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Calculus 3c-1 Preface

Preface

Here follows a collection of sequences, including sequences, which satisfy some simple difference equa-
tions. The reader is also referred to Calculus 3b. Since my aim also has been to demonstrate some
solution strategy I have as far as possible structured the examples according to the following form

A Awareness, i.e. a short description of what is the problem.

D Decision, i.e. a reflection over what should be done with the problem.
I Implementation, i.e. where all the calculations are made.

C Control, i.e. a test of the result.

This is an ideal form of a general procedure of solution. It can be used in any situation and it is not
linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a
situation which did not contain Mathematics at all. The student is recommended to use it also in
other disciplines.

One is used to from high school immediately to proceed to I. Implementation. However, examples
and problems at university level are often so complicated that it in general will be a good investment
also to spend some time on the first two points above in order to be absolutely certain of what to do
in a particular case. Note that the first three points, ADI, can always be performed.

This is unfortunately not the case with C Control, because it from now on may be difficult, if possible,
to check one’s solution. It is only an extra securing whenever it is possible, but we cannot include it
always in our solution form above.

I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a
shorthand, because they are often (too often, I would say) misused. Instead of A I shall either write
“and”, or a comma, and instead of V I shall write “or”. The arrows = and < are in particular
misunderstood by the students, so they should be totally avoided. Instead, write in a plain language
what you mean or want to do.

It is my hope that these examples, of which many are treated in more ways to show that the solutions
procedures are not unique, may be of some inspiration for the students who have just started their
studies at the universities.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.

I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
13th May 2008
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Calculus 3c-1 Sequences in General

1 Sequences in General

Example 1.1 Check if the sequence

n n+1
n—+1 n

ap =

is convergent or divergent. Find its limit, if it is convergent.

Here we have several possibilities:

1st variant. If the numerator and the denominator in both fractions are divided by n, it follows by
the rules of calculations that

n n+1 1 1 1
- = — |1+ - — (1 =0 fi .
T - (+n)_>1—|—0 (1+0)=0 forn— oo

Ap =

14—
n

2nd variant. If we remove 1 from both fractions we get

n n+1 1 1 1 1
an = — =(1-— —(1+=) == —— —0 forn—oo.
n-+1 n n+1 n n+l n

3rd variant. If everything is put on the same fraction line, we get s

n n+l nP—(m+1)?  2n41 2+~

an = — 0 for n — oo.

_ _ ___n
n+1 n (n+1)n (n+1)n n+1

It is seen in all three variants that the sequence is convergent and its limit is 0. ¢

360°
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Calculus 3c-1 Sequences in General

Example 1.2 Check if the sequence

n? n?+1
n+1 n

ap =

is convergent or divergent. In case of convergence, find its limit.

1st variant. (Does not work, but it illustrates the problem). If we reduce by n in the numerator and
the denominator in the two fractions, we get

n? n?+1 n
1~ = 1—n———>oo—oo—0.
n -+ n 14+ = n
n

Qp =

This is an illegal type of convergence and nothing can be concluded in this way.

2nd variant. (The elegant variant). Add 0 = —1 + 1 to the first numerator and apply that n? — 1 =
(n+1)(n—1):

2 24+1 2-1)+1 1 )(n—1 1 1
- n®  n+ :(n )+ D SR :(n-i- )(n—1) o1
n+1 n n+1 n n+1 n+1 n
1 1 1 1
= n—-14+——-n——=-1+ —— ——-14+0—-0=—-1 forn — oo.
n+1 n n+1 n

3rd variant. (Brute force). Put everything on the same fraction line and reduce,

n?  n?4+1 nd—(n+1)m*+1) nP—{nd+n+n+1}

ap =

n+l n (n+1)n N (n+1)n
n>+n+1
= T =1 — —1 forn — oo.
n2+n n2+n

The latter calculation can of course be performed more or less elegant. ¢

Example 1.3 Check if the sequence

nmw
Gy = COS —

2

is convergent or divergent. Find the limit in case of convergence.

It follows from

(n+4)m nmw
=008 — = ap,

a = cos ————
n—+4 2 2
that the values
ay = 07 az = 717 as = 07 ay = 13

are repeated cyclically, i.e. they all occur infinitely often. Thus we have four candidates of the limit,
but since any possible limit is unique, it does not exist in this case, and the sequence is divergent. ¢

7
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Calculus 3c-1 Sequences in General

Example 1.4 . Check if the sequence

an = n(=D"
is convergent or divergent. Find the limit in case of convergence.
Since the subsequence

Aoy = (Zn)(_l)% =2n

is divergent, the “bigger sequence” (a,) (it contains more elements) must also be divergent. ¢

Example 1.5 . Check if the sequence

Ap = —, CLERa
n

is convergent or divergent. Find the limit in case of convergence.

This sequence contains a parameter, and the question of convergence depends on the the size of the
parameter.

1) If |a| > 1, it follows from the magnitudes that
lan| = —|a|™ — oo for n — oo.
n

(The exponential function “dominates” the power function in n). In this case we have divergence.
2) If |a| <1, we get the estimate

1 1
lanp, — 0] =|anp| = —]a|" <= —0 for n — oo.
n n

It follows immediately from the definition that (a,) is convergent and that its limit is 0. ¢

Example 1.6 . Check if the sequence
an =In(n? +1) —2lnn
is convergent or divergent. Find the limit in case of convergence.

The type of convergence is “oco — 0o, so we first apply the functional equation of the logarithm. Thus

211 1
anzln(n2+1)—2lnn:1n<n—g >:1n<1—|——2>.
n n

Then follow at least two variants.

1

1st variant. Since In is continuous on pa R4, and 1+ — — 1 for n — oo, we can interchange In
n

and the limit,

1
lim an:1n<lim {1+—2}) =Inl=0,
n— oo n—o0 n

8
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Calculus 3c-1

Sequences in General

and it follows that the sequence is convergent towards the limit 0.
2nd variant. According to Taylor’s formula,
In(141¢t) =1t +te(t).

We get by putting t = 1/n?,

1 1 1 1
ap=m(l+—5)=—F5+—5e(-)—=0+0-0=0 forn— oo,
n n n n

hence the sequence is convergent and its limit is 0. ¢

Example 1.7 . Check if the sequence

(1" L+
n 2

Ay =

is convergent or divergent. Find the limit in case of convergence.

Due to the change of sign (—1)™ a good strategy would be to consider odd and even indices separately.

Thus we shall consider the two subsequences,

(_1)2n+1 1+ (_1)2n+1 1
n = - — O f )
a2n+1 o1 + 5 2n+1_) or n — 0o
and
—1)2» 1 —1)2n 1
agn:( ) + +(=1) =—+1—1 for n — oo.

2n 2 2n

It follows that we have two different candidates of the limit, and since a limit is always unique, we

conclude that it does not exist and the sequence is divergent. ¢

Example 1.8 . Check if the sequence

ap = — sin® n
n

is convergent or divergent. Find the limit if the sequence is convergent.

This example is trying to pull the reader’s leg, because one is persuaded to concentrate on the mys-

5

terious term sin” n, which apparently cannot be controlled.

Notice that we always have |sinz| <1, so
1, 5, 1
la, — 0] =|a,| = —|sin®n| < — —0 for n — oo,
n n

and we conclude that

la, —0] — 0 for n — oo,

The sequence is convergent according to the definition and its limit is 0. ¢

9
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Calculus 3c-1 Sequences in General

Example 1.9 . Check if the sequence
P s SV
is convergent or divergent. Find its limit if it is convergent.
This example is of the type “co — co”. It follows from
(a+b)(a—0b) =a* - b

that

Then putting a = v/n+ 1 and b = /n we find

a? —v? (n+1)—
n = Vvn+1-— —a—b= =
“ " Vn=a a+b  Vntlitm
1

= ———0 for n — oo,

Vn+1+yn

thus the sequence is convergent and its limit is 0. ¢
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Calculus 3c-1 Sequences in General

Example 1.10 . Check if the sequence

L (2m=3Y
" \Bn 47

is convergent or divergent. Find its limit if it is convergent.

The function f(z) = 2 is continuous and independent of n, and the “inner part” converges,

3
m—-3 27, 2-0 2 o o
= 7 — = — — .
3n + 7 341 3+0 3

In this case f and the limit can be interchanged, hence the sequence is convergent, and the limit is

4
. . 2n —3 2 2 16
m an = f (JE& 3n+7) =/ <§) - (5) ~R

In practice, the following shorter version is also accepted,

’ 3 ’
2 —3 2= 2 16
an =\ 3 T ) = 71~ (3) =% for n — oo,
n 3+E

which is correct, as long as the exponent is a constant, i.e. it does not depend on n.

Example 1.11 . Check if the sequence
n*/3 cos (nlr/(v/2)")

n+1

ay =
is convergent or divergent. Find the limit in case of convergence.

We first rewrite a,, in the following way,

4/3

an = n+ 7 cos (n'w/(x/ﬁ)”) .

n

The first factor tends to oo,

n4/3 In

T = T — > for n — oo,
n—+ 1+ =
n

which, however, in general is not sufficient, because cosz during the limit might lie close to 0, so we
get the type of convercence “oco - 07.

Notice that if we only consider even indices, then we get rid of the square root. By the chance of
parameter n — 2n we get

2n)! 1-2-3-4---2
COS<(2’:};) 7T) = COs (WURW) =1 fornZZ

11
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Calculus 3c-1 Sequences in General

because (2n)!/2" is even for n > 2. This proves that we have for n > 2,

O o ((2n)! W) (2n)4/3

agn—2n+1 on = — 00 for n — oo,

T o9n+1

and the sequence is divergent. ¢

Example 1.12 . Check if the sequence
a, =cot——n
n
is convergent or divergent. Find the limit in case of convergence

This is a tricky example, in which one must

1) replace 1/n by x =1/n, i.e. x — 0+ for n — oo,

2) apply that cot x = cosx/sinz, followed by putting everything on the same fraction line,

3) apply Taylor’s formula in both the numerator and the denominator, followed by some reduction,
4) finally take the limit  — 0+.

The details of this program look like the following:

1 CcosS T 1 rcosxr —sinx

a, = COS——n=coter— — = — - — = -
n x sinx = xsinz
x{1—1x2+x25(x)}—{x—lx?’—i-x?’e(x)} 13 s, 3
B B 6 T =5 —x—i—éx + z’e(x)
N x{x + ze(x)} B x?{1+¢e(x)}
O O 0 1—’—0—0 forz — 0+.

3" 15w 3 140

We conclude that the sequence is convergent with the limit 0. ¢

Example 1.13 . Check if the given sequence is convergent or divergent. Find the limit in case of
convergence.

3" + (—2)"

QAp = 43n+1 + (_2)n+1’

n € N.

When we estimate expressions consisting of two terms the trick is to put the numerically larger and
dominating term outside the expression as a factor. We get by using this principle in both the
numerator and the denominator that

1 (22) L (22)
3"+ (=2 3" 3) 1 3

= gn+1 + (_2)n+1 o gn+1 9 n+l 3 9 n+1"°
mE e

an

12
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Calculus 3c-1 Sequences in General

2 2 n 2 n+1
Now ‘—3 <1, s0 <—3> — 0 and <—3> — 0 for n — oo (standard sequences), hence according

to the rules of calculations,
L f
== or n — 00.
3

The sequence is convergent and its limit is
li =-.
S

Example 1.14 . Check if the sequence
n(n+2) n?

n+1 n?+1

ap =
is convergent or divergent. Find the limit in case of convergence.

The type of convergence is “co — 0o”. We note that both terms behave approximately as n, so we
subtract n from both terms:

n(n+2) n? {n(n—l—?)_ }_{ n? n}_n2+2n—n2—n n®—n®—n

an = n+1 _n2+1: n+1 n24+1 n+1  n24+1
1 1
= L+L:1——+——>1—0+0:1 for n — oo.
n+1 n2+1 n+1 1
n+ —
n

We see that the sequence is convergent with the limit 1.
A simpler variant is obtained if we immediately see that

nn+2) n?+2n+1-1 1
= =n+1-—,
n+1 n+1 n+1

where we use that n? +2n+ 1= (n+1)% O

Example 1.15 . Check if the sequence

an=Vn3+1—n
is convergent or divergent. Find the limit in case of convergence.

The type is “co — oo”. In this case the trick a — b = (a? — b?)/(a + b) does not work. However, we
succeed by a small modification. First notice that the cubic is removed by taking the third power, i.e.
we start by considering a® — b® where @ = ¥/n3 + 1 amd b = n. Then

1=mn*4+1)—n*=0a>—-10* = (a —b)(a® + ab + b?),

hence by a rearrangement,

3_b3 1

_ 3/ 3 _ __a _

ap=Vn3+1l—-n=a—->b= = 0
a’ + ab + b? (3n3+1)2—|—n3n3+1+n2_)

13
Download free eBooks at bookboon.com



Calculus 3c-1 Sequences in General

for n — oo, and we see that the sequence is convergent with the limit 0.

Alternatively one applies Taylor’s formula on /1 + z, i.e.
1
(1+z)3=1+ ( 1{3 ) x4+ xe(x) = 1+§.’E+:L’€(£L‘),

where ¢(z) — 0 for # — 0. By a small rearrangement, in which we put = = 1/n® — 0 for n — co we
get

/ 1 11 1 1
an = Vnd+l-n=n{/l+—-n=nil+-—+—c|— -n
n3 3n3  nd \n
11

1 1
= +—€<—>—>Oforn—>oo,
n

3n?2 n?

and the sequence is convergent with the limit 0. ¢
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Calculus 3c-1 Sequences in General

Example 1.16 . Check if the sequence
ay = (2n _|_3n)1/n
is convergent or divergent. Find the limit in case of convergence.

The trick in case of expressions with several terms is always to put the dominating term as a factor.
Here, 3" > 2", hence

s ()

2 n
We get from 1 <1+ (5) <2,

ny 1/n
2
3<an—3{1+<§) } <3V2-3 for n — oo.

Then all terms a,, lie between 3 and a sequence which converges towards 3, hence (a,,) is convergent
with the limit 3.

In a variant we can instead take the logarithm of (1),

1 2\"
lnan:1n3+—ln(1+(§> )—>1n3—|—0-0:1n3 for n — oo,
n

which shows that (a,) is convergent with the limit 3. ¢

Example 1.17 Let (a,) be some real sequence which is convergent with the limit a, and let the
sequence(by,) be given by
b, = (1+“—”) . neN
n
Prove that (by,) is convergent and find its limit.
(Hint: One may apply Taylor’s formula for In(1 + x).)

Taylor’s formula for In(1 4 z) gives

1
In(1+2x)=z-— 5 2?4+ 2%e(x).
Since a,, — a for n — oo, there exists an N € N, such that

a_n<1 for n > N.

n

By putting = a,,/n it follows from Taylo’s formula for n > N that

Inb, = nln (1—1— %)

15
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Since exp is continuous, we finally conclude that
b, = exp(lnb,) — expa = e for n — oo,

and (b,) is convergent with the limit e*. ¢
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Calculus 3c-1 Summable sequences

2 Summable sequences

Example 2.1 . Given a real sequence (a,). Define another sequence (by,) by
1
anE{al—im--—i—an}, n € N.

Prove that if (a,) is convergent with the limit a, then (by,) is also convergent with the limit a.
Give an example of a divergent sequence (a,, ), for which the corresponding sequence (b,,) is convergent.

We say that a sequence (a,) is summable, if its corresponding sequence (b,) defined as above is
convergent. We shall prove that if (a,) is convergent, then (a,) is also summable. Then we shall
construct an example of a summable sequence (a,,), which is not convergent. Hence, there are more
summable sequences that convergent ones.

1) Assume that a,, — a for n — oo. This means that one to every e > 0 can find some N = N(¢) € N,
such that

(2) |la—an| < % for every n > N(e).

Then

1 1 —
—bn = = — — — “ee p— n S_ — .
|a | - (@ —ai)+(a—ai)+-+(a—a)l - § la — ag

k=1

1
a—ﬁ(a1+--~+an)

If n > N(e), we split the sum in the following way

N(E n 1N(a) () c
la —b,| < —Z|afak|+— Z la — ag| EZ|a—ak\+ 3
k=N(e)+1
N(E
< —Z|afak|+—

since the n — N (¢) terms of the latter sum are all < ¢/2 by (2).

Since N(g) is fixed (corresponding to the given € > 0), the sum is

N(e)

> o
k=1

i.e. a constant, which is independent of n. Thus, there exists an N1 > N(g), such that
€
— E |a—ak\<§ for ethvert n > Nj.
n

As a conclusion we get that we to every € > 0 can find an N7 € N, such that

N(e)
|a—bn|§EZ|a—ak|+%<%+%:5 for ethvert n > Nj.
k=1

This is precisely the definition of b,, — a for n — oco.

17
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Calculus 3c-1 Summable sequences

2) The classical example of a divergent sequence (a,), for which (b,,) is convergent, is

1
2n—1

an = (—1)"71, where by, 1 = og ba, = 0.

Clearly, b, — 0 for n — oo.

A slightly more “wild” example is

aop—1 =+/n and  as, = —/n.

In this case,

\/T_l b2n = 07

bop—1 = n_1 ©8
thus b,, — 0 for n — oo.

Remark 2.1 . It follows from
nb, = a1 +as+ -+ ay,

that by = a7 and
an = nb, — (n— 1)b,—1 form > 2.

Example 2.2 We define for a real sequence (a,) another sequence (by,) by
1
bnzﬁ{al—lﬂn—l—an}, n € N.
Prove that if a,, — oo for n — oo, then b, — oo for n — oo.
Give an example of a sequence (ay) which does not tend towards oo for n tending towards oo, for
which the corresponding sequence (by,) fulfils b, — 0o for n — oo.
First note that if |a,| < ¢, then also |b,| < c. It follows that if b,, — oo, then (a,) must be unbounded.

Assume that a,, — oo for n — oo. This means that we to every ¢ > 0 can find an N = N(c¢) € N,
such that (e.g.)

an > 3c for every n > N(c).

If so, we have for n > N(c) that

N(c) n N(c)
1 1 1 n — N(c)
b, = — E — E — g — 7 . 3c.
o ar + n ap > . ar + " 3c
k=1 k=N(c)+1 k=1

To avoid that the finite sum is negative we choose N1 > 3N(c), such that

N(c)
1 3N
— E ai| < c [and trivially ﬁ < 1] for n > Nj.
n n
k=1

18
Download free eBooks at bookboon.com



Calculus 3c-1 Summable sequences

Then for every n > Ny,

N(e)

1 n— N(c)
by > — e
n;ak+ n

-3c>—c+3c—c=c.

Since for every ¢ > 0 we can choose N7, such that
b, > c for every n > Ny,

we conclude that b,, — oo for n — oo.

By the introducing remark, b, — oo implies that (a,) in unbounded. We note that an unbounded
sequence does not necessarily tend towards co. Choose e.g.

Ao, = 2N and aon—1 = 0.

Then (a,) is unbounded, and it does not tend towards co. We note that b; = 0 and

1 1 1 nn+1) n+1
bznf%(2+4+-~+2n)fE(1+2+~-+n)fﬁ- 5 =5 7
and
b L (oqaq.qop=ntD
n = = DY nzi_) s
antl 2n+1 2n +1

thus. b,, — oo.

‘We have here used that
1
(3)1+2+~~+n:§n(n+1), n € N.

For completeness, we see that this is true for n =1, 2, 3. If (3) holds for some n € N, then we get for
the following term by using (3) that

1 1
142+ +n+(n+1)= §n(n+1)+(n+l) = §(n+1)(n+2),
which we recognize as (3) where n has been replaced by n+1. Then (3) follows in general by induction

(the boot strap principle), because if (3) holds for some n, then it also holds for the following term,
etc.. Since (3) is true for n =1 (in the beginning), we see that (3) is true for all n € N. $

19
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Calculus 3c-1 Recursively given sequences

3 Recursively given sequences
Example 3.1 Let the sequence (ay,) be recursively given by

! + L eN
— (7% = Qp - n .
\/57 +1 2

Prove that (a,) is convergent and find the limit.

a1 =

We shall first find the possible limit.

Assume that the sequence is convergent, a, — a for n — oo. Since taking the square root of
nonnegative numbers is a continuous function, we get by taking the limit in

/ 1
an+41 = an+§>07

that

1 1
a=1\/a+=>0, ie. a2:a+§Wherea20.

This equation of degree two has the roots a = (1 4 v/3)/2. Since a > 0, the only possible limit is

1++3
5
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Calculus 3c-1 Recursively given sequences

It does not yet follow that the sequence actually is convergent. We continue in the following way.
A sequence (a,,) is convergent, if it is (weakly) increasing and bounded from above.

1) The sequence is bounded from above.
Obviously, a; = 1/v/2 < (1 ++/3)/2 [the possible limit]
If a,, < (1 ++/3)/2, then it follows for the next element that also

/ 1 / 3 1443
Ap41 = an+§< 1+§: 2\/_7

where we have used that

<1+‘/§>2:1{1+3+2\/§}=1+—.

&

2 4 2
Then it follows by induction that (a,,) is bounded from above.
Alternatively it follows from the assumption a,, < 3/2 that

1 3 1 3
n = n a5 5 - =V2 )
Ap+1 \/a +2<\/2+2 \/_<2

hence by induction, a,, < 3/2, and it is bounded from above.

2) The sequence is increasing.

Firstly,

1 1 1 1
as = _+_>\/j—a1, i.e. ag > aj.
V2 o2 2 /2

Then assume that a, > a,—1 for some n > 2. (This is at least true for n = 2). Then

\/ + ! \/ + ! tn — Gn_1 >0
Qp —Gp = Qp 5 Qp— 5 ’
+1 D) 1 B \/ 1 \/ 1

(7% + 5 + Ap—1 + 5

and it follows by induction that (a,) is increasing.

3) We have now proved that (a,,) is convergent.
We showed in the beginning that a = (1 + v/3)/2 is the only possible limit
Since the limit exists, we must have the limit a = (1 4+ v/3)/2. ¢
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Example 3.2 . Let the sequence (a,) be recursively given by
a =1, Apt1 = V30, n € N.

Prove that (ay,) is convergent, and find its limit.

If a,, — a for n — oo, it follows by taking the limit in the recursion formula,
a = V3a, or a® = 3a by a squaring.

We use here that taking the square root is a continuous operation, so the limit and the square root
can be interchanged. Thus we conclude that a = 0 and a = 3 are the only possible limits. We shall
prove that the sequence indeed is convergent. (Our assumption above).

1) The sequence is bounded.

If a > 1, then a1 > V3> 1, ie. (ayn) is bounded from below. It follows in particular that if the
limit a exists, then we must have a # 0, thus a = 3 is the only possible limit.

If a, < 3, then a,4+1 = v/3a, < V3-3 =3, and (a,) is also bounded from above.

2) The sequence is increasing.

In fact,

an+1_an:m_ \/3an71:\/§'{\/a_\/m}

shows that if a, > a,—1 > 1, then also \/a, > \/a,—1, hence an11 — a, > 0, and we have
Ap41 > Ap,.

From as = v/3 > 1 = a; follows that as > a;. Then by induction,
l=a1<ax< - <ap<apgyr <---.

3) Conclusion.

An increasing bounded sequence (a,,) is convergent, so the given sequence is convergent. The only
possible limits were a = 0 and a = 3. But since all a,, > 1, we can exclude a = 0, and

lim a, = 3. O

n—oo
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Example 3.3 Define the sequence (a,) by

1
a1:k7 a7l+1:§(an+£)a TLEN,

n

where k > 0 and p > 0 are any positive numbers. Prove that a> > p for every n > 2 and that the
sequence az, az, Ay, -+, is weakly decreasing. Then prove that (ay) is convergent with the limit \/p.
Calculate az with 4 decimals i the case k = 2, p = 3, and compare the result with the value on the
pocket calculator of /3. Finally, describe the connection between the sequence and Newton’s iteration
method of solution of the equation x> —p = 0.

1) Proof of ai > p for every n > 2.

1
If we put f(t) = 3 (t—|— g), t > 0, then
= > 1 > 1.
any1 = flan) > rtn>1(1)1f(t) forn>1
Since

f/(t):%(l_t%)zo fort =/p >0,

and f(t) — oo for t — 0+ and for t — oo, we must have that ¢t = /p corresponds to a minimum,
hence

an+12f(\/;5)=%(\/1_7+£p>=\/]_9 for n > 1,

VP

and a,, > \/p, and thus a2 > p for all n > 2.

2) Proof of the claim that (a,) is weakly decreasing for n > 2.
We first prove that as > az. This follows from

1 p 1 py) 1 p(1 1Y a1—as P
a2 3 2 <CL1 + a1> 2 (02 + GQ) - 2(@1 Cl2) + 2 aq a9 o 20,2 a2 aq

B D -0z

Then assume that an,—1 > ap, i.e. a,—1 —a, > 0 for n > 3. This is true for n = 3, according to
our first result. then

1 P 1 py 1 p /(1 1
S P G R 4
2 n—1 n A1 .

By 1. we have a,, > \/p and \/an,_1 > /P, 80 anan_1 —p > 0.
By the inductions assumption we get a,_1 — a, > 0.
We see that we also have a,, — a,+1 > 0, hence ay, > ap41.

Then by induction, at a,_1 > a, for all n > 2, and the sequence is weakly decreasing.
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3) Since (a,) is bounded from below and weakly decreasing, it is convergent.

1
4) The function f(t) = 5 (t + Zg) is continuous, hence we can find the limit value by taking the
limit in the recursion formula, i.e. replace a,,+1 and a, by the limit value a. We get the equation

1
a = 3 (a + E) , i.e. a? = p ved omordning.
a

Since every a, > ,/p, we have a > /p, it is in particular positive. It therefore follows that a = /p.

5) When k = 2 and p = 3, we get

1 3
ap =2 og an+1:§ an +— .

Hence
az = 1,750000, a3 =1,732143, a4 = 1,732051.

By a comparison with the value on a pocket calculator we see that az agrees on the first 3 decimals
with v/3 and a4 agrees on the first 6 decimals with v/3.
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Calculus 3c-1 Recursively given sequences

6) Comparison with the Newton-Raphson iteration method.
Let F(z) = 2% — p, then F'(x) = 2z, hence

o= o= o= T2 4 (o)

The iteration formula becomes

1 P
Ap41 = 5 (an'i'a)a

which is precisely the considered recursive sequence. ¢

Example 3.4 Let the sequence (ay,) be given by ay = 0, as = 1, and each of the following terms as
the arithmetical mean of the two preceding terms:

3 )

1
a5:g,...,an:§{an,1+an,2},....

Prove by induction that

NG i
n =73 Ton1 T3

Then prove that the sequence (a,) is convergent with the limit 2/3.

2 (=12 2 2 2
Fornzlweget—~?+—:f_+_:0:a1
g(—21)"—2 ?i 23 ’
Fornz?wegetg-?=§+§—1:a2.
2 (=12 1 2 1
F = t - =+ - = - =
or n =3 we ge 3 n—1 6+3 ) as
Assume that
2 (—1)”+2 2 (—1)”_1+2
In2= 3 Tgn-3 T3 & 1Ty Tona T3

for some n > 3. This is at least true for n = 3 and n = 4. Then by an addition,

O 8
3

2 1
’ on—3 on—2 g ’ on—1 )

1( N ) 2+
Ap = —(Ap— Ay — = — — . —
2 ! 273733

which has the same structure, and the formula follows by induction.

Since

2 4 1
- =--— =0 for n — oo,
3 3 27

2
it follows by the definition that a,, — 3"
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Example 3.5 Consider the recursively given sequence (a,), where a; = ¢ € R, any1 = f(ay) for
f(x) = x + 2% The function f has the fix point xo = 0. Show graphically that the fix point is
attractive for some values of ¢ < 0, and repelling for every ¢ > 0.

It follows from the equation f(zq) = o, i.e. 2 = 0, that xy = 0, hence zo = 0 is a fix point. Since

1 1
flx)y=a2*+o= <x+§> T

it is easy to sketch the graph.

It is difficult to sketch on the figure in MAPLE the lines which shows the convergence, so this is left
to the reader. We see that z is attractive for ¢ € [—1,0] and repelling for ¢ € R\ [—1, 0]

We shall now prove these claims.
1) If ¢ > 0, then f(c) = c?+ ¢ > ¢, and f(c) moves away from x¢ = 0, thus the point is repelling.
2) If r ¢ < —1, then f(c) = ¢ +c¢=c|(Jc] = 1) > 0, and we are back in case 1..

3) If either ¢ = 0 or ¢ = —1, then f(¢) = 0. Since trivially f(0) = 0 in all the following iterations, it
follows that xg = 0 is attractive for these values of c.

4) Finally, if =1 < ¢ < 0, then f(c) =c+c¢* =c¢(1+¢) <0, and f(c) > ¢, hence
c< fle) <0,

and we conclude that the fix point is attractive for ¢ €] — 1,0[. ¢
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Example 3.6 Consider the recursively given sequence (a,) where

ap = ¢,

1) Compute for c = —1 the terms as,

3
Ap41 = —Qy.

..., a5, and gie a graphical discription.

2) The same for ¢ = —1/2.

Again, it is difficult to give all necessary details on a figure in MAPLE-figure, so these additions are

left to the reader.

\ 0.59

r R T T T
-1 -0.8 -0.6 -0.4 -0.2 0.2 N< 08 1

\\
054 \\\
. \
—11 \
1) If ¢ = —1, then
ap=-1, ax=1, az=-1, as=1, a5=-1,
and in general a,, = (—1)".
2) If ¢ = —1/2, then
1 1 1 1 1
ay = Bk az = PER az = T 990 a4 = 927 as = 981
and in general
an = (—1)"276G"D peN. ¢
27

Download free eBooks at bookboon.com



Calculus 3c-1 Recursively given sequences

Example 3.7 Let the sequence (ay) be recursively given by

ap = 100, On+1 = 2¢/a, — 1.
1) Prove by induction that a, > 1 for every n € N.
2) Prove by induction that the sequence (a,) is decreasing.

3) Finally, prove that the sequence (a,) is convergent, and find its limit value.

1) Assume that a,, > 1. Then a,,41 = 2y/a, —1>2-1—1=1, and we see that a,, > 1 implies that
also the successor satisfies a,,+1 > 1. Since a3 = 100 > 1, the claim follows by induction, hence
(an) is bounded from below.

2) We get by insertion, as = 2¢/100 — 1 = 19 < 100 = a4, thus ay < a;.
Assume that a,,_1 > a, (this is true for n = 2). When n is replaced by n + 1, we get
an — ant1 = (2y/an_1 — 1) — (2y/a, — 1) = 2(\/an_1 — /an) > 0,

hence a,, > a,4+1. We conclude by induction that

a1 > Qg > a3 > - > Ap1 > Ay > Appp > - > 1
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Calculus 3c-1 Recursively given sequences

3) Since (ay) is decreasing and bounded from below, it follows that (a,) is convergent. Denote the
limit value by a. By taking the limit of the recursion formula we get

0= lim a,.1 — lim 2\/a, +1=a—2Va+1=(vVa—1)2
hence v/a = 1, and thus lim,, oo a, =a = 1.

1
Remark 3.1 If we consider the function f(z) = 2y/z—1, where f'(z) = 75 then f'(zo) = f'(1) =1,

corresponding to a limiting case, in which one usually can say nothing about the convergence. This is
also demonstrated by an iteration on a pocket calculator, because the approximation becomes slower
the closer one is to a = 1,

as = 3,26904, aip =1,69909, a5 =1,39299, ag =1,26997. ¢

Example 3.8 Find the smallest positive solution of the equation

1
1+25-1076/sinx

COST =

with four decimals by using a convenient iteration method. Then comment on the convergence.

Remark 3.2 This is a very vicious example! ¢

The difficulty of this example apparently stems from the denominator on the right hand side. First
we rewrite in the following way

1 ~40000sinz 1
1425-1076/sinz  40000sinxz +1 ~  40000sinz 4+ 1’

(4) cosxz =

It is easily seen that > 0 must be small, hence by Taylor’s formula

72

sinx ~ x og cosr~1— —,

2

and (4) can approximatively be written

x? 1
11— ~l—————— e 2240000z + 1) =~ 2.
2 0000 517 e @ (400002 +1)

We must in particular have 40000z > 1, thus we have in the first iteration (the starting value)
x =~ 1/v/20000 ~ 0, 03684.

Then the method is reduced to the well-known regula falsi, i.e. insert
1 = 0,03683, xy = 0,03684, x5 = 0,03685

into (4) and compare,
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I
n Ty COS T, 1-— 10000sma £ 1 Left side relation right side
1 | 0,03683 | 0,999321852 0,999321513 >
2 | 0,03684 | 0,999321484 0,999321697 <
3 | 0,03685 | 0,999321116 0,999321881 <

We are just inside the range of the accuracy of the pocket calculator, because the factor 40000 gives
an error of rounding off which is 40000 times bigger than usual (i.e. 40000 times 10~'2).

It is quite ironical that our first approximation by using Taylor’s formula in fact gives the best
approximation with four decimals,

x ~ 0,03684,
which should be compared the the interpolation of the table,
x ~ 0,036836.

If we instead apply the Newton-Raphson iteration on
1

F(x) = —_—— —1
(@) = cose + 5000sine + 1
where

F'(z) = —sinx — oSt

(40000 sinz + 1)2
we get the auxiliary function

1

~ _ 1 _|_ -
F(z) oS 40000 sin = + 1
glx)=x— =x+ CORT .

F'(z) '
ST 10000 sin g + 1)2

Even if we choose the value 2y = 0,037 as our start [where we have an eye to the value 0,03684] the
iteration is extremely slow,

x1 =0,036991, x5 =0,036982, x3=0,036974.
If we instead rewrite (4) to

40000 cos z - sin x 4 cos x = 40000 sin z,
ie. to

F(z) = 20000 sin 2z — 40000 sin z 4 cos z = 0,
then

F'(x) = 40000 cos 22 — 40000 cos = — sin z,

and we get by the Newton-Raphson iteration

20000 sin 2x,, — 40000 sin x,, + cos x,,
40000 cos 2x,, — 40000 cos x,, — sin x,,

with starting value xy = 0,037, the first values

1 = 0,036837, 2 = 0,036836, 3 = 0,036836.

Tp4+1 = Tnp
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Example 3.9 Given the function

1

F = COoS .
(x) = cosx + -

1) Write down the Newton-Raphson iteration formula for the solution of the equation F(x) = 0.

2) Apply a programmable pocket calculator to the Newton-Raphson iteration and find the first four
positive zeros of F(x) =0 by choosing the starting values

3 5 7
= P P T

9 o 9 o Ty

Apply 3 iterations and use 5 decimals.

1) Since

. . 2 .
, . sinh sinz - cosh” z 4+ sinh x
F'(z) = —sinz — 5 = — 5 ,

cosh” z cosh” z

the Newton-Raphson iteration is written

B F(xy,) oS T, - cosh? z,, + cosh z,,
Tn4+1 = T — Ia

. 2 . .
"(xn) sin z,, - cosh” x,, + sinh z,,

2) The requested iterations give with 5 decimals,

n 1 2 3 4
20" | 1,57080 | 4,71239 | 7.85398 | 10,99560
2™ | 1,86265 | 4,69410 | 7,85476 | 10,99550
20 | 1,87507 | 4,69409 | 7,85476 | 10,99550
2{M | 1,87510 | 4,69409 | 7.85476 | 10,99550

Example 3.10 Given the function

F(z)=¢"sinx — 1, T € [0, g] .
Prove that the equation F(x) = 0 has precisely one solution o, and find this by an iteration in two
steps.

Since both e” and sinz are increasing in [O, g}, and F(z) is continuous with F'(0) = —1 < 0 and
F (g) — 1 > 0, there exists precisely one zero « € }0, % {
Since
F'(x) = e"(sinz + cos z),
31
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it follows by Newton-Raphson iteration that

F(ay) e sina, —1
Qpt1 = Qp — ——+ = Qp — .
o " F'ay) " eon(sina,, + cosay,)

The next question depends on the choice of starting value. In the specific case, however, the process
is fairly robust.

If we choose ag = 1, then we get successively
a1 = 0, 657, Qg = O, 5917 a3 = 0, 5885.

If we instead choose ag = 0,5 then we also get az = 0, 5885.
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Calculus 3c-1 Sequences of functions

4 Sequences of functions

Example 4.1 Prove that the sequence of functions

fal®) = =+
xTr) = — _ PR >,
" 224+1  a2+4 x2 +n?
where f, : [—1,1] = R, is pointwise convergent on the interval [—1,1].

Hint. Apply the General principle of convergence.
Apply a programmable pocket calculator to sketch the graph of fn(x) for some large n.
It can be proved that f,, converges uniformly on the interval [—1,1] towards the function

2mx 1
1 Wg _Z for z #0,
. 2| €2 -1 «x
fz) =
0 for z = 0.

For any = € [—1, 1] we have

m
x
frvtm(@) = Fu(@)] = m+"'+x2+ (n+m)?| = = (n+5)?
‘ . o 1 7 .
It can be proved from the Theory of Fourier Series that )~ ; 2= is convergent. This means
n

that to any € > 0 there exists an N = N(g) € N, such that
Y 3 3 1 < for alle n > N
Z - <& forallen > N(e).

n+‘7 j=n+1

j=1 j:1 n + ‘]
By insertion we get that |frrm () — fn(2)| < € for n > N(g), not just pointwisely, but even uniformly.

Since every f,, n € N is an odd function, we shall only sketch the graph of f, for 2 € [0,1].
That the limit function f(x) is precisely the given function can either be shown by a formula from
Complex Function Theory or by some clever application of a Fourier series. Note that

flx) = % {WCOth(TFI) - é} for x # 0. O

Example 4.2 Prove that the sequence of functions f,, : R — R, defined by

1+ a2t

_ N
O+ m+ad)y &0

fn('r) =

converges uniformly towards the function 0.

1 4
First variant. Since 0 < + $4
n—+x

1+ [1+ 2% 1+
< here we have put y = —.
n+ax* ~ | n+at’ WHETE We Rave P Y = o ad

<1, and \/y >y for y €]0, 1], we get
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0.8

0.6

0.4+

0.2+

0.2 04 08 08 1
Hence we have the estimate
1 4 V1 4 1 1
0< folz) = R < Ak <1l-— —0 formn — oo,

I+22)(n+2t) = 1+22 Vnt+zr~ Vn
independent of x € R, so (f,) converges uniformly towards 0 over R.
Second variant. Put v = 2. Then by a decomposition with respect to u,

0< file) — 1+ 2 Lo, 1 L+u? 2
" (4 wm+u?) n+l 14+u 1+u|ln+u2 ntl

2 1 1 u? —1 1 1
= . + 5 +2 5 —
n+1 14u 14+u|n+u n+u n+1
2 1 +u—1 n 2 1—u?
n+l 14+u n+u? 14+u (n+u2)(n+1)

2 1 +u—1 2
n+1 1+u n+u? n+1]"

—1 2
Since — has its maximum for u = v/n + 1, and since 1 — —— € [0, 1], we get the estimate
n + u? n+1
1 V4 1-1 2 RV 1
0< fu(z) < nt 1< + nt — 0 for n — oo,
n+1 n+n+1 n+1 2n+1

independently of u € Ry U {0}, hence also independently of x € R. This proves that (f,) converges

uniformly towards 0 all over R.
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Example 4.3 Find a sequence of C'-functions f, : [0,1] — R, which converges uniformly on [0,1]
towards a C'-function f : [0,1] — R, and for which the sequence of derivatives (f!) is pointwise
convergent, but not converging towards the function f’.

The best strategy must be first to choose some convenient pointwisely convergent sequence of functions
(f]), where the limit function is not continuous, and then integrate the terms of this sequence from

0.

It is well-known that g, (z) = 2™ is pointwise convergent towards the discontinuous function

o(z) = { 0 forx€]0,1],

1 forx=1.
Choose
€T xn-l—l
n = n t dt = .
fu@) = [ oty =2
It is then obvious that
fyln(x) =" = gn(ar) — g(x) for n — oo.

It follows from the estimate

xn—i—l

1
; -0l = < fi 11 1
| fn(z) — 0 n+1_n+1_>0 orn — oo, allex€][0,1],

that f, — 0 uniformly. It is obvious that f(x) = 0 is a differentiable function and f’(x) = 0, which is
# lim f}, (z) = g(x).
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By using the example above (one introduces a singularity at @ = 1) it is possible to construct a
sequence of functions (f,,), which converges uniformly towards 0 in [0, 1] where

lim f)(x)#0  for ethvert z € [0,1] N Q.

n—oo

The construction, however, uses series which formally have not yet been introduced.

Example 4.4 For every n € N we put
fulz) = nxefn"”Q, zeR.

Find lim,,_. fn(x), and prove that
1

1
lim fn(z)de # / lim f,(x)dz.
O 0 n—oo

n—oo
1) Pointwise convergence. What is here obvious? When x = 0 is fixed, then

fn(0)=0—0= f(0) for n — oo.

If instead x # 0 (fast), it follows by the magnitudes that

folz) =2 D0 forn—>oo,daew2>1.

()’

As a conclusion we get that (f,,) is pointwisely convergent with the limit function

0.8
0.6
0.4
024
0 02 04 } 056 08 1
f(z) = Tim_fu(z) =0.
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2) The integrals. It follows immediately that

/Olnllnéofn(x)dﬂf = /Olf(x) do = /Olodx —0.

Then we get by the substitution v = nz?, du = 2nzdx, that

! ! 2 I 1
/ fo(z)de = / naxe” " dx = —/ e tdu=<(1—e").
0 0 2Jo 2

Finally, by taking the limit,
1 1 1 1
lim fn(x)dr = lim 5 (1—e") = 3 #0 :/ lim f,(z)dz.
0

n—0o0 0 n—oo n—oo

Remark 4.1 All functions f,(z) are continuous. Since the integration and the limit cannot be
interchanged, the convergence of (f,) can never be uniform. ¢

Example 4.5 Let f, : R — R be given by
xQn

:m, n € N.

fu(x)

1) Prove that the sequence (fy,) is pointwise convergent, but not uniformly convergent.

1
2) Prove that the sequence (f,) is uniformly convergent in the interval {—5, 5} .

1) This example is tricky, because one must split it up into three cases,
(@) 2l <1, M) jal=1, (o) ]al > 1.
In the remaining part of this question we keep z fized in the given domain.
(a) If |z| < 1, then

2n
2n

T
<z —=0 for n — oo.

|fn(x) - 0| = fn(x) = m =

1
(b) If || =1, i.e. & = %1, then f,(£1) = 3"
(c) If |x| > 1, then

2" 1

fn()
Summarizing we see that (f,,) is pointwise convergent with the limit function
0 for|z| <1,
flz) = for |z =1,
for |z| > 1.

il SRR

Since every f, is continuous and the limit function f is not continuous [cf. the figure], it follows
that the sequence is not uniformly convergent.
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0.8

0.6

0.4+

0.2

1
2) Get rid of ! When |z| < 50 e get the estimate

xgn 1 2n
<m2"<<§> — 0 for n — oo.

fnl@) = 0] = fula) = T <
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For every € > 0 there exists an N, such that for every n > N and every x € {

2n
1
|fn(2) — 0] < 22" < (5) <e [for n > N(e)],
. . 1
i.e. (fn) converges uniformly towards 0 on [—57 5] .

Example 4.6 Prove that the sequence of functions
fn(2)

X

=T 607 )
1+ o [ oo[

is pointwise convergent, and find its limit function.
Check if the convergence is uniform.

1) If € [0,1] is kept fixed, then 2™ tends to 0 for n — oo, hence
fn(z) =

xT

—x forn — oo, when x € |0,1].
14+ 2m

1 1
2) fz=1,er f,(1) = 3 for every n € N, then f,(1) — 5 for n — oo.
3) If x > 1 is kept fixed, then =™ tends towards co for n — oo, hence

fn(z) =

— 0 forn— oo, narxell, ool

1+am

0.8

0.6

0.44

02{ |

As a conclusion we see that (f,) is pointwise convergent and its limit function is

for x € 0, 1],
flz) =

for x =1,

=N

for x €]1, 00].

11
272

|
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Since every f,(x) is continuous on [0, oo[, and f(z) is not continuous, it follows that the convergence
cannot be uniform.

Example 4.7 Prove that the sequence of functions (f,), which is given by

1

fu(z) = m,

n €N,

is pointwise convergent, and find its limit function.
Check if the convergence is uniform in the interval [0, 00[, in the interval |0, 00, and in the interval
[1, 00[, respectively.

Pointwise convergence. What is obvious? For z = 0 we have

1 1

Let o # 0 be fized. If we put 1+ 22 = a > 1 (a fixed number), we see that
1

fn(x):m:a—nﬂo for n — oo.

We conclude that we have pointwise convergence and the limit function is

1 forx =0,
f(:c):{ 0 forax#0.

0.8
0.6
0.4+

0.2

Uniform convergence in [0,00[? This is not possible, because every f, is continuous, while the
limit function is clearly discontinuous in 0.
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Uniform convergence i |0, 00[? This is a really tricky question, because the limit function f(x) =0
is continuous in ]0, oo[. We shall nevertheless prove that the convergence is not uniform!

First note that the range of every f, is ]0,1[, i.e. f,,(]0,00[) =]0,1][.
If we choose x, = / ¥/2 — 1> 0, we get

1 1
L+{v2-1ph 2

|.fn(xn) - 0| = fn(xn) =

1 1
Thus, we shall always obtain the value 3 for every f,, and since the constant 3 “not can be made as

small as possible”, the convergence cannot be uniform.

Uniform convergence in [1,00[? In this case the limit function is again f(x) = 0. Since we are far
away from the discontinuity at x = 0, it will be reasonable to get rid of x by an estimation: For = > 1
we have 1 + 22 > 2, thus

1 1

méﬁﬂo fOI'n—>OO7

|fn(x) = 0] = fulz) =

and we conclude that the convergence is uniform in [1, col.

Remark 4.2 The above will always be accepted. A more careful solution is the following.

1) To every € > 0 we choose N = N(g), such that

<e <choose N > M ﬁxed) .
In2

)
2| -

2) Since (1/2™) is decreasing for increasing n, we have

1 1
on < o <e for every n > N(g) [independently of z].

3) For every x > 1 we have

1
— < <e for every n > N(e) [independently of z].

1
(1+22) on

Finally we summarize the above:

To every € > 0 there exists an N = N(g) [which does not depend on z], such that for every n > N
and every x > 1,

[fn(z) = 0] <e,

which means that we have uniform convergence on [1, ool.
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Example 4.8 . Prove that the sequence of functions (g,), given by

B 14 ne”

, x €[0,1],
r+n

In(7)

converges uniformly towards the function e*, x € [0,1].
Find the limit function lim,,_ fol gn () dz.

Let x € [0,1]. The difference between g, () and the possible limit function e” is given by

1+ ne® - 1 T
gn(x) — e = ——— — " = - e’.
rT+n r+n x+n

This gives For x € [0, 1] the following estimate,

1 ze® 1 1-el 1+e
|gn(x) _exl =

< + < + =
r+n x+n 0+n O04+n n

)

because a fraction with a positive numerator and positive denominator is made bigger, if we increase
the numerator and the denominator is replaced by a smaller positive constant.
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1+e

Since the right hand side

— 0 for n — oo, is independent of x € [0,1], it follows that (g,,)
n
converges uniformly towards e” in the interval [0, 1].

Since the convergence is uniform, and the interval of integration [0, 1] is bounded, we can interchange
the limit process and the integration,

1 1 1 ,- 1
1 x 1 r
lim gn(2)dz = lim +ne d:v:/ lim ( +ne )dm:/ evdr=e—1.
0 0

n—oo [q n—oo Jq Tr+n n— oo Tr+n

Remark 4.3 Note that none of the integrals

1
1 x
/ tne dx, n €N,
0

r+n

can be expressed by elementary functions. ¢

Example 4.9 Let f,, : [0,1] — be given by
fo(x) =nz(l —x)", ncN.
1) Prove that the sequence (f,,) is pointwise convergent, and find lim,,_,~ fn(x).

2) Prove that

n—oo

1 1
lim fn(x) dxz/ lim f,(x)dz.
0

3) Find for every n € N the maximum of f,(x).

4) Prove that (fy) is not uniformly convergent.

1) If 2 =0, then f,(0) =0, sa f(0) =0. If z €]0,1], then a =1 —z € [0, 1], i.e.
folx)=(1—a) na" —0 for n — oo

according to the magnitudes of the functions.
It follows that (f,) converges pointwise towards 0 in [0, 1].

2) We get by a partial integration that

1

/olfn(x)dx = n/olx(l_x)"dx:[_ n x(l—x)"“} Lo /Ol(l—x)”“dm

n+1 g n+l1
1 n
0 (n4+1)(n+2)

ey T

Alternatively change the variable t = 1 — x, by which we get

1 1 1 1
n d - — "dr = _ ndt = n _ 4n+l d
/0 fnl(x)dx n/o (1 — )" dz n/o (1 —t)t™dt n/o {tm —" Y dt

- n{n—li-ln-li-Q} (n—l—l)rzn—i—Q)
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There are other alternatives, which the reader may find himself.

It follows that

1
1
lim fa(x)dr = lim _ lm =0
0

n—oo n=oo (n+1)(n+2)  neoe <1+ l) - (n+2)

1 1
:/ de:/ lim f,(x)dz.
0 0 n—oo

Alternatively one may use that

n 2 1

n+1)(n+2) n+2 n+l -

0 for n — oo.

Since we now can interchange the limit process and the integration, we may erroneously jump
to the wrong conclusion that the convergence should be uniform. The last two questions of the
example show that this is not the case.

3) We get by differentiation
fl@)=nl—-z)" —n*z(l—2)" ' =nl —2)" (1 -z —nz) =n(l —2)" "1 - (n+ 1)z}

Since f,(0) = fn(1) =0, and f,(x) > 0 for 0 < 2 < 1, the continuous function f,(z) must have a
maximum.

1
Since f,, € C*°, and since f],(z) = 0 is only fulfilled for x = o

to the unique maximum. The value of the function here is
1 1 1 \" 1\
fn =n - ]_ — - ]_ - .
n+1 n+1 n+1 n+1
4) We see that
1 1\ 1

5 lim f,(—— ) = lim (1- =—#£0.
(5) Jim_f (,m) nzf;o( nH) 7

1
Alternatively, In(1 — 2) = —z + z¢(z) according to Taylor’s formula. Putting 2 = e get
n

w{(- ) Y- )

n+
1 1 1 1
— 14— -1 — -1
(n+ ){ n+1+n+1€(n+1)}0 Jr€<n—i—1)ﬂ

for n — oo.

in ]0, 1[, this value corresponds

Now exp is continuous, hence

5 1 . 1\ e L,
n = — = X — _— — — T — .
n+1 n+1 XP n+1 e orn >
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According to (5) we can find an N € N, such that

1 1 1
fn( >>§-—>0 for all n > N.
e

. 1. . . .
Since g S constant (it cannot be made as small as we wish), the convergence cannot be uniform.
e

Example 4.10 Given the function

F(z)=¢€"sinz — 1, T € [0, g] .

from Example 3.10. Let f, : |0, Tl SR e given by
2

fa@) =7 — pew

(e* sinx)™’

1) Ezpress by means of « the largest set A C ]0, g] , for which the sequence (f,) is pointwise con-
vergent in A. Find the limit function.

2) Check if the sequence is also uniformly convergent on A. Does there exist a largest set B C ]O, g} ,

such that the sequence is uniformly convergent on B?

1) Since e”sinz = F(x)+1 >0 for z € ]0, g], the sequence of functions can also be written

fn(x):x—{ﬁ}n, xe}o,g}, n € N.

Since (¢"™) is convergent for —1 < ¢ < 1, and since F(z) + 1 > 0, we get the condition

1
<1, ie. F(xz)>0.

O < @ =

According to Example 3.10 this is true for v € A = [oz, g}, because F'(«) = 0, and because F(z)
is increasing.
If x = o, then F(a) 4+ 1 = 1, hence

fo(a) =a—1.

1 1 "
Ta<ax< g, then 0 < W < 1, hence {W} — 0 for n — o0o. We conclude that
x T

the limit function is
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2) Since every function f,, is continuous in A, and the limit function f is not continuous in A, the
sequence cannot be uniformly convergent in A.

There does not exist any largest set B, on which (f,,) is uniformly convergent. In fact, for every

€€ }0, g -« { we have that (f,,) is uniformly convergent in [oz + e, g], and the smallest set which

T
contains all these intervals is }a, 5}, on which (f,,) is not uniformly convergent.
ALTERNATIVELY, choose a sequence (y,,), such that

1 1 . n
m—n—ﬁ, l1.e. F(yn)—\/i—l (—>0forn—>oo)

Then y,, — a4+, and

1 1
fn(yn>:yn_§_>a_§ for n — oo,

hence (f,(yn)) neither converges towards « nor towards « — 1.

/
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5 Linear difference equations

Example 5.1 1) Find the complete solution of the difference equation

i +xp—1 =0, k>1.

2) Find a particular solution of the difference equation
(6) xp + xp—1 =4, kE>1,

and then find the total solution of (6), for which xo = 1.

A. Linear difference equation of first order.
D. Find the solution of the homogeneous equation and then a particular solution.

I. 1) The characteristic polynomial R + 1 has the root R = —1, thus the complete solution of the
homogeneous equation is given by

zp =c- (—1)F, keNy, ceR.

2) By inspection we see that the constant solution xj = 2 is one solution of (6). Hence the
complete solution is

zp=24c- (=1, keNy, ceR.

For k =0 we get g =1 =2+ ¢, i.e. ¢ = —1, and the wanted solution becomes
zp =24 (—1)F, k € Ny,

ie.

1 for k even,
RT3 for k odd,

k € Np.
Example 5.2 Find a particular solution of the difference equation
T — Tp_1 =4, k>1,
and then find the complete solution.
A. Difference equation of first order.
D. Guess some particular solution.
I. Put a;, = 4k. Then we get by insertion (i.e. we are testing this sequence) that
xp — xR =4k —4(k — 1) =4,

and we have shown that x, = 4k, k € N, is a particular solution.

The characteristic polynomial R — 1 has the root R = 1, hence the total solution is given by

xr = 4k + ¢, ke Ny, ceR.
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Example 5.3 Find that solution of the difference equation
rp+xp_1 =k, k>1,
for which xo = 2.
A. Linear, inhomogeneous difference equation of first order.
D. Guess a particular solution.
I. If we guess on x; = ak + [, then we get by insertion that
ak+ 0+ alk—1)+ 6 =2ak = (20 — a),

1 1
which is equal to the variable k for a = 3 and § = 1

Since the characteristic polynomial R 4 1 has the root R = —1, the complete solution is given by

1 1
xk:§k+1+cm—nh keNy, ceR.

For k = 0 we get

L, 1.7
c=39g——-=2—— = —
07y 44

thus the wanted solution is

1 17
== — 4= (=) .
Tp 2k+4+4( )", k e Ny

Example 5.4 Find that solution of the difference equation

xk—xk_lzk, /4521

3

for which x5 = 4.

A. Linear, inhomogeneous difference equation of first order.
D. Solve the corresponding homogeneous equation. Then guess a particular solution.

I. The characteristic polynomial R — 1 has the root R = 1. Thus, the complete solution of the
homogeneous equation is given by

TE = ¢, keNy, ceR.

Since already xj = 1 is a solution of the homogeneous equation and since k - 1 occurs on the right
hand side of the equation, we guess in analogy with the method of solving differential equations
on a solution of the structure

zp = ok® 4 Bk, k € N.
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We get by insertion,
ap— gy =a{k®—(k—1)*}+8{k— (k- 1)} =2k — 1) + B =2ak + (8 — a).

1
This expression is equal to the variable k, if « = 3 = 2 thus the complete solution is

1 1
xk:§k2+§—|—c, kGNo, c € R.

If k£ =2, we get the condition

—_

1
4:§~22+—~2+c:3+c,

\}

from which ¢ = 1, and the solution is

1 1
xk:§k2+§k+1, k € No.

Example 5.5 At some given time we have 1000 bacteria in a culture of bacteria . We assume in
general that the number of bacteria is increased by 250 % every second hour. How many bacteria will

there be after 24 hours?

A. Exponential growth (difference equation). Notice that since we are looking at 12 -2 = 24 hours,
we shall find 5.

D. There are some problems here with the interpretation of the text. If the increase really is 250 %,
then the corresponding difference equation becomes

Tp =Tp—1+ 5 Tp—1 = 5 Th—1-
2 2

If the meaning instead is that the increase is 250 % of the previous value at time (k — 1)2, then
the difference equation becomes

5
T = 5 Th—1-

Since there is some linguistic uncertainty in the original text (I do not remember where I found
this example), we shall as an exercise go through the solving of both equations.

I. We have z¢ = 1000.

1) In the first interpretation we get
7\ 12
T12 = (§> - 1000 ~ 3379220 508.
2) In the second interpretation we get

5\ 12
Ti2 = (I) - 1000 ~ 59 604 645.
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Example 5.6 A man pays every quarter 600 euro into his account. The interest is 11 % p.a., where
the interest is added every quarter. When will there be 25 000 euro on the account?

A. Difference equation for savings.
D. Write down the model of difference equation and then solve this equation.

I. Let xj denote the capital at the k-th quarter after his payment. Then zq = 600, and since the

. .11 .
interest per quarter is T %, we get the equation

11
= 1 — .
Tp 600+{ +400}1‘k 1, keN

This is then rewritten as the difference equation

411
T — M Lp—1 = 600.

> Apply now
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The solution of the corresponding equation is

k
411
—c. | == R.
T =¢C (400), keNg, ce

Then we guess a particular solution of the structure z; = o, k € Ng. We get by insertion

411 11

400 1T a0 ™

T —
which is equal to 600 for

240000
11

Thus the complete solution is

T =

240000 411
11 “\ 200

k
) , keNy, ceR.

For k = 0 we get

240000 246600
11 11

c =600+

so the solution becomes

240000 246600 <411>’“

11 11 400 k€ No.

T =

Finally, we shall find the smallest k € Ny, for which x; > 25000. Hence we shall find the smallest
k € Ny, for which

k
24 411 24 1
6600.< > > 95000 4+ 0000:5 5000'

11 400 11 11

This is rearranged as

411\" _ 515000 _ 2575
400) = 246000 1233’

from which

2575

In (===
. 1233)  0,7364
T <411> ~0,0271

~ 27,15.
400

Hence, we see that after 28 quarters, corresponding to 7 years, we get zx > 25000 for the first
time.

C. WEAK CONTROL. There is paid 4 - 600 = 2400 euro per year, hence 16 800 euro in 7 years, so the
result looks reasonable. considering the high (and today unrealistic) interest.
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Example 5.7 In the following examples we shall deal with annuity loans. The background is in
general the following:

A loan on Gq euro is repaid with a fixed payment of A euro per settling period, and the interest to be
paid of the debt is r per settling period (where we give r as a usual fraction, and not in %). Let G,
denote the remaining debt after n settling periods.

1) Prove that G,, satisfies
Gp— (147r)Gph_1 = —A, n>1,
and then find G,,.
2) Establish the condition that the debt is repaid.
A. Annuity loans.

D. Analyze the situation at the end of the n-th settling period in order to find the difference equation
of the problem. Then solve this difference equation.

I. 1) The remaining debt G,, at the n-th settling period is equal to the remaining debt G,,_1 at the
(n — 1)-th settling period, plus the interest, xG,_1, and minus the payment A, i.e.

Gn = (1 —|— T)Gn—l — 147
which we rearrange as the solution

G, — (1 + 7“)an1 =—A, n>1.

Here we guess a particular solution of the form G,, = a. We get by insertion (i.e. testing this
solution) that

Gn—(147r)Gh1=a—(14+r)a=—-ra=-A,

and a particular solution is the constant sequence
A
G,=a=—, n € Np.
r

Since the corresponding homogeneous equation has the solution ¢-(1+7)™, the complete solution
of the inhomogeneous equation is given by

A
Gn:?—l—c-(l—kr)”, n €Ny, celR

For n = 0 we get the condition

A A
GOZ—+C, ie. C:Gof—,
r r

and the wanted solution becomes
A A
G, = +<G0——)-(1+7")n7 n € Np.
r

n —
r
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2) The debt will be paid back, if and only if G,, at some time becomes < 0. This means that
A
Gy — — <0, hence
T

A >r- Gy,

which is only expressing the reasonable fact that the payment must be bigger than the interest
in one settling period of the original loan.

Example 5.8 Let Gy and A be given, and assume that A is sufficiently large to assure that the loan
will be paid. Find a formula for the number of settling periods which is needed to pay the debt (thus
the smallest number n of settling periods for which G, <0.)

A. A continuation of Example 5.7.
D. Apply the solution of Example 5.7.
I. According to Example 5.7 the remaining debt G, is given by

A A
Gn:?+(Go——>-(1+T>n, n € Ny,

r

A
where we must assume that Gg — — < 0, i.e. A > r-G.
r
We shall find the smallest n € Ny, for which G,, <0, i.e. the smallest n € Ng, for which

A A A
=z . S n> %
(r G0> (1+7) 2, e (1+7) e

We get by taking the logarithm that

InA—1In(A—r-Gyp)
In(1+7)

Example 5.9 Let the number of settling periods be fixzed to N. Find a formula for the (constant)
payment, by which the debt is paid in precisely N settling periods.

A. A continuation of Example 5.8.
D. Apply the solution of Example 5.8.
I. If A>r- Gy, we see from Example 5.8 that we shall find A, such that

I (A= Go (10
CmA-Wm(A-r-Gy) 4 0 A

N (L + 1) (1 +7) (1 +7)

)

which we rewrite as

In (1 - %) = N +r)=ln{1+r) )
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We get from here the condition

TGO TGO -

(1+T)_N:1—T7 le 7 = —(1+7")_N,
hence
B r B r(1+r)V B
A=GCo- 1-(1+7r)N = Go (1+r)N -1 = Go

(1+r)N+1—(1+r)N.

(1+rN -1

Example 5.10 Assume that Go is 100000 euro and that the annual interest is 9 % and that there
are 4 settling periods (quarters) per year. When is the loan repaid if the payment is 3000 euro per
quarter? And when is the loan repaid, if we double the payment?

A. A continuation of the Examples 5.7-5.9.
D. Apply the results from Examples 5.7-5.9.

I. First calculate

Gp = 100000, T 9 and A = 3000.

~ 400
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We get

9
rGo = m-1OOOOO:9~250:2250<3000:A7

which guarantees that the loan will be repaid with 3000 euro in payment per settling period, cf.

Example 5.7.

It follows from Example 5.9 that
InA—In(A—-7rGy) In3000-In750  In4

In(1+7) - 9\ , 409
- In —
In (1 + 40()) ST

n > ~ 62,3,

thus the loan is repaid after 63 settling periods, corresponding to 15 % years.

When A is doubled to 6000 euro, we get A — rGy = 3750, hence

| 6000
. InA—1In(A - rGy) _ 3750 ~ 91.19
- In(1+7) In 409 T
400

and the loan is repaid after (only) 22 settling periods, corresponding to 5 % ar.

Example 5.11 Assume that Go is 100000 euro and that the annual interest is 9 % and that the
payments are quarterly. How big shall we choose the payment, if the loan is repaid after 20 and 30
years, respectively?

A. A continuation of the Examples 5.7-5.10.

D. Use the previous results from Example 5.9.

I. Here Go = 100000 and r = %0 In the first case, N = 4-20 = 80, and in the second case is
N =4-30=120. It follows from Example 5.9 that

rGo(1+r)N rGo
(I+r)N =1 1—(1+7r)=N’

A =
1) If N =80, then

9
a0 1000 a5

80
L (100\T 0
409 409

2) Nar N =120, er

50 = 2706, 38 euro.

A= _ 230 = 2417,40 euro

L 400 120
409
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Example 5.12 Find that solution of the difference equation
7r
T + 2x_1 = cos (5 k) , k>1,
for which xzq = 0.

A Linear, inhomogeneous difference equation of first order.

D. Start by finding the solution of the homogeneous equation. Then analyze the right hand side
(guess a complex solution).

I. The characteristic polynomial R + 2 has the root R = —2, so the complete solution of the homo-
geneous equation is given by

Z‘kzc-(—Q)k, keNy, ceR.

Now, cos (g k:) = Re{i*}, so if we insert zj, = ai¥, we get

Tp + 221 = ai® + 20" = a(1 — 24)i*,

which is equal to ¥, if

1 142
CTI 29T T

Thus, a particular solution is

xp = Re{%ik} = %Re{ik—i—%k“} :%cos (kg) +§COS((1€+1> %)7

and the complete solution becomes
1 2
T = ¢ Co8 (k g) +g cos ((k+1)g) +c-(=2)F.
It follows from the initial condition that

1 . 1
J:():O:g—i—O—i—c, i.e. c:—g.

The wanted solution becomes

= () 2o Gk )
1

= g{(—2)’“—1—008(%1@)fQSin(glc)}, k € Np.
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Example 5.13 Let a, =142+ ---+n, n > 1. Find a difference equation which is fulfilled by a,,.
Then find a formula for a,.

A. Establishment and solution of a difference equation.
D. Look at a, — a,_1.
I. Obviously,
Ap — Qp—1 =N, n > 1.
The corresponding homogeneous equation has the constant solution
an = ¢, n €Ny, céeR.
Then we guess the structure a, = an? + Bn. By insertion,

an—an-1 = af{n®*—(m-17°}+p{n—(n-1)}
= a@2n—-1)+p=2an+ (f—a)=n,

1 1
thus a = 3 and f=a = 3 The complete solution becomes

1 1 1
an:§n2+§n+c=§n(n+1)+c, n €Ny, ceR.

1
Since a1 =1 = 3 1-24c=1+¢, we have ¢ = 0, and the searched solution is

1
anzin(n—i-l)7 n € No.

Example 5.14 Leta, =1+4+2%2+---4+n?, n > 1. Find a difference equation which is fulfilled by a,.
Then find a formula for a,.

A. Establish a (simple) difference equation.
D. Find such a difference equation for a,,, and solve it.
I. It is immediately seen that

2

Ap — Ap_1 =N°.

The corresponding homogeneous equation has the constant sequence a,, = ¢, ¢ € R, as a solution.
Then we guess a particular solution of the form

an, = an® + fn? +yn,
hence by insertion,
an—an—1 = a{n®—(m)P}+B{n’—(n—-1>%} +y{n—(n-1)}

= a{3n®=3n+1}+p{2n -1} +~+
= 3an2+(73a+2ﬂ)n+(0¢*ﬂ+7)'
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This expression is equal to n?, if and only if

3a=1, 04:%,
—3a+26=0, ie. 6= %,
Oé—ﬂ-’-")/:O, ’y:ﬂ_a:%
A particular solution is then
1 1 1 1 1
ap = §n3+§n2+6n: 6n(2n2—|—3n+1) = 6n(2n+1)(n—|—1).

1
Since a1 = g 1-(243+1) =1, we see that this is in fact the wanted solution, so

1
anzén(n—l—l)@n—i—l), n e N.
The complete solution is of course

1
anzgn(n+1)(2n+1)+c, neN, ceR.
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Example 5.15 Find the complete solution of the following difference equations

(1) T — O9xp_1 + 6xp_o =0, k> 2,
(2) T —6xp_1 + 922 =0, k>2,
(3) T+ 221 + 229 =0, k> 2.

A. Linear homogeneous difference equations of second order.
D. Find the roots of the characteristic polynomials and apply the solution formula.

I. 1) The characteristic polynomial R? — 5R + 6 has the simple roots R = 2 and R = 3, hence the
complete solution is

zr=c1 - 28 + ¢y - 3F, ke Ny, c1,c0€R,

2) The characteristic polynomial R? — 6R + 9 has the double root R = 3, hence the complete
solution is

$k261'3k+02-k'3k7 k € Np, «¢1,co €R.

3) The characteristic polynomial R? + 2R + 2 has the two complex conjugated roots

Rz—lii:\/iexp(ii:%r),

hence the complete solution is given by
k 3 k - 3m
zr = c1(vV/2)* cos v k) + c2(vV2)F sin T k|, k € Ny,

where c1, co € R are arbitrary constants.

Example 5.16 Find in each of the following cases that solution of the difference equation which also
satisfies the given initial condition.

(].) Tp — Txi—1 + 10z, _o = 0, k>2, xo =3, 1 = 15.
(2) 9xp + 1221 + 4xp_o =0, k>2, o =1, 1 =4.
(3) wp+4xp_o =0, k>2, ro=x1 = 1.

A. Linear homogeneous difference equations of second order with given initial conditions.

D. Find the roots of the characteristic polynomials and apply some convenient solution formula. Then
insert into the initial conditions.

I. 1) The characteristic polynomial R — 7R + 10 has the two simple roots R = 2 and R = 5, hence
the complete solution is

$k201~2k+02'5k7 k € Ng, «¢1,co €R.
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It follows from the initial conditions that

To =3 =c1 +ca, o 2¢1 + 2¢o = 6,
T = 15 = 201 + 562, ’ 261 + 502 = 15,

thus 3co = 15— 6 =9, i.e. ¢ = 3 and ¢; = 0. The wanted solution is

z, = 3-5F, k e Np.

2
The characteristic polynomial 9R + 12R + 4 = (3R + 2)? has the double root R = —3 hence

the complete solution is

2\ " 2\"
T = C1 (§> +62]€<§> s k€ Ny, c1,c3 R,

It follows from the initial conditions that
2
ro=1=¢; and $1=4=—§(Cl—|—62),

thus ¢; =1 and ¢; + co = —6, i.e. co = —7. The wanted solution is
9\ ¥
et () e

The characteristic polynomial R? + 4 has the two complex conjugated roots
. ¥
R::I:2122exp<:|:z§>.
Hence, the complete solution is
xk:cl-chos<gk)+02~2ksin(gk), k € Ny,

where cq, co € R are arbitrary constants.
It follows from the initial conditions that

1
ro=1=c¢; and xz1=1=2cy, ie. 0225.

Thus, the wanted solution becomes

xk:2k{cos(gk>+%sin(gk)}7 k € Np.
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Example 5.17 Find the complete solution of the difference equation
T +4xp_1 + 4, o =17, k> 2.
A. Linear inhomogeneous difference equation of second order.

D. Find the roots of the characteristic polynomial and apply the solution formula when solving the
homogeneous equation. Finally, guess the structure of a particular solution and apply the linearity.

7
I. We guess a particular solution as a constant sequence, xj; = c. It is seen by insertion that z; = —,
k € Ny, is a particular solution.

The characteristic polynomial R? + 4R + 4 = (R + 2)? has the double root R = —2, hence the
complete solution becomes

7
T = § + C1(—2)k + Cgk(—2)k, ke Ny, c1,c R,
Example 5.18 Find that solution of the difference equation

Ty +2ap_1 + 229 =55, k>2,

1
for which xog = x1 = 3

A. Linear inhomogeneous difference equation of second order with initial conditions.

D. Find the roots of the characteristic polynomial and apply a solution formula for the homogeneous
equation. Then guess the structure of a particular solution and exploit the linearity. Insert finally
into the initial conditions and find the constants.

I. The characteristic polynomial R? + 2R + 2 has the two complex conjugated roots
. 3m .

R=-14+i=+2exp iZZ .

The complete solution of the homogeneous equation is
b 3T . 3T

z, = c1(V/2)* cos Ik + c2(V2)F sin Ik ) k € No,
where c¢q, co € R are arbitrary constants.
Then we guess a particular solution of the structure z, = a - 5*. We get by insertion

37
xk+2xk,l+2xk,g:a(5k+2.5’€—1+2-5’f—2):%(25+10+2)-5’fzga-5’“.

25
This expression is equal to 5%, if a = 377 thus the complete solution becomes

2
T = 3—i5k+cl(\/§)kcos (Z%T k) +02(\/§)k sin <%T7T k) , k € Np,
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where ¢; and ¢y € R are arbitrary constants.

It follows from the initial conditions that

= *25+c
I0—5—37 17
hence
Ll 25 37-125 88
Y75 37 185 185’
and

1125 2 2 125
TG =—-=——C £—|—c £:——01—1—02,

5 31 2l P2 3T

whence

c—1+1—§—§—2 150  74—750 676
>~ 5 "5 37 37T 5 37 185 185

The wanted solution is therefore

25 _, 88 k 3m 676 k. 3T
- - - T - 2 . - T - 2 - .
T 37 5 185 (\/_) Ccos ( 1 k) 185 (\/_) sin ( k) , keNg

[ ]
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ra | n p O W e r electricity needs. Already today, SKF's innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.
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nance. These can be reduced dramatically thanks to our

stems for on-line condition monitoring and automatic
ication. We help make it more economical to create

Therefore we'need the best employees who can
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=

Plug into The Power of Knowle‘ngineering.
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Example 5.19 Find that solution of the difference equation
T+ 3,1+ 2xk_o = 3k, k>2,
for which zo =0 and 1 = 0.

A. Linear inhomogeneous difference equation of second order with initial conditions.

D. Find the roots of the characteristic polynomial and apply a solution formula for the complete
solution of the homogeneous equation. Then guess the structure of a particular solution and
exploit the linearity. Insert finally into the final conditions and find the constants.

I. The characteristic polynomial R? + 3R + 2 has the two simple roots R = —1 and R = —2, hence
the complete solution of the homogeneous difference equation becomes

xkzcl(—l)k+02(—2)k, k‘ENo, c1, co € R.

Then we guess on a particular solution of the structure z, = - 3*. By insertion into the equation
we get

2 20
a{3k+3k+2-3k_2}:a(2+§>3k=§a~3k,

9
which is equal to 3% for o = 20" Thus the complete solution is

9
Ty = %'3k+61(—1)k+62(—2)k, keNo, ¢, c2eR.

Then we get by the final conditions,

9
JJO:O_—+01+CQ,

20
27
561:0 %7617262,
whence

27 9 36 9

Co = + — -

and

Cl=——=—-C=—""—-=—— = —
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Example 5.20 Find the complete solution of the difference equations

(1) T — Tp_9 = Sin (k g) , k> 2,
(2) T — Th_9 = COS (k . g) , k> 2.

A. Linear inhomogeneous difference equations of second order.

D. Find the roots of the characteristic equation and apply a solution formula for the solution of the
homogeneous difference equation. Then try to make a complex guess of a particular solution.

T 71'
I. Since sin (k . 5) = Im(ik), and cos (kz . 5) = Re(ik)7 we can solve both problems at the same
time, until we at last are forced to split into the real and the imaginary part.

The characteristic polynomial R?—1 has the two simple roots R = +1, hence the complete solution
of the homogeneous equation becomes

xk:cl+cz(71)k, keNg, c¢p,c€eR
Next insert , = ai®. We get
Tp — Tpeo = {ik — ik_Q} = 2aik,
which is equal to i* for a = l
1) The complete solution of
Tp — Tp_9 = sin (k: . g) = Im (zk)

is

1 1
xp = Im <§zk> +e+e(—1)F = 5 sin (k z) + ¢+ ca(=1)F, keNy, c¢1,c0€R.

[\

2) The complete solution of
™ .
Tp — Tp—2 = COS (k: 5) = Re (zk)
is

1 1
rr = Re (izk) +01+CQ(—1)k= 5 Ccos (k‘z) +C1+Cz(—1)k, k€ Ng, c¢1,c€R,
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Example 5.21 Find that solution of the difference equation
Tk — 6xp_1 + 9o =3-2F + 17 4F, k>2,
for which zy = 40 and x; = 400.

A. Linear inhomogeneous difference equation of second order with initial conditions.
D. Solve the characteristic equation; guess a particular solution.

I. The characteristic polynomial B> — 6R + 9 = (R — 3)? has the double root R = 3, hence the
homogeneous equation has the complete solution

xk:cl?)k—i—czk-?)k, k€ Ngy, c1,c3€R.

By guessing the structure x, = a - 2% + b - 4F, we get by insertion (i.e. checking this possible
solution)

Tk — 6251+ 97k 0=a-2"+b-4* —6a-2F"1 —6b-4F"1 £ 9q-2F2 4+ 9p. 42

9 3 9 a b
=a(l1-3+=)2F+b(1 -+ = )daFr=—.2F4 — .4~
“( 3+4> * < 2+16> FRRTS

This expression is equal to 3 -2F +17-4%, if a = 12 and b = 16 - 17 = 272, hence the complete
solution becomes

2 =12-2F 4272 4F 4 ¢4 - 3% + o k- 3P, keNy, c¢1,c€R.
By insertion into the conditions we get

2o =40 = 12+ 272 4 ¢; = 284 + ¢4,
thus ¢; = —244, and

x1 =400 = 24 + 1088 + 3c1 + 3¢ = 1112 — 732 + 3co = 380 + 3ca,

20
ie. cy = 3 The solution is

20
g;k:12-2’€+272-4’f—244~3’“+?k-3k, k e Ny.
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Example 5.22 Find the complete solution of the difference equations

(1) T — 2051+ Tp—o — 223 = 0, k>3,
(2) Ty — 2xp—1 — Tp—2 + 2x,_3 =0, k>3,
(3) T — Tp—g =0, k>4.

A. Two linear homogeneous difference equations of third order, and an homogeneous difference equa-
tion of fourth order.

D. Find the roots of the characteristic polynomials and then apply a solution formula.
I. 1) The characteristic polynomial
R} —2R*+R—-2=(R—-2)(R*+1)

has the simple roots R = 2 and R = +i = exp (:I:i g), thus all (real) solutions are

zr=c1- 28 + ¢ cos(k-g)+03sin(k- ), k €Ny, e¢1,c0, c3€R.
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2) The characteristic polynomial
R —2R* - R+2=(R-2)(R*-1)=(R—-2)(R—1)(R+1)
has the three simple roots R = 2 and R = 41, hence the complete solution is
zp=c1-28 +eo + e (—1)F, k€ Ny, ci1,co,c3€R.
3) The characteristic polynomial
R'~1=(R—-1)(R+1)(R—i)(R+1)
has the four simple roots R = £1 and R = =4, hence all (real) solutions are
z = ¢10cy (—1)F + ¢35 cos (k : g) + ¢4 sin (k g) , k € Ny,

where c1, co, c3, c4 € R are arbitrary constants.

Example 5.23 Find that solution of the difference equation
Ty — Tp—1 +4xp_o — 4dxp_3 = 0, k>3,
for which xog = —1, x0 =2, x4 = 4.
A. Linear homogeneous difference equation of third order with three (non-successive) conditions.

D. Find the roots of the characteristic polynomial and apply the solution formula. Finally, insert into
the conditions.

I. The characteristic polynomial
R* —R?+4R—4=(R—1)(R*+4)
has the three simple roots R = 1 and R = £2i. Hence, the complete solution is
T =C1 +022kcos (kg) +032ksin(k’-g).

Then by insertion into the conditions,

9 = -1 = ¢ + c2,
T 2 = C1 + 203,
Ty = 4 = c1 + 1602,

1 4
from which we get 15¢o = 5, thus ¢; = 3’ and ¢; = —3- Then finally

4 2 5
203:2+§7 le C3:1+§:—.

The wanted solution is

mk=—§+%-2kcos(k~g)+g-2ksin(k‘~g), k € Np.
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Example 5.24 Find the complete solution of the difference equation
Tp — 20Tp_1 + Tp_o — 20,3 = 4, k> 3.

A. Linear inhomogeneous difference equation of fourth order. The corresponding homogeneous dif-
ference equation is treated in Example 5.22 (1).

D. Find the roots of the characteristic polynomial; then guess a solution of the inhomogeneous equa-
tion.

I. The characteristic polynomial
R —2R*+ R—2=(R-2)(R*+1)

has the three simple roots R = 2 and R = 4. It is seen by inspection that z; = —2, k € Ny, is a
particular solution. Hence the complete solution is

xk:72+cl~2k+02cos(k~g>+03sin(k~g), k € Ny,

where ¢y, co, c3 € R are arbitrary constants.

Example 5.25 Find the complete solution of the difference equation
Tp — 2T — T2 + 2053 = —2, k> 3.

A. Linear inhomogeneous difference equation of third order. The corresponding homogeneous equa-
tion was dealt with in Example 5.22 (2).

D. Find the roots of the characteristic polynomial; then guess a solution of the inhomogeneous equa-
tion.

I. The characteristic polynomial
R*—2r ~R+2=(R-2)(R—-1)(R+1)

has the three simple roots R = 2 and R = £1. Since already R = 1 is a root, corresponding to the
solution z; = ¢, k € Ny, of the homogeneous equation, our guess must be modified, so we guess a
particular solution of the form zp = a - k. We get by insertion,

Tp —2xp—1 — Tp—2 +2xp_3=af{k —2(k—-1)— (k—2)+2(k - 3)}
=a{k—2k+2—-k+2+4+2k—-6} = —2q,

which is equal to —2 for @ = 1. Hence, the complete solution is given by

zr=k+ -i-Cz(—l)lv-i-Cg-yg7 k € Ng, ¢, co, c3 €R.
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Example 5.26 Find the complete solution of the difference equations
(1) T+ Tp_9 — 224 = COS <k g) , k> k.
(2) Tp + Tp_g — 2Ty_4 = Sin (k . g) , k> 4.

A. Linear inhomogeneous difference equation of fourth order with two different right hand sides.

D. Find the roots of the characteristic polynomial. Then make a complex guess, when the right hand
side is replaced by i¥. Then the two questions are answered by taking the real and the imaginary
part of the complex solution.

I. The characteristic polynomial
R*+R*-2=(R*+2)(R*-1)

has the four simple roots R = +1 and R = =4iv/2, hence the homogeneous equation has the
complete solution,

zp = c1 + ca(—1)F + e3(v2)* cos (k : g) + c4(V2)F sin (k- g) , k € Ny,

where c¢1, co, c3, ¢4 € R are arbitrary constants.

k

If we guess of a complex solution x; = a”, we get by insertion

Tp 4+ Tpeo — 20—y = « {ik + =2 — Qik_4}

= ai’*(1-1-2)=—2ai",
S e 1 . .
which is equal to " for a = —5 Hence the complex equation has the complete solution

1
T =5 i+ e+ ea(—D)F + e3(v2)F cos (k . g) + ¢4(V2)F sin (k : g) , k € Ny,

where c¢1, co, c3, c4 € R are arbitrary constants.

1) By taking the real part of the solution of the complex solution we get the solution of (1),

xTp = f% cos (k : g) +¢1 4 eo(—=1)F + ¢5(V/2)F cos (k . g) + c4(V2)F sin (k: g) ,

where k € Ny, and where ¢y, co, c3, ¢4 € R are arbitrary constants.

2) By taking the imaginary part of the complex solution, we get the solution of (2),

Tp = —% sin <k~ %) + ¢ + ca(—1)F 4 e3(V2)* cos (k; . g) + ¢4(V2)F sin (k . g) ,

where k € Ny, and where ¢1, co, ¢3, ¢4 € R are arbitrary constants.
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Example 5.27 Let the sequence xj, fulfil the difference equation
xp + 1624 = 17(=1)%, k>4,
where also to =1, x1 = —1, x5 =9 and x3 = —1. Calculate z400.
A. Linear inhomogeneous difference equation of fourth order. We shall only find z4¢¢.

D. Put yx = x4k, Y100 = Ta00, and set up another difference equation.
I. If we put yp = w4, then we get the difference equation
Yy + 16y—1 = 16, k>1,
where yg = x¢p = 1. It is immediately seen that y; = 1, k € Ny, is a solution of the inhomogeneous

equation, which also satisfies the condition. We therefore conclude that this is the wanted solution,
hence

Y100 = Ta00 = 1.
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Example 5.28 The so-called Fibonacci numbers F,, are defined as the elements of the sequence which
satisfies

Fn:anl"_anQ; n>2,

and the initial conditions Fy =0, F} = 1.
Find a general formula of the n-tt Fibonacci number F,.

The Fibonacci numbers were mentioned for the first time in a book from 1202. They were the solution
of the following problem:

Assume that any couple of rabbits which are more than one month of age bear a new couple of rabbits
at the end of each month. If one starts with one pair and none of the rabbits die, how many couples
of rabbits are there after n months?

A. Linear homogeneous difference equation of second order.

D. Find the roots of the characteristic polynomial.

1
I. The characteristic equation R? = R+ 1, or R> — R — 1 = 0, has the roots R = 5{1 + v/5}, thus

the complete solution is

145\ 1-v5\ "
Fn—Cl< +2\/_> +CQ< \/_> s neNy, c¢,ceR.

2

It follows from the initial conditions that Fy =0 = ¢; + ¢2 and

14++V5 1—+5 1 5
Fi=1=¢ - \/_"'82' \/—:—(Cl+02)+£(01—82).
2 2 2 2
Hence
+ 0 —1
C1 Co = U, 1 = )
C1 — Cy =

= o= — L
V5 2 NG

and the solution is

Fn:L(Hﬁ) ! (1%) nem,

VANE V5
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Example 5.29 We consider in the usual plane n lines where each pair intersects each other, and
where no three lines intersect at the same point. Let A, denote the number of domains which the
plane is divided in by these lines.

1) Calculate Ay and As.

2) What is the connection between A, and A,_1¢ Use the result to find a formula for A, for every
n > 2.

A. The setup of a difference equation.

D. Analyze A and As, and the general case.

Figure 1: The case of 2 lines and 3 lines.

I. 1) Clearly, Ay =4, and it follows by the figure that A3 = 7.

2) Given n — 1 lines satisfying the conditions of the text. When we add the n-th line we get under
the same assumptions as above n — 1 intersection points with the other lines, so the new line
is divided into n segments. Each of these segments will provide us with a new subdomain, so
the connection between A, _; and A,, becomes

A, =A, 1+n, i.e. A, — A, 1 =n.

3) Clearly, all solutions of the homogeneous difference equation are the constant sequences A,, = c.
Then we guess of a particular solution of the form

A, =an®+pn,
from which we get by insertion

An—An,l:a{n2—(n—1)2}+ﬂ{n—(n—1)}:2na+(5—a).

1
This expression is equal to n for a = 5= 0, so the complete solution becomes

1 1 1
An:§n2+§n+c=§n(n+l)+6, neN, cekR
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It follows from the condition
1
Ay =4 = §~2-(2+1)—|—c:3—|—c,
that ¢ = 1, so the final solution becomes

Anzin(n+1)+1, n e N.

Example 5.30 We shall by a binary sequence of length n understand n binary numbers in a given
order, where the binary numbers are 0 and 1. Find the number A, of all such sequences, which do
not contain two successive zeros.

Let B,, denote the number of sequences which satisfies the condition above and which also end by 1.
Similarly, let Cy, denote the number of sequences satisfying the condition above and ending on 0.

1) Find Ay, As and As.

2) What is the connection between A, 11 and B, and C),?

3) What is the connection between A,,_1 and B, ?

4) Find by means of (2) and (3) a difference equation for A,, and find A,,.

A. Setup of a difference equation. The situation is the same as in Example 5.31, although we her
have a more complicated equation. By a comparison between the results of the two examples we
see that we obtain the same solution.

D. Analyze the given situations.

I. 1) We get by counting all possible sequences that
a) If n =1, we have the sequences 0, 1, which are both of the desired type, hence A; = 2.
b) If n = 2, then we have four possibilities

00, 01, 10, 11,

hog which the latter three satisfy the claim, hence A5 = 3.
c) If r n = 3, then we have eight possibilities,

000, 001, 010, 011, 100, 101, 110, 111,

of which the five underlined sequences fulfil the criterion, hence As = 5.

2) It follows immediately that
An+1 - 2Bn + Cn

In fact, after a sequence from B,, can we choose both 0 and 1 (two possibilities), while we after
a sequence from C,, are forced to choose 1, so we have only one possibility.

3) Clearly,
A, . =B,.

In fact, every sequence from A,,_; can always be followed by 1 without destroying the condition.
The number must therefore be the same.
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4) Before we can set up a difference equation for A,,, we have to eliminate C,,. Every sequence
from C,, has 0 as its last term, so the second last digit must necessarily be 1. This means that

C, =B,_1.
We have the three equations

Apt1 =2B, + Cy, An_1 = By, C,=DB,_1.
Hence,

Apt1=2B,+C,, =2B, + B,—1 =2A,-1+ Ap_9,
thus by a shift of index and a rearrangement,

A, —2A, 29— A, 35=0, n > 3.

This is a linear homogeneous difference equation of third order. The characteristic polynomial
R? — 2R — 1 has the root R = —1, so

R*-2R—-1=(R+1)(R*~R—1).
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Hence we find the three simple roots

?*1(11\/5).

1
R=-1 and R=_-+-"==2
an B B

Thus, the complete solution is

An=cn(—1)" + o <1+2\/5> +c3 (1_2\/5> , n €N,

where c1, co, c3 € R are arbitrary constants.

We get the following conditions from (1),

1 5 1—+v5
A = 2=-c+tcr- +\/—+03' \/—,
2 2
2 2
1445 1—+v5
Ag = 3+Cl+62'< \/—> +03'< \/—> s
2 2
1+5 ’ 1—5 ’
As = 5= —c17¢y- + +c3 - _ R
2 2
hence
1 5
2 = —01+§(62+C3)+§(C2—63)7
3 5
3 = +Cl+§(62+63)+§(62763),
5 = —Cl+2(62+03)+\/5(61—03)7
and thus
om0 3 5-3V6
1=, 27—10 s g 3*710 .

The solution is

o Vs (14 5-3v5 (1- V5"
"o 10 2 T 10 2
1 1+\/5 n+2 1 1_\/5 n+2
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Example 5.31 A coin is thrown n times. For each throw we notice whether we have got heads or
tails, and the total result can be described by a sequence like HHTH ...TT. There are in total 2™
such sequences. The problem is to find the probability of that one in such a sequence does not get two
tails successively.

Let A,, denote the number of sequences with the desired property, and let p, denote the unknown
probability.

1) Prove that A, fulfils the difference equation

An+1 :An"‘V—Anfl, n > 2.

2) Find py,, and limy,_ 4o Dn.

A. Difference equation. If we write 0 instead of 7', and 1 instead of H, the situation is analogous
to the one in Example 5.30, and the solution A, ought to be the same. Note that the difference
equation here is simpler than the one in Example 5.30.

D. Analyze how we get the difference equation. Then solve the equation and find p,,.

I. 1) Let us consider an element from A,,. Then we have two possibilities:

a) If the element terminates with a 7', will the next element only be included, if the next throw
is an H. We denote the number of elements by A4,, k.

b) If the element terminates with an H (and the number is A, ), then we can allow both H
and 7T in the next throw, thus

An+1 = An,K + 2An,P = (An,K + An,P) + An,P = An + An,P~

Then A,, p must be equal to A,_1, because one after each element, which contributes to
Ap—1, can allow H to be the next digit, when we have a contribution to A, p, and every
contribution to A, p is obtained in this way. Then

App1=Ap+ Ap_y, n>2.
2) Then we get by a rearrangement that
An - An,1 - An,Q = 0, n Z 3.

This is a linear, homogeneous difference equation of second order. The characteristic polynomial
R? — R — 1 has the two simple roots

1£+v5
R= 2\/_.

Hence the complete solution is

145\ 1-v5\"
An61< +2\/—> +02< 2\/_> s n € Ng, ¢, c €R.

By a counting of the possibilities we get

a) If n =1, then we have the two possibilities H and T', hence A; = 2.
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b) If n = 2, then we have the four possibilities
HH, HT, TH, TT,

the first three of which satisfy the conditions, hence Ay = 3.

Thus, we have the following equations for ¢; and cs,

1+45 1-v5 1 V5
gt =§(C1+Cz)+—(01—02)7

Al = 2201 B)

Ay = 3201'<1+\/5> +62'<1_\/5> :g(Clﬁ-Cz)-ﬁ-g(Cl—cz),

2 2

3
hence, ¢c; +c3 =1 and ¢y —co = —, so
NG

Va2 5

Cc1 =

N}

1 VB+3 1 <1+\/5>2

"SETT v

This gives us the solution

n+2 n+2
1 1 1 1-—
A __< Wg) - ( ﬁ) . new

"5 2 NG 2
and thus
n+2 n—+2
Ly 4 (1++5 4 [1-+5 e
n — o An — —~= - = ’ n :
Pn = on NAUR! NAURE!
+ 1+
From /5 < 3, follows that V5 <1, so < 4\/5> — 0 for n — 400, and we have
li =0.
wifoo P =0
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