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Preface to these two texts

The two texts in this one cover, entitled ‘An introduction to complex variables’ (Part I) and “The integral theorems of
complex analysis with applications to the evaluation of real integrals’ (Part II), are versions of material available to students
at Newcastle University (UK). The first is an introductory text, based on a lecture course developed by the author; the
second provides additional and background reading (being one of the ‘Notebook™ series). The material in Part I is a
familiar topic encountered in mathematical studies at university, although here it is given a more ‘methods’ slant rather
than a ‘pure’ slant. (Complex analysis is a subject that straddles both pure and applied mathematics and it can be taught
with either aspect — or both - being emphasised.) The material in Part II builds on the introductory ideas on integration
in Part I; these are first summarised (and presented in a slightly different form) and then more extensive and advanced

applications are described.

Each text is designed to be equivalent to a traditional text, or part of a text, which covers the relevant material, with many
worked examples and set exercises being presented in Part I (and a few additional exercises in Part II). The appropriate
background for each is mentioned in the preface to each part, and there is a comprehensive index, covering both parts,

at the end; we have also included some biographical notes.
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Preface

This text is based on a lecture course developed by the author and given to students in the second year of study in
mathematics at Newcastle University. This has been written to provide a typical course (for students with a general
mathematical background) that introduces the main ideas, concepts and techniques, rather than a wide-ranging and
more general text on complex analysis. Thus the topics, with their detailed discussion linked to the many carefully worked
examples, do not cover as broad a spectrum as might be found in other, more conventional texts on complex analysis; this is
a quite deliberate choice here. Nevertheless, all the usual introductory material is included and its development is probably
more extensive than in a conventional text. The material, and its style of presentation, have been selected after a number
of years of development and experience, based on various approaches to this topic, resulting in something that works well

in the lecture theatre. Thus, for example, some of the more technical (pure mathematical) aspects are not pursued here.

We include a large number of worked examples, and an extensive set of exercises (to which answers are provided). We also

provide brief biographical notes on most of the important contributors to complex analysis (who are mentioned here).

It is assumed that the reader has some knowledge of the elementary functions, and a considerable acquaintance with the
differential and integral calculus — but no more than is typically covered in the first year of university study - and also
some experience working with complex numbers. In addition, we make use of Green’s theorem and line integrals, so some

knowledge of these is recommended.
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Introduction

Complex analysis, and particularly the theory associated with the integral theorems, is an altogether amazing and beautiful
branch of mathematics that comfortably straddles pure and applied mathematics. It not only provides the opportunity
to analyse and present in a very formal way, but also it introduces a powerful tool in mathematical methods. The results
that we describe are due, in the main, to the seminal work of Cauchy; in particular, these enable us to represent many
problems in integration in a purely algebraic form. The results are all amazingly simple and beautiful, although based on
deep and subtle ideas. The techniques are applicable, most directly and naturally, to conventional integration, but they

are also important in potential flow theory (as required, for example, in the study of fluid mechanics).

We start with a brief reminder of the properties of elementary complex numbers. Then we introduce the notion of a
complex function: a complex-valued function of a complex variable. (The subject is often called ‘the theory of functions of
a complex variable] or simply ‘complex variables’; more formally, we refer to ‘complex analysis, although we do not assume
a background in classical real analysis.) This idea naturally leads to an investigation of the differentiation and integration
of such functions. As we shall see, the conventional ideas of both these basic concepts have to be modified somewhat
when working in the complex plane. Thus we need to develop the notion of a derivative, introduce some fundamental

theorems for integration and also describe power series.

We will apply our new ideas and methods to the evaluation of certain classical (real) integrals, and also introduce an

important tool used in many branches of mathematics, physics and engineering: the Fourier Transform.
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1 Complex Numbers

The aim, in this first chapter, is to collect together the standard and familiar ideas associated with complex numbers,

and their manipulation and use in finding roots of simple equations. So we start with the notation for a complex number

written as
zZ=Xx+1y
the Cartesian or real-imaginary form; an alternative is
z=re'? = r(cos O +isin @)

the polar form, where r is the modulus and 6 the arg. We may relate these two alternative expressions for a complex number

by noting that r = | z| = «/xz + y2 and tan@ =y / X . We may also represent the complex number in the Argand plane
— the complex plane:

y or iy— z

This complex plane, and correspondingly the set of all complex numbers, is usually labelled . Here, x, y, r and 0 are all
real, so we have (x, ¥, H) €R and ¥ >0 (where [R is the set of all real numbers); we also have, of course, i =+/—1 .
(You may come across § as the symbol for v/—1 ; this is sometimes used in electrical problems where 1’ is reserved for
current.)

1.1 Elementary properties

First we list the fundamental algebraic rules obeyed by complex numbers, which we simply quote here, without justification
or detailed explanation; all this is regarded as relevant background material for the ideas that we shall develop later.

(a) Addition

Given two numbers, z; = X] +1)] and zy = X, +1)5, then
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Z1+2Zp =X +Xy +i(yl+y2),

which mirrors the rule for the addition of vectors:

(b) Product

With the notation used in (a), we have

7129 = (x + ) )(xp +1y2) = XX — Y12 +1(X 02 + X217)

but this is more neatly expressed in the polar form:

.
~
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Z|1Z9 = rlei o rzeig2 = rlrzei(gﬁ‘gz).

This shows that the arg of the product is simply the sum of the args of the two numbers involved in the product.

(c) Quotient

Corresponding to (b), we present this in two different ways:

Z1_ Xty x iy X —iy
zZy Xpt+iyy  xp+iyy xp iy

where we have introduced the conjugate (see below) of the denominator, and so we get

(g iy —1p) XX+ y1)n Lm0y
= 2 2 =T 2 2 2 2
X3+ X3+ X3+

or, in polars,

6
AN N i6-6)
 pe® 1

which involves the difference of the args.

(d) Conjugate

— . *
The conjugate of a complex number is defined as z = x —1y (but sometimes the alternative notation z is used). This

complex number has the following properties:

2

ZZ =X +y2 :|Z|2

and

Zl+ZZ :EI+EE’ 212 =EIEZ’§:Z'

| =

(We note the useful result — = i_ = % , which we used in (c) above; this is the familiar method for rewriting a fractional
zz

term in real-imaginary form.). z

Example 1 Complex numbers. Given z; =1-21, zp =3+2i, find zjzp and z/z; .

Here we have z1zy = (1-21)(3+21) =3+4+1(—6+2) =7 —41; also
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z 1-20 1-2i 3-2i  (1-20)(3-20)

z, 3420 3+2i 3-2i 9+4
- pgvice-)=-L -3
13 13 13

Note: It is usual to write complex numbers in the real-imaginary form, wherever possible (but, of course, there may be

situations where the polar form is more convenient, because it may easier to work with this format).

1.2 Inequalities

An important idea, that we shall need later, is provided by the application of elementary geometrical inequalities
(associated with triangles) to complex numbers. The fundamental result that we need (which comes from Euclid, Book I,
Proposition 20) is this: the sum of the lengths of any two sides of a triangle is always greater than the length of the third

side. Consider these two triangles:

Z1— 22
22
A RA) V)

Z1 Z]
triangle 1 triangle 2
In the construction depicted in triangle 1, we have immediately that
|Zl|+|22| > |Zl +Zz|,

where equality applies only as the enclosed area of the triangle decreases to zero, by allowing a vertex to be brought down

onto the opposite side. In triangle 2, we have
21— 25| +[z1| 2 |2 and also |z — 25| +|2] 2 |21
these two expressions give, respectively,
|21 — 232 |2| - |z1] and |71 — 23] 2 |21~ 2],

which together imply |Zl - Zz| 2 ||21 | —|22 || ,
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An introduction to the theory of complex variables Complex Numbers

although the former identity is likely to be the more useful.

(This second identity can be deduced from the first by using the same argument as for the pair above, after a simple

relabelling e.g. |Zl | 2 |Zl + Zz| - |22 | and then writing z] — zy for zj; this is left as an exercise for the interested reader.)

Example 2 Inequalities. Confirm the first triangle inequality for z; =1+ 21, zp =2-31.

We have |Zl| = \/g,

Zz|:\/E and |Zl +Zz|:|3—i|:\/m ie.

|Zl| + |22| = \/g + \/E > \/E , confirming the identity in this case.

1.3 Roots

A very familiar - and famous - identity is de Moivre’s theorem:

. A\
eind :(elg) =(cosO+isin@)" =cosnf+isinnd, neR,
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which has as a special case Euler’s even-more-famous identity. (Although de Moivre was the first to use this type of result -
in about 1722 - it was only implied by one of his expressions, and then only for positive integers; a similar result in terms
of logs had been obtained by Cotes in 1714. However, it was left to Euler in 1747 to complete the proof and statement of
the identity that we usually associate with de Moivre.) Let us now add the important property that the arg of a complex

number is not unique, as represented in the complex plane, i.e. we have

s re l(l9+2kﬂ') ke,

by virtue of complete rotations in the Argand plane. (Here, 7, as the set of all integers ....,—2,—1,0,1,2,.... .) Thus,
given a unique complex number z (in real-imaginary form and so, correspondingly, a unique point in the Argand plane),

there is no unique representation of this in polar form.

Now, suppose that we have the equation z”" = Z(y, for some given (integer) n and given complex number Zz(); this can

be expressed as

i(0y+2kr) 1/n 1(6?0 +2k7r)/n

Zn=ZO—I’OGHO_Fe and so z =17,

Then, for any continuous sequence of integers, k (e.g. kK =0,1,2,...n —1), this generates the n roots of the equation.

Example 3 Roots. Find all the roots of Z3 =1.

10 _ J2inr . thus 12n7r/3

First, we write P=l=1le , and we may elect to use 7 =0,1,2. The three roots are

therefore
221, o273 (473,
which can be written more conveniently as
eiZ”/3:cos(237rj+1sm(23 j ( 1+i3) (= w)
with 3 = = L(1-i3)? =L(1-3-2i3) =~ L(1+iV3) (= @).

The three roots are shown in the Argand plane below
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(You might have observed that l+o+ 0)2 = 0, which is the obvious condition on the sum of the three roots of the cubic

when written as z°> +0.z2 +0.z — 1= 0: the second zero here shows that the roots necessarily sum to zero.)

Comment: We are indebted to Euler for making e, 7 and i popular (although he was not the first to introduce them).
He did, however, find that ‘most beautiful result’ - his words — ei” — —] (Euler’s identity). At the end of this text, we
provide some brief biographical notes, with a little historical background, of those who have contributed to the study
of complex functions. (We have omitted those who worked essentially only on complex numbers; such a list - and an

associated history — would be very extensive and beyond the main thrust of this text.)

Exercises 1

1. Given the complex numbers 2] = —1+1 and zp =2+3i
a) find |Zl| s |Zz|, |ZIZZ| , 21 and Zlfl;
. . . . zn 1 Z1 — 2
b) write in real-imaginary (x +1y ) form: =, —, ——=.
Zl] Zp Z1t2p
2. Represent the complex numbers z; = —1+1, zp =2+ 31 in the Argand diagram; add to this figure the

complex numbers: z| + 2y, zp —Zz] and z]z; .

3. Confirm the triangle inequalities (|Zl| + |ZZ| > |Zl + Zz| , |Zl - Zz| > Hzl| - |22” ) for
(a) 1 =—1+i, V) :2+3i; (b) | :2—i, Zy =3+1.

4. Represent the complex numbers z| = Zem/ 4 and zp = 3617[/ 3 in the Argand diagram; add to this figure

the complex numbers: zjzp and zp / z] .

5. Find the modulus and argument of these complex numbers:

. -\2007
. ) i 1+1
(a) —1;(b)i;(6)1+1;(d)1—1;(6)—.;(f)( ) .

1+ I+1
I-1 1-i
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6. Write these complex numbers in polar (reia ) form:
(@) 215 (b) —1; () —1+i;(d) 1+iv/3 .

7. Write these in real-imaginary (X +1y ) form:

-12007 . 3 -13000
1 N2 1 4 (141 I+1 (1+1 I+1

A 1 )_ 1 > ; b > b . .
(@) 5 (1+1) (I+1) ( ,—2) (b) i (1_J (1_1

8. Find all the roots (which you may write in polar form) of these equations:

@zt =1;b) 2% =—1;(0) 22 = —i; (d) z° = —27i.

9. Find all the roots of 2 =1 , and then write them in real-imaginary form. Label the three different roots

Z1, Zp, z3, and hence find the values of z| +zp +2z3 and of zyz +2pz3 +z32. Why was this result to

be expected?

22 2 2 2 2 2 kXXX %
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2 Functions

In order to initiate our investigation of functions, expressed in terms of complex quantities, we write z =X +1) and

then introduce a function of this variable as

w=f(z)

(which maps from ( to ( i.e. wis also complex-valued, in general). We note that Z is not included as an argument
of the function here - and this is an important requirement, with significant consequences, which we shall develop later.

We have introduced a complex function. For any f(z), w can be expressed in real-imaginary form:

w=f(z)= f(x+iy) =u(x, y)+iv(x, y),

where 1 and v are real-valued functions of their arguments. (We observe that one immediate consequence of this is that we
are now working in a 4-space: the Argand plane, containing the given complex numbers, is a 2-space, and at each point (each

z) there exists a ‘complex number’, with a real (1) and an imaginary (v) part, thereby generating a 4-dimensional space.)

We will assume that it is always possible to write a complex function in real and imaginary parts; indeed, it is altogether
straightforward to confirm this whenever f'(z) is an elementary function, or when it can be expressed as a power series
(for example, as a Taylor expansion of the form f(z)= i a,z" ). We will always do this explicitly, whenever we can and
need to — but the assumption is always there that, in pr"{r=10ciple, real and imaginary parts exist. So, for example, we might

have the functions

w=z+2° :)c+iy+(x+iy)2 :x—i-)cz—y2 +1(y+2xy),

or w= |z| =4/ x2 + y2 (which happens to be pure real);

other functions that we work with might be

w:z3+2iz, w:zl/z, w=

(z #41).

I+z
We now pose a question that will, eventually, have significant ramifications in all that we develop in this study of complex
functions. Given f(z) we can find f = u + iv but, given u and v, can we find f(z)? Indeed, does it even matter if we

cannot find f given u and v? To see what is involved, we look at this simple example.

Example 4 Function of a Complex Variable. Given u(x,y) = )C2 and v(x,y) = y2 , find f(z) =u+1v,ifthis

exists.
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To proceed with this calculation, we first introduce z =X +1y and Z = X —1y; these are linearly independent in the

complex plane i.e. for y # (. Thus

x=1(z+7), y=3-(z-2) =—-1i(z-72),
and so u+iv:x2+iy2=%(z+7)2+i(—%)(z—7)2

=L +2z 477 -i(z> - 222 +77))

which is not a function of only z - it depends on both zand Z . In this case, for the given u and v,an f'(z) does not exist.

So we see that, although f'(z) does notexist, asuitable f'(z,Z) does.On the other hand, the choice y = x* — y2,v = 2xy, gives
ut+iv=L(z+7)° —(—l)(z —? +i2d(z+ 7).(—li) (z-7%)
4 4 2 2
=l +22)+1(-7%) =7

which is a function of z only. This apparent complication (Example 4) in defining f(z) (even for simple choices of u
and v) will lead to a fundamental idea that underpins the theory of complex variables. However, before we explore this in
any depth (as we do in the next chapter), we will first examine (and suitably define) some elementary functions — those

that are familiar from any discussion of real functions in elementary mathematics.

2.1 Elementary functions

Here, we will briefly consider polynomial functions, and the binomial theorem, as well as the exponential function (and
other functions whose definition is based on this) and the logarithmic function (which does, as we shall see, introduce
a new complication). This last example of an elementary function enables us to produce a suitable definition of z % for

arbitrary a.

(a) Polynomial functions

This function takes the general form
_ 2 n
f(@)=ay+az+ayz" +...+a,z",
for finite integers n, where each @; is, in general, a complex constant. It is immediately clear that we may write

ay+a;z+...+a,z" =by+icy + (b +ic))(x+1iy) +...+ (b, +ic, ) (x +iy)",
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where we have set a; = b; +1c; (for real constants b;,c; ), and then the expansion of this expression immediately yields

the real-imaginary form for f(z).

(b) Binomial theorem

The previous function, being polynomial, requires the expansion of terms like (X + iy)n (and so uses the elementary
rules of multiplication for complex numbers), which constitutes a simple variant of the binomial theorem. The general

binomial theorem itself takes the familiar form:

_ n
(1+z)" :1+nz+n(n—'1)22+....+zn = Z (njzm
2! =0\

n n!

with the standard notation: ;5 this requires the same rules of multiplication, of course. Such a

m) ml(n—m)
development also holds for any négative integer, and so, for example, we have

o0
1+ Z)_l =l-z+z%..= Z (=2)" (for |Z| <1).
n=0
The only difference between the conventional validity (familiar for real functions) is that, now, this expansion holds in
a circle |Z | <1 around z = 0 in the complex plane. (The validity, i.e. convergence, in this domain is readily confirmed;
for example, by writing z = rel? and noting that |Z| = (because |e!?|=1), and then 7 <1 ensures convergence,

which is equivalent to the requirement |Z | < 1.) The extension of the binomial theorem to fractional powers requires a

little more care; see (f) below.
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Sometimes it is convenient — but rarely a useful approach - to define the Taylor (or Maclaurin) expansions of functions,

and then regard these as providing the definitions of the functions e.g. ef=1+z+ % z 2 +.... (for all finite |Z | ). Here,
we shall adopt a different (and, we submit, a far simpler and neater) approach to the definition of the functions that we

commonly use; this becomes clear for the next function.

(c) Exponential function

The exponential function, exp(z) = €, is defined by

z x+iy

e’ =e"™V =e%e¥ =e"(cos y +isin y) (=u+iv),

which uses the familiar real functions (and the well-known Euler/de Moivre property). This recovers — of course! — the
real-valued exponential function on y = 0, and both siny and cosy on x = 0 (being the real and imaginary parts of the

complex function evaluated on x = 0). For general z, the function exhibits both exponential and trigonometric properties;

schematically, we have

y both

exponential

X

¥~ trigonometric

This function then exemplifies the close connection between the exponential and trigonometric functions (although, when
first encountered in elementary mathematics, the impression is that they are very different functions). We now see that
they are no more than different aspects of the same - elementary - function (€”) when viewed in the complex plane.

We add one further observation: from our definition, we see that

eZ

e*(cos y +isin y)‘ =Je?¥(cos? y+sin’ y) =e*.

From this definition of €, we may explore problems that require a little care and subtlety in their solutions; we offer

one in the next example.

Example 5 Solution of equation. Find all the solutions of e’ =-1.

We start from the definition: €” = €*(cos y +isin y) = —1, and this requires
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siny=0 and e* cos y=—1.

The first gives ¥ = nr (1 € 7,) and in the second, because e’ > 0, we must restrict the choice to n=1+2m (M € 7))

i.e. only odd integers are allowed; then x = 0. Thus all solutions are given by
z=(142m)xi, me 7.

(This confirms the familiar result that e’ <0 is impossible for x €[R.)

The introduction of the exponential function then enables a raft of other functions to be defined.

(d) Functions related to the exponential function

From our definition of €° in (c), we have
e =cos y+isiny and e ¥ = cos y—isin y
and so we may write
cosy = %(eiy + e_iy) and sin y = %(eiy —e_iy)

(and these may be familiar results from elementary complex numbers; remember that y is real). We use the structure here

to provide a definition of the trigonometric functions in the complex plane:

sin z =i(eiz —e_iz) and cOSz =l(eiz+e_iz),
21 2

and note that it may be more convenient to write 1/ 2i= —i/ 2 . Correspondingly, we define the hyperbolic functions as
. 1 - (-, -2
smhz=—(e —e ) and coshz=—(e +e )
2 2
and these agree with the familiar definitions (for real-valued functions) when we set z = x.

On the back of these definitions, some important identities connecting these four functions follow directly e.g. for real

Xx we obtain

sin(ix) :%(e_x —ex) :%i(ex —e_x) =isinh x; cos(ix) :%(e_x +ex) =coshx.

This, in turn, enables us to expand (as for the sum of two angles) in terms of real and imaginary parts, as the next example

demonstrates.
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Example 6 Real-imaginary form. Express cosh(x + 1)) in real-imaginary (Cartesian) form.

We start from the definition of cosh: cosh(x +1y) = l(ex+iy +e (Y ))
2
1 .. _ . . 1 _ 1. —x\ .
=E[ex (cosy+isiny)+e™™ (cosy—lsmy)} =E(ex +e x)cosy+51(ex —e x)smy
=cosh xcos y+isinh xsin y,

which is the required identity.

We now turn to a consideration of the logarithmic function, and the complications that arise in this case.

(e) Logarithms
This discussion leads us into new waters, because the simple-minded extension from

the familiar real functions (as used, for example, for the exponential and trigonometric functions), when applied to the

logarithmic function, is not possible. First, let us write z = rele

, then we obtain the standard expression
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logz=Inr+160,

and it is important to note what is written here. First, the logarithm of a complex-valued variable is ALWAYS written as
‘log’ (and the base is also always taken to be ‘¢); the use of ‘In’ has meaning only for real, positive quantities. So, what is
the problem here?

We know that, for any z, we have z = rei(0+2kﬁ) ; this does not affect the value (as a complex number) of z, but the polar
form then corresponds to a non-unique representation of a unique z. Thus, when we introduce this into the expression

for the logarithm, we obtain

logz=Inr+i1(0+2kn), ke,

which shows that the logarithm, in the complex plane, is not unique; this will have very significant consequences when
we are faced with integrating functions such as 1/ Z , which, we might expect, should be associated with log z. So far as
the function itself is concerned, it is usual to introduce (and use, when appropriate) a particular choice of the log value.

We define the principal value as
PV
logz = Logz=Inr+i® (-7 <®< 1),

where we have used the notation ‘Log, and included explicit reference to the choice of the principal value (‘PV’). The
special value is based — not surprisingly — on a particular choice of the arg of the log function; the one we use here is the
conventional choice, but any other is possible, providing that full rotations in the Argand plane are avoided. The choice

here is equivalent to the restriction: do not cross the line 7 >0, @ = —7 ; this line is called a branch cut:

1N
N

The effect of this definition is, across the branch cut (the heavy line in the figure), that ® is discontinuous: it jumps from

+7T to —T7.

Example 7 Logarithm. Find log(—1).

i(7+2nr)

First we write —1 =¢€ with # € 7., and so

log(-1)=In1+i(1+2n)7 =1(1+2n)x .
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This provides all the values of log(—1) ; if the principal value was required, then we have

PV
log(—1) = Log(-1)=ir.

(f) General powers

Although we can use our development of the polynomial function, and the conventional rules of algebra, to define (and
describe) what we mean by z", for 1 €7, this does not help us to attach any meaning to z% for arbitrary complex
numbers a. To accomplish this, we make use of the exp and log functions - but then, of course, we will encounter non-

uniqueness i.e. it is multi-valued! Thus we define z¢ according to
z% =exp(alogz),
PV

and then the principal value as z% = exp(alog z) . We explore this idea in the next example.

Example 8 Principal value. Find the principal value of i'.

‘We have

. PV
i' = exp(iLogi)

where
Logi=In1 +i(%72' + 0) (because we select the arg to satisfy —7 <arg < 7).
PV _af2
Thus we obtain Logi = i%ﬂ ,andso i' = exp(i.i%ﬁ) =e -,

Comment: This is quite an intriguing answer - is it what you might have expected for the value of i' 2 (Note that all

i . . .
values of 1 are real, irrespective of the choice of arg.)

Exercises 2

10. Write these functions in real-imaginary form (u +1v ), given that z = x +1y:

(@) ze%; (b) 22 —iz; (0) 22 — 23 (d) Z/Z .
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11.

12.

13.

14.

15.

16.

17.

18.

19.

Express these functions in real-imaginary (¢ +1v ) form, given that z = x +1y:
) : 4

(a) 2z° —iz”; (b) zsinz; (c) zcoshz; (d) 275 (e) (1+2)/(1-2).

Find all the values of:

1/2

(@) log(i¥%); () Log(—ei); () Log(1—i); (d) (1+i)'.

Find the principal value of each of these complex numbers:

(@ (1+1)' ®) 25 © A=),

Show that €” # 0 for all z.

Find all the roots of these equations:

(@) € =-3;(b) logz = %i;r; (c) sinz=2;(d) coshz=-1.

Find all the solutions of these equations: (a) sinhz = 0; (b) coshz=0.

Find all the solutions of the equation sinhz = k coshz, where k > 0 is a real constant. Discuss the three
cases: () O<k<1;) k=1;0) k>1.

Express these functions in real-imaginary form, given that both x and y are real, starting from the

definitions in terms of the exponential function:

(a) sin(x+1y); (b) cos(x+1iy); (c) sinh(x+1iy); (d) cosh(x+1iy), and, using earlier results:
(e) tan(x +1y); (f) tanh(x+1y).

Confirm that the expression for tanx recovers the familiar result; what are the corresponding expression
for tan(ix) and tanh(ix)?

The gamma function is defined as ['(z) = J.(:Ot e™ds  Use integration by parts to show that
I'(1+z)=2zI(z), with I'(1) =1, and hence, for n integer, that I'(1+7) =n! Also obtain the values of
@ T'(1/2); 1) T'(3/2); () T'(-1/2).

o .2 1
[You may use the identity: IO e dx= E\/; J

265 5 2 5 56 5 5 2 56 5 2 5 5 56 2 2 56 5 5 5 5 5 5 2% %t
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3 Differentiability

We now turn to a fundamental question, with far-reaching consequences: what is the derivative of a function of a complex
variable? As we shall see, viewed one way round, the answer is no surprise - it is exactly what we would expect based on

our knowledge of conventional differentiation - but another way round, it introduces ideas that are altogether unforeseen.

Before we initiate this particular investigation, we first invoke the requirement that our functions are certainly to be

continuous (at least, in some neighbourhood of the point of interest) i.e.

lim[f(z+&)]=f(2),
¢—0

where g € (C. Thus the approach to the point in question can be from any (and every) direction in the complex plane;

it is this qualification that will eventually lead to some important conditions.

3.1 Definition

Given a complex function, f, of the complex variable, z (so that f(z) € C, z €(C), then we define the derivative in

the familiar way:

f(z+8)~f(2) [_df

2 ; =5 f'(Z)j ;
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where é’ € (C, provided that this limit exists and that it is independent of the direction in which z is approached. We
write ¢ = h+ik , and then the ratio /1/k , as both h and k tend to zero, determines the direction from which the point
z is approached as the limit is performed. (We continue to use all the familiar notation for derivatives i.e. df’ / dz and

f'(2), as well as Ou/Ox and u,..)

It is informative to compare this description with the situation that pertains for the derivative of real functions, familiar

from any studies of elementary calculus:

I N
S \z=x+iy

.._>|<_ X X

two directions only an infinity of directions

The limit process, for real functions, involves just two directions: the point on the curve is approached from the left and
from the right. But in the complex plane, we may approach from any direction. For the definition of the derivative for
real functions, it is necessary that the two limits give the same result (and exist, of course); then we say that the function
is differentiable at this point. The same philosophy applies to the derivative of the function of a complex variable, but now
the limit must give the same result from all possible directions. Viewed like this, it is not surprising that this imposes a

very significant constraint in order to make differentiability possible.

Once we have this notion of a derivative in place, all the familiar rules for differentiation follow directly. However, before

we investigate, in detail, the consequences of this definition, let us look at a simple example.

Example 9 Derivative defined? Find the derivative of f = y +1x atthe point (1,1) by working from two directions.

We choose to take the limit, first keeping y fixed and then, separately, keeping x fixed. So in the first case, we obtain

) B : e
lim[1+1(l+h) (1+1)]=i
h—0 h
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and in the second we have lim
k—0

1+k+i—(1+i)j:_

Thus, in this example, the derivative is not defined because it is not unique.

On the other hand, if we start with a specific function of z, and then apply the definition, we find that the derivative

follows in the usual fashion.

2
Example 10 Derivative (first principles). Find the derivative of Z~ from first principles.

2 2 2
Vi | EEE) 22 | gy | 22667

We form — =

which is the expected result for this derivative (based our experience with the differentiation of real functions).

3.2 The derivative in detail

We now find the conditions - and there are two — which ensure that f =u +1v has a unique derivative at a point in
the complex plane. This calculation proceeds in three stages: first we find two necessary conditions, and then we construct

a sufficiency argument. We set

S =ulx, y)+iv(x, y),

and assume that all first partial derivatives exist (at least, in some domain around the general point z = X +1y ); the
limit that is the basis for the derivative will be (as outlined above) taken as { = /& +1k — 0. However, we start with

two special interpretations of this (cf. Example 9):

a) h—>0 fork=0;
b) k—0 forh=0,

which will generate our two necessary conditions.

(@ h—>0 fork=0

With this choice, we construct
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lim {u(x +h,y)+iv(x+h,y)— {u(x, y)+iv(x, y)}}
h—0 h

ou .ov
=—+i—,
Oox Ox

which is one version of the expression for the derivative at z =X +1).
b)) k—0 forh=0

Conversely, here, we construct the alternative version of the limit

i u(x,y+k)+iv(x,y+k)—{u(x,y)+iv(x,y)}
im
k—0 ik
.0u Ov
=—i—+—
d oy

These two results are two (different) answers for the derivative at a point; for these to be the same - an essential requirement

for uniqueness - then we must have
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Oou Ov Ou  0Ov

=— and —=

o oy oy o

These constitute necessary conditions for a unique derivative at a point. However, perhaps, as we take any other direction
(by fixing the ratio h/ k , as the limit is taken), we produce another answer, and so on. That this is not the case is what we
shall now demonstrate; what follows is the sufficiency argument (based on the simplest ideas that come from the assumed
existence of a Taylor expansion). More complete proofs, using the deeper ideas of functional analysis, are available (but

beyond the scope of this text).
(c) Sufficiency

This time we consider the full, general limit problem:

- {u(x+h, y+k) +iv(x+hy+k) = {u(x, p) +iv(x, y)}}

h+ik—0 h+ik

and because first partial derivatives exist, we may approximate the functions near to z = X +1y ie.forsmall { =h+1k,
by using Taylor expansions (and so we require, in addition, that the first partial derivatives are continuous). Thus we obtain
u+huy +kuy, + A+i(v+hvy +kv, +06)—{u+iv}

lim - ,
h+ik—0 h+ik

where, for simplicity, we have suppressed the arguments, (x, y), of all the functions; A and & are the error terms in the
Taylor expansions associated with the expansions of u and v, respectively. Because first partial derivatives do exist, these

are small correction terms in the limit, so we must have

) A+10
lim ( - ] =0.
h+ik—0\ h+ik

The necessary conditions are now used (e.g. replacing v,. by —u,,, and vy by u, ) to give

Y

lim
h+ik—0

h(u, —iuy)+ik(ux —iuy)+A+i5
h+ik

‘ (h+ik)uy, —i(h+ik)u, + A+id _
= lim : =u, —iu,,
h+ik—0 h+ik

forall § =h+1k — 0. Thus for f= u +iv to be differentiable, we require

ou Ov Ou  0Ov

=— and —=

o oy oy S

which are known as the Cauchy-Riemann (CR) relations.
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Comment: Here is an important observation; let us consider

u(x, y)+iv(x,y) = f(2,2) = f(x+iy,x~1y),

which is, in principle, always algebraically possible; see Example 4. As before, we assume that all first partial derivatives

exist, then we take 6/ Ox and, separately, a/ 0y , of this equation:

Uy +ivy = f, + fz and uy, +iv, =if, —ifz,

respectively. We now impose the CR relations, and this pair then becomes

u,—u,=f +f>andu, +iu, =1 or —1u +u, =,
x y z z y x z 7 Jz z 7 JzZ

and the first and third equations give, directly, 2 fz = 0: so fis not a function of Z . Thus the CR relations guarantee
that u(x, y)+1v(x,y) = f(z), and also that this function is differentiable. Indeed we see that, by taking a/ ox (or
we could elect to take 8/ 5y ; this is left for the reader to check), we obtain

of _df oz _ 0

df .
+1V —_—=u, +1v,.,
o doox o T de m =g tive

which is one our results for the derivative (obtained from first principles). Further, the derivative of f is the conventional

and familiar derivative, when expressed as a function of the single variable z.

Example 11 Derivative. Use the definition of €°, and the Cauchy-Riemann relations, to confirm that
(d/dZ) e¥ = ? (a areal constant).

‘We write

az — @OHY) — %% (cosy +isinay) (since o is real)

=u(x, y) +iv(x, y)
which gives 1, = ae“’ cosay (=v,)and v, =ae™ sinay (=-u

)

One version of the derivative (see above) is therefore

. ax . .
u, +1v, =ae” (cosay+isinay)
=qe®? (as required).

(It is left as an exercise to show that this same result is obtained, using this same approach, when « is a general (complex)

constant.)
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As we now demonstrate, the CR relations can also be used to find either u or v, given one of them - provided that the

given function is ‘appropriate’

Example 12 CR relations. Given u(x,y)=2xy+3e " cosy, find f(z)=u+iv.

From the given u#(X, y) we obtain

u,=2y-3e " cosy=v

- Xginy=
y and u), =2x—3¢ " siny=—v,

and integrating each of these, we find expressions for V(x, )):

2

Y= y2 —3e " siny+ F(x) and v=—x" =3¢ " sin y+ G(y), respectively.

Now these two are consistent when we choose F'(x) = —x%>+ 4 and G(y)= y2 + A, where A is an arbitrary constant;
thus

2

v=1% x> 3¢ siny+ 4.

We form u +iv =2xy +3e " cos y +i(y> —x% —3e ¥ sin y + 4)
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= —i(x% — y? + 2ixy) + 3¢ ¥ (cos y —isin y) +14
_ . 2 —Z .
=—1z"+3e “ +i4

which is the required f(z) =u +1v (defined to within an arbitrary (imaginary) constant).

We have demonstrated that a differentiable function of a complex variable is just that: a function of the single variable z.

We investigate this property a little further by working through the next example.

Example 13 Differentiable? Show that f =Z is not differentiable.

Here we have f =u+1v=Xx—1y, so that

thus u,, =—v, (=0), but u, # v, : the CR relations are not satisfied (anywhere), and so the given function is not

differentiable.

Finally, we may use all the ideas introduced so far to produce more derivatives.

Example 14 Derivatives. Use the derivative of €7 (for & a general complex constant) to find the derivatives of
sinz and coshz.

‘ 17/ : .
Given SInz =—(elz —¢ 12), then

21

d . | O PR 1 =
—(sin z) =—.(1elz +ie IZ) =—(elz +e IZ) =cosz,
dz 2i 2
1 -
which is the familiar result. Correspondingly, with cosh z = E(ez +¢e %), we have

%(cosh z) =%(ez —e_Z) =sinhz.
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33 Analyticity

We now introduce an important idea in the theory of complex functions, which is based on this fundamental definition:

If f(z) exists at z =z, and in a neighbourhood of z = z(y, and if f'(2() is defined, then f(z) is said

to be analytic (or regular or holomorphic) at z = z).

The most commonly-used terminology is ‘analytic’ (which is the one we will use most often), but ‘regular’ is also used
and, sometimes, the more technical ‘holomorphic’ (which is constructed from the Greek words for ‘whole’ + ‘form’ so

‘complete description’ i.e. it tells you all that you need to know).

Such a function, at least in this neighbourhood (‘nbhd’), is then called an analytic function: it exists and is differentiable
at z = z(. Such a function necessarily satisfies the Cauchy-Riemann relations at (and usually in a nbhd of) this point,

because the CR relations imply both existence and differentiability.

Finally, we often come across functions that are analytic everywhere in the complex plane; such a function is called an

entire function: it is defined (and is differentiable) throughout the entire complex plane.

Example 15 Entire  function. Show that f = e* (cosy+isiny) is an entire function, but that
f =e*(cosy—isiny) is not.

First, we note that €, siny and cosy all exist throughout the 2D plane i.e. for finite x and y, so both functions exist.

However, to be differentiable in the complex plane, the CR relations must hold; for the first function, with
u=e cosyand v=e*siny,

we obtain #, =e€* €08 y,u,, =—€"siny, v, =e"siny,v, =e" cos y,

and so U, =V,, and u,, ==V, everywhere: the first function is entire.

For the second function, we obtain

X _ X Lz _ X 1 _ X .
u,=¢ cosy,uy——e smy,v, =—¢€ smy,vy——e COoS y;

the CR relations then require cos y =0 and sin y = 0, which is impossible: this function is not analytic anywhere.

In this example, we see that the first function is simply f(z) = e, but the second is f= e”, which is not a function

of z (and so the CR relations are not applicable).
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3.4 Harmonic functions

Here, we present an important consequence of the CR relations (on the assumption that our functions « and v are now

twice differentiable). Consider the CR relations, and suitably differentiate them:

u v

y -V

XX

+ =V, and then form u xy = Vyys similarly u y =~V gives u

yx =

=0.

and so Vv, + vyy

Correspondingly, also from the CR relations, we obtain

Vyy = Uyy and Vix =—uyy,and SO Uy +Uyy, =0.

Thus both u and v satisfy the (two dimensional) Laplace’s equation; this equation is important, for example, in the study
of fluid mechanics, of electric and magnetic fields, of steady temperatures and of gravity fields. Typically, these problems

require that we

find @#(x,y) such that @, + ¢yy =0 with ¢ given on the boundary of a region.

Any solution of Laplace’s equation is usually called a harmonic function, and u and v together constitute conjugate harmonic
functions. The property that we have just described provides the basis for generating solutions of Laplace’s equation in
a very simple way: write down any f(z), separate into real and imaginary parts, then the two resulting functions are
necessarily solutions of Laplace’s equation. (Although this is constructively a very simple and, in a sense, a powerful

method, it is not suitable if a specific problem, with specific boundary conditions, is to be solved.)

/

Leadivy
% Maastricht University s Leanin:

Join the best at
- 2 u - 33" place Financial Times worldwide ranking: MSc
the Maastricht University International Business

1% place: MSc International Business
M - 1% place: MSc Financial Economics
SChOOI Of Bus' ness a nd - 2" place: MSc Management of Learning
° « 2" place: MSc Economics
Econom ICS! - 2" place: MSc Econometrics and Operations Research
- 2" place:MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is
the best specialist
university in the
Netherlands
(Elsevier)

Master’s Open Day: 22 February 2014

www.mastersopenday.nl

38 Click on the ad to read more
Download free eBooks at bookboon.com


http://www.mastersopenday.nl

Example 16 Laplace’s equation. Use f(z)=zsinz to construct solutions of Laplace’s quation.

We write f(z)=zsinz = (x+1iy)sin(x+1y)
= (x+1y)(sin xcosh y +1icos xsinh y)
= xsin x cosh y — y cos xsinh y +1i(ysin xcosh y + x cos xsinh y),
and so two solutions of Laplace’s equation are
u = xsinxcosh y— ycosxsinh y, v= ysin xcosh y+ xcos xsinh y.

(These can be checked by direct substitution, if so desired.)

Comment: In all the descriptions and developments so far, we have used only rectangular Cartesian coordinates — and
this is usually the choice that we make. However, all the usual results (and the CR relations in particular) can be expressed

in polar coordinates. Given the familiar transformation: X =7 c0s @, y = rsin @, then we may form

du Ou Ox Ou Oy . Ou Ou
—=——4———=—rsinf—+rcos—
80 ox 00 oy o0 ox Oy

. ou ou . _Ou
and, correspondingly, a— =cosf@—+sinf—;
a

ox oy

similar results are then obtained for Vg and v,.:

ov ov . ,0v Ov . 0V ov
—=cosf0—+sinf—, —=-rsin@—+rcosf—.

or ox oy 00 ox oy
These four relations (written now with subscripts for partial derivatives) then give

ru, =(rcos@u, — (sinO)uy, i, = (7sin Q)u,. +(cos O)uy

and rv, =(rcos@)v, —(sinf)vy, rv

y = (r sin@)v, +(cos O)vy;

the CR relations (written in Cartesians) are therefore equivalent to the pair
1 ) 1
(rcos@)| u, ——vy |=(rsin@)| v, +—uy |=0
r r

and (rsin@)(ur —lvej—(rcosé?)(vr+lu9j=0.
r r
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1
Thus we obtain U, =—vg and —ug =—v, (r#0),
r r

which are the CR relations written in polar coordinates. It is instructive to observe that the form of these two relations
follows the pattern of the original CR relations, in that 8/ ox — a/ Or and a/ oy —> 7'_1 8/ 00.

It is left as an exercise, for the interested and committed reader, to derive this version of the CR relations directly from

the polar form. That is, given

f(2)= Fre'?) = u(r,0) +iv(r,0),

find the derivative of f(z) by considering the two limits, separately, in which only r changes or only 6 changes, and

equate the two results. You may then show that
Fi(2)=e O +iv,)=r"e vy —iuy).

Example 17 Polar form of CR relations. Use the polar form of the Cauchy-Riemann relations to show that f(z) =logz

is an analytic function for all z # 0.

First we set z = relg , where we must ensure that the function is continuous, so we elect to use —77 < @ < ¢ (because the
function will notbe differentiable at the discontinuity); indeed, we may choose to use anybranche.g. 6y —7 <0 <Gy + 7
, for any 6); then

f(z)=logz=Inr+10 ie. u(r,0)=Inr, v(r,0)=0.
Thus u, =1/r,vg=1 uy=0,v.=0,

and so the CR relations are satisfied everywhere throughout the plane, except at the origin (where fand the CR relations

are not defined) and on each branch cut.

Note: This example shows that, away from the origin, the CR relations are satisfied (for any given choice of the arg), even
though this function is multi-valued. Indeed, we can extend this calculation to obtain the derivative of the log function
in the complex plane: write logz = f(z) = f (1”6“9) =u +1v, for any 6 as above, and then take, for example, a/ or

of this definition, to give

el r(rey=e? f(2)=u, +iv, =—,
r
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where the last term here is obtained from the work in Example 17. Thus we see that we may write

f@=—=,

re

which confirms that the derivative of log z is the familiar 1/ z , for any choice of the arg. (The change of arg amounts to
an additive constant in the representation of logz, and differentiation removes this: in part, the result here is therefore

no surprise.)

Exercises 3

20. Which of these are analytic functions (for x and y real)? Of course, this means that you must check if the

Cauchy-Riemann relations hold in some neighbourhood of the complex plane.
(@) e ¥(cosy—isiny); () X; (c) €*(siny+icosy); (@) x> +iy?; (&) 2x+ixy?s () 2—y+ix;
8) ¢”(cosx+isinx).-

21. Given these functions, #(X, ), determine (wherever possible) f(z) =u+1iv:
(@) 2x(1—y); (b) 2x—x° +3xy2; (c) X2 ye'ie) xyi(f) y—x;: (g y2 ~x%.

22. Show that these functions are NOT complex-differentiable i.e. the Cauchy- Riemann relations are not

satisfied in any neighbourhood of the complex plane:

@ R(2): 0 | 2%

23. Given that f(z) =u+1v is an analytic function, show that

Oou Ov Ou oOv
——t+———=0
Ox Ox Oy Oy

and then that lines of constant u, and constant v, are orthogonal.

Use this result to show that lines of constant | f | ,and lines of constant arg( /') , are orthogonal. [Hint: consider

the function Log( /'), so avoiding the branch cut, which is necessary for an analytic function.]
24. From the definitions in terms of exponential functions, use the derivative of e%? to find the derivatives of

(a) cosz; (b) sinhz.
o*p 0*¢
25. Find pairs of solutions of Laplace’s equation, St 5= 0, based on these complex functions:
ox~ oy
(@) ze2%; () z%; () z% sinz; (d) &% cosz .

256 56 5% 556 56 56 3 5 56 56 56 5 5 56 56 6 5 5 56 56 % 5 2 6 % % 2 %
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An introduction to the theory of complex variables Integration in the complex plane

4 Integration in the complex plane

In this chapter we address the very important issue, with far-reaching consequences, of what we mean by integration in the
complex plane. This requires us to start from the familiar (real) line integral, suitably written to describe the integration along a
path in the complex plane. This then leads, quite naturally, to the notion of a contour integral in the complex plane. Once this is
done, we can construct the various theorems — which take a particularly simple form - that enable this integration to be performed

altogether routinely (avoiding the usual techniques of integration which are familiar from more elementary mathematics).

4.1 The line integral

Integration in the complex plane, from one point to another (let us suppose from A to B), is necessarily a line integral:

7
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(It is instructive to compare this with the conventional real integral, which is solely along the real line.) In order to
interpret, and suitably define, this line integral, we introduce a real parameter, ¢, and consider first g(¢) = u(t) +1v(¢)

for a <t < b; we have written this function in real-imaginary form. Then we construct

b b
[ gy = [[ut) +ivn)] ar
b b
= [u(tydr+i[vr)de,

by invoking the linearity of the integral operator i.e. the integral of a sum is the sum of the integrals (and noting that 7
is a constant independent of t).

L 2
Example 18 Line integral I. Evaluate J(t +it2) dz.

0

We have
(t+it?)? =* —t* +2ir°

1 1 1
1 1
2290 — [(2 _ /4 (r 34, _[1,3_1,5 14
and so '[(t"'lt ) dt—'[(t -t )dl+1'[2t dl—[gl —gt } +1[—t }
0 0 0

11 .1 2 1.

=———ti—=—a—i-

35 2 15 2

It is usual to refer to a line integral in the complex plane as a contour integral.

We now extend this simple idea by considering a general function defined in the (x, y)-plane. Let us suppose that we
have a complex-valued function, f(X, ) (not necessarily, at this stage, a function of z), that we integrate along a path/
contour C which is represented by z = y(¢), a <t < b (where t is a real parameter that maps out C) . Following the

development above, we define the line integral in the complex plane by using the familiar rule for the change of variable:

b
_ dy
i S (x,y)dz = j [, @] -dr.

Example 19 Line integral II. Evaluate I( x2 + iyz ) dz along the path:
C
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(@z=t+1t,0<t<1;(b)z=1¢, 0Lt <1, followed by z=1+1f,0<¢1 < 1.

. dz _dy o
O] On this path, we have x =¢, y =1 and d_ = d_ =1+1; the integral becomes
t t

1
I(tz+412x1+i)dt:(l+d)2[%t3};
0

1 2
—(1+2i-1)==i.
3 )=3

1
d 1
(b) On the first part of the given path, we have x =¢, y =0 and d—7 =1, and so we obtain Itz.l dr =§ .
t
0

d )
On the second part of the path, x = 1, Y=t and d—}/ =1; so we now have
t

! N R b L |

j(1+1z ).1dt=[1t——t J —i-—

0 3 Jo 3
Thus the integral along the whole path becomes

27 .2 1 .1 .
X +1y)dz=—+1——=1.
Jo O+t dz=2ri=g

We observe that, in this example, the two line integrals are of the same function, but on different paths between the same

points:

(1+1)

(a)
(b)

\ 4

The values of the two path-integrals are different, so the line integral in this example is path-dependent. Here, the function
being integrated, f = x2 + iy2 along the path, cannot be expressed as a function of z alone; the interested reader should

check the CR relations for this function.
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4.2 The fundamental theorem of calculus

We are now in a position to turn to the type of function of most interest and relevance to us, namely f(z), where fis
analytic on the path C: z=y(¢), a<t < gFFurther, we make the simplifying assumption that we can express f(z)

as the derivative of a function i.e. f(z)= E, then on the path (using our definitions above) we have

b b
[ F@)dz=[ fly@)y 0 de = [ FTy@)]y ) de
C a

a

b
_ %{ Fly@l}dt =[Fly O], = FIy (0)] - FIy(a)]

which is the fundamental theorem of calculus i.e. differentiation and integration are inverse operations (first published
within the familiar calculus by Leibniz in 1675). Further, we see that the value of the integral is path-independent: the
value depends only on the end-points, denoted here by z = y(a), 7(b) . We note, however, that this result does require

F(2) to be analytic, and so defined (and unique), and differentiable, on y.

Example 20
C

Contour integral I. Find the value of I z%dz from z=0t0 z=1+1.
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We have simply that

1+i .
1+
[ zzdz=jzzdz=[lz3} LV
C : 37 Jo 3

1 2
=—(1+43i-3-i) == (=1+i).
3( ) 3( )

4.3 Closed contours

We now investigate an important class of contours, which sit at the heart of the fundamental theorems on integration
in the complex plane; these are closed contours. First, a simple definition: a contour C: z = ¥(¢), a <t < b, for which

y(a)=y(b), b>a,is called a closed contour.

(D)

y(a)\

In this figure, we have drawn a simple, closed curve - a Jordan curve (which should be a familiar object from any studies

at an early stage in university mathematics); in this case, we usually write

$rae,
C

where we have added a circle notation to the integral sign (which also may be familiar). Now suppose that f(z) is

analytic along C, and that f(z) = F'(2) (as described above), then the fundamental theorem gives

if F'(z) is also analytic and continuous on C. (If it happens that /(z) is not continuous along the path, then the

value of the integral will, in general, include a non-zero contribution from the jump in value.)

1
Example 21 Contour integral II. Find §C—2 dz where the contour is any (simple) closed path that does not pass

through z=0. z
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Let us choose to integrate along this path form z = z(j back to z = z(), then we obtain

cﬁcizdz:[—ﬂozo.

Note that this function is defined for all finite z that does not include z =0.

As a follow-up to this, it is an instructive exercise to repeat the example, but now for a specific choice of contour e.g. a

circle of radius a centred at the origin, so the path is z = y(6) = ael'g ,050<2r:

1 2r 1 " ; 27 »
—dz= | ——=aie'%dO=— | e'd0O
C.BC 22 ,('; (a619)2 a E[

.0 )
:_l[e_lg} d :_l(e_zm —l):()_
a 0 a

We now investigate an example with important consequences but which, at first sight, appears to be essentially a repeat
of the previous one. The difficulties that we encounter are most easily seen by attempting the calculation for a specific

contour, exactly as we have just done.

1 :
Example 22 Contour integral I1I. Find §C; dz where the contour is the circle z = y(t)= ae, 0<t <27, ie.

the circle of radius a, centre at the origin, mapped out just once in the counter-clockwise direction.

Although there might be the temptation to use the integral of 1/ z (i.e. log z), this function is not well-defined (not

being single-valued on one complete circuit around the origin); so we work from first principles. Thus we write

1 2 1 ) 27
gS —dzzj—.aie”dt: jidtzzm.
Cz o ae'l 0
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An introduction to the theory of complex variables Integration in the complex plane

The answer in this case is not zero, even though the function l/ Z is analytic on the chosen contour. That this has

happened has far-reaching consequences. The important difference in this example becomes clear when we consider
the log function (which should, presumably, be related to the integral of 1/ Z, as we mentioned in the commentary in
the solution). As we go once around the circle, but not crossing the branch cut, log z jumps in value by 27 (because the

function is discontinuous across the branch cut):
ael” ) ae'”
[log Z]ae‘i” = [log |z| +1(®+ 2n7z)]ae_i,, (for any n)
=lna+i(r+2nr)—[Ina+i(-7+2nr)|=2nxi.

The underlying reason for the result obtained in the previous example is now clear: the function that is the integral of
l/ Z is not continuous on the contour. This is in contrast to all our earlier work — underpinning the CR relations — which

has dealt with continuous (and differentiable) functions.

Comment: It is usual to think of the jump in value as moving onto a parallel complex plane; these planes are called
Riemann sheets (since he first thought of multiple values this way). This interpretation is depicted in the figures below;
the first shows a 3D depiction, where the movement onto a new Riemann sheet is represented by spiralling up (or down);

the second simply gives copies of the complex plane (in polars), repeated every 27.
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Riemann Sheets

Example 23 Contour integral IV. See Example 22; now let 0 < ¢ < 27n, where nisan integer (positive or negative),

so the circle is now mapped out n times.

As before, we write (J-) —dz= J- aleltdl‘ J. 1dt =27in.
0 a C

The answer here — which should be compared with that obtained in the preceding example — shows that each rotation
about the origin increases the value of the integral by 27i; # is then, quite naturally, called the winding number. An increase

in n is equivalent to moving onto a different Riemann sheet.

Comment: If the given contour does not cross the branch cut (and so does not encircle the origin), then the problems
associated with crossing the branch cut - as just described - cannot arise. To see this, consider the example of the contour
Cz=y@)=zy+ ae'?, 0<0 <27, with |ZO| > a . This circle, of radius a, with centre at z = z(y, is chosen so that

the branch cut is not crossed:
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Thus we have

i0

cﬁ— j aie —5d40= [log(zo +aew)ﬁﬂ

0 20 +ae

—log(zo+a62 ) log(zo+a1)=0

An important final calculation of this type, which we shall need later, arises when we consider the circular contour about

the origin, but now integrate any power of z (power # —1); this we develop in the next example.

o
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Example 24 Contour integral V. Find ff Mz n#—1,where Cis z= ae, 0<1<2rx.
C b

2r ) 2r
We have &(‘anzz J’ (ae")”aie"dt=ia1+ﬁ J' oi(l+n)t 4,
0 0

1+n ) 20
= a—[el(Hn)t} =0 for n#-1.
1+n 0

We see, therefore, that for all n # —1, with this contour around the origin, we obtain the zero value for the integral; only

for the case n =—1 (the log integral) do we get a non-zero answer: 27i (see Example 22).

Exercises 4

26. Evaluate these line integrals, along the given path ¥ (?):
(a) -[CZ3dZ’ y(t)=2t,0<t<1;(b) JCZ3dZ’ y(t)=(1-1t)+it, 0<t<1;
© jc sinzdz, 7(0)=3(1-), 01 <L @) [ zde.. 7(0) —ae'™, 0<t<1;
(e) IC zZ'e®dz, y(t) = te'”, 0<t<oo wheresisa complex constant
(see Exercise 19).
27. Evaluate jc (y—ixy)dz along these paths, z = z(£) = x(¢) + iy(f) -
(@) z=2t—1it,0<t<1;(b) z=2¢, 0<¢ <1, followed by z=2—1t, 0<t < 1;
©z=—it,0<t <1, followedby z=2¢—1i, 0<¢<1;(d) z=2t—it>, 0<¢<1.
28. Repeat Exercise 27 (for all four paths) for the line integral J-C (y—ix)dz .-
29. Find the values of these integrals, where the end-points of the path are given in each case:
(a) JC 22dz from z=0to z=1i; (b) J'C sinz) dz from z=0 to z =iz ;

-z _ 1. : 2 _ .
©J.CC dzfromz=1to z=1-1;(d) ICZSIHh(Z )deromZ— ltoz=1.
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30. Find the value of J c & along these paths, z = y(t) = x(¢) +1y(¢):
V4
@ z=(1+1)—Q2+1)t,0<t<1;00) z==1+(2-1)t, 05t <, © z=1+1t, 1<t < 1.

Now sketch the path described by (a) + (b) + (c). Use your results to find the value of the integral around this (closed)

path. [Remember to recast the path integrals into real integrals expressed in terms of the real parameter, ¢.]
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5 The Integral Theorems

In the preceding chapters, we have introduced the important ideas of analytic functions - and so differentiability — and
the meaning of, and methods for, integrating along contours (paths) in the complex plane. With this foundation in place,
we now turn to the development, and proof, of some fundamental results that are both amazing and amazingly simple and

elegant. These underpin the many applications of the theory of complex variables, some of which we will describe later.

5.1 Cauchy'’s Integral Theorem (1825)

We start with a description of the types of domain, in the complex plane, within which we shall be working; in particular,

we introduce the concept of a simply connected domain. This is defined as follows:

A domain, D, is simply connected if every simple, closed curve (i.e. Jordan curve) within D encloses only points

of D.

This situation is depicted in these figures:

simply connected multiply connected

In the first figure, we see that the Jordan curve (labelled C), no matter how it is chosen, always contains points that are
within D (the grey area). In the second figure, the domain - the grey area again - is defined between two bounding curves;
in this case, some Jordan curves encircle only points of D, but any contour around ‘the hole’ does not. The first is simply

connected, and the second is multiply connected (and with one ‘cut-out, we usually say that it has a multiplicity of one).
To proceed, suppose that we are given f'(z) which is analytic throughout D, which is a simply-connected domain, and

any Jordan curve (contour) C within D, mapped counter-clockwise (so that points interior to C are always to the left).

Then we find that
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$r(x)dz=0,
C
which is our first fundamental result.
We present a proof of this theorem which is based on Green’s theorem (with which the reader is assumed familiar):

Let us be given a Jordan curve, labelled I", which is mapped counter-clockwise; the region interior to I is
labelled R. Further, we are given two functions, #(X,y) and v(x,)), which possess continuous first partial
derivatives in R and on [". Although we can work separately with u or v, it is usual to combine the pair -

particularly in the light of what we do here. The theorem is then expressed as

i u(x, y)de+v(x,y) dy] =g[%—%jdxdy.

In passing, we note that this identity can be interpreted as a two-dimensional version of Gauss’ (divergence) theorem.
This is obtained by taking, in Gauss’ theorem, the divergence of the vector function (V,—) and, of course, restricting

the geometry to the 2D plane (but remember that Green’s theorem predates Gauss'!).

Proof

Let C be represented by z = y(¢), ty <t <t], with y(a) = y(b), then

b
1=$f(@)dz=[ o]y @O de
C a

and now write f =u(x,y)+iv(x,y):

b
1= {u[x®), yO]+iv[x(0), y()]} ¥ (1)t

on the curve. Further, let us write explicitly y(#) = x(¢) +1y(¢), then

b
I= j {u[x(@), y(O)]+1v[x(0), y(0)]} [x' (1) +iy'(1)] dr .

Finally, this can be recast as line integrals in x and y:

b

1= [{u[x(0). yO]x' ) ~v[x(0). )] ()} dt
w

[ {u[x(0), y(O] ' @)+ v [x(0), (O] x'(1)} dt
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= [l ) dv =v(x, ) dy]+ [ v0x, ) de -+ e, y) dy].
C C

This representation of the integral along a curve in the complex plane is the starting point for the integral theorems. Here,

we have shown that

§ £ @) dz = f[uCx.y) de—v(x, ) dy] +i§ v(x, p) de+ucx, y) dy ).
C C C

The two real line integrals that we have now generated are rewritten using Green’s theorem (all the conditions for which

are satisfied, with R interior to C, which sits inside D):

i [u(x,y)dx—v(x, p)dy| = g(—%—%)dxdy

ou Ov
and v y)drrutr,y)dy] = ”(& Y drdy .
C R
But f'(z) is an analytic function, so the Cauchy-Riemann relations hold i.e. u, = vy and uy, = —v, throughout D,
and so also throughout R; here we have used subscripts to denote partial derivatives. Thus the two double integrals above

are zero, and hence
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§/(@dz=0,
C
which is Cauchy’s Integral Theorem (1825).

It is important to observe that this result — the integral around a Jordan curve in D - holds for any and every contour

(Jordan curve) inside D.

Example 25 Contour integral VI. Given the contour C: z =y(t) =e'’, 0<t<27, evaluate (if possible):
- dz
(a) (.f) (z+e )dz;(b)(_f) —
c cz-1

(a) The given function, which is to be integrated around the contour, is f(z) = z + €7, which is analytic inside and on

C (indeed, it is an entire function), and so Cauchy’s Integral Theorem gives directly the answer zero.

(b) In this case, the given function is f(z) = 1/ (z— %) which is not analytic at z = %; this point sits inside the given
contour (which is a circle of radius 1 centred at the origin). Thus the function is not analytic inside the contour, and so

Cauchy’s Integral Theorem is not applicable: we cannot evaluate this integral (at present).

Comment: In 1900, E. Goursat (1858-1936, a French mathematician), proved that

pr@dz=0
C

provided only that f'(z) is analytic inside and on C; there is no requirement for f”(z) to be continuous - only that it

exists. Some authors therefore refer to our theorem as the Cauchy-Goursat theorem.

We should also mention that there is a converse of Cauchy’s integral theorem. If f'(z) is continuous throughout a domain,

D, in the complex plane, and if CJ-)/[ (2)dz=0 on every Jordan curve, C, that is within D, then f(z) is analytic in D.
C
This is known as Morera’s theorem; G. Morera (1856-1907), an Italian mathematician, proved this result in 1889.

5.2 Cauchy’s Integral Formula (1831)

In Example 25 above, the second choice of function did not lead to an evaluation: the function to be integrated was not

analytic inside the given contour because, at one point (z = %) the function was not defined.

Download free eBooks at bookboon.com



We now extend the ideas, as developed by Cauchy, to accommodate this situation, and show that the value of such integrals
can be found. (It is instructive to note that, in Example 25 (b), if a different contour had been chosen, so that the given
function was analytic inside and on this new contour, then the value of the integral would be zero, by virtue of the Integral
Theorem. Such a contour could be |Z + 1| =1: a circle of radius 1 with centre at z = —1; this does not enclose z = %.)
The first stage in this extension of Cauchy’s theorem (above) involves describing how Cauchy’s Integral Theorem can be

applied to a multiply-connected domain. Let us consider the following (bounded) domain:

This figure represents a domain which contains two cut-outs - a multiplicity of two - defined by the contours C} and
C, (each mapped clockwise, note) and inside the contour, C (mapped counter-clockwise), which defines the boundary
of a domain in D. We introduce any appropriate lines (not necessarily straight), L, Ly, L3, that join Cto Cj , C} to

,and C, to C again, respectively. The function f(z) is analytic throughout the two regions so formed - labelled
R; and R, - and on the boundaries of these two regions. The upshot of this is that f(z) is analytic inside and on the
boundaries of the two regions, R and R . Thus Cauchy’s Integral Theorem applies to each:

$/(2)dz=0 and ¢ f(z)dz=0,

G G

where C{,C5 bound Ry, R, , respectively. For each of these contours, observe that points interior to the region, as the

boundaries are mapped out, are always to the left (by virtue of our careful choice of mapping directions).
These two integrals, which clearly exist because of the analyticity of f and the bounded regions involved, are added; this

results in the integrals along the line segments, L, Ly, L3, cancelling identically. (The integrals are equal and opposite,

which we have indicated by the arrows in the figure.) Thus we have

froe+dree= ¢ fed=0,

(o G C++G,

and so (j)f(\z)dz=— Cﬁ f(2)dz= CJ-) f(2)dz,
C

G+G, —(G+G)
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An introduction to the theory of complex variables The Integral Theorems

because reversing the direction of the integration changes the sign of the integral. This new result, which has required no

more than an application of Cauchy’s Integral Theorem, describes the region shown in the figure below:

C

where the original directions have been retained. It is clear that this type of argument can be applied to a domain which
comprises a bounding contour (C), and any (finite) number of holes/cut-outs. Let us take the special case of a multiplicity

of one i.e. just a single cut-out:

This e-book Y o
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and note the reversed direction now chosen for mapping the contour defining the cut-out; here, f(z) is analytic in the

region between C and (7, and also on each of these contours. The result just obtained, applied in this case, then gives

$f(D)dz= f(2)dz

C G
(and note the sign change in this identity, brought about by the change of direction on Cj ). Thus, given any contour C,
every contour outside this, like C, gives the same result i.e. every contour that is inside a given C, and which encircles Cj
, has the same value of contour integral. In consequence, the integral around the bounding contour (C), and any single

interior contour, are equal.

This important deduction, based on the first theorem of Cauchy, provides the mechanism for deriving his second

fundamental result. To do this, we consider the integral

@)
!

Z—ZO

where f'(z) is analytic inside and on C, and where Z) is an interior point; the proof follows.

Proof

The function f(z) / (z—2z() is clearly not analytic everywhere inside C, but it is on C (and on C the integral exists and
is unique: it is simply a line integral). We use our new result by defining a multiply-connected region, so that the contour
inside encircles the point Z(. Further, the value of the integral that we require (around C) is equal to the value around
any (and every) contour inside, so we may choose any one that is suitable. We elect to use a circle of radius r centred on
Z( and, because z(y is strictly interior, we may always choose a radius that ensures that the whole circle remains inside
C, no matter how small the radius might be. We now have the following configuration, where the specially chosen circular

contour is Cjy:
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From the identity just derived, applied in this case, we obtain

zZ zZ

gS f@ gS /@
Z—Z Z—Z

and we write the contour, Cjy: z = z() + rei'g ,0<0< 272' . Thus we have

+ re

@f("‘) dz = J- f(“() )neledg_lj-f(_ _Helﬂ)dg
A - 40

where we may take r to be as small as we wish: we may select a circle 1nﬁn1te51mally close to z(y (because the radius of
the circle, or the shape of any contour around Z(), is irrelevant). Remember that f(z) is analytic throughout the interior

of C,so f(z() certainly exists and is continuous. With this choice of r, i.e. 7 = 0, we finally obtain

é f(2) dé_l_[f(- )dO=if(z )Zfd9:2mf(' )
Zp 20 <0
0

that is $LC) 4z = 27if (zy).

ZZO

which is Cauchy’s Integral Formula (1831).

Comment: An alternative way to analyse this technical problem is as follows. We have the integral

2z
I(r)=i [ f(z9+r¢'%)do,
0
for any given fand Zz(; the derivative with respect to r then leads to
2r 2z
I'(r)=i| f(zo+re'?)el?do = B f(zg+re'? )} ,
0 0
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where the resulting integral (which has been integrated directly) exists because ' is defined throughout the interior of

C. Thus we see that, for all » # 0 (but this still allows 7 — 0 ), we have
2z

I'(r)= B f(zg+re'? )} =0;
0

thus the value of I is independent of r, and so any choice of r will give the value of I for all r. The choice we make is 7 — 0.

Cauchy’s Integral Formula is remarkable on two levels. First, a rather general problem in integration - and f(2) is any
analytic function - is reduced to a simple algebraic exercise. There is, however, something even more surprising; let us

write the formula as

_ L fE@) .
f(Z)_27zi(2[,)z'—de ’

which follows after a relabelling. This demonstrates that, given a function on C only, then we can determine the function

completely at every interior point. (Nothing close to this type of property exists in the theory of integration for real functions.)

z+eé°

5 dz, where C, mapped counter-clockwise, are
z7 -1

Example 26 Cauchy’s Integral Formula. Find the value of §C

these circles:

@ |z =1/2;®) [z2=1]=1/2;(c) |z+1]=1/2.
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z+e
The integrand here can be written as f(2)= (z+1)(z-1)’ which is not analytic at z = *£1; these two points, and the

three choices of circle, are shown in the figure.

(a) For this choice, the integrand is analytic inside and on C, and so Cauchy’s Integral Theorem is valid:

Z
cﬁ z+e dz=0..
€72

(© (@) (b)

(246D (24D

(new) numerator is analytic inside and on C; thus we may apply Cauchy’s Integral Formula toZgTvle

(b) The circle in this case encircles just the point z =1, so we write the problem as where this

z 1
qgcwdz:% e | Lo

z—1 1+1

(c) We use the same type of approach as adopted in (b); we write the problem as (_[)CM dz, where the

, L z+1
numerator here is analytic inside and on the contour C; thus

g5(z+e )/ (z— D 4o —l+e! (e Y.
z+1 —1-1

In this example, we have worked with some specific contours - various circles — but any contours that encircle the zeros
of the denominator (or avoid them altogether), exactly as the circle do, will give the same values for the integral. This is

described above, in the preamble to Cauchy’s Integral Formula; thus, for the preceding example, we could use:
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for exercises (a), (b) and (c), respectively, and obtain the same answers.

53 An integral inequality

A result that we shall need in order to complete the demonstration (and proof), involved in the evaluation of real integrals,
requires an important and fundamental idea in the theory of integration. Indeed, we start with a standard result for real

integrals, and then show how this can be extended to contour integrals in the complex plane.

For real integrals, we have the familiar result on a bounded domain:

b b
[ o d|< [|7(0)|dx.
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This is an elementary property of classical (real) integrals. It follows, either by considering what happens if the function
to be integrated is somewhere negative-valued, and this is replaced by | f (x)| : clearly the integral (provided it exists)
of | f (x)| is greater than (or equal to) the integral of f(Xx) (on the same interval). More formally, let us suppose that
—0<m=< f(x) <M <, then

b
m(b—a)sjf(x)deM(b—a),

a

which bounds the corresponding area, above and below, by suitable rectangles.

b
Indeed, if m=0(so f >0), then .[f(x)dx >0.

a
We use this idea in a slightly different form: for any f(x), then f(x)< | f (x)| (where equality holds if f > 0, and
the inequality for f < 0). Thus we have

b b b b b
[reodr< |G| dr andso ([ £(x)d| < ([| £ (0] dx| = [| £ ()] dx,

which is the required result.

We need the version of this result that applies to contour integrals in the complex plane. In order to interpret this property,

which applies to real functions as presented above, we write

360°
thinking
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4

[r@dz= [ flr®1y @) de,
C to

on the path C: z = y(t), t) <t < ¢ . The result of this integration is to produce an answer that is - of course — a complex

number; let this be written as R el¢, and so

4 .

[f(rdz= [ flry () de = R
C to

This is rewritten in the form

4
e[ f(2)dz=¢7 [ fIr(O1y'(t)dr =R
C %
which is real and positive because R is the modulus of the complex number which is the value of the integral. Now we

take the modulus of this identity:

A
=R="7 [ fly0]7(d.

lo

e ¢ [ dz‘ =
C

[f(2)dz
C

This last term then gives
1 ho
[ Sy de= [ e flyo]y @) de,
fo i

which, from above, is necessarily real i.e.

n o 4 ' 4 '

[ 1@y @di= [ /] froly Ofdr+i | 3{e7? 10170} d

% {0 {0
where the second integral is zero. But

(e Mol ) <[ o1 0
because, always,

a=R(a+ib) <|a+ib|=Va* +b*;

SO

e fly )]y (0)|dr.

n oo 4 ' 4
R= [yl 0de= [ R fyony o) de< |
ly lo )
Finally, we write

b, 1
| ‘e—wi Iy @] y'(t)‘ de = [|flr1y (0] dr,
fo

)

Download free eBooks at bookboon.com



gl
and so we obtain j f(2)dz| < j /(D17 (0)]dr,
C to
or, written in the more usual short-hand style,

[r@dz| < []£(2)]|dz].
C C

This result precisely mirrors the standard result for real functions — perhaps no surprise since it simply makes use of the
modulus function. This integral inequality can be used exactly as written in this latter form, but it is sometimes useful to

interpret it via the real parameter, ¢, as in the preceding expression.

54 An application to the evaluation of real integrals

We shall write quite a lot about how these ideas, appropriate for the complex plane, can be used to evaluate certain real
integrals. For the moment, let us give a fairly simple introduction to the basic method and thinking, which should be both
instructive and intriguing. The idea is fundamentally straightforward: for some given real integral, with an integration
variable x, say, then replace this by z (so that on y = 0 we recover the original integration variable). Then we introduce
a suitable contour (in the complex plane) and use an integral theorem to evaluate this; the extraction of the evaluation
along the real axis — and therefore the desired result — is then almost immediate. We will develop and explain the details
in the case of a familiar integral (which can be evaluated by employing routine methods, and this is therefore available

as a comparison and a check).

0
We consider the problem > this is easily evaluated using conventional methods:
ol+x
0
j =[arctan x] =17
1+x 2
0

So we already know the answer; can we now recover this using the technique outlined above?

We construct the associated problem , where C is chosen to enclose a suitable semi-circular region:
C
—R R
R
The contour integral, evaluated along the real axis, then becomes J- — > and so we shall need to take R —> o0
1+x
-R
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(and then cope with the lower limit being 0 and not —o0 later). Returning to the contour integral, we see that
1 1
1422 (z+i)(z-1)

i.e. this function has zeros in the denominator at z = 1, and one of these might occur inside the semicircle that we have
chosen. So that, as the radius increases, we do not move from a region without, and then a region with, z = 1 inside, we

choose the semicircle, at the outset, so that R >1:

R>1

—R R

The integral can be evaluated, on this contour, by using Cauchy’s Integral Formula:

CJ‘J S él/(z_i_l)dz i 1 r

1+1

SIMPLY CLEVER
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We see that the function 1/ (z+1) is analytic on and inside the semi-circular contour chosen; certainly it is not analytic

at the one point z = —1, but this is outside the contour.

Now we have dz

R
d—>=] dx2+.[ dzzz (=7) )

C1+Z _R1+x s

where ‘s¢’ denotes the integration along the semi-circular path; we need this integral or, rather, an estimate of the value

of the integral on this path. We represent this path in the form z = R ele , 0 <60 < 7, and use the integral inequality:

T
gtsl]

iRew
2

da,

1+z

C 0

and then the triangle inequality

2

1+ 22 +1>2|z%|= R2 on the semicircle.

to give

1 1

1+222R2—1 and so < >
2l R-1

Thus

>

1+z

enabling the integral inequality to be written as

T T
(j; dzz SRJ- (219 = 2R dé= 72[R —>0 as R—ooo.
cl+z oR°-1 R -1, R -1

(Note that we have used the elementary property: ‘ielg‘ =1)

To complete the argument, we let R — o0 in the result (*) above; the first (real) integral approaches the one that we
require (almost), and the second tends to zero (and the sum of the two integrals remains equal to 7):

o0

J

—00

dx

1+x

2:72'.

This integrand, however, is even and so the integral on [0, 0) is half this value:
T dx
ol+x

1
227
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as required. The expected result has been obtained without recourse to integration in any conventional sense. Indeed, the
familiar philosophy: to evaluate a definite integral, first find the indefinite integral and then impose the limits, does not
appear in any form here. The definite integral is found directly and by an essentially algebraic process only.

0 COSX dx
Example 27 Real integral I. Find J_, 1 +x2 (and we may assume that the integral along the appropriate semi-

circular arc — O as its radius —> 00).

In order to evaluate this definite integral, we consider

iz

feio 2 ®

and this is the choice to make, rather than cos Z/ (1+ 22) , as we will explain shortly. Then, on z = X, the real part

gives us the desired integral.

We use exactly the same semi-circular contour above i.e. in the upper half-plane with R >1 so that z =1 is inside;
then we write
ii

iz .
$ CHIEEDPRIPYN (LR IS
C z-i 1+1

iz R ix
But Cﬁ - 7 dz= - 7 &+ 2
Cl+z cplex Ltz

elZ

dz (::ne_l),

and so, as R —> 00, with the assumed result on the semicircle, we obtain

o0 P o0
cosx+isinx _ COS X _
J.—zdx=7zelie J. dx=rme !
1+x

S _ool+x

In this example, as an additional result to the one requested, we see that

J‘OO Sin x dx -0
—0 1 4 2
© sinx
an otherwise obvious result (provided that I dx exists - and it does) because the integrand is an odd function.
0 142 )
iz
Comment: The result that we are asked to assume is that I 3 dz — 0 as the radius of the semicircle tends to
infinity. This is the case because sc I+z
iz eu‘ e”*e_y -~
I I =
1422 R2-1 R*-1 RE-1
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where the denominator is constructed exactly as in our earlier discussion; in the numerator e Y <1 on the semicircle
in the upper-half plane. Thus the inequality arguments follow as before. This is an example of Jordan’s Lemma: given
|f(Z)| < K(R)—> 0 as R — o0 on the semicircle, then

Ieisz(z)dz —>0 as R —> © foranyreal £>0.

N &

The examples that we have discussed (above) contain terms such as 1/ (1+z 2) , which have just two points at which the
function is not defined (and so is not analytic) — and only one such point sits inside the chosen contour. What happens
to our integral theorem (the Cauchy Integral Formula) if there is more than one such point inside the contour? To
answer this — and we must! — we first digress (Chapter 6) to introduce a generalisation of the familiar Taylor expansion

(as encountered for real functions).

Exercises 5

31. Use Cauchy’s Integral Theorem or Cauchy’s Integral Formula (as appropriate) to evaluate §C f(2)dz,

where C is the unit circle |Z| =1, mapped counter-clockwise.

The function f(z) is:

(@) 322 +2°; (b) S © 2@ S0 Z2 1+’ il z
a 5 5 (c 5(d) —; (e ; ; ; ;
z=3 " 2z-1 z 242 2a0s P21 322 10243
14z z e? ie?”®
() — s () —3 () — S — (m) —————.
z(z +4) 94z 922 _26z-3 222 +3z-2 222 +5iz-2
14772

32. Evaluate §
C 24 (i-2)z% -2iz

@ o =1/2;®) |z2=1=1/2:© |z-2[=1:@ |z+1|=1/2: (e) |z—1|=1/2.

dz,» where C, mapped counter-clockwise, is the circle:

33. In the following integrals, the contour, C, is the unit circle (|Z | =1), mapped counter-clockwise; a is a real

constant. Suitably rewrite the integrands, and hence evaluate them by Cauchy’s Integral Formula.

dz z
(a) Cﬁcmw (b) &CZ_a dz..

Note: The integrals, on the given contour, are not defined for |a | =1, but consider the other two possibilities: |a| >1,

|a|<1.
2 2 5 5 5 2 2 5 4 5 2 2 5 5 2 2 5 5 5 S 2 5 % 2 2 X 5 %

226565 3 2 56 5 3 2 56 56 % 5 2 5% 5 X %
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6 Power Series

A power series (of complex numbers) converges if the partial sums have a limit:

ie. S,=z1+2zp+...4+2z, and lim (Sn) =S (finite),
n—>00
and then necessarily z,, — 0. (You will be aware that this is, indeed, a necessary condition, but not a sufficient one;
consider the familiar partial sum
S, =1+

1
+ +....n.)

8 [—
W |—

All the power series that correspond to those encountered in any introductory study of real functions exist, and can be

constructed. Thus we have, for example,
(1+z2)" =1+nz+...+z" (the binomial expansion)
o0
(1+Z)_1 =l—z+z7 .= Z (-2)", |Z| <1
n=0

(another binomial expansion)
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o0
f(z2)= Z if(n) (zg)(z— Zo)n (Taylor expansion),
oo
although, of course, there is no suggestion that all are valid for all z. The validity can be readily constructed; we will need,
in detail, only the convergence condition for the binomial expansion, which can be based on the following discussion.
0

Example 28 Power series. Show that ZZ " converges to 1/(1—z) for |Z| <.
n=0

The method of proof follows the familiar approach taken from the study of the corresponding real series; we consider

and then form zS, =z+z" +....+z

Subtracting these two gives S, —zS, =1— 2" andso S n =~ ;wenow let 7 —> 00, which produces a finite

—Z
result for S, only if |Z| <1 (exactly as for the real case). The sum is then 1/(1—z), as required.

Note that, for this expansion, we have demonstrated that we require |Z | <1 for convergence i.e. for the power series to
exist (have a meaning); the series is not defined for z =1 and it oscillates (so not unique) for z = —1. This problem can

be analysed in more detail by writing z = I’ele , =T <0 < 1, and consider 0 <7 <1 for all 6. Thus we have

1— rn+lel(n+l)6'
0

S =

" l—rei
1 1

and then 1 — o0 requires, for convergence, ¥ <1; so S, —>S= = for |Z| < 1. We cannot allow |Z| >1

1-rel? 1-z

(i.e. ¥ >1), but we must examine the case » =1.

_ 1—(cosnf +1sin nd)
Then we have ~'7 1-(cos@+isin6) - where the terms in 16 oscillate as n increases, for any given @ # 0: no limit

exists. This leaves @ =0 (z =1), for which the limit again does not exist, but now because the value of .S, is undefined
(infinite). Thus we require |Z | <1 for convergence; the corresponding conditions for other familiar power series follow

in the same manner, although the binomial series is the only one that we need to use in any detail in this introduction.
Let us return to the previous example:
| o0
(1-2)" =) 2" for |7|<1;
n=0
we have shown that this fails - it is not defined - for |Z | =1, but is there any way that we can find an expansion valid

for |Z | > 17 At first sight, this might appear to be altogether impossible, but it can be done (and the resulting form is

important for what we do shortly). Consider the following alternative version of the original function
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1 1

=__(1+—+—2+....J=—— >z ",

1
where the preceding result has been used, but now with validity [— <1 i.e. |Z | > 1. So it is possible to construct a different
z
expansion - no longer the familiar positive, integer powers - valid for |Z| > 1. The development of a power series in
inverse powers plays an important role in complex analysis; in fact, we find that we shall use all (integer) powers: both

positive and negative.

6.1 The Laurent expansion (1843)

The Laurent expansion, about z = Z(y, is written as

o0

@)= 2 culz=z)"

n=—
where the ¢,, are complex constants; note that, previously, our simple expansions were about z = 0. This expansion allows

for all positive and negative (integer) powers, but it is usually written down so as, explicitly, to separate these two sets:

f(Z)—Za (z—z9)" +Z

n=0 IZZO)

Such an expansion is necessarily associated with a function that has a singularity - it is undefined at z =z - which
then gives rise to the terms with a negative power. As we should expect, this will be valid, in general, only for certain z;

typically, this condition on validity takes the form 75 < |Z - ZO| <7, which is an annular region between two circles:

Ci
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Note: We may treat this construction altogether formally and rigorously. So, given f(2) , we may determine (in a general
framework cf. Taylor expansions) the coefficients @,;,b,, , and analyse the validity of the series. We will not pursue this
line here because we will construct, from first principles, all the expansions (of specific simple functions) that we need;

the appropriate validity then follows directly, as we shall see.

Here is an important observation. Let us suppose that we require (ﬁf (2)dz, and that f'(z) is represented by a Laurent
expansion. Further, we suppose that the contour sits within the agnular region and encircles z = z). (If the contour is
not in the annular region, then we cannot proceed: the expansion is not valid, so it cannot be used.) We also know, from
our earlier work, that any contour, satisfying the same positioning requirements, is allowed. Thus, we elect to use a circle,

CO , of radius r, such that r, <r <#:

"~
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the contour is therefore Cy :z =z + }’619 . Thus in our first notation for the Laurent expansion, we see that each term
in the integral (j‘) f (Z)dZ , takes the form
C 2 n
i6 . i6 0, n#-1
Cy I re” | rie"dfd = ,
0 2ric_,n=-1
which follows directly from our Examples 22, 24. (We have assumed here that the integration and summation operations
can be interchanged; this is a familiar property, provided that the original series, and the series obtained by integrating

term-by-term, have a common region of convergence.) In our alternative notation, this reads

$.f(2)de = f(2)dz=2iby
C

G

Because the only term left behind after we have integrated, i.e. the only term required in the evaluation is by, we call
this the residue of f(z) at z = z(. Here we list a few other bits of terminology that we use in this context, or some

relevant observations.

() If f(2) is analytic throughout the interior of C} (see the figure at the beginning of this section), then b, =0 for

all n (because the presence of any of these terms implies that the function is not defined at z = z)).
(b) If b,, =0 for n > N +1, we have a pole of order N at z = zy.
(c) If the by, s extend to infinity, then we have an isolated essential singularity at z = z.

(d) Remember that we may choose any contour between C; and C, (encircling Cy) - they all give the same result

for the contour integral.

Comment: So a function that has a Laurent series that terminates in the bn s, for every singularity, has only poles (of a
given order) and such a function is usually called a meromorphic function. That is, a meromorphic function has no essential
singularities, but it does have poles; cf. analytic, which implies no singularities of any sort. [‘Meromorphic’ comes from
Greek (puepog and pop@og), and means, literally, ‘part of the form/appearance] which is to be compared with ‘holomorphic’

- which is sometimes used in place of ‘analytic’ as mentioned earlier — meaning, roughly, ‘whole of the appearance’]

Example 29 Laurent expansion 1. Write down the Laurent expansion of el/  about z=0.

We base this on the familiar Maclaurin expansion

el/z =1+ —+5—+ ..... which is valid for all finite 1/|Z| ;
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this function therefore has an isolated essential singularity at z =0.

In the previous example, we note that we have an isolated essential singularity at z = 0. In the next example, we see
how our standard (binomial) expansions can produce a Laurent expansion; we also note that the simplest method for
generating these expansions is by first writing the function in terms of partial fractions. (It can be shown, along the lines
described earlier, that

a(a-1) , ala-1)(a-2) 3

(1+2)% =l+az+ TR + 3 z7 4.

for any a, provided that |Z| <1. (If « is a positive integer, then this becomes the familiar identity - expansion - valid
for all z.)

Example 30 Laurent expansion II. Find a Laurent expansion of Z/ (22 +Z—2) , about z =0, which is valid for
z=3/2.

z z 1 1 2
First we write = =— + ,
21722 (z+2)(z-1D 3\z-1 z+2

and then note the required validity, interpreted as |Z | > 1 inthe first term and |Z | < 2 in the second. Thus, for the first term,

11 !
=il :‘ZU
- <1 ie. |z|>1; for the second we write
5=33) =535
z+2 2 2
Al e |2 < 2. Thus we have

z 1& (0 2z 1& 1
5573 [—gj P

z“+z-2 3.5

which is valid for

which is valid for

which is valid in the annulus 2 > |Z | >1.
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region of
validity

In this example, it should be noted that we have not expanded about the poles of the function (which are at
z=1,-2). Indeed, as z —> 1, the original function becomes f(z) =~ (1/3)/(z—1) and as z —> —2 it becomes
f(2) % (2/3)/(z +2) . Thus this function possesses two simple poles (i.e. poles of order 1), and so we can ‘read off” the

residues at these two poles directly:
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residue at z=1 is %; residue at z =—2 is %

This property, and associate technique, are very useful, and make much of what we do later amazingly simple.

z+2 _ z+2
(z-D)(Z2-1) (z=D%(z+1)

Note: A function such as f (Z ) =
2at z=1.

has a simple pole at z =—1 and a pole of order

We now see how to find the Laurent expansions of a function like this, and also determine the residues at the poles.

Example 31 Laurent expansion III. Find Laurent expansions about the poles of f(z) = (5z—21) / [22 (z— l)] ,
and identify the residues.

We have poles at z =0 (double) and at z =1 (simple); we expand about z =0 and about z =1.

About z=0: f(z)= —lz(sz—zi)(l—z)‘1 = —iz(sz—zi)(1+z+z2 +..)
y4 z

1 ) ) 1 ) )
=——(<2i+5z-2iz+..) = —Z—z[—21+(5—21)z+...]

z

and so the residue at z =0 (i.e. the coefficient of the term 2! Yis 21—5.

About z =1: it is easiest first to introduce { =z —1, to give

zw:l(s—ms;)(l—zm%z+---)
¢+4) 4

1 . S P
=E[(5_2l)+m]_2—1(5 2i+...

and so the residue at z =1 (i.e. the coefficient of the term (z — 1)_1 )is 5—21.

We observe that this second result - the residue at Z =1 - can be ‘read off” directly from the original function, without

recourse to any expansion.

Exercises 6

34. Obtain the Laurent expansions of these functions, about the point given and valid as prescribed in each case:

(a) —13+2Z2 for 0<|Z| <1 (about z=0); (b) % for 0<|Z| <4 (about z=0);
"4z 4z-z

(©) 2; for 0<|Z—1|<2 (about z=1);
z—4z+3
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(d) first for 0 < |Z| <1 and then for 1 < |Z| < 2 (about z =0 in each case);

32—22 -2

1+z

22 +@2-1)z-2i
5z+7

22+3Z+2

(e) for 1 < |Z| <2 (about z=0);

(f) for 2 <|z—1/<3 (about z=1).

35. Identify the poles (singular points) of these functions, and then find the corresponding residues:

@ Lo 20 @ = S A o

a) —; 5 (€ 5 5 (€ 5 5 \8 5

z -z z—1 22+z l+z2 22—22 z3
23 o 1+z 1

(h) )

5 1 .
(z+2)?  (z-1)zF & -1

26242 6 6 6 6 6 5 5 5 5

56555 5 5 5 2 k%
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7 The Residue Theorem

The final, and most general, theorem enables the evaluation of a contour integral inside which there is more than one pole
(singular point). We assume throughout this discussion that we can always, in the neighbourhood of each pole, construct

a suitable Laurent expansion, the radius of validity then being away from the point, but not as far as the position of the

next (nearest) pole.

7.1 The (Cauchy) Residue Theorem (1846)

We suppose that f(z) is analytic inside and on the contour C, except at a finite number of points inside C, where we

have singularities (poles), at z1,z5,...., 2, , say:

To proceed, we use the method of proof that we developed for Cauchy’s Integral Formula. For the ‘first’ singularity - it

could be any of them - we isolate it and add the familiar construction:
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We consider the integral around the contour C| + 51 , which is a path within the domain ( C] ) enclosed by C, but isolating
the first singularity, and completed by a part of C (C} ). Inside this contour, we construct a closed contour around the
singularity (C] ), together with the lines — not necessarily straight — that join the Cj to C{ Cj. The argument used

for Cauchy’s Integral Formula (going around the two sub-domains so constructed, and the two results added) then gives

[r@e+ [ roe-§red=o,

G G G
and note the direction/sign associated with the third term here. We now move to the ‘second’ singularity, constructing a

second new contour that, in part, uses Cl' but mapped in the opposite direction:

The new contour around which we integrate is now C| +C, + C5, where C{,C} are the contours drawn inside C,

and 52 is the next part of C. A repeat of the argument just invoked produces

-[ @&+ | foOE+ [ fo&-§ r(2)d=o0,
G

a G G

where the integral along " is exactly as before, but in the opposite direction; again, note the direction along C,. The

two results just obtained are now added:

[ @+ [ fod-§r@e-§ee=0

Cé q + C2 Cl C2

This process is continued across the domain inside C, picking up one singularity at a time. Eventually, the integrals along
the boundaries of the new domains within C cancel (as happens above with C| and —Cj ), leaving only the totality of

C (constructed from the segments 51 + 52 +....) and the sum of each integral around each singularity:
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Thus, schematically, we have

and we already know how to find the contribution from each pole: it is the residue of the function at the pole. Let the

residue be By at the kth pole, then we have

(ﬁf(z)deZﬁiin :
C k=1

the value of the integral along the contour C

= 27Tl X (sum of the residues at the poles inside C).
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This is the Residue Theorem, sometimes called Cauchy’s Residue Theorem - it is certainly his! - proved in 1846.

z
e

Example 32 Residue Theorem. Find §C27

2

2 dz where C, mapped counter- clockwise, is the circle
z“+ 1)

2

Z—li‘zl.

The integrand here has poles at z =0 (double), at z =1 (simple) and at z = —1 (simple); the given contour - a circle -
encloses the poles at z =0 and z =1, but excludes the third (as shown in the figure). Thus we need to find the residues

at z=0and z=1.

z
€ 1 1
At :wewriteﬁ=—2(1+z+...)(1—22+...):—2(1+Z+...)
z2(1+z%) =z z
and so the residue is 1.
e” e” 1 ¢!

At z =1: we write 5 N - —= e +...
z7(1+z%) z7(z+i)(z—1) Z—1(1"(1+1)
which can be regarded as the beginning of an expansion near z =1, or obtained by invoking Cauchy’s Integral Formula;

the residue is therefore —e'/2i = Liel .

2
J
A
J
Thus o i i
§C#2+1) dz =27i(Lie +1) =27 (i-Le').

(We could write, if it is convenient to express the answer in a more usual format, e' =cosl+isinl, and so obtain the

real-imaginary form.)
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Remember, on the basis of all our earlier comments and development, we would get the same answer for any contour

that encloses the same pair of poles.

Comment: It is clear that the residue theorem subsumes both Cauchy’s integral theorem and integral formula. For, on
the one hand, if the function is analytic - so no singular points anywhere - then all the b,, s will be zero for the Laurent
expansions about every point; hence the value of the contour integral will be zero: Cauchy’s integral theorem. On the
other hand, if the function to be integrated takes the form f(z) =g(z) / (Z—ZO) , where g(z) is analytic inside and
on the contour and z = z(y is an interior point, then there is a one singular point inside C with a residue g(zo) , which

recovers Cauchy’s integral formula.

7.2 Application to real integrals

We have already seen how this idea is used; see §5.4. We now extend this a little further by making full use of the Residue
Theorem, that is, we consider a real integral that contains more than one pole inside the contour (when the problem is
recast in the complex plane).
0 dx
—Qs -
Example 33 Real integral II. Find the value of — (x2 +2) —4x2 . (You may assume that the integral along a

suitable semi-circular arc tends to zero as its radius increases.)

dz
We consider the integral d)ﬁ > where the denominator of the integrand can be written as
c(z7+2) -4z

(22 12-22)(22 +2422) = [(2—1)2 +1}[(z+1)2 +1}

=(z-1+1)(z-1-1)(z+1+1)(z+1-1)

and the second and fourth factors here correspond to simple poles in the upper half-plane. Thus we choose the contour

shown in the figure
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The residue at z =1+1 is obtained by writing

1 1 1
(2427 472 —1—{1'—1‘1'1'1'1—'+“}
z°+2) —4z° z 1| I+1-1+1)(A+1+1+1)(A+1+1-1)

o 1 i
which gives —_— =

2i2(0+1)2 8141

Correspondingly, at z =—1+1, we write

1 1 1
(2 2 2: 1_.[ _1 ._1 . _1 ._1_- _1 . l . +"'}
27 4+2)" —4z7 zH+1-i[ (-l1+i-1+)(-1+1 )(—1+1+1+1)

1 i
2(-1+i).(-2).2i 8 (~1+i)

gg dz P 11 +i 1 —27zii(l_i+l+ij—z
Thus L (22 224z 8 (1+i) 8 (-1+i) sl 2 4

which gives
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e el P
"R (x2 +2)2 —4x? (z2 +2)2 -4z

[\

sc

S
S (P42 —4x?

as R > o

0
. . " dx i
by virtue of the given condition; so we have J 5 5 7=
S (T +2)" —4x 4

Notes: In this exercise, we have seen that the integrand has four simple poles, only two of which sit inside the semi-
circular region in the upper half-plane. In order to complete the (mathematical) argument — which we were not asked to
supply — we would need to show that the integral along the semicircle tends to zero as its radius increases. To do this, we

note that the relevant triangle inequality is based on

and so
(Z2 +2)2 —47? +4=‘4+Z4 +4> |4 =R* (on the semicircle);
4| p4 1 1

thus ‘44—2 > R —4 and then < 7 )

4+z% R -4
Hence we obtain

pis
R R
I dz ‘<I do S —>0 as R > w,

(2422422 gR* -4 R*-4

N &

as required.

It is also possible to use these techniques — integration in the complex plane - to evaluate another class of integrals:

2
[ F(sin0,cos0)d6.
0
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However, in this case, we construct the corresponding problem simply by invoking a change of integration variable (which
is a very familiar method in classical, real integration). Thus there is no requirement here to analyse integrals on parts of

the contour, as some limit is taken. We introduce z = ele , so that

cos@=l(z+lj, sin0=i‘(z—lj,
2 z 2i z

with — =1e¢ =1 ;then 0 <9 <27 becomes the integral around the circle of radius 1, centred at the origin (often

called the unit circle).

27 dO
Example 34 Real integral III. Find the value of 0 m .
We use the transformation to give
1
Zf 9 __¢ i B SN S
. - — B 2 - B 9
{ S+4sin@ ®5+4_;(2_1) 2 Siz+2(z2 1) Oz(zz+521z_1)
1 z

where the symbol on the integral denotes the unit circle — the contour used here. But we note that

5. . .
z? +Ziz-1= (z+2i)(z+110),
which shows that we have a single simple pole inside the contour, at z = — %i ; the residue at this pole is obtained by writing
1 1[2(z+2i)]
5i - L
2| 224>z -1 ZHat
2
N . 11
and e.g. invoking the Cauchy Integral Formula we get the residue —.——=—.
2 3i/2 3i
ZI” dg dz ol 2
Thus " =P " = o ==7.
31
o dt4sind o2l 2+ i3
2
7.3 Using a different contour

The essential skill in using these techniques (particularly for the evaluation of real integrals) is finding the right/appropriate

choice of contour for the problem under consideration. Let us attempt to find, for example,

o0 .
Sin x
j 227 dx
X
—00
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using these new techniques. When expressed as a suitable function in the complex plane, we would write

e

C
this is chosen, rather than the integrand sin Z/ Z , because we must ensure suitable decay conditions for large distances
away from the origin. This is discussed in §5.4 (Jordan’s Lemma), where the necessity of using the exp function, rather than
sin, is made clear. However, this is a surprising choice in the light of another crucial property of the original integrand:
the function sin x/ X is integrable — otherwise the integral would not exist! - and one essential reason for this is that
sin x/ X has a finite limit as x — 0 . (The confirmation that this function is integrable at infinity is not so easily checked;
we will not dwell upon that here.) The function sin Z/ Z possesses the same property as z —> 0, but e / z does not;
this integrand is not defined at z = 0 and, consequently, the value of the integral diverges (logarithmically) as z — 0.
The upshot of this is that z = 0 must be avoided: the conventional semi-circular contour, which obviously passes through
the origin, cannot be used. The contour that we choose, for this type of problem, is the semi-circular boundary (encircling

the poles in the upper-half plane) but with an indent around z = 0:
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A

—R —& £ R

As we see, the part of the contour along the real axis now goes around (via a semicircle of radius ) the singularity at
the origin; indeed, this particular choice ensures that this singularity is now outside the contour. To apply our general

approach, we need to take two limits: R — 00 and & — 0 ; this idea is developed in the next example.

© sinx

Example 35 A different contour. Evaluate .[ dx by using an indented semi- circular contour.

-0

iz
e
We consider, as described above, the integral %7 % and the corresponding indented contour in the figure. This integrand

has a simple pole at z = 0, but this is outside the chosen contour, so we have immediately (Cauchy’s Integral Theorem)

gsgdﬁo.
C

Thus we have

. . R .
e e” e' e”
[ —dv+ [ —de+[—dr+[=dz=0,
X z X z
-R scg £ sc
where sce denotes the semicircle around the origin, and sc the larger semicircle (of radius R); we know (Jordan’s Lemma,

§5.4) that the integral on this larger radius tends to zero as the radius increases.

0

Now we examine the contribution from the smaller semicircle. On this part of the contour, write z = ge' ,T=20>0

(and note the direction), to give

: 0 - 19) _ 0 .
I%dz: eXPg(;i: geledﬁzijexp(igelg)dﬁ
ScE T T

0
—ifd0=—iz as £ >0.
T
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(We can note that the answer here is, perhaps, what we might have guessed - or hoped for: it is half the value obtain
by going once around (2771 ) and in the opposite direction.) In addition, we also take R —> o (with Jordan’s Lemma

invoked) to give

Si%dx—m:o,

where the bar on the integral sign indicates that the principal value has been taken; this is necessary here because the
evaluation requires a limiting process (& —> 0) to obtain the value of an integral that, in the conventional sense, is not

defined. (This is sometimes written as @I or PV I .) Thus we have
0 jx
€ .
f —dx=1x
X
—o0

and then the imaginary part gives

where the bar on the integral is no longer required because this integral does exist in the conventional sense - but the

real part (involving cos) - does not.

Comment: In this exercise, we have had to introduce the notion of the principal value of an integral. This is required
when the integral, in the conventional sense, is not defined, but a value can be obtained via a (special) limiting process.

This idea is explored more fully in Part IT of this text.

Exercises 7

36. Use the Residue Theorem to evaluate § f(2)dz,, where C s the contour |Z| =3, mapped counter-

clockwise, with f'(z) chosen to be each function given in Exercise 35 (in Exercises 6).

1+z
2 +22+2)(22 —2z+5

37. Evaluate the integral §C ( ) dz, where Cis the square with vertices at the points

z=0,5,5(1+1), 51, mapped counter-clockwise.

4-3z

22 —Z

38. Evaluate the integral §C dz, where C, mapped counter-clockwise, is a closed contour with the

properties:

(a) the points z=10 and z =1 are both outside;
(b) the point z =0 is outside and z =1 is inside;

(c) the point z =0 is inside and z =1 is outside;
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(d) the points z =0 and z =1 are both inside.

2+32°
€ (z-n(9+2%)

39. Evaluate the integral dz, where C, mapped counter-clockwise, is the closed contour:

(a) |Z| =2;() |Z — 2| = 2; (c) any Jordan curve satisfying |Z| >3,

40. Introduce a suitable semi-circular contour in the complex plane, and hence evaluate these real integrals. (In
all cases, you may assume that a correctly-chosen contour ensures that the integral along the semi-circular

arc tends to zero as its radius is increased to infinity, but see Exercise 42 below.)

X

(x +l)(x +2x+2)dx;

o] e +1)(x ) o e +1)( ving ©f

sinx xsinx

P rdxas i ® g (2 +1)(x?+4)

COSX

g cos(ax)dx >0
T ()j o dr(a )(ﬂj2

<d>j dx

" sinx dx (a>1, real).

X2 +1

—o0

41. See Exercise 40(a); now give all the mathematical details that were omitted i.e. show that the integral along

the semi-circular arc does indeed tend to zero as the radius increases.
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42. See Exercise 39(c); consider a contour that is extended to infinity in all directions i.e. |Z| —> 00 on C. Now
any pole at a fixed point, z = z(), will have a residue if a term of the form 1/ (z—2z() is present; however,
every such term approaches the form 1/ Z as |Z| —> 00 Thus, if a contour encircles all the poles of a
function, the coefficient of the term l/ Z in the expansion of the function as |Z| —> o0 will recover the sum
of all the residues at all poles inside the contour. Expand the integrand for |Z| —> 00, find the coefficient
of the term 1/ z , apply the Residue Theorem and compare your answer with that obtained previously for

Exercise 39(c).

43. Evaluate these real integrals:

2r 27 2 V4
do cos” @ do
—— (b ————do; — (k>1).
@ -([5—3cos6? ®) £26—10cos26‘ © £k+cos6?( >1)

44. Consider the integral

I(s)=1 SR

where the contour, C, shown below, is mapped counter-clockwise (and the left- hand closure extends to the
left, as necessary, to enclose any poles). [Note that, once the relevant poles have been enclosed, then the left

closure may be moved to infinity, leftwards.]

-

N
\/

Evaluate /(s) when s is an integer; you should consider both positive and negative values of s.

265555 5 2 2 2 2 2 2 2 2k b k%

265 5 5 2 56 5 2 2 56 5 5 2 56 5 % 5 2 56 5 2 % %
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8 The Fourier Transform

Many physical systems involve motions such as vibrations, or oscillations, of one sort or another; these types of problems
arise in physics, applied mathematics and engineering. The study of these systems usually requires the production, and
analysis, of signals and associated spectra, but these will rarely be described in terms of simple sine waves; they are more
likely to contain general oscillatory motions, and perhaps other (non-oscillatory) components. Such output (data) is most
readily examined by taking a suitable transform; indeed, there are important branches of (mainly) physics which work solely
with the transform, rather than the original function (i.e. the physical data). The one we discuss here is probably the most
useful and most powerful: the Fourier Transform, which is based on the familiar ideas that underpin the Fourier series
(used, for example, in the construction of solutions of constant coefficient, linear partial differential equations). Indeed,
we develop this particular idea to give an outline argument that demonstrates how a Fourier series can be generalised

and extended to an integral transform.

We start with the familiar identity

e = cos(nx) £isin(nx),

which is used to produce the expressions (§2.1(d))

sin(nx) = %(ei”" —eTim ) ; cos(mx) = % (ei"x e ) .

Thus the terms in a Fourier series can be written as

a,, cos L +b, sin 7= lan(ei”m/g +e_i”m/£)+l_(ei”’zx/€ —e_i””x/f)
14 14 2 2i

inmx//l —inmx/l
= 4,e / + B,e /e

l 0
I YT U | nr L1 . (nr
where Ay =5 (an=iby) =2 _J/ f(x)cos(—g x)dx i _jf f(x)sm(—é xjdx
1 -
=5 [ £y .
—

l
1 .
Similarly, we see that B, = 2—€ J.f(x)e”mx/gdx .
L
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Then, introducing ¢, = An (n>0), c_, = Bn (n>0)and co = a0/2 , We may write

f(x)= ZC elnﬂx/f where Cy :_ Jf(x)e—lnm/fdx

n=—o0
We now examine how we might apply these results to functions which are not periodic i.e. general functions. This amounts

to allowing ¥ — o0 ; how can we do this ?

First, let us write

E .
26, = [ f(x)e "™ dr = F(”—Z)
—

1 .
then we have f(x) = Z 2€F(%)emﬂx/z

5 2 s{rmane

n

This latter expression, in the limit as £ — 00, gives

f (x)= Zi j F(k) eilocdk and, correspondingly, F(k)= j F(x) e—ikx d
T

—o0

the second expression is the Fourier Transform of f(X), and the first is its inverse.
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Thus we have, given a suitable function - the relevant integral must exist, of course — the Fourier Transform (FT) defined by

o0
F(k)= j f(x) e_lkxdx (for a real parameter k),
—00

and the inverse FT then becomes
17 i
S == [ F(k) e dk .
2r
—o0
These two integrals are line integrals along the appropriate real axes.

It is of some importance to note that there is some variation in the definitions used - and the particular one used in any
texts that might be read needs to be checked. A common alternative, considered by many authors, is obtained by replacing

fby f / \27 , which gives the so-called symmetric transform and its inverse.

Note: Not only is this a useful tool in many branches of mathematics, physics and engineering (where, as we mentioned
above, it is sometimes more convenient to work in ‘Fourier space’ i.e. use k directly, rather than physical space), but also
as a technique in its own right. Thus this construct can be used to find solutions of various types of linear, ordinary and

partial differential equations, as well as certain integral equations.

We will work through three examples, two to find F(k) and one to find an inverse i.e. given F(k), find f{x). In conclusion,
we will then hint at how the method can be adapted to solve differential equations by seeing how derivatives behave

under the Fourier transform.

Example 36 Fourier Transform I. Find the Fourier Transform of

I, 0<x<1,
f(x)=9-1,-1<x<0,
0, otherwise.

0 1
Thus we have F(k) = j (~De " dx + j(l)e—"“dx

. 0

_[16_@(}0 J{ le_ikxT _ 1(1— 1k)+1(e—1k 1)
ik 1 ik o k k
:_%i %( _ik+eik):—(cosk—1).
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We observe here that the given function is odd, and the resulting FT is also odd (and pure imaginary).

Example 37 Inverse transform. Find the inverse Fourier Transform of
1
F(k)=—s.
1+k

ikx

3 dk , with the familiar semi-circular contour that encloses the pole
iix

1 o0

Here, we require the evaluation f(x)=— I
2z o

(at k =1) in the upper-half plane; we consider, first, x > 0 . The residue at k =1 is ie+i , and so the value of the integral

—X

.. .e _

is 271 = e *. Thus we have
i

ikx

el _ -
dcsl+z '[ 1+k2dk+J.l+z =,

and the integral on the semi-circular arc (sc) tends to zero as R —> 00 (because the real part of the exponent is

Liyx =—xy <0 for x > 0). Thus
1 x 1 _
f(x)=—me " =—e " (x>0);
2r 2
1
the corresponding calculation for x < 0, using the lower-half plane, gives Eex and so the final result is

f(x) = %e_M .

In this final example, we find another FT, and then formulate (but not evaluate from first principles) the inverse, and use

this to obtain the value of a standard real integral — a very powerful, general mathematical technique.

Example 38 Fourier Transform II. Find the Fourier Transform of
I <1,
fx)=
x> 1.

Now evaluate the inverse on X =0 and hence obtain an important identity.

ool
Here we have Fk)= I le *dy = 2 |: —1lcxi| 1
1 -

=i(e_ik —eik)=i.—2isink=zsink.
k k k
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1 %2 . : I, [x[<1
Now we formulate the inverse: — I —(sink) elkxdk = | |
27 7k 0, |x/>1
—0
and evaluating this on x =0 yields immediately the result
o0 .
sink
[=——dk=x.
—00

Note: In this example, the function is even, and the FT is also even (and real). The last part of the calculation, we see,

o0 .
sin
produces the value of the integral j —xdx; this new technique is far simpler than the one adopted in Example 35!
x

—00

8.1 FTs of derivatives

We conclude by mentioning how derivatives are transformed; this would be the start of a discussion of how this transform
can be used to construct solutions of some classes of ordinary and partial differential equations (but this will not be
developed here). Suppose that we are given a function y'(x), then we take the FT:

o0

y(x)e Fdr = y(rye |

o0

—00

[ v (—ik)e ¥ dy

=ikY (k).

/
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provided that y — 0 as |x| — 00, and where Y (k) isthe FT of y(x);of course, it is assumed that the integrals defining
both »'(x) and y(x) exist. This result, with suitable decay and existence conditions, generalises to (ik)n Y (k) for
the FT of " (x).

These results, for the various derivatives, are the basis for solving suitable ODEs and PDEs. Corresponding results for
integrals (including the FT of a convolution) enable integral equations to be solved. These ideas are explored in any good

text on transform methods.

Exercises 8
45. Find the Fourier Transform of the function

) x, 0<x<a,
X)=
0, x<0, x>a

where @ > 0 is a constant.

46. Find the Fourier Transform of the function

2
x°, |x<a,
S(x)=
0, |x[>a
where @ > 0 is a constant.
a
47. Find the Fourier transform of the function f (x ) = —2 , —00 < X <00, where @ >0 isa
constant. a +x
48. Find the Fourier Transform of the function
e, x>0
S(x)=
0, x<0

where @ > 0 is a constant. Hence, from the inverse transform, show that

o0
cosk dr =T oa
0612 +k2 2a

[Hint: evaluate on X = £1 ]
49. 49. Evaluate the Inverse Fourier Transform,
17 -
fx)=— j F(k)e®dk, x>0,
2r
—00
by using the residue theorem, for these functions (a and & both real and positive)
1

1
(@) F(k)=———=; () F(k)=————— with £ > 0.
k% +a® K2 —d? +ie
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Answers

Exercises 1

1 @ln|=v2,

22|:\/Ba

2122|:\/%,El :—l—i, Zlfl :2;

Zl_Z

o1 .
myﬁcga—ayz—:ﬁa—my
2

2]

_1 :
2_ﬁ9n+mu

Zl+Z

@ |z =2,
®) |z|=+/5,

Zz|:\/ﬁ,
22|=\/Ea

2+ 2| =17,
1 2|

Zl—Zz|=\/B;
Zl—22|:\/§.

1 +22|=5,

Download free eBooks at bookboon.com



An introduction to the theory of complex variables The Fourier Transform

5 (a) modulus =1, arg = 75 (b) modulus =1, arg = 7/2; (¢) modulus = \/5 ,arg = 7z/ 4;
(d) modulus =2, arg=—r/4 (or 1z/4) 3 (e) modulus =1, arg=7/23
() modulus =1, arg =—7/2 (or 37/2).

6 @275 m) 16750 V27 (@) 2677

7 (a) i,—l,%(l—i);(b) i,—i,1.

NA

3 (@) Li,—1,—is (b) ei;r/4’ei3zz/4’eiSﬂ/4’ei77r/4; © e_i”/4,ei3”/4; ) 3e—i7r/6’3ei7r/2’3ei77r/6 ]

N . . _: 1 . 1 .
9 el/3 e, 73 = 7173 ie. Py 1+ i3 ), — 1, 5 (1- i3 ) ; the zeros arise because of the zero coefficients

in the cubic 2> +0.22 +0.z+1=0.

Exercises 2
10 (@) (xcos y—ysin y)e* +i(ycos y+ xsin y)e*; (b) x? —y2 +y+i2y—-1)x;

2 2
- .2
Xy Xy

(©) —4ixy ;s (d) 21y 1x2+y2 .

> Apply how

REDEFINE YOUR FUTURE
AXA GLOBAL GRADUATE
PROGRAM 2015

redefining / standards M
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11 (a) 2x3—6xy2+2xy+i(6x2y—2y3—x2+y2);
(b) xcosh ysinx — ysinh ycos x+1(xsinh ycosx+ ycosh ysinx);

(c) xcosh xcos y— ysinh xsin y+1(y cosh xcos y + xsinh xsin y);
2 2
(d) x4—6x2y2+y4+i4xy(x2—y2);(e) 1 x2 y2+i 2; 5
A-x2+y (-7 +y

12 @ i(E+n)m,n=0,£1,42,.5 () 1=%i7; () $In2—Lir;

(d) e_z_zm cos(Ltin2)+isin(1n2)|,n=0,+1,+2,....
(n2)+isin(31n2)

13 (a) e_”/4 [cos(%ln2)+isin(%ln2)}; (b) cos(In2)+isin(In2); (c) %1n2—i7z/4;

(d) " [cos(2In2)+isin(2In2)].

15 (@) z=In3xi(1+2n)7,n=0,1,2,...;(b) z=1;

© z=L1+4m) 7 +ilnQ2+~3),n=0,£1,42, ;@ z=i(1+2n)7, n=0,%1,%2,....
16 (@) z=inz,n=0,2142,..;0) z=iL(1+2n)7,n=0,%1,42,....

17 (@) z= %ln (%j +inm,n=0,%1,%22,...; (b) no solution exists;
1 k+1

z=—In| — |+1i(1+2n)7, n=0,£1,42,....
(<) 5 (k J 5 1(1+2n)

18 (a) sin xcosh y+icosxsinh y; (b) cosxcosh y—isinxsinh y;
(c) sinh xcos y+icosh xsin y; (d) cosh xcos y+isinh xsin y;

sin2x+isinh2y = sinh2x+isin2y

(e) ; then tan(ix) =itanh x, tanh(ix)=itanx.

cos2x+cosh2y  cosh2x+cos2y
19 @ V7sm) INTs 0 27

Exercises 3
20 (a) Yes; (b) Nojs (c) No; (d) No, except along the line y = x ; (e) No; (f) Yes; (g) No.
21 (@) f(z)=2z+ iz +iC (Cis an arbitrary real constant); (b) f(z)=2z— 2 +iC (ditto); (c) f(z) does

not exist; (d) ditto; (e) —%izz +iC (Casearlier); (f) f(z) =—(1+1)z+1C (ditto); (g) f(2)= -2 4iC
(ditto).
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24 (a) —sinz; (b) coshz.

25 (a) #(x,y)=(xcos2y— ysin 2y)ezx , §(x,y)=(ycos2y+xsin 2y)e2x
®) g(x,y)=x" —6x"y% 4y, §(x,y) = 407 = )y
(©) ¢(x,y)= (x2 — yz) sin xcosh y —2xycosxsinh y,
@(x,y) =2xysinxcosh y+ (x2 — y2 )cos xsinh y;
(d) @(x,y) = (cosxcos ycosh y+sin xsin ysinh y)e*,

@(x, ) = (cos xsin y cosh y —sin x cos ysinh y)e”.

Exercises 4

26 (a)45(b) 05 () cos3—1;(d) iza’;(e) eV (s +1).

7 @ -1+l 1415 2+i35@ 2 +id.

28 All four answers are —2 — 1— because y —1x = —iz is an analytic function.

29 (@) —1i;(b) I-cosh; (o) (1-cosl—isinl)e™"; @) 0.

30 (a) —= ln 2+ 1[arctan(2) + arctan(3)] ) 1 ln 2+ 1[arctan(2) + arctan(3)] 1%7r the contour is

shown in the figure, and the integral all around is then

_1 ‘3.1 i3 P
21n2+147r+21n2+147z+127z 271

Note that

2+
arctan(2)+arctan(3) = 7 + arctan[ 33}
= +arctan(—1) = %
Exercises 5

31 (a) 05 (b) 05 (c) 7215 (d) 27215 () 05 (F) 715 (g) — %7215 () 757215 () L7 5 G) o5

() 7L 7is () —17re/ S (m) 27
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32 (@) =275 (b) 05 (c) £72(1+e™)(1+2i); (d)

The Fourier Transform

72'(1 3i); (e) 0.

2
33 (a) ——1i for |a| > 1, and 0 for |a| < 1; (b) evaluate on the unit circle (as the problem implies) because the

a

given function is not analytic; the exercise then repeats (a).

Exercises 6
o0

34 (a)—— Z( z)" ,(b)—Z(Z/4) $(C) —md _Z(z 1}

n=-—1 n 0

d) — Z—+ Z z/2

nOZ

(e) —(2—1)2

® 2% (-2/G-1) +Z( L)'

n=0 n=
35 (@) z=0,res1; (b) z=1, res
(e) z=1, res%i;z=—i, res—%i;(f) z=0,res —

(—z/2)" +—(3+1)z (i/z)"s

n=0

—25() z=1,rese;(d) z=0,resl; z=—1,res —1;

_ 3. - 1.
—2,resz,(g) z O,resz,

(h) z=-2,res12; (i) z=1,res —(1+1); z=0,res 1 +1;

-
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Exercises 7

36

37

38

39

40

(@) 2713 (b) —4xi; (c) 27zeis (d) 0; (e) 05 (f) 27715 (g) 7is (h) 24715 (i) 0; (j) only one pole inside, so
27 .

T .

—(O-7).

507

(a) 05 (b) 277i 5 (c) —87i s (d) —677i.

(a) 7i; (b) 7i;(c) 6rl.

(a) 7/6 ; (b) 7/6

(©) —7/5 3 (d) 7/2¢

(e) Zea, ® ~Zsin2
2 e

1 (1 = RPN R, P
(2 gﬂ(e —€ ) ; (h) 27re

() %ﬁi(e—e_l)e_a
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2+37° 3
42 —2=3+—+...as|z|—>oo.
(z=1)(O9+2z%) z

T
3 @1l 7/2050 ﬁ,kﬂ,

271 ( 271 J
44 .
(s—-D!IL T(s)

Exercises 8
1 . -
45 —[(l+1ak)e ika —1]
k2
2 ) 4a
46 —(a2k2 - 2)sm(ka) + 22 cos(ka) .
i e
47 7Z'e_|k|a (and calculate for k >0,k <0 separately).
a—ik
48 Transform is 3 5
a” +k
_ 1
49 (a) 2— e ™, (b) —2—6 1 (These valid for x > 0, using the upper semi-circular region; for x < 0 repeat
a z

in the lower —half-plane, or simply note that f(—x)= f(x).)

25656 56 5 56 56 56 5 5 26 56 5k 5 5 56 56 5% 5 5 6 6 % 5 % % %t

25 5 5 5 5 5 5 2 5 5 5 5 2 % %t
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List of Integrals

This is a list of the integrals and associated calculations that are discussed in this Notebook.

Integral of f(2) =2z—iz? along z=y(t) = £ +it  from t=0 to t =1

§ @ defor £(2) 15 @ 2250 Y(E=2)50 27 1
3( 1

G 114
§ z+e”

C Lz e 116
Given f(2)=z" onC: z= reie, 0< O <27, find f(2) ininterior of C...vevveervveerreeeieniiesisseiesssesisesssesienns 118

2 7
;—edz where C is |Z| RS e bt 123

¢z —1)(z+3)

f(z2)= ! 5 satisfies |Zf(Z)| <K(R)—>0 on |Z| = R — 00, and identify K(R) ..ccooomrrrerrrmmrreerrrerreirrenneens 126

1+z
f(z2)= 1 ! satisfies |f(Z)| <K(R)—>0 on |Z| = R — 00, and identify K(R) ..ccoomrrreermrrreerrrnreeersenneeeenns 128
+z

)

J' ) cooeeeeeeeeessseeeesesese e ees e eee e e e e et et et e e e et e e 129
0 1+ x*

0

J’ L3 ........................................................................................................................................................................... 131
—oo(1+x2)

J- COS(;OC) e 132
“o(xt+a) +b

I xzsmxdx ........................................................................................................................................................................... 134

x“+4
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X
o0 .
J %dx .............................................................................................................................................................................. 140
X
_w
o0 .
J smx2 Qoo oo 143
_Oox(1+x )
T 1
znx 3 ettt ettt ettt ettt es et es ettt e e e e ettt eses e s e e et et e e eaeae st et tesesesenensateseesaeaenn 145
0 X +a
©__k
T X WEER O O L et s s s e s s s e s s es s eaees s s senasees 147
1+x
0
©  ax
J- © 14 5 OO OO 150
1+¢e*
o0
J}) cos(xz)dx ........................................................................................................................................................................ 153
27
J. i where 0 < |k| 2SS OO 157
1+ksin@
0
cos26
14—92’(19 .............................................................................................................................................................. 158
0 ( —5cos )
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Preface

This text gives an overview of the main integral theorems that are an essential element of complex analysis. This first
appeared as a volume in the ‘Notebook series’ available to students in the School of Mathematics & Statistics at Newcastle
University. The material has been provided here as an adjunct to Part I, where the main integral theorems are rehearsed
and then applied to a number of more sophisticated and involved examples. The hope is that what we present here will
help the reader to gain a broader experience of these mathematical ideas. The aim is to go beyond the simple and routine

methods, techniques and applications.

We first provide proofs of the three main integral theorems, which cover some of the ground discussed in Part I, and
then we describe various applications to the evaluation of real integrals, developed through a number of carefully worked

examples. A small number of exercises, with answers, are also offered.

o
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Introduction

Complex analysis, and particularly the theory associated with the integral theorems, is an altogether amazing and beautiful
branch of mathematics that comfortably straddles both pure and applied mathematics. It provides the opportunity to
analyse and present in a very formal way, as well as to develop a powerful tool in mathematical methods. The integral
theorems take a staggeringly simple form, which seems to run counter to all the experience gained by students familiar
with conventional integration methods. The consequence is that the results are very straightforward to use, even though
they describe deep and far-reaching ideas. In this Notebook, we shall present, and prove, the three fundamental integral
theorems: Cauchy’s Integral Theorem and Integral Formula, and the Residue Theorem. These results are then used to
evaluate various types of improper integrals (using direct methods, indented contours and regions with branch cuts) as
well as integrals of functions that are periodic on [0,27]. As part of the essential background, we need to define carefully

what we mean by the integral of complex-valued functions along curves in the complex plane; this is where we start.

1.1 Complex integration

We consider the differentiable function of a complex variable (i.e. an analytic function)

f@)=fx+iy)=ulx,y)+iv(x,y),

for which therefore the Cauchy-Riemann relations hold:

ou Ov ou ov
—=—and —=——-.
ox Oy oy ox

The aim is to define what it means to integrate f(z) along a curve in the complex plane, but first we consider a simplified

version of the essential problem, namely, f(¢#) =u(t)+1v(¢), where ¢ is a suitable parameter. Thus we form, for

t €la,b],

b b
[ £@yde = [[u(e)+iv(e)] de
b b
= [u(tyde+i[ (o)t

by invoking the linearity of the integral operator (and noting that i’ is a constant independent of ¢).

Now suppose that, given f(z), and a curve, C, described by z = y(¢), a <t < b, we wish to integrate f along the

curve i.e. form a line integral in the complex plane. We define this by using the familiar rule for the change of variable:

b
_ dr
if(z)dz— J flrol g
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The curves, C, that we use may be simple, open curves i.e. they are not closed and do not intersect, or — more usually -

they will be Jordan curves i.e. simple, closed curves.

Example 1

2

Evaluate the integral of f(z)=2z— iz? along the curve z=y(t) =t~ +it ,from t =0 to t =1.

‘We have

f@=f i) =2x+i)—i(x* ~5* +2in)

:2x+2xy+i(y2 —x2+2y),
and z=x(t)+1y(t)=y(t) = t2 +1it ie x(t) = tz and y(f) =1 on the curve. Thus
1
[ f(z)dz:ﬂ2t2(1+t)+i(t2—t4+2t)}(2z+i)dz
C 0
1
= ﬂ4t3(l+t)—(t2 — +2t)+i2t2(1+t) +i2t(t2 —t +2t)} dr
0

A

—

1,3 .2 ( 3 4_16) _2,:8
3t = +1\2t° +t t } —3+13.

Comment: we observe that J. f(z)dz= J-(zz - i22 ) dz= 22 -1 iZ3 + C and so the value of the integral from z =0

3
(ie. t=0)to z=1+1 (i.e. £ =1) becomes

1+i
2 1:3 _ '2_l' .3_._l._ N2 .
[z —3iz ]0 =(1+1) 31(1+1) =2i 31( 2+21)——3+1

w oo

This recovers the previous result because, in this example, the function f(z) =2z — iz? is an analytic function and so
J f(2)dz has its conventional meaning.

We return to the original complex integral, and treat it as in Example 1, but now in general:
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I=[f(z)dz=[[u(x,y)+iv(x, )| dz
C C

t
- Jl [l x(®), ()] + ] x(t), /(1) ]} () dt

fo

on the curve z = y(t), ¢y <t < #]. Further, let us write explicitly y(¢) = x(#) +1y(¢), then

t
I= Jl {u x(t), ()] + 1 x(0), p(0) ]} x' () +1v' (1)) dt
lo
Finally, this can be recast as line integrals in x and y:

t
1= [T 30,30 50 30,30 O

lo
t
+iJ1{u[x(t),y(t)Jy’(t)+v[x(t),y(t)}x'(t)}dt
lo
= [l yyde=v(x, )y +i [ [v(r, ) de+u(x, ) dy].
C C

This representation of the integral along a curve in the complex plane is the starting point for the integral theorems.

Exercises 1

2

1. Evaluate the integral of the function f(z) =z 324 1(z—2) along the curve

z=y(t)= ]—t+i([+[2) from =0 to t=1.
2. Confirm, by direct integration of J f(2)dz followed by evaluation, your answer obtained in Q.1.

3. Repeat Q.1 for the function f(z) =2Z (the conjugate of z) from z=0 to z=1+1 along the curves:

(@ z=t+1t,0<¢t<1;() z= 2 —if , 0>1¢>—1. (You should find that the answers are different:

f =2Z is not an analytic function of z.)

245555 5 5 % %
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2 The integral theorems

The three theorems all involve Jordan curves (so simple closed curves, sometimes called contours), but for three different
types of function. The first case is the integral of a function that is analytic inside and on the Jordan curve; in the second,
the function takes the form f'(z) / (z—2() where f(z) satisfies the conditions of the first case and z = z) is a point
inside the Jordan curve. The third — and arguably the most powerful result - is essentially a generalisation of the preceding
one, to a finite number of singular points (usually poles) inside the contour. The first (the Cauchy Integral Theorem) can

be proved by a direct application of Green’ theorem, so we provide a brief reminder of this.

2.1 Green'’s theorem

Let us be given a Jordan curve, labelled I", which is mapped counter-clockwise; the region interior to I" is labelled R.
Further, we are given two functions, #(x,y) and v(X,y), which possess continuous first partial derivatives in R and
on I'. Although we can work separately with u or v, it is usual to combine the pair — particularly in the light of the

complex-valued integral that we obtained in §1.1. The theorem is then expressed as

§[uCx,y)de+v(x,y)dy] = H(%—%jdxdy,
r R

which can be interpreted as a two-dimensional version of Gauss’ (divergence) theorem. This is obtained by taking the

divergence of the vector function (V,—u) and, of course, restricting the geometry to the 2D plane (but remember that

Green’s theorem predates Gauss’!). The circle on the line integral is used to denote a simple, closed contour, normally

mapped counter-clockwise.
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2.2 Cauchy’s integral theorem

We shall provide a proof - the classical one - of this theorem. The function f'(z) is necessarily an analytic function in
the region R, and on the Jordan curve, C, that bounds this region. (It is common practice to label curves in the complex
plane as C, whereas curves in the real plane are labelled I".) Furthermore, we shall make the additional assumption that

f'(2) is continuous in R and on C; we shall comment on this second requirement later. We write

f (@)= f(x+iy) =u(x,y) +iv(x,y)

and then

§ 12z = e, ) de—v(e, ) dv] +if [vx, v e+, ) d
C C
see §1.1. The two real line integrals that we have now generated are rewritten using Green’s theorem (all the conditions

for which are satisfied):

§ute,y)de v, @) jj[———%jdxd
C R

and V(x,y) de+u(x, y) dy] [——@jdxd
ivxy ux,y)ay| = J.J. 8x 8)}

But f(z) is an analytic function, so the Cauchy-Riemann relations hold i.e. u#, = vy and Uy =—vy throughout R

(using subscripts to denote partial derivatives); so the two double integrals above are zero, and hence

§/(2)dz=0,
C
which is Cauchy’s Integral Theorem (1825).

Example 2

The contour Cisa circle of radius 1, centre at the orlgln mapped counter-clockwise; evaluate, where possible, ff f(2)dz,

given that f(2) is: (a) Z ; (b) 1/(2 2)5(c) z

a) The function f(z)=z 2 is analytic everywhere in the complex plane, so immediately §C 2dz=0.

1
b) The function f(z)= is not analytic at z = 2, but is analytic everywhere else, i.e. it is analytic for all
z—

0< |Z| <1, so again §Cdz/(z—2) =0.

(c) Now the function f'(z) = z7 i not analytic at z =0, which is inside C, so we are not able to use Cauchy’s integral

theorem; we cannot (yet) find the value of the integral.
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Cauchy’s integral theorem requires only that f'(z) be analytic (and f'(z) continuous for our proof, but see later) inside
and on the Jordan curve, C: any valid Jordan curve will therefore suffice. This implies that, given any particular C, we may
deform C into any other Jordan curve, provided that inside and on the new curve, f(z) satisfies the same conditions as
just mentioned; on all such curves, we have §C f(2)dz=0. Thus, even if f(z) is not analytic at points in the complex

plane, any contour that avoids them will still produce the zero value for the integral; we sketch some examples below.

opP

A
./

1 G

oP oP
C

The function in this example is not analytic (i.e. it is singular) at the point P in the plane;
Cauchy’s integral theorem applies on all three contours (Cy, C, C3 ).

Indeed, we may deform the contour in a more precise fashion, as shown below:

L2
e P LI

/C
-\-‘-‘-‘—\— s

where the two straight-line segments, L1 and L2, are parallel and equal in length. We now close the gap between these

\

two lines, and ensure that the inner contour so produced encircles the singularity at P; when the lines coincide, the line
integrals on each cancel. This is simply because the integral (which exists — the function is analytic on C) in one direction

is minus the value of the integral in the other. In the limit, we obtain:
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~

and we still have §C f(z2)dz =0 where C = C; + (5, and the region, R, is that between C} and C, . The totality of

the contour, and its enclosed region, is conveniently interpreted this way: as the contour is mapped out, so the region (R)

is always on the left. This is a fundamentally important choice of deformed contour, as we shall see in §2.2.

Example 3

The contour C is a circle of radius 2, mapped counter-clockwise, together with the circle of radius 1, mapped clockwise,

both centred at the origin; the region R is the annulus between them. Evaluate §C f(2)dz where f(z)= 1/z(z+3).

EXPERIENCE THE POWEE
FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
RUN EASIER...
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The function f'(z) is singular - it has simple poles — only at z =0 and z = —3; it is analytic everywhere else. These

two points sit outside the annulus 1 < |Z| <2, so Cauchy’s integral theorem gives §C f(z)dz=0.

We conclude this introductory section by making two general observations. Our proof of Cauchy’s integral theorem
requires that f(z) is analytic and that f'(z) is continuous on and inside C. However, E.J.-B. Goursat (1858-1936)
proved in 1900 that Cauchy’s integral theorem is valid even if the condition on f'(z) is relaxed: it is sufficient that
f(2) be continuous, and that f'(z) exists, inside and on C.

The second point relates to a converse of Cauchy’s integral theorem. If f(z) is continuous throughout a domain, D, in
the complex plane, and if §C f(2)dz =0 on every Jordan curve, C, in D, then f'(z) is analytic in D. This is known as

Morera’s theorem; G. Morera (1856-1907), an Italian mathematician, who proved this result in 1889.

2.3 Cauchy’s integral formula

We are given a function, f(z), analytic inside and on the Jordan curve, C, mapped counter-clockwise, and a point

Z = z() interior to C; we consider the integral
§16) ¢
C zZ— Z()

The contour that we use for the purposes of evaluation is C as just defined, plus a circle Cyy, mapped clockwise, of radius
& with its centre at z = z(). The circle must sit wholly within C, which is always possible for z(y an interior point and

a sufficiently small (but non-zero) radius; the configuration is sketched in the figure below.

~

Now by Cauchy’s integral theorem we have

) RACI
CiCy° 70

or

§Mdz=—§ Mdz,,
C Co

Z—ZO Z—ZO
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where the circle, (), is mapped clockwise; we describe the circle using the parametric form z = z +gele for

27 2 @ > 0. Thus we may write

:f %dz _[ (ZO ree 0) cielfdo
—40
0
=i jf(zo+gei9)d0.
2r

This integral can be evaluated - and any evaluation will suffice - by allowing & —> 0 (which is allowed because f(z)

is a continuous function), which gives

0
i | /(z0)d0=-27if(z9)
2

and so §Mdz=27rif(zo),

CZ —Z2
which is Cauchy’s Integral Formula (1831).
Example 4

z+¢e°
1+z

Evaluate ffC dz, where C is the circle |Z| = 2, mapped counter-clockwise.

This is evaluated by a direct application of Cauchy’e integral formula: z = —1 is inside C, so we have

§L9) g =27 (=),

CZ—ZO

An illuminating and intriguing interpretation of Cauchy’s integral formula is made more obvious when we write it as

§f(é3 dc.

That is, given an analytic function defined on C, f(z) is then known at every point inside C. This result has no counterpart

in the theory of real functions.

Example 5

Given that f(z) = Z2 on the contour C, defined by z = rele, 0< @ <2, determine f(z) throughout the interior
of C.
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We form f(z) = — § -2 dé’ where z is any interior pomt thus we obtain on { = re' 0
) 0
17 (re ) i0
f(@)=— _[ - —rie”do,
27 0 el —z
and we note that z # relg for every @ (because z is interior to the circle). It is convenient to rewrite the integrand as
3.3i0 2 .10
r-e i i zZre
T: 7"26216 +7"Z€19 +T,
re'’ —z re'’ —z

and then we have

xd 2 2i6 i6 ereie
J.i reet yrzel + 2~ 1dO

2
1,26210 4 7610, 2 log|re el
127 0
. 2
= zz{log(rele —z)} =27iz?,
0
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by virtue of the jump in value of the logarithmic function across its branch cut. Thus f(z) = 2 on C and throughout

the interior of C.

Before we turn to the most powerful and useful of these integral theorems, we need one more result, which puts into a

clearer perspective the identity

dz .
iZ—ZO :272-1’

where () is a circle (or, indeed, any contour in this result) that encircles z = z(. We now consider the evaluation of

I, = ff(z—zo) dz
G

where n=0,1,+2,%3,... and () is the circle z =z +I’elg, 0< 8 <27; note that the case (omitted here) of
n =—1 is evaluated by Cauchy’s integral formula. Thus we have

2 i(1+n)0 27

i - . €
I,= Jr”em‘grleledﬁz T 1
1(1+n
0 ( ) 0
r1+n (1
— {el 72'( +I’l)_l}:0,

l+n

for every n # —1 . Indeed, this makes clear just how special # = —1 is: in this case, treating the problem as a conventional

integral yields a logarithmic term, which requires a branch cut (and a consequent jump in value) in order to evaluate it.

In summary, we have

0= §(z—zo)nd2=

27 forn=-1
0 for all other ns,

where () is a circle, centre z(), mapped counter-clockwise.

2.4 The (Cauchy) residue theorem

The function, f(z), is now assumed to have a finite number of singular points inside the Jordan curve C; at each point,
valid within an appropriate annulus about the point (z = z), say), it is assumed that f'(z) can be expressed as a Laurent

series i.e.

f(2)= Zan(z—zo)n + Z(b—”
n=0

n=1 Z—Zo)n ‘
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This always exists for a function that is analytic except at a finite number of discrete singular points, each annulus being
centred around each point, and not enclosing another one. A function that possesses a Laurent series about a point at
which the terms in b,, , i.e. the negative powers, do not terminate is said to have an essential singularity at this point. A
function that has Laurent series that terminates in the b, s for every singularity has only poles (of a given order) and
such a function is normally called a meromorphic function. That is, a meromorphic function has no essential singularities,
but it does have poles; cf. analytic, which implies no singularities of any sort. ['Meromorphic’ comes from Greek (pepog
and pop@og), and means, literally, ‘part of the form/appearance, which is to be compared with ‘holomorphic’ - which is

sometimes used in place of ‘analytic’ — meaning ‘whole of the appearance’]

The new theorem relates to the value of §C f(2)dz, where Cis as described above; this situation is represented in the

figure below.

.Zl
.Zz

—

In this example, the contour C encloses three singular points.

To proceed, we use Cauchy’s integral theorem on a deformed contour; this is constructed as in §2.2 so we deform around
Z1 (say), enclose this by an almost-complete circle, and then close the circle. The contour otherwise is deformed around

all the other singular points, ensuring that they remain outside the contour. This is represented in the figure below:

L %) C1'

~ )

The contour Cl' encloses only Z{, which is itself is enclosed by a circle, Cl .
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Cauchy’s integral theorem then gives

§/@dz+ § f(z)dz=0,

g G

where, as we have seen before, C| is mapped counter-clockwise, but Cj is mapped clockwise. Now choosing Cj to be

inside the annulus around z = z, inside which the Laurent expansion exists, enables us to write

§f(z)dz= ff Zan(z—zl)n +an(z_21)_n dz
G n=1

¢ =0

= 2riby,

and zero if the term in (Z -] )_1 is absent, for then bl =0; bl is called the residue of f (Z) at z = z; . Thus we have

the evaluation

§ f(2)dz=27iby .

C
1
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Let us relabel the residue, so that it corresponds to the coefficient by at z = 21, by writing it as by | ; the corresponding
residue at z = z,, is then by,,. This process of forming circles around each singular point is continued by next encircling
Zp, and then z3, and so on, each one contributing a term 271 x residue . Combining all the contributions from the

singular points inside C gives us

N
{f(@dz=27i >y,
C n=1

for N singular points inside C; this is the Residue Theorem, sometimes called the Cauchy Residue Theorem (1846).

It is clear that the residue theorem subsumes both Cauchy’s integral theorem and integral formula. For, on the one hand,
if the function is analytic - so no singular points anywhere - then all the b, s will be zero for the Laurent expansions
about every point; hence the value of the contour integral will be zero: Cauchy’s integral theorem. On the other hand, if
the function to be integrated takes the form f(2) = g(z)/ (Z —Zo) , where g(z) is analytic inside and on the contour
and z = z() is an interior point, then there is a one singular point inside C with a residue g(zo) » which recovers Cauchy’s

integral formula.

Example 6 5
z“—¢f

Evaluate i Z (Zz B 1)(Z N 3)

dz where C is the Jordan curve |Z| = 2, mapped counter-clockwise.

2 2?2
z —¢€
The function f(z) = has (simple) poles at z =0, £ 1 inside C;
zz=D(z+1)(z+3)
the pole at z = —3 is outside C and therefore does not contribute. In the neighbourhood of each pole we have
1 1
at z=0: f(z)=...— ... and so the residue here is —;
3z 3
I-e I-e
at z=1: f(z)=...————... and so the residue is ;
8(z—1) 8
I-¢ o 1-e
at z=—1: f(z) =...——— ... and here the residue is
4(z+1)

(These results can be obtained by observation, since no formal expansion is required to determine the relevant terms.)

The residue theorem then gives
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Exercises 2

sinz
1. Evaluate § 21 dz where C, mapped counter-clockwise, is the circle: (a) |Z| =1; () |Z| =3.

z

ze” —cosz
2. Evaluate § 2—dz where C, mapped counter-clockwise, is the circle: (a) |Z| =1; (@) |Z| =r>2.
Z(Z 4)
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3 Evaluation of simple, improper real
integrals

The first simple and direct application of complex integration to the evaluation of real integrals is to improper integrals

of the type

jf(X) dx or J.f(x)dx if f(x)is an even function.
—© 0

In order to evaluate these integrals, we consider

{12z
C

for a suitable choice of the contour, C. Since we eventually require the integral along the real line, this (initially in the
form —R to R) must be included as part of C. The most convenient way to accomplish this (but not exclusively so, as
we shall see later) is to use a contour which is the boundary of a semi-circular region of radius R, normally taken to be

in the upper half-plane:

-R R

The integral in the complex plane can therefore be written

R
§f@d= [f@d+]f(2)d
C

—-R sc

where ‘s¢’ denotes the integral along the semi-circular arc; further, on the real line we have z = X, so we may write

R
{f@dz= [f()dv+ [f(2)de.
C —-R sc
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The procedure is to evaluate ‘_{C f(2)dz,, using the residue theorem with the radius of the arc sufficiently large to enclose
all the singular points in the upper half-plane, to estimate the integral along the arc and then to let R — 00 . In practice,
the useful results occur only if J f(z2)dz— 0 as R — o0 ; we now investigate this important aspect of the problem.

sc

3.1 Estimating integrals on semi-circular arcs

We shall examine two cases: zf (z) = 0 uniformly as R — 00, and el f(z2) (k>0 and real) with f(z) >0
uniformly as R —> 00, both on the semi-circular arc. By ‘uniformly’ we mean the following; if | g(Z)| < K(R), where
R= |Z| ,and if K(R)—> 0 as R — o0, we say that g(z) — 0 uniformly as R — 0.

(a) Type 1

We are given that |Zf(Z)| < K(R) with K(R)—> 0 as R —> o0; we now consider the integral Jf(Z)dZ and

construct an estimate for it: sc

[r@ @< flr@le = flre)rde

sC 0

But |Zf(Z)| = |Z||f(Z)| = R|f(z)| < K(R), and so we obtain

V4 T
R[|f(2)|d0<K[dO=Kz—0 as R—>o0;
0 0

thus jf(z)dz—)O as R—oo.

sc
Example 7
Show that f(z) = 5 satisfies |Zf(Z)| < K(R) — 0 on the semi-circular arc, as R — o0, and identify K(R).

+z

z
We have zf (z) = 7 and on the semi-circular arc |Z| = R ; but by the triangle inequality, we have

1+z
-2
‘1+zz‘+12‘zz‘=R2 1
1422
z z R
and so 2|: || < =K(R)—>0as R— .
2 22 R
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(b) Type 2

This time we are given | f (Z)| < K(R) — 0 on the semi-circular arc, as R — 00 ; the integral under consideration is
J'eikz f(2)dz where k is real and positive.
sc

(If k is complex-valued, then the imaginary part can be subsumed into the definition of f(z), but the condition on the

new f(z) must be unchanged.) We proceed in a similar fashion to that adopted for type 1:

Je€r@ e <j

SC

e f(2)dz =

eikz f(z)‘ RA0,

and note that

¥ £ (2) =) £ (2) = |1 (2) < K(R).
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Thus we may write

[ f(2)dz|< RK][e_kde,
0

sc

and on the semi-circular arc y = Rsiné, so we now require an estimate for

T ) /2 .
Ie_kR51n9d0=2 Ie_kR51n0d9.
0 0

) 2 . 2
But a standard result is that > — or sin@ > —4@, so that we have
T

T

o kRsing e—ZkRH/ﬂ ,

and hence

/2 72 5
J‘e—kRsiangg J'e—2kR9/7rd6;:_ T {e—sze/nr/ _ T (l_e—kR)_
0 0 2kR 0 2kR

When we combine these results, we obtain

T

ikz
[e* 1 (z)dz <2KR i

sc

(l—e_kR):%(l—e_kR)K—)O as R— oo,

and so we have proved that J.elkz f (Z)dZ — (0 as R — 0. (This is sometimes referred to as Jordan’s lemma.)
sc

Example 7

Show that f(z) = satisfies |f(Z)| < K(R) — 0 on the semicircular arc, as R — o0, and identify K(R).

1+z

This is very straightforward, based directly on the triangle inequality:

1 1 1

|1+Z|+12|Z|=R 0 = <
l+z| 1+ R-1

=K(R)—>0a R—> .
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3.2 Real integrals of type 1

We explain the essential ingredients of the method by evaluating an improper integral that is not elementary, although

it does take a fairly simple form:

© 2
X
J o
ol+x
The complex integral that we consider is
72

§/@dz with f(z)=—":
C I+z

this function has a denominator Z4 +1:(22 +i)(22 —i) which has zeros in the upper half-plane at

-1+ i) . Thus we have, for R > 1, the following picture

_ 1 N L
Z__JE(L+0’J§(

-R R

The semi-circular region has two poles inside it, at Zz = %(il +1).
2

and then it is convenient to write

22 22

1+2* [Z—\é(1+i)}[2—\é(l—i)}[z—\é(—1+i)}[2—\%(—1—i)}'

The residues at the two (simple) poles inside C are now easily obtained:

1 2
5 (1+1) _

oe Ll PPN PR
R R a)ie) e e Y

1 2
E(_1+1) _

at 2= L (_141): I SV YT VR SO
t J2(1+0.FJ®045+REXN5) i4\/§(1+1) 4J§U+ﬂ.

Download free eBooks at bookboon.com



An introduction to the theory of complex variables Evaluation of simple, improper real integrals

We may express the contour integral as

2 R 2 2
z X z
fgde= | Sgder [T
cl+z Splx wltz
3
and 1+z42R4—1 so that |z —>0as R—>o:

z? |< R
1+24 T R0

the condition for the type 1 integral is satisfied. We also have, by an application of the residue theorem,

2 T

z _ D 2 T T Y L
imdz—%n[wi(l 1—1 1)]_\/5'

Thus, letting R — o0, we obtain

% x2 T
.[1 4dx:f
ol+x

and then, because the integrand is an even function, we finally have the evaluation
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We now try one further example of this type.

Example 8
T
Evaluate J. "3
—oo(1+x )

We consider the integral (with C the boundary of the standard semi-circular region)

§dszx+dz

c(1+22) k(1) (1+22)

< R 3—>OasR—)oo.

(~2-1)

1+Z2 ZRZ—I and so»

we see that

(1+22)

We also have Z2 +1=(z+1)(z—1), which gives a pole (of order 3) at z =1 in the upper half-plane; thus we write,

with {=z—1,

and thus the residue at z =1 is —ii. Hence, taking R — o0, we obtain

32
T dr [ 3) 3
J‘m=2m(—§j=§7z

We are now in a position to consider some type 2 integrals.
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33 Real integrals of type 2

This type of improper integral is nicely represented by this problem: find the value of

T cos(kx)
(x+a)® +b>

—0

where k, a and b are real constants, and we take k£ >0, b > 0. Although we could use cos(kz) (provided that the
relevant conditions hold on the semi-circular arc), it is far neater and more straightforward to replace cos(kx) by elkz

(and eventually take the real part). Thus we consider

§ eikz dZ:jf eikx des eikz &
czra)+b* L(x+a)? bt (zva)t bt

and on the semi-circular arc

(Z+CZ)2 +b2‘ =

22 4 2az +a? +b2‘ 2|z|2 —2a|z|—a2 —b? =R%?_2aR-4? —bz;

N !

|
_‘(Z+a)2+b2‘ﬁ PSRRI —>0as R— o,

ie. /)

and the type 2 conditions are satisfied.

We have that (z + a)2 + bz =(z+a+1b)(z + a —1b) which is zero in the upper half-plane at z =—a +1b, so we

have, for R > \/az +b2 ,

C
°
—R R
The semi-circular contour has one pole inside, at z = —a + ib.
ik(—a+ib) :
. c 1 _ph—i
and then the residue at z=—a+1ibis ———— = ¢ kb—iak .

-a+ib+a+ib  2b
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Hence we find ikz

if 62 o= 27[1( RS lak) T —kb-iak
c(z+a) +b 2b b

and so, letting R — 00, we obtain

J‘ e' g = & o—kb—iak
2 (x+a)?+p* b

when we then take the real part of this equation, we obtain

o0
_[ %dx =T ehb cos(ak) .
o (x+a)” +b b

In passing, we can note that in this example — and this is typical of problems interpreted by introducing elkZ - we also

obtain the integral

T sin(kx) T b
I (x_,_a)—z_,_bde__Ze Sln(ak),

so two integrals are evaluated for the price of one calculation.
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Let us now tackle another example of this type.

Example 9

xsinx
x> +4

dx.

o0
Evaluate j
—»

To evaluate this, we consider the integral

iz R ix iz
e [ S e [ e
cz +4 SpxT+4 pat
| R

—4=R2—4 sothat| < —>0as R—> .

2 <
i 122 +4]” R2—4

and note that

22+4‘2

But we have Z 2 4= (z+21)(z —21) which is zero in the upper half-plane at z = 21 ; we have the residue at z = 2i as

2ie_2 1.2
4i '
ze¥
Thus § dz= 27Z'i(% e_z) =ize 2 ,

sz +4

and then, with R — o0, we get

© ix
xe .
_[ 5 dx=1xe 2;
X" +4

on taking the imaginary part, this produces the required evaluation:

& —8
=
w2
=
=

Comment: In this example, we see that the real part gives
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which is no surprise because the integrand is an odd function. Thus, although we can use this method to find

0 .
xXSmx

£x2+4

e 2 )

dv (=5

(e 0]
XCOSX
we are unable to find

3 dx (even though this is expected to exist and be non-zero).
o X +4

Exercises 3

Evaluate these real integrals:

o0

(2)

dx

_00(1+x2)(x2 +4)

'(b)of dx (@) T cosx -
, 0 1+x2)2’ —oox4+4 |

265 5 5 2 5 5 5 2 56 5 X6 % %

565055 %

no.l

nine years
in a row

<
)
&
%
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4 |Indented contours, contours with
branch cuts and other special
contours

The examples described in the previous chapter have enabled us to introduce the basic principles that apply to the evaluation
of real integrals, using these techniques, although all the problems have involved a semi-circular region in the complex
plane. However, any contour could be chosen and the consequences explored, which may lead to a suitable method of
evaluation - but it may not! In this chapter we will present a few examples that require different choices of contour, some
which turn out to be an adjustment of the classical semi-circular one, but others are very different. Indeed, we shall
find that, in order to evaluate certain integrals, we may use the semi-circle, but with indentations. On other occasions,
the integrand itself can be defined only by the inclusion of branch cuts, and this must be accommodated by the chosen
contour. Finally we shall show that, for other evaluations, some very special contours must be used. However, we typically
encounter some technical problems (associated with the definition and existence of integrals, even though the original

real integral is well behaved); this aspect needs to be addressed first.

4.1 Cauchy principal value

In order to tackle integrals such as
0 .
Smx
[ ax
X
—0

we shall discuss two difficulties that stem from the consideration of the integral of eiz / z . For example, it is immediately
clear that sin x/ X is integrable in the neighbourhood of x =0 (for sin x/ x—>1 as x = 0), whereas eiz Z does
not exist at z = 0. The original real integral does exist, although confirming this by examining the behaviour at infinity
is not straightforward; thus the simple estimate |sin x| <1 leads to the integral of 1/ X , yielding 1n|x| which diverges
as |x| —> 0.

The familiar choice of a semi-circular region does work for this example, using the integrand eiZ / z , which satisfies the
requirements of a type 2 integral (§3.3) at infinity. However, we must define what we mean by the integral of a function
that possesses the property of this one near z = 0 (which, we must expect, should not be critical to the evaluation of the
real integral because this does exist). We first address the problem of developing a suitable definition, and then we will

see how we can incorporate this within a formulation of an integral in the complex plane.
The situation that we must clarify is best described by reminding ourselves of the definition of an improper integral,

where the failure to be ‘proper’ is because the integrand is not defined at a point in the range of integration. A simple

example is the integral
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X
J.y_kdy,for O<k<land x>0,
0

where y_k does not exist at y = 0. The value of this integral (if it exists) is defined by

X
lim j y_kdy ;
e—0" -

this gives

YT Urok_ 1k 1) -k
lim||=——]| |= lim —{x_ -& } =|—
e0t|| 1=k e—>0t\1-k 1-k
&
because & * —> 0 with 0< k <1: the integral exists. Let us now suppose that we require the integral of f(x), for

b E[a,b] , where f(x(), a <Xy <b, is undefined; the integral exists if

Xo—¢&

b
lim [ £@ydx |+ lim [f@)dr
&0 u 0—0 Xo+5

is finite. The use of two parameters is essential here, making clear that the processes &— 0" and 6 > 0" are

independent.

Example 10 5

Show that the real integral J.W exists (where, of course, it is necessary that all values of xk , for suitable k, are taken
to be real). 1%

The integral is defined as
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—-& 2
lim j x By |+ lim j x VB
0"\ 2 50"

- 2
= lim (gxz/ﬂ 8)+ lim (gﬁ/ﬂ ]
0" -1) 507 g

= lim (é (—e))3 - 3 (_1)2/3) + lim (% 22/3 _ 3 52/3)

e0" 2 00"

3

2 dx
Comment: We should note that the corresponding argument for J. IT fails because the integrand, and hence the
TiAX

integral, are not real for X < 0. In this case we can allow only the one-sided limit
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Let us now apply this same approach to the integral

2
J' dx
-1 X
so we consider
—6‘
lim J + lim J—
g0\ 5 X 5—>O+

= lim+@1njxﬂ )+ lim ([IDIXH )

&—0

= lim (lng—ln1)+ lim (1n2—1n5).

e—>07" 507

However, In & and In ¢ increase indefinitely in size as & —> 0" and 5> 07, respectively: the integral does not exist,
according to the familiar definition (and this result should be no surprise). But there is something rather special about

this example; if we allowed & = O , then we obtain

lim (lng—ln1+ln2—lng) =In2,

0"

and the integral exists! Nevertheless, we should be aware that even this manoeuvre does not always work; consider

which we write as

. 1T 7 1P) .. (13 1
e—0"| ~ 8—)0+ X1 xlg) esot\e 2 €
this does not exist — the two terms in & do not cancel.

The Cauchy Principal Value, when it exists, is defined by

Download free eBooks at bookboon.com



Xp—¢€

hm j F(x)dv+ j £(x)dx

Xo+&

and this value is usually represented by a bar through the integral sign, -f- f(x)dx, or by writing
b
PV [ f(x)dx.
a

Of course, a function may possess more than one point where it does not exist, so the principal-value definition must be
applied to each one. We also record that the definition can be extended to an integral that is improper because the limits

extend to infinity. So the integral

o0
dex clearly does not exist,
0

00
and neither does jx dx; on the other hand, the Cauchy principal value of this latter integral is defined as

—00

ol (32 gt

which does exist.

4.2 The indented contour

We return to the real integral that we introduced above, and use this as a vehicle to describe and explain how contours

are indented. Thus in order to evaluate

iz
sinx e
_[ —— dx we consider §:— dz,
z

which satisfies the type 2 conditions at infinity, but is undefined at z = 0. Thus we take as the contour, C, a semi-circular
arc together with the diameter along the real axis indented by a (small) semi-circular arc that allows us to avoid z = ()

, as shown in the figure below.
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—R —& E R

The contour comprising two semi-circular arcs (radii Rand &) and
an almost-complete diameter connecting them.

According to Cauchy’s integral theorem, we have

because the only singularity of e / Z is a simple pole at z = which lies outside the contour. But we may write the

integral on C as

“I studied
English for 16 >
years but...
...I finally

learned to

speak it in jus
six lessons”

Jane, Chinese architect

OUT THERE

Click to hear me talking

before and after my

unique course download

141 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/EOT

-& ix R ix iz iz
j%dﬁ{%dﬁj%dﬁs{%dz:o,

—-R SCE

where sc& labels the integral on the semi-circular arc of radius & (mapped clockwise), and sc is our familiar label for

the larger semi-circle. We know that

eiz
J—dz—)O as R— oo
SCZ

(cf. Example 7), but we do not know the behaviour on sc& (although we might surmise that is it

—%x27ri x residue = —%x27zi x1=—1m).

0

.. i .
On the smaller semi-circular arc, we have z=ge ~, 7 = @ > 0, so we obtain

| - T—eXp(i.gjg) ¢ie'?do

sce z T gel
0
=i[explice'?) do
Jexalice')
T
0
—i[dg=-ir as £—0;
T

its value is indeed —177! Thus we may write, once we have taken & — 0and R —> o0,
© ix
c .
'f' —dx=1ir,
X

—00

the principal value being necessary because we have taken & — 0 about X = 0. The imaginary part of this equation yields

which we may write like this because the integral does exist in the conventional sense. On the other hand, when we take

the real part, the principal-value notation must be retained to give
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this integral certainly does not exist in the conventional sense - it is not integrable at x = 0 - but it does in the PV sense.

Example 11
T sin
Evaluate I S x2 dx.
% x(l +x )

iz
We consider the integral § dz, which requires an indented contour around z = 0, exactly as in the example
ce\l+z

above. However, we also have simple poles at z = %1, and we may note that, on the semi-circular arc of radius R:

2

1 1
A1+ R -)

-0 as R— .

The residue at z =1 is e_l/i.2i = —%e_l , and so we obtain
iZ -1 1
5 dz= 27z1( ): —ime .
(1+Z )

However, the integral along C can be written as

RIS SRR -
el+?) () (1+Z) )
where jiz)dZ—)Oas R —> o0 .0n Zzaeig,EZHZO,weobtain
sel\l+z
0 explice'? o Oexp igel? '
;[gei‘g(l(J“ngz)ie) 1geled0:1;[$ d@——ir as £—0.
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Thus, letting R — 00 and & — 0, we see that

0 eix
T dx=iz—ize! ,
% x(l +x )
and then the imaginary part yields
T sinx
J oo gydr=a{i-<T).
% x(l +x )

cosx dx =0 (by taking the real part), although the integral

Comment: This same complex integral gives ‘J:
x(l +x2 )
T COsXx -
J P dx does not exist in the conventional sense.
(1 +x )

—oox

43 Contours with branch cuts

The logarithmic function, 10gz, is the function that is the most familiar one with a branch cut. It is usual to take the

cut along the negative real axis, thereby defining the principal value as
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A suitable interpretation is necessary for the evaluation of integrals such as

T Inx
|5,
0 X ta

where a is a positive, real constant, when treated as a corresponding integral in the complex plane. The natural way to
attempt an evaluation is to replace Inx by l0gz , and then by Logz (to make it single valued), together with a suitable

contour; so we consider

Logz
§22+a2 dz.
C

The choice of C requires some care, when we note the existence of the branch cut necessary for Logz . We have a simple
poleat z=1a = aem/ 2 in the upper half-plane, and we anticipate that the integral along the semi-circular arc tends to

zero as the radius increases, so we use the C shown below.

The two semi-circular arcs extend from €@ = 0 to @ = 71 — J ; the radii of the arcs are Rand &, and
they are joined along & = 77 — & by the straight line L. The branch cut is along the negative real axis.

First, we write

Logz Logz
2 +a*  (ztia)(z-ia)

and then the residue at Z = 1a becomes

i7/2
Log(ia) Loglae™?)
21a 2ia 2a 4a 2a

|

|

|
1
5

Y
t.
Sl
N

I

|

1

the residue theorem now gives
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ff Logz 4 o[ 7 _jIna :7—Tlna+iﬁ.
sz+a 4q 2a a 2a

The contour integral can be expressed as

e

N dx+j2°gzdz [ dz+j O

JX2+G Z +(l LZ +a Z +Cl

where sc and Sc& denote, here, the almost-complete semi-circular arcs (see the figure above), and L is the line

rel(ﬁ_g) , € <7 < R. On the larger semi-circular arc we have

| zLogz | _ RlLogs| _ Ry(InR)* +6”

< —>0a R— o,
e ol

(because 0 < @ < 7 — &) which therefore satisfies the type 1 condition. On the smaller semi-circular arc, we have

10 . .

9 LOg(EC ) . i0 . 0(ln8+19) i0
2 216 . 2 1€ de:wj T

72_8 c +a a +&£°¢€

dfd—0 as £¢—>0;

thus, with R — 00 and & —> 0, we are left with

§2L°gz dz = jz dx+j e =zlna+iﬁ
c? +a 0X +a heZ +a a 2a

But on the branch cut (bc) we have z =re'”, 00> 7 >0, so we may write

Logz Inr+iz
[;[zera &= I 7 (D= £r2+a dr+mzl;r2+a

00

dr 1 Vs
and this latter integral is elementary: J‘ﬁ = |:— arctan(r/ a):| ="
ot ta a o 2a

Thus, finally, we have

o0
21 dx+j 5 dr+1£= j dx+i—:zlna+i—,
x% +a? o +a? Ox +a? 2a a 2a

O'——18
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and so the required evaluation is

Iy T

S —8
\S]

[\

N}

X" +a

One - perhaps rather surprising - outcome of this calculation is the special case @ =1:

T Inx
J 2 1 dx=0,
t Inx T Inx
and then an interpretation of this is J. 5 dx=— 5 dx.
X +1 1 X+l

Another fairly common appearance of branch cuts (because it is directly associated with the logarithmic function) is in

the evaluation of z" for arbitrary k; we will investigate this case in the next example.

Example 12
0 —k

X
Evaluate 1— dx for real k with 0 < k < 1. (This integral is related to the Beta function.)
+Xx
0
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—k
z
In order to evaluate this integral, we consider § —— dz, for a suitable choice of the contour C; we must take the principal
—k I+z
value of z  defined by C
—k .
z —-exp[—k(hlr—%le)],

with the cutalong € = 0 (because we haveapoleat z = —1 i.e.on @ = 7 ),soweuse 0 < @ < 2. The contour we use is

where the outer, almost-complete circle is of radius R and the corresponding inner one is of radius & (for O <e<l1

); the two straight lines, L1 and L2, are z = re‘lé

for >0 and & <r < R. The singular point is at z=e" =-1
, which lies between the two almost-complete circles. This type of curve is often called a keyhole contour. The residue at

the (simple) pole is exp[—k (In1+ 172')] = e_lkﬂ , and then the residue theorem gives

—k .
IZ—dz:27rie_1k”.
C +z
But we may write
—k
j—dz+j—dz+ ERN Z 4,
1+z I+z l+Z 1+Z 1+Z

where CR denotes the almost-complete circle of radius R (mapped counter-clockwise), and ¢& is the corresponding inner

circular arc (mapped clockwise). On CR we have
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ZZ < —>0as R— o,
1+z R-1
Z—k
and so l—dZ—)OasR—)oo;
CR +z

also, on c&, where z = 5616, 27 —06 26> O, we may write this integral as

o _—k_—iko ) oi(1-k)0
& e
J. —egleledé’—lgl k I —9d9—>0 as £—0.
IS 1+ ge! e 51+ge

Finally, on L1 and L2 (and we note the directions along these lines), we have

R
jﬂ S+ j T 0r-5)y,
A 147el 1+re1(2” 9)
_oi1-0)5 i(1-k)(27-0) -
dr—e Ol L
'[1+re J‘1+rel(2” %)

—)(1 _lzk”)jgl_i_rdr as 0 —0.

Then, collecting all these results together, and taking  — 0, £ > 0 and R — o0, we obtain

K 0

Edz ( _IZk”)'[1+xdx 2 rrie 7

Thus

%~k

(eik” —e_ik”)J I dx=2rmi,

and with elk” — e_lkﬂ = 2isin(kr), the required value is
q
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—k

[ER
01+x sin(kr)

(for O0<k<1).

44 Special contours

We conclude with two examples that require special choices for the contour. We have become rather familiar with the
semi-circular contour, or some suitable refinement of it; indeed, it is by far the most common choice, but for some

functions it is altogether inappropriate.

(a) A rectangular region

We consider the problem of evaluating

T e
_‘[Ol+exdx,

where @ might be a complex constant, but such that 0 < R(r) < 1; it is clear that this condition on @ is necessary
in order to guarantee the existence of the integral. (Note the behaviour of the integrand as x — 00 .) We shall take the

case of the real integral, so & will be real here. We introduce the integral

American online

is currently enrolling in the
Interactive Online
programs:

enroll by September 30th, 2014 and
save up to 16% on the tuition!

pay in 10 installments / 2 years
Interactive Online education

vvyyVvyyVvyy

visit to
find out more!

Note: LIGS University is not accredited by ani
nationallg/ recognized accrediting agency listed
by the US Secretary of Education.

ore info here.

—

150 Click on the ad to read more
Download free eBooks at bookboon.com



http://s.bookboon.com/LIGS

oz
=
C1+ez

and observe that 1+e” =0 for z= i(1+2n)7z', for n=0,%1,%2,..., so that a semi-circular contour which is
extended to infinity will necessarily enclose an increasing number of poles. Thus we select a rectangle that encloses only

one pole, at Z =17, and so we take C as the rectangle (2R X 277 ) shown in the figure below.

27

P ﬂC

-R R

The only pole inside C is at z = 177, with the residue obtained by writing z =17 +¢:

oz ea(ifr+§) ea(i7z+§) eia”(1+§+...)
l4e? 147 1-¢5 1—(1+§+...) ’

and so the residue at z =17 (ie.at £ =0)is —e'%” Thus, by the residue theorem, we have

Nz
§ ~dz= 27zi( 10”[) 27ie'®
cl+e
Now we may write the contour integral as
R Lax c(R+iy) -R a (x+27i) 0 ea(—R+i ) ,
J. e+ .[ Ry Wt .[ a1 (: _27Ziewm) '
Cpl+e’ 1+ ] +e¥H2m s lre Y

However, we note that
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27 ea(R+iy) ' 2z e0{(R+iy)

———— i< | |———|dy
o 1+efry o |1+efF
aR
< 27—>0as R—w
R_1
e
for 0 < a < 1; similarly
0 e05(—R+iy) 27 ea(—R+iy)
j ————idy|< I ————dy
—R+iy —R+iy
27r1+e 0 1+e
e—aR
< 27—>0 as R— 0.
1-e R

Finally, we also have

R _a(x+27i) R ax
(S i (S
dx::—ezaﬂlj ——dx,

x+271 X
R1+e

R1+e

and so, taking R — 00, we obtain

e 0]
( 20{7[1)_'[01 — dx = 2 riel?™

or (e“”i —“’”)z lie dx = 27i

dx =271.

0.0]
i.e. 2mu1aﬂ I

ﬁw1+e
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Hence we have the evaluation

ax

J' e _ 7
2 1+e” sin(ar)’

where @ is real, with 0 < @ < 1.

This result should be no surprise: cf. Example 12. Let us write y = e*, with —00 < x <0 (so that 0 < y < 0), then

we obtain

OJ? ez dx_]?ya ldy—Tya_l dy_f]?y—k ~ pe
_001+ex 01+yy 01+y 01+y sin(k )

from Example 12, where k =1—a (so 0 < k <1) and also
sin(k7) = sin[(1- @) 7] = sin(ar).

(b) A sector of a circle

o0
This is the problem of evaluating , €0 x2 dx, and the obvious choice for a function in the complex plane is exp(i 22 )
(so th

sesssssssssssssssnsssssssssssssssssssssssssssssnnssssssssssnssssssssssssfilcgte]-Lucent @
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The most convenient and straightforward method for the evaluation of this integral (which we may note is the integral
0 2

of an entire function) is to incorporate the standard result -[0 eV dy= %\/7—; .

ir/4

2 2ir/2 __ 2

This can be accomplished by taking, as one part of C, the line z =r¢ , for then 1z° =1r-e 7~ ; thus we

choose to use a C as shown in the figure below.

C
By Cauchy’s integral theorem, we have
§eiz ? dz=0,
C
but we may write
.0 R 7[ . . 0
§ e dz= J J xp(iRzez“g)RieledQJr Jexp(lr el 2) i7/4 4 (= 0) .
C 0 0 R
Here, we see that
/4
lR J‘ e exp( R2 210)d9 <R J RSIH29d9<R J —4R H/Hde
0 0

because

eig‘ =1, exp(iRzezig)‘ = ‘exp{iR2 (cos26’+isin20)” = exp(—R2 sin2(9) and sin260> 46/ x for
0< O < /4. Thus we have
/4

iR J- el? exp(iRzeZie)d <

2
ﬁR_l(l—e_R j—>0 as R—>o0,
0

and so when we take R —> 00, we are left with
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T ix? i;z/4°O 2 T, 1 T N
Oe dx—e !).e dr=0 or {e dx—ﬁ(lﬂ){e dr—ﬁ(lﬂ)zx/?r.

The real part of this equation then gives

which is the required value. (Note that the corresponding integral for sin yields, from the imaginary part, the same value:

j(;”sin(xz) de=v7/242 )

Exercises 4

Oo(lnx)2 T x—sinx
Evaluate these real integrals: (a) j 5 dx; (b) J—3 dx.
0 1+x 0 X
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5 Integration of rational functions of
trigonometric functions

The final type of integral that we consider takes a rather different form; indeed, the problem and the approach to its
solution harks back to standard methods of elementary integration: substitution. Essentially all we do is to introduce a
routine change of variable — the substitution — and then integrate, except that here we generate an integral in the complex
plane that can be evaluated by using the residue theorem. We should comment that all such integrals can be evaluated
by conventional means, i.e. by using a standard (real) substitution, but the definite integrals that arise are far more easily

computed by these new methods. We shall consider definite integrals of the form

2
J f(sin#,cos0) db,
0

where fis a rational function of its arguments; a simple example is

2JZT sind

0 3+2cosf

The method involves using the familiar identification z = 610 ,so that 0 < @ <27 will map out the unit circle, |Z| =1

, in the counter-clockwise direction; we will label this contour CO. We also have

dz .9 . ~ = _

L el =iz, cosezl(eleJre lg)zl(erz 1),

do 2 2
1[0 —19)_l( B —1)
sm&-zi(e e =5:z-2 ),

and so we may write

2JZTf(SintS’,cosé’) do= § f(%(z—z_l),%(z+z_l)) (—i%).
0

z
G

But since fis rational, it remains rational under this transformation to z, and hence we can readily identify the poles (and

the residues) inside CO, the unit circle.

Example 13
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Evaluate J. where () < | k| <1 (and k is real). (The condition on k is necessary if the integral is to exist.)

1+ ksin@

We introduce z = e'? with sinf = %(z—z_l) , so we have

7 1 dz
J.1+ks1n 1k(z Z_l) (_1?)

L
L)

_foi
4 k2. 20y
0 k

1 2
ikZ —1) C zZ-+5Zz

where 22 + (21/ k)Z —1=0at z= %(—1 +V1l-k 2 ) . The root with the positive square root corresponds to a point

inside the unit circle; the other point lies outside. Thus we write

and so the residue (of this function) at z = —% +% 1-k 2 is
1 ik

1
R 2 e

Thus we finally obtain

T odo 2 k1) 2

J.1+ksm6’ /’czﬂ1 _15\/1_k2 _\/l—kz'

It is convenient, and often very useful, to note that Sin7z€ and cosn@ can be expressed as rational functions of sin &
and c0s @, so more involved trigonometric terms can appear in the integrand, without causing - as we shall see -~ undue

algebraic complications (which might have been expected). So, given 619 =c0s@+1sin @, we have

e!"¥ = (cos@+isin6)" = cosnf+isinn6,

which is the very familiar de Moivre’s theorem; then we may write

cosnf = 2( ind | o= ‘”9):%(2" +z_”)
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and sinné’:l.(eine—e_ina):i.(zn —z_”),
21 21

which considerably simplifies the process of substitution. [A. de Moivre, 1667-1754, French mathematician who developed

the field of analytical trigonometry; he was severely persecuted for his Protestant faith.]

2 20
Example 14 Evaluate Lz dé.
0 (1—%cos€)
We introduce z = ei49 with cos@ = %(Z+Z_1) and cos28 = %(22 +Z_2); thus we obtain
1(.2 2
cos26 E(Z tz ) .dz
do= 3( —i—
4.\ ) N2\ oz
0 (l—gcosﬂ) C0{1—5(2+z )
3 1

Now 22 —%Z +1=(z —2)(2 —%) , 0 we have one root of this quadratic expression that lies inside the unit circle (at

z= 1/ 2). Thus it is convenient to write
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2z cos26 zd‘g:_gii{ 1+2% 2dz
0 (1—%00549) 8 Co z(z—2)2(z—%)

which has poles at z=0 and at z =1/2 inside the contour; the residue at z =0 is

25. 1 25.
—— il =——1.

8 (212 8

The residue at z = 1/ 2 is obtained by writing z = %+ ¢, then we obtain

and so the residue at z = 1/2 is

Thus we finally have the evaluation

F cos20 25, 125.)_275
IT

3 d9=2m’(——1+ =—"r
0 (1—%005(9) 54
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Exercises 5

Evaluate these real integrals:

@ T a0 o ZJ” do
— :
0 (1+30052 0) 0 1+asin@+bcosd
Answers
Exercises 1
97 .13
L.&2. ———i—
12 6

1
3. 1;Mm) —(1+1).
(a) ()10( i)

Exercises 2
1. (a) 0; (b) —2risin?2.
2. (@ 37i; () 57i(1+2sinh2—cos2).
Exercises 3
(a) %; (b) %; (c) 4—7[6(sinl+cosl).
Exercises 4
(a) L2 () =
a) —; —.
8 4
Exercises 5
Y4 2
(@) —; (b)

(a2 +b2<1).
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Biographical Notes

In these notes, we provide some biographical information, in brief, about the various figures who have contributed to the

theory of complex variables (and numbers) over the last two centuries, or so.

Jean Robert ARGAND (1768-1822)

Argand was a French-speaking native of Switzerland - he was born in Geneva - who worked all
his life as an accountant and bookkeeper in Paris; he was ‘only’ an amateur mathematician. He
published his work on the representation of complex numbers in 1806, in a small book that he
had published privately. It was not circulated, at the time, amongst the body of mathematicians
who would have been interested; however, it was discovered (initially without any clue as to
who wrote it) in 1813, and an advert put in the press to find its author. Argand responded,
and thereafter continued to work on various problems of some importance. Indeed, although

he has received little credit for it, he was the first to give a virtually complete proof of the

fundamental theorem of algebra in the case where the coefficients are complex numbers.

It should be recorded, however, that Argand was not the first to develop the geometrical interpretation of complex numbers.
This was accomplished by Caspar Wessel (a Norwegian surveyor) in 1787, who published the work in a journal sponsored
by the Royal Danish Academy of Sciences. Sadly, this was not read by the leading mathematicians of the day - indeed,

it was not rediscovered until 1895!
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Augustin-Louis CAUCHY (1789-1857)

Cauchy was arguably the leading French mathematician of his day, although he trained
as a military engineer; however, because of poor health, he discontinued this profession
in 1813 and thereafter committed himself to the study of mathematics, full-time; he was
appointed Professor at the Ecole Polytechnique in 1816. In terms of productivity, he
was second only to Euler in the number of papers and books that he published: 7 books
and 789 research papers. He made very significant contributions to many branches of
mathematics: number theory, theory of finite groups, astronomy, mechanics, optics and
the theory of elasticity. However, his most important work was in analysis. Here, he made
precise and rigorous the notions of limits, continuity, derivatives, integrals and series. In
the case of the last mentioned, he provided us with a number of basic tests that we use
today, in order to examine the convergence of infinite series. He also worked on existence
proofs for solutions of differential equations, and applied his techniques and discoveries
concerning infinite series to both Taylor series and Fourier series. Notwithstanding all the above, he is probably best
remembered for laying the foundations of, and developing almost single-handedly, the theory of functions of a complex
variable — one of the most powerful and all-pervading theories in mathematics. Although others before him had used
complex quantities, particularly in transformations of integrals — for example Gauss, Euler and Laplace - this had been
done in a purely algebraic way: simply use a change of variable that happened to be complex-valued. Cauchy was the first
to define, and investigate, contour integrals in the complex plane, which led him to his fundamental theorems (Cauchy
Theorem, the Cauchy Integral Formula and the Residue Theorem, not to mention the Cauchy-Riemann relations).
This provides the basis for all of complex analysis, and for many important applications in mathematical physics (and

aerodynamics in particular).

Cauchy, we should mention, was not well-liked by his fellow mathematicians. He was regarded by many as arrogant and
rude, and was not averse to attacking other scientists on religious grounds (he was an ardent Catholic). Indeed Abel,
describing a meeting with him, recorded that he ‘is mad and there is nothing that can be done about him, although, right
now, he is the only one who knows how mathematics should be done’ We conclude on a fairly positive note: he was an
outstanding mathematician, who was deeply committed to his subject, even if he was somewhat narrow-minded! After
all, he gave us, at a conservative estimate, about 16 fundamental concepts or theorems that revolutionised both pure and

applied mathematics.

Leonhard EULER (1707-1783)

Euler was a native of Basel, in Switzerland, where he studied at the university, initially
under the tutelage of Johann Bernoulli. He is remembered for his enormous range
of contributions and, above all, for his prodigious mental powers. Indeed, when
he went completely blind in about 1771, he was able to continue working, producing
nearly half of his total output of papers between then and his death: he did all the

calculations in his head, his students and assistants recording the results. He spent most

of his working life, first in St Petersburg, then in Berlin, finally returning to St Petersburg

Download free eBooks at bookboon.com



in 1766; he was a respected scientist in the pay of Catherine the Great and Frederick the Great (often both funding him
at the same time!). In his eagerness to study the sun, early in his career, he looked at the sun through a telescope; this,
probably coupled with a severe fever, led to the loss of his right eye by about 1740. He continued to have problems with
the sight in his left eye, eventually losing his sight altogether.

Euler was not just a mathematician; he also supervised the observatory and botanical gardens in Berlin, and was
responsible for the publication of calendars and maps (which provided income for the Academy of Sciences in Berlin).
He also took responsibility for canal projects, city water-pumping stations and other hydraulic systems, not to mention
giving governments advice on state lotteries, insurance and pensions, and also on various military matters. Yet with all
this he led a full family life - he was happily married and had 13 children - and was a deeply committed Christian. With
all this, he managed to produce more titles than any other mathematician: 887 papers and books. (You might want to
check on Saharon Shelah: a modern update on this record?) In 1911, a project was started to print all Euler’s works in a
many-volume set; the plan was for about 72 volumes, but when his private papers were studied, it was found that there
was enough material for about another 30 volumes — and this project is not yet completed. His rate of working was
phenomenal; for example, over a period of about 7 years, during the latter part of his life when he was totally blind, he

produced material for about 250 published papers.

He made fundamental contributions to analysis in general, and in particular to number theory, the calculus and geometry.
He also worked in continuum mechanics (elasticity, fluid mechanics, acoustics), celestial mechanics (e.g. the three-
body problem) and introduced many standard techniques (e.g. integrating factors for solving differential equations);
he standardised much of our (now familiar) notation. He is regarded as the father of analytical mechanics and of fluid

mechanics.

To mention a little of his work, in detail, which is relevant to elementary mathematics, and to our study of the functions
of a complex variable, we note the following. Euler introduced the notation f (x) (in 1734) for a function, and was the
first to treat the trigonometric functions as such; before him, these were used merely to compute lengths and angles in
specific geometrical contexts. He also generated and used the power-series representations of these functions. He used
‘@ for the base of the natural logarithm (1727), ¢’ for \/—_1 (1777) and X for summation (1755). Although he did not
introduce 77 - this was due to William Jones in 1706 - he made it popular after about 1739 (before which he usually
wrote p for 77). He obtained numerous series-representations for 77 e.g.
7 111

—=lt—+—+—+.....
6 72 32 42

He also obtained (in 1748) the fundamental identity

e =cosx+isinx,

and then his ‘most beautiful result: €' +1= 0. Indeed, he investigated functions of a complex variable in a number

of different contexts, although - it would appear - not as a specific branch of mathematics. He came across the Cauchy-

Riemann relations in 1777 (as had dAlembert in 1752), but he used them only as they arose in specific problems.
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Jean Baptiste Joseph FOURIER (1768-1830)

Fourier was the mathematical physicist who devoted much of his time and energy to
understanding, and describing in mathematical terms, how heat is transferred between
bodies and inside bodies. In the process of developing the appropriate governing
equations (of what we now call heat conduction), he introduced completely new
mathematical ideas and techniques. He entered, at the age of 12, the military academy
in Auxerre (which is where he was born), where his interests and abilities in mathematics
soon became evident. However, he decided (aged 19) to train for the priesthood - he
joined a Benedictine abbey - although he never lost his interest in mathematics; indeed,
he corresponded with a few mathematicians and published some minor work. He did
not take his vows, but left for Paris at the start of the Revolution (1789) and, somewhat
reluctantly, was drawn into the complicated politics of the time. Once the dust had
settled, he began to train as a teacher in Paris (at the recently-opened Ecole Normale).
He began teaching in his old school in Auxerre, but maintained regular contact with

the leading mathematicians in France at the time: Lagrange, Laplace and Monge.

Biographical Notes

He was noticed by Napoleon, and persuaded to join the army as a scientific adviser when Egypt was invaded. He was,

thereafter, required to take a number of administrative posts back in France; at about this time he wrote a Description

of Egypt (which took much of his time before its completion in 1810). Yet he was able (from about 1804-1807) to write

his first significant memoir (on the propagation of heat in solid bodies); this was followed (1822) by his most celebrated

work: Théorie analytique de la chaleur.

Need help with your
dissertation?

Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

Get Help Now“h

Go to www.helpmyassignment.co.uk for more info E/Helpmyassignment

164 Click on the ad to read more

Download free eBooks at bookboon.com



http://www.helpmyassignment.co.uk

Fourier was the first to use partial differential equations as the basis for a complete description of a physical phenomenon.
To complete the mathematical construction, he had to invent the technique of ‘separation of variables), resulting in a set
of ordinary differential equations, solve these and then impose boundary (and initial) conditions. The resulting solution,
however, could be written only in a series of trigonometric terms: the Fourier series. This approach caused much controversy
(and this started back in 1808 when he first hinted at this method of solution) because there was grave doubt about the
correctness of this representation (in a series of sin and cos terms) for general functions. (It should be remembered that,
at this time, the only series that were generally accepted were powers series i.e. Taylor or Maclaurin series, although some
use had been made of series in Bessel functions or Legendre polynomials, but without any justification.) A number of
noted mathematicians then took up the challenge to prove - or disprove — that Fourier series were acceptable mathematical
animals. This charge was led by Dirichlet, and it was he who was able to construct (1829) a satisfactory proof of their
existence i.e. convergence, and this included the possibility of allowing discontinuous functions (which had already been
hinted at as a consequence of Fourier’s work). Indeed, Dirichlet was, based on this important work, able to introduce the

modern concept of a function.

Fourier also introduced what we now recognise as the Fourier Transform, by considering what happens if the domain in
which heat is flowing is extended to infinity. The main reason behind this approach was to generate ‘closed-form’ solutions,
rather than an infinite series — even if the integral could not be simplified in any meaningful way! (Closed-form solutions
were all the rage at the time.) This particular approach was developed by Cauchy (1816), in the context of the theory of

water-wave propagation, who then obtained both the transform and its inverse.

Fourier also made important contributions to the theory of equations, probability theory and the theory of errors, as well

as laying the foundations for the development of dimensional analysis and for linear programming.

Edouard Jean-Baptiste GOURSAT (1858-1936)

Goursat obtained his doctorate in 1881 (from the Ecole Normale Supérieure), and
thereafter taught mathematics — mainly analysis — at a number of universities in
France, finishing his career at the University of Paris. Two of his teachers were
Darboux and Hermite, and he was much influenced by their approach to analysis. His
lasting claim to fame is that he was able (1900) to generalise Cauchy’s fundamental
result on the integral of analytic functions around a closed contour. He demonstrated
that it was sufficient for f'(z) and its derivative to exist inside and on the contour -
it was not necessary for the derivative to be continuous. Indeed, he showed that this

same condition on the function and its derivative is sufficient to guarantee analyticity.

Goursat produced an important text (Cours danalyse mathématique) in which he

introduced many new and important concepts in analysis. He also improved some
theorems, originally formulated by Cauchy and by Kovalevsky, on the existence of

solutions of systems of differential equations.
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Marie Ennemond Camille JORDAN (1838-1922)

Jordan studied mathematics at the Ecole Polytechnique in Paris, where training as
an engineer was offered to all students (and it was expected that most, if not all,
would qualify as engineers). He did qualify and, indeed, worked professionally as
an engineer, during which time he developed his mathematical ideas; he returned
to the Ecole in 1873 to teach mathematics - his doctorate was on algebra and a class

of integrals — and was appointed Professor of Analysis in 1876.

He worked in almost every branch of mathematics that was commonly studied
towards the end of the nineteenth century. Thus he made contributions to finite
groups, linear algebra, number theory, topology (specifically of polyhedra),
differential equations and mechanics. He developed, from the ideas of Galois, the
theory of finite groups which led him to the concept of the infinite group. He produced a text on group theory (1870),
which remained the standard text for over 30 years. In topology, which is the main interest for us in the context of complex
analysis, he introduced the homotopy (of paths), building on the work of Riemann. Indeed, he defined the homotopy
group of a surface, but without any explicit use of group theory - even though he was one of its founders! He is most
notably remembered today, in the field of analysis, for his proof that a simple, closed curve divides a plane into exactly
two regions. (It was Jordan’s very fine understanding of mathematical rigour, and of proof, that enabled him to realise
that such a result was important and necessary, and that it had to be proved.) We are now fairly comfortable with the
notion of a Jordan curve, and the deformation of one such curve into another; it is this concept that we use in the study

of contour integrals.

Towards the end of his life, he was greatly saddened and personally affected by the First World War; he had six sons, three

of whom were killed between 1914 and 1916. The other three rose to prominent positions in government or the professions.

Pierre-Simon de LAPLACE (1749-1837)

Laplace was born into a wealthy Normandy family, and attended a Benedictine priory
school; it was expected that he would enter either the church or the army - the usual
route followed by pupils at this school. Indeed, he initially studied theology at university,
but it was not long before he discovered mathematics, and his love of it and ability at it.
He left university, without graduating, and moved to Paris; here, he was soon recognised
by the French mathematicians as possessing outstanding talents. By the age of 21,
without any formal mathematical education or training, he presented his first paper to
the Academy of Sciences in Paris. Thereafter, he maintained a steady stream — almost

a flood - of high-quality papers on a considerable range of topics, although his abiding

passions were celestial mechanics and probability theory. At the same time, he held a
number of important positions, first in the revolutionary government, and then under Napoleon; he wisely voted for the

overthrow of Napoleon, and following this Charles X raised him to the status of marquis.
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He was, throughout his life, committed to the theory of Newtonian gravity, and did much to confirm the complete
correctness of this model of the Universe (outside relativistic considerations, of course). He solved many of the outstanding
problems that had been encountered by astronomers; some of these observations appeared to contradict Newtonian theory,
but Laplace was able to demonstrate that everything was consistent, even if a few-body interactions were needed. He also
introduced the potential function and applied it, in particular, to calculations involving gravity. Laplace’s equation, which
is the equation satisfied by a potential function, was first obtained by Euler (1752); Laplace, however, used this equation
in different coordinate systems and solved many different problems with it. (So, although he certainly did not give us ‘his’
equation, it is not unreasonable to name it after him.) The bulk of his work on celestial mechanics (Traité de Mécanique
Céleste) was published in five volumes, between 1799 and 1825; in it, he aimed to present a complete analytical solution
of all mechanical problems posed by the existence of the Universe - including the important demonstration that our

solar system is stable.

Laplace’s work on probability (covered in Théorie Analytique des Probabilités, first published in 1812) discusses generating
functions and various approximations that are needed in probability theory. Then it moves on to a definition of probability,
discusses Bayes’ rule, with some discussion of expectations — both mathematical and moral. Many problems, involving
compound events, are considered, together with related topics, such as applications to life expectancy and errors in

observations.

We should mention that Laplace was not modest about his abilities; he also very rarely acknowledged any work that
preceded his own. A visitor to Paris in 1870 noted that Laplace let it be known that he considered himself the finest
French mathematician alive — and he was probably correct! He married in 1788, his wife being 20 years his junior; they
had a son and a daughter, although the daughter died in childbirth in 1813, but the child survived and maintained the

Laplace line (because Laplace’s son had no children).
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Pierre Alphonse LAURENT (1813-1854)

Laurent was trained as an engineer and then joined the army, as a member of the engineering corps, and was sent to
Algeria in the mid-1830s. He returned to France in about 1840, being appointed as the director of operations involved in
the enlargement of the port of Le Havre. It was at this time that he started to work seriously at mathematics; he submitted
a paper (for a prize offered by the Academy of Sciences) on the calculus of variations. This was not considered for a prize
- he was late submitting it — although it was highly regarded, but not published with the other submissions. This paper
contains his power series (the Laurent expansion) for a function of a complex variable. It is worth noting that Cauchy
reported on this paper, and a sequel, and recommended publication, but the editors for the relevant journal declined to
follow his advice. However, the first paper did appear in 1843; the second has been lost. (It is intriguing to note that this

generalisation of a power series was known to Weierstrass in about 1841, but he never published it.)

The reaction to his work was a bitter disappointment to Laurent, who promptly decided to follow another path of
investigation. He decided to study light waves and, in particular, the phenomenon of polarisation, publishing a number
of papers on this topic. He continued to serve in the army, was promoted to major and was appointed to a committee to
investigate the state of fortifications around the country. Until his early death, he made contributions to various problems

in applied mathematics.

Joseph LIOUVILLE (1809-1882)

Liouville began his studies, in advanced mathematics, at the Collége St Louis, in Paris. He
attended various courses given by Ampére (on analytical mechanics), and eventually moved to
an academic career (after a bout of ill health), holding a number of posts at various écoles in
Paris. Although his initial interests, and results, were concerned with electricity and heat - and
he was also a member of the astronomy section of the French Academy of Sciences — his most

important and influential work was in analysis.

He made many important discoveries; for example, he was the first to solve a boundary-value

problem for a partial differential equation in terms of an integral equation (which became a major field of analysis after
about 1900). As modern students of mathematics will know, he made significant discoveries (with his collaborator Sturm)
in the theory of second-order ordinary differential equations. He also clarified the notion of fractional derivatives, and
also showed that many types of integral (including some elliptic integrals) could be expressed, in closed form, in terms of
elementary functions. Another area that intrigued him was the whole concept of transcendental numbers. He hoped to
prove that ‘€ is transcendental; he failed, but laid the foundations for Hermite’s proof for ‘€’ (1873), and then Lindemann’s

for m (1882). However, he constructed many transcendental numbers, and provided a sufficient condition for transcendency.
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For us, his work in complex variables led to a fundamental result: that a bounded, entire function is necessarily a constant.

He also made contributions to differential geometry and Hamiltonian mechanics.

Liouville had a rather unusual life style: he would do research for six months over the summer period (in his home in Toul
- he was married), and then devote six months (over the winter) teaching in Paris. He also dabbled in politics, spending
a short period as a member of the Assembly; in his professional career he did not always get the post he thought that he

deserved, but he was eventually (1851) appointed to a chair in mathematics at the Collége de France.

Georg Friedrich Bernhard RIEMANN (1826-1866)

Many modern mathematicians take the view that Riemann has no equal in the
influence that his mathematics has had on the developments of the 20" century. For
many, it is his work on non-Euclidean geometry and topological spaces which laid
the foundations for Einstein’s theory of relativity that is pre-eminent. Others might
choose from the vast range of other contributions that he made. It is worth imagining
what else he might have achieved, had he lived to a full age; sadly, he contracted TB

in the autumn of 1862 (shortly after he married a friend of his sister) and died four

years later. So where do we start?

Perhaps the natural place is with his doctoral thesis, in which he discussed the theory of complex variables; this became
a milestone in complex-function theory. He used topological ideas, introduced ‘Riemann surfaces’ to help the discussion
and representation of multi-valued functions, and linked all this to more geometrical properties of complex variables and
conformal transformations. This work, and the way he discussed analytic functions, is now subsumed into the familiar
‘Cauchy-Riemann relations. Gauss was his examiner, and he described Riemann as having a ‘gloriously fertile originality’
Gauss recommended him for a post at Gottingen, where he worked towards the degree (‘habilitation’) that would allow him
to teach at university level. This thesis, which looked at integrability through trigonometric series, led to his fundamental
ideas embodied in the ‘Riemann integral’ The culmination of the work for his habilitation required him to give a lecture;
this was on an aspect of geometry. In this lecture, he discussed the problem of defining n-dimensional space, introducing
what we now call ‘Riemannian space, and he also touched on deep questions concerning the dimension of ‘real’ physical
space, and what geometry we should use to describe it. (Much of this was far beyond the audience - and most scientists
— at the time (except Gauss); only in the last 100 years or so have we begun to appreciate the significance of this material.)

Riemann, although he was not appointed to Gauss’ chair at his death in 1855, was given a ‘personal’ chair two years later.

At about this time, he published a paper on Abelian functions, expanding the work that he had started in his doctoral
thesis; on the back of his successes so far, he was elected to the Berlin Academy of Sciences. Then he turned to a study of
the zeta function - often referred to nowadays as the ‘Riemann-zeta function’ — and proposed his famous conjecture: that
the zeta function has infinitely many non-trivial roots and that the real part of every one is 1/2. He also gave estimates

for the number of primes less than a given number.
Riemann was not prolific, by any standards, yet virtually every paper that he published contains profound ideas that have

changed mathematics and moved us forward in great strides. He produced work that was a breakthrough in all branches

of mathematics cited above — and we are still reaping the benefits of his brilliance.
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Eugéne ROUCHE (1832-1910)

Rouché was born in southern France, and followed a conventional career-path for a mathematician:
undergraduate and postgraduate studies, teacher and then professor (at the Conservatoire des Arts
et Métiers in Paris). He wrote a number of texts, including one that provided an introduction to

the calculus for engineers.

He is remembered for two results in particular. The first is the familiar condition that states that
a system of linear equations has a solution if, and only if, the rank of the matrix of the associated
homogeneous system is equal to the rank of the augmented matrix of the system; this first appeared
in 1875, and in an expanded form in 1880. The second result is the one that is relevant to functions
of a complex variable. In 1862, he showed that, given two complex functions, f(z) and g(z), both analytic inside and
on the same contour, C, such that |g(Z)| < |f(Z)| (and f(z)#0 onC),then f(z) and f(z)+ g(z) have the same

number of zeros inside C. This provides a rather neat method for proving the fundamental theorem of algebra.

He was elected to be one of the three editors of the collected works of Laguerre (who died in 1866); the other two were

Poincaré and Hermite.

Further Reading

A good place to start, if you are interested in the history of mathematics, mainly through the lives of mathematicians, is

to use the ‘MacTutor History of Mathematics’ set-up by the University of St Andrews at

ttp://www-history.mcs.st-andrews.ac.uk/histor

where you will also find a fine set of pictures of many mathematicians.
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