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Introduction

Introduction

This is the second book containing examples from the Theory of Complex Functions. The first topic
will be examples of the necessary general topological concepts. Then follow some examples of complex
functions, complex limits and complex line integrals. Finally, we reach the subject itself, namely the
analytic functions in general. The more specific properties of these analytic functions will be given in
the books to follow.

Even if I have tried to be careful about this text, it is impossible to avoid errors, in particular in the
first edition. It is my hope that the reader will show some understanding of my situation.

Leif Mejlbro
30th May 2008
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1 Some necessary theoretical results

This chapter must not be considered as a replacement of the usual textbooks, concerning the theory
necessary for the examples. We shall always assume that all the fundamental definitions of continuity
etc. are well-known. Furthermore, we are also missing some theoretical results. The focus here is
solely on the most important theorems for this book. We start by quoting the three main theorems
for the continuous functions:

Theorem 1.1 If f : Ω → C is continuous and the domain A ⊆ Ω is compact, (i.e. closed and
bounded), then the range f(A) is also compact.

Theorem 1.2 If f : Ω → C is continuous and the domain A ⊆ Ω is connected, then the range f(A)
is also connected.

Theorem 1.3 Any continuous map f : Ω → C is uniformly continuous on every compact subset
A ⊆ Ω.

We see that the compact sets, i.e. the bounded and closed sets, are playing a central role in connection
with continuous functions. This is why we have given them the name compact sets.

The complex plane C is in a natural correspondence with the real plane R × R, by writing

z = x + iy ∈ C, corresponding to (x, y) ∈ R × R.

Some necessary theoretical results
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Then a complex function f(z) can also be written

f(z) = u(x, y) + i v(x, y),

where

u(x, y) = Re f(z) and v(x, y) = Im f(z)

are the real part and the imaginary part respectively of the complex function f(z) in the complex
variable z = x + iy ∈ C.

In the same way we consider a plane curve C as both lying in C and in R×R. Since we formally have
by a splitting into the real part and the imaginary part

f(z) dz = {u(x, y) + i v(x, y)}{dx + i dy} = {u dx − v dy} + i{u dy + v dx},

we define the complex line integral along C by∫
C

f(z) dz :=
∫

C

{u dx − v dy} + i

∫
C

{u dy + v dx},

and then the complex line integral is reduced to a complex sum of of two ordinary real line integrals.

Definition 1.1 Assume that Ω is an open non-empty subset of C, and let f : Ω → C be a complex
function. If the limit

lim
z∈Ω

z→z0

f(z) − f (z0)
z − z0

exists for some given z0 ∈ Ω, then we say that f is differentiable at z0, and we use all the usual
notations of the derivative from the real analysis like e.g. f ′ (z0).
If f : Ω → C is differentiable at every z ∈ Ω, and the derivative f ′(z) is continuous in Ω, then we call
f an analytical function.

Then we have the following theorem:

Theorem 1.4 Assume that f(z) = u(x, y)+ i v(x, y) is defined in an open set Ω, and assume further-
more that both u(x, y) and v(x, y) are continuously differentiable with respect to both x and y. Then
the complex function f(z) is an analytic function, if and only if the pair u(x, y) and v(x, y) fulfil the
Cauchy-Riemann equations in Ω:

∂u

∂x
=

∂v

∂y
and

∂u

∂u
= −∂v

∂x
.

If we instead use polar coordinates,

x = r · cos θ, y = r · sin θ,

in our description of a complex function, i.e.

f(z) = u(r, θ) + i v(r, θ),

Some necessary theoretical results
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then the same theorem still holds if and only if the Cauchy-Riemann equations in polar coordinates
are satisfied,

∂u

∂r
=

1
r

∂v

∂θ
,

1
r

∂u

∂θ
= −∂v

∂r
.

One of the main theorems of the Theory of Complex Functions is

Theorem 1.5 Cauchy’s Integral Theorem. Assume that the function f(z) is analytic in a
simply connected domain Ω (this means roughly speaking that the domain does not contain “holes”),
then the value of the line integral∫ z

z0

f(z) dz

is independent of the choice of the continuous and piecewise differentiable curve C in Ω from the fixed
point z0 ∈ Ω to the fixed point z ∈ Ω.
In in particular the curve is closed, then∮

C

f(z) dz = 0.

The next important result, which is given here, is also due to Cauchy:

Theorem 1.6 Cauchy’s integral formula. Assume that f(z) is analytic in an open domain Ω.
Assume that C is composed of simple and closed piecewise differentiable curves in Ω, run through in
such a way that all points inside C (this means to the left of C seen in the direction of the movement)
belong to Ω.
Let z0 be any point inside C in the sense above. Then

f (z0) =
1

2πi

∫
C

f(z)
z − z0

dz.

We also mention

Theorem 1.7 The Mean Value Theorem. The value of an analytic function f(z) at a point z0

is equal to the mean value of the function over any circle of centrum z0 and radius r, assuming that
the closed disc B [z0, r] of centrum z0 and radius r is contained in Ω. We have for such r > 0,

f (z0) =
1
2π

∫ 2π

0

f
(
z0 + r eiθ

)
dθ.

Finally, we mention

Theorem 1.8 Cauchy’s inequalities. Assume that f(z) is analytic in a domain which contains
the closed disc

B [z0, r] = {z ∈ C | |z − z0| ≤ r} ,

and let Mr denote the maximum of |f(z)| on the circle |z − z0| = r. Then∣∣∣f (n) (z0)
∣∣∣ ≤ Mr · n!

rn
for every n ∈ N0.

Some necessary theoretical results
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2 Topological concepts

Example 2.1 Let Ω = {1, 2, 3, 4}. Find the smallest system of open sets in Ω, such that

{1}, {2, 4}, {1, 2, 3}
are all open sets.

We shall find the open system, which is generated by

{1}, {2, 4}, {1, 2, 3}.
First of all, both ∅ and Ω must belong to the system.
Then all intersections must also be contained in the system, thus

{1} ∩ {2, 4} = ∅, {1} ∩ {1, 2, 3} = {1}, {2, 4} ∩ {1, 2, 3} = {2}.
By this process we conclude that {2} must also be open.
Finally, all unions of sets from the system must again be open. This gives

{1} ∪ {2} = {1, 2}, {1} ∪ {1, 2, 3} = {1, 2, 3},
{1} ∪ {2, 4} = {1, 2, 4}, {2} ∪ {2, 4} = {2, 4},
{2} ∪ {1, 2, 3} = {1, 2, 3}, {2, 4} ∪ {1, 2, 3} = {1, 2, 3, 4} = Ω.

We have now exhausted all possibilities, so the system of open sets must consist of the sets

∅, {1}, {2}, {1, 2},
{2, 4}, {1, 2, 3}, {1, 2, 4}, Ω = {1, 2, 3, 4}.

Example 2.2 Let f : R 	→ R be defined by

f(x) =
1

2 + |x| .

Prove that f is a contraction, and find the corresponding fixpoint.

We shall prove that there exists a constant C < 1, such that

|f(x) − f(y)| ≤ C |x − y|.
By a small computation and an estimate,

|f(x) − f(y)| =
∣∣∣∣ 1
2 + |x| −

1
2 + |y|

∣∣∣∣ =
∣∣∣∣ 2 + |y| − 2 − |x|
(2 + |x|)(2 + |y|)

∣∣∣∣ =
∣∣∣∣ |y| − |x|
(2 + |x|)(2 + |y|)

∣∣∣∣ ≤ 1
4
|x − y|,

proving that the map is a contraction.

Now, f(x) > 0 for every x ∈ R, so a fixpoint must necessarily be positive, thus |x| = x. Then we shall
solve the equation

1
2 + x

= x, x > 0.

Topological concepts
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This is equivalent to

x2 + 2x = 1, x > 0,

hence

(x + 1)2 = x2 + 2x + 1 = 2, x > 0,

and thus

x = ±2 − 1, x > 0.

It follows that the fixpoint is

x =
√

2 − 1.

Topological concepts
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Example 2.3 Let f : R × R 	→ R be given by

f(x, y) =
(
x2 + 1

)
sinh y + x +

y2

2
.

Prove that the equation f(x, y) = 0 globally determines y as a function of x.
Hint: Prove for every fixed x that f(x, y) is a continuous and strictly increasing function of y, which
takes on the value 0.
Then find by implicit differentiation the approximating polynomial of at most second degree for y as
a function of x from the point (x0, y0) = (0, 0).

We see that f ∈ C∞(R × R) and

f ′
y(x, y) =

(
x2 + 1

)
cosh y + y ≥ cosh y + y > 0,

so f(x, y) is for every fixed x strictly increasing in. Furthermore, we clearly have

f(x, y) → −∞ for y → −∞ og f(x, y) → +∞ for y → +∞

for every fixed x. By the continuity there exists for every x ∈ R precisely one y ∈ R, such that
f(x, y) = 0. This is another way of saying that y is determined as a function of x.

Now let y = y(x) be given by the construction above. Then y(0) = 0, because (0, 0) clearly satisfies
the equation, and because the solution is unique. Then we get by implicit differentiation,

{(
x2 + 1

)
cosh y + y

} dy

dx
+ 2x sinh y + 1 = 0.

If we here put (x, y) = (0, 0) and solve with respect to the derivative, we get

dy

dx

∣∣∣∣
0

= −1
1

= −1.

In general we get by another implicit differentiation,

{(
x2 + 1

)
cosh y

} d2y

dx2
+
{(

x2 + 1
)
sinh y + 1

}(dy

dx

)2

+ 4x cosh y
dy

dx
+ 2 sinh y = 0.

If we here put
(

x, y,
dy

dx

)
= (0, 0,−1), then we get by solving with respect to the second derivative,

d2y

dx2

∣∣∣∣
x=0

+ 1 · 1 + 0 + 0 = 0, hence
d2y

dx2

∣∣∣∣
x=0

= −1.

The approximating polynomial of at most second degree form the point of expansion x = 0 is given
by

P (x) = −x − 1
2

x2.

Topological concepts
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3 Complex Functions

Example 3.1 Let w = u + iv. Find in the following examples u(x, y) and v(x, y) as real functions in
two real variables:

(a) w = z3, (b) w = z +
1
z
, (c) w =

z

1 + z
, (d) w = z ez.

(a) If z ∈ C, then

w = u + iv = z3 = (x + iy)3 = x3 + 3ix2y − 3xy2 − iy3,

hence by a separation into real and imaginary parts

u(x, y) = x3 − 3xy2 and v(x, y) = 3xy2 − y3,

(b) If z ∈ C \ {0}, then

w = u + iv = x +
1
z

= z +
z

z · z = x + iy +
x − iy

x2 + y2
,

hence by separating into real and imaginary parts,

u(x, y) = x +
x

x2 + y2
, v(x, y) = y − y

x2 + y2
.

The function

w =
1
2

(
z +

1
z

)

is also called Joukowski’s function.

(c) If z ∈ C \ {−1}, then

w = u + iv =
z

1 + z
=

1 + z − 1
1 + z

= 1 − 1
1 + x + iy

= 1 − x + 1 − iy

(x + 1)2 + y2
,

hence by separating into real and imaginary parts,

u(x, y) = 1 − x + 1
(x + 1)2 + y2

, v(x, y) =
y

(x + 1)2 + y2
.

The function w =
z

z + 1
is an example of an homography, also called a fractional linear transfor-

mation.

(d) If z ∈ C, then

w = u + iv = z ez = (x + iy)ex(cos y + i sin y)
= x ex cos y − y ex sin y + i {x ex sin y + y ex cos y} ,

hence by separation into real and imaginary parts,

u(x, y) = x ex cos y − y ex sin y, v(x, y) = x ex sin y + y ex cos y.

Complex Functions
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Example 3.2 Find f(z + 1), f

(
1
z

)
, and f(f(z)) for

(a) f(z) = z + 1, (b) f(z) = z2, (c) f(z) =
1
z
, (d) f(z) =

1 + z

1 − z
.

(a) If f(z) = z + 1, then

f(z + 1) = z + 2,

f

(
1
z

)
=

1
z

+ 1 =
z + 1

z
, for z = 0,

f(f(z)) = f(z + 1) = z + 2.

(b) If f(z) = z2, then

f(z + 1) = (z + 1)2 = z2 + 2z + 1,

f

(
1
z

)
=

1
z2

, for z = 0,

f(f(z)) = f
(
z2
)

= z4.

(c) If f(z) =
1
z
, then

f(z + 1) =
1

z + 1
, for z = −1,

f

(
1
z

)
= z, for z = 0,

f(f(z)) = f

(
1
z

)
= z, for z = 0.

(d) If f(z) =
1 + z

1 − z
, then

f(z + 1) =
1 + (z + 1)
1 − (z + 1)

=
2 + z

−z
= −z + 2

z
, for z = 0,

f

(
1
z

)
=

1 + 1
z

1 − 1
z

=
z + 1
z − 1

, for z = 0 og z = 1,

f(f(z)) = f

(
1 + z

1 − z

)
=

1 + 1+z
1−z

1 − 1 + z

1 − z

=
1 − z + 1 + z

1 − z − 1 − z
=

2
−2z

= −1
z
,

for z = 0 and z = 1.

Complex Functions
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Example 3.3 Prove that the function w = z2 maps the lines y = c, c ∈ R+, into parabolas in the
w-plane.
What is the image of the line y = 0?

–4

–2

2

4

–2 –1 1 2 3

If we put z = t + ic, t ∈ R, then

w = z2 = (t + ic)2 = t2 − c2 + 2ict = u + iv,

hence by separation into real and imaginary part,

u = t2 og v = 2ct.

If y = 0, thus c = 0, we get u = t2 and v = 0, so the image of y = 0 is R+ ∪ {0} “run through twice”.
If c > 0, it follows by eliminating t that we have the following equation of a parabola,

u =
v2

4c2
− c2.

Complex Functions
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Example 3.4 Find the image of

Ω = {z ∈ C | |Re(z)| < 1}
by the following maps

(a) w = 2z + i, (b) w = (1 + i)z + 1, (c) w =
1
z
,

(d) w = 2z2, (e) w =
z + 1
z − 1

.

–2

–1

1

2

–1.5 –1 –0.5 0.5 1 1.5

Figure 1: The domain Ω is the open parallel strip between the lines x = −1 and x = 1.

(a) Since the map w = 2z + i is continuous, and Ω is connected, the range is by one of the main
theorems also connected.

–3

–2

–1

1

2

3

–2 –1 1 2

Figure 2: (a) The image of Ω is the open domain between the two vertical lines.

The map can be extended continuously to the boundary, and the map is an open map. It therefore
suffices to find the images of the boundary curves z = ±1 + iy.
Since w = ±2 + i(2y + 1), we conclude that the range is

{w ∈ C | |Re(w)| < 2}.

Complex Functions
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–4

–2

0

2

4

6

–3 –2 –1 1 2 3 4

Figure 3: (b) The image of Ω is the open domain between the two oblique lines.

(b) The map w = (1 + i)z + 1 is continuous and open. Therefore, it suffices as in (a) to find the
images of the boundary curves.
If we put z = −1 + iy, y ∈ R, then

w = (1 + i)(−1 + iy) + 1 = −1 − i + y(−1 + i) + 1 = −i + y(i − 1).

This is a parametric description of a line through the points −i and −1 (put y = 0 and y = 1).
If we instead put z = 1 + iy, then

w = (1 + i)(1 + iy) + 1 = 2 + i + (−1 + i)y,

which is the parametric description of a line. By putting y = 0, or y = 1, we get the points 2 + i
and 1 + 2i, and it is easy to sketch the domain.

(c) Consider the map

w =
1
z

=
x − iy

x2 + y2
, for z = 0.

The line z = −1 + iy is mapped into the curve of the parametric description

u = − 1
1 + y2

, v = − y

1 + y2
, y ∈ R,

hence y =
v

u
, since u = 0. Then

u +
1

1 +
( v

u

)2 = 0,

or by some reformulation,

0 = u +
u2

u2 + v2
=

u

u2 + v2

(
u2 + v2 + u

)
=

u

u2 + v2

{(
u +

1
2

)2

+ v2 −
(

1
2

)2
}

, u = 0,

Complex Functions
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which we also write as(
u +

1
2

)2

+ v2 =
(

1
2

)2

, u = 0.

The image curve is therefore a circle (with the exception of one point) of centrum − 1
2

and radius
1
2
, and where u = 0.

–1

–0.5

0.5

1

–1.5 –1 –0.5 0.5 1 1.5

Figure 4: (c) The domain Ω is mapped into the open domain outside the two discs.

Analogously, the line z = iy is mapped into the curve of the parametric description

u =
1

1 + y2
, v = − y

1 + y2
, y ∈ R,

hence y = − v

u
, u = 0, and thus

u − 1

1 +
v2

u2

= 0, u = 0,

which we write as(
u − 1

2

)2

+ v2 =
(

1
2

)2

, u = 0.

Hence the image curve is a part of a circle of centrum
1
2

and radius
1
2
, and where u = 0.

The map is open, so we get by a continuity argument (use e.g. that z = i is mapped into w = −i)
it follows that the range is the open domain outside the two discs.
Notice that the point z = 0 must be removed from the domain |Re(z)| < 1, because the map is
not defined at that point.

(d) The map w = 2z2 is continuous. If we put z = −1 + iy, then

w = 2(−1 + iy)2 = 2
(
1 − y2

)− 4iy,

hence by separation into real and imaginary part,

u = 2
(
1 − y2

)
and v = −4y.

Complex Functions
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–4

–2

0

2

4

–1 0.5 1 1.5 2 2.5

Figure 5: (d) The domain Ω is mapped onto the open interior of the parabola.

When y is eliminated, i.e. when we put y = −v

4
, then

u = 2 − v2

8
,

which is the equation of a parabola in the (u, v)-plane.

Complex Functions
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We conclude by the symmetry about (0, 0) that the image of the strips

−1 < Re(z) ≤ 0 and 0 ≤ Re(z) < 1

are identical.
Finally, if we put z = iy (in Ω), then w = −2y2, y ∈ R, which is a parametric description of the
negative real axis, run through twice.
By a continuity argument (e.g. by putting z = 1

2 , which is mapped into w = 1
2 ), we conclude that

the image is the interior of the parabola.

–1.5

–1

–0.5

0.5

1

1.5

–1 –0.5 0.5 1 1.5

Figure 6: (e) The domain Ω is mapped into that part of the open left hand half plane determined by
the line x = 1, also lying outside the disc.

(e) Finally, we consider the transformation

w =
z + 1
z − 1

, z = 1.

If we put z = −1 + iy, then

w = u + iv =
iy

−2 + iy
=

iy

4 + y2
(−2 − iy) =

1
4 + y2

(
y2 − 2iy

)
.

We get by a separation into real and imaginary parts,

u =
y2

4 + y2
og v = − 2y

4 + y2
, y ∈ R.

If y = 0, we get u = v = 0, corresponding to the point w = 0.

If y = 0, then v = 0, and
u

v
= −y

2
, thus y = −2

u

v
. Then by insertion,

0 = v +
2y

4 + y2
= v +

−4
u

v

4 + 4
u2

v2

= v −
u

v

1 +
u2

v2

= v − uv

u2 + v2
=

v

u2 + v2

(
u2 + v2 − u

)
, v = 0,
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and we conclude that(
u − 1

2

)2

+ v2 =
(

1
2

)2

, v = 0,

which describes a part of a circle of radius
1
2

and centrum
(

1
2
, 0
)

and v = 0.

Notice that (0, 0) lies on the closure of this circle.

Finally, put z = 1 + iy. If y = 0, then

w =
2 + iy

iy
= 1 − i

2
y
,

which apart from the point (u, v) = (1, 0) corresponds to the line u = 1.

Summing up, the range is that domain which “lies between” the circle and the vertical straight
line u = 1, thus the range is a part of the open left half plane given by u = 1, and which also lies

outside the closed disc of centrum
1
2

and radius
1
2
.
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Example 3.5 Find the image of

Ω = {z ∈ C | 1 < Im(z) < 2}

by the following maps:

(a) w = 2z + i, (b) w = (1 + i)z + 1, (c) w =
1
z
,

(d) w = 2z2, (e) w =
z + 1
z − 1

.

–0.5

0

0.5

1

1.5

2

2.5

–2 –1 1 2

Figure 7: The domain Ω is the open parallel strip between the two horizontal lines.

0

1

2

3

4

5

–4 –2 2 4

Figure 8: (a) The image of Ω is the open parallel strip between the two horizontal lines.

(a) If Im(z) ∈ ]1, 2[, then

Im(w) = 2 Im(z) + 1 ∈ ]3, 5[,

hence the strip 1 < Im(z) < 2 is mapped onto the strip 3 < Im(w) < 5.
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–2

2

4

–4 –2 2 4

Figure 9: (b) The domain Ω is mapped into the open oblique parallel strip.

(b) The strip 1 < Im(z) < 2 has the boundary curves y = 1 and y = 2. If we put z = x + i, then

w = (1 + i)(x + i) + 1 = (1 + i)x + i − 1 + 1 = i + (1 + i)x, x ∈ R.

If we put z = x + 2i, then

w = (1 + i)(x + 2i) + 1 = (1 + i)x + 2i − 2 + 1 = (1 + i)x − 1 + 2i, x ∈ R.

The range is the domain between these two parallel lines.

–1.2

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

–1 –0.5 0.5 1

Figure 10: (c) The domain Ω is mapped into the open half moon between the two circles.

(c) Consider the map

w =
1
z

=
x − iy

x2 + y2
, (x, y) = (0, 0).

The curve x = x + i is mapped into

w =
x − i

x2 + 1
,
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hence by separation into real and imaginary part,

u =
x

x2 + 1
and v = − 1

x2 + 1
, v < 0.

This gives f̊as x = −u

v
, hence

v +
1

x2 + 1
= v +

v2

u2 + v2
= 0, v < 0.

This equation is then in the usual way written in the form

u2 +
(

v +
1
2

)2

=
(

1
2

)2

, v < 0,

which is the equation of (a part of) a circle of centrum − i

2
and radius

1
2
, and where v < 0.

The curve z = x + 2i is mapped into

w = u + iv =
x − 2i
x2 + 4

,

hence by separation into real and imaginary part,

u =
x

x2 + 4
, v =

2
x2 + 4

.

When we eliminate x = −2
u

v
, v < 0, we get

0 = v +
2

4 +
(
2 · u

v

)2 = v +
2v2

4v2 + 4u2
=

v

4 (v2 + u2)
(
4v2 + 4u2 + 2v

)
, v < 0.

Hence

u2 + v2 +
1
2

v +
1
16

= u2 +
(

v +
1
4

)2

=
(

1
4

)2

, v < 0,

which is the equation of (a part of) a circle with w = − i

4
as its centrum and radius

1
4
, and where

v < 0.
It follows by a trivial estimate that the range is bounded, hence the range must by the open half
moon shaped domain between the two circles.

(d) We consider the map w = 2z2. The strip 1 < Im(z) < 2 has the boundary curves y = 1 and
y = 2. If we put z = x + i, x ∈ R, then

w = 2(x + i)2 = 2
(
x2 − 1

)
+ 4ix = u + iv,

hence by separation into real and imaginary part,

u = 2x2 − 2 and v = 4x.
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–6

–4

–2

2

4

6

–8 –6 –4 –2 2

Figure 11: (d) The image of Ω is the open domain between the two arcs of parabolas.

When we eliminate the parameter x, we get the equation of the parabola

u =
v2

8
− 2.

If instead we put x = x + 2i, then

w = 2(x + 2i)2 = 2
(
x2 − 4

)
+ 8ix = u + iv,

hence by separation into real and imaginary part,

u = 2x2 − 8 og v = 8x.
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When we eliminate the parameter x, we get the equation of the parabola

u =
v2

32
− 8.

A continuity argument then shows that the image is the open domain between the two parabolas.

(e) Finally, consider the transformation

w =
z + 1
z − 1

, z = 1.

The boundary curve z = x + i is mapped into

w =
x + 1 + i

x − 1 + i
=

(x + 1 + i)(x − 1 − i)
(x − 1)2 + 1

=
x2 − 2i

(x − 1)2 + 1
= u + iv.

By separation of the real and the imaginary part we get

u =
x2

(x − 1)2 + 1
≥ 0 and v = − 2

(x − 1)2 + 1
< 0,

and

u

v
= −x2

2
, thus x = ±

√
−2

u

v
.

On the other hand, if follows from the expression of v that

(x − 1)2 = −1 − 2
v
.

If we here put x = ±
√
−2

u

v
, then

−2
u

v
∓ 2
√

−2
u

v
+ 1 = −2

v
− 1,

which is reduced to

±2
√
−2

u

v
=

2
v
− 2

u

v
+ 2 = 2 · 1 − u + v

v
,

thus to

±
√
−2

u

v
=

1 + v − u

v
.

Then by a squaring,

−2
u

v
=

1
v2

(
1 + v2 + u2 + 2v − 2u − 2uv

)
,

thus

−2uv = u2 + v2 − 2u + 2v + 1 − 2uv,
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–2

–1.5

–1

–0.5

–0.5 0.5 1 1.5 2 2.5

Figure 12: (e) The image of Ω is the open half moon shaped domain between the two circles.

which we write as

(u − 1)2 + (v + 1)2 = 1, v < 0,

describing (a part of) a circle of radius 1 and centrum (1,−1), and v < 0.

The curve z = x + 2i is mapped into

w =
x + 1 + 2i
x − 1 + 2i

=
(x + 1 + 2i)(x − 1 − 2i)

(x − 1)2 + 4
=

x2 + 3 − 4i
(x − 1)2 + 4

= u + iv, v < 0,

hence by separation into real and imaginary part,

u =
x2 + 3

(x − 1)2 + 4
> 0, v = − 4

(x − 1)2 + 4
< 0.

Then

u

v
= −1

4
(
x2 + 3

)
, i.e. x2 = −4

u

v
− 3,

hence

x = ±
√
−4

u

c
− 3,

and (x − 1)2 = −4
v
− 4, so

−4
v
− 4 = (x − 1)2 =

(
±
√
−4

u

v
− 3 − 1

)2

= −4
u

v
− 3 ∓ 2

√
−4

u

v
− 3 + 1,

which is reduced to

±2
√
−4

u

v
− 3 =

4
v

+ 4 − 4
u

v
− 2 = 2

(
2 + v − 2u

v

)
.
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First we remove the common factor 2. Then we square once more,

−4
u

v
− 3 =

(
2 + v − 2u

v

)2

=
1
v2

{
4u2 − 4uv − 8u + v2 + 4v + 4

}
,

hence

−4uv − 3v2 = 4u2 − 4uv + v2 − 8u + 4v + 4,

which again is rewritten as

0 = 4u2 + 4v2 − 8u + 4v + 4 = 4
{

u2 − 2u + 1 + v2 + v +
1
4
− 1

4

}

= 4

{
(u − 1)2 +

(
v +

1
2

)2

−
(

1
2

)2
}

, v < 0,
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and we end up with the equation of (a part of) a circle,

(u − 1)2 +
(

v +
1
2

)2

=
(

1
2

)2

, v < 0,

of centrum
(

1,−1
2

)
and radius

1
2
, and where v < 0.

Since the range is bounded, it must lie between the two circles.

Remark 3.1 We ought to have checked all our results. However, we shall later in another book in
this Complex series obtain the same results in a much easier way by using the theory of conformal
mapping, so we shall not bother with these tests. ♦

Example 3.6 Find the image of the unit disc

Ω = {z ∈ C | |z| < 1}
by the following maps:

(a) w = 2z + i, (b) w = (1 + i)z + 1, (c) w =
1
z
,

(d) w = 2z2, (e) w =
z + 1
z − 1

.

–1

0

1

2

3

–2 –1 1 2

Figure 13: (a) The image of the open disc of centrum i and radius 2.

(a) When we solve the equation with respect to z we get

|z| =
1
2
|w − i| < 1, hence |w − i| < 2.

The image is the open disc of centrum i ∼ (0, 1) and radius 2.
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–1

–0.5

0

0.5

1

0.5 1 1.5 2

Figure 14: (b) The image of the open disc of centrum 1 and radius
√

2.

(b) By solving the equation with respect to z we get

z =
w − 1
1 + i

,

thus

|z| =
1√
2
|w − 1| < 1, hence |w − 1| <

√
2.

Complex Functions

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

“The perfect start 
of a successful, 
international career.”

CLICK HERE 
to discover why both socially 

and academically the University 

of Groningen is one of the best 

places for a student to be 
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon


Complex Funktions Examples c-2

 

30  

The range is the open disc of centrum w = 1 and radius
√

2.

–2

–1

0

1

2

–2 –1 1 2

Figure 15: (c) The image is the open complementary set of a disc w| > 1.

(c) Here, |z| =
1
|w| < 1, so |w| > 1 and z = 0. The image is the open complementary set of the disc

of centrum 0 and radius 1.

–3

–2

–1

1

2

3

–3 –2 –1 1 2 3

Figure 16: (d) The image is the open disc of centrum 0 and radius 2.

(d) It follows that |w| =
∣∣2z2

∣∣ < 2, hence the range is the open disc of centrum w = 0 and radius 2.

(e) We shall find the image of the boundary curve of the parametric description

z = eiθ, θ ∈ ]0, 2π[.

We get by insertion,

w =
eiθ + 1
eiθ − 1

=
ei θ

2 + e−i θ
2

ei iθ
2 − e−i θ

2
=

2 cos θ
2

2i sin θ
2

= −i cos
θ

2
.

We conclude that the image of the boundary curve is the imaginary axis. Since z = 0 is mapped
into w = −1, we conclude by the continuity that the range is the left hand half plane.
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–3
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1
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–3 –2 –1 1 2 3

Figure 17: (e) The image of Ω is the open left hand half plane.

Example 3.7 Find the equations of the curves in the (x, y)-plane, which by

z = w + ew

are mapped into u = constant and v = constant, respectively.
What is corresponding to the straight lines v = 0 and v = π?

If we put z = x + iy and w = u + iv, then

z = x + iy = w + ew = u + iv + eu+iv = u + iv + eu cos v + i eu sin v.

By separation into real and imaginary part we get

x = u + eu cos v, y = v + eu sin v.

–6

–4

–2

0

2

4

6

–1 1 2 3

Figure 18: The images of the curves u = k for k = −1, 0 and 1.

If u = k, and v ∈ R is considered as a parameter, we get the parametric description

x = k + ek cos v, y = v + ek sin v, v ∈ R,
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0
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Figure 19: The images of the curves v = k for k = 0,
π

4
,

π

2
,

3π
4

and π.

which cannot be further reduced.
If v = k, and u ∈ R is considered as a parameter, then

x = u + eu cos k, y = k + eu sin k, u ∈ R.

If sin k = 0, i.e. v = k = pπ, p ∈ Z, then

eu =
y − k

sin k
, dvs. u = ln

(
y − k

sin k

)
, forudsat, at

y − k

sin k
> 0.

Hence we obtain the explicit expression of the curve,

x = ln
(

y − k

sin k

)
+

y − k

sin k
· cos k = ln

(
y − k

sin k

)
+ (y − k) cot k for

y − k

sin k
> 0.
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Figure 20: The images of the curves v = k for k = −2π, −π, 0, π and 2π.

If v = 2pπ, p ∈ Z, then

x = u + eu and y = 2pπ, u ∈ R.
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Now, x = eu + u runs through all of R, when u runs through R, so the curve is the horizontal line
y = 2pπ. This is in particular true p = 0, so in this case the curve is the whole of the x-axis.

If v = (2p + 1)π, p ∈ Z, then

x = u − eu and y = (2p + 1)π, u ∈ R.

Since

dx

du
= 1 − eu,

we conclude that the function x(u) has a maximum for u = 0, corresponding to x = −1, and since
x(u) → −∞ for u → +∞ and for u → −∞, we conclude that the half lines

x ≤ −1, y = (2p + 1)π, p ∈ Z,

are run through twice. This is in particular true for p = 0.
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Example 3.8 Sketch the curves

u(x, y) = constant and v(x, y) = constant

in the z-plane for the following functions:

(a) f(z) =
1
z
, (b) f(z) = z, (c) f(z) = (1 − 2i)z.

–4

–2

2

4

–4 –2 2 4

Figure 21: (a) The level curves of the dipole.

(a) We must clearly assume that z = 0. Once this is done we get

f(z) =
1
z

=
1
z
· z

z
=

x − iy

x2 + y2
.

Then we separate the real and the imaginary parts,

u(x, y) =
x

x2 + y2
and v(x, y) = − y

x2 + y2
.

The curves u(x, y) = 0 are the two half lines given by

x = 0, y = 0,

thus the positive and the negative imaginary axis.

If c = 0, then u(x, y) =
1
2c

is equivalent to 2cx = x2 + y2, thus

(x − c)2 + y2 = c2, (x, y) = (0, 0),

and the level curve is a circle of centrum (c, 0) and radius |c|, with the exception of the singular
point (0, 0).

Analogously, v(x, y) = 0 is described by the two half lines given by

x = 0, y = 0,
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thus the positive and the negative part of the real axis.

If c = 0, then v(x, y) =
1
2c

is equivalent to (notice the change of sign)

x2 + (y + c)2 = c2, (x, y) = (0, 0),

which describes a circle of centrum (0,−c) and radius |c| with the exception of the singular point
(0, 0).

Remark 3.2 These level curves are the model of the field around a dipole. ♦
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–1

0

1

2

–2 –1 1 2

Figure 22: The level curves of (b).

(b) Here, u(x, y) = x and v(x, y) = y, thus the level curves are the usual axis parallel lines.
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Figure 23: The level curves of (c).

(c) If

f(z) = (1 − 2i)z = (1 − 2i)(x + iy) = x + 2y + i(−2x + y)
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then it follows by a separation into real and imaginary parts,

u(x, y) = x + 2y and v(x, y) = −2x + y.

The level curves are the straight lines

u(x, y) = x + 2y = c, v(x, y) = −2x + c, c ∈ R.

Remark 3.3 We see in all three cases that apart from the singular point z = 0 in (a), every curve
from one system of curves is always perpendicular on any curve from the other system of curves. ♦.

Example 3.9 Sketch the curves u(x, y) = constant and v(x, y) = constant in the z-plane for the
following functions,

(a) f(z) = z2, (b) f(z) = z + z2, (c) f(z) =
z + i

z − i
.

–2

–1

0

1

2

–2 –1 1 2

Figure 24: The level curves of (a).

(a) We get by a separation into real and imaginary part,

u(x, y) = x2 − y2 og v(x, y) = 2xy.

The level curves u = k form a family of hyperbolas and the straight lines y = x and y = −x.
The level curves v = k are also a family of hyperbolas with the axes added.
We see that apart from in the singular point (0, 0), every curve from one system of curves is always
orthogonal to any curve from the other system of curves.

(b) We first compute

u + iv = z + z2 = x2 − y2 + x + i(2xy + y).

We get by a separation into real and imaginary part,

u(x, y) = x2 + x − y2 =
(

x +
1
2

)2

− y2 − 1
4
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–2
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0

1
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Figure 25: The level curves of (b).

and

v = 2xy + y = 2y
(

x +
1
2

)
,

thus the curves are the same as in (a), only the centrum has been translated to
(
−1

2
, 0
)

.
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(c) If z = i, then

f(z) =
z + i

z − i
= 1 +

2i
z − i

= 1 +
2i(x + i{1 − y})
x2 + (y − 1)2

= 1 +
2(y − 1) + 2ix
x2 + (y − 1)2

.

Then by separation into the real and the imaginary parts,

u(x, y) = 1 +
2(y − 1)

x2 + (y − 1)2
and v(x, y) =

2x
x2 + (y − 1)2

.

It follows that the curve u(x, y) = 1 is the line y = 1, with the exception of the point (0, 1), in
which the denominator is always 0.

–1

0

1

2

3

–2 –1 1 2

Figure 26: The level curves of (c), i.e. a field around a dipole at the point (0, 1).

We get for the level curve u(x, y) = 1 + k, k = 0, that

k =
2(y − 1)

x2 + (y − 1)2
, (x, y) = (0, 1),

thus

x2 + (y − 1)2 − 2
k

(y − 1) +
1
k2

=
1
k2

, (x, y) = (0, 1),

which we also write

x2 +
(

y − 1 − 1
k

)2

=
1
k2

, (x, y) = (0, 1).

This is the equation of a circle of centrum
(

0,
k + 1

k

)
and radius

1
|k| , with the exception of the

singular point (0, 1).

The case v(x, y) = k is treated analogously.
If v = 0, then x = 0 (i.e. the y-axis), with the exception of the singular point (0, 1).
If v = k = 0, then we get instead,

x2 + (y − 1)2 = 2 · 1
k

x, (x, y) = (0, 1),

Complex Functions
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which is written as the equation of (a part of) a circle,

(
x − 1

k

)2

+ (y − 1)2 =
1
k2

, (x, y) = (0, 1),

of centrum
(

1
k

, 1
)

and radius
1
|k| .

Remark 3.4 The example corresponds to a dipole at z = i. ♦

Complex Functions
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4 Limits

Example 4.1 Check if the following limits exist:

(a) lim
z→0

z

z
, (b) lim

z→−1

z4 − 2z2 + 1
z + 1

.

(a) Put z = x + iy = 0. Then

z

z
=

x − iy

x + iy
.

If in particular we choose z real, z = x, we get

z

z
= 1, hence lim

x→0

x

x
= 1.

If we instead choose z imaginary, z = iy, then

z

z
=

−iy

iy
= −1, hvoraf lim

y→0

iy

iy
= −1.

Since we do not get the same limit value by the two different limits towards the same point, the
limit value does not exist for z → 0, by the definition.

(b) Since

z4 − 2z2 + 1 =
(
z2 − 1

)2
= (z + 1)2(z − 1)2,

it follows for z = −1 that

z2 − 2z2 + 1
z + 1

= (z + 1)(z − 1)2 → 0 · (−1)2 = 0 for z → −1.

Hence the limit value exists ant

lim
z→−1

z4 − 2z2 + 1
z + 1

= 0.

Example 4.2 Check if any of the following functions (defined for z = 0), can be extended continuously
to z = 0:

(a)
Re(z)

z
, (b)

z

|z| , (c)
Re
(
z2
)

|z|2 , (d)
z Re(z)

|z| .

(a) Since e.g.

Re(z)
z

=
x

x + iy
=

⎧⎨
⎩

1 for y = 0 and x = 0,

0 for x = 0 and y = 0,

we cannot extend this function continuously to z = 0.

Limits
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(b) Since e.g.

z

|z| =

⎧⎨
⎩

1 for y = 0 and x > 0,

−1 for y = 0 and x < 0,

we cannot extend this function continuously to z = 0.

(c) Since e.g.

Re
(
z2
)

|z|2 =
x2 − y2

x2 + y2
=

⎧⎨
⎩

1 for y = 0 and x = 0,

−1 for x = 0 and y = 0,

we cannot extend this function continuously to z = 0.

(d) Since∣∣∣∣Re(z)
|z|

∣∣∣∣ = |x|√
x2 + y2

≤ 1 for every z = 0,

we get∣∣∣∣z Re(z)
|z| − 0

∣∣∣∣ =
∣∣∣∣z Re(z)

|z|
∣∣∣∣ ≤ |z| · 1 → 0 for z → 0,

and we conclude that this function can be extended continuously to z = 0 with the value f(0) = 0.

Example 4.3 Check if the following limit values exist. In the case of existence, find the limit value:

(a) lim
n→+∞

n!in

nn
, (b) lim

n→+∞ in, (c) lim
n→+∞n

(
1 + i

n

)2

.

(a) We shall prove that the limit value is 0, thus

|an − 0| < ε for every n ≥ N(ε).

This follows easily from the following trivial estimate

|an − 0| = |an| =
∣∣∣∣n! in

nn

∣∣∣∣ = n!
nn

=
1
n
· 2
n
· 3
n
· · · n − 1

n
· n

n
≤ 1

n
,

for n → +∞. This proves that the limit value exists and that

lim
n→+∞

n!in

nn
= 0.

(b) Since the sequence repeats cyclical the values i, −1, −i and 2, the limit value does not exist.

Limits
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(c) We shall prove that the limit value also in this case is 0, thus we shall prove that

|an − 0| = |an| → 0 for n → +∞.

This follows from

|an| =
∣∣∣∣n
(

1 + i

n

)n∣∣∣∣ = n
(
√

2)n

nn
=

√
2 ·
(√

2
n

)n−1

.

If n ≥ 2, er
√

2 < n, then(√
2

n

)n−1

≤
(√

2
n

)1

=
√

2
n

.

Hence, for n ≥ 2,

|an − 0| =
√

2 ·
(√

2
n

)n−1

≤
√

2 ·
√

2
n

=
2
n
→ 0 for n → +∞.

We conclude that the limit value exists and that

lim
n→+∞n

(
1 + i

n

)n

= 0.

Example 4.4 Check if limn→+∞ zn exists for any of the following sequences (zn), and in case of
existence, find the limit value.

(a) zn =
in

n2 + i
, (b) zn = exp

(
iπn

4

)
, (c) zn =

(
1 + i

4

)n

, (d) zn = exp
(
i
{
n2 + n

}
π
)
.

We first note that zn is defined for every n ∈ N in all four cases.

(a) The sequence zn =
in

n2 + i
converges towards the limit value 0. In fact,

0 ≤ |zn − 0| = |zn| =
n√

n4 + 1
≤ n√

n4
=

n

n2
=

1
n
→ 0 for n → +∞.

(b) Since this sequence repeats cyclically the numbers

1 + i√
2

, i,
−1 + i√

2
, −1,

−1 − i√
2

, −i,
1 − i√

2
, 1,

it is divergent.

(c) The sequence zn =
(

1 + i

4

)n

converges towards the limit value 0. In fact,

0 ≤ |zn − 0| = |zn| =

(√
2

4

)n

→ 0 for n → +∞.

Limits
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(d) Since n2 + n = n(n + 1) in an even number for every n ∈ N, we see that

zn = exp
(
i
{
n2 + n

}
π
)

= exp(2ipπ) = 1 for every n ∈ N,

where 2p = n(n + 1).
The constant sequence is of course convergent with the limit value 1.

Example 4.5 Check if limn→+∞ zn exists for any of the following sequences (zn), and find the limit
value if it exists:

(a)
(

1 +
1
n

)n2

, (b)
(

1 +
i

n

)n2

, (c)

∣∣∣∣∣
(

1 +
i

n

)n2 ∣∣∣∣∣ .

(a) It is well-known that(
1 +

1
n

)n

≥ 1 +
(

n
1

)
1
n

= 2,

so
(

1 +
1
n

)n2

=
{(

1 +
1
n

)n}n

≥ 2n,

Limits
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and we conclude that the sequence is divergent,

(
1 +

1
n

)n2

→ +∞ for n → +∞.

(b) Since

∣∣∣∣1 +
i

n

∣∣∣∣
n2

≥ 1 for every n,

any possible limit value cannot be 0. Since

Arg
(

1 +
i

n

)
= Arctan

1
n

,

we get

arg
(

1 +
i

n

)n2

=
{

n2Arctan
1
n

+ 2pπ | p ∈ Z

}
.

Here,

n2Arctan
1
n

= n2

{
1
n
− 1

3
· 1
n3

+ o

(
1
n3

)}
= n − 1

3n
+ o

(
1
n

)
,

and it is almost obvious that the sequence with the elements n2Arctan
1
n

(mod 2π) does not have

a limit value. Thus, Arg
(

1 +
i

n

)n2

does not converge, and since the limit value cannot be zero

for (zn), we conclude that (zn) is not convergent. (The angle is “turning” all the time).

c) Since

∣∣∣∣∣
(

1 +
i

n

)n2 ∣∣∣∣∣ =
∣∣∣∣1 +

i

n

∣∣∣∣
n2

=

(√
1 +

1
n2

)n2

=
(

1 +
1
n2

) 1
2 n2

=

{(
1 +

1
n2

)n2} 1
2

,

and(
1 +

1
m

)m

→ e for m → +∞,

we conclude that

lim
n→+∞

∣∣∣∣∣
(

1 +
i

n

)n2∣∣∣∣∣ = √
e.

Addition to (b) If we instead consider

zn =
(

1 +
2πi

n

)n2

, n ∈ N,

Limits

Download free eBooks at bookboon.com



Complex Funktions Examples c-2

 

45  

then the sequence becomes convergent. In fact, since n2 ∈ N, we get

|zn| =
∣∣∣∣1 +

2πi

n

∣∣∣∣
n2

=

(√
1 +

4π2

n2

)n2

=
(

1 +
4π2

n2

) 1
2 n2

=

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎝1 +

1
n2

4π2

⎞
⎟⎠

n2

4π2
⎫⎪⎪⎬
⎪⎪⎭

2π2

→ exp
(
2π2
)

for n → +∞,

and if we put zn = |zn| exp (iθn), then

θn = n2Arg
(

1 +
2πi

n

)
= n2Arctan

(
2π
n

)

= n2

{
2π
n

− 1
3
· 8π4

n3
+ o

(
1
n3

)}
= 2πn − 8π2

3
· 1
n

+ o

(
1
n

)
,

hence

exp (iθn) = cos θn + i sin θn = cos
(
2πn− 8π2

3
· 1
n

+o

(
1
n

))
+i sin

(
πn− 8π2

3
· 1
n

+o

(
1
n

))
→ 1 for n → +∞.

Then by some rules of calculation for sequences,

|zn| exp (iθn) → exp
(
2π2
)

for n → +∞,

thus

lim
n→+∞

(
1 +

2πi

n

)n2

= exp
(
2π2
)
.
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5 Line integrals

Example 5.1 Let C be a simple, closed curve surrounding a domain Ω in the (x, y)-plane of the area
S. Prove that

(a)
∮

C

x dz = i S, (b)
∮

C

y dz = −S, (c)
∮

C

z dz = 2i S.

0

1

2

3

1 2 3

Figure 27: Example of a curve C, which surrounds a (bounded) domain Ω.

First it follows by a consideration of the figure that∮
C

x dy = −
∮

C

y dx = S.

It follows from∮
C

x dx =
∮

C

y dy = 0,

that

(a) ∮
C

x dz =
∮

C

x dx + i

∮
C

x dy = i S,

(b) ∮
C

y dz =
∮

C

y dx + i

∮
C

y dy = −S,

(c)

∮
C

z dz =
∮

C

(x − iy) (dx + i dy) =
∮

C

x dx − i

∮
C

y dx + i

∮
C

x dy +
∮

C

y dy

= 0 + i S + i S + 0 = 2i S.

Line integrals
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Example 5.2 Let C denote the circle |z| = 1. Find

(a)
∮

C

dz

z
, (b)

∮
C

dz

|z| , (c)
∮

C

dz

z2
, (d)

∮
C

dz

|z2| .

–1.5

–1

–0.5

0.5

1

1.5

–1.5 –1 –0.5 0.5 1 1.5

Figure 28: The circle C with direction of circulation.

We shall everywhere use the parametric description

z = eit, t ∈ [0, 2π],

Line integrals
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of the curve C. Then

dz = i eit dt,

and we get:

(a) ∮
C

dz

z
=
∫ 2π

0

i eit

eit
dt = i

∫ 2π

0

dt = 2πi,

(b) ∮
C

dz

|z| =
∫ 2π

0

i eit

|eit| dt =
∫ 2π

0

i eit dt =
[
eit
]2π

0
= 1 − 1 = 0,

(c) ∮
C

dz

z2
=
∫ 2π

0

i eit

e2it
dt =

∫ 2π

0

i e−it dt =
[−e−it

]2π

0
= −1 − (−1) = 0,

(d) ∮
C

dz

|z2| =
∫ 2π

0

i eit

|e2it| dt =
∫ 2π

0

i eit dt =
[
eit
]2π

0
= 1 − 1 = 0.

Example 5.3 Find the value of the complex line integral
∫

C
|z| dz, when the curve C is

(a) the line segment from −i to i,

(b) the left half of the unit circle run through from −i to i,

(c) the right half of the unit circle run through from −i to i.

(a) The parametric description is here

z = i y, y ∈ [−1, 1],

so by insertion,∫
C

|z| dz =
∫ 1

−1

|y| · i dy = 2i
∫ 1

0

y dy = 2i
[
y2

2

]1
0

= i.

(b) The left half of the unit circle from −i to i has e.g. the parametric description

z = e−θ, θ ∈
[
π

2
,

3π
2

]
,

hence∫
C

|z| dz =
∫ 3π

2

π
2

∣∣e−iθ
∣∣ (−i)e−iθ dθ =

[
e−θ
] 3π

2
π
2

= i − (−i) = 2i.

Line integrals
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–1.5

–1

–0.5

0.5

1

1.5

–1.5 –1 –0.5 0.5 1 1.5

Figure 29: The three curves C from −i to i with their directions.

(c) The right half of the unit circle from −i to i has e.g. the parametric description

z = eiθ, θ ∈
[
−π

2
,

π

2

]
,

hence by insertion,∫
C

|z| dz =
∫ π

2

−π
2

i eiθ dθ =
[
eiθ
]π

2

−π
2

= i − (−i) = 2i.

Remark 5.1 Clearly, the value of the line integral depends in this case of the path of integration. ♦

Example 5.4 Compute
∫

C

1
z

dz, where C denotes the curve with the parametric description

z(t) = 2 cos t + 2i sin t, t ∈
[
0,

π

2

]
.

By insertion of the parametric description

z(t) = 2 cos t + i 2 sin t = 2 eit, t ∈
[
0,

π

2

]
,

we get∫
C

1
z

dz =
∫ π

2

0

1
2 eit

· 2i eit dt = i

∫ π
2

0

dt =
iπ

2
.

Example 5.5 Compute the line integral
∫

C

(
x2 + i y3

)
dz, where C is the straight line segment from

z = 1 to z = i.

A parametric description of C is given by

x(t) = 1 − t, y(t) = t, t ∈ [0, 1].

Line integrals
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–0.5

0

0.5

1

1.5

2

2.5

–0.5 0.5 1 1.5 2 2.5

Figure 30: the path of integration C.

–0.5

0

0.5

1

1.5

–0.5 0.5 1 1.5

Figure 31: The path of integration C with its direction.

Hence, by insertion∫
C

(
x2 + i y3

)
dz =

∫ 1

0

{
x(t)2 + i y(t =3

} · {x′(t) + i y′(t)} dt

=
∫ 1

0

{
(1 − t)2 + it3

} · (−1 + i) dt

=
∫ 1

0

{−(1 − t)2 − t3
}

dt + i

∫ 1

0

{
(1 − t)2 − t3

}
dt

=
[
− (t − 1)3

3
− t4

4

]1
0

+ i

[
(t − 1)3

3
− t4

4

]1
0

=
(
−1

4
− 1

3

)
+ i

(
−1

4
+

1
3

)
= − 7

12
+

1
12

i.

Line integrals
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Alternatively one may apply the following variant:∫
C

(
x2 + i y3

)
dz =

∫ 1

0

{
(1 − t)2 + i t3

} · (−1 + i) dt

= (−1 + i)
∫ 1

0

{
(t − 1)2 + i t3

}
dt

= (−1 + i)
[
(t − 1)3

3
+ i

t4

4

]1
0

= (−1 + i)
(

1
3

+
1
4

i

)

= −1
3
− 1

4
+ i

(
−1

4
+

1
3

)
= − 7

12
+

1
12

i.

Remark 5.2 This is not a so-called exact differential form, so the value of the line integral depends
of the path of integration. ♦

Line integrals

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your 
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk


Complex Funktions Examples c-2

 

52  

Example 5.6 Compute the line integral
∫

C

{(
x2 − y2

)
dy − 2xy dy

}
, where C denotes the straight

line segment from 1 + i to 3 + 2i.

–0.5

0

0.5

1

1.5

2

2.5

1 2 3

Figure 32: The line segment C from 1 + i to 3 + 2i.

Here we have at least three different variants:

1) The “standard” method. The curve C has the parametric description

z(t) = 1 + i + (2 + i)t, t ∈ [0, 1],

hence by separation into real and imaginary parts,

x(t) = 1 + 2t and y(t) = 1 + t for t ∈ [0, 1].

Hence by insertion,

∫
C

{(
x2 − y2

)
dx − 2xy dy

}
=
∫ 1

0

{(
(1 + 2t)2 − (1 + t)2

) · 2 dt − 2(1 + 2t)(1 + t)dt
}

=
∫ 1

0

{
2(2 + 3t)t − 2

(
1 + 3t + 2t2

)}
dt = 2

∫ 1

0

{
2t + 3t2 − 1 − 3t − 2t2

}
dt

= 2
∫ 1

0

(
t2 − t − 1

)
dt = 2

(
1
3
− 1

2
− 1
)

=
2
3
− 3 =

7
3
.

2) Exact differential form. The differential form under the integral is a (real) exact differential form,
which can be seen by

∂

∂y

(
x2 − y2

)
= −2y =

∂

∂x
(−2xy),
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and the form is defined in the simply connected domain R
2. Hence, the value can be found by

some clever manipulation of the integrand,∫
C

{(
x2 − y2

)
dx − 2xy dy

}

=
∫

C

{
x2dx − (y2dx + x d

(
y2
))}

=
∫

C

d

{
1
3

x3 − xy2

}
=
[
1
3

x3 − xy2

](3,2)

(x,y)=(1,1)

=
(

1
3
· 33 − 3 · 22

)
−
(

1
3
− 1
)

= 9 − 12 − 1
3

+ 1 = −2 − 1
3

= −7
3
.

3) Complex Functions. An even easier variant is to notice the connection with the Theory of Complex
Functions, because

∫
C

{(
x2 − y2

)
dx − 2xy dy

}
= Re

∫ 3+2i

1+i

z2dz = Re
{

1
3

(3 + 2i)3 − 1
3

(1 + i)3
}

=
1
3

Re{27 + 54i − 36 − 8i − (1 + 3i − 3 − i)} =
1
3

(27 − 36 − 1 + 3) = −7
3
.

Example 5.7 Sketch the curve C of the parametric description z = 1 + it, t ∈ [0, 1], and indicate its
direction.
Then compute

(a)
∫

C

4z3dz, (b)
∫

C

z dx, (c)
∫

C

1
z

dz.

–0.5

0

0.5

1

1.5

–0.5 0.5 1 1.5

Figure 33: The curve C with its direction.

(a) We get by the Theory of Complex Functions that∫
C

4z3dz =
[
z4
]1+i

1
= (1 + i)4 − 14 = −4 − 1 = −5.
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Alternatively it follows by a computation of the corresponding line integral,

∫
C

4z3dz =
∫ 1

0

4(1 + it)3i dt = 4i
∫ 1

0

(
1 + 3it − 3t2 − i t3

)
dt = 4i

[
t +

3i
2

t2 − t3 − i

4
t4
]1
0

= 4i
{

1 +
3
2

i − 1 − 1
4

i

}
= i(6i − i) = −5.

(b) Here we cannot apply the Theory of Complex Functions. Instead we insert the parametric
description of C to get

∫
C

z dz =
∫ 1

0

(1 − i t)i dt =
∫ 1

0

(i + t) dt =
[
it +

t2

2

]1
0

=
1
2

+ i.

(c) Using the Theory of Complex Functions we get∫
C

1
z

dz = [Log z]1+i
1 = Log(1 + i) − Log 1 = Log(1 + i) =

1
2

ln 2 + i
π

4
.

Alternatively we get by the parametric description that

∫
C

1
z

dz =
∫ 1

0

i

1 + it
dt =

∫ 1

0

i(1 − it)
1 + t2

dt = i

∫ 1

0

1
1 + t2

dt +
∫ 1

0

t

1 + t2
dt

= i [Arctan t]10 +
1
2
[
ln
(
1 + t2

)]1
0

=
1
2

ln 2 + i
π

4
.
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Example 5.8 Sketch the curve C of the parametric description z = e−iπt, t ∈ [0, 1], and indicate its
orientation. Then compute

(a)
∫

C

4z3dz, (b)
∫

C

z dz, (c)
∫

C

1
c

dz.

–1.2

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

–1 –0.5 0.5 1

Figure 34: The curve C with its orientation.

(a) By using the Theory of Complex Functions we get∫
C

4z3 dz =
[
z4
]−1

1
= (−1)4 − 14 = 0.

Alternatively we apply the parametric description∫
C

4z3dz =
∫ 1

0

4 e−3iπt · (−iπ)e−iπt dt =
∫ 1

0

(−4iπ)e−4iπt dt =
[
e−4iπt

]1
0

= 1 − 1 = 0.

(b) By insertion of the parametric description we get

∫
C

z dz =
∫ 1

0

e+iπt · (−iπ)e−πt dt = −iπ.

(c) By insertion of the parametric description we get

∫
C

1
z

dz =
∫ 1

0

1
e−iπt

(−iπ)e−iπt dt = −iπ.
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Example 5.9 Sketch the curve C of the parametric description z = 3 e2πit, t ∈ [0, 1], and indicate its
orientation. Then compute

(a)
∫

C

4z3dz, (b)
∫

C

z dz, (c)
∫

C

1
z

dz.

–3

–2

–1

0

1

2

3

–3 –2 –1 1 2 3

Figure 35: The curve C and its orientation.

(a) By using the Theory of Complex Functions we get∫
C

4z3dz =
[
z4
]3
3

= 0.

Alternatively it follows by using the parametric description,∫
C

4z3dz =
∫ 1

0

4 · 33 · e6iπt · 3 · 2iπ · e2iπt dt = 34

∫ 1

0

8iπ · e8iπt dt =
[
81 · e8iπt

]1
0

= 0.

(b) We get by insertion of the parametric description that

∫
C

z dz =
∫ 1

0

3 e−2iπt · 3 · 2iπ · e2iπt dt = 18πi.

(c) We get by insertion of the parametric description that

∫
C

1
z

dz =
∫ 1

0

1
3 e2iπt

· 3 · 2iπ e2iπt dt = 2iπ.

Line integrals
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Example 5.10 Sketch the curve C of the parametric description z = e4iπt, t ∈ [0, 1], and indicate its
orientation. Then compute

(a)
∫

C

4z3 dz, (b)
∫

C

z dz, (c)
∫

C

1
z

dz.

–1.5

–1

–0.5

0.5

1

1.5

–1.5 –1 –0.5 0.5 1 1.5

Figure 36: The curve C with its (double) orientation.

The curve C is the unit circle circulated twice in the positive direction.

(a) By using the Theory of Complex Functions we get∫
C

4z3dz =
[
z4
]1
1

= 0.

Alternatively it follows by insertion of the parametric description,∫
C

4z3dz =
∫ 1

0

4 e12πit · 4πi e4πitdt =
∫ 1

0

16πi e16πitdt =
[
e16πit

]1
0

= 0.

(b) By insertion of the parametric description we get

∫
C

z dz =
∫ 1

0

e−4πit · 4πi e4πitdt = 4πi.

(c) We get by insertion of the parametric description

∫
C

1
z

dz =
∫ 1

0

1
e4πi

· 4πi e4πitdt = 4πi.

Alternatively we notice that
1
z

= z for |z| = 1, because then z · z = 1. The result must be the

same as in (c).

Line integrals
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–0.5

0

0.5

1

1.5

–0.5 0.5 1 1.5 2 2.5

Figure 37: The curve C and its orientation.

Example 5.11 Sketch the curve C of parametric description z = 1 + it + t2, t ∈ [0, 1], and indicate
its orientation. Then compute

(a)
∫

C

4z3 dz, (b)
∫

C

z dz, (c)
∫

C

1
z

dz.

The curve is part of a parabolic arc of vertex 1.

(a) We get by the Theory of Complex Functions that∫
C

4z3dz =
[
z4
]2+i

1
= (2 + i)4 − 1 = (3 + 4i)2 − 1 = −7 + 24i − 1 = −8 + 24i.

Alternatively (and not so smart) we insert the parametric description of the curve. Then we
have the following computation,∫

C

4z3dz =
∫ 1

0

4
(
1+t2 + it

)3
(i + 2t)dt

=
∫ 1

0

4
{(

1+t2
)3

+3it
(
1+t2

)2−3t2
(
1+t2

)−it3
}

(2t + i)dt

= 4
∫ 1

0

{(
t6+3t4+3t2+1−3t4−3t2

)
+i
(
3t5+6t3+3t−t3

)}
(2t+i)dt

= 4
∫ 1

0

{(
2t7+2t−3t5−5t3−3t

)
+i
(
t6+1+6t6+10t4+6t2

)}
dt

= 4
[(

1
4

t8 − 1
2

t6 − 5
4

t4 − 1
2

t2
)

+ i
(
t7+2t5+2t3+t

)]1
0

= 1 − 2 − 5 − 2 + 4i(1 + 2 + 2 + 1) = −8 + 24i.

(b) When we insert the parametric description we get∫
C

z dz =
∫ 1

0

(
1 + t2 − it

)
(2t + i) dt =

∫ 1

0

{(
2t3 + 2t + t

)
+ i
(
t2 + 1 − 2t2

)}
dt

=
[
1
2

t4 +
3
2

t2 + i

(
−1

3
t3 + t

)]1
0

= 2 +
2
3

i.
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(c) Since Log z is an integral of
1
z

in the right half plane, we get

∫
C

1
z

dz = [Log z]2+i
1 = Log(2 + i) =

1
2

ln 5 + iArctan
1
2
.

Alternatively (and less elegant) we insert the parametric description of the curve. Then

∫
C

1
z

dz =
∫ 1

0

2t + i

t2 + 1 + it
dt =

∫ 1

0

t2 + 1 − it

(t2 + 1)2 + t2
· (2t + i) dt =

∫ 1

0

2t3 + 3t + i
(−t2 + 1

)
t4 + 3t2 + 1

dt

=
1
2

∫ 1

0

4t3 + 6t
t4 + 3t2 + 1

dt + i

∫ 1

0

−t2 + 1(
t2 +

3 +
√

5
2

)(
t2 +

3 −√
5

2

) dt

=
1
2
[
ln
(
t4+3t2+1

)]1
0
− i

∫ 1

0

⎧⎪⎪⎨
⎪⎪⎩

1 +
√

5
2

t2 +
3 +

√
5

2

+

1 −√
5

2

t2 +
3 −√

5
2

⎫⎪⎪⎬
⎪⎪⎭ dt

=
1
2

ln 5 − i

{
1 +

√
5

2
·
√

2
3 +

√
5

Arctan

√
2

3 +
√

5
+

1 −√
5

2
Arctan

√
2

3 −√
5

}
.
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We stop the computations at this point because they should only serve as an illustration of the
fact that in the Theory of Complex Functions it is worth always to look for alternatives which
might be easier to apply. It is of course possible to reduce the computations above to the result

1
2

ln 5 + iArctan
1
2
,

by starting the reduction by√
2

3 +
√

5
=

√
4

6 + 2
√

5
=

√(
2√

5 + 1

)2

=
2√

5 + 1
,

and analogously.

Example 5.12 Compute
∫

C
(z + 1)dz, where C is that part of the parabola of the equation y = x2,

which starts at z = 0 and ends at z = 1 + i.

–0.2

0.2

0.4

0.6

0.8

1

1.2

–0.2 0.2 0.4 0.6 0.8 1 1.2

Figure 38: The curve C and its orientation.

If we use the parametric description

x = t, y = t2, t ∈ [0, 1],

it follows by insertion and computation that∫
C

(z + 1) dz =
∫ 1

0

(
t + it2 + 1

)
(1 + 2it) dt =

∫ 1

0

{(
1 + t − 2t3

)
+ i
(
t2 + 2t + 2t2

)}
dt

=
[
t +

t2

2
− t4

2
+ i
(
t3 + t2

)]1
0

= 1 +
1
2
− 1

2
+ i(1 + 1) = 1 + 2i.

Alternatively and a lot smarter we immediately see that
z2

2
+ z is an integral. (Check this, i.e.

differentiate!) Then∫
C

(z + 1) dz =
[
z2

2
+ z

]1+i

0

=
2i
2

+ 1 + i = 1 + 2i.
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Example 5.13 Find the value of the complex line integral∫
C

z exp
(
z2
)

dz,

when C is

(a) the straight line segment from z = i to z = −i + 2,

(b) the arc from z = 0 to z = 1 + i of the parabola of the equation y = x2.

–1.5

–1

–0.5

0.5

1

1.5

–0.5 0.5 1 1.5 2 2.5

Figure 39: The curve of (a) and its orientation.

–0.2

0.2

0.4

0.6

0.8

1

1.2

–0.2 0.2 0.4 0.6 0.8 1 1.2

Figure 40: The curve of (b) and its orientation.

A simple check shows that
1
2

exp
(
z2
)

is an integral of z exp
(
z2
)
. Hence

(a) ∫
C

z exp
(
z2
)

dz =
[
1
2

exp
(
z2
)]−i+2

i

=
1
2
{
exp
(
(−i + 2)2

)− exp(−1)
}

=
1
2

{
e3 cos 4 − 1

e
− i e3 sin 4

}
.
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(b) Analogously,

∫
C

z exp
(
z2
)

dz =
[
1
2

exp
(
z2
)]1+i

0

=
1
2
{
e2i − 1

}
=

1
2
{cos 2 − 1 + i sin 2}.

Example 5.14 Let C be the curve of the parametric description

x(t) = cos t, y(t) = sin t, t ∈ [0, π].

Prove that∣∣∣∣
∫

C

ez

z
dz

∣∣∣∣ ≤ π e.

–0.2

0.2

0.4

0.6

0.8

1

1.2

–1 –0.5 0.5 1

Figure 41: The curve C and its orientation.

The curve C is just a half circle in the upper half plan of radius 1 and centrum 0. It is well-known
that its length is L = π.

If z ∈ C, then |z| =
√

x2 + y2 = 1. In particular, x ≤ 1 on C, so we obtain the estimate∣∣∣∣ez

z

∣∣∣∣ = 1
|z| ·

∣∣ex · eiy
∣∣ = 1

1
· ex
∣∣eiy
∣∣ = ex ≤ e = M.

Then we have the estimate∣∣∣∣
∫

C

f(z) dz

∣∣∣∣ =
∣∣∣∣
∫

C

ez

z
dz

∣∣∣∣ ≤ M · L = π e.

Remark 5.3 It can be proved that the exact value can be written

∫
C

ez

z
dz = −

+∞∑
n=0

2
(2n + 1) · (2n + 1)!

+ iπ.

However, this cannot be proved at the mathematical level of this book. ♦
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Example 5.15 It is possible the compute the integrals

I1 =
∫ +∞

1

cos x

x +
1
x

dx og I2 =
∫ +∞

1

sinx

x +
1
x

dx

numerically, though this is not an easy task, because the integrands decrease very slowly with increasing
x. Apply the Theory of Complex Function, such that I1 and I2 are rewritten as integrals with fast
decreasing integrands, such that it is easy to perform a numerical computation.

–0.5

0

0.5

1

1.5

–0.5 0.5 1 1.5 2 2.5

Figure 42: The path of integration C from 1 to A + iB.

Consider the complex line integral

I(A,B) =
∫

C

eiz

z +
1
z

dz,

where C denotes the straight line segment from z = 1 to z = A + iB, where A ≥ 1 and B ≥ 0.
In particular, we define

I(∞, 0) = lim
A→+∞

I(A, 0) and I(1,∞) = lim
B→+∞

I(1, B).

(a) Prove that

I(∞, 0) = I1 + i I2.

(b) Explain why

I(∞, 0) = I(1,∞).

Hint: Apply that Jordan’s lemma for a half circle C+
R in the upper half plane also holds for a part

of a half plane in the upper half plane.

(c) Use a real variable of integration t, where z = ζ(t) = 1 + i t, in order to prove that one can write
I(1,∞) in the form

I(1,∞) = ei

∫ +∞

0

e−t {F1(t) + i F2(t)} dt,

and find the real functions F1(t) and F2(t).
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(a) If B = 0, then

I(A, 0) =
∫

C

eiz

z +
1
z

dz =
∫ A

1

eix

x +
1
x

dx =
∫ A

0

cos x

x +
1
x

dx + i

∫ A

1

sin x

x +
1
x

dx.

It follows that the limit A → +∞ gives (conditionally) convergent integrals and that

I(∞, 0) =
∫ +∞

0

cos x

x +
1
x

dx + i

∫ +∞

0

sin x

x +
1
x

dx = I1 + i I2.

Line integrals
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–0.5

0

0.5

1

1.5

–0.5 0.5 1 1.5 2 2.5

Figure 43: The curve C1 is composed of the quarter circle of radius A and centrum (1, 0) and the
corresponding line segments to centrum.

(b) Let C1 be the closed curve on the figure. Since the integrand is analytic inside and on C1, we
have∮

C1

eiz

z +
1
z

dz = 0.

Along the quarter circle we use the parametric description

Γ : ζ(t) = 1 + A · eit, t ∈
[
0 ,

π

2

]
,

hence we get the estimate∣∣∣∣∣∣∣
∫

Γ

eiz

z +
1
z

dz

∣∣∣∣∣∣∣ ≤
∫ π

2

0

∣∣exp
(
i
(
1 + Aeit

))∣∣
A − 1

A

· Adt ≤ A2

A2 − 1

∫ π
2

0

exp(−A sin t) dt

≤ A2

A2 − 1

∫ π
2

0

exp
(
− 2

π
A · t

)
dt ≤ A2

A2 − 1
· π

2
· 1
A

{
1 − e−A

}→ 0 for A → +∞,

where we have used that

2
π

≤ sin t ≤ t for t ∈
[
0 ,

π

2

]
,

which follows easily by considering the graph of sin t in the given interval. This proves that

− sin t ≤ − 2
π

t for t ∈
[
0 ,

π

2

]
,

which was used in the estimates above.

Since

0 =
∮

C1

eiz

z +
1
z

dz = I(A + 1, 0) +
∫

Γ

eiz

z +
1
z

dz − I(1, A),
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it follows by a rearrangement that

I(A + 1, 0) = I(1, A) −
∫

Γ

eiz

z +
1
z

dz,

and hence by taking the limit,

I(∞, 0) = I(1,∞).

(c) Finally, we apply the parametric description

z = ζ(t) = 1 + i t, t ∈ [0,+∞[,

in our computation of I(1,∞), thus

I(1,∞) =
∫ ∞

0

exp(i(1 + it))

1 + it +
1

1 + it

i dt =
∫ ∞

0

(1 + it) exp(−t + i)
(1 + it)2 + 1

i dt

= i · ei

∫ ∞

0

(1 + it) · e−t

2 − t2 + 2it
dt,

where

F̃1(t) + i F̃2(t) = i · ei · 1 + it

2 − t2 + 2it
· 2 − t2 − 2it
2 − t2 − 2it

= (− sin 1 + i · cos 1)
2 − t2 + 2t2 + i

{
2t − t3 − 2t

}
(2 − t2)2 + 4t2

= (− sin 1 + i cos 1) · t2 + 2 − i t3

4 + t4

=
1

4+t4
{−(t2+2

)
sin 1+t3 cos 1+i

((
t2+2

)
cos 1+t3 sin 1

)}
.

By separation into real and imaginary part we therefore obtain

F̃1(t) =
t3 cos 1 − (t2 + 2

)
sin 1

t4 + 4
og F̃2(t) =

t3 sin 1 +
(
t2 + 1

)
cos 1

t4 + 4
,

hence

I1 =
∫ +∞

1

cos x

x +
1
x

dx =
∫ +∞

0

t3 cos 1 − (t2 + 2
)
sin 1

t4 + 4
e−t dt,

and

I2 =
∫ +∞

1

sinx

x +
1
x

dx =
∫ +∞

0

t3 sin 1 +
(
t2 + 2

)
cos 1

t4 + 4
e−t dt.

Line integrals
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Now we shall find and use

F1(t) + i F2(t) = i
1 + i t

2 − t2 + 2it
· 2 − t2 − 2it
2 − t2 − 2it

=
i

t4 + 4
{
2 − t2 + 2t2 +

(
2t − t3 − 2t

)
i
}

= i · t2 + 2 − it3

t4 + 4
=

t3

t4 + 4
+ i

t2 + 2
t4 + 4

,

so we finally get

F1(t) =
t3

t4 + 4
and F2(t) =

t2 + 2
t4 + 4

.

Line integrals
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6 Differentiable and analytic functions; Cauchy-Riemann’s equa-
tions

Example 6.1 Given the function

f(x + iy) =
(
x2 + 2y

)
+ i
(
x2 + y2

)
.

Find the points z0 in which f ′ (z0) exists.

Clearly, f ∈ C∞ (
R

2
)
. Then by partial differentiation,

∂u

∂x
= 2x,

∂v

∂y
= 2y, thus

∂u

∂x
=

∂v

∂y
for x = y,

and

∂u

∂y
= 2,

∂v

∂x
= 2x, thus

∂u

∂y
= −∂v

∂x
for x = −1.

It follows that Cauchy-Riemann’s equations are only fulfilled for x = y = −1, hence the complex
derivative f ′ (z0) does only exist at the point z0 = −1 − i, where

f ′(−1 − i) = −2 − 2i.

Example 6.2 Prove that the function

2x2+3y2+4xy+5x+2y+3 + i
(
6x2+2y2+3xy+2x+7y+1

)
is not analytic in any domain of the complex plane.

The function is clearly of class C∞ (
R

2
)
. We shall therefore only check Cauchy-Riemann’s equations.

We get

∂u

∂x
= 4x + 4y + 5,

∂v

∂y
= 4y + 3x + 7,

∂u

∂y
= 6y + 4x + 2,

∂v

∂x
= 12x + 3y + 2.

The it follows from Cauchy-Riemann’s equations that

∂u

∂x
=

∂v

∂y
, thus 4x + 4y + 5 = 3x + 4y + 7,

hence x = 2, and

∂u

∂y
= −∂v

∂x
, thus 4x + 6y + 2 = −12x − 3y − 2.

We conclude from the latter equation that

16x + 9y + 4 = 0.
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If we here put x = 2, we get y = −4, hence Cauchy-Riemann’s equations are only fulfilled at the point
z = 2 − 4i.

Now, a point does not contain an open domain, so we conclude that the function is not analytic.

Example 6.3 Prove that none of the following functions is analytic at any point:

(a) f(z) = xy + iy, (b) f(z) = ey(cos x + i sinx).

All the given functions are of class C∞ (
R

2
)
, so we shall only prove that Cauchy-Riemann’s equations

are not fulfilled in any open domain.

(a) It follows from

u(x, y) = xy and v(x, y) = y,

that

∂u

∂x
= y,

∂u

∂y
= x og

∂v

∂x
= 0,

∂v

∂y
= 1,

and we conclude that Cauchy-Riemann’s equations are only satisfied at the point (0, 1), and a
point cannot contain any domain.

(b) Since

u(x, y) = ey cos x and v(x, y) = ey sinx,

it follows by differentiation that

∂u

∂x
= −ey sinx,

∂u

∂y
= ey cos x,

∂v

∂x
= ey cos x,

∂v

∂y
= ey sinx.

We see that Cauchy-Riemann’s equations are only fulfilled when both sinx = 0 and cos x = 0 at
the same time, and this is not possible, because

cos2 x + sin2 x = 1.

Example 6.4 Given ϕ(x, y) = x3y. Is it possible to find a function ψ(x, y), such that

f(z) = ϕ(x, y) + i ψ(x, y)

becomes analytic?

According to Cauchy-Riemann’s equations ψ must satisfy

∂ψ

∂x
= −∂ϕ

∂y
= −x3,

∂ψ

∂y
=

∂ϕ

∂x
= 3x2y.
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It follows from the former equation that

ψ(x, y) = −1
4

x4 + C1(y),

and then from the latter equation,

ψ(x, y) =
3
2

x2y2 + C2(x).

It follows that these two expressions can never be identical, no matter how C1(y) and C2(x) are chosen.
In fact, the variables occur in different terms in the former expression of ψ, while such a separation
of the variables is impossible in the second expression.

Hence one cannot find such a function ψ.

Alternatively (and better) we see that ϕ(x, y) = x3y is not harmonic:

�ϕ = 6xy + 0 = 6xy = 0 for xy = 0,

and since �ϕ = 0 is a necessary condition for ϕ being the real part of some analytic function, there
does not exist such a ψ.

Example 6.5 Prove that Cauchy-Riemann’s equations are fulfilled for the function f(z) =
√|xy|,

z = x + iy, at the point z = 0, and that the derivative nevertheless does not exist.

Since f(z) is real, we have

u(x, y) =
√
|xy| and v(x, y) = 0.

Since u(x, 0) = 0, we have

∂u

∂x
(0, 0) = 0 =

∂v

∂y
(0, 0),

and since u(0, y) = 0, we also have

∂u

∂y
(0, 0) = −∂v

∂x
(0, 0) = 0,

and we have proved that Cauchy-Riemann’s equations hold at the point z ∼ (0, 0).

Let us approach (0, 0) along the curve of the parametric description

x(t) = t, y(t) = t, t ∈ R+.

Then

ϕ(t) = f(x(t), y(t)) =
√

t2 = t, t ∈ R+,

so ϕ′(t) = 1 = 0, and the derivative does not exist.
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Example 6.6 Prove that the function

f(z) =

⎧⎨
⎩

exp
(−z−4

)
for z ∈ C \ {0},

0 for z = 0,

satisfies Cauchy-Riemann’s equations in all of C, and yet it is not differentiable at 0.

Since f(z) for z = 0 is the composition of analytic functions, it follows that f analytic for z = 0. In
particular, f(z) fulfils Cauchy-Riemann’s equations for z = 0.

On the other hand, the function is not continuous at z = 0, thus it cannot be analytic at z = 0 either.
In fact, if we choose the curve of the parametric description

z(t) = t ·
(

1 + i√
2

)
, t > 0,

Differentiable and analytic functions; Cauchy-Riemann’s equations
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then

f(z(t)) = exp

⎛
⎜⎜⎜⎝− 1

t4
(

1 + i√
2

)4

⎞
⎟⎟⎟⎠ = exp

(
1
t4

)
→ +∞ for t → 0 + .

Now, f(z) = u(x, y) + i v(x, y), so

f(x + i · 0) = u(x, 0) + i v(x, 0) = exp
(
− 1

x4

)
+ i · 0,

thus

u(x, 0) =

⎧⎪⎪⎨
⎪⎪⎩

exp
(
− 1

x4

)
for x = 0,

0 for x = 0,

and v(x, 0) = 0.

Analogously,

f(0 + iy) = u(0, y) + i · v(0, y) = exp
(
− 1

y4

)
+ i · 0,

thus

u(0, y) =

⎧⎪⎪⎨
⎪⎪⎩

exp
(
− 1

y4

)
for y = 0,

0 for y = 0,

and v(0, y) = 0.

Clearly,

∂v

∂x
=

∂v

∂y
= 0 for z = 0.

Furthermore,

∂u

∂x
(0, 0) = lim

x→0

u(x, 0) − u(0, 0)
x − 0

= lim
x→0

exp
(
− 1

x4

)
x

= lim
xto0

1
x

exp
(

1
x4

) = lim
|t|→+∞

t

exp (t4)
= 0,

and analogously,

∂u

∂y
(0, 0) = 0.

It follows by inspection that Cauchy-Riemann’s equations are also fulfilled at (0, 0), thus they hold
all over C.

The lesson is that Cauchy-Riemann’s equations alone without any assumption of continuity are not
sufficient for analyticity.
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Example 6.7 Prove by means of Cauchy-Riemanns equations that the function

f(z) = (−ex sin y + 3) + i (ex cos y + 5)

is analytic everywhere in C.

The functions

u(x, y) = −ex sin y + 3 and v(x, y) = ex cos y + 5

are both of class C∞ (
R

2
)
, so it suffices to prove that Cauchy-Riemann’s equations are fulfilled every-

where in C. We get by differentiation

∂u

∂x
= −ex sin y,

∂v

∂y
= −ex sin y, dvs.

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −ex cos y,

∂v

∂x
= ex cos x, dvs.

∂u

∂y
= −∂v

∂x
.

Since Cauchy-Riemann’s equations hold everywhere in C, we conclude that f(z) is analytic in all of
C.

Remark 6.1 Note that it is easy to find f(z) by the following manipulations,

f(z) = {−ex sin y + 3} + i {ex cos y + 5} = i2ex sin y + i ex cos y + (3 + 5i)
= i {ex cos y + i ex sin y} + (3 + 5i) = i ez + (3 + 5i). ♦

Example 6.8 Check the different concepts of logarithm in the Theory of Complex Functions.

In the Theory of Complex Functions one use in particular the following three different forms of the
logarithm:

1) The real natural logarithm ln : R+ → R.

2) The principal branch of the logarithm Log : C \ (R− ∪ {0}), where Ω = C \ (R− ∪ {0}) is an open
sliced domain of the complex plane along the negative real axis, such that always Arg z ∈ ]− π, π[
for z ∈ Ω. In this case,

Log z := ln |z| + iArg z = ln r + iθ, where z = r eiθ ∈ Ω, and θ ∈ ] − π, π[.

By using Cauchy-Riemann’s equations in polar coordinates it is easy to prove that Log z is analytic
in Ω with the derivative

f ′(z) = e−iθ

{
∂u

∂r
+ i

∂v

∂r
=

1
r

e−iθ

}
=

1
r eiθ

=
1
z
,

and it follows that Log z defined on Ω is an extension of lnx defined on R+.

We also note that

exp ◦ Log (z) = exp(ln r + iθ) = eln r eiθ = r eiθ = z,

hence in Ω the functions exp and Log are inverse to each other.
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3) Finally, we also have the multiple-valued function log z, defined on C \ {0} by

log z =

⎧⎨
⎩

Log z + 2ipπ, p ∈ Z, for z ∈ Ω,

ln |z| + i{2p + 1}π, p ∈ Z, for z ∈ R−.

This function is not uniquely determined, so we shall not call it an analytic function, even though it
has many properties in common with the analytic functions. Notice that none of these logarithms
is defined for z = 0.

Example 6.9 Check the following functions, if they fulfil the Cauchy-Riemann equations in their
domains:

(a)

f(z) = x2 − y2 − 2ixy.

(b)

x3 − 3y2x + 2x + i
(
3x2y − y3 + 2y

)
.

(c)

f(z) =
1
2

ln
(
x2 − y2

)
+ iArctan

y

x
.

(d)

f(z) =
1
2

ln
(
x2 + y2

)
+ iArccot

x

y
.

(a) The domain is C, and by separating the real and the imaginary part we get

u(x, y) = x2 − y2 and v = −2xy,

hence

∂u

∂x
= 2x and

∂v

∂y
= 2x = ∂u

∂x
for x = 0.

We conclude that Cauchy-Riemann’s equations are not satisfied in any open domain.

Remark 6.2 If one also consider the second one of Cauchy-Riemann’s equation, it can be proved
that they are only fulfilled at (0, 0). ♦

Remark 6.3 Note that f(z) = z2. ♦
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(b) The domain is C, and we get by separation of the real and the imaginary part that

u(x, y) = x3 − 3y2x + 2x and v(x, y) = 3x2y − y3 + 2y,

thus

∂u

∂x
= 3x2 − 3y2 + 2 =

∂v

∂y
og

∂u

∂y
= −6yx = −∂v

∂x
.

We have proved that Cauchy-Riemann’s equations are satisfied in all of C.

Remark 6.4 In this case it follows that

f(z) = x3 − 3y2x + 2x + i
(
3x2y − y3 + 2y

)
= x3 + 3x·iy + 3x(iy)2 + (iy)3 + 2(x + iy)
= z3 + 2z. ♦
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Figure 44: The domain in (c) is the union of the two open angular sets which contain the positive and
the negative real half axis, resp..

(c) Here,

u(x, y) =
1
2

ln
(
x2 − y2

)
and v(x, y) = Arctan

y

x

are defined and of class C∞ in the open set given by |x| > |y|. We have assumed that x = 0, so

∂u

∂x
=

1
2
· 2x
x2 − y2

=
x

x2 − y2
,

and

∂v

∂y
=

1
x

1 +
(y

x

)2 =
x

x2 + y2
= ∂u

∂x
, n̊ar y = 0.

It follows that Cauchy-Riemman’s equations are not satisfied in any open set, and the function
cannot be analytic anywhere.

(d) Here,

u(x, y) =
1
2

ln
(
x2 + y2

)
and v(x, y) = Arccot

x

y

are both defined and C∞, when y = 0. Assuming this we get

∂u

∂x
=

x

x2 + y2
,

∂v

∂y
= − 1

1 +
(

x

y

)2 ·
(
− x

y2

)
=

x

x2 + y2
=

∂u

∂x
,

∂u

∂y
=

y

x2 + y2
,

∂v

∂x
= − 1

1 +
(

x

y

)2 · 1
y

= − y

x2 + y2
= −∂u

∂y
,

proving that Cauchy-Riemann’s equations are fulfilled for y = 0.
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Remark 6.5 This is an important example, because it can be proved that

f(z) =

⎧⎨
⎩

Log z for y > 0,

Log z + iπ for y < 0,
♦

Example 6.10 Check if the following functions are analytic in any domain of the plane,

(a)

f(z) = x2 + y2 + 2ixy.

(b)

f(z) = 2x − 3y + i(3x + 2y).

(c)

f(z) =
x + iy

x2 + y2
.

(d)

f(z) =
∣∣x2 − y2

∣∣+ 2i |xy|.

(a) The function

f(z) = x2 + y2 + 2ixy

is not analytic anywhere. It is seen by a separation of the real and the imaginary part that

u(x, y) = x2 + y2 and v(x, y) = 2xy

are both of class C∞ (
R

2
)
. Then by a differentiation,

∂u

∂x
= 2x =

∂v

∂y
and

∂y

∂y
= 2y =

∂v

∂x
.

We see that one of the Cauchy-Riemann equations is satisfied, but the other

∂u

∂y
= −∂v

∂x
,

is only fulfilled for y = 0, i.e. on the real axis, and the real axis does not contain any open domain
of the plane.

(b) It is seen by inspection that

f(z) = 2x − 3y + i(3x + 2y) = 2(x + iy) + 3i(x + iy) = (2 + 3i)z,

which of course is analytic everywhere in C.
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Alternatively,

u(x, y) = 2x − 3y and v(x, y) = 3x + 2y

are both of class C∞ (
R

2
)
, and

∂u

∂x
= 2 =

∂v

∂y
og

∂u

∂y
= −3 = −∂v

∂x
,

proving that Cauchy-Riemann’s equations are fulfilled, and f(z) is analytic everywhere in C.

(c) An inspection shows that if z = 0 (i.e. when f(z) is defined), then

f(z) =
x + iy

x2 + y2
=

z

z · z =
1
z
.

Indirect proof. Assume that f(z) =
1
z

were analytic for z = 0. Then according to the rules of

computation,
1

f(z)
= z must be analytic in the same domain.

However, since
1

f(z)
= z is not analytic anywhere, f(z) cannot be analytic.
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Alternatively,

u(x, y) =
x

x2 + y2
and v(x, y) =

y

x2 + y2

are both of class C∞ for (x, y) = (0, 0). Then

∂u

∂x
=

x2 + y2 − 2x2

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
,

∂v

∂y
=

x2 + y2 − 2y2

(x2 + y2)2
=

x2 − y2

(x2 + y2)2
,

∂u

∂y
= − 2xy

(x2 + y2)2
,

∂v

∂x
= − 2xy

(x2 + y2)2
.

This proves that we obtain the “Cauchy-Riemann equations with the wrong signs”, i.e.

∂u

∂x
= −∂v

∂y
og

∂u

∂y
= +

∂v

∂x
.

If therefore Cauchy-Riemann’s equations are satisfied, then

∂u

∂x
=

∂v

∂y
= 0 og

∂u

∂y
= −∂v

∂x
= 0.

Since z ∈ C \ {0}, this is never the case.

-z^2

z^2

-z^2

z^2

–1

–0.5

0.5

1

–1 –0.5 0.5 1

Figure 45: The four angular spaces, in which f(z) is an analytic function, are indicated by the reduced
expressions.

(d) Since

z2 = x2 − y2 + 2ixy,

the analyticity here depends on the signs of x2 − y2 and 2xy.
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If x2 − y2 > 0 and 2xy > 0 (two angular spaces), then clearly

f(z) =
∣∣x2 − y2

∣∣+ 2i|xy| = x2 − y2 + 2ixy = z2

is analytic, cf. the figure.

If x2 − y2 < 0 and 2xy (again two angular spaces), then

f(z) =
∣∣x2 − y2

∣∣+ 2i|xy| = −{x2 − y2 + 2ixy
}

= −z2

is analytic, and f(z) is (at least) analytic in the four marked angular spaces on the figure.

If x2 − y2 < 0 and 2xy > 0 (again two angular spaces), then

f(z) =
∣∣x2 − y2

∣∣+ 2i|xy| = −{x2 − y2 − 2ixy
}

= −z2.

If x2 − y2 > 0 and 2xy < 0 (the two remaining angular spaces), then

f(z) =
∣∣x2 − y2

∣∣+ 2i|xy| = x2 − y2 − 2ixy = z2.

The function f(z) is not analytic in any of these latter cases. We have e.g. for z2 that

u(x, y) = x2 − y2 and v(x, y) = −2xy,

hence

∂u

∂x
= 2x,

∂v

∂y
= −2x,

∂u

∂y
= −2y,

∂v

∂x
= −2y.

It follows that Cauchy-Riemann’s equations are only satisfied at (0, 0).

Example 6.11 Prove that the following functions are analytic:

(a)

f(z) = x2 − y2 − 2xy + i
(
x2 − y2 + 2xy

)
, for z ∈ C.

(b)

f(z) =
x3 + xy2 + x + i

(
x2y + y3 − y

)
x2 + y2

, for z ∈ C \ {0}.

(c)

f(z) = sinx · cosh y + i cos x · sinh y, for z ∈ C.

As usual it is worth while first to make an inspection. This will give us some variants in each part of
the example.
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(a) 1) Inspection. All terms contain the variables (x, y) of degree 2. Therefore, it is quite reasonable
first to consider

z2 = (x + iy)2?x2 − y2 + 2ixy.

When we try to rewrite the expression of f(z) by means of expressions which contain z2, we
see that

f(z) =
{
x2 − y2

}− 2xy + i
(
x2 − y2 + {2xy})

=
{
x2 − y2 + 2ixy

}
+ i
{
x2 − y2 + 2ixy

}
= (1 + i)z2.

Since f(z) = (1 + i)z2 is a polynomial, we conclude that f(z) is analytic.

2) Cauchy-Riemann’s equations. First note that

u(x, y) = x2 − y2 − 2xy and v(x, y) = x2 − y2 + 2xy

are both of class C∞ (
R

2
)
. We shall therefore only prove that Cauchy-Riemann’s equations

are fulfilled. We find

u(x, y) = x2 − y2 − 2xy, v(x, y) = x2 − y2 + 2xy,

∂u

∂x
= 2x − 2y,

∂v

∂y
= −2y + 2x,

∂u

∂y
= −2y − 2x,

∂v

∂x
= 2x + 2y.

This implies that

∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −∂v

∂x
,

hence Cauchy-Riemann’s are satisfied everywhere, and we conclude that f(z) is analytic.

In order to prove that f(z) = (1 + i)z2, one must either go through the argument of (1) once
more, or otherwise differentiate twice, in which case we get f ′′(z) = 2(1 + i). Then we get the
result by two successive integrations.

(b) 1) Inspection. The degree of the numerator is 3, and the denominator has only degree 2. It is
reasonable first to try a reduction. Here we get without any problems

x3 + xy2 = x
(
x2 + y2

)
and x2y + y3 = y

(
x2 + y2

)
.

Then by insertion and reduction,

(1) f(z) =
x3 + xy2 + x + i

(
x2y + y3 − y

)
x2 + y2

x +
x

x2 + y2
+ i

{
y − y

x2 + y2

}
.

Since x2 + y2 = |z|2 = z · z, it follows from (1) that

f(z) = x + iy +
x − iy

x2 + y2
= z +

z

z · z = z +
1
z
,

which of course is analytic for z = 0.
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2) Cauchy-Riemann’s equations. We shall here immediately use the reduction (1), which we
here assume. If z = 0, then

u(x, y) = x +
x

x2 + y2
and v(x, y) = y − y

x2 + y2
,

which of course are both of class C∞ (
R

2 \ {(0, 0)}). Then

∂u

∂x
= 1 +

1
x2 + y2

− 2x2

(x2 + y2)2
= 1 +

y2 − x2

(x2 + y2)2
,

∂v

∂y
= 1 − 1

x2 + y2
+

2y2

(x2 + y2)2
= 1 +

y2 − x2

(x2 + y2)2
=

∂u

∂x
,

and

∂u

∂y
= − 2xy

(x2 + y2)2
,

∂v

∂x
= +

2xy

(x2 + y2)2
= −∂u

∂y
.

Thus it follows that the Cauchy-Riemann equations are fulfilled, so f(z) is analytic everywhere
in its domain.

3) Cauchy-Riemann’s equations without the reduction (1). This is the difficult variant,
in which one checks if the original expressions

u(x, y) =
x3 + yx + x

x2 + y2
and v(x, y) =

x2y + y3 − y

x2 + y2

satisfy Cauchy-Riemann’s equations.
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By a mechanical computation we get

∂u

∂x
=

(
3x2 + y2 + 1

) (
x3 + xy + x

) · 2x
(x2 + y2)2

=
3x4 + x2y2 + x2 + 3x2y2 + y4 + y2 − 2x4 − 2x2y2 − 2x2

(x2 + y2)2

=
x2 + 2x2y2 + y4 − x2 + y2

(x2 + y2)2

(
= 1 +

y2 − x2

(x2 + y2)2

)
,

∂v

∂y
=

(
x3 + 3y2 − 1

) (
x2 + y2

)− (x2y + y3 − y
) · 2y

(x2 + y2)2

=
x4 + 3x2y2 − x2 + x2y2 + 3y4 − y2 − 2x2y2 − 2y4 + 2y2

(x2 + y2)2

=
x4 + 2x2y2 + y4 − x2 + y2

(x2 + y2)2

(
= 1 +

y2 − x2

(x2 + y2)2

)
,

∂u

∂y
=

2xy
(
x2 + y2

)− 2y
(
x3 + xy2 + x

)
(x2 + y2)2

=
2xy

(x2 + y2)2
(
x2 + y2 − x2 − y2.1

)
= − 2xy

(x2 + y2)2
,

∂vv

∂x
=

2xy
(
x2 + y2

)− 2x
(
x2y + y3 − y

)
(x2 + y2)2

=
2xy

(x2 + y2)2
(
x2 + y2 − x2 − y2 + 1

)
= +

2xy

(x2 + y2)2
,

and it follows that Cauchy-Riemann’s equations

∂u

∂x
=

∂v

∂y
og

∂u

∂y
= −∂v

∂x

are fulfilled, hence f(z) is analytic for z = 0.

(c) It will later be shown that f(z) is the definition of the complex function sin z, z ∈ C. Since this
function has not yet been defined, we must instead use the Cauchy-Riemann equations.
Clearly, the functions

u(x, y) = sinx · cosh y and v(x, y) = cos x · sinh y

are both of class C∞ (
R

2
)
. Furthermore,

∂u

∂x
= cos x · cosh y =

∂v

∂y
and

∂u

∂y
= sinx · sinh y = −∂v

∂x
,

hence Cauchy-Riemann’s equations are satisfied, thus

f(z) = sinx · cosh y + i cos x · sinh y {= sin z = sin(x + iy)}

is analytic in all of C.
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Remark 6.6 We shall here show by applying Euler’s formulæ that this definition of sin z is quite
reasonable. In fact,

f(z) = sinx · cosh y + i cos x · sinh y

=
1
2i
(
eix − e−ix

) · 1
2
(
ey + e−y

)
+ i · 1

2
(
eix + e−ix

) · 1
2
(
ey − e−y

)
=

1
2i

· 1
2
{
eixey + eixe−y − e−ixey − eixey + eixe−y − e−ixey + e−ixe−y

}
=

1
2i

· 1
2
{
2 eixe−y − 2 e−ixey

}
=

1
2i
(
eix−y − e−ix+y

)
=

1
2i

{
ei(x+iy) − e−i(x+iy)

}
=

1
2i
(
eiz − e−iz

)
. ♦

Example 6.12 Find some real constants a, b, c, d, such that the following functions become analytic:

(a)

f(z) = x + a y + i(bx + cy).

(b)

f(x) = x2 + a xy + b y2 + i
(
c x2 + d xy + y2

)
.

(c)

f(z) = cos x · cosh y + a cos x · sinh yi (b sinx · sinh y + sinx · cosh y) .

We first note that all the functions are of class C∞ (
R

2
)
. Therefore, we shall only check if Cauchy-

Riemann’s equations are fulfilled.

(a) Since

u(x, y) = x + a y and v(x, y) = b x + c y,

it follows from Cauchy-Riemann’s equations that

∂u

∂x
= 1 =

∂v

∂y
= c and

∂u

∂y
= a = −∂v

∂x
= −b.

Thus, the function is analytic, if and only if c = 1 and a = −b. In that case we also have

f(z) = x − b y + i(b x + y) = (1 + ib)(x + iy) = (1 + ib)z.

(b) Since

u(x, y) = x2 + a xy + b y2 and v(x, y) = c x2 + d xy + y2,

it follows from Cauchy-Riemann’s equations that

∂u

∂x
= 2x + a y =

∂v

∂y
= d · x + 2y,

∂u

∂y
= a x + 2b y = −∂v

∂x
= −2c x = −d · y.
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These equations must hold for all x and y, hence we conclude that

d = 2, a = 2, a = −2c and 2b = −d,

hence

a = 2, b = −1
2

d = −1, c = −1
2

a = −1, d = 2,

and we conclude that the only possible function is

f(z) = x2 + 2xy − y2 + i
{−x2 + 2xy + y2

}
=
{
x2 − y2 + 2ixy

}− i
{
x2 − y2 + 2ixy

}
= (1 − i)z2.

(c) Since

u(x, y) = cos c · cosh y + a · cos x · sinh y,

v(x, y) = b · sinx · sinh y + sinx · cosh y,

we get

∂u

∂x
= − sin x · cosh y − a · sinx · sinh y,

∂v

∂y
= b · sinx · cosh y + sinx · sinh y,

∂u

∂y
= cosh x · sinh y + a · cos x · cosh y,

∂v

∂x
= b · cos x · sinh y + cos x · cosh y.

It follows that Cauchy-Riemann’s equations are satisfied, if

b = −1, −a = 1, b = −1 and a = −1,

thus for a = b = −1. For these values we obtain the analytic function

f(z) = cos x · cosh y − cos x · sinh y + i {− sin x · sinh y + sinx · cosh y}
= cos x · {cosh y − sinh y} + i sinx · {cosh y − sinh y}
= {cos x + i sinx}e−y = eix−y = eiz.
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Example 6.13 Find all analytic functions in C of the form

f(z) = f(x + iy) = ϕ(x) + i ψ(y),

where ϕ and ψ are C1-functions in one real variable.

We first assume that ϕ and ψ are real functions. A necessary and sufficient condition for f(z) being
analytic is that ϕ and ψ are both of class C1, and that Cauchy-Riemann’s equations are fulfilled,
i.e.

∂ϕ

∂x
(x) = ϕ′(x) =

∂ψ

∂y
(y) = ψ′(y),

because it is trivial that

∂ϕ

∂y
(x) = −∂ψ

∂x
(y) = 0

The equation ϕ′(x) = ψ′(y) is only satisfied, if the common value is a real constant a. In fact, since
ϕ′(x) is independent of y, we conclude that ψ′(y) = ϕ′(x) is a constant. Hence

ϕ′(x) = a and ψ′(y) = a, a ∈ R,

thus

ϕ(x) = a x + c1 and ψ(y) = a y + c2,
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and

f(z) = ϕ(x) + i ψ(y) = a · (x + iy) + c1 + i c2 = a z + c,

where a ∈ R and c ∈ C. Finally,

f(z) = a z + c, a ∈ R and c ∈ C,

is clearly analytic.

Then assume that ϕ(x) and ψ(y) in the real variables have complex values. Then by separation into
real and imaginary parts,

ϕ(x) = ϕ1(x) + i ϕ2(x) and ψ(y) = ψ1(y) + i ψ2(y),

hence

f(z) = ϕ(x) + i ψ(y)
= {ϕ1(x) − ψ2(y)} + i {ϕ2(x) + ψ1(y)} ,

and by a separation into real and imaginary parts,

u(x, y) = ϕ1(x) − ψ2(y), v(x, y) = ϕ2(x) + ψ1(y).

It follows from Cauchy-Riemann’s equations that we get the conditions

∂u

∂x
= ϕ′

1(x) =
∂v

∂y
= ψ′

1(y)

∂u

∂y
= −ψ′

2(y) = −∂v

∂x
= −ϕ′

2(x),

and we conclude as above that there exist real constants a1 and a2, such that

ϕ′
1(x) = ψ′

1(y) = a1 and ϕ′
2(x) = ψ′

2(y) = a2,

thus

ϕ1(x) = a1x + b11, ψ1(y) = a1y + b12,

ϕ2(x) = a2x + b21, ψ2(y) = a2y + b22,

and by insertion,

f(z) = ϕ(x) + i ψ(y) = (a1+i a2)x+(b11+i b21)+i (a1+i a2) y+i (b12+i b22)

= a z + c, a, c ∈ C,

where

a = a1 + i a2 og c = b11 − b22 + i (b21 + b21) .
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Example 6.14 Prove that a shorthand of Cauchy-Riemann’s equations is

∂f

dx
=

1
i

∂f

∂y
.

If we put f = u + i v, then it follows from Cauchy-Riemann’s equations that

∂f

∂x
=

∂u

∂x
+ i

∂v

∂x
=

∂v

∂y
− i

∂u

∂y
=

1
i

(
∂u

∂y
+ i

∂v

∂y

)
=

1
i

∂f

∂y
.

Example 6.15 Define

∂f

∂z
:=

1
2

(
∂f

∂x
+ i

∂f

∂y

) [
=

1
2

(
∂f

∂x
− 1

i

∂f

∂y

)]
.

Prove that Cauchy-Riemann’s equations are equivalent to

∂f

∂z
= 0.

Remark 6.7 One often says due to this result that the analytic functions only depend on z and not

on z. This claim can only be taken as a mnemonic rule, because
∂f

∂z
is not the derivative of f with

respect to z. It is only a shorthand for

1
2

(
∂f

∂x
+ i

∂f

∂y

)
. ♦

According to Example 6.14, the Cauchy-Riemann equations are equivalent to

∂f

∂x
=

1
i

∂f

∂y
,

thus

0 =
∂f

∂x
− 1

i

∂f

∂y
=

∂f

∂x
+ i

∂f

∂y
= 2

∂f

∂z
,

and it follows that Cauchy-Riemann’s equations are equivalent to

∂f

∂z
= 0.
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Example 6.16 Assume that f is analytic in a domain Ω and that

∂u

∂x
+

∂v

∂y
= 0 in Ω.

Prove that f ′ is constant in Ω.

It follows from Cauchy-Riemann’s equations that

0 =
∂u

∂x
+

∂v

∂y
=

∂u

∂x
+

∂u

∂x
= 2

∂u

∂x
,

hence

u(x, y) = u(y).

Analogously,

0 =
∂u

∂x
+

∂v

∂y
=

∂v

∂y
+

∂v

∂y
= 2

∂v

∂y
,

hence

v(x, y) = v(x).

Then it follows from the second of Cauchy-Riemann’s equations that

∂u

∂y
= u′(y) = −∂v

∂x
= −v′(x),

independently of both x and y, hence the common value must be a real constant −c. Hereby we
obtain the derivative

f ′(z) =
∂u

∂x
+ i

∂v

∂x
= 0 + i(+c) = i c, c ∈ R.

Example 6.17 Find the domains of analyticity for each of the following functions, and then find
their derivatives:

(a)
(

z − 1
z

)3

, (b)
z2 − 4

z3 − 3z − 2
, (c)

z + i

z − 2
, (d)

i

z3
.

Remark 6.8 Always start by inspecting the expression, if anything could be reduced. ♦

(a) The function

f(z) =
(

z − 1
z

)3

is analytic in C \ {0}. Then we get by the rules of computation that the derivative is

f ′(z) = 3
(

z − 1
z

)2

·
(

1 +
1
z2

)
= 3
(

z2 − 1
z

)2

· z1 + 1
z2

=
3
(
z4 − 1

) (
z2 − 1

)
z4

=
3
z4

{
z6 − z4 − z2 + 1

}
= 3z2 − 3 − 3

z2
+

3
z4

.
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(b) Here it pays off first to decompose. Since z3 − 3z − 2 has the root z = 2, we easily get the
expansion

z3 − 3z − 2 = (z − 2)(z + 1)2.

Since

z2 − 4 = (z − 2)(z + 2),

we have the reduction

f(z) =
z2 − 4

z3 − 3z − 2
=

z + 2
(z + 1)2

=
1

(z + 1)2
+

1
z + 1

.

Hence the function f(z) is analytic in C \ {2,−1} with a removable singularity at z = 2. This
means that the domain of analyticity can be extended to C \ {−1}. In this extended domain the
derivative is given by

f ′(z) = − 1
(z + 1)2

− 2
(z + 1)3

= − z + 3
(z + 1)3

.
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(c) We write the function in the following way,

f(z) =
z + i

z − 2
= 1 +

2 + i

z − 2
,

(note that we again start with a decomposition). This is clearly analytic in C \ {2}. Since we have
decomposed the function, it is very easy to compute the derivative,

f ′(z) = − 2 + i

(z − 2)2
.

Remark 6.9 If we did not decompose before the differentiation, the computations would have
been somewhat larger, to put it mildly. ♦

(d) The function f(z) =
i

z3
is analytic in C \ {0} and its derivative is

f ′(z) = − 3i
z4

.

Example 6.18 Find the derivatives of the following analytic function in their domains:

(a) f(z) = z5 − 3z2 − 1, (b) f(z) =
z

1 − z
,

(c) f(z) = (1 − z)4
(
z2 + 1

)3
, (d) f(z) =

(
z − 1
z + 1

)4

.

(a) The function is defined everywhere in C, and it follows from the elementary rules of computation
that

f ′(z) = 5z4 − 6z.

(b) Here it is better to start with a decomposition,

f(z) =
z

1 − z
= −1 +

1
1 − z

,

which is defined in C \ {1}, so the derivative is

f ′(z) =
1

(1 − z)2
, z ∈ C \ {1}.

(c) The function is defined in all of C, and by the elementary rules of computation we get the
derivative

f ′(z) = 4(z − 1)3
(
z2 + 1

)3
+ 6z(z − 1)4

(
z2 + 1

)2
= 2(z − 1)3

(
z2 + 1

)2 {
2z2 + 2 + 3z(z − 1)

}
= 2(z − 1)3

(
z2 + 1

)2 {
5z2 − 3z + 2

}
.
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(d) The function f(z) =
(

z − 1
z + 1

)4

is defined in C \ {−1}. Before the differentiation we note that

z − 1
z + 1

= 1 − 2
z + 1

,

hence by differentiation of a composed function,

f ′(z) = 4
(

z − 1
z + 1

)3

· 2
(z + 1)2

= 8 · (z − 1)3

(z + 1)5
, z ∈ C \ {−1}.

Example 6.19 (a) Check where in the complex plane the functions u and v, given by

u + iv = f(z) = (z)2 ,

satisfy Cauchy-Riemann’s equations.

(b) Is f(z) analytic at z = 0?

(a) Since

u + iv = (z)2 = (x − iy)2 = x2 − y2 − 2ixy,

we get by a separation into the real and the imaginary parts that

u(x, y) = x2 − y2 and v(x, y) = −2xy.

These functions are both of class C∞ (
R

2
)
. Then

∂u

∂x
= 2x,

∂v

∂y
= −2x,

∂u

∂y
= −2y,

∂v

∂x
= −2y.

It follows that Cauchy-Riemann’s equations are fulfilled,

∂u

∂x
=

∂v

∂y
for x = 0,

∂u

∂y
= −∂v

∂x
for y = 0.

This proves that Cauchy-Riemann’s equations are only satisfied for z = 0.

(b) Since the domain of analyticity is always an open domain contained in the set where Cauchy-
Riemann’s equations are fulfilled, and since the set {(0, 0)} ∼ {0} does not contain any open
domain, the function f(z) is not analytic at z = 0.
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Remark 6.10 The difficult thing here is that the function f(z) actually is complex differentiable
at 0. In fact, if z = 0 we get for the difference quotient that

∣∣∣∣f(z) − f(0)
z − 0

∣∣∣∣ =
∣∣∣∣∣ (z)2

z

∣∣∣∣∣ = |z|2
|z| = |z| → 0 for z → 0,

and it follows that

f ′(0) = lim
z→0

f(z) − f(0)
z − 0

= 0.

However, this does not assure that f(z) is analytic at z = 0. ♦

Example 6.20 We shall check the map w = z + z2, where z = x + iy and w = u + iv.

(a) Prove that the straight lines x = x0, where x0 is a real constant = −1
2
, is mapped into the

parabolas

(2) u = − v2

(1 + 2x0)
2 + x0 (x0 + 1) .

(b) Which curves are the images of y = y0, where y0 is a real constant = 0?

(c) Find the image of x0 = −1
2
, and the image of y0 = 0.

(d) Find a straight line x = x1, where x1 is a real constant = x0, with the property that it is mapped
into (2).

(e) What are the image curves of the circles
∣∣∣∣z +

1
2

∣∣∣∣ = r0, where r0 is a positive constant?

(a) Since

w = f(z) = z + z2 = x + iy + (x + iy)2 = x + x2 − y2 + i(y + 2xy),

it follows by a separation of the real and the imaginary part that

(3) u(x, y) = x + x2 − y and v(x, y) = y(1 + 2x).

If therefore z(t) = x0 + i t, t ∈ R, then it follows from (3) that

u(t) = x0 (x0 + 1) − t2 and v(t) = (1 + 2x0) t, t ∈ R,

and the task has now been reduced to eliminating the parameter t.

If x0 = −1
2
, then t =

v

1 + 2x0
, hence by putting this into the expression of u gives (2), thus

u = − v2

(+2x0)
2 + x0 (x0 + 1) , x0 ∈ R \

{
−1

2

}
,
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–2

–1

0

1

2

–4 –3 –2 –1 1 2 3

(c’) We note that if x0 = −1
2
, then

u = −1
2

(
−1

2
+ 1
)
− t2 = −1

4
− t2 and v = 0, t ∈ R,

and the image is
]
−∞,−1

4

]
run through twice, and we have answered the first half of (c).
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(b) If instead z(t) = t + iy0, t ∈ R, y0 = 0, then it follows from (3) that

u(t) = t + t2 − y2
0 , v(t) = y0(1 + 2t).

When we t eliminate from the last equation, we get

t =
1
2

(
v

y0
− 1
)

,

hence by insertion into the first equation,

u =
1
2

(
v

y0
− 1
)

+
1
4

(
v

y0
− 1
)2

− y2
0 =

v

2y0
− 1

2
+

v2

4y2
0

− 1
2

v

y0
+

1
4
− y2

0 =
(

v

2y0

)2

− y2
0 − 1

4
,

which again is a system of parabolas.

(c”) If y0 = 0, then

u(t) = t + t2 =
(

t +
1
2

)2

− 1
4

and v = 0, t ∈ R,

thus the interval
[
−1

4
,+∞

[
is run through twice, and we have answered the latter part of (c).

(d) If x = x1 = x0 and x0 = −1
2

shall be mapped into (2), then the parabolas must have the same
vertex, i.e.

x2
0 + x0 =

(
x0 +

1
2

)2

− 1
4

=
(

x1 +
1
2

)2

− 1
4

= x2
1 + x1.

Hence

0 =
(

x0 +
1
2

)2

−
(

x1 +
1
2

)2

= (x0 + x1 + 1) · (x0 − x1) .

It follows from x1 = x0 that x1 = −1 − x0. Using this value we get

(1 + 2x1)
2 = (1 − 2 − 2x0)

2 = (1 + 2x0)
2
,

and we conclude that the two parabolas are identical.

(e) Finally, we shall find the images of the circles∣∣∣∣z +
1
2

∣∣∣∣ = r0 > 0.

It follows from

w = z + z2 =
(

z +
1
2

)2

− 1
4
,

that(
z +

1
2

)2

= w +
1
4
,
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hence∣∣∣∣w +
1
4

∣∣∣∣ =
∣∣∣∣z +

1
2

∣∣∣∣
2

= r2
0,

and the image curve is the circle of centrum −1
4

and radius r2
0 run through twice.
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7 The polar Cauchy-Riemann’s equations

.

Example 7.1 Prove that the complex function f(z), which is given in polar coordinates (r, θ) by

f(z) =
√

r · cos
θ

2
+ i

√
r · sin θ

2
, z = r eiθ,

is analytic in the sliced domain

Ω =
{
z = r eiθ | r ∈ R+, θ ∈ ] − π, π[

}
,

where we have removed the closed real negative axis. Then find its derivative.

Given that 0 does not belong to the domain Ω, and that

u(r, θ) =
√

r · cos
θ

2
and v(r, θ) =

√
r · sin θ

2
,

are of class C∞ in this domain, we shall only check that the Cauchy-Riemann equations in polar
coordinates are satisfied. We get

∂u

∂r
=

1
2

1√
r
· cos

θ

2
,

1
r

∂v

∂θ
=

1
2

1√
r
· cos

θ

2
,

1
r

∂u

∂θ
= −1

2
1√
r
· sin θ

2
,

∂v

∂r
=

1
2

1√
r
· sin θ

2
,

and it follows that the polar Cauchy-Riemann equations are fulfilled, hence f(z) is an analytic function.

The derivative is given by

f ′(z) = e−iθ

(
∂u

∂r
+ i

∂v

∂r

)
= e−iθ

(
1

2
√

r
cos

θ

2
+ i

1
2
√

r
sin

θ

2

)

=
1
2

1√
r

e−iθ exp
(

i
θ

2

)
=

1
2

1√
r
· 1

exp
(

i
θ

2

) =
1
2
· 1
√

r cos
θ

2
+ i

√
r sin

θ

2

=
1
2

1
f(z)

.

Remark 7.1 This is in fact the polar definition of the analytic function f(z) =
√

z with the slit along
the negative real axis. ♦
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Example 7.2 Prove that the complex function f(z), which is given in polar coordinates (r, θ) by

f(z) = er cos θ cos(r · sin θ) + i er cos θ sin(r · sin θ)

is analytic in the domain

Ω =
{
z = r eiθ | r ∈ R+, θ ∈ ] − π, π[

}
,

and find its derivative.

It follows immediately from x = r cos θ and y = r · sin θ that

f(z) = ex cos y + i ex sin y = ex(cos y + i sin y) = exeiy = ez,

thus f(z) = ez is analytic with the derivative

f ′(z) = ez = f(z).

Alternatively we prove that Cauchy-Riemann’s equations in polar coordinates are satisfied. First
note that 0 does not belong to the domain. Then by a separation of the real and the imaginary parts,

u(r, θ) = er cos θ cos(r sin θ), v(r, θ) = er cos θ sin(r sin θ),

 The polar Cauchy-Riemann’s equations
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where both functions are of class C∞. Then by a differentiation,

∂u

∂r
= cos θ · er cos θ · cos(r sin θ) − sin θ · er cos θ · sin(r sin θ),

1
r

∂v

∂θ
=

1
r
· r (− sin θ)er cos θ · sin(r sin θ) +

1
r
· r cos θ · er cos θ · cos(r sin θ) =

∂u

∂r
,

1
r

∂u

∂r
=

1
r

(−r sin θ) · er cos θ · cos(r sin θ) +
1
r

er cos θ · r cos θ · (− sin(r sin θ)),

∂v

∂r
= cos θ · er cos θ · sin(r sin θ) + er cos θ · sin θ · cos(r sin θ) = −1

r

∂u

∂θ
,

and we have proved that f(z) is analytic. The derivative is given by

f ′(z) = e−iθ

{
∂u

∂r
+ i

∂v

∂r

}
= e−iθ

{
cos θ · er cos θ · cos(r sin θ) − sin θ · er cos θ · sin(r sin θ)

+i cos θ · er cos θ · sin(r sin θ) + i er cos θ · sin θ · cos(r sin θ)
}

= e−θ
{
(cos θ + i sin θ)er cos θ · cos(r sin θ) + i(cos θ + i sin θ)er cos θ · sin(r sin θ)

}
= e−iθ · eiθ

{
er cos θ cos(r sin θ) + i er cos θ sin(r sin θ)

}
= f(z).

Example 7.3 Prove that the complex function f(z), given in polar coordinates (r, θ) by

f(z) = r cos θ · ln r − rθ sin θ + i{r sin sin θ · ln r + rθ · cos θ},
is analytic in the domain

Ω =
{
z = r eiθ | r ∈ R+, θ ∈ ] − π, π[

}
,

and find its derivative.

The domain Ω does not contain 0, and both functions

u(r, θ) = r cos θ · ln r − r θ · sin θ,

v(r, θ) = r sin θ · ln r + r θ · cos θ,

are of class C∞(Ω). Hence, we shall only check the Cauchy-Riemann equations in polar coordinates.

We have
∂u

∂r
= cos θ · ln r + cos θ − θ · sin θ,

1
r

∂v

∂θ
= cos θ · ln r + cos θ − θ · sin θ =

∂u

∂r
,

1
r

∂u

∂θ
= − sin θ · ln r − sin θ − θ · cos θ,

∂v

∂r
= sin θ · ln r + sin θ + θ · cos θ = −1

r

∂u

∂θ
,
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so the polar Cauchy-Riemann equations are fulfilled and hence f(z) is analytic in Ω.

Finally, the derivative is given by

f ′(z) = e−iθ

{
∂u

∂r
+ i

∂v

∂r

}

= e−iθ {cos θ · ln r + cos θ − θ · sin θ + i (sin θ · ln r + sin θ + θ · cos θ)}

= e−iθ{ln r(cos θ + i sin θ) + (cos θ + i θ) + i θ(cos θ + i sin θ)}

= (ln r + 1 + iθ)e−iθ(cos θ + i sin θ) = 1 + Log z for z ∈ Ω.

Remark 7.2 It is also here possible to find the exact expression of f(z) in Ω as a function in z. In
fact, if z ∈ Ω, then

f(z) = r cos θ · ln r − r θ sin θ + i {r sin θ · ln r + r θ cos θ}
= r ln r · (cos θ + i sin θ) + i r θ (cos θ + i sin θ)
= r ln r · eiθ + i r θ eiθ = r eiθ(ln r + iθ)
= z Log z. ♦

Example 7.4 Sketch the curves u(x, y) = constant and v(x, y) = constant in the domains of the
following functions:

(a) f(z) = z3, (b) f(z) = ez, (x) f(z) = Log z.

(a) We have in rectangular coordinates

f(z) = (x + iy)3 = x3 − 3xy2 + i
{
3x2y − y3

}
,

thus

(4) u(x, y) = x3 − 3sy2, v(x, y) = 3x2y − y3,

If we instead use polar coordinate, then

f(z) = r3e3iθ = r3 cos 3θ + i r3 sin 3θ,

hence

u(r, θ) = r3 cos 3θ, v(r, θ) = r3 sin 3θ.

Empirically the treatment of systems of curves of e.g. the form

u(x, y) = c,

is often causing some difficulties. Hence we shall go through this example in more detail than
usually. We shall restrict ourselves to consider only the rectangular version (4).

First we consider the curves u(x, y) = c. If we insert a point (x, y), we only obtain one value of
the constant c. Hence we conclude that curves belonging to different values of c do not intersect.
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Figure 46: (a) The system of curves u(x, y) = c.

Let c = 0. Then the equation is written as follows:

0 = x3 − 3xy2 = −3x
(

y2 − 1
3

x2

)
= −3x

(
y − 1√

3
x

)(
y +

1√
3

x

)
.

Hence, the solution set for c = 0 is the union of the three straight lines, given by the equations

x = 0, y =
1√
3

x and y = − 1√
3

x,

which intersect at (0, 0). Any other curve of the type u(x, y) = c, c = 0, is now confined to one
of the six open angular spaces. Furthermore, the lines corresponding to c = 0 must be asymptotes
for any other curve u(x, y) = c, where c = 0.

–2

–1

1

2

y

–2 –1 1 2

x

Figure 47: (a) The two curve systems u(x, y) = c1 and v(x, y) = c2 are orthogonal in C \ (0, 0).

For the time being we shall neglect the vertical line x = 0, which requires another though analogous
treatment. Hence, we shall consider the lines

y = ± 1√
3

x
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and the corresponding angular spaces. Let (x0, y0) be a point on the claimed asymptote, and let
(x, y) be a point on the curve. Then

x3
0 − 3x0y

2
0 = 0 and x3 − 3xy2 = c.

If we here put x0 = x, it follows that the distance from the curve to one of the lines is smaller
than or equal to either

|y − y0| or |y − (−y0)| = |y + y0| .

Therefore, we shall only prove that one of these two distances tends towards zero, when x = x0 →
±∞. When we subtract the two equations, we get

3x0

(
y2 − y2

0

)
= c,

thus

∣∣y2 − y2
0

∣∣ = |y − y0| · |y + y0| =
∣∣∣∣ c

3x0

∣∣∣∣ .
Since the right hand side tends towards zero for x0 → ±∞, at least one of the two factors |y − y0|
and |y + y0| will tend towards zero by the same limit, and the claim is proved.

Then we threat the v-curves, either in the same way, or by using that the v-curves are orthogonal
to the u-curves. A third method is simply by the symmetry to interchange x and y.
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(b) We have in rectangular coordinates

f(z) = ex cos y + i ex sin y,

hence by separating the real and the imaginary part,

u(x, y) = ex cos y, v(x, y) = ex sin y.

In this case it is very difficult to handle the polar description, so we shall only consider the
rectangular version.

We first investigate the u-curves

ex cos y = c, c ∈ R.

If c = 0, then cos y = 0, and we get the horizontal lines

y =
π

2
+ pπ, p ∈ Z.

The curves corresponding to c = 0 must now be restricted to the horizontal “strips”, defined by
the curves corresponding to c = 0. If c = 0, it follows from the equation

ex cos y = c,

that cos y and c must have the same sign, thus

y ∈
]
−π

2
+ 2pπ ,

π

2
+ 2pπ

[
, p ∈ Z, if c > 0,

and

y ∈
]
π

2
+ 2pπ ,

3π
2

+ 2pπ

[
, p ∈ Z, if c < 0.

One may say that every second of the horizontal strips belong to positive c, and every second to
negative c.

The point is that the equation can now be written, such that x is expressed as a function of y.
This is due to the fact that Arccos is a somewhat difficult function, while cos is not. If c and cos y
have the same sign, then

x = ln
(

c

cos y

)
.

The minimum of x is obtained when | cos y| = 1, corresponding to y = qπ, q ∈ Z, and x = ln |c|.
We note that this minimum is negative, if |c| < 1. If y approaches one of the boundary “curves”,
±π

2
+qπ, q ∈ Z, then the denominator tends towards 0, thus x → +∞. Hence, the horizontal lines

y = ±π

2
+ qπ, q ∈ Z,

corresponding to the system of curves for c = 0, become the asymptotes. It follows from

x = ln |c| − ln | cos y|,
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Figure 48: (b) The curves u(x, y) = c.

that all curves in one “strip” is obtained from x = − ln | cos y| by a translation of the amount ln |c|.

Finally, the v-curves are either obtained in the same way by noticing that

sin y = cos
(π

2
− y
)

= cos
(
y − π

2

)
,

so the v-curves are obtained from the u-curves by a translation of the amount i
π

2
. Alternatively,

one may again apply the orthogonality of the u-curves and the v-curves.

–3

–2

–1

1

2

3

–3 –2 –1 1 2 3

Figure 49: (c) The orthogonal curve systems u(x, y) = c1 and v(x, y) = c2.

(c) In this case it is most convenient to apply polar coordinates,

f(z) = Log z = ln r + i θ, r > 0, θ ∈ ] − π, π],

thus

u(r, θ) = ln r and v(r, θ) = θ.
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The curves u(r, θ) = c are the circles r = ec, and the curves v(r, θ) = c are the half lines θ = c ∈
] − π, π], where we usually include θ = π, which gives a discontinuity in the function Arg z.

The point z = 0 is a singular point.

We interpret this situation as the model of a point source at z = 0, where the v-curves denote the
streamlines and the u-curves denote the equipotential curves.

Example 7.5 . Flow around a corner. Given a real constant c >
1
2
. If z ∈ C \ {0}, we define

Log�z by

Log�z = ln |z| + i θ,

where θ is the argument of z, z = r eiθ, for which θ ∈ [0, 2π[.
Consider the complex potential

F (z) = zc := ecLog�
z.

Write z = r eiθ. Prove that the half lines θ = 0 and θ =
π

c
are streamlines.

(Hence, the pattern of the flow does not change, if we put barriers along these half lines).
Sketch the streamlines in the sector 0 ≤ θ ≤ π

c
in the following three cases,

(a) c = 4, (b) c = 1, (c) c =
2
3
.

0

0.5

1

1.5

2

2.5

3

3.5

y

0.5 1 1.5 2 2.5 3 3.5

x

Figure 50: (a) The streamlines for c = 4.

First compute

F (z) = zc := ec Log�
z = ec ln r+i c θ = rc · {cos(c θ) + i sin(c θ)},

which shows that the streamlines are given by

ψ(x, y) = Im(F (z)) = rc · sin(c θ) = k,
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Figure 51: (b) The streamlines for c = 1.
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Figure 52: (c) The streamlines for c =
2
3
.

where

rc := ec ln r.

If θ = 0, then

ψ(x, y) = rc sin 0 = 0,

and if θ =
π

c
< 2π, then

ψ(x, y) = rc sin
(
c · π

c

)
= 0,

which proves that these half lines are streamlines, and the first claim is proved.

(a) If c = 4, then θ ∈
[
0,

π

4

]
, so

r4 sin 4θ = k ≥ 0,

which corresponds to a flow in an angular sector, in which the angle is
π

4
.
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(b) If c = 1, then θ ∈ [0, π], and we get

r · sin θ = y = k ≥ 0,

corresponding to a parallel flow.

(c) If c =
2
3
, then the requirement is that θ ∈

[
0,

3π
2

]
, and the corresponding equation becomes

r
2
3 sin

(
2
3

θ

)
= k ≥ 0,

which we interpret as the model of a flow around a rectangular corner.
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Example 7.6 Let f(z) = u + iv = z+ Log z be defined in the domain

Ω = {z ∈ C | Im(z) > 0}.
Sketch the curves u(x, y) = constant and v(x, y) = constant in Ω.

0

1

2

3

4

y

–3 –2 –1 1

x

Figure 53: The curves u(x, y) = constant in Ω of Example 7.6.
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Figure 54: The curves v(x, y) = constant in Ω of Example 7.6.

Since

z + Log z = x +
1
2

ln
(
x2 + y2

)
+ i

{
y + Arccot

(
x

y

)}

for y > 0, we get by separation of the real and the imaginary part that

u(x, y) = x +
1
2

ln
(
x2 + y2

)
and

v(x, y) = y + Arccot
(

x

y

)
.
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If we put u(x, y) = c, then we get by solving with respect to y that

y2 = e2c−2x − x2 = C e−2x − x2, y > 0,

where we have put C = e2c > 0.
Analogously, from v(x, y) = k we get by solving with respect to x that

x = y · cot(k − y).

Example 7.7 Let

F (z) = cLog(z − a) + cLog(z + a),

where a, c ∈ R+ are given constants. We consider F in its domain Ω as a complex potential. Find
the streamlines and the equipotential curves of F in Ω.
This example can be interpreted as the model of two sources of the same strength at the points z = a
and z = −a.

Obviously, we may choose c = 1 and a = 1, so we only consider

F (z) = Log(z − 1) + Log(z + 1), z ∈ C \ (] −∞, 1]),

where we must be aware of the branch cuts of the two principal logarithms. A separation into real
and imaginary part gives

u(x, y) = ln |z − 1| + ln |z + 1| = ln
∣∣z2 − 1

∣∣ ,
and

v(x, y) = Arg(z − 1) + Arg(z + 1).

The curves

u(x, y) = ln
∣∣z2 − 1

∣∣ = k, thus |z − 1| · |z + 1| = c,

are the so-called Cassini’s rings. These are the equipotential curves. I have not been able to let
MAPLE give some reasonable sketches, so they are here omitted. On the other hand, it is easy to
sketch the streamlines by using MAPLE, and then we may use that the equipotential curves are
orthogonal on this system of curves.

It follows from

v(0, y) = Arg(−1 + iy) + Arg(1 + iy) = ±π,

that the positive and the negative y-axis each form a streamline.
Since

cot(u + v) =
cot u · cot v − 1
cos u + cot v

,
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Figure 55: The streamlines v(x, y) = c.

and since for x = 0 and y > 0,

v(x, y) = Arccot
(

x − 1
y

)
+ Arccot

(
x + 1

y

)
= c ∈ ]0, π[∪ ]π, 2π[,

it follows for y > 0 that

x − 1
y

· x + 1
y

− 1

x − 1
y

+
x + 1

y

=

x2 − 1
y2

− 1

2x
y

=
x2 − y2 − 1

2xy
= cot c,

which we also write

x2 − y2 − 2xy cot c = 1.

This expression is extended by the obvious symmetry to the lower half plane. Hence the curve system
becomes a system of hyperbolic arcs with the y-axis as one of their asymptotes, and where they all
pass through either (1, 0) or (−1, 0). We shall of course add the lines x = −1 and x = 1 to this system.
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8 Cauchy’s Integral Theorem

Example 8.1 Integrate ez along a plane and closed curve C, which is composed of the interval C1 :
[−1, 1] on the real axis and the half circle C2 of the parametric description z(t) = eit, t ∈ [0, π].
Then find the value of

∫
C2

ez dz, and apply the result to prove that∫ π

0

ecos t · sin(t + sin t) dt = 2 sinh 1.

–0.2

0.2

0.4

0.6

0.8

1

1.2

–1 –0.5 0.5 1

Figure 56: The closed curve C with its orientation.

Since C is a simple, closed curve in C and ez is analytic in all of C, it follows from Cauchy’s integral
theorem that∮

C

ez dz =
∫

C1

ez dz +
∫

C2

ez dz = 0.

Hence,∫
C2

ez dz =
∫ π

0

ecos t+i sin t i eit dt = i

∫ π

0

ecos tei(t+sin t) dt

= i

∫ π

0

ecos t · {cos(t + sin t) + i sin(t + sin t)} dt

= −
∫ π

0

ecos t · sin(t + sin t) dt + i

∫ π

0

ecos t · cos(t + sin t) dt

= −
∫

C1

ez dz = −
∫ 1

−1

ex dx = − [ex]1−1 = −2 sinh 1 + i · 0.

Finally, by a separation into real and imaginary parts,∫ π

0

ecos t · sin(t + sin t) dt = 2 sinh 1,

and∫ π

0

ecos t · cos(t + sin t) dt = 0.
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Example 8.2 Compute
∫ 1+i

1

(
2 + 3z2 + 4z3

)
dz.

It follows by inspection that

F (z) = 2z + z3 + z4

is a primitive of f(z) = 2 + 3z2 + 4z3, thus∫ 1+i

1

(
2 + 3z2 + 4z3

)
dz = F (1 + i) − F (1)

= 2(1 + i) + (1 + i)3 + (1 + i)4 − 2 − 1 − 1
= 2 + 2i + 2i(1 + i) + (2i)2 − 4
= 2 + 2i + 2i − 2 − 4 − 4
= −8 + 4i.
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9 Cauchy’s Integral Formula

Example 9.1 Compute the values of the line integrals

(a)
∮
|z|=1

z + 2
z(4 − z)

dz, (b)
∮
|z|=2

1
z(z − 1)

dz, (c)
∮
|z|=2

z3 + 3z2 − 4
z2(z − 1)

dz.

The method here is that first we decompose and then deform each integral into the line integral along
some circle.

(a) It follows by a decomposition that

z + 2
z(4 − z)

= − z + 2
z(z − 4)

=
1
2
· 1
z
− 3

2
· 1
z − 4

.

The function
1

z − 4
is analytic inside |z| = 1, hence

∮
|z|=1

1
z − 4

dz = 0

by Cauchy’s integral theorem.
Now,∮

|z|=1

1
z

dz = 2π i,

so ∮
|z|=1

z + 2
z(4 − z)

dz =
1
2

∮
|z|=1

1
z

dz − 3
2

∮
|z|=1

1
z − 4

dz =
1
2
· 2π i + 0 = π i.

(b) A decomposition gives

1
z(z − 1)

= −1
z

+
1

z − 1
.

When we “reverse” the path of integration (indicated by a 	) and then deform it into some circle
we get

∮ �

|z|=2

1
z(z − 1)

dz =
∮ �

|z|=2

(
−1

z

)
dz +

∮ �

|z|=2

1
z − 1

dz

= +
∮
|z|=1

dz

z
−
∮
|z−1|=1

dz

z − 1
= 2π i − 2π i = 0,

hence∮
|z|=2

1
z(z − 1)

dz = −
∮ �

|z|=2

1
z(z − 1)

dz = 0.
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(c) Since the numerator and the denominator have the same degree, and since z = 1 is a root of both
the denominator and the numerator, we must be careful here, when we decompose. We get

z3 + 3z2 − 4
z2(z − 1)

=

(
z2 + 4z + 4

)
(z − 1)

z2(z − 1)
=

z2 + 4z + 4
z2

= 1 +
4
z

+
4
z2

.

Here f1(z) = 1 is analytic inside |z| = 2, so∮
|z|=2

1 dz = 0.

Furthermore, f2(z) = −4
z

is differentiable in Ω \ {0} with the derivative

f ′
2(z) =

4
z2

,

so
4
z2

has the primitive −4
z
, and we conclude that

∮
|z|=2

4
z2

dz = 0.

Hence,∮
|z|=2

z3 + 3z2 − 4
z2(z − 1)

dz =
∮
|z|=2

1 dz + 4
∮
|z|=2

1
z

dz +
∮
|z|=2

4
z2

dz = 0 + 4 · 2π i + 0 = 8π i.

Example 9.2 Assume that f : [0,+∞[→ C is continuous and that f(t) = 0 for t > R. Prove that
the function L{f}, given by

L{f}(z) =
∫ +∞

0

f(t) e−zt dt

is analytic in all of C.
Assume that f : [0,+∞[→ C is continuous and that there exist constants A, B > 0, such that

|f(t)| ≤ AeBt for every t ∈ [0,+∞[.

Prove that one can find a σ ∈ R, such that the function

L{f}(z) =
∫ +∞

0

f(t) e−zt dt

is analytic in the half plane Re(z) > σ.
We call the analytic function L{f}(z) the Laplace-transformed of f . The smallest real number σ0,
for which L{f}(z) is analytic in the half plane Re(z) > σ0, is called the abscissa of convergence.

When f : [0,+∞[→ C is continuous, and f(t) = 0 for t > R, then the support of f is compact, so
|f(t)|, which is also continuous, must have a maximum. In particular, f is bounded,

|f(t)| ≤ M for every t ≥ 0,
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and we get for every fixed z ∈ C that∣∣∣∣
∫ +∞

0

f(t) e−zt dt

∣∣∣∣ ≤ M

∫ R

0

∣∣∣e−(x+iy)t
∣∣∣ dt = M

∫ R

0

e−xt dt < +∞.

We conclude that L{f}(z) is defined for every z ∈ C.

Since the integrand f(t) e−zt is continuous in t and since the derivative with respect to the parameter
z is continuous and absolutely integrable, it follows that L{f}(z) is continuously differentiable, and
its derivative is

d

dz
L{f}(z) =

∫ +∞

0

∂

∂z

{
f(t) e−zt

}
dt = −

∫ +∞

0

t f(t) e−zt dt,

which proves that L{f}(z) is analytic in all of C.

Then we assume that

|f(t)| ≤ AeBt for every t ∈ [0,+∞[.

If σ > B, then we get for Re(z) ≥ σ that∣∣∣∣
∫ +∞

0

f(t) e−zt dt

∣∣∣∣ ≤
∫ +∞

0

AeBt e−tRe(x) dt ≤ A

∫ +∞

0

e(σ−B)t dt < +∞,

so the Laplace-transform exists for every z, for which Re(z) ≥ σ.

When we differentiate the integrand with respect to the parameter z, then

∂

∂z

{
f(t) e−zt

}
= −t f(t) e−zt.

If Re(z) ≥ σ > b, then we have the estimate∣∣∣∣ ∂

∂z

{
f(t) e−zt

}∣∣∣∣ ≤ At eBt e−σt = At e−(σ−B)t, t ≥ 0.

It follows from the magnitudes that
∂

∂z
{f(t) e−zt} has an integrable majoring function, thus we

conclude that L{f} is complex differentiable (and even continuously differentiable) for Re(z) > σ.
This proves that L{f}(z) is analytic in the half plane Re(z) > σ.

Example 9.3 Prove that

+∞∑
n=0

{
exp
(

zn

n!

)
− 1
}

defines an analytic function f : C → C.

If we put

fn(z) = exp
(

zn

n!

)
− 1,
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then fn(z) is analytic in all of C.

If |z| ≤ R, then

|fn(z)| ≤ exp
(

Rn

n!

)
− 1,

so if we can prove that the series

+∞∑
n=0

{
exp
(

Rn

n!

)
− 1
}

is convergent for every R > 0, then it follows that

f(z) =
+∞∑
n=0

fn(z)

is uniformly convergent on every compact subset of C, and the claim is proved.

Then we have for every fixed R,

Rn

n!
→ 0 for n → +∞.

 Cauchy’s Integral Formula
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Thus, we can find an N , such that for every n ≥ N ,

exp
(

Rn

n!

)
≤ 1 + 2

Rn

n!
.

Then

0 <
+∞∑
n=0

{
exp
(

Rn

n!

)
− 1
}

=
N−1∑
n=0

{
exp
(

Rn

n!

)
− 1
}

+
+∞∑
n=N

{
exp
(

Rn

n!

)
− 1
}

≤
N−1∑
n=0

{
exp
(

Rn

n!

)
− 1
}

+ 2
+∞∑
n=N

Rn

n!
≤

N−1∑
n=0

{
exp
(

Rn

n!

)
− 1
}

+ 2 eR < +∞,

and the claim is proved.

Remark 9.1 It follows that the derivative is given by

f ′(z) =
+∞∑
n=1

zn−1

(n − 1)!
exp
(

zn

n!

)
.

In this case it is easy to prove the uniform convergence over compact subsets. In fact, if |z| ≤ R, then
we can find an N , such that∣∣∣∣exp

(
zn

n!

)∣∣∣∣ ≤ M for |z| ≤ R and n ≥ N,

thus∣∣∣∣∣
+∞∑

n=N+1

zn−1

(n − 1)!
exp
(

zn

n!

)∣∣∣∣∣ ≤ M
+∞∑

n=N+1

Rn

n!
≤ M eR < +∞. ♦

Example 9.4 Assume that f is analytic in an open domain Ω. Define Ω� by

Ω� = {z | z ∈ Ω},

and a function f� on Ω� by

f�(z) = f(x).

Prove that f� is analytic in Ω�.

Obviously, f� is continuous and of class C∞ (Ω�). Write f = u + iv, i.e.

f(z) = u(x, y) + i v(x, y).

Then

f�(z) = u�(x, y) + i v�(x, y) = f(z)
= f(x − iy) = u(x,−y) − i v(x,−y).
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If (x, y) ∈ Ω�, then (x,−y) ∈ Ω, and we obtain by partial differentiation,

∂u�

∂x
(x, y) =

∂u

∂x
(x,−y),

∂v�

∂y
(x, y) = − ∂

∂y
{v(x,−y)} = +

∂v

∂y
(x,−y),

∂u�

∂y
(x, y) =

∂

∂y
{u(x,−y} = −∂u

∂y
(x,−y),

∂v�

∂x
(x, y) = − ∂

∂x
v(x,−y) = −∂v

∂x
(x,−y),

hence

∂u�

∂x
(x, y) =

∂u

∂x
(x,−y) =

∂v

∂y
(x,−y) =

∂v�

∂y
(x, y),

∂u�

∂y
(x, y) = −∂u

∂y
(x,−y) =

∂v

∂x
(x,−y) = −∂v�

∂x
(x, y),

proving that f� satisfies Cauchy-Riemann’s equations everywhere in Ω�, hence f� is analytic in Ω�.

Example 9.5 Find by an application of Cauchy’s integral formula

(a)
1

2πi

∮
|z−2|=1

ez

z − 2
dz, (b)

1
2πi

∮
|z|=1

z2 + 4
z

dz, (c)
∮
|z|=4

sin z

z
dz.

(a) If we put f(z) = ez, then f(z) is analytic in C. Since z0 = 2 lies inside the circle |z − 2| = 1, it
follows from Cauchy’s integral formula that

1
2πi

∮
|z−2|=1

ez

z − 2
dz = f(2) = e2.

(b) If we put f(z) = z2 + 4, then f(z) is analytic in C. Since z0 = 0 lies inside the circle |z| = 1, it
follows from Cauchy’s integral formula that

1
2πi

∮
|z|=1

z2 + 4
z

dz = f(0) = 4.

(c) If we put f(z) = sin z, then f(z) is analytic in C. Since z0 = 0 lies inside |z| = 4, it follows from
Cauchy’s integral formula that

1
2πi

∮
|z|=4

sin z

z
dz = f(0) = sin 0 = 0.
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Example 9.6 Find by applying Cauchy’s integral formula

(a)
∮
|z|=4

(
1

z + 1
+

2
z − 3

)
dz, (b)

∮
|z|=2

1
z2 − 1

dz.

(a) If we put f(z) = 1 and g(z) = 2, then∮
|z|=4

(
1

z + 1
+

2
z − 3

)
dz =

∮
|z|=4

f(z)
z − (−1)

dz +
∮
|z|=4

g(z)
z − 3

dz = 2π i{f(−1) + g(3)} = 6π i.

We have used that the curve |z| = 4 is simple and closed and that the points −1 and 3 lie inside
this curve.

(b) We get by a decomposition,

1
z2 − 1

=

1
2

z − 1
−

1
2

z + 1
.

Since 1 and −1 lie inside the simple, closed curve |z| = 2, it follows as above that∮
|z|=2

1
z2 − 1

dz =
1
2

∮
|z|=2

1
z − 1

dz − 1
2

∮
|z|=2

1
z + 1

dz =
1
2
· 2π i − 1

2
· 2π i = 0.

Example 9.7 Prove by means of Cauchy’s integral formula that for every k ∈ R,∮
|z|=1

ekz

z
dz = 2π i.

Apply this result together with the parametric description z = eiθ, θ ∈ [−π, π[, to prove that for every
k ∈ R,∫ π

0

ek cos θ cos(k sin θ) dθ = π.

If we put f(z) = ekz, then f(z) is analytic in C, hence by Cauchy’s integral formula,∮
|z|=1

ekz

z
dz = 2π i f(0) = 2π i.

Then put z = eiθ to get

2π i =
∮
|z|=1

ekz

z
dz =

∫ π

−π

ek cos θ+i k sin θ

eiθ
i eiθ dθ = i

∫ π

−π

ek cos θ {cos(k · sin θ) + i sin(k sin θ)} dθ

= i

∫ π

−π

ek cos θ cos(k sin θ) dθ = 2i
∫ π

0

ek cos θ cos(k sin θ) dθ,

because ek cos θ sin(k sin θ) is odd and ek cos θ cos(k sin θ) is even in θ. Finally, we get∫ π

0

ek cos θ cos(k sin θ) dθ = π.
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Example 9.8 Assume that f(z) is analytic in C, and that there exist constants M , R ∈ R+ and
m ∈ N0, such that

|f(z)| ≤ M · |z|m for |z| > R.

Prove that f(z) is a polynomial of at most degree m.
Hint: Apply Cauchy’s inequality with n = m + 1 to prove that

∣∣∣f (m+1) (z0)
∣∣∣ ≤ M(m + 1)! (r + |z0|)m

rm+1

for z0 ∈ C and r sufficiently large. Then conclude that f (m+1) (z0) = 0 for every z0 ∈ C.

It follows from Cauchy’s inequality for n = m + 1 that

∣∣∣f (m+1) (z0)
∣∣∣ ≤ M ′(m + 1)!

rn+1
,

where M ′ is the maximum of |f(z)| on the circle |z − z0| = r, and where r > R.

It follows from the assumption that M ′ can be estimated by

M ′ ≤ M · |z|m ≤ M (r + |z0|)m
,

hence by insertion,

∣∣∣f (m+1) (z0)
∣∣∣ ≤ M · (m + 1)! (r + |z0|)m

rm+1
=

1
r
· M · (m + 1)!

(
1 +

|z0|
r

)m

.
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This inequality holds for every r > r0 and for every fixed z0. We therefore conclude that

f (m+1) (z0) = 0,

and thus f(z) is a polynomial of at most degree m.

Example 9.9 Let f(t) be continuous on R. Prove that∫ 1

0

f(t)
1 − zt

dt

is a function of z, which at least is analytic for |z| < 1.

Assume that |z| ≤ R < 1 and t ∈ [0, 1]. Then we have the uniformly convergent series expansion

1
1 − zt

=
+∞∑
n=0

zntn,

thus by insertion,∫ 1

0

f(t)
1 − zt

dt =
∞∑

n=0

(∫ 1

0

tnf(t) dt

)
zn.

Here we get the estimate∣∣∣∣
∫ 1

0

tnf(t) dt

∣∣∣∣ ≤ M

∫ 1

0

tn dt =
M

n + 1
,

and we conclude that the radius of convergence of the series is ≥ 1, hence the function∫ 1

0

f(t)
1 − zt

dt

is analytic in the domain given by |z| < 1, and possibly in a larger domain, depending on the structure
of f(t). One should e.g. check for a possible extension, if f(1) = 0, and f ′(1) exists.

Example 9.10 Assume that f(z) is analytic for |z| ≤ 1. Prove that

1
π

∫ ∫
|z|≤1

f(x + iy) dx dy = f(0).

Hint: Express the integral in polar coordinates and apply Cauchy’s integral formula.

If we put

x = r · cos θ and y = r · sin θ,

then

1
π

∫ ∫
|z|≤1

f(x + iy) dx dy =
1
π

∫ 2π

0

{∫ 1

0

f
(
r eiθ

)
r dr

}
dθ =

1
π

∫ 1

0

r

{∫ 2π

0

f
(
r eiθ

)
dθ

}
dr

=
1
π

∫ 1

0

r · 2π f(0) dr = f(0)
∫ 1

0

2r dr = f(0),
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because if follows for every r ∈ ]0, 1] by Cauchy’s integral formula that

∫ 2π

0

f
(
r eiθ

)
dθ = 2π f(0).

 Cauchy’s Integral Formula
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10 Simple applications in Hydrodynamics

Example 10.1 A two-dimensional stationary from of a non-compressible ideal fluid is characterized
by the complex potential

(5) F (z) =
−1 + i

z
.

(a) Using polar coordinates (r, θ), where z = r eiθ, find an equation of the equipotential curves and
an equation of the streamlines.

(b) Then find the complex field of velocity F ′(z), the x and y parts of the real field of velocity V, and
the speed |V| of the field corresponding to (5), where everything should be expressed as functions
in (r, θ).

The function F1/ζ) = −A

ζ
, where ζ = ξ + i η and A > 0 is a constant, models a field of a dipole

where the dipole is lying in ζ = 0 of strength A and of orientation in the positive ξ-direction.
Find a transformation of the form z = ζ eiα (where α is a real constant), such that F (z) = F1(ζ).
Apply this result to show that the field corresponding to (5) is a field of a dipole. Find the position
and strength of the dipole, and show its orientation on a sketch.

(a) Since

F (z) =
−1 + i

z
=

−1 + i√
2

·
√

2
r eiθ

=
√

2
r

· exp
(

3πi

4

)
· e−iθ

=
√

2
r

exp
((

3π
4

− θ

))
= −

√
2

r
exp
(
−i
(π

4
+ θ
))

,

we find

ϕ(r, θ) =
√

2
r

cos
(

3π
4

− θ

)
and ψ(r, θ) =

√
2

r
sin
(

3π
4

− θ

)
,

so the equation of the equipotential curves becomes

(6) r =
√

2
k

cos
(

3π
4

− θ

)
for k = 0,

and
3π
4

− θ =
π

2
+ pπ, thus θ =

π

4
or θ =

5π
4

for k = 0.

In (6) the parameter either runs through

θ ∈
]
−3π

4
,

π

4

[
or θ ∈

]
π

4
,

5π
4

[
,

depending on whether k > 0 or k < 0, because we shall have r > 0

Analogously we get for the streamlines in polar coordinates,

r =
√

2
k

sin
(

3π
4

− θ

)
for k = 0,
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and

θ = −π

4
and θ =

3π
4

for k = 0.

In this connection it is not convenient to apply the polar coordinates, because we in rectangular
coordinates obtain

F (z) =
−1 + i

z
= (−1 + i)

(
x

x2 + y2
− i

y

x2 + y2

)
=

1
x2 + y2

{−x + y + i(x + y)},

and we get the following equation of the equipotential curves,

ϕ(x, y) =
−x + y

x2 + y2
= k, k ∈ R,

and the equation of the streamlines,

ψ(x, y) =
x + y

x2 + y2
= k, k ∈ R.
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–2

–1

0

1

2

–2 –1 1 2

Figure 57: The equipotential curves are full-drawn lines, while the streamlines are dotted. Further-
more, the orientation is indicated on the straight streamline, and the the orientation in general follows
by continuity.

If k = 0, then we get the equipotential curves

y = x, for (x, y) = (0, 0),

i.e. two half lines, and the streamlines

y = −x, for (x, y) = (0, 0),

i.e. again two half lines.
If k = 0, then we get for the equipotential curves that

0 = x2 + y2 +
1
k

x − 1
k

y +
(

1
2k

)2

+
(

1
2k

)2

− 2 ·
(

1
2k

)2

=
(

x +
1
2k

)2

+
(

y − 1
2k

)2

−
(

1√
2 k

)2

,

i.e. a circle with one point removed,(
x +

1
2k

)2

+
(

y − 1
2k

)2

=
(

1√
2 k

)2

, (x, y) = (0, 0),

of centrum
(
− 1

2k
,

1
2k

)
and radius

1√
2 k

.

For the streamlines we get the corresponding circle with one point removed,(
x − 1

2k

)2

+
(

y − 1
2k

)2

=
(

1√
2 k

)2

, (x, y) = (0, 0),

of centrum
(

1
2k

,
1
2k

)
and radius

1√
2 k

.

(b) Then by a differentiation,

F ′(z) = −−1 + i

z2
=

1 − i

r2 e2iθ
,
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and thus

F ′(z) =
1 + i

r2 e−2iθ
=

√
2

r2
exp
(
i
(π

4
+ 2θ

))
.

We therefore conclude that

V =

(√
2

r2
cos
(π

4
+ 2θ

)
,

√
2

r2
sin
(π

4
+ 2θ

))
, r > 0,

and then the orientation of the streamlines (the dotted lines) is fixed. Finally,

|V| = |F ′(z)| =
√

2
r2

, r > 0.

(c) It follows from

F (z) = −
√

2
r

exp
(
−i
(π

4
+ θ
))

= −
√

2

r exp
(
i
(π

4
+ θ
))

= −
√

2

z exp
(
i
π

4

) = −A

ζ
= F1/ζ),

that the strength is A =
√

2. Furthermore, since ζ = z exp
(
i
π

4

)
, the inverse is given by

z = ζ exp
(
−i

π

4

)
,

which is the wanted transformation.

Since the orientation corresponds to the positive ξ-axis, it follows that the orientation of the given
dipole is θ = −π

4
.
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