bookboon.com

Download free books at

bookbooncom




Leif Mejlbro

Complex Functions Examples c-5

Laurent Series

Download free eBooks at bookboon.com



Complex Functions Examples c-5 - Laurent Series
© 2008 Leif Mejlbro & Ventus Publishing ApS
ISBN 978-87-7681-389-5

Download free eBooks at bookboon.com



Complex Funktions Examples c-5 Contents

Contents

Introduction S
1. Some theoretical background 6
2. Laurent series 9
3. Fourier series 46
4. Laurent series solution of dierential equations 49
5. Isolated boundary points 83
6. The conditions around the point at o 96

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.

Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

OSRAM
Light is OSRAM SYLVANIA

vy
)

4
Download free eBooks at bookboon.com


http://s.bookboon.com/osram

Complex Funktions Examples c-5 Introduction

Introduction

This is the fifth book containing examples from the Theory of Complex Functions. In this volume we
shall consider the Laurent series, which are, roughly speaking, complex power series in which we also
allow negative exponents. We shall only consider the the series and their relationship to the general
theory, and finally the technique of solving linear differential equations with polynomial coefficients
by means of Laurent series. The importance of these Laurent series will be shown in the following
books, where we first introduce the residues in the sixth book, and then examples of applications in
the seventh book. Thus these three books, the present one and the two following, form together make
up an important part of the Theory of Complex Functions.

Even if I have tried to be careful about this text, it is impossible to avoid errors, in particular in the

first edition. It is my hope that the reader will show some understanding of my situation.

Leif Mejlbro
12th June 2008
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1 Some theoretical background

Definition 1.1 We define a Laurent series expanded from the point zg € C a series of the form

+oo —+o0 +oo
Z an (z —29)" = Zan (z—zo)"-l-Za_n (2 —20)""
n=-—oo n=0 n=1

The domain of convergence of the Laurent series is defined as the intersection of the domains of
convergence of the series on the right hand side of the equation above.

If a_,, = 0 for every n € N, then the Laurent series is just an usual power series, which domain of
convergence is of one of the following three types:

the empty set, an open disc of centrum zgq, all of C.
If there exists an n € N, such that a_,, # 0, then the domain of convergence is either

the empty set, or  anannulus {z € C|r < |z— 20| < R}.

360°
thinking.

Deloitte.

Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affliated entities.
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Complex Funktions Examples c-5 Some theoretical background

If R = +00, then the domain is the complementary set of a closed disc, and if r = 0, then the domain
is either an open disc with its centrum removed, or the complex plan with zg removed, C\ {zo}. The
Laurent series expansion of an analytic function f(z) is always convergent in an annulus of centrum z,
where this annulus does not contain any singularity of f(z), i.e. f(z) is analytic in all of the annulus.
The most important case, however, is when the inner radius is » = 0, i.e. when we consider a disc
with only its centrum removed, or the complex plane with the point of expansion zg removed.

When we compute the coefficients of a Laurent series in an annulus we may use the following theorem,
from which is also follows that if the annuli are as large as possible, given the point of expansion z,
then the Laurent series expansions are different in each of the possible annuli.

Theorem 1.1 LAURENT’S THEOREM. Assume that f(z) is analytic in an open annulus
{zeC|r<|z— 2| <R}.
Then the corresponding Laurent series in this annulus is uniquely determined by

+oo

f(Z): Z an(Z_ZO)na

n=—oo

an = ! %Ldz for every n € Z,
c (z

B o . Zo)n-‘rl )

and where C' is any simple, closed curve separating |z — zo| = r from |z — 29| = R, run through in the
positive sense of the plane.

The series is uniformly convergent in every closed and bounded subset of the annulus.

It was pointed out in Complex Functions c-4 that the Laurent series may be used in the theory of
Fourier series. However, the most important applications are connected with the so-called Calculus of
residues, which we shall return to in Complex Functions c-6 and to the specific application in Complex
Functions c-7. In these cases in the next books we shall only consider the behaviour of the function
in the neighbourhood of an isolated singularity of f(z).

Assume that zg is an isolated singularity of the analytic function f : Q — C, i.e. there exists an R > 0,
such that the disc with the centrum removed B (zo, R) \ {20} C € is contained in Q. Then we have
some Laurent series expansion,

+oo

f(z) = Z an (2 —20)", for z € B (20, R) \ {20} -

n=—oo
There are here three possibilities:

1) If a, = 0 for all negative n, then the Laurent series is an usual power series, and we can extend
f(2) analytically to zg. Therefore, we call this case a removable singularity.

Theorem 1.2 If the analytic function f(z) is bounded in a neighbourhood of zo (with the exception
of zo itself), then zy is a removable singularity, and f(z) is also bounded at zg.

7
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2) If a,, # 0 for some, though only a finite number of negative n, e.g. a_n # 0 and a,, = 0 for every
n < —N, then z is called a pole of order N. In this case one sometimes write f (z¢) = oo (complex
infinity).

Theorem 1.3 If f(z) — oo for z — zg, then f(2) has a pole at z.

3) If a,, # 0 for infinitely many negative n, then zq is called an essential singularitet of f(z). The
function behaves really wildly in any neighbourhood of an essential singularity,

Theorem 1.4 PICARD’S THEOREM (1879). If zq is an isolated essential singularity of the analytic
function f(z), and D(r) := B (z0,7) \ {20}, 7 > 0, is any neighbourhood of zy (with the exception
of zg itself), then the image f(D(r)) is either C or C with the exception of one point wy, i.e.

C\ {wo}

Finally, we mention that there is no principal difference if we also consider oo as an isolated singularity.
We must, however, in this case, request that the analytic function f(z) is defined in the complementary
set of a disc, |z] > R, where we always may choose zp = 0 as the point of expansion. Thus we assume
that

+oo
f(z) = Z an 2", for |z| > R.

Then we have the same three possibilities as above for a finite isolated singularity, though it here are
the positive exponents which are causing troubles:

1) If a, = 0 for every n € N, then co is a removable singularity for f(z). In this case we define by
continuous expansion,

f(o0) = ag.
We note that we in connection with the 3-transform always consider Laurent series of this type.

2) If a,, # 0 for some, though only finitely many n € N, e.g. ay # 0 and a,, = 0 for every n > N,
then we call oo a pole of f(z) of order N.

3) Finally, if a,, # 0 for infinitely many n € N, we call co an essentiel singularity of f(z).

We should here add that e.g sinz er 0 for z = nw, n € Z, then z = nm, n € Z, are poles of 1/sin z.
However, since z = nm — oo for n — £o00, we see that co is not an isolated singularity of 1/sin z, and
it is not possible later on to speak about the residue at oo for such functions.

8
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2 Laurent series

Example 2.1 Find the Laurent series expansions of the function

1

f(z):Z—Q, z #2,

from zg = 0 in each of the domains in which there exists such an expansion.

The function is defined in C\ {2}, and the point of expansion is zy = 0. Therefore, we have an usual
Taylor expansion in the disc |z| < 2 and a Laurent series expansion in the complementary of a disc
|z| > 2. The denominator consists of two terms, so the strategy is always to norm the numerically
larger of the terms and then apply the usual geometric series expansion.

z
1) In the disc |2| < 2 the constant 2 is dominating in the denominator, and ‘5‘ < 1. Hence,

1 11 1Ny &1
R i TN Al PO G A B LA
2 "= "

which clearly is a Taylor series.

1
2) We have in the complementary of a disc, |z| > 2, that ’—’ < 1, so in this case we instead use that
z

+o00 n +oo
1 1 1 1 2 1
_ :_._:_E: 2 :§2n—1.— f > 2.
1) z2—2 2z 172 zn_o{z} — zn’ or |2

1 n=0 9n41 ’

for |z| < 2,

1
Foegn—t. et for |z| > 2.

Obviously, we cannot get any expansion when |z| = 2.

Example 2.2 Find the Laurent series expansions of the function

) = ——

m, ZEC\{1,2},

from zo = 0 in each of the domains where such an expansion exists.

The singularities are 1 and 2, and the point of expansion is zyp = 0. Thus, we get three domains, a
disc ©; = B(0,1), and annulus Qs = {z € C | 1 < |z| < 2}, and finally a complementary set of a disc,
Q3 ={z € C| |z| > 2}. Since the function is a rational function, we start by a decomposition,

1 1 1
&= he-y " 7=2 7-1
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and then the most easy method is just to expand each fraction separately. We may here even use

that the Laurent series of

5 already have been found in Example 2.1, so we shall skip these
computations.

1) If z € Qy ={z € C||z| <1}, then we get the Taylor series

1 1 11 .
f(z>:z—2_z—1:_§.i _Z{ 2n+1}z7 for |z| < 1.
2

We note that there are no negative exponents in this expansion.

2) f z€ Qy={z € C|1<|z| <2}, then we get the Laurent series

+o0 +o00
1 1 11 11 1 1
[@&)=—-7—5="5 - =D g
z—92 z—1 2 1_12 z 1_1 n=02n nzlzn
z z

We note that we have both positive and negative exponents in the Laurent series expansion.
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3) If z€ Q3 ={ze€C||z| > 2}, then we get the Laurent series

1 1 11 11 = 1 X, 1
fe) ==~ == 2—;-1_1:;{2 —1}-Z—n:;{2 _1}'27'
z z

Note in this case that the series expansion does not contain any positive exponents.

Example 2.3 Find the Laurent series expansions of the function

1
f(@*m, z#1,

from zg = 0 in each of the domains in which such an expansion ezists.

The function f(z) is analytic in the unit disc ; = B(0, 1) and in the complementary set
Qy = C\ BJ0,1]. Since z =1 is a double pole, we first consider the following auxiliary function

PN 2] < 1,
1
g(z) = = 1 1 too 1
1—z _;.1—1:_277«:12,77 fOr‘Z|>l
z

Since f(z) = ¢’(2) for z #, and since we may termwise differentiate the Laurent series in their domains,
we easily get,

+oo +oo
flz)= an"fl = Z(n+ 1)2", for z € Qq, dvs. for |z| < 1,
n=1 n=0
and
400 +oo
f(z)= Zn 2l = Z(n —1)z7", for z € Qq, ie. for |z| > 1.
n=1 n=2

Obviously, this technique may be used in general on rational functions, whenever the denominator
has a multiple root.

Example 2.4 Find the domain of convergence of each of the following series:

(@ f(zuzjzn), ) f(mﬂ—) © §(+i)

n=0 n=0 n=0

(a) Here

+oo 1

g 2" = . is convergent for |z| < 1,
-z

n=0
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-15

Figure 1: The domain in (a) is an annulus.

and

+o0 1 +o00 1 n 25
2;2—:2(2_) =51

n=0

is convergent for

1 1
2—‘ < 1, thus for |z| > ok The common domain of convergence is the annulus
z

1
{ze(C|§<|z|<1},

and the sum function is

1 2z
& =1 51
(b) The series
+oo
z z
d.o=e
n=0

is convergent for every z € C, and the series

+°°ﬁ _ 2242
2n (1)

n=0

1
is convergent for —‘ < 1, thus for |z| > 1. The domain of convergence is the complementary set
z

of a disc
{zeCl[z > 1},
and the corresponding sum function is

22—1—2

f(2)162+m-
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1
(c) The series >.°° ;2™ has the domain of convergence |2| < 1, and the series > /%% —- has the

domain of convergence |z| > 1. The intersection is empty, so the open domain of convergence is
also empty.

Remark 2.1 Additionally, we prove here that
JFZOO (z” + i)
n=0 "

is also divergent, when |z| = 1. We put on this circle, z = e*?, so

1 . i
2N — = en? 4 emin? =9 cosnd,
z

and the series is

400 1 400
Z(z"—i-z—n) :2220087197 z=e'f.
n=0 n=0

We shall prove that the trigonometric series Z::E) cosnf is diwergent for every 8 € R. The
necessary condition of convergence is that the n-th term tends towards 0, i.e. we require that

cosntl — 0 for n — +o0.

Now, if e.g. |cosnf| < & for some n, then

1 1
| cos 2nf| = |2cos2n071| >1-2-—-=—
4 2

and it follows that cosnf does not tends towards 0 for n — 400, so the series is divergent. ¢

Example 2.5 Find the domain of convergence for each of the following series:

o [2z+m))” oo (21"
T b
T e e
) % s @) $i%
n=0 22n + 17 n=0 1 + Z2n .
HINT: None of the series is a power series.
(a) Tt follows that
{M} — (14 2)"
n n
where
<1+£) —e” for n — +o0.
n
13
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In particular, to every z there exist constants C; and Cs, as well as an N, such that
oy < [{exm)”
o n

Then we apply the criterion of equivalence for usual real series to conclude that the two series

f{@}n og :Ziz’ﬂ

n=1

< Cylz|™ forn > N,.

are absolutely convergent in the same domain, so the domain of convergence is the open unit disc
|z| < 1.

ASIDE. Note that if |z| = 1, then

n

e 40

n

and the necessary condition of convergence is not fulfilled, so the series is divergent on |z| = 1.
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(b) If z ¢ Z_ U {0}, then
=" _ _(=n”

z+n x+n+z’y:

r+n—1iy
@ +y

(1"

Clearly. the sum of the imaginary part alone is convergent for z ¢ Z_ U {0}, because the terms are

asymptotically equal to a constant times — . Concerning the real parts we get for the numerical
n

values,

r+n
—— =\, 0 for n — 400 and n > N(x).

CrmP+y =N
The corresponding real sequence is alternating, hence it follows from Dirichlet’s criterion that
the real part of the series is also convergent. (A further analysis would of course show that the
convergence of the real part is conditional, but we shall not use this fact here). The series is clearly
not defined for z € Z_ U {0}, so the series is convergent for z ¢ Z_ U {0}.

(c) If |z| <1, then of course,

2n

ﬁ—)m forn—>+oo,

and the series is divergent.
If instead |z| > 1, then

o 1 (02
22" 41 g2 1
It follows from

2
—— —0 for n — +o00 og |z| > 1,
22m/n
that there exist a k €10, 1[ and an N(k;z), such that

2”
ZQn + 1

’ < k" for alle n > N(k; 2).

(Note that the denominator is never 0, when |z| > 1). Hence, the domain of convergence is the
complementary set of a disc |z| > 1.

(d) If |z] = 1, then

n

z >1>0
14+22"|— 2 ’

and the necessary condition of convergence is not fulfilled, so the series is divergent for |z| = 1.

If |z] < 1, then we get the following estimates with some constants C(z) > 0 and Ca(z) > 0,

n

(2 4" < \ < Col2) 4|,

z
=11 ¥ 212”

15
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and since ZZ:& 2™ is convergent for |z| < 1, it follows from the criterion of equivalence that we
have convergence for |z| < 1.

It |z| > 1, then 22" dominate, so we get instead the following estimate

< S <p (L n>N.
|2[2" ||

1
We conclude from — < 1 that the series is convergent.

|2

Summing up we see that the domain of convergence is given by |z| # 1, i.e. in all points of C, with
the exception of the points of the unit circle.

n

z
14 22"

Example 2.6 Find a strip {z € C| |y| < k}, in which the series
JFZO:O L cosnz
2Tl

n=1

is convergent. What is the largest possible k?
Prove that the series defines an analytic function in the strip.

It follows formally from

1 inz 1 —inz
CoOSnNz = —e€ —€ s
2 +2

that
—+o0 —+o0 +oo —+o0 : n —+o0 i n
1 1 R | 1 . 1 e'® 1 e i?

The former series is convergent when

iz

<1, i.e. when e™¥ <2, or y > —In2,

and the latter series is convergent when

—iz

(&

<1, i.e. when e¥ < 2, or y < In2.

Then obviously,

+001

E 2_71 cosnz

n=1

16
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is convergent for |y| < In2 (and divergent for |y| > In2). If |y| < In2, then we get the sum function

er= 1
=1 1TX s \" 1R/ 1\ 1 3 1 9giz
Yoo = ox(7) s (em) < P P

9 2et*
1 e 1 ettt 1 2t 14271
I P e R S e R R Py |
1 4cosz—2 2cosz — 1
T 25 _4cosz 5—_4dcosz Iyl < In2,

and the function is clearly analytic in the strip.

Example 2.7 Prove that the series

+o00 n
e

o 2n+1
— 1—=z

is convergent for every z € C, for which |z| # 1.
Find an expression of the sum of the series, partly in {z | |z| < 1}, and partly in {z | |z| > 1}.

1
If |z| < 1, then |z|™ < 3 for m > N = N(z), hence

z

n In N
2
| S22 fornz e

‘ on

Since > 2|z|™ is convergent for |z| < 1, it follows that
S
_ 271,
= 1—-=2

is convergent for |z| < 1.

If instead |z| > 1, we write

z
. 1 . .
and since |—| = |z1]| < 1, it follows from the above that the series
z
_ on+1 - o on+1
l-z —l—2

is convergent for |z1| < 1, i.e. for |z| > 1.

17
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Finally, if |z| = 1, then

n
22

‘ 1 _ 22n+1 2

>0,

N | =

and the necessary condition of convergence is not fulfilled, so we have divergence for |z| = 1.

Now,

w o w(l+w) w? w w?

l—w? (1-w)(l+w) 1—w? 1-w 1—w?

so if we put w = 22", then

n n n+1
22 22 22

-2 T 122 -2

~
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and the sectional sequence becomes

sn(z) = 7

<

n
z 252 22

et

—22 124 1 — 22"

z 22 N 22 24 . 22" L2
1—2 1—22 1—22 1-—24 1—22" 1=zt

n41
z 22

1

—z 1=y

If |z] < 1, then the latter term tends towards 0 for n — +o0, hence

+oo 22" Py
2 = m @) =g forll<l
If |z| > 1, then
Z2n+1 1
T = N —1 for n — 400,
=0
z
thus
+OO 271,
z z 1
ngo 1— 22n+1 n—l>r-il:100 Sn(z) 1 —z + 1 —z or |Z|
SO summing up,
z
fi <1,
Jff 2" 1= ol
1_ 2t = 1
n=0 for |Z| > 1.
1—=z2
19
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Example 2.8 Prove that the power series

+oo .
f2)=) 7
n=0

represents a function, which is analytic in the disc |z| < 1, and which cannot be continuously extended
across the unit circle.
HINT: Apply the equation

f(z):z+22+z4+~~+22k_1+f<22k).

Prove that if ¢ € C satisfies CQk =1 for some k € N, then f(t() — oo fort — 1—.

Since |z2n| < |z|™, whenever |z| < 1, it is obvious that f(z) is analytic in the open disc |z| < 1.
Then
f(z) 22t 2 +f<z2k).
If we choose ¢ € C, such that §2k =1, then
(k)" = te1f
and we get

. . +oo o 2" +oo e
FF) = £ () = () =X ke dore—e

where we have used that ¢ is positive. Now

2k—1

2422tz
is bounded for z =t (, so we conclude that
ft¢) — fort —1—.

Since this holds for every k, and since the set of 2F-roots, k € Ny, are dense on the unit circle, we
conclude that it is not possible to extend f continuously to any point on the unit circle |z| = 1.

Example 2.9 Find the Laurent series expansion from zg = 0 for each of the following functions in
the given domains:

z—1 10
(a) for |z| > 1, (b) (z+2)(z2+1)

forl<|z| < 2.

(a) If |z| > 1 then it follows by an application of the geometric series that

1
1—— +oo n +oo
z—1 > 2 1 1
= :—1+—:—1+2§ (—1)"(—) :1—1—25 (=" - —.
1 1 n
z+1 142 14- = z — z
z z

20
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Figure 2: The annulus 1 < |z] < 2.

(b) We decompose

10 A B:z4C
(z4+2)(22+1) 242  22+41°
Then
1
a=_y
5
hence by reduction,
Bz+C 10 2 10 — 222 — 2 B 22 —4 _ —2z+4
2241 (242)(224+1) z+2 (2+2)(22+1) T (2+2)(224+1) 22+1°

Since 1 < |z| < 2, it follows by the geometric series that

1 1
10 2 2244 1 +—2';+4';2
(2+2)(22+1) z4+2 2241 Z 1\?2
L3 1+<—)
z
+oo +oo +oo
L 2 L1 4 L1
= >.(-1 (5) DD B o Vi
n=0 n=0 n=0

+oo n +oo n +oo n+1

(=2)" . 2(-n"* A=)t

- Z on z +Z 22n+1 Jrz
n=0

n=1

Z2n
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1
Example 2.10 Find the Laurent series for %, in the disc |z| < 1, and in the complementary set
5 —

of a dise |z| > 1.

(a) If |z| < 1, then by the geometric series

+o0 +o0
z+1 z—1+2 2

= =1 =1-2 n—_1-2 n 1.
z—1 z—1 1—2 nzz;)z nz::lz’ 2l <

1
(b) If |z] > 1, then put w = —, thus |w| < 1. If follows from (a) that
z

+oo +o00
z+1 14w w+ 1 1
= = — =142 "=1+2 — 1.
z—1 1—w w—1 + Zw * Zz"’ 12 >
n=1 n=1
“ALTERNATIVELY",
1+1 400 “+o00
z+1 2 2 1 1
= 1:_1_;__1:_14_222—”:1-1-222—”, 2] > 1.
1— = 1—— n=0 n=1
z z
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Example 2.11 Find the Laurent series for

1
22(1—2)

in the sets 0 < |z| < 1, and |z| > 1.

(a) If 0 < |z| < 1, then

+oo
— n
T —ZQZZ > "
n=—2

(b) If |z| > 1, then

1 1 1 11 =

2(1—2) B8, 1 23 2" 2n

Example 2.12 Find the Laurent series expansion from 0 for each of the following functions in the

given domains:

22 -1 24

(a) GC+2(+3) for 2] >3, (b)

(a) Since

2 3
—’<1and’—
z z

22(z—=1)(z+2)

for 0 < |z < 1.

because the numerator and the denominator have the same degree),

22 -1 _ g 3 8 1+3 1 8 1
-z - = - = = 5= =" 3
(z+2)(z+3) z+2 z+3 T

z z
“+oo
8 n 3"
n=0
n— + n—
3.2 R, o1 8-37)

= 1+Z(—1)"*1 —Z
n=1

’I’L

“+o00
= 1+ Z(—1)" {8- gn—1 _ 3. 2"_1} . ZL
n=1

< 1 for |z| > 3, we get by a decomposition (remember the constant term,

1
(b) Since |z| < 1 and ‘%‘ < 1for 0 < [z] < 1, it follows by a decomposition, in which — does NOT
z

23
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enter that

24 _lf8 8\ _ 1) s o4
2(z—1)(z+2) 22 \lz—1 z4+2f  22)1-2 1+
1 = n - 1 n n 1 n—2
- > 8z —|—Z(—1)-4-2—nz = 8+ (-1)" g ¢ 2
n=0 n=0
—+§ 8—|—(—1)”-i 2",
211

n=-—2

Example 2.13 Write the function

flz) =

z
14 23

1
in the form Z::f) anz™, as well as in the form Z:i% by, s Indicate in both cases the domain of
convergence.

It follows from 1+ 2% = 0 that |2] = 1. We shall therefore consider the cases |z| < 1 and |2 > 1
separately.

If |z| < 1, then
. +oo “+oo
_ n_ 3n __ n  3n+1
If instead |z| > 1, then
+oo +oo
z 1 1 1 n 1 n 1
i R R e D Dl G i T S G e e R B
1+ -3 n=0 n=0
z

Example 2.14 Find the Laurent series expansion from 0 of

sinh z exp (22) —1
(a) - for |z] >0, (b) #

> 0.
L porle
(a) We get by using the series expansion of sinh z that

too y2n+1 +oo  on—8+1 +oo y2n+1

smhz z
_ ERA R C\ {0}
s ZSZ @n+1)l 2 @n+i)l 2 nrol  ES \ 10}

(b) In the same way,

T om0 2n-3 too on+t1
exp( 1 z
. = == _— f € C\ {0}.
23 232 n! n! z Z%(n—i—Q)! o \ 10}
24
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Example 2.15 Find the Laurent series expansion from 0 of

(a) z%exp G) (b) exp <z+ %) (c) sinz-sin%.

(a) We get by a series expansion

RO |
2 2§ _ .2 §
zexp( ) =z +Z+§+n:1m7 ZGC\{O}

(b) Here we use Cauchy multiplication,

1 2 X
exp<z+;> = expz- exp— Zp'zq'zq

+o00o +oo
_ Zozopliq'zpq— Z 4", zeC\ {0},
p=0q= n=-00

+oo 1 +oo 1
ap = —_— = , n € Np,
2;0 p'q! ;quqm)' 0
p—q=n
hence
w0 (++3) = Z (S | S S 2
X - = —
P VA A CROL g +n) | 2"

for z € C\ {0}.
(c) We get by a Cauchy multiplication for z € C\ {0} that

1 +o00 (_1)p 2 l)q 1 2g+1 +00 +00 ( 1) —q

sinz-sin-— =Y ——2 PN~ 2 [ - 22(—a)
et ety () S i

The symmetry implies that a_,, = a,,, and it follows directly that as,+1 = 0, n € Z. Finally,
+o0 _ +o0
(1) 1
Qa n fr— — _1 n
’ z; @ Dig Y q;)(zqﬂ)!(zqmnﬂ)!
p—q=n

for n € Ny. Hence we get for z € C\ {0},

+oo +oo
1 1
sinz-sin— = E -1H)" E 22
z (=1) (2q+1) (2¢ +2n+ 1)!
q=

1 1
+Z{Z (2¢ +1)! (2q+2n+1)!}ﬁ'
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Example 2.16 Find the Laurent series expansion of the following functions,

z 1
(a) P for |z| > 2, (b) sin 2 for z #£0.
2
(a) Since —‘ < 1 for |z| > 2, it follows by a division and an application of the geometric series,
z
+oo
z 1 2m
= — 5= E (-H"-— for |z| > 2.
z+2 14 2 = zZ"
z

1
(b) Here we get by the series expansion of sinw, where we put w = Pt

+oo
1 (- 1
Sl — = E m 227’L+1 for z # 0.

n=0

STUDY AT
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Example 2.17 Find the Laurent series expansion of the following functions:

1 1
(a) cos 2 for z #0, (b) P for |z > 3.

1
(a) Put w = — into the series expansion of cosw to get
z

+o0 n
coslzz( Dt 1 for z # 0.

(b) Since P‘ < 1 for |z| > 3, it follows by a small rearrangement followed by an application of the
z

geometric series that

+oo
1 11 3" .
5= 3~ § Esln for |z| > 3.
1— - nO
z

Example 2.18 Find the first four terms of the Laurent series expansion of

eZ

f(Z):m

in the set 0 < |z| < 1.

If 0 < |z] < 1, then

1 1%( 1>n 2n 1 + 3 5+
_— = - D) =—— 2420 — 2
z(22+1) z i z

Now,
2 3 4

il _ _
e? +z+2'+3 +4'+

so we get by a Cauchy multiplication,

S i 1+z+2—2+£+z—4+
z(z22+1) =z 2 6 24

I
|
Jr
—_
+
—N
|
|
—_
——
I3
_|_
—N
| =
|
—
——
IS
N
_l’_
—N
u—
DO
g
I
| =
_l’_
—
——
IS
+
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Example 2.19 Find the first four terms of the Laurent series expansion of from 0.

sin z

Since sinz = 0 for z = 0 and z = 7w, and since sinz # 0 for 0 < |z|7, the domain of convergence is
0< |zl <.

Since sin z is odd and has a zero of order 1 at 0, the structure must be

1 a—1 3 5
- = +a1z+aszz” +asz” + - .
sin 2z z
Now,
o 23 5 LT
smzfzf§+5—ﬁ+ ,

so we get for 0 < |z| <,

_ 1 22 5 a 3 5
1 = sinzg: —=4¢2z2——+—— 5+ {—+a1z+a32 + a5z +}
sin z ! ! z

1 22—1—24 2° + {a +a1z? +as2® +as2® + }
6 ' 120 5040 B 3 g

1 ) 1 1 A
= a_1+ 01*60—1 2%+ a376a1+ma_1 z

. L1 1 5y
9T 190" T 5040 [ 7 '

Then it follows from the identity theorem that

a_1 = 1,

1 1
a; = ga—1:67

1 L 11 7
a3 = =0 ——=0_1 = — — —— = ——
3 6°1 120 ' 36 120 360’

o Lo, L7 1 1 7-3 ]

T BT 120" T 5040 % T 6-360 6-120 ' 5040 6-360 ' 5040

11 n 1] 31 31
180 |3 28 3-180-28 15120
Finally, by insertion,

[ U S AP
sinz 2z  6° ' 360 15120 ~

g 0< |z <.
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Example 2.20 Find the Laurent series expansions of the following functions:

z

il<l|z—2]<3, (b) 26 ilz| > 1.

(@ 5 —

22 _

C)—
N

—3-

Figure 3: The annulus of centrum at z = 2, determined by the singularities z = +1.

(a) The singular points are z = £1, where the denominator is 0. Then apply a decomposition and
change variable to z — 2,

z 2 B U SRS WS SN S Lol 1
2-1 (z=1(+1) 2 z-1 2 z2+41 2 z-2 1 6 ,, 22
+
z—2 3
+oo +oo
11 (-1 1 1
= . - —(z—9)"
2 z—2;(z—2)”+6;3”(z )
n:06~3" — 2 (z —2)
for 1 < |z —2| < 3.
(b) If |z] > 1, then
+o0 too
1 11 1 R
Py S P VL LD S
R n=1 n=0
z
so by a Cauchy multiplication,
—+oo —+oo +oo 00
# 1 1
€ 1= —'zp == —'zp_q for |z] > 1.
- pzop' qzlz p=0g=1""
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and
+<>o1
anzz:—':e forn < —1.
p=0 "

Finally, by insertion,

e® Xe XX
z—lzgz_”—'_z{zp}z for |z| > 1.

p=n+1""

n=0
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Example 2.21 Given the function [ by

5
1) = 622 fzz -1

1) Find the largest annulus
Ry < |z| < Ra, where Ry > 0 and Ry < +00,
in which f is analytic.
2) Find the power series from zo = 0 of f in the domain |z| < R;.

3) Find the Laurent series from zo = 0 of f in the annulus Ry < |z| < Rs.

] 04 [ 0%

Figure 4: The open annular domain.

1) Tt follows from

1 1
2— — = —_ = —
6z z—1 6(2 2><z+3>,

1 1 1 1
that the singular points of the function are —3 and ok Consequently, Ry = 3 and Ry = —, and

)
the annulus becomes

1 1
{z€C|§<|x|<§}.

1
2) If |z] < Ry = 3 then

1
5z 5 z 5 9 1 5 Y 1
£(2) : 2 3

R Y U I v e e e
o5 \#t3 273 D 3

I S SR 1_5{(3)n 2y o
T 21 T+43: 1+3: 1-22 & o
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1 1
3) If 3< |z] < 3 then

+oo +oo
1 1 1 11 1 11
- - _ —. =N "o,y .
1) 51 113 1-2: 3 L L ; ? +3z;( T

—+oo —+oo -1
—1)" 1
—E:Q"Z"JFE:(%'—W
n=0 n=1 z

Example 2.22 Find for each of the annuli
(a) 0<|z— 20| <20l

(b) |z0] < |2 = 20| < +00,

the Laurent series of the function

1

from zo = 2. The result shall be given in one of the forms
(@) f(z) =2, an(z = 20)",
(b) f(2) =32, bn(z—20)"

N

Figure 5: The limiting circle |z — 2| =

-2
(a) If0<|z—2|<27weputw:ZT. Then

0<|wl <1 and z=2(w+1),
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and we get by the usual geometric series,

“+oo +oo
1 1 1 1 1 1
= = - . - 1\ — _1n+1n
1) 2(2-2) 2w+1)-2w 4w 14w Adw n:O( )" 4 n;1( )T
$~ o

ZW(Z—Q)H for 0 < |z —2| < 2.

n—=-—

-2
(b) If 2 < |z — 2| < 400, then |w| > 1, where w = & as above. We get by the well-known trick,

£) 11 1 1 1 *f(—nn i"(—m
) = T T s =13 = .
dw 1+w 4w 1+l dw? = w = dw
w
+oo 1
= (12?2 ———— for 2 < |z — 2| < +o0.
7;2 (z —2)n

Example 2.23 Given the functions
1 1

f(z) = m

1) Find the Taylor series of f with zo = 0 as point of expansion, and determine its coefficients.
Find the radius of convergence R of the series.
2) Find the Laurent series of g from zy = 0 in the domain 0 < |z| < R, and determine its coefficients.

3) Find the Laurent series of g from zo = 0 in the domain |z| > R, and determine its coefficients.

1) Clearly,
1 +o0
_ _ _1\n.2n
f(z) = i nEZO( )"z for |z] < 1,

thus R = 1. It follows that
agnt1 =0 and asgy, = (—1)" for n € Ny,
and as,, = 0 otherwise.

2) The Laurent series of g(z) i 0 < |z| < 1 is according to (1) given by

—+o0

9(2) = 5 f5) = Yo (-1,

n=0
It follows that as, = 0 and
agp—3 = (—1)" for n € Ny,

and as,_3 = 0 otherwise.
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3) If instead |z| > 1, then the Laurent series of g(z) is given by

— 1 _ 1 1 _ 1+°°(_1n_+°° n_—2n—>5 f
W) = Far F L T wa e T U k>
1+—2 n=0 n=0
z

Here,
a_9p—5 = (—1)" for n € Ny,

and a,, =0 for m ¢ {—2n—5|n € Np}.
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Example 2.24 Given the functions

T 14z
1) Find the first five terms

f(2)

and g(z)=e

ag + a1z + a222 + agz‘3 + a4z4

in the Taylor series of f with 0 as point of expansion.
Specify the radius of convergence of the Taylor series.

2) Find the Taylor series of g with zo = —1 as point of expansion.
Determine the Laurent series of f i C\ {—1}.

z

1) The function f(z) = lj-
z

series from 0 is convergent for |z| < 1, i.e. in the open unit disc.

is analytic in C\ {—1}, where —1 is a simple pole. Hence the Taylor

The first five terms of the Taylor series are found by termwise multiplication,

z

flz) = liz=ao+a1+azz2+a323+a4z4+--~
z 22 22 A 2 3 4
= {”T—z!+—3!+—4!+'“}{1‘Z+Z S
1 1 1 1 1 1
= 1+(1-1 S R A T ey R ) P e S A AR T
+ ( )z+<2 +)z—|—<6 5T >z—|—<24 513 +>z+

1 3
= 14+-22—-24+224+...

2) Since g(z) = e**! is analytic in C, and the point of expansion is —1, we get

z+1 +°°1 n
g(z)=e :ZE(Z+1)7 zeC.

n=0 "

When we shall find the Laurent series of f in C\ {—1}, it is tacitly understood that zo = —1 is
the point of expansion. We find

e 1 et 1R 11 X1 1
= = — . = — — 1”71:—.— R — 171/'
1) 1+2 e z+1 enz:%n!(z—’_ ) e z—|—1+n§=:Oe (n+1)!(z+ )
35
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Example 2.25 Denote by ¢ any complex number, and define for any fized ¢ a function f. by

felz) = (2—12 + z%) sin z.

1) Determine in the domain C\ {0} the Laurent series

—+o0 —+oo
bn "
D a2
n
n=1 n=0
for fe.

Determine the coefficients b, and a,,.

2) Find for any c the value of the integral

le_l folz) dz.

3) Put ¢ = 6. Ezplain why fs has a primitive in the domain C\ {0}, and find the Laurent series of
any primitive of fg.

4) Discuss if ¢ # 6 why f. does not have a primitive in C\ {0}.

1) Inserting the series expansion of sin z, we get for z # 0 that

f( ) 1 + c . 1 f (_1)n 2n+1+ c f (_1)n 2n-+1
c = —_— —_— S111 = —_— —_— _— —_—
: 2 )) AT s — (Zn—i—l)!z e, (2n—|—1)!z
+oo + oo
-y (=)™ 2 £ e (=)™ it
= (2n+3)! =, (2n+5)!

+o0
- 5+(-5) % +;(_1)n{(2n+5)! - (2ni3)!}22n+1'

It follows that

bp=1-— %, bs =c¢ and b, =0 otherwise,
and
az, =0, neN a =(-1" c — ! neN
2n — Y, 0, 2n+1 — (271 + 5)' (27’L + 3)' ) 0-

2) Now f. is analytic in C\ {0}, so it follows from the residue theorem that

%Zl_l fe(z) dz = 2mires (f.;0) = 2mi (1 _ g) .
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3) If ¢ =6, then

6 oo 6 1 2n+1
fG(Z)_Z_3+T§{(2n+5)!_(2n+3)!}z ’

If z # 0, then this clearly has the primitive

Fs(2)

n=0

3 X (~1)n 6 1
*—+Z( ) _
22 2n+2 | (2n+5)!  (2n+3)!

z # 0.

} x2n+2

|
|
I
[ V]
+

3 X (- 1

|
|
NM|
4
g
[\
S

(2n +3)

+oo 1
B 3 (=™ 1
B _§+Z o (2n+3)
n=1
“+o0
3 (=n" 2
= —= ————— - (2n+5)z""
z2+;(2n+3)! (2n+5)z",

where we may add any arbitrary constant.

y

nnn careers.slb.com
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¢
4) If ¢ # 6, then the Laurent series contains a term of the type —, and it is well-known that this does
z

not have any primitive in C \ {0}.

A primitive is e.g. Log z, and this is only defined in the plane with a branch cut along the negative

real axis, including 0.

Example 2.26 Given the function

flo) = 222

Tl =22

1) Find the Taylor series Z:i% anz™ of f with the point of expansion zy = 0, and determine its

coefficients.
Find also the radius of convergence R.

2) Find the Laurent series of f from the point zg = 0 in the domain |z| > R, and determine its

coefficients.

3) Find the Laurent series of [ in the largest possible annulus
0<|z—1 <

Find its coefficients and the outer radius r.

1) The function

has the poles £1, so the radius of convergence (from zy = 0) is R = 1. For |z| < 1 we have the

Taylor series

“+o00 +oo “+o00
1
f(Z):(Z+2)'mZ(z—l—?)ZzQ":ZzQ"H—i—Z?zZ", |z] < 1.
n=0 n=0 n=0

By identification,

2 for n even,
ap = n € Np.

1 for n odd,

2) If |z| > 1, then

—+oo —+o0
z+2 1 1 2 1 1
f“)—z—fl—l(;*z—z)ZzTnZW

R n=0 n=0

—0—002

Z z?n’

n=1

|z| > L.
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Figure 6: The disc {z € C| 0 < |z| < 2} without its centrum.

It follows that

-1 for n odd,
b, = n € N.
-2 for n even,

3) The singularities are 1 and —1, so r = 2. Putting w = z — 1, it follows for 0 < |w| = |z — 1] < 2
that

w
0 ‘—‘ 1,
< 5 <
hence
f2) = z+2 _ (x-1D+3 w43 w43 1
o122 (z-1)(kE+1) ww+2) 2w Y@
2
+o0 +oo +o00 _
_ 1 31 G (=p~*+t (G
ERRCAS I PV e Vel Rl
+oo n+1 +0oo n +oo
= z% P TESE —§;+Z%3 gtz W =—§'g+z%(—1) gz ¥
+oo
3 1 (=™
) § _1+Z on+-2 ( _1)n’ 0<|Z_1|<2’
n=0
and thus
3 —1)"
b1:—§ and an—(2n+)2, n € Ny.
39
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Example 2.27 Given the function
f(z)=2—2%—2cosz.

1) Find the Maclaurin series of f and its radius of convergence.
Determine the order of the zero of f at z = 0.

2) Then put

s =1(3) ozt

Find the Laurent series of g in the set |z| > 0.
Determine the type of the singularities of g at z = 0.

3) Put

Find the type of the singularity of h at z = 0.
Determine the coefficients a—; for every j > 0 of the Laurent series of h,

—+oo —+o0

E J E o
a—;jz 7+ a;z

Jj=1 Jj=0

in a neighbourhood of z = 0, where z # 0.

1) The function f(z) is analytic in C, so the radius of convergence is +o0.
By insertion of the power series of cos z we get

+oo “+o00 “+o0
) =92 22 _ (71)71 Z2n - _ (71)71 2271 — 2(71)n+1 2n
1(z) =2 2; @n)! 27;2 @n)! 2 ")

n=2

It follows immediately that f(z) has a zero of order 4 at z = 0.

1
2) If z # 0, it follows from (1) that the Laurent series of g(z) = f (;) is

R 2(=1)nt 1

Q(Z):Zwﬁa |2[ >0,
n=2
and it follows that z = 0 is an essential singularity.

1
3) Since f(z) has a zero of order 4, the function h(z) = —— has a pole of order 4 at 0. Hence,

f(2)

a a a a =
4 -3 2 -1 ;
LT T S, 2 £
24 23 22 z — 7T

=

h(z) =

40
Download free eBooks at bookboon.com



Complex Funktions Examples c-5 Laurent series

Since f(z) is even, h(z) is also even. This implies that a_3 = a—1 = 0 in the following expansion,

1 = f(2)-h(z)

We get,
19 d 2 4l —12 2
a_y = — an Gg=—" —0_4=——=——.
4 627" 56 5
Summing up we get
2
a_y = —12, a_3 =0, a_ — 5’ a1 =0.
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Example 2.28 Given the functions

flz) = and g(z)

1) Find the Maclaurin series of f.
Find also the Maclaurin series of g and the coefficients of this series.

= 2f(z) 42 ().

2) Find the Laurent series of f in the annulus |z| > 1.

Also, find the Laurent series of g in the same annulus and the coefficients of this series.

3) Finally, find the Laurent series of g in the set defined by |z — 1| > 0.

1) The Maclaurin series of f is given by

+oo
f(z)= Zz", |z] < 1.
n=0

Hence by termwise differentiation and insertion,

00 +00 oo
PEIIED MU EE T SRR SRCURINE SErl
n=2 n=1

—+oo +oo
= E n222 = E ’I’L2
n=0 n=1

2) If |z| > 1, then

1 1 1

1—2 z

fe)=1— = —1=
1-— =

z

hence

“+o0 “+o0
f(z)=- anf"*l and f"(z) = + Zn(n—F 1z "3 |z| > 1,
n=1 n=1

thus

ge) = AfE=+20)= Y

+oo

n=2
(n=0)

2", for |z| < 1.

1+oo 1 +o00 1 +o00 .
—27=Z;=2z ’
Zn:OZ n=1 n=1

+oo

n=1

—+oo —+oo n2
= g n?z " = g — for |z| > 1.
Z’ﬂ
n=1 n=1

+o00
nin+1)z7" — Z nz "
n=1
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Laurent series

hence
2 el / o 222 z

g(Z) = Zf(z>+zf(z)_(liz)3+(1iz)2
- eI
= (2_%{271 +2(z—1) +1}+ﬁ+711
B 2 4 2 1 1
e S e PR G D LA P s PR

2 3 1

_ _ _ for |z — 1| > 0
GoiF o1 ao1 koo

which we consider as a degenerated Laurent series from z; = 1 with only three terms.

Example 2.29 Given the function

1

f(Z):m-

1) Find the Laurent series of f in the annulus 0 < |z| < 4.
2) Find the Laurent series of f in the set 4 < |z|.

3) Compute the integrals

7|{z|_1 f(z)d=  and fim F(2) dz.

1) If 0 < |z| < 4, then E’ < 1, hence

fer = ﬁ:_iz.iz 4z224" Z( 4n+1> "

1
4

+oo 1

n=-—2

2) If instead |z| > 4, then

4
—’ < 1, hence
z

n +o0 n—3
1 1 4
1) 22(2—4)_2_3. ___232 —
z
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3) The closed curve |z| = 1 lies in the annulus 0 < |z| < 4, so if we apply the Laurent series from (1),
we get

1 m
de =2mia_ =2mi- | —— | = ——.
sz|=1 f(z)dz =2mia_y = 2mi ( 42) 3

The closed curve |z| = 5 lies in the set |z| > 4, so if we apply the Laurent series from (2), we get

% f(z)dz =2mia_y, = 0.
|z|=5

Example 2.30 Let ¢ denote any complex number, and define the function f. by

e = (3-5) e

1) Find the Laurent series Zfz ajzl of f. in C\ {0}, and determine the coefficients a; for every j.

2) Ezxplain why the Laurent series of f. is uniformly convergent on the circle |z| = 1.
Find for every constant ¢ the value of the line integral

le_l ful2) d=.

3) Discuss, why f. does not have a primitive in the set C\ {0}, when ¢ # 1.

4) Put ¢ =1. Prove that f1 has a primitive in C\ {0}.
Find the Laurent series in C\ {0} of a primitive Fy of fi.

1) If z # 0, then the Laurent series is given by

1) 1 ¢\ . [1 ci’"ln *2"317171%‘%”72
(z = ef === — 2" = —z — —z
z 22 z 22 n! n! n!
n=0 n=0 n=0
+o0 +o0 too
1 " c " c 1—c¢ 1 c n
- n;I(n—i-l)!Z _n;2(n+2)!z Tt +;{(n+l)!_(n+2)!}z

—+o0
c l-c n+2—-c ,
= 5t +§(n+2)!2'

The coefficients are then

a_o = —c, a_1=1-—c,
and
1 c
ay, = for n > 0.

(n+1)  (n+2)
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2) We have the following estimate, when |z| = 1,

c 1—c = 1 c =1 =1
_= _ nl < 1_ il il
‘ N (e B ) B IECEU ST W R OF

< o+ 1=+ (1+]c)e < +oo,

proving that the Laurent series is uniformly convergent on |z| = 1.
We get by termwise integration,

j{ fe(2)dz = 2ima_y = 2in(1 — ¢).
|z|=1

3) A necessary condition for f. having a primitive is

f[@_l £(2)dz = 0.

When ¢ # 1, we see that this condition is not fulfilled, so in this case a primitive does not exist in
C\ {0}
4) If ¢ =1, then

ﬁ@:‘%+§§&nhﬂ‘miw}”:‘%+§Xé%%ﬁﬂ‘

1 1
Here, —— has the primitive —, and since the series
z z

—+o0

n+1
@(Z):Zmz

n=0
is analytic in C, it follows that ¢(z) has a primitive, thus

AR = - +el),  zeC\ {0}

has a primitive. Then by termwise integration of the Laurent series expansion it follows that all
primitives are given by

+oo
1 1 n
Fl(z):;‘f'k-i- Eﬁlmz7 z#0,

where k£ € C is an arbitrary constant.

Remark 2.2 Here it is not hard to find an exact expression of the primitives F4(z), z # 0, by
elementary functions. In fact,

+o00o 1

+oo
1 1
F - I e Rk N YL
1(2) PR ) e D D s T

k—1+%, 240, 0
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3 Fourier series

Example 3.1 Find the value of the integral

2m it
1
I(r):/ e forr #1.
0

1—reit

142
T 1—z

HiNT: Consider the function f(z)

If r =0, then

27
1(0):/ 1dt = 2r.
0

Let r # 0 and r # 1. Denote by C the circle |z| = r with positive direction (assuming that r > 0), so
we have the parametric description

z=re and dz =ire'tdt.

sssssssssssssvsssssassssssssssssssssnssssssssssnnsssssssssssssssssssssssfilcgte]-Lucent @
www.alcatel-lucent.com/careers

2%

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".

N
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Complex Funktions Examples c-5

Then
1 2 it _ 2m q it )
%f(z)dz = % JrZdz:/ Jr—re,w're”dt:—i/ Jr—re, (1—re't—1)dt
C Cl—Z 0 1—7“6” 0 1_T€lt
T frett

27
= —1 1 Y dt 44 —dt
2/0 ( +re ) —i—z/o 1=, eit

Then apply Cauchy’s integral theorem and Cauchy’s integral formula respectively,

0 for r €10, 1],
§ )dz -
c —4m i, for r > 1.
Hence by a rearrangement and insertion
2 " 2 for r € [0,1],
1 i
/ rre dt =2m + - f fz
o l—re 1—reit
—27 for r > 1.

We note that if » < 0, then due to the periodicity,
2 i 2 i
™1 i(t+m) ™1 it
ey / Ltfrie” )
0

o it 2 it
1 1-—
[Tl [Tl L t
0 o Ll+4|rlet o 1—|r]eit+m) 1—|r|e

1—rett
I(r), and we see that I(r) is not defined for r = £1, and that

Hence, I(—r) =
27 for |r] <1,
re R\ {-1,1}.

27 it
1
0 —re 27 for |r| > 1,

, when |z| > 1. Then find the Fourier series of

Example 3.2 Find the Laurent series of 1

1—rcosf rsin 6
) P 0=— 7 > 1.
#(0) 1472 —2rcosf (o) 1472 —2rcosf "
It follows from |z| > 1 that
+oo
1 1 1 1
T —=—Z 1
1— - n=0
z

O r>1,to get

Then put z = re’?,
1—rcosf+i-rsinf .
= o(0) +ivy(0),

I 1 _ l—rcosf+irsinf
11—z 1—re® (1—rcosh)?+ (rsind)2 1+ 72— 2rcosf
and
! :—+OO—:—Z e~in? —ficosnﬁ—kifisinnﬂ.
1=z n=1 T" n=1 ™ n=1 r
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Fourier series

Finally, when we separate the real and the imaginary parts, we get

1—1rcosf
0 = _— =
#(0) 1472 —2rcosf
rsinf
YO) =

1472 —2rcosf -

—+o0
1
—Z—n cosnb, r>1,
n:lr
+oo 1 .
Z—n sin né, r> 1.
r

n=1

Example 3.3 Prove for 0 < |z| < 4 that

Zn—l

= 4n+1'
n=0

1 =

4z — 22

Then find the Fourier series of

4 cosf — cos 20

17 —8 cosf ’ ()

(a)

sinf) — 4sin6
17 —8 cosf

If 0 < |z < 4, then 0 < E’ < 1, and we get by an application of the geometric series that

1 1

42—2225.1
4

1 1 +oo —+00
Rt DR Y

2"

1
4n+1'

If we put z = e'?, then |z| = 1 < 4, and it follows by insertion and reduction that

1 - 1 _ 4emt0 — 7210 4 cosf — cos 20 + i(sin 20 — 4 sin 6)
4oy — 22 feit _ 2160 (4ei9 _ 621‘0) (4671‘9 _ 6721‘0) - 164+1—4eif — 4e—i0
4cosf—cos20 sin20—4sinf X eln-10 io cos(n —1)0 i § sin(n — 1)0
= = — = S E— 1 —
17 — 8 cosf 17 — 8 cos b s 4n+l = 4n+l o 4n+l
Finally, when we separate the real and the imaginary parts,
(a) Real part.
4cosf—cos20 XNRcos(n—1)0 1 17 =
- = e —_— 0 9.
17— 8 cos 0 Z:O ni 16 64 " +n§::2 gtz CO°T
(b) Imaginary part.
sin20 —4sinf <X (n—1)0 15 = _
T —8cosf ,;)—4"“ =5 sm9—|—n§::2 T sinnf.
48
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4 Laurent series solution of differential equations

Example 4.1 Find all Laurent series from 0, which are a solution of the differential equation

2 f(z) + f(2) =0,

and determine its domain of convergence.

Remark 4.1 It is actually possible to solve the equation by inspection. However, since the trick is
far from evident, we shall here start with the standard solution. ¢

Laurent series solution. Since zg = 0 is a singular point of the differential equation, we can at most
expect a Laurent series solution (possibly non at all). When we put the formal series

“+o0o +oo “+o0
f(z)= Z anz" = Z a2 = Z anz" + Z a_pz ",
n=—oo n=0 n=1

into the differential equation, we get
0 = 22 (2)+ fz)=2" Z napz"" '+ Z ap2" = Znanz”+2 + Z anz"
- Z napz"t? + Z Ungo?" T2 = Z {nan + anio} 2"

According to the identity theorem this equation is satisfied, if and only if the following recursion
formula holds

Nay + apyo =0, n €7z,
thus
(1) api2 =—nay, n € Z.

Equations of this type are solved by first identifying those values of n € 7Z, for which one of the
coefficients degenerate to 0 and then split the summation domain into different parts by means of
these exception values. We see that an obvious zero is n = 0, where

(12:70'@0:0.

This proved that as = 0, while ag can be chosen arbitrarily.
Then by induction of (1),

as, =0, for n € N.

This means that the possible Laurent series solution is now reduced to

“+0oo —+o0
(2) f(Z) = Z a—nzin + Z a2n+122n+1.
n=0 n=0

Let us take a closer look on the latter series of (2),

—+o0 +oo

2n+1 __ 2\ "
d agn12?" T =2 agnia (7).
n=0 n=0
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If z # 0, then it is convergent, if and only if

+oo
n
> agnia (2%)
n=0
is convergent. Putting

b, = aspt1 and w=z

9

we see that we shall examine the conditions of convergence of the auxiliary series
—+oo
> b
n=0

where we have by (1),

bnt1 = A2(nt1)+1 = Q@nt1)+2 = —(2n + Lazny1 = —(2n + 1)by,.

/

Leadiny
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Complex Funktions Examples c-5 Laurent series solution of differential equations

This shows that if by # 0, then all b,, # 0, n € Ny, and we can determine the w-radius of convergence,

bn
bn+1

bn

1
li _
n—too ‘ —(2n+ )b,

= lim =
n—+oo 2N + 1

0w = lim

9
n— 00

so if by = a; # 0, the series is only convergent for w = 0. Therefore, we are forced for reasons of
convergence to put

a; = 0.
If ay = 0, then it follows from (1) that a3 = 0, and thus
a2n+1 = 0, ne N7

by induction. The series is then reduced to
“+o0
f(z) = Z a_nz"".
n=0

If we replace n by —n in (1), then
A_nit2 =N0_pn, n € Z,

SO

1
(3) a_p, = — G-ni2, n € Z.

If n=1, then a_y =a; =0. If n =3, then

a_3 = ga_l = 0,

hence by induction,
a_op+1 =0, n € N.

The series is now reduced to
“+o0
o —2n
fz)= Z a_onz "
n=0

We now replace n by 2n in (3). Then we obtain the following recursion formula for a_o,:

1 1
(4) a_o, = o A-2t2 T 5o A-a(n-1) neN.

Finally, we put ¢,, = a_a,. Then we derive from (4) the following recursion formula,

1
Cn = 7 Cpn—1, n € N.
2n

This is multiplied by 2"™n! in order to get

2"nle, = 2" H(n —1)le, 1, n €N,
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where we see that the right hand side is obtained from the left hand side by replacing n everywhere
by n — 1. Therefore, by recursion,

2"nle, = 2" H(n — 1)lep_y = - = 2%ley = o = ay,
hence
agp
a72n—cn—2n—n!, n € N.

The corresponding formal Laurent series it then given by

7+oo o +o<>1 1 1 ni +ool 1 n
f(Z)*Za—mZ *aogm'z—n 2 fGOZE 52 ) -

n=0 n=0

We should immediately recognize the exponential series which is convergent, if only

1
‘ﬁ < 00, hence if z € C\ {0}.

We have with only inspection found the domain of convergence, so the complete solution is given by
= ! f C
f(z) = apexp 5.2 ) or z € C\ {0}.
ALTERNATIVELY the differential equation can be solved by inspection. However, this solution is not

obvious, so we have postponed it to this place of the example. First assume that we for some reason
suspect that

a, =0 for n € N.

The previous computations show that this is actually the case. This means that

“+o0 —+oo 1
flz)= Z a_nz " = Z a_n,w", w=-.
n=0 n=0 o

If we put

then g(w) ought to be expanded as a Taylor series from wy = 0. We shall only find a differential
equation for g(w).

1

Since w = — is a (one-to-one) transformation of C\ {0} onto itself, it follows by implicit differentiation
z

that

0 = BPE) I = @) ) =2 S g(w) + g(w)
3 ( 1) ’ / 1 !
= 2| =5 ) 9(w) +gw) = —zg'(w) +g(w) = ——g'(w) + g(w),

which we write for w € C\ {0} in the following way

(5) ¢'(w) —wg(w) =0,  weC\{0}.
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This equation is either solved by inserting a w-Taylor series
“+o00
g(w> = Z bpyw™,
n=0

and then apply the usual power series method, or by multiplying (5) by an integrating factor, which
1
here can be chosen as exp (—5 w2) # 0, and finally reduce.

The former standard method is left to the reader. In the latter case, however, we have the following
equivalent equations,

0 = exp (—% w2> 5—3) — w exp (—% w2> - g(w)
= exp (—% w2) ;l—i + % (exp (—% 2)) g(w)
= % {exp (—% w2> g(w)} .
An integration gives with an arbitrary constant ¢ € C,
exp <% w2> g(w) = ¢, w e C\ {0}.

1
Finally, it follows from g(w) = f(z) and w = — that
z

f(z)zg(w)zc-exp@w) =c-eXp<%), 2 eC\ {0}

Example 4.2 Find all Laurent series from 0, which are solutions of the differential equation
(2" = 2) f'(2) = (1= 22) £ (2),

and determine the domain of convergence.

First method. Inspection. By some rearrangements,

0 = (-2 PO = (P —2) &)+ (o) )
= (-2 1)
hence by integration,
(22 =2) f(z) =G,
and thus

cCeC, z#0,L1
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The Laurent series are then easily found in the two domains
0<|z| <1 and |z] > 1.
We shall find these in the second method, so we shall not give it here but refer to the following.

Second method. Laurent series methode. Assume that f(z) = > a,2" is a formal Laurent series

solution. Then
f(z) = Z nanz" ",
and hence by insertion,
0 = (2°—2) fl(z) = (1—22) f(2)
Z nanz" Tt — Z napz" — Z anz" + Z 2a, 2"
= Z(n +2)a, 2" — Z(n + 1Da,z"
Z(n + Day—12" — Z(n + Day2"
= Z()n + D {apn—1—a,}z"

Then we conclude from the identity theorem that we get the recursion formula

(n+1){apn—1—a,} =0, n € Z.

> Apply now
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Here, either n = —1, i.e.
0- {CL_l — al} = 0,

in which case a_o does not have to be equal to a_1, or a,, = a,,_1. Therefore, we conclude that

Ay = a_2 for n < -2,

and
ap = a_1 for n > —1.
The formal solution is
+oo +o00 1
fe)—an 3 " ran Y
n=2

n=—1

The former series converges for |z| < 1, and the latter for |z| > 1. This means that the series is

divergent for all z € C, if a_1 - a_2 # 0.

Then put a_s = 0. We get

+o0 a 1
n— _1-—
f(z):a_lnglz = 1 0<|z| <1
If a_; =0, then
+o00
1 a_9o 1 a_9 1
= a_ ==, _ ="z 1.
f(Z) azgz” 22 1_1 > S~ 1 ‘Z|>
z

Example 4.3 Find all Laurent series from 0, which are solution of the differential equation

2f(2)+ (322 + 2) f'(2) + f(2) = 0,

and the domain of convergence.
Ezpress the Laurent series by elementary functions.

First method. Inspection. It is possible in some cases to solve a differential equation by inspection
Here we have an example of such an equation. This is, however, not always possible.

We rearrange the equation in the following way,
0 = 2f"(2)+ Bz +2)f'(2) + f(2) = {Z°F"(2) + 322 (2)} + {z f'(2) + f(2)}
d (3. d d 5,
PP+ e = S P+ 212}
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Therefore, if z £ 0 we get by integration, including an arbitrary constant

A1)+ 216) = {19+ 5 16| =a

thus
P+ 5 fE) =% 220

23

1
We multiply this equation by exp (——) #0, z # 0, in order to get
z

Ll e
o
B
kel
/T\
w |
~~_
Il
@
i
kel
/—l\
— N
~~
=
—~
&
+
&=
7N
|
|
~~
o]
4
kel
N
|
| =
~__
=
™
N~—

d d d 1
= exp <——>Ef(z)+aexlﬁ> (——> f(Z)—E {eXP (—;> f(z)}
. 1 du 1
On the other hand, when z # 0 we get by the change of variable u = —— that FrimeE and
z z oz
Lo () (e (L) e e
P N 22 )P \TL) T T - dz du

d d 1 1

— {1 —w)e"} = — 14— —— 5.

dz {1 —we’} dz {< Jrz) exp< z)}
Hence by insertion

L) =2 1+ ()

and by another integration including another arbitrary constant b € C,

exp (-%) ) =a (1 + %) exp (-%) +b.

The complete solution is
1 1
f(z)=a 1+; + b exp - a,beC, z#0.

Second method. Change of variable. Since ag(z) = z° is only 0 for z = 0, we see that z = 0 is
the only singular point, so we may expect that any possible solution must have the domain of

1

definition C\ {0}. Since C\ {0} is mapped into itself by the transformation w = —, an idea would
z

be to see what this equation is mapped into by this transformation.

1
Let z # 0 and w = —, and let g be given by
z

z

sy =3 () = £
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We shall set up a differential equation for g(w). It follows by the chain rule that

and
" _i//l 1/1_4// 3 ./
which put into the differential equation give
0 = 22f"(2) + (32 +2) f'(2) + f(2)
1 3 1
= = {wg” (w) + 2wg’ (w)} + {W + E} A—w?g (w)} + g(w)

= wg"(w)+2g'(w) =34 (w) —wg'(w) + g(w)
= {wg"(w) —g'(w)} —{wg (w) — g(w)}.

The latter two expressions are the numerator of the derivative of a fraction of denominator w.
Thus, if the equation is divided by w? # 0, then

wg'(w) —1-g'(w) wg'(w)—1-gw) d {M B M}

O:

w2 w2 dw w w

hence by integration,

g/(w) — gw) _

—a, a€C.

We have here chosen the sign in front of the arbitrary constant a € C in order to ease some later
computations.

The numerator looks like the derivative of ew ™ *g(w), where we are only missing the factor e~ .

Therefore, we multiply the equation by we™" in order to get

% {em"g(w)} =e g (w) — e Vg(w) = —awe ™ = % {a(w+1)e ™},

where the latter equality is proved by a simple test.
An integration with respect to w then gives with a new arbitrary constant b € C that

e Yg(w) =alw+1)e” " + b,

so we obtain the complete solution
1 1
f(z):g(w):a(l—ﬁ—w)—i—bewZCL(I—%;)—|—bexp<;>7 z #0.
Third method. The standard method. We put a formal Laurent series

“+oo
f(z) = Z anz" = Zanz", r<|z| <R,

n=—oo
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into the original differential equation. Then we have in the domain of convergence r < |z| < R

(note that in particular z # 0) that

= E anz", = E napz" 1,

hence by insertion into the equation

0 = 22f"(2) + (32 +2) f'(2) + f(2)

f'(z) = Zn(n —Da,z""2,

= 3 Z n(n—1 anz"_2 +322 Z napz""'+ 2 Znanz”_l + Z anz"

= > n(n—1a,
= Y {0 —n+3n}a, "+ (n+1)a,z"
> n(n+2)an" +> (n+ 1ayz"

= Y (n-Dn+1Dap1z"+ Y (n+ anz"
= > (n+1){(

n—1)a,_1+ a,} 2"

P +Z3nan ntl —I—Znanz —i—Zan
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Complex Funktions Examples c-5 Laurent series solution of differential equations

This equation is fulfilled in the domain of convergence, so we obtain the following recursion formula
(6) (n+1){(n—1)ap—1 +an} =0, n €7,
where we must not cancel the common factor (n + 1).

If n=—1, then n+ 1 =0, and (6) is fulfilled, no matter the choices of the values of a_1_; = a_s
and a_;. Hence we conclude that a_s and a_; are independent of each other, and we may for the
time being consider them as being arbitrary.

When n # —1, formula (6) is reduced to
(7) (n—1ap_1 +a, =0, neZ\{-1}.

When n =1, we get a; = 0, hence by recursion for n € N|

an=—mn—-1a,_1=---=(-1)""1n-1)la =0,
thus
a, =0 for n € N positive.

If n =0, then —a_1 + a9 =0, so ag = a_1, and

a_ 1
a0+—1:a_1 <1+—)
z z

determines one family of solutions for a_; € C.

We have proved that a solution necessarily must have the form
1 = 1\ X1
= a-— 1 - nZ' =a_ 1 - bpn —, 0,
I G R G R I

where we have put b, = a_,, n € N\ {1}. We shall derive a recursion formula for b,,, n € N\ {1}.
If we write —n instead of n in (7), then

(—n—Da_p_1+a_, =0, ne N\ {1},
which expressed by the b,, becomes
(n+1)byy1 = by, n e N\ {1}.

We multiply this equation by n! in order to get

(n+1)'bn+1:n'bn::2'62:21)2, nGN\{l},
thus
2 2
a_p,=b,=—by=—a_o,
n! n!
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and we have (formally) for z # 0,
+oo “+oo n
1 2 1 1 1 /1
flz) = an <1+;> +;Ea‘27n =a_1 (H;) +2a_zngzm (;)
+oo n
1 1 /1 1
114+ - 2a_ — | - —2a_o5 14—
o (105) w20 25 (3) -2 (14)
1 1
= (a—1—2a-9) |14+ - ) +2a_sexp| -],
z z
which is true for all z # 0, because the exponential series
+oo 1 <1>n (1>
S () e (?
— nl \ z z

1
—‘ < +00, i.e. for z # 0. Only the zero solution can be extended to C.
z

is convergent for

Example 4.4 Find all Laurent series from 0, which are solutions of the differential equation
2f"(2) + 22 f'(2) = f(2) =0,

and determine the domain of convergence.

Assume that
f(z) = Zanz”, r <|z| <R,
is a Laurent series solution. Then
fl(z) = Znanznfl and F'(z) = Zn(n — 1Danz"2
in the same domain. Then by insertion into the differential equation,
0 = 22f7(2)+22f(2) — f(z) = Zn(n — Danz" + Znanz"Jrl - Zanz”
= Z n2a, "t — Z Upyp12" T = Z {nzan — an_,_l} P
From the identity theorem we get the recursion formula
(8) ant1 = n%a,, n € 7.

If n =0, then a; = 0. We continue by recursion to get a, = 0 for all n € N, and we see that only
terms of non-positive indices are important.

We put b, = a_,,, n € Ny, and write —n, n € Ny, instead of n in (8). Then we get the recursion
formula

(9) nb, = (—n)za_n =a_pi1="by_1, n € N.
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We multiply this equation by {(n — 1)!}2 to get

{n12b, = {(n — 1)1}2by_y = -+ = {01}2by = by,
thus
a =b, = L a neN
—n T ¥n {n!}g 0, 0-

The series is then

n € Ny,

X1
f(z)=a Ty T z € C\ {0}, ag € C,
07;)(11!)2 z 0

where it is easy to prove that
400 1
(n!)?

has radius of convergence +o0.

,wn

(]

n=0

Remark 4.2 We note that we in this case only get one Laurent series in spite of the fact that the

equation is of second order. ¢

Remark 4.3 One can prove that the series solution can be expressed by a Bessel function. {

Example 4.5 Find all Laurent series from 0, which are solutions of the differential equation

f1(2) +22° f(2) + f(2) = 0.

Determine the domain of convergence for each of them. Finally, express the Laurent series by ele-

mentary functions.

Assume that the solution is given on the form

“+oo
f(z) = Z anz" = Zanzn, r <zl <R.

n—=—oo

Then we have in the domain of convergence,

f(z) = Znanznfl, () = Zn(n —1=a,z""?

hence by insertion into the differential equation,

0 = 2 (2)+223f(2)+ f(2) = Z n(n —1)a,z" "% + Z 2n a, 2" 4 Z anz"

Z n(n +1)a,z" "2 + Z U022 = Z {n(n+ Da, + ania} 2" 2.
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We derive from this the recursion formula

(10) ant2 = —n(n+ Dany, n € Z.

If n = 0, then we see that ag is an indeterminate and as = 0. Then by recursion,
as, =0 for all n € N.

If n = —1, then a_; is an indeterminate and a; = 0. By recursion we get
aopt1 =0 for all n € Ng.

Summing up we have
an, =0 for all n € N.

When we replace n by —n, and write b,, instead of a_,,, then

—(=n)(—n+1)a—p, = —n(n — 1)b, = a_py2 = byp_2, n e N\ {1},
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the quality of your dissertation!
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Complex Funktions Examples c-5 Laurent series solution of differential equations

hence
(11) —n(n —1)b, = by—2, n e N\ {1}.
Thus we get by multiplying by —(n — 2)!,
+nlb, = —(n—2)by_a, ne N\ {1},
and then we have to split the investigation according to whether n is even or odd.

(a) If n = 2p is even, then

(Qp)' bgp = —(Zp — 2)' bgp_g == (_1)p0| bo = (—1)p&0,
hence
_1)"
a2, = bay, = qu n € Np.

(b) If n=2p+ 1, p € Ny, is odd, then
(2p+ 1)!b2p+1 = 7(2]) — 1)!b2p_1 bgp_l == (71)1) . 1'b1 = (71)‘17(1_1,

hence

_1)n
a_9p—1 = bapi1 = ( (=) n € Ny.

on+ 1)1 47

In both cases the corresponding series are convergent for

< 400, i.e. for z # 0, and with exception

of the zero solution (which is convergent in C) the domain of convergence is C\ {0}.

Finally, we recognize the coefficients as belonging to the cosine and the sine series respectively, so

z
n=0

— agcos (%) +a_ysin G) . zeC\{o.

Example 4.6 Find all Laurent series from 0, which are solutions of the differential equation
SP1(2) 4220 (2) — (2) = 0.

Determine the domain of convergence for each of these. Finally, express the Laurent series by ele-
mentary functions.

When we for r < |z] < R put

f(z) = Zanzn, f(z)= Znanznfl, 1'(z) = Zn(n — Dapz""1,
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into the differential equation, then
0 = 2'f"(2)+22f(2) — f(2) = Z n(n — 1)anz"" + Z 2n a, 2" % — Z anz"
= Zn(n + 1)anz" 2 — Z Uppo2™T? = Z {n(n+1a, — ania} 2"
It follows by the identity theorem that we have the recursion formula
(12) aps2 =n(n+ ay,, n € Z.
If n = 0, then as = 0, and hence by induction,
as, =0 for n € N,

while ag is an indeterminate.
If n = —1, then a; = 0, and hence by induction,

A2p 41 = 0 for n € Ny,

while a_; is an indeterminate.
Summing up we have

a, =0 for n € N.
If we put b, = a_,, n € Ny and replace n by —n in (12), then we get
(13) bp_o =a—_pi2 = (—n)(—n+ Da_, = n(n — 1)b,, ne N\ {1}.
If we multiply (13) by (n — 2)!, we get

nlb, = (n—2)1b,_o.

Here there is a leap of 2 in the indices, so we must split into the cases of even or odd indices. We find

(2n)!boy, = (2{n — 1})!b2(n71) = ... =0lby = ag,
(2n+ 1)' bgn+1 = (Q{TL - 1} —+ 1)' b2(n—1)+1 =...=1! bl =a_1,
hence
= by, = ! d =b = ! N
A—_2p = bgp = Wao and  a_gp—1 = bapt1 = ma—ly n € Ny.

Thus the formal Laurent series solution is given by

+o00 1 1 400 1 1 1 1
— R — _ . = ‘h — _ 1 h - .
f(2) aoZ @n) 20 +a 1; @nt 1) 22 ap cos <z> + a_qsin (z)

The determination of the domain of convergence C \ {0} is trivial, because we only consider known

. . 1
series which are convergent for |—| < 4oc.
z

Only the zero solution can be extended to all of C.
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ALTERNATIVELY, the coefficient ag(z) = 2* leads one the the idea of transforming the differential

1
equation into a differential equation in the new variable w = =, z # 0, w # 0. If we put
z

ﬂ@:g(l)zgwy

z
then
dw 1 9
&
and

f'(z) = —w?g'(w) and  ["(z) = w'g" (w) + 2w’y (w).
Since zw = 1, it follows by insertion that

g"(w) = g(w) =0,
the complete solution of which is

w

g(w) = c1e” + cee™™ = ap coshw + a_q sinhw.

Then finally.

f(z) =crexp <§> + ¢o exp (—%) = ag cosh <%) 4+ a_; sinh <§> , z € C\{0}.

Example 4.7 Find all Laurent series from 0 which are solutions of the differential equation
A1)+ 428 (2) + (22 + 1) f(z) =0,

and determine the domain of convergence.

If we put the formal Laurent series

+oo
f(z) = Z anz" = Zanz", r<|z| <R,

n=—oo

and its formal derivatives

f(z) = Znanznfl og  f(z)= Zn(n — Danz""2,
into the differential equation, then

0 = 2'f'(2)+42°f'(2) + (22" + 1) f(2)

= Z n(n — l)anz"+2 + Z dna,z"T? 4+ Z 2a,2" 12 + Z anz"

Z (n2 + 3n + 2) anz"t? + Zanz"
= Z(n +1)(n +2)a,z"2 + Z anz"
= Z(n —Dna,—22" + Z anz"
Z {(n—1)nan—2+an} 2"
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Then apply the identity theorem on this in order to get the recursion formula
(14) (n—Dnap—o+a, =0, n € 2.

If n =0, then ap = 0, and a_» is an indeterminate.
If n =1, then a; =0, and a_; is an indeterminate.
It follows from ag = a; = 0 and

anp=—(n—1na,_o for n > 2,

by recursion that
an =0 for n € Ny.

Put b, = a_,,. Then it follows from (14) for n € N that
(—n—=1)(—n)a—pn—2+a_p=n(n+ 1)byia+b, =0, forn € N,

thus

1
1 = .
(15) bpyo it n by, neN

[ ]
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Complex Funktions Examples c-5 Laurent series solution of differential equations

The leap of the indices in (15) is 2, so we must split the following into the cases of even or odd indices.

(a) If n=2p, p € N, is even, then it follows by p recursions that

1 (="

= T
2p+1)-2p 7 @2p+1)!

bapt2 = ba(pt1) = —

(b) If n =2p—1, p € N, is odd, then it follows by p recursions that

1 (=D

2p(2p — 1) bpr == (2p)! b

bopi1 = —

Hence the complete solution is

p
QZ 2p+1) '22p+2 Z | 'Z2p+1
- 2p—|— 1! @2p)! \ =

] (1) : <1>
a_o - — sin +a_1-—cos|—|,
z z z

where we recognize the trigonometric series, which are convergent for

f(2)

1

—‘ < 400, thus the domain of
z

convergence is C \ {0}.

Example 4.8 (a) Find all Laurent series solutions from zg = 0 of the differential equation

(16) z%—!—( —|—3)%+2f(z)=0, z €C,

and determine their domains of convergence.

(b) Use e.g. the exponential series to express the complete solution by means of known elementary
functions.

HINT: There are some solution possibilities. In one of them one needs the simple formula

1 1 1

(n+2)n!  (n+1)! (n+2)!

(c) Explain why there exists precisely one solution f(z) of (16) fulfilling f(0) =1, and find it.

(a) If we put the formal Laurent series

= Zanz", f(z) = Znanz"_l, 1(z) = Zn(n —Dapz""2,
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into (16), then

2y n(n=1)anz"?+2Y naz"'+ > 3na2" "+ 202"
S onn—Danz"t+> nayz"+ Y Bnap" T+ 2a,2"

> nn+2)anz"t + > (n+2)an"

> nm+2)anz"t+ > (n+ Dag_yz"!

> {n(n+2)an + (n+ Dag_1} 2"

0

Then it follows from the identity theorem that we get the recursion formula
(17) n(n+2)a, + (n+ 1)ay—1 =0 for n € Z.

The coefficients of the recursion formula have the obvious “zeros” n = —2, —1 and 0. These are
checked separately.

e If n = —2, then
0-a_9—a_3=0,
hence
a_3=0 and a_o is arbitrary.
e If n=—1, then
—a_1+4+0-a_5=0,
hence
a_1 =0 and a_o is arbitrary.
e If n =0, then
0-ag+a_1 =0,
hence
a_1 =0 and ap is arbitrary.
e If n < —2, then it follows from (17) that

n(n +2)

n+ 1 A, n S _37 a_3 = 07

ap—1 = —

and we conclude by induction,

an, =0 for n < —3.
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e If n > 0, then it follows from (17) that
n(n+2)a, = —(n+ 1)ap_1, n € N.
When we multiply this formula by (—=1)" - (n — 1)! # 0, then we get the equivalent formulee

(=)™l (n+2)a, = ()" *(n— ) ({n -1} +2)a,_1 = - = (—=1)°0! 2 ag = 2ay,
and we conclude that

ap = % apg =2(—-1)"- (:TJFQI)' agp.
The formal Laurent series solutions are therefore given by

() = a0 Z n + 1 ),

It follows from

+oo n
S e <Zz|ao| g < 2lao |Z" — 2ao| exp(l2),
n=0 .

by the criterion of comparison that the series is convergent for every z € C. Hence, if a_o # 0,
then the complete solution is

£(z) = OZ "“ 2" forz e C\ {0},

This solution can only be extended to all of C, if a_5 = 0.
(b) If 2 # 0, then

io”i“(_z)n _ fﬂ(_z)nzfﬁ_f (=2)"
— (n+2)! — (n+2)! «(n+1)! = (n+2)
+oo n+1 n+2 1 +oo 1 1 +oo (_Z)n
— _ _ (s \
N T;) 222 n+2 z;n'( 2 Z2n:2 n!
—z 2 r ., 1 1 ., 1 1
- e ‘1}‘:2{6 DR ATt L g R

= 2—12 {1—(1+Z>6_Z}.

Hence we conclude that if z # 0, then the complete solution is given by

a_s 1—(14z)e*
f(z) = — + 2ag - —
Since
1—(14+2)e* &R n+1 .
— = nE:O Ty (—2) for z # 0,

it follows by taking the limit that

1—(14z2e* 041 1
lim = = —.
z—0 22 (0 —+ 2)' 2
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(c) The solution

is according to the above bounded for z — 0, were the limit value exists, if and only if a_5 = 0.
When this is the case, we have

. . 1=(1+ze" 1
zhg%)f(z):2aoglg(1)T=2-a0-—:a0:1.
Thus the solution is
1—(1 -z
o 2.—( ;;Z>e for z # 0,
:2 _— (= n—

=23 gy )

n= 1 for z = 0.

Remark 4.4 It is actually possible to solve the equation (16) directly without using Laurent series.
However, the trick and the reformulations are somewhat sophisticated. We give for completeness a
short review of this solution and emphasize at the same time that this is not a trivial solution. ¢
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Since z = 0 is a singular point, we assume in general in the following that z # 0. The not so obvious
idea is then to multiply the differential equation by z # 0. Then

df 2 df df

d2+ d—+32d—+2zf()
Now,

d*f df d df

20 a _ a ) 24

PR dz{z dz
and analogously,

d,

We shall therefore try to reduce the equation by applying these formulse, where we immediately must

admit that we always will get an extra term z which apparently cannot be removed. When we

E )
try this program above, then

0 = =z dJ; d—f+3zdf+2zf()
_ 2 d*f daf daf 2 df
= { Tt E}“L d+{ -2 f()}

d d
E R e
Since

22 % = % {zzf(z)} -2z f(2),

it follows by insertion that

0= jz(d{ f( )}_sz(2)>+z%+%{z2f(z)}

C{C)RETO RS WL SN E)

d?
-

- di(—{ 2/ (2) }>+i{z2f<z>}—{zj—i+2f<2>}
di(—{ 21(2) }>+—{z2f }—2{ T2 (e >}
d
dz

(% {zzf(z)}> + <1 - —) {2f(2)}.
If we put

d ¢ 2
(5) = = {)},
then the equation in z # 0 is reduced to

(18) % + (1 _ 1) 9() = 0.

z
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Using the usual solution of a real, linear, inhomogeneous differential equation of first order we at led
to guess on the following complete solution of (18):

z

g(z) =C1-ze *.

However, we cannot totally rely on the real solution formula in the complex theory, because the
principal logarithm occurs latently in the computations. Hence we shall check our guess of solution.
On the other hand, this is now trivial. When ¢(z) is given as above, then

z

1 1
gd(z)=C1(1—2)e?=Crze *- <; — 1) =— <1 — —> g(2).
ALTERNATIVELY we divide (18) by z, and come back to (16):

d? d 1d 1 1 d (1 1
0= G4 4 T 1206 = 14 1) - o6 = {5 o)+ oo

When we multiply this equation by e* # 0, then

o ) ) (£ L))
hence
d _
g(z) = - {*f(2)} = Crze >,
When this equation is integrated, we get for z # 0,
2f(2) = —C1 - (z+1)e % + Co,
and then finally.

1-— (1 -+ 2)672 Cy — (4
2 + 2 :

f(z)=Cr-

z z

A consequence of the above is that if (16) is multiplied by the integrating factor e, then it is possible
by some manipulations to write the equation in the form

d (e d | 4
—— — =0 C\ {0
S el =0 sec\p,
which immediately can be integrated. We have here made a small detour to find the more obvious
integrating factor z # 0, by which the ideas are presented more clearly than if we immediately had
multiplied by the not so obvious factor e*. ¢
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Example 4.9 Given the differential equation
2
19) 1)+ £+ (24 2) 1) 0.

1) Assume that the Laurent series
—+oo
f(z)= Z anz"
n=—oo

is a solution of (19). Find a recursion formula for the coefficients a,,. Then show that a, =0 for
n < -3.

2) Find all Laurent series solutions of (19) and their domains of convergence.

3) Express the Laurent series solutions of (19) by means of elementary functions.

Alternative solution. The singular point is z = 0. Let z # 0. When we multiply by z, it follows
that the equation is equivalent to

0 212 + 4z f(2) + 22 f(2) + 2 f(2)

= (22 + 2 (D)) + (22 () + 202} + 2 H(2)
= {27} 4 2z f) +2H(2)

d2 2 2
= S () + ),

which is a known differential equation in g(z) = 22 f(z). The complete solution is
g(2) = 2°f(2) = c1sinz + 3 cos z for z € C\ {0}.
Finally,

sin z cos z
flz)=c1- = +C2'7 for z € C\ {0}.

Only the zero solution can be extended to all of C.
Standard solution. 1) When we put a formal Laurent series into the differential equation, then
0 = Z n(n —1)a, 2"~ + Z dnanz""t + Z anz"t + Z 2a,2" 1
= Z {nQ —n+4n+2} anz" "+ Z anz" !
= Z {(n+1)(n+2)ay, +a, oy2"""
The identity theorem implies the following recursion formula,

(20) (n+1)(n+2)an + an—2 =0, n € 7.
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If n=-1, then a_3 = 0.

If n=-2, thena_4 = 0.

Then we get by induction,
a, =0 for n < —3.

Finally,

1
Qpto = —( ap for n > —3.

n+3)(n+4)
2) If n = 2p, p € Ny, is even, then it follows from (20) that
(2p +2)(2p + D)agp = —as(p-1)-

When we multiply this equation by (2p)!(—1)P # 0, it follows by a trivial recursion that

(2p + 2)!(—1)pa2p = (2p)!(—1)p_10,2(p,1) == O!(—l)a_2,
hence
(=1)P*t
Q2p = ma—m p € Np.

EXPERIENCE THE POW

FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
RUN EASIER...
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Analogously, if n =2p + 1, p € Ny, is odd, then
(2p +3)(2p + 2)azpt1 = —azp—1 = —A2(p—1)41:

hence by a multiplication by (—1)? - (2p + 1)! # 0, followed by a simple recursion,

(=1)7(2p + 3)lazp1 = (=1) 7 (2{p — 1} + 2) agp-1)1 = - = (=1) - L,
thus
(=Pt
a2p+1 = m a_j.

3) The formal Laurent series solution is for z # 0 given by

+oo
(D)7,

flz) = alz +3 2p+1+“22 @l

+oo
_ (_1);0 2p—1 (_1);0 2p—2
- a_lz(2p+ - taa) )l *
p=0 p=0
1 <X (—1p e 1=
BRI B P
sin z COS z
= a-1- 22 +a_o- 2 )

where we have recognized the sum functions of the series. Clearly, the domain of convergence
is C\ {0}, and only the zero solution can be extended to all of C.

Example 4.10 Given the differential equation
(21) (22 = 2) f"(2) + (42 = 2)f'(2) + 2 f(2) = 0

1) We assume that (21) has a Laurent series solution f(z) = Y.7°° _a,z". Derive the recursion
formula for the coefficients a,.

2) Find all Laurent series solutions of (21) and their domains of convergence.
3) Then express each of the Laurent series solutions of (21) by elementary functions.

4) Ezplain why the solutions of (21) all can be extended to C with the exception of at most two points.
Find the type of singularity of each of these points.

First method. Inspection. The most important task is of course to find all solutions of (21). We
shall here do it by inspection without applying any of the auxiliary questions in the formulation.

The coefficient 22 — z = z(z — 1) of the term of highest order of differentiation f”(z) is zero at the
singular points 0 and 1. Then we reformulate (21) in the following way:

0 = (22=2) f"(2) + (22 = 1)f'(2) + (22 = 1) f'(2) + 2 f(2)

_ di (22— 2) f(2) + (22 = Df(2)} = % {(z*=2) f(2)}
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hence by two integrations.
(22 =2) f(2) =bz—a.
If z e C\ {0, 1}, we get by a decomposition,

7bzfa bz—a a b—a

)= =2 = =2

22—z z2(z—-1) 2z 2-1

where we have trivial analytic extensions if either a = 0 or b = a.
If a # 0, then z = 0 is a simple pole, and if b # a, then z = 1 is a simple pole.

Second method. The standard method.
1) When we by the formal Laurent series into (21), we get
0 = Zn(n —1Dayz" — Zn(n — 1)apz"!
+ Z dna,z" — Z 2 anz" !
+ Z 2a,2"
= Z{n2 —n+4n+2}anz”—Z{nQ—n—i—Qn}anz"*l
= Z(n +1)(n+2)a,z" — Z n(n + 1a,z""
Z(n +1)(n+2)a,z" — Z(n + 1) (n+2)aps12"
= > (n+1)n+2){an —ang1} 2"

It follows from the identity theorem that we have the recursion formula

(n+1)(n+2){an —ant1} =0, n € 2.
Note in particular that
(22) an = an+1 forn € Z\ {-1, -2},
while we have no condition for n = —1 or n = —2 whatsoever.
2) Then solve the recursion formula
(n+1)(n+2){an — ant1} = 0. n € Z.

If n = —1, there is no relationship between a_1 and ag.

If n = —2, there is no relationship between a_- and a_1.
If n > —1, then we get by recursion of (22) that a,, = ag.
If n < —2, then we get by recursion of (22) that a,, = a_s.

Hence, all formal Laurent series solutions of (21) are given by
—+oo +oo 1 1 +oo
J— n __ R . — n
IR ST SE PN yh)
n=-—oo n=2 n=0

and we seemingly have three arbitrary constants of the solution of a linear differential equation
of only second order! However, there is nothing wrong here, which follows when we investigate
the domains of convergence of each series:
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. 1.
e The series >.7% —- is convergent for
z

1
—‘ < 1, i.e. in the open complementary set of the
z
unit disc |z| > 1.
1
e The degenerated Laurent series — is convergent for z € C\ {0}.
z

e The series Y% 2™ is convergent in the open unit disc |2| < 1.

When we compare these results it follows that ag and a_s cannot both be different from zero,
so if we want convergent series solutions, then we must have ag - a_s = 0.

We have the following possibilities:

(@ 1) =0, sec,
0 fe)=a-, ceC\ {o},
@ £(2) =a %=, o <1,
(@) FE) =ar- +a¥i% " 0< <1,
() fle)=a-1 +a ¥l > 1.

This e-book Y o N
ismadewith SETASIGN

SetaPDF h Y 4
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Laurent series solution of differential equations

3) When |z| < 1, then of course

400 1
aoz,z":a(y:, |z] < 1.
n=0

Analogously when |z| > 1,

+o0
1 1 1 1 a_9
a2y —=a 9 — —— =9 —— = ———
7;2” 2 1 2(z—1) z
z

Then these expressions can be put into (c)—(e).

We get by insertion into (d),

1 1
f(Z):a_l';+a0'1TZ, 0<|Z|<1

Insertion into (e) gives

flz) = a1 - ———

1
= (a1 —a_s) =+ (—a_g)  ——, > 1
(@-1—a-z)- —+(-a-2) 7— |2

a_2

z—1

It follows that the general solution has the form by elementary functions,

1
1—2z

)

1

where f(z) at most has the simple poles at z = 0 and z = 1. By either an analytic extension of
f(2), or just by checking the differential equation it follows that this function f(z) is a solution

of (21) everywhere in its domain.
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Example 4.11 Find all Laurent series

a “+o00 “+ 00
FR) ==+ anz" = > an2"
z n=0 n=-—1

(expansion from zo = 0), which are solutions of the differential equation
(23) (2° —2) f"(2) + (42* = 2) f'(2) + 2z f(z) = 0.
Determine the domain of convergence for each of these solutions.

Put g(z) = z - f(2) and express g'(z) explicitly by elementary functions.
Then express all the Laurent series solutions of (23) by means of elementary functions.

First method. INSPECTION. We get by some small manipulations,

0 = ( 2) f'(z) + (42% = 2) f(2) + 22 f(2)
= )%f’(z>+(3z2—1)-f’(z)+(z2—1)%f(z)+2z-f(z)

= T{E )@+ () JE} = (1) ) 1))

23—
23—2’

Then by an integration,

d d C
2 — _— = _— — —1
(z*-1) o (z f(z)) = Cn, dvs. - (2 f(2)) SRR
If |z] < 1, then
1-— 1 —(1 —(1- -2 2
iLOg z =1 ( +Z) ( Z> = = s
dz 1+2 e (1+2)? 1—22 22-1

so we conclude that

2 f(z) = 9Log(l_z) + s,

2 1+2z
and finally,
C; 1 1—=2 Cy
= — —L -
/) 2 z Og<1—i—z)+ z

In general we conclude for the corresponding Laurent series, the derivation of which is postponed
to the next variant, that since the singularities are 0 and —1 and 1, their domain of convergence
is 0 < |z| < 1. For some values of C'; and Cy the domain of convergence may be larger. (Again
the investigation is postponed to the next variant).
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+o00 n

Second method. THE STANDARD METHOD. Assume that f(z) = > '~ | a,2" is a Laurent series
solution in a domain defined by 0 < |z| < R. We get by termwise differentiation in this domain

+oo —+o0
f(z)= Z n<p 2"t and  f(z)= Z n(n — 1a,z""2,
n=-—1 n=-—1

hence by insertion into the differential equation,

0 = (2—2)f"(2)+ (42 = 2) f'(z) + 22 f(2)

+o0 +oo —+o0 “+o0 —+00
= Z n(n—1)a,z" - Z n(n—1)a,z" "1+ Z 4na,z" T — Z 2na, 2"+ Z 2a,2" !
n=-—1 n=-—1 n=-—1 n=-—1 n=-—1
+oo —+o0
= Z {n®+3n+2}a,z"t" — Z n(n+ 1)a,z""*
n=-—1 n=-—1
+oo —+o0
= Z (n+1)(n+2)a,z""" - Z n(n+1)a,z"*
n=-—1 n=+1
+oo +00
= Z (n+1)(n+ 2)a, 2" — Z (n42)(n + 3)an 22"
n=-—1 n=-—1
—+oo
= Z (n+2){(n+Da, — (n+3)ans2} 2"
n=-—1

Since n + 2 # 0 for n > —1, the recursion formula is reduced to

(24) (n+3)ans2 = (n+ 1ay, n>—1,

and we see that there is a leap of 2 in the indices.

If n=2p—1, p € Ny, then it follows from (24) that
(2p+2)agps1 =2p-agp1=---=2-0-a_1 =0,

hence a_; is an indeterminate, and azp4+1 = 0 for p € No.

If n=2p—2,peN, then it follows from (24) that

(2p+ 1)agp = (2p — )agp—2 =--- =1-ay,
hence
Aoy = 2;3_ 1 for n € Ny,

and ag is also arbitrary. Therefore, all possible Laurent series solutions are given by

“+o0 on
a_q z
25 = — g _ 1, e C.
(25) f(2) = = +a°n=02n+1 41, 40
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If a1y =0 and ap = 0, then f(z) = 0, the domain of which is all of C.

If a_y # 0 and ag = 0, then f(z) = E, the domain of which is C\ {0}.
z

If a_1 =0 and ag # 0, then

f(Z) = Qg )
= 2n+1

the domain of which is {z € C| |z| < 1}.

If both a_; # 0 and ag # 0, then the Laurent series is convergent in the open unit disc {z € C |
0 < |z| < 1} with the centrum removed, which we expected, because the differential equation has
the singular points —1, 0 and 1. (These are the zeros of the coefficient 2% — 2 of f”(2)).

If we exclude all the exception cases, it follows in general from (25) that

+oo 22n+1
9(z) =z f(2) = a1 — +ao 1 0<|z] <1,
n=0
hence
™= an ap 1 1
g =0 = L i S ZP
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Complex Funktions Examples c-5 Laurent series solution of differential equations

When |z| < 1, then both 1 — z and 1+ z lie in the domain of the principal logarithm, and we have

Arg(l —z), Arg(1+z2) € }—g, g[

Hence

a a a 1+2
g(z):a_l?OLog(l—z)—ﬁ—?OLog(l—l—z)—a_lJr?OLog( >,

1—=z2
and thus
a_1 ag 1+2 a_1 ap 1—=2
1) z +22 Og(l—z) z 2z Og<1+z)
a_1 ap ap
= —— + — Log(1 — — Log(1 —
L+ 22 Log(1+ 2) — 52 Log(1 - 2),

for 0 < |z] < 1.

Third method. INTUITION. By reading the text of the example we see that g(z) = z f(z) occurs
somewhere as an auxiliary function. This is a latent hint of reformulating the differential equation
as an equation in g(z) instead. We get

9(2) =2 f(2), g(2)=2f(2)+f(2), ¢"(z) =2f"(2) +2f'(2),
hence
0 = (2®=1)2f"(z)+ (42> =2) f'(2) + 22 f(2)
= (z2—1) {zf"(2)+2 f’(z)}+{4z2—2—222+2} fl(2)+2z f(2)
= (2 -1)g"() +2:{z () + f(2)} = (2 = 1) ¢"(2) + 220 (2)
d 2 /
R NTERVE)
It follows immediately that
(2 =1)¢'(z) = C\.

Then we may proceed as in the FIRST METHOD. However, to demonstrate another VARIANT, we

expand 7 ! 5 as a series in the open unit disc |z| < 1 followed by an integration. Then for
—z
2] <1,
Ci =2
! — _ 2n
g(z)__l_zz__clzz ’
n=0
hence
400 1
=z- =Cy—C — <1
o) =2 f) = Ca=Cr Y oo el <,
n=0
and thus

f(z):%—C’+2.O ! P 0<]z] <1
z ! :02n+1 ’ '

We must of course integrate 1 directly (cf. the two previous methods).

P
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5 Isolated boundary points

sin z

Example 5.1 Describe the type of singularity at zo = 0 of the function f(z) = , z€ C\ {0}.

The function f(z) has a removable singularity at zo = 0. In fact, we get by a series expansion that
2 4

. +oo
sinz 1 D™ 5 2z
R D AL N :
1) z z = (2n+1)! : 3! + 5! or z#0

Clearly, the function can be extended analytically to z =0 by f(0) =1, so
sin z

[(z) = :
1, for z =0,

, for z € C\ {0},

is analytic.
Example 5.2 Describe the type of singularity at zg = 0 of the function f(z) = exp (1z?), z € C\{0}.

It follows by a Laurent series expansion from zy = 0 that

1y X1, .00 X101
n=0 " n=0

1
Since a_g, = — # 0 for all n € Ny, i.e. for infinitely many negative indices, the singularity is an
n

essential singularity.
ALTERNATIVELY we choose the two sequences

?
2t ==—0 forn— +oo, and  z!=——0 forn— +oo.

n n

When we take the limit n — 400 we get respectively,

f(zl) =exp (nz) — 00 and f(z)) =exp (7712) = 0.

n

Thus we have two different limit values for two different sequences, both converging towards the
singularity, and we conclude that we have an essential singularity.

Example 5.3 Describe the singularities of the function

1

f(z):SinZ, for z€ C\ {pr | p e Z}.

It follows from

d
lim — sinz = lim cosz = (—1) #0 for every p € Z,
z—pm dz z—pm
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1
that the denominator sin z has simple zeros for z = pm, p € Z, i.e. f(z) = —— has simple poles at

the same points. Notice that since pr — oo for p — 400, we do not have oo as an isolated singularity
of f(2).
Example 5.4 Indicate the order of the pole at z =0 of

(sinz +sinh z — 22)_2.

Determining the order of the pole at z = 0 of
(sinz +sinh z — 22) 2%

is the same as determining the order of the zero at z = 0 of
(sin z 4 sinh z — 22)2.

It follows by a series expansion that

23 25 23 25
sinz +sinhz — 2z = {z—§+§+~--}+{z+§+§+--~}—2z
22° 1
= = 4...== 14---
ST e Uk

so f(z) =sinz + sinh z — 2z has a zero of order five at z = 0. Hence we conclude that
(sin z + sinh z — 22) 7%,

has a pole of order 2-5 =10 at z = 0.

Example 5.5 Find the type of the singular points in C of

(@) f(z) = - ) 2

b .
er —1 sin” z

(a) The denominator is ¢(z) =e* —1 =0 for z =2ipm, p € Z, and
P)=e=1 for z =2ipmw, p€Z.
Hence we conclude that p(z) has simple zeros for z = 2ipn, p € Z, i.e.
L
p(z) er—1
has simple poles for z = 2ipm, p € Z.

(b) Since sinz = 0 for z = pm, p € Z, where all these are simple zeros, we conclude that

2
1. z=0 is a simple pole of M;

sin” z

)2
2. z=m is a removable singularity of z(z 27r) ;
sin“ z
2(z — m)?

3. z=pmn, peZ\{0, 1}, are double poles of ———.

sin® z
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Example 5.6 Indicate the type of the singulary points in C of

22 -1 1 2%

2 Oo—m  © g

(a) The function

22—1_ 2
2241 z224+1

has simple poles for z = =+i.
(b) The denominator has the simple zeros z = —1, 0, 1, so z = —1, 0, 1, are simple poles of

1
z— 23

flz) =

(c) Tt follows from

1

_ 4 4 _

that f(z) has the simple poles

-
5

Sl
s~

i
V2

Sl

)
+_7
2 V2

Sl

360°
thinking.
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Example 5.7 Indicate the type of the singular points in C of

1 22 +5
2 (224 4)% ®) (4 =1)(z+1)

(a) Clearly, z = 0 is a simple pole, and z = £2i are double poles.
(b) The function

2 +5

f(z) = 1) (z+1)

has the three simple poles 1, ¢ and —i, and the double pole —1.

Example 5.8 Given

z—1

F(2) = exp <L> for z € C\ {1}.

Indicate the type of the singularity at zo = 1, and find res(F(z);1).

Describe for every constant o > 0 the set of points z € C\ {1}, for which |F(z)] = «. Show in

particular on a figure the set

{ze CA\ {1} [[F(?)] = o}

for representative values of o > 0.

Prove by choosing oo > 0 conveniently that F(z) is bounded for |z| < 1, and indicate the smallest

constant C' > 0, for which

|F(z)| <C  forl|z] < 1.

It follows by a series expansion from zg = 1 that

(26) F(z)—exp(i) ::%(zL)n_i%ﬁ zeC\{1}.

n=

Then by the classification of the isolated singularities,
a_p=— # for all n € Ny,
n!

and we are in case III, i.e. zg = 1 is an essential singularity.
It follows from the series expansion (26) that

res(F(z);1) =a_y = = 1.
If z=241iy # 1, then
1 1 r—1 . y

c=1 a—1tiy @-1P+y @1y
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hence

IF(2)] = exp (m{%}) — oxp <m) -

Thus the equation |F(z)| = « for & > 0 and z # 1 can be written

z—1
exp <m> = (z,y) # (1,0),
which is equivalent to

r—1

) e

=lna, lnaeR, (x,y)#(1,0).
If « =1, then In = 0, hence = 1. We have furthermore required that (z,y) # (1,0), so y # 0, and
we end up with two half lines.

If a € Ry \ {1}, then Ina # 0. We get by a rearrangement of (27) that

(1Pt = @—1), () £ (L0),

" lna

hence

(x—1)> -2 ! (x—1)+ ! 2—|— = Ly’
2In« 2In« y = 2Ina

for (z,y) # (1,0), which we also write as

(x_l—ﬁ)%ﬁ: {@} a# 1 (ny) # (L0

This is a circle where the point (1,0) has been removed with centrum and radius respectively,

1 1
(1 T n@?)’ 0) awd e

where one must not forget the numerical sign of the radius > 0.

The natural extensions of all these circles are all passing through the singular point (1,0). Hence,
the family of curves can also be described as all circles in the plane through the point (1,0) and of
centrum on the z-axis, supplied with the vertical line x = 1, where we remove the common point (1,0)
form all curves.

If
1
1 =0
T =
i.e. In (a?) = —1, or in other words,
1
a= 7
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4
.

Figure 7: Some of the level curves |F(2)| = a.

we precisely obtain the unit circle (with the exception of the singular point (1,0)).

1
Ifa< %, then
9 1
1n(a ) <lng = —1,
hence |ln (042)’ > 1, and the radius is

1

e —— 1
" )] <

and the x-coordinate of the centrum is

1+ 0,1][.

# e}
In (a?)
When « runs through the interval

1
I<a< —

e

this corresponds to that we run through all circles of the considered type (with the exception of the
point (1,0)) contained in the unit disc.

It follows that every z, |z] < 1 in the open unit disc lies on precisely one of the curves
[F(2)| = a,

corresponding to a uniquely determined

aG]O,\}E[.

We conclude that C =

1
exp P

is the smallest constant, for which

-

[F(2)] =

‘SC’ for |z| < 1,
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05

1
Figure 8: The curves |F(a)| = a for 0 < a < NG fill in all of the open unit disc.
hence
|F(2)] = |e ! < ! for |z| < 1
= lexp | — — .
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Remark 5.1 We should of course compare this result with Picard’s theorem which says that the

1
function exp < —1) takes on any value of C\ {0} in any neighbourhood of zy = 1. Nevertheless, it
z

is seen that the function is limited at any point in a neighbourhood of zy = 1, which also lies in the
open unit disc. ¢

Example 5.9 Given the Laurent series

+o0 on
n=-—oo

Find the domain of convergence € and the sum function f of this series.
Then find the value of the complex line integral

j{zll f(z)dz.

We start by writing the Laurent series as a sum of two geometric series:

Y G) T er-X @S (e) 260 E=(x)

2z
n=-—00 n= n=—oo n=0 m=1 n=0

z 1
The conditions of convergence are ‘ 3 ‘ < land ’2— ‘ < 1, so we conclude that the domain of convergence
z

is

1
Q:{ze(c ’ §<|z|<2}.

S -

Figure 9: The domain €2 lies between the two circles, where the singularities % and 2 have been marked
and with the path of integration |z| = 1 indicated.

The sum function is in € given by expansions of the geometric series given by

£2) LN 2, 1 3z

zZ) = —_— = = .

1-%2 20, 1 " 2-2"2:-1 (2-2)(22-1)
2 2z
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The value of the line integral is obtained by Laurent’s theorem, because the coefficient of 27! is %,

and because we integrate along a closed simple curve in €2, which separates the two boundary circles,
}1{ f(z2)dz =27i-a_1 = mi.
|z|=1

ALTERNATIVELY we may apply Cauchy’s integral theorem and integral formula:

2 1 1
dz = d 2 _dz=0+427i- - =mi.
%Zl_lf(z) 2z sz|_12_z z+ﬁ2|_1z_% z + 27i 5 =

Example 5.10 Given

2t exp(1/2)

1(z) = 2241

Find the singularities of f(z) and indicate their type.
Then compute the line integral

ﬁj@ﬂa

where C is the circle |z — 2i| = v/2 of positive direction.

It follows from

1
exp(l/z) _ 5, P

=07 ay
1+ (-
z
that the singularities are
z =1, pole of first order,
z = —1, pole of first order,
z = 00, pole of second order,
z =0, essential singularity.

The given circle surrounds precisely one of the singularities. We compute the integral by the residue
theorem. The pole at z = 7 is simple, so

1
4
zZre —
sz 1

res(f(2);1) = — =5 et

z=1

and hence

1. .
% f()dz=2mi- —e " =me " =m(cosl —isinl).
c 21
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5 05 0 05 1 15

Figure 10: The curve C with its direction and with the singularity z = 7 inside.

Example 5.11 Given the functions

1 sin(7z)

f(z) = m and 9(z) = m

1) Indicate the isolated singularities and their types of f and g in C.

2) Find the Laurent series of f in the annulus 0 < |z| < 2 and in the set 2 < |z|.

b
3) Find the terms L hag+arz of the Laurent series of g in the annulus 0 < |z| < 2.
z

4) Ezplain why the function h(z) = z g(z) can be represented by a power series of radius of convergence
R = +00. (One shall not find the general term of the power series).

1) The function

1
f(Z)—m

is a rational function with a double pole at z = 0 and a simple pole at z = 2 (and also a zero of
order 3 atoo).

The function

sin(7z)
22(2—2)

9(z) = = sin(mz) - f(2)

has the same (finite) singularities as f(z). However, their types are different, because z = 0 and
z = 2 are both simple zeros of the numerator. This implies that z = 0 is a simple pole of g(z), and
that z = 2 is a removable singularity of g(z).
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2) In the annulus 0 < |z| < 2, we get the Laurent series expansion

“+o0
1 1 1 1 1
1) = z2(2—z)_222.1_f_2z222_”z
2 n=0
+oo 1 +oo 1
— E —2_§
= Oﬁzn = QWZTI, fOI'O<|Z|<27

where we have used that ’g‘ < 1. It follows that

for n > -2, and 0 otherwise.

I'joined MITAS because
I wanted real responsibility

Vil Q moa

& el et BLT
BB o T
e T o

b

The Graduate Programme
for Engineers and Geoscientists

www.discovermitas.com

I was a construction

SUPErvisor in
the North Sea
advising and

helping foremen

solve problems
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Complex Funktions Examples c-5 Isolated boundary points

If instead |z| > 2, then

+oo +oo
1 1 1 1 1 1
f2) = H5—=-F5 ——5=- Zgn._:,zw.
_ 2 3 n n+3
z (2 Z) o 1— - z n=0 z n=0 ?
z
400 1
= —22"_3-—, for |z| > 2,
ZTL
n=3
2
because |—| < 1. Hence,
z
a_y =b, =—2""3 forn >3, and 0 otherwise.

3) Since g(z) has a simple pole at z = 0, the Laurent series of g(z) is in the domain 0 < |z| < 2 given
by

) b 11111 L ss,
z — J— a e — - - — — e Tz — — T e
g 0Tz 222 4z 6 N

I3
(0¢]

hence
b1+ n T 1+7T+ T
—4agtaz=—-—-+— — — — 32z
P R I D

4) The function

sin(7z)
z(z — 2)

h(z) = zg9(z) =

has the singularities at z = 0 and z = 2, and they can both be removed. Hence we can extend h(z)
analytically to all of C, so the Taylor series is convergent in all of C. Note that the sum function
of the Taylor series is rather complicated. so that is why it is not requested here. The extension
to all of C is

sin(mz)
m fOI‘ZGC\{O, 2},
H(z) = g for z =0,
—g for z = —2.

94
Download free eBooks at bookboon.com



Complex Funktions Examples c-5 Isolated boundary points

Example 5.12 Given the function

22 —1

1(z) = cos(mz) +1°

1) Find all the isolated singularities of f in C, and indicate their type.

2) Find the radius of convergence of the Maclaurin series of f without determining the coefficients.
Find the coefficients ag, ay, as and the Maclaurin series of f.

1) The isolated singularities are given by the equation
cos(mz) +1=0, le.mz=m+2pw, peE,
thus
zp, =2p+1, pE L.

These are all at most poles of second order.
If p =0, then zy = 1 is also a zero of the numerator.

If p=—1, then z_; = —1 is also a zero of the numerator.
We conclude that zp = 1 and z_; = —1 are simple poles.
Since

d2
@ {COS(ﬂ'Z) + 1}\z:zp 7é 0,

any other singularity must be a pole of second order.

2) The closest singularities of 0, are zg = 1 and z_; = —1. They both have the distance 1 to 0, so
the radius of convergence is R = 1.

If |z| < 1, then
22 -1 9
f(Z)—W—ao-FMZ-FazZ +

and we conclude immediately that a; = 0, because f(z) is an even function. If one does not see
this, we may still perform the following calculation, where we multiply by the denominator,

2 2
z2—1:{a0+a1z+azz2+~--}{2—%22—1—--}:2ao+2a1z—|—<2a2—%ao>z2+~--.

Then by identification of the coefficients,

2 w2

1
Cl():—i, a1:0, a2:Ia0:—§.
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Complex Funktions Examples c-5

6 The conditions around the point at oo

COS z

Example 6.1 Indicate the type of the singular points i C U {0} of
2 1
T R b
(a) EEE PR R ()Z_z
2

(a) The function
2 1 .
f(Z) = m + m +e

has a double pole at z = 3 and an essential singularity at oco.

(b) The function

cosz
f(z) = ™
7 — —
2
. . ™
has a removable singularity at z = —, where
T coS 2 —sinz
F(5) = tim 222 = Im — -1,
2 z2—% Z — b z2—Z

and an essential singularity at oo.

Example 6.2 Indicate the type of the singular points in C U {oco} of
sin 2
b) —5

(a) sinz+ sin Pt

(a) The function

f(z) =sinz + sin —
z

has only essential singularities at 0 and at co.

(b) The function

f(Z) - 23

_sinz
has a double pole (notice, not a triple pole) at z=0, and an essential singularity at oc. In fact,
sin z has a simple zero at z = 0, which will lower the order of the pole by 1.
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Example 6.3 Indicate the type of the singular points in C U {oo} of
1 1—-cosz
(@ —, (0 ——

z
COS —
z

(a) The function

f2)=—=

COS —
z

has simple poles for

1 ™ s
— =~ (2p+1
S =g tpr=5 2t
i.e. for
2
) SV
Pon(2p+1) P

~
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We note that 0 is not an isolated singularity, because z,, — 0 for p — 400, and for p — —o0, i.e.

0 is an essential (non-isolated) singularity.

It follows from

that oo is a removable singularity.
(b) Here 1 — cos z has a zero of second order at z = 0, so the function

1—cosz

flz) =

26

has a fourfold pole at z = 0.
Finally, oo is an essential singularity.

Example 6.4 Indicate the type of the singular points in C U {oo} of

CoS z e* —1

(a) ot (b) o)

(a) We see that z = 0 is a simple pole of

Ccos z

)
z

and furthermore that oo is an essential singularity.
(b) The function

e —1
z(z—1)

has a removable singularity at z = 0, a simple pole at z = 1, and an essential singularity at z = oo.

Example 6.5 Indicate the type of the singular points in C U {oo} of

25

, b ecoshz.
23+ 2 (%)

(a)
(a) Tt is immediately seen that
5 5 5 2

z z z z
23 4z

C2(2241) z2(z—d)(z+1d) 1_’_2%

has a removable singularity at z = 0, simple poles at z = £i, and a double pole at co.
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(b) The function e®*"# has only an essential singularity at oco.

Example 6.6 Indicate the type of the singular points in C U {oo} of

e® 2241
(b) :

14 22’ e*

(a)

(a) It follows immediately that z = 44 are simple poles and that z = oo is an essential singularity.

(b) The function

+oo  \m 400
(z2+1)e_zz(l+z2)§_:o(nl!) z”zl—z—&—;(—l)"{%—i—ﬁ}z"

has an essential singularity at co. It does not have any other singularity.

Example 6.7 Indicate the type of the singular points in C U {oco} of
45

(b) ma

—Zz

(a) ze 7, (¢) cosz—%.

(a) The only singularity of the function ze™# is the essential singularity at co.
(b) The function

2° 23

T

has a double pole at z = 1 and a triple pole at cc.

(c) The function

cotz — —
z

has simple poles at z = p7, p € Z\ {0}. Since pm — oo for p — +o00, we see that oo is an essential
(non-isolated) singularity.
The singularity at z = 0 requires a closer investigation:

COS 2 1 Z-cosz —sinz z{l—%z2+o(22)}—{z—éz?’—i-o(z?’)}

cotz—; T sinz oz z-sinz - 22 (14 o(2))
3
_€+0(Z3) z
22(1 + 0(z)) =6 o(z),

and we conclude that the singularity at z = 0 is removable.
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Example 6.8 Indicate the type of the singular points in C U {oo} of
1 1 e?

(@ O

e*—1 =z (1—e2)

(a) The function

1 1
e —1 =z

has the simple poles for z =

2pmi, p € Z\ {0}. We see that oo is a (non-isolated) essential
singularity.

The singularity at z = 0 requires a closer investigation. It follows by a series expansion that

1 I zfez—|—1_1+z—{1+z+%z2+0(22)}_—%22—1—0(2'2)
e*—1 2z z(er—1) {1+ z4o0(z) — 1} 224 0(22)
1 1+0(1)
2 1+0(1)

and we conclude that the singularity at z = 0 is removable.
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Complex Funktions Examples c-5 The conditions around the point at oo

(b) We have a double pole at z = 0, which e.g. can be seen by a Taylor expansion of the denominator.
We have simple poles for z = 2pwi, p € Z\ {0}.

The singularity at oo is not isolated, though the limit of a sequence of poles, hence oo is an essential
(non-isolated) singularity.

Example 6.9 Indicate the type of the singular points in C U {co} of

1—¢? 1
(a) 1+e’ (b) zexp >
(a) The function
l—e* 2
1+es 1+e?

has simple poles at z = i(2p + 1), p € Z, and a non-isolated essential singularity at co.
(b) It follows from
“+o0
1 1 1
Z exp ; = Z

m n—1 ’
n=0

that the singularity at z = 0 is essential.
It follows from

1
exp— — 1 for z — oo,
z

1
that oo is a simple pole of z - exp —.
z

Example 6.10 Find all zeros and poles in C U {oco} for

221 z—1
_ b)) ——.
@ = O

z

(a) The simple zeros are 1 and —1, and the simple poles are ¢ and —i.

(b) The zeros are 1 (simple) and oo (double), and the three simple poles are

V3
2 i

~1, +i

oI5

DO | =
N| —
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Example 6.11 Find all zeros and poles in C U {oo} of

(z—=1)2%(z+2)3 1
(a) — ) (b) (z—1)3

z

(a) The zeros are

and the poles are
0, oo, o0, 00, O©Q.

Here, 1 is a double zero, and —2 is a triple zero. Furthermore, 0 is a simple pole, and oo is a
fourfold pole.

(b) It follows by inspection that oo is a triple zero, and that 1 is a triple pole.

Example 6.12 Given the function

f@):z3am(%>.

1) Find in the domain |z| > 0 the Laurent series

—+oo —+oo
Sy g

g An 2
n=1 n=0

of the function f.
Indicate the coefficients a,, and b,,.

2) Indicate the isolated singularities of f in C = C U {oo} and their type.
3) Find the value of the integral

fg_l f(2) dz,

and the residuum of f at co.

1) We get by insertion into the series of cosw,
+oo
1 (="
_ .3 S
f(z) =2z cos (z) =z 7;) @n)!

It follows that

N, 1 =X 1
<;> =z *§Z+;mm for |Z‘>0

1
a1:—§> az =1, an:OfOI"nENO\{L?)}a
and
an _ O for ne NO b2n+1 i ﬂ fOr nec NO
: (2n + )]
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_ 1
2) The isolated singularities in C = C U {oo} are an essential singularity at 0, and because cos (—) =
z

cos0 =1 for z — oo, a pole of order 3 at occ.

3) Then by Cauchy’s residue theorem,

% f(z)dz =2mires(f;0) =2mi-a_; = 2m =D —2mires(f;00),
L 12
SO
(F:00) = —res(f0) = 1 =~
res(f; 00) = —res(f;0) = — 5 = — 5.
ji
1 ’\
, " o griendty
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