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Preface

The topic of this series of books on “Real Functions in Several Variables” is very important in the
description in e.g. Mechanics of the real 3-dimensional world that we live in. Therefore, we start from
the very beginning, modelling this world by using the coordinates of R3 to describe e.g. a motion in
space. There is, however, absolutely no reason to restrict ourselves to R3 alone. Some motions may
be rectilinear, so only R is needed to describe their movements on a line segment. This opens up for
also dealing with R2, when we consider plane motions. In more elaborate problems we need higher
dimensional spaces. This may be the case in Probability Theory and Statistics. Therefore, we shall in
general use Rn as our abstract model, and then restrict ourselves in examples mainly to R2 and R3.

For rectilinear motions the familiar rectangular coordinate system is the most convenient one to apply.
However, as known from e.g. Mechanics, circular motions are also very important in the applications
in engineering. It becomes natural alternatively to apply in R2 the so-called polar coordinates in the
plane. They are convenient to describe a circle, where the rectangular coordinates usually give some
nasty square roots, which are difficult to handle in practice.

Rectangular coordinates and polar coordinates are designed to model each their problems. They
supplement each other, so difficult computations in one of these coordinate systems may be easy, and
even trivial, in the other one. It is therefore important always in advance carefully to analyze the
geometry of e.g. a domain, so we ask the question: Is this domain best described in rectangular or in
polar coordinates?

Sometimes one may split a problem into two subproblems, where we apply rectangular coordinates in
one of them and polar coordinates in the other one.

It should be mentioned that in real life (though not in these books) one cannot always split a problem
into two subproblems as above. Then one is really in trouble, and more advanced mathematical
methods should be applied instead. This is, however, outside the scope of the present series of books.

The idea of polar coordinates can be extended in two ways to R3. Either to semi-polar or cylindric
coordinates, which are designed to describe a cylinder, or to spherical coordinates, which are excellent
for describing spheres, where rectangular coordinates usually are doomed to fail. We use them already
in daily life, when we specify a place on Earth by its longitude and latitude! It would be very awkward
in this case to use rectangular coordinates instead, even if it is possible.

Concerning the contents, we begin this investigation by modelling point sets in an n-dimensional
Euclidean space En by Rn. There is a subtle difference between En and Rn, although we often
identify these two spaces. In En we use geometrical methods without a coordinate system, so the
objects are independent of such a choice. In the coordinate space Rn we can use ordinary calculus,
which in principle is not possible in En. In order to stress this point, we call En the “abstract space”
(in the sense of calculus; not in the sense of geometry) as a warning to the reader. Also, whenever
necessary, we use the colour black in the “abstract space”, in order to stress that this expression is
theoretical, while variables given in a chosen coordinate system and their related concepts are given
the colours blue, red and green.

We also include the most basic of what mathematicians call Topology, which will be necessary in the
following. We describe what we need by a function.

Then we proceed with limits and continuity of functions and define continuous curves and surfaces,
with parameters from subsets of R and R2, resp..
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Continue with (partial) differentiable functions, curves and surfaces, the chain rule and Taylor’s for-
mula for functions in several variables.

We deal with maxima and minima and extrema of functions in several variables over a domain in Rn.
This is a very important subject, so there are given many worked examples to illustrate the theory.

Then we turn to the problems of integration, where we specify four different types with increasing
complexity, plane integral, space integral, curve (or line) integral and surface integral.

Finally, we consider vector analysis, where we deal with vector fields, Gauß’s theorem and Stokes’s
theorem. All these subjects are very important in theoretical Physics.

The structure of this series of books is that each subject is usually (but not always) described by three
successive chapters. In the first chapter a brief theoretical theory is given. The next chapter gives
some practical guidelines of how to solve problems connected with the subject under consideration.
Finally, some worked out examples are given, in many cases in several variants, because the standard
solution method is seldom the only way, and it may even be clumsy compared with other possibilities.

I have as far as possible structured the examples according to the following scheme:

A Awareness, i.e. a short description of what is the problem.

D Decision, i.e. a reflection over what should be done with the problem.

I Implementation, i.e. where all the calculations are made.

C Control, i.e. a test of the result.

This is an ideal form of a general procedure of solution. It can be used in any situation and it is not
linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a
situation which did not contain Mathematics at all. The student is recommended to use it also in
other disciplines.

From high school one is used to immediately to proceed to I. Implementation. However, examples
and problems at university level, let alone situations in real life, are often so complicated that it in
general will be a good investment also to spend some time on the first two points above in order to
be absolutely certain of what to do in a particular case. Note that the first three points, ADI, can
always be executed.

This is unfortunately not the case with C Control, because it from now on may be difficult, if possible,
to check one’s solution. It is only an extra securing whenever it is possible, but we cannot include it
always in our solution form above.

I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a
shorthand, because they are often (too often, I would say) misused. Instead of ∧ I shall either write
“and”, or a comma, and instead of ∨ I shall write “or”. The arrows ⇒ and ⇔ are in particular
misunderstood by the students, so they should be totally avoided. They are not telegram short hands,
and from a logical point of view they usually do not make sense at all! Instead, write in a plain
language what you mean or want to do. This is difficult in the beginning, but after some practice it
becomes routine, and it will give more precise information.

When we deal with multiple integrals, one of the possible pedagogical ways of solving problems has
been to colour variables, integrals and upper and lower bounds in blue, red and green, so the reader
by the colour code can see in each integral what is the variable, and what are the parameters, which
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do not enter the integration under consideration. We shall of course build up a hierarchy of these
colours, so the order of integration will always be defined. As already mentioned above we reserve
the colour black for the theoretical expressions, where we cannot use ordinary calculus, because the
symbols are only shorthand for a concept.

The author has been very grateful to his old friend and colleague, the late Per Wennerberg Karlsson,
for many discussions of how to present these difficult topics on real functions in several variables, and
for his permission to use his textbook as a template of this present series. Nevertheless, the author
has felt it necessary to make quite a few changes compared with the old textbook, because we did not
always agree, and some of the topics could also be explained in another way, and then of course the
results of our discussions have here been put in writing for the first time.

The author also adds some calculations in MAPLE, which interact nicely with the theoretic text.
Note, however, that when one applies MAPLE, one is forced first to make a geometrical analysis of
the domain of integration, i.e. apply some of the techniques developed in the present books.

The theory and methods of these volumes on “Real Functions in Several Variables” are applied
constantly in higher Mathematics, Mechanics and Engineering Sciences. It is of paramount importance
for the calculations in Probability Theory, where one constantly integrate over some point set in space.

It is my hope that this text, these guidelines and these examples, of which many are treated in more
ways to show that the solutions procedures are not unique, may be of some inspiration for the students
who have just started their studies at the universities.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.
I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
March 21, 2015
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Introduction to volume I,

Point sets in Rn. The maximal domain of a function

In this first volume of the series of books on Real Functions in Several Variables we start in Chapter 1
by giving a small theoretical introduction to what is needed in order to get started on the main subject.
We shall work in Euclidean space En, which in rectangular coordinates is similar to the vector space
Rn, also called the coordinate space. The difference may at the first glance seem very small, and yet
this difference is quite important. If we ever prove something in En, then this is done geometrically
without any coordinate axes. This may be very strange to most younger readers, who have never
learned Geometry in school using only ruler and compasses. For that reason I have in lack of better
words called objects in En for “abstract” or “theoretical”, though they are neither “abstract” nor
“purely theoretical”.

Once we have chosen a rectangular coordinate system in En, i.e. defined the n orthonormal basic
vectors, then we have also defined the rectangular coordinates (x1, . . . , xn) ∈ Rn of an element x ∈ En.
The reason for this transformation from the Euclidean space En to its corresponding coordinate space
Rn is of course that it is often easier to compute things in Rn than to argue geometrically in En.

Obviously, E2 ∼ R2 and E3 ∼ R3 are very important examples of En ∼ Rn, so the main emphasis is
put on these two cases, though we cannot totally rule out higher dimensional spaces.

We introduce the dot product in all Rn and use it to define the norm (or length) and angle.

In E3 ∼ R3 (and only in this space) we also introduce the important cross product or vector product,
which is applied in particular in Physics.

Even if rectangular coordinates may seem natural in the beginning, they are not well suited for all
our problems. When we consider Mechanics in the plane E2, there are clearly two very important
motions, which we should be able to describe in a reasonable way, namely the rectilinear motion,
where rectangular coordinates clearly are most appropriate, and the circular motion, where we in
a rectangular description almost always end up with some nasty square roots. To ease matters we
instead introduce the polar coordinates in the plane. In this case E2 and the corresponding polar
coordinate space ⊂ R2 are clearly not of the same geometrical shape. The circular motion is usually
easy to describe in polar coordinates, when the coordinate system is put properly.

Once we have started introducing another coordinate system like the polar coordinates instead of the
usual rectangular coordinate system, we may of course proceed by introducing other useful coordinate
systems, like semi-polar coordinates in R3, which are designed to describe bodies of revolution with
the z-axis as the axis of revolution, and the spherical coordinates in in R3, which are convenient, when
we are dealing with spheres and balls in E3.

All these new coordinate systems are only defined in Chapter 1. However, their applications will be
demonstrated over and over again in the following volumes.

We continue with introducing the most basic of what is called Topology. We define the interior,
exterior, boundary and closure of (abstract) sets. We shall also need all these abstract concepts in
the following.

We give some examples of typical sets, which will be used frequently in the following. For the same
reason we also include a section on the classical cones and conical sections from Geometry, because
we cannot assume that all readers have seen them before.
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The short Chapter 2 describes some guidelines of how to solve some typical problems in this book.

Chapter 3 contains a lot of examples describing the theoretical text from Chapter 1.

A short list of useful formulæ is given in Chapter 4.

The table of contents and the index cover all volumes, which are organized with succeeding page
numbers. Unfortunately, it has not been possible to organize the index such that the number of the
volume is also given.
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1 Basic concepts

1.1 Introduction

We shall start by defining the model number spaces Rn, so they are at hand, when we in the next
section consider the corresponding Euclidean spaces En. There is a bijective correspondence between
En and its coordinate space Rn, when we use the obvious orthonormal basis. The subtle difference
is that we argue in En in an “abstract way” on the geometry of the set, while we set up some rules
of computation in the coordinate space Rn. In other words, En contains the abstract geometrical
objects, which then are described analytically in the coordinate space Rn. In rectangular coordinates
a point set A ⊆ En has the same geometry as its set of coordinates Ã ⊆ Rn, so one may hardly see
the difference. However, whenever it is convenient to use another coordinate system, which is not
rectangular, e.g. polar or spherical coordinates, then the set of coordinates Ã ⊆ Rn has apparently a
different geometry from that of the original set A ⊆ En.

Whenever there is a need to distinguish between the “abstract space” of A ⊆ En and its coordinate
set Ã ⊆ Rn, we shall use the following colour code: black in the “abstract” space En, and blue,
red, green, etc. in the coordinate space Rn. This is, however, not needed in the first volumes, and it
only becomes convenient, when we are describing plane or space integrals, etc., where we calculate
analytically the value of these integrals.

So first we define the model number spaces Rn, and then discuss Rn as a real vector space, followed
by introducing the most commonly used coordinate systems, i.e. rectangular coordinates (in Rn in
general), polar coordinates (only in R2), semi-polar coordinates, also called cylindric coordinates (only
in R3), and finally the spherical coordinates. These are here only defined in R3, but it is not hard to
prove that generalized spherical coordinates can be defined in any number space Rn, where n ≥ 3.

In the following sections we turn to point sets in the Euclidean space En. To ease matters for the
reader we shall, as already mentioned above, whenever it is felt convenient, identify a point set A ⊆ En

with its coordinate set Ã ⊆ Rn in rectangular coordinates. Note, however, that in principle A and Ã
are not the same set, although they may look alike!

We introduce some necessary abstract topological concepts like open and closed sets, boundary sets,
convex and starshaped sets, etc.. These may seem very strange for the unexperienced reader, but they
are needed, when we later shall describe limits and continuity of functions.

In the last section of this chapter we describe functions in several variables, and extend them to vector
functions. We also describe how to visualize functions in several variables. Finally, we mention the
problem of implicit given functions. It is not possible here to give a correct proof of the Theorem of
implicit given function, though it clearly is very important.
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1.2 The real linear space Rn

The real number space Rn is considered as a real vector space (Rn,+, ·,R), also called a linear space.
The elements of Rn are ordered sets of n real numbers, which are called the coordinates of the point.
Hence, an element of Rn is written

x = (x1, . . . , xn) ∈ Rn, where x1, . . . , xn ∈ R.

Although we have not proved it yet, we mention that this is a description of x in rectangular co-
ordinates, so when x ∈ Rn is identified with the corresponding element in the Euclidean space En,
which is also denoted by x, then x is interpreted, depending on the actual situation, either as a point

x ∈ En, or as a vector −→x ∈ En pointing from 0 = (0, . . . , 0), or
−→
0 = (0, . . . , 0) to the end point x.

The addition in the vector space Rn is defined by

x+ y = (x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn) ,

so we add the coordinates at place j, j = 1, . . . , n.

The addition is clearly commutative,

x+ y = y + x, for x, y ∈ Rn.

The neutral element is the zero point (or zero vector 0, because

x+ 0 = (x1, . . . , xn) + (0, . . . , 0) = (x1, . . . , xn) = x.

The scalar multiplication by λ ∈ R of x ∈ Rn is defined by

λx = λ (x1, . . . , xn) = (λx1, . . . , λxn) ,

so each coordinate is multiplied by the same scalar λ. This can be interpreted as a stretching. We
note that we have no notation for the scalar product. In fact, there is no way to misunderstand the
concatenation λx, and we shall later use the most obvious notation “·” for another important product
in Rn.

A natural basis of Rn is given by the vectors of the coordinates

e1 = (1, 0, · · · , 0), · · · , en = (0, . . . , 0, 1),

where e.g. ej has 1 on its j-th coordinate, while all other coordinates are 0. In fact, it is obvious that
we have

x = (x1, . . . , xn) = x1e1 + · · ·+ xnxn,

and if

x1e1 + · · ·+ xnen = 0 = (0, . . . , 0),

then necessarily all xj = 0, so the description of x is unique, and {e1, . . . , en} is indeed a basis of Rn.

One usually adds a so-called inner product in Rn. This is a function denoted by · : Rn × Rn → R. It
is in order to avoid confusion that we do not introduce a notation for the scalar product of a scalar
and a vector.
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The inner product of two elements x, y ∈ Rn is defined in the following way:

x · y := (x1, . . . , xn) · (y1, . . . , yn) = x1y1 + · · ·+ xnyn =
n
�

j=1

xjyj .

This is actually a geometrical concept, which shall be demonstrated in the following. Note in particular
that

ei · ej := δij =







1 if i = j,

0 if i �= j.

The symbol δij defined above is called the Kronecker symbol. Due to this relation one may say that
the vectors e1, . . . , en are perpendicular to each other.

Since ej · ej = 1, we call the ej unit vectors. They form an orthonormal system.

We call

xj = x · ej
the projection of x onto the line defined by the unit vector ej . It is interpreted as the (signed) length
of the orthogonal projection of x onto the line defined by the unit vector ej .

Using Pythagoras’s theorem repeatedly n− 1 times we easily derive that

�x� :=
√
x · x =

�

x2
1 + · · ·+ x2

n for x ∈ Rn,

is the length (also called the norm) of the vector −→x ∼ x. Hence, whenever we are given an inner
product – in general satisfying some conditions, which are not given here – then we can talk about the
length of a vector, and even of the angle between two vectors. We shall see below, how this is done.

We mention the following properties of the norm �x� defined above for x ∈ Rn. Let x, y ∈ Rn and
λ ∈ R be given. Then

1) �x� > 0 for x �= 0 (and �0� = 0)

2) �λx� = |λ|�x�

3) �x+ y� ≤ �x�+ �y� (triangle inequality)

4) |x · y| ≤ �x� �y� (Cauchy-Schwarz’s inequality)

The proofs of the first two claims are straightforward (left to the reader) by using the coordinate
description.

Cauchy-Schwarz’s inequality is proved in the following way: Let x, y ∈ Rn be given points, and let
λ ∈ R be a scalar. Then

0 ≤ �λx+ y�2 =

n
�

j=1

(λxj + yj)
2
= λ2

n
�

j=1

x2
j + 2λ

n
�

j=1

xj yj +

n
�

j=1

y2j

= λ2�x�2 + 2λ(x · y) + �y�2,
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which holds for all λ ∈ R. This is a real polynomial in λ of second degree, and it is nonnegative for
all λ ∈ R. Hence, its discriminant is not positive,

4(x · y)2 − 4�x�2 �y�2 ≤ 0,

so by a rearrangement,

|x · y| ≤ �x� �y�,

and the claim is proved.

We prove below, after we have defined the angle between two vectors, that the equality sign holds if
and only if x and y are proportional, i.e. there exists a λ ∈ R, such that either x = λy or y = λx.
(We cannot rule out the possibilities of either x = 0 or y = 0.)

Once we have proved Cauchy-Schwarz’s inequality, we get the triangle inequality in the following way:

�x+ y�2 = (x+ y) · (x+ y) = x · x+ 2x · y + y · y,

≤ �x�2 + 2�x� �y�+ �y�2 = (�x� + �y�)2,

hence, by taking the square root,

�x+ y� ≤ �x�+ �y�.
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Figure 1.1: The triangle inequality

Remark 1.1 The vectors −→x and
−−−→
x+ y form a triangle, if we add the vector y from x, cf. Figure 1.1.

The triangle inequality says that the length from 0 to x+ y is at most equal to the length of the
broken path from 0 via x to x+ y. ♦

Figure 1.2: The angle between two vectors

Let x, y �= 0 be two non-zero vectors from Rn (or En). Then they span an ordinary plane, so we can
use the usual geometrical argument of trigonometry in this plane. In fact, we only use Pythagoras’s
theorem and the high school definition of cosine. In particular, the angle θ ∈ [0, π] between x and y
is uniquely determined by the relation

x · y = �x� �y� cos θ,

thus

cos θ =
x · y

�x� �y� for x, y �= 0,
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which defines θ uniquely in the interval [0, π].

Note in particular that if x, y �= 0, and we have equality in Cauchy-Schwarz’s inequality, then
cos θ = ±1, so we have either θ = 0 or θ = π. In either cases x and y are proportional. When x = 0
or y = 0 this statement is of course trivial.

1.3 The vector product

The three-dimensional case R3 has through centuries been thoroughly studied, because it models the
daily space which we live in. It was very early realized by physicists and mathematicians that it would
be quite convenient to introduce yet another product, denoted × : R3 ×R3 → R3. It is in rectangular
coordinates defined by

x× y = (x1, x2, x3)× (y1, y2, y3)

= (x2y3 − x3y2, x3y1 − x1y3, x1y2 − y2x1)(1.1)

and it works only in R3!

If the reader is familiar with how to calculate (3 × 3)-determinants, then (1.1) can also formally be
written in the following way,

(1.2) x× y =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 x2 x3

y1 y2 y3

e1 e2 e3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where e1, e2, e3 form an orthonormal basis, and (x1, x2, x3) , (y1, y2, y3) ∈ R3 are the coordinates of
x, y, resp., expanded with respect to this basis.

It is easy to remember the structure of this determinant. We put the coordinates of the first factor
in the first row, the coordinates of the second factor in the second row, and the three basis vectors in
the third row.

By using Linear Algebra we immediately get the following results:

1) When x and y are interchanged, then the first two rows in the determinant are interchanged, so
the determinant changes its sign, and we obtain that

y × x = −x× y.

This means that the vector product is anticommutative.

2) It is easy to see that

(1.3) (x × y) · z =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 x2 x3

y1 y2 y3

z1 z2 z3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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Since the value of the determinant does not change, when we change the rows cyclically, we
immediately get the following result,

(x× y) · z =

�

�

�

�

�

�

�

�

�

�

x1 x2 x3

y1 y2 y3

z1 z2 z3

�

�

�

�

�

�

�

�

�

�

=

�

�

�

�

�

�

�

�

�

�

y1 y2 y3

z1 z2 z3

x1 x2 x3

�

�

�

�

�

�

�

�

�

�

= (y × z) · x = x · (y × z),

which shows that we can interchange the two products if we only keep the order of the vectors
x, y, z. Hence,

(x× y) · z = x · (y × z).

3) By choosing z = x, or z = y it also follows from (1.3) that

(x× y) · x = 0 and (x× y) · y = 0.

This means that (x × y) is perpendicular to both x and y, and since all vectors lie in R3, the
vector (x × y) is either 0 or normal to the plane spanned by x and y.

4) The products · and × are actually geometrically connected with the “abstract” Euclidean space
E3, which means that they are independent of our specific choice of orthonormal basis. This means
that we can choose the basis, such that x and y lie in the plane spanned by e1 and e2, which
means that

x = (x1, x2, 0) and y = (y1, y2, 0) .

Then we get from (1.1) that

(x× y) = (0, 0, x1y2 − y1x2) =



0, 0,

�

�

�

�

�

�

x1 x2

y1 y2

�

�

�

�

�

�



 ,

and it is well-known that the absolute value of the third coordinate, |x1y2 − y1x2| is the area of
the parallelogram defined by the vectors x and y.

When we look closer at the sign of x1y2 − y1x2, it follows that when x, y and x × y are all �= 0,
then x, y and x × y in this order defines a right hand system of vectors. This means that if x
is directed along your right thumb, and y along your right forefinger, then x, y must point along
your right middle finger. This is also a way to find out the direction, in which x× y is pointing.

The length of x× y is as noted above equal to the area of the parallelogram, which is spanned by
x and y.

5) When we combine 3) and 4) above it follows that |(x×y) ·z| is the volume of the parallelepipedum
spanned by the three vectors x, y and z.

6) Finally, we shall consider the double vector product x × (y × z), which by 3) must be orthogonal
to both x and y× z. It must therefore in particular lie in the plane spanned by y and z, so there
are real constants α and β, such that

x× (y × z) = αy + βz.
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This is orthogonal to x, so

0 = x · (αy + βz) = α(x · y) + β(x · z).

This is only possible, if there exists a real constant λ, such that

α = λ(x · z) and β = −λ(x · y).

Finally, by insertion,

x× (y × z) = λ{(x · z)y − (x · y)z}.

This shows that x× (y × z) and (x · z)y − (x · y)z are proportional. Then use the coordinates of
x, y and z with respect to the orthonormal basis e1, e2, e3 and prove that λ = 1. (Left to the
reader.) It follows that

x× (y × z) = (x · z)y − (x · y)z.

These results on the vector product in R3 will later be important in our treatment of e.g. integration
in R3.
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1.4 The most commonly used coordinate systems

When we are given the Euclidean space En and want to describe it by coordinates in Rn, it is obvious
that the coordinate system can be chosen in many ways. We shall always try to choose the coordinate
system in such a way that the calculations become as easy as possible. This is of course a very vague
statement, which does not help the reader, so we here list the most commonly used coordinate systems.
Concerning the choice of which one, the reader should be guided by e.g. the geometry of the domain,
or in case of integration, of the structure of the integrand.

1) The rectangular coordinate system in Rn, n ∈ N arbitrarily chosen. This is the most obvious
coordinate system to start with. As already mentioned previously, its basis is given by the vectors

e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1),

in general,

ej = (δ1j , δ2j , . . . , δnj) ,

where δij is the Kronecker symbol, defined by

δij =







1 for i = j,

0 for i �= j.

The domain in the Euclidean space En is congruent with the corresponding coordinate domain in
Rn, and one hardly notices the difference.

Figure 1.3: The usual way to draw the rectangular coordinate system in R3.

If x = (x1, . . . , xn) and y = (y1, . . . , yn) with respect to the basis above, then the inner product of
x and y is defined by

x · y = x1y1 + · · ·+ xnyn =

n
�

j=1

xjyj .
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In the important special case of R3 we also define the vector product by

x× y = (x1, x2, x3)× (y1, y2, y3)

= (x2y3 − x3y2, x3y1 − x1y3, x1y2 − y2x1) .

The rectangular system is well designed for linear problems, e.g. rectilinear motions. In the case
of integration, the domain of integration should be limited by straight lines. If this condition is
not satisfied, one may by the following reductions end up with almost incalculable integrals.

2) Polar coordinates in the plane. These can only be used in dimension 2.

Figure 1.4: The coordinate system in polar coordinates

Assume that the point P in the Euclidean space E2 has the rectangular coordinates (x, y), cf.
Figure 1.4. The distance ̺ from origo O : (0, 0) to P : (x, y) is by Pythagoras’s theorem given by

̺ =
�

x2 + y2.

It then follows by high school trigonometry that

x = ̺ cosϕ and y = ̺ sinϕ,

where ϕ is the angle measured from the X-axis in the positive sense of the plane.

If ̺ = 0, i.e. P = O, so we are at origo, then the angle ϕ is undetermined. Every ϕ ∈ R will do in
this case.

If x �= 0, then

tanϕ =
y

x
,

so we may choose

ϕ =















Arctan
� y

x

�

for x > 0,

Arctan
� y

x

�

+ π for x < 0.
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If instead y �= 0, then

cotϕ =
x

y
,

so we may choose

ϕ =























Arccot

�

x

y

�

for y > 0,

Arccot

�

x

y

�

+ π for y < 0.

Note, however, that when ̺ > 0, the angle is only specified modulo 2π, so we can always add a
multiple of 2π to the angle ϕ without changing x and y.

Summing up, we get the following correspondence between rectangular coordinates
(x, y) ∈ R2 \ {(0, 0)} and polar coordinates (̺, ϕ), where ̺ > 0, and ϕ belongs to some half open
interval of length 2π,

(1.4)



























x = ̺ cosϕ, y = ̺ sinϕ,

̺ =
�

x2 + y2

tanϕ =
y

x
for x �= 0, and cotϕ =

x

y
for y �= 0.
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Experience shows that students are not too happy with the polar coordinates, when they first meet
them. This is probably due to the fact that the angle ϕ is not uniquely determined, in general
only modulo 2π. Nevertheless, they are very useful, and when circular motions are considered,
they are better than rectangular coordinates, so they are very important in e.g. Mechanics. We
shall here illustrate this by the simplest possible example. The unit circle is explicitly described
in polar coordinates by the simple equation

̺ = 1.

This unit circle is implicitly described in rectangular coordinates by

�

x2 + y2 = 1, or x2 + y2 = 1,

so by solving this equation with respect to y we get the more messy explicit expression,

y =







√
1− x2 for x ∈ [−1, 1] ¡nd y ≥ 0,

−
√
1− x2 for x ∈ [−1, 1] and y ≤ 0.

Figure 1.5: The unit circle in E2.

When we compare Figure 1.5 and Figure 1.6 it is obvious that although the two sets are in
correspondence, they do not look like each other. This means that in polar coordinates the
geometry is quite different in the Euclidean plane E2 and the coordinate plane R2. Therefore,
they must not be confused!

The polar coordinates are used, whenever we are dealing with circular motion or domains, which
are discs. Also, when the integrand contains expressions which are functions in

�

x2 + y2 in the
rectangular coordinates, one should rewrite the problem in polar coordinates, because then we
may get rid of at least some of these square roots. The drawback is of course that the angle ϕ
in (1.4) is only specified modulo 2π, so we must choose an half-open ϕ-interval of length 2π, e.g.
] − π, π]], or ] 0, 2π], or more general, ]α, α+ 2π] for some constant α, depending on the geometry
of the domain under consideration.
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Figure 1.6: The parameter set in polar coordinates of the unit circle in R2.

We note that the description of the inner product in polar coordinates is not an easy job, and we
shall not derive it.

3) Semi-polar coordinates in E3. These can only be applied in the Euclidean space E3. Also in this
case, the corresponding domain in the coordinate space R3 is distorted compared with the original
set in E3.

Given the usual rectangular basis e1, e2, e3 in En, the idea is to apply the polar coordinates in
the plane spanned by e1 and e2, and keep the rectangular coordinate along the e3-axis.

Figure 1.7: The geometry of the definition of the semi-polar coordinates in R3.
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It follows from the above that



























x = ̺ cosϕ, y = ̺ sinϕ, z = z,

̺ =
�

x2 + y2,

tanϕ =
y

x
for x �= 0 and cotϕ =

x

y
for y �= 0.

If (x, y) �= (0, 0), then ϕ is determined modulo 2π. On the z-axis, where (x, y) = (0, 0), the angle
ϕ is undetermined, and any ϕ ∈ R can be used.

When the angle ϕ is kept fixed, while ̺ ≥ 0 and z ∈ R vary, we describe a half plane, which we call
the meridian half plane. In such a meridian half plane (̺, z) are ordinary rectangular coordinates.

If instead ̺ > 0 is kept fixed, while ϕ and z vary, we describe a cylindric surface with the z-axis as
its axis of rotation. For that reason the semi-polar coordinates are also called cylindric coordinates.

The semi-polar coordinates are typically used, when we are dealing with rotational bodies in E3,
or, if a rectangular coordinate system in R3 e.g. the variables (x, y) only appear in the combined

form
�

x2 + y2.

4) Spherical coordinates in R3. It was noted above in 3), semi-polar coordinates, that for fixed ϕ we
describe the meridian half plane in the rectangular coordinates (̺, z), ̺ ≥ 0 and z ∈ R.

Figure 1.8: The meridian half plane for fixed ̺.

Let r =
�

̺2 + z2 denote the Euclidean distance between (0, 0) and (̺, z), and let ϑ ∈ [0, π] denote
the angle positive from the z-axis towards the vector of coordinates (̺, z), cf. Figure 1.8. Then
clearly,

z = r cos θ and ̺ = r sin θ, for θ ∈ [0, π] and r =
�

z2 + ̺2.
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Since we already have

x = ̺ cosϕ and y = ̺ sinϕ

for ϕ ∈ I, where I is some interval of length 2π, where we for convenience here put I = [0, 2π], we
get by insertion

(1.5)























x = r sin θ cosϕ,

y = r sin θ sinϕ, θ ∈ [0, π], ϕ ∈ 0, 2π, r ∈ [0,+∞[.

z = r cos θ,

Figure 1.9: The geometry of the definition of the spherical coordinates in R3.

We call (r, θ, ϕ) the spherical coordinates in R3. If r > 0 is kept fixed, then (1.5) describes a sphere
of radius r.

If we let r = the radius of the Earth and specify ϕ ∈ [−π, π] ∼ [−180◦, 180◦], and define

ϑ :=
π

2
− θ ∈

�

−π

2
,
π

2

�

∼ [−90◦, 90◦], then ϕ is the degree of longitude, and ϑ is the degree of

latitude. It is well-known that these two spherical coordinates with success have been applied for
centuries in Geography and Astronomy.

Spherical coordinates are in particular applied, when we are dealing with a sphere, or when the
rectangular coordinates (x, y, z) also appear in the form

�

x2 + y2 + z2.

If instead θ ∈ ]0, π[ is kept fixed, then (1.5) describes a cone,, and – as already seen above – when
ϕ is a constant, then (1.5) describes a meridian half plane.

5) It is possible to extend this construction of spherical coordinates to Rn for n > 3. In fact, if
(x, y, z, t) are the rectangular coordinates in R4, then we can start by using the spherical coordinates
above in the variables (x, y, z). When ϕ and θ are kept fixed, we again obtain a meridian half
plane. This time the rectangular coordinates are (r, t). Let (r, t) be a vector in this half plane, and
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define R =
√
r2 + t2 and ϑ ∈ [0, π] as the angle between the t-axis and the vector (r, t), measured

from the t-axis. Then,

t = R cosϑ and r = R sinϑ, ϑ ∈ [0, π] and R =
√

r2 + t2 =
√

x2 + y2 + z2 + t2,

and we obtain by insertion the rectangular coordinates (x, y, z, t) ∈ R4 expressed in the hyper-
spherical coordinates (R,ϕ, θ, ϑ).

Continue this construction to higher dimensions, whenever needed. Note, however, that this
construction will not be used in this series of books.

Remark 1.2 The author has actually used this construction in an analysis of solid balls in En.
These have an unexpected geometry, when n > 3, and one cannot just conclude that “they behave
as the solid balls in the usual Euclidean space E3”. One example is the following: Choose any
small ε, δ ∈ ]0, 1[, and let Bn denote the unit ball in Rn of n-dimensional volume |Bn|. Let An

denote the subset of Bn, which is obtained by restricting e.g. the x1-coordinate, so

An :=
{

(x1, . . . , xn) | x2
1 + · · ·+ x2

n ≤ 1 and − ε ≤ x1 ≤ ε
}

with its n-dimensional volume denoted by |An|

Then there exists an N ∈ N, such that for all n ≥ N most of the volume of Bn lies the slab An,
or more precisely,

|An| ≥ (1− δ) |Bn| . ♦
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1.5 Point sets in space

We shall in this section introduce the most necessary of what mathematicians call Topology. We shall
use the Euclidean space En as our model space, and whenever necessary we shall choose a rectangular
coordinate system and use the equivalent coordinate space Rn. This means that at least in E2 and
E3 it should be possible to visualize the sets. In particular, the sets are easily drawn in the Euclidean
plane E2.

The formal definition of a set A in the Euclidean space En is given by

A = {x ∈ En | p(x)} ,

where p denotes a property, which is satisfied for all x ∈ A. In plain words this is expressed as “A is
the set of x ∈ Rn, for which property p(x) is true”.

If A ⊆ En allows some symmetry, it is convenient to introduce the axes, such that these are in harmony
with this symmetry. Such a choice will usually have the effect that the corresponding coordinate set
Ã ⊂ Rn becomes simple.

In the Euclidean plane E2 ∼ R2 it is easy to draw the most important sets for the applications. This
does not mean that all plane sets can be reasonably drawn. For instance, we have problems in drawing
the set

{(x, y) | x ∈ [0, 1] ∩ Q, y ∈ [0, 1] ∩ Q},

which is the set of all points in the square [0, 1]2 of rational coordinates. However, we shall in the
following mostly avoid such pathological sets, so in general they are not at problem.

We shall, whenever necessary or convenient, use the following conventions on drawings in E2 ∼ R2:
What is included in a set is marked by

1) a hatching (2-dimensional),

2) a full-drawn line (1-dimensional),

3) a small circle or just a point (0-dimensional).

In particular, a dot-and-dash line is only limiting a hatched set, and the points on such a line do not
belong to the set. Cf. Figure 1.10 to the left.

Note that if a closed curve without double points surrounds a set which together with the curve is
totally included in the set, we do not hatch the set inside the closed curve. Cf. Figure 1.10 to the
right.

1.5.1 Interior, exterior and boundary of a set

Given a Euclidean space En with its usual Euclidean distance, which in rectangular coordinates is
given by

distn(x,y) = �x− y� =

√

√

√

√

n
∑

j=1

(xj − yj)2.
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Figure 1.10: Visualization of two discs. On the left disc part of the boundary is not included, so we
are forced to hatch the interior. To the right, the full boundary is included, so there is no need to
hatch the interior.

where (x1, . . . , xn) and (y1, . . . , yn) ∈ Rn are the coordinates of x and y, resp.. Then it is possible to
introduce solid balls in En ∼ Rn as the points of distance smaller than (or equal to) a given radius
from a given centre x0.

The open ball B (x0, r) of radius r > 0 and centre x0 ∈ En ∼ Rn is given by

B (x0, r) := {x ∈ En | distn (x,x0) < r} = {x ∈ Rn | �x− x0 < r} .

The closed ball B [x0, r] of radius r > 0 and centre x0 ∈ En ∼ Rn is given by

B [x0, r] := {x ∈ En | distn (x,x0) ≤ r} = {x ∈ Rn | �x− x0 ≤ r} .

In the latter case we may allow r = 0, in which case the closed ball of centre x0 and radius 0 is just
the centre, B [x0, 0] = {x0}. These balls are fundamental in describing more general objects.

1) If x1 ∈ A, and there exists an r > 0, such that B (x1, r) ⊆ A, then we call x1 an interior point of
A. The set of all interior points of A is called the interior of A, and it is denoted by A◦.

2) If x2 /∈ A, and there exists an r > 0, such that B (x2, r) ∩ A = ∅, then we call x2 an exterior point
of A. The set of all exterior points of A is called the exterior of A. If ∁A := E2 \ A denotes the
complementary set of A, then the exterior of A is the interior of the complement of A, i.e. the set
(∁A)◦. The point x2 on Figure 1.11 is exterior.

3) The remaining part En \
{

A◦ ∪ (∁A)◦
}

is called the boundary of A. It is denoted by ∂A. Due to
the “symmetry” it follows that A and ∁A have the same boundary, so

∂A = ∂(∁A) = En \
{

A◦ ∪ (∁A)◦
}

.

On Figure 1.11 the points x3 ∈ A and x4 /∈ A are both boundary points.
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Figure 1.11: A set A ⊆ E2 divides E2 into three sets, 1) the interior S◦ of A, 2) the exterior (∁A)◦

of A, and 3) the boundary ∂A of A, which is the remaining set E2 \
{

A◦ ∪ (∁A)◦
}

.

A boundary point x ∈ ∂A is characterized in the following way: For every r > 0, the open ball
B(x, r) contains points from both the interior A◦ and the exterior (∁A)◦, i.e.

B(x, r) ∩ A◦ �= ∅ and B(x, r) ∩ (∁A)◦ �= ∅.

Note that the boundary point x ∈ ∂A may or may not be a point in A.

The union of the interior and the boundary is called the closure of A. It is denoted by A, hence

A = A◦ ∪ ∂A = A ∪ ∂A.

A set A is called open, if it does not contain any boundary point, i.e. if

A ∩ ∂A = ∅, or equivalently, A = A◦.

Summing up we see that

A is open, if and only if A ∩ ∂A = ∅,

and

A is closed, if and only if ∂A ⊆ A.

A set A is called a neighbourhood of x ∈ A, if there exists an r > 0, such that B(x, r) ⊆ A. In
particular, when A = A◦ is open, then A is a neighbourhood of all its points.

A boundary point P of A is called an isolated point, if there exists an r > 0, such that B(P, r) ∩ A =
{P}, i.e. if P is the only point from A in a neighbourhood of P .

In the rectangular coordinate space Rn we have already used the distance

distn(x,y) = �x− yn�n :=

√

√

√

√

n
∑

j=1

(xj − yj)
2.
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The open/closed balls are written

B(x, r) =







y ∈ Rn |
n
�

j=1

(xj − yj)
2 < r2







and B[x, r] =







y ∈ Rn |
n
�

j=1

(xj − yj)
2 ≤ r2







.

The importance of these new topological concepts will be demonstrated in connection with limits and
continuity in the next volume of this series.

1.5.2 Starshaped and convex sets

Concerning the shapes of the sets under consideration the situation is very simple in the 1-dimensional
case of E1, where it usually suffices only to consider intervals. However, even in the two-dimensional
case of E2 concerning the shapes of sets, the situation becomes far more complicated, and it is not
always obvious which type of sets we should look at.

Clearly, the n-dimensional intervals

I1 × I2 × · · · × In := {(x1, x2, . . . , xn) | x1 ∈ I1, x2 ∈ I2, . . . , xn ∈ In}

are obvious candidates, where each Ij is of one of the following four types,

Ij = ]aj , bj [ , ]aj , bj) , [aj , bj[ , [aj , bj] .

The balls defined previously are also often used sets.
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Figure 1.12: A convex and a starshaped set.

We may, however, also be interested in sets having some weaker geometrical properties.

A set A ⊆ En is called starshaped with respect to a point x0 ∈ A, if for every x ∈ A, the straight
line segment [x0,x] from x0 to x lies totally in A. The set to the right of Figure 1.12 illustrates why
the set is called starshaped. Every line segment from the centre to any other point in A lies in A.
However, if we choose two points from adjacent arms of the star, it is obvious that the line segment
between them is not totally contained in A, so we cannot in general choose the point x0 arbitrarily.

If the line segment between any two points of A also lies in A, then we say that this (clearly) starshaped
set is convex. The set to the left of Figure 1.12 is convex.

Finally, we say that a set A ⊂ En is bounded, if there exists an R > 0, such that A ⊆ B(0, R), i.e. A
is contained in a ball of finite radius. Any centre x0 may of course be used here instead.

1.5.3 Catalogue of frequently used point sets in the plane and the space

We shall in this section give a summary of frequently used point sets in E2 ∼ R2 and E3 ∼ R3.

1) If I, J ⊂ R are ordinary one-dimensional intervals, we define their product set by

I × J :=
{

(x, y) ∈ R2 | x ∈ I, y ∈ J
}

.

If J = I, we often write I2 instead of I × I.

If I and J are bounded, then I × J is a rectangle. In particular, I2 is a square, if I is a bounded
interval.

Let I be a bounded interval. Then I × R is called a strip, and I × [a,+∞[ and I× ] −∞, a] are
called half-strips, cf. Figure 1.13.

The set R+×R+ = R2
+ is the open first quadrant, and R×R+ is the upper half-plane, cf. Figure 1.14.

We mention the possibilities of the open right half-plane R+ ×R, the open left half-plane R− ×R

and the open lower half-plane R× R− and variants of these.
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Figure 1.13: A strip and a half-strip.

Figure 1.14: The first quadrant and the upper half-plane.

2) Let A ⊂ R2 be a bounded plane set, and let I ⊆ R be an interval. We define a cylinder in R3 by

A× I :=
{

(x, y, z) ∈ R3 | (x, y) ∈ A, z ∈ J
}

,

cf. Figure 1.15.

When the interval I is bounded, then the length |I| of I is called the height of the cylinder.

If A is a polygon, we also call the cylinder a prism. Special cases are a parallelepipedum, where A
is a rectangle, and a cube,, where A is a square.

3) Assume that the coordinate system has been chosen, such that the coordinate description of the
set A only contains the first two coordinates (x, y) in the form x2 + y2. Then A is rotational
symmetric with respect to the z-axis, and the three-dimensional set A can be fully described by
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Figure 1.15: A (bounded) cylinder.

one (two-dimensional) meridian half-plane, in which we can use either the rectangular coordinates
(̺, z) or the polar coordinates (r, θ), as described earlier. Then the point set A can be described as
a body of revolution, which is obtained by revolving the so-called meridian section, cf. Figure 1.16

Figure 1.16: The meridian section to the left is a half disc in the right (̺, z)-half-plane. The body of
revolution is a solid ball

4) A torus is the body of revolution, which is obtained by revolving a disc with respect to a line,
which does not meet the disc. If the coordinate system is placed conveniently with the z-axis as the
axis of revolution, then the disc in the meridian half-plane (i.e. the meridian section) is described
by the inequality

z2 + (̺− a)2 ≤ b2, where 0 < b < a,

cf. Figure 1.21.

Since ̺ =
√

x2 + y2, the torus T is then described in R3 by

T =

{

(x, y, z) ∈ R3 |
(

√

x2 + y2 − a
)2

+ z2 ≤ b2
}

,
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Figure 1.17: The meridian section to the left is a quarter of a disc in the right (̺, z)-half-plane. The
body of revolution is a solid half ball

Figure 1.18: The meridian section to the left is the half of a solid ring in the right (̺, z)-half-plane.
The body of revolution is a solid shell of a ball

Figure 1.19: The meridian section to the left is a rectangle with one of its sides on the z-axis. The
body of revolution is the cylinder to the right.

where 0 < b < a.

5) Consider a (solid) cone of revolution K of height h > 0 and radius a of its basis. If the coordinate
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Figure 1.20: The meridian section to the left is a rectangle without one of its sides on the z-axis. The
body of revolution to the right is the shell of a cylinder.

Figure 1.21: The meridian section of a torus.

axes are put as on Figure 1.22, then the cone is described in cylinder coordinates by

z

h
+

̺

a
≤ 1 and z ≥ 0.

Using that

0 < z < h
(

1− ̺

a

)

and ̺ =
√

x2 + y2 ≤ a,

we obtain the following rectangular coordinate description of the cone K,

K =

{

(x, y, z) | x2 + y2 ≤ a2, 0 ≤ z ≤ h

(

1−
√

x2 + y2

a2

)}

.

If instead we choose the triangle as in Figure 1.23, then the hypothenuse of the triangle has the
equation

z =
̺h

a
.
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Figure 1.22: A triangle in the meridian half-plane, and the cone K of height h and radius a of its
basis, which is the body of revolution of the triangle in the meridian half-plane.

Figure 1.23: A triangle in the meridian half-plane, and the cone K of height h and radius a of its
basis, which is the body of revolution of the triangle in the meridian half-plane.

We therefore conclude that the triangle in the meridian half-plane is described by
{

(̺, z) | ̺ ≥ 0,
̺h

a
≤ z ≤ h

}

.

Since ̺ =
√

x2 + y2 ≥ 0, it follows that the cone K in this case is described in rectangular
coordinates by

{

(x, y, z) | x2 + y2 ≤ a2,
h

a

√

x2 + y2 ≤ z ≤ h

}

.

In particular we see, that the rectangular description contains the ugly looking square root,
√

x2 + y2, which may obscure the reader’s feeling of what is going on.
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Note on Figure 1.23 that we fix ̺ (the vertical dashed line) to find the corresponding z-interval.
This technique will be used over and over again in this series of books on Real Functions in Several
Variables.

1.6 Quadratic equations in two or three variables; short theoretical review

1.6.1 Quadratic equations in two variables. Conic sections

The general quadratic equation in two variables is given by

(1.6) Ax2 +By2 + 2Cxy + 2Dx+ 2Ey + F = 0,

where A, B, C, D, E, F ∈ R, and (A,B,C) �= (0, 0, 0).
If C �= 0, then this equation can also be written in the following way,

(x y)

(

A C
C B

)(

x
y

)

+ 2(D E)

(

x
y

)

+ F = 0.
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If we apply some orthogonal substitution of the form
(

x
y

)

=

(

q11 −q21
q21 q11

)(

x1

y1

)

, q211 + q221 = 1,

then we may obtain by a suitable choice of q11 and q21 above that this equation is reduced to

λ1 x
2
1 + λ2 y

2
2 + 2(D E)

(

q11 −q21
q21 q11

)(

x1

y1

)

+ F = 0,

hence,

λ1 x
2
1 + λ2 y

2
1 + 2D1 x1 + 2E1 y1 + F = 0,

where the term 2C1 x1 y1 has disappeared, because we have obtained that C1 = 0 for some suitable
choice of (q11, q21), which defines an orthogonal substitution.

We have proved that if we choose a specific orthogonal substitution, then the general quadratic
equation (1.6) is reduced to

(1.7) Ax2 +B y2 + 2Dx+ 2Ey + F = 0, where (A,B) �= (0, 0),

and where we for convenience write (x, y) instead of (x1, y1).

I. Both coefficients are �= 0

When both A �= 0 and B �= 0, then the reduced equation (1.7) can be written

A

(

x+
D

A

)2

+B

(

y +
E

B

)2

=
D2

A
+

E2

B
− F.

This equation is simplified, when we introduce the new variables

x1 = x+
D

A
, t1 = y +

E

B
, and the constant K =

D2

A
+

E2

B
− F.

Then the reduced equation becomes

Ax2
1 +B y21 = K.

We have here two possibilities: Either K �= 0 or K = 0. If K �= 0, then we “norm” the equation by
dividing it by K to get

x2
1

K/A
+

y21
K/B

= 1.

It is customary to introduce new constants by

a =

√

∣

∣

∣

∣

K

A

∣

∣

∣

∣

and b =

√

∣

∣

∣

∣

K

B

∣

∣

∣

∣

.

Depending on the signs of A, B and K we then get three possibilities,

Ellipse
x2
1

a2
+

y21
b2

= 1

Hyperbola
x2
1

a2
− y21

b2
= 1

(

and also − x2
1

a2
+

y21
b2

= 1

)

Empty set −x2
1

a2
− y21

b2
= 1.

48

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume-I 
Point sets in Rn

49 

Basic concepts

If instead K = 0, then we put

a =

√

1

|A| and b =

√

1

|B| .

Then, depending on the signs of A and B we get the following two possibilities:

A point
x2
1

a2
+

y21
b2

= 0,

Two straight lines
x2
1

a2
− y21

b2
= 0.

We shall in the following briefly discuss these possibilities. For simplicity we again write (x, y) instead
of (x1, y1).

The ellipse. The normed equation of the ellipse is given by

(1.8)
x2

a2
+

y2

b2
= 1, where a, b > 0.

In the special case where a = b, formula (1.8) describes a circle of centre (0, 0) and radius r = a =.

In general, (1.8) has the two coordinate axes as axes of symmetry. The ellipse cuts the x-axis at
the points A+ : (a, 0) and A− : (−a, 0), and the y-axis at the points B+ : (0.b) and B− : (0,−b).
These four points are called the top point of the ellipse. The numbers a and b (or more correctly
the line segments from O : (0, 0) to A+ : (a, 0), and from O : (0, 0) to B+ : (0, b)) are called the
semi-axes of the ellipse. The larger of a and b is called the major semi-axis, and the smaller of
them is called the minor semi-axis of the ellipse. Let us assume in the following that a > b. Then
we define the eccentricity e of the ellipse by

e :=

√

1− b2

a2
, 0 < e < 1,

where we formally may add e = 0 in the limiting case b = a, when the ellipse becomes a circle.

The foci of the ellipse (in singular: focus) are when a > b the points

F+ : (ea, 0) and F− : (−ea, 0).

If P : (x, y) lies on the ellipse, then a small computation shows that

∣

∣

∣

−−→
F+P

∣

∣

∣ = a− ex and
∣

∣

∣

−−→
F−P

∣

∣

∣ = a+ ex,

hence by addition,

(1.9)
∣

∣

∣

−−→
F+P

∣

∣

∣
+

∣

∣

∣

−−→
F−P

∣

∣

∣
= 2a,

i.e. equal twice the major semi-axis. It is possible to prove that a relation like (1.9) only holds
for an ellipse of foci F+ and F− and the major semi-axis a, where we of course must require that
∣

∣

∣

−−−→
F−F+

∣

∣

∣
< 2a.
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Figure 1.24: An ellipse.

The hyperbola. The normed equation of the hyperbola is for a convenient choice of the variables of
the form

(1.10)
x2

a2
− y2

b2
= 1.

The coordinate axes are the axes of symmetry. The hyperbola (1.10) intersects the x-axis at the
two top points A+ : (a, 0) and A− : (−a, 0), and it has no point in common with the y-axis. The
positive numbers a and b are called the semi-axes of the hyperbola.
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Figure 1.25: An hyperbola.

The lines y = ± b

a
x are the asymptotes of the hyperbola. They are found by replacing 1 on the

right hand side of (1.10) by 0 and then solving the equation. It is obvious that b is the length of
the line segment perpendicular to the x-axis from A to the asymptote in the first quadrant.

The eccentricity e of the hyperbola is defined by

e :=

√

1 +
b2

a2
, e > 1.

The foci are defined by their coordinates, i.e.

F+ : (ea, 0) and F− : (−ea, 0).

If P : (x, y) is a point on the hyperbola in the right half plane (i.e. closest to the focus F+), then
one likewise proves that

∣

∣

∣

−−→
F+P

∣

∣

∣ = ex− a and
∣

∣

∣

−−→
F−P

∣

∣

∣ = ex+ a,

hence by subtraction,
∣

∣

∣

−−→
F−P

∣

∣

∣
−
∣

∣

∣

−−→
F+P

∣

∣

∣
= 2a,

so in general for P : (x, y) just a point on the hyperbola,

(1.11)
∣

∣

∣

∣

∣

∣

−−→
F+P

∣

∣

∣
−
∣

∣

∣

−−→
F−P

∣

∣

∣

∣

∣

∣
= 2a.

It is possible to prove that if F+ and F− are two fixed points in the plane, then all points P , which
satisfy (1.11), describe an hyperbola of foci F+ and F− and a one of the semi-axes. The other one,
b, is then obtained from the equation

∣

∣

∣

−−−→
F−F+

∣

∣

∣ = 2ae = 2a

√

1 +
b2

a2
= 2

√

a2 + b2,

51

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume-I 
Point sets in Rn

52 

Basic concepts

hence

b =
1

2

√

∣

∣

∣

−−−−→
F−F+

∣

∣

∣

2

− 4a2.

A point. The general equation is here

x2

a2
+

y2

b2
= 0,

where O : (0, 0) is the only solution.

Two lines. The general solution is

x2

a2
− y2

b2
= 0,

which is rewritten as
(x

a
− y

b

)(x

a
+

y

b

)

= 0.

The solutions are the two lines

bz + ay = 0 and bx− ay = 0.,

which describe two lines through (0, 0).

II. Precisely one of the constants A and B is 0.
We may assume that A �= 0 and B = 0. Then (1.7) is written

(1.12) Ax2 + 2Dx+ 2E t+ F = 0.

If also E �= 0, then this equation is rewritten as

A

(

x+
D

A

)2

= −2E

(

y − 1

2E

{

D2

A
− F

})

,

so if we put

x1 = x+
D

A
, y1 = y − 1

2E

{

D2

A
− F

}

and a = − A

2E
,

then we get the structure,

y1 = ax2
1 (a parabola).

If instead E = 0, then (1.12) becomes

Ax2 + 2Dx+ F = 0,

which is written as

x2
1 = k, (no solution, one line, or, two parallel lines),
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where

x1 = x+
D

A
and k =

1

A

{

D2

A
− F

}

.

As usual we write in the following for convenience (x, y) instead of (x1, y1). Then the analysis above
shows that we have two cases.

Figure 1.26: A parabola.

The parabola. The normed equation is here

(1.13) y = a x2, a �= 0.

It intersects the coordinate axes only at the origo, O : (0, 0), which is called the top point of the
parabola, and the y-axis is the only axis of symmetry.

One usually instead put p =
1

a
, and then (1.13) is written

(1.14) x2 = py,

where p is called the parameter of the parabola. The focus of the parabola is F :
(

0,
p

4

)

, and the

line ℓ of the equation y = −p

4
is called the directrix of the parabola. Its geometric meaning is that

if P is any point on the parabola, then
∣

∣

∣

−−→
FP

∣

∣

∣ = dist(P, ℓ),

i.e. the distance from P to the focus is equal to the distance from P to the directrix ℓ.

The empty set, one line, or two parallel lines. In the case the equation is

x2 = k.
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If k < 0, then we have no solution.
If k = 0, then the line x = 0, y ∈ R, is the only solution.
If k > 0, then the two parallel lines x = ±

√
k, y ∈ R, are the solutions.

We call the ellipses, the hyperbolas and the parabolas the (non-degenerated) conic sections, because
they can be obtained as the intersection of a cone with a plane. The other cases mentioned above are
then called the degenerated conic sections.

1.6.2 Quadratic equations in three variables. Conic sectional surfaces.

The general quadratic equation in three variables has the form

(1.15) Ax2 +B y2 + C z2 + 2Dxy + 2E xz + 2F yz + 2g x+ 2H y + 2I z + J = 0,

where A, B, . . . , J ∈ R are real constants, and where (A,B,C,D,E, F ) �= (0, 0, 0, 0, 0, 0).

As usual, the product terms 2Dxy + 2E xz + 2F yz are a nuisance, when (D,E, F ) �= (0, 0, 0), so the
first task is to transform (1.15) into some new variables x1, y1, z1, such that the new coefficients are
all zero, (D1, E1, F1) = (0, 0, 0).

We note that (1.15) can be written

(1.16) (x y z)A





x
y
z



+ 2(G H I)





x
y
z



+ J = 0, where A :=





A D E
D B F
E F C



 .
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We find by methods described previously a coordinate transformation




x
y
z



 = Q





x1

y1
z1



 , where Q = (q1 q2 q3) , with q3 = q1 × q2,

such that

(x1 y1 z1)Q
T
AQ





x1

y1
z1



 = λ1 x
2
1 + λ2 y

2
1 + λ3 z

2
1 .

Just find the eigenvalues and the corresponding eigenvectors of A. (Here MAPLE may be used to ease
the computations.)

When we use this coordinate transformation, then (1.16) is reduced to

λ1 x
2
1 + λ2 y

2
1 + λ3 z

2
1 + 2(G H I)Q





x1

y1
z1



+ J = 0.

Then introduce

G1 = (G H I)q1, H1 = (G H I)q2, I1 = (G H I)q3,

and the equation is reduced to

(1.17) λ1 x
2
1 + λ2 y

2
1 + λ3 z

2
1 + 2G1 x1 + 2H1 y1 + 2I1 z1 + J = 0.

It follows from the analysis above that it suffices to consider the simpler equation

Ax2 +B y2 + C z2 + 2Gx+ 2H y + 2I z + J = 0, (A,B,C) �= (0, 0, 0),

where we again have simplified the notation.

We shall split the investigation into three cases.

I. First case, A �= 0, B �= 0 and C �= 0.

In this case, (1.17) can be rewritten as

A

�

x+
G

A

�2

+B

�

y +
H

B

�2

+ C

�

z +
I

C

�2

=
G2

A
+

H2

B
+

I2

C
− J.

If we put

x1 = x+
G

A
, y1 = y +

H

B
, z1 = z +

I

C
, K =

G2

A
+

H2

B
+

I2

C
− J,

then the equation (1.17) is reduced to the simpler form

Ax2
1 +B y21 + C z21 = K.

Let us first assume that K �= 0. Then it is customary to norm the equation by dividing it by K,

x2
1

K/A
+

y21
K/B

+
z21

K/C
= 1.
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We write for short,

a :=

√

∣

∣

∣

∣

K

A

∣

∣

∣

∣

, b :=

√

∣

∣

∣

∣

K

B

∣

∣

∣

∣

, c :=

√

∣

∣

∣

∣

K

C

∣

∣

∣

∣

.

Then we obtain the canonical form

±
(x1

a

)2

±
(y1
b

)2

±
(z1
c

)2

= 1,

with all possible choices of the signs, i.e. in principle eight subcases in total, which, however, by some
trivial argument of symmetry (where we rename the variables) can be reduced to four. These are

ellipsoid
(x1

a

)2

+
(y1
b

)2

+
(z1
c

)2

= 1,

hyperboloid of one sheet
(x1

a

)2

+
(y1
b

)2

−
(z1
c

)2

= 1,

hyperboloid of two sheets
(x1

a

)2

−
(y1
b

)2

−
(z1
c

)2

= 1,

empty set −
(x1

a

)2

−
(y1
b

)2

−
(z1
c

)2

= 1.

If instead K = 0, then we put

a :=

√

1

|A| , b :=

√

1

|B| , c :=

√

1

|C| ,

from which we get the two possibilities,

a point
(x1

a

)2

+
(y1
b

)2

+
(z1
c

)2

= 0,

conic sectional conic surface
(x1

a

)2

+
(y1
b

)2

−
(z1
c

)2

= 0.

We shall briefly describe these possibilities in the following, where we again for short write (x, y, z)
instead of (x1, y1, z1).

1. The ellipsoid has the canonical equation

(x

a

)2

+
(y

b

)2

+
(z

c

)2

= 1.

The semi-axes are clearly a, b and c.

2. The hyperboloid with one sheet. The normed equation is

(x

a

)2

+
(y

b

)2

−
(z

c

)2

= 1,

with one minus sign on the left hand side of the equation. The corresponding surface is connected,
i.e. it consists of one surface. (This is only indicated on the figure, because the author has not
been clever enough to make the right figure.)
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Figure 1.27: An ellipsoid.

Figure 1.28: An hyperboloid with one sheet.

An important special case is obtained, when a = b, in which case

x2 + y2

a2
− z2

c2
= 1.

This hyperboloid of one sheet is obtained by revolving the (two dimensional) hyperbola

(x

a

)2

−
(z

c

)2

= 1, y = 0,

in the XZ-plane around the z-axis.

It is possible to prove the following
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Figure 1.29: An hyperboloid with two sheets.

Theorem 1.1 An hyperboloid of one sheet contains two systems of straight lines. Two different
lines from the same system are always oblique. Two lines, one from each system, always lie in the
same plane.
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3. The hyperboloid with two sheets. The normed equation is

(x

a

)2

−
(y

b

)2

−
(z

c

)2

= 1.

It is characterized by having two minus signs on the left hand side of the normed equation. The
corresponding surface is split into two connected components.

4. The conic sectional conic surface has the canonical equation

(x

a

)2

+
(y

b

)2

−
(z

c

)2

= 0.

It is clearly a cone with O : (0, 0, 0) as its centrum.

Figure 1.30: A conic sectional conic surface.

5. A point. The equation is

(x

a

)2

+
(y

b

)2

+
(z

c

)2

= 0,

which is only satisfied for O : (0, 0, 0).

II. Second case. Here we assume that A �= 0, B �= 0 and C = 0. Then (1.17) is reduced to

(1.18) Ax2 +B y2 + 2Gx+ 2H y + 2I z + J = 0.

First assume that also I �= 0. Then (1.18) can be reformulated as

A

(

x+
G

A

)2

+B

(

y +
H

B

)2

= −2I

(

z − 1

2I

{

G2

A
+

H2

B
− J

})

.

If we put

x1 = x+
G

A
, y1 = y +

H

B
, z1 = z − 1

2I

{

G2

A
+

H2

B
− J

}

, L = −2I,
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then (1.18) is reduced to

Ax2
1 +B y21 = L z1.

By assumption, L = −2I �= 0, so when we divide by L, we get

x2
1

L/A
+

y21
L/B

= z1.

Then write for short,

a :=

√

∣

∣

∣

∣

L

A

∣

∣

∣

∣

and b :=

√

∣

∣

∣

∣

L

B

∣

∣

∣

∣

,

and we get the two possibilities,

elliptic paraboloid
(x1

a

)2

+
(y1
b

)2

= z1,

hyperbolic paraboloid
(x1

a

)2

−
(y1
b

)2

= z1.

If instead I = 0, then (1.18) is written

A

(

x+
G

A

)2

+B

(

y +
H

B

)2

=
G2

A
+

H2

B
− J.

We simplify by writing

x1 = x+
G

A
, y1 = y +

H

B
, K =

G2

A
+

H2

B
− J,

because then (1.18) takes the simpler form

(1.19) Ax2
1 +B y21 = K.

Again we must split into the two cases, K �= 0 and K = 0. If K �= 0, then we write for short

a :=

√

∣

∣

∣

∣

K

A

∣

∣

∣

∣

, b :=

√

∣

∣

∣

∣

K

B

∣

∣

∣

∣

.

We obtain the following three possibilities,

elliptic cylindric surface
(x1

a

)2

+
(y1
b

)2

= 1,

hyperbolic cylindric surface
(x1

a

)2

−
(y1
b

)2

= 1,

empty set −
(x1

a

)2

−
(y1
b

)2

= 1.
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If instead K = 0, we put

a :=

√

1

|A| and b :=

√

1

|B| .

Then we get the two possibilities,

the z1-axis
(x1

a

)2

+
(y1
b

)2

= 0,

two planes through the z1-axis
(x1

a

)2

−
(y1
b

)2

= 0.

We shall in the following briefly sketch the possibilities above. Again we write for short (x, y, z) instead
of (x1, y1, z1).
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1. The elliptic paraboloid. The canonical equation is
(x

a

)2

+
(y

b

)2

= z.

Figure 1.31: An elliptic paraboloid.

2. The hyperbolic paraboloid. The canonical equation is
(x

a

)2

−
(y

b

)2

= z.

It is possible to prove the following theorem

Figure 1.32: An hyperbolic paraboloid.

Theorem 1.2 An hyperbolic paraboloid contains two systems of straight lines. Two different
lines from the same system are always oblique with respect to each other. Two lines from different
systems will always intersect each other.
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3. The elliptic cylindric surface. The canonical equation is

(x

a

)2

+
(y

b

)2

= 1.

Figure 1.33: An elliptic cylindric surface.

4. The hyperbolic cylindric surface. The canonical equation is

(x

a

)2

−
(y

b

)2

= 1.

Figure 1.34: An hyperbolic cylindric surface.
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III. The third case. Here we assume that A �= 0, while B = C = 0. Then (1.17) is reduced to

(1.20) Ax2 + 2Gx+ 2H y + 2I z + J = 0.

If (H, I) �= (0, 0), e.g. I �= 0, then (1.20) is reformulated as

A

�

x+
G

A

�2

+ 2H y + 2I

�

z +
1

2I

�

J − G2

A

��

= 0.

We put

x1 = x+
G

A
, y1 = y and z1 = z +

1

2I

�

J − G2

A

�

,

from which

Ax2
1 + 2H y1 + 2I z1 = 0.

Then apply the orthogonal substitution




x1

y1
z1



 =





1 0 0

0 I/
√
H2 + I2 H/

√
H2 + I2

0 −H/
√
H2 + I2 I/

√
H2 + i2









x2

y2
z2





to reduce the equation above to

Ax2
2 + 2

�

H2 + I2 z2 = 0.

This structure invites to put p := −2
√
H2 + I2/A, so we get

parabolic cylindric surface x2
2 = p z2,

which is the canonical equation.

Figure 1.35: A parabolic cylindric surface.

If instead (H, I) = (0, 0), then (1.20) reduces to

A

�

x+
G

A

�2

=
G2

A
− J.
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Writing

x1 = x+
G

A
and k =

1

A

{

G2

A
.J

}

,

we see that this case can be written in the form

x2
1 = k2,

i.e. the empty set, one plane, or two (parallel) planes.
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1.6.3 Summary of the canonical cases in three variables

Equation Name (0, 0, 0) Generators

x2

a2 + y2

b2 + z2

c2 = 1 Ellipsoid Centrum None

x2

a2 + y2

b2 − z2

c2 = 1
Hyperboloid
of one sheet

Centrum
Two systems
of lines

x2

a2 − y2

b2 − z2

c2 = 1
Hyperboloid
of two sheets

Centrum None

−x2

a2 − y2

b2 − z2

c2 = 1 Empty set — —

x2

a2 + y2

b2 + z2

c2 = 0 Point (0, 0, 0) — —

x2

a2 + y2

b2 − z2

c2 = 0
Conic sectional
conic surface

Centrum
Lines through
the centrum

x2

a2 + y2

b2 = z
Elliptic
paraboloid

Toppoint None

x2

a2 − y2

b2 = z
Hyperbolic
paraboloid

Toppoint
Two systems
of lines

x2

a2 + y2

b2 = 1
Elliptic
cylindric surface

Centrum
Lines parallel
with the z-axis

x2

a2 − y2

b2 = 1
Hyperbolic
cylindric surface

Centrum
Lines parallel
with the z-axis

−x2

a2 − y2

b2 = 1 Empty set — —

x2

a2 + y2

b2 = 0 z − axis — —

x2

a2 − y2

b2 = 0
Two planes
through the z-axis

— —

x2 = p z
Parabolic
cylindrical surface

Toppoint
Lines parallel
with the y-axis

x2 = k > 0
Two planes
parallel with
the Y Z-plane

— —

x2 = 0 Y Z-plane — —

x2 = k < 0 Empty set — —
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2 Some useful procedures

2.1 Introduction

In this chapter we collect some simple and useful practical procedures, like integration of trigonometric
polynomials, the technique of partial fractions, when MAPLE is not at hand, integration of a quotient
of two polynomials, and how to find the domain of a given function. All these will be important in
the following chapter.

2.2 Integration of trigonometric polynomials

Problem 2.1 Calculate the integral

∫

sinm x cosn x dx for m, n ∈ N0.

Notation: By the degree of the product sinm x cosn x we shall understand the sum m + n of the
exponents.

Split the problem into a simpler one: There are two main cases, odd and even degree. Each of
these is again split into two subcases:

1) m+ n odd.

a) m even and n odd, i.e. m = 2p and n = 2q + 1, p, q ∈ N0,

b) m odd and n even, i.e. m = 2p+ 1 and n = 2q, p, q ∈ N0.

2) m+ n even.

a) m and n are both odd, i.e. m = 2p+ 1 and n = 2q + 1, p, q ∈ N0,

b) m and n are both even, i.e. m = 2p and n = 2q, p, q ∈ N0.

The most difficult case occurs in 2b), where both m and n are even.

Method of solution:

1) a) m = 2p and n = 2p+ 1.

Apply the substitution u = sinx corresponding to m = 2p even:
∫

sin2p x cos2q+1 xdx =

∫

sin2p x · cos2q x · cosxdx

=

∫

sin2p x · (1 − sin2 x)q d sinx

=

∫

u=sin x

u2p(1− u2)q du,

where the integral is a usual polynomial in u of degree 2p+ 2q.
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b) m = 2p+ 1 and n = 2q.

Apply the substitution u = cosx corresponding to n = 2q even:
∫

sin2p+1 x · cos2q xdx =

∫

sin2p x · cos2q x · sinxdx

=

∫

(1− cos2 x)p cos2q x · (−1) d cosx

= −
∫

u=cosx

(1− u2)pu2q du,

where the integral is a usual polynomial in u og degree 2p+ 2q.

2) When the degree m + n is even, the trick is to change the problem to a similar one by doubling
the angle, thereby halving the degree. Therefore, we use the formulæ

cos2 x =
1

2
(1 + cos 2x), sin2 x =

1

2
(1− cos 2x), sinx cos x =

1

2
sin 2x.

a) m = 2p+ 1 and n = 2q + 1 are both odd.

The integrand is transformed in the following way:

sin2p+1 x · cos2q+1 x = (sin2 x)p · (cos2 x)q · sinx cosx

=

{

1

2
(1 − cos 2x)

}p {
1

2
(1 + cos 2x)

}q

· 1
2
sin 2x.

Hence we are in a special case of 1b), so by the substitution u = cos 2x we get
∫

sin2p+1 x cos2q+1 xdx =
1

2p+q+1

∫

(1− cos 2x)p(1 + cos 2x)q sin 2xdx

=
1

2p+q+1

∫

(1− cos 2x)p(1 + cos 2x)q ·
(

−1

2

)

d cos 2x

= − 1

2p+q+2

∫

u=cos 2x

(1− u)p(1 + u)q du.

b) m = 2p and n = 2q are both even.

In this case there is no final formula, but there is a procedure by which we can reduce the
problem to a sum of several problems of the types 1a) and 2b) of lower degree. The result is
obtained after a finite number of steps.

The integrand is rewritten in the following way:

sin2p x cos2q x =

{

1

2
(1− cos 2x)

}p {
1

2
(1 + cos 2x)

}q

.

The left hand side is a trigonometrical polynomial of degree 2p+ 2q in the angle x. The right
hand side is a trigonometric polynomial of degree p + q in the doubled angle 2x. Each term
of this polynomial must be handled separately, depending on whether the degree j(≤ p+ q) is
odd (case 1a) or 1b)) or even (case 2b)).

Remark 2.1 It is of course in principle possible to create a specific solution formula, but it
will be more confusing than the description of the procedure given above. ♦

MAPLE. When m, n ∈ N0 are explicitly given as numbers, an application of MAPLE is of course
the easiest method. When either m or n ∈ N0 is not specified, one applies the method above.
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2.3 Complex decomposition of a fraction of two polynomials

Problem 2.2 Write the quotient
P (x)

Q(x)
of two polynomials as a sum of elementary fractions.

Remark 2.2 This problem occurs typically in connection with integration, and in courses on series
also in telescopic summation. If the denominator has complex conjugated roots of at least order 2, a
complex decomposition is usually the easiest method. If the order is 1, then real decomposition may
be applied instead. We shall here show the method of complex decomposition. ♦

Procedure.

1) If the degree of the numerator is ≥ the degree of the denominator, we first perform a division by
the denominator,

P (x)

Q(x)
= P1(x) +

R(x)

Q(x)
,

where the residual polynomial R(x) (the new numerator) has a degree smaller than the degree of
Q(x). We save the resulting polynomial P1(x) for the last step.

2) The denominator Q(x) is then factorized into polynomials of degree one (with complex roots):

Q(x) = c · (x− a1)
p1 · · · (x− ak)

pk .

Check that the sum p1 + · · ·+ pk of all exponents is equal to the degree of Q(x). If Q(x) is a real
polynomial, check that the complex conjugated roots occur of the same degree.
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3) To ease matters, choose the simplest one of the two polynomials P (x) and R(x). The following
method gives the same result, whether P (x) or R(x) is used. Since it is here theoretically most
correct to use R(x), we shall use R(x) in the rest of this description, and it is left to the reader to
write P (x) instead of R(x), whenever this will give us simpler calculations.

4) The fraction is rewritten in the following way

R(x)

Q(x)
=

1

c
· R(x)

(x − a1)p1 · · · (x− ak)pk
.

We get the coefficient of the special simple fraction

1

(x− a1)p1

by “covering by one’s hand” the factor (x−a1)
p1 in the denominator and then putting x = a1 into

the remainder part:

b1,p1 =
1

c
· R(x)

(x− a2)p2 · · · (x− ak)pk

∣

∣

∣

∣

x=a1

.

Save the result

b1,p1

(x− a1)p1

for the last step in this procedure.

5) Repeat 4) on any other of the factors

(x− a2)
p2 , · · · (x− ak)

pk ,

in the denominator and save all the found special fractions.

6) Subtract all the found special fractions from
R(x)

Q(x)
and reduce:

1

c
· R(x)

(x− a1)p1 · · · (x− ak)pk
− b1,p1

(x−a1)p1
− · · · − bk,pk

(x−ak)pk

=
1

d
· R1(x)

(x− a1)q1
· · · (x− ak)

qk .

If the calculations are made without errors, then

q1 < p1, · · · qk < pk.

Check this! (A weak test.)

7) Repeat 4), 5) and 6) on the reduced fraction

1

d
· R1(x)

(x− a1)q1 · · · (x− ak)qk
.

Remember in each step to write down the elementary fractions which have been found. The
process must necessarily stop after a finite number of steps, because the degree of the denominator
is becoming smaller by each iteration.
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8) Finally, collect all the found elementary fractions together with the polynomial from 1).

The description above is the standard procedure. My experience has shown me that one often can
find shortcuts, which are impossible to systemize here. I shall therefore here only give one example of
many possibilities.

Example 2.1 Let us here try to decompose the fractional function

1

x4 − 1
.

1) The standard procedure as described above. The denominator has the simple roots 1, i, −1, −i,
hence

1

x4 − 1
=

1

(x− 1)(x− i)(x+ 1)(x+ i)

=
1

(1−i)(1+1)(1+i)
· 1

x−1
+

1

(i−1)(i+1)(i+i)
· 1

x−i

+
1

(−1−1)(−1−i)(−1+i)
· 1

x+1
+

1

(−i−1)(−i−i)(−i+1)
· 1

x+i

=
1

4
· 1

x−1
− 1

4i
· 1

x−i
− 1

4
· 1

x+1
+

1

4i
· 1

x+i

=
1

4
· 1

x−1
− 1

4
· 1

x+1
− 1

4i

{

1

x−i
− 1

x+i

}

=
1

4
· 1

x−1
− 1

4
· 1

x+1
− 1

2
· 1

x2 + 1
.

This is of course fairly tiresome, though it works.

2) Alternatively it is seen that

x4 − 1 =
(

x2
)2 − 1 = (x2 + 1)(x2 − 1),

so if we write u = x2, and first decompose with respect to u followed by a decomposition with
respect to x, we easily get in two simpler steps that

1

x4 − 1
=

1

u2 − 1
=

1

(u − 1)(u+ 1)
=

1

2

1

u− 1
− 1

2

1

u+ 1

=
1

2

1

x2 − 1
− 1

2

1

x2 + 1
=

1

2

1

(x− 1)(x+ 1)
− 1

2

1

x2 + 1

=
1

4

1

x− 1
− 1

4

1

x+ 1
− 1

2

1

x2 + 1
. ♦

3) MAPLE. This is easy here, because the rational function does not contain extra parameters:

convert

(

1

x4 − 1
, parfrac, x

)

− 1

2 (x2 + 1)
− 1

4(x+ 1)
+

1

4(x− 1)

Here, “parfrac” is of course a shorthand for “partial fraction”.
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In the latter two cases we should of course continue with a complex decomposition of
1

x2 + 1
. The

simple details are left to the reader.

2.4 Integration of a fraction of two polynomials

Problem 2.3 Calculate
∫ P (x)

Q(x)
dx, where P (x) and Q(x) are (real) polynomials.

Procedure.

1) Decompose
P (x)

Q(x)
as described in the previous chapter on complex decomposition.

Then
P (x)

Q(x)
is written as a sum of a polynomial P1(x) and some elementary fractions of the type

c

(x− a)p
, i.e. we perform a partial fraction construction.

2) The polynomial P1(x) is integrated in the usual way.

3) The elementary fractions where p > 1 are also integrated in the usual way

∫

c

(x− a)p
dx = − c

p− 1
· 1

(x− a)p−1
,

no matter whether a is real or complex. If P (x) and Q(x) are real, then any complex fraction of

the type
c

(x− a)p
will be accompanied by its complex conjugated fraction

c

(x− a)p
. This means

that the integration of such a pair of complex conjugated fractions can be reduced to

∫ {

c

(x− a)p
+

c

(x− a)p

}

dx = − 1

p− 1

{

c

(x− a)p−1
+

c

(x− a)p−1

}

= − 2

p− 1
Re

{

c

(x− a)p−1
· (x− a)p−1

(x− a)p−1

}

= − 2

p− 1
· Re{c · (x − a)p−1}
{x2 − 2Re a · x+ |a|2}p−1

4) If p = 1, and a is real, then of course

∫

x

x− a
dx = c · ln |x− a|.

5) If p = 1, and a is complex, then both
c

x− a
and

c

x− a
occur in the decomposition. A direct

integration is not possible, unless one is familiar with the theory of Complex Functions. Instead
we add the two elementary fractions before the integration. (Note that when p > 1, this is done
after the integration, cf. 3)).
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More precisely we put a = α+ i β and c = r + i s. Then

c

x− a
+

c

x− a
=

r + i s

x− α− i β
+

r − i s

x− α+ i β

=
(r + i s)(x− α− i β) + (r − i s)(x− α− i β)

(x− α)2 + β2

=
2r(x − α)

(x− α)2 + β2
− 2sβ

(x− α)2 + β2
,

whence

∫ {

c

x− a
+

c

x− a

}

dx = r

∫

2(x− α)

(x − α)2 + β2
dx− 2s

∫

1

1 +

(

x− α

β

)2

1

β
dx

= r · ln
{

(x− α)2 + β2
}

− 2sArctan

(

x− α

β

)

.

6) The final result is obtained by gathering all the results from 2), 3), 4) and 5).
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Example 2.2 In Example 2.1 we found the decomposition

1

x4 − 1
=

1

4

1

x− 1
− 1

4

1

x+ 1
− 1

2

1

x2 + 1
,

from which we immediately get

∫

1

x4 − 1
dx =

1

4
ln

∣

∣

∣

∣

x− 1

x+ 1

∣

∣

∣

∣

− 1

2
Arctan x, x �= ±1. ♦

ALTERNATIVELY it is straightforward here to apply MAPLE instead. The details are left to the
reader.
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3 Examples of point sets, conics and conical sections

3.1 Point Sets

Example 3.1 Sketch the point set A, the interior A◦, the boundary ∂A and the closure A in each of
the cases below.
Furthermore, examine whether A is open, closed or nothing of that kind.
Finally, check whether A is bounded or unbounded.

1) {(x, y) | xy �= 0}.

2) {(x, y) | 0 < x < 1, 1 ≤ y ≤ 3}.

3) {(x, y) | y ≥ x2, |x| < 2}.

4) {(x, y) | x2 + y2 − 2x+ 6y ≤ 15}.

A Examination of point sets in the plane.

D Each set is analyzed on a figure.

I 1) The set A = {(x, y) | xy �= 0} is the whole plane with the exception of the X and the Y axes. It
is obvious that it is open,

A = A◦.

The boundary ∂A is the union of the X and the Y axes.

The closure is A = A◦ ∪ ∂A = R2, i.e. the whole plane.

Finally, A is clearly not bounded.

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

y

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1

x

Figure 3.1: The set of Example 3.1.1

2) It is easy to sketch the rectangle A = ]0, 1[×[1, 3]. We see that

A◦ = ]0, 1[× ]1, 3[.

The boundary of the rectangle is rather complicated to describe formally:

∂A = {(x, y) | 0 ≤ x ≤ 1, y = 1} ∪ {(x, y) | 0 ≤ x ≤ 1, y = 3}
∪ {(x, y) | x = 0, 1 ≤ y ≤ 3} ∪ {(x, y) | x = 1, 1 ≤ y ≤ 3} .

This example shows why one shall often prefer a figure instead of a formally correct mathe-
matical description.
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0

1

2

3

y

–1 –0.5 0.5 1 1.5 2

x

Figure 3.2: The set of Example 3.1.2

The closure is

A = [0, 1]× [1, 3].

The set A is neither open nor closed.

Obviously, the set is bounded (it is e.g. contained in the disc of centre (0, 0) and radius 4).

1

2

3

4

5

y

–3 –2 –1 1 2 3

x

Figure 3.3: The set of Example 3.1.3

3) The set

A = {(x, y) | y > x2, |x| < 2},

is also easily sketched. Here

A◦ = {(x, y) | y > x2, |x| < 2}

and

∂A = {(x, y) | x = −2, y ≥ 4} ∪ {(x, y) | |x| ≤ 2, y = x2} ∪ {(x, y) | x = 2, y ≥ 4},

and

A = {(x, y) | y ≥ x2, |x| ≤ 2}.

The set A is neither open nor closed.
The set is clearly not bounded.

4) Since

x2 + y2 − 2x+ 6y ≤ 15
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can be rewritten as

x2 − 2x+ 1 + y2 + 6y + 9 ≤ 9 ≤ 15 + 1 + 9 = 25 = 52,

i.e. put into the form

(x− 1)2 + (y + 3)2 ≤ 25 = 52,

it follows that

A = {(x, y) | (x− 1)2 + (y + 3)2 ≤ 52} = K((1, 3); 5).

This describes a closed disc of centre (1,−3) and radius 5, thus A = A.

–8

–6

–4

–2

2

y

–4 –2 2 4 6
x

Figure 3.4: The set of Example 3.1.4

Then

A◦ = K((1,−3); 5) = {(x, y) | (x− 1)2 + (y + 3)2 < 52}

and

∂A = {(x, y) | (x− 1)2 + (y + 3)2 = 52},

and A = A is closed and bounded.

Remark. Note that whenever a set like the one under consideration is described by an in-
equality between simple algebraic expressions, one will usually obtain the open set A◦ by only
using the inequality signs < or > without equality sign, obtain the closed set by using ≤ or ≥
everywhere, and finally get the boundary by only using equality sign =. This is unfortunately
only a rule of thumb, and one must be aware of that there are exceptions from this rule. ♦
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Example 3.2 Sketch in each of the following cases the point set A.
Examine whether A is open or closed or none of the kind.

1) {(x, y) | 3x2 + 2y2 < 6}.

2) {(x, y) | x2 + y2 ≤ 1, y > 0}.

3) {(x, y) | x2(1− x2 − y2) > 0}.

4) {(x, y) | 0 < x− y ≤ 1, y > 4}.

5)
{

(x, y) | x2 + y2 ≥
√

x2 + y2
}

.

6) {(x, y) | max{|x|, |y|} ≤ 1}.

7) {(x, y) | |x| + |y| < 1}.

8) {(x, y) | x ≤ y ≤ 4− x2}.

9) {(x, y) | (x − 1)(x2 + y2) ≥ 0}.

10) {(x, y) | (y2 − 1)(y − 3) > 0}.

A Examination of point sets in the plane.

D Analyze each set on a figure, e.g. by first examining the function. (Neither LATEX nor MAPLE er
may be well fit for the sketches in every one of the cases).
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I 1) It follows from the rearrangement

A = {(x, y) | 3x2 + 2y2 < 6} =

{

(x, y)

∣

∣

∣

∣

∣

(

x√
2

)2

+

(

y√
3

)2

< 1

}

that the set is an open ellipsoidal disc of centre (0, 0) and length of the half axes
√
2 and

√
3.

The set is open.

–1.5

–1

–0.5

0.5

1

1.5

y

–1 –0.5 0.5 1

x

Figure 3.5: The set of Example 3.2.1

2) The set

A = {(x, y) | x2 + y2 ≤ 1, y > 0}

is the intersection of the closed unit disc and the open upper half plan. The set is neither open
nor closed.

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

y

–1.5 –1 –0.5 0.5 1 1.5

x

Figure 3.6: The set of Example 3.2.2

3) The set

A = {(x, y) | x2(1− x2 − y2) > 0} = {(x, y) | x �= 0, x2 + y2 < 1}

is the open unit disc wich the exception of the points on the Y axis (where x = 0).

The set is open.

4) The set A = {(x, y) | 0 < x− y ≤ 1, y > 4} is the intersection of the three half planes

{(x, y) | x > y}, {(x, y) | y ≥ x− 1}, {(x, y) | y > 4}.

This set is neither open nor closed.
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–1

–0.5

0

0.5

1

y

–1 –0.5 0.5 1

x

Figure 3.7: The set of Example 3.2.3

2

4

6

8

y

2 4 6 8

x

Figure 3.8: The set of Example 3.2.4

5) The set

A = {(x, y) | x2 + y2 ≥
√

x2 + y2 ≥ 1}
= {(0, 0)} ∪ {(x, y) |

√

x2 + y2 ≥ 1}
= {(0, 0)} ∪ {(x, y) | x2 + y2 ≥ 1}

is the complementary set of a disc (centre (0, 0) and radius 1), supplied with the point (0, 0).

The set is closed.

–2

–1

0

1

2

y

–2 –1 1 2

x

Figure 3.9: The set of Example 3.2.5

6) The set

A = {(x, y) | max{|x|, |y|} ≤ 1} = [−1, 1]× [−1, 1]

is a closed square.

7) The set A = {(x, y) | |x|+ |y| < 1} is the open square bounded by the lines

x+ y = 1, −x+ y = 1, x− y = 1, −x− y = 1.
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–1.5
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–0.5
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1
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–1.5 –1 –0.5 0.5 1 1.5

x

Figure 3.10: The set of Example 3.2.6

–1.5

–1

–0.5

0

0.5
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–1.5 –1 –0.5 0.5 1 1.5

x

Figure 3.11: The set of Example 3.2.7

8) The set A = {(x, y) | x ≤ y ≤ 4 − x2} lies above the line y = x and below the parabola

y = 4− x2. These curves cut each other when x2 + x = 4, i.e. when x = −1

2
± 1

2

√
17.

9) Since we always have x2 + y2 ≥ 0 and x2 + y2 = 0 only for (x, y) = (0, 0), we get that

A = {(x, y) | (x− 1)(x2 + y2) ≥ 0} = {(0, 0)} ∪ {(x, y) | x ≥ 1}
is the union of a point (0, 0) and a closed half plane x ≥ 1. It follows that A is closed.

10) The set

A = {(x, y) | (y2 − 1)(y − 3) > 0} = {(x, y) | (y + 1)(y − 1)(y − 3) > 0}
= {(x, y) | −1 < y < 1} ∪ {(x, y) | 3 < y}

is open.
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Figure 3.12: The set of Example 3.2.8.
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0

1

2

y

0.5 1 1.5 2

x

Figure 3.13: The set of Example 3.2.9.
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0
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3
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–4 –3 –2 –1 1 2 3 4

x

Figure 3.14: The set of Example 3.2.10.

Example 3.3 Examine in each of the following cases, possibly by means of a sketch of a figure, the
given point set. Do these sets have names?

1) A = {(x, y, z) | max{|x|, |y|, |z| ≤ 1}.

2) A = {(x, y, z) | |x|+ |y|+ |z| ≤ 1}.

3) A = {(x, y, z) | x > 0, y > 0, z > 0}.

4) A = {(x, y, z) | 0 < x < y}.

5) A = {(x, y, z) | 0 < y}.

6) A = {(x, y, z) | x2 + 2y2 ≤ 8}.

Remark. It is difficult in all cases to let LATEX or MAPLE sketch the three dimensional figures. The
readers are kindly asked to sketch them themselves. ♦

A Point sets in the three dimensional space R3.

D Analyze each set, possibly on a figure.

I 1) The set

A = {(x, y, z) | max{|x|, |y|, |z|} ≤ 1} = [−1, 1]3

is a closed cube of centre (0, 0, 0) and edge length 2.
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2) The set

A = {(x, y, z) | |x|+ |y|+ |z| ≤ 1}

is a closed dodecahedron. It is obtained by taking the intersection of the eight half spaces

x+ y + z ≤ 1, x+ y + z ≥ −1,
x+ y − z ≤ 1, x+ y − z ≥ −1,
x− y + z ≤ 1, x− y + z ≥ −1,
x− y − z ≤ 1, x− y − z ≥ −1.

3) The set

A = {(x, y, z) | x > 0, y > 0, z > 0}

is the open first octant.
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4) The set A = {(x, y, z) | 0 < x < y} is the intersection of two open half spaces, hence itself
open. The axis of the set is the Z axis, and the projection onto the XY plane in the direction
of the Z axis is the angular set which lies between the line y = x and the Y axis in the first
quadrant.

5) The set A = {(x, y, z) | 0 < y} is the open half space which is given by the inequality y > 0,
i.e. bounded by the XZ plane where y = 0.

6) The set

A = {(x, y, z) | x2 + 2y2 ≤ 8} =

{

(x, y, z)

∣

∣

∣

∣

∣

(

x

2
√
2

)2

+
(y

2

)2

≤ 1

}

is the closed cylinder over the ellipse in the XY plane with centre (0, 0) and half axes 2
√
2 and

2. The figure shows the projection of the set onto the XY plane in the direction of the Z axis,
hence a cross section.

–3
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–1

0

1

2

3

y

–3 –2 –1 1 2 3

x

Figure 3.15: The projection onto the XY plane of the set of Example 3.3.6.
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Example 3.4 In each of the following cases a plane point set A is given in polar coordinates. Sketch
the point set and find a name of it.

1) 0 ≤ ϕ ≤ π

2
, 0 ≤ ̺ ≤ a cosϕ.

2) 0 ≤ ϕ ≤ π

4
, 0 ≤ ̺ ≤ a cosϕ+ a sinϕ.

3) −π < ϕ ≤ π, (̺− a)2 ≥ |̺− a|a.

4)











0 ≤ ϕ ≤ Arctan
b

a
, 0 ≤ ̺ ≤ a

cosϕ
,

Arctan
b

a
≤ ϕ ≤ π

2
, 0 ≤ ̺ ≤ b

sinϕ
.
.

A Point sets in the plane given in polar coordinates.

D Analyze the point sets and sketch them.

I 1) When 0 ≤ ̺ ≤ a cosϕ a multiplication by ̺ ≥ 0 gives

0 ≤ ̺2 ≤ a̺ cosϕ,

i.e.

x2 + y2 ≤ ax,

and then by a rearrangement

�

x− a

2

�2

+ y2 ≤
�a

2

�2

.

Since 0 ≤ ϕ ≤ π

2
, we get a closed half disc in the first quadrant of centre

�a

2
, 0
�

and radius
a

2
.

–0.2

0

0.2

0.4

0.6

y

–0.2 0.2 0.4 0.6 0.8 1 1.2

x

Figure 3.16: The set of Example 3.4.1.

2) By a multiplication by ̺ we get

̺2 ≤ a̺ cosϕ+ a̺ sinϕ,

thus in rectangular coordinates

x2 + y2 ≤ ax+ ay,
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which is reduced to

(

x− a

2

)2

+
(

y − a

2

)2

≤ a2

2
=

(

a√
2

)2

.

This expression describes a closed disc of centre
(a

2
,
a

2

)

and radius
a√
2
. From the condition

0 ≤ ϕ ≤ π

4
follows that the set A is that part of the disc, which lies in in this angular set (a

circumference angle).

–1

0

1

2

3

y

–1 1 2 3

x

Figure 3.17: The set of Example 3.4.2.

3) It follows from (̺− a)2 ≥ |̺− a|a that either ̺ = a or |̺− a| ≥ a, hence

̺− a ≥ a or ̺− a ≤ −a.

Summarizing we get

̺ = a or ̺ ≥ 2a or ̺ = 0,

since ̺ < 0 is not possible.

The point set is the union of a point {(0, 0)}, a circumference ̺ = a and the closed com-
plementary set of a disc ̺ ≥ 2a, since we have no restrictions on the angle −π < ̺ ≤ π.

–2

–1

1

2

–2 –1 1 2

Figure 3.18: The set of Example 3.4.3.

4) Since cosϕ > 0 for 0 ≤ ϕ ≤ Arctan
b

a
, the condition 0 ≤ ̺ ≤ a

cosϕ
is equivalent to

0 ≤ ̺ cosϕ = x ≤ a, 0 ≤ ϕ ≤ Arctan
b

a
.
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Analogously, sinϕ > 0 for Arctan
b

a
≤ ϕ ≤ π

2
, thus 0 ≤ ̺ ≤ b

sinϕ
is equivalent to

0 ≤ ̺ sinϕ = y ≤ b, Arctan
b

a
≤ ϕ ≤ π

2
.

The two cases are described by each their triangle, and the conclusion is that the set in rect-
angular coordinates is just the rectangle A = [0, a]× [0, b].
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Figure 3.19: The set of Example 3.4.4.
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Example 3.5 Sketch and describe in polar coordinates the set A, where A is given below in rectangular
coordinates.

1) A =
{

(x, y) | x ≥ 0,
(

x2 + y2
)2 ≥ x2 + y2

}

.

2) A =

{

(x, y)

∣

∣

∣

∣

x > 0,
1

2
+ y2 ≤ x2 ≤ 1− y2

}

.

A Point sets in the plane, given in rectangular coordinates should be described in polar coordinates
instead.

D Sketch the sets and use that x = ̺ cosϕ and y = ̺ sinϕ.

I 1) The point set A is the intersection of a closed complementary set of a disc and the closed right
half plane supplied by the point (0, 0).

In polar coordinates this is described by

−π

2
≤ ϕ ≤ π

2
and ̺2 ≥ ̺.

–1

–0.5

0

0.5

1

0.2 0.4 0.6 0.8 1

Figure 3.20: The set of Example 3.5.1.

2) Since x > 0, the point set lies in the open right half plane. It follows from x2 ≤ 1 − y2 that
x2 + y2 ≤ 1, so the point set lies in the unit disc.

Finally,
1

2
+ y2 ≤ x2 describes the interior of a branch of a hyperbola. The two limiting curves

x2 + y2 = 1 and x2 − y2 =
1

2

cut each other at the points

(√
3

2
,±1

2

)

, so A lies in the angular set −π

6
≤ ϕ ≤ π

6
.

In polar coordinates the upper is described by ̺ ≤ 1, and the lower bound is given by

1

2
+ ̺2 sin2 ̺ ≤ ̺2 cos2 ϕ,

hence by a rearrangement,

1

2
≤ ̺2

{

cos2 ϕ− sin2 ϕ
}

= ̺2 cos 2ϕ.
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Summarizing we get the following polar description

−π

6
≤ ϕ ≤ π

6
and

1√
2 cos 2ϕ

≤ ̺ ≤ 1.

–1

–0.5

0

0.5

1

0.2 0.4 0.6 0.8 1

Figure 3.21: The set of Example 3.5.2.

Example 3.6 Sketch the following subsets of R2, and if any of them is star shaped.

1) {(x, y) | y > 3x2}.

2) {(x, y) | x2 + y2 > 1}.

3) {(x, y) | y > −x2}.

4) {(x, y) | x > 0, y > −x2}.

A Analysis of sets concerning if they are star shaped.

D Start by sketching the sets. In this case I have had problems with the sketching programs, so the
sets are only given by their boundaries and not by the more desirable hatching.

I 1) Here, A in the interior of a parabola. Obviously, this set is star shaped (and even convex).

2

4

6

8

10

y

–2 –1 1 2

x

Figure 3.22: The set of Example 3.6.1.

2) This set is the complementary of a disc, so it cannot be star shaped. For any point from the
set the unit disc shades for some other points.
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–1

–0.5

0.5

1

–1 –0.5 0.5 1

Figure 3.23: The set of Example 3.6.2.

–6
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–4

–3

–2

–1

0

1

y

–2 –1 1 2
x

Figure 3.24: The set of Example 3.6.3.

3) The set is the exterior of a parabola. If (x0, y0) ∈ A is any point we can always find a straight
line through (x0, y0), which cuts the parabola in two different points. The points on the line
beyond the most distant intersection point cannot be connected with (x0, y0) by a straight line
inside A, so A is not star shaped seen from any point.

4) This set A is a part of the set in Example 3.6.3, hence it lies in the right half plane.

First note that

y + λ2 = −2λ(x− λ)

is a tangent of the parabola for every λ > 0. This can also be written

y + 2λx = λ2, λ > 0.

Indirect proof. Assume that A indeed was star shaped from a point (x, y). Then

y + 2λx ≥ λ2 for all λ > 0,

which can also be written

y ≥ λ(λ− 2x) for all λ > 0.

This is of course not possible for any (x, y) ∈ A. In fact, the right hand side of this inequality
tends to +∞ for λ → +∞, while y remains constant, and the inequality is violated.

We conclude from this contradiction that A is not star shaped.
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Example 3.7 . Sketch the point sets given below, and indicate which ones are convex.

1) {(x, y) | −5 < y < −3x2}.

2) {(x, y) | x2 + 3y2 > 2}.

3) {(x, y) | y > −x2}.

4) {/x, y) | x ≥ 0, y ≤ 0}.

A Examination of convexity.

D Sketch the sets and analyze.

I 1) The set is the interior of a parabola where we furthermore have the restriction −5 < y < 0.
Obviously, this set is convex.

–6

–5

–4

–3

–2

–1

0

1

y

–2 –1 1 2
x

Figure 3.25: The set of Example 3.7.1.
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2) The set

�

(x, y) | x2 + 3y2 > 2
�

=











(x, y)

�

�

�

�

�

�

�

�

x√
2

�2

+





y
�

2
3





2

> 1











is the complementary of an ellipse of centre (0, 0) and half axes
√
2 and

�

2

3
. It is clearly not

convex.

–1.5
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–0.5

0

0.5

1

1.5

y

–2 –1 1 2

x

Figure 3.26: The set of Example 3.72.

3) This set is the complementary of a parabola (actually the same set as in Example 3.6.2. It is
not star shaped, and therefore not convex either.

–6

–5

–4

–3

–2

–1

0

1

y

–2 –1 1 2
x

Figure 3.27: The set of Example 3.7.3.

4) This set is the closed fourth quadrant. It is clearly convex. There is no need to sketch it.

Example 3.8 Let

B = {(x, y) ∈ [0, 1]× [0, 1] | x is rational and y is rational}.

Find the interior B◦, the boundary ∂B and the closure B.

A Interior, exterior, boundary and closure of a point set. This is the classical “strange” example,
which should shock the reader, who has not seen this example before.

D First prove that B◦ = ∅, and then B] = [0, 1]× [0, 1].
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I If (x0, y0) ∈ B, then K((x0, y0); r), r > 0, i.e. the solid ball of centre (x0, y0) and any positive radius
r, will always contain points (x, y), of which at least one of the coordinates is irrational, hence

K((x0, y0); r) \B �= ∅ for every r > 0.

We conclude from this that B◦ = ∅.

Let (x0, y0) ∈ [0, 1] × [0, 1] be any point in the bigger set. Then the ball K((x0, y0); r) of centre
(x0, y0) and any radius r > 0 will always contain points from B. This means that (x0, y0) ∈ B, i.e.

B ⊇ [0, 1]× [0, 1].

It is on the other hand trivial that B ⊆ [0, 1]× [0, 1], hence we must have equality,

B = [0, 1]× [0, 1].

Finally, the boundary is found by means of the definition,

∂B = B \B◦ = [0, 1]× [0, 1] \ ∅ = [0, 1]× [0, 1] = B.

Example 3.9 In each of the following cases there is given a solid tetrahedron by its four corners.
Sketch the tetrahedron T – invisible edges are dotted – and set up equations of the four planes, which
bound T . Then derive the inequalities which the points of T must fulfil, and finally set up expressions
of the form

T = {(x, y, z) | (x, y) ∈ B, Z1(x, y) ≤ z ≤ Z2(x, y)}

and

T = {(x, y, z) | α ≤ z ≤ β, (x, y) ∈ B(z)};

sketch the sets B and B(z).

1) (0, 0, 0), (2, 0, 0), (0, 1, 0), (0, 0, 2).

2) (0, 0, 0), (2, 0, 2), (0, 1, 2), (0, 0, 2).

3) (1, 0, 0), (0, 0, 4), (0, 2, 2), (−1, 0, 0).

4) (0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 0, 4).

5) (1, 0, 0), (0, 0, 4), (0, 2, 0), (−1, 0, 0).

A Analysis of tetrahedra.

D The text describes very carefully what should be done. Here we shall deviate a little because figures
in space take a very long time to construct in the given programs. There are left to the reader.
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I 1) It follows immediately from the missing figure (which the reader should add himself), that three
of the planes are described by

x = 0, y = 0 and z = 0.

In fact, the plane x = 0 contains the points

(0, 0, 0), (0, 1, 0), (0, 0, 2),

the plane y = 0 contains the points

(0, 0, 0), (2, 0, 0), (0, 0, 2),

and the plane z = 0 contains the points

(0, 0, 0), (2, 0, 0), (0, 1, 0).
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A parametric description of the fourth plane is e.g.

(x, y, z) = (2, 0, 0) + u{(0, 1, 0)− (2, 0, 0)}+ v{(0, 0, 2)− (2, 0, 0)}
= (2, 0, 0) + u(−2, 1, 0) + v(−2, 0, 2)

= (2− 2u− 2v, u, 2v),

from which y = u and z = 2v.

When we eliminate u and v, we get

x = 2− 2u− 2v = 2− 2y − z,

and the equation of the fourth plane is

z = 2− x− 2y.

The points of T must satisfy the inequalities

0 ≤ x (≤ 2), 0 ≤ y
(

≤ 1− x

2

)

, 0 ≤ z ≤ 2− x− 2y.

We immediately get

T = {(x, y, z) | (x, y) ∈ B, 0 ≤ z ≤ 2− x− 2y},

where

B = {(x, y) | 0 ≤ x ≤ 2, 0 ≤ y ≤ 1− x

2
}.

–0.4
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0
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0.4

0.6

0.8

1
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1.4

y

–0.5 0.5 1 1.5 2 2.5

x

Figure 3.28: The domain B of Example 3.9.1

If we instead keep z ∈ [0, 2] fixed, the tetrahedron is cut into a triangle B(z), bounded by

0 ≤ (≤ 2− z), 0 ≤ y ≤ 1− x

2
− z

2
,
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i.e.

B(z) =
{

(x, y)
∣

∣

∣ 0 ≤ x ≤ 2− z, 0 ≤ y ≤ 1− z

2
− x

2

}

, 0 ≤ x ≤ z ≤ 2,

and

T = {(x, y, z) | (x, y) ∈ B(z), 0 ≤ z ≤ 2}.

It follows that B(z) is similar to B above with the factor of similarity 1− z

2
.

2) We see in the same way as in Example 3.9.1 that three of the planes are described by

x = 0, y = 0 and z = 2.

A parametric description of the fourth plane is e.g.

(x, y, z) = (0, 0, 0) + u(2, 0, 2) + v(0, 1, 2) = (2u, v, 2u+ 2v),

from which x = 2u and y = v. When u and v are eliminated we get

z = 2u+ 2v = x+ 2y,

which is an equation of the fourth plane.

The points of T must satisfy the inequalities

0 ≤ x (≤ 2), 0 ≤ y
(

≤ 1− x

2

)

, x+ 2y ≤ z ≤ 2.

Hence,

T = {(x, y, z) | (x, y) ∈ B, x+ 2y ≤ z ≤ 2},

where

B =
{

(x, y)
∣

∣

∣ 0 ≤ x ≤ 2, 0 ≤ y ≤ 1− x

2

}

.

If we instead keep z ∈ [0, 2] fixed, the tetrahedron is cut into a triangle B(z), bounded by

0 ≤ x ≤ z, 0 ≤ y ≤ z

2
− x

2
,

i.e.

B(z) =
{

(x, y)
∣

∣

∣ 0 ≤ x ≤ z, 0 ≤ y ≤ z

2
− x

2

}

, 0 ≤ z ≤ 2,

and

T = {(x, y, z) | (x, y) ∈ (z), 0 ≤ z ≤ 2}.

We see that B(z) is similar to B with the constant of similarity
z

2
.
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Figure 3.29: The domain B of Example 3.9.2

3) Here a trivial boundary plane is given by y = 0.

The points (1, 0, 0), (0, 2, 2), (0, 0, 4) lie in the plane of the parametric description

(x, y, z) = (1, 0, 0) + u(−1, 2, 2) + v(−1, 0, 4) = (1− u− v, 2u, 2u+ 4v),

i.e.

x = 1− u− v, y = 2u, z = 2u+ 4v,

from which

u =
y

2
, v = 1− u− x = 1− y

2
− x,

so

z = 2u+ 4v = y + 4
(

1− y

2
− x

)

= 4− 4x− y,

which is the equation of this plane.

The points (−1, 0, 0), (0, 2, 2), (0, 0, 4) lie in the plane of the parametric description

(x, y, z) = (−1, 0, 0) + u(1, 2, 2) + v(1, 0, 4) = (−1 + u+ v, 2u, 2u+ 4v),

i.e.

x = −1 + u+ v, y = 2u, z = 2u+ 4v,

from which

u =
y

2
, v = 1 + x− u = 1 + x− y

2
,

hence

z = 2u+ 4v = y + 4 + 4x− 2y = 4 + 4x− y,

which is the equation of this plane.

97

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume-I 
Point sets in Rn

98 

Examples of point sets, conics and conical sections

The points (1, 0, 0), (−1, 0, 0), (0, 2, 2) lie in the plane of the parametric description

(x, y, z) = (−1, 0, 0) + u(2, 0, 0) + v(1, 2, 2) = (2u− 1, 2v, 2v),

from which

x = 2u− 1, y = 2v, z = 2v.

We see that the equation of the plane is z = y.

Summarizing we have obtained the four planes

y = 0, z = 4− 4x− y, z = 4 + 4x− y, z = y.

The projection of T onto the XY plane is the triangle B of the corners (−1, 0), (1, 0), (0, 2).
This can be described by

0 ≤ y ≤ 2,
y

2
− 1 ≤ x ≤ 1− y

2

(

|x| ≤ 1− y

2

)

,

i.e.

B =
{

(x, y)
∣

∣

∣ 0 ≤ y ≤ 2, |x| ≤ 1− y

2

}

.
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Figure 3.30: The domain B of Example 3.9.3

When (x, y) ∈ B, it is seen from the figure that

{

y ≤ z ≤ 4− 4x− y for x ≥ 0,
y ≤ z ≤ 4 + 4x− y for x ≤ 0,

i.e.

T =
{

(x, y, z)
∣

∣

∣ 0 ≤ y ≤ 2, |x| ≤ 1− y

2
, y ≤ z ≤ 4− 4|x| − y

}

.

The plane z = constant ∈ [2, 4] cuts T in a triangle B(z) given by

0 ≤ y ≤ 4− z, |x| ≤ 2− y

2
− z

2
,

hence

B(z) =
{

(x, y)
∣

∣

∣ 0 ≤ y ≤ 4− z, |x| ≤ 2− y

2
− z

2

}

for z ∈ [2, 4].

It follows that B(z) is similar to B with the factor of similarity 2− z

2
.

Then let z ∈ ]0, 2[ be fixed. This plane cuts T in a trapeze, which is obtained by cutting a
triangle out of B at height z. Thus, for z ∈ [0, 2[,

B(z) =
{

(x, y)
∣

∣

∣ 0 ≤ y ≤ z, |x| ≤ 1− y

2

}

for z ∈ [0, 2[.

We get the following description of the tetrahedron:

T =
{

(x, y, z)
∣

∣

∣ 0 ≤ z ≤ 2, 0 ≤ y ≤ z, |x| ≤ 1− y

2

}

∪
{

(x, y, z)
∣

∣

∣ 2 ≤ z ≤ 4, 0 ≤ y ≤ 4− z, |x| ≤ 2− y

2
− z

2

}

.

4) The obvious planes are here

y = 0, [points (0, 0, 0), (1, 0, 0), (1, 0, 4)],
z = 0, [points (0, 0, 0), (1, 0, 0), (1, 1, 0)],
x = 1, [points (1, 0, 0), (1, 1, 0), (1, 0, 4)].
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Figure 3.31: The domain B(z) for z = 1 ∈ [0, 2[ in Example 3.9.3

Finally, the points (0, 0, 0), (1, 0, 4), (1, 1, 0) lie in the plane of the parametric description

(x, y, z) = u(1, 0, 4) + v(1, 1, 0) = (u + v, v, 4u),

from which

v = y, u = x− v = x− y and z = 4u = 4x− 4y.

The points in T must satisfy the inequalities

0 ≤ x ≤ 1, 0 ≤ y ≤ x, 0 ≤ z ≤ 4x− 4y.

In particular, the triangle B is

B = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ x},

and we get

T = {(x, y, z) | 0 ≤ x ≤ 1, 0 ≤ y ≤ x, 0 ≤ z ≤ 4x− 4y}.

The plane z = constant ∈ [0, 4] cuts the tetrahedron in a triangle which is similar to B of the
similarity factor 1− z

4 for z ∈ [0, 4]), thus

B(z) =
{

(x, y)
∣

∣

∣ 0 ≤ x ≤ 1− z

4
, 0 ≤ y ≤ x

}

,

and accordingly,

T =
{

(x, y, z)
∣

∣

∣ 0 ≤ z ≤ 4, 0 ≤ x ≤ 1− z

4
, 0 ≤ y ≤ x

}

.

5) The obvious planes are

y = 0, [points (1, 0, 0), (−1, 0, 0), (0, 0, 4)],
z = 0, [points (1, 0, 0), (0, 2, 0), (−1, 0, 0)].
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Figure 3.32: The domain B in Example 3.9.4

The points (1, 0, 0), (0, 2, 0), (0, 0, 4) lie in the plane of the parametric description

(x, y, z) = (1, 0, 0) + u(−1, 2, 0) + v(−1, 0, 4) = (1− u− v, 2u, 4v).

Hence,

u =
y

2
, v =

z

4
, x = 1− u− v = 1− y

2
− z

4
,

and we get the following equation of the plane,

z = 4− 4x− 2y.

Due to the symmetry the points (−1, 0, 0), (0, 2, 0) and (0, 0, 4) must lie in the plane of the
equation

z = 4 + 4x− 2y.

The projection of T onto the XY plane is the triangle

B =
{

(x, y)
∣

∣

∣ 0 ≤ y ≤ 2, |x| ≤ 1− y

2

}

.

When (x, y) ∈ B, we get for (x, y, z) ∈ T that
{

0 ≤ z ≤ 4− 4x− 2y, for x ≥ 0,
0 ≤ z ≤ 4 + 4x− 2y, for x ≤ 0,

i.e.

T =
{

(x, y, z)
∣

∣

∣ 0 ≤ y ≤ 2, |x| ≤ 1− y

2
, 0 ≤ z ≤ 4− 4|x| − 2y

}

.

At the height z ∈ [0, 4] the tetrahedron T is cut into a triangle

B(z) =
{

(x, y)
∣

∣

∣
0 ≤ y ≤ 2− z

2
, |x| ≤ 1− y

2
− z

4

}

,

where B(z) is similar to B of the similarity factor 1− z

4
, hence

T =
{

(x, y, z)
∣

∣

∣ 0 ≤ z ≤ 4, 0 ≤ y ≤ 2− z

2
, |x| ≤ 1− y

2
− z

4

}

.
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–0.5

0

0.5

1

1.5

2

2.5

y

–1.5 –1 –0.5 0.5 1 1.5

x

Figure 3.33: The domain B

Example 3.10 Sketch on a figure the set A, where

A = {(x, y) ∈ R2 | x+ 2y ≤ 2, |x− y| ≤ 2}.

On the figure one should indicate the boundary ∂A. Finally, explain why A is not bounded.

A Sketch of a set in the plane.

D Start by analyzing the lines, which bound the set.

–3

–2

–1

1

2

3

–3 –2 –1 1 2 3

Figure 3.34: The domain A in Example 3.10 is that component of the plane, which contains the point
(0, 0).

I It follows from the definition of A that we have the three restrictions

x+ 2y ≤ 2, x− y ≤ 2, y − x ≤ 2.

We note that (0, 0) satisfies all three inequalities. Thus, the domain A is the closed component
(the intersection of three closed half planes), which contains (0, 0). The boundary ∂A consists of
pieces of the lines

x+ 2y = 2, x− y = 2, y − x = 2.
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Now, the unbounded half line

{(x, y) | y = x− 2, x ≤ 2}

lies in A, so A must also be unbounded.
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3.2 Conics and conical sections

Example 3.11 A conic F is given by the equation

2x2 − 2y2 + αz2 = 1,

where α is a real constant.

1) Find the values of α, for which F is a surface of revolution. Indicate in each of these cases the
type of the surface and its axis of symmetry.

2) Prove that there is one value of α, for which the surface F is a cylindric surface. Indicate for this
value of α the type of the surface and its axis of symmetry.

A Conic sections.

D Analyze each of the three cases α < 0, α = 0 and α > 0.

I 1) a) When α < 0, the conic is an hyperboloid with two sheets:

1 =

�

x

1
√
2

�2

−







�

y

1/
√
2

�2

+

�

z
�

1/|α|

�2






.

This is an hyperboloid of revolution for α = −2, where the X axis is the axis of revolution.

–2

–1

0

1

2

–2

–1

1

2

t

–2

–1

1

2
s

Figure 3.35: The surface of revolution for α = −2.

b) When α > 0, the conic is an hyperboloid with one sheet:

1 =























x
1√
2









2

+









z
�

1

α









2













−









y
1√
2









2

.

This becomes an hyperboloid of revolution when α = 2, with the Y axis as its axis of
revolution.
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–3

–2

–1

0

1

2

3

–3
–2

–1

1
2

3

t

–3
–2

–1

2
s

Figure 3.36: The surface of revolution for α = 2.

2) When α = 0, we get an hyperbolic cylindric surface with the Z axis as its axis of generation,

1 =









x
1√
2









2

−









y
1√
2









2

.

–3

–2

–1

0

1

2

3

–3
–2

–1

2
3

–3
–2

–1

1
2

3

Figure 3.37: The surface for α = 0.
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Example 3.12 Find the type and position of the conic of the equation

x2 + 2y2 − x+ 6y +
3

4
= 0.

A Conic section.

D Translate the coordinates.

I By a rearrangement we get

0 = x2 + 2y2 − x+ 6y +
3

4

=

(

x2 − 2 · 1
2
x+

1

4

)

+ 2

(

y2 + 2 · 3
2
y +

9

4

)

− 2 · 9
4
+

3

4

=

(

x− 1

2

)2

+ 2

(

y +
3

2

)2

− 4,

i.e. in the canonical form

(

x− 1
2

2

)2

+

(

y + 3
2√

2

)2

+ 0 · z2 = 1,

because z does not appear in the equation.

–2

–1

0

1

2
–2

–1.5
–1

0.5

–1

1

2

The surface is an elliptic cylindric surface with the Z axis as its axis of generation, and with the

ellipse of centre

(

1

2
, −3

2

)

and the half axes 2 and
√
2 as generating curve.
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Example 3.13 Let a, b, c be constant different from zero satisfying the equation

a+ b+ c = 0.

Prove that the plane of the equation

x+ y + z = 0

cuts the conic given by

yz

a
+

zx

b
+

xy

c
= 0

in two straight lines (generators), which form an angle of
2π

3
.

A Intersection of two surfaces.

D Start by e.g. eliminating z = −x− y.

I Clearly, (0, 0, 0) lies in the intersection of the two surfaces. Furthermore, if two of the variables are
0, e.g. x = y = 0, then we have a point on the conic, no matter the value of the third variable
(here z). We conclude that the X , the Y and the Z axes all lie on the conic section. Of course,
none of then are contained in the oblique plane x+ y + z = 0.

If we keep off the coordinate planes, i.e. we assume in the following that xyz �= 0, then the equation
of the conic can also be written

0 =
yz

a
+

zx

b
+

xy

x
= xyz

(

1

ax
+

1

by
+

1

cz

)

,

i.e.

1

ax
+

1

by
+

1

cz
= 0 for xyz �= 0.

Since z = −(x+ y) on the plane, we get by insertion into the reduced equation of the conic that

0 =
1

ax
+

1

by
+

1

cz
=

1

ax
+

1

by
− 1

c(x+ y)
.

When we put everything here into the same fraction and reduce we get

(3.1) 0 =
1

a
(x+ y)y +

1

b
(x+ y)x− 1

c
xy,

which is an homogeneous polynomial of second degree in (x, y).

Now x = 0, if and only if y = 0, so the solutions must have the structure

(3.2) y = αx, α �= 0.

It follows that the intersection of the two surfaces must have the structure

r(t) = (t, αt,−(1 + α)t) = t(1, α,−(1 + α)), t ∈ R,
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because z = −x− y, and because we can trivially continue to (0, 0, 0).

When (3.2) is put into (3.1), we get that α is a solution of a polynomial of second degree with the
roots α1 and α2, corresponding to two straight lines. (According to the geometry the solutions
exist, so we must necessarily have the the roots α1 and α2 are real numbers).

By insertion of (x, y, z) = (1, α,−(1 + α)) we get for α �= −1 that

0 =
1

ax
+

1

by
+

1

cz
=

1

a
+

1

bα
− 1

c(1 + α)
=

bcα(1 + α) + ac(1 + α)− abα

abcα(1 + α)
,

which is reduced to

0 = α(1 + α) +
a

b
(1 + α)− a

c
α = α2 +

(

1 +
a

b
− a

c

)

α+
a

b
= α2 + a

(

1

a
+

1

b
− 1

c

)

α+
a

b
,

hence

α1 + α2 = a

(

1

c
− 1

a
− 1

b

)

= a

(

1

c
− a+ b

ab

)

=
a

c
+

c

b

and

α1α2 =
a

b
.
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Since (1, α,−(1 + α)) is of length
√

1 + α2 + (1 + α)2 =
√

2(1 + α+ α2),

The angle ϕ between the two lines (which both pass through (0, 0, 0)) is given by

cosϕ =
(1, α1,−(1 + α1))
√

2(1 + α1 + α2
1)

· (1, α2,−(1 + α2))
√

2(1 + α2 + α2
2)

=
1

2
· 1 + α1α2 + (1 + α1)(1 + α2)
√

(1 + α1 + α2
1)(1 + α2 + α2

2)
.

Here the numerator is

1 + α1α2 + (1 + α1)(1 + α2) = 2 + (α1 + α2) + 2α1α2 = 2+
ab+ c2

bc
+ 2

a

b

=
1

bc
{2bc− (b+ c)b+ c2 − 2(b+ c)c} = − 1

bc
(b2 + bc+ c2),

and the radicand is

(1 + α1 + α2
1)(1 + α2 + α2

2)

= 1 + α1 + α2 + α2
1 + α2

2 + α1α2 + α1 + α2
2 + α2

1α2 + α2
1α

2
2

= 1 + (α1 + α2) + (α1 + α2)
2 − α1α2 + α1α2(α1 + α2) + (α1α2)

2

= 1 +
ab+ c2

bc
+

(

ab+ c2

bc

)2

− a

b
+

a

b
· ab+ c2

bc
+

a2

b2

=
1

b2c2
{b2c2+ab2c+bc3+a2b2+2abc2+c4−abc2+a2bc+ac3+a2c2}

=
1

b2c2
{b2c2+bc3+c4+a(b2c+2bc2−bc2+c3)+a2(b2+bc+c2)}

=
1

b2c2
{c2(b2+bc+c2)+ac(b2+bc+c2)+a2(b2+bc+c2)}

=
1

b2c2
(b2 + bc+ c2)(c2 + ac+ a2) =

1

b2c2
(b2 + bc+ c2)(c2 + (−b− c)(−b))

=
1

b2c2
(b2 + bc+ c2)2.

Then by insertion

cosϕ =
1

2
· 1 + α1α2 + (1 + α1)(1 + α2)
√

(1 + α1 + α2
1)(1 + α2 + α2

2)
=

1

2
·
− 1

bc
(b2 + bc+ c2)

∣

∣

∣

∣

1

bc
(b2 + bc+ c2)

∣

∣

∣

∣

.

Since b2 + bc+ c2 =

(

b+
1

2
c

)2

+
3

4
c2 > 0, we have

cosϕ = −1

2

|bc|
bc

= −1

2

bc

|bc| =
{

1
2 , if bc < 0,

− 1
2 , hvis bc > 0.

Hence ϕ =
π

3
, if bc < 0, and ϕ =

2π

3

(

or − π

3

)

, if bc > 0.

If we do not include the sign of the angle we get ϕ =
π

3
.
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Example 3.14 Indicate for each value of the constant k the type of the conic F , which is given by
the equation

x2 + (4 − k2)y2 + k(2− k)z2 = 2k,

and find in particular those values of k, for which F is a surface of revolution.
Finally, think about if it makes sense to put k equal to +∞ or −∞.

A Conics.

D Discuss the sign of the coefficients and then consider the various cases.

I By considering the signs we get the scheme

k < −2 k = −2 −2 < k < 0 k = 0 0 < k < 2 k = 2 k > 2
4− k2 − 0 + + + 0 −
k(2− k) − − − 0 + 0 −

2k − − − 0 + + +
1 2 3 4 5 6 7

1) When k < −2, we get the canonical form (notice the absolute values)

1 = − 1

2|k| x
2 +

∣

∣

∣

∣

4− k2

2k

∣

∣

∣

∣

y2 +

∣

∣

∣

∣

2− k

2

∣

∣

∣

∣

z2

= − 1

2|k| x
2 +

4− k2

2k
y2 +

2− k

2
z2.

Since we have 2 plus and 1 minus we conclude that we have an hyperboloid with one sheet.

2) When k = −2, the equation is written

x2 − 8z2 = −4, dvs. −
(x

2

)2

+

(

z

1/
√
2

)2

= 1,

which describes an hyperbolic cylindric surface.

3) When −2 < k < 0, the canonical form becomes

− 1

2|k| x
2 −

∣

∣

∣

∣

4− k2

2k

∣

∣

∣

∣

y2
∣

∣

∣

∣

2− k

2

∣

∣

∣

∣

z2 = 1.

With 1 plus and 2 minus we conclude that we get an hyperboloid with two sheets.

4) When k = 0, the equation is written

x2 + 4y2 = 0,

which is satisfied for the Z axis. (Degenerated “surface of revolution”).

5) When 0 < k < 2, we rewrite to the canonical form

∣

∣

∣

∣

1

2k

∣

∣

∣

∣

x2 +

∣

∣

∣

∣

4− k2

2k

∣

∣

∣

∣

y2 +

∣

∣

∣

∣

2− k

2

∣

∣

∣

∣

z2 = 1.

With 3 plus we get an ellipsoid.
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6) When k = 2, the equation is written

x2 = 4,

which describes two planes x = ±2, parallel to the Y Z plane.

7) When k > 2, we get

∣

∣

∣

∣

1

2k

∣

∣

∣

∣

x2 −
∣

∣

∣

∣

4− k2

2k

∣

∣

∣

∣

y2 −
∣

∣

∣

∣

2− k

k

∣

∣

∣

∣

z2 = 1.

With 1 plus and 2 minus we see that we get an hyperboloid with two sheets.

We obtain surfaces of revolution when

1) x2 + (4− k2)y2 = x2 + y2, i.e. when k = ±
√
3.

2) x2 + k(2− k)z2 = x2 + z2, i.e. when k = 1.

3) 4− k2 = k(2 − k), i.e. k = 2, which however produces degenerated surfaces of revolution.

4) k = 0 gives Z axis as the degenerated “surface of revolution”.

1) When k = −
√
3 we are in case 3., so we have an hyperboloid of revolution with two sheets where

the Z axis is the axis of revolution.

2) When k = 0 we are in case 4., which is the degenerated case of the Z axis. The Z axis is clearly
the axis of revolution.

3) When k = 1 we are in case 5., and we get an ellipsoid of revolution with the Y axis as the axis
of revolution.

4) When k =
√
3 we are again in case 5., so we get an ellipsoid of revolution with the Z axis as

the axis of revolution.

5) When k = 2 we are in the degenerated case 6. The two planes have clearly the X axis as the
axis of revolution.

When k �= 0, we get by dividing by −k2 that

− 1

k2
x2 +

(

1− 4

k2

)

y2 +

(

1− 2

k

)

z2 = −2

k
.

Then it follows immediately by taking the limits k → +∞ or k → −∞,

y2 + z2 = 0,

so y = z = 0, while x is free. Therefore, by taking the limits we get the X axis
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Example 3.15 The surfaces F1 and F2 are given by the equations

x2 + 2y2 = z + 1, x2 + 2y2 = −1 + 3z2.

1) Indicate the type and the top point(s) of both F1 and F2.

2) Prove that the intersection F1 ∩ F2 consists of two ellipses, lying in planes, which are parallel to
the (X,Y ) plane.

A Conics and conic sections.

D In 1) we just reformulate the equations to the canonical form. In 2) we first eliminate x2 + 2y2 in
order to get an equation in z. Then insert the solutions in z into one of the original expressions.

–1

1
2
3
4
5

–1.5
–1

–0.5

0.5
1

1.5

–1.5
–1

–0.5

0.5
1

1.5

Figure 3.38: The surfaces F1 and F2.

I 1) If we put z1 = z + 1, we see that the equation of the surface F1 can be written in its canonical
form

x2

12
+

y2
(

1√
2

)2 = z1,

which shows that F1 is an elliptic paraboloid with top point (0, 0,−1).

Then the equation of F2 is written in the following way:

−x2

12
− y2

(

1√
2

)2 +
z2

(

1√
3

)2 = 1.

This equation describes an hyperboloid with two sheets. The top points are

(

0, 0,± 1√
3

)

.
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2) The equation of the intersection is obtained by eliminating the common expression x2 +2y2 in
(x, y). This gives

z + 1 = −1 + 3z2, i.e. 3z2 − 2− 2 = 3(z − 1)

(

z +
2

3

)

= 0.

The solutions are z = 1 and z = −2

3
, so the intersection curves lie in these two planes which

are parallel to the (X,Y ) plane.

a) When we put z = 1, we get x2 + 2y2 = 2, which in its canonical form becomes

x2

(√
2
)2 +

y2

12
= 1.

This is an equation of an ellipse in the plane z = 1 of centrum (0, 0) and half axes
√
2 and

1.

b) If we put z = −2

3
, we get x2 + 2y2 =

1

3
, which is written in its canonical form in the

following way

x2

(

1√
3

)2 +
y2

(

1√
6

)2 = 1.

This is an equation of an ellipse in the plane z = −2

3
of centre (0, 0) and half axes

1√
3
and

1√
6
.
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4 Formulæ

Some of the following formulæ can be assumed to be known from high school. It is highly recommended
that one learns most of these formulæ in this appendix by heart.

4.1 Squares etc.

The following simple formulæ occur very frequently in the most different situations.

(a+ b)2 = a2 + b2 + 2ab, a2 + b2 + 2ab = (a+ b)2,
(a− b)2 = a2 + b2 − 2ab, a2 + b2 − 2ab = (a− b)2,
(a+ b)(a− b) = a2 − b2, a2 − b2 = (a+ b)(a− b),
(a+ b)2 = (a− b)2 + 4ab, (a− b)2 = (a+ b)2 − 4ab.

4.2 Powers etc.

Logarithm:

ln |xy| = ln |x|+ ln |y|, x, y �= 0,

ln

∣

∣

∣

∣

x

y

∣

∣

∣

∣

= ln |x| − ln |y|, x, y �= 0,

ln |xr| = r ln |x|, x �= 0.

Power function, fixed exponent:

(xy)r = xr · yr, x, y > 0 (extensions for some r),

(

x

y

)r

=
xr

yr
, x, y > 0 (extensions for some r).

Exponential, fixed base:

ax · ay = ax+y, a > 0 (extensions for some x, y),
(ax)y = axy, a > 0 (extensions for some x, y),

a−x =
1

ax
, a > 0, (extensions for some x),

n
√
a = a1/n, a ≥ 0, n ∈ N.

Square root:

√
x2 = |x|, x ∈ R.

Remark 4.1 It happens quite frequently that students make errors when they try to apply these
rules. They must be mastered! In particular, as one of my friends once put it: “If you can master the
square root, you can master everything in mathematics!” Notice that this innocent looking square
root is one of the most difficult operations in Calculus. Do not forget the absolute value! ♦
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4.3 Differentiation

Here are given the well-known rules of differentiation together with some rearrangements which some-
times may be easier to use:

{f(x)± g(x)}′ = f ′(x)± g′(x),

{f(x)g(x)}′ = f ′(x)g(x) + f(x)g′(x) = f(x)g(x)

{

f ′(x)

f(x)
+

g′(x)

g(x)

}

,

where the latter rearrangement presupposes that f(x) �= 0 and g(x) �= 0.
If g(x) �= 0, we get the usual formula known from high school

{

f(x)

g(x)

}′
=

f ′(x)g(x) − f(x)g′(x)

g(x)2
.

It is often more convenient to compute this expression in the following way:

{

f(x)

g(x)

}

=
d

dx

{

f(x) · 1

g(x)

}

=
f ′(x)

g(x)
− f(x)g′(x)

g(x)2
=

f(x)

g(x)

{

f ′(x)

f(x)
− g′(x)

g(x)

}

,

where the former expression often is much easier to use in practice than the usual formula from high
school, and where the latter expression again presupposes that f(x) �= 0 and g(x) �= 0. Under these
assumptions we see that the formulæ above can be written

{f(x)g(x)}′
f(x)g(x)

=
f ′(x)

f(x)
+

g′(x)

g(x)
,

{f(x)/g(x)}′
f(x)/g(x)

=
f ′(x)

f(x)
− g′(x)

g(x)
.

Since

d

dx
ln |f(x)| = f ′(x)

f(x)
, f(x) �= 0,

we also name these the logarithmic derivatives.

Finally, we mention the rule of differentiation of a composite function

{f(ϕ(x))}′ = f ′(ϕ(x)) · ϕ′(x).

We first differentiate the function itself; then the insides. This rule is a 1-dimensional version of the
so-called Chain rule.

4.4 Special derivatives.

Power like:

d

dx
(xα) = α · xα−1, for x > 0, (extensions for some α).

d

dx
ln |x| = 1

x
, for x �= 0.
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Exponential like:

d

dx
expx = expx, for x ∈ R,

d

dx
(ax) = ln a · ax, for x ∈ R and a > 0.

Trigonometric:

d

dx
sinx = cosx, for x ∈ R,

d

dx
cosx = − sinx, for x ∈ R,

d

dx
tanx = 1+ tan2 x =

1

cos2 x
, for x �= π

2
+ pπ, p ∈ Z,

d

dx
cotx = −(1 + cot2 x) = − 1

sin2 x
, for x �= pπ, p ∈ Z.

Hyperbolic:

d

dx
sinhx = coshx, for x ∈ R,

d

dx
coshx = sinhx, for x ∈ R,

d

dx
tanhx = 1− tanh2 x =

1

cosh2 x
, for x ∈ R,

d

dx
cothx = 1− coth2 x = − 1

sinh2 x
, for x �= 0.

Inverse trigonometric:

d

dx
Arcsin x =

1√
1− x2

, for x ∈ ]− 1, 1 [,

d

dx
Arccos x = − 1√

1− x2
, for x ∈ ]− 1, 1 [,

d

dx
Arctan x =

1

1 + x2
, for x ∈ R,

d

dx
Arccot x =

1

1 + x2
, for x ∈ R.

Inverse hyperbolic:

d

dx
Arsinh x =

1√
x2 + 1

, for x ∈ R,

d

dx
Arcosh x =

1√
x2 − 1

, for x ∈ ] 1,+∞ [,

d

dx
Artanh x =

1

1− x2
, for |x| < 1,

d

dx
Arcoth x =

1

1− x2
, for |x| > 1.

Remark 4.2 The derivative of the trigonometric and the hyperbolic functions are to some extent
exponential like. The derivatives of the inverse trigonometric and inverse hyperbolic functions are
power like, because we include the logarithm in this class. ♦
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4.5 Integration

The most obvious rules are dealing with linearity

∫

{f(x) + λg(x)} dx =

∫

f(x) dx + λ

∫

g(x) dx, where λ ∈ R is a constant,

and with the fact that differentiation and integration are “inverses to each other”, i.e. modulo some
arbitrary constant c ∈ R, which often tacitly is missing,

∫

f ′(x) dx = f(x).

If we in the latter formula replace f(x) by the product f(x)g(x), we get by reading from the right to
the left and then differentiating the product,

f(x)g(x) =

∫

{f(x)g(x)}′ dx =

∫

f ′(x)g(x) dx +

∫

f(x)g′(x) dx.

Hence, by a rearrangement

The rule of partial integration:

∫

f ′(x)g(x) dx = f(x)g(x)−
∫

f(x)g′(x) dx.

The differentiation is moved from one factor of the integrand to the other one by changing the sign
and adding the term f(x)g(x).

Remark 4.3 This technique was earlier used a lot, but is almost forgotten these days. It must
be revived, because MAPLE and pocket calculators apparently do not know it. It is possible to
construct examples where these devices cannot give the exact solution, unless you first perform a
partial integration yourself. ♦

Remark 4.4 This method can also be used when we estimate integrals which cannot be directly
calculated, because the antiderivative is not contained in e.g. the catalogue of MAPLE. The idea is
by a succession of partial integrations to make the new integrand smaller. ♦

Integration by substitution:

If the integrand has the special structure f(ϕ(x)) ·ϕ′(x), then one can change the variable to y = ϕ(x):

∫

f(ϕ(x)) · ϕ′(x) dx = “

∫

f(ϕ(x)) dϕ(x)′′ =

∫

y=ϕ(x)

f(y) dy.
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Integration by a monotonous substitution:

If ϕ(y) is a monotonous function, which maps the y-interval one-to-one onto the x-interval, then

∫

f(x) dx =

∫

y=ϕ−1(x)

f(ϕ(y))ϕ′(y) dy.

Remark 4.5 This rule is usually used when we have some “ugly” term in the integrand f(x). The
idea is to put this ugly term equal to y = ϕ−1(x). When e.g. x occurs in f(x) in the form

√
x, we put

y = ϕ−1(x) =
√
x, hence x = ϕ(y) = y2 and ϕ′(y) = 2y. ♦

4.6 Special antiderivatives

Power like:
∫

1

x
dx = ln |x|, for x �= 0. (Do not forget the numerical value!)

∫

xα dx =
1

α+ 1
xα+1, for α �= −1,

∫

1

1 + x2
dx = Arctan x, for x ∈ R,

∫

1

1− x2
dx =

1

2
ln

∣

∣

∣

∣

1 + x

1− x

∣

∣

∣

∣

, for x �= ±1,

∫

1

1− x2
dx = Artanh x, for |x| < 1,

∫

1

1− x2
dx = Arcoth x, for |x| > 1,

∫

1√
1− x2

dx = Arcsin x, for |x| < 1,

∫

1√
1− x2

dx = − Arccos x, for |x| < 1,

∫

1√
x2 + 1

dx = Arsinh x, for x ∈ R,

∫

1√
x2 + 1

dx = ln(x+
√

x2 + 1), for x ∈ R,

∫

x√
x2 − 1

dx =
√

x2 − 1, for x ∈ R,

∫

1√
x2 − 1

dx = Arcosh x, for x > 1,

∫

1√
x2 − 1

dx = ln |x+
√

x2 − 1|, for x > 1 eller x < −1.

There is an error in the programs of the pocket calculators TI-92 and TI-89. The numerical signs are
missing. It is obvious that

√
x2 − 1 < |x| so if x < −1, then x+

√
x2 − 1 < 0. Since you cannot take

the logarithm of a negative number, these pocket calculators will give an error message.
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Exponential like:

∫

expx dx = expx, for x ∈ R,

∫

ax dx =
1

ln a
· ax, for x ∈ R, and a > 0, a �= 1.

Trigonometric:

∫

sinx dx = − cosx, for x ∈ R,

∫

cosx dx = sinx, for x ∈ R,

∫

tanx dx = − ln | cosx|, for x �= π

2
+ pπ, p ∈ Z,

∫

cotx dx = ln | sinx|, for x �= pπ, p ∈ Z,

∫

1

cosx
dx =

1

2
ln

(

1 + sinx

1− sinx

)

, for x �= π

2
+ pπ, p ∈ Z,

∫

1

sinx
dx =

1

2
ln

(

1− cosx

1 + cosx

)

, for x �= pπ, p ∈ Z,

∫

1

cos2 x
dx = tanx, for x �= π

2
+ pπ, p ∈ Z,

∫

1

sin2 x
dx = − cotx, for x �= pπ, p ∈ Z.

Hyperbolic:

∫

sinhx dx = coshx, for x ∈ R,

∫

coshx dx = sinhx, for x ∈ R,

∫

tanhx dx = ln coshx, for x ∈ R,

∫

cothx dx = ln | sinhx|, for x �= 0,

∫

1

coshx
dx = Arctan(sinhx), for x ∈ R,

∫

1

coshx
dx = 2 Arctan(ex), for x ∈ R,

∫

1

sinhx
dx =

1

2
ln

(

coshx− 1

coshx+ 1

)

, for x �= 0,
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∫

1

sinhx
dx = ln

∣

∣

∣

∣

ex − 1

ex + 1

∣

∣

∣

∣

, for x �= 0,

∫

1

cosh2 x
dx = tanhx, for x ∈ R,

∫

1

sinh2 x
dx = − cothx, for x �= 0.

4.7 Trigonometric formulæ

The trigonometric formulæ are closely connected with circular movements. Thus (cosu, sinu) are
the coordinates of a point P on the unit circle corresponding to the angle u, cf. figure A.1. This
geometrical interpretation is used from time to time.

✫✪
✬✩

✲

✻

��
(cosu, sinu)

u
1

Figure 4.1: The unit circle and the trigonometric functions.

The fundamental trigonometric relation:

cos2 u+ sin2 u = 1, for u ∈ R.

Using the previous geometric interpretation this means according to Pythagoras’s theorem, that the
point P with the coordinates (cosu, sinu) always has distance 1 from the origo (0, 0), i.e. it is lying
on the boundary of the circle of centre (0, 0) and radius

√
1 = 1.

Connection to the complex exponential function:

The complex exponential is for imaginary arguments defined by

exp(iu) := cosu+ i sinu.

It can be checked that the usual functional equation for exp is still valid for complex arguments. In
other word: The definition above is extremely conveniently chosen.

By using the definition for exp(iu) and exp(− iu) it is easily seen that

cosu =
1

2
(exp(iu) + exp(− iu)),

sinu =
1

2i
(exp(i u)− exp(− iu)),

.
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Moivre’s formula: We get by expressing exp(inu) in two different ways:

exp(inu) = cosnu+ i sinnu = (cosu+ i sinu)n.

Example 4.1 If we e.g. put n = 3 into Moivre’s formula, we obtain the following typical application,

cos(3u) + i sin(3u) = (cos u+ i sinu)3

= cos3 u+ 3i cos2 u · sinu+ 3i2 cosu · sin2 u+ i3 sin3 u

= {cos3 u− 3 cosu · sin2 u}+ i{3 cos2 u · sinu− sin3 u}
= {4 cos3 u− 3 cosu}+ i{3 sinu− 4 sin3 u}

When this is split into the real- and imaginary parts we obtain

cos 3u = 4 cos3 u− 3 cosu, sin 3u = 3 sinu− 4 sin3 u. ♦

Addition formulæ:

sin(u+ v) = sinu cos v + cosu sin v,

sin(u− v) = sinu cos v − cosu sin v,

cos(u + v) = cosu cos v − sinu sin v,

cos(u − v) = cosu cos v + sinu sin v.

Products of trigonometric functions to a sum:

sinu cos v =
1

2
sin(u + v) +

1

2
sin(u− v),

cosu sin v =
1

2
sin(u + v)− 1

2
sin(u− v),

sinu sin v =
1

2
cos(u − v)− 1

2
cos(u+ v),

cosu cos v =
1

2
cos(u− v) +

1

2
cos(u + v).

Sums of trigonometric functions to a product:

sinu+ sin v = 2 sin

(

u+ v

2

)

cos

(

u− v

2

)

,

sinu− sin v = 2 cos

(

u+ v

2

)

sin

(

u− v

2

)

,

cosu+ cos v = 2 cos

(

u+ v

2

)

cos

(

u− v

2

)

,

cosu− cos v = −2 sin

(

u+ v

2

)

sin

(

u− v

2

)

.

Formulæ of halving and doubling the angle:

sin 2u = 2 sinu cosu,

cos 2u = cos2 u− sin2 u = 2 cos2 u− 1 = 1− 2 sin2 u,

sin
u

2
= ±

√

1− cosu

2
followed by a discussion of the sign,

cos
u

2
= ±

√

1 + cosu

2
followed by a discussion of the sign,
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4.8 Hyperbolic formulæ

These are very much like the trigonometric formulæ, and if one knows a little of Complex Function
Theory it is realized that they are actually identical. The structure of this section is therefore the same
as for the trigonometric formulæ. The reader should compare the two sections concerning similarities
and differences.

The fundamental relation:

cosh2 x− sinh2 x = 1.

Definitions:

coshx =
1

2
(exp(x) + exp(−x)) , sinhx =

1

2
(exp(x) − exp(−x)) .

“Moivre’s formula”:

exp(x) = coshx+ sinhx.

This is trivial and only rarely used. It has been included to show the analogy.

Addition formulæ:

sinh(x+ y) = sinh(x) cosh(y) + cosh(x) sinh(y),

sinh(x− y) = sinh(x) cosh(y)− cosh(x) sinh(y),

cosh(x + y) = cosh(x) cosh(y) + sinh(x) sinh(y),

cosh(x − y) = cosh(x) cosh(y)− sinh(x) sinh(y).

Formulæ of halving and doubling the argument:

sinh(2x) = 2 sinh(x) cosh(x),

cosh(2x) = cosh2(x) + sinh2(x) = 2 cosh2(x)− 1 = 2 sinh2(x) + 1,

sinh
(x

2

)

= ±
√

cosh(x) − 1

2
followed by a discussion of the sign,

cosh
(x

2

)

=

√

cosh(x) + 1

2
.

Inverse hyperbolic functions:

Arsinh(x) = ln
(

x+
√

x2 + 1
)

, x ∈ R,

Arcosh(x) = ln
(

x+
√

x2 − 1
)

, x ≥ 1,

Artanh(x) =
1

2
ln

(

1 + x

1− x

)

, |x| < 1,

Arcoth(x) =
1

2
ln

(

x+ 1

x− 1

)

, |x| > 1.
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4.9 Complex transformation formulæ

cos(ix) = cosh(x), cosh(ix) = cos(x),

sin(ix) = i sinh(x), sinh(ix) = i sinx.

4.10 Taylor expansions

The generalized binomial coefficients are defined by

(

α
n

)

:=
α(α− 1) · · · (α− n+ 1)

1 · 2 · · ·n ,

with n factors in the numerator and the denominator, supplied with

(

α
0

)

:= 1.

The Taylor expansions for standard functions are divided into power like (the radius of convergency
is finite, i.e. = 1 for the standard series) andexponential like (the radius of convergency is infinite).
Power like:

1

1− x
=

∞
∑

n=0

xn, |x| < 1,

1

1 + x
=

∞
∑

n=0

(−1)nxn, |x| < 1,

(1 + x)n =

n
∑

j=0

(

n
j

)

xj , n ∈ N, x ∈ R,

(1 + x)α =

∞
∑

n=0

(

α
n

)

xn, α ∈ R \ N, |x| < 1,

ln(1 + x) =

∞
∑

n=1

(−1)n−1x
n

n
, |x| < 1,

Arctan(x) =

∞
∑

n=0

(−1)n
x2n+1

2n+ 1
, |x| < 1.
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Exponential like:

exp(x) =

∞
∑

n=0

1

n!
xn, x ∈ R

exp(−x) =

∞
∑

n=0

(−1)n
1

n!
xn, x ∈ R

sin(x) =

∞
∑

n=0

(−1)n
1

(2n+ 1)!
x2n+1, x ∈ R,

sinh(x) =

∞
∑

n=0

1

(2n+ 1)!
x2n+1, x ∈ R,

cos(x) =

∞
∑

n=0

(−1)n
1

(2n)!
x2n, x ∈ R,

cosh(x) =

∞
∑

n=0

1

(2n)!
x2n, x ∈ R.

4.11 Magnitudes of functions

We often have to compare functions for x → 0+, or for x → ∞. The simplest type of functions are
therefore arranged in an hierarchy:

1) logarithms,

2) power functions,

3) exponential functions,

4) faculty functions.

When x → ∞, a function from a higher class will always dominate a function form a lower class. More
precisely:

A) A power function dominates a logarithm for x → ∞:

(lnx)β

xα
→ 0 for x → ∞, α, β > 0.

B) An exponential dominates a power function for x → ∞:

xα

ax
→ 0 for x → ∞, α, a > 1.

C) The faculty function dominates an exponential for n → ∞:

an

n!
→ 0, n → ∞, n ∈ N, a > 0.

D) When x → 0+ we also have that a power function dominates the logarithm:

xα lnx → 0−, for x → 0+, α > 0.
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Index

absolute value 162
acceleration 490
addition 22
affinity factor 173
Ampère-Laplace law 1671
Ampère-Maxwell’s law 1678
Ampère’s law 1491, 1498, 1677, 1678, 1833
Ampère’s law for the magnetic field 1674
angle 19
angular momentum 886
angular set 84
annulus 176, 243
anticommutative product 26
antiderivative 301, 847
approximating polynomial 304, 322, 326, 336, 404,

488, 632, 662
approximation in energy 734
Archimedes’s spiral 976, 1196
Archimedes’s theorem 1818
area 887, 1227, 1229, 1543
area element 1227
area of a graph 1230
asteroid 1215
asymptote 51
axial moment 1910
axis of revolution 181
axis of rotation 34, 886
axis of symmetry 49, 50, 53

barycentre 885, 1910
basis 22
bend 486
bijective map 153
body of revolution 43, 1582, 1601
boundary 37–39
boundary curve 182
boundary curve of a surface 182
boundary point 920
boundary set 21
bounded map 153
bounded set 41
branch 184
branch of a curve 492
Brownian motion 884

cardiod 972, 973, 1199, 1705

Cauchy-Schwarz’s inequality 23, 24, 26
centre of gravity 1108
centre of mass 885
centrum 66
chain rule 305, 333, 352, 491, 503, 581, 1215, 1489,

1493, 1808
change of parameter 174
circle 49
circular motion 19
circulation 1487
circulation theorem 1489, 1491
circumference 86
closed ball 38
closed differential form 1492
closed disc 86
closed domain 176
closed set 21
closed surface 182, 184
closure 39
clothoid 1219
colour code 890
compact set 186, 580, 1813
compact support 1813
complex decomposition 69
composite function 305
conductivity of heat 1818
cone 19, 35, 59, 251
conic section 19, 47, 54, 239, 536
conic sectional conic surface 59, 66
connected set 175, 241
conservation of electric charge 1548, 1817
conservation of energy 1548, 1817
conservation of mass 1548, 1816
conservative force 1498, 1507
conservative vector field 1489
continuity equation 1548, 1569, 1767, 1817
continuity 162, 186
continuous curve 170, 483
continuous extension 213
continuous function 168
continuous surfaces 177
contraction 167
convective term 492
convex set 21, 22, 41, 89, 91, 175, 244
coordinate function 157, 169
coordinate space 19, 21
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Cornu’s spiral 1219
Coulomb field 1538, 1545, 1559, 1566, 1577
Coulomb vector field 1585, 1670
cross product 19, 163, 169, 1750
cube 42, 82
current density 1678, 1681
current 1487, 1499
curvature 1219
curve 227
curve length 1165
curved space integral 1021
cusp 486, 487, 489
cycloid 233, 1215
cylinder 34, 42, 43, 252
cylinder of revolution 500
cylindric coordinates 15, 21, 34, 147, 181, 182,

289, 477,573, 841, 1009, 1157, 1347, 1479,
1651, 1801

cylindric surface 180, 245, 247, 248, 499, 1230

degree of trigonometric polynomial 67
density 885
density of charge 1548
density of current 1548
derivative 296
derivative of inverse function 494
Descartes’a leaf 974
dielectric constant 1669, 1670
difference quotient 295
differentiability 295
differentiable function 295
differentiable vector function 303
differential 295, 296, 325, 382, 1740, 1741
differential curves 171
differential equation 369, 370, 398
differential form 848
differential of order p 325
differential of vector function 303
diffusion equation 1818
dimension 1016
direction 334
direction vector 172
directional derivative 317, 334, 375
directrix 53
Dirichlet/Neumann problem 1901
displacement field 1670
distribution of current 886
divergence 1535, 1540, 1542, 1739, 1741, 1742
divergence free vector field 1543

dodecahedron 83
domain 153, 176
domain of a function 189
dot product 19, 350, 1750
double cone 252
double point 171
double vector product 27

eccentricity 51
eccentricity of ellipse 49
eigenvalue 1906
elasticity 885, 1398
electric field 1486, 1498, 1679
electrical dipole moment 885
electromagnetic field 1679
electromagnetic potentials 1819
electromotive force 1498
electrostatic field 1669
element of area 887
elementary chain rule 305
elementary fraction 69
ellipse 48–50, 92, 113, 173, 199, 227
ellipsoid 56, 66, 110, 197, 254, 430, 436, 501, 538,

1107
ellipsoid of revolution 111
ellipsoidal disc 79, 199
ellipsoidal surface 180
elliptic cylindric surface 60, 63, 66, 106
elliptic paraboloid 60, 62, 66, 112, 247
elliptic paraboloid of revolution 624
energy 1498
energy density 1548, 1818
energy theorem 1921
entropy 301
Euclidean norm 162
Euclidean space 19, 21, 22
Euler’s spiral 1219
exact differential form 848
exceptional point 594, 677, 920
expansion point 327
explicit given function 161
extension map 153
exterior 37–39
exterior point 38
extremum 580, 632

Faraday-Henry law of electromagnetic induction
1676

Fick’s first law of diffusion 297
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Fick’s law 1818
field line 160
final point 170
fluid mechanics 491
flux 1535, 1540, 1549
focus 49, 51, 53
force 1485
Fourier’s law 297, 1817
function in several variables 154
functional matrix 303
fundamental theorem of vector analysis 1815

Gaussian integral 938
Gauß’s law 1670
Gauß’s law for magnetism 1671
Gauß’s theorem 1499, 1535, 1540, 1549, 1580, 1718,

1724, 1737, 1746, 1747, 1749, 1751, 1817,
1818, 1889, 1890, 1913

Gauß’s theorem in R2 1543
Gauß’s theorem in R3 1543
general chain rule 314
general coordinates 1016
general space integral 1020
general Taylor’s formula 325
generalized spherical coordinates 21
generating curve 499
generator 66, 180
geometrical analysis 1015
global minimum 613
gradient 295, 296, 298, 339, 847, 1739, 1741
gradient field 631, 847, 1485, 1487, 1489, 1491,

1916
gradient integral theorem 1489, 1499
graph 158, 179, 499, 1229
Green’s first identity 1890
Green’s second identity 1891, 1895
Green’s theorem in the plane 1661, 1669, 1909
Green’s third identity 1896
Green’s third identity in the plane 1898

half-plane 41, 42
half-strip 41, 42
half disc 85
harmonic function 426, 427, 1889
heat conductivity 297
heat equation 1818
heat flow 297
height 42
helix 1169, 1235

Helmholtz’s theorem 1815
homogeneous function 1908
homogeneous polynomial 339, 372
Hopf’s maximum principle 1905
hyperbola 48, 50, 51, 88, 195, 217, 241, 255, 1290
hyperbolic cylindric surface 60, 63, 66, 105, 110
hyperbolic paraboloid 60, 62, 66, 246, 534, 614,

1445
hyperboloid 232, 1291
hyperboloid of revolution 104
hyperboloid of revolution with two sheets 111
hyperboloid with one sheet 56, 66, 104, 110, 247,

255
hyperboloid with two sheets 59, 66, 104, 110, 111,

255, 527
hysteresis 1669

identity map 303
implicit given function 21, 161
implicit function theorem 492, 503
improper integral 1411
improper surface integral 1421
increment 611
induced electric field 1675
induction field 1671
infinitesimal vector 1740
infinity, signed 162
infinity, unspecified 162
initial point 170
injective map 153
inner product 23, 29, 33, 163, 168, 1750
inspection 861
integral 847
integral over cylindric surface 1230
integral over surface of revolution 1232
interior 37–40
interior point 38
intrinsic boundary 1227
isolated point 39
Jacobian 1353, 1355

Kronecker symbol 23

Laplace equation 1889
Laplace force 1819
Laplace operator 1743
latitude 35
length 23
level curve 159, 166, 198, 492, 585, 600, 603
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level surface 198, 503
limit 162, 219
line integral 1018, 1163
line segment 41
Linear Algebra 627
linear space 22
local extremum 611
logarithm 189
longitude 35
Lorentz condition 1824

Maclaurin’s trisectrix 973, 975
magnetic circulation 1674
magnetic dipole moment 886, 1821
magnetic field 1491, 1498, 1679
magnetic flux 1544, 1671, 1819
magnetic force 1674
magnetic induction 1671
magnetic permeability of vacuum 1673
magnostatic field 1671
main theorems 185
major semi-axis 49
map 153
MAPLE 55, 68, 74, 156, 171, 173, 341, 345, 350,

352–354, 356, 357, 360, 361, 363, 364,
366, 368, 374, 384–387, 391–393, 395–
397, 401, 631, 899, 905–912, 914, 915,
917, 919, 922–924, 926, 934, 935, 949,
951, 954, 957–966, 968, 971–973, 975,
1032–1034, 1036, 1037, 1039, 1040, 1042,
1053, 1059, 1061, 1064, 1066–1068, 1070–
1072, 1074, 1087, 1089, 1091, 1092, 1094,
1095, 1102, 1199, 1200

matrix product 303
maximal domain 154, 157
maximum 382, 579, 612, 1916
maximum value 922
maximum-minimum principle for harmonic func-

tions 1895
Maxwell relation 302
Maxwell’s equations 1544, 1669, 1670, 1679, 1819
mean value theorem 321, 884, 1276, 1490
mean value theorem for harmonic functions 1892
measure theory 1015
Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157,

1347, 1479, 1651, 1801, 1921
meridian curve 181, 251, 499, 1232
meridian half-plane 34, 35, 43, 181, 1055, 1057,

1081

method of indefinite integration 859
method of inspection 861
method of radial integration 862
minimum 186, 178, 579, 612, 1916
minimum value 922
minor semi-axis 49
mmf 1674
Möbius strip 185, 497
Moivre’s formula 122, 264, 452, 548, 818, 984,

1132, 1322, 1454, 1626, 1776, 1930
monopole 1671
multiple point 171

nabla 296, 1739
nabla calculus 1750
nabla notation 1680
natural equation 1215
natural parametric description 1166, 1170
negative definite matrix 627
negative half-tangent 485
neighbourhood 39
neutral element 22
Newton field 1538
Newton-Raphson iteration formula 583
Newton’s second law 1921
non-oriented surface 185
norm 19, 23
normal 1227
normal derivative 1890
normal plane 487
normal vector 496, 1229

octant 83
Ohm’s law 297
open ball 38
open domain 176
open set 21, 39
order of expansion 322
order relation 579
ordinary integral 1017
orientation of a surface 182
orientation 170, 172, 184, 185, 497
oriented half line 172
oriented line 172
oriented line segment 172
orthonormal system 23

parabola 52, 53, 89–92, 195, 201, 229, 240, 241
parabolic cylinder 613
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parabolic cylindric surface 64, 66
paraboloid of revolution 207, 613, 1435
parallelepipedum 27, 42
parameter curve 178, 496, 1227
parameter domain 1227
parameter of a parabola 53
parametric description 170, 171, 178
parfrac 71
partial derivative 298
partial derivative of second order 318
partial derivatives of higher order 382
partial differential equation 398, 402
partial fraction 71
Peano 483
permeability 1671
piecewise Ck-curve 484
piecewise Cn-surface 495
plane 179
plane integral 21, 887
point of contact 487
point of expansion 304, 322
point set 37
Poisson’s equation 1814, 1889, 1891, 1901
polar coordinates 15, 19, 21, 30, 85, 88, 147, 163,

172, 213, 219, 221, 289, 347, 388, 390,
477, 573, 611, 646, 720, 740, 841, 936,
1009, 1016, 1157, 1165, 1347, 1479, 1651,
1801

polar plane integral 1018
polynomial 297
positive definite matrix 627
positive half-tangent 485
positive orientation 173
potential energy 1498
pressure 1818
primitive 1491
primitive of gradient field 1493
prism 42
Probability Theory 15, 147, 289, 477, 573, 841,

1009, 1157, 1347, 1479, 1651, 1801
product set 41
projection 23, 157
proper maximum 612, 618, 627
proper minimum 612, 613, 618, 627
pseudo-sphere 1434
Pythagoras’s theorem 23, 25, 30, 121, 451, 547,

817, 983, 1131, 1321, 1453, 1625, 1775,
1929

quadrant 41, 42, 84
quadratic equation 47

range 153
rectangle 41, 87
rectangular coordinate system 29
rectangular coordinates 15, 21, 22, 147, 289, 477,

573, 841, 1009, 1016, 1079, 1157, 1165,
1347, 1479, 1651, 1801

rectangular plane integral 1018
rectangular space integral 1019
rectilinear motion 19
reduction of a surface integral 1229
reduction of an integral over cylindric surface 1231
reduction of surface integral over graph 1230
reduction theorem of line integral 1164
reduction theorem of plane integral 937
reduction theorem of space integral 1021, 1056
restriction map 153
Ricatti equation 369
Riesz transformation 1275
Rolle’s theorem 321
rotation 1739, 1741, 1742
rotational body 1055
rotational domain 1057
rotational free vector field 1662
rules of computation 296

saddle point 612
scalar field 1485
scalar multiplication 22, 1750
scalar potential 1807
scalar product 169
scalar quotient 169
second differential 325
semi-axis 49, 50
semi-definite matrix 627
semi-polar coordinates 15, 19, 21, 33, 147, 181,

182, 289, 477, 573, 841, 1009, 1016, 1055,
1086, 1157, 1231, 1347, 1479, 1651, 1801

semi-polar space integral 1019
separation of the variables 853
signed curve length 1166
signed infinity 162
simply connected domain 849, 1492
simply connected set 176, 243
singular point 487, 489
space filling curve 171
space integral 21, 1015
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specific capacity of heat 1818
sphere 35, 179
spherical coordinates 15, 19, 21, 34, 147, 179, 181,

289, 372, 477, 573, 782, 841, 1009, 1016,
1078, 1080, 1081, 1157, 1232, 1347, 1479,
1581, 1651, 1801

spherical space integral 1020
square 41
star-shaped domain 1493, 1807
star shaped set 21, 41, 89, 90, 175
static electric field 1498
stationary magnetic field 1821
stationary motion 492
stationary point 583, 920
Statistics 15, 147, 289, 477, 573, 841, 1009, 1157,

1347, 1479, 1651, 1801
step line 172
Stokes’s theorem 1499, 1661, 1676, 1679, 1746,

1747, 1750, 1751, 1811, 1819, 1820, 1913
straight line (segment) 172
strip 41, 42
substantial derivative 491
surface 159, 245
surface area 1296
surface integral 1018, 1227
surface of revolution 110, 111, 181, 251, 499
surjective map 153

tangent 486
tangent plane 495, 496
tangent vector 178
tangent vector field 1485
tangential line integral 861, 1485, 1598, 1600, 1603
Taylor expansion 336
Taylor expansion of order 2, 323
Taylor’s formula 321, 325, 404, 616, 626, 732
Taylor’s formula in one dimension 322
temperature 297
temperature field 1817
tetrahedron 93, 99, 197, 1052
Thermodynamics 301, 504
top point 49, 50, 53, 66
topology 15, 19, 37, 147, 289. 477, 573, 841, 1009,

1157, 1347, 1479, 1651, 1801
torus 43, 182–184
transformation formulæ1353
transformation of space integral 1355, 1357
transformation theorem 1354
trapeze 99

triangle inequality 23,24
triple integral 1022, 1053

uniform continuity 186
unit circle 32
unit disc 192
unit normal vector 497
unit tangent vector 486
unit vector 23
unspecified infinity 162

vector 22
vector field 158, 296, 1485
vector function 21, 157, 189
vector product 19, 26, 30, 163, 169. 1227, 1750
vector space 21, 22
vectorial area 1748
vectorial element of area 1535
vectorial potential 1809, 1810
velocity 490
volume 1015, 1543
volumen element 1015

weight function 1081, 1229, 1906
work 1498

zero point 22
zero vector 22

(r, s, t)-method 616, 619, 633, 634, 638, 645–647,
652, 655

Ck-curve 483
Cn-functions 318
1-1 map 153
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