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Introduction

Introduction

This is the fourth book containing examples from the Theory of Complex Functions. In this volume
we shall only consider complex power series and their relationship to the general theory, and finally
the technique of solving linear differential equations with polynomial coefficients by means of a power
series.

Even if I have tried to be careful about this text, it is impossible to avoid errors, in particular in the
first edition. It is my hope that the reader will show some understanding of my situation.

Leif Mejlbro
11th June 2008
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1 Some simple theoretical results concerning power series

Every analytic function f(z) defined in an open domain Ω can locally be described by a convergent
power series. Thus, if z0 ∈ Ω is an interior point, and rz0 denotes the distance from z0 to the boundary
of Ω, then we have the alternative description

f(z) =
+∞∑
n=0

an (z − z0) , for |z − z0| < rz0 ,

where the coefficients an, n ∈ N0 are uniquely determined corresponding to f(z) and the point of
expansion z0.

The two descriptions complement each other. They have both their advantages and their drawbacks.

First consider complex series without any connection to analytic functions. For given z0 ∈ C and a
given complex sequence {an} such a series is formally given by

+∞∑
n=0

an (z − z0)
n

.

We define the number of convergence λ by

0 ≤ λ := lim sup
n→+∞

n
√
|an| ≤ +∞.

Some simple theoretical results concerning power series
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Then

Theorem 1.1 The power series

+∞∑
n=0

an (z − z0)
n

is absolutely convergent for every z ∈ C fulfilling

λ |z − z0| < 1, thus for |z − z0| <
1
λ

:= R,

where R denotes the radius of convergence, and it is divergent for every z ∈ C, for which λ |z − z0| > 1.

One shall always be more careful, when one considers the points on the circle λ |z − z0| = 1, because
almost everything may occur here. concerning convergence/divergence. There exist examples of series
being absolute convergent, being divergent everywhere, or conditionally convergent in some points
and divergent in all others, and finally, there even exist examples in which the series is conditionally
convergent everywhere on the circle of radius R. Notice, however, that it the series is absolutely
convergent in just one point on the circle of convergence, then it is absolutely convergent everywhere.
Hence, the advice is to avoid this set, unless one is explicitly asked to investigate it.

There are three main types of power series:

1) If λ = +∞, then the radius of convergence is R = 0. In this case the series is only convergent
for z = z0, and since a point never is an open domain, it does not make sense in this case to talk
about an analytic function. Hence, this case is not at all interesting in this connection, and we
shall avoid it.

2) If 0 < λ < +∞, then the radius of convergence is finite, R = 1/λ. The prototype of such series is
the geometric series,

1
1 − z

=
+∞∑
n=0

zn, |z| < 1,

with the point of expansion z0 = 0. We note that the distance between z0 = 0 and z = 1, where
the denominator is zero, is precisely the radius of convergence 1.

In a sense all power series of finite positive radius of convergence is a variant of the geometric
series.

3) If λ = 0, then the radius of convergence is R = +∞, and the series is convergent in C. The
prototype for such series is the exponential series,

exp z = ez =
+∞∑
n=0

1
n!

zn, z ∈ C.

If one can stretch one’s imagination one may say that every series of infinite radius of convergence
in some sense is very much like the exponential series.

Concerning rules of computation for series one must always be very careful to have the same point of
expansion z0 for all the series involved. This is typically chosen as z0 = 0, so one hardly discovers that
one may get a problem here. Furthermore, they shall all be convergent in the same neighbourhood of
z0.

Some simple theoretical results concerning power series
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Theorem 1.2 Choose for convenience z0 = 0. Assume that

f(z) =
+∞∑
n=0

anzn and g(z) =
+∞∑
n=0

bnzn,

are two series, both convergent for |z| < r. Then f(z) ± g(z) and f(z) · g(z) also have convergent
power series expansions, which (at least) are convergent in the same disc |z| < r. Furthermore, they
are given by

(f ±g)(z) := f(z)±g(z) =
+∞∑
n=0

{an ± bn} zn, and (fg)(z) := f(z)g(z) =
+∞∑
n=0

cnzn, resp.

where we by the Cauchy multiplication define

cn =
n∑

k=0

akbn−k, n ∈ N0.

We only know that we have convergence in the original domain |z| < 1. However, if we roughly
speaking, remove a singularity for e.g. f +g or for fġ, then we may get a larger radius of convergence.
It is left to the reader to go through the examples

f(z) = −g(z) =
1

1 − z
and f(z) + g(z),

and

f(z) =
1

1 − z
and g(z) = 1 − z og f(z) · g(z),

where the radii of convergence become bigger than for f(z) or g(z). The readers who have just started
on the topic of Complex Functions are advised to avoid the Cauchy multiplication. Without some
experience one usually makes lots of errors, and the method will only be necessary in very rare cases.

One of the main results concerning power series is

Theorem 1.3 Given a power series of radius of convergence r > 0 and point of expansion z0. Then
the sum function

f(z) =
+∞∑
n=0

an (z − z0)
n for |z − z0| < r,

is an analytic function. Its derivative is obtained by termwise differentiation,

f ′(z) =
+∞∑
n=0

nan (z − z0)
n−1 for |z − z0| < r.

It follows by iterating the latter expression that the series, an hence also the analytic function itself, is
infinitely often differentiable in its open domain of convergence, and that one obtains all its derivatives
by termwise differentiation, i.e. by differentiating under the sum.

By differentiating n times and then putting z = z0, it follows that

f (n) (z0) = n! an, dvs. an =
1
n!

f (n) (z0) ,

thus

Some simple theoretical results concerning power series
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Theorem 1.4 Let f(z) be the sum of a power series of point of expansion z0 and radius of convergence
r > 0. Then f(z) is equal to its Taylor series expanded from z0,

f(z) =
+∞∑
n=0

1
n!

f (n) (z0) · (z − z0)
n for |z − z0| < r.

This theorem implies the important

Theorem 1.5 The identity theorem. If two power series

+∞∑
n=0

an (z − z0)
n and

+∞∑
n=0

An (z − z0)
n

,

of the same point of expansion z0, are convergent and equal for |z − z0| < r, where r > 0, then
an = An for every n ∈ N0, and the two series have the same radius of convergence.

We have so far introduced two parallel theories, partly the analytic functions as continuous differen-
tiable functions in the complex variable z, and partly the analytic functions as the sums of a convergent
series. We shall now unite these two theories.

Theorem 1.6 Assume that Ω is an open domain, and let f : Ω → C be analytic. Given any z0 ∈ Ω,
the Taylor series of f with z0 as point of expansion, is convergent in (at least) the largest open disc
of centrum z0 contained in Ω. Furthermore, in this disc,

f(z) =
+∞∑
n=0

1
n!

f (n) (z0) · (z − z0)
n

.

In other words: If we start with a convergent series, then it is equal to the Taylor series from the
chosen point of expansion of the analytic sum. Conversely, if we start with an analytic function f(z),
then the corresponding Taylor series of point of expansion z0 ∈ Ω is precisely the series with the sum
f(z).

We assume again that f(z) is analytic in an open domain Ω, and we let z0 ∈ Ω. We call z0 a zero of
order n for f(z), if

f (j) (z0) = 0 for j = 0, 1, . . . , n − 1 and f (n) (z0) �= 0.

This definition is supported by the fact that if z0 is a zero of order n, then the Taylor series can be
written

f(z) =
+∞∑
j=n

aj (z − z0)
j = (z − z0)

n
+∞∑
j=0

an+j (z − z0)
j
.

Theorem 1.7 Assume that f : Ω → C is analytic and not the zero function. Then, to every z ∈ Ω
there exists an n = n (z0) ∈ N0, such that f (n) (z0) �= 0.
Every zero z0 for an analytic function, which is not identically zero, is isolated.

Contrary to the case in the real analysis it is not possible to have curves in the complex plane, on which
the complex function f(z) is zero, unless it is identically zero. Note, however, that it is still possible
for its real or imaginary parts to be zero on some curves. This is important for the applications,
because this can be used in practice.

A consequence of the theorem above is

Some simple theoretical results concerning power series
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Theorem 1.8 The identity theorem. Assume that both f : Ω → C and g : Ω → C are analytic in
the open domain Ω. If the set {z ∈ Ω | f(z) = g(z)} has an accumulation point in Ω, then f(z) = g(z)
everywhere in Ω.

We shall finally mention a strange, and at the same time important property of the non-constant
analytic functions f : Ω → C. If Ω is open, then the absolute value |f(z)| cannot attain its maximum
in an interior point of Ω:

Theorem 1.9 The maximum principle. Assume that f : Ω → C is analytic in an open domain Ω.
If |f(z)| has a local maximum at an inner point z0 ∈ Ω, then f(z) is constant in Ω.

Of course, we also have a minimum principle, but this is more complicated:

Theorem 1.10 The minimum principle. Assume that the analytic function f : Ω → C is not a
constant in the open domain Ω. If |f(z)| has a local minimum at an interior point z0 ∈ Ω, then
f (z0) = 0.

The maximum principle does not hold for unbounded domains. There exists, however, a useful version

Theorem 1.11 Phragmén-Lindelöf’s theorem. Assume that f(z) is analytic in the right half
plane Re z > 0, and assume further that f(z) can be extended continuously and bounded to the
boundary, i.e. |f(i y)| ≤ M on the imaginary axis. Furthermore, assume that we can find constants
a < 1 and K > 0, such that we have the estimate

|f(z)| < K · exp (ra) , for Re z ≥ 0, hvor z = r eiθ.

Then, everywhere in the right half plane,

|f(z)| ≤ M, for Re z ≥ 0.

There exist actually some practical applications of Phragmén-Lindelöf’s theorem in the technical
literature.

Finally, we mention the following theorem, which again shows that it is a very exclusive property of
a function being analytic.

Theorem 1.12 Schwarz’s lemma. Assume that f : B(a,R) → C is analytic and f(a) = 0 and
|f(z)| ≤ M for every z ∈ B(a,R), i.e. in the open disc of centrum a and radius R. Then we have the
estimate,

(1) |f(z)| ≤ M

R
|z − a| for ethvert z ∈ B(a,R).

If we have equality at just one point of z ∈ B(a,R) \ {a} in (1), then we have equality everywhere in
(1), and there exists a constant θ, such that

f(z) = eiθ · M

R
(z − a), for every z ∈ B(a,R).

Some simple theoretical results concerning power series
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2 Simple Fourier series in the Theory of Complex Functions

It follows from the definition that exp(inθ) has the period 2π/n. Since also

cos nθ =
1
2
{
einθ + e−inθ

}
og sinnθ =

1
2i
{
einθ − e−inθ

}
,

it follows that every piecewise continuous function ϕ( theta), θ ∈ R, of period 2π also has a complex
Fourier series expansion,

(2) ϕ(θ) ∼
+∞∑

n=−∞
cn einθ,

where it can be proved that

cn =
1
2π

∫ π

−π

ϕ(θ) e−inθ dθ, for every n ∈ Z.

We note here with regards to the introduction of the Laurent series in Complex Functions c-5 that it
is quite natural that the summation of (2) is extended to all of Z, i.e. also to the negative integers.

Simple Fourier series in the Theory of Complex Functions
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Here we shall only demonstrate the connection with the analytic functions. Assume that f(z) is an
analytic function in a neighbourhood of 0 with the power series expansion (which exists)

f(z) =
+∞∑
n=0

an zn, for |z| < �.

If we here use polar coordinates, z = r eiθ, then we get for every fixed r ∈ ]0, �[ a Fourier series of the
function ϕ(θ) given by

ϕ(θ) := f
(
r eiθ

)
=

+∞∑
n=0

{an rn} einθ,

thus of the structure (2) for

cn = an rn for n ∈ N0 and cn = 0 for n ∈ Z−.

When we apply this technique on the analytic function ez, we get

ez =
+∞∑
n=0

rn

n!
cos nθ + i

+∞∑
n=0

rn

n!
sinnθ,

and since also ez = ex (cos y + i sin y), it follows by another insertion and then a separation of the real
and the imaginary parts that

er cos θ cos(r sin θ) =
+∞∑
n=0

rn

n!
cos nθ, and er cos θ sin(r sin θ) =

+∞∑
n=0

rn

n!
sinnθ.

When f(z) = 1/(1 − z),|z| < 1, is treated in the same way, we obtain after some computation the
following important formulæ

1 − r cos θ

1 + r2 − 2r cos θ
=

+∞∑
n=0

rn cos nθ, og
r sin θ

1 + r2 − 2r cos θ
=

+∞∑
n=0

rn sinnθ.

Finally, it is easy to derive

Theorem 2.1 Parseval’s formula. Assume that

f(z) =
+∞∑
n=0

an zn, and g(z) =
+∞∑
n=0

bn zn,

are analytic functions for |z| < �. By using polar coordinates, z = r einθ, it follows for every fixed
r ∈ ]0, �[ that

1
2π

∫ 2π

0

f
(
r eiθ

)
g (r eiθ) dθ =

+∞∑
n=0

an bn r2n.

In particular, if we here choose g(z) = f(z), then

1
2π

∫ 2π

0

∣∣f (r eiθ
)∣∣2 dθ =

+∞∑
n=0

|an|2 r2n.

Simple Fourier series in the Theory of Complex Functions
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3 Power series

Example 3.1 Give (without proof) examples of the various possible forms of convergence on the
boundary of the domain of convergence.

We choose the point of expansion z0 = 0 and the radius of convergence � = 1, thus the series shall all
be convergent for |z| < 1, while we are focussing on their behaviour on the circle |z| = 1.

1) The series
+∞∑
n=1

1
n2

zn, |z| < 1,

is absolutely convergent for |z| = 1.

2) The series
+∞∑
n=1

zn, |z| < 1,

is divergent for every z on the boundary, |z| = 1.

3) The series
+∞∑
n=1

1
n

zn, |z| < 1,

is divergent for z = 1 and conditionally convergent for every z �= 1 on the boundary |z| = 1.

4) Let [
√

n] denote the integer part of
√

n, i.e. the largest integer N ∈ Z, fulfilling N ≤ √
n. It is

possible to prove, though far from easy, that the series
+∞∑
n=1

1
n
· (−1)[

√
n] zn, |z| < 1,

is conditionally convergent for every z on the unit circle |z| = 1.

Example 3.2 Find the radius of convergence for each of the series

(a)
+∞∑
n=0

2nzn, (b)
+∞∑
n=0

n2zn, (c)
+∞∑
n=1

2nz2n

n2 + n
.

(a) It follows from cn = 2n > 0 that

lim
n→+∞

∣∣∣∣ cn

cn+1

∣∣∣∣ = lim
n→+∞

2n

2n+1
=

1
2
,

or alternatively,

lim
n→+∞

1
n
√|cn|

= lim
n→+∞

1
n
√

2n
=

1
2
.

The radius of convergence is
1
2
.

Power series
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Remark 3.1 The series is convergent for |z| <
1
2

with the sum

+∞∑
n=0

2nzn =
+∞∑
n=0

(2z)n =
1

1 − 2z
.

Since 2nzn does not converge towards 0 for n → +∞, when |z| ≥ 1
2
, the series is divergent for

|z| ≥ 1
2
. ♦

(b) It follows from cn = n2 > 0 that

lim
n→+∞

∣∣∣∣ cn

cn+1

∣∣∣∣ = lim
n→+∞

n2

(n + 1)2
= lim

n→+∞
1(

1 +
1
n

)2 = 1,

or alternatively,

lim
n→+∞

1
n
√|cn|

= lim
n→+∞

(
1

n
√

n

)2

= 1.

The radius of convergence is 1, and the series is convergent for |z| < 1. Since n2zn → ∞ for
n → +∞, when |z| ≥ 1, the series is divergent for |z| ≥ 1.

Power series
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Remark 3.2 If |z| < 1, then it follows by termwise differentiation that

g(z) =
1

1 − z
=

+∞∑
n=0

zn,

g′(z) =
1

(1 − z)2
=

+∞∑
n=0

(n + 1)zn,

g′′(z) =
2

(1 − z)3
=

+∞∑
n=0

(n + 2)(n + 1)zn.

Since

n2 = (n + 2)(n + 1) − 3(n + 1) + 1,

it follows that the sum for |z| < 1 is given by

f(z) =
+∞∑
n=0

n2zn =
+∞∑
n=0

(n+2)(n+1)zn − 3
+∞∑
n=0

(n+1)zn +
+∞∑
n=0

zn

= g′′(z) − 3g′(z) + g(z) =
2

(1 − z)3
− 3

(1 − z)2
+

1
1 − z

=
z(z + 1)
(1 − z)3

. ♦

(c) First note that c2n+1 = 0. We shall use a small and simple trick. If we change the variable to
t = z2, we get the series

+∞∑
n=1

2ntn

n2 + n
=

+∞∑
n=1

antn, where an =
2n

n(n + 1)
> 0.

We shall first find the t-radius of convergence,

lim
n→+∞

∣∣∣∣ an

an+1

∣∣∣∣ = lim
n→+∞

⎧⎪⎪⎨
⎪⎪⎩

2n

n(n + 1)
2n+1

(n + 1)(n + 2)

⎫⎪⎪⎬
⎪⎪⎭ = lim

n→+∞

{
1
2
· n + 2
n + 1

}
=

1
2
,

or alternatively,

lim
n→+∞

1
n
√|an|

= lim
n→+∞

1

n

√
2n

n(n + 1)

= lim
n→+∞

n
√

n · n
√

n + 1
2

=
1
2
.

This shows that the t-radius of convergence is
1
2
, and since t = z2, the original series is convergent

for |z|2 = |t| <
1
2
, hence for

|z| <
1√
2

=
√

2
2

,

and the z-radius of convergence becomes
√

2
2

.

Power series
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Remark 3.3 By using lim sup, it is possible directly to find the radius of convergence of the series:

1
lim supn→+∞

n
√|cn|

= lim
n→+∞

1

2n

√
2n

n(n + 1)

= lim
n→+∞

2n
√

n · 2n
√

n + 1√
2

=
1√
2

=
√

2
2

. ♦

Remark 3.4 Put instead w = 2t = 2z2. Then we get the series

+∞∑
n=1

wn

n(n + 1)
,

of w-radius of convergence 1. Assume that 0 ≤ |w| < 1 (it would be sufficient with 0 < |w| < 1).
Then

g(w) = w

+∞∑
n=1

wn

(n + 1)n
=

+∞∑
n=1

wn+1

(n + 1)n
, 0 < |w| < 1,

and we get by two successive differentiations that

g′(w) =
+∞∑
n=1

wn

n
and g′′(w) =

+∞∑
n=0

wn =
1

1 − w
,

hence

g′(w) = −Log(1 − w) + c1, c1 = g′(0) = 0, |w| < 1,

and then by another integration

g(w) = (1 − w) Log(1 − w) + w + c2, |w| < 1,

where

c2 = g(0) = 0.

Therefore, if 0 < |z| <
1√
2
, then the sum is given by

f(z) =
+∞∑
n=1

2nzn

n2 + n
=

1
w

g(w) = 1 +
(1 − w) Log(1 − w)

w

= 1 − Log
(
1 − 2z2

)
+

Log
(
1 − 2z2

)
2z2

,

and of course f(0) = 0, which can also be obtained by a series expansion and taking the limit in
the general expression.
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Example 3.3 Assume that p ∈ N and q ∈ C, |q| < 1. Find the radius of convergence for each of the
series

(a)
+∞∑
n=0

npzn, (b)
+∞∑
n=0

qn2
zn.

(a) It follows from the criterion of roots that

r = lim
n→+∞

1
n
√|cn|

= lim
n→+∞

1
n
√

np
= lim

n→+∞
1

( n
√

n)p = 1.

Alternatively it follows by the criterion of quotients, keeping p ∈ N fixed,

r = lim
n→+∞

∣∣∣∣ cn

cn+1

∣∣∣∣ = lim
n→+∞

np

(n + 1)p
= limn→+∞

⎧⎪⎨
⎪⎩

1

1 +
1
n

⎫⎪⎬
⎪⎭

p

= 1.

Hence the series is convergent for all |z| < 1.
If |z| = 1, then

|cnzn| = np → +∞ for n → +∞,

which shows that the necessary condition for convergence is not fulfilled, and the series is divergent
for |z| ≥ 1.

Remark 3.5 It is possible to find the sum for every given p ∈ N, though a general expression is
difficult to derive. ♦

(b) If q = 0, we define 00 := 1, and we get the trivial series

+∞∑
n=0

qn2
zn ≡ 1,

which of course is convergent for every z ∈ C.

If 0 < |q| < 1, then it follows by the criterion of roots that

r = lim
n→+∞

1
n
√|cn|

= lim
n→+∞

1
n
√
|q|n2

= lim
n→+∞

(
1
|q|
)n

= +∞,

and the series is convergent for every z ∈ C.

Remark 3.6 It follows immediately that if |q| = 1, then the radius of convergence is 1. It is only
possible to find the sum for special values of q, |q| = 1.
If |q| > 1, then the radius of convergence is 0, and the analytic sum function does not exist. ♦
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Example 3.4 Find the radius of convergence for each of the series

(a)
+∞∑
n=0

3nzn

4n + 5n
, (b)

√
n · (z − i)n, (c)

+∞∑
n=1

z2n

.

Remark 3.7 None of these series has a sum which can be expressed by elementary functions. They
define some new functions in there domains of convergence. ♦

(a) It follows by the criterion of roots that

r = lim
n→+∞

∣∣∣∣ cn

cn+1

∣∣∣∣ = lim
n→+∞

3n

4n + 5n
· 4n+1 + 5n+1

3n+1
=

1
3

lim
n→+∞

5n+1 + 4n+1

5n + 4n

=
5
3

lim
n→+∞

1 +
(

4
5

)n+1

1 +
(

4
5

)n =
5
3
,

because
(

4
5

)n

→ 0 for n → +∞.
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Alternatively we can use the criterion of roots

r = lim
n→+∞

1
n
√|cn|

= lim
n→+∞

n

√
4n + 5n

3n
= lim

n→+∞
5
3

n

√
1 +

(
4
5

)n

=
5
3
.

(b) It follows by the criterion of quotients that

r = lim
∣∣∣∣ cn

cn+1

∣∣∣∣ = lim
√

n√
n + 1

= lim
√

n

n + 1
= 1.

Alternatively we get by the criterion of roots ,

r = lim
1

n
√|cn|

= lim
1

n
√√

n
= lim

1
2n
√

n
= 1.

Remark 3.8 The essential point is of course that the series has the structure of a power series.
It is of no importance for the radius of convergence that the expansion is taken with respect to
another point than 0. ♦

(c) This is a so-called lacunar series, which means a series in which infinitely many of the coefficients
are 0, and infinitely many of them are �= 0. Here,

cp = 1 for p = 2n and cp = 0 otherwise.

It is not possible to apply the criterion of quotients in its usual form, because we must never divide
by 0.

Instead we use the criterion of roots in its general form,

r =
1

lim sup n
√|cn|

= 1,

and it follows that the radius of convergence is 1.

Alternatively it follows that if |z| ≥ 1, then |z|2n

does not converge towards 0 for n → +∞, so
the necessary condition of convergence is not fulfilled. This shows that the series is divergent for
|z| ≥ 1.

Then assume that |z| < 1. We have the trivial estimate

|z|2n ≤ |z|n for every n ∈ N.

Then∣∣∣∣∣
+∞∑
n=1

z2n

∣∣∣∣∣ ≤
+∞∑
n=1

|z|2n ≤
+∞∑
n=1

|z|n =
|z|

1 − |z| < +∞.

Hence the series is convergent in the domain of convergence

{z ∈ C | |z| < 1},
corresponding to the radius of convergence 1.
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Example 3.5 Find the radius of convergence for each of the series

(a)
+∞∑
n=1

(−1)n+1

2n − 1
(z − 1)n, (b)

+∞∑
n=1

(z + i)n

(3n)
√

n
, (c)

+∞∑
n=1

(
1 +

1
n

)n2

in(z − 1)n.

Remark 3.9 It is of no importance for the determination of the radius of convergence that the
expansion in all three cases is taken form another point than 0. The sum function of the latter two
series cannot be expressed by elementary functions, and the sum function of the first series cannot be
expressed as a known function at this stage of the development of the theory. ♦

(a) It follows from

cn =
(−1)n+1

2n − 1
,

by the criterion of quotients that∣∣∣∣ cn

cn+1

∣∣∣∣ = 2n + 1
2n − 1

→ 1 = r for n → +∞− .

Alternatively we may apply the criterion of roots,

1
n
√|cn|

= n
√

2n − 1 → 1 for n → +∞,

hence the radius of convergence is 1.

(b) Since

cn =
1

(3n)
√

n
(> 0),

the criterion of quotients does not look too promising. Instead we get by the criterion of roots,

1
n
√|cn|

= (3n)1/
√

n = exp
(

1√
n

ln(3n)
)

→ e0 = 1 for n → +∞,

where we have used the order of magnitudes. It follows that the radius of convergence is 1.

(c) Since

cn = in
(

1 +
1
n

)n2

,

with n2 in the exponent, it would not be a good idea to use the criterion of quotients. We shall
instead try the criterion of roots, thus we first compute

n
√
|cn| =

(
1 +

1
n

)n

= exp
(

n · ln
(

1 +
1
n

))
= exp

(
n

{
1
n

+ o

(
1
n

)})
= exp

⎛
⎜⎜⎝1 +

(
1
n

)
1
n

⎞
⎟⎟⎠

→ exp(1) = e =
1
r

for n → +∞, thus r =
1
e
.
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Example 3.6 Find the radius of convergence for each of the series

(a)
+∞∑
n=1

nnzn, (b)
+∞∑
n=1

n

2n
zn, (c)

+∞∑
n=0

{3 + (−1)n}n
zn.

(a) Since cn = nn, we get by the criterion of roots that

1
n
√

n
=

1
n
→ 0 for n → +∞,

and the radius of convergence is 0.

Alternatively we may use the criterion of quotients instead,

lim
n→+∞

∣∣∣∣ cn

cn+1

∣∣∣∣ = lim
n→∞

nn

(n + 1)n+1
= lim

n→+∞
1

n + 1

(
n

n + 1

)n

= 0 = r.

Since the radius of convergence is 0, the series does not have a sum function.

(b) Since

cn =
n

2n
> 0,

it follows by the criterion of roots that

1
n
√

cn
=

2
n
√

n
= 2 = r,

and the radius of convergence is 2.

Alternatively we may apply the criterion of quotients,

lim
n→+∞

cn

cn+1
= lim

n→+∞
n

2n
· 2n+1

n + 1
= 2 lim

n→+∞
n

n + 1
= 2.

Remark 3.10 In this case it is possible to find an explicit expression of the sum function. If
|w| < 1, then

1
1 − w

=
+∞∑
n=0

wn and
1

(1 − w)2
=

d

dw

(
1

1 − w

)
=

+∞∑
n=1

nwn−1.

Hence by a multiplication by w,

w

(1 − w)2
=

+∞∑
n=1

nwn, |w| < 1.

If we here put w =
z

2
for |z| < 2, then

+∞∑
n=1

n

2n
zn =

z

2(
1 − z

2

)2 =
2z

(2 − z)2
. ♦
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(c) It follows from the structure cn = {3 + (−1)n}n (> 0) that the criterion of quotients is not the
right one to apply.

Instead we use the extended criterion of roots. First note that

n
√

cn = 3 + (−1)n =

⎧⎨
⎩

2 for n odd,

4 for n even.

This implies that

lim sup n
√
|cn| = max{2 , 4} = 4,

so the radius of convergence becomes

r =
1

lim sup n
√|cn|

=
1
4
.
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Remark 3.11 It is in fact also here possible to find the sum. If |z| <
1
4
, then we get by splitting

the series into two series (with even and odd indices, respectively), because these series are also

convergent for |z| <
1
4
,

+∞∑
n=0

{3 + (−1)n}n
zn =

+∞∑
n=0

42nz2n +
+∞∑
n=0

22n+1z2n+1 =
+∞∑
n=0

(
16z2

)n
+ 2z

+∞∑
n=0

(
4z2
)n

=
1

1 − 16z2
+

2z
1 − 4z2

. ♦

Example 3.7 Find the radius of convergence for each of the series

(a)
+∞∑
n=1

zn!, (b)
+∞∑
n=1

2nzn!,
+∞∑
n=0

(n + an) zn, a ∈ R+.

Remark 3.12 The former two series are lacunar series, and it is not possible to express their sum
functions, which exist in both cases, by using elementary functions. ♦

(a) The series is trivially convergent for |z| < 1 and divergent for |z| ≥ 1, hence the radius of
convergence must be 1. ♦

(b) The series is lacunar (infinitely many coefficients are zero in an irregular pattern). This means
that the criterion of quotients cannot be applied. Instead we use the extended criterion of roots.
We get from cn! = 2n and cm = 0 otherwise that

n!
√
|cn!| = (2n)1/(n!) = 21/((n−1)!) = (n−1)!

√
2 → 1 for n → +∞,

and m
√|cm| = 0, if m �= n!, n ∈ N. Hence lim sup n

√|cn| = 1, and the radius of convergence

becomes r =
1
1

= 1.

(c) Since cn = n + an > 0, if follows from the criterion of roots that

n
√
|cn| = n

√
an + n = n

√
an
(
1 +

n

an

)
.

If a ∈ ]0, 1], then it follows from the first equality sign that the radius of convergence is r = 1.

If a > 1, it follows from the latter rearrangement that the radius of convergence is r =
1
a
. Summing

up we can write

r = min
{

1 ,
1
a

}
.

Remark 3.13 Here we find the sum function in the following way: If |z| < r, then

+∞∑
n=0

(n + an) zn =
+∞∑
n=0

nzn +
+∞∑
n=0

anzn = z
+∞∑
n=1

n zn−1 +
+∞∑
n=0

(a z)n =
z

(1 − z)2
+

1
1 − a z

. ♦
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Example 3.8 Find the radius of convergence for each of the series

(a)
+∞∑
n=1

n!
nn

zn, (b)
+∞∑
n=1

(√
3 + i

)n(√
5
)n zn, (c)

+∞∑
n=1

1
(n + i)

√
n

zn.

Remark 3.14 It is only possible in (b) to express the sum function by elementary functions, because
we here have a quotient series of quotient and first term equal to

√
3 + i√

5
z.

We shall not write down the sum function, but leave it to the reader as an exercise. ♦

(a) The structure cn =
n!
nn

, in which the faculty function occurs, indicates that one should avoid the
criterion of roots. Instead we apply the criterion of quotients to get the radius of convergence

r = lim
n→+∞

∣∣∣∣ cn

cn+1

∣∣∣∣ = lim
n→+∞

n!
nn

· (n + 1)n+1

(n + 1)!
= lim

n→+∞

(
n + 1

n

)n

= lim
n→+∞

(
1 +

1
n

)n

= e.

(b) We have already unveiled this example as a quotient series, so we shall only show the two variants.
It follows from

cn =

(√
3 + i√

5

)n

,

by the criterion of roots that

r = lim
n→+∞

1
n
√|cn|

= lim
n→+∞

∣∣∣∣∣
√

5√
3 + i

∣∣∣∣∣ =
√

5√
4

=
√

5
2

.

Alternatively we get by the criterion of quotients,

r = lim
n→+∞

∣∣∣∣ cn

cn+1

∣∣∣∣ = lim
n→+∞

∣∣∣∣∣
√

3 + i√
5

∣∣∣∣∣
n

·
∣∣∣∣∣

√
5√

3 + i

∣∣∣∣∣
n+1

= lim
n→+∞

∣∣∣∣∣
√

5√
3 + i

∣∣∣∣∣ =
√

5√
4

=
√

5
2

.

(c) Since

cn =
1

(n + i)
√

n
,

it follows by the criterion of quotients,

r = lim
n→+∞

∣∣∣∣ cn

cn+1

∣∣∣∣ = lim
n→+∞

|n + 1 + i|√n + 1
|n + i|√n

= lim
n→+∞

√
(n + 1)2 + 1

n2 + 1
· n + 1

n

= lim
n→+∞

√√√√√√√
(

1 +
1
n

)2

+
1
n2

1 +
1
n2

·
(

1 +
1
n

)
= 1.
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Alternatively we apply the criterion of roots. Then

r = lim
n→+∞

1
n
√|cn|

= lim
n→+∞

2n
√

n2 + 1 · 2n
√

n = 1.

Example 3.9 Find the radius of convergence for each of the series

(a)
+∞∑
n=1

(
in

n + 1

)n2

zn, (b)
+∞∑
n=1

lnn

n!
(z − i)n, (c)

+∞∑
n=2

n in

lnn
zn.

Remark 3.15 In none of the cases can the sum function be expressed by elementary functions. ♦

(a) It follows from

cn =
(

i n

n + 1

)n2

= in
2 · 1(

1 +
1
n

)n2 ,

by the criterion of roots that

r = lim
n→+∞

1
n
√|cn|

= lim
n→+∞

(
1 +

1
n

)n

= e,

where we note that an application of the criterion of quotients does not look promising.

(b) Since the faculty function occurs, the criterion of roots is not convenient for us here. We get from

cn =
lnn

n!
> 0 for n ≥ 2,

by the criterion of quotients that

r = lim
n→+∞

cn

cn+1
= lim

n→+∞
lnn

n!
· (n + 1)!
ln(n + 1)

= lim
n→+∞(n + 1) · lnn

ln(n + 1)

= lim
n→+∞(n + 1) · lnn

lnn + ln
(

1 +
1
n

) = +∞.

Since

cn =
n in

lnn
,

it follows by the criterion of roots that

r = lim
n→+∞

1
n
√|cn|

= lim
n→+∞

n

√
lnn

n
= lim

n→+∞

n
√

lnn
n
√

n
= 1,

because

1 ≤ n
√

lnn ≤ n
√

n for n ≥ 3,
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and because n
√

n → 1 for n → +∞.

Alternatively we get by the criterion of quotients,

r = lim
n→+∞

∣∣∣∣ cn

cn+1

∣∣∣∣ = lim
n→+∞

n

lnn
· ln(n + 1)

n + 1
= lim

n→+∞
n

n + 1
·
lnn + ln

(
1 +

1
n

)
lnn

= 1.

Example 3.10 Find the radius of convergence for the series

+∞∑
n=1

1
3n

{
(−1)n + sin

(nπ

2

)}n

zn.

We have

cn =
1
3n

{
(−1)n + sin

(nπ

2

)}n

,

hence we get the trivial estimate

|cn| ≤ 2n

3n
=
(

2
3

)n

,
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where the equality sign holds for e.g. n = 3 + 4p, p ∈ N0. We conclude that

lim sup n
√
|cn| =

2
3
,

and the radius of convergence is

r =
1

lim sup n
√|cn|

=
3
2
.

Remark 3.16 It is possible in this case to express the sum function by means of elementary functions.

If |z| <
3
2
, then

+∞∑
n=1

1
3n

{
(−1)n + sin

(nπ

2

)}n

zn

=
+∞∑
n=0

1
34n+1

{
(−1)4n+1 + sin

(
(4n + 1)π

2

)}4n+1

z4n+1

+
+∞∑
n=0

1
34n+2

{
(−1)4n+2 + sin

(
(4n + 2)π

2

)}4n+2

z4n+2

+
+∞∑
n=0

1
34n+3

{
(−1)4n+3 + sin

(
(4n + 3)π

2

)}4n+3

z4n+3

+
+∞∑
n=0

1
34n+4

{
(−1)4n+4 + sin

(
(4n + 4)π

2

)}4n+4

z4n+4

=
1
3

+∞∑
n=0

1
34n

{−1+1}4n+1z4n+1 +
1
32

+∞∑
n=0

1
34n

{1+0} z4n+2

+
1
33

+∞∑
n=0

1
34n

{−1−1}4n+3z4n+3 +
1
34

+∞∑
n=0

1
34n

{1+0} z4n+4,

which we reduce to
+∞∑
n=1

1
3n

{
(−1)n + sin

(nπ

2

)}n

zn =
z2

32

+∞∑
n=0

(
z4

34

)n

− z3

33
· 23

+∞∑
n=0

(
24z4

34

)n

+
z4

34

+∞∑
n=0

(
z4

34

)n

=
z2

32
· 1

1 − z4

34

− 23z3

33
· 1

1 − 24z4

34

+
z4

34
· 1

1 − z4

34

=
9z2

81 − z4
− 24z3

81 − 16z4
+

z4

81 − z4
=

z4 + pz2

81 − z4
+

24z3

16z4 − 81
=

z2

9 − z2
+

24z3

16z4 − 81
. ♦
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Example 3.11 Find the radius of convergence for each of the series

(a)
+∞∑
n=1

cos
(

1
n

+ i

)
zn, (b)

+∞∑
n=1

cos
(

1 +
i

n

)
zn.

Remark 3.17 None of the sum functions can be expressed by elementary functions. ♦

(a) It follows from

cos
(

1
n

+ i

)
= cos

1
n
· cosh 1 − i sin

1
n
· sinh 1,

that∣∣∣∣cos
(

1
n

+ i

)∣∣∣∣
2

= cos2
1
n
· cosh2 1 + sin2 1

n
· sinh2 1 = cos2

1
n

+ sinh2 1,

hence by some calculations

n
√
|cn| = 2n

√
cos2

1
n

+ sinh2 1 → 1 for n → +∞.

We conclude that the radius of convergence is

r =
1
1

= 1.

(b) It follows from

cos
(

1 +
i

n

)
= cos 1 · cosh

1
n
− i sin 1 · sinh

1
n

,

that∣∣∣∣cos
(

1 +
i

n

)∣∣∣∣
2

= cos2 1 · cosh2 1
n

+ sin2 1 · sinh2 1
n

= cos2 1 + sinh2 1
n

,

hence

n
√
|cn| = 2n

√
cos2 1 + sinh2 1

n
→ 1 for n → +∞,

and we conclude that the radius of convergence is

r =
1
1

= 1.
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Example 3.12 Find the radius of convergence for each of the series

(a)
+∞∑
n=0

Log(n + i) zn, (b)
+∞∑
n=0

cos(1 + in) zn.

Remark 3.18 None of the sum functions can be expressed by elementary functions. ♦

(a) We get from

|Log(n + i)|2 =
∣∣∣∣ln√n2 + 1 + iArctan

1
n

∣∣∣∣
2

=
1
4
{
ln
(
n2 + 1

)}2
+
{

Arctan
1
n

}2

,

the estimates

1
2

ln
(
n2 + 1

)
< |Log(n + i)| < C0 · ln

(
n2 + 1

)
for some constant C0. Now,

n
√

C · ln (n2 + 1) → 1 for n → +∞
for every positive constant C > 0, so we conclude that the radius of convergence is

r =
1

limn→+∞ |Log(n + i)| =
1
1

= 1.

(b) It follows from

cos(1 + in) = cos 1 · coshn − i sin 1 · sinhn,

that

| cos(1 + in)|2 = cos2 1 · cosh2 n + sin2 1 · sinh2 n = cos2 1 + sinh2 n,

so we get the estimates

sinhn < | cos(1 + in)| < 2 sinh n for n ≥ n0.

The series has the same radius of convergence as the auxiliary series

+∞∑
n=1

sinhn · zn.

Since

n
√

sinhn = n

√
1
2

(en − e−n) = e
n

√
1 − e−2n

2
→ e for n → +∞,

we conclude that the radius of convergence is

r =
1

limn→+∞
n
√

sinhn
=

1
e
.

Power series
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Example 3.13 We define Riemann’s ζ-function by

ζ(z) =
+∞∑
n=1

n−z :=
+∞∑
n=1

e−z ln n.

Prove that it is analytic in the domain

Ω = {z ∈ C | Re(z) > 1}.

Find f ′(z) in Ω.

Assume that Re(z) ≥ k > 1. Then we have the computation and the estimate,

∣∣n−z
∣∣ = ∣∣e−z ln n

∣∣ = ∣∣∣e−(x+iy) ln n
∣∣∣ = n−x ≤ n−k,

and we conclude that

+∞∑
n=1

n−k

Power series
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is a convergent majoring series in the domain given by

Re(z) ≥ k > 1.

Then the “smaller series”

ζ(z) =
+∞∑
n=1

e−z ln n

is uniformly convergent in the same domain. Since every term e−z ln n is analytic and the series is
uniformly convergent, we conclude that ζ(z) is analytic in the same domain. This holds for every
k > 1, hence ζ(z) is analytic for Re(z) > 1, thus in Ω.

If Re(z) > 1, we get by termwise differentiation that the derivative is given by

ζ ′(z) =
+∞∑
n=1

(− lnn)e−z ln n = −
+∞∑
n=2

lnn · n−z.

Example 3.14 Prove that
∑−n = 1+∞e−n sin(nz) is analytic in the domain

{z ∈ C | −1 < Im(z) < 1}.

Each term e−n sin(nz) is analytic, so we shall only prove that the series is uniformly convergent in

{z ∈ C | |Im(z) ≤ k} for every k ∈ ]0, 1[.

Hence we assume that |Im(z)| ≤ k. Then

e−n sin(n z) =
1
2i

e−n
(
einz − e−inz

)
=

1
2i

e−n
{
e−ny+inx − eny−inx

}
.

Assuming |Im(z)| = |y| ≤ k < 1, we get the estimate

∣∣e−n sin(n z)
∣∣ ≤ 1

2
e−n

{
enk + enk

}
= e−n(1−k) = an,

where a = e−(1−k) ∈ ]0, 1[. Since
∑+∞

n=1 an is a convergent majoring series, the claim is proved.

Remark 3.19 The sum function cannot be expressed by an elementary function. ♦
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Example 3.15 Let a ∈ R be any real constant, and define na, n ∈ N, by

na := exp(a lnn).

Find the radius of convergence for the series

+∞∑
n=1

z2n

4nna
.

We introduce the variable

w =
z2

4
=
(z

2

)2

.

Then

+∞∑
n=1

z2n

4nna
=

+∞∑
n=1

wn

na
.

Putting cn =
1
na

it follows that the w-radius of convergence is

�w = lim
n→+∞

1
n
√|cn|

= lim
n→+∞na/n = lim

n→+∞ exp
(a

n
lnn

)
= exp(0) = 1.

It follows that the series is convergent for

|w| =
∣∣∣z
2

∣∣∣ < 1,

i.e. for |z| < 2, and divergent for

|w| =
∣∣∣z
2

∣∣∣2 > 1,

i.e. for |z| > 2. Then it follows from the definition that the z-radius of convergence is

�z = 2.

Example 3.16 Given a series
∑+∞

n=0 cnzn of radius of convergence � ∈ R+. Find the radius of
convergence for each of the series

(a)
+infty∑

n=0

cnz2n, (b)
+∞∑
n=0

nncnzn, (c)
+∞∑
n=0

(2n − 1) cnzn.

It follows from the assumption that

lim sup n
√
|cn| =

1
�
,

where 0 < � < +∞.
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(a) Since a2n = cn and a2n+1 = 0, we get

1
R

= lim sup n
√
|an| = lim sup 2n

√
|a2n| =

√
lim sup n

√
|cn| =

1√
�
,

and we conclude that R =
√

�.

(b) Since n
√

nn = n → +∞ for n → +∞, and
1
�

> 0, we conclude that

lim sup n
√

nn |cn| = limn · 1
�

= +∞,

and the radius of convergence is R = 0 in this case.

Remark 3.20 The claim is not correct, if we allow � = +∞. It is possible to construct series∑+∞
n=0 cnzn of radius of convergence � = +∞, such that the radius of convergence of

∑+∞
n=0 nncnzn

is

(1) R = 0, (2) R ∈ R+, (3) R = +∞.

An example is

(1)
∑+∞

n=0 cnzn =
∑+∞

n=1

1√
nn

zn, � = +∞, R = 0,

(2)
∑+∞

n=0 cnzn =
∑+∞

n=1

1
nn

· 1
Rn

0

zn, � = +∞, R = R0 ∈ R+,

(3)
∑+∞

n=0 cnzn =
∑+∞

n=1

1
n2n

zn, � = +∞, R = +∞. ♦

(c) A straigth computation gives

lim sup n
√

(2n − 1) |cn| = lim sup n
√

2n − 1 · n
√
|cn| =

2
�
,

and the radius of convergence is
�

2
.

Example 3.17 Given a series
∑+∞

n=0 cnzn of radius of convergence � ∈ R+. Find the radius of
convergence for each of the series

(a)
+∞∑
n=0

cn

n!
zn, (b)

+∞∑
n=1

nkcnzn, (c)
+∞∑
n=0

ck
nzn,

where k ∈ N denotes some constant.

We shall use that lim sup n
√|cn| =

1
�
, where 0 < � < +∞.
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(a) We see that an =
cn

n!
. It is well-known that

+∞∑
n=0

1
n!

zn

has the radius of convergence +∞, so

lim n

√
1
n!

= 0, i.e. lim sup n

√∣∣∣cn

n!

∣∣∣ = 0.

In fact, choose N ∈ N, such that

n
√
|cn| ≤ 1

�
for every n ≥ N.

Then

lim sup n

√∣∣∣cn

n!

∣∣∣ ≤ 2
�

lim n

√
1
n!

= 0,

and it follows that the radius of convergence is R = +∞.
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(b) A straight computation gives

lim sup n

√
|nkcn| = 1 · lim sup n

√
|cn| =

1
�
,

and it follows that the radius of convergence is R = �.

(c) By a straight computation,

lim sup n

√
|ck

n| =
(
lim sup n

√
|cn|
)k

=
1
�k

,

and it follows that the radius of convergence is R = �k.

Example 3.18 Construct a series
∑+∞

n=0 cnzn of finite radius of convergence � (possibly � = 0), such
that the series

+∞∑
n=0

(1 + zn
0 ) cnzn

for some z0 ∈ C has radius of convergence +∞.

If we choose z0 = −1, then

1 + zn
0 =

⎧⎨
⎩

2 for n lige,

0 for n ulige.

Thus it is possible to obtain infinitely many zeros among the coefficients (1 + zn
0 ). We can exploit this

by putting

cn =

⎧⎨
⎩

0 for n even,

nn for n odd.

In fact,

+∞∑
n=0

cnzn =
+∞∑
n=0

(2n + 1)2n+1z2n+1

has radius of convergence 0, while

+∞∑
n=0

(1 + zn
0 ) cnzn =

+∞∑
n=0

0 · zn ≡ 0

is convergent for every z ∈ C.
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Example 3.19 1) Find the radius of convergence R for the power series

+∞∑
n=1

1
n2

zn.

Prove that the series is absolutely and uniformly convergent in the closed disc

{z ∈ C | |z| ≤ R}.

2) Find the set K ⊂ C, for which the series

+∞∑
n=1

1
n2

enz

is convergent for z ∈ K and divergent for z /∈ K.

1) If |z| > 1, then
∣∣∣∣ 1
n2

zn

∣∣∣∣ → +∞ for n → +∞ due to the order of magnitudes. Thus the necessary

condition of convergence is not satisfies. We therefore conclude that R ≤ 1.
If instead |z| ≤ 1, then we get the estimate∣∣∣∣∣

+∞∑
n=1

1
n2

zn

∣∣∣∣∣ ≤
+∞∑
n=1

1
n2

=
π2

6
.

The right hand side is finite and independent of |z| ≤ 1, hence the convergence is absolute and
uniform in the closed disc

{z ∈ C | |z| ≤ 1},

and the radius of convergence is R = 1.

2) By (1) the series is convergent, if and only if

|enz| = enx ≤ 1,

i.e. if and only if x ≤ 0. It follows that

K = {z ∈ C | Re(z) ≤ 0},

and we have convergence in the closed left half plane.
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4 Analytic functions described as power series

Example 4.1 Prove that for |z − 1| < 1,

1
z

=
+∞∑
n=0

(1 − z)n.

–1.5

–1

–0.5

0.5

1

1.5

–0.5 0.5 1 1.5 2 2.5

Figure 1: The domain of the series for
1
z

from the expansion point 1.

Put w = z − 1. Then

1
z

=
1

1 + w
=

+∞∑
n=0

(−1)nwn =
+∞∑
n=0

(.1)n(z − 1)n =
+∞∑
n=0

(1 − z)n,

which holds for |w| < 1, i.e. for |z − 1| < 1.

Example 4.2 Find the Taylor series for ez with the expansion point z = 1.

By some elementary manipulations,

ez = e · ez−1 = e

+∞∑
n=0

1
n!

(z − 1)n =
+∞∑
n=0

e

n!
(z − 1)n.

Alternatively we use the standard method. Putting f(z) = ez we get

fn)(z) = ez, hence f (n)(1) = e,

and thus

ez = f(z) =
+∞∑
n=0

f (n)(1)
n!

(z − 1)n =
+∞∑
n=0

e

n!
(z − 1)n,

which is convergent for every z ∈ C.
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Example 4.3 Find the power series expansion of

f(z) =
1

1 + z2

from the point z = 1, and indicate its domain.

It follows by a decomposition that

f(z) =
1

1 + z2
= − i

2
· 1
z − i

+
i

2
· 1
z + i

=
i

2

{
1

z + i
− 1

z − i

}
,

hence

f (n)(z) =
i

2
· (−1)nn!

{
1

(z + i)n+1
− 1

(z − i)n+1

}
, n ∈ N0,

Analytic functions described as power series
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and thus

an =
1
n!

f (n)(1) =
i

2
· (−1)n · (1 − i)n+1 − (1 + i)n+1

(1 + 1)n+1

=
i

2
· (−1)n(√

2
)n+1 ·

{
exp

(
−i(n + 1)

π

4

)
− exp

(
i(n + 1)

π

4

)}

=
(−1)n(√

2
)n+1 · i

2

{
−2i sin

(
(n + 1)

π

4

))

=
(−1)n(√

2
)n+1 · sin

(
(n + 1)

π

4

)
.

The series is then

1
1 + z2

=
+∞∑
n=0

(−1)n(√
2
)n+1 sin

(
(n + 1)

π

4

)
· (z − 1)n.

Now,

|an| ≤ 1√
2
·
(

1√
2

)n

,

where the equality occurs infinitely often, so it follows from the above that the radius of convergence
is

√
2. This can also be seen geometrically, because |1 ± i| =

√
2 is the distance from the point of

expansion 1 to the two singularities ±i, where the denominator is 0.

–1.5

–1

–0.5

0.5

1

1.5

–0.5 0.5 1 1.5 2 2.5

Figure 2: The distance from the point of expansion 1 to the singularities ±i and the corresponding
circle of convergence.

Remark 4.1 One can also set up another expression by computing all the coefficients.
If n = 8p, then

a8p =
1

24p
√

2
· 1√

2
=

1
24p+1

.
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If n = 8p + 1, then

a8p+1 = − 1
24p+1

.

If n = 8p + 2, then

a8p+2 =
1

24p+1
√

2
· 1√

2
=

1
24p+2

.

If n = 8p + 3, then

a8p+3 = 0.

If n = 8p + 4, then

a8p+4 =
1

24p+2
· 1√

2
·
(
− 1√

2

)
= − 1

24p+3
.

If n = 8p + 5, then

a8p+5 =
−1

24p+3
· (−1) =

1
24p+3

.

If n = 8p + 6, then

a8p+6 =
1

24p+3
· 1√

2
·
(
− 1√

2

)
= − 1

24p+4
.

If n = 8p + 7, then

a8p+7 = 0.

Summing up we get for |z − 1| <
√

2,

1
1 + z2

=
+∞∑
n=0

1
2·16n

{
1−(z−1)+

(z−1)2

2
− (z−1)4

4
+

(z−1)5

4
− (z−1)6

8

}
(z−1)8n.

Example 4.4 Find the Taylor series from z0 = 1 for each of the following functions, and indicate
the radius of convergence of the series:

(a)
1

z − 2
, (b)

1
z(z − 2)

.

(a) By a straightforward computation,

1
z − 2

= − 1
1 − (z − 1)

= −
+∞∑
n=0

(z − 1)n for |z − 1| < 1.
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Figure 3: The domain of convergence in both cases.

(b) By using the same trick we get

1
z(z − 2)

=
−1

{1 + (z − 1)}{1 − (z − 1)} = − 1
1 − (z − 1)2

= −
+∞∑
n=0

(z − 1)2n,

for |z − 1| < 1.

We can also obtain this result by a decomposition and by using (a), because

1
z(z − 2)

= −1
2
· 1
z

+
1
2
· 1
z − 2

= −1
2
· 1
1 + (z − 1)

− 1
2
· 1
1 − (z − 1)

= −1
2

{
+∞∑
n=0

(−1)n(z − 1)n +
+∞∑
n=0

(z − 1)n

}
= −

+∞∑
n=0

(z − 1)2n.

Example 4.5 Find the Taylor series for the following functions from z0 = i:

(a)
1
z
, (b)

2z − 1
z2 − z

, (c) Log(1 − z).

(a) Putting f(z) = z−1 we get

f (n) = (−1)nn!z−n−1,

and thus

f (n)(i)
n!

=
(−1)n

in+1 = −in+1
,

hence

1
z

= −
+∞∑
n=0

in+1(z − i)n =
+∞∑
n=0

in−1(z − i)n, for |z − i| < 1.

(b) By a decomposition,

f(z) =
2z − 1
z2 − z

=
z + z − 1
z(z − 1)

=
1
z

+
1

z − 1
,
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–0.5
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Figure 4: The domain in (a) and (b).

and thus (cf. (a)),

f (n)(z)
n!

= (−1)n
{
z−n−1 + (z − i)−n−1

}
,

i.e.

f (n)(i)
n!

= −in+1 − 1
(1 − i)n+1

= −in+1 −
(

(1 + i)
2

)n+1

,
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hence

f(z) =
2z − 1
z2 − z

= −
+∞∑
n=0

{
in+1 +

(
1 + i

2

)n+1
}

(z − i)n, |z − i| < 1.

–0.5
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0.5
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1.5
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–1.5 –1 –0.5 0.5 1 1.5

Figure 5: The domain of (c).

(c) If we put f(z) = Log(1 − z), then

f (n)(z) = − (n − 1)!
(1 − z)n

, n ∈ N,

hence

f (n)(i)
n!

= − 1
n
· 1
(1 − i)n

= − (1 + i)n

n · 2n
,

and the series is given by

f(z) = Log(1− i)−
+∞∑
n=1

(1 + i)n

n · 2n
(z− i)n =

1
2

ln 2− i
π

4
−

+∞∑
n=1

(1 + i)n

n · 2n
(z− i)n, |z− i| <

√
2.

Example 4.6 Find the Taylor series from z0 = −1+i for Log z. Determine the radius of convergence
of the series as well as the radius of the largest disc of centrum z0 = −1+i, in which the series converges
towards Log z.

A Taylor series is of the form

f(z) =
+∞∑
n=0

f (n) (z0)
n!

(z − z0)
n

.

If we put f(z) = Log z (which is analytic in a neighbourhood of z0 = −1 + i), then

f (n)(z) = (−1)n−1(n − 1)!z−n, n ∈ N.
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0.5

1

1.5

2

–2 –1.5 –1 –0.5

Figure 6: The series is convergent in the larger disc, and it converges towards Log z in the smaller
disc, actually in that part of the larger disc which lies in the second quadrant.

It follows from

z−1
0 =

1
−1 + i

= −1 + i

2
= − 1√

2
exp

(
i
π

2

)
,

that

f (n) (z0) = −(n − 1)!2−n · (1 + i)n = −(n − 1)!
(

1√
2

)n

exp
(
i n

π

4

)
,

and we get the Taylor series from z0 = −1 + i,

Log z = Log(−1 + i) −
+∞∑
n=1

(n − 1)!
n!

(
1√
2

)n

exp
(
i n

π

4

)
(z + 1 − i)n

=
1
2

ln 2 + i
3π
4

−
+∞∑
n=1

1
n

(
1√
2

)n

exp
(
i n

π

4

)
(z + 1 − i)n.

The radius of convergence r is determined by

1
r

= lim sup
n→+∞

n
√
|cn| = lim

n→+∞
n

√
1
n

(
1√
2

)n

=
1√
2
,

thus r =
√

2, which corresponds to the distance | − 1 + i − 0| between the point of expansion −1 + i
and the branching point 0.

Since Log z has its branch cut along the negative real axis with a discontinuity when we cross over
it, the series found does not converge towards Log z in that part of the disc of convergence which
lies below the x-axis, i.e. in the third quadrant. The radius of the largest (open) disc of centrum
z0 = −1 + i, in which the series is convergent towards Log z, is therefore the distance between the
point of expansion −1 + i and the negative real axis, thus 1 <

√
2.
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Example 4.7 Find the first five terms of the power series expansion in z from z0 = 0 for the following
functions:

(a) ez sin z, (b) ez Log(1+z), (c) ez Log(1 + z).

Remark 4.2 Even if it is very easy to solve the task in MAPLE by using the command taylor, it is
nevertheless a good exercise to try the more old-fashioned o-technique.

(a) We get by inserting

w = z · sin z = z2 − 1
6

z4 + o
(
z5
)

into the series expansion of ew,

ez·sin z = 1 +
1
1!

{
z2 − 1

6
z4 + o

(
z5
)}

+
1
2!
{
z4 + o

(
z5
)}

+ o
(
z5
)

= 1 + z2 +
(

1
2
− 1

6

)
z4 + o

(
z5
)

= 1 + z2 +
1
3

z4 + o
(
z5
)
.

(b) By a Taylor expansion,

w = z Log(1 + z) = z2 − z3

2
+

z4

3
− z5

4
+ o

(
z5
)
.

Then

ez Log(1+z) = ew = 1 +
{

z2 − z3

2
+

z4

3
− z5

4

}
+

1
2
{
z4 − z5

}
+ o

(
z5
)

= 1 + z2 − 1
2

z3 +
5
6

z4 − 3
4

z5 + o
(
z5
)
.

If we expand each factor separately, we get

ez Log(1 + z) =
{

1 + z +
1
2

z2 +
1
6

z3 +
1
24

z4 +
1

120
z5 + o

(
z5
)}×

×
{

z − z2

2
+

z3

3
− z4

4
+

z5

5
+ o

(
z5
)}

= z +
(
−1

2
+ 1
)

z2 +
(

1
3
− 1

2
+

1
2

)
z3 +

(
−1

4
+

1
3
− 1

4
+

1
6

)
z4

+
(

1
5
− 1

4
+

1
6
− 1

12
+

1
24

)
z5 + o

(
z5
)

= z +
1
2

z2 +
1
3

z3 +
3
40

z5 + o
(
z5
)
.
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Example 4.8 Determine the terms of order ≤ 3 in the power series from 0 for

(a) ez sin z, (b) sin z cos z, (c)
ez − 1

z
.

(a) We get by a straightforward computation that

ez · sin z =
{

1 + z +
z2

2
+

z3

6
+ · · ·

}
·
{

z − z3

6
+ · · ·

}
= z − z3

6
+ z2 +

z3

2
+ · · ·

= z + z2 +
z3

3
+ · · · .

(b) Here we first apply a known trigonometric formula,

sin z · cos z =
1
2

sin 2z =
1
2

{
2z − 8z3

3!
+ · · ·

}
= z − 2

3
z3 + · · · .

(c) By a series expansion and a reduction,

ez − 1
z

=
+∞∑
n=1

1
n!

zn−1 = 1 +
1
2

z +
1
6

z2 +
1
24

z3 + · · · .
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Example 4.9 Determine the terms of order ≤ 3 in the power series from 0 for

(a)
ez − cos z

z
, (b)

1
cos z

, (c)
sin z

cos z
.

Hint: Let
1

cos z
= a0 + a1z + a2z

2 + a3z
3 + · · · .

Multiply (b), and possibly also (c) by the power series expansion of cos z, and then find the coefficients
a0, a1, a2, a3.

(a) By a series expansion and a reduction,

ez − cos z

z
=

1
z

{
1 + z +

z2

2!
+

z3

3!
+

z4

4!
+ · · · − 1 +

z2

2!
− z4

4!
+ · · ·

}
= 1 + z +

z2

6
+ 0 · z3 + · · · .

(b) Here
1

cos z
is analytic for |z| <

π

2
, so

1
cos z

= a0 + a1z + a2z
2 + a3z

3 + · · · .

Since cos(−z) = cos z is an even function, it follows immediately that a1 = 0 and a3 = 0, and the
series expansion is reduced to

1
cos z

= a0 + a2z
2 + o

(
z3
)
.

Therefore, if |z| <
π

2
, then

1 =
1

cos z
· cos z =

(
a0 + a2z

2 + a4z
4 + · · · )(1 − z2

2!
+

z4

4!
− · · ·

)

= a0 +
(
−a0

2
+ a2

)
z2 + o

(
z3
)
,

and it follows from the identity theorem that

a0 = 1 and a2 =
a0

2
=

1
2
,

thus
1

cos z
= 1 +

1
2

z2 + 0 · z3 + · · · , |z| <
π

2
.

Alternatively we find f (n)(0) for n = 0, 1, 2, 3:

f(z) =
1

cos z
, f ′(z) =

sin z

cos2 z
, f ′′(z) =

1
cos z

+ 2 · sin2 z

cos3 z
, f (3)(z) = sin z · {· · · },

from which follows that

f(0) = 1, f ′(0) = 0, f ′′(0) = 1, f (3)(0) = 0,

so by insertion,

1
cos z

= 1 +
1
2!

z2 + 0 · z3 = · · · = 1 +
1
2

z2 + 0 · z3 + · · · .
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(c) Using the result of (b) we get

tan z =
sin z

cos z
=
(

z − z3

3!
+ · · ·

)(
1 +

1
2

z2 + 0 · z3 + · · ·
)

= z +
(

1
2
− 1

6

)
z3 + · · · = z +

1
3

z3 · · · .

Alternatively,

f(z) = tan z, f ′(z) = 1 + tan2 z, f ′′(z) = 2 tan z + 2 tan3 z,

f (3)(z) = 2
(
1 + tan2

)
+ tan z · {· · · },

hence

f(0) = 0, f ′(0) = 1, f ′′(0) = 0, f (3)(0) = 2,

and we get

tan z =
1
1!

z +
2
3!

z3 + · · · = z +
1
3

z3 + · · · , for |z| <
π

2
.

Example 4.10 Find the radius of convergence for the Taylor expansion from z0 = i for

f(z) =
ez

(z − 1)(z + 1)(z − 2)(z − 3)
.

0

0.5

1

1.5

2

–1 1 2 3

Figure 7: The four singularities and the disc of convergence.

The radius of convergence is the smallest distance from the point of expansion z0 = i ti the poles
{−1, 1, 2, 3}, hence � =

√
2.

Remark 4.3 Note that one does not want the full Taylor expansion for a very good reason. It will
be a very difficult task to find the coefficients using decomposition and multiplication of series. ♦
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Example 4.11 Find the sum function f(z) in |z| < 1 for each of the following series:

(a)
+∞∑
n=1

n zn, (b)
+∞∑
n=0

z2n+1

2n + 1
, (c)

+∞∑
n=1

(−1)n+1 z2n

n
.

We shall use various variants of the geometric series

1
1 − z

=
+∞∑
n=0

zn for |z| < 1.

(a) It follows by termwise differentiation of the geometric series that

1
(1 − z)2

=
+∞∑
n=1

n zn−1,

hence

f(z) =
+∞∑
n=1

n zn =
z

(1 − z)2
.

–1

–0.5

0.5

1

–1 –0.5 0.5 1 1.5 2

Figure 8: If z lies in the unit disc, then both 1 + z and 1 − z lie in the right half plane.

(b) If we differentiate the given series

f(z) =
+∞∑
n=0

z2n+1

2n + 1

then

f ′(z) =
+∞∑
n=0

z2n =
+∞∑
n=0

(
z2
)n

=
1

1 − z2
,

so f(z) is a primitive of

1
1 − z2

=
1
2
· 1
1 + z

+
1
2
· 1
1 − z

.
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We conclude from

d

dz
Log(1 + z) =

1
1 + z

og
d

dz
Log(1 − z) = − 1

1 − z
for |z| < 1,

that

f(z) =
1
2
{Log(1 + z) − Log(1 − z)} + C, |z| < 1.

If we put z = 0, then C = f(0) = 0, and since both 1 + z and 1 − z lie in the right half plane (cf.
the figure), their principal arguments lie in

]
−π

2
,

π

2

[
, thus

Arg(1 + z) − Arg(1 − z) ∈ ] − π , π[.

Then we conclude (and only at this point) that

f(z) =
1
2
{Log(1 + z) − Log(1 − z)} =

1
2

{
ln
∣∣∣∣1 + z

1 − z

∣∣∣∣+ i Arg
(

1 + z

1 − z

)}

=
1
2

Log
(

1 + z

1 − z

)
, |z| < 1.
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(c) We get by the substitution w = z2 that

f(z) =
+∞∑
n=1

(−1)n+1 · z2n

n
=

+∞∑
n=1

(−1)n+1 · wn

n
= Log(1 + w) = Log

(
1 + z2

)
, |z| < 1.

Alternatively it follows by termwise differentiation,

f ′(z) =
+∞∑
n=1

(−1)n+1 · 2z2n−1 = 2z
+∞∑
n=1

(−1)n−1z2(n−1) = 2z
+∞∑
n=0

(−z2
)n

=
2z

1 + z2
, |z| < 1,

so f(z) is a primitive of
2z

1 + z2
. Since |z| < 1, anyone of these primitives is given by

f(z) = Log
(
1 + z2

)
+ C.

Finally, we put z = 0 to obtain C = f(0) = 0, thus

f(z) = Log
(
1 + z2

)
, |z| < 1.

Example 4.12 Prove that if
sin z

z
,

ez − 1
z

and
Log(1 + z)

z
are all extended by the value 1 to z = 0,

then these functions are analytic in a neighbourhood of 0.
Then find the Taylor series of

S(z) =
∫ z

0

sin ζ

ζ
dζ, E(z) =

∫ z

0

eζ − 1
ζ

dζ, L(z) =
∫ z

0

Log(1 + ζ)
ζ

dζ.

(a) If z �= 0, then

sin z

z
=

+∞∑
n=0

(−1)n

(2n + 1)!
z2n,

which quite naturally is extended analytically to z = 0 with the value 1. The radius of convergence
is +∞, and it follows by termwise integration,

S(z) =
∫ z

0

sin ζ

ζ
dζ =

∫ z

0

+∞∑
n=0

(−1)n

(2n + 1)!
ζ2n dζ =

+∞∑
n=0

(−1)n

(2n + 1)!
· z2n+1

2n + 1
.

(b) In the same way it follows from

ez − 1 =
+∞∑
n=1

zn

n!
= z

+∞∑
n=0

zn

(n + 1)!
, z ∈ C,

that

ez − 1
z

=
+∞∑
n=0

zn

(n + 1)!
for z �= 0,
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where the series has the value 1 for z = 0, so we can extend the function analytically by the value
1 at z = 0.
Then by a termwise integration for |z| < +∞,

E(z) =
∫ z

0

eζ − 1
ζ

dζ =
∫ z

0

+∞∑
n=0

ζn

(n + 1)!
dζ =

+∞∑
n=0

1
(n + 1)!

zn+1

n + 1
=

+∞∑
n=1

1
n · n!

zn.

(c) Analogously, it follows from

Log(1 + z) =
+∞∑
n=1

(−1)n+1

n
zn = z

+∞∑
n=0

(−1)n

n + 1
zn, |z| < 1,

that

Log(1 + z)
z

=
+∞∑
n=0

(−1)n

n + 1
zn, 0 < |z| < 1,

where the series is also defined for z = 0 with the value 1. If |z| < 1, we get by termwise integration

L(z) =
∫ z

0

Log(1 + ζ)
ζ

dζ =
∫ z

0

+∞∑
n=0

(−1)n

n + 1
ζn dζ =

+∞∑
n=0

(−1)n

(n + 1)2
zn+1 =

+∞∑
n=1

(−1)n+1

n2
zn.

Example 4.13 Given a piecewise continuous function f(t) for t ∈ [0, a]. Prove that

F (z) =
∫ a

0

e−z t f(t) dt

is an analytic function in C, and find its power series expansion.

The series

e−zt = 1 − zt +
(−zt)2

2!
+ · · · + (−zt)n

n!
+ · · ·

is for any fixed value of z uniformly convergent in t ∈ [0, a]. We can therefore multiply by the bounded
function f(t) and then perform termwise integration. This gives

F (z) =
∫ a

0

f(t) dt − z

∫ a

0

t f(t) dt + · · · + (−z)n

n!

∫ a

0

tnf(t) dt + · · · ,

which is the wanted power series expansion.

Now, f is bounded (because f is piecewise continuous over a closed bounded interval), so |f(t)| ≤ M ,
and we get∣∣∣∣ (−z)n

n!

∫ a

0

tnf(t) dt

∣∣∣∣ ≤ |z|n
n!

∫ a

0

tnM dt =
|z|nan+1M

(n + 1)!
= cn|z|n.
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According to the criterion of majoring series it suffices to prove that
∑

cn|z|n is convergent for every
z ∈ C. This is obvious for z = 0. If z �= 0, then

+∞∑
n=0

an+1M

(n + 1)!
|z|n =

M

|z|
+∞∑
n=1

(a|z|)n

n!
=

M

|z|
(
ea|z| − 1

)
,

hence
∑

cn|z|n is convergent for every z ∈ C, and the domain of convergence is C, i.e. F (z) is analytic
in C.

Remark 4.4 This example indicates a method of determining the Laplace transformed of a piecewise
continuous function, which is only �= 0 on a closed bounded interval. ♦

Example 4.14 Assume that g(z) is analytic in |z| < R, and that g(0) = 0. Apply Weierstraß’s

double series theorem in order to find a power series of
1

1 − g(z)
.

Find in particular the first three terms in the power series expansion (from 0) for
1

cos z
.

Since

1
1 − g(z)

=
+∞∑
n=0

{g(z)}n =
+∞∑
n=0

gn(z) for |g(z)| < 1,

and since g(0) = 0 implies that |g(z)| < 1 in a neighbourhood of 0 (where the convergence is uniform
for |g(z)| ≤ k < 1), and c0 = 0, it follows that

1
1 − g(z)

=
+∞∑
n=0

{
+∞∑
p=1

cpz
p

}n

=
+∞∑
n=0

zn

{
+∞∑
p=0

cp+1z
p

}n

.

Since

1
cos z

=
1

1 − (1 − cos z)
,

we get

g(z) = 1 − cos z =
+∞∑
n=1

(−1)n+1

(2n)!
z2n =

z2

2!
− z4

4!
+

z6

6!
− · · · , z ∈ C,

hence (if |1 − cos z| < 1)

1
cos z

= 1 +
{

z2

2!
− z4

4!
+

z6

6!
− · · ·

}
+
{

z2 · z2

2!2!
− 2 · z2

2!
· z4

4!
+ · · ·

}{
z2 · z2 · z2

2!2!2!
+ · · ·

}
+ · · ·

= 1 +
z2

2
+

5
24

z4 +
61
720

z6 + · · · ,

when |1 − cos z| < 1. Note that because the power series expansion is unique in the larger domain
|z| <

π

2
, the same expansion holds here.
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Example 4.15 Find the first three terms of the power series expansion from z0 = 0 for the solution
w of the transcendental equation

w e−w = z.

Hint: Find w(0), w′(0), w′′(0), . . . , and then apply Taylor’s formula.

When we differentiate the equation (with respect to z)

z = w e−w,

then

1 =
(
e−w − w e−w

) dw

dz
= e−w (1 − w)

dw

dz
.

Here we put z = 0 and w = 0, and then get by a reduction that

dw

dz

∣∣∣∣
z=0

= 1.

Analytic functions described as power series

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

 - 
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future 

AxA globAl grAduAte 
progrAm 2015 

axa_ad_grad_prog_170x115.indd   1 19/12/13   16:36

http://s.bookboon.com/AXA


Complex Functions Examples c-4

 

55  

By another differentiation,

e−w (1 − w)
d2w

dz2
− e−w (2 − w)

(
dw

dz

)2

= 0,

and we obtain in the same manner,

d2w

dz2

∣∣∣∣
z=0

= 2.

Since e−w �= 0, this equation is equivalent to the simpler equation,

(1 − w)
d2w

dz2
− (2 − w)

(
dw

dz

)2

= 0.

When this equation is differentiated we get

(1 − w)
d3w

dz3
− dw

dz
· d2w

dz2
− 2(2 − w)

dw

dz
· d2w

dz2
+
(

dw

dz

)3

= 0,

hence by insertion of the previous results,

d3w

dz3

∣∣∣∣
z=0

= 1 · 2 + 2 · 2 · 1 · 2 − 1 = 9.

Finally, by insertion into Taylor’s formula we obtain in a neighbourbood of z0 = 0 that

w(z) = 0 +
1
1!

z +
2
2!

x2 +
9
3!

z3 · · · = z + z2 +
3
2

z3 + · · · .

Example 4.16 Lad M ∈ R. Prove that if f(z) is analytic in C, and

Re(f(z)) ≤ M

for every z, then f(z) is constant.
Hint: Apply Liouville’s theorem on exp(f(z)).

When we split f into its real and imaginary part, f = u + i v, it follows from the assumption that

u(x, y) ≤ M for every (x, y).

Since exp(f(z)) is analytic and

exp(f(z)) = eu · (cos v + i sin v),

we conclude that

| exp(f(z)) ≤ eu ≤ eM for every (x, y),

thus exp(f(z)) is a bounded analytic function. Then it follows from Liouville’s theorem that exp(f(z))
is constant, and since f is continuous, we conclude that f(z) is also constant.
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Example 4.17 Define the Bernouilli numbers Bn by the power series

z

ez − 1
=

+∞∑
n=0

Bn

n!
zn,

where limz→0
z

ez − 1
exists.

First determine this limit.
Then multiply by ez − 1 to prove that the Bernoulli numbers satisfy the recursion formula

n−1∑
j=0

1
j!(n − j)!

Bj = 0 for n > 1.

Find B0, B1, . . . , B4.
Prove that Bn = 0 for n �= 1 odd.
Determine the radius of convergence of the series.

Since

ez − 1 = z +
1
2!

z2 + · · ·

is different from zero for z �= 2i p π, p ∈ Z, we conclude that

lim
z→0

z

ez − 1
= lim

z→0

z

z + 1
2 z2 + o (z2)

= lim
z→0

1
1 + 1

2 z + o(z)
= 1 = B0.

It follows that B0 = 1. Furthermore, the power series is convergent in the largest open disc of centrum
at 0 which does not contain any number of the form 2i p π, p ∈ Z\{0}. The two closest singularities of
the point of expansion z0 = 0 are ±2i π, so we conclude that the radius of convergence is |±2i π| = 2π.

Assume that |z| < 2π. If we multiply the equation by

ez − 1 =
+∞∑
n=1

1
n!

zn,

it follows by a Cauchy multiplication that

z =
+∞∑
j=0

Bj

j!
zj ·

+∞∑
k=1

1
k!

zk = B0 z +
∑

j+k=n

j≥0, k≥1

1
j!k!

Bjz
n.

When n > 1, it follows from the uniqueness theorem that

0 =
∑

j+k=n

j≥0, k≥1

1
j!k!

Bj =
n−1∑
j=0

1
j!(n − j)!

Bj .

If n = 1, we again obtain (in accordance with the previous result) that

0∑
j=0

1
j!(1 − j)!

Bj = B0 = 0.
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Replacing n by n + 1, it follows from the above for n ≥ 1,

0 =
n∑

j=0

1
j!(n + 1 − j)!

Bj =
1

n!1!
Bn +

n−1∑
j=0

1
j!(n + 1 − j)!

Bj ,

hence

(3) Bn = −
n−1∑
j=0

n!
j!(n + 1 − j)!

Bj = − 1
n + 1

n−1∑
j=0

(
n + 1

j

)
Bj .
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We have already proved that B0 = 1. Then successively by (3),

B1 = −1
2

0∑
j=0

(
2
j

)
Bj = −1

2
B0 = −1

2
,

B2 = −1
3

1∑
j=0

(
3
j

)
Bj = −1

3

{(
3
0

)
B0 +

(
3
1

)
B1

}
= −1

3

{
1 + 3 ·

(
−1

2

)}
=

1
6
,

B3 = −1
4

2∑
j=0

(
4
j

)
Bj = −1

4

{(
4
0

)
B0 +

(
4
1

)
B1 +

(
4
2

)
B2

}
= −1

4

{
1 − 4

2
+

6
6

}
= 0,

B4 = −1
5

3∑
j=0

(
5
j

)
Bj = −1

5

{(
5
0

)
B0 +

(
5
1

)
B1 +

(
5
2

)
B2 +

(
5
3

)
B3

}

= −1
5

{
1 − 5

2
+

10
6

+ 0
}

= − 1
30

{6 − 15 + 10} = − 1
30

.

Summing up we have found the first five Bernouilli numbers,

B0 = 1, B1 = −1
2
, B2 =

1
6
, B3 = 0, B4 = − 1

30
.l

If

ϕ(z) =
z

ez − 1
− B0 − B1

1!
z =

z

ez − 1
− 1 +

1
2

z

=
+∞∑
n=2

Bn

n!
zn, for 0 < |z| < 2π.

then for 0 < |z| < 2π,

+∞∑
n=2

Bn

n!
(−1)nzn = ϕ(z) =

−z

e−z − 1
− 1 − 1

2
z =

−z ez

1 − ez
− 1 − 1

2
z

=
z ez

ez − 1
− 1 − 1

2
z =

z (ez − 1) + z

ez − 1
− 1 − 1

2
z

= z +
z

ez − 1
− 1 − 1

2
z =

z

ez − 1
− 1 +

1
2

z = ϕ(z) =
+∞∑
n=2

Bn

n!
zn.

Since

+∞∑
n=2

(−1)n Bn

n!
zn =

+∞∑
n=2

Bn

n!
zn for |z| < 2π,

it follows by a reduction that

0 = 2
+∞∑
n=1

B2n+1

(2n + 1)!
z2n+1, for |z| < 2π,

and we conclude by the identity theorem that B2n+1 = 0 for every n ∈ N.
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Example 4.18 Applying the Bernouilli numbers introduced in Example 4.17, prove that

z

2
·
exp

(z

2

)
+ exp

(
−z

2

)
exp

(z

2

)
− exp

(
−z

2

) =
+∞∑
n=0

1
(2n)!

B2n z2n.

Then replace z by 2iπz to prove that

πz · cot πz =
+∞∑
n=0

(−1)n · 1
(2n)!

· (2π)2n B2nz2n.

It follows by a simple computation that

z

2
·
exp

(z

2

)
+ exp

(
−z

2

)
exp

(z

2

) =
z

2
· cot

z

2
=

z

2
· ez + 1
ez − 1

=
z

2
· ez − 1 + 2

ez − 1
=

z

2
+

z

ez − 1

=
z

2
+

+∞∑
n=0

Bn

n!
zn =

z

2
+ B1z +

+∞∑
n=0

B2n

(2n)!
z2n =

+∞∑
n=0

B2n

(2n)!
z2n,

using that B1 = −1
2

and B2n+1 = 0 for n ∈ N by Example 4.9.

If we replace z by 2iπz, then

2iπz

2
· exp(iπz) + exp(−iπz)
exp(iπz) − exp(−iπz)

= π z · cot(π z) =
+∞∑
n=0

B2n

(2n)!
(2iπz)2n

=
+∞∑
n=0

(−1)n · 1
(2n)!

· (2π)2n B2n z2n.
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Example 4.19 1) Denote the roots of the polynomial of second order z2 + z − 1 by a and b (where
|b| > |a|). Prove that the function

f(z) =
1

1 − z − z2

has the Taylor expansion

+∞∑
n=0

anzn, |z| < |a|,

where the sequence of coefficients (an) is determined by the recursion formula

a0 = a1 = 1, an+2 = an+1 + an.

2) Decompose f and then expand termwise to prove the formula

an = (−1)n bn+1 − an+1

b − a
.

3) Find the Laurent expansion of f in the circular annulus |a| < |z| < |b|.

Figure 9: The disc and the annulus defined by a (to the right) and b (to the left). The disc is considered
in (1) and (2), while the annulus is considered in (3).

Remark 4.5 Since z2 + z − 1 = 0 for

z =
−1 ±√

1 + 4
2

=
−1 ±√

5
2

,

it follows that

a =
√

5 − 1
2

andb = −
√

5 + 1
2

,

which gives us some feeling of where a and b are lying, cf. the figure. The purpose of the example is,
however, that it is possible not to apply the exact values of a and b. ♦
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1) The function f(z) has a Taylor expansion for |z| < |a|,

f(z) =
1

1 − z − z2
=

+∞∑
n=0

anzn, |z| < |a|.

Thus by a multiplication by a − z − z2 for |z| < |a|,

1 =
(
1 − z − z2

) +∞∑
n=0

anzn =
+∞∑
n=0

anzn −
+∞∑
n=0

anzn+1 −
+∞∑
n=0

anzn+2

= a0 + a1z +
+∞∑
n=2

anzn − a0z −
+∞∑
n=1

anzn+1 −
+∞∑
n=0

anzn+2

= a0 + (a1 − a0) z +
+∞∑
n=0

{an+2 − an+1 − an} zn+2.
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Then it follows from the identity theorem that⎧⎨
⎩

a0 = 1,
a1 − a0 = 0,
an+2 − an+1 − an = 0, n ∈ N0,

thus

a0 = a1 = 1, an+2 = an+1 + an, n ∈ N0.

2) The product of the roots is equal to the constant term, so

1
a

= −b, and
1
b

= −a,

which we shall use in the following. Then we get in the disc |z| < |a| by a decomposition and by
the geometric series,

f(z) =
1

1 − z − z2
= − 1

z2 + z − 1
= − 1

(z − a)(z − b)
= − 1

a − b
· 1
z − a

− 1
b − a

· 1
z − b

= − 1
b − a

· 1
a
· 1

1 − z

a

+
1

b − a
· 1
b
· 1

1 − z

b

=
1

b − a
· b · 1

1 + bz
− 1

b − a
· a · 1

1 + az

=
1

b − a

{
b

+∞∑
n=0

(−1)nbnzn − a

+∞∑
n=0

(−1)nanzn

}
=

+∞∑
n=0

(−1)n bn+1 − an+1

b − a
zn,

because e.g. |bz| =
∣∣∣z
a

∣∣∣ < 1 in the disc given by |z| < |a| < |b|, and analogously |az| ≤ |bz| < 1 in
the same disc.
Since this series expansion is the same as the given series expansion,

+∞∑
n=0

anzn, |z| < |a| < |b|,

we conclude that

an = (−1)n bn+1 − an+1

b − a
, n ∈ N0.

3) Assume that z lies in the annulus |a| < |z| < |b|. Then by the decomposition above,

f(z) =
1

1 − z − z2
= − 1

a − b
· 1
z − a

− 1
b − a

· 1
z − b

=
1

b − a
· 1
z
· 1

a − a

z

+
1

b − a
· 1
b
· 1

1 − z

b

=
1

b − a
· 1
z

+∞∑
n=0

an

zn
− 1

b − a
· a · 1

1 + az
=

1
b − a

+∞∑
n=1

an−1 · 1
zn

− a

b − a

+∞∑
n=0

(−1)nanzn

=
+∞∑
n=1

an−1

b − a

1
zn

+
+∞∑
n=0

(−1)n an−1

b − a
zn,

where the estimates∣∣∣a
z

∣∣∣ < 1 and
∣∣∣z
b

∣∣∣ = |az| < 1,

secure the convergence.
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Example 4.20 Given the sequence a0, a1, . . . , an, . . . , by the recursion formula

a0 = 1, a1 = −1, an+2 = −an+1 − 2an, n ≥ 0.

1) Prove that the function

f(z) =
1

1 + z + 2z2

has the power series expansion

+∞∑
n=0

anzn,

and determine the radius of convergence.

2) Denote the roots of the polynomial 1 + z + 2z2 by a and b (where Im(a) > 0). Prove the formula

an = 2n an+1 − bn+1

a − b

by decomposing f(z) and then expanding every term in some series.

3) Prove by putting a = r ei v the formula

an =

√
2n · 8

7
· sin(n + 1)v,

where v is defined by

cos v = − 1
2
√

2
, 0 < v < π.

1) Since 2z2 + z + 1 = 0 has the roots

z =
−1 ±√

1 − 8
4

=
−1 ± i

√
7

4
,

the function f(z) is analytic in the disc

|z| <

∣∣∣∣∣−1 ± i
√

7
4

∣∣∣∣∣ =
√

8
4

=
1√
2

=
√

2
2

,

so f(z) has the Taylor expansion

f(z) =
1

1 + z + 2z2
=

+∞∑
n=0

bnzn, |z| <
1√
2
,
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where we shall prove that bn = an.
When we multiply by 1 + z + 2z2 �= 0 we get

1 =
(
1 + z + 2z2

)
f(z) =

(
1 + z + 2z2

) +∞∑
n=0

bnzn =
+∞∑
n=0

bnzn +
+∞∑
n=0

bnzn+1 +
+∞∑
n=0

2bnzn+2

= b0 + b1z +
+∞∑
n=2

bnzn + b0z +
+∞∑
n=1

bnzn+1 +
+∞∑
n=0

2bnzn+2

= b0 + (b0 + b1) z +
+∞∑
n=0

bn+2z
n+2 +

+∞∑
n=0

bn+1z
n+2 +

+∞∑
n=0

2bnzn+2

= b0 + (b0 + b1) z +
+∞∑
n=0

{bn+2 + bn+1 + 2bn} zn+2.

It follows by the identity theorem that

b0 = 1, b1 = −b0 = −1 and bn+2 = −bn+1 − 2bn, n ∈ N0,

so the two sequences (an) and (bn) fulfil the same difference equation. The solution of this is
unique, so we conclude that bn = an, n ∈ N0. It also follows from the above that the radius of

convergence is r =
1√
2
.

2) Then

a =
−1 + i

√
7

4
and b =

−1 − i
√

7
4

are the roots of the polynomial. Since a · b =
1
2
, we have

1
a

= 2b and
1
b

= 2a.

Then by a decomposition in the disc |z| <
1√
2
,

f(z) =
1

2z2 + z + 1
=

1
2(z − a)(z − b)

=
1
2
· 1
b − a

· 1
z − a

+
1
2
· 1
a − b

· 1
z − b

=
1
2
· −1
(b − a)a

· 1

1 − z

a

+
1
2
· −1
(a − b)b

· 1

1 − z

b

=
1
2
· 1
a − b

⎧⎨
⎩1

a
· 1

1 − z

a

− 1
b
· 1

1 − z

b

⎫⎬
⎭

=
1
2
· 1
a − b

{
2b · 1

1 − 2bz
− 2a · 1

1 − 2az

}
=

1
a − b

{
b

+∞∑
n=0

(2b)nzn − a

+∞∑
n=0

(2a)nzn

}

=
+∞∑
n=0

2n · bn+1 − an+1

b − a
zn =

+∞∑
n=0

anzn.

Hence it follows by the identity theorem that

an = 2n · an+1 − bn+1

a − b
, n ∈ N0.
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3) Then we introduce polar coordinates

a =
−1 + i

√
7

4
=

1√
2
·
(
−
√

2
4

+ i

√
14
4

)
= r ei v,

thus r =
1√
2

and v ∈ ]0, π[, where

cos v = −
√

2
4

= − 1√
8
.

Since b = a = r e−i v, it follows tht

an = 2n · an+1 − bn+1

a − b
=

2n · rn+1 · {ei(n+1)v − e−i(n+1)v
}

−−1 + i
√

7
4

− −1 − i
√

7
4

=
2n ·

(
1√
2

)n+1

2i sin(n + 1)v

i
√

7
2

=
2n− 1

2 (n+1)+1+1

√
7

sin(n + 1)v =
1√
7
· 2 1

2 n+ 3
2 sin(n + 2)v

=
(

2n+3

7

) 1
2

sin(n + 1)v =
(

8 · 2n

7

) 1
2

sin(n + 1)v.

Example 4.21 Put

S(z) =
+∞∑
n=0

(−1)n 3nz2n+1

2n + 1
for |z| < R,

where R denotes the radius of convergence. Determine R, and find explicitly for |z| < R the derivative
S′(z) as a function of z.

It follows from

S(z) =
+∞∑
n=0

(−1)n · 3nz2n+1

2n + 1
=

1√
3

+∞∑
n=0

(−1)n ·
(√

3 z
)2n+1

2n + 1
,

that the condition of convergence is

|
√

3 z| < 1, thus |z| < R =
1√
3
.

The by termwise differentiation for |z| <
1√
3
,

S′(z) =
+∞∑
n=0

(−1)n3nz2n =
+∞∑
n=0

(−1)n · (3z2
)n

=
1

1 + 3z2
.
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5 Linear differential equations and the power series method

Example 5.1 Solve the differential equation

f ′(z) − f(z) = 0

by insertion of a formal power series f(z) =
∑+∞

n=0 anzn.

Remark 5.1 In spite of the formulation we shall try all four solution variants. ♦

First method. Inspection. It follows from

d

dz
ez = ez,

that the function f(z) = ez trivially satisfies the homogeneous differential equation, so the complete
solution is given by

f(z) = c · ez, c ∈ C arbitrart constant.

Linear differential equations and the power series method

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

By 2020, wind could provide one-tenth of our planet’s 
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the 
world’s wind turbines. 

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our 
systems for on-line condition monitoring and automatic 
lubrication. We help make it more economical to create 
cleaner, cheaper energy out of thin air. 

By sharing our experience, expertise, and creativity, 
industries can boost performance beyond expectations. 

Therefore we need the best employees who can 
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering. 

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge


Complex Functions Examples c-4

 

67  

Second method. Integrating factor. If the differential equation is multiplied by e−z �= 0, then we
get by some small manipulation the equivalent differential equation

0 = e−z f ′(z) − e−zf(z) = e−z df

dz
+ f(z)

d

dz
e−z =

d

dz

{
e−z f(z)

}
.

We then get by integration,

e−z f(z) = c, thus f(z) = c · ez, c ∈ C arbitrary constant.

Third method. Determination of f (n) (z0). We have clearly one degree of freedom, so we choose
f(0) = c ∈ C, arbitrary. We get by successive differentiations of the given differential equation
and rearrangements

f (n)(z) = f (n−1)(z), for every n ∈ N,

hence by a simple recursion,

f(n)(0) = f (n−1)(0) = · · · = f(0) = c, n ∈ N.

Then the Taylor series from z0 = 0 is formally given by

f(z) =
+∞∑
n=0

1
n!

f (n)(0) zn = c
+∞∑
n=0

1
n!

zn = c · ez, z ∈ C,

where we immediately recognize the exponential series with its domain C.

Fourth method. Determination of a recursion formula for a series solution. We assume that the
equation has a power series solution

f(z) =
+∞∑
n=0

anzn where f ′(z) =
+∞∑
n=1

nan zn−1 for |z| ≤ �,

where we also shall find �. We get by insertion into the differential equation,

0 = f ′(z) − f(z) =
+∞∑
n=1

nan zn−1 −
+∞∑
n=0

anzn =
+∞∑
n=1

nan zn−1 −
+∞∑
n=1

an−1 zn−1,

=
+∞∑
n=1

{nan − an−1} zn−1,

where these computations are legal, if only |z| < �. Hence, we have a power series expansion of
the zero function, and since this is unique, we conclude that we have the recursion formula

nan − an−1 = 0 for every n ∈ N.

We multiply this formula by (n − 1)! �= 0. Then by a rearrangement and recursion,

n! an = (n − 1)! an−1 = · · · = j! aj = · · · = 0! a0 = a0,

thus

an = a0 · 1
n!

for every n ∈ N,
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and we derive the formal series solution,

f(z) =
+∞∑
n=0

an zn = a0

+∞∑
n=0

1
n!

zn.

If we recognize this series as the exponential series, then we have finished our task, because we
know that the exponential series is convergent in C. Otherwise, we split into the cases a0 = 0
(where we get the not so interesting zero series which is convergent everywhere) and a0 �= 0, where

� = lim
n→+∞

∣∣∣∣ an

an+1

∣∣∣∣ = lim
n→+∞(n + 1) = +∞,

and the domain of convergence is C.

Alternatively the recursion formula can be solved less elegantly in the following way:

an =
1
n

an−1 =
1
n
· 1
n − 1

an−2 = · · · =
1
n
· 1
n − 1

· · · 1
2
· 1
1
· a0 =

1
n!

a0,

and then we proceed as above.

Example 5.2 Solve the differential equation

(1 − z)f ′(z) = f(z)

by e.g. inserting a formal power series f(z) =
∑+∞

n=0 anzn.

First method. Inspection. We get by a small rearrangement,

0 = (1 − z)f ′(z) − f(z) =
d

dz
{(1 − z)f(z)},

the primitive of which is (1 − z)f(z) = c ∈ C, and thus

f(z) =
c

1 − z
, for z �= 1.

Second method. Determination of f (n) (z0). The expansion point is z0 = 0, and the coefficient
of f ′(z) is only zero for z = 1, so the Taylor series is at least convergent for |z| < 1. When we
differentiate the differential equation it follows after a rearrangement that

(1 − z)f ′′(z) = 2 f ′(z).

This gives us the hint that we possibly in general have

(1 − z)f (n)(z) = n f (n−1)(z), n ∈ N.

This is true for n = 1 and n = 2, and if we differentiate the conjecture, we get after another small
rearrangement the same structure of the equation, where only n has been replaced by n + 1, and
the claim follows by induction.
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Since z0 = 0, it then follows by recursion that

f (n)(0) = n f (n−1)(0) = · · · = n! f(0),

and the Taylor series is the same one as we found above,

f(z) =
+∞∑
n=0

1
n!

f (n)(0) zn =
+∞∑
n=0

1
n!

· n′! f(0) zn = f(0)
+∞∑
n=0

zn,

where the radius of convergence again is seen to be � = 1. The series is a quotient series of quotient
z, where |z| < 1, hence

f(z) =
f(0)
1 − z

, for |z| < 1,

though it is obvious that we can extend it to C \ {1}, because the differential equation is also
fulfilled here.

Third method. The method of power series. We assume that the solution has the power series
expansion

f(z) =
+∞∑
n=0

an zn where f ′(z) =
+∞∑
n=1

nan zn−1 for |z| ≤ �.

When these expressions are put into the differential equation and we assume that |z| < �, then

0 = (1 − z)f ′(z) − f(z) =
+∞∑
n=1

nan zn−1 −
+∞∑
n=1

nan zn −
+∞∑
n=0

an zn

=
+∞∑
n=0

(n + 1)an+1 zn −
+∞∑
n=0

(n + 1)an zn =
+∞∑
n=0

(n + 1) {an+1 − an} zn.

It follows from n + 1 �= 0 for every n ∈ N0, that we can divide by n + 1 in order to obtain the
simpler recursion formula

an+1 = an, n ∈ N0.

It follows by recursion that

an+1 = an = an−1 = · · · = a0, n ∈ N0,

an our formal series is given by

f(z) = a0

+∞∑
n=0

zn.

If a0 = 0, we get the zero series which is convergent everywhere.

If a0 �= 0, then

� = lim
n→+∞

∣∣∣∣ an

an+1

∣∣∣∣ =
∣∣∣∣a0

a0

∣∣∣∣ = 1.
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Example 5.3 Examine the inhomogeneous linear differential equation

z2f ′(z) − f(z) = −z,

and its possible solutions in the neighbourbood of z0 = 0.

First method. Inspection. When z �= 0, we multiply the equation by the integrating factor

1
z2

exp
(

1
z

)
�= 0 for z ∈ C \ {0}.

Then,

−1
z

exp
(

1
z

)
= exp

(
1
z

)
· f ′(z) − 1

z2
exp

(
1
z

)
· f(z) =

d

dz

{
exp

(
1
z

)
f(z)

}
.

So far, so good, but then everything goes wrong, because it is not possible to find a primitive
of the left hand side in any neighbourhood of z0 = 0. The problem is that the Laurent series
expansions starts with the term −1/z, so we shall consider a (complex) logarithm. These will all
have a branch cut to z0 = 0, and it will follow from a later book in this series that it is impossible
to obtain a Laurent series around the point z0 = 0.
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Second method. Formal determination of the Taylor series. If we put z = 0 into the differential
equation, then f(0) = 0. We proceed by differentiating the differential equation,

z2 f ′′(z) + (2z − 1)f ′(z) = −1, f ′(0) = 1,

z2 f (3)(z) + (4z − 1)f ′′(z) + 2 f ′(z) = 0, f ′′(0) = 2,

z2 f (4)(z) + (6z − 1)f (3)(z) + 6 f ′′(z) = 0, f (3)(0) = 12.

Then it follows by induction (left to the reader) that

z2 fn+1)(z) + (2n z − 1)f (n)(z) + n(n − 1) f (n−1)(z) = 0, m ≥ 2,

hence for z = 0,

f (n)(0) = n(n − 1) f (n−1)(0), n ≥ 2.

When we divide this recursion formula of f (n)(0) by n!(n − 1)!, then we get by recursion,

f (n)(0)
n!(n − 1)!

=
f (n−1)(0)

(n − 1)!(n − 2)!
= · · · =

f (2)(0)
2!1!

=
2
2

= 1,

and the Taylor coefficients become

1
n!

f (n)(0) = (n − 1)!, n ∈ N,

so the formal Taylor series is

+∞∑
n=0

1
n!

f (n)(0) zn =
+∞∑
n=1

(n − 1)! zn.

Hence, the radius of convergence is

� = lim
n→+∞

(n − 1)!
n!

= lim
n→+∞

1
n

= 0,

so the Taylor series expanded from z0 = 0 is only convergent for z = 0, and we cannot use the
series expansion to anything.

Third method. The power series method. Assume that the solution has a convergent power series
expansion,

f(z) =
+∞∑
n=0

an zn for |z| < �.

Then by insertion into the differential equation,

z2 f ′(z) − f(z) = z2
+∞∑
n=1

nan zn−1 −
+∞∑
n=0

an zn =
+∞∑
n=1

nan zn+1 −
+∞∑
n=0

an zn

=
+∞∑
n=2

(n − 1)an−1 zn −
+∞∑
n=0

an zn = −a0 +
+∞∑
n=1

{(n − 1)an−1 − an} zn.
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If this expression is put equal to −z, then −a0 = 0, and 0 · a0 − a1 = −1, thus a1 = 1, and

an = (n − 1)an−1, n ≥ 2.

We get by recursion, an = (n − 1)! a1 = (n − 1)!, so the formal series becomes

+∞∑
n=1

(n − 1)! zn.

It is immediately seen that this series is divergent, whenever z �= 0, so we cannot use the series
expansion to anything.

Remark 5.2 In particular, the example demonstrates that we have never finished this method of
power series solution, if we have not also found the corresponding open domain of convergence. ♦

Example 5.4 Solve the differential equation

f ′(z) − z f(z) = 0

by assuming that its solution can be written as a (formal) power series f(z) =
∑+∞

n=0 anzn.

Remark 5.3 As usual we shall again demonstrate all three possible solution variants. ♦

First variant. Inspection. In the neighbourhood of any point in which f(z) �= 0, we see that the
equation is equivalent to

f ′(z)
f(z)

= z.

Since Log f(z) is locally defined in the neighbourhood of any such point, the primitive exists and
is given by

Log f(z) =
z2

2
+ c,

so we have locally,

(4) f(z) = C · exp
(

z2

2

)
, C ∈ C.

Then we check the solution. Any solution must have the structure (4). On the other hand, if
f(z) is given by (4), then f(z) is clearly analytic in C, and it follows by differentiation that (4)
fulfils

f ′(z) − z f(z) = 0,

so (4) gives us all solutions of the differential equation.
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Second variant. Determination of the Taylor coefficients. We get by a rearrangement,

f ′(z) = z f(z).

Then a differentiation gives

f ′′(z) = z f ′(z) + f(z),

and thus

f (3)(z) = z f ′′(z) + 2 f ′(z).

We shall now show by induction that

(5) f (n+1)(z) = z f (n)(z) + n f (n−1)(z).

It follows from the above that (5) holds for n = 1, 2. Assume that (5) holds for some n ∈ N. Then
by another differentiation,

f (n+2)(z) = z f (n+1)(z) + (n + 1)f (n)(z),

which has the same structure as (5), only with n replaced by n + 1. Then the claim follows by
induction (the bootstrap principle).

Now, if we put z = 0 into (5), then

(6) f (n+1)(0) = n f (n−1)(0).

It follows from the original equation that

f ′(0) = 0 · f(0) = 0,

hence we conclude from (6) that

f (2n+1)(0) = 0 for every n ∈ N0.

We still have to find f (2n)(0). However,

f (2n)(0) = (2n − 1)f (2n−2)(0),

so by recursion,

f (2n)(0)
(2n)!

=
1
2n

· f (2n−2)(0)
(2n − 2)!

= · · · =
1
2n

· 1
2n − 2

· · · 1
2
· f(0) =

1
2n

· 1
n!

f(0).

Then by insertion into Taylor’s formula we formally obtain,

f(z) = f(0)
+∞∑
n=0

1
n!

1
2n

z2n = f(0)
+∞∑
n=0

1
n!

(
z2

2

)n

= f(0) · exp
(

z2

2

)
,

where we have recognized the exponential series of radius of convergence ∞.
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Third variant. The power series method. Assume that

f(z) =
+∞∑
n=0

anzn

is a power series solution which is convergent for |z| < R. Then we have in this domain of
convergence,

f ′(z) =
+∞∑
n=1

nanzn−1.

By insertion of these series into the differential equation we get for |z| < R (where we shall find
the radius of convergence R later) that

0 = f ′(z) − z f(z) =
+∞∑
n=0

(n + 1)an+1z
n −

+∞∑
n=0

anzn+1 = a1 +
+∞∑
n=1

(n + 1)an+1z
n −

+∞∑
n=1

an−1z
n

= a1 +
+∞∑
n=1

{(n + 1)an+1 − an−1} zn.
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By using the identity theorem we get a1 = 0 and the recursion formula

(7) (n + 1)an+1 = an−1, n ∈ N.

Since a1 = 0, and since there is a leap of 2 in the recursion formula (7), we conclude that

a2n+1 = 0 for n ∈ N0.

For even indices we get instead the recursion formula

2na2n = a2(n−1),

hence by recursion,

a2n =
1
2n

a2(n−1) =
1
2n

· 1
2(n − 1)

a2(n−2) = · · · =
1

2n · 2(n − 1) · · · 2 · 1 a0 =
1
2n

· 1
n!

a0.

We then conclude from
a2(n−1)

a2n
= 2n → +∞ for n → +∞,

that the z2-radius of convergence is +∞, hence the z-radius of convergence is also +∞, and the
series can be written as

f(z) = a0

+∞∑
n=0

1
2n

· 1
n!

z2n = a0

+∞∑
n=0

1
n!

(
z2

2

)n

= a0 exp
(

z2

2

)
, z ∈ C.

Example 5.5 Solve the differential equation

(1 − z)f ′(z) − 2 f(z) = 0

by inserting a formal power series.

Remark 5.4 We shall as usual go through all three standard solution variants. ♦

First variant. Inspection. When z �= 1, we multiply by 1− z �= 0 and obtain the equivalent equation

0 = (1 − z)2f ′(z) − 2(1 − z)f(z) = (z − 1)2f ′(z) + 2(z − 1)f(z)

= (z − 1)2
d

dz
f(z) +

d

dz
(z − 1)2 · f(z) =

d

dz

{
(z − 1)2f(z)

}
.

The primitive is (z − 1)2f(z) = c, hence

f(z) =
c

(z − 1)2
, c ∈ C, z ∈ C \ {1}.

Only the zero solution can be extended to pass the singularity.
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Second variant. Determination of the Taylor coefficients. It follows by a differentiation of

(1 − z)f ′(z) − 2f(z) = 0

that

(1 − z)f ′′(z) − 3f ′(z) = 0.

Then we prove by induction that

(8) (1 − z)f (n)(z) − (n + 1)f (n−1)(z) = 0.

Assume that (8) holds for some n ∈ N. Then a differentiation gives

(1 − z)f (n+1) − (n + 2)f (n)(z) = 0,

which has the same structure as (8), only with n replaced by n + 1. Since (8) holds for n = 1, the
claim follows by induction (the bootstrap principle), so (8) holds in general.

If we put z = 0 into (8), then

f (n)(0) = (n + 1)f (n−1)(0).

We divide by (n + 1)! and then obtain by recursion that

f (n)(0)
(n + 1)!

=
f (n−1)(0)

n!
= · · · =

f ′(0)
2!

=
f(0)
1!

.

We conclude that

an =
f (n)(0)

n!
= (n + 1)f(0).

The formal series solution is

f(z) = a0

+∞∑
n=0

(n + 1)zn.

We see that the radius of convergence is

r = lim
n→+∞

1
n
√

n + 1
= 1,

and that we have for |z| < 1,

f(z) = a0

+∞∑
n=0

(n + 1)zn = a0
d

dz

+∞∑
n=0

zn+1 = a0
d

dz

z

1 − z
= a0 · 1

(1 − z)2
.

Third variant. The power series method. Assume that the solution has the form

f(z) =
+∞∑
n=0

anzn for |z| < R,

Linear differential equations and the power series method

Download free eBooks at bookboon.com



Complex Functions Examples c-4

 

77  

where the coefficients an and the radius of convergence R > 0 are the unknown.

Since z = 1 is the only singular point, we may expect that the radius of convergence is either
R = 1 or R = +∞, if the solution can be extended beyond z = 1.

When we put

f(z) =
+∞∑
n=0

anzn and f ′(z) =
+∞∑
n=1

nanzn−1

into the differential equation, and |z| < R, then

0 =
+∞∑
n=1

nanzn−1 −
+∞∑
n=1

(n=0)

nanzn − 2
+∞∑
n=0

anzn =
+∞∑
n=0

(n + 1)an+1z
n −

+∞∑
n=0

(n + 2)anzn

=
+∞∑
n=0

{(n + 1)an+1 − (n + 2)an} zn.

We conclude from the identity theorem that we have therecursion formula

(n + 1)an+1 = (n + 2)an, n ∈ N0.

This is divided by (n + 1)(n + 2) �= 0 for n ∈ N0, and then we immediately get by recursion that

1
(n + 1) + 1

an+1 =
1

n + 2
an+1 =

1
n + 1

an = · · · =
1

0 + 1
a0 = a0,

and we get immediately, an = (n + 1)a0. Therefore, the formal series solution is given by (with
some obvious manipulations)

f(z) = a0

+∞∑
n=0

(n + 1)zn = a0

+∞∑
n=1

n zn−1 = a0
d

dz

(
+∞∑
n=0

zn

)
= a0

d

dz

(
1

1 − z

)
=

a0

(1 − z)2
,

and it is trivial that the radius of convergence is 1.
A check is also trivial, and it even follows that

a0

(1 − z)2

is a solution of the differential equation in C \ {1}.
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Example 5.6 Solve the differential equation(
2z3−z2

)
f ′′(z)−(6z2−2z

)
f ′(z)+(6z−2)f(z) = 0

by inserting a formal power series expansion f(z) =
∑+∞

n=0 anzn.

Remark 5.5 In this case it is rather difficult directly to find the Taylor coefficients, so we shall only
demonstrate the other two solution variants. However, ironically (left to the reader), it can be shown
that the determination of the Taylor coefficients actually is the easiest method in the actual case,
which is far from evident. Hence, one will not always be able in advance to judge which method is
the easiest to apply. ♦

First variant. Inspection. This method is also difficult, because one shall divide by the not so obvious
polynomial (2z − 1)2z3 (here I have been guided by the coefficient of the term of highest order of

differentiation). If we do this, then we get for z �= 1
2

and z �= 0,

Linear differential equations and the power series method

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book  
is made with 
SetaPDF

http://s.bookboon.com/Setasign


Complex Functions Examples c-4

 

79  

0 =
(2z−1)z2

2z−)2z3
f ′′(z) − 2(3z−)z

(2z−1)2z3
f ′(z) +

2(3z−1)
(2z−)2z3

f(z)

=
1

(2z−1)z
f ′′(z) − 4z−1

(2z−1)2z2
f ′(z) +

{
4z−1

(2z−1)2z2
− 6z−2

(2z−1)2z2

}
f ′(z) +

6z−2
2z−1)2z3

f(z)

=
d

dz

{
f ′(z)

(2z−1)z

}
− 2z−1

(2z−1)2z2
f ′(z) +

6z−2
(2z−1)2z3

f(z)

=
d

dz

{
f ′(z)

(2z−1)z

}
− f ′(z)

(2z−1)z2
+
{

6z2−2z
(2z−1)2z4

f(z) − 6z−2
(2z−1)2z3

f(z)
}

+
6z−2

(2z−1)2z3
f(z)

=
d

dz

{
f ′(z)

(2z − 1)z

}
− d

dz

{
f(z)

(2z − 1)z2

}
=

d

dz

{
f ′(z)

(2z − 1)z
− f(z)

(2z − 1)z2

}

=
d

dz

{
1

2z − 1
d

dz

(
f(z)

z

)}
.

We have proved that

d

dz

{
1

2z − 1
d

dz

(
f(z)

z

)}
= 0.

A primitive is given by

1
2z − 1

d

dz

(
f(z)

z

)
= C1,

thus

d

dz

(
f(z)

z

)
= C1 · (2z − 1).

Another primitive is

f(z)
z

= C1 ·
(
z2 − z

)
+ C2,

hence

f(z) = C1 ·
(
z3 − z2

)
+ C2z.

A check shows that this is the complete solution in C for any choice of the constants C1, C2 ∈ C.

Second variant. The power series method. The method of inspection relies on a rather nasty trick,
and the method of determination of the Taylor coefficients does not look promising (however, cf.
the remark in the beginning of the example). Therefore, one would usually start with the power
series method, in particular because the assumptions of the existence theorem are not fulfilled at
the singular point z0. And even by the power series method one must be very careful, because the
radius of convergence could be R = 0. In fact, the roots of the polynomial coefficient 2z3 − z2 are

0 and
1
2
, so the possible radii of convergence are 0,

1
2

and +∞.
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If we put the formal series

f(z) =
+∞∑
n=0

, f ′(z) =
+∞∑
n=1

nanzn−1, f ′′(z) =
+∞∑
n=2

n(n − 1)anzn−2,

(where we later shall find the radius of convergence R) into the equation, we get

0 =
(
2z3−z2

)
f ′′(z)−(6z2−2z

)
f ′(z)+(6z−2)f(z)

=
+∞∑
n=2

(n=0)

2n(n−1)anzn+1 −
+∞∑
n=2

(n=0)

n(n−1)anzn −
+∞∑
n=1

(n=0)

6nanzn+1

+
+∞∑
n=1

(n=0)

2nanzn +
+∞∑
n=0

6anzn+1 −
+∞∑
n=0

2anzn

=
+∞∑
n=0

2
{
n2 − n − 3n + 3

}
anzn+1 −

+∞∑
n=0

{
n2 − n − 2n + 2

}
anzn

=
+∞∑
n=0

2
(
n2 − 4n + 3

)
anzn+1 −

+∞∑
n=0

(
n2 − 3n + 2

)
anzn

=
+∞∑
n=0

2(n − 3)(n − 1)anzn+1 −
+∞∑
n=0

(n − 2)(n − 1)anzn,

thus

0 =
+∞∑
n=0

2(n − 3)(n − 1)anzn+1 −
+∞∑
n=0

(n − 2)(n − 1)anzn

=
+∞∑
n=1

2(n − 4)(n − 2)an−1z
n −

+∞∑
n=0

(n − 2)(n − 1)anzn

= −2a0 +
+∞∑
n=1

(n − 2) {2(n − 4)an−1 − (n − 1)an} zn.

It follows from the identity theorem that we have a0 = 0 and the recursion formula

(9) (n − 2) {2(n − 4)an−1 − (n − 1)an} = 0, n ∈ N.

Remark 5.6 Notice that we here have kept the common factor. The reason is that if n − 2 is
removed, then we latently divide by 0, when n = 2. This is one of the pitfalls of the power series
method. ♦

We have proved that a0 = 1. Then put n = 1 into (9) in order to get

(−1) · {2 · (−3) · a0 − 0 · a1} = 6 · 0 + 0 · a1 = 0,

which clearly holds no matter the choice of a1, thus a1 is an arbitrary constant.
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Then put n = 2 into (9). In this case we get the trivial identity

(10) 0 · {−4a1 − a2} = 0,

so a2 is also an arbitrary constant. This shows why we shall keep the factor n − 2 in (9), because
we otherwise would obtain a false solution of (10).

If n > 2, then n − 2 �= 0, and n − 1 �= 0, hence we get by solution of (9),

(11) an =
2(n − 4)
n − 1

an−1 for n ≥ 3.

If n = 4, then a4 = 0, and then we get by induction of (11) that an = 0 for every n ≥ 4.

We still have to consider the case n = 3. Here,

a3 =
2(3 − 4)
3 − 1

a2 = −a2,

and the complete solution then becomes

f(z) = a1z + a2

(
z2 − z3

)
.

This solution is a very trivial power series with the domain of convergence equal to C. A check of
the solution shows that it is indeed the complete solution in C.

Remark 5.7 Here the reader should pay attention to another pitfall in the computation. If
an �= 0, then it follows from (11) that

an−1

an
=

1
2

n − 1
n − 4

.

Therefore, one may be misled to believe that the radius of convergence is

“ lim
n→+∞

∣∣∣∣an−1

an

∣∣∣∣ ” = lim
n→+∞

∣∣∣∣12 · n − 1
n − 4

∣∣∣∣ = 1
2
.

However, this computation is only correct, if an �= 0 for every n, and this was not the case here.
We have

R = +∞ >
1
2

= lim
n→+∞

1
2

n − 1
n − 4

. ♦
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Example 5.7 Solve the differential equation

f ′′(z) − z f(z) = 0

by inserting a formal power series f(z) =
∑+∞

n=0 anzn.

Remark 5.8 In case of linear differential equations of order ≥ 2 it is very rare that the method
of inspection is successful, and the same can be said about the method of determining the Taylor
coefficients. In the present case we even end up with a series expression which cannot be expressed
by an elementary function. Thus we are only left with the power series method. ♦

If we put the formal power series

f(z) =
+∞∑
n=0

anzn, f ′(z) =
+∞∑
n=1

nanzn−1, f ′′(z) =
+∞∑
n=2

n(n − 1)anzn−2

into the differential equation, we get

0 = f ′′(z) − z f(z) =
+∞∑
n=2

n(n − 1)anzn−2 −
+∞∑
n=0

anzn+1 =
+∞∑

n=−1

(n + 3)(n + 2)an+3z
n+1 −

+∞∑
n=0

anzn+1

= 2a2 +
+∞∑
n=0

{(n + 3)(n + 2)an+3 − an} zn+1.
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Then it follows by the identity theorem that a2 = 0 and we have the recursion formula

(12) an+3 =
1

(n + 3)(n + 2)
an, n ∈ N0,

thus a3n+2 = 0 for n ∈ N0, and

a3n =
1

3n(3n−1)
· 1
(3n−3)(3n−4)

· 1
(3n−6)(3n−7)

· · · 1
2
· 1
2
· 10,

a3n+1 =
1

(3n+1) · 3n · 1
(3n−2)(3n−3)

· 1
(3n−5)(3n−6)

· · · 1
4
· 1
3
· a1,

and the complete solution (which is not nice) is formally given by

f(z) = a0

+∞∑
n=0

1
3n(3n−1)

· 1
(3n−3)(3n−4)

· · · 1
3
· 1
2
· z3n

+a1

+∞∑
n=0

1
(3n+1)3n

· 1
(3n−2)(3n−3)

· · · 1
4
· 1
3
· z3n+1.

The easiest way to find the radius of convergence is by using the recursion formula (12). We conclude
that the x3-radius of convergence for each of the two series of solution is given by

�z3 = lim
n→+∞

∣∣∣∣ an

an+1

∣∣∣∣ = lim
n→+∞(n + 3)(n + 2) = +∞.

Hence we conclude that the domain of convergence is C.

Example 5.8 Solve the differential equation(
1 − z2

)
f ′′(z) − 2z f ′(z) + 2f(z) = 0

by inserting a formal power series f(z) =
∑+∞

n=0 anzn.

Remark 5.9 Here, the power series method is the safe method, However, we shall later show that it
is even here not too difficult to find the Taylor coefficients. On the other hand one should not waste
time on the inspection method. ♦

First variant. The power series method. The singular points are the roots of 1 − z2, hence ±1. We
may therefore expect that the radius of convergence is either 1 or +∞.

If we put the formal power series

f(z) =
+∞∑
n=0

anzn f ′(z) =
+∞∑
n=1

nanzn−1, f ′′(z) =
+∞∑
n=2

n(n − 1)anzn−2,
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into the differential equation, we get

0 =
(
1−z2

)
f ′′(z) − 2zf ′(z) + 2f(z)

=
+∞∑
n=2

n(n−1)anzn−2−
+∞∑
n=2

(n=0)

n(n−1)anzn−
+∞∑
n=1

(n=0)

2nanzn+
+∞∑
n=0

2anzn

=
+∞∑
n=0

(n + 2)(n + 1)an+2z
n −

+∞∑
n=0

{
n2 + n − 2

}
anzn

=
+∞∑
n=0

(n + 2) {(n + 1)an+2 − (n − 1)an} zn.

Since n + 2 �= 0 for n ∈ N0, it follows by the identity theorem that we have the recursion formula

(n + 1)an+2 = (n − 1)an, n ∈ N0.

Thus, the structure is given by

({n + 2} − 1)an+2 = (n − 1)an, n ∈ N0.

If we split into n = 2p even and n = 2p + 1 odd, it follows by recursion that

(2p − 1)a2p = · · · = (0 − 1)a0 and 2pa2p+1 = · · · = (1 − 1)a1 = 0,

thus a2p+1 = 0 for p ∈ N, and a1 is an arbitrary constant, and

a2p = − 1
2p − 1

a0,

where a0 is also an arbitrary constant. Therefore, the formal power series is

f(z) = a1z − a0

+∞∑
n=0

1
2n − 1

z2n,

which of course has 1 as radius of convergence, if a0 �= 0.
If a0 = 0, then f(z) = a1z is convergent in C.

Since

d

dz

+∞∑
n=1

1
2n − 1

z2n−1 =
+∞∑
n=0

z2n =
1

1 − z2
=

1
2

1
1 − z

+
1
2

1
1 + z

,

a primitive in |z| < 1 is given by

+∞∑
n=1

1
2n − 1

z2n−1 = −1
2

Log(1 − z) +
1
2

Log(1 + z) =
1
2

Log
(

1 + z

1 − z

)
,

because both 1−z and 1+z lie in the right half plane, so their principal arguments lie in
]
−π

2
,

π

2

[
.

Then the solution can be written

f(z) = a0

{
1 − 1

2
z Log

(
1 + z

1 − z

)}
+ a1z for |z| < 1.
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Second variant. Determination of the Taylor coefficients. When we differentiate the equation(
1 − z2

)
f ′′(z) − 2z f ′(z) + 2 f(z) = 0

a couple of times, then(
1 − z2

)
f (3)(z) − 4z f ′′(z) − 0 · f ′(z) = 0,

(
1 − z2

)
f (4)(z) − 6z f (3)(z) − 4 · f (2)(z) = 0,

(
1 − z2

)
f (5)(z) − 8z f (4)(z) − 10 · f (3)(z) = 0,

which are special cases of the formula

(13)
(
1−z2

)
f (n)(z)−2(n−1)zf (n−1)(z)−n(n−3)f (n−2)(z) = 0

for n = 2, 3, 4, 5.

Assume that (13) holds for some n ∈ N \ {1}. Then by differentiation,(
1−z2

)
f (n+1)(z)−2(n+1−1)zf (n+1−1)(z)−{n(n−3)+2(n−1)}f (n−1)(z) = 0,

where

n(n − 3) + 2(n − 1) = n2 − 3n + 2n − 2 = n2 − n − 2
= (n + 1)(n − 2) = (n + 1)({n + 1} − 3),

and it follows by induction that (13) holds for every n ∈ N \ {1}.

If we put z = 0 into (13), then

f (n)(0) − n(n − 3)f (n−2)(0) = 0, for n ≥ 2,

and the Taylor coefficients are given by the recursion formula

an =
f (n)(0)

n!
=

n(n − 3)
n!

f (n−2)(0) =
n − 3
n − 1

· f (n−2)(0)
(n − 2)!

=
n − 3
n − 1

· an−2,

thus

(n − 1)an = (n − 3)an−2 = ({n − 2} − 1)an−2.

If n = 2p + 1, p ∈ N, is odd and > 1, we get by recursion,

(2p + 1 − 1)a2p+1 = · · · = (1 − 1)a1 = 0,

where a1 is an arbitrary constant.

If n = 2p, p ∈ N, is even, then

(2p − 1)a2p = · · · = (0 − 1)a0 = −a0,
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hence

a2p = − 1
2p − 1

a0+, for p ∈ N,

where a0 is an arbitrary constant. We get as above the formal series

f(z) = a1z − a0

+∞∑
p=0

1
2p − 1

z2p,

and it is again obvious that the domain of convergence is {z ∈ C | |z| < 1}, if a0 �= 0, and C, if
a0 = 0.

The determination of the sum function is the same as in the first variant, so it shall not be repeated
here.
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Example 5.9 Solve the differential equation(
1 − z2

)
f ′′(z) + 6 f(z) = 0

by insertion of a formal power series f(z) =
∑+∞

n=0 anzn.

The singular points are ±1, so we may expect that the radius of convergence is either 1 or +∞.

If we put the formal power series

f(z) =
+∞∑
n=0

anzn and f ′′(z) =
+∞∑
n=2

n(n − 1)anzn−2

into the differential equation, then

0 =
(
1 − z2

)
f ′′(z) + 6 f(z) =

+∞∑
n=2

n(n − 1)anzn−2 −
+∞∑
n=2

(n=0)

n(n − 1)anzn +
+∞∑
n=0

6anzn

=
+∞∑
n=0

(n + 2)(n + 1)an+2z
n −

+∞∑
n=0

{
n2 − n − 6

}
anzn

=
+∞∑
n=0

(n + 2) {(n + 1)an+2 − (n − 3)an} zn.

Since n + 2 �= 0 for n ∈ N0, we derive by the identity theorem the recursion formula

(n + 1)an+2 = (n − 3)an, n ∈ N0.

If n = 3, then a5 = 0, hence a2n+1 = 0 for n ≥ 2 by induction.

If n = 1, then 2a3 = −2a1, hence a3 = −a1, and one of the two independent solutions is given by

a1

(
z − z3

)
,

and it is of course convergent in C.

If n = 2p, then the recursion formula is written

(2p + 1)a2p+2 = (2p − 3)a2p, p ∈ N0.

When this is multiplied by 2p − 1 �= 0, it follows by recursion that

(2p + 1)(2p − 1)a2p+2 = ({2p + 2} − 1)({2p + 2} − 3)a2p+2

= (2p − 1)(2p − 3)a2p = · · · = (−1)(−3)a0

= 3a0,

thus

a2p+2 = a2(p+1) =
3

4p2 − 1
a0,
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and hence

a2n =
3

4(n − 1)2 − 1
a0 =

3
(2n − 1)(2n − 3)

a0.

The radius of convergence is 1 for a0 �= 0, and +∞ for a0 = 0, and the general solution is

f(z) = a1

(
z − z3

)
+ a0

+∞∑
n=0

3
(2n − 1)(2n − 3)

z2n, for |z| < 1.

Remark 5.10 It is here possible – though not worth the trouble – to express the corresponding
analytic function by means of Log. ♦

Example 5.10 Find all power series with expansion point 0, which are a solution of the differential
equation

z f ′′(z) − 2 f ′(z) + 4z3f(z) = 0.

Since z = 0 is a singular point, we cannot immediately conclude that there exists a solution.

If we put the formal power series

f(z) =
+∞∑
n=0

anzn, f ′(z) =
+∞∑
n=1

nanzn−1, f ′′(z) =
+∞∑
n=2

n(n − 1)anzn−2,

into the differential equation, we get

0 = zf ′′(z) − 2f(z) + 4z3f(z) =
+∞∑
n=2

(n=1)

n(n − 1)anzn−1 −
+∞∑
n=1

2nanzn−1 +
+∞∑
n=0

4anzn+3

=
+∞∑
n=1

n(n − 3)anzn−1 +
+∞∑
n=4

4an−4z
n−1

= 1 · (−2)a1+2(−1)a2z+0+
+∞∑
n=4

{n(n−3)an+4an−4} zn−1.

Hence by the identity theorem, a1 = 0, a2 = 0, and the recursion formula

n(n − 3)an = −4an−4 for n ≥ 4.

It follows immediately by induction that

a4n+1 = 0 og a4n+2 = 0.

If n = 4p, we get by recursion,

a4p =
−4

4p(4p − 3)
a4(p−1) = · · · =

(−4)p

4p(4p − 3)4(p − 1)(4p − 7) · · · 4 · 1 a0

=
(−1)pa0

p!(4p − 3)(4p − 7) · · · 1 .
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where the corresponding series is easily shown to have the radius of convergence +∞.

If n = 4p + 3, p ∈ N, then we also get by recursion that

a4p+3 =
−4

(4p + 3) · 4p a4p−1 =
−1

(4p + 3)p
a4(p−1)+1 = · · · =

(−1)p

p!(4p + 3)(4p − 1) · · · 3 a3,

and the corresponding series has also the radius of convergence +∞.

Summing up, the complete solution is

f(z) = a0

{
1 +

+∞∑
n=1

(−1)n

n!(4n − 3)(4n − 7) · · · 1 z4n

}
+ a3

{
z3 +

+∞∑
n=1

(−1)n

n!(4n + 3)(4n − 1) · · · 3 z4n+3

}

for z ∈ C.

Example 5.11 Consider the series

f(z) =
+∞∑
n=0

z2n

(n!)2
.

Find its radius of convergence and prove that f(z) satisfies in the domain of convergence the differential
equation

z2f ′′(z) + z f ′(z) = 4z2f(z).

It follows from the estimate

|f(z)| ≤
+∞∑
n=0

1
(n!)2

∣∣z2
∣∣n ≤

+∞∑
n=0

1
n!

∣∣z2
∣∣n = exp

(∣∣z2
∣∣) ,

that the domain of convergence is C.

It follows from the definition of f(z) by a differentiations that

f ′(z) =
+∞∑
n=1

2n
(n!)2

z2n−1 og f ′′(z) =
+∞∑
n=1

2n(2n − 1)
(n!)2

z2n−2,

hence by insertion into the left hand side of the differential equation,

z2f ′′(z) + z f ′(z) =
+∞∑
n=1

2n(2n − 1)
(n!)2

z2n +
+∞∑
n=1

2n
(n!)2

z2n =
+∞∑
n=1

(2n)2

(n!)2
z2n = 4

+∞∑
n=1

1
({n − 1}!)2 z2n

= 4z2
+∞∑
n=0

1
(n!)2

z2n = 4z2f(z).
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6 The classical differential equations

Example 6.1 By the Bessel equation of order 0 we shall understand the differential equation

z2f ′′(z) + z f ′(z) + z2f(z) = 0.

Find a power series solution

f(z) =
+∞∑
n=0

anzn

of this equation, for which f(0) = 1 and f ′(0) = 0, and then determine its domain of convergence.
This solution is called the Bessel function af order 0 and it is denoted by J0(z).

We get by termwise differentiation in the domain of convergence |z| < R,

f ′(z) =
+∞∑
n=1

nanzn−1 and f ′′(z) =
+∞∑
n=2

n(n − 1)anzn−2.

The classical differential equations
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When these formal power series are put into the differential equation, we get

0 = z2f ′′(z) + z f ′(z) + z2f(z) =
+∞∑
n=2

(n=0)

n(n − 1)anzn +
+∞∑
n=1

(n=0)

nanzn +
+∞∑
n=0

anzn+2

=
+∞∑
n=0

n2anzn +
+∞∑
n=2

an−2z
n = 02a0 + 12a1z +

+∞∑
n=2

(
an−2 + n2an

)
zn.

Then it follows from the identity theorem that a1 = 0, and

an−2 + n2an = 0, dvs. an = − 1
n2

an−2, n ≥ 2.

Remark 6.1 Strictly speaking the example is over-determined, because we again derive that a1 = 0
without any assumption at all, and yet it is assumed that f ′(0) = a1 = 0. We note in particular, that
if our request had been f ′(0) �= 0, then this problem would not have a solution. ♦

It follows by recursion from a1 = 0 that

a2n+1 = 0 for n ∈ N0.

Since f(0) = 1, we get a0 = 1, hence by recursion,

a2n =
(−1)n

(n!2n)2
=

(−1)n

4n(n!)2
,

and the formal series solution is given by

f(z) =
+∞∑
n=0

(−1)n

4n(n!)2
z2n =

+∞∑
n=0

(−1)n

(n!)2
(z

2

)2n

.

We have trivially the estimate

|f(z)| ≤
+∞∑
n=0

1
(n!)2

∣∣∣∣(z

2

)2
∣∣∣∣
n

≤
+∞∑
n=0

1
n!

∣∣∣∣(z

2

)2
∣∣∣∣
n

= exp
(∣∣∣z

2

∣∣∣2) < +∞

for every z ∈ C, so the series is convergent everywhere in C, and the domain of convergence for
f(z) = J0(z) is C.

Example 6.2 We define the Bessel function of order m by

Jm(z) =
+∞∑
n=0

(−1)n

n!(m + n)!

(z

2

)2n+m

, m ∈ N0.

Prove that Jm(z) is analytic in C, thus its radius of convergence is +∞.

If we put
(z

2

)m

outside the summation and change variable to w =
(z

2

)2

in the sum, then it follows
that it suffices to prove that

+∞∑
n=0

(−1)wn

n!(m + n)!

The classical differential equations

Download free eBooks at bookboon.com



Complex Functions Examples c-4

 

92  

is convergent for every w ∈ C. This follows immediately from the estimate∣∣∣∣∣
+∞∑
n=0

(−1)nwm

n!(m + n)!

∣∣∣∣∣ ≤
+∞∑
n=0

1
n!

|w|n = exp(|w|) = exp
(∣∣∣z

2

∣∣∣2) < +∞,

so the domain of convergence is C, and Jm(z) is analytic in C.

Example 6.3 We define the Hermite differential equation by

f ′′(z) + 2mf(z) = 2z f ′(z),

where m is a complex constant.

(a) Find the power series solution which satisfies f(0) = 1, f ′(0) = 0.

(b) Find the power series solution which satisfies f(0) = 0, f ′(0) = 1.

When we put the formal power series

f(z) =
+∞∑
n=0

anzn,m f ′(z) =
+∞∑
n=1

nanzn−1, f ′′(z) =
+∞∑
n=2

n(n − 1)anzn−2,

into the differential equation, we get

0 = f ′′(z) − 2z f ′(z) + 2mf(z) =
+∞∑
n=2

n(n − 1)anzn−2 −
+∞∑
n=1

(n=0)

2nanzn +
+∞∑
n=0

2manzn

=
+∞∑
n=0

{(n + 2)(n + 1)an+2 − 2(n − m)an} zn.

Since (n + 2)(n + 1) �= 0 for n ≥ 0, we get the following recursion formula by the identity theorem,

an+2 =
2(n − m)

(n + 2)(n + 1)
an.

We conclude from∣∣∣∣ 2(n − m)
(n + 2)(n + 1)

∣∣∣∣→ 0 for n → +∞,

that the z2-radius of convergence – and hence also the z-radius of convergence – is +∞.

(a) We have in this case a0 = 1 and a1 = 0, so it follows immediately by induction that a2n+1 = 0.
Then by recursion for even indices,

a2n =
2(2n − 2 − m)
2n · (2n − 1)

· a2n−2 =
4
(
n − 1 − m

2

)
2n(2n − 1)

a2(n−1) = · · ·

=
4n
(
n − 1 − m

2

)(
n − 2 − m

2

)
· · ·
(
−m

2

)
(2n)!

,
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and the series becomes

+∞∑
n=0

4n

(2n)!

(
n − 1 − m

2

)(
n − 2 − m

2

)
· · ·
(
−m

2

)
z2n.

Note that if
m

2
∈ N, then the series only contains a finite number of terms, and the solution is a

polynomial in this case.

(b) Here, a0 = 0 and a1 = 1, hence a2n = 0 by induction. Then we get by recursion,

a2n+1 =
2(2n − 1 − m)
(2n + 1) · 2n a2n−1 =

4n

(
n − 1 − m − 1

2

)
(2n + 1) · 2n · a2n−1 = · · ·

=
4n

(
n − 1 − m − 1

2

)(
n − 2 − m − 1

2

)
· · ·
(
−m − 1

2

)
(2n + 1)!

,
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and the series becomes

+∞∑
n=0

4n

(2n + 1)!

(
n − 1 − m − 1

2

)(
n − 2 − m − 1

2

)
· · ·
(
−m − 1

2

)
z2n+1.

If
m − 1

2
∈ N, then the series is reduced to a polynomial. ♦

Example 6.4 We define the Chébyshev differential equation by(
1 − z2

)
f ′′(z) + m2f(z) = z f ′(z),

where m is a complex constant.

(a) Find the power series solution, for which f(0) = 1, f ′(0) = 0.

(b) Find the power series solution, for which f(0) = 0, f ′(0) = 1.

When we put the formal power series

f(z) =
+∞∑
n=0

anzn, f ′(z) =
+∞∑
n=1

nanzn−1, f ′′(z) =
+∞∑
n=2

n(n − 1)anzn−2,

into the differential equation, we get

0 =
(
1−z2

)
f ′′(z)−z f ′(z)+m2f(z)

=
+∞∑
n=2

n(n−1)anzn−2−
+∞∑
n=2

(n=0)

n(n−1)anzn−
+∞∑
n=1

(n=0)

nanzn+
+∞∑
n=0

m2anzn

=
+∞∑
n=0

{
(n+2)(n+1)an+2−

(
n2−m2

)
an

}
zn.

Since (n+2)(n+2) �= 0 for n in the summation domain N0, we derive the following recursion formula
by the identity theorem,

(14) an+2 =
n2 − m2

(n + 2)(n + 1)
an =

(n + m)(n − m)
(n + 2)(n + 1)

an.

If m ∈ Z we sometimes get a polynomial, which of course is convergent in C. If the power series
solution is not a polynomial, then (14) implies that the radius of convergence is 1.

(a) If f(0) = 1 and f ′(0) = 0, then a0 = 1 and a1 = 0. Then we conclude by induction that a2n+1 = 0
for every odd index.
For the even indices it follows by recursion that

a2n+2 =
(2n + m)(2n − m)
(2n + 2)(2n + 1)

a2n =
4
(
n +

m

2

)(
n − m

2

)
(2n + 2)(2n + 1)

a2n =
4
(

n2 − m2

4

)
(2n + 2)(2n + 1)

a2n,
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thus since a0 = 1,

a2n =
4n

{
(n − 1)2 − m2

4

}{
(n − 2)2 − m2

4

}
· · ·
{
−m2

4

}
(2n)!

,

and the series becomes

+∞∑
n=0

4n

{
(n − 1)2 − m2

4

}{
(n − 2)2 − m2

4

}
· · ·
{
−m2

4

}
(2n)!

z2n.

If
m

2
∈ Z, then we obtain a polynomial with the domain of convergence C.

If
m

2
/∈ Z, the domain of convergence is {z ∈ C | |z| < 1}.

(b) If f(0) = 0 and f ′(0) = 1, then a0 = 0 and a1 = 1. We conclude by induction that a2n = 0 for
even indices.
For the odd indices we get by recursion,

a2n+1 =
(2n+m−1)(2n−m−1)

(2n+1) · 2n a2n−1 =
4
{(

n − 1
2

)
+

m

2

}{(
n − 1

2

)
− m

2

}
(2n + 1) · 2n a2n−1 = · · ·

=
4n

(2n + 1)!

n−1∏
j=0

{(
n − j − 1

2

)2

−
(m

2

)2
}

.

The series is then

z +
+∞∑
n=1

4n

(2n + 1)!

n−1∏
j=0

{(
n − j − 1

2

)2

−
(m

2

)2
}

· z2n+1,

where we notice that we formally must isolate the term corresponding to n = 0.

For
m + 1

2
∈ Z we get a polynomial of domain of convergence C.

If
m + 1

2
/∈ Z, then the domain of convergence is the open disc

{z ∈ C | |z| < 1}.
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Example 6.5 We define the Legendre differential equation by(
1 − z2

)
f ′′(z) + m(m + 1)f(z) = 2z f ′(z),

where m is a complex constant.

(a) Find the power series solution, for which f(0) = 1, f ′(0) = 0.

(b) Find the power series solution, for which f(0) = 0, f ′(0) = 1.

When we put the formal series

f(z) =
+∞∑
n=0

anzn, f ′(z) =
+∞∑
n=1

nanzn−1, f ′′(z) =
+∞∑
n=2

n(n − 1)anzn−2,

into the differential equation, we get

0 =
(
1−z2

)
f ′′(z)−z f ′(z)+m(m+1)f(z)

=
+∞∑
n=2

n(n−1)anzn−2−
+∞∑
n=0

{n(n−1)an+2nan−m(m+1)an} zn

=
+∞∑
n=0

{(n+2)(n+1)an+2−{n(n+1)−m(m+1)} an} zn.

Since (n + 2)(n + 1) �= 0 in the summation domain N0, we get the following recursion formula by the
identity theorem,

(15) an+2 =
n(n + 1) − m(m + 1)

(n + 2)(n + 1)
an =

n2 − m2 + n − m

(n + 2)(n + 1)
an =

(n − m)(n + m − 1)
(n + 2)(n + 1)

an.

It is easily seen that one in general has the radius of convergence 1, and that the function in some
cases becomes a polynomial of domain of convergence C, when m ∈ Z.

(a) If f(0) = 1 and f ′(0) = 0, then a0 = 1 and a1 = 0. Then it follows by induction that a2n+1 = 0
for odd indices.
For even indices it follows from the recursion formula (15) that

a2n =
2n−2−m)(2n−3+m)

2n · (2n−1)
a2n−2 =

4
(
n−1 − m

2

)(
n−1 +

m − 1
2

)
2n · (2n − 1)

a2n−2

= · · ·
=

4n

(2n)!

{
n−1 − m

2

}{
n−2 − m

2

)
· · ·
{
−m

2

}
·

·
{

n−1 +
m−1

2

}{
n−2 +

m−1
2

}
· · ·
{

m−1
2

}
,

and the series becomes

1 +
+∞∑
n=1

4n

(2n)!

{
n−1 − m

2

}{
n−2 − m

2

)
· · ·
{
−m

2

}
×

×
{

n−1 +
m−1

2

}{
n−2 +

m−1
2

}
· · ·
{

m−1
2

}
z2n.
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This expression becomes a polynomial, if either
m

2
∈ N0 or

1 − m

2
∈ N0.

(b) If f(0) = 0 and f ′(0) = 1, then a0 = 0 and a1 = 1, hence a2n = 0 by induction over the even
indices. For odd indices we get by recursion

a2n+1 =
(2n − 1 − m)(2n + 2 + m)

(2n + 1) · 2n a2n−1 =
4
(

n − m + 1
2

)(
n − 1 +

m

2

)
(2n + 1) · 2n a2n−1

=
4n

(2n + 1)!

(
n − m + 1

2

)(
n − 1 − m + 1

2

)
· · ·
(

1 − m + 1
2

)
·

·
(
n − 1 +

m

2

)(
n − 2 +

m

2

)
· · ·
(m

2

)
· a1

=
4n

(2n + 1)!

(
n − 1 − m − 1

2

)(
n − 2 − m − 1

2

)
· · ·
(
−m − 1

2

)
·

·
(
n − 1 +

m

2

)(
n − 2 +

m

2

)
· · ·
(m

2

)
,
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and the series becomes

z +
+∞∑
n=1

4n

(2n + 1)!

(
n − 1 − m − 1

2

)(
n − 2 − m − 1

2

)
· · ·
(
−m − 1

2

)
×

×
(
n − 1 +

m

2

)(
n − 2 +

m

2

)
· · ·
(m

2

)
z2n+1

= z +
+∞∑
n=1

4n

(2n + 1)!
·
⎧⎨
⎩

n−1∏
j=0

(
j − m − 1

2

)(
j +

m

2

)⎫⎬
⎭ z2n+1.

This expression becomes a polynomial, if either
m − 1

2
∈ N0 or −m

2
∈ N0.

Example 6.6 We define the Laguerre differential equation by

z f ′′(z) + mf(z) = (z − 1)f ′(z),

where m is a complex constant.

(a) Assume that m �= 0. Prove that there does not exist any solution of the equation, such that

(i) f(0) = 1, f ′(0) = 0, (ii) f(0) = 0, f ′(0) = 1.

(b) Prove that the equation has a power series solution, which satisfies the conditions

f(0) = 1, f ′(0) = −m.

When we put the formal series

f(z) =
+∞∑
n=0

anzn, f ′(z) =
+∞∑
n=1

nanzn−1, f ′′(z) =
+∞∑
n=2

n(n − 1)anzn−2,

into the differential equation, we get

0 = z f ′′(z) + (1 − z)f ′(z) + mf(z)

=
+∞∑
n=2

(n=1)

n(n−1)anzn−1+
+∞∑
n=1

nanzn−1−
+∞∑
n=1

(n=0)

nanzn+
+∞∑
n=0

manzn

=
+∞∑
n=0

{
(n + 1)2an+1 − (n − m)an

}
zn.

Since n + 1 �= 0 for n in the summation domain N0, we get the following recursion formula by the
identity theorem,

(16) an+1 =
n − m

(n + 1)2
an, n ∈ N0.
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The leap of the indices in this recursion formula is only 1, so we conclude that (apart from a constant
factor) there can at most be one power series solution. Now assume that m /∈ N0, so the series has
not degenerated into a polynomial. Then∣∣∣∣ an

an+1

∣∣∣∣ = (n + 1)2

n − m
→ +∞ for n → +∞,

and we conclude that (apart from a constant factor) there will always be a power series solution and
that its domain of convergence is C. This is of course also true for m ∈ N0, when the solution becomes
a polynomial.

(a) If we put n = 0 into the recursion formula (16), then

a1 = −ma0.

Hence we see for m �= 0, that either a0 and a1 are both zero, or none of them are zero. Now, the
two given initial conditions are characterized by one being 0, while the other is �= 0, so we conclude
that no power series solution can fulfil these initial conditions.

(b) Here we have a1 = −m · a0, so the initial conditions are fulfilled, and we get by recursion,

an =
n − m − 1

n2
an−1 = · · · =

(n − m − 1)(n − m − 2) · · · (1 − m)(−m)
(n!)2

,

so the series is given by

1 +
+∞∑
n=1

(n − m − 1)(n − m − 2) · · · (1 − m)(−m)
(n!)2

zn, z ∈ C.

This series becomes a polynomial, when m ∈ N0.
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7 Some more difficult differential equations

Example 7.1 Given the differential equation

f ′(z) =
1
2

f
(z

4

)
.

Assuming that f(z) can be expressed by a power series

f(z) =
+∞∑
n=0

anzn, for |z| < �,

we shall find a recursion formula for an expressed by an−1.
Find the radius of convergence � of the series.
Then express an by means of an−2, and in general an by a0.
Hint: Here we have a couple of variants. In some of them, though not all, we may benefit from the
formula

1 + 2 + · · · + n =
1
2

n(n + 1).

Let a0 = f(0) = 1. find the power series expansion of f(z) and the corresponding domain of conver-
gence.
Hint: The function cannot be expressed by elementary functions.

Remark 7.1 This is an non-typical example, because the variable on the left hand side is z, while
it is

z

4
on the right hand side, i.e. the derivative at a point z �= 0 is expressed by the value of the

function at another point
z

4
�= z. ♦

Assume that

f(z) =
+∞∑
n=0

anzn, |z| < �,

is a power series expansion of a solution. Then

f
(z

4

)
=

+∞∑
n=0

an

(z

4

)n

=
∑

n = 0+∞ an

4n
zn for

∣∣∣z
4

∣∣∣ < �,

where the condition
∣∣∣z
4

∣∣∣ < � of course is fulfilled, when |z| < �.

Furthermore,

f ′(z) =
+∞∑
n=1

nanzn−1 =
+∞∑
n=0

(n + 1)an+1z
n for |z| < �.

When these series are put into the equation, we get

0 = f ′(z) − 1
2

f
(z

4

)
=

+∞∑
n=0

(n + 1)an+1z
n − 1

2

+∞∑
n=0

1
4n

anzn =
+∞∑
n=0

{
(n + 1)an+1 − an

2 · 4n

}
zn.
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Since n+1 �= 0 in the summation domain N0, we get the following recursion formula from the identity
theorem,

(17) an+1 =
1

(n + 1) · 2 · 4n
an, n ∈ N0.

It follows immediately from (17) that if a0 �= 0, then all an �= 0 for n ∈ N0. Assuming this, it follows
from

an

an+1
= (n + 1) · 2 · 4n → +∞ for n → +∞,

that the radius of convergence is � = +∞.

We can now find the solution of the recursion formula (17) in many ways. Here we shall give some of
them:
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First method. The recursion formula (17) is easiest solved by a trick, in which we multiply (17) by
(n + 1)!2(n+1)2 . Then

(n + 1)!2(n+1)2an+1 =
(n + 1)!2(n+1)2

(n + 1) · 2 · 4n
an = n! 2(n+1)2−1−2nan = n! 2n2

an,

and we see that we obtain the right hand side from the left hand side by replacing n everywhere
by n − 1. We therefore get by recursion,

(n + 1)! 2(n+1)2an+1 = n! 2n2
an = · · · = 1! 21a1 = 0!20a0 = a0,

thus

an =
1

n! 2n2 a0,

and the solution is

f(z) = a0

+∞∑
n=0

1
n! 2n2 zn, z ∈ C.

Second method. Alternatively it follows from (17) that

an =
1

n · 2 · 4n−1
an−1 =

2
n · 4n

an−1, n ∈ N,

hence by recursion,

an =
2

n · 4n
an−1 =

2
n · 4n

· 2
(n − 1)4n−1

an−2, n ≥ 2,

and in general,

an =
2

n! 4n
· 2
(n − 1) 4n−1

· · · 2
2 · 42

· 2
1 · 41

a0 =
2n

n! 41+2+···+n
a0

=
2n

n! 4
1
2 n(n+1)

a0 =
2n

n! 2n2+n
a0 =

1
n! 2n2 a0, n ∈ N0.

We derive once more that the radius of convergence is +∞. Note that we have applied the hint.
The general solution is then given by

(18) f(z) = a0

+∞∑
n=0

1
n!

1
2n2 zn, a0 ∈ C, z ∈ C,

and when a0 = f(0) = 1, we of course get

f(z) =
+∞∑
n=0

1
n!

1
2n2 zn, z ∈ C,

which cannot be further reduced.
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Third method. Alternatively we may early in the process apply that 4n = 22n. Then the
recursion formula (17) can be written

an =
1

n · 22n−1
an−1.

Then note that n2 − (n − 1)2 = 2n − 1, so we get a telescopic sum by insertion,

n∑
j=1

(2j − 1) =
n∑

j=1

{
j2 − (j − 1)2

}
= n2 − 02 = n2.

This means that

an =
1

n · 22n−1
an−1 = · · · =

1
n · 22n−1

· 1
(n − 1) · 22n−3

· · · a0

1 · 21
=

a0

n! 21+3+···+(2n−1)
=

a0

n! 2n2 .

Fourth method. Determination of the Taylor coefficients. It is not necessary to apply the
recursion formula (17). In fact, if we differentiate the differential equation

f ′(z) =
1
2

f
(z

4

)
then it follows by the chain rule that

f ′′(z) =
1
2
· 1
4

f ′
(z

4

)
=

1
2
· 1
4
· 1
2

f
( z

42

)
=

1
22

· 1
4

f
( z

42

)
,

and furthermore,

f (3)(z) =
1
22

· 1
4
· 1
42

f ′
( z

42

)
=

1
22

· 1
4
· 1
42

· 1
2

f
( z

43

)
=

1
23

· 1
4
· 1
42

f
( z

43

)
,

and then by induction,

f (n)(z) =
1
2n

· 1
4 · 42 · · · 4n−1

f
( z

4n

)
, n ∈ N.

We therefore get the Taylor series

f(z) =
+∞∑
n=0

f (n)(0)
n!

zn = f(0)
+∞∑
n=0

1
2n

· 1
4

1
2 (n−1)n

· 1
n!

zn

= f(0)
+∞∑
n=0

1
2n+(n−1)n · n!

zn = f(0)
+∞∑
n=0

1
2n2n!

zn,

i.e. the same series as above with C as the domain of convergence.
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Example 7.2 Given the differential equation

(19) 2z f ′′(z) + (3 − 2z)f ′(z) − f(z) = 0.

Find every power series solution from 0 of (19) and its radius of convergence.

Prove that (19) also has a power function as a s solution in the plane with a branch cut

C \ (R− ∪ {0}) .

1) When the formal power series

f(z) =
+∞∑
n=0

anzn, f ′(z) =
+∞∑
n=1

nanzn−1, f ′′(z) =
+∞∑
n=2

n(n − 1)anzn−2,

are put into (19), we get

0 = 2z f ′′(z) + (3 − 2z)f ′(z) − f(z)

=
+∞∑
n=2

(n=1)

2n(n − 1)anzn−1 +
+∞∑
n=1

3nanzn−1 −
+∞∑
n=1

(n=0)

2nanzn −
+∞∑
n=0

anzn

=
+∞∑
n=1

n(2n − 2 + 3)anzn−1 −
+∞∑
n=0

(2n + 1)anzn

=
+∞∑
n=1

n(2n + 1)anzn−1 −
+∞∑
n=0

anzn

=
+∞∑
n=0

{(n + 1)(2n + 3)an+1 − (2n + 1)an} zn.

Then by the identity theorem,

(n + 1)(2n + 3)an+1 − (2n + 1)an = 0, n ∈ N0.

Hence we obtain the recursion formula

an+1 =
1

n + 1
· 2n + 1
2n + 3

an = · · · =
1

(n + 1)!
· 2n + 1
2n + 3

· 2n − 1
2n + 1

· · · 1
3

a0

=
1

2n + 3
· 1
(n + 1)!

a0,

so by a change of index,

an =
1

2n + 1
· 1
n!

a0,

and the series is given by

f(z) = a0

+∞∑
n=0

1
2n + 1

· 1
n!

zn,

The domain of convergence is obviously C.
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2) This question may look strange, until one realizes that the domain

C \ (R− ∪ {0})

is natural for a power series expansion of the form

f(z) =
+∞∑

n=−∞
anzn+ 1

2 .

We get from this by a formal differentiation in the domain,

f ′(z) =
+∞∑

n=−∞

(
n +

1
2

)
anzn− 1

2 ,

and

f ′′(z) =
+∞∑

n=−∞

(
n − 1

2

)(
n +

1
2

)
anzn− 3

2 ,
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hence by insertion

0 = 2z f ′′(z) + (3 − 2z)f ′(z) − f(z)

=
+∞∑

n=−∞
2
(

n − 1
2

)(
n +

1
2

)
anzn− 1

2 +
+∞∑

n=−∞
3
(

n +
1
2

)
anzn− 1

2

−
+∞∑

n=−∞
2
(

n +
1
2

)
anzn+ 1

2 −
+∞∑

n=−∞
anzn+ 1

2

=
+∞∑

n=−∞

(
n +

1
2

){
2
(

n − 1
2

)
+ 3
}

anzn− 1
2 −

+∞∑
n=−∞

2(n + 1)anzn+ 1
2

=
+∞∑
−∞

1
2

(2n + 1)(2n − 1 + 3)anzn− 1
2 −

+∞∑
n=−∞

2(n + 1)anzn+ 1
2

=
+∞∑

n=−∞
(2n + 1)(n + 1)anzn− 1

2 −
+∞∑
−∞

2(n + 1)anzn+ 1
2

=
+∞∑
−∞

(2n + 3)(n + 2)an+1z
n+ 1

2 −
+∞∑
−∞

2(n + 1)anzn+ 1
2

=
+∞∑

n=−∞
{(2n + 3)(n + 2)an+1 − 2(n + 1)an} zn+ 1

2 .

Then we get the following recursion formula by the identity theorem,

(2n + 3)(n + 2)an+1 = 2(n + 1)an, n ∈ Z.

If we put n = −1, we get a0 = 0, while a−1 is indefinite.
If we instead put n = −2, then a−2 = 0, and again a−1 is indefinitet.
We conclude that another power solution is

g(z) =
1√
z
, z ∈ C \ (R− ∪ {0}).

Remark 7.2 Alternatively, the equation can be solved by using the change of variable,

w =
√

z, z = w2, and f(z) = g(w).

Then by the chain rule,

f ′(z) = g′(w) · dw

dz
= g′(w) · 1

dz

dw

=
1

2w
g′(w),

and

f ′′(z) =
d

dw

{
1

2w
g′(w)

}
· dw

dz
=

1
2w

{
1

2w
g′′(w) − 1

w2
g′(w)

}
.
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By insertion and reduction and some computation we finally get

1
2

g′′(w) −
{

w − 1
w

}
g′(w) − g(w).

Then introduce another function by

g(w) =
1
w

h(w), h(w) = w g(w).

This function satisfies the equation

h′′(w) − 2w h′(w) = 0,

which has the trivial solution h(w) = c constant, hence

g(w) =
c

w
=

c√
z

= f(z). ♦

Example 7.3 Solve the differential equation

z(1 − z)f ′′(z) + (4z − 2)f ′(z) − 4f(z) = 0

by insertion of a formal power series of the form

+∞∑
n=0

anzn.

When we insert the series and the termwise differentiated series, we formally get

0 =
(
z−z2

) +∞∑
n=2

n(n−1)anzn−2+(4z−2)
+∞∑
n=1

nanzn−1−4
+∞∑
n=0

anzn

=
+∞∑
n=2

n(n−1)anzn−1−
+∞∑
n=2

n(n−1)anzn+4
+∞∑
n=1

nanzn −2
+∞∑
n=1

nanzn−1−4
+∞∑
n=0

anzn

=
+∞∑
n=1

{n(n−1)−2n}anzn−1 +
+∞∑
n=0

{−n(n−1)+4n−4}anzn

=
+∞∑
n=1

n(n−3)anzn−1 +
+∞∑
n=0

(4−n)(n−1)anzn

=
+∞∑
n=0

{(n + 1)(n − 2)an+1 − (n − 4)(n − 1)an} zn.

Here we have added some zero terms and changed the summation index.
Then we get the following recursion formula from the identity theorem,

(n + 1)(n − 2)an+1 = (n − 4)(n − 1)an, n ∈ N0.
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This recursion formula contains the zeros n = 1, 2, 4, so we shall first check the values n = 0, 1, . . . ,
4, separately. Then

n = 0 gives −2a1 = 4a0,
n = 1 giver a2 = 0,
n = 2 gives 0 = −2a2,
n = 3 gives 4a4 = −2a3,
n = 4 gives a5 = 0,
n ≥ 5 gives an = 0.

This gives us the solution

f(z) = a0(1 − 2z) + a3

(
1 − 1

2
z4

)
, z ∈ C,

where a0 and a3 are arbitrary complex constants.
Since f is a polynomial, the domain of convergence is trivially C.

Example 7.4 Given the differential equation

(20)
(
2z2 − 3z + 1

)
f ′′(z) + (8z − 6)f ′(z) + 4f(z).

1) Prove that if f(z) =
∑+∞

n=0 anzn is a solution of (20), then the coefficients satisfy the recursion
formula

an+2 = 3an+1 − 2an, n ∈ N.

2) Prove that

an = (2n − 1) a1 − (2n − 2) a0, n ∈ N0.

3) Find the domain of convergence of the solution series.

4) Express the solution series by elementary functions.

5) Prove that the solutions in Ω can be extended to C, with the exception of a few points in C.

Remark 7.3 It is actually possible to solve the equation by inspection and some manipulation.
Here we shall only sketch this method, leaving the details to the reader. We get by some small
rearrangements

0 =
(
2z2 − 3z + 1

)
f ′′(z) + (8z − 6)f ′(z) + 4f(z)

=
{(

2z2 − 3z + 1
)
f ′′(z) + (4z − 3)f ′(z)

}
+ {(4z − 3)f ′(z) + 4f(z)}

=
d

dz

{(
2z2 − 3z + 1

)
f ′(z) + (4z − 3)f(z)

}
=

d2

dz2

{(
2z2 − 3z + 1

)
f(z)

}
.

Hence by two integrations,(
2z2 − 3z + 1

)
f(z) = c1z + c0,

where c0 and c1 are arbitrary constants. Then it is easy to find f(z). ♦

Some more diffi cult differential equations

Download free eBooks at bookboon.com



Complex Functions Examples c-4

 

109  

1) When we put the formal power series

f(z) =
+∞∑
n=0

anzn, f ′(z) =
+∞∑
n=1

nanzn−1, f ′′(z) =
+∞∑
n=2

n(n − 1)anzn−2,

into the differential equation and add some zero terms, we get

0 = 2
+∞∑
n=0

n(n−1)anzn−3
+∞∑
n=1

n(n−1)anzn−1+
+∞∑
n=2

n(n−1)anzn−2

+8
+∞∑
n=0

nanzn − 6
∞∑

n=1

nanzn−1+4
+∞∑
n=0

anzn

=
+∞∑
n=0

{2n(n−1)an−3(n+1)nan+1+(n+2)(n+1)an+2 + 8nan−6(n+1)an+1+4an} zn

=
+∞∑
n=0

{(
2n2+6n+4

)
an−3(n+1)(n+2)an+1+(n+2)(n+1)an+2

}
zn

=
+∞∑
n=0

(n + 1)(n + 2) {2an − 3an+1 + an+2} zn.
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Since (n + 1)(n + 2) �= 0 for n ∈ N0, we obtain the following recursion formula by the identity
theorem,

an+2 = 3an+1 − 2an, n ∈ N0.

2) If we put bn = an+1 − an, then it follows by the recursion formula above,

bn+1 = an+2 − an+1 = 2 {an+1 − an} = 2bn, n ∈ N0,

hence by recursion with respect to bn,

an+1 − an = bn = 2nb0 = 2n {a1 − a0} .

Then

an =
n−1∑
j=0

(aj+1 − aj) + a0 =
n−1∑
j=0

2j (a1 − a0) + a0 = (2n − 1) a1 + (2n − 2) a0,

and we have proved the formula.

Alternatively, we see that the claimed formula,

an = (2n − 1) a1 − (2n − 2) a0, n ∈ N0,

holds for n = 0 and for n = 1. Then we prove it by induction, assuming that it holds for n and
n + 1. Then by insertion,

−2an + 3an+1 =
(
2 − 2n+1

)
a1 +

(
2n+1 − 4

)
a0 +

(
3 · 2n+1 − 3

)
a1 +

(
6 − 3 · 2n+1

)
a0

=
(
2n+2 − 1

)
a1 +

(
2 − 2n+2

)
a0 = an+2,

and the formula is proved.

3) If a1 = a0, then it follows from the formula above that an = a0 for every n, so

Ω = {z ∈ C | |z| < 1}.

If instead a1 �= a0, then

an = 2n (a1 − a0) + 2a0 − a1 = 2n
{
a1 − a0 + 2−n (2a0 − a1)

}
.

It follows that n
√

an → 2 for n → +∞, so

Ω =
{

z ∈ C

∣∣∣∣ |z| <
1
2

}
.

4) Then compare with the geometric series to obtain

f(z) = (a1 − a0)
+∞∑
n=0

(2z)2 + (2a0 − a1)
+∞∑
n=0

zn =
a1 − a0

1 − 2z
+

2a0 − a1

1 − z
.
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5) If a1 = 0, then M = C \ {1}. If a1 = 2a0, then M = C \
{

1
2

}
. In any other case we get

M = C \
{

1
2

, 1
}

.

Clearly, f is analytic in M , and it follows by a differentiation that both (1 − 2z)−1 and (1 − z)−1

fulfil (20);

(2z − 1)(z − 1) · 8
(1 − 2z)3

+
(8z − 6) · 2
(1 − 2z)2

+
4

1 − 2z
=

−8(z − 1) + 2(8z − 6) + 4(1 − 2z)
(1 − 2z)2

= 0,

(2z − 1)(z − 1) · 2
(1 − z)3

+
8z − 6

(1 − z)2
4

1 − z
=

2(1 − 2z) + 8z − 6 + 4(1 − z)
(1 − z)2

= 0.
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8 Zeros of analytic functions

Example 8.1 Find the order of the zero at z = 0 for each of the functions

(a) z2
{
exp

(
z2
)− 1

}
, (b) 6 sin z3 + z3

(
z6 − 6

)
, (c) esin z − etan z.

Remark 8.1 It will be demonstrated by the variants of solutions that one should be very careful here
by choosing the most convenient method. It is of course possible in all three cases (cf. the definition)
to differentiate, until one reach the smallest number n, for which f (n)(0) �= 0, but it will usually be
more easy to insert known series expansions for the given functions. In particular, (b) becomes very
difficult to solve by the method of differentiation. ♦

(a) First method. Insertion of Taylor series. It follows from

f(z) = z2
(
ez2 − 1

)
= z2

{
1 +

1
1!

z2 + o
(
z2
)− 1

}
= z4 + o

(
z4
)
,

that the order is 4.

Second method. The method of differentiation. We get by successive differentiation,

f(z) = z2ez2 − z2, f(0) = 0,
f ′(z) = 2z3ez2

+ 2z ez2 − 2z, f ′(0),
f ′′(z) = 4z4ez2

+ 10z2ez2
+ 2ez2 − 2, f ′′(0) = 0,

f (3)(z) = 8z5ez2
+ 36z3ez2

+ 24z ez2
, f (3)(0) = 0,

f (4)(z) = 16z6ez2
+ 112z4ez2

+ 156z2ez2
+ 24ez2

, f (4)(0) = 24,

so we conclude that the order is 4.

(b) First method. Insertion of Taylor series. It follows from

f(z) = 6 sin
(
z3
)

+ z3
(
z6 − 6

)
= 6

{
z3 − 1

3!
(
z3
)3

+
1
5!
(
z3
)5

0o
(
z15
)}

+ z9 − 6z3

=
1
20

z15 + o
(
z15
)

that the order is 15.

Second method. Differentiation with respect to w = z3. First note that the function is actually a
function of w = z3. If we change variable to w, the differentiation method becomes reasonable,
thought still bigger that the first method. In fact,

f(z) = 6 sin z3 + z9 − 6z3 = 6 sin w + w3 − 6w = g(w),

and then by differentiation with respect to w,

g(w) = w3 − 6w + 6 sinw, g(0) = 0,
g′(w) = 3w2 − 6 − 6 cos w, g′(0) = 0,
g′′(w) = 6w − 6 sin w, g′′(0) = 0,
g(3)(w) = 6 − 6 cos w, g(3)(0) = 0,
g(4)(w) = 6 sin w, g(4)(0) = 0,
g(5)(w) = 6 cos w, g(5)(0) = 6 �= 0,

Zeros of analytic functions

Download free eBooks at bookboon.com



Complex Functions Examples c-4

 

113  

and we conclude that

g(w) =
6
5!

w5 + o
(
w5
)

=
1
20

w5 + o
(
w5
)
.

Then

f(z) = g
(
z3
)

=
1
20
(
z3
)5

+ o
((

z3
)5)

=
1
20

z15 + o
(
z15
)
,

so the order of the zero is 15.
Third method. The difference of time consumption of the two methods of (a) was not very big.

However, in the present case, the differentiations really grows wild. We get

f(z) = 6 sin
`
z3

´
+ z9 − 6z3, f(0) = 0,

f ′(z) = 18z2 cos
`
z3

´
+ 9z8 − 18z2, f ′(0) = 0,

f ′′(z) = 36z cos
`
z3

´− 54z4 sin
`
z3

´
+ 72z7 − 36z, f ′′(0) = 0,

f (3)(z) = 36 cos
`
z3

´− 324z3 sin
`
z3

´

−162z6 cos
`
z3

´
+ 504z6 − 36, f (3)(0) = 0,

f (4)(z) = −1080z2 sin
`
z3

´− 1944z5 cos
`
z3

´

+486z8 sin
`
z3

´
+ 3024z5, f (4)(0) = 0,

f (5)(z) = −2160z sin
`
z3

´− 12 960z4 cos
`
z3

´

+9720z7 sin
`
z3

´
+ 1458z10 cos

`
z3

´

+15 120z4, f (5)(0) = 0,

f (6)(z) = −2160 sin
`
z3

´− 58 320z3 cos
`
z3

´

+106 920z6 sin
`
z3

´
+ 43 740z9 cos

`
z3

´

−4374z12 sin
`
z3

´
+ 60 480z3, f (6)(0) = 0,

f (7)(z) = −181 440z2 cos
`
z3

´
+ 816 480z5 sin

`
z3

´

+714 420z8 cos
`
z3

´− 183 708z11 sin
`
z3

´

−13 122z14 cos
`
z3

´
+ 181 440z2, f (7)(0) = 0,

f (8)(z) = −362 880z cos
`
z3

´
+ 4 626 720z4 sin

`
z3

´

8 164 800z7 cos
`
z3

´− 4 164 048z10 sin
`
z3

´

−734 832z13 cos
`
z3

´
+ 39 366z16 sin

`
z3

´

+362 880z, f (8)(0) = 0,

f (9)(z) = −362 880 cos
`
z3

´
+ 19 595 520z3 sin

`
z3

´

+71 033 760z6 cos
`
z3

´− 66 1134 880z9 sin
`
z3

´

−22 044 960z12 cos
`
x3

´
+ 2 834 352z15 sin

`
z3

´

+118 098z18 cos
`
z3

´
+ 362 880, f (9)(0) = 0,

f (10)(z) = 59 875 200z2 sin
`
z3

´
+ 484 989 120z5 cos

`
z3

´

−808 315 200z8 sin
`
z3

´− 462 944 160z11 cos
`
z3

´

+108 650 160z14 sin
`
z3

´
+ 10 628 820z17 cos

`
z3

´

−354 294z20 sin
`
z3

´
, f (10)(0) = 0,

f (11)(z) = 119 750 400z sin z3 + 2604 571 200z4 cos z3

−7 921 488 960z7 sin z3 − 7 517 331 360z10 cos z3

2 909 934 720z13 sin z3 + 506 640 420z16 cos z3

−38 972 340z19 sin z3 − 1 062 882z22 cos z3, f (11)(0) = 0,
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f (12)(z) = 119 750 400 sin z3 + 10 777 536 000z3 cos z3

−63 264 136 320z6 sin z3 + 98 937 780 480z9 cos z3

+60 381 145 440z12 sin z3 + 16 836 050 880z15 cos z3

+2 260 395 720z18 sin z3 − 140 300 424z21 cos z3

+3 188 646z24 sin z3,

f (12)(0) = 0,

f (13)(z) = 32 691 859 200z2 cos z3 − 411 917 425 920z5 sin z3

−1 080 232 433 280z8 cos z3 + 1 021 387 086 720z11 sin z3

+433 684 199 520z14 cos z3 − 91 195 275 600z17 sin z3

−9 727 496 064z20 cos z3 + 497 428 776z23 sin z3

+9 565 938z26 cos z3,

f (13)(0) = 0,

f (14)(z) = 65 383 718 400z cos z3 − 2 157 662 707 200z4 sin z3

−9 877 611 744 000z7 cos z3 + 14 475 955 253 760z10 sin z3

+9 135 740 053 440z13 cos z3 − 2 851 372 283 760z16 sin z3

−468 135 748 080z19 cos z3 + 40 623 350 040z22 sin z3

+1 741 000 716z25 cos z3 − 28 697 814z28 sin z3,

f (14)(0) = 0,

f (15)(z) = 65 383 718 400 cos z3 − 8 826 801 984 000z3 sin z3

−75 616 270 329 600z6 cos z3 + 174 392 387 769 610z9 sin z3

+162 192 486 456 000z12 cos z3 − 73 029 176 700 480z15 sin z3

−17 448 696 064 800z18 cos z3 + 2298 120 945 120z21 sin z3

+165 395 068 020z24 cos z3 − 6 026 540 940z27 sin z3

−86 093 442z30 cos z3,

where finally

f (15)(0) = 65 383 718 400 =
15!
20

�= 0,

so we conclude that the order of the zero is 15, and

f(z) =
f (15)(0)

15!
z15 + · · · =

1
20

z15 + · · · .

(c) It is here difficult – though not quite impossible – to insert the power series expansions, so we
prefer here the method of differentiations. It should, however, be mentioned that there is also here
an alternative, which requires some intuition. We show here three solution variants, which is far
from being exhaustive.

First method. Intuition. Since cos z �= 1 and sin z �= 0 in a neighbourhood of 0, excluding 0, it
follows that

u = sin z and v = tan z =
sin z

cos z

are different in the same neighbourhood, excluding 0. Then

esin z − etan z = eu − ev =
eu − ev

u − v
· (u − v),

where

lim
z→0

eu − ev

u − v
= lim

w→0

d

dw
ew = e0 = 1 �= 0,
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and

u − v = sin z − tan z = sin z − sin z

cos z
=

sin z(cos z − 1)
cos z

=

{
z − z3

3!
+ · · ·

}{
1 − z2

2!
+ · · · − 1

}

1 − z2

2!
+ · · ·

= −z3

2
+ o

(
z3
)
,

and we conclude that the zero has order 3.
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Second method. The method of differentiation. We get by successive differentiations,

f(z) = esin z − etan z,
f(0) = 0,

f ′(z) = cos z · esin z − (1 + tan2
)
etan z,

f ′(0) = 0,
f ′′(z) =

(
cos2 z − sin z

)
esin z − (1 + tan2 z

)
etan z

−2 tan z · (1 + tan2 z
)
etan z

=
(
cos2 z − sin z

)
esin z − (1 + tan2 z

)
(1 + tan z)2etan z,

f ′′(0) = 0,
f (3)(z) =

(
cos3 z − 3 sin z · cos z − cos z

)
esin z

−2 tan z
(
1 + tan2 z

)
(1 + tan z)2etan z

−2
(
1 + tan2 z

)2 (1 + tan z)etan z

− (1 + tan2 z
)2 (1 + tan z)2etan z,

f (3)(0) = −3,

so we conclude that the order is 3.

Third method. A hybrid of the two solutions above. Since

esin z − etan z = esin z
{
1 − etan z−sin z

}
,

and

lim
z→0

esin z = 1 �= 0,

the task is reduced to finding the order of the zero z0 = 0 of the function

g(z) = etan z−sin z − 1, g(0) = 0.

Here we get by successive differentiations,

g′(z) =
(
1 + tan2 z − cos z

)
etan z−sin z,

g′(0) = 0,
g′′(z) =

(
1 + tan2 z − cos z

)2
etan z−sin z

+
{
2 tan z

(
1 + tan2 z

)
+ sin z

}
etan z−sin z,

g′′(0) = 0,
g(3)(z) =

(
1 + tan2 z − cos z

)3
etan z−sin z

+3
{
2 tan z

(
1 + tan2 z

)
+ sin z

}
etan z−sin z

+2
{

2
(
1 + tan2 z

)2 + 4 tan2 z
(
1 + tan2 z

)
+ cos z

}
etan z−sin z,

g(3)(0) = 3,

so n = 3 is the first order of differentiation for which the result is �= 0. This means that the
order of the zero is 3.
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Example 8.2 Find the order of the zero z = 0 of

(sin z + sinh z − 2z)2.

First method. Series expansion. We get

(sin z + sinh z − 2z)2 =
{(

z − z3

3!
+

z5

5!
+ · · ·

)
+
(

z +
z3

3!
+

z5

5!
+ · · ·

)
− 2z

}2

=
{

2
5!

z5 + · · ·
}2

=
1

3600
z10 + · · · ,

and we conclude that the order of the zero is 10.

Second method. The method of differentiation. It suffices to find the order or the zero of

f(z) = sin z + sinh z − 2z,

because {f(z)}2 = (sin z + sinh z − 2z)2 then has twice as many. Note that it is not a good idea
just to differentiate the expression {f(z)}2 itself.
We get

f(z) = sin z + sinh z − 2z, f(0) = 0,

f ′(z) = cos z + cosh z − 2, f ′(0) = 0,

f ′′(z) = − sin z + sinh z, f ′′(0) = 0,

f (3)(z) = − cos z + cosh z, f (3)(0) = 0,

f (4)(z) = sin z + sinh z, f (4)(0) = 0,

f (5)(z) = cos z + cosh z, f (5)(0) = 2,

from which we conclude that

f(z) =
2
5!

z5 + o
(
z5
)
,

hence

(sin z + sinh z − 2z)2 =
1

602
z10 + o

(
z10
)
,

and the zero has order 10.
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Example 8.3 Find the order of the zero at z = 0 of 3 sin z − z(2 + cos z).

First method. Series expansion. We get

3 sin z − z(2 + cos z) = 3
{

z − z3

3!
+

z5

5!
− · · ·

}
− z

{
2 + 1 − z2

2!
+

z4

4!
− · · ·

}

= 3z − z3

2
+

1
40

z5 − · · · − 3z +
z3

2
− 1

24
z5 + · · · =

(
1
40

− 1
24

)
z5 + · · · = − 1

60
z5 + · · · ,

so the zero has order 5.

Second method. Method of differentiation. We get by successive differentiation,

f(z) = 3 sin z − 2z − z cos z, f(0) = 0,

f ′(z) = 2 cos z − 2 + z sin z, f ′(0) = 0,

f ′′(z) = − sin z + z cos z, f ′′(0) = 0,

f (3)(z) = −z sin z, f (3)(0) = 0,

f (4)(z) = −z cos z − sin z, f (4)(0) = 0,

f (5)(z) = −2 cos z + z sin z, f (5)(0) = −2,

from which we conclude that

f(z) = − 2
5!

z5 + · · · = − 1
60

z5 + · · · ,

and the order of the zero is 5.
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Example 8.4 Find the order of the zero at z = 0 of the function

f(z) = 3 sinh
(
z2
)− 3 sin

(
z2
)− z6.

First method. Taylor expansion. Clearly, f(z) is analytic in C. Then by a Taylor expansion from
z0 = 0,

]f(z) = 3 sinh
(
z2
)− 3 sin

(
z2
)− z6

=
+∞∑
n=0

3
(2n + 1)!

(
z2
)2n+1 −

+∞∑
n=0

3 · (−1)n

(2n + 1)!
(
z2
)2n+1 − z6

=
+∞∑
n=0

3
(2n + 1)!

{1 − (−1)n} z4n+2 − z6

=
+∞∑
p=0

2 · 3
(2{2p + 1} + 1)!

z4(2p+1)+2 − z6

=
+∞∑
p=0

6
(4p + 3)!

z8p+6 − z6 =
+∞∑
p=1

6
(4p + 3)!

z8p+6

=
+∞∑
p=0

6
(4p + 7)!

z8p+14.

It follows immediately that the order is 14 corresponding to p = 0.
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Second method. o-technique. A shorter variant is to use o-technique:

f(z) = 3 sinh
(
z2
)− 3 sin

(
z2
)− z6

= 3
{(

z2
)

+
1
3!
(
z2
)3

+
1
5!
(
z2
)5

+
1
7!
(
z2
)7

+ o
(
z14
)}

−3
{(

z2
)− 1

3!
(
z2
)3

+
1
5!
(
z2
)5 − 1

7!
(
z2
)7

+ o
(
z14
)}− z6

=
2 · 3
7!

z14 + o
(
z14
)
,

from which we conclude that the order of the zero is 14.

Third method. Method of differentiation, first variant. If we immediately see that f(z) can be
considered as a function of w = z2,

f(z) = 3 sinh
(
z2
)− 3 sin

(
z2
)− z6

= 3 sinhw − 3 sin w − w3,

then the example is reduced to find the order of the zero of the function

g(w) = 3 sinhw − 3 sin w − w3, g(0) = 0,

at w0 = 0. It follows by differentiation that

g′(w) = 3 cosh w − 3 cosw − 3w2, g′(0) = 0,

g′′(w) = 3 sinhw + 3 sinw − 6w, g′′(0) = 0,

g(3)(w) = 3 cosh w + 3 cos w − 6, g(3)(0) = 0,

g(4)(w) = 3 sinhw − 3 sin w, g(4)(0) = 0,

g(5)(w) = 3 cosh w − 3 cos w, g(5)(0) = 0,

g(6)(w) = 3 sinhw + 3 sinw, g(6)(0) = 0,

g(7)(w) = 3 cosh w + 3 cos w, g(7)(0) = 6 �= 0.

Hence, the function g(w) has a zero of order 7 at w0 = 0, thus

g(w) = w7 · g1(w), g1(0) �= 0.

When we put w = z2, we get

f(z) = g
(
z2
)

=
(
z2
)7

g1

(
z2
)

= z14g1

(
z2
)
, g1(0) �= 0,

and it follows immediately that f has a zero of order 14 at z0 = 0.
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Fourth method. Method of differentiation, second variant. If we do not use any of the shortcuts
above, we have to go through the following computations

f(z) = 3 sinh z2 − 3 sin z2 − z6,
f(0) = 0,

f ′(z) = 6z cosh z2 − 6z cos z2 − 6z5,
f ′(0) = 0,

f ′′(z) = 6 cosh z2 + 12z2 sinh z2 − 6 cos z2

+12z2 sin z2 − 30z4,
f ′′(0) = 0,

f (3)(z) = 36z sinh z2 + 24z3 cosh z2 + 36z sin z2

+24z3 cos z2 − 120z3,
f (3)(0) = 0,

f (4)(z) = 36 sinh z2 + 144z2 cosh z2 + 48z4 sinh z2

+36 sin z2 + 144z2 cos z2 − 48z4 sin z2 − 360z2,
f (4)(0) = 0,

f (5)(z) = 360z cosh z2 + 480z3 sinh z2 + 96z5 cosh z2

+360z cos z2 − 480z3 sin z2 − 96z5 cos z2 − 720z,
f (5)(0) = 0,

f (6)(z) = 360 cosh z2 + 2160z2 sinh z2 + 1440z4 cosh z2

+192z6 sinh z2 + 360 cos z2 − 2160z2 sin z2

−1440z4 cos z2 + 192z6 sin z2 − 720,
f (6)(0) = 0,

f (7)(z) = 5040z sinh z2 + 10 080z3 cosh z2 + 4032z5 sinh z2

+384z7 cosh z2 − 5040z sin z2 − 10 080z3 cos z2

+4032z5 sin z2 + 384z7 cos z2,
f (7)(0) = 0,

f (8)(z) = 5040 sinh z2 + 40 320z2 cosh z2 + 40 320z4 sinh z2

+10 752z6 cosh z2 + 768z8 sinh z2 − 5040 sin z2

−40 320z2 cos z2 + 40 320z4 sin z2

+10 752z6 cos z2 − 768z8 sinh z2,
f (8)(0) = 0,

f (9)(z) = 90 720z cosh z2 + 241 929z3 sinh z2 + 145 152z5 cosh z2

+27 648z7 sinh z2 + 1536z9 cosh z2 − 90 720z cos z2

+241 920z3 sin z2 + 145 152z5 cos z2

−27 648z7 sin z2 − 1536z9 cos z2,
f (9)(0) = 0,

f (10)(z) = 90 720 cosh z2 + 907 200z2 sinh z2

+1209 600z4 cosh z2 + 483 840z6 sinh z2

+69 120z8 cosh z2 + 3072z10 sinh z2

−90 720 cos z2 + 907 200z2 sin z2

+1209 600z4 cos z2 − 483 840z6 sin z2

−69 120z8 cos z2 + 3072z10 sin z2,
f (10)(0) = 0,

Zeros of analytic functions

Download free eBooks at bookboon.com



Complex Functions Examples c-4

 

122  

f (11)(z) = 1 995 840z sinh z2 + 6652 800z3 cosh z2

+5322 240z5 sinh z2 + 1520 640z7 cosh z2

+168 960z9 sinh z2 + 6144z11 cosh z2

+1995 840z sin z2 + 6652 800z3 cos z2

−5 322 240z5 sin z2 − 1 520 640z7 cos z2

+168 960z9 sin z2 + 6144z11 cos z2,
f (11)(0) = 0,

f (12)(z) = 1 995 840 sinh z2 + 23 950 080z2 cosh z2

+39 916 800z4 sinh z2 + 21 288 960z6 cosh z2

+4561 920z8 sinh z2 + 405 504z10 cosh z2

+12 288z12 sinh z2 + 1995 840 sin z2

+23 950 080z2 cos z2 − 39 916 800z4 sin z2

−21 288 960z6 cos z2 + 4561 920z8 sin z2

+405 504z10 cos z2 − 12 288z12 sin z2,
f (12)(0) = 0,

f (13)(z) = 51 891 840z cosh z2 + 207 567 360z3 sinh z2

+207 567 360z5 cosh z2 + 79 073 280z7 sinh z2

+13 178 880z9 cosh z2 + 958 464z11 sinh z2

+24 576z13 cosh z2 + 51 891 840z cos z2

−207 567 360z3 sin z2 − 207 567 360z5 cos z2

+79 073 280z7 sin z2 + 13 178 880z9 cos z2

−958 464z11 sin z2 − 24 576z13 cos z3,
f (13)(0) = 0,

f (14)(z) = 51 891 840 cosh z2 + 726 485 760z2 sinh z2

+1452 971 520z4 cosh z2 + 968 647 680z6 sinh z2

+176 756 480z8 cosh z2 + 36 900 864z10 sinh z2

+2236 416z12 cosh z2 + 49 152z14 sin z2

+51 891 840 cos z2 − 726 485 760z2 sin z2

−1 452 971 520z4 cos z2 + 968 647 680z6 sin z2

+276 756 480z8 cos z2 − 36 900 864z10 sin z2

−2 236 416z12 cos z2 + 49 152z14 sin z2.

Since

f (14)(0) = 103 783 680 =
6
7!

· 14! �= 0

is the first derivative of f(z) at z = 0, which is different from 0, we conclude that the order is 14.

Remark 8.2 Note that

a14 =
f (14)(0)

14!
=

6
7!

,

which is in agreement with the result from the first method. ♦
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Example 8.5 1) Explain why the function

f(z) = Log
(
1 + z2

)− sin2 z

is analytic in the point set

C \ {z ∈ C | Re(z) = 0 ∧ |Im(z)| ≥ 1}.

2) Find the order of the zero at z = 0 of f .

3) Denote by

+∞∑
n=0

anzn

the Taylor series of f . Find the radius of convergence of the series.
(One shall not give an explicit expression of the general term.)

Figure 10: The domain with the branch cuts from ±i.

1) The principal logarithm is analytic in the plane with the branch cuts. Hence, the function 1 + z2

must not be real negative or zero. The exception set is then

1 + z2 = −t, t ≥ 0,

i.e.

z = ±i
√

1 + t, t ≥ 0,

thus

Re(z) = 0 and |Im(z)| ≥ 1.

We have proved that Log
(
1 + z2

)
is analytic in the given point set. Since Da sine is analytic in

the complex plane, the claim follows.
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2) Then we have a couple of solution variants.

a) We get from known Taylor series,

f(z) = Log
(
1 + z2

)− 1
2

(1 − cos 2z)

=
{

z2 − 1
2

z4 + · · ·
}
− 1

2

{
1
2!

(2z)2 − 1
4!

(2z)4 + · · ·
}

=
{

z2 − 1
2

z4 + · · ·
}
−
{

z2 − 1
3

z4 + · · ·
}

= −1
6

z4 + · · · .

We conclude that the zero at z = 0 has order 4.
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b) The differentiation method. Here we get:

f ′(z) =
2z

1 + z2
− 2 sin z cos z

=
1

z + i
+

1
z − i

− sin 2z, f ′(0),

f ′′(z) = − 1
(z + i)2

− 1
(z − i)2

− 2 cos 2z, f ′′(0) = 1 + 1 − 2 = 0,

f (3)(x) =
2

(z + i)3
+

2
(z − i)3

+ 4 sin 2z, f (3)(0) = 2i − 2i + 0 = 0,

f (4)(z) =
−6

(z + i)4
+

−6
(z − i)4

+ 8 cos 2z, f (4) = −6 − 6 + 8 = −4.

It follows that the order of the zero is 4 and that the first term is

−4
4!

z4 = −1
6

z4.

c) If one does not start with a decomposition, the differentiations become more difficult:

f ′(z) =
2z

1 + z2
− sin 2z,

f ′′(z) =
2
(
z2 + 1

)− 2z · 2z
(z2 + 1)2

− 2 cos 2z =
2
(
1 − z2

)
(1 + z2)2

− 2 cos 2z,

f (3)(z) =
4
(
z3 + 3zi2

)
(z2 + 1)3

+ 4 sin 2z =
4z
(
z2 − 3

)
(1 + z2)3

+ 4 sin 2z,

f (4)(z) =
−12

(
z4 + 6z2i2 + i4

)
(z2 + 1)4

+ 8 cos 2z =
−12

(
z4 − 6z2 + 1

)
(z2 + 1)4

+ 8 cos 2z,

followed by putting z = 0.

3) If we write

f(z) =
+∞∑
n=0

anzn,

then the domain of convergence is the largest open disc of centrum 0, in which f is analytic. It
follows from the figure that the radius of convergence is 1.

Remark 8.3 Even though it is not requested, it is not difficult to find an,

f(z) = Log
(
1 + z2

)
+

1
2
{cos(2z) − 1} =

+∞∑
n=1

1
n

(−1)n+1z2n +
1
2

+∞∑
n=1

1
(2n)!

(−1)nz2n.

In particular, a2n+1 = 0 (odd indices), and

a2n = (−1)n+1

{
1
n
− 1

2 · (2n)!

}
,

thus

|a2n| ≤ 1
n

+
1

2 · (2n)!
=

1
n

+
1

2 · 2n(2n − 1)!
=

1
n

{
1 +

1
4(2n − 1)!

}
, n ∈ N.
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It follows that

2n
√
|a2n| =

1
2n
√

n
2n

√
1 +

1
4(2n − 1)!

.

Since a2n+1 = 0 and

2n
√

n = exp
(

lnn

2n

)
→ exp 0 = 1 for n → +∞,

and

2n

√
1 +

1
4(2n − 1)!

→ 1 for n → +∞,

we get lim supn→+∞
n
√|an| = 1, hence the radius of convergence is 1. ♦

Example 8.6 Find the order of the zero at z = 0 of the function

f(z) = 3 sinh z − 3 sin z + exp
(
z3
)− 1.

Using known Taylor expansions,

3 sinh z = 3z +
1
2

z3 + · · · ,

−3 sin z = −3z +
1
2

z3 + · · · ,

exp
(
z3
)− 1 = z3 + · · · ,

so

f(z) = 2z3 + · · · ,

proving that the zero z = 0 of f(z) has order 3.

Zeros of analytic functions
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9 Fourier series

Example 9.1 Put z = r ei θ into the exponential series and then derive some new Fourier series.

It follows from

ez = ex cos y + i · ex sin t, and x = r · cos θ, y = r · sin θ,

that

ez = ex(cos y + i sin y) = er cos θ cos(r sin θ) + i er cos θ sin(r sin θ)

=
+∞∑
n=0

1
n!

zn =
+∞∑
n=0

1
n!

rn einθ =
+∞∑
n=0

rn

n!
cos nθ + i

+∞∑
n=0

rn

n!
sinnθ.

By separating into the real and the imaginary parts we see that for every r ≥ 0 and every θ ∈ R,

er cos θ cos(r sin θ) =
+∞∑
n=0

rn

n!
cos nθ, og er sin θ cos(r sin θ) =

+∞∑
n=0

rn

n!
sinnθ.

Example 9.2 Put z = eiθ. Prove for m, n ∈ N0 that

1
2π

∫ 2π

0

zmzn dθ =

⎧⎨
⎩

0 for m �= n,

1 for m = n.

One says that the functions 1, z, z2, z3, . . . , form an orthogonal system on the unit circle.

The example is trivial since we get by insertion

1
2π

∫ 2π

0

zmzn dθ =
1
2π

∫ 2π

0

eimθe−inθ dθ =
1
2π

∫ 2π

0

ei(m−n)θ dθ.

If m �= n, then

1
2π

∫ 2π

0

ei(m−n)θ dθ = 0,

and if m = n, then

1
2π

∫ 2π

0

1 dθ = 1.

Fourier series
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Example 9.3 Apply the power series expansion of Log
(

1
1 − z

)
in order to get the Fourier series of

(a) ln
(
1 + r2 − 2r cos θ

)
, (b) Arctan

(
r sin θ

1 − r cos θ

)
, r ∈ [0, 1[.

Put z = r eiθ, where 0 ≤ r < 1. Then

Log
(

1
1 − z

)
=

+∞∑
n=1

zn

n
=

+∞∑
n=1

rn

n
cos nθ + i

+∞∑
n=1

rn

n
sin nθ.

On the other hand,

1
1 − z

=
1

1 − r cos θ − i r sin θ
=

1 − r cos θ + i r sin θ

(1 − r cos θ)2 + r2 sin2 θ
=

1 − r cos θ + i r sin θ

1 + r2 − 2r cos θ
,

thus

Log
(

1
1 − z

)
= −1

2
ln
(
1 + r2 − 2r cos θ

)
+ iArctan

(
r sin θ

1 − r cos θ

)
,

because 1 − z, and hence also
1

1 − z
, lies in the right half plane. When we identify the real and the

imaginary parts, we obtain the Fourier series

Fourier series

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012; 
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl


Complex Functions Examples c-4

 

129  

(a)

ln
(
1 + r2 − 2r cos θ

)
= −2

+∞∑
n=1

rn

n
cos nθ, 0 ≤ r < 1,

(b)

Arctan
(

r sin θ

1 − r cos θ

)
=

+∞∑
n=1

r2

n
sin nθ, 0 ≤ r < 1.

Remark 9.1 If instead r > 1, then R =
1
r

< 1, and we get

(a’)

ln
(
1 + r2 − 2r cos θ

)
= ln

(
r2
{
1 + R2 − 2R cos θ

})
= 2 ln r + ln

(
1 + R2 − 2R cos θ

)
= 2 ln r − 2

+∞∑
n=1

R2

n
cos nθ = 2 ln r − 2

+∞∑
n=1

1
n rn

cos nθ, r > 1.

Fourier series
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We cannot find a similar result in (b), because the denominator in

r sin θ

1 − r cos θ

is zero, when cos θ =
1
r

= R ∈ ]0, 1[. ♦

Example 9.4 Assume without proof that

+∞∑
n=1

1
n2

=
π2

6
,

and that

(21) Log
(
1 − eiθ

)
= ln

(
2 sin

θ

2

)
− i

2
(π − θ), θ ∈ ]0, π].

(a) Let r ∈ ]0, 1[ and θ ∈ R. Find the coefficients an(r) of the Fourier series expansion

Log
(
1 − r eiθ

)
=
∑

n

an(r) ei n θ.

(b) Compute the integral∫ π

−π

∣∣Log
(
1 − r ei θ

)∣∣2 dθ, r ∈ ]0, 1[,

expressed by an(r).
We assume without proof that∫ π

−π

∣∣Log
(
1 − ei θ

)∣∣2 dθ = lim
r→1−

∫ π

−π

∣∣Log
(
1 − r ei θ

)∣∣2 dθ.

Find the value of∫ π

−π

∣∣Log
(
2 − ei θ

)∣∣2 dθ.

(c) Finally, prove by using (21) and (b) that∫ π
2

0

{ln(2 sin t)}2 dt =
π3

24
.

(a) Since
∣∣−r eiθ

∣∣ < 1, we get by insertion of z = −r ei θ into the logarithmic series that

Log
(
1 − r ei θ

)
=

+∞∑
n=1

(−1)n+1

n
(−r)nei n θ = −

+∞∑
n=1

rn

n
ei n θ,

and we conclude that

an(r) = − 1
n

rn for n ∈ N; an(r) = 0 ellers.
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(b) Then by Parseval’s formula,

∫ π

−π

∣∣Log
(
1 − r ei θ

)∣∣2 dθ = 2π
+∞∑
n=1

1
n2

r2n, r ∈ ]0, 1[.

By using that the limit process r → 1− will give the correct result, we get

∫ π

−π

∣∣Log
(
1 − ei θ

)∣∣2 dθ = lim
r→1−

∫ π

−π

∣∣Log
(
1 − r ei θ

)∣∣2 dθ

= lim
r→1−

2π
+∞∑
n=1

1
n2

r2n = 2π
+∞∑
n=1

1
n2

= 2π · π2

6
=

π3

3
.

(c) Finally, it follows from (b) and (21),

π3

3
=

∫ π

−π

∣∣Log
(
1 − ei θ

)∣∣2 dθ = 2
∫ π

0

∣∣Log
(
1 − ei θ

)∣∣2 dθ

= 2
∫ π

0

{(
ln
(

2 sin
θ

2

))2

+
(

1
2

(π − θ)
)2
}

dθ

= 2
∫ π

0

{
ln
(

2 sin
θ

2

)}2

dθ +
1
2

∫ π

0

(π − θ)2 dθ

= 4
∫ π

2

0

{ln(2 sin t)}2 dt +
1
2

∫ π

0

t2 dt

= 4
∫ π

2

0

{ln(2 sin t)}2dt +
π3

6
,

hence by a rearrangement,

∫ π
2

0

{ln(2 sin t)}2 dt =
1
4

{
π3

3
− π3

6

}
=

π3

24
.
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10 The maximum principle

Example 10.1 Given f(z) = (z + 1)2. Find the maximum and the minimum of |f/z)| in the set A,
where A is the closed triangle of the corners z = 0, z = 2 and z = i.

–0.5

0

0.5

1

1.5

–1 1 2

Figure 11: The triangle A.

This example was originally constructed in order to illustrate the maximum principle. However, it is
easily seen that a geometric argument is much easier to apply, because |f(z)| indicates the square of
the distance from −1 to z.
Clearly, the minimum is obtained at z = 0, corresponding to |f(0)| = 1, and the maximum is obtained
at z = 2, corresponding to |f(z)| = 9.

Example 10.2 Find the maximum of | sin z| on the set [0, 2π] × [0.2π].

0

1

2

3

4

5

6

1 2 3 4 5 6

Figure 12: The domain Ω.

It follows from the maximum principle that the maximum is attained at the boundary of the domain.
We find

The maximum principle
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1) On the line z = x + i · 0, x ∈ [0, 2π], we get

max
x∈[0,2π]

| sin x| = sin
π

2
=
∣∣∣∣sin 3π

2

∣∣∣∣ = 1.

2) On the line z = i y, y ∈ [0, 2π], we get

max
y∈[0,2π]

| sin(i y)| = max
y∈[0,2π]

sinh y = sinh(2π).

3) On the line z = x + 2iπ, x ∈ [0, 2π], we get

max
x∈[0,2π]

| sin(x + 2iπ)| = max
x∈[0,2π]

| sin x · cosh 2π + i · cos x · sinh 2π|

= max
x∈[0,2π]

√
sin2 x · cosh2 2π + cos2 · sinh2 2π = max

x∈[0,2π]

√
cosh2 2π − cos2 x

=
√

cosh2 2π = cosh 2π.

The maximum principle
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4) On the line z = 2π + i y, y ∈ [0, 2π], we get

max
y∈[0,2π]

| sin(2π + i y)| = max
y∈[0,2π]

| sin(i y)| = max
y∈[0,2π]

sinh y = sinh 2π.

By comparing these four results it follows that

max
Ω

| sin z| = cosh 2π,

so the maximum is obtained for

z =
π

2
+ 2iπ and z =

3π
2

+ 2i π.

Example 10.3 Find the maximum of
∣∣exp

(
z2
)∣∣ on {z ∈ C | |z| ≤ 1}.

It follows from the maximum principle that the maximum is attained on the boundary |z| = 1, where
we put z = ei θ, so∣∣exp

(
z2
)∣∣ = ∣∣exp

(
22i θ

)∣∣ = exp(cos 2θ), θ ∈ [0, 2π].

Obviously, we obtain the maximum when cos 2θ = 1, hence the maximum is e1 = e.

Example 10.4 Prove that the transformation

T (z) =
R (z − z0)
R2 − z0z

, |z0| < R,

maps the open disc of radius R and centrum 0 into the unit disc with T (z0) = 0.
Hint: Apply the maximum principle, and prove that |z| = R implies that |T (z)| = 1.

Clearly, T (z0) = 0. If |z| = R, then

|T (z)| = R

∣∣∣∣ z − z0

R2 − z0z

∣∣∣∣ = R

∣∣∣∣ z − z0

z z − z0z

∣∣∣∣ = R

|z| ·
∣∣∣∣ z − z0

z − z0

∣∣∣∣ = R

R
· 1 = 1.

Then it follows from the maximum principle that |T (z)| ≤ 1 for |z| < R, and since T (z0) = 0, we
cannot have equality. so |T (z)| < 1 for |z| < R.

The maximum principle
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