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Introduction

Introduction

In this volume we give some examples of the elementary part of the theory of the Laplace transfor-
mation as described in Ventus, Complex Functions Theory a-5, The Laplace Transformation II. The
chapters and the sections will follow the same structure as in the above mentioned book on the theory.

The examples have been collected about 30 years ago from some long forgotten book on applications.
It was then pointed out by the author, and repeated here that one should not uncritically apply the
Laplace transformation in all cases. Sometimes the simpler methods known from plain Calculus may
be easier to apply.

Leif Mejlbro
March 31, 2011
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1  Special Functions

1 Special Functions

1.1 The Gamma Function

Example 1.1.1 Compute Γ

(

−n − 1

2

)

for every n ∈ N0.

We shall take for granted that Γ

(

1

2

)

=
√

π, and also the functional equation of the Gamma function,

Γ(z + 1) = zΓ(z),

from which

Γ(z) =
1

z
Γ(z + 1) for z �= 0.

We get by a simple iteration,

Γ

(

−n − 1

2

)

=
−1

n + 1
2

·Γ
(

−(n − 1) − 1

2

)

=
(−1)2

(

n + 1
2

) (

n − 1
2

) Γ

(

−n− 1

2
+ 2

)

= · · ·

=
(−1)n+1

(

n + 1
2

) (

n − 1
2

)

· · · 1
2

Γ

(

1

2

)

=
(−1)n+1 2n+1

√
π

(2n + 1)(2n− 1) · · · 3 · 1

= (−1)n+1 22n+1 n!
√

π

(2n + 1)!
. ♦
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1  Special Functions

Example 1.1.2 Compute L
{√

t +
1√
t

}

(z).

We get by a straightforward computation for � z > 0, that

L
{√

t +
1√
t

}

(z) =
Γ

(

3
2

)

z
3
2

+
Γ

(

1
2

)

z
1
2

=
1
2

√
π

z
√

z
+

√
π√
z

=

√

π

z
·
(

1 +
1

2z

)

. ♦

Example 1.1.3 Compute L
{

(

1 +
√

t
)4

}

(z).

We first compute

(

1 +
√

t
)4

= 1 + 4 t
1
2 + 6t + 4 t

3
2 + t2.

From this result we then get for � z > 0,

L
{

(

1 +
√

t
)4

}

(z) =
1

z
+ 4

Γ
(

3
2

)

z
3
2

+ 6
Γ(2)

z2
+ 4

Γ
(

5
2

)

z
5
2

+
Γ(3)

z3

=
1

z
+

4 · 1
2

√
π

z
√

z
+

6

z2
+

4 · 3
2 · 1

2

√
π

z2
√

z
+

2

z3

=
1

z
+

2
√

π

z
√

z
+

6

z2
+

3
√

π

z2
√

z
+

2

z3
,

where
√· as usual denotes the branch of the square root which is positive on R+, and which has its

branch cut lying along R−. ♦

Example 1.1.4 Compute L
{

t
7
2 e3t

}

(z).

It follows by a straightforward computation, using one of the rules of the Laplace transformation, that

L
{

t
7
2 e3t

}

(z) = L
{

t
7
2

}

(z − 3) =
Γ

(

9
2

)

(z − 3)
9
2

=
7
2 · 5

2 · 3
2 · 1

2

√
π

(z − 3)4
√

z − 3

=

=
105

16

√
π · 1

(z − 3)4
√

z − 3
for � z > 3. ♦

5
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1  Special Functions

Example 1.1.5 Find all real constants a, b, α, β and λ, for which

L
{

a t−α + b t−β
}

(z) = λ ·
{

a z−α + b z−β
}

.

If a = −b and α = β, then the relation is trivial for all λ, because both the left hand side and the
right hand side are 0.

We assume that this is not the case. Then we must have 0 < α, β < 1, and it follows that

L
{

a t−α + b t−β
}

(z) = a
Γ(1 − α)

z1−α
+ b

Γ(1 − β)

z1−β
= λ · a · 1

zα
+ λ · b · 1

zβ
,

if one of the following two possibilities is fulfilled.

1)

a
Γ(1 − α)

z1−α
= λ · a · 1

zα
and b · Γ(1 − β)

z1−β
= λ · b · 1

zβ
.

We have three possibilities.

a) If a �= 0 and b �= 0, then 1 − α = α and 1 − β = β, so α = β = 1
2 , which implies that

λ = Γ(1 − α) = Γ
(

1 − 1
2

)

= Γ
(

1
2

)

=
√

π, and a �= 0 and b �= 0 arbitrary.

b) If a = 0 and b �= 0, then α is arbitrary, while we still have β = 1
2 and λ =

√
π, and b �= 0

arbitrary.

c) If a �= 0 and b = 0, then β is arbitrary, while we still have α = 1
2 and λ =

√
π, and a �= 0 is

arbitrary.

2)

a · Γ(1 − α)

z1−α
= λ · b · 1

zβ
and b · Γ(1 − β)

z1−β
= λ · a · zα

,

hence α + β = 1 (or, equivalently, β = 1 − α), and

λ =
a

b
Γ(1 − α) =

b

a
Γ(1 − β),

so

a

b
= ±

√

Γ(1 − β)

Γ(1 − α)
= ±

√

Γ(α)

Γ(β)
= ±

√

Γ(α)

Γ(1 − α)
· Γ(α)

Γ(α)
= ±Γ(α)

√

sinαπ

π
.

Thus,

λ =
a

b
· Γ(1 − α) = ±Γ(α)Γ(1 − α)

√

sinαπ

π
= ±

√

π

sin απ
.

Summing up we get in this case

α ∈ ]0, 1[, and β = 1 − α ∈ ]0, 1[,

a = ±Γ(α) ·
√

sinαπ

π
· b and λ = ±

√

π

sin απ
. ♦.
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1  Special Functions

Example 1.1.6 1) Compute the Laplace transform of
1
3
√

t
sin t.

2) Explain why the improper integral
∫ +∞
0 x sin

(

x3
)

dx is convergent.

3) Apply the result above to compute the integral
∫ +∞
0 x sin

(

x3
)

dx.

1) Assume that � z > 0. Then it follows by a straightforward computation that

L
{

1
3
√

t
sin t

}

(z) =

∫ +∞

+

1
3
√

t
· 1

2

{

eit − e−it
}

e−zt dt

=
1

2i

∫ +∞

0

1
3
√

t
e−(z−i)t dt − 1

2i

∫ +∞

0

1
3
√

t
e−(z+i)t dt

=
1

2i
L

{

t−
1
3

}

(z − i) − 1

2i
L

{

t−
1
3

}

(z + i)

=
1

2i

Γ
(

2
3

)

(z − i)
2
3

− 1

2i

Γ
(

2
3

)

(z + i)
2
3

=
Γ

(

2
3

)

2i
· (z + i)

2
3 − (z − i)

2
3

(z2 + 1)
2
3

.

2) Next, turn to the improper integral

∫ +∞

0

x · sin
(

x3
)

dx.

We apply the change of variable t = x3, thus x = t
1
3 and dx =

1

3
t−

2
3 dt, to get

∫ +∞

0

∣

∣x sin
(

x3
)∣

∣ dx =
1

3

∫ +∞

0

t−
1
3 | sin t| dt =

1

3

+∞
∑

n=0

∫ (n+1)π

nπ

t−
1
3 | sin t| dt

=
1

3

+∞
∑

n=0

∣

∣

∣

∣

∣

∫ (n+1)π

nπ

t−
1
3 sin t dt

∣

∣

∣

∣

∣

.

We get for n ∈ N,

∫ (n+1)π

nπ

t−
1
3 sin t dt =

[

−t−
1
3 cos t

](n+1)π

nπ
+

∫ (n+1)π

nπ

{

−1

3

}

t−
4
3 cos t dt

=
(−1)n

3
√

(n + 1)π
− (−1)n

3
√

nπ
− 1

3

∫ (n+1)π

nπ

t−
4
3 cos t dt,

hence,

∫ (n+1)π

nπ

t−
1
3 | sin t| dt ≤ 1

3
√

π

{

1
3
√

n
− 1

3
√

n + 1

}

+
1

3

∫ (n+1)π

nπ

t−
4
3 dt

=
1
3
√

π

{

1
3
√

n
− 1

3
√

n + 1

}

+
1

3

[

1

− 1
3

t−
1
3

](n+1)π

nπ

=
2
3
√

π

{

1
3
√

n
− 1

3
√

n + 1

}

.

7
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1  Special Functions

We therefore conclude that

∫ +∞

0

∣

∣x sin
(

x3
)∣

∣ dx =
1

3

∫ π

0

t−
1
3 | sin t| dt +

1

3

+∞
∑

n=1

∫ (n+1)π

nπ

t−
1
3 | sin t| dt

≤ 1

3

∫ π

0

t−
1
3 dt +

1

3
· 2

3
√

π

+∞
∑

n=1

{

1
3
√

n
− 1

3
√

n + 1

}

=
1

3

[

1
2
3

t
2
3

]π

0

+
2

3
· 1

3
√

π
· 1 =

1

2

3
√

π2 +
2

3

1
3
√

π
,

where we have used that the terms of the telescoping series tend towards 0 for n → +∞. This

implies that x · sin
(

x3
)

∈ L1, hence also that
1
3
√

t
sin t ∈ L1.

8
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1  Special Functions

3) Since fn(t) :=
1
3
√

t
· sin t ·exp

(

− 1

n
t

)

∈ L1 converges pointwise towards f(t) :=
1
3
√

t
sin t, and since

|f(t)| is an integrable majoring function, we conclude from the theorem of majoring convergence
that

∫ +∞

0

x sin
(

x3
)

dx =

∫ +∞

0

1
3
√

t
sin t dt = lim

n→+∞

∫ +∞

0

1
3
√

t
sin tḑot exp

(

− 1

n
t

)

dt

= lim
n→+∞

L
{

1
3
√

t
sin t

}(

1

n

)

= lim
x→0+

L
{

1
3
√

t
sin t

}

(x)

=
Γ

(

2
3

)

2i
lim

x→0+

(x + i)
2
3 − (x − i)

2
3

(x2 + 1)
2
3

=
Γ

(

2
3

)

2i
· i

2
3 − (−i)

2
3

1

=
Γ

(

2
3

)

2i

{

exp

(

2

3
· i π

2

)

− exp

(

2

3
·
(

−i
π

2

)

)}

= Γ

(

2

3

)

· 1

2i

{

exp
(

i
π

3

)

− exp
(

−i
π

3

)}

= Γ

(

2

3

)

sin
π

3
=

√
3

2
Γ

(

2

3

)

. ♦

Example 1.1.7 Compute the inverse Laplace transforms of

1)
1√

2z + 3
,

2)
e4−3z

(z + 4)
5
2

.

1) It follows from the rearrangement

1√
2z + 3

=
1√
2
· 1
{

z +
3

2

}
1
2

=
1√
2π

·
Γ

(

1

2

)

(

z +
3

2

)− 1
2+1

,

that

L−1

{

1√
2z + 3

}

(t) =
1√
2π

exp

(

−3

2
t

)

· 1√
t
.

2) Analogously,

e4−3z

(z + 4)
5
2

= e4 · e−3z · 1

Γ

(

5

2

) ·
Γ

(

5

2

)

(z + 4)
3
2 +1

=
e4

3
2 · 1

2

√
π
· e−3z L

{

t
√

t e−4t
}

(z),

9
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1  Special Functions

hence,

L−1

{

e4−3z

(z + 4)
5
2

}

(t) =
4e4

3
√

π
(t − 3)

3
2 e−t(t−3) H(t − 3)

=
4 e16

3
√

π
e−4t · (t − 3)

√
t − 3 · H(t − 3). ♦

Example 1.1.8 Compute the inverse Laplace transform of

(√
z − 1

z

)2

.

We get by a small computation,
(√

z − 1

z

)2

=
z + 1 − 2

√
z

z2
=

1

z
+

1

z2
− 2

z
3
2

= L{1}(z) + L{t}(z)− 2

Γ
(

3
2

) · Γ
(

3
2

)

z
3
2

= L
{

1 + t − 2
1
2

√
π

√
t

}

(z),

hence,

L−1

{

(√
z − 1

z

)2
}

(t) = 1 + t − 4√
π

√
t. ♦

Example 1.1.9 Compute the inverse Laplace transform of

z

(z + 1)
5
2

.

We get by a small manipulation of the expression,

F (z) :=
z

(z + 1)
5
2

=
z + 1 − 1

(z + 1)
5
2

=
1

(z + 1)
3
2

− 1

(z + 1)
5
2

=
1

Γ
(

3
2

) · Γ
(

3
2

)

(z + 1)
3
2

− 1

Γ
(

5
2

) · Γ
(

5
2

)

(z + 1)
5
2

=
1

1
2

√
π
L

{

t
1
2

}

(z + 1) − 1
3
2 · 1

2

√
π
L

{

t
3
2

}

(z + 1)

=
2√
π
L

{

e−t
√

t
}

(z) − 4

3
√

π
L

{

e−t t
√

t
}

(z),

hence

L−1{F}(t) =
2√
π

e−t
√

t − 4

3
√

π
e−t t

√
t =

2

3
√

π
e−t

√
t (3 − 2t). ♦

10
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1  Special Functions

Example 1.1.10 Compute the inverse Laplace transform of

1
3
√

8z − 27
.

It follows from

F (z) :=
1

3
√

8z − 27
=

1

2
· 1

3

√

x −
(

3
2

)3
, and L

{

t−
2
3

}

(z) =
Γ
(

1
3

)

3
√

z
,

that

L−1

{

1
3
√

8z − 27

}

(t) =
1

2 Γ
(

1
3

) · exp
(

27
8 t

)

3
√

t2
. ♦

Example 1.1.11 Solve the equation

∫ t

0

f ′(u)f(t − u) du = 24 t3, t ∈ R+.

where we assume that f ∈ F and f ′ ∈ F , and f(0) = 0.

First write the equation as a convolution equation

(f ′ � f) (t) = 24 t3.

Since we have assumed that f and f ′ ∈ F , we may apply the Laplace transformation on this equation,
so

L
{

24 t3
}

(z) =
24 · 3!

z4
= L{f ′} (z) · L{f}(z) = z · (L{f}(z))2, for � z > 0,

hence, by solving after L{f}(z),

L{f}(z) = ± 12

z
5
2

= ± 12

Γ
(

5
2

) · Γ
(

5
2

)

z
5
2

=
±12

3
2 · 1

2

√
π
· L

{

t
3
2

}

(z),

from which we conclude that the two solutions are given by

f(t) = ±12 · 4
3
√

π
t

3
2 = ± 16√

π
t
√

t. ♦

11
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1  Special Functions

Example 1.1.12 Solve the equation

∫ t

0

f(u)√
t − u

du = 1 + t + t2, t ∈ R+,

where we assume that f ∈ F .

We first notice that since g(t) = 1 + t + t2 is not equal to 0 for t = 0, we cannot apply the formula,
which will be derived in Example 1.2.1.

The equation can be written as the convolution equation

(

f �
1√
t

)

(t) = 1 + t + t2.

This is mapped by the Laplace transformation into

L{f}(z) · L
{

t−
1
2

}

(z) =
Γ
(

1
2

)

z
1
2

L{f}(z) =
1

z
+

1

z2
+

2

z3
,

12
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1  Special Functions

hence, by solving it with respect to L{f}(z),

L{f}(z) =
1√
π
· 1

z
1
2

+
1√
π
· 1

z
3
2

+
2√
π
· 1

z
5
2

=
1

π
· Γ

(

1
2

)

z
1
2

+
1√

π · Γ
(

3
2

) · Γ
(

3
2

)

z
3
2

+
2√

π · Γ
(

5
2

) · Γ
(

5
2

)

z
5
2

=
1

π
L

{

t−
1
2

}

(z) +
2

π
L

{

t
1
2

}

(z) +
2

π · 3
2 · 1

2

L
{

t
3
2

}

(z)

=
1

π
L

{

1√
t

+ 2
√

t +
8

3
t
√

t

}

,

We conclude that

f(t) =
1

π

{

1√
t

+ 2
√

t +
8

3
t
√

t

}

=
1

π
√

t

{

1 + 2t +
8

3
t2

}

, t ∈ R+.

Finally, it is obvious that the solution satisfies the condition that f ∈ F . ♦

Example 1.1.13 Find the solution f ∈ F of the equation
∫ t

0

f(u)√
t − u

du =
√

t, for t ∈ R+.

The given equation can also be written as a convolution equation
(

f �
1√
t

)

(t) =
√

t, for t ∈ R+.

Given that f ∈ F and
1√
t
∈ F and

√
t ∈ F , we get by a Laplace transformation for � z > max{0, σ(f)}

that

L
{

f �
1√
t

}

(z) = L{f}(z) · L
{

1√
t

}

(z) =
Γ
(

1
2

)

z
1
2

L{f}(z)

=

√

π

z
· L{f}(z) = L

{

t
1
2

}

(z) =
Γ
(

3
2

)

z
3
2

=
1

2z

√

π

z
,

so a necessary condition for the solution f is that it satisfies the equation

L{f}(z) =
1

2z
.

By the inverse Laplace transformation, the only possible solution is the constant function f(t) =
1

2
.

Check. It is obvious that f(t) =
1

2
∈ F , and σ(f) = 0. Finally, we get by insertion that

∫ t

0

f(u)√
t − u

du =
1

2

∫ t

0

du√
t − u

=
[

−
√

t − u
]t

0
=

√
t,

so f(t) =
1

2
is indeed a solution. ♦
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Example 1.1.14 Find the solution f ∈ F if the equation
∫ t

0

f(u)

(t − u)
1
3

du = t(1 + t), for t ∈ R+.

We shall solve the convolution equation
∫ t

0

f(u)

(t − u)
1
3

du = (t) = t(1 + t).

Put for convenience F (z) := L{f}(z). Then by taking the Laplace transformation and using the rule
of convolution,

L
{

f �
1

t
1
3

}

(z) = F (z) · Γ
(

1 − 1
3

)

z
2
3

= L
{

t + t2
}

(z) =
1

z
+

1

z2
,

from which we get

F (z) =
1

Γ
(

2
3

) · 1

z
1
3

+
1

Γ
(

2
3

) · 1

z
4
3

=
1

Γ
(

1
3

)

Γ
(

2
3

) · Γ
(

1
3

)

z
1
3

+
1

Γ
(

2
3

)

Γ
(

4
3

) · Γ
(

4
3

)

z
4
3

=
sin π

3

π
L

{

t−
2
3

}

(z) +
3 sin π

3

π
L

{

t
1
3

}

(z).

Finally, by the inverse Laplace transformation,

f(t) =

√
3

2π
·

3
√

t

t
+

3
√

3

2π
3
√

t =

√
3

2π
·

3
√

t

t
(1 + t). ♦

Example 1.1.15 Given n ∈ N \ {1}. Let s ∈ R+. Prove that

L
{

tn−1

1 − e−t

}

(s) = Γ(n)

+∞
∑

n=0

1

(s + p)n
.

We derive the classical Riemann’s zeta function from the above by the definition

ζ(n) :=

+∞
∑

p=1

1

pn
=

1

Γ(n)
L

{

tn−1

1 − e−t

}

(1) =
1

Γ(n)

∫ +∞

0

tn−1

et − 1
dt.

We get for s > 0,

L
{

tn−1

1 − e−t

}

(s) =

∫ +∞

0

tn−1 · e−st

1 − e−t
dt = lim

ε→0+

∫ +∞

ε

tn−1
+∞
∑

p=0

e−pt · e−st dt

= lim
ε→0+

+∞
∑

p=0

∫ +∞

ε

yn−1 e−(p+s)t dt =

+∞
∑

p=0

Γ(n) · 1

(p + s)n

= Γ(n)

+∞
∑

n=0

1

(z + p)n
.
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In particular we get for s = 1 and n ∈ N \ {1},

ζ(n) :=

+∞
∑

p=1

1

pn
=

1

Γ(n)
L

{

tn−1

1 − e−t

}

(1) =
1

Γ(n)

∫ +∞

0

tn−1

et − 1
dt.

We know from e.g. the theory of Fourier series that

+∞
∑

n=1

1

n2
=

π2

6
.

Therefore, we also get

π2

6
=

+∞
∑

n=1

1

n2
= ζ(2) =

∫ +∞

0

t

et − 1
dt.

Example 1.1.16 Prove that

L
{∫ +∞

0

tu f(u)

Γ(u + 1)
du

}

(s) =
L{f}(ln s)

s
, for s ∈ R+.

First apply the definition of the Laplace transformation with respect to t, and then interchange the
order of integration to get

L
{∫ +∞

0

tu f(u)

Γ(u + 1)
du

}

(s) =

∫ +∞

0

L{tu} (s) · f(u)

Γ(u + 1)
du

=

∫ +∞

0

1

Γ(u + 1)
· Γ(u + 1)

su+1
· f(u) du =

1

s

∫ +∞

0

f(u) e−u·ln s du

=
1

s
L{f}(ln s),

and the claim is proved. ♦

15
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1.2 The Beta function

Example 1.2.1 Given a constant α ∈ ]0, 1[, and assume that g ∈ F ∩ C1 and g(0) = 0. Prove that
the solution f ∈ F of the convolution equation

∫ t

0

f(u)

(t − u)α
du = g(t), for t ∈ R+,

is given by the solution formula

(1) f(t) =
sin απ

π

∫ t

0

g′(u)(t − u)α−1 du.

We first check that (1) is indeed a solution. We get by insertion and an application of Fubini’s theorem,

f �
1

tα
=

∫ t

0

f(u)

(t − u)α
du =

sin απ

π

∫ t

0

1

(t − u)α

∫ t

0

1

(t − u)α

∫

: 0g′(x)(u − x)α−1 dxdu

=
sin απ

π

∫ t

0

g′(x)

{∫ t

x

1

(t − u)α
· (u − x)α−1 du

}

dx

=
sin απ

π

∫ t

0

g′(x)

{∫ t−x

0

1

(t − x − u)α
· uα−1 du

}

dx

=
sin απ

π

∫ t

0

g′(x) ·
(

1

uα
� uα−1

)

(t − x) dx

=

(

g′ �

(

sin απ

π
· 1

xα
� xα−1

))

(t).

Then we separately compute the inner convolution, where we use the change of variable t = xu for
x > 0. This gives,

sin απ

π
· 1

xα
� xα−1 =

sin απ

π

∫ x

0

(x − t)−α tα−1 dt =
sin απ

π

∫ 1

0

x−α (1 − u)−α · xα−1 xdu

=
sin απ

π

∫ 1

0

(1 − u)(1−α)−1 uα−1 du =
sinαπ

π
B(1 − α, α)

=
sin απ

π

Γ(1 − α)Γ(α)

Γ(1)
=

sinαπ

π

π

sin απ
= 1,

hence,

f �
1

tα
= (g′ � H) (t) =

∫ t

0

g′(u)H(t − u) du =

∫ t

0

g′(u) du = [g(u)]t0 = g(t) − g(0) = 0,

and the claim is proved.

Notice that the result is independent of whether g ∈ F or not. The important thing for this part of
the proof is that g ∈ C1 and that g(0) = 0.
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An alternative proof in which we apply that g ∈ F ∩ C1, is the following. We shall prove that the
convolution equation

(2) f � t−α = g

has the solution

(3) f =
sin απ

π
g′ � tα−1.

When we apply the Laplace transformation on (2), then

L{g}(z) = L{f}(z) · L
{

t−α
}

(z) =
Γ(1 − α)

z1−α
· L{f}(z) =

1

Γ(α)
· π

sinαπ
L{f}(z) · 1

z1−α
,

thus

L{f}(z) =
sin απ

π
· Γ(α)

zα
· z L{g}(z) =

sin απ

π
· L

{

tα−1
}

(z) · L {g′} (z)

= L
{

sin απ

π
· g′ � tα−1

}

(z),

and (3) follows.

17
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Remark 1.2.1 As a check we can apply the solution formula on Example 1.1.13,

f(t) =
sin π

2

π

∫ t

0

1

2
· 1√

u
· 1√

t − u
du =

1

2π

∫ t

0

u
1
2−1 · (t − u)

1
2−1 du

=
1

2π
B

(

1

2
,
1

2

)

=
1

2π
· π

sin π
2

=
1

2
.

Similarly, we get in Example 1.1.14,

f(t) =
sin π

3

π

∫ t

0

(1 + 2u) · (t − u)
1
3−1 du =

sin π
3

π

∫ t

0

(t + 2t− 2(t − u)) · (t − u)−
2
3 du

=

√
3

2π

{

(1 + 2t)

∫ t

0

(t − u)−
2
3 du − 2

∫ t

0

(t − u)
1
3 du

}

=

√
3

2π

{

(1 + 2t)
[

−3(t − u)
1
3

]t

0
− 2

[

−3

4
(t − u)

4
3

]t

0

}

=

√
3

2π

{

(1 + 2t)3
3
√

t − 3

2
t

3
√

t

}

=
3
√

3

2π
3
√

t − 9
√

3

4π
t

3
√

t. ♦

Example 1.2.2 Compute the integrals,

1)
∫ 1

0
x

3
2 (1 − x)2 dx,

2)
∫ 4

0
x3(4 − x)−

1
2 dx,

3)
∫ 2

0
x4

√
4 − x2 dx.

The idea is of course to use that

B(m, n) =

∫ 1

0

xm−1(1 − x)n−1 dx =
Γ(m)Γ(n)

Γ(m + n)
.

1) We get by a straightforward computation,

∫ 1

0

x
3
2 (1 − x)2 dx =

∫ 1

0

x
5
2−1(1 − x)3−1 dx =

Γ
(

5
2

)

Γ(3)

Γ
(

11
2

)

=
Γ

(

5
2

)

· 2!
9
2 · 7

2 · 5
2 · Γ

(

5
2

) =
24

9 · 7 · 5 =
16

315
.
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2) In this case we apply the change of variable,

u =
x

4
, x = 4u, dx = 4du.

Then

∫ 4

0

x3(4 − x)−
1
2 dx =

∫ 1

0

43 u3 · 4− 1
2 (1 − u)−

1
2 · 4 du = 2 · 43

∫ 1

0

u4−1(1 − u)
1
2−1 du

= 128 · Γ(4)Γ
(

1
2

)

Γ
(

9
2

) =
128 · 3! Γ

(

1
2

)

7
2 · 5

2 · 3
2 · 1

2 Γ
(

1
2

) =
256 · 24

5 · 7 =
4096

35
.

3) Here we apply the change of variable

u =
1

4
x2, x = 2

√
u, dx =

1√
u

du.

Then

∫ 2

0

x4
√

4 − x2 dx =

∫ 1

0

24 · u2 · 4 1
2

√
1 − u · 1√

u
du = 32

∫ 1

0

u
5
2−1(1 − u)

3
2−1 du

= 32 B

(

5

2
,
3

2

)

= 32
Γ

(

5
2

)

Γ
(

3
2

)

Γ(4)
= 32 ·

3
2 · 1

2 Γ
(

1
2

)

· 1
2 Γ

(

1
2

)

3!

=
32 · 3
6 · 8

(√
π
)2

= 2π. ♦

Example 1.2.3 Compute B
(

3
2 , 4

)

.

We get straightforward,

B

(

3

2
, 4

)

=
Γ

(

3
2

)

Γ(4)

Γ
(

11
2

) =
Γ

(

3
2

)

· 6
9
2 · 7

2 · 5
2 · 3

2 · Γ
(

3
2

) =
6 · 16

9 · 7 · 5 · 3 =
32

315
. ♦

Example 1.2.4 Compute

1)
∫ π

2

0 cos6 Θ dΘ,

2)
∫ π

2

0 sin4 Θ cos4 Θ dΘ,

3)
∫ π

0
sin4 Θ cos4 Θ dΘ.

We shall use that in general

(4)

∫ π
2

0

sin2m−1 Θ cos2n−1 Θ dΘ =
1

2
B(m, n) =

1

2

Γ(m)Γ(n)

Γ(m + n)
, for m, n ∈ R+.
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1) When we apply (4), we get

∫ π
2

0

cos6 Θ dΘ =

∫ π
2

0

sin2· 12−1 Θ · cos2·
7
2−1 Θ dΘ =

1

2
B

(

1

2
,
7

2

)

=
1

2

Γ
(

1
2

)

Γ
(

7
2

)

Γ(4)
=

1

2
·
√

π · 15
8

√
π

3!
=

15π

16 · 6 =
5π

32
.

2) It follows again, applying (4), that

∫

0
π
2 sin2 Θ cos4 Θ dΘ =

∫ π
2

0

sin2· 32−1 Θ cos2·
5
2−1 Θ dΘ dΘ =

1

2
B

(

3

2
,
5

2

)

=
1

2

Γ
(

3
2

)

Γ
(

5
2

)

Γ(4)
=

1
2

√
π · 3

4

√
π

2 · 3!
=

3π

16 · 6 =
π

32
.

3) In this case we start with a small rearrangement, before we apply (4),

∫ π

0

sin4 Θ cos4 Θ dΘ =
1

24

∫ 4

0

sin4 2Θ dΘ =
1

32

∫ 2π

0

sin4 Θ dΘ

=
4

32

∫ π
2

0

sin4 Θ dΘ =
1

8

∫ π
2

0

cos2·
1
2−1 Θ sin2· 52−1 Θ dΘ

=
1

8
· 1

2
B

(

1

2
,
5

2

)

=
1

16

Γ
(

1
2

)

Γ
(

5
2

)

Γ(3)
=

1

32
·
√

π · 3

4

√
π =

3π

128
. ♦

Example 1.2.5 Compute
∫ π

2

0 cosn Θ dΘ for all n ∈ N.

We have in general,

∫ π
2

0

cosn Θ dΘ =

∫ π
2

0

cos2·
n+1

2 −1 Θ · sin2· 12−1 Θ dΘ =
1

2
B

(

n + 1

2
,
1

2

)

=
Γ

(

n+1
2

)

Γ
(

1
2

)

2Γ
(

n
2 + 1

) .

1) If n = 2m is even, then

∫ π
2

0

cos2m Θ dΘ =
1

2

Γ
(

m + 1
2

)

Γ
(

1
2

)

Γ(m + 1)
=

1

2

(

m − 1
2

)

· · · 1
2 Γ

(

1
2

)

Γ
(

1
2

)

m!

=
1

2
· (2m − 1) · (2 − 1)

2m · m!
· π =

π

22m+1
· (2m)!

m!m!
=

π

22m+1

(

2m
m

)

.
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2) If n = 2m + 1 is odd, then

∫ π

0

2 cos2m+1 Θ dΘ =
1

2

Γ(m + 1)Γ
(

1
2

)

Γ
(

m + 3
2

) =
1

2
· m!

√
π

(

m + 1
2

)

· · · 1
2

√
π

=
2m+1

2
· m!

(2m + 1)(2m − 1) · · · 1 = 22m · m!m!

(2m + 1) · (2m)!

=
22m

2m + 1
· 1
(

2m
m

) . ♦

Example 1.2.6 Apply the formula

∫ +∞

0

xp−1

x + 1
dx =

π

sin pπ

to compute the integral
∫ +∞
0

y2

1 + y4
dy.

If we apply the change of variable x = y4, i.e. y = x
1
4 , then we get

∫ +∞

0

y2

1 + y4
dy =

∫ +∞

0

x
1
2

1 + x
· 1

4
· x 1

4−1 dx =

∫ +∞

0

x
3
4−1

1 + x
dx =

π

sin 3π
4

= π
√

2. ♦
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Example 1.2.7 Prove without using the definition of the Beta function that
∫ π

2

0

√
cotΘdΘ =

π√
2
.

We shall use the substitution

u =
√

tanΘ, thus Θ = Arctan
(

u2
)

, and dΘ =
2u

1 + u4
du,

which clearly should be followed by another substitution,

x = u4, thus u = x
1
4 and du =

1

4
x

1
4−1 dx.

Then,
∫ π

2

0

√
cosΘ dΘ =

∫ +∞

0

]
1

u
· 2u

1 + u4
du =

∫ +∞

0

2

1 + u4
du =

2

4

∫ +∞

0

x
1
4−1

1 + x
dx

=
1

2
· π

sin π
4

=
π√
2
. ♦

Example 1.2.8 Compute the integrals

1)
∫ 4

2

dx
√

(x − 2)(4 − x)
,

2)
∫ 5

1
4
√

(5 − x)(x − 1) dx.

1) We shall use the change of variable,

t =
1

2
(x − 2), thus x = 2t + 2 and dx = 2dt.

Then
∫ 4

2

dx
√

(x − 2)(4 − x)
=

∫ 1

0

2 dt
√

2t · 2(1 − t)
=

∫ 1

0

t
1
2−1 (1 − t)

1
2−1 dt = B

(

1

2
,
1

2

)

=
Γ

(

1
2

)

Γ
(

1
2

)

Γ(1)
= π.

2) In this case we use the change of variable

t =
1

4
(x − 1), thus x = 4t + 1 and dx = 4 dt.

Then
∫ 5

1

4
√

(5 − x)(x − 1) dx =

∫ 1

0

4
√

4(1 − t) · 4t · 4 dt = 8

∫ 1

0

t
5
4−1 (1 − t)

5
4−1 dt

= 8 B

(

5

4
,
5

4

)

= 8
Γ

(

5
4

)

Γ
(

5
4

)

Γ
(

5
2

) = 8 ·
1
4 Γ

(

1
4

)

· 1
4 Γ

(

1
4

)

3
2 · 1

2
Γ

(

1
2

)

=
2

3
√

π

{

Γ

(

1

4

)}2

. ♦
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1.3 The sine and cosine and exponential integrals

Example 1.3.1 Compute the Laplace transforms of

1) e2t Si(t),

2) t -si(t).

We shall use that

L{Si}(z) =
1

z
Arccot z for � z > 0.

1) It follows from a rule of computation that

L
{

Si(t)e2t
}

(z) = L{Si}(z − 2) =
1

z − 2
Arccot(z − 2), for Re z > 2.

2) It follows from the rule of multiplication by t that

L{t Si(t)}(z) = − d

dz

{

1

z
Arccot z

}

=
1

z2
Arccot z +

1

z
· 1

1 + z2
. ♦

Example 1.3.2 Prove that
sin t

t
/∈ L1 (R+), i.e. that

∫ +∞
0

∣

∣

∣

∣

sin t

t

∣

∣

∣

∣

dt = +∞.

Clearly, | sin t| ≥ 1√
2

for all t ∈
[

pπ +
π

4
, pπ +

3π

4

]

. We therefore have the simple estimates

∫ +∞

0

∣

∣

∣

∣

sin t

t

∣

∣

∣

∣

dt ≥
+∞
∑

p=0

∫ pπ+ 3π
4

pπ+ π
4

∣

∣

∣

∣

sin t

t

∣

∣

∣

∣

dt ≥ 1√
2

+∞
∑

p=0

∫ pπ+ 3π
4

pπ+ π
4

dt

t

≥ 1√
2

+∞
∑

p=0

1

pπ + 3π
4

· π

2
≥ π

2
√

2

+∞
∑

p=0

1

(p + 1)π
=

1

2
√

2

+∞
∑

n=1

1

n
= +∞. ♦

Example 1.3.3 Apply the trivial formula

∫ b

a

sin λt

t
dt =

∫ b

0

sin λt

t
dt −

∫ a

0

sin λt

t
dt,

to prove that

lim
λ→+∞

∫ b

a

sin λt

t
dt = 0.

Using the hint and that
∫ ∞

0

sin t

t
dt = lim

n→+∞

∫ n

0

sin t

t
dt =

π

2
,
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this is easy,

lim
λ→+∞

∫ b

a

sin λt

t
dt = lim

λ→+∞

∫ b

0

sin λt

t
dt − lim

λ→+∞

∫ a

0

sin λt

t
dt

= lim
λ→+∞

∫ λ b

0

sin u

u
du − lim

λ→+∞

∫ λ a

0

sin u

u
du =

π

2
− π

2
= 0. ♦

Example 1.3.4 Compute the Laplace transform of t2 Ci(t).

Given that

L{Ci}(z) =
Log

(

z2 + 1
)

2z
,

it follows from the rule of multiplication by t2 that

L
{

t2Ci(t)
}

(z) =
d2

dz2

{

Log
(

z2 + 1
)

2z

}

=
d

dz

{

2z

z2 + 1
· 1

2z
− Log

(

z2 + 1
)

2z2

}

= − 2z

(z2 + 1)
2 − 2z

z2 + 1
· 1

2z2
+

Log
(

z2 + 1
)

z3

= − 3z2 + 1

z (z2 + 1)
2 +

Log
(

z2 + 1
)

z3
. ♦

Example 1.3.5 Compute the Laplace transforms of

1) e−3t Ei(t),

2) t Ei(t).

We shall use that

L{Ei}(z) =
Log(1 + z)

z
, for � z > 0.

1) By using a rule of computation,

L
{

e−3t Ei(t)
}

(z) =
Log(z + 4)

z + 3
for � z > −3.

2) Using the rule of multiplication by t,

L{t Ei(t)}(z) = − d

dz

{

Log(1 + z)

z

}

=
Log(1 + z)

z2
+

1

z(1 + z)
, for � z > 0. ♦
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Example 1.3.6 Find the error in the following “proof” of

F (z) = L{Ci}(z) =
Log

(

z2 + 1
)

2z
.

“It follows from the definition

Ci(t) =

∫ +∞

t

cosu

u
du,

that t · (Ci)′(t) = − cos t, thus

− d

dz
{zF (z)− Ci(0)} = − d

dz
{z F (z)} = − z

z2 + 1
,

hence,

d

dz
{z F (z)} =

z

z2 + 1
,

and therefore,

z F (z) =
1

2
Log

(

z2 + 1
)

+ C.

Then it follows from the Finite Value Theorem that

lim
s→0+

s F (s) = lim
t→+∞

Ci(t) = 0,

so C = 0, and we conclude that

L{Ci}(z) =
Log

(

z2 + 1
)

2z
.”

It follows from the sketch above that Ci(0) occurs early in the proof. However, since the improper

integral
∫ +∞
0

cosu

u
du is divergent, which follows from the estimate

∫ +∞

0

∣

∣

∣

cosu

u

∣

∣

∣
du ≥ cos

π

4

∫ π
4

0

du

u
= +∞,

the constant Ci(0) is not defined. The sneaky thing is that this (non-existing) constant is disappearing
by a later differentiation. ♦
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Example 1.3.7 Prove that

∫ +∞

0

t e−t Ei(t) dt = ln 2 − 1

2
.

It follows by inspection supplied with the rules of computation [we notice that 1 > 0 = σ(Ei)] that

∫ +∞

0

t e−t Ei(t) dt = L{t Ei(t)}(t) = lim
z→1

{

− d

dz
L{Ei}(z)

}

= − lim
z→0

d

dz

{

Log(1 + z)

z

}

= lim
z→1

{

Log(1 + z)

z2

}

− 1

z(1 + z)
= ln 2 − 1

2
. ♦
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1.4 The error function

Example 1.4.1 Compute the Laplace transforms of

1) e3terf
(√

t
)

,

2) t · erf
(

2
√

t
)

.

It follows from Ventus, Complex Functions Theory a-6, The Laplace Transformation II that

L
{

erf
(√

t
)}

(z) =
1

z
√

z + 1
, � z > 0.

1) It follows from one of the rules of computation for the Laplace transformation that

L
{

e3terf
(√

t
)}

(z) = L
{

erf
(√

t
)}

(z − 3) =
1

(z − 3)
√

z − 2
.

2) We apply the rule of multiplication by t and the rule of similarity. Then for � z > 0,

L
{

t · erf
(

2
√

t
)}

(z) = − d

dz
L

{

erf
(√

4t
)}

(z) = − d

dz

{

1

4
L

{

erf
(√

t
)} (z

4

)

}

= −1

4

d

dz

{

1
z
4

√

z
4 + 1

}

= − d

dz

{

2

z
√

z + 4

}

= −
{

− 2

z2
√

z + 4
− 1

2
· 2

z(z + 4)
3
2

}

=
1

z2(z + 4)
3
2

{2(z + 4) + z} =
3z + 8

z2(z + 4)
3
2

. ♦

Example 1.4.2 Compute the Laplace transform of erfc
(√

t
)

.

Using that erfc
(√

t
)

= 1 − erf
(√

t
)

and that the Fourier transform of erf
(√

t
)

was found in Ventus,
Complex Functions Theory a-6, The Laplace Transformation II it follows that

L
{

erfc
(√

t
)}

(z) =
1

z
− 1

z
√

z + 1
=

√
z + 1 − 1

z
√

z + 1
. ♦

Example 1.4.3 Compute the Laplace transform of
∫ t

0 erf (
√

u) du.

We use the rule of integration and that the Fourier transform of erf
(√

t
)

was found in Ventus, Complex
Functions Theory a-6, The Laplace Transformation II to get

L
{∫ t

0

erf
(√

u
)

du

}

(z) =
1

z2
√

z + 1
, � z > 0. ♦
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Example 1.4.4 Prove that
∫ +∞
0 e−t erf

(√
t
)

dt =

√
2

2
.

Hint. Consider L
{

erf
(√

t
)}

(z).

We have straightforward,

∫ +∞

0

e−t erf
(√

t
)

dt = L
{

erf
(√

t
)}

(1) =

[

1

z
√

z + 1

]

z=1

=

√
2

2
. ♦

Example 1.4.5 Compute the inverse Laplace transform of
1√

z(z − 1)
.

It follows from the theorem of convolution applied in the opposite direction that

L−1

{

1√
z(z − 1)

}

(t) =
1√
π

(

1√
t

� et

)

(t) =
1√
π

∫ t

0

et−u

√
u

du =
1√
π

et

∫ t

0

e−u

√
u

du

=
2√
π

et

∫

√
t

0

e−v2

dv = et erf
(√

t
)

. ♦

Example 1.4.6 Compute the inverse Laplace transform of

√
z

z − 1
.

We first compute
√

z

z − 1
= z · 1√

z · (z − 1)
= z · 1

(z − 1)
√

(z − 1) + 1
= z L

{

et erf
(√

t
)}

(z)

= z L
{

et erf
(√

t
)}

(z) − e0 erf
(√

0
)

= L
{

d

dt

(

et erf
(√

t
))

}

(z).

We therefore conclude by the uniqueness that

L−1

{ √
z

z − 1

}

(t) =
d

dt

{

et erf
(√

t
)}

.

According to a result of an example in Ventus, Complex Functions Theory a-6, The Laplace Trans-
formation II we have

erf
(√

t
)

=
1√
π

∫ t

0

e−u

√
u

du.

Hence finally,

L−1

{ √
z

z − 1

}

(t) =
d

dt

{

et erf
(√

t
)}

= et · erf
(√

t
)

+
et

√
π
· e−t

√
t

= et · erf
(√

t
)

+
1√
πt

. ♦
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Example 1.4.7 Compute the inverse Laplace transform of
1

1 +
√

z
.

Assume that � z > 1. Then

1

1 +
√

z
=

1

z − 1
· z − 1√

z + 1
=

√
z − 1

z − 1
=

√
z

z − 1
− 1

z − 1
= z · 1

(z − 1)
√

z
− 1

z − 1

= z L
{

erf
(√

t
)}

(z − 1) − L
{

et
}

(z) = z L
{

et erf
(√

t
)}

(z) − L
{

et
}

(z)

= L
{

d

dt

{

et erf
(√

t
)}

− et

}

(z),

where we have used that lim→0+ et erf
(√

t
)

= 0.

Then we use the formula

erf
(√

t
)

=
1√
π

=
1√
π

∫ t

0

e−u

√
u

du,

which was also applied in Example 1.4.6, to get

L−1

{

1

1 +
√

z

}

(t) =
d

dt

{

et erf
(√

t
)}

− et = et erf
(√

t
)

+
1√
πt

− et

=
1√
πt

− et erfc
(√

t
)

. ♦

Example 1.4.8 For a > 0 fixed we define fa(t) :=
1

|t − a| . Compute the Laplace transform L{fa} (z).

We use the rule of similarity and an example from Ventus, Complex Functions Theory a-6, The Laplace
Transformation II to get

L{fa} (z) = L
{

1
√

|t − a|

}

(z) =
1√
a
L







1
√

∣

∣

t
a − 1

∣

∣







(z) =
a√
a
L

{

1
√

|t − 1|

}

(a z)

=
√

aπ · e−az

√
az

{

1 − i · erf
(

i
√

az
)}

=

√

π

z
· e−az

{

1 − i · erf
(

i
√

az
)}

. ♦
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1.5 The Bessel functions

Example 1.5.1 Compute
∫ +∞
0

J0

(

x2
)

dx.

Hint. Define the auxiliary function f(t) :=
∫ +∞
0

J0

(

tx2
)

dx, and then compute L{f}(s) for s ∈ R+

by interchanging the order of integration.

We define as in the hint,

f(t) :=

∫ +∞

0

J0

(

tx2
)

dx,

and then apply the Laplace transformation on f for z = s ∈ R+ real and positive. Then by inter-
changing the order of integration,

L{f}(s) =

∫ +∞

0

e−st

{∫ +∞

0

J0

(

tx2
)

dx

}

dt =

∫ +∞

0

{∫ +∞

0

e−st J0

(

t x2
)

dt

}

dx

=

∫ +∞

0

L
{

J0

(

t · x2
)}

(s)dx =

∫ +∞

0

1

x2
L{J0}

( s

x2

)

dx

=

∫ +∞

0

1

x2
· 1
√

1 +
{

s
x2

}2
dx =

∫ +∞

0

dx√
x4 + s2

=
1√
s

∫ +∞

0

1
√

{

x√
s

}4

+ 1

dx√
s

=
1√
s

∫ +∞

0

dx√
1 + x4

=
1√
π
L

{√
t
}

(s) ·
∫ +∞

0

dx√
1 + x4

,
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from which we conclude that

f(t) =

√

t

π

∫ +∞

0

dx√
1 + x4

,

hence by choosing t = 1,

f(1) =

∫ +∞

0

J0

(

x2
)

dx =
1√
π

∫ +∞

0

dx√
1 + x4

.

Finally, we get by the substitution x =
√

tanΘ,
∫ +∞

0

J0

(

x2
)

dx =
1√
π

∫ π
2

0

1√
1 + tan2 Θ

· 1

2
· 1√

tan Θ
· dΘ

cos2 Θ

=
1

2
√

π

∫ π
2

0

cosΘ

cos2 Θ

√

cosΘ

sin Θ
dΘ =

1

2
√

π

∫ π
2

0

sin2· 14−1 Θ · cos2·
1
4−1 Θ dΘ

=
1

2
√

π
· 1

2
B

(

1

4
,
1

4

)

=
1

4π
·
{

Γ
(

1
4

)}2

Γ
(

1
2

) =

{

Γ
(

1
4

)}2

4π
. ♦

Example 1.5.2 Compute by using the series method the inverse Laplace transform of

1

z
J0

(

2√
z

)

.

When we apply the series expansion of the Bessel function J0 we get

1

z
J0

(

2√
z

)

=
1

z

+∞
∑

n=0

(−1)n

{n!}2

(

2√
z

)2n

=
1

z

+∞
∑

n=0

(−4)n

{n!}2
· 1

zn
,

where the series is convergent for z ∈ C \ {0}.

According to a theorem in Ventus, Complex Functions Theory a-6, The Laplace Transformation II
we have in general

L−1

{

+∞
∑

n=0

bn · 1

zn+1

}

(t) =

+∞
∑

n=0

1

n!
bn tn,

provided that the series
∑+∞

n=0 bn z−(n+1) is convergent for |z| > 1
R . The latter condition is trivial,

and we get by identification that

bn =
(−4)n

{n!}2
.

Hence,

f(t) = L−1

{

+∞
∑

n=0

(−4)n

{n!}2
· 1

zn+1

}

(t) =

+∞
∑

n=0

(−4)n

{n!}3
tn, t ∈ R+. ♦
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Example 1.5.3 Prove that

1)

∫ +∞

0

Jn(t) dt = 1, 2)

∫ +∞

0

t Jn(t) dt = n,

where we assume (without proof) that the improper integrals are convergent.

1) If s > 0 is real, then

L{Jn} (s) =

(√
s2 + 1 − s

)n

√
s2 + 1

→ (1 − 0)n

√
02 + 1

= 1 for s → 0.

Therefore, if the improper integral exists, then

∫ +∞

0

Jn(t) dt = lim
s→0+

∫ +∞

0

Jn(t) e−st dt = lim
s→0+

L{Jn} (s) = 1,

according to the computation above.

2) Analogously we get here that if the improper integral exists, then its value is given by

∫ +∞

0

t Jn(t) dt = lim
s→0+

∫ +∞

0

t Jn(t) e−st dt = lim
s→0+

L{t Jn} (s) = lim
s→0+

{

− d

ds
L{Jn} (s)

}

= lim
s→0+

{

−n
(√

s2 + 1 − s
)n−1

√
s2 + 1

(

s√
s2 + 1

− 1

)

+

(√
s2 + 1 − s

)n

(√
s2 + 1

)3 · s
}

= n. ♦

Example 1.5.4 Prove that

∫ +∞

0

u exp
(

−u2
)

J0(a u) du =
1

2
exp

(

−a2

4

)

.

We put

ϕ(a) :=

∫ +∞

0

u exp
(

−u2
)

J0(a u) du and ψ(u) :=
1

2
exp

(

−a2

4

)

.

The trivial estimate |J0(a u)| ≤ 1 implies that ϕ(a) is well-defined, and that ϕ ∈ C∞ (R), and we are
allowed to differentiate under the sign of integration. It follows from

ψ′(a) =
1

2

{

−2a

4

}

exp

(

−a2

4

)

= −a

2
ψ(a), ψ(0) =

1

2
,

that we shall only prove that ϕ(a) satisfies

ϕ′(a) = −a

2
ϕ(a) for a > 0, and ϕ(0) =

1

2
.
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It follows from the computation

ϕ(0) =

∫ +∞

0

u exp
(

−u2
)

J0(0) du =

∫ +∞

0

u exp
(

−u2
)

du =

[

−1

2
exp

(

−u2
)

]+∞

0

=
1

2
= ψ(0),

that the initial condition is fulfilled.

It follows from Ventus, Complex Functions Theory a-6, The Laplace Transformation II, that

J ′
0(t) = −J1(t) and

d

dt
{t J1(t)} = t J0(t),

so when the expression of ϕ(a) is differentiated with respect to a > 0, then

ϕ′(a) =

∫ +∞

0

u e−u2 ∂

∂a
J0(a u) du =

∫ +∞

0

u e−u2

u J ′
0(a u) du = −

∫ +∞

0

u e−u2 · u J1(a u) du

=

[

1

2
e−u2

u J1(a u)

]+∞

0

− 1

2

∫ +∞

0

e−u2 ∂

∂u
{u J1(a u)}du

= −1

2

∫ +∞

0

e−u2 ∂

∂(au)
{(au)J1(au)} du

= −1

2

∫ +∞

0

e−u2

(au)J0(au) du = −a

2

∫ +∞

0

u e−u2

J0(au) du = −a

2
ϕ(a),

and the claim is proved. ♦

Example 1.5.5 Compute

L
{

e−at J0(b t)
}

(z), where a, b ∈ R+.

We just apply the rules of computation for the Laplace transformation to get

L
{

e−at J0(b t)
}

(z) = L{J0(b t)} (z + a) =
1

b
L{J0(t)}

(

z + a

b

)

=
1

b
· 1
√

1 +
{

z+a
b

}2
=

1
√

(z + a)2 + b2
, � z > −a. ♦

Example 1.5.6 Compute L{t J0(2t)} (z).

We just apply the rules of computation for the Laplace transformation to get

L{t J0(2t)} (z) = − d

dz
L{J0(2t)} (z) = −1

2

d

dz

(

L{J0}
(z

2

))

= −1

2

d

dz







1
√

1 +
{

z
2

}2







= −1

2

(

− 1
2

)

(

√

1 +
(

z
2

)2
)3 · z

2
=

z
(√

z2 + 4
)3 . ♦
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Example 1.5.7 We define the modified Bessel function of order 0 by I0(t) := J0(it), which makes
sense, because J0(t) has a convergent series expansion which can be extended to all of C.
Compute

L{I0(a t)} (z) for a ∈ R+.

It follows from the rule of change of scale that

L{I0(a t)} (z) =
1

a
L{I0}

(z

a

)

.

It therefore suffices to compute L{I0} (z).

Clearly,

I ′0(t) = i J ′
0(i t), thus J ′

0(i t) = −i I0(t),

and

I ′′0 (t) = −J ′′
0 (i t), thus J ′′

0 (i t) = −I ′′0 (t).

By insertion into the Bessel equation of order 0 we obtain the following differential equation for I0,

0 = it J ′′
0 (it) + J ′

0(i t) + it J0(i t) = −it J ′′
0 (t) − i I ′0(t) + it I0(t),

so the differential equation of I0 becomes

−t I ′′0 (t) − I ′0(t) + t I0(t) = 0, and I0(0) = 1.
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We apply the Laplace transformation on this differential equation to get

0 =
d

dz

(

z2 L{I0} (z) − z I0(0) − I ′0(0)
)

− (z L{I0} (z) − I0(0)) − d

dz
L{I0} (z)

= z2 d

dx
L{I0} (z) + 2z L{I0} (z) − 1 − z L{I0} (z) + 1 − d

dz
L{I0} (z)

=
(

z2 − 1
) d

dz
L{I0} (z) + z L{I0} (z),

the solution of which for some arbitrary constant c ∈ C is

L{I0} (z) =
c√

z2 − 1
, for � z > 1.

Finally, we conclude from

lim
z→+∞

z · c√
z2 − 1

= c = I0(0) = 1,

that

L{I0} (z) =
1√

z2 − 1
, for � z > 1. ♦

Example 1.5.8 Compute the Laplace transform of
d2

dt2
{

e2t J0(2t)
}

.

This is the usual exercise of applications of the rules of computation. If we put f(t) := e2t J0(2t),
then f(0) = 1 and f ′(0) = 2. Then for � z > 2,

L
{

d2

dt2
(

e2t J0(2t)
)

}

(z) = z2 L
{

e2t J0(2t)
}

(z) − z f(0) − f ′(0)

= z2 L{J0(2t)} (z − 2) − z − 2 = z2 · 1

2
L{J0(t)}

(

z − 2

2

)

− z − 2

= z2 · 1

2
· 1
√

1 +
(

z−2
2

)2
− z − 2 =

z2

√

(z − 2)2 + 4
− z − 2. ♦

Example 1.5.9 Compute L{t J1(t)} (z).

This is straightforward for � z > 0,

L{t J1(t)} (z) = − d

dz
L{J1} (z) = − d

dz

{

1 − z√
z2 + 1

}

=
d

dz

{

z√
z2 + 1

}

=
1√

z2 + 1
− 1

2

z · 2z

(z2 + 1)
3
2

=
1√

z2 + 1
− z2

(z2 + 1)
3
2

=
1

(z2 + 1)
3
2

.
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We notice that also

L{sin �J0} (z) =
1

(z2 + 1)
3
2

,

so we have proved that

(sin �J0) (t) = t J1(t). ♦

Example 1.5.10 Compute the integral
∫ +∞
0

t e−3t J0(4t) dt.

Assume that � z > 0. Then

int+∞
0 t e−3t J0(4t) dt = L{t J0(4t)} (z) = − d

dz
L{J0(4t)} (z)

=
d

dz

(

1

4
L{J0(t)}

(z

4

)

)

= − d

dz







1

4

1
√

1 + z2

16







= − d

dz

(

1√
z2 + 16

)

= −
(

−1

2

)

· 2z

(z2 + 16)
3
2

=
z

(z2 + 16)
3
2

.

When we choose z = 3, we get

∫ +∞

0

t e−3t J0(4t) dt =
3

(9 + 16)
3
2

=
3

53
=

3

125
. ♦

Example 1.5.11 Prove that
∫ +∞
0 t2 J0(t) dt = −1.

Consider � z > 0. Then
∫ +∞

0

t2 e−zt J0(t) dt = L
{

t2 J0(t)
}

(z) = (.1)2
d2

dz2

(

z2 + 1
)− 1

2

=
d

dz

{

−1

2

(

z2 + 1
)− 3

2 · 2z

}

=
d

dz

{

−z
(

z2 + 1
)− 3

2

}

= −
(

z2 + 1
)− 3

2 + 3z2
(

z2 + 1
)− 5

2 → −1 for z → 0 + .

Strictly speaking, we should start with a proof of that the improper integral is convergent, and that
the limit process gives the right value. ♦
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Example 1.5.12 Prove the following formulæ,

1)
∫ +∞
0

J0

(

2
√

tu
)

cosu du = sin t,

2)
∫ +∞
0 J0

(

2
√

tu
)

sin u du = cos t,

3)
∫ +∞
0

J0

(

2
√

tu
)

J0(u) du = J0(t).

We assume without proof that the improper integrals are all convergent, and that we may interchange
the order of integration, when we apply the Laplace transformation.

It follows from a result in Ventus, Complex Functions Theory a-6, The Laplace Transformation II,
that

L
{

J0

(

2
√

t
)}

(z) =
1

z
· exp

(

−1

z

)

, � z > 0.

Then it follows from the rule of scaling for λ > 0 a constant,

L
{

J0

(

2
√

λt
)}

(z) =
1

λ
L

{

J0

(

2
√

t
)}( z

λ

)

=
1

λ
· λ

z
· exp

(

−λ

z

)

=
1

z
· exp

(

−λ

z

)

.

1) We get by a Laplace transformation with respect to t that

L
{∫ +∞

0

J0

(

2
√

tu
)

cosu du

}

(z) =

∫ +∞

0

L
{

J0

(

2
√

tu
)}

(z) cosu du

=

∫ +∞

0

1

z
exp

(

−u

z

)

cosu du =
1

z
L{cosu}

(

1

z

)

=
1

z
·

1
z

1 + 1
z2

=
1

z2 + 1
= L{sin t}(z).

Hence, we get by the inverse Laplace transformation,

∫ +∞

0

J0

(

2
√

tu
)

cosu du = sin t.

Alternatively, we get either by formal computations, or by an analytic extension that

∫ +∞

0

J0

(

2
√

tu
)

cosu du =
1

2

∫ +∞

0

J0

(

2
√

tu
)

{

eiu + e−iu
}

du

=
1

2

(

L
{

J0

(

2
√

tu
)}

(−i) + L
{

J0

(

2
√

tu
)}

(i)
)

=
1

2

(

1

t
L

{

J0

(

2
√

u
)}

(

− i

t

)

+
1

t
L

{

J0

(

2
√

u
)}

(

i

t

))

=
1

2t

{(

− t

i

)

exp

(

t

i

)

+
t

i
exp

(

− t

i

)}

=
1

2i

{

eit − e−it
}

= sin t.
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2) Using the same method as above we get in this case,

L
{∫ +∞

0

J0

(

2
√

tu
)

sinu du

}

(z) =
1

z
L{sin u}

(

1

z

)

=
1

z
· 1

1 + 1
z2

=
z

z1 + 1
= L{cos t}(z).

Then by the inverse Laplace transformation,

∫ +∞

0

J0

(

2
√

tu
)

sin u du = cos t.

Alternatively, and analogously we here get

∫ +∞

0

J0

(

2
√

tu
)

sin u du =
1

2i

∫ +∞

0

J0

(

2
√

tu
)

{

eiu − e−iu
}

du

=
1

2it

{(

− t

i

)

exp

(

t

i

)

− t

i
exp

(

− t

i

)}

=
1

2

{

eit + e−it
}

= cos t.

3) We get by a Laplace transformation with respect to t that

L
{∫ +∞

0

J0

(

2
√

tu
)

J0(u) du

}

(z) =
1

z
L{J0}

(

1

z

)

=
1

z
· 1
√

1 + 1
z2

=
1√

1 + z2
= L{J0(t)} (z).

Hence, by the inverse Laplace transformation,

∫ +∞

0

J0

(

2
√

tu
)

J0(u) du = J0(t). ♦
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Example 1.5.13 Compute
∫ t

0
J0(u)J1(t − u) du.

We apply the rule of convolution for � z > 0,

L
{∫ t

0

J0(u)J1(t − u) du

}

(z) = L{J0 � J1} (z) = L{J0} (z) · L {J1} (z)

=
1√

z2 + 1
·
√

z2 + 1 − z√
z2 + 1

=
1√

z2 + 1
− z

z2 + 1
.

Hence by the inverse Laplace transformation,

∫ t

0

J0(u)J1(t − u) du = J0(t) − cos t. ♦

Example 1.5.14 Compute
∫ t

0 J0(u)J2(t − u) du.

It follows by the rule of convolution that

F (z) = L
{∫ t

0

J0(u)J2(t − u) du

}

(z) = L{J0} (z) · L {J2} (z)

=
1√

z2 + 1
·
(√

z2 + 1 − z
)2

√
z2 + 1

=
z2 + 1 + z2 − 2z

√
z2 + 1

z2 + 1

=
2

(

z2 + 1 − z
√

z2 + 1
)

− 1

z2 + 1
= 2

√
z2 + 1 − z√

z2 + 1
− 1

z2 + 1
.

Then by the inverse Laplace transformation,

∫ t

0

J0(u)J2(t − u) du = 2 J1(t) − sin t. ♦

Example 1.5.15 Compute
∫ t

0
J0(u) sin(t − u) du.

Again we use the rule of convolution to get

L
{∫ t

0

J0(u) sin(t − u) du

}

(z) = L{J0} (z) · L{sin t}(z)

=
1

(z2 + 1)
3
2

=
d

dz

{

z√
z2 + 1

}

= − d

dz

{

1 − z√
z2 + 1

}

= − d

dz

{√
z2 + 1 − z√

z2 + 1

}

= − d

dz
L{J1} (z) = L{t J1(t)} (z).

Then we get by the inverse Laplace transformation,

∫ t

0

J0(u) sin(t − u) du = (J0 � sin) (t) = t J1(t). ♦
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Example 1.5.16 Prove that Jm � Jn(t) = J0 � Jm+n(t) for all m, n ∈ N0.

We shall use that

jn(z) := L{Jn} (z) =

(√
z2 + 1 − z

)n

√
z2 + 1

, for � z > 0.

Then by the rule of convolution,

L{Jm � Jn} (z) = jm(z) · jn(z) =

(√
z2 + 1 − z

)m+n

(√
z2 + 1

)2 = j0(z) · jm+n(z) = L{J0 � Jm+n} (z),

and the claim follows, when we apply the inverse Laplace transformation. ♦

Example 1.5.17 Compute the Laplace transform of
1 − J0(t)

t
.

Apply the result to prove that

∫ +∞

0

1 − J0(t)

t et
dt = ln

(√
2 + 1

2

)

.

Apply the rule of division by t to get

L
{

1 − J0(t)

t

}

(z) =

∫

Γz

L{1 − J0(t)} (z) dz =

∫

Γz

{

1

z
− 1√

z2 + 1

}

dz

= Arsinh z − Log z + c = Log
(

z +
√

z2 + 1
)

− Log z + c

= Log

(

1 +

√

1 +
1

z2

)

+ c.

It follows from

L
{

1 − J0(t)

t

}

(z) → 0 for � z → +∞,

that

c = −Log
(

1 +
√

1 + 0
)

= − ln 2,

so we finally get

L
{

1−J0(t)

t

}

(z)=Log

(

1+

√

1+
1

z2

)

−ln 2=Log





1+
√

1+ 1
z2

2



=Log

(

z+
√

1+z2

2z

)

.

Finally, if we put z = 1, then

L
{

1−J0(t)

t

}

(1)=

∫ +∞

0

1−J0(t)

t et
dt=ln

(

1+
√

1+1

2 · 1

)

=ln

(

1+
√

2

2

)

. ♦
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Example 1.5.18 Compute the Laplace transform of t e−t J0

(

t
√

2
)

.

Just use the well-known rules of computations to get

L
{

t e−t J0

(

t
√

2
)}

= − d

dz
L

{

e−t J0

(

t
√

2
)}

(z) = − d

dz
L

{

J0

(

t
√

2
)}

(z + 2)

= − 1√
2

d

dz
L{J0}

(

z + 2√
2

)

= − 1√
2

d

dz















1
√

1 +
(

z+2√
2

)2















= − d

dz

{

1
√

2 + (z + 2)2

}

=
z + 2

(z2 + 4z + 6)
3
2

. ♦

Example 1.5.19 Apply a series expansion to prove that

L
{

J0

(

2
√

t
)}

(z) =
1

z
exp

(

−1

z

)

.

Using a termwise Laplace transformation we get

L
{

J0

(

2
√

t
)}

(z) = L
{

+∞
∑

n=0

(−1)n

(n!)2

(

2
√

t

2

)2n
}

(z) = L
{

+∞
∑

n=0

(−1)n

(n!)2
tn

}

(z)

=

+∞
∑

n=0

(−1)n

(n!)2
L{tn} (z) =

+∞
∑

n=0

(−1)n

(n!)2
n!

zn+1
=

1

z

+∞
∑

n=0

(−1)n

n!

1

zn
=

1

z
exp

(

−1

z

)

.

We finally notice that the series is absolutely convergent, so the termwise Laplace transformation is
legal. ♦

Example 1.5.20 Compute the Laplace transform of J1

(

2
√

t
)

.

By termwise Laplace transformation,

L
{

J1

(

2
√

t
)}

(z) = L
{

+∞
∑

n=0

(−1)n

n!(n + 1)!

(

2
√

t

2

)2n+1
}

(z)

= L
{

+∞
∑

n=0

(−1)n

n!(n + 1)!
tn+ 1

2

}

(z) =
+∞
∑

n=0

(−1)n

n!(n + 1)!

Γ
(

n + 3
2

)

zn+ 3
2

.

We compute separately,

Γ
(

n + 3
2

)

n!(n + 1)!
=

(

n + 1
2

) (

n − 1
2

)

· · · 1
2

√
π

n!(n + 1)!
=

√
π

2n+1
· (2n + 1)(2n − 1) · · · 1

n!(n + 1)!

=

√
π

22n+1
· (2n + 1)!

(n!)2(n + 1)!
=

√
π

22n+1
· 1

n!

(

2n + 1
n

)

.
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It follows from this computation that the series is absolutely convergent, and that

L
{

J1

(

2
√

t
)}

(z) =

√
π

2z
√

z

+∞
∑

n=0

(−1)n

n!

(

2n + 1
n

)

1

(4z)n
, � z > 0. ♦

Example 1.5.21 Define the Laguerre polynomials Ln(t) by

Ln(t) =
et

n!

dn

dtn
{

tn e−t
}

, n ∈ N0.

Compute L0(t), L1(t), . . . , L4(t).
Then compute the Laplace transform of Ln(t) for n ∈ N0.

By straightforward computations,

L0(t) =
et

0!
t0 e−t = 1,

L1(t) =
et

1

d

dt

{

t e−t
}

= et
{

−t e−t + e−t
}

= −t + 1,

L2(t) =
et

2!

d2

dt2
{

t2 e−t
}

=
et

2

d

dt

{

−t2 e−t + 2t e−t
}

=
et

2

{

t2 e−t − 4t e−t + 2e−t
}

=
1

2
t2 − 2t + 1,
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L3(t) =
et

3!

d3

dt3
{

t3 e−t
}

=
et

6

d2

dt2
{

−t3 e−t + 3t2 e−t
}

=
et

6

d

dt

{

t3 e−t − 6t2 e−t + 6t e−t
}

=
et

6

{

−t3 e−t + 9t2 e−t − 18t e−t + 6 e−t
}

= − t3

6
+

3

2
t2 − 3t + 1,

L4(t) =
et

4!

d4

dt4
{

t4 e−t
}

=
et

24

d3

dt3
{

−t4 e−t + 4t3 e−t
}

=
et

24

d2

dt2
{

t4 e−t−8 t3 e−t+12t2 e−t
}

=
et

24

d

dt

{

−t4 e−t+12t3 e−t−36t2 e−t+24t e−t
}

=
et

24

{

t4 e−t − 16t3 e−t + 72t2 e−t − 96t e−t + 24e−t
}

=
1

24
t4 − 2

3
t3 + 3t2 − 4t + 1.

Finally, we use the rules of computation to find the Laplace transforms in general,

L{Ln(t)} (z) = L
{

et

n!

dn

dtn
(

tn e−t
)

}

(z) =
1

n!
L

{

dn

dtn
(

tn e−t
)

}

(z − 1)

=
1

n!
(z − 1)n L

{

tn e−t
}

(z − 1) −
n−1
∑

j=0

[

dj

dtj
(

tn e−t
)

]

t=0

· (z − 1)n−1−j

=
1

n!
(z − 1)n L{tn} (z − 1 + 1) − 0 =

1

n!
(z − 1)n L{tn} (z)

=
1

n!
(z − 1)n · n!

zn+1
=

(z − 1)n

zn+1
=

1

z

(

1 − 1

z

)n

.

The computations above are valid for � z > 0, or, by an analytic extension, for z ∈ C \ {0}. ♦

Example 1.5.22 Let Ln(t) denote the Laguerre polynomials introduced in Example 1.5.21. Prove
that

+∞
∑

n=0

1

n!
Ln(t) = e · J0

(

2
√

t
)

.

It follows by some combinatorics that

Ln(t) =
et

n!

dn

dtn
{

tn e−t
}

=
et

n!

n
∑

n=0

(

n
k

)

dn−k

dtn−k
tn · dk

dtk
e−t

=
et

n!

n
∑

k=0

(

n
k

)

n!

k!
tk · (−1)k e−t =

n
∑

k=0

n!(−1)k

(k!)2(n − k)!
tk,
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hence, by insertion,

+∞
∑

n=0

1

n!
Ln(t) =

+∞
∑

n=0

n
∑

k=0

(−1)k

(k!)2(n − k)!
tk =

+∞
∑

k=0

{

+∞
∑

n=k

1

(n − k)!

}

(−1)k

(k!)2

(

2
√

t

2

)2k

=

+∞
∑

k=0

{

+∞
∑

n=0

1

n!

}

(−1)k

(k!)2

(

2
√

t

2

)2k

= e

+∞
∑

k=0

(−1)k

(k!)2

(

2
√

t

2

)2k

= e · J0

(

2
√

t
)

. ♦

Example 1.5.23 Let
√· denote the branch of the square root, which is positive on R+ and which has

its branch cut lying along R−.

1) Compute the inverse Laplace transforms of
1√

z + i
and

1√
z − i

.

2) Apply the results above and the rule of convolution to prove that

J0(t) =
1

π

∫ 1

−1

eits

√
1 − s2

ds, for t ∈ R+.

1) We shall use the well-known result

L
{

1√
t

}

(z) =

√

π

z
, thus

1√
z

= L
{

1√
π
· 1√

t

}

(z).

It follows from one of the rules of computation for every a ∈ C that

L
{

1√
π
· eat

√
t

}

(z) =
1√

z − a
.

Choosing a = πi we finally get

L−1

{

1√
z + i

}

(t) =
1√
π
· e−it

√
t

and L−1

{

1√
z − i

}

(t) =
1√
π
· eit

√
t
.

2) We get by the rule of convolution,

L{J0} (z) =
1√

z2 + 1
=

1√
z − i

· 1√
z + i

= L
{

1√
π
· e−it

√
t

�
1√
π
· et

√
t

}

(z),

hence

J0(t) =
1

π

∫ t

0

e−iu

√
u

· ei(t−u)

√
t − u

du =
1

π

∫ t

0

ei(t−2u)

√

u(t − u)
du =

1

π

∫ t

0

exp
(

it
(

1 − 2 u
t

))

t
√

u
t

(

1 − u
t

)

du.
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Then by the change of variable s = 1 − 2
u

t
, thus

u

t
=

1

2
(1 − s) and du = − t

2
ds,

J0(t) =
1

π

∫ t

0

exp
(

it
(

1 − 2 u
t

))

t
√

u
t

(

1 − u
t

)

du =
1

π

∫ 1

−1

eist

t
√

1
2 (1 − s) ·

(

1 − 1
2{1 − s}

)

(

− t

2

)

ds

=
1

π

∫ 1

−1

eist

√
1 − s2

ds. ♦

Example 1.5.24 Compute the inverse Laplace transform of

e−2z

√
z2 + 9

.

We get by a small rearrangement,

e−2z

√
z2 + 9

= e−2z · 1

3
· 1
√

1 +
(z

3

)2
= e−2z L{J0(3t)} (z).

Then by using the rule of delay,

f(t) = L−1

{

e−2z

√
z2 + 9

}

(t) =







J0(3(t − 2)) for t ≥ 2,

0 for t < 2.
♦

Example 1.5.25 Compute the inverse Laplace transform of

1√
z2 − 4z + 20

.

It follows from the well-known trick

1√
z2 − 4z + 20

=
1

√

(z − 2)2 + 42
=

1

4
· 1
√

1 +
(

z−2
4

)2
=

1

4
L{J0(t)}

(

z − 2

4

)

= L{J0(4t)} (z − 2) = L
{

e2t J0(4t)
}

(z),

hence

L−1

{

1√
z2 − 4z + 20

}

(t) = e2t J0(4t). ♦
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Example 1.5.26 Compute the inverse Laplace transform of

(

z2 + 2z + 5
)− 3

2 .

It follows from

L{J1(t)} (z) =

√
z2 + 1 − z√

z2 + 1
= 1 − z√

z2 + 1
,

that

L{t Jt(t)} (z) = − d

dz

{

1 − z√
z2 + 1

}

=
1

(z2 + 1)
3
2

.

Then we get

(

z2 + 2z + 5
)− 3

2 =
1

((z + 1)2 + 4)
3
2

=
1

4
3
2

(

1 +
{

z+1
2

}2
)

3
2

=
1

4
· 1

2
L{t J1(t)}

(

z + 1

2

)

=
1

4
L{2t J1(2t)} (z + 1) =

1

4
L

{

2 e−t t J1(2t)
}

(z),

and we conclude that

L−1
{

(

z2 + 2z + 5
)− 3

2

}

(t) =
1

2
e−t t J1(2t). ♦
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2 Applications

2.1 Linear ordinary differential equations

Example 2.1.1 Find the general solution of the differential equation

t f ′′(t) + 2 f ′(t) + t f(t) = 0.

We assume that f(t) and f ′(t) are defined by continuity for t = 0. Then put F (z) := L{f}(z), and
we get by the Laplace transformation of the given differential equation,

− d

dz

{

z2 F (z) − z f(0) − f ′(0)
}

+ 2 {z F (z) − f(0)} − d

dz
F (z) = 0,

hence

−2z F (z) − z2 dF

dz
+ f(0) + 2z F (z) − 2 f(0) − dF

dz
= 0,

from which

dF

dz
= − f(0)

z2 + 1
.

On the other hand, it follows from the rule of multiplication by t, that

L{t f(t)}(z) = −dF

dz
=

f(0)

z2 + 1
= f(0) · L{sin t}(z),

from which we get by the inverse Laplace transformation,

f(t) = f(0) · sin t

t
.

The differential equation is singular at the point t = 0, because the coefficient t of the term of
highest order of differentiation, f ′′(t), is (trivially) 0 at t = 0. Therefore, we cannot conclude that the
differential equation has two linearly independent solutions at t = 0.

One may of course, using plain ordinary Calculus, compute another linearly independent solution for
t �= 0 by the well-known formula,

ϕ(t) =
sin t

t

∫ (

t

sin t

)2

exp

(

−
∫

2

t
dt

)

dt =
sin t

t

∫

1

sin2 t
dt

=
sin t

t
· (− cot t) = −cos t

t
.

It is obvious that ϕ(t) is not defined at t = 0.

Remark 2.1.1 Note that the equation can also be solved directly by using the following clever rear-
rangement,

0 = t f ′′(t) + 2 f ′(t) + t f(t) = {t f ′′(t) + 1 · f ′(t)} + f ′(t) + t f(t)

=
d

dt
{t · f ′(t)} + f ′(t) + t f(t) =

d

dt
{t · f ′(t) + 1 · f ′(t)} + t f(t)

=
d2

dt2
{t f(t)} + t f(t),
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from which we immediately get t f(t) = a cos t + b sin t, hence

f(t) = a
cos t

t
+ b

sin t

t
for t �= 0,

where a and b are arbitrary constants. ♦

Example 2.1.2 Find the bounded solution of the differential equation

t2 f ′′(t) + t f ′(t) +
(

t2 − 1
)

f(t) = 0, f(1) = 2.

We immediately recognize the equation as a Bessel equation of first order, so its bounded solutions
are given by

f(t) = c J1(t), c arbitrary constant.

It follows from f(1) = 2 that s = 2/J1(1), so the bounded solution is given by

f(t) =
2

J1(1)
J1(t). ♦

Example 2.1.3 Solve the linear differential equation

t f ′′(t) + f ′(t) + 4t f(t) = 0, f(0) = 3, f ′(0) = 0.

When we apply the Laplace transformation on the differential equation to get

0 = L{t f ′′(t)} (z) + L{f ′} (z) + 4L{t f(t)}(z)

= − d

dz
L{f ′′} (z) + z L{f}(z)− f(0) − 4

d

dz
L{f}(z)

= − d

dz

{

z2 L{f}(z)− z f(0) − f ′(0)
}

− 4
d

dz
L{f}(z) + z L{f}(z)− f(0)

= −z2 d

dz
L{f}(z) − 2zL{f}(z) + f(0) − f(0) − 4

d

dz
L{f}(z) + z L{f}(z)

= −
(

z2 + 4
) d

dz
L{f}(z) − z L{f}(z).

We divide this equation by −
√

z2 + 4 to get

0 =
√

z2 + 4
d

dz
L{f}(z) +

z√
z2 + 4

L{f}(z) =
d

dz

(
√

z2 + 4 · L{f}(z)
)

,

hence, by an integration,
√

z2 + 4 · L{f}(z) = c,
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from which

L{f}(z) =
c√

z2 + 4
= c · 1

2
· 1
√

1 +
(z

2

)2
= c · L {J0(2t)} (z),

and we conclude by the inverse Laplace transformation,

f(t) = c · J0(2t).

Finally, it follows from f(0) = 3 = c · J0(0) = c that c = 3, hence the solution is given by

f(t) = 3 J0(2t). ♦

Example 2.1.4 Solve the convolution equation

∫ t

0

f(u)f(t − u) du = 16 sin 4t, t ∈ R+.

When we apply the rule of convolution on the Laplace transform of the equation above, we get

L
{∫ t

0

f(u)f(t − u) du

}

(z) = (L{f}(z))2 = L{16 sin4t}(z)

= 16 · 1

4
L{sin t}

(z

4

)

=
4

1 +
(

z
4

)2 ,

hence

L{f}(z) = ±2
1

√

1 +
(z

4

)2
= ±8 · 1

4

1
√

1 +
(

z
4

)2
= ±8L{J0(4t)} (z),

and we conclude by an inverse Laplace transformation and a square root that we have two solutions,

f(t) = ±8 J0(4t). ♦

Example 2.1.5 Solve the equation

f(t) = t +

∫ t

0

f(u)J1(t − u) du, t ∈ R+.

We apply the Laplace transformation on the equation above to get

L{f}(z) =
1

z2
+ L{f}(z) ·

√
z2 + 1 − 1√

z2 + 1
,
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from which we get

L{f}(z) =

√
z2 + 1

z2
=

z2 + 1

z2
√

z2 + 1
=

1

z2
√

z2 + 1
+

1√
z2 + 1

=
1

z2
L{J0} (z) + L{J0} (z) = L{t � J0} (z) + L{J0} (z).

This gives by the inverse Laplace transformation,

f(t) = J0(t) + (J0 � t) (t) = J0(t) +

∫ t

0

(t − u)J0(u) du

= J0(t) + t

∫ t

0

J0(u) du −
∫ t

0

u1 J0(u) du

= J0(t) + t

∫ t

0

J0(u) du −
∫ t

0

d

du
(u <, J1(u)) du

= J0(t) + y

∫ t

0

J0(u) du − t J1(t). ♦
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Example 2.1.6 A particle P of mass 2 g is moving along the X-axis. The particle is attracted by a
force directed towards 0, and it is numerically of the size 8|x|. The particle is at time t = 0 lying at
the point x = 0. Find the position of P at every time t ∈ R+ in each of the following two cases:

1) The particle P is not subjected to any other force.

2) The particle P is subjected to a damping, which numerically is 8 times the speed.

1) Based on the conditions above the problem is described by

2
d2x

dt2
= −8x, x(0) = 0,

thus by a rearrangement,

d2x

dt2
+ 4x = 0, x(0) = 0, x′(0) unspecified.

There is no need to apply the Laplace transformation, because one immediately realizes from
elementary Calculus that the differential equation has the complete solution

x(t) = c1 sin 2t + c2 cos 2t, c1, c2 arbitrary constants.

Since x(0) = 0 and x′(0) is unspecified, the searched solution becomes

x(t) = c1 sin 2t =
x′(0)

2
sin 2t.

2) In the second case with damping the differential equation with its initial conditions becomes

2
d2x

dt2
= −8x − 8

dx

dt
, x(0) = 0, x′(0) unspecified,

thus by a rearrangement,

d2x

dt2
+ 4

dx

dt
+ 4x = 0, x(0) = 0, x′(0) unspecified.

The Laplace transformation is not needed in this case either, because the characteristic polynomial
becomes λ2+4λ+4 has the root of second order λ = −2, so the complete solution of the differential
equation is according to ordinary Calculus given by

x(t) = c1 t e−2t + c2 e−2t.

It follows from x(0) = 0 that

x(t) = c1 t e−2t,

so from 4x′(t) = c1(−2t + 1)e−2t follows that c1 = x′(0), and the solution is

x(t) = x′(0) t e−2t.
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It should here be added that if we had applied the Laplace transformation in the two cases, then we
would have obtained

1)
(

z2 + 4
)

L{f}(z) = x′(0) z,

and

2)
(

z2 + 4z + 4
)

L{f}(z) = · · · .

In both cases we get the characteristic polynomial as a factor of the Laplace transform L{f}(z), while
the initial conditions are put on the right hand side of the transformed equation as coefficients of
a polynomial of smaller degree. The results of course become the same in both methods, but an
application of the Laplace transformation in such simple cases may seen a little elaborated, when the
problem can be solved straightaway by plain Calculus. This example should therefore be seen as a
warning that one should not forget what one has learned earlier. Such “primitive methods” could
indeed in some cases be more easy to apply. ♦

Example 2.1.7 A particle of mass m is moving along the X-axis, subjected to a force F (t), which is
given by

F (t) =























2
T F0 · t for t ∈

[

0, T
2

]

,

2
T F0 · (T − t) for t ∈

[

T
2 , T

]

,

0 otherwise,

where F0 is a constant.

Assuming that the particle starts from rest at t = 0 at the point x = 0 one shall find the position and
the velocity of the particle at any t ∈ R+.

The problem is described by the following initial problem,

m
d2x

dt2
= F (t), x(0) = 0, x′(0).

It is immediately judged that it like in Example 2.1.6 will be too much to apply the Laplace transfor-
mation on this problem, because we for e.g. t ∈

[

0, T
2

]

immediately get by an integration,

m
dx

dt
(t) = m x′(0) +

∫ t

0

2

T
F0 τ dτ =

2

T
F0 ·

t2

2
,

thus by a rearrangement,

dx

dt
=

F0

mT
t2.

This equation invites to another simple integration, which gives

x(t) =
F0

3mT
t3 for t ∈

[

0,
T

2

]

.

The values of the solution above at the endpoint t =
T

2
are

x

(

T

2

)

=
F0T

2

24m
and x′

(

T

2

)

=
F0T

4m
.
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Using these as the new initial values we get in the same way for t ∈
[

T
2 , T

]

,

m
dx

dt
= m · x′

(

T

2

)

+

∫ T

T
2

2

T
F0(T − τ) dτ =

F0T

4
−

[

1

T
F0(T − τ)2

]t

T
2

=
F0T

4
− 1

T
F0/T − t)2 +

1

T
F0 ·

T 2

4
=

F0T

2
− F0

T

(

T 2 − 2T t + t2
)

= 2F0t −
F0

T
t2 − F0T

2
,

thus after a rearrangement,

dx

dt
= − F0

mT
t2 +

2F0

m
t − F0T

2m
, for t ∈

[

T

2
, T

]

.

Then by another integration,

x(t) = x

(

T

2

)

+

[

− F0

3mT
t3 +

F0

m
t2 − F0T

2
t

]T

T
2

=
F0T

2

24m
+

F0T
2

24m
− F0T

2

4m
+

F0T
2

4m
− F0

3mT
t3 +

F0

m
t2 − F0T

2m
t

= − F0

3mT
t3 +

F0

m
t2 − F0T

2m
t +

F0T
2

12m
.

We get for t = T that

x′(T ) = − F0

mT
T 2 +

2F0

m
T − F0T

2m
=

F0T

2m
.

Since F (t) = 0 for t > T , we get

x′(t) =
F0T

2m
for t ≥ T.

Then analogously,

x(T ) = −F0T
2

3m
+

F0T
2

m
− F0T

2

2m
+

F0T
2

12m
=

F0T
2

4m
,

so

x(t) =
F0T

2

4m
+

F0T

2m
(t − T ) = −F0T

2

4m
+

F0T

2m
t for t ≥ T.

Summing up,

x(t) =























F0

3mT t3, for t ∈
[

0, T
2

]

,

− F0

3mT t3 + F0

m t2 − F0T
2m t + F0T 2

12m , for t ∈
[

T
2 , T

]

,

−F0T 2

4m + F0T
2m t, for t ∈ [T, +∞[,
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and

x′(t) =



























F0

mT
t2, for t ∈

[

0, T
2

]

,

− F0

mT t2 + 2 F0

m − F0T
2m , for t ∈

[

T
2 , T

]

,

F0T
2m , for t ∈ [T, +∞[. ♦
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2  Applications

Example 2.1.8 A coil of 2 henry, a resistance of 16 ohm and a capacitor of 0.02 farad are connected
in a circuit with an electric force of E volt. At time t = 0 the capacity of the capacitor is zero, and
the current in the circuit is zero. Find the charging and the current at any later time in the following
cases,

1) E = 300 volt;

2) E = 100 · sin 3t volt.

According to the given information we shall solve the following integro differential equation

2
dI

dt
+ 16I +

1

0.02

∫ t

0

I dt = E(t), I(0) = 0 and Q(0) = 0,

or, equivalently,

dI

dt
+ 8I(t) + 25

∫ t

0

I(τ) dτ =
1

2
E(t), I(0) = 0.

Figure 1: The circuit of Example 2.1.8.

Using that I(0) = 0 we get by the Laplace transformation,

z L{I}(z) + 8L{I}(z) +
25

z
L{I}(z) =

1

2
L{E}(z),

or, by a rearrangement, isolating L{I}(z),

(5) L{I}(z) =
z

2
· L{E}(z)

z2 + 8z + 25
=

z

2
· L{E}(z)

(z + 4)2 + 32
.

Once I(t) has been found we find Q(t) by the formula Q(t) =
∫ t

0
I(τ) dτ .
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1) If E = 300, then L{E}(z) =
300

z
, and we get from (5),

L{I}(z) =
150

(z + 4)2 + 32
= 50L

{

e−4t sin 3t
}

(z),

hence by the inverse Laplace transformation,

I(t) = 50 e−4t sin 3t.

Finally,

Q(t) =

∫ t

0

I(τ) dτ = 50�
∫ t

0

e(−4+3i)τ dτ = 50�
[

1

−4 + 3i
e(−4+3i)τ

]t

0

= 50�
{−4 − 3i

25
e−4t(cos 3t + i sin 3t) − −4 − 3i

25

}

= 2�
{

e−4t(−4 − 3i)(cos 3t + i sin 3t) + 4 + 3i
}

= 2 · 3 + 2 e−4t(−4 sin 3t − 3 cos 3t) = 6 − 8 e−4t sin 3t − 6 e−4t cos 3t.

Figure 2: Graph of the charge Q(t) of Example 2.1.8, 1).

2) If E = 100 sin3t, then L{E}(z) =
300

z2 + 32
. so we get from (5) that

L{I}(z) =
150z

(z2 + 9) (z2 + 8z + 25)
=

az + b

z2 + 9
+

cz + d

z2 + 8z + 25

for some constants a, b, c and d. This structure shows by the inverse Laplace transformation that

I(t) = a cos 3t +
b

3
sin 3t + c e−4t cos 3t +

d

3
e−4t sin 3t.

56

Download free eBooks at bookboon.com



The Laplace Transformation II c-12

 
59 

2  Applications

Then notice that it follows from I(0) = 0 that c = −a, so we shall only find the three constants of

I(t) = a
(

1 − e−4t
)

cos 3t +
1

3

(

b + d e−4t
)

sin 3t.

If the expressions above of L{I}(z) are multiplied by the common denominator, then we get

150z = (az + b)
(

z2 + 8z + 25
)

+ (−az + d)
(

z2 + 9
)

= (8a + b + d)z2 + (25a + 8b − 9a)z + (25b + 9d)

= (8a + b + d)z2 + (16a + 8b)z + (25b + 9d).

When we identify the coefficients of the two polynomials, we get the following system of equations,























0 = 8a + b + d

150 = 16a + 8b

0 = 25b + 9d

.

The determinant of the system is

D =

∣

∣

∣

∣

∣

∣

8 1 1
16 8 0
0 25 9

∣

∣

∣

∣

∣

∣

= 8

∣

∣

∣

∣

∣

∣

1 0 1
2 8 0
0 16 9

∣

∣

∣

∣

∣

∣

= 8(72 + 32) = 8 · 104,

so by Cramer’s formula,

a =
1

8 · 104

∣

∣

∣

∣

∣

∣

0 1 1
150 8 0

0 25 9

∣

∣

∣

∣

∣

∣

= − 150

8 · 104

∣

∣

∣

∣

1 1
25 9

∣

∣

∣

∣

= +
150

8 · 104
· 16 =

75

26
,

and

b =
1

8 · 104

∣

∣

∣

∣

∣

∣

8 0 1
16 150 0
0 0 9

∣

∣

∣

∣

∣

∣

=
150

8 · 104

∣

∣

∣

∣

8 1
0 9

∣

∣

∣

∣

=
150 · 72

8 · 104
=

75 · 9
52

=
675

52
=

225

52
· 3,

and

d =
1

8 · 104

∣

∣

∣

∣

∣

∣

8 1 0
16 8 150
0 25 0

∣

∣

∣

∣

∣

∣

= − 150

8 · 104

∣

∣

∣

∣

8 1
0 25

∣

∣

∣

∣

= −75 · 25

52
= −625

52
· 3,

hence

I(t) = a
(

1 − e−4t
)

cos 3t +
1

3

(

b + d e−4t
)

sin 3t

=
75

26
cos 3t +

225

52
sin 3t − e−4t

{

75

26
cos 3t +

625

52
sin 3t

}

.
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Figure 3: Graph of the charge Q(t) of Example 2.1.8, 2).

Then

Q(t) =

∫ t

0

I(τ) dτ =
25

26
sin 3t +

75

52
(1 − cos 3t)

−75

26
�

∫ t

0

e(−4+3i)τ dτ − 625

52
�

∫ t

0

e(−4+3i)τ dτ

=
75

52
+

25

26
sin 3t − 75

52
cos 3t

+
3

26
�

[

(4 + 3i)e(−4+3i)τ
]t

0
+

25

52
�

[

(4 + 3i)e(−4+3i)τ
]t

0

=
75

52
− 75

26
cos 3t +

25

26
sin 3t

+
3

26
�

{

(4+3i)e(−4+3i)t−4−3i
}

+
25

52
�

{

(4+3i)e(−4+3i)t−4−3i
}

=
75

52
− 75

52
cos 3t +

25

26
sin 3t

+
3

26
e−4t(4 cos 3t−3 sin3t) − 6

13
+

25

52
e−4t(4 sin 3t+3 cos3t) − 75

52

= − 6

13
− 75

52
cos 3t +

25

26
sin 3t +

1

52
e−4t{(24+75) cos3t+(100−18) sin3t}

= − 6

13
− 75

52
cos 3t +

25

26
sin 3t +

99

52
e−4t cos 3t +

41

26
e−4t sin 3t. ♦
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Example 2.1.9 A resistance of R ohm and a condenser of C farad are connected with a generator of
E volt. The capacity of the condenser is 0 at time t = 0. Find the charge and the current as functions
of t > 0, when

1) E = E0 (a constant);

2) E = E0 e−αt, where α > 0 is also a constant.

Figure 4: The circuit of Example 2.1.9.
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In this case the corresponding equation becomes

R I +
1

C

∫ t

0

I dt = E(t).

Assuming that I ∈ F we get by the Laplace transformation,

RL{I}(z) +
1

C
· 1

z
L{I}(z) = L{E}(z),

thus

L{I}(z) =
L{E}(z)

R + 1
Cz

=
1
R · z

z + 1
CR

· L{E}(z).

1) If E = E0 is a constant, then L{E}(z) =
E0

z
, hence

L{I}(z) =
E0

R
· 1

z + 1
CR

=
E0

R
L

{

exp

(

− t

CR

)}

(z),

and it follows by the inverse Laplace transformation that

I(t) =
E0

R
exp

(

− t

CR

)

,

and

Q(t) =

∫ t

0

I(τ) dτ = C{E(t) − R I(t)} = E0C

{

1 − exp

(

− t

CR

)}

.

2) If E(t) = E0 e−αt, then L{E}(z) =
E0

z + α
, hence

L{I}(z) =
E0

R
· z
(

z + 1
CR

)

· (z + α)
.

We see that we have two cases, either α �= 1

CR
, or α =

1

CR
.

a) If α �= 1

CR
, then it follows by a plain decomposition,

L{I}(z) =
E0

R

{ − 1
CR

α − 1
CR

· 1

z + 1
CR

+
−α

−α0 1
CR

· 1

z + α

}

=
E0

R

{

1

1 − CRα
· 1

z + 1
CR

− CRα

1 − CRα
· 1

z + α

}

,

hence, by the inverse Laplace transformation,

I(t) =
E0

R
· 1

1 − CRα
exp

(

− t

CR

)

− E0Cα

1 − CRα
exp(−αt),
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from which we get by an integration,

Q(t) =

∫ t

0

I(τ) dτ =
E0

R
· CR

1 − CRα

{

1 − exp

(

− t

CR

)}

− E0C

1 − CRα
{1 − exp(−αt)}

=
E0C

1 − CRα

{

1 − exp

(

− t

CR

)

− 1 + exp(−αt)

}

=
E0C

1 − CRα

{

exp(−αt) − exp

(

− t

CR

)}

.

b) If instead α =
1

CR
, then

L{I}(z) =
E0

R
· z + α − α

(z + α)2
=

E0

R
· 1

z + α
− αE0

R
· 1

(z + α)2

=
E0

R
· L

{

e−αt
}

(z) − αE0

R
L

{

t e−αt
}

(z),

and we get by the inverse Laplace transformation

I(t) =
E0

R
(1 − αt)e−αt =

E0

R

(

1 − t

CR

)

exp

(

− t

CR

)

,

and then by an integration,

Q(t) =

∫ t

0

I(τ) dτ =
E0

Rα

∫ αt

0

(1 − τ)e−τ dτ =
E0

Rα

{

[

−(1 − τ)e−τ
]αt

0
−

∫ αt

0

e−τ dτ

}

=
E0

Rα

{

−(1 − αt)e−αt + 1 +
[

e−τ
]αt

0

}

=
E0

Rα

{

−e−αt + αte−αt + 1 − 1 + e−αt
}

=
E0

Rα
αt e−αt =

E0

R
t e−αt = E0C · t

CR
exp

(

− t

CR

)

. ♦

Example 2.1.10 A beam is suspended as indicated on Figure 5 on page 62 with its endpoints at x = 0
and x = �. The beam carries a load, given by W0 (a constant) per unit length. Find the bending at
every point, i.e. solve the boundary value problem

d4f

dx4
=

W0

EI
, x ∈ ]0, �[, f(0) = f ′′(0) = 0, f(�) = f ′′(�) = 0.

In this case there is absolutely no need to apply the Laplace transformation, and one would even get
into troubles with it, because we have not specified f ′(0) and f (3)(0), which are needed.

We get by four successive integrations that the general solution is given by

f(x) =
1

4!

W0

EI
x4 + a3 x3 + a2 x2 + a1 x + a0,

where

f ′′(x) =
1

2

W0

EI
x2 + 6a3 x + 2a2.
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Figure 5: The beam of Example 2.1.10.

Thus, f(0) = a0 = 0 and f ′′(0) = 2a2 = 0, so the solution must have the structure

f(x) =
1

24

W0

EI
x4 + a3 x3 + a1 x,

where

f ′′(x) =
1

2

W0

EI
x2 + 6a3 x.

We then derive that

f ′′(�) = 0 =
1

2

W0

EI
�2 + 6a3 �, thus a3 = − 1

12

W0

EI
�,

and

f(�) = 0 =
1

24

W0

EI
�4 − 1

12

W0

EI
· � · �3 + a1 �,

so

a1 =
1

24

W0

EI

(

2�3 − �3
)

=
1

24

W0

EI
�3.

Finally, by insertion,

f(x) =
1

24

W0

EI
x4 − 1

12

W0

EI
� · x3 +

1

24

W0

EI
�3x =

1

24

W0

EI

(

x4 − 2�x3 + �3x
)

=
1

24

W0

EI
x(� − x)

(

�2 − �x − x2
)

. ♦
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Example 2.1.11 A beam is fixed at x = 0, while the other endpoint x = � is free. The beam carries
a load which per unit length is given by

W (x) =







W0, x ∈
]

0, �
2

[

,

0, x ∈
]

�
2 , �

[

.

Figure 6: The beam of Example 2.1.11.

Find the bending of the beam, i.e. solve the following boundary value problem

d4f

dx4
=

W (x)

EI
, x ∈ ]0, �[, f(0) = f ′(0) = 0, f ′′(�) = f (3)(�) = 0.

This is a boundary value problem, so it is not easy to solve it using the Laplace transformation. Instead
we integrate

d4f

dx4
=











W0

EI
, for x ∈

[

0, �
2

[

,

0 for x ∈
]

�
2 , �

]

,

to get

d3f

dx3
=







W0

EI

(

x − �
2

)

+ a, for x ∈
[

0, �
2

]

,

a, for x ∈
[

�
2 , �

]

.

It follows from the boundary condition f (3)(�) = 0 that a = 0. Hence, we get by another integration,

d2f

dx2
=







W0

2EI

(

x − �
2

)2
+ b, for x ∈

[

0, �
2

]

,

b, for x ∈
[

�
2 , �

]

.
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Then it follows from f (2)(�) = 0 that b = 0, so by another integration,

df

dx
=







W0

6EI

(

x − �
2

)3
+ c, for x ∈

[

0, �
2

]

,

c, for x ∈
[

�
2 , �

]

,

where f ′(0) = 0 implies that c = W0

48EI �3. Finally,

f(x) =







W0

24EI

(

x − �
2

)4
+ W0

48EI �3x + d, for x ∈
[

0, �
2

]

,

W0

48EI �3x + d, for x ∈
[

�
2 , �

]

,

where finally f(0) = 0 implies that d = − W0

384EI �4, and the solution is given by

f(x) =











W0

384EI

{

16
(

x − �
2

)4
+ 8�3x − �4

}

, for x ∈
[

0, �
2

]

,

W0

384EI

{

8�3x − �4
}

, for x ∈
[

�
2 , �

]

.

♦
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Example 2.1.12 Solve the boundary value problem

t f ′′(t) + 2 f ′(t) + t f(t) = 0, lim
t→0+

f(t) = 1, f(π) = 0.

We must be careful here, because we have a singular point at t = 0, where the coefficient of the highest
order term f ′′(t) is zero. It will later follow that the problem is even ill-posed, because the solution,
based on the condition limt→0+ f(t) = 1 alone will automatically satisfy f(π) = 0. Similarly, even if
it follows from the differential equation itself by letting t → 0 that f ′(0) = 0 is easily derived, and yet
it is not used in the derivation of the solution. The point is, of course as mentioned above, that we
have a singular point at t = 0, and that even if the linear equation for t �= 0 is spanned by two linearly
independent solutions, at most one of these is also a function in the class F of functions, which can
be Laplace transformed.

When the differential equation is Laplace transformed, we get

0 = − d

dz
L{f ′′} (z) + 2L{f ′} (z) − d

dz
L{f}(z)

= − d

dz

(

z2L{f}(z)− z f(0) − f ′(0)
)

+ 2(zL{f}(z) − f(0)) − d

dz
L{f}(z)

=
(

z2 + 1
) d

dz
L{f}(z)− 2z L{f}(z) + 1 + 2zL{f}(z) − 2

=
(

z2 + 1
)

·
(

− d

dz
L{f}(z)

)

− 1 =
(

z2 + 1
)

L{t f(t)}(z)− 1,

from which

L{t f(t)} =
1

z2 + 1
= L{sin t}(z).

Using the inverse Laplace transformation we therefore conclude that t f(t) = sin t, so

f(t) =
sin t

t
, t ∈ R+,

with f(0) = limt→0+ f(t) = 1 by continuity. ♦
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2.2 Linear systems of ordinary differential equations

Example 2.2.1 Solve the system of differential equations,











dx

dt
= 2 x(t) − 3 y(t),

y(t) − 2 x(t),







x(0) = 8,

y(0) = 3.

We shall assume that x(t), y(t) ∈ F . Then we write for short

X = X(z) := L{x(t)}(z) and Y = Y (z) = L{y(t)}(z).

Using the Laplace transformation we get






zX − 8 = 2X − 3Y,

zY − 3 = −2X + Y,

hence by a rearrangement,






(z − 2)X + 3Y = 8,

2X + (z − 1)T = 3.

The corresponding determinant is

∆ =

∣

∣

∣

∣

z − 2 3
2 z − 1

∣

∣

∣

∣

= z2 − 3z + 2 − 6 = z2 − 3z − 4 = (z + 1)(z − 4).

Thus, for � z > 4, by Cramer’s formula,

X(z) =
1

(z + 1)(z − 4)

∣

∣

∣

∣

8 3
3 z − 1

∣

∣

∣

∣

=
8z − 17

(z + 1)(z − 4)
=

−25
−5

z + 1
+

32−17
5

z − 4
=

5

z + 1
+

3

z − 4
,

and

Y (z) =
2

(z + 1)(z − 4)

∣

∣

∣

∣

z − 2 8
2 3

∣

∣

∣

∣

=
3z − 22

(z + 1)(z − 4)
=

−25
−5

z + 1
+

12−22
5

z − 4
=

5

z + 1
− 2

z − 4
.

Finally, by the inverse Laplace transformation,






x(t) = 5e−t + 3e4t,

5e−t − 2e4t.
♦

Example 2.2.2 Solve the following system of linear ordinary differential equations,



















d2x

dt2
+

dy

dt
+ 3x(t) = 15 e−t,

d2y

dt2
− 4

dx

dt
+ 3 y(t) = 15 sin 2t,







x(0) = 35, x′(0) = −48,

y(0) = 27, y′(0) = −55.
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We get by the Laplace transformation,



















(

z2 X − 35z + 48
)

+ (z Y − 27) + 3X =
15

z + 1
,

(

z2Y − 27z + 55
)

− 4(z X − 35) + 3Y =
15 · 2
z2 + 4

,

hence, by a rearrangement,



















(

z2 + 3
)

X + zY =
15

z + 1
+ 35z − 21,

−4zX +
(

z2 + 3
)

Y =
30

z2 + 4
+ 27z − 195.

The corresponding determinant is

∆ =
(

z2 + 3
)2

+ 4z2 = z4 + 10z2 + 9 =
(

z2 + 1
) (

z2 + 9
)

.

Then, using Cramer’s formula

X(z) =
1

(z2 + 1) (z2 + 9)

∣

∣

∣

∣

15
z+1 + 35z − 21 z
30

z2+4 + 27z − 195 z2 + 3

∣

∣

∣

∣

=
1

8

{

1

z2+1
− 1

z2+9

}

{

15
(

z2−1+4
)

z+1
+35z3+105z−21z2−63− 30z

z2+4
− 27z2 + 195z

}

=
1

8

{

1

z2 + 1
− 1

z2 + 9

}{

15z − 15 +
60

z + 1
− 30z

z2 + 4
+ 35z3 − 48z2 + 300z − 63

}

=
60

8

1

(z+1) (z2+1)
− 60

8

1

(z+1) (z2+9)
− 30z

8

1

(z2+1) (z2+9)
+

30z

8

1

(z2+4) (z2+9)

+
35z

8

{

z2+1−1

z2+1
− z2+9−9

z2+9

}

− 48

8

{

z2+1−1

z2+1
− z2+9−9

z2+9

}

+
315

8
· z

z2+1

−315

8
· z

z2+9
− 78

8
· 1

z2+1
+

78

8
· 1

z2+9

=
60

8
· 1

2
· 1

z+1
+

60

8
· 1

2
· 2−z2−1

(z+1) (z2+1)
− 60

8
· 1

10
· 1

z+1
+

60

8
· 1

10
· z2+9−10

(z+1) (z2+9)

−30

8
· 1

3
· z

z2+1
+

30

8
· 1

3
· z

z2+4
+

30

8
· 1

5
· z

z2+4
− 30

8
· 15 · z

z2+9
− 35

8
· z

z2+1

+
315

8
· z

z2+9
+

6

z2+1
− 54

z2+9
+

315

8
· z

z2+1
− 315

8
· z

z2+9
− 78

8
· 1

z2+1
+

78

8
· 1

z2+9
,
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thus

X(z) =

{

30

8
− 6

8

}

1

z+1
+

30

8
· z

z2+1
+

30

8
· 1

z2+1
+

6

8
· z

z2+9
− 1

z2+9

+

{

−10

8
− 35

8
+

315

8

}

z

z2+1
+

{

6− 78

8

}

1

z2+1
+

{

10

8
+

6

8

}

z

z2+4

+

{

−6

8

}

z

z2+9
+

{

−54+
78

8

}

1

z2+9

= 3
1

z+1
+30

z

z2+1
−45

1

z2+9
+2

z

z2+4
,

and we get by the inverse Laplace transformation,

x(t) = 3 e−t + 30 cos t − 15 sin 3t + 2 cos 2t.

Once we have found x(t), we compute

dy

dt
= 15 e−t − d2x

dt2
− 3 x(t)

= 15 e−t−
{

3 e−t−30 cos t+135 sin 3t−8 cos 2t
}{

9 e−t+90 cos t−45 sin 3t+6 cos 2t
}

= 3 e−t − 60 cos t − 90 sin 3t + 2 cos 2t,
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hence by an integration

y(t) = −3 e−t − 60 sin t + 30 cos 3t + sin 2t + c,

where

y(0) = −3 + 30 + c = 27, hence c = 0.

Summing up we get






x(t) = 3 e−t + 30 cos t − 15 sin 3t + 2 cos 2t,

y(t) = −3 e−t − 60 cos t − 30 cos 3t + sin 2t
♦

Example 2.2.3 Solve the system of ordinary differential equations






y′
1 + y2 = 0,

y′
2 + y1 = 0,







y1(0) = 1,

y2(0) = 0.

First method It follows by inspection that

d

dt
(y1 + y2) + (y1 + y2) = 0, thus y1 + y2 = c1 e−t,

and

d

dt
(y1 − y2) − (y1 − y2) = 0, thus y1 − y2 = c2 et.

It follows from the initial conditions that c1 = c2 = 1, so

y1(t) = cosh t and y2(t) = − sinh t.

Second method It follows by the Laplace transformation that






zY1(z) − 1 + Y2(z) = 0,

zY2(z) − 0 + Y1(z) = 0,

hence






z · Y1(z) + 1 · Y2(z) = 1,

1 · Y1(z) + z · Y2(z) = 0.

The determinant is z2 − 1, so it follows from Cramer’s formula,

Y1(z) =
1

z2 − 1

∣

∣

∣

∣

1 1
0 z

∣

∣

∣

∣

=
z

z2 − 1
= L{cosh t}(z),

and

Y2(z) =
1

z2 − 1

∣

∣

∣

∣

z 1
1 0

∣

∣

∣

∣

= − 1

z2 − 1
= −L{sinh t}(z),

from which we conclude that

y1(t) = cosh t and y2(t) = − sinh t. ♦
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Example 2.2.4 Solve the system of ordinary differential equations






y′
1 + y′

2 + y1 = 0,

y′
2 + y1 = 3,







y1(0) = 0,

y2(0) = 0.

First method It is obvious that y′
2 can be eliminated by subtraction, so application of the Laplace

transformation is totally unnecessary. We get by this subtraction that

y′
1 = −3,

thus y1 = −3t, using that y1(0) = 0, whence

y′
2 = 3 − y1 = 3 + 3t,

from which by an integration,

y2 =
3

2
t2 + 3t.

Summing up,

y1 = −3t and y2 =
3

2
t2 + 3t.

Second method If we instead apply the Laplace transformation, then we get










zY1 + zY2 +Y1 = 0,

zY2 + Y1 =
3

2
,

hence by a rearrangement,










(z + 1)Y1 +zY2 = 0,

1 · Y1 +zY2 =
3

2
.

The determinant of this system is

∆ = (z + 1)z − z = z2,

and we get by Cramer’s formula,

Y1 =
1

z2

∣

∣

∣

∣

0 z
3
2 z

∣

∣

∣

∣

= − 3

z2
= −L{3r} (z),

and

Y2 =
1

z2

∣

∣

∣

∣

z + 1 0
1 3

z

∣

∣

∣

∣

=
3

z2
+

3

z3
= L

{

3

2
t2 + 3t

}

(z).

Finally, by the inverse Laplace transformation,

y1 = −3t and y2 =
3

2
t2 + 3t. ♦
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Example 2.2.5 Find the function x(t) where x(t) is given by the following system of three linear
ordinary differential equations,























x′ + y′ = y + z,

y′ + z′ = z + x,

z′ + x′ = x + y,























x(0) = 2,

y(0) = −3,

z(0) = 1.

We shall use the Laplace transformation to get























zX(z)− 2 + zY (z) + 3 = Y (z) + Z(z),

zY (z) + 3 + zZ(z)− 1 = Z(z) + X(z),

zZ(z)− 1 + zX(z)− 2 = X(z) + Y (z),

hence by some rearrangements,























zX(z) + (z − 1)Y (z) − Z(z) = −1,

−X(z) + zY (z) + (z − 1)Z(z) = −2,

(z − 1)X(z) − Y (z) + zZ(z) = 3.

The corresponding determinant is

∆ =

∣

∣

∣

∣

∣

∣

z z − 1 −1
−1 z z − 1

z − 1 −1 z

∣

∣

∣

∣

∣

∣

= z3 + (z − 1)3 − 1 − 3z(z − 1) = 2
(

z3 − 1
)

.

Hence, for � z > 1,

X(z) =
1

2 (z3 − 1)

∣

∣

∣

∣

∣

∣

−1 z − 1 −1
−2 z z − 1

3 −1 z

∣

∣

∣

∣

∣

∣

=
1

2 (z3 − 1)

{

−z2 + 3(z − 1)2 − 2 − {−3z − 2z(z − 1) + (z + 1)}
}

=
1

2 (z3 − 1)

{

−z2 + 3z2 − 6z + 3 − 2 + 3z + 2z2 − 2z + z − 1
}

=
4z2 − 4z

2 (z3 − 1)
= 2 · z(z − 1)

(z − 1) (z2 + z + 1)
=

2z
(

z + 1
2

)2
+ 3

4

=
2

(

z + 1
2

)

− 1
(

z + 1
2

)2
+

{√
3

2

}2

= 2 · z + 1
2

(

z + 1
2

)2
+

{√
3

2

}2 − 2√
3
·

√
3

2
(

z + 1
2

)2
+

{√
3

2

}2 .
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Then finally, by the inverse Laplace transformation,

x(t) = 2 exp

(

−1

2
t

)

cos

(√
3

2
t

)

− 2√
3

exp

(

−1

2
t

)

sin

(√
3

2
t

)

=
4√
3
· exp

(

−1

2
t

)

{

cos

(√
3

2
t

)

·
√

3

2
− sin

(√
3

2
t

)

· 1

2

}

=
4√
3

exp

(

−1

2
t

)

cos

(√
3

2
t +

π

6

)

.

We notice that we shall not explicitly find y(t) and z(t). ♦
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Example 2.2.6 Solve the system of ordinary differential equations


















dx

dt
+

dy

dt
= t,

d2x

dt2
− y(t) = e−t,







x(0) = 3, x′(0) = −2

y(0) = 0.

It is absolutely no reason here to solve the problem via the Laplace transformation, because it is much
easier to start by integrating the first equation to get

x(t) + y(t) =
t2

2
+ c =

t2

2
+ 3,

from which

−y(t) = x(t) − t2

2
− 3.

When this is put into the second equation of the problem, we get

d2x

dt2
+ x(t) = e−t +

t2

2
+ 3,

where we guess a particular integral of the form

x(t) =
1

2
e−t +

1

2
t2 + a.

Then by insertion,

d2x

dt2
+ x(t) = e−t +

t2

2
+ 1 + a = e−t +

t2

2
+ 3,

so it is indeed a particular solution of the inhomogeneous equation, when we choose a = 2. Then we
get















x(t) =
1

2
e−t +

1

2
t2 + 2 + c1 cos t + c2 sin t,

x′(t) = −1

2
e−t + t − c1 sin t + c2 cos t,

thus

x(0) = 3 =
1

2
+ 2 + c1, hence c1 =

1

2
,

and

x′(0) = −2 = −1

2
+ c2, hence c2 = −3

2
.

We conclude that

x(t) =
1

2
e−t +

1

2
t2 + 2 +

1

2
cos t − 3

2
sin t,

and

y(t) =
t2

2
+ 3 − x(t) = −1

2
e−t + 1 − 1

2
cos t +

3

2
sin t. ♦
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Example 2.2.7 Solve the system of linear ordinary differential equations



















dx

dt
− dy

dt
− 2x(t) + 2y(t) = sin t,

d2x

dt2
+ 2

dy

dt
+ x(t) = 0,







x(0) = x′(0) = 0,

y(0) = 0.

It is seen by inspection that it is not necessary to apply the Laplace transformation in this example
either, because the first equation can be rewritten in the form

d

dt
(x − y) − 2(x − y) = sin t.

The complete solution of the corresponding homogeneous equation is c e2t, and we guess a particular
solution of the structure

x − y = a cos t + b sin t.

We get by insertion,

d

dt
(x − y) − 2(x − y) = −a sin t + b cos t − 2a cos t − 2b sin t = (−a − 2b) sin t + (b − 2a) cos t,

which is equal to sin t for b = 2a and a = − 1
5 , so b = − 2

5 . Since x(0) − y(0) = 0, the solution is

x(t) − y(t) = −1

5
cos t − 2

5
sin t + c e2t =

1

5

(

− cos t − 2 sin t + e2t
)

.

Thus,

2(x − y) = −2

5
cos t − 4

5
sin t +

2

5
e2t,

and so by a differentiation,

2
dx

dt
− 2

dy

dt
=

2

5
sin t − 4

5
cos t +

4

5
e2t.

When this expression is added to the second equation of the system we get

d2x

dt2
+ 2

dx

dt
+ x(t) =

2

5
sin t − 4

5
cos t +

4

5
e2t.

The corresponding homogeneous equation has the complete solution

c1 e−t + c2 t e−t.

A particular solution of this equation must have the structure

x(t) = a sin t + b cos t + k e2t,

thus

x′(t) = −b sin t + a cos t + 2k e2t,
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and

x′′(t) = −a sin t − b cos t + 4k e2t,

and we get by insertion

d2x

dt2
+ 2

dx

dt
+ x(t) = −2b sin t + 2a cos t + 9k e2t.

This expression is equal to 2
5 sin t − 4

5 cos t + 4
5 e2t for a = − 2

5 and b = − 1
5 and k = 4

45 . Hence, the
complete solution of the differential equation in x(t) alone is given by

x(t) = −2

5
sin t − 1

5
cos t +

4

45
e2t + c1 e−t + c2 t e−t.

By a differentiation,

x′(t) =
1

5
sin t − 2

5
cos t +

8

45
e2t + (c2 − c1) e−t − c2 t e−t.

Then we use the initial conditions to get

x(0) = 0 = −1

5
+

4

45
+ c1, thus c1 =

1

5
− 4

45
=

5

45
=

1

9
,

and

x′(0) = 0 = −2

5
+

8

45
+ c2 − c1, thus c2 =

1

9
+

2

5
− 8

45
=

5 + 18 − 8

45
=

1

3
.

Summing up, we have proved that

x(t) = −2

5
sin t − 1

5
cos t +

4

45
e2t +

1

9
e−t +

1

3
t e−t,

from which we derive that

y(t) = x(t) +
2

5
sin t +

1

5
cos t − 1

5
e2t = −1

9
e2t +

1

9
e−t +

1

3
t e−t.

For comparison we alternatively also solve the problem by using the Laplace transformation. Then we
get











zX − zY − 2X + 2Y =
1

1 + z2
,

z2 X − 2zY + X = 0,

thus











(z − 2)X + (−z + 2)Y =
1

1 + z2
,

(

z2 + 1
)

X + 2zY = 0.
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The determinant of this system is

∆ = (z − 2)
{

2z − (−1)
(

z2 + 1
)}

= (z − 2)(z + 1)2.

Then use Cramer’s formula to get

X =
1

(z − 2)(z + 1)2

∣

∣

∣

∣

∣

∣

1
1+z2 −(z − 2)

0 2z

∣

∣

∣

∣

∣

∣

=
2z

(z − 2)(z + 1)2 (z2 + 1)
,

and

Y =
1

(z − 2)(z + 1)2

∣

∣

∣

∣

z − 2 1
z2+1

z2 + 1 0

∣

∣

∣

∣

= − 1

(z − 2)(z + 1)2
.
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By a very tedious decomposition,

X =
4

325

1

z−2
+

−2

(−3)2

1

(z+1)2
+

2z

(z−2)(z+1)2 (z2+1)
− 1

4

45

1

z−2
− 1

3

1

(z+1)2

=
4

45

1

z−2
+

1

3

1

(z+1)2
+

1

3

6z−(z−2)
(

z2+1
)

(z−2)(z+1)2 (z2+1)
− 4

45

1

z−2

=
4

45

1

z−2
+

1

3

1

(z+1)2
− 1

3

z3−2z2−5z−2

(z−2)(z+1)2 (z2+1)
− 4

45

1

z−2

=
4

45

1

z−2
+

1

3

1

(z+1)2
− 1

3

z2−3z−2

(z−2)(z+1) (z2+1)
− 4

45

1

z−2

=
4

45

1

z−2
+

1

3

1

(z+1)2
− 1

3

2

(−3)2

1

z+1
− 1

9

3z2−9z−6+(z−2)
(

z2+1
)

(z−2)(z+1) (z2+1)
− 4

45

1

z−2

=
4

45

1

z−2
+

1

3

1

(z+1)2
+

1

9

1

z+1
− 1

9

z3+z2−8z− 8

(z−2)(z+1) (z2+1)
− 4

45

1

z−2

=
4

45

1

z−2
+

1

3

1

(z+1)2
+

1

9

1

z+1
− 1

9

z2−8

(z−2) (z2+ 11)
− 4

45

1

z−2

=
4

45

1

z−2
+

1

3

1

(z+1)2
+

1

9

1

z+1
− 1

45

5z2−40+4z2+4

(z−2) (z2+1)

=
4

45

1

z − 2
+

1

3

1

(z+1)2
+

1

9

1

z+1
− 1

45

9
(

z2−4
)

(z−2) (z2+1)

=
4

45

1

z−2
+

1

3

1

(z+1)2
+

1

9

1

z+1
− 1

5

z

z2+1
− 2

5

1

z2+1
.

Analogously,

Y = − 1

(z − 2)(z + 1)2
= −1

9

1

z − 2
− 1

9

9 − (z + 1)2

(z − 2)(z + 1)2

= −1

9

1

z − 2
− 1

9

(3 − z − 1)(3 + z + 1)

(z − 2)(z + 1)2
= −1

9

1

z − 2
+

1

9

(z + 1) + 3

(z + 1)2

= −1

9

1

z − 2
+

1

9

1

z + 1
+

1

3

1

(z + 1)2
.

We finally apply the inverse Laplace transformation to get















x(t) =
4

45
e2t +

1

3
t e−t +

1

9
e−t − 1

5
cos t − 2

5
sin t,

y(t) = −1

9
e2t +

1

3
t e−t +

1

9
e−t.

♦
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Example 2.2.8 Solve the system of linear ordinary differential equations


















dx

dt
+ 2

d2y

dt2
= e−t,

dx

dt
+ x(t) − y(t) = 1,







x(0) = 0,

y(0) = y′(0) = 0.

We apply the Laplace transformation,















zX + 2z2Y =
1

z + 1

(z + 1)X − Y =
1

z
.

The determinant of the system is

∆ = −z − 2z2(z + 1) = −z
(

1 + 2z2 + 2z
)

.

Then by Cramer’s formula,

Y = − 1

z (2z2 + 2z + 1)

∣

∣

∣

∣

∣

∣

z 1
z+1

z + 1 1
z

∣

∣

∣

∣

∣

∣

= 0,

from which we conclude that y ≡ 0, hence
dx

dt
= e−t by the first equation, from which

x(t) = 1 − e−t and y(t) = 0.

Alternatively, we can also find X by Cramer’s formula,

X = − 1

z (2z2 + 2z + 1)

∣

∣

∣

∣

∣

∣

1
z+1 2z2

1
z −1

∣

∣

∣

∣

∣

∣

= − 1

z (2z2 + 2z + 1)

{

− 1

z + 1
− 2z

}

=
2z2 + 2z + 1

z (2z2 + 2z + 1) (z + 1)
=

1

z(z + 1)
=

1

z
− 1

z + 1
,

from which x(t) = 1 − e−t. Finally, (sketch) there is no need to apply the Laplace transformation,
because a straightforward integration of the first equation gives

x(t) + 2
dy

dt
= 1 − e−t, thus x(t) = 1 − e−t − 2

dy

dt
,

so by eliminating x(t) in the second equation,

e−t − 2
d2y

dt2
+ 1 − e−t − 2

dy

dt
− y(t) = 1,

which is reduced to

d2y

dt2
+

dy

dt
= 0, y(0) = y′(0) = 0,

from which we get y(t) = 0, and we proceed as above. ♦
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Example 2.2.9 Solve the system of linear ordinary differential equations of variable coefficients



















t x(t) + y(t) + t
dy

dt
= (t − 1)e−t,

dx

dt
− y(t) = e−t,

x(0) = 1.

Hint. First find y(0).

When we put t = 0 into the first equation, we get y(0) = −1. Then we see that it is absolutely no
need to use the Laplace transformation, because it follows from the second equation that

(6) y(t) =
dx

dt
− e−t,

thus

dy

dt
=

d2x

dt2
+ e−t,

and hence by insertion into the first equation,

t x(t) +
dx

dt
− e−t + t

d2x

dt2
+ t e−t = (t − 1)e−t,

which is reduced to the Bessel differential equation

t
d2x

dt2
+

dx

dt
+ t x(t) = 0,

the bounded solutions of which are given by c0 J0(t). Since both J0(0) = 1 and x(0) = 1, we get that
x(t) = J0(t). Hence, by (6),

y(t) = J ′
0(t) + e−t = −J1(t) + e−t,

and the solutions become

x(t) = J0(t) and y(t) = −J1(t) + e−t ♦
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Example 2.2.10 Solve the system of ordinary differential equations



















−3
d2x

dt2
+ 3

d2y

dt2
= t e−t − 3 cos t,

t
d2x

dt2
− dy

dt
= sin t,

given that

x(0) = −1, x′(0) = 2, y(0) = 4,
d2y

dt2
(0) = 0.

Notice that y′(0) is unknown. If, however,
d2x

dt2
(0) exists and is finite, then it follows from the second

equation that y′(0) = 0. Under this assumption it follows from the first equation for t = 0 that

−3
d2x

dt2
(0) + 3 · 0 = 0 − 3,

so we get additional,

d2x

dt2
(0) = 1 and y′(0) = 0.
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We put as usual L{x}(z) = X and L{y}(z) = Y . Then by the Laplace transformation,



















−3
(

z2 X + z − 2
)

+ 3
(

z2 Y − 4z − 0
)

=
1

(z + 1)2
− 3z

z2 + 1
,

− d

dz

(

z2 X + z − 2
)

− z Y + 4 =
1

z2 + 1
,

thus


















−3z2 X + 3z2 Y = 15z − 6 +
1

(z + 1)2
− 3z

z2 + 1
,

− d

dz

(

z2 X
)

− z Y = −3 +
1

z2 + 1
.

When the second equation is multiplied by 3z, it follows by an addition that

−3z
d

dz

(

z2 X
)

− 3 · 1
(

z2 X
)

= 6z − 6 +
1

(z + 1)2
,

which can also be written

d

dz

{

−3z3 X
}

= 6z − 6 +
1

(z + 1)2
.

Then by an integration,

−3z3 X = 3z2 − 6z − 1

z + 1
+ C,

hence

X = −1

z
+

2

z2
+

1

3

1

z3(z + 1)
− C

3
· 1

z3
= −1

z
+

2

z2
− C

3
· 1

z3
− 1

3
· 1

z + 1
+

1

3
· 1 + z3

z3(z + 1)

= −1

z
+

2

z2
− C

3
· 1

z3
− 1

3
· 1

z + 1
+

1

3
· z2 − z + 1

z3
= −2

3
· 1

z
+

5

3
· 1

z2
+

1

3
(1 − C)

1

z3
− 1

3
· 1

z + 1
.

By the inverse Laplace transformation,

x(t) = −2

3
+

5

3
t +

1

6
(1 − C)t2 − 1

3
e−t,

thus

d2x

dt2
=

1

3
(1 − C) − 1

3
e−t.

It follows from

d2x

dt2
(0) = 1 =

1

3
(1 − C) − 1

3
= −C

3
,

that C = −3, so

x(t) = −2

3
+

5

3
t +

2

3
t2 − 1

3
e−t,
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(notice that x(0) = −1 and x′(0) = 2) and

d2x

dt2
=

4

3
− 1

3
e−t.

By insertion into the second equation we get

dy

dt
= t

d2x

dt2
− sin t =

4

3
t e−t − sin t,

hence by an integration,

y =
2

3
t2 +

1

3
t e−t +

1

3
e−t + cos t + k.

We get for t = 0,

y(0) = 4 =
1

3
+ 1 + k,

thus c =
8

3
. The solution is















x(t) = −2

3
+

5

3
t +

2

3
t2 − 1

3
e−t,

y(t) =
8

3
+

2

3
t2 +

1

3
(t + 1)e−te−t + cos t.

♦

Example 2.2.11 A particle moves in the XY -plane such that its position (x, y) at time t is governed
by the system of differential equations

x′′(t) + k2
1 y(t) = 0, y′′(t) + k2

2 x(t) = 0.

Assume that the particle is at rest at (a, b) at time t = 0, when it is set free. Find the position of the
particle at any later time.

We use x(0) = a and y(b) = b and x′(0) = y′(0) = 0, when we apply the Laplace transformation,







z2 X − z · a + k2
1 Y = 0,

k2
2 X + z2 Y − zb = 0,

thus






z2 X + k2
1 Y = a z,

k2
2 X + z2 Y = b z.

The determinant of the system is

∆ = z4 − k2
1 k2

2 =
(

z2 − k1 k2

) (

z2 + ka k2

)

.
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Then by Cramer’s formula,

X =
1

z4 − k2
1k

2
2

∣

∣

∣

∣

az k2
1

bz z2

∣

∣

∣

∣

=
z

(

az2 − k2
1b

)

z4 − (k1k2)
2 = z · az2 − k2

1

(z2 − k1k2) (z2 + k1k2)

=
ak1k2 − k2

1b

2k1k2
· z

z2 − k1k2
+

−ak1k2 − k2
1b

−2k1k2
· 1

z2 + k1k2

=
ak2 − bk1

2k2
· z

z2 − k1k2
+

ak2 + bk1

2k2
· z

z2 + k1k2
,

hence by the inverse Laplace transformation,

x(t) =
ak2 − bk1

2k2
· cosh

(

√

k1k2 t
)

+
ak2 + bk1

2k2
cos

(

√

k1k2 t
)

,

and analogously, or simply by interchanging letters and indices,

y(t) = −ak2 − bk1

2k1
cosh

(

√

k1k1 t
)

+
ak2 + bk1

2k1
cos

(

√

k1k2 t
)

.

It is easy to check these solution functions by insertion. ♦
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Example 2.2.12 Compute the currents I, I1 and I2 in the circuit on the figure, when E(t) = 110H(t)
Volt, and the initial currents are

I(0) = I1(0) = I2(0) = 0.

Figure 7: The circuit of Example 2.2.12.

The inductances of 2 henry and 4 henry are chosen for convenience, so the solutions do not become
too complicated. It will in practice be difficult to realize these very large inductances.

The circuit I is broken down into two simple circuits I1 and I2, where I = I1 + I2. The governing
differential equations are



















30 I1 + 10 (I1 − I2) + 2
d

dt
(I1 − I2) = 110 H(t),

20 I2 + 4
d

dt
I2 + 10 (I2 − I1) + 2

d

dt
(I2 − I1) = 0,

which is reduced to


















2
dI1

dt
+ 40 I1 − 2

dI2

dt
− 10 I2 = 110 H(t),

−2
dI1

dt
− 10 I1 + 6

dI2

dt
+ 30 I2 = 0.

Then by the Laplace transformation,











(2z + 40)L{I1} (z) − (2z + 10)L{I2} (z) =
110

z
,

−(2z + 10)L{I1} (z) + (6z + 30)L{I2} (z) = 0.
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The determinant of this system is

∆ = B(2z + 40)(6z + 30) + (2z + 10)2 = (z + 5)(12z + 240 + 4z + 20)

= 16(z + 5)

(

z +
65

4

)

.

Then, using Cramer’s formula,

L{I1} (z) =
1

16(z + 5)
(

z + 65
4

)

∣

∣

∣

∣

∣

∣

110
z −(2z + 10)

0 6z + 30

∣

∣

∣

∣

∣

∣

=
110 · 6(z + 5)

16(z + 5)
(

z + 65
4

)

z

=
33

13
· 1

z
− 33

13
· 1

z + 65
4

,

and

L{I2} (z) =
1

16
(

z + 65
4

)

(z + 5)

∣

∣

∣

∣

∣

∣

2z + 40 110
z

−(2z + 10) 0

∣

∣

∣

∣

∣

∣

=
110 · 2(z + 5)

16z
(

z + 65
4

)

(z + 5)

=
11

13
· 1

z
− 11

13
· 1

z + 65
4

.

Finally, by the inverse Laplace transformation,

I1(t) =
33

13

{

1 − exp

(

−65

4
t

)}

,

I2(t) =
11

13

{

1 − exp

(

−65

4
t

)}

,

I(t) =
44

13

{

1 − exp

(

−65

4
t

)}

. ♦

Example 2.2.13 Consider the circuit of Figure 8, where E(t) = 500 sin 10t volt, and R1 = R2 = 10
ohm, and L = 1 henry, and C = 0.01 farad. At time t = 0 the load of the condenser is 0, and the
currents I1 and I2 are both 0. Compute the load of the condenser for t > 0.

We consider the two simple circuits I1 and I2, indicated on Figure 8. The corresponding currents are
denoted by i1 and i2, so analyzing the figure we get the equations,



















R1 i1(t) + L
di1(t)

dt
+

1

C

∫ t

0
(i1 − i2) dt − vC(0) = e(t),

1

C

∫ t

0
(i2 − i1) dt − vC(0) + R2 i2(t) = 0,
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Figure 8: The circuit of Example 2.2.13.

hence by the Laplace transformation,



















10 I1(z) + z I1(z) + 100 · 1

z
{I1(z) − I2(z)} +

vC(0)

z
= E(z) =

5000

z2 + 100
,

100 · 1

z
{I2(z) − I1(z)} − vC(0)

z
+ z I2(z) + 10 I2(z) = 0.

We have vC(t) = 0 for t < 0 and

vC(0) =
E0

2
= 250 sin 0 = 0.

The system is then reduced to





10 + z + 100
z − 100

z

− 100
z 10 + z + 100

z









I1(z)

I2(z)



 =





5000
z2+100

0



 .

The determinant of the system is

∆ =

(

10 + z +
100

z

)2

−
(

100

z

)2

=

(

10 + z +
200

z

)

(10 + z) =
1

z

(

z2 + 10z + 200
)

(10 + z),

and we get by Cramer’s formula,

I1(z) =
5000

z2+100

(

z + 10 + 100
z

)

+ 0
1
z (z2 + 10z + 200) (10 + z)

= 5000 · z2 + 10z + 100

(z2 + 100) (z2 + 10z + 200) (10 + z)
,

and

I2(z) =

5000
z2+100 · 100

z
1
z (z2 + 10z + 200) (z + 10)

= 5000 · 100

(z2 + 100) (z2 + 10z + 200) (z + 10)
.
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It follows from
dq

dt
= i1(t) − i2(t) that

z Q(z) − 0 = z Q(z) = I1(z) − I2(z) = 5000 · z

(z2 + 100) (z2 + 10z + 200)
,

hence

Q(z) = 5000 · 1

(z2 + 100) (z2 + 10z + 200)

=
5

8

z

z2 + 100
− 5

8

10

z2 + 100
− 5

8

z + 12

(z + 5)2 +
(

5
√

7
)2

=
5

8

z

z2 + 102
− 5

8

10

z2 + 102
− 5

8

z + 5

(z + 5)2 +
(

5
√

7
)2 −

√
7

8
· 5

√
7

(z + 5)2 +
(

5
√

7
)2 .

Finally, we get by the inverse Laplace transformation,

q(t) =
5

8
cos 10t− 5

8
sin 10t− 5

8
e−5t cos

(

5
√

7 t
)

−
√

7

8
e−5t sin

(

5
√

7 t
)

. ♦
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2.3 Linear partial differential equations

Example 2.3.1 Solve the equation

ddu

∂t
= 2

∂2u

∂x2
,

given that

u(0, t) = u(5, t) = 0 and u(x, 0) = 10 sin 4πx.

Figure 9: The boundary conditions of Example 2.3.1.

The structure of the partial differential equation is that of the heat equation.

We denote the partial Laplace transform of u(x, t) with respect to t by U(x, z). Then it follows that

z U(x, z) − u(x, 0) = 2
∂2U

∂x2
,

thus

∂2U

∂x2
− z

2
U(x, z) = −1

2
u(x, 0) = −5 sin 4πx.

In this equation we consider z as a parameter, so when we guess a solution of the form c(z) · sin 4πx,
then we get

c(x) ·
{

−16π2 − z

2

}

sin4πz = −5 sin4πz,

so a particular integral of the equation is given by

U0(x, z) =
5

16π2 + z
2

sin 4πx =
10

32π2 + z
sin 4πx.
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If we choose the usual branch of the complex square root, then the complete solution becomes for
� z > 0,

U(x, z) =
10

32π2 + z
sin 4πx + c1(z) exp

(

1√
2

√
z x

)

+ c2(z) exp

(

− 1√
2

√
z x

)

.

Then we apply the horizontal boundary conditions.

If x = 0, then

c1(z) + c2(z) = 0.

If x = 5, then

c1(z)

(

exp

(

1√
2

√
z x

))5

+ c2(z)

(

exp

(

− 1√
2

√
z x

))5

= 0.

We conclude that either c1(z) = c2(z) ≡ 0, or exp

(

10√
2

√
z

)

= 1, corresponding to
10√
2

√
z = 2ipπ.

However, the latter is not possible for z ∈ C\ (R− ∪ {0}), because we have chosen the usual branch of
the square root with its branch cut along the negative real axis. Hence, we conclude that the partial
Laplace transform is uniquely given by

U(x, z) =
10

32π2 + z
sin 4πx,

corresponding to the solution

u(x, t) = 10 exp
(

−32π2
)

sin 4πx.

Check of solution! Given u(x, t) above, we clearly have u(0, t) = 0 and u(5, t) = 0 and u(x, 0) =
10 sin 4πx. Furthermore, by partial differentiations,

∂u

∂t
= −320 π2 exp

(

−332π2t
)

sin 4πx,

and

2
∂2u

∂x2
= −16π2 · 2 · 10 · exp

(

−32π2t
)

sin 4πx =
∂u

∂t
,

and the partial differential equation is also fulfilled. ♦
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Example 2.3.2 Solve the linear partial differential equation

∂2f

∂t2
= 9

∂2f

∂x2
,

given the boundary and initial conditions

f(0, t) = 0, f(2, t) = 0, and f(x, 0) = 20 sin 2πx − 10 sin 5πx, f ′
t(x, 0) = 0.

Figure 10: The boundary conditions of Example 2.3.2.

The structure of the partial differential equation is that of a wave equation.

Apply the partial Laplace transformation with respect to t,

z2 F (x, z) − z f(x, 0) − f ′
t(x, 0) = 9

∂2F

∂x2
,

which is reduced to

∂2F

∂x2
−

{z

3

}2

F (x, z) = −20 z sin 20πx − 10 z sin 5πx.

We guess that some particular solution must have the structure

F (x, z) = a(z) · sin 2πx + b(z) · sin 5πx,

where we get by insertion,

∂2F

∂x2
− z2

9
F (x, z) = −4π2 · a(z) · sin 2πx − 25 π2 · b(z) · sin 5πx

−z2

9
· a(z) · sin 2πx − z2

9
· b(z) · sin 5πx,
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which is equal to −20 z · sin 2πx − 10 z · sin 5πx, if and only if

−
{

4π2 +
z2

9

}

a(z) = −20 z and −
{

25π2 +
z2

9

}

b(z) = −10 z,

so we conclude that

a(z) =
180z

z2 + (6π)2
and b(z) =

90z

z2 + (15π)2
.

Hence, the complete solution is

F (x, z) =
180z

z2 + (6π)2
sin 2πx +

90z

z2 + (15π)2
sin 5πx + c1(z) exp

(z

3
x
)

+ c2(z) exp
(

−z

3
x
)

.

If we put x = 0, then

F (0, z) = 0 = c1(z) + c2(z).

If we put x = 2, then

F (2, z) = 0 = c1(z) exp

(

2

3
z

)

+ c2(z) exp

(

−2

3
z

)

.
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Thus, c1(z) = c2(z) = 0, so

F (x, z) =
180z

z2 + (6π)2
sin 2πx +

90z

z2 + (15π)2
sin 5πx.

Finally, by the inverse Laplace transformation,

f(x, t) = 180 cos 6πt · sin 2πx + 90 cos 15πt · sin 5πx. ♦

Example 2.3.3 Solve the linear partial differential equation

∂u

∂t
=

∂2u

∂x2
− 4u(x, t),

given that

u(0, t) = 0, u(π, t) = 0, and u(x, 0) = 6 sin 2x − 4 sin 2x.

Figure 11: The boundary conditions of Example 2.3.3.

This is a variant of the heat equation.

We get by the partial Laplace transformation with respect to t,

z U(x, z) − 6 sinx − 4 sin 2x =
∂2U

∂x2
− 4 U(x, z),

thus by a rearrangement,

∂2U

∂x2
− (4 + z)U(x, z) = −6 sinx − 4 sin 2x.
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There exists a particular integral of the structure

U(x, z) = a(z) sin x + b(z) sin 2x,

so by insertion,

∂2U

∂x2
− (4 + z)U(x, z) = −a(z) sinx − 4b(z) sin 2x − (4 + z)a(z) sin x − (4 + z)b(z) sin 2x

= −(5 + z)a(z) sin x − (8 + z)b(z) sin 2x = −6 sinx − 4 sin 2x,

and we conclude that

a(z) =
6

z + 5
and b(z) =

4

z + 8
.

The complete solution is therefore

U(x, z) =
6

z + 5
sinx +

4

z + 8
sin 2x + C1(z) exp

(

x
√

z + 4
)

+ C2(z) exp
(

−x
√

z + 4
)

.

Then by the boundary conditions,

U(0, z) = 0 = C1(z) + C2(z),

U(π, z) = 0 = C1(z) exp
(

π
√

z + 4
)

+ C2(z) exp
(

−π
√

z + 4
)

,

and we conclude that C1(z) = C2(z) = 0, hence

U(x, z) =
6

z + 5
sinx +

4

z + 8
sin 2z.

Finally, by the inverse Laplace transformation,

u(x, t) = 6 e−5t sin x + 4e−8t sin 2x. ♦

Example 2.3.4 Find the bounded solution f(x, t), x ∈ ]0, 1[, t ∈ R+, of the initial value problem

∂f

∂x
− ∂f

∂t
= 1 − e−t, f(x, 0) = x.

We assume that the partial Laplace transform F (x, z) with respect to t exists. Then

∂F

∂x
− z F (x, z) + x = L

{

1 − e−t
}

(z) =
1

z
− 1

z + 1
,

thus

∂F

∂x
− z F (x, z) =

1

z
− 1

z + 1
− x.

Consider z as a parameter. Then we have a linear ordinary inhomogeneous differential equation of first
order in the real variable x, so we can apply the usual methods from real Calculus. The corresponding
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homogeneous equation has the complete solution F (x, z) = C(z)ezx, and one particular integral must
have the structure

F0(x, z) = a(z)x + b(z).

We get by insertion,

∂F

∂x
− z F (x, z) = a(z) − z a(z)x − z b(z) = −z a(z)x + {a(z) − z b(z)},

which is equal to
1

z
− 1

z + 1
− x for a(z) =

1

z
and b(z) =

1

z(z + 1)
=

1

z
− 1

z + 1
, and the complete

solution becomes

F (x, z) =
1

z
− 1

z + 1
+

x

z
+ C(z)ezx.

If � z > 0, then the term C(z)ezx becomes unbounded for x → +∞, unless we choose C(z) ≡ 0.
Therefore,

F (x, z) =
1 + x

z
− 1

z + 1
= (x + 1)L{1}(z)− L

{

e−t
}

(z),

and we get by the inverse Laplace transformation that

f(x, t) = 1 + x − e−t. ♦

Example 2.3.5 Find the bounded solution for (x, t) ∈ R+ × R+ of the initial value problem

∂f

∂x
= 2

∂f

∂t
+ f(x, t), f(x, 0) = 6e−3x.

Let F (x, z) denote the partial Laplace transform with respect to t of f(x, t). Then

∂F

∂x
= 2zF (x, z) − 2 · 6 e−3x + F (x, z) = (2z + 1)F (x, z) − 12e−3x.

A particular solution is given by a well-known solution formula from real Calculus,

e(2z+1)x

∫

(−12)e−(2z+4)x dx = e(2z+1)x − −12

−2(z + 2)
e−(2z+4)x

= e−3x · 6

z + 2
= 6e−3x L

{

e−2t
}

(z),

and the corresponding homogeneous equation has the general solutions c(z)e(2z+1)x. Since e(2z+1)x

is unbounded in x, if e.g. � z > 0, we must have c(z) ≡ 0, so we conclude by the inverse Laplace
transformation that

f(x, t) = 6 e−3x−2t, (x, t) ∈ R+ × R+,

which is trivially bounded. ♦
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Example 2.3.6 Find the bounded solution of the linear partial differential equation

∂u

∂t
=

∂2u

∂x2
, (x, t) ∈ R+ × R+,

for which also u(0, t) = 1 and u(x, 0) = 0.

This is the classical heat equation.

When we apply the partial Laplace transformation with respect to t, we get

∂2U

∂x2
= z U(x, z) − u(x, 0) = z U(x, z),

which is a simple linear homogeneous partial differential equation of parametric coefficients in x, so
its complete solution is

U(x, z) = C1(z) exp
(√

z x
)

+ C2(z) exp
(

−
√

x x
)

.

If � z > 0, then �√
z > 0, hence |exp (

√
z x)| → +∞ for x → +∞, so we are forced to put C1(z) = 0.

We conclude that we shall only consider solutions of the form

U(x, z) = C2(z) exp
(

−
√

z x
)

.
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If x = 0, then u(0, t) = 1, hence

U(0, z) =
1

z
= C2(z) · e0 = C2(z),

so we conclude that the bounded solution of the given initial/boundary problem has its partial Laplace
transform given by

U(x, z) =
1

z
exp

(

−x
√

z
)

.

Then note that

L
{

erfc

(

1

2
√

t

)}

(z) =
exp (−√

z)

z
for � z > 0.

Thus, by the inverse Laplace transformation and a change of variable, where we put k = x2,

u(t, x) = L−1
z

{

exp (−x
√

z)

z

}

(t) = x2 L−1
z







exp
(

−
√

x2z
)

x2 z







(t) = x2 · 1

x2
erfc





1

2
√

t
x2





= erfc

(

x

2
√

t

)

=
2√
π

∫ +∞

x

2
√

t

exp
(

−u2
)

du,

which is the classical solution most frequently applied in the technical sciences. ♦

Example 2.3.7 Solve the linear partial differential equation

∂2f

∂t2
− 4

∂2f

∂x2
+ f(x, r) = 16 x + 20 sin x,

given the boundary/initial conditions

f(0, t) = 0, f(π, t) = 16π, f(x, 0) = 16x + 12 sin 2x − 8 sin 3x,
∂f

∂t
(x, 0) = 0.

The equation is a wave equation.

When we apply the partial Laplace transformation with respect to t, then we get

z2 F (x, z) − z f(x, 0) − ∂f

∂t
(x, 0) − 4

∂2F

∂x2
+ F (x, z) =

1

z
· 16x +

1

z
· 20 sinx,

thus by a rearrangement,

∂2F

∂x2
− 1

4

(

z2 + 1
)

F (x, z) = −4

z
x − 5

z
sin x − 4xz − 3z sin 2x − 2z sin 3x

= −
(

4

z
+ 4z

)

x − 5

z
sinx − 3z sin 2x − 2z sin 3x.

We see that there exists a particular solution of the structure

F (x, z) = a(z)x + b(z) sinx + c(z) sin 2x + d(z) sin 3x,
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Figure 12: The initial/boundary conditions of Example 2.3.7.

where we shall find the four unknown parametric coefficients, a(z), b(z), c(z) and d(z). We get by
insertion,

∂2F

∂x2
− 1

4

(

z2 + 1
)

F (x, z) = b(z) sin x − 4c(z) sin 2x − 9d(z) sin 3x

−1

4

(

z2 + 1
)

a(z)z − 1

4

(

z2 + 1
)

b(z) sinx − 1

4

(

z2 + 1
)

sin 2x − 1

4

(

z2 + 1
)

sin 3x

= −1

4

(

z2 + 1
)

a(z)x − 1

4

(

z2 + 5
)

b(z) sin x − 1

4

(

z2 + 17
)

c(z) sin 2x − 1

4

(

z2 + 37
)

d(z) sin 3x

= −4

z

(

z2 + 1
)

x − 5

z
sinx − 3z sin 2x − 2z sin 3x,

so when we identify the coefficients we get

a(z) =
16

z
, b(z) =

20

z (z2 + 5)
, c(z) =

12z

z2 + 17
, d(z) =

2z

z2 + 37
.

Then the complete solution of the partial Laplace transform becomes

F (x, z) =
16

z
x +

(

4

z
− 4z

z2 + 5

)

sin x +
12z

z2 + 17
sin 2x +

2z

z2 + 37
sin 3x

+C1(z) exp
(x

2

√

z2 + 1
)

+ C2(z) exp
(

−x

2

√

z2 + 1
)

.

Then we apply the initial/boundary conditions,

F (0, z) = 0 = C1(z) + C2(z),

and

F (π, z) =
16π

z
=

16π

z
+ C1(z) exp

(π

2

√

z2 + 1
)

+ C2(z) exp
(

−π

2

√

z2 + 1
)

,
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from which we conclude that C1(z) = C2(z) ≡ 0. Hence the partial Laplace transform becomes

F (x, z) =
16

z
x +

(

4

z
− 4z

z2 + 5

)

sin x +
12z

z2 + 17
sin 2x +

2z

z2 + 37
sin 3x,

so by the inverse partial Laplace transformation,

f(x, t) = 16x + 4 sinx − 4 cos
(√

5 t
)

sin x + 12 cos
(√

17 t
)

sin 2x + 2 cos
(√

37 t
)

sin 3x. ♦

2.4 The Dirac measure δ

Example 2.4.1 Given fε(t) :=
1

ε
χ[0,ε](t), where ε > 0 is a parameter. Compute

L{fε} (z) and lim
ε→0+

L{fε} (z).

We get by a straightforward computation that

L{fε} (z) =
1

ε
L

{

χ[0,ε]

}

(z) =
1

ε
L{H(t) − H(t − ε)}(z)

=
1

ε
· 1

z

(

1 − e−εz
)

=
1 − e−εz

zε
,

where H(t) denotes the Heaviside function H(t) := χR+ .

Then by taking the limit ε → 0+,

lim
ε→0+

L{fε} (z) =
1

z
lim

ε→0+

e−0·z − e−ε z

ε
=

1

z
lim

ε→0+

(

+z e−εz
)

= 1,

which corresponds to L{δ}(z), where δ denotes the Dirac measure. ♦

Example 2.4.2 Let g ε(t) :=
1

ε2
χ[0,ε](t) −

1

ε2
χ[2ε,3ε](t). Compute L{gε} (z), and then the limit

limε→0+ L{gε} (z).

By a straightforward computation,

L{gε} (z) =
1

ε2
L{H(t) − H(t − ε) − H(t − 2ε) + H(t − 3ε)}(z)

=
1

ε2
· 1

z

(

1 − e−εz − e−2εz + e−3εz
)

.
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Then use series expansions to proceed the computations above,

L{gε} (z) =
1

z
· 1

ε2

(

1 −
{

1 − εz +
1

2
ε2 z2 + o

(

ε2
)

}

−
{

1 − 2ε z +
4ε2

2
z2 + o

(

ε2
)

}

+

{

1 − 3ε z +
9ε2

2
· z2 + o

(

ε2
)

})

=
1

z
· 1

ε2
· ε2

(

−1

2
z2 − 4

2
z2 +

9

2
z2

)

+
1

z
· 1

ε2
o
(

ε2 z2
)

= 2z +
1

z ε2
o
(

ε2 z2
)

.

We conclude by taking the limit that

lim
ε→0+

L{gε} (z) = 2z. ♦
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Example 2.4.3 Find the Laplace transform of

t · H(t − 1) + t2 δ(t − 1).

Let ϕ be any test function. Then

∫ +∞

−∞
t2 δ(t − 1)ϕ(t) dt = 12ϕ(1) =

∫ +∞

−∞
δ(t − 1)ϕ(t) dt,

and we conclude that t2 δ(t − 1) = δ(t − 1).

Then for � z > 0,

L
{

t · H(t − 1) + t2 δ(t − 1)
}

(z) = L{t · H(t − 1)}(z) + L{δ(t − 1)}(z)

=

∫ +∞

1

t e−zt dt + e−z =

[

t ·
(

−1

z

)

e−zt

]+∞

1

+
1

z

∫ +∞

1

e−zt dt + e−z

=
1

z
e−z −

[

1

z2
e−zt

]+∞

1

+ e−z =

(

1 +
1

z
+

1

z2

)

e−z. ♦

Example 2.4.4 Find the Laplace transform of

cos t · ln t · δ(t − π).

We get by formal computations that

L{cos t · ln t · δ(t − π)}(z) =

∫ +∞

0

cos t · ln t · δ(t − π)e−zt dt

= cosπ · ln π · eπz = − ln π · e−πz,

which could also be derived directly from

cos t · ln t · δ(t − π) = − ln π · δ(t − π). ♦

Example 2.4.5 Solve the differential equation

f ′′(t) + 4 f(t) = δ(t − 2), f(0) = 0, f ′(0) = 1.

Assuming that f ∈ F , it follows by taking the Laplace transformation that

z2 L{f}(z)− z · 0 − 1 + 4L{f}(z) = e−2z,

thus

L{f}(z) =
1

z2 + 4
+

e−2z

z2 + 4
=

1

2
L{sin 2t}(z) + e.2z · 1

2
L{sin 2t}(z).

100

Download free eBooks at bookboon.com



The Laplace Transformation II c-12

 
103 

2  Applications

Figure 13: The graph of the solution of Example 2.4.5.

Then by the inverse Laplace transformation,

f(t) =
1

2
sin 2t +

1

2
sin(2{t − 2}) · H(t − 2).

Check of the solution. Since f(t) is continuous for x ≥ 0, and differentiable for x �= 2, we get

f ′(t) = cos 2t + cos(2(t − 2)) · H(t − 2) for t �= 2.

We see in particular that f(0) = 0 and f ′(0) = 1, so the initial conditions are fulfilled.

The derivative f ′(t) has a jump at t = 2, so the trick is to add and then subtract H(t − 2) to get

f ′(t) = (cos 2t + {cos(2(t − 2)) − 1} · H(t − 2)) + H(t − 2).

The first term is continuous and differentiable for t �= 2, so

f ′′(t) = −2 sin 2t − 2 sin(2(t − 2)) · H(t − 2) + δ(t − 2).

Then finally,

f ′′(t) + 4 f(t) = δ(t − 2). ♦
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Example 2.4.6 Solve the convolution equation

∫ t

0

f(u)f(t − u) du = t + 2 f(t), for t ≥ 0.

A formal application of the Laplace transformation gives

(L{f}(z))2 = L{t}(z) + 2L{f}(z) = 2L{f}(z) +
1

z2
,

hence by a rearrangement,

(L{f}(z) − 1)2 = 1 +
1

z2
=

z2 + 1

z2
.

Choose the usual branch of the square root, which is positive on R+ and has its branch cut lying along
R−. Then we get from the equation above that the Laplace transform has two solutions,

L{f}(z) = 1±
√

z2+1

z
=



























1 −
√

z2+1

z
= 1− z2+1

z
√

z2+1
=

√
z2+1−z√

z2+1
− 1

z

1√
z2+1

,

1 +

√
z2+1

z
= 2 −

(

1−
√

z2+1

z

)

= 2 −
√

z2+1−z√
z2+1

+
1

z

1√
z2+1

.

We know from Section 1.5 that
√

z2 + 1 − z√
z2 + 1

= L{J1} (z), and
1

z

1√
z2 + 1

= L{H}(z) · L {J0} (z) = L{H � J0} (z),

so using the inverse Laplace transformation we obtain the two solutions

f(t) =







J1(t) −
∫ t

0 J0(u) du,

2δ − J1(t) +
∫ t

0
J0(u) du.

♦

Example 2.4.7 Solve the convolution equation

∫ t

0

f(u)f(t − u) du = 2 f(t) +
1

6
t3 − 2t, for t ≥ 0.

Apply a formal Laplace transformation with F (z) = L{f}(z) to get

F (z)2 = 2 F (z) +
1

z4
− 2

z2
,

which we write

F (z)2 − 2 F (z) + 1 =
1

z4
− 2

z2
+ 1,
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and the equation of the Laplace transform is reduced to

{F (z) − 1}2 =

(

1 − 1

z2

)2

.

We conclude that

F (z) = L{f}(z) = 1 ±
(

1 − 1

z2

)

=















2 − 1

z2
,

1

z2
.

Finally, by the inverse Laplace transformation,

f(t) =







2 δ − t,

t.
♦
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Example 2.4.8 A beam has its endpoints at x = 0 and x = � clamped. The beam is subjected to a

vertical concentrated load P0 at the point x =
�

3
. Find the bending of the beam, i.e. solve the boundary

value problem

d4f

dx4
=

P0

EI
δ

(

x − �

3

)

, f(0) = f ′(0) = 0, f(�) = f ′(�) = 0.

Figure 14: The beam of Example 2.4.8.

This example was found in a long forgotten book as an exercise in application of the Laplace trans-
formation. However, a boundary value problem is considering a finite interval, while the Laplace
transformation requires an infinite interval, so we cannot apply the Laplace transformation here. It
is not possible to reconstruct the original exercise. It was probably included due to the occurrence
of Dirac’s delta function. In order not to make the reader disappointed we solve the given classical
problem by simply integrating the equation successively,

d3f

dx3
=

P0

EI
H

(

x − �

3

)

+ a1,

d2f

dx2
=

P0

EI

(

x − �

3

)

H

(

x − �

3

)

+ a1 x + a2,

df

dx
=

P0

EI
· 1

2

(

x − �

3

)2

H

(

x − �

3

)

+
a1

2
x2 + a2 x + a3,

f(x) =
P0

EI
· 1

6

(

x − �

3

)3

H

(

x − �

3

)

+
a1

6
x3 +

a2

2
x2 + a3 x + a4,

where we shall use the boundary conditions to find the values of the four constants a1, a2, a3 and a4.
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It follows from f(0) = 0 that a4 = 0, and from f ′(0) = 0 that also a3 = 0. The solution is therefore
reduced to

f(x) =
P0

EI
· 1

6

(

x − �

3

)3

H

(

x − �

3

)

+
a1

6
x3 +

a2

2
x2,

and

f ′(x) =
P0

EI
· 1

2

(

x − �

3

)2

H

(

x − �

3

)

+
a1

2
x2 + a2 x.

Then

f(�) = 0 =
P0

EI
· 1

6
· 8

27
�3 +

a1

6
�3 +

a2

2
�2,

thus

(7) a1 � + 3a2 = − P0

EI
· 8

27
�,

and

f ′(�) = 0 =
P0

EI
· 12 · 4

9
�2 +

1

2
a1 �2 + a2 �,

thus

(8) a1 � + 2a2 = − P0

EI
· 4

9
�.

Figure 15: The graph of the solution of Example 2.4.8.

When (8) is subtracted from (7) we get

a2 =
P0

EI

(

4

9
− 8

27

)

� =
2

27

P0

EI
�,
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from which

a1 = − P0

EI

(

4

9
+

8

27

)

= −20

27

P0

EI
,

and the solution is

f(x) =
P0

EI

{

1

6

(

x − �

3

)3

H

(

x − �

3

)

− 10

81
x3 +

2

27
� x2

}

. ♦

2.5 The z transformation

Example 2.5.1 Find the z transform of sample period T of the function f(t) = t2.

If |w| < 1, then by series expansion and termwise differentiation,

1

1 − w
=

+∞
∑

n=0

wn,
1

(1 − w)2
=

+∞
∑

n=0

(n + 1)wn,
2

(1 − w)3
=

+∞
∑

n=0

(n + 1)(n + 2)wn,

from which

+∞
∑

n=0

n2 wn =

+∞
∑

n=0

{(n2+3n+2)−3(n+1)+1}wn =
2

(1− w)3
− 3

(1−w)2
+

1

1−w

=
1

(1−w)3
·
{

2−3(1−w)+(1−w)2
}

=
2−3+3w+1−2w+w2

(1−w)3
=

w(w+1)

(1−w)3
.

When f(t) = t2, we get for z =
1

w
and |z| > 1 that

zT

{

t2
}

(z) =
+∞
∑

n=0

= n2 T 2 · 1

zn
= T 2 ·

1
z

(

1
z + 1

)

(

1 − 1
z

)3 =
T 2 z(z + 1)

(z − 1)3
. ♦

Example 2.5.2 Find the z transform of sample period 1 of the function
1

Γ(1 + t)
for t ≥ 0.

Just use the definition of the z transformation to get

z1{f}(z) =
+∞
∑

n=0

f(n · 1) · 1

zn
=

+∞
∑

n=0

1

Γ(n + 1)
· 1

zn
=

+∞
∑

n=0

1

n!

1

zn

= exp

(

1

z

)

, for z ∈ C \ {0}. ♦

106

Download free eBooks at bookboon.com



The Laplace Transformation II c-12

 
109 

2  Applications

Example 2.5.3 Find the z transforms of f(t) = sin t for t ≥ 0, when

(1) T = π, (2) T =
π

2
.

1) When T = π, it follows from the definition that

zπ{sin}(z) =

+∞
∑

n=0

sin(nπ) · 1

zn
≡ 0.

2) When T =
π

2
, then we get for |z| > 1 that

zπ/2{sin}(z) =
+∞
∑

n=0

sin
(

n · π

2

)

· 1

zn
=

+∞
∑

n=0

sin
(

(2n + 1)
π

2

)

· 1

z2n+1

=

+∞
∑

n=0

sin
(π

2
+ nπ

)

· 1

z2n+1
=

1

z

+∞
∑

n=0

(−1)n

{

1

z2

}n

=
1

z
· 1

1 + 1
z2

=
z

z2 + 1
.

These two examples show that if the sample period T is large compared with the oscillations of the
function, then we lose a lot of information when we apply the z transformation. ♦
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Example 2.5.4 Find the z transform of the function

f(t) = tan t, t ≥ 0 and t �= π

2
+ pπ, p ∈ N0,

when T =
π

3
.

The point is of course that f(t) is not defined at t =
π

2
+ pπ, p ∈ N0, and that no sample time is

of this form. We therefore obtain a fairly nice z transform below, in spite of the fact that f(t) is
discontinuous at infinitely many points, so we also lose some information in this case.

We get by the definition of the zz transformation for |z| > 1 that

zπ/3{tan}(z) =

+∞
∑

n=0

tan
(

n · π

3

)

· 1

zn

=

+∞
∑

n=0

tan
(

3n · π

3

) 1

z3n
+

+∞
∑

n=0

tan
(

(3n + 1)
π

3

) 1

z3n+1
+

+∞
∑

n=0

tan
(

(3n + 2)
π

3

) 1

z3n+2

=
+∞
∑

n=0

tan(nπ)
1

z3n
+

+∞
∑

n=0

tan
(π

3
+ nπ

) 1

z3n+1
+

+∞
∑

n=0

tan

(

2π

3
+ nπ

)

1

z3n+2

= 0 +
√

3

+∞
∑

n=0

1

z3n+1
−
√

3

+∞
∑

n=0

1

z3n+2
=

√
3

{

1

z
− 1

z2

} +∞
∑

n=0

{

1

z3

}n

=
√

3 · z − 1

z2
· 1

1 − 1
z3

=
√

3 · z − 1

z2
· z3

z3 − 1
=

√
3 · z

z2 + z + 1
. ♦

Example 2.5.5 Find the z transform of the sequence

(

n+1
∑

n=1

1

k

)

n∈N0

.

We get for |z| > 1, using a rule of computation,

z

{

n−1
∑

k=1

1

k

}

(z) = z

{

n
∑

k=0

1

k + 1

}

(z) =
z

z − 1
z

{

1

n + 1

}

(z) =
z

z − 1

+∞
∑

n=0

1

n + 1
· 1

zn

= − z2

z − 1

+∞
∑

n=1

(−1)n+1

n

{

−1

z

}n

= − z2

z − 1
Log

(

1 − 1

z

)

=
z2

z − 1
Log

(

z

z − 1

)

. ♦
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Example 2.5.6 Find the inverse z transform of the function exp

(

1

z

)

, z �= 0.

It follows immediately from the series expansion

exp

(

1

z

)

=

+∞
∑

n=0

1

n!

1

zn
, z �= 0,

that an =
1

n!
, hence

z
−1

{

exp

(

1

z

)}

=

(

1

n!

)

n∈N0

. ♦

Example 2.5.7 Find the inverse z transform of cosh

(

1√
z

)

.

It follows from the series expansion

cosh

(

1√
z

)

=
+∞
∑

n=0

1

(2n)!
· 1

zn
, for z �= 0,

where an =
1

(2n)!
, so

z
−1

{

cosh

(

1√
z

)}

=

(

1

(2n)!

)

n∈N0

. ♦

Example 2.5.8 Find the inverse z transform of
z + 2

z4 − 1
.

The Laurent series of
z + 2

z4 − 1
is for |z| > 1,

z + 2

z4 − 1
=

z + 2

z4
· 1

1 − 1
z4

=
z + 2

z4

+∞
∑

n=0

1

z4n
=

+∞
∑

n=1

z + 2

z4n
.

We therefore get

z
−1

{

z + 2

z4 − 1

}

= (an)n∈N0
,

where

an =























for n = 4p − 1, p ∈ N,

2 for n = 4p, p ∈ N,

0 otherwise. ♦
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3 Extension of the inversion formula

3.1 The inversion formula for analytic functions with branch cuts

Example 3.1.1 Find the inverse Laplace transform of e−
√

z.

Assume that � z > γ. Then �√
z >

√
γ, cf. Figure 16, hence

∣

∣

∣e−
√

z
∣

∣

∣ = e−�√
z =

1

e�
√

z
≤ C

|� z| for � z > k.

We therefore conclude by the inversion formula that

f(t) =
1

2πi

∫ γ+i∞

γ−i∞
ez t F (z) dz =

1

2πi

∫ γ+i∞

γ−i∞
ezt e−

√
z dz.

Figure 16: An analysis of the square root in Example 3.1.1.

Then choose the path of integration of Figure 17. It follows from Cauchy’s integral theorem that

0 =
1

2πi

∮

Cr,ε

ezt e−
√

z dz

=
1

2πi

∫ γ+iT

γ−iT

ezte−
√

z dz +
1

2πi

∫ −π

π

exp
(

t ε eiΘ
)

exp
(

−
√

ε ei Θ
2

)

i ε eiΘ dΘ

+
1

2πi

{

∫ π

Θ0(t)

+

∫ −Θ0(r)

−π

exp
(

t r eiΘ −
√

r ei Θ
2

)

i r eiΘ dΘ

}

+
1

2πi

∫ −ε

−r

e−i
√

|x| dx +
1

2πi

∫ −r

−ε

ext ei
√

|x| dx,
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Figure 17: The path of integration in Example 3.1.1.

where Θ0(r) = Arccos
γ

r
. It is obvious that

lim
ε→0+

1

2πi

∫ −π

π

exp
(

t ε · eiΘ
)

exp
(

−
√

ε · eiΘ
2

)

i ε eiΘ dΘ = 0.

Furthermore,
∣

∣

∣

∣

∣

1

2πi

∫ π

Arccos γ

r

exp
(

t r eiΘ −
√

r ei Θ
2

)

i r dΘ

∣

∣

∣

∣

∣

≤ 1

2π

∣

∣

∣

∣

∣

∫ π

Arccos γ

r

exp

(

t r cosΘ −
√

r cos
Θ

2

)

r dΘ

∣

∣

∣

∣

∣

≤ 1

2π
exp

(

t r

{

2

(4t
√

r)
2 − 1

}

−
√

r · 1

4t
√

r

)

r π ≤ C(t) · r e−tr → 0 for r → +∞ and t > 0,

because the maximum is attained for

cos
Θ0

2
=

1

4t
√

r
,

if either Θ ∈
[

Arccos
γ

r
, π

]

, or, if r is large, for Θ0 ∈
[

0, Arccos
γ

r

]

.
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We finally get by taking the limit and use a substitution of the variable,

∫ 0

−∞
ext e−i

√
|x| dx +

1

2πi

∫ −∞

0

ext ei
√

|x| dx

=
1

2πi

∫ +∞

0

e−xt e−i
√

x dx − 1

2πi

∫ +∞

0

e−xt ei
√

x dx = − 1

π

∫ +∞

0

e−xt sin
(√

x
)

dx

= − 1

π

+∞
∑

n=0

(−1)n

(2n + 1)!

∫ +∞

0

e−xt · xn+ 1
2 dx = − 1

π

+∞
∑

n=0

(−1)n

(2n + 1)!
L

{

xn+ 1
2

}

(t)

= − 1

π

+∞
∑

n=0

(−1)n

(2n + 1)!
· Γ

(

n + 3
2

)

tn+ 3
2

= − 1

π
· 1

t
3
2

+∞
∑

n=0

(−1)n

(2n + 1)!

(

n +
1

2

) (

n − 1

2

)

· · · 1

2
Γ

(

1

2

)

· 1

tn

= − 1√
π

e−
3
2

+∞
∑

n=0

(−1)n

(2n + 1)!
· 2n+1)(2n−1) · · ·1

2n+1
· 1

tn
= − 1

2
√

π
t−

3
2

+∞
∑

n=0

(−1)n · 1

2n n! 2n
· 1

tn

= − 1

2
√

π
t−

3
2

+∞
∑

n=0

1

n!

{

− 1

4t

}n

= − 1

2
√

π
t−

3
2 exp

(

− 1

4t

)

.

We get by taking the limit followed by a rearrangement,

L−1
{

e−
√

z
}

(t) =
1

2
√

π
t−

3
2 exp

(

− 1

4t

)

. ♦
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Example 3.1.2 Find the inverse Laplace transform of
1√
z
.

Figure 18: The path of integration in Example 3.1.2.

We choose the path of integration as given on Figure 18, where r > 1. Then

0 =

∫ 1+i
√

r2−1

1−i
√

r2−1

ezt

√
z

dz +

∫ π

Θr

exp
(

r eiΘt
)

√
r exp

(

i
Θ

2

) r i eiΘ dΘ +

∫ −ε

−r

ext

i
√

|x|
dx

+

∫ −π

π

exp
(

ε eiΘt
)

√
ε exp

(

i Θ
2 t

) ε i eiΘ dΘ +

∫ −r

−ε

ext

−i
√

|x|
dx +

∫ Θr

−π

exp
(

r eiΘt
)

√
r exp

(

i Θ
2

) · r i eiΘ dΘ.

We conclude for every fixed t ≥ 0 that
∣

∣

∣

∣

i
√

ε

∫ π

−π

exp
(

ε eiΘ t
)

exp

(

i
Θ

2

)

dΘ

∣

∣

∣

∣

≤
√

ε · eεt · 2π → 0 for ε → 0 + .

Furthermore, for t > 0,

2i

∫ r

ε

e−xt

√
x

dx = 4i

∫

√
r

√
ε

exp
(

−y2 t
)

dy =
4i√
t

∫

√
rt

√
εt

exp
(

−u2
)

du

→ 4i√
t

∫ +∞

0

exp
(

−u2
)

du =
4i√
t
·
√

π

2
=

2iπ√
πt

for ε → 0 + and r → +∞.

Finally,

∣

∣

∣

∣

−i
√

r

∫ π

Θr

exp
(

r eiΘ t
)

exp

(

i
Θ

2

)

dΘ

∣

∣

∣

∣

=
√

r

∣

∣

∣

∣

∣

∫ π

Arccos( 1
r )

ert·cosΘ exp

(

rt · sin Θ +
Θ

2

)

dΘ

∣

∣

∣

∣

∣

,

where

ert·cosΘ ≤ 1

r
for r · cosΘ ≤ − log r,
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thus for

cosΘ ≤ − log r

r · t .

Hence,

√
r

∣

∣

∣

∣

∣

∫ π

Arccos(− log r

r·t )
ert·cosΘ exp

(

i

(

rt sin Θ +
Θ

2

))

dΘ

∣

∣

∣

∣

∣

≤ π

2
· 1√

r
→ 0 for r → +∞,

so it only remains to estimate

√
r

∣

∣

∣

∣

∣

∫ Arccos(− log r

r·t )

Arccos( 1
r )

eit cosΘ exp

(

i

(

rt sin Θ +
Θ

2

))

dΘ

∣

∣

∣

∣

∣

≤
√

r · exp

(

rt cos

(

Arccos

(

1

r

))) {

Arccos

(

− log r

r t

)

− Arccos

(

1

r

)}

≤
√

r et

∫ 1
r

− log r

r t

dx√
1 − x2

≤ et
√

r

(

1

r
+

log r

r t

)

· 1
√

1 −
{

log r

r t

}2

= et

{

1√
r

+
log r

t
√

r

}

· 1
√

1 −
{

log r
r t

}2
→ 0 for r → +∞.

Summing up, we obtain by taking the limits r → +∞ and ε → 0+ that

L−1

{

1√
z

}

(t) =
1

2πi

∫ 1+i∞

1−i∞

ezt

√
z

dz =
1

2πi
lim

r→+∞

∫ 1+
√

r2−1

1−i
√

r2−1

ezt

√
z

dz

= 0 +
1√
π t

+ 0 =
1√
π
· 1√

t
.

Notice that the main contributions to the value of the integral come from the integrations along either
side of the branch cut. ♦

Example 3.1.3 Prove that the inverse Laplace transform of
1

z
√

z + 1
is erf

{√
t
}

.

We see immediately that

∣

∣

∣

∣

1

z
√

z + 1

∣

∣

∣

∣

≤ const.

|z| 32
for � z > 2,

thus

L−1

{

1

z
√

z + 1

}

(t) =
1

2πi

∫ 1+i∞

i−i∞

ezt

z
√

z + 1
dz.
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3  Extensions of the inversion formula

Figure 19: The path of integration in Example 3.1.3.

We choose the path of integration indicated on Figure 19, where R > 1 and 0 < ε < 1, where ε is the
radius of the circle surrounding −1. Then, by the residuum theorem,

1

2πi

∮

CR,ε

ezt

z
√

z + 1
dz = res

(

ezt

z
√

z + 1
; 0

)

= 1,

and therefore,

1 =
1

2πi

∫ 1+i
√

R2−1

1−i
√

R2−1

ezt

z
√

z + 1
dz +

1

2πi

∫ π

ΘR

exp
(

R eiΘ t
)

R eiΘ
√

R eiΘ + 1
R · i eiΘ dΘ

+
1

2πi

∫ −1−ε

−R

ext

x i
√

|x| − 1
dx +

1

2πi

∫ −π

π

exp
((

−1 + ε eiΘ
)

t
)

(−1 + ε eiΘ)
√

ε exp

(

i
Θ

2

) · ε · i eiΘ dΘ

+
1

2πi

∫ −R

−1−ε

ext

x(−i)
√

|x| − 1
dx +

1

2πi

∫ −ΘR

−π

exp
(

R eiΘ t
)

R eiΘ
√

R eiΘ + 1
· R i eiΘ dΘ.

Here,

1

2πi

∫ 1+i
√

R2−1

1−i
√

R2−1

ezt

z
√

z + 1
dz → L−1

{

1

z
√

z + 1

}

(t) for R → +∞,

and

1

2πi

∫ −π

π

exp
((

−1 + ε eiΘ
)

t
)

(−1 + ε eiΘ)
√

ε exp

(

i
Θ

2

) · ε i eiΘ dΘ → 0 for ε → 0 + .

Furthermore, cosΘR =
1

R
, hence

∣

∣

∣

∣

1

2πi

∫ π

ΘR

eR cosΘ·t+i R sin Θ·t

R eiΘ
√

R eiΘ + 1
· R i eiΘ

∣

∣

∣

∣

≤ 1

2π

∫ π

0

et

√
R − 1

dΘ → 0 for R → +∞,
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3  Extensions of the inversion formula

and analogously for the conjugated integral.

Finally,

1

2πi

∫ −1−ε

−R

ext

xi
√

|x| − 1
dx +

1

2πi

∫ −R

−1−ε

ext

x(−i)
√

|x| − 1
dt =

1

π
(−1)

∫ 1+ε

R

e−yt

−y
√

y − 1
(−1) dy

=
1

π

∫ R

1+ε

e−yt

y
√

y − 1
dy → 1

π

∫ +∞

1

e−yt

y
√

y − 1
dy =

1

π

∫ +∞

0

e−(y+1)t

(y + 1)
√

y
dy =

e−t

π

∫ +∞

0

e−yt

(y + 1)
√

y
dy

=
2

π
e−t

∫ +∞

0

exp
(

−x2t
)

x2 + 1
dx =

2

π
e−t e−t · π

2
et erfc

(√
t
)

= erfc
(√

t
)

,

for ε → 0+ and R → +∞, where we have applied an example from Ventus, Complex Functions Theory
a-6, The Laplace Transformation.

Summing up we get by taking these limits,

1 = L−1

{

1

z
√

z + 1

}

(t) + erfc
(√

t
)

,

hence by a rearrangement,

L−1

{

1

z
√

z + 1

}

(t) = 1 − erfc
(√

t
)

= erf
(√

t
)

. ♦
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3  Extensions of the inversion formula

Example 3.1.4 Find the inverse Laplace transform of

√
z

z − 1
.

If � z > 1, we get by a Laurent series expansion
√

z

z − 1
=

1√
z
· 1

1 − 1
z

=
1√
z

+∞
∑

n=0

1

zn
=

+∞
∑

n=0

1

zn+ 1
2

=

+∞
∑

n=0

1

Γ
(

n + 1
2

) · Γ
(

n + 1
2

)

zn+ 1
2

=

+∞
∑

n=0

1

Γ
(

2n+1
2

) L
{

tn−
1
2

}

(z),

hence by the inverse Laplace transformation,

L−1

{ √
z

z − 1

}

(t) =

+∞
∑

n=0

1

Γ
(

2n+1
2

) tn−
1
2 =

1√
t

+∞
∑

n=0

1
2n+1

2 · 2n−1
2 · · · 1

2

√
π

tn

=
1√
t

+∞
∑

n=0

2n+1

√
π

· 2n · n!

(2n + 1)!
tn =

2√
π
· 1√

t

+∞
∑

n=0

n!

(2n + 1)!
(4t)n. ♦

Example 3.1.5 Find the inverse Laplace transform of Log

(

1 +
1

z

)

by choosing a convenient path of

integration.

Is it possible to find the inverse Laplace transform by using more simple methods?

The estimate
∣

∣

∣

∣

Log

(

1 +
1

z

)∣

∣

∣

∣

≤ C

|z| for |z| ≥ 2,

shows that Log

(

1 +
1

z

)

satisfies the necessary (and also sufficient) estimate for the existence of the

inverse Laplace transform.

In this case we have a branch cut along the interval [−1, 0] on the real axis, so we choose the path of
integration as indicated on Figure 20. Then we get

0 =
1

2πi

∮

Cr,ε

Log

(

1 +
1

z

)

ezt dz =
1

2πi

∫ 2+i
√

r2−4

2−i
√

r2−4

Log

(

1 +
1

z

)

ezt dt

+
1

2πi

∫ 2π−Arccos 2
r

Arccos 2
r

Log

(

1 +
1

r eiΘ

)

· ert(cosΘ+i sin Θ)i r eiΘ dΘ

+
1

2πi

∫

2π

0Log

(

1 +
1

−1 + ε eiΘ

)

exp
(

t
(

−1 + ε eiΘ
))

i ε eiΘ dΘ

+
1

2πi

∫ −π

π

Log

(

1 +
1

ε eiΘ

)

exp
(

t ε eiΘ
)

· i ε eiΘ dΘ +
1

2πi

∫ −ε

−1+ε

{

ln

∣

∣

∣

∣

1 +
1

x

∣

∣

∣

∣

− iπ

}

etx dx

− 1

2π

∫ −ε

−1+ε

{

ln

∣

∣

∣

∣

1 +
1

x

∣

∣

∣

∣

+ iπ

}

etx dx.
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3  Extensions of the inversion formula

Figure 20: The path of integration in Example 3.1.5.

The first line integral on the right hand side converges towards

f(t) = L−1

{

Log

(

1 +
1

z

)}

(t)

for r → +∞. Concerning the second integral we have the following estimate of the integrand, when
r > 2,

∣

∣

∣

∣

1

2πi
Log

(

1 +
1

r eiΘ

)

ert(cosΘ+i sin θ) i r eiΘ

∣

∣

∣

∣

≤ 1

2π
· C

r
ert cosΘ · r =

C

2π
etr cosΘ,

so the integral is estimated in the following way,

2
C

2π

∫ Arccos(− ln r
rt )

Arccos 2
r

etr· 2
r dΘ + 2

C

2π

∫ π

Arccos(− ln r
rt )

exp

(

tr

(

− ln r

rt

))

dΘ

≤ C

π
e2t ·

{

Arccos

(

− ln r

rt

)

− Arccos

(

2

r

)}

+
C

π
· π · 1

r
→ 0 for r → +∞.

The next two integrals both tend towards 0 for ε → 0+, because ε ln ε → 0 for ε → 0+.

Considering the remaining two integrals we get

1

2πi

∫ −ε

−1+ε

{

ln

∣

∣

∣

∣

1 +
1

x

∣

∣

∣

∣

− iπ

}

etx dx − 1

2πi

∫ −ε

−1+ε

{

ln

∣

∣

∣

∣

1 +
1

x

∣

∣

∣

∣

+ iπ

}

etx dx

= −
∫ −ε

−1+ε

etx dx = −
∫ 1−ε

ε

e−tx dx → −
∫ 1

0

e−tx dx =

[

1

t
e−tx

]1

0

= −1

t

(

1 − e−t
)

.

We therefore get by taking the limits, followed by a rearrangement,

f(t) = L−1

{

Log

(

1 +
1

z

)}

(t) = +
1

t

(

1 − e−t
)

.
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3  Extensions of the inversion formula

An alternative approach is to take the Laurent series expansion,

Log

(

1 +
1

z

)

=

+∞
∑

n=0

(−1)n

n + 1

1

zn+1
=

+∞
∑

n=0

(−1)n

(n + 1)!
· n!

zn+1
=

+∞
∑

n=0

1

(n + 1)!
L{(−t)n} (z),

hence by the inverse Laplace transformation,

f(t) = L−1

{

Log

(

1 +
1

z

)}

(t) =
+∞
∑

n=0

1

(n + 1)!
(−t)n = −1

t

+∞
∑

n=1

1

n!
(−t)n =

1

t

(

1 − e−t
)

.

Another alternative is the following proof,

L{t f}(z) = − d

dz
Log

(

1 +
1

z

)

=
d

dz
Log

(

z

1 + z

)

=
1

z
− 1

1 + z
= L

{

1 − e−t
}

(z),

from which we conclude that

t f(t) = 1 − e−t,

thus

f(t) =
1

t

(

1 − e−t
)

.

Notice that limt→0+
1

t
(1 − e−t) = 1. ♦

Example 3.1.6 Compute the inverse Laplace transform of Log

(

1 +
1

z2

)

by a Bromwich integral.

Then find an alternative and simpler proof, using only elementary methods.

First method First, the estimate

∣

∣

∣

∣

Log

(

1 +
1

z2

)∣

∣

∣

∣

≤ C

|z|2 for |z| ≥ 2,

shows that the inverse Laplace transform exists and it is given by

f(t) = L−1

{

Log

(

1 +
1

z2

)}

(t) =
1

2πi

∫ 1+i∞

1−i∞
Log

(

1 +
1

z2

)

ezt dz.

The branch cut can in this case be chosen as the line segment on the imaginary axis from −i to i,
cutting through the third singularity at 0. We therefore choose the path of integration as indicated
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3  Extensions of the inversion formula

Figure 21: The path of integration in Example 3.1.6.

on Figure 21. Then

0 =
1

2πi

∮

Cr,ε

Log

(

1 +
1

z2

)

ezt dz =
1

2πi

∫ 1+i
√

r2−1

1−i
√

r2−1

Log

(

1 +
1

z2

)

ezt dz

+
1

2πi

∫ 2π−Arccos 1
r

Arccos 1
r

Log

(

1 +
1

r2 e2iΘ

)

exp
(

tr eiΘ
)

· i r eiΘ dΘ

+
1

2πi

∫ −π
2

3π
2

Log

(

1 +
1

(i + ε eiΘ)
2

)

exp
(

t
(

i + ε eiΘ
))

i ε eiΘ dΘ

+
1

2πi

∫ − 3π
2

π
2

Log

(

1 +
1

(−i + ε eiΘ)
2

)

exp
(

t
(

−i + ε eiΘ
))

i ε eiΘ dΘ

+
1

2πi

∫ − 3π
2

−π
2

Log

(

1 +
1

ε2 e2iΘ

)

exp
(

tε eiΘ
)

· i ε eiΘ dΘ

+
1

2πi

∫ −π
2

π
2

Log

(

1 +
1

ε2 e2iΘ

)

exp
(

tε eiΘ
)

· i ε eiΘ dΘ

+
1

2πi

∫ 1−ε

ε

{

ln

∣

∣

∣

∣

1 − 1

y2

∣

∣

∣

∣

+ iπ

}

eity i dy − 1

2πi

∫ 1−ε

ε

{

ln

∣

∣

∣

∣

1 − 1

y2

∣

∣

∣

∣

− iπ

}

eity i dy

+
1

2πi

∫ −ε

−1−ε

{∣

∣

∣

∣

1 − 1

y2

∣

∣

∣

∣

− iπ

}

eity i dy − 1

2πi

∫ −ε

−1−ε

{

ln

∣

∣

∣

∣

1 − 1

y2

∣

∣

∣

∣

+ iπ

}

eity i dy.

The first term tends towards f(t) for r → +∞.

The next term tends towards 0 for r → +∞, because we have the estimate
∣

∣

∣

∣

1

2πi
Log

(

1 +
1

r2 e2iΘ

)

exp
(

tr eiΘ
)

i r eiΘ

∣

∣

∣

∣

≤ 1

2π
· C

r2
et·r cosΘ · r,
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3  Extensions of the inversion formula

because r · Θ ≤ 1 for Θ ∈
[

Arccos
1

r
, 2π − Arccos

1

r

]

.

The next four terms tend towards 0 for ε → 0+, because ε ln ε → 0, when ε → 0+.

The last four terms are reduced to

i

∫ 1−ε

ε

eity dy − i

∫ −ε

−1−ε

eity dy =
1

t

[

eity
]1−ε

ε
− 1

t

[

eity
]−ε

−1−ε

→ 1

t

{

eit − 1 − 1 + e−it
}

= −2

t
(1 − cos t) for ε → 0 + .

Finally, taking the limits followed by a rearrangement,

L−1

{

Log

(

1 +
1

z2

)}

(t) =
2

t
(1 − cos t).
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3  Extensions of the inversion formula

Second method Write for short, f(t) = L−1

{

Log

(

1 +
1

z2

)}

(t). Then

L{t f(t)}(z) = − d

dz
Log

(

z2 + 1

z2

)

=
d

dz
Log

(

z2

z2 + 1

)

=
2

z
− 2z

z2 + 1
,

thus

t f(t) = 2 − 2 cos t = 2(1 − cos t),

and hence

f(t) = 2 · 1 − cos t

t
.

Third method By a Laurent series expansion,

Log

(

1 +
1

z2

)

=

+∞
∑

n=0

(−1)n

n + 1
· 1

z2n+1+1
= 2

+∞
∑

n=0

(−1)n

(2n + 1)(2n + 1)!
· (2n + 1)!

z2n+1+1

= 2

+∞
∑

n=0

(−1)n

(2n + 2)!
L

{

t2n+1
}

(z),

hence

L−1

{

Log

(

1 +
1

z2

)}

(t) = 2
+∞
∑

n=0

(−1)n

(2n + 2)!
t2n+1 = −2

t

+∞
∑

n=1

(−1)n

(2n)!
t2n

=
2

t
(1 − cos t). ♦
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3  Extensions of the inversion formula

3.2 The inversion formula for functions with infinitely many singularities

Example 3.2.1 Find the inverse Laplace transform of
1

z (ez + 1)
.

Figure 22: The path of integration in Example 3.2.1.

Clearly,

∣

∣

∣

∣

1

z (ez + 1)

∣

∣

∣

∣

≤ C

|z| for � z > 1, where C =
1

e − 1
.

Choose rn = 2nπ, n ∈ N, and let Cn denote the curve on Figure 22. The singularities inside Cn are

z0 = 0 and zp = i(2p + 1)π, p = −n, . . . , n − 1,

thus

1

2πi

∮

Cn

ezt

z (ez + 1)
dz = res

(

ezt

z (ez + 1)
; 0

)

+

n−1
∑

p=−n

res

(

ezt

z (ez + 1)
; zp

)

=
1

2
+

n−1
∑

p=−n

ezpt

zp ezp

=
1

2
+

n−1
∑

p=−n

e(2p+1)iπt

i(2p + 1)π · (−1)
=

1

2
− 2

π

n−1
∑

p=0

1

2p + 1
sin(2p + 1)πt.

On the other hand,

1

2πi

∮

Cn

ezt

z (ez + 1)
dz =

1

2πi

∫ 1+i
√

r2
n−1

1−i
√

r2
n−1

ezt

z (ez + 1)
dz +

1

2πi

∫ 2π−Θn

Θn

exp
(

rn eiΘt
)

rn i eiΘ

rn eiΘ (1 + exp (rneiΘ))
dΘ.
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3  Extensions of the inversion formula

It follows from Θn = Arccos
1

rn
that

∣

∣

∣

∣

∣

1

2πi

∫ 2π−Θn

Θn

exp
(

rn eiΘt
)

rn i eiΘ

rn eiΘ (1 + exp (rn eiΘ))
dΘ

∣

∣

∣

∣

∣

≤ 1

2π
· 2

∫ π

Θn

ern t cos Θ

|1 + exp (rn eiΘ)| dΘ

≤ 1

π
· C

∫ Arccos(− ln rn
t rn

)

Arccos( 1
rn

)
et dΘ +

1

π
· C

∫ π

π
2

e− ln rn dΘ

=
C

π

(

et

{

Arccos

(

− ln rn

t rn

)

− Arccos

(

1

rn

)}

+
π

2
· 1

rn

)

→ 0 for n → +∞,

thus it follows by taking the limit n → +∞ that

L−1

{

1

z (ez + 1)

}

= lim
n→+∞

1

2πi

∮

Cn

ezt

z (ez + 1)
dz

=
1

2
− 2

π

+∞
∑

p=0

1

2p + 1
sin(2p + 1)πt.

Remark 3.2.1 With some knowledge of known Fourier series this expression can be reduced to

L−1

{

1

z (ez + 1)

}

=
1

2

{

1 + (−1)n+1
}

for t ∈ ]n, n + 1[, where n ∈ N0. ♦
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Example 3.2.2 Prove that the inverse Laplace transform of
1

z cosh z
can be expressed as a Fourier

series, and then find this Fourier series.

Figure 23: The path of integration in Example 3.2.2.

First find the singularities of
1

z cosh z
. These are the poles

z = 0 and z = i

(

1

2
+ n

)

π, for n ∈ Z.

We choose rn = nπ, n ∈ N, and then the path of integration in Figure 23. Then

1

2πi

∮

Cn

ezt

z cosh z
dz =

1

2πi

∫ 1+i
√

r2
n−1

1−i
√

r2
n−1

ezt

z cosh z
dz +

1

2πi

∫ 2π−Arccos( 1
nπ )

Arccos( 1
nπ )

exp
(

rn eiΘ t
)

i rn eiΘ

rn eiΘ cosh (rn eiΘ)
dΘ.

The former term on the right hand side converges towards

f(t) = L−1

{

1

z cosh z

}

(t) for n → +∞,

because
∣

∣

∣

∣

1

z cosh z

∣

∣

∣

∣

≤ C

|z| for � z ≥ 1.
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The latter term on the right hand side is estimated in the following way,
∣

∣

∣

∣

∣

1

2πi

∫ 2π−Arccos( 1
nπ )

Arccos( 1
nπ )

exp
(

nπ eiΘt
)

inπeiΘ

nπeiΘ cosh (nπeiΘ)
dΘ

∣

∣

∣

∣

∣

≤ C

2π
· 2

∫ π

Arccos( 1
nπ )

etnπ cosΘ dΘ

=
C

π

{

∫ Arccos(− ln n
tnπ )

Arccos( 1
nπ )

+

∫ π

Arccos(− ln n
tnπ )

etnπ cosΘ dΘ

}

≤ C

π
et

{

Arccos

(

− lnn

tnπ

)

− Arccos

(

1

nπ

)}

+
C

π

∫ π

π
2

exp

(

t nπ · (− ln n)

tnπ

)

dΘ

→ 0 + 0 = 0 for n → +∞.

Hence, by taking the limit,

f(t) = L−1

{

1

z cosh z

}

(t) = lim
n→+∞

1

2πi

∮

Cn

ezt

z cosh z
dz

= res

(

ezt

z cosh z
; 0

)

+ lim
n→+∞

n
∑

p=−n

res

(

ezt

z cosh z
; i

(

n +
1

2

)

π

)

= 1 +

+∞
∑

n=−∞

[

ezt

z sinh z

]

z=i(n+ 1
2 )π

= 1 +

+∞
∑

n=−∞

exp

(

i

(

n +
1

2

)

πt

)

i

(

n +
1

2

)

π · sinh

(

i

(

n +
1

2

)

π

)

= 1 +
4

π

+∞
∑

n=−∞

exp

(

i

(

n +
1

2

)

πt

)

2i(2n + 1) · i sin

((

n +
1

2

)

π

)

= 1 − 4

π

+∞
∑

n=0

1

2

{

ei(n+ 1
2 )πt (−1)n

2n + 1
+

ei(−n−1+ 1
2 )πt (−1)n+1

2(−n− 1) + 1

}

= 1 − 4

π

+∞
∑

n=0

(−1)n

2n + 1
cos

((

n +
1

2

)

πt

)

.

Remark 3.2.2 It can be proved by using the Theory of Fourier series that

f(t) = L−1

{

1

z cosh z

}

(t) = 1 + (−1)n+1 for t ∈ ]2n − 1, 2n + 1[, n ∈ N0. ♦
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Example 3.2.3 Find the inverse Laplace transform of
1

z2 sinh z
.

The singularities of the function
1

z2 sinh z
are

z = i n π, n ∈ Z,

where z = 0 for n = 0 is a triple pole, and all the other singularities are simple poles. We shall first
compute the residua at these poles. We first get for n = 0,

res

(

ezt

z2 sinh z
; 0

)

=
1

2!
lim
z→0

d2

dz2

{

z ezt

sinh z

}

=
1

2
lim
z→0

d

dz

{

t · z ezt

sinh z
+

sinh z − z cosh z

sinh2 z
ezt

}

=
1

2
lim
z→0

{

t2 · z ezt

sinh z
+ 2t · sinh z − z cosh z

sinh2 z
· ezt

+
(cosh z−cosh z−z sinh z) sinh2 z−2 sinh z cosh z(sinh z−z cosh z)

sinh4 z
ezt

}

=
1

2
t2 lim

z→0

z

sinh z
+ t · lim

z→0

sinh z − z cosh z

sinh2 z
+

1

2
lim
z→0

−z sinh2 z − 2 sinh z · cosh z + 2z cosh2 z

sinh3 z

=
1

2
t2 + t lim

z→0

cosh z − cosh z − z sinh z

2 sinh z cosh z

+
1

2
lim
z→0

−sinh2 z−2z sinh z cosh z−2 cosh2 z− 12 sinh2 z+2 cosh2+4z sinh z cosh z

3 sinh2 z cosh z

=
1

2
t2 + 0 +

1

2
lim
z→0

−3 sinh z + 2z cosh z

3 sinh z cosh z
=

1

2
t2 +

1

2

{−3

3
+

2

3

}

=
1

2
t2 − 1

6
.

The computation is simpler for n �= 0,

res

(

ezt

z2 sinh z
; inπ

)

= lim
z→inπ

ezt

z2 cosh z
=

einπt

−n2π2 cosh(inπ)
= − (−1)n

n2π2
einπt.

Hence, by still an unjustified application of the residuum formula we get the following bet of the
inverse Laplace transform,

L−1

{

1

z2 sinh z

}

(t) “ = ”
1

2
t2 − 1

6
− 1

π2

+∞
∑

n=1

(−1)n

n2

{

einπt + e−inπt
}

=
1

2
t2 − 1

6
− 2

π2

+∞
∑

n=1

(−1)n

n2
cosnπt.(9)

We shall now prove that (9) is indeed correct. Choose the path of integration as indicated on Figure 24,

where rn =

(

n +
1

2

)

π. Then

1

2πi

∮

Cn

ezt

z2 sinh z
dz =

1

2
2πi

∫ 1+i
√

r2
n−1

1−i
√

r2
n−1

ezt

z2 sinh z
dz0

1

2πi

∫ 2π−Arccos( 1
rn

)

Arccos( 1
rn

)

exp
(

rn eiΘt
)

i rn eiΘ

r2
n e2iΘ sinh (rn eiΘ)

dΘ.
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Figure 24: The path of integration in Example 3.2.3.

The left hand side of this equation converges for n → +∞ towards the sum of the right hand side of
(9).

The former term on the right hand side converges towards L−1

{

1

z2 sinh z

}

(t), and the latter term

on the right hand side tends towards 0 for n → +∞, because we have the estimate
∣

∣

∣

∣

∣

1

2πi

∫ 2π−Arccos( 1
rn

)

Arccos( 1
rn

)

exp
(

rn eiΘt
)

i rn eiΘ

r2
n e2iΘ sinh (rn eiΘ)

dΘ

∣

∣

∣

∣

∣

≤ 1

π

∫ π

0

et

rn · C dΘ =
et

C rn
→ 0

for every fixed t and n → +∞. Hence, we have proved that (9) is indeed the inverse Laplace transform

of
1

z2 sinh z
.

Remark 3.2.3 It is possible to show that (9) represents a piecewise linear function. However, since
this analysis is fairly difficult, it shall not be given here. ♦

Example 3.2.4 Find the inverse Laplace transform of the function
1

z2 (1 − e−z)
.

First notice that
∣

∣

∣

∣

1

z2 (1 − e−z)

∣

∣

∣

∣

≤ C

|z|2 for � z ≥ 1,

so the inverse Laplace transform does exist, and it is given by the Bromwich integral

L−1

{

1

z2 (1 − e−z)

}

(t) =
1

2πi

∫ 1+i∞

1−i∞

ezt

z2 (1 − e−z)
dz.

The function has a triple pole for z = 0 and simple poles for z = 2ipπ, p ∈ Z \ {0}.
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We shall first compute the residua. We get for the simple poles, where p �= 0,

res

(

ezt

z2 (1 − e−z)
; 2ipπ

)

=

[

ezt

z2 e−z

]

z=2ipπ

= − 1

4p2π2
e2ipπt,

and for the triple pole, where p = 0,

res

(

ezt

z2 (1 − e−z)
; 0

)

=
1

2!
lim
z→0

d2

dz2

{

z

1 − e−z
ezt

}

.

We expand the factor
z

1 − e−z
for small z in the following way,

z

1 − e−z
=

z

1−
{

1−z+ z2

2 − z3

6 +z4 g1(z)
} =

1

1− z2

2 + z2

6 −z3 g1(z)

= 1+

{

z

2
− z2

6
+z3 g1(z)

}

+

{

z

2
− z2

6
+z3 g1(z)

}2

+z3 · g2(z)

= 1 +
z

2
− z2

6
+

z2

4
+ z3 g3(z) = 1 +

z

2
+

z2

12
+ z3 g3(z),
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hence, by insertion,

res

(

ezt

z2 (1 − e−z)
; 0

)

=
1

2
lim
z→0

d2

dz2

{(

1 +
z

2
+

z2

12
+ z3 g3(z)

)

ezt

}

=
1

2
lim
z→0

d

dz

{

t

(

1 +
z

2
+

z2

12
+ z3 g3(z)

)

ezt +

(

1

2
+

z

6
+ z2 g4(z)

)

ezt

}

=
1

2
lim
z→0

{

t2 (1 + z · g5(z)) ezt + 2t

(

1

2
+ z g6(z)

)

ezt +

(

1

6
+ z g7(z)

)

ezt

}

=
1

2
t2 +

1

2
t +

1

12
.

If therefore the residuum formula holds, the

(10) L−1

{

1

z2 (1 − e−z)

}

(t) =
1

2
t2 +

1

2
t +

1

2
− 1

2π2

+∞
∑

p=1

1

p2
cos(2ππt).

Figure 25: The path of integration in Example 3.2.4.

We shall now prove (10). We choose the well-known path of integration as indicated on Figure 25,
where rn = (2n + 1)π. Then,

1

2πi

∮

Cn

ezt

z2 (1 − e−z)
dz =

1

2πi

∫ 1+i
√

r2
n−1

1−i
√

r2
n−1

ezt

z2 (1 − e−z)
dz

+
1

2πi

∫ 2π−Arccos( 1
rn

)

Arccos( 1
rn

)

exp
(

t rn eiΘ
)

i rn eiΘ

r2
n e2iΘ {1 − exp (−rn eiΘ)} dΘ,

where the former integral on the right hand side tends towards 0 for n → +∞, because we have the
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estimate
∣

∣

∣

∣

∣

1

2πi

∫ 2π−Arccos( 1
rn

)

Arccos( 1
rn

)

exp
(

t rn eiΘ
)

i rn eiΘ

r2
n e2iΘ {1 − exp (−rn eiΘ)} dΘ

∣

∣

∣

∣

∣

≤ 1

2π
· 2

∫ π

Arccos( 1
rn

)

exp (t rn cosΘ)

rn |1 − exp (−(2n + 1)π eiΘ)| dΘ

≤ 1

π
· C · 1

rn
· et · π =

C et

rn
→ 0 for fixed t and n → +∞,

because exp
(

−(2n + 1)π eiΘ
)

= 1, if and only if −(2n + 1)π eiΘ = 2pπ, thus eiΘ =
2p

2n + 1
, which

can never be fulfilled, because
∣

∣eiΘ
∣

∣ = 1, while

∣

∣

∣

∣

2p

2n + 1

∣

∣

∣

∣

�= 1 for all n and p ∈ Z. The function

∣

∣1 − exp
(

−(/2n + 1)π eiΘ
)∣

∣ is continuous in Θ ∈ [0, 2π], so it has a minimum
1

C
> 0, and the claim

follows.

Summing up we have proved that (10) holds,

L−1

{

1

z2 (1 − e−z)

}

(t) =
1

2
t2 +

1

2
t +

1

2
− 1

2π2

+∞
∑

p=1

1

p2
cos(2ππt). ♦

Example 3.2.5 Given 0 < λ < a. Find the inverse Laplace transform of the function
sinh(λz)

z2 cosh(az)
.

It follows from the estimate
∣

∣

∣

∣

sinh(λz)

z2 cosh(az)

∣

∣

∣

∣

=
1

|z|2 ·
∣

∣eλz − e−λz
∣

∣

|eaz + e−az| ≤ 1

|z|2 · 2eλ� z

1
2 ea� z

≤ 1

|z|2

for � z > k, that the necessary and sufficient condition for the existence of the inverse Laplace
transform is satisfied.

Then cosh(az) = 0 for az = i
(π

2
+ pπ

)

, thus for z =
i

a

(π

2
+ pπ

)

. In particular,

res

(

sinh(λz)

z2 cosh(az)
;
i

a

(π

2
+ pπ

)

)

=

[

sinh(λz)

az2 sinh(az)

]

z= i
a ( π

2 +pπ)

=
sinh

(

i · λ
a

(

π
2 + pπ

))

a
(

− 1
a2

{

π
2 + pπ

}2
)

sinh
(

i
{

π
2 + pπ

})

=
sin

(

λ
a

{

π
2 + pπ

})

−π2

4a (2p + 1)2 · (−1)p

=
4a(−1)p+1

π2(2p + 1)2
sin

(

λ

a
(2p + a)

π

2

)

,

and

res

(

sinh(λz)

z2 cosh(az)
; 0

)

= lim
z→0

sinh λz

z
· 1

cosh(az)
=

λ

1
= λ,
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Figure 26: The path of integration in Example 3.2.5.

Choose the path of integration Γn as given on Figure 26. Then

1

2πi

∮

Γn

sinh(λz)

z2 cosh(az)
dz = λ +

n−1
∑

p=−n

4a(−1)p+1

π2(2p + a)2
sin

(

λ

a
(2p + 1)

π

2

)

= λ +
8a

π2

n−1
∑

p=0

(−1)p+1

(2p + 1)2
sin

(

λ

a
(2p + 1)

π

2

)

.

On the other hand,

1

2πi

∮

Γn

sinh(λz)

z2 cosh(az)
dz =

1

2πi

∫ 1+i nπ
a

1−i nπ
a

sinh(λz)

z2 cosh(az)
dz

− 1

2πi

∫ 1

−nπ
a

sinh
(

λ
{

x + i nπ
a

})

(

x + i nπ
a

)2
cosh

(

a
{

z + i nπ
a

})

dx − 1

2πi

∫ nπ
a

−nπ
a

sinh
(

−nπ
a + it

)

λ
(

−nπ
a + i t

)2
cosh

(

−nπ
a + i t

)

a
i dt

+
1

2πi

∫ 1

−nπ
a

sinh
(

λ
{

x − i nπ
a

})

(

x − i nπ
a

)2
cosh

(

a
{

x − i nπ
a

})

dx.

The first term on the right hand side tends according to the inversion theorem towards

L−1

{

sinh(λz)

z2 cosh(az)

}

(t).

The second term is estimated in the following way,
∣

∣

∣

∣

∣

sinh
(

λ
{

x + i nπ
a

})

cosh
(

a
{

x + i nπ
a

})

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

sinh(λx) cos
(

λ
a nπ

)

+i cosh(λx) sin
(

λ
a nπ

)

cosh(ax) cos(nπ) + 0

∣

∣

∣

∣

∣

≤ | sinh(λx)| + cosh(λx)

cosh(ax)
≤ 2 · eλ|x|

ea|x| = 2 e−(a−λ)|x| < 1,
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and we conclude that
∣

∣

∣

∣

∣

− 1

2πi

∫ 1

−nπ
a

sinh
(

λ
{

x + i nπ
a

})

(

x + i nπ
a

)2
cosh

(

a
{

x + i nπ
a

})

dx

∣

∣

∣

∣

∣

≤ 2

2π
· 1 + nπ

a
(

nπ
a

)2 → 0 for n → +∞.

The estimate of the fourth term is analogous.

Concerning the third term we get

∣

∣

∣

∣

∣

sinh
(

λ
{

−nπ
a + i t

})

cosh
(

a
{

−nπ
a + i t

})

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

sinh
(

−λ
a nπ

)

cosλt + i cosh
(

−λ
a nπ

)

sin λt

cosh(nπ) cos(at) − i sinh(nπ) sin(at)

∣

∣

∣

∣

∣

2

=
sinh2

(

λ
a nπ

)

cos2 λt + cosh2
(

λ
a nπ

)

sin2 λt

cosh2(nπ) cos2(at) + sinh2(nπ) sin2(at)
=

cosh2
(

λ
a nπ

)

− cos2 λt

cosh2(nπ) − sin2(at)

≤ cosh2
(

λ
a nπ

)

cosh2(nπ) − 1
≤ C2,

and we obtain the estimate
∣

∣

∣

∣

∣

− 1

2πi

∫ nπ
a

−nπ
a

sinh
({

−nπ
a + it

}

λ
)

(

−nπ
a + it

)2
cosh

(

−nπ
a + it

)

a
i dt

∣

∣

∣

∣

∣

≤ 1

2π
·C · 2 · nπ

a
(

nπ
a

)2 =
Ca2

2π2
· 1

n
→ 0 for n → +∞.

Summing up, we get for n → +∞,

L−1

{

sinh(λz)

z2 cosh(az)

}

(t) = λ +
8a

π2

+∞
∑

n=0

(−1)n+1

(2n + 1)2
sin

(

λ

a
(2n + 1)

π

2

)

. ♦
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Example 3.2.6 Given 0 < λ < a. Find the inverse Laplace transform of
cosh (λ

√
z)

z · cosh (a
√

z)
.

First notice by using series expansions that the function in spite of the occurrence of the square root
is analytic without branch cuts and a simple pole at z = 0 and either simple poles of removable

singularities for a
√

z = i
(π

2
+ pπ

)

, p ∈ Z, thus for

z = 0 and z = − π2

4a2
(2n + 1)2, n ∈ N0,

Furthermore, it is not too hard to prove that

∣

∣

∣

∣

cosh (λ
√

z)

z · cosh (a
√

z)

∣

∣

∣

∣

≤ C

|z| for � z > k.

First we compute the residua,

res

(

cosh(λ
√

z)

z · cosh(a
√

z)
· ezt; 0

)

= 1,

and

res

(

cosh (λ
√

z)

z · cosh (a
√

z)
· ezt;− π2

4a2
(2n + 1)2

)

= lim
z→− π2

4a2 (2n+1)2

cosh (λ
√

z) · ezt

z · sinh (a
√

z) · a · 1
2
√

z

=
2

a
· cosh

(

iλ · π
2a (2n + 1)

)

i · π
2a (2n + 1) sinh

(

π
2 (2n + 1)

) · exp

(

− π2

4a2
(2n + 1)2 t

)

=
4

π
· 1

2n + 1
· cos

(

λπ
2a (2n + 1)

)

i · i · sin
(

π
2 + nπ

) · exp

(

− π2

4a2
(2n + 1)2 t

)

=
4

π
· (−1)n+1

2n + 1
· cos

(

λ

a
· π

2
(2n + 1)

)

· exp

(

− π2

4a2
(2n + 1)2 t

)

.

We choose the path of integration as given on Figure 27, where rn =
π2

a2
· n2. Then, by Cauchy’s

residuum theorem

1

2πi

∮

Cn

cosh (λ
√

z)

z · cosh (a
√

z)
ezt dt = 1+

4

π

∑

k = 0n−1 (−1)k+1

2k + 1
cos

(

λ

a
· < pio

2
(2k + 1)

)

exp

(

− π2

4a2
(2k + 1)2 t

)

.

On the other hand, this expression is also equal to

1

2πi

∫ 1+i
√

r2
n−1

1−i
√

r2
n−1

cosh (λ
√

z)

z · cosh (a
√

z)
·ezt dz+

1

2πi

∫ 2π−Arccos( 1
rn

)

Arccos( 1
rn

)

cosh
(

λπ
a n ei Θ/2

)

exp
(

t π2

a2 n2 eiΘ
)

π2

a2 n2 eiΘ cosh
(

π n eiΘ/2
) ·i π2

a2
n2 eiΘ dΘ.

The former integral converges towards the wanted L−1

{

cosh (λ
√

z)

z · cosh (a
√

z)

}

(t).
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3  Extensions of the inversion formula

Figure 27: The path of integration in Example 3.2.6.

The latter integral is estimated in the following way,
∣

∣

∣

∣

∣

∣

1

2πi

∫ 2π−Arccos( 1
rn

)

Arccos( 1
rn

)

cosh
(

λπ
a n ei Θ/2

)

exp
(

t π2

a2 n2 eiΘ
)

π2

a2 n2 eiΘ cosh
(

π n eiΘ/2
) · i π2

a2
n2 eiΘ dΘ

∣

∣

∣

∣

∣

∣

≤ 1

2π
· 2

∫ π

Arccos( 1
rn

)

∣

∣

∣

∣

∣

cosh
(

λπ
a · n · cos Θ

2 + i λπ
a sin Θ

2

)

cosh
(

πn cos Θ
2 + iπn sin Θ

2

)

∣

∣

∣

∣

∣

exp

(

t · π2

a2
n2 eiΘ

)

dΘ.

Using that

| cosh(x + iy)|2 = cosh2 x − sin2 y = sinh2 x + cos2 y,

we get

∣

∣

∣

∣

∣

cosh
(

λπ
a · n · cos Θ

2 + i λπ
a sin Θ

2

)

cosh
(

πn cos Θ
2 + iπn sin Θ

2

)

∣

∣

∣

∣

∣

2

≤ cosh2
(

λπ
a n cos Θ

2

)

sinh2
(

πn cos Θ
2

)

+ cos2
(

πn sin Θ
2

) .

The integral is estimated in the interval

[

Arccos

(

1

rn

)

, Arccos

(

− ln rn

rn

)]

in the following way,

∣

∣

∣

∣

∣

cosh
(

λπ
a · n · cos Θ

2 + i λπ
a sin Θ

2

)

cosh
(

πn cos Θ
2 + iπn sin Θ

2

)

∣

∣

∣

∣

∣

· exp

(

t · π2

a2
n2 cosΘ

)

≤
cosh

(

λ
a · πn · cos

(

1
2 Arccos

(

1
rn

)))

sinh
(

πn cos
(

1
2 Arccos

(

− ln rn

rn

))) · et → 0 for n → +∞,

because 0 <
λ

a
< 1 and

cos

(

1

2
Arccos

1

rn

)

→ cos
π

4
=

√
2

2
and cos

(

1

2
Arccos

(

− ln rn

rn

))

→
√

2

2
for n → +∞.
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3  Extensions of the inversion formula

In the interval

[

Arccos

(

− ln rn

rn

)

, π

]

we estimate the integrand in the following way,

∣

∣

∣

∣

∣

cosh
(

λπ
a · n · cos Θ

2 + i λπ
a sin Θ

2

)

cosh
(

πn cos Θ
2 + iπn sin Θ

2

)

∣

∣

∣

∣

∣

· exp

(

t · π2

a2
n2 cosΘ

)

≤ C · exp(−t · ln rn) → 0 for n → +∞.

Summing up, the latter integral tends towards 0 for n → +∞, thus

L−1

{

cosh (λ
√

z)

z cosh (a
√

z)

}

(t) = 1 +
4

π

+∞
∑

n=0

(−1)n+1

2n + 1
cos

(

λ

a
· π

2
(2n+1)

)

· exp

(

− π2

4a2
(2n+1)2 t

)

. ♦

Example 3.2.7 Given 0 < λ < a. Find the inverse Laplace transform of the function
cosh(λz)

z3 cosh(az)
.

We clearly have the estimate
∣

∣

∣

∣

cosh(λz)

z3 cosh(az)

∣

∣

∣

∣

≤ C

|z|3 for |� z| ≥ k,

so the inverse Laplace transform exists.

We have a triple pole at z = 0 and simple poles at z =
i

a

{π

2
+ pπ

}

, p ∈ Z. The corresponding residua
are

res

(

cosh(λz)

z3 cosh(az)
· ezt; 0

)

=
1

2!
lim
z→0

d2

dz2

{

cosh(λz)

cosh(az)
· ezt

}

=
1

2
lim
z→0

d

dz

{

t · cosh(λz)

cosh(az)
· ezt + λ

sinh(λz)

cosh(az)
ezt − a · cosh(λz) sinh(az)

cosh2(az)
ezt

}

=
1

2

[

t2 · cosh(λz)

cosh(az)
· ezt + 2t

{

λ
sinh(λz)

cosh(az)
− a

cosh(λz) sinh(az)

cosh2(az)

}

ezt

+λ2 cosh(λz)

cosh(az)
ezt + sinh(λz) · {· · · } − a2 · cosh(λz)

cosh(az)
· ezt + sinh(az) · {· · · }

]

z=0

=
1

2

(

t2 + λ2 − a2
)

,

and

res

(

cosh(λz)

z3 cosh(az)
· ezt;

i

a
·
{π

2
+ pπ

}

)

= lim
z→ i

a (π
a
+pπ)

cosh(λz) · ezt

z3 · a · sinh(az)

=
cosh

(

i λ
a

{

π
2 + pπ

})

exp
(

i
a

{

π
2 + pπ

}

t
)

− i
a3

{

π
2 + π

}3 · a sinh
(

i
{

π
2 + pπ

})

=
8a2(−1)p

π3(2p + a)3
· cos

(

λ

a
· π

2
(2p + 1)

)

exp

(

i

a
· π

2
(2p + 1)t

)

.
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3  Extensions of the inversion formula

When we pair the residua at conjugated poles, ± i

a

{π

2
+ pπ

}

, we get the sum for each of these pairs,

16a2(−1)p

π3(2p + 1)3
cos

(

λ

a
· π

2
(2p + 1)

)

cos
( π

2a
(2p + 1)t

)

.

Figure 28: The path of integration in Example 3.2.7.
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3  Extensions of the inversion formula

Choose rn =
nπ

a
and the usual path of integration as indicated on Figure 28. Then we get by Cauchy’s

residuum theorem

1

2πi

∮

Cn

cosh(λz)ezt

z3 cosh(az)
dz =

1

2

(

t2+λ2− 1a2
)

+

n−1
∑

p=0

16a2(−1)p

π3(2p + 1)3
cos

( π

2a
(2p+1)λ

)

cos
( π

2a
(2p+1)t

)

.

On the other hand, also

1

2πi

∮

Cn

cosh(λz)ezt

z3 cosh(az)
dz

=
1

2πi

∫ 1+i
√

r2
n−1

1−i
√

r2
n−1

cosh(λz)ezt

z3 cosh(az)
dz +

1

2πi

∫ 2π−Arccos 1
rn

Arccos 1
rn

cosh
(

λrn eiΘ
)

exp
(

rn eiΘt
)

i rneiΘ

r3
n e3iΘ cosh(a rn eiΘ)

dΘ.

The former integral on the right hand side of this equation converges towards

L−1

{

cosh(λz)

z3 cosh(az)

}

(t) for n → +∞.

The latter integral is estimated in the following way,
∣

∣

∣

∣

∣

1

2πi

∫ 2π−Arccos 1
rn

Arccos 1
rn

cosh
(

λrn eiΘ
)

exp
(

rn eiΘt
)

i rneiΘ

r3
n e3iΘ cosh(a rn eiΘ)

dΘ

∣

∣

∣

∣

∣

≤ 1

2π
· 2

∫ π

0

1

r2
n

· 1 · et dΘ =
1

r2
n

· et → 0 for n → +∞.

Summing up, we get by taking this limit,

L−1

{

cosh(λz)

z3 cosh(az)

}

(t)=
1

2

(

t2+λ2−a2
)

+
16a2

π3

+∞
∑

n=0

(−1)n

(2n+1)3
cos

( π

2a
(2n+1)λ

)

cos
( π

2a
(2n+1)t

)

. ♦

Example 3.2.8 Consider the circuit on Figure 29, where the generator is specified by

E(t) = (−1)n E0 for t ∈ [n1, (n + 1)a[, n ∈ N0.

We assume that the current I(0) is zero for t = 0. Find the current I(t) at any later time t > 0.
Hint. The result does not have a nice description.

We first set up the governing differential equation

(11) L
dI

dt
+ RI = E(t), where I(0) = 0.
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3  Extensions of the inversion formula

Figure 29: The circuit of Example 3.2.8.

Since E(t) is periodic of period 2a, it follows from the rule of periodicity that if � z > 0, then

L{E(t)}(z) =
1

1 − e−2az

∫ 2a

0

e−zt E(t) dt =
E0 e2az

e2az − 1

{∫ a

0

e−zt dt −
∫ 2a

a

e−zt dt

}

=
E0 e2az

e2az − 1

{

[

−1

z
e−zt

]a

0

−
[

−1

z
e−zt

]2a

a

}

=
E0 e2az

e2az − 1
· 1

z

{

−e−az + 1 + e−2az − e−az
}

=
E0

z
· 1 − 2eaz + e2az

e2az − 1
=

E0

z
· (eaz − 1)2

(eaz − 1) (eaz + 1)
=

E0

z
· eaz − 1

eaz + 1

=
E0

z
· exp

(

az
2

)

− exp
(

−az
2

)

exp
(

az
2

)

+ exp
(

−az
2

) =
E0

z
tanh

(az

2

)

,

so it follows by the Laplace transformation of (11) that

L · z · L{I(t)}(z) + R · L{I(t)}(z) =
E0

2
· tanh

(az

2

)

,

thus,

L{I(t)}(z) =
1

Lz + R
· E0

z
tanh

(az

2

)

=
E0

L
· tanh

(

az
2

)

z
(

z + R
L

) .

Then use that

| sinh z|2 = cosh2 x − cos2 y, and | cosh z|2 = cosh2 x − sin2 y,

to get the estimate

(12)
∣

∣

∣tanh
(az

2

)∣

∣

∣

2

=
cosh2

(

ax
2

)

− cos2
(

ay
2

)

cosh2
(

ax
2

)

− sin2
(

ay
2

) ≤ cosh2
(

ax
2

)

cosh2
(

ax
2

)

− 1
= 1 +

1

cosh2
(

ax
2

)

− 1
.
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3  Extensions of the inversion formula

We conclude that

I(t) =
E0

L
L−1

{

tanh
(

az
2

)

z
(

z + R
L

)

}

(t) =
E0

2πLi

∫ γ+i∞

γ−i∞

ezt tanh
(

az
2

)

z
(

z + R
L

) dz, for t ≥ 0,

for some γ > 0.

The singularities are given by z = 0 and z = −R

L
and cosh

(az

2

)

= 0, thus, z =
(2n + 1)π

a
· i, for

n ∈ Z.

The singularity at z = 0 is removable, because

lim
z→0

ezt tanh
(

az
2

)

z
(

z + R
L

) =
1
R
L

· a

2
=

aL

2R
.

The singularity at z = −R

L
is real and simple, and

res

(

tanh
(

az
2

)

ezt

z
(

z + R
L

)

)

=
tanh

(

−aR
2L

)

−R
L

exp

(

−R

L
t

)

=
L

R
exp

(

−R

L
t

)

tanh

(

aR

2L

)

.

The singularities z =
(2n + 1)πi

a
, n ∈ Z, are all pure imaginary and simple, and we get

res

(

ezt tanh
(

az
2

)

z
(

z + R
L

) ;
(2n+1)πi

a

)

= lim
z→ (2n+1)πi

a

ezt

z
(

z + R
L

) · sinh
(

az
2

)

a
2 sinh

(

az
2

)

=
2

a
·

exp
(

i (2n+1)π
a t

)

(2n+1)πi
a

{

(2n+1)πi
a + R

L

} .

We put for convenience,

ϕn := Arg

(

R

L
+ i

(2n + 1)π

a

)

= Arctan

(

(2n + 1)Lπ

Ra

)

.

Then

res

(

ezt tanh
(

az
2

)

z
(

z + R
L

) ;
(2n+1)πi

a

)

=
2

i
·

exp
(

i
{

(2n+1)π
a t − ϕn

})

(2n + 1)π
√

R2

L2 + (2n+1)2π2

a2

=
2 sin

(

(2n+1)π
a t − ϕn

)

(2n + 1)π
√

R2

L2 + (2n+1)2π2

a2

− i ·
2 cos

(

(2n+1)π
a t − ϕn

)

(2n + 1)π
√

R2

L2 + (2n+1)2π2

a2

.

Notice that ϕ−n = −ϕn−1, so

cos

(

(2{n − 1} + 1)π

a
t − ϕn−1

)

= cos

(

(2{−n} + 1)π

a
t − ϕ−n

)

,

140

Download free eBooks at bookboon.com



The Laplace Transformation II c-12

 
143 

3  Extensions of the inversion formula

hence a change of sign in the denominator implies that

res

(

ezt tanh
(

az
2

)

z
(

z + R
L

) ;
(2n+1)πi

a

)

+ res

(

ezt tanh
(

az
2

)

z
(

z + R
L

) ;− (2n+1)πi

a

)

4 sin
(

(2n+1)π
a t − ϕn

)

(2n + 1)π
√

R2

L2 + (2n+1)2π2

a2

, n ∈ N0.

After a multiplication by
E0

L
it follows that the sum of the residua becomes

(13)
E0

R
exp

(

−R

L
t

)

tanh

(

aR

2L

)

+
4E0

πL

+∞
∑

n=0

sin
(

(2n+1)π
a t − ϕn

)

(2n + 1)
√

R2

L2 + (2n+1)2π2

a2

,

where ϕn = Arctan

(

(2n + 1)Lπ

Ra

)

, n ∈ N0. We notice that the denominator can be estimated by a

polynomial of second degree in n, which implies that the series is convergent.

141

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

 - 
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future 

AxA globAl grAduAte 
progrAm 2015 

axa_ad_grad_prog_170x115.indd   1 19/12/13   16:36

http://s.bookboon.com/AXA


The Laplace Transformation II c-12

 
144 

3  Extensions of the inversion formula

Figure 30: The path of integration in Example 3.2.8.

We shall still prove that I(t) is given by (13). Choose the path of integration Cn as on Figure 30.
Then

(14) lim
n→+∞

1

2πi

∮

Cn

ezt tanh
(

az
2

)

z
(

z + R
L

) dz

is equal to (13). Let x = −2nπ

a
. Then we get for

2nπ

a
>

R

L
the estimate, cf. (12),

∣

∣

∣

∣

∣

1

2πi

∮

Cn

ezt tanh
(

az
2

)

z
(

z + R
L

) dz

∣

∣

∣

∣

∣

≤ 1

2π
· cosh2

(

a
a

{

− 2nπ
a

})

cosh2
(

a
2

{

− 2nπ
a

})

− 1
· 2 · 2nπ

2 exp
(

− 2πn
a t

)

2nπ
a

{

2nπ
a − R

L

} ,

which clearly tends towards 0 for n → +∞.

If y = ±2nπ

a
i, then it follows from (12) that

∣

∣

∣
tanh

(az

2

)∣

∣

∣

2

=
cosh2

(

ax
2

)

− cos2(nπ)

cosh2
(

ax
2

)

− sin2(nπ)
≤ 1.

Since x ∈
[

− 2nπ
a , γ

]

, we have |ezt| ≤ eγt, so the estimate of the integrals along the horizontal segments
becomes

∣

∣

∣

∣

∣

1

2πi

∫

y=± 2nπ
a

i

ezt tanh
(

az
2

)

z
(

z + R
L

) dz

∣

∣

∣

∣

∣

≤ 1

2π
· eγt · 1 · 1

2nπ
a

· 1
2nπ

a

·
(

2nπ

a
+ γ

)

.
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3  Extensions of the inversion formula

In this analysis γ and t are fixed numbers, so we conclude that the line integrals along the three
auxiliary line segments of Cn tend towards 0 for n → +∞, hence

I(t) =
1

2πi

∫ γ+i∞

γ−i∞

ezt tanh
(

az
2

)

z
(

z + R
L

) dz = lim
n→+∞

1

2πi

∮

Cn

ezt tanh
(

az
2

)

z
(

z + R
L

) dz

=
E0

R
exp

(

−R

L
t

)

tanh

(

aR

2L

)

+
4E0

πL

+∞
∑

n=0

sin
(

(2n+1)π
a t − ϕn

)

(2n + 1)
√

R2

L2 + (2n+1)2π2

a2

,

where we have put ϕn = Arctan

(

(2n + 1)Lπ

aR

)

, for n ∈ N0. ♦
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4 Appendices

4.1 Trigonometric formulæ

We repeat the formulæ known from e.g. Ventus, Calculus 1-a, Functions in one Variable. The addition
formulæ for trigonometric functions are

(15) cos(x + y) = cosx · cos y − sin x · sin y,

(16) cos(x − y) = cosx · cos y + sin x · sin y,

(17) sin(x + y) = sinx · cos y + cosx · sin y,

(18) sin(x − y) = sinx · cos y − cosx · sin y.

Remark 4.1.1 One remembers these important rules by noting that cosx is even, and sin x is odd.
Therefore, since cos(x ± y) is even, the reduction must contain cosx · cos y (even times even) and
sinx · sin y (odd times odd). Then we shall only remember the change of sign in front of sinx · sin y.

Analogously, sin(x±y) is odd, so the reduction must contain sin x·cos y (odd times even) and cosx·sin y
(even times odd). Here there is no change of sign. ♦

The antilogarithmic formulæ. These are derived from the addition formulæ above.

sin x · sin y =
1

2
{cos(x − y) − cos(x + y)}, even,

cosx · cos y =
1

2
{cos(x − y) + cos(x + y)}, even,

sin x · cos y =
1

2
{sin(x − y) + sin(x + y)}, odd.

4.2 Integration of trigonometric polynomials

The task is to find the integral

∫

sinm x · cosn xdx, for m, n ∈ N0.

We shall in the following only consider one single term of the the form sinm x · cosn x, where m and
n ∈ N0, of a trigonometric polynomial, because we in general can find the result by linearity.

We define the degree of sinm x · cosn x as the sum m + n.

When we integrate such a single trigonometric product of degree m + n, we first must answer the
following question: Is it of even or odd degree? These two possibilities are then again subdivided
into to subcases, so we have four different variants of method, when we integrate a trigonometric
polynomial.
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1) The degree m + n is odd.

a) m = 2p is even, and n = 2q + 1 is odd.

b) m = 2p + 1 is odd, and n = 2q is odd.

2) The degree m + n is even.

a) m = 2p + 1 and n = 2q + 1 are both odd.

b) m = 2p and n = 2q are both even.

We shall in the following go through the four possibilities.

1a) m = 2p is even and n = 2q + 1 is odd.

Use the substitution u = sin x (corresponding to m = 2p even) and write

cos2q+1 xdx =
(

1 − sin2 x
)q

cosxdx =
(

1 − sin2 x
)q

d sinx,

thus
∫

sin2p x · cos2q+1 xdx =

∫

sin2p x
(

1 − sin2 x
)q

d sin x =

∫

u=sin x

u2p ·
(

1 − u2
)q

du,

and the problem is reduced to an integration of a polynomial, followed by a substitution.

1b) m = 2p + 1 odd and n = 2q even.

Apply the substitution u = cosx (corresponding to n = 2q even) and write

sin2p+1 xdx =
(

1 − cos2 x
)p

cosxdx = −
(

1 − cos2 x
)p

d cosx,

from which
∫

sin2p+1 x · cos2q xdx = −
∫

(

1 − cos2 x
)p · cos2q xd cosx = −

∫

u=cos x

(

1 − u2
)p · u2q du,

and the problem is again reduced to an integration of a polynomial followed by a substitution.

2) When the degree m + n is even, the trick is to use the double angle, using the formulæ

sin2 x =
1

2
(1 − cos 2x), cos2 x =

1

2
(1 + cos 2x), sinx · cosx =

1

2
sin 2x.

2a) m = 2p + 1 and n = 2q + 1 are both odd.

Rewrite the integrand in the following way,

sin2p+1 x · cos2q+1 x =

{

1

2
(1 − cos 2x)

}p {

1

2
(1 + cos 2x)

}q

· 1

2
sin 2x.

This is a reduction to case 1b) above, so by the substitution u = cos 2x we get
∫

sin2p+1 x · cos2q+1 xdx = − 1

2p+q+1
· 1

2

∫

u=cos 2x

(1 − u)p(1 + u)q du,

and the problem is again reduced to an integration of a polynomial followed by a substitution.
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2b) m = 2p and n = 2q are both even.

This is the most difficult one of the four cases. First rewrite the integrand in the following way,

sin2p x · cos2q =

{

1

2
(1 − cos 2x)

}p {

1

2
(1 + cos 2x)

}q

.

The degree of the left hand side is 2p + 2q in the pair (cosx, sin x), while the right hand side only
has the degree p+q in the pair (cos 2x, sin 2x) with the double angle as new variable. The problem
is that we at the same time by a multiplication get many terms on the right hand side of the
equation, which then must be computed separately.

However, since the degree is halved, whenever 2b) is applied, the problem can be solved in a finite
number of steps.

We shall illustrate the method of 2b) in the following example.
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Example 4.2.1 We shall compute the integral

∫

cos6 xdx.

The degree 0 + 6 = 6 is even, and both m = 0 and n = 6 are even. Thus we are in case 2b). By using
the double angle the integrand becomes

cos6 x =

{

1

2
(1 + cos 2x)

}3

=
1

8
(1 + 3 cos 2x + 3 cos2 2x + cos3 2x).

Integration of the first two terms is straightforward,

1

8

∫

(1 + 3 cos 2x) dx =
1

8
x +

3

16
sin 2x.

The third term is again of type 2b), so we transform it to the quadruple angle,

1

8

∫

3 cos2 2xdx =
3

8

∫

1

2
(1 + cos 4x) dx =

3

16
x +

3

64
sin 4x.

The last term is of type 1a), so

1

8

∫

cos3 2xdx =
1

8

∫

(

1 − sin2 2x
)

· 1

2
d sin 2x =

1

16
sin 2x − 1

48
sin3 2x.

Summing up we get after a reduction,

∫

cos6 xdx =
5

16
x +

1

4
sin 2x − 1

48
sin3 2x +

3

64
sin 4x. ♦
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b!

f(t) L{f}(z) σ(f)

1 1
1

z
0

2 tn
n!

zn+1
0

3 e−at 1

z + a
−� a

4 sin(at)
a

z2 + a2
|� a|

5 cos(at)
z

z2 + a2
|� a|

6 sinh(at)
a

z2 − a2
|� a|

7 cosh(at)
z

z2 − a2
|� a|

Table 1: The simplest Laplace transforms

4.3 Tables of some Laplace transforms and Fourier transforms

The simplest Laplace transforms were already derived in Ventus, Complex Functions Theory a-4, The
Laplace Transformation I. These are given in Table 1.

We collect in the following tables the results from Ventus, Complex Functions Theory a-5 where
we always can use σ(f) = 0, so there is no need to specify σ(f) in the tables. The first table is
ordered according to the simplicity of the function f(t), and the second one is ordered according to
the simplicity of L{f}(z). Instead of σ(f) we include a reference to where the function is handled in
the text.
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f(t) L{f}(z) Reference

1 tα for �α > −1
Γ(α + 1)

zα+1
Complex Functions a-5

2
1

t + a
for a > 0 eaz Ei(az) Complex Functions a-5

3
1

1 + t2
cos z ·

{π

2
− Si(z)

}

− sin z · Ci(z) Complex Functions a-5

4 ln t −γ + Log z

z
Complex Functions a-5

5
1

√

|t − 1|

√

π

2
e−z {1 − i · erf (i√z)} Complex Functions a-5

6 exp
(

−t2
)

√
π

2
exp

(

z2

2

)

erfc
(z

2

)

Complex Function a-5

7 t−
3
2 exp

(

− 1

4t

)

2
√

π e−
√

z Complex Functions a-5

8 erf(t)
1

z
exp

(

z2

4

)

erfc
(z

2

)

Complex Functions a-5

9 erfc(t)
1

z

{

1 − exp

(

z2

4

)

erfc
(z

2

)

}

Complex Function a-5

10 erfc
(√

t
) 1

z
√

z + 1
Complex Functions a-5

11 erf

(

1

2
√

t

)

1 − e−
√

z

z
Complex Functions a-5

12 erfc

(

1

2
√

t

)

1

z
e−

√
z Complex Functions a-5

13 Si(t)
1

z
Arctan

1

z
Complex Functions a-5

14 Ci(t)
Log

(

1 + z2
)

2z
Complex Functions a-5

Table 2: More advanced Laplace transforms
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f(t) L{f}(z) Reference

15 Ei(t)
Log(1 + z)

z
Complex Functions a-5

16 Jn(t) for n ∈ N0

(√
z2 + 1 − z

)n

√
z2 + 1

Complex Functions a-5

17 J0

(

2
√

t
) 1

z
exp

(

−1

z

)

Complex Functions a-5

18
1√
t
J1

(

2
√

t
)

1 − exp

(

−1

z

)

Complex Functions a-5

Table 3: More advanced Laplace transforms, continued

F (z) L−1{F}(t) Reference

1
1

z
1 Complex Functions a-4

2
1

z + a
e−at Complex Functions a-4

3 z−n for n ∈ N
1

(n − 1)!
tn−1 Complex Functions a-4

4 z−α, �α > 0
1

Γ(α)
tα−1 Complex Functions a-5

5
1

z2 − a2
, a �= 0

sinh(at)

a
Complex Functions a-4

6
z

z2 − a2
cosh(at) Complex Functions a-4

7
1

z2 + a2
, a �= 0

sin(at)

a
Complex Functions a-4

8
z

z2 + a2
cos(at) Complex Functions a-4

Table 4: Table of inverse Laplace transforms
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F (z) L−1{F}(t) Reference

9
1

z
√

z + 1
erf

(√
t
)

Complex Functions a-5

10
1√

z2 + 1
J0(t)







Complex Functions a-4 and

Complex Functions a-5

11

(√
z2 + 1 − z

)n

√
z2 + 1

for n ∈ N0 Jn(t) Complex Functions a-5

12 1 − exp

(

−1

z

)

1√
t
J1

(

2
√

t
)

Complex Functions a-5

13
1

z
exp

(

−1

z

)

J0

(

2
√

t
)

Complex Functions a-5

14 e−
√

z 1

2t
√

πt
exp

(

− 1

4t

)

Complex Functions a-5

15
1

z
e−

√
z erfc

(

1

2
√

t

)

Complex Functions a-5

16
1

z

{

1 − e−
√

z
}

erf

(

1

2
√

t

)

Complex Functions a-5

17
Log z

z
−γ − ln t Complex Functions a-5

18
1

z
Log(1 + z) Ei(t) Complex Functions a-5

19
1

z
Log

(

1 + z2
)

2Ci(t) Complex Functions a-5

20
1

z
Arctan

1

z
Si(t) Complex Functions a-5

21
1

2
Log

(

z + i

z − i

)

2i Si(t) Complex Functions a-5

Table 5: Table of inverse Laplace transforms, continued
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f(t) F{f}(ξ)

1 χ[−T,T ](x), T > 0 2
sin Tξ

ξ

2

(

1 − |x|
T

)

χ[−T,T ](x), T > 0
4

Tξ2
sin2

(

Tξ

2

)

3
a

x2 + a2
, � a > 0 π e−a|ξ|

4
sin(Tx)

x
, T > 0 π χ[−T,T ](ξ)

5 cos(ω x) · χ[−T,T ](x), T > 0
sin(T (ξ − ω))

ξ − ω
+

sin((T (ξ + ω))

ξ + ω

6 sin(ω x) · χ[−T,T ](x), T > 0
1

i

{

sin(T (ξ − ω))

ξ − ω
− sin(T (ξ + ω))

ξ + ω

}

7 e−a|x|, � a > 0
2a

ξ2 + a2

8 e−ax χR+(x), � a > 0
1

a + iξ

9 eax χR−
(x), � a > 0

1

a − iξ

10 exp
(

−ax2
)

, a > 0

√

π

a
· exp

(

− ξ2

4a

)

11 1 2π δ

12 xn, n ∈ N0 2π in δ(n)

13 eihx, h ∈ R 2π δ(h)

14 cosh(hx), h ∈ R π δ(h) + π δ(−h)

15 sin(hx), h ∈ R −i π δ(h) + i π δ(−h)

16 δ 1

17 δ(h), h ∈ R e−ihξ

18 δ(n), n ∈ N0 (iξ)n

Table 6: Some Fourier transforms, F{f}(ξ) =
∫ +∞
−∞ e−ixξ f(x) dx.
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Index

Bessel differential equation, 48, 79
Bessel functions, 30
beta function, 16
boundary value problem, 61, 63, 65, 104
Bromwich integral, 128

Cauchy’s integral theorem, 110
Cauchy’s residuum theorem, 134, 138
characteristic polynomial, 51
convolution equation, 11–14, 16, 49, 102
cosine integral, 23
Cramer’s formula, 67, 69, 70, 76, 78, 83, 85, 86

Dirac measure, 98

error function, 27
exponential integral, 23

finite value theorem, 25
Fourier series, 15, 124, 125
Fubini’s theorem, 16

Gamma function, 4

heat equation, 88, 92, 95

initial value problem, 93

Laguerre polynomial, 42, 43

residuum theorem, 115
Riemann’s zeta function, 14
rule of convolution, 39, 40
rule of division by t, 40
rule of multiplication by t, 47
rule of periodicity, 139
rule of similarity, 27, 29

sine integral, 23
singular point of differential equation, 47

wave equation, 90, 96

zeta function, 14
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