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Preface

The topic of this series of books on “Real Functions in Several Variables” is very important in the
description in e.g. Mechanics of the real 3-dimensional world that we live in. Therefore, we start from
the very beginning, modelling this world by using the coordinates of R? to describe e.g. a motion in
space. There is, however, absolutely no reason to restrict ourselves to R® alone. Some motions may
be rectilinear, so only R is needed to describe their movements on a line segment. This opens up for
also dealing with R?, when we consider plane motions. In more elaborate problems we need higher
dimensional spaces. This may be the case in Probability Theory and Statistics. Therefore, we shall in
general use R™ as our abstract model, and then restrict ourselves in examples mainly to R? and R3.

For rectilinear motions the familiar rectangular coordinate system is the most convenient one to apply.
However, as known from e.g. Mechanics, circular motions are also very important in the applications
in engineering. It becomes natural alternatively to apply in R? the so-called polar coordinates in the
plane. They are convenient to describe a circle, where the rectangular coordinates usually give some
nasty square roots, which are difficult to handle in practice.

Rectangular coordinates and polar coordinates are designed to model each their problems. They
supplement each other, so difficult computations in one of these coordinate systems may be easy, and
even trivial, in the other one. It is therefore important always in advance carefully to analyze the
geometry of e.g. a domain, so we ask the question: Is this domain best described in rectangular or in
polar coordinates?

Sometimes one may split a problem into two subproblems, where we apply rectangular coordinates in
one of them and polar coordinates in the other one.

It should be mentioned that in real life (though not in these books) one cannot always split a problem
into two subproblems as above. Then one is really in trouble, and more advanced mathematical
methods should be applied instead. This is, however, outside the scope of the present series of books.

The idea of polar coordinates can be extended in two ways to R3. Either to semi-polar or cylindric
coordinates, which are designed to describe a cylinder, or to spherical coordinates, which are excellent
for describing spheres, where rectangular coordinates usually are doomed to fail. We use them already
in daily life, when we specify a place on Earth by its longitude and latitude! It would be very awkward
in this case to use rectangular coordinates instead, even if it is possible.

Concerning the contents, we begin this investigation by modelling point sets in an n-dimensional
Euclidean space E™ by R™. There is a subtle difference between E™ and R™, although we often
identify these two spaces. In E™ we use geometrical methods without a coordinate system, so the
objects are independent of such a choice. In the coordinate space R™ we can use ordinary calculus,
which in principle is not possible in E™. In order to stress this point, we call E™ the “abstract space”
(in the sense of calculus; not in the sense of geometry) as a warning to the reader. Also, whenever
necessary, we use the colour black in the “abstract space”, in order to stress that this expression is
theoretical, while variables given in a chosen coordinate system and their related concepts are given
the colours blue, red and green.

We also include the most basic of what mathematicians call Topology, which will be necessary in the
following. We describe what we need by a function.

Then we proceed with limits and continuity of functions and define continuous curves and surfaces,
with parameters from subsets of R and R2, resp..
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Continue with (partial) differentiable functions, curves and surfaces, the chain rule and Taylor’s for-
mula for functions in several variables.

We deal with maxima and minima and extrema of functions in several variables over a domain in R™.
This is a very important subject, so there are given many worked examples to illustrate the theory.

Then we turn to the problems of integration, where we specify four different types with increasing
complexity, plane integral, space integral, curve (or line) integral and surface integral.

Finally, we consider vector analysis, where we deal with vector fields, Gauf3’s theorem and Stokes’s
theorem. All these subjects are very important in theoretical Physics.

The structure of this series of books is that each subject is usually (but not always) described by three
successive chapters. In the first chapter a brief theoretical theory is given. The next chapter gives
some practical guidelines of how to solve problems connected with the subject under consideration.
Finally, some worked out examples are given, in many cases in several variants, because the standard
solution method is seldom the only way, and it may even be clumsy compared with other possibilities.

I have as far as possible structured the examples according to the following scheme:
A Awareness, i.e. a short description of what is the problem.

D Decision, i.e. a reflection over what should be done with the problem.

I Implementation, i.e. where all the calculations are made.

C Control, i.e. a test of the result.

This is an ideal form of a general procedure of solution. It can be used in any situation and it is not
linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a
situation which did not contain Mathematics at all. The student is recommended to use it also in
other disciplines.

From high school one is used to immediately to proceed to I. Implementation. However, examples
and problems at university level, let alone situations in real life, are often so complicated that it in
general will be a good investment also to spend some time on the first two points above in order to
be absolutely certain of what to do in a particular case. Note that the first three points, ADI, can
always be executed.

This is unfortunately not the case with C Control, because it from now on may be difficult, if possible,
to check one’s solution. It is only an extra securing whenever it is possible, but we cannot include it
always in our solution form above.

I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a
shorthand, because they are often (too often, I would say) misused. Instead of A I shall either write
“and”, or a comma, and instead of V I shall write “or”. The arrows = and < are in particular
misunderstood by the students, so they should be totally avoided. They are not telegram short hands,
and from a logical point of view they usually do not make sense at all! Instead, write in a plain
language what you mean or want to do. This is difficult in the beginning, but after some practice it
becomes routine, and it will give more precise information.

When we deal with multiple integrals, one of the possible pedagogical ways of solving problems has
been to colour variables, integrals and upper and lower bounds in blue, red and green, so the reader
by the colour code can see in each integral what is the variable, and what are the parameters, which
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do not enter the integration under consideration. We shall of course build up a hierarchy of these
colours, so the order of integration will always be defined. As already mentioned above we reserve
the colour black for the theoretical expressions, where we cannot use ordinary calculus, because the
symbols are only shorthand for a concept.

The author has been very grateful to his old friend and colleague, the late Per Wennerberg Karlsson,
for many discussions of how to present these difficult topics on real functions in several variables, and
for his permission to use his textbook as a template of this present series. Nevertheless, the author
has felt it necessary to make quite a few changes compared with the old textbook, because we did not
always agree, and some of the topics could also be explained in another way, and then of course the
results of our discussions have here been put in writing for the first time.

The author also adds some calculations in MAPLE, which interact nicely with the theoretic text.
Note, however, that when one applies MAPLE, one is forced first to make a geometrical analysis of
the domain of integration, i.e. apply some of the techniques developed in the present books.

The theory and methods of these volumes on “Real Functions in Several Variables” are applied
constantly in higher Mathematics, Mechanics and Engineering Sciences. It is of paramount importance
for the calculations in Probability Theory, where one constantly integrate over some point set in space.

It is my hope that this text, these guidelines and these examples, of which many are treated in more
ways to show that the solutions procedures are not unique, may be of some inspiration for the students
who have just started their studies at the universities.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.

I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
March 21, 2015
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Introduction to volume VIII,
The line integral and the surface integral

This is the eighth volume in the series of books on Real Functions in Several Variables.

We investigate in Chapter 26 the line integrals in space, i.e. there is given a curve K in space and
a continuous function f : K — R. For mathematical reasons we assume that f is continuous on a
slightly larger closed and bounded set A, which contains K. Then we define the line integral

/’Cfds,

and set up some theorems and procedures of how to calculate the actual value of this symbol. We
can visualize this by attaching to each point of the curve the value of f at this point as a density,
and then we stretch out the curve and lie it down following the z-axis in the plane. This gives us a
function f : B — R, where B C RR, which can be integrated in the well-known way. The price of
this straightening out the curve is — not surprisingly — a weight function, which is added as a factor to
the integrand. This weight function is specified by the curve. It usually contains a square root, which
means that applications of mathematical programs like MAPLE and MATHEMATICA may be more
difficult, and one should use special packages. Since the examples have been designed as simple as
possible, such that one can calculate everything by hand, we have not put much labour into MAPLE
in this volume. One always first has to perform a geometrical analysis, before one can set up the
integral, and before one can apply MAPLE, and then it does not make sense to emphasize the use of
MAPLE, because it is not in focus here.

In Chapter 27 we go a step further, by replacing the line above by a surface F in R3. If f is a
continuous function defined on F (or on a slightly larger set), then we introduce the surface integral

/f fds,

and analyze the area element dS in order to obtain a reduction formula to e.g. a double integral in
the parameter domain £ C R%. Again the prize for this straightening out the surface to a subset of
the plane is the introduction of a weight function as a factor. Given describing parameters (u,v) of
the surface these define two systems of parameter curves, by which we construct a field of normal
vectors to the surface. The weight function at a point is then the length of the corresponding normal
vector. Since the length in R? always involves a square root, we are in the same situation as above
for the line integral. Programs like MAPLE do not like these problems, unless we use some special
extra packages. In order not to focus too much on MAPLE problems we shall only occasionally apply
MAPLE.
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26 The line integral

26.1 Introduction

The idea of replacing an abstract integral over a set by an ordinary rectangular integration over some
parameter space at the cost of adding a weight function as a factor to the integrand can also be applied
in other situations.

We start with the 1-dimensional case, i.e. consider a C''-curve K in the general space R™. We shall
in this Chapter 26 explain the line integral, notated by

Lﬂwm.

We shall find the weight function in the chosen parameter domain, when the type of coordinate system
has been chosen.

This idea is then extended in Chapter 27 to surfaces in two dimensions, i.e. we want to define the
abstract surface integral

(Lf&ﬂ&

where S is some 2-dimensional C'-surface, typically in R?, but higher dimensional spaces R™ are not
excluded. We find in the chosen parameters (u,v) used in the description of the surface the relevant
weight function, which is used in the reduction theorem.

More general, we consider in Chapter 28 the problem of how to change variables in the previously
considered plane and space integrals. The structure is the same as above. We first find the relevant
weight function and then integrate in the new variables.

Finally, we add for completeness Chapter 29 on improper integrals, where the domain is either not
bounded or closed.

26.2 Reduction theorem of fhe line integral

Let C be a C'-curve of parametric description
C: {xeR"|x=r(),tE€E]lab]}, reCh

Any m € N is possible here, but we shall mostly only consider m = 2 (plane curves) and m = 3 (space
curves).

Then (cf. Figure 26.1)
r(t+ At) —r(t) ~1r'(t)At,

which is a small vector. The corresponding infinitesimal length (the line element) at the point x = r(t)
must therefore have the structure

ds = ||’ (¢)]] dt.

It should not come as a surprise that this can indeed be proved (we shall of course skip the proof
here), so we can formulate the following
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r(t+A?)

©

Figure 26.1: Analysis of the line element ds = ||r'(t)|| At.

Theorem 26.1 Reduction theorem for a line integral. Given a C'-curve C of parametric description
(a function) r : [a,b] — R™, where r is injective almost everywhere. Let A be a closed and bounded
set, such that C C A C R™, and let f : A = R be a continuous function. Then the line integral is
reduced in the following way,

/f ds—/f DI @] dt.

~
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One can visualize the process above as if we are straightening out the curve C to a straight line,
represented by the interval [a, b] and the additional weight function ||r/(¢)||. The latter has the same
structure as if we were changing variables in R, only this is not taking place between two line segments,
but between a curve and a line segment. If we use the curve length as a parameter, then the picture
becomes even more clear. Form the curve by some wire and then stretch it out, before it is laid down
on the x-axis, and let the function values follow this stretching. Clearly, we must therefore introduce
the curve length, so we put f(x) = 1 above to get

Theorem 26.2 The length of a curve. Let C be a piecewise C'-curve of parametric description
r: [a,b] = R™, where r is injective almost everywhere. Then the length of C is given by

b
(e = / I ()]l d.

Of special importance are the plane curves, where m = 2, so for later reference we here include an
overview of the line elements, when the parametric description is given by either a function (i.e. graph)
in rectangular coordinates (z,y), or a function (i.e. a graph) in polar coordinates (g, ¢) in the plane.

1) Rectangular coordinates. The curve is given as the graph of the function
y =Y (x), x € [a,b], Y e Ch
Then the line element is

ds = 1/1+ (Y'(2))*da.

2) Polar coordinates, first version. The curve is in polar coordinates given as the graph of the
equation

0=P(p), ¢elap, PeC.

The line element is given by

ds = \/{P()}2 + {P(9)} de.

3) Polar coordinates, second version. The curve is in polar coordinates given as the graph of the
equation

p=2(0), o€lal], el

The line element is given by

ds =1/1+ {0 ®'(0)}* de.
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26.2.1 Natural parametric description

Let C be a curve as above wiith the parametric description x = r/t), r € C'. Choose some fixed
to € [a,b], and define

t
St):= [ |t'(n)|| dr  for t € [a,b].
to
Then the signed length of the curve C measured from r (to) is defined as the function

s=S(t), t € [a,b], where S’(t) = ||r'(¢)]| .

If [|/(t)|| > 0 for all ¢ € [a, b], then the function S(¢) has an inverse function, so there exists a (unique)
function T', such that

s=5(t), if and only if t="T(s),
Then by insertion,
x =r(t) =r(T(s)) :=rn(s), ie.ry:=roT.

We call x = ry(s) the natural parametric description of the curve C, and the curve length s iis called
the natural parameter of the curve. In spite of its name, one shall in practice not use the natural
parameter, because the expressions in general become more complicated than in other descriptions.
It is mentioned here for historical reasons, and anyway, the geometric interpretation of the natural
parametric description is very nice.
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The line integral
26.3 Procedures for reduction of a line integral

This is a 1-dimensional case where the domain of integration is not an interval, but a curve in the
plane or the space. The reduction formula becomes

/f m—/f DI (8] dt.

Figure 26.2: The curve of parameter representation r(t) = (cost,sint,t).

Procedure:
1) Write down a rectangular parameter representation for the curve C:
In the plane: (z,y) =r(t), tE€]la,b].
In the space: (x,y,2) =r(t), tE€]la,b].
2) Calculate the curve element (the weight is [|r/(¢)]])
ds = ||r'(t)]| dt.
Mnemonic rule, Pythagoras,

ds = “/(dz)2 + (dy)2 + (d2)2".

3) Insert the result and calculate the right hand side of

/f m—/f IZOIRD

Special case:

1) Curve length:
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2) Graph, y =Y (z), z € [a,b], rectangular. The curve element is
ds = /1+{Y'(2)}?dz.

3) Graph, o = P(y), ¢ € |, 8], polar, first variant. The curve element is

ds = V{P(@)}2 +{P'(0)}2 de.

4) Graph, ¢ = ®(p), 0 € [a,b], polar, second variant. The curve element is

ds = /14 {e®'(0)}*do.

Remark 26.1 We see that the square root is quite natural here. Since even programmable pocket
calculators are not too happy with square roots, they will usually stop, when they are not given some
help from the user. Therefore, we cannot expect to get any final result by applying pocket calculators
to problems of this type. Note in particular that

(In other words: Remember the numerical signs!) ¢

26.4 Examples of the line integral in rectangular coordinates

Example 26.1

A. A space curve C is given in a rectangular parametric representation
L o
r(t) = (z,y,2) = lnt7\/§~t,§t ) tel,2].
Find the arc length £(C), and the line integral

1= / e ” (y2 + 22) ds.
c

D. Find first the line element ds = ||r’/(t)]| d¢.

1 1
I. We get from r(t) = <1nt, V2t 5 t2> that '(t) = (;, V2, t>, hence

I ()2 = <%>2+2+t2 _ <%+t)2.

Thus we get the line element

1 1
ds= =t 4t a= ($+0) @ aarso
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The arc length is

271 1.,]° 3
é(C):/ds:/ <—+t) dt = [lnt+—t2} =In2+ .
c 1\t 2 1y 2

The line integral becomes
21 1 1

I = / ~{(ﬁ~t)2+2<t2>} : <+t) dt
Lt 2 t
21 1

/ S (2 + 7)) (+t> dt
Lt t

Example 26.2
A. Let a, h > 0. Consider the heliz

I
—
[ V)
~—~
w
+
w
&~
[ V)
S~—
U
S
w
+
~
w
9
=
I
—_
=)
<

r(t) = (z,y,2) = (a cost,a sint, ht), teR.
This is lying on the cylinder 22 + y? = a?.
Find the natural parametric representaion of the curve from (a,0,0), corresponding to ¢ = 0.

D. Find the arc length s = s(¢) as a function of the parameter ¢. Solve this equation ¢ = ¢(s), and
put the result into the parametric representation above.

I. Let us first find the line element ds = ||r'(¢)|| d¢. Since
r'(t) = (—a sint,a cost, h),

we have

It/ @) = Va2sin®t + a2 cos? t + h2 = /a2 + A2,

hence the arc length is

t t
8=s(t)=/ ||r'(T)||dT=/ VLR dr = @ -1,
0 0
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Figure 26.4: The helix for a =1 and h = é

By solving after ¢t we get
S
/a2 + h2’

When this is put into the parametric representation of the helix, we get

t=1t(s) =

(x,y,2) = (acost,asint, ht)

(acos<;> asin( 5 > s > seR
Vaz+hz)’ Vaz+h?) VaZ+h?)’ ’

which is the natural parametric representation of the helix. ¢
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Example 26.3 Calculate in each of the following cases the given line integral, where the curve C is
given by the parametric description

C: {xeRF|x=r(), tel}, k=2ork=a3.
1) The line integral fc ds, where
r(t) = (a(l — cost), a(t — sint)), t € [0, 4]
2) The line integral fc vz ds, where
r(t) = (a(l — cost), a(t — sint)), t € [0, 4mx].

3) The line integral fc zds, where

r(t) = (t,3t%,6t%), t€[0,2].
4) The line integral fc m ds, where
r(t) = (t,3t%,6t%), t€0,2].

5) The line integral [, (x + e*) ds, where
. i
r(t) = (cost,sint,lncost), te [0, Z] .
[Cf. Example 26.15.6.]
6) The line integral [, (2 +y* + 2%)ds, where

r(t) = (e’ cost, e’ sint, et), t€0,2].

7) The line integral fc QET—&;y ds, where

1
r(t) = —= (' efsint,e?),  te[0,ul.

V3
[Cf. Example 26.15.7.]

8) The line integral [,(z* +y*)ds, where

r(t):(l_t2 2t>, t € R.

1+12714¢2
9) The line integral fc ds, where

r(t) = <2 Arcsin t,In(1 — 2),In 1—1) , te [0, 7} .
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10) The line integral fc xe¥ ds, where

1
r(t) = (2 Arcsin t,In(1 — %), In ﬂ) , te [0, E} i

1—-t¢
11) The line integral | ;ds where
e A +3224 22
r(t) = (cost,2sint,et), te[-1,1].

A Line integrals.

D First find ||r/(¢)]| in each case. Then compute the line integral.

®
!

=
!

IS
n

N
h

!

0.511.52

X

Figure 26.5: The plane curve C of Example 26.3.1 and Example 26.3.2 for a = 1.

I 1) Here,
r'(t) = a(sint, 1 — cost),

SO

t
I’ @) = a\/sin2t—|— (1 —cost)? = av/2 — 2cost = ay/4sin’ 5= 2a

Then accordingly,

. 4
/ ds = / 2a
C 0

2) It follows from 1) that

It ()] = ay/2(1 — cost),

.t
sin —|.
2

t 2 ™
sin§‘ dt:4a/ |sinu|du=8a/ sinu du = 16a.
0 0
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4m
/\/Eds = / Va(l —cost) - ay/2(1 — cost) dt
c 0
4 4
a\/%/ |1—cost|dt=a\/%/ (1 — cost)dt = 4V2mav/a.
0 0

Figure 26.6: The curve C for ¢t € [0, %] It is used in Example 26.3.3 and Example 26.3.4 for
t €10,2].
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3) It follows from r'(¢) = (1, 6t, 18¢%) that

[/ (8)]| = V1 + 36t2 + 32414 = /(1 + 18£2)2 = 1 + 18¢%,

hence

1
/zds—/6t31+18t2)dt {6#‘ 668} ;16—1—1&64:24—1—1152:1176.
0

4) Tt follows from 3) above that ||r'(¢)|| = 1 + 182, so

1 214182
/ ds:/ ;82(%:

Figure 26.7: The curve C of Example 26.3.5.

5) It follows from

sint
r'(t) = <— sint, cost, — o ) ,

cost
that

L2 .2
sin”t sin” ¢ 1
"(t)|| = \/sin® ¢ + cos? ¢ =1+ =
=l et + cos? t + cos2t  |cost|

hence

1 1 1
/C(x—i—ez) ds:/0 (cost—l—elnCOSt) @dt:/o 2dt = -

6) It follows from

r'(t) = (e'(cost —sint), e’ (sint + cost),e’),

that

|r' ()] = e* /(cost —sint)2 + (sint + cost)2 + 1 = V3¢,
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Figure 26.8: The curve C of Example 26.3.6 and — apart from the factor 1/v/3 — of Example 26.3.7.

thus

2
/(a:2 +y2+2Y)ds = / e®" (cos®t +sin®t + 1) V3etdt
c 0

2
= 2\/§/ e3tdt:2—\3/§ (ef—1).
0

7) If we first divide by v/3, we get by Example 26.3.6 the more nice expression ||r/(t)|| = e’.

Then the line integral becomes

/dSZ/ etdt = e* — 1.
1 0

Figure 26.9: The curve C of Example 26.3.8, i.e. a circle except for the point (—1,0).

8) We get by just computing
Y1) —2t(1 + %) — 2t(1 — t?) 2(1 +12) —2t- 2t
(14 12)2 ’ (14 12)2

- 4t 200 —t%)\ 1 2
- <_(1+t2)2’ (1+t2)2) T (14¢2)2 (=21 =19,
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hence
Wol= - vaeraoeEe Y Jaiepe L
(1412)2 (1+¢2)2 142

Then finally,
/(xQ—i—yQ)ds = /+001 {(1—)%+4*} 2 dt
. e (14122 1412

+o00 (1 +t2)2 9
- = +oo __
B /_Oo (1+1¢2)? 1 T+ 2 dt = [2 Arctan t]752 = 2.

ALTERNATIVE. The computation above was a little elaborated. However, the line integral
is independent of the chosen parametric description, and C is a circle with the exception of
the point (—1,0), which is of no importance for the integration. Therefore, we can apply the
simpler parametric description

r(t) = (cost,sint), te]—mn,
where
r'(t) = (—sint,cost) and |r/(t)] = Vsin®t + cos2t = 1.

Then the line integral becomes almost trivial,

/(x2+y2)ds:/ 12dt = 27.
C —7

Figure 26.10: The curve C of Example 26.3.9 and Example 26.3.10.

9) Here
2 2t 1 1 2
) — _ _ (Vi—e,—t1)
r() ( 1_t2’ 1_t271+t+1—t) 1_t2 \/7, ) ?
hence
2 \/— 2v2 1 1
/ _ 1—¢2 2 — =V2(———].
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The line integral is

1
f 1 1—t]v2

ds = — — —— | dt=v2 |ln—
/c ’ / (1+t t_1> f{nl_t]o

\/ilncj ) V21In <£+1>=2\/§1n(\/§+1).
S B

10) We consider the same curve as in Example 26.3.9, so we can reuse that

o= 25 = v (- ) refog).

and the line integral becomes

v 2v/2 Vs
/ rzelds = / 2 Arcsin ¢ - (1 — %) - v2 dt = 4\/5/ Arcsin tdt
c 0

1—1¢2

T e T 1 1
4\/5/ ucosudu:4\/§usinu+cosu4:4\/5{—-—4———1}
0 [ ]0 4 \/i \/i

= d+7-4V2=71—4(V2-1).
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Figure 26.11: The curve C of Example 26.3.11.

11) Here
r'(t) = (—sint, 2 cost, e),

SO

It (#)]] = Vsin ¢ + 4 cos? +e2 = /1 + 3cos® + 2 €2t

The parametric description of the integrand restricted to the curve is

V14322 + 22 =+/1+3cos2t + e2t,

so the line integral becomes easy to compute

1
/c 1+3x2+z2 / \/1+3C082t+62t
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Example 26.4 Calculate in each of the following cases the given line integral along the given plane
curve C of the equation y =Y (z), x € I.

1) The line integral fc 22 ds along the curve

y=Y(r) =z, z € [1,2V2].

1
2) The line integral fc m ds along the curve

y=Y(z)=2? z € [0,1].
3) The line integral fc y?ds along the curve

y=Y(z) =z, z € [1,2].

4) The line integral fc ds along the curve

1
V2 —y?

y=Y(z) =sinx, x € [0, 7).

5) The line integral fc ds along the curve

1
y =Y (x) =sinhz, x €[0,2].
6) The line integral [, ye®ds along the curve
y=Y(z)=¢€", z € 0,1].
A Line integrals along plane curves.

D Sketch if possible the den plane curve. Compute the weight function /14 Y’(x)? and finally
reduce the line integral to an ordinary integral.

Figure 26.12: The curve C of Example 26.4.1.
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1
I 1) It follows from Y'(x) = . that

1
1+Y'(x)2==V1+22,  ze[l,2V2].
X

Thus we get the line integral

22 1 2V/2
/JJQdS = / mQ-E\/l—I—xQdm: V1422 -xdx
c 1 0

Njw

2Vv2
1 s 3 1 2
} _5{9 —2 }_§(27—2\/§)_9—§\/§.

= [1.2(14_:]52) 1

2 3

0.8

04

0.2

Figure 26.13: The curve C of Example 26.4.2.

2) From Y'(z) = 2z follows that

\/l—I—Y’(a;)2 = \/1—1—4332,

and hence
1 V1 +4a2 ! 1 1 /2 1
ds = YT dr= | ————dr = dt
cl+4y 1+ 4x 0o 1+ (27)2 2 Jo V1+t2

1

;[ln(ﬁm)}j:;ln(?%) - L+ ve)

3) Here clearly /1 +Y'(2)2 =1+ 12 = /2, s0
2
2
/deSZ/ xQﬁdmz%[afi]i:g\/ﬁ.
c 1

4) We get by differentiation of Y (x) = sinz that Y'(z) = cos z, hence the weight function is

VIHY(2)? =1+ cos?a = V2 —sin® .

We finally get the line integral by insertion

V2 — sin? mdx—/ dex = .

/¢—d5‘/ \/2—7
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0.8

0.4

0.2

0.2

Figure 26.14: The curve C of Example 26.4.3.

Figure 26.15: The curve C of Example 26.4.4.

Figure 26.16: The curve C of Example 26.4.5.

5) When Y (z) = sinhz, then Y/(z) = coshz, and the weight function becomes

V1+Y'(2)2 =1+ cosh®z = V/2 + sinh® z.
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We finally get the line integral by insertion

1 2 1 e 2
/7d82/ —_—— 2+Slnh2$d$:/ de:Z
c 2+ y? 0 v/2+sinh?z 0

25

0.5

T0IT0204 06 08 1 12
x

Figure 26.17: The curve C of Example 26.4.6.
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6) When Y (z) = e® then also Y'(x) = e*, so the weight function becomes

V14 Y'(2)? = 1+ e

We get the line integral by insertion

1 1

/ye””ds = /em-em-\/1+ezf’3dx:/ V14 e2. ¥ dy
c 0 0

1 1

—/ V14 e2zd(l+e?®) =

2 z=0

; [(14‘6290)%}: = {(1+€2)% — 1}.

wl

1
2
Example 26.5 A space curve C is given by the parametric description

r(t) = (et,t\/i,e*t) , te0,In3].
Prove that the curve element ds is given by (e! + e~ %) dt, and then find the value of the line integral

/sz ds.
C

A Curve element and line integral.

D Follow the guidelines.

Figure 26.18: The curve C.

I The curve is clearly of class C*°. Furthermore,

I = ()7 + (VB + () =¥ + 24 e = (¢ 47",

and we get the curve element
ds = [[f'(t)||dt = (e' +e77) ,adt

with respect to the given parametric description.
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Then compute the line integral,

In3 In3
/ 2zds = / e3te? (et + e_t) dt = / (est + et) de
C 0 0

In3
1 4 : 1 3 1 3
= | =-.3P¥43---1=2
|:3€ —|—6:|0 3 + 3 0%

where we alternatively first can apply the change of variables u = e?, from which

3 3

1 1 2
/z3zd$=/(u2+1)du=[u3+u} :9—1—3—7—1:3—.
. . 3 ) 3 3

American online
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—
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Example 26.6 A space curve C is given by the parametric description
4 . T
r(t) = t+4cost,§t—?>cost,5smt , te {0,5}.
Find the value of the line integral

/xds.
C

A Line integral.

D First find the curve element ds = ||r/(¢)]| dt.

Figure 26.19: The space curve C.

I From
, ., 4 .
r'(t) = 1—4smt,§—|—3s1nt,5cost ,

follows that
4 2
I/ (t)|]? = (1—4sint)2—|—<§+35int> +25cos’ t

16 25 25
= 1-8sint+16sin? t—l—g—i—Ssint—i—Qsin2 t+25cos® t = 9 + 25 = 9 10,

thus

ds = [[¥'(1)]] dt = gx/ﬁdt.

The line integral is

Bl

2

3 5 5 2o 5 2
rxds = (t+4cost)-§\/10dt:—\/10 E+4smt 25\/10 — t+4
c 0

3
5724/10 N 201/10
24 3
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Example 26.7 A space curve C is given by the parametric description
2 ot L
r(t) = (1t e ,§t ) tell,2].
Find the value of the line integral
1
/ S
c VT +2xz +y?

A Line integral.

D First calculate the weight function ||x/(¢)]|.

Figure 26.20: The curve C. Note the different scales on the axes.

I We get from
r'(t) = (2t,2e*,2t%) = 2 (t,e*, %)
that
(0 =2V w1 6

Then by insertion and reduction,

1 ? 1
/7(18:/ <2/ et 12416 dt = 2.
¢ Va+2rz+y? 1 \/t2+2t2 Ly et
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Example 26.8 A space curve C is given by the parametric description

1
r(t) = <1nt,t2, §t4> , te[1,2].

1
Prove that the curve element ds is given by (t + 2t3> dt, and then compute the line integral

/ ye ds.
c <

A Line integral.

D Follow the guidelines.

Figure 26.21: The curve C.

I Clearly, r(t) is of class C*° for ¢t €]1,2[. Then
/ 1 3
r'(t) = 2,2t,2t , tell,2],
implies that

2
1 1
' (t)))% = Z+ 412 + 41° = (E + 2t3> ,

SO

1
ds = ||r/(¢)]| dt = ‘; + 23

1
dt = (E + 2t3> dt fort €]1,2].
We get by insertion of the parametric description,
T 2 42 2
te -t 1 1
/ye ds = /— = 4o dt:2/ 212 dt
c < 1 t4 t 1 t2

1

2

2

12 11 2 1
oLy Zpl (1 0, 231
t 3],
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Example 26.9 A space curve C is given by the parametric description

13
t) = (Int, t2,2t), te|=,=|.
r(t) = (In ) {2 2}
1) Find a parametric description of the tangent to C at the point r(1).
1
2) Prove that the curve element ds is given by (E + 2t> dt.

3) Compute the value of the line integral
/ (e” +/y +2z2) ds.
c

A Space curve; tangent; curve element; line integral.

D Find r/(¢), and apply that ds = ||/ (¢)]| dt.

Figure 26.22: The curve C and its tangent at (0,1, 2).

I 1) Sincer(1) = (ln 1,12,2. 1) =(0,1,2), and

1
r'(t) = (;,2@2) , (1) = (1,2,2),
a parametric description of the tangent is given by

(z(u),y(u), 2(u)) = (0,1,2) + u (1,2,2) = (u, 2u + 1, 2u + 2),
2) Since

' (t)]|? = Y. I i
t2 t ’

13
we get for t € [5, 5] that

1 1
ds = [|'(¢)]| dt = 'E + Zt' dt = <¥ + Zt) dt.
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3) Then by insertion and computation we get the line integral

3
2 1
/(ex+\/§+2z) ds:/2 (e“‘t+\/t2+2-2t)-<t+2t> de
¢ 3

3
2

3
:/2(t+t+4t)~%(1+2t2)dt:6/ (1+2t%)dt

o3

SO

NJ= e

= [6t + 4t°] }=6+%(27—1):19.

sssssssssssssvssssssssssssssssssssssssssssesssssnsssssssssssssssssssssssfilcgte]-Lucent @
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¥, N
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devices ever had to be “plugged in.” To obtain that status, there
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26.5 Examples of the line integral in polar coordinates

Example 26.10 Compute in each of the following cases the given line integral along the plane curve
C which is given by an equation in polar coordinates.

1) The line integral [,(x* 4+ y®)ds along the curve given by

0=e?, ¢ €10,4].

2) The line integral fc yds along the curve given by

0=a(l —cosyp), v € 10,7].

3) The line integral fc VY ds along the curve given by

@ = Arcsin p, 0 €[0,1].
4) The line integral fc \/ﬁ ds along the curve given by
0= acos® o, pE [O,g].

1
5) The line integral fC R ds along the curve given by
224y

a ™
0= ) 506 |:O7 7:| .
cos 4

6) The line integral [, (\/:EQ +y2 — 1) ads along the curve given by
p=0-lno, o€[L2].
7) The line integral [,(z* +y?)ds along the curve given by

» =0, 0€[1,2].

1190

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume
Vil Line Integrals and Surface Integrals The line integral

%}5 4?0 72‘5 %O 71‘5 71‘0 -5

-30

—40

Figure 26.23: The curve C of Example 26.10.1.
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1
Y

Figure 26.24: The curve C of Example 26.10.2.

A Line integral in polar coordinates.

2
D First compute the weight function ;[ 0? + (—) possibly /1 + <Q —SD) , and then the line
2

integral.

d
I 1) From d—g = e¥ = p follows that
®

m:\/ﬁ.pzﬁ-e“’,

and thus

4 4 Y
/($2+y2)ds:/ 92\/5640(:190:\/5/ 63¢d¢:?(612_1)'
¢ 0 0
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0T 02 03 04 05

Figure 26.25: The curve C of Example 26.10.3.

d
2) From <0 _ asin , follows that

de

do\ 2
0+ <—Q> =a?{(1 —cosp)® +sin’ p} = a” - 2(1 — cos ),

dep
hence
/yds = /g(gp)sin@-a\/ﬁ-\/l—cosapdap:azx/ﬁ/ (1—cos<p)%sin<pdap
c 0 0
T 2 1642
_ W[ (1—00890)3] a2y 2y - 160
0 5 5
3) It follows from
2
ST Y T S
ng e /1= o2 1— o2
that
yds / 0-sing(p dg—/
Jooas = [ Ve g e= [V e

/0 ié}zdg:[—m}::l.

ALTERNATIVELY, ¢ = sinp, ¢ € {0, g} and

d 2
\[&°+ (oki) = \/sin  + cos? o = 1,

thus

3 3
/\/§d8:/ \/sinzgo-ldap:/ sinpdy = 1.
c 0 0
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0.3

0.2

0.1

Figure 26.26: The curve C of Example 26.10.4.

4) Tt follows from

do .
— = —2a sinp - cos p,
de
that
do 2
0° + (d_> = a%cost o+ 4asin® o - cos? ¢ = a®cos? ¢ {0082 © + 4sin? cp}
P

= a®cos? {4 — 3cos? go} .

/
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Figure 26.27: The curve C of Example 26.10.5. (In fact, a segment of the line z = a.

Now, cosp > 0 for ¢ € {0, g}, SO
do)\ 2
Q2+(—Q> =a cosp /4 — 3cos? p,
de

and the line integral becomes

i 3 2 5. s
/Lds _ /wds: _ACOSTP NG oson/d — 3 cos?
¢ V4a—3p ¢ Vda—3p 0 +/4a—3acos? p

av/a

z 4
= a\/a/ cos3<p-sin<pd<p:a\/a[—coiw} ==
0

0

[N

5) If o= ﬁ, then

do asing
dp  cos2p’
hence
o+ @ 2=a2 1 +sin2<p _ a?
de cos?2p  costo cost ¢’
where

o, (de)*_ _a
e dp/)  cosZy’

The line integral is obtained by insertion,

1 1 Tcosle a 7
/ﬁdSZ/ﬁdSZ/ T et W=
cTet+y c o 0 a COs® a
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00z 04 06 08 1

Figure 26.28: The curve C of Example 26.10.6.

Figure 26.29: The curve C of Example 26.10.7.

6) If ¢ = p— ln g, then

dep 1 -1

_— = 1 - =,

do 0 0
hence

1+ Q% 22\/1—1—(9—1)2
do '
Finally, we get the line integral by insertion,

/c(\/xQ—FyQ—l) ds = /c(g—l)dSZ/lzm-(g—l)dg

3
2

% [{1+ (o—1)%} }j = %(2\/5— 1).
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1 dep 1
7) If p = —, then —/— = ——, so
) 0 do 0?

de\ 2 1 1+ 02
v (ofe) ==

We get the line integral by insertion

/C(acz—i—yz)dsz/1 92-7‘1;92@):% [{1—}—92}%}?:%{5\/5—2\/5}.

The line integral

Example 26.11 A. Find the curve length from (0,0) of any finite piece (0 < ¢ < «) of the
Archimedes’s spiral, given in polar coordinates by

o=ap, 0< < +oo, where a > 0,

i.e. calculate the line integral

{= / ds.
@=0

Figure 26.30: A piece of the Archimedes’s spiral for a = 1.

D. First find the line element ds expressed by means of ¢ and de.

We shall here meet a very unpleasant integral, which we shall calculate in four different ways:

1
2

)
)
3) by using a pocket calculator,
4) by using MAPLE.

by a substitution,

by using partial integration,
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I. Since ¢ = P(p) = ap, and since we have a description of the curve in polar coordinates, the line

element is
ds = /{P(¢)}2 + {P'(¢)}2dp = \/(ap)? + a2 dp = ay/1 + @2 de.

Then by a reduction,
[e3 (e} (6%
éz/ ds:/ a\/1—|—<p2d<p:a/ V14 @2 de.
©=0 0 0

1) Since 1+ sinh?t = cosh? ¢, we have v/1 + sinh? ¢ = + cosh t, because both sides of the equation
sign must be positive. Thus we can remove the square root of the integrand by using the

monotonous substitution,

@ = sinht, dep = coshtdt, t = Arsinh ¢ =1In (cp +vV1+ g02> .

Since t can be expressed uniquely by ¢, the substitution must be monotonous.

> Apply now

REDEFINE YOUR FUTURE
AXA GLOBAL GRADUATE
PROGRAM 2015

redefining / standards M

[=%
S
]
17}
=
S
=
S
2
°
=
o
©
0
o
3
2
9
&
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2)

Then

L = a/ \/1+<p2d<p:a/ V1 + sinh ¢ - cosht dt
0 p=

= a/ cosh?tdt =a-
¢ 0 p=

{cosh 2t + 1} dt

DN | =

(e

sinh 2t 4 t] [(t + sinht - cost)]_

l\D\»—A I
1\3\@

©=0

t 4+ sinht- V1 + sinh?¢ }
L @=sinh t=0

—ln(@—km)—ﬂp m}
{\/1+a2+1n(a+ 1+a2)}.

If we instead apply partial integration, then

{ = a,/ \/1+<p2d<p:a/ 1-v/14¢2de
0

0

NN NI NI

7] Y L
a,[tp 1+<p}0 a/ ® \/ﬁdnp
_ a,{ow/l—i-oﬂ /SDH_ldgp}

1+s0
= \/1+2—/\/1+ 2d +/7
“{“ B T/ m}
= —a/ \/1+g02d<p+a{a\/l+a2+ln(a+ 1+a2)}.
0

The first term is —a foa V14 ¢2dp = —£, so we get by adding ¢ and dividing by 2 that
= g {am—l—ln(a—&— 1+a2)}.

This is an example where a pocket calculator will give an equivalent, though different answer,
so it is easy to see, whether a pocket calculator has been applied or not. It is here illustrated
by the use of a TI-89, where the command is given by

*/(ﬂi +1t°2),t,0,b),

because neither ¢ nor « are natural. Then the answer of the pocket calculator is

26.1) a- <1n(\/b2 +14D)  bVER 1) |

2 2
followed by writing o again instead of b.

However, if one does not apply a pocket calculator, but instead uses the standard methods of
integration, one would never state the result in the form (26.1). The reason for this discrepancy
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is that the programs of the pocket calculator are created from specialists in Algebra, and
they do not always speak the same mathematical language as the specialists in Calculus or
Mathematical Analysis. In Calculus the priority of the terms would be (b = «)

g{a\/l+a2+ln(a+ 1+a2>},

because one would try to put as many factors as possible outside the parentheses and then
order the rest of the terms, such that the simplest is also the first one. Obviously, this is not
the structure of (26.1).

The morale of this story is that even if a pocket calculator may give the right result, this result
does not have to be put in a practical form. It is even worse by applications of e.g. MAPLE
where the result is sometimes given in a form using functions which are not known by students
of Calculus.

Note also that pocket calculators in general do not like the operations | - | and /-, and cases
where we have got two parameters. The latter is not even one of the favorites of MAPLE
either, and it is in fact possible to obtain some very strange results by using MAPLE on even
problems from this part of Calculus. I shall therefore give the following warning: Do not use
pocket calculators and computer programs like MAPLE or Mathematica uncritically! Since they
exist, they should of course be applied, but do it with care. ¢

4) For completeness we include an application of MAPLE. Without further help we just get

Int (a~ V1+t2t= 0..@)
/ av/t2 +1dt
0

Apparently one should use some additional package from MAPLE in order to get this right
and not like here just use the most “obvious”.

Example 26.12

A. Find the value of the line integral I = fc ly| ds, where C is the cardioid given in polar coordinates
by

0=P(p)=a(l+cosp), —m<p<m

Examination of dimensions: Since o ~ a, we get fc -+ ds ~ a, and since y ~ a, The result must

be of the form ¢-a-a = c¢- a?.

Due to the numerical sign in the integrand we must be very careful. In particular, a pocket
calculator will be in big trouble here, if one does not give it a hand from time to time during the
calculations.

D. First find the line element ds.
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05

05 1 15

-0.5

Figure 26.31: The cardioid for a = 1; (kapdia = heart).

I. The line element is seen to be

VAP@)2 +{P'(¢)}2 dp = V{a(l + cos)}2 + (—asinp)? dp
= a\/(l +2cos 4 cos? ) + sin® dp = av2 - /1 + cos p dp.

ds

By a reduction we get

/|y|ds = / |P(¢)sing| - av2- /14 cosgpdy
c

—T

/ a(l + cosp) - [sing| - av'2 - /1 4 cos pde

—T

= a®V2 (1+coscp)%|sincp|d<p

—T

= a2\/§-2/ (1+cos<p)%sin<pd<p

0
= 2\f2a2/

s
3
2
=0

(I+cosp)2-(—1)dcosy

™

2
= —2v2d? [g (1+cosg0)g]
0
W2, 5 32a?
a? {02} = =5

Without using some additional help MAPLE does not return the result.

C. Weak control. The result is of the correct dimension a?. Furthermore, the integrand is positive

almost everywhere, so the result must also be positive, which it is here. ¢
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26.6 Examples of arc lengths and parametric descriptions by the arc length

Example 26.13 Compute in each of the following cases the arc length of the plane curve C given by
an equation of the formy =Y (x), z € I.

1) The arc length [, ds of the curve

x* 448
24z

y=Y(z) = x € [2,4].

2) The arc length fc ds of the curve
x
y:Y(:f:):acoshE, x € [—a,al.

[Cf. Example 26.16.1 and Example 32.7.8.]
8) The arc length [, ds of the curve

e’ —1

y=Y@ =S wclzd

4) The arc length fc ds of the curve
y=Y(x) =212, x €]0,1].
5) The arc length fc ds of the curve
y=Y(z) =213, x €]0,1].

A Arc lengths of plane curves.

D Sketch the plane curve. Calculate the weight function /1 4+ Y/(z)? and reduce the line integral of
integrand 1 to an ordinary integral.

2 22 24 26 28 3 32 34 36 38 4

Figure 26.32: The curve C of Example 26.13.1.
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I 1) Tt follows from

that

The line integral

1 1 4
V1+Y/(7)2 = @\/6%4 + (@' =16)* = o (2" +16) = = + —.

We get the arc length by insertion,

/ds
1

Il
S—
[y
—
_|_
<
&
o
8
|
t\\%
—
oo‘aw
+
N

Iy

inancial
conomics

—

ornationa g
Business.

/ Leadership &8
‘ Organlsationg

Shipping Ps laie'llals

apagement N

|

NORWEGIAN L erwo
BUSINESS SCHOOL ~ ~ £9Uss

EREDITED

Empowering People.
Improving Business.

Bl Norwegian Business School is one of Europe’s
largest business schools welcoming more than 20,000
students. Our programmes provide a stimulating
and multi-cultural learning environment with an
international outlook ultimately providing students
with professional skills to meet the increasing needs
of businesses.

Bl offers four different two-year, full-time Master of
Science (MSc) programmes that are taught entirely in
English and have been designed to provide professional
skills to meet the increasing need of businesses. The
MSc programmes provide a stimulating and multi-
cultural leaming environment to give you the best
platform to launch into your career.

* MSc in Business

* MSc in Financial Economics

* MSc in Strategic Marketing Management

* M5Sc in Leadership and Organisaticnal Psychology

www.bi.edu/master

1202

Download free eBooks at bookboon.com

Click on the ad to read more



http://s.bookboon.com/BI

Real Functions in Several Variables: Volume
Vil Line Integrals and Surface Integrals The line integral

14
1.2

A 05 0 05 1

Figure 26.33: The curve C of Example 26.13.2 for a = 1.

2) From Y’(z) = sinh L follows that
a

1+ Y/(2)2 = /1 + sinh? (f) — cosh ™,
a a

The arc length is

/ds:/ coshgdx:a[sinhgr = 2asinh1 = " (2 —1).
C —a a ad—a €

Figure 26.34: The curve C of Example 26.13.3.

3) It follows from

e**+1 coshz
e2* —1  sinhaz’

14+Y/(2)? = e2r — 1)2 4 4e2z =
e2r — 1

1203
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so the arc length becomes

4 . .
coshz sinh 4 2 sinh 2 cosh 2
d dz = [Insinhz|* =1 =ln( 2207
/c ° /2 sinhz [nsinha]; =In (sinh2> . ( sinh 2 )
4) Here, Y'(z) =

= In(2cosh2) =In(e*+e?) =In(e* + 1) — 2.

3
5\/5, S0

\/1+YI(CE)2=H1+%CC.

The arc length is

1
9 4 2
ds:/ 1+ -zdr=--2
/c o VT 93

Nl

(1+%x> ]12%{(1743>g—1}:2i7{13\/ﬁ—8}.

0.8

04

0.2

0.2

Figure 26.35: The curve C of Example 26.13.5.

3
2

5) Since the arc length of y = z3, x € [0, 1], is equal to the arc length of z = y2, it follows from

Example 26.13.4 that

/ds— —{13\/_ 9}.

[\]

ALTERNATIVELY, Y’ (x f:z: s thus

o~ b tia fonfiriat

() () e EE L v

w\»—A

3

(+3)

9 9 27 27

0
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02 04 06 08

Figure 26.36: The curve C of Example 26.14.1.

Example 26.14 Compute in each of the following cases the arc length of the given plane curve KC by
an equation in polar coordinates.

1) The arc length fc ds of the curve given by

g:acos‘l%, ¢ € [0,4n].

2) The arc length fc ds of the curve given by
0=a(l+ cosy), v € [0,27].

3) The arc length fc ds of the curve given by
»=1Inp, 0€[l,e].

4) The arc length fc ds of the curve given by

g:asin3§, v € [0, 3n].

A Arc lengths in polar coordinates.

d dp\?
D First calculate the weight function 4 [ 0% + (0) possibly 4/1 + (g (’0) , and then the line

de do
integral.
1) Since
d
digi = —a-cos?’%-sin%,

the weight function is given by

do\ 2
0’ + (d_5)> =a? cos® % + a? cos® % - sin? % =a? cos® %,

1205
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0 05 1 15 2

Figure 26.37: The curve C of Example 26.14.2.

—08 -06 —0.4 0.2

Figure 26.38: The curve C of Example 26.14.3. (Part of the curve of Example 26.10.2).

47 dQ 2 47 @ T
/ 02 + <_) dw:/ a‘cos?’—‘ dcp:4a/ |cos3t|dt
0 d(p 0 4 0

g 2 2 L3
Sa/ cos tdt:8a/ (1 —sin“t)costdt = 8a [sint— sin t] =—.
0 0 3 3

hence

/ds
c

2) In this case,

do\ 2
0%+ e :a\/(1+cosg0)2+sin2g0:a\/2(1+cosg0):a 40082£:2a‘cosf
dep 2 2

SO

27 T z
/ds:/ Qa‘cosf‘ dap:4a/ |cost|dt:8a/ costdt = 8a.
c 0 2 0 0

)
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3) From

e

follows that

/Cds:/le\/idgzx/i(e—l).
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-02

0.4

06

08

Figure 26.39: The curve C of Example 26.14.4.

ALTERNATIVELY, 0 = €%, ¢ € [0, 1], so (cf. Example 26.10.1)

2

hence

/Cds:/olx/ie“’dgozx/i(e—l).

d
4) Here d—i:a-sinzg-cosg,so
0%+ do 2:a sin® £ 4 sint 2 cos? £ = g sin? 2
dyp 3 3 3 3

thus

3 T ™
/ds:/ asiandcp:?)a/ sinztdt:@/ (1 —cos2t)dt =
c 0 3 0 2 Jo

1208
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Figure 26.40: The space curve of Example 26.15.1.

Example 26.15 Below are given some space curves by their parametric descriptions x =r(t), t € I.
Express for each of the curves there parametric description with respect to arc length from the point
of the parametric value tg.

1) The curve r(t) = (cost,sint,Incost), from to = 0 in the interval I = [0, g [

1
2) The curve r(t) = —= (et cost, elsint, et) from tg = 0 in the interval I = R.

V3
[Cf. Example 26.3.7.]

8) The curve r(t) = (Incost,Insint, /2t) from to = % in the interval I = ]O, g [

4) The curve r(t) = (Tt 4 cost, Tt — cost, /2 sint) from tg = g in the interval I = R.
5) The curve r(t) = (cos(2t),sin(2t), 2 cosht) from tg = 0 in the interval I = R.
6) The curve r(t) = (cost,sint,Incost) from to =0 in the interval I = }—g, g [

[Cf. Example 26.3.5.]

A Parametric description by the arc length.

D Find §'(t) = ||r'(¢)] and then s = s(¢) and t = 7(s), where we integrate from t¢. Finally, insert in

x =r(t) = r(7(s)).
I 1) From

sint

'(t) = (—sint,cost,—— | , te[O,E[,
r'(t) sint, cost, — 5

follows that

. 2
t 1
s'(t) = |I'(t)|| = \/sin2t+cos2t—|— L

cos?2t  cost’

1209
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Figure 26.41: The space curve of Example 26.15.2.

»
—~~

~
~—

/t 1 d /t COS U q /tl 1 n
u = ———du = -
0 COosu 0 1—sin’u 0o 2 \1+sinu

1 1+sinu t 1 1+sint

—|In|{ ——— =—In{——— ).

2 1—sinu o 2 1 —sint
Then

1+sint 9s . . e’
—F— =€, le. sint=

-1
= ———— = tanh > 0.
1 —sint c2syq  vamhs, 520
Note that it follows from t € {0, g [ that

¢ 2e® 1
cost = —-—— = :
e +1 coshs
Thus
625 _
t = Arcsin [ ——— | Arcsin(tanhs), 5 >0,
e2s +1

and the parametric description by the arc length is

2¢e8 25_1 28
r(s) = (cost,sint,lncost):( c ¢ 1( c >)

2162 410 T \e® 41
1
= ( ,tanh s, —lncoshs) , s> 0.
cosh s
2) Here
r'(t) = 1 e’ (cost —sint, cost +sint, 1)
\/§ 9 ) 9
$0

et \/(cost —sint)2 + (cost +sint)2 + 1 = ¢,

-
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Figure 26.42: The space curve of Example 26.15.3.

hence
t
s(t)z/e”duzet—l, and t=In(s+1), s>-1.
0

Finally, we get the parametric description by the arc length,

r(s) = % ((s + 1) cos(In(s + 1)), (s + 1)sin(In(s + 1)), s+ 1)
= 8\4/_; (cos(In(s + 1)), sin(In(s + 1)),1), s> —1.
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Figure 26.43: The space curve of Example 26.15.4.

3) From
v(t) = (—Sint,w, 2), te] ,E[,
cost’ sint 2
follows that
, , sin? ¢ cos’t  sint cost 1
S =1lF®l = \/coth 2 sin®t = cost + sint _ costsint’

ast € ]O,g[. Then

t t oo .
1 5 cos sint

s(t) :/ — du:/ (bmu + — u) du=1In""" = Intant,
= COSUSInu ~ \cosu sinu cost

INE]

and thus s € R and tant = e®, and

t 1 ! d sint a
COST = = s an SiNt = —F———.
V1+tan?t  V14e% V1 e

The parametric description by the arc length is

1 1
r(s) = (—2 In(1 4 e*),s — 5 In(1 + e%), ﬁArctan(es)) , s€eR.

r'(t) = (7 —sint, 7 +sint, V2 cost),

SO

VA
~
—
~+~
~—

|’ ()] = /(7 — sint)2 4 (7 + sint)2 + 2 cos? ¢

V249 + 2sin®t + 2cos? t = /98 + 2 = 10,
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Figure 26.44: The space curve of Example 26.15.5.

and thus

t
o S o
s(t)z/lOdule(t—g), hence t:1—0+§, s € R,

™

2

T 7
and the parametric description with the arc length as parameter from the point <77T, —W, \/5)

2
r(s) = <$ — sin (18—0) , 78_;% + sin (1—50) V2 cos (%)) ,

for s € R.
5) It follows from

is

r'(t) = (—2sin2t, 2 cos 2t, 2 sinh t),

that

s'(t) = ||t (t)|| = 24/sin?(2t) + cos2(2t) + sinh? t = 2 cosht,

hence
t
s(t) / 2 coshu du = 2sinht,
0
so s € R and

t= Arsinh(%)zln(% (s—|— s2+4)>, s eR.

The parametric description with the arc length as parameter is

o) (oo (2min (3)) i 2amin (3)) 21 )
= (cos (2 Arsinh (%)) ,sin (2 Arsinh (g)) , \/4+752) ,
for s € R.

1213
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Figure 26.45: The space curve of Example 26.15.6; cf. Example 26.15.1.

6) This is an extension of the curve of Example 26.15.1, with the same parametric description
evaluated from the same point t5 = 0. We can therefore reuse this example, since the only
change is that s € R,

1
r(s) = <—,tanh s, — In cosh s) , for s € R.
cosh s

Vouwro Touexs | Resanr Toocks | Macs Toveks | Vowo Buses | Vowo Cowsteucnion Esumsest | Wowo Pesm | Vowo Aeno | Wowo IT
Vowo Fimswcer Sepnces | Vowo 3P | Vowo Powerream | Vowo Pasrs | Vowo Techwowoer | Wowo Loasncs | Busisess Anes Asie
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0.8
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0.2

A 05 0 05 1

0.2 x

Figure 26.46: The chain curve for a = 1, c¢f. Example 26.16.1.

Example 26.16 Find for every one of the given plane curves below an equation of the form
(26.2) § = (s),

where the signed arc length s is computed from a fized point Py on the curve, while 1 is the angle
between the oriented tangents at Py and at the point P on the curve given by s.

1) The chain curve given by y = a cosh E, from Py given by x = 0.
a
[Cf. Example 26.4.2.]

2) The asteroid given by
r(t) = a(—cos’t,sin’ ¢, te [0, z} ,
from Py given by t = 0.
3) The winding of a circle given by
r(t) = a(cost + tsint,sint — t cost), te Ry,
from Py given by t = 0.
4) The cycloid given by
r(t) = a(t —sint, 1 — cost), t € (0,27,
from Py given by t = 7.

It can by proved that (26.2) determines the curve uniquely with exception of its placement in the plane.
Therefore, (26.2) is also called the natural equation of the curve.

A Natural equation.

D Find the arc length s, and then ¥ by a geometrical analysis.

1215
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Figure 26.47: The asteroid of Example 26.16.2.

1) The point Py has the coordinates (0,a). A parametric description of the chain curve is e.g.

t
t)= 1|1 h—
r(t) <,acos a)’

hence

r'(t) = <1,sinh i) , where ' (0) = (1,0),
a

and thus ¢ = Arctan (sinh 2) .

From

t t
s'(t) = ||’ (t)|| = /1 + sinh® = = cosh —,
a a

follows that

s(t) = / cosh = dy=a [sinh E} = a sinh <—> .
0 a alo a

The natural equation is

¥ =U(s) = Arctan (f) .
a
2) The point Py has the coordinates (—a,0), and
r'(t) = a (3cos’t - sint,3sin’¢t - cost) = 3acost - sint(cost,sint).

For t — 04 we get r'(0) = 0, and by considering a figure we may conclude that we have a horizontal
half tangent. Then it follows that ¢ = t.

It follows from

s'(t) = ||r'(t)|| = 3a cost - sint,

1216
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)

Figure 26.48: The winding of the circle of Example 26.16.3.

t t
s(t) = / 3a cosu - sinudu = 37a/ sin2udu = %Ta{l — cos 2t},
0 0

hence
4s
2t=1— —
cos 30’
and
1 4
Y=U(s)=t= iArccos (1— 32) .

3) The point Py has the coordinates (a,0), and
r'(t) = a(—sint + sint + t cost,cost — cost + tsint) = at(cost,sint).

It follows that ¢ = t.
As t > 0 we have

s'(t) = ' (V)] = at,

thus
t
2
s(t):a/ udu:th, hence t = —S,
0 2 a
and hence
2s
=V =/ —.
p=u(s) ==
1217
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25

Figure 26.49: The cycloid of Example 26.16.4.

4) The point Py is described by r(m) = a(w,0). The curve has a vertical half tangent at Py. From
t t t t t t
r'(t) = a(1 — cost,sint) = a (2 sin? §,QSin§ cos 2> = 2asin§ (sin o708 2) )
follows that

t
s'(8) = ' ()] = 2asin

EXPERIENCE THE POW

FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
RUN EASIER...
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SO

K t
U u t
s(t) —/7r 2asm§dU—4a [—cosiL —4a{—cos§},

and hence
t s ]
cos 3= "1 hence t = 2 Arccos (—%) .

Since 1) must have the form at + b, it is easy to derive that

w:w—t:ﬁ—ZArcc%‘(—%).

Example 26.17 A plane curve C is given by the parametric description

r(t) = (a /Ot sin (v?) du, a/ot cos (u?) du) , teR.

The signed arc length from the point (0,0) is called s.
1. Find s, and find the parametric description of the curve given by the arc length.

It is proved in Differential Geometry that any plane curve has a curvature

e xr(0) 2 (1)
= wmE

where we let the plane of the curve be the (X,Y)-plane in the space.

2. Prove that k is proportional to s for C.

The curve under consideration has many names: the clothoid, Euler’s spiral, Cornu’s spiral.
REMARK. “Clothoid” means in koiné, i.e. Ancient Greek: kAwfw = I spin. ¢

A Parametric description with respect to arc length, curvature.

D Find ds and then compute.

I 1) As s'(t) = ||r'(¢)]| and r'(t) = a (sin (£?) , cos (?)), we get

$(t) = ay/sin? (£2) + cos? (12) = a,
SO

s(t) = at and t(s) = s

The parametric description using the arc length is

s

x = r(t) :a</0tsin(u2) du, /Otcos(u2) du) :a</0asin(u2) du, /jcos(uQ) du).
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Figure 26.50: The clothoid for a =1 and s € [—4, 4].

2) From
¥ (1) = a (sin (%) ,cos (%)) ~ a (sin () , cos (1) ,0) ,
and
r'(t) = 2ta (cos (7) , —sin (%)) ~ 2ta (cos (*) , —sin (%) ,0) ,

follows that
2ta cos (t2) —2ta sin (t2) 0
2ta cos (t?)
0 0 1 |=-—

{e. xr'(t)} -x"(t)
asin (t?)
asin (t?) acos (t?) 0
= —2ta’.

As ||r/(t)]| = a, we finally get

e x1'(0)} (1) 2ta* __22__2_5
[ (&)1 a? a  a®
1220
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Example 26.18 A space curve C is given by the parametric description

1
r(t) = <§t2 — 1nt,251nt,2008t> , te[1,2].

1
Prove that ||v/(t)|| =t + 7 and find the length of C.
A Arc length.

D Compute [|r'(t)[| og £ = [, |['(t)] dt.

Figure 26.51: The curve C.

I It follows from

1
r/(t) = (t— t,2005t,—25int> , tel,2],
that
1 2 1 1 2
= (1) +eotteasti= 24 = (143)
thus
1 1
"Dl =t+=|=t+=
=+ 3 =e+ 3

and accordingly,

2 2 1 2 2 3
€=/IW@Wﬁ:/ L W= 2 ime] =3 o
1 1 t 2 1 2

1221
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Example 26.19 A space curve C is given by the parametric description
r(t) = <e3t,e_3t,\/18t), tel-1,1].

Prove that ||t/ ()| = 3 (¢3* + 373"), and find the arc length of C.
A Arc length.
D Find r/(¢).

20, 20

Figure 26.52: The curve C.

I We get by differentiation

r'(t) = (3 e3t -3 e‘3t,3\/§> =3 (e3t, —e 3 \/§> )
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thus

I (8)] = 31/ (€3)% + (—e=31) 42 = 34/ (¢ + e=3)% = 3 (€3 + &) |

and we get the arc length

1 1
/ ||r’(t)||dt:/ 3(e¥ 4 e %) di
-1 1

1
2/ 3-2cosh3tdt = 4[sinh 3t]j = 4sinh 3.
0

()

Example 26.20 A space curve C is given by the parametric description

1 1
r(t) = <3t3—t,3t3+t,t2), te[-1,1].

Find the arc length of C.
A Arc length.
D Find ||r/(¢)]].

Figure 26.53: The curve C.

I It follows from
r(t) = (12 — 1,t2 4+ 1,2t),
that
I (D)]12 = (2 —1)2 4+ (12 +1)% +4t% = 2¢* 424+ 4% = 2(12 + 1)?,

hence

() = /_11 I ()] dt = 2/01 VA +1)dt = 2v3 (3 +1) _8v2

1223
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Example 26.21 A space curve C is given by the parametric description
r(t) = (6t2,4\f2t3,3t4), tel-1,1].

Ezplain why the curve is symmetric with respect to the (X, Z)-plane. Then find the arc length of C.
A Arc length.

D Replace ¢t by —t. Then find r'(¢).

Figure 26.54: The curve C.
I Tt follows from r(—t) = (6t27 —4y/213, 3t4), that the curve is symmetric with respect to the (X, Z)-
plane.
From
r(t) = (1215, 12v2¢2, 12t3) — 12t (1, \/§t,t2)
follows that
I/ (8)]| = 12]¢] - /1 + 262 + 4 = 12]¢] - (1 + £2).

Finally, when we exploit the symmetry above and put u = t2, we find the arc length

1 1 1
e(c’):z/ ||r'(t)||dt:2/ 12t(1+t2)dt:12/ (14 w)du = 12 <1+%> 18,
0 0 0

1224

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume
Vil Line Integrals and Surface Integrals The line integral

Example 26.22 A space curve C is given by the parametric description
r(t) = (t+sint, V2 cost,t — sint), te[-1,1].
1) Find a parametric description of the tangent of K at the point corresponding to
t=0.
2) Compute the arc length of C.

A Space curve.

D Follow the standard method.

Figure 26.55: The curve C and its tangent at (0,/2,0).

I 1) Asr(0) = (0,1/2,0), and
r'(t) = (1 + cost,—V/2 sint, 1 — cost), r'(0) = (2,0,0),
it follows that a parametric description of the tangent of C at (0,1/2,0) is given by
x(u) = (0,v2,0) + (2u,0,0) = (2u, v2,0), u€R.

2) The arc length of C is

1 1
/ IF' (1) dt / V/(1+cost)?+2sin t+(1—cost)? dt
—1

-1

1 1
— / \/2+26052t+2sin2tdt:/ Vadt =22 = 4.
-1 —1
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27 The surface integral

27.1 The reduction theorem for a surface integral

Given a two-dimensional (piecewise) C'l-surface F in R?. We shall in this chapter see, how we can
integrate a continuous function f, defined on F, over the surface F. We shall use the notation

/F f(x)ds

for this surface integral. In the following we make sense of this abstract symbol.

Roughly speaking, the introduction of the surface integral should in some sense follow that of the
line integral in Chapter 26. The present complication is of course that we are now dealing with two
dimensions instead of just one, and two-dimensional connected sets may have a far more complicated
boundary than a one-dimensional connected set, the boundary of which only consists of at most two
points. Furthermore, if F is a C''-surface (of dimension 2) in R?, then clearly F does not have interior
points in R3, and yet we have a sense of the existence of an intrinsic boundary of F, which we shall
denote by dF. Obviously, §F must not have a too complicated geometrical structure.

Besides the geometry of the surface the area and the area element also play key roles in the definition
of the surface integral. For later use we denote the area of the surface F by area(F), though we still
have not given the slightest clue of how to find area(F).

We shall first analyze the area element dS. In order to do that we assume that F is a C*-surface in
R3, given by
F={xeR®|x=r(u,v) for (u,v) € E},

where E C R? is a parameter domain in the usual plane, and r : E — R? is of class C'.

The idea is to approximate a small surface area element AS by a small parallelogram in the neighbour-
hood, because we can calculate the area of the parallelogram. The price is that this parallelogram does
not have to lie in F, and seldom does, with the exception of the reference point. This construction is
done by introducing the parameter curves through the point P under consideration.

Let P € F be the point corresponding to the parameters (u,v) € E°, i.e. in the interior of E. Since
E° is open, we have for small Au, Av # 0 that (u + Au,v), (u,v + Av) € E, and we can define the
two small vectors

U :=r(u+ Au,v) — r(u,v) and V =r(u,v + Av) — r(u,v),

cf. Figure 27.1, where the parallelogram spanned by U and V approximates the small area element
AS lying on F.

We note that
U~r,(u,v)Au  and  V ~r(u,v)Av.

Since U and V are vectors in R3, we can form the vector product N = U x V, which is perpendicular
to both U and V, hence a normal to the surface F at P. Furthermore, it is well-known from Linear
Algebra that the length ||N|| = ||U x V|| is equal to the area of the parallelogram defined by the two
vectors U and V. We therefore get

AS ~ U x V|| = ||N(u,v)||AuvAv = |1}, x ] || Aulv.

ol
v
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Figure 27.1: Approximation of the area element AS.

Hence, we may expect that we in the limit may write
dS = [|[N(u,v)||dudv = ||r}, x /| dudv.

This is correct in all the cases we shall consider in the following. Here we only mention that it is
possible to create some geometric examples where this construction fails. These unexpected examples
will not be relevant in this series of books.
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We formulate without proof

Theorem 27.1 The reduction theorem for a surface integral Assume that F is a C'-surface in R3
of parametric description r : E — R3, where the parameter domain E C R? is bounded and closed.
We assume that v is injective almost everywhere, and also that

N=r/ xr, #0 almost everywhere.

Let F C A C R®, and assume that f : A — R is a continuous function. Then the surface integral is
reduced to an ordinary plane integral by the formula

:/ f(r(u,v)|IN(u,v)| du dv.
E

Theorem 27.1 reduces a surface integral to an ordinary plane integral at the cost of an additional
factor, the weight function ||N(u,v)||, which is the length of the normal vector with respect to the
given parametric description r : E — R3. This (abstract) plane integral is then again in the next step
reduced to a double integral by using some of the previous reduction theorems from Chapter 20. So
in principal we calculate a surface integral by the following scheme,

— plane integral — double integral.

If we choose f =1, we of course get the area of F,

Theorem 27.2 The area of a surface F. Let F be a C'-surface of parametric description r : E — R3,
where E C R? is a closed and bounded domain, and r is injective almost everywhere, as well as the
normal N # 0 almost everywhere. Then the area of F is given by the weighted plane integral

:/ IN(u, v)|| du dv.
E
In the following sections we shall give reduction formulae in some important special cases.

27.1.1 The integral over the graph of a function in two variables
Consider a surface F which in rectangular coordinates is the graph of the equation
z=2Z(z,y), for (z,y) € E,
where Z € C1(E). Then the parametric description of F is given by
x = (z,y,2) =r(z,y) = (z,y, Z(z,y)),
SO
rp(z,y) = (1,0, Z(x,y))  and  ri(z,y) = (0,1, Z,(z,y)),
hence by a method known from Linear Algebra,
e; e e3

N(z,y)=x, xr,=| 1 0 Z, |=(-Zy(z,y),—2Z,(z,y),1).
0o 1 Z
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The length of N is

INGe, )l = 1+ {252 m)Y + {2y, 9)},

so we have proved,

Theorem 27.3 Reduction theorem for the surface integral over a graph. Let F be a C'-graph of the
function

Z:Z(Ib,y), fO’I” (xvy)EEa

where E C R? is a closed and bounded domain. Let f be a continuous function on F. Then the surface
integral of f over the graph of Z is reduced in the following way,

/Ff(1l/,)(lS':/Ef((E,:%Z(CE,y))\/1+{Z;($7y)}2+{Zé($7y)}2ds

When we as in Theorem 27.3 are considering a graph of z = Z(x,y), then also

1
cos?’

INJl =

where 9 is the angle between the normal N and the z-axis. Note that 0 < 9 < g, because if ¥ = g

9

the F would not be a graph. In particular, cosd > 0.

Concerning the area of the graph we have the following theorem.

Theorem 27.4 Area of a graph. Let F be the C'-graph of the function
z=2Z(xy)  for(z,y)€E

where E is a closed and bounded domain in R?. Then the area of F is given by
AN GAY 1
area(F) = 1 — — ) dS= [ —dS.
e /E\/ (%) +(5) - [ ey

27.1.2 The integral over a cylindric surface

For convenience we shall assume that the cylindric surface C is given by the parametric description
C: r(tz)=(X{#),Y(),z), tela,b], z€l[Z:1(t),Z2(t)].

Then the normal N with respect to the given parametric description r is given by
N(t, z) = (Y'(t), = X'(t),0).

We therefore get in rectangular coordinates,
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Theorem 27.5 Reduction theorem of an integral over a cylindric surface Let C be a cylindric surface,
given by

r(t,z) = (X(1),Y(t),2),  te€lab], ze[Zi(t), Za(t)].

Then the integral over C is reduced in the following way as a double integral,

b Zs(t)
/ f(,y,2)dS = / { / FX @), Y (). 2) dz} VIXOPE T V0
C a

Zl(t)

If we instead use semi-polar coordinates, so the cylinder is perpendicular to the plane curve
L: o=Pt), ¢=92(), for ¢ € [a, b],

then the (surface) integral over C is reduced in the following way,

Z1(t)

b (  Zs(t)
/C flz,y,2)dS = / {/ F(P(t)cos ®(t), P(t) sin ®(¢), ) dz} VAP ()2 4+ {P(t)®'(t)}2 dt.

360°
thinking.

Deloitte.

DiSCOVCI‘ thC truth at WWW.dClOitte,Ca/CaI‘CCI‘S © Deloitte & Touche LLP and affiliated entities.
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27.1.3 The integral over a surface of revolution

For convenience we assume that the surface O of revolution has the z-axis as its axis. The meridian
curve is denoted M. We use that

r(t, ) = (P(t) cos p, P(t) sin ¢, Z(t)), t € la,b], ¢e€]l0,2n],

is a parametric description of O.

The meridian curve M is in semi-polar coordinates given by
o=P() and z=Z(t) for t € [a,b].

We have previously found — or it is easy to calculate again — that the normal vector is then given by
N(t,p) = P(t){—Z'(t) cosp, —Z'(t) sin p, P'(t)}.

Then the reduction formular for the surface integral becomes

[ sy as= [ L7 s cose. P52 45} o) VPO + (20t
If we instead use spherical coordinates, then the meridian curve M is given by

r=R(t) and 6=0(t) for ¢ € [a, b].
Since

o=rsinf and z =rcosb,
we get

P(t) = R(t)sin ©(¢) and Z(t) = R(t) cos O(t),

so the reduction formula for the surface integral in spherical coordinates is given by

Jer@paas= | b { / F(t,¢) (199} R(t)sin 0t/ AR (O + (RO (1)} dt,

J0

where we for short have written
F(t, ) := f(R(t)sin©(t)cos p, R(t) sin ©(¢)sin ¢, R(t) cos O(t)).

The latter equation is also written in the following more compact (and abstract) form

. 2
/ flz,y,2)dS = / { flocosp, psiny, z) dtp} ods.
JC M 0

All these formule may at a first glance look scaring, but in practical applications it is usually easy
to see what we should do. The worst complication is probably that when we take the length of the
normal vector, then we almost always will get a square root in the new integrand, and functions like
square roots and absolute values are always difficult to integrate.
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27.2 Procedures for reduction of a surface integral

We consider 2-dimensional surfaces imbedded in R3. The idea is to pull the integration over the
surface F back to a plane integral over the parameter domain E, where we can use one of the methods
from Chapter 20. This procedure has its price because we must add some weight function as a factor
to the integrand.
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Figure 27.2: Example of a surface F with a corresponding parameter domain F in the (z,y)-plane.

Procedure:

1) Write down a rectangular parameter representation of the surface F:
('x? y’ Z) = r(u7 U)? (u7 U) 6 E'

The parameter domain E € R? is then identified and sketched (a set lying in the plane).

Remark 27.1 It is not always possible to sketch F in the space, but this does not matter much,
because the real calculations are taking place in the parameter domain E.

2) Determine the weight function: Calculate the vectors
), (u,v) and 1 (u,v),

and the corresponding normal vector to the surface F in this parameter representation,

€] €9 €3

M) ool | 22 00 02
W) =T, XT,=| 9, du ou
o0 0y 0z

ov v Ov

The wanted weight function is |N(u,v)|| (calculate it), and the surface element is

dS = |N(u,v)|| dudv.
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3) Insert the parameter representation and the surface element, and calculate the right hand side by
applying one of the methods from Chapter refch20,

:/ f(r(u,v)) |IN(u,v)|| du dv.
E

If f(x,y,2) =1, the surface integral is interpreted as the area of the surface F. In this case we get

Theorem 27.6 Surface area:
= :/ [|IN(u,v)|| du dv.
E

It is of course possible also to use some known area formulae instead of calculating the cumbersome
integral above. If for instance F is the surface of a sphere of radius r, then it is well-known that

area(F) = area(0B[0,r]) = 4nr?.

Special cases:

In the following special cases we reduce 2) in the procedure by inserting the given area element dS.

1) Integral over a graph for z = f(z,vy), rectangular:

- 9f\2 2F\2
dS—\/l—i—(%) +<3_y) dx dy.

(Compare with Section 26.3 on the line integral, the case of a graph.)

2) Integral over a cylindric surface r(t,z) = (X(t),Y(¢), z), rectangular:

dx\? , [ dv\?

where ds is the curve element for ¥(t) = (X (¢),Y(t)) in the plane, cf. Chapter 26. Line integral.

3) Integral over a rotational surface
r(t, p) = (P(t) cosp, P(t) sinp, Z(t)),

semi-polar

2 2
dS = P(t) \/(%) + (%) dtde = pdsde.

The latter abstract form

dS = pdsdy,

can often be of some help when one is using the geometry (sketch a figure) when one sets up the
reduced plane integral.
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27.3 Examples of surface integrals

Example 27.1

The surface integral

A. Find the surface integral I = | r |2| dS, where F is given by the parametric representation

(z,y,2) =r(u,v) = (u sinv, u cosv,uv) = u (sinv, cos v, v),

where —1 <u<1,0<v<1.

Figure 27.3: The surface F has two components.

If we keep u = 1 fixed and let v vary, then we get an arc of the helix with a = h = 1, cf.
Example 26.2. When (0,0, 0) is removed, the surface is split into its two components F; and Fa,
which are symmetric with respect to the point (0,0,0). The surface Fi is obtained by drawing all

lines from (0,0,0) to a point on the helix.

D. The area element is given by dS = |[|[N(u,v)|| dudv. We first calculate the normal vector N(u,v)
corresponding to the given parametric representation.

I. Tt follows from r(u,v) = u (sinwv, cosv,v) that

Or ) Or .
— = (sinw, cos v, v), — =wu(cosv, —sinwv, 1),
ou v
hence the normal vector is
e e e
Oor Or 1 2 3
N(u,v) = — x —=| sinv COS v v
ou  Ov .
ucosv —usinv  u
= wu(cosv+ v sinv,v cosv — sinwv, —1)
= u{(cosv, —sinv, —1) 4+ v (sinv, cosv,0)}.
Now

(cosv, —sinv, —1) - (sinwv, cosv,0) = 0,
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so the two vectors are perpendicular. Then we get by Pythagoras’s theorem

||N(u,v)||2 = u? {||(cosv, —ginw, —1)||2 + 1)2||(sinv,cosv,0)||2}
= u”{(cos®v+ sin? +1) +0? (sin2 v+ cos® +0%) }
= u? {2 + 112} .

Note that —1 < u < 1 shows that u may be negative. When we take the square root we get the
area element

dS = [|N(u,v)| dudv = |u| V2 + v2 du dv.

Putting D = [—1,1] x [0, 1] we get by the reduction formula
/ \z\dS:/ luv]-|ul vV2+v2dudo
JF D
1 1 1 1
/ {/ |u|2|v|\/2+v2dv} du:/ u2du-/ V2+40v2-vdo
-1 Lo -1 0
N L S | 2 (172 :]°
= |z : toodt=2-= |St
o, i3 (5 o,

= %(3\/5—2\/5). 0

Nleo
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Example 27.2

A. Let F be the surface given by the graph representation

0<z<+3, 0<y<vV1+a2, z = zy.

Calculate the surface integral | F2dS.

Figure 27.4: The surface F with its projection E.

0.5

Figure 27.5: The projection E of F in the (z,y)-plane.

D. The usual procedure is to consider F as a graph of the function
z=fzy) ==y, (z,y) €E.

We shall not do this here, but instead alternatively introduce a rectangular parametric represen-
tation (z,y, z) = r(u,v). Then afterwards we shall find the weight function ||N(u,v)]|.

I. The parameters v and v are for obvious reasons not given above. They are introduced by duplicating
(z,y) by the trivial formula

(1'73/) = (’LL7U)7
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i.e. we choose the parametric representation

r(u,v) = (x,y,2) = (u,v,w), 0<u<V3, 0<v<V14u2,

so we can distinguish between (x, y) as the first two coordinates on the surface in the 3-dimensional
space, and (u,v) € F in the parametric domain. By experience it is always difficult to understand
why we use this duplication, until one realizes that we in this way can describe two different aspects
(as described above) of the same coordinates. This will be very useful in the following.

Since
Or Or
% = (1,0,’[}) and % = (0,1,U),

the corresponding normal vector becomes

Or Or €1 € €3
N = —x—=1|1 = (—v. — .
(u,v) 50 < B 0 w (—v, —u, 1)
0 1 wu
Hence

IN(u, )| = V14 + 2.

When dS denotes the area element on F, and dS; denotes the area element on F, then we have
the correspondence

dS =1+ u2+02d5;.

The abstract surface integral over F is therefore reduced to the abstract plane integral over E by
/ ;d,s':/ uvy1+u?+02dS.
JF E

Then we reduce the abstract plane integral over F in rectangular coordinates, where the v-integral
is the inner one,

A V3 V1+u?
/ zdS = UU\/1+U2+’U2dS=/ u V14+uZ+020, dvp du.
JF E 0 0
Then calculate the inner integral by means of the substitution
t =02, dt = 2vdv.

From this we get

Wowerni 14u?
1
V14+u2+02ode = \/1+u2+t~§dt
0 0
2
1[2 PR | 3 5
t=0

:%(2ﬁ—1)-(1+u2)%.
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By insertion and by the substitution ¢t = 42, dt = 2udu we finally get

' V3 1 o 3 1 V3 o 2
'/F:db' = /0 u-§(2\/§—1)~(1+u)2du:§(2\/§—1)/0 (1+v?)? udu

l(2\/5—1)/3(1+1t)%%dt:%(%@—l)é F (1+t)%]

3 5 0
%5(2\/5_1).{4%_1}:%;_1). o

Example 27.3

A. A surface of revolution O is obtained by revolving the meridian curve M given by

r =a(l +sin#), 0<o6<

ol 2

, a>0,

where 0 is the angle measured from the z-axis and r is the distance to (0,0) (an arc of a cardioid,
¢f. Example 26.12). Calculate the surface integral

z
= —FdS.
/<9x2+y2+22

Figure 27.6: The surface O for a = 1.

An examination of the dimensions shows that z, y, z ~ a and fo ---dS ~ a?, thus

z a
_— dS ~ — - a2 = Q.
/O .’E2 + y2 + 22 a2
The final result must therefore be of the form ¢ - a, where c is the constant, we are going to find.

D. When we look at surfaces (or bodies) of revolution one should always try either semi-polar or
spherical coordinates. Since the parametric representation of the meridian curve M is given in a
way which is very similar to the spherical coordinates, it is quite reasonable to expect that one
should use spherical coordinates.
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Figure 27.7: The meridian curve M for a = 1.

Although it is here possible to solve the problem by a very nasty trick, it is far better for pedagogical
reasons to follow the way which most people would go. Let us analyze the reduction formula

b 2T
[ rwvas= | { F(t,wdso}R(t) sin© () /TR T (ROGM]2dr,
O a 0
where

F(t, ) := f(R(t)sin©(t), cos p, R(t) sin ©(t)sin ¢, R(r) cos O(t)).
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There is no ¢t in A, so we must start by introducing the parameter ¢ in a convenient form. Then
we shall identify the transformed function F(¢, ) as well as the weight function, and finally we
shall carry out all the integrations.

1) The introduction of the parameter t. The most obvious thing is to put 8 = ¢, i.e. M is described

by

r=R(t) =a(l+sint), 0=0(() =t, 0<t<

0|3

By doing this we split the different aspects: 6 belongs to the curve M, and ¢ belongs to the
parametric interval

[o, g} = [a,b].

Identification of F(t, ) and the weight function. Since
z = R(t)cosO(t) = a(1l +sint) cost on M,
and
22 +y? + 22 =1r? = R(t)* = a*(1 + sint)? on M,
we obtain the integrand

z a(l+sint)cost  cost

' I = = 1 B i - F t’ ’
f(z,y,2) 22 +y2+ 22 a2(1+sint)2 a(l+sint) (t.0)

which is independent of . Since the weight function and the boundaries of do not depend on

t either, the p-integral becomes trivial, and we can put jfﬂ dp = 27 outside the integral as a

factor.

Then we calculate the weight function,

R(t)sin©(1)V{R'(t)}2 + {R(£)O'(t)}2
=a(l +sint) -sint-/{a cost}2 + {a(l +sint) - 1}2

=a(l+sint) -sint - a\/c082t+ (1+ 2sint + sin’t)
=a?(1 +sint) -sint - y/2(1 +sint)
= V24?1 +sint)? - sint.
Integration by reduction. First we note that the parametric domain is 2-dimensional,
m
D={pt |0<p=2mo<t<].
In fact, dimension corresponds to dimension, and since F is a C'°°-surface, the parametric

domain D must necessarily be 2-dimensional. (If not we have made an error, so start from the
very beginning!)
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We have now identified all functions, so we get by the reduction formula that

cost 3
= - V24 int)2 sintdpdt
/ a(1+sint) \fa ( e )2sm 4

e

= \/§-a-2w/ sint(l—l—sint)%costdt
0

= 2\/§7Ta/01u(1+u)5du
= 2\/§7ra/01(1+u—1)(1+u)édu
_ 2\/§7ra/01{(1+u)3 ~(ut) au

1

= 2V2ma E (1+u)? — % (1+u)3}
2 u)’

nNw O

= 2V27a- E[(1+u)§—5(1+ Ll)
_ 47ra Va{s(2t-1) -5 (28 -1)}
_ 4““{{3(4\/5—1)—5(2\/5—1)}
_ 4”“f{zf+2}_8”—a 2(v2+1)

87(2 + v2)a
15 '
C. Weak control. The result has the form ¢ - a, in agreement with A.

Since z > 0 on O [cf. the figure], the result must be > 0. We see that this is also the case here. ¢
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Vil Line Integrals and Surface Integrals The surface integral

Example 27.4
A. A surface of revolution O has an arc of a parabola M as its meridian curve, given by the equation

=2 0<p<a,  a>0.
a

Compute the surface integral

22
I:/ids.
o Va? +4az

Figure 27.8: The surface O and its projection onto the (z,y)-plane for a = 1.

o 02 04 0% 038 A 12
x

Figure 27.9: The meridian curve M for a = 1.

Ezamination of the dimensions. It follows from x,y, z ~ a, that

z? a?

Va2 +4daz Ve
Since fo - dS ~ a2, we get all together
2
/ xidsfva-az:a?’,
o

a2+ 4az

a.
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i.e. the result must have the form

2
/ xidSzc-a?ﬁ
o Va2 + 4az

where the constant ¢ must be positive, because the integrand is > 0.

D. The description invites to semi-polar coordinates I 1. For the matter of training we also add I 2.
Rectangular coordinates, which give a slightly different variant, although we in the end are forced
back to (semi-)polar coordinates.

I 1. Semi-polar coordinates. We introduce t as a parameter by
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Vil Line Integrals and Surface Integrals The surface integral
Since
. . 1,
x=P(t)cosp =tcosp, y=P(t)sing =tsinp, z=Z(t)=—1t,
a

we get the following interpretation of the integrand,
B x2 _ t?cos’p
Va2 +4az  Va? + 42’

f(z,y,2)

and the weight function is

PP (207 = 112 + (? t)Q N

The parametric domain is
D={(t¢)|0<t<a,0<p<2r}=][0,a] x[0,27].

Hence we get by a reduction

‘ x? t2coslp t o——
/j(l,S = —— a2+4t2dtd
-/0 Vvaz + 4daz p Va2 +4t2 a 7

1 1 a 27
—/ t3coschdtd<p:—/ t3dt-/ cos? pdo
aJp aJo 0

1 1t4a./2ﬂ'1—|—C082(pd(p:ﬂﬂ3'
a4 |, Jo 2 4

C 1. Weak control. The result has the right dimension [a®], and it is positive, cf. A.

I 2. The rectangular version. In this case we interpret the surface as the graph of the function
Lo o 2
2= flwy)=—("+y?) for(ey €k,
where the parametric domain is the disc
E={(z,y) |2* +y* < a’}.

The weight function is

2 2 2 2
1+ 0z + 9z 1+ 2 + % 21\/a2+4x2+4y2.
Ox dy a a

a
We have found everything which is needed for an application of the reduction theorem:

1
- —va? + 4x? + 4y? da dy
a

T

S ) 2
/ #(Lg = / xl
Jo <+ 4daz
o va a E \/a2+4a.($2+y2)
a
2

1
Va2 4422 + 4y?dady = f/ 2?2 dz dy.
E

o),
aJp \/a? + 422 + 4y a
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From this point it is again most natural to change to polar coordinates,

. 22 1 1 2m a
[vts = ol [{ [ ot @dg} ’

1 21 a 1 3
= f/ cos2g0dg0-/ odo=~- w-a— O
a Jo 0 a 4 4
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Example 27.5 Calculate in each of the following cases the given surface integral over a surface F,
which is the graph of a function in two variables, thus

F={(x,y,2) | (z,9) € E, z = Z(x,y)}.

1) The surface integral [ +/1+ (x +y+1)2dS, where
1

Z(x,y) = 3

n(l+z+y),  (zy) €0,1]x[0,1].

2) The surface integral ff \/WdS, where
Z(x,y) =2 — 2% —y?, for z? + 9% < 2.

3) The surface integral ffzdS, where
Z(x,y) =2 —x? — 32, for z? +y* < 2.

4) The surface integral ff xQ\/mdS, where
Z(x,y) = zy, for z* + 4% < 1.

5) The surface integral [(a+ z)dS, where

2 2

Z(m,y):x —y’ for 2% + y? < 24

a
6) Th face integral | ! ds, wh

e surface integra , where
g 7 Ja? + 42% + 42
2 _ .2

Z(m,y):x Y , for 2% + y? < 24
a

7) The surface integral [ +/a® 4 4x% 4 4y? dS, where

2 _ .2
Z(x,y):x ay’ for x* +y* < 2a*.

8) The surface integral f}. 23dS, where

Z(x,y) = \/2a% — 22 — y? for —

1247
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Figure 27.10: The surface of Example 27.5.1.

A Surface integrals in rectangular coordinates.

D Find the weight function

a9\’ a9\’
|N||=\/1+(%) () = virTval

and then calculate the surface integral.

1
I 1) We get from g(z,y) = 7 In(1 + x + y) that

1 1
= =7 . 1717
V2 1+x+y( )
and as z, y > 0,

B 1 JiiGiaiy?
¢1+|vf||2—\/1+(1+x+y)2 =

1+2+y ’

%

hence

L —— 1 1)2
/ \/l+(.z’+;/+1)2(15=/ Lty + 7y
JF E

l1+z+y
-,
0
0

1{/(]1{Hm/+x+y+l} dy} da
[l
[ {m

[1

1
[ L 3 _ 1 3
(x+2)1n(:r+2)—(x+1)1n(x+1)+6(x+2) —g(x—i—l)}

1
1+x+y)+2(x+y+1)2] dx
y=0

1
(x+2)+%(x+2)2—ln(:ﬂ+1)—%(m+1)2} dz

1

0

1 1 1 1
=3n3-2mIm2+=--32-2.23-2In2—=.23
. nats 6 BTG5 4TS

1 2
:31n3—41n2+5{27—8—8+1}:31n3—41n2+2zlnTgH_
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Figure 27.11: The surface of Example 27.5.2 and Example 27.5.3.

2) We get from g(z,y) = 2 — 2% — y? that
hence

VI+H[7gl? = V1+4(2 +42).

The surface integral

The method here is that we first transform from the surface F to the domain of integration F in
rectangular coordinates. Then we continue by transforming the integral into polar coordinates,

. V2
/ Va2 +y2dS = / Va2 + 21+ 4022 + y2) dedy = 27T/ 0*\V/1+402do
JF E

3 sinh?¢ - cosh? tdt = —

Arsinh(2v/2) 1
= 27r/
0 16 0

o (Arsinh2v2) T 1
=33 ; {cosh(4t) — 1} dt = 39 [Z sinh(4¢) — t]o
— % % sinh(2t) cosh(2t)] OArsmh(zﬁ) - % In (2\/5 +4/1+ (2\/§)z>
= % [sinh - cosh#(1 + 2sinh*¢)] 0Arsinh(2\/§) - % In(3 + 2v/2)
= e 1+(2\/§)2-{1+2-(2\/§)2}—;—2 i {(1+v2)*}
- %-2\/5-3-(1—#2-8)—116 In(1 + V2) = %(51\/5—1n(1+\/§)).
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eSS
ey
2SSO
—\

Figure 27.12: The surface of Example 27.5.4.

3) We shall here integrate over the same surface as in Example 27.5.2. We can therefore reuse
the previous result

VI+79l? = V1+4@? +y?).
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If we put t = 402 + t, then we get the surface integral

- V2
/ :<1,S':/(2—a:2—y2)\/1+4(x2+y2)da:dy:2ﬂ'/ (2 —0*)V/1+402- pdo
JF E 0
2r [* 1 T (Pf9.. 1. m 2.5 28
= 2 S(t—1) s VEdt = ~ S oS bdt=— [9.243 _ 243
81{ 1 )}f 4/1{4 4} 16[3 5}

9
s 3 1 s ™ 1 1 ™ 242
=Tt o3| =T 03072 o334 v =T (7322
8[2 52]1 8{ 5 +5} 8( 5)

™ 121 ™ 37w
= - —— 5 =—(195-121 4 =
{39 } (195 )= 20 -7 0

4) Tt follows immediately that g = (y, ), so the weight function is

VI+[7gl? = V1+ (22 +y2)

Then we compute the surface integral,

/,;'2V/l+.r'—)+//'—’<l$’:/xQ\/1+x2+y2-\/1+z2+y2dxdy
JF JE

27 1
:/ m2(1+x2+y2)dxdy:/ {/ QQCOSQ(p-(l-FQQ)QdQ} de
E 0 0

o 1 1
1 1)1 1 5

2 2 3
= dp - = tl+t)dt=n-=|=¢ -1 = —.
/0 cos® pdp 2/0 (1+7%¢) T3 [2 +3 ]0 2

2
5) Here Vg = — (z, —y), hence the weight function is
a

1 1
Vit vgl?= 1+—x2+y) - a? +4(x? +y?).

Then we get the surface integral,

/((1’,') lsf/ (a+x y) Va2 +4(z2 4+ y?) dz dy
JF JE
= (a + 2% —yH) a2 +4(22 +y2) dady

a2
1 V2a
=2 / (a® 4 0?[cos? ¢ — sin? p])\/a2 + 402 pdo p dp
0 Jo

V2a 27 V2a
1
=27 \/a2+492~gdg+—2/ congadcp/ 0%\/a? + 402 odo
a” Jo 0

0

V2a
2 2 2a
| (@)@ + 400 +0= T3 (02 +400)F
3 /o 13 ¢=0
13
:%{(a2+4-2a2)%—a3}:%a3.

6) The surface is the same as in Example 27.5.5. Therefore, we get the weight function

1
VItlvel?=—va® + 4z +y?),
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Figure 27.13: The surface of Example 27.5.5, Example 27.5.6 and Example 27.5.7.

/“\ \

Figure 27.14: The surface of Example 27.5.10.

and the surface integral is

1 1 1 1
5= / —dzdy = — area(F) = ~ - 7 - 2a* = 27a.
JF \/a? + 4a? + 4y? EQ a a

7) The surface is the same as in Example 27.5.5, so the weight function is

1
VItlvgl?=-+va*+4(z2 +12),
and the surface integral becomes
S araanras— [ 12 2 2
Va2 + 42 + 492dS = (a® +4(z* + y°))dedy
JF E G

o [V2a

2 1
=— (a® +4¢%)0do= [ a*o® + 94]
a Jo a |2

V2a

0=0
1

9 2
_ {a2.2a2+4a4} = =T 5a* = 10md®.
a |2 a
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Figure 27.15: The surface of Example 27.5.11 for a = 1.

8) Here
2xy a? —y? 1 2 _ 2
=\ = —2zy, - )
e <<x2+y2>2’<x2+y2>2 g gep e )
hence
17912 = g (4027 + (a2 = 42)?) = s
(@ +y2)* (% +y%)2
The surface integral is
' Vi T
1 1+Q4
1S = —— 1+ (22 +92)2dxd 22/ ~———od
./f( /Em2+y2 (2% +y?) y=2m | 2 ede
B 277/\/5«/14—@4 13do= T 41+td_7r/\/gu-2udu
- 1), o T )t T T2 s w1

/\/5 LR SR B S L1 -1’
— _ - - =1 |u — In
N 2u—1 2ut1f " 2w 1]

(e )]

i+l V21
{5
2

= 7{V56-V2+In(v5—-1)+In(v2+1) —In2.

9) It follows from g(x,y) = y/2a? — 22 — y? that

v L (o)
g=—F——=o(—x—y),

202 — 22 — 12
hence

22 +y? V2-a
Vi+vgl?=4/1 = .
+||V9|| \/+2a2—x2—y2 20,2—21?2—3/2
1253
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If we use polar coordinates in the parameter domain, we get

o 3 2.
/ B34S = / ( /242 — 22 — yQ) ) # dz dy
JF E y?

202 — 22 —

z acos2p
= \/ia/ (26 — 2* —y*)dady = \/5(1/4 {/ (20,292)ng} de
E 0

jus
4

acos 2y ™

1 1 4
= \/ia/ {a292—494} d(p:\@aS/

i1 1 1 /14 cosdp)>
= 2V2d° —+_-cosdp— [ —17—T d
\[a/o{2+2cos<p 4< 2 )}g&

1
<C082 2¢ — 1 cos? 2(,0) de

11 o9y o
= 2V2d° [§¢+§sin44 —1—\(/3_@5 | (1+2cos4cp+cosz4g0) dep
0
= @Cﬁ_&.ﬁas_&.laaﬁz\/57”‘5(16_2_1)
4 16 4 16 2 4 64
_1Bv2
64 '
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Example 27.6 Calculate in each of the following cases the given surface integral over a cylinder
surface C, which is given by the plane curve L in the (X,Y)-plane, and the interval, in which z lies,
when (x,y) is a point of the curve. Note that L can either be given by an equation in rectangular or
in polar coordinates, or by a parametric description.

1) The surface integral fc (22 + 2%2 + y) dS, where the curve L is given by x> + y? = 2x, and where
z € [0, Vaz+ yQ}.

2) The surface integral fc 22dS, where the curve L is given by 2% + y?> = 4, and where z € [-2, .

3) The surface integral fc (22 +2?%)dS, where the curve L is given by x®> +y? = 1, and where z € [0,2].

4) The surface integral fczdS, where the curve L is given by y = x? for z € [0,1], and where
z €0, z].

5) The surface integral [, zdS, where the curve L is given by r(t) = (acos’t, asin®t) fort € [O, g] ,
and where z € [0, y].

1
6) The surface integral fc —dS, where the curve L is given by o = e¥ for ¢ € [0,1], and where
x
z €10, x].
7) The surface integral fc % dS, where the curve L is given by o = acos2g for p € [0, g}, and
x
where z € [0, zy].
8) The surface integral fc rzdS, where the curve L is given by z? + y> = ax, and where z €

[0, Ve =27 = 2]

9) The surface integral fc dS, where the curve L is given by y = Insinx for x € [g, g} , and where

se o2,

sinx

10) The surface integral [, cosh Z dS, where the curve L is given by y = a Coshz for x € [0,qd], and

where z € 0, z].

11) The surface integral fc 22dS, where the curve L is given by y = x3 for x € [0,1], and where
z €0, z].

A Surface integral over a cylinder surface.

D Reduce to a line integral by first integrating in the direction of the Z-axis. Find the line element
and calculate the line integral.

I 1) The curve is the circle of centrum (1,0) and radius 1, thus in polar coordinates
T T

=2 ) € |:__7 _:| ’

olp) = 2cosp, ¢ 5

and the line element is

d 2
ds = mdso: \/4COS2¢+4sin290ds0 =2dgp.
de
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o
[
S

5

-05

Figure 27.16: The curve £ of Example 27.6.1.

Figure 27.17: The curve £ of Example 27.6.2.

Hence
3 o(¢)
/(y22+x22+y) dS:/ / {zo(p)sinp} dz p 2dep
c -z (Jo
L, 2 2oone 5 4 2
:/ {Qz o(¥) +Q(cp)zsinap} -2dp = {16 cos* ¢ + 8cos® ¢ - sinp} dy
-z 2=0 -z
2 ) 2 11 3 7
= 4(1 4 cos2p)*dp+0=38 1+20082ap+§+§cos4¢ dg0:8-§-§:67r.
_z 0
2

2) The curve is the circle of centrum (0,0) and radius 2. It is described in polar coordinates by
9227 @6[0727‘-]7

hence the line element is

do\ 2
ds=14/0*+ <—Q) do = 2de.
de
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05

Figure 27.18: The curve £ of Example 27.6.3.

0.84

0.64

0.4

0.24

X

Figure 27.19: The curve £ of Example 27.6.4.

Hence
27 2cos ) 27
/szS = / {/ 22d2}2dap:— {SCos?’ga—(—Q)?’} dy
c 0 -2 3 Jo
6 [ . 321 321
= lyjdp=—4+0=——.
5 ) {cos’ o+ 1} dop 5 t 3

3) The curve is the unit circle given in polar coordinates by
o=1, v €10,2m].

Thus ds = dy, and

/C(ZQ +2%)ds = /027T {/02(,22 + cos? p) dz} de

8 °r 8 22
= 7-27r+2/ cosQ<pd<p:7-27r+27r:—7T.
3 0 3
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4) The curve is an arc of a parabola. It follows by putting y = g(x) = 22 that the line element is

ds = \/1+g’(:z:)2d:c: \/1+4x2dx,

hence

1 T 1 1
/zdS:/ {/ zdz} 1+4:z:2d:z::§/ 22y/1 + 422 dzx.
C o UJo 0
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Figure 27.20: The curve £ of Example 27.6.5 for a = 1.

1
Then we get by the substitution x = 5 sinh ¢, ¢ = Arsinh(2t) that

1 Arsinh 2 1 1 1 Arsinh 2 1 2
/zdS 7/ = sinh®¢ - cosht - = coshtdt = —/ — ¢inh 2t | dt
c 2 Jo 4 2 16 Jo 2

1 Arsinh 2

L. Arsinh2 _ 1 .
= & ; i(cosh 4 —1)dt = 510 [sinh 4¢] 5 2 — 123 Arsinh 2

1 Arsinh 2 1
- 5 [4sinht. V1 + sinh?t - (1+2sinh2t)} — 155 2+ 5)
0

1 1
= 55 2VB (142 4) — =2+ VE) = = — o 2+ V5).

5) We have in the given interval, cost -sint > 0, so we do not need the absolute sign in the latter
equality,

I = a\/(—3 cos? t sint)2 + (3sin®t cost)?

= Sa\/c052 t{cos2t sin? t} + sin?t {cos2 t sin? t} = 3a cost sint,
hence the line element becomes

ds = 3a cost sintdt, te [0, g] .

Then
% asin® t 3&2 % ;
/zdS = / / zdz p 3a cost sintdt:—/ sin’ ¢t costdt
c 0 0 2 Jo
= -4 [singt]g = 3a?
16 0 16

6) The line element along the curve is

2
ds = Q2+ (gz) d(p:\/ﬁe“’dép, (7S [071]7
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0.5

OIS

Figure 27.21: The curve £ of Example 27.6.6.

and we get the surface integral
1 "1
—dS = —zV2efdp = V2(e — 1).
cT 0o X

7) The line element is

2
1
\/ @2 —|— dgp \/a2cos4 +a2< 26085 smg 5) de

acos—dgp forcpe[,g}

ds

hence

I 1
/%dS = / —2{/ zdz}acosfdgp——
cT o T 0 2 2
g 2P

= g/o o(p)?sin? COb*dﬁp—g/O a2c054§ 4sin2§ coszg cos%dgo
z
= 2 3 Gf. 1 QE fd
a/OCOSQSchongp
3 3
= 4a3/0 {1—sin2§} -smgg (5 COSE) de

2
— 443 {-290 6P sf}
a /¢—0 sin 5 3sin? 2+351n 5 sin 2
3
5

a
2520

8) The curve is in polar coordinates given by
™ 77]

= a cos p, €l-% 5
@=acosy 90[22
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Figure 27.22: The curve L of Example 27.6.7 for a = 1.

Figure 27.23: The curve £ of Example 27.6.8 for a = 1.

hence

do\ 2
ds =4/0%+ <—Q) dy = ady,
de
and

z v/ a?—a? cos? ¢
/xzdS = / / acos’g-zdz padp
c - 0

jus
2

e

2 5 CL4 1 2
/ cos? ¢ (1 — cos? p)a? dp = ?/ (2 sin2¢p | dey

2

w3

a47r

@
2
a z 4
2 16

2 9 a %
-2/ sin®2pdp = —/ (1 —cosdp)dp =
0 8 Jo

> =

9) We conclude from y = g(z) = lnsinz, = € {g, g} that the line element is

2 1
ds=/1+g(@)2ds =4/1 (Cosx) dz = du,
8 (@) de + sinx 7 sz 7
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Figure 27.24: The curve £ of Example 27.6.9.
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Figure 27.25: The curve £ of Example 27.6.10 for a = 1.

Figure 27.26: The curve £ of Example 27.6.11.

x
10) When the curve is given by y = g(x) = a cosh —, we obtain the line element
a

ds =+/1+¢'(z)2dz = (/1 + sinh? gdx = coshgdx,

/coshfds - /{/ coshzdz}-coshxdx
c a 0 0 a a

a 2
= a/ sinh 2 - cosh L de = & . sinh?1
0 a a 2

SO

a? fe—e 1\? a2 5 2 a?

@ =——(e2=1)" = — (e* =22+ 1).
(5) —S ey =Sy
11) For the curve given by y = g(x) = 23, the line element is

ds =+/1+¢'(z)2de = V14 9z*dx,
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hence

1 T 1
/szS = /{/ 22(12}\/1+93:4da:=;/ V14924 22 de
c o UJo 0
1 3
= 111/ w/1+9x4-9d(x4) 1 2|:<*/1+9x4):|
0

T 108 3

1

0

Example 27.7 Calculate in each of the following cases the given surface integral over a surface of
revolution O which is given by a meridian curve M in the meridian half plane, in which ¢ and z are
rectangular coordinates.

2
1) The surface integral fo(l‘Q +y2)dS, where the meridian curve M is given by z = 5— for o < a.
a

h
2) The surface integral f(’) (2% + y?) dS, where the meridian curve M is given by z = fhe for o < a.
a

z 2
3) The surface integral fo % dS, where the meridian curve M is given by z =1n € g for o € B—, ;’} .

4) The surface integral f(’) 22 dS, where the meridian curve M is given by 2% + 0*> = az.

5) The surface integral fo |z|e™® dS, where the meridian curve M is given by z = —lncosg for
™
e [o, —}.
=13
y? 0
6) The surface integral f(’) = dS, where the meridian curve M is given by z = a cosh = for ¢ € [0, a].
z a

A Surface integral over a surface of revolution.

D Use either semi-polar or spherical coordinates and the area element g dy ds, where ds is the curve
element, i.e. if e.g. z = g(p), then

ds = /14 ¢'(0)* do,

and similarly.

2
I 1) Here ds=4/1+ (E) do, hence
a
2 a 0 2 (14 1
/(m2+y2)d5 / / 02~g\/1+<:) do d@z?ﬂ'-—/ tv1+4tdt
e} 0 Jo a 2 Jo

- 7ra4/01{(1+t)3 ~ (10} dr = ra® E (1+10)3 —§(1+t)3]

1

0

= 7d {% (2 - 1) - ; (2% - 1)} - ”1—‘?{6(4\/5— 1) - 10(2v2 — 1)}

4 4 4 4
- %{24\/_—6—20\/§+10}:%{4\/§+4}: 7{; (V2 +1).
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Figure 27.27: The meridian curve M of Example 27.7.1 for a = 1.

Figure 27.28: The meridian curve M of Example 27.7.2 for a =1 and h = 1.
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-0.04
-0.08
-0.12

Figure 27.29: The meridian curve M of Example 27.7.3.
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0T 02 03 04 05

Figure 27.30: The meridian curve M of Example 27.7.4 and Example 27.7.5 for a = 1.

d
3) From z = Insin g follows that £z _tose

do

dz\? cos? o 1 1 T 2r
1 ) =4/1 = = fi €=, —-
\/ +<dg) \/ +sin2g |sing| sing ore [3 3}

The area element is

, hence

odpds = -2 dpdy = dS,
sin o

hence by insertion

z 2w : 2
S 2 2

/e_dsz / sme. @ g, ds0227r<7r—ﬁ>: s
o 0 0 z 0 sin o 3 3 3

. Hence, the integral [, dS

4) The figure shows that the meridian curve is a half circle of radius

is equal to the surface area of the sphere, i.e.

/(’) dS =4n (g)z = 1a®

where we have used the result of Example 27.7.6 with a = b.
ALTERNATIVELY,

o=\ ~(-5) e

in rectangular coordinates, so

1267

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume
Vil Line Integrals and Surface Integrals The surface integral

Hence

/dSsz/aw(gf-g- 1 dz=2ﬂ'-9-a=ﬂ'a2.
O o

T . . . .
ALTERNATIVELY we have r = a cosf, 0 € [O, 5}, in spherical coordinates, and o = r sinf =

a sinf cosf, and

2
ds = 4/r2 + (—) df = adb,
and we get

/ dS’:27r/2 a sinf cosf - adf = a’n [sin29}0% = a’7.
o 0

5) Since & = g cos p in semi-polar coordinates we get from Example 27.7.4 that

/OdeS = /0%{/:{(;)2(7:g)Q}COS%.“

27 a
:E/ coszgodgo/ (az — 2%)dz = ~71'|:

x =1 sinf cosp = acosf cos

o.
IS
o

AS)

o |

|
wle| |l
|| —
||
(-
—~|| —
W
(-
[NJISTENTS)
| —]
SIS

|2
[NCRRS]

ALTERNATIVELY,

in spherical coordinates, cf. Example 27.7.4, so accordingly

2 3
ds = / / a? cos? 0 sin®  cos? p-asind cosfadf» dp
(@] 0 JO

27 us 4
1
= a4/0 cos2cpdg0/02 sin® 6 - (1 — sin?0) cos 0 df = a'n [Z - E} TR

. 2
1
ds = 1+<Smg> do = do, f0r96[07q7
Cos o 3

2 3
|xle™*dS = / / ol cos| - cosp - 2 dop dp
o o |Jo cos 0

3 3 1 /m\3 473
4 do - 24 :4-7(7) =0
/0 cose <p/0 e qe 3\3 81
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Figure 27.31: The meridian curve M of Example 27.7.6.

Figure 27.32:

The meridian curve M of Example 27.7.7 for a = 1.
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7) We get from z = g(p) = a coshg that ¢'(0) = sinhg and

ds =14+ ¢'(0)2do = 1/14—sinh2 gdg:coshgdg,

hence

2 27 a 2 .+ 2
S
Y4 — / /%.Q.mhgd@ do
o 7 0 0 acosh— a
a

1 27\' a 1 1
—/ Sin2<pd<p-/ Q3dQ:_.W._a4:E_
0 0 4

a a

/
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Example 27.8 Calculate in each of the following cases the given surface integral over the surface
given by a parametric description

F={2eR®|x=r(uv), (u,v) € E}.
First find the normal vector of the surface N(u,v).
1) The surface integral f}. 222 dS, where the surface F is given by

x =r(u,v) = (u cosv,u sinv, hv), for0<u<1,0<v <2,

2) The surface integral | F 22dS, where the surface F is given by

1 In(2
x = r(u,v) = (Vu cosv,/u sinv,e”) forlﬁuﬁl%gvg n(2u).

3) The surface integral [,(x* +y*)dS, where the surface F is given by

x =r(u,v) = (\/ﬂ cos v, usinv,v%) for1<u<2,0<v<u.

4) The surface integral [(2® + 2z — 3xy) dS, where the surface F is given by
x =r(u,v) = (u+v,u® + 0% u® +03)  foru+ov <0, u? +0* <5

A Surface integrals, where the surface is given by a parametric description.

D First find the normal vector N(u,v). Then compute the weight function ||N(u,v)| as a function
of the parameters (u,v) € E.

I 1) The normal vector is

Oor Or 1 2 ©3
N(u,v) = 30 < 5p = | cosv sinv 0 | =(hsinv,—h cosv,u),
u v .
—u sinv wucosv h

and we find accordingly the weight function

IN(u, v)|| = VA2 + u2.

Then we get the following reduction of the surface integral,

1 27
/ zz2dS = / {/ w cosv - h2v*/ h2 + u? dv} du
F 0 0
1 1
= hz/ uvh2+u2du-/ v2 cosvdv
0 0

1

1 2
= h? [5 . §(h2 +u2)g] - [v? sinv+2v cosv—2sinv|
0

— %h2{(h2+1)%—h3}-4w=4§h2{(h2+1)\/h2+ —h3}.

27
0
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2) The normal vector is

€] €2
Oor Or 11 11 .
N VA I il
(u,v) 50 % 9o NG cosv 5 —= sinv
—y/usinv  \/u cosv
so the weight function becomes
1e 1 1
N = _ — _ = — 2v .
NGl = g = g Ve T

The surface integral

Then we have the following reduction of the surface integral

2 In(2u)

[{h.

11 /2 /é In(2u)
2 2 1 Jov=4Inu
21

1 2
4/, ﬁ'ﬁ[

/ 22dS
f

1

Ju

:|t:2u

(t+u)? du =

t=u

3) The normal vector is

€] €2
11 11
_Or _Or | Z_—_ cosv = —— sinw
N(u,v) = 5-x=-=| 2 V/u 2 Vu
. 3
—y/usinv  \/u cosv 5
and the weight function is
9v 1 3 Jv 4
N =4 = -4+ =4+ =,
NGl =16, Ta=aVato

1272

1
6

€3

2v | 1 . i . 2v
e 2 Vu V e2v+4uy dv} du
ve2v4ud (627’)} du

i

21

NG {(3u)% - (2u)%} du

L 3v3-2v2 /2 du= — (3v3 - 2v2 [u2]’ = & (3v3 - 22
5 ¢ )1““_12 wli=7( ):

_ 3 Jv . 3 Jv 1
=13 usmv, 1 ucosv,2,
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Finally, we get the following reduction of the surface integral

3 /v 4
2 u(u 0052+u 51112’1,7)47 *+*d’u
/(x2+y2)d8 = / / a9 8 du
F 1

0

2 Y 4d 2
L s e
= 2 du=2> v+=u-udv p du
4 /1 0 4 )1 0 9

5 37U 5 3 3
4 \?2 1 1 2 4 \?2
= %;/1\/5 (/U+§U> ]Odu:§/1 ﬂ{<§u> —<§u> }du
_ ! 1(13\/1—3—8)/2u2du—7(13\/ﬁ—8)
2 27 1 162 '
4) The normal vector is
e} €2 (S
N(u,v) = or X or =| 1 2u 3u? |=(6uv®—6u’v,3u’® — 3v* 20 — 2u)
’ ou "~ v ’ ’

1 2v 3

= (6uv(vu),3(u+v)(u—v),2(v —u)) = (v —u)(6uv, —3(u + v), 2).

Hence the weight function

IN(u,v)|| = v — u|y/36u2v2 + 9(u2 + 2uv + v2) + 4.

This expression looks very impossible, so we can only hope for that some factor of the integrand
cancels the unfortunate square root.

The integrand is given in the parameters of the surface by

23+ 22 — 3zy = (u+v)% + 2w +v*) — 3(u +v)(u? +v?)
= 4 + 3u?v + 3uv? + 03 + 203 + 203 — 3u® — 3uv — 3uw? — 303
=0.

Luckily, the surface of integration F is a zero surface of the integrand, so there is nothing to
worry about,

/ (2® 4+ 22 — 3xy)dS = 0.
f
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Example 27.9 Let F be the sphere of centrum (0,0,0) and radius a, and let
fla,y,2) = a(a® +y* - 22%) + Bay,

where a and B are constants. Calculate the surface integrals

Q- /f f(z.y.2)dS and P = /f (2.y,2)f (z,y,2) dS.

A Surface integral.

D Exploit the symmetry of the sphere, since this is far easier than just to insert into some formula.
Note that there are several possibilities of insertion into standard formulse, though none of them

looks promising.

I It follows by the symmetry that

/deS:/deS:/szS,
F F F

and that

/ rzydS = 0.
_F

Then it is immediate that

Qza(/ x2d5+/y2d5—2/22d5>+ﬁ/mde:O.
F F F F

> Apply now

REDEFINE YOUR FUTURE
AXA GLOBAL GRADUATE
PROGRAM 2015

redefining / standards M

[=%
S
]
17}
=
S
=
S
2
°
=
o
©
0
o
3
2
9
&
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A similar symmetric consideration shows that if g(z,y,z) is a homogeneous polynomial of odd
degree, then

/ g(zy,7)dS = 0.
F

Split F into the eight surfaces occurring by the intersections by the three coordinate planes. By
assuming that g(z,y, z) is odd, it follows by the symmetry of the sphere that the surfaces can be
paired in such a way that the sum of the surface integrals over each pair is zero. (The details are
left to the reader).

Since z f(x,y, 2), y f(z,y,2) and z f(x,y, z) all are homogeneous of degree 3, we conclude that
P=0.

REMARK. We shall for obvious reasons skip the traditional variants which give a lot of tedious
computations. The reason for including this example is of course to demonstrate that one in some
cases may benefit from the symmetry. ¢

Example 27.10 Let F be the sphere given by r = a and let R denote the distance from the point
(x,y,2) on the sphere to the point (0,0, w) on the Z-axis. Calculate

U(w) = /f % ds.

One may assume that w > 0. The cases w = a and w = 0, however, must be treated separately.

A Surface integral.

1
D We may for symmetric reasons assume that w > 0. We shall first check where — is harmonic. To

this end we use the mean value theorem, whenever possible. Then proceed by calculating U(w)
directly. We get some special cases, when either w = a or w = 0. We have an improper integral in
the former case and lots of symmetry in the latter one.

I Clearly,
1 1
R /22492 + (z —w)
It follows immediately for w = 0 that
1

1
= — d = — =4 .
U(0) /f Las = L area(F) = dra

-

— = {22 +9y° + (2 —w)?} 2.

REMARK. It can be mentioned aside that we get by using a so-called Riesz transformation that
U(w) =U(0) = 4ma for —a<w<a.
However, Riesz-transformations cannot be assumed for most readers, so we shall here give a straight

proof instead. ¢

1
It follows from the expression of R that U(—w) = U(w), and we have again explained why we can
choose w > 0.
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1
First attempt. We first check if = is harmonic for (z,y, z) # (0,0, w). We find

i (5)= ()
oo (1) =~ () (o) {0 =) oo ()

Then by the symmetry,

26 65 - <G ) e

and the function is harmonic for (x,y, z) # (0,0, w).

It follows when w > a from the mean value theorem that

1 1 4ma’
= — d = =
U(w) /f 7 S R(0,0,0) area(F) o w > a,

hence in general

4dra?
U(w) = ol

Note that when |w| < a, we cannot use the argument above because of the singularity at

1
(0,0, w) for R which then lies inside K.

for |w| > a.

Second attempt. Split the surface F into an upper surface F; and a lower surface F5. Then

z =1+/a? — 22 — 92 on Fi, z=—v/a?— 22 —y2 on Fs.

The surface element is in rectangular coordinates given by

dS’zédxdy7 22 4+ 9? < a?,

/aQ—xQ—yQ

and we have

R= TP+ (= = /e — (@ —2? —y2) + (2@ — 27 — ) —w)’,

where the sign + is used on Fi, and the sign — on .
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Let S be the disc 0? = 22 + y? < a?. Then

= —dSs = ——dS+:/ —ds
/_7-‘ R -7:1 —7:2

a2

27 a 1
)y — i
0 0 \/a2 0—w)? dg

a?—0?

271' 1
+/ / . ZQ 2dg dey
0 0 \/a27(a2792)+( /anngw)Q \/a -0

1

a
:27m/ 1 dt
0 a27t2+ t7w2+
% ( ) Va2 — 2+ (t+w)?

@ 1 1
= 2ma + dt
/0 {\/a2+w2—2tw \/a2+w2+2tw}

a
Va2 + w? — 2tw n Va2 + w? + 2tw
—w w

=27ma

0

2
= La{f\/(12+w272aw+\/112+w2JrQanr\/an\/aQ}
w

2ma
=~ la+wl —]a—wl}

For w = 0 we get instead (cf. the above)

U(O):27ra/a{\/_ \/1_}dt—27m (21 o = dra,

in agreement with the previous result.

If 0 < w < a, then

2
U(w) = Z)a(a—i-w—a—i—w)—élwa,

cf. the previous remark about the Riesz transformation.
When w = a, then U(a) = 4ma.
When w > a, then

2mwa 4ma?
U(w)=— " (a+w+a—w)= =

cf. the result on harmonic functions.
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Summarizing,

4ma for |w| < a,

U(w) = dma?
—F  for |w| > a.

The surface integral
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Example 27.11 A surface of revolution F is given in semi-polar coordinates (o, p,z) by
z=0°  0€[0,2], pe€l0,2n].

Sketch the meridian curve M, and calculate the surface integral

1
———dS
/f V1+4z
A Surface integral.

D Follow the guidelines.

IS

w

N

Figure 27.33: The meridian curve M.

I The surface element is dS = Pdgds, where P = g(z) = +/z and

Ul—i— dz—“ 2 \f dz
hence
1 S| 1
— 48 = 2 Vzo 1+ —d
/f 171 4: 7T/O o Vet &

4 4
1+4 2

N
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Example 27.12 A surface of revolution F is in semi-polar coordinates (o, v, z) given by

1
z =0, o€ [O, 5] , v € 1[0,2m).

Sketch the meridian curve M, and find the line element ds on this curve. Then calculate the surface
integral

QQ
/ ds
F1+9z0

A Surface integral.

D Follow the guidelines.

0 01 02 03 04 05 06

Figure 27.34: The meridian curve M.

d
I It follows from d—z = 30? that the line element is
o

dz\? 1
ds:,/1+<d—z> do = /1 + 90 do, 96[0,5],

and accordingly the surface element
1
dS = ov/1 + 9p*dodey, o€ [0,5] ,  €l0,2n].

We have z = 0 on F, so by insertion into the surface integral,

2 1 2 1 3

0 2 4 2 4
s = 27r/ ~ov/1+90%d =27T/ 8 qe=" =
/f1+9zg 0 ° CTT) Vixod P49 Va

14+90*
2w (5/42 4w (5 s
36[ Vi 36 \ 4 36
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Example 27.13 The surface F is given by
2

Y 3
Z:g(xvy):;+ixa (x7y)6E7

where

E={(z,y) eR*|1<2<20<y<a?).
Prove that

)+ () -

T 4

and then calculate the surface integral | FxdS.

A Surface integral.

D Follow the guidelines.

Figure 27.35: The surface F.

I It follows from

dg y2 3 Y
9 __Y¥ .2 99 _o9
Ox x2+4’ x

that
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hence
e () () -+
Then by the usual reduction of the surface integral to a plane integral,
'/];:x(lS = /E:U\/l—l— (gi)Q—F (?;)2dxdy: /E {(Z)Q—F i}xdxdy
/12 {/o (o + 1) dy} o= /12 5+in] _o o
/12{;24—21' }dxz/j{;x‘r’—l—ix?’} dx

1 5 417 64 5 1 5 63 75 7 75 131
= { x4] = 16 = = =
1

18 16 8 16 1816 2716 16°

Need help with your
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Example 27.14 A plane curve L is given by the parametric description
(z,y) = (cost, —2Insint), te [E, z} .

6" 2

1. Show that the line element ds is given by

2 —sin’t
ds — & dt
sint
A cylinder surface C with L as its leading curve is given in the following way:
x =cost, y= —2lnsint, z¢€[0,sint], t¢€ {%, g} .

2. Calculate the surface integral fc rzdS.

A Curve element and surface integral.

D Follow the guidelines; apply the formula of the surface integral over a cylinder surface.

Figure 27.36: The leading curve L.

I 1) From
dz dy cost
— = —sint d —=-2—
gy sint an T sint’
follows that
dz\ 2 dy 2 9 4cos®t 1 2 \92 9
( dt) (dt) sint  sin®t {(sin”0) J

C(2-sin®f)”
N sint ’

dz\? dy 2 2 —sin?t 2 —sin’t T
ds_\/(dt) +(dt> dt_’ sint ‘dt_ sint at, te {6’5}
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Figure 27.37: The surface F.

2) Then the surface integral is calculated by means of the formula of an integral over a cylinder
surface,

. sint 22 sint
/ rxzdS = / / cost -zdz p ds = / cost - {—] ds
Je c /o c 2]y

3 1 2 —sin’¢ 1 [z
= / cost- = sin?t- ——— " dt = —/ {2sint—sin3t}costdt
P 2 sint 2 x

™ 4
1., 1 . ,1%F 1 11 11

=~ lsint—csin't| =-J1->——4+>(=
2Fm 4“1] 2 1 2+4<Q

1 17
— {64-16—32+1} = —.
1o (04 = 168241} = 150

o
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Example 27.15 Let F denote the surface given by the parametric description

r(u,v) = ((a 4+ u) cosv, (a + u) sinv, av), (u,v) € E,
where

E={(u,v) eR*|0<u<a,0<v<2u},
and where a € Ry is a given constant.
Calculate the surface integral

2

/ ST

F a2+ 4y?
A Surface integral.

D First find the weight function, i.e. the length of each normal vector in the normal vector field.

Figure 27.38: The surface F for a = 1.

I It follows from

or or

v (cos v, sinv, 0), 9 (—(a+u)sinv, (a + u) cosv, a),
that the normal vector is given by

€ €2 €3

N(u,v) = COS v sinw 0

= (a sinv,a cosv,a + u),

—(a+u)sinv (a+u)cosv a

hence

IN(w, 0)[| = v a? + (a +u)?.
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Then we can calculate the surface integral,

a202

= - [|N(u, )| du dv

’ z
Y dS =
./}' Va2 +x24y? \/a2

2u a U3 2u
= a2/ {/ v? dv} du:aQ/ [] du
0 0 o L3
8 2

Vouwro Touexs | Resanr Toocks | Macs Toveks | Vowo Buses | Vowo Cowsteucnion Esumsest | Wowo Pesm | Vowo Aeno | Wowo IT
Vowo Fimswcer Sepnces | Vowo 3P | Vowo Powerream | Vowo Pasrs | Vowo Techwowoer | Wowo Loasncs | Busisess Anes Asie
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Example 27.16 A surface of revolution O is in semi-polar coordinates (o, ¢, z) given by

0€0,2a], pel02q], z=+a2+¢?

where a € Ry is some given constant.
1) Sketch the meridian curve M.

2) Show that the line element ds on M is given by
|a® +20°
3) Calculate the line integral

/ zods.
M

4) Calculate the surface integral

1
———dS.
0 22\/2% + ¢?
A Surface of revolution, line integral and surface integral.

D Standard example.

~

Figure 27.39: The meridian curve M for a = 1.

It follows from

dz = B do,

that

f 2 2 2

o a®+ 20

= 2 2: 1 R B — - =
ds = +/(do)? + (dz) +a2+92d0 2o do
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2) We conclude from 2) that

2a 2 2a
+ 202
/zgds = / a?+0% 0| 3 ° / Va?+20% - pdo
M a? + o?
1 2

- s @]l g {ent) =g @op-Fe - e

3) Again we get by first applying the result of 2),

0=0
1 2 1 2 4 9,2

——dS = 27r/ -0 a2—|— é;dg

0 22/22 + 2 o (a2 + 02)\/aZ + 202 a2+

2a _3 1
= 27r/ (a2—|—,92) 2odo=2m [—
0

) ()

2a

EXPERIENCE THE POW

FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
RUN EASIER...
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Example 27.17 A surface of revolution O is in semi-polar coordinates given by

2
0 € [a,2a], v € 10,27, zzQa—Q—,
a
where a € Ry is some given constant.

1) Sketch the meridian curve M, and show that the line element ds on M is given by
1
ds = ~ /a2 + 4p2dp.
a

2) Calculate the line integral

/ 1/2—Eds.
M a

3) Calculate the surface integral

1
—— dS.
fowow

A Line integral and surface integral.

D Apply the standard methods.

1
0.5
x
05 1 15 2

Figure 27.40: The meridian curve M for a = 1.

I 1) When we use the parametric description

2
M : («Q?Z) = <Qv 2a — Q_> ) o€ [a’a 20’])

a

the square of the weight function becomes

do\* dz\? 20\ 1 9 9
— — | =1 —-— == 4
<d9>+<d9> +< a @ e,

hence

1
ds = = /a2 + 402 do.
a
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2) Then by 1) and the substitution t = 402

2a
/1/2——d,s = / 2— 2—— \/a2+49 do

16a?
\/a2—|—4g do 8 — va? +tdt
4a2
2
1 [2 5110 5 s
- 3 - 17a2)% — }
8a2 {3( +)2La2 1202 {( 7a%)* — (5a°)2
17\/ﬁ—5\/5a

12

3) By first intersecting the surface O with the planes z = constant, we get

2 2a 9
:/ o ds=/ e a\/a2+4Q do
M a

2 28
e
a
2a

/j“iﬁwdg:g fvaiE] - L (Vi v
(VI7-V5).

= 23

Example 27.18 A surface of revolution O is in semi-polar coordinates (o, ¢, z) given by

0= 122+ 2az, z € [a,2a], v € (0,27,
where a is some positive constant. The meridian curve of the surface is denoted by M.

1) Ezplain why M is a subset of a conic section, and indicate its type and centrum. Then sketch M.

2) Show that the line element ds on M is given by

Qs |2 Azt
22 + 2az

3) Calculate the surface integral
|z|(z + a)

4) Ezplain why O is a subset of a surface of a conic section. Find its type and centrum.

ds.

A Conic sections, meridian curve, surface integral.
D If only the surface integral is calculated in semi-polar coordinates, the rest is purely standard.

I 1) We get by a squaring and a rearrangement that M is a subset of the point set given by

(z+a)? — 0* = d>

This describes in the whole PZ-plane an hyperbola of centrum (0, —a) and half axes a and a.
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The surface integral

Figure 27.41: The meridian curve M and the corresponding conic section (dotted) for a = 1.

2) The line element on M is given by

2z 4+ 2a 2
ds = 1 —|— dz = dz
V \/ 2\/2'2 + 2az>
_ 1+z2+2az—|—a2dzz 2Z2+4&Z+a2dz.
22 + 2az 22 + 2az

3) First express the integrand in semi-polar coordinates on the surface:

|z|(2 +a)  o|cosy|(z+ a)
Var+y? Y

Then the surface integral becomes
|z[(2+a)

2a 27 2 2
2z°4+4az+a
——dS = cosol(z+a)p(z)d ———dz
N L reosele vy [
3 2a 9 2 4 2
= 2/ cosapdap-/ (z4a)Vz2+2az - Z;—imdz
—z o z2°+2az

2a
= 4/ (z+a)V222 +4az + a?dz
20
= V2224+4az+a%d (2z2—|—4az+a2)

z=a

= |cosp|(z + a).

f(x,y,z) =

2 9 o\ 3 2a
= § [(22 +4az+a )2}

zZ=a

= {(8a +8a%+a )3 (2a2+4a2+a2)%}

= 2 - (1)) = 2t - e

4) The curve M is a part of an hyperbola, cf. 1), and the axis of rotation intersects the foci of
the hyperbola. We therefore conclude that O is a subset of an hyperboloid of revolution with

two nets and centrum (0,0, —a).
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We get the equation of the hyperboloid of revolution by replacing o? by x2+y? in the expression
from 1),
(2+a)2_$2_y2=a2’

or in its standard form,

() (- (@)=

The surface O it the subset which lies between the planes z = a and z = 2a.

This e-book Y o N
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Example 27.19 A surface of revolution O is in semi-polar coordinates (g, ¢, z) given by
0<p < 2m, a < o< 2a, z:alng,
a

where a is some positive constant.

1) Sketch the meridian curve M, and find the line element ds on M.

2) Calculate the line integral

1
—ds.
/M /a2+Q2

3) Calculate the surface integral

/o (x—i—a expg) ds.

A Surface of revolution, meridian curve, line integral, surface integral.

D Standard example.

0.8
0.7
0.6
05

0.3
0.2
0.1

Figure 27.42: The meridian curve M for a = 1.

I 1) The line element ds on M is given by

2 2 D) D)
ds:\/1+<32) dgz\/1+<z> dgzivag—gdg.

2) By using p as variable it follows from 1) that

2a 2a
1 \/a? 2 d
ds = . a +Q dQ:/ —Q = [lng]ga =1In2.
a a2+ p? 0 a @

1
/M /a2+02
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3) The surface element on O is given by

/2 2
dS = pdpds = gudwdgz Va2 + 02dodey,

0

so accordingly the surface integral

' 2 2 2a aln £
/ {,r+(/ exp <7>} ds = / {/ (gcos<p+aexp( a ) a? + o? dg} de
Jo a 0 Ja a
2a 1
= 0+27r/ Qx/a2+92d9=7r/ (a®+0°)7 d(a® + ¢°)
a o

=a

I CEVOH S S (CURNCA R

- Qg (5v5 — 2v3) a.

Example 27.20 A surface F is given by the parametric description
r(u,v) = (e*, e’ u+v), u? +0? < 1.
1) Show that the normal vector of the surface is given by
N(u,v) = (—ew, —e“,e“+“) .
2) Find an equation of the tangent plane of F at the point r(0,0).
3) Calculate the surface integral

. J% a5
A Surface integral.
D Use that dS = | N(u,v)|| dudv.
I 1) We conclude from

or Jr
T~ (e",0,1 T (0,e"1
ou (6 ’07 ) and v (0,6 ) )7
that
e, e, e,
81‘ (9r w _ v u _utv
N(U,’U)—%X%— e 0 1 —(—6,—6,6 )

0 e 1

2) From r(0,0) = (1,1,0) and the normal vector N(0,0) = (—1,—1, 1) we get the equation of the
tangent plane

02N(O,O,O)~(x—1,y—1,z):(—1,—1,1)~(£—1,y—1,z)=—x—i—l—y—i—l—i—z,
hence by a rearrangement

r+y—z=2.

1294

Download free eBooks at bookboon.com



Figure 27.43: The surface F.

3) From ||N(u,v)||? = €%¥ + €2 + €2%+2¥ follows that

dudv=m-1°=r.

\/e2u + 621) + e2u+2v
/u2+v2<1 Ve2u 1 e2v 4 g2ut2v
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Figure 27.44: The surface of Example 27.21.1.

27.4 Examples of surface area

Example 27.21 Calculate in each of the following cases the surface area of a surface F, which is the
graph of a function in two variables, hence

F=A{(z,y,2) | (z,y) € E, z = Z(z,y)}.

1) The surface integral ff dS, where
Z(z,y) = 1+ 2z + 2y,/y, (z,y) € [0,1] x [9,9

2) The surface integral f}. dS, where
2

1
Z(x,y):%—i—?)y, where—lgxgland—6x2§y§1.

3) The surface integral | 7 dS, where

Z(x,y) = where 1 < 2% + % < 2.

9
z? +y?
A Surface area in rectangular coordinates.

D Find the weight function

N =y (2) 4+ (2 - viFTo o
ox oy
and then compute the surface integral with the integrand 1.

Here /g = (2,3./y), so the weight function is

VIH[vgll?=v1+4+9=+/5+9y,
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1)

17

77

s H 7777

FEF I
F 7777777

SIS

(P

G777

I

Figure 27.45: The surface of Example 27.21.2.

and we can setup the surface integral

44
S o 1
/ds - /dedy:/gmdyzg.

2
27

[SSR ]
—
—~
ot
+
=]
<
—
Nl
[E—
= o

2) We get from /g = (,3) that \/1+ || 7 g||2 = V10 + 22. The surface area is

: 1 1
/ ds /\/10+a:2da:dy:/ {/ \/1U+x2dy} dx
JF E -1 | /-2
1 2 2 1
/ <1+%) \/10+$2dx:—/ (6 +22)/10 + 22 dz.
0

o 6
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////////

/ _
&
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Figure 27.46: The surface of Example 27.21.3.

x
Then by the substitution z = v/10sinht, t = Arsinh(—),
Y V10
/ ds
f

Arsmh
/ 6+ 10sinh? ¢) - V10 cosh ¢ - v/10 cosh ¢ dt

Il
l\D W=

Arsinh(-2 =)
= 3!/ (3 + 5sinh® t) cosh® t dt

Arsinh(—%)
20 v 3 5
A v {2(1 + cosh 2t) + 1 sinh? Zt} dt

Arsmh 5
/ {6+6008h2t+ §(cosh4t—1)} dt

rsmh
/ {7+ 12 cosh 2t + 5 cosh 4t} dt

W | ot

5 Arsinh(\/%)
[72& + 6sinh 2¢ + 1 sinh 4t]
0

Arsmh( )
7t + 12sinhtV/ 1 + sinh® ¢ + 5sinh#\/1 4 sinh® ¢ - (1 4 2sinh®¢ )}
1 /11 1 /11 1 11 2
Th{ —=4+4/—= | +12- —= -/ —=+5 —" —-<1+—>
<\/10 10) V10 V10 V1o V10 10

m(”*ﬁ) r+f f} 35 (“f)@ VIl

I
Dot Ut Dot Dot D ot
|

—N— —/
N

V10 5
3) Here
2xy a? —y? 1 2 2
= — - _2 -
44 ( @2+ 22 (2 + y2)? (x2+y2)2( 7y, 2 —y°),
S0
1 1
2 2,2 222
[ ng (x2+y2)4 ( oyt + (z y°) ) (x2_|_y2)2
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The surface area is

: vz /71
/dS = / 5 V1+ (@2 +y?) d:z:dy—%-/ +Q
JF z? +y?

/ \/5 )
271'/ 1+g 46° do _7/ 1—t|—tdt_g/ u2udu

V5 11 1 1 1. u—1]"°
= 7 14— ——>S>du=7m|u+-=In
V3

o+l v2-1
— w{f—x@%—ln((\/g_l)(\@*l-l))}
2

= 7{V56-V2+In(v5-1)+In(v2+1) —In2.

360°
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Figure 27.47: The meridian curve M of Example 27.22.1.

Example 27.22 Calculate in each of the following cases the surface area of a surface of revolution O,
which is given by a meridian curve M in the meridian half plane, in which o and z are the rectangular
coordinates.

1) The surface area |, o 45, where the meridian curve M is given by the parametric description

(0,2) = (2sin®t,3cost — 2cos’t), te {0, g} .

2) The surface area |, o 4S5, where the meridian curve N is given by the parametric description
(0,2) = (asin®t,a cost), t €0, m].

3) The surface area fo dS, where the meridian curve M is given by the parametric description
(0,2) = (b sint,a cost), t €[0,n].

4) The surface area fo dS, where the meridian curve M is given by 2> + 0® = az.

5) The surface area f(’) dS, where the meridian curve M is given by o = 2% for x € [0,1].

A Surface area of a surface of revolution.

D Use either semi-polar or spherical coordinates and the area element pdpds, where ds is the line
element, thus if e.g. z = g(p), then

ds = /14 g'(0)? do,
and similarly.
We get from
r(t) = (2sin®¢,3 cost — 2 cos’ t)
that

r'(t) = (6sin”¢ - cost, —3sint + 6 cos’ ¢ - sint) ,
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1)

Figure 27.48: The meridian curve M of Example 27.22.2 for a = 1.

hence
'@ = (6 sin?t - cos t)2 + (—3sint + 6 cos® ¢ - sint)2
= 36sin*t - cos® +9sin?t (2 cos?t — 1)2
= 9sin®¢ (sin® 2t + cos® 2t) = 9sin’¢,
and accordingly
ds = ||t'(¢)|| dt = 3| sint|dt = 3sintdt fort e [0, g] .
Then

27 5 5
/ ds = / / 2sin®t - 3sintdt p dp = 27r-6/ sin® ¢ dt
o 0 0 0

s
2

.
— 37 {2si’t}?dt= 37r/ (1 — cos2t)® dt
0 0

972

i

= 3 /g 1 2cos2t+1+lcos4t dt =3 §
- 0T 272 —T

o

2) It follows from r(t) = a (sint, cos® t) that
r'(t) = a (3sin®t cost, —3cos’ ¢ sint) = 3asint - cost(sint, — cost),
hence
Ir'(t)]| = 3asint - |cost|, t € [0,7).
(Remember the absolute value). The line element is given by
ds = ||v'(¢)|| dt = 3asint | cost|dt.
Finally, it follows from ody = asin®t dy that

27 blackm )
/ ds = / / asin®t - 3asint |cost|dt p de
1) 0 Jo

™

2 2
= 27r~3a2-2/ sin*t costdt:§a2.
0
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05

-05

Figure 27.49: The meridian curve M of Example 27.22.3 for a =1 og b = 2.

3) Here

ds = ||’ (t)|| dt = Vb2 cos? t + a2 sin® t dt = Va2 + (b2 — a2) cos? tdt, t €0,

hence

27 T 1
/ dS:/ {/ bsint \/a2+(b2—a2)0052tdt} dcp:47rb/ a? + (b% — a?)u? du.
o 0 0 0

We shall here consider three different cases.
a) If a = b, then

1
/dS:47ra/ adu = 4ma?,
o 0

and the surface area of the sphere is 4ma?.
b) If 0 < b < a, then

1 b2
/dS:47Tba/ 1—(1—2)u2du.
@) 0 a
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b2
Then by the substitution /1 — — u = sinwv,

a2
Arcsin(,/l—(%) 1
/ ds = 47rab/ 1 —sin?v- ———— cosvdv
o 0 b2
1—
Arccos(2) Arccos(2)
4 b (@) 2 b (@)
a cos? v dy = —2s (14 cos2v)dv
a2 a2
omab b 1 Arccos(2)
= ———— < Arccos| — | + | = sin2v
b2 a 2 0
-2
2mwab b 2 b 2mwab
= e {Arccos ( ) +14/1—-— } = T Arccos () + 27b?
b2 a a’? a B2
\/ 1= o 1-— o
SIMPLY CLEVER SKODA
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0T 02 03 04 05

Figure 27.50: The meridian curve M of Example 27.22.4 and Example 27.7.8 for a = 1.

c) If 0 < a < b, then

/d5—47rab/ \/ ——1 u? du.
b2
Then by the substitution |/ — — 1u = sinhv,
a

Arsinh ,/——1
/ ds = 47Tab/ ( >\/1+sinh2v-¥coshvdv
1)

2
4rab 1“ orab (MlatyVE-1
- / cosh2 vdy = L2 ( ) (cosh2v+1)dv

[ b2 v Jo
a2
(L2
2mab b \/b2 \/b2 b
= =7 (= | 1.2
b2 {n<a+ a? >+ a? a

2mab G
- Lh’l(—ﬂ- —2—1>+27rb2.
a a

4) Tt follows from the figure that the meridian curve is a half circle of radius g. Thus the integral

fo dS is equal to the surface area of the sphere, i.e.
2
/ dS =4n (9) = ma?
o 2

according to Example 27.22.3 with a = b.
ALTERNATIVELY,

g:\/(g)Q—(z—g)z, for z € [0, al,
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0.8

0.6

0.4

0.2

Figure 27.51: The meridian curve M of Example 27.22.5.

in rectangular coordinates, so

T . . .
ALTERNATIVELY, 7 = a cosf, 0 € {0, 5}, in spherical coordinates, and

o=rsinf =a sinf cosb,
and

2
ds =4/r2 + (jg) df = adéb,

hence

/ dS’:27r/2 a sinf cosf - adf = a’n [sin%ﬂf = a’7.
o 0

5) Since ds =+v/1+ 92%dz, we get
1 1
2
[as = on [Vivesie =2 [ Vivea
o 0 0

_ 712 {(14—91&)%};:217(10@—1)-
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Figure 27.52: The space curve K and its projection onto the (X,Y)-plane.

Example 27.23 Consider the space curve IC given by the parametric description

r(t) = (3cost —2cos®t,2sint, 3cost), te [0, g] .

1. Show that the curve has a tangent at the points of the curve corresponding to t € ]0, g}

2. Show that the curve has a tangent at the point corresponding to t = 0.
3. Find the length of K.

The curve K is projected onto the (X,Y)-plane in a curve K*. Let O denote the surface of revolution
which is obtained by rotating the curve K* once around the X -azis; and C denotes the cylinder surface
which has K* as its leading curve and the Z-azis as its direction of generators, and which is lying
between the curve K and the plane z = —x.

4. Find the area of O.
5. Find the area of C.

A Length of a space curve; area of a surface of revolution and a cylinder surface.

D Calculate r'(¢t) and show that r'(¢) # 0 in }0, g[ Check what happens for ¢ — 0. Find ||r/(¢)]].
Finally, calculate the surface areas.
I 1) We get by a differentiation
r'(t) = (—3sint+6cos®tsint,6sin’t cost, —3sint)
= J3sint (2 cos’t — 1,2sint cost, —1)
= 3sint (cos2t,sin2t, —1).
Clearly, r'(t) # 0 for t € }0, g[, hence the curve has a tangent in each of the points corre-
. T
sponding to t € }0, 5 [

1306
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2) Tt follows from

1
—r
3sint

'(t) = (cos2t,sin2t,—1) — (1,0,—1) # (0,0,0) for t — 0,

that the curve has a tangent (actually a “half tangent”) at the point corresponding to ¢ = 0.
3) From

It'(1)]|* = (3sint)? - {cos® 2t + sin? 2¢ + 1} = (3v2sint)?,

follows that the length of the curve K is

] =
= 3\/5/ sint dt = 3v/2[— cost]? = 3V2.
0
The projection of the curve onto the (X,Y)-plane has the parametric description

/() = (cost{3 — 2cos’ t},2sin’¢,0),  te€ [07 g] .
By glancing at 1) we get

' (t) = 3sint (cos 2t,sin2t,0) and ||F(¢)| = 3sint.

Ijoined MITAS because L,
I wanted real responsibility www.discovermitas.com

I'was a construction
SUPErvisor in

the North Sea
advising and
ern  Nelping foremen

& solve problems

MAERSK
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4) The surface area of O is

area(0) — /O " omii(e) - I (1)) dt

™ s

2 2
= 27r/ 251n3t~35intdt:37r/ (2sin®¢)* dt
0 0

3 3
= 371'/ (1 —cos2t)?dt = 37r/ (1 —2cos2t + cos? 2t) dt
0 0

32 = 3r [2 3r2  3m% 9r?
= — — sin 2t|F + — 1 5 4 =— 4+ —=—
5 3n[sin2¢]¢ + 5 /0 (14 cos4t)dt 5 + 1 1
5) The surface area of C is
3 El
area(C) = / (3cost + 2(t)} - ||f"(t)||dt:/ {6cost — 2cos* ) - 3sintdt
0 0

z 3 [z
3/ {3 —cos?t} -sin2tdt = 5/ (5 — cos2t) - sin 2t dt
0 0

15 (% 3 [ 15[ 1 3 = 15
?/0 sin2tdt—1/0 sin4tdt:? {—2 coth}0 —+—E[cos4t]02 =5

Example 27.24 .

1. Find the length of the curve KC given by the parametric description
r(t) = (3 (1 —t2)2,8t3,0>, teo,1].

Choose K as the leading curve for a cylinder surface C with the Z-azxis as its direction of the generators.
2. Find the area of that part of C, which lies between the curve IC and the plane of equation z = 1+y.
A Curve length; surface area.
D Find ||r/(¢)|| and integrate. Then find the surface area.
I 1) We get from
r'(t) = (—12¢ (1 — %) ,24¢%,0) = 12¢ (¢* — 1,2¢,0)
that
I/ (1)]|2 = (126)% - {t* — 26> + 1 + 462} = (126) (£ +1)°,
and thus
Ir/(t)]| = 12t (£ +1).

Hence, the arc length is

1

1 1
e:/ ||r’(t)||dt:/ 16 (£ + 1) dt:6/ (u+ 1) du = [3u? + 6u]} = 9.
0 0 [

=t2=0
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Figure 27.53: The space curve K.

2) The surface area is

1 1
A / 1+ yly—se - ' (@)]| dt = / (148%) -12¢ (1> +1) dt
0 0

1
11\ 1467
4 5 +¢4) dt = 4= ==
+96/0( +1t4) 9+96<7+5> o

Example 27.25 Find the area of that part C of the cylinder surface of equation x? +y* =9, which
is bounded by the plane z = 0 and the surface of equation z = 1 + x2.

A Area of a part of a cylinder surface.
D Just compute.

I When we integrate along the curve
K: (x,y) = (3cosy,3sinp),

we get
27

area(C):/(1+x2)ds:/ (14 9cos?p) - 3dy = 67 + 277 = 33m.
K 0
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Example 27.26 Given a curve K in the (X, Z)-plane by

= 4% 1,2
z=lz—3) > xz € 1,2].

1) Find the length of K.
2) Find the area of that surface F, which is created when K is rotated once around the Z-azis.
A Curve length, surface area.

D Find the line element

dz
ds=4/1 — ]d
S +<dx> x

and calculate f,C ds and 27 fK xds.

05

Figure 27.54: The curve K.

I 1) We get from

dz 3/ _4
dz 2 9’
the line element

9

ds = 1+4<x—>dx— Vrdz,

and the curve length becomes

3 [ )
=5/1 Vade = oyl = 2v2 - 1.

2) The surface area is according to a formula

area(]-'):27r/xd5—27r —/ xfdx—%r = —[2\/—]1 4\/_—1)

K
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Figure 27.55: The surface of revolution F.

Example 27.27 A cylinder surface C has its generators parallel to the Z-axis and its leading curve
K in the (X,Y)-plane is given by the parametric description

r(t)= (P —t,*+t), te [0,?].

Find the area of that part F of C, which is bounded by the plane z = 0 and the plane z = 8y — 8.

A Surface area.

D First find v/ (¢).

Figure 27.56: The curve K.

I First note that z = 8y — 8x = 16¢ > 0 on K. Then

v(t)=(2t—1,2t+1), 'O =V2 VA2 +1.

When we insert the above into the formula of the area of a cylinder surface with a leading curve,

1311
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Figure 27.57: The surface F.

then

S
%

area(F) = /(81/—83: d"’_\f/lfit-\/Mdt:Z\/ﬁE (\/m)3]

_ ( 4.3+1>3_1 _ v

0
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Example 27.28 Find an equation of the tangent plane of the graph of the function
g(z,y) = 2zy,  (z,y) € [1,4] x [1,4]

at the point (x,y) = (2,2). Find the area of the graph.

A Tangent plane and surface area.

D Find the approximating polynomial of at most first degree at the point of contact.

Figure 27.58: The graph of f.

An equation of the tangent plane of z = g(x,y) is

z = Pl(xy—922 +Vg22) (x— 2,y —2)
= 2f+< ) (r—2,y—2) = 2f+i(z+ 4) = Lo+ L
- V2' V2 e 2 T T Rt R Y

hence
:z:+y—\/§z:O.

Then according to some formula, the area of the graph is

4 4 T
[virTvarwy= [ {] ,/1+—+_dx} &y
B 2z 2y
- {/ \/— (2zy +y? +12)d:r} dy_ / \———— °L+y

- /r{/ (st 4we) asf ey \f/41 [ im_ldy
_ / { 8—1)—|—2y(2—1)}dy—\/_/ {y 2+2y5}dy

= s 3vieg] =gt veeom =B
1313
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28 Formulae

Some of the following formule can be assumed to be known from high school. It is highly recommended
that one learns most of these formule in this appendiz by heart.

28.1 Squares etc.

The following simple formulae occur very frequently in the most different situations.

(a+b)? = a? + b + 2ab, a? +b% +2ab = (a +b)?,
(a —b)? = a® + b* — 2ab, a? +b* —2ab = (a —b)?,
(a+b)(a—b) =a®— b2, a?—bv*> = (a+0b)(a—b),
(a+b)? = (a — b)? + 4ab, (a —b)? = (a + b)? — 4ab.

28.2 Powers etc.

Logarithm:
In|zy| = In|z|+1n|y|, x,y #0,
In|Z|= In|z| —Inly|, x,y#0,
In|z"| = rin|z|, x #0.

Power function, fixed exponent:

(zy)" =a" -y",z,y >0 (extensions for some r),

AN
<—) =—,z,y>0 (extensions for some 7).
)

Exponential, fixed base:

a®-a¥ =a*"¥, a>0 (extensions for some z, y),

(@®)! =a*¥,a >0 (extensions for some z, y),
e 1 :
a”t=-—,a>0, (extensions for some ),

Ya=a'"a>0, n € N.
Square root:
Va2 = |z, zeR.

Remark 28.1 It happens quite frequently that students make errors when they try to apply these
rules. They must be mastered! In particular, as one of my friends once put it: “If you can master the
square root, you can master everything in mathematics!” Notice that this innocent looking square
root is one of the most difficult operations in Calculus. Do not forget the absolute value!
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28.3 Differentiation

Here are given the well-known rules of differentiation together with some rearrangements which some-
times may be easier to use:

{f(@) £g(x)} = f'(x) £ ¢'(2),

{f(@)g(@)} = f'(@)g() + f(2)g'(x) = f(2)9() {J}é@) i gg<($>) }

where the latter rearrangement presupposes that f(x) # 0 and g(z) # 0.
If g(z) # 0, we get the usual formula known from high school

{f(m) }/ _ [(@)g(x) = f(z)g'(x)
g(x) g9(x)? '

It is often more convenient to compute this expression in the following way:

Vo) = dn U6 ) = 5 ot~ 30 o) ~ ko) )

where the former expression often is much easier to use in practice than the usual formula from high
school, and where the latter expression again presupposes that f(x) # 0 and g(x) # 0. Under these
assumptions we see that the formulae above can be written

{f(2)g(x)} _ f'(x) ¢ (=)
f(@)g(x) — flz)  g(x)

f(x)/g(x) ()  g(@)
Since

LTV 4 C) .

Fhlf@l=58. @ o,

we also name these the logarithmic derivatives.
Finally, we mention the rule of differentiation of a composite function
{f(e(@)} = f(e(@)) - ¢ (2).

We first differentiate the function itself; then the insides. This rule is a 1-dimensional version of the
so-called Chain rule.

28.4 Special derivatives.

Power like:

. (%) = - 271, for x > 0, (extensions for some a).
d 1
%1n|x|=5, for z # 0.
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Exponential like:

—expx = expcz,

dx

d

In (®)=Ina-a”,
Trigonometric:

— sinx = cosx,

dzr
— cosx = —sinux,
e T inx
d 1
—tanz =1+ tan’z = 7
dz cos? x
d 1
L ot = —(1+eot?a) = ———
Hyperbolic:
— sinhz = cosh z,
dx
— coshx = sinh z,
dx
d 1
—tanhz = 1 — tanh®x = 5
dx cosh® x
d 1
7 cothz =1 — coth?z = R
z sinh? z
Inverse trigonometric:

d 1
— Arcsin x =

dx V1—22’

1
e Arccos x = —7*1 —
d
% Arctan xXr = m,
d 1
e Arccot x = 522
Inverse hyperbolic:
d 1
— Arsinh z = ——,
dx A /x2 + 1
d 1
— Arcosh x = ——,
dx 552 -1
d 1
% Artanh x = 1——332’
d
% Arcoth z = m,

Remark 28.2 The derivative of the trigonometric and the hyperbolic functions are to some extent
exponential like. The derivatives of the inverse trigonometric and inverse hyperbolic functions are

for z € R,

forx € R and a > 0.

for z € R,
for x € R,

T
for;v;«é§+p7r,p€Z,

for x # pm,p € Z.

for z € R,

for z € R,
for x € R,

for = # 0.

forze]-1,1],
forze]—-1,1],
for z € R,

for x € R.

for x € R,
for x €]1,400],
for |z| < 1,

for |x| > 1.

power like, because we include the logarithm in this class. ¢
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28.5 Integration

The most obvious rules are dealing with linearity

/{f(x) + Ag(x)} dx = /f(x) dx + )\/g(x) dx, where A € R is a constant,

and with the fact that differentiation and integration are “inverses to each other”, i.e. modulo some
arbitrary constant ¢ € R, which often tacitly is missing,

[ F@ s = fa).

If we in the latter formula replace f(x) by the product f(z)g(z), we get by reading from the right to
the left and then differentiating the product,

f@g@) = [(@g@)} do= [ f@gle)ds+ [ s ) da.

Hence, by a rearrangement

The rule of partial integration:

/fumuwzzﬂmmw—/fwmuwm

The differentiation is moved from one factor of the integrand to the other one by changing the sign
and adding the term f(z)g(x).

Remark 28.3 This technique was earlier used a lot, but is almost forgotten these days. It must
be revived, because MAPLE and pocket calculators apparently do not know it. It is possible to
construct examples where these devices cannot give the exact solution, unless you first perform a
partial integration yourself. ¢

Remark 28.4 This method can also be used when we estimate integrals which cannot be directly
calculated, because the antiderivative is not contained in e.g. the catalogue of MAPLE. The idea is
by a succession of partial integrations to make the new integrand smaller. ¢

Integration by substitution:

If the integrand has the special structure f(¢(z))-¢’(z), then one can change the variable to y = ¢(z):

[ #tet@n ¢ @ae =< [ re@nacar = [ swa
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Integration by a monotonous substitution:

If p(y) is a monotonous function, which maps the y-interval one-to-one onto the z-interval, then

[r@a= [ sewew

Remark 28.5 This rule is usually used when we have some “ugly” term in the integrand f(z). The
idea is to put this ugly term equal to y = ¢ ~!(z). When e.g. 2 occurs in f(z) in the form /z, we put

y = o Y(x) = \/z, hence = = ¢(y) = y? and ¢'(y) = 2y. O

28.6 Special antiderivatives

Power like:

1
/—dx = In x|,
x

/xo‘ dr = L 2o+l
a+1

1
/ 1522 dx = Arctan x,

1 1 1+
= dr =1
/1—x2 v 2n‘1—x"

1
/ dr = Artanh z,

1— 22

1
/ dr = Arcoth z,

1— 22

dx = Arcsin x,

=

1
———— dx = — Arccos z,
/ V1—22
1
———— dx = Arsinh z,
/ VaZ 41

1
/\/Tﬁd"ﬁ:ln(ﬂf—F 332—|—1),

T
———dx =122 -1,
/\/3:2—1
1
———dx = Arcosh z,
/\/:Jc2—1

1
/ﬁdlenm—kvﬁ—ﬂ,
22 —

for x # 0. (Do not forget the numerical value!)
for o # —1,
for z € R,
for x # +£1,
for |z| < 1,
for |z| > 1,
for |z| < 1,
for |x| < 1,
for x € R,
for x € R,
for z € R,
for x > 1,

for x > 1 eller x < —1.

There is an error in the programs of the pocket calculators TI-92 and TT-89. The numerical signs are
missing. It is obvious that Va2 — 1 < |z| so if x < —1, then z + V22 — 1 < 0. Since you cannot take
the logarithm of a negative number, these pocket calculators will give an error message.
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Exponential like:

/expxdx:expx, for z € R,
1
a®dr =— -a", for x € R, and a > 0,a # 1.
Ina
Trigonometric:
/sinxdx:—cosx, for z € R,
/cosxdx:sinx, for z € R,
/tanxdx:—ln|cosx\, forx;ég—i—pﬂ, p € Z,
/cotxdx:1n|sinx|, for z # pmr, p€Z,
1 1 1 i
/ dr==In ﬂ , forx;éz—i—pﬂ, p € Z,
cos x 2 1 —sinz 2
1 1 1—cosz
dr==In|{ —— f Z
/sinx T3 n(1+cosx)’ orx#pm peL
1 us
>— dxr = tanz, forz # - +pm, pe€EZ,
cos® x 2
1
—5— dx = —cotuw, for x # pmw, p€Z.
sin” z
Hyperbolic:
/sinhxdx = coshz, for x € R,
/coshxdx = sinhz, for x € R,
/tanhxdx = Incoshz, for x € R,
/cothxalx:1n|sinhx|7 for x # 0,
1 .
dx = Arctan(sinh z), for x € R,
coshz
1
/ dx = 2 Arctan(e”), for z € R,
coshz
1 1 coshx — 1
dr=—-In| ——— f 0
/sinhx YT n(coshx—i—l)’ orz #0,
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1 e’ —1
dr=In|—— f 0
/sinh:c e em—|—1" or & 70,
1
/ﬁdz:tanhz, for z € R,
cosh” z
1
/. 5— dr = — coth, for z # 0.
sinh” x

28.7 Trigonometric formulae

The trigonometric formulae are closely connected with circular movements. Thus (cosw,sinu) are
the coordinates of a point P on the unit circle corresponding to the angle u, cf. figure A.1. This
geometrical interpretation is used from time to time.

(cosu, sinu)

Figure 28.1: The unit circle and the trigonometric functions.

The fundamental trigonometric relation:
cos?u +sinu =1, for u € R.

Using the previous geometric interpretation this means according to Pythagoras’s theorem, that the
point P with the coordinates (cosu,sinu) always has distance 1 from the origo (0,0), i.e. it is lying
on the boundary of the circle of centre (0,0) and radius v/1 = 1.

Connection to the complex exponential function:

The complex exponential is for imaginary arguments defined by
exp(iu) :=cosu+1 sinu.

It can be checked that the usual functional equation for exp is still valid for complex arguments. In
other word: The definition above is extremely conveniently chosen.

By using the definition for exp(iu) and exp(—iu) it is easily seen that

1
cosu = i(exp(iu) + exp(—iu)),

1
sinu = %(exp(i u) —exp(—iu)),

Download free eBooks at bookboon.com



Moivre’s formula: We get by expressing exp(inu) in two different ways:
exp(inu) = cosnu + i sinnu = (cosu + 1 sinw)".

Example 28.1 If we e.g. put n = 3 into Moivre’s formula, we obtain the following typical application,
cos(3u) + i sin(3u) = (cosu + i sinu)?

= cos® u + 3i cos?

= {cos® u — 3cosu - sin® u} + i{3 cos® u - sinu — sin® u}

= {4cos®u — 3cosu} + i{3sinu — 4sin®u}

w-sinu + 3i% cosu - sin?u + ¥ sin®u

When this is split into the real- and imaginary parts we obtain
cos3u:4c053u—3cosu, sin3u = 3sinu — 4sin®u. ¢
Addition formulae:
sin(u + v) = sinwu cosv + cosu sin v,
sin(u — v) = sinu cosv — cosu sinv,
cos(u + v) = cosu cosv — sinu sinv,
cos(u — v) = cosu cosv + sinu sinv.

Products of trigonometric functions to a sum:
. 1. 1,
sinu cosv = sin(u + v) + 5 sin(u — v),
. 1. 1.
cosu sinv = o sin(u +v) — 5 sin(u — v),
. . 1
sinv sinv = 5 cos(u —v) — 5 cos(u + v),

1 1
cosU COSY = cos(u —v) + 3 cos(u + v).

Sums of trigonometric functions to a product:

sinu 4+ sinv = 2sin <u—2|—v> cos (U;U) ,

. . 9 u+v\ . uU—v
sinu — sinv = 2 cos sin
2 2 ’
cosu + cosv = 2 cos utv cos S ,
2 2
. u+uvy\ . U —v
cosu—cosv:—Zsm( )sm( 5 )

Formula of halving and doubling the angle:

sin 2u = 2sinw cosu,

2 2

cos 2u = cos” u — sin u:2cosgu—1:1—2sin2u,

1 —cosu

sin 5= + — followed by a discussion of the sign,

/1
cos g =+ $ followed by a discussion of the sign,
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28.8 Hyperbolic formulae

These are very much like the trigonometric formulae, and if one knows a little of Complex Function
Theory it is realized that they are actually identical. The structure of this section is therefore the same
as for the trigonometric formulze. The reader should compare the two sections concerning similarities

and differences.
The fundamental relation:
cosh? z — sinh? z = 1.
Definitions:

coshz = % (exp(z) + exp(—x)), sinhx = % (exp(z) — exp(—x)) .

“Moivre’s formula”:

exp(x) = coshz + sinh z.

This is trivial and only rarely used. It has been included to show the analogy.

Addition formulae:
sinh(z + y) = sinh(z) cosh(y) + cosh(z) sinh(y),
sinh(z — y) = sinh(z) cosh(y) — cosh(z) sinh(y),
cosh(z + y) = cosh(z) cosh(y) + sinh(z) sinh(y),
cosh(z — y) = cosh(z) cosh(y) — sinh(z) sinh(y).
Formula of halving and doubling the argument:
sinh(2z) = 2sinh(z) cosh(z),
cosh(2z) = cosh?(z) + sinh?(x) = 2 cosh®(z) — 1 = 2sinh®(z) + 1,

cosh(z) — 1

5 followed by a discussion of the sign,

x
inh (—) -+
sinh { 5
x cosh(z) +1
‘h (7) - ’
cosh { 2 >
Inverse hyperbolic functions:

Arsinh(z) = In (1: + Va2 + 1) , z €R,

Arcosh(z) = In (a: +Vaz?— 1) , x> 1,

1 1+

Artanh(x) = 5111 <1 — a:) ) |z <1,
1 1

Arcoth(x) =  In (zfl) 2| > 1.
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28.9 Complex transformation formulse
cos(iz) = cosh(z), cosh(iz) = cos(x),

sin(iz) = i sinh(x), sinh(iz) = isinz.

28.10 Taylor expansions

The generalized binomial coefficients are defined by

<a) ala—=1)-(a—n+1)

with n factors in the numerator and the denominator, supplied with

(5) -

The Taylor expansions for standard functions are divided into power like (the radius of convergency
is finite, i.e. = 1 for the standard series) andexzponential like (the radius of convergency is infinite).
Power like:

1 o0
—:Zx", |z < 1,
x

1_
n=0
1 - n_n
=Y, ol <1,
n=0
(1+9€)":Z(@>wj, neNzeR,
=\
(1+x)o‘:z<3):c", acR\N,|z| <1,
n=0
o0 xn
In(1 = —nte <1
i) = 3o el <1,
o z2n+1
Arct D N | <1.
retan(a) = 3 (1" 3 o
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Exponential like:

— 1
exp(z) = Z ﬁx", zeR
n=0
- 1
exp(—x) = Z(—l)"ﬁw", reR
n=0 ’
- 1
sin(z) = Z(—l)"il;v%*l, z €R,
= (2n+1)!
sinh(z) = i #x%*l zeR
' ) )
= (2n+1)!
= n 1 2n
cos(z) = Z(—l) (2n)'w , z €R,
n=0 ’
cosh(z) = i L:52” reR
| ’ ’
= (2n)!

28.11 Magnitudes of functions

We often have to compare functions for x — 0+, or for x — co. The simplest type of functions are

therefore arranged in an hierarchy:
1) logarithms,

2) power functions,

3) exponential functions,

4) faculty functions.

When z — oo, a function from a higher class will always dominate a function form a lower class
precisely:

A) A power function dominates a logarithm for x — oo:

(Inz)?

pors -0 forx — 00, «, B >0.

B) An ezponential dominates a power function for x — oo:

xOL

— =0 forz — o0, a,a>1.
a[l)
C) The faculty function dominates an exponential for n — oo:

an

—'—>O, n—o00, neN, a>0.
n!

D) When = — 0+ we also have that a power function dominates the logarithm:

z%Inx — 0—, for x — 0+, a>0.
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Index

absolute value 162

acceleration 490

addition 22

affinity factor 173

Ampere-Laplace law 1671

Ampere-Maxwell’s law 1678

Ampere’s law 1491, 1498, 1677, 1678, 1833

Ampere’s law for the magnetic field 1674

angle 19

angular momentum 886

angular set 84

annulus 176, 243

anticommutative product 26

antiderivative 301, 847

approximating polynomial 304, 322, 326, 336, 404,
488, 632, 662

approximation in energy 734

Archimedes’s spiral 976, 1196

Archimedes’s theorem 1818

area 887, 1227, 1229, 1543

area element 1227

area of a graph 1230

asteroid 1215

asymptote 51

axial moment 1910

axis of revolution 181

axis of rotation 34, 886

axis of symmetry 49, 50, 53

barycentre 885, 1910

basis 22

bend 486

bijective map 153

body of revolution 43, 1582, 1601
boundary 37-39

boundary curve 182

boundary curve of a surface 182
boundary point 920

boundary set 21

bounded map 153

bounded set 41

branch 184

branch of a curve 492

Brownian motion 884

cardiod 972, 973, 1199, 1705

Cauchy-Schwarz’s inequality 23, 24, 26

centre of gravity 1108

centre of mass 885

centrum 66

chain rule 305, 333, 352, 491, 503, 581, 1215, 1489,
1493, 1808

change of parameter 174

circle 49

circular motion 19

circulation 1487

circulation theorem 1489, 1491

circumference 86

closed ball 38

closed differential form 1492

closed disc 86

closed domain 176

closed set 21

closed surface 182, 184

closure 39

clothoid 1219

colour code 890

compact set 186, 580, 1813

compact support 1813

complex decomposition 69

composite function 305

conductivity of heat 1818

cone 19, 35, 59, 251

conic section 19, 47, 54, 239, 536

conic sectional conic surface 59, 66

connected set 175, 241

conservation of electric charge 1548, 1817

conservation of energy 1548, 1817

conservation of mass 1548, 1816

conservative force 1498, 1507

conservative vector field 1489

continuity equation 1548, 1569, 1767, 1817

continuity 162, 186

continuous curve 170, 483

continuous extension 213

continuous function 168

continuous surfaces 177

contraction 167

convective term 492

convex set 21, 22, 41, 89, 91, 175, 244

coordinate function 157, 169

coordinate space 19, 21
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Cornu’s spiral 1219

Coulomb field 1538, 1545, 1559, 1566, 1577

Coulomb vector field 1585, 1670

cross product 19, 163, 169, 1750

cube 42, 82

current density 1678, 1681

current 1487, 1499

curvature 1219

curve 227

curve length 1165

curved space integral 1021

cusp 486, 487, 489

cycloid 233, 1215

cylinder 34, 42, 43, 252

cylinder of revolution 500

cylindric coordinates 15, 21, 34, 147, 181, 182,
289, 477,573,841, 1009, 1157, 1347, 1479,
1651, 1801

cylindric surface 180, 245, 247, 248, 499, 1230

degree of trigonometric polynomial 67
density 885

density of charge 1548

density of current 1548

derivative 296

derivative of inverse function 494
Descartes’a leaf 974

dielectric constant 1669, 1670
difference quotient 295
differentiability 295

differentiable function 295
differentiable vector function 303
differential 295, 296, 325, 382, 1740, 1741
differential curves 171

differential equation 369, 370, 398
differential form 848

differential of order p 325

differential of vector function 303
diffusion equation 1818

dimension 1016

direction 334

direction vector 172

directional derivative 317, 334, 375
directrix 53

Dirichlet/Neumann problem 1901
displacement field 1670

distribution of current 886

divergence 1535, 1540, 1542, 1739, 1741, 1742
divergence free vector field 1543

dodecahedron 83
domain 153, 176
domain of a function 189
dot product 19, 350, 1750
double cone 252
double point 171
double vector product 27

eccentricity 51

eccentricity of ellipse 49

eigenvalue 1906

elasticity 885, 1398

electric field 1486, 1498, 1679

electrical dipole moment 885

electromagnetic field 1679

electromagnetic potentials 1819

electromotive force 1498

electrostatic field 1669

element of area 887

elementary chain rule 305

elementary fraction 69

ellipse 48-50, 92, 113, 173, 199, 227

ellipsoid 56, 66, 110, 197, 254, 430, 436, 501, 538,
1107

ellipsoid of revolution 111

ellipsoidal disc 79, 199

ellipsoidal surface 180

elliptic cylindric surface 60, 63, 66, 106

elliptic paraboloid 60, 62, 66, 112, 247

elliptic paraboloid of revolution 624

energy 1498

energy density 1548, 1818

energy theorem 1921

entropy 301

Euclidean norm 162

Euclidean space 19, 21, 22

Euler’s spiral 1219

exact differential form 848

exceptional point 594, 677, 920

expansion point 327

explicit given function 161

extension map 153

exterior 37-39

exterior point 38

extremum 580, 632

Faraday-Henry law of electromagnetic induction
1676
Fick’s first law of diffusion 297
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Fick’s law 1818 Helmholtz’s theorem 1815

field line 160 homogeneous function 1908

final point 170 homogeneous polynomial 339, 372

fluid mechanics 491 Hopf’s maximum principle 1905

flux 1535, 1540, 1549 hyperbola 48, 50, 51, 88, 195, 217, 241, 255, 1290

focus 49, 51, 53 hyperbolic cylindric surface 60, 63, 66, 105, 110

force 1485 hyperbolic paraboloid 60, 62, 66, 246, 534, 614,

Fourier’s law 297, 1817 1445

function in several variables 154 hyperboloid 232, 1291

functional matrix 303 hyperboloid of revolution 104

fundamental theorem of vector analysis 1815 hyperboloid of revolution with two sheets 111
hyperboloid with one sheet 56, 66, 104, 110, 247,

Gaussian integral 938 255

Gauly’s law 1670 hyperboloid with two sheets 59, 66, 104, 110, 111,

Gaufl’s law for magnetism 1671 255, 527

Gauf}’s theorem 1499, 1535, 1540, 1549, 1580, 1718, hysteresis 1669
1724, 1737, 1746, 1747, 1749, 1751, 1817,

1818, 1889, 1890, 1913 identity map 303
Gauf’s theorem in R? 1543 implicit given function 21, 161
Gauf’s theorem in R? 1543 implicit function theorem 492, 503
general chain rule 314 improper integral 1411
general coordinates 1016 improper surface integral 1421
general space integral 1020 increment 611
general Taylor’s formula 325 induced electric field 1675
generalized spherical coordinates 21 induction field 1671
generating curve 499 infinitesimal vector 1740
generator 66, 180 infinity, signed 162
geometrical analysis 1015 infinity, unspecified 162
global minimum 613 initial point 170
gradient 295, 296, 298, 339, 847, 1739, 1741 injective map 153
gradient field 631, 847, 1485, 1487, 1489, 1491, inner product 23, 29, 33, 163, 168, 1750
1916 inspection 861
gradient integral theorem 1489, 1499 integral 847
graph 158, 179, 499, 1229 integral over cylindric surface 1230
Green’s first identity 1890 integral over surface of revolution 1232
Green’s second identity 1891, 1895 interior 37-40
Green’s theorem in the plane 1661, 1669, 1909 interior point 38
Green’s third identity 1896 intrinsic boundary 1227
Green’s third identity in the plane 1898 isolated point 39

Jacobian 1353, 1355
half-plane 41, 42

half-strip 41, 42 Kronecker symbol 23

half disc 85

harmonic function 426, 427, 1889 Laplace equation 1889

heat conductivity 297 Laplace force 1819

heat equation 1818 Laplace operator 1743

heat flow 297 latitude 35

height 42 length 23

helix 1169, 1235 level curve 159, 166, 198, 492, 585, 600, 603
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level surface 198, 503
limit 162, 219

line integral 1018, 1163
line segment 41

Linear Algebra 627
linear space 22

local extremum 611
logarithm 189
longitude 35

Lorentz condition 1824

Maclaurin’s trisectrix 973, 975

magnetic circulation 1674

magnetic dipole moment 886, 1821

magnetic field 1491, 1498, 1679

magnetic flux 1544, 1671, 1819

magnetic force 1674

magnetic induction 1671

magnetic permeability of vacuum 1673

magnostatic field 1671

main theorems 185

major semi-axis 49

map 153

MAPLE 55, 68, 74, 156, 171, 173, 341, 345, 350,
352-354, 356, 357, 360, 361, 363, 364,
366, 368, 374, 384-387, 391-393, 395—
397, 401, 631, 899, 905-912, 914, 915,
917, 919, 922-924, 926, 934, 935, 949,
951, 954, 957-966, 968, 971-973, 975,
1032-1034, 1036, 1037, 1039, 1040, 1042,
1053, 1059, 1061, 1064, 1066—-1068, 1070—
1072, 1074, 1087, 1089, 1091, 1092, 1094,
1095, 1102, 1199, 1200

matrix product 303

maximal domain 154, 157

maximum 382, 579, 612, 1916

maximum value 922

maximum-minimum principle for harmonic func-
tions 1895

Maxwell relation 302

Maxwell’s equations 1544, 1669, 1670, 1679, 1819

mean value theorem 321, 884, 1276, 1490

mean value theorem for harmonic functions 1892

measure theory 1015

Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157,
1347, 1479, 1651, 1801, 1921

meridian curve 181, 251, 499, 1232

meridian half-plane 34, 35, 43, 181, 1055, 1057,
1081

method of indefinite integration 859

method of inspection 861

method of radial integration 862

minimum 186, 178, 579, 612, 1916

minimum value 922

minor semi-axis 49

mmf 1674

Mobius strip 185, 497

Moivre’s formula 122, 264, 452, 548, 818, 984,
1132, 1322, 1454, 1626, 1776, 1930

monopole 1671

multiple point 171

nabla 296, 1739

nabla calculus 1750

nabla notation 1680

natural equation 1215

natural parametric description 1166, 1170
negative definite matrix 627

negative half-tangent 485
neighbourhood 39

neutral element 22

Newton field 1538

Newton-Raphson iteration formula 583
Newton’s second law 1921
non-oriented surface 185

norm 19, 23

normal 1227

normal derivative 1890

normal plane 487

normal vector 496, 1229

octant 83

Ohm’s law 297

open ball 38

open domain 176

open set 21, 39

order of expansion 322
order relation 579

ordinary integral 1017
orientation of a surface 182
orientation 170, 172, 184, 185, 497
oriented half line 172
oriented line 172

oriented line segment 172
orthonormal system 23

parabola 52, 53, 89-92, 195, 201, 229, 240, 241
parabolic cylinder 613
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parabolic cylindric surface 64, 66

paraboloid of revolution 207, 613, 1435

parallelepipedum 27, 42

parameter curve 178, 496, 1227

parameter domain 1227

parameter of a parabola 53

parametric description 170, 171, 178

parfrac 71

partial derivative 298

partial derivative of second order 318

partial derivatives of higher order 382

partial differential equation 398, 402

partial fraction 71

Peano 483

permeability 1671

piecewise C*-curve 484

piecewise C"-surface 495

plane 179

plane integral 21, 887

point of contact 487

point of expansion 304, 322

point set 37

Poisson’s equation 1814, 1889, 1891, 1901

polar coordinates 15, 19, 21, 30, 85, 88, 147, 163,
172, 213, 219, 221, 289, 347, 388, 390,
477, 573, 611, 646, 720, 740, 841, 936,
1009, 1016, 1157, 1165, 1347, 1479, 1651,
1801

polar plane integral 1018

polynomial 297

positive definite matrix 627

positive half-tangent 485

positive orientation 173

potential energy 1498

pressure 1818

primitive 1491

primitive of gradient field 1493

prism 42

Probability Theory 15, 147, 289, 477, 573, 841,
1009, 1157, 1347, 1479, 1651, 1801

product set 41

projection 23, 157

proper maximum 612, 618, 627

proper minimum 612, 613, 618, 627

pseudo-sphere 1434

Pythagoras’s theorem 23, 25, 30, 121, 451, 547,
817, 983, 1131, 1321, 1453, 1625, 1775,
1929

quadrant 41, 42, 84
quadratic equation 47

range 153

rectangle 41, 87

rectangular coordinate system 29

rectangular coordinates 15, 21, 22, 147, 289, 477,
573, 841, 1009, 1016, 1079, 1157, 1165,
1347, 1479, 1651, 1801

rectangular plane integral 1018

rectangular space integral 1019

rectilinear motion 19

reduction of a surface integral 1229

reduction of an integral over cylindric surface 1231

reduction of surface integral over graph 1230

reduction theorem of line integral 1164

reduction theorem of plane integral 937

reduction theorem of space integral 1021, 1056

restriction map 153

Ricatti equation 369

Riesz transformation 1275

Rolle’s theorem 321

rotation 1739, 1741, 1742

rotational body 1055

rotational domain 1057

rotational free vector field 1662

rules of computation 296

saddle point 612

scalar field 1485

scalar multiplication 22, 1750

scalar potential 1807

scalar product 169

scalar quotient 169

second differential 325

semi-axis 49, 50

semi-definite matrix 627

semi-polar coordinates 15, 19, 21, 33, 147, 181,
182, 289, 477, 573, 841, 1009, 1016, 1055,
1086, 1157, 1231, 1347, 1479, 1651, 1801

semi-polar space integral 1019

separation of the variables 853

signed curve length 1166

signed infinity 162

simply connected domain 849, 1492

simply connected set 176, 243

singular point 487, 489

space filling curve 171

space integral 21, 1015
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specific capacity of heat 1818 triangle inequality 23,24
sphere 35, 179 triple integral 1022, 1053
spherical coordinates 15, 19, 21, 34, 147, 179, 181,
289, 372, 477, 573, 782, 841, 1009, 1016, uniform continuity 186
1078, 1080, 1081, 1157, 1232, 1347, 1479, unit circle 32

1581, 1651, 1801 unit disc 192
spherical space integral 1020 unit normal vector 497
square 41 unit tangent vector 486
star-shaped domain 1493, 1807 unit vector 23
star shaped set 21, 41, 89, 90, 175 unspecified infinity 162

static electric field 1498

stationary magnetic field 1821
stationary motion 492 vector field 158, 296, 1485

stationary point 533, 920 vector function 21, 157, 189

Statistics 15, 147, 289, 477, 573, 841, 1009, 1157, Vector product 19, 26, 30, 163, 169. 1227, 1750
1347, 1479, 1651, 1801 vector space 21, 22

step line 172 Vector}al area 1748

Stokes’s theorem 1499, 1661, 1676, 1679, 1746, vectorial element of area 1535
1747, 1750, 1751, 1811, 1819, 1820, 1913  Vectorial potential 1809, 1810

straight line (segment) 172 velocity 490

strip 41, 42 volume 1015, 1543

substantial derivative 491 volumen element 1015

surface 159, 245

surface area 1296

surface integral 1018, 1227

surface of revolution 110, 111, 181, 251, 499

surjective map 153

vector 22

weight function 1081, 1229, 1906
work 1498

zero point 22
zero vector 22

tangent 486 (r, s, t)-method 616, 619, 633, 634, 638, 645647,
tangent plane 495, 496 652, 655

tangent vector 178 Ck_curve 4837

tangent vector field 1485 C"-functions 318

tangential line integral 861, 1485, 1598, 1600, 1603 1-1 map 153

Taylor expansion 336

Taylor expansion of order 2, 323

Taylor’s formula 321, 325, 404, 616, 626, 732

Taylor’s formula in one dimension 322

temperature 297

temperature field 1817

tetrahedron 93, 99, 197, 1052

Thermodynamics 301, 504

top point 49, 50, 53, 66

topology 15, 19, 37, 147, 289. 477, 573, 841, 1009,
1157, 1347, 1479, 1651, 1801

torus 43, 182-184

transformation formulael353

transformation of space integral 1355, 1357

transformation theorem 1354

trapeze 99
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