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Abstract―Incremental mining always requires an 
intermediate structure to store the results of the previous steps 
and update the results of the current step based on this structure. 
In particular, over data streams, the intermediate structure 
needs to be particularly effective because of the following 
characteristics of data streams: the size of input data is not 
limited; the use of main memory is limited; input data can only 
be processed once; the appearing speed of new data is fast; 
system can not control the appearing order of incoming data; 
analytical results generated by algorithms must be available 
immediately upon user request; errors of analysis results must 
be bounded in a range acceptable to users. In the previous study, 
the author proposed an intermediate structure called 
constructive set. In this paper, the author proposes applying the 
constructive set and two incremental algorithms to the problem 
of mining closed sets over data streams. 
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I. Introduction 
In recent years, advances in hardware technology have 

facilitated the ability of continuous data collection. Popular 
everyday transactions such as using credit cards, making 
phone calls or browsing web have created the need for 
automated data storage. Likewise, advances in information 
technology have led to large amounts of data being 
transmitted across the Internet. The need to mine the 
information and knowledge latent from such data volumes is 
huge for many applications. However, when the volume of 
data is too large, there are some challenges in the mining 
process: 

With the increasing volume of data, it is not possible to 
process data efficiently when browsing multiple times. More 
precisely: it can only process one data item once, at the very 
most. This leads to constraints in the execution of algorithms. 
Therefore, algorithms for mining data streams should 
generally be designed to only scan data once. 

In most cases, time is an inherent component associated 
with the process of mining data streams, because data can 
develop over time. Consequently, algorithms for mining data 
streams need to be carefully designed with a clear goal 
focused on the development of data. This means that there is 
a need for incremental mining. 

Another important feature of data streams is that they are 
often mined in a distributed environment. 

Frequent itemsets mining is a core operation of data 
mining. Therefore, frequent itemsets mining over data streams 
has attracted a lot of research interest. Compared to other 
operations over data streams, frequent itemsets mining poses 
major challenges due to the computational cost and the large 
memory need, as well as the requirement for accuracy of 
mining results. The problem of frequent itemsets mining was 
first introduced in [1], and has widely analyzed for the usual 
cases of disk resident data sets. In the case of data streams, one 
might want to find frequent itemsets on sliding windows or 
entire data streams [4][6]. 

A data stream D is defined as a sequence of transactions, 
D = (t1, t2, ..., ti, ...) where ti is the transaction occurs at the ith 
point of time. To handle and mine data streams, there are 
three commonly used window models. A window is a 
sequence of transactions occurring from the ith to the jth, 
denoted W [i, j] = (ti, ti + 1, ..., tj). 

Landmark window: In this model, frequent itemsets are 
found from a starting point of time i until the present time t. 
In other words, frequent itemsets are found over the window 
W [i, t]. A special case of the Landmark window is i = 1. In 
this case, frequent itemsets are mined over the entire data 
stream. One note in this model is that each time after the start 
of time is equally important. However, in many cases, recent 
times are of great interest. The next two models focus on this 
case. 

Sliding window: Given the length of the sliding window 
is w and the current time is t. The frequent itemsets are mined 
in the window W [t - w + 1, t]. When the time changes, this 
window will remain the same size and move along with the 
current time. This model does not care about data that appears 
before t - w + 1. 

Damped window: This model assigns a large weight to 
transactions that occur near the current time. To do this, the 
decay rate is defined and used to update (by multiplication) 
transactions that appear before a new transaction occurs. 
Correspondingly, the frequency of an itemset is also 
determined based on the weight of each transaction. 

With the sliding window model, user can specify the 
window length not too large so that the number of 
transactions in the sliding window can be stored in the main 
memory. And obviously, with the goal of updating the results 
of the frequent itemsets in the window when new transactions 
occur (it means removing the old transactions), the sliding 
window model needs to be applied the technique of 
incremental mining in case of adding and removing 
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transactions. 
Closed itemsets mining is a general case of frequent 

itemsets mining. So, with the requirement of mining closed 
itemsets in the Sliding window model, the constructive set 
along with the algorithms introduced at the end of the next 
section can be applied. 

II. Overview 
Up to now, intermediate structures used for incremental 

mining over data streams are mostly a tree, as listed below: 
Li et al. proposed prefix tree-based single-scan algorithms, 

called DSM-FI [8] and DSM-MFI [9], for mining the set of all 
frequent itemsets and maximal frequent itemsets over the 
entire history of offline data streams. 

[4] proposed a FP-tree [5] based algorithm, called FP-
stream, to mine frequent itemsets at multiple time 
granularities by a titled-time windows technique. FP-stream 
focuses on offline data streams. 

[2] proposed a transaction-sensitive sliding window based 
algorithm, called Moment, which might be the first to find 
frequent closed itemsets from online data streams with a 
transaction-sensitive sliding window. A summary data 
structure, called CET (closed enumeration tree), is used in the 
Moment algorithm to maintain a dynamically selected set of 
itemsets over a transaction-sensitive sliding window. 

[10] presented an algorithm, called FP-CDS that can 
capture all frequent closed itemsets and a storage structure, 
called FP-CDS tree that can be dynamically adjusted to 
reflect the evolution of frequencies of itemsets over time. 

[3] proposed an incremental mining algorithm, called 
DSM-CITI (Data Stream Mining for Closed Inter-
Transaction Itemsets), for discovering the set of all frequent 
inter-transaction itemsets from data streams. In the 
framework of DSM-CITI, an in-memory summary data 
structure, ITP-tree, is developed to maintain frequent inter-
transaction itemsets. 

Other studies have developed extensively based on the 
tree structures presented above: 

[9] proposed a single-pass algorithm, called DSM-RMFI, 
based on DSM-MFI to find maximal frequent itemsets over 
offline data streams with a time-sensitive sliding window. 

[7] Li et al. (2009) proposed an algorithm, called 
NewMoment to improve the efficiency of the algorithm 
Moment [2]. 

The purpose of [11] is mining closed frequent itemsets 
from transactional data streams using a sliding window 
model. An algorithm, called IMCFI is proposed for 
Incremental Mining of Closed Frequent Itemsets from a 
transactional data stream. The proposed algorithm IMCFI 
uses a data structure called INdexed Tree (INT) similar to 
NewCET used in NewMoment [7]. 

The author proposed an intermediate structure called 
constructive set to produce closed sets along with their 
occurrence frequencies [12]. The constructive set is 
constructed from a set of group patterns – an extended form 
of bit chains. The author also proposed algorithms based on 
the constructive set for mining incrementally closed sets 
when adding and removing transactions. Background 
knowledge is briefly outlined in the next section. 

III. Background 
Transaction database is T = (O, I, R ) – a trio, with a set O 

z � consisting of transaction objects o1, o2,.. , on, |O | = n; a 
set I z � of transaction items i1, i2,.. , im , |I | = m and R is a 
binary relation on O uI. 

The transaction set of T has a representation of num bit 
matrix R = (Upq), Upq = R (op,iq)�{0,1}, op�O, iq�I, p = 
1,2,… ,n, q = 1,2,… ,m, and Upq = 1 if op deals with iq, Upq = 
0 otherwise. 

For a transaction set T = (O, I, R ), each row of transaction 
matrix R is described by a m bit-chain, called bit pattern, 
namely bit pattern with size m or m-bit pattern: b = 
b1b2b3…bm-1bm,  bk�{0,1}, k = 1,2,.. ,m. 

Given two m-bit patterns a = a1a2a3…am-1am  and b = 
b1b2b3…bm-1bm , then: a = b  �  ak = bk ,�k�{1,.. , m}. 

Composition pattern of a, b is established by the & (AND) 
operation on bits of a, b: a&b = c = c1c2c3…cm-1cm � ck = 
akubk , �k�{1,.. , m}. 

When a & b = b, pattern a has more bits 1 than that of 
pattern b, in other words b covers a or a is covered by b, 
denoted a v b, thus: a v b  �  a & b = b. The negation 
operator is a !v b. 

The number of appearances of a bit pattern a in T is the 
frequency of a, denoted fa. To describe a bit pattern with its 
frequency, we may use a dot as the delimitation. 

If there are some bits whose values are not specified, the 
character * is used to indicate the ‘aggregation’ of these 
possible values. Since then, the group patterns should be 
identified. A bit pattern is a specific case of a group pattern 
when its all bits have a definite value of 0 or 1. 

If u, v are group patterns with size m, the composition of 
u and v, also denoted u & v, is a pattern: w = w1w2w3…wm-

1wm = u & v with wk = 1 if ukuvk = 1 and wk = * otherwise, 
for k = 1,.. ,m. 

If u & v = v, the group pattern u is called ‘is covered by 
v’, also denoted u v v. 

The number of appearances of a group pattern u in the 
transaction set O is frequency of u corresponding with O, also 
denoted fu. 

Composition group pattern of group patterns u.fu and v.fv 
is a group pattern w.fw, denoted w.fw = u.fu & v.fv with: w = 
u & v and fw = fu + fv . 

A group pattern u.fu is called private group pattern of a 
group pattern v.fv , denoted u.fu « v.fv , if it happens u = v and 
fu d fv. 

On the other hand, with two group patterns u, v, if u z v, 
u v v and fu d fv then v is wide group pattern of u, denoted 
u.fu « v.fv . The relation « is considered to be a specific case 
of «. 

Let T = (O, I, R ), O � O, I � I , rectangle (rct) R = ¢O,I² 
in R  is the set of elements of OuI � R . In order, |O|, |I| are 
the vertical dimension, the horizontal dimension of R, the size 
of R is |O|u|I| . With rct R = ¢O,I², the projections R on the set 
of objects, the set of items are defined by Pro(R) = O, Pri(R) 
= I. 

Rct ¢Oc,Ic² is called be contained by rct ¢O,I², denoted 
¢Oc,Ic² ͼ ¢O,I², if Oc � O, Ic � I. When Oc, Ic are strictly 
contained by O, I, it is denoted ¢Oc,Ic² ͼ ¢O,I². 

A rct is maximal if it is not contained by any other rct of 
R . 

Let the transaction database T = (O, I, R ), the set of 
maximal group patterns is defined as the constructive set P of 
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T, each maximal group pattern is called a constructive pattern. 
So: �p.fp � P, ∄u.fu � P, u z p : u v p and fu t fp 

ALGORITHM IncPatSet(o,P,nP) 
// Function for updating constructive pattern set when increasing a new object 
// in:  new object o, current constructive set P 
// out: P new constructive set 
 1. if all bits in o equal 
 then return P;  // 
o�P 
 2. if all bits in o equal 1 then { 

 3.    for p�P do fp := fp+1;       // statements in A-block 
 4.    if o�P then append o to P; return P; } 
 5. Q := {o};                        // statements in B-block 
 6. for p�P do { 
 7.   q := o & p; 
 8.   if all bits in q equal 
 then continue  // 
q�P 
 9.   else Q:=Q�{q}; } 
10. S := Q; R := �;  // statements in C-block: Filtered-PatSet(Q) 
11. for q�Q do { 
12.   s := q; 

13.   for r�S do if q « r then s := r; 
14.   R := R�{s}; nP:=nP+1; }  // set of new creative 
patterns 
15. Q := �;            // statements in D-block: Filtered-PatSet(P) 
16. for p�P do { 
17.   q := p; 

18.   for r�R do if p « r then q := r; 
19.   Q := Q � {q}; nP:=nP+1;}  //updated old creative 
patterns 
20. Return P := Q � R;  // creative pattern set with incremental 
object 
 
ALGORITHM DesPatSet(o,P) 
//Updating a Constructive Pattern Set P when descending an object 
//in:  Descended object o, Current set P 
//out: Updated constructive set P 
1. Q := �; 
2. for p�P do 
3.   if o v p then { 
4.     fp := fp-1; Q := Q�{p}; } 
5. for q�Q do { 
6.   for p�P do { 
7.     if p « q then { 
8.     P := P\{q}; break; } } } 
9. Return P. 

IV. Example 
The following example illustrates in detail the process of 

applying two algorithms to mining incrementally closed 
itemsets in the sliding window model over data streams. 

Assume that there are 12 transactions as in Table I 
appearing in data stream model with sliding window having 
the length of 4. 

TABLE I. The transaction set T 1 

 a b c d 
1 1 1 1 0 
2 0 1 1 1 

3 1 1 1 0 
4 0 1 1 0 
5 0 1 1 1 
6 1 1 1 0 
7 0 1 1 0 
8 0 1 0 1 
9 1 1 1 0 

10 0 1 1 0 
11 0 1 0 1 
12 0 0 1 1 

 

The data stream model with sliding window having the 
length of 4. Initially four transactions occurs (Table II). 
Currently, the transaction o5 appears (Table III). 

TABLE II. Four transactions appearing 

 1 2 3 4 5 6 7 8 9 10 11 12 

a 1 0 1 0 0 1 0 0 1 0 0 0 

b 1 1 1 1 1 1 1 1 1 1 1 0 

c 1 1 1 1 1 1 1 0 1 1 0 1 

d 0 1 0 0 1 0 0 1 0 0 1 1 

TABLE III. The transactions o5 appearing 

 1 2 3 4 5 6 7 8 9 10 11 12 
a 1 0 1 0 0 1 0 0 1 0 0 0 
b 1 1 1 1 1 1 1 1 1 1 1 0 
c 1 1 1 1 1 1 1 0 1 1 0 1 
d 0 1 0 0 1 0 0 1 0 0 1 1 

Initially, with 4 transactions o1, o2, o3, o4, the constructive 
set P has the closed sets: P1234 = {*111.1, 111*.2, *11*.4}. 

The transaction o5 appears, it needs to remove o1. Update 
the constructive set for the window by first removing o1 = 
1110, DesPatSet(o1, P1234), P234 = {*111.1, 111*.1, 
*11*.3}. 

Then add o5, IncPatSet(o5, P234,3). Now, the 
constructive set of the window has the following closed sets: 
P2345 = {111*.1, *111.2, *11*.4}. 

Next, two transactions o6 and o7 appear. 

TABLE IV. Transactions o6 and o7 appearing 

 2 3 4 5 6 7 8 9 10 11 12 
a 0 1 0 0 1 0 0 1 0 0 0 
b 1 1 1 1 1 1 1 1 1 1 0 
c 1 1 1 1 1 1 0 1 1 0 1 
d 1 0 0 1 0 0 1 0 0 1 1 

Remove o2 = 0111, DesPatSet(o2, P2345), P345 = 
{111*.1, *111.1, *11*.3}. 

Remove o3 = 1110, DesPatSet(o3, P345), P45 = 
{*111.1, *11*.2}. 

Add o6 = 1110, IncPatSet(o6, P45,2), P456 = {*111.1, 
*11*.3, 111*.1} 

Add o7 = 0110, IncPatSet(o7, P456,3), P4567 = 
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{*111.1, 111*.1, *11*.4} 

V. Conclusion 
This paper introduced an intermediate structure, called 

the constructive set, for incremental mining closed sets. In 
addition, two incremental algorithms, corresponding to two 
processes of adding and removing transactions, are also 
introduced for applying to incremental mining closed sets 
over data streams. 

In the future, this process of applying will be realized in 
the environment Hadoop-Spark. 
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