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Preface

The topic of this series of books on “Real Functions in Several Variables” is very important in the
description in e.g. Mechanics of the real 3-dimensional world that we live in. Therefore, we start from
the very beginning, modelling this world by using the coordinates of R3 to describe e.g. a motion in
space. There is, however, absolutely no reason to restrict ourselves to R3 alone. Some motions may
be rectilinear, so only R is needed to describe their movements on a line segment. This opens up for
also dealing with R2, when we consider plane motions. In more elaborate problems we need higher
dimensional spaces. This may be the case in Probability Theory and Statistics. Therefore, we shall in
general use Rn as our abstract model, and then restrict ourselves in examples mainly to R2 and R3.

For rectilinear motions the familiar rectangular coordinate system is the most convenient one to apply.
However, as known from e.g. Mechanics, circular motions are also very important in the applications
in engineering. It becomes natural alternatively to apply in R2 the so-called polar coordinates in the
plane. They are convenient to describe a circle, where the rectangular coordinates usually give some
nasty square roots, which are difficult to handle in practice.

Rectangular coordinates and polar coordinates are designed to model each their problems. They
supplement each other, so difficult computations in one of these coordinate systems may be easy, and
even trivial, in the other one. It is therefore important always in advance carefully to analyze the
geometry of e.g. a domain, so we ask the question: Is this domain best described in rectangular or in
polar coordinates?

Sometimes one may split a problem into two subproblems, where we apply rectangular coordinates in
one of them and polar coordinates in the other one.

It should be mentioned that in real life (though not in these books) one cannot always split a problem
into two subproblems as above. Then one is really in trouble, and more advanced mathematical
methods should be applied instead. This is, however, outside the scope of the present series of books.

The idea of polar coordinates can be extended in two ways to R3. Either to semi-polar or cylindric
coordinates, which are designed to describe a cylinder, or to spherical coordinates, which are excellent
for describing spheres, where rectangular coordinates usually are doomed to fail. We use them already
in daily life, when we specify a place on Earth by its longitude and latitude! It would be very awkward
in this case to use rectangular coordinates instead, even if it is possible.

Concerning the contents, we begin this investigation by modelling point sets in an n-dimensional
Euclidean space En by Rn. There is a subtle difference between En and Rn, although we often
identify these two spaces. In En we use geometrical methods without a coordinate system, so the
objects are independent of such a choice. In the coordinate space Rn we can use ordinary calculus,
which in principle is not possible in En. In order to stress this point, we call En the “abstract space”
(in the sense of calculus; not in the sense of geometry) as a warning to the reader. Also, whenever
necessary, we use the colour black in the “abstract space”, in order to stress that this expression is
theoretical, while variables given in a chosen coordinate system and their related concepts are given
the colours blue, red and green.

We also include the most basic of what mathematicians call Topology, which will be necessary in the
following. We describe what we need by a function.

Then we proceed with limits and continuity of functions and define continuous curves and surfaces,
with parameters from subsets of R and R2, resp..
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Continue with (partial) differentiable functions, curves and surfaces, the chain rule and Taylor’s for-
mula for functions in several variables.

We deal with maxima and minima and extrema of functions in several variables over a domain in Rn.
This is a very important subject, so there are given many worked examples to illustrate the theory.

Then we turn to the problems of integration, where we specify four different types with increasing
complexity, plane integral, space integral, curve (or line) integral and surface integral.

Finally, we consider vector analysis, where we deal with vector fields, Gauß’s theorem and Stokes’s
theorem. All these subjects are very important in theoretical Physics.

The structure of this series of books is that each subject is usually (but not always) described by three
successive chapters. In the first chapter a brief theoretical theory is given. The next chapter gives
some practical guidelines of how to solve problems connected with the subject under consideration.
Finally, some worked out examples are given, in many cases in several variants, because the standard
solution method is seldom the only way, and it may even be clumsy compared with other possibilities.

I have as far as possible structured the examples according to the following scheme:

A Awareness, i.e. a short description of what is the problem.

D Decision, i.e. a reflection over what should be done with the problem.

I Implementation, i.e. where all the calculations are made.

C Control, i.e. a test of the result.

This is an ideal form of a general procedure of solution. It can be used in any situation and it is not
linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a
situation which did not contain Mathematics at all. The student is recommended to use it also in
other disciplines.

From high school one is used to immediately to proceed to I. Implementation. However, examples
and problems at university level, let alone situations in real life, are often so complicated that it in
general will be a good investment also to spend some time on the first two points above in order to
be absolutely certain of what to do in a particular case. Note that the first three points, ADI, can
always be executed.

This is unfortunately not the case with C Control, because it from now on may be difficult, if possible,
to check one’s solution. It is only an extra securing whenever it is possible, but we cannot include it
always in our solution form above.

I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a
shorthand, because they are often (too often, I would say) misused. Instead of ∧ I shall either write
“and”, or a comma, and instead of ∨ I shall write “or”. The arrows ⇒ and ⇔ are in particular
misunderstood by the students, so they should be totally avoided. They are not telegram short hands,
and from a logical point of view they usually do not make sense at all! Instead, write in a plain
language what you mean or want to do. This is difficult in the beginning, but after some practice it
becomes routine, and it will give more precise information.

When we deal with multiple integrals, one of the possible pedagogical ways of solving problems has
been to colour variables, integrals and upper and lower bounds in blue, red and green, so the reader
by the colour code can see in each integral what is the variable, and what are the parameters, which
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do not enter the integration under consideration. We shall of course build up a hierarchy of these
colours, so the order of integration will always be defined. As already mentioned above we reserve
the colour black for the theoretical expressions, where we cannot use ordinary calculus, because the
symbols are only shorthand for a concept.

The author has been very grateful to his old friend and colleague, the late Per Wennerberg Karlsson,
for many discussions of how to present these difficult topics on real functions in several variables, and
for his permission to use his textbook as a template of this present series. Nevertheless, the author
has felt it necessary to make quite a few changes compared with the old textbook, because we did not
always agree, and some of the topics could also be explained in another way, and then of course the
results of our discussions have here been put in writing for the first time.

The author also adds some calculations in MAPLE, which interact nicely with the theoretic text.
Note, however, that when one applies MAPLE, one is forced first to make a geometrical analysis of
the domain of integration, i.e. apply some of the techniques developed in the present books.

The theory and methods of these volumes on “Real Functions in Several Variables” are applied
constantly in higher Mathematics, Mechanics and Engineering Sciences. It is of paramount importance
for the calculations in Probability Theory, where one constantly integrate over some point set in space.

It is my hope that this text, these guidelines and these examples, of which many are treated in more
ways to show that the solutions procedures are not unique, may be of some inspiration for the students
who have just started their studies at the universities.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.
I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
March 21, 2015
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Introduction to volume III,

Differentiable Functions in Several Variables

This is the third volume in the series of books on Real Functions in Several Variables. Its topic is
differential functions. The idea of differentiability goes back to the technique of approximation of a
problem by linearizing it. Consider a differentiable function f : A → R, A ⊆ R, in only one variable.
When we want to describe the behaviour of f in the neighbourhood of a point x0 ∈ A, we may
approximately describe the graph of f by its tangent at the point (x0, f (x0)), i.e. the line given by
the equation

y = f (x0) + f ′ (x0) · (x− x0) = f (x0) + f ′ (x0) h,

where we have introduced the new variable h := x− x0, which is actually used on the tangent.

It is tempting to extend this model to higher dimensions. If f : A → R is a differentiable function in
two variables (x, y) (whatever “differentiable” means in this case; it has not been defined yet), then
it would be natural to approximate f(x, y) instead by approximating the graph of f at a given point
by its tangent plane at this point. The tangent plane should be 2-dimensional, so the points of the
tangent plane are specified by the chosen point x = (x, y) ∈ A and the two coordinates h = (h1, h2)
“living on” the approximating plane. Therefore, it is natural to expect that the function is a function
in two sets of variables, (x,h) ∈ A× R2.

The program above clearly needs a lot of tidying, where we first must deviate from the general idea. In
the first section we make the definitions precise and show that the differentiability in higher dimensions
has most of its properties in common with differentiability in one dimension. We also introduce
differentiable vector functions, at the approximating polynomial of degree 1 in the coordinates. The
latter is closely connected with the equation of the tangent (hyper)plane of the graph, but it also
opens up for other generalizations later on.

Then follows a section on the chain rule, which describes how one differentiates a composite function
in several variables. This section is fairly technical, and the author has had many discussions with his
late colleague, Per Wennerberg Karlsson, of how to present the matter in the best way.
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9 Differentiable functions in several variables

9.1 Differentiability

9.1.1 The gradient and the differential

We shall first consider the well-known case of a differentiable function in one variable. The reason is
that we then are able to analyze how to proceed with the generalization to differentiable functions in
several variables.

When f : A → R, A ⊆ R is a function in just one variable, there are two equivalent ways to introduce
differentiability of f . The first method, known from high school, requires that the difference quotient
at x below has a well-defined limit for h → 0, i.e.

(9.1)
f(x+ h)− f(x)

h
→ a for h → 0.

The second method, which here may be obtained from (9.1), when we multiply by h, requires that
the increase of the function f at the point x satisfies

(9.2) f(x+ h)− f(x) = ah+ ε(h)|h|,

where a is some constant, and where ε(h) denotes some function, for which ε(h) → 0 for h → 0. Since
we can redefine ε(h) and build in the sign of h, we may just write ε(h)h instead of ε(h)|h|.

Let us turn to functions in several variables, like f : A → R, where A ⊆ Rn and n ≥ 2. It follows
immediately that we cannot generalize (9.1), because the pair (x, h) in one dimensional should be
replaced by the pair of vectors (x,h). A generalization of (9.1) would require that we should have a
vector h in the denominator, and that is not possible.

Fortunately, (9.2) is easy to generalize.

Definition 9.1 Differentiability. Let A ⊆ Rn be an open set, and let f : A → R be a function on A.
We call f differentiable at the point x ∈ A, if for all h, for which x+ h ∈ A,

f(x+ h)− f(x) = a · h+ ε(h)�h�,

where the vector a is independent ofh is some function, for which ε(h) → 0 for h → 0.

The interpretation of this definition of differentiability at x ∈ A is, that the increase (decrease) of the
function,

∆f := f(x+ h)− f(x),

behaves locally as a linear function a · h in the increase h of the variable, plus a term ε(h)�h�, which
tends faster towards 0 for h → 0 than the linear function a · h.

In particular, ∆f → 0 for h → 0, so we get the result:

A differentiable function at x ∈ A is also continuous at x ∈ A.
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Let A ⊆ Rn, n ≥ 2, be an open set. If a function f : A → R is differentiable at every point x ∈ A, we
call it differentiable in A, or just differentiable.

If f : A → R is differentiable at x ∈ A, i.e.

f(x+ h)− f(x) = a · h+ ε(h)�h�,

then the vector a is uniquely determined at x. In fact, assume that also

f(x+ h)− f(x) = a1 · h+ ε(h)�h�.

Then by subtraction,

0 = (a− a1) · h+ ε(h)�h�.
Choosing h = λ (a− a1), we get

0 = λ �a− a1�2 + ε (λ (a− a1)) · |λ| �a− a1� ,

where the latter term tends faster towards 0 than λ for λ → 0. This is only possible, if �a− a1�2 = 0,
and we conclude that a1 = a, and the uniqueness of a is proved.

In general, the vector a depends on x ∈ A, so a = a(x) is a vector field. We call it the gradient of f
and denote it by

a = grad f(x) = ▽f(x),

where “▽” reads “nabla”.

Remark. In the 1800s, when the gradient was introduced, the mathematicians needed a name for its
shorthand notation ▽. At that time one had just started the excavations of ruins in the Middle East,
and Assyrian became fashionable. The inverted triangle ▽ resembled an Assyrian harp as shown on
the bas reliefs, and its name in Assyrian was “nabla” as read on the cuneiform tablets. ♦

The gradient is therefore defined by the increase of the function in the following way,

∆f = f(x+ x)

= h · ▽f(x) + ε(h)�h�, where ε(h) → 0 for h → 0.

Here we should strictly speaking more correctly write ε(x,h), because this ε-function also depends
on the point x ∈ A. However, we shall only consider it for fixed x ∈ A, so we leave out the x in the
notation.

The linear part of the increase ∆f of the function is called the differential of f and denoted df . When
the domain A of f is open in Rn, then the differential is a function in 2n variables. More specific,

df(x,h) = h · ▽f(x).

We note that if n = 1, then ▽f(x) = f ′(x), so the gradient is equal to the differential quotient in this
case. Furthermore, its differential is (in one variable)

df(x, h) = f ′(x)h = ▽f(x)h,

so the gradient ▽f in n-dimensional space is a replacement of the derivative f ′(x), when n = 1.

This extension ▽f , inherits the same rules of computation as the derivative f ′. We mention the
following, where we assume that A ⊆ Rn is open:
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1) Let α, β be constants, and f, g : A → R differential functions. Then

▽(αf + βg) = α▽ f + β ▽ g.

2) If f, g : A → R are differentiable functions, then

▽(fg) = f ▽ g + g ▽ f.

3) If α is a constant, then

▽α = 0.

These rules of computation are proved in the same way as for the derivative of functions in one
variable.

In order to become familiar with a new concept it is customary in practice always to start by consid-
ering polynomials of first and second degree in the coordinates.

1) A polynomial of first degree in the rectangular coordinates is written

f(x) = a+ b · x, for x ∈ Rn,

where a ∈ R is a constant, and b ∈ Rn \ {0} is a constant vector. The increase of the function is
written

∆f := f(x+ h)− f(x) = a+ b · (x + h)− a− b · x = b · h,
so we only get the linear term in h and no ε-function. We conclude that

▽f = b and df(x,h) = b · h.
We mention the special case, when n = 2, in which case we have

f(x, y) = a+ bx+ ct and ▽ f(x, y) = (b, c).

2) Then we consider a special polynomial of second degree in the coordinates, namely

f(x) = x · x for x ∈ Rn.

The increase is here

∆f = f(x+ h)− f(x) = (x+ h) · (x+ h)− x · x
= x · x+ 2h · x+ h · h− x · x = 2x · h+ �h�2.

Since ε(h�h� = �h�2, we see that ε(h) = �h� → 0 for �h� → 0, so

▽f = 2x and df(x,h) = 2x · h.
When n = 2 we have

f(x, y) = x2 + y2 and ▽ f(x, y) = (2x, 2y).

Concerning applications in Physics we here just mention that the gradient enters Fourier’s law

q = −λ▽ T,

where q denotes the density of the heat flow, and T is the temperature, and λ is the constant of the
heat conductivity.

We find the same mathematical structure in Fick’s first law of diffusion, and in Ohm’s law for an
electric current.
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9.1.2 Partial derivatives

We derived previously a vector field, the gradient ▽f , of a differentiable function. We shall next find
the coordinates of this gradient.

As usual, let the domain A ⊆ Rn of f be an open set. Choose a (fixed) point x = (x1, . . . , xn) ∈ A,
and introduce the auxiliary function

f1(t) := f (t, x2, . . . , xn) .

If f1 is differentiable for t = x1, we call its derivative f
′
1 (x1) the partial derivative of f(x) with respect

to the first variable x1. More specifically,

f ′
1 (x1) = lim

h→0

f1 (x1 + h)− f1 (x1)

h
= lim

h→0

f (x1 + h, x2, . . . , xn)− f (x1, x2, . . . , xn)

h
.

In this construction we have confined h to the special vectors of the form h = (h, 0, . . . , 0), in which
case the problem of taking the limit has become 1-dimensional, so we can use (9.1), known from high
school.

Even if the partial derivative of f exists with respect to x1, we cannot be sure that the function f
itself is differentiable. Let us for the time being assume that f is differentiable at x. Then the first
coordinate of ▽f at x is indeed the partial derivative f ′

1(x) introduced above.
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In fact, let h = (h, 0, . . . , 0). Then

f1 (x1 + h)− f1 (x1) = f (x1 + h, x2, . . . , xn)− f (x1, x2, . . . , xn)

= (h, 0, . . . , 0) · ▽f(x) + ε(h)h = h · {(▽f(x))1 + ε(h)},
where (▽f(x))1 denotes the first rectangular coordinate of ▽f(x). When h → 0, then it follows that
the auxiliary function f1 is differentiable at t = x1, and its derivative is the first coordinate (▽f(x))1
of the gradient at x, and we have proved that

f ′
1 (x1) = (▽f(x))1 = ▽f(x) · e1.

An analogous analysis gives us the partial derivative of f with respect to the j-th coordinate xj , for
j = (1), 2, . . . , n.

We shall of course not use the auxiliary function f ′
j (x1) as our notation for the partial derivative of

f with respect to xj . Instead we write one of the following possibilities,

f ′
xj
(x),

∂f

∂xj
(x), Djf(x).

We shall often leave out the variable x and just write

f ′
xj
,

∂f

∂xj
or Djf.

In the frequently considered case of R3, i.e. when n = 3, we usually write

f ′
x, f

′
y, f

′
z, or

∂f

∂x
,
∂f

∂y
,
∂f

∂z
, or Dxf Dyf, Dzf.

Similarly for n = 2, where the z-coordinate does not appear.

Since the coordinates of the gradient are the partial derivatives, we immediately get

Theorem 9.1 Let A ⊆ Rn be an open set. Assume that f : A → R is differentiable. Then all its
partial derivatives exist, and the gradient is given by

▽f =

�

∂f

∂x1
, . . . ,

∂f

∂xn

�

.

It follows from Theorem 9.1 that when f is differentiable (and thus the gradient exists), then the
gradient is unique. On the other hand, one must be aware of strange phenomena like all partial
derivatives of f exist at a point, and yet f is not differentiable, so the gradient does not exist. A
simple illustrative example is given by the function

f(x, y) =











xy

x2 + y2
, (x, y) �= (0, 0),

0, (x, y) = (0, 0).

We have in Chapter 2 shown that f(x, y) is not continuous at (0, 0). If one has forgotten this, just
restrict the function to the line y = 2x, x �= 0, on which f(x, 2x) = 1 → 1 �= 0 for x → 0. The function
f has nevertheless partial derivatives at (0, 0), because the restriction to the x-axis is

f(x, 0) = 0 for all x ∈ R, with
∂f

∂x
(0, 0) = 0,
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and the restriction to the y-axis is

f(0, y) = 0 for all y ∈ R, with
∂f

∂y
(0, 0) = 0.

In order to obtain a positive result we mention without the long proof (it consists of two pages) of the
following theorem.

Theorem 9.2 Let A ⊆ Rn be open, and let f : A → R be a given function. Assume that all the
partial derivatives of f exist in a whole neighbourhood of x ∈ A and are all continuous, (this means
that we can find an open ball B(x, r) ⊆ A, in which all derivatives of f exist and are continuous) then
f is even differentiable at x.

In most cases we prove the differentiability of a function f by applying Theorem 9.2 in the following
way: First we calculate all the partial derivatives in a neighbourhood of the given point x ∈ A, and
then we show that they are all continuous.

It is of course not hard to show that the continuity of the partial derivatives fail in the case of the
function

f(x, y) =











xy

x2 + y2
, (x, y) �= (0, 0),

0, (x, y) = (0, 0).

The following theorem is a generalization of a well-known result from the theory of real functions in
one variable, namely that if f is differentiable, and f ′ is zero everywhere in an interval, then f is a
constant. The trick in the proof is to use this 1-dimensional theorem repeatedly.

Theorem 9.3 Given an open domain A in Rn, and assume that f : A → R is differentiable of
gradient ▽f = 0 everywhere in A. Then f is constant in A.

Sketch of proof. First note that the gradient in the formulation of Theorem 9.3 is used as a
shorthand for the generalization of the derivative in one dimension. In order to apply the corresponding
theorem in one dimension we of course use the partial derivatives instead. We shall use that since the
open domain A is open and connected, we can to any two points a, b ∈ A find a step line connecting
them. This is a continuous curve lying totally in A with a as starting point and b as final point
and consisting only of axiparallel line segments, on each of which just one coordinate varies. We can
exploit this, because then we can locally formulate the problem by the partial derivative with respect
to this variable.

The gradient was assumed to be 0 everywhere in A, i.e. ▽f = 0. Then along each of the afore
mentioned axiparallel line segments, the restriction f1 of f is an ordinary function in one variable, for
which f ′

1 = 0. It follows from the 1-dimensional result that f1 is constant on this line segment. This is
true for all axiparallel line segments of the step line, and as f is also continuous, then constant must
be the same on all line segments. In particular, f(a) = f(b). As a, b ∈ A were chosen arbitrarily, we
finally conclude that f is constant on A. �
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We here add the proof of the result that if f, g : A → R are both differentiable, then

▽(fg) = f ▽ g + g ▽ f.

When we look at each coordinate separately, the proof is straightforward. In fact,

(▽(fg))j :=
∂(fg)

∂xj
= f

∂g

∂xj
+ g

∂f

∂xj
= f(▽g)j + g(▽f)j = (f ▽ g + g ▽ f)j ,

where the lower index j indicates the j-th coordinate.

We include an important observation on functions defined by an integral of variable upper and lower
bounds and with an extra variable in the integrand which in the integration process is considered as
a parameter for the time being. Let us for example consider the following integral

G(x, y, z) =

∫ y

z

f(t, x) dt,

which will illustrate the principle. We shall often in the following volumes meet such functions, so
that is why we here premise a remark to the effect that they will be at hand later on, when they are
needed.

Assume that the integrand f is continuous. Then it has an antiderivative F (t, x), which satisfies
F ′
t (t, x) = f(t, x). Then we use the main theorem of differential and integration calculus in one

variable to get

G(x, y, z) = F (y, x)− F (z, x).

We then turn to the problem of finding ▽G. Clearly, y and z are the easy variables, because the
partial derivatives are straightforward,

G′
y(x, y, z) = F ′

y(y, x)− 0 = f(y, x),

G′
z(x, y, z) = 0− F ′

z(z, x) = −f(z, x).

The variable x enters here only the integrand, so one would expect that

G′
x(x, y, z) =

∫ y

z

f ′
x(t, x) dt.

This is true, if we furthermore assume that the partial derivative f ′
x of the integrand is continuous! So

when both f(t, x) and f ′
x(t, x) are continuous, the gradient of G(x, y, z) given as the integral above is

▽G =

(∫ y

z

f ′
x(t, x) dt, f(y, x),−f(z, x)

)

.

Remark 9.1 We have of course here chosen a purely mathematical notation. In the applications
in e.g. Physics this notation may sometimes be ambiguous, so one is forced to modify the notation
in order to make it more precise. Let us consider a thermodynamic system. In this we have the
following possible variables, the volume V , the pressure p, the temperature T and the entropy S. The
ambiguity of the previous notation occurs because the system is totally described by just two of these
four variables. This means that a notation like ∂V

∂p is not unique, unless one also makes it precise, if the
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state of the system is determined by (p, T ), or by (p, S). One usually adds an index, like for instance
(

∂V
∂p

)

T
, or

(

∂V
∂p

)

S
, resp.. Here,

(

∂V
∂p

)

T
means the partial derivative of the volume with respect to

the pressure, provided that the temperature T is kept constant. Similarly,
(

∂V
∂p

)

S
means that the

entropy is kept constant. This change of notation makes it easier in Thermodynamics to formulate
many results than if we instead had only used the pure mathematical notation. We mention here the
so-called Maxwell relation, which in the physical notation becomes

(

∂T

∂p

)

p

=

(

∂V

∂S

)

p

.

The reader can easily imagine the problems in only using the mathematical notations, because then
we had to add a comment on that the entropy S is kept constant on the left hand side of the equation,
while we on the right hand side of the equation instead keep the pressure fixed. ♦
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9.1.3 Differentiable vector functions

A vector function f : A → Rm, where A ⊆ Rn, is called differentiable, if all its coordinate functions
are differentiable. This means more precisely that

fi(x + h)− fi(x) = h · ▽fi(x) + εi(h)�h�, where ε(h) → 0 for h → 0, for i = 1, . . . ,m.

Combining all coordinates we have

f(x + h)− f(x) = (h · ▽)f(x) + ε(h)�h�, where ε(h) → 0 for h → 0.

We define the differential of the vector function,

df(x,h) = (h · ▽)f(x),

by all its coordinates,

(h · ▽)f(x) = (h · ▽f1(x), . . . ,h · ▽fm(x)) = ( df1(x), . . . , dfm(x)) .

If we here choose f as the identity map, i.e. f(x) := x, then f(x + h) − f(x) = h, so the differential
becomes

df(x,h) = h.

When we write x instead of f we get the strictly speaking incorrect, though very practical notation,
namely dx = h, and hence in general,

df = dx · ▽f in one dimension,

df = (dx · ▽)f in several dimensions.

All information on the mn partial derivatives of f is collected in the so-called functional matrix D f ,
which is defined by

D f(x) :=













∂f1
∂x1

(x) · · · ∂f1
∂xn

(x)

...
...

∂fm
∂x1

(x) . . .
∂fm
∂xn

(x)













,

and we get by using some Linear Algebra that the differential can be written as a matrix product,

df(x,h) = (D f(x))h, or for short df = (D f)h,

where h should be written as an (n× 1)-column.
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9.1.4 The approximating polynomial of degree 1

Let us return to the definition of the differentiability of a function f : A → R, i.e.

f(x) = f (x0) + (x− x0) · ▽f (x0) + ε (x− x0) �x− x0� ,
where x0 ∈ A is the chosen point, and where we have written the increment as h = x − x0. Since
ε (x− x0) → 0 for x → x0, it follows that the approximation by a polynomial of degree 1 in a
neighbourhood of x0 ∈ A is given by

f(x) ≃ P1(x),

where we have defined

P1(x) := f (x0) + (x− x0) · ▽f (x0) .

We call this P1(x) the approximating polynomial of at most degree 1 of the function f at the point of
expansion x0.

Remark 9.2 It is important to keep the variable in the form x− x0 = (x1 − x01, . . . , xn − x0n), and
not to reduce it to a function in x alone. The reason is that we in the applications only use the
approximating polynomial in the neighbourhood of x0, where x− x0 is small. ♦

We mention for later references the structures of the approximating polynomials for n = 2 and n = 3,

P1(x, y) = f (x0, y0) + f ′
x (x0, y0) (x− x0) + f ′

y (x0, y0) (y − y0) , for n = 2,

P1(x, y, z) = f (x0, y0, z0) + f ′
x (x0, y0, z0) (x− x0) + f (x0, y0, z0) + f ′

y (x0, y0, z0) (y − y0)

+f (x0, y0, z0) + f ′
z (x0, y0, z0) (z − z0) , for n = 3.

As a simple application we consider the function f(x, y) in two variables given by

f(x, y) = exp
(

x2 − y2
)

for (x, y) ∈ R2,

where we shall find the approximating polynomial of degree 1 derived from the point of expansion
(x0, y0) = (1,−1).

We first calculate

f ′
x(x, y) = 2x exp

(

x2 − y2
)

and f ′
y(x, y) = −2y exp

(

x2 − y2
)

.

Then we compute all the necessary constants,

f(1,−1) = 1, f ′
x(1,−1) = 2, f ′

y(1,−1) = 2.

By insertion the approximating polynomial becomes

P1(x, y) = 1 + 2(x− 1) + 2(y + 1),

which is reasonable useful, when (x− 1, y + 1) is small. As an example we get

P1(0.95,−1.02) = 0.86, in comparison with f(0.95,−1.02) = 0.87118 · · · .
If we instead “reduce” P1(x, y) to a polynomial in (x, y), then we use (0, 0) as expansion point for an
approximation, which is only reasonable at a point (1,−1) far away. The result P1(x, y) = 1+2x+2y
looks of course nicer, but we lose the important information that it can only be used for (x− 1, y+1)
small. Therefore: Always keep the variable in the form x− x0, where x0 is the point of expansion.
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9.2 The chain rule

9.2.1 The elementary chain rule

As usual we start with the 1-dimensional case in order to find out in what direction we should go,
when we generalize to the case of higher dimensions.

The elementary chain rule. Let f : A → R and X : B → A be two differentiable functions, each
in one variable. Then the composite function F := f ◦X : B → R is also differentiable, and

dF

du
=

df

dx
(X(u))

dX

du
(u),

which is also written

F ′(u) = f ′(X(u))X ′(u).

Figure 9.1: The elementary chain rule. The composite function is F = f ◦X : B → R (the tree to the
left), so first we map u ∈ B into x = X(u) ∈ A, which is then mapped into

f(x) = f(X(u)) = (f ◦X)(u).

To the right we have indicated the three levels. We shall differentiate f on the highest level with
respect to u ∈ B on the lowest level, through x ∈ A in the middle level.

Proof. Obviously, the composite function F := f ◦X : B → R is well-defined. We shall prove that
it is also differentiable.

Let u0 ∈ B. Then x0 = X (u0) ∈ A, and we can find an open neighbourhood B1 ⊆ B of u0, such that
x = X(u) ∈ A for all u ∈ B1. We may of course in the following assume that B1 = B.

Let ∆u denote an increment of u ∈ B, such that also u + ∆u ∈ B. We have assumed that X is
differentiable, so

X(u+∆u)−X(u) := ∆X → 0 for ∆u → 0 and u, u+∆u ∈ B,
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Figure 9.2: The general scheme of the chain rule. We shall differentiate the vector function f at the
highest level with respect to u on the lowest level via x on the middle level. Only the middle level x
will be in contact with both the upper level f and the lower level u.

and also

∆X

∆u
→ X ′(u) for ∆u → 0,

which can be written in the form (after a rearrangement)

X(u+∆u) = X(u) +X ′(u)∆u+ ε(∆u)∆u, where ε(∆u) → 0 for ∆u → 0.

We also assumed that the function f is differentiable in A, so

f(x+∆x)− f(x) := ∆f → 0 for ∆x → 0 and x+∆x ∈ A,

and

∆f

∆x
→ f ′(x) for ∆x → 0,

and

f(x+∆x) = f(x) + f ′(x)∆x + ε(∆x)∆x.

Using that F (u) := f(X(u)), and that X(u+∆u) ∈ A for u, u+∆u ∈ B, we get

∆F

∆u
=

1

∆u
{F (u+∆u)− F (u)} =

1

∆u
{f(X(u+∆u))− f(X(u))}

=
1

∆u
{f(X(u) + ∆X)− f(X(u))}

=
1

∆u
{f(X(u)) + f ′(X(u))∆X + ε(∆X)∆X − f(X(u))}

= f ′(X(u)) · ∆X

∆u
+ ε(∆X) → f ′(X(u)) ·X ′(u) for ∆u → 0,
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and the elementary chain rule is proved. �

We shall in the following generalize this elementary chain rule to the higher dimensional case as
described schematically on Figure 9.2. We still keep the arrows, but later we shall exclude them,
because we shall always calculate the derivatives from below, i.e. in the upward direction. First we
note that the vector function f(x) is a function of the vector x, which again is a function of the vector
u. Clearly, at head on approach is doomed to fail, so we shall first analyze a couple of simpler cases,
before we show the chain rule in general. The chain rule may at the first glance seem very technical.
It is, however, important in the practical applications.
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9.2.2 The first special case

We first consider the case where m = k = 1 and n > 1. In the following we shall only consider the
trees to the right in Figure 9.1 and Figure 9.2.

Figure 9.3: The chain rule in the first special case. The subtree, where we only differentiate with
respect to one variable uj is shown to the right.

When we confine ourselves to the partial derivatives of the composite function with respect to uj,
it follows from the tree at the right hand side of Figure 9.3 that when all the other u-variables are
considered as parameters, then we have reduced the problem to the elementary case of the one-
dimensional chain rule, so if we write F = f ◦X , we get

∂F

∂uj
(u) =

df

dx
(X(u))

∂X

∂uj
(u), for j = 1, . . . , n.

Collecting all the coordinate functions in one equation, we get the following

First special case of the chain rule. If f : A → R, where A ⊆ R, and X : B → A, where B ⊆ Rn,
and F = f ◦X : B → R, then

F (u) = f(X(u)) and ▽ F (u) = f ′(X(u))▽X(u).

One particular case will be useful in the following, namely when

F (u) = f

(

√

u2
1 + · · ·+ u2

n

)

only depends on the distance from 0 in the u-space. If u �= 0, we put

X(u) = �u� =
√

u2
1 + · · ·+ u2

n where
∂X

∂u1
=

u1

�u� etc.,

so

▽X(u) =
u

�u� .
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When F (u) = f(�u�) and u �= 0, we get by the chain rule above that

▽F (u) = f ′(�u�) u

�u� .

In other words, the gradient of F is in this special case equal to the derivative f ′ of f , multiplied by
a unit vector, which is directed away from origo.

9.2.3 The second special case

This case is also easy. We choose m > 1 and k = n = 1, so we get the tree on Figure 9.4.

Figure 9.4: The chain rule in the second special case. The subtree, where we only differentiate one
function fj is shown to the right.

The j-th coordinate function Fj(u) = fj(X(u)) is differentiated in the following way, according to the
elementary chain rule,

dFj

du
(u) =

dfj
dx

(X(u))
dX

du
(u), for j = 1, . . . ,m.

Putting all coordinate functions together we obtain:

Second special case of the chain rule. If f : A → Rm, where A ⊆ R, and X : B → A, where
B ⊆ R, and F = f ◦X : B → R, then

F(u) = f(X(u)) and F′(u) = f ′(X(u)).
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9.2.4 The third special case

This is the most complicated special case, where k > 1, while m = n = 1. The tree is shown to the
left of Figure 9.5 with the general case to the left, and the special case of k = 2 to the right.

Figure 9.5: The chain rule in the third special case. The subtree, where we only have two variables,
x and y, is shown to the right.

In order to avoid a mess of indices in the proof we shall only prove this special case for k = 2, where
we use (x, y) instead of (x1, x2). We shall therefore consider the composite function

F (u) = f(X(u), Y (u)).

Once the chain rule has been proved in this special case, it is easy to generalize.

Before we prove the chain rule in this case, we make some preparations. If the variable u is given an
increment ∆u, then we put

X(u+∆u) := X(u) + ∆X and Y (u +∆u) := Y (u) + ∆Y.

We assume of course that X(u) and Y (u) are differentiable, so

∆X → 0 and ∆Y → 0 for ∆u → 0,

and

∆X

∆u
→ X ′(u) and

∆Y

∆u
→ Y ′(u) for ∆u → 0.

Furthermore, we assume that the function f is differentiable at the point (x, y). This means that

f(x+∆x, y+∆y) = f(x, y) + f ′
x(x, y)∆x + f ′

y(x, y)∆y + ε(∆x,∆y)
√

(Deltax)2+(∆y)2,

where ε(∆x,∆y) → 0 for (∆x,∆y) → (0, 0), i.e. for
√

(∆x)2 + (∆y)2 → 0.

Then we have to put all things together, so we shall compute the differential quotient of the composite
function F (u) = F (X(u), Y (u)) and use the above to reformulate this expression.
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We get

∆F

∆u
=

1

∆u
{f(X(u+∆u), Y (u+∆u))− f(X(u), Y (u))}.

Then insert X(u+∆u) = X(u) + ∆X and Y (u+∆u) = Y (u) + ∆Y to get

∆F

∆u
=

1

∆u
{f(X(u) + ∆X,Y (u) + ∆Y )− f(X(u), Y (u))}

=
1

∆u

{

f ′
x(X(u), Y (u))∆X + f ′

y(X(u), Y (u))∆Y
}

+
1

∆u
ε(∆X,∆Y )

√

(∆X)2 + (∆Y )2

= f ′
x(X(u), Y (u))

∆X

∆u
+ f ′

y(X(u), Y (u))
∆Y

∆u
± ε(∆X,∆Y )

√

(

∆X

∆u

)2

+

(

∆Y

∆u

)2

,

where the ± indicates the sign of ∆u.

Then by taking the limit ∆u → 0,

F ′(u) = lim
∆u→0

∆F

∆u
= f ′

x(X(u), Y (u))X ′(u) + f ′
y(X(u), Y (u))Y ′(u),

because
√

(

∆X

∆u

)2

+

(

∆Y

∆u

)2

→
√

(X ′(u))2 + (Y ′(u))2 is finite for ∆u → 0,

and ε(∆X,∆Y ) → 0 for ∆u → 0.
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Summing up, we have proved the chain rule for k = 2 and m = n = 1:

Third special case of the chain rule for k = 2. If f : A → R, where A ⊆ R2, and (X,Y ) : B → A,
where B ⊆ R, and F = f ◦ (X,Y ) : B → R, then

F (u) = f(X(u), Y (u)) and F ′(u) =
[

f ′
x(x, y)X

′(u) + f ′
y(x, y)Y

′(u)
]

x=X(u), y=Y (u)
.

In practice we first compute the partial derivatives f ′
x(x, y) and f ′

y(x, y), and then the ordinary deriva-
tivesX ′(u) and Y ′(u), for finally to insert x = X(u) and y = Y (u). A short way of writing this formula
is

dF

du
=

∂f

∂x

dx

du
+

∂f

∂y

dy

du
.

This version of the chain rule is often used, when the function which should be differentiated, is fairly
complicated. We illustrate this by considering the function

F (u) = Arctan

(

√

eu − sinu

eu + sinu

)

, for u ∈ R.

The trick is to write F (u) = f(X(u), Y (u)) as a composite function. Here one would choose

f(x, y) = Arctan

(√

x

y

)

for (x, y) ∈ R2
+,

and

X(u) = eu − sinu and Y (u) = eu + sinu for u ∈ R.

(Note that X(u), Y (u) > 0 for u ∈ R.)

Then

f ′
x(x, y) =

1

1 +
x

y

· 1

2
√
xy

=
y

2(x+ y)
√
xy

, f ′
y(x, y) =

1

1 +
x

y

· −
√
x

2y
√
y
=

−x

2(x+ y)
√
xy

,

while

X ′(u) = eu − cosu and Y ′(u) = eu + cosu.

By insertion of X(u) = eu − sinu and Y (u) = eu + sinu we get

f ′
x(x, y) =

eu + sinu

2 · 2eu
√

e2u − sin2 u
, and f ′

y(x, y) =
−eu + sinu

2 · 2eu
√

e2u − sin2 u
,

so

F ′(u) =
[

f ′
x(x, y)X

′(u) + f ′
y(x, y)Y

′(u)
]

x=X(u), y=Y (u)

=
1

4eu
√

e2u − sin2 u
{(eu + sinu) (eu − cosu)− (eu − sinu) (eu + cosu)}

=
1

4eu
√

e2u − sin2 u
eu(− cosu+ sinu+ sinu− cosu) =

sinu− cosu

2
√

e2u − sin2 u
.
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If we here apply MAPLE, we write

d

du
arctan

(
√

eu − sin(u)

eu + sin(u)

)

,

which produces the following

1

2
·

eu − cos(u)

eu + sin(u)
− (eu − sin(u)) (eu + cos(u))

(eu + sin(u))2
√

eu − sin(u)

eu + sin(u)

(

1 +
eu − sin(u)

eu + sin(u)

)

which clearly needs to be reduced.

Without going into details we mention that if k > 2, then we just copy the proof above to get

Third special case of the chain rule for k > 2. If f : A → R, where A ⊆ Rk, and X : B → A,
where B ⊆ Rk, and F = f ◦X : B → R, then F (u) = f(X(u)), and

F ′(u) =
[

f ′
x1
(x)X ′

1(u) + · · ·+ f ′
xk
(x)X ′

k(u)
]

x=X(u)
= ▽f(X(u)) ·X′(u).

The latter equation follows from that the first result actually is a scalar product.

An important application occurs, when we shall differentiate a function, which is given by an integral,
in which the upper and lower bounds are differentiable functions in the variable under consideration,
as well as the integrand. Let us consider

g(x) =

∫ Y (x)

Z(x)

f(t, x) dt, x ∈ I,

where I is an interval. We define a function G(x, y, z) in three variables by

G(x, y, z) :=

∫ y

z

f(t, x) dt,

and then note that

g(x) = G(x, Y (x), Z(x)).

We have previously found that

G′
x(x, y, z) =

∫ y

z

f ′
x(t, z) dt, G′

y(x, y, z) = f(y, x), G′
z(x, y, z) = −f(z, x),

so we get by the chain rule for k = 3 and m = n = 1 and X(x) = x, that

dg

dx
=

∂G

∂x
· dX

dx
+

∂G

∂y
· dY

dx
+

∂G

∂z
· dZ

dx

=

∫ Y (x)

Z(x)

f ′
x(t, x) dt+ f(Y (x), x)Y ′(x)− f(Z(x), x)Z ′(x).

This rule is valid, when the functions f , f ′
x, Y

′ and Z ′ are all continuous.

313

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume III 
Differentiable Functions in Several Variables

314 

Differentiable functions in several variables

u1

✻

x1

✻

f1

· · ·

· · ·

· · ·

un

✻

xk

✻

fm

✚
✚
✚
✚✚❃

✚
✚
✚
✚✚❃

❩
❩

❩
❩❩⑥

❩
❩

❩
❩❩⑥

Figure 9.6: The general diagram of the chain rule.

9.2.5 The general chain rule

In the general case we have the situation as described on Figure 9.6. By fixing the index r ∈ {1, . . . ,m}
in the upper layer and j ∈ {1, . . . , n} in the lower layer we reduce the complicated scheme of Figure 9.6
to Figure 9.7, which we recognize as the diagram for the third special case of the chain rule in
Section 9.2.4. Therefore, the general chain rule follows by gluing all cases together of r ∈ {1, . . . ,m}
and j ∈ {1, . . . , n}.

uj

x1 · · · xk

fi

❅
❅

❅
❅❅■

�
�
�
��✒

�
�
�
��✒

❅
❅

❅
❅❅■

Figure 9.7: The reduced diagram of the chain rule.

The general chain rule. Given the composite function F(u) = f(X(u)), where the coordinate
functions are given by

Fr (u1, . . . , un) = fr (X (u1, . . . , un)) .

If f and X are differentiable, then so is F = f ◦ X, and we get for each coordinate function Fr and
each variable uj that

∂Fr

∂uj
(u) =

∂fr
∂x1

(X(u))
∂X1

∂uj
(u) + · · ·+ ∂fr

∂xk
(X(u))

∂Xk

∂uj
(u),
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for r ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.
If we use the functional matrix differential operator D defined by

Df =

{

∂fr
∂uj

}

r=1,...,m;j=1,...,n

,

then the general chain rule can also be written in the following matrix notation,

D(f ◦X)(u) = Df(X(u))DX(u).

Clearly, all the previously obtained special cases are obtained by putting (at least) two of the numbers
m, k, n equal to 1 (and trivially replace “∂” by “ d”, when we have got only one variable.

A frequent application consists in the change from rectangular coordinates in the plane to polar
coordinates. So given the function f : A → R, where A ⊆ R2, we shall consider partial differentiations
with respect to the polar coordinates (̺, ̺) of

F (̺, ϕ) = f(x, y) = f(̺ cosϕ, ̺ sinϕ).
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Figure 9.8: The diagram for partial differentiation in polar coordinates in the plane instead of in
rectangular coordinates.

We get by the chain rule,

∂F

∂̺
=

∂f

∂x

∂x

∂̺
+

∂f

∂y

∂y

∂̺
=

∂f

∂x
(̺ cosϕ, ̺ sinϕ) cosϕ+

∂f

∂y
(̺ cosϕ, ̺ sinϕ) sinϕ,

and

∂F

∂ϕ
=

∂f

∂x

∂x

∂ϕ
+

∂f

∂y

∂y

∂ϕ
=

∂f

∂y
(̺ cosϕ, ̺ sinϕ)(−̺ sinϕ) +

∂f

∂y
(̺ cosϕ, ̺ sinϕ) ̺ cosϕ,

or with an understandable shorthand,

∂F

∂̺
=

∂f

∂x
cosϕ+

∂f

∂y
sinϕ,

∂F

∂ϕ
= −∂f

∂x
̺ sinϕ+

∂f

∂y
̺ cosϕ,

where we first differentiate f with respect to x and y, and then insert x = ̺ cosϕ, y = ̺ sinϕ into the
result.

This is an example of the general principle in practical applications. We shall usually not bother with
whether we are considering f or F, and we shall usually in the first calculation leave out the variables.

The method is that we differentiate through all variables on the middle level and finally add all these
results,

∂fr
∂uj

=
∂fr
∂x1

∂x1

∂uj
+ · · ·+ ∂fr

∂xk

∂xk

∂uj
,

where the blue variables from the middle level are added,

Note that the symbol of a partial differential quotient is a notation and not a fraction, so one cannot
just cancel all the blue contributions. An furthermore, in the final result, only the variables u (and
not x) should occur.
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9.3 Directional derivative

We shall sometimes need the derivative of a function f(x) in a specific direction from a given point x.
Let e be a unit vector starting at the point x and pointing in the direction, in which we want to find
the derivative. Take the restriction of f to a line segment through x in the direction e, i.e. we define

F (t) = f(x+ te), for t ∈ I,

where I ⊆ R is some open interval, for which 0 ∈ I. Then F (t), t ∈ I, is an ordinary function in t,
while the right hand side f(x+ te) is a composite function,

F = f ◦X, where X(t) = x+ te = (x1 + te1, . . . , xn + ten) .

Then by the chain rule,

F ′(t) =
∂f

∂x1

dx1

dt
+ · · ·+ ∂f

∂xn

dxn

dt
= ▽f(x) ·X′(t) = e · ▽f(x+ te).

Consider in particular F ′(0). The interpretation of F ′(0) is that it gives a measure of the variation
of f , when one moves a small distance from x in the direction of e. We call F ′(0) the directional
derivative of f in the direction of e, and we shall use the notation

f ′(x, e) (= F ′(0)) = e · ▽f(x).

Since e is a unit vector, we clearly have the inequalities

−�▽ f(x)� ≤ f ′(x, e) ≤ �▽ f(x)�.

We obtain equality to the left, when e is pointing in the opposite direction of ▽f(x), and similarly
equality to the right, when the unit vector e points in the same direction as ▽f(x. In particular, the
gradient ▽f(x is pointing in the direction from the point x, in which the function f(x) obtains its
biggest increase.

If the unit vector e is chosen as one of the vectors of the orthonormal basis, ej , then the directional
derivative is equal to the partial derivative with respect to xj , i.e.

∂f

∂xj
= ej · ▽f(x),

which we have also seen previously.

We mention in this connection a slightly different problem, the solution of which is derived from the
above. Given two different points x0, x1 ∈ A. We shall find the directional derivative of f(x) in the
direction from x0 towards x1.

We shall only find the unit vector, which points from x0 towards x1. This is clearly

e :=
x1 − x0

�x1 − x0�
,

so the directional derivative of f at x0 in the direction from x0 towards x1 is given by

x1 − x0

|x1 − x0�
· ▽f (x0) .
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9.4 Cn-functions

We have previously introduced the partial derivatives of first order

∂f

∂x1
, . . . ,

∂f

∂xk

of a function f : A → R, where A ⊆ Rk, whenever they do exist. One may be tempted to check if
these (at most) k partial derivatives of first order again are differentiable functions with respect to
the variables x = (x1, . . . , xk). When this is the case, we call the results partial derivatives of second
order.

Assume that
∂f

∂xi
has a partial derivative with respect to the variable xj . We shall then use one of

the following notations for this partial derivative of second order:

∂

∂xj

(

∂f

∂xi
(x)

)

,
∂2f

∂xj∂xi
(x), f ′′

xixj
, or DjDif(x).

The symbol closest to the function f is always applied first. However, we mention that some authors
prefer to write in the opposite order

∂2f

∂xi∂xj
(x),

so here the order of differentiation follows the way this symbol is read. In practice this will not cause
any trouble, because we shall see in the following that under very mild assumptions, which are always
met in the rest of this series of books, we have

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
,

no matter which interpretation we have chosen.

If xj = xi, we also write

∂2f

∂x2
i

(x), or f ′′
x2
i
(x). or D2

i f(x)

for the corresponding partial derivative of second order.

The extension from partial derivatives of order 1 to partial derivatives of order 2 is the biggest one.
Once we have understood this step, it is obvious how to introduce partial derivatives of order n,
whenever they exist. Also, the notation of the partial derivatives of order n,

∂n

∂xi1 · · · ∂xin

(x), f (n)
xin···xi1

(x), or Di1 · · ·Dinf(x),

is easy to understand.

When the dimensions are n = 2 or 3, then we use the notation (x, y) or (x, y, z) for the variables,
instead of (x1, x2) or (x1, x2, x3).

Assume that all possible partial derivatives of f of order n exist in A and that they are all continuous
in A. Then we say that f has continuous partial derivatives of order n in A, and we write

f ∈ Cn(A).

318

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume III 
Differentiable Functions in Several Variables

319 

Differentiable functions in several variables

When this is true for all n, we write f ∈ C∞(A). Then it is natural to add f ∈ C0(A) to mean that
f is continuous in A.

Often the open domain A is tacitly understood, in which case we just write f ∈ Cn, or f ∈ C∞, or
f ∈ C0.

The importance of the class Cn(A) follows from the following theorem,

Theorem 9.4 Interchange of the order of differentiation. Assume that A ⊆ Rkk is open and that
f ∈ C2(A). Then

∂2f

∂xi∂xj
(x) =

∂2f

∂xj∂xi
(x) for x ∈ A and i, j ∈ {1, . . . , k}.

Theorem 9.4 is only formulated for n = 2, but if e.g. f ∈ C3(A), then every
∂f

∂xi
∈ C2(A), and we

may apply Theorem 9.4 with f replaced by
∂f

∂xi
, and then use induction to obtain the general result.

The proof of Theorem 9.4 is fairly long and tedious, for which reason it is not given here.
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The formulation of Theorem 9.4 above gives us a hint of that there may exist examples of functions,
for which the partial derivatives of e.g. second order exist, and yet there may exist points in which
the order of differentiation is essential. This is indeed true! Let f : R2 → R2 be given by

f(x, y) =
√

(x2 + 2(x+ y)2) (y2 + (x− y)2) =
√

3x4 − 2x3y + 4xy3 + 4y4.

If (x, y) �= (0, 0), then

f ′
x(x, y) =

6x3 − 3x2y + 2y3
√

3x4 − 2x3y + 4xy3 + 4y4
, f ′

y(x, y) =
−x3 + 6xy2 + 8y3

√

3x4 − 2x3y + 4xy3 + 4y4
.

It follows that even f ∈ C∞ (

R2 \ {(0, 0)}
)

, so we shall only investigate the point (0, 0). We get in
particular from the above,

f ′
x(0, y) = y for y �= 0, and f ′

y(x, 0) = − x√
3

for x �= 0,

Since we have the restriction f(x, 0) =
√
3x2 for x ∈ R, we get f ′

x(x, 0) = 2
√
3x, hence

f ′
x(0, 0) = 0,

Since we have the restriction f(0, y) = 2y2 for y ∈ R, we get f ′
y(0, y) = 4y, hence

f ′
y(0, 0) = 0.

Summing up, we have

f ′
x(0, y) = y for y ∈ R, and f ′

y(x, 0) = − x√
3

for x ∈ R,

from which we get

f ′′
xy(0, y) = 1 for y ∈ R and f ′′

yx(x, 0) = − 1√
3

for x ∈ R.

Then

f ′′
xy(0, 0) = 1 �= − 1√

3
= f ′′

yx(0, 0),

proving that the order of differentiation cannot be interchanged at the point (0, 0), although the partial
derivatives of second order clearly exist in all of R2.

We have above only considered the class Cn(A), when A was an open set. In many applications we
also need to talk of Cn(Ã), when Ã is not open. We introduce the following

Definition 9.2 Let A ⊆ Rk be a nonempty set, and let f : A → R be a function. We say that
f ∈ Cn(A) is n times continuously differentiable in A, if there exists an extension f̃ : Ã → R of f to
an open set Ã, such that f̃ ∈ Cn(Ã) and f̃(x) = f(x) for all x ∈ A.
If f : A → Rm is a vector function, we say that f ∈ Cn(A), if all its coordinate functions fi ∈ Cn(A).
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9.5 Taylor’s formula

9.5.1 Taylor’s formula in one dimension

We shall often need a method to approximate a Cn-function in a neighbourhood of a point, using a
polynomial as approximation. There are some possibilities, of which we here choose the most well-
known, namely Taylor’s formula. As usual we shall start with the 1-dimensional case and then derive
the general results in n dimensions.

Usually one uses Rolle’s theorem or the mean value theorem to prove Taylor’s formula, but as we
shall see below, this is not necessary, if we only assume that the function is n times continuously
differentiable.

Let I ⊆ R be an open interval, which contains 0 ∈ I, and let F : I → R be a Cn(I)-function. This
means that

F (t), F ′(t), . . . , F (n)(t), t ∈ I,

all exist and are continuous. In particular, in a neighbourhood of 0 ∈ I,

F (n)(t) = F (n)(0) + ε(t), where ε(t) → 0 for t → 0,

a relation which we shall need below.

Another preparation for the proof is the following observation that by a partial integration for h ∈ I,

∫ h

0

(h− t)k−1

(k − 1)!
F (k)(t) dt =

[

− (h− t)k

k!
F (k)(t)

]h

0

+

∫ h

0

(h− t)k

k!
F (k+1)(t) dt

=
hk

k!
F (k)(0) +

∫ h

0

(h− t)k

k!
F (k+1)(t) dt for k = 1, . . . , n− 1,

because F ∈ Cn(I).

Using this result repeatedly we obtain by induction

F (h)− F (0) =

∫ h

0

1 · F ′(t) dt =
h1

1!
F ′(0) +

∫ h

0

(h− t)1

1!
F ′′(t) dt

=
1

1!
h1F ′(0) +

1

2!
h2 F ′′(0) + · · ·+ 1

(n− 1)!
, hn−1 F (n−1)(0) +

∫ h

0

(h− t)n−1

(n− 1)!
F (n)(t) dt.

Since F (n)(t) = F (n)(0) + ε(t), where ε(t) → 0 for t → 0 in I, we finally get for the remainder term,

∫ h

0

(h− t)n−1

(n− 1)!
F (n)(t) dt =

∫ h

0

(h− t)n−1

(n− 1)!

{

F (n)(0) + ε(t)
}

dt =
hn

n!
F (0) + hn · ε̃(h),

where we have used the estimates
∣

∣

∣

∣

∣

∫ h

0

(h− t)n−1

(n− 1)!
ε(t) dt

∣

∣

∣

∣

∣

≤
∫ |h|

0

|h|n−1 max
−|h|≤t≤|h|

|ε(t)| dt = |h|n−1 · |h| · ε1(h) = |h|n · ε1(h),

where ε1(h) → 0 for h → 0. It follows that

∫ h

0

(h− t)n−1

(n− 1)!
ε(t) dt = hn · ε̃(h), where ε1(h) → 0 for h → 0.

321

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume III 
Differentiable Functions in Several Variables

322 

Differentiable functions in several variables

Summing up se see after a rearrangement that we have proved

Taylor’s formula in one dimension. Let I ⊆ R be an open interval, where 0 ∈ I, and let F : I → R

be a Cn(I)-function. Then

F (h) = F (0) +
F ′(0)

1!
h+

F ′′(0)

2!
h2 + · · ·+ F (n)(0)

n!
hn + hnε(h), for h ∈ I,

where ε(h) → 0 for h → 0.

Here,

Pn(h, F ) = Pn(h) = F (0) +
F ′(0)

1!
h+

F ′′(0)

2!
h2 + · · ·+ F (n)(0)

n!
hn

is a polynomial of at most degree n in h. We call it the approximating polynomial of F (h) of degree
at most n, and n, which is determined by the corresponding remainder term above, is called the order
of expansion.

Note that we may have come across an expansion of order n, where the approximating polynomial
actually is of degree < n. The only requirement is that F (n)(0) = 0, a possibility, which cannot be
excluded.

If the point of expansion is not 0, but instead some t0 ∈ I, then we just introduce the new variable
τ = t− t0, and the point of expansion for τ becomes τ0 = 0, and we can use the above to get

F (t) = F (t0) +
F ′ (t0)

1!
(t− t0) +

F ′′ (t0)

2!
(t− t0)

2
+ · · ·+ F (n) (t0)

n!
(t− t0)

n
+ (t− t0)

n
ε (t− t0) ,

where F ∈ Cn(I), and where ε (t− t0) → 0 for t → t0.

Before we in detail discuss Taylor’s formula in several variables we show, how we get from the one
dimensional version above to Taylor’s formula in n dimensions. The idea is simple. Let f : A → R,
where A ⊂ Rk is open, be a Cn-function. Let x ∈ A, and let x+h ∈ A be a neighbouring point, such
that the (closed) line segment between x and x+ h lies in A. If h �= 0, put h = he, where h > 0 and
e is a unit vector. We define

(9.3) F (t) := f(x+ te), for t ∈ I,

where I is an open interval containing [0, h]. Then F (0) = f(x) and F (h) = f(x+he) = f(x+e), and
F (t) is a Cn(I)-function, so we can apply Taylor’s formula in one dimension om F (t), proved above.
We shall of course in the differentiation of (9.3) above use the chain rule on the right hand side. We
shall first consider the simple case, when n = 1.

9.5.2 Taylor expansion of order 1

We apply the third special case of the chain rule to get

F ′(t) =
d

dt
f(x+ te) =

∂f

∂x1
(x+ te)e1 + · · ·+ ∂f

∂xk
(x+ te) = e · ▽f(x+ te) for t ∈ I.

Put n = 1 and t = h into Taylor’s formula to get

F (h) = f(x+ h) = f(x) + he · ▽f(x+ te) = f(x) + h · ▽f(x) + ε(h)�h�,
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where the ε-function depends on both the length h > 0 and the direction e, so if f ∈ C1(A) and
x ∈ A, then

f(x+ h) = f(x) + h · ▽f(x) + ε(h)�h�.

This was fairly easy and only illustrates that f ∈ C1(I) is continuously differentiable.

One would of course expect that the situation becomes more complicated for n > 1, and so it is! In
order to get the general idea we shall therefore in the next section confine ourselves to the case where
n = 2 and just k = 2, and only briefly at the end of the section mention the result, when k = 3.

9.5.3 Taylor expansion of order 2 in the plane

We shall proceed with the Taylor expansion of second order, n = 2, in several variables. We shall start
with he simplest case, where we have only two variable (x, y). Let A ⊆ R2 be an open and non-empty
set in the plane, and let f ∈ C2(A) be a twice continuously differentiable function of A. We shall find
for a given point (x, y) ∈ A and a small increment (hx, hy) an expression of f (x+ hx, y + hy) in a
neighbouring point (x+ hx, y + hy), where we use f and its first and second partial derivatives at the
given point (x, y).

The set A is open, at (x, y) ∈ A, so there exists an r > 0, such that the open disc B((x, y), r) ⊆ A. If
therefore the increment (hx, hy) is small

(

h2
x + h2

y < r2 will be sufficient
)

, then the closed line segment
between (x, y) and (x+ hx, y + hy) is totally contained in A, so we can take the restriction of f to
this line segment and apply the previously developed theory.
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Let h :=
√

h2
x + h2

y. Then there are constants α (= cosϕ) and β (= sinϕ), such that

hx = αh and hy = β h,

and the restriction of f to the line segment is written

F (t) = f(x+ α t, y + β t), for t ∈ I ⊃ [0, h],

where

F (h) = f (x+ hx, y + hy) and F (0) = f(x, y).

We get by the chain rule,

F ′(t) = αf ′
x(x + α t, y + β t) + β f ′

y(x + α t, y + β t).

The assumption that f ∈ C2(A) secures that the right side of this equation is again continuously
differentiable. Hence, once more by the chain rule (third special case)

F ′′(t) = α
{

α f ′′
xx(x+ α t, y + β t) + β f ′′

xy(x+ α t, y + β t)
}

+β
{

αf ′′
yx(x + α ty + beta t) + β f ′′

yy(x+ α t, y + β t)
}

.

Since f ∈ C2(A), the order of differentiation can be interchanged, so f ′′
yx = f ′′

xy, and we reduce the
expression above to

F ′′(t) = α2f ′′
xx(x+ α t, y + β t) + 2αβf ′′

xy(x + α t, y + β t) + β2f ′′
yy(x+ α t, y + β t).

Summing up we have

F (0) = f(x, y), F ′(0) = αf ′
x(x, y)+βf ′

y(x, y), F ′′(0) = α2f ′′
xx(x, y)+2αβf ′′

xy(x, y)+β2f ′′
yy(x, y),

hence by insertion,

f(x+ αh, y + βh) = F (h) = F (0) + F ′(0)h+
1

2
F ′′(0)h2 + ε(h)h2

= f(x, y) + αhf ′
x(x, y) + β hf ′

y(x, y)

+
1

2!

{

(αh)2f ′′
xx(x, y) + 2(αh)(βh)f ′′

xy(x, y) + (βh)2f ′′
yy(x, y)

}

+ ε(αh, β h)h2

= f(x, y) + hxf
′
x(x, y) + hyf

′
y(x, y) +

1

2!

{

h2
xf

′′
xx(x, y) + 2hxhyf

′′
xy(x, y) + h2

yf
′′
yy(x, y)

}

+ε (hx, hy)
(

h2
x + h2

y

)

,

where ε (hx, hy) → 0 for (hx, hy) → (0, 0).

Summing up, we have proved
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Taylor’s formula for n = 2 and k = 2. Assume that A ⊆ R2 is open and non-empty, and that
f ∈ C2(A). If (x, y) ∈ A, then

f (x+ hx, y + hy) = f(x, y) + hxf
′
x(x, y) + hyf

′
y(x, y)

+
1

2!

{

h2
xf

′′
xx(x, y) + 2hxhyf

′′
xy(x, y) + h2

yf
′′
yy(x, y)

}

+ε (hx, hy) ·
(

h2
x + h2

y

)

,

where ε (hx, hy) → 0 for (hx, hy) → (0, 0), and where A contains the closed line segment between
(x, y) ∈ A and (x+ hx, y + hy) ∈ A.

We note that the differential

df(x,h) = hxf
′
x(x, y) + hyf

′
y(x, y) = (hx, hy) ·

(

f ′
x(x, y), f

′
y(x, y)

)

= h · ▽f(x, y)

enters the expression above. It is therefore tempting to introduce the second differential d2f of the
function f by collecting all terms, which contain two partial derivatives of f ,

f2(x,h) := h2
xf

′′
xx(x, y) + 2hxhyf

′′
xy(x, y) + h2

yf
′′
yy(x, y).

We shall see below, that this is really a convenient definition.

If we here put

f1(x) = h · ▽f(x) = df(x,h),

then

d2f(x,h) = h · ▽f1(x) = (h · ▽)(h · ▽)f(x), for f ∈ C2(A).

In general, we define by induction the p-th differential of a function f ∈ Cn(A) by

dpf(x,h) = h · ▽p−1(x,h) = · · · = (h · ▽)pf(x), for p = 1, . . . , n,

where the differential operator h · ▽ operates p (≤ n) times.

Once we have seen this structure, we can immediately extend this construction to A ⊆ Rk, where
k ≥ 2, and

h · ▽ := h1
∂

∂x1
+ · · ·+ hk

∂

∂xk
,

so we obtain in general,

Taylor’s formula for f ∈ Cn(A), A ⊆ Rk open. If x, x + h ∈ A are chosen, such that the closed
line segment between x and x+ h is totally contained in A, then

f(x+ h) = f(x) + df(x,h) +
1

2
d2f(x,h) + · · ·+ 1

n!
dnf(x,h) + ε(h)�h�n,

where ε(h) → 0 for h → 0.
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In general, dpf(x,h) is computed in the following way,

dpf(x,h) = (h · ▽)pf(x,h),

where

(h · ▽)p =

(

h1
∂

∂x1
+ · · ·+ hk

∂

∂xk

)p

is calculated as an ordinary polynomial in the operators
∂

∂xj
of constant coefficients hj .

We mention in particular for k = 3,

df(x,h) = hxf
′
x(x, y, x) + hyf

′
y(x, y, z) + hzf

′
z(x, y, z)

and

d2f(x,h) = h2
xf

′′
xx(x, y, z) + h2

yf
′′
yy(x, y, z) + h2

zf
′′
zz(x, y, z)

+2hxhyf
′′
xy(x, y, z) + 2hyhzf

′′yz(x, y, z) + 2hzhxf
′′
zx(x, y, z)

for f ∈ C2(A) and A ⊆ R3 an open set. Hence, in three variables,

f (x+ hx, y + hy, z + hz)

= f(x, y, z) +
1

1!

{

hxf
′
x(x, y, z) + hyf

′
y(x, y, z) + hzf

′
z(x, y, z)

}

+
1

2!

{

h2
xf

′′
xx(x, y, z) + h2

yf
′′
yy(x, y, z) + h2

zf
′′
zz(x, y, z)

}

+
{

hxhyf
′′
xy(x, y, z) + hyhzf

′′
yz(x, y, z) + hzhxf

′′
zx(x, y, z)

}

+ε (hx, hy, hz)
(

h2
x + h2

y + h2
z

)

.

In the applications in e.g. Physics, one rarely goes beyond the order n = 2 of the expansion. Also,
the dimensions are usually k = 2 or k = 3, so we have above covered the most important cases for the
applications. And yet we have still the possibility of extending Taylor’s formula to k > 3 and n > 2,
which is of importance in the next section.

9.5.4 The approximating polynomial

Assume that f ∈ Cn(A). Then by Taylor’s formula,

f(x+ h) = f(x) +
1

1!
(h · ▽)f(x,h) + · · ·+ 1

n!
(h · ▽)nf(x,h) + ε(h)�h�n.

If we remove the remainder term ε(h)�h�n, we get a polynomial in h of at most degree n. We call it
the approximating polynomial of at most degree n in the variable h, i.e.

Pn(x,h) = f(x) +
1

1!
(h · ▽)f(x,h) + · · ·+ 1

n!
(h · ▽)nf(x,h)
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where x is the expansion point. It is an approximation of f(x) in the neighbourhood of x, because

|f(x+ h)− Pn(x),h| = ε(h)�h�n, where ε(h) → 0 for h → 0,

i.e. the error is of the size ε(h)�h�n. One may write this

f(x+ h) ≃ Pn(x,h).

In practice we denote the expansion point by x0, and then write x = x0 + h, so the increment is
h = x− x0.

We then write

f(x) ≃ Pn (x0,x− x0) in a neighbourhood of x0.

Of particular importance are the cases, where k = 2 and k = 3, and the order of expansion is 2,
because this is the most commonly used approximations in Physics. We therefore explicitly give the
approximating polynomials of order 2 below.
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Assume that A ⊆ R2. Then we write the variable in the form x = (x, y). Let (x0, y0) denote the
expansion point. Then the approximal polynomial of at most degree 2 of f ∈ C2(A) is given by

P2 (x0,x− x0) = P2 ((x0, y0) , (x− x0, y − y0))

= f (x0, y0) + (x− x0) f
′
x (x0, y0) + (y − y0) f

′
y (x0, y0)

+
1

2
(x− x0)

2 f ′′
xx (x0, y0) + (x− x0) (y − y0) f

′′
xy (x0, y0) +

1

2
(y − y0)

2 f ′′
yy (x0, y0) .

We must for numerical reasons keep h = x − x0 and k = y − y0 as the natural variables and not
“reduce” the polynomial, using x and y as the variables.

Similarly in three dimensions, if f ∈ C2(A), where A ⊆ R3. In this case,

P2 (x0,x− x0) = P2 ((x0, y0, z0) , (x− x0, y − y0, z − z0))

= f (x0, y0, z0) + (x− x0) f
′
x (x0, y0, z0) + (y − y0) f

′
y (x0, y0, z0) + (z − z0) f

′
z (x0, y0, z0)

+
1

2
(x− x0)

2
f ′′
xx (x0, y0, z0) +

1

2
(y − y0)

2
f ′′
yy (x0, y0, z0) +

1

2
(z − z0)

2
f ′′
zz (x0, y0, z0)

+ (x− x0) (y − y0) f
′′
xy (x0, y0, z0) + (y − y0) (z − z0) f

′′
yz (x0, y0, z0)

+ (z − z0) (x− x0) f
′′
zx (x0, y0, z0) ,

where we keep (x− x0, y − y0, z − z0) as our variables.

In practice the notation P2 ((x0, y0) , (x− x0, y − y0)) and P2 ((x0, y0, z0) , (x− x0, y − y0, z − z0)) are
too clumsy, so we just write P2(x, y) and P2(x, y, z) instead, where we tacitly assume the point of
expansion, (x0, y0), resp. (x0, y0, z0).

We shall below illustrate the principle in a concrete example, in which we also demonstrate an alter-
native, using results from Chapter 12. This alternative is sometimes more easy to apply.

Consider the function

f(x, y) = exp
(

x2 − y2
)

for (x, y) ∈ R2,

where we choose the expansion point (1,−1).
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First method. We compute the first and second partial derivatives of f(x, y) and then compute
their values at the expansion point (1,−1), where

f(x, y) = exp
(

x2 − y2
)

, f(1,−1) = 1,

f ′
x(x, y) = 2x exp

(

x2 − y2
)

, f ′
x(1,−1) = 2,

f ′
y(x, y) = −2y exp

(

x2 − y2
)

, f ′
y(1,−1) = 2,

f ′′
xx(x, y) =

(

2 + 4x2
)

exp
(

x2 − y2
)

, f ′′
xx(1,−1) = 6,

f ′′
xy(x, y) = −4xy exp

(

x2 − y2
)

, f ′′
xy(1,−1) = 4,

f ′′
yy(x, y) =

(

−2 + 4y2
)

exp
(

x2 − y2
)

, f ′′
yy(1,−1) = 2,

so the approximating polynomial in (x− 1, y + 1) of at most degree 2 is

P2(x, y) = f(1,−1) + f ′
x(1,−1)(x− 1) + f ′

y(1,−1)(y + 1)

+
1

2
f ′′
xx(1,−1)(x− 1)2 + f ′′

xy(1,−1)(x− 1)(y + 1) +
1

2
f ′′
yy(1,−1)(y + 1)2

= 1 + 2(x− 1) + 2(y − 1) + 3(x− 1)2 + 4(x− 1)(y + 1) + (y + 1)2,

where the polynomial should not be reduced further.

Second method. When (1,−1) is the expansion point, we introduce x = 1 + h and y = −1 + k,
or h = x − 1 and k = y + 1, where (h, k) are the new variables, which should be kept small in the
approximations.

Then,

x2 − y2 = (1 + h)2 − (−1 + k)2 = 2h+ 2k + h2 − k2,

which for small (h, k) behaves like ∼ 2h+ 2k of first degree, while the remainder terms

h2 − k2 = ε(h, k)
√

h2 + k2.

We know already, cf. Chapter 12, that

et = 1 + t+
1

2
t2 + · · · ,

where the dots indicate terms of degree > 2, i.e. of the type ε(t)t2.

If we put t = 2h+ 2k + h2 − k2, then clearly t3 = ε(h, k)
(

h2 + k2
)

, so by an expansion of order 2,

exp
(

x2 − y2
)

= 1 +
(

2h+ 2k + h2 − k2
)

+
1

2

(

2h+ 2k + h2 − k2
)2

+ · · ·

= 1 + 2h+ 2k + 3h2 + 4hk + k2 + · · · ,

where the dots indicate terms of degree > 2.
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Finally, h = x− 1 and k = y + 1, so

P2(x, y) = 1 + 2(x− 1) + 2(y + 1) + 3(x− 1)2 + 4(x− 1)(y + 1) + (y + 1)2.

If we want to find an approximation of f(0.95,−1.02) [= 0.87118 . . . ], and no computer or pocket
calculator is at hand, then we use the approximate polynomial P2(x, y) with x − 1 = −0.05 and
y + 1 = −0.02, and we get by insertion,

P2(0.95,−1.02) = 1 + 2(−0.5) + 2(−0.02) + 3(−0.05)2 + 4(−0.05)(−0.02)+ (−0.02)2 = 0.8719,

which is a fairly good approximation of f(0.92,−1.02).

Then we consider the following case in R3,

f(x, y, z) = y lnx+ z2ey for x > 0,

where the expansion point is chosen as (1, 0, 1).

First method. We compute

f(x, yt, z) = y lnx+ z2ey, f(1, 0, 1) = 1,

f ′
x(x, y, z) =

y

x
, f ′

x(1, 0, 1) = 0,

f ′
y(x, y, z) = lnx+ z2ey, f ′

y(1, 0, 1) = 1,

f ′
z(x, y, z) = 2zey, f ′

z(1, 0, 1) = 2,

f ′′
xx(x, y, z) = − y

x2
, f ′′

xx(1, 0, 1) = 0,

f ′′
yy(x, y, z) = z2ey, f ′′

yy(1, 0, 1) = 1,

f ′′
zz(x, y, z) = 2ey, f ′′

zz = 2,

f ′′
xy(x, y, z) =

1

x
, f ′′

xy(1, 0, 1) = 1,

f ′′
yz(x, y, z) = 2zey, f ′′

yz(1, 0, 1) = 2,

f ′′
zx(x, y, z) = 0, f ′′

zx(1, 0, 1) = 0,

so the approximate polynomial P2(x, y, z) of at most degree 2 is

P2(x, y, z) = 1 + y + 2(z − 1) +
1

2
y2 + (z − 1)2 + (x − 1)y + 2y(z − 1).

Second method. Since the expansion point is (1, 0, 1), we put x = 1+ h, y = k and z = 1+ p. Then

f(x, y, z) = k ln(1 + h) + (1 + p)2ek = k{h+ · · · }+
(

1 + 2p+ p2
)

(

1 + k +
1

2
k2 + · · ·

)

= hk + 1 + k +
1

2
k2 + 2p+ 2kp+ p2 + · · · ,
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where the dots indicate terms of degree > 2. Hence,

P2(x, y, z) = 1 + k + 2p+ hk + 2kp+
1

2
k2 + p2

= 1 + y + 2(z − 1) + (x− 1)y + 2y(z − 1) +
1

2
y2 + (z − 1)2.

At last we show that even if f(x, y) is a polynomial, the approximating polynomial P2(x, y) is not
necessarily the same polynomial. If we choose

f(x, y) = x2y for (x, y) ∈ R2,

then f(x, y) is a monomial of degree 2 + 1 = 3, so one would expect that P2(x, y) would be different
from f(x, y), no matter the point of expansion. This is obvious for the point of expansion (0, 0),
because the approximating polynomial of at most degree 2 in this case is 0. Then let us consider the
expansion point (1, 2). Then x = 1 + h and y = 2 + k, hence by insertion,

f(x, y) = x2y = (1 + h)2y =
(

1 + 2h+ h2
)

(2 + k) = 2 + 4h+ k + 2h2 + 2hk + h2k.

The approximation of second order is then obtained by removing all terms of degree > 2, which in
the present case is h2k, so when the expansion point is (1, 2), we get

P2(x, y) = 2 + 4h+ k + 2h2 + 2hk = 2 + 4(x− 1) + (y − 2) + 2(x− 1)2 + 2(x− 1)(y − 2) �= x2y,

because we are missing the term h2k = (x− 1)2(y − 2).
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10 Some useful procedures

10.1 Introduction

We mention two procedures, which are relevant for this book, namely The chain rule and The direc-
tional derivative. For some reason these simple procedures are felt very difficult, the first time one
meets them, so the reader should be careful here.

10.2 The chain rule

Problem 10.1 Let f = (f1, . . . , fm) be a differentiable vector function in the k real variables x1, . . . ,
xk, and assume that these again are differentiable functions in the n variables u1, . . . , un.
Find the (partial) derivatives of (f1, . . . , fm) after u1, . . . , un.

u1

✻

x1

✻

f1

· · ·

· · ·

· · ·

un

✻

xk

✻

fm

✚
✚
✚
✚✚❃

✚
✚
✚
✚✚❃

❩
❩

❩
❩❩⑥

❩
❩

❩
❩❩⑥

Figure 10.1: The general diagram of the chain rule.

uj

x1 · · · xk

fi

❅
❅

❅
❅❅■

�
�
�
��✒

�
�
�
��✒

❅
❅

❅
❅❅■

Figure 10.2: The reduced diagram of the chain rule.
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Procedure.

1) Sketch the general diagram as in Figure 10.1, and reduce the i-th f -coordinate and the j-th u-
coordinate as shown on Figure 10.2.

2) “Pull the differentiation apart” in the following way with k specimens (i.e. the number of x-
coordinates) on the right hand side

∂fi
∂uj

=
∂fi
∂

∂

∂uj
+ · · ·+ ∂fi

∂

∂

∂uj
.

3) The empty places are then filled in with all the variables x1, . . . , xk from the layer in the middle,

∂fi
∂uj

=
∂fi
∂x1

∂x1

∂uj
+ · · ·+ ∂fi

∂xk

∂xk

∂uj
.

4) Repeat this process for every relevant i and j.

Remark 10.1 If one of the layers of differentiations only contains one variable, then ∂ is replaced by

d, i.e. one writes
d · · ·
d · · · instead of

∂ · · ·
∂ · · · . ♦

10.3 Calculation of the directional derivative

Geometric interpretation: Assume that f(x) is a differentiable function. Then the directional
derivative

f ′(x; e)

of f at the point x and in the direction e indicates how much f(x) increases (decreases) per unit in
the direction e. By a direction we shall always understand a unit vector e, i.e. �e� = 1. In this case
we have

f ′(x; e) = e · ▽f(x).

Typical problems are:

Problem 10.2 Let a unit vector e be given.
Find the directional derivative f ′(x; e) of f in the direction e.

Procedure.

1) Calculate the gradient ▽f(x).

2) Calculate the inner product f ′(x; e) = e · ▽f(x).
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Problem 10.3 Given two points x1 and x2.
Find the directional derivative of f(x) at x1 in the direction of x2.

Procedure.

1) Calculate the gradient ▽f(x) i x1.

2) Find the directional vector e from x1 to x2:

e =
x2 − x1

�x2 − x1�
,

(Do not forget to find the norm of the vector).

3) The directional derivative is given by

f ′(x1; e) = e · ▽f(x1) =
1

�x2 − x1�
(x2 − x1) · ▽f(x1).

Remark 10.2 The definition is extremely simple. Nevertheless it is causing students a lot of trouble
for some reason which is not understood by me. I have taken the consequence to include this section
here. Note that when we norm ▽f(x), we obtain the direction in which the function f(x) has its
highest increase. ♦

335

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

 - 
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future 

AxA globAl grAduAte 
progrAm 2015 

axa_ad_grad_prog_170x115.indd   1 19/12/13   16:36

http://s.bookboon.com/AXA


Real Functions in Several Variables: Volume III 
Differentiable Functions in Several Variables

336 

Some useful procedures

10.4 Approximating polynomials

The most common case is given by the following problem. Other cases are obtained by suitable
modifications of it.

Problem 10.4 Find the approximating polynomial of at most second degree for a function f(x, y) in
two variables from the point (x0, y0) in its open domain.

There are here several possible methods, which all have there advantages and disadvantages, so one
cannot say that one particular method is always the easiest one to use. However, when the student
encounters this problem for the first time, her or his preference will probably without doubt be the
following

A. Standard procedure

1) Start by explaining (text), why f is a C2-function in the neighbourhood of (x0, y0).

2) Calculate the following equations:

order zero:
�

f(x, y) = · · · , f(x0, y0) = · · · ,

first order:







f ′
x(x, y) = · · · , f ′

x(x0, y0) = · · · ,

f ′
y(x, y) = · · · , f ′

y(x0, y0) = · · · ,

second order:























f ′′
xx(x, y) = · · · , f ′′

xx(x0, y0) = · · · ,

f ′′
xy(x, y) = · · · , f ′′

xy(x0, y0) = · · · ,

f ′′
yy(x, y) = · · · , f ′′

yy(x0, y0) = · · · .

3) Insert the values of the column to the right into the formula

P2(x, y) = f(x0, y0) +
1

1!

�

f ′
x(x0, y0) · (x− x0) + f ′

y(x0, y0) · (y − y0)
�

+
1

2!

�

f ′′
xx(x0, y0) · (x−x0)

2 + 2 f ′′
xy(x0, y0) · (x−x0)(y−y0) + f ′′

yy(x0, y0) · (y−y0)
2
�

.

Remark 10.3 Since the approximating polynomial is the best description of f(x, y) in a neighbour-
hood of (x0, y0), the right variables here are always x − x0 and y − y0, and not x and y. Therefore,
one shall not reduce the expression further to a polynomial in x and y alone, because we by doing
this will obtain an expression with a higher numerical uncertainty! ♦

B. Taylor expansions

1) Explain (text) that f(x, y) is composed of standard functions, for which a Taylor expansion already
is known from e.g. Chapter 12.

2) Reset the problem to zero, i.e. change the variables to

(h, k) = (x− x0, y − y0), (x, y) = (x0 + h, y0 + k).

Then we get f(x, y) = F (h, k) in the new variables (h, k).
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3) Apply convenient standard expansions in F (h, k). We list all the usual standard expansions for t
small, which should be known.

1

1− t
= 1 + t+ t2 + · · · , 1

1 + t
= 1− t+ t2 − · · · ,

(1 + t)α = 1 + αt+
α(α− 1)

2
t2 + · · · , ln(1 + t) = t− 1

2
t2 + · · · ,

Arctan t = t− · · · , et = 1 + t+
1

2
t2 + · · · ,

sin t = t− · · · , cos t = 1− 1

2
t2 + · · · ,

sinh t = t+ · · · , cosh t = 1 +
1

2
t2 + · · · ,

where the dots indicate terms of the type t2ε(t).

4) Calculate F (h, k), where every term which contains at least three factors of the type h, k, is
symbolized by · · · (of the type t2ε(t)).

5) One obtains the approximating polynomial by deleting the dots and then change variables back to

(h, k) = (x− x0, y − y0).

Remark 10.4 One should always be very careful to rewrite to one of the ten standard functions
above. We have for example (for α = 1/2)

√
25 + t = 5

(

1 +
t

25

)
1
2

= 5

{

1 +
1

2

t

25
− 1

8

t2

625
+ · · ·

}

= 5 +
1

10
t− 1

1000
t2 + · · · , t small. ♦

The following example shows that Taylor expansions may be easier to use than the standard procedure:

Example 10.1 Find the approximating polynomial of at most second degree for the function

f(x, y) = exp(x− y2)Arctan(x+ 2y) cos(x2 + 4y)

from the point (x0, y0) = (2,−1).

It is obvious that the standard procedure will give us a mess of calculations! Let us therefore turn to
the method of using known Taylor expansions.

1. The function is a product of standard functions, where we know the Taylor expansions.

2. The change of variables is here

(h, k) = (x− 2, y + 1), i.e. (x, y) = (2 + h,−1 + k).

In particular we get for t = h+ 2k that

Arctan(x + 2y) = Arctan(h+ 2k) = (h+ 2k) + · · · ,

so it suffices to expand the other factors of only first degree, since one degree is used in the factor
Arctan(h+ 2k).
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3. and 4. Since

exp(x− y2) = exp(1 + h+ 2k − k2) = e · exp(h+ k) · exp(−k2)

= e · {1 + (h+ 2k) + · · · } · {1 + · · · } = e+ e · (h+ 2k) + · · · ,

and

cos(x2 + 4y) = cos(4h+ 4k + k2) = 1 + · · · ,

we get

f(x, y) = exp(1 + h+ 2k − k2)Arctan(h+ 2k) cos(4h+ 4k + k2)

= {e+ e · (h+ 2k) + · · · } · {(h+ 2k) + · · · } · {1 + · · · }
= e · (h+ 2k) + e(h+ 2k)2 + · · · .

5. The approximating polynomial is obtained by deleting the dots and then use the inverse transfor-
mation of variables,

P2(x, y) = e(h+ 2k) + e(h+ 2k)2

= e{(x−2) + 2(y+1) + (x−2)2 + 4(x−2)(y+1)+ 4(y+)2}.

It should be noted that there also exist examples where the standard procedure is the easiest one,
so it is impossible to say in advance that one method is always better that the other one. ♦
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11 Examples of differentiable functions

11.1 Gradient

Example 11.1 Assume that the function f : A → R, A ⊆ Rk, satisfies

|f(x)− f(u)| ≤ a�x− u�c+1, x ∈ K(u; b),

where u is a fixed point in the open domain A of f and where b is so small that K(u; b) ⊂ A. Prove
that f is differentiable at the point u with the gradient 0.

A Differentiability; gradient.

D Analyze the definition of differentiability.

I If we put x = u+ h, then h = x− u, and the assumption of the example can be written

|f(u+ h)− f(u)| ≤ a�h�1+c = 0 · h+ ε̃(h) · �h�,

where ε̃(h) = a�h�c → 0 for h → 0. This shows that there exist a function ε(h) with |ε(h)| ≤ ε̃(h),
such that

f(u+ h)− f(u) = 0 · h+ ε(h) · �h�.

According to the definition, f is differentiable at u and its gradient is

▽f(u) = 0.

Example 11.2 Let P (x, y) be an homogeneous polynomial of degree n in two variables. Prove that

xP ′
x(x, y) + yP ′

y(x, y) = nP (x, y).

Formulate and prove an analogous theorem for an homogeneous polynomial of degree n in k variables.

A Homogeneous polynomials.

D Split P (x, y) into its parts and differentiate.

I A typical term in P (x, y) is of the form

Pk(x, y) = akx
kyn−k,

from which we get

x (Pk)
′
x + y (Pk)

′
y = akkx · ck−1yn−k + ak(n− k)sky · yn−k−1

= ak k x
kyn−k + ak(n− k)xkyn−k

= nakx
kyn−k = nPk(x, y).

Since differentiation and multiplication by x (or by y) are linear operations, it follows by adding
all such terms that we have for any homogeneous polynomial P (x, y) of degree n that

xP ′
x(x, y) + yP ′

y(x, y) = nP (x, y).
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In general it follows that if P (x1, . . . , xm) is an homogeneous polynomial of degree n in m variables,
then

x1P
′
x1
(x) + · · ·+ xmP ′

xm
(x) =

m
∑

j=1

xjP
′
xj
(x) = nP (x).

In fact, P (x) is built up by linear combinations of terms of the form

Q(x) = xk1
1 xk2

1 · · ·xkm
m , k1, . . . , km ≥ 0 og k1 + · · ·+ km = n,

where

m
∑

j=1

xjQ
′
xj
(x) =

m
∑

j=1

kjx
k1
1 xk2

2 · · ·xkm
m = (k1 + · · ·+ km)Q(x) = nQ(x).

This holds for every term in any homogeneous polynomial P (x), and then it follows by the linearity
that it also holds for P (x) itself.

Example 11.3 Find in each of the following cases the gradient of the given function in two variables.

1) f(x, y) = Arctan
x

y
, for y �= 0.

2) f(x, y) = Arctan
y

x
, for x �= 0.

3) f(x, y) = ln
3 + xy

4 + sin y
, for (x, y) ∈ R2, 3 + xy > 0.

4) f(x, y) = ln
√

x2 + y2, for (x, y) �= (0, 0).

A Gradients.

D Differentiate.

I 1) When f(x, y) = Arctan
x

y
, y �= 0, we get

∂f

∂x
=

1

1+

(

x

y

)2 · 1
y
=

y

x2 + y2
,

∂f

∂y
=

1

1+

(

x

y

)2 ·
(

− x

y2

)

= − x

x2 + y2
,

hence

▽f(x, y) =

(

y

x2 + y2
,− x

x2 + y2

)

, y �= 0.

2) Remark. One might be misled to believe that this result can be derived from 1), but it turns
up that this is not the case. ♦
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After the warning in the remark above we calculate as above for f(x, y) = Arctan
y

x
, x �= 0,

that

∂f

∂x
=

1

1+
(y

x

)2 ·
(

− y

x2

)

=
y

x2 + y2
,

∂f

∂y
=

1

1+
(y

x

)2 · 1
x
=

x

x2 + y2
,

so

▽f(x, y) =

(

− y

x2 + y2
,

x

x2 + y2

)

, x �= 0.

3) When xy > −3, the function is defined an of class C∞, so

∂f

∂x
=

y

3 + xy
,

∂f

∂y
=

x

3 + xy
− cos y

4 + sin y
,

and

▽f(x, y) =

(

y

3 + xy
,

x

3 + xy
− cos y

4 + sin y

)

, for xy > −3.

–6

–4

–2

0

2

4

6

y

–6 –4 –2 2 4 6

x

Figure 11.1: The domain of 3).

4) When f(x, y) = ln
√

x2 + y2 = 1
2 ln(x

2 + y2), (x, y) �= (0, 0), we get

∂f

∂x
=

x

x2 + y2
,

∂f

∂y
=

y

x2 + y2
,

hence

▽f(x, y) =

(

x

x2 + y2
,

y

x2 + y2

)

.

If we use MAPLE, then start with

with(VectorCalculus):

Let [x, y] specify the rectangular coordinate system, and then proceed in the following way:
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1) Gradient

�

arctan

�

x

y

�

, [x, y]

�









1

y

�

1 +
x2

y2

�









ex − x

y2
�

1 +
x2

y2

�ey

2) Gradient
�

arctan
�y

x

�

, [x, y]
�

− y

x2

�

1 +
y2

x2

�ex +









1

x

�

1 +
y2

x2

�









ey

3) Gradient

�

ln

�

3 + x · y
4 + sin(y)

�

, [x, y]

�

�

y

xy + 3

�

ex +









�

x

4 + sin(y)
− (xy + 3) cos(y)

(4 + sin(y))2

�

(4 + sin(y))

xy + 3









ey
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4) Gradient
(

ln
(

√

x2 + y2
)

, [x, y]
)

(

x

x2 + y2

)

ex +

(

y

x2 + y2

)

ey

Clearly, 1)–3) need some reductions, which we shall not give here, because this is not the main subject.

Example 11.4 Find in each of the following cases the gradient of the given function in three variables.

1) f(x, y, z) = (x+ y)(y + z)(z + x), for (x, y, z) ∈ R3.

2) f(x, y, z) = x 3y+xz, for (x, y, z) ∈ R3.

3) f(x, y, z) =
1

√

x2 + y2 + z2
, for (x, y, z) �= (0, 0, 0).

4) f(x, y, z) = exp
(

x2 − y + z
)

, for (x, y, z) ∈ R3.

5) f(x, y, z) = x tan(yz2) + cos(x3z), for yz2 �=
(

p+ 1
2

)

π, p ∈ Z.

A Gradients.

D Differentiate.

I 1) It follows from f(x, y, z) = (x+ y)(y + z)(z + x) that

∂f

∂x
= (x+ z)(y + z) + (x + y)(y + z) = (2x+ y + z)(y + z) = (x + y + z)2 − x2.

In this case it follows from the symmetry that we can simply interchange the letters in order
to get

∂f

∂y
= (x+ y + z)2 − y2,

∂f

∂z
= (x+ y + z)2 − z2,

hence

▽f =
(

(x+y+z)2 − x2, (x+y+ z)2 − y2, (x+y+z)2 − z2
)

.

2) It follows from

f(x, y, z) = x 3y+xz = x exp{(y + xz) ln 3}

that

∂f

∂x
= 3y+xz + x 3y+xzz ln 3 = ey+xz(1 + xz ln 3),

∂f

∂y
= x ey+xz ln 3,

∂f

∂z
= x2 ln 3 · 3y+xz,

and accordingly,

▽f(x, y, z) = 3y+xz
(

1 + xz ln 3, x ln 3, x2 ln 3
)

.
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3) When

f(x, y, z) =
1

√

x2 + y2 + z2
, (x, y, z) �= (0, 0, 0),

we get

∂f

∂x
= −1

2
· 2x
(

√

x2 + y2 + z2
)3 = − x

(

√

x2 + y2 + z2
)3 ,

and by the symmetry, analogous expressions for
∂f

∂y
and

∂f

∂z
, so

▽f = − (x, y, z)
(

√

x2 + y2 + z2
)3 , (x, y, z) �= (0, 0, 0).

Remark. If we introduce the notation

r = (x, y, z), r =
√

x2 + y2 + z2,

then this important result can be written in the short form

▽r = − r

r3
. ♦

4) When f(x, y, z) = exp(x2 − y + z), then

∂f

∂x
= exp(x2 − y + z) · 2x,

∂f

∂y
= exp(x2 − y + z) · (−1),

∂f

∂z
= exp(x2 − y + z),

hence

▽f(x, y, z) = exp(x2 − y + z) (2x,−1, 1).

5) We see that the function

f(x, y, z) = x tan(yz2) + cos(x3z)

is defined and of class C∞, when yz2 �= π

2
+ pπ, p ∈ Z. Then by a differentiation

∂f

∂x
= tan(yz2)− 3x2z sin(x3z),

∂f

∂y
= xz2{1 + tan2(yz2)} =

xz2

cos2(yz2)
,

∂f

∂z
= 2xyz{1 + tan2(yz2)} − x3 sin(x3z) =

2xyz

cos2(yz2)
− x3 sin(x3z),

and accordingly in the given domain,

▽f =

(

tan(yz2)− 3x2z sin(x3z),
xz2

cos2(yz2)
,

2xyz

cos2(yz2)
− x3 sin(x3x)

)

.
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In MAPLE we first write

with(VectorCalculus)

Then specify the rectangular coordinate system by writing [x, y, z] and proceed in the following way:

1) Gradient((x+ y) · (y + z) · (z + x), [x, y, z])

((y + z)(z + x) + (x+ y)(y + z))ex + ((y + z)(z + x) + (x+ y)(z + x))ey

+((x+ y)(z + x) + (x+ y)(y + z))ez

2) Gradient(x · 3y+x·z, [x, y, z])

(

3xz+y + x3xz+yz ln(3)
)

ex +
(

x3xz+y ln(3)
)

ey +
(

x23xz+y ln(3)
)

ez

3) Gradient

(

1
√

x2 + y2 + z2
, [x, y, z]

)

− x

(x2 + y2 + z2)
3/2

ex − y

(x2 + y2 + z2)
3/2

ey −
z

(x2 + y2 + z2)
3/2

ez

4) Gradient
(

ex
2−y+z, [x, y, z]

)

2xex
2−y+zex − ex

2−y+zey +
(

ex
2−y+z

)

ez

5) Gradient
(

x · tan
(

y · z2
)

+ cos
(

x3 · z
)

, [x, y, z]
)

(

tan
(

yz2
)

− 3 sin
(

x3z
)

x2z
)

ex +
(

x
(

1 + tan
(

yz2
)2
)

z2
)

ey

+
(

2x
(

1 + tan
(

yz2
)2
)

yz − sin
(

x3z
)

x3
)

ez

The MAPLE results should also here be reduced.
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Example 11.5 In some of the cases where it is not possible to decide only by using the rules of
calculation whether a given function of several variables is differentiable at some given point, one may
try instead to use the definition directly in the following way.
Use restrictions to see if the partial derivatives exist at the point. When this is the case, then insert
the values into the definition of differentiability, in which the ε function occurs; then check if this ε
function has the required property.
Use this procedure to prove the following claims:

• In 1)–3) the function is not differentiable at (0, 0).

• In 4)–5) the function is differentiable at (0, 0) with the gradient zero.

1) f(x, y) =
�

x2 + y2.

2) f(x, y) = |x+ y|.
3)

f(x, y) =







x3

x2 + y2
, (x, y) �= (0, 0),

0, (x, y) = (0, 0).

4) f(x, y) =
�

x4 + y4.

5) f(x, y) = |x2 − y2|.
A Gradients by using the definition.

D Follow the given description.

I First note that if f is differentiable, then

f(x+ h)− f(x) = h · ▽f(x) + ε(h)�h�,
where ε(h) → 0 for h → 0.

1) Here,

∂f

∂x
=

x
�

x2 + y2
,

∂f

∂y
=

y
�

x2 + y2
,

hence

∂f

∂x
(x, 0) →

�

1 for x → 0+,
−1 for x → 0−,

∂f

∂y
(0, y) →

�

1 for y → 0+,
−1 for y → 0− .

Then

ε(x, y) =
1

�

x2 + y2

�

f(x, y)− f(0, 0)− x
“∂f”

∂x
− y

“∂f”

∂y

�

=











































1− x
�

x2 + y2
− y

�

x2 + y2
for x > 0, y > 0,

1 +
x

�

x2 + y2
− y

�

x2 + y2
for x < 0, y > 0,

1 +
x

�

x2 + y2
+

y
�

x2 + y2
for x < 0, y < 0,

1− x
�

x2 + y2
+

y
�

x2 + y2
for x > 0, y < 0.
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By using polar coordinates we see that these expressions do not tend to zero in the given
domains, when (x, y) → (0, 0). The function is accordingly not differentiable at (0, 0).

2) Here

∂f

∂x
(x, 0) =

{

1 for x > 0,
−1 for x < 0,

∂f

∂y
(0, y) =

{

1 for y > 0,
−1 for y < 0,

so

ε(x, y) =
1

√

x2 + y2
{|x+ y| − |x| − |y|},

which does not tend towards zero for (x, y) → (0, 0). [Try e.g. y = −x.]

3) Here,

∂f

∂x
(x, 0) = 1 and

∂f

∂y
(0, y) = 0,

so

ε(x, y) =
1

√

x2 + y2

{

x3

x2 + y2
− x

}

= − xy2

(
√

x2 + y2)3
= − cosϕ · sin2 ϕ

in polar coordinates. This expression does not tend to 0 for ̺ =
√

x2 + y2 → 0.
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4) Here

∂f

∂x
(x, 0) =

∂

∂x
(x2) = 2x → 0 for x → 0,

and analogously

∂f

∂y
(0, y) = 2y → 0 for y → 0,

hence

ε(x, y) =
1

√

x2 + y2

{

√

x4 + y4 − 0− 0
}

= ̺

√

cos4 ϕ+ sin4 ϕ → 0

for ̺ → 0.

Hence, the function is differentiable at 0 and

▽f(0) = 0.

5) Here f(x, 0) = x2, so

∂f

∂x
(x, 0) = 2x → 0 for x → 0,

and f(0, y) = y2, and thus

∂f

∂y
(0, y) = 2y → 0 for y → 0.

Then

ε(x, y) =
|x2 − y2|
√

x2 + y2
=

̺2

̺
| cos2 ϕ− sin2 ϕ| = ϕ| cos 2ϕ| → 0

for ̺ → 0, and we conclude that the function is differentiable at 0 and

▽f(0) = 0.
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Example 11.6 Find in each of the following cases the gradient of the given function f : R3 → R.
The vector a is constant.

1) f(x) = x · a.

2) f(x) = (x · a)2.

3) f(x) = �x× x�.

4) f(x) = x× (x× a) · a.

A Gradients.

D Calculate the expressions and then differentiate.

I 1) Since f(x) = x · a = x1a1 + x2a2 + x3a3, it follows that

▽f(x) = a.

2) We get from f(x) = (x · a)2 = {x1a1 + x2a2 + x3a3}2 that

∂f

∂xi
= 2ai(x1a1 + x2a2 + x3a3) = 2ai (x · a),

so we get as expected,

▽f(x) = 2(x · a)a.

3) Since f(x) = �x× x� = 0, we get ▽f(x) = 0.

4) First calculate

x× a =

∣

∣

∣

∣

∣

∣

e1 e2 e3
x1 x2 x3

a1 a2 a3

∣

∣

∣

∣

∣

∣

= (x2a3 − x3a2, x3a1 − x1a3, x1a2 − x2a1) ,

whence

x× (x× a) =

∣

∣

∣

∣

∣

∣

e1 e2 e3
x1 x2 x3

x2a3 − x3a2 x3a1 − x1a3 x1a2 − x2a1

∣

∣

∣

∣

∣

∣

= (x2(x1a2 − x2a1)− x3(x3a1 − x1a3)) e1

+ (x3(x2a3 − x3a2)− x1(x1a2 − x2a1)) e2

+ (x1(x3a1 − x1a3)− x2(x2a3 − x3a2)) e3.

We conclude that

x× (x× a) · a = a1(x1x2a2 − x2
2a1 − x2

3a1 + x1x3a3)

+a2(x2x3a3 − x2
3a3 − x2

1a2 + x1x2a1)

+a3(x1x3a1 − x2
1a3 − x2

2a3 + x2x3a2)

= −x2
1(a

2
2 + a23)− x2

2(a
2
1 + a23)− x2

3(a
2
1 + a22)

+2x1x2a1a2 + 2x1x3a1a3 + 2x2x3a2a3,
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which can be further reduced. This is, however, not necessary here, because we shall only need
the derivatives in the following,

∂f

∂x1
= −2x1(a

2
1 + a23) + 2x2a1a2 + 2x3a1a3

= −2x1(a
2
1 + a22 + a23) + 2a1(x1a1 + x2a2 + x3a3)

= −2x1�a�2 + 2a1a · x),
∂f

∂x2
= −2x2�a�2 + 2a2(a · x),

∂f

∂x3
= −2x3�a�2 + 2a2(a · x).

These are the coordinates of ▽f , so all things put together we finally get

▽f(x) = −2(a · a)x+ 2(x · a)a.

We start in MAPLE by declaring

with(LinearAlgebra):
with(VectorCalculus):

Then proceed in the following way: First declare the vectors x, a ∈ R3,

X :=< x, y, z >:

A :=< a, b, c >:

In order not to involve complex conjugation in the dot product, x · a, we write

DotProduct(map(conjugate),X)

1) Gradient(DotProduct(map(conjugate,X),A),[x, y, z])

(a)ex + (b)ey + (c)ez

2) Reuse the above and then proceed with
Gradient

(

(DotProduct(map(conjugate,X),A))2, [x, y, z]
)

2(ax+ by + cz)aex + 2(ax+ by + cz)bey + 2(ax+ by + cz)cez

3) This is trivially 0.

4) DotProduct(map(conjugate,X &x (X &xA)),A)

(y(−ay + bx)− z(az − cx))a+ (−x(−ay + bx) + z(−bz + cy))b

+(x(az − cx)− y(−bz + cy))c.
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Example 11.7 Let A denote the point set where we have removed the coordinate axes from the plane
R2, i.e.

A = {(x, y) | xy �= 0}.

We define a function f : A → R by putting f(x, y) equal to the number of the quadrant, which (x, y)
belongs to. Find ▽f .

A Gradient.

D Use that f is constant on every connected component of A.

I The task is now trivial, because f(x, y) is constant on each of the four open quadrants, where it is
defined, hence ▽f = 0.
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11.2 The chain rule

Example 11.8 . Use the chain rule to calculate the derivative of the function F (u) = f(X(u)), i.e.
without finding F (u) explicitly, in the following cases:

1) f(x, y) = xy, where X(u) = (eu, cosu), u ∈ R.

2) f(x, y) = exy, where X(u) = (3u2, u3), u ∈ R.

3) f(x, y) = x3 + y3 − 3xy, where X(u) =

(

u2,
3u

1 + u

)

, u > −1.

4) f(x, y) = yx, where X(u) = (sinu, u3), u > 0.

5) f(x, y) = y ex, where X(u) = (Arctan(1 + u), eu), u ∈ R.

6) f(x, y) = y sinx, where X(u) =
(

−u,
√
1 + u2

)

, u ∈ R.

A The chain rule.

D Start by formulating the general chain rule. No matter the formulation we shall nevertheless also
calculate F (u) and find the derivative in the usual way, so that it is possible to compare the two
methods.

I The task is to insert (correctly) into the chain rule,

F ′(u) =
∂f

∂x

dx

du
+

∂f

∂y

dy

du
,

where x and y are the coordinates of X = (x, y).

1) When f(x, y) = xy and (x, y) = (eu, cosu), we get

F ′(u) = y
dx

du
+ x

dy

du
= cosu · eu − eu sinu = eu(cosu− sinu).

Test. By insertion we also have

F (u) = eu cosu,

so

F ′(u) = eu(cos u− sinu).

We see that we get the same result, and in this case the application of the chain rule is not
easier than the traditional method. ♦

In MAPLE we declare

f := (x, y) → x · y

(x, y) → x y

352

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume III 
Differentiable Functions in Several Variables

353 

Examples of differentiable functions

X := u → (eu, cos(u))

u → (eu, cos(u))

Then

d

du
f(X(u))

eu cos(u)− eu sin(u)

2) When f(x, y) = exy and (x, y) = (3u2, u3), we get by the chain rule,

F ′(u) = exy y
dx

dy
+ exy x

dy

du
= e3u

5 · u3 · 6u+ e3u
5 · 3u2 · 3u2 = 15u4 exp(3u5).

Test. By insertion we get

F (u) = exy = exp(3u5),

so by a differentiation,

F ′(u) = 15u4 exp(3u5).

We see that the two results agree, and also that the direct method is easier to apply in this
case than the chain rule. ♦

In MAPLE we declare

f := (x, y) → ex·y

u → exy

X := u →
(

3u2, u3
)

u →
(

3u2, u3
)

Then

d

du
, f(X(u))

15u4e3u
5
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3) When f(x, y) = x3 + y3 − 3xy and (x, y) =

(

u2,
3u

1 + u

)

, u > −1, we get

F ′(u) = (3x2 − 3y)
dx

du
+ (3y2 − 3x)

dy

du

= 3

(

u4 − 3u

1 + u

)

2u+ 3

(

9u2

(1 + u)2
− u2

)

· 3(1 + u)− 3u

(1 + u)2

= 6u2

(

u3 − 3

1 + u

)

+ 9
u2

(1 + u)2

{

9

(1 + u)2
− 1

}

=
81u2

(1 + u)4
− 9u2

(1 + u)2
− 18u2

1 + u
+ 6u5

= 6u5 +
9u2

(1 + u)4
{

9− (1 + u)2 − 2(1 + u)3
}

= 6u5 +
9u2

(1 + u)4
{9− 1− 2u− u2 − 2− 6u− 6u2 − 2u3}

= 6u5 − 9u2

(1 + u)4
{2u3 + 7u2 + 8u− 6}.

Test. By insertion we get

F (u) = u6 +
27u3

(1 + u)3
− 9u3

1 + u
,

hence

F ′(u) = 6u5 − 27u2

1 + u
+

9u3

(1 + u)3
+

81u2

(1 + u)3
− 81u3

(1 + u)4

= 6u5 +
9u2

(1 + u)4
{−3(1 + u)3 + u(1 + u)2 + 9(1 + u)− 9u}

= 6u5 − 9u5

(1 + u)4
{3 + 9u+ 9u2 + 3u3 − u− 2u2 − u3 − 9− 9u+ 9u}

= 6u5 − 9u2

(1 + u)4
{2u3 + 7u2 + 8u− 6}.

The two results agree. This time the two methods are more comparable in effort than in the
previous ones. ♦

In MAPLE we declare

f := (x, y) → x3 + y3 − 3x · y

(x, y) → x3 + y3 − 3xy

Then

d

du
f(X(u))

6u5 +
81u2

(1 + u)3
− 81u3

(1 + u)4
− 27u2

1 + u
+

9u3

(1 + u)2
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4) When f(x, y) = yx and (x, y) = (sinu, u3), u > 0, we get

∂f

∂x
= ln y · yx, ∂f

∂y
= x yx−1,

dx

du
= cosu,

dy

du
= 3u2,

so

F ′(u) =
∂f

∂x

dx

du
+

∂f

∂y

dy

du

= {ln y · yx} cosu+ xyx−1 · 3u2

= ln(u3) · u3 sinu cosu+ sinu · u3(sinu−1) · 3u2

= 3 lnu · u3 sinu cosu+ 3u3 sinu−1 sinu.

Test. We get by insertion

F (u) = u3 sinu = exp(3 sinu · lnu), u > 0,

hence

F ′(u) = u3 sinu{3 lnu · cosu+ 3
1

u
sinu} = 3 lnu · u3 sinu cosu+ 3u2 sinu−1 sinu.

The two results agree. ♦
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In MAPLE we declare

f := (x, y) → yx

(x, y) → yx

X := u →
(

sin(u), u3
)

u →
(

sin(u), u3
)

Then

d

du
f(X(u))

(

u3
)sin(u)

(

cos(u) ln
(

u3
)

+
3 sin(u)

u

)

5) When f(x, y) = y ex and (x, y) = (Arctan(1 + u), eu), we get

∂f

∂x
= y ex,

∂f

∂y
= ex,

dx

du
=

1

1 + (1 + u)2
,

dy

du
= eu,

hence

F ′(u) =
∂f

∂x

dx

du
+

∂f

∂y

dy

du

= eu · eArctan(1+u) · 1

1 + (1 + u)2
+ eArctan(1+u) · eu

=

{

1 +
1

1 + (1 + u)2

}

exp(u+Arctan(1 + u)).

Test. By insertion,

F (u) = eueArctan(1+u) = exp{u+ Arctan(1 + u)},

so

F ′(u) =

{

1 +
1

1 + (1 + u)2

}

exp{u+ Arctan(1 + u)}.

The two results agree. ♦

In MAPLE we declare

f := (x, y) → y · ex

(x, y) → y ex
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X := u → (arctan(1 + u), eu)

u → (arctan(1 + u), eu)

Then

d

du
f(X(u))

euearctan(1+u) +
eu arctan(1 + u)

1 + (1 + u)2

6) When f(x, y) = y sinx and (x, y) = (−u,
√
1 + u2), we get

F ′(u) =
∂f

∂x

dx

du
+

∂f

∂y

dy

du

= y cosx · (−1) + sinx · u√
1 + u2

= −
√

1 + u2 · cos(−u) + sin(−u) · u√
1 + u2

= −
√

1 + u2 ·
{

cosu+
u sinu

1 + u2

}

.

Test. By insertion,

F (u) = −
√

1 + u2 · sinu,
hence

F ′(u) = −
√

1 + u2 · cosu− u√
1 + u2

· sinu

= −
√

1 + u2 ·
{

cosu+
u sinu

1 + u2

}

.

The two results agree. ♦

In MAPLE we declare

f := (x, y) → y · sin(x)

(x, y) → y sin(x)

X := u →
(

−u,
√

1 + u2
)

u →
(

−u,
√

1 + u2
)

Then

d

du
f(X(u))

− sin(u)u√
u2 + 1

−
√

u2 + 1 cos(u)
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Remark. From a pedagogical point of view it is very inconvenient that the usual method is easier
to apply in all cases than the chain rule. It is therefore here not very convincing that the chain rule
is a practical device in some situations, where the usual calculation becomes messy. The reader is
referred to Example 11.13, where the direct calculation is not possible, and yet the result can
be obtained by using the chain rule instead. ♦

Example 11.9 Calculate the partial derivatives of the function F (u, v) = f(X(u, v)) by means of the
chain rule, i.e. without finding F (u, v) explicitly, in the following cases:

1) f(x, y) = x2y, X(u, v) = (u+ v, uv), where (x, y) ∈ R2.

2) f(x, y) =
x

x+ y
, X(u, v) = (u2 + v2, 2uv), where (u, v) ∈ R2

+.

3) f(x, y) = Arctan
y

x
, X(u, v) = (u2 − uv + v2, 2uv), where (u, v) �= (0, 0).

4) f(x, y) = Arctan(x + y2), X(u, v) = (u, exp(u sin v)), where (u, v) ∈ R2.

5) f(x, y) = x cos y, X(u, v) =
√
1 + u2 + v2 ·Arcsin u, where |u| < 1 and v ∈ R.

6) f(x, y) = x sinh y, X(u, v) = (u3v, lnu+ ln v), where (u, v) ∈ R2
+.

A Partial derivatives of composite functions by the chain rule.

D Set up the chain rule. Then differentiate in each case and insert. In spite of the text we shall
nevertheless check the result by using the traditional method in the test.

I The chain rule is written in two versions,

∂F

∂u
=

∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u
and

∂F

∂v
=

∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v
,

where one should be very careful to insert the right coordinates. Whenever f and x and y are
present, we first calculate in the intermediate coordinates x and y, and then afterwards we put
x = x(u, v) and y = y(u, v). Therefore, in the rough workings we obtain a mixed result in which
both x and y as well as u and v occur. Then x and y are eliminated in the next step.

1) When f(x, y) = x2y and (x, y) = X(u, v) = (u+ v, uv), then

∂f

∂x
= 2xy and

∂f

∂y
= x2,

and

∂x

∂u
= 1,

∂y

∂u
= v,

∂x

∂v
= 1,

∂y

∂v
= u,

so

∂F

∂u
= 2xy · 1 + x2 · v = 2(u+ v)uv + (u+ v)2v = v(u + v)(3u+ v),

and

∂F

∂v
= 2xy · 1 + x2 · u = 2(u+ v)uv + (u + v)2u = u(u+ v)(u+ 3v).
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Test. We get by insertion

F (u, v) = (u+ v)2uv,

thus

∂F

∂u
= 2(u+ v)v + (u + v)2v = v(u + v)(3u+ v),

and

∂F

∂v
=

2u(v − u)

(u + v)3
.

The results agree. ♦
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In MAPLE we declare

f := (x, y) → x2 · y

(x, y) → x2y

X := (u, v) → (u+ v, u · v)

(u, v) → (u+ v, uv)

Then

d

du
f(X(u, v))

2(u+ v)uv + (u+ v)2v

and

d

dv
f(X(u, v))

2(u+ v)uv + (u+ v)2u

2) Given

f(x, y) =
x

x+ y
, X(u, v) =

(

u2 + v2, 2uv
)

, (u, v) ∈ R2
+.

Then clearly x + u = u2 + v2 + 2uv = (u + v)2 > 0 for (u, v) ∈ R2
+, so the composite function

f(X(u, v)) is defined and of class C∞ for (u, v) ∈ R2
+. We find

∂f

∂x
=

1

x+ y
− x

(x+ y)2
=

y

(x+ y)2
=

2uv

(u+ v)4

and

∂f

∂y
= − x

(x+ y)2
= − u2 + v2

(u + v)4
.

Furthermore,

∂x

∂u
= 2u,

∂y

∂u
= 2v,

∂x

∂v
= 2v,

∂y

∂v
= 2v,

so

∂F

∂u
=

∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u
=

2uv

(u+ v)4
· 2u− u2 + v2

(u + v)4
· 2v = 2v · u− v

(u + v)3
,
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and

∂F

∂v
=

∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v
=

2uv

(u+ v)4
· 2v − u2 + v2

(u+ v)4
· 2u = 2u · v − u

(u+ v)3
.

In MAPLE we declare

f := (x, y) → x

x+ y

(x, y) → x

x+ y

X := (u, v) →
(

u2 + v2, 2u · v
)

(u, v) →
(

u2 + v2, 2uv
)

Then

d

du
f(X(u, v))

2u

u2 + 2uv + v2
−

(

u2 + v2
)

(2u+ 2v)

(u2 + 2uv + v2)
2

and

d

dv
f(X(u, v))

2v

u2 + 2uv + v2
−

(

u2 + v2
)

(2u+ 2v)

(u2 + 2uv + v2)2

where both results can be reduced further.

3) Consider

f(x, y) = Arctan
y

x
, X(u, v) = (u2 − uv + v2, 2uv), (u, v) �= (0, 0).

We first check that the composite function is defined (and of class C∞, where it is defined).
Here we shall just check that x �= 0 for (u, v) �= (0, 0). Now

x(u, v) = u2 − uv + v2 =

(

u− 1

2
v

)2

+
3

4
�= 0 for (u, v) �= (0, 0).

Therefore, f(X(u, v)) is defined and of class C∞ for (u, v) �= (0, 0).

In the calculations we shall need x2 + y2 expressed by u and v. We see that

x2 + y2 = (u2 − uv + v2)2 + 4u2v2

= u4 + u2v2 + v4 − 2u3v + 2u2v2 − 2uv3 + 4u2v2

= u4 − 2u3v + 7u2v2 − 2uv3 + v4.
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Remark. It is not worth trying the variant

x(u, v) = u2 − uv + v2 =
u3 + v3

u+ v
for u �= −v,

because the following expressions are very complicated. ♦

Then by a calculation,

∂f

∂x
=

1

1 +
( y

x

)2 ·
(

− y

x2

)

= − y

x2 + y2
,

∂f

∂y
=

x

x2 + y2
,

and

∂x

∂u
= 2u− v,

∂y

∂u
= 2v,

∂x

∂v
= 2v − u,

∂y

∂v
= 2u,

so

∂F

∂u
= − y

x2 + y2
· (2u− v) +

x

x2 + y2
· 2v =

−2uv(2u− v) + (u2 − uv + v2) · 2v
u4 − 2u3v + 7u2v2 − 2uv3 + v4

=
2v(−2u2 + uv + u2 − uv + v2)

u4 − 2u3v + 7u2v2 − 2uv3 + v4
=

2v(v2 − u2)

u4 − 2u3v + 7u2v2 − 2uv3 + v4
,

and

∂F

∂v
= − y

x2 + y2
· (2v − u) +

x

x2 + y2
· 2u =

−2uv(2v − u) + (u2 − uv + v2)2u

u4 − 2u3v + 7u2v2 − 2uv3 + v4

=
2u(−2v2 + uv + u2 − uv + v2)

u4 − 2u3v + 7u2v2 − 2uv3 + v4
=

2u(u2 − v2)

u4 − 2u3v + 7u2v2 − 2uv3 + v4
.

Test. We get by insertion that

(11.1) F (u, v) = Arctan

(

2uv

u2 − uv + v2

)

= F (v, u),

thus

∂F

∂u
=

1

1 +

{

2uv

u2 − uv + v2

}2 ·
{

2v(u2 − uv + v2)− 2uv(2u− v)

(u2 − uv + v2)2

}

=
2v(u2 − uv + v2 − 2u2 + uv)

(u2 − uv + v2)2 + 4u2v2
=

2v(v2 − u2)

u4 − 2u3v + 7u2v2 − 2uv3 + v4
.

Due to the symmetry of (11.1) we obtain
∂F

∂v
by interchanging u and v.

The results agree. ♦

Remark. One may wonder why there is given no attempt to reduce the denominator
u4 − 2u3v+7u2v2 − 2uv3 + v4 as a product of factors u− av of first degree. The reason is that
a then must satisfy the equation

a4 − 2a3 + 7a2 − 2a+ 1 = 0,
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of fourth degree and with ± integers as coefficients. It can be proved that the only possible

rational roots must be of the form a = ±1

1
= ±1, and it is easily seen that none of these

possibilities satisfies the equation. The problem is therefore to solve an equation of fourth
degree without any rational solutions, and such a procedure is not commonly known in Calculus
courses. ♦

In MAPLE we declare

f := (x, y) → arctan
(y

x

)

(x, y) → arctan
(y

x

)

X := (u, v) →
(

u2 − u · v + v2, 2u · v
)

(u, v) →
(

u2 − uv + v2, 2uv
)
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Then

d

du
f(X(u, v))

2v

u2 + v2 − uv
− 4u2v

(u2 + v2 − uv)2

1 +
4u2v2

(u2 + v2 − uv)
2

d

dv
f(X(u, v))

2u

u2 + v2 − uv
− 4uv2

(u2 + v2 − uv)
2

1 +
4u2v2

(u2 + v2 − uv)
2

4) When f(x, y) = Arctan(x+ y2) and (x, y) = X(u, v) =
(

u, eu sin v
)

, we get

∂f

∂x
=

1

1 + (x+ y2)2
and

∂f

∂y
=

2y

1 + (x + y2)2
,

and

∂x

∂u
= 1,

∂y

∂u
= sin v · eu sin v,

∂x

∂v
= 0,

∂y

∂v
= u cos v · eu sin v,

hence

∂F

∂u
=

1

1 + (x + y2)2
· 1 + 2y

1 + (x+ y2)2
· sin v · eu sin v

=
1

1 + (u + e2u sin v)2
· (1 + 2 sin v · e2u sin v),

and

∂F

∂v
=

1

1 + (x + y2)2
· 0 + 2y

1 + (x+ y2)2
· eu sin v · u cos v =

2u cos v · e2u sin v

1 + (u+ e2u sin v)2
.

Test. We get by insertion,

F (u, v) = Arctan(u + e2u sin v),

hence

∂F

∂u
=

1 + 2 sin ve2u sin v

1 + (u + e2u sin v)2
and

∂F

∂v
=

2u cos v · e2u sin v

1 + (u+ e2u sin v)2
.

The results agree. ♦

In MAPLE we declare

f := (x, y) → arctan
(

x+ y2
)
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(x, y) → arctan
�

x+ y2
�

X := (u, v) →
�

u, eu·sin(v)
�

(u, v) →
�

u, eu sin(v)
�

Then

d

dau
f(X(u, v))

1 + 2
�

eu sin(v)
�2

sin(v)

1 +
�

u+
�

eu sin(v)
�2
�2

d

dv
f(X(u, v))

2
�

eu sin(v)
�2

u cos(v)

1 +
�

u+
�

eu sin(v)
�2
�2

5) When f(x, y) = x cos y and (x, y) = X(u, v) = (
√
1 + u2 + v2,Arcsin u), it follows that the

composite function is defined and of class C∞ for |u| < 1 and v ∈ R. Then,

∂f

∂x
= cos y and

∂f

∂y
= −x sin y,

as well as

∂x

∂u
=

u√
1 + u2 + v2

,
∂y

∂u
=

1√
1− u2

,

∂x

∂v
=

v√
1 + u2 + v2

,
∂y

∂v
= 0.

We get accordingly,

∂F

∂u
=

cos(Arcsin u) · u√
1 + u2 + v2

−
√
1 + u2 + v2 · sin(Arcsin u)√

1− u2
=

u
√
1− u2

√
1 + u2 + v2

− u
√
1 + u2 + v2√
1− u2

= u







�

1− u2

1 + u2 + v2
−
�

1 + u2 + v2

1− u2







and

∂F

∂v
=

cos(Arcsin u) · v√
1 + u2 + v2

+ 0 = +v

�

1− u2

1 + u2 + v2
.

Test. We get by insertion,

F (u, v) =
�

1 + u2 + v2 · cos(Arcsin u) = +
�

1 + u2 + v2 ·
�

1− u2,
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hence

∂F

∂u
=

u
√
1− u2

√
1 + u2 + v2

− u
√
1 + u2 + v2√
1− u2

= u







�

1− u2

1 + u2 + v2
−
�

1 + u2 + v2

1− u2







,

and

∂F

∂v
= v

�

1− u2

1 + u2 + v2
.

The results agree. ♦

In MAPLE we declare

f := (x, y) → x · cos(y)

(x, y) → x cos(y)

X := (u, v) →
�
�

1 + u2 + v2, arcsin(u)
�

(u, v) →
�

�

1 + u2 + v2, arcsin(u)
�

Then

d

du
f(X(u, v))

√
−u2 + 1√

u2 + v2 + 1
−

√
u2 + v2 + 1u√

−u2 + 1

d

dv
f(X(u, v))

√
−u2 + 1 v√
u2 + v2 + 1

6) When f(x, y) = x sinh y and (x, y) = X(u, v) =
�

u3v, lnu+ ln v
�

, (u, v) ∈ R2
+, then the

composition of the functions is defined and of class C∞. From

∂f

∂x
= sinh y,

∂f

∂y
= x cosh y,

and

∂x

∂u
= 3u2v,

∂y

∂u
=

1

u
,

∂x

∂v
= u3,

∂y

∂v
=

1

v
,

follows that

∂F

∂u
= sinh y · 3u2v + x · cosh y · 1

u
,
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and

∂F

∂v
= sinh y · u3 + x · cosh y · 1

v
.

Since y(u, v) = lnu+ ln v, we have

sinh y =
1

2

(

uv − 1

uv

)

and cosh y =
1

2

(

uv +
1

uv

)

.

Then by insertion,

∂F

∂u
= 3u2v · 1

2

(

uv − 1

uv

)

+ u3v · 1
2

(

uv +
1

uv

)

· 1
u

=
3

2
u3v2 − 3

2
u+

1

2
u3v2 +

1

2
u

= 2u3v − u,

and

∂F

∂v
=

1

2

(

uv − 1

uv

)

· u3 + u3v · 12
(

uv +
1

uv

)

· 1v

=
1

2
u4v − 1

2

u2

v
+

1

2
u4v +

1

2

u2

v

= u4v.
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Test. We get by insertion

F (u, v) = u3v · 12
(

uv − 1

uv

)

=
1

2
u4v2 − 1

2
u2,

hence

∂F

∂u
= 2u3v − u and

∂F

∂v
= u4v.

The results agree. ♦

In MAPLE we declare

f := (x, y) → x · sinh(y)

(x, y) → x sinh(y)

X := (u, v) →
(

u3 · v, ln(u) + ln(v)
)

(u, v) →
(

u3v, ln(u) + ln(v)
)

Then

d

< dau
f(X(u, v))

3u2v sinh(ln(u) + ln(v)) + u2v cosh(ln(u) + ln(v))

d

dv
f(X(u, v))

u3 sinh(ln(u) + ln(v)) + u3 cosh(ln(u) + ln(v))

Since sinh and cosh are built up by the exponential function, the latter two results can be
reduced.

Remark. All these examples are very simple because they should train the reader to use a new
method. Unfortunately, in all the chosen examples the usual method is easier to apply; but there
exist examples, like e.g. Example 11.13, where the chain rule is the most efficient one. However,
in the previous two examples, Example 11.8 and Example 11.9 we must admit that the chain
rule is more difficult to apply. ♦
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Example 11.10 It can be proved that the differential equation

dw

du
= w2 + u2, u ∈ R,

among its solutions has

w = X(u), u ∈ R, where X(0) = 1,

and

w = Y (u), u ∈ R, where Y (0) = 2.

Let

F (u) = f(X(u), Y (u)), f(x, y) = ln(1 + xy2).

Find the derivative F ′(0).

A The chain rule.

D Since the functions X(u) and Y (u) cannot be found explicitly by elementary methods, we shall try
the chain rule instead.

Remark. The non-linear differential equation above is a so-called Ricatti equation. Such equations
cannot be solved in general unless one knows one solution. It can be proved that the equation then
can be completely solved. Therefore, one usually says that the Ricatti equation can only be solved
by guessing. This is not true. There exist some special cases, in which the Ricatti equation can
be completely solved without knowing a solution in advance. The considered equation is actually
of this type, but since its solution lies far beyond what can be mentioned here, we shall not solve
it. ♦

I First note that for xy2 > −1,

∂f

∂x
=

y2

1 + xy2
and

∂f

∂y
=

2xy

1 + xy2
.

Then

dX

du
= X(u)2 + u2 and

dY

du
= Y (u)2 + u2,

so when we apply the chain rule we get

F ′(u) =
∂f

∂x

dX

du
+

∂f

∂y

dY

du
=

y2

1 + xy2
{

X(u)2 + u2
}

+
2xy

1 + xy2
{

Y (u)2 + u2
}

=
Y (u)2

1 +X(u)Y (u)2
{

X(u)2 + u2
}

+
2X(u)Y (u)

1 +X(u)Y (u)2
{

Y (u)2 + u2
}

.

Now X(0) = 1 and Y (0) = 2, so X(u)Y (u)2 > −1 in an interval around u = 0, and F ′(0) is
defined. We get the value by inserting the values of the calculations above.

F ′(0) =
4

1 + 1 · 4{1 + 0}+ 2 · 1 · 2
1 + 1 · 4{4 + 0} =

4

5
+

4

5
· 4 = 4.
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Example 11.11 Let u and w denote two functions in two variables. We assume that they fulfil the
differential equations

a
∂w

∂t
= −∂u

∂z
, b

∂u

∂t
= −∂w

∂z
, (z, t) ∈ R2.

We also consider two C1-functions F , G : R → R, and we put

u(z, t) = F (x+ ct) +G(z − ct),

w(z, t) = γ{F (z + ct)−G(z − ct)}.
Prove that one can choose the constants c and γ such that the differential equations are satisfied.

A System of partial differential equations.

D Insert the given functions and find c and γ.

I By partial differentiation we get

∂w

∂t
= γ{cF ′(z + ct) + cG′(z − ct)} = cγ{F ′(z + ct) +G′(z − ct)},

∂w

∂z
= γ{F ′(z + ct)−G′(z − ct)},

and

∂u

∂z
= F ′(z + ct) +G′(x− ct),

∂u

∂t
= c F ′(z + ct)− cG′(z − ct) = c{F ′(z + ct)−G′(z − ct)}.

It follows from the equation a
∂w

∂t
= −∂u

∂z
that

acγ{F ′(z + ct) +G′(z − ct)} = −{F ′(z + ct) +G′(z − ct)}.

Since F and G are arbitrary, we get acγ = −1.

Then it follows from the equation b
∂u

∂t
= −∂w

∂z
that

bc{F ′(z + ct)−G′(z − ct)} = −γ{F ′(z + ct)−G′(z − ct)}.

Since F and G are arbitrary, we get bc = −γ.

Then solve the system of two equations

acγ = −1 and bc = −γ

in c and γ for given a, b > 0 by eliminating γ, i.e. −abc2 = −1, and then accordingly

c = +
1√
ab

,
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where we have chosen the sign +, such that c > 0. If we instead choose the sign −, we interchange
F and G.

By the choices above of c we get γ = −bc = −
�

b

a
, thus

c =
1√
ab

and γ = −
�

b

a
.

The system has the solutions















u(z, t) = F

�

z +
t√
ab

�

+G

�

z − t√
ab

�

,

w(z, t) = −
�

b

a

�

F

�

z +
t√
ab

�

−G

�

z − t√
ab

��

.

These solutions are valid for any C1-functions F , G : R → R.

Remark 1. If F and G are of class C2, then the functions are solutions of the wave equation. ♦

Remark 2. The reason why the example is placed here is that one latently applies the chain rule
in a very simple version when we calculate the dd derivative. However, this cannot be clearly seen
due to all the other messages in the example. ♦
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Example 11.12 Let Pn(x, y, z) be an homogeneous polynomial of degree n in three variables. Con-
sider Pn as a function of the spherical coordinates (r, θ, ϕ). Prove by using the result of Example 11.2
that

r
∂Pn

∂r
= nPn.

A Homogeneous polynomial in R3.

D Apply Example 11.2.

I We have according to Example 11.2,

x
∂Pn

∂x
+ y

∂Pn

∂y
+ z

∂Pn

∂z
= nPn.

Then note that

r
∂x

∂r
= r

∂

∂r
{r sin θ cosϕ} = r sin θ cosϕ = x for r > 0,

and analogously for the other rectangular coordinate functions, so

r
∂x

∂r
= x, r

∂y

∂r
= y, r

∂z

∂r
= z, for r > 0.

Then we get by the chain rule

r
∂Pn

∂r
= r

∂x

∂r

∂Pn

∂x
+ r

∂y

∂r

∂Pn

∂y
+ r

∂z

∂r

∂Pn

∂Pn
∂z = x

∂Pn

∂x
+ y

∂Pn

∂y
+ z

∂Pn

∂z
= nPn.

Example 11.13 Given the functions

X(u) = ln(2 + u), u > −2, and f(x, y) = y3ex, (x, u) ∈ R2,

and a C1-function Y (x), x ∈ A, of which we only know that

0 ∈ A Y (0) = π, Y ′(0) = 2.

Considering the composite function F (u) = f(X(u), Y (u)) we shall find the derivative F ′(0).

A Determination of a derivative, where we apparently are missing some information.

D Analyze the chain rule.

I We get by the chain rule

F ′(u) =
∂f

∂x

dX

du
+

∂f

∂y

dY

du
= y3ex · 1

2 + u
+ 3y2ex · Y ′(u)

= Y (u)3 · (2 + u) · 1

2 + u
+ 3Y (u)2 · (2 + u) · Y ′(u)

= Y (u)3 + 3Y (u)2 · Y (u) · (2 + u).

Putting u = 0 we get

F ′(0) = Y (0)3 + 3Y (0)2 · Y ′(0) · 2 = π3 + 6π2 · 2 = π3 + 12π2 = π2(12 + π).
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Example 11.14 . Find the derivative of the function

F (u) = Arcsin

(

sinu cosu√
2 + cos2 u

)

, u ∈ R

by putting F (u) = f(X(u), Y (u)), where

f(x, y) = Arcsin

(

x√
y

)

.

A The chain rule.

D Identify X(u) and Y (u), and use the chain rule.

I We shall clearly choose

x = X(u) = sinu · cosu, and y = Y (u) = 2 + cos2 u.

First calculate

dx

du
= cos2 u− sin2 u = cos 2y,

dy

du
= −2 sinu · cosu = − sin 2u,

together with

∂f

∂x
=

1
√

1− x2

y

· 1√
y
=

1
√

y − x2
=

1
√

2 + cos2 u− sin2 u · cos2 u
=

1√
2 + cos2 u

,

and

∂f

∂y
=

1
√

1− x2

y

·
(

−1

2

x

y
√
y

)

= − x

2y
· 1
√

y − x2
= − sinu · cosu

4 + 2 cos2 u
· 1√

2 + cos2 u
.

Then by the chain rule

F ′(u) =
∂f

∂x
· dx

du
+

∂f

∂y
· dy

du

=
cos2 u−sin2 u√

2+cos2 u
− sinu cosu

4+2 cos2 u
· 1√

2+cos2 u
(−2 sinu cosu)

=
1√

2+cos2 u

{

cos2 u−sin2 u+
2 sin2 u cos2 u

4+2 cos2 u

}

=
1√

2 + cos2 u

{

cos2 u− 2 sin2 u

2 + cos2 u

}

.
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C By the traditional calculation we get

F ′(u) =
1

√

1− sin2 u cos2 u

2 + cos2 u

{

cos2 u− sin2 u√
2 + cos2 u

− 1

2
· sinu cosu · (−2 sinu cos2 u)

(2 + cos2 u)
√
2 + cos2 u

}

=
1

√

2 + cos2 u− sin2 u cos2 u

{

cos2 u− sin2 u+
sin2 u cos2 u

2 + cos2 u

}

=
1√

2 + cos2

{

cos2 u+ sin2 u · −2− cos2 u+ cos2 u

2 + cos2 u

}

=
1√

2 + cos2 u

{

cos2 u− 2 sin2 u

2 + cos2 u

}

.

The two results agree.

In MAPLE we declare

f := (x, y) → arcsin

(

x√
y

)

(x, y) → arcsin

(

x√
y

)

X := u →
(

sin(u) · cos(u), 2 + cos(u)2
)

u →
(

sin(u) · cos(u), 2 + cos(u)2
)

Then

d

du
f(X(u))

cos(u)2
√

2 + cos(u)2
− sin(u)2

√

2 + cos(u)2
+

sin(u)2 cos(u)2

(2 + cos(u)2)
3/2

√

1− sin(u)2 cos(u)2

2 + cos(u)2

This expression can be reduced.
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11.3 Directional derivative

Example 11.15 Find in each of the following cases the directional derivative of the given function
f : R3 → R in the point given by the index 0 in the direction of the vector v.

1) f(x, y, z) = x+ 2xy − 3y2, (x0, y0, z0) = (1, 2, 1), v = (3, 4, 0).

2) f(x, y, z) = zex cos(πy), (x0, y0, z0) = (0,−1, 1), v = (−1, 2, 1).

3) f(x, y, z) = x2 + 2y2 + 3z2, (x0, y0, z0) = (1, 1, 0), v = (1,−1, 2).

4) f(x, y, z) = xy + yz + xz, (x0, y0, z0) = (1, 2, 3), v = (1, 1, 1).

A Directional derivative.

D Insert into the formula

f ′
(

x;
v

|v|

)

=
v

|v| · ▽f(x),

where we must remember to norm v.

I 1) Here,

▽f(x, y) = (1 + 2y, 2x− 6y) and |v| =
√

32 + 42 = 5,

so

f ′
(

(1, 2);

(

3

5
,
4

5

))

=
1

5
(3, 4) · (1 + 4, 2− 12) =

1

5
(3, 4) · (5,−10)

= (3, 4) · (1,−2) = −5.

375

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

www.discovermitas.com

http://s.bookboon.com/mitas


Real Functions in Several Variables: Volume III 
Differentiable Functions in Several Variables

376 

Examples of differentiable functions

2) Here,

▽f(x, y, z) = (zex cos(πy),−πzex sin(πy), ex cos(πz)) ,

and |v| =
√
1 + 4 + 1 =

√
6, so

f ′
(

(0,−1, 1);
1√
6
(−1, 2, 1)

)

=
1√
6
(−1, 2, 1) · (1 · e0 · (−1), 0,−1)

=
1√
6
{(−1)2 + 0− 1} = 0.

3) Here

▽f(x, y, z) = (2x, 4y, 6z) and |v| =
√
6,

so

f ′
(

(1, 1, 0);
1√
6
(1,−1, 2)

)

=
1√
6
(1,−1, 2) · (2, 4, 0) = 1√

6
(2− 4) = − 2√

6
= −

√

2

3
.

4) Here

▽f(x, y, z) = (y + z, x+ z, x+ y) and |v| =
√
3,

so

f ′
(

(1, 2, 3);
1√
3
(1, 1, 1)

)

=
1√
3
· 2[x+ y + z](x,y,z)=(1,2,3) =

12√
3
= 4

√
3.

Example 11.16 Find in each of the following cases the directional derivative of the function f at the
point given by the index 0 in the direction of the point given by the index 1.

1) f(x, y, z) = xyz +
x

y
+

y

z
+

z

x
defined for xyz �= 0 from (x0, y0, z0) = (1,−1, 1) to

(x1, y1, z1) = (3, 1, 2).

2) f(x, y, z) = 2x3y − 3y2z defined in R3 from (x0, y0, z0) = (1, 2,−1) to (x1, y1, z1) = (3,−1, 5).

3) f(x, y, z) = x ln(1 + eyz) defined in R3 from (x0, y0, z0) = (1, 1, 0) to (x1, y1, z1) = (0, 0,−1).

A Directional derivative.

D Calculate ▽f(x0, y0, z0) and find the unit vector e.

I 1) Here

▽f =

(

yz +
1

y
− z

x2
, xz − x

y2
+

1

z
, xy − y

z2
+

1

x

)

,

so

▽f(1,−1, 1) = (−1− 1− 1, 1− 1 + 1,−1 + 1 + 1) = (−3, 1, 1).
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Furthermore,

v = (3, 1, 2)(1,−1, 1) = (2, 2, 1), where |v| =
√

22 + 22 + 12 = 3,

so

f ′
(

(1,−1, 1);
1

3
(2, 2, 1)

)

=
1

3
(2, 2, 1) · (−3, 1, 1) =

1

3
{−6 + 2 + 1} = −1.

2) Here

▽f =
(

6x2y, 2x3 − 6yz,−3y2
)

,

so

▽f(1, 2,−1) = (6 · 12 · 2, 2− 6 · 2 · (−1),−3 · 22) = (12, 14,−12).

Furthermore,

v = (3,−1, 5)− (1, 2,−1) = (2,−3, 6), where |v| =
√

22 + 32 + 62 = 7,

so

f ′
(

(1, 2,−1);
1

7
(2,−3, 6)

)

=
1

7
(2,−3, 6) · (12, 14,−12) =

1

7
{−48− 42} = −90

7
.

3) Here

▽f =

(

ln(1 + eyz),
xzeyz

1 + eyz
,
xyeyz

1 + eyz

)

,

so

▽f(1, 1, 0) =

(

ln 2, 0,
1

2

)

.

Furthermore,

v = (0, 0,−1)− (1, 1, 0) = (−1,−1,−1), where |v| =
√
3,

so

f ′
(

(1, 1, 0);
1√
3
(−1,−1,−1)

)

= − 1√
3

(

1

2
+ ln 2

)

.
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Example 11.17 Given the function

f(x, y, z) = Arctan

�

x+
1

y

�

+ sinh
�

z2 − 1
�

, y < 0.

Find the direction in which the directional derivation of f at the point (1,−1, 1) is smallest, and
indicate this minimum.

A Directional derivative.

D First calculate ▽f(1,−1, 1). Then conclude that the direction must be

e = − ▽f

� ▽ f� .

I We get by differentiation

▽f =











1

1 +

�

x+
1

y

�2 ,

− 1

y2

1 +

�

x+
1

y

�2 , 2z cosh(z
2 − 1)











,

hence

▽f(1,−1, 1) = (1,−1, 2) where � ▽ f(1,−1, 1)� =
√
6.

Using the direction

e = − 1√
6
(1,−1, 2) = − ▽f(1,−1, 1)

� ▽ f(1,−1, 1)�

we get the directional derivative

f ′((1,−1, 1); e) = e · ▽f(1,−1, 1) = −�▽ f(1,−1, 1)�2
� ▽ f(1,−1, 1)� = −�▽ f(1,−1, 1)� = −

√
6.
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Example 11.18 Let f be a C1-function of two variables. We sketch from a fixed point (x0, y0) in
any direction the corresponding directional derivative of f at the point (x0, y0). Prove that we by this
procedure obtain two circles which are tangent to each other at the point (x0, y0), and find the centres
of these circles.

A “Theoretical” example concerning the directional derivative.

D Without loss of generality we may assume that (x0, y0) = (0, 0). Calculate

f ′(0; e)e or |f ′(0; e|e

for every unit vector e.

I We can obviously assume that (x0, y0) = (0, 0).

Then let

▽f(0) =

(

∂f

∂x
(0),

∂f

∂y
(0)

)

:= (a, b).

–2

–1

0

1

2

y

–2 –1 1 2

x

Figure 11.2: The sketched diameter is ▽f(0, 0).
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Any unit vector can be written in the form

e(ϕ) = (cosϕ, sinϕ), ϕ ∈ [0, 2π[,

so

(11.2) f ′(0; e(ϕ))e(ϕ) = (a cosϕ+ b sinϕ)(cosϕ, sinϕ) = (x(ϕ), y(ϕ)),

where

x(ϕ) = a cos2 ϕ+ b sinϕ cosϕ =
1

2
{a cos 2ϕ+ b sin 2ϕ}+ a

2

and

y(ϕ) = a sinϕ cosϕ+ b sin2 ϕ =
1

2
{a sin 2ϕ− b cos 2ϕ}+ b

2
.

Hence

{

x(ϕ) − a

2

}2

+

{

y(ϕ)− b

2

}2

=
1

4
{a2 + b2},
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and the centre lies at the point

(

a

2
,
b

2

)

=
1

2
▽ f(0),

and the radius is
1

2
| ▽ f(0)|.

We have above calculated the signed directional derivative. If we instead interpret(11.2) as

|f ′(0; e(ϕ))|e(ϕ),

then we obtain the cirle which is the mirror image in 0.

Example 11.19 Find the directional derivative of the function

f(x, y, z) = y
√

1 + x2z2, (x, y, z) ∈ R3,

at the point (
√
2, 1, 2) in the direction towards the point (

√
2, 2, 2 +

√
3).

A Directional derivative.

D Find the unit vector in the direction and apply the formula of the directional derivative.

I The direction is

v = (
√
2, 2, 2 +

√
3)− (

√
2, 1, 2) = (0, 1,

√
3) = 2

(

0,
1

2
,

√
3

2

)

,

hence �v� = 2, and e =

(

0,
1

2
,

√
3

2

)

. Then the directional derivative is

f ′
(

(
√
2, 1, 2) ;

(

0,
1

2
,

√
3

2

))

= 0 · ∂f
∂x

(
√
2, 1, 2) +

1

2

∂f

∂y
(
√
2, 1, 2) +

√
3

2

∂f

∂z
(
√
2, 1, 2)

=
1

2

[

√

1 + x2z2
]

(
√
2,1,2)

+

√
3

2

[

x2yz√
1 + x2z2

]

(
√
2,1,2)

=
1

2

√
1 + 2 · 4 +

√
3

2
· 2 · 1 · 2√

1 + 2 · 4 =
3

2
+

2
√
3

3
=

9 + 4
√
3

6
.
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Example 11.20 Given the function

f(x, y, z) = 2x+ 2y2z + xy2z, (x, y, z) ∈ R3.

Find (▽f)(1,−1, 2), and then the unit vector e, for which

f ′((1,−1, 2); e)

is as large as possible.

A Gradient and directional derivative.

D Just calculate.

I The gradient is

▽f = (2 + y2z, 4yz + 2xyz, 2y2 + xy2),

hence

(▽f)(1,−1, 2) = (2 + (−1)2 · 2,−4 · 2 + 2 · 1(−1) · 2, 2 + 1) = (4,−12, 3)

where the maximum is

� ▽ f(1,−1, 2)� =
√
16 + 144 + 9 =

√
169 = 13 = f ′((1,−1, 2); e)

obtained for

e =

(

4

13
,−12

13
,
3

13

)

.

11.4 Partial derivatives of higher order

Example 11.21 Find in each of the following cases the first and the second differential for the func-
tion f at the point which is indicated with the index 0.

1) f(x, y) = x exp(y2 − 1) in R2 from (x0, y0) = (1, 1).

2) f(x, y) = Arctan(x + y) + ln(1 + x) for x > −1 from (x0, y0) = (0, 1).

3) f(x, y) = (x2 + y2) ln(x2 + y2) in R2 \ {0} from (x0, y0) = (0, 1).

4) f(x, y) =
√

x2 + y2 i R2 \ {0} from (x0, y0) = (3, 4).

A First and second differential.

D First calculate the partial derivatives.

I It is obvious that f(x, y) is of class C∞ in the domain in all four cases.

382

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume III 
Differentiable Functions in Several Variables

383 

Examples of differentiable functions

1) The partial derivatives are here

∂f

∂x
= exp(y2 − 1),

∂f

∂y
= 2xy exp(y2 − 1),

∂2f

∂x2
= 0,

∂2f

∂x∂y
=

∂2f

∂y∂x
= 2y exp(y2 − 1),

∂2f

∂y2
= 2x exp(y2 − 1) + 4xy2 exp(y2 − 1) = 2x(1 + 2y2) exp(y2 − 1),

so

df((1, 1),h) = ▽f(1, 1) · h = (1, 2) · (hx, hy) = hx + 2hy = “dx+ 2dy”

and

d2f((1, 1);h) =
∂2f

∂x2
(1, 1)h2

x + 2
∂2f

∂x∂y
(1, 1)hxhy +

∂2f

∂y2
(1, 1)h2

y

= 0 · h2
x + 2 · 2hxhy + 2(1 + 2)h2

y

= 4hxhy + 6h2
y = “4 dxdy + 6( dy)2 ”.
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The differentiations are easy in MAPLE,

d

dx

(

x · ey2−1
)

ey
2−1

d

dy

(

x · ey2−1
)

2xyey
2−1

d

dx

d

dx

(

x · ey2−1
)

0

d

dx

d

dy

(

x · ey2−1
)

2yey
2−1

d

dy

d

dy

(

x · ey2−1
)

2xey
2−1 + 4x2ey

2−1

2) Here

∂f

∂x
=

1

1 + (x+ y)2
+

1

1 + x
,

∂f

∂x
(0, 1) =

1

2
+ 1 =

3

2
,

∂f

∂y
=

1

1 + (x+ y)2
,

∂f

∂y
(0, 1) =

1

2
,

∂2f

∂x2
= − 2(x+ y)

{1 + (x+ y)2}2 − 1

(1 + x)2
,

∂2f

∂x2
(0, 1) = − 2

22
− 1 = −3

2
,

∂2f

∂x
∂y = − 2(x+ y)

{1 + (x+ y)2}2 ,
∂2f

∂x∂y
(0, 1) = −1

2
,

∂2f

∂y2
= − 2(x+ y)

{1 + (x+ y)2}2 ,
∂2f

∂y2
(0, 1) = −1

2
.

Then by insertion,

df((0, 1);h) =
3

2
hx +

1

2
hy = “

3

2
dy +

1

2
dy”,
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and

d2f((0, 1);h) = −3

2
h2
x − hxhy −

1

2
h2
y = “− 3

2
( dx)2 − dxdy − 1

2
( dy)2 ”.

The differentiations are easy in MAPLE,

d

dx
(arctan(x+ y) + ln(1 + x))

1

1 + (x+ y)2
+

1

1 + x

d

dy
(arctan(x+ y) + ln(1 + x))

1

1 + (x+ y)2

d

dx

d

dx
(arctan(x+ y) + ln(1 + x))

− 2x+ 2y

(1 + (x+ y)2)
2 − 1

(1 + x)2

d

dx

d

dy
(arctan(x+ y) + ln(1 + x))

− 2x+ 2y

(1 + (x+ y)2)
2

d

dy

d

dy
(arctan(x + y) + ln(1 + x))

− 2x+ 2y

(1 + (x+ y)2)
2

3) Here

∂f

∂x
= 2x ln(x2 + y2) + 2x,

∂f

∂x
(0, 1) = 0,

∂f

∂y
= 2y ln(x2 + y2) + 2y,

∂f

∂y
(0, 1) = 2,

∂2f

∂x2
= 2 ln(x2 + y2) +

4x2

x2 + y2
+ 2;

∂2f

∂x2
(0, 1) = 2

∂2f

∂x∂y
=

4xy

x2 + y2
,

∂2f

∂x∂y
(0, 1) = 0,

∂2f

∂y2
= 2 ln(x2 + y2) +

4y2

x2 + y2
+ 2;

∂2f

∂y2
(0, 1) = 6.
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We see that

df((0, 1);h) = 2hy = “2 dy”

and

d2f((0, 1);h) = 2h2
x + 6h2

y = “2( dx)2 + 6( dy) ”.

The differentiations are easy in MAPLE,

d

dx

((

x2 + y2
)

· ln
(

x2 + y2
))

2x ln
(

x2 + y2
)

+ 2x

d

dy

((

x2 + y2
)

· ln
(

x2 + y2
))

2y ln
(

x2 + y2
)

+ 2y

d

dx

d

dx

((

x2 + y2
)

· ln
(

x2 + y2
))

2 ln
(

x2 + y2
)

+
4x2

x2 + y2
+ 2

d

dx

d

dy

((

x2 + y2
)

· ln
(

x2 + y2
))

4yx

x2 + y2

d

dy

d

dy

((

x2 + y2
)

· ln
(

x2 + y2
))

2 ln
(

x2 + y2
)

+
4y2

x2 + y2
+ 2

4) Here

∂f

∂x
=

x
√

x2 + y2
,

∂f

∂x
(3, 4) =

3

5
,

∂f

∂y
=

y
√

x2 + y2
,

∂f

∂y
(3, 4) =

4

5
,

∂2f

∂x2
=

1
√

x2 + y2
− x2

(
√

x2 + y2)3
=

y2

(
√

x2 + y2)3
,

∂2f

∂x2
(3, 4) =

16

125
,

∂2f

∂x∂y
= − xy

(
√

x2 + y2)3
,

∂2f

∂x∂y
(3, 4) = − 12

125
,

∂2f

∂y2
=

x2

(
√

x2 + y2)3
,

∂2f

∂y2
(3, 4) =

9

125
,
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hence

df((3, 3);h) =
3

5
hx +

4

5
hy = “

3

5
dx+

4

5
dy ”,

and

d2f((3, 3);h) =
16

125
h2
x − 24

125
hxhy +

9

125
h2
y.

The differentiations are easy in MAPLE,

d

dx

√

x2 + y2

x
√

x2 + y2

d

dy

√

x2 + y2

y
√

x2 + y2

d

dx

d

dx

√

x2 + y2

− x2

(x2 + y2)
3/2

+
1

√

x2 + y2

d

dx

d

dy

√

x2 + y2

− yx

(x2 + y2)
3/2

d

dy

d

dy

√

x2 + y2

− y2

(x2 + y2)
3/2

+
1

√

x2 + y2
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Example 11.22 Let the function f : R2 → R be given by

f(x, y) =







xy3

x2 + y2
, (x, y) �= (0, 0),

0, (x, y) = (0, 0).

1) Prove that f has partial derivatives of first order at every point of the plane.

2) Prove that the mixed derivatives f ′′
xy and f ′′

yx both exist at the point (0, 0), though

f ′′
xy(0, 0) �= f ′′

yx(0, 0).

3) Find f ′′
xy(x, y) for (x, y) �= (0, 0), and prove that this function does not have any limit for

(x, y) → (0, 0).

A Partial derivatives of first and second order.

D Discuss the existence of f ′
x and f ′

y; then calculate f ′′
xy(0, 0) and fyx(0, 0) at the point (0, 0). Finally,

calculate f ′′
x,y(x, y) in general and switch to polar coordinates.

I 1) When (x, y) �= (0, 0), we see that f(x, y) is a quotient of two polynomials where the denominator
is > 0. Accordingly the partial derivatives of f(x, y) exist of any order when (x, y) �= (0, 0).
We get for (x, y) �= (0, 0) that

∂f

∂x
=

y3

x2 + y2
− 2x2y3

(x2 + y2)2
=

y3(y2 − x2)

(x2 + y2)2
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and

∂f

∂y
=

3xy2

x2 + y2
− 2xy4

(x2 + y2)2
=

xy2(3x2 + y2)

(x2 + y2)2
.

We find at (0, 0)

f(x, 0)− f(0, 0) = 0 = f(0, y)− f(0, 0),

so we conclude that

∂f

∂x
(0, 0) =

∂f

∂y
(0, 0) = 0.

Summarizing we see that the partial derivatives of first order exist everywhere in R2.

2) Then it follows from the expressions of
∂f

∂x
and

∂f

∂y
that

∂f

∂x
(0, y)− ∂f

∂x
(0, 0) =

y5

y4
− 0 = y,

and

∂f

∂y
(x, 0)− ∂f

∂y
(0, 0) = 0.

We conclude that

∂2f

∂x∂y
(0, 0) = lim

y→0

1

y

{

∂f

∂x
(0, y)− ∂f

∂x
(0, 0)

}

= lim
y→0

y

y
= 1

and

∂2f

∂y
∂x(0, 0) = lim

x→0

1

x

{

∂f

∂y
(x, 0)− ∂f

∂y
(0, 0)

}

= 0,

so both

∂2f

∂x∂y
(0, 0) = 1 and

∂2f

∂y∂x
(0, 0) = 0

exist and yet they are different.

3) It follows from 1) that

∂f

∂x
=

y3(y2 − x2)

(x2 + y2)2
=

y5 − y3x2

(x2 + y2)2
,

so

∂2f

∂x∂y
=

5y4 − 3y2x2

(x2 + y2)2
− 2 · 2y

(x2 + y2)3
· (y5 − y3x2)

=
y2

(x2 + y2)2
(5y2 − 3x2)− 4y4

(x2 + y2)3
· (y2 − x2).
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When we switch to polar coordinates x = ̺ cosϕ, y = ̺ sinϕ, we get

f ′′
xy(x, y) =

̺2 sin2 ϕ

̺4
(5̺2 sin2 ϕ− 3̺2 cos2 ϕ)− ̺4 sin4 ϕ

̺6
(̺2 sin2 ϕ− ̺2 cos2 ϕ)

= sin2 ϕ(5 sin2 ϕ− 3 cos2 ϕ)− sin4 ϕ(sin2 ϕ− cos2 ϕ)

= sin2 ϕ

(

4 sin2 ϕ−4 cos2 ϕ+sin2 ϕ+cos2 ϕ+

(

1−cos2ϕ

2

)2

cos 2ϕ

)

= sin2 ϕ

(

−4 cos 2ϕ+ 1 +
1

4

{

1− 2 cos 2ϕ+ cos2 2ϕ
}

cos 2ϕ

)

.

This expression is not constant in ϕ (the latter factor is a polynomial of third degree in cos 2ϕ),
hence the limit does not exist when ̺ → 0, and there are no further conditions on ϕ.

There is no point here to show the calculations in MAPLE, because the main issue is to give an
example where both f ′′

xy(0, 0) and f ′′
yx exist without being equal. MAPLE can be used, but only

following the same procedure as above.
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Example 11.23 Find in each of the following cases the partial derivatives of first and second order
of the given function f : R2 → R.

1) f(x, y) = sin(x2y3).

2) f(x, y) = sin(cos(2x− 3y)).

3) f(x, y) =
√

1 + x2 + y2.

4) f(x, y) = ln(1 + cos2(xy)).

5) f(x, y) = exp(x+ xy − 2y).

6) f(x, y) = Arctan(x − y).

A Partial derivatives of first and second order of C∞-functions.

D Differentiate.

I 1) When f(x, y) = sin(x2y3), then

∂f

∂x
= 2xy3 cos(x2y3) and

∂f

∂y
= 3x2y2 cos(x2y3),

whence

∂2f

∂x2
= 2y3 cos(x2y3)− 4x2y6 sin(x2y3),

∂2f

∂x∂y
=

∂2f

∂y∂x
= 6xy2 cos(x2y3)− 6x3y5 sin(x2y3)

∂2f

∂y2
= 6x2y cos(x2y3)− 9x4y4 sin(x2y3).

Here, MAPLE is easy to apply,

d

dx
sin

(

x2 · y3
)

2 cos
(

x2y3
)

xy3

d

dy
sin

(

x2 · y3
)

3 cos
(

x2y3
)

x2y2

d

dx

d

dx
sin

(

x2 · y3
)

−4 sin
(

x2y3
)

x2y6 + 2 cos
(

x2y3
)

y3

d

dx

d

dy
sin

(

x2 · y3
)

−6 sin
(

x2y3
)

x3y5 + 6 cos
(

x2y3
)

xy2
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d

dy

d

dy
sin

(

x2 · y3
)

−9 sin
(

x2y3
)

x4y4 + 6 cos
(

x2y3
)

x2y

2) When f(x, y) = sin(cos(2x− 3y)), then

∂f

∂x
= −2 sin(2x− 3y) · cos(cos(2x− 3y)),

∂f

∂y
= 3 sin(2x− 3y) · cos(cos(2x− 3y)),

whence

∂2f

∂x2
= −4 cos(2x− 3y) cos(cos(2x− 3y))− 4 sin2(2x− 3y) sin(cos(2x− 3y)),

∂2f

∂x∂y
=

∂2f

∂y∂x
= 6 cos(2x− 3y) cos(cos(2x− 3y)) + 6 sin2(2x− 3y) sin(cos(2x− 3y)),

∂2f

∂y2
= −9 cos(2x− 3y) cos(cos(2x− 3y))− 9 sin2(2x− 3y) sin(cos(2x− 3y)).

The partial differentiations are easy in MAPLE,

d

dax
sin(cos(2x− 3y))

−2 cos(cos(2x− 3y)) sin(2x− 3y)

d

dy
sin(cos(2x− 3y))

3 cos(cos(2x− 3y)) sin(2x− 3y)

d

dx

d

dx
sin(cos(2x− 3y))

−4 sin(cos(2x− 3y)) sin(2x− 3y)2 − 4 cos(cos(2x− 3y)) cos(2x− 3y)

d

dx

d

dy
sin(cos(2x− 3y))

6 sin(cos(2x− 3y)) sin(2x− 3y)2 + 6 cos(cos(2x− 3y)) cos(2x− 3y)

d

dy

d

dy
sin(cos(2x− 3y))

−9 sin(cos(2x− 3y)) sin(2x− 3y)2 − 9 cos(cos(2x− 3y)) cos(2x− 3y)
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3) When f(x, y) =
√

1 + x2 + y2, then

∂f

∂x
=

x
√

1 + x2 + y2
,

∂f

∂y
=

y
√

1 + x2 + y2
,

whence

∂2f

∂x2
=

1
√

1 + x2 + y2
− x2

(
√

1 + x2 + y2)3
=

1 + y2

(
√

1 + x2 + y2)3
,

∂2f

∂x∂y
=

∂2f

∂y∂x
= − xy

(
√

1 + x2 + y2)3
,

∂2f

∂y2
=

1 + x2

(
√

1 + x2 + y2)3
.

This is also easy in MAPLE,

d

dx

√

1 + x2 + y2

x
√

x2 + y2 + 1

d

dy

√

1 + x2 + y2

y
√

x2 + y2 + 1

d

dx

d

dx

√

1 + x2 + y2

− x2

(x2 + y2 + 1)
3/2

+
1

√

x2 + y2 + 1

d

dx

d

dy

√

1 + x2 + y2

− yx

(x2 + y2 + 1)
3/2

d

dy

d

dy

√

1 + x2 + y2

− y2

(x2 + y2 + 1)
3/2

+
1

√

x2 + y2 + 1
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4) When f(x, y) = ln(1 + cos2(xy)), then

∂f

∂x
= −2y sin(xy) cos(xy)

1 + cos2(xy)
= − y sin(2xy)

1 + cos2(xy)
,

∂f

∂y
= −2x sin(xy) cos(xy)

1 + cos2(xy)
= − x sin(2xy)

1 + cos2(xy)
,

and accordingly

∂2f

∂x2
= −2y2 cos(2xy)

1 + cos2(xy)
+

y sin(2xy)

{1 + cos2(xy)}2 {−2 cos(xy) sin(xy)}y

= −2y2
(cos2(xy)− sin2(xy))(1 + cos2(xy))− 2 sin2(xy) cos2(xy)

{1 + cos2(xy)}2

= −2y2
cos2(xy) + cos4(xy)− sin2(xy)− 2 sin2(xy) cos2(xy)

{1 + cos2(xy)}2

= −2y2
−2 cos2(xy) + 4 cos4(xy)− sin2(xy)

{1 + cos2(xy)}2

= 2y2
1 + cos2(xy)− 4 cos4(xy)

{1 + cos2(xy)}2 .

Due to the symmetry in x and y we by interchanging the letters

∂2f

∂y2
= 2x2 1 + cos2(xy)− 4 cos4(xy)

{1 + cos2(xy)}2 .
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Finally,

∂2f

∂x∂y
=

∂2f

∂y∂x
= − sin(2xy)

1 + cos2(xy)
− 2xy cos(2xy)

1 + cos2(xy)

+
x sin(2xy)

{1 + cos2(xy)}2 {−2 cos(xy) sin(xy) · y}

= − sin(2xy) + 2xy cos(2xy)

1 + cos2(xy)
− xy sin2(2xy)

{1 + cos2(xy)}2 .

The calculations in MAPLE are easy, but the results need to be tidied up,

d

dx
ln
(

1 + cos(x · y)2
)

−2 cos(xy) sin(xy)y

1 + cos(xy)2

d

dy
ln
(

1 + cos(x · y)2
)

−2 cos(xy) sin(xy)x

1 + cos(xy)2

d

dx

d

dx
ln
(

1 + cos(x · y)2
)

2 sin(xy)2y2

1 + cos(xy)2
− 2 cos(xy)2y2

1 + cos(xy)2
− 4 cos(xy)2 sin(xy)2y2

(1 + cos(xy)2)
2

d

dx

d

dy
ln
(

1 + cos(x · y)2
)

2 sin(xy)2yx

1 + cos(xy)2
− 2 cos(xy)2yx

1 + cos(xy)2
− 2 cos(xy) sin(xy)

1 + cos(xy)2
− 4 cos(xy)2 sin(xy)xy

(1 + cos(xy)2)
2

d

dy

d

dy
ln
(

1 + cos(x · y)2
)

2 sin(xy)2x2

1 + cos(xy)2
− 2 cos(xy)2x2

1 + cos(xy)2
− 4 cos(xy)2 sin(xy)2x2

(1 + cos(xy)2)
2

5) When f(x, y) = exp(x+ xy − 2y), then

∂f

∂x
= (1 + y) exp(x+ xy − 2y) = (1 + y)f(x, y),

∂f

∂y
= (x− 2) exp(x+ xy − 2y) = (x− 2)f(x, y),
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whence

∂2f

∂x2
= (1 + y)2f(x, y) = (1 + y)2 exp(x+ xy − 2y),

∂2f

∂x∂y
=

∂2f

∂y∂x
= 1 · f(x, y) + (1 + y)(x− 2)f(x, y)

= (x+ xy − 2y − 1) exp(x+ xy − 2y),

∂2f

∂y2
= (x− 2)2f(x, y) = (x − 2)2 exp(x + xy − 2y).

Easy in MAPLE,

d

dx
ex+x·y−2y

(y + 1)exy+x−2y

d

dy
ex+x·y−2y

(x− 2)exy+x−2y

d

dx

d

dx
ex+x·y−2y

(y + 1)2exy+x−2y

d

dx

d

dy
ex+x·y−2y

exy+x−2y + (x − 2)(y + 1)exy+x−2y

d

dy

d

dy
ex+x·y−2y

(x− 2)2exy+x−2y

6) When f(x, y) = Arctan(x− y), we get

∂f

∂x
=

1

1 + (x− y)2
,

∂f

∂y
= − 1

1 + (x− y)2
,
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hence

∂2f

∂x2
= − 2(x− y)

{1 + (x − y)2}2 ,

∂2f

∂x∂y
=

∂2f

∂y∂x
=

2(x− y)

1 + (x − y)2}2 ,

∂2f

∂y2
= − 2(x− y)

{1 + (x − y)2}2 .

In MAPLE,

d

dx
arctan(x− y)

1

1 + (x− y)2

d

dy
arctan(x− y)

− 1

1 + (x− y)2

d

dx

d

dx
arctan(x − y)

−2x+ 2y

(1 + (x− y)2)2

d

dx

d

dy
arctan(x− y)

2x− 2y

(1 + (x− y)2)2

d

dy

d

dy
arctan(x− y)

−2x+ 2y

(1 + (x− y)2)2
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Example 11.24 Prove in each of the following cases that the given function f satisfies the given
differential equation everywhere in its domain. In some of the cases there occur some constants α, β,
γ; check if these can be chosen freely. Note that the variables are not x, y or z in all cases.

1) Prove that the function ln
√

x2 + y2, defined in R2 \ {0}, fulfils the differential equation

∂2f

∂x2
+

∂2f

∂y2
= 0.

2) Prove that the function eαx cos(αy), defined in R2, fulfils the differential equation

∂2f

∂x2
+

∂2f

∂y2
= 0.

3) Prove that the function e−t(cosx+ sin y), defined in R3, fulfils the differential equation

∂f

∂t
=

∂2f

∂x2
+

∂2f

∂y2
.

4) Prove that the function sin(αx) sin(βy) sin(γ
√

α2 + β2 t), defined in R3, fulfils the differential equa-
tion

1

γ2

∂2f

∂t2
=

∂2t

∂x2
+

∂2f

∂y2
.

5) Prove that the function
1

√

x2 + y2 + z2
, defined in R3 \ {0}, fulfils the differential equation

∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
= 0.

6) Prove that the function tα exp

(

−r2

4t

)

, defined for t > 0, fulfils the differential equation

r2
∂f

∂t
=

∂

∂r

(

r2
∂f

∂r

)

.

A Partial differential equations.

D Differentiate the given function and put it into the differential equation.

I 1) When f(x, y) = ln
√

x2 + y2 =
1

2
ln(x2 + y2), we get

∂f

∂x
=

x

x2 + y2
,

∂f

∂y
=

y

x2 + y2
,

hence

∂2f

∂x2
=

1

x2 + y2
− 2x2

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
,

∂2f

∂y2
=

x2 − y2

(x2 + y2)2
.
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Then by insertion

∂2f

∂x2
+

∂2

∂y2
=

y2 − x2

(x2 + y2)2
+

x2 − y2

(x2 + y2)2
= 0,

and the equation is fulfilled.

2) Here

∂f

∂x
= αeαx cos(αy),

∂f

∂y
= −αeαx sin(αy),

and

∂2f

∂x2
= α2eαx cos(αy),

∂2f

∂y2
= −α2eαx cos(αy).

Then by insertion into the differential equation

∂2f

∂x2
+

∂2f

∂y2
= α2 {eαx cos(αy)− eαx cos(αy)} = 0.

The equation is satisfied, and we can choose any α.
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3) Here

∂f

∂t
= −e−t(cosx+ sin y).

Then

∂2f

∂x2
= −e−t cosx and

∂2f

∂y2
= −e−t sin y,

and the differential equation is fulfilled

4) Here

1

γ2

∂2f

∂t2
= −(α2 + β2)f(x, y, t),

and

∂2f

∂x2
= −α2f(x, y, t),

∂2f

∂y2
= −β2f(x, y, t),

and the differential equation is fulfilled.

We must require that γ �= 0. Note that when γ = 0, then f(x, y, t) ≡ 0, while
1

γ2

∂2f

∂t2
is not

defined.

5) When f(x, y, z) =
1

√

x2 + y2 + z2
, we have

∂f

∂x
= − x

(x2 + y2 + x2)3/2
,

and

∂2f

∂x2
= − 1

(x2 + y2 + z2)3/2
+

3x2

(x2 + y2 + z2)5/2
=

2x2 − y2 − z2

(x2 + y2 + z2)5/2
.

Due to the symmetry we get by interchanging the letters

∂2f

∂y2
=

−x2 + 2y2 − z2

(x2 + y2 + z2)5/2
,

∂2f

∂z2
=

−x2 − y2 + 2z2

(x2 + y2 + z2)5/2
,

thus

∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
=

2x2−y2−z2

(x2+y2+z2)5/2
+

−x2+2y2−z2

(x2+x2+z2)5/2
+

−x2−y2+2z2

(x2++y2+z2)5/2
= 0.

The equation is satisfied.

6) When f(r, t) = tα exp

(

−r2

4t

)

, we get

∂f

∂t
= αtα−1 exp

(

−r2

4t

)

+ tα exp

(

−r2

4t

)

· r2

4t2
=

{

αtα−1 +
1

4
r2tα−2

}

exp

(

−r2

4t

)

,
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and accordingly

(11.3) r2
∂f

∂t
=

{

αr2tα−1 +
1

4
r4tα−2

}

exp

(

−r2

4t

)

.

Furthermore,

∂f

∂r
= tα exp

(

−r2

4t

)

·
(

− r

2t

)

= −1

2
tα−1r exp

(

−r2

4t

)

,

so

r2
∂f

∂r
= −1

2
tα−1r3 exp

(

−r2

4t

)

and

∂

∂r

(

r2
∂f

∂r

)

= −3

2
tα−1r2 exp

(

−r2

4t

)

+
1

4
r2tα−2 exp

(

−r2

4t

)

=

{

−3

2
tα−1r2 +

1

4
r4tα−2

}

exp

(

−r2

4t

)

.(11.4)

By comparison we see that (11.3) and (11.4) only equals each other when α = −3

2
, corre-

sponding to the fact that only

f(r, t) = t−3/2 exp

(

−r2

4t

)

, t > 0,

of the given set of functions are solutions of

r2
∂f

∂t
=

∂

∂r

(

r2
∂f

∂r

)

.

It is not obvious how to apply MAPLE in these cases. One must apparently apply the command
“evala”, and yet the expression is not always fully reduced. We only show the first three cases.

evala

(

d

dax

d

dx
ln
(

√

x2 + y2
)

+
d

dy

d

dy
ln
(

√

x2 + y2
)

)

0

evala

(

d

dx

d

dx
(eα·x · cos(α · y)) + d

dy

d

dy
(eα·x · cos(α · y))

)

0

evala

(

d

dx

d

dx

(

e−t · (cos(x)+sin(y))
)

+
d

dy

d

dy

(

e−t · (cos(x)+sin(y))
)

− d

dt

(

e−t · (cos(x)+sin(y))
)

)

−e−t cos(x)− e−t sin(y) + e−t(cos(x) + sin(y))

which of course is 0 after an inspection. But we did not expect that we should repeat the reduction.
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Example 11.25 A C2-function f in two variables satisfies the partial differential equation

∂2f

∂x2
− ∂2f

∂y2
= 0.

Introduce the new variables u = x+ y and v = x− y, and prove that the function

f(u, v) = f

(

u+ v

2
,
u− v

2

)

fulfils the equation

∂2g

∂u∂v
= 0.

Furthermore, prove that it follows from

∂2f

∂x2
+

∂2f

∂y2
= 0

that

∂2g

∂u2
+

∂2g

∂v2
= 0.

A Transform of the variables in partial differential equations.

D Follow the given guidelines.

I When

f(u, v) = f

(

u+ v

2
,
u− v

2

)

, x =
u+ v

2
, y =

u− v

2
,

then

(11.5)
∂g

∂v
=

∂f

∂x
· ∂x
∂v

+
∂f

∂y
· ∂y
∂v

=
1

2

∂f

∂x
− 1

2

∂f

∂y
=

1

2

{

∂f

∂x
− ∂f

∂y

}

,

hence

∂2g

∂u∂v
=

1

2

∂2f

∂x2
· ∂x
∂u

− 1

2

∂2f

∂y2
· ∂y
∂u

=
1

4

{

∂2

∂x2
− ∂2f

∂y2

}

= 0

using the assumption.

Assume that

∂2f

∂x2
+

∂2f

∂y2
= 0.

We perform the following calculation

∂g

∂u
=

∂f

∂x
· ∂x
∂u

+
∂f

∂y
· ∂y
∂u

=
1

2

{

∂f

∂x
+

∂f

∂y

}

,
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thus

∂2g

∂u2
=

1

2

{

∂2f

∂x2
· ∂x
∂u

+
∂2f

∂y∂x
· ∂y
∂u

+
∂2f

∂x∂y
· ∂x
∂u

+
∂2f

∂y2
· ∂y
∂u

}

=
1

4

{

∂2f

∂x2
+ 2

∂2f

∂x∂y
+

∂2f

∂y2

}

=
1

2

∂2f

∂x∂y
.

Finally, we get from (11.25)

∂2g

∂v2
=

1

2

{

∂2f

∂x2
· ∂x
∂v

+
∂2f

∂y∂x
· ∂y
∂v

+
∂2f

∂x∂y
· ∂x
∂v

+
∂2f

∂y2
· ∂y
∂v

}

=
1

4

{

∂2f

∂x2
− 2

∂2f

∂x∂y
+

∂2f

∂y2

}

= −1

2

∂2f

∂x∂y
,

so by adding,

∂2g

∂u2
+

∂2g

∂v2
= 0.

This is a well-known trick in the theory of partial differential equations.
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11.5 Taylor’s formula for functions of several variables

Example 11.26 Given the function

f(x, y) = exp(x+ xy − 2y), (x, y) ∈ R2.

Find the approximating polynomial of at most second degree P (x, y) and Q(x, y) from the points of

expansion (0, 0) and (1, 1) respectively. Calculate the values P

(

1

2
,
1

2

)

and Q

(

1

2
,
1

2

)

; compare these

with the value f

(

1

2
,
1

2

)

found on e.g. a pocket calculator.

A Approximating polynomials.

D Differentiate and apply a formula.

I For f(x, y) = exp(x+ xy − 2y) we get

∂f

∂x
= (1 + y) exp(x+ xu− 2y),

∂f

∂y
= (x− 2) exp(x+ xy − 2y),

and

∂2f

∂x2
= (1 + y)2 exp(x+ xy − 2y),

∂2f

∂x∂y
=

∂2f

∂y∂x
= (x+ xy − 2y − 1) exp(x+ xy − 2y),

∂2f

∂y2
= (x− 2)2 exp(x+ xy − 2y).

1) When the point of expansion is (0, 0) we get the coefficients

f(0, 0) = 1, f ′
x(0, 0) = 1, f ′

y(0, 0) = −2,

f ′′
xx(0, 0) = 1, f ′′

xy(0, 0) = f ′′
yx(0, 0) = −1, f ′′

yy(0, 0) = 4,

and accordingly,

P (x, y) = f(0, 0) + f ′
x(0, 0) · x+ f ′

y(0, 0) · y

+
1

2

{

f ′′
xx(0, 0) · x2 + 2f ′′

xy(0, 0) · xy + f ′′
yy(0, 0) · y2

}

= 1 + x− 2y +
1

2
x2 − xy + 2y2.

Alternatively,

exp(t) = 1 + t+
1

2
t2 + · · · ,
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so if we write t = x − 2y + xy and include every term of higher degree than 2 in the dots, we
get

exp(x+ xy − 2y) = 1 + {x− 2y + xy}+ 1

2
{x− 2y + xy}2 + · · ·

= 1 + x− 2y + xy +
1

2
(2− 2y)2 + · · ·

= 1 + x− 2y + xy +
1

2
x2 − 2xy + 2y2 + · · ·

= 1 + x− 2y +
1

2
x2 − xy + 2y2 + · · · .

As mentioned above the dots indicate the terms of higher degree than 2. We get the wanted
approximating polynomial by deleting the dots, i.e.

P (x, y) = 1 + x− 2y +
1

2
x2 − xy + 2y2.

2) When the point of expansion is (1, 1) we get the coefficients

f(1, 1) = 1, f ′
x(1, 1) = 2, f ′

y(1, 1) = −1,

f ′′
xx(1, 1) = 4, f ′′

xy(1, 1) = f ′′
yx(1, 1) = −1, f ′′

yy(1, 1) = 1,

so

Q(x, y) = f(1, 1) + f ′
x(1, 1)(x− 1) + f ′

y(1, 1)(y − 1)

+
1

2
f ′′
xx(1, 1)(x− 1)2 + f ′′

xy(1, 1)(x− 1)(y − 1) +
1

2
f ′′
yy(1, 1)(y − 1)2

= 1 + 2(x− 1)− (y − 1) + 2(x− 1)2 − (x− 1)(y − 1) +
1

2
(y − 1)2.

Remark. The variables in Q(x, y) ought to be (x − 1, y − 1) and not (x, y). The reason is
that the approximating polynomial Q(x, y) supplies us with the best approximation in the
neightbourhood of the point (1, 1), which means that for numerical reasons should not expand
from the fairly distant point (0, 0). ♦

The polynomial can also in this case be found alternatively. Since the point of expansion is (1, 1),
we introduce the new variables (h, k) = (x− 1, y− 1), which are small in the neighbourhood of
(1, 1). Hence, (x, y) = (h+ 1, k + 1). Then

exp(x+ xy − 2y) = exp(h+ 1+ (h+ 1)(k + 1)− 2(k + 1))

= exp(1 + h+ 1 + h+ k + hk − 2− 2k) = exp(2h− k + hk)

= 1 + {2h− k + hk}+ 1

2!
{2h− k + hk}2 + · · ·

= 1 + 2h− k + hk +
1

2
(2h− k)2 + · · ·

= 1 + 2h− k + hk + 2h2 − 2hk +
1

2
k2 + · · · ,

where the dots as usual indicate terms of higher degree. Thus

Q(x, y) = 1 + 2h− k + 2h2 − hk +
1

2
k2

= 1 + 2(x− 1)− (y − 1) + 2(x− 1)2 − (x− 1)(y − 1) +
1

2
(y − 1)2.
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3) We evaluate

P

(

1

2
,
1

2

)

= 1 +
1

2
− 2 · 1

2
+

1

2

(

1

2

)2

− 1

2
· 1
2
+ 2 ·

(

1

2

)2

= 1 +
1

2
− 1 +

1

8
− 1

4
+

1

2
=

7

8
= 0.875,

and

Q

(

1

2
,
1

2

)

= 1 + 2 ·
(

−1

2

)

−
(

−1

2

)

+ 2

(

−1

2

)2

−
(

−1

2

)(

−1

2

)

+
1

2

(

−1

2

)2

= 1− 1 +
1

2
+

1

2
− 1

4
+

1

8
=

7

8
= 0.875.

Finally, we get by using a pocket calculator

f

(

1

2
,
1

2

)

= exp

(

1

2
+

1

4
− 1

)

= exp

(

−1

4

)

≈ 0.779.

The approximations have a relatively large error (approx. 12 %). This is caused by the fact

that the point

(

1

2
,
1

2

)

is fairly distant from both points of expansions.

Example 11.27 Let f ∈ C2(A), where A is an open subset of R2. Prove that for (x, y) ∈ A and |h|
sufficiently small,

4h2f ′′
xy(x, y) = {f(x+h, y+h)+f(x−h, y−h)−f(x+h, y−h)−f(x−h, y+h)}+ε(h),

where
ε(h)

h2
→ 0 for h → 0. When we neglect ε(h) we get an approximative expression of f ′′

xy(x, y),

which can be applied in numerical calculations.
Set up analogous formulæ for f ′′

xx(x, y) and f ′′
yy(x, y).

A Approximating polynomials.

D Calculate the approximating polynomial for f(x + h, y + k). Replace (h, k) by (±h,±h) (all four
combinations) and compare.

I We know already that

f(x+ h, y + k) = f + f ′
x · h+ f ′

y · k +
1

2

{

f ′′
xxh

2 + 2f ′′
xyhk + f ′′

yyk
2
}

+ ε(h, k),

where ε(h, k)/(h2 + k2) → 0 for (h, k) → 0, and where we have used the shorthand f , f ′
x, etc.

instead of the total expression f(x, y), f ′
x(x, y), etc. in all details.

By successively replacing (h, k) by (h, h), (−h,−h), (h,−h) and (−h, h) we get

f(x+ h, y + h) = f + f ′
x · h+ f ′

y · h+
1

2
f ′′
xx · h2 + f ′′

xy · h2 +
1

2
f ′′
yy · h2 + ε1(h),

f(x− h, y − h) = f − f ′
x · h− f ′

y · h+
1

2
f ′′
xx · h2 + f ′′

xy · h2 +
1

2
f ′′
yy · h2 + ε2(h),
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f(x+ h, y − h) = f + f ′
x · h− f ′

y · h+
1

2
f ′′
xx · h2 − f ′′

xy · h2 +
1

2
f ′′
yy · h2 + ε3(h),

f(x− h, y + h) = f − f ′
x · h+ f ′

y · h+
1

2
f ′′
xx · h2 − f ′′

xy · h2 +
1

2
f ′′
yy · h2 + ε4(h),

where
εi(h)

h2
→ 0 for h → 0.

It follows that

f(x+ h, y + h) + f(x− h, y − h)− f(x+ h, y − h)− f(x− h, y + h)

= 0 · f + 0 · f ′
x · h+ 0 · f ′

y · h+ 0 · f ′′
xx · h2 + 4f ′′

xy · h2 + 0 · f ′′
yy · h2 + ε(h),

hence by a rearrangement

4f ′′
xy(x, y)h

2 = {f(x+h, y+h)+f(x−h, y−y)−f(x+h, y−h)−f(x−h, y+h)}+ε(h),

where
ε(h)

h2
→ 0 for h → 0, and the claim is proved.

Remark. This formula is useful in numerical calculations of f ′′
xy(x, y), when we know the values

of f(x+mh, y + nh), m, n ∈ Z. ♦
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If we instead put k = 0, we get

f(x+ h, y) = f(x, y) + f ′
x(x, y)h+

1

2
f ′′
xx(x, y)h

2 + ε1(h),

f(x− h, y) = f(x, y)− f ′
x(x, y)h+

1

2
f ′′
xx(x, y)h

2 + ε2(h),

hence by adding,

f(x+ h, y) + f(x− h, y) = 2f(x, y) + f ′′
xx(x, y) · h2 + ε(h),

and by a rearrangement,

h2f ′′
xx(x, y) = {f(x+ h, y)− 2f(x, y) + f(x− h, y)}+ ε(h).

Analogously,

h2f ′′
yy(x, y) = {f(x, y + h)− 2f(x, y) + f(x, y − h)} + ε(h),

where
ε(h)

h2
→ 0 for h → 0.
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Example 11.28 Find the approximating polynomial of at most second degree of the given functions
in the given points of expansion:

1) The function ln{(x+ 1)2 + (y − 1)2}, defined in R2 \ {(−1, 1)}, from the point (0, 0).

2) The function
√

x2 + y2, defined in R2 \ {(0, 0)} from the point (3, 4).

3) The function Arctan
y

x
, defined for x > 0 from the point (1,

√
3).

4) The function 5
√

x2 + 2y3, defined for x2 + 2y3 > 0 from (4, 2).

5) The function x3 + xy − 12x− 6y, defined in R2 from (1, 3).

6) The function
√

x2 + y2 + z2, defined in R3 \ {(0, 0, 0)} from the point (3, 6, 6).

7) The function sin(x− y) + z(x+ y)− 2x+ 1, defined in R3 from (0, 0, 1).

8) The function (coshx) · sin(x− y − 2z), defined in R3 from
(

0,
π

2
, 0
)

.

A Approximating polynomials of at most second degree.

D Use preferably the standard method, i.e. differentiate and apply a formula. Note the standard
scheme in each case.

In some cases it is possible instead to use standard Taylor series.

I 1) The function f(x, y) = ln{(x+ 1)2 + (y − 1)2} is of class C∞ in the given domain, and

f(x, y) = ln{(x+ 1)2 + (y − 1)2}, f(0) = ln 2,

∂f

∂x
=

2(x+ 1)

(x+ 1)2 + (y − 1)2
,

∂f

∂x
(0) = 1,

∂f

∂y
=

2(y − 1)

(x+ 1)2 + (y − 1)2
,

∂f

∂y
(0) = −1,

∂2f

∂x2
=

1

(x+ 1)2 + (y − 1)2
− 4(x+ 1)2

{(x+ 1)2 + (y − 1)2}2 ,
∂2f

∂x2
(0) = 0,

∂2f

∂x∂y
=

∂2f

∂y∂x
= − 4(x+ 1)(y − 1)

{(x+ 1)2 + (y − 1)2}2 ,
∂2f

∂x∂y
(0) = 1,

∂2f

∂y2
=

2

(x+ 1)2 + (y − 1)2
− 4(y − 1)2

{(x+ 1)2 + (y − 1)2}2 ,
∂2f

∂y2
(0) = 0.

The coefficients of the approximating polynomial are the numbers in the right hand column.
We get by insertion,

P2(x, y) = f(0) +

{

∂f

∂x
(0) · (x− 0) +

∂f

∂y
(0) · (y − 0)

}

+
1

2!

{

∂2f

∂x2
(0)(x−0)2+2

∂2f

∂x∂y
(0)(x−0)(y−0)+

∂2f

∂y2
(0)(y−0)2

}

= ln 2 + x− y +
1

2
· 2xy = ln 2 + x− y + xy.
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2) The function is of course also defined at (0, 0), but it is only of class C∞ in R \ {(0, 0)}. Using
the same procedure as before we get for the point (3, 4),

f(x, y) =
√

x2 + y2, f(3, 4) = 5,

∂f

∂x
=

x
√

x2 + y2
,

∂f

∂x
(3, 4) =

3

5
,

∂f

∂y
=

y
√

x2 + y2
,

∂f

∂y
(3, 4) =

4

5
,

∂2f

∂x2
=

y2

(
√

x2 + y2)3
,

∂2f

∂x2
(3, 4) =

16

125
,

∂2f

∂x∂y
=

∂2f

∂y∂x
= − xy

(
√

x2 + y2)3
,

∂2f

∂x∂y
(3, 4) = − 12

125
,

∂2f

∂y2
=

x2

(
√

x2 + y2)3
,

∂2f

∂y2
(3, 4) =

9

125
.

By choosing (x1, y1) = (x− x0, y − y0) = (x− 3, y − 4) as our new variables we get

P2(x, y) = 5 +
3

5
(x − 3) +

4

5
(y − 4)

+

{

16

125
(x−3)2− 12

125
· 2(x−3)(y−4)+

9

125
(y−4)2

}

= 5+
3

5
(x−3)+

4

5
(y−4)+

8

125
(x−3)2− 12

125
(x−3)(y−4) +

9

250
(y−4)2,

which can be reduced to

P2(x, y) = 5 +
3

5
(x−3) +

4

5
(y−4) +

1

250
{4(x−3)− 3(y−4)}2.

3) The function is of class C∞ in the given domain (and of course also defined for x < 0; but this
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case is not at all relevant here). We have as before

f(x, y) = Arctan
y

x
, f(1,

√
3) =

π

3
,

∂f

∂x
=

1

1 +
(y

x

)2 ·
(

− y

x2

)

= − y

x2 + y2
,

∂f

∂x
(1,

√
3) = −

√
3

4
,

∂f

∂y
=

x

x2 + y2
,

∂f

∂y
(1,

√
3) =

1

4
,

∂2f

∂x2
=

2xy

(x2 + y2)2
,

∂2f

∂x2
(1,

√
3) =

√
3

8
,

∂2f

∂x∂y
=

∂2f

∂y∂x
=

y2 − x2

(x2 + y2)2
,

∂2f

∂x∂y
(1,

√
3) =

1

8
,

∂2f

∂y2
= − 2xy

(x2 + y2)2
,

∂2f

∂y2
(1,

√
3) = −

√
3

8
.

The approximating polynomial from (1,
√
3) is

P2(x, y) =
π

3
−

√
3

4
(x − 1) +

1

4
(y −

√
3)

+

√
3

16
(x− 1)2 +

1

8
(x − 1)(y −

√
3)−

√
3

16
(y − 1)2,

which can be reduced to

P2(x, y) =
π

3
−

√
3

4
(x − 1) +

1

4
(y −

√
3)

+

√
3

16
{(x−1)+

√
3(y−

√
3)}

{

(x−1)− 1√
3
(y−

√
3)

}

.

4) We see that when x2 + 2y3 > 0, then the function is of class C∞. We calculate as before,

f(x, y) = (x2 + 2y3)1/5, f(4, 2) = 2,

∂f

∂x
=

2

5
x(x2 + 2y3)−4/5,

∂f

∂x
(4, 2) =

1

10
,

∂f

∂y
=

6

5
y2(x2 + 2y3)−4/5,

∂f

∂y
(4, 2) =

3

10
,

∂2f

∂x2
=

2

5
(x2 + 2y3)−4/5 − 16

25
x2(x2 + 2y3)−9/5,

∂2f

∂x2
(4, 2) =

1

200
,

∂2f

∂x∂y
=

∂2f

∂y∂x
= −48

25
xy2(x2 + 2y3)−9/5,

∂2f

∂x∂y
(4, 2) = − 3

50
,

∂2f

∂y2
=

12

5
y(x2 + 2y3)−4/5 − 144

25
y4(x2 + 2y3)−9/5,

∂2f

∂y2
(4, 2) =

3

25
.
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The approximating polynomial from (4, 2) is

P2(x, y) = 2 +
1

10
(x− 4) +

3

10
(y − 2) +

1

400
(x− 4)2 − 3

50
(x− 4)(y − 2) +

3

50
(y − 2)2.

5) When one is asked to find the approximating polynomial for

f(x, y) = x3 + xy2 − 12x− 6y

of at most second degree from (1, 3), it is tempting just to remove the terms x3 + xy2, which
are of third degree. This is, however, not the right procedure, because the point of expansion
is not (0, 0), but translated to (1, 3).
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In order to explain what is going on we shall first apply the rather elaborate standard procedure,
for later to give an alternative. We get by the standard procedure,

f(x, y) = x3 + xy2 − 12x− 6y, f(1, 3) = −20,

∂f

∂x
= 3x2 + y2 − 12,

∂f

∂x
(1, 3) = 0,

∂f

∂y
= 2xy − 6,

∂f

∂y
(1, 3) = 0,

∂2f

∂x2
= 6x,

∂2f

∂x2
(1, 3) = 6,

∂2f

∂x∂y
= 2y,

∂2f

∂x∂y
(1, 3) = 6,

∂2f

∂y2
= 2x,

∂2f

∂y2
(1, 3) = 2.

Then the approximating polynomial is

P2(x, y) = −20 + 3(x− 1)2 + 6(x− 1)(y − 3) + (y − 3)2,

where we of course use (x − 1, y − 3) as the new (and more correct) variables.

Alternatively we start by introducing (x1, y1) = (x − 1, y − 3) as our new variables, i.e.
(x, y) = (x1 + 1, y1 + 3). Then by insertion,

f(x, y) = x3 + xy2 − 12x− 6y

= (x1 + 1)3 + (x1 + 1)(y1 + 3)2 − 12(x1 + 1)− 6(y1 + 3)

= x3
1 + 3x2

1 + 3x1 + 1 + (x1 + 1)(y21 + 6y21 + 9)− 12x1 − 12− 6y1 − 18

= x3
1 + 3x2

1 − 9x1 − 6y1 − 29 + x1y
2
1 + 6x1y1 + 9x1 + y21 + 6y1 + 9

= −20 + 3x2
1 + 6x1y1 + y21 +

{

x3
1 + x1y

2
1

}

.

The approximative polynomial from (1, 3) is then obtained by deleting all terms of degree > 2
in (x1, y1), thus

P2(x, y) = −20 + 3x2
1 + 6x1y1 + y21

= −20 + 3(x− 1)2 + 6(x− 1)(y − 3) + (y − 3)2.

6) The function is of class C∞ for (x, y, z) �= (0, 0, 0). We use the same method as before, only
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supplied with an extra variable. (Notice the systematics).

f(x, y, z) =
√

x2 + y2 + z2, f(3, 6, 6) = 9,

∂f

∂x
=

x
√

x2 + y2 + z2
,

∂f

∂x
(3, 6, 6) =

1

3
,

∂f

∂y
=

y
√

x2 + y2 + z2
,

∂f

∂y
(3, 6, 6) =

2

3
,

∂f

∂z
=

x
√

x2 + y2 + z2
,

∂f

∂z
(3, 6, 6) =

2

3
,

∂2f

∂x2
=

y2 + z2

(
√

x2 + y2 + z2)3
,

∂2f

∂x2
(3, 6, 6) =

8

81
,

∂2f

∂y2
=

x2 + z2

(
√

x2 + y2 + z2)3
,

∂2f

∂y2
(3, 6, 6) =

5

81
,

∂2f

∂z2
=

x2 + y2

(
√

x2 + y2 + z2)3
,

∂2f

∂z2
(3, 6, 6) =

5

81
,

∂2f

∂x∂y
=

∂2f

∂y∂x
= − xy

(
√

x2 + y2 + z2)3
,

∂2f

∂x∂y
(3, 6, 6) = − 2

81
,

∂2f

∂x∂z
=

∂2f

∂z∂x
= − xz

(
√

x2 + y2 + z2)3
,

∂2f

∂x∂z
(3, 6, 6) = − 2

81
,

∂2f

∂y∂z
=

∂2f

∂z∂y
= − yz

(
√

x2 + y2 + z2)3
,

∂2f

∂y∂z
(3, 6, 6) = − 4

81
.

From this we get the approximating polynomial from (3, 6, 6),

P2(x, y, z) = 9 +
1

1!

{

1

3
(x−6)+

2

3
(y−6)+

2

3
(z−6)

}

+
1

2!

{

8

81
(x−3)2+

5

81
(y−6)2+

5

81
(z−6)2

}

− 2

2!

{

2

81
(x−3)(y−6)+

4

81
(y−6)(z−6)+

2

81
(z−6)(x−3)

}

= 9 +
1

3
(x−3)+

2

3
(y−6)+

2

3
(z−6)+

4

81
(x−3)2+

5

162
(y−6)2

+
5

162
(z−6)2− 2

81
(x−3)(y−6)− 4

81
(y−6)(z−z)− 2

81
(z−6)(x−3).
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7) Using the same method as above we get

f(x, y, z) = sin(x− y) + z(x+ y)− 2x+ 1, f(0, 0, 1) = 1,

∂f

∂x
= cos(x− y) + z − 2,

∂f

∂x
= 0,

∂f

∂y
= − cos(x− y) + z,

∂f

∂y
(0, 0, 1) = 0,

∂f

∂z
= x+ y,

∂f

∂z
(0, 0, 1) = 0,

∂2f

∂x2
= − sin(x− y),

∂2f

∂x2
(0, 0, 1) = 0,

∂2f

∂y2
= − sin(x− y),

∂2f

∂y2
(0, 0, 1) = 0,

∂2f

∂z2
= 0,

∂2f

∂z2
(0, 0, 1) = 0,

∂2f

∂x∂y
=

∂2f

∂y∂x
= sin(x− y),

∂2f

∂x∂y
(0, 0, 1) = 0,

∂2f

∂x∂z
=

∂2f

∂z∂x
= 1,

∂2f

∂x∂z
(0, 0, 1) = 1,

∂2f

∂y∂z
=

∂2f

∂z∂y
= 1,

∂2f

∂y∂z
(0, 0, 1) = 1.

Accordingly, the approximating polynomial from (0, 0, 1) is

P2(x, y, z) = 1 +
1

1!
· 0 + 2

2!
{(x−0)(z−1) + (y−0)(z−1)} = 10(x+ y)(z − 1).

We note that thee natural parameters are here (x, y, z − 1).

Alternatively we exploit that (x − 0) − (y − 0) = x − y is the approximating polynomial
for sin(x − y) of at most second degree, and since the rest is a polynomial of second degree in
(x, y, z), we get

P2(x, y, z) = x− y + z(x+ y)− 2x+ 1 = z(x+ y)− (x+ y) + 1 = 1 + (x+ y)(z − 1).
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8) We first rewrite the expression and use series expansions,

f(x, y, z) = coshx · sin(x− y − 2z) = coshx · sin
(

x−
(

y − π

2

)

− 2z − π

2

)

= − coshx · cos
(

x−
(

y − π

2

)

− 2z
)

= −
{

1 +
1

2
x2 + · · ·

}{

1− 1

2

[

x−
(

y − π

2

)

− 2z
]2

+ · · ·
}

= −1− 1

2
x2 +

1

2

{

x−
(

y − π

2

)

− 2z
}2

+ · · ·

= −1+
1

2

(

y−π

2

)2

+4z2−x
(

y−π

2

)

+2
(

y−π

2

)

z−2xz+· · · ,

where the dots denote terms of higher degree. The approximating polynomial is obtained by
removing these dots:

P2(x, y, z) = −1− 1

2
x2 +

1

2

{

x−
(

y − π

2

)

− 2z
}2

= −1− 1

2

{

2x−
(

y − π

2

)

− 2z
}{(

y − π

2

)

+ 2z
}

= −1 +
1

2

(

y − π

2

)2

+ 4z2 − x
(

y − π

2

)

+ 2
(

y − π

2

)

z − 2xz.
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Alternatively we get by the standard method,

f(x, y, z) = coshx · sin(x− y − 2z), f
(

0,
π

2
, 0
)

= −1,

∂f

∂x
= sinhx sin(x− y − 2z) + coshx cos(x− y − 2z),

∂f

∂x

(

0,
π

2
, 0
)

= 0,

∂f

∂y
= − coshx cos(x− y − 2z),

∂f

∂y

(

0,
π

2
, 0
)

= 0,

∂f

∂z
= −2 coshx cos(x− y − 2z),

∂f

∂z

(

0,
π

2
, 0,

)

= 0,

∂2f

∂x2
= 2 sinhx cos(x− y − 2z),

∂2f

∂x2

(

0,
π

2
, 0
)

= 0,

∂2f

∂y2
= coshx sin(x− y − 2z),

∂2f

∂y2

(

0,
π

2
, 0
)

= 1,

∂2f

∂z2
= −4 coshx sin(x− y − 2z),

∂2f

∂z2

(

0,
π

2
, 0
)

= 4,

∂2f

∂x∂y
= − sinhx cos(x− y − 2z) + coshx sin(x− y − 2z),

∂2f

∂x∂y

(

0,
π

2
, 0
)

= −1,

∂2f

∂y∂z
= −2 coshx sin(x− y − 2z),

∂2f

∂y∂z

(

0,
π

2
, 0
)

= 2,

∂2f

∂z∂x
= −2 sinhx cos(x− y − 2z) + 2 coshx sin(x− y − 2z),

∂2f

∂z∂x

(

0,
π

2
, 0
)

= −2.

Hence, the approximating polynomial from
(

0,
π

2
, 0
)

is

P2(x, y, z) = −1 +
1

1!
{0}+ 1

2!

{

(

y − π

2

)2

+ 4z2
}

+
2

2!

{

−x
(

y − π

2

)

+ 2
(

y − π

2

)

z − 2xz
}

= −1 +
1

2

(

y − π

2

)2

+ 4z2 − x
(

y − π

2

)

+ 2z
(

y − π

2

)

− 2xz.
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Example 11.29 Find approximating values of the following expressions by using the approximating
polynomials of at most second degree from Example 11.28. Compare with the values which we get
by using a pocket calculator instead.

1) The length L of the diagonal in a rectangle of edge lengths 2.9 and 4.2.

2) The length L of the space diagonal in a rectangular box of edge lengths 3.03 and 5.98 and 6.01.

3) 5
√
3.82 + 2 · 2.13.

A Approximating values.

D Identify the corresponding function f . Apply the approximations found in Example 11.28. Com-
pare the results with a calculation on a pocket calculator.

I 1) By using a pocket calculator we find that the length is

L =
√

2.92 + 4.22 ≈ 5.103 920.

The corresponding function is f(x, y) =
√

x2 + y2, expanded from (3, 4).

According to Example 11.28.2 the approximation is given by

P2(z, y) = 5+
3

5
(x−3)+

4

5
(y−4)+

8

125
(x−3)2− 12

125
(x−3)(y−4)+

9

250
(y−4)2(11.6)

= 5+
3

5
(x−3)+

4

5
(y−4)+

1

250
{4(x−3)−3(y−4)}2.(11.7)

Since x− 3 = − 1

10
and y − 4 =

1

5
=

2

10
, it follows from (11.6) that

P2(2, 9; 4, 2) = 5+
6

10

(

− 1

10

)

+
8

10
· 2

10
+

64

1000

(

− 1

10

)2

− 96

1000

(

− 1

10

)

2

10
+

36

1000

(

2

10

)2

= 5− 6

100
+

16

100
+

1

100 000
(64 + 192 + 144)

= 5 +
1

10
+

400

100 000
= 5.104.

If we instead use (11.7), we get by somewhat simpler calculations,

P2(2, 9; 4, 2) = 5 +
6

10

(

− 1

10

)

+
8

10
· 2

10
+

4

1000

{

− 4

10
− 3 · 2

10

}2

= 5 +
1

10
+

4

1000
= 5.104.

By comparison we see that the relative error is < 1.6 · 10−3%.

2) A calculation on a pocket calculator shows that the length is

L =
√

3.032 + 5.982 + 6.012 ≈ 9.003 410.

The corresponding function is f(x, y, z) =
√

x2 + y2 + z2, expanded from the point (3, 6, 6).
According to Example 11.28.6 the corresponding approximation is given by

P2(x, y, z) = 9+
1

3
(x−3)+

2

3
(y−6)+

2

3
(x−6)+

4

81
(x−3)2+

5

162
(y−6)2+

5

162
(z−6)2

− 2

81
(x− 3)(y − 6)− 4

81
(y − 6)(z − 6)− 2

81
(z − 6)(x− 3).
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When r (x, y, z) = (3.03; 5.98; 6.01), we have x − 3 = 3
100 and y − 6 = − 2

100 and z − 6 = 1
100 .

Then we get the approximate value by insertion,

P2(3.03; 5.98; 6.01) = 9 +
1

3
· 3

100
+

2

3

(

− 2

100

)

+
2

3
· 1

100

+
4

81

(

3

100

)2

+
5

162

(

− 2

100

)2

+
5

162

(

1

100

)2

− 2

81
· 3

100

(

− 2

100

)

− 4

81

(

− 2

100

)

· 1

100
− 2

81

(

1

100

)(

3

100

)

= 9 +
1

300
(3 − 4 + 2) +

1

162 · 10 000(2 · 4 · 9 + 5 · 405 + 24 + 16− 12)

= 9 +
1

300
+

1

1 620 000
(72025 + 28)

= 9 +
1

300
+

125

162 · 10 000
= 9 +

1

900

(

1 +
5

216

)

= 9 +
221

64800

≈ 9.003 410 (!).

The error is invisible here, in particular because the value found on a pocket calculator is also
an approximate value.

3) We get by means of a pocket calculator

5
√

3.82 + 2 · 2.213 ≈ 2., 011 883.

The corresponding function is f(x, y) = 5
√

x2 + 2y3, expanded from the point (4, 2).

We get from Example 11.28.4 the approximation

P2(x, y) = 2 +
1

10
(x− 4) +

3

10
(y − 2) +

1

400
(x− 4)2 − 3

50
(x− 4)(y − 2) +

3

50
(y − 2)2.

Since x− 4 = − 2
10 and y − 2 = 1

10 , it follows by insertion that

P2(3.8; 2.1) = 2− 2

100
+

3

100
+

1

400
· 4

100
− 3

50

(

− 2

100

)

+
3

50
· 1

100

= 2 +
1

100
+

1

10 000
(1 + 12 + 6) = 2 +

1

100
+

19

10 000
= 2.0119.

A comparison shows that this is a very accurate approximation.
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Example 11.30 A function f ∈ C∞(R2) satisfies the equations

f(x, 0) = ex, f ′
y(x, y) = 2y f(x, y).

Find the approximating polynomial of at most second degree for the function f with (0, 0) as the point
of expansion.

A Approximating polynomial from apparently very vague assumptions.

D Find the constants by using the definition of partial differentiability.

I Since f ∈ C∞, we are allowed to interchange the order of the differentiations, whenever it is
necessary. By using the standard method we get

f(x, 0) = ex, f(0, 0) = 1

f ′
x(x, 0) = ex, f ′

x(0, 0) = 1,

f ′
y(x, y) = 2y f(x, y), f ′

y(0, 0) = 0,

f ′′
xx(x, 0) = ex, f ′′

xx(0, 0) = 1,

f ′′
xy(x, y) = 2y f ′

x(x, y), f ′′
xy(0, 0) = 0,

f ′′
yy(x, y) = 2f(x, y) + 4y2f(x, y), f ′′

yy(0, 0) = 2.

The approximating polynomial is

P2(x, y) = 1 + 1 · x+ 0 · y +
1

2
· 1 · x2 + 0 · xy +

1

2
· 2y2 = 1 + x+

1

2
x2 + y2.
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C It is actually possible to determine f(x, y) uniquely from the given information. In fact, if we
divide the latter equation by f(x, y) �= 0, then

f ′
y(x, y)

f(x, y)
=

∂

∂y
ln |f(x, y)| = 2y.

When we integrate with respect to y we get with some arbitrary function ϕ(x) in x that ln |f(x, y)| =
y2 + ϕ(x). Hence there exists a function Φ(x), such that

f(x, y) = Φ(x) · exp(y2).

We put y = 0. Then it follows from the former of the given equations that

f(x, 0) = ex = Φ(x).

Hence

f(x, y) = exp(x + y2) = 1 + {x+ y2}+ 1

2
{x+ y2}2 + · · ·

= 1+ x+ y2 +
1

2
x2 + · · · .

It follows immediately that the approximating polynomial is

P2(x, y) = 1 + x+
1

2
x2 + y2,

and we have tested our result. ♦

Example 11.31 Indicate on a figure the domain of the function

f(x, y) = ln
{(

4y − y2 − x
)√

x
}

.

Then find the approximating polynomial of at most first degree for f at the point of expansion (2, 1).

A Domain and approximating polynomial.

D Check where f(x, y) is defined.

0

1

2

3

4

y

1 2 3 4

x

Figure 11.3: The domain of f(x, y).
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I The logarithm is only defined on the set of positive numbers, so (4y − y2 − x)
√
x must be defined

and positive. In particular, x > 0 and 4y − y2 − x > 0, so

0 < 4y − y2 − x = 4− (4− 4y + y2)− x = 4− (y − 2)2 − x,

and thus

0 < x < 4− (y − 2)2.

The domain is bounded of the Y axis and the parabola of the equation x = 4− (y − 2)2.

By the rearrangement

f(x, y) = ln
(

4y − y2 − x
)

+
1

2
lnx for (x, y) ∈ D,

we get

f(2, 1) = ln(4− 1− 2) +
1

2
ln 2

and

∂f

∂x
= − 1

4y − y2 − x
+

1

2
· 1
x
,

∂f

∂x
(2, 1) = −1 +

1

4
= −3

4
,

and

∂f

∂y
=

4− 2y

4y − y2 − x
,

∂f

∂y
(2, 1) = 2,

hence

P1(x, y) =
1

2
ln 2− 3

4
(x− 2) + 2(y − 1).
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Example 11.32 It is well-known that an equation like

f(x, y) = 0

under suitable circumstances can be solved with respect to one of its variables, and one has e.g. y =
Y (x), and then a differentiation of f(x, y) = 0 with respect to x gives a formula of the derivative:

Y ′(x) = −f ′
x(x, Y (x))

f ′
y(x, Y (x))

.

Prove by a similar procedure the formula

Y ′′(x) = −f ′′
yy(x, Y (x)){Y ′(x)}2+2f ′′

xy(x, Y (x))Y ′(x)+f ′′
xx(x, Y (x))

f ′
y(x, Y (x))

.

This formula holds under the assumptions that the denominator is different from zero, and that both
f and Y are C2-functions.

A Implicit given function.

D Differentiate f(x, Y (x)) = 0 twice with respect to x.

I Under the given assumptions we get by an implicit differentiation (i.e. in fact the chain rule) that

0 =
d

dx
f(x, Y (x))

= f ′
x(x, Y (x))

dx

dx
+ f ′

y(x, Y (x))
dY

dx
= f ′

y(x, Y (x)) · Y ′(x) + f ′
x(x, Y (x)),

hence by another differentiation

0 = f ′
y(x, Y (x))Y ′′(x) + f ′′

xy(x, Y (x))Y ′(x) + f ′′
yy(x, Y (x)) {Y ′(x)}2

+f ′′
xx(x, Y (x)) + f ′′

xy(x, Y (x))Y ′(x)

= f ′
y(x, Y (x))Y ′′(x)+f ′′

xx(x, Y (x))+2f ′′
xy(x, Y (x))Y ′(x)+f ′′

yy(x, Y (x)) {Y ′(x)}2.

When we divide by f ′
y(x, Y (x)) �= 0 and rearrange we obtain the searched formula.
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Example 11.33 Given the function

f(x, y) = y3 cosx+ y + x− 2, (x, y) ∈ R2.

1. Solve the equation f(0, y) = 0.

Then we get the information that the equation f(x, y) = 0 in a neighbourhood of the point (0, 1) defines
y uniquely as a function of x, i.e. y = Y (x).

2. Find Y (0), and then find Y ′(0) and Y ′′(0) by using the formulæ from Example 11.32. Find the
approximating polynomial of at most second degree for Y with the point of expansion x0 = 0.

A Implicit given function.

D Use the guidelines.

–2

–1

1

2

y

–1 1 2 3 4

x

Figure 11.4: The graph of the equation y3 cosx+ y + x− 2 = 0.

I 1) First solve the equation

0 = f(0, y) = y3 + y − 2.

It is obvious that y = 1 is a solution. Since

f(0, y) = y3 + y − 2 = y3 − y + 2(y − 1) = (y − 1)(y2 + 2),

it follows that y = 1 is the only real solution.

2) Then clearly Y (0) = 1. Furthermore,

f ′
x(x, y) = −y3 sinx+ 1, fx(0, 1) = 1,

f ′
y(x, y) = 3y2 cosx+ 1, f ′

y(0, 1) = 4,

f ′′
xx(x, y) = −y3 cosx, f ′′

xx(0, 1) = −1,

f ′′
xy(x, y) = −3y2 sinx, f ′′

xy(0, 1) = 0,

f ′′
yy(x, y) = 6y cosx, f ′′

yy(0, 1) = 6.
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Using the formulæ of Example 11.32 we get

Y ′(0) = −f ′
x(0, 1)

f ′
y(0, 1)

= −1

4

and

Y ′′(0) = −
f ′′
yy(0, 1) {Y ′(0)}2+2f ′′

xy(0, 1) · Y ′(0)+f ′′
xx(0, 1)

f ′
y(0, 1)

= −6 · (− 1
4 )

2 + 2 · 0 · (− 1
4 )− 1

4
= −

6
16 − 1

4
= −1

4

(

3

8
− 1

)

=
5

32
.

We get in particular the approximating polynomial of at most second degree,

P2(x) = Y (0) +
1

1!
Y ′(0) · (x− x0) +

1

2!
Y ′′(0) · (x− x0)

2 = 1− 1

4
x+

5

64
x2.
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It is seen on the figure that the approximation is very accurate in the neighbourhood of (0, 1).

0.8

0.9

1

1.1

y

–0.4 –0.2 0 0.2 0.4 0.6 0.8 1

x

Figure 11.5: The graphs of f(x, y) = 0 and the approximating polynomial from (0, 1).

Example 11.34 Write Taylor’s formula for a C2-function f , where we choose successively the vector
of increase (hx, hy) as

(h, 0), (0, h), (−h, 0) or (0,−h).

Explain why ▽2f(x, y) is a measure of how much f(x, y) deviates from the average of the values
of the function in the four neighbouring points. Prove in particular that an harmonic function f
approximately fulfils

f(x, y) =
1

4
{f(x+ h, y) + f(x, y + h) + f(x− h, y) + f(x, y − h)}.

Derive an analogous result in the case where one consider the four neighbouring points for which
(hx, hy) is equal to

(h, h), (h,−h), (−h, h) or (−h,−h).

A Taylor’s formula; approximation of the average.

D Start by writing down Taylor’s formula, and then make the analysis from this.

I Taylor’s formula is

f (x+ hx, y + hy) = f(x, y) + hxf
′
x(x, y) + hyf

′
y(x, y)

+
1

2

{

h2
xf

′′
xx(x, y) + 2hxhyf

′′
xy(x, y) + h2

yf
′′
yy(x, y)

}

+ε (hx, hy) ·
(

h2
x + h2

y

)

,

where ε (hx, hy) → 0 for (hx, hy) → (0, 0).
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We get in particular,

f(x+ h, y) = f(x, y) + h f ′
x(x, y) +

1

2
h2f ′′

xx(x, y) + ε(h)h2,

f(x− h, y) = f(x, y)− h f ′
x(x, y) +

1

2
h2f ′′

xx(x, y) + ε(h)h2,

f(x, y + h) = f(x, y) + h f ′
y(x, y) +

1

2
h2f ′′

yy(x, y) + ε(h)h2,

f(x, y − h) = f(x, y)− h f ′
y(x, y) +

1

2
h2f ′′

yy(x, y) + ε(h)h2.

The average is

Mf((x, y);h) =
1

4
{f(x+ h, y) + f(x− h, y) + f(x, y + h) + f(x, y − h)}

= f(x, y) +
1

4
h2

{

f ′′
xx(x, y) + f ′′

yy(x, y)
}

+ ε(h)h2

= f(x, y) +
h2

4
▽2 f(x, y) + ε(h)h2.

Then by a rearrangement

f(x, y) = Mf((x, y);h)− 1

4
h2 ▽2 f(x, y) + ε(h)h2,

so in this sense▽2f(x, y) is a measure of the deviation of the average from the value of the function.

If f is harmonic then ▽2f(x, y) = 0, so

f(x, y) = Mf((x, y);h) + ε(h)h2,

and we see that the average is a good approximation.

If we instead choose (hx, hy) = (±h,±h) with all four possible combinations of the sign, then by
letting f ′

x etc. be a shorthand of f ′
x(x, y), etc.,

f(x+h, y+h) = f(x, y)+h{f ′
x+f ′

y}+
1

2
h2{f ′′

xx+2f ′′
xy+f ′′

yy}+ε(h)h2,

f(x−h, y−h) = f(x, y)−h{f ′
x+f ′

y}+
1

2
h2{f ′′

xx+2f ′′
xy+f ′′

yy}+ε(h)h2,

f(x+h, y−h) = f(x, y)+h{f ′
x−f ′

y}+
1

2
h2{f ′′

xx−2f ′′
xy+f ′′

yy}+ε(h)h2,

f(x−h, y+h) = f(x, y)−h{f ′
x−f ′

y}+
1

2
h2{f ′′

xx−2f ′′
xy+f ′′

yy}+ε(h)h2.

Here the average is

M̃f((x, y);h) =
1

4
{f(x+h, y+h)+f(x−h, y−h)+f(x+h, y−h)+f(x−, y+h)}

= f(x, y) +
1

2
h2 ▽2 f(x, y) + ε(h) · h2,
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hence by a rearrangement

f(x, y) = M̃f((x, y);h)− 1

2
h2 ▽2 f(x, y) + ε(h)h2.

We get the same conclusion as above, since the only difference is the factor
1

2
instead of

1

4
.

If f is harmonic, we also get in this case that

f(x, y) = M̃f((x, y);h) + ε(h)h2,

and we see again that the average is a very good approximation.
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Example 11.35 Find the approximating polynomial of at most second degree of the function

f(x, y) = x sinh(x+ 2y), (x, y) ∈ R2

expanded from the point (x, y) = (2,−1).

A Approximating polynomial.

D Either use Taylor’s formula or known series expansions.

I First method. First calculate

f(x, y) = x sinh(x+ 2y), f(2,−1) = 0,

f ′
x(x, y) = sinh(x+ 2y) + x cosh(x+ 2y), f ′

x(2,−1) = 2,

f ′
y(x, y) = 2x cosh(x+ 2y), f ′

y(2,−1) = 4,

f ′′
xx(x, y) = 2 cosh(x+ 2y) + x sinh(x+ 2y), f ′′

xx(2,−1) = 2,

f ′′
xy(x, y) = 2 cosh(x+ 2y) + 2x sinh(x+ 2y), f ′′

xy(2,−1) = 2,

f ′′
yy(x, y) = 4x sinh(x+ 2y), f ′′

yy(2,−1) = 0.

By means of the second column we get the coefficients of the Taylor expansion, hence

P2(x, y) = 0+
1

1!
{2(x−2)+4(y+1)}+ 1

2!
{2(x−2)2+2 · 2(x−2)(y+1)+0}

= 2(x− 2) + 4(y + 1) + (x− 2)2 + 2(x− 2)(y + 1).

Second method. First change variables by putting x = 2 + ξ and y = −1 + η. Then by insertion
followed by known series expansions, in which terms of higher order are written as dots,

f(x, y) = x sinh(x+ 2y) = (2 + ξ) sinh(ξ + 2η)

= (2 + ξ){(ξ + 2η) + · · · }

= 2ξ + 4η + ξ2 + 2ξη + · · ·

= 2(x− 2) + 4(y + 1) + (x− 2)2 + 2(x− 2)(y + 1) + · · · ,

hence

P2(x, y) = 2(x− 2) + 4(y + 1) + (x− 2)2 + 2(x− 2)(y + 1).

Remark. Of numerical reasons one shall always in examples of approximating polynomials use
the variables x − x0, here (x − 2, y + 1), because the expansion is bound to the point x0, here
(2,−1). Many textbooks erroneously “reduce” further to the variables (x, y). ♦
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Example 11.36 Find the approximating polynomial of at most second degree for the function

g(x, y) =
√

4− 2x2 − y2, 2x2 + y2 < 4,

with the point of expansion (1, 1).

A Approximating polynomial.

D Either use Taylor’s formula, or rewrite g(x, y) as some known function for which we know the
Taylor series.

0

1

2

–1
–0.5

0.5
1t

–2
–1.5

–1
–0.5

0.5

1
1.5

s

Figure 11.6: Part of the graph of g(x, y).

I If we put z = g(x, y) =
√

4− 2x2 − y2 ≥ 0, it follows by a squaring and a rearrangement that the
equation of the surface can also be written

(

x√
2

)2

+
(y

2

)2

+
(z

2

)2

= 1, z ≥ 0,

i.e. the graph is the upper half of an ellipsoidal surface of centre (0, 0, 0) and half axes
√
2, 2 and

2.
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First method. Clearly, the function g(x, y) is of class C∞ in the domain, where the point (1, 1)
lies. Then calculate

g(x, y) =
√

4− 2x2 − y2, g(1, 1) = 1,

g′x(x, y) = − 2x
√

4− 2x2 − y2
, g′x(1, 1) = −2,

g′y(x, y) = − y
√

4− 2x2 − y2
, g′y(1, 1) = −1,

g′′xx(x, y) = − 2
√

4−2x2−y2
− 4x2

(
√

4−2x2−y2)3
, g′′xx(1, 1) = −6,

g′′xy(x, y) = − 2xy

(
√

4− 2x2 − y2)3
, g′′xy(1, 1) = −2,

g′′yy(x, y) = − 1
√

4−2x2−y2
− y2

(
√

4−2x2−y2)3
, g′′yy(1, 1) = −2.

Then the approximating polynomial is according to Taylor’s formula and the right hand column

P2(x, y) = 1−2(x−1)−(y−1)+
1

2

{

−6(x−1)2−2 · 2(x−1)(y−1)−2(y−1)2
}

= 1−2(x−1)−(y−1)−3(x−1)2−2(x−1)(y−1)−(y−1)2.

Second method. First introduce some new variables by x = 1 + ξ and y = 1 + η. Then by
insertion and introduction of a known series expansion for

√
1 + t, where the dots as usual

indicate terms of higher order,

g(x, y) =
√

4− 2(1+ξ)2 − (1+η)2 =
√

1−4ξ+ 2ξ2−2η−η2

= 1− 1

2

(

4ξ+2η+2ξ2+η2
)

− 1

8
(4ξ + 2η + · · · )2 + · · ·

= 1−2ξ−η−ξ2− 1

2
η2 − 1

8

(

16ξ2+16ξη+4η2
)

+ · · ·

= 1− 2ξ − η − 3ξ2 − 2ξη − η2 + · · · ,
and we conclude that the approximating polynomial is

P2(x, y) = 1− 2ξ − η − 3ξ2 − 2ξη − η2

= 1−2(x−1)−(y−1)−3(x−1)2−2(x−1)(y−1)−(y−1)2.
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Example 11.37 Find the approximating polynomial of at most second degree of the function

f(x, y) = lnx+ exp(xy − 2), (x, y) ∈ R+ × R,

expanded from the point (x, y) = (1, 2).

A Approximating polynomial.

D Either calculate the Taylor coefficients, or use some known series expansions.

I First method. The standard method. Clearly, f ∈ C∞(R+ × R) and (1, 2) ∈ R+ × R. Then by
differentiation,

f(x, y) = lnx+ exp(xy − 2), f(1, 2) = 1,

f ′
x(x, y) =

1

x
+ y exp(xy − 2), f ′

x(1, 2) = 3,

f ′
y(x, y) = x exp(xy − 2), f ′

y(1, 2) = 1,

f ′′
xx(x, y) = − 1

x2
+ y2 exp(xy − 2), f ′′

xx(1, 2) = 3,

f ′′
xy(x, y) = f ′′

yx(x, y) = (1 + xy) exp(xy − 2), f ′′
xy(1, 2) = 3,

f ′′
yy(x, y) = x2 exp(xy − 2), f ′′

yy(1, 2) = 1.

The approximating polynomial of at most second degree is

P2(x, y) = f(1, 2) + f ′
x(1, 2) · (x − 1) + f ′

y(1, 2) · (y − 2)

+
1

2

{

f ′′
xx(1, 2) (x−1)2+2f ′′

xy(1, 2) (x−1)(y−2)+f ′′
yy(1, 2) (y−2)2

}

= 1+3(x−1)+(y−2)+
3

2
(x−1)2+3(x−1)(y−2)+

1

2
(y−2)2.

Second method. Suitable series expansions of known standard functions. First rewrite f(x, y)
as a function of the translated variables (x− 1, y− 2), which are zero at the point of expansion
(1, 2). Then

f(x, y) = lnx+ exp(xy − 2)

= ln(1+(x−1))+exp{(x−1)(y−2)+2x+y−4}
= ln{1+(x−1)}+exp{(x−1)(y−2)+2(x−)+(y−2)}
= ln{1+(x−)}+exp{(x−1)(y−2)} · exp{2(x−1)} · exp(y−2).

By means of known series expansions for ln(1 + t) and exp(t), where we remove all terms of
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degree higher than 2 in x− 1 and y − 2, we get

f(x, y) = ln{1+(x−1)}+exp{(x−1)(y−2)} · exp{2(x−1)} · exp(y−2)

= (x−1)− 1

2
(x−1)2 + · · ·

+{1+(x−1)(y−2)+· · ·}{1+2(x−1)+2(x−1)2+· · · }{1+(y−2)+
1

2
(y−2)2+· · · }

= (x−1)− 1

2
(x−1)2+(x−1)(y−2)+1+(y−2)+

1

2
(y−2)2

+2(x−1)+2(x−1)(y−2)+2(x−1)2+· · ·

=
3

2
(x−1)2+3(x−1)(y−2)+

1

2
(y−2)2+3(x−1)+(y−2)+1+· · · ,

and we conclude that

P2(x, y) = 1+3(x−1)+(y−2)+
3

2
(x−1)2+3(x−1)(y−2)+

1

2
(y−2)2.
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Example 11.38 1) Sketch the domain D of

f(x, y) =
√

2 + x− y + ln
(

4− x2 − y2
)

.

2) Check whether D is open or closed or none of the kind.

3) Find the approximating polynomial of at most first degree for f with (1,−1) as point of expansion.

4) Find the domain E of the vector field

V(x, y) =
(

√

2 + x− y,
√
y + ln

(

4− x2 − y2
)

)

.

A Domains, open and closed sets, approximating polynomial.

D Standard task.

–2

–1

0

1

2

y

–2 –1 1 2

x

Figure 11.7: The domain D.

I 1) The function f(x, y) =
√
2 + x− y + ln

(

4− x2 − y2
)

is defined for

2 + x− y ≥ 0 and 4− x2 − y2 > 0,

hence for

y ≤ x+ 2 and x2 + y2 < 4 = 22.

2) The set D is neither open nor closed.

3) The approximating polynomial from (1,−1).

First variant. It follows from

f(x, y) =
√
2+x−y+ln

(

4−x2−y2
)

, f(1,−1) = 2+ ln 2,

f ′
x(x, y) =

1

2

1√
2+x−y

− 2x

4−x2−y2
, f ′

x(1,−1) = −3

4
,

f ′
y(x, y) = −1

2

1√
2+x−y

− 2y

4−x2−y2
, f ′

y(1,−1) =
3

4
,

that

P1(x, y) = 2 + ln 2− 3

4
(x− 1) +

3

4
(y + 1).
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Second variant. If we put x = x1 + 1 and y = y1 − 1, then we get by series expansions,

f(x, y) =
√

2 + x− y + ln(4− x2 − y2)

=
√

2+x1+1−y1+1+ln(4−{x1+1}2− {y1−1}2)

=
√

4+x1−y1+ln(2−2x1+2y1−x2
1−y21)

= 2

√

1+
x1

4
− y1

4
+ln 2+ln

(

1−x1+y1−
1

2
x2
1−

1

2
y21

)

= 2

{

1+
1

2

(x1

4
− y1

4

)

+· · ·
}

+ln2+

{

−x1+y1−
1

2
x2
1−

1

2
y21

}

+· · ·

= 2+ln2+
1

4
x1−

1

4
y1−x1+y1+ · · · ,

where the dots as usual indicate terms of higher order. We conclude that

P1(x, y) = 2 + ln 2− 3

4
x1 +

3

4
y1 = 2 + ln 2− 3

4
(x− 1) +

3

4
(y + 1).

0

0.5

1

1.5

2

y

–2 –1 1 2

x

Figure 11.8: The domain E of the vector field V.

4) The domain E of the vector field consists of the points in D, for which
√
y is also defined, so

we must also require that y ≥ 0.
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Example 11.39 1) Sketch the domain D of

f(x, y) = ex+y + ln
(

4− x2 − 4y2
)

.

2) Check if D is open or closed of none of the kind.

3) Find the approximating polynomial of at most second degree for f with (0, 0) as point of expansion.

A Domain and approximating polynomial for a function.

D Analyze where each subfunction is defined. Then the approximating polynomial is either found by
means of known series expansions or by calculating the Taylor coefficients.

–1

–0.5

0

0.5

1

y

–2 –1 1 2

x

Figure 11.9: The domain D is the open ellipsoidal disc.

I 1) The function ex+y is defined for every (x, y) ∈ R2.

The function ln
(

4− x2 − 4y2
)

is defined, if and only if 4− x2 − 4y2 > 0, i.e. if and only if

(x

2

)2

+
(y

1

)2

< 1.

The domain is the open ellipsoidal disc of centrum (0, 0) and half axes 2 and 1, cf. the figure.

2) As mentioned above in 1), the set D is open.

3) First variant. Known series expansions.
Let (x, y) ∈ K(0; 1) ⊂ D, and let dots denote terms of higher degree than 2. Then

f(x, y) = ex+y + 2 ln 2 + ln

(

1− 1

4
(x2 + 4y2)

)

= 1 +
1

1!
(x+y) +

1

2!
(x+y)2 + · · ·+ 2 ln 2− 1

4

(

x2+4y2
)

+ · · ·

= 1+2 ln2+x+y+
1

2
x2+xy+

1

2
y2− 1

4
x2−y2+· · ·

= 1 + 2 ln 2 + x+ y +
1

4
x2 + xy − 1

2
y2 + · · · .

The approximating polynomial of at most second degree from (0, 0) is

P2(x, y) = 1 + 2 ln 2 + x+ y +
1

4
x2 + xy − 1

2
y2.
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Second variant. Taylor expansion.
We get by successive differentiation

f(x, y) = ex+y + ln(4− x2 − 4y2), f(0, 0) = 1 + ln 4 = 1 + 2 ln 2,

f ′
x(x, y) = ex+y − 2x

4− x2 − yy2
, f ′

x(0, 0) = 1,

f ′
y(x, y) = ex+y − 8y

4− x2 − 4y2
, f ′

y(0, 0) = 1,

f ′′
xx(x, y) = ex+y− 2

4−x2−4y2
− 4x2

(4−x2−4y2)2
, f ′′

xx(0, 0) = 1− 2

4
=

1

2
,

f ′′
yy(x, y) = ex+y− 8

4−x2−4y2
− 64y2

(4−x2−4y2)2
, f ′′

yy(0, 0) = 1− 8

4
= −1,

f ′′
xy(x, y) = ex+y− 16xy

(4−x2−4y2)2
, f ′′

xy(0, 0) = 1.

Hence

P2(x, y) = 1 + 2 ln 2 + x+ y +
1

4
x2 − 1

2
y2 + xy.
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Remark. The expressions of the second derivative may occur in several variants:

a)

f ′′
xx(x, y) = ex+y− 8+2x2−8y2

(4−x2−4y2)2
, f ′′

xx(0, 0) = 1− 8

16
=

1

2
,

f ′′
yy(x, y) = ex+y− 32−8x2+32y2

(4−x2−4y2)2
, f ′′

yy(0, 0) = 1− 32

16
= −1,

together with the more elegant version, where dots denote terms which will become zero by
the insertion of (x, y) = (0, 0):

b)

f ′′
xx(x, y) = ex+y− 2

4−x2−4y2
+· · · , f ′′

xx(0, 0) = 1− 2

4
=

1

2
,

f ′′
yy(x, y) = ex+y− 8

4−x2−4y2
+· · · , f ′′

yy(0, 0) = 1− 8

4
= −1,

f ′′
xy(x, y) = ex+y + · · · , f ′′

xy(0, 0) = 1.

Example 11.40 Given the function

f(x, y) = exy + (2− x)ey − 2ey, (x, y) ∈ R2.

Find the approximating polynomial of at most second degree for f with (1, 1) as point of expansion.

A Approximating polynomial.

D The function is clearly of class C∞. Either calculate the Taylor coefficients, or use known series
expansions.

I First method. Calculation of the Taylor coefficients.

We get by mechanical computations,

f(x, y) = exy + (2 − x)ey − 2ey, f(1, 1) = 0,

f ′
x(x, y) = y exy − ey, f ′

x(1, 1) = 0,

f ′
y(x, y) = x exy + (2− x)ey − 2e, f ′

y(1, 1) = 0,

f ′′
xx(x, y) = y2exy, f ′′

xx(1, 1) = e,

f ′′
xy(x, y) = exy + xy exy − ey, f ′′

xy(1, 1) = e,

f ′′
yy(x, y) = x2exy + (2− x)ey, f ′′

yy(1, 1) = 2e.

Then the approximating polynomial of at most second degree for f from (1, 1) is

P2(x, y) = f(1, 1) +
1

1!

{

f ′
x(1, 1) · (x−1) + f ′

y(1, 1) · (y−1)
}

+
1

2!

{

f ′′
xx(1, 1) · (x−1)2 + f ′′

xy(1, 1) · (x−1)(y−1) + f ′′
yy(1, 1) · (y−1)2

}

=
e

2
(x−1)2 + e(x−1)(y−1) + e(y−1)2.
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Second method. Application of known series expansions.

When we translate

x1 = x−1, y1 = y−1, i.e. x = x1+1, y = y1+1,

to the point of expansion and use known series expansions up to the second degree (and where
terms of higher degrees are indicated by dots) we get

f(x, y) = exy + (2− x)ey − 2ey

= exp((x1+1)(y1+1)) + (1−x1) exp(y1+1)− 2e(y1+1)

= exp(1+x1+y1+x1y1) + e(1−x1) exp(y1)− 2e− 2ey1

= e {exp(x1+y1) · exp(x1y1) + (1−x1) exp(y1)− 2− 2y1} ,
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and hence

f(x, y) = e

({

1 + x1 + y1 +
1

2
(x1 + y1)

2 + · · ·
}

{1 + x1y1 + · · · }

+(1− x1)

{

1 + y1 +
1

2
y21 + · · ·

}

− 2− 2y1

)

= e

{

1 + x1 + y1 +
1

2
x2
1 + x1y1 +

1

2
y21 + x1y1 + · · ·

+1 + y1 +
1

2
y21 − x1 − x1y1 + · · · − 2− 2y1

}

= e

{

1

2
x2
1 + x1y1 + y21 + · · ·

}

.

The dots indicate terms of higher degree, so we conclude that the approximating polynomial
of at most second degree with (1, 1) as point of expansion is

P2(x, y) =
e

2
x2
1 + ex1y1 + ey21 =

e

2
(x− 1)2 + e(x− 1)(y − 1) + e(y − 1)2.

Example 11.41 Given the function

f(x, y) =
√

1− 2x− y + ln(1− 2y + x), (x, y) ∈ D.

1) Find the domain D.

2) Sketch D.

3) Check if D is

a) open,

b) closed,

c) bounded,

d) star shaped.

4) Find the approximating polynomial ofat most second degree for f with the point of expansion (0, 0).

A Domain; approximating polynomial.

D Analyze each part of the function separately and take the intersections of all these domains. Then
use either known series expansions, or calculate the Taylor coefficients.

I 1.–3. The function is defined when

1− 2x− y ≥ 0 and 1− 2y + x > 0,

i.e. when

y ≤ 1− 2x og y <
1

2
(x + 1),

or written in another way,

x ≤ 1

2
(1− y) and x > 2y − 1.
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–0.4

–0.2

0.2

0.4

0.6

–2 –1.5 –1 –0.5 0.5

Figure 11.10: The domain D is the angular space inclusive the fully drawn boundary curve and
exclusive the dotted boundary curve. The domain in unbounded downwards.

Since the lines intersect at

(

1

5
,
3

5

)

, the domain can be written

D =

{

(x, y)

∣

∣

∣

∣

y <
3

5
, 2y − 1 < x ≤ 1

2
(1− y)

}

.

Note that D is the intersection of an open and a closed half plane.

We see immediately that

1) D is not open, because a part of the boundary, though not the total boundary, lies in D,

2) D is not closed, because a part of the boundary, though not the total boundary, lies outside
D,

3) D is not bounded. The whole of the negative Y axis lies in D.

4) Since D is the intersection of two convex sets, it is itself convex and therefore also starshaped
with respect to any point in D.

4. We have here two variants.

First variant. The standard method. It follows from the computations

f(x, y) =
√
1−2x−y+ ln(1−2y+x), f(0, 0) = 1,

f ′
x(x, y) = − 1√

1−2x−y
+

1

1−2y+x
, f ′

x(0, 0) = 0,

f ′
y(x, y) = −1

2

1√
1−2x−y

− 2

1−2y+x
, f ′

y(0, 0) = −5

2
,

f ′′
xx(x, y) =

1

(1−2x−y)3/2
− 1

(1−2y+x)2
, f ′′

xx(0, 0) = −2,

f ′′
xy(x, y) = −1

2

1

(1−2x−y)3/2
− 4

(1−2y+x)2
, f ′′

yy(0, 0) =
17

4
,
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that the approximating polynomial of at most second degree from (0, 0) is

P2(x, y) = f(0, 0) + f ′
x(0, 0) · x+ f ′

y(0, 0) · y

+
1

2

{

f ′′
xx(0, 0) · x2 + 2f ′′

xy(0, 0) · xy + f ′′
yy(0, 0) · y2

}

= 1− 5

2
y − x2 +

3

2
xy − 17

8
y2.

Second variant. Known series expansions. It is well-known that

√
1 + t = 1 +

(

1
2
1

)

t+

(

1
2
2

)

t2 + · · · = 1+
1

2
t− 1

8
t2 + · · · ,

and

ln(1 + u) = u− 1

2
u2 + · · · .
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If we put

t = −(2x+ y) = −2x− y and u = x− 2y,

then both t and u are for the first degree in (x, y), and the approximating polynomial of at
most second degree is

P2(x, y) = 1 +
1

2
t− 1

8
t2 + u− 1

2
u2

= 1− 1

2
(2x+ y)− 1

8
(2x+ y)2 + x− 2y − 1

2
(x− 2y)2

= 1−x− 1

2
y+x−2y−1

8
(4x2+4xy+y2)− 1

2
(x2−4xy+4y2)

= 1− 5

2
y − x2 +

3

2
xy − 17

8
y2.

Example 11.42 1) Sketch the domain D of the function

f(x, y) = ln
(

4− x2 − y2
)

−
√
5− 4x+ y2.

2) Check if D is open or closed or none of the kind.

3) Compute the gradient ▽f .

4) Find the approximating polynomial of at most first degree for the function f , when the point (1,
√
2)

is used as point of expansion.

A Domain, gradient, approximating polynomial.

D Treat every subfunction separately. The approximating polynomial can then be found in several
ways.

–2

–1

0

1

2

y

–2 –1.5 –1 –0.5 0.5 1 1.5

x

Figure 11.11: The domain D.

I 1) The function ln
(

4− x2 − y2
)

is defined for 4 − x2 − y2 > 0, i.e. for x2 + y2 < 4 = 22, which
describes the open disc of centre (0, 0) and radius 2.
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The function
√
5− 4x is defined for 5− 4x ≥ 0, i.e. in the closed half space x ≤ 5

4
.

Now y2 is defined for every (x, y) ∈ R2, so the domain D is the intersection of the two sets
mentioned above,

D =

{

(x, y) ∈ R2

∣

∣

∣

∣

x2 + y2 < 22, x ≤ 5

4

}

.

2) The set D is neither open (a part of the boundary, x =
5

4
, lies in D) nor closed (another part,

the circular arc, does not lie in D).

3) The gradient is calculated straight away,

▽f(x, y) =

(

− 2x

4−x2−y2
+

2x√
5−4x

,− 2y

4−x2−y2
+ 2y

)

.

Note that

▽f(1,
√
2) =

(

−2

1
+

2

1
,−2

√
2

1
+ 2

√
2

)

= 0,

so (1,
√
2) is a stationary point of f .

4) First variant. The approximating polynomial of at most first degree with (1,
√
2) as point of

expansion is according to 3) given by,

P1(x, y) = f(1,
√
2) +▽f(1,

√
2) · (x− 1, y −

√
2) = f(1,

√
2) + 0

= ln(4− 1− 2)−
√
5− 4 + 2 = 1.

Second variant. If we put x = s + 1 and y = t +
√
2, it follows by insertion and by using

known series expansions that

f(x, y) = ln
(

4− x2 − y2
)

−
√
5− 4x+ y2

= ln
(

4− (s+ 1)2 − (t+
√
2)2

)

−
√

5− 4(s+ 1) + (t+
√
2)2

= ln
(

1− 2s− 2
√
2 t− s2 − t2

)

−
√
1− 4s+ 2 + 2

√
2 t+ t2

= −2s− 2
√
2 t+ · · · −

{

1− 1

2
· 4s+ · · ·

}

+ 2 + 2
√
2 t+ · · ·

= 1 + · · · ,
where the dots as usual denote terms of degree ≥ 2.

The approximating polynomial of at most first degree from (1,
√
2) is therefore the constant

P1(x, y) = 1.

Remark. There is nothing unusual in the fact that the approximating polynomial of at
most first degree is a constant, i.e. a degerenated polynomial of degree zero. ♦
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12 Formulæ

Some of the following formulæ can be assumed to be known from high school. It is highly recommended
that one learns most of these formulæ in this appendix by heart.

12.1 Squares etc.

The following simple formulæ occur very frequently in the most different situations.

(a+ b)2 = a2 + b2 + 2ab, a2 + b2 + 2ab = (a+ b)2,
(a− b)2 = a2 + b2 − 2ab, a2 + b2 − 2ab = (a− b)2,
(a+ b)(a− b) = a2 − b2, a2 − b2 = (a+ b)(a− b),
(a+ b)2 = (a− b)2 + 4ab, (a− b)2 = (a+ b)2 − 4ab.

12.2 Powers etc.

Logarithm:

ln |xy| = ln |x|+ ln |y|, x, y �= 0,

ln

∣

∣

∣

∣

x

y

∣

∣

∣

∣

= ln |x| − ln |y|, x, y �= 0,

ln |xr| = r ln |x|, x �= 0.

Power function, fixed exponent:

(xy)r = xr · yr, x, y > 0 (extensions for some r),

(

x

y

)r

=
xr

yr
, x, y > 0 (extensions for some r).

Exponential, fixed base:

ax · ay = ax+y, a > 0 (extensions for some x, y),
(ax)y = axy, a > 0 (extensions for some x, y),

a−x =
1

ax
, a > 0, (extensions for some x),

n
√
a = a1/n, a ≥ 0, n ∈ N.

Square root:

√
x2 = |x|, x ∈ R.

Remark 12.1 It happens quite frequently that students make errors when they try to apply these
rules. They must be mastered! In particular, as one of my friends once put it: “If you can master the
square root, you can master everything in mathematics!” Notice that this innocent looking square
root is one of the most difficult operations in Calculus. Do not forget the absolute value! ♦
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12.3 Differentiation

Here are given the well-known rules of differentiation together with some rearrangements which some-
times may be easier to use:

{f(x)± g(x)}′ = f ′(x)± g′(x),

{f(x)g(x)}′ = f ′(x)g(x) + f(x)g′(x) = f(x)g(x)

{

f ′(x)

f(x)
+

g′(x)

g(x)

}

,

where the latter rearrangement presupposes that f(x) �= 0 and g(x) �= 0.
If g(x) �= 0, we get the usual formula known from high school

{

f(x)

g(x)

}′
=

f ′(x)g(x) − f(x)g′(x)

g(x)2
.

It is often more convenient to compute this expression in the following way:

{

f(x)

g(x)

}

=
d

dx

{

f(x) · 1

g(x)

}

=
f ′(x)

g(x)
− f(x)g′(x)

g(x)2
=

f(x)

g(x)

{

f ′(x)

f(x)
− g′(x)

g(x)

}

,

where the former expression often is much easier to use in practice than the usual formula from high
school, and where the latter expression again presupposes that f(x) �= 0 and g(x) �= 0. Under these
assumptions we see that the formulæ above can be written

{f(x)g(x)}′
f(x)g(x)

=
f ′(x)

f(x)
+

g′(x)

g(x)
,

{f(x)/g(x)}′
f(x)/g(x)

=
f ′(x)

f(x)
− g′(x)

g(x)
.

Since

d

dx
ln |f(x)| = f ′(x)

f(x)
, f(x) �= 0,

we also name these the logarithmic derivatives.

Finally, we mention the rule of differentiation of a composite function

{f(ϕ(x))}′ = f ′(ϕ(x)) · ϕ′(x).

We first differentiate the function itself; then the insides. This rule is a 1-dimensional version of the
so-called Chain rule.

12.4 Special derivatives.

Power like:

d

dx
(xα) = α · xα−1, for x > 0, (extensions for some α).

d

dx
ln |x| = 1

x
, for x �= 0.
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Exponential like:

d

dx
expx = expx, for x ∈ R,

d

dx
(ax) = ln a · ax, for x ∈ R and a > 0.

Trigonometric:

d

dx
sinx = cosx, for x ∈ R,

d

dx
cosx = − sinx, for x ∈ R,

d

dx
tanx = 1+ tan2 x =

1

cos2 x
, for x �= π

2
+ pπ, p ∈ Z,

d

dx
cotx = −(1 + cot2 x) = − 1

sin2 x
, for x �= pπ, p ∈ Z.

Hyperbolic:

d

dx
sinhx = coshx, for x ∈ R,

d

dx
coshx = sinhx, for x ∈ R,

d

dx
tanhx = 1− tanh2 x =

1

cosh2 x
, for x ∈ R,

d

dx
cothx = 1− coth2 x = − 1

sinh2 x
, for x �= 0.

Inverse trigonometric:

d

dx
Arcsin x =

1√
1− x2

, for x ∈ ]− 1, 1 [,

d

dx
Arccos x = − 1√

1− x2
, for x ∈ ]− 1, 1 [,

d

dx
Arctan x =

1

1 + x2
, for x ∈ R,

d

dx
Arccot x =

1

1 + x2
, for x ∈ R.

Inverse hyperbolic:

d

dx
Arsinh x =

1√
x2 + 1

, for x ∈ R,

d

dx
Arcosh x =

1√
x2 − 1

, for x ∈ ] 1,+∞ [,

d

dx
Artanh x =

1

1− x2
, for |x| < 1,

d

dx
Arcoth x =

1

1− x2
, for |x| > 1.

Remark 12.2 The derivative of the trigonometric and the hyperbolic functions are to some extent
exponential like. The derivatives of the inverse trigonometric and inverse hyperbolic functions are
power like, because we include the logarithm in this class. ♦
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12.5 Integration

The most obvious rules are dealing with linearity

∫

{f(x) + λg(x)} dx =

∫

f(x) dx + λ

∫

g(x) dx, where λ ∈ R is a constant,

and with the fact that differentiation and integration are “inverses to each other”, i.e. modulo some
arbitrary constant c ∈ R, which often tacitly is missing,

∫

f ′(x) dx = f(x).

If we in the latter formula replace f(x) by the product f(x)g(x), we get by reading from the right to
the left and then differentiating the product,

f(x)g(x) =

∫

{f(x)g(x)}′ dx =

∫

f ′(x)g(x) dx +

∫

f(x)g′(x) dx.

Hence, by a rearrangement

The rule of partial integration:

∫

f ′(x)g(x) dx = f(x)g(x)−
∫

f(x)g′(x) dx.

The differentiation is moved from one factor of the integrand to the other one by changing the sign
and adding the term f(x)g(x).

Remark 12.3 This technique was earlier used a lot, but is almost forgotten these days. It must
be revived, because MAPLE and pocket calculators apparently do not know it. It is possible to
construct examples where these devices cannot give the exact solution, unless you first perform a
partial integration yourself. ♦

Remark 12.4 This method can also be used when we estimate integrals which cannot be directly
calculated, because the antiderivative is not contained in e.g. the catalogue of MAPLE. The idea is
by a succession of partial integrations to make the new integrand smaller. ♦

Integration by substitution:

If the integrand has the special structure f(ϕ(x)) ·ϕ′(x), then one can change the variable to y = ϕ(x):

∫

f(ϕ(x)) · ϕ′(x) dx = “

∫

f(ϕ(x)) dϕ(x)′′ =

∫

y=ϕ(x)

f(y) dy.

448

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume III 
Differentiable Functions in Several Variables

449 

Formulæ

Integration by a monotonous substitution:

If ϕ(y) is a monotonous function, which maps the y-interval one-to-one onto the x-interval, then

∫

f(x) dx =

∫

y=ϕ−1(x)

f(ϕ(y))ϕ′(y) dy.

Remark 12.5 This rule is usually used when we have some “ugly” term in the integrand f(x). The
idea is to put this ugly term equal to y = ϕ−1(x). When e.g. x occurs in f(x) in the form

√
x, we put

y = ϕ−1(x) =
√
x, hence x = ϕ(y) = y2 and ϕ′(y) = 2y. ♦

12.6 Special antiderivatives

Power like:
∫

1

x
dx = ln |x|, for x �= 0. (Do not forget the numerical value!)

∫

xα dx =
1

α+ 1
xα+1, for α �= −1,

∫

1

1 + x2
dx = Arctan x, for x ∈ R,

∫

1

1− x2
dx =

1

2
ln

∣

∣

∣

∣

1 + x

1− x

∣

∣

∣

∣

, for x �= ±1,

∫

1

1− x2
dx = Artanh x, for |x| < 1,

∫

1

1− x2
dx = Arcoth x, for |x| > 1,

∫

1√
1− x2

dx = Arcsin x, for |x| < 1,

∫

1√
1− x2

dx = − Arccos x, for |x| < 1,

∫

1√
x2 + 1

dx = Arsinh x, for x ∈ R,

∫

1√
x2 + 1

dx = ln(x+
√

x2 + 1), for x ∈ R,

∫

x√
x2 − 1

dx =
√

x2 − 1, for x ∈ R,

∫

1√
x2 − 1

dx = Arcosh x, for x > 1,

∫

1√
x2 − 1

dx = ln |x+
√

x2 − 1|, for x > 1 eller x < −1.

There is an error in the programs of the pocket calculators TI-92 and TI-89. The numerical signs are
missing. It is obvious that

√
x2 − 1 < |x| so if x < −1, then x+

√
x2 − 1 < 0. Since you cannot take

the logarithm of a negative number, these pocket calculators will give an error message.
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Exponential like:

∫

expx dx = expx, for x ∈ R,

∫

ax dx =
1

ln a
· ax, for x ∈ R, and a > 0, a �= 1.

Trigonometric:

∫

sinx dx = − cosx, for x ∈ R,

∫

cosx dx = sinx, for x ∈ R,

∫

tanx dx = − ln | cosx|, for x �= π

2
+ pπ, p ∈ Z,

∫

cotx dx = ln | sinx|, for x �= pπ, p ∈ Z,

∫

1

cosx
dx =

1

2
ln

(

1 + sinx

1− sinx

)

, for x �= π

2
+ pπ, p ∈ Z,

∫

1

sinx
dx =

1

2
ln

(

1− cosx

1 + cosx

)

, for x �= pπ, p ∈ Z,

∫

1

cos2 x
dx = tanx, for x �= π

2
+ pπ, p ∈ Z,

∫

1

sin2 x
dx = − cotx, for x �= pπ, p ∈ Z.

Hyperbolic:

∫

sinhx dx = coshx, for x ∈ R,

∫

coshx dx = sinhx, for x ∈ R,

∫

tanhx dx = ln coshx, for x ∈ R,

∫

cothx dx = ln | sinhx|, for x �= 0,

∫

1

coshx
dx = Arctan(sinhx), for x ∈ R,

∫

1

coshx
dx = 2 Arctan(ex), for x ∈ R,

∫

1

sinhx
dx =

1

2
ln

(

coshx− 1

coshx+ 1

)

, for x �= 0,
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∫

1

sinhx
dx = ln

∣

∣

∣

∣

ex − 1

ex + 1

∣

∣

∣

∣

, for x �= 0,

∫

1

cosh2 x
dx = tanhx, for x ∈ R,

∫

1

sinh2 x
dx = − cothx, for x �= 0.

12.7 Trigonometric formulæ

The trigonometric formulæ are closely connected with circular movements. Thus (cosu, sinu) are
the coordinates of a point P on the unit circle corresponding to the angle u, cf. figure A.1. This
geometrical interpretation is used from time to time.

✫✪
✬✩

✲

✻

��
(cosu, sinu)

u
1

Figure 12.1: The unit circle and the trigonometric functions.

The fundamental trigonometric relation:

cos2 u+ sin2 u = 1, for u ∈ R.

Using the previous geometric interpretation this means according to Pythagoras’s theorem, that the
point P with the coordinates (cosu, sinu) always has distance 1 from the origo (0, 0), i.e. it is lying
on the boundary of the circle of centre (0, 0) and radius

√
1 = 1.

Connection to the complex exponential function:

The complex exponential is for imaginary arguments defined by

exp(iu) := cosu+ i sinu.

It can be checked that the usual functional equation for exp is still valid for complex arguments. In
other word: The definition above is extremely conveniently chosen.

By using the definition for exp(iu) and exp(− iu) it is easily seen that

cosu =
1

2
(exp(iu) + exp(− iu)),

sinu =
1

2i
(exp(i u)− exp(− iu)),

.
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Moivre’s formula: We get by expressing exp(inu) in two different ways:

exp(inu) = cosnu+ i sinnu = (cosu+ i sinu)n.

Example 12.1 If we e.g. put n = 3 into Moivre’s formula, we obtain the following typical application,

cos(3u) + i sin(3u) = (cos u+ i sinu)3

= cos3 u+ 3i cos2 u · sinu+ 3i2 cosu · sin2 u+ i3 sin3 u

= {cos3 u− 3 cosu · sin2 u}+ i{3 cos2 u · sinu− sin3 u}
= {4 cos3 u− 3 cosu}+ i{3 sinu− 4 sin3 u}

When this is split into the real- and imaginary parts we obtain

cos 3u = 4 cos3 u− 3 cosu, sin 3u = 3 sinu− 4 sin3 u. ♦

Addition formulæ:

sin(u+ v) = sinu cos v + cosu sin v,

sin(u− v) = sinu cos v − cosu sin v,

cos(u + v) = cosu cos v − sinu sin v,

cos(u − v) = cosu cos v + sinu sin v.

Products of trigonometric functions to a sum:

sinu cos v =
1

2
sin(u + v) +

1

2
sin(u− v),

cosu sin v =
1

2
sin(u + v)− 1

2
sin(u− v),

sinu sin v =
1

2
cos(u − v)− 1

2
cos(u+ v),

cosu cos v =
1

2
cos(u− v) +

1

2
cos(u + v).

Sums of trigonometric functions to a product:

sinu+ sin v = 2 sin

(

u+ v

2

)

cos

(

u− v

2

)

,

sinu− sin v = 2 cos

(

u+ v

2

)

sin

(

u− v

2

)

,

cosu+ cos v = 2 cos

(

u+ v

2

)

cos

(

u− v

2

)

,

cosu− cos v = −2 sin

(

u+ v

2

)

sin

(

u− v

2

)

.

Formulæ of halving and doubling the angle:

sin 2u = 2 sinu cosu,

cos 2u = cos2 u− sin2 u = 2 cos2 u− 1 = 1− 2 sin2 u,

sin
u

2
= ±

√

1− cosu

2
followed by a discussion of the sign,

cos
u

2
= ±

√

1 + cosu

2
followed by a discussion of the sign,
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12.8 Hyperbolic formulæ

These are very much like the trigonometric formulæ, and if one knows a little of Complex Function
Theory it is realized that they are actually identical. The structure of this section is therefore the same
as for the trigonometric formulæ. The reader should compare the two sections concerning similarities
and differences.

The fundamental relation:

cosh2 x− sinh2 x = 1.

Definitions:

coshx =
1

2
(exp(x) + exp(−x)) , sinhx =

1

2
(exp(x) − exp(−x)) .

“Moivre’s formula”:

exp(x) = coshx+ sinhx.

This is trivial and only rarely used. It has been included to show the analogy.

Addition formulæ:

sinh(x+ y) = sinh(x) cosh(y) + cosh(x) sinh(y),

sinh(x− y) = sinh(x) cosh(y)− cosh(x) sinh(y),

cosh(x + y) = cosh(x) cosh(y) + sinh(x) sinh(y),

cosh(x − y) = cosh(x) cosh(y)− sinh(x) sinh(y).

Formulæ of halving and doubling the argument:

sinh(2x) = 2 sinh(x) cosh(x),

cosh(2x) = cosh2(x) + sinh2(x) = 2 cosh2(x)− 1 = 2 sinh2(x) + 1,

sinh
(x

2

)

= ±
√

cosh(x) − 1

2
followed by a discussion of the sign,

cosh
(x

2

)

=

√

cosh(x) + 1

2
.

Inverse hyperbolic functions:

Arsinh(x) = ln
(

x+
√

x2 + 1
)

, x ∈ R,

Arcosh(x) = ln
(

x+
√

x2 − 1
)

, x ≥ 1,

Artanh(x) =
1

2
ln

(

1 + x

1− x

)

, |x| < 1,

Arcoth(x) =
1

2
ln

(

x+ 1

x− 1

)

, |x| > 1.
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12.9 Complex transformation formulæ

cos(ix) = cosh(x), cosh(ix) = cos(x),

sin(ix) = i sinh(x), sinh(ix) = i sinx.

12.10 Taylor expansions

The generalized binomial coefficients are defined by

(

α
n

)

:=
α(α− 1) · · · (α− n+ 1)

1 · 2 · · ·n ,

with n factors in the numerator and the denominator, supplied with

(

α
0

)

:= 1.

The Taylor expansions for standard functions are divided into power like (the radius of convergency
is finite, i.e. = 1 for the standard series) andexponential like (the radius of convergency is infinite).
Power like:

1

1− x
=

∞
∑

n=0

xn, |x| < 1,

1

1 + x
=

∞
∑

n=0

(−1)nxn, |x| < 1,

(1 + x)n =

n
∑

j=0

(

n
j

)

xj , n ∈ N, x ∈ R,

(1 + x)α =

∞
∑

n=0

(

α
n

)

xn, α ∈ R \ N, |x| < 1,

ln(1 + x) =

∞
∑

n=1

(−1)n−1x
n

n
, |x| < 1,

Arctan(x) =

∞
∑

n=0

(−1)n
x2n+1

2n+ 1
, |x| < 1.
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Exponential like:

exp(x) =

∞
∑

n=0

1

n!
xn, x ∈ R

exp(−x) =

∞
∑

n=0

(−1)n
1

n!
xn, x ∈ R

sin(x) =

∞
∑

n=0

(−1)n
1

(2n+ 1)!
x2n+1, x ∈ R,

sinh(x) =

∞
∑

n=0

1

(2n+ 1)!
x2n+1, x ∈ R,

cos(x) =

∞
∑

n=0

(−1)n
1

(2n)!
x2n, x ∈ R,

cosh(x) =

∞
∑

n=0

1

(2n)!
x2n, x ∈ R.

12.11 Magnitudes of functions

We often have to compare functions for x → 0+, or for x → ∞. The simplest type of functions are
therefore arranged in an hierarchy:

1) logarithms,

2) power functions,

3) exponential functions,

4) faculty functions.

When x → ∞, a function from a higher class will always dominate a function form a lower class. More
precisely:

A) A power function dominates a logarithm for x → ∞:

(lnx)β

xα
→ 0 for x → ∞, α, β > 0.

B) An exponential dominates a power function for x → ∞:

xα

ax
→ 0 for x → ∞, α, a > 1.

C) The faculty function dominates an exponential for n → ∞:

an

n!
→ 0, n → ∞, n ∈ N, a > 0.

D) When x → 0+ we also have that a power function dominates the logarithm:

xα lnx → 0−, for x → 0+, α > 0.
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absolute value 162
acceleration 490
addition 22
affinity factor 173
Ampère-Laplace law 1671
Ampère-Maxwell’s law 1678
Ampère’s law 1491, 1498, 1677, 1678, 1833
Ampère’s law for the magnetic field 1674
angle 19
angular momentum 886
angular set 84
annulus 176, 243
anticommutative product 26
antiderivative 301, 847
approximating polynomial 304, 322, 326, 336, 404,

488, 632, 662
approximation in energy 734
Archimedes’s spiral 976, 1196
Archimedes’s theorem 1818
area 887, 1227, 1229, 1543
area element 1227
area of a graph 1230
asteroid 1215
asymptote 51
axial moment 1910
axis of revolution 181
axis of rotation 34, 886
axis of symmetry 49, 50, 53

barycentre 885, 1910
basis 22
bend 486
bijective map 153
body of revolution 43, 1582, 1601
boundary 37–39
boundary curve 182
boundary curve of a surface 182
boundary point 920
boundary set 21
bounded map 153
bounded set 41
branch 184
branch of a curve 492
Brownian motion 884

cardiod 972, 973, 1199, 1705

Cauchy-Schwarz’s inequality 23, 24, 26
centre of gravity 1108
centre of mass 885
centrum 66
chain rule 305, 333, 352, 491, 503, 581, 1215, 1489,

1493, 1808
change of parameter 174
circle 49
circular motion 19
circulation 1487
circulation theorem 1489, 1491
circumference 86
closed ball 38
closed differential form 1492
closed disc 86
closed domain 176
closed set 21
closed surface 182, 184
closure 39
clothoid 1219
colour code 890
compact set 186, 580, 1813
compact support 1813
complex decomposition 69
composite function 305
conductivity of heat 1818
cone 19, 35, 59, 251
conic section 19, 47, 54, 239, 536
conic sectional conic surface 59, 66
connected set 175, 241
conservation of electric charge 1548, 1817
conservation of energy 1548, 1817
conservation of mass 1548, 1816
conservative force 1498, 1507
conservative vector field 1489
continuity equation 1548, 1569, 1767, 1817
continuity 162, 186
continuous curve 170, 483
continuous extension 213
continuous function 168
continuous surfaces 177
contraction 167
convective term 492
convex set 21, 22, 41, 89, 91, 175, 244
coordinate function 157, 169
coordinate space 19, 21
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Cornu’s spiral 1219
Coulomb field 1538, 1545, 1559, 1566, 1577
Coulomb vector field 1585, 1670
cross product 19, 163, 169, 1750
cube 42, 82
current density 1678, 1681
current 1487, 1499
curvature 1219
curve 227
curve length 1165
curved space integral 1021
cusp 486, 487, 489
cycloid 233, 1215
cylinder 34, 42, 43, 252
cylinder of revolution 500
cylindric coordinates 15, 21, 34, 147, 181, 182,

289, 477,573, 841, 1009, 1157, 1347, 1479,
1651, 1801

cylindric surface 180, 245, 247, 248, 499, 1230

degree of trigonometric polynomial 67
density 885
density of charge 1548
density of current 1548
derivative 296
derivative of inverse function 494
Descartes’a leaf 974
dielectric constant 1669, 1670
difference quotient 295
differentiability 295
differentiable function 295
differentiable vector function 303
differential 295, 296, 325, 382, 1740, 1741
differential curves 171
differential equation 369, 370, 398
differential form 848
differential of order p 325
differential of vector function 303
diffusion equation 1818
dimension 1016
direction 334
direction vector 172
directional derivative 317, 334, 375
directrix 53
Dirichlet/Neumann problem 1901
displacement field 1670
distribution of current 886
divergence 1535, 1540, 1542, 1739, 1741, 1742
divergence free vector field 1543

dodecahedron 83
domain 153, 176
domain of a function 189
dot product 19, 350, 1750
double cone 252
double point 171
double vector product 27

eccentricity 51
eccentricity of ellipse 49
eigenvalue 1906
elasticity 885, 1398
electric field 1486, 1498, 1679
electrical dipole moment 885
electromagnetic field 1679
electromagnetic potentials 1819
electromotive force 1498
electrostatic field 1669
element of area 887
elementary chain rule 305
elementary fraction 69
ellipse 48–50, 92, 113, 173, 199, 227
ellipsoid 56, 66, 110, 197, 254, 430, 436, 501, 538,

1107
ellipsoid of revolution 111
ellipsoidal disc 79, 199
ellipsoidal surface 180
elliptic cylindric surface 60, 63, 66, 106
elliptic paraboloid 60, 62, 66, 112, 247
elliptic paraboloid of revolution 624
energy 1498
energy density 1548, 1818
energy theorem 1921
entropy 301
Euclidean norm 162
Euclidean space 19, 21, 22
Euler’s spiral 1219
exact differential form 848
exceptional point 594, 677, 920
expansion point 327
explicit given function 161
extension map 153
exterior 37–39
exterior point 38
extremum 580, 632

Faraday-Henry law of electromagnetic induction
1676

Fick’s first law of diffusion 297
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Fick’s law 1818
field line 160
final point 170
fluid mechanics 491
flux 1535, 1540, 1549
focus 49, 51, 53
force 1485
Fourier’s law 297, 1817
function in several variables 154
functional matrix 303
fundamental theorem of vector analysis 1815

Gaussian integral 938
Gauß’s law 1670
Gauß’s law for magnetism 1671
Gauß’s theorem 1499, 1535, 1540, 1549, 1580, 1718,

1724, 1737, 1746, 1747, 1749, 1751, 1817,
1818, 1889, 1890, 1913

Gauß’s theorem in R2 1543
Gauß’s theorem in R3 1543
general chain rule 314
general coordinates 1016
general space integral 1020
general Taylor’s formula 325
generalized spherical coordinates 21
generating curve 499
generator 66, 180
geometrical analysis 1015
global minimum 613
gradient 295, 296, 298, 339, 847, 1739, 1741
gradient field 631, 847, 1485, 1487, 1489, 1491,

1916
gradient integral theorem 1489, 1499
graph 158, 179, 499, 1229
Green’s first identity 1890
Green’s second identity 1891, 1895
Green’s theorem in the plane 1661, 1669, 1909
Green’s third identity 1896
Green’s third identity in the plane 1898

half-plane 41, 42
half-strip 41, 42
half disc 85
harmonic function 426, 427, 1889
heat conductivity 297
heat equation 1818
heat flow 297
height 42
helix 1169, 1235

Helmholtz’s theorem 1815
homogeneous function 1908
homogeneous polynomial 339, 372
Hopf’s maximum principle 1905
hyperbola 48, 50, 51, 88, 195, 217, 241, 255, 1290
hyperbolic cylindric surface 60, 63, 66, 105, 110
hyperbolic paraboloid 60, 62, 66, 246, 534, 614,

1445
hyperboloid 232, 1291
hyperboloid of revolution 104
hyperboloid of revolution with two sheets 111
hyperboloid with one sheet 56, 66, 104, 110, 247,

255
hyperboloid with two sheets 59, 66, 104, 110, 111,

255, 527
hysteresis 1669

identity map 303
implicit given function 21, 161
implicit function theorem 492, 503
improper integral 1411
improper surface integral 1421
increment 611
induced electric field 1675
induction field 1671
infinitesimal vector 1740
infinity, signed 162
infinity, unspecified 162
initial point 170
injective map 153
inner product 23, 29, 33, 163, 168, 1750
inspection 861
integral 847
integral over cylindric surface 1230
integral over surface of revolution 1232
interior 37–40
interior point 38
intrinsic boundary 1227
isolated point 39
Jacobian 1353, 1355

Kronecker symbol 23

Laplace equation 1889
Laplace force 1819
Laplace operator 1743
latitude 35
length 23
level curve 159, 166, 198, 492, 585, 600, 603
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level surface 198, 503
limit 162, 219
line integral 1018, 1163
line segment 41
Linear Algebra 627
linear space 22
local extremum 611
logarithm 189
longitude 35
Lorentz condition 1824

Maclaurin’s trisectrix 973, 975
magnetic circulation 1674
magnetic dipole moment 886, 1821
magnetic field 1491, 1498, 1679
magnetic flux 1544, 1671, 1819
magnetic force 1674
magnetic induction 1671
magnetic permeability of vacuum 1673
magnostatic field 1671
main theorems 185
major semi-axis 49
map 153
MAPLE 55, 68, 74, 156, 171, 173, 341, 345, 350,

352–354, 356, 357, 360, 361, 363, 364,
366, 368, 374, 384–387, 391–393, 395–
397, 401, 631, 899, 905–912, 914, 915,
917, 919, 922–924, 926, 934, 935, 949,
951, 954, 957–966, 968, 971–973, 975,
1032–1034, 1036, 1037, 1039, 1040, 1042,
1053, 1059, 1061, 1064, 1066–1068, 1070–
1072, 1074, 1087, 1089, 1091, 1092, 1094,
1095, 1102, 1199, 1200

matrix product 303
maximal domain 154, 157
maximum 382, 579, 612, 1916
maximum value 922
maximum-minimum principle for harmonic func-

tions 1895
Maxwell relation 302
Maxwell’s equations 1544, 1669, 1670, 1679, 1819
mean value theorem 321, 884, 1276, 1490
mean value theorem for harmonic functions 1892
measure theory 1015
Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157,

1347, 1479, 1651, 1801, 1921
meridian curve 181, 251, 499, 1232
meridian half-plane 34, 35, 43, 181, 1055, 1057,

1081

method of indefinite integration 859
method of inspection 861
method of radial integration 862
minimum 186, 178, 579, 612, 1916
minimum value 922
minor semi-axis 49
mmf 1674
Möbius strip 185, 497
Moivre’s formula 122, 264, 452, 548, 818, 984,

1132, 1322, 1454, 1626, 1776, 1930
monopole 1671
multiple point 171

nabla 296, 1739
nabla calculus 1750
nabla notation 1680
natural equation 1215
natural parametric description 1166, 1170
negative definite matrix 627
negative half-tangent 485
neighbourhood 39
neutral element 22
Newton field 1538
Newton-Raphson iteration formula 583
Newton’s second law 1921
non-oriented surface 185
norm 19, 23
normal 1227
normal derivative 1890
normal plane 487
normal vector 496, 1229

octant 83
Ohm’s law 297
open ball 38
open domain 176
open set 21, 39
order of expansion 322
order relation 579
ordinary integral 1017
orientation of a surface 182
orientation 170, 172, 184, 185, 497
oriented half line 172
oriented line 172
oriented line segment 172
orthonormal system 23

parabola 52, 53, 89–92, 195, 201, 229, 240, 241
parabolic cylinder 613
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parabolic cylindric surface 64, 66
paraboloid of revolution 207, 613, 1435
parallelepipedum 27, 42
parameter curve 178, 496, 1227
parameter domain 1227
parameter of a parabola 53
parametric description 170, 171, 178
parfrac 71
partial derivative 298
partial derivative of second order 318
partial derivatives of higher order 382
partial differential equation 398, 402
partial fraction 71
Peano 483
permeability 1671
piecewise Ck-curve 484
piecewise Cn-surface 495
plane 179
plane integral 21, 887
point of contact 487
point of expansion 304, 322
point set 37
Poisson’s equation 1814, 1889, 1891, 1901
polar coordinates 15, 19, 21, 30, 85, 88, 147, 163,

172, 213, 219, 221, 289, 347, 388, 390,
477, 573, 611, 646, 720, 740, 841, 936,
1009, 1016, 1157, 1165, 1347, 1479, 1651,
1801

polar plane integral 1018
polynomial 297
positive definite matrix 627
positive half-tangent 485
positive orientation 173
potential energy 1498
pressure 1818
primitive 1491
primitive of gradient field 1493
prism 42
Probability Theory 15, 147, 289, 477, 573, 841,

1009, 1157, 1347, 1479, 1651, 1801
product set 41
projection 23, 157
proper maximum 612, 618, 627
proper minimum 612, 613, 618, 627
pseudo-sphere 1434
Pythagoras’s theorem 23, 25, 30, 121, 451, 547,

817, 983, 1131, 1321, 1453, 1625, 1775,
1929

quadrant 41, 42, 84
quadratic equation 47

range 153
rectangle 41, 87
rectangular coordinate system 29
rectangular coordinates 15, 21, 22, 147, 289, 477,

573, 841, 1009, 1016, 1079, 1157, 1165,
1347, 1479, 1651, 1801

rectangular plane integral 1018
rectangular space integral 1019
rectilinear motion 19
reduction of a surface integral 1229
reduction of an integral over cylindric surface 1231
reduction of surface integral over graph 1230
reduction theorem of line integral 1164
reduction theorem of plane integral 937
reduction theorem of space integral 1021, 1056
restriction map 153
Ricatti equation 369
Riesz transformation 1275
Rolle’s theorem 321
rotation 1739, 1741, 1742
rotational body 1055
rotational domain 1057
rotational free vector field 1662
rules of computation 296

saddle point 612
scalar field 1485
scalar multiplication 22, 1750
scalar potential 1807
scalar product 169
scalar quotient 169
second differential 325
semi-axis 49, 50
semi-definite matrix 627
semi-polar coordinates 15, 19, 21, 33, 147, 181,

182, 289, 477, 573, 841, 1009, 1016, 1055,
1086, 1157, 1231, 1347, 1479, 1651, 1801

semi-polar space integral 1019
separation of the variables 853
signed curve length 1166
signed infinity 162
simply connected domain 849, 1492
simply connected set 176, 243
singular point 487, 489
space filling curve 171
space integral 21, 1015
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specific capacity of heat 1818
sphere 35, 179
spherical coordinates 15, 19, 21, 34, 147, 179, 181,

289, 372, 477, 573, 782, 841, 1009, 1016,
1078, 1080, 1081, 1157, 1232, 1347, 1479,
1581, 1651, 1801

spherical space integral 1020
square 41
star-shaped domain 1493, 1807
star shaped set 21, 41, 89, 90, 175
static electric field 1498
stationary magnetic field 1821
stationary motion 492
stationary point 583, 920
Statistics 15, 147, 289, 477, 573, 841, 1009, 1157,

1347, 1479, 1651, 1801
step line 172
Stokes’s theorem 1499, 1661, 1676, 1679, 1746,

1747, 1750, 1751, 1811, 1819, 1820, 1913
straight line (segment) 172
strip 41, 42
substantial derivative 491
surface 159, 245
surface area 1296
surface integral 1018, 1227
surface of revolution 110, 111, 181, 251, 499
surjective map 153

tangent 486
tangent plane 495, 496
tangent vector 178
tangent vector field 1485
tangential line integral 861, 1485, 1598, 1600, 1603
Taylor expansion 336
Taylor expansion of order 2, 323
Taylor’s formula 321, 325, 404, 616, 626, 732
Taylor’s formula in one dimension 322
temperature 297
temperature field 1817
tetrahedron 93, 99, 197, 1052
Thermodynamics 301, 504
top point 49, 50, 53, 66
topology 15, 19, 37, 147, 289. 477, 573, 841, 1009,

1157, 1347, 1479, 1651, 1801
torus 43, 182–184
transformation formulæ1353
transformation of space integral 1355, 1357
transformation theorem 1354
trapeze 99

triangle inequality 23,24
triple integral 1022, 1053

uniform continuity 186
unit circle 32
unit disc 192
unit normal vector 497
unit tangent vector 486
unit vector 23
unspecified infinity 162

vector 22
vector field 158, 296, 1485
vector function 21, 157, 189
vector product 19, 26, 30, 163, 169. 1227, 1750
vector space 21, 22
vectorial area 1748
vectorial element of area 1535
vectorial potential 1809, 1810
velocity 490
volume 1015, 1543
volumen element 1015

weight function 1081, 1229, 1906
work 1498

zero point 22
zero vector 22

(r, s, t)-method 616, 619, 633, 634, 638, 645–647,
652, 655

Ck-curve 483
Cn-functions 318
1-1 map 153

462

Download free eBooks at bookboon.com


