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Preface

This book is the first part of a three-part series titled Problems, Theory and Solutions
in Linear Algebra. This first part treats vectors in Euclidean space as well as matrices,
matrix algebra and systems of linear equations. We solve linear systems by the use of
Gauss elimination and by other means, and investigate the properties of these systems in
terms of vectors and matrices. In addition, we also study linear transformations of the
type T': R™ — R™ and derive the standard matrices that describe these transformations.

The second part in this series is subtitled General Vector Spaces. In this part we define
a general vector space and introduce bases, dimensions and coordinates for these spaces.
This gives rise to the coordinate mapping and other linear transformations between general
vector spaces and Euclidean spaces. We also discuss several Euclidean subspaces, e.g., the
null space and the column space, as well as eigenspaces of matrices. We then make use of
the eigenvectors and similarity transformations to diagonalize square matrices.

In the third part, subtitled Inner Product Spaces, we include the operation of inner
products for pairs of vectors in general vector spaces. This makes it possible to define
orthogonal and orthonormal bases, orthogonal complement spaces and orthogonal projec-
tions of vectors onto finite dimensional subspaces. The so-called least squares solutions
are also introduced here, as the best approximate solutions for inconsistent linear systems
Ax =b.

The aim of this series it to provide the student with a well-structured and carefully
selected set of solved problems as well as a thorough revision of the material taught in
a course in linear algebra for undergraduate engineering and science students. In each
section we give a short summary of the most important theoretical concepts relevant to
that section as Theoretical Remarks. This is followed by a variety of Problems that
address these concepts. We then provide the complete Solutions of the stated problems.
This is the structure throughout every book in this series. In each chapter an extensive
list of exercises (with answers), that are similar to the solved problems treated in that
particular chapter, are given.

Given the struture of the books in this series, it should be clear that the books are not
traditional textbooks for a course in linear algebra. Rather, we believe that this series may
serve as a supplement to any of the good undergraduate textbook in linear algebra. Our
main goal is to guide the student in his/her studies by providing carefully selected solved
problems and exercises to bring about a better understanding of the abstract notions in
linear algebra, in particular for engineering and science students. The books in this series
should also be helpful to develope or improve techniques and skills for problem solving.
We foresee that students will find here alternate procedures, statements and exercises that
are beyond some of the more traditional study material in linear algebra, and we hope
that this will make the subject more interesting for the students.
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A note to the Student

Our suggestion is that you first tackle the Problems yourself, if necessary with the help
of the given Theoretical Remarks, before you look at the Solutions that are provided.
In our opinion, this way of studying linear algebra is helpful, as you may be able to make
new connections between statements and possibly learn some alternate ways of solving
specific problems in linear algebra.

Each section in each chapter of this book (which constitutes Part 1 in this three-part
series on linear algebra) is mostly self-contained, so you should be able to work with the
problems of different sections in any order that you may prefer. Therefore, you do not
need to start with Chapter 1 and work through all material in order to use the parts that
appear, for example, in the last chapter.

To make it easier for you to navigate in this book we have, in addition to the usual
Contents list at the beginning and the Index at the back of the book, also made use of

colours to indicate the location of the Theoretical Remarks, the Problems and the
Solutions.

This book includes over 100 solved problems and more than 100 exercises with an-

swers. Enjoy!

Marianna Euler and Norbert Euler Lulea, April 2016
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Mathematical symbols

R: The set of all real numbers.
R™: The Euclidean space that contains all n-component vectors
v = (v1,v2,...,0y) for all v; € R.
vl : The norm (or length) of a vector.
v The direction vector of v; v = ﬁ
]TP; : A vector in R3 with the direction from P; to Ps.
u-v: The dot product (scalar product) for vectors u and v in R".
uxv: The cross product (vector product) for vectors u and v in R3.
u-(vxw): The scalar triple product for three vectors u, v and w in R3.
projyu: The orthogonal projection of vector u onto vector v.
{e1, ez, -, en}: The set of standard basis vectors for R"™.
A=la; ag - an] = [a4] : An m x n matrix with columns a; € R™, j =1,2,...,n.
I,=[e1 ez - eql: The n x n identity matrix with e; standard basis vectors for R".
det A or |A] : The determinant of the square matrix A.
AL The inverse of the square matrix A.
A~ B: The matrices A and B are row equivalent.
[A b]: The augmented matrix corresponding Ax = b.
span {uy, uz, - ,up}: The set of vectors spanned by the vectors {ui, ua, ---,up}.
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Mathematical symbols (continued)

T: R" - R™: A transformation T mapping vectors from R" to R™.
Cr: The co-domain of the transformation 7.

Drp: The domain of the transformation 7.

Ry The range of the transformation 7.
T: x—=T(x): A transformation 7" mapping vector x to T'(x).

T: x—T(x)=Ax: A linear transformation 7" mapping vector x to Ax.
TooT): A composite transformation.
T The inverse transformation of 7.
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Chapter 1

Vectors, lines and planes in R?

The aim of this chapter:

We treat vectors in the Euclidean space R and use the standard vector operations of
vector addition, the multiplication of vectors with scalars (real numbers), the dot product
between two vectors, and the cross product between two vectors, to calculate lengths, areas,
volumes and orthogonal (perpendicular) projections of one vector onto another vector (or
onto a line). We also use vectors to parametrize lines in R? and to find the equation that
describes a plane in R3. We show how to calculate the distance between a point and a
line, between a point and a plane, between two planes, between a line and a plane, as well
as the distance between two lines in R3.

1.1 Vector operations and the dot product

In this section we study basic vector operations, including the dot product (or scalar
product), for vectors in R3. We apply this to calculate the length (or norm) of vectors,
the distance and angle between two vectors, as well as the orthogonal projection of one
vector onto another vector and the reflection of one vector about another vector.

Theoretical Remarks 1.1.

Consider three vectors u, v and w in R3. Assume that the initial point of the vectors
are at the origin (0,0,0) and that their terminal points are at (u1,us,us), (vi,ve,vs)
and (w1, we,ws) respectively, called the coordinates or the components of the vectors.
These vectors are also known as position vectors for these points. We write

u:(u17u27u3>7 V= (’Ul,’l)g,’l)g), W = <w17w27w3)'

The position vector u for the point P with the coordinates (u1,uz,us) is shown in Figure
1.1. As a short notation, we indicate the coordinates of point P by P : (uj,ug,us). The
addition of the vectors u and v, denoted by u + v, is another vector in R?, namely

u+ v = (uj + vy, us + va, uz + v3).
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PROBLEMS, THEORY AND SOLUTIONS IN

LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE VECTORS, LINES AND PLANES IN R3
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Figure 1.1: Position vector u of point P with coordinates (u1,ug, us).

See Figure 1.2. Given a third vector w € R3 we have the property
(u+v)+w=u+(v+w).

Multiplication of u with a real constant (or scalar) r, denoted by ru, is another vector in
R3, namely

ra = (ruy, rug, rug).

The vector ru is also called the scaling of u by r or the dilation of u by r. We have
the following

Properties:
Ou=0=(0,0,0) called the zero vector
—u=(—1)u=(—uy,—ug,—usz) called the negative of u
u—v=u+(—1)v=(us —vi,us — v2,uz — v3)
u—u=0.

The dot product (also known as the Euclidean inner product or the scalar product)
of u and v, denoted by u - v, is a real number defined as follows:

u-v =uivy + usve + ugvsy € R.

Download free eBooks at bookboon.com

10



PROBLEMS, THEORY AND SOLUTIONS IN
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE VECTORS, LINES AND PLANES IN R3

Figure 1.2: Addition of vectors u and v, as well as some scalings of vector u.

The norm of u, denoted by |lul|, is the length of u given by

|u] = vu-u >0.

The distance between two points P, and P, with position vectors u = (u1,ug,us) and
v = (v1, v2, v3) respectively, is given by the norm of the vector P, P, (see Figure 1.3), i.e.

—
[P1Pof| = [[v —ul[ > 0.

A unit vector is a vector with norm 1. Every non-zero vector u € R3 can be normalized
into a unique unit vector, denoted by 1, which has the direction of u. That is, ||al| = 1.
This vector 1 is called the direction vector of u. We have u = ||ul| a.

The set of unit vectors,

{el, e, 83}, where e = (1,0,0), €2 = (0, 1,0), eg3 — (0,0, 1)

is known as the standard basis for R? and the vectors are the standard basis vectors.
The vector u = (uy,ug, u3) can then be written in the form

u = uijel + uzez + uses.

Let 6 be the angle between u and v. From the definition of the dot product and the cosine
law, it follows that

u-v = |ul||v|cosf € R.

This means that the vectors u and v are orthogonal to each other (or perpendicular to
each other) if and only if

u-v=0.
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PROBLEMS, THEORY AND SOLUTIONS IN
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE VECTORS, LINES AND PLANES IN R3

Z“

Y
@

Figure 1.3: The distance between P; and Ps.

The orthogonal projection of w onto u, denoted by proj,w, is the vector
proj,w = (w - 1) € R?,

where 1 is the direction vector of proj,w and |w - 1| is the length of proj,w (note that
| | denotes the absolute value). See Figure 1.4.

| ST

¥

=

proj, w u

Figure 1.4: The orthogonal projection of w onto u.
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Problem 1.1.1.
Consider the following three vectors in R3: u = (1,2,3), v =(2,0,1), w = (3,1,0).

a) Find the length of u as well as the unit vector that gives the direction of u.

b) Find the angle between u and v.

c) Project vector w orthogonally onto vector v.

)
)
)
)

d) Find the vector that is the reflection of w about v.
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1.1.1.

a) The length of u = (1,2,3) is ||ul]| = V12 + 22+ 32 = /14. The direction of u =
(1,2, 3) is given by the unit vector &, where

. ou (1,2,3) ( 1 2 3 )
u = = = s 5 .
[ull V14 14" V14’ V14

Note that ||a]| = 1.

b) The angle 6 between u = (1,2,3) and v = (2,0, 1) (See Figure 1.5) is calculated by
the dot product

u-v = [uf v cosé,

so that
g~ DRI+ @O + B _ V5
V145 V14
Hence

0 = cos™! ﬁ
= i)

Figure 1.5: Angle 6 between the vectors u and v

¢) The orthogonal projection of vector w = (3,1,0) onto vector v = (2,0, 1), denoted
by projy w, gives the component of vector w along the vector v, also denoted by
wy. This orthogonal projection is

w-v> v (3)(2) + (1)(0) + (0)(1) 12 6

pI‘OJvWZ(WG){/:(ﬁ 22+02+12 (2’071):(37075):WV
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PROBLEMS, THEORY AND SOLUTIONS IN
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE VECTORS, LINES AND PLANES IN R3

Figure 1.6: Vector w is reflected about v

d) The reflection of w about v is given by vector w* (see Figure 1.6),

where

w* = OB + BC.
Since

O? = proj,w, B? = 1@ and 1@ = proj,w — w
we have

w* = proj,w + (proj,w — w) = 2proj,w — w.

We calculate

12 6

126

12 6 9 12
f=2(=,0,2) = (3,1,0) = (=, -1, —).
w (5775) (77) (57 ’5)

Problem 1.1.2.

Consider the following two vectors in R?: u = (ug, ug,u3) and v = (v, ve, v3).
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PROBLEMS, THEORY AND SOLUTIONS IN
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE

VECTORS, LINES AND PLANES IN R3

a) Find the orthogonal projection of u onto the zy-plane.

b) Find the orthogonal projection of u onto the yz-plane.

c¢) Find the vector that is the reflection of u about the zz-plane.
)

Find the vector that results when u is first reflected about the zy-plane and then
reflected about the xz-plane.

d

Solution 1.1.2.

a) The orthogonal projection of u = (u1,u2,u3) onto the zy-plane is the vector uy,
which has zero z-component and the same z- and y-components as u. Thus (see

Figure 1.7)

Uyy = (u1,us,0).

(ula Uy, Ug)

Uy, Uz, 0)

Figure 1.7: Orthogonal projection of u onto the zy-plane.

b) The orthogonal projection of u = (u1,u2,u3) onto the yz-plane is the vector u,.,

given by
uyz - (07 ug, U3).

c¢) The vector u*,,, which is the reflection of u = (uq, ug,u3) about the xz-plane, has
the same z- and z-components as u, but the negative y-component of u. Thus

u,, = (u1, —ug,us3).
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PROBLEMS, THEORY AND SOLUTIONS IN
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE VECTORS, LINES AND PLANES IN R3

d) We first reflect u = (uq,u2,u3) about the zy-plane to obtain u*;, = (u1,u2, —u3)
and then we reflect u*,, about the zz-plane, which results in (u1, —ug, —us).
1.2 The cross product

In this section we introduce the cross product (or vector product) between two vectors,
as well as the scalar triple product between three vectors in R?. For example, the cross
product between two vectors is used to find a third vector which is orthogonal to both these
vectors in R3. We use these products to calculate, for example, the area of a parallelogram
and the volume of a parallelepiped.

360°
thinking
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)
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PROBLEMS, THEORY AND SOLUTIONS IN
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE VECTORS, LINES AND PLANES IN R3

Theoretical Remarks 1.2.
Consider three vectors, u = (u1, uz,u3), v = (v1,v2,v3) and w = (w1, w2, w3), in R3.

1) The cross product (also called vector product) of u and v, denoted by u x v,
is a vector in R? which is defined as follows:

uxv=(|[ull |v|]sing) & c R3.
The vector ux v is orthogonal to both u and v, where we have indicated the direction

vector of ux v by &, so that ||&|| = 1. The direction of & is given by the right-handed
triad and @ is the angle between u and v. See Figure 1.8

uxv

Figure 1.8: The cross product u x v.

The cross product has the following

Properties:

a) UXV=—-VXu

b) The norm ||u x v|| is the area of the parallelogram described by u and v.
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c¢) In terms of its coordinates, the cross product can be calculated by following
the rule of calculations for determinants of 3 x 3 matrices (see Section 2.2. in
Chapter 2), namely as follows

€] ey e3
uxv=det| ui us us
v V2 U3

Uy U Uy U U U
:eldet< 2 3>—e2det< ! 3>+e3det< ! 2)
v2 U3 v U3 v 2

= (UQU3 — U3U2)el + (U3’Ul — ul’Ug)ez + (Ul’Uz — Ugvl)eg

= (UQU?) — U3v2, U3V — U1V3, UV — UQ,U].)’
Here
{ela €2, 63}, €] = (17070)7 €2 = (07 170)7 €3 = (0707 1)1

is the standard basis for R3. The “det A” denotes the determinant of a
square matrix A. We also sometimes use the notation |A| to denote the deter-
minant of A, i.e. det A = |A].

Remark: The determinant of n x n matices is discussed in Chapter 2.

d) (uxv)-u=0, (uxv)-v=0.

e) Two non-zero vectors u and v in R3 are parallel if and only if u x v = 0.

2) The product u- (v x w) € R is known as the scalar triple product and can be
computed in terms of the determinant as follows:

up uz U3
u-(vxw)=det| vy v w3
w1 wy ws

= (vows — v3wa)uy + (V3w — Viws)ug + (Viws — Vowy ) uz.
Then

u-(vxw)=v-(wxu)=w-(uxv).

Consider a parallelepiped that is described by u, v and w. See Figure 1.9.

The volume of this parallelepiped is given by the absolute value of the scalar triple
product of these three vectors. That is

volume of parallelepiped = |u- (v X w)| cubic units.
If the three vectors u, v and w lie in the same plane in R?, then

u-(vxw)=0.
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PROBLEMS, THEORY AND SOLUTIONS IN
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE VECTORS, LINES AND PLANES IN R3

Volume = |u- (v x W)

Figure 1.9: The parallelepiped described by u, v and w.

Problem 1.2.1.

Consider the following three vectors in R?:
u=(1,2,3), v=(2,0,1), w=(3,1,0).
a) Find a vector that is orthogonal to both u and v.
b) Find the area of the parallelogram described by u and v.

c¢) Find the volume of the parallelepiped described by u, v and w.
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1.2.1.

a) The vector g = u x v is orthogonal to both u = (1,2,3) and v = (2,0, 1) (see Figure
1.10) and this cross product can be expressed in terms of the following determinant

e; €2 eg
q=| 1 2 3 |=2e;+5ex—4dez=(2,5—4).
2 0 1

Here {e1, ez, es} is the standard basis for R3.

Y

Figure 1.10: Vector q is orthogonal to both vectors u and v

b) The area of the parallelogram ABCD described by vectors u and v is given by
|lu x v||. See Figure 1.11. In part a i) above we have calculated u x v = (2,5, —4),
so that

|ux v| = /22 + 52 + (—4)2 = 3V/5 square units.

¢) The volume of the parallelepiped described by vectors u, v and w is given by the
absolute value of the scalar triple product, i.e.

uy U2 U3z
lu-(vxw)=|| v vy w3 ||,

wyp w2 w3

where u = (uy,ug,u3), v= (v1,v2,v3) and w = (wy, wa, w3).

For the given vectors u, v and w, we obtain |u- (v x w)| = |11| = 11 cubic units.
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PROBLEMS, THEORY AND SOLUTIONS IN
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE VECTORS, LINES AND PLANES IN R3

Figure 1.11: Parallelogram ABCD described by vectors u and v

Problem 1.2.2.
Consider the following three vectors in R?:

uy = (a727_1)7 uz = (47170)7 ug = (1a57 _2)7
where a is an unspecified real parameter.

a) Find the value(s) of a, such that the volume of the parallelepiped described by the
given vectors uj, ug and ug is one cubic units.

b) Find the area of each face of the parallelepiped which is described by the above given
vectors uy, uz and ug for a = 0.

Solution 1.2.2.

a) The volume of the parallelepiped is V' = |uy - (uz x ug)| and we require that V' = 1.

Hence
a 2 -1
V=41 0||l=|—-2a-3=1,
1 5 =2
so that a = —1 or a = —2.

b) The area of each face of the parallelepiped can be calculated as follows (see Figure
1.12):

Area f,.0 1 = |lur x ug||, Area ., 9 = [[uz X ugl|, Area g, 3= [[ur x uz,

all in square units.
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LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE VECTORS, LINES AND PLANES IN R3

Figure 1.12: A parallelepiped described by uy, uz and us.

Now
€1 €2 €3
u; X ug = 0 2 —1 261—62—283
1 5 =2
e e2 eg
uz xug=| 4 1 0 = —2e1 + 8ea + 19e3
1 -2
€1 €2 €3
u; X ug = 0 2 —1 261—462—863,
4 1 0
so that

Area ¢, .0 1 = V124 (=1)24 (=2)2 =6 square units

Area ¢, .0 9 = V(=2)2 + 82 + 192 = /429  square units

Area 1.0 3= V124 (—4)2+ (—8)2 =9 square units.

1.3 Planes and their equations

In this section we describe planes in R? and show how to derive their equations.
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PROBLEMS, THEORY AND SOLUTIONS IN
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE VECTORS, LINES AND PLANES IN R3

Theoretical Remarks 1.3.
1) The general equation of a plane in R? is
axr + by + cz =d,

where a, b, ¢ and d are given real numbers. All points (x,y, z) which lie on this
plane must satisfy the equation of the plane, i.e. ax + by 4+ cz = d.

2) The vector n with coordinates (a, b, c), i.e.
n= (a’ b’ C)’

is a vector that is orthogonal to the plane ax + by + cz = d. The vector n is known
as the normal vector of the plane.

3) The equation of a plane can be calculated if three points that do not lie on the same
line are given, or if the normal of the plane is known and one point on the plane is

given.
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PROBLEMS, THEORY AND SOLUTIONS IN
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE VECTORS, LINES AND PLANES IN R3

Problem 1.3.1.

Consider the following three points in R3:
(1,2,3), (2,0,1), (3,1,0).

Find an equation of the plane II that contains the given three points.

Solution 1.3.1.

Consider the points A, B and C with coordinates (1,2,3), (2,0,1) and (3,1,0), respec-
tively. Assume that these three points lie on the plane II and that the point P : (x,y, z,)
is an arbitrary point on this plane. Consider now the vectors

AB = (1,-2,-2), AC =(2,-1,-3), AP=(zx—1,y—2,7—3).

Let n denote the normal to the plane II. See Figure 1.13. Then

Figure 1.13: Plane II with normal n

HZBXE and n-ﬁzo,

so that

€1 €2 e€3
n=| 2 —1 -3 |=—-4e;+ez—3ez3=(—4,1,-3).
1 -2 -2

The equation of the plane then follows from
O=n-AP=—4(z—1)+1(y—2) - 3(z — 3),

so that 4z —y + 3z = 11.
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Problem 1.3.2.

Consider four points in R? with respective coordinates
(1,1,1), (0,1,k), (2,-1,-1) and (-2,-1,1),

)

where k is an unspecified real parameter. Find the value(s) of k, such that the above four
points lie in the same plane.

Solution 1.3.2.
Consider the four points
A: (1,1,1), B: (0,1,k), C: (2,-1,-1), D: (-2,—1,1)

on a plane in R3. See Figure 1.14. Since the four point lie on the same plane we have

Figure 1.14: A plane that contains the points A, B, C and D.

AD - (AC x AB) =0

where

AD = (=3,-2,0), AC =(1,-2,-2), AB=(-1,0,k—1)

and
3 -2 0
AD (ACxAB)=| 1 —2 —2|=o.
10 k-1

Calculating the above determinant, we obtain the condition 8k — 12 = 0, so that the value
of k for which the four points lie on the same plane is

F=2.
2
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Problem 1.3.3.

Find the equation of the plane in R? that passes through the point (1,3,1) and that is
parallel to the plane

r+y—z=1

Solution 1.3.3.
We denote the given plane by 11, i.e.
I : z4+y—2z=1,

and denote by Il the plane that we are seeking. See Figure 1.15. A normal vector for II;
is

n; = (1,1,-1)

and, since the plane II, is parallel to the given plane II;, their normal vectors will also be
parallel. Hence a normal vector ng for Ils is the same as that of II;, namely

ny = (1, 1, —1).

n

/A

nz

r' B: (z, vz
I A: (1,3, 1)

Figure 1.15: Two parallel planes II; and Il

Iy : z+y—z=1

We know one point on the plane I3, namely the point A : (1,3,1). Let B be an arbitrary
point on the plane Iy, say

B: (z,y,2).
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Then vector ﬁ takes the form
Jﬁz(az—l,y—?),z—l)

and this vector is orthogonal to the normal vector ns. Hence
E -ng = 0.

Upon evaluating the dot product zﬁ - N9, we obtain
l(lr—1)+1(y—3)—1(—1)=0.

The equation for Ils is therefore

IIy: z4+y—2=3.

m

I, A (1,81

Figure 1.16: Two orthogonal planes II; and Il
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Problem 1.3.4.
Find the equation of the plane in R? that passes through the points (1,3,1) and (—1,0,4)
and that is orthogonal to the plane

r—y+2z=3.

1.3.4.
Let II; be the given plane, i.e.
I : z—y+22=3
with normal vector
n; = (1,-1,2).

Let IIs be the plane that we are seeking. See Figure 1.16. We know two points on this
plane, namely

A: (1,3,1), B: (—1,0,4).

In order to find the equation of Il we first need to find its normal vector ns. Since II;
and Ilo are orthogonal, it means that the normal vector ny of Ils is orthogonal to every
vector that is parallel to Ils, say ﬁ , and ng is orthogonal to n;. Thus

ngznlxﬁ,

where
AB = (~-2,-3,3).
Hence
er ez e3
ny = 1 =1 2 |=3e; —Tex—bez=(3,—-7,-5).

-2 -3 3
Let C be any point on Ilo, i.e.
C: (z,y,2).
The vector 1@ is orthogonal to the normal vector ng, so that
ns - zﬁ =0,
where
ﬁz(m—l,y—?),z—l).
Calculating the dot product ns - 1@ , we obtain
3(x—1)—T7(y—3)—5(z—1) =0,
so that the equation of the plane becomes

3x — Ty — bz = —23.
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1.4 Lines and their parametrizations

In this section we study lines ¢ in R?® and show how to derive parametic equations to
describe . We derive a formula by which to calculate the distance from a point to a line
and the distance between two lines. We also show how to project a vector orthogonally
onto a line and how to reflect a vector about a line.

.
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PROBLEMS, THEORY AND SOLUTIONS IN

LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE VECTORS, LINES AND PLANES IN R3

Theoretical Remarks 1.4.

The parametric equation of a line ¢ in R? is of the form
r=at+ x1
l:¢ y=bt+y

z=ct+2z forallteR,

b

P
Pl """”2
, | —— @u2
/ (wlu Y1, Zl)
v . (a, b, ¢
f"’a

v
e

o

P1P =N

Figure 1.17: A line ¢ in R?

where (x1,y1,21) is a point on the line ¢ and v = (a, b, ¢) is the vector that is parallel to
the line ¢. See Figure 1.17. Here ¢ is a parameter that can take on any real value. That
is, for every point (x,y, z) on the line ¢, there exists a unique value of ¢, such that

(x,y,2) = (at + x1,bt + y1,ct + x1).
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Problem 1.4.1.

Find a parametric equation of the line £ in R3, where (—1,1,3) and (2,3, 7) are two points
on /.

a) Establish which of the following three points, if any, are on this line ¢:

1
(—4,-1,-1); (-1,2,3); (5, 2,5)

b) Is the vector w = (—6, —4, —8) parallel to the line ¢? Explain.

1.4.1.

We are given two points that are on the line ¢, namely P; : (—1,1,3) and P» : (2,3,7).
Then the vector P, P; is parallel to ¢ and has the following coordinates:

PPy = (3,2, 4).
Hence the vector v which is parallel to £ is
v =PP=(3,2,4).
Let P : (z,y, z) be an arbitrary point on ¢. Then
]ﬁ: tv or (x+1,y—1,2—3)=1(3,2,4) forallteR.
Comparing the z-, y—, and z-components of the above vector equation, we obtain
r+1=3t, y—1=2t 2z-—3=4t,
respectively. The parametric equation for ¢ is therefore
r=3t—-1
:¢ y=2t+1

z=4t+3 forallteR.

a) To find out whether the point (—4,—1,—1) is on the line, we use the obtained
parametic equation for £ and find ¢. That is, ¢ must satisfy the relations

—4=3t—1, —1=2+1, —1=4t+3.

This leads to a unique solution for ¢, namely ¢ = —1. Hence the point (—4,—1,—1)
is on /.
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For the point (—1,2,3) we have
1=3t—1, 2=2t+1, 3=4t+3,
which cannot be satisfied for any value of ¢. Hence (—1,2,3) is not a point on /.

The point (1/2,2,5) satisfies the parametric equation for ¢ = 1/2, so that (1/2,2,5)
is a point on /.

b) The vector w = (—6, —4, —8) is indeed parallel to the line ¢, since
w = —2v,

where v is parallel to /.

Problem 1.4.2.

Find a parametric equation of the line ¢ in R? which passes through the point (1, —1,2)
and which is orthogonal to the lines #; and {5, given in parametric form by

x =2t r=-3t+1
{0 y=1 by : y =2t
z=t—1 forallteR, z=4t—1 forallteR.
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1.4.2.

Vector vi1 = (2,1,1) is a vector that is parallel to ¢; and va = (—3,2,4) is a vector that
is parallel to £5. A vector that is orthogonal to both ¢; and ¢5 is therefore

V =V1 X Vg

and this vector v is thus parallel to the line £ that we are seeking. We calculate v:

€e; €2 eg
v=vixva=| 2 1 1|=2e —1ley+Tes=(2,—11,7).
-3 2 4

A parametric equation for the line ¢ is therefore
r=2t+1
:¢ y=—-11t -1

z="Tt+2 forallteRR.

Problem 1.4.3.

Consider a line £ in R? with the following parametric equation
r=at+
I y="0bt+uy1
z=ct+ 2z forallteR,
where (z1,y1,21) is a point on ¢ and
v = (a,b,c)

is a vector parallel to £.

a) Assume that the point Py : (x, 9o, 20) is not on the line ¢. Find a formula for the
distance from the point Py to £.

b) Find the distance from the point (—2,1,3) to the line ¢, given by the parametric
equation

r=t+1
£:¢ y=3t—4

z=>5t+2 foralltelR.
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Solution 1.4.3.
a) We find a formula for the distance from the point Py(zo, yo, z0) to the line ¢, where
r =at + 11
I y=>bt+y;

z=ct+2z foralltelR.

T

Here P : (x1,y1,21) is a point on the line £. Let s = || Py P2|| denote the distance from
Py to £, where P, is a point on ¢ which is not known. We consider the right-angled
triangle A Py Py Py. See Figure 1.18.

z)}

Py

Pr: (z1, 11, 21)

Po: (w0, yo 20)

v (a, b, )

Y
<

Figure 1.18: The distance from a point Py : (29,40, 20) to the line £ in R3

It follows that

s = | PaBs|| = | PyF)| sin. (1.4.1)
On the other hand we have, from the definition of the cross product, that

|PiBy x vl = [|Pr By | [Iv] sin 6. (14.2)

—
Solving || Py Py|| sin 6 from (1.4.2) and inserting it into (1.4.1), we obtain the following
formula for the distance:
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b) The given line ¢ passes through the point Pj : (1, —4,2) and is parallel to the vector
v = (1,3,5). Thus for the point Py : (—2,1,3), we have

o
PPy=(-3,51)

and
€] €2 €3
—>
PPhpxv=| -3 5 1 | =22eq1 + 16e5 — 14deg = (22, 16, —14).
1 3 5

ey
Calculating the lengths of the vectors P; Py x v and v, we obtain

=
|PLP) x v|| = /(22)2 + (16)2 + (—14)2 = 6v/26
v = V12 + 32 + 52 = V35,
so that the distance from the point Py to the given line ¢ is

—
B ||P1P0 X V|| N 6\/26
vl V35
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Problem 1.4.4.

Find a formula for the distance between two lines in R? and use your formula to find the
distance between the following two lines:

ly y=t—1 ly y=2t+2
z=3t+1 forallteR, z=1 forallteR.

Solution 1.4.4.

Assume that P; : (z1,y1,21) is a point on the line ¢; and that Py : (x9,y2, 22) is a point
on another line /5. Let vi denote a vector that is parallel to /1 and vg a vector that is
parallel to /5 (see Figure 1.19). Now v = v X vg is a vector that is orthogonal to both

Pl: (391, Y1, Zl)

By (g, o, )

Vi

Y
<

V2

Figure 1.19: Distance s between two lines in R3

v1 and vg, and therefore v is orthogonal to the lines ¢; and ¢5. To find the distance s
between ¢1 and {2, we project P;Ps orthogonally onto the vector v. This leads to

|P1P2 . V’ _ ’Plpg . (V1 X V2)|
vl [ve x va

—_—
S = ‘ pI‘Oij1P2H =

For the given line ¢; we have vi = (2,1,3) with a point P; : (1,—1,1) € ¢; and for the
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given line {5 we have vo = (1,2,0) with a point P : (0,2,1) € ¢5. Thus

€] €2 eg
PPy = (—1,3,0), vixvag=| 2 1 3|=—6e;+3ez+3e3=(-6,3,3),
1 2 0

so that the distance s between ¢; and /5 is

(=1,3,0)-(=6,3,3)] 5

V36+9+9 NG

Problem 1.4.5.
Consider the following two vectors in R3:
u=(-1,3,3), v=(2,-1,4).

Consider now the line £ in R, such that ¢ contains the point (2, —1,4) and the zero-vector
0=(0,0,0).

a) Find the orthogonal projection of the vector u onto the line ¢, i.e. calculate
proj, u.

b) Find the distance between the point (—1,3,3) and the line £.

c¢) Find the reflection of the vector u about the line ¢.

1.4.5.

a) We aim to obtain the vector w which is the orthogonal projection of the vector u
onto the line ¢, i.e. w =projyu. This can be achieved by projection u onto any
position vector that is lying on this line ¢, for example vector v. See Figure 1.20.
Thus

W = proj,u = proj,u = (u-v)v where v = W
v

For u=(-1,3,3) and v = (2,—1,4), we have

Wy (@) + @)D + ()@ ,
v <||V||2>V: (W>V: 22+(_1)2+42 (2,-1,4) = 5(2,—1,4).
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W = proj,u

Y
S

Figure 1.20: The orthogonal projection of u onto /.

b) The distance d between the point (—1, 3, 3) and the line ¢ is ||/ﬁ|] (see Figure 1.20).
By vector addition we then have

2 14 5 10 5

AB=u-w=(-133) - (5, —5.5) = (-3, 5+ 3)

Thus

25 100 25 5
A — —_— —_— —_— = = .
|AB]| st T 3¢5

c¢) The reflection of the vector u about the line £ is given by the vector O? . See Figure
1.21. By vector addition we have

OC + CA + 4B = u.
However, CTZl = ﬁ , so that

O?zu—%ﬁ,
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Figure 1.21: The reflection of u about /.

1
where u = (-1, 3,3) and AB = (—g, EO, g) (see part a) above). Thus the reflection

about £ is
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1.5 More on planes and lines

In this section we derive the distance between a point and a plane, as well as the distance
between two planes. We also investigate the situation for a line that lies on a plane, a line
that is projected orthogonally onto a plane, and a line that is reflected about a plane.

Theoretical Remarks 1.5.

1. Given the equation of a plane
II: ax+by+cz=d,
the distance s from the point
Py (20, Y0, 20)
to the plane II is

s lazo + byo + czo — d|

Va2 + b2+ 2

2. Given two parallel planes, I} : ax + by + cz = dy and Ils : az + by + cz = da, the
distance s between II; and Il is

where n = (a, b, ¢) is the normal vector for both planes.

Remark: Any two planes in R? that do not intersect must be parallel.

Problem 1.5.1.

Consider a plane azx + by + ¢z = d and a point Py : (x9, Yo, 20), such that Py is not a point
on this plane.

a) Find a formula for the distance from the point Py : (xo, yo, 20) to the plane ax + by +
cz =d.

b) Find the distance from the point (1,2,2) to the plane which passes through the
origin (0,0,0), as well as through the points (1,1, —1) and (0,2, 1).
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Solution 1.5.1.

a) We consider the plane
I: ax+by+cz=d
and a point

Py : (z0, Y0, 20) ¢ 11

PO : (:I;Ov Yo ZO)

—
proj, PFy | s

P, P

ar+by+cz=d

Figure 1.22: The point Py : (0,0, 20) and a plane I : ax + by + cz = d in R3

The normal vector n for the plane IT is n = (a, b, ¢) (see Figure 1.22). Consider now
an arbitrary point on II, say point P : (x,y, z), and project vector PPy orthogonally
onto n. This gives the distance s from the point Py to the plane II, i.e.

—
= — PPy -n
s = lIproin PR| =[PP -] = 22,
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where n = n/||n|| and
—
PPy = (zo — 2,90 — ¥, 20 — 2)
—
PPy -n=a(xg—x)+blyo —y) + c(z0 — 2)
= —(ax + by + cz) + axg + by + czo

= —d + axg + byg + c2p.

Thus the distance from Py to 1I is

. laxo + byo + czo — d|

where | | denotes the absolute value.

(1.5.1)

b) We seek the distance from Py : (1,2,2) to the plane that contains the origin O :
(0,0,0), as well as the points A : (1,1,—1) and B : (0,2,1). We name this plane II.
First we derive the equation of the plane II.

(1, 1, —-1)

(0, 0, 0) B
0, 2, 1)

Figure 1.23: A plane in R? that contains the points O, A and B.

Consider the vectors O‘/i and O? (see Figure 1.23). Then the normal vector n for
IT is
n= 04 x OB,

where

OA=(1,1,-1), OB=(0,21).
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Calculating the above cross product, we obtain
€] e €3
n=| 1 1 —1|=3e;—e2+2e3=(3-1,2).
0 2 1
Since the plane II passes through O : (0,0,0), the equation for IT must be

3x —y+22=0,

so that the distance s from the point Py : (1,2,2) to the plane II is
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Problem 1.5.2.

Find the distance between the planes Iy : 20 — 3y +42 =5 and Il : 4z — 6y 4+ 8z = 16.

1.5.2.

We are given two planes, namely II; : 220 — 3y + 42z = 5 and Ily : 4x — 6y + 8z = 16.
Dividing the equation of the plane Il by 2 we obtain 2x — 3y +4z = 8. The normal vector
n for both planes is therefore

n= (27 _374)>

so that we can conclude that the two planes are parallel. We now choose any point
Py : (x0,y0,20) on II; and then calculate the distance s from point Py to IIo/2. We make
use of the formula (1.5.1), namely

s laxo + byo + czo — d|
va?+ b+ 2
as derived in Problem 1.5.1 a) and given in Theoretical Remark 1.5, to calculate the
distance from the point Py to the plane Ilo. For Iy we have a = 2, b = =3, ¢ = 4 and

d = 8. To find a point Py that lies on the plane 1I;, we let x = 1 and y = 0, and insert
those values into the equation for IT; to calculate z. We obtain

3
2(1) — 3(0) + 42 =5, so that z = 7

3
Thus we have Py : (1,0, Z) Calculating s, we obtain

(2)(1) = (3)(0) + (4)(3/4) —8] _[-3] _ 3
V22 + (—3)% + 42 V29 V29

Alternatively, we can use the formula s = |d; — da|/||n|| with d; =5 and dy = 8, as given
in Theoretical Remark 1.5.

S =

Problem 1.5.3.

Consider the following line £ in R3:
x=2t+1
I y=—-2t+1
z=6t—6 forallteR.

Find all real values for the parameter b, such that every point on ¢ is on the plane

2 1
§x+by+§z:1.
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1.5.3.

Since every point on ¢ must lie on the given plane, we insert z, y and z, given by the
parametric equation for ¢, into the equation of the plane. This leads to

g(% 1) b(—2t 4 1)+ é(m .Y

Simplifying and collecting coefficients of ¢ in the above relation, we obtain
(18 —18b)t+9b—9 =0 forallteR.

We conclude that
18—18 =0 and 9—-9=0,

so that b = 1. Thus every point which is on £ is on the given plane, if and only if the plane
has the equation

2 1
gac + v+ §z =1, or, equivalently, the equation 6x + 9y + 2 =29.

Problem 1.5.4.

Consider the plane IT: x + y — 2z = —3 and the line
r=t+1
I y=2t+1
z2=2t+2 for all t € R.

a) Find a parametric equation for the line ?, such that ¢ is the orthogonal projection
of the given line ¢ onto the given plane II.

b) Find all points on the given line ¢, such that the distance between those points and
the given plane II is 2+/3.

¢) Find a parametric equation for the line £*, such that ¢* is the reflection of the given
line ¢ about the given plane II.

1.5.4.

a) First we find the intersection of the given line ¢ with the plane II:
An arbitrary point P; on £ has the coordinates

P (t+1,2t+1, 2t +2),
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so that, for every t € R, P, is a point on £. To find the intersection of ¢ with II, we
insert

r=t+1, y=2t+1, 2=2t+2
into the equation of II. This leads to

(t+1)+(2t+1)— (2t +2) = =3,

from which we can solve t, to obtain ¢ = —3. Therefore, the point P which lies on
both ¢ and II has the following coordinates (see Figure 1.24):

P (~2,-5,—4).

l

Q

l

l

|

|

r N

= M
I

Figure 1.24: The line of orthogonal projection 7 of the line ¢ onto the plane II.

To find the direction of é, such that ¢ is the line that represents the orthogonal
projection of £ onto II, we choose any point @ on ¢ (different from the point P), say
the point

Q: (1,1,2).
Then we have ]@ = (3,6,6) and following Figure 1.24, we obtain

PM = PG - MG,
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where PM is the orthogonal projection of 1@ onto £ and hence PM is the orthogonal
projection of ]@ onto II. To find M@ we project ]@ orthogonally onto the normal
vector n of II, where n = (1,1, —1). Thus

m:pmm:@-mﬁ:(?;)n

Calculating the above orthogonal projection we obtain M (5 = (1,1 —1), so that
-
PM = (37676) - (1? 17_1) = (27577)

Since the line ¢ is passing through the point P : (—2,—5,—4) and has the direction
PM, the parametric equation for s

r=2t—2
7 y=05t—95
z="Tt—4 for all t € R.
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PROBLEMS, THEORY AND SOLUTIONS IN
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE VECTORS, LINES AND PLANES IN R3

b) In Problem 1.5.1 we have derived a formula for the distance s from the point
Py : (xo0,Y0,20) to the plane ax + by 4+ cz = d, namely the formula

. laxo + byo + czo — d

v a2 + b2 + 2
Any point S; on ¢ has the coordinates
St (t+1,2t+1,2t+2)

for any choice t € R. We can thus calculate the distance s from the point S; to the
given plane Il : = + y — z = —3 by using the above formula. We obtain

1t + 1)+ 1(2t+1) — 1(2t +2) — (=3)] |t + 3]
VIFT+1 VB

RN

é*

Figure 1.25: The line of reflection ¢* of the line ¢ about the plane II.

We now seek the point S;, such that s = 21/3. Hence we have

it+3

2\/§ or |[t+3|=6.
7 |t + 3|
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Thus ¢ = 3 or t = —9. Using these two values of t for the coordinates of Sy, we
obtain the following two points on ¢ which are a distance 2v/3 away from II, namely
the points with coordiantes

(4,7,8) and (—8,—17,—16).

¢) We need to find a parametric equation for the line £*, such that ¢* is the reflection of
the given line ¢ about the given plane II. Clearly, £* can be obtained by finding the
reflection of £ about the line Z, which has already been obtained in part a) above.
Note also that, as given in part a), we have

P: (-2,-5,—-4) and Q: (1,1,2).
Let @Q* denote the point on £*, such that

MO = —MO.

Following Figure 1.25, we have

PQ* = PM + MQ",

where PM — (2,5,7) and MQ* = —m = (—1,—1,1) [see part a) of this problem)].
Thus

P—Q*} = (2a577) + (ila -1, 1) = (1a4a 8)

Since £* is passin§ through the point P : (—2,—5,—4) and has the direction given
by the vector PQ* = (1,4, 8), the parametric equation for ¢* takes the form

r=t—2
o y=4t—5

z=8t—4 for all t € R.

Problem 1.5.5.

Consider the plane IT: 2z + y + z = 5 and the line
r=1t+2
l:¢ y=-=5t+1
z=3t+3 for all t € R,

where II and ¢ are parallel.
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LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE VECTORS, LINES AND PLANES IN R3

a) Find a parametric equation for the line @, such that 7 is the orthogonal projection
of the given line ¢ onto the given plane II.

b) Find a parametric equation for the line ¢, such that ¢ is the reflection of the given
line ¢ about the given plane II.

Solution 1.5.5.
a) We need to find the line / that is the orthogonal projection of the line ¢, namely

r=1t+2
2 y=—-bt+1
z=3t+3 forallte R

onto the given plane I1: 2z 4+ y 4 2z = 5.

Qo : (2o, Yo, 20)

Figure 1.26: The orthogonal projection of £ onto II

We refer to Figure 1.26 and choose any two points P and ) on ¢ by respectively
setting t = 0 and ¢ = 1 in the above parametric equation for £. This leads to

P: (2,1,3), Q: (3,—4,6).
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We now seek the point Qg = (xg, Yo, z0) in the plane II, such that
Qo@ is orthogonal to Q?

and

Qo@ is parallel ton = (2,1,1),

where n is the normal of the plane II. We have
Q(@ = (3 — w0, —4 — y0,6 — 20)
Qoﬁ =(2—x0,1 —y0,3 — 20).

Moreover

n-

Qo0 = proj p QoP’ = (Wﬂn) )

_ <2(2 — o) +1(1 — yo) + 1(3 — 20)

= 2,1,1
4+14+1 )(”)

_ <8— <2xogyo+z()>> o)

Since (g is a point on II the coordinates of ()y have to satisfy the equations for II,
i.e.

2x0 + Yo + 20 = 5,

so that
. j 8—5H 11
pTOJnQO = <6> (2>171) = (17575)

Hence

11
3 20, —4—y0,6 —20) = (1, =, -
( Zo, Yo, ZO) (’272)>

and by comparing the z-, y- and z-components, we obtain

9 11 9 11

x0:27 y0:_§7 Z0:?7 Le. QO: (27_57 2 )

Clearly Qg is a point on f, where £ has the same direction vector v as £, namely

v = (1,-5,3).
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A parameteric equation for 7 is therefore

r=1t+2

. 9
. = —5t _—
:¢ Y 5

11
z:3t+? for all t € R.

b) We need to find the line ¢£* that is the reflection of the line ¢, namely

r=t+2
l:¢ y=-5t+1
z2=3t+3 forallt e R

about the given plane Il : 2z +y + z = 5.

Q* : (.T*, y*7 Z*)
Figure 1.27: The reflection of £ about II

We need to find the coordinates of the point Q* (see Figure 1.27). Assume that Q*
has the coordinates (z*,y*, z*). By part a) above we know that @ : (3,—4,6) and

Qo : (2,-9/2,11/2). Since QOQ;: = QQq, we have
— L

— (1,2, —2).
QO ( ) 27 2
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But, on the other hand, we have

— N . 9 . 1

QO Z({L' _27y +§7Z _7)7
so that

P ¥ L9 L, 11 1 1

= -9 S Iy = (1. -2 =
OQ ({B Y+ 2,2’ D) ) ( DY 2)

leads to z* =1, y* = —5 and z* = 5. Thus we have obtained the coordinates of Q*,
namely

Q" : (1,-5,5).

Now, ¢* is passing through the point @Q* and £* has the same direction vector as ¢,
namely v = (1, —5,3). We conclude that the parametric equation of £* is

r=t+1
0 y=-5t—5
z=3t+5 for all t € R.
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PROBLEMS, THEORY AND SOLUTIONS IN
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE VECTORS, LINES AND PLANES IN R3

Problem 1.5.6.

Consider the plane IT : = —y + z = 7, as well as a triangle with vertices 4 : (1,2,2),
B: (3,1,2) and C: (1,1,1). Note that this triangle is not lying on the plane II.

a) Orthogonally project the given triangle onto the plane II and give the vertices of the
projected triangle.

b) Reflect the given triangle about the plane IT and give the vertices of the reflected
triangle.

Solution 1.5.6.

a) We project the triangle A ABC with vertices A : (1,2,2), B : (3,1,2) and C :
(1,1,1) orthogonal onto the plane IT : x—y+2 = 7 and decribe the projected triangle
A AnBrCr by calculating the vertices of this triangle, namely the coordinates of
Ar, Brp and Crp (see Figure 1.28).

B
A
| | c
| 1
| | :
I | 1
| | |
:/-BH\:
An Cn

Figure 1.28: A ABC projected orthogonally onto II resulting in A Ag B Cry.

Assume that the coordiantes of A, By and Cfy are as follows (see Figure 1.28):

An: (x1,91,21), B (z2,y2,22), Cn: (x3,y3,23).
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Biy(3,1;.2)

Az (1,2,2)

Br: (z2, y2, 22)

kY

Al'[ : (xh Y1, Zl)

Figure 1.29: Coordinates of Ap for the projection of A ABC

— —oo
The vector AAp can be obtained by projecting A By orthogonally onto n. That is

- — ABr-n
AAq = proj,, ABr = (L) n,

n-n
where
T

—_—
AAH:(l‘l—l,yl—Q,Zl—Q), A H:(l‘g—l,yQ—Q,ZQ—Q), n:(l,—l,l).

Calculating we obtain

A7, = proj., ABn <1(:c2 —1) = 1(y2 — 2) + (22 — 2)) (1,-1,1)

1+1+1

- —1
_ <:v2 y2;-z2 > (1,—1,1) = (2,-2,2),

where xo — yo + 29 = 7 as this is a point on the plane II. We have

—
AAn = (z1 — Liy1 — 2,21 — 2) = (2,-2,2),

so that x1 = 3, y1 =0, 21 = 4 and the coordinates of A are

A (3,0,4).
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s
To find the coordinates of By, we project BAj orthogonally onto n (see Figure
1.30), i.e.

-n
BBy = proj , BAj| = <H> n,

n-n

—
BAH: (0,—1,2), BBH:(x2—3,y2—1,22—2), n = (1,—1,1).

B:(31,2)

1
BH : ((1')2, W, 22)

Figure 1.30: Coordinates of By for the projection of A ABC

Calculating we obtain

|

—
By = proj, BAg = (1,-1,1),

oy

BBH = (x2 — 3,y2 — 1,22 — 2) = (1, —1, 1)
The coordinates of By are then

By : (4,0,3).

e
In the same way, we project C' By orthogonally onto n to find Cyy (see Figure 1.31).
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Figure 1.31: Coordinates of Cpy for the projection of A ABC

We obtain

CCh = proj,, OBy = (2,-2.2)

—
and comparing this with CCr; = (x3 — 1,y3 — 1,23 — 1), we obtain

Cn: (3,-1,3).

This completes the calculations of the vertices for A AgBprCry.
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b) We reflect the triangle A ABC with vertices A : (1,2,2), B: (3,1,2)and C': (1,1,1)
about the plane Il : = — y + 2z = 7 and decribe the reflected triangle A A* B*C* by
calculating the vertices of this triangle, namely the coordinates of A*, B* and C*

(see Figure 1.32).

B:(3,1,2)

I
Az (1,2,2) < |
l

\

C: (1,11

Am: (3,0, 4) ‘/:\ Cn: (3, -1,3)

'

C*‘. (x;‘, y;, 23*)
/'
A*: (.Z'* * Z* ¢i> ’
b 1) \l

B : (23, y3, 23)

Figure 1.32: A ABC reflected about II resulting in A A*B*C*.

We assume that the coordinates of A*, B* and C* are as follows (see Figure 1.32):
A" (21,01, 21), BT (3,90, 22), CF (23,43, 23)-

From part a) above we have (see also Figure 1.32)
AA* = 244, = 2(2,—2,2) = (4, —4, 4),

and, moreover,

AA = (2% —1,yf — 2,27 —2) = (4, -4, 4).
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Thus 27 =5, yj = —2 and 2] = 6, so we have found the coordiantes of A*, namely
A* ¢ (5,-2,6).
Also
BB* = 2BB1 = 2(1,~1,1) = (a5 — 3,45 — 1,25 — 2)
CC* — 200 = 2(2,-2,2) = (a5 — 1,4 — 1,25 — 1),

which leads to the following coordinates for B* and C*:

B*: (5,-1,4), C*: (5,—3,5).

/
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1.6 Exercises

1. Consider the following two vectors in R3: u = (—1,2,3) and v = (1,-1,2).

a) Find the orthogonal projection of u onto v.

[Answer: projyu = (5, —%, 1). ]

b) Find the orthogonal projection u,. of u onto the yz-plane.
[Answer: u,. = (0,2,3). ]

¢) Find the vector u* that is the reflection of u about v.
[Answer: u*=(2,-3,—-1).]

d) Find the vector u*,, that is the reflection of u about the zz-plane.

[Answer: u*,, = (—1,-2,3). ]

e) Find the vector that results when u is first reflected about the zy-plane and
then reflected about the yz-plane. Is the resulting vector different if we first
reflect about the yz-plane and then reflect about the xy-plane?

[Answer: (1,2,—3). The vector is the same. |

f) Find the vector that results when u is first reflected about the zy-plane and
then projected orthogonally onto the yz-plane. Is the resulting vector different
if we first project orthogonally onto the yz-plane and then reflect about the
xy-plane?

[Answer: (0,2,—3). The vector is the same. |

2. Find all the values for a € R, such that the volume of the parallelepiped described
by the vectors u = (1,1,2), v = (—1,a,3) and w = (2,1, a) is one cubic unit.

[Answer: a € {0, 1, 2, 3}. |
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3. Consider the following three vectors:
u=a(l,1,2), v=(-1,b,—-1), w=(7,1,¢),
where a, b and c are real parameters.
a) Find all values for a, b and ¢, such that the given vectors u, v and w describe a

rectangular parallelepiped (i.e. a parallelepiped with perpendicular sides) with
a volume of 132 cubic units.

[Answer: a € {—-2,2}, b=3, c=—4.]

b) Find all values for a, b and ¢, such that the volume of the parallelepiped,
described by the vectors u, v and w with a # 0, is zero cubic units.

5  for all ¢ € R\{14).

A b=
[Answer: b o]

4. Consider three points P;, P, and P3 with the following coordinates in R3:
P :(2,-1,1), Pp: (3,2,—-1), Ps: (—1,3,2).

a) Find the equation of the plane II; that contains the three given points.

[Answer: 1lx + 5y + 13z = 30. |

b) Assume that the normal n of a plane Il is given as n = (—2,1,4) and that II,
contains the given point P;. Find the equation of Il,.

[Answer: —2z+y+4z=—1.]

c¢) Find the angle 6 between the two planes II; and Il that you have obtained in
part a) and part b).

[Answer: 6 = arccos <\/9175> ]

5. Consider a line ¢ in R? that passes through the points P; : (1,—2,—1) and P; :
(37 _1a 1)
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a) Find a parametric equation for /.

[Answer:
r=2t+1
2 y=1t—2

z=2t—1 for all t € R. ]

b) Find the distance s from the origin (0,0, 0) to the line ¢ that you have obtained
in part a).

[Answer: §= ——. |

6. Consider a triangle with vertices A: (1,0,1), B: (2,1,—1) and C': (2,2,1).

a) Find the distance from the point B to the base of the triangle with vertices A
and C.

21
[Answer: = ]

b) Find the area of the triangle ABC by making use of the cross product.

1
[Answer: 3 V21, ]

7. Consider the following two lines in R3:

r=2t+3 r=—s
0y y=—4t+1 ly y=s+3
z=2t+2 forallteR, z=—-s—1 forall seR.

Do the lines intersect? If so, find the point of intersection for this case.

[Answer: The point of intersection is (4, —1,3). |
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8. Consider a pyramid ABC'D with vertices at A: (2,1,0), B: (0,2,3), C: (1,0,1)
and D : (1,1,1) as shown in Figure 1.33.

Figure 1.33: The pyramid ABCD.

Find the height of this pyramid.

[Answer: The height of the pyramid is given by the distance from the point D to

1
the plane that contains the triangle ABC, namely \/_2_6 ]

> Apply now
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9. Consider the line ¢, given in parametric form by
r=kt+2
:¢ y=t—3
z=3t+4 for all t € R,
and the plane II, given by the equation
II: 3z 42y +4z=1.

a) Determine for which value(s) of k € R, if any, is ¢ parallel to II.

14
[Answer: k= —3 ]

b) Find the distance from ¢ to II for those values of k for which ¢ is parallel to II,
if any such values exist.

1
[Answer: —5 ]

V29

c) Find the intersection of ¢ with II, for all those values of k for which ¢ is not
parallel to II, if any such values exist.

[Answer: The coordinates of intersection is (—=9k + 28, =9k — 57, 12k 4+ 11)

L

3k + 14
14

for all k € ]R\{—?} ]

10. Consider the line ¢ given in parametric form by
rT=—t+2
l:¢ y=3t
z=5t—1 for all t € R,

Find all points on £, for which the distance from those points to the plane x+y—z = 2
2

1S — units.

V3

7 8
[Answer: The points with coordinates (3, -1, —g) and (1,3,4). ]
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11. Consider the plane II : x — 2y 4 3z = 31 and the line ¢ given in parametric form by

x=—t+2
:¢ y=t—1

z=—-2t+3 for all t € R.

a) Find the parametric equation of the line @, such that ¢ is the orthogonal pro-
jection of ¢ onto II.

[Answer:
r=—-5t+4
/- y=—-4t-3
z=—t+7 for all t € R. ]

b) Find the parametric equation of the line £*, such that ¢* is the reflection of ¢
about II.
[Answer:
r=2t+4
e o y=—-11t-3
z="Tt+13 for all t € R. ]

c¢) Find all points on ¢, for which the shortest distance between those points and
the plane II is 3/v/14.

11 8 19 13 10 23
A : Th ints (—,——, — d(—,——,—).
[Answer epoms(37 3,3)311 (37 373)]

12. Consider the plane IT : 3z 44y — 5z = 11 and the line ¢ given in parametric form by

r=t+4
I y=—-2t+1

z=—t+3 for all t € R,

where £ is parallel to II. Find the line ¢, such that ¢ is the orthogonal projection of
¢ onto II.
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[Answer:

t+28
T = —
5

/- 1
o=
y 5

z=—t+1 for all t € R. ]

13. Consider the plane I : 2z — y + 2z = —5 and the triangle A ABC' with vertices
A: (1,0,1), B: (0,1,1) and C: (1,1,0).

a) Find the vertices of the triangle A Ay ByCry, such that A ApBpCry is the or-
thogonal projection of A ABC onto I1.

[Answer: The vertices of the projected triangle A A B Cry are Ay @ (—1,1, —1),

45 1 15
BH : (—g, 37—5) and CH . (—§7§,—§) ]

b) Find the vertices of the triangle A A*B*C*, such that A A*B*C* is the reflec-
tion of A ABC about II.

[Answer: The vertices of the reflection triangle A A*B*C* are A* : (—3,2,—3),
B ( 87 5 57 8

_ga §7_§) and C™ : (_§7 §7_§) ]
14. Show that the distance s between two parallel planes,
I : ax+by+cz=d;

Iy : ax + by + cz = do,

is given by

where n = (a, b, ¢) is the normal vector for the planes (see Theoretical Remark 1.5).
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Chapter 2

Matrix algebra and (Gauss
elimination

The aim of this chapter:

We introduce points in the Euclidean space R™ in terms of n-component vectors. Those
vectors can be represented in terms of column-matrices (or row-matrices). Any system of
linear equations can in fact be written in the form of a matrix equation, namely Ax = b,
which can subsequently be investigated using matrix properties. To achieve this, we
introduce addition and multiplication of matrices, the determinant of a square matrix
and the inverse of a square matrix (for those matrices that are invertible). For solving
systems of linear equations, we use the method of Gauss elimination and also introduce an
alternate method following Cramer’s rule, by which certain types of square linear systems
can be solved.

2.1 Matrix operations of addition and multiplication

We introduce vectors in the Euclidean space R™ and describe the basic vector operations.

Theoretical Remarks 2.1.

1. Vectors in R™:

A vector u in the Euclidean space R™ is an n-tuple (u1,usg,...,u,). We write
u = (U, ug,y...,uUp).
Here ui, ug, ...,u, are numbers (real or complex, although we consider only real

numbers in this book). Every n-tuple denotes a unique vector or point in R". We
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can represent u by an n x 1 column-matrix

or we can represent u by an 1 X n row-matrix
u=(uj ug ... up).

Consider, furthermore, the vectors v = (vq,v2,...,v,) and w = (w1, wa, ..., wy,).
We have the following

Properties:
e u+v=_(u +v,uy+uUy...,Uy,+v,) =V-+u
e (u+v)+w=u+(v+w)
e ru=(rup,rua,...,ru,) =ur for all r € R.

e Ou=0=(0,0,...,0) called the zero-vector of R".

2. Matrix addition and multiplication with constants:

Consider the following m x n matrix

a11 ai2 Q1n

a21 a2 Q2n
A= . ,

Aml Am2 **° Omn

where a;; are numbers (real or complex, although we consider only real numbers in

this book).

Note: In some cases it is convenient to denote matriz A as follows:

A=la;j] or A=J[a;az ... ay|, where a; € R™.

Consider two matrices of size m x n, namely

A= [aij] and B = [blj]

We define addition and multiplications as follows:
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PROBLEMS, THEORY AND SOLUTIONS IN
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE
Addition of matrices:
A+ B = [a;j + bij].
Multiplication with a constant:
rA =[ra;;) = Ar forallr e R
0A = [0a;] = Omn,

We have the following

Properties:

MATRIX ALGEBRA AND GAUSS ELIMINATION

where 0,,,,, denotes the m x n zero matrix.

Let A, B and C' be matrices of size m x n and let r and s be any real numbers. Then

e A+ B=B+A
(A+B)+C=A+(B+C)
e A+0,,,=4
r(A+B)=rA+rB
(r+s)A=rA+sA
r(sA) = (rs)A.
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3. Matrix-vector multiplication:

Consider the m x n matrix A, namely
A=[ajaz ... ay|, aj€R™,
and consider the vector x € R", namely

z1
Z2

In
The matrix-vector product Ax is a vector in R™ defined as follows:
Ax = x1a1 + 1982 + -+ + Tpan.

Let A be an m x n matrix, let u and v be two vectors in R™ and let r be any real
number. We have the following

Properties:

e Alu+v)=Au+ Av
o rA(u) = A(ru).

4. Matrix-matrix multiplication:

Let A be an m x n matrix and B be an n X p matrix, where
B =[by by --- by], bjeR"
The matrix-matrix product AB is a matrix of size m X p defined as follows:
AB = [Aby Aby --- Aby].
For the properties listed below, we assume that the matrices A, B and C are of

the correct size, such that the listed properties do not contradict the above given
definitions. Let r be any real number. We have the following

Properties:

o A(BC) = (AB)C
e A(B+C)=AB+ AC
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e (A+ B)C = AC + BC
o 7(AB) = (rA)B = A(rB).

The n x n identity matrix, denoted by I, is defined as follows:

10 -+ 0
0 1 0
I, = o .| =lerez ---ex],
00 - 1
where {e1, e, -+, en} is the standard basis for R, namely
e1 = (1,0,...,0), ez=(0,1,...,0), ..., en=1(0,0,...,1).

Let A be an m X n matrix and let u € R™. Then

o A, =A=1,A.
e [,u=u

o IV =1, forallpeN.
Remark: Let A be an m X n matriz and B an n x m matriz. Then the product
AB = Omm,

where Oy denotes the m X m zero matriz, does not imply that A is a zero matriz
or that B is a zero matrixz. For example,

(1) (aa)=(00):

Problem 2.1.1.

Consider the following three matrices:

a 2 1 2 a O 1 1 1
A_<10a>’ B_<012a2)’ C‘<111>’
where a is an unspecified real parameter. Find all values for a, such that

A+B=C.
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2.1.1.

We add matrices A and B and compare every entry of the resulting matrix with the
corresponding entries in matrix C":

a+2 2+a 1 (111
1 1 a+22 ) \1 1 1)
We obtain

a+2=1 2+a=1, a+2d®=1,

for which a = —1 is the only common solution.

Problem 2.1.2.

Consider the following two matrices:

a b 1 2
=(r2) -(hd)
where a and b are unspecified real parameters. Find all values for a and b, such that

AB = BA.

2.1.2.
We multiply the matrices A and B in the order AB:
a b 1 2 a+b 2a
a1 ) (1 a)-(3" )
For the multiplication BA, we obtain
1 2 a b a+2 b+4
s (o) (50)=(" )
Comparing now every entry in AB with the corresponding entries in BA, we obtain

a+b=a+2, 2a=b+4, a=3, b=2

The above system of equations has the solution ¢ = 3 and b = 2. Thus for the values
a =2 and b =3 in A, the matrices A and B commute, i.e. AB = BA, and for all other
values of a and b, the matrix multiplication does not commute, i.e. AB # BA.

Problem 2.1.3.
Consider the matrix
0 b
=(0a)
where b and c are unspecified real parameters. Find all values of b and ¢, such that

A2 = -[27

where I5 is the 2 x 2 identity matrix.
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Solution 2.1.3.
We calculate A2:
2 (O BN b _ (b 0
c 0 c 0 0 bc /-

The 2 x 2 identity matrix I3 is

10
n=(5 1)

Comparing each entry in A? with the corresponding entries of I, we obtain
be = 1.

We conclude that the matrix

0 b
A=1 1

- 0

b

satisfies the relation A% = I, for all b € R\{0}.

2.2 The determinant of square matrices

We introduce the determinant of square matrices and show how to compute those using
the cofactor expansion and elementary row operations.
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Theoretical Remarks 2.2.

1. The determinant of an n x n matrix A = [a;;], denoted by det A or | A], is a number

that can be calculated by the cofactor expansion across the ith row,

det A = ai1Cit + ai2Cig + - -+ + ainCin,

or, alternately, det A can be calculated by the cofactor expansion down the jth

column,
det A = a1;C1j + azjCoj + - - - + a,jChj.
Here the number Cj; is the (7, j)-cofactor of A, namely
Cij = (—1)" det A,
where A;; denotes the (n—1) x (n —1) matrix, obtained from matrix A by removing

the i'! row and the jth column in A.

2. Two matrices A and B are said to be row equivalent (we write A ~ B) if B can
be obtained from A by applying a finite number of elementary row operations on A.
The three elementary row operations are the following:

i. Replace one row by adding that row to the multiple of another row.
ii. Interchange two rows.
iii. Multiply all entries in a row by a nonzero constant k.
3. The calculations for the determinant of A can be simplified by applying elementary

row operations on A. The relation between the determinant of A and the determinant
of its row equivalent matrices, are as follows:

e If A~ B, where B was obtained by applying the elementary row operation (i)
on A, then det B = det A.

e If A~ B, where B was obtained by applying the elementary row operation (ii)
on A, then det B = —det A.

e If A ~ B, where B was obtained by applying the elementary row operation (iii)
on A, then det B = kdet A.

4. Let A and B be n x n matrices. Then we have the following

Properties:

e det(AB) = (det A)(det B)
o det(A™) = (det A)™ for any m € N.
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o det AT = det A.
Note: The transpose of any m x n matriz B is an n x m matriz BT, where
the columns in B are the rows in BT.

e det(cA) =c"det A for any number c.

e The determinant of a diagonal matrix is given by the product of all its diagonal
elements.

e The determinant of a lower triangular matrix or an upper triangular matrix is
given by the product of all its diagonal elements.
Note: A square matriz is said to be lower triangular if all the entries above
its diagonal enties are zero elements. Similarly, a square matriz is said to be
upper triangular if all the entries below its diagonal entries are zero elements.

e det I, = 1, where I, is the n X n identity matrix.
1

o det(A™1) = Jot(A)’ where A~! denotes the inverse of the matrix A.

Note: For details on the inverse of matrices and how to obtain the inverse, see

Theoretical Remark 2.3.

5. Consider three vectors, u, v and w, in R?. Then

e the area of the parallelogram described by u = (u1,uz,us) and v = (v1, va, v3)
is given by the norm of the cross product

€] ez eg
luxv|=]det | wr w2 ug ||
v1 V2 U3

e the volume of the parallelepiped described by u = (u1, ug, u3), v = (v1, v2, v3)
and w = (w1, we,ws) is given by the triple product

U1 U2 U3
lu-(vxw)=|det [ v1 wva2 w3 ||
w1 W2 ws

See Theoretical Remark 1.2 for details regarding the cross product and the
triple product for vectors in R3.

Problem 2.2.1.

Compute the determinant of the following matrices:

1 -1 0 1

1 -2 2
1 4 2 1 2 -1
a=(ya)eom=l 3 )oe=| 00
-1 4 1 2
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2.2.1.

Below we compute the determinant of the given matices by cofactor expansions across the
1st row.

1 4
det A = ‘ 9 3 ' = 11011 + a12C12 = ap (1) det Ayy 4 aa(—1)""2 det Apo
—3-8=-5
1 -2 2
detB=| 3 1 1 :1‘_; H—(—z)‘ X 1‘+2‘_?1’ _;'
-1 -2 1
—1(14+2)+2B3+ 1) +2(—6+1) =1
;_18_1 12 -1 2 2 -1 2 1 2
detC=| 5 1 o|=101 2/-(n| 31 2|-1| 301
1 41 9 4 1 2 -1 1 2 -1 4 2
1 2 0 2 0 1 1 2 3 2
R R R Y A I R B By
0 1 3 0
S G I C )
=12

It is less tedious to compute the determinant by finding the row equivalent upper triangular
matrix. We now use this procedure and again compute det C:

1 -1 0 1 1 -1 0 1 1 -1 0 1
0 3 2 — 0 3 2 -3 0 3 2 -3
detC=\o 31 1|0 0 -1 2 0 0 -1 2
0 31 3 0 0 -1 6 0 0 0 4

Problem 2.2.2.

Consider matrix C' in problem a) and compute the following:

det(Ch), (detC)?*, det(3C), det(CT).
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Solution 2.2.2.

det(C*) = (det 0)* = (—12)* = 20736,
(det C)* = (—12)* = 20736,

det(3C) = 3% det C = (81)(—12) = —972,

det(CT) = det C = —12

Problem 2.2.3.

Consider the matrix

-2 1 2
A= -1 0 1
-2 1 2

Find matrix AP for all p € N by calculating A%, A3,....

[ ]
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2.2.3.

We calculate A2 and A3:

-1 0 1 0 0O
A? = 000 and A*=( 0 0 0
-1 0 1 0 00
Hence
0 0O
AP=10 0 0 for all natural numbers p > 3.
0 0O

Problem 2.2.4.

Consider
X2 —2X + I = 09, (2.2.1)

where X is a 2 X 2 matrix, I is the 2 x 2 identity matrix and Og9 is the 2 X 2 zero matrix .

a) Show that

xo( 22,

is a solution of (2.2.1) and find another solution by factorizing the matrix equation
(2.2.1)

b) Show that det X = 1 for a solution X of (2.2.1), even in the case where X is an
n X n matrix.

¢) Show that (2.2.1) admits in fact infinitely many solutions.

2.2.4.

a) We calculate

(=) (2 70) (2 7)- (G Y)

and obtain the zero matrix. The matrix equation (2.2.1) can be factorized as follows:

(X — )2 =099, sothat X =TI, isanother solution for (2.2.1).  (2.2.2)

b) It should be clear that the factorization and solution given in (2.2.2) is true when X
is an n X n matrix for any n, so that X = I, is a solution. Then det X = det I, = 1.
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c) We let

X_[2:<Z 2) and calculate (i 2)(62 2)2(8 8)

This leads to the following four conditions:
a>+bc=0, bla+d) =0, cla+d) =0, cb+d>=0. (2.2.3)

By subtracting the first equation from the fourth equation above, we obtain the
equivalent system

a>+bc=0, bla+d) =0, cla+d) =0, (a+d)(a—d)=0.

Investigating the two cases a +d = 0 and a — d = 0 we come to the conclusion that
a+d =0 and a® + bc = 0 is the only case that provides all solutions. Thus

a b 10 a+1 b
X(c—a>+<0 1>< c 1—a)
for all a, b and ¢ such that a® + bc = 0. Moreover, det X = 1. The matrix equation

X2—2X+122022

has therefore infinitely many solutions.

2.3 The inverse of square matrices

In this section we introduce the inverse of a square matrix and show how to find this
inverse, for invertible square matrices. The determinant of the matrices plays a central
role in this discussion.

Theoretical Remarks 2.3.

Let A be an n x n matrix. The matrix A is said to be invertible if there exists another
n x n matrix A~!, called the inverse of A, such that

A TA=AA =1,

A square matrix that is not invertible is said to be singular.

We have the following statements:

1. Matrix A is invertible if and only if det A # 0.
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2. Matrix A is invertible if and only if A is row equivalent to the n x n identity matrix
I,. That is, A is invertible if and only if the reduced echelon form of [A I,] is
[I, A~1].

3. If matrix A is invertible, then

-1 _ adj(A)
det A’

where adj(A) denotes the adjugate of A, given by the matrix

Cni Cox -+ Cm

) Cia Co -+ Cpo
adj(A) = ) ) .

Cln C2n e Cnn

Here Cjj is the (i, j)-cofactor of A, namely
Cij = (—1)i+j det Aij.

Let A and B be n x n invertible matrices. Then we have the following

Properties:
o (A l=4
o (cA)t =c1A! for nonzero numbers c.
o (A1)t = (A YT where AT is the transpose of A.
e (AB) ' =pB714!
o det(A 1y =
det A

Problem 2.3.1.

Consider three n x n matrices, namely A, B and C, where A and B are invertible matrices
such that the following matrix equation is satisfied:

A’B+ A= AC.
Find A.
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2.3.1.
We multiply the given matrix equation
A’B+ A= AC
by A~! from the left, i.e.
ATTA’B+ A7t A= A1 AC,
and obtain
AB+1,=C.
We now multiply the previous matrix equation by B~! from the right, i.e.
ABB™'+1,B ' =CB™!,
where I, B~' = B~! and ABB~! = AI, = A. Thus
A=CB'-B.

Problem 2.3.2.

Let X, A and B be n x n matrices, where A and X are invertible matrices such that
BX'+24=BAX""
a) Find X.
b) Find X, such that

(31 -(13)

2.3.2.
a) We multiply the given matrix equation
BX ' +24=pBAX!

by X from the right to obtain
1 1
B+2AX =BA or AX = iBA_iB'
We now multiply the provious matrix equation by A~! from the left to obtain

X=4" (;BA — ;3) or X = %A’lB (A-1,).
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b) For

1 2 1 2
A=(3 2) and B=(4 3)

we have

aen=(O1) e o ()R,

1
Inserting this into the result that was obtained for X above, namely X = §A*1B(A — 1),

we obtain
(34 1
X= ( 9/8 1/4 ) '
Problem 2.3.3.

Calculate the inverse of the following matrix:

Vowo Tavexs | Resanr Toocks | Macs Tovers | Vowo Buses | Vowo Cowsteuction Esumsent | Wowo Pesm | Vowo Aero | Vowo IT

Vowo Fimswcer Sepces | Vowo 3P | Vowo Powerream | Vowo Pasrs | Vowo Techwowoey | Wowo Loasncs | Busisess Anes Asie
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2.3.3.

|

SO O
o O - O
@)
—

S O O

To gain the inverse of matrix A, we find the reduced echelon form of [A I4]. We obatin

S O

)

oo~ O
oS - O O
—

S

— — —
S~ =

— = — O

— o O O

o - O

S

oS o o -
o —H O -
—

O

— — Al AN
S — — A

— - O O

— o O O

— — N —

O - - O

— - O O

— O O O

We conclude that the inverse of A is

—1
0

—1

~-1/2 1

~1/2

0
1/2
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Problem 2.3.4.

Find all real values of k£ such that the given matrix A is invertible and calculate then the
inverse of the matrix for one of those values of k:

k1 2
A= 2 1 k

k0 1

2.3.4.

First we find all real values of k for which A is singular. That is, we find k such that

det A =0, where

TN T

1 2
1 k|=k —-k—2 sothat (k4 1)(k—2)=0.
0 1

Hence A is singular for k = —1 or k = 2, and therefore A is invertible for all k € R\{—1, 2}.
We choose the value k = 0 and calculate the inverse of A:

0121100 1 1/2 0 | 0 1/2 0

ALl=(210]010]|~l0 1 21 0 0

001001 0 0 1]0 0 1
100 | —1/2 1/2 1
~lo10]| 1 0 -2
o011 o 0 1

The inverse of A is thus

-1/2 1/2 1
Al = 1 0 -2
0 0 1

2.4 Gauss elimination for systems of linear equations

In this section we describe the method of Gauss elimination to solve systems of linear
equations. We prove that any consistent linear system admits either a unique solution or
it admits infinitely many solutions (see Problem 2.4 ¢ below)

Theoretical Remarks 2.4.

A system of m linear equations in n unknown variables x1, 2, ..., x, can be written
in the form of a matrix equation

Ax=b, (2.4.1)
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where A is a given m X n matrix, called the coefficient matrix of the system, b is a given
vector in R” and

1. The matrix equation (2.4.1) is said to be consistent, if there exists at least one
solution x € R™ which satisfies (2.4.1). The matrix equation (2.4.1) is said to be
inconsistent (or incompatible), if there exists no x € R"” that satisfies (2.4.1).

2. Any consistent matrix equation of the form (2.4.1) admits either a unique solution
x € R™, or it admits infinitely many solutions x € R".

3. All solutions x € R"™ of (2.4.1) can be obtained by the so-called Gauss elimination
method, which can be described by the following four steps:

Step L
Step II.

Step I11.

Step IV.

Write down the augmented matrix [A b] of (2.4.1).

Apply elementary row operations on [A b] to convert [A b] into row equiv-
alent matrices.

Apply Step IT until [A b] is in its unique reduced echelon form, which we
denote by [B c|. The matrix equation

Bx=c, c€R™ (2.4.2)

is then the simplest form of the original system Ax = b. System (2.4.2) has
the same solutions as system (2.4.1).

Solve equation (2.4.2). The columns in matrix B with the leading 1’s are the so-
called pivot columns of matrix A. Every column j in the coefficient matrix
that is not a pivot column implies that z; is an arbitrary parameter in the
solution x = (21, 22,...,%j,...,xy) of (2.4.1). If the last column in the matrix
[B c] is a pivot column, then system (2.4.1) is inconsistent.

Problem 2.4.1.

Find all solutions x € R of the system of linear equations given by the matrix equation

Ax = b, where
0 1 2 -1 0 1
A=|11 0 -1 0 3 |, b=| —4
20 1 39 -5
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2.4.1.

The augmented matrix [A b] of the given system is

01 2 -10 1
[Abl=( 10 -1 03 —4
2 0 1 9 -5

10 -1 03 —4
[Abjl~| 01 2 -1 0 1
20 1 39 -5
10 -1 03 —4
~lo1 2 -10 1
0 3 33
10 -1 03 —4
~ 1 2 -10 1
00 1 11 1
1 =3 0 10 10 0
~ 10 -3 —2 -1
o 01 1 1 1
100 1 4 -3
~l010 -3 -2 —1
001 1 1 1

For x = (z1, z2, x3, 24, x5) the simplified, but equivalent, linear system then takes the form

T1 + x4 +4a5 = —3
To — 3x4 — 225 = —1

T3+ x4+ a5 = 1.

From the above reduced echelon form of [A b], we conclude that the 4th and 5t columns
in the coefficient matrix A are not pivot columns. It therefore follows that x4 and =5 are
free parameters in the solutions. We let say x4 =t and x5 = s, so that

1 =—-t—45s—3, x0=3t+2s—1, x3=—-t—s+1.

All the solutions of the given linear system Ax = b are

—t—4s—3
3t+2s—1
X = —t—s+4+1 for all t € R and all s € R.
t
s
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The solutions can also be presented in the following form:

-1 —4 -3
3 2 -1
x=t| -1 | +s| -1 |+ 1 for all t € R and all s € R.
1 0 0
0 1 0

Problem 2.4.2.

Consider the system of linear equations Ax = b with

1 2 k 2 1
A=|3 k 86|, b=|[15],
11 6 2 1

where k is an unspecified real parameter.

a) Find all values of k, such that the given system is consistent and give then all
solutions of this consistent system.

b) Do there exist values of k, such that the given system has a unique solution?

FULL ENGAGEMENT...
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2.4.2.

a) The augmented matrix for the given system is

12 k21
[Abl=| 3 k 18 6 5
11 621

Performing elementary row operations on this augmented matrix, we obtain the
following row equivalent matrices for [A b]:

12 k 2 1
[Abl~| 0 k-6 —3(k-6) 0 2
0 1 k—6 0 0

)
o
|
(=)
|
w
—
o
|
(=)
~—

1 2 k 2 1
~1 01 (k —6) 00
00 —(k—6)(k—3) 0 2

From the last echelon form of [A b] above, it is clear that the given system Ax = b
is consistent for all k£ € R\{3, 6}. Therefore, the system is inconsistent if and only
if k=3 or k =6. We now solve the system for those values of k for which it
is consistent. From the last echelon form above, we have the following simplified
system of equations for Ax = b with x = (z1, 22, x3, 24):

T + 2w + kxg +2x4 =1
$2—{—(k‘—6)$3:0
—(k — 6)(k — 3)az = 2.

Since the 41 column of A is not a pivot column, we know that x4 can be chosen as
a free parameter, say x4 = t. We obtain

2(12 — k) 2 2

=2 Y941 = =
T (k= 6)(k—3) + 1, x , T3

so that the solutions of the given system are

-2 k2 — 11k + 42
1 2(k — 6)
(k —6)(k — 3) —2
0

for all t € R and all k£ € R\{3, 6}.
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b) It is clear from the last echelon form of [A b] given in part a) above, that the 4th
column of A is not a pivot column, and this is always the case for any choice of k.
Thus the given system Ax = b cannot have a unique solution, for any choice of k.

Problem 2.4.3.

Prove that any consistent system, Ax = b with A an m X n matrix and b € R™, will
either admit exactly one solution or infinitely many solutions x € R".

2.4.3.
Assume that x; € R” and xg € R” are two distinct solutions for Ax = b. That is,
Axy = b, Axs = b.
Let x¢ denote the difference between x; and x2, i.e.
X9 = X1 — Xg # 0.
Consider Axg: we obtain
Axg = A(x1 —x2) = Ax1 —Axa=b—-b=0

and we conclude that xg is a solution of the homogeneous equation Ax = 0.
Consider now A(x1 + kx¢), where k is any real number: we obtain

A(Xl—l-k‘XO) = Axq + Akxg = Ax1 + kAxg=b+k0=Db

for any choice of k. We conclude that x1 + kxg gives infinitely many solutions for Ax = b;
one solution for every choice of k € R. Therefore, if any system of the form Ax = b admits
more than one solution, then this system will always admit infnitely many solutions.

2.5 Square systems of linear equations

A square systems of linear equations is a linear system of equations that contains as many
equations as unkown variables. For square systems of linear equations the determinant
of the coefficient matrix plays a central role for the solutions of the systems. We discuss
Cramer’s rule, by which certain square systems of linear equations can be solved in terms
of determinants.

Theoretical Remarks 2.5.

Consider the square system of linear equations
Ax =Db, (2.5.1)

where A is an n X n matrix and b € R".
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1. System (2.5.1) can be solved by the use of the Gauss elimination method. See
Theoretical Remark 2.4 for a detailed description of this method.

2. System (2.5.1) admits a unique solution x € R™ for every b € R™ if and only if A is
invertible. The unique solution of (2.5.1) is then

x=A"1b.

3. System (2.5.1) admits a unique solution if and only if det A # 0. Therefore, if
det A = 0 then system (2.5.1) may admit infinitely many solutions or the system
may be inconsistent.

4. If system (2.5.1) is consistent, then its unique solution can be calculated by the use

of Cramer’s rule, which states the following:

Cramer’s rule:
If det A # 0 then the unique solution x = (z1,x2,...x,) of (2.5.1) is given by the
formula

_ det Aj (b)

;= ) =1,2,...
.’E] detA ) J ) &y » 1,

where Aj(b) is the matrix that has been obtained from matrix A by replacing the
jth column in A by the vector b. In the case where det A = 0, Cramer’s rule states
the following:

If det A = 0 and det Aj(b) # 0 for at least one j, then the system (2.5.1) is incon-
sistent. If det A = 0 and det A;(b) = 0 for every j = 1,2,...,n, then the system

(2.5.1) admits infinitely many solutions.

Problem 2.5.1.

Consider the square system of linear equations Ax = b with

kK 1 2 1 Tl
A=1 21 k|, b= -7T1|, x=1 z2 |,
k0 1 3 x3

where k is an unspecified real parameter.

a) Find all values of k, such that the given system has a unique solution. For which
values of k is the matrix A invertible?

b) Find all values of k, such that the given system admits infinitely many solutions and
give all values of k£ for which the system is inconsistent.
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Solution 2.5.1.

a) We recall that a linear square system Ax = b has a unique solution if and only if
det A # 0 and then A is invertible. Calculating the determinant for A, we obtain

det A =

TN

1 2
1 k| =Fk+1)(k-2).
0 1

Thus the linear system has a unique solution for all £ € R\{—1, 2} and this unique
solution is

x=A"1b

for all k € R\{—1, 2}.
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b) To find the values of k for which the linear system Ax = b might admit infinitely
many solutions, we have to investigate the two cases k = —1 and k£ = 2, since the
determinant of A is zero for those two values of k.

For k = —1, the augmented matrix of the system is
-1 1 2 1 1 -1 -2 -1
1 -1 =7 | ~ 0 1 1 -2
-10 1 3 0 0 0 1

By the third row of the previous matrix it is clear that the system is inconsistent in
this case, i.e. for k = —1.
For k = 2, the augmented matrix of the system is

21 2 1 2 1 21

212 -7]~10 0 08

2 01 3 0 -1 -1 2

By the second row of the previous matrix it is clear that the system is also inconsis-
tent in this case (k = 2).

We recall that the given system has a unique solution for all £ € R\{—1, 2} and
that the system is inconsistent for k = —1 as well as for k = 2. Therefore there exist
no real value of k for which the system may admit infinitely many solutions.

Problem 2.5.2.

Consider the following linear system:

1 k 1 T k
k1 1 o | = 2 1,
-3 0 -1 x3 -2

where k is an unspecified real parameter.

a) Find all values of k, such that the given linear system admits a unique solution and
find then this solution by the use of Cramer’s rule.

b) Find all values of k, such that the given linear system is inconsistent and all values
of k for which it admits infinitely many solutions. Find all solutions.
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2.5.2.

a) We are given the system Ax = b, where

1 k 1 k
A= k1 1 and b= 2
-3 0 -1 -2

The determinant of A is
det A=k*—3k+2=(k—1)(k—2)
so that A is invertible if and only if & € R\{1, 2}. The system has therefore a unique

solution for all real k, except for £k = 1 or k = 2. To find this unique solution we use
Cramer’s rule and calculate

detAj(b) . 1.2.3
€T, = ————— = .
] detA ) J 9 bl
We obtain
E k1
det Aj(b)=| 2 1 1|=2-k
-2 0 -1
1 k1
det Ao(b)=| k 2 1|=(k—-2)(k—3)
-3 -2 -1
1k k
det As(b)=| k 1 2 |=2k>-3k—2=2k+1)(k—2).
-3 0 -2

Thus the unique solution of the given system is x = (x1, 2, x3), where

1 k—3 2k =3k -2  (2k+1)(k—2) 2k+1
xlz—i’ x2:7, x3: = = .
k—1 k—1 (k—1(k-2) (k—1)(k—2) k-1

Here k is any real number, except k =1 or k = 2. For k = 2, we note that
det A=0 and det Aj(b)=0forj=1, 2, 3.

Therefore, by Cramer’s rule, the system admits infinitely many solutions for & = 2.
For k =1, we have

det A=0 and det Aj(b)#0forj=1, 2, 3.

Therefore, by Cramer’s rule, the system is inconsistent for k = 1.
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b) The augmented matrix for the given system is

1k 1 k
Abl=| k1 1 2
-3 0 -1 -2

We multiply the first row by —1 and add this to the second row, to obtain the row
equivalent matrix

1 ko1 k
k-1 1-k 0 2—-k |,
-3 0 -1 -2

from which it is clear that the system is inconsisent if and only if k = 1. For k = 2
the above augmented matrix has the following reduced echelon form:

10 1/3 2/3
01 1/3 2/3
00 0 0

The 34 column is not a pivot column and we can therefore choose z3 arbitrary. We
let x3 = t. Hence the solutions of the given system for k = 2 are

t 1 1 2
X:_§ 1 —|—§ 2 for all t € R.
-3 0

Problem 2.5.3.

Consider the following 4 x 4 matrix:

11 0 &k
2k 1 1 0

A= 0 0 -1 1]’
11 1 -2

where k is an unspecified real parameter.
a) Consider the homogeneous linear system
Ax =0,
where x € R*. Find all values of k, such that this system admits only the trivial

(zero) solution, as well as all values of k for which the system admits infinitely many
solutions.
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b) Consider the non-homogeneous linear system

Ax = b, b =

O = O =

Find all values of k, such that this system admits infinitely many solutions x € R*
and give all those solutions. Find also all values of k for which the system admits a
unique solution, as well as all k for which the system is inconsistent.
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a)

2.5.3.

We recall that the square system Ax = 0 admits only the zero solution, x = 0, if and
only if A is an invertible matrix. Moreover, A is invertible if and only if det A # 0.
We therefore calculate the determinant of A:

11 0 k
2k 1 1 0
det A = 00 -1 1
11 1 -2
1 1 2k 1 2k 11
=110 -1 1|=| 0 =1 1=kl 0 0 -1
1 1 =2 1 1 -2 11 1
= 2k>—k+1

= —(k+1)(2k — 1).

From the above we conclude that Ax = 0 admits only the zero solution for all
k € R\{—1, 1/2} and that the system admits infinitely many solutions for k¥ = —1
as well as for k =1/2.

Since A is invertible for all & € R\{—1, 1/2}, the system has a unique solution for
all those values of k and the unique solution of the system is

x = A" 'b.

Since det A = 0 for K = —1 and for k = 1/2, we need to investigate the given system
Ax = b for those two values of k. We let

1
x2
X =
x3
T4
For k = —1 the augmented matrix and its reduced echelon form are as follows:
11 0 -1 1 100 —=2/3 0
-2 1 1 0 0 01 0 —-1/3 1
00 -1 11 7foo1 -1 -1
11 1 -2 0 0 00 0 O

Since the 4th column of the augmented matrix is not pivot, we set x4 = ¢, where ¢
is an arbitrary parameter. Then the solutions are

2 0

t 1 1
X_§ 3 + 1 for all t € R.

3 0
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For k = 1/2 the augmented matrix and its reduced echelon form are as follows:

11 0 1/2 1 1100 1
11 1 00 0010 —1
00 -1 11| {ooo1 o
11 1 -2 0 0000 0

Since the 2nd column of the augmented matrix is not pivot, we set o = t, where ¢
is an arbitrary parameter. Then the solutions are

1 1

1 0

0 + 1 for all t € R.

0 0

We conclude that the system has infinitely many solutions for both £ = 1 and for

k =1/2 and it has a unique solution for all other values of k, so that there exist no
values of k for which the system is inconsistent.

2.6 Systems of linear equations in R?

In this section we study systems of linear equations that contain at most three variables.
Geometrically these equations are planes in R3, as discussed in Chapter 1. We make
use of the method of Gauss elimination, the determinant of a square matrix, and our
knowldge of planes that we have gained in Chapter 1, in order to solve such systems and
to interpret their solutions geometrically in R3.

Theoretical Remarks 2.6.

The general equation of a plane in R? is
ar + by + cz =d, (2.6.1)

where a, b, ¢ and d are given real numbers. All points (x,%,2) in R® which lie on this
plane must satisfy equation (2.6.1). Consider now m planes in R? given, respectively, by
the following system of m equations:

a11T + a1oy + a3z = di

a21% + a2y + a3z = da

Am1T + am2Yy + am3z = dpy.
This system of equations can conveniently be written in the form of a matrix equation

Ax =d, (2.6.2)
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where

a1 a2 a13 dy
as  az  as do v
A= . . . y d= . ; X = )
: : : : .

Aml Am2 am3 dm

1. Given a finite number of planes in R3, there exist only four possibilities regarding
their common intersection, namely

a) the planes all intersect in a common point;

b) the planes all intersect along a common line;

c¢) the planes do not all intersect in a common point or along a common line;
)

d) the planes all coincide.

Remark: If we are given only two planes (m = 2), then case a) is not possible.

2. Corresponding to the above four possibilities for the intersection of m planes, we
have the following possibilities for the solutions x € R? of system (2.6.2):

a) if the planes all intersect in a common point, then system (2.6.2) has a unique
solution;

b) if the planes all intersect along a common line, then system (2.6.2) admits
infinitely many solutions with one free parameter;

c) if the planes do not all intersect in a common point or along a common line,
then the system is inconsistent and has no solutions;

d) if the planes all coincide, then the system has infinitely many solutions with
two free parameters.

Remark: If we are given only two planes, then system (2.6.2) with m = 2 has
either no solutions (no intersection), infinitely many solutions with one free
parameter (intersection along a line), or infinitely many solutions with two free
parameters (the two planes coincide).

Problem 2.6.1.

Consider the following three planes in R3:
r—4y+7z=1
3y—5z2=0
—2x+4+5y —9z =k,
where k is an unspecified real parameter. Find all values of k, such that the given three

planes intersect along a common line £ and give ¢ in parameteric form. Does there exist
values of k for which the three planes intersect in a common point? Explain.

Download free eBooks at bookboon.com



PROBLEMS, THEORY AND SOLUTIONS IN
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE MATRIX ALGEBRA AND GAUSS ELIMINATION

Solution 2.6.1.

a) We first write the given equations,
r—4dy+7z=1
3y—5z2=0
—2x+5y—9z2=k

as a matrix equation, namely

1 -4 7 z 1
Ax =b, where A= 0 3 5], x=|wy |, b=1]20
-2 5 =9 z k
The augmented matrix is
1 -4 71 1 -4 7 1 1 0 1/3 1
[Ab] = 0 3 50 |~10 3 =5 0|~ 01 —5/3 0
-2 5 -9 k 0 -3 5 k+2 00 0 k+2
From the above reduced echelon form of [A b], we conclude that the system Ax = b is
consistent if and only if £ = —2 and for this value of k the system admits infinitely many

solutions. Choosing z =t as an arbitrary parameter, these solutions are

1 5
r=——-t+1, y:§t, z=t forallteR.

3
Thus for all £ € R\{—2} the three planes intersect along a common line ¢, namely
1
= Tt+1
x 3 +
l: 5
=2t
Y73

z=t forallteR.
Figure 2.1 depicts the intersection of the three planes along the line £ for k = —2.

Figure 2.1: Intersection of the planes in Problem 2.6 a) along the line ¢ for k = —2.
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For all values k € R\{—2}, the system is inconsistent. Figure 2.2 depicts the three planes

for the case k = 6 and we see that the planes do not intersect along a common line or in
a common point.

Figure 2.2: No common intersection of the planes in Problem 2.6 a) for k = 6.

We conclude that there exists no value of k for which the system admits a unique solution.

In other words, there exists no vlaues of k for which the three planes intersect in a common
point.
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Problem 2.6.2.

Consider the following four planes in R3:

z+y=2
y+z=2
T+z=2

ax + by +cz =0,

where a, b and ¢ are unspecified real parameters.

a)

b)

Find the condition on the parameters a, b and ¢, such that all four planes intersect
in a common point and determine this point under your condition.

Find the condition on the parameters a, b and ¢, such that the given system of four
equations is inconsistent. Give the geometrical interpretation of this case in terms
of the intersection of the planes.

Does there exist any values of the parameters a, b and ¢ for which the four given
planes intersect along a common line? Explain.

2.6.2.

We first write the given equations,

T+y=2
Yy+z=2
r+z2=2

ax + by +cz =0,

in the form of a matrix equation, namely

110 - 2
01 1 2
Ax =Db, where A= 101 |0 x= Z , b= 9
a b c 0

The augmented matrix is

A b] =

LS = O =
SO ==
o = = O
SN NN
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To write this augmented matrix in its reduced echelon form, it is convenient to con-
centrate first of all on the first three rows in [A b] and then deal with the parameters
in row four. We obtain

110 2 100 1 100 1
01 1 2 010 1 01 0 1
to12 7 floo11 ]| 7]loo01 1
a b ¢ 0 a b ¢ 0 00 0 a+b+c

From the fourth row of the previous matrix we conclude that the system Ax = b is
consistent if and only if the following condition is satisfied:

a+b+c=0

and, under this condition, the unique solution of the system is

Thus the common point of intersection of the four given planes is (1,1,1) for all
values of a, b and ¢, such that a + b+ ¢ = 0.

b) The given system Ax = b, as described above, is inconsistent for all values of a, b
and ¢, such that

a+b+c#0.

This means that, for all those values of a, b and ¢, the four planes will not intersect
in a common point or along a common line.

c) As already concluded above, the system admits a unique solution for all those values
of a, b and ¢ which satisfy the condition a + b+ ¢ = 0 and the system is inconsistent
for all other values of a, b and ¢. Thus there exist no values of a, b and ¢ which allow
infinitely many solutions for the system, so that there exist no values for which the
four planes can intersect along a common line.

Problem 2.6.3.

Consider the following four planes in R? :

I 2x+4y+22=12s
Il 20+ 12y 4+ 72=12s+7
IIs: 4+ 10y +6z2 =75+ 38
Iy 242y +3z= -1,

where s is an unspecified real parameter.
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a) Find all the values of s, such that the first three planes, II;, IIy and IIs, intersect
along a common line and present this line of intersection in parametric form.

b) Find the common point of intersection of all four planes, 1Ty, IIa, II3 and 1y, if such
a point exists.
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2.6.3.

a) The planes I1;, IIy and II3 can be written in the form Ax = b, where

2 4 2 12s T
A= 2 12 71, b= 12s4+7 |, x= Y
1 10 6 7s+8 z

We now write the augmented matrix [A b] in its reduced echelon form:

2 4 2 12s 1 0 —1/4 (24s—17)/4
[Ab]=| 2 12 7 12s+7 |~ O 1 5/8 7/8
1 10 6 7548 0 0 0 s+1
We conclude that this system is consistent if and only if s = —1. Then the system
reduces to
Lo 7 131
YTETR T T T

Clearly z is an arbitrary parameter, so we let z = t. The solution is then

1 31 5 7
:L‘:Zt_Z’ y:—§t+§, z=1 foralltER,
so that the parametric equation for the line ¢, that describes the intersection of the
planes 11, Ils and II3 for s = —1, is

_1 3
T T
/ 5 7
:——t —_
y=-5ttg

z=t for all t € R.

Note that the planes II;, IIs and II3 only intersect along this common line £ if
s = —1. For all other values of s, namely s € R\{—1}, the planes do not intersect
along a common line.

b) To find the intersection of II; with the line ¢ obtained in part a) above, we need to
find the value of ¢ such that Il : = + 2y 4+ 32 = —1 is satisfied. That is

31 1 705
T htt (8 8t) + 3t ,

5
which gives t = 3 The point of the intersection of II;, Ily, II3 and Il4 is then

(z1, y1, 21), where

g LBy _3L_ 57 _oafey T ou 5
VA 4 g T g\e) Ty T e T
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In Figure 2.3 we depict the intersection of the four planes in the point (—

Figure 2.3: The intersection of the four planes in Problem 2.6 ¢) for s = —1.

Problem 2.6.4.

Consider the following six planes which describe a parallelepiped at their intersections

(see Figure 2.4):

II; :
I, :
DYy —2z=-2
114 :
115 :
1l :

r+y—4z=-10
r4+y—4z=—6

y—2z=-3
r—3y+8z=18
x—3y+ 8z =14.
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Figure 2.4: Six planes that describe a parallelepiped at their intersections.

Find the vertices, the volume and the midpoint of the parallelepiped.
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Solution 2.6.4.

The equations of the planes II; and their corresponding normal vectors n; (j =1,2,...,6)
that describe the six faces of the parallelepiped in Figure 2.5, are as follows:

I : z+y—42=-10, n; =(1,1,-4)
IIy: z+y—42=—-6 ng=(1,1,-4)
M3: y—22=-2, n3=(0,1,-2)
IMy: y—22=-3 ny=(0,1,-2)
II5: x—3y+82=18, n;=(1,-3,8)
IIg: x—3y+8z=14, ng=(1,-3,8).

Front face: Il

Figure 2.5: The parallelepiped enclosed by the six planes Iy, Ils, II3, II4, II5 and Ilg.

The coordinates of the vertice Py : (x1,y1,21) is given by the intersection of planes II;,
I1; and Il (see Figure 2.5). We write

P I NIy N 1Ig.

This is obtained by the unique solution of the linear system

A1xq1 = by,
where
1 1 —4 —10
Ai=1 0 1 -2 |, by = -3
1 -3 8 14
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We note that det Ay = 4, which ensures the existence of a unique solution for the above
linear system, namely the solution x; = Al_lbl. We obtain

-1
X1 =

3

The coordinates of the vertice Ps : (x2,y2, 22) is given by the following intersecting planes
(see Figure 2.5):

Py II; N1I4 N 1I5.

This is obtained by the unique solution of the linear system

Asxa = ba,
where
1 1 -4 —10
As=10 1 =2 |, ba=| -3
1 -3 8 18

Now det Ao = 4, which again ensures the existence of a unique solution for this linear
system. We obtain

1
X2 = 5
4

The coordinates of the vertice P3 : (x3,ys, 23) is given by the following intersecting planes
(see Figure 2.5):

Ps . II; N1IIg N 1II5.

This is obtained by the unique solution of the linear system

A3x3 = bg,
where
1 1 -4 —-10
As=10 1 —2 |, byg=[ -2
1 -3 8 18

Now det A3 = 4, which again ensures the existence of a unique solution for this linear
system. We obtain

2
X3 = 8
5

The coordinates of the vertice Py : (x4,y4, 24) is given by the following intersecting planes
(see Figure 2.5):

Py II; N1I3 N 1Ilg.
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This is obtained by the unique solution of the linear system

Ayxy4 = by,
where
1 1 -4 —-10
As=1 0 1 -2 1, by = -2
1 -3 8 14

Now det A4 = 4, which again ensures the existence of a unique solution for this linear
system. We obtain

0
X4 = 6
4

The coordinates of the vertice Ps : (x5, ys, 25) is given by the following intersecting planes
(see Figure 2.5):

P 1o N 11, N 1.

This is obtained by the unique solution of the linear system

Asxs = bs,
where
1 1 —4 —6
As=(10 1 -2 ], bsg=| -3
1 -3 8 14

Now det A5 = 4, which again ensures the existence of a unique solution for this linear
system. We obtain

1
X5 — 1
2

The coordinates of the vertice Ps : (x4, ys, 26) is given by the following intersecting planes
(see Figure 2.5):

Py : Il N1I4 N1I5.

This is obtained by the unique solution of the linear system

Agxe = bg,
where
1 1 -4 —6
As=10 1 =2 |, be=][ -3
1 -3 8 18
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Now det Ag = 4, which again ensures the existence of a unique solution for this linear
system. We obtain

3
Xg — 3
3

The coordinates of the vertice Py : (x7,y7, 27) is given by the following intersecting planes
(see Figure 2.5):

Py 1o N 113 N 1I5.

This is obtained by the unique solution of the linear system

A7x7 = by,
where
1 1 —4 —6
A =1 0 1 -2 ], by = -2
1 -3 8 18

Now det A; = 4, which again ensures the existence of a unique solution for this linear
system. We obtain

4
X7 = 6
4

The coordinates of the vertice Py : (xg,ys, 2g) is given by the following intersecting planes
(see Figure 2.5):

P 1l N1I3 N 1lg.

This is obtained by the unique solution of the linear system

Agxg = bg,
where
1 1 4 —6
As=[0 1 —2 ], bg=][ -2
1 -3 8 14

Now det Ag = 4, which again ensures the existence of a unique solution for this linear
system. We obtain

2
X8 — 4
3

We sum up: the coordinates of the vertices of the parallelepiped are as follows (see
Figure 2.5):

P : (-1,3,3) P»: (1,5,4), Ps: (2,8,5), Py: (0,6,4)

Py (1,1,2), Ps: (3,3,3), Pr: (4,6,4), Ps: (2,4,3).
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The volume V of the above parallelepiped is given by the following scalar triple product

V= | (P x BsFy) - PP |,

where | | denotes the absolute value and
— — —
PsPg=(1,3,1), PsPs=1(2,2,1), PsPp=(-2,2,1).

We obtain

V=i

N
NN W

1
1 || =| — 4] =4 cubic units
1

|
)

To find the midpoint @ : (z,y, z) of the parallelepiped we can consider, for example, the
vertices Ps and P3, where

l=——
P5&§ = §P5P3
T 1 1
1
z 2 3
. S . 3 9 7
The coordinates of the the midpoint @) is therefore @ : (5, 3 5)

T
To find the hight h of the parallelepiped with base plane Ils, we project the vector PsP;
orthogonally onto the normal vector ng = (1,1, —4) of Ily, i.e.

-
J— PsP; - ng 2 2 8 2v/2
h=|projn, BsPil = | —— | n2=[l(—5, 5> )l
N - Ny

Alternately, we can calculate the distance s between the planes I1; and I, which is given
by the relation

for Iy : ax + by + cz = dy and Ily : ax + by + cz = dy (see Theoretical Remark 1.5).
In our case we have

a=1, b=1 c=-4, dy=-10, dy=-6, n=(1,1,-4).

| —10 — (—6)] 4 2V2

VItilri6 Vi’ 3

This leads to s =
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2.7 Intersection of lines in R3

In this section we discuss intersections of lines in R?® and show how to calculate those
intersections.

Theoretical Remarks 2.7.

Given two lines in R3, say ¢; and /5, we have the following possibilities regarding their
intersection:

a) ¢ and {2 may intersect in a unique common point.
b) ¢; and ¢5 may intersect at every point on ¢; and /2, so that the two lines coincide.

c¢) ¢1 and f5 may not intersect at any point.

Remark: Given any number of lines in R3, the possibilities of their common intersections
are the same as those listed above for two lines.
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Problem 2.7.1.

Consider the following two lines in R3:
r=2t+3 xr=—5
by:¢ y=—4t+1 by: ¢ y=0bs+3
z=2t+2 z=—-s5—1
for all t € R and all s € R, where b is an unspecified real parameter.
a) Find all values of b, such that the lines ¢; and /5 intersect.

b) Do the lines intersect for b = 17 If so, find the intersection(s) in this case.

2.7.1.

a) At any point where ¢; and /s intersect, there must exist parametric values for ¢ and s
for the coordinates of the intersection points. To establish those points, we consider

rT=2t+3=-—s
y=—-4+1=>bs+3
z2=2t4+2=—-s—-1.

We have
2t4+3=—s
—4t+1=0bs+3
2W4+2=—-s5—-1

and in matix form we have

2 1 5 —3

The corresponding augmented matrix is

2 1 =3
-4 —-b 2
2 1 -3

We now apply two elementary row operations to the above augmented matrix,
namely
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1: multiply the first row by 2 and add the resulting row to the second row;
2: multiply the first row by —1 and add the resulting row to the third row.
This leads to the following echelon form:

2 1 -3
0 2—-b —4
0 O 0

From the above echelon form we conclude that the system has a solution for ¢ and
s if and only if

b # 2.

Therefore the two lines £; and fs intersect if and only if
b e R\{2}.

For those values of b, we have

2—-3b 4

= — S = ——

2(b—2)’ b2

Inserting the above values for ¢ and s into ¢ or {5, we obtain the z-, y- and z-
coordinates of the point of intersection for any b € R\{2}, namely

—4 -6 _b+2

TTh b_2 b_2

b) For b =1 the lines ¢; and /5 intersect and the parameteric values of ¢ and s are (see
above)

Inserting those values for ¢ and s into £; or £5 we obtain the coordinates of the point
of intersection, namely

(4,-1,3).

Problem 2.7.2.

Consider the following three lines in R3:
r=—t+3 r=3s+3 r=—-4p+8
b4 y=2t+1 ly: ¢ y=—6s+1 b3:Q y=p+2
z=—t+2 z=235+2 z=2p—1
forall t € R, all s € R and all p € R.
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a) Find the intersection(s) of the lines ¢; and ¢s, if those lines do intersect.

b) Find the intersection(s) of the lines ¢, ¢o and /s, if those lines do intersect.

2.7.2.
a) To find the intersection(s) of ¢; and ¢ we consider

r=—-t+3=3s5+3
y=2t+1=—-6s+1
z=—1t+2=3542,

so that
—t—3s=0
2t+6s=0
—t—3s=0.

In matrix form we have

-1 -3
> ) () (6
-1 -3 0

For the corresponding augmented matrix we have

-1 -3 0 1 30
2 6 0]~1000/|,
-1 -3 0 0 00

which means that
t=-3s forall seR.

Thus for every value of s € R for £s there is a value of t for £1, namely ¢t = —3s, that
gives the same coordinates and hence a point of intersection between ¢; and /5. The
two lines, ¢1 and /9, therefore intersect at every point on ¢; (or ¢3), so that the two
lines in fact coincide.

b) Since ¢ and ¢ coincide (as established above), we can now search for the intersec-
tion(s) between ¢; and /3. We consider

r=—t+3=—-4p+8
y=2t+1=p+2
z=—t+2=2p—1,
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so that the matrix equation takes the form

- 5
2 -1 (t): 1
1 -2 p -3

For the corresponding augmented matrix we have

-1 4 5 1 -4 =5 1 -4 =5
2 -1 1 |~10 7 11 |~ 0 1 11/7 |,
-1 -2 -3 0 -6 -8 0 0 1

which means that the system is inconsistent. Hence there exist no values for ¢ and
p which would give the same point, so that there is no intersection between ¢; and
£3. The three lines, f1, {2 and ¢3, do therefore not intersect in a common point or
points.
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2.8 Exercises

1. Consider the matrix equation
AX ' 4+ 3B =A%
where
(o w) ()
and X is an invertible 2 x 2 matrix. Find X, such that the given matrix equation is
satisfied.

o (=217 —5/17
[Answer: X = < 117 617 ) -]

2. Consider the matrix equation
2X +AX =3B,
where
1 3
a=(a2)

and X is an unspecified matrix.

a) For the given matrix equation, assume that

p=(32)

and find the matrix X.

[Answer: X = ( _2 _(; > ]

b) For the given matrix equation, assume that

1 -1 -2
B_<—1 1 3)

and find the matrix X.

3 =3 -9
[Answer: X = ( 9 9 7 ) -]
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3. Consider the matrix equation
C Y XB-A)B!'=X,
where B, C and I, — C are all n x n invertible matrices. Find the matrix X that

satisfies the above equation in terms of the other given matrices and in terms of the
identity matrix I,,.

[Answer: X = (I, — C)"tAB~1.]
4. Consider the matrix equation
AX '+ (X+B)t=Xx"1

where A, B, X, X +B, A~' — I, and A — I,, are all n x n invertible matrices.

a) Solve the given matrix equation for X.
[Answer: X = B(A™!'—1,).]

b) Solve the given matrix equation for X, where A and B take the following explicit
forms:

(1) e=(21)

[Answer: X — < B ).]

5. Consider the following matrix:

a 2 3
A= 1 0 -1 1,
-1 3 a+6

where a is an unspecified real parameter.

a) Find all values of a, such that the matrix A is invertible.

[Answer: a € R\{1}. ]
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b)

Calculate the inverse of A with a = 0.

-3 3 2
[Answer: A~1l= 5 =3 =3 |.]
-3 2 2

6. Find all solutions of the system Ax = b for the given matrix A and vector b as given
below. Give also the geometrical interpretation of the solutions where possible.

a)

1 -2 -1 1
A= 2 -2 0|, b=]|2
—2 8 5 1

[Answer: The unique solution is given by a point in R?, the coordinates of

4
which are x = 3 1.]
-3
1 -2 -1 1
A= 2 -2 0], b= 3
-2 8 6 0

[Answer: The solutions are given by a line in R? passing through the point
(3/2, 0, 1/2) and parallel to the vector (1, 1, —1), i.e. the infinitely many
solutions are

1 3/2
x=t 1]+ 0 | forallteR. |
~1 1/2

(e d) ()

[Answer: The solutions are given by a plane in R with equation
x1 — x2 + 223 = 1, i.e. the infinitely many solutions are

1 1 -2 1
x=| xz2 | =t| 1 |+s 0 |+ | 0 ] forallt€Randall se€R.]
T3 1 0
1 -1 2 1
A= 1 1 4], b=|[1
-3 3 —6 0
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[Answer: The system is inconsistent. That is, the system has no solution. |

7. Find the intersection of the following two planes in R3:

I : z—y+32=1
II: x+4+y+2z=10.

Use Maple to sketch the planes in R? (see Appendix A for information about Maple).
[Answer: The two planes intersect along the following line:
= —5t4+28
l:¢ y=t
z=2t—9 for all t € R. ]
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8. Find the intersection of the following three planes in R3:

II;: z+3y—52=0
IIy: xz+4y—82=0
II3: —2x — 7y + 132 =0.

Use Maple to sketch the planes in R? (See Appendix A for information about Maple).

[Answer: The three planes intersect along the following line:
r = —4t
I y =3t

z=t for all t € R. ]

9. Consider the following three planes in R3:

Il : z1—4xs+723=1
HQ . 3:62 — 5:63 =0
I3 : —2x1 4 5x9 — 923 = £,

where k is an unspecified real parameter.

a) Find all values of k such that the given three planes intersect along a common
line ¢ and give this line of intersection in parametric form.

[Answer: The three planes intersect along a common line ¢ if and only if
k = —2, where /¢ is given by
r1 = —t / 541
0 T9 = t

x3 = 3t/5 for all ¢t € R. ]

b) For which value(s) of & do the three planes intersect in a unique point.

[Answer: There exists no value of k for which the three planes intersect in a
unique point. |
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10. Find all solutions of the following system:

T3+ 2x5 =1
T1 + 629 + 223 + 45 = —1
T4 + Dx5 = 2.
T —6 0 -3
i) 1 0 0
[Answer: x3 | =t 0 |+s| -2 | + 1
T4 0 ) 2
xIs 0 1 0

for all t € R and all s € R. |

11. Consider the following system:

1 +x3+2x4 =1
2x1 + kro + 23+ 24 = 2
3o+ x3+2x4 =3

1+ X2+ T4 = 4,
where k is an unspecified real parameter.

a) Find all values of k, such that the given system has a unique solution.
[Answer: k€ R\{-T7}. ]
b) Find all values of k, such that the given system has infinitely many solutions.

[Answer: There exist no values of k for which the system admits infinitely
many solutions. |

c¢) Find all values of k, such that the given system is inconsistent.
[Answer: k= —T7. |

d) Find all values of k for which the coefficient matrix of the given system is
singular.

[Answer: k= —T7. ]
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12. Consider the following system:

Ty t+x2t+T3=20a
3$1+k$3:b
x1 + kxo + x3 = ¢,

where a, b, ¢ and k are unspecified real parameters.

a) Find all values of k, such that the given system has a unique solution for all
real values of a, b and c.

[Answer: k€ R\{1, 3}.]

b) Find all values of k£ and the corresponding conditions on a, b and ¢, such that
the given system is consistent.

[Answer: From part a) above, we know that the system has a unique solution
(and is consistent) for all £ € R\{1, 3} and all real values of a, b and c¢. For
k = 1 the system has infinitely many solutions (and is consistent) if and only
if c = a for all ¢ € R. For k = 3 the system has infinitely many solutions (and
is consistent) if and only if ¢ = 3a — 2b/3 for all a € R and all b € R. |

13. Consider the following matrix equation:

11 0 1 1 2
X<—1 1)<a —a>X_<—1 3)’
where X is an unspecified 2 x 2 matrix. Determine all real values of «, such that
the given matrix equation has a unique solution for X.

[Answer: o € R\{—2}. ]
14. a) Consider the function
f(x) = az® + ba® + cx + d,

where a, b, ¢ and d are unspecified real parameters. Find the values of these
parameters such that the graph y = f(z) is passing through the following points
in the zy-plane: {(1,1), (-1,1), (2,2), (=2,12)}. Use Maple to sketch your
obtained function f(z) in the xy-plane (see Appendix A for information about
Maple).

[Answer: a = —5/6, b=2, c=5/6, d=—1. ]
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b) Consider the function
f(z) = acos(2z) + b(m — x) cos(2x) + cxsin(m — ),

where a, b and ¢ are unspecified real parameters. Find the values of these
parameters such that the graph y = f(z) is passing through the following points
in the zy-plane: {(—m/2, —37), (7/2,0), (37/2,57)}. Use Maple to sketch your
obtained function f(z) in the zy-plane (see Appendix A for information about
Maple).

[Answer: o= —2m, b=3, c=—1.]
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15. Consider the system Ax = b with

11 3
A= 2 1 y b = h )
4 2 k
where h and k are unspecified real parameters.
a) Find the relation between the parameters h and k, such that the given system

Ax = b is consistent.

[Answer: k= 2h for all h € R. ]
b) Find all solutions for the given system Ax = b.

h—3

6_h>forallh6R,

[Answer: The system has the unique solution x = <

where k = 2h. |

16. Consider the following line £ in R3:

r=2t+1
2 y=—-2t+1
z=06t—06 for all t € R.

Find all real values of the parameters a, b and ¢, such that the line ¢ is lying on the
plane

ax +by+cz=1.

1 2
,c:—f—l—jbforalleR.]

A : =
[Answer: a 9

+

W =
w| o

17. Consider the following two lines in R3:

r=2t+3 Tr=-s
ly: y=—4t+1 by: ¢ y=bs+3

z2=2t+2 z=—s5—1

for all t € R and all s € R, where b is an unspecified real parameter.
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a) Find all values of b, such that the lines ¢; and ¢y intersect.
[Answer: b€ R\{2}. ]

b) Do the lines intersect for b = 17 If so, find the point of intersection for this
case.

[Answer: Yes, the point of intersection has the coordinates (4, —1,3). |

18. Consider the following six planes that describe a parallelepiped at their intersections:

IL: z4+2y—2=1
Iy : 2244y —22=0
II3: 3z —y+2z2=1
IIy: 92 —-3y+6z=1
IIs: y4+2=-1

Ilg: —2y — 22 =3.

Find the vertices, the volume and the midpoint of this parallelepiped, as well as the
hight of the parallelepiped with base face described by Il,.

[Answer: The coordinates of the vertices of the parallelepiped are as follows:

Pr: (=1, 0, —1)

B (=2, ——
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19.

20.

The volume of the parallelepiped is 1/18 cubic units. The coordinates of the the
midpoint @) of the parallelepiped is

29 11 101

@ op 7 )

The hight of the parallelepiped with base described by Il is 1/1/6 units. ]

Consider the following two planes:

I : x4+2y—42=2
HQ: r—2z=2>.

Find the equation of the planes IIj, such that IIj is the reflection of the plane II;
about the plane II.

[Answer: II}: 4z —2y — 2z =23.]

Consider the linear system Ax = b with

1 3 &k 2
k14|, b= 3],
1 k k -3

where k is an unspecified real parameter.

a) Find all values of k, such that the given system admits a unique solution.

[Answer: The system admits a unique solution for all k£ € R\{-2, 2, 3}. ]

b) Find all values of k, such that the given system admits infinitely many solutions,
as well as all values of k for which the system is inconsistent.

[Answer: For k = —2 the system has infinitely many solutions, namely
2 -1

x=t| 0 | + 1 | forallt € R. For k = 2 as well as for kK = 3 the system
1 0

is inconsistent. |

c¢) Find all values of k, such that the coefficient matrix A is singular.

[Answer: The matrix A is singular if and only if det A = 0, that is, A is
singular for k € {—2, 2, 3}. ]
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21. The following three lines, £1, £ and ¢3, describe a triangle in R? at their intersections:

(z=4a—1 r=-30+4+7
l1: y=—-2a+3 bo:q y=-pB+4
| #=8a—3 forallaeR z=—-03+43 forall R
(2 =—-6+6
l3:< y=—-20+7
z=30—4 forall §jeR.

Find the area of this triangle.

[Answer: The area of the triangle is 5v/6 square units. ]
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22. Consider the homogeneous system Ax = 0, where

1 51 k
21 k1
A= 1 4 11
4 1 3 1

and k is an unspecified real parameter.

a) Find all values of k, such that the system admits only the trivial solution and
all values of k for which A is invertible.

4 7
[Answer: For all k € R\{g, g} the system admits only the trivial solution

x = (0,0,0,0). The matrix A is also invertible for those values of k. |

b) Find all values of k, such that the system admits infinitely many solutions.

4 7
[Answer: Forall k = 30" k= E the system admits infinitely many solutions.|
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Chapter 3

Spanning sets and linearly
independent sets

The aim of this chapter:

In this chapter we introduce the following definitions and concepts for a finite set of
vectors in R™: linear combinations of vectors, spanning sets and linearly independent sets
of vectors. We apply these concepts to describe, for example, a plane or a line in R? and
to gain a better understanding of linear systems.

3.1 Linear combinations of vectors

In this section we introduce the concept of a linear combination for a finite set of vectors
in R™.

Theoretical Remarks 3.1.

Consider the set S of p vectors
S ={ug, uz, ..., up},

where u; € R" for j =1,2,...,p.

1. A linear combination of the vectors from the set S is another vector in R, namely
the vector

ciuy +coug + -+ -+ CcpUp € R"

for any fixed choice of the p constants c1, ca, ..., ¢p, called the scaling factors of
the linear combination. That is, v € R" is a linear combination of the vectors from
the set S if there exist scaling factors c1, c2, ..., ¢p, such that

vV =ciuy + couz + -+ + cpUp.
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2. Consider v € R" and let A be an m X n matrix. Assume now that v is a linear
combination of the vectors from S with scaling factors c1, ca, ..., ¢p. Then

Av = c1Aug + cpAus + - - - cpAup,.

3. Consider an m X n matrix A in the form

A=la; az - - ay,
where a; € R™ for j = 1,2,...,n. Consider a vector x € R" given by
z1
x2
X =
L,

Then the matrix-vector product Ax is defined as the linear combination of the
set of vectors {a1, agz, ..., an} with scaling factors =1, z2, ..., x,, Le.

Ax = x1a1 + 2922 + -+ + zhan.

Remark: See also Theoretical Remark 2.1 (3) where the matriz-vector product
Ax is discussed.

Problem 3.1.1.

Consider the following set of five vectors in R3:

S ={u1, uz, ug, ug, us},

where
1 1 1
u; = 0 s ug = 1 s us = -1
1 0 3
2 1
g4 = -1 , Uy = 3
0 4

Consider also the vector
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a) Show that v is a linear combination of the vectors in the set S and give the linear
combination explicitly.

b) Is v a linear combination of the set of vectors {u1, uz}? Justify your answer.

c) Let A be an unspecified 3 x 3 matrix, such that

1 2 3
Au1 = 2 s Au2 = 1 s AU3 = 1
-1 0 3
-8 22
AU4 = 11 5 ALI5 = —13
—18 32

Find Av explicitly.
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a1 careers.slb.com Schiumberger

Download free eBooks at bookboon.com Click on the ad to read more



http://s.bookboon.com/Schlumberger1

3.1.1.

a) We have to show that there exist real constants (scaling factors), ¢1, co, ¢3, ¢4 and
¢s, such that

V = ciuy + ceou2 + c3ug + c4uy + CcsUs.
We write this vector equation in the form of a matrix equation, namely
[u1 uz ug ug usjc=v,

where

c1
C2
_ 5
c=1] c3 € R°.
Cq
cs

With the given vectors u;, we have

1
1 1 1 2 1 Co 1
01 -1 -1 3 c3 = 2
10 3 0 4 cy 1
Cs

and the following corresponding augmented matrix is
11 1 211
01 -1 -1 3 2
10 3 041

Applying several elementary row operations on this augmented matrix, we obtain
its unique reduced echelon form, namely

100 9 —-14 -5
010 —4 9 4
001 -3 6 2

We conclude that the constants ¢4 and c5 can be chosen arbitrarily, so we let
cqy =1, cs = S,

where ¢t and s are arbitrary real parameters. From the above reduced echelon form
we then have

cp=-9%+14s -5
02:4t—98+4
83:3t—68+2,
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so that

—9t+14s—5

4t —9s+ 4

c= 3t —6s+2
t
S

These are the scaling factors of the linear combination, so that
v=(-9t+14s—5)ug + (4t —9s+4)ug + (3t —6s+2)ug + tuy + sus

for all t € R and all s € R. We can therefore choose t = s = 0 to find the simplest
linear combination:

v = —buy + 4usg + 2ug.

We need to establish the existence of scaling factors ¢; and ¢, such that
V = ci1uy + cous.
That is, we need to establish the consistency of the system

11 . 1

01 < Cl ) = 2

10 2 1

The associated augmented matrix is
111
01 2
1 01

so that an echelon form becomes
111
o1 2|,
0 01

the last row of which indicates that the system is inconsistent, as it implies

c10+4+c0=1.

We therefore conclude that there exist no constants ¢; and ¢y for which v is a linear
combination of the vectors u; and us.
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c¢) In part a) abovewe have established the linear combination
v=(-9+14s —5)us + (4t —9s+4)uz + (3t —6s+2)ug +tus + sus
forallt € R and all s € R
and, by setting ¢ = s = 0, the simplest linear combination
v = —buy + 4uz + 2us.
Therefore
Av = A(—5uy + 4uz + 2ug)

= —5Auy + 4Aus + 2Aus

1 2 3
=5 2 |+4 1 |+2[1
~1 0 3

9

= -4

11

Of course we could, alternately, do the calculations using the combination with the
arbitrary s and ¢t parameters. This gives the same result:

Av = A(—9t+ 14s —5)ug + A(4t — 9s +4) ug + A(3t — 6s +2) ug + At ug + Asus

= (-9t + 14s —5) Auy + (4t — 9s + 4) Aug + (3t — 65+ 2) Aug +t Auyg + s Aus

1 2 3
= (=9 +14s—5)| 2 |+@t—-9s+4)| 1 | +Bt—6s+2)| 1
~1 0 3
-8 22
+t| 11 | +s| —13
~18 32
9
= -4
11
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PROBLEMS, THEORY AND SOLUTIONS IN
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE SPANNING SETS AND LINEARLY INDEPENDENT SETS

Problem 3.1.2.

Consider the vector
k
e RrR?

N DN >~

as well as the following set of vectors in R*:

S = {ula uz, 1,13},

where

uy = ug =

===
—_ = =
N )

Here k is an unspecified real parameter. Determine all values of k, such that v is a linear
combination of the vectors from the set S.
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3.1.2.
Since v should be a linear combination of the vectors ui, ug and ug, we have
V = ciuy + coug + c3ug

or, in matrix form

k

4 “

5 =[ugugug|| ¢ |. Thatis
p €

k 11 1

1] | k11 “l

2ol Tl 1 k1 ©2

2 11 k& “

We now find all values of k € R, such that the above system is consistent, i.e. such that
there exist real values for ¢1, ¢o and c3 that satisfy the system. The associated augmented
matrix is

1 1 1 &k 1 1 1 k 1 1 1 k

E 1 1 4 0 1—-k 1—k 4—FK? 0 1—-k 1—k 4—k?

1 £ 1 2 0 k-1 0 2—k 0 0 1-k —(k—2)(k+3)

1 1 k 2 0 0 k—1 2—-k& 0 0 0 —(k—2)(k+4).
From the last row of the above echelon form we have

10+ 204 30 = —(k — 2)(k + 4)

so that the system is consistent if and only if kK = 2 or kK = —4. Therefore, v is a linear
combination of uy, uz and ug if and only if Kk =2 or k = —4.

3.2 Spanning sets of vectors

In this section we introduce the concept of a spanning set. That is, a finite set of vectors
which span a subset of vectors in R™.

Theoretical Remarks 3.2.

Consider the set S of p vectors

S ={uy, uz, ..., up},

where u; € R" for j =1,2,...,p.
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1. The set of all linear combinations of the vectors from S, denoted by span{S}, is a
subset of R™, say W, that is said to be spanned by S. We write

W =span{uy, ug, ..., up}, orsimply W =span{S}.

We say that S is the spanning set of W. Thus span{S} consists of all linear
combinations of vectors from .5, i.e.

ciuy +coug + - +cpup € W
for every possible choice of the scaling factors c1, c2, ...,c,. We write

W =span{S} = {ciu1 +coua +---+cpup forall ¢; € R, c2 € R, ..., ¢, € R}.

2. In the sense of the above introduced spannig set, we can interpret the consistency
of a linear system as follows:

The linear system
Ax = b,
is consistent if and only if
b € span{aj, agz, ..., an},

where A is an m X n matrix given by A = [a; az --- ay], aj € R™ and b € R™.

Problem 3.2.1.

Consider the following three vectors in R3:

1 -1 k
u=| -2 |, v= 11, w=1| 6 |,
3 4 2

where k is an unspecified real constant. Find all values of &, such that
a) w € span{u, v}.

b) u € span{v, w}.

c) Is0 € span{u, v}, where0=| 0 |?
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d) Which of the following systems are consistent?

2 —4 0
uvix=1| 6 |, [uvjx= 6 |, [uvlx=| 0
2 2 0

is consistent.

3.2.1.

a) If vector w is an element span {u, v}, then w must be a linear combination of the
vectors u and v. That is, there must exist scaling factors (real constants) ¢; and cg,
such that

W = ciu+ caV.
Writing this as a matrix equation, we have

1 -1 k
2 1 <Cl>: 6
3 4 €2 9

so that the associated augmented matrix and one of its echelon forms are

1 -1 k 1 -1 k
-2 1 6 |~ 0 -1 2t+6
3 4 2 0 0 11k+44
We conclude that the system is consistent if and only if k = —4.

Thereofore, w € span {u, v} if and only if k£ = —4.

b) If vector u is an element of span{v, w}, then u must be a linear combination of
the vectors v and w. But we already know from part a) above, that w is a linear
combination of u and v, which means that there exist scaling factors ¢; and co, such
that

W = ciu + cov.

Therefore, we have

co 1
u=——Vv+ —Ww,
C1 C1
so that we can conclude that u € span{v, w} if and only if £ = —4, i.e. the same

value of k as in part a) above.
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c)

The zero-vector, 0 € R?, is always an element of any spanning set of R?, since 0 is
always a linear combination with zero scaling factors of the vectors that span the
set. In the current case, namely span {u, v}, we have

0 = 0u + Ov.

Note that

I
[u v]x = zju+x2v, where x = .
2

Therefore the system

k
uvjx=| 6
2
k
is consistent if and only if | 6 | € span{u, v}. In part a) above, we have already
2
established that w € span {u, v} if and only if £ = —4. Thus, the system
2
[uvjx=| 6
2

is inconsistent, while the system

—4

is consistent. Clearly the homogeneous system

0
uvjx=1| 0
0

is also consistent.
The homogeneous system

0
vwlx=1 0
0

is consistent for all £ € R, as

0
X = 0
0

is always a solution (the trivial- or zero-solution) of the system.
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PROBLEMS, THEORY AND SOLUTIONS IN
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE SPANNING SETS AND LINEARLY INDEPENDENT SETS

Problem 3.2.2.

Consider the following three vectors in R*:

1 0 1

uy = 0 ) uz = 0 ) ug = !
2 4 -3

-3 7 1

and let W denote the set of vectors spanned by {uy, ugz, ug}, i.e. let
W = span{uy, uz, us}.

Which of the following four vectors belong to W?

) 1 0
0

-3 0 0

10 0 0

v---v---v----v---vu---v---vv--vv--vv---v---ov--vv--vv--ovv--vv-cvv-cov-coAlcateluLUcent 0
www.alcatel-lucent.com/careers
by,

-,

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".
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3.2.2.

To answer whether vi € span{ui, uz, ug} we need to establish whether there exist
scaling factors ¢y, co and cs, such that vy is a linear combination of uy, uz, ug, i.e.

V1 = ci1ug + coug + c3ug

The matrix equation is

1 0 1 -5

00 1 A

2 4 -3 2171 9

37 1 “ 10
and the associated augmentd matrix is

10 1 -5

00 1 =3

2 4 -3 9

-3 7 1 10

After applying several elementary row operations, we obtain the following reduced echelon
form of the augmented matrix:

1 00 -2
01 0 1
0 01 =3
000 O

from which we conclude that vi € span {ui, uz, ug}, where
vi = —2uy + uz — 3us.

We follow the same procedure to establish whether vo € span{u;, uz, ug}. This leads
to the following augmented matrix

1 0 01
00 10
2 4 -3 1
-3 7 10
and the reduced echelon form
1 00 1
010 -1/4
0 01 0
0 0 0 19/28

From the above reduced echelon form we conclude that v does not belong to the span {ui, uz, us},
as vg cannot be written as a linear combination of the vectors uy, ugz and ug.

Since vz € R? it cannot belong to a spanning set that is spanned by vectors in R*. For
v4, we have

V4 = = Ouy + Ougz + Oug € span{ui, uz, ug}.

o O o o
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3.3 Linearly dependent and independent sets of vectors

We introduce the concept of a linearly dependent sets and a linearly independent set of
vectors in R™. We discuss the importance of linearly independet sets for a spanning set of
vectors.

Theoretical Remarks 3.3.

Consider the set S of p vectors
S ={uy, us, ..., up},
where u; € R" for every j = 1,2,...,p.
The set S is a linearly independent set in R" if the vector equation
ciuy +coug + -+ cpup =0
can only be satisfied if all scaling factors are zero, i.e. ¢t =0, c2 =0, ..., ¢, = 0. If

there exists any non-zero scaling factors for which the above vector equation is satisfied,
then the set S is a linearly dependent set.

Remark: Consider a set of n vectors
S = {ula uz, ..., un}a

where u; € R"™ for every j = 1,2,...,n. If the set S is linearly independent and the set
S spans R™, then S is a basis for R™ and we say that the dimension of R" is n. The
standard basis, {e1, ez, ...,en} is an example of a basis for R™. These concepts of
basis and dimension is discussed in detail in Part 2 of this series, subtitled General
Vector Spaces.

For linearly independent and linearly dependent sets we have the following
Properties:

a) Assume that S is a linearly independent set. Then all subsets of vectors from S are
also linearly independent sets in R".

b) Assume that S is a linearly dependent set. Then there may exist subsets of two or
more vectors from S which are linearly independent sets in R”.

c) Let S be a set that consist of p vectors in R™. If p > n then S is a linearly dependent
set.
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d)

¢)

Consider a set @ of n vectors in R™, namely

Q = {ala az, ..., an}v
where a; € R" for all j =1,2,...,n and consider the n x n matrix
A=[a; ag -+ anl.
We have the following properties:
i) The set @ is linearly independent if and only if the reduced echelon form of A
is the identity matrix I, i.e. A and I, are row-equivalent
A~ I,

ii) The set @ is linearly independent if and only if the determinant of A is non-zero,
i.e.

det A # 0,

so that A is an invertible matrix.

iii) The set @ is linearly independent if and only if Ax = b has a unique solution
x € R” for all b € R™.

Consider the set Q2 of two non-zero vectors in R, namely

Q2 = {ul, uz}-

Then span {Q2} will span a plane II in R3 that contains the origin (0,0,0), if and
only if Q2 is a linearly independent set. That is, every vector in the plane II is a
linear combination of the vectors u; and us.

Consider the set Q3 of three non-zero vectors in R?, namely

Q3 = {u1, ug, us}.

Then span {Q3} spans R? if and only if Q3 is a linearly independent set. That is,
every vector in R3 is a linear combination of the vectors uy, ug and uz. Moreover,
if Q3 is a linearly dependent set with exactly two linearly independent vectors, then
span {Q3} spans a plane through (0,0,0) (of course the same is true for any finite
set of vectors which contains a subset of exactly two linearly independent vectors).
Note that a line ¢ through (0,0,0) can be spanned by any non-zero vector with
coordinates on /.
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PROBLEMS, THEORY AND SOLUTIONS IN
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE SPANNING SETS AND LINEARLY INDEPENDENT SETS

Problem 3.3.1.

Consider the following two vectors in R3:

1 k
u = 2 5 v = —4 )
-1 2

where k is an unspecified real parameter.

a) Find all real values of k, such that the set S = {u, v} is a linearly independent set,
as well as all the real values of k for which S is a linearly dependent set.

b) Find all real values of k, such that u and v span a plane in R3 and give the equation
of that plane.

c¢) Find all real values of k, such that u and v span a line in R® and give the equation
of that line in parametric form.

/
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a)

3.3.1.

To establish whether the set S = {u, v} is a linearly independent set (or a linearly
dependent set), we consider the vector equation

ciu+cav =0.

In matrix form this becomes

1k
= (206
-1 2 2
Since the system is homogeneous, we only have to look at the coefficient matrix to
establish the consistency of the system. We have

1k 1 k 1 k
2 4 |~ 0 -26—-4 | ~| 0 kE+2
-1 2 0 k+2 0 0

The reduced system is therefore

1+ k=0
Cg(k-+-2):: 0.

Therefore the system has the trivial solution, i.e. ¢; = 0 and ¢ = 0, if and only if
k € R\{—2}. We conclude that the set S is linearly independent for k£ € R\{—2}
and linearly dependent for k = —2.

The set of two vectors, S = {u, v}, will span a plane in R? if and only if S is a
linearly independent set, i.e. for all value k € R\{—2}, as established in part a)
above. This plane contains the origin (0,0,0) as well as all those vectors that are
linear combinations of u and v for all £ € R\{—2}. To find the equation of the plane
that is spanned by S, we first calculate the normal vector n for the plane by the
use of the cross-product (see Theoretical Remark 1.2 and Theoretical Remark
1.3). We have

ey e2 €3
n=uxv=|1 2 —1|=—(k+2)ez— (2k+4)es.
ko —4 2

Then we calculate the dot product of n with an arbitrary point on the plane, say
the point (z,vy, z), which must be zero as long as (z,v, z) is on the plane. Thus

n- (1’,2/,2) = (07 _k_27 _Qk_4) ' (w,y,z) = _(k+2)y_ (2k+4)2 =0.
Therefore, the equation of the plane that is spanned by S is
—(k+2)y— (2k+4)z=0 forall k € R\{—2}.

Note that the equation of the plane depends on k.
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c¢) The set of two vectors in the set S = {u, v} will span a line £ in R? if and only if S

is a linearly dependent set, i.e. for the value k = —2, as established in part a) above.
Those are the vectors

1 -2
u= 2 and v=| —4 |,
-1 2

as well as all linear combinations of u and v, as all these vectors are on the line /.
Obviously the line ¢ passes through the origin (0,0,0). To find the equation of ¢
that is spanned by S, we just have to multiply any vector on ¢ with an arbitrary
parameter, t, say the vector u. Thus a parametric equation of the line is

z=—1t for all t € R.

Problem 3.3.2.

Consider the set S = {u1, u2, ug} with

1 0 2
u] = 0 , U2 = 1 , ug = 3 >
1 2 k

where k is an unspecified real parameter.

Find all values of k, such that the set S is a linearly independent set and find also
all values of k such that the set is linearly dependent.

Consider W = span {uz, uz}. Find all values of k, such that ug € W.

Find all values of k, such that u;, us and ug span a plane in R? and give the equation
of that plane explicitly.

Find all values of k, such that uy, up and ug span R3.
Do there exist values for k, such that uy, us and ug span a line in R3?

Consider the matrix A = [u; uz ug] and find all values of k, such that A is row
equivalent to I3 (the 3 x 3 identity matrix) and find also all values of k for which A
is invertible.

Find all values of k, such that the system
[ul U2z 113]X =b

has a unique solution.
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2)

3.3.2.

To establish whether the set S = {u1, uz, ug} is linearly independent or linearly
dependent, we have to consider the vector equation

ci1uy + coug + c3ug = 0.

In matrix form we have

1 0 2 c1 0
01 3 Co = 0 |,
1 2 k C3 0

so that
1 0 2 1 0 2 1 0 2
01 3 |]~101 3 ~1 01 3
1 2 k 0 2 k-2 0 0 k-8

Thus there exist non-zero solutions for c;, co and c3 if and only if k—8 = 0. Therefore
the set S is linearly independent for all values k£ € R\{8} and linearly dependent for
k=38.

Since the coefficient matrix is a square matrix, we may also establish the linear
independence of the set by calculating the determinant of the system’s coefficient
matrix; let’s name this matrix A. We have det A = k — 8. The columns of A are
linearly independent if and only if det A # 0. Hence we have the same conclusion as
above.

In order to determine whether ug € span{uz, uz} = W, we need to investigate the
consistency of the non-homogeneous system ciu; + cous = ug. Clearly this system
can only be consistent if the set S = {u1, uz, ug} is linearly dependent and then
ug € W. We have already established in part a) above, that the set S is linearly
dependent for k = 8. Hence ug € W for k = 8.

In order to span a plane in R3 we need exactly two linearly independent vectors.
First, we note that the set {us, uz} is clearly a linearly independent set, since

uy # aug for all @ € R.

So to span a plane IT in R? with all three vectors in the set S = {uy, uz, uz}, we need
to make sure that the set S is a linearly dependent set with a linearly independent
subset of two vectors. We have establsihed in part a), that S is a linearly dependent
set for k = 8. Hence

1 0 2
II=span{| 0 |, 1], 3|}
1 2 8
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PROBLEMS, THEORY AND SOLUTIONS IN
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE SPANNING SETS AND LINEARLY INDEPENDENT SETS

Note that the same plane II can also be spanned by any subset of two linearly
independent vectors from the set .S. We have

1 0 1 2 0 2
M=span{[ 0 |, | 1 |}=span{|[ O |, | 3 |}=span{| 1 |, | 3 |}
1 2 1 8 2 8

To find the equation of the plane II we can use any of the above given spanning sets.
We'll use II =span {uy, uz}. We calculate the normal vector n of the plane and
then calculate the dot product with an arbitrary point (z,y,z) on the plane. (see
Theoretical Remark 1.2 and Theoretical Remark 1.3). We have

€e; ez eg
n=u xuz=|1 0 1 |=—e; —2ez+ez3=(—1,-2,1).
0 1

Then
n-(z,y,2)=(-1,-21)- ($7yvz) =-—r—-2y+z2=0.

Hence the equation of the plane II is

—x—2y+2z=0.

> Apply now
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d) In order to span R? we need a set S of three vectors in R? such that every vector
in R? can be written as a linear combination of those three vectors. For this to be
possible, the set S needs to be linearly independent. Let S = {uj, ug, ug}. In part
a) we have already established that S is a linearly independent set for all £ € R\{8}.

Thus
1 0 2
R*=span{| 0 |, | 1 |, | 3 |} forall ke R\{8}.
1 2 k

e) We can not span a line in R? by using all three vectors in the set S = {uy, uz, us},
since the subset {u;, uz} is already linearly independent (so those span a plane as
shown in part ¢) above).

f) The matrix A = [u; ug ug| is row equivalent to I3 if and only if det A # 0 and thus
A is invertible. We have

det A = =k -—8.

—_ O =
N = O
T W N

Thus A ~ I3 if and only if k € R\{8}. Moreover A~! exists if and only if k € R\{8}.
g) The system Ax = b, with
A = [ul U2 113],
has a unique solution for all b € R? if and only if A is an invertible matrix. That
is, the system has a unique solution if and only if det A # 0. In part f) we have

established that this is the case for all £ € R\{8}. Hence, Ax = b has a unique
solution for all k € R\{8}.

Problem 3.3.3.

Consider the set of vectors S = {uy, uz, usz, uy} in R* with

1 —1 -1 k
1 -9 3 —10

u; = _9 ) Uz = k 3 ug = 1 ) Uy = _4 )
-3 11 -1 6

where k is an unspecified real parameter.

a) Find all values of k, such that S is a linearly independent set.

b) Find all values of k, for which S is a linearly dependent set and list all possible
subsets of three linearly independent vectors in S with their corresponding k values.
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3.3.3.

a) To establish the linear independence of the set S, we consider the matrix A that
contains the vectors in the set S as column entries:

1 -1 -1 k
1 -9 3 -10
-2 k 1 -4
-3 11 -1 6

A=

The columns of A are linearly independent if and only if det A # 0. That is, the set
S is linearly independent if and only if det A # 0. We obtain

det A = —8k* 4 48k — 64 = —8(k — 2)(k — 4).

Hence, S is a linearly independent set for all & € R\{2, 4}.

b) By a) above, we know that S is a linearly dependent set for both k£ = 2 as well as
for K = 4. To establish a subset of three linearly independent vectors, we consider
k =2 and k = 4 in two separate cases:

Let £ = 2. Then

1 -1 -1 2
0 —2 ~3
A~ 0 1 o
0 0 0 0

From the above it is clear that there exist two subsets that contain three linearly
independent vectors in the set S with & = 2, namely the subsets

Sl = {u17 uz, 113} or 52 — {U]_, us, u4}7

where
1 -1 -1 2
1 _ -9 _ _ —-10
-3 11 — 6
Let £k =4. Then
1 -1 -1 4
0 4 -2 7
A~lo 0 01
0 0 00
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From the above it follows that there exist also two subsets that contain three linearly
independent vectors in the set S with £ = 4, namely the subsets

Sg = {111, uz, 114} or

where
1 -1
u; = 1 u -9 usg =
1 — -9 ) 2 — 4 ) 3 —
-3 11

S4 = {u17 us, 114},

-1 4
3 Uy — —10
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3.4 Exercises

1. Consider the following two vectors in R?:

1 k
we (D) e (ih)

where k is an unspecified real parameter. Find all values of k, such that S = {uz, uz2}
is a linearly independent set and all values of k, such that S is a linearly dependent
set.

[Answer: S is a linearly independent set for all £ € R\{—1, 2} and S is a linearly
dependent set for k = —1 or k = 2. ]

2. Consider the following three vectors in R?:

1 1 k
u; = 1 ) uz = 2 ) us = 1 )
-1 k 3

where k is an unspecified real parameter. Find all values of k, such that S =
{u1, uz, ug} is a linearly independent set and all values of k, such that S is a
linearly dependent set.

[Answer: S is a linearly independent set for all £ € R and S can therefore not be
a linearly dependent set for any k. |

3. Consider the set S = {uy, uz, ug, ug} with the following vectors in R*:

1 -3 —4 —1
—2 k 6 —1

uy = -3 ) uz = 9 ) us = k ) Uyg = -6 )
3 -9 —4 9

where k is an unspecified real parameter.

a) Find all values of k, such that S is a linearly independent set.

[Answer: S is a linearly independent set for all k& € R\{6}. |
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b) Give all possible linearly independet subsets of S.

[Answer: For k € R\{6} every subset of S is linearly independent (since S is
a linearly independent set in this case).

For k = 6 the set S is linearly dependent and it has four linearly independent
subsets consisting of two vectors each, namely

S1={u1, uz}, Sy ={uy, ug}, S3={uz, ug}, Sy={uz, uy},

S5 = {U3, ll4}. ]

4. Consider the set S = {u;, ua, uz, ug} with the following vectors in R*:

1 ) 4 k
-1 -3 1 —1

u; = _1 9 Uz = _5 ’ u3 - k; 9 Uy = 4 ’
3 15 12 —12

where k is an unspecified real parameter.

a) Find all values of k, such that S is a linearly independent set and also all values
of k, such that S is a linearly dependent set.

[Answer: S is a linearly independent set for all k € R\{—4} and a linearly
dependent set for k = —4. |

b) Give all possible linearly independet subsets of S.

[Answer: For k € R\{—4} every subset of S is linearly independent (since S
is a linearly independent set in this case).
For k = —4 the set S has five subsets that are linearly independent, namely

S1={u1, uz}, So={ui, ug}, S3={uy, ua}, Si={uz, us},

S5 = {U2, ll4}. ]

5. Consider the set S = {uy, uz, ug} with the following vectors in R3:

1 0 k
up = 2 s ug = 1 s ug = 0 s
3 2 1

where k is an unspecified real parameter.
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a) Find all values of k, such that S is a linearly independent set.
[Answer: All k € R\{—1}.]

b) Find all values of k, such that the vectors of the set S span R?, i.e.
R? = span {S}.

[Answer: All k € R\{—1}.]
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6. Consider the following three vectors in R3:

2 —4 a
u; — 1 , Uz = —2 , ug = b y
-1 2

where a, b and ¢ are real parameters. Consider now the set

S = {uy, uz, us}

a) Find all real values of the parameters a, b and ¢, such that S is a linearly

dependent set in R3.

[Answer: S is a linearly dependent set for all a, b, ¢ € R. ]

b) Find all values of the parameters a, b and ¢, such that S spans a line ¢ in R3
and give this line explicitly in parametric form in terms of one parameter.

S will span a line ¢ in R? if and only if ug = tuy, i.e.

[Answer:
a 2t
b | = t for all t € R.
c —t

Then a parametric equation for ¢ takes the form

z=—t forallteR.]

7. Consider the following vectors in R3:

2 —4 k
u = 1], ue= -2 |, ug= -3
-1 2 3
—4 —4
b= -1, c=1| -3 ],
1 2

where k is an unspecified real parameter. Consider also the set

S: {ul, usg, 113}.
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a)

Find all real value of k, such that the set S spans a plane W in R3. That is,
find all k£ € R, such that

W = span{S}.
Give the equation of the plane W.

[Answer: The vectors of the set S span a plane W for all k € R\{—6} and
the equation of the plane W is y + z = 0. |

For which value(s) of k is the system
[ug uz ug]jx=">b
consistent? Does @ = {uy, uz, uz} span a plane in R? for any of your obtained

k values and, if so, is b a vector in this plane?

[Answer: The system is consistent for all k& € R\{—6}. The vectors in the
set @ span a plane in R? for all k € R\{—6}. Moreover b is a vector in this
plane. |

For which value(s) of k is the system
[u; uglx =c
consistent? Does @ = {uy, ug} span a plane in R? for any of your obtained k

values and, if so, is ¢ a vector in this plane?

[Answer: The system is inconsistent for all k& € R. The vectors in the set @
span a plane in R? for all k € R\{—6}. Note: c is not a vector in this plane. |
For which value(s) of k is the system

[ug u2 ug]jx=c
consistent? Does Q = {uy, ua, ug} span a plane in R? for any of your k values

and, if so, is ¢ a vector in this plane?

[Answer: The system is inconsistent for all £ € R. The vectors in the set @
span a plane in R? for all k € R\{—6}. Note: c is not a vector in this plane. ]

Is the system
[ug u2]x=c

consistent?

[Answer: The system is inconsistent. |
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8. Consider a set S = {uy, ug, ug} with the following vectors in R3:

3 —1 3
u; = 6 ; Uz = 0 ) ug = k )
2 1 7

where k is an unspecified real parameter.

a) Find all values for k, such that S spans R3, i.e. find all values for k, such that
R3 = span {S}.

[Answer: For all k € R\{12}. |

b) Find all values for k, such that S spans a plane IT in R3 and find the equation
of that plane.

[Answer: For k = 12 the plane Il is 62 — 5y + 6z = 0. ]

c¢) Find all values for a, such that the vector

8
vV = 6
o

is in the plane II spanned by the vectors in the set S.

[Answer: v e€ll: 6z — 5y + 6z =0 if and only if @ = —3. |

9. Consider the set of vectors S = {uy, ug, uz, ug} in R* with

-1 -1 k
1 -9 3 —10

u]. = _2 9 u2 = k Y u3 = 2 Y u4 = _4 )
-3 11 -1 6

where k is an unspecified real parameter.

a) Find all values of k, such that S is a linearly independent set.

[Answer: S is a linearly independent set for all & € R\{2}. |
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b) Find all values of k, for which S is linearly dependent and list all possible
subsets of two linearly independent vectors in S with their corresponding k
values.

[Answer: S is a linearly dependent set for k = 2 and for this value of k there
exists three linearly independent subsets containing two vectors, namely

S1={u1, uz}, S ={ui, ug}, S3={ui, ug}.]

c¢) Does there exist values of k for which there exists a subset of vectors in S that
contains three linearly independent vectors?

[Answer: No. ]

[ ]
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Chapter 4

Linear Transformations in
Euclidean spaces

The aim of this chapter:

We treat linear transformations that act between Euclidean spaces R™ and R and de-
scribe the relation of such transformations to systems of linear equations. We introduce
the so-called standard matriz, which gives a unique and complete description of linear
transformations. We discuss many examples of linear transformations, we show how to
derive their standard matrices and how to compose linear transformations. We introduce
injective transformations and surjective transformations, and invesitgate invertible linear
transformations that map vectors in the same Euclidean space.

4.1 Linear transformations: domain and range

In this section we address linear transformations and give several examples, where we also
discuss the domain and the range of such transformations.

Theoretical Remarks 4.1.

Consider a transformation (or mapping) 7' that map a subset Dr of vectors from R”,
called the domain of T, to vectors in R”*. This is denoted by

T:Dr CR" — R™.
Let x € Dp. Then we write
T: x — T(x) € R™,
where T'(x) is known as the image of x under 7.

1. The co-domain of T: Dy C R™ — R™, denoted by Cr, is the Euclidean space R™.
See Figure 4.1.
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Cr=R"

Figure 4.1: The domain, co-domain and range of a transformation 7: Dy C R™ — R™.

2. The range of the transformation 7: Dy C R” — R, denoted by Ry, consists of a
subset of vectors in R™, denoted by R7, namely all those vectors in the co-domain
R™ that are the images of all vectors x in Dp. Hence Ry C R™. See Figure 4.1.

3. A transformation 7: R™ — R™ is known as a linear transformation with the
domain R" if it satisfies the following two conditions:

R" =Dy Cr =R™

Figure 4.2: A linear transformation 7": R” — R™.

a) T(u+v)=T(u)+T(v) forallueR"”and all uec R" (see Figure 4.2);

b) T(cu) =c¢T(u) for allu € R™ and all ¢ € R (see Figure 4.2).
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4. Let T: R™ — R™ be a linear transformation with domain R™. Then we have the
following

Properties:

a) The zero-vector 0,, of R" is mapped to the zero-vector 0,, of R™.
That is T(0,,) = Oy,.

b) T(ciu+cov) =c1T(u)+c2T(v) forallueR” allveR" allc; €R
and all ¢ € R.

Problem 4.1.1.
Consider the transformation 7: R? — R3, such that
T: (z1, x2) — (x1 + x2, 31 + 22, 1 —x2) for all 1, z2 € R.
a) Show that T is a linear transformation.

b) What is the domain, the co-domain and the range of T'.
c) Find T'(1,-2).

W e
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a)

4.1.1.

Consider two arbitrary vectors in R?, say

x = (x1, z2) and y = (y1, y2).

To establish whether T is linear, we need to show that T'(x+y) = T(x) + T(y) and
T(cx) = ¢T(x) holds for all ¢ € R. For the first condition we have

T(x+y) = (z1+y1 + 22 +y2, 31 +y1) + 22 +y2, 21+ 41 — (T2 +y2))
=(z1+r2+y1+y2, 31+ 22+ 3y1 +y2, T1 — T2+ Y1 — Y2)
Moreover, we have
T(x)+T(y) = (z1+ x2, 3x1 + 2, 1 — x2) + (Y1 + Y2, 3y1 + Y2, Y1 — ¥2)
=(z1+x2+y1+Yy2, 31+ 22+ 3y1 +y2, T1 — T2+ Y1 — Y2)
=Tx+y).
For the second condition we have
T(cx) = (cx1 + cxa, 3¢+ cxo, cT1 — CT2)
=c(x1 + x2, 311 + 22, 1 — T2)
=cT(x) forallceR.

We conclude that T is a linear transformation.

The domain Dr is obviously R? as we allow all vectors (x1, x2) to be mapped by 7.
The co-domain of T is R3, as vectors are being mapped from R? to R3. To establish
the range of T' we need to find all the images in R? of (z1, x2) under T. For this,
it is more convenient to write the transformation in matrix equation form. We note
that, for every x; and x9, the linear transformation T: (x1, x2) — (b1, b2, b3) maps
as follows:

x1+x2 = by
3x1 4+ x9 = by

Tl — Ty = b3.
Hence we have the matrix equation

Ax = b,
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where

11 by
A=|(3 1], b=| b | eR? x:<$1>eR2.
1 -1 b 2

The given linear transformation T' can therefore be written as follows:
T:x+ Ax =b for all x € R%.

So to find the range of T', we need to find all b € R? for which the system Ax = b
is consistent. The associated augmented matrix and some of its row equivalent
matrices are

1 1 b 1 1 b 11 by
3 1 by |~[0 =2 bo—3b |~ 0 -2 b—3y
1 -1 by 0 -2 b3—by 0 0 2by —by+bs

From the above echelon matrix we conclude that the system Ax = b is consistent if
and only if

2by — ba + b3 = 0.

We let bo =t and b3 = s, where t and s are arbitrary real parameters. Then we have

t/2—s/2 1/2 -1/2
b = t =t 1 + s 0 for all t, s € R.
S 0 1

Hence we conclude that all the vectors in R3 that are images of x under 7' belong
to the spanning set span {vi1, va}, where

1/2 —1/2
Vi1 = 1 s Vo = 0
0 1

so that the range Ry of T is a subset of R3, given by

Rp = span{vy, va}.

c) We find T'(1, —2):

1 . 1
T:(1, -2)—» Ax=| 3 1 < )— 1 | € Ry.
1 -1
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Problem 4.1.2.

Consider the transformation 7: R? — R?, such that
T: (z1, x2, x3) — (3x1, 229+ x3+ 1) for all z1, xo, z3 € R.

Is T a linear transformation? Explain your answer.

Solution 4.1.2.

We investigate T'(x + y), where

x = (x1, @2, z3), Yy = (Y1, Y2, ¥3)-
We have

Tx+y)= @1 +y1), 2(x2a+y2) +23+y3+1),

and

T(x)+T(y) = (3z1, 2z2 + 23+ 1) + (31, 2y2 +y3 + 1)

= (3(z1 + 1), 2(z2 +12) + a3 +ys +2).
Thus T'(x +y) # T(x) + T'(y), so that T" is not a linear transformation.

Problem 4.1.3.

Consider the transformation 7": R™ — R™, such that
T:x—T(x)=Ax forall x € R",

where A is any m X n matrix. Show that 7" is a linear transformation.

Solution 4.1.3.

Consider T: R™ — R™, such that
T:x— T(x)=Ax forall x € R",

where A is an m X n matrix. We show that T is a linear transformation for any given
m X n matrix. Consider any two vectors x € R” and y € R". Then

Tx+y)=Ax+Yy)
= Ax + Ay

=T(x)+T(y).
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Also
T(cx) = A(cx)
= ¢ (Ax)
=cT(x) forall ceR.

We conclude that T is a linear transformation for any m X n matrix A.

4.2 Standard matrices and composite transformations

In this section we show how to find the standard matrix for a given linear transformation
T. The standard matrix, which can be derived in terms of the standard basis vectors
of the domain of T, gives a unique description of 7. We also discuss linear composite
tansformations, which result when several linear transformations are composed.
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Theoretical Remarks 4.2.

1. The Standard matrix of T

Let T: R™ — R™ be a linear transformation that map all vectors in R" to vectors
in R™. Then there exists a unique m X n matrix A, such that

T:x—T(x)=Ax € R™

for every x € R™. This matix A is known as the standard matrix of 7. In
particular,

A=[T(e1) T'(e2) --- T'(en)],

where {e1, e, ---, ey} is the standard basis of R with
1 0 0
0 1 0
e = . y €g = . y ey €en =
0 0 1

Note: The above derivation for A stems from the fact that every vector x =
(1, 2, ..., xp) € R™, can uniquely be written as a linear combination of the
standard basis vectors as follows:

X = x1€e1 + x2€2 + - + Tp€q.

2. Consider two linear transformations, 77 and 15, such that
TltRn%Rm, Ty: R™ — RP,

See Figure 4.3.

Assume that A; is the m x n standard matrix for 77 and that As is the p x m
standard matrix for 75. Consider

Th:x—y=Ti(x) =AixeR™ forallx e R" and
To:y —z="T(y) = Ay € RP,

where y is the image of x under 77 and z is the image of y under 75. Then z is the
image of x under the new linear transformation 7', which is the composition of the two

Download free eBooks at bookboon.com



PROBLEMS, THEORY AND SOLUTIONS IN
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE LINEAR TRANSFORMATIONS IN EUCLIDEAN SPACES

Rn Rm RP

T
ot | z
s » /?&N x-a_,_,_n\\ /-
- Ve
e

pet

T
t—

T=T20T1

Figure 4.3: The linear composite transformation 75 o 7T7.

linear transformations 7} followed by 75, known as the composite transformation,
denoted by T5 o T7. We write

T:TQOTliRn—)Rp,
so that, for every x € R”, we have
T=T50T:x— TQ(Tl(X)) = TQ(Alx) = Ag(Alx) = (AQAl)X € RP,

The standard matrix of the composite transformation 75 o 77 is the matrix product
Ag A1, which is a p X n matrix.

Problem 4.2.1.
Consider the following two linear transformations that map vectors in R?:

The transformation 77: R? — R2, where T} reflects every vector in R? about the line
y = 4.

The transformation T5: R? — R?, where Ty rotates every vector in R? counter-clockwise
with angle 7/3 about the origin (0, 0).

a) Find the standard matrix for 77.

b) Find the standard matrix for T5.

¢) Find the standard matrix of the following composite transformations:

To0Ty, Tio0T, TioTy, Tyo01s.
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Solution 4.2.1.

a) Suggestion: Review again the Problems in Chapter 1, where a vector is reflected
about a line.

Let A; denote the standard matrix for 77, so that
Ti: x+— Aix  for all x € R?,

where

Ay = [Ti(e1) Ti(e2)], e1= ( (1) > , ey = ( 2 ) -

First we find the reflection of e; about the line y = 4x, i.e. we need to calculate

T1 (el):
4
C A%
B
Ti(e1)
A
O e ; i
y=4z

Figure 4.4: Reflection of e; about y = 4x.

Following Figure 4.4 we have

Tl(el)-l-@-l-ﬁl:el
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Since C@ = m, we have
Tl(el) =e€e1] — 2B—1>4

Moreover,
B—zzl =e1 — O?,

where O? is the orthogonal projection of e; onto the line ¢ given by the equation
y = 4x, i.e. the orthogonal projection of e; onto any vector on the line ¢. To find a
vector on ¢ (say v), we let x = 1. Then y = 4, so that v = (1,4) and

eV

O? = proj, e1 =
v

v

_ W)+ 0))
= Tere Y

1
= —(1,4).
~(1,9)

Thus we have

— 1 1 2 1
BA=(1,0)~ 1=(1,4) = -(16,~4) and Ti(er) = (1,0) ~ - (16,~4) = -(~15.8),

or, in column matrix form

Ti(e1) = %7 < - ) .

Next we find the reflection of eg about the line y = 4x, i.e. we need to calculate
T1 (e2):

Following Figure 4.5 we have
Ti(e2) = ez + AD + %7
where zﬁ = B? . Thus
Ti(e2) = ez + 21@.
Moreover,

ﬁ:(ﬁ—e%

where

OB = proj, ez, with v =(1,4).
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¥y A
4
v
A
/ B
(D) C
Ti(ep)
) > T
y=4g

Figure 4.5: Reflection of e3 about y = 4x.

Thus
(ﬁz proj, ez = e2°V
Vv
(0)(@) + (1)(4)
= eEye G
4
= 1_7(1’4)
and

4 1
AD = FL4) = (0,1) = (4, 1),

so that
2 1

S -1) = = (8,15).

Tl(e2) = (07 1) + 17

In column matrix form, we have

Tl(e2):1_17( 1?)'
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The standard matrix A; for T} is thus
1 -15 8
T ( 8 15 ) '

b) Let Ag denote the standard matrix for the transformation T5: R? — R2, where T)
rotates every vector in R? counter-clockwise with angle ¢ = 7/3 about the origin
(0,0). Then

Ty: x — Aox  for all x € R?,

where
Ay = [Th(e1) To(e2)], e1 = ( (1) ) , ez = ( (1) > :

In Figure 4.6 we depict the counter-clockwise rotation of e; and ez about (0, 0).

y;#

T(e2) = (~sing, cosg) =~ # 0.1

% T(e1) = (cos g, sinp)
1 \
1
@ \
\\
z = >
€ (1, 0)

Figure 4.6: Counter-clockwise rotation with angle ¢ of e; and e about (0, 0).

Following Figure 4.6 we have

nen = (7). men—( T7).

sin ¢ cos ¢

Thus the standard matrix for T» for the counter-clockwise rotation with angle ¢
about (0,0) is

Ay — ( cosyp —sing >

sinp  cosgp
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For the angle ¢ = 7/3 we have

( 1/2 —\/5/2)
Ay = :
V3/2 1/2

¢) The standard matrices for the listed composite transformations are given below:
TooT:x— (A3A1)x for all x € R?
TioTy: x+— (A1Ag)x for all x € R?
TioTi:x+ (AD)x for all x € R?

ThoTy: x + (A3)x for all x € R%
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Problem 4.2.2.

Consider the linear transformation 7: R?> — R2, where T projects every vector in R?
orthogonally onto the line y = kx for any k € R.

a) Find the standard matrix of 7T

b) Let k = —1/2, i.e. consider the line y = —x/2, and find the image of the point (1, 2)
under 7. That is, find T'(1,2).

4.2.2.

a) Suggestion: Review again the Problems in Chapter 1, where a vector is projected
onto another vector.

Let A denote the standard matrix for the orthogonal projection of every vector
x € R? onto the line y = kx for all k € R. Then

T:x— T(x) = Ax,

where

A =[T(e1) T(e2)], e1:<(1]>, e2:<§)>.

To find T'(e1) we need to project ey orthogonally onto any position vector v that is
lying on the line y = kx. See Figure 4.7.

Let x = 1. Then y = k, so that

T(e1) = proj, e1 = (e1 - V) v = <> v,

12

where

e1-v=(1,0)-(1,k) =1
IvI? = (1,k) - (1,k) = 1+ &2,

so that
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Y

Figure 4.7: The orthogonal projection of e; onto y = kx.

To find T'(e2) we project e orthogonally onto vector v = (1, k). That is

T(ez) = proj, ez = (e2 - V)V = <T|2 HZ) v,
v
where e - v = (0,1) - (1, k) = k, so that

T(@:#(i).

The standard matrix of T' is therefore

A=men Tl = i (4 5 )-

b) Using the result in part a), the standard matrix for the orthogonal projection of

every vector x € R? onto the line y = —2/2 is
A 4/5 —2/5
S\ -2/5 1/5 )
Then

o (1)) (48 ) (1)-(2)
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Problem 4.2.3.

Consider the linear transformation 7': R? — R3, where T reflects every vector in R? about
the line ¢ given by

z=—t forallteR.

a) Find the standard matrix of 7'

b) Find the image of the point (1,2,3) under 7. That is, find 7(1, 2, 3).
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4.2.3.

a) Let A denote the standard matrix of the transformation 7" that reflects every vector
x € R? about the line

T =2t
£:8 y=t
z=—t forallteR.
Then
A =[T(e1) T(e2) T(e3)]
where {e1, ez, ez} is the standard basis for R3.
To calculate T'(e1), we project e; onto any non-zero vector v with coordinates on

the line £. To find such a vector, we let ¢ = 1 in the above parametric equation for
¢ and obtain

Following Figure 4.8 we have
T(el) =e; + 2@,

where

AB = 0B —e;

and
O? = proj, e1 = (T|1 ”Z> v
v

Thus we have

T(e1) = 2proj,e1 —e1

9 <e1 . V)
= vV —e1
Iv]]?
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y A
v
C
B
T(e1)
A
> I
O - ra 7 ool
V4
{

Figure 4.8: The reflection of e; about the given line ¢ in R3.

In a similar way we find T'(e2) and T'(e3). We obtain

2
1

T(ez) = 2proj, ez —ex = - | —2
3

-1

1 —2

T(es) =2proj, ez —eg=-| —1

3 —2

The standard matrix A of T is therefore

1 1 2 =2
A= 3 2 -2 -1
-2 -1 -2
A point with coordinates (z,y, z) will therefore map as follows under this reflection
transformation:
x z 1 2 =2 z T+ 2y — 2z
T(z,y,2): [y | =AYy | =45 2 -2 -1 y | == 2w — 2y — 2
z z -2 -1 -2 z —2x —y—2z
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b) From part a) above we have

1 1 12 -2 1 !
T(1,23): | 2 | Al 2 =2 2 -2 -1 2 |=—3| 5
3 3 —2 —1 -2 3 10

Problem 4.2.4.

Let ¢ be a line in R? that passes through the origin (0,0,0). Consider now the transfor-
mation 77 : R? — R3 that projects every vector x € R? orthogonally onto ¢ as well as the
transformation Th: R3 — R3 that reflects every vector x € R? about the same line £. Find
the relation between the standard matrix of 7} and the standard matrix of T5.

4.2.4.

Let Ay denote the standard matrix for the orthogonal projection transformation 73 onto
4, ie.

T :x—Ti(x) = A1x forall x € R3
and let Ao denote the standard matrix for the reflection transformation 75 about ¢, i.e.

Ty: x— Th(x) = Aox for all x € R3.

As usual we consider the transformation of the standard basis vectors {e1, ez, es}. Re-
ferring to Figure 4.9, we have by vector addition,

e; + ]TQl) =Ti(e1) and e+ 2]?@1) =Th(ey).
Thus we obtain the relation

Tr(e1) =2Ti(e1) —es.
Referring to Figure 4.10, we have

ez + ]?Qz) =Ti(e2) and ez+ 2]?@; = Th(e2),
which gives the relation

Tr(e2) =2Ti(e2) — ea.
Referring to Figure 4.11, we have

— N
e3 + P3Q3 =Ti(ez) and ez +2P3Q3=Ts(es),
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€1
Pi & Ti(e1)| T2(e1)

Q1
S1

Figure 4.9: The reflection and orthogonal projection of e; about the line /.

which gives the relation
T>r(e3) =2Ti(e3) — es.
The standard matrix A; for T} is
Ay = [Ti(e1) Ti(ez2) Ti(es)]
and the standard matrix As for 15 is
Az = [Tz(er) Ta(ez2) Ta(es)]
= [2Ti(e1) —e1 2Ti(e2) — ez 2Ti(e3) — es]
=2[Ti(e1) Ti(e2) Ti(e3)] — [e1 e2 es].
Thus the relation between A; and As is
As =2A;, — I,

where I3 is the 3 x 3 identity matrix.
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Figure 4.10: The reflection and orthogonal projection of es about the line £.

Problem 4.2.5.
Let
1/2 1/2 1/V2
A=\ 1/2 -5/6 1/(3V2)
1/vV2 1/(3v2) —2/3

be the standard matrix for the transformation 7 that reflects every vector x € R? about
the line ¢, where / is a line in R? that passes through the origin (0,0,0). Find a parametric
equation for /.
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Z
A
l

Py

Jl QS

Sy
ez | Ti(e3)
Ty(es)
> Y
X

Figure 4.11: The reflection and orthogonal projection of eg about the line £.

Solution 4.2.5.

Since the line ¢ passes through (0,0,0), it has the form
T=at
2 y=>bt
z=ct forallteR,

where v = (a, b, ¢) is the direction of ¢ and this is also a vector that is lying on ¢. We now
have to find a, b and ¢ explicitly, such that T reflects every vector x € R3 about ¢ with
the given standard matrix A. For the standard basis {e1, ez, ez}, we have

A =[T(e1) T(ez) T(es)],

so that
1/2 1/2 1/v/2
Tler)=| 1/2 |, T(e2)= =5/6 |, T(es)=| 1/(3v2)
1V 1/(3v2) ~2/3

Referring to Figure 4.12 we have

wy = proj,e1 and wy = proj, T(eq).
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Y
sag

€1

Wl T(el)

Figure 4.12: The reflection of e; about the line £.

This means that

(M) V= (el‘v> v or T(er)-v=ep-v.

V-V V-V

For the above given T'(e1) and v = (a, b, ¢) we obtain
1 1 1
Ca e th 4 e — —b—2 =0.
2a+2b+\/§c a or a—b—v2c=0

Referring to Figure 4.13 we have
wg = proj, ez and wg = proj, T'(e2).

This means that

(M> V= <e2‘V> v or T(ez) -v=ez-v.

V-V V-V

For the above given T'(e2) and v = (a, b, c) we obtain

1 5 1 11, V2
2a 6 + 3\/50 or a 3 + 3 c

Referring to Figure 4.14 we have

w3 = proj,es and wg = proj, T'(es).

Download free eBooks at bookboon.com

186



PROBLEMS, THEORY AND SOLUTIONS IN
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE LINEAR TRANSFORMATIONS IN EUCLIDEAN SPACES

T'(e2) e

Y
@

€2

Figure 4.13: The reflection of e3 about the line /.

&~

T'(es)

V
=

Figure 4.14: The reflection of ez about the line /.
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This means that

<T(e3)v> V= (M) v or T(eg)-v=esg-v.

\ERY \ERY
For the above given T'(e3) and v = (a, b, c) we obtain

1 1 2 1. 52
—a+—=b——-c=c or a+-b———=c=0.
V2 3vV2 3 3 3

Thus we now have three conditions for the unknown constants a, b anb ¢, namely
a—b—v2c=0

1. V2
——b+—c=0
a 3 + 30

1. 5V2
—b——c=0
a+3 3 c R

or in matrix form
1 -1 -2 a 0
1 —11/3  /2/3 b | =10
1 1/3 -5v2/3 c 0

Solving this system by Gauss elimination we obtain the solution

s, b=—s, c=s,

2=+/2t foralltecR.
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Problem 4.2.6.

Find the standard matrix for the linear transformation 7: R? — R3, where T projects
every vector in R3 orthogonally onto the zy-plane.

Solution 4.2.6.

The standard matrix A for the transformation 7: R? — R3 that projects every x € R3
orthogonally onto the xy-plane is

A=[T(e1) T(e2) T(e3)]

where {e1, ez, ez} is the standard basis for R®. From Figure 4.15, it should be clear that

1 0 0
T(el) = 0 s T(ez) = 1 s T(e3) = 0
0 0 0

Figure 4.15: The orthogonal projection of x € R? onto the xy-plane.
Thus the standard matrix A is

10
01
0 0

o O O
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Problem 4.2.7.

Find the standard matrix for T': R™ — R"™, such that

T:x— kx

for every x € R™ and any k € R.

SIMPLY CLEVER

SKODA

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Download free eBooks at bookboon.com

Click on the ad to read more

190



http://www.employerforlife.com

4.2.7.

We seek the n x n matrix A, such that
T:x— Ax=kx

for every x € R"™. Let

X1

T2

X = .

Tn

Then

kK 00 --- 0 T
0 k O 0 T
000 --- k Tn

kxq

/6'.7}2
or klI,x=kx.

kxn,

Hence the standard matrix of T' is A = k I,,, where I, is the n X n identity matrix.

Problem 4.2.8.

Find the standard matrix for T: R? — R*, such that

T:x— (klxl, koxo, (k‘l — kQ):Bl, (k‘l + k‘g)ib‘g)

for every x = (x1, x2) € R? and any real numbers k; and ko.

4.2.8.

We have the transformation 7: R? — R*, such that every x = (x1, x2) € R? is mapped
to the vector (kiz1, kowa, (k1 — ko)x1, (k1 + k2)w2) € R?* for any ki, k2 € R. Thus we

seek the 4 x 2 matrix A, such that

kl T
T T ko xo
T: — A =
( ) > < T > (k1 — k) 21
(k1 + k2) 22
Since
k1 0 k1 xq
0 kiz < I > . kz xIo
k‘l — k‘Q 0 T2 (k?l — ]{32) I
0 ki + ko (kl + ]{72) X9
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it is clear that the standard matrix of T is

ky 0
B 0 ko
A=l -k 0
0 kitky

Problem 4.2.9.

Consider three linear transformations, T, T» and T3, which map all vectors in R? to
vectors in R? as follows:

Ty rotates every vector in R3 counter-clockwise by angle #; about the z-axis;

Ty rotates every vector in R3 counter-clockwise by angle 8, about the y-axis;

T3 rotates every vector in R3 counter-clockwise by angle 63 about the z-axis.

a)
b)

c)

Find the standard matrices for 17, T» and T35.
Find the standard matrix for the composite transformation 7' = T5 0 Ty o T7.

Consider a vector u = (z,y, z), where (z,y, z) is a point on the sphere with centre at
(0,0,0) and radius a > 0. Calculate T'(u), where T is the composite transformation
in part b) and show that 7'(u) is a vector with coordinates on the same sphere.

4.2.9.

Let T1: x — A;x denote the transformation that rotates every vector x & R3
counter-clockwise about the z-axis by the angle 6. Then

Ay = [Ti(e1) Ti(e2) Ti(es)],

where
cos 01 —sin 6 0
Ti(e1) = | sin6, , Ti(e2) = costh |, Ti(es)=1 0
0 0 1

Thus the standard matrix for 17 is

cosfy —sinf; O
Ay = | sinf; cost)y 0
0 0 1

Let T5: x — Aox denote the transformation that rotates every vector x € R3
counter-clockwise about the y-axis by the angle 5. Then

Az = [Tz(e1) Ta(e2) Ta(es)],
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where

cos 0 0 —sin s
Tg(el) = 0 y Tg(ez) = 1 y Tg(eg) = 0
sin 0 0 cos 0,

Thus the standard matrix for T is

cosfy 0 —sinby
Ay = 0 1 0
sinfy 0 cos 0o

Let T3: x — Asx denote the transformation that rotates every vector x € R3
counter-clockwise about the x-axis by the angle 3. Then

Az = [Tg(el) TS(GZ) T3(e3)]7

where
1 0 0
T3 (el) = 0 s T3 (62) = (60} 93 y T3 (63) = —sin 93
0 sin A3 cos 03

Thus the standard matrix for T3 is

1 0 0
A3 =| 0 cosf3 —sinfs
0 sinfs cos 03

b) For the composite transformation
T=T30Ty0T], T:x— Ax
the standard matrix A is
A= A3 A Ay,

where A;, Ag and As are given in part a) above. Thus

1 0 0 cosbly 0 —sinfy cosf)y —sinf; 0
A= 0 cosfl3 —sinf; 0 1 0 sin 64 cos 01
0 sinfs cos 03 sinfy; 0 cos 09 0 0 1
cos 01 cos 09 — sin 01 cos 69 —sin 05
= | sinfqcosf3 —cosbsinbysinfs cosbqcosbz + sinfq sinfysinfls  — cos by sin b5

sin 01 sin 03 + cos 07 sin B3 cos 03 cos By sinf3 — sin By sinfy cos 3 cos Oy cos O3
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c) Let u be a vector on the sphere with radius a > 0, given by the equation
x2+y2+22 =a’.
Then u has the following coordinates:
u=(z, y, Va*—z%—y?).
We now map u by T'=T5 0150717, i.e.
T:uw— T(u) = Au,
where A is the standard matrix given in part b). This leads to

Au=w = (wla w2, ’11)3),

where

w1 = @ cos 0 cos By — ysin by cos Py — \/a? — 22 — y2 sin by

wg = x (sin 6y cos O3 — cos 01 sin Oy sin O3) + y (cos 1 cos O3 + sin 0 sin Oy sin O3)

—+v/a? — 22 — y? cos By sin O3

ws = x (sin 61 sin O3 + cos 0 sin 6 cos 03) + y (cos 61 sin O3 — sin O sin b, cos O3)

++v/a? — 22 — y? cos by cos 3.
We calculate w? + w3 4+ w3 and obtain
2

2 2 2
w] +wy; + w3z =a”,

which shows that w is a vector on the sphere with radius a > 0 and centre (0,0, 0).

Problem 4.2.10.

a) Consider the linear transformation T: R® — R3, where T projects every vector
x € R? orthogonally onto the plane

II: ax+by+cz=0.

Find the standard matrix for 7.
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b) Find a parametric equation of the line f, where 7 is the orthogonal projection of the
line

r=1t+2
:¢ y=—-t+1
z=3t—1 forallteR

onto the plane

II: z+2y—32=0.
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Solution 4.2.10.

a) Let A be the standard matrix of 7. For the standard basis {e1, ez, ez} we then
have

A= [T(el) T(ez) T(eg)].
The normal vector n of the plane II is
n = (a,b,c).

Referring to Figure 4.16 we have

€ Pl

Figure 4.16: The orthogonal projection of e1 onto the plane II.

—
T(e1) + Q1P =eq,

where

— . e;-n a
Q1P = proj,e; = ( )

n—
n-n a? + b2 4 2
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Therefore
1 a a 1 b2 + 2
Te)=| 0 | -———=1[ b | =————— ab
(e1) a>+ b2+ || a? + b2 + 2 e

Referring to Figure 4.17 we have
—
T(e2) + Q2P = ez,

where

ez-n) b

—
P = 1 = ( =
(@22 = proj e2 nn/" T @212+

Figure 4.17: The orthogonal projection of eg onto the plane II.

Therefore
0 b a 1 ab
_ _ 2, 2
T(e2) = “2ipre | VT ereral e ZC
c —bc
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Referring to Figure 4.18 we have
—
T(es) + QsP3 =es,

where

— . e3-n c
Q3P3 = proj, ez = < ) =

n-n a4+ b2+ 2

Figure 4.18: The orthogonal projection of eg onto the plane II.

Therefore
0 a —ac
Tleg) = | 0 )~ | 0 | = | b
a’+b%+c c a’+ b +c a2 1 b2
The standard matrix A for T is thus
1 b2 + 2 2—ab ) —ac
A=[T(e1) T(e2) T(e3)] = 2rrie :ZI; a _—il;cc a2—ﬁ0b2
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b) To find the projection of the given line ¢ onto the given plane II, we choose any two
points P and @ on £ and project their position vectors onto Il using the standard
matrix that was dertived in part a). We refer to Figure 4.19.

Figure 4.19: The orthogonal projection of ¢ onto the plane II.

We choose the following two points on ¢: P : (2,1,—1) that corresponds to the
parameter value t = 0 and @ : (3,0,2) that corresponds to ¢t = 1. Using the
standard matrix A of the orthogonal projection of any vector in R? onto the plane
IT given in part a), we obtain for our plane

II: z+2y—32=0

the standard matrix

1 13 -2 3
A= 1 -2 10 6
3 6 5
Now
. 1 13 -2 3 1 3
OP, = T -2 10 6 1 = 3 0
3 6 5 —1 1
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and

L[ 13 -2 3 3 e
OQi=1;( -2 106 0 =1 6
3 6 5 2 19

—
We now have vector P;()1, namely

45 3 3 19 1 12 3
P o _ ) = —
PQi=(5; =5 20, )=(

R .
The vector P;()1 gives the direction of the line ¢ and, using the point P;, we obtain
the following parametrized equation of the line /:

12t+3
r=— —
7 2
- 3
6 1
Z—?t—|—§ for all t € R.

.
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4.3 Invertible linear transformations

In this section we discuss surjective and injective linear transformations and study invert-
ible linear transformations.

Theoretical Remarks 4.3.

1. A linear transformation 7': R®™ — R™, where
T:x—Db

is said to be surjective onto a subset W of R™ (or just onto W), if each vector
b € W is the image of at least one vector x € R™.

2. A linear transformation T: R™ — R™, where
T:x— b,

is said to be injective on a subset W of R (or just one-to-one on W), if each
vector b € W is the image of exactly one vector x € R".

3. Let T: R™ — R™ be a linear transformation with standard matrix A4, i.e.
T:x— T(x)=Ax € R™,
where A is an m x n matrix. Then we have the following
Properties:

a) T is injective on its range Ry if and only if
Ax =0

has only the zero-solution x = 0.

b) T is injective on its range Ry if and only if the columns of A form a linearly
independent set of n vectors in R”. Then

Ax=Db

has a unique solution x € R"™.

c) T is surjective onto R™ if and only if the co-domain of 7', namely R™, is the
range Rp of T, i.e. if and only if Rp = R™.

d) If T is injective on a set, then T is surjective onto this set.
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Remark: Any linear transformation T:R"™ — R™ with standard matric A =
[a1 ag -+ ap| is always surjective onto its range Ry C R™ and then

Ry = span{a;, ag, -+, an}.

If there exist vectors in the co-domain R™ that are not in Ry, then Ry # R™ and
then T s obviously not surjective onto R™.

. Assume that T: R™ — R" is an injective linear transformation on R™ with n xn stan-
dard matrix A. Assume now that there exists another injective linear transformation
T—1: R® — R", such that

TloT(x)=ToT }(x)=x forall x € R".

Then T—! is the inverse of T' and the standard matrix of T~ is the inverse matrix
A~1 of A. That is

TV x—Tx)=Ax forall x € R

Problem 4.3.1.

Consider the transformation 7: R? — R? with standard matrix

(1),

a) Give the domain Dy and the range Rp of the transformation 7.

b) Is the transformatin 7" surjective and/or injective onto its range Rp? Explain.

c) Is the transformation surjective onto R?? Explain.

4.3.1.

a) We are given the linear transformation 7: R? — R? with standard matrix

A:Gg)

That is
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Figure 4.20: A surjective transformation 7" onto y = x that is not injective.

for all x € R and all y € R. See Figure 4.20.

The domain Dy of T therefore consists of all vectors in R?, i.e.

DT:{<z> for all z, y € R}

(3 (4

The range Ry of T consists of all those vectors in R? which lie on the line y = z, i.e

RT:{( ’ ) for all k € R}
_ span{( X )}cR2.

b) The transformation is surjective onto its range Ry (the line y = x), as every vector
in Ry is the image of at least one vector in the domain D7 = R2. However, T is not
injective, as there exist more than one vector in R? that map to the same vector in
Rr. In fact there exist infinitely many vectors in R? that map to the same point
in Ry, for every point in Rp. For example, both the vectors (1,2) and (1,3) are
mapped to the vector (1,1) by T. Moreover, the vectors (1, k%) are all mapped to
(1,1) for all k € R.

c¢) The transformation T is not surjective onto R?, since only the vectors on the line
y = z are images under 7. So not every vector in R? is an image under 7. For
example, the vector v = (1,2) is not an image under T for any point in RZ.
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Problem 4.3.2.

Consider the transformation 7: R? — R3, such that

T: (x1, x2, x3) — (x1 — x2 + b3, 1 + 222 — 4a3, 221 + 322 — HX3).
a) Prove that T is a linear transformation.
b) Find the standard matrix of 7.

c¢) What is the domain Dy and the range Ry of T. Give Dp and Ry in terms of
spanning sets.

d) Is T surjective onto R3? Explain.

e) Is T injective on its range Rp? Explain.
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4.3.2.

a) We prove that the transformation 7', given by

T r1 — T9 + Ox3
T: T2 — T + 229 — 4x3 ,
T3 2x1 + 3x9 — dx3

is a linear transformation. Consider two vectors in R®, namely x = (x1, z2, x3) and
Y = (1, ¥2, y3). Then

1 — x9 + bx3 Y1 — Y2 + dys3
T(x) = 1 + 2x9 — 43 , T(y) = Y1+ 2y2 — 4ys3
2x1 + 3xo — b3 2y1 + 3y2 — dys3

We need to show that T'(x +y) = T'(x) + T'(y) and that T'(cx) = ¢T'(x) for all x
and y in R? and all ¢ € R. We have

x1+y1 — (2 +y2) + 5(x3 + y3)
T(x—i—y) = 1+ +2(.%'2 +y2) —4(.%'34—3/3)
2(x1 +y1) + 3(x2 + y2) — 5(x3 + y3)

1 — x2 + 53 Y1 — y2 + 5y3
= | =1 +2z2—4zs |+ | y1+2y2—4ys
21 + 322 — Sx3 2y1 + 3y2 — Sys

=T(x)+T(y).

Furthermore, we have
cr| — cx9 + dcxs 1 — X9 + 53
T(cx)=| cx1+ 2cxe — 4cxs =c| z1+2x2—4x3 | =cT(x) forallceR.
2cx1 + 3cxo — bexs 2x1 + 3x0 — bxy

Since x and y are arbitrary vectors in R3, the above two properties of T hold for all
vectors in R3. This proves that 7T is a linear transformation.

b) The standard matrix of 7" is a 3 x 3 matrix A, such that

T T T1 — T2 + 573
T: T2 — A T2 = T1 + 229 — 4x3
I3 I3 2(E1 + 3.’E2 - 5.’E3

Thus the standard matrix is

1 -1 )
A=(1 2 —4
2 3 =5
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¢) The domain D7 of T consists of all the vectors in R3, since 7' maps every vector in
R3. That is

Dr = span{e;, ez, es},

where {e1, ez, ez} are the standard basis vectors of R3.

To establish the range Ry of T, we need to find all vectors b € R3, such that the
system

Ax=Db

is consistent, where A is the standard matrix of 7', namely

1 -1 5
A= 1 2 —4
2 3 -5
Let
b1
b= by
b3

Then the associated augmented matrix of the above linear system is

1 -1 5 b
Abj=| 1 2 —4 b
2 3 -5 b3

Applying elementary row operations to this augmented matrix, we obtain the fol-
lowing row equivalent matrices:

1 -1 5 b 1 -1 ) b1
1 2 -4 by |~ 0 3 =9 bya—b
2 3 =5 b3 0 5 =15 b3—2bh

1 -1 5 b1
~(0 1 =3 ba/3 —b1/3
0 0 0 —5b2/3—b1/3—|—b3
By the third row of the last row equivalent matrix, we conclude that the given linear

system is consistent if and only if —5bs/3—b1/34b3 = 0, or multyplying this equation
by 3, we have the following condition on the coordinates of vector b:

—5by — b1 + 3b3 = 0.
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Thus
—5by + 3b3 -5 3
b = by = by 1 + b3 0 for all by € R and all b3 € R.
b3 0 1

Thus the range of T is a plane in R? that passes through the origin (0,0,0) and that
is spanned as follows:

-5 3
Ry = span { L], 0 |}
0 1

d) The given transformation 7T is not surjective onto R3, as there are vectors in R3 that
are not images under 7. In fact, any vector in R3 that is not lying on the plane
spanned as given by Ry in part c¢) above, is not an image under 7.

e) The given transformation 7' is not injective on Ry, as for every vector b € Ry there
exist more than one (in fact infinitely many) vectors x € R? that map to this image
vector b. We know this from the fact that the system Ax = b has infinitely many
solutions x, with x5 being a free parameter for every b € Ry, namely every vector
b of the form

—5by + 3b3
b= by for any real by and bs.
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Problem 4.3.3.

Consider the linear transformation 7': R? — R? with the standard matrix

1 -1 2
A= 2 0 2
-3 -2 4
1
a) Find all vectors x € R3, such that T(x) = | 2
7

b) Is the given transformation 7" invertible? If so, find the standard matrix for 7.

4.3.3.

a) Let

x1
X = i)
x3

and find x, such that
1
T:x—Ax=1] 2
7

for the given standard matrix A. We therefore need to solve the linear system

1 -1 2 z1 1
2 0 2 zo | =1 2
-3 -2 4 3 7

The corresponding augmented matrix, and some of its row equivalent matrices, are

1 -1 2 1 1 -1 2 1 1 -1 21
2 022 |~10 2 -2 0]~0 1 -120
-3 -2 47 0 -5 10 10 0O 0 1 2
100 —-1
~1 010
001 2
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The last row equivalent matrix given above is the reduced echelon form of A. Thus
we have the unique solution of the linear system, namely

—1 1
X = 2 for T(x)=| 2
2 7
b) Since
det A =10

we know that the matrix A is invertible and therefore we know that 7" is an injective
linear transformation with range Ry = R3. This means that 7 is an invertible
transformation on R? and that the standard matrix for its inverse 77! is A=1. We
therefore need to calculate A~!. For that, we consider [A I3], where I3 is the 3 x 3
identity matrix. We obtain

100 2/5 0 -1/5
[AL]~| 010 =7/5 1 1/5
001 —2/5 1/2 1/5

Thus the inverse matrix of A is

2/5 0 —1/5
A= —7/5 1 1/5 |,
-2/5 1/2  1/5

so that

Tl x+— A 'x  for all x € R.

Problem 4.3.4.

Consider a linear transformation 7: R3 — R3 for which the following is valid:

1 5 1 0 1 10
T: o |l=(1w0]|, 7: 2]~ -5], T 3 =1 15
-1 4 0 5 —2 4

a) Find the standard matrix of T

b) Is T an invertible transformation? Explain.
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4.3.4.

a) To find the standard matrix A of T', we first introduce some notations for the vectors
that are involved. Let

1 1 1

u] = 0 , U2 = 2 , ug = 3

-1 0 -2

5 0 10

V1 = 10 5 Vo = -5 5 V3 = 15
4 ) 4

Then, as given in this exercise, we have

T:ul'—>Au1:v1, TIU2P—)AU2:V2, TZU3P—)A113:V3.
Now

A[u1 uz U3] = [Vl V2 V3]

and by denoting U = [u; ug ug] and V = [v1 v2 v3], we have the matrix equation

AU =V,
where
1 1 1 5 0 10
U= 0 2 31, V= 10 -5 15
-1 0 -2 4 5 4

Calculating the determinant of U, we obtain
detU = —5,

which means that the columns of matrix U form a linearly independent set and
that U is an invertible matrix. Thus we can solve the matrix equation for A by
multiplying the equation with U~! from the right. We obtain

A=VvU~L

Calculating U1, we obtain

) 4 -2 -1
U—1:5 3 1 3|,
2 1 -2

so that the standard matrix A follows:

L[5 0010 4 -2 -1 0 0 -5
A=-110 =5 15 3 01 3 |=| -1 -2 -11
4 5 4 —2 1 -2 23/5 1/5 3/5
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b) To find out whether T is an invertible transformation, we can inverstigate the in-
vertibility of its standard matrix A that was calculated in part a) above. We recall
that A is an invertible matrix if and only if det A # 0. We therefore calculate det A
and obtain

det A = —45.

Hence A is invertible, which makes T an invertible transformation and the standard
matrix of 77! is A~1,
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PROBLEMS, THEORY AND SOLUTIONS IN
LINEAR ALGEBRA: PART 1 EUCLIDEAN SPACE LINEAR TRANSFORMATIONS IN EUCLIDEAN SPACES
4.4 Exercises

1. Consider the transformation 7: R?® — R2, such that every vector x = (1, z2,73) €
R3 is mapped to R? in the following manner:

T: (56'1,.%'2,.%'3> — (:Cl — bxo + 4x3, 9 — 6%3).

a) Show that 7' is a linear transformation.

[Answer: We need to show that T'(x +y) = T(x) + T(y) and that T'(c¢x) =
cT(x) for all x € R? all y € R? and all ¢ € R. |

b) Find the standard matrix of 7.

[Answer: The standard matrix is A = < é _i _;l ) -]
c¢) Find the range of T and establish whether T is surjective onto RZ.

[Answer: The range of T is R?, so that T is surjective onto R? . |

d) Is T an injective transformation on its range? Explain.

[Answer: T is not injective, as Ax = b has infinitely many solution x € R3
for any b € R?. |

2. Consider a linear transformation T': R? — R?, such that 7' maps every x = (x1, T2, x3) €
R3 to (k1 z1+3, ko wo—23) € R? for any k1 € R and any ks € R. Find the standard
matrix A of T

o (ko0 1
[Answer: A—( 0 ko _1).]

3. Consider a linear transformation 7: R® — R? for any n > 2, such that

T: x— (En:kzl‘z, Jin)

=1

for every x = (21, x2, ..., p) € R” and any constants k; € R, j =1,2,...,n.
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a) Find the standard matrix A of T

. NS
[Answer: A-( 0 0 ... 1 )]

b) Let k; =1 for j =1,2,...,n. Find now the image of the point
(1, 2, ...,n) e R"
under T'. What is this image if n = 1007

n(n+1)

[Answer: (
2

, n> . For n =100, we have the image (5050, 100). ]

4. Consider the linear transformation 7': R? — R?, such that

T(e1)=<é>, T(ez):<:;>’ T(e?’):((l))’

where {e1, ez, e3} are the standard basis vectors of R3. Find the standard matrix
3

A of T and determine T'(x), where x = | 1
4

[Answer: A:(; - (1’) T(x)z(é).]

5. Consider the linear transformation 7': R? — R?, where T projects every vector in
R? orthogonally onto the line y = —3x.

a) Find the standard matrix A of T

1 1 -3
[Answer: A_l()(—?) 9)]

b) Find T'(x), where x = ( ; ) .

[Answer: T(x)=
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c) Is T invertible? Explain.

[Answer: T is not an invertible transformation, as det A = 0. This is also
clear geometrically, as there are obviously inifinitely many vectors that project
orthogonally onto the same point on the line y = —3x, for every point on
y = —3x. |

6. Consider the linear transformation 7: R? — R2, where T reflects every vector in R?
about the line y = 3z.

a) Find the standard matrix A of T

1/ -4 3
[Answer: A—5< 3 4)]

b) Show that T is an injective transformation on R? and find the standard matrix
for the inverse transformation 7.

[Answer: Since T describes a reflection about a line, it is geometrically clear
that 7T is injective and invertible on R?. This can also be established by calcu-
lating the determinant of A. We obtain det A = —1. Hence A is an invertible
matrix and the standard matrix of 771 is A~!, which is the same as the stan-

1/ —
dard matrix of T, i.e. A=l = — 43 -]
) 3 4

7. Consider two linear transformations, T; and T, where both map vectors in R?. In
particular, T} rotates every vector in R? counter-clockwise with angle 7/3 about the
origin (0,0) and 75 maps every vector x = (z1,x2) as follows:

Ty <x1 ) = < L1+ 22 > for all 1 € R and all 25 € R.
o €2

a) Find the standard matrix A; for T} and the standard matrix Ay for Th. Are T}
and 75 invertible? Explain.

w

1 1 - 11 .
[Answer: A; = B ( V3 \fl > , Ay = < 01 > T1 and T, are invert-

ible. ]
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b) Find the standard matrix A for the composite transformation T' = To o T7. Is
T invertible and, if so, find the standard matrix B for 7.

[Answer:A:A2A1:;< 1f/§ﬂ 1_1\/§>,B:A_1:;<_\/% ﬁ?é)]

8. Consider the linear transformation 7: R? — R3, such that

1 0 -1
Tei)=|( 0], T(e)=|( 1], T(es)= 0|,
1 0 1

where {e;1, ez, es} are the standard basis vectors of R3. Establish whether T is
an invertible transformation and, if so, find the standard matrix for the inverse
transformation.

1 0 -1
[Answer: The standard matrix Aof Tis A= | 0 1 0 |. Since det A = 2,
10 1
1 101
T is invertible and the standard matrix of T-1 is A=! = 3 0 2 0 ]
-1 0 1
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9. Consider the following two planes in R3:

I : x—y+32=0
HQ: 2x+y+3z:0

a) Find the line ¢ of intersection of the given planes II; and IIy and express ¢ in
parametric form.

[Answer:

z=t for all t € R. ]

b) Let T: R? — R? denote the linear transformation that projects every vector
x € R3 orthogonally onto the line £ obtained in part a) of this problem. Find
the standard matrix A of T

1 4 -2 -2
[Answer: A= 8 -2 1 1 ].]
-2 1 1

10. Consider three linear tansformations, 77, T5 and T3, all of which map vectors in R3.
In particular, T} projects every vector in R3 orthogonally onto the line ¢, given by
the following parametric equation:

z =3t for all t € R,

T, reflects every vector in R? about the z-axis, and T3 reflects every vector in R3
about the x-axis.

a) Find the standard matrix of the composite transformation 75 o Ty o T7.

-4 2 -6
[Answer: The standard matrixis — [ —2 1 -3 |.]
-6 3 -9
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b) Find the standard matrix of the composite transformation 77 o Ty o T3.

-4 -2 —6
[Answer: The standard matrix is — 2 1 3 ].]
-6 -3 -9

c¢) Find the range of the composite transformation 7' = T3 0 T5 o T}.

[Answer: The range is given by the set span {u}, where u = (2,1, 3). That is,
all the vectors lying on the line ¢* given by the following parametric equation:

T =12s
FoQ y=s
z=3s for all s € R. ]

11. Consider the linear transformation 7: R?® — R? for which the following is valid:

1 -2 1
T(el) = 0 s T(EQ) = k N T(e3) = 1 s
1 0 k

where k is an unspecified real parameter and {e1, ez, es} are the standard basis
vectors for R3.

a) Give the standard matrix of 7" and find T'(x), where

1
x=1 2
3
1 -2 1 0
[Answer: Thestandard matrixisA=| 0 &k 1 |.ThenT(x)=| 2k+3
1 0 k 3k+1

b) Find all values of k, such that T is an injective transformation on R3.

[Answer: T is injective (one-to-one) on R? for all k € R\{-1, 2}. ]

12. Consider a linear transformation 7" which projects every vector in R? orthogonally
onto the line of intersection of the following three planes:
II;: z+3y—52=0
IIy: z+4y—82=0
I3 : —2x — 7y + 132 = 0.
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a) Find the standard matrix A of T.

1 8§ —6 -2
[Answer: A= & -6 9/2 3/2 |.]
—2 3/2 1/2

b) Is this transformation 7" invertible? Explain.

[Answer: T is not invertible, since det A = 0. |

13. Consider a linear transformation 7': R? — R3 for which the following is valid:

0 2 1 1 2 2
T: 1 |—=11, T: 0 | — o], T: 3 |—=1 3
4 2 -3 -1 8 4

a) Find the standard matrix A of T

-8 14 -3
[Answer: A= 0 1 0 ].]
-1 2 0

b) Is T an invertible transformation? Explain.

[Answer: The transformation 7' is invertible, as its standard matrix A is an
invertible matrix. ]

14. Consider the linear transformation 7': R? — R3, with standard matrix

1 1
A= 1 «
a 1

— = Q

where « is an unspecified real parameter.

a) Find all values of a, such that T is injective on R, as well as all the values of
a, such that T is invertible.

[Answer: T is injective and invertible on R3 for all « € R\{1, —2}. ]
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b) Find the range Ry of T for « = —2 and express the range in terms of a spanning
set.

1 0
[Answer: Rp = span{ 0 |, 1 1}
-1 -1

c¢) Let a = —2 and find all x € R3, such that

1
T(x) = 4
-5
1 3
[Answer: x=t| 1 |+ [ O for all t € R. ]
1 1
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15. Consider the linear transformation 7': R3 — R?, where T reflects every vector x € R3
about the plane Il : ax + by + cz = 0.

a) Find the standard matrix A for T

1 —a? 4+ b% + 2 —2ab —2ac
[Answer: A= popE —2ab a? — b+ ¢? —2bc
a® + 0% +c —2ac —2bc a® +b% — 2

b) Find a parametric equation of the line £*, such that £* is the reflection of the
line

r=2t+1
2 y=—3t
z=2 forallteR

about the plane x +y — 2 = 0.

[Answer:
)
=8+ -
T + 3
2
ﬁ* . e —7t -
y + 3

4
z:—2t+§ for all t € R. ]

c) Find the equation of the sphere which is a reflection of the sphere
(=1 +(y+2)°+(: - 1)* =4

about the plane x +y — z = 0.

7\’ 2\? 1)\
A R _z —2) =4
[Answer <:): 3> —|—<y 3> +<z 3) ]

16. Consider the linear transformation 7': R? — R3, where T reflects every vector x € R3
about the line

r =at
I y = bt

z=-ct foralltelR.

Find the standard matrix for 7.
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a? — b2 — 2 2ab 2ac
2ab —a?+ b -2 2bc ]
2ac 2bc —a? — b+ 2

1

[Answer: A = m

17. Assume that T: R3 — R3 is a linear transformation that reflects every vector x € R3
about a line ¢, such that T" has the following standard matrix:

1 -3 -2 6
6 -3 2

Find a parametric equation for this line /.

[Answer:

r=1

0ig Y=3

z:gt for all t € R. ]

18. Consider three linear transformations, T}, T» and T3, that map all vectors in R? to
vectors in R? as follows:
T1 rotates every vector counter-clockwise by angle 6; = m about the z-axis;
T5 rotates every vector counter-clockwise by angle 65 about the y-axis;
T3 rotates every vector counter-clockwise by angle #3 about the x-axis.

a) Find the standard matrix A for the composite transformation 7' = T} o Ty o T5.

[Answer:
—cosfy sinfysinfs  cosfssin by
A= 0 — cos B3 sin 03 ]

sinfy;  cosfysinfs  cos by cosbs

b) Find 6, and 03 with 0 < #y < 7 and 0 < 03 < 7, such that
T: (1,2,0) — (0,-1,2),

where T is the transformation in a) above. To which point does (0, —1,2) map
under 7" for those values of 62 and 3. That is find 7°(0, —1, 2).
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93:7;ade(o,—Lz):(l—\/§ L i+‘/§).]

[Answer: 6y = 51 3 5

T
67

c¢) Show that T as obtained in part b), is an injective transformation on R?® by

calculating the determinant of its standard matrix A and find the standard
matrix for the inverse transformation of T, i.e the standard matrix for 7.
Show also that 7"~! maps the point (0, —1,2) back to the point (1,2,0).

[Answer: Since det A # 0, the matrix A is invertible, which means that 7T is
invertible and the standard matrix of 77! is A~!, namely

—2v/3 0 2
V3 -2 3 |.]
1 2v3 V3

Al =

AN

Consider the line ¢, given by the parametric equation
r=-2t+1
2 y=3t—2
z=t+4 forallteR.

Make use of the linear transformation 7" obtained in part b) and find a para-
metric equation of the line £*, such that ¢* is the image of the line ¢ under T.
That is find £*, such that

T:0— 0.
[Answer:
x—<7\/§+1>t—\/§+1
4 4
il y= (ﬁ—3>t+2\/§+1
2 2
z = <f+i>t+\/§_1 for all t € R. ]
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e) Consider the plane
IT: 22 —3y+ 2z =4.

Make use of the linear transformation 7" obtained in part b) and find the equa-
tion of the plane II*, such that IT* is the image of the plane II under 7. That
is find II*, such that

T:11 — 11",

Use Maple to sketch both IT and IT* (see Appendix A for information about
Maple).

[Answer: IT*: (73— 1)z —2(v/3+3)y — (V3 —5)z = —16. ]

19. Consider four linear transformations, T}, T», T3 and T}, that map all vectors in R? to
vectors in R3 as follows: T} rotates every vector counter-clockwise by angle 7 about
the z-axis;

T; rotates every vector counter-clockwise by angle 7/3 about the y-axis;
T3 rotates every vector counter-clockwise by angle —m/2 about the z-axis;
T rotates every vector counter-clockwise by angle 7/2 about the z-axis.
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a) Find the standard matrix A of the transformation 7'= Ty o T o T} o T5.

[Answer:
0 0 1
1 V3
A=l =3 5 O]
V31
Y22
2

b) Find the standard matrix of the inverse transformation of 7', where T is the
transformation in a) above.

[Answer: The standard matrix of 77! is given by A~!, where A is the stan-
dard matrix of 7" obtained in a) above. That is

0 L V3
2 2
A7l = o V31 ]
22
1 0 0

¢) Find a parametric equation for the line ¢, such that
T:0— 1",
where T is the the transformation obtained in a) above and ¢* is

r=06t—1
o y=-2t+2

z=2t foralltelR.

[Answer:

r=(—V3+1)s—1
0:% y=—(3+1)s+V3

z=6s—1 forallseR.]
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20. Consider the linear transformation 7': R?2 — R2 with standard matrix A. Consider
further two linearly independent vectors,

u = (ug,uz), v = (v1,v2),

which describe a paralleleogram in R? with area S. The transforamtion 7" then maps
area S to area T'(S). Show that

area T'(S) = |det A| (area S).

21. Consider the linear transformation 7: R3 — R? with standard matrix A. Consider
further three linearly independent vectors,

u = (u1,u2,u3), v = (v1, v2,v3), w = (w1, we, ws3)

which describe a parallelepiped in R? with volume V. The transforamtion 7' then
maps volume V' to volume T'(V'). Show that

volume T'(V') = | det A| (volume V).

v---v---v----v---vu---v---vv--vv--vv---v---ov--vv--vv--ovv--vv-cvv-cov-coAlcateluLUcent 0
www.alcatel-lucent.com/careers

2
.

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".
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Appendix A

Matrix calculations with Maple

Maple is a commercial computer algebra system developed and sold commercially by
Maplesoft, a software company based in Waterloo, Canada. It was first developed in 1980
by the Symbolic Computation Group at the University of Waterloo. The Maple system is
written in the programming languages C' and Jawva. In this appendix we describe a few
main Maple commands for performing some of the basic vector and matrix calculations.

For any vector or matrix calculation, we first need to load the package LinearAlgebra.
This is done by writing

with(LinearAlgebra)

in the beginning of a Worksheet Mode file on the command line, i.e. after the symbol
>

It is a good idea to always start your new Worksheet file with a restart, in order to clear
all possible assigned values and parameters when the file is compiled. That is, we write
on the first line

> restart
Below, we show how to assign an R? vector u and a 2 x 3 matrix A.

> with(LinearAlgebra) :

> u:=<a,b,c>

a
u:=1b
c
> A:=<a,b|c,dle,f >
a c e
=50 7]
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Alternatively, we may also define the same vector u and matrix A in the following manner:

> with(LinearAlgebra) :

> u := Vector(la, b, c])

> A := Matriz(2, 3,[a, b, c,d, e, f])
a b ¢
a=lo ]

Note that the sentence that follows the sign f is a comment. Note further that selected
help and examples are available for a particular Maple routine or function by pointing
the curser on a word in the Maple Worksheet, e.g. Matriz, followed by hitting F2 on the
keyboard.
We now show how to perform some basic vector and matrix calculations
>ui=<4,—1,—1> # Vector u with coordinates (4,—1,—1) is defined.
4

w:i=| —1
-1

>v:i=<1,0,1> f Vector v with coordinates (1,0,1) is defined.

> u+ (—v) tThe sum u+ (—v).

> DotProduct(u, v) fThe dot product between u and v.
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> norm(u, 2) $The norm of the vector u.
3v2

u.v

> theta := arccos < > g The angle 0 between u and v.

norm(u, 2) - norm(v, 2)

1
0:= 3™
> CrossProduct(u, v) §The cross-product between u and v.
-1
-5
1

> Ai=<1,-8,5|12,—4,2|—1,2,8>

1 2 —1
A=| -3 -4 2
5 2 3
>b:=<1,2,-8>
1
b= 2
-3

> 1 := LinearSolve(A, b) tThe solution x of the system Ax = b.

> Az —1b g Check the solution x of Ax = b.
0

0
0

> AM := Matriz([A, b]) $The augmented matriz [A b].
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> GaussianElimination(AM)

APPENDIX A

g Perform Gauss elimination on [A b].

12 -1 1
02 -1 5
00 4 12

> ReducedRowFEchelonForm(AM) fReduced row echolon form of [A b].
1 0 0 —4
010 4
0 01 3

> Determinant(A) §The determinant of A.

8

> Ainv := MatrizInverse(A) # The inverse matriz of A.

[ —2 -1 0]
. 9 1
Ainv = 3 3
7 1
! 1 =

L 4 4 |

> Ainv.A tCalculate A1 A.

100
010
0 0 1

> x:= Ainv.b 8 The solution x = A~'b of the system Ax = b.

i We consider another example.

> B:=<1,-8,5|2,—4,2|—-1,1,3 >

1 2 -1
B:=| -3 -4 1
5 2 3
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>c:=<0,-2,8>

> Determinant(B) $The determinant of B.
0
> Binv := MatrizInverse(B) iB is singular.
Error, (in MatrizInverse) singular matrix

> 1 := LinearSolve(B, c) §The solution x of Bx = c that contains an

arbitrary parameter denoted by Maple as _t03.

2 — _t03
r:= | —1+4+ _t03

_t03

To plot figures in R? we use the Maple function plot3d. Consider for example the plane

5 19 4
AT

We plot this plane on the a-interval [0, 8] and the y-interval [0, 20]. In order to plot
this plane such that we can see the x-axis, the y-axis and the z-axis, we use the following
Maple commands:

5 19 4
—r— — = =0.. =0..2 =
> plot3d ([71‘ 517 + 7] ,x=0.8,y =0..20,azes boa:ed)

See Figure A.1 for the output plot of this plane.

We now consider the following three planes:

5 19 4
7V T T AT Ty
9 4 3
26"~ 13Y 2%
r+y—z=
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5}

'
b2

]
|

Ly
2

NP T T N T T O T )

L.
= ™
P

Figure A.1: The plot of a plane.

We calculate the intersection of the three given planes.

> restart

> with(LinearAlgebra)

5 19 19 4
A=<= - 1| - = -2 1|—-1,-1,-1
> <7 25" PTR 13" ,—1,—1>

5 19
- -= -1
7 21
A= Q i 1
26 13
1 1 -1
/8
bi=< —2 2 9
- 7 2507
4
7
b= _3
26
0
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> 1 := LinearSolve(A, b) §The solution x of Ax =b

- 24 -
133
87

266
39

L 266 -

24 87 39
W lude the the th 1 int t in th int (———, —, —).
e conclude the the three planes intersect in the point ( 133’ 266’ 266)
We now plot the intersection of the above given three planes on the z-interval [—8, 8]
and the y-interval [—20, 20]. Note the command plotlist=true, which is necessary when
plotting more than two planes on the same graph. The colon (:) at the end of an input
line hides the Maple output.
5 19 4 19 4 3

Pl:=—-2x— — - P2i=——x—-— —: P3.= .
- T 26" 1371 26 Si=aty

> plot3d ([P1, P2, P3| ,x = —8..8,y = —20..20, plotlist = true, color = [blue, red, green])

Figure A.2: The intersection of three planes in a common point.
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Index

adjugate of a matrix, 82
augmented matrix, 87

basis of R"™, 146

co-domain of T', 163

cofactor, 76

cofactor expansion, 76

components of a vector, 9

composite transformation, 171

consistency of a linear system and the span-
ning set, 141

consistent linear system, 87

coordinates of a point, 9

coordinates of a vector, 9

Cramer’s rule, 92

cross-product of two vectors, 18

determinant of a square matrix, 19

determinant of an n X n matrix, definition,
76

determinant of the inverse of a matrix, 77

dilation of a vector, 10

dimension of R™, 146

direction vector, 11

distance between two planes in R3, 41

distance between two points, 11

distance from a point to a plane in R3, 41

domain of 7', 163

dot product, 10

elementary row operations, 76, 87
equation of a plane, 24
Euclidean inner product, 10

Gauss elimination method, 87

identity matrix, 73
image of a transformation 7', 163
incompatible linear system, general, 87

inconsistent linear system, general, 87

infinitely many solutions of a linear system,
87

initial point of a vector, 9

injective linear transformation, 201

inverse of a square matrix, 81

invertible matrix, definition, 81

length of a vector, 11

linear combinations of vectors in R", 133
linear equations, general case, 86

linear transformation, 164

linearly dependent set of vectors, 146
linearly independent set of vectors, 146
lower triangular matrix, 77

Matrix addition and multiplication with con-
stants, 70

Matrix-matrix multiplication, 72

Matrix-vector multiplication, 72

matrix-vector product, 134

norm of a vector, 11
normal vector of a plane, 24

one-to-one linear transformation, 201

onto transformation, 201

orthogonal projection, 12

orthogonal projection of a line onto a plane
in R3, 46

orthogonal, one vector orthogonal to another
vector, 11

parallelepiped, 19

parametric equation of a line, 31
pivot columns, 87

plane, general equation, 99

planes and their intersections, 100
planes in R3, distance between, 41
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position vectors, 9

range of T', 164

reduced echelon form, 87

reflection of a line about a plane in R3, 46
row equivalent matrices, 76, 87

scalar product, 10

scalar triple product, 19

scaling factors of a linear combination, 133

scaling of a vector, 10

singular matrix, 81

solutions of linear systems, geometrical in-
terpretation in R3, 100

span, 141

spanning set of W, 141

standard basis for R3, 11

standard basis for R™, 170

standard basis vectors for R3, 11

standard basis vectors for R", 170

standard matrix of T', 170

surjective transformation onto a set, 201

terminal point of a vector, 9

transformation 7" between Euclidean spaces,
163

transpose of a matrix, 77

unique solution of a general linear system,
87

unit vector, 11

upper triangular matrix, 77

vector product, 18
vectors in R", 69

zero-vector, 70
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