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The Laplace Transformation II c-12 Introduction

Introduction

In this volume we give some examples of the elementary part of the theory of the Laplace transfor-
mation as described in Ventus, Complex Functions Theory a-5, The Laplace Transformation II. The
chapters and the sections will follow the same structure as in the above mentioned book on the theory.

The examples have been collected about 30 years ago from some long forgotten book on applications.
It was then pointed out by the author, and repeated here that one should not uncritically apply the
Laplace transformation in all cases. Sometimes the simpler methods known from plain Calculus may
be easier to apply.

Leif Mejlbro
March 31, 2011
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The Laplace Transformation II c-12 1 Special Functions

1 Special Functions

1.1 The Gamma Function

1
Example 1.1.1 Compute F(—n — 5) for every n € Ng.

1
We shall take for granted that " (5) = /7, and also the functional equation of the Gamma function,

I(z+1) =2zI(z),
from which
T(z) = %F(z +1)  for 2 £0.
We get by a simple iteration,
2
F(n%) = n—i-l% - <(n1)%> = mf<n%+2> =
(

— (—1)""“1) : F(l) - —1)ntlon+l /r

cee s 2n+1)2n—1)---3-1
n+1 22'ra,+1 TL' ﬁ <>

= 1) (2n+1)!
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The Laplace Transformation II c-12 1 Special Functions

1
Example 1.1.2 Compute £ {\/i + \/%} (2).

We get by a straightforward computation for R z > 0, that
1 r) r() ivr 1
L \/Z_’_i (Z): (32)_|_ (12):2f+ﬁ:\/? 1+—1. <>
Vit 23 23 NN z 2z

Example 1.1.3 Compute C{(l + \/¥)4} (2).

We first compute
4
(1+x/¥) — 14417 +6L+415 + 42

From this result we then get for Rz > 0,
4 1 r(s (2 r(s (3
£{(1+\/£) }(Z) = S+ () g (2)+4 (3) , I

22 z z

5
2
1 4-3V7 6 4-53-3V7 2

z+ 2z +z2+ 22z +z3
1 2 6 3 2

PN N

where /- as usual denotes the branch of the square root which is positive on Ry, and which has its
branch cut lying along R_. ¢

Example 1.1.4 Compute L {t% e3t} (2).

It follows by a straightforward computation, using one of the rules of the Laplace transformation, that

rE)  I.z2.3.1y7

c{tre}(s) = £{tt}(z-3) = PR e iy
- 105 1
= 1_6\/7?(2—3)4—2\/f3 forz>3. O
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The Laplace Transformation II c-12 1 Special Functions

Example 1.1.5 Find all real constants a, b, o, B and X\, for which
L{at™ + bt_ﬁ} (z)=A-{az"" —|—bz_6} .

If a = —b and a = 3, then the relation is trivial for all A\, because both the left hand side and the
right hand side are 0.

We assume that this is not the case. Then we must have 0 < «, # < 1, and it follows that

P(l—a) ,T(1-4) 1 1
zl_o‘ +b zl_ﬁ —)\az—a—f—)\bz—ﬁ,

L{at™® —l—bt*’@} (z)=a

if one of the following two possibilities is fulfilled.

1)
rt—a) 1 ra—-p 1
We have three possibilities.
a) Ifa #0and b # 0, then 1l —a=aand 1 -0 =0,s0a =0 = %, which implies that
A=T(l-a)=T(1-4%)=T(3) =7 and a # 0 and b # 0 arbitrary.
b) If a = 0 and b # 0, then « is arbitrary, while we still have § = % and A\ = /7, and b # 0
arbitrary.
¢) If a # 0 and b = 0, then § is arbitrary, while we still have o = % and A = /7, and a # 0 is
arbitrary.
2)
'l—a) 1 ra-p 2z
GW—)\bzﬁ and bzlif,@_)\ai

)

hence a + 3 =1 (or, equivalently, 5 =1 — «), and

A:%ru—wngO—@,

a _ P(l—ﬁ): M: I'«) .m: N [sin am
b_iVFO—a) iVFW) iVFﬂ—M I'(c) +T(a) T

Thus

a sin am T
= -T(1-a)=£'()l(1 - a)4/ =14/ .
A b ( @) ()T( @) T sin o

Summing up we get in this case

a €]0,1], and B=1-—a€]0,1],

a::tf‘(a)-\/smom-b and )\:i”sinﬂa .
7r 7r
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1 Special Functions

1
Example 1.1.6 1) Compute the Laplace transform of 7 sint.

i

2) Explain why the improper integral f0+oo Z sin (ac3) dx is convergent.

3) Apply the result above to compute the integral f0+oo T sin (x3) dz.

1) Assume that R z > 0. Then it follows by a straightforward computation that

L:{L Sint} (Z) — e i 1 eit _e—it}e—ztdt
vt Vt o2
1 [T 1 , 1 [T 1 ,
- - 7(z71)tdt__ - 7(z+z)tdt
2z'/o Vi 2 )0 Vi°
1 1 1 1
= 5 {t 3}(2—2)—%£{t 3}(2’—1—2)

2) Next, turn to the improper integral
+oo
/ T - sin (ac?’) dz.
0

1
We apply the change of variable ¢ = 3, thus x = ¢35 and dz = 3 t=3 dt, to get

+o0 1 +o0 . 1 +oo (n+1)7 L
/0 |2 sin(x3)|dac = 5/0 t3|sint|dt:§nz_:o/mT 173 |sint|dt
1 400 (n+1)7 L
= = t73 sintdt|.
3 nm
n=0
We get for n € N,
(n+lm i (n+1)m (n+1)7 1) .
t73 sintdt = [—t 3 cost} + -3 t73 costdt
~1)" R A
= (=1 — (3 ) — / t3 costdt,
Y (n+1)m nt 3 Jox

9
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1 Special Functions

We therefore conclude that

/0+°° @ sin (+%)] do =

IN

T +o0o  a(n+l)w
1/ 1 1
= t73 |sint|dt + - E /
3/, 32~ ),

s

75 | sint|dt

T “+oo
1 1 2 1 1
7/ st + - - > {—}
3 Jo 3 Yr =\ Vn Vn+i

@l

—
I

1|:1 ]w 2 1 1,

S| 5tE| 4= . V4
2

3|2 3 Yr 2

0

2 1

3 Y

where we have used that the terms of the telescoping series tend towards 0 for n — +o0o. This
1
implies that z - sin (2®) € L', hence also that —- sint € L'.

It

360°
thinking.
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The Laplace Transformation II c-12 1 Special Functions

1 1 1
3) Since fn(t) := —~-sint-e —~t) € L' converges pointwise towards f(t) := —~ sint, and since
) Since f,(t) %sm Xp( n) converges pointwise towards f(t) v int, and sin
|f(t)] is an integrable majoring function, we conclude from the theorem of majoring convergence
that

+oo 1 +oo

oo 1 1
. 3 . . .
zsin (z°) de = — sintdt = lim — sintdotexp [ ——t ) dt
/0 (=) i i o p( n)

0 n—-+o0o 0

: 1. 1 . 1.
= nkrfooﬁ{% smt} <E> = mli>r(r)1+£{% smt} (x)

L(3) p, @tdd—(@-is _T(5) i~ (=i
20 a0+ (z2 4+ 1)3 2i 1

Example 1.1.7 Compute the inverse Laplace transforms of

1
1) ——,
/ V2z+3
4—3z
9 <
(= + 4%

1) Tt follows from the rearrangement

1 1 1
\/22—1-3_\/5.{ +3}
.
2

W=

1
Vor 3\ 2t
(++3)
that

e deow( 3

2) Analogously,

z+ai ¢ F(Z) z+air 3 6%\/E-e’?’zﬁ{lt\/z_fe*‘“}(z),
11
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1 Special Functions

hence,
4—-3z 4
£ {(;T)} t) = 34;% (t—3)2 e "3 H(t - 3)
4616
- ﬁe*4t~(t—3)\/t—3~H(t—3). O

Example 1.1.8 Compute the inverse Laplace transform of
Vz-1)’
p .

We get by a small computation,

2
(@) _ %ﬁﬁ:EJFé_%:5{1}(2)+£{t}(2)_r(2§)
zZ2 2
= c{1+t—l2f\/5}(z),
3 m

hence,
ﬁ_l{<\/i_1>2}(t) = 1+t—\%x/i. O

Example 1.1.9 Compute the inverse Laplace transform of

_
(z+1)%

We get by a small manipulation of the expression,
z z+1-1 1 1

N

[N

F(z) = 5 = 5 F 5
(z+1)2  (z+1)2  (2+1)2  (2+1)>
1 T(E) 1 I3
CTE) GrpE TE) G+)d
1 1 1 3
= g{tz}(z+1)—% %ﬁ/j{m}(z—&—l)
= %L‘,{e*t t}(z)—%[,{e*tt\ﬁ}(z),
hence
LRI = 2 e Vie 2 etiie 2 et iB—20). O
VT 3w 3w
12
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1 Special Functions

Example 1.1.10 Compute the inverse Laplace transform of

1

8z — 2T

It follows from
1 o, _T(3)
that
1 2T ¢
w(Z)

Lt {1} (t) —_ .
8z — 27 21"(%) V2
Example 1.1.11 Solve the equation

/f f(t —u)du =243,
where we assume that f € F and f' € F, and f(0)

teR,.

First write the equation as a convolution equation

(' % £) (t) = 24

Since we have assumed that f and f’ € F, we may apply the Laplace transformation on this equation

SO

2 (L{f}(2))%,

e} (o) = 28 - e @) £)6) =

hence, by solving after L{f}(z),

) +12 3
= -Lqt2

51 /m { } (),

vl pojot

L{f)e) =22 —irl(ﬁ) -FZ(

from which we conclude that the two solutions are given by

124
tg—i—t\f O

13
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Example 1.1.12 Solve the equation

t
/ T gy =14t te Ry,
0 t—u

where we assume that f € F.

We first notice that since g(t) = 1+t + 2 is not equal to 0 for ¢ = 0, we cannot apply the formula,
which will be derived in Example 1.2.1.

The equation can be written as the convolution equation

(ﬁé) (t)=1+t+t%

This is mapped by the Laplace transformation into

L) i} e) = F( Lot =te L 2,

SIMPLY CLEVER

We will turn your CV into
an opportunity of a lifetime

- ’I.’.

LS n)!

r--

ll]

Do you like cars? Would you like to be a part of a successful brand?
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Send us your CV. You will be surprised where it can take you.
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The Laplace Transformation II c-12 1 Special Functions

hence, by solving it with respect to £{f}(2),

LN = =t gty
_rre 1 TR, 2 TE)
e RN IR A ) R
= —efrite+ st} o=t} e
2 2

We conclude that
1 8 o
t 2 -1 1+2t+ =t te R,
ft) = ﬂ_{\/—"f'\["f' x/} ﬂ_\/—{‘f' +3} +

Finally, it is obvious that the solution satisfies the condition that f € F. ¢

Example 1.1.13 Find the solution f € F of the equation

/O\/t—ﬁi)udu:\/g, forteRy.

The given equation can also be written as a convolution equation

(f*1> (t)=+t,  forteRy.

Vit
Given that f € F and % € F and v/t € F, we get by a Laplace transformation for ® z > max{0, o(f)}
that
1 1 r'(3)
L fx— = i 2/ p
{rehe = cne Lo -"Fane

- Lo =c{ple="E o1

so a necessary condition for the solution f is that it satisfies the equation
1
L{fHz) = o2

1

By the inverse Laplace transformation, the only possible solution is the constant function f(¢) = 5

CHECK. It is obvious that f(t) = = € F, and o(f) = 0. Finally, we get by insertion that

[ =) [ v = v

t—u 2 t—u

1
so f(t) = 5 is indeed a solution. ¢

15
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The Laplace Transformation II c-12

Example 1.1.14 Find the solution f € F if the equation
t
/ (f(u)lduzt(l—&—t), fort e Ry.
0

t—u)s

We shall solve the convolution equation

¢
/ EEIOR A
o (t—u)s
Put for convenience F(z) := L{f}(z). Then by taking the Laplace transformation and using the rule
of convolution,
1 ra-: 11
E{f*—l}(z) :F(z)g =L{t+t}(z) ==+ 5,
t3 23 z z
from which we get
1 1 1 1
F = . il
S 6 R R OB
T, 1)
1 2 I 2\ (4 1
FEITE) =5 TETE) 23
2 381n§£{t%}(z)

Sh;g c{ti} )+ =

Finally, by the inverse Laplace transformation,

3 vt 3V3 3 WVt
f(t):£-£+i%:£-£(l+t). O
2Tt 21 27 1
Example 1.1.15 Given n € N\ {1}. Let s € Ry. Prove that
{1 =
L =T —_—
{1—€_t}(8) (n)§(8+p)7l
We derive the classical Riemann’s zeta function from the above by the definition
+o00 n—1 +oo yn—1
1 1 t 1 t
— i L£Ld— L) = dt.
<=2 = ) G o= [ o
We get for s > 0,
! N +o i = ¢ t
_ n—1 . E n— —pt | —s
{1—et}(8) = /0 t 1_eftdt Eli%gr i t Ze e *tdt
p=0
1

“+o00 +00 +o0
= lim / Yy lem (Pt g =N " I(n) -
2. 2T Gy

a e—0+
p_
+o0 1
— (z+p)

16

Download free eBooks at bookboon.com



The Laplace Transformation II c-12

1 Special Functions

In particular we get for s =1 and n € N\ {1},

too 1 1 n—1 1 too yn—1
= - gyt 0w [ =

p=1

We know from e.g. the theory of Fourier series that

+001 2
> a= g

Therefore, we also get

2t +00
m 1 t
PR Ry A

et —

Example 1.1.16 Prove that

E{/O+OOMdu}(s):W, for s e Ry.

First apply the definition of the Laplace transformation with respect to ¢, and then interchange the

order of integration to get

IR

_ +oo 1 F(u—|— 1) B 1 [t s
B /0 T(u+1)  swtl 'f(U)du_f/O Flu) e w1 dy

= L{fHms),

and the claim is proved. ¢

S

17
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1 Special Functions

1.2 The Beta function

Example 1.2.1 Given a constant o €10, 1, and assume that g € F N C and g(0) = 0. Prove that

the solution f € F of the convolution equation

is giwen by the solution formula

g(t)v fOTt€R+,

sin o

(1) f(t)= /o g (u)(t —u)* ! du.

™

We first check that (1) is indeed a solution. We get by insertion and an application of Fubini’s theorem,

frm = / (tm;))a du= / = / =
- = Lo { [
- = Lol i
= sinﬂonr /Ot g'(z) - (uia *u“_1> (t—x)dx

(g'* (sinﬂaﬂ : zia *x“‘l)) ().

c(u—a) ! du} dx

T du} dz

/ :0g' (z)(u — )t dx du

Then we separately compute the inner convolution, where we use the change of variable ¢ = zu for

x > 0. This gives,

sinam 1 e-1 _ sinom /I(x B T /1 g7 (1—u)™* 2* T zdu
™ A m 0 s 0
. 1 .
_ smom/ (1*11,)(170‘)71’&0‘71(111,: sin a B(1-a,0)
T Jo T
_ sinar (1 —a)l'(a)  sinar 7 .
o T (1) 1 sinar
hence,
1 t ¢
frg =10 = [ d@H(E-wdu= [ ¢ du=[gw); = g(0) - 9(0)
0 0

and the claim is proved.

Notice that the result is independent of whether g € F or not. The important thing for this part of

the proof is that g € C! and that g(0) = 0.

18

Download free eBooks at bookboon.com



The Laplace Transformation II c-12 1 Special Functions

An alternative proof in which we apply that g € F N C!, is the following. We shall prove that the
convolution equation

(2) frt7 =g
has the solution

sinam , 1

(3) f=———g'xt"""

When we apply the Laplace transformation on (2), then

L)) = £ £ (b0 = U ey - s ST s
thus
sinar  T'(«) sin i ,
e = T L)) = T L0 () L4 (2)
_ E{sinﬂom g *ta_l} (2),
and (3) follows.
I jOiHEd MITAS because for En;?nee[g::g?:jtggggif:;gz

I wanted real responsibility www.discovermitas.com

TR T S
L TR T
Ve e .

I was a construction
SUpPEervisor in
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mrm  nelping foremen
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1 Special Functions

Remark 1.2.1 As a check we can apply the solution formula on Example 1.1.13,

ft)

sin

S R N
m 0 2 \/a t—u _27T 0

Lp(l1y_1 = _1
2r \2'2) 27 sin% 2

Similarly, we get in Example 1.1.14,

ft)

™ . 31 1 t 2
S0 3 /(1+2u) (t—u)ddu="23 /(t+2t—2(t—u))-(t—u)’5du
™ Jo
t
[ 1—|—2t t—u) gdu—2/(t—u)é~du}
27 0

[SIES

5, I}

V3 1+2t3\/——t\/} 3‘/—\/ gft\/ O

™

{
{1—|—2t t—u)é];—z[—Z(t—u)
{

Example 1.2.2 Compute the integrals,

1) fol 22(1 —z)2d,

2) f04 23(4 — z)~2 du,
3) f02 zt /4 — 22 da.

The idea is of course to use that

1 1 5

/ pi(l—2)?de = /“g‘lﬂ—x)?"ldw:wf(g)

0 0 F(?)
R )
- %%gr‘(g) 9.-7-5 315

20
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2) In this case we apply the change of variable,

u = r = 4u, dx = 4du.

x
4)
Then

4 1 1
/ x3(4—a:)_% dzr = / 43u3-4_%(1—u)_% -4du:2-43/ u4_1(1—u)%_1du
0 0 0

128-3!T(5)  256-2% 4096
HOREEEE RO

3) Here we apply the change of variable

1 1
uzzx2, x = 2v/u, dx:\/—adu.
Then
2 1 1 ]. 1 5 3
/ zt/4—a22dx = / 244?42 \/1—u-—du:32/ w2 (1 —u)2 " du
0 0 Vu 0
_ 39p(5.3) 2ot B)TG) gy 25T (G) ()
272 T(4) 3!
32-3
= G5 Wn)i=2m 0
Example 1.2.3 Compute B(%,4),
We get straightforward,
pEN_TETW__ r®6 e m

2Y) =T TTar@ 9768 8
Example 1.2.4 Compute
1) fog cos®© de,
2) fog sin? © cos ©dO,
3) [ sin* © cos* © dO.
We shall use that in general

2 1 1T r
(4) /0 sin?™"1 @ cos?" 1 ©dO = 5 B(m,n) = 3 Im, for m, n € Ry.

21
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1) When we apply (4), we get

™ ™

2 2 1 1
/2 cos?©de = /2 sin2271Q . cos?i-10dO = —B(—, Z)
0 0 2 22
_Ir(yrE 1 Va2V _ 15w 5w
2 '(4) 2 3! 16-6 32

2) Tt follows again, applying (4), that
3 .28 2.5 _1 1 <3 5)
sin“27 @ cos“27"OdOdO = - B -, =
/0 27\ 272

3
rEreE
I'(4)

/0% sin? @ cos? © dO

SVERVE _ 3m
2.3l T 16-6

| =

32
3) In this case we start with a small rearrangement, before we apply (4),

/ sin? © cos* © dO
0

1 4 4 1 271' 4
— sin® 20 dO = —/ sin® © d©
24/0 32 J,

us 1 T .
Tsin'@de = = / cos® 2710 sin*371 0 dO
32 J, 8/,

_1rEre)
T(3)

3

1 3
_5.\/}.1[_

Example 1.2.5 Compute fog cos" ©dO for all n € N.

We have in general,

3 z n 1 11
/ cos © dO :/ cosQ'#_l@ .sin?2719de = 2B<n+ ) =
0 0

1) If n = 2m is even, then

™

128°

F o om _ 1T(m+3)T(5) 1 (m=3)--3T(F)T ()
/OCOb 9 = O T+l 2 m!
1 2m—-1)-(2-1) T (2m)! o« 2m
2 2m - m) 22m+1 plml  22mtl \ m )
22
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2) If n =2m + 1 is odd, then

! 1 Dm+1)E (L) 1 :
/ 2c02"1QdO = - (m ) 3(2) _ nf \/Trl
0 2 F(m+§) 2 (m—|—§)§ﬁ
27n+1 m' . m|m'
T 2 T emr)em—1)-1 7 @m+1)-2m)
22m 1
= . . O

2m +1 2m
m
Example 1.2.6 Apply the formula

+oo p—1
T
/ der = — u
0 z+1 sin pm

to compute the integral f0+oo

If we apply the change of variable = = y*, i.e. y = xi then we get

+o00 2 +oo 1 +oo 31
- 1 -
/ J dy:/ o -—~l‘%71dl’=/ T dr= 7T3 =72 O
o 14yt o 1+z 4 o 1+=z sin =

~

EUROPEAN
# BUS INES‘&
SCHOO

'FINANCIAI. TIMES

AR RN NS R R R RN

8 #gobevond

-
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1 Special Functions

Example 1.2.7 Prove without using the definition of the Beta function that

: cot©®dO = L.
v 7

We shall use the substitution

2
u = Vtan ©, thus © = Arctan (u2) , and de = s du,
14+ ut
which clearly should be followed by another substitution
z =u, thus u=xi and du = ix%_ldx.
Then,
3 +oo q 2 +oo 9 9 [too 1.4
/ Veos©do = / ] -Ldu:/ ——du= / e
0 0 u 1 =+ U4 0 1 =+ U4 4 0 1 +x
1 0 ™
sinf V2
Example 1.2.8 Compute the integrals
4 dz
1 NCED Tk
)k (x—2)(4—x)
2) f V(5 —2)(z—1)de.
1) We shall use the change of variable,
1
t= 5 (x —2), thus x=2t+2 and dx = 2dt.
Then
2dt 11
| / / Hl -l = B(—,—)
2 (x—2)(4—2x) V2t-2(1—1t) 2°2
_ TG
(1)
2) In this case we use the change of variable
1
tzz(x—l), thus x=4t+1 and dx = 4dt.
Then
5 1 T .
/ «4/(5—x)(a:—1)da:=/ {‘/4(1—t)-4t-4dt=8/ B it
1 0 0
T (3\r (2 Ir(iy.1p (L ) 1 2
PR LTI ENELIG ELI R A Y
9 3 1 e
2 251 (3)
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1.3 The sine and cosine and exponential integrals

Example 1.3.1 Compute the Laplace transforms of
1) e*Si(t),
2) t-si(t)
We shall use that
1
L{Si}(z) = — Arccot z for Rz > 0.
z

1) It follows from a rule of computation that
1
L{Si(t)e*'} (z) = L{Si}(z —2) = P Arccot(z — 2), for Rez > 2.
y—

2) It follows from the rule of multiplication by ¢ that

L{tSi(t)}(z) d { ! Arccot z} = — Arccot z + L O

T dz z2 z 1422

int t
Example 1.3.2 Prove that % ¢ L' (Ry), ive. that [ |P2E] g —

1 3
Clearly, |sint| > E for all ¢t € [pw + %, P+ Zﬂ] We therefore have the simple estimates

sint

+o0 o prtdE oy 1 X T g
/ & > Z/ s L3 dt
0 t p—07PT+% \/5 p—=07PT+T t
™ 1
—- > <>
\/_Zpﬁ+ 2—2\[2 (p+Dm sz

Example 1.3.3 Apply the trivial formula

b b o a
/ sin A\t a :/ sin \t dt—/ sin A\t dt.
a 1 o U o 1

to prove that

b .

sin A\t
lim A 4t = 0.
A——+o0 a

Using the hint and that

t t
/ LIV . LY
0 t n—+oo Jq t 2
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this is easy,

b b . a -
sin At in At in At
lim MA Y = lim AT~ lim / SIAY g
A——+00 a t A——+0o 0 t A——+0o0 0
Ab Aa _:
= lim SWY i~ lim MY =TT .
A——+oo 0 u A——+oo 0 u 2 2

Example 1.3.4 Compute the Laplace transform of t* Ci(t).
Given that

(6] 22
cleipz) = LY,

it follows from the rule of multiplication by t? that

L{#Ci(t)} (z) = f{w}:i{ 2z .i_M}

dz? 2z dz | 22+1 2z 222
B 2z 22 1 Log(z*+1)
= (22 + 1)2 Z2 + 1 222 23
32241 Log (22 +1
- = 7+ ( 3 ) 0
z(2241) z

Example 1.3.5 Compute the Laplace transforms of
1) e 3 Ei(t),
2) tEi(t).

We shall use that

L{Ei}(z) = w, for Rz > 0.

1) By using a rule of computation,

_ Log(z +4)

L{e_3t Ei(t)} (2) 13

for ®z > —3.

2) Using the rule of multiplication by ¢,

LURiD} () = -4 {Log(l * Z)} _Logl+z) 1 for Rz > 0.

dz z 22 2(1+2)’
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Example 1.3.6 Find the error

F(z) = £{Ci}(2) = =~

“It follows from the definition

+oo
Ci(t) = / O du,
t

u

that t - (Ci)'(t) = — cost, thus

d . d
L (2P (2) - Gi(0)} = — o {2 F(2)} = -

hence,

d
E{ZF(Z)}: 22 +1

and therefore,

zF(z) = %Log (z2+1) +C.

in the following “proof” of

~ Log (2% +1)

2241

Then it follows from the Finite Value Theorem that

SE»I(gIJr 5 F(S) - tl}inm Cl(t) -

so C'=0, and we conclude that

O, Z2
L{Ci}(z) = w

0,

It follows from the sketch above that Ci(0) occurs early in the proof. However, since the improper

oo COSU

integral f0+

du is divergent, which follows from the estimate

o0 cosu 7 [T du
‘ ‘duzcos— — = 400,
0 4 Jo

u

u

the constant Ci(0) is not defined. The sneaky thing is that this (non-existing) constant is disappearing

by a later differentiation. ¢
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Example 1.3.7 Prove that

+oo 1
/ te 'Ei(t)dt =In2 — .
0 2

It follows by inspection supplied with the rules of computation [we notice that 1 > 0 = o(Ei)] that

/0+°°tetEi(t) dt = L{tEi(1)}(t) = lim {_dilz g{Ei}(z)} - m 2 {Log(l + z)}

2—0 dz z

. Log(1 + 2) 1 B 1
hm{ > } z(1+z)_ln2 5 O

z—1
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1.4 The error function

Example 1.4.1 Compute the Laplace transforms of
1) edterf (V/1),
2) t-erf (2/1).

It follows from Ventus, Complex Functions Theory a-6, The Laplace Transformation II that

1
1) It follows from one of the rules of computation for the Laplace transformation that
1
3t _ _ay
E{e erf(\/i)}(z)—ﬂ{erf(\/i)}(z 3) - aviD

2) We apply the rule of multiplication by ¢ and the rule of similarity. Then for 2z > 0,

et = gefor (Vi) o) = - g { T e{er (V) (5)]

4

1d 1 B d{ 2 }_ { 2 1 2 }
ddz | 2,/2+1 dz | z4/z + 4 2V/z+4 2 z(z44)%
1 3z +8

=————{2(z+4) +z2} =

22(z+4)2 2(z4+4)% ©

Example 1.4.2 Compute the Laplace transform of erfc (\/1_5)

Using that erfc (\/1_5) =1—erf (\/E) and that the Fourier transform of erf (\/E) was found in Ventus,
Complex Functions Theory a-6, The Laplace Transformation II it follows that

\/Z——
£{erfc(\/f)}(z):%_z\/zl+_1: Z\Zlﬁl. 0

Example 1.4.3 Compute the Laplace transform of fot erf (vu) du.

We use the rule of integration and that the Fourier transform of erf (\/f) was found in Ventus, Complex
Functions Theory a-6, The Laplace Transformation II to get

L{/Oterf(\/ﬂ) du}(z) W%ﬁ Rz>0. 0
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Example 1.4.4 Prove that fOJrOO e terf (\/f) dt =

“l%

HINT. Consider £ {erf (V1) } (2).

We have straightforward,

/0+OO e terf (\/Z) dt=12L {erf (\/E) } (1) = [%] B = g O

Vz+1
, 1
Example 1.4.5 Compute the inverse Laplace transform of —————.
VA1)

It follows from the theorem of convolution applied in the opposite direction that
1 1 /1 1 [tetn 1 feu
51{7}@) = —<—*et>(t):— —du:—et/ —du
Va(z—1) VT AVt VT o Vu VT o Vu
2 Ve —v? t
= —e eV dv=e erf(\/f). O
0

LS
‘ Vz
Example 1.4.6 Compute the inverse Laplace transform of I
- —
We first compute
vz 1 1 .
= z- =z- :zﬁ{e erf(\/f)}z
z—1 Vzo(z—1) (z—D/(z—1)+1 )

zL {et erf (\/E)} (2) — e erf (\fO) =L {% (et erf (\/E)) } (2).
We therefore conclude by the uniqueness that
{2} 0= B e (0).

According to a result of an example in Ventus, Complex Functions Theory a-6, The Laplace Trans-
formation II we have

et (Vi) = = [ Zaw

Hence finally,

5 o = a (i) =ear(vi) s

z—1 dt

|
mﬁ
o
=
=+
~—
=
~——
+
<
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1
Example 1.4.7 Compute the inverse Laplace transform of .
14z
Assume that Rz > 1. Then
1 1 z—1 Vz—1 NS 1 1 1
= . = = —_ = Z . _—
1++/z z—1 z+1 z—1 z—1 z-1 (z—1)y/z z-1

- c{% {etert(vE)} —et} (2),

where we have used that lim_,q, ef erf (\/f) =0.

Then we use the formula

erf(\/f):%:%‘/o %du,

which was also applied in Example 1.4.6, to get
1 d 1
-1 _ t ot ot ot
L {1—|—\/E}(t) = dt{e erf(\/i)} e eerf(\/i)—k\/E e

— elerfe (\/f) . O

1
vt

Example 1.4.8 Fora > 0 fized we define fo(t) := m

zﬁ{erf(ﬁ)}(z— 1) —L{e'} () = zﬁ{eterf(\/f)} (z) = L{e'} (2)

. Compute the Laplace transform L{fq.} (z).

We use the rule of similarity and an example from Ventus, Complex Functions Theory a-6, The Laplace

Transformation II to get

Cif} () = c{ !

—az

:\/E.\/&

1 1 a 1
——— ()= =L —— ) (2)=—F=L{—— (az
W—cq}” IS By el (R { f_”}( )

{1_¢.erf(i¢a)}:\/jeaz{l_i.erf(i@)}. 0

31

Download free eBooks at bookboon.com



The Laplace Transformation II c-12 1 Special Functions

1.5 The Bessel functions
Example 1.5.1 Compute f0+°o Jo (2?) da.

HINT. Define the auziliary function f(t) := 0+°° Jo (tz?) dw, and then compute L{f}(s) for s € Ry
by interchanging the order of integration.

We define as in the hint,

+oo
f@) = /0 Jo (t2*) da,

and then apply the Laplace transformation on f for z = s € Ry real and positive. Then by inter-
changing the order of integration,

L{f}(s) = /O+Oo e {/O+Oo Jo (tz?) dx} dt = /O+Oo {/O+Oo e " Jo (tx2)dt} da

- /O+OOE{J0 (t-2%)} (s)dz = /0+Oo %E{Jo}(x—i) dz
1 dx

/m_.;dx_/mdix_i/m;_
o Z \/1+{mi2}2 0 Vit +s2 Vs o { }4+1\/§

S

- L/OJFOO dz Lg{\/g}(s). T da

S

0 \/1—{—5{747
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from which we conclude that

Vi A
™ Jo 1—}—.1347

hence by choosing t = 1,

= [y ew= [T

= z9) de = — ——
0 ’ VTlo V14t

Finally, we get by the substitution z = vtan ©,

oo ) 1 [z 1 1 1 de
Jo (x ) de = — S T
0 VT Jo V1+tan?0 2 Vtan® cos?©

2 cos® [cos© 1 2 o2l 211
2\/,/ o2 O sin9d®_2ﬁ/0 sin © - cos 0 doe

! 1);,{1}(%)}:@9}? ,

i ()

Example 1.5.2 Compute by using the series method the inverse Laplace transform of
1 2
—Jo| —=) -
2 0(\/5 )

When we apply the series expansion of the Bessel function Jy we get

1"(%):12@%(%) Z{n'}fz"’

where the series is convergent for z € C\ {0}.

According to a theorem in Ventus, Complexr Functions Theory a-6, The Laplace Transformation II
we have in general

+o00 400
—1{;1)".27}“}(75)—2 b e,

n=0
provided that the series 3% b, 2~ ("+1) is convergent for |z| > +. The latter condition is trivial,
and we get by identification that
4\
o 0
{nl}?
Hence,
—+o00 —+o00
- (=4 1 (—=4)"
fty==c 1{Z|2- G O=> gt teRL 0
—{nl}? 2 — {nl}
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Example 1.5.3 Prove that

1) /0+00Jn(t)dt:1, 2) /O+Oot.]n(t)dt:n,

where we assume (without proof) that the improper integrals are convergent.

1) If s > 0 is real, then

(\/524-1—8)” _ (1-o0)m"
VEES RN s

Therefore, if the improper integral exists, then

1 for s — 0.

L{Jn}(s) =

+oo +oo
/0 Jd= tim [ g@ear= tm £ ()= 1

according to the computation above.

2) Analogously we get here that if the improper integral exists, then its value is given by

—+oo + oo d
. . _st T T @
/O cma = Gm [ @t lim £{t2,)() _513&{ dsﬁ{.]n}(s)}
i n(\/52—|—1—5)n71 < s 1) N (\/524—1—5)”
= lim < — - s
s=0+ s?+1 s2+1 (VsT+ 1)’

= n. O

Example 1.5.4 Prove that

Foo 9 1 a
u exp (—u?) Jo(au)du = - exp( —— ] .
. 2 4

We put

p(a) = /()Jroou exp (—u?) Jo(au) du and P(u) = % exp(—ag) .

The trivial estimate |Jo(au)| < 1 implies that p(a) is well-defined, and that ¢ € C*° (R), and we are
allowed to differentiate under the sign of integration. It follows from

¢'(a) = —=¢(a) fora >0, and  ¢(0) =
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It follows from the computation

+00 +o0 1 too
»(0) = /0 u exp(—u?) Jo(0) du = /0 u exp(—u?) du = [—2 exp(—uz)] =, = ¥(0),
that the initial condition is fulfilled.
It follows from Ventus, Complex Functions Theory a-6, The Laplace Transformation II, that
Jo(#)=—Ji(t)  and %{t Ji(t)} =t Jo(t),

so when the expression of p(a) is differentiated with respect to a > 0, then

Foo 2 8 Foo 2 +oo 2
¢'(a) / ue ™ —Jo(au)du:/ ue ™ uJ(')(au)du:—/ we ™ ~uJi(au)du
0 da 0 0

L= 1 >+w—1/%w“32{ Ji(au)}d
5¢€ ulauo > /. e 5y (u/1law)}du

1 +oo a2 8
- _5/0 ‘ d(au) {(au)Ji(au)} du
oo a [t 2 G
— _%/o e " (au)Jo(au) du = _5/0 we™ Jolau)du = —§<p(a),

and the claim is proved. ¢

Example 1.5.5 Compute
L {67‘” Jo(b t)} (2), where a, b € R,..

We just apply the rules of computation for the Laplace transformation to get
—a 1 z+a
£{e f‘Jo(bt)}(z) LA{Jp(bt)} (z+a) = bL',{Jo(t)}( b )

= % 1 2:\/ 12 b2’ %Z>_a <>
\/1+{z+Ta} (z+a)?+

Example 1.5.6 Compute L{t Jo(2t)} (2).

We just apply the rules of computation for the Laplace transformation to get

L{tJo(2t)} (2) = —%E{Jo(%)}(z):—%dilz(/;{Jo}(g))

_oaaf L ()

R AEE 2(1+@ff.
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Example 1.5.7 We define the modified Bessel function of order 0 by Iy(t) := Jo(it), which makes
sense, because Jo(t) has a convergent series expansion which can be extended to all of C.
Compute

LA{Iy(at)} () foraeR,.

It follows from the rule of change of scale that

L@t} (o) = - £} ().
It therefore suffices to compute £{Iy} (z).
Clearly,
I(t) =i Jy(it), thus Jo(it) = —iIo(t),
and
It = —Jj(it), thus  J{(it) = —I{(t).
By insertion into the Bessel equation of order 0 we obtain the following differential equation for I,
0 =it JJ(it) + Ji(it) + it Jo(it) = —it J(¢) — i L5(t) + it Io(t),

so the differential equation of Iy becomes

—t Ij/(t) — I)(t) + tIo(t) =0,  and Ip(0) = 1.

“I studied
English for 16 P
years but...
...I finally

learned to

speak it in jus
Six lessons”

Jane, Chinese architect

OUT THERE
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before and after my

unique course download
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We apply the Laplace transformation on this differential equation to get

0 = (L)) - 2 ol0) ~ (0) — (= LI} ()~ To0)) — o LI} ()

22 %ﬁ{fo} (2) +22L{Io} (2) = 1= 2L{Io} (2) + 1~ %‘“0}(2’

_ (2-1) dilz L{IY (2) + 2 L{Io} (=),

the solution of which for some arbitrary constant ¢ € C is

c
LAy} (2) = , for Rz > 1.
Finally, we conclude from
lm 2z == Iy(0) =1
2o 22 —1 — C =10 — 4
that
1
LA} (2) = , for Rz > 1. O

d2
Example 1.5.8 Compute the Laplace transform of pTEl {e2t J0(2t)},

This is the usual exercise of applications of the rules of computation. If we put f(t) := €' Jo(2t),

then f(0) =1 and f/(0) = 2. Then for Rz > 2,

2
L {% (62t J0(2t))} () = 220 {e2t J0(2t)} (2) — 2 f(0) — £(0)

2

5 1 1 22

= 2 e 2= =z — 2.

2 1+(z_2)2 (2—2)2+4

Example 1.5.9 Compute L{t J1(t)} (2).

This is straightforward for Rz > 0,

L{ERD} () —jz.c{.fl}@):_i{l_ : }:d{ : }

ALY =D 22 =2 3L () (257) 52

¢
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We notice that also
1

L {sin Z)= ———
fsinwio} (2) = ———y

)

so we have proved that

(sinxJo) () =t Ji(t). O

Example 1.5.10 Compute the integral f0+oo te 3t Jo(4t) dt.

Assume that £z > 0. Then

intd te 3t Jo(4t)dt = L’{tJo(4t)}(z):—d%L{JO(th)}(z)

- i Gewol) -t - ()

B <1> 2z B z
2) (:2+16)? (:2+16)%

When we choose z = 3, we get

+oo
3 3 3
te ™ Jy(d)dt = ——— =" =" ¢
/0 (9 4 16)% 5% 125

Example 1.5.11 Prove that f0+oo t2 Jo(t)dt = —1.

Consider Rz > 0. Then

+oo d2 1
/0 t2e ™ Jo(t)dt = L',{tQJO(t)}(z):(.1)2@(224—1) 2

- d% {—; (=2 +1)"F -2Z} = d% {—z (22 + 1)’%}

= —(z2—|—1)7%+3z2(22+1)7%—>—1 for z — 0 +.

Strictly speaking, we should start with a proof of that the improper integral is convergent, and that
the limit process gives the right value. ¢
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Example 1.5.12 Prove the following formule,
1) f0+oo Jo (2v/tu) cosudu = sint,
2) f0+oo Jo (2\/5) sinu du = cost,

3) 7% Jo (2v/tu) Jo(u) du = Jo(t).

We assume without proof that the improper integrals are all convergent, and that we may interchange
the order of integration, when we apply the Laplace transformation.

It follows from a result in Ventus, Complex Functions Theory a-6, The Laplace Transformation II,
that

1 1
E{JO (2\/5)}(2)22-exp<—z), Rz >0.
Then it follows from the rule of scaling for A > 0 a constant,

o= e (@) () -3 2am(-2) = Lol -2).

1) We get by a Laplace transformation with respect to ¢ that

ﬁ{/()*“ Jo (2vi) cosudu}(z):/()

oo u 1 1 IR 1 _
:/0 - exp(—;) cosudu = ;ﬁ{CObu} <z) = e B T L{sint}(z).

z

—+o0

L {JO (2\/@) } (z) cosudu

Hence, we get by the inverse Laplace transformation,

“+o00
/ Jo (2\/tu) cosu du = sint.
0

Alternatively, we get either by formal computations, or by an analytic extension that

/O+DO Jo (2@) cosu du = ;/OJFDQ Jo (2\/@) [ + e~ ) du

L (e (o v 2 (o v o)

% Cc{Ja (2vu) } (‘1) +%£{J° (2va)} (D)

() 1)

2%, {e“ — e*it} = sint.
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2) Using the same method as above we get in this case,

L7 0 (i) sinudu b (2) = Legsineg (L) =2 2 peosthe).
([ evim)smuan} )= L etsnn (1)

Then by the inverse Laplace transformation,

+o0
/ Jo (2\/t_u) sinu du = cost.
0

Alternatively, and analogously we here get

[ ST

0

_i _ﬁ ex é—ﬁex —§ —l{eit—ke_“’}—cost
T \\ )P ) TP T ) T e o

3) We get by a Laplace transformation with respect to ¢ that

7 g (v dodud (o) = Loy (2) = L. L L)),
([0 (2vm) s} )

z z

Tz \/1+Zi2_\/1+z2

Hence, by the inverse Laplace transformation,

/Om o (2\/5) Jo(w)du = Jo(t). O
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Example 1.5.13 Compute fot Jo(u) J1(t — u) du.

We apply the rule of convolution for Rz > 0,

L {At Jo(U)Jl(t — u) du} (Z) = ,C{Jo*Jl} (Z) = ,C{Jo} (Z) ,C{Jl} (Z)

B 1 -\/22—1—1—2_ 1 I
V22+1 V22 t1 241 2241

Hence by the inverse Laplace transformation,

/Ot Jo(u) Ji(t — u) du = Jo(t) — cost. O

Example 1.5.14 Compute fot Jo(u) Jo(t — u) du.

It follows by the rule of convolution that

F(2) L {/0 Jo(u) Jo(t — u) du} (z2) =LA{Jo} (2) - L{T2} (2)

2
1 (\/z2+1—z) _z2—|—1—|—z2—22\/22+1

V22r1l V21 22+ 1
- 2(22—1—1—2\/22—1—1)—1_2\/,22—1—1—2 1
N 22+1 B 22+1 Z2_|_1'

Then by the inverse Laplace transformation,

/Ot Jo(u) Ja(t — u) du = 2 Jy(t) —sint. O

Example 1.5.15 Compute fot Jo(u) sin(t — u) du.

Again we use the rule of convolution to get

c { /0 t Jo(u) sin(t — u) du} (2) = L {Jo} (2) - L{sint}(z)

_1_d{z}__d{1_ 2 }
S (241)r de \WRR+l)  dz 22+1

B d{wzﬂ—z}_ D LLn) () = £ {0} ()

dz 241 [ dz

Then we get by the inverse Laplace transformation,

/0 Jo(u) sin(t — u) du = (Jo *sin) (1) = ¢ J1(1). O
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Example 1.5.16 Prove that J,, * J,(t) = Jo * Jin(t) for all m, n € Ny.
We shall use that

(\/22 +1- z)n

inl) = LR} () = 2

, for Rz > 0.

Then by the rule of convolution,

SRR . m—+n
E{Jm *Jn} (2) = Jm(2) - jn(z) = ( Z( +21+ 1))2 = jo(2) - Jman(2) = ‘C{JO *Jm+n} (2),

and the claim follows, when we apply the inverse Laplace transformation. ¢

1— Jo(t
Example 1.5.17 Compute the Laplace transform of %().
Apply the result to prove that

+oo 1 _
/ L= Jo®) gy g, (V241
0 tet 2

Apply the rule of division by ¢ to get

L{%‘W}(z) _ /Fzﬁ{l—JO(t)}(z)dz:/F {%—Z%H}dz

z

= Arsinhz—Logz+c:Log(z+ z2+1)—Logz+c

1
Log <1+ 1+—2> +c.
z
It follows from

E{Ljo(t)}(z)—m for Xz — +oo,

t
that

c=-Log(1+v1+0)=—-In2,

so we finally get

1 g2 1 14+4/14 2% 24 V1+22
'C{L‘O()}(Z):Log<1+ 1+Z2>—ln2:Log T =Log Y A

Finally, if we put z = 1, then

L{l_f(t)} (1):/0+00 %{ﬁ(ﬂdt:m (14’2\(11?) —In (12\/5) L0
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Example 1.5.18 Compute the Laplace transform of te=t Jy (t\@)

Just use the well-known rules of computations to get

cfeeta (v2)} = —d%c{e*f Jo (tv2) } (2) = —%E{JO (v2)} = +2)

1 d z+2 1 d 1
:_EEC{JO}(W>:_EE 71_1_(“2)2

d 1 z+2
= —— = 3 - <>
dz 2+ (2+2)? (22 +42 4 6)2
Example 1.5.19 Apply a series expansion to prove that
1 1
(o)} 0= o).

Using a termwise Laplace transformation we get

()=o) oo S e b

n=0

n=0

X (=1)m WXt o 1= (-1 1 1
B Z ((n'))2 LA} (z) = Z ((n'))2 it T Z ( n!) o oz exp(—z) '
n=0 n=0

We finally notice that the series is absolutely convergent, so the termwise Laplace transformation is

legal. ¢

Example 1.5.20 Compute the Laplace transform of Jy (2\5)

By termwise Laplace transformation,

+oo n 2n+1
cln(2vi)} e =¢ {;—O% (27‘/%> } (2)

S e S~ (=) D(n+3
B {X:n!(n—i—l)!t+2 (z)zzn!(n—l—l)! (Z”-Fg )

n=0 n=0

We compute separately,

) (Db dVF JE sy
nl(n +1)! n!(n +1)! T oontl nl(n + 1)!

_ VF @t @ 1(zn+1>.

2041 (ph)2(n 4 1)1 22041 "l n
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It follows from this computation that the series is absolutely convergent, and that

el ()} 2z\fz ( o ) (4i)n’ fz=0.0

Example 1.5.21 Define the Laguerre polynomials L, (t) by

et dr
Enl) =01 e

Compute Lo(t), Li(t), ..., La(t).
Then compute the Laplace transform of L, (t) for n € Ny.

t"e_t}, n € Np.

By straightforward computations,

t
Lo(t) = =0t =1,
_ —t) _ ot o
Ll(t)—ldt{te b=e{-tet+e"} t+1,
t 2 t
Ly(t)y = - - {tPe '} ="

t
€ 2 ¢ —t —t 1,

= — 1t — 4t 2 =t —2t+1
2{ e et +2e7"} 5 +1,

In the past four years we have drilled

89,000 km

That's more than twice around the world.

Who are we?

We are the world’s largest oilfield services company.

Waorking globally—often in remote and challenging locations—
we invent, design, engineer, and apply technology to help our
customers find and produce oil and gas safely.

Who are we looking for?
Every year, we need thousands of graduates to begin
dynamic careers in the following domains:

. ‘ = Geoscience and Petrotechnical

=m Commercial and Business

What will you be?

ami careers.slb.com Schiumberger
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et d& 3 —t et & 3 _—t 2 —t et
et 3 3

= —{tPe ' 4+9%e " —18te 46 =——+ - t?—3t+1,
6 6 2
et d* _ et d3 _ _

L4(t) = E@{tALG t}:ﬂ%{ftzle t+4t3€ t}

et d* et d

— R -t t3 —t 12t2 —t _
gp e L e BT R e =

% {tPe™" —6t* e +6te "}

{—tte " +12t% T —36t7 e ' +24te "}

t 1, 2
= S {tteT 16t e 4 T2 e — 06t e 4 24e T ) = bt - S 43— dt 4 L.

3

Finally, we use the rules of computation to find the Laplace transforms in general,

ez @ - e et - Lo @eene-

n!

n—1

= % z—D"L {tn e_t} (z—1)— Z [% (tn e—t):| (- 1)n—1—j

=0 t=0

.

) LY e 1) 0= ) L) ()

L N el VORI Y SR A
(z—1)"- 1
n! antl Tl T z/)

The computations above are valid for Rz > 0, or, by an analytic extension, for z € C\ {0}. ¢

Example 1.5.22 Let L, (t) denote the Laguerre polynomials introduced in Ezample 1.5.21. Prove

that

JiO:L'Ln(t) = Jy (2v1).

n=0

It follows by some combinatorics that

P I et U n qn—Fk N dk .
Ln(t) = ﬁdt—n{t e }mzo<k)—dtn_kt ~%6
e~ n\n & "opl(=1)k
= = Tk (ke =S T gk
nl < k ) i e =3 (KD2(n— k) "
k=0 k=0
45
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hence, by insertion,

= =R G Ly £ S B NG M VAR
;n! Ln®) = nzog(w(n—m!t _kz_o{;k (n—k)!} 2 ( > >
_+Oo+ool 2\/—2k_+ kz\/EQk
- S{Ea () S ()
= € J0<2\/E> <>

Example 1.5.23 Let \/- denote the branch of the square root, which is positive on Ry and which has
its branch cut lying along R_.

1 1
1) Compute the inverse Laplace transforms of and

Vz+i Vz—1i

2) Apply the results above and the rule of convolution to prove that

1 1 eits
J()(t):;/i1 mds, fort e Ry.

1) We shall use the well-known result

DO [UEC S S EREA T

It follows from one of the rules of computation for every a € C that

Choosing a = i we finally get

2) We get by the rule of convolution,

Lo} (2) = R _ﬁ{i.eit*i.e_t}(z)
OETVERL Vei Veri R VECVE VST
hence
1 t —iu i(t—u) 1 t z(f 2u) 1 t it(1—2%4%
Jo(t) = / ¢ L du= 7/ exp (it ( t)) du.
TJo Vu Vt—u t—u TJo gy U1
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1 t
Then by the change of variable s =1 — 2 %, thus % = 5(1 —s) and du = 5 ds,

1 Pexp (it (1—2%)) uzl ' et ! s
Sot) = 77/0 B/ (1- ) d 77/—175\/;(1_5)-(1—§{1—s})< 2>d

Example 1.5.24 Compute the inverse Laplace transform of
6722

2249

We get by a small rearrangement,

—2z
€ =2z 1 1 . —2z
T T — ¢ LGN} G),

w
—
_|_
—
[OURIRNS
~—
N

2z } J()(?)(t - 2)) for ¢ > 2,
(t)

0 for t < 2.

Example 1.5.25 Compute the inverse Laplace transform of

1
V22 —42+20

It follows from the well-known trick

1 1 1 1 1 z—2
= = —L{Jo(t
Vz?— 42420 (z—2)2+42 4 1_|_(z—2)2 4 {0()}( 4 )
1

L{Jo(4)} (z —2) = L {e* Jo(4t)} (),

hence
1
£ {m} (t) =" To(r). 0
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Example 1.5.26 Compute the inverse Laplace transform of

(z2 —|—22+5)7% )

It follows from

c{ﬁ(t)}(z):% =1 Jm

that

L’{tJt(t)}(z)z—jZ{l— : }: 1%.

2241 (22+1)
Then we get
_3 1 1 11 1
(z2+2z+5) Po= 7 = 5 :Z-Eﬁ{tJl(t)}(Z;_ )
((z41)2+4)2

(1 ()
1 1 ,
= 1£{2th1(275)} (z4+1) = 1 L{2e "t J1(2t)} (),
and we conclude that

(e t5) ) = %e‘ttJl(Zt). o

American online
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The Laplace Transformation II c-12 2 Applications

2 Applications

2.1 Linear ordinary differential equations

Example 2.1.1 Find the general solution of the differential equation
tf"@) +2f )+t f(t)=0.

We assume that f(t) and f'(t) are defined by continuity for t = 0. Then put F(z) := L{f}(z), and
we get by the Laplace transformation of the given differential equation,

_dilz {2 F(z) =2 f(0) = f(0)} + 2{2 F(2) — f(0)} — dizF(Z) =0,
hence

—22F(2) — 2* % + f(0)+2zF(z) -2 f(0) — % =0,
from which

dF _ f(0)

dz 2241

On the other hand, it follows from the rule of multiplication by ¢, that
_dr  f(0) y
LU SOHE) = 5 = 525 = 1(0)- £fsin 1)),

from which we get by the inverse Laplace transformation,

sint

f(&) = f(0)- ——.
The differential equation is singular at the point ¢ = 0, because the coefficient ¢ of the term of
highest order of differentiation, f”(¢), is (trivially) 0 at ¢ = 0. Therefore, we cannot conclude that the

differential equation has two linearly independent solutions at ¢ = 0.

One may of course, using plain ordinary Calculus, compute another linearly independent solution for
t # 0 by the well-known formula,

. 2 .
sint t 2 sint 1
t) = — — — [ =dt) dt = — dt
o (t) t (sin t) P ( / t ) t sin? ¢

sint cost
= — - (—cott)=———.
t t

It is obvious that ¢(t) is not defined at ¢ = 0.

Remark 2.1.1 Note that the equation can also be solved directly by using the following clever rear-
rangement,

0 = HIOF2FO O = (O +1- £ O+ 10+ £
= % {t- 'O+ ')+t f(t) = % (- F)+1-f O+t f(b)

d2
— IO} + L),

49

Download free eBooks at bookboon.com



The Laplace Transformation II c-12 2 Applications

from which we immediately get ¢ f(t) = a cost + b sint, hence

f(t):ctcotb bLnt for ¢ # 0,

where a and b are arbitrary constants. ¢

Example 2.1.2 Find the bounded solution of the differential equation
O+ + @ -1) f) =0,  f1)=2

We immediately recognize the equation as a Bessel equation of first order, so its bounded solutions
are given by

f@) =cJi(t), ¢ arbitrary constant.

It follows from f(1) = 2 that s =2/.J1(1), so the bounded solution is given by

fO)= 5y B 0

Example 2.1.3 Solve the linear differential equation

tf'@)+ f()+4tft)=0,  f(0)=3, f'(0)=0.

When we apply the Laplace transformation on the differential equation to get

0 L")} (2) + LS} (2) + 4 L{Ef()}2)

~ L LU )+ LAY E) — 1) — 45 L))

L) - 210 - O} 4L LU E) + 2 L)) - £(0)

2 d;‘i L{fH(z) — 22 L{f}(2) + f(0) — f(0) — 4 d% L{f}(z)+ 2z L{f}(2)

= ()LL) - 2 LA )

We divide this equation by —v/22 + 4 to get

= VR L L) o LG L (VETELne),
hence, by an integration,
V22 +4- L{f}(z) =
50
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from which

L{fHz) = !

N2
1+ (3)
and we conclude by the inverse Laplace transformation,
f(t)=c-Jo(2t).
Finally, it follows from f(0) = 3 = ¢+ Jy(0) = ¢ that ¢ = 3, hence the solution is given by

ft) =3Jo(2t). O

¢
224+ 4

= C-

— e L{D(20)} (2),

N =

Example 2.1.4 Solve the convolution equation

/f f(t —u)du = 16 sin 4t, teR,.

When we apply the rule of convolution on the Laplace transform of the equation above, we get

e / Ff -0 duf () = (EUHE) = L0osinan ()

1 . z 4
= 16- Z ,C{Slnt} (Z) = W,
hence
L} 80— E8L {0} (2),

4 z
F m

and we conclude by an inverse Laplace transformation and a square root that we have two solutions,

ft) = £8 Jy(41). O

Example 2.1.5 Solve the equation

t):t—f—/tf(u)Jl(t—u)du, teRy.
0

We apply the Laplace transformation on the equation above to get

224+1-1

LU = 5+ £
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from which we get

2+1  22+1 1 1

L{f}(z) = 22 22722 + 1 o 22422 +1 + V22 41

= % LA{To} (z)+ L{Jo} (z) = L{tx o} (2) + L{To} (2).

This gives by the inverse Laplace transformation,

flt) = Jo(b‘)+(Jo*t)(t)=Jo(t)+/0t(t—U)Jo(U)du

t
= J +t J() du—/uJO()

- +t/J0 du—/du<J1 (w)) d

= Jo(t)—l—y/OIJo(u)du—tJl(t). O

........................................................... seeseesssssssfAlcate]-Lucent @
www.alcatel-lucent.com/careers

'0,’ NS _—

One generation’s transformation is the next’s status que.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".
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Example 2.1.6 A particle P of mass 2 g is moving along the X -axis. The particle is attracted by a
force directed towards 0, and it is numerically of the size 8|x|. The particle is at time t = 0 lying at
the point x = 0. Find the position of P at every time t € Ry in each of the following two cases:

1) The particle P is not subjected to any other force.

2) The particle P is subjected to a damping, which numerically is 8 times the speed.

1) Based on the conditions above the problem is described by

d*z
2@ S —8{E, x(O) = O,

thus by a rearrangement,

d’z , .
yel +4x =0, z(0) =0, 2'(0) unspecified.

There is no need to apply the Laplace transformation, because one immediately realizes from
elementary Calculus that the differential equation has the complete solution

z(t) = ¢1 sin 2t + co cos 2t, c1, ¢o arbitrary constants.

Since z(0) = 0 and 2/(0) is unspecified, the searched solution becomes

!/
0
2(t) = ¢ sin2t = % sin 2t.

2) In the second case with damping the differential equation with its initial conditions becomes

d? d
2 E;E =8 -8 d—f, z(0) =0, 2'(0) unspecified,

thus by a rearrangement,

2
Cfle +4 CC% +4x =0, z(0) =0, 2’ (0) unspecified.

The Laplace transformation is not needed in this case either, because the characteristic polynomial
becomes A% +4\+4 has the root of second order A = —2, so the complete solution of the differential
equation is according to ordinary Calculus given by

r(t) =crte ™ 4 cye .
It follows from x(0) = 0 that

z(t) =c te

so from 42/ (t) = ¢1(—2t + 1)e~2 follows that ¢; = 2/(0), and the solution is
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It should here be added that if we had applied the Laplace transformation in the two cases, then we
would have obtained

1) (22 + 4) L{f}(z) =2'(0) 2,
and
2) (244z+4)L{f}(z)="-.

In both cases we get the characteristic polynomial as a factor of the Laplace transform £{f}(z), while
the initial conditions are put on the right hand side of the transformed equation as coefficients of
a polynomial of smaller degree. The results of course become the same in both methods, but an
application of the Laplace transformation in such simple cases may seen a little elaborated, when the
problem can be solved straightaway by plain Calculus. This example should therefore be seen as a
warning that one should not forget what one has learned earlier. Such “primitive methods” could
indeed in some cases be more easy to apply. ¢

Example 2.1.7 A particle of mass m is moving along the X -axis, subjected to a force F(t), which is
given by

%Fo-t forte[O,%],
F(t)= % Fo-(T—1) forte [%, T], where Fy is a constant.
0 otherwise,

Assuming that the particle starts from rest at t = 0 at the point x = 0 one shall find the position and
the velocity of the particle at any t € Ry.

The problem is described by the following initial problem,

2

m CchTZ = F(t), z(0) =0, 2'(0)
It is immediately judged that it like in Example 2.1.6 will be too much to apply the Laplace transfor-
mation on this problem, because we for e.g. ¢ € [0, 7] immediately get by an integration,

mi%(t) me/(O)—F/Ot;FQTdT: %Fg : g,
thus by a rearrangement,

dr_ Fo o

dt  mT
This equation invites to another simple integration, which gives

Fy

(t) =

T
3 -
3m t fort6[0,2].

T
The values of the solution above at the endpoint t = 2 are

T\ RT? . (T BT
"N2) T 2am M \2) 7T am-
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Using these as the new initial values we get in the same way for ¢ € [%, T],

dzx (T ) FT 1 51
— = . — — Fo(T — =— — | = k(T -
me mm(2)+/TT o(T —7)dr 1 T o(T — ) z
2
BT 1 5 1 T RT Fy, 9
_ _—E /T —t —Fy — =" — (T =2Tt+t
L e > 7 +t)
B Fy , FT
= 2Fpt T t 5
thus after a rearrangement,
dx - FO 2 2F0 F()T
7 _mTt " t— o’ fort € , T
Then by another integration,
T F . F., RT1"
t) = — - (R My R
2(t) x(2)+[3mT L 2 |y
FT? FRT? FT? FT? F F T
R T
24m 24m 4m 4m 3mT 2m
FO 3 FQ 2 F()T .F()T2
= L2y .
3T’ " m ' om T 12m
We get for t = T that
Ey 2Fy FyT FoT
"T)=-——T*+ 27— =",
7(T) mT * m 2m 2m
Since F'(t) = 0 for t > T, we get
T
2 (t) = ﬁ fort > T.
Then analogously,
FRT? EFT? FRT? FRIT? FRT?
T = — — =
(1) 3m + m 2m + 12m dm
SO
FT? FRT FyT?  FT
_ 0T Ty = il >T.
2(t) 4m i 2m (t-1) 4m * 2m ! fort=T
Summing up,
o 43, for t € [0, ],
p(t) = —5Be P+ L2 BTy BT for t € [£,7],
— BT | BTy for t € [T, +o0],

4m 2m 7
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and
2 .
mTt’ fort€[07§]7
! —
0= ek AL for t € [£.7].
BT for t € [T, +oo[. 0

/
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Example 2.1.8 A coil of 2 henry, a resistance of 16 ohm and a capacitor of 0.02 farad are connected
in a circuit with an electric force of E wvolt. At time t = 0 the capacity of the capacitor is zero, and
the current in the circuit is zero. Find the charging and the current at any later time in the following

cases,

1) E =300 volt;
2) E =100 - sin 3t volt.

According to the given information we shall solve the following integro differential equation
o™ o1y L [rar=B@).  10)=0 and Q@) =0
— = = 1 =
dt 0.02 J, ’ * ’

or, equivalently,

dI t 1
U 81+ 25 /0 I(r)dr = S B, 1(0) =0

16 Q

Figure 1: The circuit of Example 2.1.8.

Using that I(0) = 0 we get by the Laplace transformation,
25 1
2 L{I} () 4 8 L{INE) + 22 LU} () = 5 L{F)(2),
or, by a rearrangement, isolating £{I}(z),

Lz LB}z L{E}e)
OV UNE =5 28 rm 2 Grapr

Once I(t) has been found we find Q(t) by the formula Q(¢) = fot I(r)dr.
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300
1) If E =300, then L{E}(z) = o and we get from (5),

150

»C{I}(Z) = m =50L {6741& Sln?)t} (Z),

hence by the inverse Laplace transformation,
I(t) = 50 e * sin 3t.
Finally,

t

Q(t)

t t
/ I(t)dr =509 / AT Ar = 50 S e<4+3i>f]
0 0

[—4—1—3@' 0

—4 -3 -4 -3
_ oo —At (o ey
= 50 { T (cos 3t + i sin 3t) o }

= 29 {e"(—4—3i)(cos3t +i sin3t) + 4 + 3i}

Figure 2: Graph of the charge Q(t) of Example 2.1.8, 1).

300

2) If E =100sin3t, then L{E}(z) = JoNRETE

so we get from (5) that

LI (z) = 150z _az+b cz+d
(22 49)(224+82+25) 2249 22482425

2-3+2e *(—4sin3t —3 cos3t) =6 —8e *sin3t — 6e* cos 3t.

for some constants a, b, ¢ and d. This structure shows by the inverse Laplace transformation that

b d
I(t) = a cos3t + 3 sin3t + ce 4 cos 3t + 3 e~ gin 3t.
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Then notice that it follows from I(0) = 0 that ¢ = —a, so we shall only find the three constants of
1
I(t)=a(l—e *)cos3t+ 3 (b+de ") sin3t.
If the expressions above of £L{I}(z) are multiplied by the common denominator, then we get

150z = (az+0b) (2* +82+25) + (—az+d) (2* +9)

(8a+b+d)z? + (25a + 8b — 9a)z + (25b + 9d)

(8a + b+ d)z? + (16a + 8b)z + (25b + 9d).

When we identify the coefficients of the two polynomials, we get the following system of equations,

0 = & + b + d
150 = 16a + 8b
0 = 256 + 9d

The determinant of the system is

8 1 1 1 0 1
D=]16 8 0|=8{2 8 0|=8(72+32)=28-104,
0 25 9 0 16 9
so by Cramer’s formula,
0 1 1
1 1
“=goa| 020 I=g 51(())4‘ 22 é‘_ 8 51(())4'16:%
' 0 25 9 ’ '
and
8 0 1
b 1 16 150 0 | = 150 8 1 _150-72_75-9_6_75_%
-~ 8-104 ©8-10410 9|  8-104 52 52 52 7
0 0 9
and
1 g 10 150 |8 1 75.25 625
T 8-104 8 0 ==c0ilo 5|7 52 T m Y
' 0 25 0 '
hence
1
It) = a(l—e*)cos3t+ 3 (b+de ) sin3t
75 225 . a4 | 7D 625 .
= % cos 3t + ) sindt —e {26 cos 3t + 52 sm3t}.
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Figure 3: Graph of the charge Q(t) of Example 2.1.8, 2).

25

92

t
Q) = /OI(T)drz%sin3t+§(1—c083t)

t t
7 %/ (43T g 625 g/ (4307 g
26" J, 52 >/,

= DB Gt D cosat
= 52 2% Sin 52 COS

3 L qt
N (—4430)T
+263?[(4+31)e }0+

= E—E(zos?)?f—i—%sin%
52 26 26

4+ 32‘)6(-4*3“7};

3 | 25 |
k2 o (—443i)t 4 o- 29 Nel(—4+30)t _4_ 3,
+269‘E{(4+3z)6 4 3z}+52\s{(4—|—3z)e 4 31}

= E—7—5<3083t+%sin3t
52 52 26

3 . , 6 25 . 75
+26 e~ (4 cos3t—3sin3t) + Tk (4sin 3t+3 cos 3t) £S5
6 T % 1 4 .
= TR 3t + % sin3t + — e~ " {(24+75) cos 3t+(100—18) sin 3¢ }
6 T 2% 9 a1, .
= 13 52 cos 3t + % sin3t + ——e” " cos 3t + 26 ¢ sin 3t. O
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Example 2.1.9 A resistance of R ohm and a condenser of C farad are connected with a generator of
FE wvolt. The capacity of the condenser is 0 at time t = 0. Find the charge and the current as functions

of t > 0, when
1) E = Ey (a constant);

2) E=Ey e~ where o > 0 is also a constant.

R ohm

@ C farad

Figure 4: The circuit of Example 2.1.9.
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In this case the corresponding equation becomes

1 t
I+ = [ Idt=E(®).
R+C/O dt = E(t)

Assuming that I € F we get by the Laplace transformation,

RE(T}(2) + = - 2 £{T} (=) = L{E} (2),

thus

iy = S

1
— - _R
R+ & z+

1
L
CR

E
1) If E = Ey is a constant, then L{E}(z) = 70, hence

= =g eleo(-gp) o)

and it follows by the inverse Laplace transformation that

and

CR

Q) = /OtI(T) dr = C{E(t) - RI(t)} = EoC {1 _ eXp(—t> } .

E
2) If E(t) = Ege™*, then L{E}(z) = TO, hence
z4+a

E() z
L{I}(z) = —- .
{}() R (Z+CIR)'(Z+Q)
1
We see that we have two cases, either o # cr Y= oR

1
a) If a # R’ then it follows by a plain decomposition,

s = B A 1 1)

R la—ds z+4z —-algz z+a
B[ 1 1 CRa 1
" R |1-CR« z—|—ﬁ 1—-CRa z+al’

hence, by the inverse Laplace transformation,

_ EO 1 t E()CO[
=% 1-Cha eXp( CR> 1= CRa P00
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from which we get by an integration,

t
_ B CR (- BN EC
/OI(T)dT— R 1_CRa {1 exp( CR)} l—CRa{l exp(—at)}

_ B¢ {1 - exp(—t> -1+ exp(—at)}

Q(t)

1—-CRa CR

_LC X(—t)—X _L
T 1-CRa \"PV TP\ TCR) [

1
b) If instead o = ——, then

CR
B @-z—i—a—a_@. 1 _an_ 1
EINE) = R (z+a)?? R z+a R (z+a«)?
EQ —at O[EQ —a
= ﬁ-ﬁ{e f}(z)—?/i{te t}(z),

and we get by the inverse Laplace transformation

1) = % (1— at)e=ot = % (1 - CtR> exp(—CtR> ,

and then by an integration,

Q) = /OtI(T) dr = % /Oata —7)e T dr = % {[—(1 — 7))ot — /Oat erT}

E, a E,

= el et w1k [T = (e ke b1 1)
E() p EO —at t L

= —ate = —te " =FEC- = —r )
Ra ™€ R'C " cr P\ CR ¢

Example 2.1.10 A beam is suspended as indicated on Figure 5 on page 62 with its endpoints at x = 0
and © = €. The beam carries a load, given by Wy (a constant) per unit length. Find the bending at
every point, i.e. solve the boundary value problem

4 _ W

i= g S0 fO=1"0)=0,  f(O)=f"()=0.

In this case there is absolutely no need to apply the Laplace transformation, and one would even get
into troubles with it, because we have not specified f/(0) and (3 (0), which are needed.

We get by four successive integrations that the general solution is given by

]. W() 4

f(x):EEx +ag2® +asz® + a1 x + ag,
where
1 Wy
" _ = 2
f (x)—2—EI;U + 6az = + 2as.
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Figure 5: The beam of Example 2.1.10.

Thus, f(0) = ap =0 and f”(0) = 2a2 = 0, so the solution must have the structure

1 W
f(x):ﬂE—;:ﬁl—Fang—l—al:z:,
where
1 W,
f//(il') = 5 E—;I'Q + 6@3 xX.
We then derive that
1W0 1VVO
" o _ =70 p2 _ _ - 7Y
')y =0= 5 EIK + 6as ¢, thus ag D EIE’
and
LWy, 1 W 5
HO=0=g 51t ~ g tut
SO
1 Wo s s 1 Wo g
0 =51 g1 ( )=simr
Finally, by insertion,
Ol Wy oy 1 Wo, 4 1 Wo s 1 Wo,, s s
1@ = g BEl® Turl T aE @ 2 )
1 W
- ﬂﬁx(e_x)(ez’—ex—ﬁ). 0
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Example 2.1.11 A beam is fized at x = 0, while the other endpoint x = £ is free. The beam carries
a load which per unit length is given by

W07 xe]07§[7

0, T e ]%,[[.

W(x)

]

02

]

y

Figure 6: The beam of Example 2.1.11.

Find the bending of the beam, i.e. solve the following boundary value problem

d'f _ W(z)

dz* EI

zelod,  f0)=f(0)=0, f')=fPw)=o0.

This is a boundary value problem, so it is not easy to solve it using the Laplace transformation. Instead
we integrate

W,
d47f: F;, fOI‘a?E[O,g[,
dat
! 0 forxe]%,ﬂ,
to get
dgf_ %(m—%)-i—a, foer[O,g],
dad

a, for z € [%,é].
It follows from the boundary condition f®)(£) = 0 that a = 0. Hence, we get by another integration,
4% 22 ¢
2f i (x—5)" +0b, for z € [0, 5],

= =
du b, for x € [%,@ .
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Then it follows from f()(¢) = 0 that b = 0, so by another integration,

3
df %(I—%) +c, forxG[O,%],
du c, for x € [%,K] ,

where f'(0) = 0 implies that ¢ = ;0% ¢3. Finally,

2%301 (x - %) + 48EI z+d, for x € [0, %] )
fx) =
o0 (3x + d, for z € [£,¢],

where finally f(0) = 0 implies that d = 384 Yol

384EI {16( %)4+8€3$_€4}7

384EI {853‘5 - £4}

fx) =

¢4, and the solution is given by
for x € [O, %] ,

for x € [%,E] .

-
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Example 2.1.12 Solve the boundary value problem

tf"t)+2f(t)+tf(t) =0, lim f(t)=1, f(x)=0.

t—0+

We must be careful here, because we have a singular point at ¢t = 0, where the coefficient of the highest
order term f”(t) is zero. It will later follow that the problem is even ill-posed, because the solution,
based on the condition lim; o4 f(¢) = 1 alone will automatically satisfy f(7) = 0. Similarly, even if
it follows from the differential equation itself by letting ¢ — 0 that f/(0) = 0 is easily derived, and yet
it is not used in the derivation of the solution. The point is, of course as mentioned above, that we
have a singular point at t = 0, and that even if the linear equation for ¢ # 0 is spanned by two linearly
independent solutions, at most one of these is also a function in the class F of functions, which can
be Laplace transformed.

When the differential equation is Laplace transformed, we get
0 = ~ L LM EFLUNE) - o L)
= —d% (22L{f}(z) = 2 F(0) = f'(0)) +2(z L{f}(2) = [(0)) — d% L{f}(z)

= (P41 S LUHE) 2 L))+ 1+ 22 LT} ) 2

= (1) (- L@ ) - 1= (1) L)) -1

from which

1

L{LI (1) = 5 = Llsint)(2).

Using the inverse Laplace transformation we therefore conclude that ¢ f(¢) = sint, so
sint

f(t):Tv teRJra

with f(0) = lim;—o4+ f(t) = 1 by continuity. ¢
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2.2 Linear systems of ordinary differential equations
Example 2.2.1 Solve the system of differential equations,

W~ 2a(t) - 34(0) 2(0) = 8,

y(t) — 2x(t), y(0) = 3.

We shall assume that z(t), y(t) € F. Then we write for short
X =X(z):=L{z(t)}(2) and Y =Y(2) = L{y(t) }(2).
Using the Laplace transformation we get
22X —8=2X—-3Y,
2Y —3=-2X+4Y,
hence by a rearrangement,

(z—=2)X+3Y = 8,

2X+(z-1)T = 3.
The corresponding determinant is

z—2 3

A=1"9 L 1

‘:,22—3,2—1-2—6:,22—32—4:(z+1)(z—4).

Thus, for Rz > 4, by Cramer’s formula,

=25  32-17
X 1 SO T R A e S B
z+1)(z—4)| 3 z2—1 (z+1)(z—4) 2z+1 2z—-4 2z+1 2z-4
and
—25 12-22
Y(z) = 2 z—2 8 _ 3z —22 _ =5 L5 5 2 _
(z+1)(z—4) 2 3 (z+1)(z—4) 241 2z—-4 2z+1 z-4

Finally, by the inverse Laplace transformation,
z(t) = bet + 3ett,

He~t — 2¢tt.

Example 2.2.2 Solve the following system of linear ordinary differential equations,

d?z  dy _

e + au + 3x(t) = 15e7t, 2(0) = 35, 2/(0) = —48,
Py dx . y(0) = 27, y'(0) = =55
W — 4% + -?)y(t) = 15 SIHQt,
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We get by the Laplace transformation,

15
(2 X —352+48) + (2Y —27)+3X = ,
z+1
(22 — 2724 55) —4(z X —35) 13y = 22
22+ 4’

hence, by a rearrangement,

15
(z2—|—3)X—|—zY = + 35z — 21,
z+1
9 30
—4zX—|—(z —|—3)Y = 5 + 27z — 195.
z2+4

The corresponding determinant is
A= (22437 4422 =24 1102249 = (22 +1) (22 49).

Then, using Cramer’s formula

1 A5 1 352-21 2
X — z+1
(2) (224+1)(22+9) 3—§4 +272—195 2243

1

8

1 1
2241 2249

15 (22—1+4)
z+1

(el

+352341052—2122—63—

30z
2244

— 2722 + 195z}

1 1 1 60 30z f
= = — Y152 — 15+ —— — 34827 -
8{Z2+1 Z2+9}{ 5z 5+Zle 22+4+35z 82% 4+ 300z 63}
_60 1 60 1 30 1 80: 1
8 (241)(2241) 8 (24+1)(2249) 8 (22+1)(224+9) 8 (22+4)(2249)
352 (2241—1 2249-9) 48 (224+1—-1 2249-9) 315 =z
+— - -— — +— =
8 2241 Z2249 8 z241 2249 8 2241
815 = 78 1 78 1
8 2249 8 2241 8 2249
601 1 601 2-2°-1 60 1 1 60 1  z°49-10
8 2 z+41 8 2 (241)(2241) 8 10 z+1 8 10 (z+1)(22+9)
8001 = 301 = 301 = 30 . 0z 3 =
8 3 2241 8 3 2244 8 5 2244 8 2249 8 2241
By 2 6 54 815 815z 78 1 78 1
"8 2249 2241 2249 8 2241 8 2249 8 2241 8 2249’
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thus

X(z) = [0 6L 1 0 = 30 1 .6 =z I
a 8 8[ z+1 8 2241 8 2241 8 2249 2249

+ _9_%4_% c + 6_L8 1 + 94_@ <
8 8 8 J 22+1 8 | 22+1 8 8 2244

6 z 78 1
B (SR /It G
+{ 8}22+9+{ +8},z2+9

1 z 1 z
= 3 30 —45 2
z—|—1+ 2241 z2—|—9+ 2244’7

and we get by the inverse Laplace transformation,
z(t) =3e "+ 30 cost — 15 sin 3t + 2 cos 2t.
Once we have found z(t), we compute
dy d*x

= 15e¢t— =2 —
I S5e s 3x(t)

= 15 e_t—{3 et —30 cost+135 sin 3t—8 cos 2t} {9 e~ t4+90 cost—45 sin 3t+6 Cos2t}

= 3¢t —60 cost — 90 sin 3t + 2 cos 2t,
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hence by an integration

y(t) = —3e~" — 60 sint + 30 cos 3t + sin 2t + c,
where

y(0) = —-3+4+30+c =27, hence ¢ = 0.
Summing up we get

x(t) =3 et + 30 cost — 15 sin 3t + 2 cos 2t,

y(t) = =3 e~t — 60 cost — 30 cos 3t + sin 2t

Example 2.2.3 Solve the system of ordinary differential equations

Yty = 0, y1(0) =1,

Yy + 1 0, y2(0) = 0.

First method It follows by inspection that

d _
E(y1+y2)+(y1+y2)20, thus y1 +y2 =cre”’

)

and
d ‘
a(yl—y2)—(y1—y2)=0, thus y1 —y2 = cp €.
It follows from the initial conditions that ¢; = ¢ = 1, so
yi(t) =cosht  and  y(t) = —sinht.
Second method It follows by the Laplace transformation that
2Y1(z) =14+ Ya(2) =0,
2Y2(2) — 0+ Yi(2) =0,
hence
z-Y1(2)+1-Ya(z) =1,
1-Yi(2) +2-Ya(z) =0.

The determinant is 22 — 1, so it follows from Cramer’s formula,

1 1 1 z
Yi(z) = ] ’ 0 - |71 = L{cosht}(z),
and
1 z 1 1 .
2(:)=5—3|1 o ' =57 = “Lisinht}(2),

from which we conclude that

y1(t) = cosht and y2(t) = —sinh . O
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Example 2.2.4 Solve the system of ordinary differential equations

yll + yé +y1 = 07 yl(o) = 07

oty = 3, y2(0) = 0.

First method It is obvious that ¢4 can be eliminated by subtraction, so application of the Laplace
transformation is totally unnecessary. We get by this subtraction that

yi = _37
thus y; = —3t, using that y;(0) = 0, whence
Yy =3 —1y1 =3+ 3L,

from which by an integration,

3
y2=§t2+3t.

Summing up,

y1=-3t and y» = gtz + 3t.

Second method If we instead apply the Laplace transformation, then we get

ZYl + ZYQ +Y1 = Oa

zYs + Yp =

)

3
2
hence by a rearrangement,

(z+ 1)1 +zYy =0,

3

The determinant of this system is
A=(z4+1)z—2=27%

and we get by Cramer’s formula,

110 =z 3
Ni=ls L |=ma=LBe)
and
11 24+1 0 3 3 3 5
YQ:; 1 % :Zz“l‘Z?)ZAC{Qt +3t}(2’).

Finally, by the inverse Laplace transformation,

3
y1=—3t  and y2:§t2+3t. O
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Example 2.2.5 Find the function z(t) where x(t) is given by the following system of three linear

ordinary differential equations,

¥4y =y+z z(0) =2,
v +2 =z+uz, y(0) = =3,
2+ =x+y, z(0) = 1.

We shall use the Laplace transformation to get
2X(2) —2+2Y(2)+3=Y(2) + Z(2),
2Y(2)+3+2Z(2)—1=2Z(2) + X(2),
2Z(z) = 14+2X(2) —2=X(2)+Y(2),

hence by some rearrangements,

2X(z) + (2—=1)Y(2) — Z(z) = -1,
—X(z) + 2Y(z) + (z—-1)Z(z2) = -2,
(z—=1)X(2) - Y(z) + 2Z(z) = 3.

The corresponding determinant is

z z—1 -1
A=| -1 z oz2-1 =24 (z-1P°-1-32(z-1)=2(*-1).
z—1 —1 z

Hence, for Rz > 1,

X(z) = 73— | 2 z z—1
-0 | . 7,
1
= o e 2 {8 -2k D+ 5+ D}
S S S - , )
= o G2 a2t e 1)
_ 4z2_4z_2. z(z—1) B 22 2(2_’_%)_1
2(z3—1) (z—1)(22+2+1) (2—1—%)24__ (z+%)2+{
- ' 2 2_73. 2 2"
Crife{g) VP e {4
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Then finally, by the inverse Laplace transformation,

ot) = 2exp<—;t> cos<*ft> —jgexp<—;t> sin<*ft>

- e he)en( ).

We notice that we shall not explicitly find y(¢) and z(t). ¢

[ ]
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Example 2.2.6 Solve the system of ordinary differential equations

oAy
dt a " z(0) =3, 2/(0)=-2
dPx B 0)=0

e y(t) = e, y(0)

It is absolutely no reason here to solve the problem via the Laplace transformation, because it is much
easier to start by integrating the first equation to get

2 2
+ylt)==+c=—=
x(t) + y(t) 5 Tc=5 + 3,
from which
t2
—y(t) = x(t) — 5 3.
When this is put into the second equation of the problem, we get
d*z ot

where we guess a particular integral of the form
1 1
t)y=—e '+ -t +a.

x(t) 5 € + 5 +a
Then by insertion,

d*z 12 12

w-’-fﬂ(t):@ t+5+1+a:€ t+5+3,
so it is indeed a particular solution of the inhomogeneous equation, when we choose a = 2. Then we
get

1 1
x(t) = 5'3_1‘/4—5752—|—2-|-61C0st—|—02sint7
/ I .
() = 5 +t—cysint 4 o cost,

thus
1 1
x(0)=3=§+2+01’ henceclzga
and
1 3
?(0)=-2=—5+c  hencecy=—o.

We conclude that

1 1 1 3
x(t)zie_t+§t2+2+§cost—isint,
and
t? 1 1 3
y(t)25+3—$(b‘)=—§€7t+1—§cost+§Sint. O
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Example 2.2.7 Solve the system of linear ordinary differential equations

dx dy .

T a 2x(t) + 2y(t) = sint, z(0) = 2/(0) =0,
2z dy y(0)=0
2492 t) =

Tz 25 tat) =0,

It is seen by inspection that it is not necessary to apply the Laplace transformation in this example
either, because the first equation can be rewritten in the form

%(x—y)—2(m—y):sint.

The complete solution of the corresponding homogeneous equation is ce?, and we guess a particular
solution of the structure

T —y=a cost+bsint.

We get by insertion,

d
E(x —y)—2(x —y) = —asint+b cost — 2a cost — 2b sint = (—a — 2b)sint + (b — 2a) cost,

which is equal to sint for b= 2a and a = —%, so b= —2. Since z(0) — y(0) = 0, the solution is
1 2 ar 1 . 2
x(t) —y(t) = —% cost — R sint 4 ce” = R (—cost —2sint +¢e*).

2 4 2
2(x —y) = —% cost — R sint + ge%,

and so by a differentiation,

d d 2 4 4
2—x—2—y——sint—gcost+ge

_ 2t
dt dt 5 '

When this expression is added to the second equation of the system we get

d*x  _dz 2 . 4 4 o,
ﬁ—FQE—Fx(t) =% sint — R cost—!—ge
The corresponding homogeneous equation has the complete solution
c1 et cot e L.
A particular solution of this equation must have the structure
x(t) = a sint + b cost + ke,
thus

2'(t) = —b sint + a cost + 2k e,
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and
2"(t) = —a sint — b cost + 4k e,

and we get by insertion

d? d
Wf +2 d_f +2(t) = —2b sint + 2a cost + 9k e*".
. N 2 4 4 2t _ 2 _ 1 _ 4
This expression is equal to £ sint — ¢ cost + z e’ for a = —¢ and b = —¢ and k = . Hence,

complete solution of the differential equation in x(t) alone is given by

2 1 4
x(t) = —% sint — R cost + 4—562t F+eretdegte .

By a differentiation,

1 2 8
2 (t) = : sint — £ cost + Ee% +(ca—c1)e P —eate

Then we use the initial conditions to get

0)=0=—21 4 th S AL
T == Ty Ty T B AT T s T o
and
2 8 1 2 8 5+418-8 1
/ = = —— — — th — — - = — = — —
PO =0=—g+pte-c us =gt e 15 3

Summing up, we have proved that

2 1 4 1 1
z(t) = —x sint — R cost + 4756215 + §e_t + §t€_t’

from which we derive that
1 1 1
2 D2 4 D=ty gt

(t)—x(t)—i—gsint—i—lcost—le =
= 5 5 5 T 0% Ty 3

the

For comparison we alternatively also solve the problem by using the Laplace transformation. Then we

get
1
z2X —z2Y —2X+2Y = ———,
14 22
22X —22Y + X = 0,
thus
(c-)X 4 (2t =
z z = i
(22 +1) X +22Y = 0
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The determinant of this system is

A=(z-2){2z—(-1) (2®+ 1)} = (¢ = 2)( + 1)*.

Then use Cramer’s formula to get

X 1 H-% —(z-2) 2z
(2 —2)(z+1)2 (2= 2)(z+ 12 (224 1)
0 2z
and
v 1 2=2 S| 1
(z—2)(z+1)2] 22+1 0 (z —2)(z +1)%

Vowo Teucxs | Resaunr Tevcks | Mack Touers | Vowo Buses | Vowo Conseucnion Ecuement | Wowo Pesm | Vowo Ao | Vowo IT

Vowo Fieswcie Senaces | Voo 3P | Wowo Powenraam | Voo Pasrs | Vowo Tecuwowoey | Wowo Lossnes | Busieess Anes Asi
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By a very tedious decomposition,

4 1 -2 1 2z 4 1 1 1

X = m i T O e e 1R (1) 15 7=2 3 (a1

4 1 1 1 1 6z—(2—2) (¢°+1) 4 1
45 z—2 3 (2+1)2 3 (2—2)(2+1)2(22+1) 45 z—2

4 1 +1 1 1 23—222-52-2 i 1
45 z—2 3 (2+1)2 3 (2—2)(2+1)2(22+1) 45 z—-2

4 1 +1 1 _1 22322 _i 1
45 z2—2 3 (24+1)2 3 (2—2)(2+1) (2241) 45 2-2

4 1 1 1 1 2 1 1322-92-6+(2-2) (z°+1) 4 1
45 z—2 3 (2+1)? 3 (=3)2z+1 9  (2—2)(z+1) (z2+1) 45 z—2

4 1 +1 1 +1 11 2%422-82-8 4 1
45 2—2 3 (2412 9241 9 (2—2)(2+1) (224+1) 45 2z—2

41 1 1 11 1 Z2—8 4 1
45 z—2 3 (2+1)2 9 z4+1 9 (2—2)(22+11) 45 z-2

4 1 +1 1 +1 1 i5z2—40+422+4
45 2—2 3 (2+1)2 9 2+1 45 (2—2)(22+1)

S

4t 1 1 11 1 9 (22 —4)
45 2 —2 3 (24+1)2 9 2+1 45 (2—2) (22+1)

o4 1ot 111z 2]
B 3(2+1)2 9241 52241 5 22417

45 z2—2
Analogously,

v 1 _ 1 9—(z41)?

_ 1 1
(z=2)(z+1)2 92z—2 9 (z—2)(z+1)?

11 1B-2-1)B+z+1) 1 1 N
92-2 9 (z—-2)(z+1)2  92z-2
BRSO S |

92—-2 9z+1 3 (z2+1)

1(z+1)+3
9 (2+41)2

+

We finally apply the inverse Laplace transformation to get

4 1 1 1 2
z(t) = EeQH— gte_t—i— §e_t — ; cost— _ sin,

1 1 1
t)=——eM+_tet+ et
y(t) = g+ gt +ge
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Example 2.2.8 Solve the system of linear ordinary differential equations

dx d?y 4
i) = e 2(0) =0,

— _
W)~y = 1, v(0) =y/0) =0.

We apply the Laplace transformation,

1

X 222y =
z + z L1
1

=

z+1)X - Y =
The determinant of the system is
A=—2-2"(z+1)=—2z(1+2"+2z).

Then by Cramer’s formula,

Y ! S
:—2— =0,
z(222422+41) S

W[

d
from which we conclude that y = 0, hence d%: = e~! by the first equation, from which

rt)=1—¢e" and y(t) = 0.
Alternatively, we can also find X by Cramer’s formula,
1 222

1 z+1 1 1
X = - - — . _ 22
2(222+224+1)| 1 1 2(222422+1) z+1

2224+ 2241 1 1 1

2(22242241)(2+1)  2(z4+1) 2z z+1

from which x(t) = 1 — e~*. Finally, (sketch) there is no need to apply the Laplace transformation,
because a straightforward integration of the first equation gives

dy ¢ —t dy
oW hus —1_et_2Y
x(t) I e ", thus x(t) e o’

so by eliminating z(t) in the second equation,

d?y dy
T2l et 22 —y(t)=1
¢ a2 e a vO=1
which is reduced to
Py | dy )

from which we get y(t) = 0, and we proceed as above. ¢
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Example 2.2.9 Solve the system of linear ordinary differential equations of variable coefficients

dy

ta(t)+y(t)+t e (t—1)et,
z(0) =1
=y = e

HINT. First find y(0).

When we put ¢ = 0 into the first equation, we get y(0) = —1. Then we see that it is absolutely no
need to use the Laplace transformation, because it follows from the second equation that

_dw —

(6) yit) =7 — e,

thus
dy Pz,

= —5 t+e
dt dt? ’
and hence by insertion into the first equation,

dx 4 d*x s s
tx(t)—!—a—e —|—tﬁ+te =(t—1)e™",

which is reduced to the Bessel differential equation

d?zr dx
t—+ — +tx(t) =
gz g T =0

the bounded solutions of which are given by c¢g Jo(t). Since both Jp(0) = 1 and z(0) = 1, we get that
x(t) = Jo(t). Hence, by (6),

y(t) = Jo(t) +e7F = =i (t) + e,
and the solutions become

x(t) = Jo(t) and  y(t)=—Ji(t) +e " O
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Example 2.2.10 Solve the system of ordinary differential equations

d*x d?y _
_3W + 3@ = te ! —3cost,
d2x dy .
tﬁ — E = Slnt7
given that
d%y
ZE(O) =-1, x/(O) =2, y(O) 4, W(O) =0.

d2
Notice that 3/(0) is unknown. If, however, %(O) exists and is finite, then it follows from the second

equation that 3/(0) = 0. Under this assumption it follows from the first equation for ¢ = 0 that

2z
—-3—(0)+3-0=0-3
)+ ,

so we get additional,

2
%(0):1 and  y/(0) = 0.

EXPERIENCE THE POW

FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
RUN EASIER...
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We put as usual L{z}(z) = X and L{y}(z) =Y. Then by the Laplace transformation,

1 - 3z
(z+1)2 22417

-3(2X+2-2)+3(2?Y —42-0) =

d 1
- X —2)—zY +4 = —

dz(z +z ) zY + 2o

thus
1 3z

322X 2y = 15z — —

z + 3z 52 6+(z+1)2 2o

d 1
- X)—zY = - —_

dz(z ) N 3—’—22—1—1

When the second equation is multiplied by 3z, it follows by an addition that

—3zi(z2x)—3~1(zzx):6z—6+

dz (z+ 1)’
which can also be written
d 1
—{-3°X}=62-6 .
dz{ X} =6 +(2—|—1)2
Then by an integration,
1
323X =322 — 62— —— +C,
z+1
hence
.,z 11 Cc1 1.2 €111 1 145
oz 22 328(x4+1) 3 2 2z 22 3 23 3 z+1 3 23(z+1)
1 2 C 1 1 1 1 22—2z+1 21 5 1 1 1 1 1
- __ <% 35 Z. 3 - —— .= - _2+_(1_C)_3__.
z oz 3 z 3 z+1 3 z 3 z 3 z2 3 z2 3 z+41
By the inverse Laplace transformation,
2 5 1 1
ty=—-+-t+ - (1-0O)*— et
wt) =S+ t+(1-CpP e,
thus
d’z 1 1
-~ =-(1-0)—=e"
az ~ 31O -3¢
It follows from
d*x 1 1 C
—0)=1==-1-0C)— - =——,
dtz() 3( ) 3 3

that C' = —3, so

2 5 2 1
$(t):—§+§t+§t2—§€_t,
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(notice that x(0) = —1 and 2/(0) = 2) and

Pxr 4 1 4

da? ~ 3 3°

By insertion into the second equation we get

By Er et
— =t— —sint=—-te " —sin
dt dt? 3 ’
hence by an integration,
2 1 1
y = §152+ §te—t+ §e‘t+cost+l<:.

We get for t =0,

1
y(0)=4=g+1+Fk

thus ¢ = g The solution is

2 5 2 1
"E(t):—§+§t+§t2—§€_t,

8 2 1
y(h) = 5 + 3 2+ S(t+ Defe " + cost.

3

Example 2.2.11 A particle moves in the XY -plane such that its position (x,y) at time t is governed

by the system of differential equations

")+ K2 y(t) =0, ")+ k2xz(t) = 0.

Assume that the particle is at rest at (a,b) at time t = 0, when it is set free. Find the position of the

particle at any later time.

We use 2(0) = a and y(b) = b and 2’(0) = y’(0) = 0, when we apply the Laplace transformation,

22X —z-a+ kY = 0,

kB3X +22Y —2b = 0,
thus

22X +KEY = az,

k3 X +22Y = bz

The determinant of the system is

A=zt —kik] = (2" — ki ko) (2% + ka k2) .
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Then by Cramer’s formula,

X - 1 az k¥ | =z (az® — kib) . az® — k3
2 kK2 | bz 22 |7 e (k1k2)2 T (22 — Eiko) (22 4 ki kg)
_ (J,k‘lk‘g - k‘%b z —ak1k2 — k%b 1
o 2k1k2 22 — k)lk)2 —2]61]{)2 22 + klkg
o aks — bk z i aks + bky z
o 2k)2 22 — klkg 2k2 22 + k?lk)2 ’

hence by the inverse Laplace transformation,

akg — bkl

aks + bky
o(t) = 2ko 2k

- cosh ( k1ko t) + T

cos ( k1ko t) ,

and analogously, or simply by interchanging letters and indices,

_ ak)2 — bkl
2k

aks + bky

cosh ( k1kq t) + T

y(t) = cos ( k1ko t) .

It is easy to check these solution functions by insertion. ¢

This e-book Y o N
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Example 2.2.12 Compute the currents I, Iy and Iy in the circuit on the figure, when E(t) = 110H (t)
Volt, and the initial currents are

30Q 11ov

100 r1
2H

12
200 4H

Figure 7: The circuit of Example 2.2.12.

The inductances of 2 henry and 4 henry are chosen for convenience, so the solutions do not become
too complicated. It will in practice be difficult to realize these very large inductances.

The circuit I is broken down into two simple circuits I; and Iz, where I = I; + Is. The governing
differential equations are

110 H(t),

d
300 +10(h 1) +2 (I — Do)

d d
0L +4 3 L +10(l~h) +2 2 (b= 1) = 0,

which is reduced to

I, dl,
2%l L 40 —222 101, = 110H(t
ar T dt 2 ®),

dly dl,
—2——-101+6—+30, = 0.
a 1+ at + 2
Then by the Laplace transformation,
(22 +40) L{} (2) — (22 4+ 10) L{I2} () = ,

—(22+10) L{I1} (2) + (624 30) L{I:} (2) = 0.
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The determinant of this system is

A = B(2z+40)(62 + 30) + (22 + 10)® = (2 + 5)(122 + 240 + 4z + 20)

= o (4 ).

Then, using Cramer’s formula,

10 (224 10)

1 z 110 - 6(z + 5)
£ih} (=) = 16(z +5) (= + ) S 16(z+5) (2 + %)
z z 1 0 62+30 z z 1 z
_ 381 33 1
13 2z 13 2+ 8
and
110
1 22440 =7 110 - 2(z + 5)
LikHE) = 16 (2 + 8) (2 + 5) T 162 (2 + %) (21 5)
T \E —(22+10) 0 ET) R

1 1 11 1

13 2_173'2—1—%'

Finally, by the inverse Laplace transformation,

b= 1 (-521)),
b= e (-520)),
0= a(-2) o

Example 2.2.13 Consider the circuit of Figure 8, where E(t) = 500 sin 10t volt, and Ry = Ry = 10
ohm, and L = 1 henry, and C = 0.01 farad. At time t = 0 the load of the condenser is 0, and the
currents Iy and Iy are both 0. Compute the load of the condenser for t > 0.

We consider the two simple circuits /7 and I, indicated on Figure 8. The corresponding currents are
denoted by 71 and iy, so analyzing the figure we get the equations,

Ruin) + 2 T L i) dt—we0) = e,
2 i iz — i) dt — v (0) + R (1) _

87

Download free eBooks at bookboon.com



The Laplace Transformation II c-12

2 Applications

)

E(t)

R 1 C D R 2

Figure 8: The circuit of Example 2.2.13.

hence by the Laplace transformation,

W074(2) + 2 T (2) + 100 - % (I(2) — (=)} + “CZ@ — B(z) = %
100 - % (L) - L(2)} — ”CZ(O) taD(2)+10D(z) = 0.
We have ve(t) =0 for ¢ < 0 and
ve(0) = % = 250 sin 0 = 0.
The system is then reduced to
10 4 2 + 190 —100 I,(2) 2000
—100 10+ 24190 Iy(z) - 0

The determinant of the system is
100\*  /100\” 200 1

and we get by Cramer’s formula,

L(z) = 153?%0 (Z 104+ "2)+0 _ oo 22 4102 + 100 |
= (22 + 102 4 200) (10 + =) (22 +100) (22 + 10z + 200) (10 + 2)
and
s 20 100
I(z) = T2 +Zmz n 200Z) Cr10) Y I100) (22 4 102 4 200) (= 1 10)°
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d
It follows from d—z =11(t) —ia(t) that

z

2Q() =0 =20(2) = Li(z) = I2(2) = 5000 5560 70, T 200)"

hence
Q(z) = 5000 !
N (22 +100) (22 4+ 10z + 200)
5 z 5 10 5 z 412
© 8224100 822+100 8 (4524 (5ﬁ)2
5z 5 10 5 z2+5 VT 5VT
8224102 8224102 8 (1524 (5v7)° 8 (24524 (5v7)

Finally, we get by the inverse Laplace transformation,

5 5 5 7
q(t) = g cos 10t — 3 sin 10t — 3 e cos (5\/71‘/) - % e~ sin (5\ﬁt) . O
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2.3 Linear partial differential equations

Example 2.3.1 Solve the equation

ddu _, o
ot " 0x?’
given that

u(0,t) = u(5,¢) =0 and u(z,0) = 10 sin4mz.

10 sin 4nx

Figure 9: The boundary conditions of Example 2.3.1.

The structure of the partial differential equation is that of the heat equation.

We denote the partial Laplace transform of u(x,t) with respect to ¢ by U(z, z). Then it follows that

0*U
2U(z,2z) —u(z,0) =2 p
thus
?U =z

1 .
i Uz, z) = -3 u(x,0) = =5 sindnz.

In this equation we consider z as a parameter, so when we guess a solution of the form ¢(z) - sin4nz,
then we get

z
c(x) - {—16772 - 5} sindrwz = —5sindrz,
so a particular integral of the equation is given by

10
Uo(z, z2) = ———— sindne = ———— sindnz.

1672 + 3 3272 + 2
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If we choose the usual branch of the complex square root, then the complete solution becomes for
Rz >0,

Uz, 2) sindrz + o1 (2) eXp<1 Nz x) +ea(2) exp (—1 Nz x) .

V2 V2

Then we apply the horizontal boundary conditions.

T 32242

If x = 0, then
c1(z) + c2(z) = 0.

If x = 5, then

e (2) (exp<;§ ﬁx>)5 +eol2) <exp<—;§ \/Ex))S ~0.

10 10
We conclude that either ¢1(z) = c2(z) = 0, or exp(\/5 \/§> = 1, corresponding to —

z = 2ipm.
\/ﬁf P

However, the latter is not possible for z € C\ (R_ U {0}), because we have chosen the usual branch of
the square root with its branch cut along the negative real axis. Hence, we conclude that the partial
Laplace transform is uniquely given by

10

Ule.2) = 55 01

sin4mx,

corresponding to the solution

u(z,t) = 10 exp(—327?) sin 47z

CHECK OF SOLUTION! Given u(x,t) above, we clearly have u(0,t) = 0 and u(5,t) = 0 and u(x,0) =
10 sin47x. Furthermore, by partial differentiations,

0
a—? = —32072 exp(—332772t) sindrz,
and
2
2 % =—167%-2-10- exp(—3271—2t) sindrx = %7

and the partial differential equation is also fulfilled. ¢
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Example 2.3.2 Solve the linear partial differential equation

o0 f o0 f

otz 7 ox?’
given the boundary and initial conditions

f(0,t) =0, f(2,t)=0, and f(x,0) = 20 sin 27 — 10 sin 57z,

14 f(x,0)

fi(xz,0) =0.

Figure 10: The boundary conditions of Example 2.3.2.

The structure of the partial differential equation is that of a wave equation.
Apply the partial Laplace transformation with respect to ¢,

2 F(2,2) — 2 [(2,0) — f}(x,0) = 9?%

which is reduced to
0’F 2
pri {%} F(x,z) = =202 sin 207z — 10 2 sin 5.

We guess that some particular solution must have the structure
F(x,z) =a(z) - sin27wx + b(2) - sin b,

where we get by insertion,

0*F B 22

520 F(x,2) = —4n% a(z)-sin2rz —257
22 22
e a(z) - sin 2wz — 9 b(z) - sin br,

2.b(z) - sin 57
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which is equal to —20 z - sin 2wz — 10 2 - sin 57z, if and only if

22 22
—{4772+9}a(z) =-20z and - {257r2+ g}b(z) =10z,
so we conclude that
180z 90z
= - d b = -
alz) 22 + (6m)? an (2) 22 4+ (15m)2

Hence, the complete solution is

180z . 90z . z z
F(z,z2) = 21602 sin 27 + 75 (150)? sinbra + ¢1(2) exp(g ac) + c2(2) exp(—g ac) .

If we put x = 0, then
F(0,2) =0=rci(2) + ca(2).

If we put x = 2, then

F(2,2) = 0= e1(2) exp@ z> +os(2) exp<—§ z) .

360°
thinking.
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Thus, ¢1(z) = e2(z) =0, so

& sin 27x + & sin b
22+ (6m)2 22 + (15m)? '

Finally, by the inverse Laplace transformation,

f(z,t) = 180 cosb6mt - sin 2wz + 90 cos 157t - sin bz O

Example 2.3.3 Solve the linear partial differential equation

ou  O%u

— = —4 t

ot = og2 M@,
given that

u(0,t) =0, wu(m,t)=0, and u(z,0) = 6 sin 2z — 4sin 2z.

6 sin X - 4 sin 2x

Figure 11: The boundary conditions of Example 2.3.3.

This is a variant of the heat equation.

We get by the partial Laplace transformation with respect to t,

2U(x,z) — 6sine — 4sin2x = 82—[] —4U(x,2)
) - ax2 ) )

thus by a rearrangement,

0*U

prol 4+ 2)U(x,z) = —6sinz — 4sin 2z.
z
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There exists a particular integral of the structure
U(x,z) = a(z) sinx + b(z) sin 2z,

so by insertion,
02U

97 4+ 2)U(x,z) = —a(z)sinz —4b(z) sin2x — (4 + 2z)a(z) sinx — (4 + 2)b(z) sin 2z

— (54 z)a(z) sinz — (8 4+ 2)b(2) sin2z = —6sinx — 4sin 2z,

and we conclude that

6 4
a(z) = P

The complete solution is therefore

U(x,z) = . 6

4
sinx +
+95 z+

5 sin2e + C1(z) exp (22 +4) + Ca(z) exp (—zvz +4)
Then by the boundary conditions,

U(0,2) = 0 = Cy(2) + Ca(2),

U(m,z) = 0=C1(z)exp (mVz + 4) + Ca(2) exp (—mvz + 4),

and we conclude that C}(z) = Ca(z) = 0, hence

sin2z.

6
U(x,z) = . sinx +

+5

Finally, by the inverse Laplace transformation,

u(z,t) = 6" sinz + 4e~ 5" sin 2z. O

Example 2.3.4 Find the bounded solution f(x,t), x €]0,1[, t € Ry, of the initial value problem

0 5}
a—i—a—{zl—e"“, f(z,0) = x.

We assume that the partial Laplace transform F'(x, z) with respect to ¢ exists. Then

OF - 1

Q—ZF(x,z)—kx—ﬁ{l e }(z)—z pt
thus

oF 1 1

or FP@R) =2 ag e

Consider z as a parameter. Then we have a linear ordinary inhomogeneous differential equation of first
order in the real variable z, so we can apply the usual methods from real Calculus. The corresponding
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homogeneous equation has the complete solution F'(x,z) = C(z)e**, and one particular integral must
have the structure

Fo(x,z) = a(z)x + b(2).

We get by insertion,

oF
Fr z2F(x,2) =a(z) —za(z)x — 2b(z) = —za(z) x + {a(z) — 2b(2)},
x
1 1 1 1 1 1
which is equal to — — —— —x for a(z) = — and b(z) = ————~ = — — — | and the complete
z  z+1 z zZ(z+1) 2z z+1
solution becomes
1 x
F - e zx
(x,2) . Z+1+Z+C(z)e

If Rz > 0, then the term C(z)e** becomes unbounded for @ — 400, unless we choose C(z) = 0.
Therefore,

1+ 1

Fle,2) = z z+1

= (z+ 1)L{1}(2) — L{e "} (2),
and we get by the inverse Laplace transformation that

flz,t)=1+z—e " O

Example 2.3.5 Find the bounded solution for (x,t) € Ry x Ry of the initial value problem

0 0
5£:2§{+f(xvt)a f(z,o):6€*3x_

Let F(x,z) denote the partial Laplace transform with respect to ¢ of f(x,t). Then

oF
e 2:F(2,2) —2-6e 3 + F(z,2) = (22 + 1)F(z,2) — 12¢3.
x
A particular solution is given by a well-known solution formula from real Calculus,
6(22+1)x /(712)67(2z+4)x do — 6(22+1)m - —12 67(2Z+4)x
—2(z+2)
_ 6—31 . 6 _ 66—3$E L {e—2t} (Z)
z+2 ’

and the corresponding homogeneous equation has the general solutions ¢(z)e(2*+D%. Since e(2#+1)*
is unbounded in z, if e.g. Rz > 0, we must have ¢(z) = 0, so we conclude by the inverse Laplace
transformation that

f(SC,t) = 66_31_%5 (:L‘,t) € ]RJr X ]RJH

which is trivially bounded. ¢
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Example 2.3.6 Find the bounded solution of the linear partial differential equation

ou  0%*u
5% 922 (z,t) € Ry xRy,

for which also u(0,t) = 1 and u(x,0) = 0.

This is the classical heat equation.
When we apply the partial Laplace transformation with respect to ¢, we get

0*U

o = 2U(@,2) — u(,0) = 2U(, 2),

which is a simple linear homogeneous partial differential equation of parametric coefficients in x, so
its complete solution is

U(z,z) = C1(z) exp (Vzz) + Ca(z) exp (—Vz z).

If Rz > 0, then R /2 > 0, hence |exp (v/z )| — +oo for z — +00, so we are forced to put C(z) = 0.
We conclude that we shall only consider solutions of the form

Uz, z) = Ca(z) exp (—\/51:) .
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The Laplace Transformation II c-12 2 Applications

If x = 0, then u(0,¢) = 1, hence
1
U0,z) = o= Ca(z) - € = Cy(2),

so we conclude that the bounded solution of the given initial/boundary problem has its partial Laplace
transform given by

Uz, z) = % exp (—2v/z) .

Then note that

c {erfc(2\1/E>} ()= SPEVE pml s

z

Thus, by the inverse Laplace transformation and a change of variable, where we put k = x2,

u(t,r) = /J_l{e}(p(_zx\/z)}(t):aj2521 M (t):xQ-ierfc L

? 2z x? 9. /L
xr2

erfc( m > 2 /+°°e ( Uz) du
JR— = — . — )
i) VE P

which is the classical solution most frequently applied in the technical sciences. ¢

Example 2.3.7 Solve the linear partial differential equation

o f 0% f ,
el —4@4-]“(%7‘) =16z + 20 sinx,

given the boundary/initial conditions

f(0,t) =0, f(m,t) = 16m, f(z,0) = 16z + 12 sin 2z — 8sin 3z, %(w, 0) =0.

The equation is a wave equation.

When we apply the partial Laplace transformation with respect to ¢, then we get

of 0’°F 1 1 ,
2 — = i - — — . — .
2 F(x,z) — z f(,0) o (x,0) —4 922 + F(x,2) . 16z + . 20sinz,

thus by a rearrangement,

?r 1,, 4 5 . : .
W_Z(Z +1) F(z, z) —;x—;smx—élxz—?)z sin 2z — 2z sin 3z

4 5

— <— + 4z> r — — sinz — 3z sin 2x — 2z sin 3x.
z z

We see that there exists a particular solution of the structure

F(z,z) = a(z)x+ b(z) sinz + ¢(z) sin2x + d(z) sin 3z,
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(S}

7 16 x+ 12 sinx - 8 sin 3x

Figure 12: The initial/boundary conditions of Example 2.3.7.

where we shall find the four unknown parametric coefficients, a(z), b(z), ¢(z) and d(z). We get by
insertion,

O’F

92 i (22 4+ 1) F(z,2) = b(z) sinz — 4c(2) sin2z — 9d(z) sin 3z
x

—i (z*+1) a(z)z — i (2 4+1) b(z)sinz — i (2* 4+ 1) sin2z — i (2> + 1) sin 3z

[y

=—"(*+1)a(z)z — i (2> +5) b(z)sinx — i (2% 4+17) c(z) sin 2z — i (2* 4 37) d(z) sin 3z

W

5
= —— (22+ 1) r — — sinx — 3z sin 2x — 2z sin 3z,
z z

so when we identify the coefficients we get

16 20 122 22

a(z) o b(z) = m, c(z) = T d(z) = 2137

Then the complete solution of the partial Laplace transform becomes

7 ) 16 " 4 4z . " 12z 2 4+ 2z 3
r,2) = —=x - — ———|sinz+ - —— sin2z + ———— sin 3z
’ z 2245 22 417 22 4+ 37

+C1(z) exp(g M) + Cs(2) exp(—%ﬁ) .
Then we apply the initial /boundary conditions,
F(0,2) =0=C1(2) + Ca(2),
and

F(m z) = 16m _ 16m + Cl(z)exp<g\/z2 + 1) +Cg(z)exp<—g 22+ 1) ,

z z
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from which we conclude that C1(z) = C2(z) = 0. Hence the partial Laplace transform becomes

sin 3x,

16 4 4 . 122 . 2z
F(x,z):?x—k - s1nm+m &nZa:—!—m

so by the inverse partial Laplace transformation,

flx,t) = 16z + 4sinx — 4 cos (\/gt) sinx + 12 cos (\/1—7t) sin 2z + 2 cos (\/ﬁt) sin 3z.

2.4 The Dirac measure §

1
Example 2.4.1 Given f.(t) := — Xjo,¢)(t), where € > 0 is a parameter. Compute
€

L{fe}(z)  and  lim L{f}(2).

We get by a straightforward computation that
1 1
LU = —L{xpa} () = 2 £{HE) — H(t - 2)}()

_ Ll ey 1™
B az(l ¢ )_ ze

where H(t) denotes the Heaviside function H(t) := xr, -
Then by taking the limit ¢ — 0+,
efO-z €%

. 1 1 e
Jp LU )= 2l = = g () =,

which corresponds to £{0}(z), where ¢ denotes the Dirac measure. ¢

1 1

O

Example 2.4.2 Let ge(t) := 2 X0 (t) — 2 Xize3¢] (t). Compute L{g-}(z), and then the limit

lime o4 £{g:} (2).

By a straightforward computation,

L{g} () = =

2

C{H(t) — H(t —¢) — H(t — 2¢) + H(t — 3¢)}(2)

2

w | =

(1 —e % _ e—25z + 6—352) .
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Then use series expansions to proceed the computations above,

2
i (1—{1—62—#%5222—#0(52)}—{1—2524—%22—#0(52)}

N

L{g:}(2) =

>
92
+{1—3sz—|—;-z2+0(52)}>

11 ,f( 1, 4, 9\ 1 1 ..,

1
= 22—1—?0(522'2).

We conclude by taking the limit that

lim £{g.} (z) = 2z. O

e—0+
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Example 2.4.3 Find the Laplace transform of

t-H(t—1)+t26(t—1).
Let ¢ be any test function. Then

+o00 +oo
/ t26(t — D)p(t) dt = 1%2p(1) = / 5(t — 1)p(t) dt,

and we conclude that t26(t — 1) = §(t — 1).
Then for Rz > 0,
L{t-Ht—1)+t*0(t—1)}(2) = L{t- Ht—1)}(z) + L{5(t — 1)}(2)

+oo 1 +oo 1 +oo
= / te #dt4+e % = {t . (——) 6_21‘} + - / e Ftdt+e*
1 z 1 zJ1

1 1 oo 11
=-—e 7 - [e‘zﬂ +e = <1—|——|—2> e %, O
z z

Example 2.4.4 Find the Laplace transform of

cost-Int-§(t —m).

We get by formal computations that
“+o0
L{cost -Int-§(t —m)}(z) = / cost-Int-§(t —m)e " dt
0

= cosm-lnm-e™ =—Inw-e ",

which could also be derived directly from

cost-Int-§(t—m)=—Innw-0(t — ). O

Example 2.4.5 Solve the differential equation
ff)+4ft)=0t-2),  f0)=0,  f(0)=1

Assuming that f € F, it follows by taking the Laplace transformation that
P L{fHz) =2 0= 1+4L{f}(z) = e,

thus

L{f}(z) = 22#—% + % = % L{sin2t}(z) +e?* - % L{sin 2t}(z).
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Figure 13: The graph of the solution of Example 2.4.5.

Then by the inverse Laplace transformation,

ft) = % sin 2t + % sin(2{t — 2}) - H(t — 2).

CHECK OF THE SOLUTION. Since f(t) is continuous for 2 > 0, and differentiable for x # 2, we get
f(t) = cos2t +cos(2(t —2)) - H(t —2)  fort+#2.

We see in particular that f(0) = 0 and f/(0) = 1, so the initial conditions are fulfilled.

The derivative f/(t) has a jump at ¢ = 2, so the trick is to add and then subtract H (¢t — 2) to get
f'(t) = (cos 2t + {cos(2(t —2)) — 1} - H(t — 2)) + H(t — 2).

The first term is continuous and differentiable for ¢ # 2, so
F/(t) = —2 sin2t — 2 sin(2(t — 2)) - H(t — 2) + 6(t — 2).

Then finally,

ffO+4f®)=06t-2). O
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Example 2.4.6 Solve the convolution equation

/f ft—u)du=1t+2f(t), fort>0.

A formal application of the Laplace transformation gives

(L{f}(2))? = L{t}(2) + 2L{f}(z) = 2L{f}(2) + 5

hence by a rearrangement,

2,2
(L))~ 1 =1+ 5 = “

Choose the usual branch of the square root, which is positive on R and has its branch cut lying along
R_. Then we get from the equation above that the Laplace transform has two solutions,

V241l 1 2241 B Z2241—2 1 1
o z B 2V 2241 V2241 z V2241
L =1 2 2 2
1+\/z—|—1 P 22 +1 _ 9_ Vz2i4+1— z+ 1
% z 22+1 2241
We know from Section 1.5 that
VZ22+1—2 1 1
————— =L{N1}(2), and - =L{H}(z) - L{To}(z) = L{H * Jp} (2),

2241 Z V2241
so using the inverse Laplace transformation we obtain the two solutions
t
— [ Jo(u) du

ft) = 0
20 — Ji(t) + [y Jo(u) du

Example 2.4.7 Solve the convolution equation

/f flt—u)d :2f(t)+ét3—2t, fort > 0.

Apply a formal Laplace transformation with F(z) = L{f}(z) to get
1 2
24 27
which we write
, 1 2
F(z)? =2F(:)+1= = 5 +1,
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and the equation of the Laplace transform is reduced to
1\2
2 _

We conclude that

Fz) = L{f}(z) =1+ <1 _ i) _ 122’

22
Finally, by the inverse Laplace transformation,

20 —t,
ft) = 0

~
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The Laplace Transformation II c-12 2 Applications

Example 2.4.8 A beam has its endpoints at x = 0 and x = £ clamped. The beam is subjected to a
l

vertical concentrated load Py at the point © = 3" Find the bending of the beam, i.e. solve the boundary

value problem

%‘%6(%{)7 F0) = F'©0) =0, f(O)=(0)=0.

3

Figure 14: The beam of Example 2.4.8.

This example was found in a long forgotten book as an exercise in application of the Laplace trans-
formation. However, a boundary value problem is considering a finite interval, while the Laplace
transformation requires an infinite interval, so we cannot apply the Laplace transformation here. It
is not possible to reconstruct the original exercise. It was probably included due to the occurrence
of Dirac’s delta function. In order not to make the reader disappointed we solve the given classical
problem by simply integrating the equation successively,

%:%H(x—é)-f'al;
%:%(m—é)H(m—é)—l—alx—Fa%

B ) ) e
f(x>=%%("E‘QBH(“Q+%$3+az—2x2+a3“a4’

where we shall use the boundary conditions to find the values of the four constants a1, as, ag and ay.
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It follows from f(0) = 0 that a4y = 0, and from f’(0) = 0 that also a3 = 0. The solution is therefore
reduced to

P 1 12 3 l a1 3 az o
0 = ) Hlz=Z aty “2
1@ =51 6<$ 3> (‘T 3>+6I+2$’

and
Py 1 N> ‘
f'(:z:)_EOI-2<:1:—3) H(z—3)+a21332—|—a23:.
Then
- _PO 1 8 3 aq 3 a9 2
f(g)_O_EI 6 27£ +6£ +2£’
thus
Py 8
(7) a1€+3a2——ﬁ~§€,
and
P 4 1
/ o _ 0 P2 - 2
el =5 12 9€ +2a1€ + as ?,
thus
Py 4
(8) a1f+2a2——ﬁ-§ .
V3 )
1 P O/(EL}

Figure 15: The graph of the solution of Example 2.4.8.

When (8) is subtracted from (7) we get

_ a8y, _2h,
“2=Fr\9 27) T EI"
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from which

o4 8 _ 20R
Er\9o "21)

a1 = —

27 EI’

and the solution is

_ R J1 \*® £y 10 5 2

2.5 The 3 transformation

Example 2.5.1 Find the 3 transform of sample period T of the function f(t) = t2.
If |w| < 1, then by series expansion and termwise differentiation,
1 = 1 = 2 <=

— = " —_— = Hw™ —_— = 1 2)w"™

— ;)w o) ;)(m T P nz:%(m )(n + 2)w
from which

an w" = f{(n2+3n+2)—3(n+1)+1}w" S R + !

(I-w)? (1-w)® 1-w

9 2—3+3w w+w? ww
= o (2w = +(1:1U)3 LA (1(_‘1;)13).

1
When f(t) = t2, we get for z = w and |z| > 1 that

400 1 /1
1 1(241) T?22(2+1)
37 t2 (Z): :n2T2_7:T2_z z _ <>
1
Example 2.5.2 Find the 3 transform of sample period 1 of the function m fort>0.

Just use the definition of the 3 transformation to get

“+o0
sl = Y e ——ZMH = Zn.zn
n=0

:exp<1>, for z€C\{0}. 0

z
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Example 2.5.3 Find the 3 transforms of f(t) =sint for t > 0, when

(1) T=m (3 T=7.

1) When T = 7, it follows from the definition that
+oo 1
Asindz) =Y s —_—
3x{sin}(z) ;bm(nw) o

2) When T = g, then we get for |z| > 1 that

+oo +oo
. . Ty 1 . T 1
3n/2isin}(z) = Zsm(n- 5) T Zsm((2n—|— 1)5) ondt
n=0 n=0
+o0 +00 n
o 1 1 (1

= (G ) = {5
n=0 n=0

1 r oz

oz 1+% 22+l

These two examples show that if the sample period T is large compared with the oscillations of the
function, then we lose a lot of information when we apply the 3 transformation. ¢
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Example 2.5.4 Find the 3 transform of the function

f(t) = tant, tZOandt;«ég—Fp?T, p € No,

™
hen T = —.
when 3

The point is of course that f(¢) is not defined at ¢ = g + pm, p € Np, and that no sample time is

of this form. We therefore obtain a fairly nice 3 transform below, in spite of the fact that f(¢) is
discontinuous at infinitely many points, so we also lose some information in this case.

We get by the definition of the zz transformation for |z| > 1 that

400
T 1
</3lt = t ( -—)-f
3n/a{tan} (2) g an(n- o) =
= m 1 = T 1 = i 1
_ Ztan(?m- g) T Ztan((Bn—!— 1)5) a1 T z%tan<(3n+2)3) 3n+2
n=0 n=0 "=

“+oo 1 “+o00 T 1 +00 9 1
= Ztan(mr) ey + Ztan<§ + mr) TSy + Ztan(; + nw) g
n=0 n=0 n=0

=X 1 R | 1 1Y =X
= 04+VBY - VBY = V(- A {5
n=0 n=0 n=0
z—1 1 z—1 23 z
= V3 22 '1—2%_\/5 22 -23—1_\/3-22—1—2—}—1' 0

Example 2.5.5 Find the 3 transform of the sequence

n+1 1
(5.
n=1 neNy

We get for |z| > 1, using a rule of computation,

=1 LA 2 1 o= o1
3{Zk}<z> - 3{§m}(z>22_13{n+1}(z>:Z_lznﬂ'Zn

k=1 n=0
2 > n+1 n 2
z (-1) 1 z 1
= — S Logl1 ==
z—lnz::l n { z} z—1 og( z>

110

Download free eBooks at bookboon.com



The Laplace Transformation II c-12 2 Applications

1
Example 2.5.6 Find the inverse 3 transform of the function exp() , 2 #0.
z

It follows immediately from the series expansion

+oo
1 1 1
exp(z) =D i 270

o) ()

Example 2.5.7 Find the inverse 3 transform of cosh(

Rl
~—

It follows from the series expansion

1 =X 11
cosh<$> = Z @l for z # 0,

n=0
1
(2n)!

.
e () (@)

Example 2.5.8 Find the inverse 3 transform of

where a,, = SO

z+2
24 -1
Z2+2 .
o is for |z| > 1,

The Laurent series of
Py

242 z+2 1 2428 1 RNz+42
A1 4 '1_%_ p Z%_Z An
n=0 n=1

z

We therefore get

g fzt+2 )
) {24—1} - (an)n€N07

where
forn =4p —1, pEN,
anp =14 2 for n = 4p, peN,
0 otherwise. O
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3 Extension of the inversion formula

3.1 The inversion formula for analytic functions with branch cuts

z

Example 3.1.1 Find the inverse Laplace transform of e~ V=.

Assume that Rz > . Then R /2 > /7, cf. Figure 16, hence

1 C
= _é}%ﬁ: < —
e FE S Rz for Rz > k.

o

We therefore conclude by the inversion formula that

1 y+ioco 1 y+ioco
f(t) = % /YZOO eZt F(Z) dZ = % i 62t eiﬁdz
[
| d?
[
[
i0

Jre? |

T
[

Figure 16: An analysis of the square root in Example 3.1.1.

Then choose the path of integration of Figure 17. It follows from Cauchy’s integral theorem that
1

0 = 9 ete VZidz
T Ch.e
I TR : o :
= — e*teVZidz + —/ exp(tae’g) exp(—\/ge’f)ieeze de
27TZ ~—iT 27TZ T
1 ™ 7@0(7") . .o .
+— / +/ exp(trele—ﬁelf)ireled(%
211 O (t) —r
L L PR
+— e de + — e*fe dz,
2m ), 2mi J_,
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PHT

— N
— /T

L

Figure 17: The path of integration in Example 3.1.1.

where O¢(r) = Arccos 7 Tt is obvious that
r

1 o , ,
lim —/ exp (te- e'©) exp (—ﬁ-eZ%)ise@d@ =0.

e—0+ 271
Furthermore,
1 ™ . . 1 T S}
—/ exp(trele—\/f"ez%)ird@ < / exp (tr cos@—ﬁcos)rd@
211 J Arccos 2 27 |JArccos 2 2

1
4tﬁ>rﬂ—<c(t).re_tr—>0 fOI"]"—>+00 andt>0,

1 2
< —exptr{——5 -1} —r-
2m ( { (4ty/7)" }
because the maximum is attained for
@ 1
2 At

if either © € {Arccos g,w}, or, if r is large, for ©¢ € [O,Arccos %}
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We finally get by taking the limit and use a substitution of the variable,

0 —00
A 1 A
/ et e_’\/m do + — et e’\/m dx

271 0
L[ ot miva L (7 e ive L[ e
= e Tle de — — eIVl dp = — = e % ¢in (\/:E) dx
2t Jo 27 Jo T Jo
+o0 n +oo too n
1 (-1) / Cwt gl 1 (-1 1
== — ez dr = —— 7ﬁ{x”+2}(t)
ﬂ§(2n+l)! 0 w;@n—l—l)!
1+Z°° (-)m T (n+32) 1 13X (—nn ( +1>< 1> 1r<1> 1
= —— . _ —— . — - 7 n — n— — [ — — . —
T (2n+ )L gty T ot = (2n+1)! 2 2 2 \2/)
+o0 n +o0
——ie—%z (1" 241)@n-1)-1 11y o L1
VT & en+ 1) 2n+1 I 2npl2n g0

1 t_%+°° 1 " 1 s 1
=——— — = = exp| —— | .
N TR T NG P\ T4

We get by taking the limit followed by a rearrangement,

Lt {e_ﬁ} (t) = ﬁt_% exp(—%) . O
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Example 3.1.2 Find the inverse Laplace transform of

b
7

1+ 2 =1

L

Figure 18: The path of integration in Example 3.1.2.

We choose the path of integration as given on Figure 18, where > 1. Then

1+ivr2—1 T ex rez'@t ] —e Tt
0 = / \erz—i— —p( @) riel@d@—l—/ —_e dx
1-ivrZ—1 V% O /r exp (z 2) —r 04/ |
—r i© —r o S i©
explee'™t ) T oexpl(re™t .
+ p(,@)eiel@d@—i—/ ‘6 dz + p(i,e)-riezed@.
= Veexp(i§t) —e —iy/|7| —r VT exp(i )

We conclude for every fixed ¢ > 0 that

T , ]
e exp(sezgt)exp(i2> d@’g\/g-est-%'eo fore - 0+.

—T

Furthermore, for ¢t > 0,

Zi/re_mtdx—lli/ﬁex (— 2t)d —M/mex (—u2) du

NG Vet
R ) 4i /m  2ir
— — exp(—u®) du = — - — = — fore - 0+ and r — +4o0.
iy o) de= et =
Finally,
. " 10 . S} T rt-cos © : S}
—ir [ exp(re®t)exp|i 3 de| = /r e exp| rt - sin © + 5 de|,
o, Arccos(2)
where
1
erteos® < . for r - cos® < —logr,
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thus for
cos O < _logr.
-t
Hence,
T ; ) 1
NG / ert'cos@exp<i <rt sin@—l——)) do| < T = o0 for r — o0,
Arccos(—1257) 2 2 Jr
so it only remains to estimate
Arccos(—127) o
NG / et cos® exp(i (rt sin © + —>> de
Arccos(L) 2
1 1 1
< Vr-exp (rt cos (Arccos <>)> {Arccos (— ogr) — Arccos <>}
T rt T
1
" dz 1 logr 1
< t — <t - .
e Wvl—xze\/;(TjL ”) logr >
1
vl
1 1 1
:et{\ﬁ—i—:\g/;}- —0 for r — +o0.

2
logr
- {4}

Summing up, we obtain by taking the limits r — +o00 and € — 0+ that

T 1 pltice gzt 1 LHVr2=1 ozt
=t = — de=o— i d
{\/2}() 2mi J1—ico VZ “ 7 omi rﬂufoo/mm vz ’
1 1 1
= 0+t—=+0=—="—.
vt VTVt

Notice that the main contributions to the value of the integral come from the integrations along either
side of the branch cut. ¢

18 erf{\/f}.

1
Example 3.1.3 Prove that the inverse Laplace transform of ———
P P / / 2z +1
We see immediately that

const.

1
<
2z + 1‘ T z2

for Rz > 2,

thus

. 1 1 fifiee et
L — ()= — —dz.
2z +1 2T Jitino 2Vz 4+ 1
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L

Figure 19: The path of integration in Example 3.1.3.

We choose the path of integration indicated on Figure 19, where R > 1 and 0 < € < 1, where € is the

radius of the circle surrounding —1. Then, by the residuum theorem,

1 ezt ezt
- ————dz =res| ——=;0) =1,
2w ?in,s zVz+1 (z\/z +1 )

and therefore,

, 1 /1+i\/R2—1 o2t W 1 71' exp(Reiet) B.id®d0
= - —F—3az P - - rve
2mi )1 iymem1 V2 A+ 1 21 Jo, Re®©vVRe® +1
1 [iE wt 1 ™ e —1+4¢c¢®©)¢ .
e wiylel =1 T (—1+sei@>\/EeXP<i§)
1 —R xt 1 7@1{ R i@t .
+—./ o dx+—-/ e),(p( - ) -Rie®de.
2mi J o x(—i)/|x] — 1 2mi J_r  Re®©VRe®© +1
Here,
1 1+iv/R%2—1 ezt L 1
— —————dz > LT —— (¢ for R — o0,
211, Aim vz +1 {z\/z+1}()
and
1 - e —14¢ce®)t ,
7/ Xp(( ) ) - £i€9dO — 0 fore — 0 +.
2mi ), . . O
(—1+e€®) /g exp iy
1
Furthermore, cos©®p = ik hence
1 s eRcos@-t—‘,—iRsin@-t ) 1 ™ et
— : _ -Rie® S—/ de — 0 for R — 400,
2mi Jo, Re®©vVRe®© +1 2 Jo VR—1
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and analogously for the conjugated integral.

Finally,
1 —1—¢ ea:t 1 -R ea:t 1 1+e eVt
LT ey [T e
211 /7R Tl 3;|_1 27 1—e Z‘(—Z) /|J3|—1 7.(.( ) R —y y—l( ) Yy
1 R efyt 1 +o0 efyt 1 +oo e*(erl)t eft +o0o efyt
:f/ 7dy—>7/ 7dy:f/ 7dy:—/ ———dy
T Jipe YWy —1 )i yWy—1 mJo (W+1Vy ™ Jo  (w+1yy
2 Heo —z%t 2
== e*t/ M der=Zete . get erfc (\/Z) = erfc (\/Z) ,
0

T 2 +1 T

for e — 0+ and R — +00, where we have applied an example from Ventus, Complex Functions Theory
a-6, The Laplace Transformation.

Summing up we get by taking these limits,

1:51{ ! }(t)+erfc(\/%),

2z +1

hence by a rearrangement,

51{ ! }(t):l—erfc(\/%):erf(\/%). o

vz +1
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The Laplace Transformation II c-12 3 Extensions of the inversion formula

Example 3.1.4 Find the inverse Laplace transform of

If Rz > 1, we get by a Laurent series expansion

Ve o1 1 _Lfi_*f;_*f 1 T(n+1d)
z—1  z 1—%_\/En:02”_n:03"+%_n:OI‘(n—i—%) onts
+oo
1 1
= Y e £{ o),
2 (e

hence by the inverse Laplace transformation,

+00 too
1 \/Z _ 1 n—l _ 1 1 "
O = Ly G e g

n=0 2

1 XRontt gnip

2 1 X n! .
G e TV im0

1
Example 3.1.5 Find the inverse Laplace transform of Log(l + —> by choosing a convenient path of
z

ntegration.

Is it possible to find the inverse Laplace transform by using more simple methods?

The estimate

1
Log(1+—>‘<£ for |z| > 2,
z |2|

1
shows that Log <1 + —> satisfies the necessary (and also sufficient) estimate for the existence of the
z

inverse Laplace transform.

In this case we have a branch cut along the interval [—1, 0] on the real axis, so we choose the path of
integration as indicated on Figure 20. Then we get

1 1 1 2+4iv/r2—4 1
0 = — Log (1+—> etdy = — Log (1+—> e*tdt
27 Jo, . z 21 Jo_iyrr=a z
1 2r—Arccos 2 1 o )
4+ LOg 14+ : . ert(cos O+ sm@)i 7"616 de
21 J Arceos 2 rei®

1
+-— OLog (1 +

27 o

T /_ﬂL 14— (tee'®)-ice’®do+ ! /_E 1
P 6] —0F | &X ge rree P n
21 ). & ee'® P 210 J 1.

1 —€
o [ {w
21 J 14e

—1—}—5@1@> exp (t (—1 + Eeie)) Z.Eeig de

1
14 =
X

— iw} et® dx

1
1+—’+i7r}emdgc.
T

119

Download free eBooks at bookboon.com



The Laplace Transformation II c-12 3 Extensions of the inversion formula

@
T
AN

L

Figure 20: The path of integration in Example 3.1.5.

The first line integral on the right hand side converges towards

fity=,"" {Log(l + %) } (t)

for r — 400. Concerning the second integral we have the following estimate of the integrand, when
r> 2,

1 1 - - 1 C C
i 1 . rt(cos ©+isin ) ; 10 PO rtcos® . _ ~ _trcos©
‘2m' °g< +r619>e A "Ton ’
so the integral is estimated in the following way,
Arccos(—127) T
C rt C 1
2 — e dO + 2 — exp (tr <—£)> de
27 J Arccos 2 2 Arccos(—12z) rt
C | 2 C 1
< Ze?t. {Arccos <—£) — Arccos (—)} +—7-= =0 for r — “+o0.
0 Tt T 0 T

The next two integrals both tend towards 0 for e — 0+, because € Ine — 0 for ¢ — 0+.

Considering the remaining two integrals we get
1 e 1 1 —e
— In|{l+ =] —irpe®de — — In
27 ) 14 T 27 ) _q4e
1

—€ 1—e 1 1 1
= —/ e de = —/ e~ dr — —/ e~ dy = { e_m] = —- (1 - e_t) .
—14e€ 5 0 t 0 3

We therefore get by taking the limits, followed by a rearrangement,

fity=,7" {Log(l + %) } (t) = +% (1—e").

1
1+—’+i7r}emdx
T
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An alternative approach is to take the Laurent series expansion,

1 R N U R (L I |
Log(1+ z) => (n—f—)l g > (7(1+)1)! ol = Zmﬁ{(—t)n} (2),

n=0 n=0 n=0

hence by the inverse Laplace transformation,

n=0

~ | =

Another alternative is the following proof,

L{tf}(z):—szog<1+i>:jZLog<ljz>:1— L _rpi-e o),

from which we conclude that

tft)y=1—e€"",
thus
1 —t
f(t)z;(l—e ).

1
Notice that lim; o4 n (1—etH)=1.9¢

1
Example 3.1.6 Compute the inverse Laplace transform of Log(l + 2) by a Bromwich integral.
z

Then find an alternative and simpler proof, using only elementary methods.

First method First, the estimate

1
Log( 1+ — §£ for |z| > 2,
22 |22

shows that the inverse Laplace transform exists and it is given by
ft)=L"1Log( 1+ 1 (t) = L /Hioo Log( 1+ 1 e*tdz
B & 22 C2mi )i & 22 '

The branch cut can in this case be chosen as the line segment on the imaginary axis from —i to 1,
cutting through the third singularity at 0. We therefore choose the path of integration as indicated
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€

.
l
!

()

)
D

L

Figure 21: The path of integration in Example 3.1.6.

on Figure 21. Then

1 1 1 Vel 1
0 = — Log(1+ — e*tdy = — Log( 1+ — ] e*tdz
2mi Je, . z 2T J1 iy 22
1 2r—Arccos 1 1 o o
— L 14+ ——= ) ire
+5— N 0g< + 3 62@) exp (tre’®) -ire’®do
-l—i _%Log 1+; exp(t(i—l—aei@))iaei@d@
2mi ) sz (i + e e©)?
1 7% 1
+— Log|14+ ———— |exp (t (—i4+€®))ice®dO
e T () XA a)

37
1 2 1 0 . i0
+2_7m/_g Log(l—l—EQe—Qi@) exp(tse )-zae de

1 E 1 0\ . s i0
+2_m/72r Log(l—i—eQe—Qi@)exp(tse )-zae de

1 1—¢ ) 1 1—¢ 1 )
+— In|l——|+ir e”yidy——_/ In|l— < |—irpeidy
27t J, Y 27t J, y?
1 —& 1 . 1 —€ 1 .
+— 1— | —impe™idy — — In|l— —|+impe™idy.
21 J_q_. Yy 2mi J_4_. 2

The first term tends towards f(¢) for r — +o0.
The next term tends towards 0 for r — +00, because we have the estimate

‘2—MLOg<1+T2€—2i®)€XP(tTel )ZTeZ S%T_Q r cos 7
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1 1
because r - © <1 for © € {Arccos —, 27 — Arccos —|.
r r

The next four terms tend towards 0 for ¢ — 0+, because € Ine — 0, when ¢ — 0+.

The last four terms are reduced to

: e ity Y ity 1 ity11—¢ 1 ity €
1 e"dy —1i e dyz;[e ]E —E[e }—1—5
€ —1—¢
Loy —it 2
—>¥{e —1-1+e }:—g(l—cost) fore — 0+.

Finally, taking the limits followed by a rearrangement,

£t {Log(l + Z%)} (t) = % (1 — cost).
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3 Extensions of the inversion formula

1
Second method Write for short, f(t) = £~} {Log(l + 2) } (t). Then
z

d 2241 d 22 2 2z
L{t f(t =——1L —— | =—L —_— =
{70} dz og( 22 ) dz Og<22+1) z 2241
thus
tf(t) =2—2cost =2(1 — cost),
and hence
1 —cost
=2
Third method By a Laurent series expansion,
+00 +00
1 (=)™ 1 (=)™ (2n + 1)!
L 1 5 — e = 2 .
°g< N 22> nz:% nt1 et nz:% 2n+1)2n+ 1)1 22011
_ Qio (_1)n £{t2n+1}( )
T T4 @nro) o
hence
1 ~ (=" 2 2 (—1)"
L7 Log( 1+ = N = 9S> T ompr < o
{ °g< +22)}() 2 ot 2) P 2= )
n=0 n=1
2
= (1 — cost). O
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3.2 The inversion formula for functions with infinitely many singularities

Example 3.2.1 Find the inverse Laplace transform of ————.
z(e#+1)

=3
=

_—/

Figure 22: The path of integration in Example 3.2.1.

1
e—1"

Zil < for Rz > 1, where C' =
(e +1)| ~ [z

Choose 1, = 2nm, n € N, and let C), denote the curve on Figure 22. The singularities inside C,, are

20=0 and zp=1i2p+1)m, p=-—n,...

7n_17
thus
1 et et n—-1 et 1 n—-1 e?vt
— ¢ < 9 — < 0 £ )=z
2mi Jo, 2(e + 1) res<z<ez+1> )*,;,,”S’(z(ewl) ) 2*,,;_,,z
1 n—1 e(2p+1)1ﬂ‘t 1 2 n—1 1
- - - -z 2+ 1
2 Z i@p+m-(-1) 2 752 T s+l

On the other hand,

1 et 1 14+iy/7r2 -1 et
" dr=
omi Jo, 2(er +1) 2m'/1

1 /2”_9” exp (rn ei@t) Tt et©

—d - .
N (e +1) i 2mi Jo, rn €9 (1 + exp (r,e'©))

doe.
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1
It follows from ©,, = Arccos — that

T'n

doe

1 /2“@” exp (rn eiet) T i e'®
2mi Jo, T €© (1 4 exp (7, €9))

1 ™ ern t cos ©
< —.2 —— dO
o7 /@n 1+ exp (r,, €©)|

Arccos(—l“,#) T

trn t 1 —Inr

-C’/ ed@—i-*-C'/e " de
Arccos(;L) m z

Inr, 1 1
g et < Arccos| — B Arccos| — + T.2) 0 for n — 400,
us try Tn 2 r,

thus it follows by taking the limit n — +oo that
1 1 zt
L7V ———— % = lim — j{ L
z(e*+1) n—+too 2mi Jo 2 (e + 1)

! 2§ L sin2p+1)mt
= - —— sin .
2 Tl P n

Remark 3.2.1 With some knowledge of known Fourier series this expression can be reduced to

Cl{ﬁ}:%{l—l—(—l)"ﬂ} for ¢ €|n,n + 1[, where n € Ny. O
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The Laplace Transformation II c-12 3 Extensions of the inversion formula

Example 3.2.2 Prove that the inverse Laplace transform of can be expressed as a Fourier
zc

osh z
series, and then find this Fourier series.

I

Figure 23: The path of integration in Example 3.2.2.

First find the singularities of . These are the poles

z cosh z
(1
z=0 and z:z<§—|—n)7r, for n € Z.

We choose r,, = nm, n € N, and then the path of integration in Figure 23. Then

1 et 1 e/l et 1 f2r—Arccos(7h) exp (1 €€ t) i 7y €i©
2mi Jo, z coshz 2mi Ji_i\fr2_1 % coshz 2mi Arccos(-L) 7, €1© cosh (1, €1©)

The former term on the right hand side converges towards

Ft) = £ {1} (#)  for n— +oo,

z cosh z
because
1
< g for Rz > 1.
z cosh z |z]
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The latter term on the right hand side is estimated in the following way,

2r—A * 9¢) inmet©
1 / m—Arccos(;L) exp(nﬂ' e’ t) inme’ < g 9 T elnmeos© g
27 Arccos(;L)

Arccos(—1nn)  n
_ g / rCCOS( tnm ) 4 / etmr c0s© €6
m Arccos(L) Arccos(—1az)

tnm

< g et {Arccos(—ln—n> — Arccos(i)} + g/ exp(tmr- (—lnn)> de
™ tnmw nm T Jz tnmw

—04+0=0 for n — +o0.

doe

211

Arccos (L) nme'® cosh (nwei®)

Hence, by taking the limit,

ol V= i L jf 4
z cosh z oo 27 ¢, % coshz
est n est 1
— \ . li g . -
reb(z coshz’0> * nanfoop_z:nreb<z coshz’ ' (n—!— 2) ﬂ-)
. 1
+oo exp <z <n + 5) ﬂ't)

n=—oo g +1 3 h ; _|_1
i\ntg |mosinh{i{n+o )7
+oo expli(n+ |7
4 2
- 1+; Z 1
n=-002j(2n + 1) - i sin <(n + 2) ﬂ')

A [ e e
B T =2 2n+1 2(—n—1)+1

n=0

1—%5 2(:37; cos((n-i—%) m‘).

n=0

ft)

ezt

+oo
=1
+ n;m [z sinh z

Dt
z:i(n+%)7r

Remark 3.2.2 It can be proved by using the Theory of Fourier series that

f(t)ZE1{zcc}shz}(t):1+(_l)n+l fort €]2n —1,2n+1[, n € Ny. O
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1
Example 3.2.3 Find the inverse Laplace transform of ————.
22 sinh z
. .. . 1
The singularities of the function ———— are
22 sinh z
Z=1inm, n € Z,

where z = 0 for n = 0 is a triple pole, and all the other singularities are simple poles. We shall first
compute the residua at these poles. We first get for n = 0,

et 0 1 I d? [ ze* 1 . d 2 et N sinhz — z coshz ,
res| ———;0) == lim — ¢ —— ¢ == lim — ¢ ¢- e
22 sinh 2z’ 2! 250 dz? | sinh 2z 2 2-0dz sinh 2z sinh? 2

zt :
{2' ze .smhz—zcoshz'ezt

1
— lim
2 z—0

sinh z sinh? 2

(cosh z—cosh z — zsinh 2) sinh? 2 —2sinh 2 cosh z(sinh z—zcosh z) _, }
e

sinh? 2
1.5 .. z . sinhz—2zcoshz 1 .. —zsinh?2z— 2sinhz-coshz + 22 cosh? 2
= —t° lim — —|—t-hm—2—|—7hm 3
2  z2—0sinhz 2—0 sinh” z 2 z2—0 sinh” z
1t2—|—t . coshz — cosh z — zsinh z
= - im
2 2—0 2sinh z cosh z
n 1 . —sinh? z—2zsinh z cosh 2—2 cosh? z— 12 sinh? z+2 cosh®+4z sinh z cosh 2
— lim
2 20 3sinh? 2 cosh z
1 1 —3sinh z + 2z cosh z 1 1 (-3 2 1 1
=240+ li = R G
2 i +2 220 3sinhz cosh 2 2 +2{ 3 3} 2 6

The computation is simpler for n # 0,

t zt inmt n
e* . . e e —1 .
res <7; znw) = lim = = — (=1 enmt,

22 sinh 2 z—inm 22 coshz  —n?m2 cosh(in) n2m?

Hence, by still an unjustified application of the residuum formula we get the following bet of the
inverse Laplace transform,

+oo
_ 1 1 1 1 (=™, —
L 1 t w_»n t2 - inmt inmt
{ZQSiI’th}() 2 6 7<= n? {e" e }
+oo
1, 1 2
9) = 3 t — ] 2 e cos nt.

We shall now prove that (9) is indeed correct. Choose the path of integration as indicated on Figure 24,

1
where r,, = <n + 5) 7. Then

doe.

1 j{ o7t 1 ) ‘/1+i\/r%1 et 1 /QwArccos(Tln) exp (Tn eiet) iy e©
e
1

o - —-5 . 5 _az —-5 5 AaZU— . . .
2mi Jo, z%sinhz 2 _i/rz1 #*sinhz 2mi J Arccos(-L) r2 €2© ginh (r,, €'©)
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E
=)
=

L

Figure 24: The path of integration in Example 3.2.3.

The left hand side of this equation converges for n — 400 towards the sum of the right hand side of
(9).

1
22sinh 2
on the right hand side tends towards 0 for n — 400, because we have the estimate

The former term on the right hand side converges towards £7! { } (t), and the latter term

0

211 -

2r—Arccos(;L) i©4) 4 i0 ™ t t
1 / exp(?‘ne. )zrn¢ 4o <1/ e 46 — e .
Arccos(L) r2 €2i© ginh (1, €i®) o ™ C Cry

for every fixed t and n — +oo. Hence, we have proved that (9) is indeed the inverse Laplace transform

z2sinh 2z’

Remark 3.2.3 It is possible to show that (9) represents a piecewise linear function. However, since
this analysis is fairly difficult, it shall not be given here. ¢

Example 3.2.4 Find the inverse Laplace transform of the function m
22(1—e
First notice that

o
22 (1 —e™?)

C

SW for Rz > 1,
z

so the inverse Laplace transform does exist, and it is given by the Bromwich integral

D P YA L/Hmein
£ {zQ (1 —e—2) () = 270 J1 oo 22 (1 —e77) dz.

The function has a triple pole for z = 0 and simple poles for z = 2ipmr, p € Z \ {0}.
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We shall first compute the residua. We get for the simple poles, where p # 0,

ezt ezt 1 iy
res 7,21 T = |—F— = ———e¢€ 1p7rt7
(ZQ (1 - e—z) b ) |:22 e_Z:| z=21ipm 4p27T2

and for the triple pole, where p = 0,

res 672:15'0 —llimal—2 i e*t
2(1—e2)") 20250dz2 |1 —e2 '

We expand the factor 1

for small z in the following way,

—Zz

z _ < - !
1—e* 1—{1—z+§_%3+2491(2)} 1_§+%2_2391(2)
_ 4dz 2724_ Sg1(2) b4 2 Zj_g_ 3g1(2) 2—|— ?ga(2)
_ 56 2 g1(2 576 2 g1(z Z g2z
p 22 22 z 22
ts- Gt e =15+ 5 2 as),
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The Laplace Transformation II c-12 3 Extensions of the inversion formula

hence, by insertion,

et N z 22 3 2t
res<z2(1—e‘z)’0) B 5—1%@{<1+5+E+Z g3(2))6}
1. d z 22 3 2t 1 =z 2 2t
= 2lli%dz{t<1+2+12+z gg(z)>€ + §+6+Z ga(z) | e
1 . 2 ~t 1 2t 1 zt
= Slm P (Lt zog5(2)) e +2t (5 +206(2) | € + 6+Zg7(z) e
teylip L
2 2 12°

If therefore the residuum formula holds, the

(10) £ ! W=tppliyl 1+fl (2m7t)
2—en) [V 720 T2 T2 o Ly costEme)-

L

Figure 25: The path of integration in Example 3.2.4.

We shall now prove (10). We choose the well-known path of integration as indicated on Figure 25,
where 7, = (2n + 1)7. Then,

3
1 ezt 1 1+iy/r2 —1 ezt
z

2mi c, 22 (1—e?) ~ om iy 22 (1 —e?)

n

+ 1 QW—AFCCOS(%”) exp (t Tn ei@) Z.Tn ei@ d@
27 AI“CCOS( ) TTZL e2i0 {1 —exp (_Tn ei@)} )

1
T™n

where the former integral on the right hand side tends towards 0 for n — 400, because we have the
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estimate
1 /QTr—Arccos(Tln) exp (t Ty €1© ) i, €i® o
2 Arccos(;L) 72 €29 {1 — exp (—ry, €1©)}
§i~2/ﬂ exp (try cosO) __de
2w Arccos(:L) ™n |1 —exp (—(2n + 1)7e'®)|
1 1 Ce'
<=Z.C-—.e-r= e—>0 for fixed ¢ and n — 400,
T T T
) ) . 2
because exp (—(2n+ Dm el@) = 1, if and only if —(2n + 1)7e® = 2pr, thus ¢© = ™ f_ T which
can never be fulfilled, because |ei@| = 1, while Y 1‘ # 1 for all n and p € Z. The function

‘1 — exp (—(/Zn + ) ei®)| is continuous in © € [0, 27], so it has a minimum ol > 0, and the claim

follows.

Summing up we have proved that (10) holds,

—+00
1 1 1 1 1 1
= A ) ==t2 4 —t+-—— 3 = cos(2mnt).
£ {zQ(l—e—z)}() 2 +2 +2 ZWQEPQCOS(WW) 0

inh(A
Example 3.2.5 Given 0 < A < a. Find the inverse Laplace transform of the function M
22 cosh(az)

It follows from the estimate

sinh(Az)

1 |e)\z _ e—)\z| 1 26)\%2 1
22 cosh(az)

=— .0 - 1o .2 <
= zf?

B e o] = R Ter®s
for Rz > k, that the necessary and sufficient condition for the existence of the inverse Laplace
transform is satisfied.

Then cosh(az) =0 for az =1 (g —|—p7r)7 thus for z = L (g —|—p7r). In particular,
a

() (7 ) - [

22 cosh(az)’ a \2 az? sinh(az)] =i (5 +pr)

sinh (i - 3 (5 + 7)) __sin(G {5 +pr})
a(~ k{5 tpn)?)sih(i {3 +pr})  —Te G+ 12 (-1F

4a(—1)P*t (/\ )
= sin| = (2p+a)

72(2p +1)2 —|— 1)2 a
and
inh(A inh A 1 A
o sinh(\z) 0 _ pyyy SmhAZ _2
z2 cosh(az) -0z cosh(az) 1
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inm

nmw

inm

Figure 26: The path of integration in Example 3.2.5.

Choose the path of integration I'), as given on Figure 26. Then

1 sinh(\z) - Nt /A T
— _— = )\ - 2 1 -
271 Jr, 2% cosh(az) dz + Z 7r2 2p—|— PER (2p+1) 2

n—1
8a (=Pt /A 7
- SN T in( L 2p+ 1))
)\+7T2p:0(2p+1)2 sin a(p+ )2

On the other hand,

1 sinh(\z) 1 M sinh(Mz)
2mi Jp 2% cosh(az) ~ 2mi 1_inx 2% cosh(az)
1 . . M % . _M .
_L/ smhg)\{x—i—z - ) dx—i_/ smh(2 o —l—lt))\ i dt
P (z+i2%) cosh(a{z+i2C}) 21t J_nx (=2 +it)" cosh(—2X +it)a

1 ! sinh ()\ {x j ””})
—/_ (x dzx.

21 sz (o — i) cosh(a {o— 525

The first term on the right hand side tends according to the inversion theorem towards
_ sinh(Az2)
L7 ().
{z2 cosh(az) } ®)

The second term is estimated in the following way,

sinh()\ {:E +1 %})
cosh(a {z +i27})

sinh(Az) cos(2 nm)+i cosh(Az) sin(2 nr)
cosh(ax) cos(nm) + 0

i Alz|
| sinh(A\x)| + cosh(A\x) 9. 0 g plaNel o 1,
cosh(ax)

ea|$|
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and we conclude that

‘_i/l sinh (A {& +427})

2m —nx (:c—i—i%fcosh(a{x—i—i%r )

— 0 for n — +o0.

The estimate of the fourth term is analogous.

Concerning the third term we get

sinh (—% mr) cos At + ¢ cosh (—% mr) sin At :

cosh(nm) cos(at) — i sinh(n) sin(at)

sinh (A {22 +it})‘2_
cosh (a{—% —l—it}) N

B sinh? (2 mr) cos? At + cosh? (2 mr) sin? M\t B cosh? (2 mr) — cos? A\t

cosh?(nm) cos?(at) + sinh?(nm) sin®(at)  cosh?(nw) — sin®(at)
20
< cos}; (5 mr) <c2,
cosh”(nm) — 1

and we obtain the estimate

1 [ sinh ({— 22 + 4t} A 1 2.2 (g% 1
——,/ — ({2 ¢ Z} ) dt| < — - C- “2:—%- — 0 for n — +oo0.
271 ) (=22 +4t)” cosh(—2 +it) a 2 (2z) 2ms
Summing up, we get for n — +oo,
_ sinh(\z) 8a <X (="l /A 7
LT A () = A ————sin| — (2 - ).
{22 cosh(az) } ®) e — (2n+1)? M\ (2n+1) 2 ¢

sessssrssrssssessansanerssrsarsanrnrsasssssrssrnssnnsrnsssssssssessesessfilCate]-Lucent @
www.alcatel-lucent.com/careers

Lo, -

One geher:;t‘ion's transform;tioF is the next's status quo.
In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there

needs to be “The Shift".
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cosh (\y/z)
z - cosh (ay/z2)"

Example 3.2.6 Given 0 < A < a. Find the inverse Laplace transform of

First notice by using series expansions that the function in spite of the occurrence of the square root
is analytic without branch cuts and a simple pole at z = 0 and either simple poles of removable

singularities for a\/z =1 (g +p7r), p € Z, thus for

2

T 2
z2=0 and z:—@@n—i-l), n € Ny,

Furthermore, it is not too hard to prove that

cosh (\/z)

C
— Y < = f .
z-cosh (av/z)| — or fez > k

||

First we compute the residua,

res(%\/g)) : ezf;o> -1

2 - cosh(ay/z
and
2
(L )
9 cosh(z)\ g (2n + 1))

S

R 7o (2n+1) smh(f (2n+1)) -exp(—42 (2 +1)° t)

4 1 cos(4Z (2n + 1)) ( w2 2)
— . . cexp|l ———= 2n 4+ 1)“t
T 2n41 g-i- b1n(§ + nm) Pl ga )
4 (=1)ntt AT m? 2
— . 7 ceosl ZE (2 1)) - — (2 1)“t ).
woana1 g g Gt ) ey, Gnt )

2
™

We choose the path of integration as given on Figure 27, where r, = — - n2. Then, by Cauchy’s
a

residuum theorem

1 cosh(A\z) L(=1)k+1 A <pio w2 5
— — L _ftdt =1 k=0"""—+t— 2k + 1 —— 2+ 1)t ).
271 Jo, 2 - cosh (af) T Z 0 ok+1 “\a 2 2k +1) Jexp 4a? (2k+1)

On the other hand, this expression is also equal to

2
LT ;
i —n?e®de.

1 Iin/r2=1 ook (A\/Z) 1 2m—Arccos (& cosh( 16/2) exp(tTr n ele)
— Y et dz—l—T/
iy L

2mi Jioifrzm1 2 cosh(ay/z) Arccos( ;1) n? e'® cosh(mn ei®/2) a?
h (A
The former integral converges towards the wanted £7! M (t).
z - cosh (ay/z)
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&
=3
=

L

Figure 27: The path of integration in Example 3.2.6.

The latter integral is estimated in the following way,

| perArceos() cosh (T ne® ) exp(1 T n2e®) o
9 -1 —n‘e” dO
i

Arccos(;L) > n2 ei® cosh (7 n ei©/2) a?

A

cosh(%7T -n-cos% +ir sin%)

§—~2/ exp(t-—n e’ ) doe.
27 Arccos(;L) a

Using that

cosh(rmn cos € +imn sin 9)

| cosh(z + iy)|? = cosh? z — sin? y = sinh? 2 + cos? ¥,

we get

2
AT [€) AT i, O

cosh(T “n-cos 5 + 17 sin 5)

cosh(mn cos % + imn sin %)

a
~ sinh? (7n cos %) + cos?(mn sin %) '

Inr,

1
The integral is estimated in the interval [Arccos () , Arccos (—

T'n

)] in the following way,

T'n

cosh(%7T -n-cos% —l—i%’r sin%)
)

cosh (7m cos % + imn sin 5)

cosh(% SN - cos(% Arccos (%)))
< - et >0 for n — +o0,
sinh (Wn cos (% Arccos (— %) ) )

A
because 0 < — < 1 and
a

1 1 2 1 Inr,
cos<§ Arccos—) — cosg = V2 and cos<§ Arccos(— nr )) —

n 2 n

2
- exp (t ) n? cos @)
a

for n — 4o0.

ol
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Inr
In the interval [Arccos <— ") ,77] we estimate the integrand in the following way,
Tn
cosh(%’r - - COS % +1 %’T sin %)

2 9
- - -exp|t-—=mn” cos®
cosh(7m coSs % + 1 sin %) a?

< C-exp(—t-lnry,) —0 for n — +oo0.
Summing up, the latter integral tends towards 0 for n — o0, thus
2

Lt {%} (t) = 1+%:§% cos(% : g (2n+1)> -exp<—%¢2 (2n+1)2t> .90

cosh(Az)

Example 3.2.7 Given 0 < A < a. Find the inverse Laplace transform of the function ————.
23 cosh(az)

We clearly have the estimate

C

BER

cosh(Az)

_ f >k
23 cosh(az) or ¥ 2] = k,

so the inverse Laplace transform exists.

We have a triple pole at z = 0 and simple poles at z = ! {g + pw}, p € Z. The corresponding residua
a

are
cosh(\z) " 1 .. d* [cosh(Az)
et ) = = lim e L e?
res(zg cosh(az) ¢ > 21 210 422 cosh(az) ¢

1. d cosh(Az) sinh(Az) , cosh(Az)sinh(az) ,
=-lim —<qt-—= -+ A\ ———= e —a- 5 e”

2 20 dz cosh(az) cosh(az) cosh™(az)
_1 2. cosh(\z) et o] sinh(Az) u cosh(Az);mh(az) oot

2 cosh(az) cosh(az) cosh”(az)

5 cosh(Az) . . 5 cosh(Az) . .
snh ool g2, 2 sinh g
cosh(az) e* +sinh(Az) - {---} —a cosh(az) e** +sinh(az) - {---} .

)

2 )

and
cosh(\z) i {7r } , cosh(\z) - e*t
AR et 2D - ] it Vo A
eS(z3 cosh(az) EEPIRT +om Zﬂg(lrgnwﬂ) z3 - a - sinh(az)

B cosh(i % {g —|—p7r}) exp(%
—a% {g —|—7r}3 -a sinh(i

_ 8a*(—1)P - A
= B pt o) cos
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When we pair the residua at conjugated poles, :I:i {g + pﬂ}, we get the sum for each of these pairs,
a

N
=)
—_

-

Figure 28: The path of integration in Example 3.2.7.

/
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The Laplace Transformation II c-12 3 Extensions of the inversion formula

Choose r,, = T and the usual path of integration as indicated on Figure 28. Then we get by Cauchy’s
a

residuum theorem

1 cosh(\z)et

- d pum
2mi Jo, 23 cosh(az) :

(t2+/\2— 1a2)+”2_:1 m cos(l (2p—|—1))\> cos(1 (2p+1)t)
= 2a 2a ’

On the other hand, also

1 cosh(\z)e?t
— ——————dz
271 Jo, 23 cosh(az)
, . , , ,
1 1+iq/r2 —1 COSh(/\Z)@Zt 1 27 —Arccos o COSh()\?“n ez@) exp(rn eth) irnez(%
= _— ——————~dz+ — . A do.
2mi J1_; frz—1 2% cosh(az) 270 J Avccos L r3 €319 cosh(ar, e®)

The former integral on the right hand side of this equation converges towards

o { cosh(\z)

—_— f .
23 cosh(az) } ®) orm = oo

The latter integral is estimated in the following way,

doe

1 /ZW—AI‘CCOS o cosh()x?“n ei@) exp (Tn ei@t) i7,e®
2mi

Arccos ;- ry €€ cosh(ary €©)

1 1 1
S—-?/ —2-1-etd@:—2-et—>0 for n — +o0.
2w 0o Th re

Summing up, we get by taking this limit,

o) VL o 1628R (<)o .
. {z3cosh<az> =3 AN =25 2 Gy cos((5g (2n+1)2) cos 5o (2t 1)t) . 0

Example 3.2.8 Consider the circuit on Figure 29, where the generator is specified by
E(t)=(-1)"Ep fortenl,(n+1)a[, n € Ny.

We assume that the current 1(0) is zero for t = 0. Find the current I(t) at any later time t > 0.
HINT. The result does not have a nice description.

We first set up the governing differential equation

I
(11) L % + RI = E(t), where I(0) = 0.

140

Download free eBooks at bookboon.com



The Laplace Transformation II c-12 3 Extensions of the inversion formula

GILnonny,

Figure 29: The circuit of Example 3.2.8.

Since E(t) is periodic of period 2a, it follows from the rule of periodicity that if ®z > 0, then

1 2a EO eZaz a 2a
L{E(t)}(z) = 1_ o202 / e ?t E(t)dt = Cre— {/ e~ ?tdt — / o7t dt}
€ 0 e 0 Y

Ey g2z 1 —zt ¢ 1 —zt 2 Ey e 1 —az —2az —az
= {|:—€ —|—e€ 262112_1.;{_6 +1+€ -¢ }

e2az _ 1 z o z
By 1-2%4e%  Ey (e —-1)°  Ey e®-1
Tz e2az _ ] oz (e —1)(e**+1)  z e 41

_ B e (%) e (=F) _ B tant (%)
¢ exp (%) +exp (—5) 2/

so it follows by the Laplace transformation of (11) that

Loz LUWYE) + R LU0} ) = 20 - tanh (%),

2
thus,
1 Ey az Ey tanh (%)
L{It)}(z) = L0 h(_):_.72'
UM)}He) = g5 tanh(5 L Z(t k)
Then use that
| sinh z|? = cosh® z — cos® y, and | cosh z|? = cosh® z — sin’ y,
to get the estimate
2 cosh? (%) — cos? (¥ cosh? (% 1
1) (%) = 2L lB) o ()L
2 cosh® (%) —sin®(%) ~ cosh®(%) —1 cosh?(%) — 1
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We conclude that

Ey tanh(%) E /’H-ioo e*t tanh(%)
It)=—L"§——=5 (1) = —F—==d fort >0
(t) { wy (0= 5 o 4 frtzo

for some v > 0.

R 2 1
The singularities are given by z = 0 and z = - and cosh(%) = 0, thus, z = M -1, for
a
n € Z.
The singularity at z = 0 is removable, because
* tanh (4 1 L
i € 000(5) 1 0l
=0 z2(z+%) L 2 2R
. . R .
The singularity at z = 7 s real and simple, and
tanh(%) tanh(—;—R) R L R aR
res( ( %) _% exp(—Lt) :Rexp<—Lt> tanh<2L>
) . (2n + 1)mi ) ) )
The singularities 2 = ———, n € Z, are all pure imaginary and simple, and we get
a
“ttanh(%) (2n+1)mi 2t inh (%
res| © an(RQ)(n—F)m = lim = I3 'SH.I(Q)
e h) e oo ) (%)
5 exp( (2n+1)7r )

o  (2nt+l)mi {(2n+1)m n E}'
L

a a

We put for convenience,

—Ang (7 +i M) - Arctan<w) .

L a Ra
Then
. 2n+1)m
<€Zttanh(a;) (2n+1) ) 2 exp(z{_( - )_t—ﬁpn})
res = — .
R
(z+ %) a Co@n)my/ By Bt
QSin(w t— @n) ' 2 cos (2n+1)7r N )

(2n+1)ﬁm (2n+1)ﬂ_\/w

Notice that ¢_,, = —p,_1, so

COS((Z{”—WT . %_1) _ COS<(2{—H}+1>7T . @_n) ,

a a
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hence a change of sign in the denominator implies that

- <ezt tanh (%) ) (2n—|—1)7ri> ©res (eZt tanh (%) - (2n+ 1)71'2')

B e
4$in<7(2"1'1)7r t— <pn>

2+ /B + O

E
After a multiplication by TO it follows that the sum of the residua becomes

n € Np.

. (2n+1)m
B AR, £ sin|——/——1t—pn
(13) Oexp<—Rt> tanh(aR> _|_7OZ ( )

R L 2L L o (2n+ 1) /%s + (2n-212)271—2
2 1)L
where ¢, = Arctan (n—}i—%# , n € Ng. We notice that the denominator can be estimated by a
a

polynomial of second degree in n, which implies that the series is convergent.

> Apply now
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2inm

2inm

Figure 30: The path of integration in Example 3.2.8.

We shall still prove that I(t) is given by (13). Choose the path of integration C,, as on Figure 30.
Then

1 [ tranh (%)
(14) nETooz_mfg S een ¥

2 2 R
is equal to (13). Let x = T Then we get for N 7 the estimate, cf. (12),
a a

1 7{ ezttanh(z)d

21i z (24 ;

which clearly tends towards 0 for n — +o0.

1 e {-BTh) 2 hr (-2
S ol (BN -1 B (B )

2
Ify= L7 i, then it follows from (12) that
a

az\|2  cosh?(92) — cos?(nm
’tanh( )‘ = 2(5) - 2( )Sl.
cosh® (%) — sin®(nr)
Since = € [—%}T’T, ﬂ , we have |e*!| < €7, so the estimate of the integrals along the horizontal segments
becomes

1 / et tanh(%) d
. bt WPV P
:t2n7r )

1 1 1 2nmw
5 (Z_|_E §~67t-1---<+’7>-
L

o 2nm 2nm
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In this analysis v and ¢ are fixed numbers, so we conclude that the line integrals along the three
auxiliary line segments of C), tend towards 0 for n — +o00, hence

y+4ioco =zt az zt az
I = L/ e tanh( 5 ) b= lim L% e tanh( 5 )
210 Jymio 2 (24 ) n—+oo 271 ( )

. (2n+1)
Ey R aR 4Fy <X Sm( o ”t—wn)
= —exp|——1)tanh +—Z

R L 2L L 0 (2n+ 1) /Ig’,_; + (2n-|;12)27-r2
2 1)L
where we have put ¢, = Arctan(%), for n € Np. %
a
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The Laplace Transformation II c-12 4 Appendicies

4 Appendices

4.1 Trigonometric formulae

We repeat the formulae known from e.g. Ventus, Calculus 1-a, Functions in one Variable. The addition
formule for trigonometric functions are

(15) cos(x +y) = cosz - cosy — sinx - siny,

—
—
(=)

sin(z +y

sinx - cosy + cosx - siny,

)
) cos(z —y) = cosx - cosy + sinx - siny,
)
)

)
sin(z —y) =sinx - cosy — cosx - siny.

Remark 4.1.1 One remembers these important rules by noting that cosx is even, and sinx is odd.
Therefore, since cos(z & y) is even, the reduction must contain cosz - cosy (even times even) and
sinz - siny (odd times odd). Then we shall only remember the change of sign in front of sinz - siny.

Analogously, sin(z+y) is odd, so the reduction must contain sin -cos y (odd times even) and cos z-siny

(even times odd). Here there is no change of sign. ¢

The antilogarithmic formule. These are derived from the addition formule above.

1
sinx - siny = 5 {cos(z — y) — cos(x + y)}, even,

1
COST - COSY = — qcos(x — + cos(x + , even,
y = 5 {cos(z —y) (z+y)}

1
sinx - cosy = 5 {sin(z — y) +sin(z + y)}, odd.

4.2 Integration of trigonometric polynomials

The task is to find the integral
/sinm x - cos” xdux, for m, n € Np.
We shall in the following only consider one single term of the the form sin™ x - cos™ x, where m and
n € Ny, of a trigonometric polynomial, because we in general can find the result by linearity.
We define the degree of sin™ x - cos™ x as the sum m + n.

When we integrate such a single trigonometric product of degree m + n, we first must answer the
following question: Is it of even or odd degree? These two possibilities are then again subdivided
into to subcases, so we have four different variants of method, when we integrate a trigonometric
polynomial.
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1) The degree m + n is odd.

a) m =2p is even, and n = 2¢ + 1 is odd.
b) m =2p+1is odd, and n = 2¢ is odd.

2) The degree m + n is even.

a) m=2p+ 1 and n =2¢+ 1 are both odd.
b) m = 2p and n = 2q are both even.

We shall in the following go through the four possibilities.

la) m = 2pis even and n = 2¢ + 1 is odd.

Use the substitution v = sinz (corresponding to m = 2p even) and write

. q . a g
cos? it xdr = (1 — sin® a:) cosxdr = (1 — sin® x) dsinz,
thus
. . . a g . q
/81n2px ccos® g dx = /sm2p x (1 — sin® x) dsinx = / u?P (1 — u2) du,
u=sinx

and the problem is reduced to an integration of a polynomial, followed by a substitution.

1b) m =2p+ 1 odd and n = 2q even.

Apply the substitution u = cosz (corresponding to n = 2¢ even) and write
sin?? T pde = (1 — cos? a:)p cosxdr = — (1 — cos? a:)p dcosz,

from which

/sian+1 z-cosPxdr = — / (1 — cos? x)p -cos® xdcosx = —/ (1 — uz)p -u? du,

U=COS T

and the problem is again reduced to an integration of a polynomial followed by a substitution.

2) When the degree m + n is even, the trick is to use the double angle, using the formulae

2 2

1 1 1
sin®x = 5 (1 — cos2x), cos”z = 5 (1 + cos2x), sinx - cosx = 5 sin 2z.

2a) m =2p+1and n =2q+ 1 are both odd.

Rewrite the integrand in the following way,
1 P 1
sin?? ! g . cos?9t g = {2 (1 — cos 2x)} {2 (1 + cos 2x)} 5 sin 2.
This is a reduction to case 1b) above, so by the substitution u = cos 2x we get

1 1
so2p+l L 2g+1 _ Lz _2\P q
/sm x - cos rdr = STari 2/_ (1 —uw)?(1+u)?du,
u=cos 2x

and the problem is again reduced to an integration of a polynomial followed by a substitution.
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2b) m = 2p and n = 2q are both even.

This is the most difficult one of the four cases. First rewrite the integrand in the following way,

1 P I
sin2pa:-cos2’1:{2(1—00821‘)} {2(1+cos2x)} .

The degree of the left hand side is 2p + 2¢ in the pair (cosz,sin x), while the right hand side only
has the degree p+ ¢ in the pair (cos 2z, sin 2x) with the double angle as new variable. The problem
is that we at the same time by a multiplication get many terms on the right hand side of the
equation, which then must be computed separately.

However, since the degree is halved, whenever 2b) is applied, the problem can be solved in a finite
number of steps.

We shall illustrate the method of 2b) in the following example.
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Example 4.2.1 We shall compute the integral

/ cos® x dz.

The degree 0+ 6 = 6 is even, and both m = 0 and n = 6 are even. Thus we are in case 2b). By using

the double angle the integrand becomes
6 1 P 2 3
cos’ x = 5(1+0052x) =§(1+3c052x—|—3c0s 2x + cos® 2x).
Integration of the first two terms is straightforward,
1

1 3
g/(l + 3cos2x)dx = éa:—i— 16 sin 2z.

The third term is again of type 2b), so we transform it to the quadruple angle,
1 3 /1 3 3
3 /3 cos? 2z dx = 3 / 5 (14 cosda)dx = 6% + 61 sin4x.
The last term is of type la), so
1 1 1 1 1
— /0053 2edr = = / (1 — sin® 2x) .= dsin2z = — sin 2z — — sin® 2z.
8 8 2 16 48
Summing up we get after a reduction,

5 1 1 3
/cosﬁa:darzl—Gx—kisin2x—@sin32x+6—4sin4x. O
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b!
10| e | o)
1 1 l 0
z
" n!
2| ¢ ot 0
1
3 et —Ra
z+a
4| sin(at a S)
sm(a ) m |\Y a|
5 t = 3
COS(G ) m |\Y a|
inh a4 R
6 S11 (at) m | Cl|
. z
7 cosh(at) m |§RCE|

Table 1: The simplest Laplace transforms

4.3 Tables of some Laplace transforms and Fourier transforms

The simplest Laplace transforms were already derived in Ventus, Complex Functions Theory a-4, The
Laplace Transformation I. These are given in Table 1.

We collect in the following tables the results from Ventus, Complex Functions Theory a-5 where
we always can use o(f) = 0, so there is no need to specify o(f) in the tables. The first table is
ordered according to the simplicity of the function f(¢), and the second one is ordered according to
the simplicity of £{f}(z). Instead of o(f) we include a reference to where the function is handled in
the text.
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f(t) L{f}(2) Reference
r 1
1 | t*for Ra > —1 w Complex Functions a-5
za+1
2 o for a > 0 e Ei(az) Complex Functions a-5
a
3 L [T —Si(z)} —sinz - Ci(z) | Complex Functions a-5
-q=—Si —sinz - Ci mplex Functions a-
e 08z 5 z sin z z omplex Functions a
v+ Log 2 .
4 Int - Complex Functions a-5
z
1 T . . .
5 ﬁ 5 ¢ {1 —i-erf(iv/2)} Complex Functions a-5
2 i 2 .
6 exp (ft ) 5 exp el erfc (5) Complex Function a-5
_3 1 .
7 | t72exp <_E> 2 /me vz Complex Functions a-5
1 22 .
8 erf(t) S Pl erfc (5) Complex Functions a-5
1 22 z .
9 erfe(t) ~ 1—exp 1 erfc (5) Complex Function a-5
1 .
10 erfc (\/f) Complex Functions a-5
2z +1
1 1—e V7 .
11 erf | —= Complex Functions a-5
2/t z
1 1 _ .
12 erfc (—) ZeVE Complex Functions a-5
2/t z
. 1 1 .
13 Si(t) Z Arctan ~ Complex Functions a-5
Log (14 22
14 Ci(t) % Complex Functions a-5

Table 2: More advanced Laplace transforms
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f(t) L{f}(2) Reference
Log(1
15 Ei(t) Log(1 +2) Complex Functions a-5
z
/2 + 1—
16 | Jn(t) for n € Ny ( - z) Complex Functions a-5
Vz2 41
1 1 .
17 Jo (2\/1?) —exp|—— Complex Functions a-5
z
18 i Jh (2\/7?) 1 —exp (—l) Complex Functions a-5
Vi z

Table 3: More advanced Laplace transforms, continued

F(z) LY F}(t) | Reference
1 .
1 - 1 Complex Functions a-4
z
1 o .
2 e ® Complex Functions a-4
z+a
3 z7"forn €N t»~1 | Complex Functions a-4
(n—1)!
_ 1 1 .
4 27 Ra >0 —t” Complex Functions a-5
[(c)
1 inh(at
5 5 5, a#0 sinh(at) Complex Functions a-4
22 —a a
6 % cosh(at) Complex Functions a-4
22 —a
1 in(at
7| ——, a#0 sin(at) Complex Functions a-4
22 + a? a
8 ﬁ cos(at) Complex Functions a-4

Table 4: Table of inverse Laplace transforms
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F(z) L7HF}() Reference
9 1 erf (\/E) Complex Functions a-5
2z +1
1 Complex Functions a-4 and
10 —— Jo(t)
22+ 1 Complex Functions a-5
o | WL N J Complex Functions a-5
W or n € Ny n(t) omplex Functions a-
1 1 .
12 1—exp|—- —J; (2\/5) Complex Functions a-5
z Vi
1 1 .
13 — exp (——) Jo (2\/f) Complex Functions a-5
z z
14 e VZ ! ex (l> Complex Functions a-5
2t/ 7t P 4t P
1 1 .
15 ZeVE erfc (—> Complex Functions a-5
z 2/t
1 _ 1 .
16 — {1 —e \/z} erf | —= Complex Functions a-5
z 2\/7?
Log 2 .
17 —v —Int Complex Functions a-5
z
1 . .
18 — Log(1 + 2) Ei(t) Complex Functions a-5
z
1 9 . .
19 — Log (14 2?) 2Ci(t) Complex Functions a-5
z
1 1 . .
20 — Arctan — Si(t) Complex Functions a-5
z z
1 .
21 3 Log (z i Z) 24 Si(t) Complex Functions a-5
z—1

Table 5: Table of inverse Laplace transforms, continued
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f(t) F{}©)
sinT’
1 X[—T,T] (l’), T>0 f 5
|| 4 o (T¢
2 (1 — 7 X[*T,T] (Z‘), T >0 T—f2 Sin 7
a —a
3 T Ra>0 me kel
sin(Tx
4 (x ), T>0 7TX[—T,T](f)
n(T(€ — (T
5 cos(wz) - X[—1,7)(2), T>0 sm(f(_fw w)) sm((g _(f: w))
. 1 (sin(7T(§ —w sin(T'(¢& +w
6 sm(wx)~X[_T’T](x), T>0 ;{ (f(_gw ) _ (f(ﬁw ))}
—ala 2a
7 e I I, Ka>0 m
8 e (x) Ra>0 !
XRy ) a+ Zf
9 ar (x) Ra>0 !
e xr_ (), a T
2
1 —ax? . _5_
0 exp( ax), a>0 o exp( 4@)
11 1 27
12 z", n € Ny 27" §()
13 eih:z:’ heR 2w 5(h)
14 cosh(hz), heR TO(n)y + TO(—p)
15 sin(hx), heR —i T O(p) + 17 O(_p)
16 ) 1
17 6(h)7 heR e~ e
18 5, n € Ny (i&)"

Table 6: Some Fourier transforms, F{ f1(¢) = [T°° e~ f(z) da.
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Index

Bessel differential equation, 48, 79
Bessel functions, 30

beta function, 16

boundary value problem, 61, 63, 65, 104
Bromwich integral, 128

Cauchy’s integral theorem, 110

Cauchy’s residuum theorem, 134, 138
characteristic polynomial, 51

convolution equation, 11-14, 16, 49, 102
cosine integral, 23

Cramer’s formula, 67, 69, 70, 76, 78, 83, 85, 86

Dirac measure, 98

error function, 27
exponential integral, 23

finite value theorem, 25
Fourier series, 15, 124, 125
Fubini’s theorem, 16

Gamma function, 4

heat equation, 88, 92, 95
initial value problem, 93
Laguerre polynomial, 42, 43

residuum theorem, 115
Riemann’s zeta function, 14
rule of convolution, 39, 40
rule of division by t, 40

rule of multiplication by ¢, 47
rule of periodicity, 139

rule of similarity, 27, 29

sine integral, 23
singular point of differential equation, 47

wave equation, 90, 96

zeta function, 14
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