 32o cm =

√
232.7676 cm = 15.24 cm .

Finally, we present a possibility to compute the area A of a triangle by means of the lengths of
two sides and the angle formed by the two sides. We have the following formulas for determining
the area A (see Fig. 5.3):

A =
1

2
ab sin γ =

1

2
bc sinα =

1

2
ac sinβ .

Example 5.4 In a triangle, the lengths of the sides a = 16 cm and b = 22 cm are known
together with the angle γ = 98o of the angle formed by the two sides. We obtain the area A as
follows:

A =
1

2
ab sin γ =

1

2
· 16 · 22 · sin 98o cm2 = 174.29 cm2 .
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5.2 Goniometric Equations

An equation that includes trigonometric terms depending on an angle or a multiple of this angle
is denoted as a goniometric equation. Examples of such equations are e.g.

cosα+ 2 cos 2α = cos 3α or sin2 β + 2 tan2 β = 3.

In order to find all solutions of a goniometric equation, one tries to express all trigonometric
terms by means of one or several of the above formulas by one trigonometric term. Without
loss of generality, assume that it is some sine term of the form sinαx.

Now, we substitute z = sinαx and determine all solutions of the equation g(z) = g(sinαx) = 0.
Let z1, z2, . . . , zn be the solutions. By substituting back, we get

z1 = sinαx, z2 = sinαx, . . . , zn = sinαx .

Finally, one has to check whether all solutions x obtained satisfy indeed the given equation.

We illustrate the solution of goniometric equations by the following examples, where we only
look for solutions in the interval [0, 2π] in all subsequent problems.

Example 5.5 Let the goniometric equation

sinx+ cosx = 1
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be given. First, we substitute the cosine term by the sine term using sin2x + cos2 x = 1. This
gives

cosx = ±
√
1− sin2 x.

Substituting now z = sinx, we get

z ±
√
1− z2 = 1.

After eliminating the square root on one side and taking the square on both sides, we get a
quadratic equation in the new variable z:

±
√
1− z2 = 1− z

1− z2 = 1− 2z + z2

2z2 − 2z = 0.

Factoring out, we obtain

2z · (z − 1) = 0

which has the two solutions

z1 = 0 and z2 = 1 .

From z1 = sinx = 0, we get the solutions

x1 = 0, x2 = π, x3 = 2π .
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From z2 = sinx = 1, we get the solutions

x4 =
π

2
, x5 =

3

2
π .

A test confirms that x1, x3 and x4 are indeed a solution of the given equation while for x2 and
x5, we get sinx+ cosx = −1 and thus, x2 and x5 are not a solution. Note that, if we would be
looking for all solutions, we would get

x1,k = 2kπ, x2,k =
π

2
+ 2kπ, k ∈ Z .

Example 5.6 We consider the goniometric equation

4 sin2 x+ 4 cosx = 1 .

Using sin2 x+ cos2 x = 1, we obtain

4(1− cos2 x) + 4 cosx = 1

4 cos2 x− 4 cosx− 3 = 0

Substituting now z = cosx and dividing the equation by 4, we get

z2 − z − 3

4
= 0
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which has the two solutions

z1 =
1

2
+ 1 =

3

2
and z2 =

1

2
− 1 = −1

2
.

For the first solution z1, we do not obtain a solution since the cosine values are in the interval
[−1, 1]. After substituting back, we get from the second solution z2

cosx = −1

2

which has the two solutions

x1 = 120o and x2 = 240o .

Inserting x1 and x2 into the given goniometric equation, we confirm that both solutions satisfy
the original equation:

4 ·
(
±1

2

√
3

)2

+ 4 ·
(
−1

2

)
= 4 · 3

4
− 2 = 1 .

Example 5.7 We determine all solutions of the equation

tan2 x+
5

tanx
= 6 .

Multiplying both sides by tanx and putting all terms on the left-hand side, we obtain

tan2 x− 6 tanx+ 5 = 0 .
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Substituting now z = tanx, we get the quadratic equation

z2 − 6z + 5 = 0

which has the two solutions

z1 = 3 +
√
9− 5 = 5 and z2 = 3−

√
9− 5 = 1 .

Substituting back, we get for z1 the equation

tanx = 5

which gives the solutions

x1 = 78.69o and x2 = 258.69o .

They do not satisfy the given equation:

52 +
5

5
�= 6 .

Moreover, for z2 we get
tanx = 1

which gives the solutions
x3 = 45o and x4 = 225o .

Inserting these solutions into the original equation, we can confirm that they satisfy the given
equation:

12 +
5

1
= 6 .
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Example 5.8 Consider the equation

cosx− sin 2x = 0 .

Using the double angle formula for the sine term, we get

cosx− 2 sinx cosx = 0

which gives
cosx · (1− 2 sinx) = 0 .

The product is equal to 0 if at least one of the factors is equal to zero. From cosx = 0, we obtain
the solutions

x1 = 90o and x2 = 270o .

From 1− 2 sin 2x = 0, we get

sin 2x =
1

2

and therefore,
2x ∈ {30o, 150o, 390o, 510o, 750o, 870o, . . .}

Therefore, in [0, 2π], we get the solutions

x3 = 15o, x4 = 75o x5 = 195o, and x6 = 255o .

A test confirms that all angles satisfy the given equation.

Example 5.9 We find all solutions of the equation

3 sinx−
√
3 cosx = 0 .

One way to transform the above equation such that only one trigonometric term occurs is to
divide both sides by cosx. In this case, we have to discuss cosx = 0 separately. This equation
is satisfied for

x1 = 90o and x2 = 2700 .

These angles do not satisfy the given equation. For cosx �= 0, we obtain

√
3 · sinx

cosx
− 1 = 0

tanx =
1

3

√
3 .

This gives the solution
x3 = 30o and x4 = 210o .

A test confirms that these angles satisfy the original equation.

EXERCISES

5.1 Determine all angles α between 00 and 360o for which the following equalities hold:

(a) sin α = 0.25 ; (b) cos α = −0.55 ;

(c) | tanα| = 2 ; (d) | cotα| =
√
3 .
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EXERCISES 101

5.2 In a right-angled triangle, the length of the hypotenuse c = 20 cm and the angle α = 18o

are given. Determine the lengths of the remaining sides and angles.

5.3 In a right-angled triangle, the lengths of the legs a = 2.5 m and b = 2.1 m are given.
Determine the angles α and β and the length of the hypotenuse.

5.4 In an oblique triangle, the lengths of the sides are a = 9 cm, b = 12 cm and c = 17 cm are
known. Determine the angles of the triangle.

5.5 Determine the area of the triangle with the lengths of the sides a = 12 cm and b = 14 cm
and the angle between the two sides γ = 111o.

5.6 Find the solutions of the following goniometric equations:

(a) 2 cos2 x = 1
2 + 2 sinx ; (b) 8 cos 2x = sinx ;

(c) 4 sin 2x+ cosx = 0 ; (d) 3
tanx = 4− tanx .
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Chapter 6

Analytic Geometry in the Plane

In analytic geometry, geometric investigations are done by means of analytic methods. It has
applications e.g. when working with vectors. Knowledge in geometry is also required for several
applications of differential calculus and integration when considering functions of one (or several)
variable(s).

The learning objectives of this chapter are to review

• properties of lines and their representations and

• the different forms of a curve of second order.

6.1 Lines

A line is determined by two points P = (x1, y1) and Q = (x2, y2) (see Fig. 6.1). For the angle
α, we have the equality

tanα =
y2 − y1
x2 − x1

.

The term tanα is the slope of the line. By means of the two points P and Q, we get the
two-point equation of a line:

y − y1 =
y2 − y1
x2 − x1

· (x− x1) .

Using the points P = (0, b) and Q = (x, y) and setting a = tanα, we obtain the normal form
(or point-slope form) of a line:

y = ax+ b .

Thus, the value b gives the y-coordinate, where the line intersects the y-axis. If b = 0, the line
y = ax goes through the origin of the coordinate system. If a = 0, the line y = b is parallel to
the x-axis of the coordinate system. All equations of a line can be put into the form

Ax+By + C = 0,

where parameters A and B are not both equal to zero. This form is also known as the general
equation of a line.

103
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x

y

a0

P1

P2

x1 x2

y1

y2

x2 − x1

y2 − y1

a1 =
y2−y1
x2−x1

Figure 6.1: Definition of a line

Next, we introduce the point-direction equation of a line in the plane. It uses one point
P = (x1, x1) and a directional vector a (see also Chapter 11) which can be obtained by means
of a second point Q = (x2, y2):

a =

(
ax
ay

)
=

(
x2 − x1
y2 − y1

)
.

Then the equation of the line is given by
(

x
y

)
=

(
x1
y1

)
+ t ·

(
ax
ay

)
, t ∈ R .

If a line does not pass through the origin, its equation can be written in the intercept form:

x

a
+

y

b
= 1 .

Here the parameters a and b give the intercepts with the x- and y-axis, respectively (see Fig.
6.2).

Example 6.1 We put a line through the point P = (3, 4) which has an angle of 45o with the
x-axis. Thus, we have

a = tanα = tan 45o = 1 .

This gives

y − 4 = 1 · (x− 3)

y = x+ 1 .

For writing the equation of this line in point-direction form, we can use e.g. the second point
Q = (4, 5), which gives the direction vector

a =

(
1
1

)
.
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x

y

b

a

x
a + y

b = 1

Figure 6.2: Intercept form of the equation of a line

Thus, the equation of this line is
(

x
y

)
=

(
3
4

)
+ t

(
1
1

)
, t ∈ R .

For instance, for t = 10, we get the point R = (13, 14) from the above equation and for t = −5,
we get the point S = (−2,−1).

For writing the equation of this line in intercept form, we determine the intercepts with the x-
and y-axes. If y = 0, we have x = −1 and if x = 0, we have y = 1. This gives

x

−1
+

y

1
= 1 .

Example 6.2 Let the line
5x− 2y + 6 = 0

be given. Solving for y, we get the normal form

y =
1

2
· (5x+ 6)

y =
5

2
x+ 3 .

Writing this equation in the intercept form, we first find the intercepts with the axes at y = 3
and x = −6/5 which gives

x

−6
5

+
y

3
= 1 .

In the plane, two points P = (x1, y1) and Q = (x2, y2) have the (Euclidean) distance

d =
√

(x2 − x1)2 + (y2 − y1)2 .

If we consider a given point P = (x0, y0) and a given line (in the plane), the distance of the
point P from the line is determined by the smallest distance of this point P to some point Q
belonging to the line. The distance d of point P from this line can be found according to the
following formula:
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d =
Ax0 +By0 + C√

A2 +B2
,

where A,B,C are the parameters in the general form of the line.

Example 6.3 Consider the point P = (2,−4) and the line y = 3x+ 2 or in the general form

3x− y + 2 = 0 .

We determine the distance d of the point P from this line and obtain with A = 3, B = −1 and
C = 2

d =
3 · 2− 1 · (−4) + 2√

32 + (−1)2
=

12√
10

≈ 3.7947 .

6.2 Curves of Second Order

A curve of second order has the equation

Ax2 +By2 + Cx+Dy + E = 0 .
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Both variables x and y occur at most with the second power, and we assume that the product
xy of both variables does not occur. Such a curve can be a circle, an ellipse, a parabola or a
hyperbola. We discuss the individual cases separately.

6.2.1 Circles

Circle:
A circle is the set of all points having from a midpoint (or center) M the same distance r.

A circle is determined by the midpoint (x0, y0) and the radius r. The equation of the circle
is given by

(x− x0)
2 + (y − y0)

2 = r2 .

For the special case when the origin of the coordinate system is the midpoint the equation
simplifies to

x2 + y2 = r2 .

The equation of a circle is illustrated in Fig. 6.3.
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x

y

x− x0

y − y0r

M

P = (x, y)
y

x

y0

x0

Figure 6.3: Definition of a circle
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Example 6.4 A circle has the midpoint M = (2, 3) and it includes the point P = (5, 7). We
determine the equation of this circle. Since the point P must satisfy the equation of the circle,
we obtain with x = 5 and y = 7

(5− 2)2 + (7− 3)2 = r2

9 + 16 = r2

Therefore, the equation of the circle is

(x− 2)2 + (y − 3)2 = 25,

i.e., the radius of the circle is r = 5.

6.2.2 Ellipses

Ellipse:
An ellipse is defined as the locus of points whose distances from two fixed points, called the
foci or focal points, have a constant sum.

The equation of an ellipse with the midpoint M = (x0, y0) and the half axes a and b is given
by

(x− x0)
2

a2
+

(y − y0)
2

b2
= 1 .

The equation of an ellipse is illustrated in Fig. 6.4. The focal points are F1 and F2, and according
to the definition of an ellipse we have

PF1 + PF2 = 2a .

If a = b, we have the special case of a circle.

Example 6.5 We consider the equation

7x2 + 4y2 − 28x+ 8y + 4 = 0 .

Transforming the terms depending on the variables x and y, respectively, into complete squares,
we obtain

7x2 − 28x = 7(x2 − 4x) = 7(x2 − 4x+ 4)− 7 · 4 = 7(x− 2)2 − 28

4y2 + 8y = 4(y2 + 2y) = 4(y2 + 2y + 1)− 4 · 1 = 4(y + 1)2 − 4

Substituting this into the original equation, we obtain

7(x− 2)2 − 28 + 4(y + 1)2 − 4 + 4 = 0

which turns into
7(x− 2)2 + 4(y + 1)2 = 28

Dividing both sides by 28, we get the equation of an ellipse:

(x− 2)2

4
+

(y + 1)2

7
= 1 ,

i.e., the midpoint of the ellipse is (2,−1), and the half axes are a = 2 and b =
√
7.
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x

y

M = (x0, y0)a

b

y0

x0

Figure 6.4: Definition of an ellipse

6.2.3 Parabolas

Parabola:
A parabola is the locus of points which are equidistant from a line (called the directrix) and
from a fixed point (called the focus or focal point).

The definition of a parabola is illustrated in Fig. 6.5. For the equation of a parabola we have
to distinguish two cases. If the parabola is parallel to the x-axis, the equation is given by

(y − y0)
2 = ±2p(x− x0) .

The point (x0, y0) is called the apex (or vertex) of the parabola. The value 2p denotes the
parameter of the parabola. If a plus sign occurs in the equation, the parabola is open from the
right (with x ≥ x0). If the minus sign occurs, the parabola is open from the left (with x ≤ x0).
If the parabola is parallel to the y-axis, its equation is given by

(x− x0)
2 = ±2p(y − y0) .

If the plus sign occurs in the equation, the parabola is open from above (with y ≥ y0) while in
the other case, the parabola is open from below (with y ≤ y0). A parabola open from the right
and one open from above are illustrated in Fig. 6.6.

Accordingly, one can consider parabolas which are open from the left or from below.

Example 6.6 Consider the equation

y2 + 4y − 2x+ 10 = 0.
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x

y

F

P = (x, y)

d

D

x− p
2

y

p

p
2

Figure 6.5: Definition of a parabola

x

y

y0

x0

(a)

x

y

y0

x0

(b)

Figure 6.6: A parabola, which is (a) open from the right and (b) open from above
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Putting all terms depending on y on the left-hand site and the rest on the right-hand side, we
get

y2 + 4y = 2x− 10.

Transforming now the term on the left-hand side into a complete square of the form (y + a)2,
we get

(y + 2)2 − 4 = 2x− 10

which gives

(y + 2)2 = 2x− 6 = 2(x− 3) .

Therefore, the above parabola is open from the right, and the apex A has the coordinates (x0, x0) =
(3,−2).

6.2.4 Hyperbolas

Hyperbola:
A hyperbola is defined as the locus of all points whose difference of the distances from two
fixed points (call the foci or focal points) is constant.

A hyperbola consists of two branches. An illustration is given in Fig. 6.7 for the case, where the
center M of the hyperbola is the origin of the coordinate system. F1 and F2 are the foci, and
we have for the difference of the distances between the points P and F1 as well as P and F2

|PF1| − |PF2| = ±2a ,

where 2a denotes the principal axis of the hyperbola, and the minus sign holds for the left branch
of the hyperbola.

The equation of a hyperbola with the center M = (x0, y0) is given by

(y − y0)
2

a2
− (x− x0)

2

b2
= 1 .

or
(x− x0)

2

a2
− (y − y0)

2

b2
= 1 .

In the first case, the hyperbola is symmetric to the line x = x0 (i.e., parallel to the y-axis),
and we also say that it is a vertical hyperbola (see Fig. 6.8 (a)). In the second case, the
hyperbola is symmetric to the line y = y0 (i.e., parallel to the x-axis), and we say that it is a
horizontal hyperbola (see Fig. 6.8 (b)). Here the parameters a and b denote the half axes
of the hyperbola, and 2a denotes the principal axis of the hyperbola.

For graphing a hyperbola, it is useful to determine the asymptotes L1 and L2 of the hyperbola.
From the equation of a hyperbola, they are obtained as follows:

L1 : y =
b

a
x ; L2 : y = − b

a
x .
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L1L2

F1F2

P

a

b

Figure 6.7: Definition of a hyperbola
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(a)

x

y

y0
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(b)

Figure 6.8: (a) Vertical and (b) horizontal hyperbolas
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Example 6.7 Let us consider the equation

4x2 − 9y2 + 32x+ 18y + 19 = 0

Transforming the terms depending on x and y into a complete square, we obtain

4x2 + 32x = 4(x2 + 8x) = 4(x2 + 8x+ 16)− 4 · 16 = 4(x+ 4)2 − 64

−9y2 + 18y = −9(y2 − 2y) = −9(y2 − 2y + 1) + 9 · 1 = −9(y − 1)2 + 9

Substituting this into the original equation, we get

4(x+ 4)2 − 64− 9(y − 1)2 + 9 + 19 = 0

which gives
4(x+ 4)2 − 9(y − 1)2 − 36 = 0 .

Dividing this equation by 36, we obtain the equation of a hyperbola:

(x+ 4)2

9
− (y − 1)2

4
= 1 .

This hyperbola has the center (or midpoint) M = (−4, 1) and the half axes a = 3 and b = 2. It
is horizontally open and symmetric to the line x = −4, and the asymptotes are

L1 =
4

9
x and L2 = −4

9
x .

.

EXERCISES

6.1 For the following lines, determine the normal form and the intercept form (if possible).:

(a) 3x+ 7y − 2 = 0 ; (b) −2x+ 5y + 5 = 0 ; (c) 3x+ 11y = 0 .

6.2 Determine the normal form of the following lines going through point P and having the
angle α with the positive x-axis:

(a) P = (3, 1), α = 60o ; (b) P = (−1,−1), α = 45o ; (c) P = (4,−2), α = 135o .

6.3 Determine the normal form of the following lines going through the point P and Q:

(a) P = (−3, 4), Q = (−1,−3) ; (b) P = (1, 7), Q = (4, 9) .

6.4 Determine the equation of the circle having the midpoint M = (1, 1) and going through
the point P = (5, 4).

6.5 Consider the parabola 8x− y2 + 16x− 80 = 0. Determine its apex and from which side it
is open.

6.6 Characterize the location of the following parabolas and graph them:

(a) x+ y2 + 4y − 24 = 0 ; (b) x2 − 8y + 10 = 0 ; (c) x2 + 6x+ 5y + 8 = 0 .

6.7 An ellipse has the midpoint (0, 0) and goes through the point P = (3, 8). One of the half
axes is 5. Determine the equation of this ellipse.

6.8 Determine the equation of the hyperbola with the center M = (1, 1) and the half axes
a = 4 and b = 7.
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Chapter 7

Sequences and Partial Sums

Sequences play a role when listing infinitely many objects. For instance, sequences are used in
connection with time series. They are also important when giving construction instructions for
algorithms. We also discuss the fundamental notion of a limit of a sequence. In this chapter, we
briefly review

• some basic notions about sequences;

• arithmetic and geometric sequences as important special sequences;

• properties of a sequence and

• partial sums of sequences.

7.1 Basic Notions

Sequence:
If a real number an is assigned to each natural number n ∈ N, then

{an} = a1, a2, a3, . . . , an, . . .

is called a sequence.

The numbers a1, a2, a3, . . . are called the terms of the sequence. In particular, the number an
is denoted as the nth term. One can define a sequence in two different forms:

• explicitly by giving a mathematical term how the nth term of the sequence can be
calculated;

• recursively by giving the first term(s) of the sequence and a recursive formula for calcu-
lating the remaining terms of the sequence.

We illustrate the calculations of the terms of a sequence by the following examples.

115
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Example 7.1 Consider the sequence

{an} =

{
n− 2

3n+ 1

}
.

We determine the terms a1, a2, . . . , a6 and obtain

a1 =
1− 2

3 · 1 + 1
= −1

4
, a2 =

2− 2

3 · 2 + 1
= 0 , a3 =

3− 2

3 · 3 + 1
=

1

10
,

a4 =
4− 2

3 · 4 + 1
=

2

13
, a5 =

5− 2

3 · 5 + 1
=

3

16
, a6 =

6− 2

3 · 6 + 1
=

4

19
.

Example 7.2 Consider the sequence

{bn} =

{
(−1)n+1 · n2

n+ 1

}
.

Then we obtain for the first six terms:

b1 = (−1)1+1 · 12

1 + 1
=

1

2
; b2 = (−1)2+1 · 22

2 + 1
= −4

3
; b3 = (−1)3+1 · 32

3 + 1
=

9

4
;

b4 = (−1)4+1 · 42

4 + 1
= −16

5
; b5 = (−1)5+1 · 52

5 + 1
=

25

6
; b6 = (−1)6+1 · 62

6 + 1
= −36

7
.

We observe that any two successive terms of the above sequence have a different sign. Such a
sequence is called an alternating sequence.

Example 7.3 Let a sequence {cn} be given by

c1 = 3, cn = c2n−1 − 5, n ≥ 2 .

In this case, the sequence is recursively defined and we can calculate a particular term if the
preceding term is known. We obtain for the first six terms:

c1 = 3; c2 = c21 − 5 = 32 − 5 = 4;

c3 = c22 − 5 = 42 − 5 = 11; c4 = c23 − 5 = 112 − 5 = 116;

c5 = c24 − 5 = 1162 − 5 = 13, 451; c6 = c25 − 5 = (13, 451)2 − 5 = 180, 929, 396 .

Example 7.4 Consider the sequence {dn} given by

d1 = 0, d2 = 1, dn = dn−2 + dn−1, n ≥ 2 .

This is a recursively defined sequence with two initial terms. Notice here that the calculation of
a particular term requires to know the last two preceding terms. In particular, we get for the
first six recursively calculated terms d3, d4, . . . , d8:

d3 = d1 + d2 = 0 + 1 = 1; d4 = d2 + d3 = 1 + 1 = 2;

d5 = d3 + d4 = 1 + 2 = 3; d6 = d4 + d5 = 2 + 3 = 5;

d7 = d5 + d6 = 3 + 5 = 8; d8 = d6 + d7 = 5 + 8 = 13;

This particular sequence is also known as Fibonacci sequence.
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7.2 Arithmetic Sequences

Arithmetic sequence:
A sequence {an}, where the difference of any two successive terms is constant, is called an
arithmetic sequence, i.e., the equality

an+1 − an = d

holds for all n ∈ N, where d is constant.

Thus, the terms of an arithmetic sequence with the first term a1 are as follows:

a1, a2 = a1 + d, a3 = a1 + 2d, a4 = a1 + 3d, . . . ,

and we obtain the following explicit formula for the nth term:

an = a1 + (n− 1) d for n ∈ N.

Example 7.5 We consider the sequence

{an} = 1,
4

3
,
5

3
, 2,

7

3
, . . . .

This is an arithmetic sequence with the first term a1 = 1 and the difference d = 1/3. Therefore,
the nth term is obtained by

an = a1 + (n− 1) · d = 1 +
1

3
· (n− 1) .
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Example 7.6 We consider an arithmetic sequence with the third term a3 = 6 and the 14th term
a14 = 50. We get the difference d of this arithmetic sequence from the equality

a14 − a3 = 11 · d

which gives
50− 6 = 44 = 11 · d

and thus, d = 4. Since a3 = a1 + 2 · d, we obtain from 6 = a1 + 2 · d = a1 + 8 the first term
a1 = −2.

7.3 Geometric Sequences

Geometric sequence:
A sequence {an}, where the ratio of any two successive terms is the same number q �= 0, is called
a geometric sequence, i.e., the equality

an+1

an
= q

holds for all n ∈ N, where q is constant.

Thus, the terms of a geometric sequence with the first term a1 are as follows:

a1, a2 = a1 · q, a3 = a1 · q2, a4 = a1 · q3, . . . ,
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and we obtain the following explicit formula for the nth term:

an = a1 · qn−1 for all n ∈ N.

Example 7.7 Consider the sequence

{an} = 1, 3, 9, 27, 81, 243, 729, . . . .

This is a geometric sequence with the first term a1 = 1 and the quotient q = 3.

Example 7.8 A geometric sequence {bn} has the second term b2 = −8 and the fifth term
b5 = 512. From b2 = b1 · q and b5 = b1 · q4, we get

b5
b2

=
512

−8
= −64 = q3

which gives as the only real solution q = −4. Thus, for the first term, we have

b2 = b1 · q

which yields

−8 = b1 · (−4)

from which we obtain the first term b1 = 2.

Example 7.9 Let the sequence {cn} be given by

cn =
2

3n+2
.

Then we obtain

c1 =
2

31+2
=

2

33
=

2

27

and
cn+1

cn
=

2 · 3n+2

3(n+1)+2 · 2
= 3n+2−(n+3) = 3−1 =

1

3
.

Thus, the sequence {cn} is a geometric sequence with the first term c1 = 2/27 and the quotient
q = 1/3.

7.4 Properties of Sequences

Often one wishes to find characteristic properties of a sequence, e.g. whether the terms of a
sequence can become arbitrarily small or large or whether each subsequent term of a sequence is
larger than the previous one. In this section, we discuss the monotonicity and the boundedness
of a sequence.
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Monotonicity of a sequence:
A sequence {an} is called increasing (or equivalently, non-decreasing) if

an ≤ an+1 for all n ∈ N.

A sequence {an} is called strictly increasing if

an < an+1 for all n ∈ N.

A sequence {an} is called decreasing (or equivalently, non-increasing) if

an ≥ an+1 for all n ∈ N.

A sequence {an} is called strictly decreasing if

an > an+1 for all n ∈ N.

A sequence {an} which is (strictly) increasing or (strictly) decreasing is also denoted as (strictly)
monotonic (or monotone).

When checking a sequence {an} for monotonicity, we may investigate the difference

Dn = an+1 − an

of two successive terms. Then:

• If Dn ≥ 0 for all n ∈ N, the sequence {an} is increasing;

• If Dn > 0 for all n ∈ N, the sequence {an} is strictly increasing;

• If Dn ≤ 0 for all n ∈ N, the sequence {an} is decreasing;

• If Dn < 0 for all n ∈ N, the sequence {an} is strictly decreasing.

Example 7.10 We investigate the sequence {an} with

an = 3(n+ 1)2 − 2n, n ∈ N,

for monotonicity, i.e., we investigate the difference of two successive terms and obtain

an+1 − an = 3(n+ 2)2 − 2(n+ 1)−
[
3(n+ 1)2 − 2n

]

= 3n2 + 12n+ 12− 2n− 2−
(
3n2 + 6n+ 3− 2n

)

= 6n+ 7.

Since 6n+ 7 > 0 for all n ∈ N, we get an+1 > an for all n ∈ N. Therefore, the sequence {an} is
strictly increasing.

Download free eBooks at bookboon.com



A REFRESHER COURSE IN MATHEMATICS

121

Sequences and Partial Sums

121

7.5. LIMIT OF A SEQUENCE 121

Boundedness of a sequence:
A sequence {an} is called bounded if there exists a finite real constant C such that

|an| ≤ C for all n ∈ N.

Such a constant C is also denoted as a bound. According to the definition of the absolute value,
this means that the inequalities −C ≤ an ≤ C hold for all terms an.

Example 7.11 Let us investigate the alternating sequence

{an} =

{
(−1)n · n− 1

n+ 2

}

whether it is bounded. We estimate the absolute value of the nth term and obtain

|an| =
∣∣∣(−1)n · n− 1

n+ 2

∣∣∣ = |(−1)n| ·
∣∣∣n− 1

n+ 2

∣∣∣ =
∣∣∣n− 1

n+ 2

∣∣∣ ≤ 1.

Therefore, the sequence {an} is bounded, e.g., C = 1 delivers such a bound.

7.5 Limit of a Sequence

We start with the introduction of a limit which is a central notion in mathematics. It is needed
for many considerations in analysis. In general, this notion is necessary in mathematics to make
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the step from ‘finiteness’ to ‘infiniteness’. The correct introduction of irrational numbers is also
only possible by means of limit considerations.

Limit of a sequence:
A finite number a is called the limit of a sequence {an} if, for any given ε > 0, there exists an
index n(ε) such that

|an − a| < ε for all n ≥ n(ε).

Note that the above inequality with the absolute value is used for a simpler presentation of the
equivalent inequalities that

a− ε < an < an + ε for all n ≥ n(ε)

To indicate that the number a is the limit of the sequence {an}, we write

lim
n→∞

an = a.

The notion of the limit a is illustrated in Fig. 7.1. The sequence {an} has the limit a, if there
exists some index n(ε) (depending on the positive number ε) such that the absolute value of the
difference between the term an and the limit a becomes smaller than the given value ε for all
terms an with n ≥ n(ε), i.e., from some number n on, all terms of the sequence {an} are very
close to the limit a. If ε becomes smaller, the corresponding value n(ε) becomes larger.

We note that a limit must be a finite real number. If the terms of a sequence tend e.g. to ∞,
then we also write as an abbreviation

lim
n→∞

an = ∞ .

However, in this case the limit of the sequence {an} does not exist.

Next, we give a few rules for working with limits of sequences. Assume that the limits

lim
n→∞

an = a and lim
n→∞

bn = b

exist. Then the following limits exist, and we obtain:

Rules for working with limits of a sequence:

(1) lim
n→∞

(an ± C) = lim
n→∞

(an)± C = a± C, (C ∈ R) ;

(2) lim
n→∞

(C · an) = C · a, (C ∈ R) ;

(3) lim
n→∞

(an ± bn) = a± b ;

(4) lim
n→∞

(an · bn) = a · b ;

(5) lim
n→∞

an
bn

=
a

b
(bn �= 0 for all n, b �= 0) .

In the formulas above, it is assumed that C ∈ R is constant. The use of the above formulas
requires the knowledge of some limits. Next, we summarize some known limits.
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n

an

a− ε

a

a+ ε

n(ε)

Figure 7.1: Limit of a sequence

Some limits:

(1) lim
n→∞

1

na
= 0 for a > 0 ;

(2) lim
n→∞

an = 0 for a ∈ R, |a| < 1 ;

(3) lim
n→∞

n
√
a = 1 for a ∈ R>0 ;

(4) lim
n→∞

an

n!
= 0 for a ∈ R ;

(5) lim
n→∞

(
1 +

1

n

)n

= e .

We illustrate the calculation of limits by the following examples.

Example 7.12 Consider the sequence {an} with

an =
3

n2
.

We can rewrite the term an as

an = 3 · 1

n2
.

Using rule (2) and limit (1) above, we get

lim
n→∞

an = 3 · lim
n→∞

1

n2
= 3 · 0 = 0 .

Example 7.13 Let the sequences {an} and {bn} with

an =
3n2 + n− 4

4n2 − 2
, bn =

6n2 + 2

n3 + n
, n ∈ N,
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be given. Using the above rules and known limits, we obtain

lim
n→∞

an = lim
n→∞

3n2 + n− 4

4n2 − 2
= lim

n→∞

n2
(
3 + 1

n − 4
n2

)

n2
(
4− 2

n2

)

=
lim
n→∞

3 + lim
n→∞

1

n
− 4 · lim

n→∞

1

n2

lim
n→∞

4− 2 · lim
n→∞

1

n2

=
3 + 0− 0

4 + 0
=

3

4
.

Similarly, we get

lim
n→∞

bn = lim
n→∞

6n2 + 2

n3 + n
= lim

n→∞

n3
(
6
n + 2

n3

)

n3
(
1 + 1

n2

)

=
6 · lim

n→∞

1

n
+ 2 · lim

n→∞

1

n3

lim
n→∞

1 + lim
n→∞

1

n2

=
0 + 0

1 + 0
= 0.

Consider now the sequence {cn} with cn = an + bn, n ∈ N. Applying the given rules for limits,
we immediately get

lim
n→∞

cn = lim
n→∞

an + lim
n→∞

bn =
3

4
+ 0 =

3

4
.

One can generalize the result from the above example. Let p, q ∈ N, then we obtain for such
special rational terms given as a fraction of two polynomial terms in n:

lim
n→∞

apn
p + ap−1n

p−1 + . . .+ a1n+ a0
bqnq + bq−1nq−1 + . . .+ b1n+ b0

=




0 for p < q
ap
bq

for p = q

±∞ for p > q.

This means that, in order to find the above limit, we have to check only the terms with the
largest exponent in the numerator and in the denominator.

Example 7.14 Using the previous formula, we immediate get (without calculations):

lim
n→∞

2n4 + n3 − 2n

n4 − n2 + 5n+ 7
= 2 ;

lim
n→∞

−4n3 + 3n2 + n− 3

n2 − n− 1
= −∞ ;

lim
n→∞

6n3 + n+ 7

n4 + 2n3 − n2 + 2
= 0 ;

7.6 Partial Sums

Next, we consider partial sums of sequences. They are often required in several applications,
e.g. in finance when one wishes to know the final amount in a saving account after some years
when depositing a monthly amount and interest is paid or in connection with loan repayments.
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nth partial sum:
Let {an} be a sequence. Then the sum of the first n terms

sn = a1 + a2 + . . .+ an =

n∑
k=1

ak

is called the nth partial sum sn.

Example 7.15 Consider the sequence {an} with

an = 2 + (−1)n−1 · 1
n
, n ∈ N.

This gives

a1 = 2 + (−1)0 · 1
1
= 3, a2 = 2 + (−1)1 · 1

2
=

3

2
, a3 = 2 + (−1)2 · 1

3
=

7

3
,

a4 = 2 + (−1)3 · 1
4
=

7

4
, a5 = 2 + (−1)4 · 1

5
=

11

5
, . . . .
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Then we get the following partial sums:

s1 = a1 = 3, s2 = a1 + a2 = 3 +
3

2
=

9

2
, s3 = a1 + a2 + a3 = 3 +

3

2
+

7

3
=

41

6
,

s4 = a1 + a2 + a3 + a4 = 3 +
3

2
+

7

3
+

7

4
=

82 + 21

12
=

103

12
,

s5 = a1 + a2 + a3 + a4 + a5 = 3 +
3

2
+

7

3
+

7

4
+

11

5
=

515 + 132

60
=

647

60
.

Of course, we can also use that si = si−1 + ai for i = 2, 3, . . . , which simplifies the calculations.

For arithmetic and geometric sequences, one can easily calculate the corresponding partial sums
as follows.

The nth partial sum of an arithmetic sequence {an} with an = a1 + (n− 1) · d is given
by

sn =
n

2
· (a1 + an) =

n

2
·
[
2a1 + (n− 1)d

]
.

The nth partial sum of a geometric sequence {an} with an = a1 · qn−1 and q �= 1 is given
by
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sn = a1 ·
1− qn

1− q
.

Notice that for q = 1, we get a sequence having all the same term a1 which gives the nth partial
sum sn = n · a1. Let us consider for illustration the following problems:

Example 7.16 We determine the sum of the first 50 even natural numbers, i.e., we calculate

S = 2 + 4 + 6 + . . .+ 98 + 100 .

This can be done by calculating the 50th partial sum of an arithmetic sequence with a1 = 2 and
d = 2, which gives

a50 = a1 + 49 · d = 2 + 49 · 2 = 100.

Thus, we obtain

s50 =
50

2
· (a1 + a50) = 25 · (2 + 100) = 2, 550 .

Example 7.17 Let {an} be an arithmetic sequence with the first term a1 = 3, the difference
d = 3 and the nth partial sum sn = 45. We wish to determine the corresponding value n and
the nth term an. From the formula for the nth partial sum of an arithmetic sequence, we obtain

45 = sn =
n

2
· [2a1 + (n− 1) · d] = n

2
· (6 + (n− 1) · 3) = n

2
· (3n+ 3).

This gives the quadratic equation 90 = 3n2 + 3n or

n2 + n− 30 = 0

which has the two real solutions

n1 = −1

2
+

√
1

4
+ 30 = −1

2
+

11

2
= 5

and

n2 = −1

2
−

√
1

4
+ 30 = −1

2
− 11

2
= −6 .

Since n2 < 0, the solution to our problem is n = n1 = 5 which yields the 5th term

a5 = a1 + 4 · d = 3 + 4 · 3 = 15 .

Example 7.18 Consider the sequence

{bn} = 2, 3,
9

2
,
27

4
,
81

8
, . . . .

This is a geometric sequence with the first term b1 = 2 and the quotient q = 3/2. For the nth
partial sum, we obtain

sn = a1 ·
1− qn

1− q
= 2 ·

1−
(
3

2

)n

1− 3

2

= 2 ·
1−

(
3

2

)n

−1

2

= 2 ·

(
3

2

)n

− 1

1

2

= 4 ·
[(

3

2

)n

− 1

]
.
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Example 7.19 We want to determine the sum

S =
9

2
− 9

4
+

9

8
− 9

16
+ · · · − 9

256
+

9

512
.

This is the partial sum of a geometric sequence with the first term a1 = 9/2 and the quotient
q = −1/2. More precisely, it is the 9th partial sum since

a9 = a1 · q8 =
9

2
·
(
−1

2

)8

=
9

2
· 1

(−2)8
=

9

2
· 1

256
=

9

512
.

Therefore, we obtain

S = s9 = a1 ·
1− q9

1− q
=

9

2
·
1−

(
−1

2

)9

1−
(
−1

2

) =
9

2
· 2
3
·
(
1− 1

29

)
= 3 ·

(
1− 1

512

)
=

1533

512
.

Example 7.20 Let {sn} be given by

sn =
n∑

k=1

3

2k−2
.

We determine the 20th partial sum s20. We have

a1 =
3

21−2
=

3

2−1
= 6 and

ak+1

ak
=

3 · 2k−2

2k−1 · 3
= 2k−2−(k−1) = 2−1 =

1

2
.

Therefore, the sequence {sn} gives the partial sums of a geometric sequence with a1 = 6 and
q = 1/2, and we obtain

s20 = a1 ·
1− q20

1− q
= 6 ·

1−
(
1

2

)20

1− 1

2

= 12 ·

[
1−

(
1

2

)20
]

.

EXERCISES

7.1 Determine the first six terms of the following sequences:

(a) {an} =

{
2 +

4

n

}
; (b) {bn} =

{
(−1)n+1 · n− 1

4 + n

}
; (c) {cn} = {1 + 2n2} .

7.2 Determine the nth term of the sequence {an} given by

{an} = 4 ,
3

2
,
2

9
,
5

8
,
12

25
,
7

18
, · · · .

7.3 Given is an arithmetic sequence {an} with a first term a1 = 15 and the difference d = 8.
Find the term a101.

7.4 For an arithmetic sequence, the terms a8 = 21 and a11 = 30 are known. Find the difference
d and the terms a1 and an.
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7.5 The first row in a football stadium has 376 seats and the last row has 1026 seats. Assuming
that the number of seats increases from row to row by the same number, how many rows
does the stadium have and what is the total number of seats?

7.6 Check the sequence

{an} =

{
n2

2n+1

}

for monotonicity! What is the largest term of the sequence? Is the sequence bounded?

7.7 Let {an} be a geometric sequence with the ratio of successive terms q = −2/3 and the
term a7 = 64/243. Find the first term a1. Which of the terms is the first with an absolute
value less than 0.01?

7.8 How many terms of the arithmetic sequence {an} with

an = 5 + 4(n− 1)

are less than 700?

7.9 A geometric sequence has the terms a2 = 6 and a7 = 2/81. Find the first term a1 and the
ratio q of any successive terms.

7.10 Investigate the following sequences for monotonicity:

(a) {an} =

{
n+ 5

n+ 1

}
; (b) {bn} =

{
2− n2

3n

}
;

(c) {cn} =

{
5n

2n− 1

}
.

7.11 Are the following sequences monotonic and bounded? Find the limits of the sequences if
they exist:

(a) {an} =
{
3
n − 6

}
; (b) {bn} =

{
7− 2n
n2

}
; (c) {cn} =

{
2n

n!

}
.

7.12 Find the limits of the following sequences if they exist (n ∈ N):

(a) {an} =

{
2nn

(n+ 1)n

}
; (b) {bn} =

{
an4 + n3

3n3 + 4n

}
; a ∈ R;

(c) {cn} with cn = cn−1/2. Check it for c1 = 1 and c1 = 4.

7.13 Determine the first six partial sums s1, s2, . . . , s6 for the following sequences:

(a) {an} =
{
3 +

n

2

}
; (b) {bn} =

{
2n3 − 2n2 + 3n− 1

2n2 + 4n

}
;

(c) {cn} =

{
(−1)n · n− 1

n+ 1

}
.

7.14 Determine the partial sum s10 of the following arithmetic sequences:

(a) {an} = 3,
9

2
, 6, . . . ; (b) {bn} = 25, 13, −1, . . . ;

(c) {cn} = −2, −14, −26, . . . .
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7.15 Determine the partial sum s12 of the following geometric sequences:

(a) {an} =
1

2
, −1

3
;
2

9
, . . . ; (b) {bn} =

{
2

5
·
(
1

3

)n−1
}
;

(c) {cn} =
{
(−3) · 2n−1

}
.

.

7.16 Determine the following sums:

(a) 2 + 6 + 10 + . . .+ 338 ; (b) 4− 4

3
+

4

9
− . . .+ . . .+

4

729
;

(c) 32 + 16 + 8 + . . .+
1

64
.
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Functions are widely applied in many disciplines to express a relationship between an indepen-
dent variable x and a dependent variable y, e.g. to express the production cost y in dependence
on the quantity x produced, or the profit y in dependence on the quantity x produced, or the
demand for a product y in dependence on its price x. The learning objectives of this chapter
are to review

• the basic notion of a function (of a real variable) and some properties,

• the major types of a function, and

• composite and inverse functions.

8.1 Basic Notions and Properties

We start with the fundamental notion of a function.

Function of a real variable:
A function f of a real variable assigns to any real number x ∈ Df ⊆ R a unique real number
y. The set Df is called the domain of function f and includes all numbers x for which function
f is defined. The set

Rf = {y | y = f(x), x ∈ Df}

is called the range of function f .

The real number y ∈ Rf denotes the function value of x, i.e., the value of function f at the
point x. The variable x is called the independent variable or the argument, and y is called
the dependent variable. The domain and range of a function are illustrated in Fig. 8.1, where
also the graph of function f is drawn in a coordinate system. Note that in mathematics, the
horizontal axis is always the x-axis, and the vertical axis is always the y-axis.

In contemporary mathematics, one also writes

f : Df → R or f : Df → Rf

131
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x

y

x1 x2

y1

y2

Df = [x1, x2]

Rf = [y1, y2]

graph of function f

Figure 8.1: Domain, range and graph of a function

for a function of a real variable. We note that the second representation above is more precise
because it gives the exact range of the function. However, often the first representation is used
when it is not necessary to know the range explicitly. In this case, it simply expresses that the
values of function f are real numbers. If the domain Df is not stated explicitly, it is assumed
that the largest possible domain is considered, i.e., the set of all real numbers x for which
the function value can be calculated.

A function can be given in the following ways:

• analytically by an equation y = f(x);

• by a table that gives for any x ∈ Df the resulting function value f(x) ∈ Rf ;

• graphically or

• by a verbal description.

Example 8.1 Consider the function f : Df → R with

y = f(x) =
√
x− 1 +

1

x− 2
.

We first determine the domain Df of function f . The term
√
x− 1 is defined for non-negative

numbers x − 1 and therefore, for all real numbers x ≥ 1. For the term 1/(x − 2), we have to
exclude the case when the denominator is equal to zero and thus, this term is defined for all real
numbers x �= 2. Both previous conditions have to be satisfied. This gives the largest possible
domain

Df = {x ∈ R | x ≥ 1 and x �= 2},

or in interval notation
Df = [1, 2) ∪ (2,∞).

So, the domain Df is the union of the above two intervals.
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x

y

−3 −2 −1 1 2 3 4 5

1

2

3

Figure 8.2: Graph of function f in Example 8.2

Example 8.2 We consider the following function f : R → {0, 1, 2, 3} described verbally:

y = f(x) =




0 if x is a non-positive integer
1 if x is an even positive integer
2 if x is an odd positive integer
3 otherwise

So, the function f is defined for all real numbers, and only four function values are possible.
The graph of this function is given in Fig. 8.2.

The next four notions deal with monotonicity properties of a function.

Increasing function:
A function f : Df → R is said to be increasing (or equivalently, non-decreasing) on an
interval I ⊆ Df if for arbitrary x1, x2 ∈ I with x1 < x2, the inequality

f(x1) ≤ f(x2)

holds.

Strictly increasing function:
A function f : Df → R is said to be strictly increasing on an interval I ⊆ Df if for arbitrary
x1, x2 ∈ I with x1 < x2, the inequality

f(x1) < f(x2)

holds.

Decreasing function:
A function f : Df → R is said to be decreasing (or equivalently, strictly decreasing) on an
interval I ⊆ Df if for arbitrary x1, x2 ∈ I with x1 < x2, the inequality

f(x1) ≥ f(x2)

holds.
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x

y

f strictly
increasing
on [a, b]

f decreasing
on [b, c]

a b c

y = f(x)

Figure 8.3: Monotonicity intervals of a function

Strictly decreasing function:
A function f : Df → R is said to be strictly decreasing on an interval I ⊆ Df if for arbitrary
x1, x2 ∈ I with x1 < x2, the inequality

f(x1) > f(x2)

holds.

If a function has one of the above four properties, we also say that it is monotonic (or mono-
tone). An illustration is given in Fig. 8.3. In part (c), where function f is strictly increasing
on the interval [a, b], but decreasing on the interval [b, c].

Figure 8.3: Monotonicity intervals of a function

We note that a function f : Df → Rf , which is strictly monotonic on the domain (i.e., either
strictly increasing on Df or strictly decreasing on Df , is a so-called one-to-one (or equivalently,
a bijective) function.

Example 8.3 We investigate the function f : Df → R with

f(x) =
1

x3 + 8

for monotonicity. This function is defined for all x �= −2, i.e., Df = R \ {−2}. First, we
consider the interval I1 = (−2,∞). Let x1, x2 ∈ I1 with x1 < x2. We get 0 < x31 + 8 < x32 + 8
and thus,

f(x1) =
1

x31 + 8
>

1

x32 + 8
= f(x2)

(note that the inequality sign changes when considering the reciprocal terms of positive terms).
Therefore, function f is strictly decreasing on the interval I1.
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x

y

−2 −1 1 2

1

−1

f(x) = 1
x3+8

Figure 8.4: Graph of function f in Example 8.3

Consider now the interval I2 = (−∞,−2) and let x1 < x2 < −2. In this case, we first get
x31 + 8 < x32 + 8 < 0 and then

f(x1) =
1

x31 + 8
>

1

x32 + 8
= f(x2).

Therefore, function f is also strictly decreasing on the interval (−∞,−2). The graph of function
f is given in Fig. 8.4.

Now we deal with the question whether the function value of a function can become arbitrarily
small (large) or not.

Bounded function:
A function f : Df → R is said to be bounded from below (from above) if there exists a
real constant C such that

f(x) ≥ C (resp. f(x) ≤ C)

for all x ∈ Df .
A function f : Df → R is said to be bounded from above if there exists a constant C such
that

f(x) ≤ C)

for all x ∈ Df .
Function f is said to be bounded if f(x) is bounded from below and from above, i.e., we have

|f(x)| ≤ C

for all x ∈ Df .
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According to the definition of the absolute values, a function f is bounded if there exists a
constant C such that

−C ≤ f(x) ≤ C.

A bounded and an unbounded function are illustrated in Fig. 8.5.

Example 8.4 We consider the function f : R → R with

y = f(x) = ex + sin 2x+ 3.

The value of the term ex is always greater than zero, the value of the term sin 2x is in the
interval [−1, 1]. Thus, the value of function f is always greater than 0 + (-1) + 3 = 2. Therefore,
function f is bounded from below since we can choose e.g. the constant C = 2 such that f(x) ≥ C
for all x ∈ R. However, function f is not bounded from above since the function value f(x) can
become arbitrarily large when x becomes large because the value of the term ex can become
arbitrarily large. Therefore, function f is also not bounded.

Example 8.5 We consider the function g : [3,∞) → R with

y = g(x) = 5−
√
x− 3.

First, the values of the term
√
x− 3 are non-negative and therefore, the function values of f are

smaller than or equal to 5. Consequently, for C = 5 we get g(x) ≤ C for all x ∈ R and thus,
function f is bounded from above. However, since the value of the term

√
x− 3 can become

arbitrarily large, the function values of g can become arbitrarily small and function g is not
bounded from below (and therefore also not bounded).
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x

y

C

−C

y = f(x)

(a) f bounded

x

y

y = g(x)

(b) g unbounded

Figure 8.5: Bounded and unbounded functions
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Example 8.6 We consider the function h : R → R with

y = h(x) = 3 cosx+ 4.

First, the possible values of the term cosx are in the interval [−1, 1]. Thus, the values of the
term 3 cosx are in the interval [−3, 3], and hence the values of function h are in the interval
[−3+ 4, 3+ 4] = [1, 7]. Consequently, function h is bounded, e.g. for C = 7, we have |h(x)| ≤ C
for all x ∈ R.

Next, we consider symmetry properties of a function.

Even/odd function:
A function f : Df → R is called even if

f(−x) = f(x) for all x ∈ Df .

A function f is called odd if

f(−x) = −f(x) for all x ∈ Df .

In both cases, the domain Df has to be symmetric with respect to the origin of the coordinate
system.

An even and an odd function are illustrated in Fig. 8.6.
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x

y
function f

−x x

f(x) = f(−x)

f(x) = f(−x)

(a) even function

x

y
function f

−x x

f(−x)

f(x)

f(−x) = −f(x)

(b) odd function

Figure 8.6: Even and odd functions
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An even function is symmetric to the y-axis. An odd function is symmetric with respect to the
origin of the coordinate system as a point. It is worth noting that a function f is not necessarily
either even or odd. To be even or odd is a specific symmetry property of a function.

Example 8.7 We consider the function f : R \ {0} → R with

f(x) = 3x5 − x3 +
2

x
.

We determine f(−x) and obtain

f(−x) = 3(−x)5 − (−x)3 +
2

−x
= −3x5 + x3 − 2

x

= −
(
3x5 − x3 +

2

x

)
= −f(x).

Thus, function f is an odd function.

Example 8.8 Let the function g : R → R with

g(x) = 4x4 + x2 + 2 |x|

be given. Using the definition of the absolute value of a number, we obtain

g(−x) = 4(−x)4 + (−x)2 + 2| − x| = 4x4 + x2 + 2|x| = g(x).

Hence, function g is an even function.

Example 8.9 Consider the function h : R → R with

h(x) = x2 + 2x+ 5.

This function is neither even nor odd because we get e.g.

h(1) = 8 and h(−1) = 4,

i.e., for the particular value x = 1, we get h(1) �= h(−1) and h(1) �= −h(1).

Periodic function:
A function f : Df → R is called periodic if there exists a real number T such that for all
x ∈ Df with x+ T ∈ Df , the equality

f(x+ T ) = f(x)

holds. The smallest real number T with the above property is called the period of function f .

Two periodic functions are illustrated in Fig. 8.7.
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y

(a)

· · · · · ·

︸ ︷︷ ︸
T

x

y

(b)

· · · · · ·

︸ ︷︷ ︸
T

Figure 8.7: Periodic functions

Zero of a function:
A point x with

f(x) = 0

is called a zero (or root) of function f .

We will give the zeroes of some functions in the subsequent sections. However, in general, the
problem of determining all zeroes of an arbitrary function is a difficult problem and often one
has to apply numerical procedures for an approximate calculation.

Convex/concave function:
A function f : Df → R is called convex on an interval I ⊆ Df , if for any choice of x1 and x2
in I and 0 ≤ λ ≤ 1, inequality

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) (8.1)

holds.

A function f : Df → R is called concave on an interval I ⊆ Df , if for any choice of x1 and x2
in I and 0 ≤ λ ≤ 1, inequality

f(λx1 + (1− λ)x2) ≥ λf(x1) + (1− λ)f(x2)
)

(8.2)

holds.

If for 0 < λ < 1 and x1 �= x2, the sign < holds in inequality (8.1) (and the sign > holds in
inequality (8.2), respectively), function f is called strictly convex (strictly concave).

The definition of a convex function is illustrated in Fig. 8.8. A function f is convex on an
interval I if for any choice of two points x1 and x2 from the interval and for any intermediate
point x from the interval [x1, x2], which can be written as x = λx1 + (1 − λ)x2, the function
value of this point (i.e., the value f(λx1 + (1− λ)x2)) is not greater than the function value of
the straight line through the points (x1, f(x1)) and (x2, f(x2)) at the intermediate point x. The
latter function value can be written as λf(x1) + (1− λ)f(x2).
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x

y

y = f(x)

a bx1 λx1 + (1− λ)x2 x2

λ ∈ [0, 1]

f(λx1 + (1− λ)x2)

f(x2)

f(x1)
λf(x1) + (1− λ)f(x2)

Figure 8.8: Definition of a convex function

Checking whether a function is convex or concave by applying the above definition can be rather
difficult. By means of differential calculus, we give criteria in Chapter 9 which are easier to use.

In the next sections, we consider classes of functions for which their properties are well known.

8.2 Linear Functions

Linear function:
A function f : R → R given by

y = f(x) = a1x+ a0 (a1 �= 0)

is called a linear function.

In this case, the graph is a (straight) line which is uniquely defined by any two distinct points
P1 and P2 belonging to this line. Assume that P1 has the coordinates (x1, y1) and P2 has the
coordinates (x2, y2), then the above parameter a1 is given by

a1 =
y2 − y1
x2 − x1

and a1 is denoted as the slope of the line. The parameter a0 gives the y-coordinate of the
intersection of the line with the y-axis (see also Section 6.1). These considerations are illustrated
in Fig. 8.9 (a) for a0 > 0 and a1 > 0 and in Fig. 8.9 (b) for a0 > 0 and a1 < 0. Different linear
functions with the same parameter a0 are illustrated in Fig. 8.10 (a), and different functions
with the same parameter a1 are illustrated in Fig. 8.10 (b). In case (a), the graphs are lines
going through the same point (0, a0) while in case (b), the graphs are parallel lines.
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x

y

x1 x2

y1

y2

a0 x2 − x1 > 0

y2 − y1 > 0

a1 =
y2−y1
x2−x1

(a)

x

y

x1 x2

y2

y1

a0

x2 − x1 > 0

y2 − y1 < 0

(b)

Figure 8.9: Linear functions with (a) a0 > 0, a1 > 0 and (b) a0 > 0, a1 < 0

x

y

a0

f1

f2

f3

(a)

x

y

f3

f2

f1

(b)

Figure 8.10: Linear functions with (a) identical a0 and (b) identical a1
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The point-slope formula of a line passing through the point P1 with the coordinates (x1, y1)
and having the slope a1 is given by

y − y1 = a1 · (x− x1).

A linear function f(x) = a1x+ a0 with a1 �= 0 has exactly one zero x0 given by

x0 = −a0
a1

.

Example 8.10 It is known that a line goes through the points (x1, y1) = (2, 3) and (x2, y2) =
(6, 11). We find the equation of the corresponding linear function represented by this line. First,
we determine the slope of this line and obtain

a1 =
y2 − y1
x2 − x1

=
11− 3

6− 2
=

8

4
= 2.
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The equation of this line is given by

y − y1 = a1 · (x− x1)

y − 3 = 2 · (x− 2)

y − 3 = 2x− 4

y = 2x− 1,

i.e., the slope of this linear function is a1 = 2 and the line intersects the y-axis at the point
y = a0 = −1, and the zero is given by

x0 = −a0
a1

= −−1

2
=

1

2
.

8.3 Quadratic Functions

Quadratic function:
A function f : R → R given by

y = f(x) = a2x
2 + a1x+ a0, a2 �= 0

is called a quadratic equation.

The graph of a quadratic function is called a parabola. If a2 > 0, then the parabola is open
from above (upward parabola, see Fig. 8.11 (a)) while, if a2 < 0, then the parabola is open
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x

y

yV

xV

V

(a) a2 > 0

x

y

yV

xV

V

(b) a2 < 0

Figure 8.11: A quadratic function and the apex

from below (downward parabola, see Fig. 8.11 (b)). The point V in Fig. 8.11 is called the
apex (or vertex), and its coordinates can be determined by rewriting the quadratic function
in the following form:

y − yV = a2 · (x− xV )
2, (8.3)

where (xV , yV ) are the coordinates of the point V . The procedure of obtaining the vertex is
illustrated in Example 8.11. In general, we get

xV = − a1
2a2

and yV = − a21
4a2

+ a0.

In the case of a21 ≥ 4a2a0, a quadratic function has the two real zeroes

x1,2 =
−a1 ±

√
a21 − 4a2a0
2a2

. (8.4)

In the case of a21 = 4a2a0, we get a zero x1 = x2 occurring twice. In the case of a21 < 4a2a0,
there does not exist a real zero (since there does not exist a real zero which is the square root of
a negative number). If a quadratic function is given in normal form y = x2 + px+ q, formula
(8.4) for finding the zeroes simplifies to

x1,2 = −p

2
±

√
p2

4
− q.

For the two zeroes x1 and x2 of the quadratic function y = f(x) = x2 + px+ q, we have

x1 + x2 = −p and x1x2 = q.

If one knows the two zeroes x1 and x2, one can easily determine the x-coordinate of the apex
as follows:

xV =
x1 + x2

2
.
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Example 8.11 Let the quadratic function f : R → R with

y = f(x) = 2x2 − 12x+ 16.

be given. Since a2 = 2 > 0, the parabola is open from above. For determining the apex, we
rewrite function f as follows:

y = 2(x2 − 6x) + 16

y = 2(x2 − 6x +9) + 16−18

y = 2(x− 3)2 − 2

y + 2 = 2(x− 3)2.

From the latter representation we find the apex

V = (xV , yV ) = (3,−2).

In the above transformation, we have written the right-hand side as a complete square of the
form a2(x−xV )

2 by adding 2 times the number 9 in parentheses and then we subtracted outside
18 so that the value of the right-hand side does not change. To determine the zeroes, we divide
the given equation by 2 and solve

x2 − 6x+ 8 = 0

which gives
x1 = 3 +

√
9− 8 = 4 and x2 = 3−

√
9− 8 = 2.

8.4 Polynomials

Linear and quadratic functions are a special case of a so-called polynomial. Polynomials are
often used for approximating more complicated functions. They can be easily differentiated and
integrated, and their properties are well investigated. Polynomials are defined as follows.

Polynomial of degree n:
The function Pn : R → R with

y = Pn(x) = anx
n + an−1x

n−1 + . . .+ a2x
2 + a1x+ a0 (8.5)

with an �= 0 is called a polynomial function (or polynomial) of degree n. The numbers
a0, a1, . . . , an are called the coefficients of the polynomial.

Example 8.12 The function f : R → R with

f(x) = 2x5 + x3 − 4x+ 2

is a polynomial of degree 5. The function g : R → R with

g(x) = −x3 + 1

is a polynomial of degree 3.
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Zero of multiplicity k:
Let f = Pn : R → R be a polynomial of degree n with

Pn(x) = (x− x0)
k · Sn−k(x) and Sn−k(x0) �= 0.

Then x0 is called a zero (or root) of multiplicity k of the polynomial Pn.

If x = x0 is a zero of multiplicity k of the polynomial, then the polynomial contains exactly k
times the factor x − x0. If a polynomial Pn(x) according to (8.5) has the zeroes x1, x2, . . . , xn,
it can be written as a product in the form

Pn(x) = an(x− x1)(x− x2) . . . (x− xn).

However, we have to give two remarks. First, not all n zeroes of a polynomial need to be real
numbers. Second, finding the real zeroes of a polynomial is in general a difficult (but important)
problem. Often one has to apply numerical procedures for finding the zeroes approximately such
as Regula falsi (see Section 3.6) or Newton’s method (see Section 9.8).

Example 8.13 Let a polynomial P5 : R → R with

P5(x) = x2(x− 1)(x2 − 2x− 3)
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be given. From the first two factors we see that

x1 = x2 = 0, x3 = 1.

are zeroes (note that x = 0 is a zero of multiplicity two). The remaining two zeroes are obtained
from x2 − 2x− 3 = 0 which gives

x4 = 1 +
√
1 + 3 = 3 and x5 = 1−

√
1 + 3 = −1.

8.5 Rational Functions

Next, we consider rational functions T which can be written as a quotient of polynomials P and
Q.

Rational function:
A function T : DT → R with

T (x) = P (x)/Q(x) = (P/Q)(x)

is called a rational function. The rational function T is called proper if deg P < deg Q and
improper if deg P ≥ deg Q, where deg is an abbreviation for the degree.
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So,

T1(x) =
x3 + 4

x2 − 3x+ 1

is an improper rational function, while

T2(x) =
x2 + 4x+ 5

x4 − 2x3 + 3

is a proper rational function.

By means of polynomial division, any improper rational function T = P/Q can be written
as the sum of a polynomial and a proper rational function. For degP ≥ degQ, the rational
function T (x) can be written as

T (x) =
P (x)

Q(x)
= S(x) +

R(x)

Q(x)

with DT = {x ∈ R | Q(x) �= 0}. To get the latter representation, we consider the terms in both
polynomials P and Q in decreasing order of their powers and divide in each step the first term
of P by the first term of Q. Then the result is multiplied by Q and the product is subtracted
from P . This yields a new polynomial P1 having a smaller degree than polynomial Pn. Now the
first term (with largest exponent) of polynomial P1 is divided by the first term of polynomial Q,
the resulting term is multiplied by polynomial Q and subtracted from P1 yielding a polynomial
P2 and so on. The procedure stops if some resulting polynomial Pi has a smaller degree than
the polynomial Q. This procedure is illustrated by the following example.

Example 8.14 Let the two polynomials P and Q with

P (x) = x4 + x3 − 2x2 + 3x− 1 and Q(x) = x2 + x+ 4

be given. The function T with T (x) = (P/Q)(x) is an improper rational function, and by
polynomial division we obtain:

(x4 + x3 − 2x2 + 3x − 1)
−(x4 + x3 + 4x2)

−6x2 + 3x − 1
− (−6x2 − 6x − 24)

9x + 23

: (x2 + x+ 4) = x2 − 6 +
9x+ 23

x2 + x+ 4

Recall that the terms in the polynomials have to be considered according to non-increasing expo-
nents. Thus, the rational function T can be written as the sum of a polynomial of degree 2 and
a proper rational function, where the polynomial in the numerator has the degree 1.
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x

y

y =
√
x

y = x2
y = x3

1

−1

1−1

Figure 8.12: Graphs of power and root functions

8.6 Power and Root Functions

Power function:
The function f : Df → R with

f(x) = xr, r ∈ R,

is called a power function. In dependence on the exponent r, the domain Df and the range
Rf are as follows:

1. r ∈ {1, 3, 5, . . .} ⊆ N : Df = (−∞,∞), Rf = (−∞,∞);

2. r ∈ {2, 4, 6, . . .} ⊆ N : Df = (−∞,∞), Rf = [0,∞);

3. r ∈ R \ (N ∪ {0}) : Df = (0,∞), Rf = (0,∞).

In case (1), the function f is strictly increasing, unbounded and odd. In case (2), the function f
is strictly decreasing on the interval (−∞, 0], strictly increasing on the interval [0,∞), bounded
from below and even. If in case (3), we have r > 0, then the function is strictly increasing and
bounded from below. If we have r < 0 in case (3), the function is strictly decreasing and also
bounded from below. For all r ∈ R>0, the power function goes through the point (x, y) = (1, 1).
The graphs of some power and root functions are given in Fig. 8.12.

Case (3) includes root functions as a special case when r is a positive value with r = 1/n, i.e.,

f(x) = x1/n = n
√
x.

In the case of a root function, the number zero belongs to the domain and also to the range,
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−1
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Figure 8.13: Graphs of exponential and logarithmic functions

i.e., Df = Rf = [0,∞).

8.7 Exponential and Logarithmic Functions

Exponential function:
The function f : R → (0,∞) with

f(x) = ax, a > 0, a �= 1,

is called an exponential function.

All exponential functions go through the point (0, 1). If a > 1, the exponential function is
strictly increasing. If 0 < a < 1, the corresponding exponential function is strictly decreasing.

Logarithmic function:
The function f : (0,∞) → R with

f(x) = loga x, a > 0, a �= 1,

is called a logarithmic function.

The graphs of some exponential and logarithmic functions are given in Fig. 8.13.

If the base a = e ≈ 2.71828 is chosen, we use the abbreviation ln which denotes the natural
logarithm, i.e.,

loge x = lnx.
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x

y
y = ex−2 + 1

1

1−1

Figure 8.14: The graph of function h in Example 8.16

If the base a = 10 is chosen, often the abbreviation lg is used, i.e.,

log10 x = lg x.

All logarithmic functions go through the point (1, 0). If a > 1, the logarithmic function is strictly
increasing. If 0 < a < 1, the corresponding logarithmic function is strictly decreasing.

Example 8.15 Let the logarithmic function g : Dg → Rg with

y = g(x) = ln(2x+ 5)− 3

be given. Since any logarithmic function is defined only for positive real numbers, we must have
2x+ 5 > 0 which gives the domain

Dg =

{
x ∈ R | x > −5

2

}
.

The range of function g corresponds to the range of an arbitrary logarithmic function (since the
modification in the argument and the subtraction of 3 from the logarithmic value do not change
the range). A logarithmic function has the only zero at the real number one. Thus the only zero
of function h is obtained from 2x+ 5 = 1 which gives x0 = −2.

Example 8.16 Let us consider the exponential function h : Dh → Rh with

y = h(x) = ex−2 + 1.

Since an exponential function is defined for all real numbers, function h has the domain Dh = R
too. The range of any exponential function is the interval (0,∞). Therefore, the we get the
range Dh = (1,∞) of function h. As a consequence, function h has no zeroes. The graph of
function h is obtained from the graph of function y = f(x) = ex by shifting it two units to the
right (since the argument is x− 2 instead of x) and then one unit above (since we have to add
one to the function value). The graph of function h is given in Fig. 8.14.
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x

y

(h, v)

h

vr

x

Figure 8.15: Definition of trigonometric functions

8.8 Trigonometric Functions

In this section, we repeat the four trigonometric functions and their properties. They can be
defined on a circle with the angle x being the variable (see Fig. 8.15).
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Sine and cosine functions:
The function f : R → [−1, 1] with

f(x) = sinx =
v

r

is called the sine function. The function f : R → [−1, 1] with

f(x) = cosx =
h

r

is called the cosine function.

The zeroes of the sine function are given by

xk = kπ with k ∈ Z .

The zeroes of the cosine function are given by

xk =
π

2
+ kπ with k ∈ Z .

The graphs of the sine and cosine functions are given in Fig. 8.16.
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y
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2
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2

Figure 8.16: Graphs of the sine and the cosine functions

Tangent and cotangent functions:
The function f : Df → R with

f(x) = tanx =
sinx

cosx
=

v

h
and Df =

{
x ∈ R | x �= π

2
+ kπ, k ∈ Z

}

is called the tangent function. The function f : Df → R with

f(x) = cotx =
cosx

sinx
=

h

v
and Df = {x ∈ R | x �= kπ, k ∈ Z}

is called the cotangent function.
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The zeroes of the tangent function coincide with those of the sine function and thus are
given by

xk = kπ with k ∈ Z .

The zeroes of the cotangent function coincide with those of the cosine function and thus
are given by

xk =
π

2
+ kπ with k ∈ Z .

The graphs of the tangent and cotangent functions are given in Fig. 8.17.

All trigonometric functions are periodic functions. In particular, the sine and cosine functions
have a period of 2π, i.e., we have

sin(x+ 2kπ) = sinx, cos(x+ 2kπ) = cosx, k ∈ Z.

Moreover, the tangent and cotangent functions have the period π, i.e., we have

tan(x+ π) = tanx, cot(x+ kπ) = cotx, k ∈ Z.

Example 8.17 Consider the function g with

y = g(x) = sin
(
x+

π

2

)
.

The domain and range of function g do not change in comparison to f(x) = sinx: Dg = R
and Rg = [−1, 1]. To determine the zeroes, we use that function f has the zeroes xk = kπ,∈ Z.
Therefore, for function g, we must have

x+
π

2
= kπ, k ∈ Z.

Hence, function g has the zeroes

xk = kπ − π

2
, k ∈ Z.

Function g has the same period of 2π as function f . The graph of function g is obtained from
the graph of f by shifting it π/2 units left along the x axis.

Example 8.18 Given is the trigonometric function h : R → Rh with

y = h(x) = 2 cos ax, a ∈ R.

First, if a = 0, function h is a constant function with h(x) = 2. Consider now the case a �= 0.
Function h is defined for all real numbers x: Dh = R. The range of the term cos ax for a �= 0 is
the interval [−1, 1]. Therefore, the range of function h is given by Rh = [−2, 2]. To determine
the zeroes of function h, we remember that the cosine function y = f(x) = cosx has the zeroes

xk =
π

2
+ kπ =

π

2
· (2k + 1), k ∈ Z.
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Figure 8.17: Graphs of the tangent and the cotangent functions
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y = h1(x) = 2 cos 2x

y = h2(x) = 2 cos 4x

Figure 8.18: Graph of function h in Example 8.18 for a = 2 (h1(x)) and a = 4 (h2(x))

For function h, we must therefore have

ax =
π

2
· (2k + 1)

which gives the zeroes

xk =
π

2a
· (2k + 1), k ∈ Z.

Moreover, function h has the period T with

T =
2π

a

(since the term ax must be a multiple of 2π). The graph of function h is given in Fig. 8.18 for
a = 2 and a = 4.
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Example 8.19 We consider the trigonometric function l : Dl → Rl with

l(x) = 1 + 3 cot(x− 1).

Since the cotangent function is defined for all x �= kπ, k ∈ Z, we get the domain

Dl = {x ∈ R | x �= kπ + 1, k ∈ Z}.

The range Rl of function l is the whole set R. Since the zeroes of function f(x) = cotx are
given by

x∗k =
π

2
+ kπ =

π

2
(2k + 1), k ∈ Z

we get the zeroes of function l as follows:

xk =
π

2
+ kπ + 1 =

π

2
(2k + 1) + 1, k ∈ Z.

The period of function l is also π as for the function f(x) = cotx.

8.9 Composite and Inverse Functions

In this section, we review the definition of a composite and an inverse function and how to work
with them.

Composite function:
Let the two functions f : Df → Rf and g : Dg → Rg be given with Rf ⊆ Dg. Then the
composite function g ◦ f of the functions f and g is defined as follows:

g ◦ f : Df → R

with
y = g(f(x)), x ∈ Df .

The function f is called the inside function, and the function g is called the outside function.
This means that first function f is applied to some number x ∈ Df , this gives the function value
f(x) which must belong to the domain Dg of function g (otherwise the composite function would
not be defined). Finally, the function value is y = g(f(x)) ∈ Rg ⊆ R. The determination of the
composite function is illustrated in Fig. 8.19.

If both compositions g ◦ f and f ◦ g are defined, this operation is not necessarily commutative,
i.e., in general, we have

(g ◦ f)(x) �= (f ◦ g)(x).

Thus, in general, the inside and outside functions cannot be interchanged. We illustrate the use
of composite functions by the following examples.
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Df
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Rg

x g(f(x))

f(x)

f g

(g ◦ f)(x)

Figure 8.19: The composite function g ◦ f

Example 8.20 Let the functions f : R → Rf and g : R → Rg with

f(x) = 2x+ 5 and g(x) = 3x2 − x+ 4

be given. We determine both composite functions f ◦ g and g ◦ f and obtain

(f ◦ g)(x) = f(g(x)) = f(3x2 − x+ 4)

= 2(3x2 − x+ 4) + 5

= 6x2 − 2x+ 13

and

(g ◦ f)(x) = g(f(x)) = g(2x+ 5)

= 3(2x+ 5)2 − (2x+ 5) + 4

= 3(4x2 + 20x+ 25)− (2x+ 5) + 4

= 12x2 + 58x+ 74.

Both compositions are defined since the range of the inside function is either the set R (function
f) or a subset (function g) while in both cases the outside function is defined for all real numbers:
Df = Dg = R.

Example 8.21 Given are the functions f : R → Rf and g : R → Rg with

f(x) = x2

and
g(x) = ex + 1.

For the composite functions we obtain

(f ◦ g)(x) = f(g(x)) = f(ex + 1) =
(
ex + 1

)2
.

and
(g ◦ f)(x) = g(f(x)) = g(x2) = ex

2
+ 1.

The composition f ◦ g is defined since the range Rg = (1,∞) is a subset of the domain Df = R,
and the composition g ◦f is defined since the range Rf = R≥0 is a subset of the domain Dg = R.
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Example 8.22 Given are the functions f : Df → Rf and g : Dg → Rg with

f(x) =
√
x+ 2, Df = [−2,∞)

and

g(x) = 2 cosx+ 1, Dg = R.

For the composite functions we obtain

(f ◦ g)(x) = f(g(x)) = f(2 cosx+ 1) =
√

(2 cosx+ 1) + 2 =
√
2 cosx+ 3.

and

(g ◦ f)(x) = g(f(x)) = g(
√
x+ 2) = 2 cos

√
x+ 2 + 1.

The composition f ◦ g is defined since the range Rg = [−1, 3] is a subset of the domain Df =
[−2,∞), and the composition g ◦ f is defined since the range Rf = [0,∞) is a subset of the
domain Dg = R.

Example 8.23 Given are the functions f : Df → Rf and g : Dg → Rg with

f(x) = 3x− 2, Df = R>0

and

g(x) =
1

x
+ 2, Dg = R>0.

For the composite function f ◦ g, we obtain

(f ◦ g)(x) = f(g(x)) = f

(
1

x
+ 2

)
= 3 ·

(
1

x
+ 2

)
− 2 =

3

x
+ 4.

The composition f◦g is defined since the range Rg = R>2 is a subset of the domain Df . However,
the composition g ◦ f is not defined since we get the range Rf = R>−2 and thus, Rf �⊆ Dg.

Inverse function:
If a function f : Df → Rf , Df ⊆ R, is strictly monotonic (i.e., either strictly increasing or
strictly decreasing) on the domain Df , then there exists a function f−1 which assigns to each
real number y ∈ Rf a unique real value x ∈ Df with

x = f−1(y),

which is called the inverse function f−1 of function f .

Here it should be mentioned that, if Rf ⊆ R but Rf �= R (in this case we say that Rf is a
proper subset of R), the inverse function of f : Df → R would not exist since there exist values
y ∈ R for which x = f−1(y) does not exist. Nevertheless, such a formulation is often used and,
in order to determine f−1, one must find the range Rf of function f (or, what is the same, the
domain Df−1 of the inverse function f−1 of f).

We write f−1 : Rf → R or more precisely, f−1 : Rf → Df . Since x usually denotes the
independent variable, we can exchange variables x and y and write
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Figure 8.20: Function f and the inverse function f−1

y = f−1(x)

for the inverse function of function f with y = f(x). The graph of the inverse function f−1

is given by the mirror image of the graph of function f with respect to the line y = x. We
emphasize that in general, we have

f−1(x) �= 1

f(x)
.

If there exists the inverse function f−1 of a function f : R → R, we have

f−1 ◦ f = f ◦ f−1,

i.e.,
f−1(f(x)) = f(f−1)(x) = x for all x ∈ R.

A function f and its inverse function f−1 are illustrated in Fig. 8.20.

We illustrate the determination of an inverse function by the following examples.

Example 8.24 We consider the linear function f : R → R given by

y = f(x) = 3x+ 7.

Solving for x, we get

y − 7 = 3x

x =
1

3
(y − 7).
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Interchanging the variables x and y, we obtain the inverse function f−1 of function f with

y = f−1(x) =
1

3
(x− 7).

Hence, the inverse function of a linear function is a linear function as well, and we have Df−1 =
Rf−1 = R.

Example 8.25 Let the power function f : R>0 → R>0 with

y = x2.5

be given. Using power rules when solving for x, we obtain

y1/2.5 =
[
x2.5

]1/2.5

x = y1/2.5 = y0.4.

Interchanging the variables x and y, we get the inverse function f−1 of function f with

y = f−1(x) = x0.4 . (8.6)

For the inverse function, we have

Df−1 = Rf−1 = R>0.

Note than we can also use the logarithmic function for determining the inverse function. By
taking the natural logarithm, we obtain

lnx =
ln y

2.5
= 0.4 ln y = ln y0.4

from which we also obtain (8.6).

Example 8.26 Let the function f : R → (5,∞) with

y = f(x) =
1

3
e2x + 5

be given. Solving for x, we obtain

y − 5 =
1

3
e2x

3(y − 5) = e2x

ln
[
3(y − 5)

]
= 2x

x =
1

2
ln

[
3(y − 5)

]
.

Note that y > 5 so that the argument of the logarithmic function is always positive. Interchanging
the variables x and y, we get the inverse function y = f−1(x) of function f with

y =
1

2
ln

[
3(x− 5)

]
,

where
Df−1 = (5,∞) and Rf−1 = R .
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Example 8.27 Let the function f : R≥0 → [3,∞) with

y = f(x) = 2x3 + 3

be given. To determine the inverse function f−1, we solve the above equation for x and obtain

2x3 = y − 3

x3 =
y − 3

2

x =
3

√
y − 3

2
.

Note that y ≥ 3 so that the term under the root is always non-negative. Interchanging now both
variables, we obtain the inverse function f−1 of function f with

y = f−1(x) =
3

√
x− 3

2
.

The domain of the inverse function f−1 is the range of function f , and the range of function
f−1 is the domain of function f , i.e.,

Df−1 = [3,∞) and Rf−1 = R≥0.

EXERCISES

8.1 Determine the domain Df and the range Rf of the following functions:

(a) f(x) = 2x+ 5 ; (b) f(x)− x2 + 2 ; (c) f(x) =
1

2
x2 +

1

2
x− 3 ;

(d) z =
√
x+ 3 ; (e) f(x) = 2 lnx+ 1 ; (f) f(x) = ln(x2 + 1) ;

(g) f(x) =
√
x2 − 9 ; (h) f(x) = lnx5 ; (i) f(x) =

√
|x| − x .

8.2 Graph the following functions:

(a) f(x) = 2x+ 5 ; (b) f(x) = −x2 + 2 ; (c) f(x) = e−x + 2 ;

(d) f(x) =
√
x+ 3 ; (e) f(x) = 2 lnx+ 1 ; (f) f(x) = tan

(
x− π

2

)
.

8.3 Give the following functions as the sum of a polynomial and a proper rational function:

(a) f(x) =
3x5 + 2x4 − x3 + 2x

x2 + 2
; (b) f(x) =

x5 − x4 + 2x2 + 1

x3 + 3x+ 1
.

8.4 Determine the domain Df , the range Rf , zeroes and periodicity of the following trigono-
metric functions:

(a) f(x) = 2 sin
(
2x+

π

2

)
; (b) f(x) = 1

2 cos
(x
2
− π

)
;

(c) f(x) = π tan
(
x+

√
3
)
; (d) f(x) = s cot(x+ 1) (s ∈ R) .

8.5 Determine the composite functions f ◦ g and g ◦ f for the following functions f and g
provided that they exist:

(a) f(x) = x+ 3 , Df = R ; g(x) = ex , Dg = R ;
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(b) f(x) = (x− 1)(x2 + 2) , Df = [1,∞); g(x) =
√
x , Dg = [0,∞) ;

(c) f(x) = (x+ 1)2 , Df = R ; g(x) = lnx , Dg = (0,∞) ;

(d) f(x) = 2x+ 1 , Df = R ; g(x) = x2 + x− 3 , Df = R ;

8.6 Determine the inverse functions f−1 of the following functions f : Df → Rf provided that
they exist:

(a) f(x) = 2x− 7 , Df = R ;

(b) f(x) = x2 + 3 , Df = [0,∞) ;

(c) f(x) = x1/4 − 1 , Df = [0,∞) ;

(d) f(x) = e2x − 1 , Df = R ;

(e) f(x) =

√
x− 4√
x+ 4

, Df = R≥0 ;

(f) f(x) = x4 + 2x2 + 1 , Df = R .(f ) 

8.9. COMPOSITE AND INVERSE FUNCTIONS 165

(b) f(x) = (x− 1)(x2 + 2) , Df = [1,∞); g(x) =
√
x , Dg = [0,∞) ;

(c) f(x) = (x+ 1)2 , Df = R ; g(x) = lnx , Dg = (0,∞) ;

(d) f(x) = 2x+ 1 , Df = R ; g(x) = x2 + x− 3 , Df = R ;

8.6 Determine the inverse functions f−1 of the following functions f : Df → Rf provided that
they exist:

(a) f(x) = 2x− 7 , Df = R ;

(b) f(x) = x2 + 3 , Df = [0,∞) ;

(c) f(x) = x1/4 − 1 , Df = [0,∞) ;

(d) f(x) = e2x − 1 , Df = R ;

(e) f(x) =

√
x− 4√
x+ 4

, Df = R≥0 ;

(f) f(x) = x4 + 2x2 + 1 , Df = R .

 x4 + 2x2 + 1; 

8.9. COMPOSITE AND INVERSE FUNCTIONS 165

(b) f(x) = (x− 1)(x2 + 2) , Df = [1,∞); g(x) =
√
x , Dg = [0,∞) ;

(c) f(x) = (x+ 1)2 , Df = R ; g(x) = lnx , Dg = (0,∞) ;

(d) f(x) = 2x+ 1 , Df = R ; g(x) = x2 + x− 3 , Df = R ;

8.6 Determine the inverse functions f−1 of the following functions f : Df → Rf provided that
they exist:

(a) f(x) = 2x− 7 , Df = R ;

(b) f(x) = x2 + 3 , Df = [0,∞) ;

(c) f(x) = x1/4 − 1 , Df = [0,∞) ;

(d) f(x) = e2x − 1 , Df = R ;

(e) f(x) =

√
x− 4√
x+ 4

, Df = R≥0 ;

(f) f(x) = x4 + 2x2 + 1 , Df = R .

.
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Differentiation

Differentiation can be used for describing and modeling movement and alteration processes in
many disciplines. It can be applied e.g. in optimization for finding extreme points or as a base
for differential equations when simulating dynamic systems. The learning goals of this chapter
are as follows:

• refreshing the concepts of a limit, continuity and the derivative of a function;

• repeating the major rules of differentiation and getting practice in their application; and

• reviewing some applications of differential calculus like graphing functions, extremum prob-
lems and determining the zeroes of a function approximately.

9.1 Limit and Continuity of a Function

First, we formally introduce the notation of a limit and illustrate it then in Fig. 9.1.

Limit of a function:
The real number L is called the limit of the function f : Df → R as x tends to x0 if for any
sequence {xn} with xn �= x0, xn ∈ Df , n = 1, 2, . . . , which converges to x0, the sequence of the
function values {f(xn)} converges to L.

The limit of a function is closely related to the limit of a sequence. In the above description,
the sequence {xn} related to the independent variable x and the sequence of {f(xn)} related to
the dependent variable y = f(x) are considered. A function has the limit L as x tends to some
value x0 (represented by a sequence, where the terms xn are from some value n on very close to
x0), if the sequence of the function values {f(xn)} tends to the value L. Often, the δ-ε notation
is used in mathematics. This means that a function f is continuous at x0 if for any positive real
number ε, there exists a positive δ = δ(ε) depending on ε such that

|x− x0| < δ(ε) =⇒ |f(x)− f(x0| < ε .

(see Fig. 9.1). Thus, for any positive (in particular, very small) ε, one can give a positive number
δ such that the function values f(x) are from the open interval (f(x)− ε, f(x)+ ε) provided that

167

Download free eBooks at bookboon.com



A REFRESHER COURSE IN MATHEMATICS

168

Differentiation
168 CHAPTER 9. DIFFERENTIATION

x

y

←
f(x)

f(
x)
→

← xx →
x0

Ll = Lr

= L

(a) limit L exists

x

y

Lr

Ll

x0

←
f(x)

f(x)
→

← xx →

(b) limit L does not exist

Figure 9.1: The limit of a function

x is from the open interval (x0 − δ, x0 + δ). If ε becomes smaller, then usually also δ becomes
smaller. Notice that for a limit of a function at a point x0, it is not necessary that the function
value f(x0) exists.

Similarly, we can consider one-side limits. If for the sequence {xn}, we have xn > x0 for
n = 1, 2, . . . , (i.e., one approaches from the right side to x0), we obtain the right-side limit
Lr and we indicate this by x → x0 + 0. Analogously, if xn < x0 for all n = 1, 2, . . . , (i.e.,
one approaches from the left side), we obtain the left-side limit Ll and we indicate this by
x → x0− 0. The limit L of a function f as x tends to x0 exists if and only if both the right- and
left side limits exist and coincide: Lr = Ll = L. Next, we review some rules for working with
limits.

Assume that the limits

lim
x→x0

f(x) = L1 and lim
x→x0

g(x) = L2.

exist. Then we have the following rules for determining limits:

Rules for limits:

(1) lim
x→x0

[
f(x) + g(x)

]
= lim

x→x0

f(x) + lim
x→x0

g(x) = L1 + L2 ;

(2) lim
x→x0

[
f(x)− g(x)

]
= lim

x→x0

f(x)− lim
x→x0

g(x) = L1 − L2 ;

(3) lim
x→x0

[
f(x) · g(x)

]
= lim

x→x0

f(x) · lim
x→x0

g(x) = L1 · L2 ;

(4) lim
x→x0

f(x)

g(x)
=

lim
x→x0

f(x)

lim
x→x0

g(x)
=

L1

L2
provided that L2 �= 0 ;

(5) lim
x→x0

√
f(x) =

√
lim
x→x0

f(x) =
√
L1 provided that L1 ≥ 0 ;

(6) lim
x→x0

[f(x)]n =

[
lim
x→x0

f(x)

]n
= Ln

1 ;

(7) lim
x→x0

[
af(x)

]
= a

[
lim

x→x0
f(x)

]

= aL1 .
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We illustrate the calculation of limits by the following examples.

Example 9.1 We calculate

L = lim
x→0

|x|
x

.

Using the definition of the absolute value, we obtain for the one-side limits

Lr = lim
x→0+0

|x|
x

= lim
x→0+0

x

x
= 1

Ll = lim
x→0−0

|x|
x

= lim
x→0−0

x

x
= −1

Due to the definition of the absolute value, it is necessary to consider the right- and left-side
limits separately. Since they are different, the limit L does not exist.

Example 9.2 We calculate

L = lim
x→1

x2 + 3x− 2

x+ 7
=

lim
x→1

x2 + 3 lim
x→1

x− lim
x→1

2

lim
x→1

x+ lim
x→1

7
=

1 + 3− 2

1 + 7
=

2

8
=

1

4
.

Example 9.3 We determine

L = lim
x→4

(x+ 5)(x+ 2)√
x

.
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This yields

L =
lim
x→4

(x+ 5) · lim
x→4

(x+ 2)
√

lim
x→4

x
=

9 · 6√
4

= 27 .

Example 9.4 We calculate
L = lim

x→2

(
e3−x + 2x

)
.

We obtain
L = e

lim
x→2

(3−x)
+ 2

lim
x→2

x
= e1 + 22 = e+ 4 .

Example 9.5 We determine

L = lim
x→9

x− 9√
x− 3

.

If we consider the limit of the numerator and the denominator as x → 4, we observe that both
terms tend to zero so that we cannot find a result in this way. Later we discuss a way how to
treat such indeterminate forms (where both the numerator and denominator tend to zero) by
means of differential calculus. However, here we can expand the fraction by

√
x+ 3 and obtain

L = lim
x→9

(x− 9)(
√
x+ 3)

(
√
x− 3)(

√
x+ 3)

= lim
x→9

(x− 9)(
√
x+ 3)

x− 9
= lim

x→9
(
√
x+ 3) = 6 .
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x

y

(a) f continuous

x

y

x0 x1

(b) f discontinuous at x0 and x1

Figure 9.2: Continuous and discontinuous functions

Continuous function:
A function f : Df → R is said to be continuous at x0 ∈ Df if the limit of function f as x tends
to x0 exists and if this limit coincides with the function value f(x0), i.e., we have

lim
x→x0

f(x) = f(x0).

In Fig. 9.2, examples of a continuous and a discontinuous function are given. We review some
types of discontinuities:

• jump: A function f has a (finite) jump at x0 if both one-side limits as x → x0 − 0 and
x → x0+0 exist but are different. The existence of the function value f(x0) does not play
a role.

• gap: A function f has a gap at x0 if

lim
x→x0

f(x)

exists but the function value f(x0) does not exist.

• pole: A rational function f = P/Q of two polynomials P and Q has a pole at x0 if
P (x0) �= 0 and Q(x0) = 0. Thus, the function value f(x0) does not exist and for x → x0+0
and x → x0 − 0, the function values tend to ±∞.

Example 9.6 Given is the function f : Df → R with

f(x) =
x2 + x− 6

x− 2
.

Function f is continuous for all points x �= 2 so that the only critical point is x = 2. The term
in the numerator has the zeroes x = 2 and x = −3. Therefore, we get

lim
x→2

f(x) = lim
x→2

(x− 2) · (x+ 3)

x− 2
= lim

x→2
(x+ 3) = 5 .
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x

y

∆y

∆x

y = f(x)

slope ∆y
∆x

f(x0)

f(x0 +∆x)

x0 x0 +∆x

Figure 9.3: The difference quotient of a function

Note that for the calculation of the limit, we can assume x �= 2 so that the above transformation
is correct. However, the function value f(2) does not exist and so function f is discontinuous
at x = 2, i.e., it has a gap.

Example 9.7 Given is the function f : R → R with

f(x) =

{
2x− 2 for x ∈ (−∞, 2]
a+ (x− 2)2 for x ∈ (2,∞),

where a is a real parameter. We determine the parameter a such that function f is continuous
at all points. Function f is obviously continuous at any point x �= 2. For x = 2, we obtain

lim
x→2−0

f(x) = f(2) = 2

and

lim
x→2+0

(
a+ (x− 2)2

)
= a .

Thus, function f is continuous at x = 2 for a = 2.

9.2 The Derivative of a Function

Difference quotient of a function:
Let f : Df → R and x0, x0 +∆x ∈ (a, b) ⊆ Df . The ratio

∆y

∆x
=

f(x0 +∆x)− f(x0)

∆x

is called the difference quotient of function f with respect to points x0 +∆x and x0.

The difference quotient characterizes the average increase or decrease of a function f over
the interval [x0, x0 +∆x]. It gives the quotient of the change in the y variable over the change
in the x variable which corresponds to the slope of the line going through the points (x0, f(x0))
and (x0 +∆x, f(x0 +∆x)). The difference quotient is illustrated in Fig. 9.3.
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x

y

∆y

∆x → 0

y = f(x)

slope f ′(x0)

f(x0)

f(x0 +∆x)

x0 x0 +∆x

Figure 9.4: The derivative of a function

We are now interested in the change of the value of function f when only a small change in the
independent variable x is allowed. This means that we look what happens if we determine the
limit of the difference quotient as ∆x tends to zero. This leads to the derivative of a function
as follows.

Derivative of a function:
A function f : Df → R with y = f(x) is said to be differentiable at the point x0 ∈ (a, b) ⊆ Df

if the limit

L = lim
∆x→0

f(x0 +∆x)− f(x0)

∆x

exists. This limit L is called the derivative (or the differential quotient) of the function f
at point x0 and denoted as

f ′(x0) or, equivalently,
df

dx
(x0) .

.

Geometrically, the value f ′(x0) gives the slope of the tangent to the curve y = f(x) at the point
(x0, f(x0)). It describes the change in the function value of f when only a ‘very small’ change in
the independent variable is considered. Roughly, we can interpret it as the number of units by
which the variable y changes (i.e., increases if greater than zero or decreases if smaller than zero)
when the independent variable x increases by one unit (i.e., from x0 to x0 + 1). The derivative
y′ = f ′(x) is illustrated in Fig. 9.4.

We consider the following example for finding the derivative of a function (at the moment still
by applying the definition).

Example 9.8 Let function f : R → R be given by

y = f(x) = x3 .

We determine the first derivative of function f at the point x0. Applying the above definition,
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this gives

f ′(xo) = lim
∆x→0

f(x0 +∆x)− f(x0)

∆x
= lim

∆x→0

(x0 +∆x)3 − x30
∆x

= lim
∆x→0

x30 + 3x20∆x+ 3x0(∆x)2 + (∆x)3 − x30
∆x

= lim
∆x→0

∆x · (3x20 + 3x0∆x+ (∆x)2

∆x

= 3x20 .

9.3 Elementary Rules

In this section, we review the derivatives of the major types of functions.

Table 9.1: Derivatives of elementary functions:

y = f(x) y′ = f ′(x) Df

C 0 −∞ < x < ∞, C constant

xn nxn−1 −∞ < x < ∞, n ∈ N

xα αxα−1 0 < x < ∞, α ∈ R

ex ex −∞ < x < ∞

ax ax ln a −∞ < x < ∞, a > 0

lnx
1

x
0 < x < ∞

loga x
1

x ln a
0 < x < ∞, a > 0

sinx cosx −∞ < x < ∞

cosx − sinx −∞ < x < ∞

tanx
1

cos2 x
= 1 + tan2 x x �= π

2
+ kπ, k ∈ Z

cotx − 1

sin2 x
= −(1 + cot2 x) x �= kπ, k ∈ Z

Next, we review some more differentiation rules considering sums, differences, products and
quotients of two functions f and g.
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Derivative of a Sum, Difference, Product and Quotient:

(1) (f + g)′(x) = f ′(x) + g′(x) ;

(2) (f − g)′(x) = f ′(x)− g′(x) ;

(3) (f · g)′(x) = f ′(x) · g(x) + f(x) · g′(x) ;

(4)

(
f

g

)′
(x) =

f ′(x) · g(x)− f(x) · g′(x)
[g(x)]2

.

Example 9.9 We illustrate the use of the above rules by the differentiation of the following
functions:

1. Let f : Df → R with f(x) =
√
x. Using

√
x = x1/2, we obtain

f ′(x) =
1

2
· x−1/2 =

1

2x1/2
=

1

2
√
x
.

2. Let f : Df → R with f(x) = 2x4 − 3x3 + 5x− 7. Then

f ′(x) = 8x3 − 9x2 + 5 .
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3. Let f : Df → R with f(x) = x2 sinx. Applying the product rule (3), we get

f ′(x) = 2x sinx+ x2 cosx = x(2 sinx+ x cosx) .

4. Let f : Df → R with f(x) = x3 · ax. Using the product rule, we get

f ′(x) = 3x2 · ax + x3 · ax · ln a = x2 · ax(3 + x · ln a) .

5. Let f : Df → R with

f(x) =
x2 + 2

x− 5
.

Applying the quotient rule (4), we get

f ′(x) =
2x · (x− 5)− (x2 + 2) · 1

(x− 5)2
=

2x2 − 10x− x2 − 2

(x− 5)2
=

x2 − 10x− 2

(x− 5)2
.

6. Let f : Df → R with

f(x) =
lnx

x3
.

Then, using the quotient rule,

f ′(x) =
1
x · x3 − lnx · 3x2

(x3)2
=

x2 − 3x2 · lnx
x6

=
x2(1− 3 lnx)

x6
=

1− 3 lnx

x4
.

Let us now consider a composite function f = g ◦ h. The rule for the differentiation of function
f is given by the following formula, known as the chain rule:
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Derivative of a composite function f = g ◦ h:

[g [h(x)]]′ = g′(z) · h′(x) with z = h(x)

Example 9.10 Let us consider the following examples for illustrating the use of the chain rule.

1. Let f : Df → R with

f(x) = e−x3
.

Then we have
g(z) = ez and z = h(x) = −x3 .

We obtain
g′(z) = ez and h′(x) = −3x2 .

Therefore, we obtain

f ′(x) = g′(h(x)) · h′(x) = e−x3 · (−3x2) = −3x2e−x3
.

2. Let f : Df → R with
f(x) = (2x2 + 3)4 .

We have
g(z) = z4 and h(x) = 2x2 + 3 .

Then we obtain
g′(z) = 4z3 and h′(x) = 4x .

Therefore, we obtain

f ′(x) = g′(h(x)) · h′(x) = 4(2x2 + 3)3 · 4x = 16x (2x2 + 3)3 .

3. Let f : Df → R with

f(x) =
√
x2 − 6x+ 5 .

We have
g(z) =

√
z and z = h(x) = x2 − 6x+ 5 .

We obtain

g′(z) =
1

2
z−1/2 =

1

2
√
z

and h′(x) = 2x− 6 .

Thus, we get

f ′(x) = g′(h(x)) · h′(x) = 1

2
√
x2 − 6x+ 5

· (2x− 6) =
x− 3√

x2 + 2x− 3
.

An alternative formulation of the chain rule for f = g ◦ h with f = g(y) and y = h(x) is given
by

df

dx
=

dg

dy
· dy
dx

.

The chain rule can also be applied if a function is composed of more than two functions. We
illustrate this by the following example.
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Example 9.11 Let f : Df → R with

f(x) = e
√
x2+3x .

Since the term under the square root must be negative, the function is only defined for x2+3x ≥ 0.
Solving this quadratic inequality, we have x ≤ −3 or x ≥ 0. Therefore, the domain Df is given
by Df = (−∞,−3] ∪ [0,∞). Function f is of the type f = g ◦ h ◦ k, where

w = g(z) = ez, z = h(y) =
√
y, y = k(x) = x2 + 3x .

We get

g′(z) = ez, h′(y) =
1

2
√
y
, k′(x) = 2x+ 3 .

Thus, we obtain

f ′(x) = e
√
x2+3x · 2x+ 3

2 ·
√
x2 + 3x

.

Next, we review higher-order derivatives. If function f ′ with y′ = f ′(x) is again differentiable,
function

y′′ = f ′′(x) =
df ′

dx
(x) =

d2f

(dx)2
(x)

is called the second derivative of function f at point x. We can continue with this procedure
and obtain in general:

y(n) = f (n)(x) =
dfn−1

dx
(x) =

dnf

(dx)n
(x), n ≥ 2,

which denotes the nth derivative of function f at the point x ∈ Df . Notice that we use
f ′(x), f ′′(x), f ′′′(x), and for n ≥ 4, we use the notation f (n)(x). Higher-order derivatives are
used for instance in the rest of this chapter when investigating specific properties of functions.

Example 9.12 Let function f : Df → R with

f(x) = 6x3 +
1

x
+ e2x+1

be given. We determine all derivatives until fourth order and obtain

f ′(x) = 12x2 − 1

x2
+ 2e2x+1

f ′′(x) = 24x+
2

x3
+ 4e2x+1

f ′′′(x) = 24− 6

x4
+ 8e2x+1

f (4)(x) =
24

x5
+ 16e2x+1 .

Example 9.13 Let function f : Df → R with

f(x) = 2 sin(3x+ 1) + 4x2
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x

y

∆y
∆x = dx

dy

y = f(x)

slope f ′(x0)

f(x0)

f(x0 +∆x)

x0 x0 +∆x

Figure 9.5: The differential of a function

be given. We determine all derivatives until the fourth order and obtain

f ′(x) = 2 cos(3x+ 1) · 3 + 8x = 6 cos(3x+ 1) + 8x

f ′′(x) = 6(− sin(3x+ 1) · 3 + 8 = −18 sin(3x+ 1) + 8

f ′′′(x) = −18 cos(3x+ 1) · 3 = −54 cos(3x+ 1)

f (4)(x) = 54 sin(3x+ 1) · 3 = 162 sin(3x+ 1) .

9.4 The Differential

Next, we introduce the notion of the differential which can be used for estimating the error when
calculating function values, i.e., what is the influence on the error in the y-value if the x-value
is only known with some possible deviations.

Differential of a function:
Let function f : Df → R be differentiable at point x0 ∈ (a, b) ⊆ Df . The differential of
function f at point x0 is defined as

dy = f ′(x0) · dx .

The differential is illustrated in Fig. 9.5.

The differential can be used e.g. for the estimation the change in the function value when a
small change in the independent variable x is considered. For small changes in the variable x,
we have

∆y ≈ dy = f ′(x0) · dx .
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Example 9.14 Let function f : Df → R with

f(x) =
(x
2
− 1

)2

and x0 = 25 be given. We compare ∆y and dy for the case when ∆x = dx = 1. Then we obtain

∆y = f(x0 + 1)− f(x0) =

(
25 + 1

2
− 1

)2

−
(
25

2
− 1

)2

=

(
26

2
− 1

)2

−
(
25

2
− 1

)2

= 122 − 11.52 = 144− 132.25 = 11.75

Using

f ′(x) = 2 ·
(x
2
− 1

)
· 1
2
=

x

2
− 1,

we get

f ′(25) =
25

2
− 1 = 11.5

and therefore
dy = f ′(25) · dx = 11.5 · 1 = 11.5 ,

i.e., ∆y and dy differ by 0.25.

Example 9.15 The radius R of a sphere has been measured as R = (4.502 ± 0.005) cm, i.e.,
we have |∆R| = |dR| ≤ 0.005. We estimate the absolute and relative error of the volume and
the surface of the sphere. The formula for the volume of a sphere is given by

V (R) =
4

3
πR3 .
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Differentiation gives

V ′(R) = 4πR2

and thus

|dV | = 4πR2 |dR| .

Using R = 4.502 and |dR| ≤ 0.005, we get for the absolute error

|dV | ≤ 4π(4.502)2 · 0.005 = 1.2735 cm3 .

Moreover, we get

V (4.502) =
4

3
π · (4.502)3 = 382.2128 cm3

and therefore, we have for the relative error

∣∣∣dV
V

∣∣∣ = |dV |
V

≤ 1.2735

382.2128
= 0.0033 .

Thus, the relative error for the volume is estimated to be not larger than 0.33 %.

The formula for the surface of a sphere is given by

S(R) = 4πR2 .

Differentiation gives

S′(R) = 8πR .
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Using again R = 4.502 and |∆R| = |dR| ≤ 0.005, we get

|dS| ≤ 8π · 4.502 · 0.005 = 0.5657 cm2 .

Moreover, the surface is obtained as

S(4.502) = 4π · (4.502)2 = 254.6952 cm2 .

Therefore, we obtain ∣∣∣dS
S

∣∣∣ = |dS|
S

≤ 0.5657

254.6952
= 0.0022 ,

i.e., the relative error for the surface can be estimated to be not larger than 0.22 %.

9.5 Graphing functions

To get a quantitative overview on a function f : Df → R and its graph, respectively, we
determine and investigate:

• domain Df (if not given) and possibly the range Rf ;

• zeroes and discontinuities;

• monotonicity of the function;

• extreme points and values;

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

http://www.deloitte.ca/careers


A REFRESHER COURSE IN MATHEMATICS

183

Differentiation
9.5. GRAPHING FUNCTIONS 183

• convexity and concavity of the function;

• inflection points;

• limits and asymptotic behavior, i.e., how does the function behave when x tends to ±∞.

Having the detailed information listed above, we can draw the graph of function f . In the
following, we discuss the above subproblems in detail.

In connection with functions of one variable, we have already discussed how to determine the
domain Df and we have classified the different types of discontinuities. As far as the determina-
tion of zeroes is concerned, we have already considered special cases such as zeroes of a quadratic
function. For more complicated functions, where finding the zeroes is difficult or analytically
impossible, we give in addition to Regula falsi from Chapter 3 another numerical procedure for
the approximate determination of zeroes later in this chapter. We start with the investigation
of the monotonicity of a function.

9.5.1 Monotonicity

By means of the first derivative f ′, we can determine intervals in which a function f is (strictly)
increasing or decreasing. In particular, the following property can be formulated.
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x

y

f strictly
increasing
on (a, b)

f strictly
decreasing
on (b, c)

y = f(x)

a b c

f ′(x) > 0 in (a, b) f ′(x) < 0 in (b, c)

Figure 9.6: Monotonicity of a function

Check of a function for (strict) monotonicity:
Let function f : Df → R be differentiable on the open interval (a, b) and let I = [a, b] ⊆ Df .
Then:

(1) Function f is increasing on I if and only if f ′(x) ≥ 0 for all x ∈ (a, b).

(2) Function f is decreasing on I if and only if f ′(x) ≤ 0 for all x ∈ (a, b).

(3) If f ′(x) > 0 for all x ∈ (a, b), then function f is strictly increasing on I.

(4) If f ′(x) < 0 for all x ∈ (a, b), then function f is strictly decreasing on I.

We remind from Chapter 8 that, if a function is (strictly) increasing or (strictly) decreasing on
an interval I ⊆ Df , we say that function f is (strictly) monotonic on the interval I. Checking a
function f for monotonicity requires to determine the intervals on which function f is monotonic
and strictly monotonic, respectively. Fig. 9.6 illustrates the determination of monotonicity
intervals by the first derivative.

9.5.2 Extreme Points

First we give the definition of a local and of a global extreme point which can be either a
minimum or a maximum.

Local extreme point:
A function f : Df → R has a local maximum (minimum) at point x0 ∈ Df if there is an
interval (a, b) ⊆ Df containing x0 such that

f(x) ≤ f(x0) (f(x) ≥ f(x0), respectively) (9.1)

for all points x ∈ (a, b). Point x0 is called a local maximum (minimum) point.

If inequality (9.1) holds for all points x ∈ Df , function f has at point x0 a global maximum
(minimum), and x0 is called a global maximum (minimum) point.
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x

y

y = f(x)

a x1 x2 x3 b

Figure 9.7: Local extreme points of a function

Necessary condition for local optimality:
Let function f : Df → R be differentiable on the open interval (a, b) ⊆ Df . If function f has
a local maximum or local minimum at point x0 ∈ (a, b), then f ′(x0) = 0.

Stationary point:
A point x0 ∈ (a, b) with f ′(x0) = 0 is called a stationary point (or critical point).

When searching global maximum and minimum points for a function f in a closed interval
I = [a, b] ⊆ Df , we have to search among the following types of points:

(1) points in the open interval (a, b), where f ′(x) = 0 (stationary points);
(2) end points a and b of I;
(3) points in (a, b), where f ′(x) does not exist.

Local extreme points are illustrated in Fig. 9.7.

We note that only points according to (1) can be found by means of differential calculus. Points
according to (2) and (3) have to be checked separately. Returning to Fig. 9.7, there are two
stationary points x2 and x3. The local (and global) minimum point x1 cannot be found by
differential calculus since the function drawn in Fig. 9.7 is not differentiable at the point x1.

The following two claims present sufficient conditions for so-called isolated local extreme points,
for which in Inequality (9.1) the strict inequality holds for all x ∈ (a, b) different from x0.

First, we give a criterion for deciding whether a stationary point is a local extreme point in the
case of a differentiable function which uses only the first derivative of function f .
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x

y

y = f(x)
x1

f ′ > 0 f ′ < 0

x3

f ′ > 0f ′ < 0

x2

f ′ < 0

a

b

Figure 9.8: First-order derivative test for local extrema

Sufficient condition for local optimality (first-order derivative test):
Let function f : Df → R be differentiable on the open interval (a, b) ∈ Df and x0 ∈ (a, b) be
a stationary point of function f . Then:

(1) If f ′(x) > 0 for all x ∈ (a∗, x0) ⊆ (a, b) and f ′(x) < 0 for all x ∈ (x0, b
∗) ⊆ (a, b), then x0

is a local maximum point of function f .

(2) If f ′(x) < 0 for all x ∈ (a∗, x0) ⊆ (a, b) and f ′(x) > 0 for all x ∈ (x0, b
∗) ⊆ (a, b), then x0

is a local minimum point of function f .

(3) If f ′(x) > 0 for all x ∈ (a∗, x0) ⊆ (a, b) and for all x ∈ (x0, b
∗) ⊆ (a, b), then x0 is not a

local extreme point of function f . The same conclusion holds if f ′(x) < 0 on both sides of
x0.

The first-order derivative test for local extreme points is illustrated in Fig. 9.8 (x1 is a local
maximum point, x2 is not a local extreme point, and x3 is a local minimum point).

Alternatively, one can use the subsequent criterion which uses higher-order derivatives.

Sufficient condition for local optimality (higher-order derivative test):
Let f : Df → R be n times continuously differentiable on the open interval (a, b) ⊆ Df and
x0 ∈ (a, b) be a stationary point. If

f ′(x0) = f ′′(x0) = f ′′′(x0) = . . . = f (n−1)(x0) = 0 and f (n)(x0) �= 0,

where number n is even, then point x0 is a local extreme point of function f , in particular:

(1) If f (n)(x0) < 0, then function f has at point x0 a local maximum.

(2) If f (n)(x0) > 0, then function f has at point x0 a local minimum.

Often the above sufficient condition works already for n = 2 and one only needs to check the
sign of the second derivative of all stationary points.
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Example 9.16 We determine all monotonicity intervals and local extreme points for the func-
tion f : [1,∞) → R with

f(x) =
√
4x− 4 · e−2x .

Differentiation gives

f ′(x) =
1

2
(4x− 4)−1/2 · 4 · e−2x − 2e−2x

√
4x− 4

= 2 e−2x
[
(4x− 4)−1/2 −

√
4x− 4

]

= 2 e−2x · 1− (4x− 4)√
4x− 4

= 2 e−2x · 5− 4x√
4x− 4

.

From f ′(x) = 0, we obtain the stationary point x0 = 5/4. To investigate the sign of f ′(x), we
need to investigate the sign of 5− 4x (notice that both terms e−2x and

√
4x− 4 are positive for

x > 1). Thus, we have

f ′(x) > 0 for 1 < x <
5

4

and function f is strictly increasing on the interval [1, 5/4]. Moreover, we have

f ′(x) < 0 for x >
5

4

and thus, function f is strictly decreasing on the interval [5/4,∞). Due to the signs of f ′

around x0, this point is a local maximum (due to the monotonicity properties it is also a global
maximum). Alternatively, one could also check the sign of f ′′ at the point x0 which would give
f ′′(5/4) < 0 and thus, it confirms that x0 is a local maximum point. Note also that the global
minimum point of function f is x1 = 1 with f(1) = 0 since all other points from the domain
Df = [1,∞) have a positive function value. Since x1 is a boundary point, this minimum cannot
be found by differential calculus, and one has to check such points separately.

9.5.3 Convexity and Concavity

Criterion for convexity/concavity of a function:
Let function f : Df → R be twice differentiable on the open interval (a, b) ⊆ Df and let
I = [a, b]. Then:

(1) Function f is convex on I if and only if f ′′(x) ≥ 0 for all x ∈ (a, b).

(2) Function f is concave on I if and only if f ′′(x) ≤ 0 for all x ∈ (a, b).

(3) If f ′′(x) > 0 for all x ∈ (a, b), then function f is strictly convex on I.

(4) If f ′′(x) < 0 for all x ∈ (a, b), then function f is strictly concave on I.

For deciding whether a function is convex or concave, the following notion of an inflection point
can be helpful.

Inflection point:
The point x0 ∈ (a, b) is called an inflection point of function f when f changes at x0 from
being convex to being concave or vice versa.
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x

y

y = f(x)

x1

f ′′ > 0

f ′′ < 0

f ′′(x1) = 0

a b

Figure 9.9: Convexity/concavity intervals of a function

Criterion for an inflection point:
Let function f : Df → R be n times continuously differentiable on the open interval (a, b) ⊆
Df . Point x0 ∈ (a, b) is an inflection point of function f if and only if

f ′′(x0) = f ′′′(x0) = . . . = f (n−1)(x0) = 0 and f (n)(x0) �= 0,

where n is odd.

Often the above criterion works already with n = 3, i.e.: f ′′(x0) = 0, f ′′′(x0) �= 0. One can also
note that an inflection point can be interpreted as a local extreme point of the first derivative
y′ = f ′(x). The notions of convexity and concavity are illustrated in Fig. 9.9.

Example 9.17 We discuss the properties of function f : Df → R given by

f(x) = 6x3 − 4x2 − 10x .

Function f is defined for all real numbers and therefore, we have Df = R. In order to find all
zeroes, we may factor out 2x which gives

f(x) = 2x · (3x2 − 2x− 5) = 0

The first zero is x1 = 0 and the other zeroes can be obtained from

3x2 − 2x− 5 = 0

or, after dividing both sides by 3, from

x2 − 2

3
x− 5

3
= 0 .

This gives

x2,3 =
1

3
±

√
1

9
+

5

3
=

1

3
±

√
16

9

which gives the solutions

x2 =
1

3
+

4

3
=

5

3
and x3 =

1

3
− 4

3
= −1 .
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x
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f(x) = 6x3 − 4x2 − 10x
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5
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−5

−10

Figure 9.10: Graph of function f in Example 9.17

Function f has no discontinuities, and we get

lim
x→−∞

f(x) = −∞ and lim
x→∞

f(x) = ∞ .

To find stationary points of function f , we determine zeroes of the first derivative:

f ′(x) = 18x2 − 8x− 10 = 0 .

Dividing both sides by 18, we get a quadratic equation in normal form:

x2 − 4

9
x− 5

9
= 0 .

Thus, we get the solutions

xE1,E2 =
2

9
±

√
4

81
+

5

9
=

2

9
±

√
49

81
,

i.e., we get

XE1 =
2

9
+

7

9
= 1 and xE2 =

2

9
− 7

9
= −5

9

as stationary points for function f . We check the sufficient condition by means of the second
derivative and obtain

f ′′(x) = 36x− 8 .
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This yields

f ′′(1) = 36 · 1− 8 = 28 > 0 and f ′′
(
−5

9

)
= 36 ·

(
−5

9

)
− 8 = −28 < 0 .

Therefore, xE2 = 1 is a local minimum point with f(1) = −8, and xE2 = −5/9 is a local
maximum point with f(−5/9) ≈ 3.75. For finding inflection points, we set f ′′(x) = 0 which
gives

xI =
2

9

as a candidate for an inflection point. We check the sufficient condition by means of the deriva-
tive and obtain

f ′′′(x) = 36,

i.e., f ′′′(2/9) �= 0, and thus xI is an inflection point of function f . We determine the sign of
the second derivation and find that for x > 2/9, we get f ′′(x) > 0, while for x < 2/9, we have
f ′′(x) < 0. Therefore, function f is strictly convex for x ≥ 2/9 and strictly concave for x ≤ 2/9.
The graph of function f is given in Fig. 9.10.

Example 9.18 We investigate the function f : Df → R with

f(x) = ln(1 + x2) .

Since 1 + x2 ≥ 1, we get Df = R. In order to find zeroes, the argument of the logarithmic
function must be equal to 1. From 1 + x2 = 1, we get the zero x0 = 0. Function f has no
discontinuities. We get

lim
x→∞

ln(1 + x2) = lim
x→−∞

ln(1 + x2) = ∞ .

Moreover, function f is an even function:

f(−x) = ln(1 + (−x)2) = ln(1 + x2) = f(x) .

Determining stationary points, we obtain from

f ′(x) =
1

1 + x2
· 2x =

2x

1 + x2
= 0

the only stationary point xE = 0. Since f ′(x) < 0 for x < 0 and f ′(x) > 0 for x > 0, the point
xE = 0 is a local minimum point with f(0) = 0. Alternatively, this can be confirmed by means
of the second derivative. We obtain

f ′′(x) =
2(1 + x2)− 2x · 2x

(1 + x2)2
=

2 + 2x2 − 4x2

(1 + x2)2
=

2− 2x2

(1 + x2)2
.

For the stationary point xE = 0, we get

f ′′(xE) = f ′′(0) =
2

12
= 2 > 0 .

This confirms again that xE = 0 is a local minimum point. In order to find inflection points, we
set f ′′(x) = 0 which gives 2− 2x2 = 0. Thus, the candidates for an inflection point are

xI1 = 1 and xI2 = −1 .
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1

2

Figure 9.11: Graph of function f in Example 9.18

We observe that f ′′(x) > 0 for x ∈ (−1, 1). Therefore, function f is strictly convex on the
interval [−1, 1]. On the other hand, f ′′(x) < 0 for x ∈ (−∞,−1) and x ∈ (1,∞). Thus, the
function f is strictly concave for all x ∈ (−∞,−1]∪ [1,∞). Since the function f changes at the
point xI1 = −1 from being concave to convex and at the point xI2 = 1 from being convex to being
concave, both points are indeed inflection points. Alternatively, one may check that f ′′′(−1) �= 0
and f ′′′(1) �= 0. The graph of function f is given in Fig. 9.11.

Example 9.19 We investigate the function f : Df → R with

f(x) =
x− 1

x3
.

For finding the domain, we have to exclude points, where the denominator is equal to zero.
Therefore, we have Df = R \ {0}. From x− 1 = 0 we get the zero x0 = 1 (observe that for the
denominator, we have x30 = 1 �= 0). Moreover, x0 = 0 is the only discontinuity (namely a pole),
and we get

lim
x→∞

f(x) = lim
x→−∞

f(x) = 0 .

Next, we determine stationary points. We get

f ′(x) =
x3 − (x− 1) · 3x2

x6
=

x2 · (x− 3x+ 3)

x6
=

−2x+ 3

x4
.

From f ′(x) = 0, we get x1 = 3/2 as the only stationary point. Since f ′(x) > 0 for x < 3/2 and
f ′(x) < 0 for x > 3/2, point xE = 3/2 is a local maximum point with f(3/2) = 4/27. Moreover,
function f is strictly increasing on the interval (−∞, 3/2] and function f is strictly decreasing
on the interval [3/2,∞).

To find inflection points, we determine the second derivative:

f ′′(x) =
−2x4 − (−2x+ 3) · 4x3

x8
=

x3 · (−2x+ 8x− 12)

x8
=

6x− 12

x5
.

From f ′′(x) = 0 we get xI = 2 as the only candidate for a stationary point. Investigating the
sign of the second derivative, we obtain f ′′(x) > 0 for x < 0, f ′′(x) < 0 for 0 < x < 2, and
f ′′(x) > 0 for x > 2. Therefore, function f is strictly convex for x ∈ (−∞, 0) ∪ [2,∞) and
function f is strictly concave for x ∈ [0, 2]. Thus, function f changes it sign as xI = 2 which is
indeed an inflection point (note that x = 0 is not an inflection point by definition). The graph
of function f is given in Fig. 9.12.
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Figure 9.12: Graph of function f in Example 9.19

Example 9.20 We investigate the function f : Df → R given by

f(x) = e−2x2+1 .

Since an exponential function is defined for all x ∈ R, we have Df → R. Moreover, any
exponential function does not have zeroes and discontinuities. We get

lim
x→−∞

f(x) = lim
x→∞

f(x) = 0 .

Next, we determine stationary points and obtain:

f ′(x) = −4x · e−2x2+1 .

Setting f ′(x) = 0, we get xE = 0 as the only stationary point. Moreover, we have f ′(x) < 0
for all x < 0 and f ′(x) > 0 for all x > 0. Therefore, xE = 0 is a local maximum point with
f(0) = e, and function f is strictly decreasing on the interval (−∞, 0] and strictly decreasing on
the interval [0,∞). Next, we determine the second derivative and obtain:

f ′′(x) = (−4x) · e−2x2+1 · (−4x)− 4e2x
2+1 = (16x2 − 4) · e−2x2+1 .

Setting f ′′(x) = 0, we get 16x2 − 4 = 0 which has the two solutions

xI1 =
1

2
and xI2 = −1

2

as candidates for an inflection point. Investigating the sign of the second derivative, we see that
f ′′(x) > 0 for x < −1/2 and for x > 1/2, while f ′′(x) < 0 for −1/2 < x < 1/2. Therefore,
function f is strictly convex for x ∈ (−∞,−1/2]∪ [−1/2,∞), and function f is strictly concave
for x ∈ [−1/2, 1/2]. Since the sign of the second derivative is changing at each of the points
xI1 = 1/2 and xI2 = −1/2, they are indeed both inflection points for function f . The graph of
function f is given in Fig. 9.13.
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Figure 9.13: Graph of function f in Example 9.20

Example 9.21 We investigate function f : Df → R given by

f(x) =
√
x+ 1 +

√
x− 1 .

For finding the domain, we have to take unto account that both terms under the roots must be
non-negative. From x+1 ≥ 0 and x− 1 ≥ 0, we get x ≥ −1 and x ≥ 1, which gives the domain
Df = [1,∞). This function has no zeroes because the range of function f is Rf = [

√
2,∞)

(observe that for x ≥ 1 the right square root is at least
√
2 and the first square root is non-

negative). Moreover, function f has no discontinuities and

lim
x→∞

f(x) = ∞ .

To find stationary points, we determine the first derivative:

f ′(x) =
1

2
√
x+ 1

+
1

2
√
x− 1

=

√
x− 1 +

√
x+ 1

2
√
x2 − 1

Since both the numerator and the denominator are greater than zero for x ≥ 1, function f has
no stationary points and therefore no local extreme points. Looking for inflection points, we
determine the second derivative and obtain:

f ′′(x) = − 1

4(x+ 1)3/2
− 1

4(x− 1)3/2
=

−(x− 1)
√
x− 1− (x+ 1)

√
x+ 1

4(x2 − 1)
√
x2 + 1

Since in the last term the numerator is negative but the denominator is positive, we obtain
f ′′(x) < 0 for all x > 1. This means that function f is strictly concave on the domain Df and
that there are no inflection points. The graph of function f is drawn in Fig. 9.14.

9.5.4 Limits

We have already discussed some rules for computing limits of sums, differences, products or
quotients of functions in Section 8.1. However, it was necessary that each of the limits exists,
i.e., each of the limits was a finite number. However, what happens when we wish to determine
the limit of a quotient of two functions, and both limits of the function in the numerator and the
function in the denominator tend to ∞ as the variable x tends to a specific value x0. Similarly,
it is possible that both functions in the numerator and in the denominator tend to zero as x
approaches some value x0.
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Figure 9.14: Graph of function f in Example 9.21

Indeterminate form:
If in a quotient both the numerator and the denominator tend to zero as x tends to x0, we call
such a limit an indeterminate form of type “0/0”, and we write

lim
x→x0

f(x)

g(x)
= “ 0/0”.

We only note that in addition to “0/0” and “∞/∞” there exist five other indeterminate forms
of the type “0 · ∞”, “∞ − ∞”, “00”, “∞0” and “1∞” which all can be reduced to one of the
forms considered in the theorem below.

(Bernoulli - de l’Hospital’s rule)
Let functions f : Df → R and g : Dg → R both tend to zero as x tends to x0, or f and g
both tend to ∞ as x tends to x0. Moreover, let f and g be continuously differentiable on the
open interval (a, b) ∈ Df ∩Dg containing x0 and g′(x) �= 0 for x ∈ (a, b). Then

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)
= L.

Here either the limit exists (i.e., the value L is finite), or the limit does not exist.

Possibly, one needs to apply this rule repeatedly. We consider some examples.

Example 9.22 We determine the limit

L = lim
x→1

2x2 − 3x+ 1

x3 + x2 + 2x− 4
.

This is an indeterminate form of the type “ 0/0”. Applying Bernoulli- de l’Hospital’s rule, we
get

L = lim
x→1

4x− 3

3x2 + 2x+ 2
=

1

7
.
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Example 9.23 We calculate the limit

L = lim
x→0

e2x + e−2x − 2

4x2
.

This is in indeterminate form of the type “ 0/0”. Using Bernoulli - de l’Hospital’s rule, we get

L = lim
x→0

2e2x − 2e−2x

8x
.

This is still an indeterminate form and we apply Bernoulli - de l’Hospital’s rule again:

L = lim
x→0

4e2x + 4e−2x

8
= 1 .

Example 9.24 We calculate the limit

L = lim
x→∞

√
4x− 4

e2x
.

This is in indeterminate form of the type “∞/∞”. Applying Bernoulli-de l’Hospital’s rule, we
get

L = lim
x→∞

4
2
√
4x−4

2e2x
= lim

x→∞

1√
4x− 4 · e2x

= 0

Example 9.25 We determine the limit

L = lim
x→2

ln(x− 1)3

x2 − 4
.
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This is an indeterminate form of the type “ 0/0”, and we obtain

L = lim
x→2

3(x−1)2

(x−1)3

2x
= lim

x→2

3

2x(x− 1)
=

3

4
.

9.6 Extreme Points under Constraints

In this section, we discuss some problems of finding the extreme points of a function f(x, y)
subject to a constraint g(x, y) = b. Note that the function and constraint depend on two
variables. If possible, one eliminates one of the variables in the constraint, e.g. y = g∗(x) and
then substitutes this term for y in the function f(x, y) so that a function f∗(x) results depending
only on one variable (which we can treat). We illustrate this by the following examples.

Example 9.26 Given is a rectangle with the fixed circumference C. Among these rectangles,
determine the lengths of the sides a and b of that rectangle having the largest area. The area A
of a rectangle is given by A = a · b. Moreover, we have the constraint 2a+ 2b = C. Solving this
constraint e.g. for b, we obtain

b =
1

2
C − a .

Using the above term to determine the area A, we get a function depending only on the variable
a:

A(a) = a ·
(
1

2
C − a

)
=

1

2
Ca− a2 .
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Differentiation gives

A′(a) =
1

2
C − 2a

Setting A′(a) = 0, we get

a =
1

4
C

and then from the constraint

b =
1

2
C − 1

4
C =

1

4
C .

Since A′′(a) = −2 < 0, a rectangle with the lengths

a = b =
1

4
C

has the maximal area, i.e., the desired rectangle is a square with the area A = 1
16C

2.

Example 9.27 We determine the point (x, y) of the function f : (0,∞) → ∞) with f(x) = 1/x
having the largest distance from the origin (0, 0). According to the Pythagorean theorem, the
distance R of a point (x, y) from the origin is given by

R(x, y) =
√
x2 + y2 .

Using y = 1/x and plugging in R(x, y), we get

R(x) =

√
x2 +

(
1

x

)2

.
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Differentiating function R and looking for stationary points, we get

R′(x) =
2x− 2 · 1

x3

2

√
x2 +

(
1
x

)2 = 0

which corresponds to

x− 1

x3
= 0 .

After multiplying both sides by x3 > 0, we obtain

x4 − 1 = 0

which has the solution xE1 = 1 (note that xE2 = −1 �∈ Df ). Since R′(x) > 0 for x > 1 and
R′(x) < 0 for 0 < x < 1, xE1 = 1 is a local and global minimum point with the distance
R(1, 1) =

√
2.

Example 9.28 Given is an equilateral triangle with the length L of each side. It is desired to
put an rectangle with the side lengths x and y into this triangle such that the area of the rectangle
becomes maximal (see Fig. 9.15). The area of the rectangle is given by A = x · y. Let H be the
height of the triangle. According to the intercept theorems, we get the proportion

H :
L

2
= (H − y) :

x

2

which, after cross multiply, corresponds to

Hx

2
=

L

2
· (H − y) .
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Solving for y, we obtain

y = H − H

L
· x .

Plugging the term for y in A, we get

A(x) = x ·
(
H − H

L
x

)
= xH − H

L
x2

Differentiation gives

A′(x) = H − 2
H

L
x .

From A′(x) = 0, we obtain

2
H

L
x = H

which gives

xE =
L

2
.

Using the above term for y and the known fact that in an equilateral triangle, we have H =
L
√
3/2, we get

yE = H
(
1− x

L

)
=

L

2

√
3

(
1− 1

2

)
=

L

4

√
3 .

Since A′′(x) = −2H/L < 0, the point (xE , yE) is a local maximum. It is also a global maximum
since A(x) is a quadratic function and the graph is a parabola open from below.
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L

x

H

y

H − y

Figure 9.15: Rectangle inside an equilateral triangle
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x

y

y = f(x)

f(x0)

f(x1)

f(x2)

a = x0 x1 x2 x̄

Figure 9.16: Illustration of Newton’s method

9.7 Zero Determination by Newton’s Method

In mathematics, it is often required to find the zeroes of a function. For instance, if we look
for stationary points or inflection points, some function has to be set to be equal to zero and
we need to determine the zeroes. However, for many functions this is a hard problem (although
one can easily see that for a continuous function on the interval [a, b], there must exist a zero in
the open interval (a, b) if two points x1, x2 ∈ [a, b] exist with f(x1) < 0 and f(x2) > 0). As an
illustration, we have no formula for finding the zeroes of a polynomial of degree 4.

In this section, we refresh an algorithm for finding zeroes of a function approximately which is
known as Newton’s method. The idea is to approximate function f about x0 by its tangent at
x0:

f(x) ≈ P1(x) = f(x0) + f ′(x0) · (x− x0).

Let x0 be an initial (approximate) value. Then we have f(x) ≈ P1(x) = 0, from which we obtain

f(x0) + f ′(x0) · (x− x0) = 0.

We eliminate x and identify it with x1 which yields:

x1 = x0 −
f(x0)

f ′(x0)
.

Now we replace the value x0 on the right-hand side by the new approximate value x1, and
we determine another approximate value x2. The procedure can be stopped if two successive
approximate values xn and xn+1 are sufficiently close to each other which means that the function
value is close to zero.

Here we only mention that some assumptions must be satisfied to guarantee that this procedure
converges to a zero. We refer the reader e.g. to the textbook by Werner and Sotskov (Math-
ematics of Economics and Business, Routledge, 2006). Newton’s method is illustrated in Fig.
9.16.
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Example 9.29 We look for zeroes of the function f : R → R with

f(x) = x+ e3x .

We obtain
f ′(x) = 1 + 3e3x > 0 .

Since function f is continuous, f(−1) = −1 + e−3 < 0 and f(0) = 1 > 0, there does exist a real
zero in the interval (−1, 0). According to Newton’s method, we obtain

xn+1 = xn − xn + e3xn

1 + 3e3xn
, n = 0, 1, 2, . . .

We obtain the values given in Table 9.2 (with four decimal places) and thus, x = −0.3500 is the
approximate value for the only real zero of function f .

Table 10.1: Function values for Example 9.29

n xn f(xn) f ′(xn)

0 0.5 -0.2769 1.6694
1 -0.3341 0.0329 2.1011
2 - 0.3489 0.0086 2.0533
3 - 0.3531 -0.0064 2.0401
4 -0.3500 -0.0001 2.0500
5 - 0.3500

EXERCISES

9.1 Find the left-side limit and the right-side limit of function f : Df → R as x approaches
x0. Can we conclude from these answers that function f has a limit as x approaches x0?

(a) f(x) =

{
s for x �= x0
s+ 1 for x = x0

; (b) f(x) =

{ √
x for x ≤ 4

(x− 2)2 − 2 for x > 4
, x0 = 4;

(c) f(x) = |x− 2| , x0 = 2 ; (d) f(x) =

{
x+ 2 for x < 3
2x− 2 for x ≥ 3

, x0 = 3.

9.2 Find the following limits provided that they exist:

(a) lim
x→−1

x2 − 2x− 3
x+ 1 ; (b) lim

x→−1

x3 − 3x2

x+ 1 ; (c) lim
x→−1

x3 − x
(x+ 1)2

.

9.3 Check the continuity of function f : Df → R at point x = x0 and in case of a discontinuity,
give its type:

(a) f(x) =

√
x+ 5 + 1
x− 4 , x0 = 4 ;

(b) f(x) = |x+ 3| , x0 = −3 ;

(c) f(x) =




ln(x− 1) for x < 1

4− 2x for x ≥ 1

, x0 = 1 ;
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9.4 Find the derivative of the following functions f : Df → R given by:

(a) f(x) = x2 − 5x− 3 cosx+ sin(π/2) ; (b) f(x) = (x3 − x) cosx ;

(c) f(x) = x− sinx
2 + cosx ; (d) f(x) = (2x3 − 3x+ lnx)4 ;

(e) f(x) = sin(x2 + 4x+ 1)3 ; (f) f(x) = cos3(x2 + 4x+ 1) ;

(g) f(x) =
√
sin(ex) ; (h) f(x) = ln(2x2 − 1) ;

(i) f(x) = x+ 1
x2 + 1

;

9.5 Find and simplify the derivative of the following functions f : Df → R given by:

(a) f(x) =
ln2(3x)

x ; (b) f(x) = (tanx+ 2) cosx ; (c) f(x) = ln
√

1 + cosx
1− cosx ;

(d) f(x) = (1− 4
√
x)3 ; (e) f(x) = x2 ex

2
; (f) f(x) = ex + lnx

sinx ;

(g) f(x) =
√
(x2 + 4x)3 .

9.6 Find the third derivatives of the following functions f : Df → R with:

(a) f(x) = x2 cos 2x ; b) f(x) = ln(2x2) ;

(c) f(x) =
3(x− 1)3

(x+ 1)2
; d) f(x) = (x− 1)e2x .

9.7 Find all local extreme points of the following functions f : Df → R given by:

(a) f(x) = x4 − 3x3 + x2 − 5 ; (b) f(x) = 3− |x+ 1| ;

(c) f(x) = e−x2/2 ; (d) f(x) = 3x2

x− 2 ;

(e) f(x) = 1
3 x3

√
4− x2 ; (f) f(x) = x− 1

x3
;

(g) f(x) = (x− 1) ln2(x− 1) ; (h) f(x) = lg(15− x2 − 2x)− 1 .

9.8 Determine the following limits by Bernoulli-de l’Hospital’s rule:

(a) lim
x→0

sin 3x
2x ; (b) lim

x→1

e3(x−1) − x
(x2 − 1)2

;

(c) lim
x→2

x3 + 2x2 − 16
x2 + x− 6

; (d) lim
x→∞

x2 − sinx
2x+ cosx ;

(e) lim
x→∞

3 + 4e3x

5x+ 1000 ; (f) lim
x→0

x
tanx ;

(g) lim
x→0

ex
2 − 1
x2

; (h) lim
x→π+0

sinx√
x− π

;

9.9 For the following functions f : Df → R, determine and investigate domains, zeros, dis-
continuities, monotonicity, extreme points and extreme values, convexity and concavity,
inflection points and limits as x tends to ±∞. Graph the functions f with f(x) given as
follows:
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(a) f(x) = (x+ 2) (x− 2)3 ; (b) f(x) = x3

(x− 1)2
;

(c) f(x) = 3x− 4
(x− 2)3

; (d) f(x) = e(x−1)2/2 ;

(e) f(x) = x2 e−x ; (f) f(x) = 3
√
2x2 − x3 ;

(g) f(x) = 1
2 (e−x − e−4x) ; (h) f(x) = 10x− 100

100 + x2
;

(i) f(x) = 8x2 + 1
x .

9.10 A 400 m path in a sports stadium consists of two parallel sections of a length L and two
added half spheres with a radius R. How must the values L and R be chosen such that the
area of the playing field (i.e., A = L · 2R) becomes maximal.

9.11 Among all cylinders with a given volume V ∗ determine that cylinder having the smallest
surface.

9.12 Determine the zero x of function f : Df → R with

f(x) = x+ e2x and − 1 ≤ x ≤ 0

exactly to four decimal places. Use Newton’s method and compare the results with Regula
falsi.

9.13 Find one zero x of the function f : Df → R with

f(x) = x3 − 3x− 4 and 2 ≤ x ≤ 3 .

Use Newton’s method to find the value with an error less than 10−5 and compare the
results with Regula falsi.
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Integration

One can find many applications of integration, e.g. in physics, chemistry, engineering or eco-
nomical sciences. For instance, the area between curves or volumes can be determined by means
of integration. The learning objectives of this chapter are to refresh

• indefinite integrals and the basic integration methods and

• definite integrals including their approximate calculation.

10.1 Indefinite Integrals

We start with the introduction of an antiderivative of a function f .

Antiderivative:
A function F : DF → R differentiable on an open interval I ⊆ DF is called an antiderivative
of the function f : Df → R on I ⊆ Df if

F ′(x) = f(x) for all x ∈ I.

Looking for an antiderivative of a function f means that we are looking for a function F whose
derivative is equal to the given function f . If function F : DF → R is any antiderivative of
function f : Df → R, then all the antiderivatives F ∗ of function f are of the form

F ∗(x) = F (x) + C,

where C ∈ R is an arbitrary constant. As a consequence, there exist infinitely many antideratives
to a function f . Using the notion of an antiderivative, the indefinite integral can be introduced
as follows.

205
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Indefinite Integral:
Let function F : DF → R be an antiderivative of function f . The indefinite integral of
function f , denoted by

∫
f(x) dx, is defined as

∫
f(x) dx = F (x) + C,

where C ∈ R is any constant.

Function f is also called the integrand, and as we see from the above definition, the indef-
inite integral of function f gives the infinitely many antiderivatives of the integrand f . The
notation dx in the integral indicates that x is the variable of integration, and C denotes the
integration constant.

10.2 Basic Integrals

In general, it is a hard problem to find an antiderivative for an arbitrary function, often this is
even impossible. In contrast to differentiation, we do not have complete rules but only methods.
Integration as the reverse process of differentiation is much more difficult.

Table 10.1 gives some indefinite integrals which follow immediately from the differentiation rules.
One can easily check their validity by differentiating the right-hand side, where we must obtain
the integrand of the corresponding left-hand side integral.

Table 10.1: Some elementary indefinite integrals
∫

xn dx =
xn+1

n+ 1
+ C (n ∈ Z, n �= −1)

∫
xr dx =

xr+1

r + 1
+ C (r ∈ R, r �= −1, x > 0)∫

1

x
dx = ln |x|+ C (x �= 0)∫

ex dx = ex + C∫
ax dx =

ax

ln a
+ C (a > 0, a �= 1)∫

sinx dx = − cosx+ C∫
cosx dx = sinx+ C∫
dx

cos2 x
= tanx+ C

(
x �= π

2
+ kπ, k ∈ Z

)
∫

dx

sin2 x
= − cotx+ C (x �= kπ, k ∈ Z)

Next, we give two basic rules for indefinite integrals concerning the treatment of a constant
factor in the integral and the integral of a sum or difference of two functions:
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1.

∫
C · f(x) dx = C ·

∫
f(x) dx (constant-factor rule);

2.

∫ [
f(x)± g(x)

]
dx =

∫
f(x) dx±

∫
g(x) dx (sum-difference rule).

Rule (1) says that we can write a constant factor in front of the integral, and rule (2) says
that, if the integrand is the sum (or difference) of two functions, we can determine the indefinite
integral as the sum (or difference) of the corresponding two integrals. Using the above list of
elementary definite integrals and the two rules mentioned above, we are now able to find the
indefinite integral for some simple functions.

Example 10.1 We find the integral∫ (
4x3 + 5x − 3 cosx

)
dx.

Applying the rules given above, we can split the integral into three integrals and solve each of
them by using the list of indefinite integrals given in Table 10.1. We obtain:∫ (

4x3 + 5x − 3 cosx
)
dx = 4

∫
x3dx+

∫
5xdx− 3

∫
cosx dx

= 4 · x
4

4
+

5x

ln 5
− 3 sinx+ C = x4 +

5x

ln 5
− 3 sinx+ C.

Example 10.2 We consider the integral∫ (
x2.5 +

1

x3
+

2

x
− 1

3 cos2 x

)
dx.

Again, we can split the integral and obtain∫ (
x2.5 +

1

x3
+

2

x
− 1

3 cos2 x

)
dx =

∫
x2.5 dx+

∫
x−3 dx+ 2

∫
1

x
dx− 1

3

∫
1

cos2 x
dx

=
x3.5

3.5
− 3x−2 + 2 ln |x| − 1

3
tanx+ C

=
2

7
x3.5 − 3

x2
+ 2 ln |x| − 1

3
tanx+ C.

Example 10.3 We wish to find the integral
∫ (√

x+ 3x3

4
√
x

)
dx.

Using power rules and the indefinite integral for a power function as integrand (see Table 10.1),
we can transform the given integral as follows:

∫ (√
x+ 3x3

4
√
x

)
dx =

∫ (√
x

4
√
x
+ 3 · x3

4
√
x

)
dx =

∫ (
x1/2

x1/4
+ 3 · x3

x1/4

)
dx

=

∫ (
x1/4 + 3x11/4

)
dx =

x5/4

5
4

+ 3 · x
15/4

15
4

+ C

=
4

5
·
(

4
√
x5 +

4
√
x15

)
+ C.
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10.3 Integration Methods

In this section, we discuss two integration methods: integration by substitution and inte-
gration by parts.

10.3.1 Integration by Substitution

Applying this method, one tries to transform the integral in such a way that an antiderivative
of the resulting integrand can be easily found. To this end, one introduces a new variable t
by means of an appropriate substitution t = g(x) (or accordingly, x = g−1(t)). We have the
following property.

Integration by substitution:
Suppose that function f : Df → R has an antiderivative F and function g : Dg → R with
Rg ⊆ Df is continuously differentiable on an open interval (a, b) ∈ Dg. Then function z = f◦g
exists with z = (f ◦ g)(x) = f(g(x)) and using the substitution t = g(x), we obtain

∫
f (g(x)) · g′(x) dx =

∫
f(t) dt = F (t) + C = F (g(x)) + C.

The symbol ◦ stands for the composition of two functions as introduced in Chapter 8. The above
rule states that, if the integrand is the product of a composite function f ◦ g and the derivative
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g′ of the inside function, then the antiderivative is given by the composite function F ◦ g, where
function F is an antiderivative of function f . The validity of the above rule can be easily proven
by differentiating the composite function F ◦ g (using the chain rule).

We illustrate the above method by the following examples.

Example 10.4 Let us find ∫
2 (2x+ 5)3 dx.

Using the substitution t = g(x) = 2x+ 5, we get

dt

dx
= 2 , i.e: 2 dx = dt

and therefore, the derivative of the inside function is two (note that the outside function is
f(t) = t3). Thus, using the formula for integration by substitution, we obtain

∫
2 (2x+ 5)3 dx =

∫
t3 dt =

1

4
t4 + C =

1

4
(2x+ 5)4 + C.

Example 10.5 Consider the integral
∫

3x2ex
3
dx.

Setting t = g(x) = x3, we obtain

dt

dx
= 3x2 , i.e.: 3x2dx = dt .

The application of the above formula for integration yields
∫

3x2ex
3
dx =

∫
etdt = et + C = ex

3
+ C.

Example 10.6 Consider the integral
∫

cosx sin3 x dx .

Introducing the substitution t = sinx, we obtain by differentiation

dt

dx
= cosx , i.e.: cosx dx = dt .

Using the above substitution and replacing cosx dx by dt, this yields now
∫

cosx sin3 x dx =

∫
t3dt =

1

4
t4 + C =

1

4
sin4 x+ C .

Sometimes the integrand is not of the type f(g(x)) · g′(x) (or cannot be easily transformed into
this form). However, integration by substitution can often also be applied in a more general
form. If we try to use some substitution t = g(x) and if, by using it and the differential
dt = g′(x) dx, it is possible to replace all terms with x and dx in the original integrand by some
terms depending on the new variable t and dt, then we can successfully apply integration by
substitution (provided one can find an antiderivative of the resulting function depending on t).
However, it is important that in the resulting integral only t and dt occur (but no longer x or
dx). To illustrate, let us consider the following examples.
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Example 10.7 We find the integral
∫

cos(4x− 2) dx .

Applying the substitution t = 4x− 2, we get by differentiation

dt

dx
= 4 , i.e.: dx =

dt

4
.

Using the above substitution and the term obtained for dx, we obtain
∫

cos(4x− 2) dx =

∫
cos t · dt

4
=

1

4

∫
cos t dt =

1

4
sin t+ C =

1

4
sin(4x− 2) + C .

Example 10.8 Consider the integral
∫ √

2− 3x dx .

We use the substitution t = 2− 3x. Differentiation gives

dt

dx
= −3 , i.e.: dx = −dt

3
.

Introducing the variable t and dt, we obtain:
∫ √

2− 3x dx = −1

3

∫ √
t dt = −1

3

∫
t1/2dt = −1

3
· 2
3
t3/2 + C = −2

9

√
(2− 3x)3 + C .
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Example 10.9 We find the integral

=

∫
5

x
ln(2x) dx .

Trying the substitution t = ln(2x), we obtain by differentiation

dt

dx
=

1

2x
· 2 =

1

x
, i.e.:

dx

x
= dt .

Using the above terms and writing the factor 5 outside the integral, we get

∫
5

x
ln(2x) dx = 5

∫
t dt =

5

2
t2 + C =

5

2
ln2(2x) + C .

Example 10.10 Let us consider the integral

∫ √
x√

x+ 2
dx .

We try the substitution t =
√
x+ 2. Differentiation gives

dt

dx
=

1

2
√
x
, i.e.: dx = 2

√
x dt = 2(t− 2) dt .

Here we used
√
x = t− 2. Now we are able to replace the integrand f(x) and dx and obtain an

integral only depending on t and dt:

∫ √
x√

x+ 2
dx =

∫
t− 2

t
· 2(t− 2) dt

= 2

∫
t2 − 4t+ 4

t
dt

= 2

∫ (
t− 4 +

4

t

)
dt

= 2

(
t2

2
− 4t+ 4 ln |t|

)
+ C .

Substituting back, we get the final result:

I = (
√
x+ 2)2 − 8(

√
x+ 2) + 8 ln(

√
x+ 2) + C .

Note than we can skip the absolute values in the last term since
√
x + 2 is always greater than

zero.

Example 10.11 We consider the integral

∫
1

1 + x2
dx .

We try the substitution x = tan t and obtain by differentiation

dx

dt
= 1 + tan2 t , i.e.: dx = 1 + tan2 t dt .
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This gives ∫
1

1 + x2
dx =

∫
1

1 + tan2 t
· (1 + tan2 t) dt =

∫
dt = t+ C.

From the substitution we get t = tan−1 x and therefore,
∫

1

1 + x2
dx = tan−1 x+ C .

We only note that the inverse function tan−1 x of the tangent function is also often denoted as
arctanx.

Example 10.12 We consider the integral
∫

x
√
x− 1 dx .

We apply the substitution x = t2 + 1 which corresponds to t =
√
x− 1. Differentiation gives

dx

dt
= 2t , i.e.: dx = 2t dt .

Now we obtain
∫

x
√
x− 1 dx =

∫
(t2 + 1)

√
t2 + 1− 1 · 2t dt

= 2

∫
t2 (t2 + 1) dt = 2

∫
(t4 + t2) dt

= 2

(
1

5
t5 +

1

3
t3
)
+ C =

2

5
(
√
x− 1)5 +

2

3
(
√
x− 1)3 + C .

10.3.2 Integration by Parts

The formula for this method is obtained from the formula for the differentiation of a product of
two functions u and v:

[
u(x) · v(x)

]′
= u′(x) · v(x) + u(x) · v′(x).

Integrating now both sides of the above equation, we obtain the formula for integration by parts
as follows:

Integration by parts:
Let u : Du → R and v : Dv → R be two functions differentiable on some open interval
I = (a, b) ⊆ Du ∩Dv. Then:

∫
u(x) · v′(x) dx = u(x) · v(x)−

∫
u′(x) · v(x) dx.

To apply integration by parts, one must be able to find an antiderivative of function v′ and
an antiderivative of function u′ · v. If we are looking for an antiderivative of a product of two
functions, the successful use of integration by parts depends on an appropriate choice of the
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functions u and v′. Integration by parts can, for instance, be applied when one of the two
factors is a polynomial Pn(x) and the other one is a logarithmic, trigonometric (sine / cosine) or
an exponential function. In most cases above, the polynomial Pn is taken as function u which
has to be differentiated within the application of integration by parts (as a consequence, the
derivative u′ is a polynomial of smaller degree). We illustrate integration by parts by some
examples.

Example 10.13 Let us find ∫
x2 cosx dx.

We apply integration by parts with

u(x) = x2 and v′(x) = cosx.

Now we obtain

u′(x) = 2x and v(x) = sinx.

Hence, ∫
x2 cosx dx = x2 sinx− 2

∫
x sinx dx.

Applying now again integration by parts to the integral
∫
x sinx dx with

u(x) = x and v′(x) = sinx,

we get

u′(x) = 1 and v(x) = − cosx.

This yields

∫
x2 cosx dx = x2 sinx− 2

(
− x cosx−

∫
− cosx dx

)

= x2 sinx+ 2x cosx+ 2 sinx+ C

= (x2 + 2) sinx+ 2x cosx+ C.

Notice that integration constant C has to be written as soon as no further integral appears on
the right-hand side.

Example 10.14 Let us now consider the integral

∫
(x+ 4)e2x dx .

Again, we apply integration by parts and use

u(x) = x+ 4 and v′(x) = e2x.

Differentiation gives

u′(x) = 1 and v(x) =
1

2
e2x.

Download free eBooks at bookboon.com



A REFRESHER COURSE IN MATHEMATICS

214

Integration
214 CHAPTER 10. INTEGRATION

According to the formula of integration by parts, this gives

∫
(x+ 4)e2x dx =

1

2
e2x(x+ 4)− 1

2

∫
e2x dx

=
1

2
e2x(x+ 4)− 1

4
e2x + C .

Example 10.15 Let us determine ∫
ln

x

2
dx.

Although the integrand f(x) = ln(x/2) is here not written as a product of two functions, we can
nevertheless apply integration by parts by introducing factor one, i.e., we set

u(x) = ln
x

2
and v′(x) = 1.

Then we obtain

u′(x) =
2

x
· 1
2
=

1

x
and v(x) = x

which leads to
∫

ln
x

2
dx = x ln

x

2
−

∫
dx = x ln

x

2
− x+ C = x

(
ln

x

2
− 1

)
+ C.

Example 10.16 We find ∫
x2 lnx dx.

Setting

u(x) = lnx and v′(x) = x2 ,

we obtain

u′(x) =
1

x
and v(x) =

1

3
x3 .

It is worth to note that mostly the polynomial is taken as u(x) (which has to be differentiated)
while here it is taken as v′(x) (so that it has to be integrated). Then we get

∫
x2 lnx dx =

1

3
x3 lnx−

∫
1

x
· 1
3
x3 dx =

1

3
x3 lnx− 1

3

∫
x2 dx =

1

3
x3 lnx− 1

9
x3 + C .

Example 10.17 We determine ∫
cos2 x dx.

Here we can set

u(x) = cosx and v′(x) = cosx.

This yields

u′(x) = − sinx and v(x) = sinx

Applying now integration by parts we get

∫
cos2 x dx = sinx cosx+

∫
sin2 x dx.
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Now one could try to apply again integration by parts to the integral on the right-hand side.
However, this does not yield a solution to the problem. Instead of this, we use the equality (see
Chapter 5)

sin2 x = 1− cos2 x,

and then the above integral can be rewritten as follows:
∫

cos2 x dx = sinx cosx+

∫
(1− cos2 x) dx

= sinx cosx+ x−
∫

cos2 x dx.

Adding now
∫
cos2 x dx to both sides, dividing the resulting equation by two and introducing the

integration constant C, we finally obtain
∫

cos2 x dx =
1

2

(
sinx cosx+ x

)
+ C.

We finish this section with an example, where both integration methods have to applied.

Example 10.18 We find ∫
cos

√
2x dx.

First, we apply integration by substitution using t =
√
2x. Differentiation gives

dt

dx
=

2

2
√
2x

=
1

t

which can be rewritten as
dx = t dt .

Replacing now
√
2x and dx in the integral, we get

∫
cos

√
2x dx =

∫
t cos t dt.

So, the above substitution was useful and the new integral depends only on t and dt. To solve
this integral, we now apply integration by parts. We set

u(t) = t and v′(t) = cos t

which gives
u′(t) = 1 and v(t) = sin t.

Then we get
∫

t cos t dt = t sin t−
∫

sin t dt

= t sin t+ cos t+ C.

After substituting back, we finally obtain
∫

cos
√
2x dx =

√
2x · sin

√
2x+ cos

√
2x+ C.
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10.4 The Definite Integral

To introduce the definite integral, let us start with the following problem: Given is a function f
with y = f(x) ≥ 0 for all x ∈ [a, b] ⊆ Df . How can we compute the area A under the graph of
function f from a to b assuming that function f is continuous on the closed interval [a, b]. First,
we split the interval [a, b] into n subintervals of equal length. Thus, we choose the points

a = x0 < x1 < x2 < . . . < xn−1 < xn = b.

The idea is now to approximate the real area under the graph of function f by a sum of the areas
of rectangles. Denote by ui (and vi, respectively) the point of the i-th closed interval [xi−1, xi],
where the function f takes the minimum (maximum) value, i.e., we have

f(ui) = min{f(x) | x ∈ [xi−1, xi]},

f(vi) = max{f(x) | x ∈ [xi−1, xi]},

and let h = ∆xi = xi − xi−1. For any interval, we consider the area of the rectangles with the
heights f(ui) and f(vi), respectively, all having the same width h. Then we can give a lower
bound An

min and an upper bound An
max on the area A in dependence on the number n of intervals

for the area A as follows (see Fig. 10.1):

An
min =

n∑
i=1

f(ui) ·∆xi,
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x

y

x0 x1 x2 xi−1 xi xn−1 xn
= a = b

· · · · · ·

f(x)
f(u1)

f(un)

f(v1)

f(vi)

f(vn)

Figure 10.1: The definite integral
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An
max =

n∑
i=1

f(vi) ·∆xi.

Since we have f(li) ≤ f(x) ≤ f(ui) for each x ∈ [xi−1, xi] i ∈ {1, 2, . . . , n}, the inequalities
An

min ≤ A ≤ An
max hold, i.e., the real area A is between the values An

min and An
max. Now one

considers the limits of both values An
min and An

max as the number of intervals tends to ∞ (or
equivalently, the widths h of the intervals tend to zero). If both limits of the sequences {An

min}
and {An

max} as n tends to ∞ exist and are equal, we say that the definite integral of function f
over the interval [a, b] exists. Formally, we can write the following.

Definite integral:
Let function f : Df → R be continuous on the closed interval [a, b] ⊆ Df . If the limits of the
sequences {An

min} and {An
max} as n tends to ∞ exist and coincide, i.e.

lim
n→∞

An
min = lim

n→∞
An

max = I,

then I is called definite integral of function f over the closed interval [a, b ] ⊆ Df .

We write

I =

b∫

a

f(x) dx
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for the definite integral of function f over the interval [a, b]. The numbers a and b, respectively,
are denoted as lower and upper limits of integration. Of course, the above definition is
not practical for evaluating definite integrals. For calculating the definite integral, the following
formula by Newton and Leibniz is useful.

Evaluation of the definite integral (Newton-Leibniz’s formula):
Let function f : Df → R be continuous on the closed interval [a, b] ⊆ Df and function F be
an antiderivative of f . Then the definite integral of function f over [a, b] is given by the
change in the antiderivative between x = a and x = b:

b∫

a

f(x)dx =
[
F (x)

] ∣∣∣
b

a
= F (b) − F (a).

According to Newton-Leibniz’s formula, the main difficulty is to find an antiderivative of the
integrand f . Therefore, we again have to apply one of the methods discussed before for finding
an antiderivative. The following properties of the definite integral are obvious.
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Properties of the definite integral:

(1)

a∫

a

f(x) dx = 0;

(2)

b∫

a

f(x) dx = −
a∫

b

f(x) dx;

(3)

b∫

a

C · f(x) dx = C ·
b∫

a

f(x) dx (C ∈ R);

(4)

b∫

a

f(x) dx =

c∫

a

f(x) dx+

b∫

c

f(x) dx (a ≤ c ≤ b);

When defining the definite integral, we assumed that function f is non-negative. However, for
the evaluation of the definite integral this assumption is not required. If function f is non-
positive, the value of the definite integral is negative: it corresponds to the area between the
x-axis and function f with negative sign. If a function f has one or several zeroes and we wish
to compute the area between the function f and the x-axis, we have to split the integral into
several sub-integrals: the first integration is from the left boundary point up to the smallest
zero, then from the smallest zero to the second smallest zero, and so on.

We continue with some examples for evaluating definite integrals.

Example 10.19 We evaluate

I =

∫ 9

1
(x2 +

√
x) dx

and obtain immediately by using the list of elementary integrals

I =

[
1

3
x3 +

x3/2

3
2

] ∣∣∣
9

1
=

[
1

3
x3 +

2

3

√
x3

] ∣∣∣
9

1
=

(
729

3
+

2

3
· 27

)
−
(
1

3
+

2

3
·
√
1

)
= (243+18)−1 = 260 .

Example 10.20 We determine the lower limit of integration a of the following integral I such
that it has the value 112/3:

I =

∫ 4

a
2x2 dx =

112

3
.

Then we obtain

I =

[
2

3
x3

] ∣∣∣
4

a
=

2

3
(64− a3) =

112

3
.

Solving for a3, this gives a3 = 8 from which we obtain the unique solution a = 2.

Example 10.21 We evaluate the integral

I =

∫ π
2

−π
2

sin2x cosx dx .
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We use the substitution t = sinx. By differentiation, we get

dt

dx
= cosx i.e.: cosxdx = dt .

When writing the definite integral now in dependence on f(t) and dt, one has to transform the
limits of integration. Since sin(−π/2) = −1 and sin(π/2) = 1, we now have −1 and 1 as lower
and upper limits of integration, respectively. This gives

I =

∫ 1

−1
t2 dt =

[
1

3
t3
] ∣∣∣

1

−1
=

1

3
−

(
−1

3

)
=

2

3
.

Example 10.22 We evaluate the definite integral

e∫

1

dx

x(2 + lnx)
.

We use the substitution

t = 2 + lnx

and obtain by differentiation
dt

dx
=

1

x
, i.e.:

dx

x
= dt.

Using the two previous representations, we get an integral only depending on t and dt:

e∫

1

dx

x(2 + lnx)
=

t(e)∫

t(1)

dt

t
.

Now we obtain

t(e)∫

t(1)

dt

t
=

[
ln |t|

]∣∣∣
t(e)

t(1)
=

[
ln |2 + lnx|

]∣∣∣
e

1
= ln(2 + ln e)− ln(2 + ln 1) = ln 3− ln 2 = ln

3

2
.

In the above computations, we did not transform the limits of the definite integral into the
corresponding t-values but we have used the above substitution again (in the opposite direction)
to the antiderivative in terms of x. In this case, it is not necessary to give the limits of integration
with respect to the variable t. Of course, we can also transform the limits of integration (in this
case, we get t(1) = 2 + ln 1 = 2 and t(e) = 2 + ln e = 3) and insert the obtained values directly
into the obtained antiderivative ln |t|.

Example 10.23 We evaluate the definite integral

I =

∫ π
2

0
ex cosx dx .

First, we consider the indefinite integral and find an antiderivative using integration by parts.
Setting

u(x) = ex and v′(x) = cosx ,
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we obtain
u′(x) = ex and v(x) = sinx .

According to the formula of integration by parts, this gives

∫
ex cosx dx = ex sinx−

∫
ex sinx dx .

Using again integration by parts for the integral
∫
ex sinx dx with

u(x) = ex and v′(x) = sinx ,

we obtain
u′(x) = ex and v(x) = − cosx

and then ∫
ex cosx dx = ex sinx−

(
−ex cosx+

∫
ex cosx dx

)

which, after putting the integrals on one side and introducing the integration constant, finally
gives ∫

ex cosx dx =
1

2
ex(sinx+ cosx) + C .

Evaluating now the definitive integral, we obtain

I =
1

2
[ex(sinx+ cosx)]

∣∣∣
π
2

0
=

1

2

[
e

π
2 (1 + 0)− e0(0 + 1)

]
=

1

2

(
e

π
2 − 1

)
.

Example 10.24 We determine the area bounded by the curve f(x) = −x2 + 5x − 4 and the
x-axis. First we determine the zeroes of function f and obtain (after multiplying f by −1 and
applying the solution formula for a quadratic equation):

x1 =
5

2
−

√
25

4
− 4 = 1 and x2 =

5

2
+

√
25

4
− 4 = 4 .

Note that f(x) ≥ 0 for all x ∈ [1, 4]. Thus, the required area A is obtained as follows:

A =

∫ 4

1
(−x2+5x−4) dx =

[
−1

3
x3 +

5

2
x2 − 4x

] ∣∣∣
4

1
=

(
−64

3
+ 40− 16

)
−
(
−1

3
+

5

2
− 4

)
=

9

2
.

Example 10.25 We want to compute the area enclosed by the graphs of the two functions
f : R → R and g : R → R given by

f(x) = x2 − 16 and g(x) = −4x− x2.

We first determine the points of intercept of both functions and obtain from

x2 − 16 = −4x− x2

the quadratic equation
2x2 + 4x− 16 = 0

or, after dividing by 2,
x2 + 2x− 8 = 0
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This quadratic equation has the two real solutions

x1 = −1−
√
1 + 8 = −4 and x2 = −1 +

√
1 + 8 = 2.

The graphs of both functions are parabolas which intersect only in these two points (−4, 0) and
(2,−12). To compute the enclosed area A, we therefore have to evaluate the definite integral

A =

4∫

−2

[
g(x)− f(x)

]
dx .

Note that the graph of function f is a parabola open from above while the graph of function g is
a parabola open from below. Therefore, the we have g(x) ≥ f(x) for all x ∈ [−2, 4] and thus, the
integrand is the difference g(x)− f(x):

A =

2∫

−4

[
(−4x− x2)− (x2 − 16)

]
dx =

2∫

−4

(−2x2 − 4x+ 16) dx

= 2

2∫

−4

(−x2 − 2x+ 8) dx = 2

(
−x3

3
− x2 + 8x

) ∣∣∣
2

−4

= 2

[(
− 8

3
− 4 + 16

)
−

(64
3

− 16− 32
)]

= 2 · (60− 24) = 2 · 36 = 72 .

Thus, the area enclosed by the graphs of the given functions is equal to 216/3 squared units.

Example 10.26 We wish to determine the area A enclosed by the function f with f(x) = sinx
with the x-axis between a = −π/2 and b = π/2. Since the function f is non-positive in the
closed interval [−π/2, 0] and non-negative in the closed interval [0, π/2] (note that x = 0 is a
zero of the sine function), we have to split the interval into two sub-intervals (from −π/2 to 0
and from 0 to π/2 and to find the two integrals separately. We obtain the area A as follows:

A = −
0∫

−π
2

sinx dx+

π
2∫

0

sinx dx

= cosx
∣∣∣
0

−π
2

− cosx
∣∣∣
π
2

0

= (1− 0) + (1− 0) = 2.

If we would not take into account that function f has a zero and would integrate in one integral
from −π/2 until π/2, the resulting value of the definite integral would be equal to zero (since
the area between the x-axis and the sine function in the first subinterval is equal to the area
between the sine function and the x-axis in the second subinterval, however, both the signs would
be opposite).
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10.5 Approximation of Definite Integrals

Often, one cannot evaluate a definite integral due to several reasons. For some functions, there
does not exist an antiderivative that can be determined analytically. As an example, we can
mention here e.g. the function f with f(x) = e−x2

, which is often applied in probability theory
and statistics, or function g with g(x) = (sinx)/x. Moreover, a function f may be given only
as a set of points (x, y) which have been experimentally determined.

In such cases, we must be satisfied with determining the definite integral approximately by
applying numerical methods. Similar to the definition of the definite integral, approximate
methods divide the closed interval [a, b ] into n subintervals of equal width h = (b−a)/n, and so
we get again the subintervals [x0, x1] , [x1, x2] , . . . , [xn−1, xn] , where a = x0 and b = xn. Within
each interval, we now replace function f by some other function which is ‘close to the original
one’ and for which the integration can be easily performed. In all approximation methods, one
replaces the function f by a polynomial of a small degree (mostly not greater than two). Here we
discuss only two methods, namely an approximation by trapeziums and Simpson’s rule.

Approximation by trapeziums

In this case, in each closed interval [xi−1, xi], the function f is replaced by a line segment (i.e.,
a linear function) through the points (xi−1, f(xi−1)) and (xi, f(xi)). This gives the area

b− a

n
·
[
1

2
f(xi−1) +

1

2
f(xi)

]
.

If n = 1, this gives an approximation by one trapezium:

b∫

a

f(x) dx ≈ (b− a) · f(a) + f(b)

2
.

The quality of the approximation improves when we use n > 1 which is also known as the
composite trapezoidal rule. In this way, we get the following approximation formula for the
definite integral:

b∫

a

f(x) dx ≈ b− a

n
·
[f(a) + f(b)

2
+ f(x1) + f(x2) + . . .+ f(xn−1)

]
.

Thus, by the above formula, we approximate the definite integral by the sum of the ar-
eas of n trapeziums, each with width (b − a)/n. Note also that any function value
f(x1), f(x2), . . . , f(xn−1) is taken with factor 1/2 as the right boundary point of an interval
and with factor 1/2 as a left boundary point of the succeeding interval. Approximation by
trapeziums is illustrated in Fig. 10.2.

Simpson’s rule

Here we consider the special case when the closed interval [a, b] is divided only into n = 2
subintervals [a, (a+ b)/2] and [(a+ b)/2, b] of equal length. Now we approximate function f by a

quadratic function which is uniquely defined by three points:
(
a, f(a)

)
,
(
(a+b)/2, f((a+b)/2)

)

and
(
b, f(b)

)
. This leads to Simpson’s formula:

b∫

a

f(x) dx ≈ b− a

6
·
[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
.
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x

y

x0 x1 x2 xi−1 xi xn−1 xn
= a = b

· · · · · ·

f(x)
f(x0)

f(x1)

f(x2)

f(xi−1)

f(xi)

f(xn−1) f(xn)

Figure 10.2: Approximation of definite integrals by trapeziums

We note that this formula is also known as Kepler’s rule.

Example 10.27 We illustrate the composite trapezoidal rule with n = 6 subintervals and Simp-
son’s rule by evaluating numerically the integral

I =

4∫

1

e2x

x
dx,

We get the function values given in Table 10.2.

Table 10.2: Function values for Example 10.27

i xi f(xi)

0 1 7.3891
1 1.5 13.3904
2 2 27.2991
3 2.5 59.3653
4 3 134.4763
5 3.5 313.3238
6 4 745.2395

Using the composite trapezoidal rule with n = 6, we obtain

4∫

1

f(x) dx ≈ b− a

n
·
[f(x0) + f(x6)

2
+ f(x1) + f(x2) + . . .+ f(x5)

]

≈ 3

6
· 1300.4835 = 650.2418.

Using Simpson’s rule with a = 1 and b = 4, we obtain

4∫

1

f(x) dx ≈ b− a

6
·
[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
=

1

2
·
[
f(1) + 4f(2.5) + f(4)

]

=
1

2
· 990.0898 = 445.0449.
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We can see that the approximations still differ rather much. This is caused by the use of only two
subintervals in the case of Simpson’s rule: One can refine the calculations by considering subse-
quently an even number of intervals and applying Simpson’s rule to the first and second intervals,
then to the third and fourth intervals and so on, which is known as composite Simpson’s rule.

EXERCISES

10.1 Find the following indefinite integrals

(a)

∫ (
3x2 +

1

2x

)
dx ; (b)

∫
x4 − 3

√
x

5
√
x

dx ; (c)

∫ (
2x + x−3.5

)
dx .

10.2 Use the substitution rule for finding the following indefinite integrals:

(a)

∫
lnx

3x
dx ; (b)

∫
ecosx sinx dx ; (c)

∫
2

3x− 1
dx ;

(d)

∫
dx

e4+3x ; (e)

∫ √
2 + 5x dx ; (f)

∫
x3 dx√
1 + x2

;

(g)

∫
x3

1 + x2
dx ; (h)

∫
x
√
2− x2 dx ; (i)

∫
cos3 x

sin2 x
dx ;

(j)

∫
sinx cosx dx ; (k)

∫
ex − 1

ex + 1
dx .

10.3 Use integration by parts to find the following indefinite integrals:

(a)

∫
xe4x dx ; (b)

∫
ex sinx dx ; (c)

∫
x

cos2 x
dx ;

(d)

∫
sin2x dx ; (e)

∫
x lnx dx ; (f)

∫
x2 sinx dx .

10.4 Evaluate the following definite integrals:

(a)

4∫

−2

(x2 + 4x+ 1) dx ; (b)

e∫

1

dx

x
; (c)

π
2∫

0

sin3 x dx ;

(d)

4∫

0

x dx√
x2 + 4

; (e)

3∫

1

x ln(x2) dx ; (f)

π∫

0

cos2 x sinx dx ;

(g)

π
4∫

−π
4

2− 3 cos2 x

cos2 x
dx .

10.5 (a) Evaluate
2π∫

0

cosx dx
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and compute the area enclosed by function f : R → R with f(x) = cosx and the
x-axis within the interval [0, 2π].

(b) Compute the area of the triangle formed by the x-axis and the functions f : R → R
and g : R → R given by

f(x) = x+ 2 and g(x) = −x

2
+ 8 .

(c) Compute the area enclosed by the two functions f : R → R and g : R → R given by

f(x) = −x2 − 4x− 1 and g(x) = 4− 10x.

10.6 Determine the following definite integral numerically:

4∫

0

dx

2 + 3x2
.

(a) Use approximation by trapeziums with n = 4.

(b) Use approximation by trapeziums with n = 8.

(c) Use Simpson’s rule.
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Vectors

Vectors are used for denoting points in the plane or space (e.g. n-tuples of numbers) and they
describe (parallel) displacements. They are often applied for denoting e.g. physical variables.
The learning objectives of this chapter are

• to review the basics about vectors with at most three components and

• to summarize the major operations with vectors.

11.1 Definition and Representation of Vectors

Vector:
A 3-dimensional vector

a =




ax
ay
az




is an ordered sequence of three real numbers ax, ay, az. The numbers ax, ay, az are called the
components (or coordinates) of the vector a.

ax, ay, az are also called the scalar components of vector a. If we consider only vectors with
the z-coordinate equal to zero, we have a 2-dimensional vector, and we write

a =

(
ax
ay

)
.

In this chapter, we consider exclusively 2- or 3-dimensional vectors. In the following, we always
assume that the components of a vector are indexed by x, y and possibly z. We describe all
operations for 3-dimensional vectors, but they can also be applied if all vectors are 2-dimensional.

We can graph a vector as an arrow in the 3-dimensional space which can be interpreted as a
displacement of a starting point P resulting in a terminal point Q. For instance, if point P
has the coordinates (p1, p2, p3) and point Q has the coordinates (q1, q2, q3), then

a =




ax
ay
az


 =

−−→
PQ =




q1 − p1
q2 − p2
q3 − p3


 .

229
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x

y

a

b

−1−2 1 2 3 4

1

2

3

4

Figure 11.1: 2-dimensional vectors in the plane

It is often assumed that the starting point P is the origin of the coordinate system. In this case,
the components of vector a are simply the coordinates of point Q and, therefore, a row vector
aT can be interpreted as a point (i.e., a location) in the 3-dimensional space. In the case of
2-dimensional vectors, we can illustrate them in the plane, e.g., the vectors

a =

(
3
1

)
and b =

(
−2
4

)

are illustrated in Fig. 11.1. Finding the terminal point of vector a means that we are going
three units to the right from the origin and one unit up. Similarly, to find the terminal point of
b, we are going two units to the left from the origin and four units up. We can see that a vector
is characterized by the length, the direction and the orientation. The length is obtained by
the length of the arrow representing the vector, the direction is determined by its location in
the space, and the orientation is characterized by the direction of its arrowhead.

The vectors a and b are said to be equal if all their corresponding components are equal, i.e.,
we have

ax = bx, ay = by, az = bz .

We have a ≤ b if the inequalities ax ≤ bx, ay ≤ by, az ≤ bz hold for the components. In a
similar way, we can introduce the inequalities a ≥ b, a < b and a > b.

Finally, we introduce some special vectors. A unit vector is a vector with a length equal to
one. The special unit vectors pointing in the direction of one of the axes are denoted as ex, ey

and ez:

ex =




1
0
0


 , ey =




0
1
0


 , ez =




0
0
1




The zero vector is a vector containing only zeroes as components:

0 =




0
0
0


 .
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11.2 Operations with Vectors

We start with the operations of adding and subtracting two vectors of the same dimension.

Sum of two vectors:
The sum of the two vectors a and b is the vector a+ b obtained by adding each component of
vector a to the corresponding (i.e., at the same position) component of vector b:

a+ b =




ax
ay
az


+




bx
by
bz


 =




ax + bx
ay + by
az + bz




Difference of two vectors:
The difference between the vectors a and b is the vector a− b defined by

a− b =




ax
ay
az


−




bx
by
bz


 =




ax − bx
ay − by
az − bz




Thus, the difference vector is obtained by subtracting the components of the vector b from the
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corresponding components of the vector a.

If we multiply the vector a by a real number λ, also denoted as a scalar, the vector b = λa
whose components are λ times the corresponding components of vector a is obtained :

b = λ a = λ ·




ax
ay
az


 =




λax
λay
λaz


 .

If λ > 0, the vector b has the same orientation as the vector a. If λ < 0, the vector b has
the opposite orientation than the vector a. The operation of multiplying a vector by a scalar is
denoted as scalar multiplication.

Example 11.1 Let

a =

(
4
2

)
and b =

(
2
5

)
.

Then we obtain

a+ b =

(
4
2

)
+

(
2
5

)
=

(
6
7

)
and a− b =

(
4
2

)
−

(
2
5

)
=

(
2
−3

)
.

Moreover, we obtain e.g.

2 a = 2 ·
(

4
2

)
=

(
8
4

)
and (−1) b = (−1) ·

(
2
5

)
=

(
−2
−5

)
.
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The sum and difference of the two vectors as well as the scalar multiplication are geometrically
illustrated in Fig. 11.2. The sum of the two vectors a and b is the vector obtained when adding
vector b to the terminal point of vector a. The resulting vector from the origin to the terminal
point of vector b gives the sum a+b. Accordingly, the difference a−b is obtained by adding to
the terminal point of vector a the vector (−1) ·b, i.e., the vector b with opposite orientation. If
we multiply a vector by a scalar, the direction of the vector does not change (but the orientation
may change).

Example 11.2 Let

a =




2
−1
0


 and b =




4
1
−3


 .

Then we obtain

a+ b =




2
−1
0


+




4
1
−3


 =




6
0
−3


 and a− b =




2
−1
0


−




4
1
−3


 =




−2
−2
3


 .

Moreover, we obtain e.g.

(−5) a+ 3b = (−5) ·




2
−1
0


+ 3




4
1
−3


 =




(−5) · 2 + 3 · 4
(−5) · (−1) + 3 · 1
(−5) · 0 + 3 · (−3)


 =




2
8
−9


 .

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

 

  

 

                . 

http://s.bookboon.com/AlcatelLucent


A REFRESHER COURSE IN MATHEMATICS

234

Vectors

234 CHAPTER 11. VECTORS

x

y

a

b

2 · a

a+ b

a− b

(−1) · b

b

−b
−1−2 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

−1

−2

−3

−4

−5

Figure 11.2: Vector operations: Sum, difference and scalar multiplication
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The operation of adding two vectors is

• commutative, i.e., we have a+ b = b+ a, and

• associative, i.e., we have (a+ b) + c = a+ (b+ c).

There exist further rules for the sum of two vectors and the multiplication by a number so that
one can interpret a vector in mathematics in a more general form as an element of a so-called
vector space.

Scalar product:
The scalar product of the vectors a and b is defined as follows:

a · b =




ax
ay
az


 ·




bx
by
bz


 = axbx + ayby + azbz.

Note also that the scalar product of two vectors is not a vector, but a number (i.e., a scalar) and
that a ·b is only defined if a and b are both of the same dimension, i.e., we cannot determine
the scalar product of a 2- and a 3-dimensional vector. The commutative and distributive laws
are valid for the scalar product, i.e., we have

a · b = b · a and a · (b+ c) = a · b+ a · c

for all vectors a,b, c of the same dimension. It is worth noting that the associative law does not
necessarily hold for the scalar product, i.e., in general we have

a · (b · c) �= (a · b) · c.

Notice that the vector on the left-hand side is parallel to vector a, while the vector on the right-
hand side is parallel to vector c. We emphasize that there is no operation that divides a vector
by another one. However, we can divide a vector by a non-zero number λ, which corresponds to
a scalar multiplication with

µ =
1

λ
.

Example 11.3 Let the vectors

a =




2
3
−1


 and b =




4
−1
−6




be given. Then we obtain the scalar product a · b as follows:

a · b = 2 · 4 + 3 · (−1) + (−1) · (−6) = 8− 3 + 6 = 11.

Example 11.4 For the scalar products composed of two of the three unit vectors parallel to the
coordinate axes we obtain:
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ex · ex = 1 ; ey · ey = 1 ; ez · ez = 1 ;

ex · ey = 0 ; ex · ez = 0 , ey · ez = 0 .

Length of a vector:
The length of vector a, denoted by |a|, is defined as

|a| =
√
a2x + a2y + a2z.

A vector with length one is denoted as unit vector (remind that we have already introduced
the specific unit vectors ex, ey, ez which have obviously the length one). Each nonzero vector
a can be written as the product of its length |a| and a unit vector e(a) pointing in the same
direction as the vector a itself, i.e.,

a = |a| · e(a).

By means of the unit vectors ex, ey and ez, we can present any vector in vectorial components
as follows:

a = axe
x + aye

y + aze
z ,

i.e., formally as the sum of three vectors.

Example 11.5 Let the vector

a =




−2
3
6




be given. We are looking for a unit vector pointing in the same direction as the vector a. Using

|a| =
√
(−2)2 + 32 + 62 =

√
49 = 7,

we find the corresponding unit vector

e(a) =
1

|a|
· a =

1

7
·




−2
3
6


 =




−2/7
3/7
6/7


 .

The distance between the two vectors a and b is obtained as follows:

|a− b| =
√
(ax − bx)2 + (ay − by)2 + (az − bz)2 .

Example 11.6 Let the vectors

a =




3
2
−3


 and b =




−1
1
5




be given. The distance between both vectors is obtained as

|a− b| =
√
[3− (−1)]2 + (2− 1)2 + (−3− 5)2 =

√
16 + 1 + 64 =

√
81 = 9.

Download free eBooks at bookboon.com



A REFRESHER COURSE IN MATHEMATICS

237

Vectors
11.2. OPERATIONS WITH VECTORS 237

Next, we present an alternative possibility to calculate the scalar product:

a · b = |a| · |b| · cos (∠(a,b)); (11.1)

In Equation (11.1), cos (∠(a,b)) denotes the cosine value of the angle between the oriented
vectors a and b.

Example 11.7 Using Equation (11.1) above and the earlier definition of the scalar product,
one can easily determine the angle between two vectors a and b of the same dimension. Let

a =




3
−1
2


 and b =




2
1
2


 .

Then we obtain

cos(∠(a,b)) =
a · b

|a| · |b|

=
3 · 2 + (−1) · 1 + 2 · 2√

32 + (−1)2 + 22 ·
√
22 + 12 + 22

=
9√

14 ·
√
9
=

3√
14

≈ 0.80178.

We have to find the smallest positive argument of the cosine function which gives the value
0.80178. Therefore, the angle between vectors a and b is approximately equal to 36.7o.

Next, we consider orthogonal vectors. Consider the triangle given in Fig. 11.3 formed by the
three 2-dimensional vectors a,b and c = a − b. Denote the angle between vectors a and b by
γ. From the Pythagorean theorem we know that the angle γ is equal to 90o if and only if the
sum of the squared lengths of vectors a and b is equal to the squared length of vector c:

|a|2 + |b|2 = |a− b|2 . (11.2)

Using the rules for working with vectors, Equation (11.2) is satisfied if and only if the scalar
product of the vectors a and b is equal to zero. We say in this case that vectors a and b are
orthogonal (or perpendicular) and write a ⊥ b. Accordingly, two 3-dimensional vectors are
orthogonal if their scalar product is equal to zero.

Example 11.8 The 3-dimensional vectors

a =




3
−1
2


 and b =




4
6
−3




are orthogonal since
a · b = 3 · 4 + (−1) · 6 + 2 · (−3) = 0 .

Vector product:
The vector product (or cross product) c = a × b of the 3-dimensional vectors a and b is
defined as follows:

c = a× b =




aybz − azby
azbx − axbz
axby − aybx


 ,
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x

y

a

b
c = a− b

γ = 90◦

1 2 3 4 5

1

2

3

−1

Figure 11.3: Orthogonality of 2-dimensional vectors

or equivalently,

c = a× b = (aybz − azby)e
x + (azbx − axbz)e

y + (axby − aybx)e
z.

The vector product of two vectors is defined as a vector having the following properties:

1. The vector c is orthogonal to both vectors a and b.

2. The vectors a,b, c form a right-handed coordinate system, i.e., the thumb points into the
direction of the vector a× b.

3. The length of the vector c is equal to

|c| = |a× b| = |a| · |b| · sin(∠(a,b)).

The length of the resulting vector c is equal to the area of the parallelogram spanned by the
two vectors a and b. As a consequence, the vector product of two parallel vectors a and b is
equal to the zero vector.

We obtain

ex × ex = 0 ; ex × ey = ez ; ex × ez = −ey ;

ey × ex = −ez ; ey × ey = 0 ; ey × ez = ex ;

ez × ex = ey ; ez × ey = −ex ; ez × ez = 0 .

The vector product is not commutative. In particular, we have

a× b = −b× a

Moreover, the vector product is not associative:

(a× b)× c �= a× (b× c)
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Example 11.9 Let

a =




4
1
−2


 and b =




1
−3
7




be given. We compute the vector product and obtain:

c = a× b =




1 · 7− (−2) · (−3)
(−2) · 1− 4 · 7
4 · (−3)− 1 · 1


 =




1
−30
−13


 .

Next, we compute the area of the parallelogram spanned by the vectors a and b. This area is
obtained as the length of the vector c:

|c| =
√
12 + (−30)2 + (−13)2 =

√
1 + 900 + 169 =

√
1070 ≈ 32.71.

Example 11.10 We determine the area of the triangle spanned by the three points

P = (2, 0, 3), Q = (5, 1, 4) and R = (2, 6, 5).

Taking the vectors

a =
−−→
PQ =




5− 2
1− 0
4− 3


 =




3
1
1




and

b =
−→
PR =




2− 2
6− 0
5− 3


 =




0
6
2


 ,

we first determine the vector product of both vectors and obtain:

a× b =




1 · 2− 1 · 6
1 · 0− 3 · 2
3 · 6− 1 · 0


 =




−4
−6
18


 .

Finally, we determine

A =
1

2
· |a× b| = 1

2
·
√
(−4)2 + (−6)2 + 182 =

1

2
·
√
16 + 36 + 324 =

1

2
·
√
376 ≈ 9.70,

i.e., the area of the triangle formed by the given three points is approximately equal to 9.70
squared units.

EXERCISES

11.1 Given are the vectors

a =




4
−3
2


 , b =




−2
5
7


 and c =




4
0
−6


 .

(a) Determine for all pairs of two of the above vectors the sum and the difference of these
vectors.
(b) Determine the vectors 6a− 3b+ 2c and 5b− 3c− a.
(c) Determine the angle between any two of the above vectors.
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11.2 Determine the length of the vector

a =




3√
6
1




and a unit vector pointing in the same direction as the vector a.

11.3 Given are the vectors

a =




−2
−3
z


 and b =




1
2
2


 .

For which values of z are the vectors a and b orthogonal?

11.4 Given are the vectors

a =




−2
−11
3


 , b =




4
−3
1


 and c =




6
−2
6


 .

For which values of λ is the vector a orthogonal to the vector λb+ c?

11.5 Determine the vector product of the vectors

a =




3
2
−1


 and b =




−7
1
3


 .

11.6 Given are the points P = (−1, 4, 2), Q = (1, 1, 1) and R = (5, 6, 0). Determine the area of
the triangle formed by the points P,Q and R.
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Combinatorics, Probability Theory
and Statistics

Probability theory and mathematical statistics, which are both a part of stochastic theory, deal
with the analysis of random phenomena which play an important role practically everywhere in
daily life. Probability theory analyzes abstract models of random events. In statistics, models
are used for forecasts and further analyses and planning. Statistical methods transform big data
sets into useful compact information. Statistical methods are not only used in mathematics,
engineering or economics, but also to a large extent in empirical sciences. Some basic com-
binatorial relationships are needed e.g. for counting possible variants that may happen in an
experiment or investigation.

The learning objectives of this chapter are

• to review some basic formulas for combinatorial problems,

• to survey the main probability distributions and

• to review some basics about a statistical test.

12.1 Combinatorics

In this section, we summarize some basics about combinatorics. In particular, we investigate
two basic questions:

• How many possibilities do exist to sequence the elements of a given set?

• How many possibilities do exist to select a certain number of elements from a set?

Let us start with the determination of the number of possible sequences formed with a set of
elements. To this end, we first introduce the notion of a permutation.

Permutation:
Let M = {a1, a2, . . . , an} be a set of n elements. Any sequence (ap1 , ap2 , . . . , apn) of all elements
of the set M is called a permutation.

241
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For instance, if M = {1, 2, 3, 4, 5}, one of the possible permutations is the sequence (2, 1, 4, 3, 5).
Similarly, for the set M = {a, b, s, t, u, v}, one of the possible permutations is (b, s, t, a, v, u).

In order to determine the number of possible permutations, we introduce the number n! (read:
n factorial) which is defined as follows:

n! = 1 · 2 · . . . · (n− 1) · n for n ≥ 1 .

For n = 0, we define 0! = 1.

Number of permutations:
Let a set M consisting of n ≥ 1 distinct elements be given. Then there exist P (n) = n!
permutations.

Example 12.1 We enumerate all permutations of the elements of set M = {1, 2, a}. We can
form P (3) = 3! = 6 sequences of the elements from the set M :

(1, 2, a), (1, a, 2), (2, 1, a), (2, a, 1), (a, 1, 2), (a, 2, 1) .

Example 12.2 Assume that nine jobs have to be processed on a single machine and that all job
sequences are feasible. Then there exist

P (9) = 9! = 1 · 2 · . . . · 9 = 362, 880

feasible job sequences.

If there are some identical elements (which cannot be distinguished), the number of possible per-
mutations of such elements reduces in comparison with P (n). The number of such permutations
with allowed repetition of elements can be determined as follows.

Number of permutations with allowed repetition:
Let n elements consisting of k groups of n1, n2, . . . , nk identical elements with n = n1 + n2 +
· · ·+ nk be given. Then there exist

P (n; n1, n2, . . . , nk) =
n!

n1! · n2! · . . . · nk!
(12.1)

permutations.

Example 12.3 How many distinct numbers with 10 digits can one form which contain two
times digit 1, three times digit 4, one time digit 5 and four times digit 9? We use formula (12.1)
with n = 10, n1 = 2, n2 = 3, n4 = 1 and n4 = 4 and obtain

P (10; 2, 3, 1, 4) =
10!

2! · 3! · 1! · 4!
=

5 · 6 · 7 · 8 · 9 · 10
2 · 6

= 12, 600

distinct numbers with these properties.
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Example 12.4 In a wardrobe, there are put 11 pants: five black ones, three blue ones, two
white ones and one brown one. How many different sequences do exist for arranging these 11
pants in the wardrobe when only the colors are distinguished (i.e., pants of the same color are
not distinguished). The problem is to find the number of possible permutations with identical
elements. We have n = 11, n1 = 5, n2 = 3, n3 = 2 and n4 = 1. Thus, due to formula (12.1),
there are

P (11; 5, 3, 2, 1) =
11!

5! · 3! · 2! · 1!
=

7 · 8 · 9 · 10 · 11
2

= 27, 720

possibilities for arranging the pants in the wardrobe when they are only distinguished by their
color.

For the subsequent considerations, the notion of a binomial coefficient is useful.

Binomial coefficient:
Let k, n be integers with 0 ≤ k ≤ n. The term

(
n

k

)
=

n!

k! · (n− k)!

is called the binomial coefficient (read: from n choose k). For k > n, we define

(
n

k

)
= 0.
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For instance, we get(
8

3

)
=

8!

3! · (8− 3)!
=

1 · 2 · 3 · 4 · 5 · 6 · 7 · 8
(1 · 2 · 3) · (1 · 2 · 3 · 4 · 5)

=
6 · 7 · 8
1 · 2 · 3

= 56.

In order to determine the binomial coefficient
(
n
k

)
with n > k, we have to compute the quotient

of the product of the k largest integers not greater than n, i.e., (n− k + 1) · (n− k + 2) · . . . · n,
divided by the product of the first k integers (i.e., 1 · 2 · . . . · k). Then we have the following
properties for working with binomial coefficients.

Rules for binomial coefficients:
Let k and n be integers with 0 ≤ k ≤ n. Then we have:

1.

(
n

0

)
=

(
n

n

)
= 1 ;

(
n

k

)
=

(
n

n− k

)
;

2.

(
n

k

)
+

(
n

k + 1

)
=

(
n+ 1

k + 1

)
.

Using the binomial coefficients, one can formulate the following equality for the computation of
the n-th power of a binomial term a+ b:

(a+ b)n = an +

(
n

1

)
an−1b+

(
n

2

)
an−2b2 + . . .+

(
n

n− 1

)
abn−1 + bn =

n∑
k=0

(
n

k

)
an−kbk. (12.2)
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where a, b are real numbers (or more general, mathematical terms) and n is a natural number.
The coefficients in formula (12.2) can be easily determined by using Pascal’s triangle which is
as follows:

Pascal’s triangle

(a+ b)0

(a+ b)1

(a+ b)2

(a+ b)3

(a+ b)4

...

(a+ b)n

(a+ b)n+1

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1
...(

n

0

) (
n

1

)
. . .

(
n

k

) (
n

k + 1

)
. . .

(
n

n− 1

) (
n

n

)

(
n+ 1

0

) (
n+ 1

1

)
. . .

(
n+ 1

k + 1

)
. . .

(
n+ 1

n

) (
n+ 1

n+ 1

)

In Pascal’s triangle, each inner number is obtained by adding the two numbers in the row above
which are standing immediately to the left and to the right of the number considered (see rule
(2) for binomial coefficients). For instance, the number 4 in the row for (a+ b)4 is obtained by
adding the number 3 and the number 1 both in the row of (a + b)3 (see the numbers in bold
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face in rows four and five of Pascal’s triangle above). Moreover, the numbers in each row are
symmetric. In the case of n = 2, we obtain the well-known binomial formula

(a+ b)2 = a2 + 2ab+ b2.

Example 12.5 We determine the term

T = (2x+ 3y)4 .

Applying formula (12.2), we get

T = (2x)4 +

(
4

1

)
· (2x)3 · 3y +

(
4

2

)
· (2x)2 · (3y)2 +

(
4

3

)
· 2x · (3y)3 + (3y)4

= 16x4 + 4 · 8x3 · 3y + 6 · 4x2 · 9y2 + 4 · 2x · 27y3 + 81y4

= 16x4 + 96x3y + 216x2y2 + 216xy3 + 81y4 .

Next, we investigate how many possibilities do exist for selecting a certain number of elements
from some given set when the order in which the elements are chosen is important. We
distinguish the cases where a repeated selection of elements is allowed and forbidden, respectively.
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Number of variations without / with repeated selection:
The number of possible selections of k elements from n elements with consideration of the
sequence (i.e., the order in which the elements are selected), each of them denoted as a
variation, is equal to

1. V (k, n) =
n!

(n− k)!
if repeated selection is forbidden;

2. V (k, n) = nk if repeated selection is allowed.

In the first case, every element may occur only once in each selection while in the second case,
an element may occur arbitrarily often in a selection.

Example 12.6 A dual number consists only of the digits 0 and 1. How many different dual
numbers can one form with eight digits? The answer is obtained by the number of variations of
8 elements when repeated selection is allowed. We get

V (2, 8) = 28 = 256 .

Next, we consider the special case when the order in which the elements are chosen is unim-
portant, i.e., it does not matter which element is selected first.

Number of combinations without / with repeated selection:
The number of possible selections of k elements from n elements without consideration of
the sequence (i.e., the order in which the elements are selected), each of them denoted as a
combination, is equal to

1. C(k, n) =

(
n

k

)
if repeated selection of the same element is forbidden;

2. C(k, n) =

(
n+ k − 1

k

)
if repeated selection of the same element is allowed.

Example 12.7 In the German game Skat, 32 cards are distributed among three players. Each
of them get 10 cards (and two are left for the skat, which one player can exchange later with
two own cards). How many possibilities do exist for one player to get different collections of
the initial 10 cards? This number is equal to the number of combinations C(10, 32) without
repetitions:

C(10, 32) =

(
32

10

)
=

32 · 31 · 30 · 29 · 28 · 27 · 26 · 25 · 24 · 23
1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10

= 64, 512, 240 .

If we determine the number of overall distributions of the cards to the players (i.e., how many
different distributions are possible), we have to take into account that the first player gets 10
cards out of 32 ones, the second player 10 out of 22 cards, and the third player gets 10 out of
12 cards. This gives on overall

N =

(
32

10

)
·
(
22

10

)
·
(
12

10

)
=

32!

(10!)3 · 2!
= 688, 323, 602, 126, 160

possible distributions of the cards to the players.
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Example 12.8 In a small country, there are 10 major touristic attractions. One person can
visit only three attractions on one day. How many possibilities do exist to select three attractions?
This corresponds to the number of combinations without repeated selection:

C(3, 10) =

(
10

3

)
=

10 · 9 · 8
1 · 2 · 3

=
720

6
= 120 .

If the tourist has chosen three attractions, he can visit them in different orders. Assume that
every possible variant is considered as a different sub-tour, how many sub-tours including three
different attractions are possible? This is the problem of determining the number of variations
when repeated selection is forbidden. Thus, we obtain

V (3, 10) =
10!

(10− 3)!
=

10!

7!
= 8 · 9 · 10 = 720

different sub-tours with three attractions included.

Example 12.9 In a German lottery, there have to be chosen six numbers out of 49 numbers.
How many possibilities do exist to have exactly three out of the six right numbers chosen? There
are

(
6
3

)
possibilities to select from the 6 ‘right’ numbers exactly three numbers, and there are(

43
3

)
possibilities to choose from the 49 − 6 = 43 ‘false’ numbers exactly three ones. Since each

selection of three ‘right’ numbers can be combined with each selection of three ‘false’ numbers,
we get the number

N =

(
6

3

)
·
(
43

3

)
=

6 · 5 · 4
1 · 2 · 3

· 43 · 42 · 41
1 · 2 · 3

= 20 · 12, 341 = 246, 820

of possible variants with exactly three right numbers in the lottery game.

Finally, we discuss some additional variants of combinations. Let Cm(k, n) be the number of
combinations without repeated selection which contain m given elements and Cm(k, n) be the
number of combinations without repeated selection which do not contain m given elements
(m ≤ k). Then we have

Cm(k, n) = C(k −m,n−m) =

(
n−m

k −m

)

and

Cm(k, n) = C(k, n−m) =

(
n−m

k

)
.

Example 12.10 How many 5-digit numbers without repeated selection can be formed by means
of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 containing the digits 3 and 6. We have n = 10, k = 5 and m = 2.
This gives

C2(5, 10) = C(3, 8) =

(
8

3

)
=

8 · 7 · 6
1 · 2 · 3

= 8 · 7 = 56 .

Next, we determine how many 5-digit numbers can be formed by means of 0, 1, 2, 3, 4, 5, 6, 7,
8, 9 without repeated selection containing at least one of the digits 3 or 6. This is the number
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C(5, 10) reduced by the number of possible 5-digit numbers which do not contain one of the digits
3 or 6. This gives

C(5, 10)− C2(5, 10) = C(5, 10)− C(5, 8) =

(
10

5

)
−

(
8

5

)

=
10 · 9 · 8 · 7 · 6
1 · 2 · 3 · 4 · 5

− 8 · 7 · 6 · 5 · 4
1 · 2 · 3 · 4 · 5

= 252− 56 = 196

of such numbers.

12.2 Events

In this section, we introduce the notion of an event which is of fundamental importance in
probability theory and modeling aspects. An event is simply a collection of outcomes of a
random experiment. One deals with the occurrence and non-occurrence of events. If one tosses
a coin, there are two possible outcomes possible: either the obverse of a coin is visible or the
reverse. However, it cannot be said in advance what will result. So, when tossing a coin, there
are two random events possible, namely ‘obverse’ and ‘reverse’ of the coin. Similarly, if one
tosses a dice, there are six random events possible: each of the numbers 1, 2, 3, 4, 5, or 6 can
appear.

Impossible and certain event:
The event ∅ that never happens is called the impossible event.
The event S that always occurs is called the certain event.

One can work with events similar to sets. In particular, we can introduce the following events.

Union and intersection of events:
The union A ∪B of the events A and B occurs if at least one of the events A or B happens.
The intersection A ∩B of the events A and B occurs if both events A and B happen.

We emphasize that the commutative, associative and distributive laws are valid when working
with events.

Exclusive events:
Two events A and B are called exclusive (or disjoint) if they cannot happen both:

A ∩B = ∅ .
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Complementary event:
The complementary event A occurs if and only if the event A does not happen:

A ∩A = ∅, A ∪A = S .

Example 12.11 If one tosses a coin, one can consider the events:

O: The obverse of a coin appears.
R: The reverse of a coin appears.

The union O ∪ R is the certain event while O and R are exclusive: the event R is the comple-
mentary event of O : R = O.

Example 12.12 An autonomous region of a country has three power stations. Let Ai be the
event that power station i works without a failure (i = 1, 2, 3). Consequently, Ai is the event
that power station i works with a failure. Moreover, introduce the following events:

B: All three power stations work without a failure;
C: Exactly one of the power stations works without a failure;
D: At least one of the power stations works without a failure.

Then we get:

B = A1 ∩A2 ∩A3 ;

C = (A1 ∩A2 ∩A3) ∪ (A1 ∩A2 ∩A3) ∪ (A1 ∩A2 ∩A3) ;

D = A1 ∪A2 ∪A3 .

Example 12.13 Consider the events:

A: A person is younger than 30 years;

B: A person is between 30 and 50 years old;

C: A person is older than 50 years;

M : A person is male.

Then we can consider e.g. the following events:

(A ∪B) ∩M : A person is not older than 50 years and male.

A ∩M : A person is younger than 30 years and female (i.e., not male).

(B ∩M) ∪ (A ∩M): A person is between 30 and 50 years old and male, or a person is younger
than 30 years old and female.

(A ∪B ∪ C) ∩M : This event corresponds to event M .

(A ∩ B) ∪ M : This is the impossible event ∅ since a person cannot be simultaneously younger
than 30 and between 30 and 50 years old.
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12.3 Relative Frequencies and Probability

Absolute and relative frequency of an event:
The absolute frequency H(A) of an event A is the number of times the event occurs in a
particular investigation.
The relative frequency h(A) of an event A is defined as the quotient of the absolute frequency
H(A) of an event and the total number n of events observed:

h(A) =
H(A)

n
.

The relative frequency is also known as empirical probability. If relationships between two
events are considered, often a four-array table (which is a special case of a contingency table)
is used. We illustrate this for the case of relative frequencies (for absolute frequencies, it can be
done in a similar manner). We consider two events A and B and well as their complementary
events A and B.

Table 12.1: Four-array table for relative frequencies

B B Σ

A h(A ∩B) h(A ∩B) h(A)

A h(A ∩B) h(A ∩B) h(A)

Σ h(B) h(B) 1

If a problem is given, one first fills the table with the known values and then computes the
remaining entries by using the calculation rules. For instance, we have

h(A ∩B) + h(A ∩B) = h(A) and h(A ∩B) + h(A ∩B) = h(B) .

Moreover, we have
h(A) + h(A) = h(B) + h(B) = 1 .

Example 12.14 200 persons took part in a qualifying test for entering a university. Among
them, there were 107 women. Moreover, it is known that 153 persons passed the test and that 24
men failed. Using the events P (a person passed the test), P (a person failed, i.e., did not pass
the test), M (a person is male) and M (a person is female, i.e., not male), we get the following
four-array table, where the known numbers from the problem are given in bold face.

Table 12.2: Four-array table for Example 12.14.

M M Σ

P 69
200

84
200

153
200

P 24
200

23
200

47
200

Σ 93
200

107
200 1
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From the problem, we know

h(M) =
107

200
; h(P ) =

153

200
; h(P ∩M) =

24

200
.

To find the other values in Table 12.2, we calculate

h(M) = 1− h(M) = 1− 107

200
=

93

200
; h(P ) = 1− h(P ) = 1− 153

200
=

47

200
.

Using these values, we obtain further

h(P ∩M) = h(P )− h(P ∩M) =
47

200
− 24

200
=

23

200
;

h(P ∩M) = h(M)− h(P ∩M) =
107

200
− 23

200
=

84

200
;

h(P ∩M) = h(P )− h(P ∩M) =
153

200
− 84

200
=

69

200
.

As a consequence, we found that 23 women did not pass the test, while 84 women and 69 men
passed the test.

In a simplified manner, one can define the probability of an event A as follows.

Probability:
The probability P (A) of an event A is given by

P (A) =
number of the favorable outcomes for the event

number of the possible outcomes
.

Example 12.15 Let A be the event that there appears at least number 3 when tossing a dice.
There are four favorable outcomes for the event (one of the numbers 3, 4, 5, or 6 appears) among
the possible six outcomes. Therefore, we get

P (A) =
4

6
=

2

3
.

Example 12.16 Somebody tosses simultaneously two dice. Let A denote the event that both dice
display at least number 5. There are 22 favorable outcomes (namely each of the dice displays
one of the numbers 5 or 6) and 62 possible outcomes. Therefore, we obtain

P (A) =
4

36
=

1

9
.

12.4 Basic Probability Theorems

In this short section, we review the calculation of the probabilities of the complementary event
and the union of two events.
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Complementary event:
The probability of the complementary event A of an event A is given by

P (A) = 1− P (A) .

Addition rule:
The probability of the union of two events A and B is given by

P (A ∪B) = P (A) + P (B)− P (A ∩B) .

In the case when A and B are exclusive, the addition rule simplifies to

P (A ∪B) = P (A) + P (B) .

Example 12.17 Consider the events
A: A person is less than 18 years old;
B: A person is at least 18 years old but younger than 65;
C: A person is at least 65 years old.
Let for some country these probabilities given as P (A) = 0.21, P (B) = 0.56 and P (C) = 0.23.
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Any two events are mutually exclusive, and we have A ∪B ∪ C = S. We obtain

P (A) = 1− P (A) = 1− 0.21 = 0.79;

P (A ∪B) = P (A) + P (B) = 0.21 + 0.56 = 0.77;

P (A ∪ C) = P (A) + P (C) = 0.21 + 0.23 = 0.44;

P (B ∪ C) = P (B) + P (C) = 0.56 + 0.23 = 0.79 .

If two events are not exclusive, the calculation of the probability of the intersection of two
elements requires in the general case the consideration of conditional probabilities which are
introduced in the next section.

12.5 Conditional Probabilities and Independence of Events

In this section, we continue with some further rules for calculating probabilities of events.

Multiplication rule:
Let A and B be two events and P (B) �= 0. Then the probability of the intersection of
the two events A and B is

P (A ∩B) = P (A|B) · P (B)

where P (A|B) denotes the conditional probability of event A, given event B.
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Note that we can interchange the events A and B, i.e., we have

P (A|B) · P (B) = P (B|A) · P (A) .

If the events A and B are independent, we have P (A|B) = P (A) (i.e, the condition has no
influence), and we get the special case

P (A ∩B) = P (A) · P (B) .

Example 12.18 12.19 Assume that one tosses simultaneously two distinguishable dice. Con-
sider the events
Ai : The i-th dice displays an even number (i = 1, 2).
Hence, the complementary events are
Ai: The i-th dice displays an odd number (i = 1, 2).
We have

P (A1) = P (A2) = P (A1) = P (A2) =
1

2
.

Since A1 and A2 are independent, we obtain

P (A1 ∩A2) = P (A1) · P (A2) =
1

4

and

P (A1 ∪A2) = P (A1) + P (A2)− P (A1 ∩A2) =
1

2
+

1

2
− 1

4
=

3

4
.

Similarly, we get

P (A1 ∩A2) = P (A1) · P (A2) =
1

4
and P (A1 ∪A2) = P (A1) + P (A2)− P (A1 ∩A2) =

3

4
.

For calculating with probabilities in the case of considering only two events, one can also use a
four-array table as introduced before.

Example 12.19 It is known that in a big company 60 % of the employees have an salary less
than 4000 EUR per month, 35 % of the employees have a university qualification, and 25 % of
the workers both have a university qualification and earn at least 4000 EUR per month,

Selecting a worker randomly, we can consider the above percentages as probabilities. Introducing
the events
U - the worker has a university qualification;
G - the worker has a salary of at least 4000 EUR per month;
as well as the complementary events U and G, we have the following information (given in bold
face in Table 12.2):

P (G) = 0.6, P (U) = 0.35, P (G ∩ U) = 0.25 .

Table 12.2: Four-array table for Example 12.19.

U U Σ

G 0.25 0.15 0.4

G 0.1 0.5 0.6

Σ 0.35 0.65 1
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P (U) =
0.35

P (G|U) =
0.714

P (Ḡ|U) =
0.286

P (Ū) =
0.65

P (G|Ū) =
0.231

P (Ḡ|Ū) =
0.769

U Ū

G Ḡ G Ḡ

P (G ∩ U) = 0.25 P (Ḡ ∩ U) = 0.1 P (G ∩ Ū) = 0.15 P (Ḡ ∩ Ū) = 0.5

Figure 12.1: Tree diagram for example 8.19

Using the known probabilities, we first get

P (G) = 1− P (G) = 1− 0.6 = 0.4 and P (U) = 1− P (U) = 1− 0.35 = 0.65 .

Then we obtain further

P (G ∩ U) = P (U)− P (G ∩ U) = 0.35− 0.25 = 0.1;

P (G ∩ U) = P (G)− P (G ∩ U) = 0.6− 0.1 = 0.5;

P (G ∩ U) = P (G)− P (G ∩ U) = 0.4− 0.25 = 0.15

Using the above four-array table, one can also easily compute the conditional properties. We
obtain:

P (G|U) =
P (G ∩ U)

P (U)
=

0.25

0.35
= 0.714

P (G|U) =
P (G ∩ U)

P (U)
=

0.1

0.35
= 0.286

P (G|U) =
P (G ∩ U)

P (U)
=

0.15

0.65
= 0.231

P (G|U) =
P (G ∩ U)

P (U)
=

0.5

0.65
= 0.769 .

For illustrating the above calculations, often a tree diagram is used which is illustrated in Fig.
12.1. At the second branching level, the conditional probabilities are given and at the end of the
tree, the probabilities of the intersections of two possible events are given: The leftmost node in
the second level displays the probability P (G∩U) = 0.25 which is obtained as the product of the
probabilities at the arcs leading to this node.

12.6 Total Probability and Bayes’ Theorem

In this section, we review two results using conditional probabilities.
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Rule of total probability:
Let B1, B2, . . . , Bk be mutually exclusive events and A = B1 ∪B2 ∪ . . . ∪Bk. Then:

P (A) =

k∑
i=1

P (A|Bi) · P (Bi) .

Example 12.20 In a mass production, a company uses the three machines M1,M2 and M3

which differ in their efficiency and precision. Machine M1 produces 40 % of the items with
an error rate of 8 %, machine M2 produces 35 % of the items with an error rate of 6 %, and
machine M3 produces 25 % of the items with an error rate of 3 %. Let A be the event that a
chosen item is faulty and Bi be the event that it is produced on machine Mi (i = 1, 2, 3). Thus,
we have

P (B1) = 0.4, P (B2) = 0.35, P (B3) = 0.25,

P (A|B1) = 0.08, P (A|B2) = 0.06, P (A|B3) = 0.03 .

We determine the probability that an arbitrarily selected item is faulty. Using the rule of total
probability, we obtain

P (A) = P (A|B1) · P (B1) + P (A|B2) · P (B2) + P (A|B3) · P (B3)

= 0.08 · 0.4 + 0.06 · 0.35 + 0.03 · 0.25
= 0.0605 .

Thus, the probability of a randomly selected item being faulty is 6.05 %.

The following property gives a relationship between conditional probabilities of the form P (A|B)
and P (B|A).

Bayes’ theorem:
Let B1, B2, . . . , Bk be mutually exclusive events and A = B1 ∪B2 ∪ . . . ∪Bk. Then:

P (Bi|A) =
P (A|Bi) · P (Bi)

P (A|B1) · P (B1) + P (A|B2) · P (B2) + . . .+ P (A|Bk) · P (Bk)

=
P (A|Bi) · P (Bi)∑k
i=1 P (A|Bi) · P (Bi)

for i = 1, 2, . . . , k.

Example 12.21 We consider again the data given in Example 12.20 and assume that a ran-
domly selected item is faulty. We determine the probability that this item was produced on
machine M3, i.e., we look for P (B3|A). Applying Bayes’ theorem, we get

P (B3|A) =
P (A|B3) · P (B3)

P (A|B1) · P (B1) + P (A|B2) · P (B2) + P (A|B3) · P (B3)

=
0.03 · 0.25

0.08 · 0.4 + 0.06 · 0.35 + 0.03 · 0.25
=

0.075

0.452

= 0.166 .
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12.7 Random Variables and Specific Distributions

12.7.1 Random Variables and Probability Distributions

In this section, we deal with random variables and their distribution. A random variable is a
variable whose value depends on random influences. We do not present here a measure-theoretic
definition of a random variable but mention only that some other formal properties are required
for a random variable. We denote random variables by capital letters and possible realizations
(i.e., values) by small letters.

Distribution function:
Let X be a random variable. The function F : R → [0, 1] defined by

F (x) = P (X ≤ x)

is denoted as the distribution function of the random variable X.

Any distribution function has the properties

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1 .

Moreover, any distribution function is an increasing, but not necessarily strictly increasing func-
tion, and all function values of a distribution function are from the interval [0, 1].
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1

Figure 12.2: Distribution function F (x) for Example 12.22

By means of the distribution function F , one can determine the probability that a particular
random variable takes on a value from a specific interval (a, b] as follows:

P (a < X ≤ b) = P (X ≤ b)− P (X ≤ a) = F (b)− F (a) .

Among the random variables, we distinguish discrete and continuous random variables. A
discrete random variable is characterized by the values xi, x2, . . ., which it may take on and
the corresponding probabilities P (X = xi) = pi. The possible realizations of a discrete random
variable may include a finite or an infinite number of values (in the latter case, they need to be
‘countable’). For the distribution function of a discrete random variable, we have

F (x) =
∑
xi≤x

P (X = xi) =
∑
xi≤x

pi .

Example 12.22 We consider a discrete random variable X which can take on the values 0, 2,
4, 7, 10 and 14 with the following probabilities:

P (X = 0) = 0.05; P (X = 2) = 0.1; P (X = 4) = 0.15;

P (X = 7) = 0.3; P (X = 10) = 0.25; P (X = 14) = 0.15.

The distribution function F is a so-called step function given in Fig. 12.2. The discontinuities
of the function F are the possible value 0, 2, 4, 7, 10, and 14.

For instance, we have

P (X ≤ 5) = F (5) = 0.3 ;

P (X > 7) = 1− P (X ≤ 7) = 1− F (7) = 0.4 =
∑
xi>7

P (X = xi) ;

P (4 ≤ X ≤ 10) = P (X ≤ 10)− P (X < 4)

= P (X ≤ 10)− P (X ≤ 4) + P (X = 4)

= 0.85− 0.30 + 0.15 = 0.7 =
∑

4≤xi≤10

P (X = xi) .
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Note that for a discrete random variable, one must carefully distinguish between P (X ≤ x) and
P (X < x). We have P (X ≤ x) = P (X < x) + P (X = x).

A random variable is called continuous if it can take on any value from an interval (a, b) (where
also R = (−∞,∞) is possible, note also that the boundary points a and b might be included or
not). Formally, we can define the following.

Density function:
A random variable X is said to be continuous if its distribution function F (x) can be written
in the following form:

F (x) =

x∫

−∞

f(t) dt ,

where f is denoted as density function of the continuous random variable X.

We only note that the last integral with an infinite limit of integration is a so-called improper
integral which we do not consider in this book. However, we mention that it can be reduced
by limit considerations to a usual definite integral:

∫ x

−∞
f(t) dt = lim

t→−∞

∫ x

t
f(t) dt .

Due to the properties of the distribution function F , we always have
∫ ∞

−∞
f(x) dx = 1 .

Note also that for a continuous random variable X, we have

P (a < X < b) = P (a ≤ X ≤ b) = P (a < X ≤ b) = P (a ≤ X < b) ,

i.e., it is not important, whether one or both of the boundary points are included or not.

12.7.2 Expected Value and Variance

In this section, we deal with the expectation value and the variance which are both fundamental
notions of stochastic theory. They describe the average value of a random variable and the mean
deviation of a value from this average value, respectively. Let us first consider discrete random
variables.

Expected value of a discrete variable:
The expected value E(X) of a discrete random variable X is defined as

E(X) =
∑
xi

xi · P (X = xi) .

Here the summation is made over all possible values xi which the random variable X may take
on.
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Example 12.23 Let X be the discrete random variable giving the grade of a student in the
examination in mathematics. From previous years, one knows the probabilities for the grades 1,
2, . . . , 5 which are as follows:

P (X = 1) = 0.1; P (X = 2) = 0.15; P (X = 3) = 0.35; P (X = 4) = 0.25;P (X = 5) = 0.15 .

We determine the expected average grade E(X):

E(X) =
5∑

i=1

i · P (X = i)

= 1 · 0.1 + 2 · 0.15 + 3 · 0.35 + 4 · 0.25 + 5 · 0.15 = 3.2 .

Variance of a discrete variable:
The variance σ2(X) of a discrete variable is defined as

σ2(X) =
∑
xi

[xi − E(X)]2 · P (X = xi) .

Example 12.24 A discrete random variable X may take on the values x1 = 1, x2 = 2, x3 = 3
and x4 = 4. The probabilities are given as follows:

p1 = P (X = x1) = 0.2; p2 = P (X = x2) = 0.3; p3 = P (X = x3) = 0.4; p4 = P (X = x4) = 0.1.

For the expected value E(X), we obtain

E(X) =
4∑

i=1

xipi = 1 · 0.2 + 2 · 0.3 + 3 · 0.4 + 4 · 0.1 = 2.4 .

For the variance σ2(X), we obtain

σ2(X) =

4∑
i=1

[xi − E(X)]2 · pi

= (1− 2.4)2 · 0.2 + (2− 2.4)2 · 0.3 + (3− 2.4)2 · 0.4 + (4− 2.4)2 · 0.1
= 0.84 .

Let us now consider a continuous random variable X with the density function f . In this case,
the expected value E(X) and the variance σ2(X) of variable X are defined as follows:

Expected value of a continuous random variable X:

E(X) =

∫ ∞

−∞
x f(x)dx .
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Variance of a continuous random variable X:

σ2(X) =

∫ ∞

−∞
[x− E(X)]2 · f(x) dx.

Often one works with the so-called standard deviation σ which is defined as follows: σ =
+
√
σ2.

An equivalent but often easier way to compute the variance is as follows:

σ2(X) =

∫ ∞

−∞
x2 · f(x) dx− [E(X)]2.

In an analogous way, such a transformation can be also made for a discrete random variable.
If only values from some interval [a, b] are possible for a continuous random variable, we get a
usual definite integral with the limits of integration a and b as we demonstrate in the following
example.

Example 12.25 Consider a random variable with the density function

f(x) =
1

b− a
, a ≤ x ≤ b

(for all other values, we have f(x) = 0). We determine E(X) and obtain

E(X) =

∫ b

a
x f(x) dx =

∫ b

a
x · 1

b− a
dx

=
1

b− a
· x

2

2

∣∣∣
b

a

=
1

b− a
· b

2 − a2

2
=

(b− a)(b+ a)

(b− a) · 2
=

b+ a

2
.

For the variance σ2(X), we obtain

σ2(X) =

∫ b

a
x2 f(x) dx− [E(X)]2

=

∫ b

a
x2

1

b− a
dx−

(
b+ a

2

)2

=
1

b− a
· x

3

3

∣∣∣
b

a
− (b+ a)2

4

=
a2 + ab+ b2

3
− (b+ a)2

4
=

a2 − 2ab+ b2

12
=

(a− b)2

12
.

Here we used that (b3 − a3) = (a2 + ab+ b2) · (b− a).

Example 12.26 Consider a non-negative random variable X with the density function

f(x) = λ eλx (x ≥ 0),
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where λ > 0 is a given parameter. We only note that this distribution is called exponential
distribution. We determine P (0 ≤ X ≤ 1) and obtain:

P (0 ≤ X ≤ 1) =

∫ 1

0
f(t) dt =

∫ 1

0
λ e−λt dt

= λ · 1

−λ
· e−λt

∣∣∣
1

0
= 1− e−λ .

Note that to find the above integral, we applied integration by substitution.

12.7.3 Binomial Distribution

Bernoulli variable:
A random variable X is called a Bernoulli variable, if X can take on only the two values 0
and 1, and the corresponding probabilities are

P (X = 0) = p and P (X = 1) = 1− p .

Binomial random variable:
Let X1, X2, . . . , Xn be n independent and identically distributed Bernoulli random variables.
The variable

X = X1 +X2 + . . . Xn

is called a binomial random variable.

We say that the variable X = Xn,p is binomially distributed with the parameters n and p.
The probability that the variable X takes on the value k can be calculated as follows:

P (X = k) =

(
n

k

)
· pk · (1− p)n−k .

The cumulative probabilities can be determined as follows:

P (X ≤ l) =
l∑

k=0

(
n

k

)
· pk · (1− p)n−k .

For the mean and the variance of a binomial random variable, we have

E(X) = np and σ2(X) = np(1− p) .

Example 12.27 In a mass production of a product, it is known that 1.5 % of the items are
faulty. We determine the probability that among n = 10 randomly selected items, there are
k = 2 faulty ones.

The discrete random variable X = Xn,p describes the number of faulty items if one considers a
sample of n items. For n = 10 and k = 2, we obtain

P (X10,0.015 = 2) =

(
10

2

)
· 0.0152 · 0.98510−2 = 0.0091 ,

Download free eBooks at bookboon.com



A REFRESHER COURSE IN MATHEMATICS

264

Combinatorics, Probability Theory
and Statistics
264 CHAPTER 12. COMBINATORICS, PROBABILITY THEORY AND STATISTICS

i.e., the probability of selecting exactly two faulty items is 0.91 %. Moreover, the probability that
among that 10 selected items, there are at most two faulty ones is obtained as follows:

2∑
k=0

P (X10,0.015 = k) =

(
10

0

)
· 0.0150 · 0.98510−0 +

(
10

1

)
· 0.0151 · 0.98510−1

+

(
10

2

)
· 0.0152 · 0.98510−2

= 0.8597 + 0.1309 + 0.0091 = 0.9997 ,

i.e., the probability of selecting at most two faulty items is 99.97 %.

12.7.4 Normal Distribution

Among the continuous distributions, the normal distribution is the most important one. Its
importance results from the central limit theorem, according to which random variables resulting
from the sum of a large number of independent variables are approximately normally distributed.

Normally distributed random variable X:
The density function of a normally distributed random variable X with the expected value
µ and the variance σ2 is given by

f(x) =
1√

2π σ2
e−

1
2 (

x−µ
σ )

2

Here the expectation value µ and the variance σ2 are the parameters of the normal distribution.
As an abbreviation, we write that the random variable X is N(µ, σ2)-distributed. The density
function f is symmetric with respect to the point x = µ. It has the maximum at x = µ and two
inflection points at x1 = µ− σ and x2 = µ+ σ.

For the probability P (X ≤ x), we get

F (x) = P (X ≤ x) =
1√
2πσ2

∫ x

−∞
e−

(z−µ)2

2σ2 dz .

If µ = 0 and σ = 1, we have the standard normal distribution. In this case, the density
function simplifies to

f(z) =
1√
2π

e−
1
2
z2 .

For transforming an N(µ, σ2)-distributed random variable X into an N(0, 1)-distributed random
variable Z, one can use the substitution

z =
x− µ

σ
.

The distribution function of an N(0, 1)-distributed random variable Z is tabulated and often
denoted as Φ(z). We have

F (x) = Φ

(
x− µ

σ

)
= Φ(z) .
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x

f(x)

1

σ = 1

σ = 0.5

(a)

x

F (x)

1
σ = 1

σ = 0.5

(b)

Figure 12.3: (a) Density function and (b) distribution function of anN(0, σ2)-distributed random
variable X

Often, the following relationship for the standard normal distribution is useful in the computa-
tions which holds due to symmetry:

Φ(−z) = 1− Φ(z) .

In Fig. 12.3, the density and the distribution functions of an N(0, σ2)-distributed random
variable X are given for σ = 0.5 and σ = 1.

Example 12.28 It is known that the length X of a workpiece is N(µ, σ2)-distributed with µ = 60
cm and σ = 2 cm. We determine the probability that the length of the workpiece is

(a) not greater than 61 cm;
(b) less than 58 cm;
(c) in the interval [57 cm, 62 cm] and
(d) does not deviate by more than 3 cm from the expectation value µ.

(a) We obtain

P (X ≤ 61) = Φ

(
61− 60

2

)
= Φ(0.5) = 0.69146

which corresponds (approximately) to 69.15 %.
(b) We get

P (X < 58) = Φ

(
58− 60

2

)
= Φ(−1) = 1− Φ(1) = 1− 0.84134 = 0.15866

which corresponds to 15.87 %.
(c) In this case, we obtain

P (57 ≤ X ≤ 62) = Φ

(
62− 60

2

)
− Φ

(
57− 60

2

)
= Φ(1)− Φ(−1.5)

= Φ(1) + Φ(1.5)− 1 = 0.84134 + 0.93319− 1 = 0.77453

corresponding to 77.45 %.
(d) Here we obtain

P (|X − 60| < 3) = P (57 ≤ x ≤ 63) = Φ

(
63− 60

2

)
− Φ

(
57− 60

2

)

= Φ(1.5)− Φ(−1.5) = 2Φ(1.5)− 1 = 0.86638

corresponding to 86.64 %.
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Example 12.29 For an N(µ, σ2)-distributed random variable X with µ = 90 cm and σ = 5
cm, we determine the following probabilities:

(a) P (80 ≤ X < 97);
(b) P (X > 100);
(c) P (|X − µ| > 10.

(a) We obtain

P (80 ≤ X < 97) = Φ

(
97− 90

5

)
− Φ

(
80− 90

5

)
= Φ(1.4)− Φ(−2)

= Φ(1.4) + Φ(2)− 1 = 0.91924 + 0.97725− 1 = 0.89649 .

(b) We get

P (X > 100) = 1− P (X ≤ 100) = 1− Φ

(
100− 90

5

)
= 1− Φ(2) = 1− 0.97725 = 0.02275 .

(c) Here we get

P (|X − µ| > 10 = P (X > 100) + P (X < 80) = 1− P (X ≤ 100) + P (X < 80)

=

[
1− Φ

(
100− 90

5

)]
+Φ

(
80− 90

5

)

= [1− Φ(2)] + Φ(−2) = 2 · [1− Φ(2)] = 0.0455 .

Example 12.30 Determine the value a such that for an N(µ, σ2)-distributed random variable
X the interval [µ − a, µ + a] contains 80 % of all values. For a N(0, 1)-distributed random
variable Z, we get

P (−z ≤ Z ≤ z) = 2Φ(z)− 1 = 0.80

from which we obtain

Φ(z) =
1.80

2
= 0.90 .

Using the inverse function Φ−1 (or directly the table of the standard normal distribution), we get
z = 1.28. Consequently, for an N(0, 1)-distributed random variable Z, 80 % of the realizations
are from the interval [−1.28, 1.28] and therefore, for an N(µ, σ2)-distributed random variable,
80 % of the realizations are from the interval [µ− 1.28σ, µ+ 1.28σ].

12.8 Statistical Tests

Finally, we briefly review some knowledge about statistical tests. The objective of such a test is
to check a particular hypothesis H0, called the null hypothesis. The opposite assumption is
called the alternative hypothesis H1.

In general, such a statistical hypothesis test includes the following steps:

1. Formulate the null hypothesis H0 and the alternative hypothesis H1;

2. Fix the significance level α;

3. Determine the region of acceptance and the region of rejection (critical region);
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4. Take a sample;

5. Make a decision: either reject the null hypothesis or ‘accept’ it (i.e., H0 is not rejected).

In the following, we explain one statistical significance test concerning the parameter (proba-
bility) p in a binomial distribution. The first question arises in connection with the formulation
of the null and alternative hypotheses H0 and H1. There exist different variants:

1. H0 : p = p0; H1 : p �= p0;

2. H0 : p ≤ p0; H1 : p > p0;

3. H0 : p ≥ p0; H1 : p < p0.

In the first case, we have a two-side test because deviations in both directions are considered.
In the other two cases, we have one-side tests because only deviations in one direction are
relevant. The selection of a particular variant depends on the specific interest of different groups
of people interested in the results of the test. To illustrate, consider the following example.
A wine store claims that a particular type of wine contains p0 = 12% alcohol. A consumer
protection organization is doubtful and conjectures that it contains less than 12% alcohol. In
this case, it would be a test of the null hypotheses p ≥ p0 against the alternative hypothesis
p < p0. On the other side, an organization for legal protection for young people might conjecture
that the alcoholic level is higher. In this case, one would test the null hypothesis p ≤ p0 against
the alternative hypothesis p > p0. In a simplified manner, one can see that the null hypothesis
describes the ‘current state’ and in principle, one wishes to know whether there are reasons for
the alternative hypothesis. Independently of the chosen variant, the calculations in the test are
made for p = p0.

Since statistical tests are based on probabilities, one has no guarantee to find in any case the
right decision, i.e., is the null hypothesis indeed true or not. However, one wants to limit the
risk of a wrong decision. There are two types of a possible error. First, one may reject the null
hypothesis although it is true. This is know as a type-1 error. The other error arises when
the null hypothesis is false but it is accepted. This kind of error is known as a type-2 error.
This is summarized in Table 12.1.

Table 12.1: Type-1 and type-2 error in statistical tests.

H0 is true H1 is true

H0 accepted right decision type 2 error
(wrong decision)

H0 rejected type 1 error right decision
(wrong decision)

The simplest case is when only two possible decisions exist. For instance, consider a criminal
trial where at the beginning the following two hypotheses are possible:

H0: the defendant is innocent.
H1: the defendant is guilty.

If the null hypothesis is rejected by the judge but the defendant is truly innocent, a type-1 error
arises. However, if the null hypothesis is accepted by the judge but the defendant is truly guilty,
a type-2 error occurs.
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Typically, the major focus is on the type-1 error, i.e., one wishes to avoid to reject a null
hypothesis although it is true. One introduces the probability

P (H0 rejected|H0 is true ) = α .

This probability should be small, and often one settles α = 0.05 or α = 0.01. The value of α is
denoted as significance level, i.e., often the chosen significance level is 5 % or 1 %.

We next illustrate the determination of the region of acceptance A and the region of re-
jection R first for a one-side and then for a two-side test. For the hypothesis H0 : p ≤ p0,
large values of the random variable do not confirm the null hypothesis. Therefore, for fixing the
regions of acceptance and rejection, we consider

P (X ≥ k) ≤ α

and determine the smallest integer k satisfying the above inequality i.e., we determine the
smallest number k such that the probability that an integer of at least k is observed is at most
equal to the significance level α. In this case, we apply a right-side test and select

A = {0, 1, . . . , k − 1} and R = {k, k + 1, k + 2, . . . , n} .

Accordingly, for a left-side test, we consider

P (X ≤ k) ≤ α

and determine the largest integer k satisfying the above inequality i.e., we determine the largest
number k such that the probability that an integer of at most k is observed is at most equal to

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

By 2020, wind could provide one-tenth of our planet’s 
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the 
world’s wind turbines. 

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our 
systems for on-line condition monitoring and automatic 
lubrication. We help make it more economical to create 
cleaner, cheaper energy out of thin air. 

By sharing our experience, expertise, and creativity, 
industries can boost performance beyond expectations. 

Therefore we need the best employees who can 
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering. 

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge


A REFRESHER COURSE IN MATHEMATICS

269

Combinatorics, Probability Theory
and Statistics
12.8. STATISTICAL TESTS 269

the significance level α. In this case, we fix the regions of acceptance (A) and rejection (R) as
follows:

A = {k + 1, k + 2, . . . , n} and R = {0, 1, . . . , k} .

When applying a two-side test, both small and large values do not confirm the null hypothesis.
So we determine A and R such that the following two inequalities are satisfied:

P (X ≤ kL) ≤
a

2
and P (X ≥ kR) ≤

α

2
,

i.e., the significance level is split into equal parts for very small and large values. Again, we
choose the largest integer satisfying the first inequality as kL and the smallest integer satisfying
the second inequality as kR. Then we get the region of acceptance

A = {kL + 1, kL + 2, . . . , kR − 1}

and the region of rejection

R = {0, 1, . . . , kL, kR, kR + 1, . . . , n} .

The region of acceptance A and the region of rejection R are illustrated in Fig. 12.4 for a
left-side and a two-side significance test. In Fig. 12.4, we used the binomial distribution with
the parameters n = 10 and p = 0.4.

We illustrate the above variants of a significance test on the following three examples.

Example 12.31 A car company gets parts from a supplier, where it is known that approximately
20 % of the parts are faulty (and must be reworked). Now a new supplier contacts the company
and claims that the company can produce the same parts such that only 10 % of the parts are
faulty. However, the car company would like to check and takes a sample of n = 50 parts among
which 7 are faulty. Here one applies a right-side test with the hypotheses

H0 : p ≤ 0.1; H1 : p > 0.1 .

The random variable X denotes the number of faulty parts. The sample size is n = 50 and
the chosen significance level is 5 % (α = 0.05). If the null hypothesis H0 is true, the random
variable is binomially distributed with the parameters n = 50 and p = 0.1. We use

P (X ≥ k) ≤ 0.05 .

From the table of the cumulative binomial distribution, we get the smallest integer k = 10
satisfying the above inequality. Thus, we get the regions of acceptance (A) and rejections (R)
as follows:

A = {0, 1, 2, . . . , 9} and R = {10, 11, . . . 50} .

(we find P (X ≥ 10) = 0.025 < 0.05 while P (X ≥ 9) = 0.058 > 0.05). The null hypothesis is
accepted since 7 ∈ A.

Example 12.32 At the last elections, a particular party reached 30 % of the votes. However,
in a recent survey, only 21 out of 100 people confirmed that they will vote next time again for
this party. Can one conclude with a significance level of 5 % that the votes for this party will
decrease? We use the hypotheses

H0 : p ≥ 0.3; H1 : p < 0.3 .
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P (X ≤ 1) ≤ 0.05
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(a) Left-side test

k

P (X = k)
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0.2

0.3

0
= kL

1 2 3 4 5 6 7 8
= kR

9 10

P (X ≤ 0) ≤ 0.025 P (X ≥ 8) ≤ 0.025

R R

A

(b) Two-side test

Figure 12.4: Region of acceptance (A) and region of rejection (R) of a significance test
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The sample size is n = 100 and α = 0.05. The random variable X denotes the number of votes
for the party. If the null hypothesis is true, the random variable X is binomially distributed with
the parameters n = 100 and p = 0.3. For this left-side test, we use

P (X ≤ k) ≤ 0.05 .

From the table of the cumulative binomial distribution, we obtain the largest integer k = 22
satisfying this inequality (we find P (X ≤ 22) = 0.048 < 0.05 while P (X ≤ 23) = 0.076 > 0.05).
Therefore, we have

A = {23, 24, . . . , 50} and R = {0, 1, . . . 22} .

The null hypothesis is rejected since 21 ∈ R.

Example 12.33 It is conjectured that in an urn, there are 40 % white spheres (while the other
60 % are assumed to be black spheres). A sample of 20 spheres included 6 white spheres. If
one chooses a significance level of 5%, will the hypothesis be rejected or not? Here we apply a
two-side test. We use

H0 : p = 0.4 and H1 : p �= 0.4 .

The random variable X denotes the number of white spheres. If the null hypothesis is correct,
the random variable X is binomially distributed with the parameters n = 20 and p = 0.4. For
this two-side test, we find from

P (X ≤ kL) ≤
α

2
= 0.025 and P (X ≥ kR) ≤

α

2
= 0.025

kL = 3 (P (X ≤ 3) = 0.016) and kR = 13 (P (X ≥ 13 = 0.021). Then we obtain the regions of
acceptance

A = {4, 5, . . . , 12} .

and the region of rejection

R = {0, 1, 2, 3, 13, 14, 15, 16, 17, 18, 19, 20} .

The null hypothesis is accepted since 6 ∈ A.

EXERCISES

12.1 Four jobs J1, J2, J3, J4 have to be processed on a machine 1, and three jobs J5, J6, J7 have
to be processed on machine 2. How many different processing sequences of the jobs on the
two machines are possible?

12.2 How many numbers containing each of the digits 1, 2, . . . , 9 exactly one can be formed
which start with the digits 35 and end with digit 8?

12.3 How many distinct numbers of the eight digits {1, 1, 2, 2, 2, 2, 3, 4, 4} can be formed?

12.4 In an election of a commission in a school, 10 teachers, 25 pupils and 5 persons of the
remaining staff take part. How many possibilities of different commissions do exist if from
the 10 teachers exactly 5, from the 25 pupils exactly 3 and from the remaining staff exactly
2 persons have to be included into the commission?
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12.5 In a questionnaire, one has to answer eight questions either with ‘I agree’, ‘I partly agree’
or ‘I disagree’. How many different fillings of the questionnaire are possible?

12.6 A tourist has 12 exciting sights in the neighborhood of his resort. Unfortunately he can
only visit four of them on one day. How many possibilities do exist
(a) to select four sights out of the 12 possible ones;
(b) to form a 4-sight subtour (where the sequence in which the sights are visited is impor-
tant).

12.7 Consider a skat game with 32 cards. If one randomly selects one card, what is the proba-
bility
(a) to select a green card;
(b) to select a card with a number (i.e., 7, 8, 9, or 10);
(c) to select a green card with a number;
(d) to select a green card or a card with a number.

12.8 A big city has three soccer teams denoted by 1, 2, and 3 in the first league who play all
at a particular weekend. Consider the events
Ai: Team i wins (i = 1, 2, 3).
Describe the events:
B: At least one of the three teams wins;
C: At most two of the three teams win;
D: None of the three teams wins.

12.9 A discrete random variable may take on the values x1 = −2, x2 = −1, x3 = 0, x4 = 1, x5 =
2, x6 = 3 with the probabilities

P (X = x1) = 0.05; P (X = x2) = 0.08; P (X = x3) = 0.19;

P (X = x4) = 0.22; P (X = x5) = 0.35; P (X = x6) = 0.11.

Determine the expectation value E(X) and the variance σ2(X). Graph the distribution
function F (x).

12.10 Consider a continuous random variable X with the density function

f(x) = 0.5 e−0.5x (x ≥ 0) .

Determine the probability P (0 ≤ X < 2).

12.11 It is known that in a mass production, 80 % of the items are of good quality while the
other 20 % must be reworked. If 20 items are randomly selected, determine the probability
that
(a) at least 15 items are of good quality;
(b) at least 2 items are not of good quality;
(c) exactly 3 items are not of good quality.

12.12 Is is known that a sportsmen in biathlon has a probability of 90 % of hitting the target
with one shot. Determine the probability that with 10 shots
(a) at most eight times the target is hit;
(b) exactly seven times the target is hit;
(c) no more than five times the target is hit.
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12.13 It is known that the length X of a workpiece is N(µ, σ2)-distributed with µ = 32 cm and
σ = 1.5 cm. Determine the probability that the length of the workpiece

(a) is not greater than 35 cm;
(b) is less than 26 cm;
(c) is in the interval [28 cm, 35 cm] and
(d) deviates by more than 6 cm from the expectation value µ.

12.14 Determine the probability that a N(0, 1)-distributed random variable X is in the interval
[−2, 2].

12.15 A machine engineering company gets parts from a supplier, where it is known that ap-
proximately 90 % of the parts are of good quality. Now an alternative supplier contacts
the company that the same parts with 95 % of the parts of good quality. The company
takes a sample of n = 30 parts among which 26 are of good quality. Apply a left-side test
with the hypotheses

H0 : p ≥ 0.95 ; H1 : p < 0.95 .

Will the null hypothesis be accepted or rejected?

12.16 It is conjectured that in an urn, there are 40 % blue (and 60 % red) spheres. A sample of
30 spheres included 10 blue spheres. Apply a two-side test with a significance level of 5%
and the hypotheses

H0 : p = 0.4 and H1 : p �= 0.4 .

Will the null hypothesis be accepted or rejected?
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List of Notations

a ∈ A a is element of set A

b /∈ A b is not an element of set A

∅ empty set (also used for impossible event in probability theory)

(a, b) open interval between a and b

[a, b] closed interval between a and b

A ⊆ B set A is a subset of the set B

A ∪B union of the sets (or events) A and B

A ∩B intersection of the sets (or events) A and B

A \B difference of sets A and B

∑
summation sign:

n∑
i=1

ai = a1 + a2 + . . .+ an

∏
product sign:

n∏
i=1

ai = a1 · a2 · . . . · an

± denotes two cases of a mathematical term: the first one with sign +
and the second one with sign −

N set of all natural numbers: N = {1, 2, 3, . . .}
Z union of the set N with the set of all negative integers and number 0

Q set of all rational numbers, i.e., set of all fractions
p

q
with p ∈ Z and q ∈ N

R set of all real numbers

R>a set of all real numbers greater than a

R≥a set of all real numbers greater than or equal to a

�= sign ‘not equal’

≈ sign of approximate equality, e.g.
√
2 ≈ 1.41

π irrational number: π ≈ 3.14159...

e Euler’s number: e ≈ 2.71828...

∞ infinity

|a| absolute value of the number a ∈ R
n = 1, 2, . . . , k equalities n = 1, n = 2, . . . , n = k
√
a square root of a
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log notation used for the logarithm: if y = loga x, then ay = x

lg notation used for the logarithm with base 10: lg x = log10 x

ln notation used for the logarithm with base e: ln a = loge x

{an} sequence: {an} = a1, a2, a3, . . . , an, . . .

{sn} nth partial sum of a sequence {an}
lim limit sign

y = f(x) y ∈ R is the function value of x ∈ R
Df domain of a function f of a real variable

Rf range of a function f of a real variable

f−1 inverse mapping or function of f

g ◦ f composite function of f and g

x → x0 x tends to x0

x → x0 + 0 x tends to x0 from the right-side

x → x0 − 0 x tends to x0 from the left-side

f ′ derivative of the function f

f ′(x), y′(x) derivative of the function f with y = f(x) at the point x

f ′′(x), y′′(x) second derivative of the function f with y = f(x) at the point x

f (n)(x) y(n)(x) nth derivative of the function f with y = f(x) at the point x

dy, df differential of function f with y = f(x)∫
integral sign

a vector: ordered n-tuple of real numbers

aT transposed vector of the vector a

|a| length (or norm) of the vector a

|a− b| distance between the vectors a and b

a ⊥ b means that the vectors a and b are orthogonal

a · b scalar product of the vectors a and b

a× b vector product of the vectors a and b

n! n factorial: n! = 1 · 2 · . . . · (n− 1) · n
P (n) number of permutations of n elements

V (k, n) number of variations (k out of n) with repeated selection

V (k, n) number of variations (k out of n)(
n

k

)
binomial coefficient:

(
n

k

)
=

n!

k! · (n− k)!
C(k, n) number of combinations (k out of n) without repeated selection
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C(k, n) number of combinations (k out of n) with repeated selection

A event

S certain event

A complementary event

H(A) absolute frequency of the event A

h(A) relative frequency of the event A

P (A) probability of the event A

P (A|B) conditional probability of the event A, given event B

X random variable

P (X = xi) probability that the random variable X takes a value x

P (X ≤ x) probability that the random variable X takes a value at most equal to x

E(X) expectation value of the random variable X

σ2(X) variance of the random variable X

Xn,p the random variable X is binomially distributed with the parameters n and p

N(µ, σ2) indicated that a random variable X is normally distributed with the
parameters µ and σ2

Φ(z) distribution function of the normal standard distribution

H0 null hypothesis of a statistical test

H1 alternative hypothesis of a statistical test
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absolute value, 29
addition rule, 253
addition theorem, 92
alternative hypothesis, 266
antiderivative, 205
apex, 146
approximation by trapeziums, 224
argument, 131
associative law, 235

Bayes’ theorem, 257
Bernoulli - de l’Hospital’s rule, 194
Bernoulli variable, 263
binomial coefficient, 243
binomial formula, 28

certain event, 249
chain rule, 177
circle, 107

equation of a, 107
combination, 247
commutative law, 235
complementary event, 250, 253
composite Simpson’s rule, 226
composite trapezoidal rule, 224
conditional probability, 254
constant-factor rule, 207
cosine function, 155
cosine theorem, 94
cotangent function, 156
critical point, 185
curve of second order, 107

denominator, 30
density function, 260
derivative, 173

nth, 178
second, 178

difference of two vectors, 231
difference quotient, 172
differentation rules, 175
differential, 179

differential quotient, 173
distribution function, 258

ellipse, 109
equation of an, 109
focal point of an, 109

equation, 43
biquadratic, 53
goniometric, 95
linear, 44
quadratic, 51

equations
system of, 48

event, 249
exclusive events, 249
expected value, 260, 261
exponential equation, 62
exponential function, 152

factor of proportionality, 66
Fibonacci sequence, 116
first-order derivative test, 186
four-array table, 251
fraction, 30

improper, 31
proper, 31

frequency
absolute, 251
relative, 251

function, 131
antisymmetric, 138
bijective, 134
bounded, 135
bounded from above, 135
bounded from below, 135
composite, 159
concave, 141, 187
continuous, 171
convex, 141, 187
decreasing, 133, 184
derivative of a composite, 177
differentiable, 173
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domain of a, 131
even, 138
improper rational, 149
increasing, 133, 184
inside, 159
inverse, 161
limit of a, 167
linear, 142
monotonic, 134
non-decreasing, 184
non-increasing, 184
nondecreasing, 133
nonincreasing, 133
odd, 138
one-to-one, 134
outside, 159
period of a, 140
periodic, 140
polynomial, 147
proper rational, 149
quadratic, 145
range of a, 131
rational, 149
root of a, 146
strictly concave, 141, 187
strictly convex, 141, 187
strictly decreasing, 134, 184
strictly increasing, 133, 184
symmetric, 138
zero of a, 141, 146

gap, 171
global maximum, 184
global maximum point, 184
global minimum, 184
global minimum point, 184

higher-order derivative test, 186
hyperbola, 112

focal point of a, 112
hypotenuse, 91

impossible event, 249
indeterminate form, 194
induction

inductive step, 19
initial step, 19

inequalities
rules for, 72

inequality, 71

linear, 73
quadratic, 80

inequality with absolute values, 76
inflection point, 187
integer, 26

negative, 26
integral

definite, 218
indefinite, 206

integrand, 206
integration by parts, 212
integration by substitution, 208
intersection of events, 249

jump, 171

Kepler’s rule, 225

law
associative, 12, 27
commutative, 12, 27
distributive, 12, 28

least common multiple, 32
leg, 91
limit, 194
limits

rules for, 168
line, 103

general equation of a, 103
intercept form of a, 104
normal form of a, 103
point-direction equation of a, 104
point-slope form of a, 103
point-slope formula of a, 144
slope of a, 103
two-point equation of a, 103

local maximum, 184
local maximum point, 184
local minimum, 184
local minimum point, 184
logarithm, 37

change-of-base formula, 38
logarithmic equation, 59
logarithmic function, 152

monotonicity of function, 184
multiplication rule, 254

Newton’s method, 201
Newton-Leibniz’s formula, 219
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normal distribution, 264
normal form, 51
null hypothesis, 266
number

irrational, 26
natural, 25
rational, 26
real, 26

numerator, 30

orthogonal vectors, 237

parabola, 110, 146
apex of a, 110, 146
downward, 146
equation of a, 110
upward, 146
vertex of a, 110

parameter, 44
partial sum, 125
Pascal’s triangle, 245
permutation, 242
permutations

number of, 242
pole, 171
polynomial, 147

coefficients of a, 147
power, 34
power function, 151
probability, 252
proportion, 65
Pythagorean theorem, 93, 237

random variable, 258
binomial, 263
continuous, 260
discrete, 259

region of acceptance, 268
region of rejection, 268
Regula falsi, 67
root, 35
root equation, 56
root function, 152

scalar multiplication, 232
scalar product, 235
sequence, 115

alternating, 116
arithmetic, 117
bounded, 121

decreasing, 120
geometric, 118
increasing, 120
limit of a, 122
rules for limits of a, 122
strictly decreasing, 120
strictly increasing, 120
term of a, 115

set, 9
sets

disjoint, 11
intersections of, 11
union of, 11

significance level, 268
Simpson’s formula, 224
sine function, 155
sine theorem, 94
stationary point, 185
statistical test, 266
sum of two vectors, 231
sum-difference rule, 207

tangent function, 156
total probability, 257
transformation

equivalent, 43
triangle inequality, 76
type-1 error, 267
type-2 error, 267

union of events, 249

variable, 44
dependent, 131
independent, 131

variance, 261, 262
variation, 247
vector, 229

components of a, 229
length of a, 236

vector product, 238

zero of multiplicity k, 148
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