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Preface

The topic of this series of books on “Real Functions in Several Variables” is very important in the
description in e.g. Mechanics of the real 3-dimensional world that we live in. Therefore, we start from
the very beginning, modelling this world by using the coordinates of R3 to describe e.g. a motion in
space. There is, however, absolutely no reason to restrict ourselves to R3 alone. Some motions may
be rectilinear, so only R is needed to describe their movements on a line segment. This opens up for
also dealing with R2, when we consider plane motions. In more elaborate problems we need higher
dimensional spaces. This may be the case in Probability Theory and Statistics. Therefore, we shall in
general use Rn as our abstract model, and then restrict ourselves in examples mainly to R2 and R3.

For rectilinear motions the familiar rectangular coordinate system is the most convenient one to apply.
However, as known from e.g. Mechanics, circular motions are also very important in the applications
in engineering. It becomes natural alternatively to apply in R2 the so-called polar coordinates in the
plane. They are convenient to describe a circle, where the rectangular coordinates usually give some
nasty square roots, which are difficult to handle in practice.

Rectangular coordinates and polar coordinates are designed to model each their problems. They
supplement each other, so difficult computations in one of these coordinate systems may be easy, and
even trivial, in the other one. It is therefore important always in advance carefully to analyze the
geometry of e.g. a domain, so we ask the question: Is this domain best described in rectangular or in
polar coordinates?

Sometimes one may split a problem into two subproblems, where we apply rectangular coordinates in
one of them and polar coordinates in the other one.

It should be mentioned that in real life (though not in these books) one cannot always split a problem
into two subproblems as above. Then one is really in trouble, and more advanced mathematical
methods should be applied instead. This is, however, outside the scope of the present series of books.

The idea of polar coordinates can be extended in two ways to R3. Either to semi-polar or cylindric
coordinates, which are designed to describe a cylinder, or to spherical coordinates, which are excellent
for describing spheres, where rectangular coordinates usually are doomed to fail. We use them already
in daily life, when we specify a place on Earth by its longitude and latitude! It would be very awkward
in this case to use rectangular coordinates instead, even if it is possible.

Concerning the contents, we begin this investigation by modelling point sets in an n-dimensional
Euclidean space En by Rn. There is a subtle difference between En and Rn, although we often
identify these two spaces. In En we use geometrical methods without a coordinate system, so the
objects are independent of such a choice. In the coordinate space Rn we can use ordinary calculus,
which in principle is not possible in En. In order to stress this point, we call En the “abstract space”
(in the sense of calculus; not in the sense of geometry) as a warning to the reader. Also, whenever
necessary, we use the colour black in the “abstract space”, in order to stress that this expression is
theoretical, while variables given in a chosen coordinate system and their related concepts are given
the colours blue, red and green.

We also include the most basic of what mathematicians call Topology, which will be necessary in the
following. We describe what we need by a function.

Then we proceed with limits and continuity of functions and define continuous curves and surfaces,
with parameters from subsets of R and R2, resp..
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Continue with (partial) differentiable functions, curves and surfaces, the chain rule and Taylor’s for-
mula for functions in several variables.

We deal with maxima and minima and extrema of functions in several variables over a domain in Rn.
This is a very important subject, so there are given many worked examples to illustrate the theory.

Then we turn to the problems of integration, where we specify four different types with increasing
complexity, plane integral, space integral, curve (or line) integral and surface integral.

Finally, we consider vector analysis, where we deal with vector fields, Gauß’s theorem and Stokes’s
theorem. All these subjects are very important in theoretical Physics.

The structure of this series of books is that each subject is usually (but not always) described by three
successive chapters. In the first chapter a brief theoretical theory is given. The next chapter gives
some practical guidelines of how to solve problems connected with the subject under consideration.
Finally, some worked out examples are given, in many cases in several variants, because the standard
solution method is seldom the only way, and it may even be clumsy compared with other possibilities.

I have as far as possible structured the examples according to the following scheme:

A Awareness, i.e. a short description of what is the problem.

D Decision, i.e. a reflection over what should be done with the problem.

I Implementation, i.e. where all the calculations are made.

C Control, i.e. a test of the result.

This is an ideal form of a general procedure of solution. It can be used in any situation and it is not
linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a
situation which did not contain Mathematics at all. The student is recommended to use it also in
other disciplines.

From high school one is used to immediately to proceed to I. Implementation. However, examples
and problems at university level, let alone situations in real life, are often so complicated that it in
general will be a good investment also to spend some time on the first two points above in order to
be absolutely certain of what to do in a particular case. Note that the first three points, ADI, can
always be executed.

This is unfortunately not the case with C Control, because it from now on may be difficult, if possible,
to check one’s solution. It is only an extra securing whenever it is possible, but we cannot include it
always in our solution form above.

I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a
shorthand, because they are often (too often, I would say) misused. Instead of ∧ I shall either write
“and”, or a comma, and instead of ∨ I shall write “or”. The arrows ⇒ and ⇔ are in particular
misunderstood by the students, so they should be totally avoided. They are not telegram short hands,
and from a logical point of view they usually do not make sense at all! Instead, write in a plain
language what you mean or want to do. This is difficult in the beginning, but after some practice it
becomes routine, and it will give more precise information.

When we deal with multiple integrals, one of the possible pedagogical ways of solving problems has
been to colour variables, integrals and upper and lower bounds in blue, red and green, so the reader
by the colour code can see in each integral what is the variable, and what are the parameters, which
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do not enter the integration under consideration. We shall of course build up a hierarchy of these
colours, so the order of integration will always be defined. As already mentioned above we reserve
the colour black for the theoretical expressions, where we cannot use ordinary calculus, because the
symbols are only shorthand for a concept.

The author has been very grateful to his old friend and colleague, the late Per Wennerberg Karlsson,
for many discussions of how to present these difficult topics on real functions in several variables, and
for his permission to use his textbook as a template of this present series. Nevertheless, the author
has felt it necessary to make quite a few changes compared with the old textbook, because we did not
always agree, and some of the topics could also be explained in another way, and then of course the
results of our discussions have here been put in writing for the first time.

The author also adds some calculations in MAPLE, which interact nicely with the theoretic text.
Note, however, that when one applies MAPLE, one is forced first to make a geometrical analysis of
the domain of integration, i.e. apply some of the techniques developed in the present books.

The theory and methods of these volumes on “Real Functions in Several Variables” are applied
constantly in higher Mathematics, Mechanics and Engineering Sciences. It is of paramount importance
for the calculations in Probability Theory, where one constantly integrate over some point set in space.

It is my hope that this text, these guidelines and these examples, of which many are treated in more
ways to show that the solutions procedures are not unique, may be of some inspiration for the students
who have just started their studies at the universities.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.
I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
March 21, 2015
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The range of a function, Extrema of a Function in Several Vari-
ables

This is the fifth volume in the series of books on Real Functions in Several Variables. Its topic is
dealing with the range of a functions, its global and local extrema.

Let f : A → R be a continuous function, where A ⊆ Rm. We show that extrema of f can only exist
at either points in the interior of A, where f is not differentiable – also called exceptional points – or
at the so-called stationary points, i.e. points in the interior of A, where the gradient is 0 – or at the
points of the boundary of A also lying in A, i.e. in A ∩ ∂A. This eases the task a lot, though there
may still be problems.

One of the problems is that points of extrema, i.e. where f attains its maximum or minimum, do not
exist in general. However, if A is closed and bounded in Rm, then we prove that we always have both
a global maximum and a global minimum.

As usual the number of practical computations increase factorially with the dimension, so in practice
only the cases of two or three space variables are manageable. Even an innocent looking problem
like finding extrema for a second order polynomial in m variables over some closed and bounded set
A ⊂ Rm may turn out to be a computational mess, if m is “large”. The author has experienced this
once for m = 7, and had to create an alternative solution method than the standard procedures given
in this book.

However, in R2 and R3 the calculations are in general moderate. In some cases MAPLE could help a
lot. On the other hand, the focus in this book has been to emphasize the possible methods, so most
of the examples are fairly simple, and it would seem to be too much to apply MAPLE on them.
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16 The range of a function

16.1 Introduction

We shall in this chapter study the range of a function in n variables. We shall assume, unless stated
otherwise, that the function is continuous. This assumption immediately invites us to apply the main
theorems of continuous functions, which already have been quoted in Section 5.11.

We shall start with

Theorem 16.1 The first main theorem of continuous functions. Assume that A ⊆ Rn is connected,
and that f : A → Rm is continuous. Then the range f(A) is also connected.

In the special case, when m = 1, the range f(A) ⊆ R becomes an interval. Depending on the definition
of f and A this range can be any type of interval, closed, half-open or open. We cannot derive more
from Theorem 16.1.

If f : A → R is continuous, while A is not connected, then we use that A can be decompose into
connected subsets,

A = A1 ∪ · · · ∪ Ak, or A = A1 ∪ · · · ∪ Ak ∪ · · · ,

where all the Ak are connected sets which are mutually disjoint. Using Theorem 16.1 above, each
subrange f (Aj) is an interval, so in a general analysis we may without loss of generality from the very
beginning restrict ourselves to the case, where the domain A of f is connected.

The real axis R is ordered by the ordinary order relation ≤, and since A is connected, hence f(A) = I
an interval, we can introduce the following definition.

Definition 16.1 Let A ⊂ Rm be a connected set, and let f : A → R be a continuous function.

1) If there exists a point a ∈ A, such that

f(a) ≤ f(x) for all x ∈ A,

then the image f(a) of the point a is called the (global) minimum of f on A.

2) If there exists a point b ∈ A, such that

f(x) ≤ f(b) for all x ∈ A,

then the image f(b) of the point b is called the (global) maximum of f on A.

If f is continuous on the connected set A, and f has both a minimum f(a) and a maximum f(b) on
A, then it follows from the above that the range is the closed interval

f(A) = [f(a), f(b)].

Then we turn to
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Theorem 16.2 The second main theorem of continuous functions. Assume that A ⊆ Rm is a bounded
and closed set. If f : A → Rk is continuous, then the range f(A) ⊆ Rk is also a bounded and closed
set.

Remark. Subsets in Rm, which are both bounded and closed are also called compact sets. The
old-fashioned term is used here, because “compact” is still not recognized everywhere. ♦

It follows from Theorem 16.2 that if f : A → R is continuous, and A is bounded and closed, then the
range f(A) is also bounded and closed, though not necessarily connected, if A is not connected. So
f(A) ⊆ I, where I is the smallest bounded and closed interval, which contains f(A). In particular, the
two end points of I must belong to the range f(A), because otherwise we could find a smaller interval
containing f(A). This means that f has both a minimum and a maximum, whenever f : A → R is
continuous on the bounded and closed set A into the set of real numbers R.

In the applications we may also be interested in local minima and maxima. A collective word for
minima and maxima is extrema. We shall in the following sections more closely study first the global
extrema, and then the local extrema.

Since the reader may feel this topic difficult, some examples in the text have been worked out in all
details, while the more standard treatment of examples is given in Chapter 17, because otherwise the
volume would be overwhelming.
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16.2 Global extrema of a continuous function

16.2.1 A necessary condition

When we shall find the smallest and largest value of a continuous function f : A → R, the strategy is
to split the domain A of f into four subdomains, and then consider the possibility of extrema in each
of them. In particular, it will turn up, that one of these subsets will never contain extrama. The four
sets are listed below:

1) The set As of stationary points. A point u ∈ A◦ (the interior of A) is called a stationary point of
f , if f is differentiable at u, and ▽f(u) = 0.

2) The set Ae of exceptional points. A point u ∈ A◦ iis called an exceptional point of f , if either f is
not differentiable at u, or it is too difficult to check if it is differentiable at u.

3) The set ∂A of boundary points. This is just the ordinary boundary of the set A. It was introduced
in Section 1.5.1.

4) The set Ar of remaining points in A◦. This means that if u ∈ Ar, then f is differentiable at u
and ▽f(u) �= 0, so u is neither an exceptional nor a stationary point, and since u ∈ A◦, it is not
a boundary point either.

Clearly, A ⊆ As ∪ Ae ∪ ∂A ∪ Ar. Every point of A lies in one of the four subsets, while there may
be boundary points u ∈ ∂A, which do not belong to A.

Let us assume the u ∈ Ar, so u ∈ A◦ and f is differentiable with ▽f(u) �= 0. We let e denote the
unit vector in the direction of the gradient og f at u, i.e.

e :=
▽f(u)

� ▽ f(u)� .

Then introduce the function

F (t) := f(u+ te), where u+ te ∈ A for |t| < δ, and F (0) = f(u).

We get by the chain rule,

F ′(0) = e · ▽f(u) = � ▽ f(u)� > 0,

so when we take the restriction of f to the line segment {u+ te | |t| < δ}, this restriction (= F (t)) is
increasing in a neighbourhood of u. Therefore, on this line segment, f(u) can neither be a minimum
nor a maximum.

In other words, this simple argument shows that the set Ar does not contain any extremum, and we
have proved

Theorem 16.3 A necessary condition for global extrema. Assume that a function f : A → R, where
A ⊆ Rm, has a global extremum at a point u ∈ A. Then

u ∈ As ∪ Ae ∪ ∂A,

i.e. u is either a stationary point, or an exceptional point, or a boundary point.
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Theorem 16.3 does not say anything about the existence of global extrema. It only gives some hints
of where to search for possible global extrema.

The set of stationary points As are found by solving the vector equation

▽f(u) = 0,

which we split into a system of m (in general nonlinear) equations in the m unknown coordinates. We
shall discuss this later on.

The set of exceptional points is in principle easy to spot, because it consists of the points, where f
either is not differentiable, or where it is very difficult to prove whether it is differentiable or not. In
most of the simple applications, however, the set of exceptional points is either empty, or contains only
a finite number of points. If e.g. the square root occurs in the definition of f , then Ae may contain
even curves, so one cannot rule out Ae from the beginning.

Finally, concerning the investigation of the values of f on the boundary, we shall usually reduce the
problem to an m− 1-dimensional case, because it is usually possible to eliminate one of the variables
on the boundary. This means that the restriction to ∂A is equivalent to a new problem with a new
continuous function f1 : A1 → R on a closed and bounded set A1 ⊂ Rm−1 in a lower dimensional
space, and so we proceed.

In principle, this method should be possible, but . . . . If the dimension m is large - even for mod-
erate m this phenomenon occurs - the number of special cases, which require an inspection, may be
overwhelming. The author was once asked to find the extrema of a squared function on a closed and
bounded set in R8. There were no exceptional points, and the possible stationary point was outside
the set A, so “only” the boundary ∂A remained. It turned up that it was consisting of ∼ 7! special
cases! The problem was solved in the end, but not by using the “standard procedure” described here.
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16.2.2 The case of a closed and bounded domain of f

We shall then take a closer look on the problem. To ease matters, we shall assume the f : A → R is
continuous on a closed and bounded domain A ⊂ Rm, in which case it follows from the second main
theorem, cf. Theorem 16.2, page 580, that f has both a global maximum and a global minimum on
A. It follows from the analysis in Section 16.2.1 that each of them belongs to one of the following
subsets of R,

Ts = {f(u) ∈ R | u ∈ A◦ is a stationary point, ▽ f(u) = 0} ,
Te = {f(u) ∈ R | f is not diffentiable at u ∈ A◦} ,
Tb = {f(u) | u ∈ ∂A}.

Usually As and Ae only contain a finitely many points from A◦, if any, so we just insert these points
and compare the sizes of their values.

Also, usually the restriction of the function to the boundary ∂A is in practice reduced to a function in
m− 1 variables, so in principle we have a new situation of a continuous function f1 : A1 → R, where
A1 ⊂ Rm−1 is closed and bounded. Then the investigation starts from the beginning, where we must
find stationary and exceptional points in A1 for this new function f1, and we also get a new boundary
∂A1.

In this way we proceed m − 1 times, until we get the restriction written as a continuous function
fm−1 : Am−1 → R, where Am−1 ⊂ R is 1-dimensional and closed and bounded, and the problem is
reduced to a high school problem.

Needless to say, that concerning global extrema on a closed and bounded set A ⊂ Rm, the investigation
of the boundary is usually the biggest task.

The use of the word “usually” above does not imply that it is always so. One may construct extremum
problems where either the stationary points or the exceptional points require a lot of work.

In order to get some feeling of this theory we shall in the following start with only considering m = 2,
so f : A → R is from now on a continuous function on a closed and bounded plane set A ⊂ R2, where
we use the rectangular coordinates (x, y) ∈ A.

Let (x, y) ∈ A◦ be a point, where f is differentiable, If is a stationary point, then we must have
▽f(x, y) = 0, i.e. in coordinates,

f ′
x(x, y) = 0 and f ′

y(x, y) = 0.

In order to find all stationary points we shall solve this system of (usually nonlinear) two equations in
the two variables x and y. There is no standard method for doing this, and the problem is in general
hard to solve. However, a couple of guidelines may be useful.

1) If one or both of the left hand sides of the equations can be factorized, then we can reduce the
problem considerably. In fact, the left hand side is zero, if and only if at least one of its factors is
zero, so we split the investigation into a number of simpler problems, putting each of the factors
equal to zero and then solving the simpler systems. Due to this potential possibility one should
never multiply the factors on the left hand side, when they occur from the beginning. By doing
this one shall lose some information.

2) Another possibility occurs, when we can eliminate one of the variables, x or y. In this case we obtain
one (usually nonlinear) equation in only one variable. This is solved by some known procedure,
e.g. by a factorization, by guessing a root, by a graphical consideration, or by an application of
the Newton-Raphson iteration formula.
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Concerning the investigation of the values of the function f on the boundary ∂A ⊂ R2, where A is
closed and bounded, we note that in most of the applications in practice, the boundary ∂A is a closed
piecewise C1-curve, or a union of such piecewise C1-curves. The simplest case occurs of course, when
∂A is a closed curve, given by a parametric description (cf. e.g. Volume IV in this series),

(x, y) = (X(t), Y (t)) for t ∈ [a, b],

where X(t) and Y (t) are given functions. In this case the restriction of f to the boundary ∂A is
described by the (new) ordinary function

g(t) := f(X(t), Y (t)), for t ∈ [a, b],

in one variable. This method is also applied, when ∂A is broken up into pieces where we can use a
parametric description, although this piece does not have to be a closed curve in the plane.

It should here be added that the reader should never believe that the methods described above are
the only possibilities of methods in these extremum problems. If we by some other method, e.g. by
inspection, can find the range [c, d], there is of course no need at all to go through all the procedures
described above, because then we already have that

min
u∈A

f(u) = c and max
u∈A

f(u) = d.

The exception is of course, when we also want to know where these extrema are attained.

In order to show how the theory above is applied in practice in R2 we proceed with some worked out
examples.

Example 16.1

A Let A be a closed and bounded (i.e. compact) subset of the plane where the boundary ∂A is a closed
curve of the parametric representation

r(t) =
(

4t
1
3 (1− t)

2
3 , 4t

2
3 (1 − t)

1
3

)

, t ∈ [0, 1].

Find the maximum and minimum in A for the C∞-function

f(x, y) = x3 + y3 − 3xy, (x, t) ∈ A.

D Standard procedure:

1) Sketch the domain A and apply the second main theorem for continuous functions, from which
we conclude the existence of a maximum and a minimum.

2) Identify the exceptional points in A◦, if any, and calculate the values f(x, y) in these points.

3) Set up the equations for the stationary points; find these – which quite often is a fairly difficult
task, because the system of equations is usually nonlinear. Finally, compute the values f(x, y)
in all stationary points.

4) Examine the function on the boundary, i.e. restrict the function f(x, y) to the boundary and
repeat the investigation above to a set which is of lower dimension. Then find the maximum
and minimum on the boundary.

584

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume V

585 

The range of a function

0

0.5

1

1.5

2

0.5 1 1.5 2

Figure 16.1: The closed and bounded domain A.

5) Collect all the candidates for a maximum and a minimum found previously in 2)–4). Then the
maximum S and the minimum M are found by a simple numerical comparison.

Remark 16.1 Note that by using this method there is no need to use the complicated (r, s, t)-
method, which will be described later and which should only be applied when we shall find local
extrema in the plane. Here we are dealing with global maxima and minima in a set A. ♦

Remark 16.2 Sometimes it is alternatively easy to identify the level curves f(x, y) = c for the
function f . In such a case, sketch a convenient number of the level curves, from which it may be
easy to find the largest and the smallest constant c, for which the corresponding level curve has
points in common with the set A. Then these values of c are automatically the maximum S, resp.
the minimum M for f on A.

Note, however, that this alternative method is demanding some experience before one can use it
as a standard method of solution. It has once been used with success by a brilliant student at an
examination. ♦

I The level curves f(x, y) = x3 + y3 − 3xy = c do not look to promising, so we stick to the standard
procedure.

1) The domain A has already been sketched. Since A is closed and bounded, and f(x, y) is
continuous on A, it follows from the second main theorem for continuous functions that the
function f has a maximum and a minimum on the set A.

2) Since f is of class C∞ in A◦, there are no exceptional points.

3) The stationary points satisfy the two equations

∂f

∂x
= 3x2 − 3y = 0, i.e. y = x2,

∂f

∂y
= 3y2 − 3x = 0, i.e. x = y2.

When we look at the graph we obtain the two solutions:

(0, 0) ∈ ∂A and (1, 1) ∈ A◦.
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–1

–0.5

0

0.5

1

–1 –0.5 0.5 1

Figure 16.2: The stationary points are the intersections between the curves y = x2 and x = y2.

Alternatively one inserts y = x2 into the second equation

0 = y2 − x = x4 − x = x(x3 − 1) = x(x− 1)(x2 + x+ 1).

Here x2 + x+ 1 has only complex roots, hence the only real roots are x = 0 (with y = x2 = 0)
and x = 1 (with y = x2 = 1), corresponding to

(0, 0) ∈ ∂A and (1, 1) ∈ A◦.

Since (0, 0) is a boundary point, we see that (1, 1) ∈ A◦ is the only stationary point for f in A◦.
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We transfer the value

f(1, 1) = 1 + 1− 3 = −1.

to the collection of all values in 5) below.

4) The Boundary. When we apply the parametric representation

(x, y) = r(t), t ∈ [0, 1],

we get the restriction to the boundary

g(t) = f(r(t)) = f
(

4t
1
3 (1− t)

2
3 , 4t

2
3 (1− t)

1
3

)

=
{

64t(1− t)2
}

+
{

64t2(1− t)
}

− 3 ·
{

4t
1
3 (1− t)

2
3

}

·
{

4t
2
3 (1− t)

1
3

}

= 64 t(1− t)2 + 64 t2(1− t)− 48 t(1− t)

= 16 t(1− t){4(1− t) + 4t− 3} = 16 t(1− t), t ∈ [0, 1].

We have finally reduced the problem to a problem known from high school

g′(t) = 12(2t− 1) = 0 for t =
1

2
,

corresponding to

g

(

1

2

)

= f
(

4 · 2− 1
3 · 2− 2

3 , 4 · 2− 2
3 · 2− 1

3

)

= f(2, 2) = 4.

At the end points of the interval, t = 0 and t = 1, we get

g(0) = g(1) = f(0, 0) = 0.

5) We collect all the candidates:

exceptional points: None, [from 2)]

Stationary point: f(1, 1) = −1, [from 3)]

Boundary points: f(0, 0) = 0 and f(2, 2) = 4, [from 4)].

By a numerical comparison we get

• The minimum is f(1, 1) = −1 (a stationary point),

• The maximum is f(2, 2) = 4 (a boundary point).

6) A typical addition: Since A is connected, and f is continuous, it also follows from the first main
theorem for continuous functions, that the range is an interval (i.e. connected), hence

f(A) = [M,S] = [−1, 4]. ♦
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Example 16.2

A. Find maximum and minimum of the C∞-function

f(x, y) = x4 + 4x2y2 + y4 − 4x3 − 4y3

in the set A given by x2 + y2 ≤ 4 = 22.

–2

–1

0

1

2

y

–2 –1 1 2

x

Figure 16.3: The domain A.
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1
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Figure 16.4: The graph of f(x, y) over A. Note that a consideration of the graph does not give any
hint.

D. Even if the rewriting of the function

f(x, y) = (x2 + y2)2 + 2x2y2 − 4(x3 + y3)

looks reasonably nice it is still not tempting to apply an analysis of the level curves f(x, y) = c, so
we shall again use the standard method as described in the previous example, to which we refer
for the description.

I. 1) The domain A has been sketched already. Since A is closed and bounded, and f(x, y) is contin-
uous on A, it follows from the second main theorem for continuous functions that f(x, y) has
a maximum and a minimum on A.
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While we are dealing with theoretical considerations we may aside mention that since A is
obviously connected, it follows from the first main theorem for continuous functions that the
range is connected, i.e. an interval, which necessarily is given by

f(A) = [M,S].

2) Since f(x, y) is of class C∞, there is no exceptional point.

3) The stationary points (if any) satisfies the system of equations

0 =
∂f

∂x
= 4x3 + 8xy2 − 12x2 = 4x(x2 + 2y2 − 3x),

0 =
∂f

∂y
= 8x2y + 4y3 − 12y2 = 4y(2x2 + y2 − 3y).

Note that it is extremely important to factorize the expressions as much as possible in order to
solve the system. In fact, when this is done, we can reduce the system to

∂f

∂x
= 0 : x = 0 or x2 + 2y2 − 3x = 0,

∂f

∂y
= 0 : y = 0 or 2x2 + y2 − 3y = 0.

These conditions are now paired in 2 · 2 = 4 ways which are handled one by one.

a) When x = 0 and y = 0, we get (0, 0) ∈ A◦, i.e. (0, 0) is a stationary point with the value of
the function

f(0, 0) = 0.

b) When x = 0 and 2x2 + y2 − 3y = 0, we get

0 + y2 − 3y = y(y − 3) = 0, hence y = 0 or y = 3.

Thus, we have two possibilities: (0, 0) ∈ A◦, which has already been found previously, and
(0, 3) /∈ A, so this point does not participate in the competition. We therefore do not get
further points in this case.

c) When y = 0 and x2 + 2y2 − 3x = 0, we get by an interchange of letters (x, y) → (y, x) that
the candidates are (0, 0) ∈ A◦ [found previously] and (3, 0) /∈ A. Hence we get no further
point in this case.

d) It still remains the last possibility

x2 + 2y2 − 3x = 0 and 2x2 + y2 − 3y = 0.

From the rewriting (cf. e.g. Linear Algebra)
(

x− 3

2

)2

+ 2y2 =

(

3

2

)2

and 2x2 +

(

y − 3

2

)2

=

(

3

2

)2

it is seen that the stationary points are the intersections of the two ellipses. It follows from
the symmetry that the points must lie on the line y = x. By eliminating y we get

0 = x2 + 2y2 − 3x = 3x2 − 3x = 3x(x− 1).

Hence we get either x = 0, corresponding to (0, 0) ∈ A◦ [found previously] or x = 1
corresponding to (1, 1) ∈ A◦, which is a new candidate with the value

f(1, 1) = 1 + 4 + 1− 4− 4 = −2.
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–1

0

1

2

3

–1 1 2 3

Figure 16.5: The ellipses x2 + 2y2 − 3x = 0 and 2x2 + y2 − 3y = 0 and the line of symmetry y = x.

Summarizing we get the stationary points (0, 0) and (1, 1) with the corresponding values of the
function

f(0, 0) = 0 and f(1, 1) = −2.
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–3

–2

–1

0

1

2

–3 –2 –1 1 2

Figure 16.6: The intersections of the circle and the lines x = 0, y = 0, y = x and x+ y + 3 = 0.

4) The boundary. The simplest version is the following alternative to the standard procedure: A
parametric representation of the boundary curve is

(x, y) = r(ϕ) = (2 cosϕ, 2 sinϕ), ϕ ∈ [0, 2π], (possibly ϕ ∈ R),

where we note that

(16.1)

(

dx

dϕ
,
dy

dϕ

)

= r′(ϕ) = (−2 sinϕ, 2 cosϕ) = (−y, x).

If we put g(ϕ) = f(r(ϕ)), where

f(x, y) = x4 + 4x2y2 + y4 − 4x3 − 4y3,

then we get by the chain rule, that the maximum and the minimum on the boundary should
be searched among the points on the boundary

x2 + y2 = 4,

for which (apply (16.1)),

0 = g′(ϕ) =
∂f

∂x
· dx

daϕ
+

∂f

∂y
· dy

dϕ

=
{

4x3+8xy2−12x2
}

· (−y) +
{

8x2y+4y3−12y2
}

x

= 4x
{

x2 + 2y2 − 3x
}

(−y) + 4y
{

2x2 + y2 − 3y
}

x

= 4xy
{

−x2 − 2y2 + 3x+ 2x2 + y2 − 3y
}

= 4xy
{

x2 − y2 + 3(x− y)
}

= 4xy(x− y){3 + x+ y}.
Hence we shall find the intersections between the circle x2 + y2 = 4 = 22 and the lines

x = 0, y = 0, y = x and x+ y + 3 = 0.

It follows immediately that these intersections are

(2, 0), (
√
2,
√
2), (0, 2), (−2, 0), (−

√
2,−

√
2), (0,−2).
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We note the values

f(2, 0) = f(0, 2) = 16− 32 = −16,

f(−2, 0) = f(0,−2) = 16 + 32 = 48,

f(
√
2,
√
2) = 6 · 4− 2 · 4 · 2

√
2 = 24− 16

√
2,

f(−
√
2,−

√
2) = 24 + 16

√
2.

5) Summarizing we shall compare numerically

exceptional points: none,

stationary points: f(0, 0) = 0, f(1, 1) = −2,

boundary points: f(2, 0) = f(0, 2) = −16,

f(−2, 0) = f(0,−2) = 48,

f(
√
2,
√
2) = 24− 16

√
2,

f(−
√
2,−

√
2) = 24 + 16

√
2.

Since 16
√
2 < 16 · 3

2
= 24, it follows that

the minimum is M = f(2, 0) = f(0, 2) = −16,

the maximum is S = f(−2, 0) = f(0,−2) = 48,

and that both the minimum and the maximum are lying on the boundary.

6) Finally, we get from 1) that due to the first main theorem for continuous functions the range
is the interval

f(A) = [M,S] = [−16, 48]. ♦
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Example 16.3

A. Find maximum and minimum for the function

f(x, y) =
√

x2 + 16y2 − y4

in the set

A = {(x, y) | x2 + 36y2 ≤ 81}.

–2

–1
0

1

2

y

–10 –8 –6 –4 –2 2 4 6 8 10

x

Figure 16.7: The closed and bounded domain A.

D. In this case one might find the level curves f(x, y) = c, which by using that

a2 − b2 = (a+ b)(a− b)

can be rewritten as

x2 =
(

y4 + c
)2 − 16y2 =

(

y4 + 4y + c
) (

y4 − 4y + c
)

.

This expression still looks too difficult to analyze, so we shall again stick to the standard procedure
as described in the first example.

I. 1) Using some Linear Algebra, the set A is written as

(x

9

)2

+

(

y
3
2

)2

≤ 1,

which shows that at A is a closed ellipsoidal disc, cf. the figure.

Since the set A is closed and bounded, and even connected, and f(x, y) is continuous on A, it
follows from the second main theorem for continuous functions that f has a minimum M and a
maximum S on A. It follows furthermore from the first main theorem for continuous functions
that the range is connected, i.e. an interval, which necessarily is

f(A) = [M,S].
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2) Since the square root is not differentiable at 0, it follows that (0, 0) is an exceptional point! We
make a note for 5) of the value

f(0, 0) = 0.

3) The stationary points in A◦ \ {(0, 0)}, if any, must satisfy the system of equations

∂f

∂x
=

x
√

x2 + 16y2
= 0 and

∂f

∂y
=

16y
√

x2 + 16y2
− 4y3 = 0.

The first equation is only fulfilled for x = 0. Thus any stationary point must lie on the y-axis.

Since (0, 0) is an exceptional point, we must have y �= 0 for any stationary point. When we

put x = 0 into the second equation, we get (NB:
√

y2 = |y|)

0 =
16y

√

16y2
− 4y3 = 4y

{

1

|y| − y2
}

= 4
y

|y|
{

1− |y|3
}

.

Since y �= 0, we must have |y| = 1, i.e. y = ±1. Hence the stationary points are (0, 1) and
(0,−1). We make a note for 5) of the value

f(0, 1) = f(0,−1) =
√
16− 1 = 3.

4) The boundary. On the boundary we get x2 + 36y2 = 81, i.e.

x2 = 81− 36y2.
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Since f(x, y) only contains x in the form x2, we can use this equation to eliminate x2 when we
write down the restriction,

f(y) =
√

x2 + 16y2 − y4 =
√

81− 36y2 + 16y2 − y4

=
√

81− 20y2 − y4 y ∈
[

−3

2
,
3

2

]

.

It follows immediately that g(y) is decreasing in the new variable t = y2 ∈
[

0,
9

4

]

, hence the

maximum on the boundary is

g(0) = f(−9, 0) = f(9, 0) = 9,

and the minimum on the boundary is

g

(

±3

2

)

= f

(

0,
3

2

)

= f

(

0,−3

2

)

=

√

16 · 9
4
− 81

16
= 6− 81

16
=

15

16
.

5) A numerical comparison of

exceptional point: f(0, 0) = 0,

stationary points: f(0, 1) = f(0,−1) = 3,

boundary points: f

(

0,
3

2

)

= f

(

0,−3

2

)

=
15

16
,

f(−9, 0) = f(9, 0) = 9,

gives

maximum: f(−9, 0) = f(9, 0) = 9, (boundary points),

minimum: f(0, 0) = 0, (exceptional point).

6) According to 1) the range is given by

f(A) = [M,S] = [0, 9],

where we have used the first main theorem for continuous functions. ♦
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Example 16.4

A. Consider the function

f(x, y) = x+ 3y − 2 ln(1 + 4xy)

defined on the triangle A with its vertices (1, 0), (4, 0) and (1, 1). Find the maximum and minimum
of f(x, y) on A.

–0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

y

1 2 3 4

x

Figure 16.8: The closed and bounded domain A.

D. Here it is far too difficult directly to find the level curves, so we apply the standard procedure as
described previously.

I. 1) We first sketch A. Since f(x, y) is continuous on the closed and bounded triangle A (note in
particular that 1+ 4xy > 0), it follows from the second main theorem for continuous functions
that f(x, y) has both a maximum S and a minimum M on A. Since A is also connected, it
follows from the first main theorem for continuous functions that the range is connected, i.e.
an interval, and we have necessarily

f(A) = [M,S].

2) Since f everywhere in A◦ is of class C∞, it follows that f(x, y) has no exceptional point.

3) The stationary points, if any, must satisfy the equations

∂f

∂x
= 1− 8y

1 + 4xy
= 0 and

∂f

∂y
= 3− 8x

1 + 4xy
= 0,

i.e.

8y = 1 + 4xy and 8x = 3(1 + 4xy).

When 1 + 4xy > 0 is eliminated we get 8x = 3 · 8y, from which x = 3y, which is a condition
that the stationary points necessarily must satisfy.

By insertion of x = 3y we get

8y = 1 + 4xy = 1 + 12y2,
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which is rewritten as

0 = 12y2 − 8y + 1 = 12

(

y − 1

6

)(

y − 1

2

)

.

From this we either get y =
1

6
, corresponding to x = 3 · 1

6
=

1

2
, i.e.

(

1

2
,
1

6

)

/∈ A, or y =
1

2
,

corresponding to

(

3

2
,
1

2

)

∈ A◦.

We only find one stationary point

(

3

2
,
1

2

)

. We make a note of the value for 5) below,

f

(

3

2
,
1

2

)

=
3

2
+

3

2
− 2 ln

(

1 + 4 · 3
2
· 12

)

= 3− 2 ln 4 = 3− 4 ln 2.

4) The investigation of the boundary is divided into three cases:

a) On the line x = 1, y ∈ [0, 1], we get the restriction

g1(y) = 1 + 3y − 2 ln(1 + 4y),

where

g′1(y) = 3− 8

1 + 4y
= 0 for 1 + 4y =

8

3
, i.e. y =

5

12
∈ [0, 1],

corresponding to

f

(

1,
5

12

)

= g1

(

5

12

)

= 1 +
5

4
− 2 ln

(

1 +
5

3

)

=
9

4
− 2 ln

(

8

3

)

.

NB: We must not forget the endpoints of the line:

f(1, 0) = g1(0) = 1 + 0− 2 ln(1 + 4 · 0) = 1,

f(1, 1) = g1(1) = 1 + 3− 2 ln(1 + 4 · 1) = 4− 2 ln 5.

b) On the line y = 0, x ∈ [1, 4], we get the restriction

g2(x) = x− 2 ln(1 + 4 · x · 0) = x,

which obviously is increasing. Therefore we shall only make a note on the values at the
endpoints,

f(1, 0) = 1 and f(4, 0) = 4.

c) On the line x+ 3y = 4, i.e. x = 4− 3y, y ∈ [0, 1], the restriction is given by

g3(y) = 4− 2 ln(1 + 4(4− 3y)y) = 4− 2 ln(1 + 16y − 12y2).

Here we get

g′3(y) = − 2

1+16y−12y2
(16−24y) = 0 for y =

2

3
∈ [0, 1],
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corresponding to x = 4− 3 · 2
3
= 2. The interesting point is

(

2,
2

3

)

∈ ∂A with the value

f

(

2,
2

3

)

= g3

(

2

3

)

= 4− 2 ln

(

1 + 16 · 2
3
− 12 · 4

9

)

= 4− 2 ln

(

1 +
32

3
− 16

3

)

= 4− 2 ln
19

3
.

We have already earlier treated the two endpoints.
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5) Finally we shall compare numerically

exceptional points: none,

stationary point: f

(

3

2
,
1

2

)

= 3− 4 ln 2 ≈ 0.23,

boundary a): f

(

1,
5

12

)

=
9

4
− 2 ln

(

8

3

)

≈ 0.29,

f(1, 1) = 4− 2 ln 5 ≈ 0.79,

f(1, 0) = 1,

boundary b): f(4, 0) = 4,

boundary c): f

(

2,
2

3

)

= 4− 2 ln
19

3
≈ 0.31.

By a comparison we see that

the maximum is S = f(0, 4) = 4, (boundary point),

the minimum is M = f

(

3

2
,
1

2

)

= 3− 4 ln 2, (stationary point).

Remark 16.3 Note that the comparison is made approximatively, while the result is given in
an exact form. ♦

6) According to 1) we finally get by the first main theorem for continuous functions that the range
is

f(A) = [M,S] = [3− 4 ln 2, 4]. ♦

16.2.3 The case of a bounded but not closed domain of f

Consider a continuous function f : A → R, where the domain A ⊂ Rm is bounded, but not closed.
Then we cannot apply the second main theorem and we cannot conclude that f has extrema on A.
Indeed, it is easy to give examples, when this is not the case.

When we analyze this case, we first check if f has a continuous extension f : A → R to the closure A of
A, i.e. f is continuous, and f(u) = f(u) for all u ∈ A. In this case we just apply the methods described
previously in Section 16.2.2, because due to the second main theorem, f has both a minimum and a
maximum on A, so we find these and then check, if they are also attained at points in A.

We elaborate a little on this. Assume that the continuous extension f : A → R exists, and let the
(global) extrema be

f(u) = fmin, and f(v) = fmax.

Clearly, if u ∈ A, then fmin is also a global minimum for f , because A is a smaller set than A.
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Similarly, if v ∈ A, then fmax is also a global maximum for f .

Then we turn to the case, when u ∈ A \A. Just note that due to the continuity of f we can to every
ε > 0 find a point uε ∈ A, such that

f(u) = fmin < f (uε) < fmin + ε,

which shows that we inside A can get as close to the value fmin as we want without ever reaching this
value.

Similarly, if v ∈ A \A, where we to every ε > 0 can find vε ∈ A, such that

fmax − ε < f (vε) < fmax = f(v),

which shows that we inside A can get as close to the value fmax as we want without ever reaching
this value.

Example 16.5

Let A be the open triangle

A = {(x, y) | 0 < x < 1, −x < y < 4x},

and let the function f(x, y) on A be given by

f(x, y) = 2xy + 3 ln(1 − x), (x, y) ∈ A.

Find the range f(A).

A.

–1

0

1

2

3

4

y

0.2 0.6 11.2

x

Figure 16.9: The open and bounded domain A.

D. Here it is possible to find the level curves. In fact, since x > 0 in A, we get that

f(x, y) = 2xy + 3 ln(1 − x) = c, (x, y) ∈ A,

is equivalent to

y = ϕc(x) =
c

2x
− 3

2
· ln(1− x)

x
.
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Although the expression looks very complicated, it is actually possible to analyze these level curves.
The reader is referred to section I 2 below which, however, may be considered a bit advanced for
a common use.

We therefore start with the standard procedure in section I 1 with some necessary modifications.
First we exploit the theoretical main theorems as much as possible. Then we extend f to the parts
of the boundary where it is possible, and we discuss what happens at the boundary points where
such a continuous extension of f is not possible.

We see that both methods have a common theoretical start, which we here call section I.

I. Since f(x, y) is continuous on the connected set A, it follows from the first main theorem for
continuous functions that the range f(A) is connected, i.e. an interval.

Since A is bounded, though not closed, we cannot apply the second main theorem for continu-
ous functions. We shall first check whether f(x, y) has a continuous extension to (parts of) the
boundary of A or not.

It follows immediately that f(x, y) can be continuously extended to the lines

y = 4x and y = −x, x ∈ [0, 1[,

with the same formal expression of the function, i.e. the extension is given by

f(x, y) = 2xy + 3 ln(1 − x) for 0 ≤ x < 1, −x ≤ y ≤ 4x.

On the other hand, we cannot extend to the vertical line x = 1, because

lim
x→1−

f(x, y) = 2y + 3 lim
x→1−

ln(1− x) = −∞.

However, we see that the lower bound is −∞, so f(A) must be a semi-infinite, i.e. either ]−∞, a[
or ]−∞, a], because the theorems do not assure that the upper bound a actually belongs to f(A).
This question can only be decided by an explicit analysis.

It follows that we shall only search the maximum in

B = {(x, y) | 0 ≤ x < 1, −x ≤ y ≤ 4x}.

Since we also have f(x, y) → −∞ for x → 1−, in B, there exists an ε ∈ ]0, 1[, such that

f(x, y) < S for (x, y) ∈ B and 1− ε ≤ x < 1.

The maximum S is therefore attained in the closed and bounded and truncated domain

Bε = {(x, y) | 0 ≤ x ≤ 1− ε, −x ≤ y ≤ 4x},

where we of course assume that S exists and S < +∞.

This follows, however, from the second main theorem for continuous functions, applied on Bε.

Since we only want to find the maximum, the standard procedure is hereafter the same as for closed
and bounded domains. The only modification is that we shall not go through an investigation of
the boundary on the line x = 1− ε.
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I 1. Standard procedure.

1) We have already sketched a figure and quoted and applied the second main theorem.

2) Since f(x, y) belongs to the class C∞ in A, there is no exceptional point.

3) The stationary points in A, if any, must satisfy the equations

∂f

∂x
= 2y − 3

1− x
= 0 and

∂f

∂y
= 2x = 0.

It follows from the latter equation that x = 0; but since x > 0 in A, we see that we have no
stationary point in A for the function f .

4) Modified investigation of the boundary.

a) For y = 4x we get the restriction

g1(x) = 8x2 + 3 ln(1− x), for x ∈ [0, 1[,

where

g′1(x) = 16x− 3

1− x
.

Hence, g′1(x) = 0 for

0 = 16x2 − 16x+ 3 = (4x− 3)(4x− 1),

i.e. for x =
1

4
or x =

3

4
.
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When we apply high school calculus it is seen that the maximum is either attained for

x = 0, corresponding to g1(0) = f(0, 0) =, or for x =
3

4
, corresponding to

g1

(

3

4

)

= f

(

3

4
, 3

)

=
8 · 9
16

+ 3 ln

(

1− 3

4

)

=
9

2
− 6 ln 2

≥ 4, 5− 6 · 0, 7 = 0, 3 > 0.

b) For y = −x we get the restriction

g2(x) = −2x2 + 3 ln(1− x), for x ∈ [0, 1[,

where

g′2(x) = −4x− 3

1− x
< 0.

Hence, g2(x) is decreasing. The maximum on this line is therefore g2(0, 0) = f(0, 0) = 0.

c) Numerical comparison. When we compare the values of the candidates above it follows that
the maximum in B is

f

(

3

4
, 3

)

=
9

2
− 6 ln 2 > 0.

This value is only attained at the boundary point

(

3

4
, 3

)

, so

• f(B) =

]

−∞,
9

2
− 6 ln 2

]

,

and

• f(A) =

]

−∞,
9

2
− 6 ln 2

[

,

because A is obtained by removing all boundary points from B.

–1

0

1

2

3

4

y

0.2 0.6 11.2

x

Figure 16.10: The level curves for c =
1

2
(below) and c = 1 (above).

I 2. The method of level curves. The level curve

y = ϕc(x) =
c

2x
− 3

2
· ln(1− x)

x
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is defined in the strip 0 < x < 1 as the graph of a function. If c �= 0, then both x = 0 and x = 1
are asymptotes. It follows that

lim
x→1−

ϕc(x) = +∞ for all c ∈ R,

and that

lim
x→0+

ϕc(x) = +∞ for c > 0,

and

lim
x→0+

ϕc(x) = −∞ for c < 0.

The curves are characterized by f(x, y) being constant c along y = ϕc(x). We have sketched two
level curves on the figure (where c > 0), from which it is seen that the curves “move upwards”,
when c increases.

Hence we are looking for the biggest c, for which y = ϕc(x) just is contacting the boundary of B
without intersecting B. This is not possible for c < 0, and at the same time we get the line y = −x
excluded. Thus the maximum can only lie on the line y = 4x. Since y = ϕc(x) only touches this
line, the following two conditions must be fulfilled:

1) The curves must go through the same point, i.e. y = 4x = ϕc(x), or

4x = − 1

2x
{−c+ 3 ln(1− x)},

from which

−c+ 3 ln(1− x) = −8x2.

2) The curves must have the same slope at this point, i.e.

4 = ϕ′
c(x) =

1

2x2

{

−c+ 3 ln(1− x) +
3x

1− x

}

.

The ugly terms −c+ 3 ln(1− x) in 2) can be eliminated by applying 1), hence

8x2 = −8x2 +
3x

1− x
,

which is rewritten as

0 = 16x2(1− x)− 3x = x{16x− 16x2 − 3} = −x(4x− 1)(4x− 3).

From this we get the solutions x = 0, x =
1

4
and x =

3

4
, and since y = 4x, we finally get the

candidates

(0, 0),

(

1

4
, 1

)

,

(

3

4
, 3

)

,

with the corresponding function values for the extended function,

f(0, 0) = 0, f

(

1

4
, 1

)

=
1

2
− 3 ln

4

3
, f

(

3

4
, 3

)

=
9

2
− 6 ln 2.
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By a numerical comparison we get that the maximum is attained at the point

(

3

4
, 3

)

. Hence we

conclude that

f(B) = −
]

−∞,
9

2
− 6 ln 2

]

.

Finally, when we remove the boundary points from B, we obtains as previously that

f(A) =

]

−∞,
9

2
− 6 ln 2

[

. ♦

If f : A → R does not have a continuous extension to the closure A, then either f is bounded on A,
or unbounded on A. We first give an example, when f is bounded on A without having a continuous
extension to all of A.

Example 16.6 A nasty example which usually is not given in any textbook, is given by the following.
It also illustrates that the usual division into cases in most textbooks is not exhaustive.

Let A = K(0; 1) be the open unit disc, and consider the function

f(x, y) =
(

x2 + y2
)

cos

(

1

1− x2 − y2

)

, x2 + y2 < 1.

Then f(x, y) is bounded on A,

|f(x, y)| ≤ x2 + y2 < 1 for (x, y) ∈ A,

and we see that f(x, y) has no continuous extension to any point on the boundary.

–1

–0.5

0

0.5

1

y

–1 –0.5 0.5 1

x

Figure 16.11: The set A is the open unit disc.

Then note that

1) f(x, y) = 1− 1

2pπ
for x2 + y2 = 1− 1

2pπ
, p ∈ N,

2) f(x, y) = −1 +
1

(2p+ 1)π
for x2 + y2 = 1− 1

(2p+ 1)π
, p ∈ N,
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from which we conclude that f has neither a maximum nor a minimum in the open set A.

However, since f(x, y) is continuous on the connected set A, it follows from the first main theorem
for continuous functions that f(A) also is connected, i.e. an interval.

According to 1) the function f(x, y) attains values smaller than 1, though we can get as close to 1 as
we wish.

According to 2) the function f(x, y) attains values bigger than −1, though we can get as close to −1
as we wish.

Hence we conclude that the range is given by

f(A) = ]− 1, 1[. ♦

Then turn to the case, when f is unbounded on A. Then either we can find a sequence un ∈ A, such
that f (un) → −∞ for n → +∞, or a sequence vn ∈ A, such that f (vn) → +∞ for n → +∞. In
order to show, what we have in mind, we include the following example.
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Example 16.7 Let A denote the open triangle on Figure 16.12, i.e. A is described by the inequalities
0 < x < 1 and −x < y < 4x.

Figure 16.12: The domain A is the open triangle. The function can be continuously extended to the
solid line segments.

Consider the function on A defined by

f(x, y) = 2xy + 3 ln(1− x) for (x, y) ∈ A.

First note that since A is connected, and f is continuous on A, it follows from the first main theorem
for continuous functions that the range of f is connected, hence an interval.

Due to the logarithmic term, f(x, y) → −∞, when (x, y) ∈ A and x → 1−. This shows that f does
not have a global minimum, and that the range has −∞ as its left endpoint.

Then f has no exceptional points in A, because f is differentiable everywhere in the open set A.

If there are stationary points, these must satisfy the equations

∂f

∂x
= 2y +

−3

1− x
= 0 and

∂f

∂y
= 2x = 0.

It follows immediately that x = 0 and then by insertion that y =
3

2
, so the only candidate of a

stationary point is

(

0,
3

2

)

. Since this point lies outside A, there are no stationary points either.

Summarizing, there are no exceptional points, no stationary points, and no boundary points in A, so
f cannot have any extremum.

Then a simple estimate shows that

f(x, y) = 2xy + 3 ln(1− x) ≤ 2 · 1 · 4 + 3 · 0 = 11,

so f is bounded from above. Therefore, f(A) = ]−∞, c[ for some finite c. This value c can only be
attained for the continuous extension f to the parts of the boundary (indicated by solid lines), which
is not lying on the vertical line x = 1.
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We note for later use that at the vertex f(0, 0) = 0.

Fix 0 < x < 1 and let y ∈ [−x, 4x] vary, i.e. we consider the restriction

gx(y) = 2xy + 3 ln(1− x) ≤ 8x2 + 3 ln(1− x) for x ∈ [−x, 4x],

where the equality sign is obtained for y = 4x. This means that the value c is attained at the half
open line segment y = 4x, 0 ≤ x < 1. Therefore, we introduce

ϕ(x) := 8x2 + 3 ln(1 − x), for 0 ≤ x < 1.

We get by a differentiation,

ϕ′(x) = 16x− 3

1− x
=

−16x2 + 16x− 3

1− x
=

(4x− 3)(1− 4x)

1− x
,

which is 0 for x =
1

4
or x =

3

4
. The values of the extended function are therefore

ϕ

(

1

4

)

= f

(

1

4
, 1

)

= 8 ·
(

1

4

)2

+ 3 ln

(

1− 1

4

)

=
1

2
− 3 ln

4

3
≈ −0.36,

and

ϕ

(

3

4

)

= f

(

3

4
, 3

)

= 8 ·
(

3

4

)2

+ 3 ln

(

1− 3

4

)

=
9

2
− 3 ln 4 ≈ 0.34.

Finally, we must not forget the endpoint x = 0, where as mentioned above,

f(0) = 0.

By a simple numerical comparison we see that

c = f

(

3

4
, 3

)

=
9

2
− 3 ln 4 =

9

2
− 6 ln 2,

so the range of the function f is

f(A) =

]

−∞,
9

2
− 6 ln 2

[

. ♦

16.2.4 The case of an unbounded domain of f

To avoid unnecessary irrelevant complications we shall for simplicity in this section only consider
continuous functions f : Rm → R, defined on all of Rm. The topic is difficult to describe in all details,
so we shall only give a couple of guidelines concerning the question of existence of extrema in this
case, where these guidelines may be useful in the applications.

1. If we can define a restriction of the function (to e.g. a simple curve, or just a straight line), such that
the values f(u) of this restriction tend to +∞, when �u� → +∞, then f has no global maximum.
Similarly, if f(u) of this restriction tend to −∞, when �u� → +∞, then f has no global minimum.

We shall illustrate this by the following example.
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Example 16.8 Consider the function

f(x, y) = x3y2 − x2y3 + y4 − sin(xy), for (x, y) ∈ R2.

The function is continuous in the connected set R2, so by the first main theorem the range is connected,
hence an interval.

When we take the restriction to the line y = −x, we get

f(x,−x) = 2x5 + x4 + sin
�

x2
�

→







+∞ for x → +∞,

−∞ for x → −∞.

We conclude that the range is f
�

R2
�

= R. ♦

Let B denote the set of all stationary points and all exceptional points joined together, and let the
restriction of f to the set B have the global maximum fB

max and the global minimum fB
min.

Usually (in the cases met in practice) B only consists of a finite number of points, so it is easy by a
numerical comparison to find the numbers fB

max and fB
min.

Using the assumption that the domain is Rm it follows that the boundary is the empty set. Then it
is easy to conclude the following

2a If there is a point u ∈ Rm, such that f(u) > fB
max, then f has no global maximum.

2b If there is a point u ∈ Rm, such that f(u) < fB
min, then f has no global minimum.

Finally, we assume that the limit

lim
�u�→+∞

f(u) = L

exists, where we also allow the infinite values, L = ±∞. Then we get

3a If L < fB
min, then f has no global minimum. Its global maximum is fB

max, and its range is
�

L, fB
max

�

.

3b If fB
min ≤ L ≤ fB

max, then fB
min is the global minimum, and fB

max is the global maximum, and the
range i

�

fB
min, f

B
max

�

.

3c If fB
max < L, then fB

min is a global minimum. There is no global maximum, and the range is
�

fB
min, L

�

.

Example 16.9 Consider the function

f(x, y) = x4 + 4x2y2 + y4 − 4x3 − 4y3 for (x, y) ∈ R2.

Since f is a polynomial in two variables, there are no exceptional points.

The possible stationary points are solutions of the system of equations

∂f

∂x
= 4x3 + 8xy2 − 12x2 = 4x

�

x2 + 2y2 − 3x
�

= 0,

∂f

∂y
= 8x2y + 4y3 − 12y2 = 4y

�

2x2 + y2 − 3y
�

= 0.
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The possible stationary points are the solutions of either

x = 0 and y = 0, i.e. (0, 0),

or

x = 0 and 2x2 + y2 − 3y = 0, i.e. (0, 0) or (0, 3),

or

x2 + 2y2 − 3x = 0 and y = 0, i.e. (0, 0) or (3, 0),

or

x2 + 2y2 − 3x = 0 and 2x2 + y2 − 3y = 0.

In the latter case we get by subtraktion,

y2 − x2 + 3y − 3x = (y − x)(y + x+ 3) = 0,

so either y = x or y = −x− 3.

In the former case we get by insertion 3x2 − 3x = 0, so either x = 1 or x = 0, and the stationary
points are (0, 0) and (1, 1).

In case of y = −x− 3 we get by insertion,

0 = x2 + 2y2 − 3x = x2 + 2(x+ 3)2 − 3x = 3x2 + 9x+ 18 = 3
(

x2 + 3x+ 6
)

,

which has only complex roots.
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Summing up we have found the stationary points B = {(0, 0), (1, 1), (3, 0), (0, 3)}, and the values in
these points are

f(0, 0, ) = 0, f(1, 1) = −2, f(3, 0) = f(0, 3) = −27.

Hence, in the chosen notation,

fB
min = −27 and fB

max = 0.

Considering the limit �u� → +∞, we see that

f(x, y) = x4 + 4x2y2 + y4 − 4x3 − 4y3 =
(

x2 + y2
)2

+ 2x2y2 − 4
(

x3 + y3
)

,

so we get in polar coordinates x = ̺ cosϕ and y = ̺ sinϕ, (note that polar coordinates are natural
to use, when we shall take the limit �u� → +∞)

f(̺ cosϕ, ̺ sinϕ) = ̺4
(

1 +
1

2
sin2 2ϕ

)

− 4̺3
(

cos3 ϕ+ sin3 ϕ
)

≥ ̺4 − 8̺3 = ̺4
(

1− 8

̺

)

→ +∞ for ̺ → +∞,

and we have proved that L exists and that L = +∞.

Then we conclude from the above that the global minimum is fmin = fB
min − 27, and that the global

maximum does not exist, and finally that the range is f
(

R2
)

= [−27,+∞[. ♦

16.3 Local extrema of a continuous function

16.3.1 Local extrema in general

We investigated in the previous section the global range of a given continuous function f : A → R,
where A ⊆ Rm. We shall in this section consider the local properties of f , i.e. if f has a local extremum
at a given point x0 ∈ A.

We introduce the increment of a function. This is defined as

∆f (= ∆f (x;x0)) = f(x)− f (x0) ,

where x0 ∈ A is the point under consideration, and x ∈ A is the variation from x0.
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Definition 16.2 Given a continuous function f : A → R, where A ⊆ Rm, and a fixed point x0 ∈ A.

1) Maximum. If there is a δ > 0, such that for all x ∈ A satisfying 0 < �x− x0� < δ,

f(x) ≤ f (x0) , i.e. ∆f ≤ 0,

we call f (x0) a maximum at x0 ∈ A.

2) Proper maximum. If there is a δ > 0, such that for all x ∈ A satisfying 0 < �x− x0� < δ,

f(x) < f (x0) , i.e. ∆f < 0,

we call f (x0) a proper maximum at x0 ∈ A.

3) Minimum. If there is a δ > 0, such that for all x ∈ A satisfying 0 < �x− x0� < δ,

f(x) ≥ f (x0) , i.e. ∆f ≥ 0,

we call f (x0) a minimum at x0 ∈ A.

4) Proper minimum. If there is a δ > 0, such that for all x ∈ A satisfying 0 < �x− x0� < δ,

f(x) > f (x0) , i.e. ∆f > 0,

we call f (x0) a proper minimum at x0 ∈ A.

When one considers a graph of a function, Definition 16.2 surely makes sense. It also follows imme-
diately from this definition that we have the following theorem.

Theorem 16.4 Let x0 ∈ A be a point in the domain of the continuous function f : A → R. If for
every δ > 0 the increment ∆f has both positive and negative values in any set of the form A ∩B (x0, δ),
where B (x0, δ) denotes the open ball of centre x0 ∈ A and radius δ > 0, then f does not have a (local)
extremum at x0.

If we restrict the given function f : A → R to the set A ∩ B (x0, δ) for δ > 0 sufficiently small, it
follows from the results in Section 16.2 that we also have

Theorem 16.5 A necessary condition for local extremum. If the continuous function f : A → R,
where A ⊆ Rm, has a local extremum at the point x0 ∈ A◦, then x0 is either a stationary point or an
exceptional point.

Note that Theorem 16.5 only gives a necessary, and not a sufficient condition. There may exist
e.g. stationary points (saddle points) which are not extremum points. We shall later return to this
problem.

Example 16.10 In this example we produce some functions in R2, which all have (0, 0) as a stationary
point and value zero.

We supply the investigation with sketches of the graphs and discussions of the sign of the function in
the neighbourhood whenever this is necessary. Concerning the graphs the reader is also referred to
Linear Algebra.
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Figure 16.13: The graph of z = x2 + y2.

1) z = f1(x, y) = x2 + y2.

The graph of f1 is a paraboloid of revolution.

Since

f1(x, y) > 0 = f(0, 0) for (x, y) �= (0, 0),

the function f1 has a proper minimum at (0, 0). It is easily seen that this is also the global minimum
of the function.
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x

Figure 16.14: The graph of z = (x− 2y)2.

2) z = f2(x, y) = x2 − 4xy + 4y2 = (x− 2y)2.

The graph of f2 is a parabolic cylinder. It follows immediately that

f2(x, y) ≥ 0 = f(0, 0);

but since

f
(

x,
x

2

)

= 0 = f(0, 0) for all x,
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Figure 16.15: The graph of z = x3 + y3 sketched in MAPLE does not give the best picture.
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Figure 16.16: The restriction to the x-axis gives a better picture.

we see that (0, 0) is a weak local minimum. However, we also have in this case that 0 is a global
minimum.

3) z = f3(x, y) = x3 + y3 = (x+ y)(x2 − xy + y2).

Since x3 + y3 is of odd degree 3, we take e.g. the restriction of f3 to the x-axis,

f3(x, 0) = x3 (is both > and < 0 in any open neighbourhood of x = 0),

so f3 has no extremum at (0, 0).

This can also be seen by analyzing the sign of the function. In fact, x2 − xy+ y2 ≥ 0 for all (x, y),
thus x3 + y3 is everywhere of the same sign as x+ y.

4) z = f4(x, y) = x2 − y2 = (x+ y)(x− y).

The graph is a hyperbolic paraboloid. There is no extremum at (0, 0).

An analysis of the sign shows that f4(x, y) is 0 on the lines x + y = 0 and x − y = 0, and that
f4(x, y) attains both positive and negative values in any neighbourhood of (0, 0).
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Figure 16.17: The graph of z = x2 − y2.

It is finally also possible to consider the restrictions

x− axis: f4(x, 0) = x2 > 0 for x �= 0,
y − axis: f5(0, y) = −y2 < 0 for y �= 0,

from which we obtain the same conclusion. ♦
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Example 16.11

A. Examine whether the function

f(x, y, z) = exp
(

xy + z2
)

has a local extremum or not.

D. Here we shall not use the standard procedure but instead we suggest an alternative method. In
fact, since exp is strictly increasing, the functions

ϕ(x, y, z) = xy + z2 and f(x, y, z) = exp(ϕ(x, y, z))

must have the same stationary points and extrema.

We therefore examine the simpler function ϕ(x, y, z).

I. The equations for the stationary points for ϕ(x, y, z) are

∂ϕ

∂x
= y = 0,

∂ϕ

∂y
= x = 0,

∂ϕ

∂z
= 2z.

Hence it follows immediately that (0, 0, 0) is the only stationary point. An analysis of the sign of
the restriction

ϕ(x, y, 0) = xy

to the plane z = 0 shows that ϕ(x, y, 0) attains both positive and negative values in any neigh-
bourhood of (0, 0, 0), thus (0, 0, 0) is not an extremum for ϕ, and therefore neither for f . ♦

16.3.2 Application of Taylor’s formula

In most cases in the applications we may without loss of generality assume that f : A → R is a
C2-function. If so, then it follows from Taylor’s formula, cf. also Section 9.5, that

∆f = df +
1

2
d2f + ε(h)�h�2,

with x0 as expansion point and x = x0 + h.

We shall in this section derive the so-called (r, s, t)-method in the 2-dimensional case, i.e. when A ⊆ R2.

If x0 is a stationary point of f , i.e. if ▽f (x0) = 0, then clearly df = 0, so at a stationary point the
increment becomes

δf =
1

2
d2f + ε(h)�h�2,

where ε(h) → 0 for �h� → 0. It is usually not very difficult to calculate d2f , so for small �h� we get
an idea of the variation of the increment ∆f .

Assume that the chosen point x0 = (u, v) ∈ A ⊆ R2 is a stationary point, and put h := �h� and

h = (hx, hy) = (h cosϕ, h sinϕ).
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Then

∆f =
1

2

{

f ′′
xx(u, v)h

2
x + 2f ′′

xy(u, v)hxhy + f ′′
yy(u, v)h

2
y

}

+ ε(h)h2

=
1

2
h2

{

f ′′
xx(u, v) cos

2 ϕ+ 2f ′′
xy(u, v) cosϕ sinϕ+ f ′′

yy(u, v) sin
2 ϕ

}

+ ε(h)h2,

where ε(h) → 0 for h = �h� → 0.

For every fixed h > 0 we let ω(h) denote the maximum of the continuous function

gh(ϕ) := |ε(h cosϕ, h sinϕ)|, for ϕ ∈ [0, 2π].

This maximum exists, because [0, 2π] is a closed and bounded interval. Then we get

|ε(h)| ≤ ω(h) for all ϕ, and ω(h) → 0 for h → 0 + .

We then introduce the following standard notation for C2-functions in R2 at the stationary point
(u, v),

r := f ′′
xx(u, v), s := f ′′

xy(u, v), and t := f ′′
yy(u, v).

Since

cos2 ϕ =
1 + cos 2ϕ

2
, 2 sinϕ cosϕ = sin 2ϕ, sin2 ϕ =

1− cos 2ϕ

2
,

we get by insertion that

∆f =
1

2
h2

{

r
1 + cos 2ϕ

2
+ s sin 2ϕ+ t

1− cos 2ϕ

2

}

+ ε(h)h2

=
1

4
h2 {r + t+ (r − t) cos 2ϕ+ 2s sin 2ϕ}+ ε(h)h2.

The trick is then to analyze the vector (r − t, 2s). Its length is

K :=
√

(r − t)2 + (2s)2 =
√

(r + t)2 − 4 (rt− s2),

and there exists an angle ψ ∈ [0, 2π], such that the vector is written

(r − t, 2s) = K(cosψ, sinψ),

so writing the coordinates,

r − t = K cosψ and 2s = K sinψ.

Then by insertion,

∆f =
1

4
h2{r + t+K(cosψ cos 2ϕ+ sinψ sin 2ϕ)} + ε(h)h2

=
1

4
h2{r + t+K cos(2ϕ− ψ)}+ ε(h)h2

=
1

4
h2{F (ϕ) + 4ε(h)},
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where

F (ϕ) = r + t+K cos(2ϕ− ψ), for ϕ ∈ [0, 2π].

Since cosine has the range [−1, 1], and K > 0, we conclude that F has the range

[r + t−K, r + t+K], where K =
√

(r + t)2 − 4 (rt− s2).

We put for short α := r + t−K and β := r + t+K, so the range of F is [α, β].

1) If α = r+ t−K > 0, then we can find h0 > 0, such that ω(h) <
1

4
α for h < h0. This implies that

4|ε(h)| < α for h < h0, and hence

∆f ≥ 1

4
h2{α+ 4ε(h)} > 0 for 0 < h < h0,

proving that f has a proper minimum at the stationary point (u, v).

2) If β := r + t+K < 0, we just copy the argument above and conclude that for some h0 > 0,

∆f ≤ 1

4
h2{β + 4ε(h)} < 0 for 0 < h < h0,

proving that f has a proper maximum at the stationary point (u, v).

3) If α < 0 < β, then ∆f is both positive and negative in any neighbourhood of x0, so x0 is not a
point of extremum in this case.

4) Finally, if either α = 0, or β = 0, then there exists a ϕ0 ∈ [0, 2π], such that F (ϕ0) = 0, and
the sign of ∆f is then determined by the function ε(h), which in this crude analysis is not under
control. Hence, we cannot by this method alone decide, whether we have a local extremum at x0

or not.

We defined previously,

K =
√

(r + t)2 − 4 (rt − s2), α = r = r + t−K and β = r + t+K.

We shall go through the possibilities above and translate the results to only involving r, s and t.

1) Since α > 0, if and only if r + t > K, this inequality is equivalent to

rt > s2 and r > 0 and t > 0,

in which case we have a proper minimum.

2) Similarly, β < 0, if and only if r + t < −K, i.e. if and only if

rt > s2 and r < 0 and t < 0.

3) Then α < 0 < β, if and only id −K < r + t < K, i.e. if and only if

rt < s2.

4) Finally, α = 0, or β = 0, if and only if |r + t|K, i.e. if and only if

rt = s2.
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Summing up, we have proved

Theorem 16.6 The (r, s, t)-method. Assume that (u, v) is a stationary point of the C2-function
f : A → R, where A ⊆ R2. Compute the numbers

r = f ′′
xx(u, v), s = f ′′

xy(u, v), t = f ′′
yy(u, v).

1) We have a proper minimum at (u, v), if

rt > s2 and r > 0 and t > 0.

2) We have a proper maximum at (u, v), if

rt > s2 and r < 0 and t < 0.

3) There is no extremum at (u, v), if

rt < s2.

4) Finally, if rt = s2, it is an open question, whether there is a local extremum at x0 or not, and
other methods should be applied.
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Theorem 16.6 above is the traditional way of tackling the question of local extrema for C2-functions
in two variables. It is not one of the author’s favourites, because it is so easy to make errors, when one
applies it. But since it is commonly used, it has for completeness been described here. One common
pitfall is that one forgets to check, if the point (u, v) really is a stationary point. If it is not, then
the first order terms become dominating over the second order terms, which actually are lying behind
the (r, s, t)-method. Therefore, Theorem 16.6 can only be applied to points, which we know are also
stationary points.

No matter the author does not like this method, there are of course given some examples below of its
application.

Example 16.12

A. In Example 16.10 it was shown that the function

f(x, y) = x4 + 4x2y2 + y4 − 4x3 − 4y3, (x, y) ∈ R2,

has the stationary points

(0, 0), (1, 1), (3, 0), and (0, 3).

Examine whether these points are also extrema.

D. This is an example where the (r, s, t)-method is of no use at the point (0, 0). This illustrates that
the mechanical (r, s, t)-method is not a universal method, which can handle all cases. We shall
therefore here use the alternative method of the approximating polynomials. This is in general far
better than the (r, s, t)-method, although this is not a universal method either.

Remark 16.4 Aside! None of the two methods above can solve the same problem of extrema
for the function

g(x, y) = exp

(

− 1

x2 + y2

)

for (x, y) �= (0, 0),

supplied by continuity with g(0, 0) = 0. It can be proved by using difference quotients that
g ∈ C∞(R2) and that

g
(n)

xkyn−k(0, 0) :=
∂ng

∂xk∂yn−k
(0, 0) = 0 for all n ∈ N0 and 0 ≤ k ≤ n,

so every approximating polynomial of degree at most n is degenerated to the zero polynomial.
Nevertheless it follows immediately that because

g(x, y) > 0 = g(0, 0) for every (x, y) �= (0, 0),

we must have a minimum at (0, 0) for g(x, y). ♦

I. 1) It follows for the point (0, 0) that since the terms of third degree are dominating the terms of
fourth degree, we must have in a neighbourhood of (0, 0) that

f(x, y) ≈ P3(x, y) = −4x3 − 4y3 = −4(x+ y)(x2 − xy + y2).
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Since

x2 − xy + y2 =
(

x− y

2

)2

+
3

4
y2 > 0 for (x, y) �= (0, 0),

the polynomial P3(x, y) must have the same sign as −(x + y), i.e. it is negative over the line
y = −x and positive under this line. We therefore conclude that P3(x, y), and hence also f(x, y)
attains both positive and negative values in any neighbourhood of (0, 0), where f(0, 0) = 0.
Hence we cannot have an extremum at (0, 0).

2) For the other candidates the (r, s, t)-method is easier, because it is the essence of the deter-
mination of the approximative polynomial of at most degree two. One often forgets in the
applications that this is the general idea behind the (r, s, t)-method. Note that we in 1) had to
expand to the third degree, which is the reason why the (r, s, t)-method fails for (0, 0).

Since

r = 12x2 + 8y2 − 24x, s = 16xy, t = 8x2 + 12y2 − 24y,

we derive the following, using the (r, s, t)-method.

a) At (1, 1) we calculate

r = −4, s = 16, t = −4 and rt − s2 = −240,

so according to the (r, s, t)-scheme there is no extremum at (1, 1).

b) At (3, 0) we calculate

r = 36, s = 0, t = 72 and rt− s2 = 2592,

so according to the (r, s, t)-scheme there is a proper minimum at (3, 0).

c) Since the function is symmetric in (x, y), the computations are obtained as in 2) with x and
y interchanged. This changes nothing in the conclusion, so we have a proper minimum at
(0, 3).

d) For completeness we note that we at (0, 0) get r = s = t = 0, so nothing can be concluded
by using the (r, s, t)-method alone.

There is, however, also an alternative method for the other points. This will here be illustrated
at the point (1, 1).

a) First we reset , the problem, i.e. put (x, y) = (1 + h, 1+ k), so (h, k) = (0, 0) corresponds to
the point (x, y) = (1, 1) under examination.

b) Insert this in the expression for f(x, y) and write dots for terms of degree > 2:

f(x, y) = (1 + h)4 + 4(1 + h)2(1 + k)2 + (1 + k)4 − 4(1 + h)3 − 4(1 + k)3

= 1 + 4h+ 6h2 + · · ·+ 4(1 + 2h+ h2)(1 + 2k + k2)

+1 + 4k + 6k2 + · · · − 4(1 + 3h+ 3h2 + · · · )
−4(1 + 3k + 3k2 + · · · )

= (1 + 4h+ 6h2) + 4
{

1 + 2h+ h2 + 2k + 4hk + k2 + · · ·
}

+(1 + 4k + 6k2)− 4(1 + 3h+ 3h2)− 4(1 + 3k + 3k2) + · · ·
= −2− 2h2 + 16hk − 2k2 + · · · ,

i.e.

P2(h, k) = −2− 2(h2 − 8hk + k2) = −2− 2
{

(h− 4k)2 − 15k2
}

.
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Since P2(h, k) + 2 attains both negative values (for k = 0 and h �= 0) and positive values
(for h = 4k) in any neighbourhood of (h, k) = (0, 0), we conclude that (x, y) = (1, 1) is not
an extremum. ♦
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Example 16.13

A. Examine whether the function

f(x, y) = 1− 4x2 − 4y2 + x2y2, (x, y) ∈ R2.

has any extremum. Find the range f(R2).

D. When we apply the standard procedure we are guided through the usual examination of the
exceptional points (there are none) and of the stationary points. It is, however, here possible to
make a shortcut by noticing that f(x, y) only is a function in u = x2 and v = y2, i.e.

f(x, y) = 1− 4x2 − 4y2 + x2y2 = g(u, v) = 1− 4u− 4v + uv, u, v ≥ 0.

I. The stationary points for f(x, y), if any, must fulfil the equations

∂f

∂x
= −2x(4− y2) = 0 and

∂f

∂y
= −2y(4− x2) = 0.

This system is split into

x = 0 or y = 2 or y = −2,

and

y = 0 or x = 2 or x = −2.

Formally we get 3 · 3 possibilities, but four of them are not possible (e.g. x cannot at the same
time be 0 and 2 or −2). We therefore get five stationary points,

(0, 0), (2, 2), (−2,−2), (−2, 2), (2,−2).

We first apply the (r, s, t)-method. Here we get

r = 2y2 − 8, s = 4xy, t = 2x2 − 8,

from which

1) At (0, 0) we calculate

r = −8, s = 0, t = −8, and rt− s2 = 64,

so it follows that we have a proper maximum at (0, 0).

2) Due to the symmetry we get the same calculations at the two points (2, 2) and (−2,−2), namely

r = 0, s = 16, t = 0, and rt− s2 = −256.

We conclude that there is no extremum at any of the two points (2, 2), (−2,−2).

3) Due to the symmetry we get the same calculations at the two points (2,−2) and (−2, 2), namely

r = 0, s = −16, t = 0, and rt− s2 = −256.

Again, the conclusion is that there is no extremum at the points (2,−2), (−2, 2),
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Figure 16.18: The graph of z = 1− 4x2 − 4y2.

Then we turn to the alternative methods.

1) In (0, 0) we get

f(x, y) ≈ P2(x, y) = 1− 4x2 − 4y2.

The graph of z = P2(x, y) is an elliptic paraboloid of revolution. Obviously we have a proper
local maximum at (0, 0).

2) We take a shortcut by considering

g(u, v) = 1− 4u− 4v + uv, u = x2, v = y2,

instead. First, all four stationary points for f are seen to correspond to the only point (u, v) =
(4, 4). It is therefore sufficient to examine g(u, v) in the neighbourhood of (4, 4).
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Figure 16.19: The graph of f(x, y) = 1− 4x2 − 4y2 + x2 + y2.

The approximating polynomial for g(u, v) expanded from (4, 4) of at most degree 2 is found by
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using:

g(u, v) = 1− 4u− 4v + uv, g(4, 4) = −15,

∂g

∂u
= −4 + v, g′u(4, 4) = 0,

∂g

∂v
= −4 + u, g′v(4, 4) = 0,

∂2g

∂u
∂v = 1,

∂2g

∂u2
=

∂2g

∂v2
= 0, ,

hence

P3(u, v) = −15 +
1

2
· (u− 4)(v − 4) = −15 + (u− 4)(v − 4).

It follows that P2(u, v) in the neighbourhood of (4, 4) attains values which are both > −15 and
< −15. Thus g(u, v) does not have an extremum at (4, 4). This implies that f(x, y) does not
have an extremum at (±2,±2) (all four possible combinations of the sign).

3) The function f(x, y) has only one local maximum,

f(0, 0) = 1.

However, this value is not the global maximum. In fact, by rewriting

f(x, y) = 1− 4x2 − 4y2 + x2y2 = (x2 − 4)(y2 − 4)− 15,

we see that the restriction to the line y = x gives

f(x, x) =
(

x2 − 4
)2 − 15 → +∞ for x → ±∞.

4) Note also that

f(x, 0) = 1− 4x2 → −∞ for x → ±∞.

Thus, since f is continuous on the connected set R2, it follows from the first main theorem for
continuous functions that the range is

f(R2) = R. ♦

16.4 Extremum for continuous functions in three or more variables

In this section we show how to treat the extremum problem, when we consider a C2-function f : A → R

first in three variables, i.e. A ⊆ R3, and then for general Rm, m ≥ 2.

Assume that x0 ∈ A ⊆ R3 is a stationary point, i.e. in the coordinates of the gradient,

∂f

∂x1
(x0) = 0,

∂f

∂x2
(x0) = 0,

∂f

∂x3
(x0) = 0.
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As previously we put ∆f = f(x)− f (x0). Then we get by Taylor’s formula,

∆f =
1

2
(h · ▽)2f (x0) + ε(h)�h�,

or, more elaborated,

∆f =
1

2

3
�

i=1

3
�

j=1

hihj
∂2f

∂xi∂xj
(x0) + ε(h)�h�2.

To ease notation we put

Mij :=
d2f

∂xi∂xj
(x0) , for i, j = 1, 2, 3.

We note that since f ∈ C2, the differentiations commute, so Mij = Mji. If we define the matrices

h− := (h1, h2, h3) , M :=





M11 M12 M13

M21 M22 M23

M31 M32 M33



 , h| :=





h1

h2

h3



 ,

then

∆f =
1

2

3
�

i=1

3
�

j=1

hiMijhj + ε(h)�h�2 =
1

2
h−Mh| + ε(h)�h�2.
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Neglecting the “error term” ε(h)�h�2, which tends towards 0 faster than �h�2, the problem is reduced
to a discussion of the bilinear form

F (h) := h−Mh|,

where as mentioned above the square matrix M is symmetric, Mij = Mji.

It is known from Linear Algebra that a real symmetric (3× 3)-matrix has three real eigenvalues
λ1, λ2, λ3, counted by multiplicity., and that we can write

F (h) = h−Mh| =
3

∑

i=1

λiw
2
i ,

where w1, w2, w3 are some linear combinations of h1, h2, h3, chosen such that �w� = �h�, where
w = (w1, w2, w3).

It is well-known from Linear Algebra that the eigenvalues are the roots in the equation

det(M− λI) = 0,

where I is the unit (3 × 3)-matrix.

The structure of the wi’s is not important here. Of importance for the analysis of possible extrema are
only the eigenvalues λ1, λ2, λ3, because we by using known results from Linear Algebra immediately
get the following results.

1) The matrix M is positive definite, if and only if all its eigenvalues are positive. In this case f has
a proper minimum at the stationary point x0.

2) The matrix M is negative definite, if and only if all its eigenvalues are negative. In this case f has
a proper maximum at the stationary point x0.

3) The matrixM is indefinite, if and only if there are at least one positive and one negative eigenvalue.
In this case f has no extremum at the stationary point x0,

4) The matrix M is semidefinite,, if and only if at least one of the eigenvalues is 0, and the nonzero
eigenvalues have all the same sign. In this case nothing can be concluded based alone on the
present analysis.

The analysis above was performed in R3, but it is trivial to extend it to any Rm, m ≥ 2. However,
when m ≥ 4, the computations soon become overwhelming, unless we have chosen very special cases.

Let us check the result for m = 2, already treated in Section 16.3.2. In this case,

M =

(

r s
s t

)

,

and

det(M− λI) =

∣

∣

∣

∣

r − λ s
s t− λ

∣

∣

∣

∣

= (r − λ)(t− λ)− s2 = λ2 − (r + t)λ+ rt− s2 = 0.

The eigenvalues are the roots of this equation,

λ =
1

2

{

r + t±
√

(r + t)2 − 4 (rt− s2)
}

=
1

2
(r + t±K),
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where K was introduced in Section 16.3.2.

When we go through the four bullets above, we again derive the (r, s, t)-scheme, so this is only a
special case of this more general theory, in which we applied some matrix calculus.

Example 16.14 Consider the function

f(x, y, z) = x3 + x2 + 2xy − y2 − z2 for (x, y, z) ∈ R3,

in three real variables. Since f ∈ C∞ �

R3
�

, there are no exception points.

Then we turn to the stationary points. First we compute the coordinates of the gradient,

f ′
x(x, y, z) = 3x2 + 2x+ 2y, f ′

y(x, y, z) = 2x− 2y, f ′
z(x, y, z) = −2z,

which we shall need to calculate the derivatives of second order.

The stationary points are the solutions of the system of equations,

3x2 + 2x+ 2y = 0, 2x− 2y = 0 and − 2z = 0,

thus z = 0 (third equation), and y = x (second equation). Eliminating y in the first equation we get

0 = 3x2 + 4x = x(3x+ 4), so x = 0 or x = −4

3
.

We conclude that there are two stationary points,

(0, 0, 0) and

�

−4

3
,−4

3
, 0

�

.

Then we calculate the matrix M consisting of the derivatives of second order,

M =





6x+ 2 2 0
2 −2 0
0 0 −2



 .

1) First consider the stationary point (0, 0, 0). The eigenvalues satisfy the equation

�

�

�

�

�

�

2− λ 2 0
2 −2− λ 0
0 0 −2− λ

�

�

�

�

�

�

= (−2− λ)

�

�

�

�

2− λ 2
2 −2− λ

�

�

�

�

= −(λ+ 2)
�

λ2 − 4− 4
�

= −(λ+ 2)
�

λ2 − 8
�

= 0,

so the eigenvalues are

λ1 = −2
√
2, λ2 = −2, λ3 = +2

√
2.

Since λ1 and λ3 have opposite signs, we conclude that the matrix is indefinite at (0, 0, 0), hence
(0, 0, 0) has not an extremum.
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2) Then at the stationary point

(

−4

3
,−4

3
, 0

)

we get instead the following equation for the eigenvalues,

∣

∣

∣

∣

∣

∣

−6− λ 2 0
2 −2− λ 0
0 0 −2− λ

∣

∣

∣

∣

∣

∣

= −(λ+ 2)((λ+ 6)(λ+ 2)− 4) = −(λ+ 2)
(

λ2 + 8λ+ 8
)

= 0,

so the eigenvalues are

λ1 = −4− 2
√
2, λ2 = −2, λ3 = −4 + 2

√
2.

They are all negative, so we conclude from the above that we have a proper maximum at

(

−4

3
,−4

3
, 0

)

. ♦

Example 16.15 To illustrate the situation in higher dimensions we shall here consider the following
very nice C∞-function in four variables,

f(x, y, z, w) = x3 + y3 − 3xz2 + 3yw2 + 6z + 6w, for (x, y, z, w) ∈ R4.
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We first compute the coordinates of the gradient,

∂f

∂x
= 3x2 − 3z2,

∂f

∂y
= 3y2 − 3w2,

∂f

∂z
= −6xz + 6,

∂f

∂w
= −6yw + 6,

from which we for later use calculate the M-matrix,

M = 6









x 0 −z 0
0 y 0 −w

−z 0 −x 0
0 −w 0 −y









.

The stationary points are the solutions of the nonlinear system

3x2 − 3z2 = 0, 3y2 − 3w2 = 0,

−6xz + 6 = 0, −6yw + 6 = 0,

from which z = ±x and xz = 1, so z = x = ±1, and w = ±y and yw = 1, so y = w = ±1. By taking
all possible combinations of the signs we find the following four stationary points,

(1, 1, 1, 1), (1,−1, 1,−1), (−1, 1,−1, 1), and (−1,−1,−1,−1).

Using brute force we get by expanding the determinant after the first columb,
�

�

�

�

�

�

�

�

x− λ 0 −z 0
0 y − λ 0 −w
−z 0 −x− λ 0
0 −w 0 −y − λ

�

�

�

�

�

�

�

�

= (x− λ)

�

�

�

�

�

�

y − λ 0 −w
0 −x− λ 0

−w 0 −y − λ

�

�

�

�

�

�

− z

�

�

�

�

�

�

0 −z 0
y − λ 0 −w
−w 0 −y − λ

�

�

�

�

�

�

= (x− λ)(−x − λ)

�

�

�

�

y − λ −w
−w −y − λ

�

�

�

�

− z2
�

�

�

�

y − λ −w
−w −y − λ

�

�

�

�

=
�

λ2 − x2 − z2
� �

λ2 − y2 − w2
�

= 0,

so the eigenvalues are λ = ±
√
x2 + z2 and λ = ±

�

y2 + w2.

Inserting the four stationary points we obtain in all cases the eigenvalues
√
2 and −

√
2, both of

multiplicity 2. Since there are both positive and negative eigenvalues, the matrix is indefinite, and we
do not have any extremum, ♦
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17 Examples of global and local extrema

17.1 MAPLE

It is possible in the examples to use some MAPLE commands. For completeness we mention the
following:

with(VectorCalculus):
Gradient(f(x, y), [x, y])

or
Gradient(f(x, y, z), [x, y, z])

etc., where e.g. f(x, y) is an explicit expression of a function, and [x, y] is a list of coordinates. The
results are given in the form

f ′
x(x, y)ex + f ′

y(x, y)ey,

and similarly.

It is also possible in this way to find the gradient in polar/spherical coordinates.

An alternative way in in R3:

with(Physics[Vectors]):
Gradient(f(x, y, z), [x, y, z])

which is the same as above, or, using

Nabla(f(x, y, z), [x, y, z])

instead.

One may also plot the gradient field of a given function f . The commands are:

with(plots):
gradplot(f(x, y), x = a..b, y = c..d)

or
gradplot3d(f(x, y, z), x = a..b, y = c..d, z = h..k)

in R2 and R3 resp..

However, most of the examples in this chapter are so simple that we shall only make little use of
MAPLE.

631

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume V

632 

Examples of global and local extrema

17.2 Examples of extremum for two variables

Example 17.1 Find in each of the following cases first the stationary points of the given function
f : R2 → R. Then check if f in any of these points has an extremum; whenever this is the case, decide
whether it is a maximum or a minimum.

1) f(x, y) = x2 + 2y2 − 2x− 2y.

2) f(x, y) = x2 + y2 + 2xy.

3) f(x, y) = xy2.

4) f(x, y) = 3x3 + 4y3 + 6xy2 − 9x2.

5) f(x, y) = (x2 + y2 − 2y)(x2 + y2 − 6y)

6) f(x, y) = x4 + y4 − 2x2y2.

7) f(x, y) = 3x4 + 4y4 − 4x2y2.

8) f(x, y) = (sinx) cos y.

9) f(x, y) = x2 + y2 + exy.

10) f(x, y) = xy + 2 sinh(1 + x2 + y2).

11) f(x, y) = x3y − 2x2y + xy3.

A Stationary points; extrema.

D Inspect the expression for a smart rearrangement. Find the stationary points. Check if these are
extrema.

I 1) a) First variant. It is seen by inspection that

f(x, y) = x2 + 2y2 − 2x− 2y = (x− 1)2 + 2

(

y − 1

2

)2

− 3

2
.

We conclude that

(

1,
1

2

)

is the only stationary point and that it is a minimum.

b) Second variant. Traditionally the equations of the stationary points are

∂f

∂x
= 2x− 2 = 0 and

∂f

∂y
= 4y − 2 = 0,

from which follows that

(

1,
1

2

)

is the only stationary point.

i) First subvariant. The approximating polynomial of at most second degree is found

by translating the coordinate system to the point

(

1,
1

2

)

, so we introduce the new

variables

x = x1 + 1, y = y1 +
1

2
.
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Then by insertion,

P2(x1, y1) [= f(x, y)] = x2
1 + 2y21 −

3

2

[cf. the first variant], which clearly has a minimum for (x1, y1) = (0, 0), i.e. for (x, y) =
(

1,
1

2

)

.

ii) Second subvariant. The (r, s, t)-method. It follows from

r =
∂2f

∂x2
= 2, s =

∂2f

∂x∂y
= 0, t =

∂2f

∂y2
= 4,

that r, t > 0 and s2 < rt, so we conclude that we have a minimum.

2) a) Inspection. It is immediately seen that

f(x, y) = x2 + y2 + 2xy = (x+ y)2,

which has a minimum (= 0) on the line y = −x. The points of this line are of course not
proper minima.

b) The stationary points. These are the solutions of the equations

∂f

∂x
= 2x+ 2y = 2(x+ y) = 0,

∂f

∂y
= 2y + 2x = 2(x+ y) = 0,

thus every point on the line y = −x is a stationary point.
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In this case we cannot conclude anything by the (r, s, t)-method. One should, however, be
able to see that e.g.

df =
∂f

∂x
dx+

∂f

∂y
dy = 2(x+ y)(dx+ dy) = d(x+ y)2,

so f(x, y) = (x+ y)2, and we are back to the first variant.

3) It follows from

∂f

∂x
= y2 = 0 and

∂f

∂y
= 2xy = 0

that the stationary points are the points on the X axis y = 0. In a neighbourhood of any
point (x0, 0), x0 �= 0 we see that xy2 has the same sign as x0, and it is 0 on the X axis. This
means that we have a minimum (though not a proper minimum) for every (x0, 0), x0 > 0, and
a maximum (though not a proper maximum) for every (x0, 0), x0 < 0. In the stationary point
(0, 0) we have neither a maximum nor a minimum, because the function in any neighbourhood
of (0, 0) takes on both positive and negative values.

4) When f(x, y) = 3x3 + 4y3 + 6xy2 − 9x2, the equations of the stationary points are


















∂f

∂x
= 9x2 + 6y2 − 18x = 0,

∂f

∂y
= 12y2 + 12xy = 12y(y + x) = 0.

We get two possibilities from the latter condition:

y = 0 or y = −x.

a) If we put y = 0 into the first equation we get

9x2 − 18x = 9x(x− 2) = 0,

so we conclude that (0, 0) and (2, 0) are stationary points.

b) If we put y = −x into the first equation we get

15x2 − 18x = 15x

�

x− 6

5

�

= 0,

so we get the stationary points (0, 0) and

�

6

5
,−6

5

�

.

Summing up we have three different stationary points

(0, 0), (2, 0) and

�

6

5
,−6

5

�

.

These are now considered one by one.

a) The point (0, 0) is not an extremum, because e.g. f(0, y) = 4y3 takes on both positive and
negative values in any neighbourhood of (0, 0).

In the other two cases we apply the (r, s, t)-method. We first calculate the general results

r =
∂2f

∂x2
= 18x− 18, s =

∂2f

∂x∂y
= 12y, t =

∂2f

∂y2
= 24y + 12x.
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b) At (2, 0) we have r = 18, s = 0 and t = 24, so rt > s2, r > 0, t > 0, corresponding to a
proper minimum.

c) At

(

6

5
,−6

5

)

we have r =
18

5
, s = −72

5
, t = −72

5
, so rt < s2 (e.g. s and t have different

signs), and we have no extremum.

Summarizing we see that only (2, 0) is an extremum (a proper minimum).

5) It follows by the rearrangement

f(x, y) = (x2 + y2 − 2y)(x2 + y2 − 6y)

=
(

x2 + {y − 1}2 − 1
) (

x2 + {y − 3}2 − 32
)

that f is zero on the circles

x2 + (y − 1)2 = 1 and x2 + (y − 3)2 = 32.

0

1

2

3

4

5

6

y

–4 –3 –2 –1 1 2 3 4

x

Figure 17.1: Zero curves for f(x, y).

The function is positive inside both circles (i.e. inside the smaller circle), and outside both
circles. It is negative at every point inside the larger circle and outside the smaller circle. The
function is continuous and 0 on both circles, so it follows from the main theorem that we must
have a local maximum inside the smaller circle, and a local minimum inside the larger disc
(and outside the smaller disc). Finally, f is both positive and negative in any neighbourhood
of (0, 0), so this point cannot be an extremum.

Remark. It follows from the above that one can apply the main theorem in a qualitative way
to decide where we must have extrema. Such analyses of figures are very useful. ♦

The stationary points. We shall now start on the tough calculations of the example. It
follows from

f(x, y) = (x2 + y2 − 2y)(x2 + y2 − 6y)

that

∂f

∂x
= 2x(x2 + y2 − 6y) + 2x(x2 + y2 − 2y) = 4x(x2 + y2 − 4y),
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and

∂f

∂y
= (2y − 2)(x2 + y2 − 6y) + (2y − 6)(x2 + y2 − 2y)

= (2y−4)(x2+y2−6y)+2(x2+y2−6y) +(2y−4)(x2+y2−2y)−2(x2+y2−2y)

= 4(y − 2)(x2 + y2 − 4y)− 8y

= 4
�

(y − 2)(x2 + y2 − 4y)− 2y
�

.

The two equations of the stationary points are therefore written more conveniently

(17.1)







x(x2 + y2 − 4y) = 0,

(y − 2)(x2 + y2 − 4y) = 2y.

It follows from the first equation that the stationary points (if any) either lies on the line x = 0
or on the circle x2 + (y − 2)2 = 22.

a) If x = 0, then we get from the latter equation (17.1) that

0 = (y − 2)(y2 − 4y)− 2y = y{(y − 2)(y − 4)− 2}
= y

�

y2 − 6y + 6
�

= y
�

(y − 3)2 − (
√
3)2

�

,

so either y = 0 or y = 3±
√
3. Hence we get three stationary points,

(0, 0), (0, 3 +
√
3), (0, 3−

√
3).

b) If x2 + y2 − 4y = 0, then it follows from the latter equation of (17.1) that y = 0, and thus
x = 0, so we find again (0, 0).

Summarizing we get the three stationary points

(0, 0), (0, 3 +
√
3), (0, 3−

√
3).

Alternatively the expression gives one the inspiration of using polar coordinates. We get

f(x, y) = (̺2 − 2̺ sinϕ)(̺2 − 6̺ sinϕ) = ̺4 − 8̺3 sin ̺+ 12̺2 sin2 ϕ,

hence

∂f

∂̺
= 4̺3 − 24̺2 sinϕ+ 24̺ sin2 ϕ = 4̺

�

̺2 − 6̺ sinϕ+ 6 sin2 ϕ
�

,

∂f

∂ϕ
= −8̺3 cosϕ+ 24ϕ2 sinϕ cosϕ = 8̺2 cosϕ(−̺+ 3 sinϕ).

After a reduction the system of equations is written

(17.2)







̺
�

̺2 − 6̺ sinϕ+ 6 sin2 ϕ
�

= 0,

̺2 cosϕ(3 sinϕ− ̺) = 0.

From the latter equation we get the three possibilities ̺ = 0, cosϕ = 0 and 3 sinϕ = ̺.

a) If ̺ = 0, then both equations are fulfilled so (0, 0) is a stationary point corresponding to
̺ = 0, hence to (0, 0) in rectangular coordinates.
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b) If cosϕ = 0 (and ̺ ≥ 0), then sinϕ = ±1.

i) When sinϕ = −1 it follows that

̺2 − 6̺ sinϕ+ 6 sin2 ϕ = ̺2 + 6̺+ 6 ≥ 6 for ̺ ≥ 0,

so we are only left with the possibility ̺ = 0, which has already been treated above.

ii) When sinϕ = 1 (and ̺ = y, because y = ̺ sinϕ), then

̺2 − 6̺ sinϕ+ 6 sin2 ϕ = ̺2 − 6̺+ 6 = 0

has the two positive solutions ̺ = 3±
√
3, corresponding to the stationary points

(0, 3 +
√
3) and (0, 3−

√
3)

in rectangular coordinates.

c) If 3 sinϕ = ̺, then

0 = 4̺

(

̺2 − 2̺ · 3 sinϕ+
2

3
(3 sinϕ)2

)

= 4̺

(

̺2 − 2̺2 +
2

3
̺2
)

= −8

3
̺2,

with the only solution ̺ = 0, which we have already treated above.

Summarizing we get in rectangular coordinates the following three stationary points

(0, 0), (0, 3 +
√
3), (0, 3−

√
3).
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Check of the type of the stationary points, inspection. It follows from the discussion
of the sign in the beginning of the example that (0, 0) is not an extremum, because the function
takes on both positive and negative values in any neighbourhood of (0, 0).

The point (0, 3−
√
3) must be a local maximum. In fact, we have already by the main theorem

concluded that there exists a local maximum in the smaller disc, and since f ∈ C∞, it can only
be attained at a stationary point. Since (0, 3−

√
3) is the only stationary point in the smaller

disc the claim follows.

It follows analogously by the discussion of the sign that (0, 3 +
√
3) must be a local minimum.

Remark. Note that by the application of the main theorem we obtain a much simpler analysis
than by the traditional standard methods in the following. We have almost done everything!
♦

Investigation of the type of the stationary points, standard procedure.

a) We first check (0, 0).

i) First variant, the (r, s, t)-method. This breaks totally down because

r = s = t = 0,

and nothing can be concluded.

ii) Second variant. Approximating polynomials of at most second degree. This cannot
be used either, because

P2(x, y) ≡ 0,

and nothing can be concluded.

iii) Third variant. A dirty trick. If follows from

4ab = (a+ b)2 − (a− b)2, i.e. ab =
1

4

{

(a+ b)2 − (a− b)2
}

,

that

a = x2 + y2 − 2y and b = x2 + y2 − 6y,

so

f(x, y) =
1

4

{

4(x2 + y2 − 4y)2 − 16y2
}

= (x2 + y2 − 4y)2 − 4y2.

If we go towards (0, 0) along the line y = 0, then f(x, 0) > 0, and if we go towards (0, 0)
along the circle x2 + y2 − 4y = 0, then f(x, y) < 0, so f takes on both positive and
negative values in any neighbourhood of(0, 0). Therefore we cannot have an extremum
at (0, 0).

Remark. The trick above is one of the very oldest in mathematics. The Egyptians
did not have tables of multiplication, though tables of squared numbers. They used the
trick above to calculate products. ♦

Erroneous variant. One might try to investigate the limit along all lines through (0, 0).

i) If y = 0, then f(x, 0) = x4 > 0 for x �= 0.
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ii) If x = 0, then

f(0, y) = (y2 − 2y)(y2 − 6y) = y2(2− y)(6 − y) > 0 for 0 < |y| < 2.

iii) If y = ax, a �= 0, then

f(x, ax) = · · · = x2{2a− (1 + a2)x}{6a− (1 + a2)x},
where the product of the latter two factors tends towards 12a2 > 0 for x → 0, and
accordingly

f(x, ax) > 0 sufficiently close to 0.

One might then erroneously conclude that (0, 0) is a minimum, what it is not.

b) Let us return to the points (0, 3 ±
√
3). These are checked by the (r, s, t)-method. First

calculate

r =
∂2f

∂x2
= 4{x2 + y − 4y}+ 8x2 = 12x2 + 4y(y − 4),

s =
∂2f

∂x∂y
= 4x(2y − 4) = 8x(y − 2),

t =
∂2f

∂y2
= 4(x2 + y2 − 4y) + 4(y − 2)(2y − 4)− 8 = 4x2 + 12y(y − 4).

Since both stationary points satisfy x = 0 we can reduce in the following way

r|x=0 = 4y(y − 4),

s|x=0 = 0,

t|x=0 = 12y(y − 4) = 3r|x=0,

thus

r|x=0t|x=0 = 3
(

r|x=0

)2 ≥ 0 = s2|x=0.

We therefore have extremum when r|x=0 �= 0.

i) We have at the point (0, 3 +
√
3) that 3 +

√
3 > 4, so r > 0, and t > 0, so we have a

minimum.

ii) We have at the point (0, 3 −
√
3) that 3 −

√
3 < 4, so r < 0, and t < 0, and we have a

maximum.

6) Here

f(x, y) = x4 + y4 − 2x2y2 =
(

x2 − y2
)2

= (x− y)2(x+ y)2,

corresponding to a minimum on the lines y = x and y = −x.

Alternatively,

∂f

∂x
= 4x3 − 4xy2 = 4x(x2 − y2),

∂f

∂y
= 4y3 − 4x2y = 4y(y2 − x2).

The stationary points are

(0, 0), (x, x) and (x,−x), x ∈ R,

corresponding to the fact that the stationary points form the set consisting of the two lines
y = x and y = −x. On these we have a minimum, though not a proper minimum.
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7) Here

f(x, y) = 3x4 + 4y4 − 4x2y2 = (4y4 − 4x2y2 + x4)02x4 =
(

2y2 − x2
)2

+ 2x4,

so we have got a minimum for y2 =
1

2
x2 = 0, i.e. at (0, 0).

Alternatively

∂f

∂x
= 12x3 − 8xy2 = 4x(3z2 − 2y2),

∂f

∂y
= 16y3 − 8x2y = 8y(2y2 − x2).

It is almost obvious that (0, 0) is the only stationary point.

8) Here

∂f

∂x
= cosx · cos y and

∂f

∂y
= − sinx · sin y.

These expressions are both zero, if and only if

(x, y) =
(π

2
+ pπ, qπ

)

, p, q ∈ Z,

hence

(x, y) =
(

pπ,
π

2
+ qπ

)

, p, q ∈ Z.

These are the stationary points.

Since

f
(π

2
+ pπ, qπ

)

= (−1)p · (−1)q = (−1)p+q og f
(

pπ,
π

2
+ qπ

)

= 0,

and |f(x, y)| ≤ 1, it follows immediately that we have maxima at

(π

2
+ pπ, qπ

)

for p+ q even,

and minima at
(π

2
+ pπ, qπ

)

for p+ q odd.

In the neighbourhood of any point of the form
(

pπ,
π

2
+ qπ

)

the function attains both positive

and negative values, so these points are not extrema.

9) The equations of the stationary points for f(x, y) = x2 + y2 + exy are

∂f

∂x
= 2x+ yexy = 0,

∂f

∂y
= 2y + xexy = 0.

These are clearly satisfied for (x, y) = (0, 0), so (0, 0) is a stationary point.
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Assume that x �= 0. Then also y �= 0, and thus xy �= 0. Accordingly,

2x2 = −xyexy = 2y2,

i.e. x2 = y2 and xy ≤ 0, so y = −x. If this restriction is put into the first equation, we get

0 = 2x− xe−x2

= x
(

2− e−x2
)

,

which has only the solution x = 0.

Remark. This is actually a “false solution”. On the other hand, we have already checked that
(0, 0) is a stationary point. ♦

Hence, (0, 0) is the only stationary point.

The problem of a possible extremum at (0, 0) can be solved in various ways.

a) It follows from

f(x, y) = x2 + y2 + exy

= x2 + y2 + 1 + xy + xyε(xy) (Taylor)

= 1 +
1

2

{

x2 + y2 + (x+ y)2
}

+ xy · ε(x, y)
that (0, 0) is a proper minimum
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.

b) We get from

∂2f

∂x2
= 2 + y2exy, r = 2,

∂2f

∂x∂y
= exy + xyexy, s = 1,

∂2f

∂y2
= 2 + x2exy, t = 2,

that rt > s2, and since r > 0 and t > 0, the stationary point (0, 0) must be a proper
minimum.

10) The equations for the stationary points for f(x, y) = xy + 2 sinh(1 + x2 + y2) are

∂f

∂x
= y + 4x cosh(1 + x2 + y2) = 0,

∂f

∂y
= x+ 4y cosh(1 + x2 + y2) = 0.

By inspection, (0, 0) is clearly a stationary point. If there were other stationary points they
should fulfil xy �= 0. Assume that (x, y) �= (0, 0) is such a stationary point. Then

y2 = −4xy cosh(1 + x2 + y2) = x2,

so y2 = x2 and xy < 0, thus y = −x. By insertion the condition is reduced to

0 = −x+ 4x cosh(1 + 2x2) = x(4 cosh(1 + 2x2)− 1).

Now 4 cosh(1 + 2x2) − 1 > 0, so x = 0 is the only solution (and strictly speaking we assumed
that x �= 0). On the other hand, he have already proved that (0, 0) is a stationary point.
Accordingly, (0, 0) is the only stationary point.

Concerning extremum at (0, 0) we have again several possibilities.

a) It follows from

∂2f

∂x2
= 4 cosh(1 + x2 + y2) + x{· · · }, r = 4 cosh1,

∂2f

∂x∂y
= 1 + x{· · · }, s = 1,

∂2f

∂y2
= 4 cosh(1 + x2 + y2) + y{· · · }, t = 4 cosh 1,

that rt > s2 and r > 0 and t > 0, corresponding to a minimum.
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b) It is this time more tricky just to inspect the function, though it is still possible:

f(x, y) = xy + 2 sinh(1 + x2 + y2)

= xy + 2 sinh 1 · cosh(x2 + y2) + 2 cosh 1 · sinh(x2 + y2)

= xy + 2 sinh 1 ·
{

1 + (x2 + y2)ε(x2 + y2)
}

+2 cosh1 ·
{

x2 + y2 + (x2 + y2)ε(x2 + y2)
}

= 2 sinh 1 +
1

2
(x+ y)2 +

{

2 cosh 1− 1

2

}

(x2 + y2)

+(x2 + y2)ε(x2 + y2).

Since cosh 1− 1

2
> 0, it follows by this rearrangement that we have a minimum at (0, 0).

11) It follows from

f(x, y) = x3y − 2x2y + xy3 = xy
{

x2 − 2x+ y2
}

= xy
{

(x − 1)2 + y2 − 1
}

,

that the zero curves for f(x, y) are the coordinate axes and the circle of centrum (1, 0) and
radius 1.

–1.5

–1

–0.5

0

0.5

1

1.5

y

–1 1 2 3

x

Figure 17.2: The zero curves for f(x, y).

The plane is then divided into six subregions, in which the sign of the function is fixed. Every
one of these open subregions has (0, 0) as a boundary point, so if one circles around (0, 0), then
the sign of the function will be positive in every second subregion and negative in the others,
because the sign is negative in the second quadrant and positive in the third quadrant.

The equations of the stationary points are

∂f

∂x
= 3x2y − 4xy + y3 = y(3x2 − 4x+ y2) = 0,
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and

∂f

∂y
= x3 − 2x2 + 3xy2 = x(x2 − 2x+ 3y2) = 0.

If we put y = 0, then the first equation is fulfilled, and the second one is reduced to

0 = x(x2 − 2x) = x2(x− 2).

Therefore, in this case we get the stationary points (0, 0) and (2, 0).

If instead y2 = 4x − 3x2 = 3x

(

4

3
− x

)

≥ 0, the first equation is again fulfilled. Then note

that this implies that x ∈
[

0,
4

3

]

. By insertion into the second equation we get

0 = x(x2 − 2x+ 12x− 9x2) = x2(10− 8x) = 8x2

(

5

4
− x

)

,

where the solutions are x = 0 and x =
5

4
∈
[

0,
4

3

]

.

When x = 0 we get y = 0, so we find again the stationary point (0, 0).

When x =
5

4
we get

y2 = 4x− 3x2 = 5− 73

16
=

5

16
, i.e. y = ±

√
5

4
,

corresponding to the stationary points
(

5

4
,

√
5

4

)

and

(

5

4
,−

√
5

4

)

.

Summarizing we have found the four stationary points

(0, 0), (2, 0),

(

5

4
,

√
5

4

)

,

(

5

4
,−

√
5

4

)

.

It follows from the figure that (0, 0) and (2, 0) both lie on one of the zero curves, so

f(0, 0) = f(2, 0) = 0.

Then we conclude from the discussion of the sign that the function is both positive and negative
in any neighbourhood of the points (0, 0) and (2, 0), so these cannot be extrema.

Since f is of class C∞, and since the two closed half discs are bounded with the value 0 of the
function on the boundaries, it follows from the second main theorem that we have a minimum
somewhere in the interior of the upper half disc and a maximum somewhere in the interior of
the lower half disc. These must necessarily be attained at stationary points. There is exactly
one stationary point in each of these half discs, so we conclude that the local minimum is

f

(

5

4
,

√
5

4

)

=
5

4
·
√
5

4

{

25

16
− 5

2
+

5

16

}

=
5
√
5

16

(

−10

16

)

= −25
√
5

128
,
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and the local maximum is

f

(

5

4
,−

√
5

4

)

=
25

√
5

128
.

Alternatively one may try the (r, s, t)-method. First calculate

r =
∂2f

∂x2
= 6xy − 4y = 2y(3x− 2),

s =
∂2f

∂x∂y
= 3x2 − 4x+ 3y2,

t =
∂2f

∂y2
= 6xy.

For (0, 0) we cannot conclude anything, because r = s = t = 0.

For (2, 0) we get r = 0, s = 12− 8 = 4 and t = 0, thus rt < s2, and we have no extremum.
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For

(

5

4
,

√
5

4

)

we get

r =

√
5

4

(

15

4
− 2

)

=
7
√
5

8
,

s =
75

16
− 5 +

15

16
=

5

8
,

t = 6 · 5
4
·
√
5

4
=

15
√
5

8
.

Since r > 0, t > 0 and rt =
525

64
>

25

64
= s2, we conclude that we have a proper minimum at

the point.

For

(

5

4
,−

√
5

4

)

we get [cf. the above]

r = −7
√
5

8
, s =

5

8
, t = −15

√
5

8
,

so r < 0, t < 0 and rt > s2, and we have a proper maximum at the point.

Finally, let us consider the point (0, 0). By using polar coordinates we get

f(x, y) = ̺4 cos3 ϕ sinϕ− 2̺3 cos2 ϕ sinϕ+ ̺4 cosϕ · sin3 ϕ
= ̺2{−2 cos2 ϕ sinϕ+ ϕ cosϕ · sinϕ}.

When ̺ → 0+, the first term dominates in most cases, and since the first term can take on
both positive and negative values, we conclude that (0, 0) is not an extremum.

Example 17.2 Let α be a constant. Check for each value of α if the function

f(x, y) = x2 + y2 + αxy + (x− y)4

has an extremum at (0, 0). Whenever this is the case, check also if it is a proper extremum.

A Investigation of extrema.

D First method. Rewrite f(x, y) and give a direct argument.

Second method. Apply the (r, s, t)-method.

I As f(x, y) is a polynomial,f(x, y) is of class C∞. We note that f(0, 0) = 0.

1) First method. This method is similar to (though not identical with) the procedure of finding
the approximating polynomial of second degree. By rewriting the terms of second degree we
get

f(x, y) = x2 + y2 + αxy + (x− y)4

=

{

x2 + 2x · α
2
y +

(α

2
y
)2

}

+

{

1− α2

4

}

y2 + (x− y)4

=
(

(x+
α

2
y
)2

+

{

1−
(α

2

)2
}

y2 + (x− y)4.(17.3)

Then we split the investigation into various cases.
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a) If |α| < 2, then all three terms of (17.3) are bigger than or equal to 0, and when (x, y) �=
(0, 0), then at least one of them is bigger than zero. Thus we conclude that (0, 0) is a proper
minimum.

b) If α = 2, then (17.3) reduces to

f(x, y) = (x+ y)2 + (x− y)4 [≥ 0].

If (x, y) �= (0, 0), then x+ y and x− y cannot both be 0 and we conclude as above that we
have a proper minimum at (0, 0).

c) If α = −2 (the difficult case) we write (17.3) in the form

f(x, y) = (x− y)2 + (x− y)4 = (x− y)2{1 + (x− y)2} [≥ 0].

It follows that the minimum 0 is attained on the line y = x, so we conclude that we have a
minimum, but not a proper minimum at (0, 0).

d) If |α| > 2, then 0 > 1−
(α

2

)2

= −β2, where β > 0, and the function can be written

f(x, y) =
(

x+
α

2
y
)2

− (βy)2 + (x− y)4,

and the approximating polynomial of second degree is

P2(x, y) =
(

x+
α

2
y
)2

− (βy)2.

Since

P2

(

x,− 2

α
x

)

= 0− 4β2

α2
x2 = −

(

2βx

α

)2

< 0 for x �= 0,

and

P2(x, 0) = x2 > 0 for x �= 0,

[in fact also f(x, 0) > 0 for x �= 0], we conclude that f(x, y) attains both positive and
negative values in any neighbourhood of (0, 0), and we do not have an extremum.

Summarizing we have

α < −2 : (0, 0) is not an extremum,

α = −2 : (0, 0) is a (non-proper) minimum,
α ∈ ]− 2, 2] : (0, 0) is a proper minimum,

α > 2 : (0, 0) is not an extremum.

2) Second method, the (r, s, t)-method. First note that the (r, s, t)-method can only/ be applied
if f ∈ C2 and if (0, 0) indeed is a stationary point. Therefore, we must first show that (0, 0) is
a stationary point.

It follows from

f(x, y) = x2 + y2 + αxy + (x− y)4, f(0, 0) = 0,
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that

∂f

∂x
= 2x+ αy + 4(x− y)3,

∂f

∂x
(0, 0) = 0,

∂f

∂y
= 2y + αx − 4(x− y)3,

∂f

∂y
(0, 0) = 0,

so (0, 0) is a stationary point.

Furthermore,

∂2f

∂x2
= 2 + 12(x− y)2, r =

∂2f

∂x2
(0, 0) = 2,

∂2f

∂x∂y
= α− 12(x− y)2, s =

∂2f

∂x∂y
(0, 0) = α,

∂2f

∂y2
= 2 + 12(x− y)2, t =

∂2f

∂y2
(0, 0) = 2.

A sufficient condition for extremum is that rt > s2, i.e. α < 4, which is fulfilled for α ∈ ]−2, 2[.
Since r, t > 0, the stationary point (0, 0) is a proper minimum, when α ∈ ]− 2, 2[.

If |α| > 2, then rt = 4 < α2 = s2, and we do not have an extremum in this case.

If α2 = 4, i.e. α = ±2, then s2 = rt, and we cannot conclude anything by the (r, s, t)-method.

Note that even if we get this negative result, there is no reason to stop. We have only demon-
strated that one particular method does not work. Let us now investigate each of the cases
α = 2 and α = −2 one by one.

a) If α = 2, then f(x, y) is written

f(x, y) = x2 + y2 + 2xy + (x − y)4 = (x + y)2 + (x − y)4 ≥ 0.

When (x, y) �= (0, 0), at least one of the terms (x+ y)2 is (x− y)4 positive, and we conclude
that (0, 0) is a proper minimum.

b) Analogously, if α = −2,

f(x, y) = x2 + y2 − 2xy + (x − y)4 = (x − y)2 + (x − y)4 = (x − y)2{1 + (x − y)2}.

We conclude that f(x, y) ≥ 0 and f(x, x) = 0 for every x, i.e. on the line. This shows that
(0, 0) is a non-proper minimum. Summarizing we get

|α| > 2 : (0, 0) is not an extremum.

|α| < 2 : (0, 0) is a proper minimum,

α = 2 : (0, 0) is a proper minimum,

α = −2 : (0, 0) is a (non-proper) minimum.
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Example 17.3 Let the function f : R2 → R be given by

f(x, y) = 3x4 − 4x2y + y2.

Show that the restriction of f to any straight line through (0, 0) has a proper minimum at the point
(0, 0). Then prove that f does not have a minimum at this point.
(Write f(x, y) as a product of two factors and check the sign of f in discs with centrum at the origo).

A Extremum.

D Insert x = 0 and y = αx into f(x, y), and prove that there is a minimum at (0, 0) on each of these
lines.

Consider possibly f(x, y) as a polynomial in y of degree 2 for every x which will help to factorize
f(x, y). Use this factorization to discuss the sign of f(x, y).

I 1) When x = 0 we get f(0, y) = y2, which clearly has a minimum for y = 0, i.e. at (0, 0).

2) When we restrict ourselves to the line y = αx we get

f(x, αx) = 3x4 − 4αx3 + α2x2 = x2(α2 − 4αx+ 3x2)

= x2{(α− 2x)2 − x2} = x2(α− x)(α − 3x).
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If α �= 0, then (α− x)(α − 3x) > 0 for |x| <
∣

∣

∣

α

3

∣

∣

∣, i.e.

f(x, αx) > 0 for 0 < |x| < 1

3
|x|,

and f(0, 0) = 0, proving that (0, 0) is a minimum.

If α = 0, then f(x, 0) = 3x4, which clearly has a minimum for x = 0, i.e. at the point (0, 0).

Summarizing we get that the restriction of f(x, y) to any straight line through (0, 0) has a
minimum at (0, 0).

3) If we consider f(x, y) = y2 − 4x2y + 3x4 as a polynomial of second degree in y for every fixed
x, we get the roots

y = x2 and y = 3x2.

–1

1

2

3

4

5

6

y

–2 –1 1 2

x

Figure 17.3: The function is positive inside both parabolas, and outside both parabolas, and negative
between them.

Then we conclude that we have the factorization

f(x, y) = 3x4 − 4x2y + y2 = (y − x2)(y − 3x2).

When we sketch the zero curves, the plane is divided as shown on the figure into four regions,
where f(x, y) > 0 inside both parabolas or outside both parabolas, and f(x, y) < 0 between
the two parabolas.

It follows from the figure that f(x, y) is both positive and negative in any neighbourhood of
the point (0, 0), where f(0, 0) = 0.

Remark. When we consider the line on the figure we see that it will always lie totally in a
“positive” region, when we are close to (0, 0). The trick of the example is that the zero curves
are so “flat” in the neighbourhood of (0, 0) that they cannot be “caught” by any straight line.
♦

Alternatively we see that if we take the restriction to the curve given by the equation
y = 2x2, then

f(x, 2x2) = 3x4 − 8x4 + 4x4 = −x4,
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which obviously has a (local) maximum for x = 0, i.e. at (0, 0), so (0, 0) cannot be an ex-
tremum. The construction of this alternative solution relies on that we can choose a curve in
the “negative” region between the two zero curves approaching (0, 0).

Example 17.4 Let the function f : R2 → R be given by

f(x, y) = −x2 + 2xy2 − y4 + y5.

Show that the restriction of f to any straight line through (0, 0) has a proper maximum at this point.
Then prove that f does not have an extremum at this point.
(Find a restriction f(g(y), y), such that only the latter term on the right hand side remains).

A Extremum.

D Insert x = 0, y = 0 and y = αx i f(x, y). Then exploit that −x2 + 2xy2 − y4 = −(x− y2)2.

I Clearly, f(0, 0) = 0.

–2

–1

0

1

2

y

–1 1 2 3 4

x

Figure 17.4: The parabola x = y2.

If x = 0, then f(0, y) = −y4 + y5 = −y4(1 − y), which clearly has a maximum for y = 0, i.e.
at(0, 0).

If y = 0, then f(x, 0) = −x2, which clearly has a maximum for x = 0, i.e. at (0, 0).

If y = αx, α �= 0, then

f(x, αx) = −x2 + 2α2x3 − α4x4 + α5x5 = −x2
{

1− 2α2x+ α4x2 − α5x3
}

.

When |x| is small, then the latter factor is positive, and it follows that f(x, αx) has a maximum
for x = 0.

Finally, we can write f(x, y) in the form

f(x, y) = −(x2 − 2xy2 + y4) + y5 = −(x− y2)2 + y5.
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When we restrict ourselves to the parabola x = y2, y ∈ R, then

f(y2, y) = y2

has the same sign as y, so f(x, y) attains both positive and negative values in any neighbourhood
of (0, 0). It follows that (0, 0) is not an extremum.

Example 17.5 Let f : R2 → R be given by

f(x, y) = x2y + xy2 + x2 + xy + 1.

check if f has an extremum at (0, 0).

A Extremum.

D Here we have several possible methods:

1) First variant. The (r, s, t)-method.

2) Second variant. Factorize x2 + xy2 + x2 + xy, and discuss the sign of it.

3) Third variant. Put y = αx into f(x, y) for some choice of α.

I 1) First variant. This time (almost an exception) the (r, s, t)-method is the simplest one, so we
shall start with it. From

∂f

∂x
= 2xy + y2 + 2x+ y,

∂f

∂y
= x2 + 2xy + x,

follows

∂f

∂x
(0, 0) = 0 and

∂f

∂y
(0, 0) = 0,

so (0, 0) is a stationary point. (Note that this must be checked before we continue with the
(r, s, t)-method).

Then it is quite easy to see that we have at (0, 0)

r = 2, s = 1 and t = 0,

so rt = 0 < 1 = s2. We conclude that there is no extremum at (0, 0).

2) Second variant. We get by a factorization,

f(x, y) = x2y + xy2 + x2 + x+ 1 = xy(x+ y) + x(x + y) + 1.

The value of the function is f(0, 0) = 1, and the “disturbance”

(y + 1)x(x+ y)

has the zero curves as shown on the figure. The sign of the “disturbance” changes whenever one
passes a zero curve, so if one moves around (0, 0), one will always pass through both positive
and negative regions for f(x, y) − f(0, 0). This means that f(x, y) cannot have an extremum
at (0, 0), because f(x, y) attains both values > f(0, 0) and < f(0, 0) in any neighbourhood of
(0, 0).
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–2

–1

0

1

2

y

–2 –1 1 2

x

Figure 17.5: The zero curves are the lines x+y = 0, x = 0 and y = −1. In the subregions the product
(y + 1)x(x + y) is positive and negative every second time.

3) Third variant Along the line y = αx we get

ϕα(x) = f(x, αx) = (α+ α2)x3 + (1 + α)x2 + 1 = 1 + (1 + α)x2 + · · · ,

where the dots indicate terms of higher degree which are small in a neighbourhood of (0, 0)
compared to x2.

a) If α > −1, then ϕα(x) ≥ 1 in a neighbourhood of x = 0.

b) If α < −1, then ϕα(x) ≤ 1 in a neighbourhood of x = 0.

In both cases we have a strict inequality sign in a dotted neighbourhood, and we conclude that
there is no extremum at (0, 0).
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Example 17.6 Let α �= 0 be a constant. Consider the function

f(x, y) = α3xy +
1

x
+

1

y
, xy �= 0.

Find the extremum of the function, and indicate for every value of α the type of the extremum.

A Extremum.

D Find the stationary points, if any, and check if they are extrema.

3

3.2

3.4

3.6

3.8

4

4.2

0.6

0.8

1

1.2

y

0.6

0.8

1

1.2

x

Figure 17.6: The graph of f(x, y) for α = 1. It is difficult to see on this figure that we have a minimum
at (1, 1). The graph of f(x, y) for α = −1 gives even less information.

I The coordinates of the possible stationary points are the solutions of the equations

∂f

∂x
= α3y − 1

x2
= 0 and

∂f

∂y
= α3x− 1

y2
= 0,

accordingly,

α3x2y = 1 and α3xy2 = 1 = α3x2y,

so y = x.

We get by insertion x = y =
1

α
, so there is just one stationary point,

(

1

α
,
1

α

)

, and the value of

the function is here

f

(

1

α
,
1

α

)

= 3α.

Furthermore,

∂2f

∂x2
=

2

x3
,

∂2f

∂x∂y
= α3,

∂2f

∂y2
=

2

y3
,

hence

r = 2α3, s = α3, t = 2α3,
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and whence

rt− s2 = 4α6 − α6 = 3α6 > 0,

showing that we have an extremum.

1) If α > 0, then r = 2α3 > 0 and t = 2α3 > 0, and we have a proper minimum.

2) If instead α < 0, we get analogously a proper maximum.

Example 17.7 Check if the function

f(x, y) = x3 + xy2 + 4xy − 3x− 4y, (x, y) ∈ R2,

has an extremum at (1, 0).

A Extremum.

D Here we have two variants:

First variant. Show that (1, 0) is a stationary point, and then apply the (r, s, t)-method.

Second variant. Translate the coordinate system to (1, 0) and argue directly.

–3
–2
–1

1
2
3
4

–0.8
–0.6

–0.4
–0.2

0
0.2

0.4
0.6

0.8

y

0.4
0.6

0.8
1

1.2
1.4

1.6
1.8

x

Figure 17.7: The surface in a neighbourhood of (1, 0). The figure does not give any hint of the type
of the stationary point.

I First variant. It follows from

∂f

∂x
= 3x2 + y2 + 4y − 3,

∂f

∂x
(1, 0) = 0,

∂f

∂y
= 2xy + 4x− 4,

∂f

∂y
(1, 0) = 0,

that (1, 0) is a stationary point.

Now,

∂2f

∂x2
= 6x,

∂2f

∂x∂y
= 2y + 4,

∂2f

∂y2
= 2x,
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so we get at the point (1, 0) that

r = 6, s = 4, t = 2.

Since rt = 12 < 16 = s2, there is no extremum at (1, 0).

–0.4

–0.2

0.2

0.4

0.6

0.8

1

1.2

–0.2 0.2 0.4 0.6 0.8 1 1.2 1.4

x

Figure 17.8: The zero curves of (x+ y − 1)(x+ 3y − 1).

Second variant. If we put x = t+ 1, then we shall check what happens in the neighbourhood of
(t, y) = (0, 0). A simple computation gives

f(t+ 1, y) = (t+ 1)3 + (t+ 1)y2 + 4(t+ 1)y − 3(t+ 1)− 4y

= t3 + 3t2 + 3t+ 1 + ty2 + y2 + 4ty + 4y − 3t− 3− 4y

= −2 + 3t2 + 4ty + y2 + t(t2 + y2)

= −2 + (t+ y)(t+ 3y) + t(t2 + y2).

The term of second order

(t+ y)(t+ 3y) = (x+ y − 1)(x+ 3y − 1)

is both positive and negative in any neighbourhood of the point (x, y) = (1, 0), and since it
in general dominates the term of third order t(t2 + y2) = (x − 1){(x − 1)2 + y2}, there is no
extremum at (1, 0).
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Example 17.8 Given the function

f(x, y) = e2y + 4ey sinx, (x, y) ∈ R2.

1) Find the stationary points of f ; check if f has a proper extremum.

2) Explain why f has both a maximum S and a minimum M on the rectangle [0, 2π]× [0, 1]; Finally,
find S and M .

A Extrema.

D Find the stationary points; check the values on the boundary.

5

10

15

0.2
0.4

0.6
0.8

1

y

1
2

3
4

5
6

x

Figure 17.9: The graph of f(x, t) for (x, y) ∈ [0, 2π]× [0, 1].

I 1) The equations of the stationary points are

∂f

∂x
= 4ey cosx = 0 and

∂f

∂y
= 2e2y + 4ey sinx = 0.

It follows from the former equation that cosx = 0, thus x =
π

2
+ pπ, p ∈ Z.

If x =
π

2
+ 2pπ, p ∈ Z, then

∂f

∂y
= 2e2y + 4ey > 0,

and these x-values do not correspond to stationary points.

If x =
3π

2
+ 2pπ, p ∈ Z, then

∂f

∂y
= 2e2y − 4ey = 2ey(ey − 2) = 0

for y = ln 2. Thus the stationary points are
{(

3π

2
+ 2pπ, ln 2

) ∣

∣

∣

∣

p ∈ Z

}

.
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Furthermore,

∂2f

∂x2
= −4ey sinx,

∂2f

∂x∂y
= 4ey cosx,

∂2f

∂y2
= 4e2y + 4ey sinx.

At the points

(

3π

2
+ 2pπ, ln 2

)

we get r = 8, s = 0, t = 16 − 8 = 8, so rt − s2 = 64 > 0, and

we have an extremum. As r > 0 and t > 0, these are all minima.

The values of the function at these points are

f

(

3π

2
+ 2pπ, ln 2

)

= 4− 8 = −4.

2) Since f is continuous (it is of class C∞), and the rectangle

D = [0, 2π]× [0, 1]

is closed and bounded (compact), it follows from the second main theorem for continuous
functions that f has both a maximum and a minimum in D.

These can only be attained either at a stationary point

(

3π

2
, ln 2

)

∈ D,

or on the boundary.
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a) For the stationary point we get

f

(

3π

2
, ln 2

)

= −4.

b) Taking the restriction of f to the boundary curve (x, y) = (x, 0), x ∈ [0, 2π], we get:

ϕ1(x) = 1 + 4 sinx, x ∈ [0, 2π],

with the maximum and minimum, respectively,

ϕ1

(π

2

)

= 1 + 4 = 5, ϕ1

(

3π

2

)

= 1− 4 = −3.

c) On the boundary curve (x, y) = (0, y), y ∈ [0, 1], or the boundary curve (x, y) = (2π, y),
y ∈ [0, 1], we get the restriction of f :

ϕ2(y) = e2y, y ∈ [0, 1],

with the maximum and minimum, respectively,

ϕ2(1) = e2, ϕ2(0) = 1.

d) On the boundary curve (x, y) = (x, 1), x ∈ [0, 2π], we get the restriction of f :

ϕ3(x) = e2 + 4e sinx, x ∈ [0, 2π],

with the maximum and minimum, respectively,

ϕ3

(π

2

)

= e2 + 4y = (e+ 2)2 − 4 > 10 > e2

and

ϕ3

(

3π

2

)

= e2 − 4e = −e(4− e) = (e − 2)2 − 4 > −4.

Finally, by a numerical comparison of

a)

f

(

3π

2
, ln 2

)

= −4,

b)

f
(π

2
, 0
)

= 5, f

(

3π

2
, 0

)

= −3,

c)

f(0, 1) = f(2π, 1) = e2, f(0, 0) = f(2π, 0) = 1,

d)

f
(π

2
, 1
)

= e2 + 4e > e2, f

(

3π

2
, 1

)

= e2 − 4e > −4,

659

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume V

660 

Examples of global and local extrema

we conclude that the maximum is

S = f
(π

2
, 1
)

= e2 + 4e,

and the minimum is

M = f

(

3π

2
, ln 2

)

= −4.

Example 17.9 Check if the function

f(x, y) = 2 cosh(x+ y)− exy, (x, y) ∈ R2,

has an extremum and (0, 0), and indicate its type if there is an extremum.

A Extremum.

D Either use known series expansions, or compute the Taylor coefficients.

1

1.2–0.4

–0.2

0.2

0.4

t

–0.4

–0.2

0.2

0.4

s

Figure 17.10: The graph in a neighbourhood of the point (0, 0).

I First method. We get by well-known series expansions from (0, 0),

f(x, y) = 2 cosh(x+ y)− exy

= 2

{

1 +
1

2
(x+ y)2 + · · ·

}

− {1 + xy + · · · }

= 1 + (x+ y)2 − xy + · · · ,
so the approximating polynomial of at most second degree is

P2(x, y) = 10x2 + xy + y2 = 1+

(

x+
1

2
y

)2

+
3

4
y2.

It follows from the latter expression that f(x, y) has a local minimum at (0, 0).
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Second method. As f ∈ C∞, we get by computation,

f(x, y) = 2 cosh(x+ y)− exy, f(0, 0) = 1,

f ′
x(x, y) = 2 sinh(x+ y)− y exy, f ′

x(0, 0) = 0,

f ′
y(x, y) = 2 sinh(x+ y)− x exy, f ′

y(0, 0) = 0.

It follows that (0, 0) is a stationary point. Furthermore,

f ′′
xx(x, y) = 2 cosh(x+ y)− y2exy, f ′′

xx(0, 0) = 2,

f ′′
xy(x, y) = 2 cosh(x+ y)− xyexy − exy, f ′′

xy(0, 0) = 1,

f ′′
yy(x, y) = 2 cosh(x+ y)− x2exy, f ′′

yy(0, 0) = 2.

Since rt = 4 > 1 = s2, and r, t > 0, we conclude that we have a local minimum.

Remark. Because

f(x, x) = 2 cosh(2x)− exp(x2) → −∞ for x → +∞,

the minimum above cannot be global.
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We have e.g.

f(x, 0) = 2 coshx− 1 → +∞ for x → +∞,

and since f is continuous on the connected set R2, the range is f(R2) = R.

Example 17.10 Given the function

f(x, y) = xy − y2 − 2 lnx, (x, y) ∈ D,

where

D = {(x, y) ∈ R2 | x > 0}.

1) Find the approximating polynomial of at most second degree of the function f , where (x0, y0) =
(2, 1) is used as point of expansion.

2) Check if the function f has an extremum at the point (2, 1), and indicate its type if it is an
extremum.

A Approximating polynomials; extremum.

D Apply a series expansion from (2, 1), or alternatively the standard method by calculating the Taylor
coefficients.

I First variant. Translate the coordinate system by

(x, y) = (x1 + 2, y1 + 1).

Then by insertion and a series expansion for ln(1 + u),

f(x, y) = xy − y2 − 2 lnx

= (x1 + 2)(y1 + 1)− (y1 + 1)2 − 2 ln(2 + x1)

= 2 + x1 + 2y1 + x1y1 − y21 − 2y1 − 1− 2 ln 2− 2 ln
(

1 +
x1

2

)

= 1− 2 ln 2 + x1 + x1y1 − y21 − 2

{

x1

2
− 1

2

x1 ∗ 2
4

+ · · ·
}

= 1− 2 ln 2 +
(x1

2

)2

+ 2 · x1

2
· y1 + y21 − 2y21 + · · ·

= 1− 2 ln 2 +

{

1

2
x1 + y1

}2

− 2y21 + · · · .

The approximating polynomial of at most second degree is

P2(x, y) = 1− 2 ln 2 +
1

4
(x− 2)2 + (x − 2)(y − 1)− (y − 1)2

= 1− 2 ln 2 +
1

4
{(x− 2) + 2(y − 1)}2 − (y − 1)2.

As the first derivatives are zero, (2, 1) is a stationary point. It follows from the terms of second
degree that (2, 1) is not an extremum.
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Second variant. By straightforward computations,

f(x, y) = xy − y2 − 2 lnx, f(2, 1) = 1− 2 ln 2,

f ′
x(x, y) = y − 2

x
, f ′

x(2, 1) = 0,

f ′
y(x, y) = x− 2y, f ′

y(2, 1) = 0,

f ′′
xx(x, y) =

2

x2
, r = f ′′

xx(2, 1) =
1

2
,

f ′′
xy(x, y) = 1, s = f ′′

xy(2, 1) = 1,

f ′′
yy(x, y) = −2, t = f ′′

yy(2, 1) = −2.

The approximating polynomial of at most second degree is

P2(x, y) = 1− 2 ln 2 +
1

4
(x− 2)2 + (x − 2)(y − 1)− (y − 1)2.

As

f ′
x(2, 1) = f ′

y(2, 1) = 0,

we see that (2, 1) is a stationary point.

As rt < 0, there is no extremum at (2, 1).

Example 17.11 Given the function

f(x, y) = 2x3 + 27x2 − 60xy + 75y2, (x, y) ∈ R2.

1) Find the stationary points of the function.

2) Check for each of the stationary points if f has an extremum; when this is the case one should
indicate its type.

3) Find the range f(R2) of the function.

A Stationary points; extremum; range.

D Solve the equations of the stationary points. Check the behaviour of the function in a neighbour-
hood of the stationary points. Finally, consider the restriction of f to the X axis.

I 1) The equations of the stationary points are


















∂f

∂x
= 6x2 + 54x− 60y = 0, i.e. x2 + 9x− 10y = 0,

∂f

∂y
= −60x+ 150y = 0, i.e. −4x+ 10y = 0.

We get by an addition that x2 + 5x = 0, so either x = 0 or x = −5. By insertion into the
latter equation we obtain the points (0, 0) and (−5,−2). These are also satisfying the former
equation, so the stationary points are (0, 0) and (−5,−2).
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2) a) The value at (0, 0) is f(0, 0) = 0, and the approximating polynomial of at most second
degree is

P2(x, y) = 27x2 − 60xy + 75y2

= 2x2 + 25x2 − 60xy + 36y2 + 39y2

= 2x2 + (5x− 6y)2 + 39y2 > 0 for (x, y) �= (0, 0),

hence f(x, y) has a local minimum at (0, 0).

Alternatively,

f ′′
xx(x, y) = 12x+ 54, r = f ′′

xx(0, 0) = 54,

f ′′
xy(x, y) = −60, s = f ′′

xy(0, 0) = −60,

f ′′
yy(x, y) = 150, t = f ′′

yy(0, 0) = 150.

We conclude from rt = 54 · 150 > (−60)2 = s2, and r, t > 0, that f(x, y) has a proper
minimum at (0, 0).

b) At (−5,−2) we get

r = 12 · (−5) + 54 = −6, s = −60, t = 150.

It follows from rt < 0 < s2 that there is no extremum at (−5,−2).

Alternatively we put (x, y) = (h− 5, k − 2), from which

f(x, y) = 2x3 + 27x2 − 60xy + 75y2

= 2(h−5)3 + 27(h−5)2 − 60(h−5)(k−2) + 75(k−2)2

= 2
{

h3 − 15h2 + 75h− 125
}

+ 27{h2 − 10h+ 25}
−60{hk− 2h− 5k + 10}+ 75

{

k2 − 4k + 4
}

= 2h3 +
{

−3h2 − 60hk + 75k2
}

+ 125.

The approximating polynomial of at most second degree in (h, k) is

P2(h, k) = −3h2 − 60hk + 75k2 + 125.

Since this expression attains values both > and < 125 in any neighbourhood of (h, k) =
(0, 0), it follows that (−5,−2) is not an extremum.

3) By taking the restriction of f to the X axis we get

ϕ(x) = f(x, 0) = 2x3 + 27x2 = x2{2x+ 27}, x ∈ R.

Since already ϕ(R) = R, we conclude that

f(R2) = R.
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Example 17.12 Given the point set

A = {(x, y) ∈ R2 | −4 ≤ x ≤ 4, 16− 6y ≤ x2 + y2 ≤ 16}.

1. Sketch A, and show that the boundary ∂A consists of two circular arcs.

We shall also consider the function

f(x, y) =
y + 8

x2 + y2 + 12
, (x, y) ∈ A.

2. Show that the function f does not have a stationary point in the interior of A.

3. Find the range f(A) of the function.

A Range of a continuous function over a closed and bounded (i.e. compact) and connected set.

D Follow the guidelines and apply the main theorems.

0

1

2

3

4

–4 –2 2 4

Figure 17.11: The domain A.

I 1) It follows immediately from x2 + y2 ≤ 16 = 42 that A lies inside the disc of centrum (0, 0) and
radius 4.

We rearrange 16− 6y ≤ x2 + y2 as

25 = x2 + y2 + 6y + 9 = z2 + (y + 3)2.

Then we can see that A lies outside the disc of centrum (0,−3) and radius 5.

The domain is the half moon shaped region on the figure. It is closed and bounded and
connected. The boundary clearly consists of two circular arcs which intersect at the points
(−4, 0) and (4, 0).

2) The stationary points, if any, shall fulfil the equations

∂f

∂x
= − 2x(y+8)

(x2+y2+12)2
= 0, i.e. x = 0 or y = −8,
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∂f

∂y
=

(x2+y2+12) · 1−2y(y+8)

(x2+y212)2
=

x2−y2−16y+12

(x2+y2+12)2
= 0.

Here y = −8 is not possible in A, so we get x = 0 from the first equation. When this put into
the second equation we get after a reduction that

y2 + 16y − 12 = 0, from which y = −8±
√
76.

The line x = 0 intersects A in the interval [2, 4] on the Y axis. Since

−8±
√
76 ≤ −8 +

√
76 < −8 +

√
81 = −8 + 9 = 1 < 2,

neither of the two candidates (0,−8 ±
√
76) (on the Y axis) lie in A, and f does not have a

stationary point in A.

3) Since f is continuous on A, and A is closed and bounded, it follows from the second main
theorem for continuous functions that the range f(A) is closed and bounded.

Since A is also connected, cf. the figure, it follows from the first main theorem for continuous
functions, that the range is connected.

Since f(A) ⊂ R, it follows from the above that f(A) is a closed interval, i.e.

f(A) = [M,S],

where M denotes the minimum and S denotes the maximum of f in A, because these exist
according to the second main theorem.
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The maximum and the minimum must be found among the values at

a) the exceptional points (where f is not differentiable; there are none of them here),

b) the stationary points (none of the either),

c) the points on the boundary.

It follows that both the maximum and the minimum shall be found on the boundary.

Investigation of the boundary. The boundary is naturally split up into

a) x2 + y2 = 16, where y ∈ [0, 4], (cf. the figure),

b) x2 + (y + 3)2 = 25, i.e. x2 = 25− (y + 3)2, where y ∈ [0, 2].

Now, x only occurs in the form x2 in f(x, y). It is therefore natural to eliminate x2 and use y
as a parameter.

a) The restriction of f(x, y) to x2 + y2 = 16, y ∈ [0, 4], is given by

g(y) =
y + 8

28
, y ∈ [0+, 4].

Clearly, g(y) is increasing in this interval, so the candidates are

g(0) = f(±4, 0) =
8

28
=

2

7
, g(4) = f(0, 4) =

12

28
=

3

7
.

b) The restriction of f(x, y) to x2 + (y + 3)2 = 25, y ∈ [0, 2], is

h(y) =
y+8

37+y2−(y+3)2
=

y+8

28−6y
, y ∈ [0, 2].

Both the numerator and the denominator are positive in the given interval. Further-
more, when y increases, then the numerator increases too, while the denominator decreases.
Hence, h(y) is increasing with the values at the end points

h(0) = f(±4, 0) =
2

7
, h(2) =

10

16
=

5

8
.

Alternatively,

h′(y) =
(28−y2−6y) · 1−(y+8)(−2y−6)

(28−y2−6y)2
=

y2+28y+76

(28−y2−6y)2
> 0 for y ∈ [0, 2],

hence h(y) is increasing.

By a numerical comparison we get M =
2

7
and S =

5

8
, so the range is

f(A) =

[

2

7
,
5

8

]

.
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17.3 Examples of extremum for three variables

Example 17.13 Find in each of the following cases the stationary points of the given function

f : R3 → R.

Then check if f in these points has an extremum; whenever this is the case check if it is a maximum
or a minimum.

1) f(x, y, z) = x2 + y2 + z2 + xyz.

2) f(x, y, z) = x3 + y3 + z3 + xyz.

3) f(x, y, z) = x4 + y4 + z4 − 4xyz.

4) f(x, y, z) = x cos z + y2.

5) f(x, y, z) = exp(xy + yz + zx).

6) f(x, y, z) = y3 + ln(1 + x2 + z2).

A Stationary points; extrema in three variables.

D Compute
∂f

∂x
,
∂f

∂y
,
∂f

∂z
; then find the stationary points; finally check if there are any extrema.

I 1) The equations of the stationary points are







































∂f

∂x
= 2x+ yz = 0,

∂f

∂y
= 2y + xz = 0,

∂f

∂z
= 2z + xy = 0,

i.e.

(17.4)



































x = −yz

2
,

y = −xz

2
,

z = −xy

2
.

When we multiply the equations of (17.4) we get a necessary condition of stationary points,

xyz = −1

8
(xyz)2, i.e. xyz{xyz + 8} = 0.

Then either xyz = 0 or xyz = −8 = (−2)3.

a) If xyz = 0, then one of the factors must be 0. Assume that x = 0. Then it follows from
(17.4) that y = z = 0.
Analogously, if we assume that y = 0 or z = 0.

Summarizing we get in this case that (0, 0, 0) is a stationary point.
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b) If xyz �= 0, then all three factors are �= 0. By insertion of the latter equation into (17.4),
we get

y = −1

2
xz = +

1

4
x2y,

hence x2 = 4.

Analogously we get y2 = 4 and z2 = 4, so the candidates shall be found among (±2,±2,±2)
with all possible combinations of the signs. By a simple test in (17.4) we see that we in this
case get the stationary points

(2, 2,−2), (2,−2, 2), (−2, 2, 2), (−2,−2,−2).

Summarizing we have the five stationary points

(0, 0, 0), (2, 2,−2), (2,−2, 2), (−2, 2, 2), (−2,−2,−2).

i) The point (0, 0, 0) is a proper minimum, because

P2(x, y, z) = x2 + y2 + z2

is positive in any dotted neighbourhood of (0, 0, 0).

Insertion. Note that

∂2f

∂x2
=

∂2f

∂y2
=

∂2f

∂z2
= 2,

∂2f

∂x∂y
= z,

∂2f

∂y∂z
= x,

∂2f

∂z∂x
= y,

so the approximating polynomial P2(x, y, z) from an expansion point (x0, y0, z0) is

P2(x, y, z) = f(x0, y0, z0) + (x− x0)
2 + (y − y0)

2 + (x− z0)
2

+z0(x−x0)(y−y0)+x0(y−y0)(z−z0)

+y0(z−z0)(x−x0).

When |x0| = |y0| = |z0| = 2 and x0y0z0 = −8, then either one or three of the factors
are negative. ♦

ii) Assume that only one of the factors is negative. Due to the symmetry we can assume
that z0 = −2, hence x0 = y0 = 2. Then

P2(x, y, z) = f(x0, y0, z0) + (x− x0)
2 + (y − y0)

2 + (z − z0)
2

+2(x− x0)(y − y0) + 2(y − y0)(z − z0)

+ 2(x− x0)(z − z0)− 4(x− x0)(y − y0)

= f(x0, y0, z0) + {(x− x0)
2 + (y − y0)

2 + (z − z0)}2
−4(x− x0)(y − y0).

In the plane z − z0 = −(x− x0)− (y − y0) the term

−4(x− x0)(y − y0)

is both positive and negative in any neighbourhood of (x0, y0), so (x0, y0, z0) = (2, 2,−2)
is not an extremum.
It follows from the symmetry that neither (2,−2, 2) nor (−2, 2, 2) are extrema.
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iii) If (x0, y0, z0) = (−2,−2,−2), then

P2(x, y, z) = f(−2,−2,−2) + (x+ 2)2 + (y + 2)2 + (z + 2)2

−2(x+ 2)(y + 2)− 2(y + 2)(z + 2)− 2(z + 2)(x+ 2)

= f(−2,−2,−2) + (x+ 2)2 + (y + 2)2 + (z + 2)2

−2(x+ 2)(y + 2) + 2(y + 2)(z + 2)− 2(z + 2)(x+ 2)− 4(y + 2)(z + 2)

= f(−2,−2,−2) + {−(x+ 2) + (y + 2) + (z + 2)}2 − 4(y + 2)(z + 2).

We see that in the plane x + 2 = (y + 2) + (z + 2) the term −4(y + 2)(z + 2) is both
positive and negative in any neighbourhood of (y, z) = (−2,−2), so (−2,−2,−2) is not
an extremum.

The conclusion is that only (0, 0, 0) is an extremum (a proper minimum).
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2) In this case,







































∂f

∂x
= 3x2 + yz = 0,

∂f

∂y
= 3y2 + xz = 0,

∂f

∂z
= 3z2 + xy = 0,

i.e.

(17.5)























yz = −3x2 ≤ 0,

xz = −3y2 ≤ 0,

xy = −3z2 ≤ 0.

From (17.5) we get the necessary condition

(yz) · (zx) · (xy) = (xyz)2 = −27(xyz)2

for a stationary point. The only possibility is xyz = 0. Since e.g. x = 0 implies that y = z = 0,
and analogously for y = 0 and z = 0, it follows that (0, 0, 0) is the only stationary point.

There is no extremum at(0, 0, 0), because e.g. f(x, 0, 0) = x3 is both positive and negative in
any neighbourhood of x0 = 0.

3) Here







































∂f

∂x
= 4x3 − 4yz = 0,

∂f

∂y
= 4y3 − 4xz = 0,

∂f

∂z
= 4z3 − 4xyz = 0,

so

(17.6)







yz = x3,
xz = y3,
xy = z3.

We get the following necessary condition for the stationary points

(yz) · (xz) · (xy) = (xyz)2 = (xyz)3,

i.e. either xyz = 0 or xyz = 1.

a) If xyz = 0, then e.g. x = 0, which immediately implies that y = z = 0. Analogously, if we
assume y = 0 or z = 0. In this case we get the stationary point (0, 0, 0).
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b) If xyz = 1, it follows from the first equation of (17.6) that

xyz = 1 = x4,

i.e. x = ±1. Analogously we get y = ±1 and z = ±1. Therefore, the stationary points
should be searched among (±1,±1,±1) with all possible eight combinations of the signs.
By insertion into (17.6), i.e. testing these points, we find the stationary points

(1, 1, 1), (1,−1, 1), (−1, 1,−1), (−1,−1, 1).

Summarizing we find that the function has five stationary points,

(0, 0, 0), (1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1).

We shall in the following check each of them considering extremum.

a) The point (0, 0, 0) is not an extremum, because −4xyz is the dominating term in a dotted
neighbourhood of (0, 0, 0), and −4xyz is both positive and negative in any neighbourhood
of (0, 0, 0).

Insertion. It follows from

∂2f

∂x2
= 12x2,

∂2f

∂y2
= 12y2,

∂2f

∂z2
= 12z2,

∂2f

∂x∂y
= −4z,

∂2f

∂y∂z
= −4x,

∂2f

∂x∂z
= −4y,

that the approximating polynomial at a stationary point (x0, y0, z0) �= (0, 0, 0) [of course
also at (0, 0, 0), but this is not relevant here] is given by

P2(x, y, z) = f(x0, y0, z0)+6{x2
0(x−x0)

2+y20(y−y0)
2+z20(z−z0)

2}
−4z0(x− x0)(y − y0)− 4x0(y − y0)(z − z0)− 4y0(x− x0)(z − z0).

When |x0| = |y0| = |z0| = 1, this is written

P2(x, y, z) = f(x0, y0, z0) + 2{(x− x0)
2 + (y − y0)

2 + (z − z0)
2}

+2
{

[z0(x− x0)]
2 − 2z0(x − x0)(y − y0) + (y − y0)

2
}

+2
{

[x0(y − y0)]
2 − 2x0(y − y0)(z − z0) + (z − z0)

2
}

+2
{

[y0(x− x0)]
2 − 2y0(x− x0)(z − z0) + (x − x0)

2
}

,

where we have used that. By a rearrangement,

P2(x, y, z)− f(x0, y0, z0)

= 2
{

(x− x0)
2 + (y − y0)

2 + (z − z0)
2
}

+ 2{z0(x− x0)− (y − y0)}2(17.7)

+2{x0(y − y0)− (z − z0)}2 + 2{y0(x− x0)− (z − z0)}2.
b) In the latter four stationary points the approximating polynomial is given by (17.7). It

follows from this expression that they are all proper minima.

Summarizing we get that

(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)

are all proper minima, while (0, 0, 0) is not an extremum.
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4) The equations of the stationary points are

∂f

∂x
= cos z = 0,

∂f

∂y
= 2y = 0,

∂f

∂z
= −x sin z = 0,

so accordingly z =
π

2
+ pπ, p ∈ Z, y = 0 and x = 0, and the stationary points are

�

0, 0,
π

2
+ pπ

�

, p ∈ Z.

In all of these points, f
�

0, 0,
π

2
+ pπ

�

= 0. Since the restriction

f(x, 0, z) = x cos z

is both positive and negative in any neighbourhood of any such point, none of them is an
extremum.

5) If f(x, y, z) = exp(xy+ yz+ zx), then f(x, y, z) > 0, and the equations of the stationary points
are







































∂f

∂x
= (y + z)f(x, y, z) = 0,

∂f

∂y
= (z + x)f(x, y, z) = 0,

∂f

∂z
= (x + y)f(x, y, z) = 0,

i.e.

(17.8)







y + z = 0,
z + x = 0,
x+ y = 0.

The system (17.8) has only the solution x = y = z = 0, so (0, 0, 0) is the only stationary point.

By a Taylor expansion,

f(x, y, z) = exp(xy + yz + zx)

= 1 + xy + yz + xz + (x2 + y2 + z2)ε(x, y, z),

where ε(x, y, z) → 0 for (x, y, z) → (0, 0, 0). Hence

P2(x, y, z) = 1 + xy + yz + zx,

where e.g.

P2(x, y, 0)− 1 = xy

attains both positive and negative values in any neighbourhood of (x, y) = (0, 0). Thus there
is no extremum at (0, 0, 0).

6) If f(x, y, z) = y3 + ln(1 + x2 + z2), the equations of the stationary points are

∂f

∂x
=

2x

1 + x2 + z2
= 0,

∂f

∂y
= 3y2 = 0,

∂f

∂z
=

2z

1 + x2 + z2
= 0.

It follows that (0, 0, 0) is the only stationary point. The restriction f(0, y, 0) = y3 is both
positive and negative in any neighbourhood of y0 = 0, so there is no extremum at (0, 0, 0).
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Example 17.14 Examine in the same way as in Example 17.13 the function

f(x, y, z) = xyz(4a− x− y − z), (x, y, z) ∈ R3
+.

A Stationary points; extrema.

D Find the possible stationary points; check if they are extrema.

I The function can by continuity be extended to its zero set. This is the surface of the tetrahedron on
the figure, and it is obvious that f(x, y, z) > 0 in the open tetrahedron. The function must have
a maximum in the tetrahedron, according to the second main theorem for continuous functions,
and because f(x, y, z) is of class C∞, this maximum can only be attained at a stationary point in
the interior of the tetrahedron.

1

2

3

4

1

2

3

4

y
1

2

3

4

x
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The equations of the stationary points are






































∂f

∂x
= yz(4a− x− y − z)− xyz = yz(4a− 2x− y − z) = 0,

∂f

∂y
= xz(4a− x− y − z)− xyz = xz(4a− x− 2y − z) = 0,

∂f

∂z
= xy(4a− x− y − 2z) = 0.

It follows from the assumptions x > 0, y > 0 and z > 0 that these equations are equivalent to






x = 4a− x− y − z,
y = 4a− x− y − z,
z = 4a− x− y − z,

and it follows immediately that

x = 4a− x− y − z = y = z = a.

Hence, (a, a, a) is the only stationary point in the first octant.

It follows from the application of the second main theorem above that we have a maximum at
(a, a, a), and the value of the function is here

f(a, a, a) = a4.

Alternatively we compute

∂2f

∂x2
= −2yz,

∂2f

∂y2
= −2xz,

∂2f

∂z2
= −2xy,

∂2f

∂x∂y
= z(4a− 2x− y − z)− yz = z(4a− 2x− 2y − z),

∂2f

∂y∂z
= x(4a− x− 2y − 2a),

∂2f

∂z∂x
= y(4a− 2x− y − 2z),

hence

∂2f

∂x2
(a, a, a) =

∂2f

∂y2
(a, a, a) =

∂2f

∂z2
(a, a, a) = −2a2,

∂2f

∂y∂z
(a, a, a) =

∂2f

∂x∂z
(a, a, a) =

∂2f

∂x∂z
(a, a, a) = −a2.

Now f(a, a, a) = a4, so

P2(x, y, z) = a4 − a2
�

(x− a)2 + (y − a)2 + (z − a)2

+(x− a)(y − a) + (y − a)(z − a) + (z − a)(x− a)}

= a4 − a2

2

�

(x− a)2 + (y − a)2 + (z − a)2

+[(x− a) + (y − a) + (z − a)]2
�

,

and we see that (a, a, a) is a maximum.
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Example 17.15 Let f : Rk → R be a polynomial of second degree. Prove that f has none or one or
infinitely many stationary points.
Then give for k = 2 examples of all three possibilities.

A Stationary points.

D Use some Linear Algebra on the system of equations of the stationary points.

I A general polynomial of second degree in Rk is of the form

f(x) =

k
∑

i,j=1

aijxixj +

k
∑

i=1

bixi + c.

The equations of the stationary points are

∂f

∂xm
=

k
∑

i=1

(aim + ami)xi + bm = 0, m = 1, . . . , k,

i.e. a system of k linear equations in k unknowns. It is known from Linear Algebra that such a
system of equations has none or one or an infinity of solutions, and the claim is proved.

Let k = 2, and denote the variables by (x, y).

If f(x, y) = x2 + y2, we clearly have (0, 0) as the only stationary point.

If f(x, y) = y2, then we clearly have infinitely many stationary points, namely (x, 0) for x ∈ R.

Finally, let f(x, y) = (x+ y)2 + x− y. Then the equations of the de stationary points are

∂f

∂x
= 2(x+ y) + 1 = 0,

∂f

∂y
= 2(x+ y)− 1 = 0.

This system of equations clearly has no solution.

A simpler system is

f(x, y) = x2 + y,

where
∂f

∂y
= 1 �= 0 for every (x, y). The structure is the same as in the example above. The

difference is that both x2 and y2 occur in the former example, so the polynomial is of second
degree in both x and y. This is not the case in the latter example.
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17.4 Examples of maxima and minima

Example 17.16 Explain in each of the following cases why the indicated function has a maximum
and a minimum, and find these values.

1) f(x, y) = 8
√

x2 + 3y2 − 5x− y2 for x2 + 3y2 ≤ 4.

2) f(x, y) = x2 − 3y2 − 3xy for x2 + y2.

3) f(x, y) = xy + y2 − 5y − 3 lnx for x ≥ 1 and 0 ≤ y ≤ 5− x.

4) f(x, y) = (x2 + y2 − 2y)(x2 + y2 − 6y) for x2 + y2 ≤ 36.

5) f(x, y) = xy +
64

x
+

64

y
for x ≥ 1, y ≥ 1 and xy ≤ 32.

6) f(x, y) = 3x2 + 3y2 − 2xy − 2x2y2 for x ≥ 0, y ≥ 0 and x2 + y2 ≤ 4.

7) f(x, y) = e−2y + e−y sinx for (x, y) ∈ [0, 2π]× [0, 1].

8) f(x, y) = x4 + y4 − x2 + 2xy − y2 for x2 + y2 ≤ 4.

9) f(x, y) = 8xy2 − xy3 − x3y for (x, y) ∈ [0, 4]× [0, 8].

A Maximum and minimum for continuous functions on closed and bounded (i.e. compact) sets.

D Apply the second main theorem. Sketch the domain. Apply that the maximum and the minimum
are either attained at an exception point or in a stationary point of on the boundary.

I All functions are continuous on a closed and bounded set,so by the second main theorem for con-
tinuous functions the function has both a maximum and a minimum on the set.

With 1) as the only exception, all the rest of the functions are of class C∞ in the interior of
their respective domains. We shall therefore in all these cases only find the stationary points and
examine the boundary.

In 1) the function is continuous everywhere, and not differentiable at (0, 0), so this is an exceptional
point.

1) The domain is an ellipsoidal disc given by

(x

2

)2

+

(

y
2√
3

)2

≤ 1

of centrum (0, 0) and half axes 2 and
2√
3
.

a) The exception point. The function is of class C∞ everywhere inside the ellipse, except
for (0, 0), which is an exception point. The value of the function is here

f(0, 0) = 0.
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–2

–1

0

1

2

y

–2 –1 1 2

x

b) Stationary points. In the domain given by 0 < x2 + 3y2 < 4, the equations of the
stationary points are

∂f

∂x
=

8x
√

x2 + 3y2
− 5 = 0,

∂f

∂y
=

24y
√

x2 + 3y2
− 2y = 0.

The latter equation gives the following two possibilities

y = 0 or
√

x2 + 3y2 = 12.
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The latter possibility is rejected, because
√

x2 + 3y2 ≤ 2 in the given domain. We conclude
that we necessarily have y = 0, whenever we have a stationary point, if any.

When y = 0 is put into the former equation of the stationary points we get

8
x

|x| = 5,

which is never fulfilled. We conclude that there is no stationary point in the domain.

c) Examination of the boundary. On the boundary, x2 + 3y2 = 4, hence

y2 =
1

3
(4− x2), x ∈ [−2, 2].

When x ∈ [−2, 2] is used as a parameter, we get along the boundary

f

(

x,±
√

4− x2

3

)

= 8 · 2− 5x− 1

3
(4− x2) =

1

3
(x2 − 15x+ 44)

=
1

3

{

(

x− 15

2

)2

− 49

4

}

=
1

3
(x− y)(x− 11).

The maximum in the interval [−2, 2] is obtained for x = −2, corresponding to

f(−2, 0) = 16 + 10 = 26,

and the minimum for x = 2, corresponding to

f(2, 0) = 16− 10 = 6.

d) Numerical comparison. Summarizing the maximum and the minimum are included in
the values

f(−2, 0) = 26, f(0, 0) = 0, f(x, 0) = 6.

It follows that

S = f(−2, 0) = 26 (maximum) and M = f(0, 0) = 0 (minimum).

2) The domain is here the unit disc.

–1.5

–1

–0.5

0

0.5

1

1.5

y

–1.5 –1 –0.5 0.5 1 1.5

x
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a) Exception points. The function is everywhere of class C∞, so there are no exception
points.

b) Stationary points. The equations of the stationary points are

∂f

∂x
= 2x− 3y = 0,

∂f

∂y
= −6y − 3x = 0,

and it follows that (0, 0) is the only stationary point in the domain. The value of the
function is here

f(0, 0) = 0.

c) Examination of the boundary. We shall use the following parametric description of
the boundary,

x = cosϕ, y = sinϕ, ϕ ∈ [0, 2π[,

hence by insertion,

g(ϕ) = f(x, y) = x2 − 3y2 − 3xy = cos2 ϕ− 3 sin2 ϕ− 3 cosϕ · sinϕ

=
1

2
{1 + cos 2ϕ− 3(1− cos 2ϕ)− 3 sin 2ϕ} =

1

2
{4 cos 2ϕ− 3 sin 2ϕ− 2}

=
5

2

{

4

5
cos 2ϕ− 3

5
sin 2ϕ

}

− 1 =
5

2
cos(2ϕ+ ϕ0)− 1,

where

cosϕ0 =
4

5
and sinϕ0 =

3

5
.

Now cos(2ϕ+ϕ0) goes twice through the interval [−1, 1], when ϕ goes through [0, 2π[, and
we find the maximum

5

2
− 1 =

3

2
,

and the minimum

−5

2
− 1 = −7

2

on the boundary.

d) Numerical comparison. By comparison we see that the value f(0, 0) = 0 from the
stationary point lies between these two values on the boundary. We therefore conclude that

S =
3

2
ogM = −7

2
.

3) The domain is the closed triangle between the lines x = 1, y = 0 and y = 5− x.

a) Stationary points. The stationary points are the solutions of the equations

∂f

∂x
= y − 3

x
= 0 and

∂f

∂y
= x+ 2y − 5 = 0,

from which x+
6

x
− 5 = 0. Since x ≥ 1, we get

x2 − 5x+ 6 = (x− 2)(x− 3) = 0,
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–1

1

2

3

4

5

6

y

–1 1 2 3 4 5 6

x

the roots of which are x = 2, corresponding to y =
3

2
, and x = 3, corresponding to y = 1.

We get the two stationary points

(

2,
3

2

)

og (3, 1).

The values of the function are here

f

(

2,
3

2

)

= 2 · 3
2
+

(

3

2

)2

− 5 · 3
2
− 3 ln 2 = −9

4
− 3 ln 2,

and

f(3, 1) = 3 · 1 + 12 − 5 · 1− 3 ln 3 = −1− 3 ln 2.

b) Examination of the boundary.

i) If y = 0, then the restriction

f(x, 0) = −3 lnx, x ∈ [1, 5],

is monotonous with its maximum f(1, 0) = 0 and its minimum f(5, 0) = −3 ln 5.

ii) If x = 1, then the restriction

f(1, y) = y2 − 4y, y ∈ [1, 4]

has the maximum f(1, 0) = f(1, 4) = 0 and the minimum f(1, 2) = −4.

iii) If y = 5− x, then

f(x, 5− x) = x(5 − x) + (5 − x)2 − 5(5− x)− 3 lnx

= −3 lnx for x ∈ [1, 5],

where the maximum is f(1, 4) = 0 and the minimum is f(5, 0) = −3 ln 5.

c) Numerical comparison. We shall compare

f

(

2,
3

2

)

= −9

4
− 3 ln 2, f(3, 1) = −1− 3 ln 3,

f(1, 0) = 0, f(5, 0) = −3 ln 5,
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f(1, 0) = f(1, 4) = 0, f(1, 2) = −4,

f(1, 4) = 0, f(5, 0) = −3 ln 5.

The maximum is clearly

f(1, 0) = f(1, 4) = 0.

By using a pocket calculator we then get approximately,

−9

4
− 3 ln 2 ≈ −4.33, −1− 3 ln 3 ≈ −4.30, −3 ln 5 ≈ −4.83.

We conclude that the minimum is

f(5, 0) = −3 ln 5 ≈ −4.83.
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4) The domain is the closed disc of centrum (0, 0) and radius 6.

–6

–4

–2

0

2

4

6

y

–6 –4 –2 2 4 6

x

It is easy to find the three stationary points

(0, 0), (0, 3 +
√
3) and (0, 3−

√
3),

where (0, 0) is not an extremum, while (0, 3 +
√
3) is a minimum point, and (0, 3 −

√
3) is a

maximum point. The function values are then

f(0, 3 +
√
3) = −36− 24

√
3, f(0, 3−

√
3) = −36 + 24

√
3.

Stationary points. We get by differentiation

∂f

∂x
= 2x(x2 + y2 − 6y) + 2x(x2 + y2 − 2y) = 4x(x2 + y2 − 4y)

and

∂f

∂y
= (2y − 2)(x2 + y2 − 6y) + (2y − 6)(x2 + y2 − 2y)

= (2y − 4)(x2 + y2 − 6y) + 2(x2 + y2 − 6y)

+(2y − 4)(x2 + y2 − 2y)− 2(x2 + y2 − 2y)

= 4(y − 2)(x2 + y2 − 4y)− 8y

= 4
{

(y − 2)(x2 + y2 − 4y)− 2y
}

.

The two equations for the stationary points are

(17.9)

{

x(x2 + y2 − 4y) = 0,
(y − 2)(x2 + y2 − 4y) = 2y.

It follows from the former equation that the stationary points either lie on the line x = 0 or on
the circle x2 + (y − 2)2 = 22

a) If x = 0, it follows from the latter equation that

0 = (y − 2)(y2 − 4y)− 2y = y{(y − 2)(y − 4)− 2} = y{y2 − 6y + 6},

which has the two solutions y = 0 and y = 3±
√
3. Thus we get in this case three stationary

points

(0, 0), (0, 3 +
√
3) and (0, 3−

√
3).
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b) If x2 + y2 − 4y = 0, it follows from the latter equation of (17.9) that y = 0, and thus x = 0,
so we find again (0, 0).

Summarizing we get the three stationary points

(0, 0), (0, 3 +
√
3) and (0, 3−

√
3).

Remark. Since we are searching the maximum and the minimum (and not the extrema), it is
sufficient to calculate the value of the function in these points, and e.g. the (r, s, t)-investigation
is totally superfluous (and a waste of time). ♦

By computation we get f(0, 0) = 0, and

f(0, 3 +
√
3) =

{

(3 +
√
3)2 − 2(3 +

√
3)
}{

(3 +
√
3)2 − 6(3 +

√
3)
}

= (12 + 6
√
3− 6− 2

√
3)(12 + 6

√
3− 18− 6

√
3)

= (6 + 4
√
3)(−6)

= −36− 24
√
3,

and analogously

f(0, 3−
√
3) = −36 + 24

√
3.

Examination of the boundary. We have on the boundary x2 + y2 = 36, so

f(x, y) = (x2 + y2 − 2y)(x2 + y2 − 6y)

= (36− 2y)(36− 6y)

= 12(18− y)(6− y), for y ∈ [−6, 6],

where the maximum is

f(0,−6) = 12 · 24 · 12 = 3456,

and the minimum is f(0, 6) = 0.

Numerical comparison. Since f(0, 3 +
√
3) < 0, the maximum and the minimum of the

function in the domain are respectively,

S = f(0,−6) = 3456 and M = f(0, 3 +
√
3) = −36− 24

√
3.

Alternative solution. The argument of the second main theorem concerning the existence
of the maximum and the minimum is the same as above.

Write the function f in the following way:

f(x, y) = (x2 + y2 − 2y)(x2 + y2 − 6y)

=
{

x2 + (y − 1)2 − 1
}{

x2 + (y − 3)2 − 32
}

,

and discuss the sign of f in the domain, i.e. sketch the zero sets (the circles of respectively
centrum (0, 1) and radius 1, and of centrum (0, 3) and radius 3) inside the domain and find the
signs in each of the thus defined subregions.

The function is positive inside the two sets of zero circles and also outside the same two sets
of circles, while it is negative between the two zero circles.

684

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume V

685 

Examples of global and local extrema

–6

–4

–2

0

2

4

6

y

–6 –4 –2 2 4 6

x

Figure 17.12: The zero curves inside the domain.

It follows immediately that the minimum must lie between the two sets of zero circles, i.e. in
the set

K((0, 3); 3) \K((0, 1); 1) = A1,

and also that the minimum point must be a stationary point, because A1 is open. Because
3 −

√
3 < 2 = 1 + 1, we see that (0, 3 +

√
3) is the only stationary point in A >1, so the

mininimum is (originally only a local minimum)

f(0, 3 +
√
3) = −36− 24

√
3.

It follows in the same way that (0, 3−
√
3) ∈ A2 = K((0, 1); 1) must be a local maximum

f(0, 3−
√
3) = −36 + 24

√
3.

Finally by using polar coordinates in the plane,

f(x, y) = (r2 − 2r sinϕ)(r2 − 6r sinϕ)

= r2(r − 2 sinϕ)(r − 6 sinϕ), 0 ≤ r ≤ 6.

In the remaining region A3 both factors are positive, so

r − 2 sinϕ > 0 og r − 6 sinϕ > 0.

The product is largest when sinϕ is smallest, i.e. when ϕ = −π

2
, thus sinϕ = −1, corresponding

to

f(x, y) = r2(r + 2)(r + 6), 0 ≤ r ≤ 6.

This product is largest when r is largest, i.e. when r = 6 (the boundary), corresponding to
(x, y) = (0,−6), and

f(0,−6) = 3456.

When we compare with the other candidate above we conclude that the maximum in A is

f(0,−6) = 3456.
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5) In this case it is difficult to sketch the domain because the hyperbola xy = 32 is very steep in
the neighbourhood of (1, 32), and very flat in the neighbourhood of (32, 1). It is demonstrated
on the figure what MAPLE does in this case.

The domain is bounded by the hyperbola xy = 32 and the lines x = 1 and y = 1.

a) Stationary points. The stationary points are the solutions of the equations

∂f

∂x
= y − 64

x2
= 0 and

∂f

∂y
= x− 64

y2
= 0.
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From these we get

64

x
= xy =

64

y
,

so the stationary points lie on the line y = x. Then by insertion x3 = 64 = 43, and thus
x = y = 4. We conclude from

x = 4 ≥ 1, y = 4 ≥ 1 and xy = 16 ≤ 32,

that we have the stationary point (4, 4) in the domain. The value of the function is here

f(4, 4) = 16 + 16 + 16 = 48.

Note that we shall not check if (4, 4) is an extremum.

b) Examination of the boundary.

i) We get along the boundary curve xy = 32, x ∈ [1, 32], that y =
32

x
, and the correspond-

ing restriction is

f(x) = f

(

x,
32

x

)

= 32 +
64

x
+ 2x, for x ∈ [1, 32],

where

g′(x) = −64

x2
+ 2 = 0 for x =

√
32,

corresponding to a minimum. The y-value is y =
32√
32

=
√
32, and the value of the

function at the point (
√
32,

√
32) is

f(
√
32,

√
32) = 32 +

64√
32

+
64√
32

= 32 + 4
√
32 = 32 + 16

√
2.

At the end points of xy = 32, x ∈ [1, 32], we get the values

f(1, 32) = f(32, 1) = 32 + 64 +
64

32
= 98.

ii) We get along the boundary curve y = 1, x ∈ [1, 32], the following restriction

h(x) = f(x, 1) = x+
64

x
+ 64,

where

h′(x) = 1− 64

x2
= 0 for x = 8,

corresponding to a minimum

f(8, 1) = 8 +
64

8
+ 64 = 80.

At the end points we get

f(1, 1) = 1 + 64 + 64 = 129 and f(32, 1) = 32 + 2 + 64 = 98.
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iii) Due to the symmetry we get along the boundary curve x = 1 that the minimum is

f(1, 8) = 80,

and that the values at the end points are

f(1, 1) = 129 and f(1, 32) = 98.

iv) Numerical comparison. Summarizing the minimum is one of the values

f(4, 4) = 48, f(
√
32,

√
32) = 32 + 16

√
2, f(1, 8) = f(8, 1) = 80.

From 32 + 16
√
2 > 32 + 16 = 48 follows that the minimum is

M = f(4, 4) = 48.

Analogously the maximum is one of the numbers

f(1, 1) = 129 and f(1, 32) = f(32, 1) = 98,

hence the maximum is

S = f(1, 1) = 129.
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6) The domain is the quarter of a disc in the first quadrant of centrum (0, 0) and radius 2.

–0.5

0

0.5
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1.5

2

2.5

y

–0.5 0.5 1 1.5 2 2.5

x

a) Stationary points. the stationary points are the solutions of the equations

(17.10)











∂f

∂x
= 6x− 2y − 4xy2 = 0,

∂f

∂y
= 6y − 2x− 4x2y = 0.

When we add the two equations we get the following necessary condition

0 = 4x+ 4y − 4xy2 − 4x2y

= 4{(x+ y)− xy(x+ y)}
= 4(x+ y)(1− xy),

so either x+ y = 0 (not possible in this domain) or xy = 1,

Analogously it follows from (17.10) that

4x2y2 = 6x2 − 2xy = 6y2 − 2xy,

hence x2 = y2, which together with xy = 1 and x > 0 give x = y = 1. The only possibility
is (1, 1), and by insertion into (17.10) we get that (1, 1) is a stationary point. Furthermore,
we see that (1, 1) belongs to the domain. The value of the function at the point is

f(1, 1) = 3 + 3− 2− 2 = 2.

b) Examination of the boundary. On the boundary curve x2 + y2 = 4 we shall use the
parametric description

x = 2 cosϕ, y = 2 sinϕ, ϕ ∈
�

0,
π

2

�

.

Then

g(ϕ) = f(x, y) = 3x2 + 3y2 − 2xy(1 + xy)

= 3 · 4− 2 · 4 cosϕ · sinϕ(1 + 4 cosϕ · sinϕ)
= 12− 4 sin 2ϕ · (1 + 2 sin 2ϕ)

= 12− 4 sin 2ϕ− 8 sin2 2ϕ

= 12− 8

�

sin2 2ϕ+
1

2
sin 2ϕ+

1

16

�

+
8

16

=
25

2
− 8

�

sin 2ϕ+
1

4

�2

for 2ϕ ∈ [0, π].
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Here sin 2ϕ ∈ [0, 1] for 2ϕ ∈ [0, π], so the maximum of g(ϕ) if obtained for sin 2ϕ = 0, i.e.

for either ϕ = 0 or ϕ =
π

2
, corresponding to

g(0) = g
(π

2

)

= f(2, 0) = f(0, 2) = 12.

The minimum is obtained for sin 2ϕ = 1, corresponding to ϕ =
π

4
, or x = y =

√
2, where

g
(π

4

)

= f(
√
2,
√
2) = 12− 2 · 2 · (1 + 2) = 0.

Alternatively we see that z = xy runs through the interval [0, 2], when (x, y) runs
through the arc of the quarter circle. This means that

g1(z) = f(x, y) = 3x2 + 3y2 − 2xy(1 + xy) = 12− 2z(1 + z),

which is largest in the interval [0, 2], when z = 0, which corresponds to (x, y) = (2, 0) or
(0, 2), and smallest when z = 2, which corresponds to (x, y) = (

√
2,
√
2).

For x = 0 we get the restriction h(y) = f(0, y) = 3y2 with the minimum f(0, 0) = 0 and
the maximum

f(0, 2) = f(2, 0) = 12,

and where we exploit the symmetry of x and y.
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c) Numerical comparison. The minimum is one of the values

f(1, 1) = 2, f(
√
2,
√
2) = 0, f(0, 0) = 0,

and the maximum is one of the values

f(1, 1) = 2, f(2, 0) = f(0, 2) = 12.

It follows that the minimum is

M = f(
√
2,
√
2) = f(0, 0)00,

and that the maximum is

S = f(2, 0) = f(0, 2) = 12.

7) The domain is here the rectangle [0, 2π]× [0, 1].

–0.4
–0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4

y

1 2 3 4 5 6 7

x

a) Stationary points. The stationary points are given by the equations


















∂f

∂x
= e−y cosx = 0,

∂f

∂y
= −2e−2y − e−y sinx = 0.

It follows from the former of these that cosx = 0, so either x =
π

2
or x =

3π

2
. Then we get

from the latter equation,

e−y(2e−y + sinx) = 0.

Now e−y > 0, hence sinx < 0 and whence x =
3π

2
. Accordingly 2e−y = 1 and thus

y = ln 2 ∈ ]0, 1[.

The function has a stationary point in the domain, namely

�

3π

2
, ln 2

�

. The value of the

function is here

f

�

3π

2
, ln 2

�

= e−2 ln 2 + e− ln 2 sin

�

3π

2

�

= −1

4
.
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b) Examination of the boundary

i) The restriction along the boundary curve y = 0, x ∈ [0, 2π] is

g(x) = f(x, 0) = 1 + sinx.

It follows immediately that the maximum is f
(π

2
, 0
)

= 2 and the minimum is

f

(

3π

2
, 0

)

= 0.

ii) The restriction along the boundary curve y = 1, x ∈ [0, 2π], is

h(x) = f(x, 1) =
1

e2
+

1

e
sinx.

This gives the maximum

f
(π

2
, 1
)

=
1

e2
+

1

2
(< 2)

and the minimum

f

(

3π

2

)

=
1

e2
− 1

e
= −e− 1

e2
(< 0).

iii) We get the same restriction r(y) = e−2y, y ∈ [0, 1], along the boundary curves x = 0 and
x = 2π which corresponds to the maximum f(0, 0) = f(2π, 0) = 1 and the minimum

f(0, 1) = f(2π, 1) =
1

e2
.

c) Numerical comparison. The maximum is one of the values

f

(

3π

2
, ln 2

)

= −1

4
, f

(π

2
, 0
)

= 2,

f
(π

2
, 1
)

=
1

e2
+

1

e
, f(0, 0) = f(2π, 0) = 1.

The minimum is one of the values

f

(

3π

2
, ln 2

)

= −1

4
, f

(

3π

2
, 0

)

= 0,

f

(

3π

2
, 1

)

= −e− 1

e2
, f(0, 1) = f(2π, 1) =

1

e2
.

We conclude that the maximum is

S = f
(π

1
2, 0

)

= 2.

From (e − 2)2 = e2 − 4e+ 4 > 0 follows by a rearrangement that e2 > 4(e− 1) > 0, hence

0 <
e − 1

e2
<

1

4
, and the minimum is

f

(

3π

2
, ln 2

)

= −1

4
.
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8) The domain is the disc of centrum (0, 0) and radius 2.

a) Stationary points. The stationary points are the solutions of the equations

∂f

∂x
= 4x3 − 2x+ 2y = 0,

∂f

∂y
= 4y3 + 2x− 2y = 0,

hence 4x3 = 2x− 2y = −4y3, i.e. y = −x.
We get by insertion

0 = 4x3 − 4x = 4x(x2 − 1),

so we have the possibilities x = 0, 1, −1, corresponding to the candidates

(0, 0), (1,−1), and (−1, 1)

of the stationary points. It follows by insertion (i.e. by testing) that they are actually all
stationary points. The values of the function are here

f(0, 0) = 0 and f(1,−1) = f(−1, 1) = 1 + 1− 1− 2− 1 = −2.

b) Examination of the boundary. On the boundary x2 + y2 = 4,

f(x, y) = x4 + y4 − x2 + 2xy − y2

= (x2 + y2)2 − 2x2y2 − (x2 + y2) + 2xy

= 12 + 2xy(1− xy).

i) First alternative. We get by the parametric description

x = 2 cosϕ, y = 2 sinϕ, ϕ ∈ [0, 2π[,

that

g1(ϕ) = f(x, y) = 12 + 2xy(1− xy)

= 12 + 2 · 4 cosϕ · sinϕ(1− 4 cosϕ · sinϕ)
= 12 + 4 sin 2ϕ(1− 2 sin 2ϕ)

= 12− 8

(

sin2 2ϕ− 1

2
sin 2ϕ+

1

16

)

+
1

2

=
25

2
− 8

(

sin 2ϕ− 1

4

)2

.
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The function

(

sin 2ϕ− 1

4

)2

is smallest when sin 2ϕ0 =
1

4
, corresponding to the maxi-

mum g1(ϕ) =
25

2
.

The function

(

sin 2ϕ− 1

4

)2

is largest when sin 2ϕ1 = −1, i.e. when (x, y) = (−
√
2,
√
2)

or = (
√
2,−

√
2), corresponding to the value of the function

f(−
√
2,
√
2) = f(

√
2,−

√
2) = 0.

ii) Second alternative. We see that z = xy runs through [−2, 2], when (x, y) runs
through the circle of the equation x2 + y2 = 4. This means that it suffices to check

g2(z) = 12 + 2xy(1− xy) = 12 + 2z − 2z2 =
25

2
− 2

(

z − 1

2

)2

for z ∈ [−2, 2]. We get the maximum for z =
1

2
, corresponding to the value

25

2
−0 =

25

2
.
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Remark. We mention that the corresponding (x, y)-values are

(17.11)

�√
5 +

√
3

2
,

√
5−

√
3

2

�

,

�√
5−

√
3

2
,

√
5 +

√
3

2

�

,

�

−
√
5 +

√
3

2
,
−
√
5 +

√
3

2

�

,

�

−
√
5 +

√
3

2
,−

√
5 +

√
3

2

�

,

but there is no need at all to find these point exactly to find the maximum and the
minimum. ♦

The minimum is obtained for z = −2, corresponding to g2(−2) = 0 and (x, y) =
(−

√
2,
√
2) or (

√
2,−

√
2).

c) Maximum and minimum. Summarizing we see that the maximum is

S = max

�

0,
25

2

�

=
25

2
.

One is not asked of where the maximum is attained, so here is added that it is the value of
the function at the points given by (17.11).

The minimum is

M = min{−2, 0} = −2.

It is the value of the functions in the points (−1, 1) and (1,−1).

9) The domain is here the rectangle [0, 4]× [0, 8].

0

2

4

6

8

y

1 2 3 4

x

a) Stationary points. The stationary points are the solutions of the equations

(17.12)











∂f

∂x
= 8y2 − y3 − 3x2y = y(8y − y2 − 3x2) = 0,

∂f

∂y
= 16xy − 3xy2 − x3 = x(16y − 3y2 − x2) = 0.

We have xy > 0 in the interior of the rectangle, so the equations are reduced to

y2 − 8y + 3x2 = 0 and 3y2 − 16y + x2 = 0,
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hence

−3x2 = y2 − 8y = 9y2 − 48y.

This is again reduced to

8y2 − 40y = 8y(y − 5) = 0.

Now y > 0, thus y = 5 ∈ ]0, 8[, hence x2 = 16y − 3y2 = 80 − 75 = 5, or (since x > 0),
x =

√
5 ∈ ]0, 4[. When we put (x, y) = (

√
5, 5) into (17.12) we get

∂f

∂x
= 5(40− 25− 15) = 0,

∂f

∂y
=

√
5(80− 75− 5) = 0,

and we conclude that (
√
5, 5) is a stationary point in the domain. The corresponding value

of the function is

f(
√
5, 5) = 8

√
5 · 25−

√
5 · 125− 5

√
5 · 5 =

√
5{200− 125− 25} = 50

√
5.

b) Examination of the boundary. It follows from

f(x, y) = xy(8y − y2 − x2),

that f(0, y) = f(x, 0) = 0.

The restriction on the boundary curve x = 4, y ∈ [0, 8], is

g(y) = −4y(16− 8y + y2) = −4y(y − 4)2

where

g′(y) = −4(y − 4)2 − 8y(y − 4) = −4(y − 4){y − 4 + 2y} = −12(y − 4)

(

y − 4

3

)

.

Now g′(y) = 0 for y = 4 and for y =
4

3
, and the values of the function are

f

(

4,
4

3

)

= −16

3

(

4− 4

3

)2

= −256

27
· 4 = −1024

27

and f(4, 4) = 0, and at the end points

f(4, 0) = 0, f(4, 8) = −32 · 16 = −512.

The restriction to the boundary curve y = 8, x ∈ [0, 4], is

h(x) = 8x(64− 64− x2) = −8x3,

which clearly takes its maximum for x = 0 and minimum for x = 4, corresponding to the
maximum f(0, 8) = 0 and the minimum f(4, 8) = −512.

c) Numerical comparison. The candidates of the minimum are

f(
√
5, 5) = 50

√
5, f(0, y) = f(x, 0) = 0,

f

(

4,
4

3

)

= −1024

27
, f(4, 8) = −256.
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The candidates of the maximum are

f(
√
5, 5) = 50

√
5, f(0, y) = f(x, 0) = f(4, 4) = 0.

By comparison the get the minimum¿

M = f(4, 8) = −512

and the maximum

S = f(
√
5, 5) = 50

√
5.
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Example 17.17 We shall construct a cage for transportation of poultry from a board of the length 6
dm and the breadth b dm. The board is broken at two places and then a net of steel wire is stretched
over it. Finally, two additional boards are added so that one gets a cage of a cross section of an
equilateral trapeze. We want to break the given board in such a way that the volume of the cage V dm3

becomes as large as possible.
First prove that

V (x, y) = (6 − 2x− x cos y)bx sin y.

Then explain why the function V shall only be considered on the set [0, 3]×
[π

2
, π

]

. Finally, find the

maximum of the volume and the corresponding set (x, y) of coordinates.

A Maximum.

D Analyze the text. Check the model and find the maximum.

By cutting the trapeze (chop off the two triangles, so one gets a rectangle) we get the height (i.e. the
breadth of the trapeze)

h(x, y) = x · sin(π − y) = x · sin y.

Figure 17.13: The skew lines are each of the length x, and the two obtuse angles are each of the size
y.

Then compute the area,

A(x, y) = (6− 2x)(h(x, y) + 2 · 1
2
h(x, y) · x cos(π − y) = (6− 2x)x sin y + x sin y{−x cos y}

= (6x− 2x2) sin y − x2 sin y · cos y.

Remark. It follows from the sign of the latter term that the areas of the corners are counted

negatively, when y ∈
]

0,
π

2

[

, which is quite reasonable when one sketches the corresponding figure.

♦
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It follows from the above that the volume is

V (x, y) = bA(x, y) = {(6x− 2x2) sin y − x2 sin y cos y}b.

Since x ≥ 0 and 6− 2x ≥ 0, we must have x ∈ [0, 3].

We can clearly choose y in the interval [0, π]; but since we shall find a maximum, we must have

−x2 sin y cos y ≥ 0, so y ∈
�π

3
, π

�

.

The task is then reduced to finding the maximum of the function

V (x, y) = {(6x− 2x2) sin y − x2 sin y cos y}b

in the set [0, 3]×
�π

2
, π

�

= A.

1) Stationary points. The stationary points in the interior of A are the solutions of the equa-
tions



















∂V

∂x
= b{(6− 4x) sin y − 2x sin y cos y} = 0,

∂V

∂y
= b{(6x− 2x2) cos y − x2(cos2 y − sin2 y)} = 0.

Since b > 0, x > 0 and sin y > 0 in A◦, these equations are reduced to

(17.13)







(6− 4x)− 2x cos y = 0,

(6− 2x) cos y − x(2 cos2 y − 1) = 0.

It follows from the former equation that

−1 < cos y =
3− 2x

x
=

3

x
− 2 < 0,

so
3

2
< x < 3 for possible stationary points. When the value above cos y is put into the latter

equation of (17.13), then

0 = (6 − 2x) · 3− 2x

x
− x

�

2

�

3− 2x

x

�2

− 1

�

=
1

x
{(6− 2x)(3− 2x)− 2(3− 2x)2 + x2}

=
1

x
{(3− 2x)[(6− 2x)− (6− 4x)] + x2}

=
1

x
{(3− 2x) · 2x+ x2} = 2(3− 2x) + x = 6− 4x+ x

= 6− 3x,

hence x = 2, and thus cos y =
3− 4

2
= −1

2
, corresponding to the candidate (x, y) =

�

2,
2π

3

�

.
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Test. That

(

2,
2π

3

)

really is a stationary point, follows from the computations

∂V

∂x
= b

{

(6− 8) sin
2π

3
− 2 · 2 sin

2π

3
cos

2π

3

}

= b sin
2π

3

(

−2− 2 · 2 ·
(

−1

2

))

= 0,

∂V

∂y
= b

{

(12− 8) cos
2π

3
− 4

(

2 cos2
2π

3
− 1

)}

= 4b

{

−1

2
−
(

1

2
− 1

)}

= 0,

and we have tested our result. ♦

The value of the function at

(

2,
2π

3

)

is

V

(

2,
2π

3

)

= b

{

(12− 8) sin
2π

3
− 4 sin

2π

3
cos

2π

3

}

= b

{

4 ·
√
3

2
− 4 ·

√
3

2
·
(

−1

2

)

}

= b{2
√
3 +

√
3} = 3

√
3 b.
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Figure 17.14: The form of the cage of maximum volume corresponding to the stationary point.

2) Examination of the boundary. We get V (0, y) ≡ 0 on the boundary curve x = 0, y ∈
[π

2
, π

]

.

On the boundary curve x = 3, y ∈
[π

2
, π

]

, we have the restriction

V (3, y) = −9b sin y · cos y = −9

2
b sin 2y,

which has its minimum V
(

3,
π

2

)

= V (3, π) = 0 and its maximum

V

(

3,
3π

4

)

=
9

2
b.

Figure 17.15: The triangle corresponding to V

(

3,
3π

4

)

=
9

2
b.

Note that this case corresponds to a degenerated trapeze, i.e. to a rectangular triangle, cf. the
figure.
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Figure 17.16: The rectangle corresponding to V

(

3

2
,
π

2

)

=
9

2
b. The height is

3

2
, and each of the

horizontal pieces have the length 3.

On the boundary curve y =
π

2
, x ∈ [0, 3], we get the restriction

V
(

x
π

2

)

= (6x− 2x2)b = 2b

{

9

4
−
(

x− 3

2

)2
}

,

with its minimum V
(

3,
π

2

)

= V (3, π) = 0, and its maximum

V

(

3

2
,
π

2

)

=
9

2
b.

Finally, V (x, π) = 0 on the boundary curve y = π, x ∈ [0, 3], which does not contribute to the
candidates.

3) Numerical comparison. We conclude from 3
√
3 > 3 · 3

2
=

9

2
that the maximum is attained

at the stationary point (x, y) =

(

2,
2π

3

)

with the value of the function

V

(

2,
2π

3

)

= 3
√
3 b.

The form of the corresponding cage is shown on the figure in connection with the stationary
point.
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Example 17.18 Check in each of the following cases if the given function has a maximum or a
minimum or both or none of the kind. If it has a maximum or a minimum give the value of the
function at these points.

1) f(x, y) = (x+ y) exp(−x2 − y2) for (x, y) ∈ R2.

2) f(x, y) = xy exp(−x2 − y2) for (x, y) ∈ R2.

3) f(x, y) = exp(x2 − y2)− x2 − y2 for (x, y) ∈ R2.

4) f(x, y) = exp(x2 + y2)− 4xy for (x, y) ∈ R2. [cf. Example 17.20]

5) f(x, y) =
1 + x2

x2 + y2 − 2y − 3
for x2 + y2 < 2y + 3.

6) f(x, y) = x3 + 2y3 for (x, y) ∈ R2.

7) f(x, y) = 3xy + ln(1 − x2 − y2) for x2 + y2 < 1.

8) f(x, y) = x2 − 2x+ y2 + 3y + 5 for x2 + y2 < 5.

9) f(x, y) = x+ tanh y for x2 + y2 < 2.

10) f(x, y) = x2y − 2x2 + 4y2 for |x| < 2 og |y| < 1.

11) f(x, y) = (7x2 + 4xy) exp(−y2) for |x| < 1.

A Extrema in open domain of C∞-functions.

D Find the stationary points, if any. Check if they are extrema. Check also f(x, y), when (x, y) tends
towards the boundary or towards ∞ in the sense x2 + y2 → +∞.

I 1) The domain is R2. It follows from the different magnitudes of the terms that

f(x, y) = (x+ y) exp(−x2 − y2) → 0 for x2 + y2 → +∞.

The stationary points are found by solving the equations

∂f

∂x
= exp(−x2 − y2)− 2x(x+ y) exp(−x2 − y2)

= {1− 2x(x+ y)} exp(−x2 − y2) = 0,

∂f

∂y
= {1− 2y(x+ y)} exp(−x2 − y2) = 0,

where we get the latter equation by a symmetric argument.

We conclude from the equations above that

2x(x+ y) = 1 = 2y(x+ y),

hence x �= 0, y �= 0, x + y �= 0 and y = x, so 4x2 = 1. This implies that the stationary points
are

(

1

2
,
1

2

)

and

(

−1

2
,−1

2

)

.
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The values of the function are

f

(

1

2
,
1

2

)

=
1√
e

and f

(

−1

2
,−1

2

)

= − 1√
e
,

which compared with the examination of the boundary gives that the minimum is

M = f

(

−1

2
,−1

2

)

= − 1√
e
,

and the maximum is

S = f

(

1

2
,
1

2

)

=
1√
e
.

The function is of course 0 on the line y = −x.
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2) It follows from the rules of magnitudes that

f(x, y) = xy exp(−x2 − y2) → 0 for x2 + y2 → +∞.

The stationary points are the solutions of the equations

∂f

∂x
= (y − 2x2y) exp(−x2 − y2)

= y(1− 2x2) exp(−x2 − y2) = 0,

∂f

∂y
= x(1 − 2y2) exp(−x2 − y2) = 0,

where the latter equations follows by the symmetry.

These equations are reduced to the system

y(1− 2x2) = 0 og x(1 − 2y2) = 0.

If x = 0, then y = 0, hence (0, 0) is a stationary point.

If x = ± 1√
2
, then y = ± 1√

2
. We find in total five stationary points,

(0, 0),

(

1√
2
,
1√
2

)

,

(

1√
2
,− 1√

2

)

,

(

− 1√
2
,
1√
2

)

,

(

− 1√
2
,− 1√

2

)

.

The values of the function at these points are

f(0, 0) = 0,

f

(

1√
2
,
1√
2

)

= f

(

− 1√
2
,− 1√

2

)

=
1

2e
,

f

(

− 1√
2
,
1√
2

)

= f

(

1√
2
,− 1√

2

)

= − 1

2e
.

Summarizing the maximum is (by comparison)

S = f

(

1√
2
,
1√
2

)

= f

(

− 1√
2
,− 1√

2

)

=
1

2e
,

and the minimum is

M = f

(

− 1√
2
,
1√
2

)

= f

(

1√
2
,− 1√

2

)

= − 1

2e
.

3) If x = 0, then

f(0, y) = exp(−y2)− y2 → −∞ for y → +∞.

If y = 0, then

f(x, 0) = exp(x2)− x2 → +∞ for x → +∞.

We conclude that the function has neither a maximum nor a minimum in the domain R2.
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Remark. Even though it is superfluous, we shall nevertheless for the exercise show how the
possible stationary points are found. The corresponding equations are

∂f

∂x
= 2x{exp(x2 − y2)− 1} = 0,

∂f

∂y
= −2y{exp(x2 − y2) + 1} = 0.

It follows from the latter equation that y = 0, which put into the former one gives

2x{exp(x2)− 1} = 0.

This equation is only fulfilled for x = 0, hence (0, 0) is the only stationary point. The value of
the function is here f(0, 0) = 0, and it is obvious that f(x, y) can be both positive and negative
in any neighbourhood of (0, 0), so there exists no point in which a maximum or a minimum
can be attained. ♦

4) It follows from the rules of magnitudes that

f(x, y) = exp(x2 + y2)− 4xy → +∞ for x2 + y2 → +∞,

and the function does not have a maximum.

The possible stationary points are the solutions of the equations

∂f

∂x
= 2x exp(x2 + y2)− 4y = 0,

∂f

∂y
= 2y exp(x2 + y2)− 4x = 0.

These equations are reduced to

(17.14)

{

x exp(x2 + y2) = 2y,
y exp(x2 + y2) = 2x.

We get by adding these equations,

(x+ y) exp(x2 + y2) = 2(x+ y).

It follows from (17.14) that x and y must either be of the same sign or be 0. Therefore, if
x+ y = 0, then (x, y) = (0, 0).

If x+ y �= 0, we get x2 + y2 = ln 2. It follows in this case from (17.14) that

x2 exp(x2 + y2) = 2xy = y2 exp(x2 + y2),

so x2 = y2, or y = x. The stationary points �= (0, 0) are then satisfying

x2 + y2 = 2x2 = ln 2,

i.e.

x = y = ±
√

ln 2

2
.
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By insertion into (17.14) it follows that they are indeed stationary points, so we have three
stationary points,

(0, 0),

(
√

ln 2

2
,

√

ln 2

2

)

,

(

−
√

ln 2

2
,−

√

ln 2

2

)

.

The values of the function here are f(0, 0) = 1 and

f

(
√

ln 2

2
,

√

ln 2

2

)

= f

(

−
√

ln 2

2
,−

√

ln 2

2

)

= 2− 2 ln 2 = 2(1− ln 2).

From ln 2 >
1

2
follows that the minimum is

f

(
√

ln 2

2
,

√

ln 2

2

)

= f

(

−
√

ln 2

2
,−

√

ln 2

2

)

= 2(1− ln 2).

It was mentioned above that the function has no maximum.

5) The domain is the open disc of centrum (0, 1) and radius 2.

–1

1

2

3

y

–2 –1 1 2

x

Clearly, the function

f(x, y) =
1 + x2

x2 + y2 − 2y − 3
, x2 + y2 < 2y + 3,

tends towards −∞, when (x, y) tends to the circle x2+(y−1)2 = 4 from the inside. Therefore,
the minimum does not exist.

The stationary points are the solutions of the equations

∂f

∂x
=

1

(x2 + y2 − 2y − 3)2
[

2x{x2 + y2 − 2y − 3} − 2x(1 + x2)
]

= 0,

∂f

∂y
=

1

(x2 + y2 − 2y − 3)2
{−(1 + x2) · 2(y − 1)} = 0.

Inside the domain, these equations are reduced to

x{(y − 1)2 − 5} = 0 and y − 1 = 0,
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hence y = 1 and x = 0. The only stationary point is the centre of the circle (0, 1). This
must necessarily be a maximum, because the maximum exists, and it can only be attained at
a stationary point (because the function is of class C∞). Hence the maximum is

S = f(0, 1) = −1

4
.

Remark 1. One can also find the maximum in the following way without any calculation. Note
that the numerator is positive, and the denominator is negative everywhere in the domain.
Hence, we shall make the numerator as small as possible (for x = 0), and the denominator
numerically as big as possible. The denominator can be written (x− 0)2 + (y− 1)2 − 4, so this
situation occurs for (x, y) = (0, 1). Since the optimum possibility for both the numerator and
the denominator occurs for at least x = 0, we conclude that (0, 1) is a maximum point and
that the maximum is

S = f(0, 1) = −1

4
. ♦

Remark 2. Another possible solution is the following: If x is kept fixed, then

f(x, y) = − 1 + x2

4− x2 − (y − 1)2

is largest when y = 1, and (x, 1) belongs to the domain, so the only condition on x is |x| < 2.
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Then the task is reduced to finding the maximum of

f(x, 1) =
x2 + 1

x2 − 4
= 1 +

5

x2 − 4
for x2 ∈ [0, 4[.

This is obtained for x = 0, so the maximum is

S = f(0, 1) = 1− 5

4
= −1

4
. ♦

6) The function f(x, y) = x3 + 2y3 has neither a maximum nor a minimum in R2, because

f(x, 0) = x3 →
�

+∞ for x → +∞,
−∞ for x → −∞.

We mention – though it is not necessary – that (0, 0) is the only stationary point.

7) Clearly, the function

f(x, y) = 3xy + ln(1 − x2 − y2), x2 + y2 < 1,

tends towards −∞, when (x, y) is approaching the boundary x2 + y2 = 1 of the unit disc (from
the inside). Therefore, the function has no minimum.

Clearly, it has a maximum, because it is continuous on every closed subset of the open unit
disc. We may choose this subset such that f(x, y) = −C on the boundary of the subset, where
C > 0 is any c positive constant. According to the second main theorem, f has a maximum on
the closed subset, and since f(0, 0) = 0 > −C, we cannot have the maximum on the boundary.
Since f is of class C∞, the maximum must be attained at a stationary point.

The stationary points are the solutions of the equations

(17.15)











∂f

∂x
= 3y − 2x

1− x2 − y2
= 0,

∂f

∂y
= 3x− 2y

1− x2 − y2
= 0.

Clearly, (0, 0) is a stationary point. It is almost obvious (due to the variation of 3xy in a
neighbourhood of (0, 0)) that the maximum is not attained at (0, 0).

We shall then find the stationary points �= (0, 0), which must exist, cf. the discussion above.
According to (17.15), such stationary points must satisfy

3y2 =
2xy

1− x2 − y2
= 3x2,

thus y2 = x2. It follows from xy > 0 that x and y must have the same sign, so we conclude
that y = x. By eliminating y we get

0 = 3y(1− x2 − y2)− 2x = x{3− 6x2 − 2} = x{1− 6x2}.

Since x �= 0, we get x = y = ± 1√
6
, and the stationary points are

(0, 0),

�

1√
6
,
1√
6

�

,

�

− 1√
6
,− 1√

6

�

.
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The corresponding values are f(0, 0) = 0 (found previously, and we have already shown that
this cannot be a maximum), and

f

(

1√
6
,
1√
6

)

= f

(

− 1√
6
,− 1√

6

)

=
1

2
− ln

3

2
,

which then necessarily must be the maximum. (This follows also from that ln 3
2 < 1

2 ).

8) Let

f(x, y) = x2 − 2x+ y2 − 3y + 5 = (x− 1)2 +

(

y − 3

2

)2

+
7

4

for x2 + y2 < (
√
5)2.

–3

–2

–1

0

1

2

3

y

–3 –2 –1 1 2 3

x

Figure 17.17: The domain with the longest possible line through (1, 32 ) inside the domain.

Interpret (x− 1)2 +

(

y − 3

2

)2

as the square of the distance from (x, y) to the point

(

1,
3

2

)

in

the domain. Clearly,

(

1,
3

2

)

is the only stationary point. It follows from the rearrangement

that this is a minimum point corresponding to the minimum

M = f

(

1,
3

2

)

=
7

4
.

The function f(x, y) has a continuous extension to the closure of the domain given by x2+y2 ≤
5. It follows from the above that the maximum exists (the second main theorem) and since
there are no stationary points at hand, it must be attained at a boundary point. Then it follows
from the geometric interpretation above that the maximum is obtained at the intersection of

the line of the equation y =
3

2
x and the boundary given by x2 + y2 = 5 in the third quadrant.

This implies that the function does not have a maximum in the given open domain.

Remark 1. For completeness it should be mentioned that the intersection point is
(

−2

√

5

13
,−3

√

5

13

)

.
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The distance from this point to

(

1,
3

2

)

is of geometrical reasons
1

2

√
13+

√
5, so the maximum

on the boundary (hence also in the closed domain is

f

(

−2

√

5

13
,−3

√

5

13

)

=

{

1

2

√
13 +

√
5

}2

+
7

4
=

13

4
+ 5 +

√
65 +

7

4
= 10 +

√
65. ♦

Remark 2. It should be obvious that if one did not use the geometric interpretation above,
then the task would give quite unpleasant computations. It is left to the reader to find the
maximum on the boundary by inserting the parametric description

x =
√
5 cos t, y =

√
5 sin t, t ∈ [0, 2π[. ♦

9) Clearly, the function f(x, y) = x+tanh y, x2+y2 < 2, has no stationary point (e.g.
∂f

∂x
= 1 �= 0),

and since the function is of class C∞, and the domain is open (i.e. without boundary points)
the function has neither a minimum nor a maximum in the domain.

10) Clearly, the function

f(x, y) = x2y − 2x2 + 4y2, |x| < 2, |y| < 1,

is of class C∞, so a possible maximum or minimum can only be attained at a stationary point.

The stationary points are the solutions of the equations

∂f

∂x
= 2xy − 4x = 2x(y − 2x) = 0,

∂f

∂y
= x2 + 8y = 0.

It follows from the former equation that either x = 0 or y = 2x.

a) If x = 0, then we get y = 0 from the latter equation and (0, 0) is a stationary point.

b) If y = 2x is put into the latter equation, we get

0 = x2 + 16x = x(x + 16),

so either x = 0 (and y = 0 again as above) or x = −16. The latter is not possible inside
the domain.

The only stationary point is (0, 0). The value of the function is here

f(0, 0) = 0.

We conclude the task in the following way: The two restrictions

f(0, y) = 4y2, |y| < 1,

and

f(x, 0) = −2x2, |x| < 2,

attain both positive and negative values at any point close to (0, 0), hence f(0, 0) = 0 is neither
a maximum nor a minimum. Since (0, 0) is the only possibility of extremum, there does not
exist any.

Alternatively (the standard procedure) the function is extended continuously to the bound-
ary, and then we we continue by examining the values on the boundary.
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a) If x = −2 and y ∈ [−1, 1] the restriction is

g1(y) = f(−2, y) = 4y − 8 + 4y2

where g′1(y) = 4− 8y = 0 for y =
1

2
. The value is

f

(

−2,
1

2

)

= g1

(

1

2

)

= 4 · 1
2
− 8 + 4

(

1

2

)2

= 2− 8 + 1 = −5.

At the end points of the interval we get the values of the function

f(−2,−1) = g1(−1) = −4− 8 + 4 = −8,

f(−2, 1) = g1(1) = 4− 8 + 4 = 0.

b) If y = 1 and x ∈ [−2, 2] the restriction is

g2(x) = f(x, 1) = x2 − 2x2 + 4 = 4− x2,

where g2(x) = −2x = 0 for x = 0. The relevant values of the function are

f(−2, 1) = g2(−2) = 4− 8 + 4 = 0,

f(0, 1) = g2(0) = 4,

f(2, 1) = g2(2) = 4− 8 + 4 = 0.
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Even if we have not examined the remaining two boundary curves, we can finish the task now,
because (0, 0) is the only stationary point with the value of the function f(0, 0) = 0. The
boundary does not belong to the domain, and by continuous extensions we find the values at
specially chosen boundary points

f(−2,−1) = −8 < f(0, 0) = 0 < f(0, 1) = 4.

Accordingly, f has neither a maximum nor a minimum in the open domain. In fact, due to the
continuity we can inside the domain obtain values of the function as close to −8 as well to 4
as we wish.

11) The function

f(x, y) = (7x2 + 4xy) exp(−y2), |x| < 1,

is of class C∞, and it can be extended by the same definition to all of R2. This domain is open,
so a possible maximum or minimum can only be attained at a stationary point.

Possible stationary points are the solutions of the equations

∂f

∂x
= (14x+ 4y) exp(−y2) = 0,

∂f

∂y
= {4x− 2y(7x2 + 4xy)} exp(−y2).

Now exp(−y2) �= 0, so these equations are equivalent to

7x = −2y and x{2− 7xy − 4y2} = 0.

If we only eliminate 7x in the term 7xy of the latter equation, we get

0 = x{2 + 2y2 − 4y2} = 2x{1− y2}.

Combining this with the equation 7x = −2y we get the possibilities

x = 0, i.e. y = 0, hence (x, y) = (0, 0),

y = 1, i.e. x = −2

7
, hence (x, y) =

(

−2

7
, 1

)

,

y = −1, i.e. x =
2

7
, hence (x, y) =

(

2

7
,−1

)

.

All three stationary points lie in the open domain, and the values of the function are

f(0, 0) = 0,

and

f

(

−2

7
, 1

)

= f(

(

2

7
,−1

)

=

(

7 · 4

49
− 4 · 2

7
· 1
)

exp(−1) = − 6

7e
.

Examination of the boundary. As mentioned above the function can be extended to the
boundary. As f(−x, y) = f(x, y), it suffices to examine the restriction

g(y) = f(1, y) = (7 + 4y) exp(−y2), y ∈ R.
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From

g′(y) = {4− 2y(7 + 4y)} exp(−y2) = (4 − 14y − 8y2) exp(−y2)

=

�

�

y +
7

8

�2

−
�

9

8

�2
�

exp(−y2),

follows g′(y) = 0 for

y = −7

8
± 9

8
=











1

4
,

−2,

corresponding to the boundary values

f

�

1,
1

4

�

= g

�

1

4

�

= 8 exp

�

− 1

16

�

> 0,

and

f(1,−2) = g(−2) = − exp(−4).

Finally, it follows by the different magnitudes of the terms that

f(x, y) → 0 for |y| → +∞.

Then by a numerical comparison

− 6

7e
= f

�

−2

7
, 1

�

= f

�

2

7
,−1

�

< − 1

e4
= f(1,−2) < 0 = f(0, 0)

< 8 exp

�

− 1

16

�

= f

�

1,
1

4

�

.

Since

�

1,
1

4

�

is a boundary point which is not included in the domain, and f

�

1,
1

4

�

is the

maximum in the closure, the function has no maximum in the domain given by |x| < 1.

On the other hand,

M = f

�

−2

7
, 1

�

= f

�

2

7
,−1

�

= − 6

7e

is a minimum in both the closed and open set, so the minimum exists.
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Example 17.19 Find in each of the following cases the largest volume of a rectangular box for which
the indicated condition is fulfilled.

1) The sum of the 12 edges is given equal to 12a.

2) The area of the surface of the box is given and equal to 6a2.

3) The length of the space diagonal of the box is given and equal to a.

A Maximum.

D Put the box into a rectangular coordinate system with one corner at (0, 0, 0) and where the cor-
responding edges lie along the axes in the positive sense, i.e. the box can be described as the
domain

[0, x]× [0, y]× [0, z].

Find the volume as a function of the edges. Exploit the condition in each sub-question to eliminate
one of the variables. Indicate the domain, in which the remaining edges can vary. Finally, find the
maximum.

I When the lengths of the edges are x, y, z ≥ 0, then the volume is given by

V (x, y, z) = xyz.

1) The condition that the sum of the 12 edges is equal to 12a is written

4(x+ y + z) = 12a, i.e. x+ y + z = 3a.

Remark. For symmetrical reasons we may expect that the solution is given by x = y = z = a.
The remaining part of the task is to prove that this hunch in this case is correct. ♦

First eliminate z,

z = 3a− x− y ≥ 0, i.e. x ≥ 0, y ≥ 0, x+ y ≤ 3a.

0

1

2

3

y

1 2 3

x

Figure 17.18: The triangle in which we shall find the maximum of f(x, y) = xy(3a− x− y).
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By insertion we see that we shall find the maximum of the function

f(x, y) = xy(3a− x− y), x ≥ 0, y ≥ 0, x+ y ≤ 3a.

We have f(x, y) > 0 in the interior of the triangle, and on we boundary we have f(x, y) = 0.
Now f(x, y) is of class C∞, so the maximum exists (second main theorem) and it can only be
attained at an interior stationary point.

The equations of the stationary points are

∂f

∂x
= 3ay − 2xy − y2 = y(3a− 2x− y) = 0,

∂f

∂y
= x(3a− x− 2y),

where we immediately get the latter expression by the symmetry.

Since x > 0 and y > 0 in the interior of the triangle A we get the reduced equations

2x+ y = 3a and x+ 2y = 3a,

and we find (a we guessed) x = y = a. The only stationary point is (a, a) corresponding to
z = 3a− a− a = a, and as mentioned above this corresponds to a maximum,

S = V (a, a, a) = a3.

2) In this case the condition is

2(xy + yz + xz) = 6a2.
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Remark. Due to the symmetry we may again expect the solution to be x = y = z = a. This
satisfies at least the condition. The remaining part of the task is to prove that also this hunch
is correct. ♦.

It follows from the condition that

z =
3a2 − xy

x+ y
,

where xy ≤ 3a2, x ≥ 0, y ≥ 0 and (x, y) �= (0, 0), hence a troublesome expression.

0

2

4

6

8

y

2 4 6 8

x

Figure 17.19: The infinite domain of the function in Example 17.19.2.

The volume function is given in this domain by

f(x, y) = xy · 3a
2 − xy

x+ y
=

3a2xy − x2y2

x+ y
.

We conclude from

0 ≤ f(x, y) ≤ y

x+ y
· 3a2 · x ≤ x · 3a2,

that f(x, y) can be extended by continuity from the first quadrant to the positive X and Y
axes supplied by the point (0, 0) by putting the value of the function equal to 0. We have
also the value 0 of the function of the branch of the hyperbola xy = 3a2 which lies in the first
quadrant. Finally, f(x, y) → 0, when either x → +∞ or y → +∞ inside the open domain.
Since f(x, y) > 0 is of class C∞ in the open domain, it follows from the second main theorem
that f(x, y) has a maximum, which necessarily must be attained at a stationary point in the
interior of the domain.

The equations of the stationary points are

∂f

∂x
=

1

(x2 + y2)

{

(3a2y − 2sy2)(x + y)− (3a2xy − x2y2)
}

=
y

(x+ y)2
{

3a2(x + y)− 2x2y − 2xy2 − 3a2x+ x2y
}

=
y

(x+ y)2
{

3a2y − x2y − 2xy2
}

=
y2

(x+ y)2
{

3a2 − x2 − 2xy
}

= 0,
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and of symmetrical reasons,

∂f

∂y
=

x2

(x+ y)2
{

3a2 − y2 − 2xy
}

= 0.

Since x �= 0, y �= 0 and x+ y �= 0 in the interior of the domain, these equations are reduced to

x2 + 2xy = 3a2, y2 + 2xy = 3a2,

accordingly x2 = y2, or y = x, because both x and y are positive. This implies that 3x2 = 3a2,
so x = y = a, and then finally,

z =
3a2 − a2

2a
= a.

Since (a, a) is the only stationary point, the maximum must be attained here. We find as
expected that the maximum is

S = V (a, a, a) = a3.

3) The condition is here that the length of the space diagonal of the box is equal to a, i.e.

√

x2 + y2 + z2 = a.

Remark. As before the strong symmetry suggests that the solution must satisfy x = y = z =
a√
3
. We shall again prove this hunch. ♦.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

–0.2 0.2 0.4 0.6 0.8 1 1.2

x

Figure 17.20: The domain of the function xy
√

a2 − x2 − y2.

It follows that

z =
√

a2 − x2 − y2, x ≥ 0, y ≥ 0, x2 + y2 ≤ a2.

By insertion we get that the task is reduced to finding the maximum of the function

f(x, y) = xy
√

a2 − x2 − y2
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in the closed quarter disc

A = {(x, y) | x ≥ 0, y ≥ 0, x2 + y2 ≤ a2}.

Clearly, f(x, y) = 0 on the boundary ∂A of A. We have f(x, y) > 0 in the interior of A. Since
f is of class C∞ in the interior of A, and is continuous on A, it follows from the second main
theorem that the maximum (which exists) must be attained at a stationary point in A◦.

The stationary points satisfy the equations

∂f

∂x
= y

√

a2 − x2 − y2 − x2y
√

a2 − x2 − y2
=

y
√

a2 − x2 − y2
{a2 − 2x2 − y2} = 0,

∂f

∂y
=

x
√

a2 − x2 − y2
{a2 − x2 − 2y2} = 0,

where the latter equation follows by the symmetry.

We then derive the equations

y = 0 or 2x2 + y2 = a2,

and

x = 0 or x2 + 2y2 = a2.

Clearly, one of the coordinates must be 0, so

(0, 0), (a, 0), (−a, 0), (0, a), (0,−a),

are all the possible stationary points. Unfortunately they all lie outside the interior of the
domain, so none of the counts in the following. (Three of them lie on the boundary, because
f(x, y) = 0, and the remaining two points do not lie at all in the closure of A).

Our only possibility is obtained when

2x2 + y2 = a2 and x2 + 2y2 = a2.

We get by a subtraction, y2 = x2, so x2 = y2 =
a2

3
. Now x2 + y2 =

2

3
a2 < a2, so

(

a√
3
,
a√
3

)

is the only stationary point in A◦, corresponding to the maximum

S = f

(

a√
3
,
a√
3

)

=
a3

3
√
3

[

=

(

a√
3

)3
]

,

and we see that x = y = z =
a√
3
in agreement with our earlier hunch.
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Example 17.20 Show by applying polar coordinates that the function

f(x, y) = exp(x2 + y2)− 4xy, y ≥ 0, y ≥ 0,

has a minimum and find this minimum. [cf. Example 17.18.4].

A Minimum by polar coordinates.

D Introduce the polar coordinates. Find the stationary points. Examine the boundary and what
happens when ̺ → +∞.

I The domain is the first quadrant. This is described in polar coordinates by

x = ̺ cosϕ, y = ̺ sinϕ, ̺ ∈ [0,+∞[, ϕ ∈
�

0,
π

2

�

.

The function is

g(̺, ϕ) = f(x, y) = exp(̺2)− 4̺2 cosϕ sinϕ = exp(̺2)− 2̺2 sin 2ϕ.

The equations of the stationary points become

(17.16)



















∂g

∂̺
= 2̺ exp(̺2)− 4̺ sin 2ϕ = 2̺{exp(̺2)− 2 sin 2ϕ} = 0,

∂g

∂ϕ
= −4̺2 cos 2̺ = 0.
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It follows from ̺ > 0 in the interior of the domain and the latter equation of (17.16) that the
condition is

cos 2ϕ = 0, i.e. sin 2ϕ = ±1,

where the former equation of (17.16) shows that only sin 2ϕ = +1 can be applied. Then

ϕ =
π

4
∈
[

0,
π

2

]

.

We get by insertion into for former equation of (17.16),

exp(̺2) = 2, hence ̺ =
√
ln 2.

Thus, the only stationary point is

(̺, ϕ) =
(√

ln 2,
π

4

)

,

corresponding in rectangular coordinates to

(x, y) =

(
√

ln 2

2
,

√

ln 2

2

)

.

The value of the function is here

g
(√

ln 2,
π

4

)

= exp(ln 2)− 2 ln 2 = 2(1− ln 2).

If ̺ → +∞, then obviously g(̺, ϕ) → +∞.

We have on the boundary curves ϕ = 0 and ϕ =
π

2
, ̺ ∈ [0,+∞[, that

g(̺, 0) = g
(

̺,
π

2

)

= exp(̺2), ̺ ∈ [0,+∞[,

so the minimum value is here g(0, 0) = 1 > 2(1− ln 2).

Summarizing, f(x, y) = g(̺, ϕ) has a minimum in A for

(̺, ϕ) =
(√

ln 2,
π

4

)

,

corresponding in rectangular coordinates to

(x, y) =

(
√

ln 2

2
,

√

ln 2

2

)

.

The value of the function is here

g
(√

ln 2,
π

4

)

= f

(
√

ln 2

2
,

√

ln 2

2

)

= 2(1− ln 2),

in accordance with the result of Example 17.18.4.
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Alternatively it is also possible only to use rectangular coordinates, and this is actually not
that difficult. The equations of the stationary points

∂f

∂x
= 2x exp(x2 + y2)− 4y = 0,

∂f

∂y
= 2y exp(x2 + y2)− 4x = 0,

i.e.

x exp(x2 + y2) = 2y, y exp(x2 + y2) = 2x,

so

2y2 = xy exp(x2 + y2) = 2x2,

and hence y = x, because we only consider the open first quadrant. Then

x exp(2x2) = 2x, i.e. exp(2x2) = 2,

hence

y = x = +

√

ln 2

2
.

The only stationary point in the open first quadrant is

(x, y) =

(
√

ln 2

2
,

√

ln 2

2

)

.

On the boundary either f(x, 0) = exp(x2), or f(0, y) = exp(y2), with the minimum value f(0, 0) =
1 > 2(1− ln 2), so the minimum value is attained at the stationary point in the first quadrant.

Example 17.21 Find the maximum and the minimum of the function

f(x, y, z) = x2 + y2 + z2, x ≥ 0, y ≥ 0, z ≥ 0, x+ y + z ≤ 1.

A Maximum and minimum.

D The existence follows from the second main theorem. Then either argue geometrically, or use the
standard method.

I The function f(x, y, z) = x2 + y2 + z2 is continuous on the given closed and bounded domain. It
follows from the second main theorem that f has both a maximum and a minimum.

1) The elegant geometrical solution. The value

f(x, y, z) = x2 + y2 + z2

can be interpreted as the square of the distance from (0, 0, 0) to (x, y, z). This distance is
smallest (= 0) for (x, y, z) = (0, 0, 0), and largest (= 1) at the other corners (1, 0, 0), (0, 1, 0)
and (0, 0, 1) of the tetrahedron which describes A.
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Figure 17.21: The domain.
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Figure 17.22: The projection onto the XY plane.

2) The standard procedure. It follows immediately that (0, 0, 0) is the only possible stationary
point, but since it lies on the boundary it is a matter of definition if it should be counted as a
stationary point or not. It will always be treated as a boundary point, when we examine the
boundary.

Examination of the boundary.

a) If z = 0, then f(x, y, 0) = x2 + y2, which on the triangle in the XY plane is smallest at
(0, 0) and largest at (1, 0) and (0, 1).
This is immediately seen, and it can also be obtained by another examination of the bound-
ary in the XY plane on the triangle shown on the figure.

b) Due to the symmetry the same is true for the surfaces x = 0 and y = 0.

c) If z = 1−x−y, then we get the same parametric domain as the domain above on the figure
in the XY plane, and the restriction is given by

g(x, y) = f(x, y, 1− x− y) = x2 + y2 + (1− x− y)2.
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The equations of the possible stationary points are
∂g

∂x
= 2x− 2(1− x− y) = 2(2x+ y − 1) = 0,

∂g

∂y
= 2(x+ 2y − 1) = 0,

(the latter equation by symmetry). Accordingly, y = x and 3(x + y) = 2, i.e. x = y =
1

3
.

Then by insertion,

g

(

1

3
,
1

3

)

= 3 · 1

33
=

1

3
.

i) We get on the boundary x+ y = 1,

g(x, 1− x) = x2 + (1− x)2, x ∈ [0, 1],

with its minimum

g

(

1

2
,
1

2

)

= 2 · 1
4
=

1

2
for x =

1

2
,

and its maximum for x = 0 or x = 1, corresponding to

g(0, 1) = g(1, 0) = 1.
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ii) We also get the restriction

ϕ(x) = x2 + (1− x)2, x ∈ [0, 1],

on the boundary y = 0, and on the boundary x = 0 we get

ψ(y) = y2 + (1 − y)2, y ∈ [0, 1].

Anyone of these will lead to precisely the same investigation as above.

By comparison of these values we conclude that the minimum is

M = f(0, 0, 0) = 0,

and the maximum is

S = f(1, 0, 0) = f(0, 1, 0) = f(0, 0, 1) = 1.

The latter method is rather troublesome compared to the geometric interpretation.

Example 17.22 Prove that the function

f(x, y) = x2 + 2y2 − 2x, (x, y) ∈ R2,

has both a maximum and a minimum on the point set

A = {(x, y) | x ≥ 0, x2 + y2 ≤ 2},

and find these values.

A The second main theorem. Maximum and minimum.

D Apply the second main theorem for continuous functions. Then find the maximum and minimum.

I Since f(x, y) is real and continuous on the closed and bounded domain A, it follows from the second
main theorem for continuous functions that f has a maximum and a minimum on A. This proves
the existence. We shall in the following give two methods for the explicit determination of these
expressions.

1) Geometrical consideration. First rewrite f in the following way,

f(x, y) = x2 + 2y2 − 2x = (x− 1)2 + 2y2 − 1 = 2

{

(

x− 1√
2

)2

+ y2

}

− 1.

It follows immediately from the first rearrangement that the minimum is attained at the point
(1, 0) ∈ A of the value of the function

M = f(1, 0) = −1.

From the latter rearrangement follows that

f(x, y) = 2α2 − 1
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–2

–1

0

1

2

y

0.5 1 1.5 2 2.5 3 3.5

x

Figure 17.23: The largest possible ellipse, which intersects (touches) the domain.

is constant for every point on the ellipse of the equation

(

x− 1√
2

)2

+ y2 = α2.

Therefore, the maximum must be attained on the largest of these ellipses (characterized by
α > 0 being largest), which has points in common with A. It follows immediately from the
figure that these maximum points must be (x, y) = (0,±

√
2) on the Y axis. Hence the maximum

value is attained at these points,

S = f(0,±
√
2) = 4.

2) The standard procedure. The function is of class C∞. Therefore we shall only find the
stationary points in A◦ followed by an examination of the boundary and numerical comparisons.

a) Stationary points. The possible stationary points are the solutions of the equations

∂f

∂x
= 2(x− 1) = 0,

∂f

∂y
= 4y = 0.

It follows that (1, 0) is the only stationary point in A◦. The value of the function is here

f(1, 0) = −1.

b) Examination of the boundary.

i) The restriction on the boundary x = 0, y ∈ [−
√
2,
√
2], is

f(0, y) = 2y2,

which has its minimum f(0, 0) = 0, and its maximum

f(0,
√
2) = f(0,−

√
2) = 4.

ii) The restriction on the boundary curve x2 + y2 = 2, x ∈ [0,
√
2], is

g(x) = f(x, y) = x2 + 2y2 − 2x = 2(x2 + y2)− x2 − 2x

= 4 + 1− (x+ 1)2 = 5− (x+ 1)2,
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which has the minimum

g(
√
2) = 5− (

√
2 + 1)2 = 2− 2

√
2 = −2(

√
2− 1) > −1,

and its maximum g(0) = 4, corresponding to y = ±
√
2.

c) Numerical comparison. Summarizing, the minimum in A is

M = f(1, 0) = −1,

and the maximum is

S = f(0,
√
2) = f(0,−

√
2) = 4.
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Example 17.23 Given the function

f(x, y) = x2 + y2 + exy, (x, y) ∈ R2.

First show that f does not have a maximum in R2. Then prove the following:

1) The function f has a minimum M on the disc A = K((0, 0); 10).

2) M is smaller than 100.

3) We have the estimate f(x, y) ≥ 100 in the point set R2 \A.
Finally, check if f has a minimum in R2.

A Extrema.

D Prove that f(x, y) → +∞ for x2 + y2 → +∞. Then prove 1) – 3). Finally, argue for a minimum.

I Clearly,

(17.17) f(x, y) = x2 + y2 + exy > x2 + y2,

thus f(x, y) → +∞ for x2 + y2 → +∞. It follows that f(x, y) has no maximum in R2.

1) Since f(x, y) is continuous and A = K((0, 0); 10) is a closed and bounded set, f(x, y) has
according to the second main theorem for continuous functions a minimum value M on A.

2) Clearly, M ≤ f(0, 0) = 1 < 100.

3) If (x, y) ∈ R2 \A, then it follows directly from (17.17) that

f(x, y) > 102 = 100.

Now R2 = A ∪ (R2 \ A), and f(x, y) > 100 on the entire R2 \ A, while there are points in A, for
which f(x, y) < 100. Therefore, a possible minimum must lie in A, and since it exists according
to 1) and is equal to M , we conclude that f has the minimum M in all of R2.

Additional remark. Since f(x, y) is of class C∞, the minimum M is attained at a stationary
point. The equations of the stationary points are

(17.18)



















∂f

∂x
= 2x+ yexy = 0,

∂f

∂y
= 2y + xexy = 0,

which has only (0, 0) as a stationary point, so

M = f(0, 0) = 1.

That (0, 0) is the only stationary point follows from the following: Clearly, xy ≤ 0. We have
according to (17.18),

2x2 = −xyexy = 2y2,

so y = −x. By insertion into the former equation of (17.18) we get

0 = 2x− x exp(−x2) = x(2 − exp(−x2)).

From exp(−x2) < 2 follows that x = 0, and thus y = 0, so (0, 0) is the only stationary point. ♦
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Example 17.24 It is well-known that if a C1-function g : R → R has precisely one stationary point
x0, which is a local minimum point x0, then g has a global minimum at x0.
Show by considering

f(x, y) = x2 + y2(1 + x)3, (x, y) ∈ R2,

that no such result exists in general for functions f : R2 → R.

A Another illustration of the difference between one and several variables.

D Show that the given function f has precisely one stationary point in which there is a local minimum,
and that this minimum is not a global minimum.
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Figure 17.24: How the surface of the graph might look like for a counterexample.

I When

f(x, y) = x2 + y2(1 + x)3,

we get the following equations of the stationary points,

∂f

∂x
= 2x+ 3y2(1 + x)2 = 0,

∂f

∂y
= 2y(1 + x3) = 0.

The latter equation shows that either y = 0 or x = −1.

If we put y = 0 into the former equation, we get x = 0, so (0, 0) is a stationary point.

If x = −1, we conclude from the former equation that
∂f

∂x
= −2 �= 0.

This shows that (0, 0) is the only stationary point. The value of the function is here f(0, 0) = 0.

Clearly, the approximating polynomial of at most second degree from (0, 0) is

P2(x, y) = x2 + y2.

This structure shows that (0, 0) is a (local) minimum point.

We then get along the restriction y = 1 that

f(x, 1) = x2 + (x+ 1)3 → −∞ for x → −∞,

so f(x, y) does not have a global minimum.
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Example 17.25 Find the range of

f(x, y) = −3y + 4y2 + x2y + y3

on the open disc K((0, 0); 1), and on R2, resp.

A Ranges.

D Find the possible stationary points; examine the boundary. Apply the main theorems for continu-
ous functions.

I The function is of class C∞ in R2. Restricted to the closed disc K((0, 0); 1) we have according to
the second main theorem both a maximum and a minimum, and these are either attained at a
stationary point or on the boundary.

Since the domain is connected, it follows from the first main theorem for continuous functions that
the range is an interval.

Stationary points. The equations of the stationary points are

∂f

∂x
= 2xy = 0,

∂f

∂y
= −3 + 8y + x2 + 3y2 = 0.

If y = 0, then x = ±
√
3.

If x = 0, then 3y2 + 8y − 3 = 0, i.e. either y = −3 or y =
1

3
.

The stationary points are

(
√
3, 0), (−

√
3, 0),

(

0,
1

3

)

, (0,−3).

Of these, only

(

0,
1

3

)

belongs to the open unit disc. The value of the function is here

f

(

0,
1

3

)

= −3 · 1
3
+ 4 · 1

9
+ 0 +

1

27
= −14

27
.

Examination of the boundary. We have on the boundary x2 + y2 = 1, which can also be
written x2 = 1− y2. Hence, we get the restriction

g(y) = f(x, y)|x2+y2=1 = 4y2 − 2y

=

(

2y − 1

2

)2

− 1

4

= 4

(

y − 1

4

)2

− 1

4
, y ∈ [−1, 1].

It follows from these rearrangements that the minimum on the boundary is g

(

1

4

)

= −1

4
, and the

maximum is

g(−1) = 4

(

−5

4

)2

− 1

4
=

25

4
− 1

4
= 6.
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Since the boundary is connected, the range of the boundary is the interval

[

−1

4
, 6

]

.

The value of the function at the stationary point

(

0,
1

3

)

is smaller than the smallest value of the

function on the boundary, because

−14

27
< −1

4
.

The range is connected, and the value 6 of the function on the boundary cannot be obtained in
the interior, although we may come as close to this value as we wish. Hence

f(K((0, 0); 1)) =

[

−14

27
, 6

[

.

The range of f over R2 is of course again R. For instance, the restriction

f(0, y) = −3y + 4y2 + y3

tends towards +∞ for y → +∞, and towards −∞ for y → −∞, and by the first main theorem
the range is an interval.
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Example 17.26 When we approximate a function by an approximating polynomial based on Taylor’s
formula, the error is zero at the point of expansion, and it will usually increase with the distance form
the point of expansion. We may get different results by using other polynomials for our approximation.
One of the possibilities is to level out the error by demanding that the integral of the square of the
error should be as small as possible. As an illustration we consider the function

f(t) = cos t, −π

2
≤ t ≤ π

2
,

and a polynomial

Q(t;x, y) = x− ty2, −π

2
≤ t ≤ π

2
.

Find x and y, such that the integral

I(x, y) =

∫ π
2

−pi
2

{f(t)−Q(t;x, y)}2dt

becomes as small as possible. Then compute the error of t = ±π

2
, partly by approximation by the

found polynomial Q, and partly by using the Taylor polynomial of at most second degree P2.

A Minimizing in L2 norm.

D Compute I(x, y) and minimize. Alternatively, compute
∂I

∂x
and

∂I

∂y
directly. Compare with the

Taylor polynomial.

I Since f(t) = cos t is an even function, it is quite reasonable to approximate by a polynomial Q(t;x, y)
of even degree in t. Since f(t)−Q(t;x, y) is even in t, we get

I(x, y) =

∫ π
2

−π
2

{f(t)−Q(t;x, y)}2dt = 2

∫ π
2

0

{cos t− x+ yt2}2dt.

Clearly, I(x, y) ≥ 0 is continuous, and I(x, y) → +∞ for x2+y2 → +∞, so I(x, y) has a minimum
in R2. Now I(x, y) is of class C∞, so this minimum must be attained at a stationary point.

1) First variant. By differentiation under the sign of integration we get the equations of the
possible stationary points

∂I

∂x
= 2

∫ π
2

0

∂

∂x

{

cos t− x+ yt2
}2

dt = −4

∫

π

2

0

(cos t− x+ yt2)dt

= −4

[

sin t− xt+
1

3
yt3

]
π
3

0

= −4

(

1− π

2
x+

π3

24
y

)

= 0,

and

∂I

∂y
= 2

∫ π
2

0

∂

∂y

{

cos t− x+ yt2
}2

dt = 4

∫ π
2

0

t2(cos t− x+ yt2)dt

= 4

∫

π

2

0

(t2 cos t− xt2 + yt4)dt =
[

t2 sin t+ 2t cos t− 2 sin t− x

3
t3 +

y

5
t5
]

π
2

0

= 4

(

π2

4
− 2− π3

24
x+

π5

160
y

)

= 0.
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These are reduced to

x− π2

12
y =

2

π
and x− 3π2

20
y =

6

π3
(π2 − 8),

hence
(

3π2

20
− π2

12

)

y =
2

π
− 6

π
+

48

π3
=

4

π3
(12− π2),

and thus

y =
15

π2
· 4

π3
(12− π2) =

60

π5
(12− π2)

and accordingly

x =
π2

12
y +

2

π
=

π2

12
· 60
π5

(12− π2) +
2

π
=

1

π3
(60− 5π2) +

2

π
=

3

π2
(20− π2).

The only stationary point is

(x, y) =

(

3

π3
(20− π2),

60

π5
(12− π2)

)

,

and it must correspond to a minimum for I(x, y). Note that x > 0 and y > 0.

2) Second variant. Alternatively we compute I(x, y):

I(x, y) = 2

∫ π
2

0

{cos t− x+ yt2}2dt

= 2

∫ π
2

0

{cos2 t+x2+y2t2−2x cos t−2xyt2+2yt2 cos t}dt

= 2

[{

1

2
t+

1

2
sin t cos t

}

+ x2t+
y2

5
t5 − 2x sin t

−2

3
xyt3 + 2y{t2 sin t+ 2t cos t− 2 sin t}

]
π
2

0

= 2

[

π

4
+

π

2
x2 +

π5

160
y2 − 2x− π3

12
xy + 2y

{

π2

4
− 2

}]

= π x2 +
π5

80
y2 − π3

6
xy − 4x+ (π2 − 8)y +

π

2
.

The equations of the stationary points,

∂I

∂x
= 2π x− π3

6
y − 4 = 0,

∂I

∂y
=

π5

40
y − π3

6
x+ π2 − 8 = 0,

are identical with the equations of the first variant. The unique solution is

(x0, y0) =

(

3

π3
(20− π2),

60

π5
(12− π2)

)

≈ (0.980 162; 0.417 698),
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corresponding to a minimum for I(x, y), given approximatively by

I(x0, y0) ≈ 0.000 936.

Remark. This approximation is also called the approximation in energy over the given interval.
It is seen that this is extremely good even for a polynomial of degree two (an error of less than
1 per thousand). This is the right concept of convergence in Communication Systems and other
applications in the technical sciences. Unfortunately, most students are at this level still most
familiar with the pointwise convergence, in spite of the fact that this concept in practice often
is very awkward. It will below be demonstrated that the inaccuracy by the various pointwise
approximations are bigger than the approximation in energy. ♦

We have found the approximation

Q(t) := Q(t;x0, y0) =
3

π3
(20− π2)− 60

π5
(12− π2)t2 ≈ 0.980 162− 0.417 698t2

of cos t. The corresponding approximation by a Taylor polynomial is

P2(t) = 1− 1

2
t2.

If t = ±π

2
, then cos t = 0, and

P2

(

±π

2

)

= 1− π2

8
=

8− π2

8
≈ −0.233 701,

and

Q
(

±π

2

)

=
3

π3
(20− π2)− 60

π5
(12− π2) · π

2

4

=
1

π3
{60− 3π2 − 180 + 15π2} =

12π2 − 120

π3

=
12(π2 − 10)

π3
≈ −0.050 465.

It is seen by comparison that the approximation in energy also gives a better pointwise result than
the Taylor polynomial.

Example 17.27 Consider the function

f(x, y) = 3x3 + 6xy2 + 4y3 − 9x2, (x, y) ∈ A,

where A is given in the following way: We remove from the ellipsoidal disc given by x2+2y2−3x ≤ 0

those points which also satisfy y < −1

2
x. Sketch A and then find the maximum and the minimum of

the function.

A Maximum and minimum for a continuous function in a closed and bounded domain.

D Sketch the set A. Then refer to the second main theorem for continuous functions. Find the
stationary points and examine the boundary points.

I Clearly, f(x, y) is of class C∞, even as a function in all of R2. Hence there are no exception points.

734

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume V

735 

Examples of global and local extrema

–1

–0.5

0

0.5

1

y

0.5 1 1.5 2 2.5 3

x

Figure 17.25: The closed set A lies above the line and inside the ellipse.

We first identify the ellipsoidal disc by the following rearrangement

0 ≥ x2 + 2y2 − 3x =

{

x2 − 2 · 3
2
x+

(

3

2

)2
}

+ 2y2 −
(

3

2

)2

,

hence

(

x− 3

2

)2

+ 2y2 ≤
(

3

2

)2

,
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or in the usual normed form











x− 3

2
3

2











2

+















y
3

2
√
2















2

≤ 1.

It follows that the inequality describes a closed ellipsoidal disc of centrum

�

3

2
, 0

�

and of the half

axes a =
3

2
and b =

3

2
√
2
.

The domain A is the intersection of the closed ellipsoidal disc and the closed half plane y ≥ −1

2
x,

i.e. that part of the ellipsoidal disc which lies above the line. It follows that A is closed and
bounded.

According to the second main theorem for continuous functions, f has a maximum and a minimum
in A. Since f is of class C∞, these are among the values of the function at either the stationary
points in the interior of A or at the points of the boundary.

First note that the line y = −1

2
x intersects the ellipse in two points given by

0 = x2 + 2y2 − 3x = x2 + 2 · x
2

4
− 3x =

3

2
x2 − 3x =

3

2
x(x − 2),

hence x = 0 and x = 2, corresponding to the points (0, 0) and (2,−1).

1) Stationary points. The equations of the stationary points are

∂f

∂x
= 9x2 + 6y2 − 18x = 0,

∂f

∂y
= 12xy + 12y2 = 12(x+ y)y = 0.

The line x+ y = 0 does not intersect the interior of A, so we only get the possibility y = 0. If
we put this into the former equation we get

0 = 9x2 + 0− 18x = 9x(x− 2),

hence x = 0 or x = 2, corresponding to the stationary points (0, 0) and (2, 0). Only (2, 0) lies
in A. Then compute the value of the function at this point,

f(2, 0) = 3 · 23 + 0 + 0− 9 · 22 = 24− 36 = −12.

2) Examination of the boundary. The boundary is split into three obvious parts:

a) y = −1

2
x, for 0 ≤ x ≤ 2 and y ≤ 0,

b) y = −
�

3x− x2

2
, for 2 ≤ x ≤ 3 and y ≤ 0,

c) y = +

�

3x− x2

2
, for 0 ≤ x ≤ 3 and y ≥ 0.

736

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume V

737 

Examples of global and local extrema

Notice that if (x, y) lies on the (boundary of the) ellipse, then

f(x, y) = 3x3 + 6xy2 + 4y3 − 9x2 = 3x{x2 + 2y2 − 3x}+ 4y3 = 4y3,

which is a trick that will help us a lot in the following.

a) The restriction of f(x, y) to y = −1

2
x, 0 ≤ x ≤ 2, is

ϕ(x) = f

(

x,−1

2
x

)

= 3x3 + 6x · x
2

4
− 4 · x

3

8
− 9x2

= 3x3 +
3

2
x3 − 1

2
x3 − 9x2 = 4x3 − 9x2, for 0 ≤ x ≤ 2,

where

ϕ′(x) = 12x2 − 18x = 12x

(

x− 3

2

)

, 0 < x < 2.

In the open interval we get ϕ′(x) = 0 for x =
3

2
, corresponding to y = −3

4
, and

ϕ

(

3

2

)

= f

(

3

2
,−3

4

)

= 4 · 27
8

− 9 · 9
4
=

27

2
− 81

4
= −27

4
.

At the end points of the interval,

ϕ(0) = f(0, 0) = 0 and ϕ(2) = f(2,−1) = 4 · 8− 9 · 4 = −4.

b) On the ellipsoidal boundary of A we reduce f(x, y) to

f(x, y) = 4y3.

It follows geometrically (consider the figure) that the maximum on this part of the boundary
is

f

(

3

2
,

3

2
√
2

)

= 4 ·
(

3

2
√
2

)3

=
27

4
√
2
,

and the minimum is

f(2,−1) = −4.

c) Numerical comparison. We shall find the maximum and the minimum among the values
of the function,

f(2, 0) = −12, f

(

3

2
,−3

4

)

= −27

4
, f(0, 0) = 0,

f(2,−1) = −4, f

(

3

2
,

3

2
√
2

)

=
27

4
√
2
,

thus the maximum is

S = f

(

3

2
,

3

2
√
2

)

=
27

4
√
2
,

and the minimum is

f(2, 0) = −12.
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Example 17.28 Explain why the function given by

f(x, y) = xy2, (x, y) ∈ K((0, 0); 1),

has both a maximum and a minimum, and find these values.

A Maximum and minimum.

D A continuous function on a closed, bounded set. Find the possible stationary points and examine
the points of the boundary.

–0.4

–0.2

0.2

0.4

–1

–0.5

0.5

1

y

–1

–0.5

0.5

1

x

Figure 17.26: The graph of f(x, y) over K((0, 0); 1).

I Since f(x, y) is continuous (even of class C∞), and K(0; 1) is closed and bounded, it follows from
the second main theorem for continuous functions that f has both a maximum and a minimum in
K(0; 1). These are either attained at a stationary point or at a boundary point.

Since

∂f

∂x
= y2 and

∂f

∂y
= 2xy

are 0 for y = 0, i.e. on the X axis, the set of stationary points is [−1, 1]×{0}. The value of f(x, y)
is here trivially f(x, 0) = 0.

We use on the boundary the parametric description (x, y) = (cos t, sin t), t ∈ [0, 2π], thus the
restriction to the boundary is given by

ϕ(t) = f(cos t, sin t) = cos t · sin2 t, t ∈ [0, 2π],

with the derivative

ϕ′(t) = − sin3 t+ 2 sin t · cos3 t = sin t · (2 cos2 t− sin2 t) = sin t(3 cos2 t− 1).

This expression is 0 for t = 0, π, or for cos t = ± 1√
3
, corresponding to sin2 t =

2

3
. When we put

t = 0, π, we get the value 0 of the function.
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If we insert cos t = ± 1√
3
, sin2 t =

2

3
, we get

f(cos t, sin t) = ± 1√
3
· 2
3
,

hence

f

(

1√
3
,±

√

2

3

)

=
2

3
√
3

is the maximum value,

and

f

(

− 1√
3
,±

√

2

3

)

= − 2

3
√
3

is the minimum value.
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Example 17.29 The function f : R2 → R is given by

f(x, y) = (x2 + y2 − 1)(x2 + y2 − 4).

1) Find the set of stationary points for f .

2) Show that f has a proper extremum at (0, 0), and indicate the type of this extremum.

3) Find the largest value which is attained by f in the disc

D = {(x, y) ∈ R2 | (x − 2)2 + y2 ≤ 4}.

A Extremum.

D An alternative solution is to rewrite this problem as a 1-dimensional problem. Exploit this idea to
solve as much of the problem as possible. Then compute the problem as indicated in the text.

–2

–1

1

2

3

4

–2

–1

1

2

y

–2
–1.5

–1
–0.5

1
1.5

x

Figure 17.27: The surface z = (x2 + y2 − 1)(x2 + y2 − 4) over D.

I The problem is actually 1-dimensional, because by switching to polar coordinates,

f(x, y) = f(̺ cosϕ, ̺ sinϕ) = (̺2 − 1)(̺2 − 4) = ̺4 − 5̺2 + 4 = g(̺), ̺ ≥ 0,

and

g′(̺) = 4̺3 − 10̺ = 4̺

(

̺2 − 5

2

)

is 0 for ̺ = 0 and for ̺ = +

√

5

2
. Furthermore, g(̺) is decreasing for 0 < ̺ <

√

5

2
and increasing

for ̺ >

√

5

2
.

In particular, (0, 0) which corresponds to ̺ = 0 is a local maximum point of the value of the
function

f(0, 0) = 4.
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We get the minimum for ̺ =

√

5

2
, corresponding to the value of the function

f

(

√

5

2
cosϕ,

√

5

2
sinϕ

)

= g

(

√

5

2

)

=

(

5

2
− 1

)(

5

2
− 4

)

= −9

4
.

Since D contains both (0, 0) and (4, 0) on the X axis, cf. the figure, the maximum value is one of

–2

–1

0

1

2

y

–2 –1 1 2 3 4

x

Figure 17.28: The domain D and the zero curves x2 + y2 = 1 and x2 + y2 = 4 for f(x, y).

the values g(0) and g(4). We conclude from

f(4, 0) = g(4) = (16− 1)(16− 4) = 15 · 12 = 180 > 4 = f(0, 0),

that f(4, 0) = 180 is the maximum value in D.

Finally, the stationary points are necessarily (0, 0) and

{

(x, y)

∣

∣

∣

∣

x2 + y2 =
5

2

}

.

Then return to the very beginning, and handle the example according to the original intention.

1) The stationary points are the solutions of the equations

∂f

∂x
= 2x(x2+y2−4)+2x(x2+y2−1) = 4x

(

x2+y2− 5

2

)

= 0,

∂f

∂y
= 2y(x2+y2−4)+2y(x2+y2−1) = 4y

(

x2+y2− 5

2

)

= 0.

We conclude that the stationary points are

{

(x, y)

∣

∣

∣

∣

x2 + y2 =
5

2

}

∪ {(0, 0)}.

2) It follows from f(x, y) = g(̺) = (1 − ̺2)(4 − ̺2) that g(̺) is increasing when ̺ → 0, hence
(0, 0) is a maximum.

741

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume V

742 

Examples of global and local extrema

Alternatively,

∂2f

∂x2
= 4

(

x2 + y2 − 5

2

)

+ 8x2, r = 4 ·
(

−5

2

)

= −10,

∂2f

∂x∂y
= 8xy, s = 0,

∂2f

∂y2
= 4

(

x2 + y2 − 5

2

)

+ 8y2, t = 4 ·
(

−5

2

)

= −10,

so rt− s2 = 100 > 0, and r < 0, t < 0, corresponding to that (0, 0) is a maximum point.

3) Since

f(x, y) =

(

5

2
− 1

)(

5

2
− 4

)

= −9

4
for x2 + y2 =

5

2
,

only the examination of the boundary remains. A parametric description of the boundary curve
of D is

(x, y) = (2 + 2 cos t, 2 sin t) = 2(1 + cos t, sin t), t ∈ [0, 2π],

where

x2 + y2 = 4
(

1 + 2 cos t+ cos2 t+ sin2 t
)

= 8(1 + cos t).

The restriction h(t) to the boundary curve is given by

h(t) = f(2(1 + cos t), 2 sin t) = {8(1 + cos t)− 1}{8(1 + cos t)− 4}
= 4(7 + 8 cos t)(1 + 2 cos t) = 4(7 + 22 cos t+ 16 cos2 t),

where

h′(t) = −4 sin t(22 + 32 cos t),

which is only 0, when either t = 0 or t = π or cos t = −11

16
. We get by insertion

h(0) = f(4, 0) = 4(7 + 22 + 16) = 4 · 45 = 180,

h(π) = f(0, 0) = 4(7− 22 + 16) = 4,

and

h

(

arccos

(

−11

16

))

= 4

(

7 + 22 ·
(

−11

16

)

+ 16 ·
(

−11

16

)2
)

= 4

(

7− 2 · 11
2

16
+

112

16

)

= 4

(

7− 121

16

)

= 4

(

112− 121

16

)

= −9

4
.

A numerical comparison gives that

f(4, 0) = 180

is the maximum value in D.
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Example 17.30 Given the function

f(x, y) = xy exp
(

y − x2
)

, (x, y) ∈ R2.

1) Find the stationary points of f .

2) Explain why f has both a maximum and a minimum in

A = {(x, y) | x2 − 3 ≤ y ≤ 0},

and find the values of the function at these points.

3) Check if f has a global maximum and a global minimum in R2.

A Maximum and minimum.

D Find the stationary points and sketch A.

–0.15

–0.1

–0.05

0.05

0.1

0.15

–3
–2.5

–2
–1.5

–1
–0.5

y –1.5
–1

–0.5

0.5
1

1.5

x

Figure 17.29: The graph of f(x, y) over A.

I 1) The function is of class C∞, and the partial derivatives are

∂f

∂x
= y exp

(

y − x2
)

− 2x2y exp
(

y − x2
)

= y
(

1− 2x2
)

exp
(

y − x2
)

,

∂f

∂y
= x exp

(

y − x2
)

+ xy exp
(

y − x2
)

= x(1 + y) exp
(

y − x2
)

.

The exponential is never zero, so these two expressions are both equal to zero, if and only if

y(1− 2x2) = 0 and x(1 + y) = 0.

If x = 0, the latter equation is fulfilled, and it follows from the former equation that y = 0.

If y = −1, the latter equation is again satisfied. It follows from the former equation that

x = ± 1√
2
.

Hence the possible stationary points are

(0, 0),

(

1√
2
,−1

)

and

(

− 1√
2
,−1

)

.

Here (0, 0) lies on the boundary, so it will also enter the analysis of the boundary points.

743

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume V

744 

Examples of global and local extrema

–3

–2.5

–2

–1.5

–1

–0.5

–1.5 –1 –0.5 0.5 1 1.5
x

Figure 17.30: The domain A.

2) Since f is continuous and A is closed and bounded, it follows from the second main theorem
for continuous functions that f has a maximum and a minimum in A. These points are either
an inner stationary point or a boundary point. The inner stationary points are

(

1√
2
,−1

)

and

(

− 1√
2
,−1

)
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with the values of the function

f

(

1√
2
,−1

)

= − 1√
2
exp

(

−1− 1

2

)

= − 1√
2e3

and

f

(

− 1√
2
,−1

)

=
1√
2e3

.

On the boundary curve y = 0, −
√
3 ≤ x ≤

√
3,

f(x, 0) = 0.

On the boundary curve y = x2 − 3, −
√
3 ≤ x ≤

√
3, we have the restriction

ϕ(x) = f
(

x, x2 − 3
)

= x(x2 − 3) exp(x2 − 3− x2) = (x3 − 3x)e−3

with

ϕ′(x) = 3(x2 − 1)e−3.

We have already checked the end points x = ±
√
3, so it only remains to compute

ϕ(1) = (1 − 3)e−3 = −2e−3 and ϕ(−1) = 2e−3.

The maximum value and the minimum value are among

f

(

1√
2
,−1

)

= − 1√
2e3

, f

(

− 1√
2
,−1

)

=
1√
2e3

,

f(1,−2) = − 2

e3
, f(−1, 2) =

2

e3
,

hence

S = f

(

− 1√
2
,−1

)

=
1√
2e3

and M = f

(

1√
2
,−1

)

= − 1√
2e3

.

3) We get along the curve y = x2,

ψ(x) = f(x, x2) = x3,

which clearly has neither a maximum value nor a minimum value in R2, because the range is
all of R.
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Example 17.31 1) Sketch the set

B =
{

(x, y) ∈ R2 | x ≥ 0, 0 ≤ y ≤ 1− 2x
}

,

and explain why the function f(x, y) = xy has both a maximum S and a minimum value M on B.

2) Find S and M .

A Maximum value and minimum value.

D Solve the problem geometrically.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

–0.2 0.2 0.4 0.6

x

Figure 17.31: The domain B.

I 1) The set B is closed and bounded, and f is continuous. It follows from the second main theorem
for continuous functions that f has a maximum and a minimum on B.

2) Clearly, f(x, y) ≥ 0 on B, and the minimum value M = 0 must be attained on the axes.

Since f(x, y) = C on the hyperbola xy = C, we conclude from considering the set of curves
that the maximum value must be attained on the line y = 1−2x. Then consider the restriction

g(x) = f(x, 1− 2x) = x− 2x2, x ∈
[

0,
1

2

]

,

of f to this boundary curve. First we vet g′(x) = 1− 4x, which corresponds to a maximum for

x =
1

4
, i.e.

S = g

(

1

4

)

= f

(

1

4
,
1

2

)

=
1

8
.

Remark. An alternative way is of course to realize that (0, 0) is the only candidate of a
stationary point. Since f is 0 on the axes, only the examination of the boundary line y = 1−2x
remains, and this was done above.
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Example 17.32 Given the function

f(x, y) = 32x2y − 20x3y − xy3, (x, y) ∈ R2.

1) Find the stationary points of f .

2) Check for each of the points (1, 2), (1, 1) and (0, 0), if f has an extremum at the given point.

3) Find the range of the function f .

A Extremum.

D Follow the guidelines.

–150
–100
–50

50
100
150–3

–2
–1

1
2

3

y –1
–0.5

0.5
1

1.5
2

x

Figure 17.32: Part of the graph of f .

I 1) The stationary points are the solutions of the equations

∂f

∂x
= 64xy − 60x2y − y3 = y(64x− 60x2 − y2) = 0,

∂f

∂y
= 32x2 − 20x3 − 3xy2 = x(32x− 20x2 − 3y2) = 0.

a) If x = 0, then the latter equation is fulfilled, and we obtain y = 0 from the first, so (0, 0) is
a stationary point.

b) If y = 0, then the former equation is fulfilled, and the latter equation gives either x = 0 or

x =
8

5
. Thus we get another stationary point

(

8

5
, 0

)

.

c) If both x �= 0 and y �= 0, the equations are reduced to

y2 = 64x− 60x2 and 3y2 = 32x− 20x2.

By elimination of y,

32x− 20x2 = 3y2 = 192x− 180x2,

from which we get the necessary condition

0 = 160x2 − 160x = 160x(x− 1).
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Since x �= 0, we only get the possibility of x = 1.

If we put x = 1 into the original equations (i.e. we test our possible solution), then

y(4− y2) = 0 and 12− 3y2 = 3(4− y2) = 0,

which are both satisfies for y = ±2.

Summarizing, the stationary points are

(0, 0),

(

8

5
, 0

)

, (1, 2), (1,−2).
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2) Examination of the extrema.

a) Since (1, 1) is not a stationary point, it cannot be an extremum.

–4

–3

–2

–1

0

1

2

3

4

y

0.5 1 1.5 2

x

Figure 17.33: The function f(x, y) changes its sign, whenever one crosses either one of the axes or the
ellipse.

b) The point (0, 0) is not an extremum.

First variant. By an analysis of the sign of the function, cf. the figure,

f(x, y) = 32x2y − 20x3y − xy3 = xy
{

32x− 20x2 − y2
}

= · · ·

=
64

5
xy

{

1− 25

16

(

x− 4

5

)2

− 5

64
y2

}

,

we see that f is both positive and negative in any neighbourhood of (0, 0), and we have
no extremum.

Second variant. If we take the restriction of f(x, y) to the line y = x, it follows, that

ϕ(x) = f(x, x) = 32x3 − 21x4 = x3 (32− 21x)

is both positive and negative in any neighbourhood of (0, 0), and we cannot have an
extremum.

c) When we check (1, 2), we have many methods at hand. We shall here restrict ourselves to
two. First note that (1, 2) is in fact a stationary point, so it is possible that we have an
extremum at the point.

First variant. Approximating polynomial of at most degree two from (1, 2).
If we put

x = x1 + 1 and y = y1 + 2,
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and neglect terms of higher order than 2 in (x1, y1) (symbolized by dots), we get

f(x, y) = 32x2y − 20x3y − xy3

= 32(x1+1)2(y1+2)2−20(x1+1)3(y1+2)−(x1+1)(y1+2)3

= 32(x2
1+2x1+1)(y1+2)−20(1+3x1+3x2

1· · · )(y1+2)

−(x1+1)(8+12y1+6y21+· · · )
= 32(2+4x1+2x2

1+y1+2x1y1+· · · )−20(2+6x1+6x2
1+y1+3x1y1+· · · )

−(8+12y1+6y21+8x1+12x1y1+· · · )
= (64−40− 8)+(128−120−8)x1+(32−20−12)y1

+(64−120)x2
1+(64−60− 12)x1y1−6y21+· · ·

= 16− 56x2
1 − 8x1y1 − 6y21 + · · ·

= 16− 160

3
x2
1 − 6

(

2

3
x1 + y1

)2

+ · · · ,

proving that we have a local maximum for (x1, y1) = (0, 0), i.e. for (x, y) = (1, 2).

Second variant. The (r, s, t)-method.
First compute

∂2f

∂x2
= 64y−120xy,

∂2f

∂x∂y
= 64x−60x2−3y2,

∂2f

∂y2
= −6xy.

At the point (1, 2),

r = 128− 240 = −112, s = −8, t = 12,

hence

r < 0, t < 0 and rt > s2.

It follows by the (r, s, t)-method that there is a proper maximum at the point (1, 2).

3) The range is R.

We have e.g.

f(x, x) = 32x3 − 21x4 → −∞ for x → +∞,

and

f(x,−x) = −32x3 + 21x4 → +∞ for x → +∞,

and the rest follows from that f(x, y) is continuous.
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Example 17.33 Given the function

f(x, y) = (x+ y2) exp(−2x2), (x, y) ∈ R2.

1) Find the stationary points.

2) Explain why f has both a maximum S and a minimum M on the closed triangle with the vertices
(0,−1), (0, 1) and (2, 0); then find S and M .

3) Show that f does not have a (global) maximum in R2.

A Stationary points. Maximum and minimum.

D Follow the guidelines.

0

0.5

1
–1

–0.5

0.5

1

t

0.5

1

1.5

2

s

Figure 17.34: The graph of f over the triangle D.

I 1) The stationary points are the solutions of

∂f

∂x
= exp

(

−2x2
)

4x(x+ y2) exp
(

−2x2
)

= (1− 4x2 − 4xy2) exp(−2x2) = 0,

and

∂f

∂y
= 2y exp

(

−2x2
)

= 0.

We get from the latter equation that y = 0, which by insertion into the former one gives

1− 4x2 = 0, i.e. x = ±1

2
. The stationary points are

(

1

2
, 0

)

and

(

−1

2
, 0

)

.

From f(x, y) ≥ 0 in D and f(0, 0) = 0 with (0, 0) ∈ D follows that

M = f(0, 0) = 0.
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–1

–0.5

0

0.5

1

y

0.5 1 1.5 2

x

Figure 17.35: The domain D.

2) The triangle D is closed and bounded, and f is continuous on D. Hence, by the second main
theorem for continuous functions, both S and M exist on D. These values are either attained

at the stationary point

(

1

2
, 0

)

∈ D or on the boundary ∂D.
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When x is fixed, we see that f(x, y) is largest in D, when y = ±
(

1− x

2

)

. This excludes
(

1

2
, 0

)

, and the maximum must be attained on the line

y = ±
(

1− x

2

)

.

The restriction of f to this line is

ϕ(x) = f
(

x,±
(

1− x

2

))

=

(

1 +
x2

4

)

exp
(

−2x2
)

, x ∈ [0, 2],

with the derivative

ϕ′(x) =
x

2
exp

(

−2x2
)

− 4x

(

1 +
x2

4

)

exp
(

−2x2
)

=
x

2
exp

(

−2x2
)

· {−7− 2x2} ≤ 0, x ∈ [0, 2].

Hence the maximum value is attained for x = 0, corresponding to

S = f(0, 1) = f(0,−1) = 1.

3) Since f(0, y) = y2, it follows that f does not have a global maximum in R2.
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Example 17.34 Given the function

f(x, y) = (x+ y)2 + 2 cos(2x+ y), (x, y) ∈ R2.

1) Find the stationary points of f ; check if f has proper extrema.

2) Let A be the point set

{(x, y) ∈ R2 | 0 ≤ x ≤ π, −2x ≤ y ≤ −x}.

Prove that f has no stationary points in the interior of A.

Explain why f has both a maximum S and a minimum M on A, and find S and M .

3) Find the range f(R2) of f .

A Extrema.

D Follow the guidelines

–2

0

2

4

6

8

10

12
–6

–5
–4

–3
–2

–1

t

0.5
1

1.5
2

2.5
3

s

Figure 17.36: The graph of f the point set A.

I 1) The stationary points are the solutions of the equation ▽f = 0, i.e.

∂f

∂x
= 2(x+ y)− 4 sin(2x+ y) = 0,

∂f

∂y
= 2(x+ y)− 2 sin(2x+ y) = 0.

It follows that sin(2x+ y) = 0 and x+ y = 0, so

sin(2x+ y) = sin(x+ (x+ y)) = sinx = 0.

Accordingly, x = pπ, p ∈ Z, and y = −x. Thus the stationary points are

{(pπ,−pπ) | p ∈ Z}.

The values of the function in these points are

f(pπ,−pπ) = 2 cospπ = 2 · (−1)p =

{

2 for p even,
−2 for p odd.

754

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume V

755 

Examples of global and local extrema

The extrema are now found by the (r, s, t)-method.

From

∂2f

∂x2
= 2− 8 cos(2x+ y) = 2− 8 cos(x+ (x+ y)),

∂2f

∂x∂y
= 2− 4 cos(2x+ y) = 2− 4 cos(x+ (x+ y)),

∂2f

∂y2
= 2− 2 cos(2x+ y) = 2− 2 cos(x+ (x+ y)),

follows that

rp =
∂2f

∂x2
(pπ,−pπ) = 2− 8(−1)p =

{

−6 for p even,
10 for p odd,

sp =
∂2f

∂x∂y
(pπ,−pπ) = 2− 4(−1)p =

{

−2 for p even,
6 for p odd,

tp =
∂2f

∂y2
(pπ,−pπ) = 2− 2(−1)p =

{

0 for p even,
4 for p odd.

If p is even, then

rp = −6, tp = 0, rp · tp = 0 < (−2)2 = s2p,

and we have no extremum.

If p is odd, then

rp = 10, tp = 4, rp · tp = 40 > 36 = s2p,

and we have a proper minimum for p odd.

–6

–5

–4

–3

–2

–1

y

0.5 1 1.5 2 2.5 3
x

Figure 17.37: The domain A.
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2) It follows from the figure that (0, 0) and (π,−π) are the only stationary points in A, and they
both lie on the boundary of A.

Since f(x, y) is continuous on the closed and bounded set A, it follows from the second main
theorem for continuous functions that f(x, y) has both a maximum and a minimum in A.

As proved above, the interior A◦ does not contain any stationary point, so the maximum and
the minimum must be attained on the boundary of A.

Examination of the boundary.

a) If y = −x, 0 ≤ x ≤ π, then the restriction is

f(x,−x) = 2 cosx.

This has its maximum f(0, 0) = 2 and its minimum f(π,−π) = −2.

b) If y = −2x, 0 ≤ x ≤ π, then the restriction is

f(x,−2x) = x2 + 2 cos 0 = x2 + 2.

This has its maximum value f(π,−2π) = π2 + 2 and its minimum value f(0, 0) = 2.
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c) If x = π, −2π ≤ y ≤ −π, then the restriction is

f(π, y) = (π + y)2 + 2 cos(2π + y) = (π + y)2 + 2 cos y

with

f ′
y(π, y) = 2(π + y)− 2 sin y = 2{π + y − sin y},

f ′′
yy(π, y) = 2{1− cos y} ≥ 0,

so f ′
y(π, y) is increasing in y. From f ′

y(π,−π) = 0 follows that f ′
y(π, y) < 0 for y ∈ [−2π,−π[.

Since f(π,−π) = 0+2 cosπ = −2 and f(π,−2π) = π2+2, these two values are respectively
the minimum and the maximum.

Summarizing,

S = f(π,−2π) = π2 + 2, M = f(π,−π) = −2.

d) Clearly, f(x, 0) → +∞ for x → +∞, and f(x, y) ≥ −2, so the range is contained in[−2,+∞[.

Since

f((2n+ 1)π,−(2n+ 1)π) = −2, n ∈ Z,

and f is continuous on the connected set R2, it follows from the first main theorem of
continuous functions that the range is connected, so

f(R2) = [−2,+∞[.

Example 17.35 Given the function

f(x, y) =
4

3
x3 − xy2 + y, (x, y) ∈ R2.

1) Find the stationary points. Check for each of them if we have an extremum.

2) Find the maximum and the minimum of the function in the square A = [0, 1]× [0, 1].

A Extrema and maximum and minimum.

D Check the stationary points and the boundary points.

I 1) The stationary points are the solutions of the equations

∂f

∂x
= 4x2 − y2 = (2x− y)(2x+ y) = 0,

∂f

∂y
= −2xy + 1 = 0, i.e. 2xy = 1.
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Figure 17.38: The graph of f over A = [0, 1]× [0, 1].

a) If y = 2x, then 1 = 2xy = 4x2, hence x = ±1

2
. In this case the stationary points are

(

1

2
, 1

)

and

(

−1

2
,−1

)

.

b) If y = −2x, then 1 = 2xy = −4x2, which is not fulfilled for any real x.

Thus the stationary points are

(

1

2
, 1

)

and

(

−1

2
,−1

)

.

Search for extrema.

First method. The (r, s, t)-method. It follows from

∂2f

∂x2
= 8x,

∂2f

∂x∂y
= −2y,

∂2f

∂y2
= −2x,

that

∂2f

∂x2
· ∂

2f

∂y2
= −16x2 < 0, for x �= 0,

and we conclude that we have no extremum.

Second method. We shall find the approximating polynomial P2(x, y) of at most second
degree in the neighbourhood of the stationary points.
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a) In the neighbourhood of

(

1

2
, 1

)

we put x =
1

2
+ ξ and y = 1 + η. Then by insertion,

f(x, y) =
4

3
x3 − xy2 + y =

4

3

(

1

2
+ ξ

)3

−
(

1

2
+ ξ

)

(1 + η)2 + 1 + η

=
4

3

(

1

8
+

3

4
ξ +

3

2
ξ2 + ξ3

)

−
(

1

2
+ ξ

)

(1 + 2η + η2) + 1 + η

=
1

6
+ξ+2ξ2+

4

3
ξ3− 1

2
−η− 1

2
η2−ξ−2ξη−ξη2+1+η

=

(

1− 1

2
+

1

6

)

+ 2ξ2 − 2ξη − 1

2
η2 + · · ·

=
2

3
+ 2

(

ξ − 1

2
η

)2

− η2 + · · · ,

and we see that f(x, y) in any neighbourhood of

(

1

2
, 1

)

attains both values a value big-

ger than f

(

1

2
, 1

)

=
2

3
and values smaller than f

(

1

2
, 1

)

=
2

3
, so there is no extremum.

b) In the neighbourhood of

(

−1

2
,−1

)

we put instead x = −1

2
− ξ and y = −1− η. Then

by similar calculations as above,

f(x, y) = −2

3
− 2

(

ξ − 1

2
η

)2

+ η2 + · · · ,

and we conclude that

(

−1

2
,−1

)

is not an extremum.

2) Now f is continuous on the closed and bounded set A, hence it follows from the second main
theorem for continuous functions that f has both a maximum and a minimum in A. Since f is
of class C∞ with no extremum at the stationary points, the maximum and the minimum must
be attained at boundary points.

Examination of the boundary.

a) If y = 0 and 0 ≤ x ≤ 1, then the restriction

f(x, 0) =
4

3
x3, x ∈ [0, 1],

has its minimum f(0, 0) = 0 and its maximum f(1, 0) =
4

3
.

b) If x = 0 and 0 ≤ y ≤ 1, then the restriction

f(0, y) = y, y ∈ [0, 1],

has its minimum f(0, 0) = 0 and its maximum f(0, 1) = 1.

c) If x = 1 and 0 ≤ y ≤ 1, then the restriction

f(1, y) =
4

3
− y2 + y =

4

3
+

1

4
−
(

y − 1

2

)2

=
19

12
−
(

y − 1

2

)2

has its minimum f(1, 0) = f(1, 1) =
4

3
, and its maximum f

(

1,
1

2

)

=
19

12
.
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d) If y = 1 and 0 ≤ x ≤ 1, then the restriction is

f(x, 1) =
4

3
x3 − x+ 1,

where

f ′
x(x, 1) = 4x2 − 1 = 0 for x =

1

2
∈ [0, 1].

Hence we have the possibilities

f(0, 1) = 1, f

(

1

2
, 1

)

=
2

3
, f(1, 1) =

4

3
,

and we see that this restriction has its minimum f

(

1

2
, 1

)

=
2

3
, and its maximum

f(1, 1) =
4

3
.

Summarizing, we get by a numerical comparison that f(0, 0) = 0 is the minimum, and

f

(

1,
1

2

)

=
19

12
is the maximum in A.
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Example 17.36 Explain why the function

f(x, y) = 2y
√

x(1 − x)− y2, (x, y) ∈
[

1

4
,
3

4

]

× [0, 3],

has both a maximum S and a minimum M .
Find these values as well as the range of the function.

A Maximum and minimum.

D Use the standard method.

–6
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–3

–2

–1

0
0.5

1
1.5

2
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3

y

0.3
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0.5
0.6

0.7

x

Figure 17.39: The graph of f . Notice the different scales on the axes.

I Since f(x, y) is continuous and A is closed and bounded, it follows from the second main theorem
for continuous functions that f has both a maximum and a minimum in A. Since f is of class
C∞ in the interior of the domain, these values are either obtained at a stationary point or at a
boundary point.

The stationary points are the solutions of the equations

∂f

∂x
=

y(1− 2x)
√

x(1− x)
= 0 og

∂f

∂y
= 2

√

x(1− x) − 2y = 0.

The former equation implies the possibilities of y = 0 or x =
1

2
. If y = 0, we consider only the

boundary of A. Furthermore,
∂f

∂y
�= 0 in A on this line.

If x =
1

2
, then

∂f

∂y
= 2

√

1

2
· 1
2
− 2y = 1− 2y = 0,

thus y =
1

2
, and the stationary point is

(

1

2
,
1

2

)

∈ A. The value of the function is here

f

(

1

2
,
1

2

)

=
1

2
− 1

4
=

1

4
.
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The boundary points

1) If y = 0 and
1

4
≤ x ≤ 3

4
, then the restriction degenerates to f(x, 0) = 0.

2) If y = 3 and
1

4
≤ x ≤ 3

4
, then the restriction is given by

f(x, 3) = 6
√

x(1− x)− 9 = 6

√

1

4
−
(

x− 1

2

)2

− 9.

We get the maximum for x =
1

2
:

f

(

1

2
, 3

)

=
6

2
− 9 = −6, .

and the minimum for x =
1

4
and x =

3

4
, where

f

(

1

4
, 3

)

= f

(

3

4
, 3

)

= 6

√
3

4
− 9 =

3
√
3

2
− 9.

3) If x =
1

4
or x =

3

4
, and 0 ≤ y ≤ 3, then the restriction is

f

(

1

4
, y

)

= f

(

3

4
, y

)

= 2y

√

3

16
.y2 =

3

16
−
(

y −
√
3

4

)2

,

and we get the maximum for y =

√
3

4
:

f

(

1

4
,

√
3

4

)

= f

(

3

4
,

√
3

4

)

=
3

16
,

and the minimum for y = 3,

f

(

1

4
, 3

)

= f

(

3

4
, 3

)

= 6

√
3

4
− 9 =

3
√
3

2
− 9.

By a numerical comparison of the candidate above we conclude that the maximum is

f

(

1

2
,
1

2

)

=
1

4
,

and similarly the minimum,

f

(

1

4
, 3

)

= f

(

3

4
, 3

)

=
3
√
3

2
− 9.

Since f is continuous and the domain is connected we conclude from the first main theorem for
continuous functions that the range is

M,S] =

[

3
√
3

2
− 9,

1

4

]

.
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Example 17.37 Given the function

f(x, y) = (x+ y)2
(

8− (x2 + y2)
)

, (x, y) ∈ R2.

1) Find the set of stationary points for f .

2) Explain why f has both a maximum and a minimum in the set

A = {(x, y) ∈ R2 | x2 + y2 ≤ 9},

and find those values.

3) Check if f has a maximum and a minimum on the set

B = {(x, y) ∈ R2 | x2 + y2 < 16},

and find the range f(B).

A Stationary points; maximum and minimum.

D Use the standard method.

–10

10

20

30

–3
–2

–1

1
2

3

y

–3
–2

–1

1
2

3

x

Figure 17.40: The graph of f over the set A.

I 1) The stationary points are the solutions of the equations

∂f

∂x
= 2(x+ y)

{

8− (x2 + y2)
}

− 2x(x+ y)2

= 2(x+ y)
{

8− x2 − (x2 + xy + y2)
}

= 0

∂f

∂y
= 2(x+ y)

{

8− y2 − (x2 + xy + y2)
}

= 0.

The obvious solution is x+ y = 0. The other possibility is

x2 + (x2 + xy2) = 8 = y2 + (x2 + xy2),

so y = ±x. We have already found y = −x, so let y = x. Then 4x2 = 8, hence x = y = ±
√
2.

Summarizing, the stationary points are

{(x,−x) | x ∈ R} ∪ {(
√
2,
√
2)} ∪ {(−

√
2,−

√
2)}.
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2) The function f is continuous on the closed and bounded set A, so f has a maximum and a
minimum according to the main theorem for continuous functions. These are either attained
at singular points or at boundary points.

a) If y = −x, then f(x,−x) = 0.

b) If (x, y) = ±(
√
2,
√
2), then

f(±
√
2,±

√
2) = 8 · (8− 4) = 32

(same sign at both places).

c) If x2 + y2 = 9, then x = 3 cos t and y = 3 sin t, t ∈ [−π, π], so the restriction is

ϕ(t) = f(x(t), y(t)) = 9(cos t+sin t)2 · (8−9) = −18 sin2
(

t+
π

4

)

,

and it follows that the maximum is 0 for t = −π

4
and t =

3π

4
, while the minimum is −18

for t =
π

4
and t = −3π

4
, i.e. for

(x, y) = ±
(

3
√
2

2
,
3
√
2

2

)

.
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Figure 17.41: The graph of f over the set B.

Summarizing, the maximum is

f(±
√
2,±

√
2) = 32 (same sign at both places),

and the minimum is

f

(

±3

2

√
2,±3

2

√
2

)

= −18 (same sign at both places).

3) The set B contains the same stationary points as A. The boundary is here x2 + y2 = 42 = 16.
If we put x = 4 cos t and y = 4 sin t, we get the restriction

ϕ(t) = f(x(t), y(t)) = 16(cos t+sin t)2 · (−8) = −256 sin2
(

t+
π

4

)

.

The maximum on the boundary is 0, and the minimum is −256. The boundary is disjoint from
B, so we shall never obtain the minimum, though the maximum in B is also

f(±
√
2,±

√
2) = 32 (same sign in both cases).

The set B is connected, and f is continuous on B. It follows from the first main theorem for
continuous functions that the range is also connected. Finally, we conclude from the above
that

f(B) = ]− 256, 32].
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Example 17.38 Let B denote the triangle of the vertices

(

−1

2
, 0

)

, (1, 0) and (0, 1). Let the function

f : B → R be given by

f(x, y) = (x+ y)(2x+ y) + x, (x, y) ∈ B.

1) Explain why f has a maximum S and a minimum M .

2) Find S and M and the points in which these values are attained.

A Maximum and minimum.

D Apply the second main theorem for continuous functions; find the stationary points and check the
boundary points.
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0.2
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–0.2

0.2
0.4

0.6
0.8

1

s

Figure 17.42: The graph of f over B.
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–0.4 –0.2 0.2 0.4 0.6 0.8 1

Figure 17.43: The domain B.

I 1) Since f is a real C∞-function, and B is a closed and bounded domain, it follows from the second
main theorem for continuous functions that f has both a maximum and a minimum in B.

Since f is of class C∞, the maximum and the minimum can only be attained at either a
stationary point or on the boundary of B.
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2) The possible stationary points are the solutions of the equations

f ′
x(x, y) = 2x+ y + 2(x+ y) + 1 = 4x+ 3y + 1 = 0,

f ′
y(x, y) = 2x+ y + x+ y = 3x+ 2y = 0.

Clearly, (2,−3) is the only stationary point, and as it is in the fourth quadrant, it lies outside
B.

–3

–2

–1

1

–1 –0.5 0.5 1 1.5 2

Figure 17.44: “Analysis of the sign” by means of the stationary point (2,−3). The value of the
function is < 1 in the angular spaces over the acute angles, and the value of the function is > 1 in the
other two angular spaces.

The boundary points.

a) If y = 0, x ∈
[

−1

2
, 1

]

, then we get the restriction

f(x, 0) = x · 2x+ x = 2x2 + x = 2

(

x+
1

4

)2

− 1

8
,

and it follows that the minimum and the maximum on this part of the boundary are

f

(

−1

4
, 0

)

= −1

8
, and f(1, 0) = 3, respectively.

b) If x+ y = 1, i.e. y = 1− x, x ∈ [0, 1], then the restriction is

f(x, 1− x) = (x + 1) + x = 2x+ 1.

Clearly, the minimum and the maximum are on this part of the boundary

f(0, 1) = 1 og f(1, 0) = 3.

c) If y = 2x+ 1, x ∈
[

−1

2
, 0

]

, then we get the restriction

f(x, 2x+ 1) = 12x2 + 8x+ 1 = 12

(

x+
1

3

)2

− 1

3
,

and the minimum and the maximum on this part of the boundary are

f

(

−1

3
,+

1

3

)

= −1

3
and f(0, 1) = 1.
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Finally, by a numerical comparison,

M = f

(

−1

3
,
1

3

)

= −1

3
and S = f(1, 0) = 3.

Remark. If we translate the coordinate system to the stationary point, i.e. if we put

x1 = x− 2 og y1 = y + 3,

then

f(x, y) = f1(x1, y1) = (x1 + y1)(2x1 + y1) + 1.

A geometrical consideration shows that the minimum must be attained on the line y = 2x + 1,

x ∈
[

−1

2
, 0

]

, and the maximum on the line x+ y = 1, in accordance with the results above. ♦

768

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/BI


Real Functions in Several Variables: Volume V

769 

Examples of global and local extrema

17.5 Examples of ranges of functions

Example 17.39 Sketch the domain of the function

f(x, y) =
√

2x− x2 − y2 +
1

√

2y − x2 − y2
.

Then find the range of the function.

A Domain and range.

D First find the domain. Then find the possible stationary points and check the values of the function
on the boundary.

I The first term is defined (and ≥ 0) for

0 ≤ 2x2 − x2 − y2 = 1− (x − 1)2 − y2,

thus for

(x− 1)2 + y2 ≤ 1.

This inequality represents a closed disc of centrum (1, 0) and radius 1.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

–0.2 0.2 0.4 0.6 0.8 1 1.2

x

Figure 17.45: The domain D lies between the two circular arcs.

The second term is defined (and > 0) for

0 < 2y − x2 − y2 = 1− x2 − (y − 1)2, i.e. x2 + (y − 1)2 < 1.

This inequality describes an open disc of centrum (0, 1) and radius 1.

The domain D is the intersection of these two discs. It is neither open nor closed, because one of
the boundary curves is contained in D, while the other is not.

Notice in particular that 0 < x < 1 and 0 < y < 1 for (x, y) ∈ D.

Stationary points. The function is of class C∞ in the interior D◦ of the domain. Therefore,
there are no exception points. The equations of the possible stationary points are

0 =
∂f

∂x
=

1− x
√

2x− x2 − y2
+

x

(
√

2y − x2 − y2)3
,

0 =
∂f

∂y
= − y

√

2x− x2 − y2
− 1− y

(
√

2y − x2 − y2)3
.
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It was mentioned above that in particular 0 < x < 1 and 0 < y < 1 for (x, y) ∈ D◦, so
∂f

∂x
> 0

and
∂f

∂y
< 0 everywhere in D◦. The equations of the stationary points are not fulfilled in D◦, so

there does not exist any of them.

Clearly, f(x, y) → +∞, when (x, y) tends to any point on that arc of ∂D, which does not belong
to D. The set D is connected and f is continuous, so it follows from the first and the second main
theorem for continuous functions that f(D) = [a,+∞[, where the value a is attained at a point of
the boundary which also lies in D, i.e. in ∂D ∩D. Clearly, a is a minimum value.

The restriction of the function to ∂D ∩D is

f(x, y) = 0 +
1

�

1− x2 − (y − 1)2
, (x− 1)2 + y2 = 1, x > 0, y > 0.

This value of the function is smallest, when 1−x2−(y−1)2 is largest. This means that x2+(y−1)2,
which can be interpreted as the square of the distance from (0, 1) to (x, y) on the circular arc must
be as small as possible. A geometric consideration shows that this point lies on both the line
x+ y = 1 and on the circle (x− 1)2 + y2 = 1, as well as in the first quadrant, hence the searched
point is

(x, y) =

�

1− 1√
2
,
1√
2

�

.

The minimum value a is the value of the function at this point.

a = f

�

1− 1√
2
,
1√
2

�

=
1

�

1−
�

− 1√
2

�2

−
�

1√
2
− 1

�2

=
1

�

1− 2

�

1− 1√
2

�2
=

1
�

1− (
√
2− 1)2

=
1

�

1− 2− 1 + 2
√
2

=
1

�

2
√
2− 2

·
�

2
√
2 + 2

�

2
√
2 + 2

=

�

2
√
2 + 2

2
=

�√
2 + 1

2
.

We conclude that the range is

f(D) =

��

2
√
2 + 2

2
,+∞

�

=





�√
2 + 1

2
,+∞



 .
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Example 17.40 Let

f(x, y) = −2xy2 + 4x2 + y2 − 2x, (x, y) ∈ A.

Find the range of the function in the following cases:

1) The domain A is the closed half ellipsoidal disc given by

4x2 + y2 ≤ 1 and x ≥ 0.

2) The domain A is the open half ellipsoidal disc given by

4x2 + y2 < 1 and x > 0.

3) The domain A is the whole plane.

A Maximum and minimum; range.

D From f ∈ C∞ follows that there are no exception point. The set A is connected in all three cases
and the function is continuous, so the range is again connected, according to the first main theorem
for continuous functions, hence an interval. We can in the three cases apply the following methods:

1) Since A is closed and bounded, we can apply the second main theorem, hence the maximum
and minimum exist and they are attained at either a stationary point or at a boundary point.

2) Here A is bounded and open. The closure was treated in 1), so we can derive the range from
1).

3) In this case A is unbounded. We argue on the term of highest degree.

I The equations of the possible stationary points in the plane are

∂f

∂x
= −2y2 + 8x− 2 = 0,

∂f

∂y
= −4xy + 2y = 2y(1− 2x) = 0.

From the latter equation we get the possibilities

a) y = 0 and b) x =
1

2
.

Thus:

a) If y = 0, then
∂f

∂x
= 0 for x =

1

4
, so

(

1

4
, 0

)

is a stationary point for f .

b) If x =
1

2
, then

∂f

∂x
= −2y2 + 4 − 2 = 0 for y = ±1, so

(

1

2
, 1

)

and

(

1

2
,−1

)

are stationary

points for f .

Summarizing, the stationary points for f in the plane are
(

1

4
, 0

)

,

(

1

2
, 1

)

,

(

1

2
,−1

)

.

Of these, only the first one lies in the half ellipsoidal disc of the first two questions.
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–1

–0.5

0

0.5

1

y

–0.2 0.2 0.4 0.6

x

1) If A = {(x, y) | 4x2 + y2 ≤ 1 and x ≥ 0}, then in the stationary point of A,

f

(

1

4
, 0

)

= 0 + 4 · 1

16
+ 0− 2 · 1

4
=

1

4
− 1

2
= −1

4
.

The boundary falls naturally into two pieces:

a) If x = 0 and y ∈ [−1, 1], we get the restriction

ϕ(y) = f(0, y) = y2, y ∈ [−1, 1],

with the minimum value

ϕ(0) = f(0, 0) = 0,

772

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your 
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk


Real Functions in Several Variables: Volume V

773 

Examples of global and local extrema

and the maximum value

ϕ(1) = ϕ(−1) = f(0, 1) = f(0,−1) = 1.

b) If 4x2 + y2 = 1 and x ≥ 0, then y2 = 1− 4x2 and x ∈
[

0,
1

2

]

, so we get the restriction

ψ(x) = f(x,±
√

1− 4x2) = −2x(y2 + 1) + (4x2 + y2)

= −2x(1− 4x2 + 1) + 1 = 8x3 − 4x+ 1, x ∈
[

0,
1

2

]

,

with the derivative

ψ′(x) = 24x2 − 4 = 24

(

x2 − 1

6

)

,

which in the interval

]

0,
1

2

[

is zero for x =
1√
6
. Hence

f

(

1√
6
,
1√
3

)

= f

(

1√
6
,− 1√

3

)

= −2 · 1√
6

(

2− 4

6

)

+ 1 = 1− 8

3
√
6
< 0,

because (3
√
6)2 = 9 · 6 = 54 < 82 = 64. At the end points,

f(0,±1) = 1 and f

(

1

2
, 0

)

=
8

8
− 4

2
+ 1 = 0.

The maximum and minimum values shall be found among the value at the stationary point

f

(

1

4
, 0

)

= −1

4
,

and the values at the boundary points found above,

f(0, 0) = 0, f(0,±1) = 1, f

(

1

2
, 0

)

= 0, f

(

1√
6
,± 1√

3

)

= 1− 8

3
√
6
.

Clearly, the maximum value is

S = f(0, 1) = f(0,−1) = 1,

(both are boundary points). From

25 · 27 = 262 − 1 > 242 − 82 = 16 · 32,

follows that

25

16
>

32

27
=

64

54
,

so
√

25

16
=

5

4
>

√

64

54
=

8

3
√
6
,

773

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume V

774 

Examples of global and local extrema

and hence

f

(

1√
6
,± 1√

3

)

= 1− 8

3
√
6
> 1− 5

4
= −1

4
= f

(

1

4
, 0

)

.

This shows that the minimum value is attained at the stationary point and that the value is

M = f

(

1

4
, 0

)

= −1

4
.

The domain is connected, so it follows from the first main theorem that the range is also
connected, i.e.

f(A) =

[

−1

4
, 1

]

.

2) The closure of A was treated in 1), where the minimum value was attained at a stationary point,
in particular in an interior point, and where the maximum value is attained at a boundary point.
We therefore conclude that the range is

f(A) =

[

−1

4
, 1

[

.

3) By restriction to the line y = x,

g(x) = f(x, x) = −2x3 + 5x2 − 2x.
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For large x the expression is dominated by −2x3, and as −2x3 → −∞ for x → +∞, and
−2x3 → +∞ for x → −∞, and as the range is an interval (the first main theorem again), we
conclude that

f(A) = R.

Example 17.41 Let

f(x, y) = 3x3 + 4y3 + 6xy2 − 9x2, (x, y) ∈ A.

Find the range of the function in the following cases.

1) The domain A is the closed triangle of the vertices (0, 0), (3, 3) and

(

3,−3

2

)

. item The domain

A is the interior of the point set of 1).

2) The domain A is the whole plane.

A Maximum and minimum; range.

D From f ∈ C∞ (

R2
)

follows that there are no exception points. First find the stationary points in
the plane. Since A is connected in all three cases, it follows from the first main theorem that all
the ranges are intervals.

1) Since A is closed and bounded, and f is continuous, it follows from the second main theorem
that f has both a maximum and a minimum in A. These can only be attained at a stationary
point or at a boundary point.

2) Because A is the interior of the set of 1), we can apply the results from 1).

3) Consider e.g. the restriction of f to the line y = x.

The possible stationary points in the whole plane must satisfy the equations

∂f

∂x
= 9x2 + 6y2 − 18x = 0,

∂f

∂y
= 12y2 + 12xy = 12y(y + x) = 0.

It follows from the latter equation that either y = 0 or y = −x. We therefore get the following
possibilities:

1) If y = 0, then either x = 0 or x = 2, and the stationary points in this case are

(0, 0) and (2, 0).

2) If y = −x, then

0 = 15x2 − 18x = 15x

(

x− 6

5

)

,

which corresponds to the stationary points

(0, 0) and

(

6

5
,−6

5

)

.
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–1

1

2

3

y

0.5 1 1.5 2 2.5 3

x

Summarizing, the stationary points in the plane are

(0, 0), (2, 0),

(

6

5
,−6

5

)

.

1) It follows from the figure that (2, 0) is the only stationary point in A. The value is here

f(2, 0) = 3 · 8− 9 · 4 = −12.

The boundary.

a) The restriction to y = x is

g1(x) = f(x, x) = 13x3 − 9x2, x ∈ [0, 3],

with the derivative

g′1(x) = 39x2 − 18 = 0 for x = +

√

6

13
∈ [0, 3].

The candidates are

f

(

√

6

13
,

√

6

13

)

= 13

√

6

13
· 6

13
− 9 · 6

13
=

6

13
(
√
6 · 13− 9) < 0,

because
√
6 · 13− 9 =

√
78− 9 <

√
81− 9 = 0, and

f(0, 0) = 0, f(3, 3) = 13 · 27− 81 = 270.

b) The restriction to x = 3 is

g2(y) = 81 + 41y3 + 18y2 − 81 = 4y3 + 18y2

for y ∈
[

−3

2
, 3

]

, with the derivative

g′2(y) = 12y2 + 36y = 12y(y + 3) = 0 for y = 0 ∈
[

−3

2
, 3

]

.
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The candidates are

f

(

3,−3

2

)

= 4

(

−3

2

)3

+ 18

(

3

2

)2

= −4 · 27
8

+ 18 · 9
4
=

54

2
= 27,

f(3, 0) = 0 and f(3, 3) = 270.

c) The restriction to y = −1

2
x is

g3(x) = 3x3 + 4

(

−1

2
x

)3

+ 6x

(

−1

2
x

)2

− 9x2

= 3x3 − 1

2
x3 +

3

2
x3 − 9x2

= 4x3 − 9x2 for x ∈ [0, 3],

with the derivative

g′3(x) = 12x2 − 18x = 12x

(

x− 3

2

)

= 0

for (x = 0 and) x =
3

2
∈ [0, 3]. The candidates are

f

(

3

2
,−3

4

)

= 4

(

3

2

)3

− 9

(

3

2

)2

=
4 · 27
8

− 81

4
= −27

4
,

f(0, 0) = 0 and f

(

3,−3

2

)

= 27.

Summarizing, all the candidates are

f(2, 0) = −12,

(the stationary point), and

f

(

√

6

13
,

√

6

13

)

= 6

√

6

13
− 54

13
, f(3, 0) = 0, f

(

3

2
,−3

4

)

= −27

4
,

f(0, 0) = 0, f(3, 3) = 270, f

(

3,−3

2

)

= 27,

(at boundary points).

By a numerical comparison we find the minimum value at a stationary point

M = f(2, 0) = −12,

and the maximum value at a boundary point,

S = f(3, 3) = 270.

It follows from the first main theorem that the range is the interval

f(A) = [−12, 270].
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2) When we remove the boundary of 1), we also remove the maximum value from the range.
However, due to the continuity we can in A obtain values as close to 270 as we wish, so the
range becomes

f(A) = [−12, 270[.

3) The restriction to the line y = x is

g(x) = 13x3 − 9x2 = x2(13x− 9), x ∈ R.

The range is clearly

f(A) = R.
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Example 17.42 Let

f(x, y) = x+ y +
√

|4x| − x2 − y2 − 3, (x, y) ∈ A.

1) Find the domain of the function.

2) Find the range f(A).

A Domain and range.

D Sketch the set A. Consider the two main theorems of continuous functions.

–1

–0.5

0

0.5

1

y

–3 –2 –1 1 2 3

x

I 1) It follows from the rearrangement

f(x, y) = x+ y +
√

|4x| − x2 − y2 − 3 = x+ y +
√

1− (|x| − 2)2 − y2

that the domain of f is the union of two closed discs,

A = K((2, 0); 1) ∪K((−2, 0); 1).

This set is closed and bounded, but not connected, so we can only apply the second main theo-
rem. We conclude that f has a maximum and a minimum of both of its connected components.

2) The investigation is now split into the two cases of x > 0 and x < 0.

a) If x > 0, then

f(x, y) = x+ y +
√

1− (x− 2)2 − y2, (x − 2)2 + y2 ≤ 1.

The equations of the stationary points are

∂f

∂x
= 1− x− 2

√

1− (x− 2)2 − y2
= 0,

∂f

∂y
= 1− y

√

1− (x− 2)2 − y2
= 0,

hence

y = x− 2 =
√

1− (x− 2)2 − y2,

so y ≥ 0 (and x ≥ 2), and y =
√

1− 2y2, thus

1− 2y2 = y2, or y = +
1√
3
> 0,

779

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume V

780 

Examples of global and local extrema

and x = 2 +
1√
3
.

In this connected component, the only stationary point is

(

2 +
1√
3
,
1√
3

)

, corresponding

to the value

f

(

2 +
1√
3
,
1√
3

)

= 2 +
2√
3
+

√

1− 2

3
= 2 +

3√
3
= 2 +

√
3.

The square root is 0 on the boundary, so we shall only find the maximum and the minimum
of x+ y on the boundary. A geometric analysis shows that the points must lie on the line
y = x− 2. The radius of the circle is 1, so we get the points

(

2− 1√
2
,− 1√

2

)

and

(

2 +
1√
2
,
1√
2

)

,

corresponding to the values

f

(

2− 1√
2
,− 1√

2

)

= 2− 2√
2
= 2−

√
2 and f

(

2 +
1√
2
,
1√
2

)

= 2 +
√
2.

It follows by a numerical comparison of

f

(

2 +
1√
3
,
1√
3

)

= 2 +
√
3, f

(

2− 1√
2
,− 1√

2

)

= 2−
√
2,

f

(

2 +
1√
2
,
1√
2

)

= 2 +
√
2,

that the range is

[2−
√
2, 2 +

√
3].

Alternatively the boundary is described by

x = 2 + cos θ, y = sin θ, θ ∈ [0, 2π],

so the restriction becomes

g1(θ) = x+ y + 0 = 2 + cos θ + sin θ

with the derivative

g′1(θ) = − sin θ + cos θ = −
√
2 sin

(

θ − π

4

)

,

which is 0 for θ =
π

4
or for θ =

5π

4
. This gives us the candidates

f

(

2 +
1√
2
,
1√
2

)

= 2 +
√
2 for θ =

π

4
,

f

(

2− 1√
2
,− 1√

2

)

= 2−
√
2 for θ =

5π

4
,

and formally (though not in reality)

g1(0) = g1(2π) = f(3, 0) = 3 (< 2 +
√
2) for θ = 0 and θ = 2π.

The range of the connected subregion is

[2−
√
2, 2 +

√
3].
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3) If x < 0, then

f(x, y) = x+ y +
√

1− (x+ 2)2 − y2, (x+ 2)2 + y2 ≤ 1,

and the equations of the stationary points are

∂f

∂x
= 1− x+ 2

√

1− (x+ 2)2 − y2
= 0,

∂f

∂y
= 1− y

√

1− (x+ 2)2 − y2
= 0.

The possible stationary points satisfy

y = x+ 2 =
√

1− (x+ 2)2 − y2 ≥ 0,

thus as before

y = +
1√
3

and x = −2 +
1√
3
,

corresponding to the value

f

(

−2 +
1√
3
,
1√
3

)

= −2 +
2√
3
+

√

1− 2

3
= −2 +

√
3.

The investigation of the boundary is similar the the previous one (we have again two variants),
so we find the candidates

(

−2− 1√
2
,− 1√

2

)

and

(

−2 +
1√
2
,
1√
3

)

of the corresponding values of the function

f

(

−2− 1√
2
,− 1√

2

)

= −2−
√
2 and f

(

−2 +
1√
2
,
1√
2

)

= −2 +
√
2.

We conclude by a numerical comparison that the maximum and the minimum values on this
connected component are

S = f

(

−2 +
1√
3
,
1√
3

)

= −2 +
√
3

and

M = f

(

−2− 1√
2
,− 1√

2

)

= −2−
√
2,

corresponding to the subinterval

[−2−
√
2,−2 +

√
3].

Summarizing, the range becomes

f(A) = [−2−
√
2,−2 +

√
3] ∪ [2−

√
2, 2 +

√
3],

which is the union of two closed intervals with no points in common.
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Example 17.43 Find the range of the function

f(x, y, z) = xy + z2, x2 + y2 + z2 ≤ a2.

A the range of a polynomial in three variables over a closed ball, i.e. a closed and bounded and
connected set.

D According to the second main theorem, f has a maximum value S and a minimum value M on
this set. Then the first main theorem implies that the range is connected, hence the interval
[M,S]. The maximum and the minimum values are either attained at a stationary point or
at a boundary point, because a polynomial does not have exceptional points. Therefore, find the
possible stationary points, and the examine the behaviour of the function on the boundary. Finally,
make a numerical comparison.

I The equations of the possible stationary points are

∂f

∂x
= y = 0,

∂f

∂y
= x = 0,

∂f

∂z
= 2z = 0.

Clearly, (0, 0, 0) is the only stationary point, and the value is here f(0, 0, 0) = 0.

We shall use spherical coordinates by the examination of the boundary,







x = a sin θ cosϕ,
y = a sin θ sinϕ,
z = a cos θ,

where θ ∈ [0, π] and ϕ ∈ [0, 2π].
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By insertion we get the following restriction to the boundary

f(x, y, z) = xy + z2 = a2 sin2 θ cosϕ sinϕ+ a cos2 θ

=
a2

2

{

sin2 θ sin 2ϕ+ 2 cos2 θ
}

=
a2

2

{

2 + sin2 θ(sin 2ϕ− 2)
}

.

These rearrangements show that f(x, y, z) is largest on the boundary (the sphere), when sin2 θ = 0,
and the corresponding maximum value is

S =
a2

2
{2 + 0} = a2 (> 0).

Furthermore, f(x, y, z) is smallest on the boundary (the sphere), when sin2 θ = 1 and sin 2ϕ = −1,
which corresponds to the minimum value

M =
a2

2
{2 + 1 · (−1− 2)} = −a2

2
.

Since the ball is connected and the function is continuous, it follows from the first main theorem
that the range is

f(A) =

[

−a2

2
, a2

]

.

Remark. Since we shall not explicitly indicate where the maximum and the minimum values are
attained, we shall only argue instead of doing some heavy computations.. ♦

Example 17.44 Given the function

f(x, y, z) =
√
x+

√
y +

√
z +

√

2− x− y − z, (x, y, z) ∈ A.

1) Find the domain A and sketch it.

2) Explain why the function has both a maximum value S and a minimum value M .

3) Find S and M and the points in which they are attained.

4) Find the range f(A) of the function.

A Domain, maximum and minimum and range.

D Use the standard methods and some symmetry arguments.

I 1) The function is defined (and continuous) for x ≥ 0, y ≥ 0, z ≥ 0 and x + y + z ≤ 2, i.e. in the
closed tetrahedron

A = {(x, y, z) | 0 ≤ x ≤ 2, 0 ≤ y ≤ 2− x, 0 ≤ z ≤ 2− x− y}

shown on the figure.
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0
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Figure 17.46: The domain A.

2) Since A is closed and bounded, and f is continuous on A, it follows from the second main
theorem for continuous functions that f has both a maximum and a minimum on A.

Since f is of class C∞ in the interior of A, there are no exception points, so the maximum and
the minimum lie either in the interior stationary points or on the boundary.

Since A is connected, also f(A) is connected, due to the first main theorem for continuous
functions, and the range is the interval

f(A) = [M,S],

cf. 4).

3) The equations of the possible stationary points in the interior or A are

∂f

∂x
=

1

2

1√
x
− 1

2

1√
2− x− y − z

= 0,

∂f

∂y
=

1

2

1√
y
− 1

2

1√
2− x− y − z

= 0.

∂f

∂z
=

1

2

1√
z
− 1

2

1√
2− x− y − z

= 0.

Since x, y, z > 0 and x+ y + z < 2 in the interior of A we get

x = y = z = 2− x− y − z (−2− 3x),

thus x = y = z =
1

2
> 0. The only stationary point in the interior of A is

(

1

2
,
1

2
,
1

2

)

, which

we intuitively could expect from the symmetry. The value of the function at this stationary
point is

f

(

1

2
,
1

2
,
1

2

)

= 4

√

1

2
= 2

√
2.
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The boundary.

a) First consider the boundary surface B, which also lies in the (X,Y )-plane, i.e. where z = 0.
The restriction is given by

ϕ(x, y) = f(x, y, 0) =
√
x+

√
y +

√

2− x− y, (x, y) ∈ B,

where

B = {(x, y) | 0 ≤ x ≤ 2, 0 ≤ y ≤ 2− x}.

This restriction ϕ is of class C∞ in the interior of B, so it has a maximum and a minimum

0

0.5

1

1.5

2

y

0.5 1 1.5 2

x

Figure 17.47: The part of the boundary B in the (X,Y )-plane.

in B according to the second main theorem. It follows from the conditions of a (restricted)
stationary point

∂ϕ

∂x
=

1

2

1√
x
− 1

2

1√
2− x− y

= 0,

∂ϕ

∂y
=

1

2

1√
y
− 1

2

1√
2− x− y

= 0,

that

0 < x = y = 2− x− y (= 2− 2x),

hence x = y =
2

3
, which corresponds to

ϕ

(

2

3
,
2

3

)

= f

(

2

3
,
2

3
, 0

)

= 3

√

2

3
=

√
6.

This is the “stationary point” on the part of the boundary in the (X,Y )-plane.

There is a similar “examination of the boundary” connected with this part of the boundary.
If e.g. y = 0, we get the restriction

ψ(x) = ϕ(x, 0) = f(x, 0, 0) =
√
x+

√
2− x, x ∈ [0, 2].

785

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume V

786 

Examples of global and local extrema

Using the symmetry we get ψ′(x) = 0 for x = 1, which corresponds to the candidate

ψ(1) = ϕ(1, 0) = f(1, 0, 0) = 2.

If instead x = 0, then similarly,

f(0, 1, 0) = 2.

The remaining boundary curve of the surface in the (X,Y )-plane lies on the line x+ y = 2,
so the restriction becomes

η(x) = ϕ(x, 2 − x) =
√
x+

√
2− x, x ∈ [0, 2],

which is identical with ψ(x) from above. Therefore we get the candidate

η(1) = ϕ(1, 1) = f(1, 1, 0) = 2.

b) It follows by the symmetry that we have analogous results in those parts of the boundary
surface which lie in the planes y = 0 and x = 0, respectively. We see that we have at the
same time examined the boundary curves of the remaining oblique part of the boundary
surface, so we are only missing the investigation of the “interior” of this remaining part of
the boundary surface.

c) The restriction to the “interior” of the oblique boundary surface lying in the plane z =
2− x− y is given by

Θ(x, y) = f(x, y, 2− x− y) =
√
x+

√
y +

√

2− x− y,
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where the domain of the parameter is the domain B in the (X,Y )-plane. Since we formally
have Θ(x, y) = ϕ(x, y) over the same domain, we can reuse the results from ϕ, hence the

interesting point is

(

2

3
,
2

3

)

. The value of the function is here

Θ

(

2

3

2

3

)

= f

(

2

3
,
2

3
,
2

3

)

= ϕ

(

2

3
,
2

3

)

=
√
6.

The conclusion is that we have the following candidates of S and M :

Stationary point:

f

(

1

2
,
1

2
,
1

2

)

= 2
√
2 (=

√
8).

Interior point on the boundary surfaces in x = 0, y = 0, z = 0, respectively:

f

(

0,
2

3
,
2

3

)

= f

(

2

3
, 0 ,

2

3

)

= f

(

2

3
,
2

3
, 0

)

=
√
6.

Interior point of the oblique part of the boundary surface lying in x+ y + z = 2:

f

(

2

3
,
2

3
,
2

3

)

=
√
6.

Interior points on the edges lying on one of the axes:

f(1, 0, 0) = f(0, 1, 0) = f(0, 0, 1) = 2 (=
√
4).

Interior points lying on one of the oblique edges:

f(1, 1, 0) = f(1, 0, 1) = f(0, 1, 1) = 2 (=
√
4).

The corners:

f(0, 0, 0) = f(2, 0, 0) = f(0, 2, 0) = f(0, 0, 2) =
√
2.

It follows by a numerical comparison that the maximum value is

S = f

(

1

2
,
1

2
,
1

2

)

= 2
√
2,

and the minimum value is

M = f(0, 0, 0) = f(2, 0, 0) = f(0, 2, 0) = f(0, 0, 2) =
√
2.

Remark. Note that the examination of the boundary which is here given in all details may
be quite large. In some cases one could have made a shortcut, but for pedagogical reasons we
have here only skipped trivial arguments of symmetry. ♦

4) Since A is connected and f is continuous, it follows from the first main theorem for continuous
functions that the range is the interval

f(A) = [
√
2, 2

√
2].
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Example 17.45 Given the function

f(x, y) = exp
(

−x4 − y2
)

, (x, y) ∈ R2.

1) Show without differentiating that f has a proper maximum at (0, 0).

2) Find the range of the function.

3) Show that f has both a maximum and a minimum on the set

A =
{

(x, y) ∈ R2 | 2x2 + y2 ≤ 6
}

,

and find these values.

A Maximum and minimum without differentiating.

D Analyze f(x, y).

–2

–1

0

1

2

y

–2 –1 1 2

x

Figure 17.48: The domain A.

I 1) Clearly, x4 + y2 ≥ 0, and we have only equality at (0, 0). Since exp is strictly increasing, f must
have a proper maximum at (0, 0) where f(0, 0) = 1.

2) Since x4 + y2 → +∞ for x2 + y2 → +∞, and since exp is strictly increasing and continuous
where

exp
(

−
(

x4 + y2
))

→ 0 for x2 + y2 → +∞,

it follows that the range is ]0, 1].

3) Since A is a closed ellipsoidal disc (in particular a closed and bounded set), and since f is
continuous, it follows from the second main theorem for continuous functions that f has both a
maximum value and a minimum value on A. From (0, 0) ∈ A and 1) follow that the maximum
value is

S = f(0, 0) = 1.

Clearly, f is constant on the curves

x4 + y2 = C ≥ 0

788
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of the value f(x, y) = e−C . We shall therefore only find the largest C, for which we can find an
(x, y) on the curve, also lying in A. Clearly, such a point (x, y) must lie in ∂A, so y2 = 6− 2x2.
Hence, the constant C is the maximum value of the function

ϕ(x) = x4 + y2 = x4 − 2x2 + 6 =
(

x2 − 1
)2

+ 5 for x ∈ [−
√
3,
√
3].

If we put t = x2 ∈ [0, 3], it follows that we shall find the maximum value of

ψ(t) = (t− 1)2 + 5, t ∈ [0, 3].

The only possibilities are t = 0, t = 1 and t = 3. We get by insertion

ψ(0) = 5, ψ(1) = 5,

and

ψ(3) = ϕ(±
√
3) = 4 + 5 = 9 = C,

and we conclude that the minimum value of f is

f(±
√
3, 0) = e−9.

Example 17.46 1) Find the domain A of the function

f(x, y) =
√
x+

√
y +

√

2− x− y,

and sketch A.

2) Explain why f has both a maximum value and a minimum value on A.

3) Then find the maximum value and the minimum value of f as well as the points in which they are
attained.

4) Finally, find the range f(A).

A Domain; maximum and minimum; range.

D Standard example.

I 1) The function is defined when

x ≥ 0, y ≥ 0 and x+ y ≤ 2,

i.e. in the closed triangle A with the corners (0, 0), (2, 0) and (0, 2).

2) Since A is closed and bounded, and f is continuous in A, it follows from the second main
theorem for continuous functions that f has both a maximum and a minimum in A.

3) Since f ∈ C1 in the interior of A, the maximum and the minimum can only be attained at
either a stationary point in A◦ or in a point on the boundary ∂A.

The stationary points shall satisfy the equations

∂f

∂x
=

1

2

1√
x
− 1

2

1√
2−x−y

= 0,
∂f

∂y
=

1

2

1√
y
− 1

2

1√
2−x−y

= 0,
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0

0.5

1

1.5

2

y

0.5 1 1.5 2

x

Figure 17.49: The domain A.

hence
√
x =

√
y =

√
2− x− y, i.e. x = y = 2− 2x, and the only stationary point is

(x, y) =

(

2

3
,
2

3

)

.

The value of the function is here

f

(

2

3
,
2

3

)

= 3

√

2

3
=

√
6.

Remark. Since we shall only find the maximum and the minimum on a closed and bounded
set, a numerical comparison is sufficient, and we do not have to go through an elaborated
examination of extrema. ♦
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The boundary:

a) We get on the boundary curve y = 0, x ∈ [0, 2], the restriction

ϕ(x) = f(x, 0) =
√
x+

√
2− x,

which for symmetric reasons has its maximum for x = 1 and its minimum for x = 0 and
x = 2.

Alternatively,

ϕ′(x) =
1

2

1√
x
− 1

2

1√
2− x

= 0 for x = 1.

the interesting values are

f(0, 0) = f(2, 0) =
√
2 and f(1, 0) = 2.

b) By interchanging the letters (x, y) → (y, x) we get on the boundary curve x = 0, y ∈ [0, 2]
the same function as above. Hence the candidates are

f(0, 0) = f(0, 2) =
√
2 and f(0, 1) = 2.

c) We get on the boundary curve y = 2− x, x ∈ [0, 2] the restriction

ψ(x) = f(x, 2− x) =
√
x+

√
2− x = ϕ(x),

cf. above, so the candidates are

f(0, 2) = f(2, 0) =
√
2 and f(1, 1) = 2.

All things considered, we have found the candidates

f

(

2

3
,
2

3

)

=
√
6, (stationary point),

f(1, 0) = f(0, 1) = f(1, 1) = 2,

f(0, 0) = f(2, 0) = f(0, 2) =
√
2.

Thence by comparison, the minimum value is

M = f(0, 0) = f(2, 0) = f(0, 2)
√
2,

and the maximum value is

S = f

(

2

3
,
2

3

)

=
√
6.

4) Since f is continuous and the triangle A is connected, it follows from the first main theorem for
continuous functions that the range f(A) is also connected, hence an interval. Then it follows
from 3) that

f(A) = [M,S] = [
√
2,
√
6].
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Example 17.47 The function f : A → R is given by

f(x, y) =
√

2− x− y, A = {(x, y) ∈ R2 | −2 ≤ x ≤ 1, x2 ≤ y ≤ 2− x}.

1) Explain why f has both a maximum value S and a minimum value M .

2) Find S and M and the range f(A) of the function.

A Maximum and minimum and range.

D Apply the standard methods.

1

2

3

4

–2 –1.5 –1 –0.5 0.5 1

Figure 17.50: The domain A.

I 1) The domain A is indicated on the figure. Clearly, A is closed and bounded.

It follows that f is defined and continuous for y ≤ 2 − x, thus in particular in A. It follows
from the second main theorem for continuous functions that f has both a maximum value S
and a minimum value M on A. Since f is of class C∞ in the interior of A, these values are
either attained at an inner stationary point or on the boundary.

0

0.5

1

1.5

1

2

3

4

t

–2
–1.5

–1

0.5
1

s

Figure 17.51: The graph of f over A.
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2) We get in the interior of A,

∂f

∂x
= −1

2

1√
2− x− y

,
∂f

∂y
= −1

2

1√
2− x− y

.

These equations are never 0 in the interior of A, so f has no stationary points. We conclude
that S and M are attained at boundary points.

a) When y = 2−x, the restriction is f(x, 2−x) = 0. As f(x, y) ≥ 0, this must be the minimum
value M = 0.

b) When y = x2, the restriction is

f(x, x2) =
√

2− x− x2 =

√

2 +
1

4
−
(

x2 + x+
1

4

)

=

√

(

3

2

)2

−
(

x+
1

2

)2

, x ∈ [−2, 1].

It follows immediately that the maximum value is obtained for x = −1

2
, i.e.

S = f

(

−1

2
,
1

4

)

=
3

2
and M = f(x, 2 − x) = 0.

Since A is connected, it follows from the first main theorem for continuous functions that
the range is

f(A) = [M,S] =

[

0,
3

2

]

.
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Example 17.48 1) Sketch the set

A = {(x, y) ∈ R2 | x2 + y2 ≤ 2 and y ≤ 0};

Indicate in particular the boundary ∂A on the figure. Explain why A is bounded and closed.

2) Explain why

f(x, y) = (x+ y)
√

2− x2 − y2, (x, y) ∈ A,

has a minimum value M and a maximum value S. Find these values as well as the points where
they are attained.

3) Finally, explain why the range f(A) of the function is an interval, and find f(A).

A Maximum and minimum. The first and second main theorems for continuous functions.

D Use the standard methods.

–1.6

–1.4

–1.2

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

y

–1.5 –1 –0.5 0.5 1 1.5
x

Figure 17.52: The point set A is the closed half disc in the lower half plane of centrum (0, 0) and
radius

√
2.

I 1) The point set A is the intersection of the closed disc of centrum (0, 0) and radius
√
2, and the

closed lower half plain. An intersection of two closed sets is also closed, so A is closed. Since
A is contained in a disc of finite radius, A is bounded.

2) The function

f(x, y) = (x+ y)
√

2− x2 − y2

is defined and continuous on A.

Since A is closed and bounded and f is continuous, it follows from the second main theorem
for continuous functions that f has a minimum value M and a maximum value S on A.

Since f is of class C∞ in the interior of A, the values S and M can only be attained at an
interior stationary point in A◦ or on the boundary ∂A.
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–1.6

–1.4

–1.2

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

y

–1.5 –1 –0.5 0.5 1 1.5
x

Figure 17.53: The zero lines of the function f(x, y) in A. There are the union of the half circle and
the oblique line y = −x. The function is negative to the left of this oblique line, and positive to the
right of it.

When we examine the sign of f we see that f can be both positive and negative. When we
specify S and M , we can exclude the zero curves, i.e. that part of the boundary which lies on
the circular arc, as well as the points of A, which lie on the line y = −x.

In particular, the examination of the boundary is reduced to the segment y = 0, x ∈ [−
√
2,
√
2],

on the X-axis, where we also can exclude the end points because the value is here 0. The
restriction of f to this part of the boundary is

ϕ(x) = f(x, 0) = x
�

2− x2, x ∈ [−
√
2,
√
2],

with the derivative

ϕ′(x) =
�

2− x2 − x2

√
2− x2

=
2(1− x2)√

2− x2
, for x ∈ ]−

√
2,
√
2[.

It follows that ϕ′(x) = 0 for x = ±1. Hence, on the boundary we get the following candidates
of S and M (because we have already excluded the end points and the circular arc),

f(1, 0) = 1 og f(−1, 0) = −1.

The possible candidates of the stationary points in the interior of A (i.e. where 2−x2 − y2 > 0
and y < 0) are the solutions of the equations























∂f

∂x
=

�

2− x2 − y2 − x(x + y)
�

2− x2 − y2
=

2− 2x2 − xy − y2
�

2− x2 − y2
= 0,

∂f

∂y
=

1− x2 − xy − 2y2
�

s− x2 − y2
= 0,

which are reduced in the interior of A to

(17.19)







2x2 + xy + y2 = 2,

x2 + xy + 2y2 = 2.
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Thus y2 = x2, i.e. either y = x or y = −x. By the analysis of the sign of f , neither of the
stationary points on y = −x can be a maximum or a minimum (the value of the function is
here zero). In the chase of the candidates the investigation is now reduced to the line segment
y = x, x ∈ ] − 1, 0[, (because y ≤ 0). Then we get by insertion into either of the equations of
(17.19) that

2 = 2x2 + xy + y2 = 4x2,

hence x = y = − 1√
2
. We note again that f may have stationary points on y = −x, but these are

of no importance because the only relevant stationary point is

(

− 1√
2
,− 1√

2

)

, corresponding

to the value of the function

f

(

− 1√
2
,− 1√

2

)

= −
√
2.

We have now found three candidates of M and S:

f

(

− 1√
2
,− 1√

2

)

= −
√
2, f(−1, 0) = −1, f(1, 0) = 1.

It follows by a numerical comparison that

M = f

(

− 1√
2
,− 1√

2

)

= −
√
2 and S = f(1, 0) = 1.

3) Since A is convex, A is in particular connected. Since f is continuous in A, it follows from the
first main theorem for continuous functions that the range (here a subset of R) is connected,
hence an interval. Now f has according to 2) a minimum and a maximum, so we finally get

f(A) = [M,S] = [−
√
2, 1].
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Example 17.49 Let

A = {(x, y) ∈ R2 | x2 − 1 ≤ y ≤ 3},

and consider the function f : A → R given by

f(x, y) = 1− x2 − y + 2x2y, (x, y) ∈ A.

1) Sketch A, and explain why the function f has both a maximum value S and a minimum value M .

2) Find the stationary points of the function f .

3) Find S and M .

4) Find the range f(A) of the function.

A Maximum and minimum and range of a function.

D Standard example.

–1

1

2

3

y

–2 –1 1 2

x

Figure 17.54: The domain A.

I 1) The set A is closed and bounded, and the polynomial f is continuous on A. It follows from
the second main theorem for continuous functions that f has both a maximum value S and a
minimum value M on A. Since f is of class C∞ in the interior of A, the values S and M are
either attained at a stationary point or at a boundary point.

2) The equations of the stationary points are



















∂f

∂x
= −2x+ 4xy = 0, i.e. 4x

�

y − 1

2

�

= 0,

∂f

∂y
= −1 + 2x2 = 0, i.e. x2 =

1

2
.

We get from the latter equation that x = ± 1√
2
, which put into the first equation gives y =

1

2
.

Hence, the stationary points are
�

− 1√
2
,
1

2

�

and

�

1√
2
,
1

2

�

,
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and we note that they both lie in the interior of A:

x2 − 1 = −1

2
< y =

1

2
< 3.

5

10

15

–1

1

2

3

t

–2

–1

1

2

s

Figure 17.55: The graph of f over A.
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3) The values at the stationary points are

f

(

± 1√
2
,
1

2

)

= 1− 1

2
− 1

2
+ 2 · 1

2
· 1
2
=

1

2
.

The boundary.

a) By restriction to the line segment y = 3, x ∈ [−2, 2],

ϕ(x) = f(x, 3) = 1− x2 − 3 + 6x2 = 5x2 − 2,

which clearly is smallest when x = 0, and largest when x = ±2. We get the candidates

f(0, 3) = −2 and f(±2, 3) = 18.

b) Considering the restriction to the parabolic arc we have two alternatives:

i) By the restriction to y = x2 − 1, x ∈ [−2, 2], we get

ψ(x) = f(x, x2−1) = 2(1−x2) + 2x2(x2−1) = 2(x2 − 1)2,

which is smallest when x2 = 1, and largest when x2 = (±2)2.The candidates are

f(±1, 0) = 1− 1 = 0 and f(±2, 3) = 18.

ii) Alternatively, x2 = y + 1, y ∈ [−1, 3], so

η(y) = −2y + 2(y + 1)y = 2y2, y ∈ [−1, 3],

which is smallest for y = 0, and largest for y = 3, corresponding to

f(±1, 0) = 0 and f(±2, 3) = 18.

Then by a numerical comparison of the candidates,

SP: f

(

± 1√
2
,
1

2

)

=
1

2
,

a) f(0, 3) = −2 and f(±2, 3) = 18,

b) f(±1, 0) = 0 and f(±2, 3) = 18,

we finally get

S = f(±2, 3) = 18 and M = f(0, 3) = −2.

c) Since A is connected, and f is continuous, it follows from the first main theorem for con-
tinuous functions, that f(A) � R is connected, hence an interval.
We have shown in 3) that M = −2 and S = 18, so the range is

f(A) = [−2, 18].
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Example 17.50 Find the interval of range of the function

f(x, y) = xy + 64

(

1

x
+

1

y

)

, (x, y) ∈ A,

where

A = {(x, y) ∈ R2 | x ≥ 1, y ≥ 1, xy ≤ 32}.

A Maximum, minimum, interval of range.

D Sketch A and conclude that A is closed and bounded. Apply the first and second main theorems
for continuous functions. Find the possible stationary points. Check the boundary. Conclude by
a numerical comparison.

0

5

10

15

20

25

30

y

5 10 15 20 25 30

x

Figure 17.56: The closed and bounded domain A.

I It follows from the figure and the definition of A that A is connected and closed and bounded. Since
f(x, y) is continuous on the closed and bounded set A, it follows from the second main theorem
for continuous functions that f(x, y) has a maximum and a minimum on A. Since f is of class
C∞, the maximum and minimum values are to be found among the values at the possible inner
stationary points and at the boundary points.

Since A is also connected, and f is continuous, it follows from the first main theorem for continuous
functions that the range is connected, hence a closed interval, which must necessarily be

f(A) = [fmin, fmax] .

The equations of the possible stationary points are

∂f

∂x
= y − 64

x2
= 0 and

∂f

∂y
= x− 64

t2
= 0,

thus

x2y = 64 and xy2 = 64.
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Now x, y > 0 in A, so it follows by a division that
x

y
= 1, i.e. y = x. Then by insertion x3 = 64, so

x = y = 4. Since xy = 16 < 32 and 4 > 1 we conclude that (4, 4) lies in the interior of A. Hence
(4, 4) is a stationary point, and the value of the function is here

f(4, 4) = 16 + 64

(

1

4
+

1

4

)

= 16 + 32 = 48.

The boundary.

1) For y = 1, 1 ≤ x ≤ 32, we get the restriction

ϕ(x) = f(x, 1) = x+
64

x
+ 64

where

ϕ′(x) = 1− 64

x2
= 0 for x = 8.

We notice the values

f(1, 1) = ϕ(1) = 1 + 64 + 64 = 129,

f(32, 1) = ϕ(32) = 32 + 2 + 64 = 98,

f(8, 1) = ϕ(8) = 8 + 8 + 64 = 80.

2) For x = 1, 1 ≤ y ≤ 32, it follows from the symmetry,

f(1, 1) = 129, f(1, 32) = 98, f(1, 8) = 80.

3) If xy = 32, i.e. y =
32

x
, 1 ≤ x ≤ 32, we get the restriction

ψ(x) = xy + 64 · x+ y

xy
= 32 + 2

(

x+
32

x

)

= 2x+
64

x
+ 32

where

ψ′(x) = 2− 64

x2
= 0 for x =

√
32 = 4

√
2 = y.

This is the only additional value, because we have already checked the end points of the interval
above,

f(
√
32,

√
32) = ψ(

√
32) = 32 + (

√
32 +

√
32) = 32 + 8

√
2.

Then compare the values of the candidates,

f(4, 4) = 48, f(1, 1) = 129, f(8, 1) = f(1, 8) = 80,

f(32, 1) = f(1, 32) = 98, f(
√
32,

√
32) = 32 + 8

√
2 < 48.

It follows that the minimum value is

f(
√
32,

√
32) = 32 + 8

√
2,

and the maximum value is

f(1, 1) = 129.

The range is connected, so the interval of the range is

f(A) = [32 + 8
√
2, 129].
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Example 17.51 Given the function

f(x, y) = 2 ln
(

1 + x2 + y2
)

+ x
√
2 + y, x2 + y2 ≤ 4.

1) Explain why the function has a maximum value S and a minimum value M .

2) Show that the stationary points of the function are (−
√
2,−1) and

(

−1

3

√
2,−1

3

)

.

3) Find S and M .

4) Find the range of the function.

A Maximum and minimum, range.

D Sketch a figure. Follow the guidelines.

–2

–1

1

2

–2 –1 1 2

Figure 17.57: The domain A and the line y =
1√
2
x.

I 1) The domain A is a closed disc of centrum(0, 0) and radius 2, thus A is closed and bounded and
connected.

Clearly, f is continuous on A and of class C∞ in the interior of A. According to the second
main theorem for continuous functions, f has a maximum value S and a minimum value M on
A. These values are either attained at a stationary point or on the boundary, because there
are no exceptional points.

Note also that A is connected, so the range f(A) = [M,S] is connected according to the the
first main theorem for continuous functions. This will be used in 4).

2) The equations of the stationary points are

∂f

∂x
=

4x

1 + x2 + y2
+
√
2 = 0 and

∂f

∂y
=

4y

1 + x2 + y2
+ 1 = 0.

It follows that at a stationary point we must have x �= 0 and y �= 0, so the equations are
equivalent to

4xy

1 + x2 + y2
= −

√
2 y and

4xy

1 + x2 + y2
= −x, x �= 0, y �= 0.
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Accordingly, the possible stationary points must lie on the line x =
√
2 y.

When we eliminate x in e.g. the latter equation of the stationary points, then

−1 =
4y

1 + x2 + y2
=

4y

1 + 3y2
,

hence

3y2 + 4y + 1 = 0.

The solutions are y = −1 and y = −1

3
. From x =

√
2 y follows that the only possible stationary

points are

(−
√
2,−1) and

(

−1

3

√
2,−1

3

)

.

It remains to be proved that they are both stationary points.

a) They satisfy the equations:

i) For (−
√
2,−1) we get

−4
√
2

1+2+1
+
√
2 = −

√
2 +

√
2 = 0 and

−4

1+2+1
+ 1 = −1 + 1 = 0.
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ii) We get for

(

−1

3

√
2,−1

3

)

,

− 4
3

√
2

1+ 2
9+

1
9

+
√
2 =

− 4
3

√
2

4
3

+
√
2 = 0 and

− 4
3

1+ 2
9+

1
9

+ 1 =
− 4

3
4
3

+ 1 = 0.

b) They both lie in A:

i) For (−
√
2,−1) we get

x2 + y2 = 2 + 1 = 3 < 4.

ii) For

(

−1

3

√
2,−1

3

)

=
1

3
(−

√
2, 1) we get

x2 + y2 =
1

9
· 3 =

1

3
< 4.

We have now proved that the stationary points are

(−
√
2,−1) and

(

−1

3

√
2,−1

3

)

.

3) The values of the function at the stationary points are

f(−
√
2,−1) = 2 ln(1 + 2 + 1)−

√
2 ·

√
2− 1 = 2 ln 4− 3,

f

(

−1

3

√
2,−1

3

)

= 2 ln

(

1 +
2

9
+

1

9

)

− 1

3

√
2 ·

√
2− 1

3
= 2 ln

4

3
− 1.

The boundary.

–2

–1

0

1

2

–2 –1 1 2

Figure 17.58: The geometrical analysis of the maximum and the minimum on the boundary.

On the boundary 2 ln(1 + x2 + y2) = 2 ln 5 is constant. The maximum and minimum values on
the boundary are attained at those points in which x

√
2+y attains its maximum and minimum

value on the circle. Geometrically these are given by the two tangents of the circle, which are
parallel to the line x

√
2 + y = 0, i.e. at the intersection points of the circle x2 + y2 = 4 and
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perpendicular to the line x =
√
2 y, on which the stationary points lie. This gives the new

candidates
(

2

√

2

3
,
2√
3

)

and

(

−2

√

2

3
,− 2√

3

)

.

Since all candidates of S and M lie on the line x =
√
2 y, we get the following one-dimensional

variant of the identification of S and M :

The restriction to the line x =
√
2 y is

g(y) = 2
(

1 + 3y2
)

+ 3y, y ∈
[

− 2√
3
,
2√
3

]

,

where

g′(y) =
12y

1 + 3y2
+ 3, y ∈

]

− 2√
3
,
2√
3

[

.

As before we get g′(y) = 0 for y = −1 and y = −1

3
. The variation of g′(y) is:

y − 2√
3
≤ y < −1 −1 −1 < y < −1

3
−1

3
−1

3
< y ≤ 2√

3
g′(y) + 0 − 0 +

Hence we have a local maximum for y = −1 and a local minimum for y = −1

3
.

The candidates of S are

g(−1) = 2 ln 4− 3 and g

(

2√
3

)

= 2 ln 5 + 2
√
3.

It follows that

S = g

(

2√
3

)

= f

(

2

√

2

3
,
2√
3

)

= 2 < ln5 + 2
√
3 [≈ 6, 6830].

Analogously, the candidates of M are
(

− 2√
3

)

= 2 ln 5− 2
√
3 and g

(

−1

3

)

= 2 ln
4

3
− 1.

By a numerical comparison on a pocket calculator we get

M = g

(

−1

3

)

= f

(

−1

3

√
2,−1

3

)

= 2 ln
4

3
− 1 [≈ −0, 4246].

Alternatively a parametric description of the boundary is

(x, y) = (2 cosϕ, 2 sinϕ), ϕ ∈ [0, 2π].
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Hence the restriction to the boundary becomes

h(ϕ) = f(2 cosϕ, 2 sinϕ) = 2 ln 5 + 2
√
2 cosϕ+ 2 sinϕ

where

h′(ϕ) = −2
√
2 sinϕ+ 2 cosϕ = 0

for tanϕ =
1√
2
, corresponding to

cosϕ = ± 1
√

1 + tan2 ϕ
= ± 1

√

1 + 1
2

= ±
√

2

3

and

sinϕ = cosϕ tanϕ = ±
√

2

3
·
√

1

2
= ±,

1√
3
,

where the signs are belonging together.

We get the candidates

f

(

2

√

2

3
,
2√
3

)

and

(

−2

√

2

3
,− 2√

3

)

with the values of the function
(

2

√

2

3
,
2√
3

)

= 2 ln

(

1 +
8

3
+

4

3

)

+ 2

√

2

3
·
√
2 +

2√
3
= 2 ln 5 + 2

√
3,

and

f

(

−2

√

2

3
,− 2√

3

)

= 2 ln 5− 2
√
3.

Numerical comparison.

We shall find the maximum and the minimum value among

f(−
√
2,−1) = 2 ln 4− 3, f

(

−1

3

√
2,−1

3

)

= 2 ln
4

3
− 1,

f

(

2

√

2

3
,
2√
3

)

= 2 ln 5 + 2
√
3, f

(

−2

√

2

3
,− 2√

3

)

= 2 < ln5−
√
3.

Clearly,

S = f

(

2

√

2

3
,
2√
3

)

= 2 ln 5 + 2
√
3 ≈ 6, 6830.

Then by a numerical comparison on a pocket calculator,

M = f

(

−1

3

√
2,−1

3

)

= 2 ln
4

3
− 1 ≈ −0.4246.
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4) Since A is connected, and f is continuous on A, the range f(A) is connected according to the
first main theorem for continuous functions. We have already found S and M in 3), so the
range is the interval

f(A) = [M,S] =

[

2 ln
4

3
− 1, 2 ln 5 + 2

√
3

]

.
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Example 17.52 Given the function

f(x, y) = 2y sinx− x, (x, y) ∈ A,

where the domain A is given by the inequalities

−π

2
≤ x ≤ π

2
, 0 ≤ y ≤ cosx.

1) Explain why the function has a maximum value S and a minimum value M .

2) Find S and M .

3) Find the range of the function.

A Maximum and minimum values; range.

D Sketch A, and apply the second and the first main theorem for continuous functions.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

–1.5 –1 –0.5 0.5 1 1.5

x

Figure 17.59: The set A.

I 1) The set A is closed and bounded, and f is continuous. According to the second main theorem
for continuous functions, f has both a maximum value S and a minimum value M on A.

2) Since f is of class C∞, the values S and M are either attained at an inner stationary point or
at a boundary point.

Stationary points.

The equations of the stationary points are

∂f

∂x
= 2y cosx− 1 = 0 and

∂f

∂y
= 2 sinx = 0.

It follows from the latter equation that x = pπ, p ∈ Z, i.e. x = 0, if the point shall also lie in

A. When this is put into the former equation we get 2y − 1 = 0, so y =
1

2
. Thus the only

stationary point in A is

(

0,
1

2

)

. The value of the function at this point is

f

(

0,
1

2

)

= 2 · 1
2
· sin 0− 0 = 0.

The boundary.

808

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume V

809 

Examples of global and local extrema

a) On the boundary curve y = 0, x ∈
[

−π

2
,
π

2

]

, we have the restriction

ϕ(x) = f(x, 0) = −x,

with the maximum value

ϕ
(

−π

2

)

= f
(

−π

2
.0
)

=
π

2

and the minimum value

ϕ
(π

2

)

= f
(π

2
, 0
)

= −π

2
.

b) On the boundary curve y = cosx, x ∈
[

−π

2
,
π

2

]

, we get the restriction

ψ(x) = f(x, cosx) = 2 cosx · sinx− x = sin 2x− x,

where

ψ′(x) = 2 cos 2x− 1 = 0, cos 2x =
1

2
,

so

x =
(

±π

3
+ 2pπ

)

· 1
2
= ±π

6
+ pπ, p ∈ Z.

Here p = 0, because we shall stay inside A, hence

ψ
(π

6

)

= f

(

π

6
,

√
3

2

)

= sin
π

3
− π

6
=

√
3

2
− π

6
=

3
√
3− π

6
,

and

ψ
(

−π

6

)

= f

(

−π

6
,

√
3

2

)

= − sin
π

3
+

π

6
= −3

√
3− π

6
.

Then by a numerical comparison,

S = f
(

−π

2
, 0
)

=
π

2
and M = f

(π

2
, 0
)

= −π

2
.

c) Since A is connected, and f is continuous, it follows from the first main theorem for con-
tinuous functions that f(A) is connected, i.e. an interval. When we apply the results from
2), we get

f(A) = [M,S] =
[

−π

2
,
π

2

]

.

809

Download free eBooks at bookboon.com



Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume V

811 

Formulæ

18 Formulæ

Some of the following formulæ can be assumed to be known from high school. It is highly recommended
that one learns most of these formulæ in this appendix by heart.

18.1 Squares etc.

The following simple formulæ occur very frequently in the most different situations.

(a+ b)2 = a2 + b2 + 2ab, a2 + b2 + 2ab = (a+ b)2,
(a− b)2 = a2 + b2 − 2ab, a2 + b2 − 2ab = (a− b)2,
(a+ b)(a− b) = a2 − b2, a2 − b2 = (a+ b)(a− b),
(a+ b)2 = (a− b)2 + 4ab, (a− b)2 = (a+ b)2 − 4ab.

18.2 Powers etc.

Logarithm:

ln |xy| = ln |x|+ ln |y|, x, y �= 0,

ln

∣

∣

∣

∣

x

y

∣

∣

∣

∣

= ln |x| − ln |y|, x, y �= 0,

ln |xr| = r ln |x|, x �= 0.

Power function, fixed exponent:

(xy)r = xr · yr, x, y > 0 (extensions for some r),

(

x

y

)r

=
xr

yr
, x, y > 0 (extensions for some r).

Exponential, fixed base:

ax · ay = ax+y, a > 0 (extensions for some x, y),
(ax)y = axy, a > 0 (extensions for some x, y),

a−x =
1

ax
, a > 0, (extensions for some x),

n
√
a = a1/n, a ≥ 0, n ∈ N.

Square root:

√
x2 = |x|, x ∈ R.

Remark 18.1 It happens quite frequently that students make errors when they try to apply these
rules. They must be mastered! In particular, as one of my friends once put it: “If you can master the
square root, you can master everything in mathematics!” Notice that this innocent looking square
root is one of the most difficult operations in Calculus. Do not forget the absolute value! ♦
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18.3 Differentiation

Here are given the well-known rules of differentiation together with some rearrangements which some-
times may be easier to use:

{f(x)± g(x)}′ = f ′(x)± g′(x),

{f(x)g(x)}′ = f ′(x)g(x) + f(x)g′(x) = f(x)g(x)

{

f ′(x)

f(x)
+

g′(x)

g(x)

}

,

where the latter rearrangement presupposes that f(x) �= 0 and g(x) �= 0.
If g(x) �= 0, we get the usual formula known from high school

{

f(x)

g(x)

}′
=

f ′(x)g(x) − f(x)g′(x)

g(x)2
.

It is often more convenient to compute this expression in the following way:

{

f(x)

g(x)

}

=
d

dx

{

f(x) · 1

g(x)

}

=
f ′(x)

g(x)
− f(x)g′(x)

g(x)2
=

f(x)

g(x)

{

f ′(x)

f(x)
− g′(x)

g(x)

}

,

where the former expression often is much easier to use in practice than the usual formula from high
school, and where the latter expression again presupposes that f(x) �= 0 and g(x) �= 0. Under these
assumptions we see that the formulæ above can be written

{f(x)g(x)}′
f(x)g(x)

=
f ′(x)

f(x)
+

g′(x)

g(x)
,

{f(x)/g(x)}′
f(x)/g(x)

=
f ′(x)

f(x)
− g′(x)

g(x)
.

Since

d

dx
ln |f(x)| = f ′(x)

f(x)
, f(x) �= 0,

we also name these the logarithmic derivatives.

Finally, we mention the rule of differentiation of a composite function

{f(ϕ(x))}′ = f ′(ϕ(x)) · ϕ′(x).

We first differentiate the function itself; then the insides. This rule is a 1-dimensional version of the
so-called Chain rule.

18.4 Special derivatives.

Power like:

d

dx
(xα) = α · xα−1, for x > 0, (extensions for some α).

d

dx
ln |x| = 1

x
, for x �= 0.
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Exponential like:

d

dx
expx = expx, for x ∈ R,

d

dx
(ax) = ln a · ax, for x ∈ R and a > 0.

Trigonometric:

d

dx
sinx = cosx, for x ∈ R,

d

dx
cosx = − sinx, for x ∈ R,

d

dx
tanx = 1+ tan2 x =

1

cos2 x
, for x �= π

2
+ pπ, p ∈ Z,

d

dx
cotx = −(1 + cot2 x) = − 1

sin2 x
, for x �= pπ, p ∈ Z.

Hyperbolic:

d

dx
sinhx = coshx, for x ∈ R,

d

dx
coshx = sinhx, for x ∈ R,

d

dx
tanhx = 1− tanh2 x =

1

cosh2 x
, for x ∈ R,

d

dx
cothx = 1− coth2 x = − 1

sinh2 x
, for x �= 0.

Inverse trigonometric:

d

dx
Arcsin x =

1√
1− x2

, for x ∈ ]− 1, 1 [,

d

dx
Arccos x = − 1√

1− x2
, for x ∈ ]− 1, 1 [,

d

dx
Arctan x =

1

1 + x2
, for x ∈ R,

d

dx
Arccot x =

1

1 + x2
, for x ∈ R.

Inverse hyperbolic:

d

dx
Arsinh x =

1√
x2 + 1

, for x ∈ R,

d

dx
Arcosh x =

1√
x2 − 1

, for x ∈ ] 1,+∞ [,

d

dx
Artanh x =

1

1− x2
, for |x| < 1,

d

dx
Arcoth x =

1

1− x2
, for |x| > 1.

Remark 18.2 The derivative of the trigonometric and the hyperbolic functions are to some extent
exponential like. The derivatives of the inverse trigonometric and inverse hyperbolic functions are
power like, because we include the logarithm in this class. ♦
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18.5 Integration

The most obvious rules are dealing with linearity

∫

{f(x) + λg(x)} dx =

∫

f(x) dx + λ

∫

g(x) dx, where λ ∈ R is a constant,

and with the fact that differentiation and integration are “inverses to each other”, i.e. modulo some
arbitrary constant c ∈ R, which often tacitly is missing,

∫

f ′(x) dx = f(x).

If we in the latter formula replace f(x) by the product f(x)g(x), we get by reading from the right to
the left and then differentiating the product,

f(x)g(x) =

∫

{f(x)g(x)}′ dx =

∫

f ′(x)g(x) dx +

∫

f(x)g′(x) dx.

Hence, by a rearrangement

The rule of partial integration:

∫

f ′(x)g(x) dx = f(x)g(x)−
∫

f(x)g′(x) dx.

The differentiation is moved from one factor of the integrand to the other one by changing the sign
and adding the term f(x)g(x).

Remark 18.3 This technique was earlier used a lot, but is almost forgotten these days. It must
be revived, because MAPLE and pocket calculators apparently do not know it. It is possible to
construct examples where these devices cannot give the exact solution, unless you first perform a
partial integration yourself. ♦

Remark 18.4 This method can also be used when we estimate integrals which cannot be directly
calculated, because the antiderivative is not contained in e.g. the catalogue of MAPLE. The idea is
by a succession of partial integrations to make the new integrand smaller. ♦

Integration by substitution:

If the integrand has the special structure f(ϕ(x)) ·ϕ′(x), then one can change the variable to y = ϕ(x):

∫

f(ϕ(x)) · ϕ′(x) dx = “

∫

f(ϕ(x)) dϕ(x)′′ =

∫

y=ϕ(x)

f(y) dy.
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Integration by a monotonous substitution:

If ϕ(y) is a monotonous function, which maps the y-interval one-to-one onto the x-interval, then

∫

f(x) dx =

∫

y=ϕ−1(x)

f(ϕ(y))ϕ′(y) dy.

Remark 18.5 This rule is usually used when we have some “ugly” term in the integrand f(x). The
idea is to put this ugly term equal to y = ϕ−1(x). When e.g. x occurs in f(x) in the form

√
x, we put

y = ϕ−1(x) =
√
x, hence x = ϕ(y) = y2 and ϕ′(y) = 2y. ♦

18.6 Special antiderivatives

Power like:
∫

1

x
dx = ln |x|, for x �= 0. (Do not forget the numerical value!)

∫

xα dx =
1

α+ 1
xα+1, for α �= −1,

∫

1

1 + x2
dx = Arctan x, for x ∈ R,

∫

1

1− x2
dx =

1

2
ln

∣

∣

∣

∣

1 + x

1− x

∣

∣

∣

∣

, for x �= ±1,

∫

1

1− x2
dx = Artanh x, for |x| < 1,

∫

1

1− x2
dx = Arcoth x, for |x| > 1,

∫

1√
1− x2

dx = Arcsin x, for |x| < 1,

∫

1√
1− x2

dx = − Arccos x, for |x| < 1,

∫

1√
x2 + 1

dx = Arsinh x, for x ∈ R,

∫

1√
x2 + 1

dx = ln(x+
√

x2 + 1), for x ∈ R,

∫

x√
x2 − 1

dx =
√

x2 − 1, for x ∈ R,

∫

1√
x2 − 1

dx = Arcosh x, for x > 1,

∫

1√
x2 − 1

dx = ln |x+
√

x2 − 1|, for x > 1 eller x < −1.

There is an error in the programs of the pocket calculators TI-92 and TI-89. The numerical signs are
missing. It is obvious that

√
x2 − 1 < |x| so if x < −1, then x+

√
x2 − 1 < 0. Since you cannot take

the logarithm of a negative number, these pocket calculators will give an error message.
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Exponential like:

∫

expx dx = expx, for x ∈ R,

∫

ax dx =
1

ln a
· ax, for x ∈ R, and a > 0, a �= 1.

Trigonometric:

∫

sinx dx = − cosx, for x ∈ R,

∫

cosx dx = sinx, for x ∈ R,

∫

tanx dx = − ln | cosx|, for x �= π

2
+ pπ, p ∈ Z,

∫

cotx dx = ln | sinx|, for x �= pπ, p ∈ Z,

∫

1

cosx
dx =

1

2
ln

(

1 + sinx

1− sinx

)

, for x �= π

2
+ pπ, p ∈ Z,

∫

1

sinx
dx =

1

2
ln

(

1− cosx

1 + cosx

)

, for x �= pπ, p ∈ Z,

∫

1

cos2 x
dx = tanx, for x �= π

2
+ pπ, p ∈ Z,

∫

1

sin2 x
dx = − cotx, for x �= pπ, p ∈ Z.

Hyperbolic:

∫

sinhx dx = coshx, for x ∈ R,

∫

coshx dx = sinhx, for x ∈ R,

∫

tanhx dx = ln coshx, for x ∈ R,

∫

cothx dx = ln | sinhx|, for x �= 0,

∫

1

coshx
dx = Arctan(sinhx), for x ∈ R,

∫

1

coshx
dx = 2 Arctan(ex), for x ∈ R,

∫

1

sinhx
dx =

1

2
ln

(

coshx− 1

coshx+ 1

)

, for x �= 0,
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∫

1

sinhx
dx = ln

∣

∣

∣

∣

ex − 1

ex + 1

∣

∣

∣

∣

, for x �= 0,

∫

1

cosh2 x
dx = tanhx, for x ∈ R,

∫

1

sinh2 x
dx = − cothx, for x �= 0.

18.7 Trigonometric formulæ

The trigonometric formulæ are closely connected with circular movements. Thus (cosu, sinu) are
the coordinates of a point P on the unit circle corresponding to the angle u, cf. figure A.1. This
geometrical interpretation is used from time to time.

✫✪
✬✩

✲

✻

��
(cosu, sinu)

u
1

Figure 18.1: The unit circle and the trigonometric functions.

The fundamental trigonometric relation:

cos2 u+ sin2 u = 1, for u ∈ R.

Using the previous geometric interpretation this means according to Pythagoras’s theorem, that the
point P with the coordinates (cosu, sinu) always has distance 1 from the origo (0, 0), i.e. it is lying
on the boundary of the circle of centre (0, 0) and radius

√
1 = 1.

Connection to the complex exponential function:

The complex exponential is for imaginary arguments defined by

exp(iu) := cosu+ i sinu.

It can be checked that the usual functional equation for exp is still valid for complex arguments. In
other word: The definition above is extremely conveniently chosen.

By using the definition for exp(iu) and exp(− iu) it is easily seen that

cosu =
1

2
(exp(iu) + exp(− iu)),

sinu =
1

2i
(exp(i u)− exp(− iu)),

.
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Moivre’s formula: We get by expressing exp(inu) in two different ways:

exp(inu) = cosnu+ i sinnu = (cosu+ i sinu)n.

Example 18.1 If we e.g. put n = 3 into Moivre’s formula, we obtain the following typical application,

cos(3u) + i sin(3u) = (cos u+ i sinu)3

= cos3 u+ 3i cos2 u · sinu+ 3i2 cosu · sin2 u+ i3 sin3 u

= {cos3 u− 3 cosu · sin2 u}+ i{3 cos2 u · sinu− sin3 u}
= {4 cos3 u− 3 cosu}+ i{3 sinu− 4 sin3 u}

When this is split into the real- and imaginary parts we obtain

cos 3u = 4 cos3 u− 3 cosu, sin 3u = 3 sinu− 4 sin3 u. ♦

Addition formulæ:

sin(u+ v) = sinu cos v + cosu sin v,

sin(u− v) = sinu cos v − cosu sin v,

cos(u + v) = cosu cos v − sinu sin v,

cos(u − v) = cosu cos v + sinu sin v.

Products of trigonometric functions to a sum:

sinu cos v =
1

2
sin(u + v) +

1

2
sin(u− v),

cosu sin v =
1

2
sin(u + v)− 1

2
sin(u− v),

sinu sin v =
1

2
cos(u − v)− 1

2
cos(u+ v),

cosu cos v =
1

2
cos(u− v) +

1

2
cos(u + v).

Sums of trigonometric functions to a product:

sinu+ sin v = 2 sin

(

u+ v

2

)

cos

(

u− v

2

)

,

sinu− sin v = 2 cos

(

u+ v

2

)

sin

(

u− v

2

)

,

cosu+ cos v = 2 cos

(

u+ v

2

)

cos

(

u− v

2

)

,

cosu− cos v = −2 sin

(

u+ v

2

)

sin

(

u− v

2

)

.

Formulæ of halving and doubling the angle:

sin 2u = 2 sinu cosu,

cos 2u = cos2 u− sin2 u = 2 cos2 u− 1 = 1− 2 sin2 u,

sin
u

2
= ±

√

1− cosu

2
followed by a discussion of the sign,

cos
u

2
= ±

√

1 + cosu

2
followed by a discussion of the sign,
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18.8 Hyperbolic formulæ

These are very much like the trigonometric formulæ, and if one knows a little of Complex Function
Theory it is realized that they are actually identical. The structure of this section is therefore the same
as for the trigonometric formulæ. The reader should compare the two sections concerning similarities
and differences.

The fundamental relation:

cosh2 x− sinh2 x = 1.

Definitions:

coshx =
1

2
(exp(x) + exp(−x)) , sinhx =

1

2
(exp(x) − exp(−x)) .

“Moivre’s formula”:

exp(x) = coshx+ sinhx.

This is trivial and only rarely used. It has been included to show the analogy.

Addition formulæ:

sinh(x+ y) = sinh(x) cosh(y) + cosh(x) sinh(y),

sinh(x− y) = sinh(x) cosh(y)− cosh(x) sinh(y),

cosh(x + y) = cosh(x) cosh(y) + sinh(x) sinh(y),

cosh(x − y) = cosh(x) cosh(y)− sinh(x) sinh(y).

Formulæ of halving and doubling the argument:

sinh(2x) = 2 sinh(x) cosh(x),

cosh(2x) = cosh2(x) + sinh2(x) = 2 cosh2(x)− 1 = 2 sinh2(x) + 1,

sinh
(x

2

)

= ±
√

cosh(x) − 1

2
followed by a discussion of the sign,

cosh
(x

2

)

=

√

cosh(x) + 1

2
.

Inverse hyperbolic functions:

Arsinh(x) = ln
(

x+
√

x2 + 1
)

, x ∈ R,

Arcosh(x) = ln
(

x+
√

x2 − 1
)

, x ≥ 1,

Artanh(x) =
1

2
ln

(

1 + x

1− x

)

, |x| < 1,

Arcoth(x) =
1

2
ln

(

x+ 1

x− 1

)

, |x| > 1.
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18.9 Complex transformation formulæ

cos(ix) = cosh(x), cosh(ix) = cos(x),

sin(ix) = i sinh(x), sinh(ix) = i sinx.

18.10 Taylor expansions

The generalized binomial coefficients are defined by

(

α
n

)

:=
α(α− 1) · · · (α− n+ 1)

1 · 2 · · ·n ,

with n factors in the numerator and the denominator, supplied with

(

α
0

)

:= 1.

The Taylor expansions for standard functions are divided into power like (the radius of convergency
is finite, i.e. = 1 for the standard series) andexponential like (the radius of convergency is infinite).
Power like:

1

1− x
=

∞
∑

n=0

xn, |x| < 1,

1

1 + x
=

∞
∑

n=0

(−1)nxn, |x| < 1,

(1 + x)n =

n
∑

j=0

(

n
j

)

xj , n ∈ N, x ∈ R,

(1 + x)α =

∞
∑

n=0

(

α
n

)

xn, α ∈ R \ N, |x| < 1,

ln(1 + x) =

∞
∑

n=1

(−1)n−1x
n

n
, |x| < 1,

Arctan(x) =

∞
∑

n=0

(−1)n
x2n+1

2n+ 1
, |x| < 1.
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Exponential like:

exp(x) =

∞
∑

n=0

1

n!
xn, x ∈ R

exp(−x) =

∞
∑

n=0

(−1)n
1

n!
xn, x ∈ R

sin(x) =

∞
∑

n=0

(−1)n
1

(2n+ 1)!
x2n+1, x ∈ R,

sinh(x) =

∞
∑

n=0

1

(2n+ 1)!
x2n+1, x ∈ R,

cos(x) =

∞
∑

n=0

(−1)n
1

(2n)!
x2n, x ∈ R,

cosh(x) =

∞
∑

n=0

1

(2n)!
x2n, x ∈ R.

18.11 Magnitudes of functions

We often have to compare functions for x → 0+, or for x → ∞. The simplest type of functions are
therefore arranged in an hierarchy:

1) logarithms,

2) power functions,

3) exponential functions,

4) faculty functions.

When x → ∞, a function from a higher class will always dominate a function form a lower class. More
precisely:

A) A power function dominates a logarithm for x → ∞:

(lnx)β

xα
→ 0 for x → ∞, α, β > 0.

B) An exponential dominates a power function for x → ∞:

xα

ax
→ 0 for x → ∞, α, a > 1.

C) The faculty function dominates an exponential for n → ∞:

an

n!
→ 0, n → ∞, n ∈ N, a > 0.

D) When x → 0+ we also have that a power function dominates the logarithm:

xα lnx → 0−, for x → 0+, α > 0.
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absolute value 162
acceleration 490
addition 22
affinity factor 173
Ampère-Laplace law 1671
Ampère-Maxwell’s law 1678
Ampère’s law 1491, 1498, 1677, 1678, 1833
Ampère’s law for the magnetic field 1674
angle 19
angular momentum 886
angular set 84
annulus 176, 243
anticommutative product 26
antiderivative 301, 847
approximating polynomial 304, 322, 326, 336, 404,

488, 632, 662
approximation in energy 734
Archimedes’s spiral 976, 1196
Archimedes’s theorem 1818
area 887, 1227, 1229, 1543
area element 1227
area of a graph 1230
asteroid 1215
asymptote 51
axial moment 1910
axis of revolution 181
axis of rotation 34, 886
axis of symmetry 49, 50, 53

barycentre 885, 1910
basis 22
bend 486
bijective map 153
body of revolution 43, 1582, 1601
boundary 37–39
boundary curve 182
boundary curve of a surface 182
boundary point 920
boundary set 21
bounded map 153
bounded set 41
branch 184
branch of a curve 492
Brownian motion 884

cardiod 972, 973, 1199, 1705

Cauchy-Schwarz’s inequality 23, 24, 26
centre of gravity 1108
centre of mass 885
centrum 66
chain rule 305, 333, 352, 491, 503, 581, 1215, 1489,

1493, 1808
change of parameter 174
circle 49
circular motion 19
circulation 1487
circulation theorem 1489, 1491
circumference 86
closed ball 38
closed differential form 1492
closed disc 86
closed domain 176
closed set 21
closed surface 182, 184
closure 39
clothoid 1219
colour code 890
compact set 186, 580, 1813
compact support 1813
complex decomposition 69
composite function 305
conductivity of heat 1818
cone 19, 35, 59, 251
conic section 19, 47, 54, 239, 536
conic sectional conic surface 59, 66
connected set 175, 241
conservation of electric charge 1548, 1817
conservation of energy 1548, 1817
conservation of mass 1548, 1816
conservative force 1498, 1507
conservative vector field 1489
continuity equation 1548, 1569, 1767, 1817
continuity 162, 186
continuous curve 170, 483
continuous extension 213
continuous function 168
continuous surfaces 177
contraction 167
convective term 492
convex set 21, 22, 41, 89, 91, 175, 244
coordinate function 157, 169
coordinate space 19, 21

823

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume V

824 

Index

Cornu’s spiral 1219
Coulomb field 1538, 1545, 1559, 1566, 1577
Coulomb vector field 1585, 1670
cross product 19, 163, 169, 1750
cube 42, 82
current density 1678, 1681
current 1487, 1499
curvature 1219
curve 227
curve length 1165
curved space integral 1021
cusp 486, 487, 489
cycloid 233, 1215
cylinder 34, 42, 43, 252
cylinder of revolution 500
cylindric coordinates 15, 21, 34, 147, 181, 182,

289, 477,573, 841, 1009, 1157, 1347, 1479,
1651, 1801

cylindric surface 180, 245, 247, 248, 499, 1230

degree of trigonometric polynomial 67
density 885
density of charge 1548
density of current 1548
derivative 296
derivative of inverse function 494
Descartes’a leaf 974
dielectric constant 1669, 1670
difference quotient 295
differentiability 295
differentiable function 295
differentiable vector function 303
differential 295, 296, 325, 382, 1740, 1741
differential curves 171
differential equation 369, 370, 398
differential form 848
differential of order p 325
differential of vector function 303
diffusion equation 1818
dimension 1016
direction 334
direction vector 172
directional derivative 317, 334, 375
directrix 53
Dirichlet/Neumann problem 1901
displacement field 1670
distribution of current 886
divergence 1535, 1540, 1542, 1739, 1741, 1742
divergence free vector field 1543

dodecahedron 83
domain 153, 176
domain of a function 189
dot product 19, 350, 1750
double cone 252
double point 171
double vector product 27

eccentricity 51
eccentricity of ellipse 49
eigenvalue 1906
elasticity 885, 1398
electric field 1486, 1498, 1679
electrical dipole moment 885
electromagnetic field 1679
electromagnetic potentials 1819
electromotive force 1498
electrostatic field 1669
element of area 887
elementary chain rule 305
elementary fraction 69
ellipse 48–50, 92, 113, 173, 199, 227
ellipsoid 56, 66, 110, 197, 254, 430, 436, 501, 538,

1107
ellipsoid of revolution 111
ellipsoidal disc 79, 199
ellipsoidal surface 180
elliptic cylindric surface 60, 63, 66, 106
elliptic paraboloid 60, 62, 66, 112, 247
elliptic paraboloid of revolution 624
energy 1498
energy density 1548, 1818
energy theorem 1921
entropy 301
Euclidean norm 162
Euclidean space 19, 21, 22
Euler’s spiral 1219
exact differential form 848
exceptional point 594, 677, 920
expansion point 327
explicit given function 161
extension map 153
exterior 37–39
exterior point 38
extremum 580, 632

Faraday-Henry law of electromagnetic induction
1676

Fick’s first law of diffusion 297

824

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume V

825 

Index

Fick’s law 1818
field line 160
final point 170
fluid mechanics 491
flux 1535, 1540, 1549
focus 49, 51, 53
force 1485
Fourier’s law 297, 1817
function in several variables 154
functional matrix 303
fundamental theorem of vector analysis 1815

Gaussian integral 938
Gauß’s law 1670
Gauß’s law for magnetism 1671
Gauß’s theorem 1499, 1535, 1540, 1549, 1580, 1718,

1724, 1737, 1746, 1747, 1749, 1751, 1817,
1818, 1889, 1890, 1913

Gauß’s theorem in R2 1543
Gauß’s theorem in R3 1543
general chain rule 314
general coordinates 1016
general space integral 1020
general Taylor’s formula 325
generalized spherical coordinates 21
generating curve 499
generator 66, 180
geometrical analysis 1015
global minimum 613
gradient 295, 296, 298, 339, 847, 1739, 1741
gradient field 631, 847, 1485, 1487, 1489, 1491,

1916
gradient integral theorem 1489, 1499
graph 158, 179, 499, 1229
Green’s first identity 1890
Green’s second identity 1891, 1895
Green’s theorem in the plane 1661, 1669, 1909
Green’s third identity 1896
Green’s third identity in the plane 1898

half-plane 41, 42
half-strip 41, 42
half disc 85
harmonic function 426, 427, 1889
heat conductivity 297
heat equation 1818
heat flow 297
height 42
helix 1169, 1235

Helmholtz’s theorem 1815
homogeneous function 1908
homogeneous polynomial 339, 372
Hopf’s maximum principle 1905
hyperbola 48, 50, 51, 88, 195, 217, 241, 255, 1290
hyperbolic cylindric surface 60, 63, 66, 105, 110
hyperbolic paraboloid 60, 62, 66, 246, 534, 614,

1445
hyperboloid 232, 1291
hyperboloid of revolution 104
hyperboloid of revolution with two sheets 111
hyperboloid with one sheet 56, 66, 104, 110, 247,

255
hyperboloid with two sheets 59, 66, 104, 110, 111,

255, 527
hysteresis 1669

identity map 303
implicit given function 21, 161
implicit function theorem 492, 503
improper integral 1411
improper surface integral 1421
increment 611
induced electric field 1675
induction field 1671
infinitesimal vector 1740
infinity, signed 162
infinity, unspecified 162
initial point 170
injective map 153
inner product 23, 29, 33, 163, 168, 1750
inspection 861
integral 847
integral over cylindric surface 1230
integral over surface of revolution 1232
interior 37–40
interior point 38
intrinsic boundary 1227
isolated point 39
Jacobian 1353, 1355

Kronecker symbol 23

Laplace equation 1889
Laplace force 1819
Laplace operator 1743
latitude 35
length 23
level curve 159, 166, 198, 492, 585, 600, 603
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level surface 198, 503
limit 162, 219
line integral 1018, 1163
line segment 41
Linear Algebra 627
linear space 22
local extremum 611
logarithm 189
longitude 35
Lorentz condition 1824

Maclaurin’s trisectrix 973, 975
magnetic circulation 1674
magnetic dipole moment 886, 1821
magnetic field 1491, 1498, 1679
magnetic flux 1544, 1671, 1819
magnetic force 1674
magnetic induction 1671
magnetic permeability of vacuum 1673
magnostatic field 1671
main theorems 185
major semi-axis 49
map 153
MAPLE 55, 68, 74, 156, 171, 173, 341, 345, 350,

352–354, 356, 357, 360, 361, 363, 364,
366, 368, 374, 384–387, 391–393, 395–
397, 401, 631, 899, 905–912, 914, 915,
917, 919, 922–924, 926, 934, 935, 949,
951, 954, 957–966, 968, 971–973, 975,
1032–1034, 1036, 1037, 1039, 1040, 1042,
1053, 1059, 1061, 1064, 1066–1068, 1070–
1072, 1074, 1087, 1089, 1091, 1092, 1094,
1095, 1102, 1199, 1200

matrix product 303
maximal domain 154, 157
maximum 382, 579, 612, 1916
maximum value 922
maximum-minimum principle for harmonic func-

tions 1895
Maxwell relation 302
Maxwell’s equations 1544, 1669, 1670, 1679, 1819
mean value theorem 321, 884, 1276, 1490
mean value theorem for harmonic functions 1892
measure theory 1015
Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157,

1347, 1479, 1651, 1801, 1921
meridian curve 181, 251, 499, 1232
meridian half-plane 34, 35, 43, 181, 1055, 1057,

1081

method of indefinite integration 859
method of inspection 861
method of radial integration 862
minimum 186, 178, 579, 612, 1916
minimum value 922
minor semi-axis 49
mmf 1674
Möbius strip 185, 497
Moivre’s formula 122, 264, 452, 548, 818, 984,

1132, 1322, 1454, 1626, 1776, 1930
monopole 1671
multiple point 171

nabla 296, 1739
nabla calculus 1750
nabla notation 1680
natural equation 1215
natural parametric description 1166, 1170
negative definite matrix 627
negative half-tangent 485
neighbourhood 39
neutral element 22
Newton field 1538
Newton-Raphson iteration formula 583
Newton’s second law 1921
non-oriented surface 185
norm 19, 23
normal 1227
normal derivative 1890
normal plane 487
normal vector 496, 1229

octant 83
Ohm’s law 297
open ball 38
open domain 176
open set 21, 39
order of expansion 322
order relation 579
ordinary integral 1017
orientation of a surface 182
orientation 170, 172, 184, 185, 497
oriented half line 172
oriented line 172
oriented line segment 172
orthonormal system 23

parabola 52, 53, 89–92, 195, 201, 229, 240, 241
parabolic cylinder 613
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parabolic cylindric surface 64, 66
paraboloid of revolution 207, 613, 1435
parallelepipedum 27, 42
parameter curve 178, 496, 1227
parameter domain 1227
parameter of a parabola 53
parametric description 170, 171, 178
parfrac 71
partial derivative 298
partial derivative of second order 318
partial derivatives of higher order 382
partial differential equation 398, 402
partial fraction 71
Peano 483
permeability 1671
piecewise Ck-curve 484
piecewise Cn-surface 495
plane 179
plane integral 21, 887
point of contact 487
point of expansion 304, 322
point set 37
Poisson’s equation 1814, 1889, 1891, 1901
polar coordinates 15, 19, 21, 30, 85, 88, 147, 163,

172, 213, 219, 221, 289, 347, 388, 390,
477, 573, 611, 646, 720, 740, 841, 936,
1009, 1016, 1157, 1165, 1347, 1479, 1651,
1801

polar plane integral 1018
polynomial 297
positive definite matrix 627
positive half-tangent 485
positive orientation 173
potential energy 1498
pressure 1818
primitive 1491
primitive of gradient field 1493
prism 42
Probability Theory 15, 147, 289, 477, 573, 841,

1009, 1157, 1347, 1479, 1651, 1801
product set 41
projection 23, 157
proper maximum 612, 618, 627
proper minimum 612, 613, 618, 627
pseudo-sphere 1434
Pythagoras’s theorem 23, 25, 30, 121, 451, 547,

817, 983, 1131, 1321, 1453, 1625, 1775,
1929

quadrant 41, 42, 84
quadratic equation 47

range 153
rectangle 41, 87
rectangular coordinate system 29
rectangular coordinates 15, 21, 22, 147, 289, 477,

573, 841, 1009, 1016, 1079, 1157, 1165,
1347, 1479, 1651, 1801

rectangular plane integral 1018
rectangular space integral 1019
rectilinear motion 19
reduction of a surface integral 1229
reduction of an integral over cylindric surface 1231
reduction of surface integral over graph 1230
reduction theorem of line integral 1164
reduction theorem of plane integral 937
reduction theorem of space integral 1021, 1056
restriction map 153
Ricatti equation 369
Riesz transformation 1275
Rolle’s theorem 321
rotation 1739, 1741, 1742
rotational body 1055
rotational domain 1057
rotational free vector field 1662
rules of computation 296

saddle point 612
scalar field 1485
scalar multiplication 22, 1750
scalar potential 1807
scalar product 169
scalar quotient 169
second differential 325
semi-axis 49, 50
semi-definite matrix 627
semi-polar coordinates 15, 19, 21, 33, 147, 181,

182, 289, 477, 573, 841, 1009, 1016, 1055,
1086, 1157, 1231, 1347, 1479, 1651, 1801

semi-polar space integral 1019
separation of the variables 853
signed curve length 1166
signed infinity 162
simply connected domain 849, 1492
simply connected set 176, 243
singular point 487, 489
space filling curve 171
space integral 21, 1015
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specific capacity of heat 1818
sphere 35, 179
spherical coordinates 15, 19, 21, 34, 147, 179, 181,

289, 372, 477, 573, 782, 841, 1009, 1016,
1078, 1080, 1081, 1157, 1232, 1347, 1479,
1581, 1651, 1801

spherical space integral 1020
square 41
star-shaped domain 1493, 1807
star shaped set 21, 41, 89, 90, 175
static electric field 1498
stationary magnetic field 1821
stationary motion 492
stationary point 583, 920
Statistics 15, 147, 289, 477, 573, 841, 1009, 1157,

1347, 1479, 1651, 1801
step line 172
Stokes’s theorem 1499, 1661, 1676, 1679, 1746,

1747, 1750, 1751, 1811, 1819, 1820, 1913
straight line (segment) 172
strip 41, 42
substantial derivative 491
surface 159, 245
surface area 1296
surface integral 1018, 1227
surface of revolution 110, 111, 181, 251, 499
surjective map 153

tangent 486
tangent plane 495, 496
tangent vector 178
tangent vector field 1485
tangential line integral 861, 1485, 1598, 1600, 1603
Taylor expansion 336
Taylor expansion of order 2, 323
Taylor’s formula 321, 325, 404, 616, 626, 732
Taylor’s formula in one dimension 322
temperature 297
temperature field 1817
tetrahedron 93, 99, 197, 1052
Thermodynamics 301, 504
top point 49, 50, 53, 66
topology 15, 19, 37, 147, 289. 477, 573, 841, 1009,

1157, 1347, 1479, 1651, 1801
torus 43, 182–184
transformation formulæ1353
transformation of space integral 1355, 1357
transformation theorem 1354
trapeze 99

triangle inequality 23,24
triple integral 1022, 1053

uniform continuity 186
unit circle 32
unit disc 192
unit normal vector 497
unit tangent vector 486
unit vector 23
unspecified infinity 162

vector 22
vector field 158, 296, 1485
vector function 21, 157, 189
vector product 19, 26, 30, 163, 169. 1227, 1750
vector space 21, 22
vectorial area 1748
vectorial element of area 1535
vectorial potential 1809, 1810
velocity 490
volume 1015, 1543
volumen element 1015

weight function 1081, 1229, 1906
work 1498

zero point 22
zero vector 22

(r, s, t)-method 616, 619, 633, 634, 638, 645–647,
652, 655

Ck-curve 483
Cn-functions 318
1-1 map 153
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