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Introduction

Introduction

Here we present a collection of examples of eigenvalue problems. The reader is also referred to Calculus
4b as well as to Calculus 3c-2.

It should no longer be necessary rigourously to use the ADIC-model, described in Calculus 1c and
Calculus 2c, because we now assume that the reader can do this himself.

Even if I have tried to be careful about this text, it is impossible to avoid errors, in particular in the
first edition. It is my hope that the reader will show some understanding of my situation.

Leif Mejlbro
20th May 2008
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1 Initial and boundary value problems

Example 1.1 Solve the following eigenvalue problem

y′′ + λy = 0, x ∈ [0, L], y(0) = y′(0) = 0.

This is a pure initial value problem

y(0) = 0 and y′(0) = 0,

hence the solution is unique. Obviously, the zero solution is the only solutions.

Example 1.2 Prove that the boundary value problem

d2y

dx2
+ 2

dy

dx
+ 2y = 0, x ∈ [0, π], y(0) = 1, y(π) = −e−π,

has infinitely many solutions and find these. Sketch the graphs of some of these solution.

The characteristic polynomial

R2 + 2R + 2 = (R + 1)2 + 1

has the roots R = −1 ± i.

The complete solution is given by

y(x) = c1e
−x cos x + c2e

−x sin x, x ∈ [0, π], c1, c2 ∈ R.
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It follows from the boundary values that

y(0) = c1 = 1 og y(π) = −c1e
−π = −eπ.

We get in both cases that c1 = 1, and we have no requirement on c2 ∈ R.

The complete solution of the boundary value problem is

y(x) = e−x cos x + ce−x sinx, x ∈ [0, π], c ∈ R arbitrær.

Initial and boundary value problems
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Example 1.3 For a loaded column at equilibrium, one can as a mathematical model for a (small)
bending y(x) in a convenient coordinate system use the following linear boundary value problem,

EI
d2y

dx2
+ Py = −Pe, x ∈ [0, L], y(0) = 0, y′(L) = 0.

Here, E, I, L, P and e are given positive constants. For convenience we write P/(EI) = k2.

1) Find the solution of the boundary value problem.

2) Prove that y(L) → ∞ for P → EI
π2

4L2
, no matter how small the fixed constant e is.

3) Sketch y(L) as a function of kl =

√
P

EI
· L, 0 ≤ kL <

π

2
.

1) By a division with EI > 0 the equation is transferred into the inhomogeneous equation

d2y

dx2
+ k2y = −k2e, k2 =

P

EI
> 0.

(a) First find the complete solution. The characteristic equation

R2 + k2 = 0, i.e. R = ±ik, [NB k > 0]

provides us with the following solution of the corresponding homogeneous equation

c1 cos kx + c2 sin kx, c1, c2 are arbitrary.

We guess a particular solution as the constant y = −e. Since the equation is linear, the
complete solution is

y = −e + c1 cos(kx) + c2 sin(kx), x ∈ [0, L], c1, c2 arbitrary.

NB. Unfortunately e is a constant which has nothing to do with the usual mathematical constant
2, 718 . . . .

(b) Insert into the boundary conditions.
We get

y(0) = 0 = −e + c1, dvs. c1 = e,

and

y′(L) = 0 = −c1k sin(kL) + c2k cos(kL),

hence [because k > 0]

c2 cos(kL) = e · (kL).

If kL =
π

2
+ pπ, then the left hand side is 0, and the right hand side is ±e. Therefore we do

not have any solution for kL =
π

2
+ pπ, p ∈ N0.

Initial and boundary value problems
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Initial and boundary value problems

If kL �= π

2
+ pπ, p ∈ N0, then cos(kL) �= 0, so

c2 = e · tan(kL).

By insertion of c1 = e and c2 = e · tan(kL) we get the solution

y = −e + e cos(kx) + e tan(kL) sin(kx)

= e

{
1

cos(kL)
(cos(kL) · cos(kx) + sin(kL) · sin(kx)) − 1

}

= e

{
cos(k(L − x))

cos(kL)
− 1

}
, x ∈ [0, L].

2) If P → EI
π2

4L2
from below, then k2 =

P

EI
→

(π

2

)2

· 1
L2

from below, so

kL → π

2
− .

By insertion of x = L we get

y(L) = e

{
1

cos(kL)
− 1

}
→ ∞ for P → EI

π2

4L2
− .

3) The function

yk(L) = e

{
1

cos(kL)
− 1

}
= e{sec(kL) − 1}

(secant = 1/cosine) is easily sketched on a figure.

Funktionen $y_k(L)$

Legend

0

1

2

3

4
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Example 1.4 Consider the boundary value problem

y′′ + 3y = 0, x ∈ [0, π], y(0) = y(π) = 0.

Set up the linear system of equations

Bc = z,

and check it.

The characteristic polynomial R2 + 3 has the two simple roots R = ±i
√

3, so the complete solution is

y = c1 cos(
√

3x) + c2 sin(
√

3x), x ∈ [0, π], c1, c2, arbitrary.

It follows from the boundary conditions,⎧⎨
⎩

c1 +0 · c2 = y(0) = 0,

c1 · cos(
√

3π) +c2 · sin(
√

3π) = y(π) = 0.

The matrix equation is

Bc =
(

1 0
cos(

√
3π) sin(

√
3π)

)(
c1

c2

)
=

(
0
0

)
.

Since

detB = sin(
√

3π) �= 0,

the solution c1 = c2 = 0 is unique end the zero solution is the only solution.

Example 1.5 Consider the boundary value problem

y′′ + 4y = 0, x ∈ [0, π], y(0) = y(π) = 0.

Set up the linear system of equations

Bc = z,

and check it.

Since the characteristic polynomial R2+4 has the two simple roots R = ±2i, the complete solution
is

y = c1 cos(2x) + c2 sin(2x), x ∈ [0, π], c1, c2 arbitary.

It follows from the boundary conditions that{
c1 + 0 · c2 = y(0) = 0,
c1 + 0 · c2 = y(π) = 0.

The matrix equation becomes

Bc =
(

1 0
1 0

)(
c1

c2

)
=

(
0
0

)
,

Initial and boundary value problems
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where

rang(B|z) = rang(B) = 1 < n = 2.

It follows immediately that the boundary value problem has infinitely many solutions,

y = c · sin(2x), x ∈ [0, π], x ∈ R arbitrary.

Initial and boundary value problems
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Example 1.6 Prove that the boundary value problem

d2y

dx2
+ 2

dy

dx
+ y = 0, x ∈ [0, 1], y(0) = y′(1) = 0,

has a nontrivial solution and find all its complete solution.

The characteristic polynomial

R2 + 2R + 1 = (R + 1)2

has the double root R = −1, so the complete solution is

y = c1e
−x + c2xe−x, x ∈ [0, 1],

where c1 and c2 are arbitrary constants.

From the boundary value y(0) = 0 follows that

y(0) = c1 = 0,

so the candidates must have the form

y(x) = c2xe−x.

Since

y′(x) = c2(1 − x)e−x,

it follows from the boundary value y′(1) = 0 that

y′(1) = c2 · 0 = 0,

which is fulfilled for every c2 ∈ R.

The complete solution of the boundary value problem is

y = c · xe−x, x ∈ [0, 1], c an arbitrary constant.

Initial and boundary value problems
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Example 1.7 Given the boundary value problem

y′′ + λ2y = 0, x ∈ [0, 1], λ ∈ R+,

with the boundary conditions

y(0) = 1, y′(0) = −1, y(1) + y′(1) = 0,

where λ is considered as a parameter.

Find all the possible values of the parameter λ ∈ R+, and the corresponding functions y(x).

This example is a boundary value problem, very much like an eigenvalue problem without being one.
The differences are

1) we have three conditions for an equation of second order,

2) the boundary conditions are not zero.

Clearly, the complete solution is

y = c1 cos λx + c2 sinλx

where

y′ = −λc1 sinλx + λc2 cos λx.

It follows from the boundary conditions that

y(0) = c1 = 1, y′(0) = c2λ = −1,

y(1) + y′(1) = c1{cos λ − λ sinλ} + c2{sinλ + λ cos λ} = 0.

Hence c1 = 1, c2 = − 1
λ

, which we put into the latter equation,

0 = cos λ − λ sinλ − 1
λ

sinλ − cos λ = −λ2 + 1
λ

sinλ.

The latter equation is fulfilled if λn = nπ, n ∈ N. If we e.g. put

yn(x) = cos(nπx) − 1
nπ

sin(nπx), n ∈ N,

then all eigenfunctions corresponding to λn = nπ, n ∈ N, are given by

y(x) = c · yn(x) = c

{
cos(nπx) − 1

nπ
sin(nπx)

}
, c arbitrary.

Initial and boundary value problems
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2 Eigenvalue problems

Example 2.1 (Cf. Example 1.1). Solve the following eigenvalue problem

y′′ + λy = 0, x ∈ [0, L], y(0) = 0, y′(L) = 0.

The characteristic polynomial R2 + λ has the roots:

(a) If λ = −k2, then R = ±k, k > 0.

(b) If λ = 0, then R = 0 is a double root.

(c) If λ = k2, then R = ±ik, k > 0.

We treat each of the three cases separately.

(a) If λ = −k2, k > 0, then the complete solution is

y = c1 sinh(kx) + c2 cosh(kx).

It follows from the boundary condition y(0) = 0 that c2 = 0, hence

y = c1 sinh(kx) where y′(x) = c1k cosh(kx).

Applying the boundary condition y′(L) = 0 we get c1k = 0, so c1 = 0. The zero solution is the
only solution, and no λ = −k2 < 0 is an eigenvalue.

(b) If λ = 0, then the complete solution is

y = c1x + c2 where y′(x) = c1.

It follows from the boundary conditions that

y(0) = c2 = 0 og y′(L) = c1 = 0,

and again we only get the zero solution, so λ = 0 is not an eigenvalue.

(c) If λ = k2, k > 0, then the complete solution is

y(x) = c1 sin(kx) + c2 cos(kx).

Using the boundary condition y(0) = c2 = 0 we see that the candidates should be searched among

y(x) = c1 sin(kx) where y′(x) = c1 · k cos(kx).

It follows from the latter boundary condition that

y′(L) = 0 = c1k · cos(kL).

We find proper solutions, when cos(kL) = 0, i.e. when

knL =
π

2
+ nπ, n ∈ N0,

so the eigenvalues are

λn = k2
n =

1
L2

(π

2
+ nπ

)2

=
π2(2n + 1)2

4L2
, n ∈ N0,

and a generating eigenfunction is

yn(x) = sin(knx) = sin
(
(2n + 1)

π

2
x
)

.

Eigenvalue problems
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Example 2.2 Solve the following eigenvalue problem

y′′ + λy = 0, x ∈ [0, 1], y(0) = y′(1) − λy′(0) = 0.

The characteristic polynomial is R2 + λ.

1) If λ = −k2 < 0, k > 0, then the characteristic polynomial has the two real roots R = ±k, and the
complete solution is

y(x) = c1 sinh(kx) + c2 cosh(kx).

It follows immediately from the boundary condition y(0) = 0 that c2 = 0, so the set of candidates
is limited to

y(x) = c1 sinh(kx) where y′(x) = c1k · cosh(kx).

By insertion into the boundary condition

y′(1) − λy′(0) = y′(1) + k2y′(0) = 0

we get

0 = c1k{cosh(k) + k2},

hence c1 = 0, and we only get the zero solution, hence no λ = −k2 < 0 is an eigenvalue.

Eigenvalue problems
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2) If λ = 0, then the complete solution is

y(x) = c1x + c2.

It follows from the boundary conditions that

y(0) = c2 = 0 and y′(1) − 0 · y′(0) = c1 = 0,

and we obtain again only the zero solution, so λ = 0 is not an eigenvalue.

3) If λ = k2 > 0, k > 0, the the characteristic equation R2 + k2 = 0 has the two complex solutions
R = ±ik. The complete solution is

y(x) = c1 sin(kx) + c2 cos(kx).

The boundary condition y(0) = 0 implies that c2 = 0, so the set of candidates shall be found
among

y(x) = c1 sin(kx) where y′(x) = c1k cos(kx).

By insertion into the second boundary condition we get

0 = y′(1) − λy′(0) = y′(1) − k2y′(0) = c1k{cos(k) − k2}.

We get proper solutions, when cos(k) = k2. By considering a graph we see that there is precisely
one solution k > 0, namely k ≈ 0, 824.

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1
x

More explicitly we apply the Newton-Raphson iteration formula on the equation

F (k) = k2 − cos k where F ′(k) = 2k + sin k.

Eigenvalue problems
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The iteration formula is

kn+1 = kn − F (kn)
F ′(kn)

= kn − k2
n − cos kn

2kn + sin kn
.

By putting k1 = 1 we get

k2 = 0, 838218, k3 = 0, 824242, k4 = k5 = 0, 824132,

corresponding to the eigenvalue

λ = k2 ≈ 0, 679194,

and a generating eigenfunction is

y0(x) = sin(kx) ≈ sin(0, 824x).

Example 2.3 Solve the following eigenvalue problem

y′′ + λy′ = 0, x ∈ [0, L], y(0) = y(L) = 0.

The characteristic polynomial

R2 + λR = R(R + λ)

has the roots R = 0 and R = −λ.

1) If λ = 0, then R = 0 is a double root, and the complete solution is

y(x) = c1x + c2.

It follows from y(0) = 0 = c2 that the candidates are limited to y = c1x. However, since y(L) =
c1L = 0 implies c1 = 0, we only get the zero solution, and λ = 0 is not an eigenvalue.

2) If λ �= 0, then the complete solution is

y(x) = c1 exp(−λx) + c2.

It follows from the boundary conditions that

y(0) = c1 + c2 = 0, thus c2 = −c1,

y(L) = c1 exp(−λL) + c2 = 0, thus c1{exp(−λL) − 1} = 0.

Since exp(−λL) �= 1, we have c1 = 0, which implies that c2 = 0. Again, we only obtain the zero
solution, hence no λ �= 0 is an eigenvalue.

Summing up we see that the eigenvalue problem does not have any eigenvalue.

Example 2.4 Solve the following eigenvalue problem

y(4) + λy(2) = 0, x ∈ [0, 1], y′′(0) = y′′′(0) = y′′(1) = y′′′(1) = 0.

Eigenvalue problems
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The characteristic polynomial is R4 + λR2 = R2(R2 + λ).

1) If λ = −k2 < 0, k > 0, then R = 0 is a double root, and we have furthermore two simple, real
roots R = ±k. The complete solution is

y(x) = c1 + c2x + c3 cosh(kx) + c4 sinh(kx).

Since the terms c1 + c2x disappear after at least two differentiations, every λ ∈ R is an eigenvalue,
and c1 + c2x is the corresponding eigenfunction.

We shall then check if there are other eigenfunctions. We first calculate

y′′(x) = c3k
2 cosh(kx) + c4k

2 sinh(kx),

y′′′(x) = c3k
3 sinh(kx) + c4k

3 cosh(kx).

It follows from the first condition y′′(0) = 0 that c3 = 0. Then it follows from the second condition
y′′′(0) = 0 that c4 = 0.

If λ = −k2 < 0, k > 0, then λ is an eigenvalue with the eigenfunctions

y(x) = c1 + c2x, c1, c2 arbitrary.

2) If λ = 0, then R = 0 is a multiple root of multiplicity four. The complete solution is

y(x) = c1 + c2x + c3x
2 + c4x

4

where

y′′(x) = 2c3 + 6c4x, and y′′′(x) = 6c4.

We conclude as above that λ = 0 is an eigenvalue with the corresponding eigenfunctions c1 + c2x.
There are no other eigenfunctions, because

y′′(0) = 2c3 = 0 and y′′′(0) = 6c4 = 0

imply that c3 = c4 = 0.

3) If λ = k2, then R = 0 is a double root, and R = ±ik are simple, complex conjugated roots. The
complete solution is

y(x) = c1 + c2x + c3 sin(kx) + c4 cos(kx).

We conclude as above that c1 + c2x are eigenfunctions for every such λ = k2.

We shall now check if there exist other eigenfunctions. We first calculate

y′′(x) = −c3k
2 sin(kx) − c4k

2 cos(kx).

It follows from y′′(0) = 0 that c4 = 0, so only y′′(x) = −c3k
2 sin(kx) is relevant where

y′′′(0) = −c3k
3 cos(kx).

It follows from y′′′(0) = −c3k
3 = 0 that c3 = 0, hence the only eigenfunctions are c1 + c2x.

Eigenvalue problems
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Summing up we see that every λ ∈ R is an eigenvalue with

y(x) = c1 + c2x, c1, c2 arbitrary,

as the corresponding eigenfunctions.

Example 2.5 Solve the following eigenvalue problem

y(4) + λy(2) = 0, x ∈ [0, L], y′(0) = y′′′(0) = y′(L) = y′′′(L) = 0.

The characteristic polynomial is R2(R2 + λ).

1) If λ = −k2 < 0, k > 0, then R = 0 is a double root, and R = ±k are simple, real roots. The
complete solution is

y(x) = c1 + c2x + c3 cosh(kx) + c4 sinh(kx).

Clearly, the constants y(x) = c1 are always eigenfunctions, hence λ = −k2, k > 0 is always an
eigenvalue.

Eigenvalue problems
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We shall now check if there exist other eigenfunctions. We first calculate

y′(x) = c2 + c3k sinh(kx) + c4k cosh(kx)

and

y′′′(x) = c3k
3 sinh(kx) + c4k

3 cosh(kx).

It follows from the former two boundary conditions that

0 = y′(0) = c2 + c4k and 0 = y′′′(0) = c4k
3,

hence c4 = 0 and thus c2 = 0. This reduces the set of possible candidates to

y(x) = c1 + c3 cosh(kx)

where

y′(x) = c3k sinh(kx) and y′′′(x) = c3k
3 sinh(kx).

It follows from the next boundary condition that y′(L) = c3k sinh(kL) = 0, hence c3 = 0.

Every λ < 0 is an eigenvalue with y0(x) = 1 as the corresponding generating eigenfunction.

2) If λ = 0, then R = 0 is a root of multiplicity four. The complete solution is

y(x) = c1 + c2x + c3x
2 + c4x

3

where

y′(x) = c2 + 2c3x + 3c4x
2 and y′′′(x) = 6c4.

It is immediately seen that y0(0) = 1 is a generating eigenfunction, so λ = 0 is an eigenvalue.

We shall now check if there are other eigenfunctions. We get by insertion into the first two boundary
conditions that

y′(0) = c2 = 0 and y′′′(0) = 6c4 = 0, hence c2 = c4 = 0.

Finally, y′(L) = 2c3L = 0, so c3 = 0.

Summing up we see that there do not exist any other eigenfunctions than the constants.

3) If λ = k2 > 0, k > 0, then R = 0 is a double root, and R = ±ik are simple, complex conjugated
roots. The complete solution is

y(x) = c1 + c2x + c3 sin(kx) + c4 cos(kx).

It follows again that the constants are eigenfunctions. Then we check if there are other eigenfunc-
tions. We first calculate

y′(x) = c2 + c3k cos(ks) − c4k sin(kx)

Eigenvalue problems
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and

y′′′(x) = −c3k
3 cos(kx) + c4k

3 sin(kx).

We get from the first two boundary conditions that

y′(0) = c2 + c3k = 0 and y′′′(0) = −c3k
3 = 0,

hence c3 = 0, and thus c2 = 0.

It remains to consider

y(x) = c1 + c4 cos(kx)

where

y′(x) = −c4k sin(kx) and y′′′(x) = c4k
3 sin(kx).

The latter two boundary conditions, y′(L) = y′′′(L) = 0, will both give us the condition

sin(kL) = 0, thus knL = nπ, n ∈ N.

For the particular eigenvalues

λn = k2
n =

(nπ

L

)2

, n ∈ N,

we also get the eigenfunctions

yn(x) = cos
(nπx

L

)
, n ∈ N.

Summing up we see that every λ ∈ R is an eigenvalue with the corresponding generation eigenfunction
y0(x) = 1.

Furthermore, when λn = (nπ/L)2, n ∈ N, we get the generating eigenfunctions

yn(x) = cos
(nπx

L

)
, n ∈ N.

Example 2.6 Solve the following eigenvalue problem

y(4) + λy(2) = 0, x ∈ [0, 1], y(0) = y′(0) = y′′(0) = y(1) = 0.

The characteristic polynomial is R4 + λR2 = R2(R2 + λ).

1) If λ = −k2 < 0, k > 0, then R = 0 is a double root, and R = ±k are two real simple roots. The
complete solution is

y(x) = c1 + c2x + c3 sinh(kx) + c4 cosh(kx)

where

y′(x) = c2 + c3k cosh(kx) + c4k sinh(kx),

Eigenvalue problems

Download free eBooks at bookboon.com



Examples of Eigenvalue Problems

 

22  

y′′(x) = c3k
2 sinh(kx) + c4k

2 cosh(kx).

By inspection we see that we should start with the boundary condition

y′′(0) = 0 = c4k
2, thus c4 = 0.

Then we get

y(0) = 0 = c1 + c4 = c1, i.e. c1 = 0.

We have furthermore

y′(0) = 0 = c2 + c3k, i.e. c2 = −kc3,

so the candidates must necessarily have the structure

y(x) = c3{−kx + sinh(kx)}.

Then the latter boundary condition gives

y(1) = 0 = c3{sinh(k) − k}, k > 0.

The function ϕ(t) = sinh(t)− t is strictly increasing for t > 0 (because ϕ′(t) = cosh t− 1 > 0), and
ϕ(0) = 0, so sinh(k) − k > 0, and c3 = 0. Hence we only get the zero solution, and we conclude
that no λ < 0 can be an eigenvalue.
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2) If λ = 0, then the root R = 0 has multiplicity four. The complete solution becomes

y(x) = c1 + c2x + c3x
2 + c4x

3

where

y′(x) = c2 + 2c3x + 3c4x
2 og y′′(x) = 2c3 + 6c4x.

It follows from y(0) = 0 that c1 = 0.

It follows from y′(0) = 0 that c2 = 0.

It follows from y′′(0) = 0 that c3 = 0.

Since c1 = c2 = c3 = 0, we also get y(1) = c4 = 0, and the zero solution is the only solution.
Therefore we conclude that λ = 0 is not an eigenvalue.

3) If λ = k2 > 0, k > 0, then the root R = 0 has multiplicity two, and we have furthermore the two
simple and complex conjugated roots R = ±ik, k > 0. The complete solution is

y(x) = c1 + c2x + c3 sin(kx) + c4 cos(kx)

where

y′(x) = c2 + c3k cos(kx) − c4k sin(kx),

y′′(x) = −c3k
2 sin(kx) − c4k

2 cos(kx).
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We have concerning the boundary conditions:

It follows from y′′(0) = −c4k
2 = 0 that c4 = 0.

It follows from y(0) = 0 = c1 + c4 = c1 that c1 = 0.

It follows from y′(0) = 0 = c2 + c3k that c2 = −c3k.

The possible candidates then necessarily have the structure

y(x) = c3{−kx + sin(kx)}
We conclude from y(1) = {−k+sin k}c3 = 0 by considering a graph that −k+sin k < 0, s̊a c3 = 0.
Again we only obtain the zero solution.
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Summing up it follows that no λ ∈ R is an eigenvalue.

Example 2.7 Solve the following eigenvalue problem

y′′ + λy = 0, x ∈ [0, 1], y(0) − y(1) = 0, y′(0) + y′(1) = 0.

The characteristic polynomial is R2 + λ.

1) If λ = −k2 > 0, k > 0, then the complete solution is

y(x) = c1 cosh(kx) + c2 sinh(kx)

where

y′(x) = c1k sinh(kx) + c2 cosh(kx).

It follows from the boundary conditions that

y(0) − y(1) = c1{1 − cosh(k)} − c2 sinh(k) = 0,

y′(0) + y′(1) = c1k sinh(k) + c2k{1 + cosh(k)} = 0,

hence on matrix form⎛
⎝ 1 − cosh(k) − sinh(k)

k sinh(k) k{1 + cosh(k)}

⎞
⎠

⎛
⎝ c1

c2

⎞
⎠ =

⎛
⎝ 0

0

⎞
⎠ .

It follows from

detB =

∣∣∣∣∣∣
1 − cosh(k) − sinh(k)

k sinh(k) k{1 + cosh(k)}

∣∣∣∣∣∣ = k{1 − cosh2(k) + sinh2(k)} = 0,

that there exist proper solutions (c1, c2) �= (0, 0), e.g.

c1 = sinh(k) and c2 = 1 − cosh(k).

Every λ = −k2 < 0, k > 0, is an eigenvalue and the corresponding generating eigenfunction is

yk(x) = sinh(k) cosh(kx) + (1 − cosh(k)) sinh(kx) = sinh(k{1 − x}) + sinh(kx).

2) If λ = 0, then the root R = 0 has multiplicity 2 and the complete solution is

y(x) = c1x + c2 where y′(x) = c1.

It follows from the boundary values that

y(0) − y(1) = −c1 = 0 and y′(0) + y′(1) = 2c1 = 0,

hence c1 = 0, and c2 can be chosen arbitrarily.

We conclude that λ = 0 is an eigenvalue and that we can choose the generating eigenfunction
y0(x) = 1.
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3) If λ = k2 > 0, k > 0, then the complete solution is

y(x) = c1 cos(kx) + c2 sin(kx)

where

y′(x) = −c1k sin(kx) + c2k cos(kx).

It follows from the boundary conditions that

y(0) − y(1) = c1(1 − cos k) − c2 sin k = 0,

y′(0) + y′(1) = −c1k sin k + c2k(1 + cos k) = 0,

hence written in the form of a matrix,⎛
⎝ 1 − cos k − sin k

−k sin k k(1 + cos k)

⎞
⎠

⎛
⎝ c1

c2

⎞
⎠ =

⎛
⎝ 0

0

⎞
⎠ .

It follows from

detB =

∣∣∣∣∣∣
1 − cos k − sin k

−k sin k k(1 + cos k)

∣∣∣∣∣∣ = k(1 − cos2 k − sin2 k) = 0,

that we have proper solutions (c1, c2) �= (0, 0), e.g.

c1 = sin k and c2 = 1 − cos k, for k �= 2nπ, n ∈ N.

Every λ = k2 > 0, k > 0 is an eigenvalue and a corresponding eigenfunction can be chosen as

yk(x) = sin k · cos(kx) + (1 − cos k) sin(kx) = sin(k{1 − x}) + sin(kx), for k �= nπ,

and

yn,0(x) = cos(2nπx) for k = 2nπ,

and

yn,1(x) = sin(2n + 1)πx for k = (2n + 1)π.
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Example 2.8 Consider the problem of the column from Example 1.3 and put e = 0. Solve this
eigenvalue problem and sketch y(L) as a function of kL =

√
P/(EI) · L.

When we put e = 0 in Example 1.3, then

EI
d2y

dx2
+ Py = 0, x ∈ [0, 1], y(0) = 0, y′(L) = 0.

Write P/(EI) = k2. Then we get by a division by EI,

d2y

dx2
+ k2y = 0, x ∈ [0, L], y(0) = 0, y′(L) = 0.

The complete solution is

y(x) = c1 cos kx + c2 sin kx

where

y′(x) = −c1k sin kx + c2k cos kx.
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It follows from the boundary conditions that

y(0) = 0 = c1,

y′(L) = 0 = −c1k sin kL + c2k cos kL = c2k cos kL.

Clearly, c1 = 0, so we only obtain proper solutions y(x) = c2 sin kx, if

cos kL = 0, thus knL =
π

2
+ nπ, n ∈ N0.

–1

–0.5

0

0.5

1

0.2 0.4 0.6 0.8 1
x

the eigenvalues are

λn = k2
n =

π2(2n + 1)2

4L2
, n ∈ N0,

and a corresponding eigenfunction may be chosen as

yn(x) = sin
(

(2n + 1)πx

2L

)
, n ∈ N0.

There are infinitely many eigenfunctions c · yn(x), c ∈ R \ {0}, of which y0(x) and y1(x) are sketched
on the figure.
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Example 2.9 Consider the eigenvalue problem

y′′ + λy = 0, x ∈ [0, 1], y′(0) = 0, y(1) + y′(1) = 0.

1) Prove that we have separated (Sturm) boundary conditions.

2) Prove that λ < 0 and λ = 0 cannot be eigenvalues.

3) Find an equation which an eigenvalue λ must fulfil. The put λ = α2, and sketch the roots (αn) of
the equation above and find the corresponding eigenfunctions (yn).

4) Explain that all of the conclusions of the eigenvalue theorem (Sturm’s oscillation theorem) are
fulfilled.

1) If we write the equations of the boundary values as⎧⎨
⎩

0 · y(0) + 1 · y′(0) = 0

1 · y(1) + 1 · y′(1) = 0,
,

we see that we have separated (Sturm) boundary conditions. Since r(x) = 1, we even have a
regular Sturm-Liouville problem.

2) If λ = −α2, α < 0, then the complete solution is

y(x) = c1 cosh(αx) + c2 sinh(αx)

where

y′(x) = c1α sinh(αx) + c2α cosh(αx).

It follows from the former boundary condition that

y′(0) = c2α = 0, dvs. c2 = 0.

Hence we only need to consider the candidates

y(x) = c1 cosh(αx) med y′(x) = c1α sinh(αx).

Then by the latter boundary condition,

y(1) + y′(1) = c1{cosh(α) + α sinh(α)} = 0.

Since cosh(α)+α sinh(α) > 0 for α > 0, we must have c1 = 0, so we only obtain the zero solution,
thus no λ < 0 can be an eigenvalue.

If λ = 0, then the equation is reduced to y′′ = 0, so the complete solution is

y(x) = c1x + c2, with y′(x) = c1.

It follows from y′(0) = 0 that c1 = 0, and y(x) = c2 must be a constant. Then

y(1) + y′(1) = c2 + 0 = c2 = 0,

and we also here only get the zero solution. Thus λ = 0 cannot be an eigenvalue either.
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3) Finally, if λ = α2, α > 0, then the complete solution is

y(x) = c1 cos(αx) + c2 sin(αx)

where

y′(x) = −c1α sin(αx) + c2α cos(αx),

It follows from y′(0) = c2α = 0 that c2 = 0, so the candidates must necessarily fulfil

0

2

4

6

8

y

2 4 6 8
x

y(x) = c1 cos(αx) where y′(x) = −c1α sin(αx).

Then by the second boundary condition,

y(1) + y′(1) = c1{cos α − α sinα} = 0.

We get proper solutions c1 �= 0 when

cos α = α sinα, α > 0.

Since cos α �= 0 for every solution, this is also written

cotα = α, α > 0,

which is easily solved graphically.

It follows that there exists precisely one root αn in every interval ]nπ, (n + 1)π[, n ∈ N, and that

αn ≈ nπ for large n ∈ N,

or more precisely,

αn = nπ + ε(n), n ∈ N,

where ε(0) ∈ ]0,
π

2
[, and ε(n) → 0 decreasingly.

A corresponding generating eigenfunction is e.g.

yn(x) = cos(αnx), n ∈ N0.
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4) Finally, we shall check the conclusions of Sturm’s oscillation theorem.

a) Since λn = α2
n, n ∈ N0, we clearly have

λ0 < λ1 < · · · < λn < · · · ,

and λn → ∞ for n → ∞.

b) To every eigenvalue λn there corresponds (modulo an arbitrary constant factor) precisely one
eigenfunction,

yn(x) = cos(αnx) = cos(
√

λnx).

c) Since nπ < αn <

(
n +

1
2

)
π, n ∈ N, we see that ψn(x) = αnx satisfies

[0, nπ] ⊂ ψ([0, 1]) ⊂
[
0,

(
n +

1
2

)
π

[
, n ∈ N.

Since cos t has precisely n zeros in [0, nπ] and
[
0,

(
n +

1
2

)
π

[
, the function yn(x) = cos(αnx)

must have precisely n zeros in [0, 1], and it is obvious that yn(x) changes its sign whenever we
cross a zero.
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Remark 2.1 We can now find the values of the first αn. However, this cannot be done by a direct
application of either Newton-Raphson’s iteration formula or Banach’s fixpoint theorem, because they
cannot be used on

cos α − α sinα = 0 eller cot α = α.

Instead one may use the alternative form

αn = nπ + Arccot αn, n ∈ N0,

and then the methods mentioned can be applied.

Example 2.10 Consider the eigenvalue problem

y′′ + λy = 0, x ∈ [0, 1], y(0) = 0, y(1) = y′(1).

1) Prove that we have no negative eigenvalues.

2) Prove that λ = 0 is an eigenvalue and find a corresponding eigenfunction.

3) Prove that the remaining eigenfunctions are given by yn(x) = sin αnx, where αn is the n-th positive
root of the equation tan z = z. Sketch the roots.

1) Put λ = −k2 < 0, where k > 0.

• The complete solution.
The characteristic equation

R2 + λ = R2 − k2 = (R − k)(R + k) = 0

has the solutions R = ±k, and the differential equation is homogeneous, so the complete
solution is

y(x) = c1 cosh(kx) + c2 sinh(kx)

where

y′(x) = c1k sinh(kx) + c2k cosh(kx).

Remark 2.2 Masochists would probably here choose the variant

y = c̃1e
kx + c̃2e

−kx med y′ = c̃1kekx − c̃2ke−kx.

This variant will of course give the same result after much bigger calculations.

• Insert into the boundary conditions.
It follows from the first boundary condition that

y(0) = 0 = c1 [possibly 0 = c̃1 + c̃2].

The candidates must then necessarily satisfy

y(x) = c2 sinh(kx), where y′(x) = c2k cosh(kx).
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Then we get from the second boundary condition,

y(1) = c2 sinh(k) = y′(1) = c2k · cosh(k),

hence by a rearrangement,

c2{sinh(k) − k cosh(k)} = 0.

If there are proper solutions (i.e. c2 �= 0), then

(1) sinh(k) − k cosh(k) = 0.

The function

ϕ(t) = sinh(t) − t cosh(t)

has the derivative

ϕ′(t) = −t sinh t < 0 for t > 0,

so ϕ(t) is decreasing! Now, ϕ(0) = 0, so

sinh(k) − k cosh(k) < 0 for alle k > 0,

and we only get the solution c2 = 0. Thus, no λ < 0 can be an eigenvalue.

Alternatively we see that (1) is equivalent to

tanh(k) = k,

where a graphical analysis shows that k = 0 is the only solution.
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2) Let λ = 0, so the equation is reduced to
d2y

dx2
= 0.

• The complete solution follows by two integrations,

y = c1x + c2 where y′ = c1.

• Insertion into the boundary conditions:

y(0) = 0 = c2, thus y = c1x where y′ = c1.

The latter boundary condition is now trivial,

y(1) = c1 = y′(1).

• The complete set of eigenfunctions is

y(x) = c1x, x ∈ [0, 1], c1 arbitrary.
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3) Let λ = k2 > 0, k > 0.

• The complete solution of

d2y

dx2
+ k2y = 0

is

y(x) = c1 cos(kx) + c2 sin(kx)

where

y′(x) = −c1k sin(kx) + c2k cos(kx).

• Insertion into the boundary conditions.
It follows from the first boundary condition that

y(0) = 0 = c1,

so we must necessarily have

y(x) = c2 sin(kx) where y′(x) = c2k cos(kx).

It follows from the second boundary condition y(1) = y′(1) that

c2 sin(k) = c2k cos(k).

We only obtain proper solutions, c2 �= 0, if

F (k) = sin(k) − k cos(k) = 0, thus tan(k) = k.

By a graphical consideration we see that there is no solution in
]
0,

π

2

[
, and that there is

precisely one solution αn ∈
]
nπ, nπ +

π

2

[
, n ∈ N, where it follows from the geometry that

(
nπ +

π

2

)
− αn → 0 for n → ∞.

• Since c1 = 0, we find the eigenvalues λn = α2
n with the generating eigenfunctions

yn(x) = sin(αnx), x ∈ [0, 1] og n ∈ N.

Remark 2.3 The zeros of F (z) = sin z − z cos z can be found very fast by a Newton-Raphson
iteration. In fact, since

F ′(z) = z sin z,

we get the iteration scheme

zn+1 = zn − F (zn)
F ′(zn)

= zn +
zn cos zn − sin zn

zn sin zn
= zn + cot zn − 1

zn
.
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Using the initial values z
(0)
0 =

π

2
+ nπ we get for the first zeros,

n 1 2 3 4

z
(n)
0

3π
2

= 4,71239
5π
2

= 7,85398
7π
2

= 10,99557
9π
2

= 14,13717

z
(n)
1 4,50018 7,72666 10,90463 14,06643

z
(n)
2 4,49342 7,72525 10,90412 14,06619

z
(n)
3 4,49341 7,72525 10,90412 14,06619
αn 4,49341 7,72525 10,90412 14,06619

Example 2.11 Consider the eigenvalue problem

y′′ + 2y′ + λy = 0, x ∈ [0, 1], y(0) = y(1) = 0.

1) Prove that λ = 1 is not an eigenvalue.

2) Prove that there does not exist any eigenvalue λ < 1.

3) Prove that the n-th positive eigenvalue is λn = n2π2 + 1, and find a corresponding eigenfunction.

1) Let λ = 1. Then the characteristic equation is

R2 + 2R + 1 = (R + 1)2 = 0.

• Since R = −1 is a double root, the complete solution is

y(x) = c1xe−x + c2e
−x.
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• Insertion into the boundary conditions:
It follows from the first boundary condition that

y(0) = 0 = c2,

hence we shall only look for candidates of the structure y = c1xe−x.
It follows from the second boundary condition that

y(1) = 0 = c1 · 1 · e−1, thus c1 = 0.

Since (c1, c2) = (0, 0) is the only solution, we conclude that λ = 1 is not an eigenvalue.

2) Assume that λ = 1 − k2 < 1, k > 0.

• The complete solution:
The characteristic equation

R2 + 2R + 1 − k2 = (R + 1)2 − k2 = 0

has the two simple roots R = −1 ± k.
The complete solution is

y(x) = c1e
−x cosh(kx) + c2e

−x sinh(kx).

• Insertion into the boundary conditions:
It follows from y(0) = 0 that

y(0) = c1 = 0.

Then we shall only look for candidates of the form y(x) = c2e
−x sinh(kx). Then it follows from

y(1) = 0 that

y(1) = 0 = c2e
−1 sinh(k).

Now, e−1 sinh(k) > 0 for k > 0, so c2 = 0 is the only solution. Hence, no λ < 1 is an eigenvalue.

3) Assume that λ = 1 + k2 > 1, k > 0.

• The complete solution.
The characteristic equation

R2 + 2R + 1 + k2 = (R + 1)2 + k2 = 0

has the two simple roots R = −1 ± ik, so the complete solution is

y(x) = c1e
−x cos(kx) + c2e

−x sin(kx).

• Insertion into the boundary conditions.
We get from y(0) = 0 that c1 = 0, so we need only in the following to consider functions of the
form

(2) y(x) = c2e
−x sin(kx).

We get from y(1) = 0 that

c2 · 1
e
· sin k = 0.

We get proper solutions c2 �= 0, when kn = nπ, n ∈ N.
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• Eigenvalues and eigenfunctions.
The eigenvalues are λn = 1 + k2

n = n2π2 + 1, n ∈ N.
A corresponding eigenfunction is by (2) given by

yn(x) = e−x sin(nπx), x ∈ [0, 1],

and all eigenfunctions corresponding to λn are given by c · yn(x), where c �= 0 is an arbitrary
constant.
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Example 2.12 Consider the eigenvalue problem

y′′ + λy = 0, x ∈ [0, 1], y(0) = 0, y(1) + y′(1) = 0.

1) Prove that we do not have negative eigenvalues.

2) Prove that λ = 0 is not an eigenvalue.

3) Find all positive eigenvalues and the corresponding eigenfunctions.

1) Let λ = −k2, k > 0.

• The characteristic equation R2 − k2 = 0 has the two simple roots R = ±k, so the complete
solution is

y(x) = c1 cosh(kx) + c2 sinh(kx)

where

y′(x) = c1k · sinh(kx) + c2k · cosh(kx).

• Insertion into the boundary conditions:
It follows immediately from y(0) = 0 that c1 = 0, so the candidates must have the structure

y(x) = c2 sinh(kx) med y′(x) = c2k · cosh(kx).

By insertion into the second boundary condition we get

0 = y(1) + y′(1) = c2{sinh(k) + k · cosh(k)}.
From sinh(k) + k · cosh(k) > 0 for every k > 0 follows that c2 = 0. Since (c1, c2) = (0, 0), we
conclude that we only have the zero solution, hence no λ < 0 is an eigenvalue.

2) If λ = 0, the differential equation is reduced to y′′ = 0.

• The complete solution is (by two integrations)

y(x) = c1x + c2 where y′(x) = c1.

• Insertion into the boundary conditions:
It follows from y(0) = 0 = c2 that y(x) = c1x.
It follows from 0 = y(1)+y′(1) = c1 +c1 = 2c1 that c1 = 0, hence we only get the zero solution,
and λ = 0 is not an eigenvalue.

3) Let λ = k2, k > 0.

• The characteristic equation R2+k2 = 0 has the two simple, complex conjugated roots R = ±ik,
hence the complete solution is

y(x) = c1 cos(kx) + c2 sin(kx)

where

y′(x) = −c1k · sin(kx) + c2k · cos(kx).
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• Insertion into the boundary conditions:
It follows immediately from y(0) = 0 that c1 = 0, so the candidates must have the structure

y(x) = c2 sin(kx) where y′(x) = c2k · cos(kx).

Then it follows from the second boundary condition that

0 = y(1) + y′(1) = c2{sin(k) + k · cos(k)}.
We obtain proper solutions, c2 �= 0, when

sin k + k · cos k = 0, thus k = − tan k.

By considering a graph we see that there is precisely one solution

αn ∈
]
nπ − π

2
, nπ

[
for every n ∈ N.

0

1

2

3

4

5

6

y

1 2 3 4 5 6
x

• Eigenvalues and eigenfunctions.
The eigenvalues are λn = α2

n, n ∈ N, and the corresponding generating eigenfunctions are
yn = sin(αnx). All eigenfunctions are of course given by c · yn(x), where c �= 0 is an arbitrary
constant.

Remark 2.4 It follows from the figure that

αn −
(
nπ − π

2

)
→ 0 for n → ∞.

Newton-Raphson’s iteration formula becomes a little complicated, if we choose

F (z) = sin z + z · cos z,

Eigenvalue problems
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though this choice does not harm the convergence,

zn+1 = zn − F (zn)
F ′(zn)

= zn +
sin zn + zn · cos zn

zn · sin zn − 2 cos zn
.

One may here choose the initial values

z
(p)
0 = pπ − π

2
, p ∈ N.

Example 2.13 Consider the eigenvalue problem

y′′ + λy = 0, x ∈ [0, L], y(0) = 0, cy(L) − y′(L) = 0, c ∈ R.

1) Prove that λ = 0 is an eigenvalue, if and only if cL = 1, and find in that particular case a
corresponding generating eigenfunction.

2) Prove that there exists just one negative eigenvalue, if and only if cL > 1. Find in the case of cL = 6
an approximate value of the negative eigenvalue and a corresponding generating eigenfunction.

3) Find in case of cL = −1 an approximate value of the smallest positive eigenvalue and a corre-
sponding generating eigenfunction.

1) Let λ = 0. The complete solution is

y(x) = c1x + c2 med y′(x) = c1.

It follows from the boundary conditions that{
y(0) = 0 = c2,
cy(L) − y′(L) = c1cL − c2c − c1 = 0, thus

{
c2 = 0,
c1(cL − 1) = 0.

It follows that λ = 0 is an eigenvalue, if and only if cL = 1. If so, then y = x is a generating
eigenfunction corresponding to λ = 0.

2) Then assume that λ = −α2, α > 0, is an eigenvalue. The complete solution of the differential
equation is

y(x) = c1 cosh(αx) + c2 sinh(αx).

It follows from the boundary condition y(0) = c1 = 0 that if λ = −α2 is an eigenvalue, then [where
we put c2 = 1]

yα(x) = sinh(αx), x ∈ [0, L],

is a corresponding generating eigenfunction.

This eigenfunction must also fulfil the second boundary condition,

(3) c · yα(L) − y′
α(L) = c · sinh(αL) − α · cosh(αL) = 0.

The equation (3) is a little tricky. In the first case, α > 0 was given, and we should find a
connection between c and L, which assures that (3) is satisfied. It is, however, difficult to give a
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direct solution of the equation, because we end up with a discussion of another equation of the
form

e2αL =
c + α

c − α
.

An alternative procedure is the following: Let t = α > 0 be the variable, and let c and L be
constants. Then define an auxiliary function by

ϕc,L(t) = c · sinh(tL) − t · cosh(tL), t ≥ 0.

We see that ϕc,L(0) = 0 and

ϕ′
c,L(t) = c · L cosh(tL) − cosh(tL) − tL · sinh(tL) = (cL − 1) cosh(tL) − tL · sinh(tL)

= (cL − 1) cosh u − u · sinhu, u = t · L ≥ 0.

If therefore cL ≤ 0, then ϕ′
c,L(t) < 0 for t > 0, and ϕc,L(t) is decreasing, so (3) is never fulfilled.
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A necessary condition for (3) is therefore that cL > 1. We shall now assume this. Then (3) is also
written

L · ϕc,L(α) = c · L · sinh(αL) − αL · cosh(αL) = 0,

hence with u = t · L = α · L > 0,

cL · sinhu − u cosh u = 0.

Now, coshu ≥ 1, so we rewrite the equation above to

(4) u = cL tanh u, u > 0.

The curve z = cL tanh u has z = cL as an horizontal asymptote. Its derivative is cL > 1 for u = 0,
and it decreases towards 0 for u increasing. Hence this curve has precisely one intersection with
the curve z = u, which again means that the curve given by (4) has precisely one solutionu = αL.

We have now proved that if cL > 1, then there is just one negative eigenvalue λ = −α2, where
α = u/L, and where u is the unique positive solution of (4).

A corresponding generating eigenfunction is yα(x) = sinh(αx).

Now put cL = 6, so (4) is written

u = 6 tanhu, u > 0.

Since tanh u → 1 for u → ∞, we get u ≈ 6. Then by Newton-Raphson iteration, or just by regula
falsi on a pocket calculator (i.e. successive interpolation between u = 5, 9 and u = 6, 0 etc.) we get

u = 5, 999926, thus u ≈ 6.
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Then α ≈ 6/L and λ = −α2 = −36/L2, and a corresponding generating eigenfunction is approxi-
matively

y(x) = sinh
(

6x
L

)
.

3) Let λ = α2, α > 0. The complete solution is

y(x) = c1 sin(αx) + c2 cos(αx).

It follows from y(0) = c2 = 0 that we may only consider

y(x) = c1 sin(αx) where y′(x) = c1α cos(αx).

Then by the second boundary condition,

cy(L) − y′(L) = c1{c sin(αL) − α cos(αL)} = 0.

We only obtain proper solutions (where c1 �= 0) if

cL sin(αL) − αL cos(αL) = 0.

If we put cL = −1 and t = αL, it follows that we shall find the smallest positive solution of

sin t + t cos t = 0, thus t = − tan t.

We get by a graphical consideration that t ∈
]π

2
, π

[
.
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Remark 2.5 When we apply the Newton-Raphson iteration method we put

F (t) = sin t + t cos t where F ′(t) = 2 cos t − t sin t.

Then

g(t) = t +
sin t + t cos t

t sin t − 2 cos t
,

and the iteration formula becomes

αn+1 = αn +
sinαn + αn cos αn

αn sinαn − 2 cos αn
.

Choosing the initial value α1 = 2 we get α2 = 2, 029048 and α3 = 2, 028758 = α4, hence

α = 2, 028758 · 1
L

where λ = α2 = 4, 115858 · 1
L2

.

A generating eigenfunction is

y1(x) = sin
(
2, 028758 · x

L

)
.

Example 2.14 Consider an axle which is simply supported at its endpoints x = 0 and x = L. The
axle is rotating with the constant angular speed ω. For some values of ω, called the critical angular
speeds, the axle may rotate in a bent form. The model equation for small bendings of the rotating axle
is

(5) EI
d4u

dx4
− ω2	u = 0, x ∈ [0, L],

where E is the elasticity module of the axle, I is the moment of inertia, and 	 is the mass per length.
Given the boundary conditions

u(0) = u′′(0) = u(L) = u′′(L) = 0,

we shall find the critical angular speeds and their corresponding bendings u(x). We therefore consider
(5) together with the boundary conditions above as an eigenvalue problem where the eigenvalue is de-
fined as λ = ω2, and where we shall find the positive eigenvalues and their corresponding eigenfunctions
u(x). (It may be convenient to introduce k4 = ω2	/(EI).)

When we divide by EI > 0 the text above is transformed into the following shorter and equivalent
eigenvalue problem,⎧⎪⎨

⎪⎩
d4u

dx4
− k4u = 0,

u(0) = 0, u′′(0) = 0, , u(L) = 0, u′′(L) = 0.

1) The complete solution.

The characteristic equation

0 = R4 − k4 = (R2 + k2)(R2 − k2)
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has the four simple roots R = ±ik and R = ±k, so the complete solution of the differential equation
is

u(x) = c1 cos(kx) + c2 sin(kx) + c3 cosh(kx) + c4 sinh(kx).

Since we later on also shall consider the boundary conditions, we here also compute for convenience,

u′′(x) = k2{−c1 cos(kx) − c2 sin(kx) + c3 cosh(kx) + c4 sinh(kx)}.

2) Insertion into the boundary conditions.

It follows from the first two boundary conditions that⎧⎨
⎩

u(0) = c1 + c3 = 0,

u′′(0) = k2{−c1 + c3} = 0,

hence c1 = c3 = 0. Then the candidates must have the structure

u(x) = c2 sin(kx) + c4 sinh(kx)

where

u′′(x)
k2

= −c2 sin(kx) + c4 sinh(kx).
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Then it follows from the latter two boundary conditions that

u(L) = c2 sin(kL) + c4 sinh(kL) = 0,

u′′(L)
k2

= −c2 sin(kL) + c4 sinh(kL) = 0.

If we shall have proper solutions, then we must have

0 =

∣∣∣∣∣∣
sin(kL) sinh(kL)

− sin(kL) sinh(kL)

∣∣∣∣∣∣ = 2 sinh(kL) · sin(kL).

Since sinh(kL) > 0, the only possibility is sin(kL) = 0, thus

knL = nπ, n ∈ N.

We get e.g. by insertion

u(L) = c2 · 0 + c4 · sinh(nπ) = 0,

so c4 = 0 and c2 is arbitrary.

3) Eigenvalues and eigenfunctions.

We have seen in 2) that the eigenvalues are

λn = ω2
n =

k4
nEI

	
=

n4π4EI

	
, n ∈ N.

The corresponding generating eigenfunctions are then

un(x) = sin (knx) = sin
(
nπ · x

L

)
, x ∈ [0, L].

The complete set of corresponding eigenfunctions is then given by c · un(x), where c �= 0 is an
arbitrary constant.

Example 2.15 Consider the eigenvalue problem

x2y′′ + xy′ + λy = 0, x ∈ [1, e], y(1) = 0, y(e) = 0.

The differential equation is a so-called Euler differential equation. Prove that the eigenvalues are
λn = n2π2, n ∈ N, and find the corresponding eigenfunctions.

The Euler differential equations are characterized by each term of the equation has the structure

xj djy

dxj
.

We have here two possible methods of solution:
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1) The method of guesses, i.e. we guess the structure y = xα. Then we typically obtain a
polynomial in α, which we put equal to 0.

• If the order – as in the present case – is 2, and we have two different real roots α1 and α2, then
we can immediately write down the complete solution, namely that it is generated by the two
linearly independent solutions xα1 and xα2 .

• If α is a (real) double root, two linearly independent solutions are xα and xα ln |x|.
• If the roots are complex conjugated, α ± iβ, we have two linearly independent solutions given

by

xα cos(β ln |x|) and xα sin(β ln |x|).

2) The standard method. We apply the substitution u = lnx, x > 0, thus x = eu. Then by the
chain rule,

x
dy

dx
=

dy

dx
and x2 d2y

dx2
=

d2y

du2
− dy

du
.

By this substitution it follows by insertion that an Euler differential equation is always transferred
into a differential equation of constant coefficients, thus

x2 d2y

dx2
+ a1x

dy

dx
+ a2y = 0

is transferred into

d2y

du2
+ (a1 − 1)

dy

du
+ a2y = 0, u = lnx, x > 0.

First method. By insertion of y = xα we get

(6) xα{α(α − 1) + α + λ} = xα(α2 + λ) = 0,

so we obtain a solution, if α2 + λ = 0. (This corresponds to the usual characteristic equation).

1) If λ = −k2, k > 0, then α = ±k, hence xk and x−k are two linearly independent solutions. Then
it follows by the existence and uniqueness theorem for linear differential equations of second order
that the complete solution is

y(x) = c1x
k + c2x

−k.

It follows from the initial conditions that⎧⎨
⎩

y(1) = 0 = c1 + c2,

y(e) = 0 = ekc1 + e−kc2 = e−k{e2kc1 + c2},
dvs. c1 = c2 = 0.

Hence, no λ > 0 can be an eigenvalue.

2) If λ = 0, we rewrite the equation is rewritten in the following way,

0 = x2y′′ + xy′ = x

{
x

d(y′)
dx

+ 1 · y′
}

= x
d

dx
(xy′) = 0.
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Then by integration,

x
dy

dx
= c1, hence y(x) = c1 lnx + c2.

Then by the boundary conditions,

y(1) = 0 = c2 and y(e) = 0 = c1 + c2,

hence c1 = c2 = 0, and λ = 0 is not an eigenvalue.

3) If λ = k2, k > 0, then α = ±ik. The corresponding solutions are

x±ik = exp(±ik lnx), x ∈ [1, e],

hence the complete solution is

y(x) = c1 sin(k lnx) + c2 cos(k lnx).

Since y(1) = 0 = c2, the candidates must have the structure y(x) = c1 sin(k lnx). Then it follows
from y(e) = 0 that

c1 sin(k ln e) = c1 sin(k) = 0.

If there exists eigenvalues, then we must have sin k = 0, hence kn = nπ, n ∈ N. The eigenvalues
are λn = k2

n = n2π2, n ∈ N, and the corresponding generating eigenfunctions are

yn(x) = sin(kn lnx) = sin(nπ lnx), n ∈ N.

Second method. When we apply the substitution u = lnx, the problem is transferred into

d2y

du2
+ λy = 0, u ∈ [0, 1], y|u=0 = y|u=1 = 0.

1) If λ = −k2, k > 0, then the complete solution is

y(u) = c1 cosh(ku) + c2 sinh(ku).

It follows from the boundary conditions that

y|u=0 = 0 = c1 og y|u=1 = c1 cosh(k) + c2 sinh(k) = c2 sinh(k) = 0,

hence c1 = c2 = 0, and no λ < 0 is an eigenvalue.

2) If λ = 0, then y(u) = c1u + c2. Then we get by the boundary conditions that

y|u=0 = c2 = 0 and y|u=1 = c1 + c2 = 0,

hence c1 = c2 = 0, and λ = 0 is not an eigenvalue.

3) If λ = k2, k > 0, then the complete solution is

y(u) = c1 cos(ku) + c2 sin(ku).

It follows from the boundary conditions that

y|u=0 = c1 = 0 og y|u=1 = c1 cos k + c2 sin k = c2 sin k = 0,

and it follows that the eigenvalues correspond to sin k = 0, thus kn = nπ, n ∈ N. We conclude
that the eigenvalues are λn = k2

n = n2π2, n ∈ N, and the corresponding generating eigenfunctions
are

yn(x) = sin(knu) = sin(nπ lnx), x ∈ [1, e], n ∈ N.
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Example 2.16 Consider the eigenvalue problem

x2 d2y

dx2
− 3x

dy

dx
+ λy = 0, x ∈ [1, e], y(1) = 0, y(e) = 0.

The differential equation is an Euler differential equation. Prove that every eigenvalue is bigger than
4, that λn = n2π2 + 4, and that the corresponding eigenfunctions are yn(x) = x2 sin(nπ lnx).
Hint: Apply the substitution u = lnx ∈ [0, 1] and derive the eigenvalue problem where u is the variable.
Put z(u) = y(x).

The different methods of solution of an Euler differential equation have already been described in the
beginning of Example 2.15.

When we apply the monotonous substitution u = lnx ∈ [0, 1] we get by the chain rule,

dy

dx
=

du

dx

dz

du
=

1
x

dz

du
, x = eu

and

d2y

dx2
=

d

dx

{
1
x

dz

du

}
= − 1

x2

dz

du
+

1
x
· 1
x

d2z

du2
=

1
x2

{
d2z

du2
− dz

du

}
.
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Then by insertion into the differential equation,

0 = x2 d2y

dx2
− 3x

dy

dx
− λy = x2 · 1

x2

{
d2z

du2
− dz

du

}
− 3x · 1

x

dz

du
+ λz(u) =

d2z

du2
− dz

du
− 3

dz

du
+ λz,

and the transformed equation becomes

d2z

du2
− 4

dz

du
+ λz = 0

with the boundary conditions

z(0) = y(1) = 0 and z(1) = y(e) = 0.

The characteristic polynomial is

R2 − 4R + λ = (R − 2)2 + λ − 4.

1) If λ = 4−k2 < 4, k > 0, then the characteristic polynomial has the two real simple roots R = 2±k,
so the complete solution is

z = c1 e(2+k)u + c2 e(2−k)u = e2u
{
c1 eku + c2 e−ku

}
.

It follows from the boundary conditions that

z(0) = c1 + c2 = 0 og z(1) = e2
{
ek · c1 + e−k · c2

}
= 0,

thus

1 · c1 + 1 · c2 = 0 og ek · c1 + e−k · c2 = 0.

Now, ek �= e−k, so it follows immediately that c1 = c2 = 0, corresponding to the zero solution, and
no λ = 4 − k2 < 4 is an eigenvalue.

2) If λ = 4, then the characteristic polynomial has the double root R = 2. The complete solution is
then

z(u) = c1 e2u + c2 u e2u = e2u(c1 + c2u).

It follows from the boundary conditions that

z(0) = c1 = 0 and z(1) = e2(c1 + c2) = 0,

hence c1 = c2 = 0, corresponding to the zero solution, and λ = 4 cannot be an eigenvalue.

3) If λ = 4 + k2 > 4, k > 0, then the characteristic polynomial has the complex conjugated roots
R = 2 ± ik. The complete solution is

z(u) = c1 e2u sin(ku) + c2 e2u cos(ku).

It follows from the first boundary condition that

z(0) = 0 = c2,
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so each candidate must have the structure

z(u) = c1 e2u sin(ku).

Then it follows from the second boundary condition that

z(1) = 0 = c1 e2 sin(k).

Here we only obtain proper solutions, if kn = nπ, n ∈ N. If so, then the eigenvalue is

λn = 4 + k2
n = 4 + n2π2, n ∈ N.

A generating eigenfunction is

zn(u) = e2u sin(knu) = e2u sin(nπu).

This is transformed back to yn by u = lnx, thus

yn(x) = zn(u) = zn(ln x) = x2 sin(nπ lnx), x ∈ [1, e].

Example 2.17 Consider the eigenvalue problem

y′′ + λy = 0, x ∈ [−π, π], y(−π) = y(π), y′(−π) = y′(−π).

1) Prove that λ = 0 is an eigenvalue and find a corresponding eigenfunction.

2) Prove that there are no negative eigenvalues.

3) Find all the positive eigenvalues and prove that each of them has two corresponding linearly inde-
pendent eigenfunctions. Explain why this is not a counterexample to Sturm’s oscillation theorem.

1) If λ = 0, then the complete solution is

y(x) = c1x + c2 med y′(x) = c1.

It follows from the boundary conditions that

−c1π + c2 = c1π + c2 and c1 = c1,

hence c1 = 0, while c2 is arbitrary. It follows that λ = 0 is an eigenvalue with a corresponding
generating eigenfunction y0(x) = 1.

2) If λ = −k2, k > 0, then the complete solution is

y(x) = c1 cosh(kx) + c2 sinh(kx)

where

y′(x) = kc1 sinh(kx) + kc2 cosh(kx).

It follows from the boundary conditions that

c1 cosh(kπ) − c2 sinh(kx) = c1 cosh(kπ) + c2 sinh(kπ),

hence c2 = 0 after a reduction, and

k{−c1 sinh(kπ) + c2 cosh(kπ)} = k{c1 sinh(kπ) + c2 cosh(kπ)},
from which c1 = 0. Now c1 = c2 = 0 corresponds to the zero solution, so no λ < 0 can be an
eigenvalue.
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3) If λ = k2, k > 0, the complete solution is

y(x) = c1 cos(kx) + c2 sin(kx)

where

y′(x) = −kc1 sin(kx) + kc2 cos(kx).

It follows from the boundary conditions that

y(−π) = c1 cos(kπ) − c2 sin(kπ) = y(π) = c1 cos(kπ) + c2 sin(kπ),

y′(−π) = kc2 cos(kπ) + kc1 sin(kπ) = y′(π) = kc2 cos(kπ) − kc1 sin(kπ),

hence

2c2 sin(kπ) = 0 and 2c1k sin(kπ) = 0.

These equations are satisfied for all (c1, c2), if sin(kπ) = 0, thus if k ∈ N.

We conclude that λn = n2, n ∈ N, is an eigenvalue with the corresponding two linearly independent
eigenfunctions

yn,1(x) = cos nx and yn,2(x) = sin nx.

Since the boundary conditions are not separated, the assumptions of Sturm’s oscillation theorem
are not fulfilled, thus it cannot be applied. For that reason the example is not a counterexample
to this theorem.

Example 2.18 The bending u(x) of a column can be modelled as an eigenvalue problem in the fol-
lowing way by convenient choices of the geometry, the spring constant and the material constant,

d4u

dx4
+ a2 d2u

dx2
= 0, u ∈ [0, 1],

u(1) = 0, u′(1) = 0, u′′(0) = 0, a2u′(0) + u(0) + u(3)(0) = 0.

1) Consider a as an eigenvalue. Prove that the positive eigenvalues are the roots of the equation

tan a = a(1 − a2).

2) Find the smallest positive eigenvalue (approximatively) graphically as well as by means of an iter-
ation with 2 decimals.

3) Find a corresponding eigenfunction u(s) for the smallest positive eigenvalue.

We assume that a > 0. This implies that the characteristic polynomial

R4 + a2R2 = R2(R2 + a2)

has the simple imaginary roots ±ia supplied with the og double root R = 0. The complete solution is

u(x) = c1 sin(ax) + c2 cos(ax) + c3x + c4
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where

u′(x) = ac1 cos(ax) − ac2 sin(ax) + c3

and

u′′(x) = −a2c1 sin(ax) − a2c2 cos(ax),

and

u(3)(x) = −a3c1 cos(ax) + a3c2 sin(ax).

1) We get by insertion into the boundary conditions,

u(1) = 0 = c1 sin a + c2 cos a + c3 + c4,

u′(1) = 0 = ac1 cos a − ac2 sin a + c3,

u′′(0) = 0 = −a2c2,

and

a2u′(0) + u(0) + u(3)(0) = 0 = a3c1 + a2c3 + c2 + c4 − a3c1.
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It follows immediately that c2 = 0, so the system is reduced to⎧⎨
⎩

sin a · c1 + c3 + c4 = 0,
a cos ·c1 + c3 = 0,

a2c3 + c4 = 0.

Then it follows from the last equation that c4 = −a2c3, so the first two are reduced to

(7)
{

sin a · c1 + (1 − a2)c3 = 0,
a cos a · c1 + 1 · c3 = 0.

The determinant condition for proper solutions is∣∣∣∣ sin a 1 − a2

a cos a 1

∣∣∣∣ = sin a − a(1 − a2) cos a = 0.

If cos a = 0, then sin a �= 0, and there is no solution. We can therefore assume that cos a �= 0.
Then the determinant condition can be written

(8) tan a = a(1 − a2).

2) A graphical consideration shows that the smallest positive solution of (8) lies very close to π/2 in
the interval ]π/2, π[. It is, however, difficult to create a figure which shows that we actually have
a ≈ 1, 8.

We shall use the Newton-Raphson iteration method to find the smallest positive zero a ∈ ]π/2, π[
of

F (a) = tan a − a(1 − a2) = tan a + a3 − a.

Since

F ′(a) = 1 + tan2 a + 3a2 − 1 = tan2 a + 3a2,
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the iteration is given by

an+1 = an − F (an)
F ′(an)

= an − tan an + an(a2
n − 1)

tan2 an + 3a2
n

, n ∈ N.

Notice that the denominator F ′(a) = tan2 +3a2 ≥ 3(π/2)2 � 0, so we may expect a very fast
convergence.

If we e.g. choose a1 = 2 (a more energetic choice would of course be ã1 = 1, 8), then we get

a2 = 1, 772572, a3 = 1, 805332, a4 = 1, 809239

a5 = 1, 809278, a6 = 1, 809279.

Then with 2 decimals a ≈ 1, 81.

We shall continue in 3) to work with the better value

a ≈ a6 = 1, 809279.

3) When we calculate the eigenfunction we choose c1 = 1. As mentioned above we use the improved
value a ≈ 1, 809279 in order to minimize the rounding errors. The final results will only be given
with 2 decimals.

We have from above that c2 = 0, and we have furthermore chosen c3 = 1. We shall therefore only
calculate

c4 = −a2c3 and from (7), c1 = − c3

a cos a
,

thus

c4 = −a2 = −3, 273491 ≈ −3, 27

and

c1 = − 1
a cos a

= 2, 339710 ≈ 2, 34.

With 2 decimals an eigenfunction corresponding to the smallest positive eigenvalue a ≈ 1, 81 is
approximately given by

u(x) = c1 sin(ax) + c2 cos(ax) + c3x + c4 ≈ 2, 34 sin(1, 81x) + x − 3, 27.

Remark 2.6 From a practical point of view the result cannot be correct, because we get u(0) =
−3, 27. If the spring constant is the same for the two springs, then we should get 0 by the symmetry.
An analysis of the boundary conditions shows that there is “something wrong** with

a2u′(0) + u(0) + u(3) = 0.

In fact, the physical dimensions do not agree. For instance, u(0) has dimension �, and u(3) has
dimension �/�3 = 1/�2. One should therefore always check the physical dimensions of a model, before
one starts on solving it. Inside pure mathematics, however, this is an excellent example.
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Example 2.19 In the investigation of the stability of rotating thin columns one may as a linearized
model of the bending u(x) perpendicular to the plane of rotation use the following eigenvalue problem,

u(3) + Ω2(r − 1)u′ = 0, 0 ≤ x ≤ 1, u(0) = u′(0) = u′′(1) = 0.

Here, r is a positive constant, and λ = Ω2 denotes the eigenvalue. We shall only be concerned with
the positive eigenvalues.
Find in the three cases r > 1, r = 1 and r < 1 the possible solutions of the eigenvalue problem (i.e.
both s̊avel eigenvalues and eigenfunctions).

We consider here an eigenvalue problem for a differential equation of third order,

d3u

dx3
+ Ω2(r − 1)

du

dx
= 0, 0 ≤ x ≤ 1.

The characteristic polynomial is

R3 + Ω2(r − 1)R = R{R2 + Ω2(r − 1)}.
1) If r > 1, the characteristic polynomial has the roots

R = 0 and R = ±iΩ
√

r − 1.

The complete solution is

u = c1 sin(Ω
√

r − 1 · x) + c2 cos(Ω
√

r − 1 · x) + c3

where

u′ = c1Ω
√

r − 1 cos(Ω
√

r − 1 · x) − c2Ω
√

r − 1 sin(Ω
√

r − 1 · x)

and

u′′ = −c1Ω2(r − 1) sin(Ω
√

r − 1 · x) − c2Ω2(r − 1) cos(Ω
√

r − 1 · x).

It follows from the boundary conditions that

u(0) = 0 = c2 + c3, thus c3 = −c2,

and

u′(0) = 0 = c1Ω
√

r − 1, i.e. c1 = 0.

Since c1 = 0, it follows from the latter boundary condition that

u′′(1) = 0 = −0 − c2Ω2(r − 1) cos(Ω
√

r − 1).

Now c1 = 0 and c3 = −c2, so we only obtain proper solutions when

cos(Ω
√

r − 1) = 0, thus Ω
√

r − 1 =
π

2
+ nπ, n ∈ N0.

This corresponds to the eigenvalues

λn = Ω2
n =

1
r − 1

π2

4
(2n + 1)2, n ∈ N0,

with the corresponding generating eigenfunction (i.e. c2 = 1)

un(x) = cos
(π

2
(2n + 1)x

)
− 1, n ∈ N0.
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2) If r = 1, then the characteristic polynomial is reduced to R3 in which R = 0 is a root of multiplicity
three. The complete solution is

u(x) = c1x
2 + c2x + c3,

where

u′(x) = 2c1x + c2 og u′′(x) = 2c1.

It follows from the boundary conditions that

u(0) = 0 = c3, u′(0) = 0 = c2, u′′(1) = 0 = 2c1,

so there does not exist any proper solution, hence not eigenvalue or eigenfunction.

Notice that since r − 1 = 0 we see that Ω has totally disappeared from the problem.

3) If 0 < r < 1, then the characteristic polynomial has the three real roots

R = 0 and R = ±Ω
√

1 − r.
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The complete solution is

u = c1 sinh(Ω
√

1 − rx) + c2 cosh(Ω
√

1 − rx) + c3

where

u′ = Ω
√

1 − r{c1 cosh(Ω
√

1 − rx) + c2 sinh(Ω
√

1 − rx)},

and

u′′ = Ω2(1 − r){c1 sinh(Ω
√

1 − rx) + c2 cosh(Ω
√

1 − rx)}.

It follows from the boundary conditions that

u(0) = c2 + c3 = 0, thus c3 = −c2,

u′(0) = c1Ω
√

1 − r = 0, i.e. c1 = 0.

since c1 = 0, it follows from the latter boundary condition that

u′′(1) = 0 + c2Ω2(1 − r) · 1 = c2Ω2(1 − r) = 0.

Since 1−r > 0 and Ω > 0, we must have c2 = 0 and thus c3 = 0, and we only get the zero solution,
so we have no eigenvalue when 0 < r < 1.

Example 2.20 Given the differential equation

y′′ + 2λy′ + 2λ2y = 0, 0 ≤ x ≤ π,

with y(0)− y′(0) = 0 and y(π)− y′(π) = 0, and where the parameter λ ∈ R is considered as a possible
eigenvalue.

1) Prove that λ = 0 is not an eigenvalue.

2) Find all the eigenvalues and the corresponding eigenfunctions.

1) If λ = 0, then the equation is reduced to y′′ = 0, the complete solution of which is

y = c1 + c2x where y′ = c2.

Then by insertion into the boundary conditions,

y(0) − y′(0) = c1 − c2 = 0,

hence c1 = c2, and

y(π) − y′(π) = c1 + c2π − c2 = 0,

so c1 = −(π − 1)c2.

Since c1 = c2 = 0 is the only solution, we conclude that λ = 0 is not an eigenvalue.
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2) If λ �= 0, then the characteristic polynomial

R2 + 2λR + 2λ2 = (R + λ)2 + λ2,

has the simple roots R = −λ ± iλ. The complete solution is

y = c1e
−λx cos(λx) + c2e

−λx sin(λx)

where

y′ = λ(c2 − c1)e−λx cos(λx) − λ(c1 + c2)e−λx sin(λx).

It follows from the boundary conditions that

0 = y(0) − y′(0) = c1 − λ(c2 − c1) = (1 + λ)c1 − λc2.

Now λ �= 0 by (1), so c2 =
1 + λ

λ
c1, which by insertion gives

0 = y(π) − y′(π)

= c1e
−λπ cos(λπ) + c1 · 1 + λ

λ
e−λπ sin(λπ)

−
(

λ · 1 + λ

λ
− λ

)
c1e

−λπ cos(λπ) +
(

λ + λ · 1 + λ

λ

)
c1e

−λπ sin(λπ)

= c1e
−λπ

{
(1 − 1) cos(λπ) +

(
λ +

(λ + 1)2

λ

)
sin(λπ)

}

= c1e
−λπ · λ2 + (λ + 1)2

λ
sin(λπ).

Since λ2+(λ+1)2 > 0 for all λ ∈ R\{0}, we only obtain proper solutions, c1 �= 0, if λ = n ∈ Z\{0}.
We get for λn = n ∈ Z \ {0} and c1 = n that c2 = n + 1, so an eigenfunction corresponding to n is

yn(x) = ne−nx cos nx + (n + 1)e−nx sinnx, n ∈ Z \ {0}.

All the eigenfunctions corresponding to λn = n ∈ Z \ {0} are then given by c · yn(x), where c is an
arbitrary constant.

Remark 2.7 We get for n = −1,

y−1(x) = −ex cos x

without any sine term.
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Example 2.21 Given the eigenvalue problem

d4y

dx4
+ λ2 d2y

dx2
= 0, x ∈ [0, 1], y(0) = y′′(0) = y(1) = y′(1) = 0.

1) Check if λ = 0 is an eigenvalue.

2) Prove that every eigenvalue λ �= 0 must fulfil the equation tanλ = λ.

1) For λ = 0 the equation is reduced to
d4y

dx4
= 0, the complete solution of which is

y = c0 + c1x + c2x
2 + c3x

3

where

dy

dx
= c1 + 2c2x + 3c3x

2 and
d2y

dx2
= 2c2 + 6c3x.

It follows from the boundary conditions that

y(0) = c0 = 0, y(1) = c0 + c1 + c2 + c3 = 0,

y′′(0) = 2c2 = 0, y′(1) = c1 + 2c2 + 3c3 = 0,

which is reduced to c0 = c2 = 0 and

c1 + c3 = 0, c1 + 3c3 = 0,

hence also c1 = c3 = 0.

Since the zero solution is the only solution, we conclude that λ = 0 is not an eigenvalue.

2) If λ �= 0, then the characteristic polynomial

R4 + λ2R2 = R2(R2 + λ2)

has the double root R = 0 and the two simple and complex conjugated roots R = ±iλ. The
complete solution is

y = c0 + c1x + c2 cos λx + c3 sinλx

where

dy

dx
= c1 − c2λ sinλx + c3λ cos λx

and

d2y

dx2
= −c2λ

2 cos λx − c3λ
2 sinλx.

It follows from the boundary conditions that

y(0) = c0 + c2 = 0, y′′(0) = −c2λ
2 = 0,
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y(1) = c0 + c1 + c2 cos λ + c3 sinλ = 0,

y′(1) = c1 − c2λ sinλ + c3λ cos λ = 0.

Since the two values ±λ correspond to the same square λ2, we may of course assume that λ > 0.
Then by the first two equations, c2 = 0 and c0 = 0, and the two remaining equations are reduced
to {

c1 + c3 sin λ = 0,
c1 + c3λ cos λ = 0, i.e.

(
1 sin λ
1 λ cos λ

)(
c1

c3

)
=

(
0
0

)
.

We only get proper solutions, if the matrix is singular, i.e. if∣∣∣∣ 1 sinλ
1 λ cos λ

∣∣∣∣ = λ cos λ − sinλ = 0,

hence

λ cos λ − sinλ = 0.

Since sin λ �= 0, when cos λ = 0, we must have cos λ �= 0 for every solution. Then the equation is
rewritten as

tanλ = λ.
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It follows from the figure that we have precisely one solution λn > 0 in each interval
]
nπ, nπ +

π

2

[
,

n ∈ N, and that λn ∼
(

n +
1
2

)
π for n → ∞.

A corresponding eigenfunction is e.g.

ϕn(x) = sin(λnx) − (sinλn) · x,

where we have chosen c1 = − sinλn and c3 = 1.

Example 2.22 Given the eigenvalue problem

d2y

dx2
+ λy = 0, 0 ≤ x ≤ 1

2
,

y(0) + y′(0) = 0, y

(
1
2

)
= 0.

1) Prove that we have no negative eigenvalues.

2) Find an equation from with one in principle can find the smallest eigenvalue (the calculation is
not required).
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1) If λ < 0, λ = −k2, then the complete solution is

y = c1 cosh(kx) + c2 sinh(kx)

where

y′ = k{c2 cosh(kx) + c1 sinh(kx)}.
We get by insertion into the boundary conditions that

y(0) + y′(0) = c1 + kc2 = 0,

y

(
1
2

)
= cosh

(
k

2

)
c1 + sinh

(
k

2

)
c2 = 0.

This linear system of equations in (c1, c2) has the determinant∣∣∣∣∣
1 k

cosh
k

2
sinh

k

2

∣∣∣∣∣ = sinh
k

2
−k cosh

k

2
= cosh

k

2

{
tanh

k

2
− k

}
< cosh

k

2

{
k

2
− k

}
< 0 for k > 0.

Since this determinant is �= 0, the system has only the zero solution, so no λ < 0 can be an
eigenvalue.

2) If λ = 0, then the complete solution is

y = c1 + c2x where y′(x) = c2.

It follows from the boundary conditions that

y(0) + y′(0) = c1 + c2 = 0 og y

(
1
2

)
= c1 +

1
2

c2 = 0.

The only solution is c1 = c2 = 0, so λ = 0 cannot be an eigenvalue either.

If λ = k2 > 0, k > 0, then the complete solution is

y = c1 cos(kx) + c2 sin(kx)

where

y′ = kc2 cos(kx) − kc1 sin(kx).

We get by insertion into the boundary conditions that

y(0) + y′(0) = c1 + kc2 = 0,

y

(
1
2

)
= cos

(
k

2

)
c1 + sin

(
k

2

)
c2 = 0.

This system has proper solutions (c1, c2) �= (0, 0), if and only if the corresponding determinant is
zero, thus

0 =

∣∣∣∣∣
1 k

cos
k

2
sin

k

2

∣∣∣∣∣ = sin
(

k

2

)
− k · cos

(
k

2

)
, k > 0.
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Since cos
k

2
�= 0 for every solution, this condition is equivalent to the equation

tan
k

2
= k.

Since tan
k

2
≈ k

2
< k in the neighbourhood of 0, and tan

k

2
→ ∞ for k → π−, this equation must

by the continuity have a solution k ∈ ]0, π[. It follows from the figure that it has precisely one
solution.

Remark 2.8 It can be proved by a Newton-Raphson iteration that the first, i.e. the smallest
positive eigenvalue is

λ1 = k2
1 ≈ 5, 434.
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Example 2.23 Consider the eigenvalue problem

d2y

dx2
+ λ

dy

dx
− (λ+1)y = 0, x ∈ [0, 1], y(0)−y′(0) = y(1)−y′(1) = 0.

1) Prove that λ = −2 is an eigenvalue and find all its corresponding eigenfunctions.

2) Prove that every λ ∈ R is an eigenvalue for the eigenvalue problem under consideration, and that
y = ex, x ∈ [0, 1], is a corresponding eigenfunction.

1) We get by insertion of λ = −2 that

d2y

dx2
− 2

dy

dx
+ y = 0, x ∈ [0, 1],

with the characteristic polynomial R2 − 2R + 1 = (R − 1)2. Since the root R = 1 has multiplicity
2, the complete solution is

y = c1e
x + c2xex where y′ = (c1 + c2)ex + c2xex.
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First calculate

y(0) = c1 and y′(0) = c1 + c2,

and

y(1) = c1 + c2 and y′(1) = c1 + 2c2.

It follows from the boundary conditions that

c1 = c1 + c2 and c1 + c2 = c1 + 2c2

for c2 = 0 and c1 arbitrary constants. Hence, λ = −2 is an eigenvalue, and every eigenfunction
has the form cex.

2) It is immediately seen that the function y = ex fulfils both the equation and the boundary condi-
tions, no matter the choice of λ ∈ R.

Example 2.24 Consider the eigenvalue problem

d2y

dx2
+ λ

dy

dx
= 0, x ∈ [0, 1], y(0) = 0, y′(1) = 0.

Prove that λ = 0 is not an eigenvalue. Then prove that the eigenvalue problem does not have an
eigenvalue.

1) When λ = 0, the equation is reduced to
d2y

dx2
= 0, the complete solution of which is

y = c1x + c2.

By insertion into the boundary conditions we get

y(0) = c2 = 0 and y′(1) = c1 = 0.

This shows that λ = 0 is not an eigenvalue.

2) If λ �= 0, then the characteristic polynomial

R2 + λR = R(R + λ),

has the roots R = 0 and R = −λ. The complete solution is

y = c1 + c2e
−λx where y′ = −λc2e

−λx.

By insertion into the boundary values we get

y(0) = c1 + c2 = 0 og y′(1) = −λc2e
−λ = 0.

Since λ �= 0, we get c2 = 0, and hence c1 = −c2 = 0.

It follows in particular that no λ �= 0 can be an eigenvalue.

Summing up, the eigenvalue problem does not have any eigenvalue.
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3 Nontypical eigenvalue problems

We collect in this chapter some eigenvalue problems which for some reason are nontypical. In some of
the cases there is required a lot more of the reader than one could expect. In other cases I have found
some eigenvalue problems in the literature, which I feel very strange. They have only been included
here, because some of the readers may come across them.

Example 3.1 Consider the eigenvalue problem

u′′′ + Ω2(r − 1)u′ + Ω2u(1) = 0, x ∈ [0, 1], u(0) = u′(0) = u′′(0) = 0,

where r is a positive constant, and Ω is the eigenvalue.

1) Prove for every fixed r > 1 that the positive eigenvalues fulfil the equation

(9) tanΩ
√

r − 1 = rΩ
√

r − 1.

(Hint: Use the three boundary conditions and furthermore the identity u(1) = u(1)).

2) Find for r = 2 the smallest positive eigenvalue with three decimals.

3) We again assume that r > 1. Prove that the smallest positive eigenvalue Ω0 satisfies Ω0 → √
3 for

r → 1.

(Hint: Apply (9), put x =
√

r − 1 and use Taylor’s formula for tanΩx).

4) Find in the case of r = 1 all the positive eigenvalues and their corresponding eigenfunctions.

1) Since u(1) occurs, the equation is not a usual differential equation. If we consider for a while u(1)
just as some constant c (“independent of u(t)”), it makes sense to guess a particular solution of
the form u0(x) = ax + b.

Since r > 1, we get by insertion

0 + Ω2(r − 1)a + Ω2(a + b) = Ω2(ra + b) = 0.

Now, Ω > 0, so b = −ra, and u0(x) = a(x − r) where u(1) = a(1 − r), thus

a =
u(1)
1 − r

.

For given u(1), a particular solution is

u(x) =
u(1)
1 − r

(x − r).

The “homogeneous” equation where we neglect the term Ω2u(1), has the characteristic polynomial

R3 + Ω2(r − 1)R = R{R2 + Ω2(r − 1)}.
Since r > 1, the complete solution is

u(x) = c1 sin(Ω
√

r − 1x) + c2 cos(Ω
√

r − 1x) + c3 +
u(1)
1 − r

(x − r)
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where

u(1) = c1 sin(Ω
√

r − 1) + c2 cos(Ω
√

r − 1) + c3 + u(1),

and we derive the additional condition

(10) c1 sin(Ω
√

r − 1) + c2 cos(Ω
√

r − 1) + c3 = 0.

Now,

u′(x) = Ω
√

r − 1{c1 cos(Ω
√

r − 1x) − c2 sin(Ω
√

r − 1)} +
u(1)
1 − r

,

u′′(x) = −Ω2(r − 1){c1 sin(Ω
√

r − 1x) + c2 cos(Ω
√

r − 1x)}.
It follows from the boundary conditions that

u(0) = c2 + c3 +
r

r − 1
u(1) = 0,

u′(0) = c1Ω
√

r − 1 − 1
r − 1

u(1) = 0,

u′′(1) = −Ω2(r − 1){c1 sin(Ω
√

r − 1) + c2 cos(Ω
√

r − 1)} = 0.

When we compare the latter equation and (10) we get c3 = 0, and the system is reduced to the
three equations

c2 +
r

r − 1
u(1) = 0,

c1Ω
√

r − 1 − 1
r − 1

u(1) = 0,

c1 sin(Ω
√

r − 1) + c2 cos(Ω
√

r − 1) = 0.

It follows from the first two equations that

c2 = − r

r − 1
u(1) and c2 = −rΩ

√
r − 1 c1.

Then by insertion into the last equation,

c1{sin(Ω
√

r − 1) − rΩ
√

r − 1 cos(Ω
√

r − 1)} = 0.

A necessary condition for Ω being an eigenvalue is therefore

(11) sin(Ω
√

r − 1) = rΩ
√

r − 1 cos(Ω
√

r − 1).

Clearly, a solution of this equation also satisfies cos(Ω
√

r − 1) �= 0, so we get as required (9),

tan(Ω
√

r − 1) = rΩ
√

r − 1.

The condition (11) is also sufficient. Assume that it holds, and let

u(x) = c1 sin(Ω
√

r − 1x) + c2 cos(Ω
√

r − 1x) + c3 +
u(1)
1 − r

(x − r).
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If u(x) is an eigenfunction, then we have already proved above that c3 = 0 and

c2 = − r

r − 1
u(1), c1Ω

√
r − 1 =

1
r − 1

u(1),

and by (11),

c1 sin(Ω
√

r − 1) + c2 cos(Ω
√

r − 1) = c1rΩ
√

r − 1 cos(Ω
√

r − 1) + c2 cos(Ω
√

r − 1)

= cos(Ω
√

r − 1{c1rΩ
√

r − 1 + c2} = 0.

Since cos(Ω
√

r − 1) �= 0, this is reduced to

c1Ω
√

r − 1 =
1

r − 1
u(1), c2 = − r

r − 1
u(1),

0 = c1rΩ
√

r − 1 + c2 = r · 1
r − 1

u(1) − r

r − 1
u(1) = 0,

which is fulfilled for whatever the choice of u(1). If we choose e.g. u(1) = 1, then we obtain the
corresponding generating eigenfunction

uΩ(x) =
sin(Ω

√
r − 1x)

Ω(r − 1)
√

r − 1
− r

r − 1
cos(Ω

√
r − 1x) +

1
1 − r

(x − r).
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2) Now let r = 2. Then (9) is written in the form

tan Ω = 2Ω.

By a graphical consideration we see that there is precisely one solution in the interval ]0, π/2[, and
since

tan
π

4
= 1 < 2 · π

4
=

π

2
,

the solution must even lie in the interval ]π/4, π/2[.

We shall now find the zero in ]π/4, π/2[ of the function

F (Ω) = 2Ω cos Ω − sin Ω.

Here we apply Newton-Raphson iteration . From

F ′(Ω) = 2 cos Ω − 2Ω sin Ω − cos Ω = −2Ω sin Ω + cos Ω,

follows that the iteration formula becomes

Ωn+1 = Ωn − F (Ωn)
F ′(Ωn)

= Ωn +
2Ωn cos Ωn − sinΩn

2Ωn sin Ωn − cos Ωn
.

Thus with the initial value Ω1 = 1,

Ω2 = 1, 209282, Ω3 = 1, 167398, Ω4 = 1, 165565, Ω5 = 1, 165561,

hence Ω ≈ 1, 1656.

Nontypical eigenvalue problems

Download free eBooks at bookboon.com



Examples of Eigenvalue Problems

 

71  

3) Let us return to the equation (9),

tan(Ω
√

r − 1) = rΩ
√

r − 1.

If we put x =
√

r − 1, then x → 0+ for r → 1+.

Let ϕ(u) = tanu, ϕ(0) = 0. Then

ϕ′(u) = 1 + tan2 u, ϕ′(0) = 1

ϕ′′(u) = 2 tan u(1 + tan2 u), ϕ′′(0) = 0,

ϕ(3)(0) = 2(1 + tan2 u)2 + tanu · {· · · }, ϕ(3)(0) = 2,

so by a Taylor expansion,

ϕ(u) = tanu = u +
1
3

u3 + u3ε(u).

Then put u = Ω0

√
r − 1 > 0. It follows from (9) that

rΩ0

√
r − 1 = tan(Ω0

√
r − 1) = Ω0

√
r − 1 +

1
3

Ω3
0

√
r − 1(r − 1) + (

√
r − 1)3ε(

√
r − 1).

When this equation is divided by Ω0

√
r − 1 > 0, then

r = 1 +
1
3

Ω0(r − 1) + (r − 1)ε(
√

r − 1),

hence by a rearrangement,

Ω2
0 · (r − 1) = 3(r − 1) + (r − 1)ε(

√
r − 1).

This equation is then divided by r − 1 > 0. This gives

Ω0(r)2 = 3 + ε(
√

r − 1),

hence by taking the limit,

Ω0 = lim
r→1+

Ω0(r) =
√

3.

4) If we put r = 1, the eigenvalue problem is reduced to

u(3) + Ω2 u(1) = 0, x ∈ [0, 1], u(0) = u′(0) = u′′(1) = 0.

If we again just consider u(1) as a constant, the corresponding homogeneous equation becomes
u(3) = 0, the complete solution of which is

u(x) = c2x
2 + c3x + c4.

This should inspire us to guess on the structure of the solution

u(x) = c1x
3 + c2x

2 + c3x + c4
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of the original equation. We see that

u(1) = c1 + c2 + c3 + c4.

If we put this function u(x) into the differential equation (thus testing it), we get

u(3) + Ω2u(1) = 6c1 + Ω2(c1 + c2 + c3 + c4) = 0.

Furthermore,

u′(x) = 3c1x
2 + 2c2x + c3, u′′(x) = 6c1x + 2c2.

Then by the boundary conditions,

u(0) = 0 = c4, u′(0) = 0 = c3, u′′(1) = 6c1 + 2c2 = 0.

Now, c3 = c4 = 0, so

u(x) = c1x
3 + c2x

2,

where c1, c2 and u(1) satisfy

c1 + c2 − u(1) = 0, (Ω2 + 6)c1 + Ω2c2 = 0, 6c1 + 2c2 = 0.

We find the eigenvalues which this system is singular. We see that u(1) = c1 + c2 only occurs in
the first equation. Hence, the condition becomes

0 =
∣∣∣∣ Ω2 + 6 Ω2

6 2

∣∣∣∣ =
∣∣∣∣ 6 Ω2

4 2

∣∣∣∣ = 4
∣∣∣∣ 3 Ω2

1 1

∣∣∣∣ = 4(3 − Ω2),

thus Ω2 = 3. From Ω > 0 follows that Ω =
√

3, which was already indicated in 3).

Now let Ω =
√

3. We shall now express c1 and c2 by u(1). The equations

⎧⎨
⎩

c1 + c2 = u(1)

3c1 + c2 = 0,
imply

⎧⎪⎪⎨
⎪⎪⎩

c1 = −1
2

u(1),

c2 =
3
2

u(1).

For Ω =
√

3 the only eigenfunctions are

u(x) = −1
2

u(1)x3 +
3
2

u(1)x2 =
u(1)

2
x2(3 − x), x ∈ [0, 1].

It is left to the reader to test this solution, i.e. prove that the obtained function u(x) is an eigenfunction
for r = 1 corresponding to Ω =

√
3.

The eigenvalue problem of this example is of a type, which is usually not included in the textbooks.
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Example 3.2 In some cases one may also be forced to use the power series method in eigenvalue
problems. We shall here illustrate this in a (very big and complicated) example.

Consider the eigenvalue problem

d4y

dx4
+ (λ − x)

d2y

dx2
− dy

dx
= 0, x ∈ [0, λ].

y(0) = y′(0) = y′′(λ) = y′′′(λ) = 0.

This is the model equation of the bending of a vertical thin column of length λ, clamped in one end and
under the influence of the weight of the column. One wants to find the smallest positive eigenvalue λ.

1) First inspect the equation. Since

d

dx

{
(λ − x)

dy

dx

}
= (λ − x)

d2y

dx2
− dy

dx
,

the differential equation is also written

d4y

dx4
+

d

dx

{
(λ − x)

dy

dx

}
= 0.

This can immediately be integrated,

d3y

dx3
+ (λ − x)

dy

dx
= c, c arbitrær.
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2) The determination of c by using the boundary value y′′′(λ) = 0 follows from the equation

c = y′′′(λ) + (λ − λ)y′(λ) = 0.

The problem is then reduced to the simpler homogeneous equation

d3y

dx3
+ (λ − x)

dy

dx
= 0,

which is a camouflaged differential equation of second order in
dy

dx
. We therefore put z =

dy

dx
, so

d2z

dx2
+ (λ − x)z = 0,

where the boundary values for z are

z(0) = y′(0) = 0 and z′(λ) = y′′(λ) = 0.

Remark 3.1 We have already applied the boundary value y′′′(λ) = z′′(λ) = 0, and we see that it
now also follows from the equation. Furthermore, y(0) = 0 is not at all relevant for z = y ′.

3) Change of variable. The factor λ− x is annoying, so we change the variable to t = λ− x. If we
put

u(t) = z(x), thus u(λ − x) = z(x),

then the equation is transferred into

d2u

dt2
+ tu(t) = 0 where u(λ) = 0 and u′(0) = 0.

4) We shall neglect the boundary condition u(λ) = 0 for a while, when we find a power series solution
of this equation. We shall later come back to the condition u(λ) = 0. It follows from u′(0) = 0
that a1 = 0. By inserting the formal power series

u(t) =
∞∑

n=0

antn and
d2u

dt2
=

∞∑
n=2

n(n − 1)antn−2

into the differential equation we get

0 =
d2u

dt2
+ tu(t) =

∞∑
n=2

n(n − 1)antn−2 +
∞∑

n=0

antn−1 =
∞∑

n=0

(n + 2)(n + 1)an+2t
n +

∞∑
n=1

an−1t
n

= 2a2 +
∞∑

n=1

{(n + 2)(n + 1)an+2 + an−1}tn.

Then we get by the identity theorem that a2 = 0 (we have already proved that a1 = 0), and for
n ∈ N (the summation domain)

(n + 2)(n + 1)an+2 + an−1 = 0 for n ∈ N.

Nontypical eigenvalue problems

Download free eBooks at bookboon.com



Examples of Eigenvalue Problems

 

75  

This is by n → n + 1 transformed to

(n + 3)(n + 2)an+3 + an = 0 for n ∈ N0.

There is a leap of 3 in the indices, hence we conclude by induction from a1 = 0 and a2 = 0 that

a3n+1 = 0 and a3n+2 = 0 for n ∈ N0.

We can now write the power series solution in the form

u(t) =
∞∑

n=0

a3nt3n =
∞∑

n=0

bnt3n,

where the recursion formula for a3n = bn is obtained by n → 3n, thus

(3n + 3)(3n + 2)a3n+3 + a3n = 0, n ∈ N0,

so

bn+1 = − 1
(3n + 3)(3n + 2)

bn, bn = a3n, n ∈ N0.

The radius of convergence for b0 �= 0 (and hence for bn �= 0) and t �= 0 is found by the criterion
of quotients∣∣∣∣an+1(t)

an(t)

∣∣∣∣ =
|bn+1||t|3(n+1)

|bn||t|3n
=

|t|3
(3n + 3)(3n + 2)

→ 0 for n → ∞.

It follows that the series is convergent for every t ∈ R, and that 	 = ∞.

Since we are actually considering a boundary value problem, the coefficients a0 = b0 �= 0 are
“free”. We choose a0 = b0 = 1. Then by induction,

bn = a3n = (−1)n · 1
(3n)!

n−1∏
j=0

(3j + 1), n ∈ N.

5) We have now proved that

(12)
dy

dx
= z(x) = u(λ − x) =

∞∑
n=0

a3n(λ − x)3n, x ∈ R,

where we have found a3n in (4). The function cannot be expressed by elementary functions. It
can, however, be termwise integrated. Since y(0) = 0, we get by termwise integration and a
rearrangement that

y(x) = =
∞∑

n=0

a3n

∫ x

0

(λ − t)3ndt =
∞∑

n=0

a3n

[
− 1

3n + 1
(λ − t)3n+1

]x

0

=
∞∑

n=0

a3n

3n + 1
λ3n+1 −

∞∑
n=0

a3n

3n + 1
(λ − x)3n+1,

which is the structure of the eigenfunctions, if only we can find the eigenvalues.
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6) We still miss to find the smallest (positive) λ = λcrit, for which we have a proper solution, i.e.
where a0 �= 0. Here we use the boundary condition y′(0) = 0, thus by (12),

y′(0) =
∞∑

n=0

a3nλ3n = 0 where a0 = 1.

This transcendent equation is solved approximatively in the following way:

We write for convenience η = λ3, and then we find successively the smallest root of each of the
polynomials

Pn(η) =
n∑

k=0

a3kηk, n ∈ N.

Since the a3k have alternating signs, the possible real roots can only be positive. The first poly-
nomials may only have complex roots, but if two succeeding polynomials Pn(η) and Pn+1(η) have
here (smallest) real roots ηn and ηn+1, then every following polynomial Pn+m(η) will also have a
(smallest) real root ηn+m. Since a3n is alternating, it is easy to prove that ηn+m, m > 1, always
lies between ηn and ηn+1, so we get a convergent sequence. The following numerical computations
show that the convergence is very fast.

7) Numerical computations. No text needed.

n = 1 : P1(η) = 1 − 1
3 · 2η, η1 = 6 and λ1 = 3

√
6 = 1, 81712.

n = 2 : P2(η) = 1 − η

6

(
1 − η

6 · 5
)

, η2 = 8, 29180 and λ2 = 3
√

η2 = 2, 02403.

n = 3 : P3(η) = 1− η

6

(
1 − η

30

(
1 − η

9 · 8
))

, η3 = 7, 814712 and λ3 = 3
√

η3 = 1, 98444.

n = 4 : P4(η) = 1 − η

6

(
1 − η

30

(
1 − η

72

(
1 − η

12 · 11

)))
,

η4 = 7, 838213 and λ4 = 3
√

η4 = 1, 98643.

n=5 : P5(η)=1− η

6

(
1− η

30

(
1− η

72

(
1− η

132

(
1− η

15 · 14

))))
,

η5 = 7, 837325 and λ5 = 3
√

η5 = 1, 98635.

and for n = 6,

P6(η)=1− η

6

(
1− η

30

(
1− η

72

(
1− η

132

(
1− η

210

(
1− η

18·17

)))))
,

η6 = 7, 837348 and λ6 = 3
√

η6 = 1, 98635.

It follows that λ5 = λ6 = 1, 98635 is an estimate of λcrit with 5 decimals. This result is obtained
after six iterations.
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Example 3.3 Find the complete solution of the homogeneous system

d

dt

(
x1

x2

)
=

(
1 5
1 −3

) (
x1

x2

)
.

We can solve this example in many ways. Here we shall give three variants.

1) The eigenvalue method. The eigenvalues are the roots of the characteristic polynomial∣∣∣∣ 1−λ 5
1 −3−λ

∣∣∣∣ = (λ−1)(λ+3)−5 = λ2+2λ−8 = (λ+1)2−9,

thus

λ = −1 ± 3 =
{

2,
−4.

a) If λ = 2, then we get the matrix(
1 − λ 5

1 −3 − λ

)
=

( −1 5
1 −5

)
,

and we conclude that an eigenvector can be chosen as e.g. (5, 1).
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b) If λ = −4, we get the matrix(
1 − λ 5

1 −3 − λ

)
=

(
5 5
1 1

)
,

and we can choose the eigenvector (1,−1).

Summing up the complete solution is(
x1

x2

)
= c1e

2t

(
5
1

)
+ c2e

−4t

(
1
−1

)
=

(
5e2t e−4t

e2t −e−4t

)(
c1

c2

)
.

2) The fumbling method. We write the system of equations,⎧⎪⎨
⎪⎩

dx1

dt
= x1 + 5x2,

dx2

dt
= x1 − 3x2.

It follows from the latter equation that

(13) x1 =
dx2

dt
+ 3x2,

so by insertion into the former,

dx1

dt
=

d2x2

dt2
+ 3

dx2

dt
= x1 + 5x2 =

dx2

dt
+ 8x2.

Then by a rearrangement,

d2x2

dt2
+ 2

dx2

dt
− 8x2 = 0.

The characteristic equation R2 + 2R − 8 = 0 has the roots R = 2 and R = −4, so

x2 = c2e
2t + c2e

−4t.

If this is put into (13), then

x1 =
dx2

dt
+ 3x2 = (2c1e

2t − 4c2e
−4t) + (3c1e

2t + 3c2e
−4t) = 5c1e

2t − c2e
−4t.

Summing up we have(
x1

x2

)
=

(
5c1e

2t − c2e
−4t

c1e
2t + c2e

−4t

)
=

(
5e2t −e−4t

e2t e−4t

)(
c1

c2

)
.

3) The exponential matrix. The characteristic polynomial is

(λ + 1)2 − 9.

Then we get by Caley-Hamilton’s theorem,

(A + I)2 − 9I = 0, dvs. B2 = 9I, where B = A + I.
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Since I trivially commutes with A, we get

exp(At) = exp((B − I)t) = e−t exp(Bt)

= e−t

{ ∞∑
n=0

1
(2n)!

B2nt2n +
∞∑

n=0

1
(2n + 1)!

B2n+1t2n+1

}

= e−t

{ ∞∑
n=0

(3t)2n

(2n)!
I +

1
3

∞∑
n=0

(3t)2n+1

(2n + 1)!
B

}

= e−t

{
cosh(3t)I +

1
3

sinh(3t)B
}

= e−t

{
cosh(3t)

(
1 0
0 1

)
+

1
3

sinh(3t)
(

2 5
1 −2

)}

=
1
3

e−t

(
3 cosh 3t + 2 sinh 3t 5 sinh 3t

sinh 3t 3 cosh 3t − 2 sinh 3t

)

=
1
6

e−t

(
3e3t+3e−3t+2e3t−2e−3t 5e3t− 5e−3t

e3t−e−3t 3e3t+3e−3t−2e3t+2e−3t

)

=
1
6

e−t

(
5e3t+e−3t 5e3t−5e−3t

e3t−e−3t e3t+5e−3t

)

=
1
6

(
5e2t+e−4t 5e2t−5e−4t

e2t−e−4t e2t+5e−4t

)
.

Hence the complete solution is(
x1

x2

)
= c1

(
5e2t+e−4t

e2t−e−4t

)
+ c2

(
5e2t−5e−4t

e2t+5e−4t

)
.

Example 3.4 Prove that λ = 3 is an eigenvalue for the eigenvalue problem

d2y

dx2
− 2λ

dy

dx
+ (π2 − 9 + 6λ)y = 0, x ∈ [0, 1], y(0) = 0, y(1) = 0,

and find a corresponding eigenfunction.

If we immediately put λ = 3, then

d2y

dx2
− 6

dy

dx
+ (9 + π2)y = 0, x ∈ [0, 1], y(0) = 0, y(1) = 0.

The characteristic polynomial

R2 − 6R + 9 + π2 = (R − 3)2 + π2

has the roots 3 ± iπ, and the complete solution is

y = c1e
3x cos(πx) + c2e

3x sin(πx).

It follows from the the boundary conditions that

y(0) = c1 = 0 and y(1) = −e3c1 = 0,
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so c1 = 0, and c2 can be chosen arbitrarily. We get a corresponding eigenfunction by c1 = 0 and
c2 = 1,

y(x) = e3x sin(πx), x ∈ [0, 1].

Remark 3.2 The example is tricky, because if one does not immediately put λ = 3, then we get the
characteristic polynomial

R2 − 2λR + π2 − 9 + 6λ,

the (real or complex) roots are

R = λ ±
√

λ2 − π2 + 9 − 6λ = λ ±
√

(λ − 3)2 − π2.

The complete solution is for λ �= 3 ± π in a complex form

y = c1 exp((λ +
√

(λ − 3)2 − π2)x) + c2 exp((λ −
√

(λ − 3)2 − π2)x)

= eλx
{

c1 exp(
√

(λ − 3)2 − π2 x) + c2 exp(−
√

(λ − 3)3 − π2 x)
}

.
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If we put x = 0, then y(0) = 0 gives that c2 = −c1. If c1 = 1, then it follows from y(1) = 0 that

exp(
√

(λ − 3)2 − π2) − exp(−
√

(λ − 3)2 − π2) = 0,

thus

exp(2
√

(λ − 3)2 − π2) = 1 = e2ipπ, p ∈ Z.

Hence

2
√

(λ − 3)2 − π2 = 2ipπ, thus
√

(λ − 3)2 − π2 = ipπ, p ∈ Z.

In particular we must have (λ − 3)2 ≤ π2, thus −π + 3 ≤ λ ≤ π + 3, and

(λ − 3)3 = (1 − p2)π2 ≥ 0.

The only possibility is p = 0, where λ = 3 ± π, and p = ±1, where λ = 3.

We have already checked λ = 3.

If λ = 3 ± π, then λ is a double root in characteristic polynomial, and the complete solution is

y = c1e
λx + c2xeλx, λ = 3 ± π.

It follows from y(0) = 0 that c1 = 0 and y(1) = 0 we get c2 = 0, and none of these possible values is
an eigenvalue.

We have with this additional remark shown that λ = 3 is the only eigenvalue of the problem.

Example 3.5 Consider the eigenvalue problem

d2y

dx2
+ λ

dy

dx
− (λ + 1)y = 0, x ∈ [0, 1], y(1) = 0, y′(0) = 0.

Prove that λ = −2 is an eigenvalue and find a corresponding eigenfunction.

First variant. If we immediately put λ = −2, then we obtain

d2y

dx2
− 2

dy

dx
+ y = 0.

The characteristic equation R2 − 2R + 1 = (R − 1)2 = 0 has the double root R = 1, so the complete
solution is

y = aex + bxex where y′ = (a + b)ex + bxex.

It follows from the boundary values that{
y(1) = (a + b)e = 0,
y′(0) = 0,

which are satisfied if a + b = 0, e.g. if a = 1 and b = −1. This proves that λ = −2 is an eigenvalue
and that a corresponding eigenfunction is

y = ex − xex = (1 − x)ex, x ∈ [0, 1].
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A check shows that the conditions indeed are satisfied.

Second variant. If one does not start by putting λ = −2, then we must go through the following
considerations: The general characteristic equation

R2 + λR − (λ + 1) = (R + λ + 1)(R − 1) = 0

has the roots R = 1 and R = −λ − 1. If λ = −2 we get the double root R = 1. If λ �= −2 the roots
are simple.

If λ �= −2, the complete solution is

y = aex + be−(λ+1)x where y′ = aex − (λ + 1)be−(λ+1)x.

It follows from the boundary values that{
y(1) = ae + be−λ−1 = 0,
y′(0) = a − (λ + 1)b = 0,

which we write in form of a matrix(
e e−λ−1

1 −(λ + 1)

)(
a
b

)
=

(
0
0

)
.

If λ �= −2, the eigenvalues are those values for which the matrix is singular, hence

ϕ(λ) =
∣∣∣∣ e e−λ−1

1 −(λ + 1)

∣∣∣∣ = −e(λ + 1) − e−(λ+1) = 0.

It follows from

ϕ′(λ) = −e + e−(λ+1) = e
{

e−(λ+2) − 1
}

,

that ϕ′(λ) = 0 for λ = −2, corresponding to a (global) maximum

ϕ(−2) = −e(−2 + 1) − e−(−2+1) = e − e = 0,

hence ϕ(λ) is only zero at the exceptional value λ = −2, and no λ �= −2 is an eigenvalue.

If λ = −2, we just repeat the first variant, and we see that λ = −2 is the only eigenvalue and a
generating eigenfunction is

y(x) = (1 − x)ex, x ∈ [0, 1].
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Example 3.6 Consider the eigenvalue problem

d2y

dx2
− 2

dy

dx
+ (1 + λ)y = 0, x ∈ [0, 1], y(0) − y′(0) = y(1) = 0.

Prove that λ =
π2

4
is an eigenvalue and find a corresponding eigenfunction.

If we immediately put λ =
π2

4
, then we get the characteristic equation

R2 − 2R + 1 +
π2

4
= 0,

the solutions of which are R = 1 ± i
π

2
. Then we get the complete solution

y = c1e
x cos

πx

2
+ c2e

x sin
πx

2

where

y′ =
(
c1 +

π

2
c2

)
ex cos

πx

2
+

(
c2 − π

2
c1

)
ex sin

πx

2
.

Then by the boundary conditions,

y(1) = c2 · e · 1 = 0, thus c2 = 0,

and

y(0) = y′(0) = c1 −
(
c1 +

π

2
c2

)
= −π

2
c2 = 0,

so c2 = 0, and c1 is arbitrary.

It follows that λ =
π2

4
is an eigenvalue and that a corresponding eigenfunction is obtained for c2 = 0

and e.g. c1 = 1, hence

y = ex cos
πx

2
.

Remark 3.3 It is possible to prove that all eigenvalues are given by

λn = π2

(
n +

1
2

)2

, n ∈ N0

with the corresponding generating eigenfunctions

ϕn(x) = cos(
√

λnx) = cos
(

π

(
n +

1
2

)
x

)
, n ∈ N0.
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Example 3.7 Consider the eigenvalue problem⎧⎨
⎩

d2y

dx2
+ (λ + 3)

dy

dx
+ 3λy = 0, x ∈ [0, 1],

5y(0) + y′(0) = y(1) + y′(1) = 0.

Prove that λ = 3 is an eigenvalue and find a corresponding eigenfunction.

If we immediately put λ = 3, then we get the simpler equation,

d2y

dx2
+ 6

dy

dx
+ 9y = 0, x ∈ [0, 1],

the characteristic equation of which R2 + 6R + 9 = (R + 3)2 = 0 has the double root R = −3. The
complete solution is

y = c1e
−3x + c2xe−3x

where

dy

dx
= (−3c1 + c2)e−3x − 3c2xe−3x.
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By insertion into the boundary conditions we get

5y(0) + y′(0) = 5c1 − 3c1 + c2 = 2c1 + c2 = 0,

and

y(1) + y′(1) = e−3{c1 + c2 − 3c1 + c2 − 3c2} = −e−3(2c1 + c2) = 0.

These two conditions are simultaneously fulfilled if and only if c2 = −2c1, where c1 can be chosen
arbitrarily. We conclude that λ = 3 is an eigenvalue and that a corresponding eigenfunction is obtained
be e.g. choosing c1 = 1,

y(x) = e−3x − 2xe−3x = (1 − 2x)e−3x.

Example 3.8 Consider the eigenvalue problem

d2y

dx2
− (λ + 2)

dy

dx
+ 5y = 0, x ∈

[
0,

π

2

]
,

y(0) − y′(0) = 3y
(π

2

)
− y′

(π

2

)
= 0.

1) Prove that λ = 2 is an eigenvalue and find all its corresponding eigenfunctions.

2) Is y = e2x cos
(
x +

π

4

)
, x ∈

[
0,

π

2

]
, an eigenfunction corresponding to the eigenvalue λ = 2?

1) If we put λ = 2, then we get the differential equation

d2y

dx2
− 4

dy

dx
+ 5y = 0

with constant coefficients. The characteristic equation

R2 − 4R + 5 = (R − 2)2 + 1 = 0

has the two simple complex conjugated roots R = 2 ± i. The complete solution is

y = c1e
2x cos x + c2e

2x sinx.

Then by a differentiation,

y′(x) = 2c1e
2x cos x − c1e

2x sinx + 2c2e
2x sinx + c2e

2x cos x

= (2c1 + c2)e2x cos x + (2c2 − c1)e2x sinx.

When we put these into the boundary conditions, we get

y(0) − y′(0) = c1 − (2c1 + c2) = −c1 − c2 = −(c1 + c2) = 0,

3y
(π

2

)
− y′

(π

2

)
= 3c2e

π − (2c2−c1)eπ = (c1 + c2)eπ = 0.

We obtain the eigenfunctions when c2 = −c1, hence the eigenfunctions are c1 times the generating
eigenfunction

y0(x) = e2x(cos x − sinx) =
√

2
(

1√
2

cos x − 1√
2

sinx

)
=

√
2 e2x cos

(
x +

π

4

)
.
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2) If we choose c1 =
1√
2
, we get the eigenfunction

1√
2

y0(x) = e2x cos
(
x +

π

4

)
,

and we see that the answer is “yes”.
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