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Preface

The topic of this series of books on “Real Functions in Several Variables” is very important in the
description in e.g. Mechanics of the real 3-dimensional world that we live in. Therefore, we start from
the very beginning, modelling this world by using the coordinates of R? to describe e.g. a motion in
space. There is, however, absolutely no reason to restrict ourselves to R® alone. Some motions may
be rectilinear, so only R is needed to describe their movements on a line segment. This opens up for
also dealing with R?, when we consider plane motions. In more elaborate problems we need higher
dimensional spaces. This may be the case in Probability Theory and Statistics. Therefore, we shall in
general use R™ as our abstract model, and then restrict ourselves in examples mainly to R? and R3.

For rectilinear motions the familiar rectangular coordinate system is the most convenient one to apply.
However, as known from e.g. Mechanics, circular motions are also very important in the applications
in engineering. It becomes natural alternatively to apply in R? the so-called polar coordinates in the
plane. They are convenient to describe a circle, where the rectangular coordinates usually give some
nasty square roots, which are difficult to handle in practice.

Rectangular coordinates and polar coordinates are designed to model each their problems. They
supplement each other, so difficult computations in one of these coordinate systems may be easy, and
even trivial, in the other one. It is therefore important always in advance carefully to analyze the
geometry of e.g. a domain, so we ask the question: Is this domain best described in rectangular or in
polar coordinates?

Sometimes one may split a problem into two subproblems, where we apply rectangular coordinates in
one of them and polar coordinates in the other one.

It should be mentioned that in real life (though not in these books) one cannot always split a problem
into two subproblems as above. Then one is really in trouble, and more advanced mathematical
methods should be applied instead. This is, however, outside the scope of the present series of books.

The idea of polar coordinates can be extended in two ways to R3. Either to semi-polar or cylindric
coordinates, which are designed to describe a cylinder, or to spherical coordinates, which are excellent
for describing spheres, where rectangular coordinates usually are doomed to fail. We use them already
in daily life, when we specify a place on Earth by its longitude and latitude! It would be very awkward
in this case to use rectangular coordinates instead, even if it is possible.

Concerning the contents, we begin this investigation by modelling point sets in an n-dimensional
Euclidean space E™ by R™. There is a subtle difference between E™ and R™, although we often
identify these two spaces. In E™ we use geometrical methods without a coordinate system, so the
objects are independent of such a choice. In the coordinate space R™ we can use ordinary calculus,
which in principle is not possible in E™. In order to stress this point, we call E™ the “abstract space”
(in the sense of calculus; not in the sense of geometry) as a warning to the reader. Also, whenever
necessary, we use the colour black in the “abstract space”, in order to stress that this expression is
theoretical, while variables given in a chosen coordinate system and their related concepts are given
the colours blue, red and green.

We also include the most basic of what mathematicians call Topology, which will be necessary in the
following. We describe what we need by a function.

Then we proceed with limits and continuity of functions and define continuous curves and surfaces,
with parameters from subsets of R and R2, resp..
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Continue with (partial) differentiable functions, curves and surfaces, the chain rule and Taylor’s for-
mula for functions in several variables.

We deal with maxima and minima and extrema of functions in several variables over a domain in R™.
This is a very important subject, so there are given many worked examples to illustrate the theory.

Then we turn to the problems of integration, where we specify four different types with increasing
complexity, plane integral, space integral, curve (or line) integral and surface integral.

Finally, we consider vector analysis, where we deal with vector fields, Gauf3’s theorem and Stokes’s
theorem. All these subjects are very important in theoretical Physics.

The structure of this series of books is that each subject is usually (but not always) described by three
successive chapters. In the first chapter a brief theoretical theory is given. The next chapter gives
some practical guidelines of how to solve problems connected with the subject under consideration.
Finally, some worked out examples are given, in many cases in several variants, because the standard
solution method is seldom the only way, and it may even be clumsy compared with other possibilities.

I have as far as possible structured the examples according to the following scheme:
A Awareness, i.e. a short description of what is the problem.

D Decision, i.e. a reflection over what should be done with the problem.

I Implementation, i.e. where all the calculations are made.

C Control, i.e. a test of the result.

This is an ideal form of a general procedure of solution. It can be used in any situation and it is not
linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a
situation which did not contain Mathematics at all. The student is recommended to use it also in
other disciplines.

From high school one is used to immediately to proceed to I. Implementation. However, examples
and problems at university level, let alone situations in real life, are often so complicated that it in
general will be a good investment also to spend some time on the first two points above in order to
be absolutely certain of what to do in a particular case. Note that the first three points, ADI, can
always be executed.

This is unfortunately not the case with C Control, because it from now on may be difficult, if possible,
to check one’s solution. It is only an extra securing whenever it is possible, but we cannot include it
always in our solution form above.

I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a
shorthand, because they are often (too often, I would say) misused. Instead of A I shall either write
“and”, or a comma, and instead of V I shall write “or”. The arrows = and < are in particular
misunderstood by the students, so they should be totally avoided. They are not telegram short hands,
and from a logical point of view they usually do not make sense at all! Instead, write in a plain
language what you mean or want to do. This is difficult in the beginning, but after some practice it
becomes routine, and it will give more precise information.

When we deal with multiple integrals, one of the possible pedagogical ways of solving problems has
been to colour variables, integrals and upper and lower bounds in blue, red and green, so the reader
by the colour code can see in each integral what is the variable, and what are the parameters, which
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do not enter the integration under consideration. We shall of course build up a hierarchy of these
colours, so the order of integration will always be defined. As already mentioned above we reserve
the colour black for the theoretical expressions, where we cannot use ordinary calculus, because the
symbols are only shorthand for a concept.

The author has been very grateful to his old friend and colleague, the late Per Wennerberg Karlsson,
for many discussions of how to present these difficult topics on real functions in several variables, and
for his permission to use his textbook as a template of this present series. Nevertheless, the author
has felt it necessary to make quite a few changes compared with the old textbook, because we did not
always agree, and some of the topics could also be explained in another way, and then of course the
results of our discussions have here been put in writing for the first time.

The author also adds some calculations in MAPLE, which interact nicely with the theoretic text.
Note, however, that when one applies MAPLE, one is forced first to make a geometrical analysis of
the domain of integration, i.e. apply some of the techniques developed in the present books.

The theory and methods of these volumes on “Real Functions in Several Variables” are applied
constantly in higher Mathematics, Mechanics and Engineering Sciences. It is of paramount importance
for the calculations in Probability Theory, where one constantly integrate over some point set in space.

It is my hope that this text, these guidelines and these examples, of which many are treated in more
ways to show that the solutions procedures are not unique, may be of some inspiration for the students
who have just started their studies at the universities.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.

I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
March 21, 2015
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Introduction to volume XI,
Vector Fields II; Stokes’s Theorem; Nabla calculus

This is the eleventh volume in the series of books on Real Functions in Several Variables.

It is also the second volume on Vector Fields. It was necessary to split the material into three volumes
because the material is too big for one volume, and even these three volumes are large. In the first
volume we dealt with the tangential line integral, which e.g. can be used to describe the work of a
particle when it is forced along a given curve by some force. It was natural to introduce the gradient
fields, where the tangential line integral only depends on the initial and the terminal points of the
curve and not of the curve itself. Such gradients fields are describing conservative forces in Physics.

Tangential line integrals are one-dimensional in nature. In case of two dimensions we consider the
fluz of a flow through a surface. When the surface 0f) is surrounding a three dimensional body 2,
this leads to Gauf’s theorem, by which we can express the flux of a vector field V through 052, which
is a surface integral, by a space integral over 2 of the divergence of the vector field V. This theorem
works both ways. Sometimes, and most frequently, the surface integral is expressed as space integral,
other times we express a space integral as a flux, i.e. a surface integral. Applications are obvious in
Electro-Magnetic Field Theory, though other applications can also be found.

In this volume we shall study Stokes’s theorem. By using a more advanced mathematical formalism
from modern Differential Geometry it is possible to show that Gauf’s theorem and Stokes’s theorem
as presented here in Volume X and Volume XI can be considered as special cases of the same general
Gauf$’s theorem. This is difficult to see in the terminology chosen here. However, the pattern is similar
in both cases. An integration in n dimensions over a domain 2 is transformed into an integration in
n — 1 dimensions over the intrinsic boundary 6€2, and the integrand is changed appropriately during
this transformation.

Gauf’s and Stokes’s theorems have always been considered as extremely difficult to understand for
the student. Therefore we have included a section on Mazwell’s equations from Physics, where these
two theorems are constantly been applied. We also give lots of examples of worked out problems.

We also include a chapter on nabla calculus, which in three dimensions uses a formalism with the cross
product and the dot product known from Linear Algebra. Some formulse become easier to comprehend
than the traditional ones using the notations grad, div and rot, of some authors also written curl.
This is actually the first step towards the unification of Gaufl’s and Stokes’s theorems in the general
Gauf’s theorem mentioned above. However, we shall not go into the full generality in n dimensions.
The following Volume XII is the third one concerning these vector fields. Here we shall conclude with
introducing vector potentials, harmonic functions and Green’s theorems.
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35 Rotation of a vector field; Stokes’s theorem

35.1 Rotation of a vector field in R?

We considered in Volume X the fluz of a vector field V through a closed surface F in the sense that
F = 09 is the boundary of a three dimensional body §2. We shall in this chapter instead consider a
closed curve K in the space R3 (i.e. coinciding initial and final point of the curve), which then can
be considered as the boundary curve §G of some surface G in R3. Note that G means the intrinsic
boundary of G, because in R? we have G = G for every continuous and piecewise C' two dimensional
surface G.

Remark 35.1 When we compare with Gaujf8’s theorem, we see that we here replace the three dimen-
sional body 2 with a two dimensional surface F, and the boundary surface 0f2 is replaced with an
in principle one dimensional closed curve K = 6G. At the first glance the reader may feel a little un-
easy, because there are many piecewise C'!' surfaces G which satisfy the requirement that its boundary
curve is equal to the given curve K, so G is not uniquely determined, in contrast to the body € in
Gauf’s theorem. This is probably the reason for why Stokes’s theorem below intuitively is felt to be
“difficult”. We shall in this chapter try to explain what lies behind. ¢

The idea is that given a vector field V and a surface F of the closed (intrinsic) boundary curve 6.F,
then it should be possible to express the circulation of V along the closed curve §.F, i.f.

}{ V - tds,
OF

as a flux of some vector field W, depending only on V|, through the surface F, i.e.

(35.1) 74 V-tds:/W-ndS,
5F F

where we shall find the relationship between W and V.

B
I
Q

Figure 35.1: Coupled orientation of a surface F and its intrinsic boundary curve 0.F.
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The first problem is of course that there are two orientations of the intrinsic boundary curve 6 F and
two ways to define the unit normal field n on F. We therefore need to describe how these two ways
of orientation are coupled.

1) If the continuous normal vector field n is given on F, then the orientation of 6F is determined
in the following way. Choose an n close to the boundary curve § F. Grasp this n with your right
hand, such that your thumb is pointing in the same direction as n. Then the other four fingers
will indicate the orientation of §F, cf. Figure 35.1.

2) If instead the orientation of §.F is given, then put your right hand, such that your four fingers are
pointing in the direction of the tangent of §F. Then your thumb will indicate the direction of the
unit normal vector field n on F in the neighbourhood of §F. Finally, extend n by continuity to
all of F.

Figure 35.2: The coupling between n on F and the orientations of the two (intrinsically) closed
boundary curves Ky and Ko, when the intrinsic boundary has two components.

A connected surface F may have several intrinsic boundary curves. If n is a continuous normal vector
field on F, then procedure 2) above defines the orientations on all boundary curves. An example is
shown on Figure 35.2, where we note that we have a sense of that “K; and Ko are given opposite
orientations”. This is, however, due to the chosen convention.

Remark 35.2 The northern hemisphere of the Earth satisfies the convention described above. If you
are on the North Pole and let your right thumb point along the axis of rotation away from the surface,
then the other four fingers will indicate the direction of the rotation of the Earth, i.e. eastwards.
Clearly, this rule does not apply on the South Pole. ¢

Let us return to the problem of determining W in (35.1), i.e.

f V-tds=/W-ndS,
5F F

where we assume that the orientations of dF and F are linked together as described above. Let us
first start with the simple case, where F is a plane domain E in the (z,y)-plane, cf. Figure 35.3.
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OE

Figure 35.3: Analysis of the circulation along a closed curve § F surrounding a plane set E.

Note that we have changed the notation on Figure 35.3. Since 0F is given the positive orientation
in the plane, the normal vector field in the whole R? space is represented by the normed vector e,
which points towards you from the paper. If t is the unit tangent field along § F, and n is the normal
field to the curve in the plane, then it is well-known that

n=txe,, ie. Ng =t, and ny= —t;.

The circulation is given by

C=[ (Vata+V,t,) ds:/

(=Vany +Vyng) ds = / (Vyy =Vi) - (ng,my) ds.
OE OF

OF

Then use Gauf’s theorem for a plane vector field, cf. Volume X, to conclude that this is equal to

s [0V, v,
—[Edlv(Vy, V,) dS_é(az ay)dS.

It follows that we have proved that the circulation is

aV, vV,
Vete +Vyt ds:/(—y— I) dS:/W-ezdS:/Wzd&
]({9}3( yy) g\ 0z dy E E

because in this setup e, is the unit normal field.

If instead F is lying in the (y, z)-plane with e, as its normal vector field, then a similar analysis shows
that

aV, aVv,
V,t, +V.t, ds:/< z——y)dS:/WmdS,
7({9E(yy ) g\ 9y 0z E

and when FE lies in the (z, z)-plane in this order (defining the orientation from z towards z), then e,
is its normal vector, so we obtain by similar calculations

oV, OV, B
éE(VztﬁVm) ds_/E(az - a:c) dS_/EWde.
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Note that if we instead had chosen the (z, z)-plane with the orientation from x towards z, then the
result would change its sign, but the same would the normal vector field, when it satisfies the right
convention, so we get the same result.

Before we proceed we first collect the above in a convenient definition of the rotation, because the
expression of W derived above occurs over and over again in these calculations.

Definition 35.1 Let V be a differentiable vector field in the ordinary space R3. Then we define the

rotation of V', written rotV by

ov, 9V, . oVy OV, o & o, oV, o
0z oxr )Y Ox oy ) 7

dy 0z
where e, e, and e, are orthonormal unit vectors.

rotV .= (

In some books, rot is instead written curl.
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There is an easier way to remember this formula, namely as a formal determinant, using a similar
determinant as when we calculate the cross product of two vectors, namely

e; €, e,

o 0 0
I‘OtV—VXV— % 8_y @
v, v, V.

This structure invites one to also use the notation 7 x instead of rot. This formal determinant
is calculating by developing the determinant after the first row and then always let the differential
operator work on the function.

35.2 Stokes’s theorem
We proved in Section 35.1 that the only candidate W of the solution of the problem
V-tds:/W-ndS,
oF F

in some special cases is W = rotV. It can be proved that this is true in general. As usual in these
matters the proof of this statement is too complicated to be brought here, so following the usual style
of these books we shall only formulate without given a correct proof the important

Theorem 35.1 Stokes’s theorem. Let F be an oriented, piecewise C'-surface with a continuous
normal vector field n, defined almost everywhere.

1) Assume that its boundary curve 6.F is a closed and piecewise C'-curve without double points, and
with a tangent almost everywhere.

2) Let the orientations of F and 0F be linked by the right hand convention as described above.
3) Let V:A— R3 be a C'-vector field, where F C A C R3.
Then

V-tds:/ n-rotVds.
oF F

As in the case of Gaufl’s theorem there is also a two dimensional version of this theorem. This was
more or less proved in Section 35.1, when we derived the possible structure of Stokes’s theorem in the
three dimensional case. This two dimensional version is also called Green’s theorem in the plane.

Theorem 35.2 Green’s theorem in the plane. Let E C R? be a bounded plane set with a boundary
OF which is a piecewise C-curve with no double points with a tangent field almost everywhere. Let
the unit normal vector field n on OF always point away from E. Then

v, IV,
Veodz +V,d :/{y_ x}dS.
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Stokes’s theorem (or Green’s theorem) can be used in two ways. We mention the procedure in one of
them below. The task is to find the circulation of a C'-vector field V along a closed curve /C, then
we shall choose a surface F, such that

1) The surface F has K as its boundary curve, 6F = K.

2) Depending on the structure of rotV, which we calculate at this step, we should furthermore choose
F, such that the surface integral

/ n-rotVdsS
f

becomes easy to handle. This is not always an easy task.

We say that a vector field V is rotational free, if rotV = 0 in all the domain of V

We have the following important simple results
Theorem 35.3 A C'-gradient field, gradf, is always rotational free.

PROOF. In fact, f € C?, so the order of differentiation can be interchanged in the following. We get
straightforward

e, e, e,
rot(gradf) = 200 _(9f  9f f  &f &f 0%
g - dr dy 0z | = Oy0z 020y’ 0z0x  0x0z’ dxdy  Oyox

of of of

or Oy 0z

= (0,0,00=0. ¢

One can prove the following converse statement, which is not formulated in its full generality

Theorem 35.4 If v is a rotational free vector field in a starshaped domain, then V = gradf is a
gradient field, i.e.

rotV =0 implies the existence of f, such that V = gradf.

PrROOF. Just calculate,

div (rotV) = 2 (3‘/2 3Vy>+£<5Vx 8Vz> g(avy_avw>

o dy 0z Oy \ 0z Oz 9z \ Oz dy
B 0%V, B 02V, n 0%V, B 0%V, n 02V, B 0%V,
N Oxdy  0x0z Oydz  Oyox 0z0x 020y
[V, B 0%V, n _82Vy n 02V, n 0%V, 3 V. \ 0 o
— \9ydz 0z0y 0x0z 020w dxdy Oydx)

We also have a theorem, which states when a divergence free vector field is a rotational field. We
postpone the formulation of this result to a later section, where it fits into the context.
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Remark 35.3 As mentioned previously we also write

gradf = v/ f, divV=vy-V and rotV=7vyxV,
where nabla, v/, is the three dimensional differential operator

o 0 0

Vo (%’ ay’ &> '
Then the results above are also written

vxvf=0 and V(v xV)=0,
which should remind one of similar rules in Linear Algebra, when we are dealing with vectors in R3.

We shall here include some simple examples, which illustrate the theorems above. In a later section
we supply these with others which may go into various other directions. ¢

Example 35.1 We shall find the circulation C of the given vector field
V(z,y,2) = (*x,2%,9%2),  for (z,y,2) € R,

along the oriented curve IC on Figure 35.4, consisting of three circular arcs, all of centrum 0 and radius
a > 0, and which furthermore lie in the planes given by z =0, y = —2 and = = y/3.

Figure 35.4: The curve K in Example 35.1.

If we should directly calculate the circulation by using the definition using line integrals, then we
should deal with three different line integrals. It is, of course, possible, However, it is easier here to
apply Stokes’s theorem, because all three curves lie on the same spherical surface of centrum 0 and
radius a. Therefore, we choose F as the spherical triangle on this sphere, bounded by the curve K.
The orientation of K and the right hand convention forces the unit normal vector field always to point
away from 0, so the unit normal vector field is given by

1
n=-(z,y,z2), for (z,y,2) € F, ie. 22 +y? + 22 =d?
a
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We first compute rotV to see

e, €
rotV(z,y, z) = 8213 %
22x 2%y

so restricted to F we get
n-rotV = % (z,y,2) - 2(yz

6
, 2T, (E’y) = — XY=z,
a

Rotation of a vector field; Stokes’s theorem

if it has a simple structure,

€z

= (2yz — 0,2z 4+ 0,2zy — 0) = 2(yz, 2z, xY),

where 2% + 3% + 22 = ¢?
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The surface F defined above is in spherical coordinates given by

T 37 us
F {(7‘35079)|T_a7§06[Eaz];ae[oyg}}y

cf. also Figure 35.4, so we finally get by Stokes’s theorem,

%V-nds:/n~VdS=§/myzdS
K F aJF

3m

§/4 {/2 (aBCosﬂsinzﬁcosgosingo) a251n9d9} de
x 0

1 ! £
= 6a’ [Z sin? 9} . {5 sin? 4
0

C

w0

4

o

Example 35.2 Clearly, V(z,y, 2) = (z,vy, 2) is a rotational free vector field, rotV = 0, so it follows
from Stokes’s theorem that the circulation along any closed curve K is

]{x~tds=0. O
K

Example 35.3 We cannot in advance predict the direction of rotV for given V. We shall in this
example show that in some cases rotV and V may be parallel to each other, and in other cases they
are perpendicular to each other. To illustrate the first case we choose the vector field

V(z,y,z) = (cosy, cosz,siny — sin x), for (z,y,2) € R,
Then
e ey e,
0 0 0
rotV = 92 8_y P = (cosy,cosx,siny —sinz) =V,

cosy cosx siny—sinz
so rotV = V, and the rotation of V is even equal to V itself, and they are trivially parallel.

Concerning the other statement, we choose the vector field

U(z,y,z) = (r,r,7), where r = \/x2 + y2 + 22,
We note that, when r # 0, then

or or _y or =z

ox 1’ oy 0z 1’
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so we get for r # 0,

|9 9 0 Yy—2z z2—x x—Y
rotU=1 5, oy 0z _( ror o )’
ror T

and it follows that
UrotU=(y—2)+(z—2)+(x—y)=0,

which shows that U L rotU. In other words, U and rotU are perpendicular to each other, and the
claim is proved. ¢

Example 35.4 We shall in this example demonstrate how we may choose the surface F with a given
closed curve K as its intrinsic boundary 6 F = K, when we apply Stokes’s theorem.

1) Specification of the curve K. We let the curve K be defined as the intersection of the circular
cylindric surface of the equation

2 + y2 = ax,
with the surface, given by the equation
2z =+/4a? — ax.

The latter is one half of a parabolic cylindric surface.
We choose the orientation on I, such that the direction of the z-axis is the direction of the bounded
part of the circular cylindric surface above of boundary K.

Figure 35.5: The curve K in Example 35.4.
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2) Specification of the vector field V and its rotation. We choose
V(z,y,2) = (3zy,22%, —yz)  for (z,y,2) € R?,

and we shall find the circulation C' of V along the curve K above with the chosen orientation.
Since we shall apply Stokes’s theorem, we start by calculating the rotation of V,

e, ey e,

0 0 0
rotV = % 6_y & = (*Z, 0, CC)

3ry 22?2 —yz

3) Choice of surface F, such that §F = K. First note that the projection of K onto the (z,y)-plane

is the circle of centrum (%, 0) and radius g, so it cuts the plane into two open domains, of which

only the bounded domain B is of interest for us, so

B {en | (o-5) +<(5) '}

so the surface F, we are going to choose, should be parametrized over B.

Since K is the intersection of two surfaces, it lies on both of them, so it is obvious to choose
Fi: z=Z(z,y) = Va2 — az, for (x,y) € B.

However, since K is defined by
22 +y? = az, and 22 =4a® —ax, z>0,

it follows by addition that KC also lies on the surface
Fa: 22 4+ 9% 4 2% = 4d?, z >0,

which is a part of a sphere.

a) First consider F7, which is the graph of the function Z(z,y) = v4a? — az. It therefore follows
from Section 13.5 that its field of normal vectors is given by

N(a,y) =, x ¥, = (<2, ~Z;,1) = (52.0.1).

which has a positive z-component, so the orientation is correct. It therefore follows from
Stokes’s theorem that the circulation is

Cc = / n-rotVdS:/N-rotdedyz/ (i,O,l)-(—z,O,x)dxdy
2 B B \22

- /B(—g—kx) dxdy:—gw<g)2+/Bxdxdy,
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ad H a® [2 (3  cosdy
= — 1+2cos2 22¢) dp = — d
T /—’;( + 2 cos 2 + cos® 2¢) dyp ). <2+ 5 >
_ @3 _&
T2 TR

b) Then consider F, i.e. the part of the sphere 2% + y? + 22 = 4a?, which lies above B. Then,

n= % (m Y, % )7
because the normal vector is always pointing away from 0, and furthermore,

1
n-rotV = % (z,9,2) - (—2,0,2) =0,

and it follows trivially that

C:/ n-rotvVdsS =0. O
Fa
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Example 35.5 When we apply Green’s theorem in the plane on the vector fields V; = (0,z) and
Vo = (—y,0) along a closed curve OF, which is the boundary of the domain E, we get

Vo1 Vi
jq{ Vz,ldx+vy,1dy:]{ xdyz/ (a vl —’1> dS:/ 49 = area(E),
oE OF E Ox dy E

and

f Viodz + Vo dy = ]{ (—y)dy = / (Wy’? - avM) ds = / dS = area(E),
OE OF g\ Oz dy 5

hence

1
area(F) = 7{ xdy = 7{ (—y)dx = 574 xdy —yda,
OF OE OF

where OF has been given the positive orientation in the plane.

Formule of this type are applied in e.g. the theory of materials of magnetic hysteresis. ¢

35.3 Maxwell’s equations

Gauj$’s and Stokes’s equations are in particular applied in the theory of electro-magnetic fields. We
shall here briefly sketch the connection.

35.3.1 The electrostatic field

We consider the space R? containing a set ) of electrically charged particles. The force on any one
particle is proportional to the strength of its own charge. The collection of all charged particles defines
a vector field, the electrostatic field E in R?, where the vector E(z,y, z) at one particular point of the
coordinates (z,y, z) is defined as the ratio of the force (a vector) on a test particle at this point to the
strength of charge (a scalar) of the test particle.

Consider for the time being the electrostatic field E, created by one single particle of charge ¢, which
we may assume lies at origo O : (0,0,0). Then experience has shown that the force at a point (z,y, z)
in absolute value is inverse proportional to the square of the distance to (0,0, 0), and proportional to
the charge q. We get for » > 0

1
|Eq($uy72)| = g L%l, where 12 = 22 + y2 + 22

The constant e, which for convenience has been put into the denominator, is characteristic of the
medium and is called the dielectric constant of the medium. The direction of the vector field E, is
given by

i(f Y i), where 7 = /22 + y2 + 22.

»
rr.r

Here + is chosen if ¢ > 0, and - when ¢ < 0, because the force is repulsive (away from 0), when ¢ > 0,
and attractive (towards 0), when ¢ < 0, when applied to a test particle of charge +1. Hence,

E,(z,y,2) = E%(Ly,z), for (z,y,z) # (0,0,0).
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This is a conservative vector field of the same structure as the Coulomb vector field considered pre-
viously in Section 33.3.2, so we get immediately that if €2 is an open set containing 0, then — cf. the
calculations of Section 33.3.2,

4
/)quS:g4w=i%
o0 g g

because the only difference from the Coulomb vector field is the constant factor £. We note that we
in Section 33.3.2 applied Gauf§’s theorem to derive this result.

We have derived for a single particle that the flux through any closed surface surrounding 0 is equal
to 47 /e times the charge ¢. It should be equal to div E4, but it is not, because E, is not defined at 0.
We shall now repair this. If the open set {2 contains many points of charge ¢,,, say, then we should add
all these contributions. It is, however, customary instead to replace their contributions by a smooth
distribution of charge of density o(z,vy,z,t). Then the vector field E is also smooth, and we get by
Gauj$’s theorem the usual connection between the flux through a closed surface and the divergence of E.
In particular, when this density is independent of time, and €2 is a small axiparallel parallelepipedum
of edge lengths dz, dy, dz, and containing the point (z,y,z) € Q under consideration, then the net
flux out of this infinitesimal volume element (2 is

j{ E- dA = E-ndS =~ div E(z,y, z) dzdy dz,
o0 90

where we have used the (mathematical) mean value theorem on the right hand side. Hence, by taking
the limit diam Q — 0,

4
divE = -~ p.
g

This is called Gauf’s law in Physics. It is also the first of Mazwell’s four equations. The constant 47

is the area of the unit sphere, and it occurred only in the derivation, so instead one often writes

_ £
T Ar

in books on electro-magnetic field theory. We shall here use both notations.

€o

Gauf’s law is usually given in two equivalent versions. The one above, which we have just derived, is
called Gauf$’s law as a differential equation, because div is a differential operator,

4
dwE- 2 (Jg).
€0 15

The other version is Gauf$’s law as an integral equation,

/ E- dA:i/ng7 where dA :=nd5S.
OF €0 Jao

This was actually used in the derivation of Gaufi’s law as a differential equation, and it follows
immediately by insertion and an application of Gauf}’s (mathematical) theorem, that if the first law
is given, then the second one follows. So the two versions are equivalent.

When the dielectric constant € is not a constant in the medium, it is often better instead to use the
so-called displacement field D, which is given by the two equations,

div D = 47, and D =c¢E.
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35.3.2 The magnostatic field

Ferromagnetic materials behave as if they were charged with a “magnetic fluid” analogous to the
electrical fluid, so one would expect that the magnetic “charge” would be described by a magnetic
vector field H, just like we obtained the electrical vector field E. In analogy with the dielectric constant
€ above we would expect another constant p, called the permeability, such that the displacement vector
D = cE is analogous to the magnetic induction B = pH. This construction, however, requires the
existence of a unit positive magnetic charge, and no such magnetic charge (a so-called monopole) has
ever been found. So we must use another procedure.

Since it does not look like that a magnetic monopole exists, we instead of an analogue of the equations
of the displacement field above, introduce the following equation for the induction field B,

div B =0.

This describes precisely that there is no magnetic monopole. This is actually Gauf$’s law for magnetism
formulated as a differential equation,

div B =0.

Then let © be a body of surface 9. According to GauBl’s (mathematical) theorem from Chapter 33
the magnetic flux of B through the closed surface 012 is

/ B-ndS:/dideQ:O,
o0 Q

and we have derived Gauf§’s law for magnetism as an integral equation,

B-dA =0, dA:=ndS.
o0

This is the second one of Maxwell’s equations in its two equivalent formulations.
We saw above that B is a divergence free vector field, div B = 0.

Let V be any C! divergence free vector field in R3, and let @ C R? be a domain, such that its
boundary 92 is cut into two surfaces, F; and F», by a closed C! curve K without double points, cf.
Figure 35.6. Choose the normal vector field n, such that it points into 2 on the surface Fi, and away
from Q on the surface F5. Let ®; and ®- denote the fluxes on ; and Fs, resp.. Then it follows from
Gauf}’s theorem that the outgoing flux (seen from Q) is

By + (—®1)= | V-ndS+ V-(—n)dS:/dideQ:O,
]:2 ]:1 Q

so we get by a rearrangement that ®; = ®;. It therefore follows that we can talk about the flux of V
passing through the loop formed by the closed curve K, because the flux is the same on all (admissible)
bounded surfaces having K as its boundary curve.

This applies in particular to the magnetic field B, and it is therefore possible to talk about a magnetic
fluz surrounded by a closed curve K.

Consider a current I through a closed curve K as above. Then it produces a magnetic field, which is
governed by the Ampére-Laplace law,

1
B:Kljé?txuds,
j A

where K is a constant only depending on the chosen physical units, and t is he unit tangent field on
the curve K, and u is the unit vector which points from the point on the curve towards the point P
under consideration.
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T,

2

Figure 35.6: When div V = 0, then the flux of V through a surface depends only on its boundary
curve K.

The law above was obtained after many experiments and measurements on closed curves of different
shapes. It is therefore a mathematical model which gives a good mathematical description of the
magnetic field. Note in particular that it is not derived from some mathematical theorem.
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It is customary to write K = pg/4m, where pg is called the magnetic permeability of vacuum. Thus
we shall in the following write the Ampere-Laplace law in the following way,

1
B:@If ~ tx uds.
47T ;CT'2

It follows in particular that a magnetic field is produced when we move electric charges.

If we stretch K towards an “infinite loop” we get in the limit the magnetic field produced by an infinite
rectilinear current I. In fact, choose e.g. K, in the (z, z)-space, such that KC,, is composed of the line
segments

{O} X [_nvn]v [O,TL] X {n}7 {n} X [_nvn]v [O,H] X {—n},
cf. Figure 35.7.

(0,n) (n,n)
f/?(n
(0,-m) (n,-n)

Figure 35.7: The curve IC,,.

The line integrals along the three latter line segments are all of size ~ n~!, so their contributions

tend to zero, when n — +o0. Therefore, the magnetic field generated by a current I > 0 along the
infinitely thin z-axis is s point (z,y,0) in the (x,y)-plane given by

+o0 +oo
Ho 1 Ty z Fo 1
B="~1 ) 07071 (77777)(1 = —1I(- ) 70/ 7d7
47r/,oo7“2( )errz47r(ya:)7oor3z
where
2
r=Va2 2422 =22 2|1+ - ).
Va?+ y?
If we put
z = +/x? +y? - sinht, dz = /2% 4 y2 - cosht dt,
we get by this substitution,
o 2 o y pol o
B="—1(- 9 70 7:_1—(__7_70):_1::7 - Y, 707
4T (=@ )x2+y2 2mr r’r 2mr 271'(3:2—|—y2)( y,@,0)
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where r = /22 + y? and ||t|| = ||(—y,x,0)/r|| = 1.
Then we compute the circulation of B around a circular path of radius r» > 0. It follows from the
above that the magnetic field B is tangent to this circular path, so

I
B.tds=Bds, where B:=|B|=!"

b
2rr

which is constant in magnitude. The circle C' of radius 7 has the length £(C) = 27r, so the magnetic
circulation Ag is

r

ABZY{BidS:j{Bds:B/ ds:Bé(C’):Zﬂ'rB:Qﬂ'r-u—OI:,uOI.
C C C 2

This shows that the magnetic circulation Ag (also called the magnetic force, mmf) is proportional to
the electric current I, and it is independent of the radius » > 0. Locally B is a gradient field,

I
B:'uivArctan<g) for x >0 or z <0,
27 z
or
wol (7 x
=— | = —VArccot | — for y > 0 ory <0,
2 \ 2 Y

i.e. a gradient field in each of the four open half-planes. If we therefore consider any closed loop C
winding once aroung the infinite current I along the z-axis, then we can deform C into a circle in
the plane, supplied with some additional loops, which lie in one of the four half-planes above or can
be projected into one of them. In particular, these additional loops do not surround the z-axes, so
their total contribution is 0. This argument shows that the magnetic circulation corresponding to a
rectilinear current along the infinitely thin z-axis is independent of the closed path, as long as it does
not go through points on the z-axis.

We have in the simple example of Figure 35.8 illustrated the technique. It follows in this particular
case that

j{B-tds
c

B-tds+/ B-tds—i—(/ B-tds—+ B-tds)
01 CQ Fl FZ

/ B-tds—l—/ B -tds=puol+0=pol.
C1+1 Ca+To

We say that a closed curve C' links a current I, if the path of I traverses every bounded C!-surface
F, which has C' as its intrinsic boundary.

Using a similar, though more sophisticated technique it is possible to prove that the result is true for
any shape of the path of the current, or even currents, so we have derived

Theorem 35.5 Ampere’s law for the magnetic field. The circulation of the magnetic field B along a
closed path C, which links the currents I, Iz, ..., is

ABZj{B-tdSZMo(Il-FIQ-‘r"'):/LoI,
C

where [ =11 + Is + - - - denotes the total current linked to the path C'.
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Figure 35.8: By adding the line integral of yF along I' = v; + I's, we just add 0. On the other
hand, the line integrals along C5 and I's cancel each other, because they have the same integrand and
opposite orientations. Similarly for other closed plane curves as well as closed space curves.

In the next step we shall establish a connection between the electric field E and the magnetic field
B. The electric field is defined as the force per unit charge, hence the tangential line integral along a
curve C' is equal to the work done when we move onte unit of charge along the curve C.

When C is closed, this tangential line integral becomes the circulation of the electric field,

VE,C:% E - tds.
c

Then assume that given an electric conductor which forms a closed path C'. We place it in a region
in which a magnetic field exists.

Let F be any (admissible) bunded surface which has the closed curve C as its intrinsic boundary. If
the magnetic flux g = | #B-ndS through F varies with time, a current is observed in circuit, while
the flux is varying, and this current again produces an electric field E, which is called the induced
electric field.

Also, in this case the physicists have been forced to rely on experiments to set up a model. Mea-
surements of this induced electric field have shown that it depends on the rate of change d®g/ dt.
One observed also that the greater the rate of change of the flux, the larger the induced electrical
field. Also, the direction in which the induced electrical field acts depends on whether the magnetic
flux is increasing or decreasing. Omne can use the right-hand rule to determine the direction of the
act of the induced electric field. If the right-hand thumb points in the direction of the magnetic field,
then the induced electrical field acts in the opposite/same direction as the fingers, when the flux
increases/decreases. A simple analysis shows that if d®g/dt is positive, then the induced electrical
field Vg = §C E - tds acts in the negative sense, and wice versa, so they have always opposite signs.

More detailed measurements in experiments have shown that if we choose the physical units right,
then a mathematical model is as simple as

4o d
VE:%E-tds:——Ez——/B-ndS,
o dt at J»
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and we can — under the assumption of the chosen model above — formulate the following

Theorem 35.6 The Faraday-Henry law of electromagnetic induction. Let B be a dynamic magnetic
field. Then an electric field E is induced in any closed circuit. The induced electrical field E is equal
to the negative of the time rate of the magnetic flux through the circuil, i.e.

fE-tds:—i/B-ndS.
c dt J»

When we apply Stokes’s (mathematical) theorem on the left hand side of the Faraday-Henry law of
electromagnetic induction, where we use the same surface F in the resulting surface integral, we get

/rotE-ndS:—i/B-ndS, ie. /(rotE+6B>-ndS:0.

This relation must hold for every (admissable) surface F, so using the usual argument we easily
conclude that we must have

B B
aa—t + rotE = 0, ie. rotE = —aa—t.

Conversely, this equation immediately implies Theorem 35.6, so the two results are equivalent.

This result in its two versions is also called Maxwell’s third equation.
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Finally, by inspecting the first three of Maxwell’s equations above we get the feeling that there should
also exist a result containing the circulation of the magnetic field B along a closed curve C, i.e.
fo B - tds, when the field is not static. At this step this is only a hunch guided by some vague sense
of symmetry, but we shall see in the following that our guess is actually giving us the right equation.

Let us start by analyzing the Faraday-Henry law, Theorem 35.6, above, i.e.

fE-tds:—i/B~ndS.
c dt Jz

A symmetric statement, where E and B have been interchanged, should therefore contain the time
rate of change of flux of the electric, i.e. we may expect that

d
<2 [ E.nd
dt/f nds

enters. However, when we look at the static case, i.e. Ampére’s law, Theorem 35.5, which should hold
in the limit, we get instead

%des:,uoL
c

which apparently has nothing to do with a time rate of change of flux, so something must be missing.

The trick is the following: Consider some closed surface F and cut it by some closed oriented curve
C on F into two. We let F¢ denote the part of F, which is given the right-hand orientation induced
by the orientation of C. We keep F fixed and let C shrink to a point. Then in some obvious sense
Fc — F, and clearly,

lim B-tds=0.
C=0 Jo

Figure 35.9: The closed surface F is cut into two by the closed oriented curve C', where we choose the
part F¢, for which the normal vector field induced by the orientation of C' is pointing outwards from
F D Fe.
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Let ¢(t) in the dynamic case denote the net charge inside the bounded closed surface F at a given
time ¢t. Then the net outgoing charge flux passing through F per unit time is a current Ix, so

dg

dt’

Ir

with a minus sign, because when ¢(t) decreases in ¢, then the current Ir is leaving F in its positive
direction.

Given the dynamic electric field E(t), the total charge within F is expressed by the surface integral

q(t) = eo /}_E(t) -ndsS,

hence

d__ [ .
i dt/fE(t)-ndS—so/f 5 ndS (=—-1IFr).

It therefore follows that
Ir +go/ E(t) ndS =0,
F

Then let G C F be any sub-surface of the bounded closed surface F with the closed curve C as its
intrinsic boundary, and then replace I in Ampére’s law

‘74 B-tds=puol
c
by
d
I=Ig+4+¢)— | E(t) -ndS.
dt Jg
By this qualified guess we replace Ampére’s law by

j{CB(t)wds:uo{Ig +60%/9E(t)~nd5}.

We see that we keep the structure of Ampére’s law and at the same time obtain that if C' shrinks
towards a point, then we indeed get 0 as requested.

We coin the above model in the following

Theorem 35.7 The Ampere-Maxwell law. Let E(t) be a dynamic electric field with the corresponding
current density J, and let F be an oriented surface with the oriented closed curve C as its intrinsic
boundary. Then the current I through F is given by

I:/JdS.
F

Furthermore, a dynamic magnetic field B is induced, and

?{B-tdSZMO{I—i—soi/E(t)~nd5}=uo{/JdS—é—soi/E(t)-ndS}.
c dt Jz F dt J#
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This is the fourth of the so-called Mazwell’s equations.

Then note that according to Stokes’s theorem, the left hand side is also equal to

/rotB-ndS’ = (%B-tds) zuo{l—i—goi/E(t)-ndS}
F c dt Jx
MO{/JdSJraOi/E(t)-ndS}.

F dt J

Hence, by a rearrangement,

0:/ {rotB—uo (J+508E)}-nd5,
F ot

This equation holds for every choice of an admissible surface F. This is only possible, if the first factor
of the integrand is 0,

OE
tB — J — | =0
(1 25) <0

and we have shown the following pointwise result,

OE
tB = J — .
ro Mo( + €0 3t>

Conversely, it is obvious that Theorem 35.7 follows from this pointwise equation, so the two results
are equivalent.

Note that Theorem 35.7 so far is only a model derived under the _[assumption that we can extend the
static Ampere’s law

%B(t)-tds:uof
c

to the dynamic case by replacing I by adding a term concerning the time rate of the flux of the electric
field,

1+50%/ E(f) - ndS.
f

It has therefore afterwards been necessary through the years to verify this model experimentally, and
it turned up that it really describes the actual situation found in nature.

35.3.3 Summary of Maxwell’s equations

It is customary to collect all Maxwell’s equations in a separate section, so this is also done here.
First we make some preparations. The notion of an electromagnetic field is characterized by a vector
consisting of the electric field E and the magnetic field B. They produce a force on an electric charge
q, which is given by

F=¢E+v xB),

where the charge ¢ is moving with the velocity v. This mathematical model has been verified by many
experiments and measurements. It does not follow from mathematics alone.
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Then we shall use the nabla notation, i.e.
gradV =V, divV=x -V, and rotV=y xV,

suggesting the strong connection with Linear Algebra and Geometry in the Euclidean space E3 ~ R3.
In some books rot is written curl instead.

We then turn to Maxwell’s equations.
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Maxwell’s first law = Gaufls law.

1) As integrals, where ¢ denotes the density of the charge,

/ E-ndS:/v-EdV:i/ng.
f19) Q €0 Jq

2) Pointwise,

V~E:£.
€0

Maxwell’s second law = Gauf}’s law on magnetism. We assume that no magnetic monopole
exists.

1) As a surface integral, where F is a closed surface,

/B~ndS’:0.
f

2) Pointwise,

v -B=0.

Maxwell’s third law = Faraday-Henry’s law of electromagnetic induction.

1) As integrals, where C' is a closed curve, and F is any surface having C' as its intrinsic boundary,

%E-tds:—i/B-ndS.
c dt J

2) Pointwise,

Maxwell’s fourth law = Ampeére-Maxwell’s law. Let J denote the vectorial current density, i.e.
the current I through a surface F is given by

I:/J~ndS.
f

1) As integrals,
d
j{ B~tds:u0/ J-ndS+uoao—/ E - -ndS.
c F dt Jr
2) Pointwise,

OE
B = pod —.
AR Hod + pog ot
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Maxwell’s four equations together with the above mentioned law of the force on a particle of charge
q and of velocity v,

F=¢qE+v xB),

form the basis of the electromagnetic theory. In the description above some effort has been made to
explain, when a result follows from mathematics, in particular from Gauf3’s and Stokes’s theorems, and
when some experimental measurements have been necessary to set up the right mathematical model.
In particular, in the derivation of Ampére-Mazwell’s law we first made some reasonable mathematical
assumptions, though in the beginning were not justified. By using some mathematics we deduced a
possible model, and finally this model was indeed verified through the years by lots of measurements
on experiments.

35.4 Procedure for calculation of the rotation of a vector field and appli-
cation of Stokes’s theorem

Let us first mention the most practical way of calculating the rotation of a 3-dimensional C'! vector
field by means of a formal determinant,

e, e e,

g 9 0
t == - = x> ) z)
ro VX dr 0Oy 0z | ( v V)
Va Ly V.

Note that this rule is only valid when rectangular coordinates are used!

Vi
W IFE
s

Figure 35.10: As an example we choose again the surface of the upper unit half sphere F, where the
boundary curve §F is the unit circle in the (z,y)-plane.
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Figure 35.11: The connection between a vector and the corresponding curl which fixes the orientation.

The fixing of the orientation of a surface (i.e. the direction of the normal vector), when the direction
of the run through of the boundary curve, is given by:

e The convention of orientation: Let the normal vector field on the surface F be supplied with
a curl around the foot of the normal vector. The direction of the curl is by continuity fixed by the
direction of the run through of the boundary curve. If you put your right hand along the normal
vector with the four fingers in the direction of the curl, then your thumb will point in the direction
of the normal. Cf. also Figure 35.11.

Whenever circulation of a vector field is mentioned, one should think of an application of Stokes’s
theorem:

j{ V-tds:/n-rof,VdS7
§F F

where the left hand side is the circulation of V (1 dimension), and the right hand side is a flux of the
vector field rot V (2 dimensions).

In exercises the student will often in an earlier question have calculated rot V, so the task is reduced
to the choice of a convenient surface F for the given closed (boundary) curve 0F. As long as the
student is learning these ideas, the surface F will typically either be flat or a part of a sphere.

Remark 35.4 Stokes’s theorem can also be applied from the right to the left. If e.g. one shall find
the flux ffn -UdS of a rotational field U =rot V, and V is fairly easy to find, then

/n-UdS:/n-rotVdS:]{ V -tds. O
F F 5F
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35.5 Examples of calculation of rotation of a vector field and application
of Stokes’s theorem

35.5.1 Examples of divergence and rotation of a vector field

Example 35.6 Find coordinate expressions of the vector fields rot(rot V) and grad(div V).
Then prove the formula

grad(div V) —rot(rot V) = (div(grad V;), div(grad V), div(grad V.)).

A Calculations using nabla.

D The results can be obtained by very mechanical calculations. It is a matter of taste whether one
prefers the notation above or

grad = v/, div = v/, rot =y x.

We shall here use the latter, thereby keeping the formal connection to the geometric relationships
that the operations are describing.

I Let V ne a vector field of class C2. Then

_ _(9V. 0V, oVy 9V, o, oV,
rotV-va-(ay aZ)%—i—((% 8x>ey+< y)ez.
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By repeating this pattern we get for the double rotation that

rot(rot V) = v x (v xV)
- (2 ),
oy | 0z Oy 0z | 0 Ox *
o [0V, 0V, o [0V, IV,
*(5{% az} ou {ax ay}>
0 [0V, 0V, ov, 9V,
+<%{82_8x} 3y{3y 8,2})6’
rot(rot V) = x (VV)

B 52Vw B o?V, 0%V, n 0%V,
N Oy? 0z2  0x0z  Ox0y

thus

92V, 3214, 2V, 9V, &V,
v Ty +

022 0z2  Oxdy 0Oyoz
o 32 02V, o,

+ +
ox? Oydz  Oxdz

—(v 2Vgc,v2Vy,v2V)

RN AR TAAY

Tor on oy 0z | "

R A AN

By or Oy 0z ) Y

0[OV oV, ov.)

0z | 0z = Oy @ Oz i

=-V'V+v(v-V)
—(div(grad V;),div(grad V), div(grad V.)) + grad(div V),

and the formula follows by a rearrangement.
REMARK 1. Note that the formula can also be written
V(V-V)=vx(vxV)=v*V. ¢

REMARK 2. We note for completeness

oV, 9V, IV,
v(v-V)—v(ax Ty T az)
B o*V, 0%V, 0%V, 0*V, 0%V, n 0%V,
T\ 9z Oxdy  Oxdz Oxdy Oy? Oyoz

+ Ve + al + OV e O
0xdz  Oydz 022 ) °
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Example 35.7 Find div V and rot V for each of the following vector fields on R3.

1) V(x,y,2) = (2, —y*, 22%y).

2) V(z,y,2z) = (2 +siny, —z + cosy, 0).

3) V(z,y,2) = (e*¥, cos(zy), cos(x2?)).
§) V(,0,2) = (8% + y2,0 + 25,2 + 7).
5) V(x,y,z) = (x + Arctan y, 3z — z,2Y%).
6) V(z,y,2) = (23, —22%yz, 2yz*).

7) V(z,y, z) = (sinh(zyz), z, x).

8) V(Arctan z, Arctan z, Arctan y).

A This is just a simple exercise in finding the divergence and the rotation.

D Insert into the formulee
divV=x-V and rot V=g xV.
1) We get for V = (zz, —y?, 22%y),

divV=2z-2y4+0=2-—2y

and
e ey e,
0 0 0
tV=| — — — |=(Q22% -4 .
ro or 8y 02 (227, ¢ — 4zy,0)

xz —y? 22y
2) We get for V = (z +siny, —z + cos y, 0),

divV=0-siny+0=—siny

and
e, ey e,
0 0 0
rot V = 92 8_y 5 | = (1,1, —cosy).

z+siny —z+4+cosy O
3) We get for V = (e, cos(xy), cos(z2?2)),

div V =y e — z sin(zy) — 22z sin(zz?)
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and
e, ey e,
rot V= 9 2 — = (0, 2%sin(x2?), —y sin(zy) — z ™)
Ox Oy 0z ’ ’ '

e cos(zy) cos(zz?)
4) We get for V = (2% + yz,y? + 22, 2% + 2y),

divV=2xz+y+2)

and
e, €y e,
rot V = (1% gy 86z =(@x—-—zy—y,z—2)=(0,0,0)=0.
x2+yz y2+xz z2—|—xy
5) When

V = (z + Arctan y, 3z — z,€%%) = (z + Arctan y, 3z — z, eln 2w2)
we find

divV=1404+In2-y-e"?¥ =141n2.y-2¥°

and
e, ey e,
0 0] 0 1
tV= — — — =(In2-2-2¥+1,0,3— — ).
rot V Oz dy 0z <n ? L0 1+y2>

r+ Arctan y 3z — 2z elm2ZV?
6) If V = (223, —22%yz, 2yz*), then
div V = 2% — 2222 + 8y2?

and

rot V=| — - | = (22" 4 222y, 3222, —dayz2).

xzd —22%yz 2yt
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7) If V = (sinh(zyz), z, z), then

div V = yz cosh(zyz)

and
(S ey e,
rot V — % a% (982 = (—1,zy cosh(zyz) — 1, —zz cos(zyz)).

sinh(zyz) 2 =

8) If V = (Arctan z, Arctan x, Arctan y) then

divVv=0
and
ew ey eZ
0 19} d 1 1 1
t V= — = )
ro oz dy 0z (1+y2’1+z2’1+x2>

Arctan z Arctan x Arctan y

sssssssssssssvssssssssssssssssssssssssssssesssssnsssssssssssssssssssssssfilcgte]-Lucent @
www.alcatel-lucent.com/careers

"'," / =3 -

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".
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Example 35.8 Find the divergence and the rotation of the vector field (the so-called Coulomb vector
field),

1
V(x7y,z):T—3(x7y,z), (x7y,z)7é(070,0)7 r= V$2+y2+22'
[Cf. Example 33.14]

A Divergence and rotation.
D Compute div V=v/-V androt V= x V.
I First note that

ar x ar y or  z

dr 1’ Ay  r

% 5,

These are easy rules of calculations, by which
0 [x d [y 0 [z

Y ) ()G
A Ox \r3 +8y r3 +Bz r3

(LS00 (1 sor\ (1 8o
o 3 rd Ox 3 rt dy r3  rt 9z

3 3 1., o o, 3 3
= maA v =g g =0
and
er ey €,
9 9 9
rot V. = Ox 0Oy Oz
r Yy =
,,13 7.3 7.3

(i ()0 (e () ()
) )

s (o o o or o o
Ay Yo 9z “orY bx Oy
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REMARK. A variant is

e; e e,

rot V a0 A, 9. | =

[l

)

8

Q@

N

)

N

|
Pl
7 N
ﬁw‘,_.
N—
RS
VS
ﬁw‘,_.
N———
Pl
VR
ﬁw‘,_‘
N—

B 3 or or or | 3 2’3 Zy Zz 3 X% =0 o
I = TS 5 -5 -
r dr Oy 0z r y oz r

Example 35.9 Choose the constants o and 3, such that the vector field
V((E,y72) = (myz),@ (‘,Ea’ya’za)’ ((E,y,Z) ER?H
has zero rotation.

A Rotation free vector field.
D Compute rot V.

I We get by a calculation,

ew ey eZ
0 0 0
rot V. = % aiy &

xo""ﬁyﬁzﬁ mﬁyoH—ﬁ mﬁyﬁzaH?
= B (xﬁyﬂflzoﬂrﬁ _ xByOtJrBZ,B*l) e, + (anr,@y,@ZB*l _ xﬁflyﬁzaﬁ@) e,

+5 (:z:ﬁ_lyo‘Jrﬁzﬁ - :z:o‘+5y’8_lzﬁ) e,

_ B(xyz),@ (yflza o yﬁzfljxazfl o xflza’xflya o (anil) .

If 8 =0, then the factor outside the vector is 0, and the vector field becomes rotation free in ]Ri.
This corresponds to the vector field

V(z,y,2) = (x%y%,2%),  a€R,
where the condition (z,y, z) € R} assures that the vector is always defined.

The second possibility is that the vector is

a,—1 o, —1 -1 a ,.—1, « a, —1

(yilzo‘—yz , otz — 2% Tyt — %y ):0.
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This gives the condition @ = —1, in which case the vector field becomes
B=1,8,8 B, B~1,8 B, 8,61 g (l 11
V($7yaz):($ Yy 2,1y 2Ty & ):(J:yz) T
xy =z

which is also free of rotation.

35.5.2 General examples

Example 35.10

A. Find the circulation C of the vector field
V(z,y,z) = (zQx,a:Zy,sz) , (z,y,2) € R3,

along the curve K on the figure which is composed of three circle arcs of centre 0 and radius a,
and which lie in the planes z =0, y = —x and x = y\/3, respectively.

Figure 35.12: The curve K for a = 1.

D. A circulation along a closed curve can either be calculated by using its definition as an ordinary
line integral, or it can be transformed by means of Stokes’s theorem to a surface integral. Most
students are at their first encounter with this problem inclined to preferring the line integral,
because it should now be better known, even when applications of Stokes’s theorem very often give
much simpler calculations. For that reason we shall here demonstrate both variants.

I 1. The circulation as a line integral.

Let us first give the parametric representations of the three arcs, which K can be composed into
in a natural way:

K:lz (Qf,y,Z):Cl(COS(p,SiDQ0,0), QOE |:g73:-:|7
1 1 T
Ko: (z,y,2) =a|——= cosf, — cosf,sinf |, 0¢€ |0,—|,
V3 1 ™
Ks: (z,9,2)=a 751n0§ sinf, cosf | , NS {0,5].
1691
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0.8

0.6

0.2

-0.2

Figure 35.13: The projection onto the (x,y)-plane for a = 1.

Check here that all three curves are circular arcs of radius a and centre 0. Then check that the
initial and the end points are the right ones, i.e. that the direction of the run through is correct.
(Here this is left to the reader).

In order to avoid too many complications in the calculations we rewrite the integrand in the
following way,

V.dx = 2%zdr+2%ydy+y’zdz
= {2 +22A () +97d ()}

/
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By insertion we get the following confusing picture of formulae, where there are lots of possibilities
of making errors,

¢ =3[ [ A e i)
1

3
6

1 3 2 2
+—/ a’sin? 4 - a—(—2cos€sin6‘)+a— cosgﬁ-a—(—2cosﬁsin6‘)
2/, 2 2 2

2
1 d(z2
{0-#4—&2%52@2@2 sin<p-cos<p+y2-0} dep
¥
2

2

—1—% cos?6-a®- QSiHGCOSG} do

1 [z 3042 342 2
+f/ a260520-i-2c03931n9+isin29~a—-2cost9 sin 0
2 Jo 4 4 4

2

_’_az sin? 0 - a*(—2sin 6 cos 9)} dé

3w ™
T 4 r2 1
= a4/ cos® o sinpdyp + %/ (— sin® 6 cos 6 — 5 cos3esin9+cos3esin9> dé
= 0

6

L re (3 3 1
—l—a—/ = cos®Osinf + = sin®fcosh — = sin®Ocosf § db,
2 Jo 2 8 2

i.e.

4 o ]t b S 1\ .3
C = a" |—— cos™ ¢ + = —14 - — = ]sin”fcosf df
= 2 Jo 8 2

a4 % 9 . 3 3 .
+ — —— sin” O cosf + 2cos’ fsinf » db
1
4

at (9 1 a* 9 4 1
= —|—=—-- — |- Sin“ 0 — 2 - — 16
4 \16 4)+ 2 [ g 4 o8 L
5a*  at 9 1 a’ 12¢*  3a*
6 + 2 ( 32 O+0+2> 64(5 9+16) 64 16

The calculations can be carried out, though they are far from simple.

I 2. Circulation by means of Stokes’s theorem.

We shall now demonstrate that the calculations by an application of Stokes’s theorem in this case
is far simpler. First note that since all sub-curves are circular arcs of radius a and centre 0, they all
lie on the sphere of radius a and centre 0. They bound a part F of the sphere, where the orientation
of K forces the normal vector n on F to point away from 0 (the right hand convention), i.e.

1
nzi(xayvz)y Wherea,:\/m.
a
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Figure 35.14: The surface F for a = 1 with a single normal vector n.

Furthermore,
e; e, e,
0 0 0
rot V= oz oy 0z | (2yz, 2z, 2zy).

It is on the sphere most natural to use spherical coordinates. Then by Stokes’s theorem and a
reduction,

Cc = /V-dx:/n-rotVdS
K F

1
= / = (z,y,2) - (2yz,2zx,2zy) dS = §/ xyzdS
Fa aJF

3w ™
6 [+ 3
= f/ {/ a sinfcosp - a sin@sin<p~acos9a2sin9d€} dep
a Jo 0
6

= 3
cosp -sinpdep - / sin® 6 cos @ df
0

1
sin? go] . [Z sin? 9}
0

1(1 1) 1 6a* 3a*
— 6@4 . _ _ —_= — = ——
2 4] 4 32 16’

= 6a

>
@H\

=
e}

= 6a4[

N =

o

i.e. far easier calculations than by the line integral. ¢
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Example 35.11
A. An oriented curve K is given as the intersection curve between
o the cylindric surface 22 + 2 = azx,
and

e half of the parabolic cylindric surface
2z =1+/4a? — ax.

The orientation of IC obeys the right hand convention with the positive z-axis. Find the circulation
along KC of the vector field

V(;zc,y,z) = (31’y,21’2,—y2), (l',y,Z) ERB'

Figure 35.15: The curve K and its projection onto the (z,y)-plane.

D. We shall here demonstrate three variants:

1) The line integral (the calculations are worse than those of Example 35.10).

2) Stokes’s theorem by the surface

Fi: 2z =+/4a? — ax, (xz,y) € B,

3) Stokes’ setning by the surface

Fo: 2? +y* + 22 = (20), (x,y) € B, z>0.
I 1. As a general warning we shall first give the solution calculated as a line integral.

When K is projected onto the (z,y)-plane we get the curve £ of the parametric representation
™ 7T:|

(J,',y,Z) = (Q Cos @, 0 Sin(p70) =a (COS2 ¥, oS Sin3070) ) pE |:_§7 5
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Figure 35.16: The parametric domain B is the disc in the (z,y)-plane of centre (g, 0) and radius %.

Here we have chosen a = 1.

Now z = v4a? — ax, so K has the parametric representation
. — _ 2 . 5 T
K: r(p)=(x,y,2) =a(cos®p,cospsinp,\/4—cos?p), @€ ~53]
Then we get the values of the vector field along the curve I,

V(.TJ, Y, Z) = (313y, 21:27 —?JZ)

= (Sa cos? ¢ - a cos ¢ sin g, 2a® cos? ¢, —a cos ¢ sin ¢ - a\/4 — cos? <p>

= a? <3cos3<p sin ¢, 2 cos* p, — cos ¢ - sin g - 4—cosQ<p>.

> Apply now

REDEFINE YOUR FUTURE
AXA GLOBAL GRADUATE
PROGRAM 2015
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]
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o
©
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&
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Hence,

cosgp-singp)

r'(p) =a [ —2sing - cos @, cos? ¢ — sin? p,
4 — cos? p

In order to avoid too big calculations we first calculate the integrand separately,

Vor'(e
= d (3 cos® ¢ sin p - (—2sinp cosp) + 2 cos’ ¢ - (cos2 @ — sin® gp) — cos? ¢ sin? cp)
1
= a (3 cos? ¢ cos g sin @ - (—sin2¢) + 2(cos? ¢)? - cos 2p — 1 (2 cos ¢ sin np)?)
; 2
1 2 2 1 2 1
= a®¢3 Lfcosspsmip, (—sin2¢) + 2 1rcos2p cos 2p — — sin? 2
2 2 2 4
aB i 2 2 )
= 7 {=3(1 4 cos 2¢) sin” 2¢ + 2(1 + cos 2¢)? cos 2¢ — sin® 2¢}
3
= % {—3sin® 2 — 3 cos 2¢ sin”® 2 + 2(1 + 2 cos 2¢ + cos” 2¢) cos 2 — sin® 2}
3
= az {4 sin? 2¢ — 3 cos 2y sin? 2¢ + 2 cos 2 + 4 cos® 2 + 2 cos? 2 - cos 20}
3
= az {4 (cos? 2¢p — sin® 2¢0) — 5 cos 2 sin® 2 + 2 cos 2¢ (sin® 2 + cos® 2¢) + 2 cos 2},

ie.
a3
V. 1r'(p) = T {4 cosdp —5cos2¢p sin? 2 + 4 cos 20},

which is a fairly tough calculation. At the same time we see why we do not immediately insert the
expression into the integral.

However, after this reduction the circulation becomes easy to calculate,

cC = %V-tds: 2V-r’(go)dgo
K

_Z
2

5

2
{4 cosdp — 5cos2¢ sin® 2p + 4 cos2¢} dy

|8,

e

N P 511~'32% 2 sin 2
= 7 [sin @]7%— 5 35 @7 + [2sin <PLg

jus
2

w3
w3

(==

)

and we see that after so much trouble we only get zero as our result.
I. As an introduction to the applications of Stokes’s theorem we first calculate

e: €y e,

0 0 0
rot V= % Fy &
3zy 222 —yz

= (—Z,O,4$ - 31‘) = (—Z,O,Z’),
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which looks promising, because rot V is much simpler than V.

Then we shall choose a surface which has IC as its boundary curve. This surface is of course not
unique.

I 2. The most obvious possibility is to choose the parabolic cylindric surface
Fi: z:\/m7 (z,y) € B,
where the parametric domain B is best described in polar coordinates,
B={(9,s0) ’ S [—g,g},oﬁgéacosw},

while (z,y, z) still denotes the rectangular coordinates.

Because F7 is given as a graph, the parametric representation is

r(@.y) = (@y.2) = (v.y. V42 ~az),  (w,y) € B,
from which we get the tangential vector fields

1 —a a
! =11,0,= ———— :(10——) d r =(0,1,0
rl) ( ) ) 2 4012 _ ax) ) ) 22 ) an ry ( ) ) ))

and the corresponding normal vector field

e; € e,

., a a
N(z,y)=r, xr,=| 1 0 —5s :(5,0,1).

0 1 0

We see that N(z,y) and the orientation of K satisfy the right hand convention N - e, = 1, so we
have the correct orientation.

An application of Stokes’s theorem then gives

%V-tds:/ n-rot VdS:/ (ﬂ,O,l)-(—aO,x)dxdy
K F1 B \2%

1
= /(—a+x>dxdy:—aarea(3)+/xdxdy
B\ 2 2 B
a an 2 T a cos
= _i'ﬂ(§> +/g2{/0 _ocoswgdg} de

3 3 1 Jacose 3 3 13
= —%4—/ cosgo-[?)gg} d@z—ﬂ+a—/ cos® pdyp

C

_x 0 8 3 J_=
2 2
ma® 2% [ (14 cos2¢p)”
_ w200 F (Lgcos2p)T
8 3 Jo 2
8 243 1 (3
= —E—Fi-—/ (1+2cos2g0+cos22g0) de
8 3 4/,
ma® a® (w ™
= ——+ 3140 f}:().
8 +6{2+ +4
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I 3. The calculations of I 2. were much simpler than the calculations of I 1., although they still gave
some trigonometric problems. The question is now, if it is possible to choose another surface F
with IC as its boundary curve, such that the calculations become even more easy. We shall now

show that this is possible, though far from obvious.

First we note that since K satisfies the two conditions
a) 22 +y* =axr and b) 2% =4d® — ax,
the parametric representation of F must also satisfy

(2® +y?) + 2° = az + (4a® — az) = 4a* = (2a),

z >0,

i.e. IC lies on the half sphere of centre 0 and radius 2a and z > 0. We choose F» as that part of
this half sphere which lies above the parametric domain B:

For 2*+y*+2°=(20)%  (x,9) €B,

z>0.

The sphere of centre 0 and radius 2a has the unit normal vector

n= % (ac,y,z),

hence we have on F3

1
n-rot V= %(x,y,z)-(—z,o,x)zo.

Iy
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By an application of Stokes’s theorem the calculation of the circulation is now reduced to a triviality,
C’:fV-tds:/ n-rot VdS = 0dS =0,
K Fs F2

in which we shall not even insert a parametric representation followed by some reduction theorem!

O

35.5.3 Examples of applications of Stokes’s theorem

Example 35.12 Apply in each of the following cases Stokes’s theorem to find the circulation of the
given vector field V : R? — R? along the given closed curve K, we one shall indicate the direction of
the curve on a figure.

1) The circulation of the vector field
V(z,y,2) = (ysinh(zy) + 2%, xsinh(zy) + 22 + x, 202 + 2y?)
along the closed curve K given by z? +y> =1, z = 1.
2) The circulation of the vector field
V(z,y,2) = (y? + 2%, (x — a)* + 2%, 22 +¢?)
along the closed curve IC given by
2?24+ y? =bx, zt=da>—2%—9y% whereb<a and z > 0.
3) The circulation of the vector field
V(z,y,2) = (y,x —yz,27)
along the closed curve IC given by
w2yt =1, 2z =14 —22% — o2
4) The circulation of the vector field
V(z,y,z) = (yz — 2y, xz + 4z, zy)
along the closed curve IC given by
o=1+4cosp, z= \/m for ¢ € [—7, 7.
5) The circulation of the vector field
V(z,y,2) = (y* — 22y, 22y, 2az + 3a?)

along the closed curve IC given by

2?2 +y? =ax z=a— /2% + 92
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Figure 35.17: The curve K of Example 35.12.1.

6) The circulation of the vector field V(z,y,z) = (z,z,y) along the boundary of the triangle K of
vertices (0,0,1), (0,1,0) and (1,0,0).

7) The circulation of the vector field V(z,y, z) = (y, z,x) along the closed curve K given by
:1:2+y2+22:a2, Z=y—x.
8) The circulation of the vector field V(x,y, z) = (y +sinz, z,x cos z) along the closed curve K given
by
2 y? 422 =1, z=x.
9) The circulation of the vector field V(z,y,2) = (22, ax + 22,222 + 2y?) along the closed curve K
given by

x2+y2=a2, zZ=a.

10) The circulation of the vector field
V(w,y,2) = (—y(a® +22%), 2(a” + 4y* + 22%), 2%)

along the closed curve IC given by

x2+y2=a2, zZ=a.

A Circulation of vector fields.

D Sketch the curve and choose an orientation of it. Compute rot V, and choose the surface F.
Finally, apply Stokes’s theorem.

I 1) The most obvious choice of the surface is

F={(z,y,1)|2* +y* <1}

1701
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Figure 35.18: The curve K of Example 35.12.2 for a =4 and b = 2.

where the orientation is given by the normal vector n = (0,0, 1). Hence

n~rotV:%—an

Ox oy

= sinh(zy) + 2y cosh(xy) + 1 — sinh(xy) — zy cosh(zy) = 1.
Then according to Stokes’s theorem the circulation is

/V-tds:/n-rotVdSzl-area(}")zw.
K F

2) If we choose the orientation of I, such that the projection of the curve onto the XY-plane has
a positive orientation, it is quite natural to choose the corresponding surface

f:{(w,% Vv 22—x2—y2)|r2+y2§bx},

with the normal vector n-e, > 0. We first find

e, ey e,
rot V= % (% % = (2y — 42°,42° — 22,2(z — a) — 2y).

2t (m—a)? 42t a?4y?
Then calculate the normal vector of the surface F,

e, ey e,

I
—_
(e
|
N[
8
—~
'S
S
N
|
8
N
|
<
[}
~
|
w
I
—_
jen)
[
DO |
%l
w

N(z,y)
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hence

1 1z 1y
.rotV = —— __2_43 __43_2 () —2
e ||N<x,y>||{2z3(y )45 542" 20) +2(0—a) y}

2a
IN(z,y)

1 Ty YT
N S 2—72—2—2}:
N g)] st 2 20202
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Real Functions in Several Variables: Volume Xl Rotation of a vector field; Stokes’s theorem

Figure 35.19: The curve K of Example 35.12.3

Choose the parameter domain
B ={(z,y) | 2 +y* | ba}.

According to Stokes’s theorem the circulation of V along the curve K is given by

—2a
V.tds = /n-rot VdS:/ =20 Nz, y)| de dy
/)c F B [IN(z, y)|l

2
= —2qarea(B) =—-2a-7 (g) = ——ab*

3) Here we choose the surface
F=A{(z,y,2- 22 —y?) | 2® +¢* < 1},

where the boundary curve K is oriented such that it is positive in the XY-plane. Then n-e, > 0
for the normal vector on F.

Then by computing,

e, ey e,
0 0 0
t V= — — | = —2r,1—-1) = —2x,0).
ro or oy o (y, —2z, ) = (y, —2x,0)
y x—yz x°
and

0 1 =2y
hence
1
n-rot V=-———(2z,2y,1) - (y,—22,0) = 0.
IN(z, )|l
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Real Functions in Several Variables: Volume Xl Rotation of a vector field; Stokes’s theorem

Figure 35.20: The curve K of Example 35.12.4

0.5 1 15

-0.5

Figure 35.21: The parameter domain B of Example 35.12.4.

Then it is easy to find the circulation,

/t-Vds:/ n-rot VdsS =0.
K F
4) Choose the surface which is given in semi polar coordinates by

F = {(@,% V4d=0%)|0< o< 1+cosp, p€ [—W,W]} ={(0,¢,V4—0%) | (0,9) € B},
where the parameter domain
B={(0,¢p)|0<0<1+cosy, ¢ € [-m,7]}

lies inside the cardioid.
Choose the orientation of K such that the projection of K onto the cardioid is run through in

1705

Download free eBooks at bookboon.com



the the positive sense of the plane. Then by a computation,

e, ey e,
rot V= % 8% % =(x—-z,y—y,z+4—2+4+2)=(0,0,6).

yz —2y wzz+4xr xy
The surface F is described in rectangular coordinates (though in polar parameters) by

(z,y,2) = (0 cosp, o sinp, /4 — 0?).

This rectangular description is necessary when we compute the normal vector by the usual
method,

e, ey e,

2 2 o
: -~ pcosp  psing
N(o, ) = cos sin @ — ’ 7 ’
(29 4= <\/4—92 VA= Q)

—posiny pcosy 0
hence
6o
n-rot V=_———.
[B(o, o)l

The circulation along I is

~14-cos ¢
/ 6o dg} de

60 / 4
—dS = 6ododyp = / {
/J-' N (o, )|l B —-= Uo

/ 3(1—|—coscp)2d<p:3/ (1+2cose + cos? @) dp

—T —T

T 3
3 {1+4cos®p} dp+0=7-3-2m = 9.

—T

5) Choose the surface

F={(z,y,a~ Va2 +y?) [ 2® +y* <az} = {(z,y,a — Va2 +y?) | (z,y) € B},

where the parameter domain B is described in polar coordinates of the plane,

BZ{(&@) ‘ o<acosp, pc [—gg”

Then
e, ey e,
0 0 0
t V= — — — =(0,0,2y — 2 2z) = (0,0,2
ro o a9y P (0,0,2y — 2y + 2x) = (0,0, 2x),

y? —2xy 2wy 2az+ 3a®
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Real Functions in Several Variables: Volume Xl Rotation of a vector field; Stokes’s theorem

Figure 35.22: The curve K of Example 35.12.5 for a = 1.
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Figure 35.23: The surface F of Example 35.12.6.

The circulation af V along K is then by Stokes’s theorem,

/t-Vds:/ n-VdS:/N-dedy:/2xdxdy
K F B B
™ a cosp z 9 . a cos
:/ {/ 2gcos<p-gdg} dcp:/ {gg‘g] cospdyp
_ 0 -z

0
s 2
2 2 2 (1 2
:-/; gGJBCOSZLSDdSD:ga?’/g( +C208 SD) dQD

1 2 1 4 1 3
:6@3/—72r <1—|—2(3082g0—|—+c208(p) dg0:6a3-§7r

v

[SIE] W

M

™
fa3.

6) First calculate

e; e, e,

rot V= g 0 4
T

— =(1,1,1).

z x Y
We choose naturally the surface F in the following way

fZ{(x,y,l—x—y)|O§w§1,0§y§1—x}
with the normal vector

e, e, e,

N(z,y)=|] 1 0 -1 |=(1,1,1).

0 1 -1

The circulation of the vector field along K is then

/t-Vds:/n-rot VdS:/N-rot dedy:Sarea(B):§.
K F B 2
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Real Functions in Several Variables: Volume Xl Rotation of a vector field; Stokes’s theorem

7) Choose F as the plane surface (a disc)
F={(z,yy—a)|2® +y*+ (y — 2)* <’}
with N - e, > 0 by the chosen orientation. We get

e, e, e,

o o0 0
rot V= _{13 8_y & = (—].,—].,—].)
Yy z x
and

N(IE,y) = 1 0 -1 = (17_151)7

hence
N-.rot V=(-1,-1,-1)-(1,-1,1) = —1.

The projection B of F onto the XY-plane is given by

1 3 z+y\° (x - y) 2
2 2 2 2 2 2 2 2
o>z +y'+y—z)="+y " — - (v — + - (r— = +3 ,
>y o =g S - S o= () s (T
which describes the interior of an elliptic disc with the directions of the axes
(L L) and (L _L>
V2 V2 V2 V2

and the half axes a and i.

V3
The circulation is
2
/ t-Vds:/ n-rot VdS = / N -rot Vdzdy = —area(B) = —7 - £
K F B V3
8) Since
e ey e,
0 0 0
rotV = — — — = (0,cosz —cosz,1 —1) = (0,0,0),

Ox Jy 0z
y+sinz x xcosz

the circulation is trivially 0 by Stokes’s theorem.
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Real Functions in Several Variables: Volume Xl Rotation of a vector field; Stokes’s theorem

Figure 35.24: The curve K of Example 35.12.8.

Figure 35.25: The curve K of Example 35.12.9 and Example 35.12.10 for a = 1.
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Real Functions in Several Variables: Volume XI Rotation of a vector field; Stokes’s theorem

9) Here
€ ey e,
0 0 0
rot V g oy Ep (4y — 22,2z — 4z, a)

[\

2?2 ar+4 22 2224+ 2y°

We have n = (0,0,1) in the chosen orientation of K, so the circulation becomes

/t-Vds:/n-rot VdS:/adxdy:a-area(B):wa?’.
K F B

ALTERNATIVELY it is here also easy to compute the circulation as a line integral. We choose
the parametric description

(#,y,2) = (a cosp,asing,a), ¢ €l0,27],
for K. Then we get the tangent vector field

tds = (—a sinp,a cosg,0)dey,

Vouwro Touexs | Resanr Toocks | Macs Toveks | Vowo Buses | Vowo Cowsteucnion Esumsest | Wowo Pesm | Vowo Aeno | Wowo IT

Vowo Fimswcer Sepnces | Vowo 3P | Vowo Powerream | Vowo Pasrs | Vowo Techwowoer | Wowo Loasncs | Busisess Anes Asie
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hence
2m
/ t-Vds = / (—a sinp, a cos @,0) - (a?, a® cos p + a?,2a?) dp
K 0

2
= a3/ —smgp—i—cos @+ cosp+0)dy
0

2w 2w
a? / cos? pdp =a / sin? pdy
0 0

2T 2T
a3/ cos? <p+51n <pd 7/ dp = ma,
0

10) The surface F is the same as in Example 35.12.9, so we can reuse n = N = (0,0, 1) and

OoVy
n-rotV:%—8—:3x2+4y2+222+x2+2z2:4(x2+y2+z2).
T Y

Since z = a on F, the circulation becomes

/t~Vds = /n-rot VdS:4/(a:2+y2+a2)da:dy
K F

B

2 a
4/ {/ 0% ng} dp + 4a? - 1a® = 27a* + 4na* = 6ma’.
0 0

Example 35.13 In each of the following cases apply Stokes’s theorem to compute the flux

/ n-rot VdS
f

of the rotation of the given vector field V : R3 — R3 through the surface F, where we shall choose an
orientation, which is indicated on a figure.

1) The flux of V(z,y,z) = (y?, & — 22, —xy) through the surface F given by z = \/a? — x2 — y2 for
2?4+ y* < a’.

2) The flux of V(z,y,2) = (2y3, 2% + yz, x) through the triangle F with the vertices (1,0,0), (0,1,0)
and (0,0,1).

3) The flux of V(x,y,2) = (y + 22, zIn(1 — 2% + y?), Arctan(zyz)) through the surface F given by
z=1—a2%—y? for 2® +y* < 1.

A Flux computed by means of Stokes’s theorem.

D Sketch the surface F and the boundary curve K and choose an orientation. (It has not been
possible for me to sketch the orientation of the figures). Finally, exploit that the flux according to
Stokes’s theorem is given by

(35.2) / (VxV)-ndS = / V- tds, where K = “0F”.
F K
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;ﬁ’;‘/ﬂll lll/[/;'.’;"w‘« >
pa e

Figure 35.26: The surface F of Example 35.13.1 for a = /2.

e e

Figure 35.27: The surface F of Example 35.13.2

I 1) The boundary curve is the circle in the XY-plane of centrum (0,0) and radius a. Choose the
parametric description

(z,y,2) = (a cosp,a sinp,0), v € [0,27],

for K in R? corresponding to a positive orientation. Since t = (— sin g, cos ¢, 0) and ds = a de,
the flux is according to (35.2) given by

2w
/ V-tds = / (a®sin® @, a cos @, —a’sin ¢ cos @) - (— sin p, cos @, 0)a dp
K 0
27 1
= / {—a®sin® ¢ + a® cos® p + 0} d<p:0+a2-§ 227 4 0 = ma®.
0
2) The boundary curve is the boundary of the triangle with e.g. the parametric description
’Cl : (x7y7z):(1_t7t70)7 te [07 1]7
ICQ: (3572173):(0,1—15707 te [Oal]a

Ks: (x7yvz):(t7071_t)7 te [071]7
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Figure 35.28: The surface F of Example 35.13.3.

where ds = v/2dt on each of the three sub-curves. According to (35.2) the flux is given by

/(VXV)-ndS = V-tds+ V-tds+ V-tds
F K1 Ko K3

/1(2t3,(1—t)2,1—t)~(—l,l,O)dt
0
+/1(2(1—t)3,(1—t)t,0)-(0,—1,1)dt
01
+/ (0,%,t) - (1,0, —1) dt
0

_ 2_ 3 _4\2 1_ _ 1_
_ /0{ 263 1 (1 t)}dt+/0{ (1 t)t}dt+/0( ) dt

/1{—2t3 + (1 =) )1 =32 — (1 —t) —t}hdt
0

1

1
1 2
/{—2t3+2(t—1)2—1}dt: [——t4+—(t—1)3—t}
0 2 3
1 2 2
14+ =Z_
2 1 T373

0

N W

5
5
3) The boundary curve K is the unit circle in the XY-plane. Choose the orientation corresponding
to the parametric description
(z,y,2) = (cosp,sinp,0), v € [0,27],
for IC. Then
t = (—sinp, cosp,0) and ds = daep,

and the flux through F is then according to (35.13) given by

27 27
1
/V-tds:/ (sin<p,0,0)-(—sinap,cosw,O)dcp:—/ sin2<pd<p:—§-27r:—7r.
K 0 0
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Figure 35.29: The space curve K and its tangent at r (%)

Example 35.14 A space curve K is given by the parametric description
r(t) = (2cost,2sint, 4 4 2sin(2t)), teR,
1. Find a parametric description of the tangent of K at the point r (g)

2. Show that IC lies on the surface F, given by the equation z = 4 + xy.

Let ICy be the restriction of KC corresponding to the parameter interval [0, 2], where its orientation is
corresponding to increasing t. Furthermore, we have given the vector field

3. Find the circulation of the vector field along the curve KCy.

A Space curve; circulation along a closed curve.

D Find r/(¢) and the tangent corresponding to ¢t = Z

Put (x,y, z) = r(t) into the equation of F.
Try to apply Stokes’s theorem. Alternatively, compute directly the circulation.

I 1) It follows from
r'(t) = (—2sint, 2 cost,4 cos 2t)

that

r(%) - (22 55,4+2> = (V2,V/2,6)
and

¢ (5)= (-5 50) = (-vavao,
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Real Functions in Several Variables: Volume XI Rotation of a vector field; Stokes’s theorem

Figure 35.30: The surface F of equation z = 4 4+ xy for 2% +y% < 4

hence the equation of the tangent is

(2,9,2) = (V2 = V2u, V2 + V2u,6) = (V2(1 — u), V2(1 + u),6), u € R.

EXPERIENCE THE POW

FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
RUN EASIER...
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2) Since
44 x(t)y(t) =4+ 4cost -sint =4 + 2sin 2t = z,

the curve K lies on the surface F.
3) It follows from Stokes’s theorem that

/V'tds:/n-rotVdS7
K F

where
e € e,
o 0 0
tV=| — — — = (2y,—1,0).
ro Ox Oy 0z (2y,-1,0)

Y z  y?+2z
Since z = 4 + zy, 2% + y? < 4, we get for the surface F that

9z _ and 2.
or Y oy
hence

N($7y) = (_y7 —Z, 1)
ALTERNATIVELY, (2,y,2) = (u,v,4 4+ uv), thus

Nu,v)=| 1 0 v |=(-v,—-u,1)=(-y,—z1).
If we put B = {(z,y) | 2* + y* < 4}, then
/V-tds = /n-rotVdS’:/N-rot Vdzdy
K F B
2 -2 )
= /(—2y2+x—|—0)da}dy:—2/ {/ (gzsin2tp+0)gdg} de
B o o

2 472 16
-9 {_ﬂ] . {Q_} =21 — = —8m.
0

2 4 4

ALTERNATIVELY a direct computation gives

2
/V-tds: V.r'(t)dt
K 0

27
= / (2sint, 2 cost, 4sin? t+8+4sin2t) - (—sint, 2 cost, 4 cos 2t) dt
0

27

= {—4sin® t+4 cos® t+16 sin” ¢ cos 2t +32 cos 2t + 16 sin 2t cos 2t} dt
0

27 27
= 16/ sin?t cos 2t dt = 16/ sin?t(2cos®t — 1) dt
0 0

27
2
- 8/ sin22tdt—167r:8-§—167r:—87r.
0
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Example 35.15 Let o be a constant, and consider the vector field
V(z,y,2) = (ax® +2z4yz, a0y’ —xz—yz, a(z® —y*+2%)), (z,9,2) € R>.

1. Find div V.

2. Show that V is not a gradient field in R3 for any choice of a.

Let K denote the circle given by x2 + y? = a?, z = a.

3. Find the circulation of V along IC; indicate the chosen orientation.

Let the domain Q C R3 be given by x2 + y2 < a?, y>0,0<z<a.

4. Find the flux of V through 0S).

A Divergence, circulation and flux.

ov;
D Compute div V. Check e for some 7 and j. Find the circulation, e.g. by Stokes’a theorem.
Ly
Finally, apply Gauf’s theorem to find the flux.

I 1) The divergence is
div V =20z + 2z 4 2ay — 2z + 20z = 2a(x + y + 2).

2) Tt follows from

M _ g P2,

oy 9z 7
that

oV, OV,

— £ = fi .

9 o or z#0

The surface z = 0 does not contain inner points, thus V is not a gradient field for any value of
a.

3) It follows by the definition of the circulation that

/V-tds
K

2m
= / (aa2 cos? t+a” cos? t+a?sint, aa® sin? t —a? cos t —a’ sin t, aa’(cos® t—sin2+a)) ‘
0

-(—sint, cost,0)adt
27
=a® | {—acos®tsint—costsint—sin®t+asin®tcost—cos® t—sintcost+0} dt
0

27
:a3/ (—sin®t — cos® t) dt = —2ma’®.
0
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Rotation of a vector field; Stokes’s theorem

Real Functions in Several Variables: Volume Xl

Figure 35.31: The curve K and its projection onto the (X,Y')-plane for a = 1.

1]
Z
Zi

///////////////////Nn//,.

LA T
S,
ST
%

e

S
oS
S

IRVl
AT

=
S

Figure 35.32: The body Q2 for a = 1.
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Real Functions in Several Variables: Volume XI Rotation of a vector field; Stokes’s theorem

ALTERNATIVELY,
9 9
rot V-e, = Ox Oy =—z—2z=—-2z
rz+ Yz —xz—Yz

Choose F as the disc 22 + y? < a?, z = a. Then we get by Stokes’s theorem that

?{ V-tds :/ rot V-e,dS = / (—2a) dS = —2a area(F) = —2ma®.
K F F

4) When we apply GauB’s theorem and 1), it follows that the flux is given by

V.-ndS = /dideQ:2a/(x+y—|—z)dQ:2a/(y+z)dQ
Q Q Q

a m 7T(Z2 a
= 2aa/ / ydy dx+2a-—/ zdz
—a 0 2 0

a 2 1 1
= aa‘2/ (a* — 2%)dzx + ama® - :2aa<a3—3a3>+a7ra4
0

o0

2

4 1 4
= gaa4+§a7ra4:aa4 <§+g

\'/ M‘Q
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Real Functions in Several Variables: Volume Xl Rotation of a vector field; Stokes’s theorem

Example 35.16 Consider the space curve IC given by the parametric description

t
(z,y,2) = (1 + cost,sint, 2 sin 5) , t € [0, 2.

1. Find a parametric description of the tangent of K at the point corresponding to t = T

2. Show that K lies on a sphere of centrum at (0,0,0), and find an equation of the sphere.

Furthermore, consider the surface F given by the parametric description
t
(z,y,2) = (1 + cost, sint, 2u sin 5) , (t,u) €0, 2n] x [0,1],

and the vector field V(x,y,z) = (2,v,2), (z,y,2) € R3.
3. Find the area of F.

4. Find the circulation of the vector field along the curve KC.

A Space curve, surface area, circulation of a vector field.

D 1) First calculate r/(t).

2) Show that 2% + y? + 22 = r? > 0 and find r > 0.

3) Compute the surface area.
)

4) Apply Stokes’s theorem. Alternatively the circulation is computed directly as a line integral.

Figure 35.33: The curve K.

I 1) We find

t 1
r'(t) = (— sint, cost, cos 5) , r (g) = (—1,0, 75) .

Now, r (g) = (1,1,v/2), hence a parametric description of the tangent is given by

(1,1,\/§)+u<—1,0,%>, u e R.
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2) Since

t
x(t)? 4+ y(t)? + 2(t)> = (1 + cost)? + sin® t + 4sin? 5

=14 2cost + cos®t +sin?t + 2(1 — cost)
=14+14+2=4=2%

it follows that KC lies on the sphere of centrum (0, 0,0) and radius 2.

Figure 35.34: The surface F.

3) It follows from

or _ (— sint, cost, u cos t) and @ = (0,0,2sin ;)

ot 2 ou
that
e, ey e,
: t ;
N(t,u) = | —Smt cost wcosy | — g4y 3 (cost,sint,0),
4
0 0 2sin -
sin 5
hence
.t t
IN(t,u)|| = 281115‘ -1=2sin 2 te0,2n], welo,1].
Hence

1 2m t t 2
area(F) = / {/ 2sin - dt} = [—4005 —} =4(1+1)=8.

4) Since rot V = 0, it follows by Stokes’s theorem no matter how we choose the surface F; with
boundary curve K that

%V-tdt:/ n-rot VdsS =0.
K F1
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ALTERNATIVELY we get by the definition that

27 21
?{V-tdt: V-r’(t)dt:/ r(t)-r'(t)dt
K 0 0
27r£

| (32 at= 5 (reni? - 1r))

because the curve is closed.

g
— ||
2

:O7

ALTERNATIVELY it is possible though extremely tedious to insert the parametric description

and then reduce.
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Example 35.17 Given the vector field

Vi(z,y,z) = (y3 —x2?, =23 4 y2?, z?’) , (z,y,2) € R3.
1. Find the divergence <7 -V and the rotation \7 X V.
Let a be a positive constant, and let L denote the half spherical shell given by
z>0, a? < 2?4+ 9% + 2?2 < 3a?.
2. Find the flux of V through OL.
Let C be the circle in the plane z = a of centrum (0,0, a) and radius a.
3. Find the absolute value of the circulation fc V -tds.
4. Check if there exists a vector field W : R® — R3, such that
V=vxW,
in the whole space.
5. Check if there exists a scalar field F : R® — R, such that V = 7 F in the whole space.
A Divergence, rotation, flux, circulation, vector potential, gradient field.
D Apply Gaufi’s theorem and Stokes’s theorem, whenever it is possible.
I 1) We get by some very simple calculations that

divV=v-V=—2242%432%2 =322

and
e ey e,
0 0 0
vV XV=rotV= E ay 2 = (—2yz, —2x2, —322° — 3y?).
W12 —ad g 2B

2) It follows from Gauf}’s theorem and the result of 1) that

/ V-ndS:/ dideQ:/3z2dQ.
oL L L

At height z € [0, a] the body L is cut into an annulus of the area
7(3a? — 2%) — w(a® — 2%) = 2ma®.
At height z € [a,v/3 a] the body L is cut into a circle of area

7(3a% — 22).
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0.8
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0.2

0 02 04 06 08 112 14 18

Figure 35.35: The meridian cut for ¢ = 1 with the cut at height z.

Hence by insertion,

V. -ndS

a V3a
/ 322d0 = / 322 2ma® dz + / 32%1(3a% — 2%) dz
L 0 a
a V3a V3a
= 67ra’ / 22dz + 97a® / 22dz — 37T/ 24dz
0 a a

V3a a V3a
97a’ / 22dz — 3ma’ / 22dz — 37r/ 24 dz
0 0 a
3ra® - 3v3a® — ma® - a® — EW(Q\/g —1a

2
= ma’ (9\/5—1—57\/54—3) :g(18\/§—2)a5.

3) Put B = {(z,y) | * + y* < a®}. Then we get by Stokes’s theorem and the result of 1) that

](V-tds
C

/ rot V-ndxdy’ =
B

/ (—Zya, —2za, —3x° — 3y2) -(0,0,1)dzdy
B

4

a 3 4
= 3/(x2+y2)dxdy=3-2ﬂ'/ QQ'ng:6ﬂ~aZ: ma
B 0

2

4) Since div V = 322 # 0 for z # 0, there exists no vector potential W of V in all of the space.
5) It follows from

oV oV,

OV _ o 0 OVa _ g 2

3y 3y° and o 3z,
that

oV, 0Vy

— £ = f

5y g for @y #0.0)

and V is not a gradient field, and there exists no integral F' of V.

1725
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Example 35.18 Given the vector fields
U(z,y,2) = (22 + ycosz, 2 + sinx, y?), V(z,y,z2) = (y, 2, ),
in the space R3.
1) Find the divergence and the rotation of both vector fields.
2) Find the flux of U through the surface of the cube

{(z,9,2) €ER*|0<2<1,0<y<1,0<2<1}.

3) Let a be a positive constant. Find the circulation of V along the circle in the (X, Z)-plane of
centrum at (a,0,2a) and radius a. Choose an orientation of the circle.
4) Find a vector potential for V.

A Vector analysis.

D Apply Gauf’s theorem and Stokes’s theorem.

Figure 35.36: The circle of 3).

I 1) By simple calculations,

div U = —y sinx, div V=0,

(3] €9 €3
0 0 0
rot U= o ay 9 | = (2y,2z2,2x) = 2V,

22 +ycosx 2% +sinz y

€ €2 €3

rot V=| — — =(-1,-1,-1).

1726
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Real Functions in Several Variables: Volume XI Rotation of a vector field; Stokes’s theorem

1 1
In particular, V = ¢ X (2 U), thus 5 U is a vector potential of V (cf. 4)).

2) According to Gaufl’s theorem the flux of U through 97T is given by

1 1 1
U-ndS = / div Usz/ {/ {/ (—y Sinx)dx} dy} dz
aT T o Wo Uo

w1 1
1- {7]0 -[cosz]g = —3 (1 —cosl).

3) According to Stokes’s theorem,

]{ t-Vds:/n-rotVdS:/(O,—l,O)-(—l,—l,—l)dS: area(A) = ma®.
9A A A

1
4) According to the result of 1), the field 3 U is a vector potential of V.

360°
thinking.

Deloitte.

DiSCOVCI‘ thC truth at WWW.dClOitte,Ca/CaI‘CCI‘S © Deloitte & Touche LLP and affiliated entities.
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Example 35.19 Let p € R and b € R be constants. consider the circle K given by z% + y? = b2,
z = p; the circle is given the orientation which forms a right hand turn with the Z-axis. Furthermore,
consider the vector field

W(z,y,z) = ( 9z T ,\/W) 5 (z,y) # (0,0).

\/xQ—&—yQ’ \/x2+y2
Denote the circulation of W along the oriented circle K by C(b,p).
1) Show that C(b,p) = —2mpb.
2) Let V =rot W. Show that
1

\/TTy?(x+y’y_m’_Z)’

3) Show that W is not a gradient field.

V(Ly,z) = (1’7y) # (070)

4) Show that W has zero divergence.

5) Let O be the surface of revolution which is given in semi-polar coordinates by

2
0 € [a,2a], v € [0, 27, z=2a—g—7
a

where a > 0 is a positive constant.
Find the flux

/V~nd5,
o

where we also shall choose an orientation of O.

A Circulation, rotation, gradient field, divergence, flux.

D The circulation can be computed in various ways. The computation of the flux has also some
variants.

I 1) We have two variants.

First variant. The definition of the circulation as a line integral.
We use the following parametric description of the circle K,

r(t) = (z,y,z) = (b-cost,b-sint,p), t €0, 2m].
Then
r'(t) = b(—sint, cost,0),

and the circulation is according to the definition given by

27T ‘. . S .
C(b,p) = W - -tds = bsint p7_bcost p,b b (—sint, cost,0) dt
K 0 b b

2
—pb {sin2 t 4 cos’t + O} dt = —2mpb.
0
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Second variant. Stokes’s theorem.
An application of Stokes’s theorem gives

/W-tds:/rotW-ndS7
K F

where F is the disc at height z = p and radius b, and where the unit normal vector is

parallel to the Z-axis.

The unit normal is trivially n = (0,0, 1). Then by 2),

rot W=YV.

When we apply the expression of V, we obtain in polar coordinates

27 bl
W-tds:/V-ndS:/ S dSz—p/ / = odo b dy
/;c F ]-'< \/x2+y2> 0 0o @

2) Let (x,y) # (0,0). Then

<
I

rot W=y xW =

e, ey

9 9

Ox dy

yz —xz
Va2 +y? a2 + g2

z

Y T

y =z
Va2 +y? a2 +y?
2%z z

€.

Y2z

1

—2z +

- + - +
\/332—|—y2 (\/a:2+y2)3 \/J:Q—l—yQ (\/x2+y2)3

y+x
y—x _ 1
B v ? + y?
:v2z+y2z
x? +y?

3) Suppose W was a gradient field, \/F. Then

V=yxW=yxyF=0.

(J:—Fy,y—x, —Z)

But V # 0, thus we conclude that W is not a gradient field.

4) By just computing,

div W = 8(

ox

0 Tz
)2 ()

(22 + y2)3/2

+ L (Vi)

0z

TrYz .
~(~gi) o=
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Real Functions in Several Variables: Volume Xl Rotation of a vector field; Stokes’s theorem

ALTERNATIVELY it follows that if U is defined by

2

3U=——(—2,-9,0) + V22 + 32 (—y.7.2), (z,y) # (0,0),

then
W =rot U=vy x U,
and hence

div W=y (v xU)=0.

Figure 35.37: The surface O. The upper boundary curve K; is oriented as a left hand screw, while
the lower boundary curve Ks is oriented as a right hand screw. Hence the normal vector field on O is
everywhere pointing away from the Z-axis.

5) Choose the orientation on O as described in the caption of the figure. Then 60 = Ky — Ky,
where the minus sign in front of Ky means that this circle is run through in the opposite
direction of the usual one, i.e. as a left handed screw.

There are two variants.

1. variant. Stokes’s theorem combined with 1).

We get by Stokes’s theorem,

/V-ndS = /(VXW)-ndS:f W tds=— W . tds+ W - tds
o o 50 K1 K2

= —C(a,a)+ C(2a,—2a) = +27a - a + (+27 - 2a - 2a) = 107a®.
Second variant. Surface integral.
The meridian curve has the equation

2
zzZa—Q—,
a

1730
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Real Functions in Several Variables: Volume XI Rotation of a vector field; Stokes’s theorem

2
so we conclude that the tangent vector is (1, —0). Hence the normal vector N = (2p, a),
a

and thus the unit normal vector

1
n=————(2p,0).
a® + 4¢?

Then the outgoing unit normal vector field of the surface O is

1
n(o, p) = ——=——=(20cos p,2¢sinp,a).
a® + 4¢?

We have on O,
1
vV = (x—|—y,y—x,—z)
/1'2 + y2
0
(Qcosgp + osinp, psinp — pcos g, —2a + a)

A~ =

cos ¢ + sin ¢, sin ¢ — cos @, 9 2 E) ,
a 0
hence the integrand over O is written

1 2
flz,y,z) = V-n:7{2,9(0052<p+cos<psin<p+sin2<p—cos<psin<p)+g—2a—}
0

/a2 _|_402
1 a?
va* +4p 0
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Finally, by inserting into a known formula of the surface integral over surfaces of revolution,

we get
2a 27T 2 2
1 a / 40
—_— 39—2}d o\/1+ —-dpo
/a {o \/a2+4g2{ Y 90} a?

/V-ndS
@]
2_7T 2a

a Jq

2
—— {8a3 —4da® —a® + 20,3} = 10ma’.
a

(392 — 2a2) do = 2% [95 — 2a2g} za

Example 35.20 Let F be one eighth of a sphere given by
22 4+ 9% + 2% = d?, x>0, y>0, z22>0,
where a is a positive constant. Thus the boundary curve 0F is composed of three circular arcs.
Also, consider the vector field
V(z,y,2) = (ay + yz, —ax + zz, 22 — 2x7), (z,y,2) € R,
1) Find the rotation 7 x V.
2) Show that V is not a gradient field.

3) Find the circulation

f V - tds,
5F

where we choose an orientation of 0F.
A Rotation, circulation, Stokes’s theorem.
D Sketch a figure. Apply Stokes’s theorem.

I 1) The rotation is

ez ey ez
0 0 0
rot V. = VvV X V = % a_y a

ay+yz —ax+zx 22— 2xy
= (—2z—=x,y+2y,—a+ zaz) = (3z,3y, —2a).

2) Tt follows from rot V # 0 that V is not a gradient field.
3) Choose the orientation of §.F as described on the figure. Then the unit normal vector field on

F is pointing outwards, i.e.

1
n=-(z,y,2), for (z,y,2) € F.
a
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Real Functions in Several Variables: Volume Xl Rotation of a vector field; Stokes’s theorem

Figure 35.38: The surface F and the boundary curve 6.F for a = 1. On the surface F the unit normal
vector field is always directed away from (0,0,0), and the curve 0F is oriented correspondingly, i.e.
from the X-axis towards the y-axis, then towards the z-axis and finally back to the z-axis.

When we apply Stokes’s theorem we conclude that the circulation along 6.F is

1
7{ V-tds = /n-rot VdS:/ = (z,y,2) - (—3x,3y, —2a)dS
6F F Fa

1
7/(—3x2+3y2—2az)d,9:—2/ zdsS,
aJr F

where it follows by the symmetry that

/x2dS:/y2dS.
F F

The following computations can be given in various variants.

0.8

0.6

04

0.2

Figure 35.39: The meridian cut of F for a = 1. We have at height z that ¢ = Va2 — 22.
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First variant. If we first (i.e. innermost) at helght z and denote the circle by ¢, then
]{ V-tds = —2/zdS——2/ “Va? —22ds
§F
= —7T/Z\/a2—22d8 <—7T/ZQdS).
¢ ¢
Using the parametric description
0 = a CoS, zZ = a siny,

of £ we get ds = adyp, and the computations continue as follows,

3 3
j{ V-tds = —77/ asincp-acoscp~ad<p:—7ra3/ sin @ cos pdp
6F 0 0
22 1%
R Y
2 |, 2
Second variant. The surface F is described in spherical coordinates by
T = a sinf cosy, T
oefo.3].
y = a sin 8 sin p, weight: a?sin 6,
T
¥ € |:07 o |0
z=a cosb, 2

hence by insertion,

j{ V -tds
§F

—/ 22’dS:—2/2 /2 acosf-a?sinfdf » dep
F 0 0

22 1%
T sin® ¢ T 4
2" [ 2 ]0 2"

Third variant. Direct computation of the line integrals without the use of Stokes’s theorem.

First note that the boundary curve §.F is composed of the subcurves:

Iy: (x,y,2) = (a cosp,asinp,0), p € —O, g , with the unit tangent vector t = (— sin ¢, cos p, 0),
and the line element ds = ade.

Iyt (2,y,2) = (0,a cosp,a siny), p € _O, g , with the unit tangent vector t = (0, — sin ¢, cos ¢),
and the line element ds = adep,

Is: (z,y,2) = (a sing,0,a cosp), p € _O, g , with the unit tangent vector t = (cos ¢, 0, — sin @)

and the line element ds = a dp.
We get by insertion,

]{ V-tds=/ +/ +/(1t—|—yz,—ax—|—zx,z2—2xy)-tds.
SF r Iy I3
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Real Functions in Several Variables: Volume XI Rotation of a vector field; Stokes’s theorem

The integrals are computed separately,

™

B
V. tds = / (a®sin ¢, —a® cos p, —2a*sin p cos ) - (— sin g, cos ¢, 0) ady
r 0
%
= / a’ (— sin? p — cos? gp) dp = —ga?’,
V.tds = / a” cos p+a’sin g cos ¢, 0, a? sin cp) (0, — sin g, cos ) adep
T2 0
/ [sin?’go]72r 1 4
= a®sinpcospdp =3 || =_d?,
0 3 1, 3
V. -tds = / (0, —a? sin p+a? sin ¢ cos @, a® cos gp) (cosp, 0, —sinp)ady
T's 0
2 p]? 1
/ —a® cos® psing) dp = a® [M] =——a’.
0 3 1, 3
Summarizing,

1 1
% V‘tdsz_g03+§a3—§a3:—ga3_

Ijoined MITAS because for Engineore and Geosentiss
I wanted real I‘BSpDHSlblllty www.discovermitas.com

I'was a construction
SUPErvisor in

the North Sea
advising and

e Lelping foremen
% solve problems

MAERSK
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Real Functions in Several Variables: Volume Xl Rotation of a vector field; Stokes’s theorem

Example 35.21 Consider the vector field

V(z,y,z) = (zz,yz + 22,222 — yz2), (z,y,2) € R,
1. Find the divergence 7 - V and the rotation 57 x V.
Let A denote the half ball given by

x2+y2—|—z2§62, z >0,
where ¢ is a positive constant, and let n be the outwards unit normal vector of the surface OA.

2. Find the fluz

o= V .-ndS.
dA

3. The surface OA is the union of a disc F1 and a half sphere Fo. Find the fluzes

@1: V- -ndS and (132: V -ndS.
Fi Fa

Let K denote a circle in the plane of equation z = b. We denote the centrum of the circle by (xo,yo,b),
and its radius is called a.

4. Choose an orientation of the circle K. Then find the circulation

O:y{V-tds.
K

A Divergence, rotation, flux, circulation.

D Follow the guidelines which give the simplest variant.

Figure 35.40: The half ball A for ¢ = 1.
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I 1) By just computing we get

divV=y - V=z+4+2z4+20—y=20x—y+ 22

and
e, ey e,
0 0 0
rot V. = Vv X V = % 8—y &

rz yz+zz 2T2—YZ
= (—z—y—zx—2x,2)=(—x—y—2,—1,2).

2) Then by GauB’s theorem,

o = /V ndS = /dldeQ /296— +22)dQ
OA

= 04+0+4+2 dQ_Q—_
—I——|—/Az 4c 2c

3) Now n = (0,0, —1) on F7, where also z = 0. Hence
o :/ (0,0,0) - ndS = 0.
Fi
Then apply the result of 2) and that ® = &7 + o, to get
Py =P — P = —

4) Choose the orientation such that the projection onto the (X, Y')-plane has a positive orientation.
Then the corresponding unit normal vector is n = (0,0, 1).

By Stokes’s theorem, the circulation along & (which encircles the disc B) is given by

‘%V-tds:/n-vadS:/(0,0,l)-(—x—y—b,—x,—b)dS
K B B

C

—b/ dS = —b-area(B) = —b- 7 -a’.
B
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36 Nabla calculus

From time to time we have previously in R3 used the notations
grad = v/, div =+ and rot=curl=v x.

In this section we shall more systematically use nabla (57) instead of grad, div, rot and curl. Tt
turns up that this change of notation is very convenient, because the formulae containing 7 will be
very similar to those already known from Linear Algebra in the three-dimensional Euclidean space
E3 ~ R3.

Remark 36.1 The gradient, divergence etc. were introduced in the middle of the 19th century.
Clearly, one needed a shorthand for these new operations, and one chose to put delta, A, upside
down to get 7. Concerning the name of this new operator one first tried to spell delta backwards,
“atled”, but this suggestion was never successful. It probably resembled “Amled =Hamlet” too much.
At that time, however, one had started to excavate the ruins of ancient Iraq, and on some of the clay
tablets one also found pictures of harps. These harps had the same shape as 17, so this new symbol
was afterwards called “nabla”, which is the Assyrian word for harp. One may still find a remnant of
it in David’s 57th psalm, verse 9, where the word “nevel” is used. This is an ancient Hebrew word for
a harp, which no longer is commonly understood. ¢

36.1 The vectorial differential operator v/
The vectorial differential operator 1/ is defined in all spaces R™ in a rectilinear coordinate system by
0 T 0 0] 9]
=eg—+ - te,—=—,....,=— | .
v e 0xy, o1 oy,
In most applications, however, we restrict ourselves to E3 ~ R?, where we write
0] L 0 n 0 o 0 0
= €1 - € —— a. = a v a Yo |
v ' oz 2 dy 0z ox’ dy’ 0z
We collect the definitions and rules, which we have met previously.

1) Gradient of a scalar field f : Q — R, where Q C R, and f € C1(Q),
_(9f of
2) Divergence of a vector field V:Q - R", Q CR", and V € C1(Q) x --- x C1(Q),

o Vv,

3) Rotation of a vector field V: Q) — R, O C R? and V € C*(Q)3. Note that rotation is only
introduced in R3.

(S3] €9 €3
V. 9V, 9V, 0OV. avy_avw> 9 9 0

Ay 0z ' Oz dr * Oox Oy

or oy 0z |
i Vo V3

va:<
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The formal determinant is interpreted in the following way as if we were dealing with an ordinary
determinant. The only difference is that we always calculate downwards and let the differential
operators in the second line act on the functions in the third line. Note that if <7 is replaced by a
vector field U, then we just get the usual determinant formula for U x V.

4) Differential of a scalar field f : @ — R, where Q C R” and f € C'(Q). We introduce the
infinitesimal vector

dx = (dzq,..., dz,).

Then

of of "\ Of
df:(dx-v)f:vf-dx:a—mdx1+-~-a—%dxnzz - da;.

5) Differential of a vector field V : Q — R, where Q C R" and V € C*(Q)". This is similar to
the case of a scalar field above, so

AV = (dx- )V = (YW - dx, ..., UV, - dx) = (dWA, ..., dV},).

It follows from these definitions that all these differential operators are linear.

i
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We shall in the following let o and 8 denote scalars, f, g € C(Q) real functions, @ C R™ and
U,V € C1/Q)" vector fields. Finally, dx = (dz1,..., dz,) denotes the infinitesimal vector. Then
the linearities goe as follows:

1) Gradient
vief+pg) =av f+5vy.
2) Divergence
V- (@U+pV)=av-U+87-V.
3) Rotation (only in R?)
v X (@U+8V)=avy xU+ vy xV.
4) Differential of a scalar field
d(af+8g) =adf+Bdg=av f - dx+Bv g dx.
5) Differential of vector fields

d(aU + V) = (dx - v)(aU + V) = adU + gdV.

36.2 Differentiation of products

Let f, g be C! functions and let U, V be C' vector fields on the open set Q. Then fg and U-V are
C" functions, i.e. scalar fields, on {2, so we can form the gradient and the differential of them. The
rules are

1) Gradient of fg.

vifg9)=g9vf+fvy
this is proved by considering each coordinate separately,

TR ]
8xj(fg)_gé)mj+ &Tj'

We note that if g = f, then the formula above reduces to
V() =2fvf
2) Differential of fg.
d(fg) = dx-v(fg) = fdx-vf+ fdx-vg=gdf + fdg.

3) Gradient of U- V. In general, this formula becomes messy, so it is not given here. However, we
shall later return to the special case, when we are dealing with three dimensions.

Then we consider the product fU, which is a vector field. We get only one possibility.
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1) Divergence of fU,
div (fU)=v-(fU)=(vf) U+ fv-U=gradf U+ fdiv U.

We leave the straightforward proof to the reader. Note here that the formula with nabla is easier
to remember than the interpretation

div (fU) = gradf - U + fdiv U.

In the remaining formulee we assume that we consider the three dimensional case, so we can form the
vector product. Then the possibilities of differentiation of a product, using these differential operators,
are

rot(fU) =v x (fU), div(UxV)=v-(UxV), rot(UxV)=vy x(UxV),
and
grad(U-V) =y (U-V),

supplied with the differentials d(fU), d(U - V) and d(U x V). Since the differentials follow from the
rules df = dx - 7 f and dU = (dx - 7)U above, we shall not further deal with the differentials.

The rules are
1) Rotation of fU, n =3.
rot(fU)=v x (fU)=(vf) x U+ fv xU=gradf x U + frotU.
We note that 7 x behaves like a derivation.
2) Divergence of U XV, n = 3.
div(UxV)=v-(UxV)=(yxU)-V-(yxV)-U=rotU-V —rotV . U.

The structure is almost the same as for a derivation. The minus sign is caused by the fact that the
vector product is anticommutative, U x V = —V x U. This follows from the proof, which again
is left to the reader.

3) Rotation of U x V, n = 3. The complicated formula below relies on the rule for the double
vector product in R3,

ax(bxc)=(a-c)b—(a-b)c, a, b, c € R?,
known from Linear Algebra. We quote again without proof the result
rot((UxV)=yx(UxV)=(V-9)U-V(v-V)-(U-v)V+U(v- V).
4) Gradient of U-V, n =3.
v(U-V)=(V-9)U+V x (v xU)+(U-y)V+Ux (v x V).

We shall not prove this rule either, although the proof is not too hard. We note that the expected
terms are

(V-v)U+(U-v)V,
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and then we have the two additional correction terms
Vx(vxU)+4Ux (7Y xV)=V xrotU+ U x rotV,

which involve the rotations of U and V. Again we skip the proof and only mention that it uses
the formula for 7 x (U x V).

In the special case, where V = U, we get
grad (|U[?*) = v (|U|*) = v(U-U) = 2U x (yU) = 2U x rotU.

It should be mentioned that if another variable is involved, e.g. t (# z, y, z), then we have the usual
rules

0 ou oV 0 ou oV
U V=% 5 ad ZUxV)="F5x7F

36.3 Differentiation of second order
The three vectorial differential operators of first order,
grad = v/, (from 1 dimension to 3), div = v/, (from 3 dimensions to 1),

rot = v x, (from 3 dimensions to 3),

can be combined to form differential operators of second order. Note that whenever rot = sy x is
involved, then we tacitly require that the dimension is 3. There are five possibilities:

1) Rotation of gradient, n = 3. From 1 via 3 to 3 dimensions,
rot(gradf) = x vf =0,
because 17 x v/ is the zero operator,
2) Divergens of rotation, n = 3. From 3 via 3 to 1 dimension,
div (rotU) =v - (v x U) =0.
This follows straightforward by some tedious calculations.
3) Divergence of a gradient, all n € N. From 1 via n to 1 dimension.

0% f 0% f

V2 =v-vf==—5+ +——.
= / 0x? et ox2

This is the so-called Laplace operator, which is also denoted by A, thus

0? 0?
A: 2: . = —F -
Vi=V-V 8x%+ +6x%

We note that A can also act on a vector field,
VU =2 (Uier + -+ Upey) = (V2U1) e+ + (Van) en.

We also mention the following formula for the Laplace operator acting on a product of two func-
tions,

Vfe)=fVPg+2v g+l S
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4) Double rotation, n = 3, From 3 via 3 to 3 dimensions.
vx(vxU)=v(v-U)-v- vy,
which can also be written
rot(rotU) = grad(div U) — AU,

where

, 2 9 P

is the Laplace operator.

Nabla calculus

5) Gradient of divergence, general n € N. From n via 1 to n dimensions.

, " OU;
V(v - U) = grad(div U) = grad ; on; |

which cannot be further simplified.
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36.4 Nabla applied on x

In the applications one often needs to consider, 3/, /-, or /X, applied to expressions in x. We list
some of the formulae below.

1) Formule valid for alln € N and all x € R™,

divx=v-x=mn,

Ax = ?x =0,

Ax-x) = A (|x[]?) = 2n,

(U-v)x=1,

grad(a-x) =v(a-x)=a, constant a € R"™.

2) Formule valid for all n € N and for x # 0.
If f(x) = F(||x]|) only depends on ||x||, then

wwzﬁfwm

3) Formule for alln >3 and x # 0.
V(xE") =0 forx £0.

4) If n =3, then
rotx = xx =0, for all xinR3,

and

A <ﬁ) =2 (”—i”> =0 forall x € R\ {0}.

5) When n =2, then

v (In [x[)) = 0.

As an application we consider a rotating body in space of angle velocity w with respect to an axis
through the origin. Then the velocity at the point x is v = w x x, and we find
divv=y - v=vy- - (wxx)=(V Xw) x—(V Xx) w=0,

and

rotv=yxv=y X (wxx)=x% Viw—x(V'w—(w V)x+w(V- X)=—-w+3w=2w.
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36.5 The integral theorems

We shall here see what happens when we apply the nabla calculus in the cases of Gaufy’s and Stokes’s
theorems. This will give us an inspiration to derive new formulee, which are also valid.

We first recall Gauf’s theorem

/disz/ n-VvdSs.
Q o0

When we replace the operator div with the symbol /-, we get

/v-VdQ:/ n-Vds,
Q o

which shows the structure of the theorem. When we go from the left to the right, the body  is
replaced by the surface 0f2, and the operator /- is replaced by an inner product with the unit normal
vector field, n-.

This gives us the hint that we might try to replace /- by the other differential operator rot = 7 x,
and then of course write nx instead of n-. This suggests the formula

/deQ:/ n x Vds.
Q o0

It can be proved that this is indeed true, so we have obtained the following formula, written with rot
instead of 7 X,

/ dQ = / n x vVdsS,
rotv f19)

where n as usual denotes the outgoing unit normal vector field on the surface 92.

If we instead replace /- by 1/ alone (and the vector field V by a function f), then we see that we
may expect a formula of the form

/vfdﬂ:/ nfdS, ie. /gradfdQ:/ nfdsS.
Q a0 Q a0

Again this formula can be proved to be correct. Note that the result here is a vector field.

We have above given three versions of Gauf$’s theorem.

Then let us turn to Stokes’s theorem,

/n~rotVdS=7{ t-Vds,
F §F

which using the nabla notation is written

/n~vadS:/(n-v)deS:f t-Vds.
F F §F

When we replace t - V by t x V, we must apparently by analogy replace (n- /) bu (n x v/) to see
what happens. In this way we see that we may expect the following formula, only derived by analogy,

/(nxv)deS:f t-Vds.
F 5F
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Once we have got a hunch of the formula, it is not difficult to prove that it is indeed correct. As usual
we shall not do it here.

Finally, let us see what we should expect, when the dot has disappeared on the right hand side of the
original Stokes’s theorem. Clearly, we now must consider a function f times the unit tangent vector
field n as the integrand, because we have not defined pointwise multiplication of two vector fields. So
we derive that

fis}_tfds

should be expected to occur on the right hand side.

By analogy, the integrand on the left hand side must contain n and x and 7 f. This is only possible
in the following way,

/fnxvde:jéftfds.

Again it can be proved that this formula indeed is valid.

Summarizing we have got three versions of Gauf’s theorem,

1. /v-VdQ:/ n-Vds,
Q o0

2. /VdeQ:/ n x vdSs,
Q o0

3. /QvfdQ:/mnde,

where n is the outgoing unit normal vector field of the surface 02, and three versions of Stokes’s
theorem,

1. /n-vadS:% t-Vds,
F 5F

2. /(HXV)XVdS:?{ t x Vds,
F 5F

3. /nxvde:% tfds,
F 6F

where t is the unit tangent field of 4, and n is the unit normal vector field on F, corresponding to
the orientation of J.F.

As simple applications we first use the second variant of Gauf$’s theorem above with V. = 7 f. We
get in this case

/ nxvde:/vxvfdQ:O.
a0 Q

Then we — also with V = v/ f — apply the third version of Stokes’s theorem. Since §F = ), we get
trivially

/ nxvdezy{tdeZO.
a0 0
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Then we choose V = x in the second version of Stokes’s theorem,

/(nxv)xdez% t x xds.
F §F

The integrand of the integrand of the left hand side is calculated,
mxy)xx=v(x-n-n(y -x)=n-3n=—2n,

and since t X x = —x X t, we conclude by insertion and reduction that

/ndSzlj{ X X tds.
F 2 )sF

This expression is sometimes called the wvectorial area, though this term may be misleading. In
particular, every closed surface F has the vectorial surface 0, because 6.F = {).
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36.6 Partial integration

The principle of partial integration is in its simplest form of functions in one real variable derived
from the rule of differentiation,

d . .dg df

from which by a rearrangement

dg _ d daf
de d;zc(fg) 9 dz

Hence by an integration,
dg , df
[ = r@g) - [ 95t do

We can derive some similar rules for some of the differentiations introduced in Section 36.2 by using
Gauf}’s and Stokes’s theorem.

1) Gradient of a product of functions and Gauf3’s theorem

vifo9)=g9gvri+rfvy, or by a rearrangement fvg=v(f9) —gv/f,

from which by the third version of Gauf}’s theorem,

/QfVQdﬂz/Qv(fg)dfl—/ﬂfvfdﬁ:/aangdS—/ngfdQ-

Note that we recover the third version of Gaufl’s theorem by choosing f = 1, so this formula may
be considered as an extension of this third version.
Choosing g = f we get by a rearrangement,

/vafdQ:%/mandS.

When furthermore f = 1, we just get the known result that |, aq 1 dS = 0 for all closed surfaces
on.

2) Divergence of a product of a function and a vector field and Gauf3’s theorem

V- (fU)=(vf)- U+ fv-U, or by a rearrangement 7 -U=v-(fU) - (vf) U,

so by an integration over the three dimensional body € followed by the first variant of Gauf’s
theorem,

/va-UdQ:/Qv-(fU)dQ—/Qvf-UdQ:/Bﬂn-fUdS—/Qvf-UdQ.

When f =1, this new formula degenerates to the first version of Gauf’s theorem, so

/va-UdQ:/mn-fUdS—/Qvf-UdQ,

may be considered as an extension of this first version of Gau8’s theorem.
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3) Gradient of a product of functions and Stokes’s theorem
The formula

fvg=v(fg)—gv/f
is multiplied from the left by nx, so
fnxvg=nxvy(fg)—gmxvf

Let F be a surface of boundary dF. Then we get by the third version of Stokes’s theorem that

/ffnxvgdS:/anv(fg)dS—/fgnxvfdszjgffgtds—/fgnxvfd&

which is an extension of the third version of Stokes’s theorem. This is again obtained by putting
f=1
4) Rotation of a product of a function and a vector field and Stokes’s theorem,
fvxU=vx(fU)-vfxU.
When this equation is multiplied from the left by n., we get
n-fyxU=n-vyx(fu)—n-yfxU.

Let F be a surface of boundary 6F. Then it follows from the first version of Stokes’s theorem that

/Fn-fvadS:/fn-vx(fU)dS—/Fn-vfodS:jgft-fUds—/Fn-vfodS,

which can be considered as an extension of the first version of Stokes’s theorem, because this is
recovered, when we put f = 1.

36.7 Overview of Nabla calculus

In complicated cases it may be useful to apply the abstract theory of nabla calculus instead of the
enormous calculations with coordinates.

The theory may look a little confusing the first time one sees it, until one realizes that there are three
different products in the vector analysis in R3:

scalar multiplication: no special notation aV, vector,
inner product (dot product) : dot U-v, scalar,
vector product (cross product) : Cross UxV, vector.

These are transferred to a nabla notation,

_(9 9 9
2 Ox 0y 0z )’
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by the relations
no special notation gradf = v/ f,
dot divV =y -V,
Cross rotV=yxV
When we apply the correspondence 7 ~ n we get Gauf3’s theorem in three versions:
Joqn fdS = [ fdQ = [,gradfdQ, no special notation
Joqn-VdS = [,V -VdQ= [,divVdQ, dot product, usual version
Joqn xVdS = [, v xVdQ = [,rotVdS, cross product.

When we apply the correspondence (n,s7, x) ~ t, where - and x are always put in a meaningful
connection, we obtain Stokes’s theorem in three versions:

$srtfds= [rnxvfdS = [-nxgradfds, no special notation

$srt-Vds= [n- (v xV)dS= [pn-rotVdS, dot product, usual version

$srtx Vds = [(nxv)xVdS, cross product.
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36.8 Overview of partial integration in higher dimensions

The simplest case is described by

Figure 36.1: The interval [a, b], where one goes from 1 dimension to 0 dimensions.

1) Main theorem of the differential and integral calculus, 1 dimension:

b
e = 7@ = 10) - f(a),

a

i.e. a 1-dimensional integral is transformed into a 0-dimensional “boundary integral”. Note that
in the right end point, where the outer normal is equal to the direction of the axis, we use the sign
+, and in the left end point, where the outer normal is opposite to the direction of the axis, we
use the sign —.

Figure 36.2: A surface F with its limiting curve §.F.

2) Stokes’s theorem, 2 dimensions:

/ n-rotVdS:% t-Bds,
F §F

i.e. a 2-dimensional surface integral is transferred into a 1-dimensional “boundary integral”.
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Figure 36.3: A domain in space € with surface 9. The unit normal vector field is everywhere directed
away from Q.

3) Gauf}’s theorem, 3 dimensions:
/dideQ: n-Vds,
Q o9

i.e. a 3-dimensional space integral is transferred into a 2-dimensional “boundary integral”.

The more advanced applications use the nabla calculus, cf. the previous sections in this chapter. Here
we have several special cases, because there in e.g. in R? exist three types of product (scalar multi-
plication, dot and cross product) and three types of differentiation (gradient, divergence, rotation).
The basic idea is that if the integrand is of the form ® ® DV, where ® stands for any of the possible
products, and D stands for any of the possible differentiations, then we get a new integrand (by a
partial integration) of a simpler form —D®&W, where (&, D) does not have to be equal to (®,D).
The price for this is that we get an additional boundary integral.
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36.9 Examples in nabla calculus

Example 36.1 Let V denote a vector field, which is both divergence free and rotation free, and let e
be a fixed unit vector. We consider also the following fields,

F=—-e-V, W=V xe, U=-vF T=v xW.
1) show that
VX (Vxx)=V+y(V-x).
2) Show that T is the same vector field as U, and that this field also is both divergence free and
rotation free.
A Nabla calculus.
D Just exploit the assumptions,
divV=y-V=0 and rot V=yxV =0,
and the rules of differentiation of products.
I 1) We shall use the following well-known rule of calculation
VX(VXW)=(W-7)V-W(7 V) (V-7)W+ V(v W)
with W = x, thus
Vx(Vxx) = (x-v7)V-=x(v- V)= (V- V)x+ V(7 x)
= (x-v)V-0—(V-y)x+3V
= V4+x-v)V—(V-v)x+2(V-v)x
V+(x-v)V+(V-y)x
= V+v(V-x),

where we have used that

0] 0 0

and that
TV x) = (V- )x+ (x- 7)V.
2) Consider in particular T and put W = x. Then
T = YxW=vyx(Vxe)
(e-V)V—-e(v-V)=(V-v)e+V(v-e)
= (e-y)V-0-0+0=(e-v)V
= (e-V)V+(V-v)e=v(e V)=-vVF=1,

and the first claim is proved.

Since T = U = — 7 F' is a gradient field, is is rotation free,
VUXxT=-yxvF=0.
Since T = U = v x W is a rotation field, it is divergence free:

vV T=v-vxW=0.
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Example 36.2 Let f be a C-function in r (= /22 +y% + 22). We shall also (cf. the short hand
notation in connection with the chain rule) consider f as a composed function f(r(x,y,z)), where

(r,9,2) # (0,0,0).

1) Express s7f by the derivative [’ and x.

2) Then set up formule for 7 x (x f) and for <7 - (x f).
3) Find the integer n, for which <7 - (r" x) = 0.

A Nabla calculus.

D Just follow the guidelines.

I We shall of course always assume that r # 0. Then

. (Or Or Or ,(Eyi),lx
vr = ox’oy’0z) \r'r’r) r

1) We get by the chain rule,

vi= (10 g g0 5 ) = 0 vr=L0x
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2) A direct computation gives

e, ey e,

0 0 0

VX ((xf)= oz @ 92

zf(r) yflr) zf(r)

S L L R L L PO L T L T

ro r r T

A variant is

€y ey e, e, e, e.
wflr) yf(r) zf(r) x y z
= VfXX:@xxx:O.
Furthermore,
v-oxf) = (f(r)+x%>+<f(r)+yg—£)+<f(r)+2%>

= 30 +x vf =3/ + T D xox
= 3f(r)+rfi(r).
3) Choose f(r) =r". Then it follows from the above,
v (r"x) =3r" + "t = 3+ n)rm.

When r # 0, this is equal to 0 for n = —3.
REMARK. In general, 7 - (x f(r)) = 0 generates the differential equation

rf(r)+3f(r)=0.
Then by separation of the variables,

540

and the complete solution is obtained by an integration,

)

fry=C-r73, r#0, whereCeR. ¢
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Example 36.3 Let a be a constant vector, and let f be a C'-function in one variable. We define

g9(x) = f(a-x).

1) Express the gradient 7g by the derivative f’.

(Use one of the special cases of the chain rule).

2) Let also 'V be a gradient field, and let k = 3. Show that the vector 7 x (gV) is perpendicular to
both a and V.

A Nabla calculus.
D Just compute.

I1) Ifa=(ay,...,ax) and x = (z1,...,2x), then

hence

dg

9z, f(a-x)ay,
hence

vy =f'(a-x)a.

2) If V is a gradient field, then there exists a function F', such that V = 7 F. Hence,

Vx(gV) = (V9 xV+gvxV
= flla-x)axV + f(a-x) v x(VF)
= flla-x)axV+0
= f'(a-V,

which shows that 57 x (¢ V) is perpendicular on both a and V.
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Example 36.4 Show the formula

2Vf) - (v x (f V)= (v xV)-v(f?)
A Nabla calculus.
D Just compute.

I We get straight away,

2(vf)-(vx(fV))

of of of 0 0 0 0 0 0
2((% "By 82) (ay(fvz)—az(fvy)vaz(fvz)—&C(f%)a&c(fvy) oy
08 [OF OV op L0V,
_Zaﬁ{ay‘/z+f3y Bzvy fazy}
f 8Vx of V.
a{a Tan ax}
of ov, of oV,
{3V+f_3yvm fay}
_ o) oV, | | OU?) [OVe OVi1 , O(f?) [0V, OVi
_Bzv{y Bz}+ By{az_ﬁx} 0z {Bzv 8y}

=v(f*) (v x V).

Example 36.5 Let V be a C' vector field in the set A € R3. Show that if there exists a C' function

g: A — R\ {0}, such that gV is a gradient field in A, then
V. (yxV)=0
in the set A.

A Nabla calculus.

D Start by analyzing the assumption. Compute 57 x V by means of the rules of calculations.

I The assumption assures that there exists a C? function F', such that
gV =vF, ie. V:é vF=hvF,
where h: A — R\ {0} is C?, because g(x) # 0. Then
VxV = yx(hvF)
= (Vh)xvvF+hvyxyF

= (vh) x VF, [the rotation of a gradient is 0].
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Now, 7 F is perpendicular to (s7h) x (7 F'), hence

V(U xV)=hvF - {(Vh)xF}=0.

Example 36.6 Let o be a constant. Find 7(r®) and </2(r®).

A Nabla calculus.
D Just compute.
I When r # 0, then

1
vr = ; (x7ya Z)v

hence by the chain rule,

2

rgr=ar*?(z,y,2) =ar* ?x.

V() =ar

By taking the divergence we get

V) = v-vr) =v-{ar* T (2,y,2)}
= ala—2)r*"*(z,y, z) - (z,y,2) + 3 ro—2
—2)r* 4t p? 4 3ar?
1

= «

(
:a(
(
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Example 36.7 Let e be a constant unit vector. Show that
e {v(V-e)-vx(Vxe}=v-V.
A Nabla calculus.

D Just compute.

I We get by means of the rules of calculation,

e {v(V-e)—vx(Vxe)}
=e-{[(e-V)V+tex (VY x V)+(V-v)e+tV x (v xe)|-v x (V xe)}
=e-{(e-V)V+lex (v xV)]-vx(Vxe)}
=e-{(e-V)V-vUx(Vxe}+te-lex(vxV)
=e-{(e-V)V-[(e-V)V—e(v V)=(V-v)et+V(7-e)}+0

(

[
=e-e(v-V)+0

This formula can of course also be written in the form

e-{graddive) —rot(V xe)} =div V.

Example 36.8 Let a be a constant vector. For x # 0 we consider the fields

a-x axx
U(X)Zwa W(X):W-
Show that

VXW=—-yU.
A Nabla calculus.

D Just compute by using the rulse of calculation and the result of Example 36.6.
I Clearly, U and W are C* for x # 0. Put r = ||x||. Then by Example 36.6,
v(r®) =ar*?x for x # 0.
Then we shall use the following result from Linear Algebra,

xx(axx)=(x-x)a—(a-x)x=r’a—(a-x)x.
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Applying these preparations we get

VxXxW = yx{riaxx)} definition of W
= (vr¥)x(axx+7r3 v x(axx) rule of calculation
= 3rPxx(axx)+r3yx(axx) Example 36.6
= =3r*{rfa—(a-x)x}+7r3 v x(axx) Linear Algebra
3 3a- 1
= —3 a+% x+r—3{0—0—(a~ v)x+a(v -x)} rule of computation
33 1 .
= —za + 5 (a-x)x+ = (—a+ 3a) computation
1 .
= —32 + 5 (a-x)x, reduction,
and
vU = v(r3a-x) definition of U
—3 1 .
= (a-x)v (r3)+ 3V (a-x) rule of calculation
3 1
= (a-x)- —5X —|—T—3a Example 36.6 and v/ (a-x) = a.

It follows by a comparison of these two expressions that
VXW=—-yU.

This can also be written
rot W = —grad U,

where U and W are given above.

Example 36.9 Consider the composite vector function
V(x)=Uw),  w=[fx).

Find an expression for \7 -V and 7 X V.

A Nabla calculus.

D Just compute.

I In general,

ov; _oWU;of) _ du; of

ox; 0x; dw  Ox;’
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When we change notation (x1,x2,x3) = (z,y, 2), it follows that

0
vV =3 Ulw) - = U),
i=1 ¢
and
V ov, o9V, 9V, 9V, IV, IV,
v Ay 0z ' ddz Ox Oz Ay
of of
)G U 5 | e e e
of of of of of '
_ / N 2L | = - L=
= Uz(w)g—Uz(w) D 9r Oy 02 vf x U (f(x)).
Bf 8f U’ U’ U’
/ _J ! _J x z
U, (w) o U’ (w) By Y
ALTERNATIVELY, a more sophisticated reasoning is the following,
e, ey e, e, ey e,
o o o |_|a u o | __.
VXV=L G By 8 | T or oy 9. |~ VIxU)
Upof Uyof U.of Ugof U;of Uzof

Summarizing we obtain the results

V-(Uof(x)=vfx)-U=-(f(x)) and v x(Uocf(x)=vf(x)xU(f(x))
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Real Functions in Several Variables: Volume Xl Nabla calculus

Example 36.10 Given a C' vector field V and a C? scalar field f with the following property:
The vector V is at each point (x,y, z) perpendicular to the level surface of f through the point (z,y, z).
Prove that V - (v x V) = 0.

A Nabla calculus.
D Analyze the assumption. Then find a relation between f and V. Finally, compute V - (7 x V).

I Since both 7f and V are perpendicular to the level surface, they are proportional at each point.
Hence, there exists a function g, such that (usually)

(36.1) V(z,y,2) = g(x,y,2) v f(z,y,2).
When 7 f # 0, then clearly g is os class C'. Thus, when 7 f # 0, then

VxV=vux(gvf)=(vg) x(Vf)+g(vxvf)=(vg) x(Vf)+0.

Since 7 f is perpendicular to \7g X 7 f, we get
Vo (vxV)=gvfA{vgxvf}=0.

If 7f =0, then (36.1) does not necessary hold. However, if (36.1) holds, the relation is trivial.

Now assume that (36.1) does not hold, i.e. V(x,y,2) # 0 and 7 f(z,y,z) = 0. We shall then use
a continuity argument:

www.alcatel-lucent.com/careers

¥, N

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".

1763

Click on the ad to read more
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Since f has level surfaces, we must have 5/ f # 0 arbitrarily close to (z,v, 2z), and it follows from
the above that V- (7 x V) = 0 at these points. This relation is continuous, so it follows by a
continuous extension that V - {57 x V} = 0 also is valid at points, where 7 f(z,y, z) = 0.

Example 36.11 Show by means of Gaufl’s theorem that for any closed surface F,

/ ndS = 0.
F

A Gauf}’s theorem in its operator version.
D Insert the obvious into Gauf}’s theorem in its operator version.

I Let F be the boundary of the domain €). Then by Gauf}’s theorem in its operator version,

/deQ:/ nDdS:/nDdS.
Q o0 F

If we replace O with 1, it follows that

[ nas= [ graa= [ oae-o,
F Q Q

Example 36.12 Find the divergence of the vector field
V= (vf)x(v9)
[Cf. Example 38.17.]

A Nabla calculus.
D Just compute.

I The rotation of a gradient is 0, i.e. every gradient field is rotation free. Hence

Ve (Vfxve) = (v xvf)-vg—(Vxvg) - vf=0-0=0.

Example 36.13 Consider the vector field V : R? — R3 given by
V(z,y,2) = f(z,y) ez,
which also satisfies
VX (VxV)=aV,
where « is a constant. Find a differential equation which has the function f as one of its solutions.

A Double rotation.

D Compute the left hand side.
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I Tt follows from V(z,y,2) = f(z,y) e, that

(S7% ey e,
|92 0
0 0 flzy)

and

e; €, e,

VY= g g | = (000 = ) = 00,57,
fy —fe 0
and
aV =(0,0,af(z,y)).
Then from 7 x (v X V) =a'V,
~Vif=af oo Vift+af=Af+af=0.

Example 36.14 Let V denote the volume of a domain  in space with the outwards unit normal
vector field n, and let a be a constant vector. Find

1
V' Jaa
A Nabla calculus.

n x (x x a)ds.

D Apply a variant Gauf’s theorem and use the nabla calculations.

I By a variant of Gauf’s theorem,

/ ndeS:/vadQ.
o0 Q

Put V =x x a. Then

1 1
— n x xxadS:—/vx x x a)dsS.
p L omxbexa)ds = [ g xiexa)

Then by a rule of calculation,
VX (xxvae) = (a-v)x—a(v-x)-(x-v)a+x(v-a)
= (a-v)x—a(v-x)-0+0

0 0 0
—<Mm+@%+%&ymm%&U+HU

= a-—3a= —2a,
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which is a constant. Hence by insertion,

1
— n x xxadS’zf/ —2adS = —2a.
V oo ( ) v V(

ADDITION. For completeness we here prove the variant of Gaufl’s theorem, which is applied above.
First note that the usual version of Gauf3’s theorem can be written

/ n-WdS:/v-WdQ.
o0 Q

Choose W =V x b, where b is any constant vector. Then

(36.2) /mn-(be)dS:/Qv-(be)dQ.

The geometric interpretation of n - (V x b) is that it is equal to the (signed) volume of the
parallelepiped defined by the vectors n, V and b. (This simple result is also known from Linear
Algebra).

The same interpretation is true for (n x V) - b (with the same sign, because the sequence of the
vectors is not changed), thus

n-(Vxb)=mnxV):b.
Since b is constant, it follows by a rule of calculation,
vV - (Vxb)=(vxV)-b—(yxb-V)=(yxV): b.

By inserting these two results into (36.2), we get

/ (nxV)-de:/(va)-bdQ.
o9 Q

Since b is a constant vector, it follows by a rearrangement that

{/ ndeS—/vadQ}-b:O.
o0 Q

Since 0 is the only vector, which is perpendicular to all vectors, the first factor must be 0, and we
get by another rearrangement.

/ ndeS:/vadQ,
a0 Q

and the variant of Gaufy’s theorem has been proved.
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Example 36.15 Let V, W be vector fields in the space which also depend on time t and satisfy the
equations

oW ov
VXV—OZW, VXW——ﬂE,
where a and B are constants. Show that the vector field
ov oW
U = ﬁV X E + O[W X W

and the scalar field
=8V -y xV+aW. .y xW

satisfy the differential equation

of

(An equation of this type is often called a continuity equation or a preservation theorem).
A Continuity equation.

D Nabla calculus.

0 0
I Since — is a differentiation with respect to a “parameter”, where can interchange — with any of

ot
the operators v/, \/- and v/ x. Hence

af ov ov oW oW
ov oW
= —(va)-(vaH—ﬂV-(vx6t>+(v><V)-(v><W)+on-<vx6t>
ov oW
= 5V'<VXE)+OZW'<VXW>~
By using this rule of calculation we get similarly,
ov oW
v-U = ﬁv-(ant>+av-<Wxat>
oV ov OW OW
ov oW
= —(va)-(va)—BV-(vx§)+(va)-(va)—aW~(vxﬁ>
ov oW
Finally, by adding these expressions we get
of

Download free eBooks at bookboon.com



Download free eBooks at bookboon.com



37 Formulae

Some of the following formule can be assumed to be known from high school. It is highly recommended
that one learns most of these formule in this appendiz by heart.

37.1 Squares etc.

The following simple formulae occur very frequently in the most different situations.

(a+b)?* = a® + b + 2ab, a® + b + 2ab = (a + b)?,
(a—b)* = a® + b — 2ab, a® +b? — 2ab = (a — b)?,
(a+b)(a —b) = a® — b, a?—b* = (a+b)(a—b),
(a+b)? = (a — b)? + 4ab, (a —b)? = (a + b)? — 4ab.

37.2 Powers etc.

Logarithm:
In|zy| = In|z|+1n|y|, x,y #0,
In|Z|= In|z| —Inly|, x,y#0,
In|z"| = rin|z|, x #0.

Power function, fixed exponent:

(zy)" =a" -y",z,y >0 (extensions for some r),

AN
<—) =—,z,y>0 (extensions for some 7).
) )

Exponential, fixed base:

a®-a¥ =a*"¥, a>0 (extensions for some z, y),

(@®)! =a*¥,a >0 (extensions for some z, y),
e 1 :
a”t=-—,a>0, (extensions for some ),
a

Ya=a'"a>0, n € N.
Square root:
Va2 = |z, zeR.

Remark 37.1 It happens quite frequently that students make errors when they try to apply these
rules. They must be mastered! In particular, as one of my friends once put it: “If you can master the
square root, you can master everything in mathematics!” Notice that this innocent looking square
root is one of the most difficult operations in Calculus. Do not forget the absolute value!
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37.3 Differentiation

Here are given the well-known rules of differentiation together with some rearrangements which some-
times may be easier to use:

{f(@) £g(x)} = f'(x) £ ¢'(2),

{f(@)g(@)} = f'(@)g() + f(2)g'(x) = f(2)9() {J}é@) i gg<($>) }

where the latter rearrangement presupposes that f(x) # 0 and g(z) # 0.
If g(z) # 0, we get the usual formula known from high school

{f(m) }/ _ [(@)g(x) = f(z)g'(x)
g(x) g9(x)? '

It is often more convenient to compute this expression in the following way:

Vo) = dn U6 ) = 5 ot~ 30 o) ~ ko) )

where the former expression often is much easier to use in practice than the usual formula from high
school, and where the latter expression again presupposes that f(x) # 0 and g(x) # 0. Under these
assumptions we see that the formulae above can be written

{f(2)g(x)} _ f'(x) ¢ (=)
f(@)g(x) — flz)  g(x)

f(x)/g(x) ()  g(@)
Since

LTV 4 C) .

Fhlf@l=58. @ o,

we also name these the logarithmic derivatives.
Finally, we mention the rule of differentiation of a composite function
{f(e(@)} = f(e(@)) - ¢ (2).

We first differentiate the function itself; then the insides. This rule is a 1-dimensional version of the
so-called Chain rule.

37.4 Special derivatives.

Power like:

. (%) = - 271, for x > 0, (extensions for some a).
d 1
%1n|x|=5, for z # 0.
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Exponential like:

—expx = expcz,

dx

d

In (®)=Ina-a”,
Trigonometric:

— sinx = cosx,

dzr
— cosx = —sinux,
e T inx
d 1
—tanz =1+ tan’z = 7
dz cos? x
d 1
L ot = —(1+eot?a) = ———
Hyperbolic:
— sinhz = cosh z,
dx
— coshx = sinh z,
dx
d 1
—tanhz = 1 — tanh®x = 5
dx cosh® x
d 1
7 cothz =1 — coth?z = R
z sinh? z
Inverse trigonometric:

d 1
— Arcsin x =

dx V1—22’

1
e Arccos x = —7*1 —
d
% Arctan xXr = m,
d 1
e Arccot x = 522
Inverse hyperbolic:
d 1
— Arsinh z = ——,
dx A /x2 + 1
d 1
— Arcosh x = ——,
dx 552 -1
d 1
% Artanh x = 1——332’
d
% Arcoth z = m,

Remark 37.2 The derivative of the trigonometric and the hyperbolic functions are to some extent
exponential like. The derivatives of the inverse trigonometric and inverse hyperbolic functions are

for z € R,

forx € R and a > 0.

for z € R,
for x € R,

T
for;v;«é§+p7r,p€Z,

for x # pm,p € Z.

for z € R,

for z € R,
for x € R,

for = # 0.

forze]-1,1],
forze]—-1,1],
for z € R,

for x € R.

for x € R,
for x €]1,400],
for |z| < 1,

for |x| > 1.

power like, because we include the logarithm in this class. ¢
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37.5 Integration

The most obvious rules are dealing with linearity

/{f(x) + Ag(x)} dx = /f(x) dx + )\/g(x) dx, where A € R is a constant,

and with the fact that differentiation and integration are “inverses to each other”, i.e. modulo some
arbitrary constant ¢ € R, which often tacitly is missing,

[ F@ s = fa).

If we in the latter formula replace f(x) by the product f(z)g(z), we get by reading from the right to
the left and then differentiating the product,

f@g@) = [(@g@)} do= [ f@gle)ds+ [ s ) da.

Hence, by a rearrangement

The rule of partial integration:

/fumuwzzﬂmmw—/}umuwm

The differentiation is moved from one factor of the integrand to the other one by changing the sign
and adding the term f(z)g(x).

Remark 37.3 This technique was earlier used a lot, but is almost forgotten these days. It must
be revived, because MAPLE and pocket calculators apparently do not know it. It is possible to
construct examples where these devices cannot give the exact solution, unless you first perform a
partial integration yourself. ¢

Remark 37.4 This method can also be used when we estimate integrals which cannot be directly
calculated, because the antiderivative is not contained in e.g. the catalogue of MAPLE. The idea is
by a succession of partial integrations to make the new integrand smaller. ¢

Integration by substitution:

If the integrand has the special structure f(¢(z))-¢’(z), then one can change the variable to y = ¢(z):

[ #te@n ¢z =< [ re@nacar = [ swa
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Integration by a monotonous substitution:

If p(y) is a monotonous function, which maps the y-interval one-to-one onto the z-interval, then

[r@a= [ sewew

Remark 37.5 This rule is usually used when we have some “ugly” term in the integrand f(z). The
idea is to put this ugly term equal to y = ¢ ~!(z). When e.g. 2 occurs in f(z) in the form /z, we put

y = o Y(x) = \/z, hence = = ¢(y) = y? and ¢'(y) = 2y. O

37.6 Special antiderivatives

Power like:

1
/—dx = In x|,
x

/xo‘ dr = L 2o+l
a+1

1
/ 1522 dx = Arctan x,

1 1 1+
= dr =1
/1—x2 v 2n‘1—x"

1
/ dr = Artanh z,

1— 22

1
/ dr = Arcoth z,

1— 22

dx = Arcsin x,

=

1
———— dx = — Arccos z,
/ V1—22
1
———— dx = Arsinh z,
/ VaZ 41

1
/\/Tﬁd"ﬁ:ln(ﬂf—F 332—|—1),

T
———dx =122 -1,
/\/3:2—1
1
———dx = Arcosh z,
/\/:Jc2—1

1
/ﬁdlenm—kvﬁ—ﬂ,
22 —

for x # 0. (Do not forget the numerical value!)
for o # —1,
for z € R,
for x # +£1,
for |z| < 1,
for |z| > 1,
for |z| < 1,
for |x| < 1,
for x € R,
for x € R,
for z € R,
for x > 1,

for x > 1 eller x < —1.

There is an error in the programs of the pocket calculators TI-92 and TT-89. The numerical signs are
missing. It is obvious that Va2 — 1 < |z| so if x < —1, then z + V22 — 1 < 0. Since you cannot take
the logarithm of a negative number, these pocket calculators will give an error message.
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Exponential like:

/expxdx:expx, for z € R,
1
a®dr =— -a", for x € R, and a > 0,a # 1.
Ina
Trigonometric:
/sinxdx:—cosx, for z € R,
/cosxdx:sinx, for z € R,
/tanxdx:—ln|cosx\, forx;ég—i—pﬂ, p € Z,
/cotxdx:1n|sinx|, for z # pmr, p€Z,
1 1 1 i
/ dr==In ﬂ , forx;éz—i—pﬂ, p € Z,
cos x 2 1 —sinz 2
1 1 1—cosz
dr==In|{ —— f Z
/sinx T3 n(1+cosx)’ orx#pm peL
1 us
>— dxr = tanz, forz # - +pm, pe€EZ,
cos® x 2
1
—5— dx = —cotuw, for x # pmw, p€Z.
sin” z
Hyperbolic:
/sinhxdx = coshz, for x € R,
/coshxdx = sinhz, for x € R,
/tanhxdx = Incoshz, for x € R,
/cothxalx:1n|sinhx|7 for x # 0,
1 .
dx = Arctan(sinh z), for x € R,
coshz
1
/ dx = 2 Arctan(e”), for z € R,
coshz
1 1 coshx — 1
dr=—-In| ——— f 0
/sinhx YT n(coshx—i—l)’ orz #0,
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1 e’ —1
dr=In|—— f 0
/sinh:c e em—|—1" or & 70,
1
/ﬁdz:tanhz, for z € R,
cosh” z
1
/. 5— dr = — coth, for z # 0.
sinh” x

37.7 Trigonometric formula

The trigonometric formulae are closely connected with circular movements. Thus (cosw,sinu) are
the coordinates of a point P on the unit circle corresponding to the angle u, cf. figure A.1. This
geometrical interpretation is used from time to time.

(cosu, sinu)

Figure 37.1: The unit circle and the trigonometric functions.

The fundamental trigonometric relation:
cos?u +sinu =1, for u € R.

Using the previous geometric interpretation this means according to Pythagoras’s theorem, that the
point P with the coordinates (cosu,sinu) always has distance 1 from the origo (0,0), i.e. it is lying
on the boundary of the circle of centre (0,0) and radius v/1 = 1.

Connection to the complex exponential function:

The complex exponential is for imaginary arguments defined by
exp(iu) :=cosu+1 sinu.

It can be checked that the usual functional equation for exp is still valid for complex arguments. In
other word: The definition above is extremely conveniently chosen.

By using the definition for exp(iu) and exp(—iu) it is easily seen that

1
cosu = i(exp(iu) + exp(—iu)),

1
sinu = %(exp(i u) —exp(—iu)),
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Moivre’s formula: We get by expressing exp(inu) in two different ways:
exp(inu) = cosnu + i sinnu = (cosu + 1 sinw)".

Example 37.1 If we e.g. put n = 3 into Moivre’s formula, we obtain the following typical application,
cos(3u) + i sin(3u) = (cosu + i sinu)?

= cos® u + 3i cos?

= {cos® u — 3cosu - sin® u} + i{3 cos® u - sinu — sin® u}

= {4cos®u — 3cosu} + i{3sinu — 4sin®u}

w-sinu + 3i% cosu - sin?u + ¥ sin®u

When this is split into the real- and imaginary parts we obtain
cos3u:4c053u—3cosu, sin3u = 3sinu — 4sin®u. ¢
Addition formulae:
sin(u + v) = sinwu cosv + cosu sin v,
sin(u — v) = sinu cosv — cosu sinv,
cos(u + v) = cosu cosv — sinu sinv,
cos(u — v) = cosu cosv + sinu sinv.

Products of trigonometric functions to a sum:
. 1. 1,
sinu cosv = sin(u + v) + 5 sin(u — v),
. 1. 1.
cosu sinv = o sin(u +v) — 5 sin(u — v),
. . 1
sinv sinv = 5 cos(u —v) — 5 cos(u + v),

1 1
cosU COSY = cos(u —v) + 3 cos(u + v).

Sums of trigonometric functions to a product:

sinu 4+ sinv = 2sin <u—2|—v> cos (U;U) ,

. . 9 u+v\ . uU—v
sinu — sinv = 2 cos sin
2 2 ’
cosu + cosv = 2 cos utv cos S ,
2 2
. u+uvy\ . U —v
cosu—cosv:—Zsm( )sm( 5 )

Formula of halving and doubling the angle:

sin 2u = 2sinw cosu,

2 2

cos 2u = cos” u — sin u:2cosgu—1:1—2sin2u,

1 —cosu

sin 5= + — followed by a discussion of the sign,

/1
cos g =+ $ followed by a discussion of the sign,
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37.8 Hyperbolic formulae

These are very much like the trigonometric formulae, and if one knows a little of Complex Function
Theory it is realized that they are actually identical. The structure of this section is therefore the same
as for the trigonometric formulze. The reader should compare the two sections concerning similarities

and differences.
The fundamental relation:
cosh? z — sinh? z = 1.
Definitions:

coshz = % (exp(z) + exp(—x)), sinhx = % (exp(z) — exp(—x)) .

“Moivre’s formula”:

exp(x) = coshz + sinh z.

This is trivial and only rarely used. It has been included to show the analogy.

Addition formulae:
sinh(z + y) = sinh(z) cosh(y) + cosh(z) sinh(y),
sinh(z — y) = sinh(z) cosh(y) — cosh(z) sinh(y),
cosh(z + y) = cosh(z) cosh(y) + sinh(z) sinh(y),
cosh(z — y) = cosh(z) cosh(y) — sinh(z) sinh(y).
Formula of halving and doubling the argument:
sinh(2z) = 2sinh(z) cosh(z),
cosh(2z) = cosh?(z) + sinh?(x) = 2 cosh®(z) — 1 = 2sinh®(z) + 1,

cosh(z) — 1

5 followed by a discussion of the sign,

x
inh (—) -+
sinh { 5
x cosh(z) +1
‘h (7) - ’
cosh { 2 >
Inverse hyperbolic functions:

Arsinh(z) = In (1: + Va2 + 1) , z €R,

Arcosh(z) = In (a: +Vaz?— 1) , x> 1,

1 1+

Artanh(x) = 5111 <1 — a:) ) |z <1,
1 1

Arcoth(x) =  In (zfl) 2| > 1.
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37.9 Complex transformation formulse
cos(iz) = cosh(z), cosh(iz) = cos(x),

sin(iz) = i sinh(x), sinh(iz) = isinz.

37.10 Taylor expansions

The generalized binomial coefficients are defined by

<a) ala—=1)-(a—n+1)

with n factors in the numerator and the denominator, supplied with

(5) -

The Taylor expansions for standard functions are divided into power like (the radius of convergency
is finite, i.e. = 1 for the standard series) andexzponential like (the radius of convergency is infinite).
Power like:

1 o0
—:Zx", |z < 1,
x

1_
n=0
1 - n_n
=Y, ol <1,
n=0
(1+9€)":Z(@>wj, neNzeR,
=\
(1+x)o‘:z<3):c", acR\N,|z| <1,
n=0
o0 xn
In(1 = —nte <1
i) = 3o el <1,
o z2n+1
Arct D N | <1.
retan(a) = 3 (1" 3 o
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Exponential like:

— 1
exp(z) = Z ﬁx", zeR
n=0
- 1
exp(—x) = Z(—l)"ﬁw", reR
n=0 ’
- 1
sin(z) = Z(—l)"il;v%*l, z €R,
= (2n+1)!
sinh(z) = i #x%*l zeR
' ) )
= (2n+1)!
= n 1 2n
cos(z) = Z(—l) (2n)'w , z €R,
n=0 ’
cosh(z) = i L:52” reR
| ’ ’
= (2n)!

37.11 Magnitudes of functions

We often have to compare functions for x — 0+, or for x — co. The simplest type of functions are

therefore arranged in an hierarchy:
1) logarithms,

2) power functions,

3) exponential functions,

4) faculty functions.

When z — oo, a function from a higher class will always dominate a function form a lower class
precisely:

A) A power function dominates a logarithm for x — oo:

(Inz)?

pors -0 forx — 00, «, B >0.

B) An ezponential dominates a power function for x — oo:

xOL

— =0 forz — o0, a,a>1.
a[l)
C) The faculty function dominates an exponential for n — oo:

an

—'—>O, n—o00, neN, a>0.
n!

D) When = — 0+ we also have that a power function dominates the logarithm:

z%Inx — 0—, for x — 0+, a>0.
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bend 486

bijective map 153

body of revolution 43, 1582, 1601
boundary 37-39

boundary curve 182

boundary curve of a surface 182
boundary point 920

boundary set 21

bounded map 153

bounded set 41

branch 184

branch of a curve 492

Brownian motion 884

cardiod 972, 973, 1199, 1705

Cauchy-Schwarz’s inequality 23, 24, 26

centre of gravity 1108

centre of mass 885

centrum 66

chain rule 305, 333, 352, 491, 503, 581, 1215, 1489,
1493, 1808

change of parameter 174

circle 49

circular motion 19

circulation 1487

circulation theorem 1489, 1491

circumference 86

closed ball 38

closed differential form 1492

closed disc 86

closed domain 176

closed set 21

closed surface 182, 184

closure 39

clothoid 1219

colour code 890

compact set 186, 580, 1813

compact support 1813

complex decomposition 69

composite function 305

conductivity of heat 1818

cone 19, 35, 59, 251

conic section 19, 47, 54, 239, 536

conic sectional conic surface 59, 66

connected set 175, 241

conservation of electric charge 1548, 1817

conservation of energy 1548, 1817

conservation of mass 1548, 1816

conservative force 1498, 1507

conservative vector field 1489

continuity equation 1548, 1569, 1767, 1817

continuity 162, 186

continuous curve 170, 483

continuous extension 213

continuous function 168

continuous surfaces 177

contraction 167

convective term 492

convex set 21, 22, 41, 89, 91, 175, 244

coordinate function 157, 169

coordinate space 19, 21
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Cornu’s spiral 1219

Coulomb field 1538, 1545, 1559, 1566, 1577

Coulomb vector field 1585, 1670

cross product 19, 163, 169, 1750

cube 42, 82

current density 1678, 1681

current 1487, 1499

curvature 1219

curve 227

curve length 1165

curved space integral 1021

cusp 486, 487, 489

cycloid 233, 1215

cylinder 34, 42, 43, 252

cylinder of revolution 500

cylindric coordinates 15, 21, 34, 147, 181, 182,
289, 477,573,841, 1009, 1157, 1347, 1479,
1651, 1801

cylindric surface 180, 245, 247, 248, 499, 1230

degree of trigonometric polynomial 67
density 885

density of charge 1548

density of current 1548

derivative 296

derivative of inverse function 494
Descartes’a leaf 974

dielectric constant 1669, 1670
difference quotient 295
differentiability 295

differentiable function 295
differentiable vector function 303
differential 295, 296, 325, 382, 1740, 1741
differential curves 171

differential equation 369, 370, 398
differential form 848

differential of order p 325

differential of vector function 303
diffusion equation 1818

dimension 1016

direction 334

direction vector 172

directional derivative 317, 334, 375
directrix 53

Dirichlet/Neumann problem 1901
displacement field 1670

distribution of current 886

divergence 1535, 1540, 1542, 1739, 1741, 1742
divergence free vector field 1543

dodecahedron 83
domain 153, 176
domain of a function 189
dot product 19, 350, 1750
double cone 252
double point 171
double vector product 27

eccentricity 51

eccentricity of ellipse 49

eigenvalue 1906

elasticity 885, 1398

electric field 1486, 1498, 1679

electrical dipole moment 885

electromagnetic field 1679

electromagnetic potentials 1819

electromotive force 1498

electrostatic field 1669

element of area 887

elementary chain rule 305

elementary fraction 69

ellipse 48-50, 92, 113, 173, 199, 227

ellipsoid 56, 66, 110, 197, 254, 430, 436, 501, 538,
1107

ellipsoid of revolution 111

ellipsoidal disc 79, 199

ellipsoidal surface 180

elliptic cylindric surface 60, 63, 66, 106

elliptic paraboloid 60, 62, 66, 112, 247

elliptic paraboloid of revolution 624

energy 1498

energy density 1548, 1818

energy theorem 1921

entropy 301

Euclidean norm 162

Euclidean space 19, 21, 22

Euler’s spiral 1219

exact differential form 848

exceptional point 594, 677, 920

expansion point 327

explicit given function 161

extension map 153

exterior 37-39

exterior point 38

extremum 580, 632

Faraday-Henry law of electromagnetic induction
1676
Fick’s first law of diffusion 297
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Fick’s law 1818 Helmholtz’s theorem 1815

field line 160 homogeneous function 1908

final point 170 homogeneous polynomial 339, 372

fluid mechanics 491 Hopf’s maximum principle 1905

flux 1535, 1540, 1549 hyperbola 48, 50, 51, 88, 195, 217, 241, 255, 1290

focus 49, 51, 53 hyperbolic cylindric surface 60, 63, 66, 105, 110

force 1485 hyperbolic paraboloid 60, 62, 66, 246, 534, 614,

Fourier’s law 297, 1817 1445

function in several variables 154 hyperboloid 232, 1291

functional matrix 303 hyperboloid of revolution 104

fundamental theorem of vector analysis 1815 hyperboloid of revolution with two sheets 111
hyperboloid with one sheet 56, 66, 104, 110, 247,

Gaussian integral 938 255

Gauly’s law 1670 hyperboloid with two sheets 59, 66, 104, 110, 111,

Gaufl’s law for magnetism 1671 255, 527

Gauf}’s theorem 1499, 1535, 1540, 1549, 1580, 1718, hysteresis 1669
1724, 1737, 1746, 1747, 1749, 1751, 1817,

1818, 1889, 1890, 1913 identity map 303
Gauf’s theorem in R? 1543 implicit given function 21, 161
Gauf’s theorem in R? 1543 implicit function theorem 492, 503
general chain rule 314 improper integral 1411
general coordinates 1016 improper surface integral 1421
general space integral 1020 increment 611
general Taylor’s formula 325 induced electric field 1675
generalized spherical coordinates 21 induction field 1671
generating curve 499 infinitesimal vector 1740
generator 66, 180 infinity, signed 162
geometrical analysis 1015 infinity, unspecified 162
global minimum 613 initial point 170
gradient 295, 296, 298, 339, 847, 1739, 1741 injective map 153
gradient field 631, 847, 1485, 1487, 1489, 1491, inner product 23, 29, 33, 163, 168, 1750
1916 inspection 861
gradient integral theorem 1489, 1499 integral 847
graph 158, 179, 499, 1229 integral over cylindric surface 1230
Green’s first identity 1890 integral over surface of revolution 1232
Green’s second identity 1891, 1895 interior 37-40
Green’s theorem in the plane 1661, 1669, 1909 interior point 38
Green’s third identity 1896 intrinsic boundary 1227
Green’s third identity in the plane 1898 isolated point 39

Jacobian 1353, 1355
half-plane 41, 42

half-strip 41, 42 Kronecker symbol 23

half disc 85

harmonic function 426, 427, 1889 Laplace equation 1889

heat conductivity 297 Laplace force 1819

heat equation 1818 Laplace operator 1743

heat flow 297 latitude 35

height 42 length 23

helix 1169, 1235 level curve 159, 166, 198, 492, 585, 600, 603
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level surface 198, 503
limit 162, 219

line integral 1018, 1163
line segment 41

Linear Algebra 627
linear space 22

local extremum 611
logarithm 189
longitude 35

Lorentz condition 1824

Maclaurin’s trisectrix 973, 975

magnetic circulation 1674

magnetic dipole moment 886, 1821

magnetic field 1491, 1498, 1679

magnetic flux 1544, 1671, 1819

magnetic force 1674

magnetic induction 1671

magnetic permeability of vacuum 1673

magnostatic field 1671

main theorems 185

major semi-axis 49

map 153

MAPLE 55, 68, 74, 156, 171, 173, 341, 345, 350,
352-354, 356, 357, 360, 361, 363, 364,
366, 368, 374, 384-387, 391-393, 395—
397, 401, 631, 899, 905-912, 914, 915,
917, 919, 922-924, 926, 934, 935, 949,
951, 954, 957-966, 968, 971-973, 975,
1032-1034, 1036, 1037, 1039, 1040, 1042,
1053, 1059, 1061, 1064, 1066—-1068, 1070—
1072, 1074, 1087, 1089, 1091, 1092, 1094,
1095, 1102, 1199, 1200

matrix product 303

maximal domain 154, 157

maximum 382, 579, 612, 1916

maximum value 922

maximum-minimum principle for harmonic func-
tions 1895

Maxwell relation 302

Maxwell’s equations 1544, 1669, 1670, 1679, 1819

mean value theorem 321, 884, 1276, 1490

mean value theorem for harmonic functions 1892

measure theory 1015

Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157,
1347, 1479, 1651, 1801, 1921

meridian curve 181, 251, 499, 1232

meridian half-plane 34, 35, 43, 181, 1055, 1057,
1081

method of indefinite integration 859

method of inspection 861

method of radial integration 862

minimum 186, 178, 579, 612, 1916

minimum value 922

minor semi-axis 49

mmf 1674

Mobius strip 185, 497

Moivre’s formula 122, 264, 452, 548, 818, 984,
1132, 1322, 1454, 1626, 1776, 1930

monopole 1671

multiple point 171

nabla 296, 1739

nabla calculus 1750

nabla notation 1680

natural equation 1215

natural parametric description 1166, 1170
negative definite matrix 627

negative half-tangent 485
neighbourhood 39

neutral element 22

Newton field 1538

Newton-Raphson iteration formula 583
Newton’s second law 1921
non-oriented surface 185

norm 19, 23

normal 1227

normal derivative 1890

normal plane 487

normal vector 496, 1229

octant 83

Ohm’s law 297

open ball 38

open domain 176

open set 21, 39

order of expansion 322
order relation 579

ordinary integral 1017
orientation of a surface 182
orientation 170, 172, 184, 185, 497
oriented half line 172
oriented line 172

oriented line segment 172
orthonormal system 23

parabola 52, 53, 89-92, 195, 201, 229, 240, 241
parabolic cylinder 613
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parabolic cylindric surface 64, 66

paraboloid of revolution 207, 613, 1435

parallelepipedum 27, 42

parameter curve 178, 496, 1227

parameter domain 1227

parameter of a parabola 53

parametric description 170, 171, 178

parfrac 71

partial derivative 298

partial derivative of second order 318

partial derivatives of higher order 382

partial differential equation 398, 402

partial fraction 71

Peano 483

permeability 1671

piecewise C*-curve 484

piecewise C"-surface 495

plane 179

plane integral 21, 887

point of contact 487

point of expansion 304, 322

point set 37

Poisson’s equation 1814, 1889, 1891, 1901

polar coordinates 15, 19, 21, 30, 85, 88, 147, 163,
172, 213, 219, 221, 289, 347, 388, 390,
477, 573, 611, 646, 720, 740, 841, 936,
1009, 1016, 1157, 1165, 1347, 1479, 1651,
1801

polar plane integral 1018

polynomial 297

positive definite matrix 627

positive half-tangent 485

positive orientation 173

potential energy 1498

pressure 1818

primitive 1491

primitive of gradient field 1493

prism 42

Probability Theory 15, 147, 289, 477, 573, 841,
1009, 1157, 1347, 1479, 1651, 1801

product set 41

projection 23, 157

proper maximum 612, 618, 627

proper minimum 612, 613, 618, 627

pseudo-sphere 1434

Pythagoras’s theorem 23, 25, 30, 121, 451, 547,
817, 983, 1131, 1321, 1453, 1625, 1775,
1929

quadrant 41, 42, 84
quadratic equation 47

range 153

rectangle 41, 87

rectangular coordinate system 29

rectangular coordinates 15, 21, 22, 147, 289, 477,
573, 841, 1009, 1016, 1079, 1157, 1165,
1347, 1479, 1651, 1801

rectangular plane integral 1018

rectangular space integral 1019

rectilinear motion 19

reduction of a surface integral 1229

reduction of an integral over cylindric surface 1231

reduction of surface integral over graph 1230

reduction theorem of line integral 1164

reduction theorem of plane integral 937

reduction theorem of space integral 1021, 1056

restriction map 153

Ricatti equation 369

Riesz transformation 1275

Rolle’s theorem 321

rotation 1739, 1741, 1742

rotational body 1055

rotational domain 1057

rotational free vector field 1662

rules of computation 296

saddle point 612

scalar field 1485

scalar multiplication 22, 1750

scalar potential 1807

scalar product 169

scalar quotient 169

second differential 325

semi-axis 49, 50

semi-definite matrix 627

semi-polar coordinates 15, 19, 21, 33, 147, 181,
182, 289, 477, 573, 841, 1009, 1016, 1055,
1086, 1157, 1231, 1347, 1479, 1651, 1801

semi-polar space integral 1019

separation of the variables 853

signed curve length 1166

signed infinity 162

simply connected domain 849, 1492

simply connected set 176, 243

singular point 487, 489

space filling curve 171

space integral 21, 1015
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specific capacity of heat 1818 triangle inequality 23,24
sphere 35, 179 triple integral 1022, 1053
spherical coordinates 15, 19, 21, 34, 147, 179, 181,
289, 372, 477, 573, 782, 841, 1009, 1016, uniform continuity 186
1078, 1080, 1081, 1157, 1232, 1347, 1479, unit circle 32

1581, 1651, 1801 unit disc 192
spherical space integral 1020 unit normal vector 497
square 41 unit tangent vector 486
star-shaped domain 1493, 1807 unit vector 23
star shaped set 21, 41, 89, 90, 175 unspecified infinity 162

static electric field 1498

stationary magnetic field 1821
stationary motion 492 vector field 158, 296, 1485

stationary point 533, 920 vector function 21, 157, 189

Statistics 15, 147, 289, 477, 573, 841, 1009, 1157, Vector product 19, 26, 30, 163, 169. 1227, 1750
1347, 1479, 1651, 1801 vector space 21, 22

step line 172 Vector}al area 1748

Stokes’s theorem 1499, 1661, 1676, 1679, 1746, vectorial element of area 1535
1747, 1750, 1751, 1811, 1819, 1820, 1913  Vectorial potential 1809, 1810

straight line (segment) 172 velocity 490

strip 41, 42 volume 1015, 1543

substantial derivative 491 volumen element 1015

surface 159, 245

surface area 1296

surface integral 1018, 1227

surface of revolution 110, 111, 181, 251, 499

surjective map 153

vector 22

weight function 1081, 1229, 1906
work 1498

zero point 22
zero vector 22

tangent 486 (r, s, t)-method 616, 619, 633, 634, 638, 645647,
tangent plane 495, 496 652, 655

tangent vector 178 Ck_curve 4837

tangent vector field 1485 C"-functions 318

tangential line integral 861, 1485, 1598, 1600, 1603 1-1 map 153

Taylor expansion 336

Taylor expansion of order 2, 323

Taylor’s formula 321, 325, 404, 616, 626, 732

Taylor’s formula in one dimension 322

temperature 297

temperature field 1817

tetrahedron 93, 99, 197, 1052

Thermodynamics 301, 504

top point 49, 50, 53, 66

topology 15, 19, 37, 147, 289. 477, 573, 841, 1009,
1157, 1347, 1479, 1651, 1801

torus 43, 182-184

transformation formulael353

transformation of space integral 1355, 1357

transformation theorem 1354

trapeze 99
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