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Preface

Preface

Part II in this series of three on convexity and optimization is about linear
and convex optimization.

We start by studying some equivalent ways to formulate a given opti-
mization problem and then present some classical model examples.

Duality is an important principle in many areas of mathematics, so also in
optimization theory. To each minimization problem we can associate a dual
maximization problem by means of the so-called Lagrange function, and the
two problems have the same optimal value provided certain conditions are
fulfilled. We devote two chapters to the study of duality for general convex
optimization problems and then treat the special case of linear programming
in a separate chapter.

The simplex algorithm, which until the mid 1980’s was the only practical
algorithm for solving large linear optimization problems, is studied in the
last chapter.

Uppsala, April 2016
Lars-Åke Lindahl
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conX conic hull of X, see Part I
cvxX convex hull of X, see Part I
dom f the effective domain of the function f , i.e.

{x | −∞ < f(x) < ∞}
extX set of extreme points of X, see Part I
reccX recession cone of X, see Part I
f ′ derivate or gradient of f , see Part I
vmax, vmin optimal values, p. 2
B(a; r) open ball centered at a with radius r
B(a; r) closed ball centered at a with radius r
I(x) set of active constraints at x, p. 42
L(x, λ) Lagrange function, p. 32
Mr̂[x] object obtained by replacing the element in M

at location r by x, p. 93
R+, R++ {x ∈ R | x ≥ 0}, {x ∈ R | x > 0}
R− {x ∈ R | x ≤ 0}
R, R, R R ∪ {∞}, R ∪ {−∞}, R ∪ {∞,−∞}
X+ dual cone of X, see Part I
1 the vector (1, 1, . . . , 1)
φ(λ) dual function infx L(x, λ), p. 33
∇f gradient of f
[x, y] line segment between x and y
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‖·‖1, ‖·‖2, ‖·‖∞ �1-norm, Euclidean norm, maximum norm, see Part I
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Optimization

Chapter 9

Optimization

The Latin word optimum means ’the best’. The optimal alternative among
a number of different alternatives is the one that is the best in some way.
Optimization is therefore, in a broad sense, the art of determining the best.

Optimization problems occur not only in different areas of human plan-
ning, but also many phenomena in nature can be explained by simple opti-
mization principles. Examples are light propagation and refraction in differ-
ent media, thermal conductivity and chemical equilibrium.

In everyday optimization problems, it is often difficult, if not impossible,
to compare and evaluate different alternatives in a meaningful manner. We
shall leave this difficulty aside, for it can not be solved by mathematical
methods. Our starting point is that the alternatives are ranked by means of
a function, for example a profit or cost function, and that the option that
gives the maximum or minimum function value is the best one.

The problems we will address are thus purely mathematical − to min-
imize or maximize given functions over sets that are given by a number of
constraints.

9.1 Optimization problems

Basic notions

We begin by recalling the following notation from Part I:

R = R ∪ {+∞}
R = R ∪ {−∞}
R = R ∪ {−∞,+∞}.

1
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For the problem of minimizing a function f : Ω → R over a subset X of
the domain Ω of the function, we use the notation

min f(x)
s.t. x ∈ X.

Here, s.t. is an abbreviation for the phrase subject to the condition.
The elements of the setX are called the feasible points or feasible solutions

of the optimization problem. The function f is the objective function.
Observe that vi allow +∞ as a function value of the objective function

in a minimization problem.
The (optimal) value vmin of the minimization problem is by definition

vmin =

{
inf {f(x) | x ∈ X} if X �= ∅,
+∞ if X = ∅.

The optimal value is thus a real number if the objective function is bounded
below and not identically equal to +∞ on the set X, the value is −∞ if the
function is not bounded below on X, and the value is +∞ if the objective
function is identically equal to +∞ on X or if X = ∅.

Of course, we will also study maximization problems, and the problem of
maximizing a function f : Ω → R over X will be written

max f(x)
s.t. x ∈ X.

The (optimal) value vmax of the maximization problem is defined by

vmax =

{
sup {f(x) | x ∈ X} if X �= ∅,
−∞ if X = ∅.

The optimal value of a minimization or maximization problem is in this
way always defined as a real number, −∞ or +∞, i.e. as an element of
the extended real line R. If the value is a real number, we say that the
optimization problem has a finite value.

A feasible point x0 for an optimization problem with objective function
f is called an optimal point or optimal solution if the value of the problem
is finite and equal to f(x0). An optimal solution of a minimization problem
is, in other words, the same as a global minimum point (with a finite value).
Of course, problems with finite optimal values need not necessarily have any
optimal solutions.
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From a mathematical point of view, there is no difference in principle be-
tween maximization problems and minimization problems, since the optimal
values vmax and vmin of the problems

max f(x)
s.t. x ∈ X

and min −f(x)
s.t. x ∈ X

,

respectively, are connected by the simple relation vmax = −vmin, and x0 is a
maximum point of f if and only if x0 is a minimum point of −f . For this
reason, we usually only formulate results for minimization problems.

Finally, a comment as to why we allow +∞ and −∞ as function values
of the objective functions as this seems to complicate matters. The most
important reason is that sometimes we have to consider functions that are
defined as pointwise suprema of an infinite family of functions, and the supre-
mum function may assume infinite values even if all functions in the family
assume only finite values. The alternative to allowing functions with values
in the extended real line would be to restrict the domain of these supremum
functions, and this is neither simpler nor more elegant.
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General comments

There are some general and perhaps completely obvious comments that are
relevant for many optimization problems.

Existence of feasible points

This point may seem trivial, for if a problem has no feasible points then there
is not much more to be said. It should however be remembered that the set
of feasible points is seldom given explicitly. Instead it is often defined by a
system of equalities and inequalities, which may not be consistent.

If the problem comes from the ”real world”, simplifications and defects
in the mathematical model may lead to a mathematical problem that lacks
feasible points.

Existence of optimal solutions

Needless to say, a prerequisite for the determination of the optimal solution
of a problem is that there is one. Many theoretical results are of the form
’If x0 is an optimal solution, then x0 satisfies these conditions.’ Although
this usually restricts the number of potential candidates for optimal points,
it does not prove the existence of such points.

From a practical point of view, however, the existence of an optimal so-
lution − and its exact value, if such a solution exists − may not be that
important. In many applications one is often satisfied with a feasible solu-
tions that is good enough.

Uniqueness

Is the optimal solution, if such a solution exists, unique? The answer is
probably of little interest for somebody looking for the solution of a practical
problem − he or she should be satisfied by having found a best solution even
if there are other solutions that are just as good. And if he or she would
consider one of the optimal solutions better than the others, then we can only
conclude that the optimization problem is not properly set from the start,
because the objective function apparently does not include everything that
is required to sort out the best solution.

However, uniqueness of an optimal solution may sometimes lead to inter-
esting properties that can be of use when looking for the solution.
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Dependence on parameters and sensitivity

Sometimes, and in particular in problems that come directly from ”reality”,
objective functions and constraints contain parameters, which are only given
with a certain accuracy and, in the worst case, are more or less coarse esti-
mates. In such cases, it is not sufficient to determine the optimal solution,
but it is at least as important to know how the solution changes when pa-
rameters are changed. If a small perturbation of one parameter alters the
optimal solution very much, there is reason to consider the solution with
great skepticism.

Qualitative aspects

Of course, it is only for a small class of optimization problems that one
can specify the optimum solution in exact form, or where the solution can
be described by an algorithm that terminates after finitely many iterations.
The mathematical solution to an optimization problem often consists of a
number of necessary and/or sufficient conditions that the optimal solution
must meet. At best, these can be the basis for useful numerical algorithms,
and in other cases, they can perhaps only be used for qualitative statements
about the optimal solutions, which however in many situations can be just
as interesting.

Algorithms

There is of course no numerical algorithm that solves all optimization prob-
lems, even if we restrict ourselves to problems where the constraint set is
defined by a a finite number of inequalities and equalities. However, there
are very efficient numerical algorithms for certain subclasses of optimization
problems, and many important applied optimization problems happen to be-
long to these classes. We shall study some algorithms of this type in the last
chapter of this Part II and in Part III.

The development of good algorithms has been just as important as the
computer development for the possibility of solving big optimization prob-
lems, and much of the algorithm development has occurred in recent decades.

9.2 Classification of optimization problems

To be able to say anything sensible about the minimization problem

(P) min f(x)
s.t. x ∈ X

Download free eBooks at bookboon.com



LINEAR AND CONVEX OPTIMIZATION: 
CONVEXITY AND OPTIMIZATION – PART II

6

Optimization

6

6 9 Optimization

we must make various assumptions about the objective function f : Ω → R
and about the set X of feasible points.

We will always assume that Ω is a subset of Rn and that the set X can
be expressed as the solution set of a number of inequalities and equalities,
i.e. that

X = {x ∈ Ω | g1(x) ≤ 0, . . . , gp(x) ≤ 0, gp+1(x) = 0, . . . , gm(x) = 0}

where g1, g2, . . . , gm are real valued functions defined on Ω.

We do not exclude the possibility that all constraints are equalities, i.e.
that p = 0, or that all constraints are inequalities, i.e. that p = m, or that
there are no constraints at all, i.e. that m = 0.

Since the equality h(x) = 0 can be replaced by the two inequalities
±h(x) ≤ 0, we could without loss of generality assume that all constraints
are inequalities, but it is convenient to formulate results for optimization
problems with equalities among the constraints without first having to make
such rewritings.

If x̂ is a feasible point and gi(x̂) = 0, we say that the i:th constraint is
active at the point x̂. All constraints in the form of equalities are, of course,
active at all feasible points.
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The condition x ∈ Ω is (in the case Ω �= Rn) of course also a kind of
constraint, but it plays a different role than the other constraints. We will
sometimes call it the implicit constraint in order to distinguish it from the
other explicit constraints. If Ω is given as the solution set of a number of
inequalities of type hi(x) ≤ 0 and the functions hi, the objective function
and the explicit constraint functions are defined on the entire space Rn, we
can of course include the inequalities hi(x) ≤ 0 among the explicit conditions
and omit the implicit constraint.

The domain Ω will often be clear from the context, and it is in these cases
not mentioned explicitly in the formulation of the optimization problem. The
minimization problem (P) will therefore often be given in the following form

min f(x)

s.t.

{
gi(x) ≤ 0, i = 1, 2, . . . , p
gi(x) = 0, i = p+ 1, . . . ,m.

Linear programming

The problem of maximizing or minimizing a linear form over a polyhedron,
which is given in the form of an intersection of closed halvspaces in Rn,
is called linear programming, abbreviated LP. The problem (P) is, in other
words, an LP problem if the objective function f is linear and X is the set
of solutions to a finite number of linear equalities and inequalities.

We will study LP problems in detail in Chapter 12.

Convex optimization

The minimization problem

min f(x)

s.t.

{
gi(x) ≤ 0, i = 1, 2, . . . , p
gi(x) = 0, i = p+ 1, . . . ,m

with implicit constraint x ∈ Ω is called convex, if the set Ω is convex, the
objective function f : Ω → R is convex, and the constraint functions gi are
convex for i = 1, 2, . . . , p and affine for i = p+ 1, . . . ,m.

The affine conditions gp+1(x) = 0, . . . , gm(x) = 0 in a convex problem
can of course be summarized as Ax = b, where A is an (m− p)× n-matrix.

The set X of feasible points is convex in a convex minimization problem,
for

X =

p⋂
i=1

{x ∈ Ω | gi(x) ≤ 0} ∩
m⋂

i=p+1

{x | gi(x) = 0},
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and this expresses X as an intersection of sublevel sets of convex functions
and hyperplanes.

A maximization problem

max f(x)
s.t. x ∈ X

is called convex if the corresponding equivalent minimization problem

min −f(x)
s.t. x ∈ X

is convex, which means that the objective function f has to be concave.

LP problems are of course convex optimization problems. General convex
optimization problems are studied in Chapter 11.

Convex quadratic programming

We get a special case of convex optimization if X is a polyhedron and the
objective function f is a sum of a linear form and a positive semidefinite
quadratic form, i.e. has the form f(x) = 〈c, x〉 + 〈x,Qx〉, where Q is a
positive semidefinite matrix. The problem (P) is then called convex quadratic
programming. LP problems constitute a subclass of the convex quadratic
problems, of course.

Non-linear optimization

Non-linear optimization is about optimization problems that are not sup-
posed to be LP problems. Since non-linear optimization includes almost
everything, there is of course no general theory that can be applied to an
arbitrary non-linear optimization problem.

If f is a differentiable function and X is a ”decent” set in Rn, one can of
course use differential calculus to attack the minimization problem (P). We
recall in this context the Lagrange theorem, which gives a necessary condition
for the minimum (and maximum) when

X = {x ∈ Rn | g1(x) = g2(x) = · · · = gm(x) = 0}.
A counterpart of Lagrange’s theorem for optimization problems with con-
straints in the form of inequalities is given in Chapter 10.

Integer programming

An integer programming problem is a mathematical optimization problem in
which some or all of the variables are restricted to be integers. In particular,
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a linear integer problem is a problem of the form

min 〈c, x〉
s.t. x ∈ X ∩ (Zm × Rn−m)

where 〈c, x〉 is a linear form and X is a polyhedron in Rn.
Many problems dealing with flows in networks, e.g. commodity distribu-

tion problems and maximum flow problems, are linear integer problems that
can be solved using special algorithms.

Simultaneous optimization

The title refers to a type of problems that are not really optimization prob-
lems in the previous sense. There are many situations, where an individual
may affect the outcome through his actions without having full control over
the situation. Some variables may be in the hands of other individuals with
completely different desires about the outcome, while other variables may be
of a completely random nature. The problem to in some sense optimize the
outcome could then be called simultaneous optimization.
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Simultaneous optimization is the topic of game theory, which deals with
the behavior of the various agents in conflict situations. Game theoretical
concepts and results have proved to be very useful in various contexts, e.g.
in economics.

9.3 Equivalent problem formulations

Let us informally call two optimization problems equivalent if it is possible to
determine in an automatical way an optimal solution to one of the problems,
given an optimal solution to the other, and vice versa.

A trivial example of equivalent problems are, as already mentioned, the
problems

max f(x)
s.t. x ∈ X

and min −f(x).
s.t. x ∈ X

We now describe some useful transformations that lead to equivalent op-
timization problem

Elimination of equalities

Consider the problem

(P) min f(x)

s.t.

{
gi(x) ≤ 0, i = 1, 2, . . . , p
gi(x) = 0, i = p+ 1, . . . ,m.

If it is possible to solve the subsystem of equalities and express the solution
in the form x = h(y) with a parameter y running over some subset of Rd,
then we can eliminate the equalities and rewrite problem (P) as

(P′) min f(h(y))
s.t. gi(h(y)) ≤ 0, i = 1, 2, . . . , p

If ŷ is an optimal solution to (P′), then h(ŷ) is of course an optimal solution
to (P). Conversely, if x̂ is an optimal solution to (P), then x̂ = h(ŷ) for some
value ŷ of the parameter, and this value is an optimal solution to (P′).

The elimination is always possible (by a simple algorithm) if all constraint
equalities are affine, i.e. if the system can be written in the form Ax = b for
some (m − p) × n-matrix A. Assuming that the system is consistent, the
solution set is an affine subspace of dimension d = n − rankA, and there
exists an n×d-matrix C of rank d and a particular solution x0 to the system
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such that Ax = b if and only if x = Cy + x0 for some y ∈ Rd. The problem
(P) is thus in this case equivalent to the problem

min f(Cy + x0)
s.t. gi(Cy + x0) ≤ 0, i = 1, 2, . . . , p

(with implicit constraint Cy + x0 ∈ Ω).

In convex optimization problems, and especially in LP problems, we can
thus, in principle, eliminate the equalities from the constraints and in this
way replace the problem by an equivalent optimization problem without any
equality constraints.

Slack variables

The inequality g(x) ≤ 0 holds if and only if there is a number s ≥ 0 such
that g(x) + s = 0. By thus replacing all inequalities in the problem

(P) min f(x)

s.t.

{
gi(x) ≤ 0, i = 1, 2, . . . , p
gi(x) = 0, i = p+ 1, . . . ,m

with equalities, we obtain the following equivalent problem

(P′) min f(x)

s.t.



gi(x) + si = 0, i = 1, 2, . . . , p

gi(x) = 0, i = p+ 1, . . . ,m
si ≥ 0, i = 1, 2, . . . , p

with n + p variables, m equality constraints and p simple inequality con-
straints. The new variables si are called slack variables.

If x̂ is an optimal solution to (P), we get an optimal solution (x̂, ŝ) to (P′)
by setting ŝi = −gi(x̂). Conversely, if (x̂, ŝ) is an optimal solution to the last
mentioned problem, then x̂ is of course an optimal solution to the original
problem.

If the original constraints are affine, then so are all new constraints. The
transformation thus transforms LP problems to LP problems.

Inequalities of the form g(x) ≥ 0 can of course similarly be written as
equalities g(x)−s = 0 with nonnegative variables s. These new variables are
usually called surplus variables.
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Nonnegative variables

Every real number can be written as a difference between two nonnegative
numbers. In an optimization problem, we can thus replace an unrestricted
variable xi, i.e. a variable that a priori may assume any real value, with two
nonnegative variables x′

i and x′′
i by setting

xi = x′
i − x′′

i , x′
i ≥ 0, x′′

i ≥ 0.

The number of variables increases with one and the number of inequalities
increases with two for each unrestricted variable that is replaced, but the
transformation leads apparently to an equivalent problem. Moreover, convex
problems are transfered to convex problems and LP problems are transformed
to LP problems.

Example 9.3.1. The LP problem

min x1 + 2x2

s.t.





x1 + x2 ≥ 2
2x1 − x2 ≤ 3

x1 ≥ 0
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is transformed, using two slack/surplus variables and by replacing the un-
restricted variable x2 with a difference of two nonnegative variables, to the
following equivalent LP problem in which all variables are nonnegative and
all remaining constraints are equalities.

min x1 + 2x′
2 − 2x′′

2 + 0s1 + 0s2

s.t.





x1 + x′
2 − x′′

2 − s1 = 2
2x1 − x′

2 + x′′
2 + s2 = 3

x1, x
′
2, x

′′
2, s1, s2 ≥ 0.

Epigraph form

Every optimization problem can be replaced by an equivalent problem with
a linear objective function, and the trick to accomplish this is to utilize the
epigraph of the original objective function. The two problems

(P) min f(x)
s.t. x ∈ X

and (P′) min t

s.t.

{
f(x) ≤ t
x ∈ X

are namely equivalent, and the objective function in (P′) is linear. If x̂ is an
optimal solution to (P), then (x̂, f(x̂)) is an optimal solution to (P′), and if
(x̂, t̂) is an optimal solution to (P′), then x̂ is an optimal solution to (P).

If problem (P) is convex, i.e. has the form

min f(x)

s.t.

{
gi(x) ≤ 0, i = 1, 2, . . . , p
gi(x) = 0, i = p+ 1, . . . ,m

with convex functions f and gi for 1 ≤ i ≤ p, and affine functions gi for
i ≥ p+ 1, then the epigraph variant

min t

s.t.



f(x)− t ≤ 0,

gi(x) ≤ 0, i = 1, 2, . . . , p
gi(x) = 0, i = p+ 1, . . . ,m

is also a convex problem.

So there is no restriction to assume that the objective function of a convex
program is linear when we are looking for general properties of such programs.
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Piecewise affine objective functions

Suppose thatX is a polyhedron (given as an intersection of closed halfspaces)
and consider the convex optimization problem

(P) min f(x)
s.t. x ∈ X

where the objective function f(x) is piecewise affine and given as

f(x) = max{〈ci, x〉+ bi | i = 1, 2, . . . ,m}.

The epigraph transformation results in the equivalent convex problem

min t

s.t.

{
max
1≤i≤m

(〈ci, x〉+ bi) ≤ t

x ∈ X,

and since max1≤i≤m αi ≤ t if and only if αi ≤ t for all i, this problem is in
turn equivalent to the LP problem

(P′) min t

s.t.

{
〈ci, x〉 − t+ bi ≤ 0, i = 1, 2, . . . ,m

x ∈ X.

The constraint set of this LP problem is a polyhedron in Rn × R.

If instead the objective function in problem (P) is a sum

f(x) = f1(x) + f2(x) + · · ·+ fk(x)

of piecewise affine functions fi, then problem (P) is equivalent to the convex
problem

min t1 + t2 + · · ·+ tk

s.t.

{
fi(x) ≤ ti i = 1, 2, . . . , k

x ∈ X

and this problem becomes an LP problem if every inequality fi(x) ≤ ti is
expressed as a system of linear inequalities in a similar way as above.
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9.4 Some model examples

Diet problem

Let us start with a classical LP problem that was formulated and studied
during the childhood of linear programming. The goal of the diet problem
is to select a set of foods that will satisfy a set of daily nutritional require-
ments at minimum cost. There are n foods L1, L2, . . . , Ln available at a
cost of c1, c2, . . . , cn dollars per unit. The foods contain various nutrients
N1, N2, . . . , Nm (proteins, carbohydrates, fats, vitamins, etc.). The number
of units of nutrients per unit of food is shown by the following table:

L1 L2 . . . Ln

N1 a11 a12 . . . a1n
N2 a21 a22 . . . a2n
...

Nm am1 am2 . . . amn

Buying x1, x2, . . . , xn units of the foods, one thus obtains

ai1x1 + ai2x2 + · · ·+ ainxn
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units of nutrient Ni at a cost of

c1x1 + c2x2 + · · ·+ cnxn.

Suppose that the daily requirement of the different nutrients is b1, b2,
. . . , bm and that it is not harmful to have too much of any substance. The
problem to meet the daily requirement at the lowest possible cost is called
the diet problem. Mathematically, it is of the form

min c1x1 + c2x2 + · · ·+ cnxn

s.t.





a11x1 + a12x2 + · · · + a1nxn ≥ b1
a21x1 + a22x2 + · · · + a2nxn ≥ b2

...
am1x1 + am2x2 + · · · + amnxn ≥ bm

x1, x2, . . . , xn ≥ 0.

The diet problem is thus an LP problem. In addition to determining
the optimal diet and the cost of this, it would be of interest to answer the
following questions:

1. How does a price change of one or more of the foods affect the optimal
diet and the cost?

2. How is the optimal diet affected by a change of the daily requirement
of one or more nutrients?

3. Suppose that pure nutrients are available on the market. At what price
would it be profitable to buy these and satisfy the nutritional needs by
eating them instead of the optimal diet? Hardly a tasty option for a
gourmet but perhaps possible in animal feeding.

Assume that the cost of the optimal diet is z, and that its cost changes
to z + ∆z when the need for nutrient N1 is changed from b1 to b1 + ∆b1,
ceteris paribus. It is obvious that the cost can not be reduced when demand
increases, so therefore ∆b1 > 0 entails ∆z ≥ 0. If it is possible to buy the
nutrient N1 in completely pure form to the price p1, then it is economically
advantageous to meet the increased need by taking the nutrient in pure form,
provided that p1∆b1 ≤ ∆z. The maximum price of N1 which makes nutrient
in pure form an economical alternative is therefore ∆z/∆b1, and the limit as
∆b1 → 0, i.e. the partial derivative ∂z

∂b1
, is called the dual price or the shadow

price in economic literature.
It is possible to calculate the nutrient shadow prices by solving an LP

problem closely related to the diet problem. Assume again that the market
provides nutrients in pure form and that their prices are y1, y2, . . . , ym. Since
one unit of food Li contains a1i, a2i, . . . , am units of each nutrient, we can

Download free eBooks at bookboon.com



LINEAR AND CONVEX OPTIMIZATION: 
CONVEXITY AND OPTIMIZATION – PART II

17

Optimization
9.4 Some model examples 17

”manufacture” one unit of food Li by buying just this set of nutrients, and
hence it is economically advantageous to replace all foods by pure nutrients
if

a1iy1 + a2iy2 + · · ·+ amym ≤ ci

for i = 1, 2, . . . , n. Under these conditions the cost of the required daily ration
b1, b2, . . . , bm is at most equal to the maximum value of the LP problem

max b1y1 + b2y2 + · · ·+ bmym

s.t.





a11y1 + a21y2 + . . . + am1ym ≤ c1
a12y1 + a22y2 + . . . + am2ym ≤ c2

...
a1ny1 + a2ny2 + . . . + amnym ≤ cn

y1, y2, . . . , ym ≥ 0.

We will show that this so called dual problem has the same optimal value
as the original diet problem and that the optimal solution is given by the
shadow prices.

Production planning

Many problems related to production planning can be formulated as LP
problems, and a pioneer in the field was the Russian mathematician and
economist Leonid Kantorovich, who studied and solved such problems in the
late 1930s. Here is a typical such problem.

A factory can manufacture various goods V1, V2, . . . , Vn. This requires
various inputs (raw materials and semi-finished goods) and different types of
labor, something which we collectively call production factors P1, P2, . . . , Pm.
These are available in limited quantities b1, b2, . . . , bm. In order to manufac-
ture, market and sell one unit of the respective goods, production factors are
needed to an extent given by the following table:

V1 V2 . . . Vn

P1 a11 a12 . . . a1n
P2 a21 a22 . . . a2n
...

Pm am1 am2 . . . amn

Every manufactured product Vj can be sold at a profit which is cj dollars per
unit, and the goal now is to plan the production x1, x2, . . . , xn of the various
products so that the profit is maximized.
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Manufacturing x1, x2, . . . , xn units of the goods consumes ai1x1 + ai2x2 +
· · · + ainxn units of production factor Pi and results in a profit equal to
c1x1 + c2x2 + · · ·+ cnxn. The optimization problem that we need to solve is
thus the LP problem

max c1x1 + c2x2 + · · ·+ cnxn

s.t.





a11x1 + a12x2 + . . . + a1nxn ≤ b1
a21x1 + a22x2 + . . . + a2nxn ≤ b2

...
am1x1 + am2x2 + . . . + amnxn ≤ bm

x1, x2, . . . , xn ≥ 0.

Here it is reasonable to ask similar questions as for the diet problem, i.e. how
is the optimal solution and the optimal profit affected by

1. altered pricing c1, c2, . . . , cn;

2. changes in the resource allocation.

If we increase a resource Pi that is already fully utilized, so does (nor-
mally) the profit. What will the price of this resource be for the expansion
to pay off? The critical price is called the shadow price, and it can be inter-
preted as a partial derivative, and as the solution to a dual problem.
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Transportation problem

The transportation problem is another classical LP problem that was formu-
lated and solved before the invention of the simplex algorithm

A commodity (e.g. gasoline) is stored at m places S1, S2, . . . , Sm and de-
manded at n other locations D1, D2, . . . , Dn. The quantity of the commodity
available at Si is ai units, while bj units are demanded at Dj. To ship 1 unit
from storage place Si to demand center Dj costs cij dollars.

...

...

...

...

ai

bn

bj

b1

cij
xij

Figure 9.1. The transportation problem

The total supply, i.e.
∑m

i=1 ai, is assumed for simplicity to be equal to the
total demand

∑n
j=1 bj, so it is possible to meet the demand by distributing

xij units from Si to Dj. To do this at the lowest transportation cost gives
rise to the LP problem

min
m∑
i=1

n∑
j=1

cijxij

s.t.




∑n
j=1 xij = ai, i = 1, 2, . . . , m∑m
i=1 xij = bj, j = 1, 2, . . . , n

xij ≥ 0, all i, j.

An investment problem

An investor has 1 million dollars, which he intends to invest in various
projects, and he has found m interesting candidates P1, P2, . . . , Pm for this.
The return will depend on the projects and the upcoming economic cycle.
He thinks he can identify n different economic situations E1, E2, . . . , En, but
it is impossible for him to accurately predict what the economy will look like
in the coming year, after which he intends to collect the return. However,
one can accurately assess the return of each project during the various eco-
nomic cycles; each invested million dollars in project Pi will yield a return
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of aij million dollars during business cycle Ej. We have, in other words, the
following table of return for various projects and business cycles:

E1 E2 . . . En

P1 a11 a12 . . . a1n
P2 a21 a22 . . . a2n
...

Pm am1 am2 . . . amn

Our investor intends to invest x1, x2, . . . , xm million dollars in the various
projects, and this will give him the return

a1jx1 + a2jx2 + · · ·+ amjxm

million dollars, assuming that the economy will be in state Ej. Since our in-
vestor is a very cautious person, he wants to guard against the worst possible
outcome, and the worst possible outcome for the investment x1, x2, . . . , xm is

min
1≤j≤n

m∑
i=1

aijxi.

He therefore wishes to maximize this outcome, which he does by solving the
problem

max min
1≤j≤n

m∑
i=1

aijxi

s.t. x ∈ X

where X is the set {(x1, x2, . . . , xm) ∈ Rm
+ |

∑m
i=1 xi = 1} of all possible ways

to distribute one million on the various projects.
In this formulation, the problem is a convex maximization problem with

a piecewise affine concave objective function. However, we can transform it
into an equivalent LP problem by making use of a hypograph formulation.
Utilizing the techniques of the previous section, we see that the investor’s
problem is equivalent to the LP problem

max v

s.t.




a11x1 + a21x2 + . . . + am1xm ≥ v
a12x1 + a22x2 + . . . + am2xm ≥ v

...
a1nx1 + a2nx2 + . . . + amnxm ≥ v

x1 + x2 + . . . + xm = 1
x1, x2, . . . , xm ≥ 0.
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Two-person zero-sum game

Two persons, row player Rick and column player Charlie, each choose, inde-
pendently of each other, an integer. Rick chooses a number i in the range
1 ≤ i ≤ m and Charlie a number j in the range 1 ≤ j ≤ n. If they choose
the pair (i, j), Rick wins aij dollars of Charlie, and to win a negative amount
is of course the same as to loose the corresponding positive amount.

The numbers m, n and aij are supposed to be known by both players, and
the objective of each player is to win as much as possible (or equivalently, to
loose as little as possible). There is generally no best choice for any of the
players, but they could try to maximize their expected winnings by selecting
their numbers at random with a certain probability distribution.

Suppose Rick chooses the number i with probability xi, and Charlie
chooses the number j with probability yj. All probabilities are of course
nonnegative numbers, and

∑m
i=1 xi =

∑n
j=1 yj = 1. Let

X = {x ∈ Rm
+ |

m∑
i=1

xi = 1} and Y = {y ∈ Rn
+ |

n∑
j=1

yj = 1}.

The elements in X are called the row player’s mixed strategies, and the ele-
ments in Y are the column player’s mixed strategies.
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Since the players choose their numbers independently of each other, the
outcome (i, j) will occur with probability xiyj. Rick’s pay-off is therefore a
random variable with expected value

f(x, y) =
m∑
i=1

n∑
j=1

aijxiyj.

Row player Rick can now conceivably argue like this: ”The worst that can
happen to me, if I choose the probability distribution x, is that my opponent
Charlie happens to choose a probability distribution y that minimizes my
expected profit f(x, y)”. In this case, Rick will obtain the amount

g(x) = min
y∈Y

f(x, y) = min
y∈Y

n∑
j=1

yj
( m∑
i=1

aijxi

)
.

The sum
∑n

j=1 yj
(∑m

i=1 aijxi

)
is a weighted arithmetic mean of the n numbers∑m

i=1 aijxi, j = 1, 2, . . . , n, with the weights y1, y2, . . . , yn, and such a mean
is greater than or equal to the smallest of the n numbers, and equality is
obtained by putting all weight on this smallest number. Hence,

g(x) = min
1≤j≤n

m∑
i=1

aijxi.

Rick, who wants to maximize his outcome, should therefore choose to
maximize g(x), i.e. Rick’s problem becomes

max g(x)
s.t. x ∈ X.

This is exactly the same problem as the investor’s problem. Hence, Rick’s op-
timal strategy, i.e. optimal choice of probabilities, coincides with the optimal
solution to the LP problem

max v

s.t.




a11x1 + a21x2 + . . . + am1xm ≥ v
a12x1 + a22x2 + . . . + am2xm ≥ v

...
a1nx1 + a2nx2 + . . . + amnxm ≥ v

x1 + x2 + . . . + xm = 1
x1, x2, . . . , xm ≥ 0.
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The column player’s problem is analogous, but he will of course minimize
the maximum expected outcome f(x, y). Charlie must therefore solve the
problem

min max
1≤i≤m

n∑
j=1

aijyj

s.t. y ∈ Y

to find his optimal strategy, and this problem is equivalent to the LP problem

min u

s.t.





a11y1 + a12y2 + . . . + a1nyn ≤ u
a21y1 + a22y2 + . . . + a2nyn ≤ u

...
am1y1 + am2y2 + . . . + amnyn ≤ u

y1 + y2 + . . . + yn = 1
y1, y2, . . . , yn ≥ 0.

The two players’ problems are examples of dual problems, and it follows
from results that will appear in Chapter 12 that they have the same optimal
value.

Consumer Theory

The behavior of consumers is studied in a branch of economics known as
microeconomics. Assume that there are n commodities V1, V2, . . . , Vn on
the market and that the price of these goods is given by the price vector
p = (p1, p2, . . . , pn). A basket x consisting of x1, x2, . . . , xn units of the goods
thus costs 〈p, x〉 = p1x1 + p2x2 + · · ·+ pnxn.

A consumer values her benefit of the commodity bundle x by using a
subjective utility function f , where f(x) > f(y) means that she prefers x to
y. A reasonable assumption about the utility function is that every convex
combination λx + (1 − λ)y of two commodity bundles should be valued as
being at least as good as the worst of the two bundles x and y, i.e. that
f(λx + (1 − λ)y) ≥ min

(
f(x), f(y)

)
. The utility function f is assumed, in

other words, to be quasiconcave, and a stronger assumption, which is often
made in the economic literature and that we are making here, is that f is
concave.

Suppose now that our consumer’s income is I, that the entire income
is disposable for consumption, and that she wants to maximize her utility.

Download free eBooks at bookboon.com



LINEAR AND CONVEX OPTIMIZATION: 
CONVEXITY AND OPTIMIZATION – PART II

24

Optimization

24

24 9 Optimization

Then, the problem that she needs to solve is the convex optimization problem

max f(x)

s.t.

{
〈p, x〉 ≤ I

x ≥ 0.

To determine empirically a consumer’s utility function is of course al-
most impossible, so microtheory is hardly useful for quantitative calculations.
However, one can make qualitative analyzes and answer questions of the type:
How does an increase in income change the consumer behavior? and How
does changes in the prices of the goods affect the purchasing behavior?

Portfolio optimization

A person intends to buy shares in n different companies C1, C2, . . . , Cn for S
dollars. One dollar invested in the company Cj gives a return of Rj dollars,
where Rj is a random variable with known expected value

µj = E[Rj].

The covariances
σij = E[(Ri − µi)(Rj − µj)]

are also assumed to be known.

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

“The perfect start 
of a successful, 
international career.”

CLICK HERE 
to discover why both socially 

and academically the University 

of Groningen is one of the best 

places for a student to be 
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon


LINEAR AND CONVEX OPTIMIZATION: 
CONVEXITY AND OPTIMIZATION – PART II

25

Optimization9.4 Some model examples 25

The expected total return e(x) from investing x = (x1, x2, . . . , xn) dollars
in the companies C1, C2, . . . , Cn is given by

e(x) = E
[ n∑
j=1

xjRj

]
=

n∑
j=1

µjxj,

and the variance of the total return is

v(x) = Var
[ n∑
j=1

xjRj

]
=

n∑
i,j=1

σijxixj.

Note that v(x) is a positive semi-definite quadratic form.
It is not possible for our person to maximize the total return, because

the return is a random variable, i.e. depends on chance. However, he can
maximize the expected total return under appropriate risk conditions, i.e.
requirements for the variance. Alternatively, he can minimize the risk with
the investment given certain requirements on the expected return. Thus
there are several possible strategies, and we will formulate three such.

(i) The strategy to maximize the expected total return, given an upper
bound B on the variance, leads to the convex optimization problem

max e(x)

s.t.




v(x) ≤ B
x1 + x2 + · · ·+ xn = S

x ≥ 0.

(ii) The strategy to minimize the variance of the total return, given a lower
bound b on the expected return, gives rise to the convex quadratic program-
ming problem

min v(x)

s.t.




e(x) ≥ b
x1 + x2 + · · ·+ xn = S

x ≥ 0.

(iii) The two strategies can be considered together in the following way. Let
ε ≥ 0 be a (subjective) parameter, and consider the convex quadratic problem

min εv(x)− e(x)

s.t.

{
x1 + x2 + · · ·+ xn = S

x ≥ 0

with optimal solution x(ε). We leave as an exercise to show that

v(x(ε1)) ≥ v(x(ε2)) and e(x(ε1)) ≥ e(x(ε2))
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if 0 ≤ ε1 ≤ ε2. The parameter ε is thus a measure of the person’s attitude
towards risk; the smaller the ε, the greater the risk (= variance) but also the
greater expected return.

Snell’s law of refraction

We will study the path of a light beam which passes through n parallel
transparent layers. The j:th slice Sj is assumed to be aj units wide and to
consist of a homogeneous medium in which the speed of light is vj. We choose
a coordinate system as in figure 9.2 and consider a light beam on its path
from the origin on the surface of the first slice to a point with y-coordinate
b on the outer surface of the last slice.

θj

S1 S2 Sj Sn

aj

yj

(x, b)

x

y

Figure 9.2. The path of a light beam through
layers with different refraction indices.

According to Fermat’s principle, the light chooses the fastest route. The
path of the beam is therefore determined by the optimal solution to the
convex optimization problem

min
n∑

j=1

v−1
j

√
y2j + a2j

s.t.
n∑

j=1

yj = b,

and we obtain Snell’s law of refraction

sin θi
sin θj

=
vi
vj

by solving the problem.
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Overdetermined systems

If a system of linear equations Ax = b with n unknowns and m equations
is inconsistent, i.e. has no solutions, you might want to still determine the
best approximate solution, i.e. the n-tuple x = (x1, x2, . . . , xn) that makes
the error as small as possible. The error is by definition the difference Ax− b
between the left and the right hand side of the equation, and as a measure
of the size of the error we use ‖Ax− b‖ for some suitably chosen norm.

The function x �→ ‖Ax − b‖ is convex, so the problem of minimizing
‖Ax − b‖ over all x ∈ Rn is a convex problem regardless of which norm is
used, but the solution depends on the norm, of course. Let as usual aij denote
the element at location i, j in the matrix A, and let b = (b1, b2, . . . , bm).

1. The so-called least square solution is obtained by using the Euclidean
norm ‖·‖2. Since ‖Ax− b‖22 =

∑m
i=1(ai1x1 + ai2x2 + · · ·+ ainxn − bi)

2, we get
the least square solution as the solution of the convex quadratic problem

minimize
m∑
i=1

(ai1x1 + ai2x2 + · · ·+ ainxn − bi)
2.
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The gradient of the objective function is equal to zero at the optimal point,
which means that the optimal solution is obtained as the solution to the
linear system

ATAx = ATb.

2. By instead using the ‖·‖∞ norm, one obtains the solution that gives the
smallest maximum deviation between the left and the right hand side of the
linear system Ax = b. Since

‖Ax− b‖∞ = max
1≤i≤m

|ai1x1 + ai2x2 + · · ·+ ainxn − bi|,

the objective function is now piecewise affine, and the problem is therefore
equivalent to the LP problem

min t

s.t.





±(a11x1 + a12x2 + · · · + a1nxn − b1)≤ t
...

±(am1x1 + am2x2 + · · · + amnxn − bm)≤ t.

3. Instead of minimizing the sum of squares of the differences between left
and right sides, we can of course minimize the sum of the absolute value of
the differences, i.e. use the ‖·‖1-norm. Since the objective function

‖Ax− b‖1 =
m∑
i=1

|ai1x1 + ai2x2 + · · ·+ ainxn − bi|

is a sum of convex piecewise affine functions, our convex minimization prob-
lem is in this case equivalent to the LP problem

min t1 + t2 + · · ·+ tm

s.t.




±(a11x1 + a12x2 + · · · + a1nxn − b1)≤ t1
...

±(am1x1 + am2x2 + · · · + amnxn − bm)≤ tm.

Largest inscribed ball

A convex set X with nonempty interior is given in Rn, and we want to
determine a ball B(x, r) in X (with respect to a given norm) with the largest
possible radius r. We assume that X can be described as the solution set to
a system of inequalities, i.e. that

X = {x ∈ Rn | gi(x) ≤ 0, i = 1, 2, . . . ,m},
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with convex functions gi.
The ball B(x, r) lies in X if and only if gi(x + ry) ≤ 0 for all y with

‖y‖ ≤ 1 and i = 1, 2, . . . ,m, which makes it natural to consider the functions

hi(x, r) = sup
‖y‖≤1

gi(x+ ry), i = 1, 2, . . . ,m.

The functions hi are convex since they are defined as suprema of convex
functions in the variables x and r.

The problem of determining the ball with the largest possible radius has
now been transformed into the convex optimization problem

max r
s.t. hi(x, r) ≤ 0, i = 1, 2, . . . ,m.

For general convex sets X, it is of course impossible to determine the
functions hi explicitly, but if X is a polyhedron, gi(x) = 〈ci, x〉 − bi, and the
norm in question is the �p-norm, then it follows from Hölder’s inequality that

hi(x, r) = sup
‖y‖p≤1

(〈ci, x〉+ r〈ci, y〉 − bi) = 〈ci, x〉+ r‖ci‖q − bi

for r ≥ 0, where ‖·‖q denotes the dual norm.
The problem of determining the center x and the radius r of the largest

ball that is included in the polyhedron

X = {x ∈ Rn | 〈ci, x〉 ≤ bi, i = 1, 2, . . . ,m}

has now been reduced to the LP problem

max r
s.t. 〈ci, x〉+ r‖ci‖q ≤ bi, i = 1, 2, . . . ,m.

Exercises

9.1 In a chemical plant one can use four different processes P1, P2, P3, and P4 to
manufacture the products V1, V2, and V3. Produced quantities of the various
products, measured in tons per hour, for the various processes are shown in
the following table:

P1 P2 P3 P4

V1 −1 2 2 1
V2 4 1 0 2
V3 3 1 2 1
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(Process P1 thus consumes 1 ton of V1 per hour!) Running processes P1,
P2, P3, and P4 costs 5 000, 4 000, 3 000, and 4 000 dollars per per hour,
respectively. The plant intends to produce 16, 40, and 24 tons of products V1,
V2, and V3 at the lowest possible cost. Formulate the problem of determining
an optimal production schedule.

9.2 Bob has problems with the weather. The weather occurs in the three states
pouring rain, drizzle and sunshine. Bob owns a raincoat and an umbrella,
and he is somewhat careful with his suit. The raincoat is difficult to carry,
and the same applies − though to a lesser degree − to the umbrella; the
latter, however, is not fully satisfactory in case of pouring rain. The following
table reveals how happy Bob considers himself in the various situations that
can arise (the numbers are related to his blood pressure, with 0 corresponding
to his normal state).

Pouring rain Drizzle Sunshine

Raincoat 2 1 −2
Umbrella 1 2 −1
Only suit −4 −2 2

In the morning, when Bob goes to work, he does not know what the weather
will be like when he has to go home, and he would therefore choose the clothes
that optimize his mind during the walk home. Formulate Bob’s problem as
an LP problem.

9.3 Consider the following two-person game in which each player has three al-
ternatives and where the payment to the row player is given by the following
payoff matrix.

1 2 3

1 1 0 5
2 3 3 4
3 2 4 0

In this case, it is obvious which alternatives both players must choose. How
will they play?

9.4 Charlie and Rick have three cards each. Both have the ace of diamonds
and the ace of spades. Charlie also has the two of diamonds, and Rick has
the two of spades. The players play simultaneously one card each. Charlie
wins if both these cards are of the same color and loses in the opposite case.
The winner will receive as payment the value of his winning card from the
opponent, with ace counting as 1. Write down the payoff matrix for this two-
person game, and formulate column player Charlie’s problem to optimize his
expected profit as an LP problem.
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9.5 The overdetermined system




x1 + x2 = 2
x1 − x2 = 0
3x1 +2x2 = 4

has no solution.

a) Determine the least square solution.
b) Formulate the problem of determining the solution that minimizes the

maximum difference between the left and the right hand sides of the
system.

c) Formulate the problem of determining the solution that minimizes the
sum of the absolut values of the differences between the left and the right
hand sides.

9.6 Formulate the problem of determining

a) the largest circular disc,
b) the largest square with sides parallel to the coordinate axes,

that is contained in the triangle bounded by the lines x1−x2 = 0, x1−2x2 = 0
and x1 + x2 = 1.

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

American online      
LIGS University 

▶▶ enroll by September 30th, 2014 and 

▶▶ save up to 16% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to 

      find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc, 

DBA and PhD  programs:

Note: LIGS University is not accredited by any 
nationally recognized accrediting agency listed 
by the US Secretary of Education. 
More info here. 

http://s.bookboon.com/LIGS


LINEAR AND CONVEX OPTIMIZATION: 
CONVEXITY AND OPTIMIZATION – PART II

32

The Lagrange function

Chapter 10

The Lagrange function

10.1 The Lagrange function and the dual prob-

lem

The Lagrange function

To the minimization problem

(P) min f(x)

s.t.

{
gi(x) ≤ 0, i = 1, 2, . . . , p
gi(x) = 0, i = p+ 1, . . . ,m

with x ∈ Ω as implicit condition and m explicit constraints, the first p of
which in the form of inequalities, we shall associate a dual maximization
problem, and the tool to accomplish this is the Lagrange function defined
below. To avoid trivial matters we assume that dom f �= ∅, i.e. that the
objective function f : Ω → R is not identically equal to ∞ on Ω.

X denotes as before the set of feasible points in the problem (P), i.e.

X = {x ∈ Ω | g1(x) ≤ 0, . . . , gp(x) ≤ 0, gp+1(x) = 0, . . . , gm(x) = 0},
and vmin(P ) is the optimal value of the problem.

Definition. Let
Λ = Rp

+ × Rm−p.

The function L : Ω× Λ → R, defined by

L(x, λ) = f(x) +
m∑
i=1

λigi(x),

is called the Lagrange function of the minimization problem (P), and the
variables λ1, λ2, . . . , λm are called Lagrange multipliers.

32
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For each x ∈ dom f , the expression L(x, λ) is the sum of a real number
and a linear form in λ1, λ2, . . . , λm. Hence, the function λ �→ L(x, λ) is affine
(or rather, the restriction to Λ of an affine function on Rm). The Lagrange
function is thus especially concave in the variable λ for each fixed x ∈ dom f .

If x ∈ Ω \ dom f , then obviously L(x, λ) = ∞ for all λ ∈ Λ. Hence,

inf
x∈Ω

L(x, λ) = inf
x∈dom f

L(x, λ) < ∞

for all λ ∈ Λ.

Definition. For λ ∈ Λ, we define

φ(λ) = inf
x∈Ω

L(x, λ)

and call the function φ : Λ → R the dual function associated to the mini-
mization problem (P).

It may of course happen that the domain

domφ = {λ ∈ Λ | φ(λ > −∞}
of the dual function is empty; this occurs if the functions x �→ L(x, λ) are
unbounded below on Ω for all λ ∈ Λ.

Theorem 10.1.1. The dual function φ of the minimization problem (P) is
concave and

φ(λ) ≤ vmin(P )

for all λ ∈ Λ.

Hence, domφ = ∅ if the objective function f in the original problem (P) is
unbounded below on the constraint set, i.e. if vmin(P ) = −∞.

Proof. The functions λ → L(x, λ) are concave for x ∈ dom f , which means
that the function φ is the infimum of a family of concave functions. It
therefore follows from Theorem 6.2.4 in Part I that φ is concave.

Suppose λ ∈ Λ and x ∈ X; then λigi(x) ≤ 0 for i ≤ p and λigi(x) = 0 for
i > p, and it follows that

L(x, λ) = f(x) +
n∑

i=1

λigi(x) ≤ f(x),

and that consequently

φ(λ) = inf
x∈Ω

L(x, λ) ≤ inf
x∈X

L(x, λ) ≤ inf
x∈X

f(x) = vmin(P ).
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The following optimality criterion is now an immediate consequence of
the preceding theorem.

Theorem 10.1.2 (Optimality criterion). Suppose x̂ is a feasible point for the
minimization problem (P) and that there is a point λ̂ ∈ Λ such that

φ(λ̂) = f(x̂).

Then x̂ is an optimal solution.

Proof. The common value f(x̂) belongs to the intersection R∩R = R of the
codomains of f and φ, and it is thus a real number, and by Theorem 10.1.1,
f(x̂) ≤ vmin(P ). Hence, f(x̂) = vmin(P ).

Example 10.1.1. Let us consider the simple minimization problem

min f(x) = x2
1 − x2

2

s.t. x2
1 + x2

2 ≤ 1.

The Lagrange function is

L(x1, x2, λ) = x2
1 − x2

2 + λ(x2
1 + x2

2 − 1)

= (λ+ 1)x2
1 + (λ− 1)x2

2 − λ

with (x1, x2) ∈ R2 and λ ∈ R+.
The Lagrange function is unbounded below when 0 ≤ λ < 1, and it

attains the minimum value −λ for x1 = x2 = 0 when λ ≥ 1, so the dual
function φ is given by

φ(λ) =

{
−∞ , if 0 ≤ λ < 1

−λ , if λ ≥ 1.

We finally note that the optimality condition φ(λ̂) = f(x̂) is satisfied by
the point x̂ = (0, 1) and the Lagrange multiplier λ̂ = 1. Hence, (0, 1) is an
optimal solution.

The optimality criterion gives a sufficient condition for optimality, but it
is not necessary, as the following trivial example shows.

Example 10.1.2. Consider the problem

min f(x) = x
s.t. x2 ≤ 0.
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There is only one feasible point, x̂ = 0, which is therefore the optimal solu-
tion. The Lagrange function L(x, λ) = x + λx2 is bounded below for λ > 0
and

φ(λ) = inf
x∈R

(x+ λx2) =

{
−1/4λ, if λ > 0

−∞, if λ = 0.

But φ(λ) < 0 = f(x̂) for all λ ∈ Λ = R+, so the optimality criterion in
Theorem 10.1.2 is not satisfied by the optimal point.

For the converse of Theorem 10.1.2 to hold, some extra condition is thus
needed, and we describe such a condition in Chapter 11.1.

The dual problem

In order to obtain the best possible lower estimate of the optimal value of
the minimization problem (P), we should, in the light of Theorem 10.1.1,
maximize the dual function. This leads to the following definition.
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Definition. The optimization problem

(D) max φ(λ)
s.t. λ ∈ Λ

is called the dual problem of the minimization problem (P).

The dual problem is a convex problem, irrespective of whether the prob-
lem (P) is convex or not, because the dual function is concave. The value of
the dual problem will be denoted by vmax(D) with the usual conventions for
±∞-values.

Our next result is now an immediate corollary of Theorem 10.1.1.

Theorem 10.1.3 (Weak duality). The following inequality holds between the
optimal values of the problem(P) and its dual problem (D):

vmax(D) ≤ vmin(P ).

The inequality in the above theorem is called weak duality. If the two
optimal values are equal, i.e. if

vmax(D) = vmin(P )

then we say that strong duality holds for problem (P).
Weak duality thus holds for all problems while strong duality only holds

for special types of problems. Of course, strong duality prevails if the opti-
mality criterion in Theorem 10.1.2 is satisfied.

Example 10.1.3. Consider the minimization problem

min x3
1 + 2x2

s.t. x2
1 + x2

2 ≤ 1.

It is easily verified that the minimum is attained for x = (0,−1) and that
the optimal value is vmin(P ) = −2. The Lagrange function

L(x1, x2, λ) = x3
1 + 2x2 + λ(x2

1 + x2
2 − 1) = x3

1 + λx2
1 + 2x2 + λx2

2 − λ

tends, for each fixed λ ≥ 0, to −∞ as x2 = 0 and x1 → −∞. The Lagrange
function is in other words unbounded below on R2 for each λ, and hence
φ(λ) = −∞ for all λ ∈ Λ. The value of the dual problem is therefore
vmax(D) = −∞, so strong duality does not hold in this problem.

The Lagrange function, the dual function and the dual problem of a
minimization problem of the type (P) are defined in terms of the constraint
functions of the problem. Therefore, it may be worth emphasizing that

Download free eBooks at bookboon.com



LINEAR AND CONVEX OPTIMIZATION: 
CONVEXITY AND OPTIMIZATION – PART II

37

The Lagrange function
10.1 The Lagrange function and the dual problem 37

problems that are equivalent in the sense that they have the same objective
function f and the same set X of feasible points do not necessarily have
equivalent dual problems. Thus, strong duality may hold for one way of
framing a problem but fail to hold for other ways. See exercise 10.2.

Example 10.1.4. Let us find the dual problem of the LP problem

(LP-P) min 〈c, x〉

s.t.

{
Ax≥ b
x≥ 0.

Here A is an m× n-matrix, c is a vector in Rn and b a vector in Rm. Let us
rewrite the problem in the form

min 〈c, x〉

s.t.

{
b− Ax ≤ 0
x ∈ Rn

+

with x ∈ Rn
+ as an implicit constraint. The matrix inequality b − Ax ≤ 0

consists ofm linear inequalities, and the Lagrangefunction is therefore defined
on the product set Rn

+ × Rm
+ , and it is given by

L(x, λ) = 〈c, x〉+ 〈λ, b− Ax〉 = 〈c− ATλ, x〉+ 〈b, λ〉.

For fixed λ, L(x, λ) is bounded below on the set Rn
+ if and only if c−ATλ ≥ 0,

with minimum value equal to 〈b, λ〉 attained at x = 0. The dual function
φ : Rm

+ → R is thus given by

φ(λ) =

{
〈b, λ〉 , if ATλ ≤ c

−∞ , otherwise.

The dual problem to the LP problem (LP-P) is therefore also an LP problem,
namely (after renaming the parameter λ to y) the LP problem

(LP-D) max 〈b, y〉

s.t.

{
ATy≤ c

y≥ 0.

Note the beautiful symmetry between the two problems.
By weak duality, we know for sure that the optimal value of the maximiza-

tion problem is less than or equal to the optimal value of the minimization
problem. As we shall see later, strong duality holds for LP problems, i.e. the
two problems above have the same optimal value, provided at least one of
the problems has feasible points.
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We now return to the general minimization problem

(P) min f(x)

s.t.

{
gi(x) ≤ 0, i = 1, 2, . . . , p
gi(x) = 0, i = p+ 1, . . . ,m

with X as the set of feasible points, Lagrange function L : Ω × Λ → R,
and dual function φ. Our next theorem shows that the optimality criterion
in Theorem 10.1.2 can be formulated as a saddle point condition on the
Lagrange function.

Theorem 10.1.4. Suppose (x̂, λ̂) ∈ Ω×Λ. The following three conditions are
equivalent for the optimization problem (P):

(i) x̂ ∈ X and f(x̂) = φ(λ̂), i.e. the optimality criterion is satisfied.

(ii) For all (x, λ) ∈ Ω× Λ,

L(x̂, λ) ≤ L(x̂, λ̂) ≤ L(x, λ̂),

i.e. (x̂, λ̂) is a saddle point for the Lagrange function.

(iii) x̂ ∈ X, x̂ minimizes the function x �→ L(x, λ̂) when x runs through Ω,
and

λ̂igi(x̂) = 0

for i = 1, 2, . . . , p.

Thus, x̂ is an optimal solution to the problem (P) if any of the equivalent
conditions (i)–(iii) is satisfied.

The condition in (iii) that λ̂igi(x̂) = 0 for i = 1, 2, . . . , p is called com-
plementarity. An equivalent way to express this, which explains the name,
is

λ̂i = 0 or gi(x̂) = 0.

A constraint with a positive Lagrange multiplier is thus necessarily active at
the point x̂.

Proof. (i) ⇒ (ii): For x̂ ∈ X and arbitrary λ ∈ Λ (= Rp
+ × Rn−p) we have

L(x̂, λ) = f(x̂) +
m∑
i=1

λigi(x̂) = f(x̂) +

p∑
i=1

λigi(x̂) ≤ f(x̂),

since λi ≥ 0 and gi(x̂) ≤ 0 for i = 1, 2, . . . , p. Moreover,

φ(λ̂) = inf
z∈Ω

L(z, λ̂) ≤ L(x, λ̂) for all x ∈ Ω.
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If f(x̂) = φ(λ̂), then consequently

L(x̂, λ) ≤ f(x̂) = φ(λ̂) ≤ L(x, λ̂)

for all (x, λ) ∈ Ω × Λ, and by the particular choice of x = x̂, λ = λ̂ in
this inequality, we see that f(x̂) = L(x̂, λ̂). This proves the saddle point
inequality in (ii) with L(x̂, λ̂) = f(x̂).

(ii) ⇒ (iii): It is obvious that x̂ minimizes the function L( · , λ̂) if and only
if the right part of the saddle point inequality holds. The minimum value is
moreover finite (due to our tacit assumption dom f �= ∅), and hence f(x̂) is
a finite number.

The left part of the saddlepoint inequality means that

f(x̂) +
m∑
i=1

λigi(x̂) ≤ f(x̂) +
m∑
i=1

λ̂igi(x̂)

for all λ ∈ Λ, or equivalently that

m∑
i=1

(λi − λ̂i)gi(x̂) ≤ 0

for all λ ∈ Λ.
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Now fix the index k and choose in the above inequality the number λ so
that λi = λ̂i for all i except i = k. It follows that

(10.1) (λk − λ̂k)gk(x̂) ≤ 0

for all such λ.

If k > p, we choose λk = λ̂k ± 1 with the conclusion that ±gk(x̂) ≤ 0, i.e.
that gk(x̂) = 0. For k ≤ p we instead choose λk = λ̂k+1, with the conclusion
that gk(x̂) ≤ 0. Thus, x̂ satisfies all the constraints, i.e. x̂ ∈ X.

For k ≤ p we finally choose λk = 0 and λk = 2λ̂k, respectively, in the
inequality (10.1) with ±λ̂kgk(x̂) ≤ 0 as result. This means that λ̂kgk(x̂) = 0
for k ≤ p, and the implication (ii) ⇒ (iii) is now proved.

(iii) ⇒ (i): From (iii) follows at once

φ(λ̂) = inf
x∈Ω

L(x, λ̂) = L(x̂, λ̂) = f(x̂) +
m∑
i=1

λ̂igi(x̂) = f(x̂),

which is condition (i).

If the objective and constraint functions f and g1, g2, . . . , gm are differ-
entiable, so is the Lagrange function L(x, λ) = f(x) +

∑m
i=1 λigi(x), and we

use L′
x(x0, λ) as the notation for the value of the derivative of the function

x �→ L(x, λ) at the point x0, i.e.

L′
x(x0, λ) = f ′(x0) +

m∑
i=1

λig
′
i(x0).

If the differentiable function x �→ L(x, λ) has a minimum at an inte-
rior point x0 in Ω, then L′

x(x0, λ) = 0. The following corollary is thus an
immediate consequence of the implication (i) ⇒ (iii) in Theorem 10.1.4.

Corollary 10.1.5. Suppose that x̂ is an optimal solution to the minimization
problem (P), that x̂ is an interior point of the domain Ω, that the objec-
tive and constraint functions are differentiable at x̂, and that the optimality
criterion f(x̂) = φ(λ̂) is satisfied by some Lagrange multiplier λ̂ ∈ Λ. Then

(KKT)

{
L′

x(x̂, λ̂) = 0 and

λ̂igi(x̂) = 0 for i = 1, 2, . . . , p.

The system (KKT) is called the Karush–Kuhn–Tucker condition.
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The equality L′
x(x̂, λ̂) = 0 means that

f ′(x̂) +
m∑
i=1

λ̂ig
′
i(x̂) = 0,

which written out in more detail becomes




∂f

∂x1

(x̂) +
m∑
i=1

λ̂i
∂gi
∂x1

(x̂) = 0

...

∂f

∂xn

(x̂) +
m∑
i=1

λ̂i
∂gi
∂xn

(x̂) = 0.

Example 10.1.5. In Example 10.1.1 we found that x̂ = (0, 1) is an optimal
solution to the minimization problem

min x2
1 − x2

2

s.t. x2
1 + x2

2 ≤ 1

and that the optimality criterion is satisfied with λ̂ = 1. The Lagrange
function is L(x, λ) = x2

1 − x2
2 + λ(x2

1 + x2
2 − 1), and indeed, x = (0, 1) and

λ = 1 satisfy the KKT-system




∂L(x, λ)

∂x1

= 2(λ+ 1)x1 = 0

∂L(x, λ)

∂x1

= 2(λ− 1)x2 = 0

λ(x2
1 + x2

2 − 1) = 0.

10.2 John’s theorem

Conditions which guarantee that the KKT condition is satisfied at an optimal
point, are usually called constraint qualification conditions, and in the next
chapter we will describe such a condition for convex problems. In this section
we will study a different qualifying condition, John’s condition, for general
optimization problems with constraints in the form of inequalities.

Let us therefore consider a problem of the form

(P) min f(x)
s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m
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with implicit constraint set Ω, i.e. domain for the objective and the constraint
functions.

Whether a constraint is active or not at an optimal point plays a ma-
jor role, and affine constraints are thereby easier to handle than other con-
straints. Therefore, we introduce the following notations:

Iaff(x) = {i | the function gi is affine and gi(x) = 0},
Ioth(x) = {i | the function gi is not affine and gi(x) = 0},
I(x) = Iaff(x) ∪ Ioth(x).

So Iaff(x) consists of the indices of all active affine constraints at the point
x, Ioth(x) consists of the indices of all other active constraints at the point,
and I(x) consists of the indices of all active constraints at the point.

Theorem 10.2.1 (John’s theorem). Suppose x̂ is a local minimum point for
the problem (P), that x̂ is an interior point in Ω, and that the functions f
and g1, g2, . . . , gm are differentiable at the point x̂. If there exists a vector
z ∈ Rn such that

(J)

{
〈g′i(x̂), z〉 ≥ 0 for all i ∈ Iaff(x̂)

〈g′i(x̂), z〉 > 0 for all i ∈ Ioth(x̂),
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then there exist Lagrange parameters λ̂ ∈ Rm
+ such that

(KKT)

{
L′

x(x̂, λ̂) = 0

λ̂igi(x̂) = 0 for i = 1, 2, . . . ,m.

Remark 1. According to Theorem 3.3.5 in Part I, the system (J) is solvable
if and only if

(J′)





∑
i∈I(x̂)

uig
′
i(x̂) = 0

u ≥ 0

⇒ ui = 0 for all i ∈ Ioth(x̂).

The system (J) is thus in particular solvable if the gradient vectors ∇gi(x̂)
are linearly independent for i ∈ I(x̂).

Remark 2. If Ioth(x̂) = ∅, then (J) is trivially satisfied by z = 0.

Proof. Let Z denote the set of solutions to the system (J). The first part
of the proof consists in showing that Z is a subset of the conic halfspace
{z ∈ Rn | −〈f ′(x̂), z〉 ≥ 0}.

Assume therefore that z ∈ Z and consider the halfline x̂ − tz for t ≥ 0.
We claim that x̂− tz ∈ X for all sufficiently small t > 0.

If g is an affine function, i.e. has the form g(x) = 〈c, x〉+ b, then g′(x) = c
and g(x+ y) = 〈c, x+ y〉+ b = 〈c, x〉+ b+ 〈c, y〉 = g(x) + 〈g′(x), y〉 for all x
and y. Hence, for all indices i ∈ Iaff(x̂),

gi(x̂− tz) = gi(x̂)− t〈g′i(x̂), z〉 = −t〈g′i(x̂), z〉 ≤ 0

for all t ≥ 0.

For indices i ∈ Ioth(x̂), we obtain instead, using the chain rule, the in-
equality

d

dt
gi(x̂− tz)|t=0 = −〈g′i(x̂), z〉 < 0.

The function t �→ gi(x̂− tz) is in other words decreasing at the point t = 0,
whence gi(x̂− tz) < gi(x̂) = 0 for all sufficiently small t > 0.

If the i:th constraint is inactive at x̂, i.e. if i /∈ I(x̂), then gi(x̂) < 0, and
it follows from continuity that gi(x̂− tz) < 0 for all sufficiently small t > 0.

We have thus proved that the points x̂ − tz belong to the constraint set
X if t > 0 is sufficiently small. Since x̂ is a local minimum point of f , it
follows that f(x̂− tz) ≥ f(x̂) for all sufficiently small t > 0. Consequently,

−〈f ′(x̂), z〉 = d

dt
f(x̂− tz)

∣∣
t=0

= lim
t→0+

f(x̂− tz)− f(x̂)

t
≥ 0.
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g1(x) = 0

g2(x) = 0

∇g1(x̂)

∇g2(x̂)

-∇f(x̂)

X

x̂

Figure 10.1. Illustration for Example 10.2.1: The vector −∇f(x̂) does
not belong to the cone generated by the gradients ∇g1(x̂) and ∇g2(x̂).

This proves the alleged inclusion

Z ⊆ {z ∈ Rn | −〈f ′(x̂), z〉 ≥ 0} = {−f ′(x̂)}+ =
(
con{−f ′(x̂)}

)+
,

and it now follows from Theorem 3.2.1, Corollary 3.2.4 and Theorem 3.3.4
in Part I that

con{−f ′(x̂)} ⊆ Z+ = con{g′i(x̂) | i ∈ I(x̂)}.

So the vector −f ′(x̂) belongs to the cone generated by the vektors g′i(x̂),
i ∈ I(x̂), which means that there are nonnegative integers λ̂i, i ∈ I(x̂), such
that

−f ′(x̂) =
∑
i∈I(x̂)

λ̂ig
′
i(x̂).

If we finally define λ̂i = 0 for i /∈ I(x̂), then

f ′(x̂) +
m∑
i=1

λ̂ig
′
i(x̂) = 0

and λ̂igi(x̂) = 0 for i = 1, 2, . . . ,m. This means that the KKT-condition is
satisfied.

The condition in John’s statement that the system (J) has a solution
can be replaced with other qualifying constraints but can not be completely
removed without the conclusion being lost. This is shown by the following
example.

Example 10.2.1. Consider the problem

min f(x) = x1

s.t.

{
g1(x)=−x3

1 + x2 ≤ 0
g2(x)= −x2 ≤ 0
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with Lagrange function L(x, λ) = x1+λ1(x2−x3
1)−λ2x2. The unique optimal

solution is x̂ = (0, 0), but the system L′
x(x̂, λ) = 0, i.e.

{
1 = 0

λ1 −λ2 = 0,

has no solutions. This is explained by the fact that the system (J), i.e.
{
−z2 ≥ 0
z2 > 0,

has no solutions.

Example 10.2.2. We will solve the problem

min x1x2 + x3

s.t.

{
2x1 − 2x2 + x3 +1 ≤ 0
x2
1 + x2

2 − x3 ≤ 0

using John’s theorem. Note first that the constraints define a compact set
X, for the inequalities

x2
1 + x2

2 ≤ x3 ≤ −2x1 + 2x2 − 1
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imply that (x1 + 1)2 + (x2 − 1)2 ≤ 1, and consequently, −2 ≤ x1 ≤ 0,
0 ≤ x2 ≤ 2, and 0 ≤ x3 ≤ 7. Since the objective function is continuous,
there is indeed an optimal solution.

Let us now first investigate whether the system (J) is solvable. We use the
equivalent version (J′) in the remark after the theorem. First note that the
gradients of the constraint functions are never equal to zero. The condition
(J′) is thus met in the points where only one of the constraints is active.

Assume therefore that x is a point where I(x) = {1, 2}, i.e. where both
constraints are active, and that u1(2,−2, 1) + u2(2x1, 2x2,−1) = (0, 0, 0). If
u2 > 0, we conclude from the above equation that u1 = u2, x1 = −1 and
x2 = 1. Inserting x1 = −1 and x2 = 1 into the two active constraints yields
x3 = 3 and x3 = 2, respectively, which is contradictory. Thus, u2 = 0, which
means that the condition (J′) is fulfilled at all feasible points.

We conclude that the optimal point satisfies the KKT-condition, which
in this instance is as follows





x2 +2λ1 +2x1λ2 = 0 (i)
x1 − 2λ1 +2x2λ2 = 0 (ii)
1+ λ1 − λ2 = 0 (iii)

λ1(2x1 − 2x2 + x3 + 1) = 0 (iv)
λ2(x

2
1 + x2

2 − x3) = 0 (v)

The further investigation is divided into two cases.

λ1 = 0 : Equation (iii) implies that λ2 = 1, which inserted into (i) and (ii)
gives x1 = x2 = 0, and from (v) now follows x3 = 0. But this is a false
solution, since (0, 0, 0) /∈ X.

λ1 > 0 : Equation (iv) now implies that

2x1 − 2x2 + x3 + 1 = 0. (vi)

From (i) and (ii) follows (x1 + x2)(1 + 2λ2) = 0, and since λ2 ≥ 0,

x1 + x2 = 0. (vii)

By (iii,) λ2 > 0. Condition (v) therefore implies that

x2
1 + x2

2 − x3 = 0. (viii)

The system consisting of equations (vi), (vii), (viii) has two solutions, namely

x̂ = (−1+
√

1/2, 1−
√
1/2, 3−2

√
2) and x = (−1−

√
1/2, 1+

√
1/2, 3+2

√
2).

Using (i) and (iii), we compute the corresponding λ and obtain

λ̂ = (−1/2 +
√
1/2, 1/2 +

√
1/2) and λ = (−1/2−

√
1/2, 1/2−

√
1/2),
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respectively. Note that λ̂ ≥ 0 and λ < 0. The system KKT thus has a unique
solution (x, λ) with λ ≥ 0, namely x = x̂, λ = λ̂. By John’s theorem, x̂ is
the unique optimal solution of our minimization problem, and the optimal
value is 3/2−

√
2.

Exercises

10.1 Determine the dual function for the optimization problem

min x21 + x22
s.t. x1 + x2 ≥ 2,

and prove that (1, 1) is an optimal solution by showing that the optimality
criterion is satisfied by λ̂ = 2. Also show that the KKT-condition is satisfied
at the optimal point.

10.2 Consider the two minimization problems

(Pa) min e−x1

x21/x2 ≤ 0

and (Pb) min e−x1

|x1| ≤ 0

both with Ω = {(x1, x2) | x2 > 0} as implicit domain. The two problems
have the same set X = {(0, x2) | x2 > 0} of feasible points and the same
optimal value vmin = 1. Find their dual functions and dual problems, and
show that strong duality holds for (Pb) but not for (Pa).

10.3 Suppose the function f : X × Y → R has two saddle points (x̂1, ŷ1) and
(x̂2, ŷ2). Prove that

a) f(x̂1, ŷ1) = f(x̂2, ŷ2);

b) (x̂1, ŷ2) and (x̂2, ŷ1) are saddle points, too.

10.4 Let f : X × Y → R be an arbitrary function.

a) Prove that
sup
y∈Y

inf
x∈X

f(x, y) ≤ inf
x∈X

sup
y∈Y

f(x, y).

b) Suppose there is a point (x̂, ŷ) ∈ X × Y such that

sup
y∈Y

inf
x∈X

f(x, y) = inf
x∈X

f(x, ŷ) and inf
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

f(x̂, y).

Prove that (x̂, ŷ) is a saddle point of the function f if and only if

inf
x∈X

f(x, ŷ) = sup
y∈Y

f(x̂, y),

and that the common value then is equal to f(x̂, ŷ).
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10.5 Consider a minimization problem

min f(x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m

with convex differentiable constraint functions g1, g2, . . . , gm, and suppose
there is a point x0 ∈ X = {x | g1(x) ≤ 0, . . . , gm(x) ≤ 0} which satisfies
all non-affine constraints with strict inequality. Show that the system (J) is
solvable at all points x̂ ∈ X.
[Hint: Show that z = x̂− x0 satisfies (J).]

10.6 Solve the following optimization problems

a) min x31 + x1x
2
2

s.t.

{
x21 +2x22 ≤ 1

x2 ≥ 0

b) max x21 + x22 + arctanx1x2

s.t.

{
x21 + x22 ≤ 2
0 ≤ x1 ≤ x2

c) min x1x2

s.t.

{
x21 + x1x2 + 4x22 ≤ 1

x1 + 2x2 ≥ 0

d) max x21x2x3

s.t.

{
2x1 + x1x2 + x3 ≤ 1

x1, x2, x3 ≥ 0.
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Chapter 11

Convex optimization

11.1 Strong duality

We recall that the minimization problem

(P) min f(x)

s.t.

{
gi(x) ≤ 0, i = 1, 2, . . . , p
gi(x) = 0, i = p+ 1, . . . ,m

is called convex if
• the implicit constraint set Ω is convex,
• the objective function f is convex,
• the constraint functions gi are convex for i = 1, 2, . . . , p and affine for
i = p+ 1, . . . ,m.

The set X of feasible points is convex in a convex optimization problem,
and the Lagrange function

L(x, λ) = f(x) +
m∑
i=1

λigi(x)

is convex in the variable x for each fixed λ ∈ Λ = Rp
+ × Rm−p, since it is a

conic combination of convex functions.

We have already noted that the optimality criterion in Theorem 10.1.2
need not be fulfilled at an optimal point, not even for convex problems,
because of the trivial counterexample in Example 10.1.2. For the criterion
to be met some additional condition is needed, and a weak one is given in
the next definition.

Definition. The problem (P) satisfies Slater’s condition if there is a feasible
point x in the relative interior of Ω such that gi(x) < 0 for each non-affine
constraint function gi.

49
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Slater’s condition is of course vacously fulfilled if all constraint functions
are affine.

For convex problems that satisfy Slater’s condition, the optimality cri-
terion is both sufficient and necessary for optimality. We have namely the
following result.

Theorem 11.1.1 (Duality theorem). Suppose that the problem (P) is convex
and satisfies Slater’s condition, and that the optimal value vmin is finite. Let
φ : Λ → R denote the dual function of the problem. Then there is a point
λ̂ ∈ Λ such that

φ(λ̂) = vmin.

Proof. First suppose that all constraints are inequalities, i.e. that p = m, and
renumber the constraints so that the functions gi are convex and non-affine
for i = 1, 2, . . . , k and affine for i = k + 1, . . . ,m.

Because of Slater’s condition, the system
{
gi(x) < 0, i = 1, 2, . . . , k
gi(x) ≤ 0, i = k + 1, . . . ,m

has a solution in the relative interior of Ω, whereas the system



f(x)− vmin < 0
gi(x) < 0, i = 1, 2, . . . , k
gi(x) ≤ 0, i = k + 1, . . . ,m

lacks solutions in Ω, due to the definition of vmin. Therefore, it follows from
Theorem 6.5.1 in Part I that there exist nonnegative scalars λ̂0, λ̂1, . . . , λ̂m

such that at least one of the numbers λ̂0, λ̂1, . . . , λ̂k is positive and

λ̂0(f(x)− vmin) + λ̂1g1(x) + λ̂2g2(x) + · · ·+ λ̂mgm(x) ≥ 0

for all x ∈ Ω. Here, the coefficient λ̂0 has to be positive, because if λ̂0 = 0
then λ̂1g1(x) + · · · + λ̂mgm(x) ≥ 0 for all x ∈ Ω, which contradicts the fact
that the first mentioned system of inequalities has a solution in Ω. We may
therefore assume, by dividing by λ̂0 if necessary, that λ̂0 = 1, and this gives
us the inequality

L(x, λ̂) = f(x) +
m∑
i=1

λ̂igi(x) ≥ vmin

for all x ∈ Ω. It follows that

φ(λ̂) = inf
x∈Ω

L(x, λ̂) ≥ vmin,

which combined with Theorem 10.1.1 yields the desired equality φ(λ̂) = vmin.
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If the problem has affine equality constraints, i.e. if p < m, we replace
each equality gi(x) = 0 with the two inequalities ±gi(x) ≤ 0, and it follows
from the already proven case of the theorem that there exist nonnegative
Lagrange multipliers λ̂1, . . . , λ̂p, µ̂p+1, . . . , µ̂m, ν̂p+1, . . . , ν̂m such that

f(x) +

p∑
i=1

λ̂igi(x) +
m∑

i=p+1

(µ̂i − ν̂i)gi(x) ≥ vmin

for all x ∈ Ω, By defining λ̂i = µ̂i − ν̂i for i = p + 1, . . . ,m, we obtain a
point λ̂ ∈ Λ = Rp

+ × Rm−p which satisfies φ(λ̂) ≥ vmin, and this completes
the proof of the theorem.

By combining Theorem 11.1.1 with Theorem 10.1.2 we get the following
corollary.

Corollary 11.1.2. Suppose that the problem (P) is convex and that it satisfies
Slater’s condition. Then, a feasible point x̂ is optimal if and only if it satisfies
the optimality criterion, i.e. if and only if there exists a λ̂ ∈ Λ such that
φ(λ̂) = f(x̂).

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

By 2020, wind could provide one-tenth of our planet’s 
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the 
world’s wind turbines. 

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our 
systems for on-line condition monitoring and automatic 
lubrication. We help make it more economical to create 
cleaner, cheaper energy out of thin air. 

By sharing our experience, expertise, and creativity, 
industries can boost performance beyond expectations. 

Therefore we need the best employees who can 
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering. 

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge


LINEAR AND CONVEX OPTIMIZATION: 
CONVEXITY AND OPTIMIZATION – PART II

52

Convex optimization
52 11 Convex optimization

11.2 The Karush–Kuhn–Tucker theorem

Variants of the following theorem were first proved by Karush and Kuhn–
Tucker, and the theorem is therefore usually called the Karush–Kuhn–Tucker
theorem.

Theorem 11.2.1. Let

(P) min f(x)

s.t.

{
gi(x) ≤ 0, i = 1, 2, . . . , p
gi(x) = 0, i = p+ 1, . . . ,m

be a convex problem, and suppose that the objective and constraint functions
are differentiable at the feasible point x̂.

(i) If λ̂ is a point in Λ and the pair (x̂, λ̂) satisfies the KKT-condition

{
L′
x(x̂, λ̂) = 0

λ̂igi(x̂) = 0 for i = 1, 2, . . . , p

then strong duality prevails; x̂ is an optimal solution to the problem (P)
and λ̂ is an optimal solution to the dual problem.

(ii) Conversely, if Slater’s condition is fulfilled and x̂ is an optimal solution,
then there exist Lagrange multipliers λ̂ ∈ Λ such that (x̂, λ̂) satisfies the
KKT-condition.

Proof. (i) The KKT-condition implies that x̂ is a stationary point of the
convex function x �→ L(x, λ̂), and an interior stationary point of a convex
function is a minimum point, according to Theorem 7.2.2 in Part I. Condition
(iii) in Theorem 10.1.4 is thus fulfilled, and this means that the optimality
criterion is satisfied by the pair (x̂, λ̂).

(ii) Conversely, if Slater’s condition is satisfied and x̂ is an optimal solu-
tion, then the optimality criterion f(x̂) = φ(λ̂) is satisfied by some λ̂ ∈ Λ,
according to Theorem 11.1.1. The KKT-condition is therefore met because
of Corollary 10.1.5.

The KKT-condition has a natural geometrical interpretation. Assume for
simplicity that all constraints are inequalities, i.e. that p = m, and let I(x̂)
denote the index set for the constraints that are active at the optimal point
x̂. The KKT-condition means that λ̂i = 0 for all indices i /∈ I(x̂) and that

−∇f(x̂) =
∑
i∈I(x̂)

λ̂i∇gi(x̂),
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where all coefficients λ̂i occuring in the sum are nonnegative. The geometrical
meaning of the above equality is that the vector −∇f(x̂) belongs to the cone
generated by the gradients ∇gi(x̂) of the active inequality constraints. Cf.
figure 11.1 and figure 11.2.

f(x) = 3

f(x) = 2

f(x) = 1

x̂

−∇f(x̂)
∇g1(x̂)

∇g2(x̂)

X

g1(x) ≤ 0 g2(x) ≤ 0

Figure 11.1. The point x̂ is opti-
mal since both constraints are ac-
tive at the point and
−∇f(x̂) ∈ con{∇g1(x̂),∇g2(x̂)}.

f(x) = 2

f(x) = 1

∇g1(x̂)
∇g2(x̂)

−∇f(x̂)

x̂

x
X

g1(x) ≤ 0 g2(x) ≤ 0

Figure 11.2. Here the point x̂ is
not optimal since
−∇f(x̂) �∈ con{∇g1(x̂),∇g2(x̂)}.
The optimum is instead attained at
x, where −∇f(x) = λ1∇g1(x) for
some λ1 > 0.

Example 11.2.1. Consider the problem

min ex1−x3 + e−x2{
(x1 − x2)

2 − x3 ≤ 0
x3 − 4 ≤ 0.

The objective and the constraint functions are convex. Slater’s condition is
satisfied, since for instance (1, 1, 1) satisfies both constraints strictly. Accord-
ing to Theorem 11.2.1, x is therefore an optimal solution to the problem if
and only if x solves the system




ex1−x3 + 2λ1(x1 − x2) = 0 (i)
−e−x2 − 2λ1(x1 − x2) = 0 (ii)

−ex1−x3 − λ1 + λ2 = 0 (iii)
λ1

(
(x1 − x2)

2 − x3

)
= 0 (iv)

λ2(x3 − 4) = 0 (v)
λ1, λ2 ≥ 0 (vi)

It follows from (i) and (vi) that λ1 > 0, from (iii) and (vi) that λ2 > 0,
and from (iv) and (v) that x3 = 4 and x1 − x2 = ±2. But x1 − x2 < 0,
because of (i) and (vi), and hence x1 − x2 = −2. By comparing (i) and (ii)
we see that x1 − x3 = −x2, i.e. x1 + x2 = 4. It follows that x = (1, 3, 4)
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and λ = (e−3/4, 5e−3/4) is the unique solution of the system. The problem
therefore has a unique optimal solution, namely (1, 3, 4). The optimal value
is equal to 2e−3.

11.3 The Lagrange multipliers

In this section we will study how the optimal value vmin(b) of an arbitrary
minimization problem of the type

(Pb) min f(x)

s.t.

{
gi(x) ≤ bi, i = 1, 2, . . . , p
gi(x) = bi, i = p+ 1, . . . ,m

depends on the constraint parameters b1, b2, . . . , bm. The functions f and
g1, g2, . . . , gm are, as previously, defined on a subset Ω of Rn, b = (b1, . . . , bm)
is a vector in Rm, and

X(b) = {x ∈ Ω | gi(x) ≤ bi for 1 ≤ i ≤ p and gi(x) = bi for p < i ≤ m}
is the set of feasible points.
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The Lagrange function and the dual function associated to the minimiza-
tion problem (Pb) are denoted by Lb and φb, respectively. By definition,

Lb(x, λ) = f(x) +
m∑
i=1

λi(gi(x)− bi),

and the relationship between the Lagrange functions Lb and Lb belonging to
two different parameter vectors b and b, is therefore given by the equation

Lb(x, λ) = Lb(x, λ) +
m∑
i=1

λi(bi − bi) = Lb(x, λ) + 〈λ, b− b〉.

By forming the infimum over x ∈ Ω, we immediately get the following relation
for the dual functions:

(11.1) φb(λ) = φb(λ) + 〈λ, b− b〉.

The following theorem gives an interpretation of the Lagrange parameters
in problems which satisfy the optimality criterion in Theorem 10.1.2, and thus
especially for convex problems which satisfy Slater’s condition.

Theorem 11.3.1. Suppose that the minimization problem (Pb) has an optimal
solution x and that the optimality criterion is satisfied at the point, i.e. that
there are Lagrange multipliers λ such that φb(λ) = f(x). Then:

(i) The objective function f is bounded below on X(b) for each b ∈ Rm,
so the optimal value vmin(b) of problem (Pb) is finite if the set X(b) of
feasible points is nonempty, and equal to +∞ if X(b) = ∅.

(ii) The vector −λ is a subgradient at the point b of the optimal value func-
tion vmin : R

m → R.

(iii) Suppose that the optimality criterion is satisfied in the problem (Pb) for
all b in an open convex set U . The restriction of the function vmin to
U is then a convex function.

Proof. By using weak duality for problem (Pb), the identity (11.1) and the
optimality criterion for problem (Pb), we obtain the following inequality:

vmin(b) = inf
x∈X(b)

f(x) ≥ φb(λ) = φb(λ) + 〈λ, b− b〉 = f(x) + 〈λ, b− b〉

= vmin(b)− 〈λ, b− b〉.

It follows, first, that the optimal value vmin(b) can not be equal to −∞, and
second, that −λ is a subgradient of the function vmin at the point b.

If the optimality criterion is satisfied at all b ∈ U , then vmin has a sub-
gradient at all points in U , and such a function is convex.
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Now suppose that the function vmin is differentiable at the point b. The
gradient at the point b is then, by Theorem 8.1.3 in Part I, the unique
subgradient at the point, so it follows from (ii) in the above theorem that
v′min(b) = −λ. This gives us the approximation

vmin(b1 +∆b1, . . . , bm +∆bm) ≈ vmin(b1, . . . , bm)− λ1∆b1 · · · − λm∆bm

for small increments ∆bj. So the Lagrange multipliers provide information
about how the optimal value is affected by small changes in the parameters.

Example 11.3.1. As an illustration of Theorem 11.3.1, let us study the con-
vex problem

min x2
1 + x2

2

s.t.

{
x1 +2x2 ≤ b1
2x1 + x2 ≤ b2.

Since it is about minimizing the distance squared from the origin to a poly-
hedron, there is certainly an optimal solution for each right-hand side b, and
since the constraints are affine, it follows from the Karush–Kuhn–Tucker
theorem that the optimal solution satisfies the KKT-condition, which in the
present case is the system




2x1 + λ1 +2λ2 = 0 (i)
2x2 +2λ1 + λ2 = 0 (ii)

λ1(x1 + 2x2 − b1) = 0 (iii)
λ2(2x1 + x2 − b2) = 0 (iv)

λ1, λ2 ≥ 0.

We now solve this system by considering four separate cases:

λ1 = λ2 = 0 : In this case, x1 = x2 = 0 is the unique solution to the KKT-
system. Thus, the point (0, 0) is optimal provided it is feasible, and so is the
case if and only if b1 ≥ 0 and b2 ≥ 0. The optimal value for these parameter
values is vmin(b) = 0.

λ1 > 0, λ2 = 0 : From (i) and (ii), it follows first that x2 = 2x1 = −λ1, and
(iii) then gives x = 1

5
(b1, 2b1). This point is feasible if 2x1 + x2 = 4

5
b1 ≤ b2,

and for the Lagrange multiplier λ1 = −2
5
b1 to be positive, we must also have

b1 < 0. Thus, the point x = 1
5
(b1, 2b1) is optimal if b1 < 0 and 4b1 ≤ 5b2, and

the corresponding value is vmin(b) =
1
5
b21.

λ1 = 0, λ2 > 0 : From (i) and (ii), it now follows that x1 = 2x2 = −λ2,
which inserted into (iv) gives x = 1

5
(2b2, b2). This is a feasible point if

x1+2x2 =
4
5
b2 ≤ b1. The Lagrange multiplier λ2 = −2

5
b2 is positive if b2 < 0.
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Hence, the point x = 1
5
(2b2, b2) is optimal and the optimal value is v(b) = 1

5
b22,

if b2 < 0 och 4b2 ≤ 5b1.

λ1 > 0, λ2 > 0: By solving the subsystem obtained from (iii) and (iv), we
get x = 1

3
(2b2 − b1, 2b1 − b2), and the equations (i) and (ii) then result in

λ = 2
9
(4b2 − 5b1, 4b1 − 5b2). The two Lagrange multipliers are positive if

5
4
b1 < b2 < 4

5
b1. For these parameter values, x is the optimal point and

vmin(b) =
1
9
(5b21 − 8b1b2 + 5b22) is the optimal value.

The result of our investigation is summarized in the following table:

vmin(b) −λ1 =
∂v

∂b1
−λ2 =

∂v

∂b2
b1 ≥ 0, b2 ≥ 0 0 0 0

b1 < 0, b2 ≥ 4
5
b1

1
5
b21

2
5
b1 0

b2 < 0, b2 ≤ 5
4
b1

1
5
b22 0 2

5
b2

5
4
b1 < b2 <

4
5
b1

1
9
(5b21 − 8b1b2 + 5b22)

2
9
(5b1 − 4b2)

2
9
(5b2 − 4b1)
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Exercises

11.1 Let b > 0 and consider the following trivial convex optimization problem

min x2

s.t. x ≥ b.

Slater’s condition is satisfied and the optimal value is attained at the point
x̂ = b. Find the number λ̂ which, according to Theorem 11.1.1, satisfies the
optimality criterion.

11.2 Verify in the previous exercise that v′(b) = λ̂.

11.3 Consider the minimization problem

(P) min f(x)

s.t.

{
gi(x) ≤ 0, i = 1, 2, . . . , p
gi(x) = 0, i = p+ 1, . . . ,m

with x ∈ Ω as implicit constraint, and the equivalent epigraph formulation

(P′) min t

s.t.




f(x)− t ≤ 0,
gi(x) ≤ 0, i = 1, 2, . . . , p
gi(x) = 0, i = p+ 1, . . . ,m

of the problem with (t, x) ∈ R× Ω as implicit constraint.

a) Show that (P′) satisfies Slater’s condition if and only if (P) does.

b) Determine the relation between the Lagrange functions of the two prob-
lems and the relation between their dual functions.

c) Prove that the two dual problems have the same optimal value, and that
the optimality criterion is satisfied in the minimization problem (P) if
and only if it is satisfied in the problem (P′).

11.4 Prove for convex problems that Slater’s condition is satisfied if and only if,
for each non-affine constraint gi(x) ≤ 0, there is a feasible point xi in the
relative interior of Ω such that gi(xi) < 0.

11.5 Let

(Pb) min f(x)

s.t.

{
gi(x) ≤ bi, i = 1, 2, . . . , p
gi(x) = bi, i = p+ 1, . . . ,m

be a convex problem, and suppose that its optimal value vmin(b) is > −∞
for all right-hand sides b that belong to some convex subset U of Rm. Prove
that the restriction of vmin to U is a convex function.
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11.6 Solve the following convex optimization problems.

a) min ex1−x2 + ex2 − x1
s.t. x ∈ R2

b) min ex1−x2 + ex2 − x1

s.t.

{
x21 + x22 ≤ 1
x1 + x2 ≥ −1

c) min −x1 − 2x2

s.t.

{
ex1 + x2 ≤ 1

x2 ≥ 0

d) min x1 + 2x2

s.t.

{
x21 + x22 ≤ 5
x1 − x2 ≤ 1

e) min x1 − x2

s.t.

{
0 < x1 ≤ 2
0 ≤ x2 ≤ lnx1

f) min ex1 + ex2 + x1x2

s.t.

{
x1 + x2 ≥ 1
x1, x2 ≥ 0

11.7 Solve the convex optimization problem

min x21 + x22 − ln(x1 + x2)

s.t.



(x1 − 1)2 + x22 ≤ 9

x1 + x2 ≥ 2
x1, x2 ≥ 0.

11.8 Solve the convex optimization problem

min

n∑
j=1

v−1
j

√
y2j + a2j

s.t.

{∑n
j=1 yj = b

y ∈ Rn

that occurred in our discussion of light refraction in Section 9.4, and verify
Snell’s law of refraction: sin θi/ sin θj = vi/vj , where θj = arctan yj/aj .

11.9 Lisa has inherited 1 million dollars that she intends to invest by buying
shares in three companies: A, B and C. Company A manufactures mobile
phones, B manufactures antennas for mobile phones, and C manufactures ice
cream. The annual return on an investment in the companies is a random
variable, and the expected return for each company is estimated to be

A B C
Expected return: 20% 12% 4%

Lisa’s expected return if she invests x1, x2, x3 million dollars in the three
companies, is thus equal to

0.2x1 + 0.12x2 + 0.04x3.

The investment risk is by definition the variance of the return. To calculate
this we need to know the variance of each company’s return and the corre-
lation between the returns of the various companies. For obvious reasons,
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there is a strong correlation between sales in companies A and B, while sales
of the company C only depend on whether the summer weather is beau-
tiful or not, and not on the number of mobile phones sold. The so-called
covariance matrix is in our case the matrix



50 40 0
40 40 0
0 0 10




For those who know some basic probability theory, it is now easy to calculate
the risk − it is given by the expression

50x21 + 80x1x2 + 40x22 + 10x23.

Lisa, who is a careful person, wants to minimize her investment risk but she
also wants to have an expected return of at least 12 %. Formulate and solve
Lisa’s optimization problem.
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11.10 Consider the consumer problem

max f(x)

s.t.

{
〈p, x〉 ≤ I

x ≥ 0

discussed in Section 9.4, where f(x) is the consumer’s utility function, as-
sumed to be concave and differentiable, I is her disposable income, p =
(p1, p2, . . . , pn) is the price vector and x = (x1, x2, . . . , xn) denotes a con-
sumption bundle.

Suppose that x̂ is an optimal solution. The optimal utility v, as well as
x̂, depends on the income I, of course; let us assume that v = v(I) is a
differentiable function. Show that under these assumptions

x̂j , x̂k > 0 ⇒ 1

pj

∂f

∂xj

∣∣∣
x̂
=

1

pk

∂f

∂xk

∣∣∣
x̂
=

dv

dI

x̂j = 0, x̂k > 0 ⇒ 1

pj

∂f

∂xj

∣∣∣
x̂
≤ 1

pk

∂f

∂xk

∣∣∣
x̂
.

In words, this means:

The ratio between the marginal utility and the price of a commodity is for
the optimal solution the same for all goods that are actually purchased, and
it equals the marginal increase of utility at an increase of income. For goods
that are not purchased, the corresponding ratio is not larger.

The conclusion is rather trivial, for it xk > 0 and
1

pj

∂f

∂xj
>

1

pk

∂f

∂xk
, then the

consumer benefits from changing a small quantity ε/pk of commodity no. k
to the quantity ε/pj of commodity no. j.
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Chapter 12

Linear programming

Linear programming (LP) is the art of optimizing linear functions over poly-
hedra, described as solution sets to systems of linear inequalities. In this
chapter, we describe and study the basic mathematical theory of linear pro-
gramming, above all the very important duality concept.

12.1 Optimal solutions

The optimal value of a general optimization problem was defined in Chap-
ter 9. In particular, each LP problem

(P) min 〈c, x〉
s.t. x ∈ X

has an optimal value, which in this section will be denoted by vmin(c) to
indicate its dependence of the objective function.

LP problems with finite optimal values always have optimal solutions.
The existence of an optimal solution is of course obvious if the polyhedron of
feasible points is bounded, i.e. compact, since the objective function is con-
tinuous. For arbitrary LP problems, we rely on the representation theorem
for polyhedra to prove the existence of optimal solutions.

Theorem 12.1.1. Suppose that the polyhedron X of feasible solutions in the
LP problem (P) is nonempty and a subset of Rn. Then we have:

(i) The value function vmin : R
n → R is concave with effective domain

dom vmin = (reccX)+.

The objective function 〈c, x〉 is, in other words, bounded below on X if
and only if c belongs to the dual cone of the recession cone of X.

62
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(ii) The problem has optimal solutions for each c ∈ (reccX)+, and the set
of optimal solutions is a polyhedron. Moreover, the optimum is attained
at some extreme point of X if X is a line-free polyhedron.

Proof. By definition, the optimal value vmin(c) = inf{〈c, x〉 | x ∈ X} is
the pointwise infimum of a family of concave functions, namely the linear
functions c �→ 〈c, x〉, with x running through X. So the value function vmin

is concave by Theorem 6.2.4 in Part I.

Let us now determine dom vmin, i.e. the set of c such that vmin(c) > −∞.
By the structure theorem for polyhedra (Theorem 5.3.1 in Part I), there is a
finite nonempty set A such that X = cvxA+reccX, where A = extX if the
polyhedron is line-free. The optimal value vmin(c) can therefore be calculated
as follows:

vmin(c) = inf{〈c, y + z〉 | y ∈ cvxA, z ∈ reccX}(12.1)

= inf{〈c, y〉 | y ∈ cvxA}+ inf{〈c, z〉 | z ∈ reccX}
= min{〈c, y〉 | y ∈ A}+ inf{〈c, z〉 | z ∈ reccX},

The equality inf{〈c, y〉 | y ∈ cvxA} = min{〈c, y〉 | y ∈ A} holds because of
Theorem 6.3.3 in Part I, since linear functions are concave.

If c belongs to the dual cone (reccX)+, then 〈c, z〉 ≥ 0 for all vectors
z ∈ reccX with equality for z = 0, and it follows from equation (12.1) that

vmin(c) = min{〈c, y〉 | y ∈ A} > −∞.

This proves the inclusion (reccX)+ ⊆ dom vmin, and that the optimal value
is attained at a point in A, and then in particular at some extreme point of
X if the polyhedron X is line-free.

If c /∈ (reccX)+, then 〈c, z0〉 < 0 for some vector z0 ∈ reccX. Since
tz0 ∈ reccX for t > 0 and limt→∞〈c, tz0〉 = −∞, it follows that

inf{〈c, z〉 | z ∈ reccX} = −∞,

and equation (12.1) now implies that vmin(c) = −∞. This concludes the
proof of the equality dom vmin = (reccX)+.

The set of minimum points to an LP problem with finite value vmin is
equal to the intersection

X ∩ {x ∈ Rn | 〈c, x〉 = vmin}

between the polyhedron X and a hyperplane, and it is consequently a poly-
hedron.
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c

〈c, x〉 = k′

〈c, x〉 = k

〈c, x〉 = vmin

x̂

X

Figure 12.1. The minimum of 〈c, x〉 over the line-
free polyhedron X is attained at an extreme point.

Example 12.1.1. The polyhedron X of feasible points for the LP problem

min x1 + x2

s.t.





x1 − x2 ≥−2
x1 + x2 ≥ 1

−x1 ≥−3

has three extreme points, namely (3, 5), (−1
2
, 3
2
) and (3,−2). The values of

the objective function f(x) = x1 + x2 at these points are f(3, 5) = 8 and
f(−1

2
, 3
2
) = f(3,−2) = 1. The least of these is 1, which is the optimal value.

The optimal value is attained at two extreme points, (1
2
, 3
2
) och (3,−2), and

thus also at all points on the line segment between those two points.

(− 1
2
, 3
2
)

(3, 5)

(3,−2)

x1 + x2 = k

x1

x2

Figure 12.2. Illustration for Example 12.1.1.

Suppose that X = {x ∈ Rn | Ax ≥ b} is a line-free polyhedron and
that we want to minimize a given linear function over X. To determine the
optimal value of this LP problem, we need according to the previous theorem,
assuming that the objective function is bounded below on X, only calculate
function values at the finitely many extreme points of X. In theory, this
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is easy, but in practice it can be an insurmountable problem, because the
number of extreme points may be extremely high. The number of potential
extreme points of X when A is an m × n-matrix, equals

(
m
n

)
, which for

m = 100 and n = 50 is a number that is greater than 1029. The simplex
algorithm, which we will study in Chapter 13, is based on the idea that
it is not necessary to search through all the extreme points; the algorithm
generates instead a sequence x1, x2, x3, . . . of extreme points with decreasing
objective function values 〈c, x1〉 ≥ 〈c, x2〉 ≥ 〈c, x3〉 ≥ . . . until the minimum
point is found. The number of extreme points that needs to be investigated
is therefore generally relatively small.

Sensitivity analysis

Let us rewrite the polyhedron of feasible points in the LP problem

(P) min 〈c, x〉
s.t. x ∈ X

as

X = cvxA+ conB
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with finite sets A and B. We know from the preceding theorem and its proof
that a feasible point x is optimal for the LP problem if and only if

{
〈c, a〉 ≥ 〈c, x〉 for all a ∈ A

〈c, b〉 ≥ 0 for all b ∈ B,

and these inequalities define a convex cone Cx in the variable c. The set of
all c for which a given feasible point is optimal, is thus a convex cone.

Now suppose that x is indeed an optimal solution to (P). How much
can we change the coefficients of the objective function without changing
the optimal solution? The study of this issue is an example of sensitivity
analysis.

Expressed in terms of the cone Cx, the answer is simple: If we change
the coefficients of the objective function to c+∆c, then x is also an optimal
solution to the perturbed LP problem

(P′) min 〈c+∆c, x〉
s.t. x ∈ X

if and only if c+∆c belongs to the cone Cx, i.e. if and only if ∆c lies in the
polyhedron −c+ Cx.

In summary, we have thus come to the following conclusions.

Theorem 12.1.2. (i) The set of all c for which a given feasible point is
optimal in the LP problem (P), is a convex cone.

(ii) If x is an optimal solution to problem (P), then there is a polyhedron
such that x is also an optimal solution to the perturbed LP problem (P ′)
for all ∆c in the polyhedron.

The set {∆ck | ∆c ∈ −c+ Cx and ∆cj = 0 for j �= k} is a (possibly un-
bounded) closed interval [−dk, ek] around 0. An optimal solution to the prob-
lem (P) is therefore also optimal for the perturbed problem that is obtained
by only varying the objective coefficient ck, provided that the perturbation
∆ck lies in the interval −dk ≤ ∆ck ≤ ek. Many computer programs for
LP problems, in addition to generating the optimal value and the optimal
solution, also provide information about these intervals.

Sensitivity analysis will be studied in connection with the simplex algo-
rithm in Chapter13.7.

Example 12.1.2. The printout of a computer program that was used to solve
an LP problem with c = (20, 30, 40, . . . ) contained among other things the
following information:
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Optimal value: 4000 Optimal solution: x = (50, 40, 10, . . . )

Sensitivity report: Variable Value Objective Allowable Allowable
coeff. decrease increase

x1 50 20 15 5
x2 40 30 10 10
x3 10 40 15 20
...

...
...

...
...

Use the printout to determine the optimal solution and the optimal value
if the coefficients c1, c2 and c3 are changed to 17, 35 and 45, respectively, and
the other objective coefficients are left unchanged.

Solution: The columns ”Allowable decrease” and ”Allowable increase” show
that the polyhedron of changes ∆c that do not affect the optimal solution
contains the vectors (−15, 0, 0, 0, . . . ), (0, 10, 0, 0, . . . ) and (0, 0, 20, 0, . . . ).
Since

(−3, 5, 5, 0, . . . ) = 1
5
(−15, 0, 0, 0, . . . ) + 1

2
(0, 10, 0, 0, . . . ) + 1

4
(0, 0, 20, 0, . . . )

and 1
5
+ 1

2
+ 1

4
= 19

20
< 1, ∆c = (−3, 5, 5, 0, . . . ) is a convex combination of

changes that do not affect the optimal solutions, namley the three changes
mentioned above and (0, 0, 0, 0, . . . ). The solution x = (50, 40, 10, . . . ) is
therefore still optimal for the LP problem with c = (17, 35, 45, . . . ). However,
the new optimal value is of course 4000− 20 · 3 + 30 · 5 + 40 · 5 = 4290.

12.2 Duality

Dual problems

By describing the polyhedron X in a linear minimization problem

min 〈c, x〉
s.t. x ∈ X

as the solution set of a system of linear inequalities, we get a problem with
a corresponding Lagrange function, and hence also a dual function and a
dual problem. The description of X as a solution set is of course not unique,
so the dual problem is not uniquely determined by X as a polyhedron, but
whichever description we choose, we get, according to Theorem 11.1.1, a dual
problem, where strong duality holds, because Slater’s condition is satisfied
for convex problems with affine constraints.

Download free eBooks at bookboon.com



LINEAR AND CONVEX OPTIMIZATION: 
CONVEXITY AND OPTIMIZATION – PART II

68

Linear programming

68

68 12 Linear programming

In this section, we describe the dual problem for some commonly occur-
ring polyhedron descriptions, and we give an alternative proof of the duality
theorem. Our premise is that the polyhedron X is given as

X = {x ∈ U+ | Ax− b ∈ V +},

where
• U and V are finitely generated cones in Rn and Rm, respectively;
• A is an m× n-matrix;

• b is a vector in Rm.

As usual, we identify vectors with column matrices and matrices with linear
transformations. The set X is of course a polyhedron, for by writing

X = U+ ∩ A−1(b+ V +)

we see that X is an intersection of two polyhedra − the conical polyhe-
dron U+ and the inverse image A−1(b + V +) under the linear map A of the
polyhedron b+ V +.
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The LP problem of minimizing 〈c, x〉 over the polyhedron X with the
above description will now be written

(P) min 〈c, x〉
s.t. Ax− b ∈ V +, x ∈ U+

and in order to form a suitable dual problem we will perceive the condition
x ∈ U+ as an implicit constraint and express the other condition Ax−b ∈ V +

as a system of linear inequalities. Assume therefore that the finitely generated
cone V is generated by the columns of the m× k-matrix D, i.e. that

V = {Dz | z ∈ Rk
+}.

The dual cone V + can then be written as

V + = {y ∈ Rm | DTy ≥ 0},
and the constraint Ax − b ∈ V + can now be expressed as a system of in-
equalities, namely DTAx−DTb ≥ 0.

Our LP problem (P) has thus been transformed into

min 〈c, x〉
s.t. DTb−DTAx ≤ 0, x ∈ U+.

The associated Lagrange function L : U+ × Rk
+ → R is defined by

L(x, λ) = 〈c, x〉+ 〈λ,DTb−DTAx〉 = 〈c− ATDλ, x〉+ 〈b,Dλ〉,

and the corresponding dual function φ : Rk
+ → R is given by

φ(λ) = inf
x∈U+

L(x, λ) =

{
〈b,Dλ〉 , if c− ATDλ ∈ U

−∞ , otherwise.

This gives us a dual problem of the form

max 〈b,Dλ〉
s.t. c− ATDλ ∈ U, λ ∈ Rk

+.

Since Dλ describes the cone V as λ runs through Rk
+, we can by setting

y = Dλ reformulate the dual problem so that it becomes

max 〈b, y〉
s.t. c− ATy ∈ U, y ∈ V.

It is therefore natural to define duality for LP problems of the form (P) as
follows.
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Definition. Given the LP problem

(P) min 〈c, x〉
s.t. Ax− b ∈ V +, x ∈ U+,

which we call the primal problem, we call the problem

(D) max 〈b, y〉
s.t. c− ATy ∈ U, y ∈ V

the dual LP problem.
The optimal values of the two problems are denoted by vmin(P ) and

vmax(D). The polyhedron of feasible points will be denoted by X for the
primal problem and by Y for the dual problem.

Example 12.2.1. Different choices of the cones U and V give us different
concrete dual problems (P) and (D). We exemplify with four important spe-
cial cases.

1. The choice U = {0}, U+ = Rn and V = V + = Rm
+ gives us the following

dual pair:

(P1) min 〈c, x〉
s.t. Ax ≥ b

and (D1) max 〈b, y〉
s.t. ATy = c, y ≥ 0.

Every LP problem can be expressed in the form (P1), because every poly-
hedron can be expressed as an intersection of halfspaces, i.e. be written as
Ax ≥ b.

2. The choice U = U+ = Rn
+ and V = V + = Rm

+ gives instead the dual pair:

(P2) min 〈c, x〉
s.t. Ax ≥ b, x ≥ 0

and (D2) max 〈b, y〉
s.t. ATy ≤ c, y ≥ 0.

This is the most symmetric formulation of duality, and the natural formu-
lation for many application problems with variables that represent physical
quantities or prices, which of course are nonnegative. The diet problem and
the production planning problem in Chapter 9.4 are examples of such prob-
lems.

3. U = U+ = Rn
+, V = Rm and V + = {0} result in the dual pair:

(P3) min 〈c, x〉
s.t. Ax = b, x ≥ 0

and (D3) max 〈b, y〉
s.t. ATy ≤ c.

The formulation (P3) is the natural starting point for the simplex algo-
rithm.
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4. The choice U = {0}, U+ = Rn, V = Rm and V + = {0} gives us the pair

(P4) min 〈c, x〉
s.t. Ax = b

and (D4) max 〈b, y〉
s.t. ATy = c.

Example 12.2.2. A trivial example of dual LP problems in one variable is

min 5x
s.t. 2x ≥ 4

and max 4y
s.t. 2y = 5, y ≥ 0

Both problems have the optimal value 10.

Example 12.2.3. The problems

min x1 + x2

s.t.





x1 − x2 ≥−2
x1 + x2 ≥ 1

−x1 ≥ −3

and max −2y1 + y2 − 3y3

s.t.





y1 + y2 − y3 = 1
−y1 + y2 = 1

y1, y2, y3 ≥ 0

are dual. The optimal solutions to the primal minimization problem were
determined in Example 12.1.1 and the optimal value was found to be 1. The
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feasible points for the dual maximization problem are of the form

y = (t, 1 + t, 2t)

with t ≥ 0, and the corresponding values of the objective function are 1− 7t.
The maximum value is attained for t = 0 at the point (0, 1, 0), and the
maximum value is equal to 1.

The Duality Theorem

The primal and dual problems in Examples 12.2.2 and 12.2.3 have the same
optimal value, and this is no coincidence but a consequence of the duality
theorem, which is formulated below and is a special case of the duality the-
orem for general convex problems (Theorem 11.1.1). In this section we give
an alternative proof of this important theorem, and we start with the trivial
result about weak duality.

Theorem 12.2.1 (Weak duality). The optimal values of the two dual LP prob-
lems (P) and (D) satisfy the inequality

vmax(D) ≤ vmin(P ).

Proof. The inequality is trivially satisfied if any of the two polyhedra X and
Y of feasible points is empty, because if Y = ∅ then vmax(D) = −∞, by
definition, and if X = ∅ then vmin(P ) = +∞, by definition.

Assume therefore that both problems have feasible points. If x ∈ X and
y ∈ Y , then y ∈ V , (Ax− b) ∈ V +, (c−ATy) ∈ U and x ∈ U+, by definition,
and hence 〈Ax− b, y〉 ≥ 0 and 〈c− ATy, x〉 ≥ 0. It follows that

〈b, y〉 ≤ 〈b, y〉+ 〈c− ATy, x〉 = 〈b, y〉+ 〈c, x〉 − 〈y, Ax〉
= 〈c, x〉+ 〈b, y〉 − 〈Ax, y〉 = 〈c, x〉 − 〈Ax− b, y〉 ≤ 〈c, x〉.

The objective function 〈b, y〉 in the maximization problem (D) is in other
words bounded above on Y by 〈c, x〉 for each x ∈ X, and hence

vmax(D) = sup
y∈Y

〈b, y〉 ≤ 〈c, x〉.

The objective function 〈c, x〉 in the minimization problem (P) is therefore
bounded below on X by vmax(D). This implies that vmax(D) ≤ vmin(P ) and
completes the proof of the theorem.

The following optimality criterion follows from weak duality.
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Theorem 12.2.2 (Optimality criterion). Suppose that x̂ is a feasible point for
the minimization problem (P), that ŷ is a feasible point for the dual maxi-
mization problem (D), and that

〈c, x̂〉 = 〈b, ŷ〉.
Then x̂ and ŷ are optimal solutions of the respective problems.

Proof. The assumptions on x̂ and ŷ combined with Theorem 12.2.1 give us
the following chain of inequalities

vmax(D) ≥ 〈b, ŷ〉 = 〈c, x̂〉 ≥ vmin(P ) ≥ vmax(D).

Since the two extreme ends are equal, there is equality everywhere, which
means that ŷ is a maximum point and x̂ is a minimum point.

Theorem 12.2.3 (Duality theorem). Suppose that at least one of the two dual
LP problems

min 〈c, x〉
s.t. Ax− b ∈ V +, x ∈ U+

(P)

and

max 〈b, y〉
s.t. c− ATy ∈ U, y ∈ V

(D)

has feasible points. Then, the two problem have the same optimal value.

Thus, provided that at least one of the two dual problems has feasible points:

(i) X = ∅ ⇔ the objective function 〈b, y〉 is not bounded above on Y .

(ii) Y = ∅ ⇔ the objective function 〈c, x〉 is not bounded below on X.

(iii) If X �= ∅ and Y �= ∅, then there exist points x̂ ∈ X and ŷ ∈ Y such
that 〈b, y〉 ≤ 〈b, ŷ〉 = 〈c, x̂〉 ≤ 〈c, x〉 for all x ∈ X and all y ∈ Y .

The duality theorem for linear programming problems is a special case
of the general duality theorem for convex problems, but we give here an
alternative proof based directly on the following variant of Farkas’s lemma.

Lemma. The system

(12.2)

{
〈c, x〉≤ α

x ∈X

has a solution if and only if the systems

{
〈b, y〉> α

y ∈ Y
and (12.3-B)




〈b, y〉 = 1
−ATy ∈ U

y ∈ V
(12.3-A)

both have no solutions,
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Proof. The system (12.2), i.e.





〈c, x〉≤α
Ax− b ∈ V +

x ∈ U+,

is solvable if and only if the following homogenized system is solvable:

(12.2′)





〈c, x〉 ≤ αt
Ax− bt ∈ V +

x ∈ U+

t∈ R
t > 0.

(If x solves the system (12.2), then (x, 1) solves the system (12.2′), and if
(x, t) solves the system (12.2′), then x/t solves the system (12.2).) We can
write the system (12.2′) more compactly by introducing the matrix

Ã =

[
α −cT

−b A

]
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and the vectors x̃ = (t, x) ∈ R× Rn and d = (−1, 0) ∈ R× Rn, namely as

(12.2′′)





Ãx̃ ∈ R+ × V +

x̃ ∈ R× U+

dTx̃ < 0.

By Theorem 3.3.2 in Part I, the system (12.2′′) is solvable if and only if
the following dual system has no solutions:

(12.3′′)

{
d− ÃTỹ ∈ {0} × U

ỹ ∈ R+ × V .

Since

ÃT =

[
α −bT

−c AT

]
,

we obtain the following equivalent system from (12.3′′) by setting ỹ = (s, y)
with s ∈ R and y ∈ Rm:

(12.3′)




−1− αs+ 〈b, y〉 = 0
cs− ATy ∈ U

y ∈ V
s ≥ 0.

The system (12.2) is thus solvable if and only if the system (12.3′) has no
solutions, and by considering the cases s > 0 and s = 0 separately, we see
that the system (12.3′) has no solutions if and only if the two systems




〈b, y/s〉= α+1/s
c− AT(y/s) ∈ U

y/s ∈ V
s> 0

and




〈b, y〉= 1
−ATy ∈ U

y ∈ V

have no solutions, and this is obviously the case if and only if the systems
(12.3-A) and (12.3-B) both lack solutions.

Proof of the duality theorem. We now return to the proof of the duality
theorem, and because of weak duality, we only need to show the inequality

(12.4) vmin(P ) ≤ vmax(D).

We divide the proof of this inequality in three separate cases.
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Case 1. Y �= ∅ and the system (12.3-B) has no solution.

The inequality (12.4) is trivially true if vmax(D) = ∞. Therefore, assume
that vmax(D) < ∞. Then, because of the definition of vmax(D), the system
(12.3-A) has no solution when α = vmax(D). So neither of the two systems in
(12.3) has a solution for α = vmax(D). Thus, the system (12.2) has a solution
for this α-value by the lemma, which means that there is a feasible point x̂
such that 〈c, x̂〉 ≤ vmax(D). Consequently, vmin(P ) ≤ 〈c, x̂〉 ≤ vmax(D).

Note that it follows from the proof that the minimization problem actually
has an optimal solution x̂.

Case 2. Y = ∅ and the system (12.3-B) has no solution.

The system (12.3-A) now lacks solutions for all values of α, so it follows
from the lemma that the system (12.2) is solvable for all α-values, and this
means that the objective function 〈c, x〉 is unbounded below on X. Hence,
vmin(P ) = −∞ = vmax(D) in this case.

Case 3. The system (12.3-B) has a solution

It now follows from the lemma that the system (12.2) has no solution for all
values of α, and this implies that the set X of feasible solutions is empty.
The polyhedron Y of feasible points in the dual problem is consequently
nonempty. Choose a point y0 ∈ Y , let y be a solution to the system (12.3-B)
and consider the points yt = y0 + ty for t > 0. The vectors yt belong to V ,
because they are conical combinations of vectors in V . Moreover, the vectors
c−ATyt = (c−ATy0)− tATy are conic combinations of vectors in U and thus
belong to U . This means that the vector yt lies in Y for t > 0, and since

〈b, yt〉 = 〈b, y0〉+ t〈b, y〉 = 〈b, y0〉+ t → +∞

as t → ∞, we conclude that vmax(D) = ∞. The inequality (12.4) is in other
words trivially fulfilled.

The Complementary Theorem

Theorem 12.2.4 (Complementary theorem). Suppose that x̂ is a feasible point
for the LP problem (P) and that ŷ is a feasible point for the dual LP problem
(D). Then, the two points are optimal for their respective problems if and
only if

〈c− ATŷ, x̂〉 = 〈Ax̂− b, ŷ〉 = 0.

Proof. Note first that due to the definition of the polyhedra X and Y of
feasible points, we have 〈Ax−b, y〉 ≥ 0 for all points x ∈ X and y ∈ V , while
〈c− ATy, x〉 ≥ 0 for all points y ∈ Y and x ∈ U .
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In particular, 〈Ax̂ − b, ŷ〉 ≥ 0 and 〈c − ATŷ, x̂〉 ≥ 0 if x̂ is an optimal
solution to the primal problem (P) and ŷ is an optimal solution to the dual
problem (D). Moreover, 〈c, x̂〉 = 〈b, ŷ〉 because of the Duality theorem, so it
follows that

〈c, x̂〉−〈Ax̂−b, ŷ〉 ≤ 〈c, x̂〉 = 〈b, ŷ〉 ≤ 〈b, ŷ〉+〈c−ATŷ, x̂〉 = 〈c, x̂〉−〈Ax̂−b, ŷ〉.

Since the two extreme ends of this inequality are equal, we have equality
everywhere, i.e. 〈Ax̂− b, ŷ〉 = 〈c− ATŷ, x̂〉 = 0.

Conversely, if 〈c − ATŷ, x̂〉 = 〈Ax̂ − b, ŷ〉 = 0, then 〈c, x̂〉 = 〈ATŷ, x̂〉 and
〈b, ŷ〉 = 〈Ax̂, ŷ〉, and since 〈ATŷ, x̂〉 = 〈Ax̂, ŷ〉, we conclude that 〈c, x̂〉 =
〈b, ŷ〉. The optimality of the two points now follows from the Optimality
criterion.

Let us for clarity formulate the Complementarity theorem in the impor-
tant special case when the primal and dual problems have the form described
as Case 2 in Example 12.2.1.

Corollary 12.2.5. Suppose that x̂ and ŷ are feasible points for the dual prob-
lems

min 〈c, x〉
s.t. Ax ≥ b, x ≥ 0

(P2)

and

max 〈b, y〉
s.t. ATy ≤ c, y ≥ 0.

(D2)

respectively. Then, they are optimal solutions if and only if

(12.5)

{
(Ax̂)i > bi ⇒ ŷi = 0

x̂j > 0 ⇒ (ATŷ)j = cj

In words we can express condition (12.5) as follows, which explains the term
’complementary slackness’: If x̂ satisfies an individual inequality in the sys-
tem Ax ≥ b strictly, then the corresponding dual variable ŷi has to be equal
to zero, and if ŷ satisfies an individual inequality in the system ATy ≤ c
strictly, then the corresponding primal variable xj has to be equal to zero.

Proof. Since 〈Ax̂− b, ŷ〉 =
∑m

i=1((Ax̂)i− bi)ŷi is a sum of nonnegative terms,
we have 〈Ax̂ − b, ŷ〉 = 0 if and only if all the terms are equal to zero, i.e. if
and only if (Ax̂)i > bi ⇒ ŷi = 0.

Similarly, 〈c − ATŷ, x̂〉 = 0 if and only if x̂j > 0 ⇒ (ATŷ)j = cj. The
corollary is thus just a reformulation of Theorem 12.2.4 for dual problems of
type (P2)–(D2).
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The curious reader may wonder whether the implications in the condition
(12.5) can be replaced by equivalences. The following trivial example shows
that this is not the case.

Example 12.2.4. Consider the dual problems

min x1 + 2x2

s.t. x1 + 2x2 ≥ 2, x ≥ 0
and max 2y

s.t.

{
y ≤ 1
2y ≤ 2, y ≥ 0

with A = cT =
[
1 2

]
and b = [2]. The condition (12.5) is not fulfilled with

equivalence at the optimal points x̂ = (2, 0) and ŷ = 1, because x̂2 = 0 and
(ATŷ)2 = 2 = c2.

However, there are other optimal solutions to the minimization problem;
all points on the line segment between (2, 0) and (0, 1) are optimal, and the
optimal pairs x̂ = (2 − 2t, t) and ŷ = 1 satisfy the condition (12.5) with
equivalence for 0 < t < 1.

The last conclusion in the above example can be generalized. All dual
problems with feasible points have a pair of optimal solutions x̂ and ŷ that
satisfy the condition (12.5) with implications replaced by equivalences. See
exercise 12.8.
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Example 12.2.5. The LP problem

min −x1 + 2x2 + x3 + 2x4

s.t.





−x1 − x2 − 2x3 + x4 ≥ 4
−2x1 + x2 +3x3 + x4 ≥ 8

x1, x2, x3, x4 ≥ 0

is easily solved by first solving the dual problem

max 4y1 + 8y2

s.t.





−y1 − 2y2 ≤−1
−y1 + y2 ≤ 2
−2y1 +3y2 ≤ 1

y1 + y2 ≤ 2
y1, y2 ≥ 0

graphically and then using the Complementary theorem.

4y1 + 8y2 = 12

1 2 y1

1

2

y2

Figure 12.3. A graphical solution to
the maximization problem in Ex. 12.2.5.

A graphical solution is obtained from figure 12.3, which shows that ŷ =
(1, 1) is the optimal point and that the value is 12. Since ŷ satisfies the first
two constraints with strict inequality and ŷ1 > 0 and ŷ2 > 0, we obtain the
optimal solution x̂ to the minimization problem as a solution to the system




−x1 − x2 − 2x3 + x4 = 4
−2x1 + x2 +3x3 + x4 = 8

x1 = 0
x2 = 0
x1, x2, x3, x4 ≥ 0.

The solution to this system is x̂ =
(
0, 0, 4

5
, 28

5

)
, and the optimal value is 12,

which it of course has to be according to the Duality theorem.
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Exercises

12.1 The matrix A and the vector c are assumed to be fixed in the LP problem

min 〈c, x〉
s.t. Ax ≥ b

but the right hand side vector b is allowed to vary. Suppose that the problem
has a finite value for some right hand side b. Prove that for each b, the value
is either finite or there are no feasible points. Show also that the optimal
value is a convex function of b.

12.2 Give an example of dual problems which both have no feasible points.

12.3 Use duality to show that (3, 0, 1) is an optimal solution to the LP problem

min 2x1 + 4x2 + 3x3

s.t.



2x1 +3x2 +4x3 ≥ 10
x1 +2x2 ≥ 3

2x1 +7x2 +2x3 ≥ 5, x ≥ 0.

12.4 Show that the column player’s problem and the row player’s problem in a
two-person zero-sum game (see Chapter 9.4) are dual problems.

12.5 Investigate how the optimal solution to the LP problem

max x1 + x2

s.t.



tx1 + x2 ≥−1
x1 ≤ 2
x1 − x2 ≥ −1

depends on the parameter t.

12.6 The Duality theorem follows from Farkas’s lemma (Corollary 3.3.3 in Part I).
Show conversely that Farkas’s lemma follows from the Duality theorem by
considering the dual problems

min 〈c, x〉
s.t. Ax ≥ 0

and max 〈0, y〉
s.t. ATy = c, y ≥ 0

12.7 Let Y = {y ∈ Rm | c− ATy ∈ U, y ∈ V }, where U and V are closed convex
cones, and suppose that Y �= ∅.

a) Show that reccY = {y ∈ Rm | −ATy ∈ U, y ∈ V }.

b) Show that the system (12.3-B) has a solution if and only if the vector −b
does not belong to the dual cone of reccY .

c) Show, using the result in b), that the conclusion in case 3 of the proof of
the Duality theorem follows from Theorem 12.1.1, i.e. that vmax(D) = ∞ if
(and only if) the system (12.3-B) has a solution.
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12.8 Suppose that the dual problems

min 〈c, x〉
s.t. Ax ≥ b, x ≥ 0

and max 〈b, y〉
s.t. ATy ≤ c, y ≥ 0

both have feasible points. Prove that there exist optimal solutions x̂ and ŷ
to the problems that satisfy

{
(Ax̂)i > bi ⇔ ŷi = 0

x̂j > 0 ⇔ (ATŷ)j = cj .

[Hint: Because of the Complementarity theorem it suffices to show that the
following system of inequalities has a solution: Ax ≥ b, x ≥ 0, ATy ≤ c,
y ≥ 0, 〈b, y〉 ≥ 〈c, x〉, Ax+ y > b, Ay − c < x. And this system is solvable if
and only if the following homogeneous system is solvable: Ax−bt ≥ 0, x ≥ 0,
−ATy+ ct ≥ 0, y ≥ 0, −〈c, x〉+ 〈b, y〉 ≤ 0, Ax+y− bt > 0, x−ATy+ ct > 0,
t > 0. The solvability can now be decided by using Theorem 3.3.7 in Part I.]
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Chapter 13

The simplex algorithm

For practical purposes, there are somewhat simplified two kinds of methods
for solving LP problems. Both generate a sequence of points with progres-
sively better objective function values. Simplex methods, which were intro-
duced by Dantzig in the late 1940s, generate a sequence of extreme points of
the polyhedron of feasible points in the primal (or dual) problem by moving
along the edges of the polyhedron. Interior-point methods generate instead,
as the name implies, points in the interior of the polyhedron. These methods
are derived from techniques for non-linear programming, developed by Fiacco
and McCormick in the 1960s, but it was only after Karmarkars innovative
analysis in 1984 that the methods began to be used for LP problems.

In this chapter, we describe and analyze the simplex algorithm.

13.1 Standard form

The simplex algorithm requires that the LP problem is formulated in a special
way, and the variant of the algorithm that we will study assumes that the
problem is a minimization problem, that all variables are nonnegative and
that all other constraints are formulated as equalities.

Definition. An LP problem has standard form if it has the form

min c1x1 + c2x2 + · · ·+ cnxn

s.t.




a11x1 + a12x2 + · · ·+ a1nxn = b1
...

am1x1 + am2x2 + · · ·+ amnxn = bm
x1, x2, . . . , xn ≥ 0.

82
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By introducing the matrices

A =




a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn


 , b =




b1
b2
...
bm


 and c =




c1
c2
...
cn




we get the following compact writing for an LP problem in standard form:

min 〈c, x〉
s.t. Ax = b, x ≥ 0.

We noted in Chapter 9 that each LP problem can be transformed into an
equivalent LP problem in standard form by using slack/surplus variables and
by replacing unrestricted variables with differences of nonnegative variables.

Duality

We gave a general definition of the concept of duality in Chapter 12.2 and
showed that dual LP problems have the same optimal value, except when
both problems have no feasible points. In our description of the simplex
algorithm, we will need a special case of duality, and to make the presenta-
tion independent of the results in the previous chapter, we now repeat the
definition for this special case.

Definition. The LP problem

(D) max 〈b, y〉
s.t. ATy ≤ c

is said to be dual to the LP problem

(P) min 〈c, x〉
s.t. Ax = b, x ≥ 0.

We shall use the following trivial part of the Duality theorem.

Theorem 13.1.1 (Weak duality). If x is a feasible point for the minimization
problem (P) and y is a feasible point for the dual maximization problem (D),
i.e. if Ax = b, x ≥ 0 and ATy ≤ c, then

〈b, y〉 ≤ 〈c, x〉.

Proof. The inequalities ATy ≤ c and x ≥ 0 imply that att 〈x,ATy〉 ≤ 〈x, c〉,
and hence

〈b, y〉 = 〈Ax, y〉 = 〈x,ATy〉 ≤ 〈x, c〉 = 〈c, x〉.
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Corollary 13.1.2 (Optimality criterion). Suppose that x̂ is a feasible point for
the minimization problem (P), that ŷ is a feasible point for the dual maxi-
mization problem (D), and that 〈c, x̂〉 = 〈b, ŷ〉. Then x̂ and ŷ are optimal
solutions to the respective problems.

Proof. It follows from the assumptions and Theorem 13.1.1, applied to the
point y and an arbitrary feasible point x for the minimization problem, that

〈c, x〉 = 〈b, y〉 ≤ 〈c, x〉

for all feasible points x. This shows that x is a minimum point, and an
analogous argument shows that y is a maximum point.

13.2 Informal description of the simplex al-

gorithm

In this section we describe the main features of the simplex algorithm with
the help of some simple examples. The precise formulation of the algorithm
and the proof that it works is given in sections 13.4 and 13.5.
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Example 13.2.1. We start with a completely trivial problem, namely

min f(x) = x3 + 2x4

s.t.

{
x1 +2x3 − x4 = 2

x2 − x3 + x4 = 3, x ≥ 0.

Since the coefficients of the objective function f(x) are positive and x ≥ 0, it
is clear that f(x) ≥ 0 for all feasible points x. There is also a feasible point
x with x3 = x4 = 0, namely x = (2, 3, 0, 0). The minimum is therefore equal
to 0, and (2, 3, 0, 0) is the (unique) minimum point.

Now consider an arbitrary problem of the form

(13.1) min f(x) = cm+1xm+1 + · · ·+ cnxn + d

s.t.





x1 + a1m+1xm+1 + . . . + a1nxn = b1
x2 + a2m+1xm+1 + . . . + a2nxn = b2

...
xm + amm+1xm+1 + . . . + amnxn = bm, x ≥ 0

where

b1, b2, . . . , bm ≥ 0.

If cm+1, cm+2, . . . , cn ≥ 0, then obviously f(x) ≥ d for all feasible points x,
and since x = (b1, . . . , bm, 0, . . . , 0) is a feasible point and f(x) = d, it follows
that d is the optimal value.

The constraint system in LP problem (13.1) has a very special form, for it
is solved with respect to the basic variables x1, x2, . . . , xm, and these variables
are not present in the objective function. Quite generally, we shall call a set
of variables basic to a given system of linear equations if it is possible to solve
the system with respect to the variables in the set.

Example 13.2.2. Let us alter the objective function in Example 13.2.1 by
changing the sign of the x3-coefficient. Our new problem thus reads as fol-
lows:

(13.2) min f(x) = −x3 + 2x4

s.t.

{
x1 +2x3 − x4 = 2

x2 − x3 + x4 = 3, x ≥ 0.

The point (2, 3, 0, 0) is of course still feasible and the corresponding value
of the objective function is 0, but we can get a smaller value by choosing
x3 > 0 and keeping x4 = 0. However, we must ensure that x1 ≥ 0 and
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x2 ≥ 0, so the first constraint equation yields the bound x1 = 2− 2x3 ≥ 0,
i.e. x3 ≤ 1.

We now transform the problem by solving the system (13.2) with respect
to the variables x2 and x3, i.e. by changing basic variables from x1, x2 to
x2, x3. Using Gaussian elimination, we obtain

{
1
2
x1 + x3 − 1

2
x4 = 1

1
2
x1 + x2 + 1

2
x4 = 4.

The new basic variable x3 is then eliminated from the objectiv function by
using the first equation in the new system. This results in

f(x) = 1
2
x1 +

3
2
x4 − 1,

and our problem has thus been reduced to a problem of the form (13.1),
namely

min 1
2
x1 +

3
2
x4 − 1

s.t.

{
1
2
x1 + x3 − 1

2
x4 = 1

1
2
x1 + x2 + 1

2
x4 = 4, x ≥ 0

with x2 and x3 as basic variables and with nonnegative coefficients for the
other variables in the objectiv function. Hence, the optimal value is equal to
−1, and (0, 4, 1, 0) is the optimal point.

The strategy for solving a problem of the form (13.1), where some co-
efficient cm+k is negative, consists in replacing one of the basic variables
x1, x2, . . . , xm with xm+k so as to obtain a new problem of the same form. If
the new c-coefficients are nonnegative, then we are done. If not, we have to
repeat the procedure. We illustrate with another example.

Example 13.2.3. Consider the problem

(13.3) min f(x) = 2x1 − x2 + x3 − 3x4 + x5

s.t.



x1 +2x4 − x5 = 5

x2 + x4 +3x5 = 4
x3 − x4 + x5 = 3, x ≥ 0.

First we have to eliminate the basic variables x1, x2, x3 from the objective
function with

(13.4) f(x) = −5x4 + 5x5 + 9

as result. Since the coefficient of x4 is negative, x4 has to be eliminated
from the objective function and from two constraint equations in such a way
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that the right hand side of the transformed system remains nonnegative.
The third equation in (13.3) can not be used for this elimination, since the
coefficient of x4 is negative. Eliminating x4 from the first equation by using
the second equation results in the equation x1 − 2x2 − 7x5 = 5− 2 · 4 = −3,
which has an illegal right-hand side. It therefore only remains to use the first
of the constraints in (13.3) for the elimination. We then get the following
equivalent system

(13.5)





1
2
x1 + x4 − 1

2
x5 = 5

2

−1
2
x1 + x2 + 7

2
x5 = 3

2
1
2
x1 + x3 + 1

2
x5 = 11

2
, x ≥ 0

with x2, x3, x4 as new basic variables.
The reason why the right-hand side of the system remains positive when

the first equation of (13.3) is used for the elimination of x4, is that the ratio
of the right-hand side and the x4-coefficient is smaller for the first equation
than for the second (5/2 < 4/1).

We now eliminate x4 from the objective function, using equation (13.4)
and the first equation of the system (13.5), and obtain

f(x) = 5
2
x1 +

5
2
x5 − 7

2
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which is to be minimized under the constraints (13.5). The minimum value
is clearly equal to −7

2
, and (0, 3

2
, 11

2
, 5
2
, 0) is the minimum point.

To reduce the writing it is customary to omit the variables and only work
with coefficients in tabular form. The problem (13.3) is thus represented by
the following simplex tableau:

1 0 0 2 −1 5
0 1 0 1 3 4
0 0 1 −1 1 3
2 −1 1 −3 1 f

The upper part of the tableau represents the system of equations, and the
lower row represents the objective function f . The vertical line corresponds
to the equality signs in (13.3).

To eliminate the basic variables x1, x2, x3 from the objective function we
just have to add −2 times row 1, row 2 and −1 times row 3 to the objective
function row in the above tableau. This gives us the new tableau

1 0 0 2 −1 5
0 1 0 1 3 4
0 0 1 −1 1 3
0 0 0 −5 5 f − 9

The bottom row corresponds to equation (13.4). Note that the constant term
9 appears on the other side of the equality sign compared to (13.4), and this
explains the minus sign in the tableau. We have also highlighted the basic
variables by underscoring.

Since the x4-coefficient of the objective function is negative, we have to
transform the tableau in such a way that x4 becomes a new basic variable.
By comparing the ratios 5/2 and 4/1 we conclude that the first row has to
be the pivot row, i.e. has to be used for the eliminations. We have indicated
this by underscoring the coefficient in the first row and the fourth column of
the tableau, the so-called pivot element.

Gaussian elimination gives rise to the new simplex tableau

1
2

0 0 1 −1
2

5
2

−1
2

1 0 0 7
2

3
2

1
2

0 1 0 1
2

11
2

5
2

0 0 0 5
2

f + 7
2

Since the coefficients of the objective function are now nonnegative, we can
read the minimum, with reversed sign, in the lower right corner of the tableau.
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The minimum point is obtained by assigning the value 0 to the non-basic
variables x1 and x5, which gives x = (0, 3

2
, 11

2
, 5
2
, 0).

Example 13.2.4. Let us solve the LP problem

min x1 − 2x2 + x3

s.t.




x1 +2x2 +2x3 + x4 = 5
x1 + x3 + x5 = 2

x2 − 2x3 + x6 = 1, x ≥ 0.

The corresponding simplex tableau is

1 2 2 1 0 0 5
1 0 1 0 1 0 2
0 1 −2 0 0 1 1
1 −2 1 0 0 0 f

with x4, x5, x6 as basic variables, and these are already eliminated from the
objective function. Since the x2-coefficient of the objective function is nega-
tive, we have to introduce x2 as a new basic variable, and we have to use the
underscored element as pivot element, since 1/1 < 5/2. Using the third row,
the tableau is transformed into

1 0 6 1 0 −2 3
1 0 1 0 1 0 2
0 1 −2 0 0 1 1
1 0 −3 0 0 2 f + 2

and this tableau corresponds to the problem

min x1 − 3x3 + 2x6 − 2

s.t.



x1 +6x3 + x4 − 2x6 = 3
x1 + x3 + x5 = 2

x2 − 2x3 + x6 = 1, x ≥ 0.

Since the x3-coefficient in the objective function is now negative, we have
to repeat the procedure. We must thus introduce x3 as a new basic variable,
and this time we have to use the first row as pivot row, for 3/6 < 2/1. The
new tableau has the following form

1
6

0 1 1
6

0 −1
3

1
2

5
6

0 0 −1
6

1 1
3

3
2

1
3

1 0 1
3

0 1
3

2
3
2

0 0 1
2

0 1 f + 7
2
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We can now read off the minimum−7
2
and the minimum point (0, 2, 1

2
, 0, 3

2
, 0).

So far, we have written the function symbol f in the lower right corner of
our simplex tableaux. We have done this for pedagogical reasons to explain
why the function value in the box gets a reverse sign. Remember that the
last row of the previous simplex tableau means that

3
2
x1 +

1
2
x4 + x6 = f(x) + 7

2
.

Since the symbol has no other function, we will omit it in the future.

Example 13.2.5. The problem

min f(x) = −2x1 + x2

s.t.

{
x1 − x2 + x3 = 3

−x1 + x2 + x4 = 4, x ≥ 0

gives rise to the following simplex tableaux:

1 −1 1 0 3
−1 1 0 1 4
−2 1 0 0 0

1 −1 1 0 3
0 0 1 1 7
0 −1 2 0 6

Since the objective function has a negative x2-coefficient, we are now
supposed to introduce x2 as a basic variable, but no row will work as a
pivot row since the entire x2-column is non-positive. This implies that the
objective function is unbounded below, i.e. there is no minimum. To see this,
we rewrite the last tableau with variables in the form

min f(x) = −x2 + 2x3 − 6

s.t.

{
x1 = x2 − x3 +3
x4 = − x3 +7.

By choosing x2 = t and x3 = 0 we get a feasible point xt = (3 + t, t, 0, 7) for
each t ≥ 0, and since f(xt) = −t− 6 → −∞ as t → ∞, we conclude that the
objective function is unbounded below.

Examples 13.2.4 and 13.2.5 are typical for LP problems of the form (13.1).
In Section 13.5, namely, we show that one can always perform the iterations
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so as to obtain a final tableau similar to the one in Example 13.2.4 or the one
in Example 13.2.5, and in Section 13.6 we will show how to get started, i.e.
how to transform an arbitrary LP problem in standard form into a problem
of the form (13.1).

13.3 Basic solutions

In order to describe and understand the simplex algorithm it is necessary
first to know how to produce solutions to a linear system of equations. We
assume that Gaussian elimination is familiar and concentrate on describing
how to switch from one basic solution to another. We begin by reviewing the
notation that we will use in the rest of this chapter.

The columns of an m× n-matrix A will be denoted A∗1, A∗2, . . . , A∗n so
that

A =
[
A∗1 A∗2 . . . A∗n

]
.

We will often have to consider submatrices comprised of certain columns
in an m× n-matrix A. So if 1 ≤ k ≤ n and

α = (α1, α2, . . . , αk)
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is a permutation of k elements chosen from the set {1, 2, . . . , n}, we let A∗α
denote the m × k-matrix consisting of the columns A∗α1 , A∗α2 , . . . , A∗αk

in
the matrix A, i.e.

A∗α =
[
A∗α1 A∗α2 . . . A∗αk

]
.

And if

x =




x1

x2
...
xn




is a column matrix with n entries, then xα denotes the column matrix




xα1

xα2

...
xαk


 .

As usual, we make no distinction between column matrices with n entries
and vectors in Rn.

We consider permutations α = (α1, α2, . . . , αk) as ordered sets and allow
us therefore to write j ∈ α if j is any of the numbers α1, α2, . . . , αk. This
also allows us to write sums of the type

k∑
i=1

xαi
A∗αi

as ∑
j∈α

xjA∗j,

or with matrices as

A∗αxα.

Definition. Let A be anm×n-matrix of rankm, and let α = (α1, α2, . . . , αm)
be a permutation of m numbers from the set {1, 2, . . . , n}. The permutation
α is called a basic index set of the matrix A if the columns of them×m-matrix
A∗α form a basis for Rm.

The condition that the columns A∗α1 , A∗α2 , . . . , A∗αm form a basis is equiv-
alent to the condition that the submatrix

A∗α =
[
A∗α1 A∗α2 . . . A∗αm

]
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is invertible. The inverse of the matrix A∗α will be denoted by A−1
∗α . This

matrix, which thus means (A∗α)
−1, will appear frequently in the sequel − do

not confuse it with (A−1)∗α, which is not generally well defined.
If α = (α1, α2, . . . , αm) is a basic index set, so too is of course every

permutation of α.

Example 13.3.1. The matrix
[
3 1 1 −3
3 −1 2 −6

]

has the following basic index sets: (1, 2), (2, 1), (1, 3), (3, 1), (1, 4), (4, 1)
(2, 3), (3, 2), (2, 4), and (4, 2).

We also need a convenient way to show the result of replacing an element
in an ordered set with some other element. Therefore, letM = (a1, a2, . . . , an)
be an arbitrary n-tuple (ordered set). The n-tuple obtained by replacing the
item ar at location r with an arbitrary object x will be denoted by Mr̂[x]. In
other words,

Mr̂[x] = (a1, . . . , ar−1, x, ar+1, . . . , an).

An m × n-matrix can be regarded as an ordered set of columns. If b is
a column matrix with m entries and 1 ≤ r ≤ n, we therefore write Ar̂[b] for
the matrix [

A∗1 . . . A∗r−1 b A∗r+1 . . . A∗n
]
.

Another context in which we will use the above notation for replacement
of elements, is when α = (α1, α2, . . . , αm) is a permutation of m elements
taken from the set {1, 2, . . . , n}. If 1 ≤ r ≤ m, 1 ≤ k ≤ n and k /∈ α, then
αr̂[k] denotes the new permutation

(α1, . . . , αr−1, k, αr+1, . . . , αm).

Later we will need the following simple result, where the above notation
is used.

Lemma 13.3.1. Let E be the unit matrix of order m, and let b be a column
matrix with m elements. The matrix Er̂[b] is invertible if and only if br �= 0,
and in this case

Er̂[b]
−1 = Er̂[c],

where

cj =

{
−bj/br for j �= r,

1/br for j = r.
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Proof. The proof is left to the reader as a simple exercise.

Example 13.3.2. 

1 4 0
0 3 0
0 5 1




−1

=



1 −4/3 0
0 1/3 0
0 −5/3 1




Systems of linear equations and basic solutions

Consider a system of linear equations

(13.6)





a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
am1x1 + am2x2 + · · · + amnxn = bm

with coefficient matrix A of rank m and right-hand side matrix b. Such a
system can equivalently be regarded as a vector equation

(13.6′)
n∑

j=1

xjA∗j = b
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or as a matrix equation

(13.6′′) Ax = b.

Both alternative approaches are, as we shall see, fruitful.

We solve the system (13.6), preferably using Gaussian elimination, by
expressing m of the variables, xα1 , xα2 , . . . , xαm say, as linear combinations
of the remaining n−m variables xβ1 , xβ2 , . . . , xβn−m and b1, b2, . . . , bm. Each
assignment of values to the latter β-variables results in a unique set of values
for the former α-variables. In particular, we get a unique solution by setting
all β-variables equal to 0.

This motivates the following definition.

Definition. Let α = (α1, α2, . . . , αm) be a permutation of m numbers chosen
from the set {1, 2, . . . , n}, and let β = (β1, β2, . . . , βn−m) be a permutation
of the remaining n −m numbers. The variables xα1 , xα2 , . . . , xαm are called
basic variables and the variables xβ1 , xβ2 , . . . , xβn−m are called free variables
in the system (13.6), if for each c = (c1, c2, . . . , cn−m) ∈ Rn−m there is a
unique solution x to the system (13.6) such that xβ = c. The unique solution
obtained by setting all free variables equal to 0 is called a basic solution.

Any m variables can not be chosen as basic variables; to examine which
ones can be selected, let α = (α1, α2, . . . , αm) be a permutation of m numbers
from the set {1, 2, . . . , n} and let β = (β1, β2, . . . , βn−m) be an arbitrary
permutation of the remaining n −m numbers, and rewrite equation (13.6′)
as

(13.6′′′)
m∑
j=1

xαj
A∗αj

= b−
n−m∑
j=1

xβj
A∗βj

.

If α is a basic index set, i.e. if the columns A∗α1 , A∗α2 , . . . , A∗αm form a
basis of Rm, then equation (13.6′′′) has clearly a unique solution for each
assignment of values to the β-variables, and (xα1 , xα2 , . . . , xαm) is in fact the
coordinates of the vector b −

∑n−m
j=1 xβj

A∗βj
in this basis. In particular, the

coordinates of the vector b are equal to (xα1 , xα2 , . . . , xαm), where x is the
corresponding basic solution, defined by the condition that xβj

= 0 for all j.

Conversely, suppose that each assignment of values to the β-variables
determines uniquely the values of the α-variables. In particular, the equation

(13.7)
m∑
j=1

xαj
A∗αj

= b
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has then a unique solution, and this implies that the equation

(13.8)
m∑
j=1

xαj
A∗αj

= 0

has no other solution then the trivial one, xαj
= 0 for all j, because we would

otherwise get several solutions to equation (13.7) by to a given one adding
a non-trivial solution to equation (13.8). The columns A∗α1 , A∗α2 , . . . , A∗αm

are in other words linearly independent, and they form a basis for Rm since
they are m in number. Hence, α is a basic index set.

In summary, we have proved the following result.

Theorem 13.3.2. The variables xα1 , xα2 , . . . , xαm are basic variables in the
system (13.6) if and only if α is a basic index set of the coefficient matrix A.

Let us now express the basic solution corresponding to the basic index
set α in matrix form. By writing the matrix equation (13.6′′) in the form

A∗αxα + A∗βxβ = b

and multiplying from the left by the matrix A−1
∗α , we get

xα + A−1
∗αA∗βxβ = A−1

∗α b, i.e.

xα = A−1
∗α b− A−1

∗αA∗βxβ,

which expresses the basic variables as linear combinations of the free variables
and the coordinates of b. The basic solution is obtained by setting xβ = 0
and is given by

xα = A−1
∗α b , xβ = 0.

We summarize this result in the following theorem.

Theorem 13.3.3. Let α be a basic index set of the matrix A. The corre-
sponding basic solution x to the system Ax = b is given by the conditions

xα = A−1
∗α b and xk = 0 for k /∈ α.

The n−m free variables in a basic solution are equal to zero by definition.
Of course, some basic variable may also happen to be equal to zero, and since
this results in certain complications for the simplex algorithm, we make the
following definition.

Definition. A basic solution x is called non-degenerate if xi �= 0 for m indices
i and degenerate if xi �= 0 for less than m indices i.
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Two basic index sets α and α′, which are permutations of each other,
naturally give rise to the same basic solution x. So the number of different
basic solutions to a system Ax = b with m equations and n unknowns is at
most equal to the number of subsets with m elements that can be chosen
from the set {1, 2, . . . , n}, i.e. at most equal to

(
n
m

)
. The number is smaller

if the matrix A contains m linearly dependent columns.

Example 13.3.3. The system
{
3x1 + x2 + x3 − 3x4 = 3
3x1 − x2 +2x3 − 6x4 = 3

has − apart from permutations − the following basic index sets: (1, 2), (1, 3),
(1, 4), (2, 3) and (2, 4), and the corresponding basic solutions are in turn
(1, 0, 0, 0), (1, 0, 0, 0), (1, 0, 0, 0), (0, 1, 2, 0) and (0, 1, 0,−2

3
). The basic so-

lution (1, 0, 0, 0) is degenerate, and the other two basic solutions are non-
degenerate.

The reason for our interest in basic index sets and basic solutions is that
optimal values of LP problems are attained at extreme points, and these
points are basic solutions, because we have the following characterisation of
extreme points.
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Theorem 13.3.4. Suppose that A is an m×n-matrix of rank m, that b ∈ Rm

and that c ∈ Rn. Then:

(i) x is an extreme point of the polyhedron X = {x ∈ Rn | Ax = b, x ≥ 0}
if and only if x is a nonnegative basic solution to the system Ax = b,
i.e. if and only if there is a basic index set α of the matrix A such that
xα = A−1

∗α b ≥ 0 and xk = 0 for k /∈ α.

(ii) y is an extreme point of the polyhedron Y = {y ∈ Rm | ATy ≤ c} if and
only if ATy ≤ c and there is a basic index set α of the matrix A such
that y = (A−1

∗α )
Tcα.

Proof. (i) According to Theorem 5.1.1 in Part I, x is an extreme point of the
polyhedron X if and only if x ≥ 0 and x is the unique solution of a system
of linear equations consisting of the equation Ax = b and n − m equations
out of the n equations x1 = 0, x2 = 0, . . . , xn = 0. Let α1, α2, . . . , αm be the
indices of the m equations xi = 0 that are not used in this system. Then,
α = (α1, α2, . . . , αm) is a basic index set and x is the corresponding basic
solution.

(ii) Because of the same theorem, y is an extreme point of the polyhedron
Y if and only if y ∈ Y and y is the unique solution of a quadratic system of
linear equations obtained by selecting m out of the n equations in the system
ATy = c. Let α1, α2, . . . , αm denote the indices of the selected equations.
The quadratic system is then of the form (A∗α)

Ty = cα, and this system
of equations has a unique solution y = (A−1

∗α )
Tcα if and only if A∗α is an

invertible matrix, i.e. if and only if α = (α1, α2, . . . , αm) is a basic index set
of A.

Example 13.3.4. It follows from Theorem 13.3.4 and Example 13.3.3 that
the polyhedron X of solutions to the system{

3x1 + x2 + x3 − 3x4 = 3
3x1 − x2 +2x3 − 6x4 = 3, x ≥ 0

has two extreme points, namely (1, 0, 0, 0) and (0, 1, 2, 0).
The ”dual” polyhedron Y of solutions to the system



3y1 +3y2 ≤ 2
y1 − y2 ≤ 1
y1 +2y2 ≤ 1

−3y1 − 6y2 ≤ −1

has three extreme points, namely (5
6
,−1

6
), (1

3
, 1
3
) and (7

9
,−2

9
), corresponding

to the basic index sets (1, 2), (1, 3) and (2, 4). (The points associated with
the other two basic index sets (1, 4) and (2, 3), y = (1,−1

3
) and y = (1, 0),

respectively, are not extreme points since they lie outside Y .)
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Changing basic index sets

We will now discuss how to generate a suite of basic solutions by successively
replacing one element at a time in the basic index set.

Theorem 13.3.5. Suppose that α = (α1, α2, . . . , αm) is a basic index set of
the system Ax = b and let x denote the corresponding basic solution. Let k
be a column index not belonging to the basic index set α, and let v ∈ Rn be
the column vector defined by

vα = A−1
∗αA∗k, vk = −1 and vj = 0 for j /∈ α ∪ {k}.

(i) Then Av = 0, so it follows that x−tv is a solution to the system Ax = b
for all t ∈ R.

(ii) Suppose that 1 ≤ r ≤ m and define a new ordered set α′ by replacing
the element αr in α with the number k, i.e.

α′ = αr̂[k] = (α1, . . . , αr−1, k, αr+1, . . . , αm).

Then, α′ is a basic index set if and only if vαr �= 0. In this case,

A−1
∗α′ = Er̂[vα]

−1A−1
∗α

and if x′ is the basic solution corresponding to the basic index set α′,
then

x′ = x− τv,

where τ = xαr/vαr .
(iii) The two basic solutions x and x′ are identical if and only if τ = 0. So

if x is a non-degenerate basic solution, then x �= x′.

We will call v the search vector associated with the basic index set α and
the index k, since we obtain the new basic solution x′ from the old one x by
searching in the direction of minus v.

Proof. (i) It follows immediately from the definition of v that

Av =
∑
j∈α

vjA∗j +
∑
j /∈α

vjA∗j = A∗αvα − A∗k = A∗k − A∗k = 0.

(ii) The set α′ is a basic index set if and only if A∗α′ is an invertible matrix.
But

A−1
∗αA∗α′ = A−1

∗α
[
A∗α1 . . . A∗αr−1 A∗k A∗αr+1 . . . A∗αm

]

=
[
A−1

∗αA∗α1 . . . A−1
∗αA∗αr−1 A−1

∗αA∗k A−1
∗αA∗αr+1 . . . A−1

∗αA∗αm

]

=
[
E∗1 . . . E∗r−1 vα E∗r+1 . . . E∗m

]
= Er̂[vα],
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where of course E denotes the unit matrix of order m. Hence

A∗α′ = A∗αEr̂[vα].

The matrix A∗α′ is thus invertible if and only if the matrix Er̂[vα] is invertible,
and this is the case if and only if vαr �= 0, according to Lemma 13.3.1. If the
inverse exists, then

A−1
∗α′ =

(
A∗αEr̂[vα]

)−1
= Er̂[vα]

−1A−1
∗α .

Now, define xτ = x− τv. Then xτ is a solution to the equation Ax = b,
by part (i) of the theorem, so in order to prove that xτ is the basic solution
corresponding to the basic index set α′, it suffices to show that xτ

j = 0 for all
j /∈ α′, i.e. for j = αr and for j /∈ α ∪ {k}.

But xτ
αr

= xαr−τvαr = 0, because of the definition of τ , and if j /∈ α∪{k}
then xj and vj are both equal to 0, whence xτ

j = xj − τvj = 0.

(iii) Since vk = −1, we have τv = 0 if and only if τ = 0. Hence , x′ = x if
and only if τ = 0.

If the basic solution x is non-degenerate, then xj �= 0 for all j ∈ α and in
particular xαr �= 0, which implies that τ �= 0, and that x′ �= x.
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Corollary 13.3.6. Keep the asumptions of Theorem 13.3.5 and suppose in
addition that x ≥ 0, that the index set

I+ = {j ∈ α | vj > 0}

is nonempty, and that the index r is chosen so that αr ∈ I+ and

τ = xαr/vαr = min{xj/vj | j ∈ I+}.

Then x′ ≥ 0.

Proof. Since x′
j = 0 for all j /∈ α′, it suffices to show that x′

j ≥ 0 for all
j ∈ α ∪ {k}.

We begin by noting that τ ≥ 0 since x ≥ 0, and therefore

x′
k = xk − τvk = 0 + τ ≥ 0.

For indices j ∈ α \ I+ we have vj ≤ 0, and this implies that

x′
j = xj − τvj ≥ xj ≥ 0.

Finally, if j ∈ I+, then xj/vj ≥ τ , and it follows that

x′
j = xj − τvj ≥ 0.

This completes the proof.

13.4 The simplex algorithm

The variant of the simplex algorithm that we shall describe assumes that the
LP problem is given in standard form. So we start from the problem

min 〈c, x〉
s.t. Ax = b, x ≥ 0

where A is an m× n-matrix, b ∈ Rm and c ∈ Rn.
We assume that

rankA = m = the number of rows in A.

Of course, this is no serious restriction, because if rankA < m and the system
Ax = b is consistent, then we can delete (m − rankA) constraint equations
without changing the set of solutions, and this leaves us with an equivalent
system A′x = b, where the rank of A′ is equal to the number of rows in A′.

Let us call a basic index set α of the matrix A and the corresponding
basic solution x to the system Ax = b feasible, if x is a feasible point for our
standard problem, i.e. if x ≥ 0.
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The simplex algorithm starts from a feasible basic index set α of the
matrix A, and we shall show in Section 13.6 how to find such an index set
by applying the simplex algorithm to a so-called artificial problem.

First compute the corresponding feasible basic solution x, i.e.

xα = A−1
∗α b ≥ 0,

and then the number λ ∈ R and the column vectors y ∈ Rm and z ∈ Rn,
defined as

λ = 〈c, x〉 = 〈cα, xα〉
y = (A−1

∗α )
Tcα

z = c− ATy.

The number λ is thus equal to the value of the objective function at x.
Note that zα = cα − (ATy)α∗ = cα − (A∗α)

Ty = cα − cα = 0, so in order
to compute the vector z we only have to compute its coordinates

zj = cj − (A∗j)
Ty = cj − 〈A∗j, y〉

for indices j /∈ α. The numbers zj are usually called reduced costs.

Lemma 13.4.1. The number λ and the vectors x, y and z have the following
properties:

(i) 〈z, x〉 = 0, i.e. the vectors z and x are orthogonal.

(ii) Ax = 0 ⇒ 〈c, x〉 = 〈z, x〉.
(iii) Ax = b ⇒ 〈c, x〉 = λ+ 〈z, x〉.
(iv) If v is the search vector corresponding to the basic index set α and the

index k /∈ α, then 〈c, x− tv〉 = λ+ tzk.

Proof. (i) Since zj = 0 for j ∈ α and xj = 0 for j /∈ α,

〈z, x〉 =
∑
j∈α

zjxj +
∑
j /∈α

zjxj = 0 + 0 = 0.

(ii) It follows immediately from the definition of z that

〈z, x〉 = 〈c, x〉 − 〈ATy, x〉 = 〈c, x〉 − 〈y, Ax〉 = 〈c, x〉
for all x satisfying the equation Ax = 0.

(iii) If Ax = b, then

〈c, x〉 − 〈z, x〉 = 〈ATy, x〉 = 〈y, Ax〉 = 〈(A−1
∗α )

Tcα, b〉 = 〈cα, A−1
∗α b〉

= 〈cα, xα〉 = λ.

(iv) Since Av = 0, it follows from (ii) that

〈c, x− tv〉 = 〈c, x〉 − t〈c, v〉 = λ− t〈z, v〉 = λ+ tzk.
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The following theorem contains all the essential ingredients of the simplex
algorithm.

Theorem 13.4.2. Let α, x, λ, y and z be defined as above.

(i) (Optimality) If z ≥ 0, then x is an optimal solution to the minimiza-
tion problem

min 〈c, x〉
s.t. Ax = b, x ≥ 0

and y is an optimal solution to the dual maximization problem

max 〈b, y〉
s.t. ATy ≤ c

with λ as the optimal value. The optimal solution x to the minimization
problem is unique if zj > 0 for all j /∈ α.

(ii) Suppose that z �≥ 0, and let k be an index such that zk < 0. Let further
v be the search vector associated to α and k, i.e.

vα = A−1
∗αA∗k, vk = −1, vj = 0 for j /∈ α ∪ {k},

and set xt = x − tv for t ≥ 0. Depending on whether v ≤ 0 or v �≤ 0,
the following applies:

(ii a) (Unbounded objective function) If v ≤ 0, then the points
xt are feasible for the minimization problem for all t ≥ 0 and
〈c, xt〉 → −∞ as t → ∞. The objective function is thus unbounded
below, and the dual maximization problem has no feasible points.

(ii b) (Iteration step) If v �≤ 0, then define a new basic index set
α′ and the number τ as in Theorem 13.3.5 (ii) with the index r
chosen as in Corollary 13.3.6. The basic index set α′ is feasible
with x′ = x− τv as the corresponding feasible basic solution, and

〈c, x′〉 = 〈c, x〉+ τzk ≤ 〈c, x〉.
Hence, 〈c, x′〉 < 〈c, x〉, if τ > 0.

Proof. (i) Suppose that z ≥ 0 and that x is an arbitrary feasible point for
the minimization problem. Then 〈z, x〉 ≥ 0 (since x ≥ 0), and it follows
from part (iii) of Lemma 13.4.1 that 〈c, x〉 ≥ λ = 〈c, x〉. The point x is thus
optimal and the optimal value is equal to λ.

The condition z ≥ 0 also implies that ATy = c− z ≤ c, i.e. y is a feasible
point for the dual maximization problem, and

〈b, y〉 = 〈y, b〉 = 〈(A−1
∗α )

Tcα, b〉 = 〈cα, A−1
∗α b〉 = 〈cα, xα〉 = 〈c, x〉,

so if follows from the optimality criterion (Corollary 13.1.2) that y is an
optimal solution to the dual problem.
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Now suppose that zj > 0 for all j /∈ α. If x is a feasible point �= x, then
xj0 > 0 for some index j0 /∈ α, and it follows that 〈z, x〉 =

∑
j /∈α zjxj ≥

zj0xj0 > 0. Hence, 〈c, x〉 = λ + 〈z, x〉 > λ = 〈c, x〉, by Lemma 13.4.1 (iii).
This proves that the minimum point is unique.

(ii a) According to Theorem 13.3.5, xt is a solution to the equation Ax = b
for all real numbers t, and if v ≤ 0 then xt = x − tv ≥ x ≥ 0 for t ≥ 0. So
the points xt are feasible for all t ≥ 0 if v ≤ 0, and by Lemma 13.4.1 (iv),

lim
t→∞

〈c, xt〉 = λ+ lim
t→∞

zkt = −∞.

The objective function is thus not bounded below.

Suppose that the dual maximization problem has a feasible point y. Then,
〈b, y〉 ≤ 〈c, xt〉 for all t ≥ 0, by the weak duality theorem, and this is contra-
dictory since the right hand side tends to −∞ as t → ∞. So it follows that
the dual maximization problem has no feasible points.

(ii b) By Corollary 13.3.6, α′ is a feasible basic solution with xτ as the cor-
responding basic solution, and the inequality 〈c, x′〉 ≤ 〈c, x〉 now follows
directly from Lemma 13.4.1 (iv), because τ ≥ 0.

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc 
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and 
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012; 
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl


LINEAR AND CONVEX OPTIMIZATION: 
CONVEXITY AND OPTIMIZATION – PART II

105

The simplex algorithm
13.4 The simplex algorithm 105

Theorem 13.4.2 gives rise to the following algorithm for solving the stan-
dard problem

min 〈c, x〉
s.t. Ax = b, x ≥ 0.

The simplex algorithm

Given a feasible basic index set α.

1. Compute the matrix A−1
∗α , the corresponding feasible basic solution x,

i.e. xα = A−1
∗α b and xj = 0 for j /∈ α, and the number λ = 〈cα, xα〉.

Repeat steps 2–8 until a stop occurs.

2. Compute the vector y = (A−1
∗α )

Tcα and the numbers zj = cj − 〈A∗j, y〉
for j /∈ α.

3. Stopping criterion: quit if zj ≥ 0 for all j /∈ α.
Optimal solution: x. Optimal value: λ. Optimal dual solution: y.

4. Choose otherwise an index k such that zk < 0, compute the corre-
sponding search vector v, i.e. vα = A−1

∗αA∗k, vk = −1 and vj = 0 for
j /∈ α ∪ {k}, and put I+ = {j ∈ α | vj > 0}.

5. Stopping criterion: quit if I+ = ∅.
Optimal value: −∞.

6. Define otherwise τ = min{xj/vj | j ∈ I+} and determine an index r so
that αr ∈ I+ and xαr/vαr = τ .

7. Put α′ = αr̂[k] and compute the inverse A−1
∗α′ = Er̂[vα]

−1A−1
∗α .

8. Update: α := α′, A−1
∗α := A−1

∗α′ , x := x− τv, and λ := λ+ τzk.

Before we can call the above procedure an algorithm in the sense of a
mechanical calculation that a machine can perform, we need to specify how
to choose k in step 4 in the case when zj < 0 for several indices j, and r in
step 6 when xj/vj = τ for more than one index j ∈ I+.

A simple rule that works well most of the time, is to select the index j
that minimizes zj (and if there are several such indices the least of these) as
the index k, and the smallest of all indices i for which xαi

/vαi
= τ as the

index r. We shall return to the choice of k and r later; for the immediate
discussion of the algorithm, it does not matter how to make the choice.

We also need a method to find an initial feasible basic index set to start
the simplex algorithm from. We shall treat this problem and solve it in
Section 13.6.

Now suppose that we apply the simplex algorithm to an LP problem
in standard form, starting from a feasible basic index set. It follows from
Theorem 13.4.2 that the algorithm delivers an optimal solution if it stops

Download free eBooks at bookboon.com



LINEAR AND CONVEX OPTIMIZATION: 
CONVEXITY AND OPTIMIZATION – PART II

106

The simplex algorithm106 13 The simplex algorithm

during step 3, and that the objective function is unbounded from below if
the algorithm stops during step 5.

So let us examine what happens if the algorithm does not stop. Since
a feasible basic index set is generated each time the algorithm comes to
step 7, we will obtain in this case an infinite sequence α1, α2, α3, . . . of feasible
basic index sets with associated feasible basic solutions x1, x2, x3, . . .. As the
number of different basic index sets is finite, some index set αp has to be
repeated after a number of additional, say q, iterations. This means that αp =
αp+q and xp = xp+q and in turn implies that the sequence αp, αp+1, . . . , αp+q−1

is repeated periodically in all infinity. We express this by saying that the
algorithm cycles. According to (ii)

¯
in Theorem 13.4.2,

〈c, xp〉 ≥ 〈c, xp+1〉 ≥ · · · ≥ 〈c, xp+q〉 = 〈c, xp〉,

and this implies that

〈c, xp〉 = 〈c, xp+1〉 = · · · = 〈c, xp+q−1〉.

The number τ is hence equal to 0 for all the iterations of the cycle, and
this implies that the basic solutions xp, xp+1, . . . , xp+q−1 are identical and
degenerate. If the simplex algorithm does not stop, but continues indefinitely,
it is so because the algortihm has got stuck in a degenerate basic solution.

The following theorem is now an immediate consequence of the above
discussion.

Theorem 13.4.3. The simplex algorithm stops when applied to an LP prob-
lem in which all feasible basic solutions are non-degenerate.

Cycling can occur, and we shall give an example of this in the next sec-
tion. Theoretically, this is a bit troublesome, but cycling seems to be a rare
phenomenon in practical problems and therefore lacks practical significance.
The small rounding errors introduced during the numerical treatment of an
LP problem also have a beneficial effect since these errors usually turn de-
generate basic solutions into non-degenerate solutions and thereby tend to
prevent cycling. There is also a simple rule for the choice of indices k and r,
Bland’s rule, which prevents cycling and will be described in the next section.
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Example

Example 13.4.1. We now illustrate the simplex algorithm by solving the
minimization problem

min x1 − x2 + x3

s.t.




−2x1 + x2 + x3 ≤ 3
−x1 + x2 − 2x3 ≤ 3
2x1 − x2 +2x3 ≤ 1, x ≥ 0.

We start by writing the problem in standard form by introducing three
slack variables:

min x1 − x2 + x3

s.t.




−2x1 + x2 + x3 + x4 = 3
−x1 + x2 − 2x3 + x5 = 3
2x1 − x2 +2x3 + x6 = 1, x ≥ 0.

Using matrices, this becomes

min cTx
s.t. Ax = b, x ≥ 0
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with

A =



−2 1 1 1 0 0
−1 1 −2 0 1 0
2 −1 2 0 0 1


 , b =



3
3
1


 and

cT =
[
1 −1 1 0 0 0

]
.

We note that we can start the simplex algorithm with

α = (4, 5, 6), A−1
∗α =



1 0 0
0 1 0
0 0 1




−1

=



1 0 0
0 1 0
0 0 1


 , xα =



3
3
1


 ,

λ = 〈cα, xα〉 = cTαxα =
[
0 0 0

]


3
3
1


 = 0.

1st iteration:

y = (A−1
∗α )

Tcα =



1 0 0
0 1 0
0 0 1





0
0
0


 =



0
0
0




z1,2,3 = c1,2,3 − (A∗1,2,3)
Ty =




1
−1
1


−



−2 −1 2
1 1 −1
1 −2 2





0
0
0


 =




1
−1
1


 .

Since z2 = −1 < 0, we have to select k = 2 and then

vα = A−1
∗αA∗k =



1 0 0
0 1 0
0 0 1






1
1

−1


 =




1
1

−1


 , v2 = −1

I+ = {j ∈ α | vj > 0} = {4, 5}
τ = min{xj/vj | j ∈ I+} = min{x4/v4, x5/v5} = min{3/1, 3/1} = 3

for α1 = 4, i.e.

r = 1

α′ = αr̂[k] = (4, 5, 6)1̂[2] = (2, 5, 6)

Er̂[vα]
−1 =




1 0 0
1 1 0

−1 0 1




−1

=




1 0 0
−1 1 0
1 0 1




A−1
∗α′ = Er̂[vα]

−1A−1
∗α =




1 0 0
−1 1 0
1 0 1






1 0 0
0 1 0
0 0 1


 =




1 0 0
−1 1 0
1 0 1



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x′
α′ = xα′ − τvα′ =



0
3
1


− 3



−1
1

−1


 =



3
0
4




λ′ = λ+ τzk = 0 + 3 (−1) = −3.

Update: α := α′, A−1
∗α := A−1

∗α′ , xα := x′
α′ and λ := λ′.

2nd iteration:

y = (A−1
∗α )

Tcα =



1 −1 1
0 1 0
0 0 1





−1
0
0


 =



−1
0
0




z1,3,4 = c1,3,4 − (A∗1,3,4)
Ty =



1
1
0


−



−2 −1 2
1 −2 2
1 0 0





−1
0
0


 =



−1
2
1


 .

Since z1 = −1 < 0,

k = 1

vα = A−1
∗αA∗k =




1 0 0
−1 1 0
1 0 1





−2
−1
2


 =



−2
1
0


 , v1 = −1

I+ = {j ∈ α | vj > 0} = {5}
τ = x5/v5 = 0/1 = 0 for α2 = 5, i.e.

r = 2

α′ = αr̂[k] = (2, 5, 6)2̂[1] = (2, 1, 6)

Er̂[vα]
−1 =



1 −2 0
0 1 0
0 0 1



−1

=



1 2 0
0 1 0
0 0 1




A−1
∗α′ = Er̂[vα]

−1A−1
∗α =



1 2 0
0 1 0
0 0 1







1 0 0
−1 1 0
1 0 1


 =



−1 2 0
−1 1 0
1 0 1




x′
α′ = xα′ − τvα′ =



3
0
4


− 0



−2
−1
0


 =



3
0
4




λ′ = λ+ τzk = −3 + 0 (−1) = −3.

Update: α := α′, A−1
∗α := A−1

∗α′ , xα := x′
α′ and λ := λ′.
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3rd iteration:

y = (A−1
∗α )

T
cα =



−1 −1 1
2 1 0
0 0 1





−1
1
0


 =




0
−1
0




z3,4,5 = c3,4,5 − (A∗3,4,5)
Ty =



1
0
0


−



1 −2 2
1 0 0
0 1 0






0
−1
0


 =



−1
0
1


 .

Since z3 = −1 < 0,

k = 3

vα = A−1
∗αA∗k =



−1 2 0
−1 1 0
1 0 1






1
−2
2


 =



−5
−3
3


 , v3 = −1

I+ = {j ∈ α | vj > 0} = {6}
τ = x6/v6 = 4/3 for α3 = 6, i.e.

r = 3

α′ = αr̂[k] = (2, 1, 6)3̂[3] = (2, 1, 3)
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Er̂[vα]
−1 =



1 0 −5
0 1 −3
0 0 3




−1

=



1 0 5

3

0 1 1
0 0 1

3




A−1
∗α′ = Er̂[vα]

−1A−1
∗α =



1 0 5

3

0 1 1
0 0 1

3





−1 2 0
−1 1 0
1 0 1


 =




2
3

2 5
3

0 1 1
1
3

0 1
3




x′
α′ = xα′ − τvα′ =



3
0
0


− 4

3



−5
−3
−1


 =




29
3

4
4
3




λ′ = λ+ τzk = −3 +
4

3
(−1) = −13

3
.

Update: α := α′, A−1
∗α := A−1

∗α′ , xα := x′
α′ and λ := λ′.

4th iteration:

y = (A−1
∗α )

T
cα =




2
3

0 1
3

2 1 0
5
3

1 1
3





−1
1
1


 =



−1

3

−1
−1

3




z4,5,6 = c4,5,6 − (A∗4,5,6)
Ty =



0
0
0


−



1 0 0
0 1 0
0 0 1





−1

3

−1
−1

3


 =




1
3

1
1
3


 .

The solution x = (4, 29
3
, 4
3
, 0, 0, 0) is optimal with optimal value −13

3
since

z4,5,6 > 0. The original minimization problem has the same optimal value, of
course, and (x1, x2, x3) = (4, 29

3
, 4
3
) is the optimal solution.

The version of the simplex algorithm that we have presented is excellent
for computer calculations, but it is unnecessarily complicated for calculations
by hand. Then it is better to use the tableau form which we utilized in
Section 13.2, even if this entails performing unnecessary calculations. To the
LP problem

min 〈c, x〉
s.t. Ax = b, x ≥ 0

we associate the following simplex tableau:

(13.9)
A b E

cT 0 0T

We have included the column on the far right of the table only to explain
how the tableau calculations work; it will be omitted later on.
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Let α be a feasible basic index set with x as the corresponding basic
solution. The upper part [A b E ] of the tableau can be seen as a matrix,
and by multiplying this matrix from the left by A−1

∗α , we obtain the following
new tableau:

A−1
∗αA A−1

∗α b A−1
∗α

cT 0 0T

Now subtract the upper part of this tableau multiplied from the left by
cTα from the bottom row of the tableau. This results in the tableau

A−1
∗αA A−1

∗α b A−1
∗α

cT − cTαA
−1
∗αA −cTαA

−1
∗α b −cTαA

−1
∗α

Using the notation introduced in the definition of the simplex algorithm,
we have A−1

∗α b = xα, c
T
αA

−1
∗α = ((A−1

∗α )
Tcα)

T = yT, cT−cTαA
−1
∗αA = cT−yTA = zT

and cTαA
−1
∗α b = cTαxα = 〈cα, xα〉 = λ, which means that the above tableau can

be written in the form

(13.10)
A−1

∗αA xα A−1
∗α

zT −λ −yT

Note that the columns of the unit matrix appear as columns in the matrix
A−1

∗αA, because column number αj in A−1
∗αA is identical with unit matrix

column E∗j. Moreover, zαj
= 0.

When performing the actual calculations, we use Gaussian elimination to
get from tableau (13.9) to tableau (13.10).

If zT ≥ 0, which we can determine with the help of the bottom line in
(13.10), then x is an optimal solution, and we can also read off the optimal
solution y to the dual maximization problem. (The matrix A will in many
cases contain the columns of the unit matrix, and if so then it is of course
possible to read off the solution to the dual problem in the final simplex
tableau without first having to add the unit matrix on the right side of
tableau (13.9).)

If zT �≥ 0, then we choose a column index k with zk < 0, and consider the
corresponding column a = A−1

∗αA∗k (= vα) in the upper part of the tableau.

The minimization problem is unbounded if a ≤ 0. In the opposite case,
we choose an index i = r that minimizes xαi

/ai (= xαi
/vαi

) among all ratios
with positive ai. This means that r is the index of a row with the least ratio
xαi

/ai among all rows with positive ai. Finally, we transform the simplex
tableau by pivoting around the element at location (r, k).
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Example 13.4.2. We solve Example 13.4.1 again − this time by performing
all calculations in tabular form. Our first tableau has the form

−2 1 1 1 0 0 3
−1 1 −2 0 1 0 3
2 −1 2 0 0 1 1
1 −1 1 0 0 0 0

and in this case it is of course not necessary to repeat the columns of the
unit matrix in a separate part of the tableau in order also to solve the dual
problem.

The basic index set α = (4, 5, 6) is feasible, and since A∗α = E and cTα =[
0 0 0

]
, we can directly read off zT =

[
1 −1 1 0 0 0

]
and −λ = 0

from the bottom line of the tableau.

The optimality criterion is not satisfied since z2 = −1 < 0, so we proceed
by choosing k = 2. The positive ratios of corresponding elements in the
right-hand side column and the second column are in this case the same and
equal to 3/1 for the first and the second row. Therefore, we can choose r = 1
or r = 2, and we decide to use the smaller of the two numbers, i.e. we put
r = 1. The tableau is then transformed by pivoting around the element at
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location (1, 2). By then continuing in the same style, we get the following
sequence of tableaux:

−2 1 1 1 0 0 3
1 0 −3 −1 1 0 0
0 0 3 1 0 1 4

−1 0 2 1 0 0 3

α = (2, 5, 6), k = 1, r = 2

0 1 −5 −1 2 0 3
1 0 −3 −1 1 0 0
0 0 3 1 0 1 4
0 0 −1 0 1 0 3

α = (2, 1, 6), k = 3, r = 3

0 1 0 2
3

2 5
3

29
3

1 0 0 0 1 1 4

0 0 1 1
3

0 1
3

4
3

0 0 0 1
3

1 1
3

13
3

α = (2, 1, 3)

The optimality criterion is now satisfied with x = (4, 29
3
, 4
3
, 0, 0, 0) as op-

timal solution and −13
3
as optimal value. The dual problem has the optimal

solution (−1
3
,−1,−1

3
).

Henceforth, we will use the tableau variant of the simplex algorithm to
account for our calculations, because it is the most transparent method.

The optimality condition in step 2 of the simplex algorithm is a sufficient
condition for optimality, but the condition is not necessary. A degenerate
basic solution can be optimal without the optimality condition being satisfied.
Here is a trivial example of this.

Example 13.4.3. The problem

min −x2

s.t. x1 + x2 = 0, x ≥ 0

has only one feasible point, x = (0, 0), which is therefore optimal. There are
two feasible basic index sets, α = (1) and α′ = (2), both with (0, 0) as the
corresponding degenerate basic solution.
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The optimality condition is not fulfilled at the basic index set α, because
y = 1 · 0 = 0 and z2 = −1− 1 · 0 = −1 < 0. At the other basic index set α′,
y = 1 · (−1) = −1 and z2 = 0− 1 · (−1) = 1 > 0, and the optimality criterion
is now satisfied.

The corresponding simplex tableaux are

1 1 0
0 −1 0

α = (1)

and 1 1 0
1 0 0

α = (2)

We shall now study a simple example with a non-unique optimal solution.

Example 13.4.4. The simplex tableaux associated with the problem

min x1 + x2

s.t.

{
x1 + x2 − x3 = 1

2x2 − x3 + x4 = 1, x ≥ 0

are as follows:

1 1 −1 0 1
0 2 −1 1 1
1 1 0 0 0

α = (1, 4)

1 1 −1 0 1
0 2 −1 1 1
0 0 1 0 −1

α = (1, 4)

The optimality condition is met; x = (1, 0, 0, 1) is an optimal solution,
and the optimal value is 1. However, coefficient number 2 in the last row,
i.e. z2, is equal to 0, so we can therefore perform another iteration of the
simplex algorithm by choosing the second column as the pivot column and
the second row as the pivot row, i.e. k = 2 and r = 2. This gives rise to the
following new tableau:

1 0 −1
2

−1
2

1
2

0 1 −1
2

1
2

1
2

0 0 1 0 −1

α = (1, 2)
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The optimality condition is again met, now with x̂ = (1
2
, 1
2
, 0, 0) as optimal

solution. Since the set of optimal solutions is convex, each point on the line
segment between x̂ and x is also an optimal point.

13.5 Bland’s anti cycling rule

We begin with an example of Kuhn showing that cycling can occur in de-
generate LP problems if the column index k and the row index r are not
properly selected.

Example 13.5.1. Consider the problem

min −2x1 − 3x2 + x3 + 12x4

s.t.




−2x1 − 9x2 + x3 + 9x4 + x5 = 0

1
3
x1 + x2 − 1

3
x3 − 2x4 + x6 = 0

2x1 +3x2 − x3 − 12x4 + x7 = 2, x ≥ 0.

We use the simplex algorithm with the additional rule that the column index
k should be chosen so as to make zk as negative as possible and the row index
r should be the least among all allowed row indices. Our first tableau is
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−2 −9 1 9 1 0 0 0
1
3

1 −1
3

−2 0 1 0 0

2 3 −1 −12 0 0 1 2

−2 −3 1 12 0 0 0 0

with α = (5, 6, 7) as feasible basic index set. According to our rule for the
choice of of k, we must choose k = 2. There is only one option for the
row index r, namely r = 2, so we use the element located at (2, 2) as pivot
element and obtain the following new tableau

1 0 −2 −9 1 9 0 0
1
3

1 −1
3

−2 0 1 0 0

1 0 0 −6 0 −3 1 2

−1 0 0 6 0 3 0 0

with α = (5, 2, 7). This time k = 1, but there are two row indices i with
the same least value of the ratios xαi

/vαi
, namely 1 and 2. Our additional

rule tells us to choose r = 1. Pivoting around the element at location (1, 1)
results in the next tableau

1 0 −2 −9 1 9 0 0

0 1 1
3

1 −1
3

−2 0 0

0 0 2 3 −1 −12 1 2

0 0 −2 −3 1 12 0 0

with α = (1, 2, 7), k = 4, r = 2.
The algorithms goes on with the following sequence of tableaux:

1 9 1 0 −2 −9 0 0

0 1 1
3

1 −1
3

−2 0 0

0 −3 1 0 0 −6 1 2

0 3 −1 0 0 6 0 0

α = (1, 4, 7), k = 3, r = 1

1 9 1 0 −2 −9 0 0

−1
3

−2 0 1 1
3

1 0 0

−1 −12 0 0 2 3 1 2

1 12 0 0 −2 −3 0 0

α = (3, 4, 7), k = 6, r = 2
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−2 −9 1 9 1 0 0 0

−1
3

−2 0 1 1
3

1 0 0

0 −6 0 −3 1 0 1 2

0 6 0 3 −1 0 0 0

α = (3, 6, 7), k = 5, r = 1

−2 −9 1 9 1 0 0 0
1
3

1 −1
3

−2 0 1 0 0

2 3 −1 −12 0 0 1 2

−2 −3 1 12 0 0 0 0

α = (5, 6, 7)

After six iterations we are back to the starting tableau. The simplex
algorithm cycles!

We now introduce a rule for the choice of indices k and r that prevents
cycling.

Bland’s rule: Choose k in step 4 of the simplex algorithm so that

k = min{j | zj < 0}

and r in step 6 so that

αr = min{j ∈ I+ | xj/vj = τ}.

Example 13.5.2. Consider again the minimization problem in the previous
example and now use the simplex algorithm with Bland’s rule. This results
in the following sequence of tableaux:

−2 −9 1 9 1 0 0 0
1
3

1 −1
3

−2 0 1 0 0

2 3 −1 −12 0 0 1 2

−2 −3 1 12 0 0 0 0

α = (5, 6, 7), k = 1, r = 2
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0 −3 −1 −3 1 6 0 0

1 3 −1 −6 0 3 0 0

0 −3 1 0 0 −6 1 2

0 3 −1 0 0 6 0 0

α = (5, 1, 7), k = 3, r = 3

0 −6 0 −3 1 0 0 2

1 0 0 −6 0 −3 1 2

0 −3 1 0 0 −6 1 2

0 0 0 0 0 12 1 2

α = (5, 1, 3)

The optimality criterion is met with x = (2, 0, 2, 0, 2, 0, 0) as optimal
solution and −2 as optimal value.

Theorem 13.5.1. The simplex algorithm always stops if Bland’s rule is used.
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Proof. We prove the theorem by contradiction. So suppose that the simplex
algorithm cycles when applied to some given LP problem, and let x be the
common basic solution during the iterations of the cycle.

Let C denote the set of indices k of the varibles xk that change from being
basic to being free during the iterations of the cycle. Since these variables
have to return as basic variables during the cycle, C is of course also equal
to the set of indices of the variables xk that change from being free to being
basic during the cycle. Moreover, xk = 0 for all k ∈ C.

Let
q = max{j | j ∈ C},

and let α be the basic index set which is in use during the iteration in the
cycle when the variabel xq changes from being basic to being free, and let xk

be the free variable that replaces xq. The index q is in other words replaced
by k in the basic index set that follows after α. The corresponding search
vector v and reduced cost vector z satisfy the inequalities

zk < 0 and vq > 0,

and
zj ≥ 0 for j < k.

since the index k is chosen according to Bland’s rule. Since k ∈ C, we also
have k < q, because of the definition of q.

Let us now consider the basic index set α′ that belongs to an iteration
when xq returns as a basic variables after having been free. Because of Bland’s
rule for the choice of incoming index, in this case q, the corresponding reduced
cost vector z′ has to satisfy the following inequalities:

(13.11) z′j ≥ 0 for j < q and z′q < 0.

Especially, thus z′k ≥ 0.
Since Av = 0, vk = −1 and vj = 0 for j /∈ α ∪ {k}, and zj = 0 for j ∈ α,

it follows from Lemma 13.4.1 that

∑
j∈α

z′jvj − z′k = 〈z′, v〉 = 〈c, v〉 = 〈z, v〉 =
∑
j∈α

zjvj + zkvk = −zk > 0,

and hence ∑
j∈α

z′jvj > z′k ≥ 0.

There is therefore an index j0 ∈ α such that z′j0vj0 > 0. Hence z′j0 �= 0,
which means that j0 can not belong to the index set α′. The variable xj0 is
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in other words basic during one iteration of the cycle and free during another
iteration. This means that j0 is an index in the set C, and hence j0 ≤ q, by
the definition of q. The case j0 = q is impossible since vq > 0 and z′q < 0.
Thus j0 < q, and it now follows from (13.11) that z′j0 > 0. This implies in
turn that vj0 > 0, because the product z′j0vj0 is positive. So j0 belongs to the
set I+ = {j ∈ α | vj > 0}, and since xj0/vj0 = 0 = τ , it follows that

min{j ∈ I+ | xj/vj = τ} ≤ j0 < q.

The choice of q thus contradicts Bland’s rule for how to choose index to leave
the basic index set α, and this contradiction proves the theorem.

Remark. It is not necessary to use Bland’s rule all the time in order to prevent
cycling; it suffices to use it in iterations with τ = 0.

13.6 Phase 1 of the simplex algorithm

The simplex algorithm assumes that there is a feasible basic index set to start
from. For some problems we will automatically get one when the problem is
written in standard form. This is the case for problems of the type

min 〈c, x〉
s.t. Ax ≤ b, x ≥ 0

where A is an m× n-matrix and the right-hand side vector b is nonnegative.
By introducing m slack variables sn+1, sn+2, . . . , sn+m and defining

s = (sn+1, sn+2, . . . , sn+m),

we obtain the standard problem

min 〈c, x〉
s.t. Ax+ Es = b, x, s ≥ 0,

and it is now obvious how to start; the slack variables will do as basic vari-
ables, i.e. α = (n + 1, n + 2, . . . , n + m) is a feasible basic index set with
x = 0, s = b as the corresponding basic solution.

In other cases, it is not at all obvious how to find a feasible basic index set
to start from, but one can always generate such a set by using the simplex
algorithm on a suitable artificial problem.

Consider an arbitrary standard LP problem

min 〈c, x〉
s.t. Ax = b, x ≥ 0,
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where A is an m× n-matrix. We can assume without restriction that b ≥ 0,
for if any bj is negative, we just multiply the corresponding equation by −1.

We begin by choosing an m× k-matris B so that the matrix

A′ =
[
A B

]

gets rank equal to m and the system

A′
[
x
y

]
= Ax+ By = b

gets an obvious feasible basic index set α0. The new y-variables are called
artificial variables, and we number them so that y = (yn+1, yn+2, . . . , yn+k).

A trivial way to achieve this is to choose B equal to the unit matrix E
of order m, for α0 = (n + 1, n + 2, . . . , n +m) is then a feasible basic index
set with (x, y) = (0, b) as the corresponding feasible basic solution. Often,
however, A already contains a number of unit matrix columns, and then it
is sufficient to add the missing unit matrix columns to A.

Now let

1 =
[
1 1 . . . 1

]T
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be the k× 1-matrix consisting of k ones, and consider the following artificial
LP problems:

min 〈1, y〉 = yn+1 + · · ·+ yn+k

s.t. Ax+ By = b, x, y ≥ 0
.

The optimal value is obviously ≥ 0, and the value is equal to zero if and only
if there is a feasible solution of the form (x, 0), i.e. if and only if there is a
nonnegative solution to the system Ax = b.

Therefore, we solve the artificial problem using the simplex algorithm with
α0 as the first feasible basic index set. Since the objective function is bounded
below, the algorithm stops after a finite number of iterations (perhaps we
need to use Bland’s supplementary rule) in a feasible basic index set α, where
the optimality criterion is satisfied. Let (x, y) denote the corresponding basic
solution.

There are now two possibilities.

Case 1. The artificial problem’s optimal value is greater than zero.

In this case, the original problem has no feasible solutions.

Case 2. The artificial problem’s value is equal to zero.

In this case, y = 0 and Ax = b.
If α ⊆ {1, 2, . . . , n}, then α is also a feasible basic index set of the matrix

A, and we can start the simplex algorithm on our original problem from α
and the corresponding feasible basic solution x.

If α �⊆ {1, 2, . . . , n}, we set

α′ = α ∩ {1, 2, . . . , n}.

The matrix columns {A∗k | k ∈ α′} are now linearly independent, and we
can construct an index set β ⊇ α′, which is maximal with respect to the
property that the columns {A∗k | k ∈ β} are linearly independent.

If rankA = m, then β will consist of m elements, and β is then a basic
index set of the matrix A. Since xj = 0 for all j /∈ α′, and thus especially
for all j /∈ β, it follows that x is the basic solution of the system Ax = b
that corresponds to the basic index set β. Hence, β is a feasible basic index
set for our original problem. We can also note that x is a degenerate basic
solution.

If rankA < m, then β will consist of just p = rankA elements, but we
can now delete m − p equations from the system Ax = b without changing
the set of solutions. This results in a new equivalent LP problem with a
coefficient matrix of rank p, and β is a feasible basic index set with x as the
corresponding basic solution in this problem.

Download free eBooks at bookboon.com



LINEAR AND CONVEX OPTIMIZATION: 
CONVEXITY AND OPTIMIZATION – PART II

124

The simplex algorithm
124 13 The simplex algorithm

To solve a typical LP problem, one thus normally needs to use the simplex
algorithm twice. In Phase 1, we use the simplex algorithm to generate a
feasible basic index set α for the original LP problem by solving an artificial
LP problem, and in phase 2, the simplex algorithm is used to solve the
original problem starting from the basic index set α.

Example 13.6.1. We illustrate the technique on the simple problem

min x1 + 2x2 + x3 − 2x4

s.t.





x1 + x2 + x3 − x4 = 2
2x1 + x2 − x3 +2x4 = 3

x1, x2, x3, x4 ≥ 0.

Phase 1 consists in solving the artificial problem

min y5 + y6

s.t.





x1 + x2 + x3 − x4 + y5 = 2
2x1 + x2 − x3 +2x4 + y6 = 3

x1, x2, x3, x4, y5, y6 ≥ 0.

The computations are shown in tabular form, and the first simplex tableau
is the following one.

1 1 1 −1 1 0 2
2 1 −1 2 0 1 3
0 0 0 0 1 1 0

We begin by eliminating the basic variables from the objective function
and then obtain the following sequence of tableaux:

1 1 1 −1 1 0 2

2 1 −1 2 0 1 3

−3 −2 0 −1 0 0 −5

α = (5, 6), k = 1, r = 2

0 1
2

3
2

−2 1 −1
2

1
2

1 1
2

−1
2

1 0 1
2

3
2

0 −1
2

−3
2

2 0 3
2

−1
2

α = (5, 1), k = 3, r = 1
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0 1
3

1 −4
3

2
3

−1
3

1
3

1 2
3

0 1
3

1
3

1
3

5
3

0 0 0 0 1 1 0

α = (3, 1)

The above final tableau for the artificial problem shows that α = (3, 1)
is a feasible basic index set for the original problem with x = (5

3
, 0, 1

3
, 0) as

corresponding basic solution. We can therefore proceed to phase 2 with the
following tableau as our first tableau.

0 1
3

1 −4
3

1
3

1 2
3

0 1
3

5
3

1 2 1 −2 0

By eliminating the basic variables from the objective function, we obtain
the following tableau:
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0 1
3

1 −4
3

1
3

1 2
3

0 1
3

5
3

0 1 0 −1 −2

α = (3, 1), k = 4, r = 2

One iteration is enough to obtain a tableau satisfying the optimality criterion.

4 3 1 0 7

3 2 0 1 5

3 3 0 0 3

α = (3, 4)

The optimal value is thus equal to −3, and x = (0, 0, 7, 5) is the optimal

solution.

Since the volume of work grows with the number of artificial variables,
one should not introduce more artificial variables than necessary. The mini-
mization problem

min 〈c, x〉
s.t. Ax ≤ b, x ≥ 0

requires no more than one artificial variable. By introducing slack variables
s = (sn+1, sn+2, . . . , sn+m), we first obtain an equivalent standard problem

min 〈c, x〉
s.t. Ax+ Es = b, x, s ≥ 0

.

If b ≥ 0, this problem can be solved, as we have already noted, without
artificial variables. Let otherwise i0 be the index of the most negative coor-
dinate of the right-hand side b, and subtract equation no. i0 in the system
Ax + Es = b from all other equations with negative right-hand side, and
change finally the sign of equation no. i0.

The result is a system of equations of the form A′x + E ′s = b′, which is
equivalent to the system Ax+Es = b and where b′ ≥ 0 and all the columns of
the matrix E ′, except column no. i0, are equal to the corresponding columns
of the unit matrix E. Phase 1 of the simplex algorithm applied to the problem

min 〈c, x〉
s.t. A′x+ E ′s = b′, x, s ≥ 0

therefore requires only one artificial variable.
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Existence of optimal solutions and the duality theorem

The simplex algorithm is of course first and foremost an efficient algorithm
for solving concrete LP problems, but we can also use it to provide alternative
proofs of important theoretical results. These are corollaries to the following
theorem.

Theorem 13.6.1. Each standard LP problem with feasible points has a fea-
sible basic index set where one of the two stopping criteria in the simplex
algorithm is satisfied.

Proof. Bland’s rule ensures that phase 1 of the simplex algorithm stops with
a feasible basic index set from where to start phase 2, and Bland’s rule also
ensures that this phase stops in a feasible basic index set, where one of the
two stopping criteria is satisfied.

As first corollary we obtain a new proof that every LP problem with finite
value has optimal solutions (Theorem 12.1.1).

Corollary 13.6.2. Each linear minimization problem with feasible solutions
and downwards bounded objective function has an optimal solution.

Proof. Since each LP problem can be replaced by an equivalent LP problem
in standard form, it is sufficient to consider such problems. The only way
for the simplex algorithm to stop, when the objective function is bounded
below, is to stop at a basic solution which satisfies the optimality criterion.
So it follows at once from the above theorem that there exists an optimal
solution if the objective function is bounded below and the set of feasible
solutions is nonempty.

We can also give an algorithmic proof of the Duality theorem.

Corollary 13.6.3 (Duality theorem). If the linear optimization problem

min 〈c, x〉
s.t. Ax = b, x ≥ 0

has feasible solutions, then it has the same optimal value as the dual maxi-
mization problem

max 〈b, y〉
s.t. ATy ≤ c.

Proof. Let α be the feasible basic index set where the simplex algorithm
stops. If the optimality criterion is satisfied at α, then it follows from Theo-
rem 13.4.2 that the minimization problem and the dual maximization prob-
lem have the same finite optimal value. If instead the algorithm stops because
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the objective function is unbounded below, then the dual problem has no fea-
sible points according to Theorem 13.4.2, and the value of both problems is
equal to −∞, by definition.

By writing general minimization problems in standard form, one can also
deduce the general form of the duality theorem from the above special case.

13.7 Sensitivity analysis

In Section 12.1, we studied how the optimal value and the optimal solution
depend on the coefficients of the objective function. In this section we shall
study the same issue in connection with the simplex algorithm and also study
how the solution to the LP problem

(P) min 〈c, x〉
s.t. Ax = b, x ≥ 0

depends on the right-hand side b. In real LP problems, the coefficients of the
objective function and the constraints are often not exactly known, some of
them might even be crude estimates, and it is then of course important to
know how sensitive the optimal solution is to errors in input data. And even
if the input data are accurate, it is of course interesting to know how the
optimum solution is affected by changes in one or more of the coefficients.

Let α be a basic index set of the matrix A, and let x(b) denote the
corresponding basic solution to the system Ax = b, i.e.

x(b)α = A−1
∗α b and x(b)j = 0 for all j /∈ α.

Suppose that the LP problem (P) has an optimal solution for certain
given values of b and c, and that this solution has been obtained because the
simplex algorithm stopped at the basic index set α. For that to be the case,
the basic solution x(b) has to be feasible, i.e.

(i) A−1
∗α b ≥ 0,

and the optimality criterion z ≥ 0 in the simplex algorithm has to be satisfied.
Since

z = c− ATy and y = (A−1
∗α )

Tcα,

we have z = c − (A−1
∗αA)

Tcα, which means that the optimality criterion can
be written as

(ii) z(c) = c− (A−1
∗αA)

Tcα ≥ 0.
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Conversely, x(b) is an optimal solution to the LP problem (P) for all b
and c that satisfy the conditions (i) and (ii), because the optimality criterion
in the simplex algorithm is then satisfied.

Condition (i) is a system of homogeneous linear inequalities in the vari-
ables b1, b2, . . . , bm, and it defines a polyhedral cone Bα in Rm, while (ii)
is a system of homogeneous linear inequalities in the variables c1, c2, . . . , cn
and defines a polyhedral cone Cα in Rn. In summary, we have the following
result:

x(b) is an optimal solution to the LP problem (P) for all b ∈ Bα and all
c ∈ Cα.

Now suppose that we have solved the problem (P) for given values of b
and c with x = x(b) as optimal solution and λ as optimal value. Condition
(ii) determines how much we are allowed to change the coefficients of the
objective function without changing the optimal solution; x is still an optimal
solution to the perturbed problem

(P′) min 〈c+∆c, x〉
s.t. Ax = b, x ≥ 0
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if z(c+∆c) = z(c) + z(∆c) ≥ 0, i.e. if

(13.12) ∆c− (A−1
∗αA)

T(∆c)α ≥ −z(c).

The optimal value is of course changed to λ+ 〈∆c, x〉.
Inequality (13.12) defines a polyhedron in the variables ∆c1, ∆c2, . . . ,

∆cn. If for instance ∆cj = 0 for all j except j = k, i.e. if only the ck-
coefficient of the objective function is allowed to change, then inequality
(13.12) determines a (possibly unbounded) closed interval [−dk, ek] around 0
for ∆ck.

If instead we change the right-hand side of the constraints replacing the
vector b by b+∆b, then x(b+∆b) becomes an optimal solution to the problem

min 〈c, x〉
s.t. Ax = b+∆b, x ≥ 0

as long as the solution is feasible, i.e. as long as A−1
∗α (b + ∆b) ≥ 0. After

simplification, this results in the condition

A−1
∗α (∆b) ≥ −x(b)α,

which is a system of linear inequalities that determines how to choose ∆b. If
∆bi = 0 for all indices except i = k, then the set of solutions for ∆bk is an
interval around 0 of the form [−dk, ek].

The printouts of softwares for the simplex algorithm generally contain
information on these intervals.

Example 13.7.1. A person is studying the diet problem

min 〈c, x〉
s.t. Ax ≥ b, x ≥ 0

in a specific case with six foods and four nutrient requirements. The fol-
lowing computer printout is obtained when cT = (1, 2, 3, 4, 1, 6) and bT =
(10, 15, 20, 18).

Optimal value: 8.52

Optimal solution:

Food 1: 5.73
Food 2: 0.00
Food 3: 0.93
Food 4: 0.00
Food 5: 0.00
Food 6: 0.00
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Sensitivity report

Variable Value Objective- Allowable Allowable
coeff. decrease increase

Food 1: 5.73 1.00 0.14 0.33
Food 2: 0.00 2.00 1.07 ∞
Food 3: 0.93 3.00 2.00 0.50
Food 4: 0.00 4.00 3.27 ∞
Food 5: 0.00 1.00 0.40 ∞
Food 6: 0.00 6.00 5.40 ∞

Constraint Final Shadow Bounds Allowable Allowable
value price r.h. side decrease increase

Nutrient 1: 19.07 0.00 10.00 ∞ 9.07
Nutrient 2: 31.47 0.00 15.00 ∞ 16.47
Nutrient 3: 20.00 0.07 20.00 8.00 7.00
Nutrient 4: 18.00 0.40 18.00 4.67 28.67

The sensitivity report shows that the optimal solution remains unchanged
as long as the price of food 1 stays in the interval [5.73 − 0.14, 5.73 + 0.33],
ceteris paribus. A price change of z units in this range changes the optimal
value by 5.73 z units.

A price reduction of food 4 with a maximum of 3.27, or an unlimited
price increase of the same food, ceteris paribus, does not affect the optimal
solution, nor the optimal value.

The set of price changes that leaves the optimal solution unchanged is
a convex set, since it is a polyhedron according to inequality (13.12). The
optimal solution of our example is therefore unchanged if for example the
prices of foods 1, 2 and 3 are increased by 0.20, 1.20 and 0.10, respectively,
because ∆c = (0.20, 1.20, 0.10, 0, 0, 0) is a convex combination of allowable
increases, since

0.20

0.33
+

1.20

∞
+

0.10

0.50
≤ 1.

The sensitivity report also shows how the optimal solution is affected
by certain changes in the right-hand side b. The optimal solution remains
unchanged, for example, if the need for nutrient 1 would increase from 10
to 15, since the constraint is not binding and the increase 5 is less than the
permitted increase 9.07.

The sensitivity report also tells us that the new optimal solution will still
be derived from the same basic index set as above, if b4 is increased by say 20
units from 18 to 38, an increase that is within the scope of the permissible.
So in this case, the optimal diet will also only consist of foods 1 and 3, but
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the optimal value will increase by 20 · 0.40 to 16.52 since the shadow price of
nutrient 4 is equal to 0.40.

13.8 The dual simplex algorithm

The simplex algorithm, applied to a problem

min 〈c, x〉
s.t. Ax = b, x ≥ 0

with a bounded optimal value, starts from a given feasible basic index set
α0 and then generates a finite sequence (αk, xk, yk)pk=0 of basic index sets αk,
corresponding basic solutions xk and vectors yk with the following properties:

(i) The basic solutions xk are extreme points of the polyhedron

X = {x ∈ Rn | Ax = b, x ≥ 0}
of feasible solutions.

(ii) The line segments [xk, xk+1] are edges of the polyhedron X.

(iii) The objective function values (〈c, xk〉)pk=0 form a decreasing sequence.

(iv) 〈b, yk〉 = 〈c, xk〉 for all k.
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(v) The algorithm stops after p iterations when the optimality criterion is
met, and yp is then an extreme point of the polyhedron

Y = {y ∈ Rm | ATy ≤ c}.
(vi) xp is an optimal solution to the primal problem, and yp is an optimal

solution to the dual problem

max 〈b, y〉
s.t. ATy ≤ c.

(vii) The vectors yk do not, however, belong to Y for 0 ≤ k ≤ p− 1.

The optimal solution xp is obtained by moving along edges of the poly-
hedron X until an extreme point has been reached that also corresponds to
an extreme point of the polyhedron Y . Instead, we could move along edges
of the polyhedron Y , and this observation leads to the following method for
solving the minimization problem.

The dual simplex algorithm

Given a basic index set α such that z = c− ATy ≥ 0, where y = (A−1
∗α )

Tcα.

Repeat steps 1–4 until a stop occurs.

1. Compute the basic solution x corresponding to α.

2. Stopping criterion: quit if x ≥ 0.
Optimal solution: x. Optimal dual solution: y.
Also quit if any of the constraint equations has the form a′i1x1+a′i2x2+
· · · + a′inxn = b′i with b′i > 0 and a′ij ≤ 0 for all j, because then there
are no feasible solutions to the primal problem.

3. Generate a new basic index set α′ by replacing one of the indices of α
in such a way that the new reduced cost vector z′ remains nonnegative
and 〈b, y′〉 ≥ 〈b, y〉, where y′ = (A−1

∗α′)Tcα′ .

4. Update: α := α′, y := y′.

We refrain from specifying the necessary pivoting rules. Instead, we con-
sider a simple example.

Example 13.8.1. We shall solve the minimization problem

min x1 + 2x2 + 3x3

s.t.



2x1 + x3 ≥ 9
x1 +2x2 ≥ 12

x2 +2x3 ≥ 15, x ≥ 0
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by using the dual simplex algorithm, and we begin by reformulating the
problem in standard form as follows:

min x1 + 2x2 + 3x3

s.t.




2x1 + x3 − x4 = 9
x1 +2x2 − x5 = 12

x2 +2x3 − x6 = 15, x ≥ 0.

The corresponding simplex tableau now looks like this:

2 0 1 −1 0 0 9
1 2 0 0 −1 0 12
0 1 2 0 0 −1 15
1 2 3 0 0 0 0

For comparison, we also state the corresponding dual maximization prob-
lem:

max 9y1 + 12y2 + 15y3

s.t.




2y1 + y2 ≤ 1

2y2 + y3 ≤ 2
y1 +2y3 ≤ 3, y ≥ 0.

We can start the dual simplex algorithm from the basic index set α =
(4, 5, 6), and as usual, we have underlined the basic columns. The cor-
responding basic solution x is not feasible since the coordinates of xα =
(−9,−12,−15) are negative. The bottom row [ 1 2 3 0 0 0 ] of the tableau
is the reduced cost vector zT = cT − yTA. The row vector yT = cTαA

−1
∗α =[

0 0 0
]
can also be read in the bottom row; it is found below the matrix

−E, and y belongs to the polyhedron Y of feasible solutions to the dual
problem, since zT ≥ 0.

We will now gradually replace one element at a time in the basic index
set. As pivot row r, we choose the row that corresponds to the most negative
coordinate of xα, and in the first iteration, this is the third row in the above
simplex tableau. To keep the reduced cost vector nonnegative, we must select
as pivot column a column k, where the matrix element ark is positive and
the ratio zk/ark is as small as possible. In the above tableau, this is the third
column, so we pivot around the element at location (3, 3). This leads to the
following tableau:

2 −1
2

0 −1 0 1
2

3
2

1 2 0 0 −1 0 12

0 1
2

1 0 0 −1
2

15
2

1 1
2

0 0 0 3
2

−45
2
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In this new tableau, α = (4, 5, 3), xα = (−3
2
,−12, 15

2
) and y = (0, 0, 3

2
).

The most negative element of xα is to be found in the second row, and the
least ratio zk/a

′
2k with a positive denominator a′2k is obtained for k = 2.

Pivoting around the element at location (2, 2) leads to the following simplex
tableau:

9
4

0 0 −1 −1
4

1
2

9
2

1
2

1 0 0 −1
2

0 6

−1
4

0 1 0 1
4

−1
2

9
2

3
4

0 0 0 1
4

3
2

−51
2

Now, α = (4, 2, 3), xα = (−9
2
, 6, 9

2
) and y = (0, 1

4
, 3
2
). This time, we should

select the element in the first row and the first column as pivot element, which
leads to the next tableau.

1 0 0 −4
9

−1
9

2
9

2

0 1 0 2
9

−4
9

−1
9

5

0 0 1 −1
9

2
9

−4
9

5

0 0 0 1
3

1
3

4
3

−27
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Here, α = (1, 2, 3), xα = (2, 5, 5) and y = (1
3
, 1
3
, 4
3
), and the optimality

criterion is met since xα ≥ 0. The optimal value is 27 and (2, 5, 5, 0, 0, 0)
is the optimal point. The dual maximization problem attains its maximum
at (1

3
, 1
3
, 4
3
). The optimal solution to our original minimization problem is of

course x = (2, 5, 5).

13.9 Complexity

How many iterations are needed to solve an LP problem using the simplex
algorithm? The answer will depend, of course, on the size of the problem.
Experience shows that the number of iterations largely grows linearly with
the number of rows m and sublinearly with the number of columns n for
realistic problems, and in most real problems, n is a small multiple of m,
usually not more than 10m. The number of iterations is therefore usually
somewhere between m and 4m, which means that the simplex algorithm
generally performs very well.

The worst case behavior of the algorithm is bad, however (for all known
pivoting rules). Klee and Minty has constructed an example where the num-
ber of iterations grows exponentially with the size of the problem.

Example 13.9.1 (Klee and Minty, 1972). Consider the following LP problem
in n variables and with n inequality constraints:

max 2n−1x1 + 2n−2x2 + · · ·+ 2xn−1 + xn

s.t.




x1 ≤ 5
4x1 + x2 ≤ 25
8x1 + 4x2 + x3 ≤ 125
...

...
2nx1 +2n−1x2 + . . . +4xn−1 + xn ≤ 5n

The polyhedron of feasible solutions has in this case 2n extreme points.
Suppose that we apply the simplex algorithm to the equivalent standard

problem, in each iteration choosing as pivot column the column with the most
negative value of the reduced cost. If we start from the feasible basic solution
that corresponds to x = 0, then we have to go through all the 2n feasible
basic solutions before we finally reach the optimal solution (0, 0, . . . , 5n). The
number of iterations is therefore equal to 2n and thus increases exponentially
with n.

An algorithm for solving a problem in n variables is called strictly polyno-
mial if there exists a positive integer k such that the number of elementary
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arithmetic operations in the algorithm grows with n as at most O(nk). In
many algorithms, the number of operations also depends on the size of the
input data. An algorithm is called polynomial if the number of arithmetic
operations is growing as a polynomial in L, where L is the number of bi-
nary bits needed to represent all input (i.e. the matrices A, b and c in linear
programming).

Gaussian elimination is a strictly polynomial algorithm, because a system
of linear equations with n equations and n unknowns is solved with O(n3)
arithmetic operations.

Klee–Minty’s example and other similar examples demonstrate that the
simplex algorithm is not strictly polynomial. But all experience shows that
the simplex algorithm works very well, even if the worst case behavior is bad.
This is also supported by probabilistic analyzes, made by Borgwardt (1987),
Smale (1983), Adler and Megiddo (1985), among others. Such an analysis
shows, for example, that (a variant of) the simplex algorithm, given a certain
special probability distribution of the input data, on average converges after
O(m2) iterations, where m is the number of constraints.

The existence of a polynomial algorithm that solves LP problems (with
rational coefficients as input data) was first demonstrated in 1979 by Leonid
Khachiyan. His so-called ellipsoid algorithm reduces LP problems to the
problem of finding a solution to a system Ax > b of strict inequalities with a
bounded set of solutions, and the algorithm generates a sequence of shrinking
ellipsoids, all guaranteed to contain all the solutions to the system. If the
center of an ellipsoid satisfies all inequalities of the system, then a solution
has been found, of course. Otherwise, the process stops when a generated
ellipsoid has too small volume to contain all solutions, if there are any, with
the conclusion that there are no solutions.

LP problems in standard form with n variables and input size L are solved
by the ellipsoid method in O(n4L) arithmetic operations. However, in spite
of this nice theoretical result, it was soon clear that the ellipsoid method
could not compete with the simplex algorithm on real problems of moderate
size due to slow convergence. (The reason for this is, of course, that the
implicit constant in the O-estimate is very large.)

A new polynomial algorithm was discovered in 1984 by Narendra Kar-
markar. His algorithm generates a sequence of points, which lie in the interior
of the set of feasible points and converge towards an optimal point. The algo-
rithm uses repeated centering of the generated points by a projective scaling
transformation. The theoretical complexity bound of the original version of
the algorithm is also O(n4L).

Karmarkar’s algorithm turned out to be competitive with the simplex
algorithm on practical problems, and his discovery was the starting point for
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an intensive development of alternative interior point methods for LP prob-
lems and more general convex problems. We will study such an algorithm in
Chapter 18.

It is still an open problem whether there exists any strictly polynomial
algorithm for solving LP problems.

Exercises

13.1 Write the following problems in standard form.

a) min 2x1 − 2x2 + x3

s.t.



x1 + x2 − x3 ≥ 3
x1 + x2 − x3 ≤ 2

x1, x2, x3 ≥ 0

b) min x1 + 2x2

s.t.



x1 + x2 ≥ 1

x2 ≥−2
x1 ≥ 0.

13.2 Find all nonnegative basic solutions to the following systems of equations.

a)

{
5x1 +3x2 + x3 = 40
x1 + x2 + x3 = 10

b)

{
x1 − 2x2 − x3 + x4 = 3
2x1 +5x2 − 3x3 +2x4 = 6.
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13.3 State the dual problem to

min x1 + x2 + 4x3

s.t.

{
x1 − x3 = 1
x1 +2x2 +7x3 = 7, x ≥ 0

and prove that (1, 3, 0) is an optimal solution and that (12 ,
1
2) is an optimal

solution to the dual problem.

13.4 Solve the following LP problems using the simplex algorithm.

a) min −x4

s.t.



x1 + x4 = 1

x2 +2x4 = 2
x3 − x4 = 3, x ≥ 0

b) max 2x1 − x2 + x3 − 3x4 + x5

s.t.



x1 +2x4 − x5 = 15

x2 + x4 + x5 = 12
x3 − 2x4 + x5 = 9, x ≥ 0

c) max 15x1 + 12x2 + 14x3

s.t.



3x1 +2x2 +5x3 ≤ 6
x1 +3x2 +3x3 ≤ 3

5x3 ≤ 4, x ≥ 0

d) max 2x1 + x2 + 3x3 + x4 + 2x5

s.t.



x1 +2x2 + x3 + x5 ≤ 10

x2 + x3 + x4 + x5 ≤ 8
x1 + x3 + x4 ≤ 5, x ≥ 0

e) min x1 − 2x2 + x3

s.t.




x1 + x2 − 2x3 ≤ 3
x1 − x2 + x3 ≤ 2

−x1 − x2 + x3 ≤ 0, x ≥ 0

f) min x1 − x2 + 2x3 − 3x4

s.t.

{
2x1 +3x2 + x3 = 2
x1 +3x2 + x3 +5x4 = 4, x ≥ 0.

13.5 Carry out in detail all the steps of the simplex algorithm for the problem

min −x2 + x4

s.t.



x1 + x4 + x5 = 1

x2 − 2x4 − x5 = 1
x3 +2x4 + x5 = 3, x ≥ 0.

Is the optimal solution unique?
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13.6 Use artificial variables to solve the LP problem

max x1 + 2x2 + 3x3 − x4

s.t.




x1 +2x2 +3x3 = 15
2x1 + x2 +5x3 = 20
x1 +2x2 + x3 + x4 = 10, x ≥ 0.

13.7 Use the simplex algorithm to show that the following systems of equalities
and inequalities are consistent.

a)

{
3x1 + x2 +2x3 + x4 + x5 = 2
2x1 − x2 + x3 + x4 +4x5 = 3, x ≥ 0

b)




x1 − x2 +2x3 + x4 ≥ 6
−2x1 + x2 − 2x3 +7x4 ≥ 1

x1 − x2 + x3 − 3x4 ≥ −1, x ≥ 0.

13.8 Solve the LP problem

min x1 + 2x2 + 3x3

s.t.



2x1 + x3 ≥ 3
x1 +2x2 ≥ 4

x2 +2x3 ≥ 5, x ≥ 0.

13.9 Write the following problem in standard form and solve it using the simplex
algorithm.

min 8x1 − x2

s.t.



3x1 + x2 ≥ 1
x1 − x2 ≤ 2
x1 +2x2 = 20, x ≥ 0.

13.10 Solve the following LP problems using the dual simplex algorithm.

a) min 2x1 + x2 + 3x3

s.t.




x1 + x2 + x3 ≥ 2
2x1 − x2 ≥ 1

x2 +2x3 ≥ 2, x ≥ 0

b) min x1 + 2x2

s.t.




x1 − 2x3 ≥−5
−2x1 +3x2 − x3 ≥ −4
−2x1 +5x2 − x3 ≥ 2, x ≥ 0

c) min 3x1 + 2x2 + 4x3

s.t.

{
4x1 +2x3 ≥ 5
x1 +3x2 +2x3 ≥ 4, x ≥ 0.
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13.11 Suppose b2 ≥ b1 ≥ 0. Show that x =
(
b1,

1
2(b2 − b1), 0

)
is an optimal

solution to the problem

min x1 + x2 + 4x3

s.t.

{
x1 − x3 = b1
x1 +2x2 +7x3 = b2, x ≥ 0.

13.12 Investigate how the optimal solution to the LP problem

max 2x1 + tx2

s.t.

{
x1 + x2 ≤ 5
2x1 + x2 ≤ 7, x ≥ 0

varies as the real parameter t varies.

13.13 A shoe manufacturer produces two shoe models A and B. Due to limited
supply of leather, the manufactured number of pairs xA and xB of the two
models must satisfy the inequalities

xA ≤ 1000, 4xA + 3xB ≤ 4100, 3xA + 5xB ≤ 5000.
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The sale price of A and B is 500 SEK and 350 SEK, respectively per pair. It
costs 200 SEK to manufacture a pair of shoes of model B. However, the cost
of producing a pair of shoes of model A is uncertain due to malfunctioning
machines, and it can only be estimated to be between 300 SEK and 410
SEK. Show that the manufacturer may nevertheless decide how many pairs
of shoes he shall manufacture of each model to maximize his profit.

13.14 Joe wants to meet his daily requirements of vitamins P, Q and R by only
living on milk and bread. His daily requirement of vitamins is 6, 12 and 4
mg, respectively. A liter of milk costs 7.50 SEK and contains 2 mg of P, 2 mg
of Q and nothing of R; a loaf of bread costs 20 SEK and contains 1 mg of P,
4 mg of Q and 4 mg of R. The vitamins are not toxic, so a possible overdose
does not harm. Joe wants to get away as cheaply as possible. Which daily
bill of fare should he choose? Suppose that the price of milk begins to rise.
How high can it be without Joe having to change his bill of fare?

13.15 Using the assumptions of Lemma 13.4.1, show that the reduced cost zk
is equal to the direction derivative of the objective function 〈c, x〉 in the
direction −v.

13.16 This exercise outlines an alternative method to prevent cycling in the sim-
plex algorithm. Consider the problem

(P) min 〈c, x〉
s.t. Ax = b, x ≥ 0

and let α be an arbitrary feasible basic index set with corresponding basic
solution x. For each positive number ε, we define new vectors x(ε) ∈ Rn

and b(ε) ∈ Rm as follows:

x(ε)α = xα + (ε, ε2, . . . , εm) and x(ε)j = 0 for all j /∈ α,

b(ε) = Ax(ε).

Then x(ε) is obviously a nonnegative basic solution to the system Ax = b(ε)
with α as the corresponding basic index set, and the coordinates of the vector
b(ε) are polynomials of degree m in the variable ε.

a) Prove that all basic solutions to the system Ax = b(ε) are non-degenerate
except for finitely many numbers ε > 0. Consequently, there is a number
ε0 > 0 so that all basic solution are non-degenerate if 0 < ε < ε0.

b) Prove that if 0 < ε < ε0, then all feasible basic index sets for the problem

(Pε) min 〈c, x〉
s.t. Ax = b(ε), x ≥ 0

are also feasible basic index sets for the original problem (P).
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c) The simplex algorithm applied to problem (Pε) will therefore stop at a
feasible basic index set β, which is also feasible for problem (P), provided
ε is a sufficiently small number. Prove that β also satisfies the stopping
condition for problem (P).

Cycling can thus be avoided by the following method: Perturb the right-
hand side by forming x(ε) and the column matrix b(ε), where ε is a small
positive number. Use the simplex algorithm on the perturbed problem. The
algorithm stops at a basic index set β. The corresponding unperturbed
problem stops at the same basic index set.

13.17 Suppose that A is a polynomial algorithm for solving systems Cx ≥ b of
linear inequalities. When applied to a solvable system, the algorithm finds a
solution x and stops with the output A(C, b) = x. For unsolvable systems,
it stops with the output A(C, b) = ∅. Use the algorithm A to construct a
polynomial algorithm for solving arbitrary LP problems

min 〈c, x〉
s.t. Ax ≥ b, x ≥ 0.

13.18 Perform all the steps of the simplex algorithm for the example of Klee and
Minty when n = 3.
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Bibliografical and historical
notices

The theory of convex programs has its roots in a paper by Kuhn–Tucker [1],
which deals with necessary and sufficient conditions for optimality in nonlin-
ear problems. Kuhn–Tucker noted the connection between Lagrange multi-
pliers and saddle points, and they focused on the role of convexity. A related
result with Lagrange multiplier conditions had otherwise been shown before
by John [1] for general differentiable constraints, and KKT conditions are
present for the first time in an unpublished master’s thesis by Karush [1].
Theorem 11.2.1 can be found in Uzawa [1].

The duality theorem in linear programming was known as a result of game
theory by John von Neumann, but the first published proof of this theorem
appears in Gale–Kuhn–Tucker [1].

The earliest known example of linear programming can be found in works
by Fourier [1] from the 1820s and deals with the problem of determining the
best, with respect to the maximum norm, fit to an overdetermined system of
linear equations. Fourier reduced this problem to minimizing a linear form
over a polyhedron, and he also hinted a method, equivalent to the simplex
algorithm, to compute the minimum.

It was to take until the 1940s before practical problems on a larger scale
began to be formulated as linear programming. The transportation prob-
lem was formulated by Hitchcock [1], who also gave a constructive solution
method, and the diet problem was studied by Stigler [1], who, however, failed
to compute the exact solution. The Russian mathematician and economist
Kantorovich [1] had some years before formulated and solved LP problems
in production planning, but his work was not noticed outside the USSR and
would therefore not influence the subsequent development.

The need for mathematical methods for solving military planning prob-
lems had become apparent during the Second World War, and in 1947 a
group of mathematicians led by George Dantzig and Marshall Wood worked
at the U.S. Department of the Air Force with such problems. The group’s
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work resulted in the realization of the importance of linear programming,
and the first version of the simplex algorithm was described by Dantzig [1]
and Wood–Dantzig [1].

The simplex algorithm is contemporary with the first computers, and
this suddenly made it possible to treat large problems numerically and con-
tributed to a breakthrough for linear programming. A conference on linear
programming, arranged by Tjalling Koopmans 1949 in Chicago, was also an
important step in the popularization of linear programming. During this
conference, papers on linear programming were presented by economists,
mathematicians, and statisticians. The papers were later published in Koop-
mans [1], and this book became the start for a rapidly growing literature on
linear programming.

Dantzig’s [2] basic article 1951 treated the non-degenerate case of the sim-
plex algorithm, and the possibility of cycling in the degenerate case caused
initially some concern. The first example with cycling was constructed
by Hoffman [1], but even before this discovery Charnes [1] had proposed
a method for avoiding cycling. Other such methods were then given by
Dantzig–Orden–Wolfe [1] and Wolfe [2]. Bland’s [1] simple pivoting rule is
relatively recent.

It is easy to modify the simplex algorithm so that it is directly applicable
to LP problems with bounded variables, which was first noted by Charnes–
Lemke [1] and Dantzig [3].

The dual simplex algorithm was developed by Beale [1] and Lemke [1].
The currently most efficient variants of the simplex algorithm are primal-dual
algorithms.

Convex quadratic programs can be solved by a variant of the simplex
algorithm, formulated by Wolfe [1].

Khachiyan’s [1] complexity results was based on the ellipsoid algorithm,
which was first proposed by Shor [1] as a method in general convex optimiza-
tion. See Bland–Goldfarb–Todd [1] for an overview of the ellipsoid method.

Many variants of Karmarkar’s [1] algorithm were developed after his pub-
lication in 1984. Algorithms for LP problems with O(n3L) as complexity
bound are described by Gonzaga [1] and Ye [1].

There are numerous textbooks on linear programming. Two early such
books, written by pioneers in the field, are Dantzig [4], which in addition to
the mathematical material also contains a thorough historical overview, many
applications and an extensive bibliography, and Gale [1], which provides a
concise but mathematically rigorous presentation of linear programming with
an emphasis on economic applications. More recent books are Chvatal [1]
and Luenberger [1].
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Chapter 9

9.1 min 5000x1 + 4000x2 + 3000x3 + 4000x4

s.t.




−x1 +2x2 +2x3 + x4 ≥ 16
4x1 + x2 +2x4 ≥ 40
3x1 + x2 +2x3 + x4 ≥ 24, x ≥ 0

9.2 max v

s.t.





2x1 + x2 − 4x3 ≥ v
x1 +2x2 − 2x3 ≥ v

−2x1 − x2 +2x3 ≥ v
x1 + x2 + x3 = 1, x ≥ 0

9.3 The row player should choose row number 2 and the column player
column number 1.

9.4 Payoff matrix:

Sp E Ru E Ru 2

Sp E −1 1 −1
Ru E 1 −1 −2
Sp 2 −1 2 2

The column players problem can be formulated as

min u

s.t.





−y1 + y2 + y3 ≤ u
y1 − y2 − 2y3 ≤ u

−y1 +2y2 +2y3 ≤ u
y1 + y2 + y3 = 1, y ≥ 0

9.5 a) (4
5
, 13
15
)
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9.6 a) max r

s.t.




−x1 + x2 + r

√
2 ≤ 0

x1 − 2x2 + r
√
5 ≤ 0

x1 + x2 + r
√
2 ≤ 1

b) max r

s.t.




−x1 + x2 +2r≤ 0
x1 − 2x2 +3r≤ 0
x1 + x2 +2r≤ 1

Chapter 10

10.1 φ(λ) = 2λ− 1
2
λ2

10.2 The dual functions φa and φb of the two problems are given by:

φa(λ) = 0 for all λ ≥ 0 and φb(λ) =





0 if λ = 0,

λ− λ lnλ if 0 < λ < 1,

1 if λ ≥ 1.

10.5 The inequality gi(x0) ≥ gi(x̂)+〈g′i(x̂), x0− x̂〉 = 〈g′i(x̂), x0− x̂〉 holds for
all i ∈ I(x̂). It follows that 〈g′i(x̂), x̂−x0〉 ≥ −gi(x0) > 0 for i ∈ Ioth(x̂),
and 〈g′i(x̂), x̂− x0〉 ≥ −gi(x0) ≥ 0 for i ∈ Iaff(x̂).

10.6 a) vmin = −1 for x = (−1, 0) b) vmax = 2 + π
4
for x = (1, 1)

c) vmin = −1
3
for x = ±( 2√

6
,− 1√

6
) d) vmax =

1
54

for x = (1
6
, 2, 1

3
)

Chapter 11

11.1 λ̂ = 2b

11.3 b) Let L : Ω × Λ → R and L1 : (R × Ω) × (R+ × Λ) → R be
the Lagrange functions of the problems (P) and (P′), respectively, and
let φ and φ1 be the corresponding dual functions. The two Lagrange
functions are related as follows:

L1(t, x, λ0, λ) = (1− λ0)(t− f(x)) + L(x, λ).

The Lagrange function L1 is for fixed (λ0, λ) ∈ R+ ×Λ bounded below
if and only if λ0 = 1 and λ ∈ domφ. Hence, domφ1 = {1} × domφ.
Moreover, φ1(1, λ) = φ(λ) for all λ ∈ domφ.

11.4 Let I be the index set of all non-affine constraints, and let k be the
number of elements of I. Slater’s condition is satisfied by the point
x = k−1

∑
i∈I xi.

11.5 Let b(1) and b(2) be two points in U , and let 0 < λ < 1. Choose, given
ε > 0, feasible points x(i) for the problems (Pb(i)) so that f(x(i)) <
vmin(b

(i)) + ε. The point x = λx(1) + (1 − λ)x(2) is feasible for the
problem (Pb), where b = λb(1) + (1− λ)b(2). Therefore,

vmin(λb
(1) + (1− λ)b(2)) ≤ f(x) ≤ λf(x(1)) + (1− λ)f(x(2))

< λvmin(b
(1)) + (1− λ)vmin(b

(2)) + ε,
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and since ε > 0 is arbitrary, this shows that the function vmin is convex
on U .

11.6 a) vmin = 2 for x = (0, 0) b) vmin = 2 for x = (0, 0)

c) vmin = ln 2−1 for x = (− ln 2, 1
2
) d) vmin = −5 for x = (−1,−2)

e) vmin = 1 for x = (1, 0) f) vmin = 2 e1/2 + 1
4
for x = (1

2
, 1
2
)

11.7 vmin = 2− ln 2 for x = (1, 1)

11.9 min 50x2
1 + 80x1x2 + 40x2

2 + 10x2
3

s.t.

{
0.2x1 +0.12x2 +0.04x3 ≥ 0.12

x1 + x2 + x3 = 1, x ≥ 0

Optimum for x1 = x3 = 0.5 miljon dollars.

Chapter 12

12.1 All nonempty sets X(b) = {x | Ax ≥ b} of feasible points have the
same recession cone, since reccX(b) = {x | Ax ≥ 0} if X(b) �= ∅.
Therefore, it follows from Theorem 12.1.1 that the optimal value v(b)
is finite if X(b) �= ∅. The convexity of the optimal value function v is a
consequence of the same theorem, because

v(b) = min{〈−b, y〉 | ATy ≤ c, y ≥ 0},
according to the duality theorem.

12.2 E.g. min x1 − x2

s.t.

{
−x1 ≥ 1

x2 ≥ 1, x ≥ 0

and max y1 + y2

s.t.

{
−y1 ≤ 1

y2 ≤ −1, y ≥ 0

12.5 vmax =



t− 3

t+ 1
for x =

(
− 2

t+ 1
,
t− 1

t+ 1

)
if t < −2,

5 for x = (2, 3) if t ≥ −2.

Chapter 13

13.1 a) min 2x1 − 2x2 + x3

s.t.



x1 + x2 − x3 − s1 = 3
x1 + x2 − x3 + s2 = 2

x1, x2, x3, s1, s2 ≥ 0

b) min x1 + 2x′
2 − 2x′′

2

s.t.



x1 + x′

2 − x′′
2 − s1 = 1

x′
2 − x′′

2 − s2 = −2
x1, x

′
2, x

′′
2, s1, s2 ≥ 0

13.2 a) (5, 5, 0) and (71
2
, 0, 21

2
) b) (3, 0, 0, 0) and (0, 0, 0, 3)
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13.3 max y1 + 7y2

s.t.





y1 + y2 ≤ 1
2y2 ≤ 1

−y1 +7y2 ≤ 4

13.4 a) vmin = −1 for x = (0, 0, 4, 1) b) vmax = 56 for x = (24, 0, 0, 1, 11)

c) vmax = 306
7
for x = (15

7
, 3
7
, 0) d) vmax = 23 for x = (2, 0, 3, 0, 5)

e) vmin = −∞ f) vmin = −113
15

for x = (0, 2
3
, 0, 2

5
)

13.5 vmin = −2 is attained at all points on the line segment between the
points (0, 3, 1, 1, 0) and (0, 2, 2, 0, 1).

13.6 vmax = 15 for x = (21
2
, 21

2
, 21

2
, 0)

13.8 vmin = 9 for x = (2
3
, 12

3
, 12

3
)

13.9 vmin = −403
5
for x = (−33

5
, 114

5
)

13.10 a) vmin = 41
4
for x = (3

4
, 1
2
, 3
4
) b) vmin = 4

5
for x = (0, 2

5
, 0)

c) vmin = 5 7
12

for x = (11
4
, 11
12
, 0)

13.12 vmax =





7 for x = (31
2
, 0) if t ≤ 1,

4 + 3t for x = (2, 3) if 1 < t < 2,

5t for x = (0, 5) if t ≥ 2.

13.13 500 pairs of model A and 700 pairs of model B.

13.14 4 liters of milk and 1 loaf. The milk price could rise to 10 SEK/l.

13.17 First, use the algorithm A on the system consisting of the linear in-
equalities Ax ≥ b, x ≥ 0, ATy ≤ c, y ≥ 0, 〈c, x〉 ≤ 〈b, y〉. If the
algorithm delivers a solution (x, y), then x is an optimal solution to the
minimization problem because of the complementarity theorem.
If the algorithm instead shows that the system has no solution, then we
use the algorithm on the system Ax ≥ b, x ≥ 0 to determine whether
the minimization problem has feasible points or not. If this latter sys-
tem has feasible points, then it follows from our first investigation that
the dual problem has no feasible points, and we conclude that the ob-
jective function is unbounded below, because of the duality theorem.
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active constraint, 6
artificial variable, 122

basic index set, 92
feasible —, 101

basic solution, 95
degenerate —, 96
feasible —, 101

basic variable, 85, 95
Bland’s rule, 118

complementarity, 38
complementary theorem, 76
constraint qualification condition, 41
convex

optimization, 7
quadratic programming, 8

cycling, 106

diet problem, 15
dual

function, 33
price, 16
problem, 36, 70
simplex algorithm, 133

duality, 70
strong —, 36
weak –, 72

duality theorem, 50, 73

ellipsoid algorithm, 137

feasible
point, 2
solution, 2

free variable, 95

implicit constraint, 7
integer programming, 8

John’s theorem, 42

Karush–Kuhn–Tucker
condition, 40
theorem, 52

Lagrange
function, 32
multiplier, 32

linear
integer programming, 9
programming, 7

objective function, 2
optimal

point, 2
solution, 2
value, 2

optimality criterion, 34, 73, 84
optimization

convex —, 7
convex quadratic —, 8
linear —, 7
non-linear —, 8

phase 1, 121
pivot element, 88
polynomial algorithm, 137

reduced cost, 102

154

Download free eBooks at bookboon.com



LINEAR AND CONVEX OPTIMIZATION: 
CONVEXITY AND OPTIMIZATION – PART II

155

Index

155

INDEX 155

saddle point, 38
search vector, 99
sensitivity analysis, 66
simplex algorithm, 105

dual —, 133
phase 1, 121

simplex tableau, 88
slack variable, 11
Slater’s condition, 49
standard form, 82
strong duality, 36
surplus variable, 11

transportation problem, 19
two-person zero-sum game, 21

weak duality, 36, 83
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