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1 Preface

Many students find that the obligatory Statistics course comes as a shock. The set textbook is
difficult, the curriculum is vast, and secondary-school maths feels infinitely far away.

“Statistics” offers friendly instruction on the core areas of these subjects. The focus is overview.
And the numerous examples give the reader a “recipe” for solving all the common types of exer-
cise. You can download this book free of charge.
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2 Basic concepts of probability theory

2.1 Probability space, probability function, sample space, event

A probability space is a pair (£, P) consisting of a set € and a function P which assigns to each
subset A of € a real number P(A) in the interval [0, 1]. Moreover, the following two axioms are
required to hold:

1L.P(Q) =1,
2.P (U, An) => 02 P(Ay) if Ay, Ao, ... is a sequence of pairwise disjoint subsets of (2.

The set 2 is called a sample space. The elements w € (2 are called sample points and the subsets
A C  are called events. The function P is called a probability function. For an event A, the
real number P(A) is called the probability of A.

From the two axioms the following consequences can be deduced:

P(0) =

(A\B) P(A)— P(B)if B C A,

P(CA)=1-P(A),

P(A) ( )if B C A,

P(A -UA,) =P(A1)+---+ P(A4,) if Ai,..., A, are pairwise disjoint events,
P(AUB)=P(A)+ P(B) — P(AnN B) for arbitrary events A and B.

Z
u-

EXAMPLE. Consider the set 2 = {1,2,3,4,5,6}. For each subset A of €2, define

where # A is the number of elements in A. Then the pair (£2, P) is a probability space. One can
view this probability space as a model for the for the situation “throw of a dice”.
EXAMPLE. Now consider the set Q = {1,2,3,4,5,6} x {1,2,3,4,5,6}. For each subset A of (2,
define

_#A

=25

Now the probability space (2, P) is a model for the situation “throw of two dice”. The subset

A={(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)}

P(A)

is the event “a pair”.

2.2 Conditional probability
For two events A and B the conditional probability of A given B is defined as

P(ANB)

P(A|B) =5

12
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‘We have the following theorem called computation of probability by division into possible causes:
Suppose A1, ..., A, are pairwise disjoint events with A; U --- U A,, = €. For every event B it
then holds that

P(B) = P(A1) - P(B| A1) +---+ P(A,) - P(B | A,).

EXAMPLE. In the French Open final, Nadal plays the winner of the semifinal between Federer
and Davydenko. A bookmaker estimates that the probability of Federer winning the semifinal is
75%. The probability that Nadal can beat Federer is estimated to be 51%, whereas the probability
that Nadal can beat Davydenko is estimated to be 80%. The bookmaker therefore computes the
probability that Nadal wins the French Open, using division into possible causes, as follows:

P(Nadal wins the final) = P(Federer wins the semifinal) x
P(Nadal wins the final|Federer wins the semifinal)+
P(Davydenko wins the semifinal) x
P(Nadal wins the final|Davydenko wins the semifinal)
0.75-0.51+4+0.25-0.8

58.25%
Ijoined MITAS because MG
I wanted real responsibility www.discovermitas.com

&~ - Y '.l P
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Statistics Basic concepts of probability theory

2.3 Independent events
Two events A and B are called independent, if
P(ANnB)=P(A)-P(B).

Equivalent to this is the condition P(A | B) = P(A), i.e. that the probability of A is the same as
the conditional probability of A given B.

Remember: Two events are independent if the probability of one of them is not affected by

knowing whether the other has occurred or not.

EXAMPLE. A red and a black dice are thrown. Consider the events

A: red dice shows 6,
B: black dice show 6.

Since 1 11
P(ANB)=—=-.--=P(A)-P(B

A and B are independent. The probability that the red dice shows 6 is not affected by knowing

anything about the black dice.

EXAMPLE. A red and a black dice are thrown. Consider the events

A: the red and the black dice show the same number,
B: the red and the black dice show a total of 10.

Since 1 1

A and B are not independent. The probability of two of a kind increases if one knows that the sum
of the dice is 10.

2.4 The Inclusion-Exclusion Formula

Formula 8 on page 12 has the following generalization to three events A, B, C"
P(AUBUC)=P(A)+P(B)+P(C)—P(ANB)—P(ANC)—P(BNC)+P(ANBNC).

This equality is called the Inclusion-Exclusion Formula for three events.

EXAMPLE. What is the probability of having at least one 6 in three throws with a dice? Let A; be
the event that we get a 6 in the first throw, and define As and Ag similarly. Then, our probability
can be computed by inclusion-exclusion:

P = P(AlUAQUAg)
= P(A1)+P(A2)+P(A3)—P(AlﬂAQ)—P(AlﬂAg)—P(AgﬂAg)

+P(A; N Ay N Ajg)
1

1
67676 & & @ @&
41%

%
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The following generalization holds for n events A1, As, ..., A, withunion A = A; U---U A,:

P(A) =Y P(A)=> PANA)+ Y PANANA)—- £P(AN--NA,).
7 1<J 1<j<k

This equality is called the Inclusion-Exclusion Formula for n events.

EXAMPLE. Pick five cards at random from an ordinary pack of cards. We wish to compute the
probability P(B) of the event B that all four suits appear among the 5 chosen cards.

For this purpose, let A; be the event that none of the chosen cards are spades. Define As, As,
and A4 similarly for hearts, diamonds, and clubs, respectively. Then

EB:A1UA2UA3UA4.
The Inclusion-Exclusion Formula now yields

P(CB)=> P(4A)—> PANA)+ > PANA;NAL) —PAINAyNAsNAy),

i<j i<j<k
13
)
L — 0= 73.6%

(%)

—6-——~L +4
52
(%)
P(B)=1- P(B) =26.4%

that is

52
5
We thus obtain the probability

EXAMPLE. A school class contains n children. The teacher asks all the children to stand up and
then sit down again on a random chair. Let us compute the probability P(B) of the event B that
each pupil ends up on a new chair.

We start by enumerating the pupils from 1 to n. For each ¢ we define the event

A; : pupil number ¢ gets his or her old chair

Then
CB=A,U---UA,.

Now P(CB) can be computed by the Inclusion-Exclusion Formula for n events:

P(CB) =) P(A) =Y P(AiNAj)+-—-£P(AN---NA,),

i<j
thus
n 1 n 1 n 1
P(CB) = Z T =
(CB) <1>n <2>n(n1)+ (n)n'
1 1

15
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We conclude
PB)=1-PCB) =~ 241 1
B 20 31 4! n!
It is a surprising fact that this probability is more or less independent of n: P(B) is very close to
37% for all n > 4.

2.5 Binomial coefficients

The binomial coefficient ( Z ) (read as “n over k) is defined as

n\ n! B 1-2:3---n
k) Kn—-k! 1-2---k-1-2---(n—k)
for integers n and k with 0 < k& < n. (Recall the convention 0! = 1.)

The reason why binomial coefficients appear again and again in probability theory is the fol-
lowing theorem:

The number of ways of choosing k elements from a set of n elements is ( Z ) .

~

UROPEAN
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Statistics Basic concepts of probability theory

For example, the number of subsets with 5 elements (poker hands) of a set with 52 elements (a

52
( 5 ) = 2598960 .

An easy way of remembering the binomial coefficients is by arranging them in Pascal’s tri-

pack of cards) is equal to

angle where each number is equal to the sum of the numbers immediately above:

! |

0
! 11
0
2 2 2 121
0 1 2
(0 1331

) ) 14641
: 15101051
) )58 (2) () 1615201561

S Ot
—

N Ot
w ot
= Ot

One notices the rule
n _(n . 10 B 10
n—k) k) E\7)7\3)"

2.6 Multinomial coefficients

The multinomial coefficients are defined as

n B n!
ky - ke | k!l k!

for integers n and k1, ..., k. with n = ky + - - - 4+ k,.. The multinomial coefficients are also called
generalized binomial coefficients since the binomial coefficient

(+)
(1)

is equal to the multinomial coefficient

withl =n — k.
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3 Random variables

3.1 Random variables, definition

Consider a probability space (2, P). A random variable is a map X from (2 into the set of real
numbers R.

Normally, one can forget about the probability space and simply think of the following rule of
thumb:

Remember: A random variable is a function taking different values with different probabilities.

The probability that the random variable X takes certain values is written in the following way:

P(X = x): the probability that X takes the value = € R,

P(X < z): the probability that X takes a value smaller than x,
P(X > z): the probability that X takes a value greater than z,
etc.

One has the following rules:

P(X<z) = P(X<u2)+P(X =1)
P(X>z) = P(X>a2)+P(X =1)
1 = PX<z)+P(X=2)+PX >z

3.2 The distribution function
The distribution function of a random variable X is the function ' : R — R given by
F(z)=P(X <x).

F(z) is an increasing function with values in the interval [0, 1] and moreover satisfies F'(x) — 1
for z — o0, and F'(x) — 0 for v — —o0.
By means of F'(x), all probabilities of X can be computed:

P(X <x) lim. o F(z —¢)
P(X=2z) = F(x)—lim.oF(z—¢)
P(X>z) = 1—-lim.F(x—e¢)
P(X>z) = 1-F(x)

18
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3.3 Discrete random variables, point probabilities

A random variable X is called discrete if it takes only finitely many or countably many values.
For all practical purposes, we may define a discrete random variable as a random variable taking
only values in the set {0, 1,2, ... }. The point probabilities

determine the distribution of X . Indeed,

P(XeA)=> P(X=k)
keA

forany A C {0,1,2,...}. In particular we have the rules

P(X <k) = Xi,P(X =i
P(X2k) = L2, P(X=1i)

The point probabilities can be graphically illustrated by means of a pin diagram:

STUDY AT A TOP RANKED
INTERNATIONAL BUSINESS SCHOOL

no.l

nine years
in a row
Reach your full potential at the Stockholm School of Economics,
in one of the most innovative cities in the world. The School
$ is ranked by the Financial Times as the number one business
S school in the Nordic and Baltic countries.

Stockholm
(]

Visit us at www.hhs.se
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Statistics Rancom variables

P(X=K)

01+

v
=~

3.4 Continuous random variables, density function

A random variable X is called continuous if it has a density function f(z). The density function,
usually referred to simply as the density, satisfies

P(XecA)= [ f(t)dt
teA

forall A C R. If A is an interval [a, b] we thus have

P(angb):/bf(t)dt.

One should think of the density as the continuous analogue of the point probability function in the
discrete case.

3.5 Continuous random variables, distribution function

For a continuous random variable X with density f(z) the distribution function F'(x) is given by

Fla) = /_ Ft)dt .

The distribution function satisfies the following rules:

P(X<z) = F(x)

P(X>xz) = 1-F(x)
P(X|<2) = F()-F(-a)
P(|X|>z) = F(—z)+1—-F(x)

3.6 Independent random variables

Two random variables X and Y are called independent if the events X € Aand Y € B are in-
dependent for any subsets A, B C R. Independence of three or more random variables is defined
similarly.

Remember: X and Y are independent if nothing can be deduced about the value of Y from
knowing the value of X.

20
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Statistics Expected value and variance

ExXAMPLE. Throw a red dice and a black dice and consider the random variables

X: number of pips of red dice,
Y': number of pips of black dice,
Z: number of pips of red and black dice in total.

X and Y are independent since we can deduce nothing about X by knowing Y. In contrast, X
and Z are not independent since information about Z yields information about X (if, for example,
Z has the value 10, then X necessarily has one of the values 4, 5 and 6).

3.7 Random vector, simultaneous density, and distribution function

If Xi,...,X, are random variables defined on the same probability space ({2, P) we call X =
(X1,...,X,) an (n-dimensional) random vector. It is a map

X:Q—R".
The simultaneous (n-dimensional) distribution function is the function F : R™ — [0, 1] given by
F(z1,...,2p) =P(Xi <1 A ANX, < xp) .

Suppose now that the X; are continuous. Then X has a simultaneous (n-dimensional) density
f:R"™ — [0, oof satisfying

P(XeA) = / f(x)dx
X€EA

for all A C R™. The individual densities f; of the X; are called marginal densities, and we obtain
them from the simultaneous density by the formula

fl(:cl):/ lf(:vl,...,wn)d:cg...da:n
R7—

stated here for the case fi(x1).

Remember: The marginal densities are obtained from the simultaneous density by “integrating

away the superfluous variables”.

4 Expected value and variance

4.1 Expected value of random variables

The expected value of a discrete random variable X is defined as
o0
E(X)=> P(X=k) k.
k=1

The expected value of a continuous random variable X with density f(x) is defined as

E(X):/_O;f(x)-xdx.

Often, one uses the Greek letter 1 (“mu’) to denote the expected value.
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4.2 Variance and standard deviation of random variables

The variance of a random variable X with expected value F(X) = p is defined as
var(X) = B((X — p)?).

If X is discrete, the variance can be computed thus:

var(X) =Y P(X = k) - (k—p)*.
k=0

If X is continuous with density f(x), the variance can be computed thus:

oo
var(X) = [ o) ) do.
—0o
The standard deviation o (“sigma”) of a random variable X is the square root of the variance:

o(X) = +/var(X) .
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Statistics Expected value and variance

4.3 Example (computation of expected value, variance, and standard deviation)

EXAMPLE 1. Define the discrete random variable X as the number of pips shown by a certain
dice. The point probabilities are P(X = k) = 1/6 for k = 1,2, 3,4, 5, 6. Therefore, the expected
value is

=35.

26:1 14243444546
6

k=1 6

The variance is

6
Var = E

k=1

_(1-35+(2-35)* +--- + (6 - 3.5)*

(k —3.5)*
6

=2917.

CDM—!

The standard deviation thus becomes

o(X) =/2.917 = 1.708 .

EXAMPLE 2. Define the continuous random variable X as a random real number in the interval
[0, 1]. X then has the density f(z) = 1 on [0, 1]. The expected value is

1
E(X)= / xdr=0.5.
0
The variance is .
var(X) = / (z —0.5)%dz = 0.083 .
0
The standard deviation is
0.083 = 0.289 .

4.4 Estimation of expected value ;. and standard deviation o by eye

If the density function (or a pin diagram showing the point probabilities) of a random variable is
given, one can estimate ;. and o by eye. The expected value p is approximately the “centre of
mass” of the distribution, and the standard deviation ¢ has a size such that more or less two thirds
of the “probability mass” lie in the interval p £ o.

()
0,2+

0,1+

H-r W ur
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4.5 Addition and multiplication formulae for expected value and variance

Let X and Y be random variables. Then one has the formulae

E(X+Y) = EX)+E(Y)
E(aX) = a-FX)

var(X) = E(X2?) - B(X)?
var(aX) = a2 var(X)

var(X +a) = var(X)
for every a € R. If X and Y are independent, one has moreover

E(X-Y) = E(X) EY)
var(X +Y) = var(X)+ var(Y)

Remember: The expected value is additive. For independent random variables, the expected value
is multiplicative and the variance is additive.

4.6 Covariance and correlation coefficient

The covariance of two random variables X and Y is the number
Cov(X,Y)=E(X - EX)(Y —EY)).

One has
Cov(X,X) = var(X)
Cov(X,Y) E(X Y)-EX-EY
var(X +Y) = var(X)+ var(Y)+2-Cov(X,Y)

The correlation coefficient p (“rho”) of X and Y is the number

~ Cov(X,Y)
S o(X) oY)’

where 0(X) = (/var(X) and o(Y) = /var(Y) are the standard deviations of X and Y. It is
here assumed that neither standard deviation is zero. The correlation coefficient is a number in the
interval [—1, 1]. If X and Y are independent, both the covariance and p equal zero.

Remember: A positive correlation coefficient implies that normally X is large when Y large, and
vice versa. A negative correlation coefficient implies that normally X is small when Y is large,
and vice versa.

EXAMPLE. A red and a black dice are thrown. Consider the random variables

X: number of pips of red dice,
Y': number of pips of red and black dice in total.
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If X is large, Y will normally be large too, and vice versa. We therefore expect a positive correla-
tion coefficient. More precisely, we compute

E(X) = 35
EY) = 7
E(X-Y) = 2742
o(X) = 171
oY) = 242

The covariance thus becomes
Cov(X,)Y)=EX Y)-EX) - E(Y)=2742-35-7=2092.

As expected, the correlation coefficient is a positive number:

. Cov(X.Y) _ 292 _ ..

o(X)-o(Y) 1.71-2.42
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Statistics The Law of Large Numbers

S The Law of Large Numbers

5.1 Chebyshev’s Inequality

2

For a random variable X with expected value 1 and variance o~, we have Chebyshev’s Inequal-

ity:
o2
PIX —ulza) <%
for every a > 0.
5.2 The Law of Large Numbers
Consider a sequence X1, X2, X3, ... of independent random variables with the same distribution

and let 1 be the common expected value. Denote by .S,, the sums
Sp=X1+--+X,.

The Law of Large Numbers then states that

g

for every € > 0. Expressed in words:

S,
n,u’>5>%0 forn — oo
n

The mean value of a sample from any given distribution converges to the expected value of that
distribution when the size n of the sample approaches co.

5.3 The Central Limit Theorem

Consider a sequence X1, X2, X3, ... of independent random variables with the same distribution.
Let 1 be the common expected value and o2 the common variance. It is assumed that o is positive.
Denote by S/, the normed sums

X1+ + Xn —np
ov/n ’

By “normed” we understand that the S/, have expected value 0 and variance 1. The Central Limit
Theorem now states that

S, =

P(S; < x) — ®(x) forn — oo

for all x € R, where ® is the distribution function of the standard normal distribution (see section

15.4):
Tl
d(x) = / — e oqt.
oo V2T

The distribution function of the normed sums .S/, thus converges to ® when n converges to oo.
This is a quite amazing result and the absolute climax of probability theory! The surprising
thing is that the limit distribution of the normed sums is independent of the distribution of the X;.
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5.4 Example (distribution functions converge to ®)

Consider a sequence of independent random variables X7, Xo, ... all having the same point prob-
abilities

The sums S, = X + -+ + X, are binomially distributed with expected value © = n/2 and

2

variance 0 = n/4. The normed sums thus become

Xt Xy /2
N Vn/2 ‘
The distribution of the S/, is given by the distribution function F},. The Central Limit Theorem

states that F;, converges to ® for n — oo. The figure below shows F,, together with ® for n =

1,2,10, 100. It is a moment of extraordinary beauty when one watches the F;, slowly approaching
P:

S/

n=1 n=z
14 7- 14 —
0.5 0.8
0.5 0.5
0.47 0.44
0.2 0.2
0+ u]
3 2 1 a 1 2 3 3 2 1 a 1 2 3
n=10 n=100
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.24 0.24
0+ a
3 2 1 o 1 2 3 3 2 1 o 1 2 3
6 Descriptive statistics
6.1 Median and quartiles
Suppose we have n observations x1, . . . , . We then define the median x:(0.5) of the observations

as the “middle observation”. More precisely,

2(0.5) = T(nt1)/2 if n is odd
(Tn)2 + Tpjag1)/2 ifniseven

where the observations have been sorted according to size as

T <z9 <<z, .
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Similarly, the lower quartile x(0.25) is defined such that 25% of the observations lie below
2(0.25), and the upper quartile 2:(0.75) is defined such that 75% of the observations lie below
x(0.75).

The interquartile range is the distance between x(0.25) and x(0.75), i.e. (0.75) — 2(0.25).

6.2 Mean value

Suppose we have n observations z1, . .., z,. We define the mean or mean value of the observa-
tions as
n .
n

6.3 Empirical variance and empirical standard deviation

Suppose we have n observations x1, ..., x,. We define the empirical variance of the observa-
tions as . )
$2 — Z¢=1(l’i — )
n—1

Excellent Economics and Business programmes at:

i

AACSB>

s . .
Ey/ university of
gﬁ%é groningen

| |
“The perfect start

of a successful,
international career’

)

-

j' CLICK HERE

to discover why both socially
and academically the University
of Groningen is one of the best

i laces for a student to be
www.rug.nl/feb/education p

28

Click on the ad to read more

Download free eBooks at bookboon.com


http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

Statistics Statistical hypothesis testing

The empirical standard deviation is the square root of the empirical variance:

The greater the empirical standard deviation s is, the more “dispersed” the observations are around
the mean value 7.

6.4 Empirical covariance and empirical correlation coefficient

Suppose we have n pairs of observations (x1,y1), ..., (Zn, yn). We define the empirical covari-
ance of these pairs as
7,1_ T — 7T .
COVemp = Zl_l( - 1)(% y) .
n —

Alternatively, Cover,p can be computed as

2?21 ;Y — NIy

Covemp = 1
The empirical correlation coefficient is
empirical covariance Covemp
r= T e - e =
(empirical standard deviation of the x)(empirical standard deviation of the y) 525y

The empirical correlation coefficient r always lies in the interval [—1, 1].

Understanding of the empirical correlation coefficient. If the x-observations are independent of
the y-observations, then r will be equal or close to 0. If the z-observations and the y-observations
are dependent in such a way that large x-values usually correspond to large y-values, and vice
versa, then r will be equal or close to 1. If the x-observations and the y-observations are dependent
in such a way that large z-values usually correspond to small y-values, and vice versa, then r will

be equal or close to —1.

7 Statistical hypothesis testing

7.1 Null hypothesis and alternative hypothesis

A statistical test is a procedure that leads to either acceptance or rejection of a null hypothesis
Hj given in advance. Sometimes H)j is tested against an explicit alternative hypothesis H;.

At the base of the test lie one or more observations. The null hypothesis (and the alternative
hypothesis, if any) concern the question which distribution these observations were taken from.

7.2 Significance probability and significance level

One computes the significance probability P, thatis the probability — if Hy is true — of obtaining
an observation which is as extreme, or more extreme, than the one given. The smaller P is, the
less plausible Hy is.
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Often, one chooses a significance level « in advance, typically o = 5%. One then rejects Hy
if P is smaller than « (and one says, “Hj is rejected at significance level o). If P is greater than
a, then Hj is accepted (and one says, “Hj is accepted at significance level o” or “H( cannot be
rejected at significance level o).

7.3 Errors of type I and 11

We speak about a type I error if we reject a true null hypothesis. If the significance level is «,
then the risk of a type I error is at most a.

We speak about a type II error if we accept a false null hypothesis.

The strength of a test is the probability of rejecting a false Hy. The greater the strength, the
smaller the risk of a type II error. Thus, the strength should be as great as possible.

7.4 Example

Suppose we wish to investigate whether a certain dice is fair. By “fair” we here only understand
that the probability p of a six is 1/6. We test the null hypothesis

Hy:p= % (the dice is fair)
against the alternative hypothesis
H :p> é (the dice is biased)
The observations on which the test is carried out are the following ten throws of the dice:
2,6,3,6,5,2,6,6,4,6 .

Let us in advance agree upon a significance level o = 5%. Now the significance probability P
can be computed. By “extreme observations” is understood that there are many sixes. Thus, P is
the probability of having at least five sixes in 10 throws with a fair dice. We compute

10
P=>Y" <1k0> (1/6)*(5/6)1°°% = 0.015

k=5

(see section 8 on the binomial distribution). Since P = 1.5% is smaller than o = 5%, we reject
Hy. If the same test was performed with a fair dice, the probability of committing a type I error
would be 1.5%.

8 The binomial distribution Bin(n, p)

8.1 Parameters

n: number of tries
p: probability of success

In the formulae we also use the “probability of failure” ¢ =1 — p.
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8.2 Description

We carry out n independent tries that each result in either success or failure. In each try the
probability of success is the same, p. Consequently, the total number of successes X is binomially
distributed, and we write X ~ Bin(n,p). X is a discrete random variable and takes values in the
set {0,1,...,n}.

8.3 Point probabilities

For k € {0,1,...,n}, the point probabilities in a Bin(n, p) distribution are

n _
P(X =k)= (k) pF gk
See section 2.5 regarding the binomial coefficients ( Z > .

EXAMPLE. If a dice is thrown twenty times, the total number of sixes, X, will be binomially
distributed with parameters n = 20 and p = 1/6. We can list the point probabilities P(X = k)
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and the cumulative probabilities P(X > k) in a table (expressed as percentages):

ko 1 2 3 4 5 6 T 8 9
P(X=Fk)[26 104 198 238 202 129 65 26 08 0.2
P(X >k)|[100 974 87.0 67.1 433 231 102 37 L1 0.3

8.4 Expected value and variance
Expected value: E(X) = np.

Variance: var(X) = npgq.

8.5 Significance probabilities for tests in the binomial distribution

We perform n independent experiments with the same probability of success p and count the
number & of successes. We wish to test the null hypothesis Hg : p = pg against an alternative
hypothesis Hj.
Hy H; Significance probability
p=po p>po P(X=Fk)
p=pyo p<py PX<k)
p=p0 p#p0 >, PX=1I)

where in the last line we sum over all [ for which P(X =1) < P(X = k).

EXAMPLE. A company buys a machine that produces microchips. The manufacturer of the ma-
chine claims that at most one sixth of the produced chips will be defective. The first day the
machine produces 20 chips of which 6 are defective. Can the company reject the manufacturer’s
claim on this background?

SOLUTION. We test the null hypothesis Hy : p = 1/6 against the alternative hypothesis H; :
p > 1/6. The significance probability can be computed as P(X > 6) = 10.2% (see e.g. the table
in section 8.3). We conclude that the company cannot reject the manufacturer’s claim at the 5%
level.

8.6 The normal approximation to the binomial distribution

If the parameter n (the number of tries) is large, a binomially distributed random variable X
will be approximately normally distributed with expected value ;1 = np and standard deviation
o = /npq. Therefore, the point probabilities are approximately

P(szw(’%%f)v%

where ¢ is the density of the standard normal distribution, and the tail probabilities are approxi-

L4+ 1_
P(X<k)~o(fz"
NGT

mately

32

Download free eBooks at bookboon.com



Statistics The binomial distribution Bin(n,p)

v pq

where @ is the distribution function of the standard normal distribution (Table B.2).

k—L1_
P(XZk)%l—(b(Qm))

Rule of thumb. One may use the normal approximation if np and nq are both greater than 5.

EXAMPLE (continuation of the example in section 8.5). After 2 weeks the machine has produced
200 chips of which 46 are defective. Can the company now reject the manufacturer’s claim that
the probability of defects is at most one sixth?

SOLUTION. Again we test the null hypothesis Hy : p = 1/6 against the alternative hypothesis

Hy : p > 1/6. Since now np =~ 33 and ng ~ 167 are both greater than 5, we may use the normal

approximation in order to compute the significance probability:

46 — 3 — 33.3
V278

Therefore, the company may now reject the manufacturer’s claim at the 5% level.

P(X246)x1—<1>< )zl—@(2.3)w1.1%

8.7 Estimators

Suppose k is an observation from a random variable X ~ Bin(n, p) with known n and unknown
p. The maximum likelihood estimate (ML estimate) of p is

.k
p=—.
n

This estimator is unbiased (i.e. the expected value of the estimator is p) and has variance

~ _ Pg
var(p) = -
The expression for the variance is of no great practical value since it depends on the true (un-
known) probability parameter p. If, however, one plugs in the estimated value p in place of p, one
gets the estimated variance
p(1—p)
n

EXAMPLE. We consider again the example with the machine that has produced twenty microchips
of which the six are defective. What is the maximum likelihood estimate of the probability param-
eter? What is the estimated variance?

SOLUTION. The maximum likelihood estimate is

6
p=— =230
P=5p = 30%
and the variance of p is estimated as

0.3-(1-0.3)

—— = =10.0105.
50 0.0105
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The standard deviation is thus estimated to be 1/0.0105 ~ 0.10. If we presume that p lies within
two standard deviations from p, we may conclude that p is between 10% and 50%.

8.8 Confidence intervals

Suppose k is an observation from a binomially distributed random variable X ~ Bin(n, p) with
known n and unknown p. The confidence interval with confidence level 1 — « around the point
estimate p = k/n is

. [p(1—p) . [p(1—p
[p_ul—a/Q I¥=P+U1—a/z Z%]

Loosely speaking, the true value p lies in the confidence interval with the probability 1 — a.

The number u;_, /5 is determined by ®(u;_,/2) = 1 — «/2 where @ is the distribution
function of the standard normal distribution. It appears e.g. from Table B.2 that with confidence
level 95% one has

Ul /2 = u0.975 = 1.96 .

EXERCISE. In an opinion poll from the year 2015, 62 out of 100 persons answer that they intend
to vote for the Green Party at the next election. Compute the confidence interval with confidence
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Statistics The Poisson distribution Pois(A)

level 95% around the true percentage of Green Party voters.

SOLUTION. The point estimate is p = 62/100 = 0.62. A confidence level of 95% yields o =
0.05. Looking up in the table (see above) gives ug.g75 = 1.96. We get

0.62-0.38
1.964/ ————— = 0.10.
100

The confidence interval thus becomes
[0.52, 0.72] .

So we can say with a certainty of 95% that between 52% and 72% of the electorate will vote for
the Green Party at the next election.

9 The Poisson distribution Pois(\)

9.1 Parameters

A: Intensity

9.2 Description

Certain events are said to occur spontaneously, i.e. they occur at random times, independently
of each other, but with a certain constant infensity \. The intensity is the average number of
spontaneous events per time interval. The number of spontaneous events X in any given concrete
time interval is then Poisson distributed, and we write X ~ Pois()A). X is a discrete random
variable and takes values in the set {0,1,2,3,...}.

9.3 Point probabilities
For k € {0,1,2,3...} the point probabilities in a Pois(\) distribution are

k
P(X =k)= %exp(—)\) .

Recall the convention 0! = 1.

EXAMPLE. In a certain shop an average of three customers per minute enter. The number of
customers X entering during any particular minute is then Poisson distributed with intensity A =
3. The point probabilities (as percentages) can be listed in a table as follows:

ko 1 2 3 4 5 6 7 8 9 >10
P(X=k)[50 149 224 224 168 101 50 22 08 03 0.1

9.4 Expected value and variance

Expected value: E(X) = \.

Variance: var(X) = A
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9.5 Addition formula

Suppose that X1,..., X, are independent Poisson distributed random variables. Let \; be the
intensity of X, i.e. X; ~ Pois();). Then the sum

X=X1++X
will be Poisson distributed with intensity
A:>\1—i_—i_)\n7

i.e. X ~ Pois(A).

9.6 Significance probabilities for tests in the Poisson distribution

Suppose that k is an observation from a Pois(\) distribution with unknown intensity A\. We wish
to test the null hypothesis Hy : A = Ag against an alternative hypothesis Hj.

Hy H; Significance probability
A=X A>X P(X >k)
A=X A< PX<Ek)
A=X A# XN Y, PX =1
where the summation in the last line is over all [ for which P(X =1) < P(X = k).

If n independent observations ki, .. ., k, from a Pois(\) distribution are given, we can treat
the sum k = k1 + - - - + k&, as an observation from a Pois(n - \) distribution.

9.7 Example (significant increase in sale of Skodas)

EXERCISE. A Skoda car salesman sells on average 3.5 cars per month. The month after a radio
campaign for Skoda, seven cars are sold. Is this a significant increase?

SOLUTION. The sale of cars in the given month may be assumed to be Poisson distributed with a
certain intensity A. We test the null hypothesis

Hy: A=35

against the alternative hypothesis
H;:A>35.

The significance probability, i.e. the probability of selling at least seven cars given that Hy is true,
is

00 k
3.5
P = E ( k:') exp(—3.5) = 0.039 4+ 0.017 + 0.007 + 0.002 + - - - = 0.065 .
k=7 ’

Since P is greater than 5%, we cannot reject Hy. In other words, the increase is not significant.
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9.8 The binomial approximation to the Poisson distribution

The Poisson distribution with intensity A is the limit distribution of the binomial distribution with
parameters n and p = \/n when n tends to co. In other words, the point probabilities satisfy

P(X,=k)— P(X=k) for n - o0
for X ~ Pois(A) and X,, ~ Bin(n, A\/n). In real life, however, one almost always prefers to use
the normal approximation instead (see the next section).
9.9 The normal approximation to the Poisson distribution

If the intensity A is large, a Poisson distributed random variable X will to a good approximation
be normally distributed with expected value ¢ = A and standard deviation ¢ = v/\. The point

where () is the density of the standard normal distribution, and the tail probabilities are

k+3—A
P(ng:)z<b<+2)

probabilities therefore are
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Statistics The Poisson distribution Pois(A)

VA

where @ is the distribution function of the standard normal distribution (Table B.2).

E—1-)
<HX2M%1—®(52>

Rule of thumb. The normal approximation to the Poisson distribution applies if A is greater than

nine.

9.10 Example (significant decrease in number of complaints)

EXERCISE. The ferry Deutschland between Rgdby and Puttgarten receives an average of 180
complaints per week. In the week immediately after the ferry’s cafeteria was closed, only 112
complaints are received. Is this a significant decrease?

SOLUTION. The number of complaints within the given week may be assumed to be Poisson
distributed with a certain intensity A. We test the null hypothesis

Hy: A =180
against the alternative hypothesis
H;: A< 180.

The significance probability, i.e. the probability of having at most 112 complaints given Hy, can
be approximated by the normal distribution:

112+ 4 — 180
P=¢—-2—— | =®(-5.03) < 0.0001 .
V180

Since P is very small, we can clearly reject Hy. The number of complaints has significantly
decreased.

9.11 Estimators

Suppose k1, . .. k,, are independent observations from a random variable X ~ Pois(\) with un-
known intensity A. The maximum likelihood estimate (ML estimate) of ) is

A=(ki4-+kn)/n.

This estimator is unbiased (i.e. the expected value of the estimator is A) and has variance

. A
A)=—.
var(\) -
More precisely, we have
nA ~ Pois(n) .

If we plug in the estimated value Ain \’s place, we get the estimated variance

S|>

var(\) =
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9.12 Confidence intervals

Suppose k1, . .., k, are independent observations from a Poisson distributed random variable X ~
Pois(\) with unknown A. The confidence interval with confidence level 1 — « around the point
estimate \ = (k1 + -+ kn)/nis

A A A
A— U1—a/2\/; y A+ ul—a/2\/;

Loosely speaking, the true value A lies in the confidence interval with probability 1 — a.
The number u;_, /o is determined by ®(u;_o/2) = 1 — /2, where ® is the distribution
function of the standard normal distribution. It appears from, say, Table B.2 that

Uy o2 = U0.975 = 1.96

for confidence level 95%.

EXAMPLE (continuation of the example in section 9.10). In the first week after the closure of the
ferry’s cafeteria, a total of 112 complaints were received. We consider £ = 112 as an observation
from a Pois(\) distribution and wish to find the confidence interval with confidence level 95%
around the estimate

~

A=112.

Looking up in the table gives ug 975 = 1.96. The confidence interval thus becomes

[112f 1.96V112 , 112 + 1.96V112 } ~ (91, 133]

10 The geometrical distribution Geo(p)

10.1 Parameters

p: probability of success

In the formulae we also use the “probability of failure” ¢ = 1 — p.

10.2 Description

A series of experiments are carried out, each of which results in either success or failure. The
probability of success p is the same in each experiment. The number W of failures before the first
success is then geometrically distributed, and we write W ~ Geo(p). W is a discrete random
variable and takes values in the set {0, 1,2, ... }. The “wait until success” is V =W + 1.

10.3 Point probabilities and tail probabilities

For k € {0,1,2... } the point probabilities in a Geo(p) distribution are

P(X =k)=q"p.
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Statistics The geometrical distribution Geo(p)

In contrast to most other distributions, we can easily compute the tail probabilities in the geomet-
rical distribution:
P(X >k)=q".

EXAMPLE. Pin diagram for the point probabilities in a geometrical distribution with probability
of success p = 0.5:

0.54 P(X=k)
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Statistics The hypergeometrical distribution HG(n,r,N)

10.4 Expected value and variance

Expected value: E(W) = q/p.
Variance: var(W) = q/p%.

Regarding the “wait until success” V' = W + 1, we have the following useful rule:

Rule. The expected wait until success is the reciprocal probability of success: E(V') = 1/p.

EXAMPLE. A gambler plays lotto each week. The probability of winning in lotto, i.e. the proba-
bility of guessing correctly seven numbers picked randomly from a pool of 36 numbers, is

-1
p= (376) ~ 0.0000001198 .

The expected wait until success is thus

EV)=p!'= (376> weeks = 160532 years .

11 The hypergeometrical distribution HG(n,r, N)

11.1 Parameters

r: number of red balls

s: number of black balls

N: total number of balls (N = r + s)
n: number of balls picked out (n < N)

11.2 Description

In an urn we have r red balls and s black balls, in total N = r 4 s balls. We now pick out
n balls from the urn, randomly and without returning the chosen balls to the urn. Necessarily
n < N. The number of red balls ¥ amongst the balls chosen is then hypergeometrically dis-
tributed and we write Y ~ HG(n,r, N). Y is a discrete random variable with values in the set
{0,1,...,min{n,r}}.

11.3 Point probabilities and tail probabilities

For k € {0,1,...,min{n,r}} the point probabilities of a HG(n, r, N') distribution are
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Statistics The hypergeometrical distribution HG(n,r,N)

EXAMPLE. A city council has 25 members of which 13 are Conservatives. A cabinet is formed by
picking five council members at random. What is the probability that the Conservatives will have
absolute majority in the cabinet?

SOLUTION. We have here a hypergeometrically distributed random variable Y ~ HG(5, 13, 25)
and have to compute P(Y > 3). Let us first compute all point probabilities (as percentages):

k o 1 2 3 4 5
P(Y=k)|15 121 323 355 161 24

The sought-after probability thus becomes

P(Y >3) = 35.5% + 16.1% + 2.4% = 54.0%

11.4 Expected value and variance

Expected value: FE(Y) =nr/N.
Variance: var(Y) = nrs(N —n)/(N?(N —1)).

11.5 The binomial approximation to the hypergeometrical distribution

If the number of balls picked out, n, is small compared to both the number of red balls r and the
number of black balls s, it becomes irrelevant whether the balls picked out are returned to the urn
or not. We can thus approximate the hypergeometrical distribution by the binomial distribution:

for Y ~ HG(n,r,N) and X ~ Bin(n,r/N). In practice, this approximation is of little value
since it is as difficult to compute P(X = k) as P(Y = k).
11.6 The normal approximation to the hypergeometrical distribution

If n is small compared to both r and s, the hypergeometrical distribution can be approximated by
the normal distribution with the same expected value and variance.
The point probabilities thus become

k —nr/N 1

PY =k)=~¢
¢hmuv—nme%N>-n) V%mUV—nw%N%N>—U)

where ¢ is the density of the standard normal distribution. The tail probabilities become

k+%—nr/N

Vrs(N = n)/(N2(N — 1))

PY <k ~®
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The multinomial distribution Mult(n, p,,...p,)

k—1—nr/N

V/rrs(N = n)/(N2(N — 1))

where @ is the distribution function of the standard normal distribution (Table B.2).

PY>k)~1-9®

12 The multinomial distribution Mult(n, py, ..., p,)

12.1 Parameters

n: number of tries
p1: 1st probability parameter

pr: rth probability parameter

It is required thatpy +--- + p, = 1.

12.2 Description

We carry out n independent experiments each of which results in one out of r possible outcomes.
The probability of obtaining an outcome of type ¢ is the same in each experiment, namely p;. Let
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Statistics The negative binomial distribution NB(n,p)

S; denote the total number of outcomes of type i. The random vector S = (S1,...,S,) is then
multinomially distributed and we write S ~ Mult(n, p1, ..., p,). S is discrete and takes values in
the set {(k1,...k,) €Z" | ki >0, k1 + -+ k, = n}.

12.3 Point probabilities

For k1 + - - - + k, = n the point probabilities of a Mult(n, p1, ..., p,) distribution are
n T
P(S = (ki,...,k)) = : ki
(S = (k1. k) (kk> 1

EXAMPLE. Throw a dice six times and, for each 4, let S; be the total number of i’s. Then
S = (S1,...,86) is a multinomially distributed random vector: S ~ Mult(6,1/6,...,1/6).
The probability of obtaining, say, exactly one 1, two 2s, and three sixes is

6

P(5=(1,2,0,0,0,3)) = ( 120003

> - (1/6)' - (1/6)% - (1/6)% ~ 0.13%

Here, the multinomial coefficient (see also section 2.6) is computed as

6 - 6! _@_60
120003 / 1121000131 12

12.4 Estimators

Suppose k1, ..., k, is an observation from a random vector S ~ Mult(n, p1, ..., p,) with known
n and unknown p;. The maximum likelihood estimate of p; is

k;

n

Di
This estimator is unbiased (i.e. the estimator’s expected value is p;) and has variance

pi(1 —p;) .

var(py) = 25

13 The negative binomial distribution NB(n, p)

13.1 Parameters

n: number of tries
p: probability of success

In the formulae we also use the letter ¢ = 1 — p.
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Statistics The exponential distribution (A)

13.2 Description

A series of independent experiments are carried out each of which results in either success or
failure. The probability of success p is the same in each experiment. The total number X of failures
before the n’th success is then negatively binomially distributed and we write X ~ NB(n, p). The
random variable X is discrete and takes values in the set {0,1,2,... }.

The geometrical distribution is the special case n = 1 of the negative binomial distribution.

13.3 Point probabilities

For k € {0,1,2...} the point probabilities of a NB(k, p) distribution are

P(X = k) = <”+k_1>-p"~q’“-

n—1

13.4 Expected value and variance

Expected value: E(X) = ng/p.
Variance: var(X) = ng/p>.

13.5 Estimators

The negative binomial distribution is sometimes used as an alternative to the Poisson distribution
in situations where one wishes to describe a random variable taking values in the set {0, 1,2, ... }.
Suppose k1, . . ., kn, are independent observations from a NB(n, p) distribution with unknown

parameters n and p. We then have the following estimators:
£2

ﬁ: — 5 A:
s2—k p

Clsw‘ S

where k and s? are the mean value and empirical variance of the observations.

14 The exponential distribution Exp()\)

14.1 Parameters

A:  Intensity

14.2 Description

In a situation where events occur spontaneously with the intensity A (and where the number of
spontaneous events in any given time interval thus is Pois(\) distributed), the wait T' between
two spontaneous events is exponentially distributed and we write 7' ~ Exp(\). T is a continuous
random variable taking values in the interval [0, co|.
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The normal distribution

14.3 Density and distribution function

The density of the exponential distribution is
f(z) =X exp(—Az) .

The distribution function is

F(z) =1—exp(—Az) .

14.4 Expected value and variance
E(T)=1/\
var(T) = 1/)2.

Expected value:

Variance:

15 The normal distribution

15.1 Parameters

w: expected value

o2: variance

Remember that the standard deviation o is the square root of the variance.
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Statistics The normal distribution

15.2 Description

The normal distribution is a continuous distribution. If a random variable X is normally distribut-
ed, then X can take any values in R and we write X ~ N (1, 0?).

The normal distribution is the most important distribution in all of statistics. Countless natu-
rally occurring phenomena can be described (or approximated) by means of a normal distribution.

15.3 Density and distribution function

The density of the normal distribution is the function

o) =~ exp<—<"“"“‘)2) |

It is symmetric, i.e.

The distribution function of the normal distribution

=[5

is difficult to compute. Instead, one uses the formula

F(@:@(”C;”)

where @ is the distribution function of the standard normal distribution which can be looked up in
Table B.2. From the table the following fact appears:

Fact: In a normal distribution, about 68% of the probability mass lies within one standard devi-
ation from the expected value, and about 95% of the probability mass lies within two standard

deviations from the expected value.

15.4 The standard normal distribution

A normal distribution with expected value ; = 0 and variance 0> = 1 is called a standard normal
distribution. The standard deviation in a standard normal distribution equals 1 (obviously). The
density ¢(t) of a standard normal distribution is

o(t) = \/12? exp <;t2> :

The distribution function ® of a standard normal distribution is

d(z) = /_; \/12? exp (—;R) dt .

On can look up @ in Table B.2.
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Statistics The normal distribution

15.5 Properties of ¢

The distribution function ® of a standard normally distributed random variable X ~ N(0, 1)

satisfies
PX<z) = o(x)
PX>z) = &(—x)
PIX|<2) = Bx)—o(—2)
P(X|> 1) = 2 &(-2)
O(—x) = 1—-9(2)

15.6 Estimation of the expected value 1

Suppose z1, T2, . .., T, are independent observations of a random variable X ~ N(u,o?). The
maximum likelihood estimate (ML estimate) of p is

TLF T,
- .

=
This is simply the mean value and is written Z. The mean value is an unbiased estimator of p (i.e.
the estimator’s expected value is u). The variance of the mean value is
2
2/ — g
var®(z) = — .
@ =2

More precisely, Z is itself normally distributed:

2
o
z~ N(u,—) .
z~N(p, )
15.7 Estimation of the variance o>
Suppose 1, . . ., ¥, are independent observations of a random variable X ~ N (u, 0?). Normally,

2

the variance o“ is estimated by the empirical variance

§2 = Z(a:i—j:)2'
n—1

2 2

The empirical variance s“ is an unbiased estimator of the true variance o“.

Warning: The empirical variance is not the maximum likelihood estimate of o2. The maximum

¥ (i — )

n

likelihood estimate of o2 is

but this is seldom used since it is biased and usually gives estimates which are too small.
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Statistics The normal distribution

15.8 Confidence intervals for the expected value 1

Suppose z1, . .., T, are independent observations of a normally distributed random variable X ~
N(u,0?) and that we wish to estimate the expected value p. If the variance o2 is known, the
confidence interval for p with confidence level 1 — «v is as follows:

_ g _ o
T — Ul—q/2——F— T+ Ul_q/2—F—
a/ \/ﬁ ) a/ \/ﬁ

The number u;_, /5 is determined by ®(u;_o/2) = 1 — /2 where @ is the distribution function
of the standard normal distribution. It appears from, say, Table B.2 that

U a2 = Uo.975 = 1.96

for confidence level 95%.
If the variance o2 is unknown, the confidence interval for z with confidence level 1 — « is

52 52
T—t1opm—1) Pl ti—a2(n—1) o

where s is the empirical variance (section 6.3). The number ¢;_, /2 is determined by F(ui_q /2) =
1 — «/2, where F is the distribution function of Student’s ¢ distribution with n — 1 degrees of
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Statistics Distribution connected with the normal distribution

freedom. It appears from, say, Table B.4 that

n |2 3 4 5 6 7 8 9 10 11 12
ti_ajo | 127 4.30 3.18 278 2.57 245 2.36 231 226 2.23 220

for confidence level 95%.

15.9 Confidence intervals for the variance o2 and the standard deviation o

Suppose z1, . .., T, are independent observations of a normally distributed random variable X ~
N (u,0?). The confidence interval for the variance o with confidence level 1 — « is:

[ (n—1s* (n—1)s? ]

2 )
Xa/2 X1—a/2

where s is the empirical variance (section 6.3). The numbers Xi /2 and Xia /o are determined
by F(Xi/g) = a/2 and F(Xia/z) = 1 — a/2 where F is the distribution function of the x>
distribution with n — 1 degrees of freedom (Table B.3).

Confidence intervals for the standard deviation o with confidence level 1 — « are computed
simply by taking the square root of the limits of the confidence intervals for the variance:

[ (n—1)s? (n—1)s? ]
Xi/? 7 X%—O[/Q
15.10 Addition formula

A linear function of a normally distributed random variable is itself normally distributed. If, in
other words, X ~ N(u,0?) and a,b € R (a # 0), then

aX 4+ b~ N(ap +b,a’c?).

The sum of independent normally distributed random variables is itself normally distributed.
2

If, in other words, X1, ..., X,, are independent with X; ~ N(u;,0;), then we have the addition

Sformula
X1+"'+Xn"’N(M1+"'+Nna0%+"'+0i)-

16 Distributions connected with the normal distribution

16.1 The y? distribution

Let X1,...,X,, ~ N(0,1) be independent standard normally distributed random variables. The
distribution of the sum of squares

Q=X+ +X

is called the y? distribution with n degrees of freedom. The number of degrees of freedom is
commonly symbolized as df .
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A x? distributed random variable () with df degrees of freedom has expected value

E(Q) =df
and variance
var(Q) =2 - df .
The density of the x? distribution is
flx)=K- o R

where df is the number of degrees of freedom and K is a constant. In practice, one doesn’t use
the density, but rather looks up the distribution function in Table B.3. The graph below shows the
density function with df = 1,4, 10, 20 degrees of freedom.

16.2 Student’s ¢ distribution

Let X be a normally distributed random variable with expected value y and variance o2. Let the
random variables X and S? be the mean value and empirical variance, respectively, of a sample
consisting of n observations from X . The distribution of

X—pn
V/S?/n

is then independent of both y and o2 and is called Student’s ¢ distribution with n — 1 degrees of

freedom.
A t distributed random variable 7" with df degrees of freedom has expected value

for df > 2, and variance

for df > 3.
The density of the ¢ distribution is

x2>—(df+1)/2

f(:z:):K-<1+df
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Statistics Distribution connected with the normal distribution

where df is the number of degrees of freedom and K is a constant. In practice, one doesn’t use
the density, but rather looks up the distribution function in Table B.4. The graph below shows
the density of the ¢ distribution with df = 1,2, 3 degrees of freedom and additionally the density
() of the standard normal distribution. As it appears, the ¢ distribution approaches the standard
normal distribution when df — oc.

16.3 Fisher’s I distribution

Let X; and X5 be independent normally distributed random variables with the same variance. For
i = 1, 2 let the random variable Si2 be the empirical variance of a sample of size n; from X;. The
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Statistics Tests in the normal distribution

distribution of the quotient
St
53
is called Fisher’s F' distribution with n; — 1 degrees of freedom in the numerator and ny — 1
degrees of freedom in the denominator.
The density of the F’ distribution is

V=

odf1/2-1
(dfa + df1x)¥/?

where K is a constant, df; the number of degrees of freedom in the numerator, df, the number

fa) =K

of degrees of freedom in the denominator, and df = df; + df2. In practice, one doesn’t use the
density, but rather looks up the distribution function in Table B.5.

17 Tests in the normal distribution

17.1 One sample, known variance, Hy : 1 = g

Let there be given a sample x1, ..., x, of n independent observations from a normal distribution
with unknown expected value ;. and known variance o2. We wish to test the null hypothesis

Ho: p=rpo.

For this purpose, we compute the statistic

_ V(T —po) Yoy @i — npo

B 2

g no

The significance probability now appears from the following table, where & is the distribution
function of the standard normal distribution (Table B.2).

Alternative  Significance

hypothesis ~ probability
Hi: pu>po D(—u)
Hi:op<po P (u)
Hi:p#po 2-2(—|ul)

Normally, we reject Hy if the significance probability is less than 5%.

17.2 One sample, unknown variance, H, : 1 = o (Student’s ¢ test)

Let there be given a sample x1, ..., x, of n independent observations from a normal distribution
with unknown expected value ;. and unknown variance o2. We wish to test the null hypothesis
Ho: p=po.

For this purpose, we compute the statistic

V(EZ = po) iy i — nyig
s N ’

t:
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Statistics Tests in the normal distribution

where s? is the empirical variance (see section 6.3).
The significance probability now appears from the following table where Fsiudent s the dis-
tribution function of Student’s ¢ distribution with df = n — 1 degrees of freedom (Table B.4).

Alternative Significance
hypothesis probability
Hi: p> o 1 — Fstudent (t)
H: < o 1— FStudent(_t)

H,: 12 75 Ho 2. (1 - FStudent(|t|))

Normally, we reject Hy if the significance probability is less than 5%.

EXAMPLE. The headmaster of a school wishes to confirm statistically that his students have per-
formed significantly miserably in the 2008 final exams. For this purpose, n = 10 students are
picked at random. Their final scores are

T3 X2 X3 Xg Ty Tg Xy Xy X9 10
76 7.7 75 58 57 79 54 67 79 94

The national average for 2008 is 8.27. It is reasonable to assume that the final scores are normally
distributed. However, the variance is unknown. Therefore, we apply Student’s ¢ test to test the null
hypothesis

Hy:p =827

against the alternative hypothesis
H;:p<827.

We compute the mean value of the observations as £ = 7.17 and the empirical standard deviation
as s = 1.26. We obtain the statistic
V10(7.17 — 8.27)

t= = —-2.76.
1.26 76

Looking up in Table B.4 under df = n—1 = 9 degrees of freedom gives a significance probability
1 - FStudent(_t) - ]- - Fstudent(2.76)

between 1% and 2.5%. We may therefore reject Hy and confirm the headmaster’s assumption that
his students have performed significantly poorer than the rest of the country.

17.3 One sample, unknown expected value, Hy : 02 = o2

THEOREM. Let there be given n independent observations z, . . ., z, from a normal distribution
with variance o2. The statistic

(= D)5 _ S0 (@i~ 0
o2 o2

q:

is then 2 distributed with df = n — 1 degrees of freedom (here s? is the empirical variance).
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Statistics Tests in the normal distribution

Let there be given a sample x1, ..., x, of n independent observations from a normal distribution
with unknown expected value ;. and unknown variance o2. We wish to test the null hypothesis

L2 2
Hy: 0 =03 .

For this purpose, we compute the statistic

_ (n — 1)52 _ Z?:l(x’i - 5)2

2 2
a9 )

where s is the empirical variance.
The significance probability can now be read from the following table where F\ 2 is the distri-
bution function of the x? distribution with df = n — 1 degrees of freedom (Table B.3).

Alternative Significance
hypothesis probability
H;: 0? > o} 1—Fe(q)
H;: o? <o} F\2(q)

H;: 02 # o} 2-min{F,2(q),1 — F\2(q)}

Normally, Hy is rejected if the significance probability is smaller than 5%.

Note: In practice, we always test against the alternative hypothesis H; : o2 > 3.
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Statistics Tests in the normal distribution

17.4 Example

Consider the following twenty observations originating from a normal distribution with unknown
expected value and variance:

91 97 98 112 91 97 116 108 108 100
107 98 92 103 100 99 98 104 104 97

We wish to test the null hypothesis

H,: the standard deviation is at most 5 (i.e. the variance is at most 25)

against the alternative hypothesis

H,: the standard deviation is greater than 5 (i.e. the variance is greater than 25).

The empirical variance is found to be s> = 45.47 and we thus find the statistic

20 —1)-45.47
q= —( 5)2 = 34.56 .
By looking up in Table B.3 under df = 19 degrees of freedom, we find a significance probability
around 2%. We can thus reject Hy.
(Actually, the observations came from a normal distribution with expected value ¢ = 100 and

standard deviation o = 6. The test is thus remarkably sensitive.)

17.5 Two samples, known variances, Hy : j1; = o

Let there be given a sample x1, ..., x, from a normal distribution with unknown expected value
1 and known variance o2. Let there in addition be given a sample ¥, . . ., %, from a normal
distribution with unknown expected value ;5 and known variance o3. It is assumed that the two
samples are independent of each other.

We wish to test the null hypothesis

Ho: py = po.

For this purpose, we compute the statistic

T—y
The significance probability is read from the following table where @ is the distribution function
of the standard normal distribution (Table B.3).

Alternative Significance
hypothesis probability
Hy: g > pe D(—u)
Hi: g < po D(u)

Hi: o # peo 2 @(—|ul)

Normally, we reject Hy if the significance probability is smaller than 5%.

Note: In real life, the preconditions of this test are rarely met.
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17.6 Two samples, unknown variances, H : 111 = p» (Fisher-Behrens)

Let the situation be as in section 17.5, but suppose that the variances o and o3 are unknown. The
problem of finding a suitable statistic to test the null hypothesis

Ho: p1 = pe

is called the Fisher-Behrens problem and has no satisfactory solution.
If n,m > 30, one can re-use the test from section 17.5 with the alternative statistic

* T—y
Vst /n+s3/m

where s7 and s3 are the empirical variances of the z’s and y’s, respectively.

17.7 Two samples, unknown expected values, Hy : 02 = o2
Let there be given a sample x1, . . ., x,, from a normal distribution with unknown expected value
1 and unknown variance o%. In addition, let there be given a sample y1, . . ., ¥y, from a normal

distribution with unknown expected value ;> and unknown variance o3. It is assumed that the
two samples are independent of each other.
We wish to test the null hypothesis

Hy: 01 =09.
For this purpose, we compute the statistic

s7  empirical variance of the x’s

s5  empirical variance of the y’s

)
v =maxquv,— o .
v

The significance probability now appears from the following table where Frigpe; is the distribution

Further, put

function of Fisher’s F' distribution with n — 1 degrees of freedom in the numerator and m — 1
degrees of freedom in the denominator (Table B.5).

Alternative Significance
hypothesis probability

H;: o} > o2 1 — Frisher(v)

H, : 0‘% < 0'% 1—F]:isher(1/v)
H1 : J% 75 U% 2. (1 — FFisher(v*))

Normally, Hj is rejected if the significance probability is smaller than 5%.

If Hy is accepted, the common variance o7 = o2 is estimated by the “pooled” variance

o (@ =)+ (i —9)?  (n—1)si+ (m—1)s3

Spool = n+m-—2 n+m—2
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17.8 Two samples, unknown common variance, Hy : 111 = po

Let there be given a sample z1, . .., z, from a normal distribution with unknown expected value
1 and unknown variance o2. In addition, let there be given a sample y1, . . . , ¥, from a normal
distribution with unknown expected value 1> and the same variance o2. It is assumed that the
two samples are independent of each other.

We wish to test the null hypothesis

Ho: p1 = po.
For this purpose, we compute the statistic
Ty

t =
VU/n 41 /m)st

where sgool is the “pooled” variance as given in section 17.7.

The significance probability now appears from the following table where Fsiudent 1S the dis-
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Statistics Tests in the normal distribution

tribution function of Student’s ¢ distribution with n + m — 2 degrees of freedom (Table B.4).

Alternative Significance
hypothesis probability
Hi: o > po 1 — Fstudent ()
Hi: o <pe 1 — Fsudent(—t)

H, : J751 75 15 2. (1 - FStudent(|t|))

Normally, Hy is rejected if the significance probability is smaller than 5%.

17.9 Example (comparison of two expected values)

Suppose we are given seven independent observations from a normally distributed random vari-
able X:
x1:26, 1‘2221, .%‘3:15, x4:7, x5:15, 1‘6228, :L‘7:21

and also four independent observations from a normally distributed random variable Y":
y1:29, y2:31, y3:17, y4:22.

We wish to test the hypothesis
Hy: E(X)=E(Y).

In order to be able to test this, we need to test first whether X and Y have the same variance.
We therefore test the auxiliary hypothesis

Hj : var(X) = var(Y)

against the alternative
H7 : var(X) # var(Y) .

For this purpose, we compute the statistic

as in section 17.7, as well as

1
vF = max{v, } =1.26.
v

Looking up in Table B.5 with 7 — 1 = 6 degrees of freedom in the numerator and 4 — 1 = 3
degrees of freedom in the denominator shows that the significance probability is clearly greater
than 20%, and we may therefore accept the auxiliary hypothesis H.

Now we return to the test of Hy against the alternative hypothesis

H :E(X)#E®Y).
The “pooled” variance is found to be

o 6si+3s3

Spool = — g2 = 48.8.
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The statistic thereby becomes

L T—7 192438

\/(1/7 +1/4)s%  V(/T+1/4)4838 B

Therefore, the significance probability is found to be
2 (1 = Fsudent([t])) =2 (1 = Fspdent(1.31)) = 2 - (1 — 0.90) = 20%

by looking up Student’s ¢ distribution with 7 4 4 — 2 = 9 degrees of freedom in Table B.4.
Consequently, we cannot reject Hg.

18 Analysis of variance (ANOVA)

18.1 Aim and motivation

Analysis of variance, also known as ANOVA, is a clever method of comparing the mean values
from more than two samples. Analysis of variance is a natural extension of the tests in the previous
chapter.

18.2 k samples, unknown common variance, Hy : 1y = -+ =

Let X1,..., X} be k independent, normally distributed random variables, with expected values
{1, - .., iy and common variance 0. From each X, let there be given a sample consisting of n;
observations. Let z; and s? be mean value and empirical variance of the sample from X ;.

We wish to test the null hypothesis

Ho: pn=-- =

against all alternatives. For this purpose, we estimate the common variance o2 in two different
ways.

The variance estimate within the samples is

1
n—k

J

(n; — 1)5? .
1

k
2=

The variance estimate between the samples is

k
1 _
S?W: 1 an(xj—a:)Q.

s% estimates o2 regardless of whether Hy is true or not. s3, only estimates o2 correctly if Hy is
true. If Hy is false, then s3, estimates too high.
Now consider the statistic
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The significance probability is
1- FFisher(U)

where Frisher 1S the distribution function of Fisher’s F' distribution with k£ — 1 degrees of freedom
in the numerator and n — k degrees of freedom in the denominator (Table B.5).

18.3 Two examples (comparison of mean values from three samples)
Let three samples be given:

sample 1: 29, 28, 29, 21, 28, 22, 22, 29, 26, 26
sample 2: 22, 21, 18, 28, 23, 25, 25, 28, 23, 26
sample 3: 24, 23, 26, 20, 33, 23, 26, 24, 27, 22

It is assumed that the samples originate from independent normal distributions with common
variance. Let u; be the expected value of the ¢’th normal distribution. We wish to test the null
hypothesis

Ho: p1=p2=ps.

(As a matter of fact, all the observations originate from a normal distribution with expected value
25 and variance 10, so the test shouldn’t lead to a rejection of Hy.) We thus have k£ = 3 samples
each consisting of n; = 10 observations, a total of n = 30 observations. A computation gives the
following variance estimate within the samples:

57 = 10.91
and the following variance estimate between the samples:
5%, = 11.10

(Since we know that Hy is true, both s% and 5?\/1 should estimate o2 = 10 well, which they also
indeed do.) Now we compute the statistic:

s3, 1110 102
v=—H5 =——=102 .
s 10.91
Looking up in Table B.5 under k¥ — 1 = 2 degrees of freedom in the numerator and n — k = 27
degrees of freedom in the denominator shows that the significance probability is more than 10%.
The null hypothesis Hy cannot be rejected.

Somewhat more carefully, the computations can be summed up in a table as follows:
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Sample number 1 2 3
29 22 24
28 21 23
29 18 26
21 28 20
28 23 33
22 25 23
22 25 26
29 28 24
26 23 27
26 26 22
Mean value 7; 26.0 23.9 24.8
Empirical variance s? 10.22 9.88 12.62
r=24.9 (grand mean value)
s2 = (s + 83+ 3)/3 =10.91 (variance within samples)
s2, =55 (z; —x)? =11.10 (variance between samples)
v=s3/s7 =1.02 (statistic)
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Statistics The chi-squared test (or x? test)

If we add 5 to all the observations in sample 3, we get the following table instead:

Sample number 1 2 3
29 22 29
28 21 28
29 18 31
21 28 25
28 23 38
22 25 28
22 25 31
29 28 29
26 23 32
26 26 27
Mean value 7 ; 26.0 239 29.8
Empirical variance s? 10.22 9.88 12.62
T =26.6 (grand mean value)
s7 = (s% + s3 +s3)/3 =10.91 (variance within samples)
s2, =53 (7, — )% = 89.43 (variance between samples)
v = s3,/s7 = 8.20 (statistic)

Note how the variance within the samples doesn’t change, whereas the variance between the
samples is now far too large. Thus, the statistic v = 8.20 also becomes large and the significance
probability is seen in Table B.5 to be less than 1%. Therefore, we reject the null hypothesis Hy of
equal expected values (which was also to be expected, since Hy is now manifestly false).

19 The chi-squared test (or Y test)

19.1 2 test for equality of distribution

The reason why the 2 distribution is so important is that it can be used to test whether a given
set of observations comes from a certain distribution. In the following sections, we shall see many
examples of this. The test, which is also called Pearson’s x? test or x? test for goodness of fit, is
carried out as follows:

1. First, divide the observations into categories. Let us denote the number of categories by k and
the number of observations in the ¢’th category by O;. The total number of observations is thus
n=01+ -+ O.

2. Formulate a null hypothesis Hy. This null hypothesis must imply what the probability p; is that
an observation belongs to the ¢’th category.
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3. Compute the statistic
k 2
2 _ (00— Ey)

As mentioned, O; is the observed number in the i’th category. Further, F; is the expected number
in the 7’th category (expected according to the null hypothesis, that is): F; = np;. Incidentally,
the statistic y = +/x?2 is sometimes called the discrepancy.

4. Find the significance probability
P=1-F(x%

where ' = F) 2 is the distribution function of the x? distribution with df degrees of freedom
(look up in Table B.3). Hy is rejected if P is smaller than 5% (or whatever significance level one
chooses). The number of degrees of freedom is normally df = k —1, i.e. one less than the number
of categories. If, however, one uses the observations to estimate the probability parameters p; of
the null hypothesis, df becomes smaller.

Remember: Each estimated parameter costs one degree of freedom.

Note: It is logical to reject Hy if x? is large, because this implies that the difference between the
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Statistics The chi-squared test (or x? test)

observed and the expected numbers is large.

19.2 The assumption of normal distribution

Since the x? test rests upon a normal approximation, it only applies provided there are not too few
observations.

Remember: The \? test applies if the expected number E; is at least five in each category. If,
however, there are more than five categories, an expected number of at least three in each category
suffices.

19.3 Standardized residuals

If the null hypothesis regarding equality of distribution is rejected by a x? test, this was because
some of the observed numbers deviated widely from the expected numbers. It is then interesting
to investigate exactly which observed numbers are extreme. For this purpose, we compute the
standardized residuals

Oi —np; Oi — E;

" Vnpi(1 = p;) N VEi(1—p;)

for each category. If the null hypothesis were true, each r; would be normally distributed with

expected value p = 0 and standard deviation o = 1. Therefore:

Remember: Standardized residuals numerically greater than 2 are signs of an extreme observed
number.

It can very well happen that standardized residuals numerically greater than 2 occur even though
the %2 test does not lead to rejection of the null hypothesis. This does not mean that the null hy-
pothesis should be rejected after all. In particular when one has a large number of categories, it
will not be unusual to find some large residuals.

Warning: Only compute the standardized residuals if the null hypothesis has been rejected by a

X? test.

19.4 Example (women with five children)

EXERCISE. A hospital has registered the sex of the children of 1045 women who each have five
children. Result:
O;
5 girls 58
4 girls + 1 boy 149
3 girls + 2 boys 305
2 girls + 3 boys 303
1 girl + 4 boys 162
5 boys 45
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Test the hypothesis Hy that, at every birth, the probability of a boy is the same as the probability

of a girl.

SOLUTION. If Hy is true, the above table consists of 1045 observations from a Bin(5, 1/2) distri-
bution. The point probabilities in a Bin(5, 1/2) distribution are

The expected numbers F; = 1045 - p; then become

The statistic is computed:

2

X_

pi

5 girls 0.0313
4 girls+ 1 boy  0.1563
3 girls + 2 boys  0.3125
2 girls + 3 boys  0.3125
1 girl + 4 boys  0.1563
5 boys 0.0313
E;

5 girls 32.7

4 girls + 1 boy  163.3
3 girls + 2 boys  326.6

2 girls + 3 boys  326.6

1 girl + 4 boys  163.3

5 boys 32.7

(58 —32.7)% (149 —163.3)> (305 — 326.6)>
32.7 163.3 326.6
(303 — 326.6)% (162 — 163.3)% (45 — 32.7)2
326.6 163.3 32.7

= 28.6.

Since the observations are divided into six categories, we compare the statistic with the x? distri-

bution with df = 6 — 1 = 5 degrees of freedom. Table B.3 shows that the significance probability

is well below 0.5%. We can therefore with great confidence reject the hypothesis that the boy-girl
ratio is Bin(5, 1/2) distributed.
Let us finally compute the standardized residuals:

LK
5 girls 4.5
4 girls+ 1 boy -1.2
3 girls + 2 boys -1.4
2 girls + 3 boys -1.6
1 girl + 4 boys 0.1
5 boys 2.2

We note that it is the numbers of women with five children of the same sex which are extreme and

make the statistic large.
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19.5 Example (election)

EXERCISE. At the election for the Danish parliament in February 2005, votes were distributed
among the parties as follows (as percentages):

A B C F 0] \" @ others
25.8 92 103 6.0 133 29.0 34 3.0

In August 2008, an opinion poll was carried out in which 1000 randomly chosen persons were
asked which party they would vote for now. The result was:

A B C F O V @ others
242 89 98 68 141 294 43 25

Has the popularity of the different parties changed since the election?

SOLUTION. We test the null hypothesis Hy that the result of the opinion poll is an observation
from a multinomial distribution with k£ = 8 categories and probability parameters p; as given in
the table above. The expected observations (given the null hypothesis) are:

A B C F O V @ others
258 92 103 60 133 290 34 30
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Now we compute the statistic y2:

8 2 2 2
, (0 — E)? (242 — 258) (25 — 30)
_ _ ... — ) _6.15.
X Z E, T D

=1

By looking up in Table B.3 under the x? distribution with df = 8 — 1 = 7 degrees of freedom, it
is only seen that the significance probability is below 50%. Thus, we have no statistical evidence
to conclude that the popularity of the parties has changed.
Let us ignore the warning in section 19.3 and compute the standardized residuals. For category
A, for example, we find
242 — 1000 - 0.258

- —_1.16.
V1000 - 0.258 - 0.742

r

Altogether we get

A B C F 0] \Y @  others
-1.16 -033 -0.52 1.06 0.74 028 157 -0.93

Not surprisingly, all standardized residuals are numerically smaller than 2.

19.6 Example (deaths in the Prussian cavalry)

In the period 1875-1894 the number of deaths caused by horse kicks was registered in 10 of the
regiments of the Prussian cavalry. Of the total of 200 “regiment-years”, there were 109 years with
no deaths, 65 years with one death, 22 years with two deaths, three years with three deaths, and
one year with four deaths. We wish to investigate whether these numbers come from a Poisson
distribution Pois(\).

In order to get expected numbers greater than five (or at least to come close to that), we group
the years with three and four deaths into a single category and thus obtain the following observed
numbers O; of years with 4 deaths:

i O
0 109
1 65
2 22
>3 4

The intensity ) is estimated as A = 122 /200 = 0.61, since there were a total of 122 deaths during
the 200 regiment-years. The point probabilities of a Pois(0.61) distribution are

i Di
0 0.543
1 0.331
2 0.101
>3 0.024
68
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The expected numbers thus become

l E;
0 108.7
1 66.3
2 20.2
>3 48

The reader should let himself be impressed by the striking correspondence between expected and
observed numbers. It is evidently superfluous to carry the analysis any further, but let us compute
the statistic anyway:

5 (109 —108.7)2 (65—66.3)> (22 —20.2)> (4 —4.8)

— :03.
X 1087 663 202 T 48

Since there are four categories and we have estimated one parameter using the data, the statistic
should be compared with the x? distribution with df = 4 — 1 — 1 = 2 degrees of freedom. As
expected, Table B.3 shows a significance probability well above 50%.

Incidentally, the example comes from Ladislaus von Bortkiewicz’s 1898 book Das Gesetz der
kleinen Zahlen.
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Statistics Contingency tables

20 Contingency tables

20.1 Definition, method

Suppose that a number of observations are given and that the observations are divided into cate-
gories according to two different criteria. The number of observations in each category can then
be displayed in a contingency table. The purpose of the test presented here is to test whether there
is independence between the two criteria used to categorize the observations.

METHOD. Let there be given an r X s table, i.e. a table with r rows and s columns:

ail a2 N .. A1s
a1 a2 PN e a9s
Aprl ar2 v e Qprs

It has row sums R; = Y °_. a;;, column sums S; = Y '_. a;;, and total sum
Jj=1"1 J =11
N = E Qij -
i,j

These are the observed numbers O. The row probabilities are estimated as

. R;
Di N y
and the column probabilities as
.S
Dj = N
If there is independence between rows and columns, the cell probabilities can be estimated as
. R R;S;
Pij = PiPj = N
We can thus compute the expected numbers E':
R151 R1S2 R Ss
N 5 .. . 5
Ry Sy R2Sy RoSs
2 % .. .. 237
R.S) R.So R.Ss
N N N
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since the expected number in the (4, j)’th cell is
E = Npy; = R;S;/N .

Now we compute the statistic

2\~ (0-E)?  (a; — RiS;/N)?
X = Z E B Z R;Sj/N
where the summation is carried out over each cell of the table. If the independence hypothesis
holds true and the expected number is at least 5 in each cell, then the statistic is x? distributed
with

df =(r—1)(s—1)

degrees of freedom.

Important! If the data are given as percentages, they must be expressed as absolute numbers
before insertion into the contingency table.

20.2 Standardized residuals

If the independence hypothesis is rejected by a x? test, one might, as in section 19.3, be interest-
ed in determining which cells contain observed numbers deviating extremely from the expected
numbers. The standardized residuals are computed as

Oij — RZS]/’I’L
V (RiS;/m) (1= Ri/m) (1~ S;/n)

If the independence hypothesis were true, each r;; would be normally distributed with expected

Tij =

value 1 = 0 and standard deviation ¢ = 1. Standardized residuals numerically greater than 2 are
therefore signs of an extreme observed number.

20.3 Example (students’ political orientation)

EXERCISE. At three Danish universities, 488 students were asked about their faculty and which
party they would vote for if there were to be an election tomorrow. The result (in simplified form)

was:
A B C F O V 0| R

Humanities | 37 48 15 26 4 17 10| 157
Natural Sci. | 32 38 19 18 7 51 2 | 167
Social Sci. 32 24 15 7 12 69 5 | 164
S; 101 110 49 51 23 137 17 | 488

Investigate whether there is independence between the students’ political orientation and their
faculty.
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SOLUTION. We are dealing with a 3 x 7 table and perform a x? test for independence. First, the

expected numbers
E— R;S j
488
are computed and presented in a table:

A B C F O \% @
Humanities | 32.5 354 158 164 74 441 55
Natural Sci. | 34.6 376 168 175 79 469 58
Social Sci. | 339 37.0 165 17.1 7.7 460 5.7

Now the statistic

2\~ (0-E)?
X = Z E
can be computed, since the observed numbers O are the numbers in the first table:
5 (37—325)2 (5 —5.7)2
="+ -+ ——=0609.
X 325 T 57

The statistic is to be compared with a x? distribution with df = (3 — 1)(7 — 1) = 12 degrees of
freedom. Table B.3 shows that the significance probability is well below 0.1%, and we therefore
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confidently reject the independence hypothesis.

Let us now compute the standardized residuals to see in which cells the observed numbers are
extreme. We use the formula for r;; in section 20.2 and get

A B C F (@) \" (0]
Humanities | 1.1 29 02 30 -16 -58 24
Natural Sci. | -0.6 0.1 07 02 -04 09 =20
Social Sci. | 0.5 -3.0 -05 -32 19 49 -04

We find that there are extreme observations in many cells.

20.4 2 test for 2 x 2 tables

A contingency table with two rows and two columns is called a 2x2 table. Let us write the

alb
cld
The statistic thus becomes

> _ <ad—bc>2(1+1+1+1>
X N Ein Bz Ea Ex
where N = a+b+c+d is the total number of observations, and F;; is the expected number in the

ij°th cell. The statistic x? is to be compared with the y? distribution with df = (2—1)(2—1) = 1
degree of freedom.

observed numbers as follows:

If we wish to perform a one-sided test of the independence hypothesis, the statistic

<ad — bc> ( 1 N 1 n 1 N 1 )
u = B — _— _ _
N Eun FEio Eor Eax

is used instead. Under the independence hypothesis, © will be standard normally distributed.

20.5 Fisher’s exact test for 2 x 2 tables

Given a 2 x 2 table, nothing stands in the way of using the x? test, but there is a better test in this
situation called Fisher’s exact test. Fisher’s exact test does not use any normal approximation,
and may therefore still be applied when the number of expected observations in one or more of
the cells is smaller than five.

METHOD. Let there be given a 22 table:

alb
cld

with row sums R; = a+b and Ry = ¢+ d and column sums S1 = a+ cand Sy = b+ d and total
sum N = Ry + Ry = 51+ S2 = a + b+ ¢+ d. We test the independence hypothesis Hy against
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the alternative hypothesis H; that the “diagonal probabilities” p1; and poy are greater than what
they would have been had there been independence. (This situation can always be arranged by
switching the rows if necessary.) The conditional probability of obtaining exactly the 2x?2 table
above, given that the row sums are Ry and Ro, and that the column sums are Sy and So, is
P Ryl Rp! 511.5)!
conditional T TN 1Bl ¢l dl
The significance probability in Fisher’s exact test is the sum of Popqitional taken on all 2 x?2 tables
with the same row and column sums as in the given table, and which are at least as extreme as the
given table:
min{b,c}
Poier = Z . Ry! RQ.! 51159 !. .
—~ N! (a+)(b—a)(c—1i)(d+q)!

The independence hypothesis Hy is rejected if Pgigper is smaller than 5% (or whatever signifi-
cance level one has chosen).

ADDENDUM: If a two-sided test is performed, i.e. if one does not test against any specific alter-
native hypothesis, the significance probability becomes 2 - Prigher- It is then necessary that the
2x2 table is written in such a way that the observed numbers in the diagonal are greater than the
expected numbers (this can always be obtained by switching the rows if necessary).

20.6 Example (Fisher’s exact test)

In a medical experiment concerning alternative treatments, ten patients are randomly divided into
two groups with five patients in each. The patients in the first group receive acupuncture, while
the patients in the other group receive no treatment. It is then seen which patients are fit or ill at
the end of the experiment. The result can be presented in a 2 x 2 table:

| fit il
acupuncture | 4 1

no treatment | 2 3

The significance probability in Fisher’s exact test is computed as

! 51516141

Hisher = zz; T [ R (o R NG TR

With such a large significance probability, there is no evidence that acupuncture had any effect.

21 Distribution-free tests

In all tests considered so far, we have known something about the distribution from which the
given samples originated. We knew, for example, that the distribution was a normal distribution
even though we didn’t know the expected value or the standard deviation.

Sometimes, though, one knows nothing at all about the underlying distribution. It then be-
comes necessary to use a distribution-free test (also known as a non-parametric test). The two
examples considered in this chapter are due to Frank Wilcoxon (1892-1965).
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21.1 Wilcoxon’s test for one set of observations

Let there be given n independent observations dy, .. ., d, from an unknown distribution. We test
the null hypothesis

Hy: The unknown distribution is symmetric around O.

Each observation d; is given a rank which is one of the numbers 1,2, ...,n. The observation
with the smallest numerical value is assigned rank 1, the observation with the second smallest
numerical value is assigned rank 2, etc. Now define the statistics

t4 = > (ranks corresponding to positive d;),
t_ = ) (ranks corresponding to negative d;).

(One can check at this point whether ¢ + t_ = n(n + 1)/2; if not, one has added the numbers
incorrectly.) If Hg holds true, then ¢ and ¢_ should be more or less equal. When to reject Hg
depends on which alternative hypothesis is tested against.

If we test Hy against the alternative hypothesis
H,: The unknown distribution primarily gives positive observations,

then Hj is rejected if £_ is extremely small. Choose a significance level o and consult Table B.8

- |
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under n and «. If £_ is smaller than or equal to the table value, Hy is rejected. If £_ is greater than
the table value, Hy is accepted.

If we test H against the alternative hypothesis
H,: The unknown distribution primarily gives negative observations,

then Hyj is rejected if ¢ is extremely small. Choose a significance level « and consult Table B.8
under n and «. If £ is smaller than or equal to the table value, Hy is rejected. If £ is greater than
the table value, Hy is accepted.

If we don’t test Hy against any particular alternative hypothesis, the null hypothesis is rejected
if the minimum ¢ := min{¢,¢_} is extremely small. Choose a significance level « and consult
Table B.8 under n and «/2 (if, for example, we choose the significance level & = 5%, then we
look up in the table under n and 0.025). If ¢ is smaller than or equal to the table value, we reject
Hy. If ¢ is greater than the table value, we accept Hp.

The above test applies in particular when two sets of observations x1,...,z, and y1,...,Yn
are given and d; is the difference between the “before values” x; and the “after values” y;, i.e.
d; = x; — y;. If there are only random, unsystematic differences between the before and after
values, it follows that the d;’s are distributed symmetrically around O.

21.2 Example

An experiment involving ten patients is carried out to determine whether physical exercise lowers
blood pressure. At the beginning of the experiment, the patients’ blood pressures are measured.
These observations are denoted z1,...,z19. After a month of exercise, the blood pressures are
measured again. These observations are denoted y1, . . ., y10. We now test the null hypothesis

Hy: Physical exercise has no influence on blood pressure. The ten differences d; = x; — y; are
therefore distributed symmetrically around 0,

against the alternative hypothesis

H: Physical exercise causes the blood pressure to decrease. The ten differences d; are therefore
primarily positive.

We compute the ranks and ¢4 and ¢_:

Person 1 2 3 4 5 6 7 8 9 10
Before x; 140 125 110 130 170 165 135 140 155 145
After y; 137 137 102 104 172 125 140 110 140 126
Difference d; 3 -12 8 26 -2 40 -5 30 15 19
Rank 2 5 4 8 1 10 3 9 6 7

ty =2+4+6+7+8+9+10 = 46,
t.=1+3+5=09.
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We shall reject Hp if ¢ = 9 is extremely small. Table B.8 with significance level o = 5% shows
that “extremely small” means < 10. Conclusion: The test shows that the null hypothesis Hy must
be rejected against the alternative hypothesis Hy at significance level 5%.

21.3 The normal approximation to Wilcoxon’s test for one set of observations

Table B.8 includes values up to n = 50. If the number of observations is greater, a normal dis-
tribution approximation can be applied. Indeed, if the null hypothesis is true, the statistic ¢ is
approximately normally distributed with expected value

n(n+1)
4

and standard deviation

o \/n(n+ D@n+1)

24
The significance probability is therefore found by comparison of the statistic

t —
P
g

with Table B.2 of the standard normal distribution.

EXAMPLE. Let us use the normal approximation to find the significance probability in the previous
example (even though n here is smaller than 50 and the approximation therefore is not highly
precise). We get = 27.5 and o0 = 9.81. The statistic therefore becomes z = 1.89, which gives
a significance probability of 2.9%. The conclusion is thus the same, namely that H is rejected at
significance level 5%.

21.4 Wilcoxon’s test for two sets of observations

Suppose we have two sets x1,...,x, and y1,..., ¥y, of independent observations. We test the
null hypothesis

Hy: The observations come from the same distribution.

Each of the n + m observations is assigned a rank which is one of the numbers 1,2,...,n 4+ m.
The observation with the smallest numerical value is assigned rank 1, the observation with the
second smallest numerical value is assigned rank 2, etc. Define the statistic

t, = >_(ranks of the z;’s).

Whether Hj, is rejected or not depends on which alternative hypothesis we test against.
If we test Hg against the alternative hypothesis

H,: The x;’s are primarily smaller than the y;’s,

then Hy is rejected if ¢, is extremely small. Look up in Table B.9 under n and m. If ¢, is smaller
than or equal to the table value, then Hy is rejected at significance level o = 5%. If ¢, is greater
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than the table value, then Hy is accepted at significance level o = 5%.

If we test Hy against the alternative hypothesis

H: The x;’s are primarily greater than the y;’s,

then one has to switch the roles of x;’s and y;’s and continue as described above.

If we don’t test Hy against any particular alternative hypothesis, then the null hypothesis is reject-
ed if the minimum

t:=min{ty,n(n+m+1) —t,}

is extremely small. Look up in Table B.9 under n and m. If ¢ is smaller than or equal to the table
value, then Hj is rejected at significance level o = 10%. If ¢ is greater than the table value, then
H, is accepted at significance level 10%.

21.5 The normal approximation to Wilcoxon’s test for two sets of observations

Table B.9 applies for moderate values of n and m. If the number of observations is greater, one
can use a normal distribution approximation. Indeed, if the null hypothesis holds true, the statistic
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t, is approximately normally distributed with expected value
n(n+m+1)
i e—

and standard deviation

\/ nm(n+m+ 1)
o= .
12
The significance probability is then found by comparing the statistic

:tx_luf
g

with Table B.2 of the standard normal distribution.

22 Linear regression

22.1 The model

Suppose we have a sample consisting of n pairs of observations

(xlayl)u (x27y2)7"'7 (fﬂm?/n) .

We propose the model that each y; is an observation from a random variable
Yi = Bo+ bz + E;

where the F;’s are independent normally distributed random variables with expected value 0 and
common variance o2. Thus we can express each y; as

yi = Bo + Brx; + €;

where e; is an observation from F;. We call y; the response variable, x; the declaring variable
and e; the remainder term.

22.2 Estimation of the parameters 3, and (3,

Let  be the mean value of the x;’s and ¢ the mean value of the y;’s. Define the sum of products

of errors as
n

SPEwy =Y (v —Z)(yi — 1)

i=1
and the sum of squares of errors as

n

SSE, =) (v — )

i=1

The parameters 3y and 3; of the regression equation are now estimated as

. SPE,,
'™ SSE,
Bo =9y — bz
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22.3 The distribution of the estimators

If the model’s assumptions are met, the estimator Bo is normally distributed with expected value
o (the estimator thus is unbiased) and variance o?(1/n + z?/SSE,). In other words, it holds

that )
. 2 (1 7
Bo ~ N (5070 (n + SSE. .

Moreover, the estimator Bl is normally distributed with expected value (31 (this estimator is there-

fore unbiased too) and variance o2 /SSE,. In other words, it holds that

~ 0'2
pBr~N (ﬁl’SSEz> .

22.4 Predicted values y; and residuals ¢;
From the estimates BO and 31, the predicted value of y; can be computed for each ¢ as
Ji = fo + 1 -

The i’th residual ¢é; is the difference between the actual value y; and the predicted value 7);:

€ =Y — Vi -

The residual é; is an estimate of the remainder term e;.

22.5 Estimation of the variance o2

We introduce the sum of squares of residuals as

SSR = Zn: &2
=1

The variance o2 of the remainder terms is now estimated as

5  SSR
s4 = .
n—2

This estimator is unbiased (but different from the maximum likelihood estimator).

22.6 Confidence intervals for the parameters 3, and 3,

After estimating the parameters 3y and 3;, we can compute the confidence intervals with confi-
dence level 1 — « around the estimates 3y and (3;. These are

. /1 z2
+t —

A S
o N —

The number ¢;_, o is determined by F'(u;_,/2) = 1 — a//2, where F'is the distribution function

of Student’s ¢ distribution with n — 1 degrees of freedom (see also section 15.8).
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22.7 The determination coefficient R>

In order to investigate how well the model with the estimated parameters describes the actual
observations, we compute the determination coefficient

_ SSE,—SSR

R2
SSE,

R? lies in the interval [0, 1] and measures the part of the variation of the y;’s which the model
describes as a linear function of the z;’s.

Remember: The greater the determination coefficient R? is, the better the model describes the
observations.

22.8 Predictions and prediction intervals

Let there be given a real number zg. The function value

Yo = Bo + Bizo

is then estimated, or predicted, as

do = o + Przo -
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LINKOPING UNIVERSITY, SWEDEN
RANKED AMONG TOP 50 UNIVERSITIES UNDER s0
Interested in Strategy and Management in International

Organisations? Kick-start your career with a master’s degree
from Linképing University, Sweden.

%&; Linkping University

81

Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/liu

Statistics

Linear regression

The confidence interval, or prediction interval, with confidence level 1 — « around the estimate

QO 18

. 1
== tl_a/QS\/l + o +

(zo — Z)?
SSE,

The number #;_, /5 is determined by F'(u1_q/2) = 1 — /2, where F is the distribution function

of Student’s ¢ distribution with n — 2 degrees of freedom (see also section 15.8).

22.9 Overview of formulae

S = i1
T =S;/n
S5z = Z?:l m?

2 = SSE,/(n— 1)

SPry = Z?zl TiYi

SPEyy =371 1(xi — %)(yi — ) = SPuy — SuSy/n
B = SPE,,/SSE,

Go=7- bz

Ji = beo + Pra;

€ =Yi— Ui

SSR =Y, ¢ = SSE, — SPE2,/SSE,

&2 = SSR/(n —2)

R?=1- SSR/SSE,

22.10 Example

The sum of the z;’s

The mean value of the x;’s

The sum of the squares of the x;’s
The sum of the squares of the errors
Empirical variance of the x;’s

The sum of the products

The sum of the products of the errors
The estimate of (31

The estimate of 3,

Predicted value of y;

The 7’th residual

The sum of the squares of the residuals
The estimate o2

The determination coefficient

EXERCISE. It is claimed that the temperature in the Andes Mountains decreases by six degrees per

1000 metres. The following temperatures were measured simultaneously at ten different localities
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in the same region:

Altitude z; | Temperature y;
(metres) | (degrees)

500 | 15

1000 | 14

1500 | 11

2000 | 6

2500 | -1

3000 | 2

3500 | O

4000 | 4

4500 | -8

5000 | -14

We use a linear regression model
Yi = Po + Prxi + €

where the remainder terms e; are independent normally distributed with expected value 0 and the

same (unknown) variance o2.

1) Estimate the parameters 3y and ;.
2) Determine the confidence interval with confidence level 95% for 3.
3) Can the hypothesis Hy : 31 = —0.006 be accepted?

4) To how large degree can the difference of temperature be explained as a linear function of the
altitude?

SOLUTION. First we perform the relevant computations:

Sy = 332, @ = 27500 Sy =302y =21

7 = S;/10 = 2750 j=2S,/10=2.1

88, = 310, 2?2 = 96250000 88, =310 y? = 859

SSE, =SS, — S2/10 = 20625000 SSE, =SS, —5z2/10 = 814.9

SPyy, = 310 ziy; = —68500 SPE,, = SP,, — S:5,/10 = —126250
B = SPE,,/SSE, = —0.0061 Bo=17— 7 =189

SSR = SSE, — SPE},/SSE, =42.1 s*=SSR/8=15.26
R?=1-SSR/SSE, = 0.948

1) It appears directly from the computations that the estimates of 5y and (3 are

Bo=18.9 , B = —0.0061.
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2) Table B.4, under df = 10 — 1 = 9 degrees of freedom, shows that g 975 = 2.26 (see also
section 15.8). The confidence interval around Bl thus becomes

V5.26 Vv5.26
—0.0061 — 2.26——— , —0.0061 4 2.26————| = [-0.0072, —0.0050] .
V20625000 V20625000
3) The hypothesis Hy : 51 = —0.006 is accepted, since this value lies within the confidence
interval.

4) The part of the temperature difference describable as a linear function of the altitude is nothing
other than the determination coefficient

R? =94.8% .

The fact that R? is large (close to 100%) shows that the actual temperatures are quite close to those
predicted. This also appears from the figure below, which shows that the actual temperatures are

very close to the regression line:
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Overview of discrete distributions

A Overview of discrete distributions

Distribution | Description | Values Point proba- Mean Variance
bilities value

Binomial Number of | k=0,1,....,n Z pkgnk np npq
distribution | successes in
Bin(n, p) n tries
Poisson Number of | k=0,1, ),‘ﬁ—?e_k A A
distribution | spontaneous
Pois(A) events in a

time interval
Geometrical | Number k=01, q"p q/p q/p?
distribution | of fail-
Geo(p) ures before

success

r s
Hyper- Number of | k& = 0,.. <k>(]<;_k> nr/N ZL\?;;E]]\\;:?))
geometrical | red balls | ..., min{n,r} (n)
distribution | among n
HG(n,r, N) | balls
Negative Number k=0,1, ( " Zﬁ; ! ) p" g ng/p nq/p*
binomial of failures
distribution | before the
NB(n,p) n’th success
Multi- Number (k1, ... k) ( " ) Ik _ —
, ki -k,

nomial- of  sample | where
distribution | points  of | Y k; =n
Mult(n,...) | each type
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B Tables

B.1 How to read the tables

Table B.2 gives values of the distribution function

®(u) = /; \/127 exp (—;ﬂ) dt

of the standard normal distribution.

Table B.3 gives values of = for which the distribution function F' = F)2 of the x? distribution
with df degrees of freedom takes the values F'(x) = 0.500, F'(x) = 0.600, etc.

Table B.4 gives values of x for which the distribution function F' = Fi,dent Of Student’s ¢ distri-
bution with df degrees of freedom takes the values F'(z) = 0.600, F'(x) = 0.700, etc.

Table B.5, Table B.6 and Table B.7 give values of x for which the distribution function F' =
Frigher of Fisher’s F' distribution with n degrees of freedom in the numerator (top line) and
m degrees of freedom in the denominator (leftmost column) takes the values F'(z) = 0.90,
F(z) =0.95,and F(x) = 0.99, respectively.
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Table B.8 and Table B.9 give critical values for Wilcoxon’s tests for one and two sets of observa-
tions. See Chapter 21 for further details.
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Tables

B.2 The standard normal distribution

u ®(u) P(—u) u ®(u) P(—u) u P(u) P(—u)
0.00 0.5000 0.5000 0.36 0.6406 0.3594 0.72 0.7642 0.2358
0.01 0.5040 0.4960 0.37 0.6443 0.3557 0.73 0.7673 0.2327
0.02 0.5080 0.4920 0.38 0.6480 0.3520 0.74 0.7704 0.2296
0.03 0.5120 0.4880 0.39 0.6517 0.3483 0.75 0.7734 0.2266
0.04 0.5160 0.4840 0.40 0.6554 0.3446 0.76 0.7764 0.2236
0.05 0.5199 0.4801 0.41 0.6591 0.3409 0.77 0.7794 0.2206
0.06 0.5239 0.4761 0.42 0.6628 0.3372 0.78 0.7823 0.2177
0.07 0.5279 0.4721 0.43 0.6664 0.3336 0.79 0.7852 0.2148
0.08 0.5319 0.4681 0.44 0.6700 0.3300 0.80 0.7881 0.2119
0.09 0.5359 0.4641 0.45 0.6736 0.3264 0.81 0.7910 0.2090
0.10 0.5398 0.4602 0.46 0.6772 0.3228 0.82 0.7939 0.2061
0.11 0.5438 0.4562 0.47 0.6808 0.3192 0.83 0.7967 0.2033
0.12 0.5478 0.4522 0.48 0.6844 0.3156 0.84 0.7995 0.2005
0.13 0.5517 0.4483 0.49 0.6879 0.3121 0.85 0.8023 0.1977
0.14 0.5557 0.4443 0.50 0.6915 0.3085 0.86 0.8051 0.1949
0.15 0.5596 0.4404 0.51 0.6950 0.3050 0.87 0.8078 0.1922
0.16 0.5636 0.4364 0.52 0.6985 0.3015 0.88 0.8106 0.1894
0.17 0.5675 0.4325 0.53 0.7019 0.2981 0.89 0.8133 0.1867
0.18 0.5714 0.4286 0.54 0.7054 0.2946 0.90 0.8159 0.1841
0.19 0.5753 0.4247 0.55 0.7088 0.2912 0.91 0.8186 0.1814
0.20 0.5793 0.4207 0.56 0.7123 0.2877 0.92 0.8212 0.1788
0.21 0.5832 0.4168 0.57 0.7157 0.2843 0.93 0.8238 0.1762
0.22 0.5871 0.4129 0.58 0.7190 0.2810 0.94 0.8264 0.1736
0.23 0.5910 0.4090 0.59 0.7224 0.2776 0.95 0.8289 0.1711
0.24 0.5948 0.4052 0.60 0.7257 0.2743 0.96 0.8315 0.1685
0.25 0.5987 0.4013 0.61 0.7291 0.2709 0.97 0.8340 0.1660
0.26 0.6026 0.3974 0.62 0.7324 0.2676 0.98 0.8365 0.1635
0.27 0.6064 0.3936 0.63 0.7357 0.2643 0.99 0.8389 0.1611
0.28 0.6103 0.3897 0.64 0.7389 0.2611 1.00 0.8413 0.1587
0.29 0.6141 0.3859 0.65 0.7422 0.2578 1.01 0.8438 0.1562
0.30 0.6179 0.3821 0.66 0.7454 0.2546 1.02 0.8461 0.1539
0.31 0.6217 0.3783 0.67 0.7486 0.2514 1.03 0.8485 0.1515
0.32 0.6255 0.3745 0.68 0.7517 0.2483 1.04 0.8508 0.1492
0.33 0.6293 0.3707 0.69 0.7549 0.2451 1.05 0.8531 0.1469
0.34 0.6331 0.3669 0.70 0.7580 0.2420 1.06 0.8554 0.1446
0.35 0.6368 0.3632 0.71 0.7611 0.2389 1.07 0.8577 0.1423
89

Download free eBooks at bookboon.com



Statistics Tables
u ®(u) P(—u) u P(u) P(—u) u ®(u) P(—u)
1.08 0.8599 0.1401 1.45 0.9265 0.0735 1.82 0.9656 0.0344
1.09 0.8621 0.1379 1.46 0.9279 0.0721 1.83 0.9664 0.0336
1.10 0.8643 0.1357 1.47 0.9292 0.0708 1.84 0.9671 0.0329
1.11 0.8665 0.1335 1.48 0.9306 0.0694 1.85 0.9678 0.0322
1.12 0.8686 0.1314 1.49 0.9319 0.0681 1.86 0.9686 0.0314
1.13 0.8708 0.1292 1.50 0.9332 0.0668 1.87 0.9693 0.0307
1.14 0.8729 0.1271 1.51 0.9345 0.0655 1.88 0.9699 0.0301
1.15 0.8749 0.1251 1.52  0.9357 0.0643 1.89 0.9706 0.0294
1.16 0.8770 0.1230 1.53 0.9370 0.0630 1.90 0.9713 0.0287
1.17 0.8790 0.1210 1.54 0.9382 0.0618 1.91 0.9719 0.0281
1.18 0.8810 0.1190 1.55 0.9394 0.0606 1.92 0.9726 0.0274
1.19 0.8830 0.1170 1.56 0.9406 0.0594 1.93 0.9732 0.0268
1.20 0.8849 0.1151 1.57 0.9418 0.0582 1.94 0.9738 0.0262
1.21 0.8869 0.1131 1.58 0.9429 0.0571 1.95 0.9744 0.0256
1.22 0.8888 0.1112 1.59 0.9441 0.0559 1.96 0.9750 0.0250
1.23 0.8907 0.1093 1.60 0.9452 0.0548 1.97 0.9756 0.0244
1.24 0.8925 0.1075 1.61 0.9463 0.0537 1.98 0.9761 0.0239
1.25 0.8944 0.1056 1.62 0.9474 0.0526 1.99 0.9767 0.0233
1.26 0.8962 0.1038 1.63 0.9484 0.0516 2.00 0.9772 0.0228
1.27 0.8980 0.1020 1.64 0.9495 0.0505 2.01 0.9778 0.0222
1.28 0.8997 0.1003 1.65 0.9505 0.0495 2.02 0.9783 0.0217
1.29 0.9015 0.0985 1.66 0.9515 0.0485 2.03 0.9788 0.0212
1.30 0.9032 0.0968 1.67 0.9525 0.0475 2.04 0.9793 0.0207
1.31 0.9049 0.0951 1.68 0.9535 0.0465 2.056 0.9798 0.0202
1.32 0.9066 0.0934 1.69 0.9545 0.0455 2.06 0.9803 0.0197
1.33 0.9082 0.0918 1.70 0.9554 0.0446 2.07 0.9808 0.0192
1.34 0.9099 0.0901 1.71 0.9564 0.0436 2.08 0.9812 0.0188
1.35 09115 0.0885 1.72 0.9573 0.0427 2.09 0.9817 0.0183
1.36 0.9131 0.0869 1.73 0.9582 0.0418 2.10 0.9821 0.0179
1.37 0.9147 0.0853 1.74 0.9591 0.0409 2.11 0.9826 0.0174
1.38 0.9162 0.0838 1.75 0.9599 0.0401 2.12 0.9830 0.0170
1.39 0.9177 0.0823 1.76  0.9608 0.0392 2.13 0.9834 0.0166
1.40 0.9192 0.0808 1.77 0.9616 0.0384 2.14 0.9838 0.0162
1.41 0.9207 0.0793 1.78 0.9625 0.0375 2.15 0.9842 0.0158
1.42 0.9222 0.0778 1.79 0.9633 0.0367 2.16 0.9846 0.0154
1.43 0.9236 0.0764 1.80 0.9641 0.0359 2.17 0.9850 0.0150
1.44 0.9251 0.0749 1.81 0.9649 0.0351 2.18 0.9854 0.0146
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u ®(u) P(—u) u P(u) P(—u) u ®(u) P(—u)
2.19 0.9857 0.0143 2.56 0.9948 0.0052 2.93 0.9983 0.0017
2.20 0.9861 0.0139 2.57 0.9949 0.0051 2.94 0.9984 0.0016
2.21 0.9864 0.0136 2.58 0.9951 0.0049 2.95 0.9984 0.0016
2.22 0.9868 0.0132 2.59 0.9952 0.0048 2.96 0.9985 0.0015
2.23 0.9871 0.0129 2.60 0.9953 0.0047 2.97 0.9985 0.0015
2.24 0.9875 0.0125 2.61 0.9955 0.0045 2.98 0.9986 0.0014
2.25 0.9878 0.0122 2.62 0.9956 0.0044 2.99 0.9986 0.0014
2.26 0.9881 0.0119 2.63 0.9957 0.0043 3.00 0.9987 0.0013
2.27 0.9884 0.0116 2.64 0.9959 0.0041 3.10 0.9990 0.0010
2.28 0.9887 0.0113 2.65 0.9960 0.0040 3.20 0.9993 0.0007
2.29 0.9890 0.0110 2.66 0.9961 0.0039 3.30 0.9995 0.0005
2.30 0.9893 0.0107 2.67 0.9962 0.0038 3.40 0.9997 0.0003
2.31 0.9896 0.0104 2.68 0.9963 0.0037 3.50 0.9998 0.0002
2.32 0.9898 0.0102 2.69 0.9964 0.0036 3.60 0.9998 0.0002
2.33 0.9901 0.0099 2.70 0.9965 0.0035 3.70 0.9999 0.0001
2.34 0.9904 0.0096 2.71 0.9966 0.0034 3.80 0.9999 0.0001
2.35 0.9906 0.0094 2.72 0.9967 0.0033 3.90 1.0000 0.0000
2.36 0.9909 0.0091 2.73 0.9968 0.0032 4.00 1.0000 0.0000
2.37 0.9911 0.0089 2.74 0.9969 0.0031
2.38 0.9913 0.0087 2.75 0.9970 0.0030
2.39 0.9916 0.0084 2.76 0.9971 0.0029
2.40 0.9918 0.0082 2.77 0.9972 0.0028
2.41 0.9920 0.0080 2.78 0.9973 0.0027
2.42 0.9922 0.0078 2.79 0.9974 0.0026
2.43 0.9925 0.0075 2.80 0.9974 0.0026
2.44 0.9927 0.0073 2.81 0.9975 0.0025
2.45 0.9929 0.0071 2.82 0.9976 0.0024
2.46 0.9931 0.0069 2.83 0.9977 0.0023
2.47 0.9932 0.0068 2.84 0.9977 0.0023
2.48 0.9934 0.0066 2.85 0.9978 0.0022
2.49 0.9936 0.0064 2.86 0.9979 0.0021
2.50 0.9938 0.0062 2.87 0.9979 0.0021
2.51 0.9940 0.0060 2.88 0.9980 0.0020
2.52 0.9941 0.0059 2.89 0.9981 0.0019
2.53 0.9943 0.0057 2.90 0.9981 0.0019
2.54 0.9945 0.0055 2.91 0.9982 0.0018
2.55 0.9946 0.0054 2.92 0.9982 0.0018
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B.3 The x? distribution (values = with F>(z) = 0.500 etc.)

Q.
=
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0.45

1.39

2.37

3.36

4.35

5.35

6.35

7.34

8.34

9.34
10.34
11.34
12.34
13.34
14.34
15.34
16.34
17.34
18.34
19.34
20.34
21.34
22.34
23.34
24.34
25.34
26.34
27.34
28.34
29.34
30.34
31.34
32.34
33.34
34.34

0.71

1.83

2.95

4.04

5.13

6.21

7.28

8.35

9.41
10.47
11.53
12.58
13.64
14.69
15.73
16.78
17.82
18.87
19.91
20.95
21.99
23.03
24.07
25.11
26.14
27.18
28.21
29.25
30.28
31.32
32.35
33.38
34.41
35.44
36.47

1.07

241

3.66

4.88

6.06

7.23

8.38

9.52
10.66
11.78
12.90
14.01
15.12
16.22
17.32
18.42
19.51
20.60
21.69
22.77
23.86
24.94
26.02
27.10
28.17
29.25
30.32
31.39
32.46
33.53
34.60
35.66
36.73
37.80
38.86

1.64

322

4.64

5.99

7.29

8.56

9.80
11.03
12.24
13.44
14.63
15.81
16.98
18.15
19.31
20.47
21.61
22.76
23.90
25.04
26.17
27.30
28.43
29.55
30.68
31.79
3291
34.03
35.14
36.25
37.36
38.47
39.57
40.68
41.78

2.71

4.61

6.25

7.78

9.24
10.64
12.02
13.36
14.68
15.99
17.28
18.55
19.81
21.06
22.31
23.54
24.77
25.99
27.20
28.41
29.62
30.81
32.01
33.20
34.38
35.56
36.74
37.92
39.09
40.26
41.42
42.58
43.75
44.90
46.06

3.84

5.99

7.81

9.49
11.07
12.59
14.07
15.51
16.92
18.31
19.68
21.03
22.36
23.68
25.00
26.30
27.59
28.87
30.14
31.41
32.67
33.92
35.17
36.42
37.65
38.89
40.11
41.34
42.56
43.77
44.99
46.19
47.40
48.60
49.80

5.02

7.38

9.35
11.14
12.83
14.45
16.01
17.53
19.02
20.48
21.92
23.34
24.74
26.12
27.49
28.85
30.19
31.53
32.85
34.17
35.48
36.78
38.08
39.36
40.65
41.92
43.19
44.46
45.72
46.98
48.23
49.48
50.73
51.97
53.20

6.63

9.21
11.34
13.28
15.09
16.81
18.48
20.09
21.67
23.21
24.72
26.22
27.69
29.14
30.58
32.00
33.41
34.81
36.19
37.57
38.93
40.29
41.64
42.98
44.31
45.64
46.96
48.28
49.59
50.89
52.19
53.49
54.78
56.06
57.34

7.88
10.60
12.84
14.86
16.75
18.55
20.28
21.95
23.59
25.19
26.76
28.30
29.82
31.32
32.80
34.27
35.72
37.16
38.58
40.00
41.40
42.80
44.18
45.56
46.93
48.29
49.64
50.99
52.34
53.67
55.00
56.33
57.65
58.96
60.27

10.83
13.82
16.27
18.47
20.52
22.46
24.32
26.12
27.88
29.59
31.26
3291
34.53
36.12
37.70
39.25
40.79
42.31
43.82
45.31
46.80
48.27
49.73
51.18
52.62
54.05
55.48
56.89
58.30
59.70
61.10
62.49
63.87
65.25
66.62
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df 0.500 0.600 0.700 0.800 0.900 0.950 0.975 0.990 0.995 0.999
36 3534 3750 3992 4288 47.21 51.00 5444 5862 61.58 67.99
37 36.34 3853 4098 4398 4836 52.19 55.67 59.89 62.88 69.35
38 37.34 3956 42.05 45.08 49.51 53.38 5690 61.16 64.18 70.70
39 3834 40.59 43.11 46.17 50.66 54.57 58.12 6243 65.48 72.05
40 39.34 41.62 44.16 47.27 51.81 55.76 59.34 63.69 66.77 73.40
41 4034 42.65 4522 4836 5295 5694 60.56 64.95 68.05 74.74
42 4134 43.68 46.28 4946 54.09 58.12 61.78 66.21 69.34  76.08
43 4234 4471 47.34 50.55 5523 59.30 62.99 67.46 70.62 7742
44 4334 4573 48.40 51.64 56.37 6048 6420 68.71 71.89  78.75
45 4434 46.76 4945 5273 57.51 61.66 6541 69.96 73.17 80.08
46 4534 47.79 50.51 53.82 58.64 6283 66.62 7120 7444 81.40
47 46.34 48.81 51.56 5491 59.77 64.00 67.82 7244 75.70 82.72
48 47.34 4984 52.62 5599 6091 65.17 69.02 73.68 76.97 84.04
49 4833 50.87 53.67 57.08 62.04 6634 7022 7492 78.23 85.35
50 49.33 51.89 54.72 58.16 63.17 67.50 7142 76.15 79.49 86.66
51 50.33 5292 5578 59.25 6430 68.67 72.62 77.39 80.75 87.97
52 5133 5394 56.83 6033 6542 69.83 73.81 78.62 82.00 89.27
53 5233 5497 5788 6141 66.55 7099 7500 79.84 83.25 90.57
54 5333 5599 5893 6250 67.67 72.15 76.19 81.07 84.50 91.87
55 5433 57.02 5998 63.58 68.80 73.31 77.38 82.29 85.75 93.17
56 5533 58.04 61.03 64.66 6992 7447 78.57 83.51 86.99 94.46
57 5633 59.06 62.08 6574 71.04 75.62 79.75 84.73 88.24 95.75
58 57.33 60.09 63.13 66.82 72.16 76.78 80.94 85.95 89.48 97.04
59 5833 61.11 64.18 67.89 7328 7793 82.12 87.17 90.72 98.32
60 59.33 62.13 6523 6897 7440 79.08 83.30 88.38 91.95 99.61
61 6033 63.16 6627 70.05 7551 80.23 84.48 89.59 93.19 100.89
62 6133 64.18 67.32 71.13 76.63 81.38 85.65 90.80 9442 102.17
63 6233 6520 6837 7220 77.75 82.53 86.83 92.01 95.65 103.44
64 6333 6623 6942 7328 78.86 83.68 88.00 93.22 96.88 104.72
65 6433 6725 7046 7435 79.97 84.82 89.18 94.42 98.11 105.99
66 6533 6827 71.51 7542 81.09 8596 90.35 95.63 99.33 107.26
67 6633 69.29 7255 76.50 8220 87.11 91.52 96.83 100.55 108.53
68 67.33 70.32 73.60 77.57 83.31 88.25 92.69 98.03 101.78 109.79
69 6833 7134 74.64 78.64 8442 89.39 9386 99.23 103.00 111.06
70 69.33 7236 75.69 79.71 85.53 90.53 95.02 10043 10421 112.32
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B.4 Student’s ¢ distribution (values x with Fg;,qent () = 0.600 etc.)

df 0.600 0.700 0.800 0.900 0.950 0.975 0.990 0.995 0.999
1 032 073 138 3.08 631 1271 31.82 63.66 318.31
2 029 062 106 1.8 292 430 696 992 2233
3 028 058 098 164 235 318 454 584 102
4 027 057 094 153 213 278 375 460 7.17
5 027 056 092 148 202 257 336 403 5.89
6 026 055 091 144 194 245 314 371 521
7 026 055 090 141 18 236 3.00 350 479
8 026 055 08 140 186 231 290 336 4.50
9 026 054 08 138 183 226 282 325 430

10 026 054 088 137 181 223 276 317 4.14

11 026 054 088 136 180 220 272 311 402

12 026 054 087 136 178 218 268 3.05 393

13 026 054 087 135 177 216 265 301 3385

14 026 054 087 135 176 214 262 298 3.79

15 026 054 087 134 175 213 260 295 3.73

16 026 054 086 134 1.75 212 258 292 3.69

17 026 053 086 133 1.74 211 257 290 3.65

18 026 053 08 133 173 210 255 288 3.61

19 026 053 08 133 173 2.09 254 286 3.58

20 026 053 086 133 172 209 253 285 355

21 026 053 086 132 172 208 252 283 353

22 026 053 086 132 172 207 251 282 350

23 026 053 086 132 171 207 250 281 348

24 026 053 086 132 171 206 249 280 347

25 026 053 086 132 171 206 249 279 345

26 026 053 086 131 171 206 248 278 343

27 026 053 086 131 1.70 205 247 277 342

28 026 053 08 131 170 205 247 276 341

29 026 053 08 131 170 2.05 246 2796 3.40

30 026 053 08 131 170 204 246 275 3.39

35 026 053 085 131 169 203 244 272 334

40 026 053 08 130 168 202 242 270 331

50 025 053 08 130 168 201 240 2.68 3.26

100 025 053 085 129 166 198 236 263 3.17
co 025 052 084 128 164 196 233 258  3.09
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B.5 Fisher’s F distribution (values x with Frige () = 0.90)

1 2 3 4 5 6 7 8 9 10
39.86 49.50 53.59 5583 5724 5820 5891 5944 59.86 60.19
8.53 9.00 9.16 924 9.29 9.33 9.35 9.37 9.38 9.39
5.54 546  5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23
454 432 419 4.11 4.05 4.01 3.98 3.95 3.94 3.92
4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30
3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 296 294
3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70
3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 256 254
3.36 3.01 2.81 2.69 2.61 2.55 2.51 247 244 242
10 3.29 292 273 2.61 252 246 241 2.38 2.35 2.32
11 3.23 2.86  2.66 2.54 245 2.39 2.34 230 227 2.25
12 3.18 2.81 2.61 248 2.39 2.33 2.28 224 221 2.19
13 3.14 276 256 243 2.35 2.28 2.23 220 216 2.14
14 3.10 273 2.52 2.39 231 2.24 2.19 2.15 2.12 2.10
15 3.07 270 249 2.36 227 2.21 2.16 212 2.09 2.06
16 3.05 2.67 2.46 2.33 224 218 2.13 2.09 2.06 2.03
17 3.03 264 244 2.31 222 215 210 206  2.03 2.00
18 3.02 262 242 2.29 220 213 2.08 204  2.00 1.98
19 3.01 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96
20 3.00 259 2.38 2.25 2.16  2.09 2.04 2.00 1.96 1.94
21 2.98 2.57 2.36 2.23 2.14 208 2.02 1.98 1.95 1.92
22 2.97 256 235 222 2.13 2.06 2.01 1.97 1.93 1.90
23 2.96 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89
24 2.95 254 233 2.19 210  2.04 1.98 1.94 1.91 1.88
25 2.94 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87
26 2.93 252 231 2.17 2.08 2.01 1.96 1.92 1.88 1.86
27 292 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 1.85
28 292 250 229 2.16 206  2.00 1.94 1.90 1.87 1.84
29 291 250 2.28 2.15 2.06 1.99 1.93 1.89 1.86 1.83
30 290 249 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82
31 290 248 2.27 2.14 2.04 1.97 1.92 1.88 1.84 1.81
32 2.89 2.48 2.26 2.13 2.04 1.97 1.91 1.87 0.84 1.81
33 2.89 247 2.26 2.12 2.03 1.96 1.91 1.86 1.83 1.80
34 2.88 247 2.25 2.12 2.02 1.96 1.90 1.86 1.82 1.79
35 2.88 246 225 2.11 2.02 1.95 1.90 1.85 1.82 1.79

o R QNN AW -
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B.6 Fisher’s F' distribution (values x with Frige () = 0.95)

1 2 3 4 5 6 7 8 9 10
1 16145 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88
2 1851 19.00 19.16 1925 1930 19.33 1935 1937 1938 19.40
3 10.13 9.55 9.28 9.12  9.01 894  8.89 8.85 8.81 8.79
4 771 694 659  6.39 626 616 609 604 600 596
S 661 5.79 541 5.19  5.05 495 488 482 477 474
6
7
8
9

599 514 476 453 439 428 421 415 410 4.06

559 474 435 412 397 3.87 379 373 3.68 3.64

532 446  4.07 384 3.69 358 350 344 339 3.35

512 426  3.86 3.63 3.48 3.37 329 323 3.18 3.14
10 496 410 3.71 3.48 3.33 322 314  3.07 3.02 298
11 484 398 3.59 336 320  3.09 3.01 2.95 290 285
12 475 3.89 3.49 326  3.11 3.00 291 2.85 2.80 275
13 4.67 3.81 341 3.18 3.03 292 283 277 271 2.67
14 460 374 334 3.11 296 285 276 270  2.65 2.60
15 454  3.68 3.29 306 290 279 271 264 259 2.54
16  4.49 3.63 3.24 3.01 2.85 274 266 259 254 249
17 445 3.59 320 296 281 270 261 2.55 2.49 2.45
18 443 3.55 3.16 293 2.77 2.66 258 2.51 246 241
19 441 352 313 290 274  2.63 2.54 248 242 238
20 438 3.49 3.10 287 271 260 251 245 2.39 2.35
21 435 3.47 3.07 2.84  2.68 257 249 242 237 2.32
22 433 344  3.05 282 266 255 246 240 234 230
23 431 342 3.03 280 264 253 244 237 232 227
24 429 340  3.01 278 262 251 242 236 462 225
25 427 3.39 299 276 260 249 240 234 228 224
26 425 3.37 2.98 274 259 247 239 232 227 222
27 424 335 296 273 2.57 246 237 2.31 2.25 2.20
28 4.22 334 295 271 256 245 236 229 224 219
29 421 3.33 2.93 270 255 243 2.35 2.28 222 218
30 420 332 292 269 253 242 233 227 221 2.16
31 418 330 291 268 252 241 232 225 220 215
32 417 3.29 290 267 251 240 231 224 219 2.14
33 416 3.28 289 266 250 239 230 223 2.18 2.13
34 415 3.28 2.88 2.65 249 238 229 223 2.17 2.12
35 415 3.27 2.87 264 249 237 229 222 216 211
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B.7 Fisher’s F' distribution (values = with Fp;g,.,(z) = 0.99)

1 2 3 4 5 6 7 8 9 10

1 4052 5000 5403 5625 5764 5859 5928 5981 6022 6056
2 9850 99.00 99.17 99.25 9930 9933 9936 9937 9939 99.40
3 3412 30.82 2946 2871 2824 2791 2767 2749 2735 27.23
4 2120 18.00 16.69 1598 1552 1521 1498 1480 14.66 14.55
S 1626 1327 1206 1139 1097 10.67 1046 10.29 10.16 10.05
6 1375 1092 9.78 9.15 8.75 8.47 8.26 810 798 7.87
7 1225 9.55 8.45 7.85 746  7.19 6.99 6.84 6.72 6.62
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81
9 10.56 802 699 6.42 6.06  5.80 5.61 547 5.35 5.26
10 10.04 7.56  6.55 5.99 5.64  5.39 520 506 494 485
11 9.65 7.21 6.22 5.67 532  5.07 489 474 463 4.54
12 933 6.93 5.95 541 506 482 464 450 439 4.30
13 9.07 6.70 574 5.21 486 462 444 430 4.19 4.10
14 8.86 6.51 5.56 504 469 446 428 414  4.03 3.94
15 8.68 636 542 489 456 432 414 4.00 3.89 3.80
16 8.53 6.23 5.29 4.77 444 420 4.03 3.89 3.78 3.69
17 840  6.11 5.18 4.67 434 410 3.93 3.79 3.68 3.59
18 830  6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51
19 8.22 5.93 5.01 450 417 3.94 3.77 3.63 3.52 3.43
20 8.13 5.85 494 443 4.10 3.87 370  3.56 3.46 3.37
21 8.05 578  4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31
22 7098 572 482 431 3.99 3.76 3.59 3.45 3.35 3.26
23 791 5,66 4776  4.26 3.94 3.71 3.54 341 3.30 3.21
24 7.85 5.61 472 422 3.90 3.67 350  3.36 3.26 3.17
25 7.80 557  4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13
26 775 5.53 4.64 414 3.82 3.59 3.42 3.29 3.18 3.09
27 771 549 460 411 3.78 3.56 3.39 3.26 3.15 3.06
28  7.67 545 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03
29  7.63 542 454 4.04 3.73 3.50 3.33 3.20 3.09 3.00
30 759 539 451 4.02 3.70 3.47 330 3.17 3.07 2.98
31 7.56 536 448 3.99 3.67 3.45 3.28 3.15 3.04 2.96
32 753 534 446 3.97 3.65 3.43 3.26 3.13 3.02 2.93
33 750 531 4.44 3.95 3.63 341 3.24 3.11 3.00 291
34 747 529 442 3.93 3.61 3.39 3.22 3.09 2.98 2.89
35 745 527 440 391 3.59 3.37 320  3.07 2.96 2.88
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B.8 Wilcoxon’s test for one set of observations

n | 0.005 0.010 0.025 0.050 n | 0.005 0.010 0.025 0.050
5 — — — 0 28 91 101 116 130
6 — — 0 2 29 100 110 126 140
7 — 0 2 3 30| 109 120 137 151
8 0 1 3 ) 31 118 130 147 163
9 1 3 ) 8 32 128 140 159 175
10 3 ) 8 10 33| 138 151 170 187
11 ) 7 10 13 34| 148 162 182 200
12 7 9 13 17 35 159 173 195 213
13 9 12 17 21 36 | 171 185 208 227
14 12 15 21 25 37| 182 198 221 241
15 15 19 25 30 38| 194 211 235 256
16 19 23 29 35 39| 207 224 249 271
17 23 27 34 41 40| 220 238 264 286
18 27 32 40 47 41| 233 252 279 302
19 32 37 46 53 42| 247 266 294 319
20 37 43 52 60 43| 261 281 310 336
21 42 49 58 67 44| 276 296 327 353
22 48 95 65 75 45| 291 312 343 371
23 54 62 73 83 46 | 307 328 361 389
24 61 69 81 91 47| 322 345 378 407
25 68 76 89 100 48 | 339 362 396 426
26 75 84 98 110 49| 355 379 415 446
27 83 92 107 119 50| 373 397 434 466
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B.9 Wilcoxon’s test for two sets of observations, o = 5%

m=1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 2 2 2 3 3 3 4 4 4 4 5 ) 6 6
3 ) ) 6 6 7 8 8 9 10 10 11 11 12 13 13
4 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22
5/ 14 15 16 17 19 20 21 23 24 26 2v 28 30 31 33
6| 20 21 23 24 26 28 29 31 33 35 37 38 40 42 44
71027 28 30 32 34 36 39 41 43 45 47 49 52 54 56
8| 35 37 39 41 44 46 49 51 54 56 59 62 64 67 69
9| 4 46 49 51 54 57 60 63 66 69 T2 V5 78 81 &4
10| 54 56 59 62 66 69 72 75 79 8 8 89 92 96 99
11| 65 67 71 74 78 8 8 89 93 97 100 104 108 112 116
12| 77 80 &8 &7 91 95 99 104 108 112 116 120 125 129 133
13| 90 93 97 101 106 110 115 119 124 128 133 138 142 147 152
14 | 104 108 112 116 121 126 131 136 141 146 151 156 161 166 171
15| 119 123 127 132 138 143 148 153 159 164 170 175 181 186 192
16 | 135 139 144 150 155 161 166 172 178 184 190 196 201 207 213
17152 156 162 168 173 179 186 192 198 204 210 217 223 230 236
18 | 170 175 180 187 193 199 206 212 219 226 232 239 246 253 259
19 | 190 194 200 207 213 220 227 234 241 248 255 262 270 277 284
20| 210 214 221 228 235 242 249 257 264 272 279 287 294 302 310
21 | 231 236 242 250 257 265 272 280 288 296 304 312 320 328 336
221253 258 265 273 281 289 297 305 313 321 330 338 347 355 364
23 1276 281 289 297 305 313 322 330 339 348 357 366 374 383 392
24 | 300 306 313 322 330 339 348 357 366 375 385 394 403 413 422
25325 331 339 348 357 366 375 385 394 404 414 423 433 443 453
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Explanation of symbols

C Explanation of symbols

A B,C
Q

P
P(A|B)
N, U
A, V
ACQ
w e N
CA
A\B

events

sample space

probability function, significance probability
conditional probability of A given B
intersection, union

and, or

A is a subset of 2

w belongs to €2

complement of the set A

difference of the sets A and B (“A minus B”)
f is a map from €2 into R

equals by definition

absolute value of = (e.g. | — 2| = 2)

the set of natural, integral, real numbers

the empty set

the interval {x € R | z > 0}

random variables

the expected value of X

the variance of X

the covariance of X and YV

expected value

variance

standard deviation

binomial distribution

Poisson distribution

geometrical distribution

hypergeometrical distribution

multinomial distribution

negative binomial distribution

exponential distribution

normal distribution

empirical variance

empirical standard deviation

distribution function

density function

distribution function of standard normal distribution
density function of standard normal distribution
number of observations or tries

intensity (in a Poisson process)
determination coefficient
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p correlation coefficient
Z,y mean value
df  number of degrees of freedom

In the past four years we have drilled

39,000 km

That's more than twice around the world.

Who are we?

We are the world's largest oilfield services company'.

Working globally—often in remote and challenging locations—
we invent, design, engineer, and apply technology to help our
customers find and produce oil and gas safely.

Who are we looking for?
Every year, we need thousands of graduates to begin
dynamic careers in the following domains:

‘ ‘ = Geoscience and Petrotechnical

m Commercial and Business

What will you be?

a1 careers.slb.com Schiumbergep
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Index

Index

accept, 29
addition formula, 24

addition formula for normal distribution, 50

alternative hypothesis, 29
analysis of variance, 60
ANOVA, 60
automobiles, 36
auxiliary hypothesis, 59

binomial coefficient, 16
binomial distribution, 30
black balls, 41

Bortkiewicz, Ladislaus von, 69

cabinet, 42

Central Limit Theorem, 26
Chebyshev’s inequality, 26
chi-squared, 63

chi-squared distribution, 50
city council, 42

conditional probability, 12
contingency table, 70
continuous random variable, 20
correlation coefficient, 24
covariance, 24

cumulative probabilities, 32

declaring variable, 79

density, 20

density function, 20
determination coefficient, 81
discrepancy, 64

discrete random variable, 19
disjoint events, 12

distribution function, 18
distribution-free test, 74
division into possible causes, 13

empirical correlation coefficient, 29
empirical covariance, 29
empirical standard deviation, 28

empirical variance, 28
equality of distribution, 63
errors (of type I and II), 30
event, 12

expected number, 64
expected value, 21, 24
exponential distribution, 45

F distribution, 52

Fisher’s exact test, 73
Fisher’s F, 52
Fisher-Behrens problem, 57
French Open, 13

generalized binomial coefficients, 17
geometrical distribution, 39

Gesetz der kleinen Zahlen, 69
goodness of fit, 63

Green Party, 34

hypergeometrical distribution, 41

inclusion-exclusion, 14
independent events, 14
independent random variables, 20
intensity, 35, 45

interquartile range, 28

Law of Large Numbers, 26
linear regression, 79
lower quartile, 28

marginal density, 21

mean, 28

mean value, 28

median, 27

moment of extraordinary beauty, 27
multinomial coefficients, 17
multinomial distribution, 43
multiplication formula, 24

negative binomial distribution, 44
non-parametric test, 74
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Index

normal distribution, 46
normed sum, 26
null hypothesis, 29

observed number, 64

parameter, 30

Pascal’s triangle, 17
Pearson’s test, 63

pin diagram, 19

point probability, 19
Poisson distribution, 35
pooled variance, 57
predicted value, 80
probability function, 12
probability of failure, 30
probability of success, 30
probability space, 12
Prussian cavalry, 68

quartile, 28

random variables, 18
random vector, 21
rank, 74

red balls, 41
regression, 79

reject, 29

remainder term, 79
residual, 80
response variable, 79

sample point, 12
sample space, 12
school class, 15
significance level, 29

significance probability, 29
simple linear regression, 79

simultaneous density, 21

simultaneous distribution function, 21

Skoda, 36
spontaneous event, 35, 45
standard deviation, 22

standard normal distribution, 47

standardized residuals, 65, 71

strength, 30
Student’s t, 51

t distribution, 51

test, 29

throw of a dice, 12

toss of a coin, 27
two-times-two table, 73
type I and 11, 30

unbiased estimator, 33
upper quartile, 28
urn, 41

variance, 22, 24

variance between samples, 60
variance within samples, 60

Wilcoxon’s test, 74
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