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Preface

Preface
With the explosion of resources available on the internet, virtually anything can be learned on your own, 
using free online resources. Or can it, really? If you are looking for instructional videos to learn Calculus, 
you will probably have to sort through thousands of hits, navigate through videos of inconsistent quality 
and format, jump from one instructor to another, all this without written guidance. 

This free e-book is a guide through a play-list of Calculus instructional videos. The play-list and the book 
are divided into 16 thematic learning modules. The format, level of details and rigor, and progression 
of topics are consistent with a semester long college level Calculus II course, the first volume covering 
the equivalent of a Calculus I course. The continuity of style should help you learn the material more 
consistently than jumping around the many options available on the internet. The book further provides 
simple summary of videos, written definitions and statements, worked out examples – even though fully 
step by step solutions are to be found in the videos – and an index. 

The present book is a guide to instructional videos, and as such can be used for self study, or as a textbook 
for a Calculus course following the flipped classroom model.

An essential companion to this book is the exercise manual Exercises for A youtube Calculus Workbook 
Part II: a flipped classroom model, which also outlines and discusses the structure for a flipped classroom 
course based on this material. 

For future reference, the play list of all the videos is available at:

https://www.youtube.com/playlist? list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL.

If you need to review any part of Calculus I, please refer to the first youtube workbook, whose associated 
play-list is available at:

http://www.youtube.com/playlist? list=PL265CB737C01F8961. 

In particular, undefined notions or Theorems we may refer to that are not stated in the present book 
can be found in the first volume.

I hope that only few errors are left in this book, but some are bound to remain. I welcome feedback and 
comments at calculusvideos@gmail.com.

Download free eBooks at bookboon.com
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Natural Logarithm and Exponential

1	 �M1: Natural Logarithm and 
Exponential

1.1	 Natural Logarithm: definition and logarithm laws

Watch the video at 

https://www.youtube.com/watch?v=HETqWLBLsYc&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=1

Abstract

The natural logarithm function is defined as the antiderivative of 1x  on (0,∞)  that takes the 
value 0 at 1. Its basic properties are introduced and proved.

Definition 1.1.1. The natural logarithm function, denoted ln, is defined on  by 

lnx :=

ˆ x

1

dt

t
.

Properties of the natural logarithm function: Let x and y be two positive numbers and let r ∈ (−∞,∞). 

ln(1) = 0 	  (1.1.1)

ln(xy) = lnx+ ln y 	 (1.1.2)

ln

(
x

y

)
= lnx− ln y 	  (1.1.3)

ln(xr) = r lnx 	  (1.1.4)

(lnx)
′

=
1

x
, 	  (1.1.5)

so that ln is an increasing function on (0,∞) .

Example 1.1.2. Expand  ln
(

3x2
√
x+2

)
. 

ln

(
3x2

√
x+ 2

)
= ln 3 + 2 lnx− 1

2
ln(x+ 2).

Example 1.1.3. Express as a single logarithm ln 3 + 1
3 ln 8 . 

ln 3 +
1

3
ln 8 = ln

(
3 · 8 1

3

)
= ln 6.
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Natural Logarithm and Exponential

1.2	 Calculus of Logarithms

Watch the videos at 

https://www.youtube.com/watch?v=JjwQvDwhUrQ&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=2 

and at 

https://www.youtube.com/watch?v=z1oupT5GyaU&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=3 

Abstract

These two videos go over more properties of the natural logarithm function, in particular its 
graph, and over derivatives and integrals involving the natural logarithm function. 

Since, (lnx)′ = 1
x > 0  and (lnx)′′ = − 1

x2 < 0 , the function ln is increasing and concave down on its 
domain (0,∞) . Moreover 

lim
x→∞

lnx = +∞

lim
x→0+

lnx = −∞,

and the graph of the function is 

 

Definition 1.2.1. The Euler number e is by definition the unique number such that 

ln e = 1,
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Natural Logarithm and Exponential

as shown below:

 

Calculus of logarithm:

	

(lnx)
′

=
1

x

(ln |x|)′ =
1

xˆ
dx

x
= ln |x|+ C (0,∞) (−∞, 0).

(ln(f(x)))
′

=
f ′(x)

f(x)
.

Example 1.2.2. Differentiate: 

1)	 f(x) = ln(x2 + 10) ;

Solution. 

f ′(x) =
2x

x2 + 10
.

2)	 f(x) = cos(lnx) ;

Solution. 

f ′(x) = − sin(lnx)

x
.

3)	 f(x) = ln(3 5
√
x) .

Solution. 

CORRECTIONS

• p.10: 4th paragraph. Link the name of the book Exercises for A youtube
Calculus Workbook Part II: a flipped classroom model to this URL: http://bookboon.com/en/exercises-
for-a-youtube-calculus-workbook-part-ii-ebook

• p 11, right after definition 1.1.1. Do not italicize.
• p13, Example 1.2.2. 1) the semi-colon shouldn’t be an exponent.
• p13, Example 1.2.2 3) Solution. The implication sign didn’t go through. It

should be
f(x) = ln 3 +

1

5
lnx =⇒ f ′(x) =

1

5x
.

• p16, right before 1st formula: “and the note” should be “and then note”
• p16, 1st formula: problem with implication sign. Should be:

(ln f(x))′ =
f ′(x)

f(x)
=⇒ f ′(x) = f(x) · (ln f(x))′ .

• p17: link doesn’t work
• p17: implication problem in formula. Should be:

x1 �= x2 =⇒ f(x1) �= f(x2).

• p18, Example 1.4.3: “Fir” should be “For”
• p19, Definition 1.4.4. implication problem. Formulas should be

x1 < x2 =⇒ f(x1) < f(x2),

and
x1 < x2 =⇒ f(x1) > f(x2).

• p20, Abstract: “example” should be “examples”
• p21 Example 1.5.4, 1st line of solution: “It we were asked” should be “If we

were asked”
• p24, Example 1.6.3. There seems to be a change in font size at “, so that”

and on.
• p24, Example 1.6.4. “Consider” should not be italicized.
• p35, formula right before 4) should be (second line 1 should be 1/x^2)

dy

dx
= e

1
x ln x ·

(
1

x
lnx

)′

= x
1
x

(
− lnx

x2
+

1

x2

)
.

• p38, proposition 2.2.3. Replace the comma by a period in the formula:

loga x =
lnx

ln a
.

• p42, Remark 2.3.4. There seems to be a change of font size after the formula.
Also, “Have nothing” should be “has nothing”

• p45, Definition 2.4.1. The text should not be italicized, but “inverse cosine
function” should be.

1
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Natural Logarithm and Exponential

Example 1.2.3. Find an equation of the tangent line to y = ln
(
x3 − 7

)
 at x = 2 .

Solution. The point of tangency is 

(
2, ln(23 − 7)

)
= (2, ln 1) = (2, 0) ,

and the slope is dydx |x=2 . Since, 

dy

dx
=

3x2

x3 − 7
,

the slope is 121 = 12 and the tangent line has equation 

y = 12(x− 2).

Example 1.2.4. Find dydx  along the curve 

ln(xy) = y sinx.
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Solution. We differentiate implicitly 

y + x dy
dx

xy
=

dy

dx
sinx+ y cosx,

and solve for dydx : 

y + x
dy

dx
= xy sinx

dy

dx
+ xy2 cosx =⇒ dy

dx
=

xy2 cosx− y

x− xy sinx
.

Example 1.2.5. Evaluate the following integrals: 

1)	 	
´ 2
1

4+u2

u3 du ;

Solution. 

ˆ 2

1

4 + u2

u3
du =

ˆ 2

1

4

u3
+
1

u
du =

[
−2

u2
+ ln |u|

]2

1

= (−1

2
+ln 2)−(−2+0) =

3

2
+ln 2.

2)	 	
´ 6
e

dx
x ln x

;

Solution. Let u = lnx . Then du = dx
x  and 

ˆ 6

e

dx

x ln x
=

ˆ ln 6

1

du

u
= [ln |u|]ln 6

1 = ln(ln 6).

3)	
´

cosx
2+sin x dx ;

Solution. Let u = 2 + sinx , then du = cosx dx  and 

ˆ
cosx

2 + sinx
dx =

ˆ
du

u
= ln |u|+ C = ln(2 + sinx) + C.

4)	
´
tanx dx .

Solution. Since tanx = sin x
cosx , we can let u = cosx  and du = − sinx dx  to the effect that 

ˆ
tanx dx =

ˆ
sinx

cosx
dx = −

ˆ
du

u
= − ln |u|+C = ln | cosx|−1+C = ln | secx|+C.
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1.3	 Logarithmic Differentiation

Watch the video at 

https://www.youtube.com/watch?v=6sjx6oAkWTE&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=4

Abstract

This video illustrates on examples the technique of logarithmic differentiation. 

The basic idea behind logarithmic differentiation is that to differentiate a function f(x)  that involves 
products, quotients and/or powers, we can consider ln f(x)  and take advantage of the Laws of Logarithm 
to turn it into a simpler expression to differentiate, and then note that 

CORRECTIONS

• p.10: 4th paragraph. Link the name of the book Exercises for A youtube
Calculus Workbook Part II: a flipped classroom model to this URL: http://bookboon.com/en/exercises-
for-a-youtube-calculus-workbook-part-ii-ebook

• p 11, right after definition 1.1.1. Do not italicize.
• p13, Example 1.2.2. 1) the semi-colon shouldn’t be an exponent.
• p13, Example 1.2.2 3) Solution. The implication sign didn’t go through. It

should be
f(x) = ln 3 +

1

5
lnx =⇒ f ′(x) =

1

5x
.

• p16, right before 1st formula: “and the note” should be “and then note”
• p16, 1st formula: problem with implication sign. Should be:

(ln f(x))′ =
f ′(x)

f(x)
=⇒ f ′(x) = f(x) · (ln f(x))′ .

• p17: link doesn’t work
• p17: implication problem in formula. Should be:

x1 �= x2 =⇒ f(x1) �= f(x2).

• p18, Example 1.4.3: “Fir” should be “For”
• p19, Definition 1.4.4. implication problem. Formulas should be

x1 < x2 =⇒ f(x1) < f(x2),

and
x1 < x2 =⇒ f(x1) > f(x2).

• p20, Abstract: “example” should be “examples”
• p21 Example 1.5.4, 1st line of solution: “It we were asked” should be “If we

were asked”
• p24, Example 1.6.3. There seems to be a change in font size at “, so that”

and on.
• p24, Example 1.6.4. “Consider” should not be italicized.
• p35, formula right before 4) should be (second line 1 should be 1/x^2)

dy

dx
= e

1
x ln x ·

(
1

x
lnx

)′

= x
1
x

(
− lnx

x2
+

1

x2

)
.

• p38, proposition 2.2.3. Replace the comma by a period in the formula:

loga x =
lnx

ln a
.

• p42, Remark 2.3.4. There seems to be a change of font size after the formula.
Also, “Have nothing” should be “has nothing”

• p45, Definition 2.4.1. The text should not be italicized, but “inverse cosine
function” should be.

1

Example 1.3.1. differentiate 

f(x) =
(x2 + 1)3x ln x

x3
√
x4 + 3

.

Solution. 

ln f(x) = 3 ln(x2 + 1) + lnx+ ln(lnx)− 3 lnx− 1

2
ln(x4 + 3),

so that 

(ln f(x))
′
=

6x

x2 + 1
− 2

x
+

1

x lnx
− 1

2

4x3

x4 + 3
,

that is 

	

f ′(x)

f(x)
=

(
6x

x2 + 1
− 2

x
+

1

x ln x
− 2x3

x4 + 3

)
=⇒

f ′(x) = f(x)

(
6x

x2 + 1
− 2

x
+

1

x lnx
− 2x3

x4 + 3

)

=

(
(x2 + 1)3x lnx

x3
√
x4 + 3

)(
6x

x2 + 1
− 2

x
+

1

x ln x
− 2x3

x4 + 3

)
.

Exercises

you are now prepared to work on the Practice Problems, and Homework set M1A in the manual of 
exercises.
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1.4	 One-to-one functions and inverse functions

Watch the video at 

https://www.youtube.com/watch?v=a0oKcvT2ECA&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL 

Abstract

This video defines one-to-one functions and considers criteria, and defines the inverse function 
of a one-to-one function.

Definition 1.4.1. A function f is one-to-one on an interval I if for every x1  and x2  in I 

CORRECTIONS

• p.10: 4th paragraph. Link the name of the book Exercises for A youtube
Calculus Workbook Part II: a flipped classroom model to this URL: http://bookboon.com/en/exercises-
for-a-youtube-calculus-workbook-part-ii-ebook

• p 11, right after definition 1.1.1. Do not italicize.
• p13, Example 1.2.2. 1) the semi-colon shouldn’t be an exponent.
• p13, Example 1.2.2 3) Solution. The implication sign didn’t go through. It

should be
f(x) = ln 3 +

1

5
lnx =⇒ f ′(x) =

1

5x
.

• p16, right before 1st formula: “and the note” should be “and then note”
• p16, 1st formula: problem with implication sign. Should be:

(ln f(x))′ =
f ′(x)

f(x)
=⇒ f ′(x) = f(x) · (ln f(x))′ .

• p17: link doesn’t work
• p17: implication problem in formula. Should be:

x1 �= x2 =⇒ f(x1) �= f(x2).

• p18, Example 1.4.3: “Fir” should be “For”
• p19, Definition 1.4.4. implication problem. Formulas should be

x1 < x2 =⇒ f(x1) < f(x2),

and
x1 < x2 =⇒ f(x1) > f(x2).

• p20, Abstract: “example” should be “examples”
• p21 Example 1.5.4, 1st line of solution: “It we were asked” should be “If we

were asked”
• p24, Example 1.6.3. There seems to be a change in font size at “, so that”

and on.
• p24, Example 1.6.4. “Consider” should not be italicized.
• p35, formula right before 4) should be (second line 1 should be 1/x^2)

dy

dx
= e

1
x ln x ·

(
1

x
lnx

)′

= x
1
x

(
− lnx

x2
+

1

x2

)
.

• p38, proposition 2.2.3. Replace the comma by a period in the formula:

loga x =
lnx

ln a
.

• p42, Remark 2.3.4. There seems to be a change of font size after the formula.
Also, “Have nothing” should be “has nothing”

• p45, Definition 2.4.1. The text should not be italicized, but “inverse cosine
function” should be.

1

In other words, f  is one-to-one if it never takes on the same value twice.
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Proposition 1.4.2 (Horizontal line Test). A function is one-to-one if and only if horizontal lines intersect 
the graph in at most one point. 

 

Example 1.4.3. For instance f(x) = x3  is one-to-one on its domain (−∞,∞), while g(x) = x2  is not:

 

while the restriction of x2  to the non-negative reals, h(x) = x2  for x ≥ 0 , is one-to-one:
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Recall 

Definition 1.4.4. A function f is increasing on an interval I if for every x1  and x2  in I 

CORRECTIONS

• p.10: 4th paragraph. Link the name of the book Exercises for A youtube
Calculus Workbook Part II: a flipped classroom model to this URL: http://bookboon.com/en/exercises-
for-a-youtube-calculus-workbook-part-ii-ebook

• p 11, right after definition 1.1.1. Do not italicize.
• p13, Example 1.2.2. 1) the semi-colon shouldn’t be an exponent.
• p13, Example 1.2.2 3) Solution. The implication sign didn’t go through. It

should be
f(x) = ln 3 +

1

5
lnx =⇒ f ′(x) =

1

5x
.

• p16, right before 1st formula: “and the note” should be “and then note”
• p16, 1st formula: problem with implication sign. Should be:

(ln f(x))′ =
f ′(x)

f(x)
=⇒ f ′(x) = f(x) · (ln f(x))′ .

• p17: link doesn’t work
• p17: implication problem in formula. Should be:

x1 �= x2 =⇒ f(x1) �= f(x2).

• p18, Example 1.4.3: “Fir” should be “For”
• p19, Definition 1.4.4. implication problem. Formulas should be

x1 < x2 =⇒ f(x1) < f(x2),

and
x1 < x2 =⇒ f(x1) > f(x2).

• p20, Abstract: “example” should be “examples”
• p21 Example 1.5.4, 1st line of solution: “It we were asked” should be “If we

were asked”
• p24, Example 1.6.3. There seems to be a change in font size at “, so that”

and on.
• p24, Example 1.6.4. “Consider” should not be italicized.
• p35, formula right before 4) should be (second line 1 should be 1/x^2)

dy

dx
= e

1
x ln x ·

(
1

x
lnx

)′

= x
1
x

(
− lnx

x2
+

1

x2

)
.

• p38, proposition 2.2.3. Replace the comma by a period in the formula:

loga x =
lnx

ln a
.

• p42, Remark 2.3.4. There seems to be a change of font size after the formula.
Also, “Have nothing” should be “has nothing”

• p45, Definition 2.4.1. The text should not be italicized, but “inverse cosine
function” should be.

1

and decreasing on I if for every x1  and x2  in I 

CORRECTIONS

• p.10: 4th paragraph. Link the name of the book Exercises for A youtube
Calculus Workbook Part II: a flipped classroom model to this URL: http://bookboon.com/en/exercises-
for-a-youtube-calculus-workbook-part-ii-ebook

• p 11, right after definition 1.1.1. Do not italicize.
• p13, Example 1.2.2. 1) the semi-colon shouldn’t be an exponent.
• p13, Example 1.2.2 3) Solution. The implication sign didn’t go through. It

should be
f(x) = ln 3 +

1

5
lnx =⇒ f ′(x) =

1

5x
.

• p16, right before 1st formula: “and the note” should be “and then note”
• p16, 1st formula: problem with implication sign. Should be:

(ln f(x))′ =
f ′(x)

f(x)
=⇒ f ′(x) = f(x) · (ln f(x))′ .

• p17: link doesn’t work
• p17: implication problem in formula. Should be:

x1 �= x2 =⇒ f(x1) �= f(x2).

• p18, Example 1.4.3: “Fir” should be “For”
• p19, Definition 1.4.4. implication problem. Formulas should be

x1 < x2 =⇒ f(x1) < f(x2),

and
x1 < x2 =⇒ f(x1) > f(x2).

• p20, Abstract: “example” should be “examples”
• p21 Example 1.5.4, 1st line of solution: “It we were asked” should be “If we

were asked”
• p24, Example 1.6.3. There seems to be a change in font size at “, so that”

and on.
• p24, Example 1.6.4. “Consider” should not be italicized.
• p35, formula right before 4) should be (second line 1 should be 1/x^2)

dy

dx
= e

1
x ln x ·

(
1

x
lnx

)′

= x
1
x

(
− lnx

x2
+

1

x2

)
.

• p38, proposition 2.2.3. Replace the comma by a period in the formula:

loga x =
lnx

ln a
.

• p42, Remark 2.3.4. There seems to be a change of font size after the formula.
Also, “Have nothing” should be “has nothing”

• p45, Definition 2.4.1. The text should not be italicized, but “inverse cosine
function” should be.

1

A function is monotone on I if it is either increasing or decreasing on I.

Proposition 1.4.5. If f is monotone on an interval, then it is one-to-one on this interval.

Definition 1.4.6. Let f be a function with domain A. The range of f is the set of values assumed by f, 
that is, the set {f(x) : x ∈ A}. 

Definition 1.4.7. If f is a one-to-one function with domain A and range B, then it admits an inverse 
function, denoted f−1 , that has domain B and range A and is defined by 

y = f(x) ⇐⇒ f−1(y) = x.
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1.5	 Finding inverse functions 

Watch the video at 

https://www.youtube.com/watch?v=ddc_t0n0xhQ&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=6

Abstract

In this video, examples are provided to check that a function is one-to-one, to evaluate the 
inverse function at a particular point, and to find a formula for the inverse of a given function. 
Additionally, it is shown that the graph of the inverse function of a one-to-one function is 
obtained from the graph of the function by reflection about y = x.

Example 1.5.1. If f is one-to-one and f(2) = 9 , what is f−1(9)? 

Solution. 

f(2) = 9 ⇐⇒
f

2 = f−1(9).
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Example 1.5.2. Let f(x) = x+ cosx . Is f one-to-one? What is f−1(1)? 

Solution. Since 

f ′(x) = 1− sinx ≥ 0,

the function is increasing on its domain, hence one-to-one by Proposition 1.4.5. Thus it has an inverse 
function and f−1(1) = 0 because 

f(0) = 0 + cos 0 = 1.

To find an algebraic expression for f−1  from an algebraic expression defining a one-to-one function f, 
remember that by definition, in this case: 

y = f(x) ⇐⇒ f−1(y) = x.

Thus, start from y = f(x) , and solve for x! 

Example 1.5.3. Is f(x) = 3− 2x  one-to-one? If yes, find a formula for f−1 .

Solution. Since f is decreasing on (−∞,∞), it is one-to-one by Proposition 1.4.5. Moreover 

y = 3− 2x ⇐⇒ x =
3− y

2
= f−1(y),

so that f−1(x) = 3−x
2 .

Example 1.5.4. Find the inverse function of 

f(x) =
4x− 1

2x+ 3
.

Solution. Note that f has domain (−∞,− 3
2 ) ∪ (− 3

2 ,∞) . If we were asked to find the range of f, one way 
to do that would be to find the domain of f−1 . Let y = 4x−1

2x+3 . Then 

(2x+ 3)y = 4x− 1 ⇐⇒ x(2y − 4) = −(1 + 3y) ⇐⇒ x = −1 + 3y

2y − 4
= f−1(y),

so that f−1(x) = − 1+3x
2x−4 , whose domain is (−∞, 2) ∪ (2,∞) , which is also the range of f.
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Graph of inverse functions: 

Proposition 1.5.5. If f is a one-to-one function, the graph of f –1 is obtained from the graph of f by 
reflection about the line y = x:

 

Example 1.5.6. The function f(x) = x2  for x ≥ 0  is one-to-one and its inverse function is f−1(x) =
√
x :
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1.6	 Calculus of inverse functions

Watch the video at 

https://www.youtube.com/watch?v=eN_4_naF-4U&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=7

Abstract

This video examines how differentiability and continuity transfer from a one-to-one function 
to its inverse function, and establishes a formula for the derivative of the inverse function.

Proposition 1.6.1. If f is one-to-one and continuous on an interval I, then f−1  is also continuous on f(I).

Theorem 1.6.2. If f is one-to-one and differentiable at b = f−1(a) , and f ′(b) �= 0 , then f−1  is differentiable 
at a and 

(
f−1

)′
(a) =

1

f ′(f−1(a))
.

In Leibniz notations, with 

y = f−1(x) ⇐⇒ f(y) = x
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this translates as 

dy

dx
=

1
dx
dy

.

Example 1.6.3. Let f(x) = x5 − x3 + 2x. Is it one-to-one? If yes, find 
(
f−1

)′
(2) .

Solution. Note that 

f ′(x) = 5x4 − 3x2 + 2 = 5u2 − 3u+ 2 u = x2

and 5u2 − 3u+ 2 = 0  has no solution because its discriminant (1) is −31 < 0 , so that f ′(x) > 0  because 
f ′(0) > 0 and f ′  does not change sign. Thus f is an increasing function, and is thus one-to-one 
(Proposition 1.4.5). According to Theorem 1.6.2, we have 

(
f−1

)′
(2) =

1

f ′ (f−1(2))
.

Moreover f−1(2) = 1 because f(1) = 2 . Thus f ′(f−1(2)) = f ′(1) = 4 and 

(
f−1

)′
(2) =

1

4
.

Example 1.6.4. Consider f(x) =
√
x− 2.

1)	 Show that f is one-to-one;
Solution. Since f ′(x) = 1

2
√
x−2

> 0  on (2,∞) , f  is increasing, hence one-to-one, on its domain.

2)	 Use Theorem 1.6.2 to calculate 
(
f−1

)′
(2) ;

Solution. 
(
f−1

)′
(2) =

1

f ′ (f−1(2))

and 

f(x) = 2 ⇐⇒
√
x− 2 = 2 ⇐⇒ x = 6,

so that f−1(2) = 6. Thus 
(
f−1

)′
(2) =

1
1

2
√
6−2

= 4.
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3)	 Find a formula for f−1(x) ;
Solution. Let y =

√
x− 2. Then y2 = x− 2 with y ≥ 0 , that is, 

x = y2 + 2 y ≥ 0,

so that f−1(x) = x2 + 2 for x ≥ 0 .

4)	 Use 3. to recalculate 
(
f−1

)′
(2) ;

Solution. Since f−1(x) = x2 + 2 for x ≥ 0 , 
(
f−1

)′
(x) = 2x  and thus 

(
f−1

)′
(2) = 4 .

5)	 Sketch the graphs of f and of f−1 .
Solution.

 

Exercises

you are now prepared to work on the Practice Problems, and Homework set M1B in the manual of 
exercises.
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1.7	 Natural Exponential: definition and properties 

Watch the video at 

https://www.youtube.com/watch?v=zp2jv7H1qIA&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&ind
ex=8

Abstract

This video defines the natural exponential function as the inverse function of the natural 
logarithm function and explores its basic properties. 

Recall that the natural logarithm function has domain (0,∞)  and range (−∞,∞) and is increasing, 
hence one-to-one, on its domain. Thus it admits an inverse function. 

Definition 1.7.1. The natural exponential function, tentatively denoted exp, is the inverse function of the 
natural logarithm function ln. Thus it has domain (−∞,∞) and range (0,∞)  and 

y = expx ⇐⇒ x = ln y, y > 0.
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Since ln(ex) = x ln e = x  by (1.1.4) and ln(expx) = x  because ln and exp are inverse of each other, we 
conclude that ln(ex) = ln(expx)  for all x, which ensures that 

expx = ex

because ln is one-to-one. We use the notation ex from now on for the natural exponential function. Of 
course, we have 

elnx = x x > 0

ln(ex) = x x.

The properties of logarithm are rephrased in term of its inverse function:

Properties of exponential:

e0 = 1 	  (1.7.1)

ex+y = ex · ey 	  (1.7.2)

ex−y =
ex

ey 	  (1.7.3)

(ex)r = erx. 	  (1.7.4)

Moreover 

(ex)
′

= exˆ
ex dx = ex + C.

The graph y = ex  is obtained from y = lnx  by reflection about y = x , so that y = ex  is increasing 
concave up (which we can also see from the fact that the first and second derivative are ex > 0 ), with 

lim
x→∞

ex = +∞

lim
x→−∞

ex = 0 :
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1.8	 Derivatives and integrals with exponentials

Watch the video at 

https://www.youtube.com/watch?v=F-YEvvY6nPk&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=9

Abstract

This video goes over examples of differentiation and integration of functions defined in terms 
of exponential functions. 

The examples below use the basic formulas 

(ex)
′

= ex

(eu)
′

= eu · u′
ˆ

ex dx = ex + C.

Example 1.8.1. Differentiate:

1)	 y = ex

1+x ;

Solution. Using the Quotient Rule: 

dy

dx
=

ex(1 + x)− ex

(1 + x)2
=

xex

(1 + x)2
.

2)	 y = eu
2

cosu ;
Solution. Using the Product Rule and the Chain Rule: 

dy

du
= 2ueu

2

cosu− eu
2

sinu.

3)	 y = ex lnx ;
Solution. Using the Product Rule: 

dy

dx
= ex lnx+

ex

x
.

4)	 y = cos(eπx) .
Solution. Using the Chain Rule: 

dy

dx
= − sin (eπx) · πeπx.
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Example 1.8.2. Evaluate:

1)	 ´ 1
0 xex

2

dx ;
Solution. Using substitution with u = x2 , so that du = 2x dx , we have 

ˆ 1

0

xex
2

dx =
1

2

ˆ 1

0

eu du =
1

2
[eu]10 =

e− 1

2
.

2)	
´

e
1
x

x2 dx ;
Solution. Using substitution with u = 1

x , so that du = − 1
x2 dx , we have 

ˆ
e

1
x

x2
dx = −

ˆ
eu du = −eu + C = −e

1
x + C.

3)	
´
ex sin(ex) dx .

Solution. Using substitution with u = ex , so that du = ex dx , we have 
ˆ

ex sin(ex) dx =

ˆ
sinu du = − cosu+ C = − cos(ex) + C.
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1.9	 Exponential and logarithmic equations and inequalities

Watch the video at 

https://www.youtube.com/watch?v=J9ki-Vz1-Xg&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&ind
ex=10

Abstract

This video goes over examples of equations and inequalities involving exponential and 
logarithm.

Example 1.9.1. Solve:

1)	 e2x+3 − 7 = 0 ;
Solution. By applying ln on both sides of e2x+3 = 7 , we obtain 

2x+ 3 = ln 7 ⇐⇒ x =
ln 7− 3

2
.

2)	 ln(5− 2x) = −3 ;
Solution. By applying the natural exponential on both sides, we obtain 

5− 2x = e−3 ⇐⇒ x =
5− e−3

2
.

3)	 eex = 10;
Solution. By applying ln on both sides, we have 

ex = ln 10 ⇐⇒ x = ln(ln 10).

4)	 ln(2x+ 1) = 2− lnx ;
Solution. The domain of this equation is (0,∞) . On this domain, we can rewrite the equation as 

ln(2x+ 1) + lnx = 2

ln (x(2x+ 1)) = 2,

so that 2x2 + x = e2 . This is a quadratic equation 2x2 + x− e2 = 0 , which we can solve with 
the quadratic formula to the effect that 

	 x =
−1±

√
1 + 8e2

4
,

but only x = −1+
√
1+8e2

4
 is in the domain of the equation, and is thus the only solution.
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5)	 7ex − e2x = 12.
Solution. We can rewrite the equation as 

e2x − 7ex + 12 = 0

(ex)2 − 7ex + 12 = 0

u2 − 7u+ 12 = 0 u = ex

(u− 3)(u − 4) = 0

so that we have ex = 3  or ex = 4 , that is, x = ln 3  or x = ln 4 .

Example 1.9.2. Solve:

1)	 2 < lnx < 9 ;
Solution. Since ex  is an increasing function, it preserves the direction of inequalities, so that 

e2 < elnx < e9 ⇐⇒ e2 < x < e9

and the solution set is the interval (e2, e9) .

2)	 e2−3x > 4 .
Solution. Since ln is an increasing function, it preserves the direction of inequalities, so that 

ln(e2−3x) > ln 4 ⇐⇒ 2− 3x > ln 4 ⇐⇒ 2− ln 4

3
> x,

so that the solution set is the interval (−∞, 2−ln 4
3 ) .

Exercises

you are now prepared to work on the Practice Problems, and Homework set M1C in the manual of 
exercises.
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2	 �M2: More transcendental 
functions

2.1	 General exponential functions

Watch the videos at 

https://www.youtube.com/watch?v=0uIuLyOUqYc&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=11 

and at 

https://www.youtube.com/watch?v=aHckAl23AD8&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=12 

Abstract

These two videos define and study exponential functions of a general base a > 0 , a �= 1 .
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Definition 2.1.1. Let a > 0  with a �= 1 . The exponential function of base a is the function 

f(x) = ax := ex lna.

Note that f(x) = ax  has domain (−∞,∞) and range (0,∞) .

For instance 
2π = eπ ln 2

10x
2

= ex
2 ln 10

xx = ex ln x,

and you should keep in mind that powers are really defined in terms of powers of e, and be comfortable 
rewriting them as such. 

Proposition 2.1.2 (Laws of exponents). Let x, y in (∞,∞)  and a, b > 0 . Then 

ax+y = ax · ay

ax−y =
ax

ay

(ax)
y

= axy

(ab)
x

= ax · bx.

Proposition 2.1.3. Let a > 0  and a �= 1 . Then the exponential function of base a is differentiable on 
(−∞,∞) and 

(ax)
′
= ax · ln a.

In other words, 
ˆ

ax dx =
ax

ln a
+ C.

Example 2.1.4. Differentiate:

1)	 g(x) = x4 · 4x ;
Solution. Using the product rule 

g′(x) = 4x3 · 4x + x4 · 4x · ln 4.

2)	 f(θ) = 10tan θ ;
Solution. Using the Chain Rule 

f ′(θ) = 10tan θ · ln 10 · sec2 θ.
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3)	 y = x
1
x ;

Solution. Since 

x
1
x = e

1
x ln x,

we use the Chain Rule, and Product Rule, to the effect that 

CORRECTIONS

• p.10: 4th paragraph. Link the name of the book Exercises for A youtube
Calculus Workbook Part II: a flipped classroom model to this URL: http://bookboon.com/en/exercises-
for-a-youtube-calculus-workbook-part-ii-ebook

• p 11, right after definition 1.1.1. Do not italicize.
• p13, Example 1.2.2. 1) the semi-colon shouldn’t be an exponent.
• p13, Example 1.2.2 3) Solution. The implication sign didn’t go through. It

should be
f(x) = ln 3 +

1

5
lnx =⇒ f ′(x) =

1

5x
.

• p16, right before 1st formula: “and the note” should be “and then note”
• p16, 1st formula: problem with implication sign. Should be:

(ln f(x))′ =
f ′(x)

f(x)
=⇒ f ′(x) = f(x) · (ln f(x))′ .

• p17: link doesn’t work
• p17: implication problem in formula. Should be:

x1 �= x2 =⇒ f(x1) �= f(x2).

• p18, Example 1.4.3: “Fir” should be “For”
• p19, Definition 1.4.4. implication problem. Formulas should be

x1 < x2 =⇒ f(x1) < f(x2),

and
x1 < x2 =⇒ f(x1) > f(x2).

• p20, Abstract: “example” should be “examples”
• p21 Example 1.5.4, 1st line of solution: “It we were asked” should be “If we

were asked”
• p24, Example 1.6.3. There seems to be a change in font size at “, so that”

and on.
• p24, Example 1.6.4. “Consider” should not be italicized.
• p35, formula right before 4) should be (second line 1 should be 1/x^2)

dy

dx
= e

1
x ln x ·

(
1

x
lnx

)′

= x
1
x

(
− lnx

x2
+

1

x2

)
.

• p38, proposition 2.2.3. Replace the comma by a period in the formula:

loga x =
lnx

ln a
.

• p42, Remark 2.3.4. There seems to be a change of font size after the formula.
Also, “Have nothing” should be “has nothing”

• p45, Definition 2.4.1. The text should not be italicized, but “inverse cosine
function” should be.

1

4)	 h(x) = (sin x)
x .

Solution. Since 

(sinx)
x
= ex ln(sinx),

we use the Chain Rule, and Product Rule, to the effect that 

h′(x) = ex ln(sinx) · (x ln(sin x))′

= (sinx)
x
(
ln(sin x) +

x cosx

sinx

)
.
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Example 2.1.5. Evaluate 
´
πx + 2xπ dx .

Solution. 
ˆ

πx + 2xπ dx =
πx

lnπ
+

2xπ+1

π + 1
+ C.

Graph of exponential functions

Since 

(ax)
′
= ax · ln a

and ln a > 0  whenever a > 1 , ln a < 0  whenever 0 < a < 1, we conclude that ax is increasing on its 
domain if a > 1  and decreasing on its domain if 0 < a < 1. Moreover 

(ax)
′′
= ax · (ln a)2 > 0,

so that ax is concave up in both cases.
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2.2	 General logarithm functions

Watch the videos at 

https://www.youtube.com/watch?v=S4NTCdIrcJw&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=13

and at 

https://www.youtube.com/watch?v=2wtpQJ_6AFA&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=14 

Abstract

These two videos define and examine the properties of logarithm functions of base a (a > 0 , 
a �= 1). 

We have seen that for a > 0 , a �= 1 , the exponential function of base a is one-to-one with domain 
(−∞,∞) and range (0,∞) . Thus, it admits an inverse function: 

Definition 2.2.1. The logarithm function of base a, denoted loga , is by definition the inverse function of 
the exponential function of base a. Thus, it has domain (0,∞)  and range (−∞,∞) and is defined by 

y = loga x, x > 0 ⇐⇒ ay = x.

By definition, 

	

aloga x = x x > 0

loga (a
x) = x x,

loga a = 1

loga 1 = 0.

Example 2.2.2. 

log5 25 = 2 52 = 25

log4 2 =
1

2
4

1
2 = 2

log2
1

2
= −1 2−1 = 1

2 .
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Graph of logarithm functions:

 

Proposition 2.2.3 (Change of base formula). If a > 0 , a �= 1 , then 

loga x =
lnx

ln a
,.
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Corollary 2.2.4 (Laws of Logarithms). Let a > 0 , a �= 1 . Let x, y > 0 and r be a real number. Then 

loga (xy) = loga x+ loga y

loga

(
x

y

)
= loga x− loga y

loga (x
r) = r loga x.

Example 2.2.5. 

log8 320− log8 5 = log8

(
320

5

)
= log8(64) = 2 82 = 64;

10log10 4+log10 7 = 10log10(4×7) = 28.

Corollary 2.2.6. If a > 0 , a �= 1 , then 

(loga x)
′
=

1

x ln a
.

Example 2.2.7. Differentiate f(x) = log5

(
x

x−1

)
.

Solution. Since f(x) = log5 x− log5(x− 1)  (by Corollary 2.2.4), we conclude from Corollary 2.2.6 that 

f ′(x) =
1

ln 5

(
1

x
− 1

x− 1

)
.

Example 2.2.8. Evaluate:

1)	
´

2x

2x+1 dx

Solution. Let u = 2x + 1 . Then du = 2x ln 2 dx  so that 
ˆ

2x

2x + 1
dx =

1

ln 2

ˆ
du

u
=

1

ln 2
ln |u|+ C =

ln(2x + 1)

ln 2
+ C.

2)	
´ log2 x

x dx

Solution. Let u = log2 x . Then du = 1
x ln 2 dx  so that 

	
ˆ

log2 x

x
dx = ln 2

ˆ
u du =

ln 2

2
(log2 x)

2 + C.

Exercises

you are now prepared to work on the Practice Problems, and Homework set M2A in the manual of 
exercises.
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2.3	 Inverse trig functions: arcsine 

Watch the video at 

https://www.youtube.com/watch?v=ELkBDmPA8VI&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=15 

Abstract

This video introduces the inverse sine function and its basic properties. 

The sine function is not one-to-one, but its restriction to the interval 
[
−π

2 ,
π
2

]
 is:

Definition 2.3.1. The inverse sine function, denoted arcsin, is the inverse function of the restriction of 
the sine function to 

[
−π

2 ,
π
2

]
, that is: 

y = arcsinx ⇐⇒ sin y = x y ∈
[
−π

2 ,
π
2

]
.

The function arcsin has thus domain [−1, 1] and range 
[
−π

2 ,
π
2

]
. 

Therefore 
arcsin(sin x) = x x ∈

[
−π

2 ,
π
2

]

sin (arcsinx) = x x ∈ [−1, 1].
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Example 2.3.2. 

arcsin

(
1

2

)
=

π

6
sin π

6 = 1
2

π
6 ∈

[
−π

2 ,
π
2

]
;

sin

(
arcsin

√
3

2

)
=

√
3

2

arcsin
(
sin

π

4

)
=

π

4
π
4 ∈

[
−π

2 ,
π
2

]
;

arcsin

(
sin

2π

3

)
= arcsin

(
sin

π

3

)
=

π

3
π
3

[
−π

2 ,
π
2

]
2π
3 :
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Example 2.3.3. To calculate 

tan

(
arcsin

1

3

)

note that 

θ := arcsin
1

3

is an angle in (0, π
2 )  with sin θ = 1

3 . This situation can be represented in the right triangle below:

 

Applying the Pythagorean Theorem, we have l2 + 1 = 9 , so that l =
√
8 = 2

√
2 . Thus 

tan θ =
1

2
√
2
=

√
2

4
.

Remark 2.3.4. The alternative notation sin−1  is often used for arcsin. Yet, this is in direct conflict with 
the standard convention to place the exponent next to the function when taking powers of the value of 
a trig function, as in sin2 x  to mean (sin x)2 . To be coherent with this convention, sin−1 x  should mean 

(sin x)
−1

=
1

sinx

which has nothing to do with arcsin x! Thus we will not use this alternative notation. 
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Graph of arcsine:

The graph y = arcsinx  is the reflection about y = x  of the restriction of y = sinx  to x ∈
[
−π

2 ,
π
2

]
:

 

In particular, arcsin is odd: 

arcsin(−x) = − arcsinx x ∈ [−1, 1] .

Proposition 2.3.5. The inverse sine function is differentiable on (−1, 1) and 

(arcsinx)
′
=

1√
1− x2

.

In other words, 

ˆ
dx√
1− x2

= arcsinx+ C. � (2.3.1)
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2.4	 Inverse trig functions: other inverse trig functions

Watch the video at 

https://www.youtube.com/watch?v=oKoXfFktY6A&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=16

Abstract

This video defines and studies the inverse cosine function arccos and the inverse tangent 
function arctan. 
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Inverse cosine function: The cosine function is not one-to-one, but its restriction to the interval 
[0, π]  is:

 

Definition 2.4.1. The inverse cosine function, denoted arccos, is the inverse function of the restriction 
of the cosine function to [0, π] , that is: 

y = arccosx ⇐⇒ cos y = x y ∈ [0, π] .

The function arccos has thus domain [−1, 1] and range [0, π] . 

Therefore 

arccos(cosx) = x x ∈ [0, π]

cos (arccosx) = x x ∈ [−1, 1].

Example 2.4.2. For instance 

arccos
(
cos

π

5

)
=

π

5
π
5 ∈ [0, π]

arccos

(
cos

6π

5

)
= arccos

(
cos

4π

5

)
cos 6π

5 = cos 4π
5

4π
5 ∈ [0, π] :
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Graph of arccosine:

The graph is obtained by reflection of that of the restriction of the cosine function to [0, π]  about y = x:

 

Proposition 2.4.3. The function arccos is differentiable on (−1, 1) and 

(arccosx)
′
= − 1√

1− x2
.

Thus, arcsin and -arccos are two antiderivatives of 1√
1−x2  on (−1, 1) and thus differ by a constant. More 

specifically: 

arccosx+ arcsinx =
π

2
.

Inverse tangent function: The tangent function is not one-to-one, but its restriction to the interval 
(
−π

2 ,
π
2

)
 is:
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Definition 2.4.4. The inverse tangent function, denoted arctan, is the inverse function of the restriction 
of the tangent function to 

(
−π

2 ,
π
2

)
, that is: 

y = arctanx ⇐⇒ tan y = x y ∈
(
−π

2 ,
π
2

)
.

The function arctan has thus domain (−∞,∞) and range 
(
−π

2 ,
π
2

)
. 

Therefore 
arctan(tanx) = x x ∈

(
−π

2 ,
π
2

)

tan (arctanx) = x x.
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Graph of arctangent:

The graph is obtained by reflection of that of the restriction of the tangent function to 
(
−π

2 ,
π
2

)
 about y = x:

 

Note in particular 
lim

x→−∞
arctanx = −π

2

lim
x→∞

arctanx =
π

2
.

Proposition 2.4.5. The function arctan is differentiable on (−∞,∞) and 

(arctanx)
′
=

1

1 + x2
.

In other words 

ˆ
dx

1 + x2
= arctanx+ C. 		   (2.4.1)
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2.5	 Inverse trig functions: derivative and integrals

Watch the video at 

https://www.youtube.com/watch?v=LlaI5eOMf7c&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&ind
ex=17

Abstract

This video goes over examples of derivatives and integrals involving inverse trigonometric functions.

Example 2.5.1. Differentiate:

1)	 y =
√
arctanx ;

Solution. Using the Chain Rule, 

dy

dx
=

1

2
√
arctanx

· 1

1 + x2
.

2)	 f(x) =
√
1− x2 arcsinx ;

Solution. Using the Product Rule, and the Chain Rule 

f ′(x) =
−2x

2
√
1− x2

arcsinx+
√
1− x2 · 1√

1− x2

= 1− x arcsinx√
1− x2

.

3)	 g(x) = x ln(arctanx) ;
Solution. Using the Product Rule, and the Chain Rule 

g′(x) = ln(arctanx) +
x

arctanx
· 1

1 + x2
.

4)	 	h(x) = arccos(ex) .
Solution. Using the Chain Rule 

h′(x) = − ex√
1− (ex)2

= − ex√
1− e2x

.

Using substitution and the formula (2.4.1), we establish 

	
ˆ

dx

x2 + a2
=

1

a
arctan

(x
a

)
+ C. 	� (2.5.1)
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Example 2.5.2. Evaluate:

1)	 ´ 4
4+x2 dx ;

Solution. Using (2.5.1), 
ˆ

4

4 + x2
dx =

4

2
arctan

(x
2

)
+ C = 2 arctan

(x
2

)
+ C.

2)	 	́ 1

0
4

1+t2 dt ;

Solution. 
ˆ 1

0

4

1 + t2
dt = 4 [arctan t]10 = 4 · π

4
= π.

3)	 	
´

dt√
1−4t2

;

Solution. Since 4t2 = (2t)2 , we let u = 2t ; then du = 2 dt  and 
ˆ

dt√
1− 4t2

=
1

2

ˆ
du√
1− u2

=
1

2
arcsinu+ C =

1

2
arcsin(2t) + C.
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4)	 	
´ π

2

0
sin x

1+cos2 x dx ;
Solution. Let u = cosx . Then du = − sinx dx  and 

ˆ π
2

0

sinx

1 + cos2 x
dx = −

ˆ 0

1

du

1 + u2

=

ˆ 1

0

du

1 + u2
= [arctanu]

1
0 =

π

4
.

5)	 	
´

arctan x
1+x2 dx ;

Solution. Let u = arctanx . Then du = dx
1+x2  and 

ˆ
arctanx

1 + x2
dx =

ˆ
u du =

u2

2
+ C =

(arctanx)
2

2
+ C.

6)	 	
´

e2x√
1−e4x

dx .
Solution. Since e4x =

(
e2x

)2, we let u = e2x . Then du = 2e2x dx , and 

ˆ
e2x√
1− e4x

dx =
1

2

ˆ
du√
1− u2

=
1

2
arcsinu+ C =

1

2
arcsin(e2x) + C.

Exercises

you are now prepared to work on the Practice Problems, and Homework set M2B in the manual of 
exercises.
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2.6	 Hyperbolic functions

Watch the video at 

https://www.youtube.com/watch?v=DTnb2YoM8Q8&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=18

Abstract

In this video, we introduce hyperbolic functions, explore some basic properties, differentiate 
a number of functions defined in terms of hyperbolic functions.

Definition 2.6.1. The hyperbolic sine function, denoted sinh, is defined on (−∞,∞) by 

sinhx :=
ex − e−x

2
.

Its range is also (−∞,∞).
The hyperbolic cosine function, denoted cosh, is defined on (−∞,∞) by 

coshx :=
ex + e−x

2
.

Its range is [1,∞) . 

 

Note that sinh is odd, that is, 

sinh(−x) = − sinhx x

and that cosh is even, that is, 

cosh(−x) = coshx x.
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This terminology of hyperbolic sine and cosine is justified among other things by the observation that 
the trigonometric identity 

cos2 t+ sin2 t = 1

means that a point of the plane of coordinates (cos t, sin t)  lies on the unit circle x2 + y2 = 1 . The 
corresponding identity 

cosh2 t− sinh2 t = 1

means that a point of the plane of coordinates (cosh t, sinh t)  lies on the hyperbola x2 − y2 = 1 .
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The similarities between trigonometric and hyperbolic functions include identities. For instance: 

cos(x+ y) = cosx cos y − sinx sin y cosh(x + y) = coshx cosh y + sinhx sinh y

sin(x+ y) = sinx cos y + cosx sin y sinh(x+ y) = sinhx cosh y + coshx sinh y

sin(2x) = 2 sinx cosx sinh(2x) = 2 sinhx coshx

and 

CORRECTIONS 2

• p45, after def. 2.4.1: replace “The function arcsin has thus domain” by “the
function arccos has thus domain”

• p52, Definition 2.6.1. “Its range is also” should not be italicized.
• p52, right after the graphs. Should be “Note that sinh is odd” (there seems

to be a space between between sin and h)
• p54, second block of formulas. Unglue:

cos(2x) =cos2 x− sin2 x vs. cosh(2x) =cosh2 x+ sinh2 x

= 2 cos2 x− 1 = 2 cosh2 x− 1

= 1− 2 sin2 x = 1 + 2 sinh2 x.

• p55, Corollary 2.6.3. Replace with this (to unglue some products):

(tanhx)
′

= sech2x

= 1− tanh2 x

(cothx)
′

= −csch2x

= 1− coth2 x

(sechx)
′

= − sinhx sech2x

(cschx)
′

= − coshx csch2x.

• p56, Definition 2.7.1 reverse italicization before the formula (normal text
should not be italicized, names of functions introduced should be. Just like
in the second part of the definition)

• p59, right before Theorem 3.1.1. Remove “such a” and replace by a period.
• p 59-60: if possible, do not split Theorem 3.1.1 across 2 pages.
• p73, 3). Only “Solution” should be italicized (it is not). Everything else,

including “Evaluate” should be in normal font (currently italicized)
• p74. The second video link goes to the same video as the first one. Use this

URL instead https://www.youtube.com/watch?v=_H4R2oSvujI&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL
for the second link.

• p74, Remark 4.3.1: use the font style of the remark 2.3.4 on page 42
• p79, abstract: “successive integration” should be “successive integrations”
• p81, Example 5.1.2. Italicize “Solution” and only this (the rest of the line

should be in normal font)
• p81, bottom. “double angle formula (4.2.1)” links to p.113 and should

instead link to page 70.
• p94 top: the same formula appears twice instead of once
• p95 under the first triangle: “and” should not be italicized
• p95 Example 5.4.8. The link (5.1.3) does not seem properly aligned with

“using”
• p95 under the second triangle “we have” “and” and “so that” should not be

italicized
• page 99, Example 6.2.1. “in view of (6.2.1)”: the style is not the same

as other references to equations and should be harmonized here (in red,
without underlining).

• page 99 just before method 1 : “this coefficients” should be “these coeffi-
cients”

We define other hyperbolic functions in terms of cosh and sinh in a similar fashion to what is done for 
trigonometric functions, thus defining hyperbolic versions of tangent, cotangent, secant, and cosecant. 

tanh x :=
sinhx

coshx

cothx :=
coshx

sinhx

sechx :=
1

coshx

cschx :=
1

sinhx
.

Theorem 2.6.2. cosh and sinh are differentiable on the real line and 

(coshx)
′

= sinhx

(sinhx)
′

= coshx.
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Corollary 2.6.3. tanh , coth, sech , and csch  are differentiable on their domains and 

CORRECTIONS 2

• p45, after def. 2.4.1: replace “The function arcsin has thus domain” by “the
function arccos has thus domain”

• p52, Definition 2.6.1. “Its range is also” should not be italicized.
• p52, right after the graphs. Should be “Note that sinh is odd” (there seems

to be a space between between sin and h)
• p54, second block of formulas. Unglue:

cos(2x) =cos2 x− sin2 x vs. cosh(2x) =cosh2 x+ sinh2 x

= 2 cos2 x− 1 = 2 cosh2 x− 1

= 1− 2 sin2 x = 1 + 2 sinh2 x.

• p55, Corollary 2.6.3. Replace with this (to unglue some products):

(tanhx)
′

= sech2x

= 1− tanh2 x

(cothx)
′

= −csch2x

= 1− coth2 x

(sechx)
′

= − sinhx sech2x

(cschx)
′

= − coshx csch2x.

• p56, Definition 2.7.1 reverse italicization before the formula (normal text
should not be italicized, names of functions introduced should be. Just like
in the second part of the definition)

• p59, right before Theorem 3.1.1. Remove “such a” and replace by a period.
• p 59-60: if possible, do not split Theorem 3.1.1 across 2 pages.
• p73, 3). Only “Solution” should be italicized (it is not). Everything else,

including “Evaluate” should be in normal font (currently italicized)
• p74. The second video link goes to the same video as the first one. Use this

URL instead https://www.youtube.com/watch?v=_H4R2oSvujI&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL
for the second link.

• p74, Remark 4.3.1: use the font style of the remark 2.3.4 on page 42
• p79, abstract: “successive integration” should be “successive integrations”
• p81, Example 5.1.2. Italicize “Solution” and only this (the rest of the line

should be in normal font)
• p81, bottom. “double angle formula (4.2.1)” links to p.113 and should

instead link to page 70.
• p94 top: the same formula appears twice instead of once
• p95 under the first triangle: “and” should not be italicized
• p95 Example 5.4.8. The link (5.1.3) does not seem properly aligned with

“using”
• p95 under the second triangle “we have” “and” and “so that” should not be

italicized
• page 99, Example 6.2.1. “in view of (6.2.1)”: the style is not the same

as other references to equations and should be harmonized here (in red,
without underlining).

• page 99 just before method 1 : “this coefficients” should be “these coeffi-
cients”

Example 2.6.4. Differentiate 

1)	 f(x) = sinh2 x

Solution. 

f ′(x) = 2 sinhx coshx.

2)	 f(t) = ln(sinh t)

Solution. 

f ′(t) =
cosh t

sinh t
= coth t.

3)	 y = sinh(coshx)

Solution. 

dy

dx
= cosh (coshx) · sinhx.

4)	 h(x) = tanh(4x)

Solution. 

h′(x) = 4sech2 (4x) .

5)	 u(t) = coth
(√

1 + t2
)

Solution. 

u′(t) = −csch2
(√

1 + t2
)
·
(√

1 + t2
)′

= −csch2
(√

1 + t2
)
· 2t

2
√
1 + t2

= −
t csch2

(√
1 + t2

)
√
1 + t2

.
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2.7	 Inverse hyperbolic functions

Watch the video at 

https://www.youtube.com/watch?v=KO70S6dayk0&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=19

Abstract

In this video, we introduce the inverse hyperbolic sine and cosine functions, study their basic 
properties, and use them to calculate integrals.

Definition 2.7.1. The hyperbolic arcsine function or inverse hyperbolic sine function, denoted arcsinh  
is defined by 

y = arcsinhx ⇐⇒ sinh y = x

for all x in (−∞,∞).

The hyperbolic arccosine function or inverse hyperbolic cosine function, denoted arccosh is the inverse 
function of the restriction of cosh to [0,∞) . Thus, it has domain [1,∞)  and range [0,∞) , and 

y = arccoshx, x ≥ 1 ⇐⇒ cosh y = x, y ≥ 0.
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Theorem 2.7.2. For all x in (−∞,∞) 

arcsinhx = ln
(
x+

√
x2 + 1

)
,

and for all x ≥ 1  

arccoshx = ln
(
x+

√
x2 − 1

)
.

Corollary 2.7.3. For all x in (−∞,∞) 

(arcsinhx)
′
=

1√
x2 + 1

,

and for all x > 1 , 

(arccoshx)
′
=

1√
x2 − 1

.
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In integral form, this rephrases as 

ˆ
dx√
x2 + 1

= arcsinhx+ C 	  (2.7.1)

ˆ
dx√
x2 − 1

= arccoshx+ C. 	  (2.7.2)

Example 2.7.4. Evaluate the following integrals:

1)	 	
´ 1
0

dt√
16t2+9

Solution. Let u = 4t
3  in 

ˆ 1

0

dt√
16t2 + 9

=

ˆ 1

0

dt

3

√(
4t
3

)2
+ 1

=
1

3
· 3
4

ˆ 4
3

0

du√
u2 + 1

=
1

4
[arcsinhu]

4
3
0

=
1

4
arcsinh

4

3
.

2)	 	
´

dx√
x2−4

Solution. Let u = x
2  in 

ˆ
dx√
x2 − 4

=

ˆ
dx

2

√(
x
2

)2 − 1

=
2

2

ˆ
du√
u2 − 1

= arccoshu+ C

= arccosh
x

2
+ C.

Exercises

you are now prepared to work on the Practice Problems, and Homework set M2C in the manual of 
exercises.
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3	 M3: Rule of De l’Hospital
3.1	 Rule of De L’Hospital: statement and proof

Watch the video at 

https://www.youtube.com/watch?v=3JFFOyO2HwE&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=20

Abstract

This video states and proves the Rule of De l’Hospital. 

The Rule of De l’Hospital is a tool to calculate limits that are indeterminate of the form 00  or ∞∞ . 
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Theorem 3.1.1 (Rule of De l’Hospital) Let f and g be two functions differentiable on an open interval 
centered at a, except possibly at a. If 

lim
x→a

f(x) = lim
x→a

g(x) = 0 limx→a f(x) = ±∞ limx→a g(x) = ±∞,

then 

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
,

if limx→a
f ′(x)
g′(x)

 exists, or is infinite. 

Additionally, the statement remains valid if a is replace by a+ , a− , −∞  or +∞ . 

Remark 3.1.2. We will use the symbol H=  to indicate that two limits are equal by the Rule of De l’Hospital.

Example 3.1.3. 

	

lim
x→1

ln x

x− 1

H
= lim

x→1

1
x

1
= 1

lim
x→0

2x+ sinx

x

H
= lim

x→0

2 + cosx

1
= 3

lim
x→0

√
1 + x− 1

x

H
= lim

x→0

1
2
√
1+x

1
=

1

2

lim
x→∞

x2 − 1

2x2 − 1

H
= lim

x→∞

2x

4x

H
= lim

x→∞

2

4
=

1

2

lim
x→∞

lnx

x

H
= lim

x→∞

1
x

1
= 0.

The proof of the Rule of De l’Hospital makes use of the following generalization of the Mean Value 
Theorem: 

Theorem 3.1.4 (Cauchy Mean Value Theorem). Let f and g be two functions that are continuous on 
[a, b]  and differentiable on (a, b) with g′(x) �= 0 on (a, b), and g(b) �= g(a) . Then there exists (at least) a 
c in (a, b) with 

f ′(c)

g′(c)
=

f(b)− f(a)

g(b)− g(a)
.

Remark 3.1.5. The classical Mean Value Theorem corresponds to g(x) = x . 
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3.2	 Rule of de l’Hospital: examples (quotients)

Watch the video at 

https://www.youtube.com/watch?v=bRbltAEO0kk&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=21

Abstract

This video goes over standard examples of use of the Rule of De l’Hospital to evaluate limits 
of quotients.

Example 3.2.1. 

	

lim
x→1

x2 + x− 2

lnx

H
= lim

x→1

2x+ 1
1
x

= 3

lim
t→0

e3t − 1

t

H
= lim

t→0

3e3t

1
= 3

lim
x→0

x+ tanx

sinx

H
= lim

x→0

1 + sec2 x

cosx
= 2

lim
x→∞

ex

x

H
= lim

x→∞

ex

1
= ∞

lim
x→0

x+ sinx

x+ cosx
=

0

1
= 0

and thus the Rule of De l’Hospital does not apply. Applying (erroneously!) the rule in this case would 
result in the incorrect statement that 

lim
x→0

x+ sinx

x+ cosx

H
= lim

x→0

1 + cosx

1− sinx
= 2 �= 0!

At times, the Rule of De l’Hospital needs to be iterated to reach a conclusion: 

Example 3.2.2. 

lim
x→∞

x2

ex
H
= lim

x→∞

2x

ex
H
= lim

x→∞

2

ex
= 0

lim
x→0

sinx− x

x3

H
= lim

x→0

cosx− 1

3x2

H
= lim

x→0

− sinx

6x

H
= lim

x→0

− cosx

6
= −1

6
.
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3.3	 Rule of De L’Hospital: indeterminate products

Watch the video at 

https://www.youtube.com/watch?v=C73cThFNg18&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=22

Abstract

This video goes over a number of examples where a limit that is indeterminate of the type 
0 · ∞  is evaluated using the Rule of De l’Hospital. 

Products where one factor has limit 0 and the other has an infinite limit are indeterminate forms of the 
type 

0 · ∞.

While Theorem 3.1.1 formally only applies to indeterminate forms of the type 00  or ∞∞ , a product of the 
type 0 · ∞  can easily be transformed into a quotient 00  or ∞∞  because 

lim
x→a

f(x) = 0 =⇒ lim
x→a

1

f(x)
= ±∞

lim
x→a

f(x) = ±∞ =⇒ lim
x→a

1

f(x)
= 0

and 

f(x) · g(x) = g(x)
1

f(x)

.

Example 3.3.1. 

lim
x→0+

x ln x = lim
x→0+

lnx
1
x

H
= lim

x→0+

1
x

− 1
x2

= lim
x→0+

−x = 0

lim
x→−∞

x2ex = lim
x→−∞

x2

e−x

H
= lim

x→−∞

2x

−e−x

H
= lim

x→−∞

2

e−x
= 0

lim
x→0+

sinx ln x = lim
x→0+

lnx

cscx

H
= lim

x→0+

1
x

− cosx csc2 x

= lim
x→0+

− sin2 x

x cosx

H
= lim

x→0+
− 2 sinx cosx

cosx− x sinx
= −0

1
= 0.
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3.4	 Rule of De L’Hospital: indeterminate powers

Watch the video at 

https://www.youtube.com/watch?v=hx_ylpT7M7E&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=23

Abstract

This video outlines, with examples, how to evaluate indeterminate limits of the form 00 , ∞0  
and 1∞ . 

Consider limits of the form 

lim
x→a

(f(x))
g(x)

.

	

lim
x→a

f(x) = lim
x→a

g(x) = 0 =⇒ 00

lim
x→a

f(x) = ∞ limx→a g(x) = 0 =⇒ ∞0

lim
x→a

f(x) = 1 limx→a g(x) = ∞ =⇒ 1∞,
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but all 3 types of indeterminate forms stem from the fact that in 

(f(x))
g(x)

= eg(x) ln(f(x)),

the product g(x) ln (f(x))  is an indeterminate form of the type 0 · ∞ , which we have seen how to treat 
with the Rule of De l’Hospital in the previous section. 

Example 3.4.1. Evaluate

1)	 	limx→0+ (tan(2x))
x ;

Solution. Since 

(tan(2x))
x
= ex ln(tan(2x)),

we only need to find 

lim
x→0+

x ln (tan(2x)) = lim
x→0+

ln(tan(2x))
1
x

H
= lim

x→0+

2 sec2(2x)
tan(2x)

− 1
x2

= lim
x→0+

− 2x2

cos(2x) sin(2x)

= lim
x→0+

− 4x2

sin(4x)
sin(4x) = 2 cos(2x) sin(2x)

H
= lim

x→0+
− 8x

4 cos(4x)
= 0.

Thus 

lim
x→0+

(tan(2x))
x
= elimx→0+

x ln(tan(2x)) = e0 = 1.

2)	 	limx→∞ (ex + x)
1
x ;

Solution. Since 

(ex + x)
1
x = e

1
x ln(ex+x),

we only need to find 

lim
x→∞

ln(ex + x)

x

H
= lim

x→∞

ex+1
ex+x

1

H
= lim

x→∞

ex

ex + 1

H
= lim

x→∞

ex

ex
= 1.

Thus 

lim
x→∞

(ex + x)
1
x = elimx→∞

ln(ex+x)
x = e1 = e.
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3)	 	limx→∞
(
x+ 1

x

) 1
x .

Solution. Since 
(
x+

1

x

) 1
x

= e
1
x ln(x+ 1

x ),

we only need to find 

lim
x→∞

ln
(
x+ 1

x

)

x

H
= lim

x→∞

1− 1
x2

x+ 1
x

1

= lim
x→∞

x2 − 1

x2 + 1
· x

x2
= 1 · 0 = 0.

Thus 

lim
x→∞

(
x+

1

x

) 1
x

= elimx→∞
1
x ln(x+ 1

x ) = e0 = 1.

Exercises

you are now prepared to work on the Practice Problems, and Homework set M3 in the manual of exercises.
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4	 �M4: Integration review and 
Integration by parts

4.1	 Review of Integration: basics and completing the square

Watch the video at 

https://www.youtube.com/watch?v=W88xMl9Mv28&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=24

Abstract

This video reviews basic integration formulas and explore examples where completing the 
square can help integrating. 

Basic formulas and substitution

It is a corollary of the Fundamental Theorem of Calculus that if f is continuous on [a, b]  and F is an 
antiderivative of f on [a, b]  then 

ˆ b

a

f(x) dx = F (b)− F (a)

:= [F (x)]
b
a .

Thus, to calculate the definite integral of a continuous function over an interval, we only need to find 
an antiderivative of this function, that is, its indefinite integral 

´
f(x) dx.
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Basic tools in this process are the following formulas: 

	

ˆ
f(x) + g(x) dx =

ˆ
f(x) dx +

ˆ
g(x) dx

ˆ
c · f(x) dx = c ·

ˆ
f(x) dx c

ˆ
xn dx =

xn+1

n+ 1
+ C, n �= −1

ˆ
dx

x
= ln |x|+ C

ˆ
cosx dx = sinx+ C

ˆ
sinx dx = − cosx+ C

ˆ
sec2 x dx = tanx+ C

ˆ
ex dx = ex + C

ˆ
ax dx =

ax

ln a
+ C (a > 0, a �= 1)

ˆ
dx√
1− x2

= arcsinx+ C

ˆ
dx

1 + x2
= arctanx+ C

Integration by substitution is based on reversing the Chain Rule for differentiation: 

ˆ
f(g(x)) g′(x) dx

u=g(x)
=

ˆ
f(u) du,

and, for definite integrals 
ˆ b

a

f(g(x)) g′(x) dx
u=g(x)
=

ˆ g(b)

g(a)

f(u) du.

Using simple substitutions, we establish, for a fixed non-zero constant k: 

ˆ
sin(kx) dx = −1

k
cos(kx) + C

ˆ
cos(kx) dx =

1

k
sin(kx) + C

ˆ
ekx dx =

1

k
ekx + C

ˆ
dx

k2 + x2
=

1

k
arctan

(x
k

)
+ C.
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Example 4.1.1. Evaluate 

1)	 	
´

4x+3√
2x2+3x−1

dx

Solution. Let u = 2x2 + 3x− 1 . Then du = 4x+ 3 dx  so that 

ˆ
4x+ 3√

2x2 + 3x− 1
dx =

ˆ
du√
u
= 2

√
u+ C = 2

√
2x2 + 3x− 1 + C.

2)	 	
´

dx
x−

√
x

Solution. Note that 
ˆ

dx

x−
√
x
=

ˆ
dx√

x (
√
x− 1)

and that (
√
x− 1)

′
= 1

2
√
x , so that, letting u =

√
x− 1 , we have 2du = dx√

x  and 

ˆ
dx

x−
√
x
= 2

ˆ
du

u
= 2 ln |u|+ C = 2 ln |

√
x− 1|+ C.

Completing the square

Completing the square can be useful in changing the form of an integral into one that can be handled 
with basic techniques described above. 
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Recall that to complete the square in ax2 + bx+ c , you first factor out the leading coefficient and then 
use the fact that 

x2 + 2ax = (x+ a)2 − a2 	  (4.1.1)

Example 4.1.2. Evaluate

1)	 	
´

dx√
8x−x2

Solution. Note that by completing the square in the quadratic function 8x− x2 , we have: 

8x− x2 = −(x2 − 8x) = −((x− 4)2 − 16) = 16− (x− 4)2.

Thus 
ˆ

dx√
8x− x2

=

ˆ
dx√

16− (x− 4)2
=

1

4

ˆ
dx√

1−
(
x−4
4

)2 .

Letting u = x
4 − 1 , we have du = 1

4 dx  and 

ˆ
dx√

8x− x2
=

ˆ
du√
1− u2

= arcsinu+ C = arcsin
(x
4
− 1

)
+ C.

2)	 	
´ 4
2

2 dx
x2−6x+10

Solution. Note that by completing the square in the quadratic function x2 − 6x+ 10 , we have: 

x2 − 6x+ 10 = (x− 3)2 − 9 + 10 = (x− 3)2 + 1,

so that 
ˆ 4

2

2 dx

x2 − 6x+ 10
=

ˆ 4

2

2 dx

1 + (x− 3)2
.

Let u = x− 3 so that du = dx , and we have 
ˆ 4

2

2 dx

1 + (x− 3)2
= 2

ˆ 1

−1

du

1 + u2
= 2 [arctanu]

1
−1 = 2

(π
4
−
(
−π

4

))
= π.
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4.2	 Review of Integration: trig formulas and manipulating fractions

Watch the video at 

https://www.youtube.com/watch?v=rGUSiPQ8Aqw&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=25 

Abstract

This video illustrates on examples how trig formulas or algebra on fractions can change the 
form of an integral into one that can be handled with basic techniques. 

Trigonometric identities

There are many trigonometric identities that can be useful, but one of the most commonly used is the 
double angle formula: 

cos(2x) = 2 cos2 x− 1

= 1− 2 sin2 x

= cos2 x− sin2 x

sin(2x) = 2 sinx cosx.

	  (4.2.1)

Example 4.2.1. Evaluate

1)	 	
´ π

4

0

√
1 + cos(4x) dx

Solution. Note that, using the double angle formula, 

cos(4x) = 2 cos2(2x)− 1,

so that 
ˆ π

4

0

√
1 + cos(4x) dx =

ˆ π
4

0

√
2 cos2(2x) dx =

√
2

ˆ π
4

0

| cos(2x)| dx.

Moreover, 0 ≤ x ≤ π
4  so that 0 ≤ 2x ≤ π

2  and cos(2x) ≥ 0  on [0, π4 ] . Thus, 
ˆ π

4

0

√
1 + cos(4x) dx =

√
2

ˆ π
4

0

cos 2x dx =
√
2

[
1

2
sin(2x)

]π
4

0

=

√
2

2
.
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2)	 	
´ π
0

√
1− cosx dx

Solution. Note that, using the double angle formula, 

cosx = 1− 2 sin2
(x
2

)
,

so that 
ˆ π

0

√
1− cosx dx =

ˆ π

0

√
2 sin2

(x
2

)
dx =

√
2

ˆ π

0

∣∣∣sin
(x
2

)∣∣∣ dx.

Since 0 ≤ x
2 ≤ π

2  if x  in [0, π] , sin
(
x
2

)
≥ 0  on this interval and 

ˆ π

0

√
1− cosx dx =

√
2

ˆ π

0

sin
(x
2

)
dx =

√
2
[
−2 cos

(x
2

)]π
0
= 2

√
2.

Transforming rational functions

The first observation is that if in a quotient of two polynomials the degree of the numerator is not less 
than that of the denominator, then the fraction can be simplified by long division, which is often useful 
to integrate. If you need to brush up on long division you can start at 1.50 into this video. 
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Example 4.2.2. Evaluate 

1)	 	
´

3x2−7x
3x+2 dx . 

Solution. By long division, we obtain:

x− 3

3x+ 2
)

3x2 − 7x
− 3x2 − 2x

− 9x
9x+ 6

6

so that 

3x2 − 7x

3x+ 2
= x− 3 +

6

3x+ 2
.

Thus, 
ˆ

3x2 − 7x

3x+ 2
dx =

ˆ
x− 3 dx+ 6

ˆ
dx

3x+ 2
.

Let u = 3x+ 2, so that du = 3 dx , and 

ˆ
3x2 − 7x

3x+ 2
dx =

ˆ
x− 3 dx+ 2

ˆ
du

u

=
x2

2
− 3x+ 2 ln |3x+ 2|+ C.

2)	 	
´

x
x+1 dx .

Solution. Long division in this case can be performed easily with the following trick: 

	

ˆ
x

x+ 1
dx =

ˆ
(x+ 1)− 1

x+ 1
dx =

ˆ
1− 1

x+ 1
dx = x− ln |x+ 1|+ C.

Sometimes, splitting a fraction in pieces is enough to obtain terms that can be integrated. 
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3)	 Evaluate 
´

3x+2√
1−x2

dx .
Solution. Note that 

ˆ
3x+ 2√
1− x2

dx = 3

ˆ
x√

1− x2
dx+ 2

ˆ
dx√
1− x2

.

Let u = 1− x2, so that du = −2x dx  and 

	

ˆ
3x+ 2√
1− x2

dx = −3

2

ˆ
du√
u
+ 2

ˆ
dx√
1− x2

.

= −3
√
u+ 2 arcsinx+ C

= −3
√
1− x2 + 2 arcsinx+ C.

Exercises

you are now prepared to work on the Practice Problems, and Homework set M4A in the manual of 
exercises.
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4.3	 Integration by parts: indefinite integrals

Watch the videos at 

https://www.youtube.com/watch?v=XwCJrJkhJP0&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&ind
ex=26 

and 

https://www.youtube.com/watch?v=_H4R2oSvujI&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL 

Abstract

These videos establish the integration by parts formula for indefinite integrals and goes over 
a number of examples. 

Turning around the Product Rule for derivatives yields the integration by parts formula 

ˆ
f(x)g′(x) dx = f(x)g(x)−

ˆ
f ′(x)g(x) dx

which is often more compactly written, with u = f(x)  and dv = g′(x) dx : 

ˆ
u dv = uv −

ˆ
v du. 		  (4.3.1)

Remark 4.3.1. When using integration by parts, you have to pick what part is interpreted as u and what 
part is interpreted as dv. The rule of thumb is that you chose so that 

´
v du  is simpler than the original 

integral. In other words, the derivative of u should not be more complicated than u and the integral of 
dv should not be more complicated than dv. This is, of course, not an absolute rule but rather a rough 
guideline.

Example 4.3.2. Evaluate 

1)	 	
´
x sinx dx

Solution. We pick2 u = x  and dv = sinx dx  so that du = dx  and v = − cosx . Thus, by (4.3.1), 

ˆ
x sinx dx = −x cosx+

ˆ
cosx dx = −x cosx+ sinx+ C.
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2)	 	
´
xe−x dx

Solution. We pick u = x  and dv = e−x dx  so that du = dx  and v = −e−x . Thus, by (4.3.1), 

ˆ
xe−x dx = −xe−x +

ˆ
e−x dx = −e−x(x + 1) + C.

3)	 	
´
cosx ln(sin x) dx

Solution. Let u = ln(sin x)  and dv = cosx dx , so that du = cos x
sin x  and v = sinx . Thus, by (4.3.1), 

ˆ
cosx ln(sin x) dx = sinx ln(sin x)−

ˆ
sinx · cosx

sinx
dx

= sinx ln(sin x)−
ˆ

cosx dx = sinx (ln(sinx)− 1) + C.

4)	 	
´
lnx dx

Solution. Let u = lnx  and dv = dx , so that du = dx
x  and v = x . Thus, by (4.3.1), 

ˆ
lnx dx = x lnx−

ˆ
x · dx

x
= x lnx−

ˆ
dx = x(ln x− 1) + C.
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5)	 	
´
arcsinx dx

Solution. Let u = arcsinx  and dv = dx , so that du = dx√
1−x2  and v = x . Thus, by (4.3.1), 

ˆ
arcsinx dx = x arcsinx−

ˆ
x√

1− x2
dx.

By substitution with t = 1− x2, so that dt = −2x dx, we have 

ˆ
arcsinx dx = x arcsinx+

1

2

ˆ
dt√
t
= x arcsinx+

√
t+C = x arcsinx+

√
1− x2+C.

6)	 	
´
arctanx dx

Solution. Let u = arctanx  and dv = dx , so that du = dx
1+x2  and v = x . Thus, by (4.3.1), 

ˆ
arctanx dx = x arctanx−

ˆ
x

1 + x2
dx.

By substitution with t = 1 + x2, so that dt = 2x dx , we have 

ˆ
arctanx dx = x arctanx− 1

2

ˆ
du

u
= x arctanx− 1

2
ln(1 + x2) + C.

7)	 	
´
t3et dt

Solution. Sometimes, we need to iterate the process of integration by parts. Let u = t3  and 
dv = et dt . Then du = 3t2 dt  and v = et  and 

	
ˆ

t3et dt = t3et − 3

ˆ
t2et dt. � (4.3.2)

To calculate 
´
t2et dt , we proceed by parts with u = t2  and dv = et dt  so that du = 2t dt  and 

v = et  and 

ˆ
t2et dt = t2et − 2

ˆ
tet dt. 	  (4.3.3)

To calculate 
´
tet dt, we proceed by parts with u = t  and dv = et dt , so that du = dt  and 

v = et . Thus 
ˆ

tet dt = tet −
ˆ

et dt = et(t− 1) + C.

We now substitute in (4.3.3), and in turn, back in (4.3.2), to the effect that 
ˆ

t3et dt = t3et − 3
(
t2et − 2et(t− 1)

)
+ C

= et
(
t3 − 3t2 + 6t− 6

)
+ C.
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4.4	 Integration by parts: definite integrals

Watch the video at 

https://www.youtube.com/watch?v=giqPcUV8p48&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=28 

Abstract

This video states the integration by parts formula for definite integrals and goes over a few 
examples. 

The counterpart of (4.3.1) for definite integrals is 

ˆ b

a

u dv = [uv]ba −
ˆ b

a

v du. 	  (4.4.1)

Example 4.4.1. Evaluate:

1)	 	
´ 1
0

(
x2 + 1

)
e−x dx

Solution. Let u = x2 + 1  and dv = e−x dx . Then du = 2x dx  and v = −e−x , so that, by (4.4.1), 

ˆ 1

0

(
x2 + 1

)
e−x dx =

[
−(x2 + 1)e−x

]1
0
+ 2

ˆ 1

0

xe−x dx. 	  (4.4.2)

We calculate 
´ 1
0 xe−x dx  by parts with u = x  and dv = e−x dx , so that du = dx  and v = −e−x

 , 
and, by (4.4.1), 

ˆ 1

0

xe−x dx =
[
−xe−x

]1
0
+

ˆ 1

0

e−x dx =
[
−e−x(x + 1)

]1
0
.

Substituting back in (4.4.2), we obtain: 

ˆ (
x2 + 1

)
e−x dx =

[
−e−x

(
x2 + 2x+ 3

)]1
0
= −6e−1 + 3
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2)	 	
´ 4
1

√
t ln t dt

Solution. Let u = ln t  and dv =
√
t dt . Then du = dt

t  and v = 2
3 t

3
2 , so that 

ˆ 4

1

√
t ln t dt =

[
2

3
t
3
2 ln t

]4

1

− 2

3

ˆ 4

1

t
3
2 · 1

t
dt

=

[
2

3
t
3
2 ln t

]4

1

− 2

3

ˆ 4

1

t
1
2 dt

=

[
2

3
t
3
2 ln t− 4

9
t
3
2

]4

1

=
16

3
ln 4− 32

9
+

4

9
=

16

3
ln 4− 28

9
.

3)	 	
´ 1
0 x 5x dx

Solution. Let u = x  and dv = 5x dx . Then du = dx  and v = 5x

ln 5 and 

ˆ 1

0

x 5x dx =

[
x5x

ln 5

]1

0

− 1

ln 5

ˆ 1

0

5x dx

=

[
x5x

ln 5
− 5x

(ln 5)2

]1

0

= 5

(
1

ln 5
− 1

(ln 5)2

)
+

1

(ln 5)2

=
5

ln 5
− 4

(ln 5)2
.
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4.5	 Integration by parts: one more example

Watch the video at 

https://www.youtube.com/watch?v=8W0PFO-MD5I&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&
index=29 

Abstract

This video goes over one example of integrals where two successive integrations by parts lead 
to an equation whose unknown is the desired integral.

Example 4.5.1. Evaluate 
´
ex sinx dx .

Solution. Let u = sinx  and dv = ex dx . Then du = cosx dx  and v = ex , so that by integration 
by parts, 

ˆ
ex sinx dx = sinxex −

ˆ
ex cosx dx.

Integrating by parts in the new integral with u = cosx  and dv = ex dx, we have du = − sinx dx  and 
v = ex  so that 

ˆ
ex sinx dx = sinxex −

(
ex cosx+

ˆ
ex sinx dx

)

= ex(sin x− cosx) +

ˆ
ex sinx dx.

Solving for the desired integral I :=
´
ex sinx dx , we obtain 

I =
1

2
ex (sinx− cosx) + C.

Exercises

you are now prepared to work on the Practice Problems, and Homework set M4B in the manual of 
exercises.

Before turning to Chapter 4, you can also take Mock Test 1. 
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5	 �M5: Trigonometric integrals and 
trigonometric substitutions

5.1	 Powers of sine and cosine

Watch the video at 

https://www.youtube.com/watch?v=Lt9o_TC4F4U&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=30 

Abstract

 This video goes over the general technique to evaluate integrals of the form 

ˆ
cosm x sinn x dx

distinguishing different cases. 

Case 1: at least one of the powers is odd

Example 5.1.1. To evaluate 
´
cos3 x dx , note that 

ˆ
cos3 x dx =

ˆ
cos2 x cosx dx =

ˆ (
1− sin2 x

)
cosx dx,

so that the substitution u = sinx  gives du = cosx dx  and 

ˆ
cos3 x dx =

ˆ
1− u2 du = u− u3

3
+ C = sinx− sin3 x

3
+ C.

This approach can be used for the general case 

ˆ
cosm x sinn x dx, 	  (5.1.1)
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as long as at least one exponent is odd, say m = 2k + 1 . Then 

ˆ
cosm x sinn x dx =

ˆ
cos2k x sinn x cosx dx

=

ˆ (
cos2 x

)k
sinn x (cosx dx)

=

ˆ (
1− sin2 x

)k
sinn x (cosx dx)

=

ˆ (
1− u2

)k
un du for u = sinx, 	  (5.1.2)

and the resulting integral is that of a polynomial in u. Note however that to calculate the integral, we 
first need to multiply things through in the integral. Thus, if both m and n are odd in (5.1.1), it is better 
to split the smallest power in order to minimize k in (5.1.2). 

Example 5.1.2. Evaluate 
´
cos5 x sin3 x dx .

Solution. Using the rule of thumb above, we “split” the power of sin: 

ˆ
cos5 x sin3 x dx =

ˆ
cos5 x sin2 x sinx dx

=

ˆ
cos5 x

(
1− cos2 x

)
sinx dx

= −
ˆ

u5(1− u2) du u = cosx

=

ˆ
u7 − u5 du

=
u8

8
− u6

6
+ C =

cos8 x

8
− cos6 x

6
+ C.

Case 2: both powers are even

In this case, we write powers as powers of 

cos2 x =
1 + cos(2x)

2 	  (5.1.3)

sin2 x =
1− cos(2x)

2
,

(which follows from the double angle formula (4.2.1)) to reduce the powers, and this process may need 
to be iterated. 
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Example 5.1.3. Evaluate 
´
sin4 x dx .

Solution. In view of (5.1.3), we have 

ˆ
sin4 x dx =

ˆ (
sin2 x

)2
dx

=

ˆ (
1− cos(2x)

2

)2

dx

=
1

4

ˆ
1− 2 cos(2x) + cos2(2x) dx

=
1

4

ˆ
1− 2 cos(2x) +

1 + cos(4x)

2
dx

=
1

4

ˆ
3

2
− 2 cos(2x) +

1

2
cos(4x) dx

=
3

8
x− 1

4
sin(2x) +

1

32
sin(4x) + C.
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Example 5.1.4. Evaluate 
´
cos4 x sin2 x dx .

Solution. In view of (5.1.3), we have 

ˆ
cos4 x sin2 x dx =

ˆ (
cos2 x

)2
sin2 x dx

=

ˆ (
1 + cos(2x)

2

)2 (
1− cos(2x)

2

)
dx

=
1

8

ˆ (
1 + 2 cos(2x) + cos2(2x)

)
(1− cos(2x)) dx

=
1

8

ˆ
1 + cos(2x)− cos2(2x)− cos3(2x) dx

=
1

8

(
x+

sin(2x)

2
−
ˆ

1 + cos(4x)

2
dx−

ˆ
cos2(2x) cos(2x) dx

)

=
1

8

(
x

2
+

sin(2x)

2
− sin(4x)

8
−
ˆ (

1− sin2(2x)
)
cos(2x) dx

)
.

In the last integral, let u = sin(2x)  so that du = 2 cos(2x) dx  and 

ˆ
cos4 x sin2 x dx =

1

8

(
x

2
+

sin(2x)

2
− sin(4x)

8
− 1

2

ˆ (
1− u2

)
du

)

=
x

16
+

sin(2x)

16
− sin(4x)

64
− sin(2x)

2
+

sin3(2x)

6
+ C

=
x

16
− 7 sin(2x)

16
− sin(4x)

64
+

sin3(2x)

6
+ C.
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5.2	 Products of sine and cosine

Watch the video at 

https://www.youtube.com/watch?v=KNwcjS2AsVw&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=31 

Abstract

 This video goes over evaluating integrals of one of the following types: 

ˆ
sin(mx) cos(nx) dx

ˆ
sin(mx) sin(nx) dx

ˆ
cos(mx) cos(nx) dx .

This type of problem becomes easy if we transform products into half-sums with the help of the following 
trigonometric formulas 

sinα cosβ =
1

2
(sin(α− β) + sin(α+ β))

sinα sinβ =
1

2
(cos(α− β)− cos(α+ β))

cosα cosβ =
1

2
(cos(α− β) + cos(α+ β)) .

Example 5.2.1. Evaluate

1)	 	
´
sin(3x) cosx dx .

Solution. 

ˆ
sin(3x) cosx dx =

1

2

ˆ
sin(2x) + sin(4x) dx

= − 1

4
cos(2x)− 1

8
cos(4x) + C.

2)	 	
´
sin(5x) sin(3x) dx .

Solution. 

ˆ
sin(5x) sin(3x) dx =

1

2

ˆ
cos(2x)− cos(8x) dx

=
1

4
sin(2x)− 1

16
sin(8x) + C.
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3)	 	
´
cos(2x) cos(7x) dx .

Solution. 

ˆ
cos(2x) cos(7x) dx =

1

2

ˆ
cos(5x) + cos(9x) dx

=
1

10
sin(5x) +

1

18
sin(9x) + C.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

“The perfect start 
of a successful, 
international career.”

CLICK HERE 
to discover why both socially 

and academically the University 

of Groningen is one of the best 

places for a student to be 
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon


A youtube Calculus Workbook (Part II)

86 

�M5:  Trigonometric integrals and trigonometric substitution   

5.3	 (co)secant, (co)tangent and their powers

Watch the video at 

https://www.youtube.com/watch?v=YThB05DtWJk&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=32 

Abstract

 This video goes over some examples of integrals of powers of sec and tan. 

The following two formulas are verified: 

ˆ
secx dx = ln | secx+ tanx|+ C 	  (5.3.1)

ˆ
cscx dx = − ln | cscx+ cotx|+ C,

	 = ln | cscx− cotx|+ C 	  (5.3.2)

and used in the following examples. 

Example 5.3.1. Evaluate 
´
sec3 x dx .

Solution. Note that 
ˆ

sec3 x dx =

ˆ
secx sec2 x dx

can be integrated by parts, with u = secx  and dv = sec2 x dx , so that du = sinx sec2 x dx  and v = tanx. 
Thus 

ˆ
sec3 x dx = secx tanx−

ˆ
tanx sinx sec2 x dx

= secx tanx−
ˆ

sin2 x sec3 x dx

= secx tanx−
ˆ
(1 − cos2 x) sec3 x dx

= secx tanx−
ˆ

sec3 x dx+

ˆ
secx dx,

so that 

2

ˆ
sec3 x dx = secx tanx+

ˆ
secx dx
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and, in view of (5.3.1), 

2nd set of corrections

January 10, 2014

• p 40, Definition 2.3.1: there is a change of font size after the formula.

• p45, Definition 2.4.1: p45, “the function arccos has thus domain” should
be “The function arccos has thus domain” and the font size should be
harmonized with before the formula.

• p47, Definition 2.4.4: there seems to be a change of font size after the
formula

• p52, Definition 2.6.1 (end): “Its range is [1, ∞) .” seems to use smaller
font than those before the formula

• p60, Theorem 3.1.1: the last line seems to be with smaller fonts than
before the formula

• p60, “Exercise 3.1.2.” should be “Remark 3.1.2.” (with the appropriate
font for remarks, like, say, Remark 3.1.5 further on that page)

• page 87, before Example 5.3.2, replace the formula
ˆ

sec3 x dx =
1

2
secx tanx+ ln | secx+ tanx|+ C.

with ˆ
sec3 x dx =

1

2
(secx tanx+ ln | secx+ tanx|) + C.

• p92, top: “represents the area of one fourth of the disc.” seem to use
smaller fonts than before the formula.

• page 93, the link to Example 5.4.4 should link to page 92 (not 89)

• page 99, top: “non of the factors” should be “none of the factors”

• page 107, Example 6.4.1. There still is a change of font size after the 2nd
equation.

• page 116, Proposition 7.1.2: the text after the formula should still be
italicized

1

Example 5.3.2. Evaluate 
´
tan4 x dx .

Solution. Note that 

ˆ
tan4 x dx =

ˆ
tan2 x · tan2 x dx

=

ˆ
tan2 x

(
sec2 x− 1

)
dx

=

ˆ
tan2 x sec2 x dx −

ˆ
tan2 x dx.

Using u = tanx  so that du = sec2 x dx  in the first integral, and the identity tan2 x = sec2 x− 1  in the 
second, we have 

ˆ
tan4 x dx =

ˆ
u2 du−

ˆ
sec2 x dx+

ˆ
dx

=
tan3 x

3
− tanx+ x+ C.

Exercises

you are now prepared to work on the Practice Problems, and Homework set M5A in the manual of 
exercises.
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5.4	 Trig substitutions

Watch the videos at 

https://www.youtube.com/watch?v=0ZAA6hlr6Hc&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=33 

and 

https://www.youtube.com/watch?v=GTvbWO6iYeE&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=34 

and 

https://www.youtube.com/watch?v=8yR5vCc2YWM&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&
index=35 

Abstract

These videos present generalities on trigonometric substitution, then go over a number of 
examples. 
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Trigonometric substitutions allow to transform expressions of the form 

a2 − x2; a2 + x2 x2 − a2

into a single square, which often allows to simplify an integral. The basic idea is to parametrize x as 

x = g(θ),

where g is one-to-one, so that θ = g−1(x)  defines a regular substitution. The choice of g that will permit 
us to rewrite the desired expressions as one single square make use of trigonometric identities:

 

The triangle is used to get back to an expression in terms of x instead of θ. 

Example 5.4.1. Evaluate 
´

dx
x2

√
x2+4

.

Solution. Note that there is no obvious substitution, so we may try trig substitution to get rid of the radical. 
We use the second row in the table above: let x = 2 tan θ  for −π

2 < θ < π
2 , so that dx = 2 sec2 θ dθ  and 

ˆ
dx

x2
√
x2 + 4

=

ˆ
2 sec2 θ

4 tan2 θ
√
4 tan2 θ + 4

dθ.

Using the fact that 

4 tan2 θ + 4 = 4(tan2 θ + 1) = 4 sec2 θ,
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we obtain 

ˆ
dx

x2
√
x2 + 4

=

ˆ
sec2 θ

4 tan2 θ| sec θ|
dθ

=
1

4

ˆ
sec θ

tan2 θ
dθ sec θ > 0

(
−π

2 ,
π
2

)

=
1

4

ˆ
cos θ

sin2 θ
dθ

=
1

4

ˆ
du

u2
u = sin θ

= − 1

4u
+ C = − 1

4 sin θ
+ C.

To express this as a function of x, note that tan θ = x
2 , which we represent in the following triangle:

 

Thus, 

1

sin θ
=

√
x2 + 4

x

and 
ˆ

dx

x2
√
x2 + 4

= −
√
x2 + 4

4x
+ C.

Remark 5.4.2. Note that trigonometric substitutions often lead to rather complicated calculations and 
should be considered a “last resort”. Whenever possible use an alternative argument.

Example 5.4.3. While trig substitution could be use to evaluate 
ˆ

x√
x2 + 4

dx

it is much more efficient to use a regular substitution with u = x2 + 4 , so du = 2x dx  and 
ˆ

x√
x2 + 4

dx =
1

2

ˆ
du√
u
=

√
u+ C =

√
x2 + 4 + C.
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Example 5.4.4. Similarly, we could use trig substitution to evaluate 
ˆ 3

0

√
9− x2 dx

but it is more efficient to note that y =
√
9− x2  correspond to the upper-half of the circle x2 + y2 = 9  

centered at the origin and of radius 3:
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Thus 
ˆ 3

0

√
9− x2 dx =

1

4
π(3)2 =

9π

4
,

represents the area of one fourth of the disc. 

Yet in some cases, trig substitution is our only option. 

Example 5.4.5. Evaluate 
´ √

9−x2

x2 dx .
Solution. We proceed by trig substitution, letting x = 3 sin θ  where −π

2 ≤ x ≤ π
2 . Then 

dx = 3 cos θ dθ  and 

ˆ √
9− x2

x2
dx =

ˆ √
9− 9 sin2 θ

9 sin2 θ
3 cos θ dθ

=
1

3

ˆ
√
9(1− sin2 θ)

sin2 θ
cos θ dθ

=

ˆ √
cos2 θ

sin2 θ
cos θ dθ

=

ˆ
cos2 θ

sin2 θ
dθ cos θ ≥ 0

[
−π

2 ,
π
2

]

=

ˆ
1− sin2 θ

sin2 θ
dθ =

ˆ
1

sin2 θ
− 1 dθ

= − cot θ − θ + C.

To rewrite this function in terms of x, note that sin θ = x
3  for θ ∈

[
−π

2 ,
π
2

]
 so that θ = arcsin

(
x
3

)
, and 

we see on the triangle below that cot θ =
√
9−x2

x
:

 

Thus 
ˆ √

9− x2

x2
dx = −

√
9− x2

x
− arcsin

(x
3

)
+ C.

Example 5.4.6. Establish a formula for the area of the ellipse 

x2

a2
+

y2

b2
= 1.
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Solution. Solving for y leads to y = ± b
a

√
a2 − x2 , so that the upper-half ellipse in the picture 

below 

 

has equation y = b
a

√
a2 − x2  and the area of the ellipse is 4 times the area 

A =
b

a

ˆ a

0

√
a2 − x2 dx.

We can either use the idea of Example 5.4.4, and see that 
´ a
0

√
a2 − x2 dx  is the area of a quarter of a 

disk of radius a and conclude that 

A =
b

a
· πa

2

4
,

so that the area of the ellipse is 

S = 4A = πab,

or we can treat the case of the disk as a particular case of the ellipse (for a = b, the radius) without 
assuming this case known. In that latter case, we need to calculate 

´ a
0

√
a2 − x2 dx , and we proceed by 

trigonometric substitution with x = a sin θ  for −π
2 ≤ θ ≤ π

2 . Then dx = a cos θ dθ , x = 0  for θ = 0  and 
x = a  for θ = π

2 , so that 

	

ˆ a

0

√
a2 − x2 dx =

ˆ π
2

0

√
a2(1− sin2 θ) a cos θ dθ

= a2
ˆ π

2

0

√
cos2 θ cos θ dθ

= a2
ˆ π

2

0

cos2 θ dθ

= a2
ˆ π

2

0

1 + cos(2θ)

2
dθ

=
a2

2

[
θ +

sin(2θ)

2

]π
2

0

=
a2π

4
,

 (5.1.3)
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which leads to 

S = 4A = 4
b

a
· a

2π

4
= πab.

Example 5.4.7. Evaluate 
´

dx
x2

√
16x2−9

.

Solution. Note first that 
ˆ

dx

x2
√
16x2 − 9

=

ˆ
dx

4x2
√
x2 − 9

16

=
1

4

ˆ
dx√

x2 −
(
3
4

)2

Let now x = 3
4 sec θ  for 0 ≤ θ < π

2  (that is, for x ≥ 3
4 ). Then dx = 3

4
sin θ
cos2 θ dθ = 3

4 sin θ sec2 θ dθ , so that 

ˆ
dx

x2
√
16x2 − 9

=
1

4
· 3
4

ˆ
sin θ sec2 θ

9
16 sec

2 θ
√

9
16 (sec

2 θ − 1)
dθ

=
3

16
· 16
9

ˆ
sin θ

3
4

√
tan2 θ

dθ

=
1

3
· 4
3

ˆ
sin θ

tan θ
dθ tan θ ≥ 0 [0, π2 )

=
4

9

ˆ
cos θ dθ =

4

9
sin θ + C.

ˆ
dx

x2
√
16x2 − 9

=

ˆ
dx

4x2
√
x2 − 9

16

=
1

4

ˆ
dx√

x2 −
(
3
4

)2
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Moreover, sec θ = 4x
3  so that, in view of the triangle below,

 

sin θ =
√
16x2−9
4x

 and 
ˆ

dx

x2
√
16x2 − 9

=
4

9
·
√
16x2 − 9

4x
+ C =

√
16x2 − 9

9x
+ C.

Example 5.4.8. Evaluate 
´

dx
(x2+4)2 .

Solution. We use the trig substitution x = 2 tan θ  for −π
2 < θ < π

2 , so that dx = 2 sec2 θ dθ  and 

	

ˆ
dx

(x2 + 4)
2 = 2

ˆ
sec2 θ

(
4 tan2 θ + 4

)2 dθ

=
2

16

ˆ
sec2 θ

(sec2 θ)2
dθ tan2 θ + 1 = sec2 θ

=
1

8

ˆ
cos2 θ dθ

=
1

8

ˆ
1 + cos(2θ)

2
dθ

=
θ

16
+

sin(2θ)

32
+ C

=
1

16
(θ + sin θ cos θ) + C sin θ sin θ cos θ

Moreover, tan θ = x
2  and −π

2 < θ < π
2  so that θ = arctan

(
x
2

)
 and, in view of the triangle below,

 

we have sin θ = x√
x2+4

 and cos θ = 2√
x2+4

, so that 
ˆ

dx

(x2 + 4)
2 =

1

16

(
arctan

(x
2

)
+

2x

x2 + 4

)
+ C.

Remark 5.4.9. In some cases, the formulas (2.7.1) and (2.7.2) might be useful to avoid a lengthy 
trigonometric substitution. 

Exercises

you are now prepared to work on the Practice Problems, and Homework set M5B in the manual of 
exercises.

(5.1.3)
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6	 M6: Partial Fractions
6.1	 Partial fractions: generalities; long division

Watch the video at 

https://www.youtube.com/watch?v=zPSl1bb6tkw&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&ind
ex=36 

Abstract

This video discusses the general strategy to integrate rational functions, and reviews long 
division of polynomial, which is the first step to be performed. 

It is easy to integrate 

ˆ
3

x− 1
+

2

x+ 3
dx = 3 ln |x− 1|+ 2 ln |x+ 3|+ C,

but not so clear at first how to integrate 

ˆ
5x+ 7

x2 + 2x− 3
dx

unless you realize that 

3

x− 1
+

2

x+ 3
=

3(x+ 3) + 2(x− 1)

(x− 1)(x+ 3)
=

5x+ 7

x2 + 2x− 3
.

Thus, to integrate rational functions, i.e., quotients of polynomials, we have to be able to go the other 
way, that is, break down our fraction (like 5x+7

x2+2x−3) into a sum of simpler ones (like 3
x−1 + 2

x+3 ), or 
partial fractions.

To this end, we will: 

1)	 if the degree of the numerator is not less than that of the denominator, simplify by long 
division: 

p(x)

q(x)
= f(x) +

r(x)

q(x)
,

where f(x)  is the quotient and r(x)  the remainder in the division, so that r(x)  has degree 
less than that of q(x) .3 
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2)	 factor q(x) . The factors may include:
a)	 non-repeated linear factors of the type (ax+ b)  
b)	 repeated linear factors of the type (ax+ b)n  
c)	 irreducible quadratic factors of the type ax2 + bx+ c  (irreducible because b2 − 4ac < 0) 
d)	 repeated irreducible quadratic factors of the type (ax2 + bx+ c)n.  

The next steps depend on which of these four cases occurs. This will be explored in the next videos. 

Example 6.1.1. To evaluate 

ˆ
x3 + x

x− 1
dx

we first note by long division

x2 + x+ 2

x− 1
)

x3 + x
− x3 + x2

x2 + x
− x2 + x

2x
− 2x+ 2

2

that 

x3 + x

x− 1
= x2 + x+ 2 +

2

x− 1
,

so that 
ˆ

x3 + x

x− 1
dx =

x3

3
+

x2

2
+ 2x− 2 ln |x− 1|+ C.
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6.2	 only non-repeated linear factors

Watch the videos at 

https://www.youtube.com/watch?v=JFmCXnO2YSs&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=37 

and 

https://www.youtube.com/watch?v=ayCykwsXfkE&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=38

Abstract

These videos discuss the general methods to find the decomposition into partial fraction over 
a rational functions when the denominator has only non-repeated linear factors, and goes 
over three examples. 

Recall that modulo long division, we can assume that our rational function is in lowest terms, that is, 
r(x)
q(x) where the degree of r is less that the degree of q. If q(x)  is of the form 

q(x) = (a1x+ b1) · (a2x+ b2) . . . (anx+ bn) ,
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where none of the factors is repeated, then the form of the decomposition into partial fractions is 

r(x)

q(x)
=

A1

ax1 + b1
+

A2

a2x+ b2
+ . . .+

An

anx+ bn
, 	  (6.2.1)

and thus, we only need to find the coefficients A1, A2, . . . An  to integrate r(x)
q(x). We discuss how in the 

examples: 

Example 6.2.1. Evaluate 
ˆ

x2 + 2x− 1

x3 − x
dx.

Solution. The fraction is already in lowest terms, so there is no need for long division. Moreover 

x2 + 2x− 1

x3 − x
=

x2 + 2x− 1

x(x − 1)(x+ 1)
,

so that, in view of (6.2.1), 

x2 + 2x− 1

x3 − x
=

A

x
+

B

x− 1
+

C

x+ 1
. 	  (6.2.2)

To find these coefficients: 
method 1: handcover method: 
To find A, multiply both sides by x and set x = 0 : 

x2 + 2x− 1

(x− 1)(x+ 1)
= A+

Bx

x− 1
+

Cx

x+ 1

x=0
=⇒ 1 = A.

To find B, multiply both sides by x− 1 and set x = 1 : 

CORRECTIONS 3

• page 99, in the equation after “To find B”, x = 1 should be above =⇒, and
not above 1:

x2 + 2x− 1

x(x+ 1)
=

A(x− 1)

x
+B +

C(x− 1)

(x+ 1)

x=1
=⇒ 1 = B

• page 100 top: (6.2.2) should link to page 99 instead of 101
• page 103 Abstract: “, and explain” should be “, and explains”
• page 105: The link (6.3.3) links to page 107 instead of 105
• page 107, Example 6.4.1. There is a change of font size after the equation.
• page 110, Abstract: “corresponding term” should be “corresponding terms”
• page 111, 5) “Example 73” should be “Example 5.4.8” and should link to

page 95.
• page 115, Abstract: “goes over” should be “go over”
• page 116, Proposition 7.1.2: the text should be italicized, like in other

propositions. Moreover, there seems to be a change of font size after the
formula

• page 123, Example 7.3.4 “Solution” should be italicized but not “For”, “we
have”, “and thus”, and “Moreover”

• page 126, Abstract: “They show on example” should be “They show on
examples”

• page 126, the third set of parametric equations for the unit circle should be
(there was an extra t ):

{
x = cos(2t)

y = sin(2t)
t∈[0,2π)(the circle is then described twice counterclockwise)

• page 133 Abstract: “out” should be “how”
• page 135, above the curve: “left,and” should be “left, and”
• page 137, Example 8.4.1. beginning of Solution. “As see in” should be “As

seen in”
• page 139, Theorem 8.5.2 “from a to bS.” should be “from a to b.”
• page 141, Theorem 8.6.1: if possible, do not split the Theorem over 2 pages
• page 155 Proposition 8.2.1 should link to page 129.
• page 155, Example 9.3.1: “(9.2.3) gives” should be “(9.3.1) gives”. There is

no need to link, since the formula is on the same page.
• page 160, Example 9.5.2 “pounded by” should be “bounded by”
• page 161, first line: idem
• page 162, 1st line after abstract “the set N of natural numbers” should be

“the set N of natural numbers”
• page 162, line 5: idem: “ranging over N” should be “ranging over N”
• page 170, Abstract: “limit.s” should be “limit.”
• page 171, the formula (10.4.2) is incorrect and should be

P (n) =⇒ P (n+ 1).

• page 171, bottom “using (10.4.3) for nand n+1.” should be “using (10.4.3)
for n and n+ 1.”

• page 172 near bottom should be (implication problem)

an+1 > an =⇒ 2 + an+1 > 2 + an =⇒ an+2 =
√
2 + an+1 >

√
2 + an = an+1,

To find C, multiply both sides by x+ 1 and set x = −1: 

x2 + 2x− 1

x(x− 1)
=

A(x + 1)

x
+

B(x+ 1)

x− 1
+ C

x=−1
=⇒ −1 = C.

Thus 

ˆ
x2 + 2x− 1

x3 − x
dx =

ˆ
1

x
+

1

x− 1
− 1

x+ 1
dx = ln |x|+ ln |x− 1| − ln |x+ 1|+ C.
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method 2: system method: 
To find the coefficients, we rewrite the right-hand side in (6.2.2) as one fraction, and identify 
the numerators: 

x2 + 2x− 1

x(x− 1)(x+ 1)
=

A

x
+

B

x− 1
+

C

x+ 1
=

A(x− 1)(x+ 1) +Bx(x+ 1) + Cx(x − 1)

x(x − 1)(x+ 1)

so that 

x2 + 2x− 1 = A(x − 1)(x+ 1) +Bx(x + 1) + Cx(x − 1)

= x2(A+B + C) + x(B − C) + (−A).

Using the fact that two polynomials are equal if and only if their coefficients of same degree are equal 
we obtain the system 






A+B + C = 1

B − C = 2

−A = −1

⇐⇒






A = 1

B = 1

C = −1.

Remark 6.2.2. While the handcover method is more efficient, it only applies to the case of non-repeated 
linear factors, unlike the system method, which is more universal.
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Example 6.2.3. Evaluate 

ˆ 1

0

x3 − 4x− 10

x2 − x− 6
dx.

Solution. The fraction is not in lowest term, so we first perform long division:

x + 1

x2 − x− 6
)

x3 − 4x− 10
− x3 + x2 + 6x

x2 + 2x− 10
− x2 + x + 6

3x − 4

so that 
ˆ 1

0

x3 − 4x− 10

x2 − x− 6
dx =

ˆ 1

0

x+ 1 +
3x− 4

x2 − x− 6
dx.

The decomposition into partial fraction of 3x−4
x2−x−6  is of the form 

3x− 4

x2 − x− 6
=

3x− 4

(x+ 2)(x− 3)
=

A

x+ 2
+

B

x− 3
.

The handcover method yields A = 2 and B = 1  so that 

ˆ 1

0

x3 − 4x− 10

x2 − x− 6
dx =

ˆ 1

0

x+ 1 +
2

x+ 2
+

1

x− 3
dx

=

[
x2

2
+ x+ 2 ln |x+ 2|+ ln |x− 3|

]1

0

=
3

2
+ ln

3

2
.

Example 6.2.4. Evaluate 
ˆ

2x+ 3

x2 + 3x− 4
dx.

Solution. Note that while we could use partial fractions, a substitution is more efficient whenever possible. 
In this case, for u = x2 + 3x− 4 , we have du = 2x+ 3 dx  so that 

ˆ
2x+ 3

x2 + 3x− 4
dx =

ˆ
du

u
= ln |u|+ C = ln |x2 + 3x− 4|+ C.
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Example 6.2.5. Evaluate 

ˆ
4x+ 3

2x2 − 5x− 3
dx.

Solution. Since 2x2 − 5x− 3 = (2x+ 1) (x− 3) , the form of the decomposition into partial fractions is 

4x+ 3

(2x+ 1)(x− 3)
=

A

2x+ 1
+

B

x− 3
,

and the handcover method yields A = − 2
7 and B = 15

7 . Thus 

ˆ
4x+ 3

2x2 − 5x− 3
dx = −1

7

ˆ
2dx

2x+ 1
+

15

7

ˆ
dx

x− 3

= −1

7
ln |2x+ 1|+ 15

7
ln |x− 3|+ C.

Exercises

you are now prepared to work on the Practice Problems, and Homework set M6A in the manual of 
exercises.
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6.3	 with repeated linear factors

Watch the video at 

https://www.youtube.com/watch?v=RuCuXpWCshw&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&
index=39

Abstract

This video gives the form of the decomposition into partial fractions when the denominator 
contains repeated linear factors, and explains on examples how to find the corresponding 
coefficients, and how to integrate the resulting terms. 

If the denominator q(x)  of a rational function r(x)
q(x) in lowest terms contains a repeated linear factor 

(ax+ b)n  the corresponding terms in the decomposition into partial fractions of r(x)q(x) are 

Corrections to “A youtube Calculus Workbook
part II”

February 21, 2014

• page 94, first displayed equation in Example 5.4.7 misses an x

2 at the
denominator of the last term. Replace with

ˆ
dx

x

2
p
16x2 − 9

=

ˆ
dx

4x2
q
x

2 − 9
16

=
1

4

ˆ
dx

x

2

q
x

2 −
�
3
4

�2

• page 103, first displayed formula missed an a in the second term ((x+ b)
insteead of (ax+ b)). Replace with

A1

ax+ b

+
A2

(ax+ b)2
+ . . .+

An

(ax+ b)n
.

1

Example 6.3.1. The decomposition into partial fractions of x
(x−2)3  has the form 

A

x− 2
+

B

(x − 2)2
+

C

(x− 2)3
,

where A, B and C are constants to be determined, while the decomposition into partial fractions of 
x

(x+1)(x−1)(x−2)3  has the form 

A

x+ 1
+

B

x− 1
+

C

x− 2
+

D

(x− 2)2
+

E

(x− 2)3
.

Note that each term of the form A
(ax+b)n  for n > 1  is easily integrated with the power rule: 

ˆ
A

(ax+ b)n
dx =

A

a

ˆ
du

un
u = ax+ b

=
A

a

u1−n

1− n
+ C =

A

a(1 − n)(ax+ b)n−1
.

Example 6.3.2. Evaluate 

ˆ
x2

(x+ 1)3
dx.

Solution. The fraction is already in lowest terms, so there is no need for long division. Moreover 

x2

(x+ 1)3
=

A

x+ 1
+

B

(x+ 1)2
+

C

(x+ 1)3
. 	  (6.3.1)

Download free eBooks at bookboon.com

https://www.youtube.com/watch?v=RuCuXpWCshw&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&index=39
https://www.youtube.com/watch?v=RuCuXpWCshw&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&index=39
https://www.youtube.com/watch?v=RuCuXpWCshw&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&index=39


A youtube Calculus Workbook (Part II)

104 

M6: Partial Fractions

To f﻿ind A, B and C, we will present two methods: in both, we start by rewriting the right hand side in 
(6.3.1) as one fraction, and identify the numerators: 

x2

(x+ 1)3
=

A(x + 1)2 +B(x + 1) + C

(x+ 1)3
,

so that 

x2 = A(x+ 1)2 +B(x+ 1) + C. 	  (6.3.2)

In the system method we rewrite the right hand side of (6.3.2) in standard form and identify the coefficients 
of same degree to form a system of equations of unknowns A, B and C: 

x2 = Ax2 + (B +2A)x+ (A+B+C) =⇒






A = 1

B + 2A = 0

A+B + C = 0

⇐⇒






A = 1

B = −2

C = 1

.

Thus, 

ˆ
x2

(x+ 1)3
dx =

ˆ
1

x+ 1
− 2

(x+ 1)2
+

1

(x + 1)3
dx

= ln |x+ 1| − 2

x+ 1
− 1

2(x+ 1)2
+ C.

Alternatively, we can use the same idea as the handcover method, combined with differentiation, to find 
A, B and C from (6.3.2): Plugging in x = −1 yields 1 = C . If we differentiate (6.3.2), we obtain 

2x = 2A(x+ 1) +B,

so that plugging in x = −1 yields −2 = B . If we differentiate again, we get 2 = 2A , that is, A = 1.

Example 6.3.3. Evaluate 

ˆ
x4 − 2x2 + 4x+ 1

x3 − x2 − x+ 1
dx.
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Solution. By long division

x+ 1

x3 − x2 − x+ 1
)

x4 − 2x2 + 4x+ 1
− x4 + x3 + x2 − x

x3 − x2 + 3x+ 1
− x3 + x2 + x− 1

4x

we see that 

x4 − 2x2 + 4x+ 1

x3 − x2 − x+ 1
= x+ 1 +

4x

x3 − x2 − x+ 1
.

Moreover, 
4x

x3 − x2 − x+ 1
=

4x

(x− 1)2(x+ 1)
=

A

x− 1
+

B

(x− 1)2
+

C

(x + 1)
.
	  (6.3.3)

To f﻿ind C, we can use handcover (multiply by x+ 1 and set x = −1) to find C = −1. On the other hand, 
rewriting the right hand side of (6.3.3) as one fraction and identifying the numerators yields 

4x = A(x− 1)(x+ 1) +B(x+ 1) + C(x − 1)2,

in which x = 1  yields 4 = 2B , so that B = 2 . Differentiating gives 

4 = A(x− 1 + x+ 1) +B + 2C(x− 1)

in which x = 1  yields 4 = 2A+B , so that A = 1. Thus 

ˆ
x4 − 2x2 + 4x+ 1

x3 − x2 − x+ 1
dx =

ˆ
x+ 1 +

1

x− 1
+

2

(x− 1)2
− 1

x+ 1
dx

=
x2

2
+ x+ ln |x− 1| − 2

x− 1
− ln |x+ 1|+ C.
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6.4	 with irreducible quadratic factors

Watch the video at 

https://www.youtube.com/watch?v=3rszFlSL2AI&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&ind
ex=41 

Abstract

This videos presents the form of the decomposition into partial fractions for a rational function 
whose denominator contains a (non-repeated) irreducible quadratic factor, goes over the 
method to integrate the corresponding term, and presents examples. 

If the denominator q(x)  of a rational function r(x)q(x) in lowest terms contains an irreducible quadratic term 
ax2 + bx+ c  with b2 − 4ac < 0, then the decomposition into partial fractions of r(x)q(x) contains the term 

Ax+B

ax2 + bx+ c
,

where A and B are constants to be determined. 
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Example 6.4.1. For instance, the decomposition into partial fractions of 2x+3
x4+9x2  has the form 

2x+ 3

x4 + 9x2
=

2x+ 3

x2(x2 + 9)
=

A

x
+

B

x2
+

Cx+D

x2 + 9
,

where A, B, C and D are constants to be determined. On the other hand 

5x+ 4

x2 + x+ 1

is already a partial fraction and cannot be decomposed any further, since x2 + x+ 1  is irreducible. 

Example 6.4.2. Evaluate 

ˆ
2x2 − x+ 4

x3 + 4x
dx.

Solution. The form of the decomposition into partial fractions is 

2x2 − x+ 4

x3 + 4x
=

2x2 − x+ 4

x(x2 + 4)
=

A

x
+

Bx+ C

x2 + 4
.

To find A, B and C, we use the system method: 

2x2 − x+ 4 = A(x2 + 4) +Bx2 + Cx

= (A+B)x2 + Cx+ 4A

so that 






A+B = 2

C = −1

4A = 4

⇐⇒






A = 1

B = 1

C = −1 .

Thus 

ˆ
2x2 − x+ 4

x3 + 4x
dx =

ˆ
1

x
+

x− 1

x2 + 4
dx

= ln |x|+
ˆ

x

x2 + 4
dx−

ˆ
dx

x2 + 4
,

and using the substitution u = x2 + 4  (du = 2x dx ) in the first integral and (2.5.1) in the second, we obtain 

ˆ
2x2 − x+ 4

x3 + 4x
dx = ln |x|+ 1

2
ln(x2 + 4)− 1

2
arctan

(x
2

)
+ C.
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General method to integrate a partial fraction Ax+B
ax2+bx+c  where ax2 + bx+ c  is irreducible (that is, 

b2 − 4ac < 0). 

1)	 Complete the square in ax2 + bx+ c : 

ax2 + bx+ c = a

(
x2 +

b

a
x+

c

a

)
= a

((
x+

b

2a

)2

− b2

4a2
+

c

a

)

= a

((
x+

b

2a

)2

− (b2 − 4ac)

4a2

)
.

Because b2 − 4ac < 0, this is of the form 

a
(
u2 + α2

)

where u := x+ b
2a  and α :=

√
4ac−b2

2a
 . 

2)	 Thus, the substitution u := x+ b
2a , yields an integral of the form 

ˆ
Cu +D

u2 + α2
du

3)	 Split the integral: 

ˆ
Cu+D

u2 + α2
du = C

ˆ
u

u2 + α2
du+D

ˆ
du

u2 + α2
.

4)	 Calculate the first integral using the substitution v = u2 + α2  so that 

ˆ
u

u2 + α2
du =

1

2

ˆ
dv

v
=

1

2
ln(u2 + α2)

5)	 Calculate the second integral using (2.5.1) 
6)	 Rewrite the result in terms of x.

Example 6.4.3. Evaluate 

ˆ
4x2 − 3x+ 2

4x2 − 4x+ 3
dx.

Solution. Long division (or, equivalently, the observation that 
4x2 − 3x+ 2 = (4x2 − 4x+ 3) + (x− 1) ) gives 

ˆ
4x2 − 3x+ 2

4x2 − 4x+ 3
dx =

ˆ
1 +

x− 1

4x2 − 4x+ 3
dx.
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Because the discriminant ∆ = 16− 48 of the denominator is negative, 4x2 − 4x+ 3  is irreducible. 
Completing the square, we obtain 

4x2 − 4x+3 = 4

(
x2 − x+

3

4

)
= 4

((
x− 1

2

)2

− 1

4
+

3

4

)
= 4

((
x− 1

2

)2

+
1

2

)
.

Thus 
ˆ

4x2 − 3x+ 2

4x2 − 4x+ 3
dx =

ˆ
1 +

x− 1

4
((

x− 1
2

)2
+ 1

2

) dx,

and, letting u = x− 1
2  so that x− 1 = u− 1

2 , we obtain 
ˆ

4x2 − 3x+ 2

4x2 − 4x+ 3
dx = x+

1

4

ˆ
u− 1

2

u2 + 1
2

du

= x+
1

4

ˆ
u

u2 + 1
2

du− 1

8

ˆ
du

u2 + 1
2

= x+
1

2
ln

(
u2 +

1

2

)
− 1

8
·
√
2 arctan

(√
2u

)
+ C

= x+
1

2
ln

(
x2 − x+

3

4

)
−

√
2

8
arctan

(√
2

(
x− 1

2

))
+ C.

Exercises

you are now prepared to work on the Practice Problems, and Homework set M6B in the manual of 
exercises.
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6.5	 with repeated irreducible quadratic factors

Watch the videos at 

https://www.youtube.com/watch?v=LndYRZDClsY&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=42 

and 

https://www.youtube.com/watch?v=RtSYWe23opM&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=43 

Abstract

These videos discuss the form of the decomposition into partial fraction for a rational function 
whose denominator contains a repeated irreducible quadratic factor, and how to integrate the 
corresponding terms in the decomposition. This is illustrated on examples. 

If the denominator q(x)  of a rational function r(x)
q(x) in lowest terms contains a repeated irreducible 

quadratic term (ax2 + bx+ c)n  with b2 − 4ac < 0, then the decomposition into partial fractions of r(x)q(x) 
contains the terms 

A1x+B1

ax2 + bx+ c
+

A2x+B2

(ax2 + bx+ c)2
+ . . .+

Anx+Bn

(ax2 + bx+ c)n
,

where A1, . . . , An  and B1, . . . , Bn  are constants to be determined. 

Example 6.5.1. For instance, the form of the decomposition of 

4x+ 5

(x+ 1)(x− 2)2(x2 + 4)(x2 + x+ 1)2

is 

4x+ 5

(x+ 1)(x− 2)2(x2 + 4)(x2 + x+ 1)2
=

A

x+ 1
+

B

x− 2
+

C

(x− 2)2
+
Dx+ E

x2 + 4
+

Fx+G

x2 + x+ 1
+

Hx+ I

(x2 + x+ 1)2
.

General method to integrate Ax+B
(ax2+bx+c)n  for b2 − 4ac < 0 and n > 1

This is in part based on the method to integrate Ax+B
ax2+bx+c  on page 108. 

1)	 Complete the square in ax2 + bx+ c  so that 

1

an
Ax +B((

x+ b
2a

)2
+ 4ac−b2

4a2

)n
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2)	 The substitution u := x+ b
2a  yields an integral of the form 

ˆ
Cu +D

(u2 + α2)
n du

3)	 Split the integral: 
ˆ

Cu+D

(u2 + α2)
n du = C

ˆ
u

(u2 + α2)
n du+D

ˆ
du

(u2 + α2)
n .

4)	 The first integral can be calculated with the substitution v = u2 + α2 : 

ˆ
u

(u2 + α2)
n du =

1

2

ˆ
dv

vn
=

v1−n

2(1− n)
.

5)	 The second integral can be calculated using trigonometric substitution as in Example 5.4.8: 
we use u = α tan θ  for −π

2 < θ < π
2  so that du = α sec2 θ dθ  and 

ˆ
du

(u2 + α2)
n = α

ˆ
sec2 θ(

α2(tan2 θ + 1)
)n dθ

=
α

α2n

ˆ
sec2 θ

sec2n θ
dθ

=
1

α2n−1

ˆ
cos2(n−1) θ dθ,

and this can be evaluated as explained in Case 2 of Section 5.1. 

6)	 Rewrite your answer in terms of x.

Example 6.5.2. Evaluate 

ˆ
1− x+ 2x2 − x3

x(x2 + 1)2
dx.

Solution. The numerator has degree less than the denominator, so the form of the decomposition into 
partial fractions is 

1− x+ 2x2 − x3

x(x2 + 1)2
=

A

x
+

Bx+ C

x2 + 1
+

Dx+ E

(x2 + 1)2

=
A(x2 + 1)2 + (Bx+ C)x(x2 + 1) + (Dx+ E)x

x(x2 + 1)2
,

so that, identifying numerators and reordering the terms on the right hand side, we have 

−x3 + 2x2 − x+ 1 = x4(A+B) + x3(C) + x2(2A+B +D) + x(C + E) +A.
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Thus, identifying the coefficients of corresponding degree: 






A+B = 0

C = −1

2A+B +D = 2

C + E = −1

A = 1

⇐⇒






A = 1

B = −1

C = −1

D = 1

E = 0

and we have 

	 ˆ
1− x+ 2x2 − x3

x(x2 + 1)2
dx =

ˆ
1

x
− x+ 1

x2 + 1
+

x

(x2 + 1)2
dx

= ln |x| −
ˆ

x

x2 + 1
dx−

ˆ
dx

x2 + 1
+

ˆ
x

(x2 + 1)2
dx

= ln |x| − 1

2

ˆ
du

u
− arctanx+

1

2

ˆ
du

u2
u = x2 + 1 du = 2x dx

= ln |x| − 1

2
ln |u| − arctanx− 1

2u
+ C

= ln |x| − 1

2
ln(x2 + 1)− arctanx− 1

2(x2 + 1)
+ C.
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Example 6.5.3. Evaluate 
ˆ

x+ 1

(x2 + x+ 1)2
dx.

Solution. This is already a partial fraction of the type Ax+B
(ax2+bx+c)n  for b2 − 4ac < 0 as discussed above. 

Thus, we first need to complete the square: 

x2 + x+ 1 =

(
x+

1

2

)2

− 1

4
+ 1 =

(
x+

1

2

)2

+
3

4
,

and then substitute u = x+ 1
2 , so that x = u− 1

2  and 

ˆ
x+ 1

(x2 + x+ 1)2
dx =

ˆ
u− 1

2 + 1
(
u2 + 3

4

)2 du

=

ˆ
u

(
u2 + 3

4

)2 du+
1

2

ˆ
du

(
u2 + 3

4

)2 .

We evaluate the first integral by substitution, using v = u2 + 3
4  so that dv = 2u du  and 

ˆ
u

(
u2 + 3

4

)2 du =
1

2

ˆ
dv

v2
= − 1

2v
= − 1

2
(
u2 + 3

4

) = − 1

2 (x2 + x+ 1)
.

To evaluate the second integral, we use trigonometric substitution with u =
√
3
2 tan θ  and −π

2 < θ < π
2  . 

Then du =
√
3
2 sec2 θ dθ  and 

	

ˆ
du

(
u2 + 3

4

)2 =

√
3

2

ˆ
sec2 θ

(
3
4

(
tan2 θ + 1

))2 dθ

=

√
3

2
· 16
9

ˆ
sec2 θ

(sec2 θ)
2 dθ

=
8
√
3

9

ˆ
cos2 θ dθ

=
8
√
3

9

ˆ
1 + cos 2θ

2
dθ

=
4
√
3

9

(
θ +

1

2
sin(2θ)

)
+ C

=
4
√
3

9
(θ + sin θ cos θ) + C (4.2.1)
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On the other hand, as tan θ = 2u√
3

, we can represent the situation on the following triangle

 

on which we read that 

sin θ cos θ =
2
√
3u

(√
4u2 + 3

)2 =

√
3(2x+ 1)

4x2 + 4x+ 4
.

Given that θ = arctan
(

2u√
3

)
= arctan

(
2x+1√

3

)
, we conclude that 

ˆ
du

(
u2 + 3

4

)2 =
4
√
3

9
(θ + sin θ cos θ) + C

=
4
√
3

9

(
arctan

(
2x+ 1√

3

)
+

√
3(2x+ 1)

4x2 + 4x+ 4

)
+ C

and thus 

ˆ
x+ 1

(x2 + x+ 1)
2 dx =

ˆ
u

(
u2 + 3

4

)2 du+
1

2

ˆ
du

(
u2 + 3

4

)2

= − 1

2 (x2 + x+ 1)
+

2
√
3

9

(
arctan

(
2x+ 1√

3

)
+

√
3(2x+ 1)

4x2 + 4x+ 4

)
+ C.

Exercises

you are now prepared to work on the Practice Problems, and Homework set M6C in the manual of 
exercises.
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7	 M7: Improper Integrals
7.1	 Improper integrals of type I

Watch the videos at 

https://www.youtube.com/watch?v=DkWSsckVrpg&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=44

and 

https://www.youtube.com/watch?v=twK6qeDVEww&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=45 

Abstract

These two videos introduce and define improper integrals of type I, that is, 

ˆ a

−∞
f(x) dx;

ˆ ∞

a

f(x) dx;

ˆ ∞

−∞
f(x) dx

and go over a number of explicit calculations.
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Definition 7.1.1 (Improper integrals of type I) 

1)	 If 
´ t
a
f(x) dx  exists for every t ≥ a , then 

ˆ ∞

a

f(x) dx := lim
t→∞

ˆ t

a

f(x) dx

is called convergent if the limit is finite, and divergent if the limit does not exist. 

2)	 If 
´ b
t f(x) dx  exists for every t ≤ b , then 

ˆ b

−∞
f(x) dx := lim

t→−∞

ˆ b

t

f(x) dx

is called convergent if the limit is finite, and divergent if the limit does not exist. 

3)	 If both 
´ a
−∞ f(x) dx  and 

´∞
a

f(x) dx  are convergent then 
ˆ ∞

−∞
f(x) dx :=

ˆ a

−∞
f(x) dx+

ˆ ∞

a

f(x) dx

is convergent, and divergent otherwise. 

Proposition 7.1.2. Let p be a real number. Then 

ˆ ∞

1

dx

xp

is convergent if and only if p > 1 .

Example 7.1.3. Are the following integrals convergent or divergent. If convergent, find the value: 

1)	 ˆ 0

−∞

dx

2x− 5

Solution. 

ˆ 0

−∞

dx

2x− 5
= lim

t→−∞

ˆ 0

t

dx

2x− 5

= lim
t→−∞

1

2

ˆ −5

2t−5

du

u
u = 2x− 5

= lim
t→−∞

1

2
[ln |u|]−5

2t−5

= lim
t→−∞

1

2
(ln 5− ln |2t− 5|) = −∞,

so that the integral is divergent.
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2)	  ˆ ∞

0

x

(x2 + 2)2
dx

Solution. 

ˆ ∞

0

x

(x2 + 2)2
dx = lim

t→∞

ˆ t

0

x

(x2 + 2)2
dx

= lim
t→∞

1

2

ˆ t2+2

2

du

u2
u = x2 + 2

= lim
t→∞

[
− 1

2u

]t2+2

2

= lim
t→∞

1

4
− 1

2 (t2 + 2)
=

1

4
.

3)	 ˆ −1

−∞
e−2t dt

Solution. 

ˆ −1

−∞
e−2t dt = lim

x→−∞

ˆ −1

x

e−2t

= lim
x→−∞

[
−1

2
e−2t

]−1

x

= lim
x→−∞

1

2e2x
− e2

2
= ∞,

so that the integral is divergent.

4)	
	

ˆ ∞

−∞

dx

1 + x2

Solution. 

ˆ ∞

0

dx

1 + x2
= lim

t→∞

ˆ t

0

dx

1 + x2

= lim
t→∞

[arctanx]
t
0

= lim
t→∞

arctan t =
π

2

and 
ˆ 0

−∞

dx

1 + x2
= lim

t→−∞

ˆ 0

t

dx

x2 + 1
= lim

t→−∞
[arctan t]

0
t = lim

t→−∞
− arctan t =

π

2
.

Thus ˆ ∞

−∞

dx

1 + x2
=

ˆ 0

−∞

dx

1 + x2
+

ˆ ∞

0

dx

1 + x2
=

π

2
+

π

2
= π.
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5)	 ˆ ∞

0

cos2 θ dθ

Solution. 

ˆ ∞

0

cos2 θ dθ = lim
t→∞

ˆ t

0

cos(2θ) + 1

2
dθ

= lim
t→∞

[
θ

2
+

1

4
sin(2θ)

]t

0

= lim
t→∞

t

2
+

1

4
sin(2t) = ∞,

so that the integral is divergent.

Exercises

you are now prepared to work on the Practice Problems, and Homework set M7A in the manual of 
exercises.
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7.2	 Improper integrals of type II

Watch the videos at 

https://www.youtube.com/watch?v=ISndl7-oAN0&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&ind
ex=46 

and 

https://www.youtube.com/watch?v=hXTcKdCMx0c&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=47 

Abstract

These videos introduce and define improper integrals of type II, that is, integrals of functions 
on a closed interval, that have discontinuities. They go over several examples of calculations.

Definition 7.2.1 (Improper integrals of type II) 

1)	 If f is continuous on [a, b) and discontinuous at b then 
ˆ b

a

f(x) dx := lim
t→b−

ˆ t

a

f(x) dx

is convergent if the limit is finite, and divergent if the limit does not exist. 

2)	 If f is continuous on (a, b]  and discontinuous at a then 
ˆ b

a

f(x) dx := lim
t→a+

ˆ b

t

f(x) dx

is convergent if the limit is finite, and divergent if the limit does not exist. 

3)	 If f is continuous on [a, b]  except at c ∈ (a, b)  then 
ˆ b

a

f(x) dx :=

ˆ c

a

f(x) dx +

ˆ b

c

f(x) dx

is convergent if and only if both improper integrals are convergent. 
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Example 7.2.2. Are the following improper integrals convergent or divergent? If convergent, find its value. 

1)	 ˆ 3

0

dx

x
√
x

Solution. The only discontinuity on [0, 3]  is 0. Thus 

ˆ 3

0

dx

x
√
x

= lim
t→0+

ˆ 3

t

dx

x
√
x
= lim

t→0+

ˆ 3

t

x− 3
2 dx

= lim
t→0+

[
− 2√

x

]3

t

= lim
t→0+

2√
t
− 2√

3
= ∞

and the integral is divergent.

2)	 ˆ 9

1

dx
3
√
x− 9

Solution. The only discontinuity on [1, 9] is 9. Thus 

ˆ 9

1

dx
3
√
x− 9

= lim
t→9−

ˆ t

1

dx
3
√
x− 9

= lim
t→9−

ˆ t

1

(x− 9)−
1
3 dx

= lim
t→9−

[
3

2
(x− 9)

2
3

]t

1

= lim
t→9−

3

2
(t− 9)

2
3 − 6 = −6.

3)	 ˆ 4

0

dx

x2 + x− 6

Solution. Since x2 + x− 6 = (x − 2)(x+ 3), the only discontinuity on [0, 4] is 2. Moreover 
ˆ 2

0

dx

x2 + x− 6
= lim

t→2−

ˆ t

0

dx

(x− 2)(x+ 3)
= lim

t→2−

ˆ t

0

A

x− 2
+

B

x+ 3
dx

and the handcover method easily yields A = 1
5  and B = − 1

5 . Thus 

ˆ 2

0

dx

x2 + x− 6
= lim

t→2−

1

5

ˆ t

0

1

x− 2
− 1

x+ 3
dx

= lim
t→2−

1

5
[ln |x− 2| − ln |x+ 3|]t0 = −∞

because limt→2− ln |t− 2| = −∞ . Hence 
´ 2
0

dx
x2+x−6

 and thus 
´ 4
0

dx
x2+x−6

 are divergent.
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4)	 ˆ 1

0

lnx√
x
dx

Solution. The only discontinuity on [0, 1] is 0. Thus 

ˆ 1

0

lnx√
x
dx = lim

t→0+

ˆ 1

t

lnx√
x
dx.

We proceed by parts with u = lnx  and dv = x− 1
2 dx  so that du = dx

x  and v = 2
√
x . Then 

ˆ 1

0

lnx√
x
dx = lim

t→0+

([
2
√
x lnx

]1
t
− 2

ˆ 1

t

dx√
x

)

= lim
t→0+

[
2
√
x lnx− 4

√
x
]1
t

= lim
t→0+

−4−
√
t (2 ln t− 4) .

Moreover, 

lim
t→0+

√
t ln t = lim

t→0+

ln t
1√
t

H
= lim

t→0+

1
t

− 1
2 t

− 3
2

= lim
t→0+

−2t
1
2 = 0.

Thus 
ˆ 1

0

lnx√
x
dx = lim

t→0+
−4−

√
t (2 ln t− 4) = −4.
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7.3	 Comparison for improper integrals

Watch the videos at 

https://www.youtube.com/watch?v=-DHgr52BHlc&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=48

and 

https://www.youtube.com/watch?v=vWNqvlB0F8Y&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=49 

Abstract

In these videos, the method of comparison for improper integrals is presented, general 
statements given, and several examples illustrate the method.
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Theorem 7.3.1 (Comparison for improper integrals (type I)) If f and g are continuous on [a,∞)  with 

f(x) ≥ g(x) ≥ 0 x ≥ a

then 

1)	 If 
´∞
a

f(x) dx  is convergent, so is 
´∞
a

g(x) dx . 
2)	 If 

´∞
a

g(x) dx  is divergent, so is 
´∞
a

f(x) dx . 

Theorem 7.3.2 (Comparison for improper integrals (type II)) If f and g are continuous on [a, b) and 
discontinuous at b with 

f(x) ≥ g(x) ≥ 0 a ≤ x < b

then 

1)	 If 
´ b
a f(x) dx  is convergent, so is 

´ b
a g(x) dx . 

2)	 If 
´ b
a g(x) dx  is divergent, so is 

´ b
a f(x) dx . 

Remark 7.3.3. We leave it to you to write out the obvious analogues of Theorem 7.3.1 for integrals of the 
type 

´ b
−∞ f(x) dx  and of  Theorem 7.3.2  for integrals of the type 

´ b
a f(x) dx , where f  is discontinuous at a.

Example 7.3.4. Is 
´∞
0

e−x2

dx  convergent? 

Solution. For x ≥ 1 , we have x2 ≥ x  and thus 

e−x ≥ e−x2

≥ 0.

Moreover 
ˆ ∞

1

e−x = lim
t→∞

[
−e−x

]t
1
= lim

t→∞

1

e
− 1

et
=

1

e

is convergent. By comparison (Theorem 7.3.1), so is 
´∞
1

e−x2

dx . since 

ˆ ∞

0

e−x2

dx =

ˆ 1

0

e−x2

dx+

ˆ ∞

1

e−x2

dx

and 
´ 1
0 e−x2

dx  is finite, we conclude that 
´∞
0

e−x2

dx  is convergent.
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Example 7.3.5. Decide whether the following integrals are convergent or divergent. 

1)	 ˆ ∞

1

1 + | cosx|
x

dx

Solution. Since 

1 + | cosx|
x

≥ 1

x
≥ 0

on [1,∞) , and 
´∞
1

dx
x  is divergent by Proposition 7.1.2, we conclude from Theorem 7.3.1 that 

´∞
1

1+| cosx|
x dx  is also divergent.

2)	 ˆ ∞

1

2 + e−x

x2
dx

Solution. Note that for x ≥ 1 , e−x ≤ e−1 ≤ 1 so that 

0 ≤ 2 + e−x

x2
≤ 3

x2
.

Moreover, 
´∞
1

3
x2 dx = 3

´∞
1

dx
x2  is convergent (by Proposition 7.1.2). Thus, by comparison 

´∞
1

2+e−x

x2 dx  is also convergent.

3)	
ˆ ∞

1

x√
1 + x6

dx

Solution. Since 1 + x6 ≥ x6  we conclude that 
√
1 + x6 ≥

√
x6 = x3  so that 

1

x2
=

x

x3
≥ x√

1 + x6

for every x ≥ 1 . Since 
´∞
1

dx
x2  is convergent, so is 

´∞
1

x√
1+x6

dx .

4)	
ˆ 1

0

e−x

√
x
dx

Solution. The only discontinuity on [0, 1]  is 0. On the other hand, for 0 ≤ x ≤ 1 , we have 

e−1 ≤ e−x ≤ e0 = 1
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so that 

e−1

√
x

≤ e−x

√
x

≤ 1√
x
.

Moreover, 
ˆ 1

0

dx√
x
= lim

t→0+

ˆ 1

t

dx√
x
= lim

t→0+

[
2
√
x
]1
t
= lim

t→0+
2− 2

√
t = 2

is convergent, so that, by Theorem 7.3.2, 
´ 1
0

e−x
√
x
dx  is also convergent.

Exercises

you are now prepared to work on the Practice Problems, and Homework set M7B in the manual of 
exercises.

Before turning to Chapter 8, you should also take Mock Test 2.
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8	 M8: Parametric Curves
8.1	 Introduction to parametric curves 

Watch the videos at 

https://www.youtube.com/watch?v=5qIxW9ZvyIw&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=50 

and 

https://www.youtube.com/watch?v=4yaxDE-NOI0&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=51 

Abstract

These two videos introduce the notion of a parametric curve and of parametric equations for 
such a curve. They show on examples that there are many ways to parametrize a curve. An 
example of parametric curve is sketched, and a parametrization is found for a curve described 
by mechanical motion. 

A parametric curve in the plane is the image of parametric equations 
{
x = f(t)

y = g(t)
, t ∈ I

where t is the parameter, ranging in an interval I. A given (parametric) curve in the plane may have a 
number of parametrizations, that is, sets of parametric equations that represent the curve. One might think 
of a parametric curve as the trajectory of a moving object (in the plane), and of parametric equations as 
describing the position at a given time, hence encoding how the curve is traced out (in what direction, 
at what speed, etc).

For instance, the unit circle x2 + y2 = 1  can be parametrized by 
{
x = cos t

y = sin t
∈ π

{
x = cos(2t)

y = sin(2t)
∈ π

CORRECTIONS 3

• page 99, in the equation after “To find B”, x = 1 should be above =⇒, and
not above 1:

x2 + 2x− 1

x(x+ 1)
=

A(x− 1)

x
+B +

C(x− 1)

(x+ 1)

x=1
=⇒ 1 = B

• page 100 top: (6.2.2) should link to page 99 instead of 101
• page 103 Abstract: “, and explain” should be “, and explains”
• page 105: The link (6.3.3) links to page 107 instead of 105
• page 107, Example 6.4.1. There is a change of font size after the equation.
• page 110, Abstract: “corresponding term” should be “corresponding terms”
• page 111, 5) “Example 73” should be “Example 5.4.8” and should link to

page 95.
• page 115, Abstract: “goes over” should be “go over”
• page 116, Proposition 7.1.2: the text should be italicized, like in other

propositions. Moreover, there seems to be a change of font size after the
formula

• page 123, Example 7.3.4 “Solution” should be italicized but not “For”, “we
have”, “and thus”, and “Moreover”

• page 126, Abstract: “They show on example” should be “They show on
examples”

• page 126, the third set of parametric equations for the unit circle should be
(there was an extra t ):

{
x = cos(2t)

y = sin(2t)
t∈[0,2π)(the circle is then described twice counterclockwise)

• page 133 Abstract: “out” should be “how”
• page 135, above the curve: “left,and” should be “left, and”
• page 137, Example 8.4.1. beginning of Solution. “As see in” should be “As

seen in”
• page 139, Theorem 8.5.2 “from a to bS.” should be “from a to b.”
• page 141, Theorem 8.6.1: if possible, do not split the Theorem over 2 pages
• page 155 Proposition 8.2.1 should link to page 129.
• page 155, Example 9.3.1: “(9.2.3) gives” should be “(9.3.1) gives”. There is

no need to link, since the formula is on the same page.
• page 160, Example 9.5.2 “pounded by” should be “bounded by”
• page 161, first line: idem
• page 162, 1st line after abstract “the set N of natural numbers” should be

“the set N of natural numbers”
• page 162, line 5: idem: “ranging over N” should be “ranging over N”
• page 170, Abstract: “limit.s” should be “limit.”
• page 171, the formula (10.4.2) is incorrect and should be

P (n) =⇒ P (n+ 1).

• page 171, bottom “using (10.4.3) for nand n+1.” should be “using (10.4.3)
for n and n+ 1.”

• page 172 near bottom should be (implication problem)

an+1 > an =⇒ 2 + an+1 > 2 + an =⇒ an+2 =
√
2 + an+1 >

√
2 + an = an+1,

{
x = sin t

y = cos t
∈ π
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To sketch a parametric curve (from parametric equations), we study the variations of x and y as functions 
of the parameter t, and trace out the corresponding curve in the xy-plane. 

Example 8.1.1. Sketch the curve given by 
{
x = cos t

y = sin(2t)
t ∈ [0, 2π].

Solution. We draw x(t)  and y(t)  and then follow for various values of the parameter t the corresponding 
pair of coordinates (x, y) . On the picture below, we have represented in particular the point on the curve 
corresponding to t = π

4 .

 

Example 8.1.2. The cycloid is the trajectory of a point on a circle rolling without sliding on a straight line.
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We establish that, calling r the radius of the circle, and θ the angle between the radius joining the center 
of the circle with the point of contact of the circle with the straight line, and the radius joining the center 
to the point whose trajectory we study, as below,

 

the equations 
{
x = r (θ − sin θ)

y = r (1− cos θ)
θ ∈ (−∞,∞)

form parametric equations describing the cycloid.
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8.2	 Tangent lines to parametric curves 

Watch the videos at 

https://www.youtube.com/watch?v=Gv3hS7REvtg&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=52 

and 

https://www.youtube.com/watch?v=_bET7G94aW0&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=53 

Abstract

In these videos, we study how to obtain the slope of the tangent line to a parametric curve at 
a point of given parameter, and how to find the points of a curve where the tangents have a 
given slope, are horizontal, or vertical. This is used to sketch a parametric curve.

Proposition 8.2.1. If f and g are differentiable functions and 
{
x = f(t)

y = g(t)
t ∈ I

are parametric equations of a curve, the slope of the tangent line to the curve at (f(a), g(a))  for a ∈ I  is 
given by 

dy

dx |t=a
=

dy
dt |t=a

dx
dt |t=a

=
y′(a)

x′(a)
,

provided that x′(a) �= 0. 

Note that if x′(a) = 0 and y′(a) �= 0  then the curve has a vertical tangent at the point of parameter a, 
while the tangent is horizontal if x′(a) �= 0 and y′(a) = 0 . 

Example 8.2.2. Find an equation of the tangent line to the curve 
{
x = t2 + t

y = t2 − t

at the point of parameter t = 0.
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Solution. The point of parameter 0 is (x(0), y(0)) = (0, 0) . The slope of the tangent line is 

y′(0)

x′(0)
=

2t+ 1

2t− 1 |t=0
=

1

−1
= −1,

so that the tangent line is y = −x .

Example 8.2.3. Find an equation of the tangent line to the curve 
{
x = e

√
t

y = t− ln(t2)

at the point of parameter t = 1.

Solution. The point of parameter 1 is (x(1), y(1)) = (e, 1). The slope of the tangent line is 

y′(1)

x′(1)
=

1− 2
t

e
√

t

2
√
t |t=1

= −2

e
.

Thus, an equation of the tangent line is 

y − 1 = −2

e
(x− e) .

Example 8.2.4. Find the points on the curve 

	

{
x = t(t2 − 3)

y = 3(t2 − 3)

where the tangent line is horizontal or vertical. Sketch the curve.

Solution. Since 

dy

dx
=

y′(t)

x′(t)
=

6t

3t2 − 3
=

2t

(t− 1)(t+ 1)
,

we see that the curve has an horizontal tangent when t = 0, that is, at (x(0), y(0)) = (0,−9), and a vertical 
tangent when t = −1 and when t = 1, that is, at 

(x(1), y(1)) = (−2,−6) (x(−1), y(−1)) = (2,−6).

Download free eBooks at bookboon.com



A youtube Calculus Workbook (Part II)

131 

M8: Parametric Curves

To sketch the curve, we can start with this information, combined with the variations of x(t)  and y(t) :

 

Following the variations of x(t)  and y(t) , a rough sketch indicates a self-intersection:

 

We can calculate explicitly the coordinates of this self-intersection point: two values t1  and t2  of the 
parameter correspond to the same point if 

{
t1(t

2
1 − 3) = t2(t

2
2 − 3)

3(t21 − 3) = 3(t22 − 3)
=⇒
t1 �=t2

t1 = −
√
3; t2 =

√
3,

and this parameters correspond to the point (0, 0). Hence the slopes of the tangent lines at (0, 0) 
correspond to 

y′(
√
3)

x′(
√
3)

=
√
3 y′(−

√
3)

x′(−
√
3)

= −
√
3,
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so that we obtain the following sketch:
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8.3	 Symmetry; concavity 

Watch the video at 

https://www.youtube.com/watch?v=s88vR9a3t0E&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&ind
ex=54 

Abstract

This video illustrates on the example of the astroid how to use symmetry to reduce the study of 
the curve to a smaller interval of the parameter, and how to study the concavity of the curve. 

Symmetry

A parametric curve can admit one or more axis of symmetry, as well as center of symmetry. There are 
different ways this can be reflected by the parametric equations. In the example treated here the curve 
has parametric equations 

{
x(θ) = 4 cos3 θ

y(θ) = 4 sin3 θ 	  (8.3.1)

and the interval for θ is not specified, but we want to study the curve on an interval large enough for us 
to be able to draw out the whole curve.

The first observation is that both x and y are 2π -periodic, so that we can restrict the study to interval 
of length 2π , for instance [−π, π]. 

The second observation is that 
{
x(−θ) = x(θ)

y(−θ) = −y(θ)

so that when a point of coordinates (x, y)  is on the curve, so is the point of coordinates (x,−y). In other 
words, the x-axis is an axis of symmetry for the curve and the transformation of the parameter θ �→ −θ  
corresponds to this reflection about y = 0 . Thus, we can study the curve on [0, π]  and obtain the second 
half of the curve by symmetry with respect to the x-axis.

Third, we observe that 
{
x (π − θ) = −x(θ)

y(π − θ) = y(θ)
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so that (−x, y) is on the curve whenever (x, y)  is. In other words, the y-axis is also an axis of symmetry 
for the curve, and θ �→ π − θ  corresponds to the reflection about x = 0 . Thus we can study the curve 
on [0, π2 ]  and obtain the other half of the part of the curve corresponding to [0, π]  by symmetry with 
respect to the y-axis.

Concavity

Just like for graphs of functions, the concavity of the curve depends on the sign of d
2y

dx2  along the curve. 
Specifically, the curve is concave up when d

2y
dx2 > 0  and concave down when d

2y
dx2 < 0 . To find d

2y
dx2  in terms 

of the parameter, say t, note that 

d2y

dx2
=

d

dx

(
dy

dx

)
=

d

dx

(
y′(t)

x′(t)

)
=

d

dt

(
y′(t)

x′(t)

)
· dt
dx

=
1

x′(t)
· d
dt

(
y′(t)

x′(t)

)
.

Sketching the graph

Returning to the example (8.3.1), we have seen that we only need to study the variations of x and y over 
[0, π2 ]  and then use symmetries with respect to both the x-axis and y-axis to complete the curve: 

x′(θ) = −12 cos2 θ sin θ ≤ 0
[
0, π

2

]

y′(θ) = 12 sin2 θ cos θ ≥ 0
[
0, π2

]
.
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We obtain the following variations, and tangents at the end points:

 

To complete the sketch, we need to know if the curve is concave up or concave down on this interval. Since 

d2y

dx2
=

1

x′(θ)
· d

dθ

(
y′(θ)

x′(θ)

)

=
−1

12 cos2 θ sin θ

d

dθ

(
12 sin2 θ cos θ

−12 cos2 θ sin θ

)

=
1

12 cos2 θ sin θ

d

dθ
(tan θ)

=
sec2 θ

12 cos2 θ sin θ
> 0

(
0, π2

)
.

The sketch on 
[
0, π2

]
 gives the part on the left, and completing the curve by symmetry we obtain the 

complete curve on the right:

 

Exercises

you are now prepared to work on the Practice Problems, and Homework set M8A in the manual of 
exercises.
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8.4	 plane areas 

Watch the video at 

https://www.youtube.com/watch?v=ZnnjO9PAnm8&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=55 

Abstract

This video extrapolates from the case of the graph of a continuous positive function to obtain 
a formula for the area between a parametric curve and the x-axis. This is illustrated on the 
case of the astroid. 

For the graph y = f(x)  of a non-negative continuous function f, 

 

the area under the graph over [a, b]  is 

ˆ b

a

f(x) dx =

ˆ b

a

y dx.

If we re-parametrize y = f(x)  in terms of a parameter t ∈ [α, β] , where x(α) = a , x(β) = b  and the 
curve is traversed exactly once as t increases from α to β, we can then rewrite the integral as 

ˆ b

a

y dx =

ˆ β

α

y(t)x′(t) dt.
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This approach can be applied to other parametric curves: 

Example 8.4.1. Find the area enclosed by the astroid 
{
x = 4 cos3 θ

y = 4 sin3 θ
 studied in Section 8.3.

Solution. As seen in Section 8.3, a sketch of the curve is as shown on the right hand side below
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The left hand side corresponds to the part of the curve corresponding to θ ∈
[
0, π

2

]
, where θ = 0  

corresponds to the point (4, 0) and θ = π
2  corresponds to (4, 0). Thus, the area under the curve on the 

left hand side can be represented as 

ˆ 0

π
2

y(θ)x′(θ) dθ = −
ˆ π

2

0

4 sin3 θ
(
−12 cos2 θ sin θ

)
dθ

= 48

ˆ π
2

0

sin4 θ cos2 θ dθ,

and we use the methods discussed in Section 5.1 to evaluate this integral: 

ˆ 0

π
2

y(θ)x′(θ) dθ = 48

ˆ π
2

0

(
1− cos 2θ

2

)2 (
1 + cos 2θ

2

)
dθ

=
48

8

ˆ π
2

0

1− cos 2θ − cos2 2θ + cos3 2θ dθ

= 6

ˆ π
2

0

1− cos 2θ − 1 + cos 4θ

2
dθ + 6

ˆ π
2

0

cos2(2θ) cos(2θ) dθ

= 6

[
θ

2
− 1

2
sin(2θ)− 1

8
sin(4θ)

]π
2

0

+ 6

ˆ π
2

0

(
1− sin2(2θ)

)
cos(2θ) dθ

= 6 · π
4
+

6

3

ˆ 0

0

1− u2 du u = sin(2θ) du = 2 cos(2θ) dθ

=
3π

2
.

Thus, by symmetry, the area enclosed by the astroid is 4 times this area, that is 6π .
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8.5	 arc length 

Remark 8.5.1. As background, you can review the case of the graph of a function here. 

Watch the videos at 

https://www.youtube.com/watch?v=vnLUGQ5gdF0&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=56 

and 

https://www.youtube.com/watch?v=_2v7b9UHmCc&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=57 

Abstract

A formula for the length of a piece of parametric curve is established and applied to a pair of 
examples.

Theorem 8.5.2 (Arc Length) Let C be a curve of parametric equations 
{
x = f(t)

y = g(t)
 for t ∈ [a, b] , where f, 

f ′ , g, and g′  are continuous on [a, b] and C is traversed exactly once as t increases from a to b. Then, the 

length of C is given by 

ˆ b

a

√
(f ′(t))2 + (g′(t))2 dt =

ˆ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

Since the graph of a function y = f(x)  can be seen as a parametric curve 
{
x = t

y = f(t)
, we obtain: 

Corollary 8.5.3. If f and f ′  are continuous on [a, b] then the length of y = f(x)  for a ≤ x ≤ b  is given by 

ˆ b

a

√
1 + (f ′(x))2 dx.

Example 8.5.4. Find the length of the curve 
{
x = t3

y = t2
, 0 ≤ t ≤ 4.
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Solution. x(t)  and y(t)  are continuous with continuous derivatives, and the curve is traversed once as t 
in increases from 0 to 4 because x(t)  and y(t)  are one-to-one on [0, 4]. Thus the length of the curve is 

L =

ˆ 4

0

√
(x′(t))2 + (y′(t))2 dt

=

ˆ 4

0

√
(3t2)

2
+ (2t)

2
dt

=

ˆ 4

0

√
9t4 + 4t2 dt =

ˆ 4

0

t
√

9t2 + 4 dt.

We proceed then by substitution with u = 9t2 + 4 , so that du = 18t dt  and 

L =
1

18

ˆ 148

4

√
udu =

1

18
· 2
3

[
u

3
2

]148
4

=
1

27

(
148

3
2 − 8

)
.

Example 8.5.5. Find the length of the astroid 
{
x = 4 cos3 θ

y = 4 sin3 θ
.

Solution. As we have seen from Section 8.3, the length of this astroid is four times the length of the part 
of the astroid corresponding to θ ∈

[
0, π

2

]
. Moreover, x(θ)  and y(θ)  are continuous with continuous 

derivatives, and one-to-one, on 
[
0, π2

]
. Thus, the length is 

L = 4

ˆ π
2

0

√
(x′(θ))2 + (y′(θ))2 dθ

= 4

ˆ π
2

0

√
(−12 cos2 θ sin θ)2 +

(
12 sin2 θ cos θ

)2

= 48

ˆ π
2

0

√
cos2 θ sin2 θ

(
cos2 θ + sin2 θ

)
dθ

= 48

ˆ π
2

0

cos θ sin θ dθ cos2 θ + sin2 θ = 1

= 24

ˆ π
2

0

sin(2θ) dθ sin(2θ) = 2 cos θ sin θ

= −12 [cos(2θ)]
π
2
0 = 24.
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8.6	 Surface area of surface of revolutions 

Watch the video at 

https://www.youtube.com/watch?v=LxjD6kUJAlM&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=58 

Abstract

Formulas for the area of a surface of revolution generated by rotating a parametric curve about 
an horizontal or vertical axis are established, and illustrated on examples.

Theorem 8.6.1 (Area of a surface of revolution) Let C be a curve of parametric equations 

{
x = f(t)

y = g(t)
 for 

t ∈ [a, b] , where f, f ′ , g, and g′  are continuous on [a, b]  and C is traversed exactly once as t increases from 

a to b. Then the surface area of the surface generated by rotating C about the x-axis is given by 

A = 2π

ˆ b

a

y(t)

√(
dx

dt

)2

+

(
dy

dt

)2

dt

and the surface area of the surface generated by rotating C about the y-axis is 

A = 2π

ˆ b

a

x(t)

√(
dx

dt

)2

+

(
dy

dt

)2

dt.
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Example 8.6.2. Find the surface area generated by rotating the curve 
{
x = et − t

y = 4e
t
2

, t ∈ [0, 1]

about the y-axis.

Solution. By Theorem 8.6.1,

A = 2π

ˆ 1

0

x(t)

√(
dx

dt

)2

+

(
dy

dt

)2

dt

= 2π

ˆ 1

0

(et − t)

√
(et − 1)

2
+
(
2e

t
2

)2

dt

= 2π

ˆ 1

0

(et − t)
√
e2t + 2et + 1 dt

= 2π

ˆ 1

0

(et − t)
√
(et + 1)2 dt

= 2π

ˆ 1

0

(et − t)(et + 1) dt

= 2π

ˆ 1

0

e2t + et − tet − t dt

= 2π

([
e2t

2
+ et − t2

2

]1

0

−
ˆ 1

0

tet dt

)
,

and we proceed by parts for the remaining integral, with u = t  and dv = et dt , so that du = dt  and v = et . 

A = 2π

(
e2 − 1

2
+ e− 3

2
−
[
tet − et

]1
0

)

= π
(
e2 + 2e− 6

)
.

Exercises

you are now prepared to work on the Practice Problems, and Homework set M8B in the manual of 
exercises.
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9	 M9: Polar Curves
9.1	 Polar coordinates

Watch the video at 

https://www.youtube.com/watch?v=8AnWt-pXsqc&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=59 

Abstract
In this video, we introduce the polar system of coordinates and how it is related to the Cartesian 
system. 
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To define a system of polar coordinates in the plane, we need to fix a point O, called pole, and a half-ray 
with O as origin called polar axis, and a unit of length. A point in the plane is then given by its distance 
to the pole r and the angle θ between the (positive) polar axis and the half-ray joining the pole to the 
point. The point is then given by the polar coordinates (r, θ)  as shown below:

 
Of course, in this system the pole has an infinite number of pairs of polar coordinates, because (0, θ)  
represents the pole, regardless of the value of θ. On the other hand, all other points of the plane are 
represented by unique polar coordinates only if we restrict ourselves to r ≥ 0  and θ ∈ [0, 2π) . We will 
not always make this assumption, in which case each point has many pairs of polar coordinates:
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Example 9.1.1. Plot the points of polar coordinates 
(
1, π2

)
, 
(
−2, π4

)
, (3, 2) .

Solution.

 

Polar system and Cartesian system

By convention, when a Cartesian system of coordinates is available, the associated polar system has the 
origin of the Cartesian system as pole, the positive x-axis as polar axis, and the same unit of length as 
the Cartesian system.
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With these conventions, we have 
{
x = r cos θ

y = r sin θ 	  (9.1.1)

r2 = x2 + y2 	  (9.1.2)

tan θ =
y

x
.

Example 9.1.2. Find the Cartesian coordinates of the points of polar coordinates 
(
2
√
2, 3π

4

)
 and 

(
−1, π3

)
.

Solution. If the polar coordinates are 
(
2
√
2, 3π

4

)
 then 

{
x = r cos θ = 2

√
2 cos 3π

4 = −2

y = r sin θ = 2
√
2 sin 3π

4 = 2

and the point has Cartesian coordinates (−2, 2). 

If the polar coordinates are 
(
−1, π3

)
 then 

{
x = r cos θ = − cos π

3 = − 1
2

y = r sin θ = − sin π
3 = −

√
3
2

and the point has Cartesian coordinates 
(
− 1

2 ,−
√
3
2

)
.
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9.2	 Polar regions and polar curves

Watch the videos at 

https://www.youtube.com/watch?v=0IK3LlokUVg&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=60 

and 

https://www.youtube.com/watch?v=HZx9e9DyqFI&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=61 

Abstract

These two videos give (sometimes rough) sketches of simple polar curves and polar regions 
of the plane.

Example 9.2.1. Find an equation in Cartesian coordinates of the curves given by the following equations 
in polar coordinates: 

1)	 	r = 2 .
Solution. As r2 = x2 + y2 , this is the circle of radius 2 centered at the origin, of Cartesian 
equation 

x2 + y2 = 4.
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2)	 	θ = 3π
4 .

Solution. This is the set of points of the plane on the line making an angle of 3π4  with the positive 
x-axis, that is, y = −x . Indeed, the pole is on the curve, and for x �= 0 , we have tan θ = y

x , that is, 

y = tan
3π

4
x = −x.

 

3)	 	r = 3 sin θ .
Solution. Since sin θ = y

r , we can rewrite this curve as r2 = 3y , that is, in Cartesian coordinates 

x2 + y2 = 3y ⇐⇒ x2 + y2 − 3y = 0

⇐⇒ x2 +

(
y − 3

2

)2

=
9

4

is the circle centered at 
(
0, 32

)
 of radius 32 .
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4)	 	r = cos θ .
Solution. Since cos θ = x

r , we can rewrite this curve as r2 = x , that is, in Cartesian coordinates 

x2 + y2 = x ⇐⇒ x2 − x+ y2 = 0

⇐⇒
(
x− 1

2

)2

+ y2 =
1

4

is the circle centered at 
(
1
2 , 0

)
 of radius 12 .
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Example 9.2.2. Sketch the following regions given in polar coordinates: 

1)	 	2 ≤ r ≤ 4 .
Solution. The curves r = 2  and r = 4  are the circles centered at the origin of respective radii 
2 and 4. The region 2 ≤ r ≤ 4  is the annulus between them:

 

2)	 	0 ≤ θ ≤ π
3 .

Solution. θ = 0  is the x-axis and θ = π
3  is the line through the origin of slope tan π

3 =
√
3 . The 

region 0 ≤ θ ≤ π
3  is the sector between these two lines:
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3)	 	0 ≤ θ ≤ π
3 , |r| ≥ 2 .

Solution. To the sector above, we add the condition that |r| ≥ 2 , that is, r ≥ 2  or r ≤ −2. In 
other words, we add the condition that points are outside of the disk centered at the origin 
of radius 2:
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4)	 	0 ≤ r ≤ 3 sin θ .
Solution. We have seen in question (2) that r = 3 sin θ  is the circle centered at (0, 3

2 )  of radius 
3
2 . In view of the picture below, we see that the region 0 ≤ r ≤ 3 sin θ  is the corresponding disk:
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Example 9.2.3. Sketch the polar curve r = sin(2θ) .

Solution. To sketch the curve, we first draw r = sin(2θ)  in the Cartesian coordinates θ and r in 
order to visualize the variations of r in terms of θ. Then we follow these variations in the polar 
coordinates (r, θ) : to this end, for each half ray through the origin defined by a value of θ, we 
plot the point at (signed) distance r(θ)  on this half-ray. Parts of the resulting curve traced out 
that way are sketched below for θ gradually increasing from 0 to 3π4 :

 

Download free eBooks at bookboon.com



A youtube Calculus Workbook (Part II)

154 

M9: Polar Curves

Completing the curve for θ ∈ [0, 2π] , we obtain:

 

To be fair, to obtain such a sketch, we need to find a few tangent lines, which is what we will discuss 
after the exercises.

Exercises

you are now prepared to work on the Practice Problems, and Homework set M9A in the manual of 
exercises.
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9.3	 tangent lines to polar curves

Watch the videos at 

https://www.youtube.com/watch?v=-Zh4SSUgRCs&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=62 

and 

https://www.youtube.com/watch?v=XCj9HearLzM&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=63 

Abstract
In these two videos, a formula is established for the slope of the tangent line to a polar curve 
at a given point of the curve, tangent lines at the pole are examined, and several examples of 
polar curves are sketched. 

Polar curves r = f(θ) can be seen, via (9.1.1), as parametric curves of the parameter θ: 
{
x = r cos θ = f(θ) cos θ

y = r sin θ = f(θ) sin θ
, 0 ≤ θ ≤ 2π.

Thus Proposition 8.2.1 regarding the slope of the tangent line to a parametric curve applies here to the 
effect that the slope of the tangent line to the point of r = f(θ) corresponding to θ = θ0 is 

dy

dx |θ=θ0
=

y′(θ0)

x′(θ0)
=

f ′(θ0) sin θ0 + f(θ0) cos θ0
f ′(θ0) cos θ0 − f(θ0) sin θ0

. 	  (9.3.1)

Note also that when the curve goes through the pole for θ = θ0, that is, when f(θ0) = 0 , then 

dy

dx |θ=θ0
= tan θ0

is the slope of the line θ = θ0, which is the corresponding tangent line! 

Example 9.3.1. Find the slope of the tangent lines to the polar curve r = sin(2θ)  (see Example 
9.2.3) for θ = π

4  and θ = π
2 . 

Solution. Since r′(θ) = 2 cos(2θ) , (9.3.1) gives 

dy

dx |θ=π
4

=
2 cos π

2 sin π
4 + sin π

2 cos π
4

2 cos π
2 cos π

4 − sin π
2 sin π

4

=
cos π

4

− sin π
4

= −1.
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On the other hand, for θ = π
2 , r = 0 , so that the corresponding tangent line at the pole is the vertical 

line θ = π
2  (or x = 0 ).

Example 9.3.2 (Cardioid) Sketch the polar curve r = 1− cos θ .

Solution. First we look at the variations of r as a function of θ. Since r′(θ) = sin θ , we have:

 

Moreover, r = 0  for θ = 0  and θ = 2π , so that the tangent at the pole is horizontal. The tangent line at  
θ has slope 

dy

dx
=

r′ sin θ + r cos θ

r′ cos θ − r sin θ
=

sin2 θ − cos2 θ + cos θ

2 sin θ cos θ − sin θ
,

so that the slope for θ = π
2  is −1, the slope at π  is infinite and the tangent is therefore vertical, and the 

slope for θ = 3π
2  is 1. Taking all this into account, we obtain the following sketch:
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Example 9.3.3 (cardioid with a loop) Sketch the polar curve r =
√
3
2 + sin θ .

Solution. First, we look at the variations of r as a function of θ. Note that r′(θ) = cos θ , and 
r = 0  for sin θ = −

√
3
2

, that is, for θ = 4π
3  or θ = 5π

3 . Thus, we obtain the following variations:

 

Moreover, 

dy

dx
=

r′ sin θ + r cos θ

r′ cos θ − r sin θ

=
cos θ sin θ +

(√
3
2 + sin θ

)
cos θ

cos2 θ −
(√

3
2 + sin θ

)
sin θ

,

so that 

dy

dx |θ=0
=

√
3

2
dy
dx |θ=π

2

= dy
dx |θ= 3π

2

= 0.

Note also that θ = 4π
3  and θ = 5π

3  are tangent lines at the pole. Taking all this into account, we obtain 
the following sketch:
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9.4	 arc length for polar curves

Watch the video at 

https://www.youtube.com/watch?v=phr8Ulc_N9k&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=64

Abstract

The formula for the length of a piece of parametric curve is particularized to a polar curve 
r = f(θ), and length of example of polar curves are calculated. 

Theorem 8.5.2 is applied to the case of a curve r = f(θ), interpreted as a parametric curve 
{
x = f(θ) cos θ

y = f(θ) sin θ
, 0 ≤ θ ≤ 2π
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to the effect that: 

Proposition 9.4.1. If r = f(θ) has a continuous first derivative for a ≤ θ ≤ b  and if the curve r = f(θ) 
is traced exactly once as θ runs from a to b, then the length of the curve is given by 

L =

ˆ b

a

√

r2 +

(
dr

dθ

)2

dθ.

Example 9.4.2. Find the length of the polar curve r = 5 cos θ  for 0 ≤ θ ≤ 3π
4 .

Solution. The assumptions of Proposition 9.4.1 are satisfied, so that the length is given by 

L =

ˆ 3π
4

0

√
25 cos2 θ + 25 sin2 θ dθ = 5

ˆ 3π
4

0

dθ = 5 · 3π
4

=
15π

4
.

Example 9.4.3. Find the length of the polar curve r = θ2  for 0 ≤ θ ≤ 2π .
Solution. The assumptions of Proposition 9.4.1 are satisfied, so that the length is given by 

L =

ˆ 2π

0

√
r2 + (r′)2 dθ

=

ˆ 2π

0

√
θ4 + (2θ)2 dθ

=

ˆ 2π

0

√
θ2 (θ2 + 4)dθ

=

ˆ 2π

0

θ
√
θ2 + 4 dθ

=
1

2

ˆ 4π2+4

4

√
udu u = θ2 + 4

=

[
1

3
u

3
2

]4π2+4

4

=
1

3

((
4π2 + 4

) 3
2 − 8

)
.

Example 9.4.4. Find the length of the polar curve r = 1+ cos θ  for 0 ≤ θ ≤ π .
Solution. The assumptions of Proposition 9.4.1 are satisfied, so that the length is given by 

L =

ˆ π

0

√
r2 + (r′)2 dθ

=

ˆ π

0

√
1 + 2 cos θ + cos2 θ + sin2 θ dθ

=

ˆ π

0

√
2(1 + cos θ) dθ

=
√
2

ˆ π

0

√

1 + 2 cos2
(
θ

2

)
− 1 dθ

= (
√
2)2
ˆ π

0

∣∣∣∣cos
(
θ

2

)∣∣∣∣ dθ cos θ
2 ≥ 0 [0, π]

= 4

[
sin

θ

2

]π

0

= 4.
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9.5	 area enclosed by a sector of a polar curve

Watch the video at 

https://www.youtube.com/watch?v=hBBjAfsyxw8&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&ind
ex=65 

Abstract
A formula is established for the area enclosed by an angular sector and a polar curve r = f(θ), 
and several examples illustrate the use of the formula.

Proposition 9.5.1. The area of the plane region bounded by two half-rays θ = a  and θ = b , and by a 
polar curve r = f(θ) is given by 

A =
1

2

ˆ b

a

(f(θ))2 dθ =
1

2

ˆ b

a

r2dθ.

Example 9.5.2. What is the area represented below 

 

Solution. This is the area of the plane region bounded by the half rays θ = 0  and θ = π , and 
the polar curve r = θ . In view of Proposition 9.5.1, 

A =
1

2

ˆ π

0

θ2 dθ =
1

2

[
θ3

3

]π

0

=
π3

6
.

Example 9.5.3. What is the area represented below 
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Solution. This is the area of the plane region bounded by the half rays θ = −π
2  and θ = π

2 , and 
the polar curve r = 4+ 3 sin θ . In view of Proposition 9.5.1, 

A =
1

2

ˆ π
2

−π
2

(4 + 3 sin θ)
2
dθ

=
1

2

ˆ π
2

−π
2

16 + 24 sin θ + 9 sin2 θ dθ

= [8θ − 12 cos θ]
π
2

−π
2
+

9

2

ˆ π
2

−π
2

sin2 θ dθ

= 8π +
9

4

ˆ π
2

−π
2

1− cos 2θ dθ

= 8π +
9

4

[
θ − 1

2
sin 2θ

]π
2

−π
2

=
41π

4
.

Exercises

you are now prepared to work on the Practice Problems, and Homework set M9B in the manual of 
exercises.

Before turning to Chapter 10, you should also take Mock Test 3.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

 - 
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future 

AxA globAl grAduAte 
progrAm 2015 

axa_ad_grad_prog_170x115.indd   1 19/12/13   16:36

http://s.bookboon.com/AXA


A youtube Calculus Workbook (Part II)

162 

M10: Sequences and Series

10	 M10: Sequences and Series
10.1	 Sequences

Watch the video at 

https://www.youtube.com/watch?v=tF9gna3hxDM&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=66 

Abstract

 In this video, various ways of defining a sequence are examined. 

Formally, a sequence of real numbers is a real valued function defined on the set s : N → R of natural numbers: 
s : N → R . Thus a sequence is determined by the ordered list of its values 

{s(1), s(2), . . . , s(n), . . .}

which we denote {s(n)}∞n=1 , where the index n is an integer ranging from 1 to ∞, that is, ranging over 
s : N → R. To avoid to have too many parenthesis, we write 

sn := s(n)

for the nth value in the ordered list, and accordingly, the sequence is denoted 

{sn}∞n=1 .

A sequence can be defined in various ways: 

•	 By an explicit formula giving the nth term. For instance 

	
{

n+ 1

n2 + 2

}∞

n=1

=

{
2

3
,
1

2
,
4

11
, . . .

}
.

When a sequence is given under this form, it is easy to calculate any term in the sequence, by 
simply plugging in the corresponding value of n. For example, the 1000nd  term in the above 
sequence is 1000

106+2 . 
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•	 By the first few terms, thus implying a specific pattern. For instance, if a sequence is given 
by its first 5 terms {1, 3, 5, 7, 9, . . .} , it is implicitly understood that we are considering the 
sequence of odd integers, which could also be given explicitly as {2n− 1}∞n=1 . 

•	 The ordered list may start at a number different from 1. For instance 

{√
n2 − 9

}∞

n=3
=

{√
n2 − 9

}

n≥3
=

{
0,
√
7,4, . . .

}

is a well-defined sequence. 

•	 By a non-numeric definition of the nth term. For instance, {pn}∞n=1 , where pn  is the world 
population n years from today 

•	 By induction, that is, by giving the first term or first few terms, and a rule to calculate the 
next term from the preceding one(s). For instance, a sequence {an}∞n=1 can by defined 
inductively by 

{
a1 = 1

an+1 = 1
1+an

n.

Then 

a1 = 1

a2 = a1+1 =
1

1 + a1
=

1

2

a3 = a2+1 =
1

1 + a2
=

1

1 + 1
2

=
2

3

a4 = a3+1 =
1

1 + a3
=

1

1 + 2
3

=
3

5

When a sequence is defined this way, it is computationally much more costly to calculate a 
given term, as you first need to calculate all the preceding terms. 

•	 A sequence can be defined by induction by giving more than one initial term, and a relation 
of induction that depends on more than one preceding terms. For instance, the Fibonacci 
sequence {fn}∞n=1  is defined by 

{
f1 = f2 = 1

fn+2 = fn+1 + fn n.

Thus, to obtain one term, you add the two preceding ones. Thus the sequence’s first few terms are 

{1, 1, 1 + 1, 2 + 1, 3 + 2, 5 + 3, . . .} = {1, 1, 2, 3, 5, 8, . . .}.
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10.2	 limit of sequences

Watch the video at 

https://www.youtube.com/watch?v=pKrsN1fZd8k&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=67 

Abstract

In this video, we define the limit of a sequence and examine limit laws and theorems for 
sequences. 

The limit at ∞ of a real-valued function introduced in Calculus I is particularized to a sequence: 

Definition 10.2.1. The limit of a sequence {an}∞n=1 is L, in symbols 

lim
n→∞

an = L,
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if the values an can be made as close to L as we want by taking n sufficiently large, that is, if for every 
ε > 0 , there is N ∈ N  such that 

n ≥ N =⇒ |an − L| < ε.

If a sequence has a finite limit, we say that it is convergent. Otherwise, we say that it is divergent. 

As a direct result of the definition, we have: 

Proposition 10.2.2. If f : R → R  and f(n) = an  for all n then 

lim
x→∞

f(x) = L =⇒ lim
n→∞

an = L.

Example 10.2.3. 

lim
n→∞

3 + 5n2

2 + n+ 3n2
= lim

x→∞

3 + 5x2

2 + x+ 3x2
=

5

3
.

lim
n→∞

ln(n2)

n
= lim

x→∞

ln(x2)

x
= lim

x→∞

2 lnx

x

H
= lim

x→∞

2
x

1
= 0.

lim
n→∞

2 + cos(nπ)

does not exists because 2 + cos(nπ) = 2 + (−1)n  alternates between 1 and 3.

Theorem 10.2.4. Let {an}∞n=1 and {bn}∞n=1 be two convergent sequences and let c be a constant. 

1)	 	limn→∞ c = c ; 
2)	 	limn→∞(an ± bn) = limn→∞ an ± limn→∞ bn ; 
3)	 	limn→∞(an · bn) = limn→∞ an · limn→∞ bn ; 
4)	 	If limn→∞ bn �= 0 then 

lim
n→∞

an
bn

=
limn→∞ an
limn→∞ bn

.

Proposition 10.2.5. If f : R → R  is continuous and limn→∞ an = L  then 

lim
n→∞

f(an) = f(L).
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Theorem 10.2.6 (Squeeze Theorem for sequences) If for some n0 

an ≤ bn ≤ cn n ≥ n0

and 

lim
n→∞

an = lim
n→∞

cn = L

then 

lim
n→∞

bn = L.

Corollary 10.2.7. If limn→∞ |an| = 0  then limn→∞ an = 0.

Example 10.2.8. 

lim
n→∞

(−1)n sin
1

n
= 0

because 
∣∣∣∣(−1)n sin

1

n

∣∣∣∣ = sin
1

n

and limn→∞ sin 1
n = sin 0 = 0 . 

Example 10.2.9. What is 

lim
n→∞

cos2 n

2n
?

Solution. Since 0 ≤ cos2 n ≤ 1 , we have 

0 ≤ cos2 n

2n
≤ 1

2n
.

Moreover, limn→∞
1
2n = 0 , so that, by Theorem 10.2.6, limn→∞

cos2 n
2n = 0 . 
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Example 10.2.10. What is 

lim
n→∞

2n

n!
?

Solution. Recall that by definition 

n! := n · (n− 1) · (n− 2) . . . 3 · 2 · 1,

while 2n = 2 · 2 . . . 2 with n factors. Thus 

2n

n!
=

2 · 2 · 2 . . . . . . 2 · 2
1 · 2 · 3 . . . (n− 1) · n =

2 · 2
1 · 2 · 2

3
· 2
4
· . . . · 2

n− 1
· 2
n
≤ 2 · 2

n

because each one of the fractions 23 ,
2
4 , . . .

2
n−1 is less than 1, and thus, so is their product. Thus 

0 ≤ 2n

n!
≤ 4

n

and limn→∞
4
n = 0 , so that Theorem 10.2.6 applies to the effect that 

lim
n→∞

2n

n!
= 0.
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10.3	 abstract properties of sequences

Watch the video at 

https://www.youtube.com/watch?v=eXP-jUDX3KU&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=68 

Abstract

This video introduces the notions of (eventually) non-decreasing and (eventually) non-
increasing sequence, of monotonic sequence, of lower and upper bounds for a sequence, as well 
as greatest lower bound and least upper bound. It is shown that an eventually non-decreasing 
sequences that is bounded above is convergent and that an eventually non-increasing sequence 
that is bounded below is convergent.

Definition 10.3.1. A sequence {an}∞n=1 is 

•	 increasing if an+1 > an  for all n; 
•	 eventually increasing if there is n0  with an+1 > an  for all n ≥ n0 ; 
•	 (eventually) non-decreasing if an+1 ≥ an  for all n  (for all n ≥ n0 , for some n0 ) 
•	 (eventually) decreasing if an+1 < an  for all n  (for all n ≥ n0 , for some n0 ) 
•	 (eventually) non-increasing if an+1 ≤ an  for all n  (for all n ≥ n0 , for some n0 ) 
•	 (eventually) monotonic if it is either (eventually) non-decreasing or (eventually) non-

increasing. 

Example 10.3.2. {n}∞n=1  is increasing, thus non-decreasing, thus monotonic.

{
1
n

}∞
n=1

 is decreasing, thus non-increasing, thus monotonic.

The constant sequence {1}∞n=1  is both non-decreasing and non-increasing. 

The sequence {(−1)
n}∞n=1 is not monotonic.

Definition 10.3.3. A sequence {an}∞n=1 is 

•	 bounded above if there is a number M (called an upper bound) such that an ≤ M  for all n; 
•	 bounded below if there is a number B (called a lower bound) such that an ≥ B  for all n; 
•	 bounded if it is bounded above and below. 

Example 10.3.4. The sequence {n}∞n=1  is monotonic but not bounded (above). 
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The sequence 
{
cos

(
nπ
2

)}∞
n=1

 is bounded but not monotonic.

Proposition 10.3.5. If a sequence is bounded above it has a least upper bound. If it is bounded below it 
has a greatest lower bound. 

The least upper bound sup{an}∞n=1 of the sequence {an}∞n=1 satisfies 

ε > 0 nε anε > sup{an}∞n=1 − ε 	  (10.3.1)

Similarly, the greatest lower bound inf{an}∞n=1 of the sequence {an}∞n=1 satisfies 

ε > 0 nε anε < inf{an}∞n=1 + ε. 	  (10.3.2)

Theorem 10.3.6. If a sequence is eventually non-decreasing and bounded above, it is convergent. If a 
sequence is eventually non-increasing and bounded below, it is convergent. 

Note also: 
Proposition 10.3.7. A convergent sequence is bounded. 

Exercises

you are now prepared to work on the Practice Problems, and Homework set M10A in the manual of 
exercises.
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10.4	 limit of sequences defined inductively

Watch the videos at 

https://www.youtube.com/watch?v=2tXDcknwgFc&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=69 

and 

https://www.youtube.com/watch?v=DhOTjYSqm2I&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=70 

Abstract

In this video, we examine through an example how to justify that a sequence defined inductively 
is convergent, using proofs by induction, and how to find the limit.

We are now looking at examples of sequences defined inductively by 
{
a1

an+1 = f(an) n 	  (10.4.1)

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

By 2020, wind could provide one-tenth of our planet’s 
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the 
world’s wind turbines. 

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our 
systems for on-line condition monitoring and automatic 
lubrication. We help make it more economical to create 
cleaner, cheaper energy out of thin air. 

By sharing our experience, expertise, and creativity, 
industries can boost performance beyond expectations. 

Therefore we need the best employees who can 
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering. 

Visit us at www.skf.com/knowledge

https://www.youtube.com/watch?v=2tXDcknwgFc&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&index=69
https://www.youtube.com/watch?v=2tXDcknwgFc&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&index=69
https://www.youtube.com/watch?v=DhOTjYSqm2I&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&index=70
https://www.youtube.com/watch?v=DhOTjYSqm2I&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&index=70
http://www.skf.com/knowledge


A youtube Calculus Workbook (Part II)

171 

M10: Sequences and Series

Note that if {an}∞n=1 is convergent and f is continuous, then, in view of Proposition 10.2.5, 

L = lim
n→∞

an = lim
n→∞

an+1 = lim
n→∞

f(an) = f(L).

Thus: 
Proposition 10.4.1 If {an}∞n=1 is defined by (10.4.1) where f is continuous, then the only possible limits 
for {an}∞n=1 are the fixed points of f, that is, values L such that 

f(L) = L.

Therefore, to find the limit (if any) of a sequence defined recursively as in (10.4.1), we first need to 
establish convergence, usually via Proposition 10.3.5, and then find the limit among the fixed points of f.

In order to apply Proposition 10.3.5, we will sometimes have to show that a sequence defined by (10.4.1) 
is increasing (decreasing), and bounded above (below), and a convenient way to do that is by induction:

To prove that a property P (n)  is true for all natural numbers n, it is enough to show that P (1)  is true 
and that for all n, 

CORRECTIONS 3

• page 99, in the equation after “To find B”, x = 1 should be above =⇒, and
not above 1:

x2 + 2x− 1

x(x+ 1)
=

A(x− 1)

x
+B +

C(x− 1)

(x+ 1)

x=1
=⇒ 1 = B

• page 100 top: (6.2.2) should link to page 99 instead of 101
• page 103 Abstract: “, and explain” should be “, and explains”
• page 105: The link (6.3.3) links to page 107 instead of 105
• page 107, Example 6.4.1. There is a change of font size after the equation.
• page 110, Abstract: “corresponding term” should be “corresponding terms”
• page 111, 5) “Example 73” should be “Example 5.4.8” and should link to

page 95.
• page 115, Abstract: “goes over” should be “go over”
• page 116, Proposition 7.1.2: the text should be italicized, like in other

propositions. Moreover, there seems to be a change of font size after the
formula

• page 123, Example 7.3.4 “Solution” should be italicized but not “For”, “we
have”, “and thus”, and “Moreover”

• page 126, Abstract: “They show on example” should be “They show on
examples”

• page 126, the third set of parametric equations for the unit circle should be
(there was an extra t ):

{
x = cos(2t)

y = sin(2t)
t∈[0,2π)(the circle is then described twice counterclockwise)

• page 133 Abstract: “out” should be “how”
• page 135, above the curve: “left,and” should be “left, and”
• page 137, Example 8.4.1. beginning of Solution. “As see in” should be “As

seen in”
• page 139, Theorem 8.5.2 “from a to bS.” should be “from a to b.”
• page 141, Theorem 8.6.1: if possible, do not split the Theorem over 2 pages
• page 155 Proposition 8.2.1 should link to page 129.
• page 155, Example 9.3.1: “(9.2.3) gives” should be “(9.3.1) gives”. There is

no need to link, since the formula is on the same page.
• page 160, Example 9.5.2 “pounded by” should be “bounded by”
• page 161, first line: idem
• page 162, 1st line after abstract “the set N of natural numbers” should be

“the set N of natural numbers”
• page 162, line 5: idem: “ranging over N” should be “ranging over N”
• page 170, Abstract: “limit.s” should be “limit.”
• page 171, the formula (10.4.2) is incorrect and should be

P (n) =⇒ P (n+ 1).

• page 171, bottom “using (10.4.3) for nand n+1.” should be “using (10.4.3)
for n and n+ 1.”

• page 172 near bottom should be (implication problem)

an+1 > an =⇒ 2 + an+1 > 2 + an =⇒ an+2 =
√
2 + an+1 >

√
2 + an = an+1,

	  (10.4.2)

Indeed, if P (1)  is true, then by (10.4.2) with n = 1, P (2)  is true, so that by (10.4.2) with n = 2, P (3)  is 
true, and so on. We conclude by induction that P (n)  is true for all natural number n. 

Example 10.4.2. Is the sequence defined recursively by 
{
a1 = 1

an+1 = 3− 1
an

n 	  (10.4.3)

convergent? If yes, find its limit.

Solution. We will first show that the sequence is increasing, then that it is bounded, so that we 
will conclude by Proposition 10.3.5 that the sequence is convergent. 

To show that it is increasing, we proceed by induction to show an+1 > an  for all n. This is true for 
n = 1  for a1 = 1 < a2 = 3− 1

1 = 2 . Assume that this is true for a given n. We want to show that it is 
then necessarily also true for n + 1, that is, that an+2 > an+1 . To this end, note that 

an+1 > an =⇒ 1

an
>

1

an+1
=⇒ 3− 1

an+1
> 3− 1

an
.

=⇒ an+2 > an+1 n n+ 1. using (10.4.3) for n and n + 1.
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We conclude by induction that {an}∞n=1 is increasing. 

Note that 0 < 1 ≤ an  for all n for {an}∞n=1 is increasing and a1 = 1 . We show, by induction as well, that 
an ≤ 3  for all n. It is true if n = 1 , as a1 = 1 ≤ 3 . Assume now that an ≤ 3 . Then 

an ≤ 3 =⇒ 1

3
≤ 1

an
=⇒ 3− 1

an
≤ 3− 1

3
≤ 3.

=⇒ an+1 ≤ 3  using (10.4.3).

Therefore {an}∞n=1 is increasing and bounded above, hence convergent. Let L := limn→∞ an . By 
Proposition 10.4.1, 

L = 3− 1

L
⇐⇒ L2 − 3L+ 1 = 0

⇐⇒ L =
3±

√
5

2
.

Since an ≥ 1  for all n, L ≥ 1  so that 

L =
3 +

√
5

2
.

Example 10.4.3. Is the sequence {an}∞n=1 defined by 
{
a1 =

√
2

an+1 =
√
2 + an n

convergent? If yes, find its limit.

Solution. We show by induction that {an}∞n=1 is increasing, that is, we show that an+1 > an  
for all n. This is true for n = 1 for 

a1 =
√
2 <

√
2 + a1 =

√
2 +

√
2 = a2.

Assume now that this is true for some n, that is, an+1 > an . Then 

CORRECTIONS 3

• page 99, in the equation after “To find B”, x = 1 should be above =⇒, and
not above 1:

x2 + 2x− 1

x(x+ 1)
=

A(x− 1)

x
+B +

C(x− 1)

(x+ 1)

x=1
=⇒ 1 = B

• page 100 top: (6.2.2) should link to page 99 instead of 101
• page 103 Abstract: “, and explain” should be “, and explains”
• page 105: The link (6.3.3) links to page 107 instead of 105
• page 107, Example 6.4.1. There is a change of font size after the equation.
• page 110, Abstract: “corresponding term” should be “corresponding terms”
• page 111, 5) “Example 73” should be “Example 5.4.8” and should link to

page 95.
• page 115, Abstract: “goes over” should be “go over”
• page 116, Proposition 7.1.2: the text should be italicized, like in other

propositions. Moreover, there seems to be a change of font size after the
formula

• page 123, Example 7.3.4 “Solution” should be italicized but not “For”, “we
have”, “and thus”, and “Moreover”

• page 126, Abstract: “They show on example” should be “They show on
examples”

• page 126, the third set of parametric equations for the unit circle should be
(there was an extra t ):

{
x = cos(2t)

y = sin(2t)
t∈[0,2π)(the circle is then described twice counterclockwise)

• page 133 Abstract: “out” should be “how”
• page 135, above the curve: “left,and” should be “left, and”
• page 137, Example 8.4.1. beginning of Solution. “As see in” should be “As

seen in”
• page 139, Theorem 8.5.2 “from a to bS.” should be “from a to b.”
• page 141, Theorem 8.6.1: if possible, do not split the Theorem over 2 pages
• page 155 Proposition 8.2.1 should link to page 129.
• page 155, Example 9.3.1: “(9.2.3) gives” should be “(9.3.1) gives”. There is

no need to link, since the formula is on the same page.
• page 160, Example 9.5.2 “pounded by” should be “bounded by”
• page 161, first line: idem
• page 162, 1st line after abstract “the set N of natural numbers” should be

“the set N of natural numbers”
• page 162, line 5: idem: “ranging over N” should be “ranging over N”
• page 170, Abstract: “limit.s” should be “limit.”
• page 171, the formula (10.4.2) is incorrect and should be

P (n) =⇒ P (n+ 1).

• page 171, bottom “using (10.4.3) for nand n+1.” should be “using (10.4.3)
for n and n+ 1.”

• page 172 near bottom should be (implication problem)

an+1 > an =⇒ 2 + an+1 > 2 + an =⇒ an+2 =
√

2 + an+1 >
√
2 + an = an+1,

so that the property is true for n + 1. We conclude that, by induction, an+1 > an  for all n, that is, 
{an}∞n=1 is increasing. 
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We show by induction that {an}∞n=1 is bounded above by 2, that is, that an ≤ 2  for all n. This is true for 
n = 1  for a1 =

√
2 ≤ 2 . Assume that an ≤ 2 . Then 

an ≤ 2 =⇒ 2 + an ≤ 4 =⇒
√
2 + an ≤

√
4 = 2 ⇐⇒ an+1 ≤ 2,

and we conclude by induction that an ≤ 2  for all n.

In view of Proposition 10.3.5, {an}∞n=1 is convergent. Let L := limn→∞ an . By Proposition 10.4.1, 
CORRECTIONS 4

• page 173 2nd centered formula should be (implication problem)

L =
√
2 + L =⇒ L2 = 2 + L ⇐⇒ L2 − L− 2 = 0 ⇐⇒ (L− 2)(L+ 1) = 0,

• page 174, 1st line after Abstract: “terms of f the sequence geometrically”
should be “terms of the sequence geometrically”: omit f

• page 175, before Proposition 10.5.1: “Proposition 10.3.5 can applied” should
be “Proposition 10.3.5 can be applied”

• page 178, Definition 10.6.2 “we define its” should not be italicized
• page 181, 1st line “there are sequence” should be “there are sequences”
• page 182, Definition 10.8.1 “of whose terms are” should be “whose terms are

of the form”
• page 183, Proposition 10.8.3: first line in italic
• page 188, Example 10.9.5. In the solution, Example 10.9.1 should link to

page 186
• page 190 2nd line: “with an integrals” should be “with integrals ”
• page 190, Theorem 11.1.1: “Let f be a continuous, non-negative, decreasing

function on [1, ∞) . Then” should be italicized
• page 191, Example 11.1.2 “convergent?” should not be italicized
• page 192, Theorem 11.2.1 “Let p and k be fixed.” should be italicized
• page 194, Abstract “integral test” should be “Integral Test”
• page 196, Theorem 11.3.1 “converges by the Integral Test, then the nth

remainder Rn satisfies” and “and therefore, adding the nth partial sum sn:”
should be italicized

• page 198, 2nd formula. The two series are somehow displayed differently.
Use

sn =

n∑

i=1

ai and tn =

n∑

i=1

bn

• page 198, Theorem 11.4.1: “convergent” and “divergent” are too close to the
series on the right hand side. Use

∞∑

n=1

bn convergent =⇒
∑∞

n=1 an convergent

∞∑

n=1

an divergent =⇒
∑∞

n=1 bn divergent.

• page 199, line 5: “common ration” should be “common ratio”
• p 204: Replace the formula

Rn =

∞∑

i=n+1

ai and Tn =
∑∞

i=n+1 bi,

with (to have both series displayed the same way)

Rn =

∞∑

i=n+1

ai and Tn =

∞∑

i=n+1

bi,

• page 207, Example 12.1.4 in each of the solutions of 1), 2) and 3) “the
Alternating Series Test applied to” should be “the Alternating Series Test
applies to”

so that L = 2  or L = −1. But an ≥
√
2  for all n, so that L = 2 .
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10.5	 fixed points and limits of sequences defined inductively

Watch the videos at 

https://www.youtube.com/watch?v=MusYJvXR07A&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=71

and 

https://www.youtube.com/watch?v=l5c70iBiDg0&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&ind
ex=72

Abstract

In these videos, we examine the different possibilities for the convergence of a sequence defined 
by (10.4.1) where f has fixed points, depending on the function and the initial condition. It is 
also shown that a sequence converges to L if and only if the subsequences of odd index and 
of even index both converge to L. This is illustrated on an example. 

When a sequence is defined by (10.4.1), we can track the terms of the sequence geometrically on the 
graph of f, using also the line y = x . Note that the fixed points of f, that is, the potential limits of the 
sequence, are obtained as intersection points of the graph y = f(x)  with y = x . Whether the sequence 
converges or not often depends on the initial term a1 .
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As we can see on the right hand side of the picture above, the sequence may converge “spiraling” around 
the limit, that is, without being (eventually) monotonic, which prevents a direct application of Proposition 
10.3.5. However, we see that the terms of the sequence are successively above and below the limit. Hence 
the subsequences indexed by odd and by even numbers are monotonic, so that Proposition 10.3.5 can 
be applied to these subsequences. Moreover, we establish: 

Proposition 10.5.1. Let {an}∞n=1 be a sequence and L a real number. Then 

lim
n→∞

an = L ⇐⇒ lim
n→∞

a2n = lim
n→∞

a2n+1 = L.

Example 10.5.2. Is the sequence {an}∞n=1 defined by 
{
a1 = 1

an+1 = 1
1+an

n

convergent? If yes, find its limit.

Solution. Examining the first few terms: 

a1 = 1; a2 =
1

1 + 1
=

1

2
; a3 =

1

1 + 1
2

=
2

3
; a4 =

1

1 + 2
3

=
3

5
; a5 =

1

1 + 3
5

=
5

8
; a6 =

1

1 + 5
8

=
8

13
. . .

we see that a2 ≤ a4 ≤ a6 . . .  and that a1 ≥ a3 ≥ a5 . . . , and thus we set out to show, by induction, that 
{a2n}∞n=1 is non-decreasing and that {a2n+1}∞n=1 is non-increasing. 

Thus, we want to show that a2(n+1) = a2n+2 ≥ a2n  for all n. It is true for n = 1  because a4 ≥ a2 . 
Assume that it is true for n. To show that it is then necessarily true for n+ 1 , note that 

a2n+2 ≥ a2n =⇒ 1 + a2n+2 ≥ 1 + a2n

=⇒ 1

1 + a2n
≥ 1

1 + a2n+2

=⇒ a2n+1 ≥ a2n+3

=⇒ 1

1 + a2n+3
≥ 1

1 + a2n+1

=⇒ a2n+4 = a2(n+2) ≥ a2n+2 = a2(n+1)

and we conclude by induction that {a2n}∞n=1 is non-decreasing, and a similar argument would show 
that {a2n+1}∞n=1 is non-increasing. Note that we have showed that f(x) = 1

1+x  is decreasing, and thus 
f ◦ f  is increasing. 
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We then show (by induction) that {a2n}∞n=1 is bounded above by 1 and that {a2n+1}∞n=1 is bounded 
below by 12 . It is true for n = 1  for a2 = 1

2 ≤ 1 and a3 = 2
3 ≥ 1

2. Assume that it is true for n, that is, 

a2n ≤ 1 a2n+1 ≥ 1
2 .

Since a2n+2 = f ◦ f(a2n) and a2n+3 = f ◦ f(a2n+1), we conclude from the fact that f ◦ f  is increasing that 

a2n+2 ≤ f ◦ f(1) = 2

3
≤ 1 a2n+3 ≥ f ◦ f

(
1
2

)
= 3

5 ≥ 1
2 ,

so that the property is true for n+ 1  and we conclude by induction. 

Therefore, {a2n}∞n=1 is non-decreasing and bounded above, hence convergent by Proposition 10.3.5, and 
{a2n+1}∞n=1 is non-increasing and bounded below, hence convergent. In view of Proposition 10.4.1 and 
the fact that 

a2(n+1) = f ◦ f(a2n) a2(n+1)+1 = f ◦ f(a2n+1)

their respective limits are among the fixed points of 

f ◦ f(x) = 1

1 + 1
1+x

=
1 + x

2 + x
.

Since 

1 + x

2 + x
= x ⇐⇒ 1 + x = x2 + 2x ⇐⇒ x2 + x− 1 = 0 ⇐⇒ x =

−1±
√
5

2
,

we conclude that 

lim
n→∞

a2n = lim
n→∞

a2n+1 =
−1 +

√
5

2
,

for −1−
√
5

2 < 0  cannot be a limit since an > 0  for all n. By Proposition 10.5.1, we conclude that 

lim
n→∞

an =
−1 +

√
5

2
.

Exercises

you are now prepared to work on the Practice Problems, and Homework set M10B in the manual of 
exercises.
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10.6	 Series

Remark 10.6.1. If you need to brush up on the sigma sign notation for sums, you can review that here. 

Watch the video at 

https://www.youtube.com/watch?v=cd8gf1iFfKA&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&ind
ex=73 

Abstract

In this video, partial sums, convergent series and divergent series are defined. 

We begin with the example of the sum 

1

2
+

1

4
+

1

8
+ . . .+

1

2n
+ . . .
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to see whether we can make sense of an infinite sum. The geometric interpretation

 

seems to indicate that we should be able to make sense of this infinite sum, and that it should add up 
to one. To this end, we consider the sequence {sn}∞n=1  of partial sums: 

sn :=

n∑

i=1

1

2i
.

We note that 

s1 =
1

2
= 1− 1

2
, s2 =

1

2
+

1

4
= 1− 1

4
, s3 =

1

2
+

1

4
+

1

8
= 1− 1

8
,

and conjecture that the formula 

sn = 1− 1

2n 	  (10.6.1)

may be true for all n. This is easily shown by induction for if (10.6.1) is true for some n, then 

sn+1 =
1

2
+. . .

1

2n
+

1

2n+1
= sn+

1

2n+1
= 1− 1

2n
+

1

2n+1
= 1+

1

2n

(
−1 +

1

2

)
= 1− 1

2n+1
.

Therefore 

lim
n→∞

sn = 1
∑∞

n=1
1
2n := limn→∞ sn = 1.

More generally: 

Definition 10.6.2. Given a sequence {an}∞n=1 (called sequence of terms of the series 
∑∞

n=1 an ), we define 
its sequence {sn}∞n=1  of partial sums 

sn :=

n∑

i=1

ai = a1 + a2 + . . .+ an,
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and define the series of general term an  
∞∑

n=1

an := lim
n→∞

sn,

which we call convergent if the limit exists, and divergent otherwise. 

In the sequel, we are going to be concerned with the question of deciding whether a given series is 
convergent or divergent, even though we will seldom be able to calculate the exact sum.
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10.7	 Series: a criterion for divergence

Watch the video at 

https://www.youtube.com/watch?v=T9bikTjs78A&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&ind
ex=74 

Abstract

In this video, we establish a criterion for divergence of a series, often referred to as the nth term 
Test, stating that if the sequence of terms does not converge to 0, then the series is divergent.

Theorem 10.7.1. If 
∑∞

n=1 an  is convergent then limn→∞ an = 0. 

Equivalently: 

Theorem 10.7.2 (nth term Test). If limn→∞ an �= 0 then 
∑∞

n=1 an  is divergent.

Example 10.7.3. Are the following series convergent or divergent: 

1)	 	
∑∞

n=1
2n

3n+1

Solution. limn→∞
2n

3n+1 = 2
3 �= 0 , so that, by the nth term Test, the series 

∑∞
n=1

2n
3n+1 is divergent.

2)	 	
∑∞

n=1 arctann

Solution. limn→∞ arctann = π
2 �= 0  so that, by the nth term Test, the series 

∑∞
n=1 arctann  is 

divergent.

3)	 	
∑∞

n=1
(n+1)2

n(n+2)

Solution. limn→∞
(n+1)2

n(n+2) = 1 �= 0 so that, by the nth term Test, the series 
∑∞

n=1
(n+1)2

n(n+2)  is 
divergent.
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The converse of Theorem 10.7.2 is false! That is, there are sequences {an}∞n=1 with limn→∞ an = 0 but 
∑∞

n=1 an  is divergent. For instance, we show that for 

an =
1

n

the sequence {sn}∞n=1  of partial sums verifies 

sn ≥
ˆ n+1

1

dx

x
= ln(n+ 1)

so that 

lim
n→∞

sn = ∞

and thus 
∞∑

n=1

1

n
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10.8	 Geometric Series

Watch the videos at 

https://www.youtube.com/watch?v=LczuwtRj75c&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&ind
ex=75

and 

https://www.youtube.com/watch?v=kIEw0tdQQ10&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=76 

Abstract

In these videos, we define geometric sequences and geometric series, examine when they 
converge, and obtain a formula for the sum of a convergent geometric series.

Definition 10.8.1. A geometric sequence of common ratio r is a sequence whose terms are of the form 

a1, a2 = a1r, a3 = a2r = a1r
2, . . . , an = an−1r = a1r

n−1, . . .

A geometric sequence is determined by its first term a and its common ratio r and can then be written 
in standard form as 

{
a · rn−1

}∞
n=1

.

Example 10.8.2. The sequence with first terms 

1)	 	5, 10, 20, 40, 80, 160, . . .  is geometric with common ratio 2 and first term 5, that is, the 
sequence can be written 

{
5 · 2n−1

}∞
n=1

=

{
5

2
· 2n

}∞

n=1

= {5 · 2n}∞n=0 ,

where the last two forms are easily seen to be equal to the standard form. It is sometimes 
convenient to change index this way to obtain powers under a certain form. 

2)	 	4, −2, 1, − 1
2 ,

1
4 , . . .  is geometric of common ratio − 1

2  and first term 4, that is, the sequence 
can be written 

{
4 ·

(
− 1

2

)n−1
}∞

n=1

=

{
(−1)n−1 · 1

2n−3

}∞

n=1

.
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Proposition 10.8.3. The geometric sequence {a · rn−1}∞n=1 is 

1)	 	convergent to 0  if |r| < 1 ; 
2)	 	divergent if |r| > 1 ; 
3)	 	constant (and thus convergent) if r = 1 ; 
4)	 	divergent if r = −1. 

Definition 10.8.4. A geometric series is a series whose sequence of terms is geometric. Thus it can be 
written in standard form as 

∞∑

n=1

arn−1.

In view of Proposition 10.8.3 and Theorem 10.7.2, a geometric series of common ratio r with |r| ≥ 1  is 
divergent. Moreover, 

Theorem 10.8.5. A geometric series of common ratio r is convergent if and only if 

|r| < 1

and then 
∞∑

n=1

arn−1 =
a

1− r
=

1− .

Example 10.8.6. Are the following series geometric? If yes, decide if they are convergent, and find their 
sum whenever possible. 

1)	 	
∑∞

n=1
en

3n−1

Solution. 
∞∑

n=1

en

3n−1
=

∞∑

n=1

e ·
(e
3

)n−1

is the geometric series of first term e and common ratio e
3 . Since 0 < e

3 < 1, the series is 
convergent and 

∞∑

n=1

en

3n−1
=

e

1− e
3

=
3e

3− e
.

2)	 	18 − 1
4 + 1

2 − 1 + . . .

Solution. This series is geometric with first term 18  and common ratio –2. Since | − 2| ≥ 1 , the 
series 

∑∞
n=1

1
8 · (−2)n−1 is divergent.
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3)	 	1 + 0.4 + 0.16 + 0.064 + . . .

Solution. This series is geometric with first term 1 and common ratio 0.4. Since |0.4| < 1 , the 
series is convergent and 

∞∑

n=1

(0.4)n−1 =
1

1− 0.4
=

10

6
=

5

3
.

4)	 	
∑∞

n=1(−1)n+1 3n−1

4n

Solution. 
∞∑

n=1

(−1)n+1 3
n−1

4n
=

∞∑

n=1

1

4
· (−3)n−1

4n−1
=

∞∑

n=1

1

4
·
(
− 3

4

)n−1

is the geometric series with first term 14  and common ratio − 3
4 . Since | − 3

4 | < 1 , the series is 
convergent and 

∞∑

n=1

(−1)n+1 3
n−1

4n
=

1
4

1− (− 3
4 )

=
1

7
.

5)	 	
∑∞

n=1 3
−2n8n−1

Solution. 

∞∑

n=1

3−2n8n−1 =

∞∑

n=1

8n−1

(
32
)n =

∞∑

n=1

1

9
· 8

n−1

9n−1
=

∞∑

n=1

1

9
·
(8
9

)n−1

is the geometric series of first term 19  and common ratio 89 . Since | 89 | < 1 , the series is convergent 
and 

∞∑

n=1

3−2n8n−1 =
1
9

1− 8
9

= 1.

Example 10.8.7 (Decimal expansion of rational numbers and geometric series) You may know that 
decimal numbers with expansions that are either finite or periodic are the rationals, that is, numbers 
that can be written as the quotient of two integers. For a finite expansion, it is easy to see. For instance 

3.456 =
3456

1000
.

What about periodic expansions? For instance, can we write 

0.73 := 0.737373 . . .

as a fraction of two integers? The pattern that repeats corresponds to 73
100  for the first two digits after 0, 

73
10000  for the next two, 73

1000000  for the next two, and so on. Thus 

0.73 := 0.737373 . . .=
73

100
+

73

(100)2
+

73

(100)3
+ . . . =

∞∑

n=1

73

100
·
( 1

100

)n−1
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is the geometric series of first term 73
100  and common ratio 1

100 . Thus 

0.73 =

∞∑

n=1

73

100
·
( 1

100

)n−1

=
73
100

1− 1
100

=
73

99
.

Example 10.8.8. The series 
∞∑

n=0

xn

is the geometric series of first term 1 and common ratio x. Thus, it is convergent if and only if −1 < x < 1  , 
and for these values of x, we have 

∞∑

n=0

xn =
1

1− x
.

Similarly, 
∞∑

n=1

xn =
x

1− x
−1 < x < 1.

This way, we obtain representations (on (–1, 1)) of functions of x as sums of a series. 
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10.9	 Telescoping sums

Watch the video at 

https://www.youtube.com/watch?v=e6ecDWAq49g&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=77 

Abstract
In this video, we obtain the exact sum for some series with telescoping sums. A result on the 
constant multiple and sum of convergent series is stated and applied on examples. 

In general, it is difficult to find the exact sum of a convergent series. We just saw that geometric series are 
an exception. Another case where we can obtain exact sums is that of a series with so called telescoping 
sums, for which most terms in the partial sums cancel out. 

Example 10.9.1. Is the series 
∞∑

n=1

1

n2 + n

convergent? If yes, find its sum.

Solution. Note that 1
n2+n  can be decomposed into partial fractions as 

1

n2 + n
=

1

n(n+ 1)
=

1

n
− 1

n+ 1
.

Thus, the partial sum 

sn =

n∑

i=1

1

i2 + i
=

n∑

i=1

(
1

i
− 1

i+ 1

)

rewrites as 

sn = 1− 1

2
+

1

2
− 1

3
+

1

3
− 1

4
+ . . .+

1

n− 1
− 1

n
+

1

n
− 1

n+ 1

= 1− 1

n+ 1

so that 

lim
n→∞

sn = 1 =

∞∑

n=1

1

n2 + n
.
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Example 10.9.2. Is the series 
∞∑

n=2

1

n2 − 1

convergent? If yes, find its sum.

Solution. Note that 

1

n2 − 1
=

1

(n− 1)(n+ 1)
=

1

2

(
1

n− 1
− 1

n+ 1

)
,

so that the partial sums are 

sn =
1

2

n∑

i=2

1

i− 1
− 1

i+ 1

=
1

2

(
1− 1

3
+

1

2
− 1

4
+

1

3
− 1

5
+

1

4
− 1

6
+ . . .

. . .+
1

n− 3
− 1

n− 1
+

1

n− 2
− 1

n
+

1

n− 1
− 1

n+ 1

)

=
1

2

(
1 +

1

2
− 1

n
− 1

n+ 1

)

and 

lim
n→∞

sn =
3

4
=

∞∑

n=2

1

n2 − 1
.

Example 10.9.3. Is the series 
∞∑

n=1

ln

(
n

n+ 1

)

convergent? If yes, find its sum.

Solution. Note that 

ln

(
n

n+ 1

)
= lnn− ln(n+ 1)

so that the partial sum is 

sn =
n∑

i=1

ln i− ln(i+ 1)

= ln 1− ln 2 + ln 2− ln 3 + . . .+ ln(n− 1)− lnn+ lnn− ln(n+ 1)

= − ln(n+ 1)
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and 

lim
n→∞

sn = −∞.

Thus 
∑∞

n=1 ln
(

n
n+1

)
 is divergent.

Theorem 10.9.4. Let c be a real number. If 
∑∞

n=1 an  and 
∑∞

n=1 bn  are two convergent series, then so are 
the series 

∑∞
n=1 c · an  and 

∑∞
n=1(an + bn)  and we have 

∞∑

n=1

c · an = c ·
∞∑

n=1

an

∞∑

n=1

(an + bn) =

∞∑

n=1

an +

∞∑

n=1

bn.

Example 10.9.5. Is the series 
∞∑

n=1

(
3

n2 + n
+

1

3n

)

convergent? If yes, find its sum.

Solution. By Example 10.9.1, 
∞∑

n=1

1

n2 + n
= 1

and 
∑∞

n=1
1
3n =

∑∞
n=1

1
3 ·

(
1
3

)n−1

 is a geometric series of first term 13  and common ratio 13  so that 
∞∑

n=1

1

3n
=

1
3

1− 1
3

=
1

2
.

In view of Theorem 10.9.4, we conclude 
∞∑

n=1

(
3

n2 + n
+

1

3n

)
= 3

∞∑

n=1

1

n2 + n
+

∞∑

n=1

1

3n
= 3 +

1

2
=

7

2
.

Exercises

you are now prepared to work on the Practice Problems, and Homework set M10C in the manual of 
exercises.
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11	 M11: �Integral Test and 
Comparison Test

1.1	 Integral Test

Watch the video at  

https://www.youtube.com/watch?v=E4zO0UzG4QY&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=78 

Abstract

In this video, we present the Integral Test and illustrate this result on examples. 

In this section, we consider the problem of convergence of a series of the form 
∞∑

n=1

f(n)

where f is a continuous non-negative decreasing function on [1,∞) . 
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In this case, we can represent the terms f(1), f(2), . . . , f(n), . . .  of the series as areas of rectangles, in 
order to compare the partial sum with integrals of f, as shown below:

 

 

Since the sequence {sn}∞n=1  of partial sums satisfies 

ˆ n+1

1

f(x) dx ≤ sn ≤ f(1) +

ˆ n

1

f(x) dx, � (11.1.1)

we conclude 

Theorem 11.1.1 (Integral Test)  Let f  be a continuous, non-negative, decreasing function on [1,∞) . Then 

∞∑

n=1

f(n) ⇐⇒
´∞
1 f(x) dx

In view of (11.1.1), if 
∑∞

n=1 f(n)  converges, then 

ˆ ∞

1

f(x) dx ≤
∞∑

n=1

f(n) ≤ f(1) +

ˆ ∞

1

f(x) dx. � (11.1.2)
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Example 11.1.2.  Is 
∑∞

n=1
n

en2  convergent? 

Solution. The series is of the form 
∑∞

n=1 f(n)  for f(x) = xe−x2 . This function is continuous 
and positive on [1,∞) . Moreover, it is decreasing on this interval, for 

f ′(x) = e−x2

− 2x2e−x2

= e−x2 (
1− 2x2

)
< 0 x ≥ 1√

2
.

Thus, the Integral Test applies to the effect that 
∑∞

n=1
n

en2  converges if and only if 
´∞
1

xe−x2

dx  does. 
Moreover 

	

ˆ ∞

1

xe−x2

dx = lim
t→∞

ˆ t

1

xe−x2

dx

= lim
t→∞

−1

2

ˆ −t2

−1

eu du u = −x2

= lim
t→∞

1

2
[eu]

−1
−t2 = lim

t→∞

1

2e
− 1

2et2
=

1

2e
,

so that 
∑∞

n=1
n

en2  is convergent. Moreover, (11.1.2) yields 

1

2e
≤

∞∑

n=1

n

en2 ≤ 1

e
+

1

2e
=

3

2e
.
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11.2	 p-series

Watch the video at  

https://www.youtube.com/watch?v=VFuCgE8rwmg&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=79 

Abstract

 In this video, we establish that a p-series 
∑∞

n=1
1
np  converges if and only if p > 1 . Additional 

examples of applications of the Integral Test are included. 

A series of the form 
∞∑

n=1

k

np

where p and k are fixed numbers, is called a p-series.

Theorem 11.2.1 (p-series Test).  Let p and k be fixed. 

∞∑

n=1

k

np
⇐⇒ p > 1.

Example 11.2.2. Are the following series convergent?  

1.	
∑∞

n=1
1

3√
n2

Solution. The series 

∞∑

n=1

1
3
√
n2

=

∞∑

n=1

1

n
2
3

is a divergent p-series because p = 2
3 ≤ 1 .

2.	
∑∞

n=1
1√
n3

Solution. The series 

∞∑

n=1

1√
n3

=

∞∑

n=1

1

n
3
2

is a convergent p-series because p = 3
2 > 1 .
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Here are additional examples illustrating the Integral Test (Theorem 11.1.1): 

Example 11.2.3. Are the following series convergent?  

1.	
∑∞

n=1
1

n2+4

Solution. This series is of the form 
∑∞

n=1 f(n)  where f(x) = 1
x2+4  is continuous non-negative 

and decreasing on [1,∞) . By the Integral Test, the series is convergent if and only if 

ˆ ∞

1

dx

x2 + 4
= lim

t→∞

[
1

2
arctan

x

2

]t

1

is convergent. Thus, 
∑∞

n=1
1

n2+4 is convergent for 

lim
t→∞

[
1

2
arctan

x

2

]t

1

=
1

2

(
π

2
− arctan

1

2

)
.

2.	
∑∞

n=1
n

n2+4

Solution. This series is of the form 
∑∞

n=1 f(n)  where f(x) = x
x2+4

 is continuous non-negative, 
and decreasing on [2,∞)  because 

f ′(x) =
x2 + 4− 2x2

(x2 + 4)2
=

4− x2

(x2 + 4)2
< 0 x > 2.

By the Integral Test, the series is convergent if and only if 

ˆ ∞

2

x

x2 + 4
dx

is convergent. Moreover 

ˆ ∞

2

x

x2 + 4
dx = lim

t→∞

ˆ t

2

x

x2 + 4
dx

= lim
t→∞

1

2

ˆ t2+4

8

du

u
u = x2 + 4

= lim
t→∞

[lnu]
t2+4
8 = lim

t→∞
ln(t2 + 4)− ln 8 = ∞.

Thus, the integral is divergent, and, by the Integral Test, 
∑∞

n=1
n

n2+4 is divergent.
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11.3	 Estimating the sum

Watch the video at  

https://www.youtube.com/watch?v=iEHWR1Hc3JM&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&
index=80 

Abstract

In this video, we examine ways to control the error made in estimating the sum of a series that 
converges by the Integral Test by approximating it by a partial sum. 

If the series 
∑∞

n=1 an =
∑∞

n=1 f(n)  converges by the Integral Test (Theorem 11.1.1) then in particular 
an ≥ 0  for all n so that the sequence {sn}∞n=1  of partial sums is non-decreasing and thus, the error 

Rn :=

∞∑

i=n+1

ai
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made in the approximation 

	
sn ≈

∞∑

n=1

an

is decreasing with n and has limit 0. Rn is called nth remainder of the series. 

The considerations we used to justify Theorem 11.1.1, can be used to control Rn:
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Thus, 

Theorem 11.3.1 If a series 

∞∑

n=1

an =

∞∑

n=1

f(n)

converges by the Integral Test, then the nth remainder Rn satisfies 

ˆ ∞

n+1

f(x) dx ≤ Rn ≤
ˆ ∞

n

f(x) dx

and therefore, adding the nth partial sum sn: 

sn +

ˆ ∞

n+1

≤
∞∑

n=1

an ≤ sn +

ˆ ∞

n

f(x) dx. f(x)dx sn +

ˆ ∞

n+1

≤
∞∑

n=1

an ≤ sn +

ˆ ∞

n

f(x) dx. � (11.3.1)

Example 11.3.2. Is 
∑∞

n=1
1
n5  convergent?  If yes, estimate the sum, exact to three decimal places.

Solution. This is a p-series for p  = 5 > 1, and therefore 
∑∞

n=1
1
n5  is convergent. To estimate 

∑∞
n=1

1
n5  with three exact decimal places, we need the error to be less than 10−4  so as to not 

affect the third decimal. Recall that p-series converge by the Integral Test. Thus, we can use 
the estimate 

sn ≈
∞∑

n=1

1

n5
,

where the error Rn satisfies, according to Theorem 11.3.1, 

Rn ≤
ˆ ∞

n

dx

x5
= lim

t→∞

[
− 1

4x4

]t

n

=
1

4n4
. Rn ≤

ˆ ∞

n

dx

x5
= lim

t→∞

[
− 1

4x4

]t

n

=
1

4n4
.

Thus, Rn ≤ 10−4  whenever 

1

4n4
≤ 10−4 ⇐⇒ n ≥ 10

4
√
4
≈ 7.1.

Thus the partial sum 

s8 = 1 +
1

25
+

1

35
+ . . .+

1

85
= 1.036880406256885

approximates
∑∞

n=1
1
n5  with at least 3 exact decimal places. 
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Note that using (11.3.1), we can obtain a fourth exact decimal for 

s8 +

ˆ ∞

9

dx

x5
≤

∞∑

n=1

1

n5
≤ s8 +

ˆ ∞

8

dx

x5

s8 +
1

4× 94
≤

∞∑

n=1

1

n5
≤ s8 +

1

4× 84

1.036918510204454 ≤
∞∑

n=1

1

n5
≤ 1.036941441413135.

Exercises

you are now prepared to work on the Practice Problems, and Homework set M11A in the manual of 
exercises.
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11.4	 Direct Comparison Test

Watch the video at  

https://www.youtube.com/watch?v=vg2q8zR4ng8&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&ind
ex=81

Abstract

In this video, we present the Comparison Test for series and apply it to conclude on the 
convergence of various examples of series. 

If 

0 ≤ an ≤ bn

and 

CORRECTIONS 4

• page 173 2nd centered formula should be (implication problem)

L =
√
2 + L =⇒ L2 = 2 + L ⇐⇒ L2 − L− 2 = 0 ⇐⇒ (L− 2)(L+ 1) = 0,

• page 174, 1st line after Abstract: “terms of f the sequence geometrically”
should be “terms of the sequence geometrically”: omit f

• page 175, before Proposition 10.5.1: “Proposition 10.3.5 can applied” should
be “Proposition 10.3.5 can be applied”

• page 178, Definition 10.6.2 “we define its” should not be italicized
• page 181, 1st line “there are sequence” should be “there are sequences”
• page 182, Definition 10.8.1 “of whose terms are” should be “whose terms are

of the form”
• page 183, Proposition 10.8.3: first line in italic
• page 188, Example 10.9.5. In the solution, Example 10.9.1 should link to

page 186
• page 190 2nd line: “with an integrals” should be “with integrals ”
• page 190, Theorem 11.1.1: “Let f be a continuous, non-negative, decreasing

function on [1, ∞) . Then” should be italicized
• page 191, Example 11.1.2 “convergent?” should not be italicized
• page 192, Theorem 11.2.1 “Let p and k be fixed.” should be italicized
• page 194, Abstract “integral test” should be “Integral Test”
• page 196, Theorem 11.3.1 “converges by the Integral Test, then the nth

remainder Rn satisfies” and “and therefore, adding the nth partial sum sn:”
should be italicized

• page 198, 2nd formula. The two series are somehow displayed differently.
Use

sn =

n∑

i=1

ai and tn =

n∑

i=1

bn

• page 198, Theorem 11.4.1: “convergent” and “divergent” are too close to the
series on the right hand side. Use

∞∑

n=1

bn convergent =⇒
∑∞

n=1 an convergent

∞∑

n=1

an divergent =⇒
∑∞

n=1 bn divergent.

• page 199, line 5: “common ration” should be “common ratio”
• p 204: Replace the formula

Rn =

∞∑

i=n+1

ai and Tn =
∑∞

i=n+1 bi,

with (to have both series displayed the same way)

Rn =

∞∑

i=n+1

ai and Tn =

∞∑

i=n+1

bi,

• page 207, Example 12.1.4 in each of the solutions of 1), 2) and 3) “the
Alternating Series Test applied to” should be “the Alternating Series Test
applies to”

then sn ≤ tn  for all n, and both sequences of partial sums {sn}∞n=1  and {tn}∞n=1  are non-decreasing. 
Thus, if {tn}∞n=1  is convergent, then {sn}∞n=1  is non-decreasing and bounded above, hence convergent. 
On the other hand, if {sn}∞n=1  is divergent, then limn→∞ sn = ∞  and as tn ≥ sn , limn→∞ tn = ∞ . In 
other words: 

Theorem 11.4.1 (Comparison Test) If 

0 ≤ an ≤ bn n

then 

corrections 3: youtube workbook part II

January 13, 2014

• p10: add at the end of the preface: “I hope that only few errors are left
in this book, but some are bound to remain. I welcome feedback and
comments at calculusvideos@gmail.com.”

• p33, Definition 2.1.1, italicize “exponential function of base”

• p37, Abstract: replace “2 videos” by “two videos”

• p265, Notations: the new entry for n! uses a smaller font than the others

• p 66 link “Fundamental Theorem of Calculus” on line 2 after Abstract to
https://www.youtube.com/watch?v=MkeATgzdVKs&list=SP265CB737C01F8961&index=72

• page 116, Definition 7.1.1: italicize “convergent” and “divergent” in 3)

• page 119, Definition 7.2.1: italicize “convergent” and “divergent” in 2) and
“convergent” in 3)

• page 123, line -3: the link for Theorem 7.3.1 is not the same style as other
links

• page 198, Theorem 11.4.1: I still sent a formula that need improvement
(different sizs for similar formulas). Use instead:

∞∑

n=1

bn convergent =⇒
∞∑

n=1

an convergent

∞∑

n=1

an divergent =⇒
∞∑

n=1

bn divergent.

• page 207, right before Theorem 12.1.3: replace the formula with

∞∑

n=1

(−1)n bn or
∞∑

n=1

(−1)n−1bn where bn = |an| ≥ 0.

• page 209, Abstract: do not italicize “absolutely convergent” and “condi-
tionally convergent” in the Abstract (but only in the definition 12.2.1)

1
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Example 11.4.2. Are the following series convergent or divergent?  

1.	
∑∞

n=1
1

2n+3

Solution. Since 2n + 3 ≥ 2n , we conclude that 

1

2n + 3
≤ 1

2n
n.

Since 
∑∞

n=1
1
2n =

∑∞
n=1

(
1
2

)
n  is geometric of common ratio 12 , 

∑∞
n=1

1
2n  is convergent. Applying 

the Comparison Test, we conclude that 
∑∞

n=1
1

2n+3 is convergent.

2.	
∑∞

n=1
2

n3+4

Solution. Since n3 + 4 ≥ n3, we have 

2

n3 + 4
≤ 2

n3
n.

Moreover, 
∑∞

n=1
2
n3  is a p-series with p = 3 > 1  and is therefore convergent. By Comparison 

Test, the series 
∑∞

n=1
2

n3+4 is also convergent.

3.	
∑∞

n=1
1

n2+n+1

Solution. Since n2 + n+ 1 ≥ n2 , we have 

1

n2 + n+ 1
≤ 1

n2
n.

Moreover, 
∑∞

n=1
1
n2  is a convergent p-series for p = 2 > 1 . By Comparison Test, 

∑∞
n=1

1
n2+n+1 

is also convergent.

4.	
∑∞

n=2
1

n−
√
n

Solution. Since n−
√
n ≤ n , we have 

1

n
≤ 1

n−
√
n

n

Moreover 
∑∞

n=1
1
n  is a divergent p-series for p = 1 ≤ 1 . By Comparison Test, we conclude that 

∑∞
n=1

1
n−

√
n  is also divergent.
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5.	
∑∞

n=1
1√

n(n+1)(n+2)

Solution. Note that 

n(n+1)(n+2) ≥ n3 =⇒
√
n(n+ 1)(n+ 2) ≥ n

3
2 =⇒ 1√

n(n+ 1)(n+ 2)
≤ 1

n
3
2

n.

Moreover, 
∑∞

n=1
1

n
3
2

 is a convergent p-series for p = 3
2 > 1 . By Comparison Test, ∑∞

n=1
1√

n(n+1)(n+2)  is also convergent.

6.	
∑∞

n=1
5

3n+2

Solution. Since 3n + 2 ≥ 3n , 

5

3n + 2
≤ 5

3n
n,

and 
∑∞

n=1
5
3n =

∑∞
n=1 5

(
1
3

)n  is a convergent geometric series, for its common ratio is 13  and 
| 13 | < 1 . By Comparison Test, 

∑∞
n=1

5
3n+2 is also convergent.

Remark 11.4.3. We expect the series 
∑∞

n=1
1

2n−1  to behave like the series 
∑∞

n=1
1
2n  which is geometric 

of common ration 12 , and thus convergent. However, direct comparison with 
∑∞

n=1
1
2n  does not apply for 

1

2n − 1
≥ 1

2n
n

which is not the direction of inequality we need. To address this problem, we introduce a variant of the 
Comparison Test in the next section. 
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11.5	 Limit Comparison Test

Watch the video at  

https://www.youtube.com/watch?v=URCmqHziYoI&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=82 

Abstract

In this video, we state and prove the Limit Comparison Test for series and examine examples 
of applications.

Theorem 11.5.1 (Limit Comparison Test) Let {an}∞n=1 and {bn}∞n=1 be sequences of non-negative numbers. 
If 

lim
n→∞

an
bn

= c 0 < c < ∞,

then the series 
∑∞

n=1 an  and 
∑∞

n=1 bn  either both converge or both diverge.
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Example 11.5.2. Are the following series convergent or divergent?  

1.	
∑∞

n=1
1

2n−1

Solution. Let an = 1
2n−1  and bn = 1

2n . Then 

lim
n→∞

an
bn

= lim
n→∞

2n

2n − 1
= lim

n→∞

2n

2n
(
1− 1

2n

) = lim
n→∞

1

1− 1
2n

= 1 > 0.

Moreover, 
∑∞

n=1 bn =
∑∞

n=1

(
1
2

)n  is a convergent geometric series, for its common ratio is 
1
2 < 1. By the Limit Comparison Test, 

∑∞
n=1

1
2n−1  is convergent.

2.	
∑∞

n=1
2n2+3n√

5+n5

Solution. Let an = 2n2+3n√
5+n5

 and bn = n2

n
5
2
= 1

n
1
2

. Then 

lim
n→∞

an
bn

= lim
n→∞

n
1
2

(
2n2 + 3n

)

(5 + n5)
1
2

= lim
n→∞

n
5
2

(
2 + 3

n

)

n
5
2

(
5
n5 + 1

) 1
2

= lim
n→∞

2 + 3
n√

1 + 5
n5

= 2 > 0.

Moreover, 
∑∞

n=1 bn =
∑∞

n=1
1

n
1
2

 is a divergent p-series for p = 1
2 ≤ 1 . By the Limit Comparison Test, 

∑∞
n=1

2n2+3n√
5+n5  is also divergent.

3.	
∑∞

n=1
1+n+n2

1+n2+n6

Solution. Let an = 1+n+n2

1+n2+n6  and bn = n2

n6 = 1
n4 . Then 

lim
n→∞

an
bn

=
n4(1 + n+ n2)

1 + n2 + n6
= lim

n→∞

n6
(
1 + 1

n + 1
n2

)

n6
(
1 + 1

n4 + 1
n6

) = 1 > 0.

Moreover, 
∑∞

n=1 bn =
∑∞

n=1
1
n4  is a convergent p-series for p = 4 > 1 . By the Limit Comparison 

Test, 
∑∞

n=1
1+n+n2

1+n2+n6  is also convergent.

4.	 ∑∞
n=1 sin

(
1
n

)

Solution. Let an = sin bn = 1
n  and bn = 1

n . Then 

lim
n→∞

an
bn

= lim
n→∞

sin( 1n )
1
n

= lim
x→0

sinx

x
= 1 > 0.

Moreover 
∑∞

n=1 bn =
∑∞

n=1
1
n  is a divergent p-series for p = 1 ≤ 1 . By the Limit Comparison 

Test, 
∑∞

n=1 sin
(
1
n

)
 is also divergent. 
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5.	
∑∞

n=1
1

n1+ 1
n

Solution. Note that 

n1+ 1
n = n · n 1

n = ne
lnn
n

and 

lim
n→∞

lnn

n
= lim

x→∞

lnx

x

H
= lim

x→∞

1
x

1
= 0,

so that 

lim
n→∞

n
1
n = e0 = 1.

Thus, letting an = 1

n1+ 1
n

 and bn = 1
n , we have 

lim
n→∞

an
bn

= lim
n→∞

n

n1+ 1
n

= lim
n→∞

1

n
1
n

=
1

1
= 1 > 0.

Moreover, 
∑∞

n=1
1
n  is a divergent p-series for p = 1 ≤ 1 . By the Limit Comparison Test, 

∑∞
n=1

1

n1+ 1
n

 is 
divergent as well.
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11.6	 Estimating sums revisited

Watch the video at  

https://www.youtube.com/watch?v=sXs9bjUcxbg&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&ind
ex=83

Abstract

In this video, we examine how to control the error made when approximating the sum of a 
series by a partial sum, when we used the Comparison Test to conclude on convergence. 

If we established the convergence of a series 
∑∞

n=1 an  using the Comparison Test, then we had 

0 ≤ an ≤ bn n � (11.6.1)

and 
∑∞

n=1 bn  convergent. Note that if 

CORRECTIONS 4

• page 173 2nd centered formula should be (implication problem)

L =
√
2 + L =⇒ L2 = 2 + L ⇐⇒ L2 − L− 2 = 0 ⇐⇒ (L− 2)(L+ 1) = 0,

• page 174, 1st line after Abstract: “terms of f the sequence geometrically”
should be “terms of the sequence geometrically”: omit f

• page 175, before Proposition 10.5.1: “Proposition 10.3.5 can applied” should
be “Proposition 10.3.5 can be applied”

• page 178, Definition 10.6.2 “we define its” should not be italicized
• page 181, 1st line “there are sequence” should be “there are sequences”
• page 182, Definition 10.8.1 “of whose terms are” should be “whose terms are

of the form”
• page 183, Proposition 10.8.3: first line in italic
• page 188, Example 10.9.5. In the solution, Example 10.9.1 should link to

page 186
• page 190 2nd line: “with an integrals” should be “with integrals ”
• page 190, Theorem 11.1.1: “Let f be a continuous, non-negative, decreasing

function on [1, ∞) . Then” should be italicized
• page 191, Example 11.1.2 “convergent?” should not be italicized
• page 192, Theorem 11.2.1 “Let p and k be fixed.” should be italicized
• page 194, Abstract “integral test” should be “Integral Test”
• page 196, Theorem 11.3.1 “converges by the Integral Test, then the nth

remainder Rn satisfies” and “and therefore, adding the nth partial sum sn:”
should be italicized

• page 198, 2nd formula. The two series are somehow displayed differently.
Use

sn =

n∑

i=1

ai and tn =

n∑

i=1

bn

• page 198, Theorem 11.4.1: “convergent” and “divergent” are too close to the
series on the right hand side. Use

∞∑

n=1

bn convergent =⇒
∑∞

n=1 an convergent

∞∑

n=1

an divergent =⇒
∑∞

n=1 bn divergent.

• page 199, line 5: “common ration” should be “common ratio”
• p 204: Replace the formula

Rn =

∞∑

i=n+1

ai and Tn =
∑∞

i=n+1 bi,

with (to have both series displayed the same way)

Rn =
∞∑

i=n+1

ai and Tn =
∞∑

i=n+1

bi,

• page 207, Example 12.1.4 in each of the solutions of 1), 2) and 3) “the
Alternating Series Test applied to” should be “the Alternating Series Test
applies to”

then 

Rn ≤ Tn

because of (11.6.1). In many cases, 
∑∞

n=1 bn  is a p-series or a geometric series, and we can estimate  
Tn, thus Rn. 

Example 11.6.1. Find n such that the nth partial sum of 

∞∑

n=1

1

n4 + 5

has at least four exact decimal places.

Solution. Since 

0 ≤ 1

n4 + 5
≤ 1

n4

and 
∑∞

n=1
1
n4  is a convergent p-series ( p = 4 > 1), we conclude by the Comparison Test that 

∑∞
n=1

1
n4+5 

is convergent. Moreover 

Rn =

∞∑

i=n+1

1

i4 + 5
≤ Tn =

∞∑

i=n+1

1

i4
≤
ˆ ∞

n

dx

x4
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and
ˆ ∞

n

dx

x4
= lim

t→∞

[
− 1

3x3

]t

n

=
1

3n3
.

Thus, Rn ≤ 1
3n3  and we can ensure that Rn ≤ 10−5  by requiring 1

3n3 ≤ 10−5 which amounts to 

n ≥ 3

√
105

3
≈ 32.2.

Thus 

s33 =

33∑

i=1

1

i4 + 5
≈

∞∑

n=1

1

n4 + 5

with an error of at most 10−5 , and thus at least 4 exact decimal places.

Example 11.6.2. Find n such that the nth partial sum of 

∞∑

n=1

2

3n + 5

has at least three exact decimal places.

Solution. Since 

0 ≤ 2

3n + 5
≤ 2

3n

and 
∑∞

n=1
2
3n =

∑∞
n=1 2

(
1
3

)n  is a geometric series of common ratio 13 , hence convergent, we 
conclude by the Comparison Test that 

∑∞
n=1

2
3n+5 is convergent. Moreover 

Rn =

∞∑

i=n+1

2

3i + 5
≤ Tn =

∞∑

i=n+1

2

3i
=

2
3n+1

1− 1
3

=
1

3n
.

Thus, we can ensure that Rn ≤ 10−4  by requiring 

1

3n
≤ 10−4 ⇐⇒ log3(10

4) ≤ n.

Since log3(104) ≈ 8.3 , we conclude that 

s9 =

9∑

i=1

2

3i + 5
≈

∞∑

n=1

2

3n + 5

with an error of at most 10_4 and thus at lest 3 exact decimal places.

Exercises

you are now prepared to work on the Practice Problems, and Homework set M11B in the manual of 
exercises.
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12	 M12: Alternating Series Test
12.1	 Alternating Series Test

Watch the video at  

https://www.youtube.com/watch?v=INXn6LOoQNk&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&
index=84 

Abstract

In this video, alternating series are defined and examples examined. The Alternating Series 
Test is stated and established, and applied to a number of examples.

Definition 12.1.1. A series is alternating  if its terms are alternatively positive and negative.

Example 12.1.2. 

∞∑

n=1

(−1)n
n

n+ 1
= −1

2
+

2

3
− 3

4
+

4

5
− . . .
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and 

∞∑

n=1

(−1)n+1 1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− . . .

are both alternating series, while 

1− 1

2
− 1

3
+

1

4
+

1

5
− 1

6
− 1

7
+ . . .

is not, for the sign of the terms do not alternate for every n. 

Note that an alternating series 
∑∞

n=1 an  can be written under the form 

corrections 3: youtube workbook part II

January 13, 2014

• p10: add at the end of the preface: “I hope that only few errors are left
in this book, but some are bound to remain. I welcome feedback and
comments at calculusvideos@gmail.com.”

• p33, Definition 2.1.1, italicize “exponential function of base”

• p37, Abstract: replace “2 videos” by “two videos”

• p265, Notations: the new entry for n! uses a smaller font than the others

• p 66 link “Fundamental Theorem of Calculus” on line 2 after Abstract to
https://www.youtube.com/watch?v=MkeATgzdVKs&list=SP265CB737C01F8961&index=72

• page 116, Definition 7.1.1: italicize “convergent” and “divergent” in 3)

• page 119, Definition 7.2.1: italicize “convergent” and “divergent” in 2) and
“convergent” in 3)

• page 123, line -3: the link for Theorem 7.3.1 is not the same style as other
links

• page 198, Theorem 11.4.1: I still sent a formula that need improvement
(different sizs for similar formulas). Use instead:

∞∑

n=1

bn convergent =⇒
∞∑

n=1

an convergent

∞∑

n=1

an divergent =⇒
∞∑

n=1

bn divergent.

• page 207, right before Theorem 12.1.3: replace the formula with

∞∑

n=1

(−1)n bn or
∞∑

n=1

(−1)n−1bn where bn = |an| ≥ 0.

• page 209, Abstract: do not italicize “absolutely convergent” and “condi-
tionally convergent” in the Abstract (but only in the definition 12.2.1)

1

Theorem 12.1.3 (Alternating Series Test)  An alternating series 
∑∞

n=1(−1)n−1bn  or 
∑∞

n=1(−1)nbn , where 
bn ≥ 0  for all n, {bn}∞n=1 is eventually non-increasing, and 

lim
n→∞

bn = 0

is convergent.

Example 12.1.4. Are the following series convergent?  

1.	
∑∞

n=1(−1)n−1 1
n

Solution. Since 
{

1
n

}∞
n=1

 is decreasing with limit 0 and the series is alternating, the Alternating 
Series Test applies to the effect that 

∑∞
n=1(−1)n−1 1

n  is convergent.

2.	
∑∞

n=1(−1)n 1√
n

Solution. Since 
{

1√
n

}∞

n=1
 is decreasing with limit 0 (because 

√
x  is increasing with 

limx→∞
√
x = ∞ ) and the series is alternating, the Alternating Series Test applies to the effect 

that 
∑∞

n=1(−1)n 1√
n  is convergent.

3.	
∑∞

n=1(−1)n−1 1
ln(n+1)

Solution. Since 
{

1
ln(n+1)

}∞

n=1
 is decreasing with limit 0 (because ln x is increasing with 

limx→∞ lnx = ∞ ) and the series is alternating, the Alternating Series Test applies to the 
effect that 

CORRECTIONS 5

• page 207, Example 12.1.4, 3) replace “the Alternating Series Test applies
to the effect that

∑∞
n=1(−1)n 1√

n
is convergent.” by “the Alternating Series

Test applies to the effect that
∑∞

n=1(−1)n−1 1
ln(n+1) is convergent.”

• page 208, 5) “Solution” should be italicized and “Since” should not.
• page 209, Definition 12.2.1: italicize “absolutely convergent” and “condi-

tionally convergent”
• page 211, 5. “Solution” should be italicized and “Since” should not.
• page 212, the entire text of Proposition 12.3.1 should be italicized
• page 219, Example 13.3.1 unglue n and “is”:

{
an = n

2n if n is odd
an = 1

2n if n is even
.

Also replace
∣∣∣∣
an+1

an

∣∣∣∣ =
n+ 1

2n+1
· 2n =

n+ 1

2
or

∣∣∣an+1

an

∣∣∣ = 1
2n+1 · 2n

n = 1
2n

with∣∣∣∣
an+1

an

∣∣∣∣ =
n+ 1

2n+1
· 2n =

n+ 1

2
or

∣∣∣∣
an+1

an

∣∣∣∣ =
1

2n+1
· 2

n

n
=

1

2n

to harmonize the size of similar terms in the equation.
• page 220: the text of Theorem 13.3.2 should be italicized
• page 221, Example 13.3.4 unglue n and “is”:

n
√
an =

{
n

1
n

2 if n is odd
1
2 if n is even

,

• page 225 top Remark: replace “, an, simplify” by “, simplify” and replace

n
√
|an| =

|x|
lnn

,

by
n!

(n+ 2)!
=

1

(n+ 1)(n+ 2)
and 32n

3n+1 = 3n−1.

• page 226, abstract: replace “leading the definition” by “leading to the defi-
nition”

• page 227, Definition 14.1.2: italicize “power series” and “coefficients”
• p 228, line 1: “we will say” instead of “we will day”
• p 229, Definition 14.1.6: italicize “power series centered at” and “coeffi-

cients”
• p235, Example 14.2.7, Solution to 1. The part “Since...at most 6:” should

not be italicized
• p237, equation (14.3.1) include space between x and “with”:

(0.1)
∞∑

n=0

xn =
1

1− x
for all x with |x| < 1.

• Same for p 237, solution to Example 14.3.1:

f(x) =
1

1− (−x)

(0.1)
=

∞∑

n=0

(−x)n =

∞∑

n=0

(−1)nxn for all x with |x| < 1.

 is convergent.
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4.	
∑∞

n=1(−1)n cos
(
π
n

)

Solution. Since 

lim
n→∞

cos
(π
n

)
= cos 0 = 1,

lim
n→∞

(−1)n cos
(π
n

)
�= 0

and the nth term Test applies to the effect that 
∑∞

n=1(−1)n cos
(
π
n

)
 is divergent.

5.	
∑∞

n=1(−1)n 2n
4n2+1

Solution. Since 
(

2x

4x2 + 1

)′
=

2(4x2 + 1)− 16x2

(4x2 + 1)2
=

2− 8x2

(4x2 + 1)2
< 0 x ≥ 1,

we conclude that 
{

2n
4n2+1

}∞

n=1
 is non-increasing. Moreover, 

lim
n→∞

2n

4n2 + 1
= 0.

Thus, the Alternating Series Test applies to the effect that 
∑∞

n=1(−1)n 2n
4n2+1  is convergent.

6.	
∑∞

n=1(−1)n 2n
4n+1

Solution. Since 

lim
n→∞

2n

4n+ 1
=

2

4
=

1

2
�= 0,

lim
n→∞

(−1)n
2n

4n+ 1
�= 0

and the nth term Test applies to the effect that 
∑∞

n=1(−1)n 2n
4n+1  is divergent.
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12.2	 Absolute and conditional convergence

Watch the video at  

https://www.youtube.com/watch?v=nT6AZ50CJio&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=85 

Abstract

In this video, the notions of absolute convergence and of conditional convergence are introduced. 
It is shown that an absolutely convergent series is also convergent. Examples are examined to 
determined if a series is absolutely convergent, conditionally convergent, or divergent.

Definition 12.2.1. A series 
∑∞

n=1 an  is absolutely convergent if 
∑∞

n=1 |an|  is convergent, and conditionally 
convergent  if it is convergent but not absolutely convergent.

Example 12.2.2. The series 

∞∑

n=1

(−1)n
1

n2
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is absolutely convergent for 

∞∑

n=1

∣∣∣∣(−1)n
1

n2

∣∣∣∣ =
∞∑

n=1

1

n2

is a convergent p-series ( p = 2 > 1). On the other hand 

∞∑

n=1

(−1)n
1

n

is conditionally convergent because 
∑∞

n=1(−1)n 1
n  is convergent by the Alternating Series Test as 

{
1
n

}∞
n=1

 
is decreasing with limit 0, but 

∑∞
n=1(−1)n 1

n  is not absolutely convergent for 
∞∑

n=1

∣∣∣∣(−1)n
1

n

∣∣∣∣ =
∞∑

n=1

1

n

is a divergent p-series ( p = 1 ≤ 1).

Theorem 12.2.3. An absolutely convergent series is convergent.

Example 12.2.4. Are the following series absolutely convergent, conditionally convergent or divergent?  

1.	
∑∞

n=1
sinn
n3

Solution. Since 

0 ≤
∣∣∣∣
sinn

n3

∣∣∣∣ ≤
1

n3

and 
∑∞

n=1
1
n3  is a convergent p-series ( p = 3 > 1), we conclude by the Comparison Test that 

∑∞
n=1

∣∣ sin n
n3

∣∣ is convergent, that is, 
∑∞

n=1
sinn
n3  is absolutely convergent.

2.	
∑∞

n=1
(−1)n−1

n
√
n

Solution. Since 
∣∣∣∣
(−1)n−1

n
√
n

∣∣∣∣ =
1

n
3
2

and 
∑∞

n=1
1

n
3
2

 is a convergent p-series ( p = 3
2 > 1 ), we conclude that 

∑∞
n=1

(−1)n−1

n
√
n  is absolutely 

convergent.
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3.	 ∑∞
n=1

(−1)n−1

√
n

Solution. Since 
∣∣∣∣
(−1)n−1

√
n

∣∣∣∣ =
1

n
1
2

and 
∑∞

n=1
1

n
1
2

 is a divergent p-series (p = 1
2 ≤ 1), the series 

∑∞
n=1

(−1)n−1

√
n  is not absolutely 

convergent. On the other hand 
{

1√
n

}∞

n=1
 is decreasing with limit 0. By the Alternating Series 

Test, 
∑∞

n=1
(−1)n−1

√
n  is convergent, hence conditionally convergent.

4.	
∑∞

n=1
(−1)n

n+5

Solution. Note that 
∣∣∣ (−1)n

n+5

∣∣∣ = 1
n+5 and 

lim
n→∞

n

n+ 5
= 1 > 0,

so that, by the Limit Comparison Test, 
∑∞

n=1
1

n+5 is divergent because 
∑∞

n=1
1
n  is a divergent 

p-series ( p = 1 ≤ 1). Thus 
∑∞

n=1
(−1)n

n+5
 is not absolutely convergent. On the other hand {

1
n+5

}∞

n=1
 is decreasing with limit 0. By the Alternating Series Test, 

∑∞
n=1

(−1)n

n+5
 is convergent, 

hence conditionally convergent.

5.	
∑∞

n=1
(−1)nn
ln(n+1)

Solution. Since 

lim
n→∞

n

ln(n+ 1)
= lim

x→∞

x

ln(x+ 1)

H
= lim

x→∞

1
1

x+1

= lim
x→∞

x+ 1 = ∞,

the sequence 
{

(−1)nn
ln(n+1)

}∞

n=1
 does not converge to 0. By the nth term Test, 

∑∞
n=1

(−1)nn
ln(n+1) is 

divergent.
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12.3	 Estimating sums with the Alternating Series Test

Watch the video at

https://www.youtube.com/watch?v=eC5_B_pIwzI&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=86

Abstract

In this video, we examine upper bounds for the error made in approximating the sum of a 
series that converges by the Alternating Series Test by a partial sum.

Proposition 12.3.1. If an alternating series 
∑∞

n=1(−1)n−1bn  converges by the Alternating Series Test (that 
is, bn ≥ 0 , {bn}∞n=1  is eventually non-increasing and limn→∞ bn = 0) then the error Rn =

∑∞
i=n+1(−1)i−1bi  

made in approximating 
∑∞

n=1(−1)n−1bn  by the nth partial sum sn =
∑n

i=1(−1)i−1bi  satisfies 

|Rn| ≤ bn+1.

In other words, the first neglected term is an upper bound for the error. 
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Example 12.3.2. Find 

∞∑

n=1

(−1)n−1

(2n− 1)!

with 4 exact decimal places.

Solution. The sequence 
{

1
(2n−1)!

}∞

n=1
 is decreasing with limit 0, so that Proposition 12.3.1 

applies to the effect that the error Rn  made in the approximation 

sn =

n∑

i=1

(−1)i−1

(2i− 1)!
≈

∞∑

n=1

(−1)n−1

(2n− 1)!

satisfies 

|Rn| ≤
1

(2(n+ 1)− 1)!
=

1

(2n+ 1)!
.

Examining the values of (2n + 1)! as n grows we have 3! = 6, 5! =120, 7! = 5040, and 
9! = 362160 > 105. Thus 

s4 = 1− 1

6
+

1

120
− 1

5040
≈

∞∑

n=1

(−1)n−1

(2n− 1)!

with an error less than 10–5, hence at least 4 exact decimal places.

Exercises

you are now prepared to work on the Practice Problems, and Homework set M12 in the manual of 
exercises.
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13	 M13: Ratio and Root Tests
13.1	 Ratio Test (Statement and proof )

Watch the video at  

https://www.youtube.com/watch?v=BOcp-elEnGk&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=87 

Abstract

In this video, we state and prove the Ratio Test.

Theorem 13.1.1 (Ratio Test)   

1.	 If 

lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ = L < 1

then 
∑∞

n=1 an  is absolutely convergent, hence convergent. 

2.	 If 

lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ = L > 1 limn→∞

∣∣∣an+1

an

∣∣∣ = ∞

then 
∑∞

n=1 an  is divergent. 

3.	 If 

lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ = 1

the test is inconclusive. 

Example 13.1.2. The Ratio Test is indeed inconclusive if limn→∞

∣∣∣an+1

an

∣∣∣ = 1, as we can see from the fact 
that limn→∞

∣∣∣an+1

an

∣∣∣ = 1 if an = 1
n  and if an = 1

n2 , but 
∑∞

n=1
1
n  is divergent and 

∑∞
n=1

1
n2  is convergent. 

Thus limn→∞

∣∣∣an+1

an

∣∣∣ = 1 doesn’t give any indication regarding the convergence of the series. 
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13.2	 Ratio Test: examples

Watch the videos at  

https://www.youtube.com/watch?v=ZS33eDmpD0U&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=88 

and 

https://www.youtube.com/watch?v=YtfOBDo4m0E&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=89 

and 

https://www.youtube.com/watch?v=6cm0JnpWM2I&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=90 

Abstract

In these videos, the convergence of series is tested on a number of examples using the Ratio Test.
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Example 13.2.1. Are the following series convergent or divergent?  

1.	
∑∞

n=1
(−1)nn3

3n

Solution. In this case 

∣∣∣∣
an+1

an

∣∣∣∣ =
(n+ 1)3

3n+1
· 3

n

n3
=

1

3
·
(
n+ 1

n

)3

so that limn→∞

∣∣∣an+1

an

∣∣∣ = 1
3 < 1 . By the Ratio Test, the series 

∑∞
n=1

(−1)nn3

3n
 is absolutely 

convergent, hence convergent.

2.	
∑∞

n=1
2n+5
3n

Solution. In this case 
∣∣∣∣
an+1

an

∣∣∣∣ =
2n+1 + 5

3n+1
· 3n

2n + 5
=

1

3
·
2n

(
2 + 5

2n

)

2n
(
1 + 5

2n

)

so that limn→∞

∣∣∣an+1

an

∣∣∣ = 2
3 < 1 . By the Ratio Test, 

∑∞
n=1

2n+5
3n  is convergent. 

3.	
∑∞

n=1
10n

n!

Solution. Since 

∣∣∣∣
an+1

an

∣∣∣∣ =
10n+1

(n+ 1)!
· n!

10n
=

n!

(n+ 1)!
· 10

n+1

10n
=

10

n+ 1
,

we conclude that limn→∞

∣∣∣an+1

an

∣∣∣ = 0 < 1 . By the Ratio Test, 
∑∞

n=1
10n

n!  is convergent.

4.	
∑∞

n=1
(2n)!
n!n!

Solution. Since 

∣∣∣∣
an+1

an

∣∣∣∣ =
(2n+ 2)!

(n+ 1)!(n+ 1)!
· n!n!
2n!

=

(
n!

(n+ 1)!

)2

· (2n+ 2)!

2n!

=
(2n+ 1)(2n+ 2)

(n+ 1)2
,

we conclude that 

lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ = 4 > 1

and, by the Ratio Test, 
∑∞

n=1
(2n)!
n!n!

 is divergent.
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Example 13.2.2. Are the following series convergent or divergent?  

1.	
∑∞

n=1
n!
nn

Solution. Since 
∣∣∣∣
an+1

an

∣∣∣∣ =
(n+ 1)!

(n+ 1)n+1
· n

n

n!
=

n+ 1

(n+ 1)n+1
· nn =

(
n

n+ 1

)n

= en ln( n
n+1)

and 

lim
n→∞

n ln

(
n

n+ 1

)
= lim

x→∞

lnx− ln(x+ 1)
1
x

H
= lim

x→∞

1
x − 1

x+1

− 1
x2

= lim
x→∞

x2

x+ 1
− x

= lim
x→∞

x2 − x2 − x

x+ 1
= lim

x→∞
− x

x+ 1
= −1

we conclude that limn→∞

∣∣∣an+1

an

∣∣∣ = e−1 < 1 . By the Ratio Test, 
∑∞

n=1
n!
nn  is convergent.

2.	
∑∞

n=1 n!e
−n

Solution. Since 
∣∣∣∣
an+1

an

∣∣∣∣ =
(n+ 1)!

n!
· en

en+1
=

n+ 1

e
,

we have limn→∞

∣∣∣an+1

an

∣∣∣ = ∞ . By the Ratio Test, 
∑∞

n=1 n!e
−n  is divergent.

3.	
∑∞

n=1 an  where {
a1 = 2

an+1 = 5n+1
4n+3an

.

Solution. By definition of {an}∞n=1 
∣∣∣∣
an+1

an

∣∣∣∣ =
5n+ 1

4n+ 3

so that limn→∞

∣∣∣an+1

an

∣∣∣ = 5
4 > 1 . By the Ratio Test, 

∑∞
n=1 an  is divergent.

Example 13.2.3. Show in two different ways that 
∑∞

n=1 ne
−n  is convergent.

Solution. Method 1: Integral Test. The series is of the form 
∑∞

n=1 f(n)  where f(x) = xe−x  is 
non-negative, continuous, and decreasing on [1,∞)  for 

f ′(x) = e−x(1− x) < 0 x > 1.

By the Integral Test, 
∑∞

n=1 ne
−n  is convergent if and only if 

´∞
1

xe−x dx  is. moreover, 

ˆ ∞

1

xe−x dx = lim
t→∞

ˆ t

1

xe−x dx
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and we calculate 
´ t
1
xe−x dx  by parts with u = x  and dv = e−x dx  so that du = dx  and 

v = −e−x , that is, 

ˆ t

1

xe−x dx =
[
−xe−x

]t
1
+

ˆ t

1

e−x dx =
[
−e−x(x+ 1)

]t
1
=

2

e
− t+ 1

et
.

Moreover, 

lim
t→∞

t+ 1

et
H
= lim

t→∞

1

et
= 0.

Thus, 

ˆ ∞

1

xe−x dx = lim
t→∞

2

e
− t+ 1

et
=

2

e
,

so that 
∑∞

n=1 ne
−n  is convergent. 

Method 2: Ratio Test. Since 
∣∣∣∣
an+1

an

∣∣∣∣ =
n+ 1

n
· en

en+1
=

1

e
· n+ 1

n
,

we conclude that 

lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ =
1

e
< 1,

so that 
∑∞

n=1 ne
−n  is convergent by the Ratio Test.

Example 13.2.4. For what values of x is the sequence {xn

n!

}∞
n=1

 convergent? When convergent, find the 
limit.

Solution. By the nth term Test, we have 

lim
n→∞

xn

n!
= 0 x,

because 
∑∞

n=1
xn

n!  is convergent for all x. Indeed, letting an = xn

n! , we have 
∣∣∣∣
an+1

an

∣∣∣∣ =
|x|n+1

(n+ 1)!
· n!

|x|n =
|x|

n+ 1
,

so that 

lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ = 0 x,

and 
∑∞

n=1
xn

n!  is absolutely convergent for all x, by the Ratio Test.
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13.3	 Root Test

Watch the video at  

https://www.youtube.com/watch?v=mnry_Af3tek&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&ind
ex=91 

Abstract

In this video, the Root Test for convergence of series is stated and proved, and applied to some 
examples.

Example 13.3.1. Consider the series 
∑∞

n=1 an  where 

CORRECTIONS 5

• page 207, Example 12.1.4, 3) replace “the Alternating Series Test applies
to the effect that

∑∞
n=1(−1)n 1√

n
is convergent.” by “the Alternating Series

Test applies to the effect that
∑∞

n=1(−1)n−1 1
ln(n+1) is convergent.”

• page 208, 5) “Solution” should be italicized and “Since” should not.
• page 209, Definition 12.2.1: italicize “absolutely convergent” and “condi-

tionally convergent”
• page 211, 5. “Solution” should be italicized and “Since” should not.
• page 212, the entire text of Proposition 12.3.1 should be italicized
• page 219, Example 13.3.1 unglue n and “is”:

{
an = n

2n if n is odd
an = 1

2n if n is even
.

Also replace
∣∣∣∣
an+1

an

∣∣∣∣ =
n+ 1

2n+1
· 2n =

n+ 1

2
or

∣∣∣an+1

an

∣∣∣ = 1
2n+1 · 2n

n = 1
2n

with∣∣∣∣
an+1

an

∣∣∣∣ =
n+ 1

2n+1
· 2n =

n+ 1

2
or

∣∣∣∣
an+1

an

∣∣∣∣ =
1

2n+1
· 2

n

n
=

1

2n

to harmonize the size of similar terms in the equation.
• page 220: the text of Theorem 13.3.2 should be italicized
• page 221, Example 13.3.4 unglue n and “is”:

n
√
an =

{
n

1
n

2 if n is odd
1
2 if n is even

,

• page 225 top Remark: replace “, an, simplify” by “, simplify” and replace

n
√
|an| =

|x|
lnn

,

by
n!

(n+ 2)!
=

1

(n+ 1)(n+ 2)
and 32n

3n+1 = 3n−1.

• page 226, abstract: replace “leading the definition” by “leading to the defi-
nition”

• page 227, Definition 14.1.2: italicize “power series” and “coefficients”
• p 228, line 1: “we will say” instead of “we will day”
• p 229, Definition 14.1.6: italicize “power series centered at” and “coeffi-

cients”
• p235, Example 14.2.7, Solution to 1. The part “Since...at most 6:” should

not be italicized
• p237, equation (14.3.1) include space between x and “with”:

(0.1)
∞∑

n=0

xn =
1

1− x
for all x with |x| < 1.

• Same for p 237, solution to Example 14.3.1:

f(x) =
1

1− (−x)

(0.1)
=

∞∑

n=0

(−x)n =

∞∑

n=0

(−1)nxn for all x with |x| < 1.

The Ratio Test is inconclusive in this case, for 

CORRECTIONS 5

• page 207, Example 12.1.4, 3) replace “the Alternating Series Test applies
to the effect that

∑∞
n=1(−1)n 1√

n
is convergent.” by “the Alternating Series

Test applies to the effect that
∑∞

n=1(−1)n−1 1
ln(n+1) is convergent.”

• page 208, 5) “Solution” should be italicized and “Since” should not.
• page 209, Definition 12.2.1: italicize “absolutely convergent” and “condi-

tionally convergent”
• page 211, 5. “Solution” should be italicized and “Since” should not.
• page 212, the entire text of Proposition 12.3.1 should be italicized
• page 219, Example 13.3.1 unglue n and “is”:

{
an = n

2n if n is odd
an = 1

2n if n is even
.

Also replace
∣∣∣∣
an+1

an

∣∣∣∣ =
n+ 1

2n+1
· 2n =

n+ 1

2
or

∣∣∣an+1

an

∣∣∣ = 1
2n+1 · 2n

n = 1
2n

with∣∣∣∣
an+1

an

∣∣∣∣ =
n+ 1

2n+1
· 2n =

n+ 1

2
or

∣∣∣∣
an+1

an

∣∣∣∣ =
1

2n+1
· 2

n

n
=

1

2n

to harmonize the size of similar terms in the equation.
• page 220: the text of Theorem 13.3.2 should be italicized
• page 221, Example 13.3.4 unglue n and “is”:

n
√
an =

{
n

1
n

2 if n is odd
1
2 if n is even

,

• page 225 top Remark: replace “, an, simplify” by “, simplify” and replace

n
√
|an| =

|x|
lnn

,

by
n!

(n+ 2)!
=

1

(n+ 1)(n+ 2)
and 32n

3n+1 = 3n−1.

• page 226, abstract: replace “leading the definition” by “leading to the defi-
nition”

• page 227, Definition 14.1.2: italicize “power series” and “coefficients”
• p 228, line 1: “we will say” instead of “we will day”
• p 229, Definition 14.1.6: italicize “power series centered at” and “coeffi-

cients”
• p235, Example 14.2.7, Solution to 1. The part “Since...at most 6:” should

not be italicized
• p237, equation (14.3.1) include space between x and “with”:

(0.1)
∞∑

n=0

xn =
1

1− x
for all x with |x| < 1.

• Same for p 237, solution to Example 14.3.1:

f(x) =
1

1− (−x)

(0.1)
=

∞∑

n=0

(−x)n =

∞∑

n=0

(−1)nxn for all x with |x| < 1.
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depending on whether n is even or odd. Thus, 
∣∣∣an+1

an

∣∣∣ does not have a limit because it has a subsequence 
with limit ∞ and a subsequence with limit 0. Yet, we ought to be able to conclude by “comparison” to 
the geometric series 

∑∞
n=1

1
2n , which is the spirit of the Ratio Test. 

The alternative is: 

Theorem 13.3.2 (Root Test)   

1.	 If 

lim
n→∞

n
√
|an| = L < 1

then 
∑∞

n=1 an  is absolutely convergent, hence convergent. 

2.	 If 

lim
n→∞

n
√
|an| = L > 1 lim

n→∞
n
√
|an| = ∞

then 
∑∞

n=1 an  is divergent. 

3.	 If 

lim
n→∞

n
√
|an| = 1

then the Test is inconclusive. 

Example 13.3.3. We see that the Root Test is inconclusive when limn→∞
n
√
|an| = 1 because, given that 

lim
x→∞

lnx

x

H
= lim

x→∞

1
x

1
= 0,

we have 

lim
n→∞

n

√
1

n
= lim

n→∞

1

n
1
n

= lim
n→∞

1

e
lnn
n

= lim
n→∞

1

e0
= 1

and 

lim
n→∞

n

√
1

n2
= lim

n→∞

1

e
2 lnn

n

= 1

but 
∑∞

n=1
1
n  is a divergent p-series ( p = 1 ≤ 1), while 

∑∞
n=1

1
n2  is a convergent p-series ( p = 2 > 1). 
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Example 13.3.4. We can use the Root Test to justify that the series of Example 13.3.1 is convergent. Indeed 

CORRECTIONS 5

• page 207, Example 12.1.4, 3) replace “the Alternating Series Test applies
to the effect that

∑∞
n=1(−1)n 1√

n
is convergent.” by “the Alternating Series

Test applies to the effect that
∑∞

n=1(−1)n−1 1
ln(n+1) is convergent.”

• page 208, 5) “Solution” should be italicized and “Since” should not.
• page 209, Definition 12.2.1: italicize “absolutely convergent” and “condi-

tionally convergent”
• page 211, 5. “Solution” should be italicized and “Since” should not.
• page 212, the entire text of Proposition 12.3.1 should be italicized
• page 219, Example 13.3.1 unglue n and “is”:

{
an = n

2n if n is odd
an = 1

2n if n is even
.

Also replace
∣∣∣∣
an+1

an

∣∣∣∣ =
n+ 1

2n+1
· 2n =

n+ 1

2
or

∣∣∣an+1

an

∣∣∣ = 1
2n+1 · 2n

n = 1
2n

with∣∣∣∣
an+1

an

∣∣∣∣ =
n+ 1

2n+1
· 2n =

n+ 1

2
or

∣∣∣∣
an+1

an

∣∣∣∣ =
1

2n+1
· 2

n

n
=

1

2n

to harmonize the size of similar terms in the equation.
• page 220: the text of Theorem 13.3.2 should be italicized
• page 221, Example 13.3.4 unglue n and “is”:

n
√
an =

{
n

1
n

2 if n is odd
1
2 if n is even

,

• page 225 top Remark: replace “, an, simplify” by “, simplify” and replace

n
√
|an| =

|x|
lnn

,

by
n!

(n+ 2)!
=

1

(n+ 1)(n+ 2)
and 32n

3n+1 = 3n−1.

• page 226, abstract: replace “leading the definition” by “leading to the defi-
nition”

• page 227, Definition 14.1.2: italicize “power series” and “coefficients”
• p 228, line 1: “we will say” instead of “we will day”
• p 229, Definition 14.1.6: italicize “power series centered at” and “coeffi-

cients”
• p235, Example 14.2.7, Solution to 1. The part “Since...at most 6:” should

not be italicized
• p237, equation (14.3.1) include space between x and “with”:

(0.1)
∞∑

n=0

xn =
1

1− x
for all x with |x| < 1.

• Same for p 237, solution to Example 14.3.1:

f(x) =
1

1− (−x)

(0.1)
=

∞∑

n=0

(−x)n =

∞∑

n=0

(−1)nxn for all x with |x| < 1.

so that 

lim
n→∞

n
√
an =

1

2
< 1

for 

lim
n→∞

n
1
n = lim

n→∞
e

ln
n = e0 = 1.

By the Root Test, 
∑∞

n=1 an  is convergent. 

Note that we could also have used a comparison argument to reduce the problem to using the Ratio 
Test: Since 

0 ≤ an ≤ n

2n
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and 
∑∞

n=1
n
2n  is convergent by the Ratio Test, because 

n+ 1

2n+1
· 2

n

n
=

1

2
· n+ 1

n
−→
n→∞

1

2
< 1,

we conclude by the Comparison Test that 
∑∞

n=1 an  is convergent. 

Example 13.3.5. Are the following series convergent?  

1.	
∑∞

n=1

(
4n+1
5n+3

)n

Solution. If an =
(

4n+1
5n+3

)n

 then 

lim
n→∞

n
√
|an| = lim

n→∞

4n+ 1

5n+ 3
=

4

5
< 1,

so that the series 
∑∞

n=1

(
4n+1
5n+3

)n

 is convergent by the Root Test.

2.	
∑∞

n=1

(
2n2+1
n2+3

)n

Solution. If an =
(

2n2+1
n2+3

)n

 then 

lim
n→∞

n
√
|an| = lim

n→∞

2n2 + 1

n2 + 3
= 2 > 1,

so that the series 
∑∞

n=1

(
2n2+1
n2+3

)n

 is divergent by the Root Test.

3.	
∑∞

n=1
(−1)n

(arctann)n

Solution. If an = (−1)n

(arctann)n
 then 

lim
n→∞

n
√
|an| = lim

n→∞

1

arctann
=

2

π
< 1,

so that the series 
∑∞

n=1
(−1)n

(arctann)n  is convergent by the Root Test.

Exercises

you are now prepared to work on the Practice Problems, and Homework set M13 in the manual of 
exercises.

Download free eBooks at bookboon.com



A youtube Calculus Workbook (Part II)

223 

M13: Ratio and Root Tests

13.4	 Strategies to test series for convergence (M14)

Watch the video at  

https://www.youtube.com/watch?v=TdMMHGtXmwE&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL
&index=92 

Abstract

In this video, we discuss strategies to decide which of the various Tests we have seen should 
be applied to decide on the convergence of a series. 

When we want to decide if a series 
∑∞

n=1 an  is convergent, you may want to approach it following these 
guidelines: 

1.	 What is limn→∞ an ?  

lim
n→∞

an �= 0 =⇒
∞∑

n=1

an nth

lim
n→∞

an = 0 =⇒

2.	 Is the series a p-series 
∑∞

n=1
k
np  or a geometric series 

∑∞
n=1 ar

n−1? 

•	 p-series is convergent if and only if p > 1  
•	 geometric series of common ratio r is convergent if and only if |r| < 1 , in which case 

∞∑

n=1

a · rn−1 =
a

1− r
.

3.	 Is the series “similar” to a p-series or a geometric series? Then use Direct (Theorem 11.4.1) 
or Limit Comparison (Theorem 11.5.1) with the appropriate p-series or geometric series. 
Note that Comparison only applies to series with positive terms, but if a series does not 
have only positive terms, these theorems can be applied to 

∑∞
n=1 |an|  to obtain absolute 

convergence, hence convergence.

Example 13.4.1. To conclude about the convergence of 
∑∞

n=1
2n

3n−1+2, note that 

0 ≤ 2n

3n−1 + 2
≤ 2n

3n−1
= 2

(
2

3

)n−1

and that 
∑∞

n=1 2
(
2
3

)n−1
 is a convergent geometric series for its common ratio 2

3  is in (−1, 1). By 
Comparison Test, 

∑∞
n=1

2n

3n−1+2 is also convergent. 
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Example 13.4.2. To conclude on the convergence of 
∑∞

n=1

√
n3+3n+3

3
√
2n6+n4+1 , let 

• page 119, Definition 7.2.1: italicize “convergent” and “divergent” in 1), 2)
and “convergent” in 3)

• page 122: if possible to not spit Theorem 7.3.1 across 2 pages

• page 123, Example 7.3.4. “Moreover” should not be italicized

• page 142, Example 8.6.2: “about the y-axis.” should not be italicized

• page 155, Example 9.3.1 Solution: “(9.2.3) gives” should be “(9.3.1) gives”.

• page 169, top: the font size seems smaller than the end of page 168

• page 192, line 3 after the abstract. Italicize “series” in p-series

• page 196, Example 11.3.2. The question should be on the same line as
“Example”

• page 199 Example 11.4.2. 1) “Solution” should be italicized

• page 209, Definition 12.2.1: italicize “absolutely convergent” and “condi-
tionally convergent”

• page 211, 5. “Solution” should be italicized and “Since” should not.

• page 219-220 Example 13.3.1: the font size changes after the 2nd formula
(at the top of page 220)

• page 220, Theorem 3.3.2: do not italicize title “(Root Test)”

• page 220, Example 13.3.3: font size changes in the last line

• page 224, Example 13.4.2: replace the first displayed formula with this
one

an :=

√
n3 + 3n+ 3

3
√
2n6 + n4 + 1

and bn :=

√
n3

3
√
n6

=
1√
n

in order to harmonize the size of similar formulas.

• page 227 Definition 14.1.2: only the first “power series” should be italicized.

• page 228 top: italicize “has a power series representation”

• page 238, 4. “Solution” should be italicized and “Since” should not.

• page 251 Theorem 14.9.2: do not italicize the title “(Taylor-Lagrange)”

• page 251 Corollary 14.9.3: idem: “Taylor’s Inequality” should not be ital-
icized

• page 260, Theorem 15.4.1: the last line seems to have smaller font

• page 262 Theorem 15.5.1: do not italicize the title (Binomial Theorem)

2

and note that 

lim
n→∞

an
bn

= lim
n→∞

√
n
√
n3 + 3n+ 3

3
√
2n6 + n4 + 1

= lim
n→∞

n2
√
1 + 3

n2 + 3
n3

n2 3

√
2 + 1

n2 + 1
n6

=
1√
2
> 0,

so that by the Limit Comparison Test, 
∑∞

n=1

√
n3+3n+3

3
√
2n6+n4+1  is divergent, for 

∑∞
n=1 bn =

∑∞
n=1

1

n
1
2

 is a 
divergent p-series ( p = 1

2 ≤ 1 ). 

4.	 Is the series alternating, that is, of the form 
∑∞

n=1(−1)nbn  or 
∑∞

n=1(−1)n−1bn  where 
bn ≥ 0  for all n?  If yes, the Alternating Series Test (Theorem 12.1.3) applies to the effect 
that the series is convergent provided that {bn}∞n=1 is eventually non-increasing and that 
limn→∞ bn = 0. 

5.	 Series with general terms defined in terms of products, quotients, powers, and particularly 
factorials, are usually handled by the Ratio Test (Theorem 13.1.1)
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Remark. To apply the ratio test, you need to calculate 
∣∣∣an+1

an

∣∣∣,
i

 simplify it, and find the limit 
as n goes to ∞. To this end, keep in mind that. 

ax

ay
= ax−y and n! = 1 · 2 · 3 . . . · (n− 1) · n,

so that for instance

CORRECTIONS 5

• page 207, Example 12.1.4, 3) replace “the Alternating Series Test applies
to the effect that

∑∞
n=1(−1)n 1√

n
is convergent.” by “the Alternating Series

Test applies to the effect that
∑∞

n=1(−1)n−1 1
ln(n+1) is convergent.”

• page 208, 5) “Solution” should be italicized and “Since” should not.
• page 209, Definition 12.2.1: italicize “absolutely convergent” and “condi-

tionally convergent”
• page 211, 5. “Solution” should be italicized and “Since” should not.
• page 212, the entire text of Proposition 12.3.1 should be italicized
• page 219, Example 13.3.1 unglue n and “is”:

{
an = n

2n if n is odd
an = 1

2n if n is even
.

Also replace
∣∣∣∣
an+1

an

∣∣∣∣ =
n+ 1

2n+1
· 2n =

n+ 1

2
or

∣∣∣an+1

an

∣∣∣ = 1
2n+1 · 2n

n = 1
2n

with∣∣∣∣
an+1

an

∣∣∣∣ =
n+ 1

2n+1
· 2n =

n+ 1

2
or

∣∣∣∣
an+1

an

∣∣∣∣ =
1

2n+1
· 2

n

n
=

1

2n

to harmonize the size of similar terms in the equation.
• page 220: the text of Theorem 13.3.2 should be italicized
• page 221, Example 13.3.4 unglue n and “is”:

n
√
an =

{
n

1
n

2 if n is odd
1
2 if n is even

,

• page 225 top Remark: replace “, an, simplify” by “, simplify” and replace

n
√
|an| =

|x|
lnn

,

by
n!

(n+ 2)!
=

1

(n+ 1)(n+ 2)
and 32n

3n+1 = 3n−1.

• page 226, abstract: replace “leading the definition” by “leading to the defi-
nition”

• page 227, Definition 14.1.2: italicize “power series” and “coefficients”
• p 228, line 1: “we will say” instead of “we will day”
• p 229, Definition 14.1.6: italicize “power series centered at” and “coeffi-

cients”
• p235, Example 14.2.7, Solution to 1. The part “Since...at most 6:” should

not be italicized
• p237, equation (14.3.1) include space between x and “with”:

(0.1)
∞∑

n=0

xn =
1

1− x
for all x with |x| < 1.

• Same for p 237, solution to Example 14.3.1:

f(x) =
1

1− (−x)

(0.1)
=

∞∑

n=0

(−x)n =

∞∑

n=0

(−1)nxn for all x with |x| < 1.

6.	 If 
∑∞

n=1 an =
∑∞

n=1(bn)
n  use the Root Test (Theorem 13.3.2).

7.	 If none of the above applies, you can try to apply the Integral Test (Theorem 11.1.1) 
provided that 

∞∑

n=1

an =

∞∑

n=1

f(n)

where f is eventually continuous, non-negative, and decreasing. Then 

∞∑

n=1

f(n) ⇐⇒
´∞
1 f(x) dx

Exercises

you are now prepared to work on the Practice Problems, and Homework set M14 in the manual of 
exercises.

Before turning to Chapter 14, you should also take Mock Test 4.
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14	 M15: �Power Series and Taylor 
Series

14.1	 Power series

Watch the video at  

https://www.youtube.com/watch?v=IsZMVI4VcCU&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=93 

Abstract

In this video, power series are defined and conditions for their convergence examined, leading 
to the definition of radius of convergence and interval of convergence. 

In the sequel, we use the convention that 

0! := 1.

Example 14.1.1. The series 

∞∑

n=1

xn

n!

is absolutely convergent for all x, by the Ratio Test, because 
∣∣∣∣
an+1

an

∣∣∣∣ =
|x|n+1

(n+ 1)!
· n!

|x|n =
|x|

n+ 1

so that limn→∞

∣∣∣an+1

an

∣∣∣ = 0 < 1  for all x. Thus 

f : x �→
∞∑

n=1

xn

n!

is a well-defined function with domain (−∞,∞). 

In this module, we will be interested in functions defined that way, and when a given function can be 
represented that way. 
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Definition 14.1.2. A power series (centered at 0) is a series of the form 

∞∑

n=0

cnx
n = c0 + c1x+ c2x

2 + . . .+ cnx
n + . . . ,

where x is a variable and all of the cn’s are constants, called coefficients of the power series. 

Of course 

f(x) :=

∞∑

n=0

cnx
n

is only defined for values of x making the series converge. Thus we will want to determine the set of x’s 
making power series converge. 

Note that for x = 0, 
∑∞

n=0 cnx
n = c0  is always convergent. 

Example 14.1.3. If cn = 1 for all n, we obtain 
∑∞

n=0 x
n  which is a geometric series of common ratio x. 

Thus 
∑∞

n=0 x
n  converges if and only if |x| < 1  and then 

∞∑

n=0

xn =
1

1− x
−1 < x < 1,
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so that 
∑∞

n=0 x
n  is a function with domain (−1, 1). We will say that f(x) = 1

1−x  has a power series 
representation on (−1, 1). 

Example 14.1.4. For what values of x is the series 
∑∞

n=0 n!x
n  convergent? 

Solution. If an := n!xn  then 

∣∣∣∣
an+1

an

∣∣∣∣ =
(n+ 1)!|x|n+1

n!|x|n = (n+ 1) · |x|.

Thus limn→∞

∣∣∣an+1

an

∣∣∣ = ∞  for all x �= 0  and limn→∞

∣∣∣an+1

an

∣∣∣ = 0 for x = 0 . By the Ratio Test, we conclude 
that 

∑∞
n=0 n!x

n  is divergent for all x �= 0  and convergent for x = 0 .

Example 14.1.5. For what values of x is the series 
∑∞

n=1
xn

n  convergent? 

Solution. If an := xn

n  then 

∣∣∣∣
an+1

an

∣∣∣∣ =
|x|n+1

n+ 1
· n

|x| = |x| · n

n+ 1
,

so that 

lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ = |x|.

By the Ratio Test, we conclude that 
∑∞

n=0
xn

n  is absolutely convergent for |x| < 1  and divergent for 
|x| > 1 . For |x| = 1 , that is, x = ±1, we have to analyze the series separately: 

When x = 1 , 

∞∑

n=1

xn

n
=

∞∑

n=1

1

n

is a divergent p-series ( p = 1 ≤ 1). 

When x = −1, 

∞∑

n=1

xn

n
=

∞∑

n=1

(−1)n

n

is an alternating series that converges by the Alternating Series Test, because 
{

1
n

}∞
n=1

 is decreasing with 
limit 0. Thus 

∑∞
n=1

xn

n  converges if and only if x ∈ [−1, 1).
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Examples 14.1.1, 14.1.3, 14.1.4 and 14.1.5 suggest that a series centered at 0 converges on an interval 
centered at 0 that may or may not contain the endpoints.

More generally, we will consider: 

Definition 14.1.6. A power series centered at a is a series of the form 

∞∑

n=0

cn(x− a)n = c0 + c1(x − a) + c2(x − a)2 + . . .+ cn(x− a)n + . . .

where x is a variable and all of the cn’s are constants, called coefficients of the power series.

Theorem 14.1.7. Given a power series 
∑∞

n=0 cn(x− a)n , there are 3 possibilities: 

1.	
∑∞

n=0 cn(x− a)n  converges only for x = a; 

2.	
∑∞

n=0 cn(x− a)n  converges for all x; 
3.	 There is R > 0  such that 

∑∞
n=0 cn(x− a)n  converges absolutely if |x− a| < R  and diverges if 

|x− a| > R . 

We call the value R in the third case the radius of convergence of the series . 

We include Case 1. in Theorem 14.1.7 by identifying that case with a radius of convergence R = 0 . 
Similarly, allowing the radius of convergence R to be infinite recovers Case 2. in Theorem 14.1.7. 

Thus the series converges absolutely inside an interval centered at a of radius R (where R may also be 0 
or ∞) and diverges outside. As we have seen on the examples above, the series may or may not converge 
at the end points where |x− a| = R  and the two numerical series corresponding to x = a+R  and to 
x=a-R need to be tested for convergence separately. 

Including endpoints whenever applicable, we then obtain the interval of convergence, that is, the set of 
values of x for which the power series converge.
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14.2	 Intervals of convergence

Watch the videos at  

https://www.youtube.com/watch?v=Eq8BSG-melo&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=94

and 

https://www.youtube.com/watch?v=8unc34-OqmA&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=95 

and

https://www.youtube.com/watch?v=KWGOU8B7J9g&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&
index=96 

Abstract

In these videos, the interval of convergence is determined for a number of examples of power 
series.
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Example 14.2.1. Find the interval of convergence for the series 

∞∑

n=1

(x− 3)n

n2
.

Solution. Let an := (x−3)n

n2
. Then 

∣∣∣∣
an+1

an

∣∣∣∣ =
|x− 3|n+1

(n+ 1)2
· n2

|x− 3|n =
n2

(n+ 1)2
· |x− 3|

so that 

lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ = |x− 3|.

Thus 
∑∞

n=1
(x−3)n

n2  is absolutely convergent if |x− 3| < 1  and is divergent if |x− 3| > 1 . 

Moreover |x− 3| = 1  for x = 2  or x = 4 , corresponding to 
∑∞

n=1
(−1)n

n2  and 
∑∞

n=1
1
n2  respectively. 

Both are absolutely convergent for 
∑∞

n=1
1
n2  is a convergent p-series ( p = 2 > 1). Thus, the interval of 

convergence is [2, 4].

Example 14.2.2. Find the interval of convergence for the series 

∞∑

n=0

(−1)nxn

n+ 1
.

Solution. Let an := (−1)nxn

n+1
. Then 

∣∣∣∣
an+1

an

∣∣∣∣ =
|x|n+1

n+ 2
· n+ 1

|x|n =
n+ 1

n+ 2
· |x|

so that limn→∞

∣∣∣an+1

an

∣∣∣ = |x|  and, by the Ratio Test, the interval of convergence is centered at 0 and of 
radius 1. 

At x = −1, the series becomes 

∞∑

n=0

(−1)n(−1)n

n+ 1
=

∞∑

n=0

1

n+ 1
=

∞∑

n=1

1

n

because (−1)2n = 1  for all n. Moreover, 
∑∞

n=1
1
n  is a divergent p-series ( p = 1 ≤ 1). 

At x = 1 , the series becomes 

∞∑

n=0

(−1)n

n+ 1
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which is convergent by the Alternating Series Test, for 
{

1
n+1

}∞

n=1
 is decreasing with limit 0. Thus the 

interval of convergence is 

I = (−1, 1].

Example 14.2.3. Find the interval of convergence for the series 

∞∑

n=0

3nxn

(n+ 1)2
.

Solution. Let an := 3nxn

(n+1)2 . Then, 

∣∣∣∣
an+1

an

∣∣∣∣ =
3n+1|x|n+1

(n+ 2)2
· (n+ 1)2

3n|x|n = 3|x| ·
(
n+ 1

n+ 2

)2

,

so that limn→∞

∣∣∣an+1

an

∣∣∣ = 3|x|  and, by the Ratio Test, the interval of convergence is centered at 0 and of 
radius 13 . At x = − 1

3, the series becomes 
∞∑

n=0

3n

(n+ 1)2
·
(
−1

3

)n

=

∞∑

n=0

(−1)n

(n+ 1)2
,

which is absolutely convergent, hence convergent, for 
∞∑

n=0

∣∣∣
(−1)n

(n+ 1)2

∣∣∣ =
∞∑

n=0

1

(n+ 1)2
=

∞∑

n=1

1

n2

is a convergent p-series ( p = 2 > 1). Thus, the series is also convergent when x = 1
3 , where it becomes 

∑∞
n=0

1
(n+1)2 . Therefore, the interval of convergence is 

I =

[
−1

3
,
1

3

]
.

Example 14.2.4. Find the interval of convergence for the series 

∞∑

n=2

(x− 1)n

lnn
.

Solution. Let an := (x−1)n

lnn
. Then, 

∣∣∣∣
an+1

an

∣∣∣∣ =
|x− 1|n+1

ln(n+ 1)
· lnn

|x− 1|n =
lnn

ln(n+ 1)
· |x− 1|

and 

lim
n→∞

lnn

ln(n+ 1)
= lim

x→∞

lnx

ln(x+ 1)

H
= lim

x→∞

1
x
1

x+1

= lim
x→∞

x+ 1

x
= 1,
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so that limn→∞

∣∣∣an+1

an

∣∣∣ = |x− 1| . By the Ratio Test, the interval of convergence is centered at 1 and of 
radius 1. At x = 0 , the series becomes 

∞∑

n=2

(−1)n

lnn
,

which is convergent by the Alternating Series Test, for 
{

1
lnn

}∞
n=2

 is decreasing with limit 0. 

On the other hand, at x = 2 , the series becomes 

∞∑

n=2

1

lnn
,

and 

0 ≤ 1

n
≤ 1

lnn
n ≥ 2 � (14.2.1)

for f(x) = x− lnx > 0  for all x ≥ 1  and thus n ≥ lnn . Indeed, f ′(x) = 1− 1
x > 0 for x > 1  and 

f(1) = 1 > 0 . 
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In view of (14.2.1), we conclude by Comparison that 
∑∞

n=2
1

lnn  is divergent because 
∑∞

n=1
1
n  is a divergent 

p-series ( p = 1 ≤ 1). Thus, the interval of convergence is 

I = [0, 2).

Example 14.2.5. Find the interval of convergence for the series 

∞∑

n=1

(−1)n
(x+ 2)n

n · 2n .

Solution. Let an := (−1)n (x+2)n

n2n
. Then 

∣∣∣∣
an+1

an

∣∣∣∣ =
|x+ 2|n+1

(n+ 1)2n+1
· n2n

|x+ 2|n =
1

2
· n

n+ 1
· |x+ 2|,

so that limn→∞

∣∣∣an+1

an

∣∣∣ = |x+2|
2 . By the Ratio Test, the interval of convergence is centered at –2 and of 

radius 2. 

At x = –4, the series becomes 

∞∑

n=1

(−1)n

n2n
· (−2)n =

∞∑

n=1

(−1)2n2n

n2n
=

∞∑

n=1

1

n

which is a divergent p-series ( p = 1 ≤ 1). 

At x = 0 , the series becomes 

∞∑

n=1

(−1)n

n
,

which is convergent by the Alternating Series Test, for the sequence 
{

1
n

}∞
n=1

 is decreasing with limit 0. 

Therefore the interval of convergence is 

I = (−4, 0].

Example 14.2.6. Find the interval of convergence for the series 

	

∞∑

n=2

xn

(lnn)n
.
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Solution. Let an := xn

(lnn)n . Then 

n
√
|an| =

|x|
lnn

,

so that limn→∞
n
√
|an| = 0 for all x. By the Root Test, the series is convergent for all x and the interval 

of convergence is 

I = (−∞,∞).

Example 14.2.7. Suppose that 
∑∞

n=0 cnx
n  converges when x = −4 and diverges when x = 6 . Can we 

conclude about the convergence of: 

1.	
∑∞

n=0 cn

Solution. Since this is a power series centered at 0, its interval of convergence is centered at  
0. Because it converges for x = −4, it s radius of convergence R is at least 4. Because it diverges 
for x = 6 , R is at most 6: 

4 ≤ R ≤ 6.

Now 
∞∑

n=0

cn =

∞∑

n=0

cnx
n x = 1

and 1 is in the interval of convergence for R ≥ 4 . Thus 
∑∞

n=0 cn  is absolutely convergent.

2.	
∑∞

n=0 cn8
n

Solution. Note that 
∞∑

n=0

cn8
n =

∞∑

n=0

cnx
n x = 8

which is divergent because R ≤ 6 < 8 .
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3.	
∑∞

n=0 cn(−3)n

Solution. Note that 
∞∑

n=0

cn(−3)n =

∞∑

n=0

cnx
n x = −3

which is convergent because R ≥ 4 .

4.	
∑∞

n=0(−1)ncn9
n

Solution. Note that 

∞∑

n=0

(−1)ncn9
n =

∞∑

n=0

cnx
n x = −9

which is divergent because R ≤ 6 < 9 .

Exercises

you are now prepared to work on the Practice Problems, and Homework set M15A in the manual of 
exercises.
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14.3	 Representation of functions as power series

Watch the video at  

https://www.youtube.com/watch?v=tAQa4brg3F4&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=97 

Abstract

In this video, we use the sum of a geometric series formula to find power series representations 
for various functions. 

Recall that a geometric series of common ratio x and first term 1 converges if and only if |x| < 1 , and then 

CORRECTIONS 5

• page 207, Example 12.1.4, 3) replace “the Alternating Series Test applies
to the effect that

∑∞
n=1(−1)n 1√

n
is convergent.” by “the Alternating Series

Test applies to the effect that
∑∞

n=1(−1)n−1 1
ln(n+1) is convergent.”

• page 208, 5) “Solution” should be italicized and “Since” should not.
• page 209, Definition 12.2.1: italicize “absolutely convergent” and “condi-

tionally convergent”
• page 211, 5. “Solution” should be italicized and “Since” should not.
• page 212, the entire text of Proposition 12.3.1 should be italicized
• page 219, Example 13.3.1 unglue n and “is”:

{
an = n

2n if n is odd
an = 1

2n if n is even
.

Also replace
∣∣∣∣
an+1

an

∣∣∣∣ =
n+ 1

2n+1
· 2n =

n+ 1

2
or

∣∣∣an+1

an

∣∣∣ = 1
2n+1 · 2n

n = 1
2n

with∣∣∣∣
an+1

an

∣∣∣∣ =
n+ 1

2n+1
· 2n =

n+ 1

2
or

∣∣∣∣
an+1

an

∣∣∣∣ =
1

2n+1
· 2

n

n
=

1

2n

to harmonize the size of similar terms in the equation.
• page 220: the text of Theorem 13.3.2 should be italicized
• page 221, Example 13.3.4 unglue n and “is”:

n
√
an =

{
n

1
n

2 if n is odd
1
2 if n is even

,

• page 225 top Remark: replace “, an, simplify” by “, simplify” and replace

n
√
|an| =

|x|
lnn

,

by
n!

(n+ 2)!
=

1

(n+ 1)(n+ 2)
and 32n

3n+1 = 3n−1.

• page 226, abstract: replace “leading the definition” by “leading to the defi-
nition”

• page 227, Definition 14.1.2: italicize “power series” and “coefficients”
• p 228, line 1: “we will say” instead of “we will day”
• p 229, Definition 14.1.6: italicize “power series centered at” and “coeffi-

cients”
• p235, Example 14.2.7, Solution to 1. The part “Since...at most 6:” should

not be italicized
• p237, equation (14.3.1) include space between x and “with”:

(0.1)
∞∑

n=0

xn =
1

1− x
for all x with |x| < 1.

• Same for p 237, solution to Example 14.3.1:

f(x) =
1

1− (−x)

(0.1)
=

∞∑

n=0

(−x)n =

∞∑

n=0

(−1)nxn for all x with |x| < 1.

� (14.3.1)

We can see this formula as providing a power series representation of the function f(x) = 1
1−x  on the 

interval (−1, 1).

This basic observation can be used to find power series representation for more functions. 

Example 14.3.1. Find power series representations (on some interval to be specified) for the functions 

1.	 f(x) = 1
1+x

Solution. Note that 

CORRECTIONS 5

• page 207, Example 12.1.4, 3) replace “the Alternating Series Test applies
to the effect that

∑∞
n=1(−1)n 1√

n
is convergent.” by “the Alternating Series

Test applies to the effect that
∑∞

n=1(−1)n−1 1
ln(n+1) is convergent.”

• page 208, 5) “Solution” should be italicized and “Since” should not.
• page 209, Definition 12.2.1: italicize “absolutely convergent” and “condi-

tionally convergent”
• page 211, 5. “Solution” should be italicized and “Since” should not.
• page 212, the entire text of Proposition 12.3.1 should be italicized
• page 219, Example 13.3.1 unglue n and “is”:

{
an = n

2n if n is odd
an = 1

2n if n is even
.

Also replace
∣∣∣∣
an+1

an

∣∣∣∣ =
n+ 1

2n+1
· 2n =

n+ 1

2
or

∣∣∣an+1

an

∣∣∣ = 1
2n+1 · 2n

n = 1
2n

with∣∣∣∣
an+1

an

∣∣∣∣ =
n+ 1

2n+1
· 2n =

n+ 1

2
or

∣∣∣∣
an+1

an

∣∣∣∣ =
1

2n+1
· 2

n

n
=

1

2n

to harmonize the size of similar terms in the equation.
• page 220: the text of Theorem 13.3.2 should be italicized
• page 221, Example 13.3.4 unglue n and “is”:

n
√
an =

{
n

1
n

2 if n is odd
1
2 if n is even

,

• page 225 top Remark: replace “, an, simplify” by “, simplify” and replace

n
√
|an| =

|x|
lnn

,

by
n!

(n+ 2)!
=

1

(n+ 1)(n+ 2)
and 32n

3n+1 = 3n−1.

• page 226, abstract: replace “leading the definition” by “leading to the defi-
nition”

• page 227, Definition 14.1.2: italicize “power series” and “coefficients”
• p 228, line 1: “we will say” instead of “we will day”
• p 229, Definition 14.1.6: italicize “power series centered at” and “coeffi-

cients”
• p235, Example 14.2.7, Solution to 1. The part “Since...at most 6:” should

not be italicized
• p237, equation (14.3.1) include space between x and “with”:

(0.1)
∞∑

n=0

xn =
1

1− x
for all x with |x| < 1.

• Same for p 237, solution to Example 14.3.1:

f(x) =
1

1− (−x)

(0.1)
=

∞∑

n=0

(−x)n =

∞∑

n=0

(−1)nxn for all x with |x| < 1.

2.	 f(x) = 1
1+x2

Solution. Note that 

f(x) =
1

1− (−x2)

(14.3.1)
=

∞∑

n=0

(−x2)n =

∞∑

n=0

(−1)nx2n

for all x with |x2| < 1 , that is, |x| < 1 .

(14.3.1)
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3.	 f(x) = 1
x−5

Solution. Note that 

f(x) = −1

5
· 1

1− x
5

(14.3.1)
= −1

5

∞∑

n=0

(x
5

)n

= −
∞∑

n=0

1

5n+1
xn

for all x with |x5 | < 1, that is, |x| < 5 .

4.	 f(x) = 1+x2

1−x2

Solution. Since 

f(x) = (1 + x2) · 1

1− x2

( )
= (1 + x2) ·

∞∑

n=0

x2n
(14.3.1)
= (1 + x2) ·

∞∑

n=0

x2n

for |x2| < 1 , that is, for |x| < 1 . Thus, for x ∈ (−1, 1), we have 

f(x) =

∞∑

n=0

x2n + x2
∞∑

n=0

x2n =

∞∑

n=0

x2n +

∞∑

n=0

x2n+2.

5.	 f(x) = 7x−1
3x2+2x−1

Solution. The decomposition into partial fraction for this function is: 

7x− 1

3x2 + 2x− 1
=

7x− 1

(x+ 1)(3x− 1)
=

2

x+ 1
+

1

3x− 1

= 2 · 1

1− (−x)
− 1

1− 3x

(14.3.1)
= 2

∞∑

n=0

(−x)n −
∞∑

n=0

(3x)n

provided that | − x| < 1 and |3x| < 1 . Thus, the equality above is true for |x| < 1
3  and then 

f(x) = 2
∞∑

n=0

(−1)nxn −
∞∑

n=0

3nxn

=

∞∑

n=0

((−1)
n · 2− 3n) xn − 1

3 < x < 1
3 .
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14.4	 term-by-term differentiation and integration of power series

Watch the video at  

https://www.youtube.com/watch?v=8WwilmZqkGs&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=98 

Abstract

In this video, we state a theorem for term-by-term differentiation and integration of power 
series and apply it to find more power series representations, and estimate numerical integrals. 

If a power series 

∞∑

n=0

cn(x− a)n

has radius of convergence R, then it is absolutely convergent for |x− a| < R , and defines on this interval 
a function 

f(x) =

∞∑

n=0

cn(x − a)n.

It is natural to ask whether the function f is differentiable, and whether it can be differentiated “like a 
polynomial”, yielding a power series representation for f ′ . Dually, we ask whether f is integrable on this 
interval, and whether f can be integrated “like a polynomial”, yielding a power series representation for 
an antiderivative of f. The answers are all positive: 

Theorem 14.4.1. If the power series 
∑∞

n=0 cn(x− a)n  has radius of convergence R > 0 , then 

CORRECTIONS 6

• page 239, 3rd line after Abstract: replace “then it is absolutely convergence”
by “then it is absolutely convergent”

• page 239, Theorem 14.4.1: the text should be italicized, and include “f(x) =∑∞
n=0 cn(x− a)n is defined on (a− R, a+ R) and” between “then” and 1.,

as below:

Theorem 1. If the power series
∑∞

n=0 cn(x−a)n has radius of convergence R > 0,
then f(x) =

∑∞
n=0 cn(x− a)n is defined on (a−R, a+R) and

(1) f is differentiable on (a−R, a+R) and

f ′(x) =

∞∑

n=1

n · cn(x− a)n−1 = c1 + 2c2(x− a) + 3c3(x− a)2 + . . .

and the series representing f ′ has radius of convergence R.
(2) f admits antiderivatives on (a−R, a+R) and on this interval

ˆ
f(x) dx = C +

∞∑

n=0

cn
(x− a)n+1

n+ 1

and the series on the right hand side has radius of convergence R.

• page 242, Abstract: replace “to find power series representation.” by “to
find power series representations.”

• page 244 Abstract: replace “to fin” by “to find”
• page 244, Example 14.6.1, 3) italicize “Solution”
• page 250, Definition 14.9.1: italicize “Taylor polynomial of f at”
• page 251, Theorem 14.9.2: the text of the Theorem should be italicized
• page 251, Corollary 14.9.3: idem for first line
• page 251, Example 14.9.4, 2nd line: replace f (n) = f by f (n) = f
• page 254, Abstract: replace “of functions to obtain” by “of functions are

used to obtain”
• page 254, Example 15.1.1, 1) italicize “Solution”
• page 254, Example 15.1.1, 2) (14.10.2) should be (14.10.4)
• page 260, Theorem 15.4.1: italicize all the text till the first displayed for-

mula
• page 262 Theorem 15.5.1: idem (italicize). If possible do not split the

theorem over two pages. Also to harmonize the size of display of similar
formula, replace (

r

0

)
:= 1 and

(
r
1

)
= r.

with (
r

0

)
:= 1 and

(
r

1

)
= r.

• I have not double checked the index, but a sample seems to work well.
• page 268, endnote 3: missing link for this video (should link to:

https://www.youtube.com/watch?v=iju4GxstffI&list=PL265CB737C01F8961&index=13
) and for Example 4.2.2 (should link to page 72)

 is deifined on (a−R, a+R)  and

1.	 f is differentiable on (a−R, a+R)  and 

f ′(x) =
∞∑

n=1

n · cn(x− a)n−1 = c1 + 2c2(x− a) + 3c3(x− a)2 + . . .

and the series representing f ′  has radius of convergence R. 

2.	 f admits antiderivatives on (a−R, a+R)  and on this interval 

ˆ
f(x) dx = C +

∞∑

n=0

cn
(x− a)n+1

n+ 1

and the series on the right hand side has radius of convergence R. 
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We can restate this result as 

( ∞∑

n=0

cn(x − a)n

)′

=
∞∑

n=0

cn ((x− a)n)
′

(a−R, a+R)

ˆ ∞∑

n=0

cn(x− a)n dx =

∞∑

n=0

cn

ˆ
(x − a)n dx (a−R, a+R).

Example 14.4.2. Find a power series representation for 
´

dx
1+x4  on (−1, 1) and find an estimate with at 

least 4 exact decimal places of 
´ 1

2

0
dx

1+x4 .

Solution. Note that 

1

1 + x4
=

1

1− (−x4)

(14.3.1)
=

∞∑

n=0

(−x4)n for | − x4| < 1

=
∞∑

n=0

(−1)nx4n for |x| < 1.

Using Theorem 14.4.1, 
ˆ

dx

1 + x4
= C +

∞∑

n=0

(−1)n

4n+ 1
x4n+1 (−1, 1).
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In particular, 

ˆ 1
2

0

dx

1 + x4
=

[ ∞∑

n=0

(−1)n

4n+ 1
x4n+1

] 1
2

0

=

∞∑

n=0

(−1)n

(4n+ 1)24n+1

is converging by the Alternating Series Test, so that, in view of Proposition 12.3.1, the error made in 
approximating 

´ 1
2

0
dx

1+x4  by 

sn :=

n∑

i=0

(−1)i

(4i+ 1) 24i+1

satisfies 

|Rn| ≤
1

(4(n+ 1) + 1)24(n+1)+1
=

1

(4n+ 5)24n+5
.

Thus, for n = 2, 

|Rn| ≤
1

13× 213
≈ 9.10−6

and 

s2 =
1

2
− 1

160
+

1

4608
≈
ˆ 1

2

0

dx

1 + x4

with at least 4 exact decimal places.
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14.5	 more power series representations

Watch the video at  

https://www.youtube.com/watch?v=_AK0pH4W9i4&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=99 

Abstract

In this video, we use term-by-term differentiation and integration of power series and the sum 
of a geometric series to find power series representations.

Example 14.5.1. Find a power series representation for f(x) = ln(5− x) .

Solution. Since 

f ′(x) = − 1

5− x
= −1

5
· 1

1− x
5

(14.3.1)
= −1

5

∞∑

n=0

(x
5

)n

for |x5 | < 1

= −
∞∑

n=0

xn

5n+1
for |x| < 5,

and f is an antiderivative of f ′ , we deduce from Theorem 14.4.1 that for x in (−5, 5), f has the form 

f(x) = C −
∞∑

n=0

xn+1

(n+ 1)5n+1
. � (14.5.1)

Moreover, f(0) = ln 5  because f(x) = ln(5− x) , and f(0) = C  because of (14.5.1), so that 

f(x) = ln 5−
∞∑

n=0

xn+1

(n+ 1)5n+1
−5 < x < 5.
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Example 14.5.2. Find a power series representation for f(x) = 1
(1+x)2 .

Solution. Since for u = 1 + x , 

ˆ
f(x) dx =

ˆ
du

u2
= − 1

1 + x

= − 1

1− (−x)

(14.3.1)
= −

∞∑

n=0

(−x)n for |x| < 1

=
∞∑

n=0

(−1)n+1xn for |x| < 1,

we conclude by Theorem 14.4.1 that for x in (−1, 1) 

f(x) =

(ˆ
f(x) dx

)′
=

∞∑

n=1

(−1)n+1nxn−1 =
∞∑

n=0

(−1)n(n+ 1)xn.
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14.6	 Power series and sums of numerical series

Watch the video at  

https://www.youtube.com/watch?v=rQ9RmZ2BNyQ&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&
index=100 

Abstract

In this video, we use power series representations of functions to find the exact sums of various 
numerical series.

Example 14.6.1. Find: 

1.	 the sum of 
∑∞

n=1 nx
n−1  for |x| < 1

Solution. Since 

∞∑

n=0

xn =
1

1− x
|x| < 1,

we have by term-by-term differentiation that 

∞∑

n=1

nxn−1 =

(
1

1− x

)′
=

1

(1− x)2
|x| < 1.

2.	 the sum of 
∑∞

n=1 nx
n  for |x| < 1

Solution. By the previous question, for |x| < 1 , 

∞∑

n=1

nxn = x

∞∑

n=1

nxn−1 =
x

(1− x)2
.

3.	 the sum of the numerical series 
∑∞

n=1
n
2n

Solution. Note that for x = 1
2 , which satisfies |x| < 1 , we have 

∞∑

n=1

nxn =

∞∑

n=1

n

2n
.

Thus, in view of the previous question, 
∑∞

n=1
n
2n  is the value of the function 

x
(1−x)2  at x = 1

2 ,  
that is, 

∞∑

n=1

n

2n
=

1
2

(1− 1
2 )

2
= 2.
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4.	 the sum of 
∑∞

n=2 n(n− 1)xn  for |x| < 1

Solution. We have seen in the first question that for |x| < 1 , 
∞∑

n=1

nxn−1 =
1

(1− x)2
.

Differentiating term-by-term, we obtain 
∞∑

n=2

n(n− 1)xn−2 =

(
1

(1− x)2

)′
=

2

(1− x)3
,

so that 
∞∑

n=2

n(n− 1)xn = x2 ·
∞∑

n=2

n(n− 1)xn−2 =
2x2

(1− x)3

for all x in (−1, 1).

5.	 the sum of 
∑∞

n=2
n2−n
2n

Solution. Note that for x = 1
2 , 

∞∑

n=2

n(n− 1)xn =

∞∑

n=2

n2 − n

2n
,

so that, in view of the previous question, 
∑∞

n=2
n2−n
2n

 is the value at x = 1
2  of the function 

2x2

(1−x)3 , that is, 

∞∑

n=2

n2 − n

2n
=

2 · 1
4

(1 − 1
2 )

3
= 4.

6.	 then sum of 
∑∞

n=1
n2

2n
.

Solution. Note that we have obtained 
∞∑

n=1

n

2n
= 2

∞∑

n=2

n2 − n

2n
= 4.

Thus, 

∞∑

n=1

n2

2n
=

∞∑

n=1

n2 − n

2n
+

∞∑

n=1

n

2n

= 0 +

∞∑

n=2

n2 − n

2n
+

∞∑

n=1

n

2n
= 4 + 2 = 6.

Exercises

you are now prepared to work on the Practice Problems, and Homework set M15B in the manual of 
exercises.
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14.7	 Taylor and MacLaurin series

Watch the video at  

https://www.youtube.com/watch?v=sDTfZOcYk_o&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=101 

Theorem 14.7.1. If a function f has a representation as a power series centered at a, it is necessarily 
represented by the series 

∞∑

n=0

f (n)(a)

n!
(x− a)n,

where f (n)  denotes the nth  derivative of f and we use the convention that 0! = 1 .

Definition 14.7.2. The series 
∞∑

n=0

f (n)(a)

n!
(x− a)n

is called Taylor series of f at a. When a = 0 , we obtain the series 

∞∑

n=0

f (n)(0)

n!
xn,

called MacLaurin series of f.

Example 14.7.3. Find the MacLaurin series of f(x) = ex .

Solution. Since f ′(x) = f(x), we have by an immediate induction that f (n)(x) = f(x) = ex  
for all n. Thus 

f (n)(0)

n!
=

e0

n!
=

1

n!
,

and the MacLaurin series of ex is 

∞∑

n=0

xn

n!
,

which has interval of convergence (−∞,∞) as easily seen from the Ratio Test (see e.g., Example 13.2.4). 

Note that even though the series converges, we have not yet established that it converges to ex. We will 
consider this question in Section 14.9.
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14.8	 Examples of Taylor Series

Watch the video at  

https://www.youtube.com/watch?v=E9kjOiwbpV8&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=102 

Abstract

 In this video, we find Taylor series explicitly for a number of examples. 

Example 14.8.1. Find the Taylor series of f(x) = 1 + x+ x2  at a = 2 .

Solution. Since f ′(x) = 1 + 2x , f ′′(x) = 2 and f (n)(x) ≡ 0  for all n ≥ 3 , there Taylor series 
of f at 2 is 

f(0) + f ′(0)(x− 2) +
f ′′(0)

2
(x− 2)2 = 7 + 5(x− 2) + (x− 2)2,

and is in fact a polynomial. 
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Of course, the Taylor series of a polynomial of degree n is a polynomial of degree n: the same polynomial 
but written in terms of powers of (x− a) rather than in standard form.

Example 14.8.2. Find the Taylor series of f(x) = 1
x  at a = 1 .

Solution. Note that f(x) = x−1  so that 

f (0)(x) = x−1

f (1)(x) = −x−2

f (2)(x) = (−1)(−2)x−3

f (3)(x) = (−1)(−2)(−3)x−4

f (n)(x) = (−1)(−2) . . . (−n)x−(n+1)

= (−1)nn!x−(n+1).

Thus 

f (n)(1)

n!
=

(−1)nn!

n!
= (−1)n n ≥ 0

and the Taylor series of f at 1 is 
∞∑

n=0

(−1)n(x− 1)n.

Note that we could also have observed that 

f(x) =
1

x
=

1

1− (1− x)
=

∞∑

n=0

(1− x)n =
∞∑

n=0

(−1)n(x− 1)n |x− 1| < 1,

so that f has a power series representation centered at 1, which is therefore its Taylor series.

Example 14.8.3. Find the Taylor series of f(x) = sinx  at a = π
4 .

Solution. Note that 

f (0)(x) = sinx

f (1)(x) = cosx

f (2)(x) = − sinx

f (3)(x) = − cosx

f (4)(x) = sinx = f (0)(x),
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so that this pattern then repeats: f (5)(x) = f (1)(x) , f (6)(x) = f (2)(x) , and so on. In particular, derivatives 
of even order are of the form ± sinx  and those of odd order are of the form ± cosx . More specifically, 
we have 

f (2n)(x) = (−1)n sinx f (2n+1)(x) = (−1)n cosx.

Thus 

f (n)
(
π
4

)

n!
= ±

√
2

2
· 1

n!
,

where two positive signs alternate with two negative signs periodically. Thus the Taylor series is of the form 
√
2

2

(
1 +

(
x− π

4

)
−

(
x− π

4

)2

2!
−

(
x− π

4

)3

3!
+

(
x− π

4

)4

4!
+

(
x− π

4

)5

5!
− . . .

)
.

Example 14.8.4. Find the MacLaurin series of f(x) = sinx .

Solution. We have already established in the previous example that 

f (2n)(x) = (−1)n sinx f (2n+1)(x) = (−1)n cosx.

Thus f (2n)(0) = 0  for all n, and the MacLaurin series reduces to 

∞∑

n=0

(−1)n

(2n+ 1)!
x2n+1.

It is easily verified by the Ratio Test that this series has interval of convergence (−∞,∞), for 
∣∣∣∣
an+1

an

∣∣∣∣ =
|x|2n+3

(2n+ 3)!
· (2n+ 1)!

|x|2n+1
=

|x|2
(2n+ 2)(2n+ 3)

,

so that limn→∞

∣∣∣an+1

an

∣∣∣ = 0 for all x. however, we cannot yet justify that 

sinx =

∞∑

n=0

(−1)n

(2n+ 1)!
x2n+1,

even though we will in Section 14.9.

Download free eBooks at bookboon.com



A youtube Calculus Workbook (Part II)

250 

M15: Power Series and Taylor Series

14.9	 Convergence of Taylor Series

Watch the video at  

https://www.youtube.com/watch?v=JboE2aHr0hE&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=103 

Abstract

In this video, we state and establish the Theorem of Taylor-Lagrange giving an explicit formula 
for the remainder in a Taylor series. We deduce Taylor’s inequality and apply it to prove equality 
of ex and sin x with their MacLaurin series.

Definition 14.9.1. The nth Taylor polynomial of f at a is 

Tn(x) :=

n∑

i=0

f (i)(a)

i!
(x− a)i.

We denote by Rn(x)  the error made in approximating f by Tn(x) , that is, 

Rn(x) := f(x)− Tn(x).

Obviously limn→∞ Tn(x) = f(x)  if and only if limn→∞ |Rn(x)| = 0 . 
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Theorem 14.9.2 (Taylor-Lagrange) If f and its first n derivatives are continuous on [a, b] and f (n)  is 
differentiable on (a, b), then there exists c in (a, b) such that 

f(b) = Tn(b) +
f (n+1)(c)

(n+ 1)!
(b− a)n+1 ,

so that 

Rn(b) =
f (n+1)(c)

(n+ 1)!
(b− a)n+1 .

Corollary 14.9.3 (Taylor’s Inequality)  If there is M such that for every x with |x− a| ≤ d , 

|f (n+1)(x)| ≤ M,

then 

|Rn(x)| ≤
M

(n+ 1)!
· |x− a|n+1

for all x with |x− a| ≤ d .

Example 14.9.4. Let f(x) = ex  and consider its MacLaurin series 
∑∞

n=0
xn

n! , as obtained in Example 
14.7.3. Since f is increasing and f    (n) = f for all n , 

|x| ≤ d =⇒ |f (n+1)(x)| = ex ≤ ed,

so that, in view of Taylor’s Inequality, if |x| ≤ d  then 

|Rn(x)| ≤
ed|x|n+1

(n+ 1)!
.

Since limn→∞
ed|x|n+1

(n+1)! = 0 , we conclude by the Squeeze Theorem that limn→∞ |Rn(x)| = 0  if |x| ≤ d , 
that is, limn→∞ Tn(x) = ex . Since this is true for every d, we conclude that 

ex =

∞∑

n=0

xn

n!
x
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Example 14.9.5. We have seen in Example 14.8.4 that the MacLaurin series of f(x) = sinx  is 
∑∞

n=0(−1)n x2n+1

(2n+1)!
. Moreover, the successive derivatives of f are of the form ± cosx  or ± sinx . At any rate, 

|f (n+1)(x)| ≤ 1 x,

so that, in view of Taylor’s Inequality, 

|Rn(x)| ≤
|x|n+1

(n+ 1)!
.

Since limn→∞
|x|n+1

(n+1)! = 0  for all x, we conclude that limn→∞ |Rn(x)| = 0  for all x, that is 

sinx =

∞∑

n=0

(−1)n
x2n+1

(2n+ 1)!
x.
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14.10	 More examples of Taylor Series

Watch the video at  

https://www.youtube.com/watch?v=aByBBTG5AEM&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&
index=104 

Abstract

In this video, equalities between functions and their MacLaurin series on the appropriate 
intervals are established for more functions: cos(x), ln(1 + x)  and arctan x. 

To summarize the standard power series representations established:

1

1− x
=

∞∑

n=0

xn −1 < x < 1 � (14.10.1)

ex =
∞∑

n=0

xn

n!
x � (14.10.2)

sinx =
∞∑

n=0

(−1)n
x2n+1

(2n+ 1)!
x � (14.10.3)

cosx =
∞∑

n=0

(−1)n
x2n

(2n)!
x � (14.10.4)

ln(1 + x) =
∞∑

n=1

(−1)n−1

n
xn −1 < x ≤ 1 � (14.10.5)

arctanx =
∞∑

n=0

(−1)n

2n+ 1
x2n+1 −1 ≤ x ≤ 1. � (14.10.6)

Exercises

you are now prepared to work on the Practice Problems, and Homework set M15C in the manual of 
exercises.
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15	 M16: �Applications of power 
series

15.1	 Power series and sums of numerical series

Watch the video at

https://www.youtube.com/watch?v=hxHkazlw6F8&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=105 

Abstract

In this video, standard power series representations of functions are used to obtain exact values 
of various numerical series as values of the functions represented.

Example 15.1.1. Find the exact values of the following series: 

1.	
∑∞

n=0
3n

5nn!

Solution. Recall from (14.10.2) that ex =
∑∞

n=0
xn

n!  for all x. Thus 

∞∑

n=0

3n

5nn!
=

∞∑

n=0

1

n!

(
3

5

)n

= e
3
5 .

2.	
∑∞

n=0
(−π2)n

(36)n(2n)!

Solution. Recall from (14.10.4) that cosx =
∑∞

n=0
(−1)n

(2n)! x
2n . Thus 

∞∑

n=0

(−π2)n

(36)n(2n)!
=

∞∑

n=0

(−1)nπ2n

(62)n(2n)!
=

∞∑

n=0

(−1)n

(2n)!
·
(π
6

)n

= cos
π

6
=

√
3

2
.

3.	
∑∞

n=0
(−1)n

2n+1

Solution. Recall from (14.10.6) that arctanx =
∑∞

n=0
(−1)n

2n+1 x
2n+1  for x ∈ [−1, 1]. Thus, 

∞∑

n=0

(−1)n

2n+ 1
= arctan 1 =

π

4
.
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4.	
∑∞

n=0
(−1)n24n

n!

Solution. 

∞∑

n=0

(−1)n24n

n!
=

∞∑

n=0

(−16)n

n!
= e−16.

5.	 1− ln 2 + (ln 2)2

2! − (ln 2)3

3! + . . .

Solution. 

1− ln 2 +
(ln 2)

2

2!
− (ln 2)

3

3!
+ . . . =

∞∑

n=0

(− ln 2)n

n!
= e− ln 2 = eln(2

−1) =
1

2
.

6.	
∑∞

n=1
(−1)n+1

3nn

Solution. Recall from (14.10.5) that ln(1 + x) =
∑∞

n=1
(−1)n−1

n xn  for −1 < x ≤ 1 . Thus 

∞∑

n=1

(−1)n+1

3nn
=

∞∑

n=1

(−1)n−1

n

(
1

3

)n

= ln

(
1 +

1

3

)
= ln

(
4

3

)
.
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15.2	 Estimating integrals

Watch the video at  

https://www.youtube.com/watch?v=x4kG01QCZvE&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&i
ndex=106 

Abstract

In this video, we use power series representations for antiderivatives to estimate definite 
integrals.

Example 15.2.1. Estimate 
´ 1
0 e−x2

dx  with 2 exact decimal places.

Solution. We cannot obtain an antiderivative of e−x2 in closed form, even though antiderivatives 
exist since the function is continuous. However, we can find a power series representation for 
the antiderivative in order to use the Fundamental Theorem of Calculus. Indeed, plugging in 
−x2  in (14.10.2), we obtain 

e−x2

=

∞∑

n=0

(
−x2

)n

n!
=

∞∑

n=0

(−1)n
x2n

n!

for all x. Integrating term-by-term with Theorem 14.4.1, 

ˆ
e−x2

dx = C +

∞∑

n=0

(−1)n
x2n+1

n!(2n+ 1)
,

so that, by the Fundamental Theorem of Calculus, 
ˆ 1

0

e−x2

dx =

[ ∞∑

n=0

(−1)n
x2n+1

n!(2n+ 1)

]1

0

=

∞∑

n=0

(−1)n

n!(2n+ 1)
.

This series is convergent by the Alternating Series Test for 
{

1
n!(2n+1)

}∞

n=0
 is decreasing with limit 0. 

Thus, in view of Proposition 12.3.1, the error committed in the approximation 

sn ≈
∞∑

n=0

(−1)n

n!(2n+ 1)
=

ˆ 1

0

e−x2

dx

satisfies 

|Rn| ≤
1

(n+ 1)!(2n+ 3)
.
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To ensure two exact decimal places, we want |Rn| ≤ 10−3  and (n+ 1)!(2n+ 3) ≥ 103 for n ≥ 4 . Thus 

s4 = 1− 1

3
+

1

10
− 1

42
+

1

216
≈
ˆ 1

0

e−x2

dx

with at least two exact decimal places. 

Example 15.2.2. Estimate 
´ 1
0 sin(x2) dx  with 3 exact decimal places.

Solution. We proceed similarly: plugging in x2  in (14.10.3), 

sin(x2) =
∞∑

n=0

(−1)n
(
x2

)2n+1

(2n+ 1)!
=

∞∑

n=0

(−1)n
x4n+2

(2n+ 1)!
,

so that, integrating term-by-term via Theorem 14.1.1, we obtain 

ˆ
sin(x2) dx = C +

∞∑

n=0

(−1)n
x4n+3

(2n+ 1)!(4n+ 3)
.

By the Fundamental Theorem of Calculus 

ˆ 1

0

sin(x2) dx =

[ ∞∑

n=0

(−1)n
x4n+3

(2n+ 1)!(4n+ 3)

]1

0

=
∞∑

n=0

(−1)n

(2n+ 1)!(4n+ 3)
.

This series is converging by the Alternating Series Test for 
{

1
(2n+1)!(4n+3)

}∞

n=1
 is decreasing with limit 

0. Thus, in view of Proposition 12.3.1, the error committed in the approximation 

sn ≈
ˆ 1

0

sin(x2) dx

satisfies 

|Rn| ≤
1

(2n+ 3)!(4n+ 7)
.

To ensure that the estimate has 3 exact decimal places, we want |Rn| ≤ 10−4 , which is achieved for n = 2  
for 7!× 15 = 75600 > 104 . Thus 

s2 =
1

3
− 1

42
+

1

1320
≈
ˆ 1

0

sin(x2) dx

with at least 3 exact decimal places.
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15.3	 Calculating limits

Watch the video at

https://www.youtube.com/watch?v=-KkU1DmvHNY&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL
&index=107 

Abstract

In this video, we use power series representations to evaluate limits.

Example 15.3.1. Evaluate 

lim
x→0

sinx− x+ x3

6

x5
.

Solution. This limit is an indeterminate form of the type 00 , so we could use the Rule of De l’Hospital, 
but we would have to iterate it five times. Alternatively, we can use the power series representation 
(14.10.3) of sin x: 

sinx = x− x3

3!
+

x5

5!
− x7

7!
=⇒ sinx− x+

x3

6
=

x5

5!
− x7

7!
+ . . . ,
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so that 

sinx− x+
x3

6
= x5

(
1

5!
− x2

7!
+

x4

9!
− . . .

)

and 

lim
x→0

sinx− x+ x3

6

x5
= lim

x→0

1

5!
− x2

7!
+

x4

9!
− . . . =

1

5!
=

1

120
.

Example 15.3.2. Evaluate 

lim
x→0

x− arctanx

x3
.

Solution. Since this is a limit as x approaches 0, we can use the power series representation (14.10.6) of arctan,  
which is valid on [–1, 1]. Since 

arctanx = x− x3

3
+

x5

5
− . . . ,

we have 

x− arctanx =
x3

3
− x5

5
+ . . . = x3

(
1

3
− x2

5
+ . . .

)

so that 

lim
x→0

x− arctanx

x3
= lim

x→0

1

3
− x2

5
+

x4

7
− . . . =

1

3
.

Example 15.3.3. Evaluate 

lim
x→0

1− cosx

1 + x− ex
.

Solution. In view of (14.10.4), 

cosx = 1− x2

2
+

x4

4!
− . . . =⇒ 1− cosx =

x2

2
− x4

4!
+ . . .

On the other hand, in view of (14.10.2), 

ex = 1 + x+
x2

2
+

x3

6
+ . . . =⇒ 1 + x− ex = −x2

2
− x3

6
− . . .

Thus 

lim
x→0

1− cosx

1 + x− ex
= lim

x→0

x2
(

1
2 − x2

4! +
x4

6! − . . .
)

x2
(
− 1

2 − x
6 − x2

4! − . . .
) =

1
2

− 1
2

= −1.
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15.4	 More power series: products

Watch the video at  

https://www.youtube.com/watch?v=bxxAXuMCsMA&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL
&index=108 

Abstract

In this video, we state a theorem on the power series representation of the product of two 
absolutely convergent power series and apply it to obtain the first few terms of the power series 
representation for more functions.

Theorem 15.4.1. If 
∑∞

n=0 anx
n  and 

∑∞
n=0 bnx

n  both converge absolutely for |x| < R , then for every x 
in (−R,R) , we have 

∞∑

n=0

anx
n ·

∞∑

n=0

bnx
n =

∞∑

n=0

cnx
n

where 

cn =

n∑

k=0

ak · bn−k = a0bn + a1bn−1 + . . .+ an−1b1 + anb0,

and the series 
∑∞

n=0 cnx
n  is absolutely convergent for |x| < R .

Example 15.4.2. Find the first 3 terms of a power series representation of 

ln(1 + x)

1− x
=

1

1− x
· lnx.

Solution. Since 1
1−x =

∑∞
n=0 x

n  for |x| < 1  by (14.10.1) and ln(1 + x) =
∑∞

n=1
(−1)n−1

n xn  
by (14.10.5) for |x| < 1 , we conclude from Theorem 15.4.1 that ln(1+x)

1−x
 has a power series 

representation for |x| < 1 , which has the form 

(
1 + x+ x2 + x3 + x4 + . . .

)
·
(
x− x2

2
+

x3

3
− x4

4
+ . . .

)
,

and thus starts with the terms 

x+

(
1− 1

2

)
x2 +

(
−1

2
+ 1 +

1

3

)
x3 + . . . = x+

x2

2
+

5x3

6
+ . . .

As we usually only use the first few terms of a power series representation when estimating integrals or 
limits, this can be used in applications. 
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Example 15.4.3. Evaluate 

lim
x→0

(1 + x− ex) sinx

cosx− 1 + x2

2

.

Solution. In view of (14.10.2) and (14.10.3), we have for every x, 

(1 + x− ex) sinx = −
∞∑

n=2

xn

n!
·

∞∑

n=0

(−1)n

(2n+ 1)!
x2n+1

= −
(
x2

2
+

x3

6
+

x4

24
+ . . .

)
·
(
x− x3

6
+

x5

120
− . . .

)

= −x3

2
− x4

6
+ x5

(
1

12
+

1

24

)
+ . . .

= −x3

2
− x4

6
+

x5

8
+ . . .

On the other hand, in view of (14.10.4), 

cosx− 1 +
x2

2
=

x4

4!
− x6

6!
+ . . . .

Thus, 

(1 + x− ex) sinx

cosx− 1 + x2

2

=
x3

(
− 1

2 − x
6 + x2

8 + . . .
)

x4
(
1
4! −

x2

6! + . . .
) ,

so that 

lim
x→0+

(1 + x− ex) sinx

cosx− 1 + x2

2

= −∞

for limx→0+
1
x = +∞  and limx→0

− 1
2−

x
6 +

x2

8 +...
1
4!−

x2

6! +...
= − 4!

2 < 0. 
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15.5	 More power series: Binomial series

Watch the video at  

https://www.youtube.com/watch?v=K07xwIg7orQ&list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL&in
dex=109 

Abstract

In this video, we state the binomial theorem giving a power series representation of (1 + x)r , 
where r is not a positive integer, and we examine applications. In particular, we derive a power 
series representation for arcsin.

Theorem 15.5.1 (Binomial Theorem) Let r be a real number that is not a positive integer. Then for every 
x in (–1, 1), 

(1 + x)r =

∞∑

n=0

(
r

n

)
xn

where 

CORRECTIONS 6

• page 239, 3rd line after Abstract: replace “then it is absolutely convergence”
by “then it is absolutely convergent”

• page 239, Theorem 14.4.1: the text should be italicized, and include “f(x) =∑∞
n=0 cn(x− a)n is defined on (a− R, a+ R) and” between “then” and 1.,

as below:

Theorem 1. If the power series
∑∞

n=0 cn(x−a)n has radius of convergence R > 0,
then f(x) =

∑∞
n=0 cn(x− a)n is defined on (a−R, a+R) and

(1) f is differentiable on (a−R, a+R) and

f ′(x) =

∞∑

n=1

n · cn(x− a)n−1 = c1 + 2c2(x− a) + 3c3(x− a)2 + . . .

and the series representing f ′ has radius of convergence R.
(2) f admits antiderivatives on (a−R, a+R) and on this interval

ˆ
f(x) dx = C +

∞∑

n=0

cn
(x− a)n+1

n+ 1

and the series on the right hand side has radius of convergence R.

• page 242, Abstract: replace “to find power series representation.” by “to
find power series representations.”

• page 244 Abstract: replace “to fin” by “to find”
• page 244, Example 14.6.1, 3) italicize “Solution”
• page 250, Definition 14.9.1: italicize “Taylor polynomial of f at”
• page 251, Theorem 14.9.2: the text of the Theorem should be italicized
• page 251, Corollary 14.9.3: idem for first line
• page 251, Example 14.9.4, 2nd line: replace f (n) = f by f (n) = f
• page 254, Abstract: replace “of functions to obtain” by “of functions are

used to obtain”
• page 254, Example 15.1.1, 1) italicize “Solution”
• page 254, Example 15.1.1, 2) (14.10.2) should be (14.10.4)
• page 260, Theorem 15.4.1: italicize all the text till the first displayed for-

mula
• page 262 Theorem 15.5.1: idem (italicize). If possible do not split the

theorem over two pages. Also to harmonize the size of display of similar
formula, replace (

r

0

)
:= 1 and

(
r
1

)
= r.

with (
r

0

)
:= 1 and

(
r

1

)
= r.

• I have not double checked the index, but a sample seems to work well.
• page 268, endnote 3: missing link for this video (should link to:

https://www.youtube.com/watch?v=iju4GxstffI&list=PL265CB737C01F8961&index=13
) and for Example 4.2.2 (should link to page 72)
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is called binomial coefficient and by convention 

• page 211, ex 5. “Solution” should be italicized and “Since” should
not. (3rd time I point this one out!)

• Notation: the new entry for n! should refer to page 167 (not 67) and the
font used is smaller than the rest of the notations entries.

• page 263, first formula. Replace (to harmonize font size) with
(
r

0

)
:= 1 and

(
r

1

)
= r.

• index: only one entry of “remainder of a series” and “remainder (series)”
should remain (my bad in asking for a second one)

• add index entries:

– natural logarithm 11

– logarithm (natural) 11

– one-to-one 17

– increasing function 19

– decreasing function 19

– natural exponential 26

– exponential (natural) 26

– exponential of base a 34

– even function 52

– De l’Hospital Rule 60

– Fundamental Theorem of Calculus 66

– Integration by parts 74

– by parts (integration) 74

– area of an ellipse 92

– repeated linear factor 103

– irreducible quadratic factor 106

– repeated irreducible quadratic factor 110

– improper integral (type I) 116

– improper integral (type II) 119

– divergent improper integral (type I) 116

– divergent improper integral (type II) 119

– Comparison (improper integrals) 123

– parametric curve 126

– cycloid 127

2

Moreover, the binomial series  
∑∞

n=0

(
r
n

)
xn  is absolutely convergent for |x| < 1 .

Example 15.5.2. Obtain the first 4 terms of power series representations on appropriate intervals of 

1.	
√
1 + x

Solution. For −1 < x < 1 , Theorem 15.5.1 applies to the effect that 

√
1 + x = (1 + x)

1
2 =

∞∑

n=0

(1
2

n

)
xn

= 1 +
x

2
+

1
2

(
− 1

2

)

2!
x2 +

1
2

(
− 1

2

) (
− 3

2

)

3!
x3 + . . .

= 1 +
x

2
− x2

8
+

x3

16
− . . .

2.	
√
1− x2

Solution. Note that |x2| < 1  if and only if |x| < 1 . Thus, for −1 < x < 1 , Theorem 15.5.1 
applies to the effect that 

√
1− x2 =

(
1 +

(
−x2

)) 1
2 =

∞∑

n=0

(1
2

n

) (
−x2

)n

=

∞∑

n=0

(−1)n
(1

2

n

)
x2n

= 1− x2

2
− x4

8
− x6

16
− . . .

Example 15.5.3. Obtain a power series representation of arcsin on an appropriate interval.

Solution. Since 

(arcsinx)
′

=
1√

1− x2
=

(
1 + (−x2)

)− 1
2

=
∞∑

n=0

(
− 1

2

n

)(
−x2

)n | − x2| < 1

=

∞∑

n=0

(−1)n
(
− 1

2

n

)
x2n |x| < 1,
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we conclude by term-by-term integration via Theorem 14.4.1 that for |x| < 1 , 

arcsinx = C +

∞∑

n=0

(−1)n
(
− 1

2

n

)
x2n+1

2n+ 1
.

Moreover, arcsin 0 = 0 = C . Thus 

arcsinx =

∞∑

n=0

(−1)n
(
− 1

2

n

)
x2n+1

2n+ 1
= x+

x3

6
+

3

40
x5 + . . .

for all x in (−1, 1).

Exercises

you are now prepared to work on the Practice Problems, and Homework set M16 in the manual of 
exercises.

Once you are done, you are now ready to take the Sample Final Exam.
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16	 Notations
(r, θ) polar coordinates, page 112
0 · ∞ type of indeterminate limit, page 48
00 type of indeterminate limit, page 49
1∞ type of indeterminate limit, page 49
arccos arcsine or inverse cosine function, page 34
arccosh inverse hyperbolic cosine, page 43
arcsin arcsine or inverse sine function, page 31
arcsinh inverse hyperbolic sine, page 43
arctan arctangent or inverse tangent function, page 36
cosh hyperbolic cosine function, page 40
coth hyperbolic cotangent, page 41
0
0 type of indeterminate limit, page 45
∞
∞ type of indeterminate limit, page 45
∞0 type of indeterminate limit, page 49´∞
a

improper integral over [a,∞), page 89´∞
−∞ improper integral over (−∞,∞), page 89
´ b
−∞ improper integral over (−∞, b], page 89
{sn}∞n=1 sequence, page 128
limn→∞ an limit of the sequence {an}∞n=1, page 130
ln natural logarithm function, page 8
loga logarithm of base a, page 28
csch hyperbolic cosecant, page 41
sech hyperbolic secant, page 41
H
= equality of limits by use of the Rule of De l’Hospital, page 45
sinh hyperbolic sine function, page 40∑∞

n=1 an series of general term an, or infinite sum, page 140
tanh hyperbolic tangent, page 41
ax exponential of base a: ex ln a, page 25
e Euler number, page 9
ex natural exponential function, page 19
f (n) nth derivative of f , page 188
f−1 inverse of f , page 14
n!	 page 167
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17	 Index
A
absolutely convergent series  209
alternating series  206
Alternating Series Test  207
annulus  150
arc length  139
arc length (polar)  159
area enclosed by a polar curve  160
area of an ellipse  92
astroid  133

B
binomial coefficient  263
binomial series  263
bounded  168
bounded above  168
bounded below  168
by parts (integration)  74

C
cardioid  156
cardioid with a loop  157
Cauchy Mean Value Theorem  60
change of base formula (logarithm)  38
coefficients of a power series  227
common ratio  182
Comparison (improper integrals)  123
Comparison Test for series  198
complete the square  69
concavity (parametric curve)  134 
conditionally convergent series  209
convergent improper integral (type I)  116
convergent improper integral (type II)  119
convergent sequence  165
convergent series  179
cycloid  127

D
De l’Hospital Rule  60 
decimal expansion  184
decreasing function  19 
decreasing sequence  168
divergent improper integral (type I)  116
divergent improper integral (type II)  119
divergent sequence  165
divergent series  179
double angle formula  70

E
ellipse  92
even function  52
eventually decreasing sequence  168
eventually increasing  168
eventually non-decreasing sequence  168
eventually non-increasing  168
exponential (natural)  26
exponential of base a  34

F
factorial  167
Fibonacci sequence  163
fixed point  171
Fundamental Theorem of Calculus  66

G
geometric sequence  182
geometric series  183
greatest lower bound  169

H
handcover method (for partial fractions)  99
hyperbolic cosecant  54
hyperbolic cosine  52
hyperbolic cotangent  54
hyperbolic secant  54
hyperbolic sine  52
hyperbolic tangent  54

I
improper integral (type I)  116
improper integral (type II)  119
increasing function  19
increasing sequence  168
index  162 
inductive definition of a sequence  163
Integral Test  190
Integration by parts  74
interval of convergence of a power series  229
inverse cosine function  45
inverse function  19
inverse hyperbolic cosine function  56
inverse hyperbolic sine function  56
inverse sine function  40
inverse tangent function  47
irreducible quadratic factor  106
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18	 Endnotes
1.	� The discriminant of a quadratic equation  ax2 + bx+ c = 0  is ∆ := b2 − 4ac . If ∆ > 0 , then the 

equation has two real solutions −b±
√
∆

2a
. If ∆ = 0 , the equation has a unique solution − b

2a . If ∆ < 0 , 
the equation has no real solution.

2.	� Trying to apply the rule of thumb, you see that x is simplified by differentiation but would be made more 
complicated by integration, whereas sin x gives ± cos x depending on integration or differentiation, that 
is, it leads to the same complexity. Thus we prefer to take u = x and dv = sin x dx.

3.	� This step is sometimes enough, as we have seen with Example 4.2.2. If you need to brush up on long 
division you can start at 1.50 into this video.
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