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Preface

Preface

The topic of this series of books on “Real Functions in Several Variables” is very important in the
description in e.g. Mechanics of the real 3-dimensional world that we live in. Therefore, we start from
the very beginning, modelling this world by using the coordinates of R3 to describe e.g. a motion in
space. There is, however, absolutely no reason to restrict ourselves to R3 alone. Some motions may
be rectilinear, so only R is needed to describe their movements on a line segment. This opens up for
also dealing with R2, when we consider plane motions. In more elaborate problems we need higher
dimensional spaces. This may be the case in Probability Theory and Statistics. Therefore, we shall in
general use Rn as our abstract model, and then restrict ourselves in examples mainly to R2 and R3.

For rectilinear motions the familiar rectangular coordinate system is the most convenient one to apply.
However, as known from e.g. Mechanics, circular motions are also very important in the applications
in engineering. It becomes natural alternatively to apply in R2 the so-called polar coordinates in the
plane. They are convenient to describe a circle, where the rectangular coordinates usually give some
nasty square roots, which are difficult to handle in practice.

Rectangular coordinates and polar coordinates are designed to model each their problems. They
supplement each other, so difficult computations in one of these coordinate systems may be easy, and
even trivial, in the other one. It is therefore important always in advance carefully to analyze the
geometry of e.g. a domain, so we ask the question: Is this domain best described in rectangular or in
polar coordinates?

Sometimes one may split a problem into two subproblems, where we apply rectangular coordinates in
one of them and polar coordinates in the other one.

It should be mentioned that in real life (though not in these books) one cannot always split a problem
into two subproblems as above. Then one is really in trouble, and more advanced mathematical
methods should be applied instead. This is, however, outside the scope of the present series of books.

The idea of polar coordinates can be extended in two ways to R3. Either to semi-polar or cylindric
coordinates, which are designed to describe a cylinder, or to spherical coordinates, which are excellent
for describing spheres, where rectangular coordinates usually are doomed to fail. We use them already
in daily life, when we specify a place on Earth by its longitude and latitude! It would be very awkward
in this case to use rectangular coordinates instead, even if it is possible.

Concerning the contents, we begin this investigation by modelling point sets in an n-dimensional
Euclidean space En by Rn. There is a subtle difference between En and Rn, although we often
identify these two spaces. In En we use geometrical methods without a coordinate system, so the
objects are independent of such a choice. In the coordinate space Rn we can use ordinary calculus,
which in principle is not possible in En. In order to stress this point, we call En the “abstract space”
(in the sense of calculus; not in the sense of geometry) as a warning to the reader. Also, whenever
necessary, we use the colour black in the “abstract space”, in order to stress that this expression is
theoretical, while variables given in a chosen coordinate system and their related concepts are given
the colours blue, red and green.

We also include the most basic of what mathematicians call Topology, which will be necessary in the
following. We describe what we need by a function.

Then we proceed with limits and continuity of functions and define continuous curves and surfaces,
with parameters from subsets of R and R2, resp..
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Preface

Continue with (partial) differentiable functions, curves and surfaces, the chain rule and Taylor’s for-
mula for functions in several variables.

We deal with maxima and minima and extrema of functions in several variables over a domain in Rn.
This is a very important subject, so there are given many worked examples to illustrate the theory.

Then we turn to the problems of integration, where we specify four different types with increasing
complexity, plane integral, space integral, curve (or line) integral and surface integral.

Finally, we consider vector analysis, where we deal with vector fields, Gauß’s theorem and Stokes’s
theorem. All these subjects are very important in theoretical Physics.

The structure of this series of books is that each subject is usually (but not always) described by three
successive chapters. In the first chapter a brief theoretical theory is given. The next chapter gives
some practical guidelines of how to solve problems connected with the subject under consideration.
Finally, some worked out examples are given, in many cases in several variants, because the standard
solution method is seldom the only way, and it may even be clumsy compared with other possibilities.

I have as far as possible structured the examples according to the following scheme:

A Awareness, i.e. a short description of what is the problem.

D Decision, i.e. a reflection over what should be done with the problem.

I Implementation, i.e. where all the calculations are made.

C Control, i.e. a test of the result.

This is an ideal form of a general procedure of solution. It can be used in any situation and it is not
linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a
situation which did not contain Mathematics at all. The student is recommended to use it also in
other disciplines.

From high school one is used to immediately to proceed to I. Implementation. However, examples
and problems at university level, let alone situations in real life, are often so complicated that it in
general will be a good investment also to spend some time on the first two points above in order to
be absolutely certain of what to do in a particular case. Note that the first three points, ADI, can
always be executed.

This is unfortunately not the case with C Control, because it from now on may be difficult, if possible,
to check one’s solution. It is only an extra securing whenever it is possible, but we cannot include it
always in our solution form above.

I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a
shorthand, because they are often (too often, I would say) misused. Instead of ∧ I shall either write
“and”, or a comma, and instead of ∨ I shall write “or”. The arrows ⇒ and ⇔ are in particular
misunderstood by the students, so they should be totally avoided. They are not telegram short hands,
and from a logical point of view they usually do not make sense at all! Instead, write in a plain
language what you mean or want to do. This is difficult in the beginning, but after some practice it
becomes routine, and it will give more precise information.

When we deal with multiple integrals, one of the possible pedagogical ways of solving problems has
been to colour variables, integrals and upper and lower bounds in blue, red and green, so the reader
by the colour code can see in each integral what is the variable, and what are the parameters, which
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do not enter the integration under consideration. We shall of course build up a hierarchy of these
colours, so the order of integration will always be defined. As already mentioned above we reserve
the colour black for the theoretical expressions, where we cannot use ordinary calculus, because the
symbols are only shorthand for a concept.

The author has been very grateful to his old friend and colleague, the late Per Wennerberg Karlsson,
for many discussions of how to present these difficult topics on real functions in several variables, and
for his permission to use his textbook as a template of this present series. Nevertheless, the author
has felt it necessary to make quite a few changes compared with the old textbook, because we did not
always agree, and some of the topics could also be explained in another way, and then of course the
results of our discussions have here been put in writing for the first time.

The author also adds some calculations in MAPLE, which interact nicely with the theoretic text.
Note, however, that when one applies MAPLE, one is forced first to make a geometrical analysis of
the domain of integration, i.e. apply some of the techniques developed in the present books.

The theory and methods of these volumes on “Real Functions in Several Variables” are applied
constantly in higher Mathematics, Mechanics and Engineering Sciences. It is of paramount importance
for the calculations in Probability Theory, where one constantly integrate over some point set in space.

It is my hope that this text, these guidelines and these examples, of which many are treated in more
ways to show that the solutions procedures are not unique, may be of some inspiration for the students
who have just started their studies at the universities.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.
I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
March 21, 2015
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Introduction to volume VI,

Integration of a Function in Several Variables

This is the sixth volume in the series of books on Real Functions in Several Variables. We start the
investigation of how to integrate a real function in several variables. First we introduce the so-called
“gradient fields”, which are linked to conservative forces in Physics. We mention that restricted to
two dimensions this theory is also closely connected with the theory of analytic functions in Complex
Functions Theory. However, we shall not go into the realm of complex functions in this volume.

In Chapter 20, we introduce the plane integral. For completeness we start with a flow diagram of how
all the following concepts of integration are connected. The basic theory is the plane integral (in two
dimensions over a domain in R2), which in rectangular coordinates is reduced to a double integral,
each in one variable, so the well-known integration theory from Real Functions in One Variable can be
applied twice. In general, the innermost integral will have limits which are depending on the variable
in the outer integral, so one must be careful in the calculations.

What is new here, is that one must always start with a careful analysis of the plane domain, before
we can set up the double integral. In rectangular coordinates we fix, what is going to be the “outer
variable” and then find the bounds of the “inner variable” for this fixed “outer variable”. Then we
first integrate with respect to the “inner variable” to get a result, which after the integration only
depends on the “outer variable”. Then we perform the second integration with respect to the “outer
variable”.

In order to visualize this procedure we introduce a colour code. Blue (and later also green) integrals
are abstract integrals in the sense that they cannot be computed directly by some integration technique
known for one real variable. We may in special cases find their values by a geometrical argument, but
we cannot rely on this. Then the hierarchy is that one should start with the red integral, which is
always the inner integral. Its bounds are functions in the black “outer variable”, indicating that they
are playing the role of a constant with respect to this first red integration. Occasionally, when the
bounds are constants, we shall also colour them in red. When the inner inner integration has been
performed, the result must be a function in the black “outer” variable alone, and the red colour must
not occur at this step. Finally, we calculate the outer black integral.

There are two versions here. Either we start by integrating vertically, in which case y is the red
“inner” variable, and x is the black “outer” variable. Or we start by integrating horizontally, where x
is the red “inner” variable, and y is the black “outer” variable. Clearly, whenever possible one should
always sketch a figure of the domain of integration.

Then we turn to the case of polar coordinates in plane. This becomes more abstract than the rectangu-
lar case, because the area element ̺ dϕd̺ contains a weight function ̺. The integration domain B, in
which we apply the polar coordinates, is pulled back to the parameter domain (̺, ϕ) ∈ D, which must
not be confused with the original domain B itself. For the price of introducing the weight function
̺ we obtain that the abstract integration in B in polar coordinates is transformed into an abstract
integration of another function (namely including the weight function as a factor) over D, where we
can apply the methods of setting up the corresponding double integral as in the case of rectangular
coordinates. Again, there are here two cases. Either ̺ is the red “inner” variable and ϕ is the black
“outer variable”, or ϕ is the red “inner” variable and ̺ is the black “outer variable”.

Whenever convenient we have supplied the calculations with a comparison with the corresponding
results, when we apply MAPLE. We must still perform the geometrical analysis of the domain in
order to get the variables right, and then the definition of the bounds of the “inner” variable is also
interior in the MAPLE command, i.e. before the specification of the bounds of the “outer” variable.

845

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume VI 
Antiderivatives and Plane Integrals

846 

Introduction to volume VI, Integration 
of a Function in Several Variables

Once this geometrical analysis has been applied, the MAPLE calculations are usually faster than the
old-fashioned ones by pen and pencil, but occasionally we meet cases, which MAPLE apparently does
not like, if we are not to supply with some further help

In the next volume we continue with the space integrals, which in principle are handled in the same
way, only there are formally six versions of the triple integrals in rectangular coordinates, depending on
the order of the variables. Furthermore, we also get six versions when we apply semi-polar coordinates,
as well as in the case of spherical coordinates. When applying semi-polar or spherical coordinates we
also get som weight function, which is connected with the chosen coordinate system.
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19 Antiderivatives of functions in several variables

19.1 The theory of antiderivatives of functions in several variables

When we are going to discuss integration of functions in several variables, we naturally start with
writing down, what is known already in 1 dimension, and what we should expect in the simplest
situation in more variables, before we proceed to more general cases.

We begin with the well-known theorem that if f : I → R is a continuous function in one variable,
x ∈ I, where I ⊆ R is an interval, then we by an integration can find all differentiable functions F ,
for which the derivative is f , i.e. such that

F ′(x) = f(x), for x ∈ I ⊆ R.

This can be reformulated in the following way, where we use differentials instead,

dF = f(x) dx.

As already mentioned above, this problem can always be solved in 1 dimension, and the solutions
are here called the antiderivatives of f . It can be expressed as an integral with the variable x as the
upper bound, and an arbitrary constant a as the lower bound, i.e.

F (x) = Fa(x) :=

∫ x

a

f(ξ) dξ, where a ∈ R is an arbitrary constant.

It is customary also to write this in the following way,

F (x) =

∫

f(x) dx+ c,

where the variable x now occurs under the integral sign, and where c is some arbitrary constant.

When we consider higher dimensional spaces we first note that we have previously seen (cf. Chapter 9)
that the gradient in some sense is the generalisation of the differential quotient in 1 dimension.
Therefore, the generalised problem should be phrased in the following way:

Problem 19.1 Given a continuous vector field f on an open set A ⊆ Rm. When is it possible to find
a C1-function F : A → R, such that

▽F (x) = f(x) for all x ∈ A?

The answer to this question is that if m ≥ 2, then this is far from always possible. We shall therefore
introduce the following new concepts. If such a function F exists, then we call it an antiderivative
of the vector field f . Since f in this case can be written as a gradient of a C1-function, we call f a
gradient field.

Since gradient fields in particular are important in Physics, we shall in the rest of this chapter give a
brief description of them. Note that if m = 2, then gradient fields may also be interpreted as analytic
functions, so the reader has the possibility of also consulting the books on Complex Function Theory.

If F is an antiderivative of the gradient field f , then it is trivial that so is also F +c for every arbitrary
constant c. Conversely, if A is connected, then F + c, c ∈ R, are describing all possible antiderivatives.
In fact, let F and G be two antiderivatives of the same gradient fielt f . Then by a trivial subtraction

▽(F −G) = ▽F −▽G = f − f = 0.

847

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume VI 
Antiderivatives and Plane Integrals

848 

Antiderivatives of functions in several variables

Referring again to Chapter 9 we see that this is only possible, when the difference F −G is a constant,
and the claim follows.

Let us again compare with the 1-dimensional case. The analogue of dF = f(x) dx in one variable can
only be

(19.1) dF = f(x) · dx, for x ∈ A.

In fact, both f(x) and dx must enter more or less as already indicated, but they are of dimension m,
while dF is 1-dimensional. We can only obtain the right dimension by introducing the dot product.

An expression f(x) · dx like the one on the right hand side of (19.1), is called a differential form. If
furthermore there exists an antiderivative F , such that (19.1) indeed holds, then the right hand side
f(x) · dx is called an exact differential form. Clearly, not all differential forms are also exact, when
m ≥ 2.

In order to become more familiar with these new concepts we restricts ourselves in the following to
the “simple” case of just two variables (x, y).

Problem 19.2 Given a continuous 2-dimensional vector field (f, g) in an open set A ⊆ R2 in the
plane. What are the conditions on the functions (f, g) and (so it turns up) on the domain A, in order
that (f, g) is a gradient field with a function F as its antiderivative, and how do we explicitly construct
F , when we have proved that it exists?
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We shall first derive a necessary condition, so we assume that (f, g) is a gradient field with the
antiderivative F . This means that

∂F

∂x
= f and

∂F

∂y
= g in A.

We assume furthermore that (f, g) is a C1 vector field. In the practical applications, where this theory
is applied, this assumption is no obstacle at all. Then F ∈ C2(A), so we can differentiate F with
respect to x and y and then interchange the order of differentiation. This gives

∂f

∂y
=

∂

∂y

{

∂F

∂x

}

=
∂

∂x

{

∂F

∂y

}

=
∂g

∂x
,

so we have derived the necessary condition

(19.2)
∂f

∂y
=

∂g

∂x

for the C1 vector field (f, g) to be a gradient field.

Without further assumptions we can only use (19.2) in the negative way:

Theorem 19.1 If the C1 vector field (f, g) does not fulfil (19.2)
(

in A ⊆ R2
)

, i.e. if

∂f

∂y
�= ∂g

∂x
,

then (f(x, y), g(x, y)) is not a gradient field.

Trivial as Theorem 19.1 may seem, there are lots of applications of this result.

In general, (19.2) is not sufficient to conclude that (f, g) is a gradient field. It will be shown in an
example in the following that the vectorfield

(f(x, y), g(x, y)) :=

(

y

x2 + y2
,

−x

x2 + y2

)

for (x, y) �= (0, 0),

does satisfy (19.2), and yet (f, g) is not a gradient field in all of A = R2 \ {(0, 0)}.

Theorem 19.2 Assume that (f(x, y), g(x, y) is a C2 vector field in an open simply connected domain
A ⊆ R2, which satisfies the necessary condition (19.2). Then (f, g) is a gradient field.

We recall that the simply connected sets were introduced in Section 1.5. These sets are connected
sets “without holes”. If A ⊆ R2 is a plane simply connected set, then for every closed curve Γ lying
entirely in A all points inside Γ also lie in A. In the sketched example above the unit circle lies in A,
and the point (0, 0) inside Γ does not belong to A, so A is not simply connected.

When we add the assumption of simply connectedness to (19.2) we get a sufficient, though not
necessary condition. Consider e.g. a gradient field (f, g) on a simply connected set A. Then (f, g)
remains a gradient field on every subset of A. Choose any subset of A which is not simply connected,
and we see that the assumption of being simply connected is not necessary.
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Proof of Theorem 19.2. The first part of the proof is done by brute force by simply constructing
an antiderivative F , where we at the same time get a template of how to find F in practice. The only
problem is that we finally shall check that we have obtained the right solution. We assume that (19.2)
holds and that A is simply connected.

We define a function

F1(x, y) :=

∫

f(x, y) dx,

where we consider y as a parameter. Then clearly

∂F1

∂x
= f(x, y),

so the first equation is fulfilled.

If F1 also satisfies

(19.3)
∂F1

∂y
= g(x, y),

then F1(x, y) is our antiderivative, and the problem is solved.

If F1 does not satisfy (19.3), then we add a function F2(y) depending only of y and derive an equation,
which F2 should fulfil. So we define

F (x, y) := F1(x, y) + F2(y).

Then

∂F

∂x
=

∂F1

∂x
+

∂F2

∂x
=

∂F1

∂x
= f(x, y),

because F2(y) does not depend on x.

Concerning the second condition, we want

∂ (F1 + F2)

∂y
=

∂F1

∂y
+

dF2

dy
= g(x, y),

a condition, which we rewrite as

(19.4)
dF2

dy
(y) = g(x, y)− ∂F1

∂y
(x, y).

If the right hand side of (19.4) is independent of x, then this is just an ordinary integration problem
in the variable y alone, so F2(y) can be found, and the claim follows.

In this part of the proof it only remains to prove that the right hand side of (19.4) is independent of
x. When we differentiate it with respect to x, we get

∂

∂x

(

g − ∂F1

∂y

)

=
∂g

∂x
− ∂2F1

∂x∂y
=

∂g

∂x
− ∂2F1

∂y∂x
=

∂g

∂x
− ∂

∂y

(

∂F1

∂x

)

=
∂f

∂y
− ∂f

∂y
= 0.

So, where does the assumption of the simply connectedness enter the solution?
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We must analyze the situation once more to see why we have not yet finished the proof. We have

above proved that when y is kept fixed, then g− ∂F1

∂y
is independent of x in a horizontal subset of A.

This construction holds for every y, but the problem is that the set A ∩ (R× {y}) is not necessarily
connected, but could consist of a union of some disjoint x-intervals, so the actual solution could differ
by a constant on the different x-intervals.

Therefore, we have by the argument above only proved that when F1(x, y) and F2(y) are fixed by the
procedure described above, then

F (x, y) = F1(x, y) + F2(y), (x, y) ∈ A1,

is an antiderivative of (f, g) in a subset A1 ⊆ A.

We note that if D ⊆ A is an open axiparallel rectangle, then the construction above combined with
the continuity of F (x, y) shows that F (x, y) is an antiderivative in D.

Since all open rectangles contained in A allow F (x, y) as an antiderivative, we can find a maximal
open simply connected subdomain A1 ⊆ A, such that F (x, y) is an antiderivative on A1. Such a
subregion exists �= ∅. We shall prove that A1 = A.

Contrariwise. Assume that A1 �= A. Then we can find a point (x, y) ∈ A ∩ ∂A1 and an open axiparallel
rectangle D, such that (x, y) ∈ D, and such that A1 ∪ D is simply connected. Since A1 ∩ D �= ∅,
because D is an open neighbourhood of the boundary point (x, y) of A1, we are forced to use the same
antiderivative in D, and we have shown that (f, g) has an antiderivative in the larger set A1 ∪ D,
which is not possible, because A1 was assumed to be maximal.

This means that our assumption that A1 �= A is wrong, so we conclude that A1 = A, and the theorem
is proved. ♦

In practice we just use the procedure given above in the proof. We list a short version of the two-
dimensional case in the following.

1) First calculate

F1(x, y) :=

∫

f(x, y) dx, y fixed.

2) Then check that

g(x, y)− ∂F1

∂y
(x, y)

is independent of x. If not, then either (f(x, y), g(x, y)) is not a gradient field, or we have made a
miscalculation. (Check!)

3) Calculate

F1(y) :=

∫ {

g(x, y)− ∂F1

∂y
(x, y)

}

dy.

4) Finally, check if

F (x, y) := F1(x, y) + F2(y)
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really is an antiderivative, i.e. check the two equations

∂F

∂x
(x, y) = f(x, y) and

∂F

∂y
(x, y) = g(x, y).

We may of course, whenever convenient, interchange x and y in the procedure above.

A template for the three-dimensional case is described in Section 19.2.vsi

Remark 19.1 If A is not simply connected, we can still use the method above on a simply connected
subdomain A1 ⊂ A. However, if A1 is maximal, then the proof above will not give us another
nontrivial simply connected set A1 ∪ D, and then we may even be forced to choose two different
(local) antiderivatives on D, where these differ by a constant �= 0. This is of course not possible. ♦

Example 19.1 The simplest possible example is given by the vector field (f(x), g(y)), where f is
continuous in the interval I1, and g is continuous in the interval I2. In fact,

F (x, y) =

∫

f(x) dx+

∫

g(y) dy, (x, y) ∈ I1 × I2,

is an antiderivative, because we immediately get ▽F (x, y) = (f(x), g(y)). It is in this case no need to
assume that f ∈ C1 (I1) ad g ∈ C1 (I2) in their respective variables x and y, because trivially

∂f

∂y
= 0 =

∂g

∂x
.
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The corresponding differential form is

df = f(x) dx+ g(y) dy,

and the integration of this is called integration by separating the variables. ♦

Example 19.2 Then let us see what happens, when we interchange the variables in Example 19.1.
We assume that f ∈ C1 (I2) and g ∈ C1 (I1) and consider the vector field

(f(y), g(x)), (x, y) ∈ D = I1 × I2.

Clearly, D = I1 × I2 is simply connected, so the condition of (f(y), g(x)) being a gradient field is that

f ′(y) = g′(x).

The right hand side does not depend on y, and since the left hand side only depends (at most) on y,
it must be a constant, f ′(y) = c0(= g′(x)), so when this is the case, we get by integration,

(f(y), g(x)) = (c0y + c1, c0x+ c2) = c0(y, x) + (c1, c2) .

This equation describes all possible functions f(y) = c0y + c1 and g(x) = c0x + c2, if (f(y), g(x)) is
going to be a gradient field. When this is the case, we get by inspection that

(f(y), g(x)) = c0(y, x) + (c1, c2) = ▽ (c0xy + c1x+ c2y + c3) ,

from which we immediately derive that all antiderivatives are given by

F (x, y) = c0xy + c1x+ c2y + c3. ♦

Example 19.3 Given the plane C∞ vector field

(f(x, y), g(x, y)) =

(

y
√

y2 + 2xy
,

x+ y
√

y2 + 2xy
+ 2y

)

.

This vector field is only defined, when 0 < y2+2xy = y(y+2x), i.e. it is only defined in A = A1 ∪ A2,
where

A1 := {(x, y) | y > 0 and y + 2x > 0} and A2 := {(x, y) | y < 0 and y + 2x < 0},

cf. Figure 19.1.

The strategy is to proceed directly to the solution procedure without first checking the necessary
condition, because this will give us some nasty computations. So we shall directly find the candidates
of a possible antiderivative. Finally, we shall of course check these candidates in order to see, if we
indeed have a gradient field.

Inspecting Figure 19.1 we see that for y > 0 the horizontal integration is performed in the interval
]

−y

2
,+∞

[

, while the horizontal integration for fixed y < 0 is taking place over the interval
]

−∞,−y

2

[

.

In each of these cases we get for fixe y �= 0 the primitive

F1(x, y) =

∫

f(x, y) dx =

∫

y
√

y2 + 2xy
dx =

√

y2 + 2xy.
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Figure 19.1: The domain A = A1 ∪ A2 of the vector field of Example 19.2. Note that A has two
connected components, bounded by the lines y = 0 and y + 2x = 0.

Then we compute the correction term,

∂F1

∂y
(x, y) =

y + x
�

y2 + 2xy
,

so by subtracting this from g(x, y) we get

g(x, y)− ∂F1

∂y
(x, y) = 2y.

We note that if the result had depended on x, then either we had made an error in our calculations
(check!), or (f, g) is not a gradient field.

We obtain by another integration,

F2(y) =

� �

g(x, y)− ∂F1

∂y
(x, y)

�

dy =

�

2y dy = y2,

so the candidates of the antiderivatives are

F (x, y) = F1(x, y) + F2(y) =







�

y2 + 2xy + y2 + c1, (x, y) ∈ A1,

�

y2 + 2xy + y2 + c2, (x, y) ∈ A2,

where c1 and c2 are arbitrary constants. It follows immediately that

▽F (x, y) = (f(x, y), g(x, y)) for (x, y) ∈ A = A1 ∪ A2.

Note that A = A1 ∪ A2 is not simply connected.
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Alternatively we get by inspection in A that

(f(x, y), g(x, y)) · ( dx, dy) = y
√

y2 + 2xy
dx+

(

x+ y
√

y2 + 2xy
− 2y

)

dy

=
y dx+ xdy
√

y2 + 2xy
+

y dy
√

y2 + 2xy
+ 2y dy =

d(xy)
√

y2 + 2xy
+

1

2

d
(

y2
)

√

y2 + 2xy
+ d

(

y2
)

=
1

2

d
(

y2 + 2xy
)

√

y2 + 2xy
+ d

(

y2
)

= d
(

√

y2 + 2xy
)

+ d
(

y2
)

= d
(

√

y2 + 2xy + y2
)

,

which proves that (f, g) is a gradient field, and that one of its antiderivatives is

F (x, y) =
√

y2 + 2xy + y2.

Then continue by discussing the situation in each of the two connected subdomains A1 and A2. ♦

The following two examples are classical. They are given in every textbook on real functions in several
real variables. In both cases the domain A = R2 \ {(0, 0)} is not simply connected.

Example 19.4 Consider the C∞ vector field

(f(x, y), g(x, y)) =

(

x
√

x2 + y2
,

y
√

x2 + y2

)

, for (x, y) �= (0, 0).

We proceed directly to the calculation of the primitive of the first coordinate f(x, y) with respect to
for first variable,

F1(x, y) =

∫

x
√

x2 + y2
dx =

√

x2 + y2, for (x, y) �= (0, 0).

Then we compute the correction term,

∂F1

∂y
(x, y) =

y
√

x2 + y2
, for (x, y) �= (0, 0).

We get that already F1(x, y) =
√

x2 + y2 is an antiderivative, and (f, g) is a gradient field.

Alternatively we may also argue directly by inspection on the corresponding differential form,

(f(x, y), g(x, y)) · ( dx, dy) = x
√

x2 + y2
dx+

y
√

x2 + y2
dy

=
1

2

{

d
(

x2
)

√

x2 + y2
+

d
(

y2
)

√

x2 + y2

}

=
d
(

x2 + y2
)

√

x2 + y2
= d

(

√

x2 + y2
)

,

and we see that (f, g) has the antiderivatives

F (x, y) =
√

x2 + y2 + c, for (x, y) �= (0, 0), and c arbitrary.♦
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Example 19.5 Then we consider the vector field

(f(x, y), g(x, y)) =

�

y

x2 + y2
,

−x

x2 + y2

�

, for (x, y) �= (0, 0).

Using the same method as in Example 19.4 we get for y �= 0,

F1(x, y) =

�

y

x2 + y2
dx =

�

1

1 +

�

x

y

�2 d

�

x

y

�

= Arctan

�

x

y

�

.

When y �= 0, the correction term becomes

∂F1

∂y
(x, y) =

1

1 +

�

x

y

�2

−x

y
=

−x

x2 + y2
= g(x, y),

so we conclude hat (f, g) is a gradient field in the two simply connected subdomains of A defined by
y > 0 and y < 0. The antiderivatives are therefore























F+(x, y) = Arctan

�

x

y

�

+ c1, for y > 0,

F−(x, y) = Arctan

�

x

y

�

+ c2, for y < 0,

where c1 and c2 are arbitrary constants.
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Then we investigate what happens for y = 0 and x �= 0.

Let x < 0 be fixed. Then

lim
y→0+

F+(x, y) = −π

2
+ c1, and lim

y→0−
F−(x, y) = +

π

2
+ c1.

We extend both F+ and F− by continuity to the negative x-axis so that they agree. This requires
that c2 = c1 − π. Then

F (x, y) =











































F+(x, y) = Arctan

�

x

y

�

+ c1, for y > 0 and x ∈ R,

c1 −
π

2
, for y = 0 and x < 0,

F−(x, y) = Arctan

�

x

y

�

+ c1 − π, for y < 0 and x ∈ R,

is a (continuous) antiderivative of the vector field (f, g) in the open, simply connected domain
R2 \ {(x, 0) | x ≥ 0}.
However, when x > 0, then

lim
y→0+

F+(x, y) = +
π

2
+ c1, and lim

y→0−
F−(x, y) = −π

2
+ c1,

so the limits from and below differ by the constant 2π, and we cannot extend the antiderivative F (x, y)
to all of A = R2 \ {(0, 0)}.
Alternatively we could also here have used inspection in the calculations. If as above we assume
that y �= 0, then

(f(x, y), g(x, y)) · ( dx, dy) = y

x2 + y2
dx+

−x

x2 + y2
dy =

1

x2 + y2
{y dx− xdy}

=
y2

x2 + y2

�

1

y
dx− x

y2
dy

�

=
1

1 +

�

x

y

�2 d

�

x

y

�

= Arctan

�

x

y

�

,

and then we proceed as above. ♦
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19.2 Templates for gradient fields and antiderivatives of functions in three
variables

As the main case we consider vector fields in R3, i.e.

V(x, y, z) = (f(x, y, z), g(x, y, z), h(x, y, z)),

which is assumed to be of class C1 in an open domain A ⊆ R3. Whenever necessary we shall mention
the modifications to R2.

Problem 19.3 Check whether the vector field V = (f, g, h) is a gradient field. When this is the case,
find an antiderivative F . This means that the function F satisfies the equation

▽F = V.

Remark 19.2 The problem is tricky, because there exist so many solution methods that one may
be confused the first time one is confronted with this situation. Furthermore, there exist necessary
conditions which are not sufficient, and sufficient conditions which are not necessary. Finally, the
standard procedure assumes some knowledge of line integrals, which is not always the case in every
textbook, the first time this problem is encountered. It will, however, be known at the end of any
course dealing with functions in several variables. ♦

Procedure:

Existence. This section is not necessary, if only one remembers to check the solution in the next
section. The considerations of this section may, however, be useful in some particular situations.

x

f

y

g

z

h

✚
✚
✚
✚✚❃

❩
❩

❩
❩❩⑥

✏✏✏✏✏✏✏✏✏✏✶

✚
✚
✚
✚✚❃

����������✐

❩
❩

❩
❩❩⑥

Figure 19.2: Diagram for “cross differentiation”.

1) Check that f , g, h ∈ C2(A) satisfy

∂f

∂y
=

∂g

∂x
,

∂f

∂z
=

∂h

∂x
,

∂g

∂z
=

∂h

∂y
.

One may call these the “cross derivatives”. In case of 2 dimensions we only use the first equation.

a) If these equations are not fulfilled, then V(x, y, z) is not a gradient field, and the problem does
not have an antiderivative.

b) If the equations are satisfied, then V(x, y, z) is indeed a gradient field in every simply connected
region of A.
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Remark 19.3 Note the extra condition that we only consider simply connected regions A.
This is a sufficient condition, though not necessary. ♦

2) Suppose that the equations of 1) are satisfied. Check whether A is a simply connected region. If
“yes”, then we have proved the existence. If “no”, construct a candidate by means of one of the
methods in the next section and check it, i.e. check the equation

▽F = V.

Construction of a possible antiderivative. We shall describe four methods, of which the former
two have intrinsically built a check into them, while the latter two do not contain such a check! For that
reason the latter two methods may be tricky, because their simple formulæ usually give some results,
even when no such antiderivative exists! A reasonable strategy is therefore to skip the investigation
in the section above and instead start by constructing a candidate F of an antiderivative and then as
a rule always perform a check, i.e. check whether the candidate really satisfies the equation

▽F = V.

1) Indefinite integration.

a) Write the differential form

V(x) · dx = f(x, y, z) dx+ g(x, y, z) dy + h(x, y, z) dz.

b) Choose the simplest looking of the three terms in a), e.g. f(x, y, z) dx. Then calculate

F1(x, y, z) =

∫

f(x, y, z) dx, y, z are here considered as constants.

c) Check the result, i.e. calculate

dF1 =
∂F1

∂x
dx+

∂F1

∂y
dy +

∂F1

∂z
dz,

and compare this with

V · dx = f dx+ g dy + h dz.

i) If ∂F1

∂x �= f , then we have made an error in our calculations. There is only one thing to do:
Start from the very beginning!

ii) If g1 = g − ∂F1

∂y , or h1 = h− ∂F1

∂z depends on x, then we have two possibilities: Either

(*) we have made an error in our calculations above,

or

(**) V(x, y, z) is not a gradient field.

Note that both possibilities may occur, so in this case one should check one’s calculations
an extra time.

iii) When neither g1 nor h1 depend on x, (which loosely speaking has been integrated in the
first process, and therefore should have disappeared from the reduced problem), then we
have

V · dx = dF1 + g1(x, y) dy + h1(y, z) dz.

In this case we repeat the process above on the reduced form

g1(y, z) dy + h1(y, z) dz.
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d) After at most three repetitions of this process we either get

V(x, y, z) is not a gradient field (in which case the task is finished),

or

V(x) · dx = dF1(x, y, z) + dF2(y, z) + dF3(z),

or something similar. The essential thing is that dF1 depends on all three variables, that dF2

only depends on two of them, and that dF3 only depends on one variable. Since all terms on
the right hand side are “put under the d-sign”, it follows that V(x) is a gradient field. One
gets an antiderivative by removing the d-sign in all three terms,

F (x, y, z) = F1(x, y, z) + F2(y, z) + F3(z).

Finally, we get all possible antiderivatives by adding an arbitrary constant.

860

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

STUDY AT A TOP RANKED 
INTERNATIONAL BUSINESS SCHOOL

Reach your full potential at the Stockholm School of Economics, 
in one of the most innovative cities in the world. The School 
is ranked by the Financial Times as the number one business 
school in the Nordic and Baltic countries. 

Visit us at www.hhs.se

Sw
ed

en

Stockholm

no.1
nine years 
in a row

http://s.bookboon.com/hhs2016


Real Functions in Several Variables: Volume VI 
Antiderivatives and Plane Integrals

861 

Antiderivatives of functions in several variables

2) The method of inspection.

This method is often called the “method of guessing”, but this is misleading, because it uses
systematically the well-known rules of differentiation, read in the opposite direction of what one
is used to from the reader’s previous education:

Linearity: df + α dg = d(f + α g), α constant,

Product: g df + f dg = d(f · g),

Quotient: g df − f dg =















g2 d

�

f

g

�

, g �= 0,

−f2 d

�

g

f

�

, f �= 0,

Composition: F ′(f) df = d(F ◦ f).

These rules are all what we need, so learn them in this form!

a) Apply the rules of differentiation above to put as much as possible under the d-sign:

V(x) · dx = dF1 +V1(x) · dx.

b) If one by this process obtains that V1(x) = 0, then V(x) is indeed a gradient field,

V(x) · dx = dF1 = ▽F1(x) · dx,

and F1(x) is an antiderivative.

c) If one cannot obtain an equation of the form V1(x) = 0, then either V(x) is not a gradient
field, or one has run out of ideas of further reductions. In this case one chooses another possible
V1(x), which is simpler than V(x), and uses one of the other methods on the reduced form
V1(x) · dx.

Even when V is not a gradient field, it is often quite useful to remove a term of the form dF1(x),
because later calculations of e.g. line integrals will be considerably easier to perform on the residual
vector field. This technique may be useful in practical calculations in e.g. Thermodynamics.

3) Standard method; line integration along a curve consisting of axis parallel lines.

Once the tangential line integral has been introduced, and V(x) is defined in R3, (or in some
region which allows curves consisting of axis parallel lines as e.g. described in the following), it is
easy to calculate a candidate to an antiderivative by integration along such a curve like e.g.

(0, 0, 0) −→ (x, 0, 0) −→ (x, y, 0) −→ (x, y, z).

a) Start by writing down the differential form

V(x) · dx = f(x, y, z) dx+ g(x, y, z) dy + h(x, y, z) dz.

b) Integrate this differential form along the curve mentioned above,

F0(x, y, z) =

� x

0

f(t, 0, 0) dt+

� y

0

g(x, t, 0) dt+

� z

0

h(x, y,t) dt.
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c) Check the result! This means that one should check the equation

▽F0 = V(x).

If this is not fulfilled, then V(x) is not a gradient field, not even in the case where the candidate
F0(x, y, z) exists! It is not an antiderivative in this case.

d) If on the other hand F0(x) is an antiderivative, then we get all antiderivatives by adding an
arbitrary constant.

4) Radial integration.

In this case we integrate along the line

(0, 0, 0) −→ (x, y, z).

a) Be extremely careful when x is replaced by tx, and y by ty, and z by tz in V(x). By this
process we get V(tx, ty, tz).

Remark 19.4 Warning! This seemingly simple process is far more difficult to perform than
one would believe at the first sight! ♦

b) Calculate

F0(x, y, z) = (x, y, z) ·
∫ 1

0

V(tx, ty, tz) dt.

Note that the dot product is used here.

c) Check the result! This means that one should check the equation

▽F0(x) = V(x).

Remark 19.5 The method of radial integration is only mentioned here, because it may be found
in some textbooks. I shall here strongly advise against the use of it, partly because the transform
to x → tx is far more difficult to perform than one would believe, and partly because the integral
which is used in the calculation of F0(x, y, z) in general is far more complicated than the analogous
integral where we integrate along a simple curve consisting of straight lines parallel with one of
the axis. ♦
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19.3 Examples of gradient fields and antiderivatives

Example 19.6 Find for every of the given vector fields first the domain and then every indefinite
integral, whenever such an integral exists.

1) V(x, y) = (x, y).

2) V(x, y) = (y, x).

3) V(x, y) =

�

1

x+ y
,

−x

y(x+ y)

�

.

4) V(x, y) = (3x2 + 2y2, 2xy).

5) V(x, y) =

�

3x2 + y2 +
y

1 + x2y2
, 2xy − 4 +

x

1 + x2y2

�

.

6) V(x, y) =









−2x

2− x2 − 2y2
+

−x
�

2− x2 − 2y2
−4y

2− x2 − 2y2
+

−2y
�

2− x2 − 2y2









.

7) V(x, y) =

�

x

(x− y)2
,

−x2

y(x− y)2

�

.

8) V(x, y) =

�

2x(1− ey)

(1 + x2)2
,

ey

1 + x2

�

.

9) V(x, y) = (sin y + y sinx+ x, cos x+ x cos y + y).

A Gradient fields; integrals.

D First find the domain. Then check if we are dealing with a differential, or use indefinite integration.
Another alternative is to integrate along a step line within the domain.

I 1) The vector field V(x, y) = (x, y) is defined in the whole of R2.

a) First method. We get by only using the rules of calculation,

V(x, y) · ( dx, dy) = xdx+ y dy = d

�

1

2
(x2 + y2)

�

,

which shows that V(x, y) has an indefinite integral,

F (x, y) =
1

2
(x2 + y2).

b) Second method. We get by indefinite integration,

F1(x, y) =

�

xdx =
1

2
x2,

hence

y − ∂

∂y
F1(x, y) = y, i.e. F2(x, y) =

1

2
y2.

An integral is

F (x, y) = F1(x, y) + F2(x, y) =
1

2
(x2 + y2).
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c) Third method. When we integrate along the step line

C : (0, 0) −→ (x, 0) −→ (x, y),

which lies in the domain, we get the candidate

∫

C

V · ( dx, dy) =
∫ x

0

t dt+

∫ y

0

t dt =
1

2
x2 +

1

2
y2.

d) Check. The check is always mandatory by the latter method; though it is not necessary
in the two former ones, it is nevertheless highly recommended. Obviously,

▽F (x, y) = (x, y) = V(x, y),

and we have checked our result.

2) The vector field V(x, y) = (y, x) is defined in R2.

a) First method. It follows by the rules of calculations that

V(x, y) · ( dx, dy) = y dx+ xdy = d(xy),

which shows that V(x, y) has an integral

F (x, y) = xy.

864

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/liu


Real Functions in Several Variables: Volume VI 
Antiderivatives and Plane Integrals

865 

Antiderivatives of functions in several variables

b) Second method. We get by indefinite integration

F1(x, y) =

∫

y dx = xy,

thus

x− ∂

∂y
F1(x, y) = x− x = 0, i.e. F2(x, y) = 0.

An integral is

F (x, y) = xy.

c) Third method. When we integrate along the step line

C : (0, 0) −→ (x, 0) −→ (x, y),

which lies in the domain, then
∫

C

V · ( dx, dy) =
∫ x

0

0 dt+

∫ y

0

xdt = xy.

d) Check (which is mandatory by the third method). Clearly, ▽F = (y, x), so the calculations
are all right.

3) The vector field V(x, y) =

(

1

x+ y
,

−x

y(x+ y)

)

is defined in the set

A = {(x, y) | y �= 0, y �= −x}.

This set is the union of four angular spaces, where one considers each of these separately when
we solve the problem.

a) First method. Here we get by some clever reductions,

1

x+ y
dx− x

y(x+ y)
=

y2

y(x+ y)

(

1

y
dx− x

y2
dy

)

=
1

1 +
x

y

d

(

x

y

)

= d ln

∣

∣

∣

∣

1 +
x

y

∣

∣

∣

∣

,

so an integral in each of the four domains is

F (x, y) = ln

∣

∣

∣

∣

1 +
x

y

∣

∣

∣

∣

= ln |x+ y| − ln |y|.

b) Second method. We get by indefinite integration,

F1(x, y) =

∫

1

x+ y
dx = ln |x+ y|,

thus

− x

y(x+ y)
− ∂F1

∂y
= − x

y(x+ y)
− 1

x+ y
= −1

y

x+ y

x+ y
= −1

y
.

Hence by integration, F2(x, y) = − ln |y|, so an integral is

F (x, y) = F1(x, y) + F2(x, y) = ln |x+ y| − ln |y| = ln

∣

∣

∣

∣

1 +
x

y

∣

∣

∣

∣

.

865

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume VI 
Antiderivatives and Plane Integrals

866 

Antiderivatives of functions in several variables

c) Third method. In this case the integration along a step line is fairly complicated, because
we shall choose a point and a step curve in each of the four angular spaces. It is possible to
go through this method of solution, but since it is fairly long, we shall here leave it to the
reader.

d) Check. Here

▽F (x, y) =

(

1

x+ y
,

1

x+ y
− 1

y

)

=

(

1

x+ y
,− x

y(x+ y)

)

= V(x, y),

so our calculations are correct.

4) The vector field V(x, y) = (3x2 + 2y2, 2xy) is defined in R2.

a) First method Since

V(x, y) · ( dx, dy) = (3x2 + 2y2) dx+ 2xy dy

= d(x3) + y2 dx+ (y2 dx+ xd(y2))

= d(x3 + xy2) + y2 dx,

cannot be written as a differential, we conclude that V(x, y) is not a gradient field and no
integral exists.

b) Second method. We get by indefinite integration,

F1(x, y) =

∫

(3x2 + 2y2) dx = x3 + 2xy2,

and accordingly,

2xy − ∂F1

∂y
= 2xy − 4xy = −2xy.

This expression depends on x, which it should not if the field is a gradient field. Therefore,
we conclude that the field is not a gradient field, and also that there does not exist any
integral.

If one does not immediately see the above, we get by the continuation,

F2(x, y) = −
∫

2xy dy = −xy2,

so a candidate of the integral is

F (x, y) = F1(x, y) + F2(x, y) = x3 + xy2.

Then the check below will prove that this is not an integral.

c) Third method. Integration along the step curve

C : (0, 0) −→ (x, 0) −→ (x, y),

in the domain gives

∫

C

V · ( dx, dy) =
∫ x

0

(3t2 + 0) dt+

∫ y

0

2xt dt = x3 + xy2,

in other words the same candidate as by the second method.
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d) Check. We find

▽F (x, y) = (3x2 + y2, 2xy) �= V(x, y),

so the check is not successful. The field is not a gradient field.

5) The vector field

V(x, y) =

(

3x2 + y2 +
y

1 + x2y2
, 2xy − 4 +

x

1 + x2y2

)

is defined in R2.

a) First method. Here

V · dx = 3x2 dx+ (y2 dx+ 2xy dy)− 4 dy +
1

1 + x2y2
(y dx+ xdy)

= d(x3) + d(xy2)− d(4t) +
1

1 + x2y2
d(xy)

= d{x3 + xy2 − 4y + Arctan(xy)},
so V(x, y) has an integral given by

F (x, y) = x3 + xy2 − 4y + Arctan(xy).

b) Second method. We get by an indefinite integration,

F1(x, y) =

∫ {

3x2 + y2 +
y

1 + x2y2

}

dx = x3 + xy2 + Arctan(xy),

hence

∂F1

∂y
= 2xy +

x

1 + x2y2
,

and whence

2xy − 4 +
x

1 + x2y2
− ∂F1

∂y
= −4.

It follows immediately that F2(y) = −4y. The vector field is a gradient field with an integral

F (x, y) = F1(x, y) + F2(y) = x3 + xy2 − 4y + Arctan(xy).

c) Third method. If we integrate along the step curve

C : (0, 0) −→ (x, 0) −→ (xy),

entirely in the domain, we get
∫

C

V · dx =

∫ x

0

(3t2 + 0 + 0) dt+

∫ y

0

{

2xt− 4 +
x

1 + x2t2

}

dt

= x3 + {xy2 − 4y + Arctan(xy)}.
As mentioned above one shall always check the result by this method! The check is not
necessary in the two former methods, but it is nevertheless highly recommended.
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d) Check. By some routine calculations,

▽F (x, y) =

�

3x2 + y2 − 0 +
y

1 + (xy)2
, 0 + 2xy − 4 +

x

1 + (xy)2

�

= V(x, y).

We get the correct answer, so V(x, y) is a gradient field and an integral is

F (x, y) = x3 + xy2 − 4y + Arctan(xy).

6) The vector field

V(x, y) =









−2x

2− x2 − 2y2
+

−x
�

2− x2 − 2y2
−4y

2− x2 − 2y2
+

−2y
�

2− x2 − 2y2









is defined in the open ellipsoidal disc

A =

�

(x, y)

�

�

�

�

�

�

x√
2

�2

+ y2 < 1

�

of centrum (0, 0) and half axes
√
2 and 1.
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Figure 19.3: The open domain of 6).

a) First method. By collecting terms which look more or less the same we get

V · dx =
1

2− x2 − 2y2
(−2xdx− 4y dy) +

1
√

2− x2 − 2y2
(−xdx− 2y dy)

=
1

2− x2 − 2y2
d(2− x2 − 2y2) +

1

2

1
√

2− x2 − 2y2
d(2− x2 − 2y2)

= d
(

ln |2− x2 − 2y2|
)

+ d
(

√

2− x2 − 2y2
)

= d
{

ln(2− x2 − 2y2) +
√

2− x2 − 2y2
}

for (x, y) ∈ A.

This vector field is a gradient field, an an integral in A is given by

F (x, y) = ln(2− x2 − 2y2) +
√

2− x2 − 2y2.

b) Second method. We get by indefinite integration,

F1(x, y) =

∫

{

−2x

2− x2 − 2y2
+

−x
√

2− x2 − 2y2

}

dx

= ln |2− x2 − 2y2|+
√

2− x2 − 2y2

= ln(2− x2 − 2y2) +
√

2− x2 − 2y2, (x, y) ∈ A,

hence

∂F1

∂y
=

−4y

2− x2 − 2y2
+

−2y
√

2− x2 − 2y2
= g(x, y).

An integral in A is given by

F (x, y) = F1(x, y) = ln(2− x2 − 2y2) +
√

2− x2 − 2y2,

and the vector field is a gradient field.

c) Since A is convex and symmetric about e.g. the X axis, the step curve

C : (0, 0) −→ (x, 0) −→ (x, y)
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lies totally inside A for each (x, y) ∈ A. By an integration along this step curve we get
�

C

V · dx =

� x

0

� −2t

2− t2 − 0
+

−t√
2− t2 − 0

�

dt

+

� y

0

� −4t

2− x2 − 2t2
+

−2t√
2− x2 − 2t2

�

dt

= {ln(2− x2)− ln 2}+ {
�

2− x2 −
√
2}

+{ln(2 − x2 − 2y2)− ln(2− x2)}
+{

�

2− x2 − 2y2 −
�

2− x2}
= ln(2− x2 − 2y2) +

�

2− x2 − 2y2 − ln 2−
√
2.

Here we can of course neglect the constant − ln 2−
√
2.

d) Check. We get by standard calculations

▽F =

�

−2x

2−x2−2y2
+

−x
�

2−x2−2y2
,

−4y

2−x2−2y2
+

−2y
�

2−x2−2y2

�

= V(x, y).

The check is OK, and V(x, y) is a gradient field with the obtained function F (x, y) as an
integral.

7) The vector field

V(x, y) =

�

x

(x− y)2
,

−x2

y(x− y)2

�

is defined in the set

A = {(x, y) | y �= 0, y �= x},

with four angular spaces as its components.

a) First method. Since y �= 0 in A, it seems natural to put y2 outside the denominator.
Then

V · dx =
x

(x− y)2
dx− x2

y(x− y)2
dy =

x
y

�

x
y − 1

�2 · 1
y
dx+

x
y

�

x
y − 1

�2

�

− x

y2

�

dy

=

x
y

�

x
y − 1

�2

�

1

y
dx+ xd

�

1

y

��

=

x
y − 1 + 1
�

x
y − 1

�2 d

�

x

y

�

=







1
x
y − 1

+
1

�

x
y − 1

�







d

�

x

y

�

= d

�

ln

�

�

�

�

x

y
− 1

�

�

�

�

− 1
x
y − 1

�

.

It follows that V(x, y) has an integral, e.g.

F (x, y) = ln

�

�

�

�

x− y

y

�

�

�

�

+
y

y − x
,

defined in each of the four connected components of A. Furthermore, V(x, y) is a gradient
field.
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b) Second method. We get by indefinite integration in A that

F1(x, y) =

∫

x

(x − y)2
dx =

∫

x− y + y

(x − y)2
dx =

∫

1

x− y
dx+ y

∫

1

(x− y)2
dx

= ln |x− y| − y

x− y
,

whence

∂F1

∂y
=

−1

x− y
− 1

x− y
− y

(x− y)2
=

−2x+ 2y − y

(x− y)2
=

−2x+ y

(x− y)2
,

so

− x2

y(x− y)2
− ∂F1

∂y
= −−x2 + 2xy − y2

y(x− y)2
=

−(x− y)2

y(x− y)2
= −1

y
,

and hence by an integration, F2(y) = − ln |y|, so an integral is

F (x, y) = ln |x− y| − y

x− y
− ln |y| = ln

∣

∣

∣

∣

x− y

y

∣

∣

∣

∣

− y

x− y
.

c) The third method can also be applied here but it is fairly difficult due to the structure
of A, so here follows only a short description of the method. Choose a point in each of the
four connected components. Then a geometric analysis shows that one should in the two
angular spaces in which the angle is acute first integrate horizontally and then vertically,
so the integration path has here the form

C : (x0, y0) −→ (x, y0) −→ (x, y),

because we have to stay inside the connected component.
In the other two angular spaces this path of integration may go beyond the connected
component (sketch examples on a figure), so we introduce instead the following path of
integration

C : (x0, y0) −→ (x0, y) −→ (x, y),

i.e. we first integrate vertically and then horizontally.
This is clearly a tedious procedure, and on the top of it one should also check the result
before we can recognize the result as being correct.

d) Check.

▽F (x, y) =

(

1
y

x−y
y

+
y

(x− y)2
,

1
x−y
y

·
(

− x

y2

)

− x− y + y

(x− y)2

)

=

(

x− y

(x− y)2
+

y

(x− y)2
,− x

y(x− y)
− x

(x− y)2

)

=

(

x

(x− y)2
,

−x

y(x− y)2
(x− y + y)

)

=

(

x

(x− y)2
,− x2

y(x− y)2

)

= V(x, y),

so we have checked that V(x, y) is indeed a gradient field with F (x, y) as its integral.
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8) The vector field

V(x, y) =

(

2x(1− ey)

(1 + x2)2
,

ey

1 + x2

)

is defined in R2.

a) First method. We get by some clever manipulation

V · dx =
1− ey

(1 + x2)2
· 2xdx+

1

1 + x2
ey dy = (1− ey)

1

(1 + x2)2
d(x2) +

1

1 + x2
d(ey)

= (ey − 1) d

(

1

1 + x2

)

+
1

1 + x2
d(ey − 1) = d

(

ey − 1

1 + x2

)

,

so an integral is

F (x, y) =
ey − 1

1 + x2
,

and V(x, y) is a gradient field.
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b) Second method. We get by indefinite integration,

F1(x, y) =

∫

2x(1−ey)

(1 + x2)2
dx = (1−ey)

∫

d(1+x2)

(1+x2)2
=

ey−1

1+x2
,

where

∂F1

∂y
=

ey

1 + x2
= g(x, y),

and V(x, y) is seen to be a gradient field.

c) Third method. Here there is plenty of space to integrate along the step curve

C : (0, 0) −→ (x, 0) −→ (x, y),

no matter where (x, y) ∈ R2 lies. Then

∫

C

V · dx =

∫ x

0

0 dt+

∫ y

0

et

1 + x2
dt =

ey − 1

1 + x2
,

which is the candidate, which should be checked.

d) Check.

▽F (x, y) =

(

−2x(ey − 1)

(1 + x2)2
,

ey

1 + x2

)

= V(x, y).

We conclude that V(x, y) is a gradient field and an integral is F (x, y).

9) The vector field

V(x, y) = (sin y + y sinx+ x, cos x+ x cos y + y)

is defined in R2.

a) First method. We get by some simple manipulations

V · dx = sin y dx+ y sinxdx+ xdx+ cosxdy + x cos y dy + y dy

=
1

2
d
(

x2 + y2
)

+ (sin y dx+ xd sin y) + (−y d cosx+ cosxdy)

= d

{

1

2
x2 +

1

2
y2 + x sin y − y cosx

}

+ 2 cosxdy,

which clearly is not a differential, so the field is not a gradient field.

b) Second method. Indefinite integration gives

F1(x, y) =

∫

(sin y + y sinx+ x) dx = x sin y − y cosx+
x2

2
,

where

∂F1

∂y
= x cos y − cosx,

thus

cosx+ x cos y + y − ∂F1

∂y
= 2 cosx+ y.

This expression depends on x, so we conclude that the vector field is not a gradient field.
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c) Third method. Choose the step curve

C : (0, 0) −→ (x, 0) −→ (x, y)

as the path of integration in R2. Then
∫

C

V · dx =

∫ x

0

(0 + 0 + t) dt+

∫ y

0

(cosx+ x cos t+ t) dt

=
1

2
x2 + y cosx+ x sin y +

1

2
y2

= F (x, y),

which is the candidate, and we must check it.

d) Check. It follows from

▽F (x, y) = (x− y sinx+ sin y, cosx+ x cos y + y)

= V(x, y)− (2y sinx, 0) �= V(x, y),

that V(x, y) is not a gradient field.

Example 19.7 Sketch the domain A of the vector field

V(x, y) =

(

4x− y

x(3x− y)
,−1

3

(

1

y
+

1

3x− y

))

.

Prove that V is a gradient field and find all its integrals.
(Consider first a connected subset of A).

A Gradient field; integral.

D If there exists an integral, it can be found by one of the following three standard methods:

1) First method. Rules of calculation for differentials.

2) Second method. Indefinite integration.

3) Third method. Integration along some curve, typically a step curve. Notice that the check
is mandatory by this method, because one may get “false solutions” by this method.

I The vector field is defined in the set

A = {(x, y) | x �= 0, y �= 0, y �= 3x},

which is the union of six connected components. We shall in the following consider any one of
these.

Aside. Before we start on the calculations it will be quite convenient in advance to perform the
following simple decomposition:

4x− y

x(3x− y)
=

x+ (3x− y)

x(3x− y)
=

1

x
+

1

3x− y
, (x, y) ∈ A.

The vector field can then also be written

V(x, y) =

(

1

x
+

1

3x− y
,−1

3

(

1

y
+

1

3x− y

))

,

which we shall exploit in the following. ♦
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Figure 19.4: The six connected components of the domain of V(x, y).

1) First method. The ides is that if F (x, y) is an integral, then we can write

dF = V(x, y) · ( dx, dy).

The task is therefore to prove that V(x, y) · ( dx, dy) can be written as a differential, dF , from
which we directly get the integral F (x, y).

We get in this case, where we always pair terms which are similar,

V · dx =

(

1

x
+

1

3x− y

)

dx− 1

3

(

1

y
+

1

3x− y

)

dy

=
1

x
dx− 1

3

1

y
dy +

1

3
· 1

3x− y
(3 dx− dy)

= d ln |x| − 1

3
d ln |y|+ 1

3
· 1

3x− y
d(3x− y)

=
1

3
ln

∣

∣

∣

∣

x3

y

∣

∣

∣

∣

+
1

3
ln |3x− y| = 1

3
ln

∣

∣

∣

∣

x3(3x− y)

y

∣

∣

∣

∣

.

Since a possible check only consists of doing the same calculations in the reverse order, we
conclude that all the integrals in Ai, i = 1, . . . , 6, are given by

F (x, y) =
1

3
ln

∣

∣

∣

∣

x3(3x− y)

y

∣

∣

∣

∣

+ Ci,

where Ci ∈ R for (x, y) ∈ Ai, i = 1, . . . , 6.

2) Second method. Indefinite integration. It follows from the form of the expression that it is
most convenient to perform indefinite integration on the latter coordinate of the vector field.
(It is not an error to choose the former coordinate instead; it is only that the calculations
become somewhat more difficult in that case).

F1(x, y) = −1

3

∫ (

1

y
+

1

3x− y

)

dy = −1

3
ln |y|+ 1

3
ln |3x− y|.

Hence

∂F1

∂x
=

1

3
· 3

3x− y
=

1

3x− y
,
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so

V1(x, y)−
∂F1

∂x
=

4x− y

x(3x− y)
− 1

3x− y
=

4x− y − x

x(3x− y)
=

1

x
.

As a weak control we note that this expression no longer depends on y, which is the variable
which should have been removed by the integration above.

We get by another integration,

F2(x) =

∫

1

x
dx = ln |x|.

We get in any connected component Ai, i = 1, . . . , 6, the integral

F (x, y) = F1(x, y) + F2(x) = −1

3
ln |y|+ 1

3
ln |3x− y|+ ln |x| = 1

3
ln

∣

∣

∣

∣

x3(3x− y)

y

∣

∣

∣

∣

,

and all integrals in a connected component Ai, i = 1, . . . , 5 is

F (x, y) =
1

3
ln

∣

∣

∣

∣

x3(3x− y)

y

∣

∣

∣

∣

+ Ci, Ci ∈ R, (x, y) ∈ Ai, i = 1, . . . , 6.

3) Third method. Because A is the union of six connected components, and since none of these
have a natural starting point, the third method becomes somewhat complicated, so we shall
leave this to the reader. In principle the calculations can be performed.
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4) Check. It follows from

F (x, y) = −1

3
ln |y|+ 1

3
ln |3x− y|+ ln |x|+ C1 in Ai

that

▽F (x, y) =

�

1

3
· 3

3x− y
+

1

x
,−1

3
· 1
y
− 1

3
· 1

3x− y

�

=

�

4x− y

x(3x− y)
,−1

3

�

1

y
+

1

3x− y

��

= V(x, y).

which shows that V is a gradient field.

Example 19.8 Let A denote the point set which is obtained by removing the origo and the positive
part of the Y axis from the plane R2,

A = {(x, y) | x �= 0 or (x = 0 and y < 0)}.

We define a function f : A → R by

f(x, y) =







0, y < 0,
y2, x > 0 and y ≥ 0,

−y2, x < 0 and y ≥ 0.

Prove that f is a C1-function, and that its partial derivative
∂f

∂x
is zero everywhere in A.

A A C1-function, which is not identically 0, and where nevertheless
∂f

∂x
= 0 everywhere.

D Apply the definition of differentiability itself (and not one of the weaker rules of calculations) to

prove that f is of class C1. Then calculate
∂f

∂x
by going to the limit in the difference quotient.

I Clearly, A is open, and f(x, y) is continuous across the X axis (with the exception of (0, 0), which
is not included in the domain). Furthermore, f(x, y) is of class C∞, when (x, y) ∈ A does not lie
on the X axis.

Let us consider a point (x0, 0), x0 �= 0, on the X axis minus (0, 0). If x0 < 0, then

f(x, y)− f(x0, 0) =







−y2, for y > 0,

0, for y ≤ 0,
x < 0,

thus

|f(x, y)− f(x0, 0)| ≤ |y|2 = 0 +
�

(x−x0)2+y2 · ε(
�

(x−x0)2+y2).

We get analogously for x0 > 0 that

f(x, y)− f(x0, 0) =







y2, for y > 0,

0, for y ≤ 0,
x > 0,
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i.e.

f(x, y)−f(x0, y)| ≤ |y|2 = 0+
√

(x−x0)2+y2 · ε(
√

(x−x0)2+y2).

It follows from these considerations that f is of class C1 on the set of points on the X axis which
also is included in A.

It is finally trivial that
∂f

∂x
= 0 everywhere in A.
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Example 19.9 Given the vector field

V(x, y) =

(

2x3+2x+2xy

1+x2
,
x2y2+2y+x2

1+y2

)

, (x, y) ∈ R2.

1) Prove that V is a gradient field, and find all its integrals.

2) Explain why any of the integrals has the range R.

A Gradient field.

D Prove that ω = V · dx is a differential. (Reduce!)

I 1) When we compute ω we get

ω = V · dx =
2x3y + 2x+ 2xy

1 + x2
dx+

x2y2 + 2y + x2

1 + y2
dy

=
2x

1 + x2
dx+ 2xy dx+

2y

1 + y2
dy + x2 dy

= d ln(1 + x2) + d ln(1 + y2) + {2xy dx+ x2 dy}
= d

{

ln
(

1 + x2
)

+ ln
(

1 + y2
)

+ x2y
}

.

This proves that V is a gradient field, and that all integrals are given by

FC(x, y) = ln
(

1 + x2
)

+ ln
(

1 + y2
)

+ x2y + C, C ∈ R.

2) It follows from the rules of magnitude that

FC(x, 1) → +∞ for x → ±∞,

and that

FC(x,−1) → −∞ for x → ±∞.

Since FC(x, y) is continuous in (x, y) ∈ R2 for every fixed C ∈ R, we conclude that the range
is all of R.
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20 Integration in the plane

20.1 An overview of integration in the plane and in the space

Consider the abstract integral
∫

A f(x) dµ, where f : A → R always is assumed to be continuous.
When we want to classify the type of integration, we should go through the following flow diagram.

Is the domain of integration A closed and bounded without exceptional points for the inte-
grand f?

❄
No

Improper integral

❄

Proper integral. Is the domain of integration integration A flat?

Yes

❄
Yes

❄
Yes

❄
No

❄
No

Dimension 2.
Plane integral.

Dimension 3.

Space integral.

Dimension 1.

Line integral.

Dimension 2.

Surface integral.

❄ ❄

Transformation theorems.

Figure 20.1: Flow diagram for types of integration.

These are ordered according to their difficulties in the following way:

1) Plane integral (rectangular, polar)

2) Space integral (rectangular, semi-polar, spherical)

3) Line integral (rectangular, polar; parametrical representation)

4) Surface integral (rectangular, semi-polar, spherical; parametrical representation)

5) Transformation theorems (plane, space)

6) Improper integral (bounded or unbounded domain).
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20.2 Introduction

We shall here extend integration in R to integration in R2 and R3, from which it will be easy for the
reader to generalize to integration in Rn. As expected, there are lots of theoretical problems, when
we rigorously define integration in higher dimensions. One would of course expect that in particular
the geometry of the domain of integration interferes in a profound way, and it surely does. However,
in order not to stray into lots of theoretical considerations of the Riemann and Lebesgue integrals we
shall make this introduction as short as possible.

In the first analysis we shall, whenever nothing else is stated, assume that f : A → R is a continuous
function on a bounded and closed domain A ⊂ R2, or ⊂ R3. Then we let the symbol

∫

A

f(x) dµ

denote the (abstract concept of the) integral of f over the set A. This is interpreted as the limit (in
some vaguely described sense) of the mean of f , written as

n
∑

i=1

f (xi) dµ (Ai) , for xi ∈ Ai,

where µ (Ai) denotes the (Riemann or Lebesque) measure of Ai, and where

A = A1 ∪ · · · ∪ An, µ (Ai ∩ Aj) = 0 for i �= j,

is an (almost disjoint) measurable subdivision of A, where diam(Ai) → 0 for n → +∞, or something
similar, which shall not be specified here.

Note that we write dµ for the Lebesgue measure, and not dx, as one would expect.

Later on we shall also take a closer look on the situation, when A is not bounded or closed – or when
f is not continuous everywhere.

The above describes the intuitive idea. It is easy to comprehend, and yet difficult to get theoretically
right. We ought here to mention that there exist sets, which are not measurable. Fortunately, these
cannot be materialized in the real world, because otherwise we might come across strange problems
like cutting a 3-dimensional body into nonmeasurable subsets, which then in a jigsaw puzzle can be
put together in a new way, such that the initial body is doubled, and yet no point is missing! Clearly,
this is against the practical experience. We therefore relegate these sets into the strange world of
Mathematics, and from now on we tacitly assume that all sets are measurable.

We shall use the following rules of integration over and over again.
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1) Linearity. Let f, g ∈ C(A), and let c ∈ R be a constant. Then
∫

A

{f(x) + c g(x)} dµ =

∫

A

f(x) dµ+ c

∫

g(x) dµ.

2) Splitting of sets. Let f ∈ C(A ∪ B). Then
∫

A∪B

f(x) dµ+

∫

A∩B

f(x) dµ =

∫

A

f(x) dµ+

∫

B

f(x) dµ.

Figure 20.2: Venn diagram for A ∪ B. The points in A ∩ B lie in both A and in B, so they enter
both

∫

A
· dµ and

∫

B
· dµ. We compensate for this by adding

∫

A∪B
· dµ.

3) The area/volume of A.
∫

A

1 dµ = µ(A) = vol(A).

4) Integration respects the (weak) order relation. Assume that µ(A) > 0 and that f(x) ≤ g(x) for all
x ∈ A. Then

∫

A

f(x) dµ ≤
∫

A

g(x) dµ.

5) Absolute value. If f : A → R is continuous on the closed and bounded set A, then
∣

∣

∣

∣

∫

A

f(x) dµ

∣

∣

∣

∣

≤
∫

A

|f(x)| dµ.

6) Integration over nullsets always gives 0. Let A be a (Lebesgue) nullset, i.e. µ(A) = 0. Then for all
continuous functions f ∈ C(A),

∫

A

f(x) dµ = 0.

This rule does not hold for the Dirac measure “δ(t)′′, but this is an atomic measure and not a true
function in the usual sense.

883

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume VI 
Antiderivatives and Plane Integrals

884 

Integration in the plane

7) Extension to the closure. Let f ∈ C(A), where A is bounded, and the boundary ∂A is a nullset,
i.e. µ(∂A) = 0. Then

∫

A

f(x) dµ =

∫

A◦

f(x) dµ =

∫

A

f(x) dµ.

We note here that it is possible to construct sets A, such that ∂A is not a nullset, so µ(∂A) > 0. In
the applications such a “space filling curve” as boundary may e.g. enter the problem of Brownian
motion in the plane. We shall of course in the following not consider such “strange sets”, so we
shall always in the following assume that ∂A = 0.

8) The mean value. When µ(A) > 0, we define the mean value as

1

µ(A)

∫

A

f(x) dµ.

The mean value theorem. If A, where µ(A) > 0, is closed and bounded and connected, then there
is an u ∈ A, such that

∫

A

f(x) dµ = f(u)µ(A).

9) Integration of a vector function in Rm. This is done for each coordinate,

∫

A

f(x) dµ :=

(∫

A

f1(x) dµ, · · · ,
∫

A

fm(x) dµ

)

.
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10) Rules of calculation for a function defined by an integral. Let f ∈ Cn(A×B), n ≥ 1 and A ⊆ Rk

and B ⊆ R. We define a function f ;B → R by

F (u) :=

∫

A

f(x, u) dµ, for u ∈ B.

Then F ∈ Cn(B), and we can differentiate the integral with respect to u under the integration
sign,

F ′(u) =

∫

A

f ′
u(x, u) dµ, for u ∈ B.

We shall in the following go through various cases of integration. The program follows the list in
Section 20.1, where they have been listed according to their complexity. However, we first give some
examples which show the importance of integration in space in Physics.

Example 20.1 Let f denote the density of a given mass spread over the set A. Then the total mass
over A is

M =

∫

A

f(x) dµ.

The centre of the mass, or the barycentre, ξ is defined by the vector function

M ξ =

∫

A

x f(x) dµ.

It can be proved that the barycentre of A does not change, if we use another coordinate system, so ξ
is an invariant.

We note in particular that if the mass is spread evenly over A, then the density becomes a constant
f0, and we get

M = f0 µ(A), and µ(A)ξ =

∫

A

xdµ.

Note that even if ξ is called the centre of mass this does not imply that ξ ∈ A. Let e.g. A describe a
ring of constant density. Then the centre of mass (i.e. the barycentre) lies at the centre of the ring,
i.e. outside the ring. ♦

Example 20.2 Integration in space is also used in the Theory of Electricity. If f denotes the “density”
of the electrical charge, then the total electric charge of A is

Q =

∫

A

f(x) dµ.

We note that the electrical “density” can be positive, negative and zero. In most other applications
a density f satisfies that f(x) ≥ 0.

Another application in the Theory of Electricity is the definition of the electrical dipole moment,

p :=

∫

A

x f(x) dµ.
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Furthermore, a distribution of current is defined by its vectorial “density” f(x). If furthermore,
A ⊆ R3, we also introduce the magnetic dipole moment,

m :=
1

2

∫

A

x× f(x) dµ. ♦

Example 20.3 In Mechanics we define the angular momentum of a rotation of a solid around a line
in the following way

I :=

∫

A

{R(x)}2f(x) dµ,

where R(x) denotes the distance from the point x to the line ℓ (the axis of rotation), and where f is
the density function of the body.

If ℓ is one of the coordinate axes, this expression becomes very simple. If e.g. ℓ is the z-axis, and we use
rectangular coordinates (x, y, z), then R is the distance between (x, y, z) and (0, 0, z), so R2 = x2 + y2

and

I =

∫

A

(

x2 + y2
)2

f(x, y, z) dµ. ♦
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20.3 The plane integral in rectangular coordinates

The simplest of the new cases of extension of the integral is the plane integral. The domain of
integration B ⊆ R2 is a set in the (x, y)-plane, and dµ is replaced by the element of area dS, and the
integrand is written f(x, y), so the generally used notation of the plane integral is

(20.1)

∫

B

f(x, y) dS or

∫

B

f(x, y) dS,

where we shall later explain the colour green. Sometimes one writes in the applications
∫ ∫

B

f(x, y) dxdy

to emphasize that we are dealing with a 2-dimensional integration.

We consider (20.1) as an abstract notation of the plane integral, sometimes coloured in blue or green
in the following to signalize that one cannot calculate it directly, but must use some reduction like
in Theorem 20.1 below. In these reductions the integral is broken down to a series of ordinary 1-
dimensional integrals, which are then sometimes for pedagogical reasons given the colours red, black
or blue. We need Theorem 20.1, before we can explain, what is meant by this. Cf. also Section 20.3.2
on the colour code.

We note that the area of a plane set B, written area(B), is found by integrating the constant 1, thus

area(B) :=

∫

B

1 dS =

∫

B

dS, for B ⊂ R2.

When we reduce (20.1) to a computable form, we shall in general rewrite (20.1) as a concatenation of
two integrals with respect to the chosen coordinates. For plane sets we have introduced in Section 1.4,

1) rectangular coordinates,

2) polar coordinates.

We shall in the following subsections show the reduction theorems in the two two types of coordinate
systems.

20.3.1 Reduction in rectangular coordinates

As mentioned earlier we shall not bother too much with the proofs, but only sketch the ideas. So
given a plane domain B ⊂ R2 in rectangular coordinates.

The optimum situation is when we can describe B as either

B =
{

(x, y) ∈ R2 | a ≤ x ≤ b, Y1(x) ≤ y ≤ Y2(x)
}

,

where Y1(x) and Y2(x), x ∈ [a, b], are continuous functions, which describe the lower and the upper
boundary curves, or as

B = {(x, y) | c ≤ y ≤ d, X1(y) ≤ x ≤ X2(y)} ,

where X1(y) and X2(y), y ∈ [c, d], are continuous functions, which describe the left and the right
boundary curves, cf. Figure 20.3, where the left hand side refers to the first case, and the right hand
side refers to the second case.

887

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume VI 
Antiderivatives and Plane Integrals

888 

Integration in the plane

Figure 20.3: Analysis of the domain B of integration in rectangular coordinates.

In the first case we integrate vertically for every fixed x ∈ [a, b] over the interval y ∈ [Y1(x), Y2(x)].
One may think of this process as if we collect all “mass” lying in B on the vertical line above x and
take it as a value F (x) of a new function,

F (x) :=

∫ Y2(x)

Y1(x)

f(x, y) dy, for x ∈ [a, b].

When we afterwards integrate F (x) horizontally along the x-axis, we collect all “mass” from B, so we
get

∫

B

f(x, y) dS =

∫ b

a

F (x) dx =

∫ b

a

{

∫ Y2(x)

Y1(x)

f(x, y) dy

}

dx.

The latter double integral can now by computed by two successive ordinary 1-dimensional integrations,
where one must be very careful to integrate in the right order. In order to explain this order we shall
sometimes colour these integrals, so

∫

B

f(x, u) dS =

∫ b

a

{

∫

Y1(x)

Y2(x)f(x, y) dy

}

dx,

which we interpret in the following way: The blue integral to the left is an abstract symbol, which
cannot be computed in this form. It is, however, equal to the double integral on the right hand side,
which has been coloured in red and black. The procedure is then that we first integrate the red
integral, where all other colours (here only black) are considered as constants. Once this has been
done, the result must no longer contain the red y as a variable. If it does, when we have made an
error and must start from the beginning. When the red integral has been calculated, then we continue
with the black integral and reduce.
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Similarly, if instead B = {(x, y) | c ≤ y ≤ d, X1(y) ≤ x ≤ X2(y)}.

We state the results as a theorem.

Theorem 20.1 Reduction theorem of a plane integral in rectangular coordinates. Assume that
B ⊂ R2 is bounded and closed, and that f : B → R is a continuous function.

1) Assume that B can be written

B =
{

(x, y) ∈ R2 | a ≤ x ≤ b, Y1(x) ≤ y ≤ Y2(x)
}

,

where

Y1, Y2 ∈ C0([a, b]) and Y1(x) ≤ Y2(x) for x ∈ [a, b].

Then

∫

B

f(x, u) dS =

∫ b

a

{

∫

Y1(x)

Y2(x)f(x, y) dy

}

dx.

2) Assume instead that

B =
{

(x, y) ∈ R2 | c ≤ y ≤ d, X1(y) ≤ x ≤ X2(y)
}

,

where

X1, X2 ∈ C0([c, d]) and X1(y) ≤ X2(y) for y ∈ [c, d].

Then

∫

B

f(x, y) dS =

∫ d

c

{

∫ X2(y)

X1(y)

f(x, y) dx

}

dy.

Theorem 20.1 gives us some methods for explicitly calculating a plane integral. It is formulated in
its simplest form. When the geometry of the domain B is more complicated, we may split it up into
simpler subdomains,

B = B1 ∪ · · · ∪ Bn, where µ (Bi ∩ Bj) = 0 for i �= j,

where the reduction theorem can be used on every Bi, i = 1, . . . , n.

Note that we do not require a disjoint splitting of B. The condition µ (Bi ∩ Bj) = 0 for i �= j means
that the intersection Bi ∩ Bj is a nullset – a point, or a straight line in RR2, or a plane in R3. This
may be convenient in order to put the bounds of the integrals right.

One should note that even if both reductions can be used, like in Figure 20.3, the resulting two double
integrals may lead to calculations of different difficulties, so one should carefully choose the variant,
which gives the simplest calculations. This will be illustrated in some of the examples in the following.
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20.3.2 The colour code, and a procedure of calculating a plane integral

In this section we give a more thorough treatment, because it is the basic form which all other
reductions are referring to.

The colour code: We let blue or green integrals denote abstract concepts, which cannot be computed
without further reduction. These colours signal that a reduction should be carried out. Whenever
possible, we shall prefer the use of the blue colour, because the green colour may be difficult to read.
It is only in R3 that we shall need four colours.

Red and black integrals are calculated by elementary calculus methods. When we calculate a red
integral, i.e. a red variable, we consider any other colour as representing constants with respect to this
integration.

Blue integrals represent in R2 the abstract integral, while in space integrals in R3 it will be convenient
to let the blue integrals represent a simpler (2-dimensional) abstract integral, and use the green colour
for the full abstract integral in 3 dimensions.
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The chosen hierarchy of colours is therefore

green — blue — black — red ,

which means that we whenever possible establish the integrals in this order. In the calculations we
start from behind with first integrating the black variable, then the red one, and then finally the blue
integral. A weak check is that after the “black” integration, the black variable has disappeared. If we
still have the black variable somewhere in the expression, then this is an indication of that we have
made an error, so we must go back to the analysis of the domain.

The problems of understanding what is going on here is caused by the historical notation of an integral
in the form

∫

· · · dµ,

which says that the integral is actually written as an advanced form of a pair of brackets, where
∫

is
the first bracket and dµ is the second bracket. Other alternative notations are, however, possible but
they have all some other disadvantages, so we shall stick to the familiar notation.

Geometry.

Whenever possible, one should always start by sketching a figure of the parametric domain. In its
basic form (the rectangular version) the parametric domain is identical with the domain itself, so one
does not distinguish between whether some of the coordinates are lying in the domain itself, while
other coordinates at the same time are considered as lying in the parametric domain. Therefore, the
same letter may occur both as a variable and as a parameter, depending on the actual situation. This
may at a first glance look very confusing. In other words, one lacks a notation, by which one can
distinguish between a variable and a parameter. Some experiments have been made by using different
colours for the different aspects with some success. It has been included here in some of the examples.

In the rectangular case there are two basic geometrical forms:

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

Figure 20.4: First version, where one in the inner (i.e. the first) integral integrates vertically. The
bounds are here Y1(x) = 0 and Y2(x) = x.

The actual figure is divided into sub-figures of one of these two types. Then each sub-figure is treated
separately. We use the following principles:
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0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

Figure 20.5: Second version, where one in the inner (i.e. the first) integral integrates horizontally. The
bounds are here X1(y) = y and X2(y) = 1.

First version. The variable x lies in an interval [a, b], where a and b are constants. Note that x is
considered as a parameter in the first (i.e. the inner) integration. We colour x black to indicate
that x is considered as a constant, when we integrate with respect to y, which is here coloured
red. The variable y lies between the two curves of equations y = Y1(x) and y = Y2(x), where the
x fixes both Y1(x) and Y2(x) as constants, so they are both black.

Second version. The variable y lies in an interval [c, d], where c and d are constants. Note that y
is considered as a parameter in the first (i.e. the inner) integration. We colour y black to indicate
that y is considered as a constant, when we integrate with respect to y, which is here coloured
red. The variable x lies between the two curves of equations x = X1(y) and x = X2(y). Since y is
fixed, the numbers are both fixed, therefore coloured black.

Remark 20.1 Some figures, like e.g. axis-parallel rectangles, can be described equally well in the two
geometrical versions. Then it depends on the structure of the integrand whether one should choose
the first or the second version, because the integrations themselves do not be equally easy in the two
versions. Whenever one is in trouble with the calculations in one of the two versions, one may try the
other one instead. In some cases these integrations can in fact be calculated. ♦

Problem 20.1 Calculate the abstract plane integral
∫

B

f(x, y) dS,

by reduction in rectangular coordinates.

Procedure:

1) Sketch the domain of integration B. If necessary, divide B into sub-domains of type 1 or type 2,
described above.

2) If B (or some sub-domain) is of type 1, then write

B = {(x, y) | a ≤ x ≤ b, Y1(x) ≤ y ≤ Y2(x)},
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and set up the reduction formula

∫

B

f(x, y) dS =

∫ b

a

{

∫

Y1(x)

Y2(x)f(x, y) dy

}

dx.

According to the figure of the first version, one first keeps x fixed and integrates y vertically. This
can be interpreted as if we are collecting the “mass” of the vertical line above the point x in this
point on the x-axis. Then the total “mass” is afterwards obtained by integrating the partial results
from the inner integrations after x.

3) Perform a separate calculation of the inner integral:

ϕ(x) =

∫ Y2(x)

Y1(x)

f(x, y) dy,

where x is considered as a constant.

When one has obtained the necessary training in this technique, one may of course skip this point.

4) Insert and calculate the integral by methods from elementary calculus

∫

B

f(x, y) dS =

∫ b

a

ϕ(x) dx.

5) If B (or a subdomain of B) is of type 2, then write

B = {(x, y) | c ≤ y ≤ d, X1(y) ≤ x ≤ X2(y)},

and apply the formula of reduction

∫

B

f(x, y) dS =

∫ d

c

{

∫ X2(y)

X1(y)

f(x, y) dx

}

dy.

According to the figure, 2. version, we here keep y fixed and then integrate horizontally after x.
By this we collect the “mass” along the horizontal line at the point y on the y-axis. The total
“mass” is then obtained by integrating the subresults after y.

6) Compute separately the inner integral:

ψ(y) =

∫ X2(y)

X1(y)

f(x, y) dx,

where y is considered as a constant.

When one has obtained the necessary training in this technique, one may of course skip this point.

7) Calculate the integral after insertion using simple methods known from elementary Calculus.

∫

B

f(x, y) dS =

∫ d

c

ψ(y) dy.
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–0.2

0
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0.4

0.6

0.8

1

1.2

y

0.5 1 1.5 2

x

Figure 20.6: The domain B.

20.4 Examples of the plane integral in rectangular coordinates

Example 20.4 A. Compute
∫

B xy dS, where B is the set given on Figure 20.6.

D. Here we can reduce in two different ways,

D1. We first integrate (i.e. the inner integral) vertically.

D2. We first integrate (i.e. the inner integral) horizontally.

In order to compare the two possibilities they are both included here.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

0.5 1 1.5 2

x

Figure 20.7: The domain B with a vertical path of integration from y = 1− 1
2 x to y = 1.

D1. We shall first integrate vertically.

I 1. In this case we write the domain in the following way,

B = {(x, y) ∈ R2 | 0 ≤ x ≤ 2, 1− 1

2
x ≤ y ≤ 1}.
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One derives this in the following way. The “outer” variable of integration xmust always lie between
two constants, here 0 ≤ x ≤ 2. Then we analyze the figure for every fixed x to find the interval of

integration for den “inner” variable of integration y, her 1− 1

2
x ≤ y ≤ 1.

Then we set up the double integral

(20.2)

∫

B

xy dS =

∫ 2

0

{

∫ 1

1− 1
2 x

xy dy

}

dx =

∫ 2

0

x

{

∫ 1

1− 1
2 x

y dy

}

dx.

We compute the inner integral,

∫ 1

1− 1
2 x

y dy =

[

1

2
y2
]1

1− 1
2 x

=
1

2

{

1−
(

1− 1

2
x

)2
}

1

2

{

1− 1

4
x2

}

=
1

2
x− 1

8
x2.
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By insertion into (20.2),

∫

B

xy dS =

∫ 2

0

x

{

1

2
x− 1

8
x2

}

dx =

∫ 2

0

{

1

2
x2 − 1

8
x3

}

dx =

[

1

6
x3 − 1

32
x4

]2

0

=
8

6
− 1

2
=

5

6
.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

0.5 1 1.5 2

x

Figure 20.8: The domain B with the horizontal path of integrations from x = 2− 2y to x = 2.

D2. In the second variant we first integrate horizontally, cf. Figure 20.8

I 2. The set is here written

B = {(x, y) ∈ R2 | 0 ≤ y ≤ 1, 2− 2y ≤ x ≤ 2},

because y ∈ [0, 1] here is the outer variable of integration (between two constants), and where
2− 2y ≤ x ≤ 2 for the inner variable of integration x for every fixed y.

The double integral becomes

(20.3)

∫

B

xy dS =

∫ 1

0

{
∫ 2

2−2y

xy dx

}

dy =

∫ 1

0

{
∫ 2

2−2y

xdx

}

dy.

First compute the inner integral,

∫ 2

2(1−y)

xdx =

[

1

2
x2

]2

2(1−y)

=
1

2
· 22

{

12 − (1− y)2
}

= 2(2y − y2) = 4y − 2y2.

When this is inserted into (20.3), we get

∫

B

xy dS =

∫ 1

0

y(4y − 2y2) dy =

∫ 1

0

(4y2 − 2y3) dy =

[

4

3
y3 − 1

2
y4
]1

0

=
5

6
. ♦
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Example 20.5 We get the area of a domain B by integrating the constant 1 over B. In particular,
when B is lying between two graphs,

B =
�

(x, y) ∈ R2 | a ≤ x ≤ b, Y1(x) ≤ y ≤ Y2(x)
�

,

then

area(B) =

�

B

1 dS =

� b

a

{Y2(x)− Y1(x)} dx,

because the inner integral is trivially

� Y2(x)

Y1(x)

1 dy = Y2(x) − Y1(x). ♦

Example 20.6 Another simple observation is the following: Assume that D = [a, b] × [c, d] is an
axiparallel rectangle, and that the integrand f(x, y) = F (x)G(y) has separated variables. Then by
first integrating vertically, so F (x) is considered to be a constant in this inner integration and hence
can be moved outside to the outer black integral,

�

B

F (x)G(y) dS =

� b

a

�

� d

c

F (x)G(y) dy

�

dx =

� b

a

�

� d

c

G(y) dy

�

dx

=

�

� b

a

F (x) dx

��

� d

c

G(y) dy

�

,

and we see that we in this case can separate the integrations. ♦

Example 20.7 Let the domain be the square
�

0,
π

2

�

×
�

0,
π

2

�

and the integrand cos(x− y). Then by

the reduction theorem,

�

B

cos(x − y) dS =

�

π

2

0







�

π

2

0

cos(x− y) dy







dx =

�

π

2

0

[− sin(x − y)]
y=

π

2
y=0 dx

=

�

π

2

0

�

− sin
�

x− π

2

�

+ sinx
�

dx =

�

π

2

0

(cosx+ sinx) dx

=

�

π

2

0

cosx dx+

�

π

2

0

sinx dx = 1 + 1 = 2. ♦
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Example 20.8 A. Compute
∫

B
x exp

(

y3
)

dS, where B is sketched on Figure 20.9.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

–0.2 0.2 0.4 0.6 0.8 1 1.2

x

Figure 20.9: The domain B.

D. We shall check the two possibilities of order of integration.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

–0.2 0.2 0.4 0.6 0.8 1 1.2

x

Figure 20.10: The domain B with a vertical path of integration from y = x to y = 1.

D 1. We shall first try to integrate vertically for fixed x.

I 1. The domain is here written (note the order of x and y):

B = {(x, y) ∈ R2 | 0 ≤ x ≤ 1, x ≤ y ≤ 1}.

Then we can set up the double integral,

∫

B

x exp
(

y3
)

dS =

∫ a

0

{∫ 1

x

x exp
(

y3
)

dy

}

dx =

∫ 1

0

x

{∫ 1

x

exp
(

y3
)

dy

}

dx.

The inner integral,

∫ 1

x

exp
(

y3
)

dy,
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does not look nice, so at this point one should take a look at the alternative way of computing.

Apparently, the simplest application of MAPLE does not solve the problem either:

with(Student[MultivariateCalculus]):

MultiInt
(

x · ey3

, y = x..1, x = 0..1
)

∫ 1

0

∫ 1

x

x ey
3

dy dx

where we cannot go further. Then one could try

int
(

ey
3

, y = x..1
)

which returns

∫ 1

x

ey
3

dy

which is of no help either. Finally, the indefinite integral

∫

ey
3

dy

899
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gives the following result

−1

3
(−1)2/3









2

3

y(−1)1/3π
√
3

Γ

�

2

3

�

(−y3)1/3
−

y(−1)1/3Γ

�

1

3
,−y3

�

(−y3)1/3









a result which would require a course in Special Functions to understand.

The conclusion is that it in principle is possible to apply MAPLE, but this application is in this
particular case more difficult than the following method, where we just interchange the order of x
and y.

–0.2
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0.2

0.4

0.6

0.8

1

1.2

y

–0.2 0.2 0.4 0.6 0.8 1 1.2

x

Figure 20.11: The domain B with a horizontal path of integration from x = 0 to x = y for fixed y.

D 2. We write the set in the following way (note the order of x and y):

B = {(x, y) ∈ R2 | 0 ≤ y ≤ 1, 0 ≤ x ≤ y}.

Then we set up the double integral

(20.4)

�

B

x exp
�

y3
�

dS =

� 1

0

�� y

0

x exp
�

y3
�

dx

�

dy =

� 1

0

exp
�

y3
�

�� y

0

x dx

�

dy.

The inner integral is straightforward,

� y

0

x dx =

�

1

2
x2

�y

0

=
1

2
y2.

By an insertion into (20.4) followed by the substitutionn t = y3 and dt = 3y2 dy, where y2 dy
already is present under the sign of integration, we finally get

�

B

x exp
�

y3
�

dS =

� 1

0

exp
�

y3
�

· 1
2
y2 dy =

� 1

0

exp(t) · 1
2
· 1
3
dt

=
1

6

�

et
�1

0
=

1

6
{e− 1} .
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Remark 20.2 We have here an example, in which one of the possible methods cannot be applied,
and where MAPLE does not help much in this variant. On the other hand, by interchanging the
order of integration we were nevertheless able to compute this plane integral. ♦

Example 20.9 A luminous element of area dS contributes to the lighting of another element of area
dS′ with the amount

L cosα cosβ

R2
dS,

where R is the distance between the two elements of area, α is the angle between the normal of dS
and the direction from dS to dS′, and β is the angle between the normal of dS′ and the dierection
from dS′ to dS. Finally, L describes the emission of light from dS.

The lighting E onto dS′ from the shining part of B of a plane can then be written as a plane integral.
When L is a constant, and B = [0, a] × [0, b] is a rectangle, and dS′ is perpendicular to the shining
plane, situated at some distance on the z-axis, it can be shown that

E =
L cosα cosβ

R2
dS = Lz

∫ a

0

{

∫ b

0

y

(x2 + y2 + z2)
2 dy

}

dx.

A. Find the value of

E = Lz

∫

B

y

(x2 + y2 + z2)2
dS, where B = [0, a]× [0, b] and z > 0 a constant.

D. We can expect a lot of trouble in this example no matter the version, we choose. This is due to
the fact that the integrand invites to a description in polar coordinates, while the domain B in
the (x, y)-plane is best described in rectangular coordinates. Experience shows that whenever we
have a mixed problem of rectangular and polar coordinates, then the calculations are in general
very difficult. Unfortunately, this is often the case in practical applications.

Then note that if we first in the inner integral integrate with respect to x, then already the first
integral

∫ a

0

dx

(x2+y2 + z2)2

will also cause some trouble. It is possible to use this variant, but the computations are far from
easy to perform. However, if we instead start by integrating y, we obtain some easier computations,

because y dy =
1

2
d
(

y2
)

, and y occurs only as y2 in the remaining of the integrand. We therefore

choose this variant, so we first integrate with respect to y in the inner integral.

I. The domain is an axiparallel rectangle, so we can go straight to setting up the double integral,

(20.5) E = Lz

∫

B

y

(x2 + y2 + z2)2
dS = Lz

∫ a

0

{

∫ b

0

y

(x2 + y2 + z2)2
dy

}

dx.

We put c = x2 + z2 = constant in the inner integral, and we apply the substitution t = y2 with

dt = 2y dy, where the group y dy already occurs under the sign of integration, i.e. y dy =
1

2
dt.
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Then

∫ b

0

y

(x2 + y2 + z2)2
dy =

∫ b

0

1

(y2+c)2
y dy =

1

2

∫ b2

0

dt

(t+c)2
=

1

2

[

− 1

t+ c

]b2

t=0

=
1

2

(

1

c
− 1

b2 + c

)

=
1

2

(

1

x2 + z2
− 1

x2 + b2 + z2

)

.

This result is then inserted into (20.5),

(20.6) E =
Lz

2

∫ a

0

(

1

x2 + z2
− 1

x2 + b2 + z2

)

dx.

At this place it is absolutely not a good idea to “reduce” it by writing these two fractions as one,
so we keep the form above.

In the next step we prove that if k2 > 0, then it follows by the change of variable t =
x

k
, that

∫

dx

x2 + k2
=

1

k

∫

1

1 +
(x

k

)2

1

k
dx =

1

k

∫

dt

1 + t2
=

1

k
Arctan t =

1

k
Arctan

(x

k

)

.

The trick here is by a division to obtain the constant 1 plus a square in the denominator.

Using the above we get

k1 = z and k2 =
√

b2 + z2,

so by insertion into (20.6),

E =
Lz

2

[

1

k1
Arctan

(

x

k1

)

− 1

k2
Arctan

(

x

k2

)]a

0

=
Lz

2

{

1

z
Arctan

(a

z

)

− 1√
b2 + z2

Arctan

(

a√
b2 + z2

)}

=
L

2

{

Arctan
(a

z

)

− z√
b2 + z2

Arctan

(

a√
b2 + z2

)}

. ♦
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Example 20.10 Calculate in each of the following cases the given plane integral by applying the
theorem of reduction for rectangular coordinates. Sketch first the domain of integration B.

1)
∫

B

1

(x + y)2
dS, where B = {(x, y) | 1 ≤ x ≤ 2 and 0 ≤ y ≤ x3}.

2)
∫

B

x

1 + xy
dS, where B = [0, 1]× [0, 1].

3)
∫

B(x sin y − yex) dS, where B = [−1, 1]×
[

0,
π

2

]

.

4)
∫

B

√

|y − x2| dS, where B = [−1, 1]× [0, 2].

5)
∫

B
(x2y2 + x) dS, where B = [0, 2]× [−1, 0].

6)
∫

B
|y| cos πx

4
dS, where B = [0, 2]× [−1, 0].

7)
∫

B

x2

(1 + x+ y)2
dS, where B = {(x, y) | 0 ≤ x, 0 ≤ y, x+ y ≤ 1}.

8)
∫

B(4− y) dS, where B = {(x, y) | 0 ≤ x, 0 ≤ y, x2 + y2 ≤ 2}.

9)
∫

B(
√
x− y2) dS, where B is the bounded set in the first quadrant, which is bounded by the curves

y = x2 and x = y4.

10)
∫

B x cos(x+ y) dS, where B is the triangle of the vertices (0, 0), (0, 0), (π, 0) and (π, π).

11)
∫

B x 3

√

1 + y − y2 +
1

3
y3 dS, where B = {(x, y) | 0 ≤ x, 0 ≤ y, x+ y ≤ 1}.

12)
∫

B(3y
2 + 2xy) dS, where B = {(x, y) | 0 ≤ x, 0 ≤ y, x+ y ≤ 1}.

A Plane integrals in rectangular coordinates.

D Sketch the domain and apply the theorem of reduction.

0

2

4

6

8

0.5 1 1.5 2 2.5 3

x

Figure 20.12: The domain B of Example 20.10.1.
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I 1) We get by the theorem of reduction,

∫

B

1

(x + y)2
dS =

∫ 2

1

{

∫ x3

0

1

(x+ y)2
dy

}

dx =

∫ 2

1

[

− 1

x+ y

]x3

y=0

dx

=

∫ 2

1

{

− 1

x+ x3
+

1

x

}

dx =

∫ 2

1

{

− 1

x
+

x

1 + x2
+

1

x

}

dx

=

[

1

2
ln(1 + x2)

]2

1

=
1

2
ln

(

5

2

)

.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

–0.2 0.2 0.4 0.6 0.8 1 1.2

x

Figure 20.13: The domain B of Example 20.10.2.
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MAPLE. We get by the commands with(Student[MultivariateCalculus]):

MultiInt

(

1

(x+ y)2
, y = 0..x3, x = 1..2

)

−1

2
ln(2) +

1

2
ln(5)

2) We get by the theorem of reduction,
∫

B

x

1 + xy
dS =

∫ 1

0

{∫ 1

0

x

1 + xy
dy

}

dx =

∫ 1

0

[ln(1 + xy)]1y=0 dx

=

∫ 1

0

1 · ln(1 + x) dx = [x ln(1 + x)]10 −
∫ 1

0

x

1 + x
dx

= ln 2−
∫ 1

0

{

1− 1

1 + x

}

dx = ln 2− 1 + ln 2

= 2 ln 2− 1.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

y

–1 –0.5 0.5 1

x

Figure 20.14: The domain B of Example 20.10.3.

MAPLE. We get by the commands with(Student[MultivariateCalculus]):

MultiInt

(

x

1 + x · y , y = 0..1, x = 0..1

)

−1 + 2 ln(2)

3) We get by the theorem of reduction,
∫

B

(x sin y − yex) dS =

∫ π
2

0

{∫ 1

−1

(xsin y − yex) dx

}

dy

= 0−
∫ π

2

0

y ·
(

e− 1

e

)

dy = −1

2
(e − e−1)

[

y2
]

π
2

0

= −π2

4
sinh 1

(

= −π2(e2 − 1)

8e

)

,
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0

0.5

1

1.5

2

y

–1 –0.5 0.5 1

x

Figure 20.15: The domain B of Example 20.10.4.

where we first integrate with respect to x and then with respect to y.

MAPLE. We get by the commands with(Student[MultivariateCalculus]):

MultiInt
(

x · sin(y)− y · ex, x = −1..1, y = 0..
π

2

)

1

8

(

−e+ e−1
)

π2

4) Here, the curve y = x2 may cause some troubles. For symmetric reasons
∫

B

√

|y − x2| dS =

∫ 1

−1

{∫ 2

0

√

|y − x2| dy
}

dx

= 2

∫ 1

0

{

∫ x2

0

√

x2 − y dy +

∫ 2

x2

√

y − x2 dy

}

dx

= 2

∫ 1

0

{

[

−2

3
(x2 − y)

3
2

]x2

y=0

+

[

2

3
(y − x2)

3
2

]2

y=x2

}

dx

= 2

∫ 1

0

{

2

3
(x2)

3
2 +

2

3
(2− x2)

3
2

}

dx =
4

3

∫ 1

0

x3 dx+
4

3
· 2
√
2

∫ 1

0

{

1−
(

x√
2

)2
}

3
2

dx

=
1

3
+
16

3

∫

√
2

2

0

{1−t2} 3
2 dt=

1

3
+
16

3

∫ π
4

0

{1−sin2 u} 3
2 cosu du=

1

3
+
16

3

∫ π
4

0

cos4 u du

=
1

3
+

16

3

∫ π

0

4

(

1 + cos 2u

2

)2

du =
1

3
+

4

3

∫ π
4

0

{

1 + 2 cos 2u+
1 + cos 4u

2

}

du

=
1

3
+

4

3

[

3

2
u+ sin 2u+

1

8
sin 4u

]
π
4

0

=
1

3
+

π

2
+

4

3
=

5

3
+

π

2
.

MAPLE. We get by the commands with(Student[MultivariateCalculus]):

MultiInt
(

√

|y − x2|, y = 0..2, x = −1..1
)

5

3
+

1

2
π
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–1.2

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

y

0.5 1 1.5 2
x

Figure 20.16: The domain B of Example 20.10.5 and of Example 20.10.6.

5) Here,
∫

B

(x2y2 + x) dS =

∫ 2

0

{∫ 0

−1

(x2y2 + x) dy

}

dx

=

∫ 2

0

[

1

3
x2y3 + xy

]0

y=−1

dx =

∫ 2

0

{

1

3
x2 + x

}

dx

=

[

1

9
x3 +

1

2
x2

]2

0

=
8

9
+

4

2
= 2 +

8

9
=

26

9
.

MAPLE. We get by the commands with(Student[MultivariateCalculus]):

MultiInt
(

x2 · y2 + x, y = −1..0, x = 0..2
)

26

9

6) The domain is identical with that of Example 20.10.5. It follows that

∫

B

|y| cos πx
4

dS =

∫ 0

−1

(−y) dy ·
∫ 2

0

cos
πx

4
dx =

[

−y2

2

]0

−1

· 4
π

[

sin
πx

4

]2

0
=

2

π
.

MAPLE. We get by the commands with(Student[MultivariateCalculus]):

MultiInt
(

|y| · cos
(π

4
· x

)

, y = −1..0, x = 0..2
)

2

π

7) Here,
∫

B

x2

(1 + x+ y)2
dS =

∫ 1

0

{∫ 1−x

0

x2

(1 + x+ y)2
dy

}

dx =

∫ 1

0

[

− x2

1 + x+ y

]1−x

y=0

dx

=

∫ 1

0

{

x2

1 + x
− x2

2

}

dx =

∫ 1

0

{

x− 1 +
1

x+ 1
− x2

2

}

dx

=

[

x2

2
− x+ ln(1 + x)− x3

6

]1

0

=
1

2
− 1 + 2 ln 2− 1

6
= ln 2− 2

3
.
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–0.2

0

0.2
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0.6

0.8
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x

Figure 20.17: The domain B of Example 20.10.7.
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Figure 20.18: The domain B of Example 20.10.8.

MAPLE. We get by the commands with(Student[MultivariateCalculus]):

MultiInt

(

x2

(1 + x+ y)2
, y = 0..1− x, x = 0..1

)

−2

3
+ ln(2)

8) The domain is a quarter of a disc in the first quadrant, hence by combining the method of
identifying obvious areas and the theorem of reduction in rectangular coordinates,

∫

B

(4− y) dS=4 area(B)−
∫

√
2

0

{

∫

√
2−x2

0

y dy

}

dx=4 · 1
4
π(
√
2)2−

∫

√
2

0

[

1

2
y2
]

√
2−x2

y=0

dx

= 2π − 1

2

∫

√
2

0

(2 − x2) dx = 2π −
√
2 +

1

6
(
√
2)3 = 2π − 2

3

√
2.
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Alternatively we get by using polar coordinates instead, cf. Example 20.29.1,

∫

B

(4− y) dS = 4 area(B)−
∫ π

2

0

{

∫

√
2

0

̺ sinϕ · ̺ d̺
}

dϕ

= 2π + [cosϕ]
π
2
0 ·

[

̺3

3

]

√
2

0

= 2π − 2

3

√
2.

MAPLE. We get by the commands with(Student[MultivariateCalculus]):

MultiInt
(

4− y, y = 0..
√

2− x2, x = 0..
√
2
)

2π − 2

3

√
3

–0.2

0

0.2

0.4

0.6

0.8

1

y

–0.2 0.2 0.4 0.6 0.8 1

x

Figure 20.19: The domain B of Example 20.10.9.
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9) When x = y4 in the first quadrant, the inverse function is given by y = 4
√
x, and it follows by

the theorem of reduction that
∫

B

(
√
x− y2) dS =

∫ 1

0

{

∫ 4
√
x

x2

(
√
x− y2) dy

}

dx =

∫ 1

0

[

y
√
x− 1

3
y3
] 4
√
x

y=x2

dx

=

∫ 1

0

{

x
3
4 − 1

3
x

3
4 − x

5
2 +

1

3
x6

}

dx =

[

2

3
· 4
7
x

7
4 − 2

7
x

7
2 +

2

1
x7

]1

0

=
8

21
− 2

7
+

1

21

=
1

7
.

MAPLE. We get by the commands with(Student[MultivariateCalculus]):

MultiInt
(√

x− y2, y = x2.. 4
√
x, x = 0..1

)

1

7

0.5

1

1.5

2

2.5

3

y

0.5 1 1.5 2 2.5 3

x

Figure 20.20: The domain B of Example 20.10.10.

10) The domain is the triangle bounded by the X-axis, the line x = π and the line y = x. We get
by the theorem of reduction,

∫

B

x cos(x+ y) dS =

∫ π

0

{
∫ x

0

x cos(x+ y) dy

}

dx =

∫ π

0

[x sin(x+ y)]xy=0 dx

=

∫ π

0

{x sin 2x− x sinx} dx =

[

−x · 1
2
cos 2x+ x cos x

]π

0

+

∫ π

0

{

1

2
cos 2x− cosx

}

dx

= −π

2
− π +

[

1

4
sin 2x− sinx

]π

0

= −3π

2
.

MAPLE. We get by the commands with(Student[MultivariateCalculus]):

MultiInt (x · cos(x+ y), y = 0..x, x = 0..π)

−3

2
π
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–0.2
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–0.2 0.2 0.4 0.6 0.8 1 1.2

x

Figure 20.21: The domain B of Example 20.10.11 and of Example 20.10.12.

11) Here, the idea of first (i.e. innermost) integrating with respect to y for fixed x is stillborn,
so we interchange the order of integration. We shall therefore first (innermost) integrate with
respect to x and then outermost with respect to y.

∫

B

x
3

√

1 + y − y2 +
1

3
y3 dS =

∫ 2

0

{

∫ 1−y

0

x

{

1 + y − y2 +
1

3
y3
}

1
3

dx

}

dy

=
1

2

∫ 2

0

{

1 + y − y2 +
1

3
y3
}

1
3

(1− y)2 dy

=
1

2

∫ 2

0

{

4

3
+

1

3
(y3 − 3y2 + 3y − 1)

}
1
3

(y − 1)2 dy

=
1

2

∫ 2

y=0

{

4

3
+

1

3
(y − 1)3

}
1
3

d

(

1

3
(y − 1)3

)

=
1

2
· 3
4

[

(

4

3
+

1

3
(y − 1)3

)
4
3

]2

y=0

=
3

8

{

(

5

3

)
4
3

−
(

4

3
− 1

3

)
4
3

}

=
3

8

{

(

4

3

)
5
3

− 1

}

=
5

8
3

√

5

3
− 3

8
.

MAPLE. We get by the commands with(Student[MultivariateCalculus]):

MultiInt

(

x · 3

√

1 + y − y2 +
1

3
y3, x = 0..1− y, y = 0..2

)

−3

8
+

5

24
3
√
45

12) The sketch of B is identical with Example 20.10.11. We get by the theorem of reduction,
∫

B

(3y2 + 2xy) dS =

∫ 1

0

{∫ 1−y

0

(3y2 + 2xy) dx

}

dy

=

∫ 1

0

{

3y2(1− y) + y(1− y)2
}

dy =

∫ 1

0

{

3y2 − 3y2 + y − 2y2 + y3
}

dy

=

∫ 1

0

(

y + y2 − 2y3
)

dy =
1

2
+

1

3
− 2 · 1

4
=

1

3
.
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MAPLE. We get by the commands with(Student[MultivariateCalculus]):

MultiInt
(

3y2 + 2x · y, x = 0..1− y, y = 0..1
)

1

3

Example 20.11 Let B be the rectangle [0, 2π]×
[

5

4
,
5

3

]

. Reduce the plane integral

∫

B

1

y + sinx
dS

in two ways, and then show the formula

∫ 2π

0

ln

(

5 + 3 sinx

5 + 4 sinx

)

dx = 2π ln

(

9

8

)

.

A Plane integral.

D Reduce the plane integral in two different ways as double integrals, and then just compute.

I First note that the domain of integration is given by

y + sinx > 0 and y ≥ 5

4
> 1.
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Then we reduce the plane integral in two different ways as double integrals,

�

B

1

y + sinx
dS =

� 2π

0

�

� 5
3

5
4

1

y + sinx
dy

�

dx =

� 5
3

5
4

�� 2π

0

1

y + sinx
dx

�

dy.

When we use that sinx is periodic, and then introduce the substitution t = tan
x

2
, we get

� 5
3

5
4

�� 2π

0

1

y + sinx
dx

�

dy =

� 5
3

5
4

�� π

−π

1

y + sinx
dx

�

dy

=

� 5
3

5
4

�

� π

−π

1

ysin2 x
2 + 2 sin x

2 cos x
2 + y cos2 x

2

dx

�

dy

= 2

� 5
3

5
4

�� +∞

−∞

1

yt2+2y + y
dt

�

dy = 2

� 5
3

5
4

1

y

�

� +∞

−∞

1

u2+ 2
y + 1

du

�

dy

= 2

� 5
3

5
4

1

y



















� +∞

−∞

1
�

u+
1

y

�2

+1− 1

y2

du



















dy

= 2

� 5
3

5
4

1

y

1
�

1− 1

y2









Arctan









u+
1

y
�

1− 1

y2

















+∞

u=−∞

dy = 2π

� 5
3

5
4

1
�

y2 − 1
dy

= 2π
�

ln
�

y +
�

y2 − 1
��

5
3

5
4

= 2π







ln





5

3
+

�

�

5

3

�2

− 1



− ln





5

4
+

�

�

5

4

�2

− 1











= 2π

�

ln

�

5

3
+

4

3

�

− ln

�

5

4
+

3

4

��

= 2π{ln 3− ln 2} = 2π ln

�

3

2

�

.

On the other hand,

� 2π

0

�

� 5
3

5
4

1

y + sinx
dy

�

dx =

� 2π

0

[ln(y + sinx)]
5
3

y= 5
4

dx =

� 2π

0

ln

� 5
3 + sinx
5
4 + sinx

�

dx

=

� 2π

0

�

ln

�

4

3

�

+ ln

�

5 + 3 sinx

5 + 4 sinx

��

dx = 2π ln

�

4

3

�

+

� 2π

0

ln

�

5 + 3 sinx

5 + 4 sinx

�

dx.

As a conclusion we get

�

B

1

y + sinx
dS = 2π ln

�

4

3

�

+

� 2π

0

ln

�

5 + 3 sinx

5 + 4 sinx

�

dx = 2π ln

�

3

2

�

.

Finally, by a rearrangement

� 2π

0

ln

�

5 + 3 sinx

5 + 4 sinx

�

dx = 2π

�

ln

�

3

2

�

− ln

�

4

3

��

= 2π ln

�

9

8

�

,

as required.
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MAPLE. One should note that the order of integration is also of importance in MAPLE. We get
by the commands with(Student[MultivariateCalculus]):

MultiInt

�

1

y + sin(x)
, y =

5

4
..
5

3
, x = 0..2π

�

−2π ln(2) + 2 ln(3)π − 2Iπarctan

�

1

3

�

+ 2Iπ arctan

�

1

2

�

+ 2Iπ arctan(2)− 2Iπ arctan(3)

while

MultiInt

�

1

y + sin(x)
, x = 0..2π, y =

5

4
..
5

3

�

gives the correct answer, which was also found above,

2 ln(3)π − 2π ln(2)

Example 20.12 The unit square E = [0, 1] × [0, 1] is divided by the straight line of equation y = x
into two triangles: T1 given by y ≤ x, and T2 given by y > x. We define a function f : E → R in the
following way:

f(x, y) =







x2 + 2y, (x, y) ∈ T1,

1 + 3y2, (x, y) ∈ T2.

Compute the plane integral
�

E f(x, y) dS.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

–0.2 0.2 0.4 0.6 0.8 1 1.2

x

Figure 20.22: The triangle T1 has an edge along the X-axis, and the triangle T2 has an edge along
the Y -axis.

A Plane integral.

D Reduce over each of the sets T1 and T2. The plane integral can be reduced to double integrals in
2× 2 = 4 different ways, of which we only show one.
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I From

T1 = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ x}
T2 = {(x, y) | 0 ≤ y ≤ 1, 0 ≤ x ≤ y},

follows (note the two different successions of the order of integration)

∫

E

f(x, y) dS =

∫

T1

f(x, y) dS +

∫

T2

f(x, y) dS

=

∫ 1

0

{∫ x

0

(x2 + 2y) dy

}

dx+

∫ 1

0

{∫ y

0

(1 + 3y2) dx

}

dy

=

∫ 1

0

[

x2y + y2
]x

y=0
dx+

∫ 1

0

[

x+ 3y2x
]y

x=0
dy

=

∫ 1

0

(x3 + x2) dx+

∫ 1

0

(y + 3y3) dy

=

∫ 1

0

(4t3 + t2 + t) dt =

[

t4 +
1

3
t3 +

1

2
t2
]1

0

= 1 +
1

3
+

1

2
=

11

6
.

MAPLE. We get by the commands with(Student[MultivariateCalculus]):

MultiInt
(

x2 + 2y, y = 0..x, x = 0..1
)

+MultiInt
(

1 + 3y2, x = 0..y, y = 0..1
)

11

6

Example 20.13 Let D be the set which is bounded by the curve y = ex, and the line x = 1, and the
coordinate axes. Sketch D, and compute the plane integral

∫

D

1

(1 + y)2 coshx
dS.

A Plane integral in rectangular coordinates.

D Sketch the domain and apply the theorem of reduction.

I When we reduce the plane integral, introduce the substitution u = ex, and apply a decomposition,
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0

0.5

1

1.5

2

2.5

3

y

0.2 0.4 0.6 0.8 1 1.2 1.4

x

we get

∫

D

1

(1 + y)2 coshx
dS =

∫ 1

0

1

coshx

{

∫ ex

0

1

(1 + y)2
dy

}

dx =

∫ 1

0

2ex

e2x + 1

[

− 1

1 + y

]ex

y=0

dx

=

∫ 1

0

{

2ex

e2x + 1
− 2ex

e2x + 1
· 1

ex + 1

}

dx =

∫ e

1

{

2

u2 + 1
− 2

(u2 + 1)(u+ 1)

}

du

=

∫ e

1

{

2

u2 + 1
− 1

u+ 1
− 2

(u2 + 1)(u+ 1)
+

1

u+ 1

}

du

=

∫ e

1

{

2

u2 + 1
− 1

u+ 1
+

u2 + 1− 2

(u2 + 1)(u+ 1)

}

du

=

∫ e

1

{

2

u2 + 1
− 1

u+ 1
+

u

u2 + 1
− 1

u2 + 1

}

du

=

∫ e

1

{

1

u2 + 1
+

u

u2 + 1
− 1

u+ 1

}

du =

[

Arctan u+
1

2
ln(u2 + 1)− 1

2
ln(u+ 1)

]e

1

= Arctan e− π

4
+

1

2
ln

(

e2 + 1

(e+ 1)2

)

− 1

2
ln

(

1 + 1

(1 + 1)2

)

= Arctan e− π

4
− 1

2
ln
(

e2 + 1
)

+
1

2
ln 2,

where we also can obtain the equivalent results

∫

D

1

(1 + y)2 coshx
dS = Arctan e− π

4
+

1

2
ln

(

2(e2 + 1)

(e+ 1)2

)

= Arctan e− π

4
+ ln

(

cosh 1

cosh2 1
2

)

= Arctan e− π

4
+ ln

(

2 cosh1

1 + cosh 1

)

.
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MAPLE. We get by the commands with(Student[MultivariateCalculus]):

MultiInt

(

1

(1 + y)2 · cosh(x) , y = 0..ex, x = 0..1

)

1

2
ln(2) +

1

2

(

e−1 + e
)

− ln
(

e−
1
2 + e

1
2

)

− arctan

(

e−
1
2 − e

1
2

e−
1
2 + e

1
2

)

which then should be reduced further.
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Example 20.14 The function f : R+ × R+ → R is given by

f(x, y) =
x2 − y2

(x2 + y2)2
.

Note that the domain of the function is the open first quadrant. By the computations of integrals we
shall whenever necessary use a continuous extension to the axes.

1) Compute the double integrals

I1 =

∫ 1

0

{∫ 1

0

f(x, y) dy

}

dx and I2 =

∫ 1

0

{∫ 1

0

f(x, y) dx

}

dy.

2) It follows from 1) that I1 �= I2. Make a comment on this result by considering the plane integral
of the function f over the unit square [0, 1]× [0, 1].

A Double integrals.

D Compute I1, and apply that I2 = −I1 by an argument of symmetry.

I 1) We get when x �= 0,

∫ 1

0

f(x, y) dy =

∫ 1

0

x2 − y2

(x2 + y2)2
dy =

∫ 1

0

d

dy

(

y

x2 + y2

)

dy =
1

1 + x2
,

so

I1 =

∫ 1

0

{∫ 1

0

f(x, y) dy

}

dx =

∫ 1

0

1

1 + x2
dx = Arctan 1 =

π

4
.

From f(y, x) = −f(x, y) follows by interchanging the letters and by a small argument of
symmetry that

I2 =

∫ 1

0

{∫ 1

0

f(x, y) dx

}

dy =

∫ 1

0

{∫ 1

0

f(y, x) dy

}

dx

= −
∫ 1

0

{∫ 1

0

f(x, y) dy

}

= −I1 = −π

4
�= I1.

2) The plane integral
∫

[0,1]2 f(x, y) dxdy is improper at (0, 0), and it is not convergent. If e.g.

D =

{

(x, y) ∈ [0, 1]2
∣

∣

∣

∣

y <
1

2
x

}

,

then
∫

D

x2 − y2

(x2 + y2)2
dxdy ≥

∫

D

x2 − 1
4 x

2

(x2 + 1
4 x

2)2
dxdy

=

∫ 1

0

3
4 x

2

(54 )
2x4

· 1
2
xdx =

3

4
· 4

2

52
· 1
2

∫ 1

0

1

x
dx = +∞,

and D ⊂ [0, 1]× [0, 1].
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Clearly, MAPLE does not like these integrals. Nothing happens, when we use the commands

with(Student[MultivariateCalculus]):

MultiInt

(

x2 − y2

(x2 + y2)2
, y = 0..1, x = 0..1

)

Not even a message from MAPLE. It just carried on computing, so the author had to stop the
operation.

Example 20.15 Find the domain B for

f(x, y) =
√

1− x2 − y2 +
√

x2y.

Then find the range f(B) and the plane integral
∫

B

f(x, y) dS.

A Domain, range and plane integral.

D Use the standard methods. When we calculate the plane integral we neglect the zero set.

–1

–0.5

0

0.5

1

y

–1 –0.5 0.5 1

x

Figure 20.23: The domain B. Note the interval on the negative Y -axis.

I The function is defined and continuous when x2 + y2 ≤ 1 and x2y ≥ 0. From the first condition
follows that B is contained in the closed unit disc. From the second condition follows that if x �= 0,
then y ≥ 0; however, if x = 0, then x2y = 0 for every y, so the latter term is defined in union of
the closed upper half plane and the y-axis.

The domain is the intersection of these closed domains, i.e. union of the closed half disc in the
upper half plane and the interval [−1, 0] on the y-axis, cf. the figure.

Since f is continuous in B, and B is closed and bounded and connected, then f has a maximum
value S and a minimum value M in B (second main theorem), and by the first main theorem the
range is connected, so f(B) = [M,S].

We shall search the maximum and the minimum among:
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1) the interior points, where f is not differentiable (the exceptional points: x = 0 and 0 < y < 1),

2) the interior stationary points (i.e. inside the set x2 + y2 < 1, y > 0, x �= 0),

3) the boundary points.

1) The restriction of f to x = 0 and y ∈ ]0, 1[ is

ϕ(y) =
�

1− y2, y ∈ ]0, 1[.

This function is decreasing and of the range ]0, 1[, so it has neither a minimum value nor a
maximum value.

2) If (x, y) is a stationary point in the open quarter disc in the first quadrant, then (−x, y) is
clearly a stationary point in the open quarter disc in the second quadrant, and vice versa.
Now, f only contains x in the form x2, so the value is the same, f(x, y) = f(−x, y). It will
therefore suffice to consider the quarter disc

{(x, y) | x > 0, y > 0, x2 + y2 < 1}
in the first quadrant. We have in this subdomain,

f(x, y) =
�

1− x2 − y2 + x
√
y.

The equations of possible stationary points are here














∂f

∂x
= − x

�

1− x2 − y2
+
√
y = 0,

∂f

∂y
= − y

�

1− x2 − y2
+

1

2

x√
y
= 0,

and it follows from x > 0 and y > 0 that

xy
�

1− x2 − y2
= y

√
y =

1

2

x2

√
y
.

Hence y2 =
1

2
x2, so y = +

1√
2
x. Then

y =
1√
2
x =

x2

1− x2 − y2
=

x2

1− 3
2 x

2
,

hence by a rearrangement,

x2 + 2

√
2

3
x− 2

3
= 0.

The solutions are x = −
√
2 (must be rejected because we are only considering points of the unit

disc in the first quadrant) and x =

√
2

3
, corresponding to y =

1√
2
x =

1

3
. Clearly,

�√
2

3
,
1

3

�

is an inner point of the domain, so it is a stationary point. Then by the above,

�

−
√
2

3
,
1

3

�

is

also a stationary point, and these two points are the only stationary points. The value of the
functions is here

f

�

±
√
2

3
,
1

3

�

=

�

1− 2

9
− 1

9
+

√
2

3

�

1

3
=

�

2

3
+

1

3

�

2

3
=

4

3

�

2

3
.
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3) The examination of the boundary is split into

a) The circular arc, x2 + y2 = 1, x ∈ [−1, 1], y ∈ [0, 1].

b) The line segment on the X-axis, y = 0, x ∈ [−1, 1].

c) The line segment on the Y -axis, x = 0, y ∈ [−1, 0].

a) Since f(−x, y) = f(x, y), it suffices to consider the quarter circular arc x2 = 1− y2, x ≥ 0,
y ≥ 0. The restriction of f becomes

ϕ(y) =
√

(1− y2)y =
√

y − y3, y ∈ [0, 1].

Since ϕ and Φ(y) = ϕ(y)2 = y− y3 attain their maximum value and minimum value at the
same points we compute

Φ′(y) = 1− 3y2, hence Φ′(y) = 0 for y =
1√
3
.

Correspondingly, x = ±
√

2

3
, and

f

(

±
√

2

3
,

√

1

3

)

=

√

2

3
· 1√

3
=

1

3

√

2
√
3.

At the end points

[f(−1, 0) =] f(1, 0) = 0 and f(0, 1) = 0.
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b) When y = 0 and x ∈ [−1, 1], the restriction of f is given by

f(x, 0) =
√

1− x2, x ∈ [−1, 1],

which clearly has its maximum value f(0, 0) = 1 and its minimum value f(−1, 0) = f(1, 0) =
0.

c) When x = 0 and y ∈ [−1, 0], we get

f(0, y) =
√

1− y2, y ∈ [−1, 0],

with the maximum value f(0, 0) = 1 and the minimum value f(0, 1) = 0.

It follows by a numerical comparison that the minimum value is attained at the boundary points

M = f(1, 0) = f(0, 1) = f(−1, 0) = f(+,−1) = 0,

and the maximum value is attained at the stationary points,

S = f

(√
2

3
,
1

3

)

= f

(

−
√
2

3
,
1

2

)

=
4
√
2

3
√
3
.

According to the first main theorem for continuous functions the range of the function is connected,
thus

f(B) = [M,S] =

[

0,
4
√
2

3
√
3

]

.

We shall finally compute a plane integral. Since f(x, y) is continuous on B, and the interval on
the Y -axis in the lower half plane is a null set, the integral is zero over this part.

Let B̃ denote the closed half disc in the upper half plane. Then we get by reduction in polar
coordinates

∫

B

f(x, y) dS =

∫

B̃

{

√

1− x2 − y2 +
√

x2y
}

dS

=

∫ π

0

{∫ 1

0

(

√

1− ̺2 +
√

̺2cos2 ϕ · ̺ sinϕ
)

̺ d̺

}

dϕ

=
π

2

∫ 1

0

(

1− ̺2
)

1
2 2̺ d̺+ 2

∫ π
2

0

| cosϕ|
√

sinϕdϕ ·
∫ 1

0

̺
5
2 d̺

=
π

2

[

−2

3

(

1− ̺2
)

3
2

]1

0

+ 2

[

2

3
(sinϕ)

3
2

]
π
2

ϕ=0

·
[

2

7
̺

7
2

]1

̺=0

=
π

2
· 2
3
+ 2 · 2

3
· 2
7
=

π

3
+

8

21
.

MAPLE. We get by the commands

with(Student[MultivariateCalculus]):

MultiInt
((

√

1− r2 +
√

r2 · cos(t)2 · r · sin(t)
)

r, r = 0..1, t = 0..π
)

1

3
π +

8

21
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Example 20.16 Calculate the plane integral

∫

B

3xy dxdy,

where B is the closed set in the first quadrant, which is bounded by the parabola of the equation
y = 4− 4x2 and the coordinate axes.

A Plane integral.

D Sketch the domain and compute the plane integral.

1

2

3

4

–0.2 0.20.40.60.8 1 1.2

x

Figure 20.24: The domain of integration B.

I We get immediately,

∫

B

3xy dy dx = 3

∫ 1

0

x

{

∫ 4−4x2

0

y dy

}

dx =
3

2

∫ 1

0

x
(

4− 4x2
)2

dx

=
3

2
· 16 · 1

2

∫ 1

0

(1− t)2 dt = 12

∫ 1

0

u2 du = 4.

MAPLE. We get by the commands

with(Student[MultivariateCalculus]):

MultiInt
(

3x · y, y = 0..4− 4x2, x = 0..1
)

4
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Example 20.17 Let B denote the bounded set in the (X,Y )-plane, which is bounded by the line y = x
and the parabola y = x2. Compute the plane integral

∫

B

x2y dxdy.

A Plane integral.

D First sketch B.

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

x

Figure 20.25: The domain B.

I Since

B
{

(x, y) | 0 ≤ x ≤ 1, x2 ≤ y ≤ x
}

,

the plane integral is reduced to

∫

B

x2y dxdy =

∫ 1

0

x2

{∫ x

x2

y dy

}

dx =
1

2

∫ 1

0

x2
[

y2
]x

x2 dx =
1

2

∫ 1

0

(

x4 − x6
)

dx =
1

2

(

1

5
− 1

7

)

=
1

35
.

MAPLE. We get by the commands

with(Student[MultivariateCalculus]):

MultiInt
(

x2 · y, y = x2..x, x = 0..1
)

1

35
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Example 20.18 Let the set B be given by the inequalities

x ≥ 0, y ≥ 0,
x

a
+

y

h
≤ 1.

where a and h are positive constants. Sketch B, and then compute the plane integral

J =

∫

B

x3y dS.

A Plane integral.

D Follow the guidelines and apply one of the theorems of reduction.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

0.5 1 1.5 2

x

Figure 20.26: The domain B when a = 2 and h = 1.

I Since the integrand contains y of lower exponent than x, it will be easier first (i.e. innermost) to
integrate vertically with respect to y, i.e. for fixed x,

0 ≤ y ≤ h
(

1− x

a

)

, 0 ≤ x ≤ a.

Then by means of the theorem of reduction in rectangular coordinates,

J =

∫

B

x3y dS =

∫ a

0

x3

(

∫ h(1− x
a
)

0

y dy

)

=

∫ a

0

x3 · h
2

2

(

1− x

a

)2

dx

=
h2

2

∫ a

0

x3

(

1− 2

a
x+

1

a2
x2

)

dx =
h2

2

∫ a

0

(

x3 − 2

a
x4 +

1

a2
x5

)

dx

=
h2

2

[

x4

4
− 2

5a
x5 +

1

6a2
x6

]a

0

=
h2

2

(

a2

4
− 2

5
a4 +

1

6
a4
)

=
h2a4

2

(

1

4
− 2

5
+

1

6

)

=
h2a4

2
· 15− 24 + 10

60
=

1

120
h2a4.

If we alternatively first integrate horizontally with respect to x, i.e.

0 ≤ x ≤ a
(

1− y

h

)

, 0 ≤ y ≤ h,
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then we get by another theorem of reduction in rectangular coordinates, where we apply the

substitution t = 1− y

h
, y = h(1− t) and dy = −h dt,

J =

∫

B

x3y dS =

∫ h

0

y

(

∫ a(1− y
h
)

0

x3 dx

)

dy =

∫ h

0

y · a
4

4
·
(

1− y

h

)4

dy

=

∫ 1

0

a4

4
· h(1 − t) · t4 · h dt = a4h2

4

∫ 1

0

(

t4 − t5
)

dt =
a4h2

4

(

1

5
− 1

6

)

=
1

120
a4h2.

MAPLE. Here MAPLE is in trouble. We get by the commands
with(Student[MultivariateCalculus]):

MultiInt
(

x3 · y, y = 0..h
(

1− x

a

)

, x = 0..a
)

∫ a

0

1

2
x3h

(

1− x

a

)2

dx
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Example 20.19 In each of the following cases a plane integral of a continuous function f : B → R

is written as a double integral. Sketch in each case the set B, and set up the double integral, or the
sum of double integrals, which occur by interchanging the order or integration.

1)
∫ 1

0

{∫ x

x2 f(x, y) dy
}

dx.

2)
∫ e

1

{

∫ ln x

0 f(x, y) dy
}

dx.

3)
∫ 2

1

{

∫

√
2x−x2

2−x
f(x, y) dy

}

dx.

4)
∫ 2

0

{

∫ 0

−
√
2x−x2 f(x, y) dy

}

dx.

5)
∫ 3

0

{

∫

√
25−y2

4y
3

f(x, y) dx

}

dy.

6)
∫ 2

−6

{

∫ 1−y
y2−4

4

f(x, y) dx

}

dy.

7)
∫ 1

0

{

∫ 1−y

−
√

1−y2
f(x, y) dx

}

dy.

8)
∫ 3

0

{

∫

√
25−y2

0
f(x, y) dx

}

dy.

A Interchange of the order of integrations in double integrals.

D Sketch the set B and set up the double integral in the reverse order. Note that a nice description
in one case does not imply a nice description in the reverse order.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

–0.2 0.2 0.4 0.6 0.8 1 1.2

x

Figure 20.27: The domain B of Example 20.19.1.

I 1) The domain is given by

B = {(x, y) | 0 ≤ x ≤ 1, x2 ≤ y ≤ x} = {(x, y) | 0 ≤ y ≤ 1, y ≤ x ≤ √
y}.

In fact, it follows from the inner integral that x2 ≤ y ≤ x, from which it is easy to derive

y ≤ x ≤ √
y.
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By interchanging the order of integration we get

∫ 1

0

{∫ x

x2

f(x, y) dy

}

dx =

∫ 1

0

{

∫

√
y

y

f(x, y) dx

}

dy.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

0.5 1 1.5 2 2.5 3

x

Figure 20.28: The domain B of Example 20.19.2.

2) The domain is found in the same way as in Example 20.19.1. It is given by

B = {(x, y) | 1 ≤ x ≤ e, 0 ≤ y ≤ lnx} = {(x, y) | 0 ≤ y ≤ 1, ey ≤ x ≤ e},
hence by interchanging the order of integration,

∫ e

1

{

∫ lnx

0

f(x, y) dy

}

dx =

∫ 1

0

{∫

ey
f(x, y) dx

}

dy.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

0.5 1 1.5 2

x

Figure 20.29: The domain B of Example 20.19.3.

3) This domain is bounded by the circle (x− 1)2 + y2 = 1 and the straight line y = 2− x, hence

B = {(x, y) | 1 ≤ x ≤ 2, 2− x ≤ y ≤
√

2x− x2}
= {(x, y) | 0 ≤ y ≤ 1, 2− y ≤ x ≤ 1 +

√

1− y2}.
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When we interchange the order of integration we get

∫ 2

1

{

∫

√
2x−x2

2−x

f(x, y) dy

}

dx =

∫ 1

0

{

∫ 1+
√

1−y2

2−y

f(x, y) dx

}

dy.

–1

–0.5

0.5

1

y

0.5 1 1.5 2
x

Figure 20.30: The domain B of Example 20.19.4.

4) The domain is that part of the disc (x− 1)2 + y2 ≤ 1 of centrum(1, 0) and radius 1, which lies
in the fourth quadrant, thus below the X-axis, so

B = {(x, y) | 0 ≤ x ≤ 2, −
√

2x− x2 ≤ y ≤ 0}
= {(x, y) | −1 ≤ y ≤ 0, 1−

√

1− y2 ≤ x ≤ 1 +
√

1− y2}.
When we interchange the order of integration we get

∫ 2

0

{∫ 0

−
√
2x−x2

f(x, y) dy

}

dx =

∫ 0

−1

{

∫ 1+
√

1−y2

1−
√

1−y2

f(x, y) dx

}

dy.

0.5

1

1.5

2

2.5

3

y

1 2 3 4 5

x

Figure 20.31: The domain B of Example 20.19.5.
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5) The domain is bounded by the circle x2 + y2 = 52 and the lines y = 0 and y =
3

4
x. By the

alternative description we must cut the domain by the dotted line x = 4. Then we get the two
possible descriptions:

B =

{

(x, y)

∣

∣

∣

∣

0 ≤ y ≤ 3,
4y

3
≤ x ≤

√

25− y2
}

=

{

(x, y)

∣

∣

∣

∣

0 ≤ x ≤ 4, 0 ≤ y ≤ 3x

4

}

∪ {(x, y) | 4 ≤ x ≤ 5, 0 ≤ y ≤
√

25− x2}.

When we interchange the order of integration we obtain the following complicated expression

∫ 3

0

{

∫

√
25−y2

4y
3

f(x, y) dx

}

dy =

∫ 4

0

{

∫ 3x
4

0

f(x, y) dy

}

dx+

∫ 5

4

{

∫

√
25−x2

0

f(x, y) dy

}

dx.

In this case we get the sum of two double integrals by interchanging the order of integration.

Remark. It follows from the form of the domain that it would be far more reasonable here to
use polar coordinates, because B in these is described by

B =

{

(̺, ϕ) | 0 ≤ ̺ ≤ 5, 0 ≤ ϕ ≤ Arctan
3

4

}

,

and the integral is transformed into

∫ Arctan 3
4

0

{∫ 5

0

f̃(̺, ϕ)̺ d̺

}

dϕ. ♦
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–6

–4

–2

2

y

2 4 6 8
x

Figure 20.32: The domain B of Example 20.19.6.

6) By inspection of the integral we see that the domain is given by

B =

{

(x, y)

∣

∣

∣

∣

−6 ≤ y ≤ 2,
y2 − 4

4
≤ x ≤ 2− y

}

.

It follows from the inequality
y2 − 4

4
≤ x that y2 ≤ 4(x+1), and likewise we get from x ≤ 2−y

that y ≤ 2 − x. Whenever the square root occurs (here by |y| ≤ 2
√
x+ 1), we must be very

careful! The figure shows that we have to split by the line x = 0, so B is written as a union of
two sets which do not have the same structure,

B = {(x, y) | −1 ≤ x ≤ 0, −2
√
x+ 1 ≤ y ≤ 2

√
x+ 1}

∪{(x, y) | 0 ≤ x ≤ 8, −2
√
x+ 1 ≤ y ≤ 2− x}.

When we interchange the order of the integration we get a sum of two double integrals,

∫ 2

−6

{

∫ 2−y

y2−4
4

f(x, y) dx

}

dy =

∫ 0

−1

{

∫ 2
√
x+1

−2
√
x+1

f(x, y) dy

}

dx+

∫ 8

0

{∫ 2−x

−2
√
x+1

f(x, y) dy

}

dx.

0.2

0.4

0.6

0.8

1

1.2

y

–1 –0.5 0 0.5 1

x

Figure 20.33: The domain B of Example 20.19.7.
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7) The domain is bounded by the unit circle in the second quadrant, by the X-axis and by the
line y + x = 1. It is natural to split in the two subdomains along the Y -axis, thus

B = {(x, y) | 0 ≤ y ≤ 1, −
√

1− y2 ≤ x ≤ 1− y}
= {(x, y) | −1 ≤ x ≤ 0, 0 ≤ y ≤

√

1− x2}∪ <, {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x}.
Then by interchanging the order of integration,

∫ 1

0

{

∫ 1−y

−
√

1−y2

f(x, y) dx

}

dy =

∫ 0

−1

{

∫

√
1−x2

0

f(x, y) dy

}

dx+

∫ 1

0

{∫ 1−x

0

f(x, y) dy

}

dx.

0.5

1

1.5

2

2.5

3

y

1 2 3 4 5

x

Figure 20.34: The domain B of Example 20.19.8.

8) The domain is described by

B = {(x, y) | 0 ≤ x ≤
√

25− y2, 0 ≤ y ≤ 3},

thus B is that part of the quarter disc in the first quadrant of centrum (0, 2, ) and radius 5,
which also lies below the line y = 3. When we interchange the coordinates we must cut the
domain by the line x = 4. Then B is written as the union of the two sets,

B = {(x, y) | 0 ≤ y ≤
√

25− x2, 4 ≤ x ≤ 5} ∪ {(x, y) | 0 ≤ x ≤ 4, 0 ≤ y ≤ 3}.

Then by interchanging the order of integration,

∫ 3

0

{

∫

√
25−y2

0

f(x, y) dx

}

dy =

∫ 4

0

{∫ 3

0

f(x, y) dy

}

dx+

∫ 5

4

{

∫

√
25−x2

0

f(x, y) dy

}

dx.

932

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume VI 
Antiderivatives and Plane Integrals

933 

Integration in the plane

Example 20.20 Sketch the point sets

B = {(x, y) | 0 ≤ x ≤ 2, 0 ≤ y ≤ 2, xy ≥ 2}

and

D = {(x, y) | 1 ≤ x, 1 ≤ y, xy ≤ 2}.

Then compute the plane integrals

∫

B

1

xy
dS and

∫

D

1

xy
dS.

A and D Sketch of a domain; computation of a plane integral.

0

0.5

1

1.5

2

y

0.5 1 1.5 2

x

Figure 20.35: The domain B.

0

0.5

1

1.5

2

y

0.5 1 1.5 2

x

Figure 20.36: The domain D.

I The domains are sketched on the two figures. We see that

B ∪D = [1, 2]× [1, 2],
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which may be exploited in one of the variants, because B and D have just one boundary curve in
common and are otherwise disjoint; cf. the alternative below.

From

B =

{

(x, y)

∣

∣

∣

∣

1 ≤ x ≤ 2,
2

x
≤ y ≤ 2

}

,

follows that

∫

B

1

xy
dS =

∫ 2

1

{

∫ 2

2
x

1

xy
dy

}

dx =

∫ 2

1

1

x
[ln y]22

x
dx =

∫ 2

1

1

x
lnx dx =

1

2
(ln 2)2.

MAPLE. We get by the commands

with(Student[MultivariateCalculus]):

MultiInt

(

1

x · y , y =
2

x
..2, x = 1..2

)

1

2
ln(2)2

934
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From

D =

{

(x, y)

∣

∣

∣

∣

1 ≤ x ≤ 2, 1 ≤ y ≤ 2

x

}

,

we get analogously

∫

D

1

xy
dS =

∫ 2

1

{

∫ 2
x

1

1

xy
dy

}

dx =

∫ 2

1

1

x
[ln y]

2
x

1 dx

=

∫ 2

1

1

x
{ln 2− lnx} dx =

[

ln 2 · lnx− 1

2
(ln x)2

]2

1

= (ln 2)2 − 1

2
(ln 2)2 =

1

2
(ln 2)2.

Alternatively,

∫

B∪D

1

xy
dS =

∫ 2

1

dx

x
·
∫ 2

1

dy

y
= (ln 2)2 =

∫

B

1

xy
dS +

∫

D

1

xy
dS =

1

2
(ln 2)2 +

∫

D

1

xy
dS,

hence
∫

D

1

xy
dS = (ln 2)2 − 1

2
(ln 2)2 =

1

2
(ln 2)2.

Example 20.21 Let the point set B be given by

B =

{

(x, y) ∈ R2

∣

∣

∣

∣

0 ≤ x ≤ π

4
, x ≤ y ≤ 1

cosx

}

.

Find the value of the plane integral
∫

B

y dS.

A Plane integral.

D Sketch the domain B and reduce to a double integral.

I By the reduction to a double integral we get

∫

B

y dS =

∫ π
4

0

{

∫ 1/ cosx

x

y dy

}

dx =

∫ π
4

0

[

1

2
y2
]1/ cos x

x

dx =
1

2

∫ π
4

0

{

1

cos2 x
− x2

}

dx

=
1

2

[

tanx− 1

3
x3

]
π
4

0

=
1

2

{

1− 1

3
· π

3

64

}

=
1

2
− π3

384
.

MAPLE. We get by the commands
with(Student[MultivariateCalculus]):

MultiInt

(

y, y = x..
1

cos(x)
, x = 0..

π

4

)

− π3

384
+

1

2
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0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2 0.4 0.6 0.8

Figure 20.37: The domain B.

20.5 The plane integral in polar coordinates

Some point sets in R2 are more conveniently described in polar coordinates that in rectangular coor-
dinates, where the transformation formula is

x = ̺ cosϕ and y = ̺ sinϕ,

and ̺ =
√

x2 + y2, while the angle can be more difficult to specify. We note that

tanϕ =
y

x
, if x �= 0, and cotϕ =

x

y
, if y �= 0.

When (x, y) = (0, 0), then ̺ = 0, and ϕ is unspecified. Referring to Figure 20.38 we see that if ̺ > 0,

Figure 20.38: Analysis of the area element in polar coordinates.

and ∆̺ and ∆ϕ are small, then the area element is almost a rectangle (not likely on Figure 20.38) of
area ̺∆ϕ ·∆̺ = ̺∆̺ ·∆ϕ, so in the limit dxdy should be expected to be replaced by ̺ d̺ dϕ. This
is actually true, though we shall not go into details of the proof of this claim. Then we quote, also
without proof.
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Theorem 20.2 Reduction theorem of a plane integral in polar coordinates. Let B ⊆ R2 be a closed
and bounded set, and let f : B → R be a continuous function.

1) Assume that B is described in polar coordinates by

B = {(̺, ϕ) | α ≤ ϕ ≤ β, P1(ϕ) ≤ ̺ ≤ P2(ϕ)} ,
where

P1, P2 ∈ C0([α, β]) and 0 ≤ P1(ϕ) < P2(ϕ) for ϕ ∈ ]α, β[, β − α ≤ 2π.

Then the plane integral of f over B is reduced to a double integral in the following way,

∫

B

f(x, y) dS =

∫ β

α

{

∫ P2(ϕ)

P1(ϕ)

f(̺cosϕ, ̺sinϕ)̺ d̺

}

dϕ.

2) Assume that B is described in polar coordinates by

B = {(̺, ϕ) | a ≤ ̺ ≤ b, Φ1(̺) ≤ ϕ ≤ Φ2(ϕ)} ,
where

Φ1, Φ2 ∈ C0([a, b]), a ≥ 0 and 0 ≤ Φ1(̺) < Φ2(̺) ≤ 2π for ̺ ∈ ]a, b[.

Then the plane integral of f over B is reduced to a double integral in the following way,

∫

B

f(x, y) dS =

∫ b

a

{

∫ Φ2(̺)

Φ1(̺)

f(̺ cosϕ, ̺ sinϕ) dϕ

}

̺ d̺.

Figure 20.39: Examples of domains B in Theorem 20.2 of type 1) to the left, and of type 2) to the
right.

A reduction in polar coordinates is in particular easy to perform, when both the domain B and the
integrand have simpler descriptions in polar coordinates than in rectangular coordinates.

If, however, the integrand is better described in polar coordinates, and the domain in rectangular
coordinates, or vice versa, then we may expect some hard calculations.
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Example 20.22 A classical application is the calculation of the value of the Gaussian integral,

I =

∫ +∞

−∞
exp

(

−x2
)

dx.

The domain R is unbounded, but the integrand is > 0 everywhere, so if the integral was divergent
(it is not!), then we could see this by getting the value +∞. The trick is to compute I2 as a plane
integral, first in rectangular coordinates, and then we switch to polar coordinates. This is done in the
following way,

I2 =

∫ +∞

−∞
exp

(

−x2
)

dx ·
∫ +∞

−∞
exp

(

−y2
)

dy =

∫ ∫

R2

exp
(

−
(

x2 + y2
))

dxdy

=

∫ ∫

R+×[0,2π]

exp
(

−̺2
)

̺ d̺ dϕ = 2π

∫ +∞

0

exp
(

−̺2
)

̺ d̺ = π
[

− exp
(

−̺2
)]+∞

0
= π,

because ϕ ∈ [0, 2π] does not enter the integrand, and because ̺ =
√

x2 + y2 ≥ 0. By taking the
square root we finally get

I =

∫ +∞

−∞
exp

(

−x2
)

dx =
√
π. ♦
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Integration in the plane

Example 20.23 A. Compute the plane integral

I =

∫

B

(x2 + y2) dS,

where B in polar coordinates is described by the parameter domain

A =
{

(̺, ϕ)
∣

∣

∣ a ≤ ̺ ≤ 2a,
̺

2a
≤ ϕ ≤ ϕ

a

}

.

Note that B has a curved form in the (x, y) plane, while the parameter domain A in the (̺, ϕ)
plane is “straightened out”, so we can use the rectangular version in the (̺, ϕ) plane. The price of
obtaining this convenience is that we must add the weight function ̺ as a factor in the integrand.

0

0.5

1

1.5

2

y

–1 –0.5 0.5 1 1.5

x

Figure 20.40: The domain B in the (x, y) plane.
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0.5

1

1.5

2

y

0.5 1 1.5 2

x

Figure 20.41: The parameter domain A in the (̺, ϕ) plane.

D. Set up the reduction formula in its second version, i.e. with the inner ϕ integral. This means that
we start with a vertical integration in the parameter domain!
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Integration in the plane

I. When we use the reduction formula in its second version, where we multiply the integrand by the
weight function ̺, we get the calculation,

∫

B

(x2 + y2) dS =

∫ 2a

a

{

∫
̺
a

̺
2a

̺2 dϕ

}

̺ d̺ =

∫ 2a

a

̺3

{

∫
̺
a

̺
2a

dϕ

}

d̺.

The value of the inner integral is then calculated,

∫
̺
a

̺
2a

dϕ =
̺

a
− ̺

2a
=

̺

2a
,

which is the length of the ϕ interval.

Then by insertion,

∫

B

(x2 + y2) dS =

∫ 2a

a

̺3 · ̺

2a
d̺ =

1

2a

∫ 2a

a

̺4 d̺ =
1

2a

[

1

5
̺5
]2a

1

=
1

10a

{

(2a)5 − a5
}

=
1

10a

{

32 a5 − a5
}

=
31

10
a4.
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Example 20.24 A. Calculate the plane integral

I =

∫

B

(x+ y) dS,

where B is described in polar coordinates (for a > 0) by the parameter domain

A =
{

(̺, ϕ)
∣

∣

∣ −π

2
≤ ϕ ≤ π

4
, 0 ≤ ̺ ≤ a

}

,

i.e. A is a rectangle in the (̺, ϕ) plane.

–1

–0.5

0.5

1

y

–0.2 0.2 0.4 0.6 0.8 1 1.2
x

Figure 20.42: The domain B in the (x, y)-plane when a = 1.
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Figure 20.43: The parameter domain A in the (̺, ϕ) plane for a = 1.

D. In this case both reduction formulæ are applicable, so we give two solutions.

D 1. Apply reduction formula 1); do not forget the weight function ̺!.

I 1. Since x = ̺ cosϕ and y = ̺ sinϕ, the first version, where we start in the inner integral by
integrating horizontally with respect to ̺, gives

I =

∫

B

(x+ y) dS =

∫ π
4

−π
2

{∫ a

0

(̺ cosϕ+ ̺ sinϕ) ̺ d̺

}

dϕ.
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Then we calculate the inner integral,
∫ a

0

(̺ cosϕ+ ̺ sinϕ) ̺ d̺ = (cosϕ+ sinϕ)

∫ a

0

̺2 d̺ =
a3

3
(cosϕ+ sinϕ).

Finally, by insertion of this result,

I =

∫ π
4

−π
2

a3

3
(cosϕ+ sinϕ) dϕ =

a3

3
[sinϕ− cosϕ]

π
4

−π
2
=

a3

3
.

D 2. Then we use the reduction formula 2)I; do not forget the weight function ̺!

I 2. In the second version we only interchance the order of integration. The limits are constants, and
the integrand is factorized, so we can split the integral in the product of two integrala. This gives

I =

∫ a

0

{

∫ π
4

−π
2

(̺ cosϕ+ ̺ sinϕ) dϕ

}

̺ d̺

=

∫ a

0

̺2 d̺ ·
∫ π

4

−π
2

(cosϕ+ sinϕ) dϕ =
a3

3
· [sinϕ− cosϕ]

π
4

−π
2
=

a3

3
.

Example 20.25 A. Compute the plane integral I =
∫

B xdS, where B = K
((a

2
, 0
)

;
a

2

)

, a > 0.

–0.4

–0.2

0

0.2

0.4

0.2 0.4 0.6 0.8 1

Figure 20.44: The domain B when a = 1, i.e. −
√
x− x2 ≤ y ≤

√
x− x2 for 0 ≤ x ≤ 1.

D. In this case it is possible to calculate the plane integral both in rectangular and in polar coordinates,
so we give two variants.

D 1. The domain B is in rectangular coordinates described by

B = {(x, y) | 0 ≤ 0 ≤ a, −
√

ax− x2 ≤ y ≤
√

ax− x2}.

I 1. The rectangular double integral is

I =

∫

B

xdS =

∫ a

0

x

{

∫

√
ax−x2

−
√
ax−x2

dy

}

dx =

∫

a

2a
√

ax− x2 dx.
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The trick in tasks like this is to give the “bad term” a new name. We put

t := ax− x2, dt = (a− 2x) dx.

The next trick is to add something and then sbtract it again. This is here done in the following
way,

I =

∫ a

0

2x
√

ax− x2 dx = −
∫ a

0

(a− 2x− a)
√

ax− x2 dx

= −
∫ a

0

√

ax− x2 · (a− 2x) dx+ a

∫ a

0

√

ax− x2 dx

= −
∫ a

x=0

√
t dt+ a

∫ a

0

√

ax− x2 dx

= −
[

2

3

(

ax− x2
)

3
2

]a

0

+ a

∫ a

0

√

ax− x2 dx = 0 + a

∫ a

0

√

ax− x2 dx.

The integral
∫ a

0

√
ax− x2 dx looks nasty. However, by a geometrical consideration we see that the

integral must be equal to the area of the domain between the x axis and the graph of

y = +
√

ax− x2.

This is (cf. the figure) the area of the half of a disc of radius
a

2
. Hence,

I = a ·
{

1

2
· π

(a

2

)2
}

=
πa3

8
.

D 2. The polar version; do not forget the weight function ̺!

I 2. When we put x = ̺ cosϕ and y = ̺ sinϕ, then the equation of the boundary curve is transformed
into

0 = x2 + y2 − ax = ̺2 − a ̺ cosϕ = ̺(̺− a cosϕ).

Since ̺ = 0 corresponds to the point (0, 0), we conclude that the boundary curve is described by

̺ = a cosϕ with − π

2
≤ ϕ ≤ π

2
.

Thus the parameter domain A corresponding to B is given by

A =
{

(̺, ϕ)
∣

∣

∣ −π

2
≤ ϕ ≤ π

2
, 0 ≤ ̺ ≤ a cosϕ

}

.

The reduction formula in its first version gives
∫

B

xdS =

∫ π
2

−π
2

{∫ a

0

cosϕ̺ cosϕ · ̺ d̺
}

dϕ =

∫ π
2

−π
2

cosϕ

{∫ a cosϕ

0

̺2 d̺

}

dϕ.

We first calculate the inner integral,
∫ a cosϕ

0

̺2 d̺ =

[

1

3
̺3
]a cosϕ

0

=
a3

3
cos3 ϕ.

Then by insertion,
∫

B

xdS =
a3

3

∫ π
2

−π
2

cos4 ϕdϕ = 2 · a
3

3

∫ π
2

0

cos4 ϕdϕ,

where we have used than the even function cos4 ϕ is integrated over a symmetric interval.

943

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume VI 
Antiderivatives and Plane Integrals

944 

Integration in the plane
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Figure 20.45: The parameter domain A in the (̺, ϕ) plane.

This is a trigonometric integral, where the integrand is of even order. The trick is to use the
double angle as a new variable,

cos4 x =
{

cos2 x
}2

=

{

1

2
(1 + cos 2x)

}2

=
1

4

{

1 + 2 cos 2x+ cos2 2x
}

=
1

4

{

1 + 2 cos 2x+
1

2
(1 + cos 4x)

}

=
3

8
+

1

2
cos 2x+

1

8
cos 4x.

Then by insertion

∫

B

xdS =
2

3
a3

∫ π
2

0

{

3

8
+

1

2
cos 2x+

1

8
cos 4x

}

dx =
2

3
a3 · 3

8

π

2
+ 0 + 0 =

πa3

8
.

20.6 Procedure of reduction of the plane integral; polar version

Geometri.
When a domain B is bounded by radial half lines from (0, 0), or circular arcs (with or without its
centrum at (0, 0)), then the calculations will often be easier in polar coordinates,

x = ̺ cosϕ and y = ̺ sinϕ,

than rectangular coordinates. When we apply this technique, then the reader must be aware of that
the parameter domain B̃ is not equal to the original domain B. The price is that we must not forget
the weight function, which in the case of polar coordinates is ̺. But then we can reduce as in the
rectangular case with respect to (̺, ϕ).

This is formally expressed by the abstract element of area dS. In the case of polar coordinates this
is identified with ̺ d̺ dϕ, calculated in the rectangular (̺, ϕ) domain,

dS = ̺ d̺ dϕ,
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or, written as an integral,
∫

B

f(x, y) dS =

∫

B̃

f(x, y)weight function d̺ dϕ

=

∫

B̃

f(̺ cosϕ, ̺ sinϕ) ̺ d̺ dϕ.

Thus we have reduced the problem to the rectangular case, so we could in principle stop here. However,
we shall not do this, because we ought to mention some reductions, which are not immediate, and
which may be of some help in the following.
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Just like in the rectangular case there are here two main cases.

0

0.2

0.4

0.6

0.8
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1.8

2
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0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

Figure 20.46: First version. We integrate over B, first radially with respect to ̺.
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x

Figure 20.47: Second version. We integrate over B, first along the circular arc with respect to ϕ.

Procedure.

1) Sketch B, and split if necessary B into subdomains of type 1 or type 2.

2) If B is of type 1 (i.e. B lies in some angular space), then sketch, if necessary the parameter domain
B̃, which we here write in the form

B̃ = {(ϕ, ̺) | α ≤ ϕ ≤ β, P1(ϕ) ≤ ̺ ≤ P2(ϕ)}.

Note that e.g. P1 is read “big rho 1”, because it is the Greek letter.

Then the reduction formula becomes
∫

B

f(x, y) dS =

∫

B̃

f(̺ cosϕ, ̺ sinϕ)ϕdϕd̺

=

∫ β

α

{

∫ P2(ϕ)

P1(ϕ)

f(̺ cosϕ, ̺ sinϕ ̺ d̺)

}

dϕ.
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3) Calculate separately the inner integral, i.e. keep ϕ fixed and integrate with respect to ̺:

F (ϕ) =

∫ P2(ϕ)

P1(ϕ)

f(̺ cosϕ, ̺ sinϕ) ̺ d̺.

4) Insert the result and then calculate

∫

B

f(x, y) dS =

∫ β

α

F (ϕ) dϕ.

5) If instead B is of type 2 (i.e. lies between two circular arcs of centrum at (0, 0)), then we sketch,
if necessary, the parameter domain B̃, which is written

B̃ = {(ϕ, ̺) | a ≤ ̺ ≤ b, Φ1(̺) ≤ ϕ ≤ Φ2(̺)}.

Then the reduction formula becomes

∫

B

f(x, y) dS =

∫

B̃

f(̺ cosϕ, ̺ sinϕ) ̺ dϕd̺

=

∫ b

a

{

∫ Φ2(̺)

Φ1(̺)

f(̺ cosϕ, ̺ sinϕ) dϕ

}

̺ d̺.

6) Calculate separately the inner integral, where ̺ is kept fixed, and then integrate with respect to
ϕ:

G(̺) =

∫ Φ2(̺)

Φ1(̺)

f(̺ cosϕ, ̺ sinϕ) dϕ.

7) Insert the result and calculate

∫

B

f(x, y) dS =

∫ b

a

G(̺) ̺ d̺,

where we must not forget the weight function ̺ in the integrand.
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Integration in the plane

20.7 Examples of the plane integral in polar coordinates

Example 20.26

A. Calculate

I =

∫

b

(x2 + y2) dS,

where B is described in polar coordinates by

A =
{

(̺, ϕ)
∣

∣

∣ a ≤ ̺ ≤ 2a,
̺

2a
≤ ϕ ≤ ϕ

a

}

.

Note that B has a “weird” form in the (x, y)-plane, while the parameter domain A in the (̺, ϕ)-
plane is “straightened out”, so one can apply the rectangular version in the (̺.ϕ)-plane. The price
for this is that one must add the weight function ̺ to the integrand.

0
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1.5
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y

–1 –0.5 0.5 1 1.5

x

Figure 20.48: The domain B in the (x, y)-plane.
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Figure 20.49: The parameter domain A in the (̺, ϕ)-plane.

D. Apply the reduction formula in the second version, i.e. where the ϕ-integral is the inner integral.
This means that we first integrate vertically in the parameter domain.
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I. By the reduction formula in its second version we get with the weight function ̺

∫

B

(x2 + y2) dS =

∫ 2a

a

{

∫
̺
a

̺
2a

̺2 dϕ

}

̺ d̺ =

∫ 2a

a

̺3

{

∫
̺
a

̺
2a

dϕ

}

d̺.

First calculate the inner integral,

∫
̺
a

̺
2a

dϕ =
̺

a
− ̺

2a
=

̺

2a
,

which is seen to be the length of the ϕ-interval. Then by insertion,

∫

B

(x2 + y2) dS =

∫ 2a

a

̺3 · ̺

2a
d̺ =

1

2a

∫ 2a

a

̺4 d̺ =
1

2a

[

1

5
̺5
]2a

1

=
1

10a

{

(2a)5 − a5
}

=
1

10a

{

32 a5 − a5
}

=
31

10
a4.

MAPLE. We get by the commands

with(Student[MultivariateCalculus]):

MultiInt
(

r2 · r, t = r

2a
..
r

a
, r = a..2a

)

31

10
a4 ♦
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Example 20.27

A. Calculate

I =

∫

B

(x+ y) dS,

where B is described in polar coordinate (for a > 0) by

A =
{

(̺, ϕ)
∣

∣

∣ −π

2
≤ ϕ ≤ π

4
, 0 ≤ ̺ ≤ a

}

,

i.e. A is a rectangle in the (̺, ϕ) plane.
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x

Figure 20.50: The domain B for a = 1 in the (x, y)-plane.
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Figure 20.51: The parametric domain A for a = 1 in the (̺, ϕ)-plane.

D. Here we can apply both reduction formulæ, so we give two solutions.

D 1. Apply the first reduction formula; do not forget the weight function ̺.
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I 1. From x = ̺ cosϕ and y = ̺ sinϕ, we get in the first version, where we start by integrating
horizontally after ̺, that

I =

∫

B

(x+ y) dS =

∫ π
4

−π
2

{∫ a

0

(̺ cosϕ+ ̺ sinϕ) ̺ d̺

}

dϕ.

Then calculate the inner integral,

∫ a

0

(̺ cosϕ+ ̺ sinϕ) ̺ d̺ = (cosϕ+ sinϕ)

∫ a

0

̺2 d̺ =
a3

3
(cosϕ+ sinϕ).

By insertion of this result we finally get

I =

∫ π
4

−π
2

a3

3
(cosϕ+ sinϕ) dϕ =

a3

3
[sinϕ− cosϕ]

π
4

−π
2
=

a3

3
.

D 2. Apply the second reduction formula. Again, do not forget the weight function ̺.

I 2. In the second version we just interchange the order of integration. Since the bounds are constants,
and the variables can be separated in the integrand, we can split the integral into a product of two
integrals. Then

I =

∫ a

0

{

∫ π
4

−π
2

(̺ cosϕ+ ̺ sinϕ) dϕ

}

̺ d̺

=

∫ a

0

̺2 d̺ ·
∫ π

4

−π
2

(cosϕ+ sinϕ) dϕ =
a3

3
· [sinϕ− cosϕ]

π
4

− π
2
=

a3

3
.

MAPLE. We get by the commands

with(Student[MultivariateCalculus]):

MultiInt
(

(r · cos(t) + r · sin(t)) · r, r = 0..a, t = −π

2
..
π

4

)

1

3
a3 ♦

951

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume VI 
Antiderivatives and Plane Integrals

952 

Integration in the plane

Example 20.28

A. Calculate I =
∫

B xdS, where B = K
((a

2
, 0
)

;
a

2

)

, a > 0.
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0.4

0.2 0.4 0.6 0.8 1

Figure 20.52: The domain B for a = 1, i.e. −
√
x− x2 ≤ y ≤

√
x− x2 for 0 ≤ x ≤ 1.

D. In this case it is possible to calculate the integral by using either rectangular or polar coordinates.

D 1. In rectangular coordinates the domain B is described by

B = {(x, y) | 0 ≤ 0 ≤ a, −
√

ax− x2 ≤ y ≤
√

ax− x2}.

I 1. The rectangular double integral is given by

I =

∫

B

xdS =

∫ a

0

x

{

∫

√
ax−x2

−
√
ax−x2

dy

}

dx =

∫

a

2a
√

ax− x2 dx.

The trick in problems of this type is to call the “ugly” part something different. We put

t = ax− x2, dt = (a− 2x) dx.

Then by adding the right term and subtract it again we get

I =

∫ a

0

2x
√

ax− x2 dx = −
∫ a

0

(a− 2x− a)
√

ax− x2 dx

= −
∫ a

0

√

ax− x2 · (a− 2x) dx+ a

∫ a

0

√

ax− x2 dx

= −
∫ a

x=0

√
t dt+ a

∫ a

0

√

ax− x2 dx

= −
[

2

3

(

ax− x2
)

3
2

]a

0

+ a

∫ a

0

√

ax− x2 dx = 0+ a

∫ a

0

√

ax− x2 dx.

The integral
∫ a

0

√
ax− x2 dx does not look nice; but the geometrical interpretation helps a lot:

The integral is the area of the domain between the x-axis and the curve

y = +
√

ax− x2,
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i.e. (cf. the figure) the area of a half-disc of radius
a

2
. Therefore,

I = a ·
{

1

2
· π

(a

2

)2
}

=
πa3

8
.

D 2. The polar version; do not forget the weight function ̺.

I 2. When we put x = ̺ cosϕ and y = ̺ sinϕ, the equation of the boundary curve becomes

0 = x2 + y2 − ax = ̺2 − a ̺ cosϕ = ̺(̺− a cosϕ).

Since ̺ = 0 corresponds to the point (0, 0), it follows that the boundary curve is described by

̺ = a cosϕ with − π

2
≤ ϕ ≤ π

2
.

The parametric domain A corresponding to B is therefore

A =
{

(̺, ϕ)
∣

∣

∣ −π

2
≤ ϕ ≤ π

2
, 0 ≤ ̺ ≤ a cosϕ

}

.
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Figure 20.53: The parametric domain A in the (̺, ϕ) plane.

When we use the first version of the reduction formula we get

∫

B

xdS =

∫ π
2

−π
2

{∫ a cosϕ

0

̺ cosϕ · ̺ d̺
}

dϕ =

∫ π
2

−π
2

cosϕ

{∫ a cosϕ

0

̺2 d̺

}

dϕ.

When we calculate the inner integral we get
∫ a cosϕ

0

̺2 d̺ =

[

1

3
̺3
]a cosϕ

0

=
a3

3
cos3 ϕ.

Then by insertion

∫

B

xdS =
a3

3

∫ π
2

−π
2

cos4 ̺ dϕ = 2 · a
3

3

∫ π
2

0

cos4 ϕdϕ,

where we use that the even function cos4 ϕ is integrated over a symmetric interval.

When we shall calculate a trigonometric integral, where the integrand is of even order, we change
variables to the double angle:

cos4 x =
{

cos2 x
}2

=

{

1

2
(1 + cos 2x)

}2

=
1

4

{

1 + 2 cos 2x+ cos2 2x
}

=
1

4

{

1 + 2 cos 2x+
1

2
(1 + cos 4x)

}

=
3

8
+

1

2
cos 2x+

1

8
cos 4x.

Finally, by insertion,

∫

B

xdS =
2

3
a3

∫ π
2

0

{

3

8
+

1

2
cos 2x+

1

8
cos 4x

}

dx =
2

3
a3 · 3

8

π

2
+ 0 + 0 =

πa3

8
.

MAPLE. We get by the commands

with(Student[MultivariateCalculus]):

MultiInt
(

r · cos(t) · r, r = 0..a · cos(t), t = −π

2
..
π

2

)
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1

8
π a3 ♦
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Example 20.29 Compute in each of the following cases the given plane integral by applying a theorem
of reduction for polar coordinates. First sketch the domain of integration B.

1)
∫

B
(4− y) dS, where B is given by x ≥ 0, y ≥ 0, and x2 + y2 ≤ 2.

2)
∫

B(a+ y) dS, where B is given by 0 ≤ ϕ ≤ π

2
and 0 ≤ ̺ ≤ a cosϕ.

3)
∫

B

√

a2 − x2 − y2 dS, where B is given by −π

2
≤ ϕ ≤ π

2
and 0 ≤ ̺ ≤ a cosϕ.

4)
∫

B
xy dS, where B is given by 0 ≤ ϕ ≤ π

3
and 2 cosϕ ≤ ̺ ≤ 4

1 + cosϕ
.

5)
∫

B

x(x+ y)

(2x2 + y2)(x2 + y2)
3
2

dS, where B is given by 0 ≤ ϕ ≤ π

4
and cosϕ ≤ ̺ ≤ cosϕ+ sinϕ.

6)
∫

B

1
√

a2 + x2 + y2
dS, where B is the disc K((0, 0); a).

7)
∫

B

x

(x2 + y2)
3
2

dS, where B is given by −π ≤ ϕ ≤ π and b exp(a cosϕ) ≤ ̺ ≤ 1, and where

furthermore b < e−a.

8)
∫

B

x

(x2 + y2)
3
2

dS, where B is given by −π ≤ ϕ ≤ π and 1 ≤ ̺ ≤ b exp(a cosϕ), and where

furthermore b > ea.

9)
∫

B
(x2 − y2) dS, where B is given by −π

4
≤ ϕ ≤ π

2
and 0 ≤ ̺ ≤ a.

10)
∫

B

√

x2 + y2 dS, where B is given by −π

2
≤ ϕ ≤ π

2
and 0 ≤ ̺ ≤ a cosϕ.

11)
∫

B xy dS, where B is given by 0 ≤ ϕ ≤ π

4
and a ≤ ̺ ≤ 2a cos2 ϕ.

A Plane integral in polar coordinates.

D Sketch the domain and apply the theorem of reduction.
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Figure 20.54: The domain B of Example 20.29.1.
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I 1) This example is the same as Example 20.10.8. We shall, however, use polar coordinates in the
present case.

In polar coordinates B is described by

0 ≤ ϕ ≤ π

2
, 0 ≤ ̺ ≤

√
2.

From the theorem of reduction in polar coordinates follows that

∫

B

(4− y) dS = 4 area(B)−
∫

π

2

0

{

∫

√
2

0

̺ sinϕ · ̺ d̺
}

dϕ

= 4 · 1
4
(
√
2)2π + [cosϕ]

π
2
0 ·

[

1

3
̺3
]

√
2

0

= 2π +
2
√
3

3
.

MAPLE. We get by the commands

with(Student[MultivariateCalculus]):

MultiInt
(

r · sin(t) · r, r = 0..
√
2, t = 0..

π

2

)

2

3

√
2

which gives the value of the integral.
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x

Figure 20.55: The domain B of Example 20.29.2.

2) From 0 ≤ ̺ ≤ a cosϕ follows that

0 ≤ ̺2 = x2 + y2 = a̺ cosϕ = ax,

so the domain is a half disc in the first quadrant of centrum
(a

2
, 0
)

and radius
a

2
. By the

reduction formula in polar coordinates,
∫

B

(a+ y) dS = a · area(B) +

∫

B

y dS = a · 1
2
· π

(a

2

)2

+

∫ π
2

0

{∫ a cosϕ

0

̺ sinϕ · ̺ d̺
}

dϕ

= π · a
3

8
+

∫ π
2

0

[

1

3
̺3 sinϕ

]a cosϕ

̺=0

dϕ =
a3π

8
+

a3

3

∫ π
2

0

cos3 ϕ · sinϕdϕ

=
πa3

8
− a3

12

[

cos4 ϕ
]

π
2

0
= a3

(

π

8
+

1

12

)

.
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MAPLE. We get by the commands

with(Student[MultivariateCalculus]):

MultiInt
(

r · sin(t) · r, r = 0..a · cos(t), t = 0..
π

2

)

1

12
a3

which gives the value of the integral.
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Figure 20.56: The domain B of Example 20.29.3.

3) Here B is the disc of centrum
(a

2
, 0
)

and radius
a

2
, cf. Example 20.29.2. From the reduction

formula in polar coordinates follows that
∫

B

√

a2 − x2 − y2 dS =

∫ π
2

−π
2

{∫ a cosϕ

0

√

a2 − ̺2 · ̺ d̺
}

dϕ

= 2

∫ π
2

0

[

−1

3
(a2 − ̺2)

3
2

]a cosϕ

̺=0

dϕ =
2

3

∫ π
2

0

{

(a2)
3
2 − (a2 − a2 cos2 ϕ)

3
2

}

dϕ

=
2

3

∫ π
2

0

{

a3 − a3(1 − cos2 ϕ) sinϕ
}

dϕ =
2

3
a3

{

π

2
+

∫ π
2

ϕ=0

(1− cos2 ϕ) d cosϕ

}

=
πa3

3
+

2

3
a3

[

cosϕ− 1

3
cos3 ϕ

]
π
2

ϕ=0

=
πa3

3
− 4

9
a3 =

a3

9
(3π − 4).
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MAPLE. We get by the commands

with(Student[MultivariateCalculus]):

MultiInt
(
√

a2 − r2 · r, r = 0..a · cos(t), t = −π

2
..
π

2

)

1

3
a3 csgn(a)π − 4

9
a3 csgn(a)

where csgn(a) denotes the sign of a.

0

1

2

3

4

y

0.5 1 1.5 2

x

Figure 20.57: The domain B of Example 20.29.4.
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4) From 2 cosϕ ≤ ̺ follows

2x = 2̺ cosϕ ≤ ̺2 = x2 + y2,

which is rewritten as the inequality (x− 1)2 + y2 ≥ 1 for the complementary set of the disc of
centrum (1, 0) and radius 1.

From ̺ ≤ 4

1 + cosϕ
follows ̺ + ̺ cosϕ = ̺ + x ≤ 4, i.e. ̺ ≤ 4 − x, so x ≤ 4. Under this

assumption we get by a squaring that ̺2 = x2 + y2 ≤ (4− x)2, hence

y2 ≤ (4− x)2 − x2 = 4(4− 2x) = 8(2− x),

from which follows that we shall also require that x ≤ 2, because y2 ≥ 0.

The domain is bounded by the parabola y2 = 16− 8x and the circle (x− 1)2 + y2 = 1 and the

tow lines ϕ = 0 and ϕ =
π

3
.

Then by the theorem of reduction in polar coordinates followed by the substitution u = cosϕ,

∫

B

xy dS =

∫ π
3

0

{

∫ 4
1+cosϕ

2 cosϕ

̺3sinϕ · cosϕd̺

}

dϕ

=
1

4

∫ π
3

0

sinϕ · cosϕ
{

44

(1 + cosϕ)4
− 24 cos4 ϕ

}

dϕ

=

∫ π
3

0

{

64 cosϕ

(1 + cosϕ)4
− 4 cos5 ϕ

}

sinϕdϕ =

∫ 1

1
2

{

64(u+ 1− 1)

(u+ 1)4
− 4u5

}

du

=

∫ 1

1
2

{

64

(u+ 1)3
− 64

(u+ 1)4
− 4u5

}

du

=

[

−1

2
· 64

(u+ 1)2
+

1

3
· 64

(u+ 1)3
− 4

6
u6

]1

1
2

= −32

4
+

1

3
· 64
8

− 2

3
+

32
9
4

− 1

3
· 6427

8

+
2

3
· 1

64

= −8 +
8

3
− 2

3
+

128

9
− 512

81
+

1

3 · 32 = −6 +
1252− 512

81
+

1

3 · 32
=

640− 486

81
+

1

3 · 32 =
154

81
+

1

3 · 32 =
154 · 32 + 27

32 · 81 =
4955

2592
.

MAPLE. We get by the commands

with(Student[MultivariateCalculus]):

MultiInt

(

r3 · sin(t) · cos(t), r = 2 cos(t)..
4

1 + cos(t)
, t = 0..

π

3

)

4955

2592

5) Here the condition cosϕ ≤ ̺ implies that

̺ cosϕ = x ≤ ̺2 = x2 + y2,
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Figure 20.58: The domain B of Example 20.29.5.

which we rewrite as
(

x− 1

2

)2

+ y2 ≥ 1

4
=

(

1

2

)2

,

and we are describing the complementary set of a disc of centrum

(

1

2
, 0

)

and radius
1

2
.

The condition ̺ ≤ cosϕ+ sinϕ means that

̺2 = x2 + y2 ≤ ̺ cosϕ+ ̺ sinϕ = x+ y,

which is rewritten as
(

x− 1

2

)2

+

(

y − 1

2

)2

≤ 1

2
=

(

1√
2

)2

.

This inequality represents a disc of centrum

(

1

2
,
1

2

)

and radius
1√
2
. As also 0 ≤ ϕ ≤ π

4
, it is

now easy to sketch the domain B.

Then by the theorem of reduction in polar coordinates,
∫

B

x(x+ y)

(2x2 + y2)(x2 + y2)
3
2

dS

=

∫ π
4

0

{

∫ cosϕ+sinϕ

cosϕ

̺2(cosϕ+ sinϕ)cosϕ

̺2(2 cos2 ϕ+ sin2 ϕ)̺3
· ̺ d̺

}

dϕ

=

∫ π
4

0

(cosϕ+ sinϕ) cosϕ

2 cos2 ϕ+ sin2 ϕ

[

−1

̺

]cosϕ+sinϕ

̺=cosϕ

dϕ

=

∫ π
4

0

{

cosϕ+ sinϕ

2 cos2 ϕ+ sin2 ϕ
− cosϕ

2 cos2 ϕ+ sin2 ϕ

}

dϕ =

∫ π
4

0

sinϕ

cos2 ϕ+ 1
dϕ

= [− Arctan(cosϕ)]
π
4
0 = Arctan 1− Arctan

(√
2

2

)

=
π

4
− Arctan

(√
2

2

)

.

MAPLE. We get by the commands
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with(Student[MultivariateCalculus]):

MultiInt

(

r2 · (cos(t) + sin(t)) · cos(t)
r2 · (2 cos(t)2 + sin(t)2( · r3 · r, r = cos(t).. cos(t) + sin(t), t = 0..

π

4

)

1

4
π − arctan

(

1

2

√
2

)

6) The disc K((0, 0); a) is described in polar coordinates by

−π ≤ ϕ ≤ π, 0 ≤ ̺ ≤ a.

We shall here omit the sketch of the well-known disc of centrum (0, 0) and radius a.

Then by an application of the theorem of reduction in polar coordinates,

∫

B

1
√

a2 + x2 + y2
dS =

∫ π

−π

{

∫ a

0

̺
√

a2 + ̺2
d̺

}

dϕ = 2π
[

√

a2 + ̺2
]a

0
= 2πa(

√
2− 1).

MAPLE. We get by the commands

with(Student[MultivariateCalculus]):

MultiInt

(

r√
a2 + r2

, r = 0..a, t = −π..π

)

−2csgn(a)aπ + 2
√
2csgn(a)aπ

where csgn(a) denotes the sign of a.

–1

–0.5

0

0.5

1

y

–1 –0.5 0.5 1

x

Figure 20.59: The domain B of Example 20.29.7, when a = 1 and b =
1

2e
.

7) The set is an annulus shaped domain which is neither nice in a rectangular description nor in
a polar description.

When we reduce the plane integral it is fairly simple to get
∫

B

x

(x2 + y2)
3
2

dS =

∫ π

−π

{

∫ 1

b exp(a cosϕ)

̺ cosϕ

̺3
· ̺ d̺

}

dϕ =

∫ π

−π

cosϕ · [ln ̺]1b exp(a cosϕ) dϕ

=

∫ π

−π

cosϕ{− ln b− a cosϕ} dϕ = −a

∫ π

−π

cos2 ϕdϕ = −aπ.
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MAPLE. Here MAPLE needs some help, because we get by the commands

with(Student[MultivariateCalculus]):

MultiInt

(

r · cos(t)
r3

· r, r = b · ea·cos(t)..1, t = −π..π

)

∫ π

−π

∫ 1

b ea cos(t)

cos(t)

r
dr dt

so we must split the double integral into two separate integrals.

–2

–1

0

1

2

y

–2 –1 1 2 3

x

Figure 20.60: The domain B of Example 20.29.8, when a =
1

3
and b = 2.
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8) This case is similar to Example 20.29.7. We get

∫

B

x

(x2 + y2)
3
2

dS =

∫ π

−π

{

∫ b exp(a cosϕ)

1

cosϕ

̺
d̺

}

dϕ = +aπ,

because, apart from the change of sign, the computations are formally the same as in Exam-
ple 20.29.7.

–0.5

0

0.5

1

y

–0.2 0.2 0.4 0.6 0.8 1 1.2

x

Figure 20.61: The domain B of Example 20.29.9.

9) The set B is a circular sector as shown on the figure.

Then by the theorem of reduction,
∫

B

(x2 − y2) dS =

∫ π
2

−π
4

(∫ a

0

{

̺2cos2 ϕ− ̺2sin2 ϕ
}

̺ d̺

)

dϕ

=

∫ π
2

−π
4

(∫ a

0

cos 2ϕ · ̺3 d̺
)

dϕ =

[

1

2
sin 2ϕ

]
π
2

−π
4

· a
4

4
=

1

2
{0− (−1)} · a

4

4
=

a4

8
.

MAPLE. We get by the commands

with(Student[MultivariateCalculus]):

MultiInt
(

(

r2 · cos(t)2 − r2 · sin(t)2
)

· r, r = 0..a, t = −π

4
..
π

2

)

1

8
a4

10) From 0 ≤ ̺ ≤ a cosϕ follows that

0 ≤ ̺2 = x2 + y2 = a̺ cosϕ = ax,

so B is the closed disc of centrum
(a

2
, 0
)

and radius
a

2
.
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–0.6

–0.4

–0.2

0

0.2

0.4

0.6

y

–0.2 0.2 0.4 0.6 0.8 1 1.2

x

Figure 20.62: The domain B of Example 20.29.10.

Then by the theorem of reduction,
∫

B

√

x2 + y2 dS =

∫ π
2

−π
2

{∫ a cosϕ

0

̺ · ̺ d̺
}

dϕ =
a3

3

∫ π
2

−π
3

cos3 ϕdϕ

=
a3

3

∫ π
2

−π
3

(1− sin2 ϕ) cosϕdϕ =
a3

3

[

sinϕ− 1

3
sin3 ϕ

]
π
2

−π
2

=
a3

3
· 2

(

1− 1

3

)

=
4a3

9
.

MAPLE. We get by the commands

with(Student[MultivariateCalculus]):

MultiInt
(

r · r, r = 0..a · cos(t), t = −π

2
..
π

2

)

4

9
a3

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

0.5 1 1.5 2

x

Figure 20.63: The domain B of Example 20.29.11.
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11) There is no nice rectangular description of the domain. It follows by the theorem of reduction,

∫

B

xy dS =

∫ π
4

0

{

∫ 2a cos2 ϕ

a

̺cosϕ · ̺sinϕ · ̺ d̺
}

dϕ

=

∫ π
4

0

cosϕ sinϕ

{

∫ 2a cos2 ϕ

a

̺3 d̺

}

dϕ,

=
1

4

∫ π
4

0

cosϕ · sinϕ
[

(2a)4 cos8 ϕ− a4
]

dϕ (t = cosϕ)

=
a4

4

∫ 1

1√
2

{

16t9 − t
}

dt =
a4

4

[

16

10
t10 − 1

2
t2
]1

1√
2

=
a4

4

{

8

5
− 1

2
− 8

5
· 1

32
+

1

2
· 1
2

}

=
a4

4

{

31

20
− 1

4

}

=
a4

4
· 26
20

=
13

40
a4.

MAPLE. We get by the commands
with(Student[MultivariateCalculus]):

MultiInt
(

r · cos(t) · r · sin(t) · r, r = a..2a · cos(t)2, t = 0..
π

4

)

13

40
a4
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Example 20.30 Let B be the domain in the first quadrant, which is bounded by the curves of the
equations

y = x, y = 4x, xy = 1, xy = 2.

Describe B in polar coordinates and then compute the plane integral
∫

B

x2 exp(xy) ln
( y

x

)

dS.

A Plane integral reduced by polar coordinates.

D Sketch B. Then describe B in polar coordinates.

0

0.5

1

1.5

2

2.5

3

y

0.5 1 1.5 2

x

I In polar coordinates the line y = 4x is described by ϕ = Arctan 4, and the line y = x by

ϕ = Arctan 1 =
π

4
.

Since

xy = ̺2 sinϕ cosϕ,

the hyperbola xy = 1 is described by

̺ =
1√

sinϕ cosϕ
, ϕ ∈

[π

4
,Arctan 4

]

,

and the hyperbola xy = 2 by

̺ =
2√

sinϕ cosϕ
, ϕ ∈

[π

4
,Arctan 4

]

.

Summarizing we get by the reduction of the plane integral in polar coordinates that

∫

B

x2 exp(xy) ln
(y

x

)

dS

=

∫ Arctan 4

Arctan 1

{

∫ 2/
√
sinϕ cosϕ

1/
√
sinϕ cosϕ

̺2cos2 ϕ · exp
(

̺2sinϕ cosϕ
)

ln(tanϕ)̺ d̺

}

dϕ.(20.7)
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First calculate the inner integral by using the substitution t = ̺2 sinϕ cosϕ, where ϕ is kept fixed.
This gives

∫ 2/
√
sinϕ cosϕ

1/
√
sinϕ cosϕ

̺2cos2 ϕ · exp
(

̺2sinϕ cosϕ
)

ln(tanϕ)̺ d̺

=
1

2

ln(tanϕ)

sin2 ϕ

∫ 2

1

t et dt =
1

2

ln(tanϕ)

sin2 ϕ

[

t et − et
]2

1
=

e2

2

ln(tanϕ)

sin2 ϕ
.

When this result is put into (20.7), it follows, when we use the substitution u = tanϕ that

∫

B

x2 exp(xy) ln
(y

x

)

dS =
e2

2

∫ Arctan 4

Arctan 1

ln(tanϕ)

sin2 ϕ
dϕ

=
e2

2

∫ Arccot 1
4

Arccot 1

(+ ln(cotϕ)) · −1

sin2 ϕ
dϕ

=
e2

2

∫ 1
4

1

lnu du =
e2

2
[u lnu− u]

1
4
1

=
e2

2

(

1

4
· 2 ln 1

2
− 1

4
+ 1

)

=
e2

8
(3− 2 ln 2).

MAPLE makes a mess here, which we shall not show.

Alternatively one may introduce the new variables

(u, v) =
(

xy,
y

x

)

.

This transformation is considered in all details in Example 29.4, so we shall just mention the main
points, namely

D = {(u, v) | 1 ≤ u ≤ 2, 1 ≤ v ≤ 4} = [1, 2]× [1, 4],

and

x(u, v) =

√

u

v
and y(u, v) =

√
uv,

and that the Jacobian is
1

2v
.

By the transformation of the plane integral

∫

B

x2 exp(xy) ln
(y

x

)

dS =

∫

D

u

v
· eu ln v · 1

2v
du dv =

1

2

∫ 2

1

ueu du ·
∫ 4

1

1

v2
ln v dv

=
1

2
[ueu − e]

2
1 ·

[

− ln v

v
− 1

v

]4

1

=
1

2
e2

{

1− ln 4

4
− 1

4

}

=
e2

8
(3− 2 ln 2),

which is far easier than the method above. ♦
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Example 20.31 Find the domain D of the function

f(x, y) =
√

a2 − x2 − y2,

where a is a positive constant. Then compute the plane integral
∫

D

{f(x, y)}2 dxdy.

A Domain of a function, plane integral.

D Analyze f . Compute the plane integral by using polar coordinates.

I It follows immediately that

D = {(x, y) | x2 + y2 ≤ a2} = K(0; a),

and
∫

D

{f(x, y)}2 dxdy =

∫

K(0;a)

{a2 − x2 − y2} dxdy

= a2 · area(K(0; a))− 2π

∫ a

0

̺2 · ̺ d̺ = a2 · πa2 − 2π · a
4

4
=

π

2
a4.

Example 20.32 Compute the plane integral
∫

B

yx2 dS,

where B er is the quarter disc given by the inequalities

1 ≤ x, 0 ≤ y, x2 + y2 ≤ 2x.

A Plane integral.

D There are at least three different solutions:

1) Reduction in rectangular coordinates.

2) Reduction in polar coordinates.

3) Reduction in a translated polar coordinate system.

I First method. Reduction in rectangular coordinates.

The set B is described in rectangular coordinates by

B = {(x, y) | 0 ≤ y ≤
√

2x− x2, x ∈ [1, 2]}.

Hence
∫

B

yx2 dS =

∫ 2

1

{

∫

√
2x−x2

0

yx2 dy

}

dx =
1

2

∫ 2

1

x2{2x− x2} dx =
1

2

∫ 2

1

{

2x3 − x4
}

dx

=
1

2

[

x4

2
− x5

5

]2

1

=
1

4
{16− 1} − 1

10
{32− 1} =

75− 62

20
=

13

20
.
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0

0.2

0.4

0.6

0.8

1

1.2

0.5 1 1.5 2

Figure 20.64: The quarter disc B.

Second method. Reduction in polar coordinates.

It follows from the figure that every point in B lies in the angular space ϕ ∈
[

0,
π

4

]

(den dotted

oblique line). We get the lower ̺-limit from a ≤ x = ̺ cosϕ,

1

cosϕ
≤ ̺.

970
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From ̺2 = x2 + y2 ≤ 2x = 2̺ cosϕ we get the upper ̺-limit ̺ ≤ 2 cosϕ.

Summarizing, B is described in polar coordinates by
{

(̺, ϕ)

∣

∣

∣

∣

1

cosϕ
≤ ̺ ≤ 2 cosϕ, ϕ ∈

[

0,
π

4

]

}

.

Hence by reduction in polar coordinates,
∫

B

yx2 dS =

∫ π
4

0

{

∫ 2

1
cosϕ

cosϕ̺ sinϕ · {̺cosϕ}2 · ̺ d̺
}

dϕ

=

∫ π
4

0

sinϕ · cos2 ϕ
{

∫ 2 cosϕ

1
cos ϕ

̺4 d̺

}

dϕ =

∫ π
4

0

sinϕ · cos2 ϕ
[

1

5
̺5
]2 cosϕ

1
cosϕ

dϕ

=
1

5

∫ π
4

0

{

32 cos7 ϕ− 1

cos3 ϕ

}

sinϕdϕ =
1

5

[

−32 · 1
8
cos8 ϕ− 1

2
· 1

cos2 ϕ

]
π
4

0

=
1

5

{

4
(

− cos8
π

4
+ 1

)

+
1

2

(

− 1

cos2 π
2

+ 1

)}

=
1

5

{

4

(

− 1

16
+ 1

)

+
1

2
(−2 + 1)

}

=
1

5

{

15

4
− 1

2

}

=
1

5
· 13
4

=
13

20
.

Third method. Translated polar coordinate system.

As x2 + y2 ≤ 2x can also be written (x − 1)2 + y2 ≤ 1, the set B can be described by
{

(x, y)
∣

∣

∣ x = 1 + ̺ cosϕ, y = ̺ sinϕ, ̺ ∈ [0, 1], ϕ ∈
[

0,
π

2

]}

,

where the pole lies in (x, y) = (1, 0). Then we get the plane integral
∫

B

yx2 dS =

∫ π
2

0

{∫ 1

0

̺sinϕ · {1 + ̺ cosϕ}2̺ d̺
}

dϕ

=

∫ π
2

0

{∫ 1

0

̺2
{

1 + 2̺cosϕ+ ̺2cos2 ϕ
}

d̺

}

sinϕdϕ

=

∫ π
2

0

[

̺3

3
+

̺4

2
cosϕ+

̺5

5
cos2 ϕ

]1

̺=0

sinϕdϕ

=

∫ π
2

0

{

1

3
+

1

2
cosϕ+

1

5
cos2 ϕ

}

sinϕdϕ

=

[

−1

3
cosϕ− 1

4
cos2 ϕ− 1

15
cos3 ϕ

]
π
2

0

=
1

3
+

1

4
+

1

15
=

1

4
+

6

15
=

1

4
+

2

5
=

13

20
.

MAPLE. For completeness we add the commands in MAPLE,
with(Student[MultivariateCalculus]):

MultiInt
(

y · x2, y = 0..
√

2x− x2, x = 1..2
)

13

20
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20.8 Examples of area in polar coordinates

Example 20.33 Let A be the plane point set which in polar coordinates is bounded by the inequalities

−π ≤ ϕ ≤ π, 0 ≤ ̺ ≤ 1 + cosϕ;

the boundary curve ∂A is a cardioid. Let B be the disc which is bounded by 0 ≤ ̺ ≤ 1. Find the area
of the intersection A ∩B.

A Area of a set given in polar coordinates.

D Sketch the boundary curves. Then set up the integrals of the area and compute.

–1

–0.5

0

0.5

1

–1 –0.5 0.5 1 1.5 2

Figure 20.65: The intersection of the unit disc and the cardioid.

I By examining the figure we set up the formula of the area where we have a half disc in the right
half plane,

area(A ∩B) =
1

2
π · 12 + 2

∫ π

π
2

{∫ 1+cosϕ

0

̺ d̺

}

dϕ =
π

2
+ 2

∫ π

π
2

1

2
(1 + cosϕ)2 dϕ

=
π

2
+

∫ π

π
2

{

1 + 2 cosϕ+
1

2
(1 + cos 2ϕ)

}

dϕ

=
π

2
+

3π

2
· 1
2
+ [2 sinϕ]ππ

2
+

1

4
[sin 2ϕ]ππ

2
=

5π

4
− 2.

MAPLE. We add the commands in MAPLE,

with(Student[MultivariateCalculus]):

π

2
+ 2 ·MultiInt

(

r, r = 0..1 + cos(t), t =
π

2
..π

)

5

4
π − 2
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Example 20.34 In each of the following cases a plane and bounded point set B is given by the
boundary curve ∂B given in polar coordinates. Sketch B and find the area of B.

1) The cardiod,

̺ = a(1 + cosϕ), ϕ ∈ [−π, π].

2) (A part of) Descartes’s leaf,

̺ =
3a sinϕ cosϕ

sin3 ϕ+ cos3 ϕ
, ϕ ∈

[

0,
π

2

]

.

3) (Part of) Maclaurin’s trisectrix,

̺ = 4a · cosϕ− 1

cosϕ
, ϕ ∈

[

−π

3
,
π

3

]

.

A Sketches of curves given in polar coordinates. Area by a plane integral.

D Sketch the boundary curve. Then apply the theorem of reduction.

–1

–0.5

0

0.5

1

0.5 1 1.5 2

Figure 20.66: The cardioid.

I 1) Cardioid, from Greek “η κα̺δια = the heart”, because the curve has the shape of a heart.

The area is given by
∫

B

dS =

∫ π

−π

{

∫ a(1+cosϕ)

0

̺ d̺

}

dϕ =

∫ π

−π

1

2
a2(1 + cosϕ)2 dϕ

=
1

2
a2

∫ π

−π

{

1 + 2 cosϕ+
1 + cos 2ϕ

2

}

dϕ =
1

2
a2 · 3

2
· 2π =

3

2
a2π.

MAPLE. We add the commands in MAPLE,

with(Student[MultivariateCalculus]):

MultiInt (r, r = 0..a · (1 + cos(t)), t = −π..π)

3

2
π a2
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0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Figure 20.67: Part of Descartes’s leaf.

2) The area is here computed in the following way

∫

B

dS =

∫

π

2

0

{

∫
3a sinϕ cosϕ

sin3 ϕ+cos3 ϕ

0

̺ d̺

}

dϕ =
1

2

∫ π
2

0

9a2 · sin2 ϕ cos2 ϕ

(sin3 ϕ+ cos3 ϕ)2
dϕ

=
9

2
a2

∫ π
2

0

tan2 ϕ · cos4 ϕ
cos6 ϕ(1 + tan3 ϕ)2

dϕ =
9a2

2

∫ +∞

u=tanϕ=0

u2

(1 + u3)2
du

=
3

2
a2

[

− 1

1 + u3

]+∞

0

=
3

2
a2.
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MAPLE. We add the commands in MAPLE,

with(Student[MultivariateCalculus]):

π

2
+ 2 ·MultiInt

(

r, r = 0..
3a · sin(t) · cos(t)
sin(t)3 + cos(t)3

, t = 0..π

)

3

2
a2

–1

–0.5

0

0.5

1

0.5 1 1.5 2 2.5 3

Figure 20.68: A part of Maclaurin’s trisectrix.

3) By the usual reduction the area is here computed in the following way,
∫

B

dS =

∫ π
3

−π
3

1

2

{

a

cosϕ
− 4a cosϕ

}2

dϕ =
a2

2
· 2

∫ π
3

0

{

1

cos2 ϕ
− 8 + 8 + 8 cos 2ϕ

}

dϕ

= a2[tan t+ 4 sin 2ϕ]
π
3
0 = a2

{

tan
π

3
+ 4 sin

2π

3

}

= a2

(

√
3 + 4 ·

√
3

2

)

= 3
√
3 a2.
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Example 20.35 Find the area of the plane domain B, which is bounded by (i) a part of Archimedes’s
spiral given in polar coordinates by

̺ = aϕ, ϕ ∈ [0, π],

and (ii) the part of the negative X-axis given by

(y = 0 and x ∈ [−πa, 0]), or (ϕ = π and ̺ ∈ [0, πa]).

A Area in polar coordinates.

D Sketch the domain; compute the area by reduction in polar coordinates.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

–3 –2.5 –2 –1.5 –1 –0.5 0.5

I The area is
∫

B

dS =

∫ π

0

{∫ aϕ

0

̺ d̺

}

dϕ =

∫ π

0

1

2
a2ϕ2 dϕ =

1

6
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Example 20.35 Find the area of the plane domain B, which is bounded by (i) a part of Archimedes’s
spiral given in polar coordinates by

̺ = aϕ, ϕ ∈ [0, π],

and (ii) the part of the negative X-axis given by

(y = 0 and x ∈ [−πa, 0]), or (ϕ = π and ̺ ∈ [0, πa]).

A Area in polar coordinates.

D Sketch the domain; compute the area by reduction in polar coordinates.
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21 Formulæ

Some of the following formulæ can be assumed to be known from high school. It is highly recommended
that one learns most of these formulæ in this appendix by heart.

21.1 Squares etc.

The following simple formulæ occur very frequently in the most different situations.

(a+ b)2 = a2 + b2 + 2ab, a2 + b2 + 2ab = (a+ b)2,
(a− b)2 = a2 + b2 − 2ab, a2 + b2 − 2ab = (a− b)2,
(a+ b)(a− b) = a2 − b2, a2 − b2 = (a+ b)(a− b),
(a+ b)2 = (a− b)2 + 4ab, (a− b)2 = (a+ b)2 − 4ab.

21.2 Powers etc.

Logarithm:

ln |xy| = ln |x|+ ln |y|, x, y �= 0,

ln

∣

∣

∣

∣

x

y

∣

∣

∣

∣

= ln |x| − ln |y|, x, y �= 0,

ln |xr| = r ln |x|, x �= 0.

Power function, fixed exponent:

(xy)r = xr · yr, x, y > 0 (extensions for some r),

(

x

y

)r

=
xr

yr
, x, y > 0 (extensions for some r).

Exponential, fixed base:

ax · ay = ax+y, a > 0 (extensions for some x, y),
(ax)y = axy, a > 0 (extensions for some x, y),

a−x =
1

ax
, a > 0, (extensions for some x),

n
√
a = a1/n, a ≥ 0, n ∈ N.

Square root:

√
x2 = |x|, x ∈ R.

Remark 21.1 It happens quite frequently that students make errors when they try to apply these
rules. They must be mastered! In particular, as one of my friends once put it: “If you can master the
square root, you can master everything in mathematics!” Notice that this innocent looking square
root is one of the most difficult operations in Calculus. Do not forget the absolute value! ♦
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21.3 Differentiation

Here are given the well-known rules of differentiation together with some rearrangements which some-
times may be easier to use:

{f(x)± g(x)}′ = f ′(x)± g′(x),

{f(x)g(x)}′ = f ′(x)g(x) + f(x)g′(x) = f(x)g(x)

{

f ′(x)

f(x)
+

g′(x)

g(x)

}

,

where the latter rearrangement presupposes that f(x) �= 0 and g(x) �= 0.
If g(x) �= 0, we get the usual formula known from high school

{

f(x)

g(x)

}′
=

f ′(x)g(x) − f(x)g′(x)

g(x)2
.

It is often more convenient to compute this expression in the following way:

{

f(x)

g(x)

}

=
d

dx

{

f(x) · 1

g(x)

}

=
f ′(x)

g(x)
− f(x)g′(x)

g(x)2
=

f(x)

g(x)

{

f ′(x)

f(x)
− g′(x)

g(x)

}

,

where the former expression often is much easier to use in practice than the usual formula from high
school, and where the latter expression again presupposes that f(x) �= 0 and g(x) �= 0. Under these
assumptions we see that the formulæ above can be written

{f(x)g(x)}′
f(x)g(x)

=
f ′(x)

f(x)
+

g′(x)

g(x)
,

{f(x)/g(x)}′
f(x)/g(x)

=
f ′(x)

f(x)
− g′(x)

g(x)
.

Since

d

dx
ln |f(x)| = f ′(x)

f(x)
, f(x) �= 0,

we also name these the logarithmic derivatives.

Finally, we mention the rule of differentiation of a composite function

{f(ϕ(x))}′ = f ′(ϕ(x)) · ϕ′(x).

We first differentiate the function itself; then the insides. This rule is a 1-dimensional version of the
so-called Chain rule.

21.4 Special derivatives.

Power like:

d

dx
(xα) = α · xα−1, for x > 0, (extensions for some α).

d

dx
ln |x| = 1

x
, for x �= 0.
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Exponential like:

d

dx
expx = expx, for x ∈ R,

d

dx
(ax) = ln a · ax, for x ∈ R and a > 0.

Trigonometric:

d

dx
sinx = cosx, for x ∈ R,

d

dx
cosx = − sinx, for x ∈ R,

d

dx
tanx = 1+ tan2 x =

1

cos2 x
, for x �= π

2
+ pπ, p ∈ Z,

d

dx
cotx = −(1 + cot2 x) = − 1

sin2 x
, for x �= pπ, p ∈ Z.

Hyperbolic:

d

dx
sinhx = coshx, for x ∈ R,

d

dx
coshx = sinhx, for x ∈ R,

d

dx
tanhx = 1− tanh2 x =

1

cosh2 x
, for x ∈ R,

d

dx
cothx = 1− coth2 x = − 1

sinh2 x
, for x �= 0.

Inverse trigonometric:

d

dx
Arcsin x =

1√
1− x2

, for x ∈ ]− 1, 1 [,

d

dx
Arccos x = − 1√

1− x2
, for x ∈ ]− 1, 1 [,

d

dx
Arctan x =

1

1 + x2
, for x ∈ R,

d

dx
Arccot x =

1

1 + x2
, for x ∈ R.

Inverse hyperbolic:

d

dx
Arsinh x =

1√
x2 + 1

, for x ∈ R,

d

dx
Arcosh x =

1√
x2 − 1

, for x ∈ ] 1,+∞ [,

d

dx
Artanh x =

1

1− x2
, for |x| < 1,

d

dx
Arcoth x =

1

1− x2
, for |x| > 1.

Remark 21.2 The derivative of the trigonometric and the hyperbolic functions are to some extent
exponential like. The derivatives of the inverse trigonometric and inverse hyperbolic functions are
power like, because we include the logarithm in this class. ♦
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21.5 Integration

The most obvious rules are dealing with linearity

∫

{f(x) + λg(x)} dx =

∫

f(x) dx + λ

∫

g(x) dx, where λ ∈ R is a constant,

and with the fact that differentiation and integration are “inverses to each other”, i.e. modulo some
arbitrary constant c ∈ R, which often tacitly is missing,

∫

f ′(x) dx = f(x).

If we in the latter formula replace f(x) by the product f(x)g(x), we get by reading from the right to
the left and then differentiating the product,

f(x)g(x) =

∫

{f(x)g(x)}′ dx =

∫

f ′(x)g(x) dx +

∫

f(x)g′(x) dx.

Hence, by a rearrangement

The rule of partial integration:

∫

f ′(x)g(x) dx = f(x)g(x)−
∫

f(x)g′(x) dx.

The differentiation is moved from one factor of the integrand to the other one by changing the sign
and adding the term f(x)g(x).

Remark 21.3 This technique was earlier used a lot, but is almost forgotten these days. It must
be revived, because MAPLE and pocket calculators apparently do not know it. It is possible to
construct examples where these devices cannot give the exact solution, unless you first perform a
partial integration yourself. ♦

Remark 21.4 This method can also be used when we estimate integrals which cannot be directly
calculated, because the antiderivative is not contained in e.g. the catalogue of MAPLE. The idea is
by a succession of partial integrations to make the new integrand smaller. ♦

Integration by substitution:

If the integrand has the special structure f(ϕ(x)) ·ϕ′(x), then one can change the variable to y = ϕ(x):

∫

f(ϕ(x)) · ϕ′(x) dx = “

∫

f(ϕ(x)) dϕ(x)′′ =

∫

y=ϕ(x)

f(y) dy.
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Integration by a monotonous substitution:

If ϕ(y) is a monotonous function, which maps the y-interval one-to-one onto the x-interval, then

∫

f(x) dx =

∫

y=ϕ−1(x)

f(ϕ(y))ϕ′(y) dy.

Remark 21.5 This rule is usually used when we have some “ugly” term in the integrand f(x). The
idea is to put this ugly term equal to y = ϕ−1(x). When e.g. x occurs in f(x) in the form

√
x, we put

y = ϕ−1(x) =
√
x, hence x = ϕ(y) = y2 and ϕ′(y) = 2y. ♦

21.6 Special antiderivatives

Power like:
∫

1

x
dx = ln |x|, for x �= 0. (Do not forget the numerical value!)

∫

xα dx =
1

α+ 1
xα+1, for α �= −1,

∫

1

1 + x2
dx = Arctan x, for x ∈ R,

∫

1

1− x2
dx =

1

2
ln

∣

∣

∣

∣

1 + x

1− x

∣

∣

∣

∣

, for x �= ±1,

∫

1

1− x2
dx = Artanh x, for |x| < 1,

∫

1

1− x2
dx = Arcoth x, for |x| > 1,

∫

1√
1− x2

dx = Arcsin x, for |x| < 1,

∫

1√
1− x2

dx = − Arccos x, for |x| < 1,

∫

1√
x2 + 1

dx = Arsinh x, for x ∈ R,

∫

1√
x2 + 1

dx = ln(x+
√

x2 + 1), for x ∈ R,

∫

x√
x2 − 1

dx =
√

x2 − 1, for x ∈ R,

∫

1√
x2 − 1

dx = Arcosh x, for x > 1,

∫

1√
x2 − 1

dx = ln |x+
√

x2 − 1|, for x > 1 eller x < −1.

There is an error in the programs of the pocket calculators TI-92 and TI-89. The numerical signs are
missing. It is obvious that

√
x2 − 1 < |x| so if x < −1, then x+

√
x2 − 1 < 0. Since you cannot take

the logarithm of a negative number, these pocket calculators will give an error message.
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Exponential like:

∫

expx dx = expx, for x ∈ R,

∫

ax dx =
1

ln a
· ax, for x ∈ R, and a > 0, a �= 1.

Trigonometric:

∫

sinx dx = − cosx, for x ∈ R,

∫

cosx dx = sinx, for x ∈ R,

∫

tanx dx = − ln | cosx|, for x �= π

2
+ pπ, p ∈ Z,

∫

cotx dx = ln | sinx|, for x �= pπ, p ∈ Z,

∫

1

cosx
dx =

1

2
ln

(

1 + sinx

1− sinx

)

, for x �= π

2
+ pπ, p ∈ Z,

∫

1

sinx
dx =

1

2
ln

(

1− cosx

1 + cosx

)

, for x �= pπ, p ∈ Z,

∫

1

cos2 x
dx = tanx, for x �= π

2
+ pπ, p ∈ Z,

∫

1

sin2 x
dx = − cotx, for x �= pπ, p ∈ Z.

Hyperbolic:

∫

sinhx dx = coshx, for x ∈ R,

∫

coshx dx = sinhx, for x ∈ R,

∫

tanhx dx = ln coshx, for x ∈ R,

∫

cothx dx = ln | sinhx|, for x �= 0,

∫

1

coshx
dx = Arctan(sinhx), for x ∈ R,

∫

1

coshx
dx = 2 Arctan(ex), for x ∈ R,

∫

1

sinhx
dx =

1

2
ln

(

coshx− 1

coshx+ 1

)

, for x �= 0,
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∫

1

sinhx
dx = ln

∣

∣

∣

∣

ex − 1

ex + 1

∣

∣

∣

∣

, for x �= 0,

∫

1

cosh2 x
dx = tanhx, for x ∈ R,

∫

1

sinh2 x
dx = − cothx, for x �= 0.

21.7 Trigonometric formulæ

The trigonometric formulæ are closely connected with circular movements. Thus (cosu, sinu) are
the coordinates of a point P on the unit circle corresponding to the angle u, cf. figure A.1. This
geometrical interpretation is used from time to time.

✫✪
✬✩

✲

✻

��
(cosu, sinu)

u
1

Figure 21.1: The unit circle and the trigonometric functions.

The fundamental trigonometric relation:

cos2 u+ sin2 u = 1, for u ∈ R.

Using the previous geometric interpretation this means according to Pythagoras’s theorem, that the
point P with the coordinates (cosu, sinu) always has distance 1 from the origo (0, 0), i.e. it is lying
on the boundary of the circle of centre (0, 0) and radius

√
1 = 1.

Connection to the complex exponential function:

The complex exponential is for imaginary arguments defined by

exp(iu) := cosu+ i sinu.

It can be checked that the usual functional equation for exp is still valid for complex arguments. In
other word: The definition above is extremely conveniently chosen.

By using the definition for exp(iu) and exp(− iu) it is easily seen that

cosu =
1

2
(exp(iu) + exp(− iu)),

sinu =
1

2i
(exp(i u)− exp(− iu)),

.
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Moivre’s formula: We get by expressing exp(inu) in two different ways:

exp(inu) = cosnu+ i sinnu = (cosu+ i sinu)n.

Example 21.1 If we e.g. put n = 3 into Moivre’s formula, we obtain the following typical application,

cos(3u) + i sin(3u) = (cos u+ i sinu)3

= cos3 u+ 3i cos2 u · sinu+ 3i2 cosu · sin2 u+ i3 sin3 u

= {cos3 u− 3 cosu · sin2 u}+ i{3 cos2 u · sinu− sin3 u}
= {4 cos3 u− 3 cosu}+ i{3 sinu− 4 sin3 u}

When this is split into the real- and imaginary parts we obtain

cos 3u = 4 cos3 u− 3 cosu, sin 3u = 3 sinu− 4 sin3 u. ♦

Addition formulæ:

sin(u+ v) = sinu cos v + cosu sin v,

sin(u− v) = sinu cos v − cosu sin v,

cos(u + v) = cosu cos v − sinu sin v,

cos(u − v) = cosu cos v + sinu sin v.

Products of trigonometric functions to a sum:

sinu cos v =
1

2
sin(u + v) +

1

2
sin(u− v),

cosu sin v =
1

2
sin(u + v)− 1

2
sin(u− v),

sinu sin v =
1

2
cos(u − v)− 1

2
cos(u+ v),

cosu cos v =
1

2
cos(u− v) +

1

2
cos(u + v).

Sums of trigonometric functions to a product:

sinu+ sin v = 2 sin

(

u+ v

2

)

cos

(

u− v

2

)

,

sinu− sin v = 2 cos

(

u+ v

2

)

sin

(

u− v

2

)

,

cosu+ cos v = 2 cos

(

u+ v

2

)

cos

(

u− v

2

)

,

cosu− cos v = −2 sin

(

u+ v

2

)

sin

(

u− v

2

)

.

Formulæ of halving and doubling the angle:

sin 2u = 2 sinu cosu,

cos 2u = cos2 u− sin2 u = 2 cos2 u− 1 = 1− 2 sin2 u,

sin
u

2
= ±

√

1− cosu

2
followed by a discussion of the sign,

cos
u

2
= ±

√

1 + cosu

2
followed by a discussion of the sign,
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21.8 Hyperbolic formulæ

These are very much like the trigonometric formulæ, and if one knows a little of Complex Function
Theory it is realized that they are actually identical. The structure of this section is therefore the same
as for the trigonometric formulæ. The reader should compare the two sections concerning similarities
and differences.

The fundamental relation:

cosh2 x− sinh2 x = 1.

Definitions:

coshx =
1

2
(exp(x) + exp(−x)) , sinhx =

1

2
(exp(x) − exp(−x)) .

“Moivre’s formula”:

exp(x) = coshx+ sinhx.

This is trivial and only rarely used. It has been included to show the analogy.

Addition formulæ:

sinh(x+ y) = sinh(x) cosh(y) + cosh(x) sinh(y),

sinh(x− y) = sinh(x) cosh(y)− cosh(x) sinh(y),

cosh(x + y) = cosh(x) cosh(y) + sinh(x) sinh(y),

cosh(x − y) = cosh(x) cosh(y)− sinh(x) sinh(y).

Formulæ of halving and doubling the argument:

sinh(2x) = 2 sinh(x) cosh(x),

cosh(2x) = cosh2(x) + sinh2(x) = 2 cosh2(x)− 1 = 2 sinh2(x) + 1,

sinh
(x

2

)

= ±
√

cosh(x) − 1

2
followed by a discussion of the sign,

cosh
(x

2

)

=

√

cosh(x) + 1

2
.

Inverse hyperbolic functions:

Arsinh(x) = ln
(

x+
√

x2 + 1
)

, x ∈ R,

Arcosh(x) = ln
(

x+
√

x2 − 1
)

, x ≥ 1,

Artanh(x) =
1

2
ln

(

1 + x

1− x

)

, |x| < 1,

Arcoth(x) =
1

2
ln

(

x+ 1

x− 1

)

, |x| > 1.
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21.9 Complex transformation formulæ

cos(ix) = cosh(x), cosh(ix) = cos(x),

sin(ix) = i sinh(x), sinh(ix) = i sinx.

21.10 Taylor expansions

The generalized binomial coefficients are defined by

(

α
n

)

:=
α(α− 1) · · · (α− n+ 1)

1 · 2 · · ·n ,

with n factors in the numerator and the denominator, supplied with

(

α
0

)

:= 1.

The Taylor expansions for standard functions are divided into power like (the radius of convergency
is finite, i.e. = 1 for the standard series) andexponential like (the radius of convergency is infinite).
Power like:

1

1− x
=

∞
∑

n=0

xn, |x| < 1,

1

1 + x
=

∞
∑

n=0

(−1)nxn, |x| < 1,

(1 + x)n =

n
∑

j=0

(

n
j

)

xj , n ∈ N, x ∈ R,

(1 + x)α =

∞
∑

n=0

(

α
n

)

xn, α ∈ R \ N, |x| < 1,

ln(1 + x) =

∞
∑

n=1

(−1)n−1x
n

n
, |x| < 1,

Arctan(x) =

∞
∑

n=0

(−1)n
x2n+1

2n+ 1
, |x| < 1.
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Exponential like:

exp(x) =

∞
∑

n=0

1

n!
xn, x ∈ R

exp(−x) =

∞
∑

n=0

(−1)n
1

n!
xn, x ∈ R

sin(x) =

∞
∑

n=0

(−1)n
1

(2n+ 1)!
x2n+1, x ∈ R,

sinh(x) =

∞
∑

n=0

1

(2n+ 1)!
x2n+1, x ∈ R,

cos(x) =

∞
∑

n=0

(−1)n
1

(2n)!
x2n, x ∈ R,

cosh(x) =

∞
∑

n=0

1

(2n)!
x2n, x ∈ R.

21.11 Magnitudes of functions

We often have to compare functions for x → 0+, or for x → ∞. The simplest type of functions are
therefore arranged in an hierarchy:

1) logarithms,

2) power functions,

3) exponential functions,

4) faculty functions.

When x → ∞, a function from a higher class will always dominate a function form a lower class. More
precisely:

A) A power function dominates a logarithm for x → ∞:

(lnx)β

xα
→ 0 for x → ∞, α, β > 0.

B) An exponential dominates a power function for x → ∞:

xα

ax
→ 0 for x → ∞, α, a > 1.

C) The faculty function dominates an exponential for n → ∞:

an

n!
→ 0, n → ∞, n ∈ N, a > 0.

D) When x → 0+ we also have that a power function dominates the logarithm:

xα lnx → 0−, for x → 0+, α > 0.
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Ampère-Maxwell’s law 1678
Ampère’s law 1491, 1498, 1677, 1678, 1833
Ampère’s law for the magnetic field 1674
angle 19
angular momentum 886
angular set 84
annulus 176, 243
anticommutative product 26
antiderivative 301, 847
approximating polynomial 304, 322, 326, 336, 404,

488, 632, 662
approximation in energy 734
Archimedes’s spiral 976, 1196
Archimedes’s theorem 1818
area 887, 1227, 1229, 1543
area element 1227
area of a graph 1230
asteroid 1215
asymptote 51
axial moment 1910
axis of revolution 181
axis of rotation 34, 886
axis of symmetry 49, 50, 53

barycentre 885, 1910
basis 22
bend 486
bijective map 153
body of revolution 43, 1582, 1601
boundary 37–39
boundary curve 182
boundary curve of a surface 182
boundary point 920
boundary set 21
bounded map 153
bounded set 41
branch 184
branch of a curve 492
Brownian motion 884

cardiod 972, 973, 1199, 1705

Cauchy-Schwarz’s inequality 23, 24, 26
centre of gravity 1108
centre of mass 885
centrum 66
chain rule 305, 333, 352, 491, 503, 581, 1215, 1489,

1493, 1808
change of parameter 174
circle 49
circular motion 19
circulation 1487
circulation theorem 1489, 1491
circumference 86
closed ball 38
closed differential form 1492
closed disc 86
closed domain 176
closed set 21
closed surface 182, 184
closure 39
clothoid 1219
colour code 890
compact set 186, 580, 1813
compact support 1813
complex decomposition 69
composite function 305
conductivity of heat 1818
cone 19, 35, 59, 251
conic section 19, 47, 54, 239, 536
conic sectional conic surface 59, 66
connected set 175, 241
conservation of electric charge 1548, 1817
conservation of energy 1548, 1817
conservation of mass 1548, 1816
conservative force 1498, 1507
conservative vector field 1489
continuity equation 1548, 1569, 1767, 1817
continuity 162, 186
continuous curve 170, 483
continuous extension 213
continuous function 168
continuous surfaces 177
contraction 167
convective term 492
convex set 21, 22, 41, 89, 91, 175, 244
coordinate function 157, 169
coordinate space 19, 21
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Cornu’s spiral 1219
Coulomb field 1538, 1545, 1559, 1566, 1577
Coulomb vector field 1585, 1670
cross product 19, 163, 169, 1750
cube 42, 82
current density 1678, 1681
current 1487, 1499
curvature 1219
curve 227
curve length 1165
curved space integral 1021
cusp 486, 487, 489
cycloid 233, 1215
cylinder 34, 42, 43, 252
cylinder of revolution 500
cylindric coordinates 15, 21, 34, 147, 181, 182,

289, 477,573, 841, 1009, 1157, 1347, 1479,
1651, 1801

cylindric surface 180, 245, 247, 248, 499, 1230

degree of trigonometric polynomial 67
density 885
density of charge 1548
density of current 1548
derivative 296
derivative of inverse function 494
Descartes’a leaf 974
dielectric constant 1669, 1670
difference quotient 295
differentiability 295
differentiable function 295
differentiable vector function 303
differential 295, 296, 325, 382, 1740, 1741
differential curves 171
differential equation 369, 370, 398
differential form 848
differential of order p 325
differential of vector function 303
diffusion equation 1818
dimension 1016
direction 334
direction vector 172
directional derivative 317, 334, 375
directrix 53
Dirichlet/Neumann problem 1901
displacement field 1670
distribution of current 886
divergence 1535, 1540, 1542, 1739, 1741, 1742
divergence free vector field 1543

dodecahedron 83
domain 153, 176
domain of a function 189
dot product 19, 350, 1750
double cone 252
double point 171
double vector product 27

eccentricity 51
eccentricity of ellipse 49
eigenvalue 1906
elasticity 885, 1398
electric field 1486, 1498, 1679
electrical dipole moment 885
electromagnetic field 1679
electromagnetic potentials 1819
electromotive force 1498
electrostatic field 1669
element of area 887
elementary chain rule 305
elementary fraction 69
ellipse 48–50, 92, 113, 173, 199, 227
ellipsoid 56, 66, 110, 197, 254, 430, 436, 501, 538,

1107
ellipsoid of revolution 111
ellipsoidal disc 79, 199
ellipsoidal surface 180
elliptic cylindric surface 60, 63, 66, 106
elliptic paraboloid 60, 62, 66, 112, 247
elliptic paraboloid of revolution 624
energy 1498
energy density 1548, 1818
energy theorem 1921
entropy 301
Euclidean norm 162
Euclidean space 19, 21, 22
Euler’s spiral 1219
exact differential form 848
exceptional point 594, 677, 920
expansion point 327
explicit given function 161
extension map 153
exterior 37–39
exterior point 38
extremum 580, 632

Faraday-Henry law of electromagnetic induction
1676

Fick’s first law of diffusion 297
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Fick’s law 1818
field line 160
final point 170
fluid mechanics 491
flux 1535, 1540, 1549
focus 49, 51, 53
force 1485
Fourier’s law 297, 1817
function in several variables 154
functional matrix 303
fundamental theorem of vector analysis 1815

Gaussian integral 938
Gauß’s law 1670
Gauß’s law for magnetism 1671
Gauß’s theorem 1499, 1535, 1540, 1549, 1580, 1718,

1724, 1737, 1746, 1747, 1749, 1751, 1817,
1818, 1889, 1890, 1913

Gauß’s theorem in R2 1543
Gauß’s theorem in R3 1543
general chain rule 314
general coordinates 1016
general space integral 1020
general Taylor’s formula 325
generalized spherical coordinates 21
generating curve 499
generator 66, 180
geometrical analysis 1015
global minimum 613
gradient 295, 296, 298, 339, 847, 1739, 1741
gradient field 631, 847, 1485, 1487, 1489, 1491,

1916
gradient integral theorem 1489, 1499
graph 158, 179, 499, 1229
Green’s first identity 1890
Green’s second identity 1891, 1895
Green’s theorem in the plane 1661, 1669, 1909
Green’s third identity 1896
Green’s third identity in the plane 1898

half-plane 41, 42
half-strip 41, 42
half disc 85
harmonic function 426, 427, 1889
heat conductivity 297
heat equation 1818
heat flow 297
height 42
helix 1169, 1235

Helmholtz’s theorem 1815
homogeneous function 1908
homogeneous polynomial 339, 372
Hopf’s maximum principle 1905
hyperbola 48, 50, 51, 88, 195, 217, 241, 255, 1290
hyperbolic cylindric surface 60, 63, 66, 105, 110
hyperbolic paraboloid 60, 62, 66, 246, 534, 614,

1445
hyperboloid 232, 1291
hyperboloid of revolution 104
hyperboloid of revolution with two sheets 111
hyperboloid with one sheet 56, 66, 104, 110, 247,

255
hyperboloid with two sheets 59, 66, 104, 110, 111,

255, 527
hysteresis 1669

identity map 303
implicit given function 21, 161
implicit function theorem 492, 503
improper integral 1411
improper surface integral 1421
increment 611
induced electric field 1675
induction field 1671
infinitesimal vector 1740
infinity, signed 162
infinity, unspecified 162
initial point 170
injective map 153
inner product 23, 29, 33, 163, 168, 1750
inspection 861
integral 847
integral over cylindric surface 1230
integral over surface of revolution 1232
interior 37–40
interior point 38
intrinsic boundary 1227
isolated point 39
Jacobian 1353, 1355

Kronecker symbol 23

Laplace equation 1889
Laplace force 1819
Laplace operator 1743
latitude 35
length 23
level curve 159, 166, 198, 492, 585, 600, 603
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level surface 198, 503
limit 162, 219
line integral 1018, 1163
line segment 41
Linear Algebra 627
linear space 22
local extremum 611
logarithm 189
longitude 35
Lorentz condition 1824

Maclaurin’s trisectrix 973, 975
magnetic circulation 1674
magnetic dipole moment 886, 1821
magnetic field 1491, 1498, 1679
magnetic flux 1544, 1671, 1819
magnetic force 1674
magnetic induction 1671
magnetic permeability of vacuum 1673
magnostatic field 1671
main theorems 185
major semi-axis 49
map 153
MAPLE 55, 68, 74, 156, 171, 173, 341, 345, 350,

352–354, 356, 357, 360, 361, 363, 364,
366, 368, 374, 384–387, 391–393, 395–
397, 401, 631, 899, 905–912, 914, 915,
917, 919, 922–924, 926, 934, 935, 949,
951, 954, 957–966, 968, 971–973, 975,
1032–1034, 1036, 1037, 1039, 1040, 1042,
1053, 1059, 1061, 1064, 1066–1068, 1070–
1072, 1074, 1087, 1089, 1091, 1092, 1094,
1095, 1102, 1199, 1200

matrix product 303
maximal domain 154, 157
maximum 382, 579, 612, 1916
maximum value 922
maximum-minimum principle for harmonic func-

tions 1895
Maxwell relation 302
Maxwell’s equations 1544, 1669, 1670, 1679, 1819
mean value theorem 321, 884, 1276, 1490
mean value theorem for harmonic functions 1892
measure theory 1015
Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157,

1347, 1479, 1651, 1801, 1921
meridian curve 181, 251, 499, 1232
meridian half-plane 34, 35, 43, 181, 1055, 1057,

1081

method of indefinite integration 859
method of inspection 861
method of radial integration 862
minimum 186, 178, 579, 612, 1916
minimum value 922
minor semi-axis 49
mmf 1674
Möbius strip 185, 497
Moivre’s formula 122, 264, 452, 548, 818, 984,

1132, 1322, 1454, 1626, 1776, 1930
monopole 1671
multiple point 171

nabla 296, 1739
nabla calculus 1750
nabla notation 1680
natural equation 1215
natural parametric description 1166, 1170
negative definite matrix 627
negative half-tangent 485
neighbourhood 39
neutral element 22
Newton field 1538
Newton-Raphson iteration formula 583
Newton’s second law 1921
non-oriented surface 185
norm 19, 23
normal 1227
normal derivative 1890
normal plane 487
normal vector 496, 1229

octant 83
Ohm’s law 297
open ball 38
open domain 176
open set 21, 39
order of expansion 322
order relation 579
ordinary integral 1017
orientation of a surface 182
orientation 170, 172, 184, 185, 497
oriented half line 172
oriented line 172
oriented line segment 172
orthonormal system 23

parabola 52, 53, 89–92, 195, 201, 229, 240, 241
parabolic cylinder 613
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parabolic cylindric surface 64, 66
paraboloid of revolution 207, 613, 1435
parallelepipedum 27, 42
parameter curve 178, 496, 1227
parameter domain 1227
parameter of a parabola 53
parametric description 170, 171, 178
parfrac 71
partial derivative 298
partial derivative of second order 318
partial derivatives of higher order 382
partial differential equation 398, 402
partial fraction 71
Peano 483
permeability 1671
piecewise Ck-curve 484
piecewise Cn-surface 495
plane 179
plane integral 21, 887
point of contact 487
point of expansion 304, 322
point set 37
Poisson’s equation 1814, 1889, 1891, 1901
polar coordinates 15, 19, 21, 30, 85, 88, 147, 163,

172, 213, 219, 221, 289, 347, 388, 390,
477, 573, 611, 646, 720, 740, 841, 936,
1009, 1016, 1157, 1165, 1347, 1479, 1651,
1801

polar plane integral 1018
polynomial 297
positive definite matrix 627
positive half-tangent 485
positive orientation 173
potential energy 1498
pressure 1818
primitive 1491
primitive of gradient field 1493
prism 42
Probability Theory 15, 147, 289, 477, 573, 841,

1009, 1157, 1347, 1479, 1651, 1801
product set 41
projection 23, 157
proper maximum 612, 618, 627
proper minimum 612, 613, 618, 627
pseudo-sphere 1434
Pythagoras’s theorem 23, 25, 30, 121, 451, 547,

817, 983, 1131, 1321, 1453, 1625, 1775,
1929

quadrant 41, 42, 84
quadratic equation 47

range 153
rectangle 41, 87
rectangular coordinate system 29
rectangular coordinates 15, 21, 22, 147, 289, 477,

573, 841, 1009, 1016, 1079, 1157, 1165,
1347, 1479, 1651, 1801

rectangular plane integral 1018
rectangular space integral 1019
rectilinear motion 19
reduction of a surface integral 1229
reduction of an integral over cylindric surface 1231
reduction of surface integral over graph 1230
reduction theorem of line integral 1164
reduction theorem of plane integral 937
reduction theorem of space integral 1021, 1056
restriction map 153
Ricatti equation 369
Riesz transformation 1275
Rolle’s theorem 321
rotation 1739, 1741, 1742
rotational body 1055
rotational domain 1057
rotational free vector field 1662
rules of computation 296

saddle point 612
scalar field 1485
scalar multiplication 22, 1750
scalar potential 1807
scalar product 169
scalar quotient 169
second differential 325
semi-axis 49, 50
semi-definite matrix 627
semi-polar coordinates 15, 19, 21, 33, 147, 181,

182, 289, 477, 573, 841, 1009, 1016, 1055,
1086, 1157, 1231, 1347, 1479, 1651, 1801

semi-polar space integral 1019
separation of the variables 853
signed curve length 1166
signed infinity 162
simply connected domain 849, 1492
simply connected set 176, 243
singular point 487, 489
space filling curve 171
space integral 21, 1015
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specific capacity of heat 1818
sphere 35, 179
spherical coordinates 15, 19, 21, 34, 147, 179, 181,

289, 372, 477, 573, 782, 841, 1009, 1016,
1078, 1080, 1081, 1157, 1232, 1347, 1479,
1581, 1651, 1801

spherical space integral 1020
square 41
star-shaped domain 1493, 1807
star shaped set 21, 41, 89, 90, 175
static electric field 1498
stationary magnetic field 1821
stationary motion 492
stationary point 583, 920
Statistics 15, 147, 289, 477, 573, 841, 1009, 1157,

1347, 1479, 1651, 1801
step line 172
Stokes’s theorem 1499, 1661, 1676, 1679, 1746,

1747, 1750, 1751, 1811, 1819, 1820, 1913
straight line (segment) 172
strip 41, 42
substantial derivative 491
surface 159, 245
surface area 1296
surface integral 1018, 1227
surface of revolution 110, 111, 181, 251, 499
surjective map 153

tangent 486
tangent plane 495, 496
tangent vector 178
tangent vector field 1485
tangential line integral 861, 1485, 1598, 1600, 1603
Taylor expansion 336
Taylor expansion of order 2, 323
Taylor’s formula 321, 325, 404, 616, 626, 732
Taylor’s formula in one dimension 322
temperature 297
temperature field 1817
tetrahedron 93, 99, 197, 1052
Thermodynamics 301, 504
top point 49, 50, 53, 66
topology 15, 19, 37, 147, 289. 477, 573, 841, 1009,

1157, 1347, 1479, 1651, 1801
torus 43, 182–184
transformation formulæ1353
transformation of space integral 1355, 1357
transformation theorem 1354
trapeze 99

triangle inequality 23,24
triple integral 1022, 1053

uniform continuity 186
unit circle 32
unit disc 192
unit normal vector 497
unit tangent vector 486
unit vector 23
unspecified infinity 162

vector 22
vector field 158, 296, 1485
vector function 21, 157, 189
vector product 19, 26, 30, 163, 169. 1227, 1750
vector space 21, 22
vectorial area 1748
vectorial element of area 1535
vectorial potential 1809, 1810
velocity 490
volume 1015, 1543
volumen element 1015

weight function 1081, 1229, 1906
work 1498

zero point 22
zero vector 22

(r, s, t)-method 616, 619, 633, 634, 638, 645–647,
652, 655

Ck-curve 483
Cn-functions 318
1-1 map 153
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