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Preface

The topic of this series of books on “Real Functions in Several Variables” is very important in the
description in e.g. Mechanics of the real 3-dimensional world that we live in. Therefore, we start from
the very beginning, modelling this world by using the coordinates of R? to describe e.g. a motion in
space. There is, however, absolutely no reason to restrict ourselves to R® alone. Some motions may
be rectilinear, so only R is needed to describe their movements on a line segment. This opens up for
also dealing with R?, when we consider plane motions. In more elaborate problems we need higher
dimensional spaces. This may be the case in Probability Theory and Statistics. Therefore, we shall in
general use R™ as our abstract model, and then restrict ourselves in examples mainly to R? and R3.

For rectilinear motions the familiar rectangular coordinate system is the most convenient one to apply.
However, as known from e.g. Mechanics, circular motions are also very important in the applications
in engineering. It becomes natural alternatively to apply in R? the so-called polar coordinates in the
plane. They are convenient to describe a circle, where the rectangular coordinates usually give some
nasty square roots, which are difficult to handle in practice.

Rectangular coordinates and polar coordinates are designed to model each their problems. They
supplement each other, so difficult computations in one of these coordinate systems may be easy, and
even trivial, in the other one. It is therefore important always in advance carefully to analyze the
geometry of e.g. a domain, so we ask the question: Is this domain best described in rectangular or in
polar coordinates?

Sometimes one may split a problem into two subproblems, where we apply rectangular coordinates in
one of them and polar coordinates in the other one.

It should be mentioned that in real life (though not in these books) one cannot always split a problem
into two subproblems as above. Then one is really in trouble, and more advanced mathematical
methods should be applied instead. This is, however, outside the scope of the present series of books.

The idea of polar coordinates can be extended in two ways to R3. Either to semi-polar or cylindric
coordinates, which are designed to describe a cylinder, or to spherical coordinates, which are excellent
for describing spheres, where rectangular coordinates usually are doomed to fail. We use them already
in daily life, when we specify a place on Earth by its longitude and latitude! It would be very awkward
in this case to use rectangular coordinates instead, even if it is possible.

Concerning the contents, we begin this investigation by modelling point sets in an n-dimensional
Euclidean space E™ by R™. There is a subtle difference between E™ and R™, although we often
identify these two spaces. In E™ we use geometrical methods without a coordinate system, so the
objects are independent of such a choice. In the coordinate space R™ we can use ordinary calculus,
which in principle is not possible in E™. In order to stress this point, we call E™ the “abstract space”
(in the sense of calculus; not in the sense of geometry) as a warning to the reader. Also, whenever
necessary, we use the colour black in the “abstract space”, in order to stress that this expression is
theoretical, while variables given in a chosen coordinate system and their related concepts are given
the colours blue, red and green.

We also include the most basic of what mathematicians call Topology, which will be necessary in the
following. We describe what we need by a function.

Then we proceed with limits and continuity of functions and define continuous curves and surfaces,
with parameters from subsets of R and R2, resp..
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Continue with (partial) differentiable functions, curves and surfaces, the chain rule and Taylor’s for-
mula for functions in several variables.

We deal with maxima and minima and extrema of functions in several variables over a domain in R™.
This is a very important subject, so there are given many worked examples to illustrate the theory.

Then we turn to the problems of integration, where we specify four different types with increasing
complexity, plane integral, space integral, curve (or line) integral and surface integral.

Finally, we consider vector analysis, where we deal with vector fields, Gauf3’s theorem and Stokes’s
theorem. All these subjects are very important in theoretical Physics.

The structure of this series of books is that each subject is usually (but not always) described by three
successive chapters. In the first chapter a brief theoretical theory is given. The next chapter gives
some practical guidelines of how to solve problems connected with the subject under consideration.
Finally, some worked out examples are given, in many cases in several variants, because the standard
solution method is seldom the only way, and it may even be clumsy compared with other possibilities.

I have as far as possible structured the examples according to the following scheme:
A Awareness, i.e. a short description of what is the problem.

D Decision, i.e. a reflection over what should be done with the problem.

I Implementation, i.e. where all the calculations are made.

C Control, i.e. a test of the result.

This is an ideal form of a general procedure of solution. It can be used in any situation and it is not
linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a
situation which did not contain Mathematics at all. The student is recommended to use it also in
other disciplines.

From high school one is used to immediately to proceed to I. Implementation. However, examples
and problems at university level, let alone situations in real life, are often so complicated that it in
general will be a good investment also to spend some time on the first two points above in order to
be absolutely certain of what to do in a particular case. Note that the first three points, ADI, can
always be executed.

This is unfortunately not the case with C Control, because it from now on may be difficult, if possible,
to check one’s solution. It is only an extra securing whenever it is possible, but we cannot include it
always in our solution form above.

I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a
shorthand, because they are often (too often, I would say) misused. Instead of A I shall either write
“and”, or a comma, and instead of V I shall write “or”. The arrows = and < are in particular
misunderstood by the students, so they should be totally avoided. They are not telegram short hands,
and from a logical point of view they usually do not make sense at all! Instead, write in a plain
language what you mean or want to do. This is difficult in the beginning, but after some practice it
becomes routine, and it will give more precise information.

When we deal with multiple integrals, one of the possible pedagogical ways of solving problems has
been to colour variables, integrals and upper and lower bounds in blue, red and green, so the reader
by the colour code can see in each integral what is the variable, and what are the parameters, which
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do not enter the integration under consideration. We shall of course build up a hierarchy of these
colours, so the order of integration will always be defined. As already mentioned above we reserve
the colour black for the theoretical expressions, where we cannot use ordinary calculus, because the
symbols are only shorthand for a concept.

The author has been very grateful to his old friend and colleague, the late Per Wennerberg Karlsson,
for many discussions of how to present these difficult topics on real functions in several variables, and
for his permission to use his textbook as a template of this present series. Nevertheless, the author
has felt it necessary to make quite a few changes compared with the old textbook, because we did not
always agree, and some of the topics could also be explained in another way, and then of course the
results of our discussions have here been put in writing for the first time.

The author also adds some calculations in MAPLE, which interact nicely with the theoretic text.
Note, however, that when one applies MAPLE, one is forced first to make a geometrical analysis of
the domain of integration, i.e. apply some of the techniques developed in the present books.

The theory and methods of these volumes on “Real Functions in Several Variables” are applied
constantly in higher Mathematics, Mechanics and Engineering Sciences. It is of paramount importance
for the calculations in Probability Theory, where one constantly integrate over some point set in space.

It is my hope that this text, these guidelines and these examples, of which many are treated in more
ways to show that the solutions procedures are not unique, may be of some inspiration for the students
who have just started their studies at the universities.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.

I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
March 21, 2015
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Introduction to volume 111,
Differentiable Functions in Several Variables

This is the third volume in the series of books on Real Functions in Several Variables. Its topic is
differential functions. The idea of differentiability goes back to the technique of approximation of a
problem by linearizing it. Consider a differentiable function f: A — R, A C R, in only one variable.
When we want to describe the behaviour of f in the neighbourhood of a point zg € A, we may
approximately describe the graph of f by its tangent at the point (zo, f (z9)), i.e. the line given by
the equation

y = f (o) + f'(20) - (x — wo) = f (x0) + f' (20) h,
where we have introduced the new variable h := x — z(, which is actually used on the tangent.

It is tempting to extend this model to higher dimensions. If f : A — R is a differentiable function in
two variables (z,y) (whatever “differentiable” means in this case; it has not been defined yet), then
it would be natural to approximate f(z,y) instead by approximating the graph of f at a given point
by its tangent plane at this point. The tangent plane should be 2-dimensional, so the points of the
tangent plane are specified by the chosen point x = (x,y) € A and the two coordinates h = (hq, ha)
“living on” the approximating plane. Therefore, it is natural to expect that the function is a function
in two sets of variables, (x,h) € A x R?.

The program above clearly needs a lot of tidying, where we first must deviate from the general idea. In
the first section we make the definitions precise and show that the differentiability in higher dimensions
has most of its properties in common with differentiability in one dimension. We also introduce
differentiable vector functions, at the approximating polynomial of degree 1 in the coordinates. The
latter is closely connected with the equation of the tangent (hyper)plane of the graph, but it also
opens up for other generalizations later on.

Then follows a section on the chain rule, which describes how one differentiates a composite function
in several variables. This section is fairly technical, and the author has had many discussions with his
late colleague, Per Wennerberg Karlsson, of how to present the matter in the best way.
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9 Differentiable functions in several variables

9.1 Differentiability
9.1.1 The gradient and the differential

We shall first consider the well-known case of a differentiable function in one variable. The reason is
that we then are able to analyze how to proceed with the generalization to differentiable functions in
several variables.

When f: A — R, A C R is a function in just one variable, there are two equivalent ways to introduce
differentiability of f. The first method, known from high school, requires that the difference quotient
at = below has a well-defined limit for h — 0, i.e.

(9.1) w —a for h — 0.

The second method, which here may be obtained from (9.1), when we multiply by h, requires that
the increase of the function f at the point x satisfies

(02)  fla+h) - f(a) = ah+e(h)|h],

where a is some constant, and where €(h) denotes some function, for which (k) — 0 for b — 0. Since
we can redefine ¢(h) and build in the sign of h, we may just write e(h)h instead of e(h)|h|.

Let us turn to functions in several variables, like f : A — R, where A C R™ and n > 2. It follows
immediately that we cannot generalize (9.1), because the pair (x,h) in one dimensional should be
replaced by the pair of vectors (x,h). A generalization of (9.1) would require that we should have a
vector h in the denominator, and that is not possible.

Fortunately, (9.2) is easy to generalize.

Definition 9.1 Differentiability. Let A C R™ be an open set, and let f: A — R be a function on A.
We call f differentiable at the point x € A, if for all h, for which x +h € A,

fx+h) - f(x)=a-h+e(h)h],
where the vector a is independent ofh is some function, for which e(h) — 0 for h — 0.

The interpretation of this definition of differentiability at x € A is, that the increase (decrease) of the
function,

Af = f(x+h) - f(x),

behaves locally as a linear function a - h in the increase h of the variable, plus a term e(h)||hl|, which
tends faster towards 0 for h — O than the linear function a - h.

In particular, Af — 0 for h — 0, so we get the result:

A differentiable function at x € A is also continuous at x € A.

Download free eBooks at bookboon.com



Let A CR", n > 2, be an open set. If a function f: A — R is differentiable at every point x € A, we
call it differentiable in A, or just differentiable.

If f: A — R is differentiable at x € A, i.e.
f(x+h) = f(x) =a-h+e(h)|h],
then the vector a is uniquely determined at x. In fact, assume that also
f(x+h)— f(x)=a;-h+e)|h|.
Then by subtraction,
0=(a—ay) -h+eh)|h|.
Choosing h = A (a — a;), we get
0=Aa-al’+e\(@a-a))- A Ja-al,

where the latter term tends faster towards 0 than A for A — 0. This is only possible, if ||a — a; ||2 =0,
and we conclude that a; = a, and the uniqueness of a is proved.

In general, the vector a depends on x € A, so a = a(x) is a vector field. We call it the gradient of f
and denote it by

a=grad f(x) =v/f(x),
where “5/” reads “nabla”.

Remark. In the 1800s, when the gradient was introduced, the mathematicians needed a name for its
shorthand notation v7. At that time one had just started the excavations of ruins in the Middle East,
and Assyrian became fashionable. The inverted triangle 57 resembled an Assyrian harp as shown on
the bas reliefs, and its name in Assyrian was “nabla” as read on the cuneiform tablets. ¢

The gradient is therefore defined by the increase of the function in the following way,
Af = flx+x)
= h-vf(x)+eh)|h|, where (h) — 0 for h — 0.

Here we should strictly speaking more correctly write £(x,h), because this e-function also depends
on the point x € A. However, we shall only consider it for fixed x € A, so we leave out the x in the
notation.

The linear part of the increase A f of the function is called the differential of f and denoted df. When
the domain A of f is open in R"”, then the differential is a function in 2n variables. More specific,

df(x,h) =h-vf(x).

We note that if n = 1, then 7 f(z) = f’(z), so the gradient is equal to the differential quotient in this
case. Furthermore, its differential is (in one variable)

df(z,h) = f'(z) h = v f(z)h,
so the gradient 7 f in n-dimensional space is a replacement of the derivative f’(x), when n = 1.

This extension v/ f, inherits the same rules of computation as the derivative f’. We mention the
following, where we assume that A C R" is open:
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1) Let «a, 8 be constants, and f, g : A — R differential functions. Then
viaf+89)=av f+B8vy.

2) If f, g: A — R are differentiable functions, then
vifg)=Ffvg+gv/f

3) If «v is a constant, then
vo=0.

These rules of computation are proved in the same way as for the derivative of functions in one
variable.

In order to become familiar with a new concept it is customary in practice always to start by consid-
ering polynomials of first and second degree in the coordinates.

1) A polynomial of first degree in the rectangular coordinates is written
fx)=a+Db-x, for x € R",

where a € R is a constant, and b € R™ \ {0} is a constant vector. The increase of the function is
written

Af:=f(x+h)—f(x)=a+b-(x+h)—a—b-x=b-h,
so we only get the linear term in h and no e-function. We conclude that
vf=Db and df(x,h)=b-h.
We mention the special case, when n = 2, in which case we have
flz,y)=a+bx+ct and v flz,y) = (b, c).
2) Then we consider a special polynomial of second degree in the coordinates, namely
fx)=x-x for x € R™.
The increase is here
Af = f(x+h)—f(x)=(x+h)-(x+h)—x-x
= x-x+2h-x+h-h—x-x=2x-h+|h|?%
Since e(h|/h| = ||h||?, we see that e(h) = ||h|| — 0 for ||h|| — 0, so
vf=2x and df(x,h) =2x-h.
When n = 2 we have
flay)=2*+y*>  and v f(z,y) = (22,2y).
Concerning applications in Physics we here just mention that the gradient enters Fourier’s law
q=-AvT,

where q denotes the density of the heat flow, and T is the temperature, and )\ is the constant of the
heat conductivity.

We find the same mathematical structure in Fick’s first law of diffusion, and in Ohm’s law for an
electric current.
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9.1.2 Partial derivatives

We derived previously a vector field, the gradient 57 f, of a differentiable function. We shall next find
the coordinates of this gradient.

As usual, let the domain A C R™ of f be an open set. Choose a (fixed) point x = (z1,...,2,) € A,
and introduce the auxiliary function

filt) = f(t,xa, .. xn) .

If fy is differentiable for ¢t = x1, we call its derivative f{ (x1) the partial derivative of f(x) with respect
to the first variable x1. More specifically,

f{ (331) — Im f1 ($1+h)—f1 (331) — im f(J’l —I—h,arg,...,xn)—f(xl,xg,...,a:n).
0 h h—0 h

In this construction we have confined h to the special vectors of the form h = (h,0,...,0), in which
case the problem of taking the limit has become 1-dimensional, so we can use (9.1), known from high
school.

Even if the partial derivative of f exists with respect to x1, we cannot be sure that the function f
itself is differentiable. Let us for the time being assume that f is differentiable at x. Then the first
coordinate of 57 f at x is indeed the partial derivative f](x) introduced above.

.
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In fact, let h = (h,0,...,0). Then

fitwi+h) = fi(z) = fle+hze,...,20) = f(z1,22,...,2)
= (1,0,...,0)- Vf(x) +e(h)h=h-{(Vf(x)1 +e(h)},
where (57 f(x))1 denotes the first rectangular coordinate of <7 f(x). When h — 0, then it follows that

the auxiliary function f; is differentiable at ¢ = x1, and its derivative is the first coordinate (7 f(x))1
of the gradient at x, and we have proved that

fi(@) = (V) = Vf(x)-er

An analogous analysis gives us the partial derivative of f with respect to the j-th coordinate z;, for
i=1),2,...,n.

We shall of course not use the auxiliary function f]' (z1) as our notation for the partial derivative of
f with respect to x;. Instead we write one of the following possibilities,

of

0, gl Difx).

Lj
We shall often leave out the variable x and just write

of

f:/Cj 5 axj or Dj f
In the frequently considered case of R3, i.e. when n = 3, we usually write
of of of
! ! !
fz?fya fza or %7@7&7 or DInyf7 DZf

Similarly for n = 2, where the z-coordinate does not appear.

Since the coordinates of the gradient are the partial derivatives, we immediately get

Theorem 9.1 Let A C R" be an open set. Assume that f : A — R is differentiable. Then all its
partial derivatives exist, and the gradient is given by

_ (91 9f
Vf_(83:17""83:n>'

It follows from Theorem 9.1 that when f is differentiable (and thus the gradient exists), then the
gradient is unique. On the other hand, one must be aware of strange phenomena like all partial
derivatives of f exist at a point, and yet f is not differentiable, so the gradient does not exist. A
simple illustrative example is given by the function

ry
2 20 (‘ray) 7& (0,0)7
f(xvy) = vy
0, (z,y) = (0,0).

We have in Chapter 2 shown that f(x,y) is not continuous at (0,0). If one has forgotten this, just
restrict the function to the line y = 2z, x # 0, on which f(z,2z) =1 — 1 # 0 for z — 0. The function
f has nevertheless partial derivatives at (0, 0), because the restriction to the z-axis is

of

f(z,0)=0 for all x € R, with 8—(07 0) =0,
x
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and the restriction to the y-axis is

f(0,y) =0 forallyeR, with %(07 0) =0.

Y

In order to obtain a positive result we mention without the long proof (it consists of two pages) of the
following theorem.

Theorem 9.2 Let A C R™ be open, and let f : A — R be a given function. Assume that all the
partial derivatives of f exist in a whole neighbourhood of x € A and are all continuous, (this means
that we can find an open ball B(x,r) C A, in which all derivatives of f exist and are continuous) then
f is even differentiable at x.

In most cases we prove the differentiability of a function f by applying Theorem 9.2 in the following
way: First we calculate all the partial derivatives in a neighbourhood of the given point x € A, and
then we show that they are all continuous.

It is of course not hard to show that the continuity of the partial derivatives fail in the case of the
function

ry
"2, 9 (a:,y) 7é (050)7
[l y) = Y
0, (z,y) = (0,0).

The following theorem is a generalization of a well-known result from the theory of real functions in
one variable, namely that if f is differentiable, and f’ is zero everywhere in an interval, then f is a
constant. The trick in the proof is to use this 1-dimensional theorem repeatedly.

Theorem 9.3 Given an open domain A in R™, and assume that f : A — R is differentiable of
gradient 7 f = 0 everywhere in A. Then f is constant in A.

SKETCH OF PROOF. First note that the gradient in the formulation of Theorem 9.3 is used as a
shorthand for the generalization of the derivative in one dimension. In order to apply the corresponding
theorem in one dimension we of course use the partial derivatives instead. We shall use that since the
open domain A is open and connected, we can to any two points a, b € A find a step line connecting
them. This is a continuous curve lying totally in A with a as starting point and b as final point
and consisting only of axiparallel line segments, on each of which just one coordinate varies. We can
exploit this, because then we can locally formulate the problem by the partial derivative with respect
to this variable.

The gradient was assumed to be 0 everywhere in A, i.e. \7f = 0. Then along each of the afore
mentioned axiparallel line segments, the restriction f; of f is an ordinary function in one variable, for
which f{ = 0. It follows from the 1-dimensional result that f; is constant on this line segment. This is
true for all axiparallel line segments of the step line, and as f is also continuous, then constant must
be the same on all line segments. In particular, f(a) = f(b). As a, b € A were chosen arbitrarily, we
finally conclude that f is constant on A. [J
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We here add the proof of the result that if f, g: A — R are both differentiable, then

V(ifg9)=fvg+gv il

When we look at each coordinate separately, the proof is straightforward. In fact,

0 0 0
)= G2 =1 % 4 3L — 90+ 90 = 9+ 99 1)

where the lower index j indicates the j-th coordinate.

We include an important observation on functions defined by an integral of variable upper and lower
bounds and with an extra variable in the integrand which in the integration process is considered as
a parameter for the time being. Let us for example consider the following integral

G(x,y,z) = /y f(t,l‘) di,

which will illustrate the principle. We shall often in the following volumes meet such functions, so
that is why we here premise a remark to the effect that they will be at hand later on, when they are
needed.

Assume that the integrand f is continuous. Then it has an antiderivative F(t,x), which satisfies
F/(t,z) = f(t,z). Then we use the main theorem of differential and integration calculus in one
variable to get

G(z,y,2) = Fly,x) - F(z,2).

We then turn to the problem of finding yG. Clearly, y and z are the easy variables, because the
partial derivatives are straightforward,

G;(m,y,z) = Fy/(y’x) -0= f(yax)a
G/z(xayvz) =0- F;(Z,l’) = —f(Z,(E).

The variable x enters here only the integrand, so one would expect that

Gl (z,y,2) = /y f(t, x) dt.

This is true, if we furthermore assume that the partial derivative f. of the integrand is continuous! So
when both f(¢,z) and f.(¢, ) are continuous, the gradient of G(x,y, z) given as the integral above is

vo = ([ ftto s 1),

Remark 9.1 We have of course here chosen a purely mathematical notation. In the applications
in e.g. Physics this notation may sometimes be ambiguous, so one is forced to modify the notation
in order to make it more precise. Let us consider a thermodynamic system. In this we have the
following possible variables, the volume V, the pressure p, the temperature 7" and the entropy S. The
ambiguity of the previous notation occurs because the system is totally described by just two of these
four variables. This means that a notation like %—‘; is not unique, unless one also makes it precise, if the
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state of the system is determined by (p,T'), or by (p, S). One usually adds an index, like for instance
AV or (2Y) | resp.. Here, (2Y) means the partial derivative of the volume with respect to
o )r )g o )

the pressure, provided that the temperature 7' is kept constant. Similarly, (%—‘;) means that the

entropy is kept constant. This change of notation makes it easier in Thermodynamics to formulate
many results than if we instead had only used the pure mathematical notation. We mention here the
so-called Mazwell relation, which in the physical notation becomes

(3T> _ (3">
o/, 95/,
The reader can easily imagine the problems in only using the mathematical notations, because then

we had to add a comment on that the entropy S is kept constant on the left hand side of the equation,
while we on the right hand side of the equation instead keep the pressure fixed. ¢
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9.1.3 Differentiable vector functions

A vector function f : A — R™, where A C R", is called differentiable, if all its coordinate functions
are differentiable. This means more precisely that

filx+h) - fi(x) =h-vfi(x)+e(h)]h], where e(h) - 0 forh — 0, fori=1,...,m.
Combining all coordinates we have

f(x+h) — f(x) = (h-)f(x) +e(h)|hl, where ¢(h) - 0 for h — 0.
We define the differential of the vector function,

df(x, h) = (h - V)E(x),
by all its coordinates,

(b D)) = (h- T B V() = (Afa(X), ., dfm(x)).

If we here choose f as the identity map, i.e. f(x) := x, then f(x + h) — f(x) = h, so the differential
becomes

df(x,h) = h.

When we write x instead of f we get the strictly speaking incorrect, though very practical notation,
namely dx = h, and hence in general,

df =dx-vf in one dimension,

df = (dx - ¢)f in several dimensions.

All information on the mn partial derivatives of f is collected in the so-called functional matriz Df,
which is defined by

of1 2!

%(X) E(X)
Dfx) = | -

dfm 9 fm

and we get by using some Linear Algebra that the differential can be written as a matriz product,
df(x,h) = (Df(x)) h, or for short df = (Df)h,

where h should be written as an (n x 1)-column.
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9.1.4 The approximating polynomial of degree 1
Let us return to the definition of the differentiability of a function f: A — R, i.e.

f(x) = f(x0) + (x —x0) - Vf (x0) + € (x — x0) [[x — %ol| ,

where xg € A is the chosen point, and where we have written the increment as h = x — xg. Since
e(x—x9) — 0 for x — xg, it follows that the approximation by a polynomial of degree 1 in a
neighbourhood of x¢ € A is given by

f(x) ~ Pi(x),
where we have defined
Pi(x) := f(x0) + (x —%0) - Vf (X0) -

We call this P; (x) the approzimating polynomial of at most degree 1 of the function f at the point of
eTpansion Xq.

Remark 9.2 It is important to keep the variable in the form x — %o = (z1 — Zo1, ..., Tn — Ton), and
not to reduce it to a function in x alone. The reason is that we in the applications only use the
approximating polynomial in the neighbourhood of xg, where x — xg is small. ¢

We mention for later references the structures of the approximating polynomials for n = 2 and n = 3,

Pi(z,y) = f (zo,y0) + fr (x0,%0) (x — x0) + f, (x0,%0) (¥ — ¥0) , for n =2,
Pi(z,y,2) = f(20,0,20) + fz (x0, Y0, 20) (z — z0) + f (20, Y0, 20) + f, (0, Y0, 20) (¥ — ¥o)
+f (x07y0720)+f; (x07y0720) (Z_ZO)7 forn:3.

As a simple application we consider the function f(z,y) in two variables given by
flz,y) = exp (x2 - y2) for (z,y) € R2,
where we shall find the approximating polynomial of degree 1 derived from the point of expansion
(zo,90) = (1,-1).
We first calculate
fi(x,y) = 2z exp (;v2 — y2) and fo(x,y) = —2yexp (x2 — y2) )
Then we compute all the necessary constants,
f,-1=1,  fi(l,-1)=2,  fi(1,-1)=2.
By insertion the approximating polynomial becomes
Pi(z,y) =1+42(x—1)+2(y + 1),
which is reasonable useful, when (z — 1,y + 1) is small. As an example we get
P;(0.95,—-1.02) = 0.86, in comparison with f(0.95,—1.02) = 0.87118-- - .

If we instead “reduce” Pj(z,y) to a polynomial in (z,y), then we use (0,0) as expansion point for an
approximation, which is only reasonable at a point (1, —1) far away. The result P (z,y) = 1+ 2z +2y
looks of course nicer, but we lose the important information that it can only be used for (z — 1,y + 1)
small. Therefore: Always keep the variable in the form x — xg, where xg is the point of expansion.
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9.2 The chain rule
9.2.1 The elementary chain rule

As usual we start with the 1-dimensional case in order to find out in what direction we should go,
when we generalize to the case of higher dimensions.

The elementary chain rule. Let f: A — R and X : B — A be two differentiable functions, each
in one variable. Then the composite function F := fo X : B — R is also differentiable, and

dF daf X
“du = %( (u)) %(U)v

which is also written

F'u) = f1(X ()X (u).

R f
f

A X
X

B u

Figure 9.1: The elementary chain rule. The composite function is F = fo X : B — R (the tree to the
left), so first we map u € B into z = X (u) € A, which is then mapped into

f(@) = f(X(u)) = (f o X)(u).

To the right we have indicated the three levels. We shall differentiate f on the highest level with
respect to u € B on the lowest level, through z € A in the middle level.

PRrOOF. Obviously, the composite function F' := fo X : B — R is well-defined. We shall prove that
it is also differentiable.

Let up € B. Then o = X (up) € A, and we can find an open neighbourhood B; C B of uy, such that
x = X(u) € A for all u € B;. We may of course in the following assume that By = B.

Let Awu denote an increment of u € B, such that also u + Au € B. We have assumed that X is
differentiable, so

X(u+Au) — X(u) :=AX =0 for Au— 0 and u, u + Au € B,
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R £=(/), .. 1,,)

f=(f1,...,fm)

A CRF x=(x1,...,xk)
X

B R u=(ul,...,un>

Figure 9.2: The general scheme of the chain rule. We shall differentiate the vector function f at the
highest level with respect to u on the lowest level via x on the middle level. Only the middle level x
will be in contact with both the upper level f and the lower level u.

and also

AX
Au

which can be written in the form (after a rearrangement)

— X' (u) for Au — 0,

X(u+ Au) = X (u) + X' (u)Au + e(Au)Au, where £(Au) — 0 for Au — 0.
We also assumed that the function f is differentiable in A, so
flx+Az)— f(x) =Af =0 for Ax - 0and x + Az € A,

and

Af
Az

and
flx+ Az) = f(z) + f(2)Az + e(Az)Axz.
Using that F(u) := f(X(u)), and that X (u+ Au) € A for u, u + Au € B, we get

— f(x) for Az — 0,

A P du) - Py = L (Xt Aw) — (X (W)
_ i{f(X(u)-i—AX)—f(X(u))}
_ i {F(X(w) + f'(X () AX +(AX)AX — f(X(u))}
— (X () - i—f Fe(AX) = (X (W) - X'(u)  for Au 0,
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and the elementary chain rule is proved. O

We shall in the following generalize this elementary chain rule to the higher dimensional case as
described schematically on Figure 9.2. We still keep the arrows, but later we shall exclude them,
because we shall always calculate the derivatives from below, i.e. in the upward direction. First we
note that the vector function f(x) is a function of the vector x, which again is a function of the vector
u. Clearly, at head on approach is doomed to fail, so we shall first analyze a couple of simpler cases,
before we show the chain rule in general. The chain rule may at the first glance seem very technical.
It is, however, important in the practical applications.
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9.2.2 The first special case

We first consider the case where m = k = 1 and n > 1. In the following we shall only consider the
trees to the right in Figure 9.1 and Figure 9.2.

f m=1 f
X k=1 X
u, u, n>1 u]

Figure 9.3: The chain rule in the first special case. The subtree, where we only differentiate with
respect to one variable u; is shown to the right.

When we confine ourselves to the partial derivatives of the composite function with respect to u;,
it follows from the tree at the right hand side of Figure 9.3 that when all the other u-variables are
considered as parameters, then we have reduced the problem to the elementary case of the one-
dimensional chain rule, so if we write F' = f o X, we get

OF , . df 0X

Tuj(u)— dx(X(“))aTJ(“)’ forj=1,...,n.

Collecting all the coordinate functions in one equation, we get the following

First special case of the chain rule. If f: A - R, where ACR, and X : B — A, where B CR",
and F'=foX : B —R, then

Flu)=f(X(u) and v F(u)=f(X()vX().

One particular case will be useful in the following, namely when

Flu)= f (m)

only depends on the distance from 0 in the u-space. If u # 0, we put
8X U1

X(u) = |jul| = \/uZ+--+u2 where ——

= —— etc.
oup |l

SO
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When F(u) = f(||u]|) and u # 0, we get by the chain rule above that

VF () = f([[al)—

u
[Jul|
In other words, the gradient of F is in this special case equal to the derivative f’ of f, multiplied by

a unit vector, which is directed away from origo.

9.2.3 The second special case

This case is also easy. We choose m > 1 and k =n = 1, so we get the tree on Figure 9.4.

fi fm m>1 f]‘
X =1 X
u n=] u

Figure 9.4: The chain rule in the second special case. The subtree, where we only differentiate one
function f; is shown to the right.

The j-th coordinate function Fj(u) = f;(X (u)) is differentiated in the following way, according to the
elementary chain rule,

dF;  df; dx

E(u) = 4 (X (u)) E(u)7 forj=1,...,m.

Putting all coordinate functions together we obtain:

Second special case of the chain rule. Iff: A — R™, where A C R, and X : B — A, where
BCR,andF=foX :B —R, then

F(u) = f(X (u)) and  F'(u) = (X (u)).

309
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9.2.4 The third special case

This is the most complicated special case, where £ > 1, while m = n = 1. The tree is shown to the
left of Figure 9.5 with the general case to the left, and the special case of k = 2 to the right.

N S
DAY

u

=

N

m
n u

Figure 9.5: The chain rule in the third special case. The subtree, where we only have two variables,
x and vy, is shown to the right.

In order to avoid a mess of indices in the proof we shall only prove this special case for k = 2, where
we use (z,y) instead of (x1,z2). We shall therefore consider the composite function

F(u) = f(X(u),Y(u)).
Once the chain rule has been proved in this special case, it is easy to generalize.

Before we prove the chain rule in this case, we make some preparations. If the variable u is given an
increment Awu, then we put

X(u+ Au) = X(u) + AX and Y(u+ Au) :=Y (u) + AY.
We assume of course that X (u) and Y (u) are differentiable, so
AX -0 and AY —0 for Au — 0,

and

AX , AY ,
E%X(u) and E%Y(u) for Au — 0.

Furthermore, we assume that the function f is differentiable at the point (z,y). This means that

fa+Az,y+Ay) = f(z,y) + fole,y) Az + fi(z,y)Ay + e(Az, Ay)y/ (Deltaz)?+ (Ay)?,
where e(Az, Ay) — 0 for (Az, Ay) — (0,0), i.e. for /(Ax)2 + (Ay)? — 0.

Then we have to put all things together, so we shall compute the differential quotient of the composite
function F'(u) = F(X(u),Y (u)) and use the above to reformulate this expression.
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We get

AF L (X e+ Au), Y(u+ M) — F(X (), Y ()}

Aw - Au U u), Y (u U u), Y (u))}.
Then insert X (u+ Au) = X (u) + AX and Y (u + Au) = Y (u) + AY to get

AF

1
Ry = A X))+ AXY (u) + AY) — f(X (), Y (u))}

- Aiu {f2(X(u), Y (u)AX + fy(X(u),Y (u)AY } + Aiu e(AX,AY)\/(AX)2 1 (AY)2

where the + indicates the sign of Awu.
Then by taking the limit Au — 0,

)= Jim 25 = £000), Y @)X () + £ (X (), Y ()Y (w),

because

\/(%)2 N (%)2 S /(XW2 1 (Y(@)? s finite for Au — 0,

and e(AX,AY) — 0 for Au — 0.
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Summing up, we have proved the chain rule for kK =2 and m =n = 1:
Third special case of the chain rule for k =2. If f : A — R, where A CR?, and (X,Y): B — A,
where BC R, and F = fo(X,Y): B — R, then

Flu) = f(X(),Y()  and  F'w) = [£2(e,9)X () + £ )Y 0], oy

In practice we first compute the partial derivatives f; (z,y) and f;(z,y), and then the ordinary deriva-
tives X' (u) and Y’ (u), for finally to insert = X (u) and y = Y'(u). A short way of writing this formula
is

dF  9f de  Of dy

du ~ 8z du ' 9y du’

This version of the chain rule is often used, when the function which should be differentiated, is fairly
complicated. We illustrate this by considering the function

F(u) = Arctan <\/ w) , for u € R.
e +sinwu

The trick is to write F(u) = f(X (u),Y (u)) as a composite function. Here one would choose

f(z,y) = Arctan <\/§> for (z,y) € R?,

and
X(u) =e" —sinu and Y(u)=e"+sinu for u € R.

(Note that X (u), Y(u) > 0 for u € R.)

Then
1 1 Y , 1 —/T -z
f; T,Y) = ’ = ) f T,Y) = ’ = )
() 142 2y 2z +y)Ty o(@:9) 1+2 2yy 2(x+y)/ay
Y Y
while
X'(u)=¢€“—cosu  and  Y'(u)=e"+ cosu.

By insertion of X (u) = €* — sinu and Y (u) = e* + sinu we get

—e¥ +sinu

9
2. 2euv/e2v —gin?y

e" 4+ sinu

folz,y) = ,
2.2t/ e2v —gin?u

and  f,(z,y) =
S0
Fla) = [Fn)X @+ ey W], o

1
= {(e" +sinu) (e" — cosu) — (e* — sinu) (€* + cosu)}
4eur/e2u — sin® u

1 “ . , sinu — cosu
= —e (—cosu—}—smu—}—smu—cosu)z—2.
4evr/e2v —gin® u 2¢y/e2v —sin“u
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If we here apply MAPLE, we write
d e* — sin(u)
— arctan |,
du e* + sin(u)
which produces the following

e" —cos(u)  (e" —sin(u)) (" 4 cos(u))

1 et sin(u) (e +sin(u))?

2 e* — sin(u) e — sin(u)
. 1+ .

e* + sin(u) et + sin(u)

which clearly needs to be reduced.
Without going into details we mention that if £ > 2, then we just copy the proof above to get

Third special case of the chain rule for k > 2. If f : A = R, where A CRF, and X : B — A,
where BCRF, and F = foX : B — R, then F(u) = f(X(u)), and

F'(u) = [f1, ) X{(u) + - + fr, (Xp ()] ) = VX (w) - X (u).

The latter equation follows from that the first result actually is a scalar product.

An important application occurs, when we shall differentiate a function, which is given by an integral,
in which the upper and lower bounds are differentiable functions in the variable under consideration,
as well as the integrand. Let us consider

Y (z)
g(x) = / f(t,x)de, rel,

Z(x)

where I is an interval. We define a function G(x,y, z) in three variables by

G(z,y,z /ftz

and then note that

9(x) = G(x,Y (x), Z(x)).

We have previously found that

@)= [ LEDd G = o) Gl = —flea),
so we get by the chain rule for k =3 and m =n =1 and X (z) = «, that
dg _ 0G AX  0G dY  9G dz
de  Oxr dx Oy dz 0z dzx

Y (z)
/Z ) Q) DY @) - 12, 07 @)

This rule is valid, when the functions f, f., Y/ and Z’ are all continuous.
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i o fm
T Tk
A
U’l ... un

Figure 9.6: The general diagram of the chain rule.

9.2.5 The general chain rule

In the general case we have the situation as described on Figure 9.6. By fixing the index r € {1,...,m}
in the upper layer and j € {1,...,n} in the lower layer we reduce the complicated scheme of Figure 9.6
to Figure 9.7, which we recognize as the diagram for the third special case of the chain rule in

Section 9.2.4. Therefore, the general chain rule follows by gluing all cases together of r € {1,...,m}
and j € {1,...,n}.

xr1 PP Tk

uj
Figure 9.7: The reduced diagram of the chain rule.
The general chain rule. Given the composite function F(u) = £(X(u)), where the coordinate
functions are given by
Fr (u1y. . un) = fr X (ug,...,up)).

If £ and X are differentiable, then so is F = f o X, and we get for each coordinate function F, and
each variable u; that

OF, _ Ofr 0X, ofr 0,
8Uj W= 81E1 (X u 8uj (u) + amk (X N an (u)7
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forre{l,...,m} and j € {1,...,n}.
If we use the functional matriz differential operator D defined by

]D)f = { 8fr } 9
8U'j r=1,...,m;j=1,....,n

then the gemeral chain rule can also be written in the following matriz notation,

D(£ o X)(u) = DE(X (u))DX (u).

Clearly, all the previously obtained special cases are obtained by putting (at least) two of the numbers
m, k, n equal to 1 (and trivially replace “0” by “d”, when we have got only one variable.

A frequent application consists in the change from rectangular coordinates in the plane to polar
coordinates. So given the function f : A — R, where A C R?, we shall consider partial differentiations
with respect to the polar coordinates (g, ¢) of

F(o,¢) = f(z,y) = f(ocosp, osinp).
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7N

Figure 9.8: The diagram for partial differentiation in polar coordinates in the plane instead of in
rectangular coordinates.

We get by the chain rule,

g*g%+ﬁ@*g( cos sin ) cos +g( cos sin @) sin
Do~ 0z Do Oy Dp o LCOSPesmP)costy (ocosp, osmp)sing,

and

a_F_g%'i_ﬁ@_g( cos ¢, osin p)(—osin )‘f‘ﬁ( cos @, psin p) g cos
B 0z 0p Oy 0p Oy Qe8P esin@)(mesing) g (ecosy, esing)ecos e,

or with an understandable shorthand,

oF  Of of . oF of . of
—— = 7 COs@ + - siny, —— = — - psSImy+ —— pCcosy,
do Ox

oy dp Ox oy
where we first differentiate f with respect to x and y, and then insert x = pcos, y = gsin into the
result.

This is an example of the general principle in practical applications. We shall usually not bother with
whether we are considering f or F, and we shall usually in the first calculation leave out the variables.

The method is that we differentiate through all variables on the middle level and finally add all these
results,

8fr - 8fr 8951 afr 8xk

Ou;  Omy Ou; | Oy Ouy’

where the blue variables from the middle level are added,

Note that the symbol of a partial differential quotient is a notation and not a fraction, so one cannot
just cancel all the blue contributions. An furthermore, in the final result, only the variables u (and
not x) should occur.
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9.3 Directional derivative

We shall sometimes need the derivative of a function f(x) in a specific direction from a given point x.
Let e be a unit vector starting at the point x and pointing in the direction, in which we want to find
the derivative. Take the restriction of f to a line segment through x in the direction e, i.e. we define

F(t) = f(x +te), fort e I,

where I C R is some open interval, for which 0 € I. Then F(t), ¢t € I, is an ordinary function in ¢,
while the right hand side f(x 4+ te) is a composite function,

F=foX, where X(t) = x +te = (x1 + tey,...,z, + tey).
Then by the chain rule,

af dxq af dx,
Fl(t) = =L —~ ...
®) Ox, dt + Oz, dt

=vf(x)-X'(t) =e-vf(x+te)

Consider in particular F’(0). The interpretation of F’(0) is that it gives a measure of the variation
of f, when one moves a small distance from x in the direction of e. We call F'(0) the directional
derivative of f in the direction of e, and we shall use the notation

fl(x,e) (= F'(0)) =e-vf(x).

Since e is a unit vector, we clearly have the inequalities

IV < f(xe) <V I

We obtain equality to the left, when e is pointing in the opposite direction of v/ f(x), and similarly
equality to the right, when the unit vector e points in the same direction as 57 f(x. In particular, the
gradient 5/ f(x is pointing in the direction from the point x, in which the function f(x) obtains its
biggest increase.

If the unit vector e is chosen as one of the vectors of the orthonormal basis, e;, then the directional
derivative is equal to the partial derivative with respect to z;, i.e.

of _

oz, e v f(x),

which we have also seen previously.

We mention in this connection a slightly different problem, the solution of which is derived from the
above. Given two different points xg, x; € A. We shall find the directional derivative of f(x) in the
direction from xy towards x;.

We shall only find the unit vector, which points from xo towards x;. This is clearly

X1 — Xp
e =—
[[x1 — ol

so the directional derivative of f at x¢ in the direction from xg towards x; is given by
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9.4 ("-functions
We have previously introduced the partial derivatives of first order

of of
6561’.“731';@

of a function f : A — R, where A C R¥, whenever they do exist. One may be tempted to check if
these (at most) k partial derivatives of first order again are differentiable functions with respect to
the variables x = (x1,...,xr). When this is the case, we call the results partial derivatives of second
order.

0]

Assume that 8_f has a partial derivative with respect to the variable x;. We shall then use one of
Xq

the following notations for this partial derivative of second order:

0 (21 0 ,
3—%<8—@(X)>, axjaxi(x)’ fiwys or DiD;if(x).

The symbol closest to the function f is always applied first. However, we mention that some authors
prefer to write in the opposite order
0% f )
—(x
8131'8133' ’
so here the order of differentiation follows the way this symbol is read. In practice this will not cause
any trouble, because we shall see in the following that under very mild assumptions, which are always
met in the rest of this series of books, we have
0% f B o%f
6:51-6:53» - &vjaxi’

no matter which interpretation we have chosen.

If x; = x;, we also write
0% f
922 (x), or I ;/12 (x). or D} f(x)
3
for the corresponding partial derivative of second order.

The extension from partial derivatives of order 1 to partial derivatives of order 2 is the biggest one.
Once we have understood this step, it is obvious how to introduce partial derivatives of order n,
whenever they exist. Also, the notation of the partial derivatives of order n,

o" n
m(x)7 f;i)r (%), or Dj, --- Dy, f(x),

1

is easy to understand.

When the dimensions are n = 2 or 3, then we use the notation (z,y) or (z,y,z) for the variables,
instead of (z1,x2) or (z1, 22, x3).

Assume that all possible partial derivatives of f of order n exist in A and that they are all continuous
in A. Then we say that f has continuous partial derivatives of order n in A, and we write

fecn(A).
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When this is true for all n, we write f € C°°(A). Then it is natural to add f € C°(A) to mean that
f is continuous in A.

Often the open domain A is tacitly understood, in which case we just write f € C", or f € C*°, or

feco.

The importance of the class C™(A) follows from the following theorem,

Theorem 9.4 Interchange of the order of differentiation. Assume that A C R¥k is open and that
f € C?A). Then
0% f ) — 0% f (%)
81‘i31'j o 5:%81@

forxe Aandi, je{1,...,k}.

Theorem 9.4 is only formulated for n = 2, but if e.g. f € C3(A), then every gf
T

0
may apply Theorem 9.4 with f replaced by 8—f, and then use induction to obtain the general result.
T

€ C?(A), and we

The proof of Theorem 9.4 is fairly long and tedious, for which reason it is not given here.

In the past four years we have drilled

89,000 km

That's more than twice around the world.

Who are we?

We are the world’s largest oilfield services company’.

Working globally—often in remote and challenging locations—
we invent, design, engineer, and apply technology to help our
customers find and produce oil and gas safely.

Who are we looking for?
Every year, we need thousands of graduates to begin
dynamic careers in the following domains:

‘ ‘ m Geoscience and Petrotechnical

m Commercial and Business

What will you be?

a1 careers.slb.com Schiumberger

319

Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/Schlumberger1

The formulation of Theorem 9.4 above gives us a hint of that there may exist examples of functions,
for which the partial derivatives of e.g. second order exist, and yet there may exist points in which
the order of differentiation is essential. This is indeed true! Let f : R? — R? be given by

fl@y) = V(@2 +2(x+)?) (2 + (x - y)?) = V3! — 203y + dwy® + 4y,
If (z,y) # (0,0), then

623 — 322y + 213
V3z4 — 223y + dayd + Ayt

- —a + 6zy? + 83
V324 — 223y + dayd + Ayt

It follows that even f € C*° (R?\ {(0,0)}), so we shall only investigate the point (0,0). We get in
particular from the above,

fi0,y) =y fory#0,  and f;(a:,O):—% for & # 0,

Since we have the restriction f(z,0) = /322 for € R, we get f.(z,0) = 2/3x, hence
£2(0,0) =0,

Since we have the restriction f(0,y) = 2y? for y € R, we get f4(0,y) = 4y, hence
f,(0,0)=0.

Summing up, we have

f10,y) =y foryeR, and fy(x,0) = — for x € R,

Sls

from which we get

foy(0,y)=1 foryeR and  f (2,0)=—

o for z € R.

Sl

Then

1
proving that the order of differentiation cannot be interchanged at the point (0, 0), although the partial
derivatives of second order clearly exist in all of R2.

We have above only considered the class C"(A), when A was an open set. In many applications we
also need to talk of C™(A), when A is not open. We introduce the following

Definition 9.2 Let A C R be a nonempty set, and let f : A — R be a function. We say that
f € C"(A) is n times continuously differentiable in A, if there evists an extension f : A—=TRof fto
an open set A, such that f € C"(A) and f(x) = f(x) for all x € A.

Iff: A — R™ is a vector function, we say that £ € C™(A), if all its coordinate functions f; € C™(A).
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9.5 Taylor’s formula
9.5.1 Taylor’s formula in one dimension

We shall often need a method to approximate a C™-function in a neighbourhood of a point, using a
polynomial as approximation. There are some possibilities, of which we here choose the most well-
known, namely Taylor’s formula. As usual we shall start with the 1-dimensional case and then derive
the general results in n dimensions.

Usually one uses Rolle’s theorem or the mean value theorem to prove Taylor’s formula, but as we
shall see below, this is not necessary, if we only assume that the function is n times continuously
differentiable.

Let I C R be an open interval, which contains 0 € I, and let F' : I — R be a C™(I)-function. This
means that

F(t), F'(t), ..., F™(@), tel,

all exist and are continuous. In particular, in a neighbourhood of 0 € I,
F (1) = FM(0) 4 e(t), where e(t) — 0 for t — 0,

a relation which we shall need below.

Another preparation for the proof is the following observation that by a partial integration for h € I,

h

h (h_t)k—l _ (h—t)k h (h —t)k
/()WF(k)(t) dt = [— - F<’“>(t)]0+/0 TF<’“+1>(t)olt

k ho(1 ok
%F<k>(0)+/ %F(k“)(t)dt for k=1,...,n—1,
. 0 .

because F' € C™(I).

Using this result repeatedly we obtain by induction

h 1 h _ )1
F(h)—F(O):/O 1-F'(t)dt:%F'(0)+/0 %F”(t)dt

1 P (b=t
_ = prlpl-D / AL
(n—1)’ O+ | =1

Since F(M(t) = F(™(0) + £(t), where £(t) — 0 for t — 0 in I, we finally get for the remainder term,

h n—1 h n—1 n
(h—1t) (n) / (h—1t) (n) h 0) -
-~ " = ~— I F\" = —F "
/0 T RACETE R [F0) +e()} de =" FO 417 &(h),
where we have used the estimates

h _ p\n—1
/0 Uzn _t)l)! (1) dt

1 1
= hUF'(0) + 5 REF"(0) 4 --- + F™ (1) dt.

|hl
S/ A"t max e(t)]dt = [n]" 7 [A] - e1(h) =[] - ea(R),
0

—|n|<t<|h]|

where e1(h) — 0 for h — 0. It follows that

" (bt
/ (n—1) e(t)dt = h™-&(h),  where e1(h) — 0 for b — 0.
0 - :
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Summing up se see after a rearrangement that we have proved

Taylor’s formula in one dimension. Let I C R be an open interval, where0 € I, andlet F : I — R
be a C™(I)-function. Then

F’ ol Fm)
F(h) =F(0) + 1(,0) h+ 250) h? 4+ n,(O) ™ +h"e(h),  forhel,
where e(h) — 0 for h — 0.
Here,
FE’ F F(n)
PuhF) = Py = F(O) + g T ey O

is a polynomial of at most degree n in h. We call it the approzimating polynomial of F'(h) of degree
at most n, and n, which is determined by the corresponding remainder term above, is called the order
of expansion.

Note that we may have come across an expansion of order n, where the approximating polynomial
actually is of degree < nm. The only requirement is that F(™)(0) = 0, a possibility, which cannot be
excluded.

If the point of expansion is not 0, but instead some ty € I, then we just introduce the new variable
T =1t — ty, and the point of expansion for 7 becomes 175 = 0, and we can use the above to get

F' (to) " (to)
1! 2!
where F' € C™(I), and where ¢ (t —tg) — 0 for t — to.

Fn) (to)

- (t—to)" + (t —to)" e(t—tg),

F(t)=F(ty) + (t—to)* + -+

(t—t0)+

Before we in detail discuss Taylor’s formula in several variables we show, how we get from the one
dimensional version above to Taylor’s formula in n dimensions. The idea is simple. Let f : A — R,
where A C RF is open, be a C"-function. Let x € A, and let x +h € A be a neighbouring point, such
that the (closed) line segment between x and x + h lies in A. If h # 0, put h = he, where h > 0 and
e is a unit vector. We define

(9.3) F(t) := f(x +te), fortel,

where [ is an open interval containing [0, h]. Then F(0) = f(x) and F(h) = f(x+he) = f(x+e), and
F(t) is a C™(I)-function, so we can apply Taylor’s formula in one dimension om F'(t), proved above.
We shall of course in the differentiation of (9.3) above use the chain rule on the right hand side. We
shall first consider the simple case, when n = 1.

9.5.2 Taylor expansion of order 1

We apply the third special case of the chain rule to get

= & _of of _
F'(t) = dtf(x+te)— 6x1(x—|—te)el—|— —|—a$k(x+te)—e vf(x+te) for t € I.

Put n =1 and ¢t = h into Taylor’s formula to get

F(h) = f(x+h) = f(x) + he - Vf(x +te) = f(x) + h- V[(x) +e(h)|[h]],
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where the e-function depends on both the length h > 0 and the direction e, so if f € C1(A) and
x € A, then

f(x+h) = f(x) +h-vf(x)+eh)h].

This was fairly easy and only illustrates that f € C*(I) is continuously differentiable.

One would of course expect that the situation becomes more complicated for n > 1, and so it is! In
order to get the general idea we shall therefore in the next section confine ourselves to the case where
n = 2 and just £ = 2, and only briefly at the end of the section mention the result, when k = 3.

9.5.3 Taylor expansion of order 2 in the plane

We shall proceed with the Taylor expansion of second order, n = 2, in several variables. We shall start
with he simplest case, where we have only two variable (z,y). Let A C R? be an open and non-empty
set in the plane, and let f € C?(A) be a twice continuously differentiable function of A. We shall find
for a given point (z,y) € A and a small increment (hg, hy) an expression of f (z + hy,y + hy) in a
neighbouring point (x + ha,y + hy), where we use f and its first and second partial derivatives at the
given point (z,y).

The set A is open, at (z,y) € A, so there exists an r > 0, such that the open disc B((z,y),r) C A. If
therefore the increment (hy, hy) is small (hi + hi < r? will be suﬂﬁcient), then the closed line segment
between (x,y) and (x + hg,y + hy) is totally contained in A, so we can take the restriction of f to
this line segment and apply the previously developed theory.
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Let h:= /h2 4+ hZ. Then there are constants o (= cos ) and 3 (= sin ¢), such that
he =ah and hy = B h,
and the restriction of f to the line segment is written

F(t)=f(z+at,y+ Bt), for t € I 10, h],

F(h)=f(z+he,y+hy)  and  F(0) = f(z,y).
We get by the chain rule,
F'(t) = afi(e+aty+pt)+ B f(z+at,y+ ).

The assumption that f € C2(A) secures that the right side of this equation is again continuously
differentiable. Hence, once more by the chain rule (third special case)

F'(t) = a{a 7 (x+ at, y—|—6t)+ﬁf"(x—|—o<t,y+ﬂt)}
+8{a fy.(z + aty +betat) + B f},(x + at,y+ Bt)}.
Since f € C?(A), the order of differentiation can be interchanged, so f,, = fr,, and we reduce the

expression above to

F'(t) = fl(z + at,y + Bt) + 2aBf1,(x + at,y + Bt) + B2 f, (v + at,y + Bi).
Y yy

Summing up we have

F0) = f(z,y), F'(0)=af(z,y)+Bf(x,y), F"0)=c’fl(z,y)+2aBf),(z,y)+ B, (x,y),

hence by insertion,

f(z +ah,y+ Bh)=F(h)=F(0)+ F'(0)h+ = 5 F”( Yh? 4 e(h)h?
= f(z,y) + ahfy(z,y) + Bhfy(z,y)
+% {(ah)? £ (x,y) + 2(ah)(BR) f1, (x,y) + (BR)? f, (2, 9) } + e(ah, B h)R®

+¢ (ha, hy) (2 + b)),
where € (hg, hy) — 0 for (hg, hy) — (0,0).

Summing up, we have proved

324
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Taylor’s formula for n = 2 and k = 2. Assume that A C R? is open and non-empty, and that
feC*A). If (z,y) € A, then

fl@they+hy) = fl@y)+hafi(zy)+hyfylz,y)

1
o (e fia (@, y) + 2hahy £, (2, y) + By £, (2,9)}

+e (has hy) - (h2+h2),

where € (hg, hy) — 0 for (hz, hy) — (0,0), and where A contains the closed line segment between
(z,y) € A and (x + hy,y + hy) € A,

We note that the differential

enters the expression above. It is therefore tempting to introduce the second differential d>f of the
function f by collecting all terms, which contain two partial derivatives of f,

F2xh) = 1 f7 (2, y) + 2hohy 1, (2, y) + b £, (2, y).
We shall see below, that this is really a convenient definition.
If we here put
fix) =h-vf(x) = df(x,h),
then
Efxh)=h - vAikx)=(h-v)(h-V)f(x), forfeC*4).
In general, we define by induction the p-th differential of a function f € C™(A) by
@, h) =h-Vpi(ch) = = (h- VP f(x),  forp=1,...n,
where the differential operator h - 57 operates p (< n) times.
Once we have seen this structure, we can immediately extend this construction to A C R¥, where

k> 2,and

0 0
\Y4 18$1+ + kaxka

so we obtain in general,

Taylor’s formula for f € C"(A), A C R* open. If x, x + h € A are chosen, such that the closed
line segment between x and x + h is totally contained in A, then

Fle4 ) = FO<) + df o)+ 5 @ F00m) 44 o " fx ) + ()],

where e(h) — 0 for h — 0.
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In general, d”f(x,h) is computed in the following way,
dpf(X, h) - (h : V)pf(xa h);

where

0 o\’
L) = = 4. -
(h-v) <h1 By + oty 8xk>

0
is calculated as an ordinary polynomial in the operators e of constant coefficients h;.
Ty

We mention in particular for k = 3,
df(x,h) = he fo (2,5, @) + hy fy (2., 2) + hefo(2, y, 2)
and

fxh) = B2 (e, y,2) + Rl f) (w,y, 2) + h2fL (2, y, 2)

+2hohy f, (2, y, 2) + 2hyhe fy2(2,y, 2) + 2hahe 1o (2, y, 2)
for f € C%(A) and A C R3 an open set. Hence, in three variables,

f(x+hg,y+hy,z+hs)
= J@y2) + 3 a0 2) + By 0 2) + e £, 2) )
g (2, 2) 4 0 (o, 2) W22 (2,2 )
+ {hahy fr, (@, y,2) + hyhe fr(2,y, 2) + hoha [l (2,9, 2) }

+¢ (ha, hy, h2) (b2 + i + h2) .

In the applications in e.g. Physics, one rarely goes beyond the order n = 2 of the expansion. Also,
the dimensions are usually £ = 2 or £ = 3, so we have above covered the most important cases for the
applications. And yet we have still the possibility of extending Taylor’s formula to & > 3 and n > 2,
which is of importance in the next section.

9.5.4 The approximating polynomial
Assume that f € C™(A). Then by Taylor’s formula,

% L (h- )" f(x, h) + e(h) 1] ".

n!

fet+h) = f(x) + =) f(h) + -+
If we remove the remainder term e(h)|h||”, we get a polynomial in h of at most degree n. We call it
the approximating polynomial of at most degree n in the variable h, i.e.

1 1

Pn(X,h):f(X)+ nl
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where x is the expansion point. It is an approximation of f(x) in the neighbourhood of x, because
|f(x+h) — P,(x),h| = e(h)||h|", where e(h) — 0 for h — 0,

i.e. the error is of the size e(h)|/h||". One may write this
f(x+h)~ P,(x,h).

In practice we denote the expansion point by xXg, and then write x = x¢ + h, so the increment is
h =x—xq.

We then write
f(x) = P, (x0,x — Xq) in a neighbourhood of xg.
Of particular importance are the cases, where k = 2 and k = 3, and the order of expansion is 2,

because this is the most commonly used approximations in Physics. We therefore explicitly give the
approximating polynomials of order 2 below.
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Assume that A C R?. Then we write the variable in the form x = (x,y). Let (x0,y0) denote the
expansion point. Then the approximal polynomial of at most degree 2 of f € C?(A) is given by

P (x0,x —%x0) = P2 ((z0,y0) , (x — 20,y — %0))

= f (z0,90) + (x — x0) £z (x0,0) + (¥ — vo) £, (0, Yo0)

1

5 (z — 20)” fily (x0, %0) + (¥ — 7o) (¥ — %0) fay (o, 90) + % (y — o) foy (0, 90) -

We must for numerical reasons keep h = x — z¢g and k = y — yo as the natural variables and not
“reduce” the polynomial, using = and y as the variables.

Similarly in three dimensions, if f € C?(A), where A C R3. In this case,

P (x0,x — x0) = P> ((%0,%0,20) , (x — 0,y — Yo, 2 — 20))

= f (20,90, 20) + (= — x0) f; (0, Y0, 20) + (¥ — Yo) f, (20, v0, 20) + (2 = 20) fL (20, Yo, 20)

1

1 1
5 (& — 20)* 1, (x0, Y0, 20) + B (y —y0)° foy (0,90, 20) + 5 (z = 20)” 2. (0, 0, 20)

+ (= 20) (y — y0) fiy (0, Y0, 20) + (¥ — yo) (2 — 20) £, (0, Yo, 20)

+ (2 — 20) (x — xo) (x()vy()a 20) ,

where we keep (z — x0,y — yo,2 — 20) as our variables.

)
In practice the notation P ((zo,¥o0), (x — o,y — yo)) and Pz ((zo, Yo, 20) , (x — o,y — Yo, 2 — 20)) are
too clumsy, so we just write Py(z,y) and Pa(x,y, z) instead, where we tacitly assume the point of
expansion, (o, o), resp. (To, Yo, 20)-

We shall below illustrate the principle in a concrete example, in which we also demonstrate an alter-
native, using results from Chapter 12. This alternative is sometimes more easy to apply.

Consider the function

f(z,y) =exp (x —y ) for (z,y) € R?,

where we choose the expansion point (1, —1).
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First method. We compute the first and second partial derivatives of f(z,y) and then compute
their values at the expansion point (1, —1), where

fz,y) = exp (° — y?), fL,-1) =1,

fol@,y) =2z exp (2 — y?), fa(l,=1) =2,
fi(z,y) = —2yexp (22 — y?), fr1,=1) =2,
vo(a,y) = (2+42%) exp (2* — ¢, 7o(1,-1) =6,
2z y) = —dayexp (22 —y?) 21, —1) =4,
V(@ y) = (-2 + 4y?) exp (2 — ¢?), V(1 —1) =2,

so the approximating polynomial in (x — 1,y + 1) of at most degree 2 is

Py(z,y) = f(L-1+fo(L,-D@-1)+f,1 -1y +1)

+%f;’m(1, Dz =12+ f7,(1L, =D = Dy + 1) + %f;’y(L ~D(y+1)*

= 14+2@—-1)+2(y—1)+3@x—-1)>+4x -y +1) + (y+1)3
where the polynomial should not be reduced further.

Second method. When (1,—1) is the expansion point, we introduce x = 1+ h and y = —1 + k,
or h=x—1and k = y+ 1, where (h, k) are the new variables, which should be kept small in the
approximations.

Then,
2? —y? = (1+h)? — (=14 k)? = 2h + 2k + h* — k2,

which for small (h, k) behaves like ~ 2h + 2k of first degree, while the remainder terms
h2 — k2 = e(h, k)Vh? + k2.

We know already, cf. Chapter 12, that

1
et=1—|—t—|—§t2+-~-,

where the dots indicate terms of degree > 2, i.e. of the type &(t)t2.

If we put t = 2h + 2k + h? — k2, then clearly t* = (h, k) (h2 + kz), so by an expansion of order 2,

exp (22 — y?) 1+(2h+2k+h2—k2)+%(2h+2k+h2—k2)2+---

= 142h+2k+3R*+4hk+k>+---,

where the dots indicate terms of degree > 2.
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Finally, h=x—1and k =y + 1, so
Py(z,y) =142 —1)+2(y+1) +3@ -1 +4= -1y +1) + (y+ 1)

If we want to find an approximation of f(0.95,—1.02)[= 0.87118...], and no computer or pocket
calculator is at hand, then we use the approximate polynomial Py(x,y) with x — 1 = —0.05 and
y+ 1= —0.02, and we get by insertion,

Py(0.95,-1.02) = 1+ 2(—0.5) + 2(—0.02) + 3(—0.05)* + 4(—0.05)(—0.02) + (—0.02)* = 0.8719,
which is a fairly good approximation of f(0.92, —1.02).
Then we consider the following case in R3,

flz,y,2) =ylna + 2%e¥ for x > 0,
where the expansion point is chosen as (1,0,1).

First method. We compute

f(x7ytvz):ylnx+226ya f(]-voa]-): ]-7
/ _Y / _
fa:(xay7z)_;7 fa:(laovl)_ov
— 2 —

f;;(xayvz)_lnx+z eya fé(laovl)_:l?
fi(z,y, 2) = 2zeY, f(1,0,1) =2,
" _ y " —
xx(x’yvz)__?’ m(l,O,l)-O,
(@Y, 2) = 2%, y(1,0,1) =1,
(@, 2) = 2€, =2,

" @y ) = 7 (1,0,1) =1
Ty 