
The 4th International Conference on Next Generation Computing 2018

A New Approach for Mining Incrementally
Closed Itemsets over Data Streams

Thanh-Trung Nguyen1, Phong Le2

Dept. Information Technology
Hong Bang International University

Ho Chi Minh City, Vietnam
1trungnt@hiu.vn, 2phonglh@hiu.vn

Sptisyn Vladimir Grigorievich3

Dept.Division for Information
Technology

School of Computer Science & Robotics
National Research Tomsk Polytechnic

University, Russian Redereation
3spvg@tpu.ru

Phan Ngoc Hoang4

Dept. School of Information Technology
Electrical & Electronic Engineering

Ba Ria-Vung Tau University, Vietnam
4hoangpn@bvu.edu.vn

Abstract―Incremental mining always requires an
intermediate structure to store the results of the previous steps
and update the results of the current step based on this structure.
In particular, over data streams, the intermediate structure
needs to be particularly effective because of the following
characteristics of data streams: the size of input data is not
limited; the use of main memory is limited; input data can only
be processed once; the appearing speed of new data is fast;
system can not control the appearing order of incoming data;
analytical results generated by algorithms must be available
immediately upon user request; errors of analysis results must
be bounded in a range acceptable to users. In the previous study,
the author proposed an intermediate structure called
constructive set. In this paper, the author proposes applying the
constructive set and two incremental algorithms to the problem
of mining closed sets over data streams.

Keywords―closed itemsets; constructive set; data mining;
data streams; incremental mining

I. Introduction
In recent years, advances in hardware technology have

facilitated the ability of continuous data collection. Popular
everyday transactions such as using credit cards, making
phone calls or browsing web have created the need for
automated data storage. Likewise, advances in information
technology have led to large amounts of data being
transmitted across the Internet. The need to mine the
information and knowledge latent from such data volumes is
huge for many applications. However, when the volume of
data is too large, there are some challenges in the mining
process:

With the increasing volume of data, it is not possible to
process data efficiently when browsing multiple times. More
precisely: it can only process one data item once, at the very
most. This leads to constraints in the execution of algorithms.
Therefore, algorithms for mining data streams should
generally be designed to only scan data once.

In most cases, time is an inherent component associated
with the process of mining data streams, because data can
develop over time. Consequently, algorithms for mining data
streams need to be carefully designed with a clear goal
focused on the development of data. This means that there is
a need for incremental mining.

Another important feature of data streams is that they are
often mined in a distributed environment.

Frequent itemsets mining is a core operation of data
mining. Therefore, frequent itemsets mining over data streams
has attracted a lot of research interest. Compared to other
operations over data streams, frequent itemsets mining poses
major challenges due to the computational cost and the large
memory need, as well as the requirement for accuracy of
mining results. The problem of frequent itemsets mining was
first introduced in [1], and has widely analyzed for the usual
cases of disk resident data sets. In the case of data streams, one
might want to find frequent itemsets on sliding windows or
entire data streams [4][6].

A data stream D is defined as a sequence of transactions,
D = (t1, t2, ..., ti, ...) where ti is the transaction occurs at the ith
point of time. To handle and mine data streams, there are
three commonly used window models. A window is a
sequence of transactions occurring from the ith to the jth,
denoted W [i, j] = (ti, ti + 1, ..., tj).

Landmark window: In this model, frequent itemsets are
found from a starting point of time i until the present time t.
In other words, frequent itemsets are found over the window
W [i, t]. A special case of the Landmark window is i = 1. In
this case, frequent itemsets are mined over the entire data
stream. One note in this model is that each time after the start
of time is equally important. However, in many cases, recent
times are of great interest. The next two models focus on this
case.

Sliding window: Given the length of the sliding window
is w and the current time is t. The frequent itemsets are mined
in the window W [t - w + 1, t]. When the time changes, this
window will remain the same size and move along with the
current time. This model does not care about data that appears
before t - w + 1.

Damped window: This model assigns a large weight to
transactions that occur near the current time. To do this, the
decay rate is defined and used to update (by multiplication)
transactions that appear before a new transaction occurs.
Correspondingly, the frequency of an itemset is also
determined based on the weight of each transaction.

With the sliding window model, user can specify the
window length not too large so that the number of
transactions in the sliding window can be stored in the main
memory. And obviously, with the goal of updating the results
of the frequent itemsets in the window when new transactions
occur (it means removing the old transactions), the sliding
window model needs to be applied the technique of
incremental mining in case of adding and removing

79

The 4th International Conference on Next Generation Computing 2018

transactions.
Closed itemsets mining is a general case of frequent

itemsets mining. So, with the requirement of mining closed
itemsets in the Sliding window model, the constructive set
along with the algorithms introduced at the end of the next
section can be applied.

II. Overview
Up to now, intermediate structures used for incremental

mining over data streams are mostly a tree, as listed below:
Li et al. proposed prefix tree-based single-scan algorithms,

called DSM-FI [8] and DSM-MFI [9], for mining the set of all
frequent itemsets and maximal frequent itemsets over the
entire history of offline data streams.

[4] proposed a FP-tree [5] based algorithm, called FP-
stream, to mine frequent itemsets at multiple time
granularities by a titled-time windows technique. FP-stream
focuses on offline data streams.

[2] proposed a transaction-sensitive sliding window based
algorithm, called Moment, which might be the first to find
frequent closed itemsets from online data streams with a
transaction-sensitive sliding window. A summary data
structure, called CET (closed enumeration tree), is used in the
Moment algorithm to maintain a dynamically selected set of
itemsets over a transaction-sensitive sliding window.

[10] presented an algorithm, called FP-CDS that can
capture all frequent closed itemsets and a storage structure,
called FP-CDS tree that can be dynamically adjusted to
reflect the evolution of frequencies of itemsets over time.

[3] proposed an incremental mining algorithm, called
DSM-CITI (Data Stream Mining for Closed Inter-
Transaction Itemsets), for discovering the set of all frequent
inter-transaction itemsets from data streams. In the
framework of DSM-CITI, an in-memory summary data
structure, ITP-tree, is developed to maintain frequent inter-
transaction itemsets.

Other studies have developed extensively based on the
tree structures presented above:

[9] proposed a single-pass algorithm, called DSM-RMFI,
based on DSM-MFI to find maximal frequent itemsets over
offline data streams with a time-sensitive sliding window.

[7] Li et al. (2009) proposed an algorithm, called
NewMoment to improve the efficiency of the algorithm
Moment [2].

The purpose of [11] is mining closed frequent itemsets
from transactional data streams using a sliding window
model. An algorithm, called IMCFI is proposed for
Incremental Mining of Closed Frequent Itemsets from a
transactional data stream. The proposed algorithm IMCFI
uses a data structure called INdexed Tree (INT) similar to
NewCET used in NewMoment [7].

The author proposed an intermediate structure called
constructive set to produce closed sets along with their
occurrence frequencies [12]. The constructive set is
constructed from a set of group patterns – an extended form
of bit chains. The author also proposed algorithms based on
the constructive set for mining incrementally closed sets
when adding and removing transactions. Background
knowledge is briefly outlined in the next section.

III. Background
Transaction database is T = (O, I, R) – a trio, with a set O

z � consisting of transaction objects o1, o2,.. , on, |O | = n; a
set I z � of transaction items i1, i2,.. , im , |I | = m and R is a
binary relation on O uI.

The transaction set of T has a representation of num bit
matrix R = (Upq), Upq = R (op,iq)�{0,1}, op�O, iq�I, p =
1,2,… ,n, q = 1,2,… ,m, and Upq = 1 if op deals with iq, Upq =
0 otherwise.

For a transaction set T = (O, I, R), each row of transaction
matrix R is described by a m bit-chain, called bit pattern,
namely bit pattern with size m or m-bit pattern: b =
b1b2b3…bm-1bm, bk�{0,1}, k = 1,2,.. ,m.

Given two m-bit patterns a = a1a2a3…am-1am and b =
b1b2b3…bm-1bm , then: a = b � ak = bk ,�k�{1,.. , m}.

Composition pattern of a, b is established by the & (AND)
operation on bits of a, b: a&b = c = c1c2c3…cm-1cm � ck =
akubk , �k�{1,.. , m}.

When a & b = b, pattern a has more bits 1 than that of
pattern b, in other words b covers a or a is covered by b,
denoted a v b, thus: a v b � a & b = b. The negation
operator is a !v b.

The number of appearances of a bit pattern a in T is the
frequency of a, denoted fa. To describe a bit pattern with its
frequency, we may use a dot as the delimitation.

If there are some bits whose values are not specified, the
character * is used to indicate the ‘aggregation’ of these
possible values. Since then, the group patterns should be
identified. A bit pattern is a specific case of a group pattern
when its all bits have a definite value of 0 or 1.

If u, v are group patterns with size m, the composition of
u and v, also denoted u & v, is a pattern: w = w1w2w3…wm-

1wm = u & v with wk = 1 if ukuvk = 1 and wk = * otherwise,
for k = 1,.. ,m.

If u & v = v, the group pattern u is called ‘is covered by
v’, also denoted u v v.

The number of appearances of a group pattern u in the
transaction set O is frequency of u corresponding with O, also
denoted fu.

Composition group pattern of group patterns u.fu and v.fv
is a group pattern w.fw, denoted w.fw = u.fu & v.fv with: w =
u & v and fw = fu + fv .

A group pattern u.fu is called private group pattern of a
group pattern v.fv , denoted u.fu « v.fv , if it happens u = v and
fu d fv.

On the other hand, with two group patterns u, v, if u z v,
u v v and fu d fv then v is wide group pattern of u, denoted
u.fu « v.fv . The relation « is considered to be a specific case
of «.

Let T = (O, I, R), O � O, I � I , rectangle (rct) R = ¢O,I²
in R is the set of elements of OuI � R . In order, |O|, |I| are
the vertical dimension, the horizontal dimension of R, the size
of R is |O|u|I| . With rct R = ¢O,I², the projections R on the set
of objects, the set of items are defined by Pro(R) = O, Pri(R)
= I.

Rct ¢Oc,Ic² is called be contained by rct ¢O,I², denoted
¢Oc,Ic² ͼ ¢O,I², if Oc � O, Ic � I. When Oc, Ic are strictly
contained by O, I, it is denoted ¢Oc,Ic² ͼ ¢O,I².

A rct is maximal if it is not contained by any other rct of
R .

Let the transaction database T = (O, I, R), the set of
maximal group patterns is defined as the constructive set P of

80

The 4th International Conference on Next Generation Computing 2018

T, each maximal group pattern is called a constructive pattern.
So: �p.fp � P, ∄u.fu � P, u z p : u v p and fu t fp

ALGORITHM IncPatSet(o,P,nP)
// Function for updating constructive pattern set when increasing a new object
// in: new object o, current constructive set P
// out: P new constructive set
 1. if all bits in o equal then return P; //
o�P
 2. if all bits in o equal 1 then {

 3. for p�P do fp := fp+1; // statements in A-block
 4. if o�P then append o to P; return P; }
 5. Q := {o}; // statements in B-block
 6. for p�P do {
 7. q := o & p;
 8. if all bits in q equal then continue //
q�P
 9. else Q:=Q�{q}; }
10. S := Q; R := �; // statements in C-block: Filtered-PatSet(Q)
11. for q�Q do {
12. s := q;

13. for r�S do if q « r then s := r;
14. R := R�{s}; nP:=nP+1; } // set of new creative
patterns
15. Q := �; // statements in D-block: Filtered-PatSet(P)
16. for p�P do {
17. q := p;

18. for r�R do if p « r then q := r;
19. Q := Q � {q}; nP:=nP+1;} //updated old creative
patterns
20. Return P := Q � R; // creative pattern set with incremental
object

ALGORITHM DesPatSet(o,P)
//Updating a Constructive Pattern Set P when descending an object
//in: Descended object o, Current set P
//out: Updated constructive set P
1. Q := �;
2. for p�P do
3. if o v p then {
4. fp := fp-1; Q := Q�{p}; }
5. for q�Q do {
6. for p�P do {
7. if p « q then {
8. P := P\{q}; break; } } }
9. Return P.

IV. Example
The following example illustrates in detail the process of

applying two algorithms to mining incrementally closed
itemsets in the sliding window model over data streams.

Assume that there are 12 transactions as in Table I
appearing in data stream model with sliding window having
the length of 4.

TABLE I. The transaction set T 1

 a b c d
1 1 1 1 0
2 0 1 1 1

3 1 1 1 0
4 0 1 1 0
5 0 1 1 1
6 1 1 1 0
7 0 1 1 0
8 0 1 0 1
9 1 1 1 0

10 0 1 1 0
11 0 1 0 1
12 0 0 1 1

The data stream model with sliding window having the
length of 4. Initially four transactions occurs (Table II).
Currently, the transaction o5 appears (Table III).

TABLE II. Four transactions appearing

 1 2 3 4 5 6 7 8 9 10 11 12

a 1 0 1 0 0 1 0 0 1 0 0 0

b 1 1 1 1 1 1 1 1 1 1 1 0

c 1 1 1 1 1 1 1 0 1 1 0 1

d 0 1 0 0 1 0 0 1 0 0 1 1

TABLE III. The transactions o5 appearing

 1 2 3 4 5 6 7 8 9 10 11 12
a 1 0 1 0 0 1 0 0 1 0 0 0
b 1 1 1 1 1 1 1 1 1 1 1 0
c 1 1 1 1 1 1 1 0 1 1 0 1
d 0 1 0 0 1 0 0 1 0 0 1 1

Initially, with 4 transactions o1, o2, o3, o4, the constructive
set P has the closed sets: P1234 = {*111.1, 111*.2, *11*.4}.

The transaction o5 appears, it needs to remove o1. Update
the constructive set for the window by first removing o1 =
1110, DesPatSet(o1, P1234), P234 = {*111.1, 111*.1,
11.3}.

Then add o5, IncPatSet(o5, P234,3). Now, the
constructive set of the window has the following closed sets:
P2345 = {111*.1, *111.2, *11*.4}.

Next, two transactions o6 and o7 appear.

TABLE IV. Transactions o6 and o7 appearing

 2 3 4 5 6 7 8 9 10 11 12
a 0 1 0 0 1 0 0 1 0 0 0
b 1 1 1 1 1 1 1 1 1 1 0
c 1 1 1 1 1 1 0 1 1 0 1
d 1 0 0 1 0 0 1 0 0 1 1

Remove o2 = 0111, DesPatSet(o2, P2345), P345 =
{111*.1, *111.1, *11*.3}.

Remove o3 = 1110, DesPatSet(o3, P345), P45 =
{*111.1, *11*.2}.

Add o6 = 1110, IncPatSet(o6, P45,2), P456 = {*111.1,
11.3, 111*.1}

Add o7 = 0110, IncPatSet(o7, P456,3), P4567 =

81

The 4th International Conference on Next Generation Computing 2018

{*111.1, 111*.1, *11*.4}

V. Conclusion
This paper introduced an intermediate structure, called

the constructive set, for incremental mining closed sets. In
addition, two incremental algorithms, corresponding to two
processes of adding and removing transactions, are also
introduced for applying to incremental mining closed sets
over data streams.

In the future, this process of applying will be realized in
the environment Hadoop-Spark.

References
[1] Agrawal R., Imielinski T., and Swami A., “Mining Association Rules

between Sets of items in Large Databases,” in SIGMOD '93
Proceedings of the 1993 ACM SIGMOD international conference on
Management of data, Pages 207-216, May 25 - 28, 1993.

[2] Chi Y., Wang H., Yu P., and Muntz R., “MOMENT: Maintaining
closed frequent itemsets over a stream sliding window,” in Proceedings
of the 4th IEEE international conference on data mining, (pp. 59–66),
2004.

[3] Chiu S.-C., Li H.-F., Huang J.-L., and You H.-H., “Incremental mining
of closed inter-transaction itemsets over data stream sliding windows,”
Journal of Information Science, Volume: 37 issue: 2, page(s): 208-220,
April 2011.

[4] Giannella C., Han J., Pei J., Yan X., and Yu, P.S., “Mining frequent
patterns in data streams at multiple time granularities,” in Kargupta H.,
Joshi A., Sivakumar K., and Yesha Y. (Eds.), Data mining: Next
generation challenges and future directions. AAAI/MIT, 2003.

[5] Han J., Pei J., and Yin Y., “Mining frequent patterns without candidate
generation,” in Proceedings of the 2000 international conference on
management of data, (pp. 1–12), 2000.

[6] Jin R. and Agrawal G., “An algorithm for in-core frequent itemset
mining on streaming data,” in ICDM '05 Proceedings of the Fifth IEEE
International Conference on Data Mining, Pages 210-217, November
27 - 30, 2005.

[7] Li H.-F., Ho C.-C., and Lee S.-Y., “Incremental updates of closed
frequent itemsets over continuous data streams,” Expert Systems with
Applications 36(2):2451-2458,·March 2009.

[8] Li H.-F., Lee S.-Y., and Shan M.-K., “An efficient algorithm for
mining frequent itemsets over the entire history of data streams,” in
Proceedings of the first international workshop on knowledge
discovery in data streams, 2004.

[9] Li H.-F., Lee S.-Y., and Shan M.-K., “Online mining (recently)
maximal frequent itemsets over data streams” in Proceedings of the
15th IEEE international workshop on research issues on data
engineering, (pp. 11–18), 2005.

[10] Liu X., Guan J., and Hu P., “Mining frequent closed itemsets from a
landmark window over online data streams,” Computers &
Mathematics with Applications, Volume 57, Issue 6, Pages 927-936,
March 2009.

[11] Naik S.B. and Pawar J.D., “An Efficient Incremental Algorithm to
Mine Closed Frequent Itemsets over Data Streams,” in Proceeding of
The 19th International Conference on Management of Data (COMAD),
19th - 21st Dec, 2013.

[12] Nguyen T.-T., “Mining Incrementally Closed Item Sets with
Constructive Pattern Set,” Expert Systems With Applications, Vol.100,
page(s): 41-67, June 2018.

82

