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Preface

Preface

In this volume I present some examples of Simple Differential Equations I, cf. also Calculus 1a,
Functions of One Variable. Since my aim also has been to demonstrate some solution strategy I have
as far as possible structured the examples according to the following form

A Awareness, i.e. a short description of what is the problem.

D Decision, i.e. a reflection over what should be done with the problem.

I Implementation, i.e. where all the calculations are made.

C Control, i.e. a test of the result.

This is an ideal form of a general procedure of solution. It can be used in any situation and it is not
linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a
situation which did not contain Mathematics at all. The student is recommended to use it also in
other disciplines.

One is used to from high school immediately to proceed to I. Implementation. However, examples
and problems at university level are often so complicated that it in general will be a good investment
also to spend some time on the first two points above in order to be absolutely certain of what to do
in a particular case. Note that the first three points, ADI, can always be performed.

This is unfortunately not the case with C Control, because it from now on may be difficult, if possible,
to check one’s solution. It is only an extra securing whenever it is possible, but we cannot include it
always in our solution form above.

I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a
shorthand, because they are often (too often, I would say) misused. Instead of ∧ I shall either write
“and”, or a comma, and instead of ∨ I shall write “or”. The arrows ⇒ and ⇔ are in particular
misunderstood by the students, so they should be totally avoided. Instead, write in a plain language
what you mean or want to do.

It is my hope that these examples, of which many are treated in more ways to show that the solutions
procedures are not unique, may be of some inspiration for the students who have just started their
studies at the universities.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.
I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
17th July 2007
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Some theorems constantly applied in the following

1 Some theorems constantly applied in the following

Theorem 1.1 Solution by separation. Consider a differential equation of the form

(1)
dx

dt
= f(t)g(x), (t, x) ∈ I1 × I2,

where f : I1 → R and g : I2 → R are both continuous functions, and where g(x) �= 0 for every x ∈ I2.
The complete solution of (1) is given by∫

dx

g(x)
=
∫

f(t) dt + c,

where c ∈ R is some en arbitrary constant.

Informally we write (1) in the following form (divide by g(x) �= 0 and “multiply” by dt)

dx

g(x)
= f(t) dt.

Here, x and dx only occur on the left hand side, while t and dt only occur on the right hand side. For
that reason we say that the variables can be separated.

Theorem 1.2 Solution of a linear differential equation of first order. Consider an equation of the
form

(2)
dx

dt
+ p(t)x = q(t), t ∈ I,

where the functions p(t) and q(t) are both continuous in the interval I.

The complete solution of the differential equation (2) is given by

(3) x(t) = e−P (t)

{∫
eP (t)q(t) dt + c

}
, t ∈ I, and where c ∈ R are arbitrary

Here we have put

P (t) =
∫

p(t) dt.

When q(t) = 0 in (2), the differential equation is called homogeneous. When q(t) �= 0 in (2), the
differential equation is called inhomogeneous. Homogeneous equations are usually easier to solve than
inhomogeneous ones. Therefore, one often starts by first solving the homogeneous equation, e.g. by
(3),

x(t) = c · e−P (t), t ∈ I, c ∈ R arbitrary,

where as before P (t) =
∫

p(t) dt.

The following theorem follows from the linearity:

Theorem 1.3 The complete solution of (2) is obtained by adding all the solutions of the corresponding
homogeneous equation to any solution of the inhomogeneous equation.
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2 Separation of the variables

Example 2.1 Find ths solution x = f(t) of the differential equation

dx

dt
=

5t
x

, x > 0, t ∈ R,

for which f(0) = 1.

A. The equation is a first order differential equation, in which the variables can be separated:

dx

dt
= ϕ(t)ψ(t), x > 0, t ∈ R,

where

ϕ(t) = 5t and ψ(x) =
1
x

,

and where the initial value is f(0) = 1.

D. The equation is solved by separation of the variables, e.g. by an application of theorem 1.1. I shall
here give two variants of solution. They both start by determining the complete solution.

I. First solution. Here we apply theorem 1.1.

Since ψ(x) =
1
x
�= 0 for every x > 0, we get

⎧⎪⎨
⎪⎩

G(x) =
∫ 1

ψ(x)
dx =

∫
x dx =

x2

2
,

F (t) =
∫

ϕ(t) dt =
∫

5t dt =
5
2

t2.

Separation of the variables

Download free eBooks at bookboon.com



Calculus 1c-1

 

8  

The complete solution is given by

x2

2
=

5
2

t2 + c, x > 0, c ∈ R, t ∈ Ic,

where the condition x > 0 implies that every t ∈ Ic must satisfy

5
2

t2 + c > 0.

Hence, the solutions can also be written in the form

x2 = 5t2 + 2c, x > 0, c ∈ R, t ∈ Ic,

where c ∈ R is an arbitrary constant, and Ic is the corresponding domain.

–1

1

2

3

4

–2 –1 1 2

Figure 1: The solution for which f(0) = 1, including its asymptotes.

For t = 0 we get x = 1, i.e. c =
1
2
, and this particular solution is given by

x2 = 5t2 + 1, x > 0, t ∈ R.

When we rewrite this as

x2 −
(√

5 t
)2

= 1, x > 0, t ∈ R,

we see that its graph is an hyperbolic branch in the upper half plan with the asymptotes
x = ±√

5 t. The solution is also written

x = f(t) =
√

5t2 + 1, t ∈ R,

where we exploit that x > 0.

Second solution. A small rearrangement of the equation. When we multiply the equation by
2x, we get by the rules of calculation that

2x
dx

dt
=

d
(
x2
)

dt
= 10t, x > 0, t ∈ R,

Separation of the variables
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hence by an integration,

x2 = 5t2 + c, x > 0, c ∈ R, t ∈ Ic,

where c ∈ R is an arbitrary constant, and where every t ∈ Ic satisfies the condition 5t2 + c > 0.

For the particular solution we get c = 1, when t = 0. Thus we get x2 = 5t2 + 1 under the
constraint that x > 0, i.e. an hyperbolic branch in the upper half plane, cf. the figure. Since
x > 0, we also have

x = f(t) =
√

5t2 + 1, t ∈ R.

C. Test: When x = f(t) =
√

5t2 + 1, t ∈ R, it is obvious that

f(0) =
√

5 · 02 + 1 = 1,

so the initial condition is satisfied.

Furthermore

dx

dt
=

1
2
· 1√

5t2 + 1
· 5 · 2t =

5t
x

,

and we have checked the solution.

Finally, x = f(t) ≥ 1 > 0 for every t ∈ R, and we have proved all conditions in the example.

Example 2.2 . Find the solution x = f(t) of the differential equation

dx

dt
= 4t

√
x, x > 0, t ∈ R,

for which f(2) = 1. Find in particular the domain of the solution.

A. The equation is a first order differential equation in which the variables can be separated:

dx

dt
= ϕ(t)ψ(x), x > 0, t ∈ R,

where

ϕ(t) = 2r and ψ(x) = 2
√

x,

and where the initial condition is f(2) = 1.

D. The equation can either be solved by the method of separation of the variables, e.g. by applying
theorem 1.1, or by a small trick. The constant follows from the initial condition. Finally, discuss
the domain.

Separation of the variables
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I. First solution. Application of theorem 1.1.
Since ψ(x) = 2

√
x �= 0 for every x > 0, we get⎧⎨

⎩ G(x) =
∫ 1

ψ(x)
dx =

∫ 1
2
√

x
dx =

√
x,

F (t) =
∫

ϕ(t) dt =
∫

2t dt = t2.

The complete solution is then
√

x = t2 + c, t ∈ Ic,

where t ∈ Ic must satisfy t2 + c > 0.

5

10

15

20

25

30

35

0.5 1 1.5 2 2.5 3

Figure 2: The solution f(t) = (t2 − 3)2 for t >
√

3.

When (t, x) = (2, 1), we get c =
√

1 − 22 = −3, hence the searched solution is given by
√

x = t2 − 3, t ∈ Ic,

where the domain Ic is described by t2 > 3 and 2 ∈ Ic, i.e.

Ic = ]
√

3,+∞[.

Notice that the other possible interval, ]−∞,−√
3[, actually does not give the correct solution.

We now obtain our solution by squaring,

x =
(
t2 − 3

)2
, t ∈ ]

√
3,+∞[.

Second solution. “The divine inspiration”. (It is not so “divine” as one might think, when one
just has tried this method a couple of times).

When the equation is divided by 2
√

x > 0, we get

1
2
√

x

dx

dt
=

d(
√

x)
dt

= 2t,

Separation of the variables
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from which by an integration
√

x = t2 + c, t ∈ Ic,

where the interval Ic is determined by t2 + c > 0 (because x > 0) and 2 ∈ Ic. The rest is done
like in the First solution.

C. Now let

x =
(
t2 − 3

)2
for t ∈ ]

√
3,+∞[.

Then we get in this interval that
√

x = |t2 − 3| = t2 − 3 > 0.

When t = 2 ∈ ]
√

3,+∞[ we get

x = f(2) = (4 − 3)2 = 1.

Finally, by insertion in the differential equation,

dx

dt
= 2

(
t2 − 3

) · 2t = 4t
√

x, x > 0,

and the solution has been checked.

Separation of the variables
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Example 2.3 . Find the complete solution of the differential equation

dx

dt
= 4t

√
x, x > 0, t ∈ R.

Indicate in particular those functions which are solutions for every t ∈ R. Draw in a (t, x) coordinate
system the solution curves which go through the following points:

(1) (t, x) = (0, 1), (2) (t, x) = (1, 1), (3) (t, x) = (
√

2, 1).

A. The differential equation is the same as the differential equation in Example 2.2, so we can reuse
the former solution. Here we shall discuss the domain.

D. Either retrieve the complete solution of Example 2.2, or repeat one of the variants from I. in
Example 2.2. Then find the constants c ∈ R, for which Ic = R.

I. We choose of course here to reuse the complete solution from Example 2.2, i.e.
√

x = t2 + c, t ∈ Ic, x > 0,

where Ic is a connected subset of the set of points t, for which t2 + c > 0. Therefore, if Ic = R, we
must have t2 + c > 0 for every t ∈ R, i.e. c > 0.

When this is the case, we get

x =
(
t2 + c

)2
, t ∈ R, c > 0.

0

1

2

3

4

–1 –0.5 0.5 1

Figure 3: The solution x =
(
t2 + 1

)2.

1) When the point (t, x) = (0, 1) lies of the solution curve, then
√

x =
√

1 = 1 = t2 + c = 02 + c = c,

i.e. c = 1, and the searched for solution is

x =
(
t2 + 1

)2
, t ∈ R.

Separation of the variables
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0

1
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3

4

0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 4: The solution x = t4 for t > 0.

2) When the point (t, x) = (1, 1) lies on the solution curve, then

√
x =

√
1 = 1 = t2 + c = 12 + c = 1 + c,

i.e. c = 0, and
√

x = t2. Then note that t2 > 0 for t > 0 or t < 0. Since we shall choose that
interval, in which t = 1 is situated, the solution must be

x = t4, for t > 0.

0

1

2

3

4

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Figure 5: The solution x = (t2 − 1)2 for t > 1.

3) When the point (t, x) = (
√

2, 1) lies on the solution curve, we must have

√
x =

√
1 = 1 = t2 + c = (

√
2)2 + c = 2 + c,

i.e. c = −1, and
√

x = t2 − 1 > 1 for either t > 1 or t < −1. Since t =
√

2 must belong to the
interval I−1, the solution is given by

x = (t2 − 1)2, for t > 1.

Separation of the variables
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Example 2.4 . Find the solution x = f(t) of the differential equation

dx

dt
= x

2
3 sin t, t ∈ R, x ∈ R,

for which f(0) = 1.

A. The equation is a first order differential equation, in which the variables can be separated,

dx

dt
= ϕ(t)ψ(x), t ∈ R, x ∈ R,

where

ϕ(t) = sin t and ψ(x) = x
2
3 ,

and where the initial condition is f(0) = 1.

Now, ψ(x) = x
2
3 is 0 for x = 0, so we must assume that x �= 0, which shows that there is a latent

possibility of an unpleasant discussion of the domain.

D. We solve the equation by the method of separation of the variables, either by means of theorem 1.1
or by some manipulation. The constant is then determined from the initial condition. Finally we
must go through the discussion of the domain.

I. First solution. Application of theorem 1.1.
Since ψ(x) = x

2
3 �= 0 for x �= 0, we get⎧⎨

⎩ G(x) =
∫ 1

ψ(x)
dx =

∫
x− 2

3 dx = 3x
1
3 ,

F (t) =
∫

ϕ(t) dt =
∫

sin t dt = − cos t.

The solution is then implicitly given by

3x
1
3 = − cos t + c, x �= 0,

supplied with the trivial solution x = 0, and strictly speaking, also every differentiable compo-
sitions of such solutions for x = 0, if such compositions exist. This is, however, a very difficult
discussion, which I shall leave out here.

When (t, x) = (0, 1), we get 3 = −1 + c, i.e. c = 4, and the solution is determined by

3x
1
3 = 4 − cos t > 0, t ∈ R,

because the right hand side clearly is positive for every t ∈ R. This will give us the solution

x =
(

4 − cos t

3

)3

, t ∈ R,

which immediately is seen to be periodic of period 2π.
Second solution. Some manipulation.

We shall here neglect the trivial solution x = 0.
When we divide by 3x

2
3 , x �= 0, we get

1
3

x− 2
3

dx

dt
=

d

dt

(
x

1
3

)
=

1
3

sin t,

Separation of the variables
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0

1
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3

4

5

–8 –6 –4 –2 2 4 6 8

Figure 6: The solution curve x =
(

4 − cos t

3

)3

.

hence, by integration

x
1
3 = −1

3
cos t + c.

When (t, x) = (0, 1), we get 1 = −1
3

+ c, i.e. c =
4
3
, from which

x
1
3 =

4 − cos t

3
≥ 1 for every t ∈ R,

thus x �= 0. The solution is uniquely given by

x =
(

4 − cos t

3

)3

, t ∈ R.

C. Test. Let

x =
(

4 − cos t

3

)3

, t ∈ R.

Then x = 1 for t = 0, so the initial condition is fulfilled.

Furthermore,

4 − cos t

3
= x

1
3 > 0, t ∈ R,

hence

dx

dt
= 3

(
4 − cos t

3

)2 sin t

3
=
(
x

1
3

)2

sin t = x
2
3 sin t,

and the solution has been checked.

Separation of the variables
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Example 2.5 . Find the complete solution of the differential equation

1
x

dx

dt
= 2t, t ∈ R, x > 0.

A. A first order differential equation, in which the variables can be separated. Integration of 2t.

D. Arrange the equation so that it suffices with only performing one integration.

I. The equation is written

1
x

dx

dt
=

d ln x

dt
= 2t = et ln 2, t ∈ R,

hence by an integration

lnx =
1

ln 2
et ln 2 + c =

1
ln 2

2t + c, t ∈ R,

and therefore, if we put C = ec,

x = exp
(

1
ln 2

2t + c

)
= C · exp

(
1

ln 2
et

)
, t ∈ R, C > 0.

Separation of the variables
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Figure 7: The curve x = exp
(

1
ln 2

2t

)
for C = 1.

C. Let

x = C · exp
(

1
ln 2

2t

)
, C > 0, t ∈ R.

Then x > 0 for every t ∈ R, and

dx

dt
= C · exp

(
1

ln 2
· 2t

)
· 1
ln 2

· ln 2 · 2t = x · 2t,

hence by a division by x = C · exp
(

1
ln 2

· 2t

)
> 0,

1
x

dx

dt
= 2t, t ∈ R, x > 0,

and the solution has been checked.

Example 2.6 . Consider the differential equation

dx

dt
= 4

(
4
√

x
)3

, t ∈ R, x ≥ 0.

Prove by direct insertion that x = (t−1)4 is a solution for t ∈ [1,∞[, but not a solution for t ∈ ]−∞, 1[.

A. We shall not find the complete solution, but only show that some given function is a solution, while
another one is not a solution. It would have been more correct to let t belong to open intervals.
We are now forced to perform a limit.

D. Test the solutions by insertion.

I. Let x = (t − 1)4 for t ∈ I, where I is one of the two open intervals ]1,+∞[ or ] −∞, 1[. Then

4
√

x = |t − 1| =
{

t − 1 for t ∈ ]1,+∞[,
−(t − 1) for t ∈ ] −∞, 1[,

Separation of the variables
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and

dx

dt
= 4(t − 1)3 =

{
4 ( 4

√
x)3 , for t ∈ ]1,+∞[,

4 (− 4
√

x)3 = −4 ( 4
√

x)3 for t ∈ ] −∞, 1[,

which proved the claim for t �= 1.

When t → 1+ from the right we get x = 0, and the derivative (the “half tangent”) is calculated,

x(t) − x(0)
t − 1

=
(t − 1)4

t − 1
= (t − 1)3 → 0 = 4

(
4
√

x(0)
)3

for t → 0+,

from which follows that x = (t − 1)4 is a solution for t ∈ [1,+∞[ (by taking the limit to t = 1)
and not a solution for t ∈ ] −∞, 1[.

Remark. When x > 0, we divide the equation by 4 ( 4
√

x)3 and get

1
4

1
( 4
√

x)
dx

dt
=

d 4
√

x

dt
= 1,

hence by an integration

4
√

x = t + c (> 0),

The condition on the open domain is that t > −c. When this is the case, the complete solution is

x = (t + c)4, for t > −c, c ∈ R arbitrary. ♦

Example 2.7 Find the complete solution x = f(t) of the differential equation

dx

dt
+ 2tex = 0, t ∈ R, x ∈ R,

for which f(2) = − ln 3.

A. A differential equation of first order, where the variables can be separated.

D. The equation is rearranged, and the variables are separated, e.g. by an application of theorem 1.1.
We get the constant from the initial condition. Discussion of the domain.

I. First solution. Application of theorem 1.1.
Since the equation can be written

dx

dt
= −2t ex = ϕ(t)ψ(x), t ∈ R, x ∈ R,

where

ϕ(t) = 2t and ψ(x) = e−x �= 0 for every x,

Separation of the variables
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Figure 8: The solution curve x = − ln
(
t2 − 1

)
for t > 1.

we get⎧⎨
⎩ G(x) =

∫ 1
ψ(x)

dx = − ∫ e−x dx = e−x,

F (t) =
∫

2t dt = t2.

Then by theorem 1.1 the complete solution is given by

e−x = t2 + c (> 0), c ∈ R, t ∈ Ic,

where each t ∈ Ic must satisfy the condition t2 + c > 0.

When (t, x) = (2,− ln 3), we get c = −1, i.e. the solution is implicitly given by

e−x = t2 − 1 (> 0), for t > 0.

By taking the logarithm and changing the sign we get the explicit solution

x = − ln
(
t2 − 1

)
, for t > 1.

Second solution. Reformulation followed by an integration.
First we write the equation as

dx

dt
= −2t ex.

Dividing by −ex we get

−e−x dx

dt
=

d

dt

(
e−x

)
= 2t,

hence by an integration,

e−x = t2 + c, c ∈ R, t ∈ Ic,

Separation of the variables
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where each t ∈ Ic must satisfy the condition t2 + c > 0.

For (t, x) = (2,− ln 3) we get c = −1, thus

e−x = t2 − 1 > 0, for t > 1,

and therefore,

x = − ln
(
t2 − 1

)
= ln

(
1

t2 − 1

)
, for t ∈ R.

C. Test. Let x = − ln
(
t2 − 1

)
for t > 1. Then t2 − 1 = e−x, and

dx

dt
= − 2t

t2 − 1
= − 2t

e−x
= −2t ex,

which we rewrite as

dx

dt
+ 2t ex = 0,

and we see that the differential equation is fulfilled.

Separation of the variables
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When t = 2 is put into the expression of x, we get

x(2) = − ln(22 − 1) = − ln 3,

and we see that the initial condition is also satisfied.

We have checked our solution.

Example 2.8 Find the complete solution of the differential equation

dx

dt
+ x tan t = 0, t ∈

]
−π

2
,
π

2

[
.

A. The equation can either be solved by separating the variables, or as a linear equation of first order,
where we have a solution formula. Finally it can be solved by the nasty trick of first dividing by
cos t and then manipulate the result in a clever way.

D. Choose one of the solution methods mentioned above.

I. First solution. Separation and theorem 1.1.
Rewrite the equation in the following way

dx

dt
= −x tan t = ϕ(t)ψ(x),

where

ϕ(t) = − tan t and ψ(x) = x.

Then x = 0 is trivially a solution, and we see that when x �= 0, then ψ(x) �= 0.

For x �= 0 we get⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

G(x) =
∫ 1

ψ(x)
dx =

∫ 1
x

dx = ln |x|,

F (t) = − ∫ tan t dt = − ∫ sin t

cos t
dt

=
∫ d cos t

cos t
= ln cos t,

because cos t > 0 for t ∈
]
−π

2
,
π

2

[
.

According to theorem 1.1 the complete solution is for x �= 0 given by

ln |x| = ln cos t + k, x �= 0, k ∈ R, t ∈ Ik,

hence

|x| = ek cos t > 0, k ∈ R, t ∈
]
−π

2
,
π

2

[
,

thus with a new constant c = ±ek �= 0, where we have built the sign of x into the constant c,

x = c · cos t, c ∈ R \ {0}, t ∈
]
−π

2
,
π

2

[
.

Separation of the variables
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–2

–1

1

2

–1.5 –1 –0.5 0.5 1 1.5

Figure 9: The solution curves x = c · cos t, t ∈
]
−π

2
,
π

2

[
, for c = −2,−1, 0, 1 and 2.

None of these solutions takes on the value 0, so we have no composition problems. Since x = 0,
corresponding to c = 0, is also a solution, the complete solution is given by

x = c · cos t, c ∈ R, t ∈
]
−π

2
,
π

2

[
.

Second solution. Reformulation followed by an integration.
It follows trivially from

dx

dt
= −x tan t

that x = 0 is a solution.
Now, cos t > 0 for t ∈

]
−π

2
,
π

2

[
, so when also x �= 0, we get

1
x

dx

dt
=

d ln |x|
dt

= − sin t

cos t
=

1
cos t

d

dt
cos t =

d

dt
ln cos t.

Hence by an integration,

ln |x| = ln cos t + k,

i.e. by the exponential function

|x| = ek cos t, or x = ±ek cos t.

Since every real number c can either be written as ±ek for some k ∈ R or as 0, and since c = 0
corresponds to the solution x = 0, the complete solution must be given by

x = c · cos t, c ∈ R, t ∈
]
−π

2
,
π

2

[
.

Separation of the variables
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Third solution. A trick.
When the equation is divided by cos t > 0, and the equation then is read from the right towards
the left, we get

0 =
1

cos t

dx

dt
+

sin t

cos2 t
· x =

1
cos t

dx

dt
− 1

cos2 t

d

dt
(cos t) · x

=
(

1
cos t

)
· dx

dt
+

d

dt

(
1

cos t

)
· x =

d

dt

( x

cos t

)
.

Then by a simple integration,

x

cos t
= c, c ∈ R, t ∈

]
−π

2
,
π

2

[
,

and the complete solution is

x = c · cos t, c ∈ R, t ∈
]
−π

2
,
π

2

[
.

Fourth solution. Linear homogeneous differential equation of first order.
We first get by an identification that p(t) = tan t, hence

P (t) =
∫

tan t dt =
∫

sin t

cos t
dt = − ln cos t,

Separation of the variables
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where we again use that cos t > 0 for t ∈
]
−π

2
,
π

2

[
. Then the complete solution is obtained

from theorem 1.2,

x = c · e−P (t) = c · eln cos t = c · cos t, c ∈ R, t ∈
]
−π

2
,
π

2

[
.

C. Test. Let x = c · cos t, c ∈ R, t ∈
]
−π

2
,
π

2

[
. Then

dx

dt
+ x tan t = −c · sin t + c · cos t · sin t

sin t
= 0,

and we have checked our solution.

Example 2.9 Find the complete solution of the differential equation

dx

dt
=

2t
ex

, t ∈ R, x ∈ R.

A. A non-linear first order differential equation, in which the variables can be separated.

D. Separate the variables and integrate. Discuss the intervals of the domain.

I. By separation of the variables we get

exdx = 2t dt,

[
alternatively ex dx

dt
=

(ex)
dt

= 2t
]

,

hence by an integration,

ex = t2 + c, t2 > −c,

so

x = ln
(
t2 + c

)
, when t2 > −c.

When c = a2 > 0, the solution is

x = ln
(
t2 + a2

)
, t ∈ R,

defined for every t ∈ R.

When c = −a2, a ≥ 0, the solution is

x = ln
(
t2 − a2

)
for either t > a or t < −a,

i.e. the solution is defined in two disjoint intervals, and it tends towards −∞, when one is ap-
proaching the finite boundary point (and of course towards +∞, when one let t tend towards
infinity).

C. Test. Let x = ln
(
t2 + c

)
, where t2 > −c. Then

dx

dt
=

2t
t2 + c

=
2t
ex

,

in all cases.

We have checked our solution.

Separation of the variables
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–14

–12

–10

–8

–6

–4

–2

–2 –1 1 2

Figure 10: Sketch of the curves x = ln
(
t2 + c

)
for c = 1 (above), c = 0 (in the middle) and c = −1

(below).

Example 2.10 Find the complete solution of the differential equation

dx

dt
=

t

x
, x > 0, t ∈ R.

(Notice that this formulation implicitly requires that one shall indicate the domain of each solution).
Sketch in the same coordinate system some solution curves, so we can obtain an overview of the set
of all solution curves.

A. A non-linear differential equation of first order, in which the variables can be separated.

D. Separate the variables and integrate. Discuss the intervals of the domain.

I. When the equation is multiplied by 2x > 0, we get by a reformulation that

2x
dx

dt
=

d
(
x2
)

dt
= 2t,

which can be integrated immediately,

x2 = t2 + c for t2 > −c,

because x2 > 0 by the assumption.

1) When c = a2 > 0, we get the solution

x =
√

t2 + a2, t ∈ R,

which is defined in the whole of R.

2) When c = 0, we get

x = t for t > 0, or x = −t for t < 0.

3) When c = −a2 < 0, we get

x =
√

t2 − a2 for
{

t > a,
t < −a.

Separation of the variables
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0.5

1

1.5

2

2.5

3

–3 –2 –1 1 2 3

Figure 11: The graphs of x =
√

t2 + c for c = 1 (above), c = 0 (the straight half lines in the middle)
and for c = −1 (below).

The curves are a part of a hyperbolic system in the open upper half plane, supplied by halves of
the asymptotes.

Example 2.11 Find in an explicit form the complete solution (including a discussion of the domains)
of the differential equation

dx

dt
=

1
2

3

√
x

t2
, t > 0, x > 0.

Sketch the solution, the graph of which goes through the point (1, 1).

A. A differential equation in which the variables can be separated.

Find the complete solution and sketch one of these.

D. Separate the variables and solve the equation (theorem 1.1). Do not forget to discuss the domains!
Insert the initial condition and sketch the graph of the solution.

I. When the equation is divided by
3
2

3
√

x, x > 0, we get

2
3

x− 1
3

dx

dt
=

d

dt

(
x

2
3

)
=

1
3

t−
2
3 =

d

dt

(
t

1
3

)
, x > 0, t > 0.

By an integration we get

(4) x
2
3 = t

1
3 + c, x > 0, c ∈ R, t ∈ Ic � R+,

where t ∈ Ic satisfies t
1
3 + c > 0 and t > 0, i.e. t > −c3 and t > 0.

1) When c ≥ 0, then t > −c3 for all t ∈ R+, hence Ic = R+ in this case.

2) When c < 0, we get the domain

Ic =
]−c3,+∞[ =

]|c|3,+∞[ .

Separation of the variables
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Figure 12: The solution curve through (1, 1).

Since x > 0, we finally get from (4) that the solution is given by

x =
(
t

1
3 + c

) 3
2

, for

⎧⎨
⎩

t ∈ R+, when c ≥ 0,

t ∈ ]|c|3,+∞[ , when c < 0.

When (t, x) = (1, 1), it follows from (4) that

c = x
2
3 − t

1
3 = 1 − 1 = 0.

Hence the solution is

x =
√

t, t ∈ R+.

C. When

x =
(
t

1
3 + c

) 3
2

, t ∈ Ic,

we get

dx

dt
=

3
2
·
(
t

1
3 + c

) 1
2 · 1

3
t−

2
3 =

1
2

3

√
1
t2

(
t

1
3 + c

)3

=
1
2

3

√
x

t2
.

We have checked our solution.

Example 2.12 . Find the solution of the differential equation

e
√

x dx

dt
= 4 t

√
x, x > 0, t ∈ R,

the graph of which goes through the point
(−3, (ln 5)2

)
. Find in particular the domain of this solution.

Separation of the variables
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A. A non-linear differential equation of first order with an initial condition, and where the variable
can be separated.

D. Separate the variables and solve the equation. Then insert the initial condition and find the
wanted particular solution.

Do not forget to discuss the domain.

I. When we divide by 2
√

x > 0 we get

2t = e
√

x · 1
2
√

x

dx

dt
= e

√
x d

dt

(√
x
)

=
d

dt

(
e
√

x
)

.

Then by an integration

e
√

x = t2 + c, c ∈ R, x > 0, t ∈ Ic.

Since e
√

x > 1 for x > 0, we conclude that t ∈ Ic must satisfy t2 + c > 1, i.e. t2 > 1 − c.

When (t, x) =
(−3, (ln 5)2

)
, we get

c = e
√

x − t2 = eln 5 − (−3)2 = 5 − 9 = −4,

Separation of the variables
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Figure 13: The wanted solution through the point
(−3, (ln 5)2

)
.

so we have derived the condition

t2 > 1 − c = 1 − (−4) = 5, or |t| >
√

5.

Therefore, the solution

x =
{
ln
(
t2 + c

)}2
=
{
ln
(
t2 − 4

)}2

is defined in the two intervals ]−∞,−√
5[ and ]

√
5,+∞[. Since t = −3 ∈ ]−∞,−√

5[ for the given
initial point, the wanted solution is

x =
{
ln
(
t2 − 4

)}2
, t ∈ ] −∞,−

√
5[.

C. When

x = f(t) =
({ln (t2 − 4

)}2
, t ∈ ] −∞,−

√
5[,

we see that t = −3 lies in the interval and

f(−3) =
{
ln
(
(−3)2 − 4

)}2
= (ln 5)2,

hence the initial condition is satisfied.

Then note that since t2 − 4 > 1 for t <
√

5, we have
√

x = + ln
(
t2 − 4

)
, t <

√
5,

thus

e
√

x dx

dt
= eln(t2−4) · 2 ln

(
t2 − 4

) · 2t
t2 − 4

= (t2 − t) · √x · 4t
t2 − 4

= 4t
√

x,

and we have checked our solution.

Separation of the variables
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Example 2.13 Find the solution x = ϕ(t) of the differential equation

dx

dt
=

1 + x2

1 + t2
,

for which ϕ(0) = 1.
Hint: Use that

tan(u + v) =
tan u + tan v

1 − tanu tan v
.

A. A non-linear differential equation of first order which can be solved by separation.

D. Divide by 1 + x2 > 0 and integrate. Insert t = 0 and find the constant. Discuss the domain.

–1

0

1

2

3

y

–3 –2 –1 1 2

x

Figure 14: The solution curve x =
1 + t

1 − t
, t < 1, with the vertical asymptote t = 1.

I. By a division by 1 + x2 followed by a reformulation we get

1
1 + t2

=
1

1 + x2

dx

dt
=

d

dt
Arctan x,

hence by an integration,

Arctan x =
∫

1
1 + t2

dt + c = Arctan t + c.

When t = 0 we get

Arctan x(0) = Arctan 1 =
π

4
= Arctan 0 + c = c,

i.e. c =
π

4
, and

Arctan x(t) = Arctan t +
π

4
.

Separation of the variables
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By solving this equation with respect to x we get

x(t) = tan(Arctan x(t)) = tan
{

Arctan t +
π

4

}
=

tan(Arctan t) + tan π
4

1 − tan(Arctan t) · tan π
4

=
t + 1
1 − t

,

and the solution is

x =
1 + t

1 − t
, for t < 1,

because we require that t �= 1 (the denominator is �= 0), and because t = 0 must belong to the
domain.

C. Test. When

x =
1 + t

1 − t
=

2
1 − t

− 1, for t < 1,

we get x(0) =
1 + 0
1 − 0

= 1, and

dx

dt
=

d

dt

{
2

1 − t
− 1
}

=
2

(1 − t)2
,

Separation of the variables
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and

1 + x2

1 + t2
=

1
1 + t2

{
1 +

(
1 + t

1 − t

)2
}

=
1

1 + t2
· (1 − t)2 + (1 + t)2

(1 − t)2

=
1

1 + t2
· 2 + 2t2

(1 − t)2
=

2
(1 − t)2

=
dx

dt
,

and we have checked our solution.

Example 2.14 Consider the differential equation

(5)
dx

dt
= 3x3

√
t, t ≥ 0, x > 0.

1) Find the solution x = ϕ(t) of (5), for which ϕ(1) =
1√
28

. Sketch the graph of ϕ(t).

2) Show by direct insertion in (5), that the found ϕ(t) indeed is a solution.

3) Show that every solution of (5) has a vertical asymptote.

A. A differential equation in which the variables can be separated. The problem is subdivided into
three questions:

1) Find one particular solution.

2) Test the solution.

3) Discuss the asymptotes.

D. 1) The equation is solved by the method of separation of the variables, e.g. by an application
of theorem 1.1. Then we get our solution by means of the initial condition. Do not forget to
sketch the curve.

2) Test the particular solution.

3) The investigation of the asymptotes is done by some limit.

I. 1) First variant. Application of theorem 1.1.
It follows from

dx

dt
= f(t)g(x), f(t) =

√
t, g(x) = 3x3 �= 0, t ≥ 0, x > 0,

that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G(x) =
∫ 1

g(x)
dx =

∫ 1
3

x−3 dx = −1
6

1
x2

,

F (t) =
∫

f(t) dt =
∫

t
1
2 dt =

2
3

t
3
2 =

2
3

t
√

t.

Separation of the variables
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We get the complete solution in an implicit form by applying theorem 1.1,

−1
6

1
x2

=
2
3

t
√

t + k, t ∈ Ik, k ∈ R.

The requirement of t ∈ Ik is that t ≥ 0 and
2
3

t
√

t + k < 0, i.e. (
√

t)3 < −3
2

k, hence k < 0 and

0 ≤ t <

(
−3

2
k

) 2
3

for t ∈ Ik.

Since k = −
{

1
6

1
x2

+
2
3

t
√

t

}
we get for (t, x) =

(
1,

1√
28

)
,

k = −
{

28
6

+
2
3

}
= −16

3
,

i.e.

−1
6

1
x2

=
2
3

t
√

t − 16
3

for t ∈ Ik,

where Ik is determined by t ≥ 0 and
2
3

t
√

t <
16
3

, i.e. (
√

t)3 < 8, from which t < 4. Therefore,

the domain is Ik = [0, 4[. Then

1
x2

= 32 − 4 t
√

t = 4
{

8 − t
3
2

}
, t ∈ [0, 4[.

Finally, since we have assumed that x > 0,

x =
1
2

1√
8 − t3/2

, t ∈ [0, 4[.

Second variant. When we divide by −1
2

x3 we get

−6t
1
2 = −2x−3 dx

dt
=

d

dt

(
1
x2

)
.

Then by an integration,

1
x2

= −6
∫

t
1
2 dt + 4c = −6 · 2

3
t

3
2 + 4c = −4t

3
2 + 4c.

Since x > 0 and t ≥ 0, we must have −4t
3
2 + 4c > 0 in the domain, i.e. we only get solutions,

when c > 0. In that case (x > 0) we have

x =
1√

4c − 4t3/2
=

1
2
· 1√

x − t3/2
, t ∈

[
0, c2/3

[
.

When (t, x) =
(

1,
1√
28

)
is put into the equation, we get 4c =

1
x2

+ 4t3/2, thus

c =
28 + 4

4
=

32
4

= 8 = 23,

Separation of the variables
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i.e. Ic =
[
0, 82/3

[
= [0, 4[, and we have found the solution

x =
1
2
· 1√

8 − t3/2
, t ∈ [0, 4[.

0

1

2

3

4

y

1 2 3 4

x

Figure 15: The graph of x =
1
2
· 1√

8 − t3/2
, t ∈ [0, 4[, and its vertical asymptote x = 4.

Separation of the variables
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Sketch of the curve. The function x =
1
2
· 1√

8−t3/2
, t ∈ [0, 4[, is trivially increasing, and

for t → 4− it tends towards +∞, hence x = 4 is a vertical asymptote.
2) C. Let

x = f(t) =
1
2

1√
8 − t3/2

, t ∈ [0, 4[.

Then f(t) is defined in the whole of the interval [0+, 4[.

For t = 1 we get f(1) =
1
2

1√
7

=
1√
28

.

Finally, we get by a differentiation
dx

dt
=

1
2
·
(
−1

2

)
· 1(√

8 − t3/2
)3 ·

(
−3

2

√
t

)

= 3
{

1
2

1√
8 − t3/2

}3 √
t = 3x3

√
t.

We have checked our solution.
3) According to (1) the general solution has the form

x =
1
2

1√
c − t3/2

, t ∈
[
0, c2/3

[
, c > 0.

When t → c2/3−, we get
√

c − t3/2 → 0+, from which we conclude that x = f(t) → +∞ for
t → c2/3−, and the solution has the vertical asymptote t = c2/3.

Example 2.15 Find the solution x = ϕ(t) of the differential equation

dx

dt
=

2t
ex

, t ∈ R, x ∈ R,

for which ϕ(
√

2) = 0. Determine the domain of the solution.

A. A non-linear differential equation of first order, in which the variables can be separated.

D. Multiply by ex and reduce.

I. By the multiplication by ex we get

ex = t2 + c > 0,

i.e. the complete solution is given by

x = ln(t2 + c) for t2 + c > 0.

We get from ϕ(
√

2) = 0 that

exp(ϕ(
√

2)) = 1 = (
√

2)2 + c = 2 + c,

so c = −1. Therefore, the solution is x = ln(t2 − 1) where |t| > 1. Furthermore, since t =
√

2 must
lie in the domain, the solution is

ϕ(t) = ln(t2 − 1), for t > 1.

Separation of the variables
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Figure 16: The solution ϕ(t) = ln(t2 − 1) for t > 1.

Example 2.16 Find the complete solution of the differential equation

dx

dt
=

e−x

1 + t2
, x ∈ R, t ∈ R.

Specify the domain for each of the solutions.

A. A non-linear differential equation of first order, in which the variables can be separated.

D. Multiply by ex and reduce.

I. Multiplication by ex gives

1
1 + t2

= ex dx

dt
=

d (ex)
dt

,

hence by integration,

ex = Arctan t + c.

The requirement of the domain is that

Arctan t + c > 0,

so the complete solution becomes

x = ln(Arctan t + c), n̊ar Arctan t + c > 0.

Since Arctan t ∈
]
−π

2
,
π

2

[
, the domain is the whole of R, when c ≥ π

2
, and empty when c ≤ −π

2
.

When c ∈
]
−π

2
,
π

2

[
, we get the condition Arctan t > −c, thus t > − tan c.

Summarizing we therefore get

1) x = ln(Arctan t + c) for every t ∈ R, when c ≥ π

2
,

Separation of the variables
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2) x = ln(Arctan t + c) for t > − tan c, when −π

2
< c <

π

2
,

3) no solution when c ≤ −π

2
.

Example 2.17 Find the complete solution of the equation

dx

dt
= (2x − 3)(t + 1), t ∈ R, x ∈ R.

Find the solution and its domain which is passing through (1, 1).

A. A linear and inhomogeneous differential equation of first order.

D. Even though the equation can be solved by using the usual solution formula for linear differential
equations of first order. we see that the formulation of the equation invites to a solution by
separating the variables.

–1

–0.5

0

0.5

1

1.5

–3 –2 –1 1

x

Figure 17: The graph of the solution curve through (1, 1).

I. It is obvious that x =
3
2

is a particular solution. When x �= 3
2
, we get by separating the variables

that∫
dx

x − 3
2

= c1 +
∫

2(t + 1) dt,

i.e.

ln
∣∣∣∣x − 3

2

∣∣∣∣ = c1 + (t + 1)2,

and the complete solution becomes

x =
3
2

+ c · exp
(
(t + 1)2

)
, t ∈ R, c ∈ R.

Notice that c = 0 corresponds to the exceptional curve given by x =
3
2
.

Separation of the variables
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The constant of the solution curve through (x, t) = (1, 1) is obtained by solving the equation

1 =
3
2

+ c · exp
(
(t + 1)2

)
,

hence

c = − 1
2e4

.

Therefore the wanted solution is defined for every t ∈ R, and

x =
3
2
− 1

2
exp

(
(t + 1)2 − 4

)
=

3
2
− 1

2
exp((t + 3)(t − 1)), t ∈ R.

Separation of the variables
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3 Linear differential equation of first order

Example 3.1 . Find the complete solution of the differential equation

dx

dt
+ x = t, t ∈ R.

A. The equation is a linear differential equation of first order.

D. The equation can either be solved by the formulæ in theorem 1.2 and theorem 1.3, or by a
multiplication by an “integrating factor” et followed by an integration.

I. First solution. Application of theorem 1.2 and theorem 1.3.
Since p(t) = 1, we get

P (t) =
∫

p(t) dt = t,

and hence the complete solution of the corresponding homogeneous equation becomes

x = c · e−t, t ∈ R, c ∈ R.

Since q(t) = t, a particular solution is given by

x = e−P (t)

∫
eP (t) q(t) dt = e−t

∫
et · t dt

= e−t

{
et · t −

∫
et dt

}
= e−t

{
et · t − et

}
= t − 1.

Variant. If we guess the structure x = at + b of the solution, we get by insertion (i.e. by
testing) that

dx

dt
+ x = a + (at + b) = at + (a + b) = t,

which is fulfilled for a = 1 and b = −1. Thus a particular solution is given by x = t − 1.

According to theorem 1.3 the complete solution is then

x = t − 1 + c · e−t, c ∈ R, t ∈ R.

Second solution. When the equation is multiplied by et and the result is read from the right
towards the left, we get by a small reformulation that

t et = et dx

dt
+ etx = et dx

dt
+

d

dt

(
et
) · x =

d

dt

(
x et
)
,

where we apply the rule of differentiation of a product. The equation

d

dt

(
x et
)

= t et

is then solved by an integration:

x et =
∫

t et dt = t et −
∫

et dt = (t − 1)et + c,

hence

x = t − 1 + c · e−t, c ∈ R, t ∈ R.

Linear differential equation of fi rst order
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C. Test. Let x = t − 1 + c · e−t, c ∈ R, t ∈ R. By insertion in the differential equation we get

dx

dt
+ x =

(
1 − c · e−t

)
+
(
t − 1 + c · e−t

)
= t.

We have checked our solution.

Example 3.2 Find the solution x = f(t) of the differential equation

dx

dt
+

1
t

x = −2t2, t > 0,

for which f(1) = −1.

A. A linear inhomogeneous differential equation of first order.

D. The equation can either be solved by using theorem 1.2 and theorem 1.3, or by a small trick where
one multiplies by t and reformulates the equation to a form which can be directly integrated.

I. First solution. Application of theorem 1.2 and theorem 1.3.

From p(t) =
1
t
, t > 0, and q(t) = −2t2, we get

P (t) =
∫

1
t

dt = ln t, t > 0,

hence the complete solution of the homogeneous equation is

x = c · e− ln t =
c

t
, c ∈ R, t > 0.

A particular solution is given by

x = e−P (t)

∫
eP (t) q(t)dt =

1
t

∫
t · (−2t2) dt

= −2
t

∫
t3 dt = −2

t
· 1
4

t4 = −1
2

t3.

Then according theorem 1.3 the complete solution is

x = −1
2

t3 +
c

t
, c ∈ R, t > 0.

Alternatively we know that both differentiation and division by t > 0 will lower the degree
of a polynomial without a constant term by 1. In order to find a particular solution it will
therefore be reasonable to guess a polynomial of degree 2+1 = 3. Therefore, let x = a t3. Then

dx

dt
+

1
t

x = 3a t2 + a t2 = 4a t2 = −2t2,

from which a = −1
2
, and x = −1

2
t3 is a particular solution.

When the initial condition f(1) = −1 is inserted into the general expression of the solution

f(t) = −1
2

t3 +
c

t
,

Linear differential equation of fi rst order
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we get −1
2

+ c = −1, from which c = −1
2
, and the solution is

f(t) = −1
2

(
t3 +

1
r

)
, t > 0.

–5

–4

–3

–2

–1

0.5 1 1.5 2

Figure 18: Graph of the solution x = −1
2

(
t3 +

1
t

)
, t > 0.

Second solution. Integrating factor.
When the equation is multiplied by t > 0 and then read from the right towards the left, we get
by a small reformulation that

−2t3 = t
dx

dt
+ 1 · x = t · dx

dt
+

dt

dt
· x =

d

dt
(t x),

where we have used the rule of differentiation of a product. Then by an integration

t x = −
∫

2t3 dt + c = −1
2

t4 + c,

and the complete solution is obtained by a division by t > 0:

x = f(t) = −1
2

t3 +
c

t
, c ∈ R, t > 0.

When t = 1, we get f(1) = −1 = −1
2

+ c, so c = −1
2
. Therefore, our solution becomes

x = f(t) = −1
2

(
t3 +

1
t

)
, t > 0.

C. Test. Let x = f(t) = −1
2

(
t3 +

1
t

)
, t > 0.

For t = 1 we get f(1) = −1
2

(1 + 1) = −1.

Linear differential equation of fi rst order
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By insertion in the left hand side of the differential equation we get

dx

dt
+

1
t

x = −1
2

(
3t2 − 1

t2

)
+

1
t2

(
−1

2

)
·
(

t3 +
1
t

)

= −1
2

{
3t2 − 1

t2
+ t2 +

1
t2

}
= −1

2
· 4t2 = −2t2.

We have checked our solution.

Linear differential equation of fi rst order
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Example 3.3 Find the complete solution of the differential equation

t
dx

dt
− 2x = t5, t < 0.

A. A non-normed linear inhomogeneous differential equation of first order. Notice that t < 0.

D. Here we have several possible methods of solution:

1) Norm the equation and solve by means of the formula in theorem 1.2.

2) Divide by t3 and rewrite the result as an integration problem.

3) Guess a polynomial and test.

I. First solution. Application of theorem 1.2.
We first norm the equation:

dx

dt
− 2

t
x = t4, t < 0.

Here

p(t) = −2
t
, q(t) = t4, P (t) = −

∫
2
t

dt = −2 ln |t| = − ln
(
t2
)
.

The complete solution is obtained by theorem 1.2:

x = e−P (t)
{

eP (t) q(t) dt + c
}

= t2
{∫

1
t2

· t4 dt + c

}

= t2
{∫

t2 dt + c

}
= t2

{
1
3

t3 + c

}
=

1
3

t5 + c t2,

i.e.

x =
1
3

t5 + c t2, c ∈ R, t < 0.

Second solution. A nice little reformulation.
When we read the equation from the right towards the left and divide it by t3 �= 0, we get by
a small rearrangement that

t2 =
1
t2

dx

dt
− 2

t3
· x =

1
t2

dx

dt
+

d

dt

(
1
t2

)
· x =

d

dt

( x

t2

)
.

Therefore by an integration,

x

t2
=
∫

t2 dt + c =
1
3

t3 + c,

and the complete solution is

x =
1
3

t5 + c · t2, c ∈ R, t < 0.

Linear differential equation of fi rst order
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Third solution. Guess a polynomial.

If x is a non-constant polynomial then both t
dx

dt
and 2x are polynomials of the same degree.

It is therefore quite reasonable to guess a solution of the form

x = a · t5 + c · tn.

Insertion into the left hand side of the differential equation gives

t
dx

dt
− 2x = t

{
5a t4 + c · n tn−1

}− 2
{
a t5 + c tn

}
= 3a t5 + c · (n − 2) tn.

This expression is equal to t5, when a =
1
3
, n = 2 and c is arbitrary. Therefore,

x =
1
3

t5 + c · t2, c ∈ R, t < 0,

are solutions, and according to theorem 1.3 we have at the same time found the complete
solution, because the structure of the solution is the correct one.

C. Test. This was latently performed above in the Third solution.

Example 3.4 Find the complete solution of the differential equation

dx

dt
− 2

t
x = 2t + 5, t > 0.

A. A linear inhomogeneous differential equation of first order. We shall not in this solution exploit
that the left hand side by a multiplication by t formally can be put in the same form as the left
hand side of the differential equation of Example 3.3. We leave it to the reader to use this shortcut.

D. Here we have several possibilities of solution:

1) Solve the equation by applying theorem 1.2.

2) Divide by t2 and rewrite the problem as a problem of integration.

I. First solution. Application of theorem 1.2.
Since

p(t) = −2
t
, q(t) = 2t + 5, P (t) = −

∫
2
t

dt = −2 ln |t| = − ln
(
t2
)
,

we obtain the complete solution by the solution formula given in theorem 1.2,

x = e−P (t)

{∫
eP (t) q(t) dt + c

}
= t2

{∫
1
t2

(2t + 5) dt + c

}

= t2
{∫

2
t

dt +
∫

5
t2

dt + c

}
= t2

{
2 ln t − 5

t
+ c

}
= 2t2 ln t − 5t + c · t2,

i.e.

x = 2t2 ln t − 5t + c · t2, c ∈ R, t > 0.

Linear differential equation of fi rst order
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Second solution. Nice reformulations.
By division by t2 �= 0 for t > 0 we get

2
t

+
5
t2

=
1
t2

dx

dt
− 2

t3
x =

1
t2

dx

dt
+

d

dt

(
1
t2

)
· x =

d

dt

( x

t2

)
.

Then by an integration,

x

t2
=
∫

2
t

dt +
∫

5
t2

dt + c = 2 ln t − 5
t

+ c.

The complete solution is

x = 2t2 ln t − 5t + c · t2, c ∈ R, t > 0.

C. Test. When x = 2t2 ln t − 5t + c t2 is put into the left hand side of the differential equation we
get

dx

dt
− 2

t
x = 4t ln t + 2t − 5 + 2ct − 4t ln t + 10 − 2ct = 2t + 5.

We have checked our solution.

Example 3.5 Find a polynomial of degree 1 which is a solution of the differential equation

dx

dt
+ t2 x = t3 + 1, t ∈ R.

Then find the complete solution of the equation.

A. A linear inhomogeneous differential equation of first order.

One is here invited to guess a particular solution.

D. Use the hint of guessing a particular solution.

Find a solution of the corresponding homogeneous equation and then apply theorem 1.3.

I. When x = at + b is put into the left hand side of the equation we get

dx

dt
+ t2x = a t3 + b t2 + a.

This expression is equal to t3 + 1, when a = 1 and b = 0. Thus a particular solution is

x = t.

Since p(t) = t2, we get

e−P (t) = exp
(
−1

3
t3
)

as a generating solution of the complete solution of the homogeneous equation.

Using theorem 1.3 we conclude that the complete solution is

x = t + c · exp
(
−1

3
t3
)

, c ∈ R, t ∈ R.

Linear differential equation of fi rst order
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C. Test. When x = t+ c · exp
(
−1

3
t3
)

, we get by insertion into the left hand side of the differential

equation that

dx

dt
+ t2x = 1 − c t2 exp

(
−1

3
t3
)

+ t3 + c t2 exp
(
−1

3
t3
)

= t3 + 1.

We have checked our solution.
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Example 3.6 Given the differential equation

dx

dt
+ x = cos t, t ∈ R.

1) Does the differential equation have a solution of the form x = a cos t?

2) Does the differential equation have a solution of the form x = a cos t + b sin t?

3) Find the complete solution of the equation.

A. A linear inhomogeneous differential equation of first order. One is implicitly requested to guess a
particular solution followed by at determination of the complete solution.

D. Insert the given functions into the left hand side of the differential equation and analyze the
results. Alternatively one may use the solution formula.

I. 1) By insertion of x = a cos t into the left hand side of the differential equation we get

dx

dt
+ x = −a sint + a cos t.

If this expression should be equal to cos t, we necessarily must have that both a = 0 and a = 1,
which is not possible. Therefore, we cannot have a solution of the suggested structure a cos t.

2) By insertion of x = a cos t + b sin t into the left hand side of the differential equation we get

dx

dt
+ x = −a sin t + b cos t + a cos t + b sin t

= (−a + b) sin t + (a + t) cos t,

which is equal to cos t for a = b =
1
2
. Therefore, a particular solution is given by

x =
1
2

(cos t + sin t)
[
=

1√
2

sin
(
t +

π

4

)]
.

3) We now guess that x = e−t is a solution of the corresponding homogeneous equation. It is
immediately seen that this is true.

Alternatively we have p(t) = 1, hence P (t) = t, and thus

x = c · e−P (t) = c · e−t.

According to theorem 1.3, the complete solution is

x =
1
2

(cos t + sin t) + c · e−t, c ∈ R, t ∈ R.

Alternatively (sketch only) we get when the equation i multiplied by et that

et cos t = et dx

dt
+ et x =

d

dt

(
et x
)
,

and the solution can then be found directly by an integration.

Linear differential equation of fi rst order
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Example 3.7 Find the complete solution of the differential equation

dx

dt
− 2tx = 2t, t ∈ R.

Show (without applying the Existence and Uniqueness Theorem that there to any (a, b) ∈ R
2 exists

precisely one solution, the graph of which goes through (a, b).
Sketch the graphs of the three solutions which respectively go through the points

(3,−1), (1, 1) og
(

2,−3
2

)
.

A. A linear inhomogeneous differential equation of first order where the variables also can be sepa-
rated.

Existence and uniqueness problem.

Sketches of curves.

D. There are several possibilities of solutions:

1) Application of theorem 1.2 and theorem 1.3 where one may guess a particular solution.

2) Multiplication by an integrating factor exp
(−t2

)
followed by an integration.

3) Separation of the variables.

Investigate in particular the existence and the uniqueness.

Sketch the three graphs of solution.

I. First solution. Application of theorem 1.2 and theorem 1.3.
We first get from p(t) = −2t and q(t) = 2t that

P (t) =
∫

p(t) dt = −
∫

2t dt = −t2.

Thus the corresponding homogeneous equation has the complete solution

c · exp(−P (t)) = c · exp
(
t2
)
.

Then use theorem 1.2 in order to obtain a particular solution,

f(t) = e−P (t)

∫
eP (t) q(t) dt = et2

∫
e−t2 · 2t dt

= et2
∫

e−t2 d
(
t2
)

= −et2 · e−t2 = −1.

Alternatively it is immediately seen by inspection that x = −1 is a solution.

According to theorem 1.3 the complete solution is then given by

x = −1 + c · exp
(
t2
)
, c ∈ R, t ∈ R.

Linear differential equation of fi rst order
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Second solution. When the equation is multiplied by the integrating factor exp
(−t2

)
, we get

by the rule of differentiation of a product that

2t e−t2 = e−t2 dx

dt
− 2t e−t2 x

= e−t2 dx

dt
+

d

dt

(
e−t2

)
· x =

d

dt

(
x e−t2

)
.

Then by an integration,

x e−t2 =
∫

2t e−t2 dt + c = −e−t2 + c,

hence by a multiplication by et2 �= 0,

x = −1 + c · et2 , c ∈ R, t ∈ R.

Third solution. Separation of the variables.
It follows from

dx

dt
= 2tx + 2t = 2t(x + 1)

that the variables can be separated. Then it follows immediately that x = −1 is a solution.
When x �= −1 we can divide the equation by x + 1, whence

1
x + 1

dx

dt
=

d

dt
ln |x + 1| = 2t.

Then an integration gives

ln |x + 1| = t2 + k, k ∈ R,

i.e. |x + 1| = ek et2 , k ∈ R. Then note that the sign of x + 1 can be built into the constant
c = ±ek, and that c = 0 corresponds to the solution x = −1, so we conclude that the complete
solution is

x = −1 + c et2 , c ∈ R, t ∈ R.

C. Putting x = −1 + c et2 , we get

dx

dt
− 2tx = 2txet2 + 2t − 2tcet2 = 2t,

and we have checked our solution.

I. Let us now turn to the question of existence and uniqueness. We shall then get a new series
of (local) A., D., and I. (first analysis, then choice of method of solution, and finally the
implementation of the solution):

I A. Let x = −1 + c · et2 , c ∈ R, t ∈ R. The task is to show that there to any (t, x) = (a, b)
exists precisely one c ∈ R, such that b = −1 + c · ea2

.
I D. Solve the equation b = −1 + c · ea2

with respect to c for given (a, b).
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–2

–1

0

1

2

–3 –2 –1 1 2 3

Figure 19: The solution curve x = −1 through (3,−1).

I I. From b = −1 + c · ea2
we get

c = e−a2
(b + 1),

which shows that the solution c exists and is uniquely determined.

I. Sketches of curves for x = −1 + c · et2 through chosen points.

1) When (a, b) = (3,−1), it follows from the above that

c = e−a2
(b + 1) = e−9(−1 + 1) = 0.

Hence the solution is x = −1.
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Figure 20: The solution curve x = −1 + 2 et2−1 through (1, 1).

2) When (a, b) = (1, 1), we get

c = e−1(1 + 1) =
2
e
.

The solution is

x = −1 +
2
e
· et2 .

–6

–5

–4

–3

–2

–1

1

–2 –1 1 2

Figure 21: The solution curve x = −1 − 1
2

et2−4 through
(

2,−3
2

)
.

3) When (a, b) =
(

2,−3
2

)
, we get

c = e−4

(
−3

2
+ 1
)

= −e−4

2
.

The solution is

x = −1 − 1
2

et2−4.
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Example 3.8 Find the complete solution of the differential equation

dx

dt
− 1

t
x =

1
t + 1

√
t − 1
t + 1

, t > 1.

A. A normed linear inhomogeneous differential equation of first order.

D. Either multiply by the integrating factor 1/t and then reduce, or apply the solution formula. By
the integration we shall use some substitution.

I. First note that both the left hand side and the right hand side are defined for t > 1. When we
divide the equation by t > 1, we get

1
t(t + 1)

√
t − 1
t + 1

=
1
t

dx

dt
− 1

t2
x =

1
t

dx

dt
+

d

dt

(
1
t

)
· x =

d

dt

(x

t

)
,

hence by an integration and a multiplication by t > 1,

x = t

∫
1

t(t + 1)

√
t − 1
t + 1

dt + c t.

We calculate this integral by using the monotonous substitution

u =

√
t − 1
t + 1

∈ ]0, 1[, i.e.
t − 1
t + 1

= u2,

hence

t =
1 + u2

1 − u2
=

2
1 − u2

− 1 og dt =
4u

(1 − u2)2
du.

Remark. The technique of applying the method of substitution is best explained by giving some
“nasty expression” a short name. In this particular case one would consider the square root of a
fractional function of the variable as fairly “ugly”, so why not call this the new variable u? ♦.

Applying this substitution we get the integral

∫
1

t(t + 1)

√
t − 1
t + 1

dt =
∫

1 − u2

1 + u2
· 1

1+u2

1−u2 + 1
· u · 4u

(1 − u2)2
du, u =

√
t − 1
t + 1

=
∫

1 − u2

1 + u2
· 1 − u2

2
· 4u2

(1 − u2)2
du =

∫
2u2

1 + u2
du, u =

√
t − 1
t + 1

= 2
∫ (

1 − 1
1 + u2

)
du = 2u − 2Arctan u, u =

√
t − 1
t + 1

= 2

√
t − 1
t + 1

− 2Arctan

(√
t − 1
t + 1

)
.

The complete solution is then

x = 2t

√
t − 1
t + 1

− 2tArctan

(√
t − 1
t + 1

)
+ c t, t > 1, c ∈ R.
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Figure 22: The solution curve for c = 0.

C. Test. We first calculate

dx

dt
= 2

√
t − 1
t + 1

+ 2t · 1
2

√
t + 1
t − 1

· t + 1 − (t − 1)
(t + 1)2

− 2Arctan

(√
t − 1
t + 1

)

−2t · 1
1 + t−1

t+1

·
√

t + 1
t − 1

· 1
(t + 1)2

+ c,

from which

dx

dt
− 1

t
x = 2

√
t − 1
t + 1

+ 2t

√
t + 1
t − 1

· 1
(t + 1)2

− 2Arctan

(√
t − 1
t + 1

)
+ c

−2t(t + 1)
2t

√
t + 1
t − 1

· 1
(t + 1)2

− 2

√
t − 1
t + 1

+2Arctan

(√
t − 1
t + 1

)
− c

= 2t

√
t + 1
t − 1

· 1
(t + 1)2

− (t + 1)

√
t + 1
t − 1

· 1
(t + 1)2

=
t − 1

(t + 1)2

√
t + 1
t − 1

=
1

t + 1

√
t − 1
t + 1

,

and we have checked our solution.
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Example 3.9 We assume that a solution x0(t) of the differential equation

dx

dt
+ 2x = a

satisfies x(0) = 3 and x(t) → 7 for t → ∞. Find x0(t).

A. A linear inhomogeneous differential equation of first order with an unknown constant a and two
conditions.

D. Multiply by the integrating factor e2t before the integration, or use the standard method. Then
find the constants a and c by means of the given conditions.

–4

–2

0

2

4

6

1 2 3 4 5

Figure 23: The solution x0(t) = 7 − 4 e−2t.

I. First solution. By a multiplication by the integrating factor e2t followed by a rearrangement we
get

a e2t = e2t dx

dt
+ 2e2t x = e2t · dx

dt
+

d

dt

(
e2t
) · x =

d

dt

(
e2t · x) .

Then by an integration,

e2t · x(t) =
1
2

a e2t + c,

and we get the complete solution

x(t) =
1
2

a + c · e−2t, t ∈ R, c ∈ R.

Second solution. By an application of the solution formula and some unconscious calculations
we get

x(t) = c · exp
(
−
∫

2 dt

)
+ exp

(
−
∫

2 dt

)
·
{∫

exp
(∫

2 dt

)
· a dt

}

= c · e−2t + e−2t

∫
e2t · a dt =

1
2

a + c · e−2t,
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which of course is the same result as in the first solution.

By insertion in the conditions we obtain the equations

x(0) =
1
2

a + c = 3,

and

lim
t→∞x(t) = lim

t→∞

{
1
2

a + c · e−2t

}
=

1
2

a = 7,

from which we get that a = 14 and c = −4.

We conclude that the solution is

x0(t) = 7 − 4e−2t.

Example 3.10 Consider the differential equation

(6)
dx

dt
− 2tx = 2t3 − 2t2 + 1, t ∈ R.

1) Find a solution of (6) by guessing a polynomial.

2) Find the complete solution of (6).

A. A linear differential equation of first order. Find the complete solution.

D. 1) Check if a polynomial (it suffices by degree 2) is a solution.
2) Apply theorem 1.2 and theorem 1.3.

I. 1) Since
dx

dt
decreases the degree of a polynomial and multiplication by t increases the degree by

1 it suffices to guess x = at2 + bt + c. When this is inserted in (6) we get

dx

dt
− 2tx = 2at + b − 2at3 − 2bt2 − 2ct

= −2at3 − 2bt2 + 2(a − c)t + b.

Choosing a = −1 and b = −1 and c = a = −1, we get

dx

dt
− 2tx = 2t3 − 2t2 + 0 · t + 1 = 2t3 − 2t2 + 1,

and we have found a particular solution

x = −t2 + t − 1, t ∈ R.

2) It is seen by inspection that the complete solution of the corresponding homogeneous equation
is

x = c · exp
(
t2
)
, c ∈ R, t ∈ R.

Then it follows from theorem 1.3 that the complete solution of the inhomogeneous equation is

x = −t2 + t − 1 + c · exp
(
t2
)
, c ∈ R, t ∈ R.
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C. Putting x = −t2 + t − 1 + c · exp
(
t2
)

we get

dx

dt
− 2tx = −2t + 1 + 2ct exp

(
t2
)

+ 2t3 − 2t2 + 2t − 2ct exp
(
t2
)

= 2t3 − 2t2 + 1,

and we have checked our solution.

Example 3.11 1) Find the complete solution of the differential equation

(7)
dx

dt
+
(

2t − 1
t

)
x = 2t2, t > 0.

2) Find the solution ϕ(t) of (7), for which

lim
t→0+

ϕ′(t) = 0.

A. A linear inhomogeneous differential equation of first order.

D. Apply the solution formula. Then insert the condition in the complete solution in order to get the
constant c.
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I. 1) From

P (t) =
∫ (

2t − 1
t

)
dt = t2 − ln t,

we get the complete solution

x(t) = c · e−P (t) + e−P (t)

∫
eP (t) q(t) dt

= c · t e−t2 + t e−t2
∫

1
t

et2 · 2t2 dt

= t + c · t e−t2 .

2) Since

dx

dt
= ϕ′(t) = 1 + c · e−t2 − 2ct2e−t2 → 1 + c for t → 0+,

we get c = −1, hence

ϕ(t) = t − t e−t2 = t
(
1 − e−t2

)
.

C. Test. It follows immediately from

ϕ′(t) = 1 − e−t2 + 2t2 e−t2 ,

that

lim
t→0+

ϕ′(t) = 1 − 1 + 0 = 0.

By insertion in the differential equation for t > 0 we get

ϕ′(t) +
(

2t − 1
t

)
ϕ(t) = 1 − e−t2 + 2t2 e−t2 + 2t2 − 2t2 e−22 − 1 + e−t2 = 2t2,

and we have checked our solution.

Example 3.12 Find the complete solution of the differential equation

dx

dt
+

2
1 − t2

x = 1 − t, |t| < 1.

A. A linear inhomogeneous differential equation of first order.

D. Apply the solution formula.

I. From

P (t) =
∫

2
1 − t2

dt =
∫ {

1
1 − t

+
1

1 + t

}
dt = ln

∣∣∣∣1 + t

1 − t

∣∣∣∣ = ln
(

1 + t

1 − t

)
,
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follows that the complete solution for |t| < 1 is given by

x = c · 1 − t

1 + t
+

1 − t

1 + t

∫
1 + t

1 − t
· (1 − t) dt

= c · 1 − t

1 + t
+

1 − t

1 + t
· 1
2

(1 + t)2

=
1
2
(
1 − t2

)
+ c · 1 − t

1 + t
, t ∈ ] − 1, 1[.

Example 3.13 Find the solution x = ϕ(t) of the differential equation

dx

dt
+ 3t2x = t2, t ∈ R,

for which ϕ(0) = 1.

A. A linear inhomogeneous differential equation of first order.

D. Apply the solution formula.

0

0.5

1

1.5

2

–1 –0.5 0.5 1 1.5 2

Figure 24: The graph of the solution ϕ(t) =
1
3
4
{

1 + 2 e−t3
}

with its asymptote x =
1
3
.

I. From P (t) =
∫

3t2 dt = t3 follows that the complete solution is

x = c · e−t3 + e−t3
∫

t2 · et3 dt =
1
3

+ c · e−t3 ,

where

x(0) =
1
3

+ c = 1, dvs. c =
2
3
.
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Then the wanted particular solution is

x = ϕ(t) =
1
3

{
1 + 2 e−t3

}
, t ∈ R.

Example 3.14 Find the complete solution of the differential equation

dx

dt
− cos t

sin t
x = sin t, t ∈ ]0, π[.

A. A linear inhomogeneous differential equation of first order.

D. Apply the solution formula.
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0.6

0.8
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1.4
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1.8

0.5 1 1.5 2 2.5 3

Figure 25: The graph of the particular solution x0(t) = t · sin t.

I. From

P (t) = −
∫

cos t

sin t
dt = −

∫
d sin t

sin t
= − ln | sin t| = − ln sin t,

follows that the complete solution is

x(t) = c · sin t + sin t

∫
1

sin t
· sin t dt

= t · sin t + c · sin t.
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Example 3.15 Find the complete solution of the differential equation

dx

dt
− 1

t
x = 1, t > 0.

A. A linear inhomogeneous differential equation of first order.

D. Here we have several variants of solutions.

I. First variant. Solution formula. From

P (t) = −
∫

1
t

dt = − ln t, t > 0,

follows that the complete solution is

x = c · t + t

∫
1
t
· 1 dt = t · ln t + c · t, t > 0, c ∈ R.

Second variant. Integrating factor. When we divide the equation by t > 0 we get

1
t

=
1
t

dx

dt
− 1

t2
x =

1
t
· dx

dt
+

d

dt

(
1
t

)
· x =

d

dt

(x

t

)
,
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hence by an integration,

x

t
= c + ln t,

and the complete solution is

x = t · ln t + c · t, t > 0, c ∈ R.

Third variant. Euler differential equation. When we multiply the equation by t > 0 we obtain
an inhomogeneous Euler differential equation,

t
dx

dt
− x = t.

Remark. The characterization of an Euler differential equation is that any j-th derivative of
x is multiplied by a constant times tj . ♦

The trick used on this type of equation is to guess a solution of the form x = tn and then solve
with respect to n. In the present case we get

t
dx

dt
− x = t · n tn−1 − tn = (n − 1)tn,

since the structure of an Euler differential equation secures that the result becomes a constant
times tn.

It follows that for n = 1 we get a solution of the homogeneous equation, c · t.

Now the right hand side has the same form as a solution of the homogeneous equation. For
Euler equations the trick is to multiply by ln t, i.e. one guesses that a solution is x = c · t · ln t.
We get by insertion

dx

dt
− 1

t
x = c · ln t + c − c · ln t = c = 1.

It is seen that we get a particular solution for c = 1, and then we conclude from theorem 1.3
that the complete solution is given by

x = t · ln t + c · t, t > 0, c ∈ R.

Example 3.16 Find the complete solution of the differential equation

dx

dt
+
(

1 +
1
t

)
x =

1
t
, t > 0.

A. A linear inhomogeneous differential equation of first order.

D. Apply the solution formula.
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0

0.2

0.4

0.6

0.8

1

1 2 3 4

Figure 26: The graph of the only bounded solution
1
t
− 1

t · et
, t > 0 for c = −1.

I. From p(t) = 1 +
1
t

follows that P (t) =
∫ (

1 +
1
t

)
dt = t + ln t, hence the complete solution is for

t > 0

x =
c

t · et
+

1
t · et

∫
t · et · 1

t
dt

=
1
t

+
c

t · et
, t > 0, c ∈ R.

The solution is bounded for c = −1. On the other hand, when c �= −1 the solution is unbounded
for t → 0+.

Example 3.17 Find the complete solution of the differential equation

dx

dt
+ (1 + tan t)x = cos t, t ∈

]
−π

2
,
π

2

[
.

A. A linear inhomogeneous differential equation of first order.

D. Apply the solution formula.

I. From p(t) = 1 + tan t = 1 +
sin t

cos t
follows that

P (t) =
∫ {

1 +
sin t

cos t

}
dt = t − ln cos t, t ∈

]
−π

2
,
π

2

[
.

The complete solution is then

x = c · e−P (t) + e−P (t)

∫
eP (t) · cos t dt

= c · e−t cos t + e−t cos t

∫
et

cos t
· cos t dt

= cos t + c · e−t cos t, t ∈
]
−π

2
,
π

2

[
, c ∈ R.
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Example 3.18 Find the complete solution of the differential equation

dx

dt
+

2t
1 + t2

x = 1, t ∈ R.

A. A linear inhomogeneous differential equation of first order.

D. Apply the solution formula, or find an integrating factor.

First variant. From p(t) =
2t

1 + t2
follows that P (t) = ln(1 + t2), hence e−P (t) =

1
1 + t2

. The

complete solution is then given by

x =
c

1 + t2
+

1
1 + t2

∫
(1 + t2) dt

=
1
3
· 3t + t3

1 + t2
+

c

1 + t2
, t ∈ R, c ∈ R.

Second variant. When the equation is multiplied by the integrating factor 1 + t2 > 0 we get

1 + t2 = (1 + t2)
dx

dt
+ 2t · x

= (1 + t2) · dx

dt
+

d

dt
(1 + t2) · x

=
d

dt

{
(1 + t2)x

}
.

Then by an integration

(1 + t2)x = c + t +
1
3

t3 = c +
t

3
(3 + t2),

and the complete solution is

x =
t

3
· t2 + 3
t2 + 1

+
c

t2 + 1
, t ∈ R, c ∈ R.

Example 3.19 Find the complete solution of the differential equation

dx

dt
+

2t
1 + t2

x =
1

2t2 + 1
, t ∈ R.

A. A linear inhomogeneous differential equation of first order.

D. Either reuse Example 3.18 when the solution formula is applied, or find an integrating factor.

I. First variant. We get like in Example 3.18 that e−P (t) =
1

1 + t2
, and the complete solution

becomes

x =
c

1 + t2
+

1
1 + t2

∫
t2 + 1
2t2 + 1

dt

=
c

1 + t2
+

1
2
· 1
1 + t2

∫ {
1 +

1
1 + (

√
2 t)2

}
dt

=
c

1 + t2
+

1
2
· 1
1 + t2

{
t +

1√
2

Arctan(
√

2t)
}

.

Linear differential equation of fi rst order

Download free eBooks at bookboon.com



Calculus 1c-1

 

64  

Second variant. When we multiply by the integrating factor 1 + t2 we get

1 + t2

1 + 2t2
= (1 + t2)

dx

dt
+ 2t · x =

d

dt

{
(1 + t2)x

}
=

1
2

{
1 +

1
1 + (

√
2)2

}
.

Then by an integration,

(1 + t2)x =
1
2

{
t +

1√
2

Arctan(
√

2t)
}

+ c,

and the complete solution is given by

x =
1

2(1 + t2)

{
t +

1√
2

Arctan(
√

2t)
}

+
c

1 + t2
, t ∈ R, c ∈ R.
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Example 3.20 Find the complete solution of the differential equation

dx

dt
+

1 + tan2 t

tan t
x = 1

in the interval
]
0,

π

2

[
.

Does there exist a solution ψ(t) which has a (finite) limit for t → 0+?

A. A linear inhomogeneous differential equation of first order.

D. Apply the solution formula, or find an integrating factor.

I. First variant. From

P (t) =
∫

1 + tan2 t

tan t
dt =

∫
d tan t

tan t
= ln tan t, for t ∈

]
0,

π

2

[
,

follows that the complete solution is

x =
c

tan t
+

1
tan t

∫
tan t dt

= c cot t − cot · ln cos t, t ∈
]
0,

π

2

[
, c ∈ R.

0

0.1
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Figure 27: Graph of the solution ψ(t) = − cos t · ln cos t.

Second variant. When the equation is multiplied by the integrating factor tan t, we get

sin t

cos t
= tan t = tan t · dx

dt
+ (1 + tan2 t) · x =

d

dt
{tan t · x},

hence by an integration,

tan t · x = − ln cos t + c,

and the complete solution is

x = − cos t · ln cos t + c · cot t, t ∈
]
0,

π

2

[
, c ∈ R.
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Then note that it follows by e.g. l’Hospital’s theorem that

lim
t→0+

{− cot t · ln cos t} = − lim
t→0+

{
cos t · ln cos t

sin t

}

= −1 · lim
t→0+

− sin t
cos

cos t
= lim

t→0+

sin t

cos2 t
= 0.

Since cos t → 1 for t → 0+, we get c = 0. Thus the wanted solution is

ψ(t) = − cos t · ln cos t.

Example 3.21 Find the complete solution of the differential equation

dx

dt
− tan(t) · x = t, t ∈

]
−π

2
,
π

2

[
.

A. A linear and inhomogeneous differential equation of first order with variable coefficients.

D. We either multiply by cos t and reduce, or use the solution formula.

I. First variant. When the equation is multiplied by cos t �= 0 for t ∈
]
−π

2
,
π

2

[
, we get the equivalent

equation

t · cos t = cos t · dx

dt
− sin t · x =

d

dt
{cos t · x},

from which

cos t · x =
∫

t · cos t dt = t · sin t + cos t + c,

hence

x = 1 + t · tan t +
c

cos t
, t ∈

]
−π

2
,
π

2

[
, c ∈ R.

Second variant. Since p(t) = − tan t, we obtain

−P (t) =
∫

tan t dt =
∫

sin t

cos t
dt = − ln(cos t), t ∈

]
−π

2
,
π

2

[
,

and the complete solution of the homogeneous equation is then

x =
c

cos t
, t ∈

]
−π

2
,
π

2

[
, c ∈ R.

The complete solution of the inhomogeneous equation is given by

x = 1 + t · tan t +
c

cos t
, t ∈

]
−π

2
,
π

2

[
, c ∈ R.
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Example 3.22 Prove that there exist no polynomial which is a solution of the differential equation

dx

dt
+ x t = t2, t ∈ R.

Is it possible to find a solution of the differential equation by applying the known solution methods?

A. A linear inhomogeneous differential equation of first order.

What does the complete solution look like?

D. Insert a polynomial and see what happens.

Then apply theorem 1.2.

I. When x is a polynomial of degree n in t, then
dx

dt
is either 0 (for n = 0) or of degree n− 1, and t x

is of degree n + 1. Consequently the term t x can only be balanced by a term on the right hand
side t2, when the polynomial x is of first degree. We therefore put

x = a t + b

into the left hand side of the differential equation. Then

dx

dt
+ xt = a + a t2 + bt = a

(
t2 + 1

)
+ b t.

By setting the coefficients of t2, resp. t, equal to each other we get a = 1 and b = 0. Unfortunately
the test

dx

dt
+ x t = t2 + 1 �= t2

shows that this expression is never equal to t2.

–2

–1

0

1

2

–3 –2 –1 1 2 3

Figure 28: The graph of f(t) = exp
(
− t2

2

)∫ t

0
exp

(
s2

2

)
s2 ds.

It follows from p(t) = t and q(t) = t2 that P (t) =
1
2

t2 and

x = exp
(
−1

2
t2
){∫

exp
(

1
2

t2
)

t2 dt + c

}
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where we have applied theorem 1.2.

The problem here is that even if we have a solution formula, we cannot calculate the integral

∫
exp

(
1
2

t2
)

t2 dt =
∫ (

t exp
(

1
2

t2
))

t dt

= t exp
(

1
2

t2
)
−
∫

exp
(

1
2

t2
)

dt

with the functions we know at this stage, so we cannot calculate the integral explicitly. Instead
we may use programmes like MAPLE. For example the figure has been made by use of MAPLE.
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4 The Existence and Uniqueness Theorem and other theoret-
ical considerations

Example 4.1 Let the function h(t) be given by

h(t) =
{

(t − 1)2, t ≥ 1,
0, t < 1,

Sketch the graph of h(t). Prove that h(t) differentiable for every t ∈ R. Show that h(t) is a solution
of the differential equation

dx

dt
= 2

√
x, x ≥ 0, t ∈ R.

The functions x = h(t) and x = 0 are both solutions of the differential equation, and they both take
on the value 0 for t = 1. Why is this not a contradiction to the Existence and Uniqueness Theorem?

A. We shall prove that a differential equation may have two different solutions going through the
same point without violating the Existence and Uniqueness Theorem.

D. Check the differentiability of h(t).

Check the differential equation.

Read the Existence and Uniqueness Theorem thoroughly and analyze the given equation!

0

1

2

3

4

0.5 1 1.5 2 2.5 3

Figure 29: The graph of h(t).

I. It follows immediately from the expression of h(t) that h′(t) exists for t �= 1 and that

h′(t) =
{

2(t − 1), t > 1,
0, t < 1.

When we consider the point t = 1 we are here forced to go back to the definition of the derivative
as a limit of a difference quotient. Let Δt �= 0 denote the increment. Then

h(1 + Δt) − h(1)
Δ1

=

⎧⎨
⎩

(Δt)2 − 0
Δt

= Δ, Δt > 0,

0, Δt < 0.
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0

1

2

3

4

0.5 1 1.5 2 2.5 3

Figure 30: The graph of the derivative h′(t).

When Δt → 0 through either positive or negative numbers, we get the same limit 0 in both cases.
This means that h′(0) exists and it value is h′(0) = 0. Therefore,

h′(t) =
{

2(t − 1), t ≥ 1,
0, t < 1,

and it is obvious that both h(t) and h′(t) are continuous.

Since h(t) ≥ 0 and

√
h(t) =

{
t − 1 (≥ 0), for t ≥ 1,

0, for t < 1

}
=

1
2

h′(t),

it follows that x = h(t) is a solution of

(8)
dx

dt
= 2

√
x, x ≥ 0, t ∈ R.

On the other hand it is also obvious that x = 0 is a solution of (8) and that x = 0 trivially is 0 for
t = 1.

The Existence and Uniqueness Theorem is describing the conditions for existence and uniqueness
of solutions of differential equations of the form

dx

dt
= ϕ(t)ψ(x), t ∈ J1, x ∈ J2.

The assuption in the Existence and Uniqueness Theorem is that

ψ(x) �= 0 for every x ∈ J2.

In the case under consideration we have

ϕ(t) = 1 and ψ(x) = 2
√

x.

Therefore, since ψ(x) = 2
√

x = 0 for x = 0, we cannot conclude that we have existence and
uniqueness when x = 0.
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When the assumption of some theorem (here the Existence and Uniqueness Theorem) is not ful-
filled, it is not possible to conclude anything from this theorem, and hence it is no contradiction
that we have two solution curves going through the same point.

Remark. Arguments of the type above are in general considered as difficult, and even professional
mathematicians may sometimes make an error in them. I have found a very well hidden example
in Andersen, Bohr & Petersen, Matematisk Analyse, (a famous Danish textbook) where one would
not expect to find such a fallacy. ♦

Example 4.2 Consider the differential equation

dx

dt
= g − k xn,

where g and k are positive real numbers, and n is a natural number. Show that there exists a constant
solution x = K of the differential equation, and show that the graph of any other solution either lies
above or below the straight line x = K.

A. A nonlinear differential equation of first order, where the variables can be separated. Are there
any constant solutions? Where are the graphs of the other solutions?

D. Put x = K and then solve with respect to K. Divide into the two cases of n even and n odd.
Apply the Existence and Uniqueness Theorem in order to conclude how the other solutions behave
compared with the constant solution.

I. Remark. When x satisfies g − k · x2 �= 0, we get by a separation of the variables that

1
g − k · xn

dx

dt
= 1,

hence by an integration,∫
dx

g − k · xn
= t + c.

When g and k and n are given numbers, we can er in principle calculate the integral by first
decomposing the integrand. Unfortunately, we get by this procedure the inverse function, i.e. we
get t as a function of x. It is not a simple task afterwards to find x as a function of t, when n �= 1.
This is the reason why one is not asked to find the complete solution, and the example should
rather demonstrate how one by some theoretical theorems is able to conclude something about the
structure of the solutions. ♦

When we put x = K into the differential equation we get 0 = g − k · Kn, hence

Kn =
g

k
> 0.

Then we split the investigation into the cases of n even/odd.

1) When n = 2m + 1 is odd, we get one solution,

K = n

√
g

k
> 0.
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2) When n = 2m is even we get two solutions,

K = ± 2m

√
g

k
.

In both cases we have
dx

dt
= 0.

Obviously f(x) = g− k ·xn is continuous, so we have to go through the following discussion of the
slopes of the solution curves. Again we shall split into n odd/even.
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–1

1

2

3

–3 –2 –1 1

Figure 31: The solutions curves for
dx

dt
= 1 − x, i.e. g = 1 = k and n = 1 odd.

1) When n = 2m + 1 is odd, then

dx

dt
= g − k · xn

⎧⎪⎪⎨
⎪⎪⎩

< 0 for x ∈
]

n

√
g

k
,+∞

[
,

> 0 for x ∈
]
−∞, n

√
g

k

[
.

According to the Existence and Uniqueness Theorem every non-constant solution will either be

decreasing everywhere and lie above the line x = n

√
g

k
, or be increasing everywhere and lying

below the line x = n

√
g

k
.

–4

–2

0

2

4

–2 –1 1 2

Figure 32: Solution curves for
dx

dt
= 1 − x2, i.e. g = 1 = k and n = 2 even.
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2) When n = 2m is even, then

dx

dt
= g − k · xn

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

< 0 for x ∈
]

n

√
g

k
,+∞

[
,

> 0 for x ∈
]
− n

√
g

k
, n

√
g

k

[
,

< 0 for x ∈
]
−∞,− n

√
g

k

[
.

According to the Existence and Uniqueness Theorem every non-constant solution will either be

decreasing everywhere and lie above the line x = n

√
g

k
, or be increasing everywhere and lying

between the lines x = n

√
g

k
and x = − n

√
g

k
, or be decreasing everywhere and lying below the

line x = − n

√
g

k
.

Remark. It is not difficult to prove that when x = f(t) is a solution of the differential equation
then

x = gc(t) = f(t + c)

is also a solution for any constant c ∈ R, i.e. the solution graphs can be translated horizontally. ♦

Example 4.3 1) How many solutions do the differential equation

(9)
dx

dt
= et2 x, t ∈ R

have?
Is the following claim correct or wrong: Whenever x1(t) and x2(t), t ∈ R are any two solutions of
(9), then x1(t) + x2(t) is also a solution of (9).

2) How many solutions do the differential equation

(10)
dx

dt
= et2 x + 1, t ∈ R

have?
Is the following claim correct or wrong: Do there exist two solutions x1(t) and x2(t), t ∈ R, such
that x(t) = x1(t) + x2(t) is also a solution of (10)?

A. Linear homogeneous/inhomogeneous differential equation of first order.

D. It is possible to set up a solution formula for the complete solution. However, the integrations can-
not be carried out, so the solutions cannot be expressed by known elementary functions. This does
not matter here, because this is not what the task is about. We shall instead argue theoretically
on the expression of the solution.
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I. 1) Obviously, x = 0 is a solution. If x �= 0, then we divide x, getting

et2 =
1
x

dx

dt
=

d

dt
ln |x|,

hence by an integration,

ln |x| = k +
∫

et2 dt,

and the complete solution is therefore then

x = c · exp
(∫

et2 dt

)
, c ∈ R,

with only one parameter c ∈ R.
Alternatively we apply the solution formula which of course will give the same expression.

It can be proved that the integral
∫

et2 dt cannot be expressed by known elementary functions.
However, an exact expression of the function is not necessary for the following discussion.

Since the equation is homogeneous, we obviously find that if

x1(t) = c1 · exp
(∫

et2 dt

)
, x2(t) = c2 · exp

(∫
et2 dt

)

are solutions, then

x(t) = x1(t) + x2(t) = (c1 + c2) · exp
(
et2 dt

)
is also a solution of the homogeneous equation, so the claim is correct.

2) The equation is linear and inhomogeneous. The structure of the solution is

x(t) = c · exp
(∫

et2 dt

)
+ exp

(∫
et2 dt

)
·
∫

exp
(
−
∫

et2 dt

)
dt,

which cannot either be expressed by means of known elementary functions. The complete
solution again only depends on one parameter c ∈ R.

Since the equation is inhomogeneous, the latter claim is wrong. Just let x1(t) and x2(t) be
solutions of the equation, which here is written in the equivalent form

dx

dt
− et2 x = 1.

Then by an insertion of x(t) = x1(t) + x2(t) we get that

dx

dt
− et2 d =

d

dt
(x1 + x2) − et2 (x1 + x2)

=
{

dx1

dt
− et2 x1

}
+
{

dx2

dt
+ et2 x2

}
= 1 + 1 = 2 �= 1.

Since x1 and x2 were any solutions of the inhomogeneous equation it follows that the claim is
not true for any pair of solutions (x1, x2).
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Example 4.4 Show by insertion that the equation

(11)
dx

dt
+ p(t)x = q(t), t ∈ I,

for every value of the constant c has the solution

(12) x = e−P (t)

{∫
eP (t)q(t) dt + c

}
, t ∈ I, c ∈ R,

where P (t) =
∫

p(t) dt.
Is this a new proof of theorem 1.2?

A. Testing a solution.

D. Insert (12) into (11) and reduce.

I. We first calculate

dx

dt
= −p(t)x + e−P (t)

{
eP (t) q(t) + 0

}
= −p(t)x + q(t),
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hence by a rearrangement

dx

dt
+ p(t)x = q(t),

and we have proved the first claim.

Of course we have not given a new proof of theorem 1.2. We have only shown that (12) describes
some solutions of (11). We are still missing the proof of that we get all solutions in this way. This
requires another argument.

Example 4.5 Does there exist a differential equation of the form

(13)
dx

dt
+ p(t)x = q(t), t ∈ I,

which has the functions

x = t2, t ∈ R, and x = t3, t ∈ R,

as two of its solutions?

A. Given solutions of an unknown linear differential equation of first order.

D. Insert the two given functions into (13), i.e.

dx

dt
+ p(t)x = q(t),

and try to identify p(t) and q(t).

I. When we insert x = t2, resp. x = t3, into the differential equation we get

x = t2 : 2t + t2 p(t) = q(t), i.e. 2t2 + t3p(t) = t q(t),
x = t3 : 3t2 + t3p(t) = q(t), i.e. 3t2 + t3p(t) = q(t),

hence by a subtraction, t2 = (1 − t)q(t), so

q(t) =
t2

1 − t
, t �= 1,

and 3t2 − 2t + (t3 − t2)p(t) = 0, thus

p(t) =
2t − 3t2

t3 − t2
=

t(2 − 3t)
t2(t − 1)

=
2 − 3t
t(t − 1)

, for t �= 0, 1.

We derive that a candidate of the unknown differential equation is

dx

dt
+

2 − 3t
t(t − 1)

x =
t2

1 − t
, for t �= 0, 1.
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It follows from this that there does not exist any equation of the form (13) for t ∈ R, because
we must assume that t �= 0 and t �= 1. On the other hand, we obtain something acceptable if we
multiply the equation by t(t − 1). Then

t(t − 1)
dx

dt
+ (2 − 3t)x = −t3, t ∈ R,

which is defined in the whole of R.

If we have “solved” the problem can only be decided by the

C. Test. If x = t2, then the left hand side is

t(t − 1)
dx

dt
+ (2 − 3t)x

= t(t − 1) · 2t + (2 − 3t) · t2 = 2t3 − 2t2 + 2t2 − 3t3 = −t3,

and we see that x = t2 is a solution of the found differential equation.

When x = t3 we get for the left hand side

t(t − 1)
dx

dt
+ (2 − 3t)x

= t(t − 1) · 3t2 + (2 − 3t) · t3 = 3t4 − 3t3 + 2t3 − 3t4 = −t4,

so x = t3 is also a solution of the modified equation.

Conclusion: There exists no equation of the form (13), defined for every t ∈ R, such that x = t2

and x = t3 both are solutions. However, if we exclude the two points t = 0 and t = 1, or
alternatively multiply the candidate by t(t−1), then we get a modified equation which has the
two solutions for t �= 0 og t �= 1.
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5 The Bernoulli differential equation

Example 5.1 Let x = ϕ(t) denote the solution of the differential equation

dx

dt
+ x = x2, x > 0, t ∈ R,

for which ϕ(0) =
1
2
. Show that y = {ϕ(t)}−1 satisfies the differential equation

dy

dt
− y = −1,

and find ϕ(t).

A. The equation is a nonlinear differential equation of first order (a socalled Bernoulli differential
equation), which by a rearrangement can be written in a form, in which the variables can be
separated.

D. There are several possibilities of solution, like e.g.

1) Follow the description above.

2) Divide by −x2 and reduce.

3) Separate the variables.
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I. First solution. The suggested procedure.
When x = ϕ(t) > 0, then

y = {ϕ(t)}−1 =
1
x

> 0, and x =
1
y
.

By insertion we get

0 =
dx

dt
+ x − x2 =

d

dt

(
1
y

)
+

1
y
− 1

y2

= − 1
y2

dy

dt
+

1
y
− 1

y2
.

When this equation is multiplied by −y2 < 0, we obtain the equivalent equation

dy

dt
− y + 1 = 0, y > 0,

which we rewrite in the form

dy

dt
− y = −1, y > 0,

i.e. a linear differential equation of first order with constant coefficients.

–4

–2

0

2

4
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Figure 33: Some solution curves.

The complete solution of the corresponding homogeneous y-equation is seen by inspection to
be c · et. Another simple inspection gives that y = 1 is a particular solution. According to
theorem 1.3 the complete solution of the y-equation is given by

y = 1 + c · et, c ∈ R, y > 0, t ∈ Ic,

where every t ∈ Ic satisfies the condition 1 + c · et > 0.

Since x =
1
y

we get that the original nonlinear x-equation has the complete solution

x = ϕ(t) =
1

1 + c · et
, c ∈ R, 1 + c · et > 0.
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It follows from the initial condition ϕ(0) =
1
2

that ϕ(0) =
1
2

=
1

1 + c
, so c = 1, and the

condition 0 < 1 + c · et = 1 + et is seen to be fulfilled for every t ∈ R.

0
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Figure 34: The graph of the solution ϕ(t) =
1

1 + et
.

Therefore, the solution is

ϕ(t) =
1

1 + et
, t ∈ R.

Second solution. When we divide the equation by −x2 �= 0, we get

−1 = − 1
x2

dx

dt
− 1

x
=

d

dt

(
1
x

)
− 1

x
.

Hence, by putting y =
1
x

> 0 we obtain exactly the same as in the first solution. No need to
repeat these calculations.

Third solution. Separation of the variables.
We get by a rearrangement

dx

dt
= x2 − x = x(x − 1), x > 0, t ∈ R.

It follows immediately that x = 1 is a solution.
When x > 0 we can separate the variables:

1
x(x − 1)

dx

dt
=
(
− 1

x
+

1
x − 1

)
dx

dt
=

d

dt

(
ln
∣∣∣∣x − 1

x

∣∣∣∣
)

= 1,

hence by an integration,

ln
∣∣∣∣x − 1

x

∣∣∣∣ = t + k, eller
∣∣∣∣x − 1

x

∣∣∣∣ = ek · et.

The sign of
x − 1

x
is built into the constant −c

(
= ±ek

)
. Hence

x − 1
x

= 1 − 1
x

= −c · et, c ∈ R \ {0}.
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Since c = 0 corresponds to the trivial solution x = 1, we can allow c ∈ R.

By a rearrangement of the equation we get

1
x

= 1 + c · et, c ∈ R, x > 0, 1 + c · et > 0,

i.e.

x =
1

1 + c · et
, c ∈ R, x > 0, 1 + c · et > 0.

Like in the first solution we use the initial conditions to get c = 1, and the wanted solution
becomes

ϕ(t) =
1

1 + et
, t ∈ R.

C. Let ϕ(t) =
1

1 + c · et
, t ∈ Ic, where 1 + c · et > 0. Then

dx

dt
+ x = − c · et

(1 + c · et)2
+

1
1 + c · et

=
(1 + c · et) − c · et

(1 + c · et)2
=
(

1
1 + c · et

)2

= x2,

and the differential equation is satisfied.

It is seen immediately that the initial condition is fulfilled for c = 1.

Example 5.2 Let x = ϕ(t) denote the solution of the differential equation

dx

dt
− x =

√
x, x > 0, t ∈ R,

for which ϕ(0) =
1
2
. Show that y = {ϕ(t)} 1

2 satisfies the differential equation

dy

dt
− 1

2
y =

1
2
,

and find ϕ(t).

A. The equation is a nonlinear differential equation of first order (a socalled Bernoulli differential
equation), which by a rearrangement can be put in a form, in which the variables can be separated.

There is already given one solution method above.

D. We have several possibilities of solution, like e.g.:

1) Follow the method described above.

2) Divide by 2
√

x and reduce.

3) Separate the variables.
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I. First solution. The indicated method.
When x = ϕ(t) > 0 we see that y =

√
ϕ(t) =

√
x > 0 is defined and we get x = y2. Then by

an insertion into the equation,

0 =
dx

dt
− x −√

x =
d
(
y2
)

dt
− y2 − y

= 2y
dy

dt
− y2 − y = 2y

{
dy

dt
− 1

2
y − 1

2

}
.

Since 2y �= 0, this equation is equivalent to the linear differential equation of first order with
constant coefficients

dy

dt
− 1

2
y =

1
2
, y > 0.

It is seen by inspection that y = −1 is a solution and that the corresponding homogeneous

equation has the complete solution c ·exp
(

1
2

t

)
. By theorem 1.3 we therefore get the complete

solution of the inhomogeneous equation

y = −1 + c · exp
(

1
2

t

)
, for y > 0 and − 1 + c · exp

(
1
2

t

)
> 0.
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From x = y2 we get that the complete solution of the original nonlinear differential equation is

x =
(
−1 + c · exp

(
1
2

t

))2

, for c > exp
(
−1

2
t

)
.

The condition on t and c is important. If it is not fulfilled, we get wrong solutions. We see
that c > 0, and when this is the case, then

t > 2 ln
1
c

= −2 ln c.

It follows from the initial condition ϕ(0) =
1
2

that 0 > −2 ln c, i.e. c > 1 and (−1+ c)2 =
1
2
, so

c = 1 +
1√
2

(> 1).

The wanted solution is then

x =
{(

1 +
1√
2

)
exp

(
1
2

t

)
− 1
}2

, t ∈
]
−2 ln

(
1 +

1√
2

)
,+∞

[
.

Second solution. A rearrangement and a division by 2
√

x give

0 =
1

2
√

x

dx

dt
− 1

2
√

x − 1
2

=
d (

√
x)

dt
− 1

2
√

x − 1
2
.

When we use the substitution y =
√

x, we are back in the case of the first solution. It is then
no need to repeat the following calculations.

Third solution. Separation of the variables.
It follows from the rearrangement

dx

dt
= x +

√
x =

√
x
(√

x + 1
)
, x > 0,

that

1 =
1√

x (
√

x + 1)
dx

dt
= 2

1√
x + 1

d (
√

x)
dt

= 2
d

dt

{
ln
(√

x + 1
)}

.

Then by an integration

ln
(√

x + 1
)

=
1
2

t + k,

so

√
x + 1 = c · exp

(
1
2

t

)
, c > 0,

hence

√
x = c · exp

(
1
2

t

)
− 1 (> 0), c > 0, exp

(
1
2

t

)
>

1
c
,
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i.e. t > 2 ln
1
c

= −2 ln c.

Then we get by a squaring

x =
{

c · exp
(

1
2

t

)
− 1
}2

, for c > 0 og t ∈ ] − 2 ln c,+∞[.

For the initial value problem we must have 0 > −2 ln c, i.e. c > 1, so ϕ(0) =
1
2

= {c− 1}2, and

thus c = 1 +
1√
2
. The solution is then

ϕ(t) =
{(

1 +
1√
2

)
exp

(
1
2

t

)
− 1
}2

, t ∈
]
−2 ln

(
1 +

1√
2

)
,+∞

[
.

C. Let x = ϕ(t) =
{

c · exp
(

1
2

t

)
− 1
}2

, t > −2 ln c. Then in particular,

√
x = c · exp

(
1
2

t

)
− 1.

By insertion into the left hand side of the differential equation we get

dx

dt
− x = 2

{
c · exp

(
1
2

t

)
− 1
}
· c · 1

2
exp

(
1
2

t

)
−
{

c · exp
(

1
2

t

)
− 1
}2

=
{

c · exp
(

1
2

t

)
− 1
}{

2 · c · 1
2
· exp

(
1
2

t

)
− c · exp

(
1
2

t

)
+ 1
}

= c · exp
(

1
2

t

)
− 1 =

√
x,

and we see that the differential equation is satisfied.

For c = 1 +
1√
2

it is seen that

0 ∈
]
−2 ln

(
1 +

1√
2

)
,+∞

[
,

and that ϕ(0) =
1
2
.
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Example 5.3 Consider a differential equation of the form

(14)
dx

dt
+ p(t)x = q(t)xα, x > 0, t ∈ R,

where α is a real constant. Show that if we put y = x1−α, then (14) is transferred into a linear
differential equation of first order in the unknown function y, and specify this equation.

A. Solution formula for a general Bernoulli differential equation. A method of solution is sketched.
This method does not work for α = 1, because then y ≡ 1. But when α = 1, we see that (14) is
linear, so it is possible to apply another and simpler method.

Note also that when α = 0 we can either use the method indicated above, or we can consider
the equation as a linear and inhomogeneous differential equation of first order, i.e. we can use the
usual solution formula. When α = 0 we therefore can choose between two methods, of which the
latter is the easiest one to apply.

D. Follow the sketched method under the condition that α �= 1.

I. Let α ∈ R \ {1}. If x > 0, then

y = x1−α > 0 and x = y
1

1−α .

By insertion into (14) we get after a rearrangement,

0 =
dx

dt
+ p(t)x − q(t)xα

=
d

dt

(
y

1
1−α

)
+ p(t) y

1
1−α − q(t) y

α
1−α

=
1

1 − α
· y 1

1−α−1 · dy

dt
+ p(t) y

1
1−α − q(t) y

α
1−α

=
1

1 − α
· y α

1−α

{
dy

dt
+ (1 − α) p(t) y − (1 − α) q(t)

}
.

Since

1
1 − α

· y α
1−α �= 0,

we see that (5.3) is equivalent to the linear and inhomogeneous differential equation of first order

(15)
dy

dt
+ (1 − α) p(t) y = (1 − α) q(t), y > 0, y = x1−α. ♦

Remark. In practice it is easiest to solve (14) by first dividing by the unpleasant expression xα

and then reduce. It follows from

1
xα

dx

dt
=

1
1 − α

dx1−α

dt

that y = x1−α is a very natural new variable, so in this case we do not have to remember the
solution formula (15), only to use one’s common sense. ♦
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Example 5.4 Consider the differential equation

(16) t
dx

dt
− 1

2
x =

t2

2
1
x

, x > 0, t ∈ R.

1) Prove that x = ϕ(t) is a solution of (16), if and only if y = {ϕ(t)}2 is a solution of

(17) t
dy

dt
− y = t2.

2) Find the complete solution of(17) in each of the intervals t ∈ ] −∞, 0[ and t ∈ ]0,+∞[.

3) Find the solution x = f(t) of (16), for which f(1) = 2, and the solution x = g(t), for which
g(−2) = 2. Specify in particular the definition intervals of the solutions.

4) Does (16) have any solution, which is defined in a neighbourhood of t = 0?

5) Show that for every point (t0, x0) with t0 �= 0 there exists precisely one solution x = ϕ(t) of (16),
for which ϕ(t0) = x0.

A. A nonlinear equation of first order of the type

a(t)
dx

dt
+ b(t)x = c(t)xα.

When α = 0 or 1, then the equation is linear. When α �= 0, 1, it is called a Bernoulli differential
equation. Such an equation can always be solved. There is here indicated a solution procedure. In
the general method, which is not described explicitly, we divide by xα for x �= 0 and then rewrite
the equation to a differential equation in y = x1−α.
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D. 1) Multiply (16) by 2x and reduce.
2) Solve (17) for t �= 0.
3) Apply the initial conditions ant find two different particular solutions.

4) Investigate what happens in the neighbourhood of t = 0.
(

Consider in particular
dx

dt

)
.

5) Show the existence and uniqueness of the solution through any point (t0, x0), where t0 �= 0 and
x0 > 0.

I. 1) When (16) is multiplied by 2x > 0, we obtain the equivalent equation

0 = t · 2x dx

dt
− 1

2
· 2x · x − t2

2x
· 2x = t

d
(
x2
)

dt
− x2 − t2.

Note that the multiplication by 2x corresponds to a division by
1
2

1
x

, hence a division by a
constant times xα, because we have α = −1.
When we put y = x2 > 0, the equation above is reduced to (17), i.e.

t
dy

dt
− y = t2.

2) When t �= 0, we get by a division by t2 > 0 that (17) is equivalent to

1 =
1
t

dy

dt
− 1

t2
y =

1
t

dy

dt
+

d

dt
· y =

d

dt

(y

t

)
,

hence by an integration
y

t
= t − 2c, i.e. y = t2 − 2ct = (t − c)2 − c2 (> 0),

where the condition on t for any given c ∈ R is that t(t − 2c) > 0, i.e. when t does not lie
between 0 and 2c.
a) When c ≥ 0, we get the possibilities t ∈ ] −∞, 0[ and t ∈ ]2c,+∞[.
b) When c ≤ 0, we get the possibilities t ∈ ] −∞, 2c[ and t ∈ ]0,+∞[.
Hence the solutions are given by

y = t2 − 2ct = (t − c)2 − c2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

c ≥ 0, t ∈ ] −∞, 0[,

c ≥ 0, t ∈ ]2c,+∞[,

c ≤ 0, t ∈ ] −∞, 2c[,

c ≤ 0, t ∈ ]0,+∞[.

3) Since y = x2 and x > 0, it follows that

x =
√

t2 − 2ct =
√

(t − c)2 − c2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

c ≥ 0, t ∈ ] −∞, 0[,

c ≥ 0, t ∈ ]2c,+∞[,

c ≤ 0, t ∈ ] −∞, 2c[,

c ≤ 0, t ∈ ]0,+∞[.
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Remark. Since (t − c)2 − x2 = c2, The solution curves are either x = |t| (for c = 0) or parts
of hyperbolic branches as sketched on the figure.

0

2

4

6

–6 –4 –2 2 4 6

Figure 35: Sketch of some solution curves of the Bernoulli equation.

Apart from the half lines x = ±t, every solution curve has a vertical half tangent, when the
solutions tend to the t-axis. ♦

Let x = f(t) where f(1) = 1. Then

{f(1)}2 = 4 = (c − 1)2 − c2 = −2c + 1, i.e. c = −3
2
,

and since 1 > 0, the solution with its corresponding domain is given by

f(t) =
√

t2 + 3t, t ∈ ]0,+∞[.

When x = g(t) where g(−2) = 2, we get

{g(−2)}2 = 4 = (−2)2 + 2c = 4 + 2c, i.e. c = 0.

When −2 < 0, the solution and its domain are given by

g(t) =
√

t2 = |t| = −t, t < 0.

4) Let x =
√

t2 − 2ct, c �= 0, t(t − 2c) > 0. Then

dx

dt
=

t − c√
t(t − 2c)

,

hence∣∣∣∣dx

dt

∣∣∣∣→ +∞ for t → 0 in the interval.

Therefore, any such solution curve has a vertical half tangent, when t → 0 in the domain, so it
cannot be extended further.

When c = 0, we get x = |t|, t ∈ ] −∞, 0[, or t ∈ ]0,+∞[. In these cases,

dx

dt
= −1 for t < 0,

dx

dt
= +1 for t > 0,
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hence these solutions cannot be extended either across the vertical line t = 0.

We conclude that no composition of solutions is possible across t = 0, so no solution can be
extended across the x-axis.

5) When t0 �= 0 and x0 > 0, we shall only prove that c ∈ R is uniquely determined by

x0 =
√

t20 − 2ct0.

This follows from

c =
1

2t0

(
t20 − x2

0

)
.

Choosing this c, the solution is then given by

x =
√

t2 − 2ct,

⎧⎨
⎩

t ∈ ] −∞,min(0, 2c)[, when t0 < 0,

t ∈ ]max(0, 2c),+∞[, when t0 > 0.

The Bernoulli differential equation

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

http://www.deloitte.ca/careers


Calculus 1c-1

 

91  

6 The setup of model equations

Example 6.1 A thermometer has for some time been in a room of the temperature 21◦. The ther-
mometer is then taken outside, where the temperature is 3◦. After 3 minutes the thermometer shows
8◦. We assume that the speed by which the temperature of the thermometer is proportional to the
difference between the temperature of the environment and the temperature of the thermometer.
Find the temperature of the thermometer as a function of time.

For how long shall one wait until the thermometer only deviates by
1
2

◦
from the true temperature?

A. Setup of a mathematical model followed by an application of this model.

D. Analyze the text and then setup the model. Solve the model equation in the given case.

I. Let x = f(t) denote the temperature and let t denote the time measured in minutes. Thus we put

f(0) = 21, (The thermometer is taken outside to time t = 0)

f(3) = 8, (the thermometer is read to the time t = 3).

The velocity f ′(t), by which the temperature of the thermometer is changed is proportional (pro-
portional factor k) to the difference between the temperature of the environment, 3◦, and the
temperature of the thermometer f(t) itself, i.e. f ′(t) is proportional to 3 − f(t). This shows that
the model can be described by the differential equation

f ′(t) = k · {3 − f(t)}.

The task is now to find the constant k and the solution x = f(t), t ≥ 0, where⎧⎪⎨
⎪⎩

dx

dt
= −k x + 3k,

f(0) = 21, f(3) = 8.

Since the constant k is unknown we must require two (boundary) conditions.

We first solve the linear equation

dx

dt
+ k · x = 3k, t ≥ 0.

We just guess x = e−k t as a solution of the corresponding homogeneous equation and x = 3 as a
particular solution. (This should not be too surprising.)

By theorem 1.3 the complete solution is then

(18) x = f(t) = 3 + c · e−k t, t ≥ 0.

The two constants c and e−k are then found from:

21 = f(0) = 3 + c, 8 = f(3) = 3 + c · e−3k.
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Thus c = 18 and e−3k =
8 − 3
18

=
5
18

, i.e.

e−k = 3

√
5
18

or k =
1
3

ln
(

18
5

)
.

By insertion into (18) we get the solution

x = f(t) = 3 + 18 ·
(

3

√
5
18

)t

, t ≥ 0,

which is equivalent to

x = f(t) = 3 + 18 exp
(
− t

3
ln
(

18
5

))
, t ≥ 0.

Then assume that the thermometer deviates less than
1
2

◦
from the temperature of the environment.

Since the thermometer is, by the start of the problem, always showing a higher temperature than
the environment we must have

0 < 18 · exp
(
− t

3
ln
(

18
5

))
≤ 1

2
,

i.es.

exp
(

t

3
ln
(

18
5

))
≥ 36,

from which

t ≥ 3 · ln(36)

ln
(

18
5

) ≈ 8, 39 min..

C. Test. Let us check that our function satisfies the differential equation. Put

x = f(t) = 3 + 18 exp
(
− t

3
ln
(

18
5

))
, t ≥ 0,

and let

k =
1
3

ln
(

18
5

)
.

Then

f(0) = 3 + 18 = 21 og f(3) = 3 + 18 exp
(
− ln

(
18
5

))
= 3 + 18 · 5

18
= 8,

and be see that the two (boundary) conditions are fulfilled.

We then get by a differentiation,

dx

dt
= 18 exp

(
− t

3
ln
(

18
5

))
·
(
−1

3
ln
(

18
5

))
= (x − 3) · (−k) = k · (3 − x),

The setup of model equations

Download free eBooks at bookboon.com



Calculus 1c-1

 

93  

which is precisely the differential equation of the model.

Thus our solution is correct.

Example 6.2 Let x(t) denote the population of a country at time t. We assume that the population
increase Δx in a short interval of time is (approximately) proportional to the length of this interval
of time Δt as well as to the population x(t) by the start of this short interval of time,

Δx = k · x(t) · Δt,

where k is some given factor of proportionality.

1) Set up a differential equation which describes x(t).

2) Assume that the population is doubled in 50 years. When will the population be tripled?

A. 1) Setting up a mathematical model.

2) Apply the model in a specific given situation.

D. 1) Analyze the text in order to set up the differential equation.

2) Find the constant from the given addition condition and then solve the solution with respect
to time.

I. 1) Let f(t) denote the number of inhabitants to time t. Then the increase of population

Δf(t) = f(t + Δt) − f(t)

in a small interval of time of length Δt > 0 is proportional (with some unknown factor k) to
the length Δt of the time interval and the number f(t) of inhabitants, i.e.

f(t + Δt) − f(t) ≈ k · Δt · f(t),

where we can replace ≈ by =, if we add a term of the type o(Δt) on the right hand side.
A division by Δt > 0 followed by taking the limit Δt → 0 then gives

lim
Δt→0

f(t + Δt) − f(t)
Δt

= f ′(t) = k · f(t),

which means that the model of the increase of the population under the given circumstances can
be described by the linear homogeneous differential equation of first order (we write x = f(t))
with constant coefficients,

dx

dt
= k · x, x > 0, t ∈ R.

The complete solution of this equation is

x = c · ek t, c > 0, t ∈ R.
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2) Let c > 0 be the number of inhabitants at time t = 0 years. The assumption that the population
is doubled in 50 years can then be written

f(50) = c · e50 k = 2c,

hence

k =
1
50

ln 2 (≈ 0, 0139).

By choosing this k in the following, we then want to find t, such that

f(t) = c ek t = 3c.

This is easy. We find k t = ln 3, i.e.

t =
1
k

ln 3 = 50 · ln 3
ln 2

≈ 79, 25 år.
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Example 6.3 A vertical cylindric tank of radius R and height h0 is filled with water. At time t = 0
a circular hole of radius r is opened in the bottom of the tank, and the water pours out under the
gravitational pull. If h(t) denotes the height of the water inside the tank at time t, then we can derive
from physics (Torricelli’s law) the differential equation

dh

dt
= − r2

R2

√
2g h(t), t ≥ 0,

where g denotes the gravitation. Find the function h(t).

A. In this case the differential equation is given so we shall not derive it. It is a nonlinear equation
of the type, where we can separate the variables.

D. Solve the differential equation by separation for the initial condition h(0) = h0.

I. Let x = h(t) ≥ 0 denote the height of the water column to time t ≥ 0, measured from the bottom.
Then h(0) = h0, and we shall solve the slightly rearranged differential equation

(19)
dx

dt
= − r2

R2

√
g

2
· 2√x, x ≥ 0, t ≥ 0,

with the initial condition x = h(0) = h0.

The equation (19) has the trivial solution x = 0, which does not satisfy the initial conditions.
When x > 0 we can separate the variables. Dividing (6.3) by 2

√
x we get

1
2
√

x

dx

dt
=

d (
√

x)
dt

= − rr

R2

√
g

2
,

thus by a simple integration,

√
x = − r2

R2

√
g

2
· t + c ≥ 0, t ≥ 0, x > 0.

When t = 0 we get from the initial condition that c =
√

h0. Since t must fulfil

− r2

R2

√
g

2
· t +

√
h0 ≥ 0,

we get

0 ≤ t ≤ R2

r2

√
2h0

g
,

and thus

√
x =

√
h0 − t · r2

R2

√
g

2
, t ∈

[
0,

R2

r2

√
2h0

g

]
.

We obtain the solution by squaring

x =
{√

h0 − t · r2

R2

√
g

2

}2

= h0 − t · r2

R2

√
2gh0 + t2 · r4

R4
· g

2
, t ∈

[
0,

R2

r2

√
2h0

g

]
.
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C. Let x be given as above. Then

√
x =

√
h0 − t · r2

R2

√
g

2
, t ∈

[
0,

R2

r2

√
2h0

g

]
,

hence by a differentiation

d (
√

x)
dt

=
1
2

1√
x

dx

dt
= − r2

R2

√
g

2
,

from which

dx

dt
= − r2

R2

√
g

2
· 4x = − r2

R2

√
2gx,

which is precisely Torricelli’s law.

Finally, it is trivial that h(0) = h0, and since

x > 0 for t <
R2

r2

√
2h0

g
,

the uniqueness follows from the Existence and Uniqueness Theorem.

Example 6.4 A rope is wound round a tree. The ends of the rope are affected by the two forces S1

and S2. We shall in the following assume that S1 is a constant and that the rope is at rest and that the
slightest increase of S2 will make the rope slide. The corresponding force S2 is an increasing function
of the angle θ, by which the rope is wound round the tree, S2 = S2(θ). It can be shown that S2 is
determined by the differential equation

dS2

dθ
= μS2,

where μ is a constant, which is determined by the pair of materials (rope,tree). We shall assume that
μ = 0, 2 rad−1. How much of the rope must be wound round the tree, if S1 is in equilibrium with a
force S2 which is 100 times as big?

A. We have given a differential equation with an initial condition. One shall find
θ

2π
≥ 0 (where 1

winding around the tree is put equal to 2π rad), such that S(θ) = S2, where S2 = 100S1.

D. Find the complete solution of the differential equation and then solve the equation

S(θ) = S2 = 100S1

with respect to θ. The number of windings is then
θ

2π
.
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I. The solution of

dS

dθ
= μS, S(0) = S1,

is by inspection

S(θ) = S1 eμ θ.

Then we shall solve the equation

S1 eμ θ = S2 = 100S1

with respect to θ, i.e.

θ =
1
μ

ln 100 = 5 · 2 ln 10 = 10 ln 10 rad.

Since 1 winding round the tree corresponds to 2π radians, we shall wind the rope

10 ln 10
2π

≈ 3, 7

times round the tree.

Example 6.5 When one inflates a tyre of an automobile the valve of the tyre is connected with a
container which contains compressed air. We shall in the following assume that the pressure in the
container is constant during the inflation.
The pressure of the tyre p measured in kPa is described as a function in time t, measured in seconds.
During the inflation, the pressure of the tyre increases in such a way that the velocity by which it
increases is proportional to the difference of the pressures of the container and the tyre. Assume that
the factor of proportionality is 0.02 (in general this constant depends among other things of the volume
of the tyre and of the air resistance in the valve), and that the pressure in the container is 1000 kPa.

1) Formulate the assumption above concerning the increase of the pressure of the tyre p(t) by means
of p′(t), and derive a differential equation for p(t).

2) How long time will it take to inflate a flat tyre, i.e. a tyre in which the pressure is 1 atm. = 101
kPa, until the pressure is 190 kPa?

A. 1) Set up a model.

2) Solve the found differential equation in a special case.

D. 1) Analyze the text above in order to formulate a differential equation for the pressure of the tyre
p(t). Since we later shall solve (2) we shall find the complete solution.

2) In the given case one shall set up the initial condition for the differential equation. Solve the
initial value problem and find t for the final condition.
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I. 1) The change p′(t) of the pressure of the tyre is assumed to be proportional (with the factor

0.02 =
1
50

) with the difference of the pressures 1000− p(t) between the container and the tyre.
In other words:

p′(t) = 0, 02 · {1000 − p(t)} = 20 − 1
50

p(t),

which can be written as the linear differential equation of first order with constant coefficients,

p′(t) +
1
50

p(t) = 20.

The corresponding homogeneous equation has (by inspection) the complete solution c·exp
(
− 1

50
t

)
,

and one guesses the particular solution p0(t) = 1000. The complete solution of the model equa-
tion is then

p(t) = 1000 + c · exp
(
− 1

50
t

)
, t ≥ 0, c ∈ R.

2) For t = 0 we have p(0) = 101. When this value is put into the complete solution, we can find
c from the equation

p(0) = 101 = 1000 + c,
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thus c = −899. The wanted solution is then

p(t) = 1000 − 899 exp
(
− 1

50+
t

)
, t ≥ 0.

0

50

100

150

200

1 2 3 4 5

Figure 36: The intersection point of the graph for p(t) = 1000−899 exp
(
− t

50

)
and the line x = 190.

The task is to find t from the equation p(t) = 190, i.e.

1000 − 899 exp
(
− 1

50
t

)
= 190.

We get by a rearrangement

899 exp
(
− 1

50
t

)
= 1000 − 190 = 810,

i.e.

exp
(
− 1

50
t

)
=

810
899

,

and thus

t = 50 · ln 899
810

≈ 5, 2 seconds.

C. The test of the differential equation has almost been done by the guessing above. Then let

p(t) = 1000 − 899 exp
(
− 1

50
t

)
.

For t = 0 we get p(0) = 1000 − 899 = 101, and we see that the initial condition is also fulfilled.

For t = 50 ln
899
810

we get

p

(
50 ln

899
810

)
= 1000 − 899 exp

(
− ln

899
810

)
= 1000 − 810 = 190,

and the final condition is also satisfied.

The remaining parts of the test are left to the reader.
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Example 6.6 Consider an ideal gas in a container of fixed volume v0. (For an ideal gas we have that
the pressure = volume × temperature).

(A) The gas is heated in such a way that the increase of the temperature in a small time interval
is proportional to the length of the time interval and to the temperature at the start of the time
interval.

1) Set up a differential equation for the temperature T (t) to any time t. We denote the proportional
factor by k and it will here be considered as known.

2) Assume that the pressure of the gas by this heating is doubled in 5 minutes. How many minutes
will it take to treble the pressure? (Start by finding k).

(B) Then assume that the gas is heated in such a way that the increase of the temperature in a small
time interval is proportional to the length of the time interval and to the square of the temperature
at the start of the time interval.

3. Assume that the pressure of the gas in this heating to the time t = 0 is p = 1 atm., and to the
time t = 5 minutes is p = 6 atm. Assuming the present model, when will the container surely
have been blown up, no matter haw big v0 is?

A. Two separate tasks A and B, of which A contains two questions and B one.

(A) 1) Set up of a mathematical model.
2) Use the ideal gas equation to find the time, when the pressure is trebled.

(B) A latent new setup of a model (one may expect a nonlinear differential equation).

3. One should be surprised the first time one reads the claim, until one notices that the equation
is nonlinear. We may expect a vertical asymptote for the solution p(t) for some finite t = t0,
for which the container certainly has blown up.

D. (A) 1) Analyze the text in order to set up a differential equation for T (t).
2) Exploit p(t) = v0 · T (t) to set up an equation in p(t). The constant is found by means of

an additional condition. Finally, solve the new equation, this time with respect to t.

(B) 3. Analyze the text in order to set up a differential equation for T (t). Apply the same method
as in (2), and check the domain of the solution p(t).

I. Let p(t) > 0 denote the pressure and T (t) > 0 the absolute temperature to time t. By the equation
of an ideal gas we get

p(t) = v0 · T (t), v0 > 0 constant.

(A) 1) The increase of the temperature T (t + Δt)− T (t) is proportional (factor k) to the length
of the time interval Δt > 0 and to the temperature T (t) at the start of the time interval,
i.e.

T (t + Δt) − T (t) ≈ k · Δt · T (t).

Dividing by Δt �= 0 followed by the limit Δt → 0+ we get

lim
Δt→0+

T (t + Δt) − T (t)
Δt

= T ′(t) = k · T (t).
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Therefore, the differential equation becomes

T ′(t) = k · T (t)

with the complete solution

T (t) = c · ekt, t ∈ R, c > 0.

2) Since T (t) =
1
v0

· p(t), the corresponding differential equation of p(t) is

p′(t) = k · p(t)

with the complete solution

p(t) = cv0 · ekt, t ∈ R, c > 0.

The time is measured in minutes, so the conditions become

p(0) = cv0, p(5) = 2p(0),

i.e.

cv0 · e5k = 2cv0,

thus e5k = 2, and we get k =
1
5

ln 2.
The next task is to use this k to find t of the equation

p(t) = cv0 · exp
(

1
5

ln 2 · t
)

= 3p(0+) = ccv0.

It is immediately seen that exp
(

1
5

ln 2 · t
)

= 3 has the solution

t = 5 · ln 3
ln 2

≈ 8 minutes.

(B) The setup of the model is done in precisely the same way as in (1). The only difference is that
T (t) on the right hand side is replaced by {T (t)}2. Therefore, the model equation becomes in
this case

T ′(t) = k · {T (t)}2.

3. When T (t) =
1
v0

· p(t), we obtain the corresponding differential equation of p(t):

p′(t) =
k

v0
{p(t)}2, t ∈ R, p > 0, k > 0, v0 > 0.

We solve this equation by a separation of the variables. A division by −{p(t)}2 �= 0 gives

− 1
{p(t)}2

dp

dt
=

d

dt

{
1

p(t)

}
= − k

v0
= −k0, k0 =

k

v0
,
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hence by an integration

1
p(t)

= c − k0t, for c − k0t > 0, dvs. t <
c

k0
.

Thus the general solution is

p(t) =
1

x − k0t
for t <

c

k0
.

Then use the initial condition,

p(0) = 1 =
1
c
, dvs. c = 1,

and the side condition,

1
p(5)

=
1
6

= c − 5k0 = 1 − 5k0, dvs. k0 =
1
6
.

Hence the solution is

p(t) =
1

c − k0t
=

6
6 − t

, for t ∈ [0, 6[.

Since obviously p(t) → +∞ for t → 6−, we conclude under the assumption that the model
is correct that the container has exploded earlier than the time t = 6 minutes.

The setup of model equations

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/IE


Calculus 1c-1

 

103  

Example 6.7 Consider a ball shaped lump of ice, which is melting with a velocity which is proportional
to the area of the surface of the ball. (The proportional factor is denoted by −k, k > 0, and we assume
here that k is known). We assume that the lump of ice is ball shaped through the whole of the melting
process. Let V (t) denote the volume of the lump of ice at time t.

1) Find the surface area of a ball as a function of its volume V . (The surface area is 4πr2, and the

volume is
4
3

πr3, where r denotes the radius).

2) Set up a differential equation for V (t).

3) Find V (t), t ≥ 0, when the radius r = 2 cm to time t = 0.

A. Setup of a mathematical model, and an application of this model.

D. 1) Eliminate r from the two equations.

2) Set up a mathematical model by analyzing the text.

3) Apply the model in a special case. (NB. Notice that we cannot find the value of k.)

I. 1) Let A denote the surface area. Then

A = 4πr2 and V =
4
3

πr3.

It follows from the latter equation that

r = 3

√
3V
4π

,

which put into the former equation gives

A = 4π 3

√(
3V
4π

)2

= 3
√

36π · V
2
3 .

2) The velocity V ′(t) of the melting is proportional (factor k < 0) to the surface area A =
3
√

36π · V 2/3. Then we conclude that the mathematical model is described by the differential
equation

V ′(t) = k
3
√

36π · V 2
3 .

Putting c =
1
3

k 3
√

36π, this equation can also be written

(20) V ′(t) = 3c · V 2
3 , V > 0.

Since the volume decreases by the melting, we have V ′(t) < 0, thus x < 0.
When V > 0, a division by 3V

2
3 , gives that (20) is transformed into

1
3

V − 2
3

dV

dt
=

d
(
V

1
3

)
dt

= c.
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Then by an integration

3
√

V = ct + k1, for ct + k1 > 0, i.e. for t < −k1

c
,

because c < 0. Thus we get the complete solution

V (t) =

{
{ct + k1}3, for t < −k1

c
, c < 0,

0 for t ∈ R

of (20), because V = 0 is trivially a solution.

3) When r = 2 for t = 0, we get

V (0) =
4π
3

· 23 = k3
1, i.e. k1 = 2 3

√
4π
3

.

Since c =
1
3

k 3
√

36π, where k < 0 is the melting factor, we get the solution

V = {k1 + ct}3 =

{
2 3

√
4π
3

− |k|
3

3
√

36π · t
}3

=
4π
3

{2 − |k| · t}3, t ∈
[
0,

2
|k|
]

.

Remark. We miss some information in order to find the proportional factor k.

Example 6.8 It starts to snow on a winter day early in the morning, and the snow continues to fall
through the whole day. The snow is falling with a constant intensity, i.e. there falls a constant amount
of snow per area unite and per time unit.

1) Describe the thickness h(t) of the layer of snow as a function of the time t, assuming that this
thickness is 0 at time t = t0, when it starts snowing.

2) The speed by which a snow plough can remove the snow is inversely proportional to the thickness
of the layer of snow. Let x(t) denote the distance which the snow plough has cleared to time t.
Give the expression of x(t). (We assume that the snow plough starts at time t1 > t0).

3) A snow plough starts at 11 AM and has cleared 4 km at 2 PM, further 2 km at 5 PM on the same
day. When did it start to snow?

A. We shall set up two mathematical models, one for the thickness of the layer of snow (first question),
and one for how much a snow plough can clear (second question). Finally we are given three
conditions which should enable us to calculate when it started to snow.

D. 1) Set up a mathematical model for the thickness of the layer of snow.

2) Set up a mathematical model (a differential equation) for how much, x(t), the snow plough has
cleared.

3) Solve the differential equation in (2), and exploit the additional conditions in order to find the
unknown constants which are occurring in the complete solution. Hereby find t0.
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I. 1) Obviously,

h(t) = μ · (t − t0), t ≥ t0,

where μ > 0 is a constant.
2) We get immediately that

(21) x′(t) =
k1

h(t)
=

k

t − t0
, t > t0,

where k =
k1

μ
, i.e. the expected differential equation is reduced to the most simple case, namely

that of an integration problem.
3) From (21) we get

x(t) = k · ln(t − t0) + c, t > t0.

We see that we have three unknown constants, k, t0 and c. Therefore, we can expect three
additional conditions:

11 AM x(11) = 0 = k · ln(11 − t0) + c, 11 > t0;
2 PM, x(14) = 4 = k · ln(14 − t0) + c,
5 PM, x(17) = 4 + 2 = 6 = k · ln(17 − t0) + c.

Thus we get three nonlinear equations⎧⎨
⎩

k · ln(11 − t0) + c = 0,
k · ln(14 − t0) + c = 4,
k · ln(17 − t0) + c = 6,

for the three constants. When the first one is subtracted from the latter two we get

k · ln
(

14 − t0
11 − t0

)
= 4, k · ln

(
17 − t0
11 − t0

)
= 6,

hence

3k · ln
(

14 − t0
11 − t0

)
= 12 = 2k · ln

(
17 − t0
11 − t0

)
,

and thus(
14 − t0
11 − t0

)3

=
(

17 − t0
11 − t0

)2

.

When this is multiplied by (11 − t0)3 it is transferred into

(14 − t0)3 = (17 − t0)2(11 − t0).

This equation is by a small calculation reduced to

t20 − 25t0 + 145 = 0,

the solutions of which are

t0 =
1
2
{25 ±

√
45} ≈

{
15.85,
9.15.

Since it started to snow before 11 AM, we have t0 =
1
2
{25 − √

45}, i.e. t0 ≈ 9.15 which

corresponds to the time appr. 909, when it started to snow, and where we have used that 0.15
hour is appr. 9 minutes.
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Example 6.9 The circuit on the figure consists of a resistance R, a condenser with capacity C and
a voltage generator E(t) = cos 2t. The voltage V (t) over the condenser is governed by the differential
equation

(22)
dV

dt
+

1
RC

V =
1
C

cos 2t.

Figure 37: Diagram of an electric circuit with resistance R and condenser with capacity C and voltage
generator E(t) = cos 2t.

1) Determine the constants α and β such that

V (t) = α cos 2t + β sin 2t

is a solution of (22).

2) Find the complete solution of (22).

3) What information should be at hand in order to obtain a given voltage V (t)?

A. Given a linear differential equation of first order with constant coefficients. Solve the equation,
and analyze what kind of information is necessary in order to obtain a unique particular integral.

D. 1) Insert the indicated solutions and derive the solution.

2) Find the complete solution (theorem 1.3).

3) Analyze the complete solution concerning initial conditions.

I. 1) Inserting V = α · cos 2t + β · sin 2t, we get

dV

dt
+

1
RC

V = {−2α sin 2t + 2β cos 2t} +
1

RC
{α cos 2t + β sin 2t}

=
(
2β +

α

RC

)
cos 2t +

(
−2α +

β

RC

)
sin 2t,
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which is equal to
1
C

cos 2t for

1
RC

α + 2β =
1
C

, and − 2α +
1

RC
β = 0,

i.e.

α =
R

1 + {2RC}2
, β =

2R2C

1 + {2RC}2
.

The particular solution is therefore

V (t) =
R

1 + {2RC}2
cos 2t +

2R2C

1 + {2RC}2
sin 2t.

2) The corresponding homogeneous equation has trivially the solution

k · exp
(
− t

RC

)
, k ∈ R, t ∈ R.

By theorem 1.3 the complete solution is

(23) V (t) =
R

1 + {2RC}2
{cos 2t + 2RC sin 2t} + k · exp

(
− t

RC

)
,

where k ∈ R is an arbitrary constant, and t ∈ R.
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3) In order to solve specific problems we must know either R and C, or R and RC. We still

have to consider the constant k ∈ R. Since exp
(
− t

RC

)
�= 0 for every t ∈ R, this constant is

uniquely determined by (23), if only V (t0) = V0 is given for some t = t0. In that case

k = V0 exp
(

t0
RC

)
− R exp(t0/(RC))

1 + {2RC}2
{cos 2t0 + 2RC sin 2t0},

which is then inserted into (23).

Example 6.10 Consider a particle of mass m, which is moving in a straight motion. The position
of the particle to time t is denoted by x(t) where we measure the distance from a fixed initial point 0.
During the motion the particle is only subjected to one force f(x), which only depends on the position
x. We assume that f(x) is continuous and that f(x) �= 0 for every x.

According to Newton’s second law we get for the velocity v(t) = x′(t) that

m
dv

dt
= f(x),

hence

(24) mv
dv

dt
= f(x) · x′(t).

1. Show that if V (x) is an integral of f(x), then we get by an integration of (24) with respect to t that

1
2

mv2 − V (x) = konstant.

We shall only consider that situation, in which a bullet of mass m is shot into the space in a direction
vertically on the surface of the earth. The initial velocity is v0, and we assume that the bullet is only

influenced by the gravity f(x) = − k

x2
, where k is some positive constant. Here x denotes the distance

to the centre of the earth. When the radius of the earth is denoted by R, we get v(R) = v0.

2. Find the velocity of the bullet v as a function of the distance x.

3. Find the smallest initial velocity v0, for which the bullet can go to infinity from the earth.

4. When the initial speed is less that the v0 found in (3), how far in the space will the bullet particle
go?

A. The first question is purely theoretical. The following three problems refer to a given situation.
We can assume the given mathematical model of Newton’s second law.

D. 1) Integrate (24).

2) Set up the equation in the special case of an initial condition and solve the equation.

3) Find the smallest v0, for which the solution goes to infinity.

4) Find the domain and range, when v is smaller than the velocity of evasion.
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I. 1) Let
dV

dx
= f(x). From

0 = mv
dv

dx
− f(x) =

1
2

m
d
(
v2
)

dx
− dV

dx
=

d

dx

{
1
2

mv2 − V (x)
}

it follows by an integration that

1
2

mv2 − V (x) = c.

2) When f(x) = − k

x2
, then V (x) =

k

x
, hence according to (1),

1
2

mv2 − k

x
= constant.

When x = R, then v(R) = v0, thus the constant is
1
2

mv2
0 − k

R
, and we get by insertion,

1
2

mv2 =
1
2

mv2
0 − k

R
+

k

x
(> 0), x ≥ R,

and thus

v2 = v2
0 − 2k

mR
+

2k
m

· 1
x

(> 0), x ≥ R.

Since v > 0, we get

v(x) =
{

v2
0 − 2k

mR
+

2k
m

· 1
x

} 1
2

, x ∈ Iv0 ,

where the interval Iv0 has R as its left boundary point and satisfies

v2
0 − 2k

mR
+

2k
m

· 1
x

> 0 for x ∈ Iv0 ,

i.e.

(25)
1
x

>
m

2k

{
2k
mR

− v2
0

}
=

1
R

− m

2k
· v2

0 .

We note that v > 0, when x satisfies this condition.

3) When we can use every x ≥ R in (25), we must have

1
R

− m

2k
v2
0 ≤ 0,

i.e.

v2
0 ≥ 2k

mR
, or v0 ≥

√
2k
mR

.

The smallest velocity (the velocity of evasion) is therefore

v0 =

√
2k
mR

.
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4) Let 0 < v0 <

√
2k
mR

. Then the largest height x is found by writing equality in (25), thus

1
x

=
1
R

− m

2k
v2
0 > 0,

from which

x =
1

1
R

− mv0

2k

=
2kR

2k − mRv2
0

.

Example 6.11 The following example is the first one of two examples in which we show that the
possible motions of a planet can be found from two basic laws. We consider a particle P , which is
moving in a plane, in which we have given an (x, y) coordinate system. To any time t the position of
the particle is given by its coordinates x(t) and y(t).

0

0.2

0.4

0.6

0.8

1

y

0.2 0.4 0.6 0.8 1

x

Figure 38: Radius vector r(t) and the angle θ(t) for the particle P , and the orthogonal projections
x(t) and y(t) onto the axes

.

We can also in another way determine the coordinates, namely by determining the two variables r(t)
and θ(t) given on the figure (polar coordinates). Here r(t) indicates the usual distance from 0 to P ,
and θ(t) is the angle from the x axis to the line OP chosen in such a way that θ(t) becomes continuous.
We assume that x(t), y(t), r(t) and θ(t) are twice differentiable functions. In the following we shall
often neglect t and just write x, y, r, θ.
Let us assume that the sun is situated at 0 and that the planet P during its motion is only influenced
by the mass attraction of the sun F(t). Since a1 = (cos θ, sin θ), a2 = (− sin θ, cos θ), we see that F(t)
is determined by

F(t) = − k

r2(t)
a1(t),

where k is a constant. Then by Newton’s second law we get

F(t) = m · (x′′(t), y′′(t)) ,

where m denotes the mass of the planet.
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0

0.2

0.4

0.6

0.8

1

1.2

0.2 0.4 0.6 0.8 1 1.2

Figure 39: The sun is situated at 0, and the planet at P . The outer normal is a1 = (cos θ, sin θ), and
the perpendicular vector is a2 = (− sin θ, cos θ).

1) It follows from the first figure that

x(t) = r(t) cos θ(t), y(t) = r(t) sin θ(t).

Find by a differentiation with respect to t the accelerations x′′(t) and y′′(t) expressed by r(t) and
θ(t) and the derivatives of first and second order of these functions.

2) Let a(t) = (x′′(t), y′′(t)). Prove from (1) that

a(t) =
{
r′′(t) − r(t)(θ′(t))2

}
a1 + {2r′(t) · θ′(t) + r(t) · θ′′(t)} a2.

3) Find the projection of a(t) onto the vector a1, and onto the vector a2. Find the projections of F(t)
p̊a a1 and a2.

4) Show that the following two differential equations are fulfilled for every motion of a planet

d2r

dt2
− r

{
dθ

dt

}2

= − k

mr2
, 2

dθ

dt
· dr

dt
+ r · d2θ

dt2
= 0.

A. Two body problem. Express the law for planet motion in a plane by a mathematical model in
polar coordinates. We shall not solve the equations. A procedure is sketched.

D. 1) Transfer from rectangular to polar coordinates.

2) Splitting of a(t) = (x′′(t), y′′(t)) according to a “moving coordinate system”.

3) Determination of the Projections.

4) The mathematical model.

I. 1) Let

x(t) = r(t) cos θ(t), y(t) = r(t) sin θ(t).
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Then

x′(t) =
dr

dt
cos θ − r sin θ · dθ

dt
,

x′′(t) =
d2r

dt2
· cos θ − 2

dr

dt
· dθ

dt
· sin θ

−r cos θ ·
(

dθ

dt

)2

− r sin θ · d2θ

dt2
,

and

y′(t) =
dr

dt
· sin θ + r cos θ · dθ

dt
,

y′′(t) =
d2r

dt2
sin θ + 2

dr

dt
· dθ

dt
cos θ

−r sin θ ·
(

dθ

dt

)2

+ r cos θ · d2θ

dt2
.
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2) If we put a1 = (cos θ, sin θ) and a2 = (− sin θ, cos θ), we get by a small calculation that

a(t) = (x′′(t), y′′(t))

=

({
d2r

dt2
− r

(
dθ

dt

)2
}

cos θ +
{

2
dr

dt

dθ

dt
+ r

d2θ

dt2

}
(− sin θ),

{
d2r

dt2
− r

(
dθ

dt

)2
}

sin θ +
{

2
dr

dt

dθ

dt
+ r

d2θ

dt2

}
cos θ

)

=

{
d2r

dt2
− r

(
dθ

dt

)2
}

(cos θ, sin θ)

+
{

2
dr

dt
· dθ

dt
+ r

d2θ

dt2

}
(− sin θ, cos θ)

=
{
r′′(t) − r(t)[θ′(t)]2

}
a1 + {2r′(t)θ′(t) + r(t)θ′′(t)}a2.

3) Since a1 and a2 are perpendicular unit vectors, the projections are simply the coefficients of
a1 and a2 respectively:

Projection onto a1 :
d2r

dt2
− r

(
dθ

dt

)2

,

Projection onto a2 : 2
dr

dt
· dθ

dt
+ r · d2θ

dt2
.

The corresponding projections of F(t) are

Projection onto a1 : m

{
d2r

dt2
− r

(
dθ

dt

)2
}

,

Projection onto a2 : m

{
2

dr

dt
· dθ

dt
+ r

d2θ

dt2

}
.

If we instead use the expression F(t) = − k

r2(t)
a1(t) for F(t), we get the projections

Projection onto a1 : − k

r2
,

Projection onto a2 : 0.

4) The two different expressions in (3) for the projections if F(t) must necessary be equal. Thus
we have:

d2r

dt2
− r

(
dθ

dt

)2

= − k

mr2
, (projection onto a1),

2
dr

dt
· dθ

dt
+ r

d2θ

dt2
= 0, (projekction onto a2).

Remark. Note that when the latter equation is multiplied by r > 0, we get

0 = 2r
dr

dt
· dθ

dt
+ r2 d2θ

dt2

=
d

dt

(
r2
) · dθ

dt
+ r2 d

dt

(
dθ

dt

)
=

d

dt

{
r2 dθ

dt

}
,
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whence by an integration

r2 dθ

dt
= c.

When c �= 0, then
θ

dt
�= 0, and θ(t) has an inverse function t(θ). It is seen by composition that

r = r(t(θ)) can be considered as a function in θ. Then we get by an integration∫
r2(θ) dθ =

∫
c dt = ct + k.

The integral
∫

r2(θ) dθ can be interpreted as the area of the domain which the radius vector
r(θ) sweeps over. If k = 0 from the beginning, then this area is proportional to the time t.

Example 6.12 This example is a continuation of Example 6.11. When we put ω =
dθ

dt
, we get the

following two differential equations for the motion

(26)
d2r

dt2
− rω2 = − k

mr2
,

(27) 2ω
dr

dt
+ r

dω

dt
= 0.

1) Prove from (27) that there is a constant c, such that we during the motion have

r2(t)ω(t) = c.

2) What kind of motion do we get when c = 0?

3) We then assume that c �= 0. Prove that θ(t) has an inverse function t = g(θ). Prove also that if
we introduce the function u by

u(t) =
1

r(t)
,

then

dr

dt
= −c

du

dθ
,

d2r

dt2
= −c2 u2 d2u

dθ2
.

4) The point is now that one from (26) can find a fairly simple differential equation for u as a function
in θ. Hint: Show that

d2u

dθ2
+ u = K

for some constant K.

A. Continuation of Example 6.11, with very strong guidelines.

D. 1) Multiply (27) by r > 0 and integrate.
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2) Consider the case c = 0.

3) Show that when c �= 0, then t(θ) is defined, and express
dr

dt
and

d2r

dt2
by a differentiation with

respect to θ.

4) Derive a differential equation of second order with constant coefficients r.

I. 1) We must for physical reasons have r > 0, so when (27) is multiplied by x, we obtain the
equivalent equation

0 = ω · 2r dr

dt
+ r2 dω

dt
= ω

d

dt

(
r2
)

+ r2 dω

dt
=

d

dt

(
r2ω

)
,

hence by an integration

r(t)2ω(t) = c.

2) When c = 0, then ω =
θ

dt
= 0, because r > 0. This means that θ = k. Then the motion is

radial, i.e. it is bound to a half line from the centre.

3) When c �= 0, then ω(t) =
dθ

dt
=

c

r(t)2
�= 0, and

dθ

dt
has the same sign as c. Consequently the

inverse function of θ(t) exists, t = g(θ).
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If we put u(t) =
1

r(t)
, i.e. r(t) =

1
u(t)

, then ω =
c

r2
= c u2, and

dr

dt
=

d

dθ

(
1
u

)
· dθ

dt
= − 1

u2

du

dθ
· ω

= − 1
u2

· cu2 du

dθ
= −c

du

dθ
.

Furthermore,

d2r

dt2
=

d

dt

(
dr

dt

)
=

d

dθ

(
−c

du

dθ

)
· dθ

dt

= −c
d2u

dθ2
· ω = −c2u2 d2u

dθ2
.

4) Finally, we get by insertion into (26) that

0 =
d2r

dt2
− rω2 +

k

mr2

= −c2u2 d2u

dθ2
− 1

u
· c2u4 +

ku2

m

= −c2u2

{
d2u

dθ2
+ u − k

c2m

}
.

Since c2u2 �= 0, we can rewrite this equation in the form

d2u

dθ2
+ u =

k

c2m
= K.
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7 MAPLE programmes

Example 7.1 Write a MAPLE programme, which sketches the graph of one of the solutions of the
differential equation

dx

dt
+ 2t x = t2, t ∈ [−2, 2].

A. MAPLE programme for a solution of a linear and inhomogeneous differential equation of first
order.

D. First set up the solution formula: Notice that the integral is of a type which cannot be expressed
by elementary functions. The MAPLE programme is of course not unique. I shall below indicate
the commands which were used by the figure.

–0.8

–0.6

–0.4

–0.2

0.2

0.4

0.6

0.8

–2 –1 1 2

Figure 40: The graph of x0(t) =
1
2

t − 1
2

e−t2
∫ t

0
eτ2

dτ .

I. The complete solution is given by a formula, which we shall reduce as much as possible,

x(t) = e−t2
∫ t

0

eτ2 · τ2 dτ + c · e−t2

= e−t2
{

1
2

t et2 − 1
2

∫
et2 dt + c

}

=
1
2

t − 1
2

e−t2
∫ t

0

eτ2
dτ + c · e−t2 .

Remark 1. We thus perform a partial integration in order to get a simpler integrand. Even if
the MAPLE programme should be able directly to calculate the first integral, it of course allowed
also to make the calculations easier for MAPLE, hence increase the speed of the calculations. ♦
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We only want to sketch the graph of one solution, so we choose c = 0, in which case we get the
solution

x0(t) =
1
2

t − 1
2

e−t2
∫ t

0

ex2
dx.

A MAPLE programme for drawing this graph in the interval [−2, 2] is e.g. given by

plot([t,t/2-exp(-t^2)/2∗int(exp(x^2),x=0..t),t=-2..2],
scaling=constrained,color=black);

There are of course other possibilities.

Remark 2. In cases like this where one cannot find the exact expression of the solution by ele-
mentary functions, we can see that MAPLE is really of great help. However, in other cases it is
actually easier not to use MAPLE, which should only be considered as an useful tool. ♦

MAPLE programmes
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