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Preface

This book is the first part of a three-part series titled Problems, Theory and Solutions
in Linear Algebra. This first part treats vectors in Euclidean space as well as matrices,
matrix algebra and systems of linear equations. We solve linear systems by the use of
Gauss elimination and by other means, and investigate the properties of these systems in
terms of vectors and matrices. In addition, we also study linear transformations of the
type T : Rn → Rm and derive the standard matrices that describe these transformations.

The second part in this series is subtitled General Vector Spaces. In this part we define
a general vector space and introduce bases, dimensions and coordinates for these spaces.
This gives rise to the coordinate mapping and other linear transformations between general
vector spaces and Euclidean spaces. We also discuss several Euclidean subspaces, e.g., the
null space and the column space, as well as eigenspaces of matrices. We then make use of
the eigenvectors and similarity transformations to diagonalize square matrices.

In the third part, subtitled Inner Product Spaces, we include the operation of inner
products for pairs of vectors in general vector spaces. This makes it possible to define
orthogonal and orthonormal bases, orthogonal complement spaces and orthogonal projec-
tions of vectors onto finite dimensional subspaces. The so-called least squares solutions
are also introduced here, as the best approximate solutions for inconsistent linear systems
Ax = b.

The aim of this series it to provide the student with a well-structured and carefully
selected set of solved problems as well as a thorough revision of the material taught in
a course in linear algebra for undergraduate engineering and science students. In each
section we give a short summary of the most important theoretical concepts relevant to
that section as Theoretical Remarks. This is followed by a variety of Problems that
address these concepts. We then provide the complete Solutions of the stated problems.
This is the structure throughout every book in this series. In each chapter an extensive
list of exercises (with answers), that are similar to the solved problems treated in that
particular chapter, are given.

Given the struture of the books in this series, it should be clear that the books are not
traditional textbooks for a course in linear algebra. Rather, we believe that this series may
serve as a supplement to any of the good undergraduate textbook in linear algebra. Our
main goal is to guide the student in his/her studies by providing carefully selected solved
problems and exercises to bring about a better understanding of the abstract notions in
linear algebra, in particular for engineering and science students. The books in this series
should also be helpful to develope or improve techniques and skills for problem solving.
We foresee that students will find here alternate procedures, statements and exercises that
are beyond some of the more traditional study material in linear algebra, and we hope
that this will make the subject more interesting for the students.
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A note to the Student

Our suggestion is that you first tackle the Problems yourself, if necessary with the help
of the given Theoretical Remarks, before you look at the Solutions that are provided.
In our opinion, this way of studying linear algebra is helpful, as you may be able to make
new connections between statements and possibly learn some alternate ways of solving
specific problems in linear algebra.

Each section in each chapter of this book (which constitutes Part 1 in this three-part
series on linear algebra) is mostly self-contained, so you should be able to work with the
problems of different sections in any order that you may prefer. Therefore, you do not
need to start with Chapter 1 and work through all material in order to use the parts that
appear, for example, in the last chapter.

To make it easier for you to navigate in this book we have, in addition to the usual
Contents list at the beginning and the Index at the back of the book, also made use of
colours to indicate the location of the Theoretical Remarks, the Problems and the
Solutions.

This book includes over 100 solved problems and more than 100 exercises with an-
swers. Enjoy!

Marianna Euler and Norbert Euler Lule̊a, April 2016
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Mathematical symbols

R : The set of all real numbers.

Rn : The Euclidean space that contains all n-component vectors

v = (v1, v2, . . . , vn) for all vj ∈ R.

‖v‖ : The norm (or length) of a vector.

v̂ : The direction vector of v; v̂ =
v

‖v‖
.

−−−→
P1P2 : A vector in R3 with the direction from P1 to P2.

u · v : The dot product (scalar product) for vectors u and v in Rn.

u× v : The cross product (vector product) for vectors u and v in R3.

u · (v ×w) : The scalar triple product for three vectors u, v and w in R3.

proj v u : The orthogonal projection of vector u onto vector v.

{e1, e2, · · · , en} : The set of standard basis vectors for Rn.

A = [a1 a2 · · · an] = [aij ] : An m× n matrix with columns aj ∈ Rm, j = 1, 2, . . . , n.

In = [e1 e2 · · · en] : The n× n identity matrix with ej standard basis vectors for Rn.

detA or |A| : The determinant of the square matrix A.

A−1 : The inverse of the square matrix A.

A ∼ B : The matrices A and B are row equivalent.

[A b] : The augmented matrix corresponding Ax = b.

span {u1, u2, · · · ,up} : The set of vectors spanned by the vectors {u1, u2, · · · ,up}.
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Mathematical symbols (continued)

T : Rn → Rm : A transformation T mapping vectors from Rn to Rm.

CT : The co-domain of the transformation T .

DT : The domain of the transformation T .

RT : The range of the transformation T .

T : x �→ T (x) : A transformation T mapping vector x to T (x).

T : x �→ T (x) = Ax : A linear transformation T mapping vector x to Ax.

T2 ◦ T1 : A composite transformation.

T−1 : The inverse transformation of T .
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Vectors, lines and planes in R3

Chapter 1

Vectors, lines and planes in R3

The aim of this chapter:

We treat vectors in the Euclidean space R3 and use the standard vector operations of
vector addition, the multiplication of vectors with scalars (real numbers), the dot product
between two vectors, and the cross product between two vectors, to calculate lengths, areas,
volumes and orthogonal (perpendicular) projections of one vector onto another vector (or
onto a line). We also use vectors to parametrize lines in R3 and to find the equation that
describes a plane in R3. We show how to calculate the distance between a point and a
line, between a point and a plane, between two planes, between a line and a plane, as well
as the distance between two lines in R3.

1.1 Vector operations and the dot product

In this section we study basic vector operations, including the dot product (or scalar
product), for vectors in R3. We apply this to calculate the length (or norm) of vectors,
the distance and angle between two vectors, as well as the orthogonal projection of one
vector onto another vector and the reflection of one vector about another vector.

Theoretical Remarks 1.1.

Consider three vectors u, v and w in R3. Assume that the initial point of the vectors
are at the origin (0, 0, 0) and that their terminal points are at (u1, u2, u3), (v1, v2, v3)
and (w1, w2, w3) respectively, called the coordinates or the components of the vectors.
These vectors are also known as position vectors for these points. We write

u = (u1, u2, u3), v = (v1, v2, v3), w = (w1, w2, w3).

The position vector u for the point P with the coordinates (u1, u2, u3) is shown in Figure
1.1. As a short notation, we indicate the coordinates of point P by P : (u1, u2, u3). The
addition of the vectors u and v, denoted by u+ v, is another vector in R3, namely

u+ v = (u1 + v1, u2 + v2, u3 + v3).

9
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Figure 1.1: Position vector u of point P with coordinates (u1, u2, u2).

See Figure 1.2. Given a third vector w ∈ R3 we have the property

(u+ v) +w = u+ (v +w).

Multiplication of u with a real constant (or scalar) r, denoted by ru, is another vector in
R3, namely

ru = (ru1, ru2, ru3).

The vector ru is also called the scaling of u by r or the dilation of u by r. We have
the following

Properties:

0u = 0 = (0, 0, 0) called the zero vector

−u = (−1)u = (−u1,−u2,−u3) called the negative of u

u− v = u+ (−1)v = (u1 − v1, u2 − v2, u3 − v3)

u− u = 0.

The dot product (also known as the Euclidean inner product or the scalar product)
of u and v, denoted by u · v, is a real number defined as follows:

u · v = u1v1 + u2v2 + u3v3 ∈ R.
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Figure 1.2: Addition of vectors u and v, as well as some scalings of vector u.

The norm of u, denoted by ‖u‖, is the length of u given by

‖u‖ =
√
u · u ≥ 0.

The distance between two points P1 and P2, with position vectors u = (u1, u2, u3) and

v = (v1, v2, v3) respectively, is given by the norm of the vector
−−−→
P1P2 (see Figure 1.3), i.e.

‖−−−→P1P2‖ = ‖v − u‖ ≥ 0.

A unit vector is a vector with norm 1. Every non-zero vector u ∈ R3 can be normalized
into a unique unit vector, denoted by û, which has the direction of u. That is, ‖û‖ = 1.
This vector û is called the direction vector of u. We have u = ‖u‖ û.
The set of unit vectors,

{e1, e2, e3}, where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)

is known as the standard basis for R3 and the vectors are the standard basis vectors.
The vector u = (u1, u2, u3) can then be written in the form

u = u1e1 + u2e2 + u3e3.

Let θ be the angle between u and v. From the definition of the dot product and the cosine
law, it follows that

u · v = ‖u‖ ‖v‖ cos θ ∈ R.

This means that the vectors u and v are orthogonal to each other (or perpendicular to
each other) if and only if

u · v = 0.
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Figure 1.3: The distance between P1 and P2.

The orthogonal projection of w onto u, denoted by projuw, is the vector

projuw = (w · û)û ∈ R3,

where û is the direction vector of projuw and |w · û| is the length of projuw (note that
| | denotes the absolute value). See Figure 1.4.

Figure 1.4: The orthogonal projection of w onto u.
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1.1. VECTOR OPERATIONS AND THE DOT PRODUCT 13

Problem 1.1.1.

Consider the following three vectors in R3: u = (1, 2, 3), v = (2, 0, 1), w = (3, 1, 0).

a) Find the length of u as well as the unit vector that gives the direction of u.

b) Find the angle between u and v.

c) Project vector w orthogonally onto vector v.

d) Find the vector that is the reflection of w about v.
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Solution 1.1.1.

a) The length of u = (1, 2, 3) is ‖u‖ =
√
12 + 22 + 32 =

√
14. The direction of u =

(1, 2, 3) is given by the unit vector û, where

û =
u

‖u‖
=

(1, 2, 3)√
14

= (
1√
14

,
2√
14

,
3√
14

).

Note that ‖û‖ = 1.

b) The angle θ between u = (1, 2, 3) and v = (2, 0, 1) (See Figure 1.5) is calculated by
the dot product

u · v = ‖u‖ ‖v‖ cos θ,

so that

cos θ =
(1)(2) + (2)(0) + (3)(1)√

14
√
5

=

√
5√
14

.

Hence

θ = cos−1

( √
5√
14

)
.

Figure 1.5: Angle θ between the vectors u and v

c) The orthogonal projection of vector w = (3, 1, 0) onto vector v = (2, 0, 1), denoted
by projv w, gives the component of vector w along the vector v, also denoted by
wv. This orthogonal projection is

projv w = (w · v̂) v̂ =
(w · v
v · v

)
v =

(3)(2) + (1)(0) + (0)(1)

22 + 02 + 12
(2, 0, 1) = (

12

5
, 0,

6

5
) = wv.
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Figure 1.6: Vector w is reflected about v

d) The reflection of w about v is given by vector w∗ (see Figure 1.6),

where

w∗ =
−−→
OB +

−−→
BC.

Since

−−→
OB = projvw,

−−→
BC =

−−→
AB and

−−→
AB = projvw −w

we have

w∗ = projvw + (projvw −w) = 2 projvw −w.

We calculate

projvw = (
12

5
, 0,

6

5
)

w∗ = 2(
12

5
, 0,

6

5
)− (3, 1, 0) = (

9

5
,−1,

12

5
).

Problem 1.1.2.

Consider the following two vectors in R3: u = (u1, u2, u3) and v = (v1, v2, v3).
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a) Find the orthogonal projection of u onto the xy-plane.

b) Find the orthogonal projection of u onto the yz-plane.

c) Find the vector that is the reflection of u about the xz-plane.

d) Find the vector that results when u is first reflected about the xy-plane and then
reflected about the xz-plane.

Solution 1.1.2.

a) The orthogonal projection of u = (u1, u2, u3) onto the xy-plane is the vector uxy

which has zero z-component and the same x- and y-components as u. Thus (see
Figure 1.7)

uxy = (u1, u2, 0).

Figure 1.7: Orthogonal projection of u onto the xy-plane.

b) The orthogonal projection of u = (u1, u2, u3) onto the yz-plane is the vector uyz,
given by

uyz = (0, u2, u3).

c) The vector u∗
xz, which is the reflection of u = (u1, u2, u3) about the xz-plane, has

the same x- and z-components as u, but the negative y-component of u. Thus

u∗
xz = (u1,−u2, u3).
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d) We first reflect u = (u1, u2, u3) about the xy-plane to obtain u∗
xy = (u1, u2,−u3)

and then we reflect u∗
xy about the xz-plane, which results in (u1,−u2,−u3).

1.2 The cross product

In this section we introduce the cross product (or vector product) between two vectors,
as well as the scalar triple product between three vectors in R3. For example, the cross
product between two vectors is used to find a third vector which is orthogonal to both these
vectors in R3. We use these products to calculate, for example, the area of a parallelogram
and the volume of a parallelepiped.
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Theoretical Remarks 1.2.

Consider three vectors, u = (u1, u2, u3), v = (v1, v2, v3) and w = (w1, w2, w3), in R3.

1) The cross product (also called vector product) of u and v, denoted by u × v,
is a vector in R3 which is defined as follows:

u× v = (‖u‖ ‖v‖ sin θ) ê ∈ R3.

The vector u×v is orthogonal to both u and v, where we have indicated the direction
vector of u×v by ê, so that ||ê|| = 1. The direction of ê is given by the right-handed
triad and θ is the angle between u and v. See Figure 1.8

Figure 1.8: The cross product u× v.

The cross product has the following

Properties:

a) u× v = −v × u.

b) The norm ‖u× v‖ is the area of the parallelogram described by u and v.
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c) In terms of its coordinates, the cross product can be calculated by following
the rule of calculations for determinants of 3 × 3 matrices (see Section 2.2. in
Chapter 2), namely as follows

u× v = det




e1 e2 e3
u1 u2 u3
v1 v2 v3




= e1 det

(
u2 u3
v2 v3

)
− e2 det

(
u1 u3
v1 v3

)
+ e3 det

(
u1 u2
v1 v2

)

= (u2v3 − u3v2)e1 + (u3v1 − u1v3)e2 + (u1v2 − u2v1)e3

= (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

Here

{e1, e2, e3}, e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1),

is the standard basis for R3. The “detA” denotes the determinant of a
square matrix A. We also sometimes use the notation |A| to denote the deter-
minant of A, i.e. detA ≡ |A|.
Remark: The determinant of n× n matices is discussed in Chapter 2.

d) (u× v) · u = 0, (u× v) · v = 0.

e) Two non-zero vectors u and v in R3 are parallel if and only if u× v = 0.

2) The product u · (v × w) ∈ R is known as the scalar triple product and can be
computed in terms of the determinant as follows:

u · (v ×w) = det




u1 u2 u3
v1 v2 v3
w1 w2 w3




= (v2w3 − v3w2)u1 + (v3w1 − v1w3)u2 + (v1w2 − v2w1)u3.

Then

u · (v ×w) = v · (w × u) = w · (u× v).

Consider a parallelepiped that is described by u, v and w. See Figure 1.9.

The volume of this parallelepiped is given by the absolute value of the scalar triple
product of these three vectors. That is

volume of parallelepiped = |u · (v ×w)| cubic units.

If the three vectors u, v and w lie in the same plane in R3, then

u · (v ×w) = 0.

Download free eBooks at bookboon.com



PROBLEMS, THEORY AND SOLUTIONS IN 
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE

20

Vectors, lines and planes in R3

20

20 CHAPTER 1. VECTORS, LINES AND PLANES IN R3

Figure 1.9: The parallelepiped described by u, v and w.

Problem 1.2.1.

Consider the following three vectors in R3:

u = (1, 2, 3), v = (2, 0, 1), w = (3, 1, 0).

a) Find a vector that is orthogonal to both u and v.

b) Find the area of the parallelogram described by u and v.

c) Find the volume of the parallelepiped described by u, v and w.
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Solution 1.2.1.

a) The vector q = u×v is orthogonal to both u = (1, 2, 3) and v = (2, 0, 1) (see Figure
1.10) and this cross product can be expressed in terms of the following determinant

q =

∣∣∣∣∣∣
e1 e2 e3
1 2 3
2 0 1

∣∣∣∣∣∣
= 2e1 + 5e2 − 4e3 = (2, 5,−4).

Here {e1, e2, e3} is the standard basis for R3.

Figure 1.10: Vector q is orthogonal to both vectors u and v

b) The area of the parallelogram ABCD described by vectors u and v is given by
‖u× v‖. See Figure 1.11. In part a i) above we have calculated u× v = (2, 5,−4),
so that

‖u× v‖ =
√

22 + 52 + (−4)2 = 3
√
5 square units.

c) The volume of the parallelepiped described by vectors u, v and w is given by the
absolute value of the scalar triple product, i.e.

|u · (v ×w)| = |

∣∣∣∣∣∣
u1 u2 u3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣
|,

where u = (u1, u2, u3), v = (v1, v2, v3) and w = (w1, w2, w3).

For the given vectors u, v and w, we obtain |u · (v ×w)| = |11| = 11 cubic units.
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Figure 1.11: Parallelogram ABCD described by vectors u and v

Problem 1.2.2.

Consider the following three vectors in R3:

u1 = (a, 2,−1), u2 = (4, 1, 0), u3 = (1, 5,−2),

where a is an unspecified real parameter.

a) Find the value(s) of a, such that the volume of the parallelepiped described by the
given vectors u1, u2 and u3 is one cubic units.

b) Find the area of each face of the parallelepiped which is described by the above given
vectors u1, u2 and u3 for a = 0.

Solution 1.2.2.

a) The volume of the parallelepiped is V = |u1 · (u2 ×u3)| and we require that V = 1.
Hence

V = |

∣∣∣∣∣∣
a 2 −1
4 1 0
1 5 −2

∣∣∣∣∣∣
| = | − 2a− 3| = 1,

so that a = −1 or a = −2.

b) The area of each face of the parallelepiped can be calculated as follows (see Figure
1.12):

Area face 1 = ‖u1 × u3‖, Area face 2 = ‖u2 × u3‖, Area face 3 = ‖u1 × u2‖,

all in square units.
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Figure 1.12: A parallelepiped described by u1, u2 and u3.

Now

u1 × u3 =

∣∣∣∣∣∣
e1 e2 e3
0 2 −1
1 5 −2

∣∣∣∣∣∣
= e1 − e2 − 2e3

u2 × u3 =

∣∣∣∣∣∣
e1 e2 e3
4 1 0
1 5 −2

∣∣∣∣∣∣
= −2e1 + 8e2 + 19e3

u1 × u2 =

∣∣∣∣∣∣
e1 e2 e3
0 2 −1
4 1 0

∣∣∣∣∣∣
= e1 − 4e2 − 8e3,

so that

Area face 1 =
√

12 + (−1)2 + (−2)2 =
√
6 square units

Area face 2 =
√

(−2)2 + 82 + 192 =
√
429 square units

Area face 3 =
√
12 + (−4)2 + (−8)2 = 9 square units.

1.3 Planes and their equations

In this section we describe planes in R3 and show how to derive their equations.
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Theoretical Remarks 1.3.

1) The general equation of a plane in R3 is

ax+ by + cz = d,

where a, b, c and d are given real numbers. All points (x, y, z) which lie on this
plane must satisfy the equation of the plane, i.e. ax+ by + cz = d.

2) The vector n with coordinates (a, b, c), i.e.

n = (a, b, c),

is a vector that is orthogonal to the plane ax+ by + cz = d. The vector n is known
as the normal vector of the plane.

3) The equation of a plane can be calculated if three points that do not lie on the same
line are given, or if the normal of the plane is known and one point on the plane is
given.
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Problem 1.3.1.

Consider the following three points in R3:

(1, 2, 3), (2, 0, 1), (3, 1, 0).

Find an equation of the plane Π that contains the given three points.

Solution 1.3.1.

Consider the points A, B and C with coordinates (1, 2, 3), (2, 0, 1) and (3, 1, 0), respec-
tively. Assume that these three points lie on the plane Π and that the point P : (x, y, z, )
is an arbitrary point on this plane. Consider now the vectors

−−→
AB = (1,−2,−2),

−→
AC = (2,−1,−3),

−→
AP = (x− 1, y − 2, z − 3).

Let n denote the normal to the plane Π. See Figure 1.13. Then

Figure 1.13: Plane Π with normal n

n =
−→
AC ×−−→

AB and n · −→AP = 0,

so that

n =

∣∣∣∣∣∣
e1 e2 e3
2 −1 −3
1 −2 −2

∣∣∣∣∣∣
= −4e1 + e2 − 3e3 = (−4, 1,−3).

The equation of the plane then follows from

0 = n · −→AP = −4(x− 1) + 1(y − 2)− 3(z − 3),

so that 4x− y + 3z = 11.

Download free eBooks at bookboon.com



PROBLEMS, THEORY AND SOLUTIONS IN 
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE

26

Vectors, lines and planes in R3
26 CHAPTER 1. VECTORS, LINES AND PLANES IN R3

Problem 1.3.2.

Consider four points in R3 with respective coordinates

(1, 1, 1), (0, 1, k), (2,−1,−1) and (−2,−1, 1),

where k is an unspecified real parameter. Find the value(s) of k, such that the above four
points lie in the same plane.

Solution 1.3.2.

Consider the four points

A : (1, 1, 1), B : (0, 1, k), C : (2,−1,−1), D : (−2,−1, 1)

on a plane in R3. See Figure 1.14. Since the four point lie on the same plane we have

Figure 1.14: A plane that contains the points A, B, C and D.

−−→
AD · (−→AC ×−−→

AB) = 0

where

−−→
AD = (−3,−2, 0),

−→
AC = (1,−2,−2),

−−→
AB = (−1, 0, k − 1)

and

−−→
AD · (−→AC ×−−→

AB) =

∣∣∣∣∣∣
−3 −2 0
1 −2 −2

−1 0 k − 1

∣∣∣∣∣∣
= 0.

Calculating the above determinant, we obtain the condition 8k−12 = 0, so that the value
of k for which the four points lie on the same plane is

k =
3

2
.
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Problem 1.3.3.

Find the equation of the plane in R3 that passes through the point (1, 3, 1) and that is
parallel to the plane

x+ y − z = 1.

Solution 1.3.3.

We denote the given plane by Π1, i.e.

Π1 : x+ y − z = 1,

and denote by Π2 the plane that we are seeking. See Figure 1.15. A normal vector for Π1

is

n1 = (1, 1,−1)

and, since the plane Π2 is parallel to the given plane Π1, their normal vectors will also be
parallel. Hence a normal vector n2 for Π2 is the same as that of Π1, namely

n2 = (1, 1,−1).

Figure 1.15: Two parallel planes Π1 and Π2

We know one point on the plane Π2, namely the point A : (1, 3, 1). Let B be an arbitrary
point on the plane Π2, say

B : (x, y, z).

Download free eBooks at bookboon.com



PROBLEMS, THEORY AND SOLUTIONS IN 
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE

28

Vectors, lines and planes in R3

28 CHAPTER 1. VECTORS, LINES AND PLANES IN R3

Then vector
−−→
AB takes the form

−−→
AB = (x− 1, y − 3, z − 1)

and this vector is orthogonal to the normal vector n2. Hence

−−→
AB · n2 = 0.

Upon evaluating the dot product
−−→
AB · n2, we obtain

1(x− 1) + 1(y − 3)− 1(z − 1) = 0.

The equation for Π2 is therefore

Π2 : x+ y − z = 3.

Figure 1.16: Two orthogonal planes Π1 and Π2
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Problem 1.3.4.

Find the equation of the plane in R3 that passes through the points (1, 3, 1) and (−1, 0, 4)
and that is orthogonal to the plane

x− y + 2z = 3.

Solution 1.3.4.

Let Π1 be the given plane, i.e.

Π1 : x− y + 2z = 3

with normal vector

n1 = (1,−1, 2).

Let Π2 be the plane that we are seeking. See Figure 1.16. We know two points on this
plane, namely

A : (1, 3, 1), B : (−1, 0, 4).

In order to find the equation of Π2 we first need to find its normal vector n2. Since Π1

and Π2 are orthogonal, it means that the normal vector n2 of Π2 is orthogonal to every

vector that is parallel to Π2, say
−−→
AB, and n2 is orthogonal to n1. Thus

n2 = n1 ×
−−→
AB,

where
−−→
AB = (−2,−3, 3).

Hence

n2 =

∣∣∣∣∣∣
e1 e2 e3
1 −1 2

−2 −3 3

∣∣∣∣∣∣
= 3e1 − 7e2 − 5e3 = (3,−7,−5).

Let C be any point on Π2, i.e.

C : (x, y, z).

The vector
−→
AC is orthogonal to the normal vector n2, so that

n2 ·
−→
AC = 0,

where
−→
AC = (x− 1, y − 3, z − 1).

Calculating the dot product n2 ·
−→
AC, we obtain

3(x− 1)− 7(y − 3)− 5(z − 1) = 0,

so that the equation of the plane becomes

3x− 7y − 5z = −23.
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1.4 Lines and their parametrizations

In this section we study lines � in R3 and show how to derive parametic equations to
describe �. We derive a formula by which to calculate the distance from a point to a line
and the distance between two lines. We also show how to project a vector orthogonally
onto a line and how to reflect a vector about a line.
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Theoretical Remarks 1.4.

The parametric equation of a line � in R3 is of the form

� :




x = at+ x1

y = bt+ y1

z = ct+ z1 for all t ∈ R,

Figure 1.17: A line � in R3

where (x1, y1, z1) is a point on the line � and v = (a, b, c) is the vector that is parallel to
the line �. See Figure 1.17. Here t is a parameter that can take on any real value. That
is, for every point (x, y, z) on the line �, there exists a unique value of t, such that

(x, y, z) = (at+ x1, bt+ y1, ct+ x1).
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Problem 1.4.1.

Find a parametric equation of the line � in R3, where (−1, 1, 3) and (2, 3, 7) are two points
on �.

a) Establish which of the following three points, if any, are on this line �:

(−4,−1,−1); (−1, 2, 3); (
1

2
, 2, 5)

b) Is the vector w = (−6,−4,−8) parallel to the line �? Explain.

Solution 1.4.1.

We are given two points that are on the line �, namely P1 : (−1, 1, 3) and P2 : (2, 3, 7).

Then the vector
−−−→
P1P2 is parallel to � and has the following coordinates:

−−−→
P1P2 = (3, 2, 4).

Hence the vector v which is parallel to � is

v =
−−−→
P1P2 = (3, 2, 4).

Let P : (x, y, z) be an arbitrary point on �. Then

−−→
P1P = tv or (x+ 1, y − 1, z − 3) = t(3, 2, 4) for all t ∈ R.

Comparing the x-, y−, and z-components of the above vector equation, we obtain

x+ 1 = 3t, y − 1 = 2t, z − 3 = 4t,

respectively. The parametric equation for � is therefore

� :




x = 3t− 1

y = 2t+ 1

z = 4t+ 3 for all t ∈ R.

a) To find out whether the point (−4,−1,−1) is on the line, we use the obtained
parametic equation for � and find t. That is, t must satisfy the relations

−4 = 3t− 1, −1 = 2t+ 1, −1 = 4t+ 3.

This leads to a unique solution for t, namely t = −1. Hence the point (−4,−1,−1)
is on �.
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For the point (−1, 2, 3) we have

−1 = 3t− 1, 2 = 2t+ 1, 3 = 4t+ 3,

which cannot be satisfied for any value of t. Hence (−1, 2, 3) is not a point on �.

The point (1/2, 2, 5) satisfies the parametric equation for t = 1/2, so that (1/2, 2, 5)
is a point on �.

b) The vector w = (−6,−4,−8) is indeed parallel to the line �, since

w = −2v,

where v is parallel to �.

Problem 1.4.2.

Find a parametric equation of the line � in R3 which passes through the point (1,−1, 2)
and which is orthogonal to the lines �1 and �2, given in parametric form by

�1 :




x = 2t

y = t

z = t− 1 for all t ∈ R,

�2 :




x = −3t+ 1

y = 2t

z = 4t− 1 for all t ∈ R.
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Solution 1.4.2.

Vector v1 = (2, 1, 1) is a vector that is parallel to �1 and v2 = (−3, 2, 4) is a vector that
is parallel to �2. A vector that is orthogonal to both �1 and �2 is therefore

v = v1 × v2

and this vector v is thus parallel to the line � that we are seeking. We calculate v:

v = v1 × v2 =

∣∣∣∣∣∣
e1 e2 e3
2 1 1

−3 2 4

∣∣∣∣∣∣
= 2e1 − 11e2 + 7e3 = (2,−11, 7).

A parametric equation for the line � is therefore

� :




x = 2t+ 1

y = −11t− 1

z = 7t+ 2 for all t ∈ R.

Problem 1.4.3.

Consider a line � in R3 with the following parametric equation

� :




x = at+ x1

y = bt+ y1

z = ct+ z1 for all t ∈ R,

where (x1, y1, z1) is a point on � and

v = (a, b, c)

is a vector parallel to �.

a) Assume that the point P0 : (x0, y0, z0) is not on the line �. Find a formula for the
distance from the point P0 to �.

b) Find the distance from the point (−2, 1, 3) to the line �, given by the parametric
equation

� :




x = t+ 1

y = 3t− 4

z = 5t+ 2 for all t ∈ R.

Download free eBooks at bookboon.com



PROBLEMS, THEORY AND SOLUTIONS IN 
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE

35

Vectors, lines and planes in R3
1.4. LINES AND THEIR PARAMETRIZATIONS 35

Solution 1.4.3.

a) We find a formula for the distance from the point P0(x0, y0, z0) to the line �, where

� :




x = at+ x1

y = bt+ y1

z = ct+ z1 for all t ∈ R.

Here P1 : (x1, y1, z1) is a point on the line �. Let s = ‖
−−−→
P0P2‖ denote the distance from

P0 to �, where P2 is a point on � which is not known. We consider the right-angled
triangle �P1P2P0. See Figure 1.18.

Figure 1.18: The distance from a point P0 : (x0, y0, z0) to the line � in R3

It follows that

s = ‖−−−→P0P2‖ = ‖−−−→P1P0‖ sin θ. (1.4.1)

On the other hand we have, from the definition of the cross product, that

‖−−−→P1P0 × v‖ = ‖−−−→P1P0‖ ‖v‖ sin θ. (1.4.2)

Solving ||−−−→P1P0|| sin θ from (1.4.2) and inserting it into (1.4.1), we obtain the following
formula for the distance:

s =
‖−−−→P1P0 × v‖

‖v‖
.
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b) The given line � passes through the point P1 : (1,−4, 2) and is parallel to the vector
v = (1, 3, 5). Thus for the point P0 : (−2, 1, 3), we have

−−−→
P1P0 = (−3, 5, 1)

and

−−−→
P1P0 × v =

∣∣∣∣∣∣
e1 e2 e3
−3 5 1
1 3 5

∣∣∣∣∣∣
= 22e1 + 16e2 − 14e3 = (22, 16,−14).

Calculating the lengths of the vectors
−−−→
P1P0 × v and v, we obtain

‖−−−→P1P0 × v‖ =
√
(22)2 + (16)2 + (−14)2 = 6

√
26

‖v‖ =
√
12 + 32 + 52 =

√
35,

so that the distance from the point P0 to the given line � is

s =
‖−−−→P1P0 × v‖

‖v‖
=

6
√
26√
35

.
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Problem 1.4.4.

Find a formula for the distance between two lines in R3 and use your formula to find the
distance between the following two lines:

�1 :




x = 2t+ 1

y = t− 1

z = 3t+ 1 for all t ∈ R,

�2 :




x = t

y = 2t+ 2

z = 1 for all t ∈ R.

Solution 1.4.4.

Assume that P1 : (x1, y1, z1) is a point on the line �1 and that P2 : (x2, y2, z2) is a point
on another line �2. Let v1 denote a vector that is parallel to �1 and v2 a vector that is
parallel to �2 (see Figure 1.19). Now v = v1 × v2 is a vector that is orthogonal to both

Figure 1.19: Distance s between two lines in R3

v1 and v2, and therefore v is orthogonal to the lines �1 and �2. To find the distance s

between �1 and �2, we project
−−−→
P1P2 orthogonally onto the vector v. This leads to

s =
∥∥∥projv

−−−→
P1P2

∥∥∥ =
|−−−→P1P2 · v|

‖v‖
=

|−−−→P1P2 · (v1 × v2)|
‖v1 × v2‖

.

For the given line �1 we have v1 = (2, 1, 3) with a point P1 : (1,−1, 1) ∈ �1 and for the
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given line �2 we have v2 = (1, 2, 0) with a point P2 : (0, 2, 1) ∈ �2. Thus

−−−→
P1P2 = (−1, 3, 0), v1 × v2 =

∣∣∣∣∣∣
e1 e2 e3
2 1 3
1 2 0

∣∣∣∣∣∣
= −6e1 + 3e2 + 3e3 = (−6, 3, 3),

so that the distance s between �1 and �2 is

s =
|(−1, 3, 0) · (−6, 3, 3)|√

36 + 9 + 9
=

5√
6
.

Problem 1.4.5.

Consider the following two vectors in R3:

u = (−1, 3, 3), v = (2,−1, 4).

Consider now the line � in R3, such that � contains the point (2,−1, 4) and the zero-vector
0 = (0, 0, 0).

a) Find the orthogonal projection of the vector u onto the line �, i.e. calculate

proj� u.

b) Find the distance between the point (−1, 3, 3) and the line �.

c) Find the reflection of the vector u about the line �.

Solution 1.4.5.

a) We aim to obtain the vector w which is the orthogonal projection of the vector u
onto the line �, i.e. w =proj� u. This can be achieved by projection u onto any
position vector that is lying on this line �, for example vector v. See Figure 1.20.
Thus

w = proj�u = projvu = (u · v̂)v̂ where v̂ =
v

‖v‖
.

For u = (−1, 3, 3) and v = (2,−1, 4), we have

w =

(
u · v
‖v‖2

)
v =

(u · v
v · v

)
v =

(−1)(2) + (3)(−1) + (3)(4)

22 + (−1)2 + 42
(2,−1, 4) =

1

3
(2,−1, 4).
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Figure 1.20: The orthogonal projection of u onto �.

b) The distance d between the point (−1, 3, 3) and the line � is ‖−−→AB‖ (see Figure 1.20).
By vector addition we then have

−−→
AB = u−w = (−1, 3, 3)− (

2

3
,−1

3
,
4

3
) = (−5

3
,
10

3
,
5

3
).

Thus

‖−−→AB‖ =

√
25

9
+

100

9
+

25

9
=

5

3

√
6.

c) The reflection of the vector u about the line � is given by the vector
−−→
OC. See Figure

1.21. By vector addition we have

−−→
OC +

−→
CA+

−−→
AB = u.

However,
−→
CA =

−−→
AB, so that

−−→
OC = u− 2

−−→
AB,
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Figure 1.21: The reflection of u about �.

where u = (−1, 3, 3) and
−−→
AB = (−5

3
,
10

3
,
5

3
) (see part a) above). Thus the reflection

about � is

−−→
OC = (−1, 3, 3)− 2(−5

3
,
10

3
,
5

3
) = (

7

3
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3
,−1

3
).
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Figure 1.21: The reflection of u about �.
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3
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1.5 More on planes and lines

In this section we derive the distance between a point and a plane, as well as the distance
between two planes. We also investigate the situation for a line that lies on a plane, a line
that is projected orthogonally onto a plane, and a line that is reflected about a plane.

Theoretical Remarks 1.5.

1. Given the equation of a plane

Π : ax+ by + cz = d,

the distance s from the point

P0 : (x0, y0, z0)

to the plane Π is

s =
|ax0 + by0 + cz0 − d|√

a2 + b2 + c2
.

2. Given two parallel planes, Π1 : ax+ by + cz = d1 and Π2 : ax+ by + cz = d2, the
distance s between Π1 and Π2 is

s =
|d1 − d2|

‖n‖
,

where n = (a, b, c) is the normal vector for both planes.

Remark: Any two planes in R3 that do not intersect must be parallel.

Problem 1.5.1.

Consider a plane ax+ by+ cz = d and a point P0 : (x0, y0, z0), such that P0 is not a point
on this plane.

a) Find a formula for the distance from the point P0 : (x0, y0, z0) to the plane ax+ by+
cz = d.

b) Find the distance from the point (1, 2, 2) to the plane which passes through the
origin (0, 0, 0), as well as through the points (1, 1,−1) and (0, 2, 1).
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Solution 1.5.1.

a) We consider the plane

Π : ax+ by + cz = d

and a point

P0 : (x0, y0, z0) /∈ Π.

Figure 1.22: The point P0 : (x0, y0, z0) and a plane Π : ax+ by + cz = d in R3

The normal vector n for the plane Π is n = (a, b, c) (see Figure 1.22). Consider now

an arbitrary point on Π, say point P : (x, y, z), and project vector
−−→
PP0 orthogonally

onto n. This gives the distance s from the point P0 to the plane Π, i.e.

s = ‖projn
−−→
PP0‖ = |−−→PP0 · n̂| =

|−−→PP0 · n|
‖n‖

,
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where n̂ = n/‖n‖ and

−−→
PP0 = (x0 − x, y0 − y, z0 − z)

−−→
PP0 · n = a(x0 − x) + b(y0 − y) + c(z0 − z)

= −(ax+ by + cz) + ax0 + by0 + cz0

= −d+ ax0 + by0 + cz0.

Thus the distance from P0 to Π is

s =
|ax0 + by0 + cz0 − d|√

a2 + b2 + c2
, (1.5.1)

where | | denotes the absolute value.

b) We seek the distance from P0 : (1, 2, 2) to the plane that contains the origin O :
(0, 0, 0), as well as the points A : (1, 1,−1) and B : (0, 2, 1). We name this plane Π.
First we derive the equation of the plane Π.

Figure 1.23: A plane in R3 that contains the points O, A and B.

Consider the vectors
−→
OA and

−−→
OB (see Figure 1.23). Then the normal vector n for

Π is

n =
−→
OA×−−→

OB,

where

−→
OA = (1, 1,−1),

−−→
OB = (0, 2, 1).
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Calculating the above cross product, we obtain

n =

∣∣∣∣∣∣
e1 e2 e3
1 1 −1
0 2 1

∣∣∣∣∣∣
= 3e1 − e2 + 2e3 = (3,−1, 2).

Since the plane Π passes through O : (0, 0, 0), the equation for Π must be

3x− y + 2z = 0,

so that the distance s from the point P0 : (1, 2, 2) to the plane Π is

s =
|(3)(1) + (−1)(2) + (2)(2)|√

9 + 1 + 4
=

5√
14

.
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Problem 1.5.2.

Find the distance between the planes Π1 : 2x− 3y + 4z = 5 and Π2 : 4x− 6y + 8z = 16.

Solution 1.5.2.

We are given two planes, namely Π1 : 2x − 3y + 4z = 5 and Π2 : 4x − 6y + 8z = 16.
Dividing the equation of the plane Π2 by 2 we obtain 2x−3y+4z = 8. The normal vector
n for both planes is therefore

n = (2,−3, 4),

so that we can conclude that the two planes are parallel. We now choose any point
P0 : (x0, y0, z0) on Π1 and then calculate the distance s from point P0 to Π2/2. We make
use of the formula (1.5.1), namely

s =
|ax0 + by0 + cz0 − d|√

a2 + b2 + c2

as derived in Problem 1.5.1 a) and given in Theoretical Remark 1.5, to calculate the
distance from the point P0 to the plane Π2. For Π2 we have a = 2, b = −3, c = 4 and
d = 8. To find a point P0 that lies on the plane Π1, we let x = 1 and y = 0, and insert
those values into the equation for Π1 to calculate z. We obtain

2(1)− 3(0) + 4z = 5, so that z =
3

4
.

Thus we have P0 : (1, 0,
3

4
). Calculating s, we obtain

s =
|(2)(1)− (3)(0) + (4)(3/4)− 8|√

22 + (−3)2 + 42
=

| − 3|√
29

=
3√
29

.

Alternatively, we can use the formula s = |d1 − d2|/‖n‖ with d1 = 5 and d2 = 8, as given
in Theoretical Remark 1.5.

Problem 1.5.3.

Consider the following line � in R3:

� :




x = 2t+ 1

y = −2t+ 1

z = 6t− 6 for all t ∈ R.

Find all real values for the parameter b, such that every point on � is on the plane

2

3
x+ by +

1

9
z = 1.
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Solution 1.5.3.

Since every point on � must lie on the given plane, we insert x, y and z, given by the
parametric equation for �, into the equation of the plane. This leads to

2

3
(2t+ 1) + b(−2t+ 1) +

1

9
(6t− 6) = 1.

Simplifying and collecting coefficients of t in the above relation, we obtain

(18− 18b)t+ 9b− 9 = 0 for all t ∈ R.

We conclude that

18− 18b = 0 and 9b− 9 = 0,

so that b = 1. Thus every point which is on � is on the given plane, if and only if the plane
has the equation

2

3
x+ y +

1

9
z = 1, or, equivalently, the equation 6x+ 9y + z = 9.

Problem 1.5.4.

Consider the plane Π : x+ y − z = −3 and the line

� :




x = t+ 1

y = 2t+ 1

z = 2t+ 2 for all t ∈ R.

a) Find a parametric equation for the line �̂, such that �̂ is the orthogonal projection
of the given line � onto the given plane Π.

b) Find all points on the given line �, such that the distance between those points and
the given plane Π is 2

√
3.

c) Find a parametric equation for the line �∗, such that �∗ is the reflection of the given
line � about the given plane Π.

Solution 1.5.4.

a) First we find the intersection of the given line � with the plane Π:
An arbitrary point Pt on � has the coordinates

Pt : (t+ 1, 2t+ 1, 2t+ 2),
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so that, for every t ∈ R, Pt is a point on �. To find the intersection of � with Π, we
insert

x = t+ 1, y = 2t+ 1, z = 2t+ 2

into the equation of Π. This leads to

(t+ 1) + (2t+ 1)− (2t+ 2) = −3,

from which we can solve t, to obtain t = −3. Therefore, the point P which lies on
both � and Π has the following coordinates (see Figure 1.24):

P : (−2,−5,−4).

Figure 1.24: The line of orthogonal projection �̂ of the line � onto the plane Π.

To find the direction of �̂, such that �̂ is the line that represents the orthogonal
projection of � onto Π, we choose any point Q on � (different from the point P ), say
the point

Q : (1, 1, 2).

Then we have
−−→
PQ = (3, 6, 6) and following Figure 1.24, we obtain

−−→
PM =

−−→
PQ−−−→

MQ,
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where
−−→
PM is the orthogonal projection of

−−→
PQ onto �̂ and hence

−−→
PM is the orthogonal

projection of
−−→
PQ onto Π. To find

−−→
MQ we project

−−→
PQ orthogonally onto the normal

vector n of Π, where n = (1, 1,−1). Thus

−−→
MQ = projn

−−→
PQ = (

−−→
PQ · n̂) n̂ =

(−−→
PQ · n
n · n

)
n

Calculating the above orthogonal projection we obtain
−−→
MQ = (1, 1− 1), so that

−−→
PM = (3, 6, 6)− (1, 1,−1) = (2, 5, 7).

Since the line �̂ is passing through the point P : (−2,−5,−4) and has the direction
−−→
PM , the parametric equation for �̂ is

�̂ :




x = 2t− 2

y = 5t− 5

z = 7t− 4 for all t ∈ R.
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b) In Problem 1.5.1 we have derived a formula for the distance s from the point
P0 : (x0, y0, z0) to the plane ax+ by + cz = d, namely the formula

s =
|ax0 + by0 + cz0 − d|√

a2 + b2 + c2
.

Any point St on � has the coordinates

St : (t+ 1, 2t+ 1, 2t+ 2)

for any choice t ∈ R. We can thus calculate the distance s from the point St to the
given plane Π : x+ y − z = −3 by using the above formula. We obtain

s =
|1(t+ 1) + 1(2t+ 1)− 1(2t+ 2)− (−3)|√

1 + 1 + 1
=

|t+ 3|√
3

.

Figure 1.25: The line of reflection �∗ of the line � about the plane Π.

We now seek the point St, such that s = 2
√
3. Hence we have

|t+ 3|√
3

= 2
√
3 or |t+ 3| = 6.
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Thus t = 3 or t = −9. Using these two values of t for the coordinates of St, we
obtain the following two points on � which are a distance 2

√
3 away from Π, namely

the points with coordiantes

(4, 7, 8) and (−8,−17,−16).

c) We need to find a parametric equation for the line �∗, such that �∗ is the reflection of
the given line � about the given plane Π. Clearly, �∗ can be obtained by finding the
reflection of � about the line �̂, which has already been obtained in part a) above.
Note also that, as given in part a), we have

P : (−2,−5,−4) and Q : (1, 1, 2).

Let Q∗ denote the point on �∗, such that

−−−→
MQ∗ = −−−→

MQ.

Following Figure 1.25, we have

−−→
PQ∗ =

−−→
PM +

−−−→
MQ∗,

where
−−→
PM = (2, 5, 7) and

−−−→
MQ∗ = −−−→

MQ = (−1,−1, 1) [see part a) of this problem].
Thus

−−→
PQ∗ = (2, 5, 7) + (−1,−1, 1) = (1, 4, 8).

Since �∗ is passing through the point P : (−2,−5,−4) and has the direction given

by the vector
−−→
PQ∗ = (1, 4, 8), the parametric equation for �∗ takes the form

�∗ :




x = t− 2

y = 4t− 5

z = 8t− 4 for all t ∈ R.

Problem 1.5.5.

Consider the plane Π : 2x+ y + z = 5 and the line

� :





x = t+ 2

y = −5t+ 1

z = 3t+ 3 for all t ∈ R,

where Π and � are parallel.
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a) Find a parametric equation for the line �̂, such that �̂ is the orthogonal projection
of the given line � onto the given plane Π.

b) Find a parametric equation for the line �, such that � is the reflection of the given
line � about the given plane Π.

Solution 1.5.5.

a) We need to find the line �̂ that is the orthogonal projection of the line �, namely

� :




x = t+ 2

y = −5t+ 1

z = 3t+ 3 for all t ∈ R

onto the given plane Π : 2x+ y + z = 5.

Figure 1.26: The orthogonal projection of � onto Π

We refer to Figure 1.26 and choose any two points P and Q on � by respectively
setting t = 0 and t = 1 in the above parametric equation for �. This leads to

P : (2, 1, 3), Q : (3,−4, 6).
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We now seek the point Q0 = (x0, y0, z0) in the plane Π, such that

−−→
Q0Q is orthogonal to

−−→
QP

and

−−→
Q0Q is parallel to n = (2, 1, 1),

where n is the normal of the plane Π. We have

−−→
Q0Q = (3− x0,−4− y0, 6− z0)

−−→
Q0P = (2− x0, 1− y0, 3− z0).

Moreover

−−→
Q0Q = projn

−−→
Q0P =

(−−→
Q0P · n
n · n

)
n

=

(
2(2− x0) + 1(1− y0) + 1(3− z0)

4 + 1 + 1

)
(2, 1, 1)

=

(
8− (2x0 + y0 + z0)

6

)
(2, 1, 1).

Since Q0 is a point on Π the coordinates of Q0 have to satisfy the equations for Π,
i.e.

2x0 + y0 + z0 = 5,

so that

projn
−−→
Q0P =

(
8− 5

6

)
(2, 1, 1) = (1,

1

2
,
1

2
).

Hence

(3− x0,−4− y0, 6− z0) = (1,
1

2
,
1

2
),

and by comparing the x-, y- and z-components, we obtain

x0 = 2, y0 = −9

2
, z0 =

11

2
, i.e. Q0 : (2,−9

2
,
11

2
).

Clearly Q0 is a point on �̂, where �̂ has the same direction vector v as �, namely

v = (1,−5, 3).
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A parameteric equation for �̂ is therefore

�̂ :




x = t+ 2

y = −5t− 9

2

z = 3t+
11

2
for all t ∈ R.

b) We need to find the line �∗ that is the reflection of the line �, namely

� :




x = t+ 2

y = −5t+ 1

z = 3t+ 3 for all t ∈ R

about the given plane Π : 2x+ y + z = 5.

Figure 1.27: The reflection of � about Π

We need to find the coordinates of the point Q∗ (see Figure 1.27). Assume that Q∗

has the coordinates (x∗, y∗, z∗). By part a) above we know that Q : (3,−4, 6) and

Q0 : (2,−9/2, 11/2). Since
−−−→
Q0Q

∗ =
−−→
QQ0, we have

−−−→
Q0Q

∗ = (−1,−1

2
,−1

2
).
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But, on the other hand, we have

−−−→
Q0Q

∗ = (x∗ − 2, y∗ +
9

2
, z∗ − 11

2
),

so that

−−−→
Q0Q

∗ = (x∗ − 2, y∗ +
9

2
, z∗ − 11

2
) = (−1,−1

2
,−1

2
)

leads to x∗ = 1, y∗ = −5 and z∗ = 5. Thus we have obtained the coordinates of Q∗,
namely

Q∗ : (1,−5, 5).

Now, �∗ is passing through the point Q∗ and �∗ has the same direction vector as �,
namely v = (1,−5, 3). We conclude that the parametric equation of �∗ is

�∗ :




x = t+ 1

y = −5t− 5

z = 3t+ 5 for all t ∈ R.
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Problem 1.5.6.

Consider the plane Π : x − y + z = 7, as well as a triangle with vertices A : (1, 2, 2),
B : (3, 1, 2) and C : (1, 1, 1). Note that this triangle is not lying on the plane Π.

a) Orthogonally project the given triangle onto the plane Π and give the vertices of the
projected triangle.

b) Reflect the given triangle about the plane Π and give the vertices of the reflected
triangle.

Solution 1.5.6.

a) We project the triangle �ABC with vertices A : (1, 2, 2), B : (3, 1, 2) and C :
(1, 1, 1) orthogonal onto the plane Π : x−y+z = 7 and decribe the projected triangle
�AΠBΠCΠ by calculating the vertices of this triangle, namely the coordinates of
AΠ, BΠ and CΠ (see Figure 1.28).

Figure 1.28: �ABC projected orthogonally onto Π resulting in �AΠBΠCΠ.

Assume that the coordiantes of AΠ, BΠ and CΠ are as follows (see Figure 1.28):

AΠ : (x1, y1, z1), BΠ : (x2, y2, z2), CΠ : (x3, y3, z3).
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Figure 1.29: Coordinates of AΠ for the projection of �ABC

The vector
−−−→
AAΠ can be obtained by projecting

−−−→
ABΠ orthogonally onto n. That is

−−−→
AAΠ = proj n

−−−→
ABΠ =

(−−−→
ABΠ · n
n · n

)
n,

where

−−−→
AAΠ = (x1 − 1, y1 − 2, z1 − 2),

−−−→
ABΠ = (x2 − 1, y2 − 2, z2 − 2), n = (1,−1, 1).

Calculating we obtain

−−−→
AAΠ = proj n

−−−→
ABΠ =

(
1(x2 − 1)− 1(y2 − 2) + 1(z2 − 2)

1 + 1 + 1

)
(1,−1, 1)

=

(
x2 − y2 + z2 − 1

3

)
(1,−1, 1) = (2,−2, 2),

where x2 − y2 + z2 = 7 as this is a point on the plane Π. We have

−−−→
AAΠ = (x1 − 1, y1 − 2, z1 − 2) = (2,−2, 2),

so that x1 = 3, y1 = 0, z1 = 4 and the coordinates of AΠ are

AΠ : (3, 0, 4).
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To find the coordinates of BΠ, we project
−−−→
BAΠ orthogonally onto n (see Figure

1.30), i.e.

−−−→
BBΠ = proj n

−−−→
BAΠ =

(−−−→
BAΠ · n
n · n

)
n,

where

−−−→
BAΠ = (0,−1, 2),

−−−→
BBΠ = (x2 − 3, y2 − 1, z2 − 2), n = (1,−1, 1).

Figure 1.30: Coordinates of BΠ for the projection of �ABC

Calculating we obtain

−−−→
BBΠ = proj n

−−−→
BAΠ = (1,−1, 1),

so that

−−−→
BBΠ = (x2 − 3, y2 − 1, z2 − 2) = (1,−1, 1).

The coordinates of BΠ are then

BΠ : (4, 0, 3).

In the same way, we project
−−−→
CBΠ orthogonally onto n to find CΠ (see Figure 1.31).
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Figure 1.31: Coordinates of CΠ for the projection of �ABC

We obtain

−−−→
CCΠ = proj n

−−−→
CBΠ = (2,−2.2)

and comparing this with
−−−→
CCΠ = (x3 − 1, y3 − 1, z3 − 1), we obtain

CΠ : (3,−1, 3).

This completes the calculations of the vertices for � AΠBΠCΠ.
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b) We reflect the triangle�ABC with vertices A : (1, 2, 2), B : (3, 1, 2) and C : (1, 1, 1)
about the plane Π : x− y + z = 7 and decribe the reflected triangle �A∗B∗C∗ by
calculating the vertices of this triangle, namely the coordinates of A∗, B∗ and C∗

(see Figure 1.32).

Figure 1.32: �ABC reflected about Π resulting in �A∗B∗C∗.

We assume that the coordinates of A∗, B∗ and C∗ are as follows (see Figure 1.32):

A∗ : (x∗1, y
∗
1, z

∗
1), B∗ : (x∗2, y

∗
2, z

∗
2), C∗ : (x∗3, y

∗
3, z

∗
3).

From part a) above we have (see also Figure 1.32)

−−→
AA∗ = 2

−−−→
AAΠ = 2(2,−2, 2) = (4,−4, 4),

and, moreover,

−−→
AA∗ = (x∗1 − 1, y∗1 − 2, z∗1 − 2) = (4,−4, 4).
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Thus x∗1 = 5, y∗1 = −2 and z∗1 = 6, so we have found the coordiantes of A∗, namely

A∗ : (5,−2, 6).

Also

−−→
BB∗ = 2

−−−→
BBΠ = 2(1,−1, 1) = (x∗2 − 3, y∗2 − 1, z∗2 − 2)

−−→
CC∗ = 2

−−−→
CCΠ = 2(2,−2, 2) = (x∗3 − 1, y∗3 − 1, z∗3 − 1),

which leads to the following coordinates for B∗ and C∗:

B∗ : (5,−1, 4), C∗ : (5,−3, 5).
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1.6 Exercises

1. Consider the following two vectors in R3: u = (−1, 2, 3) and v = (1,−1, 2).

a) Find the orthogonal projection of u onto v.

[Answer: projvu = (
1

2
,−1

2
, 1). ]

b) Find the orthogonal projection uyz of u onto the yz-plane.

[Answer: uyz = (0, 2, 3). ]

c) Find the vector u∗ that is the reflection of u about v.

[Answer: u∗ = (2,−3,−1). ]

d) Find the vector u∗
xz that is the reflection of u about the xz-plane.

[Answer: u∗
xz = (−1,−2, 3). ]

e) Find the vector that results when u is first reflected about the xy-plane and
then reflected about the yz-plane. Is the resulting vector different if we first
reflect about the yz-plane and then reflect about the xy-plane?

[Answer: (1, 2,−3). The vector is the same. ]

f) Find the vector that results when u is first reflected about the xy-plane and
then projected orthogonally onto the yz-plane. Is the resulting vector different
if we first project orthogonally onto the yz-plane and then reflect about the
xy-plane?

[Answer: (0, 2,−3). The vector is the same. ]

2. Find all the values for a ∈ R, such that the volume of the parallelepiped described
by the vectors u = (1, 1, 2), v = (−1, a, 3) and w = (2, 1, a) is one cubic unit.

[Answer: a ∈ {0, 1, 2, 3}. ]
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3. Consider the following three vectors:

u = a(1, 1, 2), v = (−1, b,−1), w = (7, 1, c),

where a, b and c are real parameters.

a) Find all values for a, b and c, such that the given vectors u, v and w describe a
rectangular parallelepiped (i.e. a parallelepiped with perpendicular sides) with
a volume of 132 cubic units.

[Answer: a ∈ {−2, 2}, b = 3, c = −4. ]

b) Find all values for a, b and c, such that the volume of the parallelepiped,
described by the vectors u, v and w with a �= 0, is zero cubic units.

[Answer: b =
8− c

c− 14
for all c ∈ R\{14}. ]

4. Consider three points P1, P2 and P3 with the following coordinates in R3:

P1 : (2,−1, 1), P2 : (3, 2,−1), P3 : (−1, 3, 2).

a) Find the equation of the plane Π1 that contains the three given points.

[Answer: 11x+ 5y + 13z = 30. ]

b) Assume that the normal n of a plane Π2 is given as n = (−2, 1, 4) and that Π2

contains the given point P1. Find the equation of Π2.

[Answer: −2x+ y + 4z = −1. ]

c) Find the angle θ between the two planes Π1 and Π2 that you have obtained in
part a) and part b).

[Answer: θ = arccos

(√
15

9

)
. ]

5. Consider a line � in R3 that passes through the points P1 : (1,−2,−1) and P2 :
(3,−1, 1).

Download free eBooks at bookboon.com



PROBLEMS, THEORY AND SOLUTIONS IN 
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE

63

Vectors, lines and planes in R3
1.6. EXERCISES 63

a) Find a parametric equation for �.

[Answer:

� :




x = 2t+ 1

y = t− 2

z = 2t− 1 for all t ∈ R. ]

b) Find the distance s from the origin (0, 0, 0) to the line � that you have obtained
in part a).

[Answer: s =
5
√
2

3
. ]

6. Consider a triangle with vertices A : (1, 0, 1), B : (2, 1,−1) and C : (2, 2, 1).

a) Find the distance from the point B to the base of the triangle with vertices A
and C.

[Answer:

√
21

5
. ]

b) Find the area of the triangle ABC by making use of the cross product.

[Answer:
1

2

√
21. ]

7. Consider the following two lines in R3:

�1 :





x = 2t+ 3

y = −4t+ 1

z = 2t+ 2 for all t ∈ R,

�2 :





x = −s

y = s+ 3

z = −s− 1 for all s ∈ R.

Do the lines intersect? If so, find the point of intersection for this case.

[Answer: The point of intersection is (4,−1, 3). ]
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8. Consider a pyramid ABCD with vertices at A : (2, 1, 0), B : (0, 2, 3), C : (1, 0, 1)
and D : (1, 1, 1) as shown in Figure 1.33.

Figure 1.33: The pyramid ABCD.

Find the height of this pyramid.

[Answer: The height of the pyramid is given by the distance from the point D to

the plane that contains the triangle ABC, namely
1√
26

. ]
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9. Consider the line �, given in parametric form by

� :




x = kt+ 2

y = t− 3

z = 3t+ 4 for all t ∈ R,

and the plane Π, given by the equation

Π : 3x+ 2y + 4z = 1.

a) Determine for which value(s) of k ∈ R, if any, is � parallel to Π.

[Answer: k = −14

3
. ]

b) Find the distance from � to Π for those values of k for which � is parallel to Π,
if any such values exist.

[Answer:
15√
29

. ]

c) Find the intersection of � with Π, for all those values of k for which � is not
parallel to Π, if any such values exist.

[Answer: The coordinates of intersection is
1

3k + 14
(−9k + 28, −9k − 57, 12k + 11)

for all k ∈ R\{−14

3
}. ]

10. Consider the line � given in parametric form by

� :





x = −t+ 2

y = 3t

z = 5t− 1 for all t ∈ R,

Find all points on �, for which the distance from those points to the plane x+y−z = 2

is
2√
3
units.

[Answer: The points with coordinates (
7

3
,−1,−8

3
) and (1, 3, 4). ]
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11. Consider the plane Π : x− 2y+ 3z = 31 and the line � given in parametric form by

� :




x = −t+ 2

y = t− 1

z = −2t+ 3 for all t ∈ R.

a) Find the parametric equation of the line �̂, such that �̂ is the orthogonal pro-
jection of � onto Π.

[Answer:

�̂ :




x = −5t+ 4

y = −4t− 3

z = −t+ 7 for all t ∈ R. ]

b) Find the parametric equation of the line �∗, such that �∗ is the reflection of �
about Π.

[Answer:

�∗ :




x = 2t+ 4

y = −11t− 3

z = 7t+ 13 for all t ∈ R. ]

c) Find all points on �, for which the shortest distance between those points and
the plane Π is 3/

√
14.

[Answer: The points (
11

3
,−8

3
,
19

3
) and (

13

3
,−10

3
,
23

3
). ]

12. Consider the plane Π : 3x+4y−5z = 11 and the line � given in parametric form by

� :





x = t+ 4

y = −2t+ 1

z = −t+ 3 for all t ∈ R,

where � is parallel to Π. Find the line �̂, such that �̂ is the orthogonal projection of
� onto Π.
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[Answer:

�̂ :




x = t+
28

5

y = −2t− 1

5

z = −t+ 1 for all t ∈ R. ]

13. Consider the plane Π : 2x − y + 2z = −5 and the triangle �ABC with vertices
A : (1, 0, 1), B : (0, 1, 1) and C : (1, 1, 0).

a) Find the vertices of the triangle �AΠBΠCΠ, such that �AΠBΠCΠ is the or-
thogonal projection of �ABC onto Π.

[Answer: The vertices of the projected triangle�AΠBΠCΠ areAΠ : (−1, 1,−1),

BΠ : (−4

3
,
5

3
,−1

3
) and CΠ : (−1

3
,
5

3
,−4

3
). ]

b) Find the vertices of the triangle �A∗B∗C∗, such that �A∗B∗C∗ is the reflec-
tion of �ABC about Π.

[Answer: The vertices of the reflection triangle�A∗B∗C∗ areA∗ : (−3, 2,−3),

B∗ : (−8

3
,
7

3
,−5

3
) and C∗ : (−5

3
,
7

3
,−8

3
). ]

14. Show that the distance s between two parallel planes,

Π1 : ax+ by + cz = d1

Π2 : ax+ by + cz = d2,

is given by

s =
|d1 − d2|

‖n‖
,

where n = (a, b, c) is the normal vector for the planes (see Theoretical Remark 1.5).
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Chapter 2

Matrix algebra and Gauss
elimination

The aim of this chapter:

We introduce points in the Euclidean space Rn in terms of n-component vectors. Those
vectors can be represented in terms of column-matrices (or row-matrices). Any system of
linear equations can in fact be written in the form of a matrix equation, namely Ax = b,
which can subsequently be investigated using matrix properties. To achieve this, we
introduce addition and multiplication of matrices, the determinant of a square matrix
and the inverse of a square matrix (for those matrices that are invertible). For solving
systems of linear equations, we use the method of Gauss elimination and also introduce an
alternate method following Cramer’s rule, by which certain types of square linear systems
can be solved.

2.1 Matrix operations of addition and multiplication

We introduce vectors in the Euclidean space Rn and describe the basic vector operations.

Theoretical Remarks 2.1.

1. Vectors in Rn:

A vector u in the Euclidean space Rn is an n-tuple (u1, u2, . . . , un). We write

u = (u1, u2, . . . , un).

Here u1, u2, . . . , un are numbers (real or complex, although we consider only real
numbers in this book). Every n-tuple denotes a unique vector or point in Rn. We

69
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can represent u by an n× 1 column-matrix

u =




u1
u2
...
un


 ,

or we can represent u by an 1× n row-matrix

u = (u1 u2 . . . un).

Consider, furthermore, the vectors v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn).
We have the following

Properties:

• u+ v = (u1 + v1, u2 + u2, . . . , un + vn) = v + u

• (u+ v) +w = u+ (v +w)

• r u = (ru1, ru2, . . . , run) = u r for all r ∈ R.
• 0u = 0 = (0, 0, . . . , 0) called the zero-vector of Rn.

2. Matrix addition and multiplication with constants:

Consider the following m× n matrix

A =




a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · ·
...

am1 am2 · · · amn


 ,

where aij are numbers (real or complex, although we consider only real numbers in
this book).

Note: In some cases it is convenient to denote matrix A as follows:

A = [aij ] or A = [a1 a2 . . . an], where aj ∈ Rm.

Consider two matrices of size m× n, namely

A = [aij ] and B = [bij ].

We define addition and multiplications as follows:
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Addition of matrices:

A+B = [aij + bij ].

Multiplication with a constant:

rA = [raij ] = Ar for all r ∈ R

0A = [0 aij ] = 0mn, where 0mn denotes the m× n zero matrix.

We have the following

Properties:

Let A, B and C be matrices of size m×n and let r and s be any real numbers. Then

• A+B = B +A

• (A+B) + C = A+ (B + C)

• A+ 0mn = A

• r(A+B) = rA+ rB

• (r + s)A = rA+ sA

• r(sA) = (rs)A.
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3. Matrix-vector multiplication:

Consider the m× n matrix A, namely

A = [a1 a2 . . . an], aj ∈ Rm,

and consider the vector x ∈ Rn, namely

x =




x1
x2
...
xn


 .

The matrix-vector product Ax is a vector in Rm defined as follows:

Ax = x1a1 + x2a2 + · · ·+ xnan.

Let A be an m × n matrix, let u and v be two vectors in Rn and let r be any real
number. We have the following

Properties:

• A(u+ v) = Au+Av

• rA(u) = A(ru).

4. Matrix-matrix multiplication:

Let A be an m× n matrix and B be an n× p matrix, where

B = [b1 b2 · · · bp], bj ∈ Rn.

The matrix-matrix product AB is a matrix of size m× p defined as follows:

AB = [Ab1 Ab2 · · ·Abp].

For the properties listed below, we assume that the matrices A, B and C are of
the correct size, such that the listed properties do not contradict the above given
definitions. Let r be any real number. We have the following

Properties:

• A(BC) = (AB)C

• A(B + C) = AB +AC
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• (A+B)C = AC +BC

• r(AB) = (rA)B = A(rB).

The n× n identity matrix, denoted by In, is defined as follows:

In =




1 0 · · · 0
0 1 · · · 0
...

... · · ·
...

0 0 · · · 1


 = [e1 e2 · · · en],

where {e1, e2, · · · , en} is the standard basis for Rn, namely

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1).

Let A be an m× n matrix and let u ∈ Rn. Then

• AIn = A = ImA.

• Inu = u.

• Ipn = In for all p ∈ N.

Remark: Let A be an m× n matrix and B an n×m matrix. Then the product

AB = 0mm,

where 0mm denotes the m×m zero matrix, does not imply that A is a zero matrix
or that B is a zero matrix. For example,

(
1 1
1 1

)(
1 1

−1 −1

)
=

(
0 0
0 0

)
.

Problem 2.1.1.

Consider the following three matrices:

A =

(
a 2 1
1 0 a

)
, B =

(
2 a 0
0 1 2a2

)
, C =

(
1 1 1
1 1 1

)
,

where a is an unspecified real parameter. Find all values for a, such that

A+B = C.
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Solution 2.1.1.

We add matrices A and B and compare every entry of the resulting matrix with the
corresponding entries in matrix C:(

a+ 2 2 + a 1
1 1 a+ 2a2

)
=

(
1 1 1
1 1 1

)
.

We obtain

a+ 2 = 1, 2 + a = 1, a+ 2a2 = 1,

for which a = −1 is the only common solution.

Problem 2.1.2.

Consider the following two matrices:

A =

(
a b
1 2

)
, B =

(
1 2
1 0

)
,

where a and b are unspecified real parameters. Find all values for a and b, such that

AB = BA.

Solution 2.1.2.

We multiply the matrices A and B in the order AB:

AB =

(
a b
1 2

)(
1 2
1 0

)
=

(
a+ b 2a
3 2

)
.

For the multiplication BA, we obtain

BA =

(
1 2
1 0

)(
a b
1 2

)
=

(
a+ 2 b+ 4
a b

)
.

Comparing now every entry in AB with the corresponding entries in BA, we obtain

a+ b = a+ 2, 2a = b+ 4, a = 3, b = 2.

The above system of equations has the solution a = 3 and b = 2. Thus for the values
a = 2 and b = 3 in A, the matrices A and B commute, i.e. AB = BA, and for all other
values of a and b, the matrix multiplication does not commute, i.e. AB �= BA.

Problem 2.1.3.

Consider the matrix

A =

(
0 b
c 0

)
,

where b and c are unspecified real parameters. Find all values of b and c, such that

A2 = I2,

where I2 is the 2× 2 identity matrix.
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Solution 2.1.3.

We calculate A2:

A2 =

(
0 b
c 0

)(
0 b
c 0

)
=

(
bc 0
0 bc

)
.

The 2× 2 identity matrix I2 is

I2 =

(
1 0
0 1

)
.

Comparing each entry in A2 with the corresponding entries of I2, we obtain

bc = 1.

We conclude that the matrix

A =




0 b

1

b
0


 .

satisfies the relation A2 = I2 for all b ∈ R\{0}.

2.2 The determinant of square matrices

We introduce the determinant of square matrices and show how to compute those using
the cofactor expansion and elementary row operations.
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Theoretical Remarks 2.2.

1. The determinant of an n×n matrix A = [aij ], denoted by detA or |A|, is a number

that can be calculated by the cofactor expansion across the ith row,

detA = ai1Ci1 + ai2Ci2 + · · ·+ ainCin,

or, alternately, detA can be calculated by the cofactor expansion down the jth

column,

detA = a1jC1j + a2jC2j + · · ·+ anjCnj .

Here the number Cij is the (i, j)-cofactor of A, namely

Cij = (−1)i+j detAij ,

where Aij denotes the (n−1)× (n−1) matrix, obtained from matrix A by removing

the ith row and the jth column in A.

2. Two matrices A and B are said to be row equivalent (we write A ∼ B) if B can
be obtained from A by applying a finite number of elementary row operations on A.
The three elementary row operations are the following:

i. Replace one row by adding that row to the multiple of another row.

ii. Interchange two rows.

iii. Multiply all entries in a row by a nonzero constant k.

3. The calculations for the determinant of A can be simplified by applying elementary
row operations on A. The relation between the determinant of A and the determinant
of its row equivalent matrices, are as follows:

• If A ∼ B, where B was obtained by applying the elementary row operation (i)
on A, then detB = detA.

• If A ∼ B, where B was obtained by applying the elementary row operation (ii)
on A, then detB = − detA.

• If A ∼ B, where B was obtained by applying the elementary row operation (iii)
on A, then detB = k detA.

4. Let A and B be n× n matrices. Then we have the following

Properties:

• det(AB) = (detA)(detB)

• det(Am) = (detA)m for any m ∈ N.
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• detAT = detA.
Note: The transpose of any m× n matrix B is an n×m matrix BT , where
the columns in B are the rows in BT .

• det(cA) = cn detA for any number c.

• The determinant of a diagonal matrix is given by the product of all its diagonal
elements.

• The determinant of a lower triangular matrix or an upper triangular matrix is
given by the product of all its diagonal elements.
Note: A square matrix is said to be lower triangular if all the entries above
its diagonal enties are zero elements. Similarly, a square matrix is said to be
upper triangular if all the entries below its diagonal entries are zero elements.

• det In = 1, where In is the n× n identity matrix.

• det(A−1) =
1

det(A)
, where A−1 denotes the inverse of the matrix A.

Note: For details on the inverse of matrices and how to obtain the inverse, see
Theoretical Remark 2.3.

5. Consider three vectors, u, v and w, in R3. Then

• the area of the parallelogram described by u = (u1, u2, u3) and v = (v1, v2, v3)
is given by the norm of the cross product

‖u× v‖ = ‖ det




e1 e2 e3
u1 u2 u3
v1 v2 v3


 ‖;

• the volume of the parallelepiped described by u = (u1, u2, u3), v = (v1, v2, v3)
and w = (w1, w2, w3) is given by the triple product

|u · (v ×w)| = | det




u1 u2 u3
v1 v2 v3
w1 w2 w3


 |.

See Theoretical Remark 1.2 for details regarding the cross product and the
triple product for vectors in R3.

Problem 2.2.1.

Compute the determinant of the following matrices:

A =

(
1 4
2 3

)
, B =




1 −2 2
3 1 1

−1 −2 1


 , C =




1 −1 0 1
2 1 2 −1
3 0 1 2

−1 4 1 2


 .
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Solution 2.2.1.

Below we compute the determinant of the given matices by cofactor expansions across the
1st row.

detA =

∣∣∣∣
1 4
2 3

∣∣∣∣ = a11C11 + a12C12 = a11(−1)1+1 detA11 + a12(−1)1+2 detA12

= 3− 8 = −5.

detB =

∣∣∣∣∣∣
1 −2 2
3 1 1

−1 −2 1

∣∣∣∣∣∣
= 1

∣∣∣∣
1 1

−2 1

∣∣∣∣− (−2)

∣∣∣∣
3 1

−1 1

∣∣∣∣+ 2

∣∣∣∣
3 1

−1 −2

∣∣∣∣

= 1(1 + 2) + 2(3 + 1) + 2(−6 + 1) = 1.

detC =

∣∣∣∣∣∣∣∣

1 −1 0 1
2 1 2 −1
3 0 1 2

−1 4 1 2

∣∣∣∣∣∣∣∣
= 1

∣∣∣∣∣∣
1 2 −1
0 1 2
4 1 2

∣∣∣∣∣∣
− (−1)

∣∣∣∣∣∣
2 2 −1
3 1 2

−1 1 2

∣∣∣∣∣∣
− 1

∣∣∣∣∣∣
2 1 2
3 0 1

−1 4 2

∣∣∣∣∣∣

= 1

∣∣∣∣
1 2
1 2

∣∣∣∣− 2

∣∣∣∣
0 2
4 2

∣∣∣∣− 1

∣∣∣∣
0 1
4 1

∣∣∣∣+ 2

∣∣∣∣
1 2
1 2

∣∣∣∣− 2

∣∣∣∣
3 2

−1 2

∣∣∣∣− 1

∣∣∣∣
3 1

−1 1

∣∣∣∣

−
(
2

∣∣∣∣
0 1
4 1

∣∣∣∣− 1

∣∣∣∣
3 1

−1 1

∣∣∣∣ 2
∣∣∣∣

3 0
−1 4

∣∣∣∣
)

= −12

It is less tedious to compute the determinant by finding the row equivalent upper triangular
matrix. We now use this procedure and again compute detC:

detC =

∣∣∣∣∣∣∣∣

1 −1 0 1
0 3 2 −3
0 3 1 −1
0 3 1 3

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

1 −1 0 1
0 3 2 −3
0 0 −1 2
0 0 −1 6

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

1 −1 0 1
0 3 2 −3
0 0 −1 2
0 0 0 4

∣∣∣∣∣∣∣∣

= (1)(3)(−1)(4) = −12.

Problem 2.2.2.

Consider matrix C in problem a) and compute the following:

det(C4), (detC)4, det(3C), det(CT ).
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Solution 2.2.2.

det(C4) = (detC)4 = (−12)4 = 20736,

(detC)4 = (−12)4 = 20736,

det(3C) = 34 detC = (81)(−12) = −972,

det(CT ) = detC = −12

Problem 2.2.3.

Consider the matrix

A =




−2 1 2
−1 0 1
−2 1 2


 .

Find matrix Ap for all p ∈ N by calculating A2, A3, . . . .
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Solution 2.2.3.

We calculate A2 and A3:

A2 =




−1 0 1
0 0 0

−1 0 1


 and A3 =




0 0 0
0 0 0
0 0 0


 .

Hence

Ap =




0 0 0
0 0 0
0 0 0


 for all natural numbers p ≥ 3.

Problem 2.2.4.

Consider

X2 − 2X + I2 = 022, (2.2.1)

where X is a 2× 2 matrix, I2 is the 2× 2 identity matrix and 022 is the 2× 2 zero matrix .

a) Show that

X =

(
2 1/2

−2 0

)
.

is a solution of (2.2.1) and find another solution by factorizing the matrix equation
(2.2.1)

b) Show that detX = 1 for a solution X of (2.2.1), even in the case where X is an
n× n matrix.

c) Show that (2.2.1) admits in fact infinitely many solutions.

Solution 2.2.4.

a) We calculate

(
2 1/2

−2 0

)(
2 1/2

−2 0

)
− 2

(
2 1/2

−2 0

)
+

(
1 0
0 1

)

and obtain the zero matrix. The matrix equation (2.2.1) can be factorized as follows:

(X − I2)
2 = 022, so that X = I2 is another solution for (2.2.1). (2.2.2)

b) It should be clear that the factorization and solution given in (2.2.2) is true when X
is an n×n matrix for any n, so that X = In is a solution. Then detX = det In = 1.

Download free eBooks at bookboon.com



PROBLEMS, THEORY AND SOLUTIONS IN 
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE

81

Matrix algebra and Gauss elimination
2.3. THE INVERSE OF SQUARE MATRICES 81

c) We let

X − I2 =

(
a b
c d

)
and calculate

(
a b
c d

)(
a b
c d

)
=

(
0 0
0 0

)
.

This leads to the following four conditions:

a2 + bc = 0, b(a+ d) = 0, c(a+ d) = 0, cb+ d2 = 0. (2.2.3)

By subtracting the first equation from the fourth equation above, we obtain the
equivalent system

a2 + bc = 0, b(a+ d) = 0, c(a+ d) = 0, (a+ d)(a− d) = 0.

Investigating the two cases a+ d = 0 and a− d = 0 we come to the conclusion that
a+ d = 0 and a2 + bc = 0 is the only case that provides all solutions. Thus

X =

(
a b
c −a

)
+

(
1 0
0 1

)
=

(
a+ 1 b
c 1− a

)

for all a, b and c such that a2 + bc = 0. Moreover, detX = 1. The matrix equation

X2 − 2X + I2 = 022

has therefore infinitely many solutions.

2.3 The inverse of square matrices

In this section we introduce the inverse of a square matrix and show how to find this
inverse, for invertible square matrices. The determinant of the matrices plays a central
role in this discussion.

Theoretical Remarks 2.3.

Let A be an n× n matrix. The matrix A is said to be invertible if there exists another
n× n matrix A−1, called the inverse of A, such that

A−1A = AA−1 = In.

A square matrix that is not invertible is said to be singular.

We have the following statements:

1. Matrix A is invertible if and only if detA �= 0.
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2. Matrix A is invertible if and only if A is row equivalent to the n× n identity matrix
In. That is, A is invertible if and only if the reduced echelon form of [A In] is
[In A−1].

3. If matrix A is invertible, then

A−1 =
adj(A)

detA
,

where adj(A) denotes the adjugate of A, given by the matrix

adj(A) =




C11 C21 · · · Cn1

C12 C22 · · · Cn2
...

...
...
...

C1n C2n · · · Cnn


 .

Here Cij is the (i, j)-cofactor of A, namely

Cij = (−1)i+j detAij .

Let A and B be n× n invertible matrices. Then we have the following

Properties:

• (A−1)−1 = A

• (cA)−1 = c−1A−1 for nonzero numbers c.

• (AT )−1 = (A−1)T , where AT is the transpose of A.

• (AB)−1 = B−1A−1

• det(A−1) =
1

detA
.

Problem 2.3.1.

Consider three n×n matrices, namely A, B and C, where A and B are invertible matrices
such that the following matrix equation is satisfied:

A2B +A = AC.

Find A.
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Solution 2.3.1.

We multiply the given matrix equation

A2B +A = AC

by A−1 from the left, i.e.

A−1A2B +A−1A = A−1AC,

and obtain

AB + In = C.

We now multiply the previous matrix equation by B−1 from the right, i.e.

ABB−1 + InB
−1 = CB−1,

where InB
−1 = B−1 and ABB−1 = AIn = A. Thus

A = CB−1 −B−1.

Problem 2.3.2.

Let X, A and B be n× n matrices, where A and X are invertible matrices such that

BX−1 + 2A = BAX−1.

a) Find X.

b) Find X, such that

A =

(
1 2
3 2

)
, B =

(
1 2
4 3

)
.

Solution 2.3.2.

a) We multiply the given matrix equation

BX−1 + 2A = BAX−1

by X from the right to obtain

B + 2AX = BA or AX =
1

2
BA− 1

2
B.

We now multiply the provious matrix equation by A−1 from the left to obtain

X = A−1

(
1

2
BA− 1

2
B

)
or X =

1

2
A−1B (A− In) .
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b) For

A =

(
1 2
3 2

)
and B =

(
1 2
4 3

)

we have

A− I2 =

(
0 1
3 1

)
and A−1 =

(
−1/2 1/2
3/4 −1/4

)
.

Inserting this into the result that was obtained forX above, namelyX =
1

2
A−1B(A− I2),

we obtain

X =

(
3/4 1
9/8 1/4

)
.

Problem 2.3.3.

Calculate the inverse of the following matrix:

A =




1 −1 0 1
0 1 1 1

−1 0 1 0
−1 1 1 1


 .
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.

Inserting this into the result that was obtained forX above, namelyX =
1

2
A−1B(A− I2),

we obtain

X =

(
3/4 1
9/8 1/4

)
.

Problem 2.3.3.

Calculate the inverse of the following matrix:

A =




1 −1 0 1
0 1 1 1

−1 0 1 0
−1 1 1 1


 .
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Solution 2.3.3.

To gain the inverse of matrix A, we find the reduced echelon form of [A I4]. We obatin

[A I4] =




1 −1 0 1 | 1 0 0 0
0 1 1 1 | 0 1 0 0

−1 0 1 0 | 0 0 1 0
−1 1 1 1 | 0 0 0 1




∼




1 −1 0 1 | 1 0 0 0
0 1 1 1 | 0 1 0 0
0 −1 1 1 | 1 0 1 0
0 0 1 2 | 1 0 0 1




∼




1 −1 0 1 | 1 0 0 0
0 1 1 1 | 0 1 0 0
0 0 1 2 | 1 0 0 1
0 0 2 2 | 1 1 1 0




∼




1 −1 0 1 | 1 0 0 0
0 1 1 1 | 0 1 0 0
0 0 1 2 | 1 0 0 1
0 0 0 1 | 1/2 −1/2 −1/2 1




∼




1 −1 0 0 | 1/2 1/2 1/2 −1
0 1 1 0 | −1/2 3/2 1/2 −1
0 0 1 0 | 0 1 1 −1
0 0 0 1 | 1/2 −1/2 −1/2 1




∼




1 −1 0 0 | 1/2 1/2 1/2 −1
0 1 0 0 | −1/2 1/2 −1/2 0
0 0 1 0 | 0 1 1 −1
0 0 0 1 | 1/2 −1/2 −1/2 1




∼




1 0 0 0 | 0 1 0 −1
0 1 0 0 | −1/2 1/2 −1/2 0
0 0 1 0 | 0 1 1 −1
0 0 0 1 | 1/2 −1/2 −1/2 1


 .

We conclude that the inverse of A is

A−1 =




0 1 0 −1
−1/2 1/2 −1/2 0
0 1 1 −1
1/2 −1/2 −1/2 1


 .
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Problem 2.3.4.

Find all real values of k such that the given matrix A is invertible and calculate then the
inverse of the matrix for one of those values of k:

A =




k 1 2
2 1 k
k 0 1


 .

Solution 2.3.4.

First we find all real values of k for which A is singular. That is, we find k such that

detA = 0, where

∣∣∣∣∣∣
k 1 2
2 1 k
k 0 1

∣∣∣∣∣∣
= k2 − k − 2 so that (k + 1)(k − 2) = 0.

Hence A is singular for k = −1 or k = 2, and therefore A is invertible for all k ∈ R\{−1, 2}.
We choose the value k = 0 and calculate the inverse of A:

[A I3] =




0 1 2 | 1 0 0
2 1 0 | 0 1 0
0 0 1 | 0 0 1


 ∼




1 1/2 0 | 0 1/2 0
0 1 2 | 1 0 0
0 0 1 | 0 0 1




∼




1 0 0 | −1/2 1/2 1
0 1 0 | 1 0 −2
0 0 1 | 0 0 1


 .

The inverse of A is thus

A−1 =




−1/2 1/2 1
1 0 −2
0 0 1


 .

2.4 Gauss elimination for systems of linear equations

In this section we describe the method of Gauss elimination to solve systems of linear
equations. We prove that any consistent linear system admits either a unique solution or
it admits infinitely many solutions (see Problem 2.4 c below)

Theoretical Remarks 2.4.

A system of m linear equations in n unknown variables x1, x2, . . . , xn can be written
in the form of a matrix equation

Ax = b, (2.4.1)
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where A is a given m× n matrix, called the coefficient matrix of the system, b is a given
vector in Rm and

x =




x1
x2
...

xn


 ∈ Rn.

1. The matrix equation (2.4.1) is said to be consistent, if there exists at least one
solution x ∈ Rn which satisfies (2.4.1). The matrix equation (2.4.1) is said to be
inconsistent (or incompatible), if there exists no x ∈ Rn that satisfies (2.4.1).

2. Any consistent matrix equation of the form (2.4.1) admits either a unique solution
x ∈ Rn, or it admits infinitely many solutions x ∈ Rn.

3. All solutions x ∈ Rn of (2.4.1) can be obtained by the so-called Gauss elimination
method, which can be described by the following four steps:

Step I. Write down the augmented matrix [A b] of (2.4.1).

Step II. Apply elementary row operations on [A b] to convert [A b] into row equiv-
alent matrices.

Step III. Apply Step II until [A b] is in its unique reduced echelon form, which we
denote by [B c]. The matrix equation

Bx = c, c ∈ Rm (2.4.2)

is then the simplest form of the original system Ax = b. System (2.4.2) has
the same solutions as system (2.4.1).

Step IV. Solve equation (2.4.2). The columns in matrix B with the leading 1’s are the so-
called pivot columns of matrix A. Every column j in the coefficient matrix
that is not a pivot column implies that xj is an arbitrary parameter in the
solution x = (x1, x2, . . . , xj , . . . , xn) of (2.4.1). If the last column in the matrix
[B c] is a pivot column, then system (2.4.1) is inconsistent.

Problem 2.4.1.

Find all solutions x ∈ R5 of the system of linear equations given by the matrix equation
Ax = b, where

A =




0 1 2 −1 0
1 0 −1 0 3
2 0 1 3 9


 , b =




1
−4
−5


 .
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Solution 2.4.1.

The augmented matrix [A b] of the given system is

[A b] =




0 1 2 −1 0 1
1 0 −1 0 3 −4
2 0 1 3 9 −5


 .

Applying elementary row operations, we bring [A b] in its unique reduced echelon form:

[A b] ∼




1 0 −1 0 3 −4
0 1 2 −1 0 1
2 0 1 3 9 −5




∼




1 0 −1 0 3 −4
0 1 2 −1 0 1
0 0 3 3 3 3




∼




1 0 −1 0 3 −4
0 1 2 −1 0 1
0 0 1 1 1 1




∼




1 −3 0 10 10 0
0 1 0 −3 −2 −1
0 0 1 1 1 1




∼




1 0 0 1 4 −3
0 1 0 −3 −2 −1
0 0 1 1 1 1


 .

For x = (x1, x2, x3, x4, x5) the simplified, but equivalent, linear system then takes the form

x1 + x4 + 4x5 = −3

x2 − 3x4 − 2x5 = −1

x3 + x4 + x5 = 1.

From the above reduced echelon form of [A b], we conclude that the 4th and 5th columns
in the coefficient matrix A are not pivot columns. It therefore follows that x4 and x5 are
free parameters in the solutions. We let say x4 = t and x5 = s, so that

x1 = −t− 4s− 3, x2 = 3t+ 2s− 1, x3 = −t− s+ 1.

All the solutions of the given linear system Ax = b are

x =




−t− 4s− 3
3t+ 2s− 1
−t− s+ 1

t
s




for all t ∈ R and all s ∈ R.
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The solutions can also be presented in the following form:

x = t




−1
3

−1
1
0




+ s




−4
2

−1
0
1




+




−3
−1
1
0
0




for all t ∈ R and all s ∈ R.

Problem 2.4.2.

Consider the system of linear equations Ax = b with

A =




1 2 k 2
3 k 18 6
1 1 6 2


 , b =




1
5
1


 ,

where k is an unspecified real parameter.

a) Find all values of k, such that the given system is consistent and give then all
solutions of this consistent system.

b) Do there exist values of k, such that the given system has a unique solution?
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Solution 2.4.2.

a) The augmented matrix for the given system is

[A b] =




1 2 k 2 1
3 k 18 6 5
1 1 6 2 1




Performing elementary row operations on this augmented matrix, we obtain the
following row equivalent matrices for [A b]:

[A b] ∼




1 2 k 2 1
0 k − 6 −3(k − 6) 0 2
0 1 k − 6 0 0




∼




1 2 k 2 1
0 1 (k − 6) 0 0
0 k − 6 −3(k − 6) 0 2




∼




1 2 k 2 1
0 1 (k − 6) 0 0
0 0 −(k − 6)(k − 3) 0 2


 .

From the last echelon form of [A b] above, it is clear that the given system Ax = b
is consistent for all k ∈ R\{3, 6}. Therefore, the system is inconsistent if and only
if k = 3 or k = 6. We now solve the system for those values of k for which it
is consistent. From the last echelon form above, we have the following simplified
system of equations for Ax = b with x = (x1, x2, x3, x4):

x1 + 2x2 + kx3 + 2x4 = 1

x2 + (k − 6)x3 = 0

−(k − 6)(k − 3)x3 = 2.

Since the 4th column of A is not a pivot column, we know that x4 can be chosen as
a free parameter, say x4 = t. We obtain

x1 =
2(12− k)

(k − 6)(k − 3)
− 2t+ 1, x2 =

2

k − 3
, x3 = − 2

(k − 6)(k − 3)
,

so that the solutions of the given system are

x = t




−2
0
0
1


+

1

(k − 6)(k − 3)




k2 − 11k + 42
2(k − 6)

−2
0


 for all t ∈ R and all k ∈ R\{3, 6}.

Download free eBooks at bookboon.com



PROBLEMS, THEORY AND SOLUTIONS IN 
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE

91

Matrix algebra and Gauss elimination
2.5. SQUARE SYSTEMS OF LINEAR EQUATIONS 91

b) It is clear from the last echelon form of [A b] given in part a) above, that the 4th

column of A is not a pivot column, and this is always the case for any choice of k.
Thus the given system Ax = b cannot have a unique solution, for any choice of k.

Problem 2.4.3.

Prove that any consistent system, Ax = b with A an m × n matrix and b ∈ Rm, will
either admit exactly one solution or infinitely many solutions x ∈ Rn.

Solution 2.4.3.

Assume that x1 ∈ Rn and x2 ∈ Rn are two distinct solutions for Ax = b. That is,

Ax1 = b, Ax2 = b.

Let x0 denote the difference between x1 and x2, i.e.

x0 = x1 − x2 �= 0.

Consider Ax0: we obtain

Ax0 = A(x1 − x2) = Ax1 −Ax2 = b− b = 0

and we conclude that x0 is a solution of the homogeneous equation Ax = 0.
Consider now A(x1 + kx0), where k is any real number: we obtain

A(x1 + kx0) = Ax1 +Akx0 = Ax1 + kAx0 = b+ k 0 = b

for any choice of k. We conclude that x1+kx0 gives infinitely many solutions for Ax = b;
one solution for every choice of k ∈ R. Therefore, if any system of the form Ax = b admits
more than one solution, then this system will always admit infnitely many solutions.

2.5 Square systems of linear equations

A square systems of linear equations is a linear system of equations that contains as many
equations as unkown variables. For square systems of linear equations the determinant
of the coefficient matrix plays a central role for the solutions of the systems. We discuss
Cramer’s rule, by which certain square systems of linear equations can be solved in terms
of determinants.

Theoretical Remarks 2.5.

Consider the square system of linear equations

Ax = b, (2.5.1)

where A is an n× n matrix and b ∈ Rn.
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1. System (2.5.1) can be solved by the use of the Gauss elimination method. See
Theoretical Remark 2.4 for a detailed description of this method.

2. System (2.5.1) admits a unique solution x ∈ Rn for every b ∈ Rn if and only if A is
invertible. The unique solution of (2.5.1) is then

x = A−1b.

3. System (2.5.1) admits a unique solution if and only if detA �= 0. Therefore, if
detA = 0 then system (2.5.1) may admit infinitely many solutions or the system
may be inconsistent.

4. If system (2.5.1) is consistent, then its unique solution can be calculated by the use
of Cramer’s rule, which states the following:

Cramer’s rule:
If detA �= 0 then the unique solution x = (x1, x2, . . . xn) of (2.5.1) is given by the
formula

xj =
detAj(b)

detA
, j = 1, 2, . . . , n,

where Aj(b) is the matrix that has been obtained from matrix A by replacing the

jth column in A by the vector b. In the case where detA = 0, Cramer’s rule states
the following:
If detA = 0 and detAj(b) �= 0 for at least one j, then the system (2.5.1) is incon-
sistent. If detA = 0 and detAj(b) = 0 for every j = 1, 2, . . . , n, then the system
(2.5.1) admits infinitely many solutions.

Problem 2.5.1.

Consider the square system of linear equations Ax = b with

A =




k 1 2
2 1 k
k 0 1


 , b =




1
−7
3


 , x =




x1
x2
x3


 ,

where k is an unspecified real parameter.

a) Find all values of k, such that the given system has a unique solution. For which
values of k is the matrix A invertible?

b) Find all values of k, such that the given system admits infinitely many solutions and
give all values of k for which the system is inconsistent.
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Solution 2.5.1.

a) We recall that a linear square system Ax = b has a unique solution if and only if
detA �= 0 and then A is invertible. Calculating the determinant for A, we obtain

detA =

∣∣∣∣∣∣
k 1 2
2 1 k
k 0 1

∣∣∣∣∣∣
= (k + 1)(k − 2).

Thus the linear system has a unique solution for all k ∈ R\{−1, 2} and this unique
solution is

x = A−1b

for all k ∈ R\{−1, 2}.
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b) To find the values of k for which the linear system Ax = b might admit infinitely
many solutions, we have to investigate the two cases k = −1 and k = 2, since the
determinant of A is zero for those two values of k.

For k = −1, the augmented matrix of the system is




−1 1 2 1
2 1 −1 −7

−1 0 1 3


 ∼




1 −1 −2 −1
0 1 1 −2
0 0 0 1


 .

By the third row of the previous matrix it is clear that the system is inconsistent in
this case, i.e. for k = −1.

For k = 2, the augmented matrix of the system is




2 1 2 1
2 1 2 −7
2 0 1 3


 ∼




2 1 2 1
0 0 0 8
0 −1 −1 2


 .

By the second row of the previous matrix it is clear that the system is also inconsis-
tent in this case (k = 2).

We recall that the given system has a unique solution for all k ∈ R\{−1, 2} and
that the system is inconsistent for k = −1 as well as for k = 2. Therefore there exist
no real value of k for which the system may admit infinitely many solutions.

Problem 2.5.2.

Consider the following linear system:



1 k 1
k 1 1

−3 0 −1







x1
x2
x3


 =




k
2

−2


 ,

where k is an unspecified real parameter.

a) Find all values of k, such that the given linear system admits a unique solution and
find then this solution by the use of Cramer’s rule.

b) Find all values of k, such that the given linear system is inconsistent and all values
of k for which it admits infinitely many solutions. Find all solutions.
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Solution 2.5.2.

a) We are given the system Ax = b, where

A =




1 k 1
k 1 1

−3 0 −1


 and b =




k
2

−2


 .

The determinant of A is

detA = k2 − 3k + 2 = (k − 1)(k − 2)

so that A is invertible if and only if k ∈ R\{1, 2}. The system has therefore a unique
solution for all real k, except for k = 1 or k = 2. To find this unique solution we use
Cramer’s rule and calculate

xj =
detAj(b)

detA
, j = 1, 2, 3.

We obtain

detA1(b) =

∣∣∣∣∣∣
k k 1
2 1 1

−2 0 −1

∣∣∣∣∣∣
= 2− k

detA2(b) =

∣∣∣∣∣∣
1 k 1
k 2 1

−3 −2 −1

∣∣∣∣∣∣
= (k − 2)(k − 3)

detA3(b) =

∣∣∣∣∣∣
1 k k
k 1 2

−3 0 −2

∣∣∣∣∣∣
= 2k2 − 3k − 2 = (2k + 1)(k − 2).

Thus the unique solution of the given system is x = (x1, x2, x3), where

x1 = − 1

k − 1
, x2 =

k − 3

k − 1
, x3 =

2k2 − 3k − 2

(k − 1)(k − 2)
=

(2k + 1)(k − 2)

(k − 1)(k − 2)
=

2k + 1

k − 1
.

Here k is any real number, except k = 1 or k = 2. For k = 2, we note that

detA = 0 and det Aj(b) = 0 for j = 1, 2, 3.

Therefore, by Cramer’s rule, the system admits infinitely many solutions for k = 2.
For k = 1, we have

detA = 0 and det Aj(b) �= 0 for j = 1, 2, 3.

Therefore, by Cramer’s rule, the system is inconsistent for k = 1.
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b) The augmented matrix for the given system is

[A b] =




1 k 1 k
k 1 1 2

−3 0 −1 −2


 .

We multiply the first row by −1 and add this to the second row, to obtain the row
equivalent matrix




1 k 1 k
k − 1 1− k 0 2− k
−3 0 −1 −2


 ,

from which it is clear that the system is inconsisent if and only if k = 1. For k = 2
the above augmented matrix has the following reduced echelon form:




1 0 1/3 2/3
0 1 1/3 2/3
0 0 0 0


 .

The 3rd column is not a pivot column and we can therefore choose x3 arbitrary. We
let x3 = t. Hence the solutions of the given system for k = 2 are

x = − t

3




1
1

−3


+

1

3




2
2
0


 for all t ∈ R.

Problem 2.5.3.

Consider the following 4× 4 matrix:

A =




1 1 0 k
2k 1 1 0
0 0 −1 1
1 1 1 −2


 ,

where k is an unspecified real parameter.

a) Consider the homogeneous linear system

Ax = 0,

where x ∈ R4. Find all values of k, such that this system admits only the trivial
(zero) solution, as well as all values of k for which the system admits infinitely many
solutions.
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b) Consider the non-homogeneous linear system

Ax = b, b =




1
0
1
0


 .

Find all values of k, such that this system admits infinitely many solutions x ∈ R4

and give all those solutions. Find also all values of k for which the system admits a
unique solution, as well as all k for which the system is inconsistent.
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Solution 2.5.3.

a) We recall that the square system Ax = 0 admits only the zero solution, x = 0, if and
only if A is an invertible matrix. Moreover, A is invertible if and only if detA �= 0.
We therefore calculate the determinant of A:

detA =

∣∣∣∣∣∣∣∣

1 1 0 k
2k 1 1 0
0 0 −1 1
1 1 1 −2

∣∣∣∣∣∣∣∣

= 1

∣∣∣∣∣∣
1 1 0
0 −1 1
1 1 −2

∣∣∣∣∣∣
−

∣∣∣∣∣∣
2k 1 0
0 −1 1
1 1 −2

∣∣∣∣∣∣
− k

∣∣∣∣∣∣
2k 1 1
0 0 −1
1 1 1

∣∣∣∣∣∣

= −2k2 − k + 1

= −(k + 1)(2k − 1).

From the above we conclude that Ax = 0 admits only the zero solution for all
k ∈ R\{−1, 1/2} and that the system admits infinitely many solutions for k = −1
as well as for k = 1/2.

b) Since A is invertible for all k ∈ R\{−1, 1/2}, the system has a unique solution for
all those values of k and the unique solution of the system is

x = A−1b.

Since detA = 0 for k = −1 and for k = 1/2, we need to investigate the given system
Ax = b for those two values of k. We let

x =




x1
x2
x3
x4


 .

For k = −1 the augmented matrix and its reduced echelon form are as follows:




1 1 0 −1 1
−2 1 1 0 0
0 0 −1 1 1
1 1 1 −2 0


 ∼




1 0 0 −2/3 0
0 1 0 −1/3 1
0 0 1 −1 −1
0 0 0 0 0


 .

Since the 4th column of the augmented matrix is not pivot, we set x4 = t, where t
is an arbitrary parameter. Then the solutions are

x =
t

3




2
1
3
3


+




0
1

−1
0


 for all t ∈ R.
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For k = 1/2 the augmented matrix and its reduced echelon form are as follows:




1 1 0 1/2 1
1 1 1 0 0
0 0 −1 1 1
1 1 1 −2 0


 ∼




1 1 0 0 1
0 0 1 0 −1
0 0 0 1 0
0 0 0 0 0


 .

Since the 2nd column of the augmented matrix is not pivot, we set x2 = t, where t
is an arbitrary parameter. Then the solutions are

x = t




−1
1
0
0


+




1
0

−1
0


 for all t ∈ R.

We conclude that the system has infinitely many solutions for both k = 1 and for
k = 1/2 and it has a unique solution for all other values of k, so that there exist no
values of k for which the system is inconsistent.

2.6 Systems of linear equations in R3

In this section we study systems of linear equations that contain at most three variables.
Geometrically these equations are planes in R3, as discussed in Chapter 1. We make
use of the method of Gauss elimination, the determinant of a square matrix, and our
knowldge of planes that we have gained in Chapter 1, in order to solve such systems and
to interpret their solutions geometrically in R3.

Theoretical Remarks 2.6.

The general equation of a plane in R3 is

ax+ by + cz = d, (2.6.1)

where a, b, c and d are given real numbers. All points (x, y, z) in R3 which lie on this
plane must satisfy equation (2.6.1). Consider now m planes in R3 given, respectively, by
the following system of m equations:

a11x+ a12y + a13z = d1

a21x+ a22y + a23z = d2
...

am1x+ am2y + am3z = dm.

This system of equations can conveniently be written in the form of a matrix equation

Ax = d, (2.6.2)
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where

A =




a11 a12 a13
a21 a22 a23
...

...
...

am1 am2 am3


 , d =




d1
d2
...
dm


 , x =




x
y
z


 .

1. Given a finite number of planes in R3, there exist only four possibilities regarding
their common intersection, namely

a) the planes all intersect in a common point;

b) the planes all intersect along a common line;

c) the planes do not all intersect in a common point or along a common line;

d) the planes all coincide.

Remark: If we are given only two planes (m = 2), then case a) is not possible.

2. Corresponding to the above four possibilities for the intersection of m planes, we
have the following possibilities for the solutions x ∈ R3 of system (2.6.2):

a) if the planes all intersect in a common point, then system (2.6.2) has a unique
solution;

b) if the planes all intersect along a common line, then system (2.6.2) admits
infinitely many solutions with one free parameter;

c) if the planes do not all intersect in a common point or along a common line,
then the system is inconsistent and has no solutions;

d) if the planes all coincide, then the system has infinitely many solutions with
two free parameters.

Remark: If we are given only two planes, then system (2.6.2) with m = 2 has
either no solutions (no intersection), infinitely many solutions with one free
parameter (intersection along a line), or infinitely many solutions with two free
parameters (the two planes coincide).

Problem 2.6.1.

Consider the following three planes in R3:

x− 4y + 7z = 1

3y − 5z = 0

−2x+ 5y − 9z = k,

where k is an unspecified real parameter. Find all values of k, such that the given three
planes intersect along a common line � and give � in parameteric form. Does there exist
values of k for which the three planes intersect in a common point? Explain.
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Solution 2.6.1.

a) We first write the given equations,

x− 4y + 7z = 1

3y − 5z = 0

−2x+ 5y − 9z = k

as a matrix equation, namely

Ax = b, where A =




1 −4 7
0 3 −5

−2 5 −9


 , x =




x
y
z


 , b =




1
0
k


 .

The augmented matrix is

[A b] =




1 −4 7 1
0 3 −5 0

−2 5 −9 k


 ∼




1 −4 7 1
0 3 −5 0
0 −3 5 k + 2


 ∼




1 0 1/3 1
0 1 −5/3 0
0 0 0 k + 2


 .

From the above reduced echelon form of [A b], we conclude that the system Ax = b is
consistent if and only if k = −2 and for this value of k the system admits infinitely many
solutions. Choosing z = t as an arbitrary parameter, these solutions are

x = −1

3
t+ 1, y =

5

3
t, z = t for all t ∈ R.

Thus for all k ∈ R\{−2} the three planes intersect along a common line �, namely

� :




x = −1

3
t+ 1

y =
5

3
t

z = t for all t ∈ R.

Figure 2.1 depicts the intersection of the three planes along the line � for k = −2.

Figure 2.1: Intersection of the planes in Problem 2.6 a) along the line � for k = −2.
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For all values k ∈ R\{−2}, the system is inconsistent. Figure 2.2 depicts the three planes
for the case k = 6 and we see that the planes do not intersect along a common line or in
a common point.

Figure 2.2: No common intersection of the planes in Problem 2.6 a) for k = 6.

We conclude that there exists no value of k for which the system admits a unique solution.
In other words, there exists no vlaues of k for which the three planes intersect in a common
point.

102 CHAPTER 2. MATRIX ALGEBRA AND GAUSS ELIMINATION

For all values k ∈ R\{−2}, the system is inconsistent. Figure 2.2 depicts the three planes
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We conclude that there exists no value of k for which the system admits a unique solution.
In other words, there exists no vlaues of k for which the three planes intersect in a common
point.
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Problem 2.6.2.

Consider the following four planes in R3:

x+ y = 2

y + z = 2

x+ z = 2

ax+ by + cz = 0,

where a, b and c are unspecified real parameters.

a) Find the condition on the parameters a, b and c, such that all four planes intersect
in a common point and determine this point under your condition.

b) Find the condition on the parameters a, b and c, such that the given system of four
equations is inconsistent. Give the geometrical interpretation of this case in terms
of the intersection of the planes.

c) Does there exist any values of the parameters a, b and c for which the four given
planes intersect along a common line? Explain.

Solution 2.6.2.

a) We first write the given equations,

x+ y = 2

y + z = 2

x+ z = 2

ax+ by + cz = 0,

in the form of a matrix equation, namely

Ax = b, where A =




1 1 0
0 1 1
1 0 1
a b c


 , x =




x
y
z


 , b =




2
2
2
0


 .

The augmented matrix is

[A b] =




1 1 0 2
0 1 1 2
1 0 1 2
a b c 0


 .
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To write this augmented matrix in its reduced echelon form, it is convenient to con-
centrate first of all on the first three rows in [A b] and then deal with the parameters
in row four. We obtain




1 1 0 2
0 1 1 2
1 0 1 2
a b c 0


 ∼




1 0 0 1
0 1 0 1
0 0 1 1
a b c 0


 ∼




1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 a+ b+ c


 .

From the fourth row of the previous matrix we conclude that the system Ax = b is
consistent if and only if the following condition is satisfied:

a+ b+ c = 0

and, under this condition, the unique solution of the system is

x = 1, y = 1, z = 1.

Thus the common point of intersection of the four given planes is (1, 1, 1) for all
values of a, b and c, such that a+ b+ c = 0.

b) The given system Ax = b, as described above, is inconsistent for all values of a, b
and c, such that

a+ b+ c �= 0.

This means that, for all those values of a, b and c, the four planes will not intersect
in a common point or along a common line.

c) As already concluded above, the system admits a unique solution for all those values
of a, b and c which satisfy the condition a+ b+ c = 0 and the system is inconsistent
for all other values of a, b and c. Thus there exist no values of a, b and c which allow
infinitely many solutions for the system, so that there exist no values for which the
four planes can intersect along a common line.

Problem 2.6.3.

Consider the following four planes in R3 :

Π1 : 2x+ 4y + 2z = 12s

Π2 : 2x+ 12y + 7z = 12s+ 7

Π3 : x+ 10y + 6z = 7s+ 8

Π4 : x+ 2y + 3z = −1,

where s is an unspecified real parameter.
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a) Find all the values of s, such that the first three planes, Π1, Π2 and Π3, intersect
along a common line and present this line of intersection in parametric form.

b) Find the common point of intersection of all four planes, Π1, Π2, Π3 and Π4, if such
a point exists.
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Solution 2.6.3.

a) The planes Π1, Π2 and Π3 can be written in the form Ax = b, where

A =




2 4 2
2 12 7
1 10 6


 , b =




12s
12s+ 7
7s+ 8


 , x =




x
y
z


 .

We now write the augmented matrix [A b] in its reduced echelon form:

[A b] =




2 4 2 12s
2 12 7 12s+ 7
1 10 6 7s+ 8


 ∼




1 0 −1/4 (24s− 7)/4
0 1 5/8 7/8
0 0 0 s+ 1


 .

We conclude that this system is consistent if and only if s = −1. Then the system
reduces to

y +
5

8
z =

7

8
, x− 1

4
z = −31

4
.

Clearly z is an arbitrary parameter, so we let z = t. The solution is then

x =
1

4
t− 31

4
, y = −5

8
t+

7

8
, z = t for all t ∈ R,

so that the parametric equation for the line �, that describes the intersection of the
planes Π1, Π2 and Π3 for s = −1, is

� :




x =
1

4
t− 31

4

y = −5

8
t+

7

8

z = t for all t ∈ R.

Note that the planes Π1, Π2 and Π3 only intersect along this common line � if
s = −1. For all other values of s, namely s ∈ R\{−1}, the planes do not intersect
along a common line.

b) To find the intersection of Π4 with the line � obtained in part a) above, we need to
find the value of t such that Π4 : x+ 2y + 3z = −1 is satisfied. That is

−31

4
+

1

4
t+ 2

(
7

8
− 5

8
t

)
+ 3t = −1,

which gives t =
5

2
. The point of the intersection of Π1, Π2, Π3 and Π4 is then

(x1, y1, z1), where

x1 =
1

4

(
5

2

)
− 31

4
= −57

8
, y1 = −5

8

(
5

2

)
+

7

8
= −11

16
, z1 =

5

2
.
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In Figure 2.3 we depict the intersection of the four planes in the point (−57

8
, −11

16
,
5

2
).

Figure 2.3: The intersection of the four planes in Problem 2.6 c) for s = −1.

Problem 2.6.4.

Consider the following six planes which describe a parallelepiped at their intersections
(see Figure 2.4):

Π1 : x+ y − 4z = −10

Π2 : x+ y − 4z = −6

Π3 : y − 2z = −2

Π4 : y − 2z = −3

Π5 : x− 3y + 8z = 18

Π6 : x− 3y + 8z = 14.
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Figure 2.4: Six planes that describe a parallelepiped at their intersections.

Find the vertices, the volume and the midpoint of the parallelepiped.
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Solution 2.6.4.

The equations of the planes Πj and their corresponding normal vectors nj (j = 1, 2, . . . , 6)
that describe the six faces of the parallelepiped in Figure 2.5, are as follows:

Π1 : x+ y − 4z = −10, n1 = (1, 1,−4)

Π2 : x+ y − 4z = −6 n2 = (1, 1,−4)

Π3 : y − 2z = −2, n3 = (0, 1,−2)

Π4 : y − 2z = −3 n4 = (0, 1,−2)

Π5 : x− 3y + 8z = 18, n5 = (1,−3, 8)

Π6 : x− 3y + 8z = 14, n6 = (1,−3, 8).

Figure 2.5: The parallelepiped enclosed by the six planes Π1, Π2, Π3, Π4, Π5 and Π6.

The coordinates of the vertice P1 : (x1, y1, z1) is given by the intersection of planes Π1,
Π4 and Π6 (see Figure 2.5). We write

P1 : Π1 ∩Π4 ∩Π6.

This is obtained by the unique solution of the linear system

A1x1 = b1,

where

A1 =




1 1 −4
0 1 −2
1 −3 8


 , b1 =




−10
−3
14


 .
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We note that detA1 = 4, which ensures the existence of a unique solution for the above
linear system, namely the solution x1 = A−1

1 b1. We obtain

x1 =




−1
3
3


 .

The coordinates of the vertice P2 : (x2, y2, z2) is given by the following intersecting planes
(see Figure 2.5):

P2 : Π1 ∩Π4 ∩Π5.

This is obtained by the unique solution of the linear system

A2x2 = b2,

where

A2 =




1 1 −4
0 1 −2
1 −3 8


 , b2 =




−10
−3
18


 .

Now detA2 = 4, which again ensures the existence of a unique solution for this linear
system. We obtain

x2 =




1
5
4


 .

The coordinates of the vertice P3 : (x3, y3, z3) is given by the following intersecting planes
(see Figure 2.5):

P3 : Π1 ∩Π3 ∩Π5.

This is obtained by the unique solution of the linear system

A3x3 = b3,

where

A3 =




1 1 −4
0 1 −2
1 −3 8


 , b3 =




−10
−2
18


 .

Now detA3 = 4, which again ensures the existence of a unique solution for this linear
system. We obtain

x3 =




2
8
5


 .

The coordinates of the vertice P4 : (x4, y4, z4) is given by the following intersecting planes
(see Figure 2.5):

P4 : Π1 ∩Π3 ∩Π6.
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This is obtained by the unique solution of the linear system

A4x4 = b4,

where

A4 =




1 1 −4
0 1 −2
1 −3 8


 , b4 =




−10
−2
14


 .

Now detA4 = 4, which again ensures the existence of a unique solution for this linear
system. We obtain

x4 =




0
6
4


 .

The coordinates of the vertice P5 : (x5, y5, z5) is given by the following intersecting planes
(see Figure 2.5):

P5 : Π2 ∩Π4 ∩Π6.

This is obtained by the unique solution of the linear system

A5x5 = b5,

where

A5 =




1 1 −4
0 1 −2
1 −3 8


 , b5 =




−6
−3
14


 .

Now detA5 = 4, which again ensures the existence of a unique solution for this linear
system. We obtain

x5 =




1
1
2


 .

The coordinates of the vertice P6 : (x6, y6, z6) is given by the following intersecting planes
(see Figure 2.5):

P6 : Π2 ∩Π4 ∩Π5.

This is obtained by the unique solution of the linear system

A6x6 = b6,

where

A6 =




1 1 −4
0 1 −2
1 −3 8


 , b6 =




−6
−3
18


 .
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Now detA6 = 4, which again ensures the existence of a unique solution for this linear
system. We obtain

x6 =




3
3
3


 .

The coordinates of the vertice P7 : (x7, y7, z7) is given by the following intersecting planes
(see Figure 2.5):

P7 : Π2 ∩Π3 ∩Π5.

This is obtained by the unique solution of the linear system

A7x7 = b7,

where

A7 =




1 1 −4
0 1 −2
1 −3 8


 , b7 =




−6
−2
18


 .

Now detA7 = 4, which again ensures the existence of a unique solution for this linear
system. We obtain

x7 =




4
6
4


 .

The coordinates of the vertice P8 : (x8, y8, z8) is given by the following intersecting planes
(see Figure 2.5):

P8 : Π2 ∩Π3 ∩Π6.

This is obtained by the unique solution of the linear system

A8x8 = b8,

where

A8 =




1 1 −4
0 1 −2
1 −3 8


 , b8 =




−6
−2
14


 .

Now detA8 = 4, which again ensures the existence of a unique solution for this linear
system. We obtain

x8 =




2
4
3


 .

We sum up: the coordinates of the vertices of the parallelepiped are as follows (see
Figure 2.5):

P1 : (−1, 3, 3) P2 : (1, 5, 4), P3 : (2, 8, 5), P4 : (0, 6, 4)

P5 : (1, 1, 2), P6 : (3, 3, 3), P7 : (4, 6, 4), P8 : (2, 4, 3).
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The volume V of the above parallelepiped is given by the following scalar triple product

V = |
(−−−→
P5P8 ×

−−−→
P5P6

)
·
−−−→
P5P1 |,

where | | denotes the absolute value and

−−−→
P5P8 = (1, 3, 1),

−−−→
P5P6 = (2, 2, 1),

−−−→
P5P1 = (−2, 2, 1).

We obtain

V = |

∣∣∣∣∣∣
1 3 1
2 2 1

−2 2 1

∣∣∣∣∣∣
| = | − 4| = 4 cubic units

To find the midpoint Q : (x, y, z) of the parallelepiped we can consider, for example, the
vertices P5 and P3, where

−−→
P5Q =

1

2

−−−→
P5P3




x
y
z


−




1
1
2


 =

1

2




1
7
3


 .

The coordinates of the the midpoint Q is therefore Q : (
3

2
,
9

2
,
7

2
).

To find the hight h of the parallelepiped with base plane Π2, we project the vector
−−−→
P5P1

orthogonally onto the normal vector n2 = (1, 1,−4) of Π2, i.e.

h = ‖projn2

−−−→
P5P1‖ = ‖

(−−−→
P5P1 · n2

n2 · n2

)
n2 = ‖(−2

9
,
2

9
,
8

9
)‖ =

2
√
2

3
.

Alternately, we can calculate the distance s between the planes Π1 and Π2, which is given
by the relation

s =
|d1 − d2|

‖n‖
,

for Π1 : ax+ by + cz = d1 and Π2 : ax+ by + cz = d2 (see Theoretical Remark 1.5).
In our case we have

a = 1, b = 1, c = −4, d1 = −10, d2 = −6, n = (1, 1,−4).

This leads to s =
| − 10− (−6)|√

1 + 1 + 16
=

4√
18

=
2
√
2

3
.
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2.7 Intersection of lines in R3

In this section we discuss intersections of lines in R3 and show how to calculate those
intersections.

Theoretical Remarks 2.7.

Given two lines in R3, say �1 and �2, we have the following possibilities regarding their
intersection:

a) �1 and �2 may intersect in a unique common point.

b) �1 and �2 may intersect at every point on �1 and �2, so that the two lines coincide.

c) �1 and �2 may not intersect at any point.

Remark: Given any number of lines in R3, the possibilities of their common intersections
are the same as those listed above for two lines.
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Problem 2.7.1.

Consider the following two lines in R3:

�1 :




x = 2t+ 3

y = −4t+ 1

z = 2t+ 2

�2 :




x = −s

y = bs+ 3

z = −s− 1

for all t ∈ R and all s ∈ R, where b is an unspecified real parameter.

a) Find all values of b, such that the lines �1 and �2 intersect.

b) Do the lines intersect for b = 1? If so, find the intersection(s) in this case.

Solution 2.7.1.

a) At any point where �1 and �2 intersect, there must exist parametric values for t and s
for the coordinates of the intersection points. To establish those points, we consider

x = 2t+ 3 = −s

y = −4t+ 1 = bs+ 3

z = 2t+ 2 = −s− 1.

We have

2t+ 3 = −s

−4t+ 1 = bs+ 3

2t+ 2 = −s− 1

and in matix form we have




2 1
−4 −b
2 1




(
t
s

)
=




−3
2

−3


 .

The corresponding augmented matrix is




2 1 −3
−4 −b 2
2 1 −3


 .

We now apply two elementary row operations to the above augmented matrix,
namely
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1: multiply the first row by 2 and add the resulting row to the second row;
2: multiply the first row by −1 and add the resulting row to the third row.
This leads to the following echelon form:




2 1 −3
0 2− b −4
0 0 0


 .

From the above echelon form we conclude that the system has a solution for t and
s if and only if

b �= 2.

Therefore the two lines �1 and �2 intersect if and only if

b ∈ R\{2}.

For those values of b, we have

t =
2− 3b

2(b− 2)
, s =

4

b− 2
.

Inserting the above values for t and s into �1 or �2, we obtain the x-, y- and z-
coordinates of the point of intersection for any b ∈ R\{2}, namely

x =
−4

b− 2
, y =

7b− 6

b− 2
, z = −b+ 2

b− 2
.

b) For b = 1 the lines �1 and �2 intersect and the parameteric values of t and s are (see
above)

t =
1

2
, s = −4.

Inserting those values for t and s into �1 or �2 we obtain the coordinates of the point
of intersection, namely

(4,−1, 3).

Problem 2.7.2.

Consider the following three lines in R3:

�1 :





x = −t+ 3

y = 2t+ 1

z = −t+ 2

�2 :





x = 3s+ 3

y = −6s+ 1

z = 3s+ 2

�3 :





x = −4p+ 8

y = p+ 2

z = 2p− 1

for all t ∈ R, all s ∈ R and all p ∈ R.
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a) Find the intersection(s) of the lines �1 and �2, if those lines do intersect.

b) Find the intersection(s) of the lines �1, �2 and �3, if those lines do intersect.

Solution 2.7.2.

a) To find the intersection(s) of �1 and �2 we consider

x = −t+ 3 = 3s+ 3

y = 2t+ 1 = −6s+ 1

z = −t+ 2 = 3s+ 2,

so that

−t− 3s = 0

2t+ 6s = 0

−t− 3s = 0.

In matrix form we have




−1 −3
2 6

−1 −3




(
t
s

)
=




0
0
0


 .

For the corresponding augmented matrix we have




−1 −3 0
2 6 0

−1 −3 0


 ∼




1 3 0
0 0 0
0 0 0


 ,

which means that

t = −3s for all s ∈ R.

Thus for every value of s ∈ R for �2 there is a value of t for �1, namely t = −3s, that
gives the same coordinates and hence a point of intersection between �1 and �2. The
two lines, �1 and �2, therefore intersect at every point on �1 (or �2), so that the two
lines in fact coincide.

b) Since �1 and �2 coincide (as established above), we can now search for the intersec-
tion(s) between �1 and �3. We consider

x = −t+ 3 = −4p+ 8

y = 2t+ 1 = p+ 2

z = −t+ 2 = 2p− 1,
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so that the matrix equation takes the form




−1 4
2 −1

−1 −2




(
t
p

)
=




5
1

−3


 .

For the corresponding augmented matrix we have




−1 4 5
2 −1 1

−1 −2 −3


 ∼




1 −4 −5
0 7 11
0 −6 −8


 ∼




1 −4 −5
0 1 11/7
0 0 1


 ,

which means that the system is inconsistent. Hence there exist no values for t and
p which would give the same point, so that there is no intersection between �1 and
�3. The three lines, �1, �2 and �3, do therefore not intersect in a common point or
points.

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

STUDY AT A TOP RANKED 
INTERNATIONAL BUSINESS SCHOOL

Reach your full potential at the Stockholm School of Economics, 
in one of the most innovative cities in the world. The School 
is ranked by the Financial Times as the number one business 
school in the Nordic and Baltic countries. 

Visit us at www.hhs.se

Sw
ed

en

Stockholm

no.1
nine years 
in a row

http://s.bookboon.com/hhs2016


PROBLEMS, THEORY AND SOLUTIONS IN 
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE

119

Matrix algebra and Gauss elimination
2.8. EXERCISES 119

2.8 Exercises

1. Consider the matrix equation

AX−1 + 3B = A2,

where

A =

(
1 −1
0 3

)
, B =

(
2 1
1 1

)

and X is an invertible 2× 2 matrix. Find X, such that the given matrix equation is
satisfied.

[Answer: X =

(
−2/17 −5/17
−1/17 6/17

)
. ]

2. Consider the matrix equation

2X +AX = 3B,

where

A =

(
1 3

−1 −2

)

and X is an unspecified matrix.

a) For the given matrix equation, assume that

B =

(
3 1

−3 2

)

and find the matrix X.

[Answer: X =

(
9 −6

−6 7

)
. ]

b) For the given matrix equation, assume that

B =

(
1 −1 −2

−1 1 3

)

and find the matrix X.

[Answer: X =

(
3 −3 −9

−2 2 7

)
. ]
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3. Consider the matrix equation

C−1(XB −A)B−1 = X,

where B, C and In − C are all n × n invertible matrices. Find the matrix X that
satisfies the above equation in terms of the other given matrices and in terms of the
identity matrix In.

[Answer: X = (In − C)−1AB−1. ]

4. Consider the matrix equation

AX−1 + (X +B)−1 = X−1,

where A, B, X, X +B, A−1 − In and A− In are all n× n invertible matrices.

a) Solve the given matrix equation for X.

[Answer: X = B(A−1 − In). ]

b) Solve the given matrix equation forX, where A and B take the following explicit
forms:

A =

(
1 −1
1 0

)
, B =

(
2 1
1 1

)
.

[Answer: X =

(
−3 2
−2 1

)
. ]

5. Consider the following matrix:

A =




a 2 3
1 0 −1

−1 3 a+ 6


 ,

where a is an unspecified real parameter.

a) Find all values of a, such that the matrix A is invertible.

[Answer: a ∈ R\{1}. ]
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b) Calculate the inverse of A with a = 0.

[Answer: A−1 =




−3 3 2
5 −3 −3

−3 2 2


 . ]

6. Find all solutions of the system Ax = b for the given matrix A and vector b as given
below. Give also the geometrical interpretation of the solutions where possible.

a) A =




1 −2 −1
2 −2 0

−2 8 5


 , b =




1
2
1


 .

[Answer: The unique solution is given by a point in R3, the coordinates of

which are x =




4
3

−3


 . ]

b) A =




1 −2 −1
2 −2 0

−2 8 6


 , b =




1
3
0


 .

[Answer: The solutions are given by a line in R3 passing through the point
(3/2, 0, 1/2) and parallel to the vector (1, 1, −1), i.e. the infinitely many
solutions are

x = t




1
1

−1


+




3/2
0

1/2


 for all t ∈ R. ]

c) A =

(
1 −1 2

−2 2 −4

)
, b =

(
1

−2

)
.

[Answer: The solutions are given by a plane in R3 with equation
x1 − x2 + 2x3 = 1, i.e. the infinitely many solutions are

x =




x1
x2
x3


 = t




1
1
0


+ s




−2
0
1


+




1
0
0


 for all t ∈ R and all s ∈ R. ]

d) A =




1 −1 2
1 1 4

−3 3 −6


 , b =




1
1
0


 .
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[Answer: The system is inconsistent. That is, the system has no solution. ]

7. Find the intersection of the following two planes in R3:

Π1 : x− y + 3z = 1

Π2 : x+ y + 2z = 10.

Use Maple to sketch the planes in R3 (see Appendix A for information about Maple).

[Answer: The two planes intersect along the following line:

� :




x = −5t+ 28

y = t

z = 2t− 9 for all t ∈ R. ]
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8. Find the intersection of the following three planes in R3:

Π1 : x+ 3y − 5z = 0

Π2 : x+ 4y − 8z = 0

Π3 : −2x− 7y + 13z = 0.

Use Maple to sketch the planes in R3 (See Appendix A for information about Maple).

[Answer: The three planes intersect along the following line:

� :




x = −4t

y = 3t

z = t for all t ∈ R. ]

9. Consider the following three planes in R3:

Π1 : x1 − 4x2 + 7x3 = 1

Π2 : 3x2 − 5x3 = 0

Π3 : −2x1 + 5x2 − 9x3 = k,

where k is an unspecified real parameter.

a) Find all values of k such that the given three planes intersect along a common
line � and give this line of intersection in parametric form.

[Answer: The three planes intersect along a common line � if and only if
k = −2, where � is given by

� :




x1 = −t/5 + 1

x2 = t

x3 = 3t/5 for all t ∈ R. ]

b) For which value(s) of k do the three planes intersect in a unique point.

[Answer: There exists no value of k for which the three planes intersect in a
unique point. ]
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10. Find all solutions of the following system:

x3 + 2x5 = 1

x1 + 6x2 + 2x3 + 4x5 = −1

x4 + 5x5 = 2.

[Answer:




x1
x2
x3
x4
x5




= t




−6
1
0
0
0




+ s




0
0

−2
−5
1




+




−3
0
1
2
0




for all t ∈ R and all s ∈ R. ]

11. Consider the following system:

x1 + x3 + 2x4 = 1

2x1 + kx2 + x3 + x4 = 2

3x2 + x3 + 2x4 = 3

x1 + x2 + x4 = 4,

where k is an unspecified real parameter.

a) Find all values of k, such that the given system has a unique solution.

[Answer: k ∈ R\{−7}. ]

b) Find all values of k, such that the given system has infinitely many solutions.

[Answer: There exist no values of k for which the system admits infinitely
many solutions. ]

c) Find all values of k, such that the given system is inconsistent.

[Answer: k = −7. ]

d) Find all values of k for which the coefficient matrix of the given system is
singular.

[Answer: k = −7. ]
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12. Consider the following system:

x1 + x2 + x3 = a

3x1 + kx3 = b

x1 + kx2 + x3 = c,

where a, b, c and k are unspecified real parameters.

a) Find all values of k, such that the given system has a unique solution for all
real values of a, b and c.

[Answer: k ∈ R\{1, 3}. ]

b) Find all values of k and the corresponding conditions on a, b and c, such that
the given system is consistent.

[Answer: From part a) above, we know that the system has a unique solution
(and is consistent) for all k ∈ R\{1, 3} and all real values of a, b and c. For
k = 1 the system has infinitely many solutions (and is consistent) if and only
if c = a for all c ∈ R. For k = 3 the system has infinitely many solutions (and
is consistent) if and only if c = 3a− 2b/3 for all a ∈ R and all b ∈ R. ]

13. Consider the following matrix equation:

X

(
1 1

−1 1

)
−

(
0 1
α −α

)
X =

(
1 2

−1 3

)
,

where X is an unspecified 2 × 2 matrix. Determine all real values of α, such that
the given matrix equation has a unique solution for X.

[Answer: α ∈ R\{−2}. ]

14. a) Consider the function

f(x) = ax3 + bx2 + cx+ d,

where a, b, c and d are unspecified real parameters. Find the values of these
parameters such that the graph y = f(x) is passing through the following points
in the xy-plane: {(1, 1), (−1, 1), (2, 2), (−2, 12)}. Use Maple to sketch your
obtained function f(x) in the xy-plane (see Appendix A for information about
Maple).

[Answer: a = −5/6, b = 2, c = 5/6, d = −1. ]
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b) Consider the function

f(x) = a cos(2x) + b(π − x) cos(2x) + cx sin(π − x),

where a, b and c are unspecified real parameters. Find the values of these
parameters such that the graph y = f(x) is passing through the following points
in the xy-plane: {(−π/2,−3π), (π/2, 0), (3π/2, 5π)}. Use Maple to sketch your
obtained function f(x) in the xy-plane (see Appendix A for information about
Maple).

[Answer: a = −2π, b = 3, c = −1. ]
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15. Consider the system Ax = b with

A =




1 1
2 1
4 2


 , b =




3
h
k


 ,

where h and k are unspecified real parameters.

a) Find the relation between the parameters h and k, such that the given system
Ax = b is consistent.

[Answer: k = 2h for all h ∈ R. ]

b) Find all solutions for the given system Ax = b.

[Answer: The system has the unique solution x =

(
h− 3
6− h

)
for all h ∈ R,

where k = 2h. ]

16. Consider the following line � in R3:

� :




x = 2t+ 1

y = −2t+ 1

z = 6t− 6 for all t ∈ R.

Find all real values of the parameters a, b and c, such that the line � is lying on the
plane

ax+ by + cz = 1.

[Answer: a =
1

3
+

b

3
, c = −1

9
+

2b

9
for all b ∈ R. ]

17. Consider the following two lines in R3:

�1 :





x = 2t+ 3

y = −4t+ 1

z = 2t+ 2

�2 :





x = −s

y = bs+ 3

z = −s− 1

for all t ∈ R and all s ∈ R, where b is an unspecified real parameter.
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a) Find all values of b, such that the lines �1 and �2 intersect.

[Answer: b ∈ R\{2}. ]

b) Do the lines intersect for b = 1? If so, find the point of intersection for this
case.

[Answer: Yes, the point of intersection has the coordinates (4,−1, 3). ]

18. Consider the following six planes that describe a parallelepiped at their intersections:

Π1 : x+ 2y − z = 1

Π2 : 2x+ 4y − 2z = 0

Π3 : −3x− y + 2z = 1

Π4 : −9x− 3y + 6z = 1

Π5 : y + z = −1

Π6 : −2y − 2z = 3.

Find the vertices, the volume and the midpoint of this parallelepiped, as well as the
hight of the parallelepiped with base face described by Π2.

[Answer: The coordinates of the vertices of the parallelepiped are as follows:

P1 : (−17

12
,
11

36
, −65

36
)

P2 : (−7

6
,

7

18
, −25

18
)

P3 : (−3

2
,
1

2
, −3

2
)

P4 : (−7

4
,

5

12
, −23

12
)

P5 : (−11

12
, − 7

36
, −47

36
)

P6 : (−2

3
, −1

9
, −8

9
)

P7 : (−1, 0, −1)

P8 : (−5

4
, − 1

12
, −17

12
)
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The volume of the parallelepiped is 1/18 cubic units. The coordinates of the the
midpoint Q of the parallelepiped is

Q : (−29

24
,
11

72
, −101

72
).

The hight of the parallelepiped with base described by Π2 is 1/
√
6 units. ]

19. Consider the following two planes:

Π1 : x+ 2y − 4z = 2

Π2 : x− z = 5.

Find the equation of the planes Π∗
1, such that Π∗

1 is the reflection of the plane Π1

about the plane Π2.

[Answer: Π∗
1 : 4x− 2y − z = 23. ]

20. Consider the linear system Ax = b with




1 3 k
k 1 4
1 k k


 , b =




2
3

−3


 ,

where k is an unspecified real parameter.

a) Find all values of k, such that the given system admits a unique solution.

[Answer: The system admits a unique solution for all k ∈ R\{−2, 2, 3}. ]

b) Find all values of k, such that the given system admits infinitely many solutions,
as well as all values of k for which the system is inconsistent.

[Answer: For k = −2 the system has infinitely many solutions, namely

x = t




2
0
1


+




−1
1
0


 for all t ∈ R. For k = 2 as well as for k = 3 the system

is inconsistent. ]

c) Find all values of k, such that the coefficient matrix A is singular.

[Answer: The matrix A is singular if and only if detA = 0, that is, A is
singular for k ∈ {−2, 2, 3}. ]
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21. The following three lines, �1, �2 and �3, describe a triangle in R3 at their intersections:

�1 :




x = 4α− 1

y = −2α+ 3

z = 8α− 3 for all α ∈ R

�2 :




x = −3β + 7

y = −β + 4

z = −β + 3 for all β ∈ R

�3 :




x = −δ + 6

y = −2δ + 7

z = 3δ − 4 for all δ ∈ R.

Find the area of this triangle.

[Answer: The area of the triangle is 5
√
6 square units. ]
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22. Consider the homogeneous system Ax = 0, where

A =




1 5 1 k
2 1 k 1
1 4 1 1
4 1 3 1




and k is an unspecified real parameter.

a) Find all values of k, such that the system admits only the trivial solution and
all values of k for which A is invertible.

[Answer: For all k ∈ R\{4
3
,
7

5
} the system admits only the trivial solution

x = (0, 0, 0, 0). The matrix A is also invertible for those values of k. ]

b) Find all values of k, such that the system admits infinitely many solutions.

[Answer: For all k =
4

3
or k =

7

5
the system admits infinitely many solutions.]
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Chapter 3

Spanning sets and linearly
independent sets

The aim of this chapter:

In this chapter we introduce the following definitions and concepts for a finite set of
vectors in Rn: linear combinations of vectors, spanning sets and linearly independent sets
of vectors. We apply these concepts to describe, for example, a plane or a line in R3 and
to gain a better understanding of linear systems.

3.1 Linear combinations of vectors

In this section we introduce the concept of a linear combination for a finite set of vectors
in Rn.

Theoretical Remarks 3.1.

Consider the set S of p vectors

S = {u1, u2, . . . , up},

where uj ∈ Rn for j = 1, 2, . . . , p.

1. A linear combination of the vectors from the set S is another vector in Rn, namely
the vector

c1u1 + c2u2 + · · ·+ cpup ∈ Rn

for any fixed choice of the p constants c1, c2, . . ., cp, called the scaling factors of
the linear combination. That is, v ∈ Rn is a linear combination of the vectors from
the set S if there exist scaling factors c1, c2, . . . , cp, such that

v = c1u1 + c2u2 + · · ·+ cpup.

133
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2. Consider v ∈ Rn and let A be an m × n matrix. Assume now that v is a linear
combination of the vectors from S with scaling factors c1, c2, . . . , cp. Then

Av = c1Au1 + c2Au2 + · · · cpAup.

3. Consider an m× n matrix A in the form

A = [a1 a2 · · · an],

where aj ∈ Rm for j = 1, 2, . . . , n. Consider a vector x ∈ Rn given by

x =




x1
x2
...

xn


 .

Then the matrix-vector product Ax is defined as the linear combination of the
set of vectors {a1, a2, . . . , an} with scaling factors x1, x2, . . . , xn, i.e.

Ax = x1a1 + x2a2 + · · ·+ xnan.

Remark: See also Theoretical Remark 2.1 (3) where the matrix-vector product
Ax is discussed.

Problem 3.1.1.

Consider the following set of five vectors in R3:

S = {u1, u2, u3, u4, u5},

where

u1 =




1
0
1


 , u2 =




1
1
0


 , u3 =




1
−1
3




u4 =




2
−1
0


 , u5 =




1
3
4


 .

Consider also the vector

v =




1
2
1


 .
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a) Show that v is a linear combination of the vectors in the set S and give the linear
combination explicitly.

b) Is v a linear combination of the set of vectors {u1, u2}? Justify your answer.

c) Let A be an unspecified 3× 3 matrix, such that

Au1 =




1
2

−1


 , Au2 =




2
1
0


 , Au3 =




3
1
3




Au4 =




−8
11

−18


 , Au5 =




22
−13
32


 .

Find Av explicitly.
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Solution 3.1.1.

a) We have to show that there exist real constants (scaling factors), c1, c2, c3, c4 and
c5, such that

v = c1u1 + c2u2 + c3u3 + c4u4 + c5u5.

We write this vector equation in the form of a matrix equation, namely

[u1 u2 u3 u4 u5] c = v,

where

c =




c1
c2
c3
c4
c5




∈ R5.

With the given vectors uj, we have




1 1 1 2 1
0 1 −1 −1 3
1 0 3 0 4







c1
c2
c3
c4
c5




=




1
2
1




and the following corresponding augmented matrix is




1 1 1 2 1 1
0 1 −1 −1 3 2
1 0 3 0 4 1


 .

Applying several elementary row operations on this augmented matrix, we obtain
its unique reduced echelon form, namely




1 0 0 9 −14 −5
0 1 0 −4 9 4
0 0 1 −3 6 2


 .

We conclude that the constants c4 and c5 can be chosen arbitrarily, so we let

c4 = t, c5 = s,

where t and s are arbitrary real parameters. From the above reduced echelon form
we then have

c1 = −9t+ 14s− 5

c2 = 4t− 9s+ 4

c3 = 3t− 6s+ 2,
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so that

c =




−9t+ 14s− 5
4t− 9s+ 4
3t− 6s+ 2

t
s




.

These are the scaling factors of the linear combination, so that

v = (−9t+ 14s− 5)u1 + (4t− 9s+ 4)u2 + (3t− 6s+ 2)u3 + tu4 + su5

for all t ∈ R and all s ∈ R. We can therefore choose t = s = 0 to find the simplest
linear combination:

v = −5u1 + 4u2 + 2u3.

b) We need to establish the existence of scaling factors c1 and c2, such that

v = c1u1 + c2u2.

That is, we need to establish the consistency of the system




1 1
0 1
1 0




(
c1
c2

)
=




1
2
1


 .

The associated augmented matrix is




1 1 1
0 1 2
1 0 1




so that an echelon form becomes




1 1 1
0 1 2
0 0 1


 ,

the last row of which indicates that the system is inconsistent, as it implies

c1 0 + c2 0 = 1.

We therefore conclude that there exist no constants c1 and c2 for which v is a linear
combination of the vectors u1 and u2.
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c) In part a) abovewe have established the linear combination

v = (−9t+ 14s− 5)u1 + (4t− 9s+ 4)u2 + (3t− 6s+ 2)u3 + tu4 + su5

for all t ∈ R and all s ∈ R

and, by setting t = s = 0, the simplest linear combination

v = −5u1 + 4u2 + 2u3.

Therefore

Av = A (−5u1 + 4u2 + 2u3)

= −5Au1 + 4Au2 + 2Au3

= −5




1
2

−1


+ 4




2
1
0


+ 2




3
1
3




=




9
−4
11


 .

Of course we could, alternately, do the calculations using the combination with the
arbitrary s and t parameters. This gives the same result:

Av = A(−9t+ 14s− 5)u1 +A(4t− 9s+ 4)u2 +A(3t− 6s+ 2)u3 +Atu4 +Asu5

= (−9t+ 14s− 5)Au1 + (4t− 9s+ 4)Au2 + (3t− 6s+ 2)Au3 + t Au4 + sAu5

= (−9t+ 14s− 5)




1
2

−1


+ (4t− 9s+ 4)




2
1
0


+ (3t− 6s+ 2)




3
1
3




+t




−8
11

−18


+ s




22
−13
32




=




9
−4
11


 .
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Problem 3.1.2.

Consider the vector

v =




k
4
2
2


 ∈ R4

as well as the following set of vectors in R4:

S = {u1, u2, u3},

where

u1 =




1
k
1
1


 , u2 =




1
1
k
1


 , u3 =




1
1
1
k


 .

Here k is an unspecified real parameter. Determine all values of k, such that v is a linear
combination of the vectors from the set S.
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Solution 3.1.2.

Since v should be a linear combination of the vectors u1, u2 and u3, we have

v = c1u1 + c2u2 + c3u3

or, in matrix form




k
4
2
2


 = [u1 u2 u3]




c1
c2
c3


 . That is




k
4
2
2


 =




1 1 1
k 1 1
1 k 1
1 1 k







c1
c2
c3


 .

We now find all values of k ∈ R, such that the above system is consistent, i.e. such that
there exist real values for c1, c2 and c3 that satisfy the system. The associated augmented
matrix is



1 1 1 k
k 1 1 4
1 k 1 2
1 1 k 2


 ∼




1 1 1 k
0 1− k 1− k 4− k2

0 k − 1 0 2− k
0 0 k − 1 2− k


 ∼




1 1 1 k
0 1− k 1− k 4− k2

0 0 1− k −(k − 2)(k + 3)
0 0 0 −(k − 2)(k + 4).


 .

From the last row of the above echelon form we have

c10 + c20 + c30 = −(k − 2)(k + 4)

so that the system is consistent if and only if k = 2 or k = −4. Therefore, v is a linear
combination of u1, u2 and u3 if and only if k = 2 or k = −4.

3.2 Spanning sets of vectors

In this section we introduce the concept of a spanning set. That is, a finite set of vectors
which span a subset of vectors in Rn.

Theoretical Remarks 3.2.

Consider the set S of p vectors

S = {u1, u2, . . . , up},

where uj ∈ Rn for j = 1, 2, . . . , p.
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1. The set of all linear combinations of the vectors from S, denoted by span {S}, is a
subset of Rn, say W , that is said to be spanned by S. We write

W = span {u1, u2, . . . , up}, or simply W = span {S}.

We say that S is the spanning set of W . Thus span {S} consists of all linear
combinations of vectors from S, i.e.

c1u1 + c2u2 + · · ·+ cpup ∈ W

for every possible choice of the scaling factors c1, c2, . . . , cp. We write

W = span {S} = {c1u1 + c2u2 + · · ·+ cpup for all c1 ∈ R, c2 ∈ R, . . . , cp ∈ R}.

2. In the sense of the above introduced spannig set, we can interpret the consistency
of a linear system as follows:

The linear system

Ax = b,

is consistent if and only if

b ∈ span {a1, a2, . . . , an},

where A is an m× n matrix given by A = [a1 a2 · · · an], aj ∈ Rm and b ∈ Rm.

Problem 3.2.1.

Consider the following three vectors in R3:

u =




1
−2
3


 , v =




−1
1
4


 , w =




k
6
2


 ,

where k is an unspecified real constant. Find all values of k, such that

a) w ∈ span {u, v}.

b) u ∈ span {v, w}.

c) Is 0 ∈ span {u, v}, where 0 =




0
0
0


?
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d) Which of the following systems are consistent?

[u v]x =




2
6
2


 , [u v]x =




−4
6
2


 , [u v]x =




0
0
0


 .

e) Find all values of k for which the system

[u w]x =




0
0
0




is consistent.

Solution 3.2.1.

a) If vector w is an element span {u, v}, then w must be a linear combination of the
vectors u and v. That is, there must exist scaling factors (real constants) c1 and c2,
such that

w = c1u+ c2v.

Writing this as a matrix equation, we have



1 −1
−2 1
3 4




(
c1
c2

)
=




k
6
2




so that the associated augmented matrix and one of its echelon forms are



1 −1 k
−2 1 6
3 4 2


 ∼




1 −1 k
0 −1 2k + 6
0 0 11k + 44


 .

We conclude that the system is consistent if and only if k = −4.
Thereofore, w ∈ span {u, v} if and only if k = −4.

b) If vector u is an element of span {v, w}, then u must be a linear combination of
the vectors v and w. But we already know from part a) above, that w is a linear
combination of u and v, which means that there exist scaling factors c1 and c2, such
that

w = c1u+ c2v.

Therefore, we have

u = −c2
c1
v +

1

c1
w,

so that we can conclude that u ∈ span {v, w} if and only if k = −4, i.e. the same
value of k as in part a) above.
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c) The zero-vector, 0 ∈ R3, is always an element of any spanning set of R3, since 0 is
always a linear combination with zero scaling factors of the vectors that span the
set. In the current case, namely span {u, v}, we have

0 = 0u+ 0v.

d) Note that

[u v]x = x1u+ x2v, where x =

(
x1
x2

)
.

Therefore the system

[u v]x =




k
6
2




is consistent if and only if




k
6
2


 ∈ span {u, v}. In part a) above, we have already

established that w ∈ span {u, v} if and only if k = −4. Thus, the system

[u v]x =




2
6
2




is inconsistent, while the system

[u v]x =




−4
6
2




is consistent. Clearly the homogeneous system

[u v]x =




0
0
0




is also consistent.

e) The homogeneous system

[v w]x =




0
0
0




is consistent for all k ∈ R, as

x =




0
0
0




is always a solution (the trivial- or zero-solution) of the system.
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Problem 3.2.2.

Consider the following three vectors in R4:

u1 =




1
0
2

−3


 , u2 =




0
0
4
7


 , u3 =




1
1

−3
1




and let W denote the set of vectors spanned by {u1, u2, u3}, i.e. let

W = span {u1, u2, u3}.

Which of the following four vectors belong to W?

v1 =




−5
−3
9
10


 , v2 =




1
0
1
0


 , v3 =




0
0
0


 , v4 =




0
0
0
0


 .

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

 

  

 

                . 

http://s.bookboon.com/AlcatelLucent


PROBLEMS, THEORY AND SOLUTIONS IN 
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE

145

Spanning sets and linearly independent sets
3.2. SPANNING SETS OF VECTORS 145

Solution 3.2.2.

To answer whether v1 ∈ span {u1, u2, u3} we need to establish whether there exist
scaling factors c1, c2 and c3, such that v1 is a linear combination of u1, u2, u3, i.e.

v1 = c1u1 + c2u2 + c3u3

The matrix equation is


1 0 1
0 0 1
2 4 −3

−3 7 1







c1
c2
c3


 =




−5
−3
9
10




and the associated augmentd matrix is


1 0 1 −5
0 0 1 −3
2 4 −3 9

−3 7 1 10


 .

After applying several elementary row operations, we obtain the following reduced echelon
form of the augmented matrix:



1 0 0 −2
0 1 0 1
0 0 1 −3
0 0 0 0




from which we conclude that v1 ∈ span {u1, u2, u3}, where
v1 = −2u1 + u2 − 3u3.

We follow the same procedure to establish whether v2 ∈ span {u1, u2, u3}. This leads
to the following augmented matrix



1 0 0 1
0 0 1 0
2 4 −3 1

−3 7 1 0




and the reduced echelon form


1 0 0 1
0 1 0 −1/4
0 0 1 0
0 0 0 19/28


 .

From the above reduced echelon form we conclude that v2 does not belong to the span {u1, u2, u3},
as v2 cannot be written as a linear combination of the vectors u1, u2 and u3.

Since v3 ∈ R3 it cannot belong to a spanning set that is spanned by vectors in R4. For
v4, we have

v4 =




0
0
0
0


 = 0u1 + 0u2 + 0u3 ∈ span {u1, u2, u3}.
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3.3 Linearly dependent and independent sets of vectors

We introduce the concept of a linearly dependent sets and a linearly independent set of
vectors in Rn. We discuss the importance of linearly independet sets for a spanning set of
vectors.

Theoretical Remarks 3.3.

Consider the set S of p vectors

S = {u1, u2, . . . , up},

where uj ∈ Rn for every j = 1, 2, . . . , p.

The set S is a linearly independent set in Rn if the vector equation

c1u1 + c2u2 + · · ·+ cpup = 0

can only be satisfied if all scaling factors are zero, i.e. c1 = 0, c2 = 0, . . . , cp = 0. If
there exists any non-zero scaling factors for which the above vector equation is satisfied,
then the set S is a linearly dependent set.

Remark: Consider a set of n vectors

S = {u1, u2, . . . , un},

where uj ∈ Rn for every j = 1, 2, . . . , n. If the set S is linearly independent and the set
S spans Rn, then S is a basis for Rn and we say that the dimension of Rn is n. The
standard basis, {e1, e2, . . . , en} is an example of a basis for Rn. These concepts of
basis and dimension is discussed in detail in Part 2 of this series, subtitled General
Vector Spaces.

For linearly independent and linearly dependent sets we have the following

Properties:

a) Assume that S is a linearly independent set. Then all subsets of vectors from S are
also linearly independent sets in Rn.

b) Assume that S is a linearly dependent set. Then there may exist subsets of two or
more vectors from S which are linearly independent sets in Rn.

c) Let S be a set that consist of p vectors in Rn. If p > n then S is a linearly dependent
set.
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d) Consider a set Q of n vectors in Rn, namely

Q = {a1, a2, . . . , an},

where aj ∈ Rn for all j = 1, 2, . . . , n and consider the n× n matrix

A = [a1 a2 · · · an].

We have the following properties:

i) The set Q is linearly independent if and only if the reduced echelon form of A
is the identity matrix In, i.e. A and In are row-equivalent

A ∼ In.

ii) The set Q is linearly independent if and only if the determinant of A is non-zero,
i.e.

detA �= 0,

so that A is an invertible matrix.

iii) The set Q is linearly independent if and only if Ax = b has a unique solution
x ∈ Rn for all b ∈ Rn.

e) Consider the set Q2 of two non-zero vectors in R3, namely

Q2 = {u1, u2}.

Then span {Q2} will span a plane Π in R3 that contains the origin (0, 0, 0), if and
only if Q2 is a linearly independent set. That is, every vector in the plane Π is a
linear combination of the vectors u1 and u2.

f) Consider the set Q3 of three non-zero vectors in R3, namely

Q3 = {u1, u2, u3}.

Then span {Q3} spans R3 if and only if Q3 is a linearly independent set. That is,
every vector in R3 is a linear combination of the vectors u1, u2 and u3. Moreover,
if Q3 is a linearly dependent set with exactly two linearly independent vectors, then
span {Q3} spans a plane through (0, 0, 0) (of course the same is true for any finite
set of vectors which contains a subset of exactly two linearly independent vectors).
Note that a line � through (0, 0, 0) can be spanned by any non-zero vector with
coordinates on �.
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Problem 3.3.1.

Consider the following two vectors in R3:

u =




1
2

−1


 , v =




k
−4
2


 ,

where k is an unspecified real parameter.

a) Find all real values of k, such that the set S = {u, v} is a linearly independent set,
as well as all the real values of k for which S is a linearly dependent set.

b) Find all real values of k, such that u and v span a plane in R3 and give the equation
of that plane.

c) Find all real values of k, such that u and v span a line in R3 and give the equation
of that line in parametric form.
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Solution 3.3.1.

a) To establish whether the set S = {u, v} is a linearly independent set (or a linearly
dependent set), we consider the vector equation

c1u+ c2v = 0.

In matrix form this becomes



1 k
2 −4

−1 2




(
c1
c2

)(
0
0

)
.

Since the system is homogeneous, we only have to look at the coefficient matrix to
establish the consistency of the system. We have




1 k
2 −4

−1 2


 ∼




1 k
0 −2k − 4
0 k + 2


 ∼




1 k
0 k + 2
0 0


 .

The reduced system is therefore

c1 + c2k = 0

c2(k + 2) = 0.

Therefore the system has the trivial solution, i.e. c1 = 0 and c2 = 0, if and only if
k ∈ R\{−2}. We conclude that the set S is linearly independent for k ∈ R\{−2}
and linearly dependent for k = −2.

b) The set of two vectors, S = {u, v}, will span a plane in R3 if and only if S is a
linearly independent set, i.e. for all value k ∈ R\{−2}, as established in part a)
above. This plane contains the origin (0, 0, 0) as well as all those vectors that are
linear combinations of u and v for all k ∈ R\{−2}. To find the equation of the plane
that is spanned by S, we first calculate the normal vector n for the plane by the
use of the cross-product (see Theoretical Remark 1.2 and Theoretical Remark
1.3). We have

n = u× v =

∣∣∣∣∣∣
e1 e2 e3
1 2 −1
k −4 2

∣∣∣∣∣∣
= −(k + 2)e2 − (2k + 4)e3.

Then we calculate the dot product of n with an arbitrary point on the plane, say
the point (x, y, z), which must be zero as long as (x, y, z) is on the plane. Thus

n · (x, y, z) = (0, −k − 2, −2k − 4) · (x, y, z) = −(k + 2)y − (2k + 4)z = 0.

Therefore, the equation of the plane that is spanned by S is

−(k + 2)y − (2k + 4)z = 0 for all k ∈ R\{−2}.

Note that the equation of the plane depends on k.
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c) The set of two vectors in the set S = {u, v} will span a line � in R3 if and only if S
is a linearly dependent set, i.e. for the value k = −2, as established in part a) above.
Those are the vectors

u =




1
2

−1


 and v =




−2
−4
2


 ,

as well as all linear combinations of u and v, as all these vectors are on the line �.
Obviously the line � passes through the origin (0, 0, 0). To find the equation of �
that is spanned by S, we just have to multiply any vector on � with an arbitrary
parameter, t, say the vector u. Thus a parametric equation of the line is

� :




x = t

y = 2t

z = −1t for all t ∈ R.

Problem 3.3.2.

Consider the set S = {u1, u2, u3} with

u1 =




1
0
1


 , u2 =




0
1
2


 , u3 =




2
3
k


 ,

where k is an unspecified real parameter.

a) Find all values of k, such that the set S is a linearly independent set and find also
all values of k such that the set is linearly dependent.

b) Consider W = span {u1, u2}. Find all values of k, such that u3 ∈ W .

c) Find all values of k, such that u1, u2 and u3 span a plane in R3 and give the equation
of that plane explicitly.

d) Find all values of k, such that u1, u2 and u3 span R3.

e) Do there exist values for k, such that u1, u2 and u3 span a line in R3?

f) Consider the matrix A = [u1 u2 u3] and find all values of k, such that A is row
equivalent to I3 (the 3× 3 identity matrix) and find also all values of k for which A
is invertible.

g) Find all values of k, such that the system

[u1 u2 u3]x = b

has a unique solution.
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Solution 3.3.2.

a) To establish whether the set S = {u1, u2, u3} is linearly independent or linearly
dependent, we have to consider the vector equation

c1u1 + c2u2 + c3u3 = 0.

In matrix form we have




1 0 2
0 1 3
1 2 k







c1
c2
c3


 =




0
0
0


 ,

so that




1 0 2
0 1 3
1 2 k


 ∼




1 0 2
0 1 3
0 2 k − 2


 ∼




1 0 2
0 1 3
0 0 k − 8


 .

Thus there exist non-zero solutions for c1, c2 and c3 if and only if k−8 = 0. Therefore
the set S is linearly independent for all values k ∈ R\{8} and linearly dependent for
k = 8.
Since the coefficient matrix is a square matrix, we may also establish the linear
independence of the set by calculating the determinant of the system’s coefficient
matrix; let’s name this matrix A. We have detA = k − 8. The columns of A are
linearly independent if and only if detA �= 0. Hence we have the same conclusion as
above.

b) In order to determine whether u3 ∈ span{u1, u2} = W , we need to investigate the
consistency of the non-homogeneous system c1u1 + c2u2 = u3. Clearly this system
can only be consistent if the set S = {u1, u2, u3} is linearly dependent and then
u3 ∈ W . We have already established in part a) above, that the set S is linearly
dependent for k = 8. Hence u3 ∈ W for k = 8.

c) In order to span a plane in R3 we need exactly two linearly independent vectors.
First, we note that the set {u1, u2} is clearly a linearly independent set, since

u1 �= αu2 for all α ∈ R.

So to span a plane Π in R3 with all three vectors in the set S = {u1, u2, u3}, we need
to make sure that the set S is a linearly dependent set with a linearly independent
subset of two vectors. We have establsihed in part a), that S is a linearly dependent
set for k = 8. Hence

Π = span {




1
0
1


 ,




0
1
2


 ,




2
3
8


}.
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Note that the same plane Π can also be spanned by any subset of two linearly
independent vectors from the set S. We have

Π = span {




1
0
1


 ,




0
1
2


} = span {




1
0
1


 ,




2
3
8


} = span {




0
1
2


 ,




2
3
8


}.

To find the equation of the plane Π we can use any of the above given spanning sets.
We’ll use Π = span {u1, u2}. We calculate the normal vector n of the plane and
then calculate the dot product with an arbitrary point (x, y, z) on the plane. (see
Theoretical Remark 1.2 and Theoretical Remark 1.3). We have

n = u1 × u2 =

∣∣∣∣∣∣
e1 e2 e3
1 0 1
0 1 2

∣∣∣∣∣∣
= −e1 − 2e2 + e3 = (−1,−2, 1).

Then

n · (x, y, z) = (−1,−2, 1) · (x, y, z) = −x− 2y + z = 0.

Hence the equation of the plane Π is

−x− 2y + z = 0.
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d) In order to span R3 we need a set S of three vectors in R3 such that every vector
in R3 can be written as a linear combination of those three vectors. For this to be
possible, the set S needs to be linearly independent. Let S = {u1, u2, u3}. In part
a) we have already established that S is a linearly independent set for all k ∈ R\{8}.
Thus

R3 = span {




1
0
1


 ,




0
1
2


 ,




2
3
k


} for all k ∈ R\{8}.

e) We can not span a line in R3 by using all three vectors in the set S = {u1, u2, u3},
since the subset {u1, u2} is already linearly independent (so those span a plane as
shown in part c) above).

f) The matrix A = [u1 u2 u3] is row equivalent to I3 if and only if detA �= 0 and thus
A is invertible. We have

detA =

∣∣∣∣∣∣
1 0 2
0 1 3
1 2 k

∣∣∣∣∣∣
= k − 8.

Thus A ∼ I3 if and only if k ∈ R\{8}. Moreover A−1 exists if and only if k ∈ R\{8}.

g) The system Ax = b, with

A = [u1 u2 u3],

has a unique solution for all b ∈ R3 if and only if A is an invertible matrix. That
is, the system has a unique solution if and only if detA �= 0. In part f) we have
established that this is the case for all k ∈ R\{8}. Hence, Ax = b has a unique
solution for all k ∈ R\{8}.

Problem 3.3.3.

Consider the set of vectors S = {u1, u2, u3, u4} in R4 with

u1 =




1
1

−2
−3


 , u2 =




−1
−9
k
11


 , u3 =




−1
3
1

−1


 , u4 =




k
−10
−4
6


 ,

where k is an unspecified real parameter.

a) Find all values of k, such that S is a linearly independent set.

b) Find all values of k, for which S is a linearly dependent set and list all possible
subsets of three linearly independent vectors in S with their corresponding k values.
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Solution 3.3.3.

a) To establish the linear independence of the set S, we consider the matrix A that
contains the vectors in the set S as column entries:

A =




1 −1 −1 k
1 −9 3 −10

−2 k 1 −4
−3 11 −1 6


 .

The columns of A are linearly independent if and only if detA �= 0. That is, the set
S is linearly independent if and only if detA �= 0. We obtain

detA = −8k2 + 48k − 64 = −8(k − 2)(k − 4).

Hence, S is a linearly independent set for all k ∈ R\{2, 4}.

b) By a) above, we know that S is a linearly dependent set for both k = 2 as well as
for k = 4. To establish a subset of three linearly independent vectors, we consider
k = 2 and k = 4 in two separate cases:
Let k = 2. Then

A ∼




1 −1 −1 2
0 −2 1 −3
0 0 1 0
0 0 0 0


 .

From the above it is clear that there exist two subsets that contain three linearly
independent vectors in the set S with k = 2, namely the subsets

S1 = {u1, u2, u3} or S2 = {u1, u3, u4},

where

u1 =




1
1

−2
−3


 , u2 =




−1
−9
2

11


 , u3 =




−1
3
1

−1


 , u4 =




2
−10
−4
6


 .

Let k = 4. Then

A ∼




1 −1 −1 4
0 4 −2 7
0 0 0 1
0 0 0 0


 .
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From the above it follows that there exist also two subsets that contain three linearly
independent vectors in the set S with k = 4, namely the subsets

S3 = {u1, u2, u4} or S4 = {u1, u3, u4},

where

u1 =




1
1

−2
−3


 , u2 =




−1
−9
4

11


 , u3 =




−1
3
1

−1


 , u4 =




4
−10
−4
6


 .
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3.4 Exercises

1. Consider the following two vectors in R2:

u1 =

(
1
k

)
, u2 =

(
k

k + 2

)
,

where k is an unspecified real parameter. Find all values of k, such that S = {u1, u2}
is a linearly independent set and all values of k, such that S is a linearly dependent
set.

[Answer: S is a linearly independent set for all k ∈ R\{−1, 2} and S is a linearly
dependent set for k = −1 or k = 2. ]

2. Consider the following three vectors in R3:

u1 =




1
1

−1


 , u2 =




1
2
k


 , u3 =




k
1
3


 ,

where k is an unspecified real parameter. Find all values of k, such that S =
{u1, u2, u3} is a linearly independent set and all values of k, such that S is a
linearly dependent set.

[Answer: S is a linearly independent set for all k ∈ R and S can therefore not be
a linearly dependent set for any k. ]

3. Consider the set S = {u1, u2, u3, u4} with the following vectors in R4:

u1 =




1
−2
−3
3


 , u2 =




−3
k
9

−9


 , u3 =




−4
6
k

−4


 , u4 =




−1
−1
−6
9


 ,

where k is an unspecified real parameter.

a) Find all values of k, such that S is a linearly independent set.

[Answer: S is a linearly independent set for all k ∈ R\{6}. ]
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b) Give all possible linearly independet subsets of S.

[Answer: For k ∈ R\{6} every subset of S is linearly independent (since S is
a linearly independent set in this case).
For k = 6 the set S is linearly dependent and it has four linearly independent
subsets consisting of two vectors each, namely

S1 = {u1, u3}, S2 = {u1, u4}, S3 = {u2, u3}, S4 = {u2, u4},

S5 = {u3, u4}. ]

4. Consider the set S = {u1, u2, u3, u4} with the following vectors in R4:

u1 =




1
−1
−1
3


 , u2 =




5
−3
−5
15


 , u3 =




4
1
k
12


 , u4 =




k
−1
4

−12


 ,

where k is an unspecified real parameter.

a) Find all values of k, such that S is a linearly independent set and also all values
of k, such that S is a linearly dependent set.

[Answer: S is a linearly independent set for all k ∈ R\{−4} and a linearly
dependent set for k = −4. ]

b) Give all possible linearly independet subsets of S.

[Answer: For k ∈ R\{−4} every subset of S is linearly independent (since S
is a linearly independent set in this case).
For k = −4 the set S has five subsets that are linearly independent, namely

S1 = {u1, u2}, S2 = {u1, u3}, S3 = {u1, u4}, S4 = {u2, u3},

S5 = {u2, u4}. ]

5. Consider the set S = {u1, u2, u3} with the following vectors in R3:

u1 =




1
2
3


 , u2 =




0
1
2


 , u3 =




k
0
1


 ,

where k is an unspecified real parameter.
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a) Find all values of k, such that S is a linearly independent set.

[Answer: All k ∈ R\{−1}. ]

b) Find all values of k, such that the vectors of the set S span R3, i.e.

R3 = span {S}.

[Answer: All k ∈ R\{−1}. ]
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6. Consider the following three vectors in R3:

u1 =




2
1

−1


 , u2 =




−4
−2
2


 , u3 =




a
b
c


 ,

where a, b and c are real parameters. Consider now the set

S = {u1, u2, u3}

a) Find all real values of the parameters a, b and c, such that S is a linearly
dependent set in R3.

[Answer: S is a linearly dependent set for all a, b, c ∈ R. ]

b) Find all values of the parameters a, b and c, such that S spans a line � in R3

and give this line explicitly in parametric form in terms of one parameter.

[Answer: S will span a line � in R3 if and only if u3 = tu1, i.e.



a
b
c


 =




2t
t

−t


 for all t ∈ R.

Then a parametric equation for � takes the form

� :




x = 2t

y = t

z = −t for all t ∈ R. ]

7. Consider the following vectors in R3:

u1 =




2
1

−1


 , u2 =




−4
−2
2


 , u3 =




k
−3
3




b =




−4
−1
1


 , c =




−4
−3
2


 ,

where k is an unspecified real parameter. Consider also the set

S = {u1, u2, u3}.
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a) Find all real value of k, such that the set S spans a plane W in R3. That is,
find all k ∈ R, such that

W = span{S}.

Give the equation of the plane W .

[Answer: The vectors of the set S span a plane W for all k ∈ R\{−6} and
the equation of the plane W is y + z = 0. ]

b) For which value(s) of k is the system

[u1 u2 u3]x = b

consistent? Does Q = {u1, u2, u3} span a plane in R3 for any of your obtained
k values and, if so, is b a vector in this plane?

[Answer: The system is consistent for all k ∈ R\{−6}. The vectors in the
set Q span a plane in R3 for all k ∈ R\{−6}. Moreover b is a vector in this
plane. ]

c) For which value(s) of k is the system

[u1 u3]x = c

consistent? Does Q = {u1, u3} span a plane in R3 for any of your obtained k
values and, if so, is c a vector in this plane?

[Answer: The system is inconsistent for all k ∈ R. The vectors in the set Q
span a plane in R3 for all k ∈ R\{−6}. Note: c is not a vector in this plane. ]

d) For which value(s) of k is the system

[u1 u2 u3]x = c

consistent? Does Q = {u1, u2, u3} span a plane in R3 for any of your k values
and, if so, is c a vector in this plane?

[Answer: The system is inconsistent for all k ∈ R. The vectors in the set Q
span a plane in R3 for all k ∈ R\{−6}. Note: c is not a vector in this plane. ]

e) Is the system

[u1 u2]x = c

consistent?

[Answer: The system is inconsistent. ]
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8. Consider a set S = {u1, u2, u3} with the following vectors in R3:

u1 =




3
6
2


 , u2 =




−1
0
1


 , u3 =




3
k
7


 ,

where k is an unspecified real parameter.

a) Find all values for k, such that S spans R3, i.e. find all values for k, such that

R3 = span {S}.

[Answer: For all k ∈ R\{12}. ]

b) Find all values for k, such that S spans a plane Π in R3 and find the equation
of that plane.

[Answer: For k = 12 the plane Π is 6x− 5y + 6z = 0. ]

c) Find all values for α, such that the vector

v =




8
6
α




is in the plane Π spanned by the vectors in the set S.

[Answer: v ∈ Π : 6x− 5y + 6z = 0 if and only if α = −3. ]

9. Consider the set of vectors S = {u1, u2, u3, u4} in R4 with

u1 =




1
1

−2
−3


 , u2 =




−1
−9
k
11


 , u3 =




−1
3
2

−1


 , u4 =




k
−10
−4
6


 ,

where k is an unspecified real parameter.

a) Find all values of k, such that S is a linearly independent set.

[Answer: S is a linearly independent set for all k ∈ R\{2}. ]
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b) Find all values of k, for which S is linearly dependent and list all possible
subsets of two linearly independent vectors in S with their corresponding k
values.

[Answer: S is a linearly dependent set for k = 2 and for this value of k there
exists three linearly independent subsets containing two vectors, namely

S1 = {u1, u2}, S2 = {u1, u3}, S3 = {u1, u4}. ]

c) Does there exist values of k for which there exists a subset of vectors in S that
contains three linearly independent vectors?

[Answer: No. ]
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Chapter 4

Linear Transformations in
Euclidean spaces

The aim of this chapter:

We treat linear transformations that act between Euclidean spaces Rn and Rm and de-
scribe the relation of such transformations to systems of linear equations. We introduce
the so-called standard matrix, which gives a unique and complete description of linear
transformations. We discuss many examples of linear transformations, we show how to
derive their standard matrices and how to compose linear transformations. We introduce
injective transformations and surjective transformations, and invesitgate invertible linear
transformations that map vectors in the same Euclidean space.

4.1 Linear transformations: domain and range

In this section we address linear transformations and give several examples, where we also
discuss the domain and the range of such transformations.

Theoretical Remarks 4.1.

Consider a transformation (or mapping) T that map a subset DT of vectors from Rn,
called the domain of T , to vectors in Rm. This is denoted by

T : DT ⊆ Rn → Rm.

Let x ∈ DT . Then we write

T : x �→ T (x) ∈ Rm,

where T (x) is known as the image of x under T .

1. The co-domain of T : DT ⊆ Rn → Rm, denoted by CT , is the Euclidean space Rm.
See Figure 4.1.

163
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Figure 4.1: The domain, co-domain and range of a transformation T : DT ⊆ Rn → Rm.

2. The range of the transformation T : DT ⊆ Rn → Rm, denoted by RT , consists of a
subset of vectors in Rm, denoted by RT , namely all those vectors in the co-domain
Rm that are the images of all vectors x in DT . Hence RT ⊆ Rm. See Figure 4.1.

3. A transformation T : Rn → Rm is known as a linear transformation with the
domain Rn if it satisfies the following two conditions:

Figure 4.2: A linear transformation T : Rn → Rm.

a) T (u+ v) = T (u) + T (v) for all u ∈ Rn and all u ∈ Rn (see Figure 4.2);

b) T (cu) = c T (u) for all u ∈ Rn and all c ∈ R (see Figure 4.2).
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4. Let T : Rn → Rm be a linear transformation with domain Rn. Then we have the
following

Properties:

a) The zero-vector 0n of Rn is mapped to the zero-vector 0m of Rm.
That is T (0n) = 0m.

b) T (c1u+ c2v) = c1 T (u) + c2 T (v) for all u ∈ Rn, all v ∈ Rn, all c1 ∈ R
and all c2 ∈ R.

Problem 4.1.1.

Consider the transformation T : R2 → R3, such that

T : (x1, x2) �→ (x1 + x2, 3x1 + x2, x1 − x2) for all x1, x2 ∈ R.

a) Show that T is a linear transformation.

b) What is the domain, the co-domain and the range of T .

c) Find T (1,−2).
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Solution 4.1.1.

a) Consider two arbitrary vectors in R2, say

x = (x1, x2) and y = (y1, y2).

To establish whether T is linear, we need to show that T (x+y) = T (x) + T (y) and
T (cx) = c T (x) holds for all c ∈ R. For the first condition we have

T (x+ y) = (x1 + y1 + x2 + y2, 3(x1 + y1) + x2 + y2, x1 + y1 − (x2 + y2))

= (x1 + x2 + y1 + y2, 3x1 + x2 + 3y1 + y2, x1 − x2 + y1 − y2)

Moreover, we have

T (x) + T (y) = (x1 + x2, 3x1 + x2, x1 − x2) + (y1 + y2, 3y1 + y2, y1 − y2)

= (x1 + x2 + y1 + y2, 3x1 + x2 + 3y1 + y2, x1 − x2 + y1 − y2)

= T (x+ y).

For the second condition we have

T (cx) = (c x1 + c x2, 3c x1 + c x2, c x1 − c x2)

= c (x1 + x2, 3x1 + x2, x1 − x2)

= c T (x) for all c ∈ R.

We conclude that T is a linear transformation.

b) The domain DT is obviously R2 as we allow all vectors (x1, x2) to be mapped by T .
The co-domain of T is R3, as vectors are being mapped from R2 to R3. To establish
the range of T we need to find all the images in R3 of (x1, x2) under T . For this,
it is more convenient to write the transformation in matrix equation form. We note
that, for every x1 and x2, the linear transformation T : (x1, x2) �→ (b1, b2, b3) maps
as follows:

x1 + x2 = b1

3x1 + x2 = b2

x1 − x2 = b3.

Hence we have the matrix equation

Ax = b,
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where

A =




1 1
3 1
1 −1


 , b =




b1
b2
b3


 ∈ R3, x =

(
x1
x2

)
∈ R2.

The given linear transformation T can therefore be written as follows:

T : x �→ Ax = b for all x ∈ R2.

So to find the range of T , we need to find all b ∈ R3 for which the system Ax = b
is consistent. The associated augmented matrix and some of its row equivalent
matrices are




1 1 b1
3 1 b2
1 −1 b3


 ∼




1 1 b1
0 −2 b2 − 3b1
0 −2 b3 − b1


 ∼




1 1 b1
0 −2 b2 − 3b1
0 0 2b1 − b2 + b3


 .

From the above echelon matrix we conclude that the system Ax = b is consistent if
and only if

2b1 − b2 + b3 = 0.

We let b2 = t and b3 = s, where t and s are arbitrary real parameters. Then we have

b =




t/2− s/2
t
s


 = t




1/2
1
0


+ s




−1/2
0
1


 for all t, s ∈ R.

Hence we conclude that all the vectors in R3 that are images of x under T belong
to the spanning set span {v1, v2}, where

v1 =




1/2
1
0


 , v2 =




−1/2
0
1




so that the range RT of T is a subset of R3, given by

RT = span {v1, v2}.

c) We find T (1, −2):

T : (1, −2) �→ Ax =




1 1
3 1
1 −1




(
1

−2

)
=




−1
1
3


 ∈ RT .
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Problem 4.1.2.

Consider the transformation T : R3 → R2, such that

T : (x1, x2, x3) �→ (3x1, 2x2 + x3 + 1) for all x1, x2, x3 ∈ R.

Is T a linear transformation? Explain your answer.

Solution 4.1.2.

We investigate T (x+ y), where

x = (x1, x2, x3), y = (y1, y2, y3).

We have

T (x+ y) = (3(x1 + y1), 2(x2 + y2) + x3 + y3 + 1),

and

T (x) + T (y) = (3x1, 2x2 + x3 + 1) + (3y1, 2y2 + y3 + 1)

= (3(x1 + y1), 2(x2 + y2) + x3 + y3 + 2).

Thus T (x+ y) �= T (x) + T (y), so that T is not a linear transformation.

Problem 4.1.3.

Consider the transformation T : Rn → Rm, such that

T : x �→ T (x) = Ax for all x ∈ Rn,

where A is any m× n matrix. Show that T is a linear transformation.

Solution 4.1.3.

Consider T : Rn → Rm, such that

T : x �→ T (x) = Ax for all x ∈ Rn,

where A is an m × n matrix. We show that T is a linear transformation for any given
m× n matrix. Consider any two vectors x ∈ Rn and y ∈ Rn. Then

T (x+ y) = A(x+ y)

= Ax+Ay

= T (x) + T (y).
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Also

T (cx) = A(cx)

= c (Ax)

= c T (x) for all c ∈ R.

We conclude that T is a linear transformation for any m× n matrix A.

4.2 Standard matrices and composite transformations

In this section we show how to find the standard matrix for a given linear transformation
T . The standard matrix, which can be derived in terms of the standard basis vectors
of the domain of T , gives a unique description of T . We also discuss linear composite
tansformations, which result when several linear transformations are composed.
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Theoretical Remarks 4.2.

1. The Standard matrix of T :

Let T : Rn → Rm be a linear transformation that map all vectors in Rn to vectors
in Rm. Then there exists a unique m× n matrix A, such that

T : x �→ T (x) = Ax ∈ Rm

for every x ∈ Rn. This matix A is known as the standard matrix of T . In
particular,

A = [T (e1) T (e2) · · · T (en)],

where {e1, e2, · · · , en} is the standard basis of Rn with

e1 =




1
0
...
0


 , e2 =




0
1
...
0


 , . . . , en =




0
0
...
1


 .

Note: The above derivation for A stems from the fact that every vector x =
(x1, x2, . . . , xn) ∈ Rn, can uniquely be written as a linear combination of the
standard basis vectors as follows:

x = x1e1 + x2e2 + · · ·+ xnen.

2. Consider two linear transformations, T1 and T2, such that

T1 : Rn → Rm, T2 : Rm → Rp.

See Figure 4.3.

Assume that A1 is the m × n standard matrix for T1 and that A2 is the p × m
standard matrix for T2. Consider

T1 : x �→ y = T1(x) = A1x ∈ Rm for all x ∈ Rn and

T2 : y �→ z = T2(y) = A2y ∈ Rp,

where y is the image of x under T1 and z is the image of y under T2. Then z is the
image of x under the new linear transformation T , which is the composition of the two
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Figure 4.3: The linear composite transformation T2 ◦ T1.

linear transformations T1 followed by T2, known as the composite transformation,
denoted by T2 ◦ T1. We write

T = T2 ◦ T1 : Rn → Rp,

so that, for every x ∈ Rn, we have

T = T2 ◦ T1 : x �→ T2(T1(x)) = T2(A1x) = A2(A1x) = (A2A1)x ∈ Rp.

The standard matrix of the composite transformation T2 ◦ T1 is the matrix product
A2A1, which is a p× n matrix.

Problem 4.2.1.

Consider the following two linear transformations that map vectors in R2:

The transformation T1 : R2 → R2, where T1 reflects every vector in R2 about the line
y = 4x.

The transformation T2 : R2 → R2, where T2 rotates every vector in R2 counter-clockwise
with angle π/3 about the origin (0, 0).

a) Find the standard matrix for T1.

b) Find the standard matrix for T2.

c) Find the standard matrix of the following composite transformations:

T2 ◦ T1, T1 ◦ T2, T1 ◦ T1, T2 ◦ T2.
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Solution 4.2.1.

a) Suggestion: Review again the Problems in Chapter 1, where a vector is reflected
about a line.

Let A1 denote the standard matrix for T1, so that

T1 : x �→ A1x for all x ∈ R2,

where

A1 = [T1(e1) T1(e2)], e1 =

(
1
0

)
, e2 =

(
0
1

)
.

First we find the reflection of e1 about the line y = 4x, i.e. we need to calculate
T1(e1):

Figure 4.4: Reflection of e1 about y = 4x.

Following Figure 4.4 we have

T1(e1) +
−−→
CB +

−−→
BA = e1
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Since
−−→
CB =

−−→
BA, we have

T1(e1) = e1 − 2
−−→
BA

Moreover,

−−→
BA = e1 −

−−→
OB,

where
−−→
OB is the orthogonal projection of e1 onto the line � given by the equation

y = 4x, i.e. the orthogonal projection of e1 onto any vector on the line �. To find a
vector on � (say v), we let x = 1. Then y = 4, so that v = (1, 4) and

−−→
OB = projv e1 =

e1 · v
v · v

v

=
(1)(1) + (0)(4)

12 + 42
(1, 4)

=
1

17
(1, 4).

Thus we have

−−→
BA = (1, 0)− 1

17
(1, 4) =

1

17
(16,−4) and T1(e1) = (1, 0)− 2

17
(16,−4) =

1

17
(−15, 8),

or, in column matrix form

T1(e1) =
1

17

(
−15

8

)
.

Next we find the reflection of e2 about the line y = 4x, i.e. we need to calculate
T1(e2):

Following Figure 4.5 we have

T1(e2) = e2 +
−−→
AB +

−−→
BC,

where
−−→
AB =

−−→
BC. Thus

T1(e2) = e2 + 2
−−→
AB.

Moreover,

−−→
AB =

−−→
OB − e2,

where

−−→
OB = projv e2, with v = (1, 4).
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Figure 4.5: Reflection of e2 about y = 4x.

Thus

−−→
OB = projv e2 =

e2 · v
v · v

v

=
(0)(1) + (1)(4)

12 + 42
(1, 4)

=
4

17
(1, 4)

and

−−→
AB =

4

17
(1, 4)− (0, 1) =

1

17
(4,−1),

so that

T1(e2) = (0, 1) +
2

17
(4,−1) =

1

17
(8, 15).

In column matrix form, we have

T1(e2) =
1

17

(
8
15

)
.
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The standard matrix A1 for T1 is thus

A1 =
1

17

(
−15 8

8 15

)
.

b) Let A2 denote the standard matrix for the transformation T2 : R2 → R2, where T2

rotates every vector in R2 counter-clockwise with angle ϕ = π/3 about the origin
(0, 0). Then

T2 : x �→ A2x for all x ∈ R2,

where

A2 = [T2(e1) T2(e2)], e1 =

(
1
0

)
, e2 =

(
0
1

)
.

In Figure 4.6 we depict the counter-clockwise rotation of e1 and e2 about (0, 0).

Figure 4.6: Counter-clockwise rotation with angle ϕ of e1 and e2 about (0, 0).

Following Figure 4.6 we have

T2(e1) =

(
cosϕ
sinϕ

)
, T2(e2) =

(
− sinϕ
cosϕ

)
.

Thus the standard matrix for T2 for the counter-clockwise rotation with angle ϕ
about (0, 0) is

A2 =

(
cosϕ − sinϕ
sinϕ cosϕ

)
.
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For the angle ϕ = π/3 we have

A2 =

(
1/2 −

√
3/2

√
3/2 1/2

)
.

c) The standard matrices for the listed composite transformations are given below:

T2 ◦ T1 : x �→ (A2A1)x for all x ∈ R2

T1 ◦ T2 : x �→ (A1A2)x for all x ∈ R2

T1 ◦ T1 : x �→ (A2
1)x for all x ∈ R2

T2 ◦ T2 : x �→ (A2
2)x for all x ∈ R2.

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book  
is made with 
SetaPDF

http://s.bookboon.com/Setasign


PROBLEMS, THEORY AND SOLUTIONS IN 
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE

177

Linear transformations in Euclidean spaces

4.2. STANDARD MATRICES AND COMPOSITE TRANSFORMATIONS 177

Problem 4.2.2.

Consider the linear transformation T : R2 → R2, where T projects every vector in R2

orthogonally onto the line y = k x for any k ∈ R.

a) Find the standard matrix of T .

b) Let k = −1/2, i.e. consider the line y = −x/2, and find the image of the point (1, 2)
under T . That is, find T (1, 2).

Solution 4.2.2.

a) Suggestion: Review again the Problems in Chapter 1, where a vector is projected
onto another vector.

Let A denote the standard matrix for the orthogonal projection of every vector
x ∈ R2 onto the line y = kx for all k ∈ R. Then

T : x �→ T (x) = Ax,

where

A = [T (e1) T (e2)], e1 =

(
1
0

)
, e2 =

(
0
1

)
.

To find T (e1) we need to project e1 orthogonally onto any position vector v that is
lying on the line y = kx. See Figure 4.7.

Let x = 1. Then y = k, so that

T (e1) = projv e1 = (e1 · v̂) v̂ =

(
e1 · v
‖v‖2

)
v,

where

v = (1, k) ≡
(

1
k

)
, v̂ =

v

‖v‖
.

Now

e1 · v = (1, 0) · (1, k) = 1

‖v‖2 = (1, k) · (1, k) = 1 + k2,

so that

T (e1) =
1

1 + k2

(
1
k

)
.
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Figure 4.7: The orthogonal projection of e1 onto y = kx.

To find T (e2) we project e2 orthogonally onto vector v = (1, k). That is

T (e2) = projv e2 = (e2 · v̂) v̂ =

(
e2 · v
‖v‖2

)
v,

where e2 · v = (0, 1) · (1, k) = k, so that

T (e2) =
k

1 + k2

(
1
k

)
.

The standard matrix of T is therefore

A = [T (e1) T (e2)] =
1

1 + k2

(
1 k
k k2

)
.

b) Using the result in part a), the standard matrix for the orthogonal projection of
every vector x ∈ R2 onto the line y = −x/2 is

A =

(
4/5 −2/5

−2/5 1/5

)
.

Then

T (1, 2) :

(
1
2

)
�→ A

(
1
2

)
=

(
4/5 −2/5

−2/5 1/5

)(
1
2

)
=

(
0
0

)
.
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Problem 4.2.3.

Consider the linear transformation T : R3 → R3, where T reflects every vector in R3 about
the line � given by

� :




x = 2t

y = t

z = −t for all t ∈ R.

a) Find the standard matrix of T .

b) Find the image of the point (1, 2, 3) under T . That is, find T (1, 2, 3).
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Solution 4.2.3.

a) Let A denote the standard matrix of the transformation T that reflects every vector
x ∈ R3 about the line

� :




x = 2t

y = t

z = −t for all t ∈ R.

Then

A = [T (e1) T (e2) T (e3)]

where {e1, e2, e3} is the standard basis for R3.

To calculate T (e1), we project e1 onto any non-zero vector v with coordinates on
the line �. To find such a vector, we let t = 1 in the above parametric equation for
� and obtain

v =




2
1

−1


 .

Following Figure 4.8 we have

T (e1) = e1 + 2
−−→
AB,

where

−−→
AB =

−−→
OB − e1

and
−−→
OB = projv e1 =

(
e1 · v
‖v‖2

)
v.

Thus we have

T (e1) = 2 projv e1 − e1

= 2

(
e1 · v
‖v‖2

)
v − e1

=
1

3




1
2

−2


 .
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Figure 4.8: The reflection of e1 about the given line � in R3.

In a similar way we find T (e2) and T (e3). We obtain

T (e2) = 2 projv e2 − e2 =
1

3




2
−2
−1




T (e3) = 2 projv e3 − e3 =
1

3




−2
−1
−2


 .

The standard matrix A of T is therefore

A =
1

3




1 2 −2
2 −2 −1

−2 −1 −2


 .

A point with coordinates (x, y, z) will therefore map as follows under this reflection
transformation:

T (x, y, z) :




x
y
z


 �→ A




x
y
z


 =

1

3




1 2 −2
2 −2 −1

−2 −1 −2







x
y
z


 =

1

3




x+ 2y − 2z
2x− 2y − z

−2x− y − 2z


 .
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b) From part a) above we have

T (1, 2, 3) :




1
2
3


 �→ A




1
2
3


 =

1

3




1 2 −2
2 −2 −1

−2 −1 −2







1
2
3


 = −1

3




1
5

10


 .

Problem 4.2.4.

Let � be a line in R3 that passes through the origin (0, 0, 0). Consider now the transfor-
mation T1 : R3 → R3 that projects every vector x ∈ R3 orthogonally onto � as well as the
transformation T2 : R3 → R3 that reflects every vector x ∈ R3 about the same line �. Find
the relation between the standard matrix of T1 and the standard matrix of T2.

Solution 4.2.4.

Let A1 denote the standard matrix for the orthogonal projection transformation T1 onto
�, i.e.

T1 : x �→ T1(x) = A1x for all x ∈ R3

and let A2 denote the standard matrix for the reflection transformation T2 about �, i.e.

T2 : x �→ T2(x) = A2x for all x ∈ R3.

As usual we consider the transformation of the standard basis vectors {e1, e2, e3}. Re-
ferring to Figure 4.9, we have by vector addition,

e1 +
−−−→
P1Q1 = T1(e1) and e1 + 2

−−−→
P1Q1 = T2(e1).

Thus we obtain the relation

T2(e1) = 2T1(e1)− e1.

Referring to Figure 4.10, we have

e2 +
−−−→
P2Q2 = T1(e2) and e2 + 2

−−−→
P2Q2 = T2(e2),

which gives the relation

T2(e2) = 2T1(e2)− e2.

Referring to Figure 4.11, we have

e3 +
−−−→
P3Q3 = T1(e3) and e3 + 2

−−−→
P3Q3 = T2(e3),
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Figure 4.9: The reflection and orthogonal projection of e1 about the line �.

which gives the relation

T2(e3) = 2T1(e3)− e3.

The standard matrix A1 for T1 is

A1 = [T1(e1) T1(e2) T1(e3)]

and the standard matrix A2 for T2 is

A2 = [T2(e1) T2(e2) T2(e3)]

= [2T1(e1)− e1 2T1(e2)− e2 2T1(e3)− e3]

= 2 [T1(e1) T1(e2) T1(e3)]− [e1 e2 e3].

Thus the relation between A1 and A2 is

A2 = 2A1 − I3,

where I3 is the 3× 3 identity matrix.
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Figure 4.10: The reflection and orthogonal projection of e2 about the line �.

Problem 4.2.5.

Let

A =




1/2 1/2 1/
√
2

1/2 −5/6 1/(3
√
2)

1/
√
2 1/(3

√
2) −2/3




be the standard matrix for the transformation T that reflects every vector x ∈ R3 about
the line �, where � is a line in R3 that passes through the origin (0, 0, 0). Find a parametric
equation for �.
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√
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Figure 4.11: The reflection and orthogonal projection of e3 about the line �.

Solution 4.2.5.

Since the line � passes through (0, 0, 0), it has the form

� :




x = a t

y = b t

z = c t for all t ∈ R,

where v = (a, b, c) is the direction of � and this is also a vector that is lying on �. We now
have to find a, b and c explicitly, such that T reflects every vector x ∈ R3 about � with
the given standard matrix A. For the standard basis {e1, e2, e3}, we have

A = [T (e1) T (e2) T (e3)],

so that

T (e1) =




1/2

1/2

1/
√
2


 , T (e2) =




1/2

−5/6

1/(3
√
2)


 , T (e3) =




1/
√
2

1/(3
√
2)

−2/3


 .

Referring to Figure 4.12 we have

w1 = projv e1 and w1 = projv T (e1).
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Figure 4.12: The reflection of e1 about the line �.

This means that(
T (e1) · v
v · v

)
v =

(e1 · v
v · v

)
v or T (e1) · v = e1 · v.

For the above given T (e1) and v = (a, b, c) we obtain

1

2
a+

1

2
b+

1√
2
c = a or a− b−

√
2c = 0.

Referring to Figure 4.13 we have

w2 = projv e2 and w2 = projv T (e2).

This means that(
T (e2) · v
v · v

)
v =

(e2 · v
v · v

)
v or T (e2) · v = e2 · v.

For the above given T (e2) and v = (a, b, c) we obtain

1

2
a− 5

6
b+

1

3
√
2
c = b or a− 11

3
b+

√
2

3
c = 0.

Referring to Figure 4.14 we have

w3 = projv e3 and w3 = projv T (e3).
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Figure 4.13: The reflection of e2 about the line �.

Figure 4.14: The reflection of e3 about the line �.
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This means that
(
T (e3) · v
v · v

)
v =

(e3 · v
v · v

)
v or T (e3) · v = e3 · v.

For the above given T (e3) and v = (a, b, c) we obtain

1√
2
a+

1

3
√
2
b− 2

3
c = c or a+

1

3
b− 5

√
2

3
c = 0.

Thus we now have three conditions for the unknown constants a, b anb c, namely

a− b−
√
2c = 0

a− 11

3
b+

√
2

3
c = 0

a+
1

3
b− 5

√
2

3
c = 0,

or in matrix form



1 −1 −
√
2

1 −11/3
√
2/3

1 1/3 −5
√
2/3







a

b

c


 =




0

0

0


 .

Solving this system by Gauss elimination we obtain the solution

a =
3√
2
s, b =

1√
2
s, c = s,

where s is a free parameter. We let s =
√
2, so the parametric equation of � becomes

� :




x = 3t

y = t

z =
√
2 t for all t ∈ R.

Download free eBooks at bookboon.com



PROBLEMS, THEORY AND SOLUTIONS IN 
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE

189

Linear transformations in Euclidean spaces
4.2. STANDARD MATRICES AND COMPOSITE TRANSFORMATIONS 189

Problem 4.2.6.

Find the standard matrix for the linear transformation T : R3 → R3, where T projects
every vector in R3 orthogonally onto the xy-plane.

Solution 4.2.6.

The standard matrix A for the transformation T : R3 → R3 that projects every x ∈ R3

orthogonally onto the xy-plane is

A = [T (e1) T (e2) T (e3)]

where {e1, e2, e3} is the standard basis for R3. From Figure 4.15, it should be clear that

T (e1) =




1
0
0


 , T (e2) =




0
1
0


 , T (e3) =




0
0
0


 .

Figure 4.15: The orthogonal projection of x ∈ R3 onto the xy-plane.

Thus the standard matrix A is




1 0 0
0 1 0
0 0 0


 .
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Problem 4.2.7.

Find the standard matrix for T : Rn → Rn, such that

T : x �→ k x

for every x ∈ Rn and any k ∈ R.
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Solution 4.2.7.

We seek the n× n matrix A, such that

T : x �→ Ax = k x

for every x ∈ Rn. Let

x =




x1
x2
...

xn


 .

Then



k 0 0 · · · 0
0 k 0 · · · 0
...

...
0 0 0 · · · k







x1
x2
...

xn


 =




k x1
k x2
...

k xn


 or kInx = k x.

Hence the standard matrix of T is A = k In, where In is the n× n identity matrix.

Problem 4.2.8.

Find the standard matrix for T : R2 → R4, such that

T : x �→ (k1x1, k2x2, (k1 − k2)x1, (k1 + k2)x2)

for every x = (x1, x2) ∈ R2 and any real numbers k1 and k2.

Solution 4.2.8.

We have the transformation T : R2 → R4, such that every x = (x1, x2) ∈ R2 is mapped
to the vector (k1x1, k2x2, (k1 − k2)x1, (k1 + k2)x2) ∈ R4 for any k1, k2 ∈ R. Thus we
seek the 4× 2 matrix A, such that

T :

(
x1
x2

)
�→ A

(
x1
x2

)
=




k1 x1
k2 x2

(k1 − k2)x1
(k1 + k2)x2


 .

Since



k1 0
0 k2

k1 − k2 0
0 k1 + k2




(
x1
x2

)
=




k1 x1
k2 x2

(k1 − k2)x1
(k1 + k2)x2


 ,
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it is clear that the standard matrix of T is

A =




k1 0
0 k2

k1 − k2 0
0 k1 + k2


 .

Problem 4.2.9.

Consider three linear transformations, T1, T2 and T3, which map all vectors in R3 to
vectors in R3 as follows:
T1 rotates every vector in R3 counter-clockwise by angle θ1 about the z-axis;
T2 rotates every vector in R3 counter-clockwise by angle θ2 about the y-axis;
T3 rotates every vector in R3 counter-clockwise by angle θ3 about the x-axis.

a) Find the standard matrices for T1, T2 and T3.

b) Find the standard matrix for the composite transformation T = T3 ◦ T2 ◦ T1.

c) Consider a vector u = (x, y, z), where (x, y, z) is a point on the sphere with centre at
(0, 0, 0) and radius a > 0. Calculate T (u), where T is the composite transformation
in part b) and show that T (u) is a vector with coordinates on the same sphere.

Solution 4.2.9.

a) Let T1 : x �→ A1x denote the transformation that rotates every vector x ∈ R3

counter-clockwise about the z-axis by the angle θ1. Then

A1 = [T1(e1) T1(e2) T1(e3)],

where

T1(e1) =




cos θ1
sin θ1
0


 , T1(e2) =




− sin θ1
cos θ1
0


 , T1(e3) =




0
0
1


 .

Thus the standard matrix for T1 is

A1 =




cos θ1 − sin θ1 0
sin θ1 cos θ1 0
0 0 1


 .

Let T2 : x �→ A2x denote the transformation that rotates every vector x ∈ R3

counter-clockwise about the y-axis by the angle θ2. Then

A2 = [T2(e1) T2(e2) T2(e3)],
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where

T2(e1) =




cos θ2
0

sin θ2


 , T2(e2) =




0
1
0


 , T2(e3) =




− sin θ2
0
cos θ2


 .

Thus the standard matrix for T2 is

A2 =




cos θ2 0 − sin θ2
0 1 0

sin θ2 0 cos θ2


 .

Let T3 : x �→ A3x denote the transformation that rotates every vector x ∈ R3

counter-clockwise about the x-axis by the angle θ3. Then

A3 = [T3(e1) T3(e2) T3(e3)],

where

T3(e1) =




1
0
0


 , T3(e2) =




0
cos θ3
sin θ3


 , T3(e3) =




0
− sin θ3
cos θ3


 .

Thus the standard matrix for T3 is

A3 =




1 0 0
0 cos θ3 − sin θ3
0 sin θ3 cos θ3


 .

b) For the composite transformation

T = T3 ◦ T2 ◦ T1, T : x �→ Ax

the standard matrix A is

A = A3A2A1,

where A1, A2 and A3 are given in part a) above. Thus

A =




1 0 0
0 cos θ3 − sin θ3
0 sin θ3 cos θ3







cos θ2 0 − sin θ2
0 1 0

sin θ2 0 cos θ2







cos θ1 − sin θ1 0
sin θ1 cos θ1 0
0 0 1




=




cos θ1 cos θ2 − sin θ1 cos θ2 − sin θ2

sin θ1 cos θ3 − cos θ1 sin θ2 sin θ3 cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3 − cos θ2 sin θ3

sin θ1 sin θ3 + cos θ1 sin θ2 cos θ3 cos θ1 sin θ3 − sin θ1 sin θ2 cos θ3 cos θ2 cos θ3


 .
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c) Let u be a vector on the sphere with radius a > 0, given by the equation

x2 + y2 + z2 = a2.

Then u has the following coordinates:

u = (x, y,
√

a2 − x2 − y2).

We now map u by T = T3 ◦ T2 ◦ T1, i.e.

T : u �→ T (u) = Au,

where A is the standard matrix given in part b). This leads to

Au = w = (w1, w2, w3),

where

w1 = x cos θ1 cos θ2 − y sin θ1 cos θ2 −
√
a2 − x2 − y2 sin θ2

w2 = x (sin θ1 cos θ3 − cos θ1 sin θ2 sin θ3) + y (cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3)

−
√

a2 − x2 − y2 cos θ2 sin θ3

w3 = x (sin θ1 sin θ3 + cos θ1 sin θ2 cos θ3) + y (cos θ1 sin θ3 − sin θ1 sin θ2 cos θ3)

+
√

a2 − x2 − y2 cos θ2 cos θ3.

We calculate w2
1 + w2

2 + w2
3 and obtain

w2
1 + w2

2 + w2
3 = a2,

which shows that w is a vector on the sphere with radius a > 0 and centre (0, 0, 0).

Problem 4.2.10.

a) Consider the linear transformation T : R3 → R3, where T projects every vector
x ∈ R3 orthogonally onto the plane

Π : ax+ by + cz = 0.

Find the standard matrix for T .
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b) Find a parametric equation of the line �̂, where �̂ is the orthogonal projection of the
line

� :




x = t+ 2

y = −t+ 1

z = 3t− 1 for all t ∈ R

onto the plane

Π : x+ 2y − 3z = 0.
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Solution 4.2.10.

a) Let A be the standard matrix of T . For the standard basis {e1, e2, e3} we then
have

A = [T (e1) T (e2) T (e3)].

The normal vector n of the plane Π is

n = (a, b, c).

Referring to Figure 4.16 we have

Figure 4.16: The orthogonal projection of e1 onto the plane Π.

T (e1) +
−−−→
Q1P1 = e1,

where

−−−→
Q1P1 = projn e1 =

(e1 · n
n · n

)
n =

a

a2 + b2 + c2




a
b
c


 .

Download free eBooks at bookboon.com



PROBLEMS, THEORY AND SOLUTIONS IN 
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE

197

Linear transformations in Euclidean spaces
4.2. STANDARD MATRICES AND COMPOSITE TRANSFORMATIONS 197

Therefore

T (e1) =




1
0
0


− a

a2 + b2 + c2




a
b
c


 =

1

a2 + b2 + c2




b2 + c2

−ab
−ac


 .

Referring to Figure 4.17 we have

T (e2) +
−−−→
Q2P2 = e2,

where

−−−→
Q2P2 = projn e2 =

(e2 · n
n · n

)
n =

b

a2 + b2 + c2




a
b
c


 .

Figure 4.17: The orthogonal projection of e2 onto the plane Π.

Therefore

T (e2) =




0
1
0


− b

a2 + b2 + c2




a
b
c


 =

1

a2 + b2 + c2




−ab
a2 + c2

−bc


 .
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Referring to Figure 4.18 we have

T (e3) +
−−−→
Q3P3 = e3,

where

−−−→
Q3P3 = projn e3 =

(e3 · n
n · n

)
n =

c

a2 + b2 + c2




a
b
c


 .

Figure 4.18: The orthogonal projection of e3 onto the plane Π.

Therefore

T (e3) =




0
0
1


− c

a2 + b2 + c2




a
b
c


 =

1

a2 + b2 + c2




−ac
−bc

a2 + b2


 .

The standard matrix A for T is thus

A = [T (e1) T (e2) T (e3)] =
1

a2 + b2 + c2




b2 + c2 −ab −ac
−ab a2 + c2 −bc
−ac −bc a2 + b2


 .
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b) To find the projection of the given line � onto the given plane Π, we choose any two
points P and Q on � and project their position vectors onto Π using the standard
matrix that was dertived in part a). We refer to Figure 4.19.

Figure 4.19: The orthogonal projection of � onto the plane Π.

We choose the following two points on �: P : (2, 1,−1) that corresponds to the
parameter value t = 0 and Q : (3, 0, 2) that corresponds to t = 1. Using the
standard matrix A of the orthogonal projection of any vector in R3 onto the plane
Π given in part a), we obtain for our plane

Π : x+ 2y − 3z = 0

the standard matrix

A =
1

14




13 −2 3
−2 10 6
3 6 5


 .

Now

−−→
OP1 =

1

14




13 −2 3
−2 10 6
3 6 5







2
1

−1


 =

1

2




3
0
1



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and

−−→
OQ1 =

1

14




13 −2 3
−2 10 6
3 6 5







3
0
2


 =

1

14




45
6
19


 .

We now have vector
−−−→
P1Q1, namely

−−−→
P1Q1 = (

45

14
− 3

2
,
3

7
− 0,

19

14
− 1

2
) = (

12

7
,
3

7
,
6

7
).

The vector
−−−→
P1Q1 gives the direction of the line �̂ and, using the point P1, we obtain

the following parametrized equation of the line �̂:

�̂ :




x =
12

7
t+

3

2

y =
3

7
t

z =
6

7
t+

1

2
for all t ∈ R.
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4.3 Invertible linear transformations

In this section we discuss surjective and injective linear transformations and study invert-
ible linear transformations.

Theoretical Remarks 4.3.

1. A linear transformation T : Rn → Rm, where

T : x �→ b

is said to be surjective onto a subset W of Rm (or just onto W ), if each vector
b ∈ W is the image of at least one vector x ∈ Rn.

2. A linear transformation T : Rn → Rm, where

T : x �→ b,

is said to be injective on a subset W of Rm (or just one-to-one on W ), if each
vector b ∈ W is the image of exactly one vector x ∈ Rn.

3. Let T : Rn → Rm be a linear transformation with standard matrix A, i.e.

T : x �→ T (x) = Ax ∈ Rm,

where A is an m× n matrix. Then we have the following

Properties:

a) T is injective on its range RT if and only if

Ax = 0

has only the zero-solution x = 0.

b) T is injective on its range RT if and only if the columns of A form a linearly
independent set of n vectors in Rm. Then

Ax = b

has a unique solution x ∈ Rn.

c) T is surjective onto Rm if and only if the co-domain of T , namely Rm, is the
range RT of T , i.e. if and only if RT = Rm.

d) If T is injective on a set, then T is surjective onto this set.
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Remark: Any linear transformation T : Rn → Rm with standard matrix A =
[a1 a2 · · · an] is always surjective onto its range RT ⊆ Rm and then

RT = span {a1, a2, · · · , an}.

If there exist vectors in the co-domain Rm that are not in RT , then RT �= Rm and
then T is obviously not surjective onto Rm.

4. Assume that T : Rn → Rn is an injective linear transformation on Rn with n×n stan-
dard matrix A. Assume now that there exists another injective linear transformation
T−1 : Rn → Rn, such that

T−1 ◦ T (x) = T ◦ T−1(x) = x for all x ∈ Rn.

Then T−1 is the inverse of T and the standard matrix of T−1 is the inverse matrix
A−1 of A. That is

T−1 : x �→ T−1(x) = A−1x for all x ∈ Rn.

Problem 4.3.1.

Consider the transformation T : R2 → R2 with standard matrix

A =

(
1 0
1 0

)
.

a) Give the domain DT and the range RT of the transformation T .

b) Is the transformatin T surjective and/or injective onto its range RT ? Explain.

c) Is the transformation surjective onto R2? Explain.

Solution 4.3.1.

a) We are given the linear transformation T : R2 → R2 with standard matrix

A =

(
1 0
1 0

)
.

That is

T :

(
x
y

)
�→ A

(
x
y

)
=

(
1 0
1 0

)(
x
y

)
=

(
x
x

)
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Figure 4.20: A surjective transformation T onto y = x that is not injective.

for all x ∈ R and all y ∈ R. See Figure 4.20.

The domain DT of T therefore consists of all vectors in R2, i.e.

DT = {
(

x
y

)
for all x, y ∈ R}

= span {
(

1
0

)
,

(
0
1

)
} = R2.

The range RT of T consists of all those vectors in R2 which lie on the line y = x, i.e

RT = {
(

k
k

)
for all k ∈ R}

= span {
(

1
1

)
} ⊂ R2.

b) The transformation is surjective onto its range RT (the line y = x), as every vector
in RT is the image of at least one vector in the domain DT = R2. However, T is not
injective, as there exist more than one vector in R2 that map to the same vector in
RT . In fact there exist infinitely many vectors in R2 that map to the same point
in RT , for every point in RT . For example, both the vectors (1, 2) and (1, 3) are
mapped to the vector (1, 1) by T . Moreover, the vectors (1, k) are all mapped to
(1, 1) for all k ∈ R.

c) The transformation T is not surjective onto R2, since only the vectors on the line
y = x are images under T . So not every vector in R2 is an image under T . For
example, the vector v = (1, 2) is not an image under T for any point in R2.
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Problem 4.3.2.

Consider the transformation T : R3 → R3, such that

T : (x1, x2, x3) �→ (x1 − x2 + 5x3, x1 + 2x2 − 4x3, 2x1 + 3x2 − 5x3).

a) Prove that T is a linear transformation.

b) Find the standard matrix of T .

c) What is the domain DT and the range RT of T . Give DT and RT in terms of
spanning sets.

d) Is T surjective onto R3? Explain.

e) Is T injective on its range RT ? Explain.
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Solution 4.3.2.

a) We prove that the transformation T , given by

T :




x1
x2
x3


 �→




x1 − x2 + 5x3
x1 + 2x2 − 4x3
2x1 + 3x2 − 5x3


 ,

is a linear transformation. Consider two vectors in R3, namely x = (x1, x2, x3) and
y = (y1, y2, y3). Then

T (x) =




x1 − x2 + 5x3
x1 + 2x2 − 4x3
2x1 + 3x2 − 5x3


 , T (y) =




y1 − y2 + 5y3
y1 + 2y2 − 4y3
2y1 + 3y2 − 5y3


 .

We need to show that T (x + y) = T (x) + T (y) and that T (cx) = c T (x) for all x
and y in R3 and all c ∈ R. We have

T (x+ y) =




x1 + y1 − (x2 + y2) + 5(x3 + y3)
x1 + y1 + 2(x2 + y2)− 4(x3 + y3)

2(x1 + y1) + 3(x2 + y2)− 5(x3 + y3)




=




x1 − x2 + 5x3
x1 + 2x2 − 4x3
2x1 + 3x2 − 5x3


+




y1 − y2 + 5y3
y1 + 2y2 − 4y3
2y1 + 3y2 − 5y3




= T (x) + T (y).

Furthermore, we have

T (cx) =




cx1 − cx2 + 5cx3
cx1 + 2cx2 − 4cx3
2cx1 + 3cx2 − 5cx3


 = c




x1 − x2 + 5x3
x1 + 2x2 − 4x3
2x1 + 3x2 − 5x3


 = c T (x) for all c ∈ R.

Since x and y are arbitrary vectors in R3, the above two properties of T hold for all
vectors in R3. This proves that T is a linear transformation.

b) The standard matrix of T is a 3× 3 matrix A, such that

T :




x1
x2
x3


 �→ A




x1
x2
x3


 =




x1 − x2 + 5x3
x1 + 2x2 − 4x3
2x1 + 3x2 − 5x3


 .

Thus the standard matrix is

A =




1 −1 5
1 2 −4
2 3 −5


 .
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c) The domain DT of T consists of all the vectors in R3, since T maps every vector in
R3. That is

DT = span {e1, e2, e3},

where {e1, e2, e3} are the standard basis vectors of R3.

To establish the range RT of T , we need to find all vectors b ∈ R3, such that the
system

Ax = b

is consistent, where A is the standard matrix of T , namely

A =




1 −1 5
1 2 −4
2 3 −5


 .

Let

b =




b1
b2
b3


 .

Then the associated augmented matrix of the above linear system is

[A b] =




1 −1 5 b1
1 2 −4 b2
2 3 −5 b3


 .

Applying elementary row operations to this augmented matrix, we obtain the fol-
lowing row equivalent matrices:




1 −1 5 b1
1 2 −4 b2
2 3 −5 b3


 ∼




1 −1 5 b1
0 3 −9 b2 − b1
0 5 −15 b3 − 2b1




∼




1 −1 5 b1
0 1 −3 b2/3− b1/3
0 0 0 −5b2/3− b1/3 + b3




By the third row of the last row equivalent matrix, we conclude that the given linear
system is consistent if and only if −5b2/3−b1/3+b3 = 0, or multyplying this equation
by 3, we have the following condition on the coordinates of vector b:

−5b2 − b1 + 3b3 = 0.
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Thus

b =




−5b2 + 3b3
b2
b3


 = b2




−5
1
0


+ b3




3
0
1


 for all b2 ∈ R and all b3 ∈ R.

Thus the range of T is a plane in R3 that passes through the origin (0, 0, 0) and that
is spanned as follows:

RT = span {




−5
1
0


 ,




3
0
1


}.

d) The given transformation T is not surjective onto R3, as there are vectors in R3 that
are not images under T . In fact, any vector in R3 that is not lying on the plane
spanned as given by RT in part c) above, is not an image under T .

e) The given transformation T is not injective on RT , as for every vector b ∈ RT there
exist more than one (in fact infinitely many) vectors x ∈ R3 that map to this image
vector b. We know this from the fact that the system Ax = b has infinitely many
solutions x, with x3 being a free parameter for every b ∈ RT , namely every vector
b of the form

b =




−5b2 + 3b3
b2
b3


 for any real b2 and b3.
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Problem 4.3.3.

Consider the linear transformation T : R3 → R3 with the standard matrix

A =




1 −1 2
2 0 2

−3 −2 4


 .

a) Find all vectors x ∈ R3, such that T (x) =




1
2
7


.

b) Is the given transformation T invertible? If so, find the standard matrix for T−1.

Solution 4.3.3.

a) Let

x =




x1
x2
x3




and find x, such that

T : x �→ Ax =




1
2
7




for the given standard matrix A. We therefore need to solve the linear system




1 −1 2
2 0 2

−3 −2 4







x1
x2
x3


 =




1
2
7


 .

The corresponding augmented matrix, and some of its row equivalent matrices, are




1 −1 2 1
2 0 2 2

−3 −2 4 7


 ∼




1 −1 2 1
0 2 −2 0
0 −5 10 10


 ∼




1 −1 2 1
0 1 −1 0
0 0 1 2




∼




1 0 0 −1
0 1 0 2
0 0 1 2


 .
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The last row equivalent matrix given above is the reduced echelon form of A. Thus
we have the unique solution of the linear system, namely

x =




−1
2
2


 for T (x) =




1
2
7


 .

b) Since

detA = 10

we know that the matrix A is invertible and therefore we know that T is an injective
linear transformation with range RT = R3. This means that T is an invertible
transformation on R3 and that the standard matrix for its inverse T−1 is A−1. We
therefore need to calculate A−1. For that, we consider [A I3], where I3 is the 3× 3
identity matrix. We obtain

[A I3] ∼




1 0 0 2/5 0 −1/5
0 1 0 −7/5 1 1/5
0 0 1 −2/5 1/2 1/5


 .

Thus the inverse matrix of A is

A−1 =




2/5 0 −1/5
−7/5 1 1/5
−2/5 1/2 1/5


 ,

so that

T−1 : x �→ A−1x for all x ∈ R3.

Problem 4.3.4.

Consider a linear transformation T : R3 → R3 for which the following is valid:

T :




1
0

−1


 �→




5
10
4


 , T :




1
2
0


 �→




0
−5
5


 , T :




1
3

−2


 �→




10
15
4


 .

a) Find the standard matrix of T .

b) Is T an invertible transformation? Explain.
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Solution 4.3.4.

a) To find the standard matrix A of T , we first introduce some notations for the vectors
that are involved. Let

u1 =




1
0

−1


 , u2 =




1
2
0


 , u3 =




1
3

−2




v1 =




5
10
4


 , v2 =




0
−5
5


 , v3 =




10
15
4


 .

Then, as given in this exercise, we have

T : u1 �→ Au1 = v1, T : u2 �→ Au2 = v2, T : u3 �→ Au3 = v3.

Now

A[u1 u2 u3] = [v1 v2 v3]

and by denoting U = [u1 u2 u3] and V = [v1 v2 v3], we have the matrix equation

AU = V,

where

U =




1 1 1
0 2 3

−1 0 −2


 , V =




5 0 10
10 −5 15
4 5 4


 .

Calculating the determinant of U , we obtain

detU = −5,

which means that the columns of matrix U form a linearly independent set and
that U is an invertible matrix. Thus we can solve the matrix equation for A by
multiplying the equation with U−1 from the right. We obtain

A = V U−1.

Calculating U−1, we obtain

U−1 =
1

5




4 −2 −1
3 1 3

−2 1 −2


 ,

so that the standard matrix A follows:

A =
1

5




5 0 10
10 −5 15
4 5 4







4 −2 −1
3 1 3

−2 1 −2


 =




0 0 −5
−1 −2 −11
23/5 1/5 3/5


 .
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b) To find out whether T is an invertible transformation, we can inverstigate the in-
vertibility of its standard matrix A that was calculated in part a) above. We recall
that A is an invertible matrix if and only if detA �= 0. We therefore calculate detA
and obtain

detA = −45.

Hence A is invertible, which makes T an invertible transformation and the standard
matrix of T−1 is A−1.
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4.4 Exercises

1. Consider the transformation T : R3 → R2, such that every vector x = (x1, x2, x3) ∈
R3 is mapped to R2 in the following manner:

T : (x1, x2, x3) �→ (x1 − 5x2 + 4x3, x2 − 6x3).

a) Show that T is a linear transformation.

[Answer: We need to show that T (x+ y) = T (x) + T (y) and that T (cx) =
c T (x) for all x ∈ R3, all y ∈ R3 and all c ∈ R. ]

b) Find the standard matrix of T .

[Answer: The standard matrix is A =

(
1 −5 4
0 1 −6

)
. ]

c) Find the range of T and establish whether T is surjective onto R2.

[Answer: The range of T is R2, so that T is surjective onto R2 . ]

d) Is T an injective transformation on its range? Explain.

[Answer: T is not injective, as Ax = b has infinitely many solution x ∈ R3

for any b ∈ R2. ]

2. Consider a linear transformation T : R3 → R2, such that T maps every x = (x1, x2, x3) ∈
R3 to (k1 x1+x3, k2 x2−x3) ∈ R2 for any k1 ∈ R and any k2 ∈ R. Find the standard
matrix A of T .

[Answer: A =

(
k1 0 1
0 k2 −1

)
. ]

3. Consider a linear transformation T : Rn → R2 for any n ≥ 2, such that

T : x �→ (

n∑
i=1

ki xi, xn)

for every x = (x1, x2, . . . , xn) ∈ Rn and any constants kj ∈ R, j = 1, 2, . . . , n.
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a) Find the standard matrix A of T .

[Answer: A =

(
k1 k2 · · · kn
0 0 · · · 1

)
. ]

b) Let kj = 1 for j = 1, 2, . . . , n. Find now the image of the point

(1, 2, . . . , n) ∈ Rn

under T . What is this image if n = 100?

[Answer:

(
n(n+ 1)

2
, n

)
. For n = 100, we have the image (5050, 100). ]

4. Consider the linear transformation T : R3 → R2, such that

T (e1) =

(
1
5

)
, T (e2) =

(
−1
−2

)
, T (e3) =

(
0
1

)
,

where {e1, e2, e3} are the standard basis vectors of R3. Find the standard matrix

A of T and determine T (x), where x =




3
1
4


 .

[Answer: A =

(
1 −1 0
5 −2 1

)
, T (x) =

(
2

17

)
. ]

5. Consider the linear transformation T : R2 → R2, where T projects every vector in
R2 orthogonally onto the line y = −3x.

a) Find the standard matrix A of T .

[Answer: A =
1

10

(
1 −3

−3 9

)
. ]

b) Find T (x), where x =

(
1
5

)
.

[Answer: T (x) =
1

5

(
−7
21

)
. ]
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c) Is T invertible? Explain.

[Answer: T is not an invertible transformation, as detA = 0. This is also
clear geometrically, as there are obviously inifinitely many vectors that project
orthogonally onto the same point on the line y = −3x, for every point on
y = −3x. ]

6. Consider the linear transformation T : R2 → R2, where T reflects every vector in R2

about the line y = 3x.

a) Find the standard matrix A of T .

[Answer: A =
1

5

(
−4 3
3 4

)
. ]

b) Show that T is an injective transformation on R2 and find the standard matrix
for the inverse transformation T−1.

[Answer: Since T describes a reflection about a line, it is geometrically clear
that T is injective and invertible on R2. This can also be established by calcu-
lating the determinant of A. We obtain detA = −1. Hence A is an invertible
matrix and the standard matrix of T−1 is A−1, which is the same as the stan-

dard matrix of T , i.e. A−1 =
1

5

(
−4 3
3 4

)
. ]

7. Consider two linear transformations, T1 and T2, where both map vectors in R2. In
particular, T1 rotates every vector in R2 counter-clockwise with angle π/3 about the
origin (0, 0) and T2 maps every vector x = (x1, x2) as follows:

T2 :

(
x1
x2

)
�→

(
x1 + x2

x2

)
for all x1 ∈ R and all x2 ∈ R.

a) Find the standard matrix A1 for T1 and the standard matrix A2 for T2. Are T1

and T2 invertible? Explain.

[Answer: A1 =
1

2

(
1 −

√
3√

3 1

)
, A2 =

(
1 1
0 1

)
. T1 and T2 are invert-

ible. ]
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b) Find the standard matrix A for the composite transformation T = T2 ◦ T1. Is
T invertible and, if so, find the standard matrix B for T−1.

[Answer:A = A2A1 =
1

2

(
1 +

√
3 1−

√
3√

3 1

)
, B = A−1 =

1

2

(
1

√
3− 1

−
√
3 1 +

√
3

)
. ]

8. Consider the linear transformation T : R3 → R3, such that

T (e1) =




1
0
1


 , T (e2) =




0
1
0


 , T (e3) =




−1
0
1


 ,

where {e1, e2, e3} are the standard basis vectors of R3. Establish whether T is
an invertible transformation and, if so, find the standard matrix for the inverse
transformation.

[Answer: The standard matrix A of T is A =




1 0 −1
0 1 0
1 0 1


 . Since detA = 2,

T is invertible and the standard matrix of T−1 is A−1 =
1

2




1 0 1
0 2 0

−1 0 1


 . ]
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9. Consider the following two planes in R3:

Π1 : x− y + 3z = 0

Π2 : 2x+ y + 3z = 0.

a) Find the line � of intersection of the given planes Π1 and Π2 and express � in
parametric form.

[Answer:

� :




x = −2t

y = t

z = t for all t ∈ R. ]

b) Let T : R3 → R3 denote the linear transformation that projects every vector
x ∈ R3 orthogonally onto the line � obtained in part a) of this problem. Find
the standard matrix A of T .

[Answer: A =
1

6




4 −2 −2
−2 1 1
−2 1 1


 . ]

10. Consider three linear tansformations, T1, T2 and T3, all of which map vectors in R3.
In particular, T1 projects every vector in R3 orthogonally onto the line �, given by
the following parametric equation:

� :




x = 2t

y = −t

z = 3t for all t ∈ R,

T2 reflects every vector in R3 about the z-axis, and T3 reflects every vector in R3

about the x-axis.

a) Find the standard matrix of the composite transformation T3 ◦ T2 ◦ T1.

[Answer: The standard matrix is
1

14




−4 2 −6
−2 1 −3
−6 3 −9


 . ]
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b) Find the standard matrix of the composite transformation T1 ◦ T2 ◦ T3.

[Answer: The standard matrix is
1

14




−4 −2 −6
2 1 3

−6 −3 −9


 . ]

c) Find the range of the composite transformation T = T3 ◦ T2 ◦ T1.

[Answer: The range is given by the set span {u}, where u = (2, 1, 3). That is,
all the vectors lying on the line �∗ given by the following parametric equation:

�∗ :




x = 2s

y = s

z = 3s for all s ∈ R. ]

11. Consider the linear transformation T : R3 → R3 for which the following is valid:

T (e1) =




1
0
1


 , T (e2) =




−2
k
0


 , T (e3) =




1
1
k


 ,

where k is an unspecified real parameter and {e1, e2, e3} are the standard basis
vectors for R3.

a) Give the standard matrix of T and find T (x), where

x =




1
2
3


 .

[Answer: The standard matrix isA =




1 −2 1
0 k 1
1 0 k


 . Then T (x) =




0
2k + 3
3k + 1


 . ]

b) Find all values of k, such that T is an injective transformation on R3.

[Answer: T is injective (one-to-one) on R3 for all k ∈ R\{−1, 2}. ]

12. Consider a linear transformation T which projects every vector in R3 orthogonally
onto the line of intersection of the following three planes:

Π1 : x+ 3y − 5z = 0

Π2 : x+ 4y − 8z = 0

Π3 : −2x− 7y + 13z = 0.
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a) Find the standard matrix A of T.

[Answer: A =
1

13




8 −6 −2
−6 9/2 3/2
−2 3/2 1/2


 . ]

b) Is this transformation T invertible? Explain.

[Answer: T is not invertible, since detA = 0. ]

13. Consider a linear transformation T : R3 → R3 for which the following is valid:

T :




0
1
4


 �→




2
1
2


 , T :




1
0

−3


 �→




1
0

−1


 , T :




2
3
8


 �→




2
3
4


 .

a) Find the standard matrix A of T .

[Answer: A =




−8 14 −3
0 1 0

−1 2 0


 . ]

b) Is T an invertible transformation? Explain.

[Answer: The transformation T is invertible, as its standard matrix A is an
invertible matrix. ]

14. Consider the linear transformation T : R3 → R3, with standard matrix

A =




1 1 α
1 α 1
α 1 1


 ,

where α is an unspecified real parameter.

a) Find all values of α, such that T is injective on R3, as well as all the values of
α, such that T is invertible.

[Answer: T is injective and invertible on R3 for all α ∈ R\{1, −2}. ]
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b) Find the range RT of T for α = −2 and express the range in terms of a spanning
set.

[Answer: RT = span {




1
0

−1


 ,




0
1

−1


}. ]

c) Let α = −2 and find all x ∈ R3, such that

T (x) =




1
4

−5


 .

[Answer: x = t




1
1
1


+




3
0
1


 for all t ∈ R. ]
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15. Consider the linear transformation T : R3 → R3, where T reflects every vector x ∈ R3

about the plane Π : ax+ by + cz = 0.

a) Find the standard matrix A for T .

[Answer: A =
1

a2 + b2 + c2




−a2 + b2 + c2 −2ab −2ac
−2ab a2 − b2 + c2 −2bc
−2ac −2bc a2 + b2 − c2


 . ]

b) Find a parametric equation of the line �∗, such that �∗ is the reflection of the
line

� :




x = 2t+ 1

y = −3t

z = 2 for all t ∈ R

about the plane x+ y − z = 0.

[Answer:

�∗ :




x = 8t+
5

3

y = −7t+
2

3

z = −2t+
4

3
for all t ∈ R. ]

c) Find the equation of the sphere which is a reflection of the sphere

(x− 1)2 + (y + 2)2 + (z − 1)2 = 4

about the plane x+ y − z = 0.

[Answer:

(
x− 7

3

)2

+

(
y − 2

3

)2

+

(
z − 1

3

)2

= 4. ]

16. Consider the linear transformation T : R3 → R3, where T reflects every vector x ∈ R3

about the line

� :





x = at

y = bt

z = ct for all t ∈ R.

Find the standard matrix for T .
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[Answer: A =
1

a2 + b2 + c2




a2 − b2 − c2 2ab 2ac
2ab −a2 + b2 − c2 2bc
2ac 2bc −a2 − b2 + c2


 . ]

17. Assume that T : R3 → R3 is a linear transformation that reflects every vector x ∈ R3

about a line �, such that T has the following standard matrix:

A =
1

7




−3 −2 6
−2 −6 −3
6 −3 2


 .

Find a parametric equation for this line �.

[Answer:

� :




x = t

y = −1

2
t

z =
3

2
t for all t ∈ R. ]

18. Consider three linear transformations, T1, T2 and T3, that map all vectors in R3 to
vectors in R3 as follows:
T1 rotates every vector counter-clockwise by angle θ1 = π about the z-axis;
T2 rotates every vector counter-clockwise by angle θ2 about the y-axis;
T3 rotates every vector counter-clockwise by angle θ3 about the x-axis.

a) Find the standard matrix A for the composite transformation T = T1 ◦ T2 ◦ T3.

[Answer:

A =




− cos θ2 sin θ2 sin θ3 cos θ3 sin θ2

0 − cos θ3 sin θ3

sin θ2 cos θ2 sin θ3 cos θ2 cos θ3


 . ]

b) Find θ2 and θ3 with 0 ≤ θ2 ≤ π and 0 ≤ θ3 ≤ π, such that

T : (1, 2, 0) �→ (0,−1, 2),

where T is the transformation in a) above. To which point does (0,−1, 2) map
under T for those values of θ2 and θ3. That is find T (0,−1, 2).
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[Answer: θ2 =
π

6
, θ3 =

π

3
and T (0,−1, 2) = (

1

2
−

√
3

4
,
1

2
+

√
3,

3

4
+

√
3

2
). ]

c) Show that T as obtained in part b), is an injective transformation on R3 by
calculating the determinant of its standard matrix A and find the standard
matrix for the inverse transformation of T , i.e the standard matrix for T−1.
Show also that T−1 maps the point (0,−1, 2) back to the point (1, 2, 0).

[Answer: Since detA �= 0, the matrix A is invertible, which means that T is
invertible and the standard matrix of T−1 is A−1, namely

A−1 =
1

4




−2
√
3 0 2

√
3 −2 3

1 2
√
3

√
3


 . ]

d) Consider the line �, given by the parametric equation

� :




x = −2t+ 1

y = 3t− 2

z = t+ 4 for all t ∈ R.

Make use of the linear transformation T obtained in part b) and find a para-
metric equation of the line �∗, such that �∗ is the image of the line � under T .
That is find �∗, such that

T : � → �∗.

[Answer:

�∗ :




x =

(
7
√
3

4
+

1

4

)
t−

√
3 + 1

y =

(√
3

2
− 3

2

)
t+ 2

√
3 + 1

z =

(√
3

4
+

5

4

)
t+

√
3− 1 for all t ∈ R. ]
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e) Consider the plane

Π : 2x− 3y + z = 4.

Make use of the linear transformation T obtained in part b) and find the equa-
tion of the plane Π∗, such that Π∗ is the image of the plane Π under T . That
is find Π∗, such that

T : Π → Π∗.

Use Maple to sketch both Π and Π∗ (see Appendix A for information about
Maple).

[Answer: Π∗ : (7
√
3− 1)x− 2(

√
3 + 3)y − (

√
3− 5)z = −16. ]

19. Consider four linear transformations, T1, T2, T3 and T4, that map all vectors in R3 to
vectors in R3 as follows: T1 rotates every vector counter-clockwise by angle π about
the z-axis;
T2 rotates every vector counter-clockwise by angle π/3 about the y-axis;
T3 rotates every vector counter-clockwise by angle −π/2 about the x-axis;
T4 rotates every vector counter-clockwise by angle π/2 about the z-axis.
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a) Find the standard matrix A of the transformation T = T4 ◦ T2 ◦ T1 ◦ T3.

[Answer:

A =




0 0 1

−1

2

√
3

2
0

−
√
3

2
−1

2
0




. ]

b) Find the standard matrix of the inverse transformation of T , where T is the
transformation in a) above.

[Answer: The standard matrix of T−1 is given by A−1, where A is the stan-
dard matrix of T obtained in a) above. That is

A−1 =




0 −1

2
−
√
3

2

0

√
3

2
−1

2

1 0 0




. ]

c) Find a parametric equation for the line �, such that

T : � → �∗,

where T is the the transformation obtained in a) above and �∗ is

�∗ :




x = 6t− 1

y = −2t+ 2

z = 2t for all t ∈ R.

[Answer:

� :




x = (−
√
3 + 1)s− 1

y = −(
√
3 + 1)s+

√
3

z = 6s− 1 for all s ∈ R. ]
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20. Consider the linear transformation T : R2 → R2 with standard matrix A. Consider
further two linearly independent vectors,

u = (u1, u2), v = (v1, v2),

which describe a paralleleogram in R2 with area S. The transforamtion T then maps
area S to area T (S). Show that

area T (S) = | detA| (area S).

21. Consider the linear transformation T : R3 → R3 with standard matrix A. Consider
further three linearly independent vectors,

u = (u1, u2, u3), v = (v1, v2, v3), w = (w1, w2, w3)

which describe a parallelepiped in R3 with volume V . The transforamtion T then
maps volume V to volume T (V ). Show that

volume T (V ) = | detA| (volume V ).
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Matrix calculations with Maple

Maple is a commercial computer algebra system developed and sold commercially by
Maplesoft, a software company based in Waterloo, Canada. It was first developed in 1980
by the Symbolic Computation Group at the University of Waterloo. The Maple system is
written in the programming languages C and Java. In this appendix we describe a few
main Maple commands for performing some of the basic vector and matrix calculations.

For any vector or matrix calculation, we first need to load the package LinearAlgebra.
This is done by writing

with(LinearAlgebra)

in the beginning of a Worksheet Mode file on the command line, i.e. after the symbol

>

It is a good idea to always start your new Worksheet file with a restart, in order to clear
all possible assigned values and parameters when the file is compiled. That is, we write
on the first line

> restart

Below, we show how to assign an R3 vector u and a 2× 3 matrix A.

> with(LinearAlgebra) :

> u :=< a, b, c >

u :=




a
b
c




> A :=< a, b|c, d |e, f >

A :=

[
a c e
b d f

]

227
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Alternatively, we may also define the same vector u and matrix A in the following manner:

> with(LinearAlgebra) :

> u := Vector([a, b, c])

u :=




a
b
c




> A := Matrix (2 , 3 , [a, b, c, d , e, f ])

A :=

[
a b c
d e f

]

Note that the sentence that follows the sign � is a comment. Note further that selected
help and examples are available for a particular Maple routine or function by pointing
the curser on a word in the Maple Worksheet, e.g. Matrix, followed by hitting F2 on the
keyboard.

We now show how to perform some basic vector and matrix calculations

> u :=< 4 ,−1 ,−1 > �Vector u with coordinates (4,−1,−1) is defined.

u :=




4
−1
−1




> v :=< 1 , 0 , 1 > �Vector v with coordinates (1, 0, 1) is defined.

v :=




1
0
1




> u + (−v) �The sum u+ (−v).




3
−1
−2




> DotProduct(u, v) �The dot product between u and v.

3
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> norm(u, 2 ) �The norm of the vector u.

3
√
2

> theta := arccos

(
u.v

norm(u, 2 ) · norm(v , 2 )

)
�The angle θ between u and v.

θ :=
1

3
π

> CrossProduct(u, v) �The cross-product between u and v.




−1
−5
1




> A :=< 1 ,−3 , 5 |2 ,−4 , 2 | − 1 , 2 , 3 >

A :=




1 2 −1
−3 −4 2
5 2 3




> b :=< 1 , 2 ,−3 >

b :=




1
2

−3




> x := LinearSolve(A, b) �The solution x of the system Ax = b.

x :=




−4
4
3




> A.x − b �Check the solution x of Ax = b.




0
0
0




> AM := Matrix ([A, b]) �The augmented matrix [A b].

AM :=




1 2 −1 1
−3 −4 2 2
5 2 3 −3



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> GaussianElimination(AM ) �Perform Gauss elimination on [A b].




1 2 −1 1
0 2 −1 5
0 0 4 12




> ReducedRowEchelonForm(AM ) �Reduced row echolon form of [A b].




1 0 0 −4
0 1 0 4
0 0 1 3




> Determinant(A) �The determinant of A.

8

> Ainv := MatrixInverse(A) �The inverse matrix of A.

Ainv :=




−2 −1 0

19

8
1

1

8
7

4
1

1

4




> Ainv .A �Calculate A−1A.




1 0 0
0 1 0
0 0 1




> x := Ainv .b �The solution x = A−1b of the system Ax = b.

x :=




−4
4
3




> B :=< 1 ,−3 , 5 |2 ,−4 , 2 | − 1 , 1 , 3 > �We consider another example.

B :=




1 2 −1
−3 −4 1
5 2 3



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> c :=< 0 ,−2 , 8 >

b :=




0
−2
8




> Determinant(B) �The determinant of B.

0

> Binv := MatrixInverse(B) �B is singular.

Error, (in MatrixInverse) singular matrix

> x := LinearSolve(B , c) �The solution x of Bx = c that contains an

arbitrary parameter denoted by Maple as −t03.

x :=




2− −t03

−1 + −t03

−t03




To plot figures in R3 we use the Maple function plot3d. Consider for example the plane

5

7
x− 19

21
y − z = −4

7
.

We plot this plane on the x-interval [0, 8] and the y-interval [0, 20]. In order to plot
this plane such that we can see the x-axis, the y-axis and the z-axis, we use the following
Maple commands:

> plot3d

([
5

7
x− 19

21
y +

4

7

]
, x = 0..8, y = 0..20, axes = boxed

)

See Figure A.1 for the output plot of this plane.

We now consider the following three planes:

5

7
x− 19

21
y − z = −4

7

−19

26
x− 4

13
y − z = − 3

26

x+ y − z = 0.
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Figure A.1: The plot of a plane.

We calculate the intersection of the three given planes.

> restart

> with(LinearAlgebra)

> A :=<
5

7
,−19

26
, 1 | − 19

21
,− 4

13
, 1 | − 1 ,−1 ,−1 >

A :=




5

7
−19

21
−1

−19

26
− 4

13
−1

1 1 −1




> b :=< −4

7
,− 3

26
, 0 >

b :=




−4

7

− 3

26

0



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> x := LinearSolve(A, b) �The solution x of Ax = b

x :=




− 24

133
87

266
39

266




We conclude the the three planes intersect in the point (− 24

133
,

87

266
,

39

266
).

We now plot the intersection of the above given three planes on the x-interval [−8, 8]
and the y-interval [−20, 20]. Note the command plotlist=true, which is necessary when
plotting more than two planes on the same graph. The colon (:) at the end of an input
line hides the Maple output.

> P1 :=
5

7
x− 19

21
y +

4

7
: P2 := −19

26
x− 4

13
y +

3

26
: P3 := x+ y :

> plot3d ([P1, P2, P3] , x = −8..8, y = −20..20, plotlist = true, color = [blue, red, green])

Figure A.2: The intersection of three planes in a common point.
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adjugate of a matrix, 82
augmented matrix, 87

basis of Rn, 146

co-domain of T , 163
cofactor, 76
cofactor expansion, 76
components of a vector, 9
composite transformation, 171
consistency of a linear system and the span-

ning set, 141
consistent linear system, 87
coordinates of a point, 9
coordinates of a vector, 9
Cramer’s rule, 92
cross-product of two vectors, 18

determinant of a square matrix, 19
determinant of an n × n matrix, definition,

76
determinant of the inverse of a matrix, 77
dilation of a vector, 10
dimension of Rn, 146
direction vector, 11
distance between two planes in R3, 41
distance between two points, 11
distance from a point to a plane in R3, 41
domain of T , 163
dot product, 10

elementary row operations, 76, 87
equation of a plane, 24
Euclidean inner product, 10

Gauss elimination method, 87

identity matrix, 73
image of a transformation T , 163
incompatible linear system, general, 87

inconsistent linear system, general, 87
infinitely many solutions of a linear system,

87
initial point of a vector, 9
injective linear transformation, 201
inverse of a square matrix, 81
invertible matrix, definition, 81

length of a vector, 11
linear combinations of vectors in Rn, 133
linear equations, general case, 86
linear transformation, 164
linearly dependent set of vectors, 146
linearly independent set of vectors, 146
lower triangular matrix, 77

Matrix addition and multiplication with con-
stants, 70

Matrix-matrix multiplication, 72
Matrix-vector multiplication, 72
matrix-vector product, 134

norm of a vector, 11
normal vector of a plane, 24

one-to-one linear transformation, 201
onto transformation, 201
orthogonal projection, 12
orthogonal projection of a line onto a plane

in R3, 46
orthogonal, one vector orthogonal to another

vector, 11

parallelepiped, 19
parametric equation of a line, 31
pivot columns, 87
plane, general equation, 99
planes and their intersections, 100
planes in R3, distance between, 41

234
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position vectors, 9

range of T , 164
reduced echelon form, 87
reflection of a line about a plane in R3, 46
row equivalent matrices, 76, 87

scalar product, 10
scalar triple product, 19
scaling factors of a linear combination, 133
scaling of a vector, 10
singular matrix, 81
solutions of linear systems, geometrical in-

terpretation in R3, 100
span, 141
spanning set of W , 141
standard basis for R3, 11
standard basis for Rn, 170
standard basis vectors for R3, 11
standard basis vectors for Rn, 170
standard matrix of T , 170
surjective transformation onto a set, 201

terminal point of a vector, 9
transformation T between Euclidean spaces,

163
transpose of a matrix, 77

unique solution of a general linear system,
87

unit vector, 11
upper triangular matrix, 77

vector product, 18
vectors in Rn, 69

zero-vector, 70
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