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Introduction

Introduction

This is the ninth book containing examples from the Theory of Complex Functions. We shall here
treat the important Argument Principle, which e.g. is applied in connection with Criteria of Stability
in Cybernetics. Finally, we shall also consider the Many-valued functions and their pitfalls.

Even if I have tried to be careful about this text, it is impossible to avoid errors, in particular in the
first edition. It is my hope that the reader will show some understanding of my situation.

Leif Mejlbro
27th June 2008
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1 Some theoretical background

1.1 The argument principle

Let f : M ∈ C be a function defined on a set M . We define arg f as any function on M , which for
every t ∈ M is one of the values from the set arg f(t). Then

Theorem 1.1 Let f : [a, b] → C \ {0} be a continuous continuous complex function on an interval
[a, b], which is different from zero. Then f has a continuous argument function arg f .

Clearly, we get all continuous argument functions from one continuous argument function θ = arg f
by an addition of a multiple of 2π. It follows that the difference

(1) arg f(b) − arg f(a)

has the same value for every continuous argument function arg f . This difference (1) is called the
argument variation of f on the interval [a, b].

In particular, if f(a) = f(b), then the continuous curve with the parametric description z = f(t),
t ∈ [a, b], is a closed curve, which does not pass through 0, and the argument variation is a multiple
of 2π,

arg f(b) − arg f(a) = 2nπ, for some n ∈ Z.

Some theoretical background
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This number n ∈ Z is only defined for closed curves. It is called the winding number around 0 of
the curve or the function. It is geometrically interpreted as the number of times (with respect to the
orientation of the plane), which the curve winds around 0, where negative windings of course cancel
positive windings.

The importance of the winding number around 0 is shown by the following theorem:

Theorem 1.2 Let f : [a, b] → C \ {0} and g : [a, b] → C be two given continuous complex functions,
for which f(a) = f(b) and g(a) = g(b). Assume that we have for every t ∈ [a, b] that

|g(t)| < |f(t)|.

Then the two functions f and f + g have the same winding number n around 0.

According to this theorem one may allow small perturbations a closed curves without changing the
winding number.

Definition 1.1 Given an analytic function f : Ω → C, which only has poles as its singularities, and
which is not the zero function. We define the logarithmic derivative of f as the uniquely determined
analytic function

f ′(z)
f(z)

, defined in {z ∈ Ω | f(z) �= 0}.

We see that if Log f(z) is defined, then

d

dz
Log f(z) =

f ′(z)
f(z)

.

It is well-known that Log f(z) needs not be defined globally, while
f ′(z)
f(z)

is always uniquely defined,

if only f(z) �= 0.

We have the following important result, which in particular is used in the applications of Cybernetics.

Theorem 1.3 The argument principle. Given an open domain Ω � C and an analytic function
f : Ω → C, which is not the zero function, and which only has poles in Ω as its singularities. Let C
be a simple closed curve in Ω, which does not pass through any zero or pole of f , and let ω ⊂ C be the
bounded domain lying inside the curve C. The total number of zeros of f in ω is denoted N , and the
total number of poles of f in ω is denoted P , all counted by multiplicity. Then the winding number
around 0 for the closed curve f(C) in the w-plane is equal to the difference N − P , i.e.

1
2πi

∮
C

f ′(z)
f(z)

dz = N − P = winding number of f(C) around w0 = 0.

When we combine the argument principle with the previous theorem, we get

Some theoretical background
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Theorem 1.4 Rouché’s theorem. Given an open domain Ω � C, and given two analytic functions
f , g : Ω → C. Let C be a simple closed curve in Ω, and assume that neither f nor g have singularities
inside C. Assume that we have the estimate

|f(z)| > |g(z)| for every z on the curve C.

Then the two functions f and g have the same number of zeros (counted by multiplicity) inside the
curve C.

1.2 Stability criteria

Considering the question of stability of mechanical or electrical systems with respect to oscillations, it
is of great importance to decide if all zeros of some polynomial lie in a left half plane. This polynomial
is typically the numerator of the so-called transfer function. This polynomial P (z) will usually have
complex coefficients. However, if we instead consider the polynomial P (z)P (z), where the coefficients
of the latter factor are the complex conjugated of the coefficients of the former factor, then this new
factor will have the complex conjugated roots of the roots of P (z). We see that all roots of P (z) lie in
the left half plane, if and only if all roots of the polynomial P (z)P (z) with real coefficients also lie in
the left half plane. We can therefore in the following restrict ourselves to only considering polynomials
of real coefficients.

We now introduce the following:

Definition 1.2 We call a polynomial P (z) of real coefficients a Hurwitz-polynomial, if all its zeros
lie in the open left half plane.

Concerning Hurwitz-polynomials we have the following simple result:

Theorem 1.5 A necessary condition for a polynomial

P (z) = a0 zn + a1 zn−1 + · · · + an−1 z + an

of real coefficients to be a Hurwitz-polynomial is that all its coefficients a0, . . . , an have the same sign.
In case of n = 1 or n = 2 this condition is also sufficient.

In general this only gives us a necessary condition, which is not sufficient. This follows from the
example

16z3 + 8z2 + 9z + 17 = (z + 1)
(

z − 1
4
− i

)(
z − 1

4
+ i

)

Some theoretical background
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We can do better with

Theorem 1.6 A polynomial P (z) of real coefficients is a Hurwitz-polynomial, if and only if⎧⎨
⎩

|P (z)| > |P (−z)| for Re z > 0,

P (iy) �= 0 for every y ∈ R.

The standard method for proving that a given polynomial with real coefficients is a Hurwitz-polynomial,
is the following

Theorem 1.7 Hurwitz’s criterion (1895). Given a polynomial

P (z) = a0 zn + a1 zn−1 + · · · + an−1 z + an

with positive coefficient. Then P (z) is a Hurwitz-polynomial, if and only if the following determinant
inequalities are all fulfilled,

D1 = a1 > 0, D2 =

∣∣∣∣∣∣
a1 a0

a3 a2

∣∣∣∣∣∣ > 0, D3 =

∣∣∣∣∣∣∣∣∣∣

a1 a0 0

a3 a2 a1

a5 a4 a3

∣∣∣∣∣∣∣∣∣∣
> 0, . . . ,

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a0 0 · · · 0

a3 a2 a1 · · · 0

...
...

...
...

a2n−1 a2n−2 a2n−3 · · · an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0,

where we put ak = 0 for k > n.

Clearly, this criterion may in practice be rather difficult to use, when the degree of the polynomial
is large. Fortunately we have an alternative criterion, by which on by iteration is able to reduce the
degree with (at least) 1 in every step:

Theorem 1.8 Schur’s criterion. A polynomial P (z) with real coefficients is a Hurwitz-polynomial,
if and only if its coefficients all have the same sign, and the polynomial

Q(z) =
P (1)P (z) − P (−1)P (−z)

z + 1

is also a Hurwitz-polynomial.

We shall finally mention

Some theoretical background
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Theorem 1.9 Nyquist’s criterion (1932). Given a rational function H(z), where H(iy) �= 1 on

the imaginary axis. We denote by P the number of poles for
1

1 + H(z)
in the right half plane (counted

by the multiplicity). Then the control system, which corresponds to the transfer function

f(z) =
H(z)

1 + H(z)
,

is stable, if and only if
1

1 + H(z)
has the winding number a P around the point w = 1, when z runs

through the imaginary axis.

supplied with

Theorem 1.10 Nyquist-Michailow’s criterion. Given a rational function G(z) with no zeros
on the imaginary axis and with N zeros in the right half plane. Let K be a so-called amplification
factor.
Then the control system, which corresponds to the transfer function

f(z) =
1

K · G(z)
+ 1,

is stable, if and only if
1

G(z)
has the winding number N around the point w = −K, when z runs

through the imaginary axis from −i∞ to +i∞. Here, N denotes the number of zeros of G(z) in the
right half plane.

Some theoretical background
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1.3 Inverse functions

Given an analytic function f(z) in an open domain Ω, and assume that f : Ω → f(Ω) is one-to-one.
Although it is far from trivial, one can then prove that f ′(z) �= 0 everywhere in Ω, so the inverse map
exists and is an analytic function with the derivative

d

dw
f◦−1(w) =

1
f ′ (f◦−1(w))

.

Clearly, one can then always locally determine the inverse f ◦−1(w) of an analytic function f(z) in a
neighbourhood of any point, in which f ′(z) �= 0. Then question is now, when these local inverses can
be glued together to a global analytic function. We know already from the example of the many-valued
function log w that this is not always possible.

Since the topic here is the inverse function, we shall for convenience interchange the variables z and
w. An obvious definition is

Definition 1.3 Let f : Ω → C be analytic in an open domain Ω in the w-plane. A point w0 ∈ Ω is
said to be a singular point of the function f(w), if f ′ (w0) = 0.
When w0 ∈ Ω is a singular point, we call the image z0 = f (w0) a branch point of the corresponding
Riemann-surface.

Another type of branch points are the logarithmic branch points.

Definition 1.4 We say that a point z0 is a logarithmic branch point of the function f(w), defined
on the open set Ω, if the following two conditions hold,

1) The point z0 is isolated in C \ f(Ω).

2) There does not exist any larger open domain Ω1 ⊃ Ω with corresponding analytic function f1 :
Ω1 → C, such that

f1(w) = f(w) for w ∈ Ω, and z0 ∈ f1 (Ω1) .

Condition 2) above can also be expressed in the following way:

2a) For given any open set Ω1 ⊃ Ω and any analytic function f1 : Ω → C we have that either f1 is
not an analytic extension of f , or – if it is – then the point z0 /∈ f1 (Ω1).

Then we can describe the following procedure for determining the inverse function, i.e. for solving the
equation

z = f(w), w ∈ Ω.

1) First find the singular points w0 ∈ Ω, i.e. the solutions of the equation

f ′(w) = 0.

2) Then for every solution w0 of this equation, the image z0 = f (w0) is a branch point, where we do
not have any one-to-one connection between any of the neighbourhoods of w0 and z0.

Some theoretical background
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3) Then check the image f(Ω) for the possibility of one (or more) branch points).

4) When we have found the image f(Ω), then we shall find the largest possible open domain ω ⊆ Ω,
for which f : ω → f(ω) is one-to-one. We call any such maximum open domain a fundamental
domain.

5) If the boundary of a fundamental domain ω is composed of piecewise differentiable curves contained
in Ω, then the boundary of f(Ω) \ f(ω) is consisting of curves between the branch points. We
notice that these can be ordinary branch points or logarithmic branch points. We call any such
curve in the z-plane a branch cut, and the uniquely determined inverse map f ◦−1 : f(ω) → ω onto
the image of a fundamental domain is called a branch of the inverse map f ◦−1.

6) Whenever possible we try directly to find an expression in Ω of the many-valued function f ◦−1(z).

7) By means of the fundamental domains, the branch cuts, some pieces of paper, a pair of scissors,
some glue or tape, and possibly also some patience it is possible to construct a model of the
corresponding Riemann-surface.

Remark 1.1 Contrarily to the branch points, the fundamental domains, the branch cuts and the
branches are not uniquely determined. ♦
Even if the Riemann-surfaces in general are difficult to handle, they have nevertheless found their way
into the theory of Stability.

Assume that f(z) is a polynomial or a rational function. Then there exists a Riemann-surface R,
corresponding to f(z), such that f maps the z-plane onto the Riemann-surface R. The criterion of
stability can then be reduced to the condition that the image f

(
Ω
)

of the closed right half plane

Ω = {z ∈ C | Re z ≥ 0}
does not contain points which lie above the point w = 0. If the image f

(
Ω
)

of the right half plane
into the Riemann-surface R is bounded by a curve Γ (where Γ is the image of the imaginary axis),
then we get the following stability criterion:

Theorem 1.11 If the domain f(Ω) to the right of the curve Γ on the corresponding Riemann-surface
R does not contain any point above w = 0 (and the curve Γ does not pass through such a point), then
f(z) is the transfer function for a stable system. If these conditions are not satisfied, then the system
is unstable.

It is of course in practice very difficult to investigate Γ on the Riemann-surface R itself. Instead
we consider the projection γ of Γ onto the w-plane. We obtain a parametric description by putting
z = iy into the expression of f(z) and then separate the real and the imaginary part. Then we get
the parametric description:

γ : u = u(y), v = v(y), y ∈ R.

We lose some information by this projection and the condition that the point w = 0 must not lie to
the right of the curve γ, is then only necessary and not sufficient, which is illustrated by the example

f(z) = z3 − z2 + 2z − 3.

The coefficients have different signs, so the corresponding system cannot be stable. On the other
hand, it is easy to prove that w = 0 does not lie to the right of the curve γ, demonstrating that the
condition is not sufficient.

Some theoretical background
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2 The argument variation

Example 2.1 Prove that the polynomial zn − a has n roots in the unit disc for every fixed a ∈ C,
where 0 < |a| < 1.

We put f(z) = zn and g(z) = −a and let C denote the unit circle |z| = 1 run through in the positive
sense. On C we have the following estimate

|f(z)| = |zn| = 1 > |a| = |g(z)| for |z| = 1,

so it follows from Rouché’s theorem that f(z) = zn and f(z) + g(z) = zn − a have the same number
of zeros inside C, i.e. n. According to the solution formula for the binomial equation zn = a, which
also could have been applied here, all n roots are different, when 0 < |z| < 1, so they are all simple.
In particular we see that by adding any small constant a �= 0 to f(z) = zn the n identical roots z = 0
are branching away in n different directions.

Example 2.2 Compute the line integral

1
2πi

∮
|z|=2

10z9 + 25 sinh z +
1
2

exp
(z

2

)
exp
(
exp
(z

2

))
z10 + 25 cosh z + exp

(
exp
(z

2

)) dz.

This example shall only demonstrate how one may use the argument principle to calculate “impossible”
line integrals of the type

1
2πi

∮
C

h′(z)
h(z)

dz.

Clearly, the usual method of inserting some parametric description is doomed to fail.

Instead we put

h(z) = z10+25 cosh z+exp
(
exp
(z

2

))
, where h′(z) = 10z9+25 sinh z+

1
2

exp
(z

2

)
exp
(
exp
(z

2

))
.

Thus the integral is of the form

1
2πi

∮
C

h′(z)
h(z)

dz = Nh − Ph = Nh,

where we immediately see that h(z) does not have any poles, so Ph = 0.

We shall only find the number of zeros of h(z) inside |z| = 2.

In order to get an idea of what to do we estimate each term of the denominator h(z) along the circle
|z| = 2. This gives∣∣z10

∣∣ = 210 = 1024,

|25 cosh z| = 25
∣∣∣∣12 {ez + e−z

}∣∣∣∣ ≤ 25
2

· 2 ∣∣e2
∣∣ ≤ 200,

The argument variation
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and∣∣∣exp
(
exp
(z

2

))∣∣∣ ≤ ee < 33 = 27.

We see that the first estimate will give the biggest number, so if we put

f(z) = z10 and g(z) = 25 cosh z + exp
(
exp
(z

2

))
,

then it follows for |z| = 2 that

|f(z)| =
∣∣z10
∣∣ = 1024 > 200 + 27 > |25 cosh z| +

∣∣∣exp
(
exp
(z

2

))∣∣∣ ≥ |g(z)|.

Then Rouché’s theorem implies that f(z) and f(z) + g(z) = h(z) have the same number of zeros
insider |z| = 2, i.e.

Nh = Nf = 10.

Then

1
2πi

∮
|z|=2

10z9 + 25 sinh z +
1
2

exp
(z

2

)
exp
(
exp
(z

2

))
z10 + 25 cosh z + exp

(
exp
(z

2

)) dz = 10.

The argument variation
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Example 2.3 Find the number of zeros of the analytic function

z2 + 5 sin z in the rectangle
{

z = x + i y | −π

2
< x <

π

2
and − 1 < y < 1

}
.

Clearly, z = 0 is a simple zero, so there exist zeros in this open set. The question is, if there are
others.

We have in general,

| sin z|2 = sin2 x + sinh2 y,

from which we get the estimate

| sin z| ≥
∣∣∣sin(±π

2

)∣∣∣ = 1,

on the vertical segments ±π

2
+ i y, −1 < y < 1 of the rectangle. On the horizontal segments, x ± i,

|x| <
π

2
, so here we have with y = pm1 the estimate

| sin z| ≥ sinh 1 > 1.

Choosing f(z) = 5 sin z, estimating downwards we get on the boundary C of the rectangle that

|f(z)| = |5 sin z| ≥ 5 for z ∈ C.

Then the remaining term g(z) = z2 is estimated upwards on the boundary curve C, i.e. by a small
geometric argument,

|g(z)| =
∣∣z2
∣∣ ≤ ∣∣∣π

2
+ i
∣∣∣2 =

π2

4
+ 1 <

10
4

+ 1 < 5 for z ∈ C.

Then it follows by Rouché’s theorem that f(z) = 5 sin z and f(z) + g(z) = z2 + 5 sin z have the same
number of zeros in the open rectangle. Since f(z) = 5 sin z only has the simple zeros {pπ | p ∈ Z} i
C, we conclude that z = 0 is the only possible zero for z2 + 5 sin z inside C.

Example 2.4 Give a coarse estimate of where the roots of the polynomial

z3 + 2z2 − 50z + 100

are lying with respect to origo.

We first notice that the polynomial has degree three, so it follows from the Fundamental Theorem of
Algebra that the polynomial has three zeros in all of C. The question here is how close they are to
the origo.

We shall first prove that all zeros lie inside the circle |z| = 9. Choosing

f1(z) = z3 and g1(z) = 2z2 − 50z + 100,

we get the estimates

|f1(z)| = 93 = 729 and |g1(z)| ≤ 2 · 92 + 50 · 9 + 100 = 712 < |f1(z)| for |z| = 9,

The argument variation
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so we conclude from Rouché’s theorem that there are three zeros (and hence all of them) inside |z| = 9.

Then we prove that we inside |z| = 4 only have one zero. In this case we choose

f2(z) = −50z og g2(z) = z3 + 2z2 + 100,

and we get the estimates

|f2(z)| = |−50z| = 200 and |g2(z)| =
∣∣z3 + 2z2 + 100

∣∣ ≤ 64+32+100 = 196 < |f2(z)| for |z| = 4,

so f2(z) is dominating, what the number of zeros is concerned. Since −50z has just one zero inside
|z| = 4 (this zero is 0), the polynomial has also just one zero inside |z| = 4. Notice, however, that
this zero does not lie in the “neighbourhood” of 0. We shall namely prove at last that there is no zero

inside the circle |z| =
7
4
.

Choosing

f3(z) = 100 and g3(z) = z3 + 2z2 − 50z,

we get the estimate

|g3(z)| =
∣∣z3 + 2z2 − 50z

∣∣ ≤ (2 +
7
4

)(
7
4

)2

+50· 7
4

=
15
4
· 49
16

+
7
4
·50 <

(
1
4

+
7
4

)
·50 = 100 = |f3(z)|

for |z| =
7
4
. Hence, the polynomial f3(z) + g3(z) has the same number of zeros inside |z| =

7
4

than
the constant 100, i.e. none.

As a control we also find the roots of the polynomial z3 + 2z2 − 50z + 100 by either using Cardano’s
formula or by using a pocket calculator. Approximative values are

−8, 889 794 306, 2, 658 473 477, 4, 231 320 828.

All three of them satisfy the estimates
7
4

= 1, 75 < z0 < 9, and only the middle one fulfils
7
4

= 1, 75 <

z0 < 4.

Remark 2.1 If we instead had considered the polynomial z3 + 2z2 + 50z + 100 with the plus sign
everywhere, then – apart from the trivial change of sign – repeat the whole argument above, so the
zeros of this polynomial also lie in the same annuli. However, here we can make a shortcut and directly
find the zeros, because we have the splitting into factors

z3 + 2z2 + 50 + 100 = (z + 2)
(
z2 + 50

)
,

proving that the roots are −2, 5
√

2 i and −5
√

2 i. On a figure one may see that this change of sign
dramatically changes the placements of the roots, since we in the former case have three real roots,
and in the latter case two complex conjugated roots and one real root. ♦
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Example 2.5 Compute the line integral∮
|z|=1

z − 1
ez − 3z

dz.

Putting f(z) = ez − 3z, it follows that

|ez| ≤ e < 3 = |3z| for |z| = 1,

and we conclude from Rouché’s theorem that f(z) has only a simple zero z0 inside |z| = 1. Then it is
obvious that

exp (z0) = 3z0,

which we shall exploit in the following.

Then f ′(z) = ez − 3, where

|f ′(z)| ≥ 3 − |ez| ≥ 3 − e > 0, for |z| ≤ 1.,

so f ′(z) �= 0 inside |z| = 1.

We proceed with a rather tricky argument,∮
|z|=1

z − 1
ez − 3z

dz =
∮
|z|=1

z − 1
ez − 3

· ez − 3
ez − 3z

dz =
∮
|z|=1

z − 1
ez − 3

· f ′(z)
f(z)

dz

= 2πi res
(

z − 1
ez − 3

· f ′(z)
f(z)

; z0

)
= 2πi

z0 − 1
exp z0 − 3

· 1 = 2πi · z0 − 1
3z0 − 3

=
2πi

3
,

because it is easily proved that in general,

res
(

ϕ(z) · f ′(z)
f(z)

; z0

)
= ϕ (z0) · m,

assuming that ϕ(z) is analytic in a neighbourhood of z0 and that f(z) has a zero of order m, if m > 0,
or a pole of order −m = |z|, if m < 0.

Alternatively we may apply Rule II, because the solution z0 of exp z0 = 3z0 in the unit disc is a
simple pole, hence∮

|z|=1

z − 1
ez − 3z

dz = 2πi · lim
z→z0

z − 1
d

dz
{ez − 3z}

= 2πi · lim
z→z0

z − 1
ez − 3

= 2πi · z0 − 1
exp z0 − 3

= 2πi · z0 − 1
3z0 − 3

=
2πi

3
.

Remark 2.2 It is remarkable that even if one cannot directly find the value of the integral by inserting
a parametric description, and even if one cannot explicitly find the pole z0, we are nevertheless able
to compute the line integral, because z0 is cancelled in the calculations. ♦

The argument variation

Download free eBooks at bookboon.com



Complex Functions Examples c-9

18 
 

Example 2.6 Compute

(a)
∮
|z|=3

z2

z3 − 2
dz, (b)

∮
|z|=2

2z3 + 1
z4 + 2z2 + 1

dz, (c)
∮
|z|=2

2z3 + 1
z4 + 2z + 1

dz.

(a) Putting f(z) = z3 − 2, it is seen that f has three zeros inside |z| = 3 and no pole. Hence by the
argument principle,∮

|z|=3

z2

z3 − 2
dz =

1
3

∮
|z|=3

3z2

z3 − 2
dz =

1
3

∮
|z|=3

f ′(z)
f(z)

dz =
2πi

3
(3 − 0) = 2πi.

Alternatively, use the residuum at ∞, because there is no pole for |z| ≥ 3:∮
|z|=3

z2

z3 − 2
dz = −

∮ �

|z|=3

z2

z3 − 2
dz = −2πi res

(
z2

z3 − 2
; ∞
)

= −2πi

{
− lim

z→∞
z3

z3 − 2

}
= 2πi.
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(b) It follows from z4 + 2z2 + 1 =
(
z2 + 1

)2 that

2z32 + 1
z4 + 2z2 + 1

has two double poles inside |z| = 2 and no pole outside. We cannot directly apply the argument
principle. We have, however, a zero at ∞, so by the residuum at ∞ we get

∮
|z|=2

2z3 + 1
z4 + 2z2 + 1

dz = −
∮ �

|z|=2

2z3 + 1
z4 + 2z2 + 1

dz = −2πi res
(

2z3 + 1
z4 + 2z2 + 1

; ∞
)

= −2πi

{
− lim

z→∞ z · 2z3 + 1
z4 + 2z2 + 1

}
= 4πi.

(c) Put f(z) = z4 + 2z + 1. We have on |z| = 2 the estimate

|z|4 = 24 = 16 > 2 · 2 + 1 = 5 ≥ |2z + 1| for |z| = 2,

so w = f(z) has the winding number 4 around 0 for |z| = 2. Then it follows from the argument
principle that∮

|z|=2

2z3 + 1
z4 + 2z + 1

dz =
1
2

∮
|z|=1

f ′(z)
f(z)

dz =
1
2
· 2πi · 4 = 4πi.

Alternatively we get

|2z + 1| ≤ 2r + 1 < r4 =
∣∣z4
∣∣ for |z| = r ≥ 2,

thus∣∣z4 + 2z + 1
∣∣ ≥ ∣∣z4

∣∣− |2z + 1| > 0 for |z| ≥ 2.

Hence, the function

2z3 + 1
z4 + 2z + 1

does not have poles outside |z| = 2, and since ∞ is a simple zero, we get

∮
|z|=2

2z3 + 1
z4 + 2z + 1

dz = −
∮ �

|z|=2

2z3 + 1
z4 + 2z + 1

dz = −2πi res
(

2z3 + 1
z4 + 2z + 1

; ∞
)

= −2πi ·
{
− lim

z→∞
z
(
2z3 + 1

)
z4 + 2z + 1

}
= 2πi · 2 = 4πi.
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Example 2.7 Compute the complex line integral

1
2πi

∮
|z|=1

10z + ez + cos z

5z2 + ez + sin z
dz.

Put f(z) = 5z2 and g(z) = ez + sin z. We have for |z| = 1 the estimates

|g(z)| ≤ ∣∣exeiy
∣∣+ | sin z| ≤ e1 + cosh 1 < e + 2 < 5 = |f(z)|.

Hence

|f(z)| > |g(z)| for |z| = 1.

Since f(z) and g(z) are analytic, we conclude from Rouché’s theorem that

1
2πi

∮
|z|=1

10z + ez + cos z

5z2 + ez + sin z
dz =

1
2πi

∮
|z|=1

f ′(z) + g′(z)
f(z) + g(z)

dz =
1

2πi

∮
|z|=1

f ′(z)
f(z)

dz

=
1

2πi

∮
|z|=1

10z
5z2

dz = 2 · 1
2πi

∮
|z|=1

1
z

dz = 2.

Alternatively,

1
2πi

∮
|z|=1

f ′(z)
f(z)

dz

is equal to the number of zeros counted by multiplicity of f(z) = 5z2 inside |z| = 1, where we use
that f(z) does not have poles. We immediately see that this number ie 2.

Example 2.8 Given a polynomial f(z). Prove that

1
2πi

∮
|z|=R

f ′(z)
f(z)

z dz

is the sum of all roots of f , when R is chosen sufficiently large.

Let z0 denote any root of the polynomial of multiplicity n0, thus

f(z) = (z − z0)
n0 P (z),

where P (z0) �= 0. Then

f ′(z)
f(z)

· z =
n0 (z − z0)

n0−1
P (z)z

(z − z0)
n0 P (z)

+
(z − z0)

n0 P ′(z) · z
(z − z0)

n0 P (z)
= n0 · z

z − z0
+

P ′(z)
P (z)

· z

= n0 · z − z0 + z0

z − z0
+

P ′(z)
P (z)

· z n0 z0

z − z0
+ g(z),

where g(z) is analytic in a neighbourhood of z0. It follows that

res
(

f ′(z)
f(z)

· z ; z0

)
= n0 z0.
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This holds for every zero of the denominator, so if f(z) has the structure

f(z) = A (z − z1)
n1 · · · (z − zk)nk ,

and if R is chosen so large that all roots lie inside |z| = R, then

1
2πi

∮
|z|=R

f ′(z)
f(z)

z dz =
k∑

j=1

res
(

f ′(z)
f(z)

· z ; zj

)
=

k∑
j=1

njzj ,

which is precisely the sum of all roots counted by multiplicity.

Example 2.9 Prove that the equation ez − 3z7 = 0 has seven zeros in the unit disc |z| < 1.

Put f(z) = −3z7 and g(z) = ez. If |z| = 1, then we have the estimates

|f(z)| =
∣∣−3z7

∣∣ = 3|z|7 = 3,

and

|g(z)| =
∣∣exeiy

∣∣ = ex ≤ e1 < 3 = |f(z)|.
We conclude from Rouché’s theorem that

f(z) = −3z7 and f(z) + g(z) = ez − 3z7

have the same number of zeros inside |z| = 1.
Since f(z) = −3z7 has the 7 identical roots lying in z = 0, we conclude that ez − 3z7 has 7 zeros
inside |z| = 1.

0

0.5

1

1.5

2

2.5

3

–1 –0.5 0.5 1

Figure 1: The graph of f(x) = ex − 3x7, x ∈ [−1, 1].

By considering the graph we conclude that the equation has precisely one real root. An approximative
value is

z = 0, 983 720 9.
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Example 2.10 Prove for a given a > e that the equation

ez = a zn

has n solutions in the unit disc.

Putting f(z) = a zn and g(z) = −ez, we get for |z| = 1 that

|g(z)| = |ez| ≤ e < a = |a zn| = |f(z)|, for |z| = 1,

and we conclude from Rouché’s theorem that

f(z) + g(z) = a zn − ez and f(z) = a zn

have the same number of zeros in the unit.

Since f(z) has an n-tuple zero at 0, this number is n. The claim follows from that a zn − ez = 0 is
equivalent to ez = a zn.
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Example 2.11 Prove that the equation

ez+2 − 2 z7 = 0

has no solution in the unit disc.

This example is trivial, because we have for |z| ≤ 1,∣∣ez+2 − 2 z7
∣∣ ≥ e1 − 2 > 0,

thus

ez+2 − 2 z7 �= 0 for every z where |z| < 1.

Example 2.12 Given λ ∈ R, λ > 1. Prove that the equation z eλ−z = 1 has precisely one root in the
unit disc |z| < 1. This root is real and positive.

When we multiply by ez �= 0 and rearrange, we get the equation

z eλ − ez = 0.

When |z| = 1, we get the estimate∣∣z eλ
∣∣ = eλ > e ≥ |ez| = ex.

Hence we conclude by Rouché’s theorem that the functions

z eλ − ez and z eλ

have the same number of zeros in z in the unit disc |z| ≤ 1, i.e. precisely one.

Now

f(0) = −1 and f(1) = eλ − e1 > 0,

where f(z) = z eλ − ez is analytic and in particular real and continuous, when z is real. Thus there
exists at least one real zero in the interval ]0, 1[. On the other hand we have just proved above that
be have precisely one complex zero in the unit disc, and since we have found a real zero, this is the
only zero in the unit disc.

Example 2.13 Find the number of roots of the polynomial 1 + 4z2 + z5 inside the unit disc? Are
they real? Foes the polynomial have real roots?

Put f(z) = 4z2 and g(z) = 1 + z5. If |z| = 1, then we get the estimate

|g(z)| =
∣∣1 + z5

∣∣ ≤ 1 + 1 = 2 < 4 =
∣∣4z2

∣∣ = |f(z)|.
Thus we conclude by Rouché’s theorem that

f(z) + g(z) = 1 + 4z2 + z5 and f(z) = 4z2
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–1.5 –1 –0.5 0.5 1

Figure 2: The graph of f(x) = 1 + 4x2 + x5.

have the same number of zeros inside the unit disc, i.e. 2.

Then consider the real function

f(x) = 1 + 4x2 + x5, x ∈ [−1, 1].

If x = 0, then f(0) = 1 > 0, and if x ∈ [−1, 1] \ {0}, then

f(x) = 1 + 4x2 + x5 > 1 + 0 − 1 = 0,

thus f(x) �= 0 for x ∈ [−1, 1]. We therefore conclude that no zero in the unit disc is real.

Finally, consider

f(x) = 1 + 4x2 + x5, for x ∈ R.

Then clearly,

f(x) → −∞ for x → −∞,

and

f(x) → +∞ for x → +∞.

Since f(x) is real and continuous, f(x) has (at least) one real zero.

Example 2.14 Prove for n > 2 that all roots of

4zn − z2 − z − 1 = 0

lie in the unit disc.

Put f(z) = 4zn and g(z) = −z2 − z − 1. If |z| = 1, then we get the estimates

|g(z)| =
∣∣−z2 − z − 1

∣∣ ≤ 1 + 1 + 1 = 3 < 4 = |4zn| ,
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and it follows from Rouché’s theorem that

f(z) + g(z) = 4zn − z2 − z − 1 and f(z) = 4zn

have the same number of zeros inside |z| = 1, i.e. n zeros.

Remark 2.3 The argument is unchanged for n = 2, 1 and 0, and the conclusion is in general that
we have n roots. It is, however, obvious in the latter three cases that we can reduce the equation, so
we do not have to use Rouché’s theorem in these cases. ♦

Example 2.15 Find r > 0, such that the polynomial

z3 − 4z2 + z − 4

has precisely two roots inside the circle |z| = r.

It follows by inspection that

z3 − 4z2 + z − 4 = (z − 4)
(
z2 + 1

)
,

so the roots are 4 and ±i, and it follows that every r ∈ ]1, 4[ can be used.
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If we instead try to apply Rouché’s theorem, then it is natural to put

f(z) = −4z2 and g(z) = z3 + z − 4.

We get the following estimates for |z| = r,

|g(z)| ≤ r3 + r + 4 and |f(z)| = 4r2.

(Note the “change of sign” by the estimate of |g(z)|).
If we want to be absolutely certain that we have exactly two zeros inside |z| = r, then we shall choose
r, such that

r3 + r + 4 < 4r2.

Due to the terms r3 and 4 on the left hand side it is obvious that we must have r < 4 and r > 1. If
we try r = 2, we get

r3 + r + 4 = 8 + 2 + 4 = 14 < 16 = 4r2,

so we may use r = 2.

–8

–6

–4

–2

0

2

–1 1 2 3 4

Figure 3: The graph of 4r2 − r3 − r − 4.

Remark 2.4 If we try to find the zeros of 4r2 − r3 − r − 4, then we have one in the interval ]1, 2[,
and one in |3, 4[, cf. the figure. We cannot get the precise result r ∈ ]1, 4[ by only using Rouché’s
theorem. This is due to the fact that we have estimated |g(z)| above, and we are no computing the
exact number. ♦
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Example 2.16 Find the number of roots of

z8 − 5z4 − 2z − 1

inside |z| = 1.

–4

–2

0

2

4

6

8

–1 –0.5 0.5 1

Figure 4: The graph of x8 − 5x5 − 2x + 1 for x ∈ [−1, 1].

Since the boundary curve is given by |z| = 1, it is almost obvious that we shall seek the numerically
larger coefficient and isolate the corresponding term. Hence, we try to apply Rouché’s theorem on the
functions

f(z) = −5z5 and g(z) = z8 − 2z + 1,

where

f(z) + g(z) = z8 − 5z5 − 2z + 1.

If |z| = 1, then we have the estimates

|f(z)| =
∣∣−5z2

∣∣ = 5,

and

|g(z)| =
∣∣z8 − 2 + 1

∣∣ ≤ |z|8 + 2|z| + 1 = 4 < 5 = |f(z)|.
(Notice that we in the estimation of g(z) write plus everywhere between the terms.) This proves that
f(z) is dominating. Now, f(z) has a five-tuple zero at z = 0 and no other zero inside |z| = 1, so it
follows from Rouché’s theorem that at

z8 − 5z5 − 2z + 1

has 5 roots inside |z| = 1.

Remark 2.5 The polynomial has real coefficients, so the non-real roots are pairwise complex conju-
gated. The unit disc {z ∈ C | |z| ≤ 1} is symmetric with respect to the x-axed, so it follows that we
must have 1, 3 or 5 roots inside |z| = 1. When we consider the graph of the restriction to the real
interval [−1, 1], we see that we have precisely one root inside |z| = 1. ♦
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Example 2.17 Find the number of roots of the polynomial

z87 + 36z57 + 71z4 + z3 − z + 1

(a) in the domain |z| < 1, (b) in the domain |z| < 2.

Remark 2.6 Due to the large exponents a graphical solution of the problem will be very difficult,
even in MAPLE. ♦

(a) Put

f1(z) = 71z4 and g1(z) = z87 + 36z57 + z3 − z + 1.

If |z| = 1, then we get the estimate

|g1(z)| ≤ 1 + 36 + 1 + 1 + 1 = 40 < 71 = |f1(z)| .
Using Rouché’s theorem we conclude that f1(z) and f1(z) + g1(z) have the same number of roots
inside |z| = 1. Since f1(z) = 71z4 only has the four-tuple root z = 0, we conclude that

z87 + 36z57 + 71z4 + z3 − z + 1

has four roots in the set {z ∈ C | |z| < 1}.
(b) Put

f2(z) = z87 andg2(z) = 36z57 + 71z4 + z3 − z + 1.,

If |z| = 2, then we have the estimates

|g2(z)| ≤ 36 · 257 + 71 · 24 + 23 + 2 + 1 < 64 · 257 = 263 < 287 = |f2(z)| ,
so all roots lie inside |z| = 2. Hence the number of roots is 87.

Remark 2.7 Put

f3(z) = 1 and g3 = z87 + 36z57 + 71z4 + z3 − z + 1.

Then we prove in the same way that

|g3(z)| < |f3(z)| = 1 for |z| = 0, 3,

cf. the figure, thus f3(z) and f3(z) + g3(z) have the same number of roots inside |z| =
3
10

, i.e. no zero
at all. Hence there must lie 4 roots in the annulus{

z ∈ C

∣∣∣∣ 3
10

< |z| < 1
}

,

Furthermore, all 87 roots lie inside |z| = 1, 13 (which can even be improved to |z| = 1, 1271 by using
a pocket calculator). In fact, if |z| = 1, 13, then we have the estimates∣∣z87

∣∣ > 41 400 > 40 800,

The argument variation

Download free eBooks at bookboon.com



Complex Functions Examples c-9

29 
 

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25 0.3 0.35

Figure 5: The graph of 1 − {r87 + 36r57 + 71r4 + r3 + r + 1
}
.

and∣∣36z57
∣∣+ ∣∣71z4

∣∣+ ∣∣z3
∣∣+ |z| + 1 < 38 800 + 116 + 2 + 1 + 1 < 40 800,

and then we apply Rouché’s theorem as above. We see in particular that we have 87 − 4 = 83 roots
in the annulus{

z ∈ C

∣∣∣∣ 1 < |z| <
113
100

}
.
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If we consider f4(z) = 36z57 instead, then we prove in the same way that there are 57 roots in the
disc{

z ∈ C

∣∣∣∣ |z| <
111
100

}
,

so we have 57 − 4 = 53 roots in the annulus{
z ∈ C

∣∣∣∣ 1 < |z| <
111
100

}
,

and 87 − 57 = 30 roots in the annulus{
z ∈ C

∣∣∣∣ 111
100

< |z| <
113
100

}
.

There is only one real root, and one can with some difficulty prove that it is ≈ −1, 012. This example
shows that it is not an easy task to find the zeros of polynomials of a large degree. There exists,
however, a method, by which one can separate roots which lie close to each other and then find the
roots. However, this lies beyond the scope of these notes. ♦

Example 2.18 Find the number of zeros of the polynomial

2z5 − 6z2 + z + 1

in the closed annulus 1 ≤ |z| ≤ 2.

First consider the boundary |z| = 2. We put

f1(z) = 2z5 and g1(z) = −6z2 + z + 1,

and find that

|g1(z)| ≤ 6 · 4 + 2 + 1 = 27 < 64 = |f1(z)| , for |z| = 2.

Using Rouché’s theorem we see that 2z5 − 6z2 + z +1 and f1(z) = 2z5 must have the same number of
zeros inside |z| = 2, thus 2z5 − 6z2 + z +1 has all its five zeros lying inside the disc {z ∈ C | |z| ≤ 2}.
Then we consider |z| = 1. Here we put

f2(z) = −6z2 and g2(z) = 2z5 + z + 1.

Then we have the estimates

|g2(z)| ≤ 2 + 1 + 1 = 4 < 6 = |f2(z)| , for |z| = 1.

An application of Rouché’s theorem gives that 2z5 − 6z2 + z + 1 and f2(z) = −6z2 have the same
number of zeros inside |z| = 1, hence 2z5 − 6z2 + z + 1 has two zeroes lying in {z ∈ C | |x| < 1}.
Summing up it follows from the above that 2z5 − 6z2 + z +1 has 5− 2 = 3 zeros in the closed annulus

{z ∈ C | 1 ≤ |z| ≤ 2}.
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Remark 2.8 The degree of the polynomial is so small that modern computers easily can find the
roots. We have approximatively the roots

−0, 33172, 0, 51413, 1, 32755, −0, 75498 ± 1, 27999.

We see that all roots lie inside |z| =
3
2
. By an elaboration of the estimate above it is possible by

Rouché’s theorem to prove that all roots satisfy |z| <
16
10

, but one cannot derive in this way that even

|z| <
3
2
.

An analogous argument shows that there are no root inside |z| =
3
10

. ♦

Example 2.19 Prove that the equation ez = 2z + 1 has precisely one solution in the disc |z| < 1.
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Figure 6: The graph of 2x + 1 − ex for x ∈ [−1, 1].

Clearly, z = 0 is a solution. Then it follows by the figure that this is the only real solution in the
interval [−1, 1], i.e. in the unit disc. We shall prove that there does not exist any other complex
solution.

Put

f(z) = 2z + 1 andg(z) = −ez.

The idea is of course to apply Rouché’s theorem to prove that

f(z) + g(z) = 2z + 1 − ez and f(z) = 2z + 1

have the same number of zeros inside |z| = 1, i.e. one. Now,

|f(z)| ≥ |2z| − 1 = 1 and |g(z)| < e,

so it is not possible to use the usual trick. Instead we are forced to the following pointwise estimate.
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Let |z| = 1, i.e. x2 + y2 = 1. Then

g(z)| = ex, x ∈ [−1, 1],

and

|f(z)| = |2z + 1| =
√

(2x + 1)2 + 4y2 =
√

4x2 + 4x + 1 + 4y2

=
√

4 (x2 + y2) + 4x + 1 =
√

5 + 4x, for x2 + y2 = 1.

The claim will be proved, if we can prove that

ex <
√

5 + 4x for x ∈ [−1, 1],

or, in an equivalent formulation,

e2x < 5 + 4x for x ∈ [−1, 1].

–1

1

2

3

4

–1 –0.5 0.5 1

Figure 7: The graph of ϕ(x) = 5 + 4x − e2x, x ∈ [−1, 1].

Put

ϕ(x) = 5 + 4x − e2x, for x ∈ [−1, 1].

Then

ϕ′(x) = 4 − 2 e2x = 2
(
2 − e2x

)
,

and we conclude that ϕ(x) is increasing in
[
−1 ,

1
2

ln 2
[

and decreasing in
]
1
2

ln 2 , 1
]
. We conclude

from

ϕ(−1)01 − e−2 > 0 and ϕ(1) = 9 − e2 > 0,

that ϕ(x) > 0. This implies that

e2x < 5 + 4x, for x ∈ [−1, 1],

as wanted. Then by the results above,

|f(z)| > |g(z)| for |z| = 1,

and it follows from Rouché’s theorem that the equation ez = 2z + 1 has precisely one solution in the
open unit disc |z| < 1.
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Example 2.20 Given an analytic function f which maps the closed unit disc |z| ≤ 1 onto a set D,
which is contained in the interior of this disc. Prove that f has precisely one fix point in |z| ≤ 1,
which means that there exists precisely one z, |z| ≤ 1, such that f(z) = z.

–1

–0.5

0.5

1

–1 –0.5 0.5 1

Figure 8: An example of D.

Consider the function

g(z) = z − f(z).

Since boundary is mapped into boundary, we have |f(z)| < 1 for |z| = 1, and the winding number
for g(z) around 0 is therefore by the argument principle and Rouché’s theorem equal to the winding
number of z around 0 along |z| = 1, i.e. is is 1.

Since g(z) does not have poles in the unit disc, there must be precisely one zero of g(z) in the unit
disc |z| ≤ 1, i.e. there exists exactly one <0 where |z0| < 1, such that

g (z0) = z0 − f (z0) = 0,

hence by a rearrangement,

f (z0) = z0,

and z0 is a fix point of f(z).

Example 2.21 Find the location of the zeros of the polynomial z4 − z + 5.

The polynomial z4 − z + 5 has real coefficients, so its roots are either real or pairwise complex
conjugated. It is seen from the graph that the polynomial cannot have real roots in the interval
[−2, 2].

If |z| = 1, then we choose f(z) = 5 and g(z) = z4 − z. Then we get the estimate

g(z)| =
∣∣z4 − z

∣∣ ≤ 2 < 5 = |f(z)| for |z| = 1.

Since f(z) = 5 does not have zeros, we conclude from Rouché’s theorem that z4 − z +5 does not have
any zero in the unit disc {z ∈ C | |z| ≤}.
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Figure 9: The graph of x4 − x + 5 for x ∈ [−2, 2].

If |z| = 2, we instead choose f(z) = z4 and g(z) = −z + 5. Then we get the estimate

|g(z)| = | − z + 5| ≤ | − z| + 5 = 7 < 16 = 24 = |f(z)| for |z| = 2.

Hence, by Rouché’s theorem, all four roots lie inside |z| = 2. By an elaboration of the estimate one
can show that all roots lie inside |z| = 1, 7.

Summing up the results above we conclude that all roots lie in the annulus

{z ∈ C | 1 < |z| < 1, 7},

and that they are pairwise complex conjugated.

The argument variation
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Example 2.22 Apply Rouché’s theorem to find the quadrants, in which the zeros of z4 + i z2 + 2 are
lying, and find the number of zeros which lie inside circles of centrum 0 and various radii.
We may check our results by finding the roots directly.

Remark 2.9 The main purpose of this example is of course to show a new technique. Therefore, we
have chosen an example, which can be solved explicitly, so one may check the results. ♦

0

0.5

1

1.5

2

0.5 1 1.5 2

Figure 10: The closed curve CR for RH = 2.

Consider the first quadrant. Let CR be the closed curve, which is sketched on the figure with R = 2.
It z = it runs through the vertical segment from i R to 0, this curve is mapped into the graph of

f(it) = t4 − it2 + 2, t ∈ [0, R].,

i.e. into a parabola.
If z = t runs through the real interval [0, R], the image curve is the graph of

f(t) = t4 + it2 + 2, t ∈ [0, R],

i.e. a parabola.
If z = R ei θ, θ ∈

[
0,

π

2

]
, runs throught the circular arc, then the image curve is the graph of

f
(
R ei θ

)
= R4e4iθ + i R2e2iθ + 2,

where

Im
{
f
(
R ei θ

)}
= R4 sin 4θ + R2 cos 2θ =

(
2R2 sin 2θ + 1

)
R2 cos 2θ,

which is only zero for θ =
π

4
. This corresponds to

f
(
R exp

(
i
π

4

))
= R4eiπ + i R2 exp

(
i
π

2

)
+ 2 = 2 − R2 − R4 < 0 for R > 1.

Now sin 2θ > 0 for θ ∈
]
0,

π

2

[
, so this is the only crossing of the real axis for R > 1, and it follows by

the figure that the winding number around 0 is 1, when R > 1.
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Figure 11: The image curve f (CR) for R = 2.
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Figure 12: The image curve f (CR) for R =
1
2
.

An analogous analysis shows that the winding number is 0 around 0, when R < 1, cf. the figure.
Summing up we conclude from Rouché’s theorem that there is precisely one zero in the first quadrant,
and that it is even given by |z| = 1 and Arg z =

π

4
, i.e.

z =
1√
2

(1 + i).

In the second quadrant we consider the curve CR as shown on the figure for R = 2. The axes are
mapped into the same curves as above, only taken in the opposite direction.
On the circular arc we also get as before,

f
(
R eiθ

)
= R4ei4θ + i R2e2iθ + i R2e2iθ + 2, θ ∈

[π
2

, π
]
.
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0
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–2 –1.5 –1 –0.5

Figure 13: The curve CR in the second quadrant for R = 2.

Here

Im
{
f
(
R eiθ

)}
=
(
2R2 sin 2θ + 1

)
R2 cos 2θ

is equal to 0, if either θ =
3π
4

, or sin 2θ = − 1
2R2

, for R >
1√
2
.

–10

–5

0

5

10

–10 –5 5 10 15

Figure 14: The image curve f (CR) of the curve in the second quadrant for R = 2 >
1√
2
.

If θ =
3π
4

, and R >
√

2, then

f

(
R exp

(
i
3π
4

))
= R4e3iπ + i R2e3i π

2 + 2 = −R4 + R2 + 2 < 0.

If R >
√

2 and sin 2θ = − 1
2R2

, then

Im
{
f
(
R eiθ

)}
= 0,

The argument variation
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hence

f
(
R eiθ

)
= Re

{
f
(
R eiθ

)}
= R4 cos 4θ − R2 sin 2θ + 2 = R4

(
1 − 2 sin2 2θ

)− R2 sin 2θ + 2

= R4

{
1 − 2 · 2

4R4

}
− R2 · 1

2R2
+ 2 = R4 − 1

2
− 1

2
+ 2 = R4 + 1.

A sketch of the image curve for R >
√

2 is given on the figure with R = 2 The winding number is 1,
so we have one root in the second quadrant for |z| ≥ √

2.

–0.2

–0.1

0

0.1

0.2

2.02 2.06 2.1 2.14 2.18

Figure 15: The image curve f (CR) of the curve in the second quadrant for R =
1
2

<
√

2.
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An analogous analysis shows that if 0 < R <
√

2, then the winding number is 1 around 0. Hence we
conclude that there is precisely one root in the second quadrant, and it fulfils |z| =

√
2. The argument

variation shows that the zero must satisfy Arc z =
3π
4

, so we have even found the root

z =
√

2 · ei 3π
4 = −1 + i.

–2

–1.5

–1

–0.5

0
–2 –1.5 –1 –0.5

Figure 16: The curve CR in the third quadrant for R = 2.

In the third quadrant the images of the axes are the usual parabolic arcs where the direction is as in
the first quadrant. It follows from

f
(
R eiθ

)
= R4e4iθ + i R2e2iθ + 2, θ ∈

[
π,

3π
2

]
,

and

Im
{
f
(
R eiθ

)}
=
(
2R2 sin 2θ + 1

)
R2 cos 2θ,

where sin 2θ > 0, that the image is the same as in the first quadrant, so there is only one zero in the

third quadrant, and it lies on the circle |z| = 1 and satisfies Arg z = −3π
4

, so

z = − 1√
2
− i√

2
.

Finally, the discussion of the fourth quadrant is identical with the discussion of the second quadrant,
so we have here precisely one root which lies on the circle |z| =

√
2 and satisfies Arg z = −π

4
, thus

z = 1 − i.

Remark 2.10 Finally, we solve the equation completely by noting that it is an equation of second
order in z2,

z4 + i z2 + 2 =
(
z2
)2

+ i
(
z2
)

+ 2 = 0.

Hence

z2 =
−i ±√−1 − 8

2
=

−i ± 3i
2

=

⎧⎨
⎩

i,

−2i.
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The solutions are then

z = ± 1√
2

(1 + i) and z = ±(1 − i),

i.e. the same results as found previously in a somewhat harder way. ♦

Remark 2.11 Even if this method is a little difficult, it may be successful in cases, when one cannot
find the exact solutions. It is of course a coincidence that we here can find the roots by either of the
two methods. ♦

Example 2.23 Find the number of zeros of

z4 + z3 + 5z2 + 2z + 4

in the first quadrant.
Hint: Use the argument principle on a curve CR, which is composed of the line segments from i R to
0, from 0 to R and the circular arc R eiθ, 0 < θ <

π

2
, for R sufficiently large.

0

0.5

1

1.5

2

2.5

3

0.5 1 1.5 2 2.5 3

Figure 17: The closed curve CR in the first quadrant for R = 3.

We shall find the winding number around 0 for the image curve f (CR).

We have on the real axis,

f(t) = t4 + t3 + 5t2 + 2t + 4 > 0 for t ∈ [0, R].

Then we get on the circular arc z = R eiθ, θ ∈
[
0,

π

2

]
, when R is sufficiently large, i.e. when

R3 + 5R2 + 2R + 4 < R4,

e.g. when R = 3, that the curve f
(
R eiθ

)
is a perturbation of the curve

(
R eiθ

)4
= R4e4iθ, θ ∈

[
0,

π

2

]
,

The argument variation
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thus f
(
R eiθ

)
starts at a point on R+, proceeds into the first quadrant, through the second quad-

rant and further through the third quadrant, and it ends in the fourth quadrant (possibly with a
continuation into the first quadrant).

Finally,

f(it) = (it)4 + (it)3 + 5(it)2 + 2it + 4 = t4 − 5t2 + 4 + i t
(
2 − t2

)
, t ∈ [0, R],

so it follows that f(it) = 0 for t = 0 or t = ±√
2. Hence, if R >

√
2, then f(it) is real at an interior

point of ]0, R[ only when R =
√

2, corresponding to the intersection point

f
(
i
√

2
)

=
(√

2
)4

− 5
(√

2
)2

+ 4 = 4 − 5 · 2 + 4 = −2

on the real axis.
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100

–100 –50 50 100

Figure 18: The curve f (CR) for R = 3.
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Figure 19: That part of the curve f (CR) for R = 3, which lies in the neighbourhood of 0.

Since f (CR) is a closed curve, it is in principle like the sketch on the figure for R = 3. We see that
it is difficult to see what happens in a neighbourhood of 0, so we also give a closeup of the curve in a

The argument variation
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neighbourhood of 0. It is seen that the winding number around 0 is 0, no matter how big R is. We
therefore conclude that the polynomial does not have roots in the first quadrant.

Remark 2.12 If we apply Hurwitz’s criterion on the problem,

∣∣∣∣∣∣∣∣
a1 a0 0 0
a3 a2 a1 a0

0 a4 a3 a2

0 0 0 a4

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 | 1 | 0 | 0
− | |
2 5 | 1 | 1
− − − |
0 4 2 | 5
− − − − −
0 0 0 4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

then

D1 = 1 > 0, D2 = 5 − 2 = 3 > 0, D3 =

∣∣∣∣∣∣
1 1 0
2 5 1
0 4 2

∣∣∣∣∣∣ = 2 > 0,

and D4 = 8 > 0, and we conclude that all roots lie in the left half plane.

This also follows from that there are no roots in the first quadrant. In fact, since the polynomial has
real coefficients, it follows by a conjugation that there are no root in the fourth quadrant either, so
all roots must lie in the left half plane. ♦
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Example 2.24 Prove that the equation z + e−z = λ has precisely one solution (which of course is
real) in the right half plane, when λ > 1.
Hint: Consider a half circle in the right half plan of centrum at 0 and radius R > λ + 1.

0

1

2

3

0.5 1 1.5 2 2.5 3

Figure 20: The graph of ϕ(x) = x + e−x with λ = 2 and λ = 3.

The real function

ϕ(x) = x + e−x, x ∈ R+,

has the derivative

ϕ′(x) = 1 − e−x > 0, for x ∈ R+,

so ϕ is increasing on R+. Now, ϕ(0) = 1 and ϕ(x) → +∞ for x → +∞, so it follows from the
continuity of ϕ that every value λ ∈ ]1,+∞[ is attained exactly once on R+.
Then we shall prove that there do not exist any other complex solutions for Re(z) > 0.

–4

–2

0

2

4

1 2 3 4

Figure 21: The curve CR for R = 4.

Put f(z) = z + e−z − λ, where λ > 1, and denote by CR the boundary of the half disc in the right
half plane of centrum 0 and radius R, where R > λ + 1, cf. the figure with R = 4.
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The image curve of the vertical line segment of the parametric description

z(t) = i(R − t), t ∈ [0, 2R],

is

f(i(R − t)) = i(R − t) + e−i(R−t) − λ = cos(R − t) − λ + i{R − t − sin(R − t)}, t ∈ [0, 2R].

It follows from λ > 1 ≥ cos(R − t), that Re{f(i(R − t))} < 0, so the image curve lies in the left half
plane.

The image curve of the circular arc of the parametric description

z(θ) = R eiθ, θ ∈
[
−π

2
,

π

2

]
,

where R > λ + 1, is given by

f
(
R eiθ

)
= R eiθ + exp(−R{cos θ + i sin θ}) − λ.

–4

–2

2

4

–3 –2 –1 1 2

Figure 22: The image curve f (CR) for λ = 2 and R = 4.

The intersection points with the x-axis are given by

Im
{
f
(
R eiθ

)}
= R · sin θ − e−R cos θ · sin(R · sin θ) = 0,

with the trivial solution θ = 0. Since

|R · sin θ| ≥ | sin(R · sin θ)| >
∣∣e−R cos θ · sin(R · sin θ)

∣∣ ,
when r θ ∈

]
−π

2
,

π

2

[
\ {0}, it follows that Im

{
f
(
R ei theta

)}
has the same sign as R · sin θ, θ ∈]

−π

2
,

π

2

[
. Hence, θ = 0 gives us the only intersection point with the x-axis. This is given by

f(R) = R + e−R − λ > R + 1 − λ > 0,

so the figure gives with λ = 2 and R = 4 the principal picture of the image curve f (CR). We conclude
that f (CR) for R > λ + 1 has the winding number 1 around 0. Then it follows from the argument
principle that z + e−z = λ has precisely one solution in the right half plane, and the claim is proved.
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Example 2.25 Prove that

f(z) = a − 8z2 + z4 + e−z for a ∈ [1,+∞[,

has precisely two zeros in the right half plane.

–4

–2

0

2

4

1 2 3 4

Figure 23: The closed curve CR in the right half plane for R = 4.

Let CR denote the closed curve in the right half plane consisting of a half circle of centrum at 0 and
radius R, and a line segment on the imaginary axis. Then a parametric description of the line segment
on the imaginary axis is given by

f(it) = a + 8 + t4 + e−it = 8 + a + t4 + cos t − i sin t, t ∈ [−R,R],

(but of course run through in the opposite direction).

Since Re{f(it)} = 8 + a + t4 + cos t > 0, this curve segment lies entirely in the right half plane.

Then consider the circular arc of the parametric description

z(θ) = R eiθ, θ ∈
[
−π

2
,

π

2

]
,

where R is chosen large. It follows from

f
(
R eiθ

)
= a − 8R2e2iθ + R4e4iθ + e−R cos θ−i R sin θ,

that we have for θ ∈
]
−π

2
,

π

2

[
, where cos θ > 0, the estimates

R4 =
∣∣R4e4iθ

∣∣ > a + 8R2 + e−R

=
∣∣a − 8R2e2iθ + e−R cos θ−i R sin θ

∣∣ ,
for R sufficiently large.

We conclude that f
(
R eiθ

)
for R “large” can be considered as a small perturbation of

f1

(
Reiθ

)
= R4e4iθ, θ ∈

[
−π

2
,

π

2

]
.
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Figure 24: The image curve f (CR) for a = 1 and R = 4.

It follows from

4θ ∈ [−2π, 2π] = 2 [−π, π] for θ ∈
[
−π

2
,

π

2

]
,

that the latter curve has the winding number 2 around 0. Hence, the same is true for f
(
R eiθ

)
. We

conclude that 8z2 + z4 + e−z has precisely two zeros in the right half plane for a ∈ [1,+∞[.
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Example 2.26 Find the number of zeros in the right half plane of the polynomial

1 + z2 − z3.

–3

–2

–1

0

1

0.5 1 1.5 2

Figure 25: The graph of 1 + x2 − x3, x ∈ [0, 2].

There is of course nothing wrong in first make a real analysis of the function. We see that we have a
real root in the right half plane ≈ 1, 5. Then let CR denote the curve, which is indicated on the figure
in the special case R = 4.
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Figure 26: The closed curve CR in the right half plane for R = 4.

The task is to find the winding number of the image curve f (CR) around 0 when R is large.

If z = it, t ∈ [−R,R], then

f(it) = 1 − t2 + i t3, t ∈ [−R,R].

Now, |z|3 > 1 + |z|2 for |z| = R large, so the image curve by f of R eiθ is a perturbation of

−R3e3iθ, θ ∈
[
−π

2
,

π

2

]
.
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Figure 27: The image curve f (CR) for R = 2.

A principal sketch of the image curve f (CR) is given on the figure as an example, where R = 2. This
curve has the winding number 1 around 0, so we have only one zero in the right half plane. The
polynomial has real coefficients and it is of odd degree, so this zero is real, and we have already found
it on the graph in the beginning of the example.

Example 2.27 1) Prove that all roots of the polynomial

P (z) = (1 + 2i)z4 − i z3 + 3z + 4 + 3i

belong the the open disc |z| < 2.

2) Prove that both the real and the imaginary part of P (z) are positive on both the x and the y axes,
where z = x + i y.

3) Prove that P (z) has a root in each of the quadrants of the z-plane.

1) Put

f(z) = (1 + 2i)z4 and g(z) = −i z3 + 3z + 4 + 3i.

If |z| = 2, then

|f(z)| =
∣∣(1 + 2i)z4

∣∣ = √
5 · 24 = 16

√
5, |z| = 2,

and

|g(z)| ≤ ∣∣−i z3
∣∣+ |3z| + 4 + |3i| = 8 + 6 + 4 + 3 = 21 < 32 < 16

√
5 = |f(z)|.

Then it follows from Rouché’s theorem that f(z) and P (z) = f(z) + g(z) have the same number
of zeros inside the circle |z| = 2, i.e. four zeros. Then by the Fundamental theorem of Algebra all
roots of the polynomial lie in the disc |z| < 2.

The argument variation
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Figure 28: The graph of ϕ(x) = x4 + 3x + 4.

2) By a computation we get for z = x ∈ R that

P (x) = (1 + 2i)x4 − i x3 + 3x + 4 + 3i =
{
x4 + 3x + 4

}
+ i
{
2x4 − x3 + 3

}
.

Clearly,

ϕ(x) = x4 + 3x + 4 > 0 for x ≥ −4
3
.

Since

ϕ′(x) = 4x3 + 3 ≤ −4 ·
(

4
3

)3

+ 3 < 0 for x ≤ −4
3
,

the function is decreasing for x ≤ −4
3
, so we conclude that ϕ(x) > 0 on R.

Clearly,

ψ(x) = 2x4 − x3 + 3 > 0 for x ≤ 3
√

3.

If x > 3
√

3, then

ψ(x) = x3(2x − 1) + 3 > 0.

Hence, we conclude that Re{P (x)} and Im{P (x)} both are positive, when x ∈ R, so the curve
P (R) lies in the first quadrant.

If z = iy, y ∈ R, then

P (iy) = (1 + 2i)y4 − i(i y)3 + 3i y + 4 + 3i =
{
y4 − y3 + 4

}
+ i
{
2y4 + 3y + 3

}
.

We have

ϕ(y) = y4 − y3 + 4 > 0 for |y| ≥ 1,

The argument variation
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because y4 > |y|3 for |y| > 1. Furthermore,

ϕ(y) > 0 for |y| ≤ 1,

because |y|3 < 4 for |y| < 1.

If we put ψ(y) = 2y4 + 3y + 3, then ψ′(y) = 8y3 + 3, and we have locally (actually globally) a
minimum corresponding to

y = − 3

√
3
8
∈ ] − 1, 1[.

Now

ψ(y) = 2y4 + 3(y + 1) > 0 for y = − 3

√
3
8
,

so we conclude that ψ(y) > 0 for every y ∈ R.

The argument variation
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Summing up we get that Re{P (iy)} and Im{P (iy)} are both positive for y ∈ R, so the curve P (iR)
lies in the first quadrant.

0

0.5

1

1.5

2

0.5 1 1.5 2

Figure 29: The closed curve C.

3) Since P (z) = f(z) + g(z), where |g(z)| < |f(z)| on |z| = 2, we see that P (z) is only a perturbation
of f(z) = (1 + 2i)z4 along |z| = 2. In particular, if C denotes the boundary of the quarter disc
|z| ≤ 2, x ≥ 0, y ≥ 0, then P (z) taken along |z| = 2 starts in the first quadrant, goes once through
the second, the third and the fourth quadrant, and finally ends in the first quadrant. Then it
follows from (2) that the images of the line segments on the axes lie in the first quadrant. We
conclude that the winding number is 1 around 0, so there is precisely one root in the first quadrant
according to the argument principle.

Since the investigations in all the other quadrants are the same, we conclude that there lies one
root in each quadrant.

Example 2.28 Compute – possible by using Rouché’s theorem – the complex line integral∮
|z|=1

3z2 + 4 + ez

z3 + 4z + ez
dz.

If we put h(z) = z3 + 4z + ez, then h(z) is analytic in C, and h′(z) = 3z2 + 4 + ez. Then∮
|z|=1

3z2 + 4 + ez

z3 + 4z + ez
dz =

∮
|z|=1

h′(z)
h(z)

dz = 2πi{number of zeros of h(z) in |z| < 1}.

Then put f(z) = 4z and g(z) = z3 + ez. We have the following estimates on |z| = 1,

|g(z)| ≤ |z|3 + |ez| ≤ 1 + e < 4 = |4z| = |f(z)|, |z| = 1.

Hence, we conclude from Rouché’s theorem that h(z) and f(z) have the same number of zeros inside
|z| = 1.

Since f(z) = 4z has only the simple zero z = 0 inside |z| = 1, we conclude that this number is 1, so∮
|z|=1

3z2 + 4 + ez

z3 + 4z + ez
dz = 2πi.

The argument variation
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Figure 30: The graph of x3 + 4x + ex, x ∈ [−1, 1]

Remark 2.13 It follows by considering the graph that the zero of the denominator inside |z| = 1 is
real. The approximate

z0 ≈ −0, 202 172 6

is then found by means of a pocket calculator. ♦

Example 2.29 Compute – possible by using Rouché’s theorem – the complex line integral∮
|z|=1

15z2 + 2z + 1 − sin z

5z3 + z2 + z + cos z
dz.

The integral is of the type∮
|z|=1

h′(z)
h(z)

dz,

and since h(z) = 5z3 + z2 + z + cos z is analytic everywhere, the value of the line integral is according
the argument principle equal to 2πi times the number of zeros of h(z) inside |z| = 1.

In order to find this number we apply Rouché’s theorem with

f(z) = 5z3 and g(z) = z2 + z + cos z.

When |z| = 1, then |f(z)| = 5 and

|g(z)| ≤ 1 + 1 + | cos z| ≤ 2 + cosh 1 < 2 + 2 = 4 < 5 = |f(z)|,
where we have used the estimate |cosz| ≤ cosh 1 for |z| ≤ 1.

By Rouché’s theorem, the number of zeros of h(z) = f(z) + g(z) inside |z| = 1 is equal to the number
of zeros (counted by multiplicity) of f(z) = 5z3 inside |z| = 1, thus equal to 3. Hence by insertion,∮

|z|=1

15z2 + 2z + 1 − sin z

5z3 + z2 + z + cos z
dz = 2πi · 3 = 6πi.

The argument variation
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Figure 31: The graph of 5x3 + x2 + x + cos x, x ∈ [−1, 1].

Remark 2.14 It is seen by considering the graph that only one of the three roots inside |z| = 1 is
real. ♦

Example 2.30 Given the polynomial

P (z) = z3 + 6iz − 3.

(a) Sketch the image of the y-axis by the map P and find the increase of the argument of P (z) on the
y-axis, when this is run through from i∞ to −i∞.

(b) Let CR denote the half circle of the parametric description

z(θ) = R eiθ, −π

2
≤ θ ≤ π

2
,

and let ΔR arg P denote the increase of the argument of P (z), when z runs through the half circle
from the point corresponding to the parameter θ = −π

2
to the point corresponding to the parameter

θ =
π

2
. Find

lim
R→+∞

ΔR arg P.

(c) The equation P (z) = 0 has three complex roots. Use the argument principle to find the number of
roots of positive real part – i.e. the number of roots lying in the right half plane.

(a) A parametric description of the imaginary axis run through from i∞ to −i∞, is e.g. given by

z(t) = −it, t ∈ R.

We get by insertion,

w = u + iv = P (−it) = (−it)3 + 6i(−it) − 3 = it3 + 6t − 3,

The argument variation
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Figure 32: The image of the imaginary axis.

thus

(2) u(t) = 6t − 3 and v(t) = t3,

hence t =
u + 3

6
, and therefore

v =
(

u + 3
6

)3

.

The argument variation
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The direction of the curve is given by (2), i.e. we start in the third quadrant, continue through the
second quadrant and end in the first quadrant. Notice in particular that 0 lies below the curve.

–200

–100

100

200

–200 –100 100 200

Figure 33: The image of the half circle CR.

(b) If R is large, then z3 dominates in P (z), so the curve starts at P (−iR) in the first quadrant, follows
R3e3iθ one and a half times around 0, and ends at P (iR) in the third quadrant. In particular,

lim
R→+∞

ΔR arg P = lim
R→+∞

ΔR arg
(

z3

{
1 +

6i
z2

− 3
z2

})
= lim

R→+∞
ΔR

(
z3
)

= 3π.

(c) When the two curves are put together, and since the image of the imaginary axis lies above 0,
the winding number around 0 must be 1, when R is sufficiently large. We therefore conclude from
the argument principle that there is one root in the right half plane.

Remark 2.15 The roots of

z3 + 6iz − 3 = z3 + pz + q,

can in principle be found by Cardano’s formula, where p = 6i and q = −3. In fact,

z =
3

√
−q

2
+

√
q2

4
+

p3

27
+

3

√
−q

2
−
√

q2

4
+

p3

27
= 3

√
3
2

+
1
2

√
9 − 32i + 3

√
3
2
− 1

2

√
9 − 32i,

where the cubic roots are chosen, such that

3

√
3
2

+
1
2

√
9 − 32i · 3

√
3
2
− 1

2

√
9 − 32i = −2i.

In practice this solution formula is usually inappropriate, because for example,

√
9 − 32i = ±

⎧⎨
⎩
√√

1105 + 9
2

− i

√√
1105 − 9

2

⎫⎬
⎭ .

This shows why one in practice should avoid the application of Cardano’s formula. ♦

The argument variation
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Example 2.31 Given

ϕ(z) = ez − 3 z2.

Prove that ϕ(z) has two zeros z1 and z2 in the domain {z ∈ C | |z| < 1}, and prove that z1 and z2 are
both simple and real. (The exact values of z1 and z2 are not required).
Compute the values of

res
(

z(z − 2)
ez − 3z2

; zj

)
, j = 1, 2,

by eliminating zj by means of the equation ϕ (zj) = 0.
Finally, compute the complex line integral∮

|z|=1

z(z − 2)
ez − 3z2

dz.
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Figure 34: The graph of ϕ(x) = ex − 3x2, x ∈ [−1, 1].

1) We first apply Rouché’s theorem. The functions

f(z) = −3z2 and g(z) = ez

are both analytic in C. We get for |z| = 1 the estimates,

|g(z)| = |ez| = ex ≤ e1 < 3 = |f(z)|, |z| = 1,

and then it follows from Rouché’s theorem that f(z) = −3z2 and ϕ(z) = ez − 3z2 have the same
number of zeros inside |z| = 1, i.e. 2.

When we consider the graph. we see that ϕ(x) = ex − 3x2 = 0 for two different real values in
] − 1, 1[, and since we according to the above have precisely two zeros inside |z| = 1, the roots are
real and simple.

Remark 2.16 One can approximately find the numerical values

z1 ≈ −0, 4590 og z2 ≈ 0, 9100. ♦

The argument variation
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Remark 2.17 It is not so important for the rest of the example that the zeros are real. The
important thing is that they are simple, so ϕ′ (z0) �= 0, when ϕ (z0) = 0. Thus, we assume

ϕ (z0) = ez0 − 3z2
0 = 0,

and we find

ϕ′ (z0) = ez0 − 6z0 = (ez0 − 3z0) +
(
3z2

0 − 6z0

)
= 3z0 (z0 − 2) .

Therefore, if both ϕ (z0) = 0 and ϕ′ (z0) = 0, then we necessarily have either z0 = 0 (which is not
possible) or z0 = 2 (which is not possible either), because it is easily shown that

ϕ(0) = 1 �= 0 and ϕ(2) = e2 − 12 �= 0.

Hence we conclude that ϕ(z) and ϕ′(z) are never zero simultaneously, and it follows that every
zero of ϕ(z) is simple. ♦

2) Since ϕ(z) only has simple zeros zj , and since we in each of these have

ezj = 3 z2
j ,

we conclude from Rule II that

res
(

z(z − 2)
ez − 3z2

; zj

)
= res

(
z(z − 2)

ϕ(z)
; zj

)
=

zj (zj − 2)
ϕ′ (zj)

=
z2

j − 2zj

ezj − 6zj
=

z2
j − 2zj

3z2
j − 6zj

=
1
3
.

3) Finally, it follows from Cauchy’s integral formula that∮
|z|=1

z(z − 2)
ez − 3z2

dz = 2πi

{
res
(

z(z − 2)
ez − 3z2

; z1

)
+ res

(
z(z − 2)
ez − 3z2

; z2

)}
= 2πi

(
1
3

+
1
3

)
=

4πi

3
.

Example 2.32 Let K denote the square with the corners

1 + i, −1 + i, −1 − i, 1 − i,

run through in this sequence.

1) Prove the estimate
∣∣z2 + sin z

∣∣ < 4 for z ∈ K.

2) Compute – e.g. by an application of Rouché’s theorem – the complex line integral∮
K

16z3 + 2z + cos z

4z4 + z2 + sin z
dz.

1) It follows from

sin z = sin(x + iy) = sinx cosh y + i cos x sinh y,

that

| sin z|2 = sin2x cosh2 y + cos2 x sinh2 y = cosh2 y − cos2 x,

hence∣∣z2 + sin z
∣∣ ≤ |z|2 + | sin z| < 2 + cosh1 < 4

for every z ∈ K, and the estimate is proved.

The argument variation

Download free eBooks at bookboon.com



Complex Functions Examples c-9

58 
 

2) If we put f(z) = 4z4 and g(z) = z2 + sin z, then

|f(x)| ≥ 4 and |g(z)| < 4 for z ∈ K.

Thus by Rouché’s theorem,∮
K

16z3 + 2z + cos z

4z4 + z2 + sin z
dz =

∮
K

f ′(z) + g′(z)
f(z) + g(z)

dz =
∮

K

f ′(z)
f(z)

dz =
∮

K

4
z

dz = 8iπ.

The argument variation
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3 Stability criteria

Example 3.1 Check if P (z) = z3 + 2z2 + 3z + 1 is a Hurwitz polynomial.

By using Schur’s criterion we get the polynomial of second degree,

Q(z) =
1
z1
{
7
(
z3 + 2z2 + 3z + 1

)− (−1)
(−z3 + 2z2 − 3z + 1

)}
= 6z2 + 10z + 8.

Since Q(z) is a polynomial of second degree, it is a Hurwitz polynomial, because all its coefficients
are positive. Since P (z) also has only positive coefficients, it follows from Schur’s criterion that P (z)
is a Hurwitz polynomial.

If we instead apply Hurwitz’s criterion, then we get the determinants

D1 = 2, D2 =

∣∣∣∣∣∣
2 1

1 3

∣∣∣∣∣∣ = 5, D3 =

∣∣∣∣∣∣∣∣∣∣

2 1 0

1 3 2

0 0 1

∣∣∣∣∣∣∣∣∣∣
= 5.

All these determinants are positive, so we conclude that the polynomial is a Hurwitz polynomial, and
all its roots lie in the left half plane.

Example 3.2 Check if the polynomial P (z) = z3 + 2z2 + z + 3 is a Hurwitz polynomial.

When we apply Schur’s criterion, we get

Q(z) =
1

z + 1
{
7
(
z3 + 2z2 + z + 3

)− 3
(−z3 + 2z2 − 3z + 1

)}
= 10z2 − 2z + 12.

Here Q(z) has terms of both positive and negative coefficients, so Q(z) is not a Hurwitz polynomial.
We therefore conclude that P (z) is not a Hurwitz polynomial.

If we instead apply Hurwitz’s criterion, we immediately get that

D2 =

∣∣∣∣∣∣
2 1

3 1

∣∣∣∣∣∣ = −1 < 0.

Hence there is at least one root in the closed right half plane Re z ≥ 0.

When we insert the parametric description z = iy of the imaginary axis, then

P (iy) =
(
3 − 2y2

)
+ iy

(
1 − y2

)
,

which is not zero for any y ∈ R. Therefore, there is at least one root in the open right half plane.
Clearly, such a root cannot be real, and since the coefficients of the polynomial are real, the complex
conjugated of the root must also be a root. By using a pocket calculator we find the approximate
values

−2, 174 559 41 og 0, 087 279 7 ± 1, 171 312 1 i.

Stability criteria
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Example 3.3 Find the set of values of the parameter c, such that the polynomial

f(z) = z4 + 2z3 + 3z2 + 4z + c

has only roots in the left half plane.

We shall use Hurwitz’s criterion. It follows from

a0 = 1, a1 = 2, a2 = 3, , a3 = 4, a4 = c,

that D4 is given by

D4 =

∣∣∣∣∣∣∣∣
a1 a0 0 0
a3 a2 a1 a0

0 a4 a3 a2

0 0 0 a4

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
2 1 0 0
4 3 2 1
0 c 4 3
0 0 0 c

∣∣∣∣∣∣∣∣
.

It follows easily that

D1 = 2 > 0, D2 = 2 · 3 − 1 · 4 = 2 > 0, D4 = c · D3.

When we apply Hurwitz’s criterion, it follows that f(z) has its roots in the left half plane, if and only
if c > 0 and D3 > 0. Since

D3 =

∣∣∣∣∣∣
2 1 0
34 3 2
0 c 4

∣∣∣∣∣∣ = 24 − 16 − 4c = 8 − 4c = 4(2 − c),

the condition becomes c ∈ ]0, 2[.

Remark 3.1 Of continuity reasons two of the roots for c = 2 must lie on the imaginary axis. When
c = 2, we get more specifically,

z4 + 2z3 + 3z2 + 4z + 2 =
(
z4 + 2z3 + z2

)
+
(
2z2 + 4z + 4

)
=
(
z2 + 2

) (
z2 + 2z + 1

)
=
(
z − i

√
2
)(

z + i
√

2
)

(z + 1)2,

and the claim follows.

Alternatively we put z = iλ, λ ∈ R, and separate into the real and the imaginary part,

(iλ)4 + 2(iλ)3 + 3(iλ)2 + 4(iλ) + 2 = λ4 − 3λ2 + 2 + 2i
(−λ3 + 2λ

)
.

This expression is zero, if and only if

λ4 − 3λ2 + 2 = 0 and λ
(
λ2 − 2

)
= 0,

thus if and only if λ2 = 2, hence λ = ±√
2. Then we conclude that(

z − i
√

2
)(

z + i
√

2
)

= z2 + 2

is a divisor, and it is easy to find all roots. ♦

Stability criteria
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Example 3.4 Find the set of parameters c, for which the polynomial

f(z) = 3z3 + 2z2 + z + c

has only roots in the left half plane.

We shall use Hurwitz’s criterion where

a0 = 3, a1 = 2, a2 = 1, a3 = c.

Then

D3 =

∣∣∣∣∣∣
a1 a0 0
a3 a2 a1

0 0 a3

∣∣∣∣∣∣ =
∣∣∣∣∣∣

2 3 0
c 1 2
0 0 c

∣∣∣∣∣∣ = c · D2.

It follows from

D1 = 2 > 0 and D2 = 2 − 3x > 0 for c <
2
3
,

that f(z) has all its roots lying in the left half plane, if and only if c ∈
]
0 ,

2
3

[
.

Remark 3.2 When c =
2
3
, then by the continuity at least one root must lie on the imaginary axis.

Now

3z2 + 2z2 + z +
2
3

=
(
3z3 + z

)
+ 2
(

z2 +
1
3

)
= (3z + 2)

(
z2 +

1
3

)
,

so when c =
2
3

all roots are given by

z = −2
3
, z = ± i√

3
.

Alternatively, put z = iλ, λ ∈ R into the polynomial to get

3(iλ)3 + 2(iλ)2 + iλ +
2
3

= −2λ2 +
2
3

+ i λ
(
1 − 3λ2

)
.

This expression is zero, if and only if both

2λ2 =
2
3

and λ
(
1 − 3λ2

)
= 0,

thus if and only if λ2 =
1
3
, hence λ = ± 1√

3
, and the roots on the imaginary axis are ± i√

3
. If we then

divide by(
z − i√

3

)(
z +

i√
3

)
= z2 +

1
3

we get the real root z = −2
3
. ♦
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Example 3.5 Find the set of the parameters a and b, such that the polynomial

f(z) = 4z4 + z3 + z2 + az + b

has only roots in the left half plane. Sketch the solution set in the (a, b)-plane.

It follows from

a0 = 4, a1 = 1, a2 = 1, a3 = a, a4 = b,

that

D4 =

∣∣∣∣∣∣∣∣
a1 a0 0 0
a3 a2 a1 a0

0 a4 a3 a2

0 0 0 a4

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1 4 0 0
a 1 1 4
0 b a 1
0 0 0 b

∣∣∣∣∣∣∣∣
.

According to Hurwitz’s criterion we get the conditions

D1 = 1 > 0, D2 = 1 − 4a > 0, D4 = b · D3 > 0,

and

D3 =

∣∣∣∣∣∣
1 4 0
a 1 1
0 b a

∣∣∣∣∣∣ = a − b − 4a2 > 0.
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These requirements are fulfilled, if and only if a, b > 0 and a <
1
4
, and

b < a − 4a2 = a(1 − 4a).

0

0.02

0.04

0.06

–0.1 0.1 0.2 0.3

Figure 35: The domain of stability in the (a, b)-plane.

It follows from the inequalities above that the domain of stability in the (a, b)-plane is given by{
(a, b)

∣∣∣∣ a ∈
]
0 ,

1
4

[
, 0 < b < a − 4a2

}
,

which is bounded by the parabola b = a − 4a2 and the a-axis.

Remark 3.3 When (a, b) lies on the boundary b = a− 4a2, then by the continuity at least one of the
roots must lie on the imaginary axis. It follows by a reduction that

4z4 + z3 + z2 + az + a − 4a2 = 4
(
z4 − a2

)
+
(
z3 + az

)
+
(
z2 + 1

)
= 4
(
z2 + a

) (
z2 − 1

)
+ z
(
z2 + a

)
+
(
z2 + a

)
=
(
z2 + a

) (
4z2 − 4a + z + 1

)
=
(
z2 + a

) (
4z2 + z + 1 − 4a

)
,

hence the roots are

z = ±i
√

a and z =
−1 ±√1 − 16(1 − 4a)

8
=

−1 ±√
64a − 15
8

. ♦
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Example 3.6 Prove that

z3 + (3 − i)z2 + (5 − 2i)z + 3 − i

has all its roots lying in the left half plane.

Since the polynomial has complex coefficients, we cannot apply Hurwitz’s criterion directly. However,
since the conjugated polynomial has the complex conjugated roots, the polynomial

P (z)P (z) =
{
z3+(3−i)z2+(5−2i)z+3−i

}{
z3+(3+i)z2+(5+2i)z+3i

}
= z6+6z5+(10+9+1)z4+{6+2Re{(3−i)(5+2i)}}z3

+2{2Re{(3−i)(3+i)}+25+4}z2+2Re{(5−2i)(3+i)}z+9+1
= z6+6z5+20z4+{6+2(15+2)}z3+{2 · 10+29}z2+2(15+2)z+10
= z6+6z5+20z4+40z3+49z3+34z+10

must have its roots lying in the left half plane, if and only if

P (z) = z3 + (3 − i)z2 + (5 − 2i)z + 3 − i

has its roots lying in the left half plane. Hence we can alternatively check

f(z) = z6 + 6z5 + 20z4 + 40z3 + 49z2 + 34z + 10,

where

a0 = 1, a1 = 6, a2 = 20, a3 = 40, a4 = 49, a5 = 34, a6 = 10.

Here we have a couple of possible solutions, of which we start with Hurwitz’s criterion, which gives a
lot of computation, because the determinants are so large.

Hurwitz’s criterion. First we write down

D6 =

∣∣∣∣∣∣∣∣∣∣∣∣

a1 a0 0 0 0 0
a3 a2 a1 a0 0 0
a5 a4 a3 a2 a1 a0

0 a6 a5 a4 a3 a2

0 0 0 a6 a5 a4

0 0 0 0 0 a6

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

6 1 0 0 0 0
40 20 6 1 0 0
34 49 40 20 6 1
0 10 34 49 40 20
0 0 0 10 34 49
0 0 0 0 0 10

∣∣∣∣∣∣∣∣∣∣∣∣
,

where we shall find the signs of all the minorants. It follows immediately that

D1 = 6, D2 = 120 − 40 = 80 and D6 = 10 · D5,

so it “only” remains to check that both

D3 > 0, D4 > 0 and D5 > 0.

We get by a computation,

D3 =

∣∣∣∣∣∣
6 1 0

40 20 6
34 49 40

∣∣∣∣∣∣ = 4

∣∣∣∣∣∣
3 1 0

10 10 3
17 49 40

∣∣∣∣∣∣ = 4

∣∣∣∣∣∣
3 1 0

10 10 3
14 48 40

∣∣∣∣∣∣ = 8

∣∣∣∣∣∣
3 1 0

10 10 3
7 24 20

∣∣∣∣∣∣
= 8

∣∣∣∣∣∣
3 1 0

10 10 3
10 25 20

∣∣∣∣∣∣ = 40

∣∣∣∣∣∣
3 1 0

10 10 3
2 5 4

∣∣∣∣∣∣ = 40(120 + 6 − 40 − 45) = 40 · 41 > 0.
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Furthermore,

D4 =

∣∣∣∣∣∣∣∣
6 1 0 0

40 20 6 1
34 49 40 20
0 10 34 49

∣∣∣∣∣∣∣∣
= 4

∣∣∣∣∣∣∣∣
3 1 0 0

20 20 3 1
17 49 20 20
0 10 17 49

∣∣∣∣∣∣∣∣
= 4

∣∣∣∣∣∣∣∣
3 1 0 0

20 30 20 50
20 50 20 20
0 10 17 49

∣∣∣∣∣∣∣∣
= 400

∣∣∣∣∣∣∣∣
3 1 0 0
2 3 2 5
2 5 2 2
0 10 17 49

∣∣∣∣∣∣∣∣
= 400

⎧⎨
⎩3

∣∣∣∣∣∣
3 2 5
5 2 2

10 17 49

∣∣∣∣∣∣−
∣∣∣∣∣∣

2 2 5
2 2 2
0 17 49

∣∣∣∣∣∣
⎫⎬
⎭

= 400

⎧⎨
⎩3(6 · 49 + 40 + 25 · 17 − 100 − 490 − 102) −

∣∣∣∣∣∣
2 2 5
0 0 −3
0 17 49

∣∣∣∣∣∣
⎫⎬
⎭

= 400{3(294 + 40 + 425 − 100 − 490 − 102) − 2 · 3 · 17}

= 1200{759 − 692 − 34} = 1200 · 33 > 0.

Finally,

D5 =

∣∣∣∣∣∣∣∣∣∣

6 1 0 0 0
40 20 6 1 0
34 49 40 20 6
0 10 34 49 40
0 0 0 10 34

∣∣∣∣∣∣∣∣∣∣
= 8

∣∣∣∣∣∣∣∣∣∣

3 1 0 0 0
20 20 3 1 0
17 49 20 20 3
0 10 17 49 20
0 0 0 10 17

∣∣∣∣∣∣∣∣∣∣

= 8

∣∣∣∣∣∣∣∣∣∣

3 1 0 0 0
20 20 3 1 0
20 50 20 20 3
20 30 20 50 20
0 0 0 10 17

∣∣∣∣∣∣∣∣∣∣
= 80

∣∣∣∣∣∣∣∣∣∣

3 1 0 0 0
20 20 3 1 0
20 50 20 30 20
2 3 2 5 2
0 0 0 10 17

∣∣∣∣∣∣∣∣∣∣

= 800

∣∣∣∣∣∣∣∣∣∣

3 1 0 0 0
20 20 3 1 0
2 5 2 3 2
2 3 2 5 2
0 0 0 10 17

∣∣∣∣∣∣∣∣∣∣
= 800

∣∣∣∣∣∣∣∣∣∣

3 1 0 0 0
20 20 3 1 0
0 2 0 −2 0
2 3 2 5 2
0 0 0 10 17

∣∣∣∣∣∣∣∣∣∣
,
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hence

D5 = 1600

∣∣∣∣∣∣∣∣∣∣

3 1 0 0 0
20 20 3 1 0
0 1 0 −1 0
2 3 2 5 2
0 0 0 10 17

∣∣∣∣∣∣∣∣∣∣
= 1600

∣∣∣∣∣∣∣∣∣∣

3 1 0 0 0
20 21 3 1 0
0 0 0 −1 0
2 8 2 5 2
0 10 0 10 17

∣∣∣∣∣∣∣∣∣∣
= 1600

∣∣∣∣∣∣∣∣
3 1 0 0

20 21 3 0
2 8 2 2
0 10 0 17

∣∣∣∣∣∣∣∣
= 3200

∣∣∣∣∣∣∣∣
3 1 0 0

20 21 3 0
1 4 1 1
0 10 0 17

∣∣∣∣∣∣∣∣
= 3200

⎧⎨
⎩3

∣∣∣∣∣∣
21 3 0
4 1 1

10 0 17

∣∣∣∣∣∣− 1

∣∣∣∣∣∣
20 3 0
1 1 1
0 0 17

∣∣∣∣∣∣
⎫⎬
⎭

= 3200

⎧⎨
⎩9

∣∣∣∣∣∣
7 1 0
4 1 1

10 0 17

∣∣∣∣∣∣− 172

⎫⎬
⎭ = 3200

⎧⎨
⎩9

∣∣∣∣∣∣
7 1 0

−3 0 1
10 0 17

∣∣∣∣∣∣− 289

⎫⎬
⎭

= 3200
{

9 · (−1)
∣∣∣∣ −3 1

10 17

∣∣∣∣− 289
}

= 3200{9(51 + 10) − 289)} = 3200 · 260 > 0,

and we have D5 > 0. Since this implies that D6 > 0, we have proved that all minorants are
positive, and it follows from Hurwitz’s criterion that all roots are lying in the open left half plane.
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Schur’s criterion. Alternatively we apply Schur’s criterion on the polynomial

f(z) = z6 + 6z5 + 20z4 + 40z3 + 49z2 + 34z + 10.

Since all coefficients are positive, this polynomial is a Hurwitz polynomial, if and only if

f(1)f(z) − f(−1)f(−z)
z + 1

is a Hurwitz polynomial. A computation gives

f(z) = z6 + 6z5 + 20z4 + 40z3 + 49z2 + 34z + 10 =
1

z + 1
{160 f(z) − 0 · f(−z)} = 160 · f(z)

z + 1
,

so z = −1 is a root. Using division by polynomials we get

f(z)
z + 1

= z5 + 5z4 + 15z3 + 25z2 + 24z + 10.

Since f(z) = P (z)P (z), we again obtain z = −1 as a root, so by another division by polynomials,

f1(z) =
f(z)

(z + 1)2
= z4 + 4z3 + 11z2 + 14z + 10.

Since all coefficients are positive, and f1(1) = 40 and f1(−1) = 4, it follows that f1(z) is a Hurwitz
polynomial, if and only if f2(z) is a Hurwitz polynomial, where

f2(z) =
f1(1)f1(z) − f(−1)f(−z)

z + 1
=

4
z + 1

{10f1(z) − f1(−z)}

=
4

z + 1
{
10z4+40z3+110z2+140z+100−z4+4z3−11z2+14z−10

}
=

4
z + 1

{
9z4 + 44z3 + 99z2 + 154z + 90

}
= 4
{
9z3 + 35z2 + 64z + 90

}
.

Putting

f3(z) = 9z3 + 35z2 + 64z + 90,

we get f3(1) = 198 and f3(−1) = 52, so f2(z) and f3(z) are Hurwitz polynomials, if and only if

f4(z) =
f3(1)f3(z) − f3(−1)f3(−z)

z + 1
=

2
z + 1

{99f3(z) − 26f3(−z)}

=
2

z + 1
{
99
(
9z3+35z2+64z+90

)−26
(−9z3+35z2−64z+90

)}
=

2
z + 1

{
125 · 9z3 + 73 · 35z2 + 125 · 64z + 73 · 90

}
=

10
z + 1

{
9 · 25z3 + 7 · 73z2 + 25 · 64z + 18 · 73

}
=

10
z + 1

{
225z3 + 511z2 + 1600z + 1314

}
= 10

{
225z2 + 286z + 1314

}
is a Hurwitz polynomial. Since f4(z) is a polynomial of second degree of positive coefficients, it is
a Hurwitz polynomial, and we conclude that the original polynomial

z3 + (3 − i)z2 + (5 − 2i)z + 3 − i

has all its roots lying in the open left half plane.
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Remark 3.4 By chance we found by Schur’s criterion that z = −1 is a root. Then by division by a
polynomial,

z3 + (3 − i)z2 + (5 − 2i)z + 3 − i = (z + 1)
(
z2 + (2 − i)z + 3 − i

)
.

The roots of z2 + (2 − i)z + 3 − i are given by

z =
−2 + i ±√(−2 + i)2 − 4(3 − i)

2
=

−2 + i ±√
3 − 4i − 12 + 4i

2
=

−2 + i ±√−9
2

=
−2 + i ± 3i

2
,

hence z3 + (3 − i)z2 + (5 − 2i)z + 3 − i has the three roots

−1, −1 + 2i and − 1 − i,

which all lie in the left half plane. ♦

Example 3.7 Given the transfer function f(z) =
z2 − 1
2z2 − 5

of a control system. Check if the control

system is stable.

We shall first put f(z) on the form
H(z)

1 + H(z)
, i.e.

H(z) =
− z2 − 1

2z2 − 5
z2 − 1
2z2 − 5

− 1
=

−z2 + 1
z2 − 1 − 2z2 + 5

=
−z2 + 1
−z2 + 4

=
z2 − 1
z2 − 4

.

By Nyquist’s criterion we shall then consider

1
1 + H(z)

=
1

1 +
z2 − 1
z2 − 4

=
z2 − 4

z2 − 4 + z2 − 1
=

z2 − 4
2z2 − 5

.

The poles of this function are ±
√

5
2
, of which only one lies in the right half plane, i.e. P = 1.

Then let z = it, t ∈ R, run through the imaginary axis. Then

w =
1

1 + H(it)
=

1

1 +
−t2 − 1
−t2 − 4

=
1

1 +
t2 + 1
t2 + 4

, t ∈ R,

so the image curve runs through the interval
]
1
2

,
4
5

]
twice, when z = it runs through the imaginary

axis. In particular, the winding number is 0 �= 1 around w = 1, so the control system is unstable.
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Example 3.8 Find the set of a ∈ R+, for which the polynomial

P (z) = a z4 + 4z3 + 3z2 + 2z + 1

has all its roots in the open left half plane.
Find an a ∈ R, such that P (z) = 0 has a solution on the imaginary axis, and then find in this case
all its roots.

1) We note that it is given that a > 0. We shall use Hurwitz’s criterion, where

a0 = a, a1 = 4, a2 = 3, a3 = 2, a4 = 1.

It follows that

D4 =

∣∣∣∣∣∣∣∣
a1 a0 0 0
a3 a2 a1 a0

0 a4 a3 a2

0 0 0 a4

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
4 a 0 0
2 3 4 a
0 1 2 3
0 0 0 1

∣∣∣∣∣∣∣∣
.

Hence, D1 = 4 > 0,

D2 = 12 − 2a > 0 for a < 6,

and

D3 = 24 − 4a − 16 = 8 − 4a > 0 for a < 2,

and D4 = 1 · D3 > 0 for a < 2. Summing up, the condition is that a ∈ ]0, 2[.

2) Assume that z = iy, y ∈ R, is a root. Then we get by insertion,

P (iy) = a y4 − 4i y3 − 3y2 + 2i y + 1 =
{
a y4 − 3 y2 + 1

}
+ 2i y

{−2y2 + 1
}

= 0.

When we separate the real and the imaginary part, we get for the imaginary part the possibilities

y = 0 (which must be rejected, because the real part then is 1 �= 0) and y2 =
1
2
. When we put

y2 =
1
2

into the condition for the real part, then

0 = a y4 − 3y2 + 1 =
1
4

a − 3 · 1
2

+ 1 =
1
4

a − 1
2
,

so a = 2, which we also could have obtained by the continuity, because the roots are lying in the
open left half plane, if and only if a ∈ ]0, a[.
When we insert this a-value, we get after a reduction that

P (z) = 2z4 + 4z3 + 3z2 + 2z + 1 =
(
2z2 + 1

) (
z2 + 2z + 1

)
=
(
2z2 + 1

)
(z + 1)2,

so the roots are z = −1 (a double root) and z = ±i
1√
2
.

Alternatively, both z = iy and z = −iy are simultaneously roots, because the polynomial has
real coefficients. This means that

(z − iy)(z + iy) = z2 + y2
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must be a divisor in the polynomial. We get by the division,

az4 + 4z3 + 3z2 + 2z + 1 =
(
z2 + y2

) (
az2 + 4z +

(
3 − ay2

))
+
(
2 − 4y2

)
z +
(
ay4 − 3y2 + 1

)
.

Since the remainder part must be 0 for every z ∈ C, when ±iy are roots, we conclude that

y2 =
1
2

and ay4 − 3y2 + 1 = a · 1
4
− 3

2
+ 1 = 0,

so we get again a = 2, and then we proceed as above.

Example 3.9 Given

Pλ(z) = z4 + 4z3 + 8z2 + λ z + 12.

Find the largest possible open interval ]a, b[,� R, for which all roots of Pλ(z) lie in the open left half
plane, when λ ∈ ]a, b[.
Then find all roots of Pa(z).

We must obviously require that λ > 0. We shall apply Hurwitz’s criterion. We first identify the
coefficients,

Pλ(z) = 1 · z4 + 4 · z3 + 8 · z2 + λ · z + 12 = a0z
4 + a1z

3 + a2z
2 + a3z + a4.
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Then

D4 =

∣∣∣∣∣∣∣∣
a1 a0 0 0
a3 a2 a1 a0

0 a4 a3 a2

0 0 0 a4

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
4 1 0 0
λ 8 4 1
0 12 λ 8
0 0 0 12

∣∣∣∣∣∣∣∣
.

The minorants are then computed

D1 = 4, D2 =
∣∣∣∣ 4 1

λ 8

∣∣∣∣ = 32 − λ, D3 =

∣∣∣∣∣∣
4 1 0
λ 8 4
0 12 λ

∣∣∣∣∣∣ = 32λ − λ2 − 192,

and D4 = 12 · D3, so D4 > 0, if and only if D3 > 0. It is trivial that D1 > 0. Furthermore,

D2 = 32 − λ > 0 for λ < 32,

and

D3 = −λ2 + 32λ − 192 = −(λ − 8)(λ − 24) > 0 for λ ∈ ]8, 24[.

Summing up we see that all roots of Pλ(z) lie in the open left half plane for

λ ∈ ]8, 24[= ]8, 24[.

Then we shall find all roots of Pa(z) = P8(z). We get by some small rearrangements,

P8(z) = z4 + 4z3 + 8z2 + 8z + 12 = 4z
(
z2 + 2

)
+ z4 + 8z2 + 12

= 4z
(
z2 + 2

)
+
(
z2 + 2

) (
z2 + 6

)
=
(
z2 + 2

) (
z2 + 4z + 6

)
=

(
z2 + 1

) ({z + 2}2 + 1
)
,

which shows that the roots are

z = ±i
√

2 and z = −2 ± i
√

2.

Alternatively, λ = 8 is a limiting case, so at least one root must lie on the imaginary axis. If we
put z = iy, then

P8(iy) = y4 − 4iy3 − 8y2 + 8iy + 12 =
(
y4 − 8y2

)− 4iy
(
y2 − 2

)
=

(
y2 − 2

) (
y2 − 6

)− 4iy
(
y2 − 2

)
=
(
y2 − 2

) {
y2 − 6 + 8iy

}
,

and we conclude that y = ±√
2, thus z = ±i

√
2, is a solution, and we get by a division by

(z − i
√

2)(z + i
√

2) = z2 + 2

the remaining roots z = −2 ± i
√

2.

Remark 3.5 For completeness we also compute P24(z). We get

P24(z) = z4 + 4z3 + 8z2 + 24z + 12 =
(
z4 + 8z2 + 12

)
+ 4
(
z2 + 6

)
z

=
(
z2 + 2

) (
z2 + 6

)
+ 4z

(
z2 + 6

)
=
(
z2 + 6

) (
z2 + 4z + 2

)
= (z − i

√
6)(z + i

√
6)
({z + 2}2 − 2

)
,

so the roots are

z = ±i
√

6 and z = −2 ±
√

2. ♦
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Example 3.10 Given the polynomial

Pλ.μ(z) = z4 + 2z3 + λ z2 + μ z + 1

which depends on the parameters λ, μ ∈ R+.

(a) For every fixed μ ∈ R+, find the largest possible open half line

]a(μ),+∞[� R+,

such that all the roots of Pλ,μ(z) are lying in the open left half plane Re(z) < 0, when
λ ∈ ]a(μ),+∞[.

(b) We define by the above a function a(μ), μ ∈ R+. Prove that a(μ) has a minimum for some
μ0 ∈ R+, and then find μ0.

(c) Solve the equation

Pa(μ0),μ0(z) = 0.

Clearly, this example is inviting an application of Routh-Hurwitz’s criterion. Let μ ∈ R+ be fixed.
Putting

Pλ,μ(z) = 1 · z4 + 2 · z3 + λ · z2 + μ · z + 1 = a0z
4 + a1z

3 + a2z
2 + a3z + a4,

we see that the corresponding matrix is⎛
⎜⎜⎝

a1 a0 0 0
a3 a2 a1 a0

0 a4 a3 a2

0 0 0 a4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

2 1 0 0
μ λ 2 1
0 1 μ λ
0 0 0 1

⎞
⎟⎟⎠ .

(a) Since all coefficients have the same sign, it follows from the above that

D1 = 2 > 0, D2 =
∣∣∣∣ 2 1

μ λ

∣∣∣∣ = 2λ − μ, D4 = D3,

and

D3 =

∣∣∣∣∣∣
2 1 0
μ λ 2
0 1 μ

∣∣∣∣∣∣ = 2λμ − 4 − μ2.

It follows from D1, . . . , D4 > 0, that the conditions are

λ >
μ

2
og λ >

μ

2
+

2
μ

(
>

μ

2

)
.

Then, by Routh-Hurwitz’s criterion,

a(μ) =
μ

2
+

2
μ

,

and we see that all roots lie in the open left half plane, if

λ ∈
]
μ

2
+

2
μ

, +∞
[

.
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(b) Putting t =
μ

2
∈ R+, and considering the function

ϕ(t) = t +
1
t

for t ∈ R+,

it follows that

ϕ(t) → +∞ for t → 0 + and for t → +∞,

and

ϕ′(t) = 1 − 1
t2

= 0 only for t = 1 ∈ R+.

The corresponding point must then be a minimum,

μ0 = 2 and a (μ0) = a(2) = 2.

(c) It follows by inspection that if μ0 = 2 and a (μ0) = 2 then

P2,2(z) = z4 + 2z3 + 2z2 + 2z + 1 =
(
z4 + 2z2 + z2

)
+
(
z2 + 2z + 1

)
=

(
z2 + 1

) (
z2 + 2z + 1

)
= (z + 1)2

(
z2 + 1

)
.

This polynomial is 0 for z = −1 (a double root) and for z = ±i (simple roots).

Alternatively we guess that we must have roots on the imaginary axis. Hence, if we put z = iy,
y ∈ R, then

P2,2 = y4 − 2iy3 − 2y2 + 2iy + 1 =
(
y4 − 2y2 + 1

)− 2iy
(
y2 − 1

)
=
(
y2 − 1

) {
y2 − 2iy − 1

}
= 0,

which for y ∈ R only is fulfilled for y = ±1, thus z = ±i. When we divide by z2 + 1 we get
z2 + 2z + 1, which has z = −1 as a double root.

Remark 3.6 It is here possible in general to find the roots of Pa(μ),μ(z), μ ∈ R+. The calculations
are easy,

Pa(μ),μ(z) = z4 + 2z3 +
{

2
w

μ +
μ

2

}
z2 + μ z + 1 =

{
z2 + 2z +

2
μ

}
z2 +

μ

2

{
z2 + 2z +

2
μ

}

=
(

z2 + 2z +
2
μ

)(
z2 +

μ

2

)
.

Since μ > 0, we always get to imaginary roots,

±i

√
μ

2
.

If μ ∈ ]0, μ[, then we furthermore get the two complex conjugated roots

z = −1 ± i

√
2
μ
− 1, μ ∈ ]0, 2[.

If μ = 2, then we get the double root z = −1 (cf. the above).

When μ > 2, we have the additional two real roots

z = −1 ±
√

1 − 2
μ

, μ ∈ ]2,+∞[. ♦
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Example 3.11 Find the largest open interval ]a, b[, such that

z4 + 4z3 + 8z2 + λ z + 15

is a Hurwitz polynomial for every λ ∈ ]a, b[.

A necessary condition is of course that λ > 0. We derive from

Pλ(z) = 1 · z4 + 4 · z3 + 8 · z2 + λ · z + 15 = a0z
4 + a1z

3 + a2z
2 + a3z + a4,

the corresponding matrix⎛
⎜⎜⎝

a1 a0 0 0
a3 a2 a1 a0

0 a4 a3 a2

0 0 0 a4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

4 1 0 0
λ 8 4 1
0 15 λ 8
0 0 0 15

⎞
⎟⎟⎠ .
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Then by Hurwitz’s criterion,

D1 = 4 > 0, D2 = 32 − λ > 0, D3 = 32λ − λ2 − 16 · 15 > 0, D4 = 15 · D3 > 0.

(The latter condition is fulfilled if only D3 > 0, so we may neglect it). It follows from D2 > 0 that
λ < 32, and then we conclude from

−λ2 + 32λ − 16 · 15 = −(λ − 16)2 + 16 = −(λ − 12)(λ − 20),

that D3 > 0, if and only if λ ∈ ]12, 20[.

Summing up we get

]a, b[ = ]12, 20[.

Alternatively, though not very smart in this case, we apply Schur’s criterion twice. The details
are left to the reader.

Remark 3.7 When λ = a = 12, we get the factorization,

z4 + 4z3 + 8z2 + 12z + 15 =
(
z2 + 3

) (
z2 + 4z + 5

)
,

which shows that the roots are

z = ±i
√

3 and z = −2 ± i.

If λ = b = 20, then we get the factorization

z4 + 4z3 + 8z2 + 20z + 15 =
(
z2 + 5

) (
z2 + 4z + 3

)
,

showing that the roots are

z = ±i
√

3 og z = −3, z = −1. ♦
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4 The infinitely-valued function log z

Example 4.1 Compute all complex values of 1z, z = x + iy.

It follows from log 1 = 0 + 2ipπ, p ∈ Z, that

1z = exp({x · 0 − y · 2pπ} + i{x · 2pπ + y · 0})
= e−2pπy · {cos(2xπ) + i · sin(2xpπ)}, p ∈ Z.

If we put y = 0, i.e. z = x ∈ R, we conclude from the above that

1x = cos(2xpπ) + i · sin(2xpπ) = e2ixpπ, p ∈ Z.

Notice that if x is not rational, x ∈ R \ Q, then one can prove that the symbol 1x represents a point
set which is dense on the unit circle.

Note, however, that if we choose x =
1
n

, n ∈ N, then the expression is reduced to the usual n-th unit
roots.

Example 4.2 Compute all values of

(a) Log(1 + i)2, (b) Log(1 + i)10i, (c) log e, (d) Log e.

(a) We shall always compute from the inside to the outside,

Log(1 + i)2 = Log 2i = ln 2 + iArg(2i) = ln 2 + i
π

2
.

(b) Here we first apply the definition of ab, and then we compute outwards from the inside,

Log(1 + i)10i = Log{exp(10i · log(1 + i))} = Log
{

exp
(

10i ·
{

1
2

ln 2 + i arg(1 + i)
})}

= Log
{

exp
(

10i ·
{

1
2

ln 2 + i
(π

4
− 2pπ

)})}

= Log
{

exp
(
−5π

2
+ 20pπ + i · 5 ln 2

)}
.

There is a trap here, because

5 ln 2 ≈ 3, 44 > π,

so 5 ln 2 is not the principal argument. Hence we get

Log(1 + i)10i = −5π
2

+ 20pπ + i {5 ln 2 − 2π}, p ∈ Z.

Remark 4.1 The example should be surprising for two reasons. First we shall find out, if 5 ln 2
is a principal value or not. (And it is not!) Secondly, we see that the principal logarithm of a
many-valued function again may be many-valued. ♦

The infi nitely-valued function log z
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(c)

log e = ln e + i arg e = 1 + 2ipπ, p ∈ Z.

(d)

Log e = ln e + iArg e = 1 + i · 0 = 1.

Example 4.3 Find all values of

(a) log 2, (b) log i, (c) log(1 − i).

(a)

log 2 = log
{
2 · e2ipπ

}
= ln 2 + 2ipπ, p ∈ Z.

(b)

log i = ln |i| + i arg i = i
(π

2
+ 2pπ

)
, p ∈ Z.

(c)

log(1 − i) = ln |1 − i| + i arg(1 − i) =
1
2

ln 2 + i
(
−π

4
+ 2pπ

)
, p ∈ Z.

The infi nitely-valued function log z
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5 The many-valued functions az and za

Example 5.1 Compute all the complex values of zi for z ∈ C \ {0}.

We get by insertion into the formula of the many-valued function za for a = i that

zi := exp(i{ln |z| + i(Arg z − 2pπ)})
= e− Arg z+2pπ cot{cos(ln |z|) + i · sin(ln |z|)}, p ∈ Z.

We have here used that we also have arg = {Arg z − 2pπ | p ∈ Z} which give a nicer final result.

Example 5.2 Find all values of

(a) ii, (b) 1i, (c) 1
√

2.

Here we shall stick very close to the definitions.

(a)

ii := exp(i log i) = exp
(
i
{

ln |i| + i
(π

2
− 2pπ

)})
= exp

(
−π

2
+ 2pπ

)
, p ∈ Z,

which is a sequence of real numbers!

The many-valued functions ...
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(b)

1i := exp(i log 1) = exp(i · {0 − 2ipπ}) = e2pπ, p ∈ Z,

which is also a sequence of real numbers.

(c)

1
√

2 := exp(
√

2 · log 1) = exp(
√

2 · 2pπi) = cos(2
√

2 pπ) + i sin(2
√

2 pπ), p ∈ Z.

This set is dense on the unit circle.

Remark 5.1 The examples above show that concerning many-valued functions one cannot rely on
one’s intuition. ♦

Example 5.3 Given c ∈ C \ {0} and z = x + iy ∈ C.

(a) Find all values of log (cz).

(b) Find all values of z log c.

(c) For which values of z and c do we have log (cz) = z log c?

(a) Let p, q ∈ Z denote free parameters. Then

log (cz) = log
(
ez·log c

)
= z · log c + 2ipπ = (x + iy){ln |c| + iArg c + 2iqπ} + 2ipπ

= x ln |c|−y Arg c−2yqπ+i{xArg c+y ln |c|+2xqπ+2pπ}.

(b) It follows from the computation above that z · log c is obtained by putting p = 0, thus

z log c = x ln |c|−y Arg c−2yqπ+i{z Arg c + y ln |c|+2xqπ}, q ∈ Z.

(c) A necessary (though not sufficient) condition for

log (cz) = z log c,

is that the sets

{2π(xq + p) | p, q ∈ Z} and {2πxq | q ∈ Z}
are identical.
Hence a necessary and sufficient condition is that

Z � {xq | q ∈ Z}, thus x ∈ Q.

If y �= 0, then the real parts are identical, if and only if we choose the same q ∈ Z. Then,
concerning the imaginary parts, we are forced to choose p = 0, and p ∈ Z is no longer a free
parameter. Therefore, y = 0.
When this is the case, i.e. z = x ∈ Q, then

log (xx) = x ln |c| + i{xArg c + (xq + p) · 2π}, p, q ∈ Z,

The many-valued functions ...

Download free eBooks at bookboon.com



Complex Functions Examples c-9

80 
 

and

x log c = x ln |c| + i{xArg c + xq · 2π}, p ∈ Z.

Since {xq + p | p, q ∈ Z} considered as a set (not counted by multiplicity) is identical with
{xq | q ∈ Z}, the two expressions are identical, if and only if

z = x ∈ Q,

while c ∈ C \ {0} can be chosen arbitrarily.

Example 5.4 Compute all values of

(a) log(1 + i)πi, (b) (−i)−i, (c) 3π, (d) 2πi.

(a) We first compute (1 + i)πi. Here,

(1 + i)πi = exp(πi log(1 + i)) = exp
(

πi

{
1
2

ln 2 + i
(π

4
− 2pπ

)})

= exp
(
−π2

4
+ 2pπ2 + i

π

2
ln 2
)

, p ∈ Z,

hence

log(1 + i)πi =
(

2p − 1
4

)
π2 + iπ

(
1
2

ln 2 + 2q
)

, p, q ∈ Z.

Remark 5.2 We see that we have two independent parameters p, q ∈ Z. ♦

(b) A computation gives here

(−i)−i = exp(−i{ln | − i| + i arg(−i)}) = exp(−i · i · arg(−i))

= exp(arg(−i)) = exp
((

2p − 1
2

)
π

)
, p ∈ Z,

i.e. a set of real positive numbers.

(c) Here,

3π = exp(π ln 3) = exp(π{ln 3 + 2ipπ}) = eπ3
{
cos
(
2pπ2

)
+ i sin

(
2pπ2

)}
, p ∈ Z.

It is easily seen that this set is dense on the circle of centrum 0 and radius eπ ln 3.

(d) Here,

2πi = exp(πi log 2) = exp(πi{ln 2 − 2ipπ}) = e2pπ2{cos(π ln 2) + i sin(π ln 2)}, p ∈ Z,

which represent infinitely many numbers on the half line from 0 and forming the angle π ln 2 with
the real axis.
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Figure 36: The points of (d) lie on a half line.

Example 5.5 Compute all values of

(a) (1 + i)1+i, (b) (1 + i)i(1 + i)−i, (c) i2.

(a) It follows from the definition and a computation that

(1 + i)1+i := exp((1 + i) log(1 + i)) = exp
(

(1 + i)
(

1
2

ln 2 + i
{π

4
+ 2pπ

}))

= exp
(

1
2

ln 2 − π

4
− 2pπ + i

{
1
2

ln 2 +
π

4
+ 2pπ

})

=
√

2 exp
(
−π

4
− 2pπ

)
×
{

cos
(

1
2

ln 2 +
π

2

)
+ i sin

(
1
2

ln 2 +
π

2

)}
.

(b) By the definition,

(1 + i)i(1 + i)−i := exp(i log(1 + i)) · exp(−i log(1 + i))

= exp
(

i

{
1
2

ln 2 + i
(π

4
+ 2pπ

)})
exp
(
−i

{
1
2

ln 2 + i
(π

4
+ 2qπ

)})

= exp
(
−π

4
− 2pπ + i

1
2

ln 2 − i
1
2

ln 2 +
π

4
+ 2qπ

)
= exp(2(q − p)π) = exp(2nπ), n ∈ Z.

(c) At this stage the reader should be suspicious concerning many-valued functions. Nevertheless,
this example should not give any problem,

i2 = −1.
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Example 5.6 Compute all values of

(a) 2i, (b) 4
√

16, (c) (
√

3 − i)i, (d)
∣∣(−1)i

∣∣ .
(a)

2i := exp(i log 2) = exp(i (ln 2 − 2ipπ)) = e2pπ {cos(ln 2) + i sin(ln 2)}, p ∈ Z.

(b)

4
√

16 := exp
(

1
4

log 16
)

= exp
(

1
4

(4 ln 2 + 2ipπ)
)

= exp
(
ln 2 + i p

π

2

)
= {2, 2i, −2, −2i}.

(c)

(
√

3 − i)i ; = exp(i log(
√

3 − i)) = exp
(
i
{

ln 2 + i
(
−π

6
− 2ipπ

)})
= exp

(π

6
+ 2pπ

)
· {cos(ln 2) + i sin(ln 2)}, p ∈ Z.

(d) ∣∣(−1)i
∣∣ = | exp(i{−iπ − 2ipπ})| = | exp(π + 2pπ)| = e(2p+1)π, p ∈ Z.
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Remark 5.3 The strange thing here is that also

(−1)i = exp(i{−iπ − 2ipπ}) = exp(π + 2pπ) = e(2p+1)π, p ∈ Z,

hence (−1)i =
∣∣(−1)i

∣∣. ♦

Example 5.7 Put z = r eiθ. Compute all values of

(a) Re
(
zi
)
, (b) Im

(
zi
)
, (c)

∣∣zi
∣∣ .

It follows from

zi := exp(i{ln r + iθ − 2ipπ}) = exp(−θ + 2pπ + i ln r),

that

(a)

Re
(
zi
)

= eθ+2pπ cos(ln r), p ∈ Z,

(b)

Im
(
zi
)

= e−θ+2pπ sin(ln r), p ∈ Z,

(c) ∣∣zi
∣∣ = e−θ+2pπ, p ∈ Z.

Example 5.8 Put z = x + iy. Compute all values of

(a) Re (iz) , (b) Im (iz) , (c) |iz| .

It follows from

iz := exp(z · log i) = exp
(
(x + iy)i

{π

2
+ 2pπ

})
= exp

(
−u

{
1
2

+ 2p
)

π + i x

(
1
2

+ 2p
)

π

)
, p ∈ Z,

that

(a)

Re (iz) = exp
(
−yπ

{
2p +

1
2

})
· cos

(
xπ

{
2p +

1
2

})
, p ∈ Z,

(b)

Im (iz) = exp
(
−yπ

{
2p +

1
2

})
· sin

(
xπ

{
2p +

1
2

})
, p ∈ Z,
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(c)

|iz| = exp
(
−yπ

{
2p +

1
2

})
, p ∈ Z.

Example 5.9 Find all the solutions of the following equations

(a) Log z =
1
4

πi, (b) ez = i, (c) ez = 1 + i
√

3.

(a) We first note that
1
4

πi lies in the image of the principal logarithm, so there exists a solution.
This is given by

z = eLog z = exp
(
i
π

4

)
=

1√
2

+ i
1√
2

=
1√
2

(1 + i).

(b)

z = log i = i
{π

2
+ 2pπ

}
, p ∈ Z.

(c)

z = log(1 + i
√

3) = ln 2 + i
{π

3
+ 2pπ

}
, p ∈ Z.
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6 The Arcus Functions and the Area Functions

Example 6.1 Find all solutions of the following equations,

(a) cos z = sin z, (b) sin z = 2, (c) sin z = cosh 4.

(a) It follows by a rearrangement and a multiplication by

1√
2

= sin
π

4
= cos

π

4

using the addition formula for sin z that

0 =
1√
2

sin z − 1√
2

cos z = sin z · cos
(
−π

4

)
+ cos z · sin

(
−π

4

)
= sin

(
z − π

4

)
.

The zeros of sin w are w = pπ, p ∈ Z, so the set of solutions is

z =
π

4
+ pπ, p ∈ Z.

Alternatively we get by Euler’s formulæ,

1
2
(
eiz + e−iz

)
=

1
2i
(
eiz − e−iz

)
.

A multiplication by 2i eiz �= 0 gives

i e2iz + i = e2iz − 1,

thus

(1 − i)e2iz = 1 + i,

and hence

e2iz =
1 + i

1 − i
=

i(−i + 1)
1 − i

= i.

Taking the complex logarithm we get

2iz = log i = i
π

2
+ 2ipπ, p ∈ Z,

and the set of solutions is given by

z =
π

4
+ pπ, p ∈ Z.

Alternatively it follows from sin2 z + cos2 z = 1 that sin z = cos z �= 0 for every solution of the
equation. Hence it is equivalent to the equation

tan z = 1.

Then finally,

z = arctan 1 =
1
2i

log
(

1 + i

1 − i

)
=

1
2i

log i =
1
2i

{
i
π

2
+ 2ipπ

}
=

π

4
+ pπ, p ∈ Z.
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(b) The solution of the equation sin z = 2 is given by a solution formula,

z = arcsin 2 =
1
i

log(2i ±√
1 − 4) =

1
i

log(i{2 ±
√

3})

=
1
i

{
ln(2 ±

√
3) + i

(π

2
+ 2pπ

)}
=

π

2
+ 2pπ ∓ ln(2 +

√
3), p ∈ Z.

(c) The solution of sin z = cosh 4 is also given by a solution formula,

z = arcsin(cosh 4) =
1
i

log(i cosh 4 ±
√

1 − cosh2 4)

=
1
i

log
(
i cosh 4 ±

√
− sinh2 4

)
=

1
i

log(i cosh 4 ± i sinh 4)

=
1
i

log(i{cosh 4 ± sinh 4}).

Now

cosh 4 + sinh 4 = e4 and cosh 4 − sinh 4 = e−4,

hence by insertion,

z =
1
i

log
(
i e±4

)
=

1
i

{
±4 + i

π

2
+ 2ipπ

}
=

π

2
+ 2pπ ∓ 4i, p ∈ Z.
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Example 6.2 Find all values of

(a) arcsin i, (b) arcsin 1, (c) arcsin 100.

(a) By insertion into the solution formula we get

arcsin i =
1
i

log(−1 ±√
1 + 1) =

1
i

log(−1 ±
√

2)

=

⎧⎪⎪⎨
⎪⎪⎩

1
i
{ln(

√
2 − 1) + 2ipπ} = 2pπ + i ln(

√
2 + 1),

1
i
{ln(

√
2 + 1) + i(2p + 1)π} = (2p + 1)π − i ln(

√
2 − 1),

where p ∈ Z.

(b) Here we get as expected,

arcsin 1 =
1
i

log(i +
√

1 − 1) =
1
i

log i =
1
i

{
i
(π

2
+ 2pπ

)}
=

π

2
+ 2pπ, p ∈ Z.

(c) By using the solution formula,

arcsin 100 =
1
i

log(i · 100 ±
√

1 − 1002) =
1
i

log(i{100 ± 3
√

1111} =

= −i
{
± ln(100 + 3

√
1111) + i

(π

2
+ 2pπ

)}
=

π

2
+ 2pπ ∓ i ln(100 + 3

√
1111), p ∈ Z.

Example 6.3 Solve the equations

(a) cos2 z = −1, (b) sin z + cos z = i, (c) cos z = 2.

Whenever one considers trigonometric equations one shall in general first try to reduce them as much
as possible.

(a) Here it is tempting first to find the square root, so we shall solve the equation cos z = ±i. This
is of course possible, but we shall get some problems with the double ±. Hence, it is easier first to
notice that

cos 2z = 2 cos2 z − 1 = 2 · (−1) − 1 = −3.

Then we get directly by the solution formula,

z =
1
2

arccos(−3) =
1
2i

log(−3 ± i
√

1 − 9) =
1
2i

log(−{3 ± 2
√

2})

=
1
2i

{ln(3 ± 2
√

2) + i(π + 2pπ)} =
1
2i

{
ln
(
(
√

2 ± 1)2
)

+ i(π + 2pπ)
}

=
π

2
+ pπ ∓ i ln(

√
2 + 1), p ∈ Z.
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(b) Since

sin z + cos z =
√

2 · sin
(
z +

π

4

)
= i,

the equation is reduced to

sin
(
z +

π

4

)
=

i√
2
.

Then by a rearrangement of the solution formula and a reduction,

z = −π

4
+ arcsin

(
i√
2

)
= −π

4
+

1
i

log

(
− 1√

2
±
√

1 +
1
2

)

= −π

4
+

1
i

log

(
−1 ±√

3√
2

)
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−π

4
+

1
i

{
ln

(√
3 − 1√

2

)
+ 2ipπ

}

−π

4
+

1
i

{
ln

(√
3 + 1√

2

)
+ i(π + 2pπ)

}

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−π

4
+ 2pπ + i ln

(√
3 + 1√

2

)

−π

4
+ π + 2pπ − i ln

(√
3 + 1√

2

)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=
π

4
+ 2pπ ±

{
π

2
− i ln

(√
3 + 1√

2

)}

=
π

4
+ 2pπ ±

{
π

2
− i

2
ln(2 +

√
3)
}

, p ∈ Z,

where we have used that

ln

(√
3 + 1√

2

)
=

1
2

ln

(√
3 + 1√

2

)2

=
1
2

ln

(
4 + 2

√
3

2

)
=

1
2

ln(2 +
√

3).

(c) It follows directly by the solution formula that

z = arccos 2 =
1
i

log(2 ∓ i
√

1 − 4) =
1
i

log(2 ∓
√

3) =
1
i
{∓ ln(2 +

√
3) + 2ipπ}

= 2pπ ± i ln(2 +
√

3), p ∈ Z.
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Example 6.4 Solve the equations

(a) cos z =
√

3, (b) cos z = 4, (c) cos z =
3
4

+
i

4
.

(a) The solution is

z = arccos
√

3 =
1
i

log(
√

3 ± i
√

1 − 3) =
1
i

log(
√

3 ∓
√

2)

=
1
i
{∓ ln(

√
3 +

√
2) + 2ipπ} = 2pπ ± i ln(

√
3 +

√
2), p ∈ Z.

(b) The solution is

z = arccos 4 =
1
i

log(4 ± i
√

1 − 16) =
1
i

log(4 ∓
√

15)

=
1
i
{∓ ln(4 +

√
15) + 2ipπ} = 2pπ ± i ln(4 +

√
15), p ∈ Z.

The solution is

z = arccos
(

3
4

+
i

4

)
=

1
i

log

(
3 + i

4
± i

√
1 − (3 + i)2

16

)

=
1
i

log
(

3 + i

4
± i

4

√
16 − (9 − 1 + 6i)

)
=

1
i

log
(

3 + i

4
± i

4

√
8 − 6i

)

=
1
i

log
(

3 + i

4
± i

4
(3 − i)

)
=

1
i

log
(

3 + 1
4

± 1 + 3i
4

)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
i

log(1 + i) =
1
i

{
1
2

ln 2 + i
π

4
+ 2ipπ

}

1
i

log
(

1 − i

2

)
=

1
i

{
−1

2
ln 2 − i

π

4
+ 2ipπ

}
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= 2pπ ±
{

π

4
− i

2
ln 2
}

, p ∈ Z.

Example 6.5 Solve the equation

(1 + i
√

3) cos z − (
√

3 − i) sin z = 4 e−iz.

Using that

(1 + i
√

3) cos z − (
√

3 − i) sin z = (1 + i
√

3) {cos z + i sin z} = (1 + i
√

3)eiz,

the equation is reduced to

(1 + i
√

3)eiz = 4e−iz.
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Hence, the equation is equivalent to

e2iz =
4

1 + i
√

3
=

4
1 + 3

(1 − i
√

3) = 1 − i
√

3 = 2 exp
(
−i

π

3

)
,

s̊a vi finder, at

2iz = log
(
2 exp

(
−i

π

3

))
= ln 2 − i

π

3
+ 2ipπ, p ∈ Z,

so

z = pπ − π

6
− i

1
2

ln 2, p ∈ Z.
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Example 6.6 Prove that the complex formula

(3) arccos z =
1
i
Log
(

z + i exp
(

1
2

Log
(
1 − z2

)))

for z = t ∈ ] − 1, 1[ is equal to the usual real function Arccos t.

0

0.2

0.4

0.6

0.8

1

–1 –0.5 0.5 1

Figure 37: The point on the circle is t+ i
√

1 − t2, t ∈ ]−1, 1[, and the corresponding angle is Arccos t.

Let z = t ∈ ] − 1, 1[. When we compute the right hand side of (3), we get

1
i

Log
(

t + i exp
{

1
2

Log
(
1 − t2

)})
=

1
i

Log
(
t + i

√
1 − t2

)

=
1
i

{
1
2

ln
(
t2 + 1 − t2

)
+ iArg

(
t + i

√
1 − t2

)}

= Arg
(
t + i

√
1 − t2

)
= Arccos

(
t√

t2 + 1 − t2

)
= Arccos t,

because
√

1 − t2 > 0 for t ∈ ] − 1, 1[.

Example 6.7 Solve the equations

(a) ez = −1 + i, (b) tan z = i, (c) cos2 z = −9,

(a) The solution is

z = log(−1 + i) =
1
2

ln 2 + i

{
3π
4

+ 2pπ

}
, p ∈ Z.

(b) The set of solutions is empty, because tan z = i implies that

1
cos2 z

= 1 + tan2 z = 1 + i2 = 0,

which is not possible for any z ∈ C.
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(c) Using that

cos 2z = 2 cos2 z − 1 = −19,

we get the solution

z =
1
2

arccos(−19) =
1
2
· 1

i
log
(
−19 ± i

√
1 − (−19)2

)
=

1
2i

log(−19 ± i
√

1 − 361) =
1
2i

log(−19 ± i · 6i
√

10)

=
1
2i

log(−{19 ± 6
√

10}) =
1
2i

{ln(19 ± 6
√

10) + i(π + 2pπ)}

=
π

2
+ pπ +

1
2i

ln
(
{
√

10 ± 3}2
)

=
π

2
+ pπ ∓ i ln(3 +

√
10), p ∈ Z.

Example 6.8 Solve the equations

tan z = 3i and tanh z = 3.

(a) The solution is

z = arctan(3i) =
1
2i

log
(

1 − 3
1 + 3

)
=

1
2i

log
(
−1

2

)

=
1
2i

{− ln 2 + i(π + 2pπ)} =
π

+
pπ + i

1
2

ln 2, p ∈ Z.

(b) The solution is

z = artanh 3 =
1
2

log
(

1 + 3
1 − 3

)
=

1
2

log(−2)

=
1
2
{ln 2 + i(π + 2pπ)} =

1
2

ln 2 + i
{π

2
+ pπ

}
, p ∈ Z.

Remark 6.1 It follows by a comparison that

arctan(3i) = i artanh 3. ♦
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Example 6.9 Prove the complex formula

(4) Arctan z =
1
2i

Log
(

1 + iz

1 − iz

)
=

1
2i

Log
(

i − z

i + z

)

is equal to usual real function Arctan t.

Put z = t ∈ R. When we compute the right hand of formula (4), we get

1
2i

Log
(

1 + it

1 − it

)
=

1
2i

{
ln
∣∣∣∣1 + it

1 − it

∣∣∣∣+ iArg
(

1 + it

1 − it

)}
=

1
2i

{
ln 1 + iArg

(
(1 + it)2

1 + t2

)}

=
1
2

Arg(1 + it)2.

–1

–0.5

0.5

1

1.5

–0.5 0.5 1 1.5

Figure 38: The line of the parametric description 1 + it, t ∈ R.

Since 1 + it lies in the right half plane, we have

Arg(1 + it) ∈
]
−π

2
,

π

2

[
,

hence 2 Arg(1 + it(∈ ] − π, π[ is a principal value. Then we can continue in the following way,

1
2i

Log
(

1 + it

1 − it

)
=

1
2

Arg(1 + it)2 =
1
2
· 2Arg(1 + it) = Arctan

t

1
= Arctan t,

and the claim is proved.
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Example 6.10 Find all values of

(a) arctan(1 + 2i), (b) arcosh(2i), (c) artanh(1 − i).

(a) We get by insertion into the formula and a computation that

arctan(1 + 2i) =
1
2i

log
(

i − 1 − 2i
i + 1 + 2i

)
=

1
2i

log
(−1 − i

1 + 3i

)
=

1
2i

log
(
− (1 + i)(1 − 3i)

10

)

=
1
2i

log
(
− 1

10
{1 + 3 + i(1 − 3)}

)

=
1
2i

log
(
−1

5
(2 − i)

)
=

1
2i

log
(
−2

5
+

i

5

)

=
1
2i

(
ln

1√
5

+ i

{
π + Arctan

(
−1

2

)
+ 2pπ

})

= −1
2

Arctan
1
2

+
π

2
+ pπ +

i

4
ln 5, p ∈ Z.

(b) Here we get

Arcosh(2i) = log(2i±√−4 − 1) = log(i{2±
√

5}) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ln(2 +
√

5) + i
{π

2
+ 2pπ

}
,

− ln(2 +
√

5) + i

{
3π
2

+ 2pπ

}
,

p ∈ Z.
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(c) Finally,

artanh(1 − i) =
1
2

log
(

1 + 1 − i

1 − 1 + i

)
=

1
2

log
(

2 − i

i

)
=

1
2

log(−1 − 2i)

=
1
2
{ln

√
5 + i(Arctan 2 + π + 2pπ)}

=
1
4

ln 5 + i

{
1
2

Arctan 2 +
π

2
+ pπ

}
, p ∈ Z.

Example 6.11 Find all real numbers t ∈ R for which the complex formula

(5) Arccot z =
1
2i

Log
(

z + i

z − i

)

is equal to the usual real function Arccot t.

Put z = t ∈ R, and then compute the right hand side of formula (5),

1
2i

Log
(

t + i

t − i

)
=

1
2i

{
ln
∣∣∣∣ t + i

t − i

∣∣∣∣+ iArg
(

t + i

t − i

)}
=

1
2

Arg
(

t + i

t − i

)
.

–1.5

–1

–0.5

0.5

1

1.5

–2 –1.5 –1 –0.5 0.5 1

Figure 39: The points t − i and t and the corresponding angles for t = −1, 5.

Since t is real, it follows by considering the figure that

Arg(t + i) = − Arg(t − i), t ∈ R,

and it is tempting to expect that

Arg(t + i) = Arccot t.

However, this is not true for all t. In fact, it follows by a computation that

1
2i

Log
(

t + i

t − i

)
=

1
2

Arg
(

t + i

t − i

)
=

1
2

Arg
{

(t + i)2

t2 + 1

}
=

1
2

Arg
{
(t + i)2

}
=

1
2

Arg
(
t2 − 1 + 2it

)
.
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If t < 0, then t2 − 1 + 2it lies in the lower half plane, so

1
2

Arg
(
t2 − 1 + 2it

) ∈ ]−π

2
, 0
[
,

and since Arccot t ∈ ]0, π[, this is not possible.

If t = 0, then of course

1
2

Arg(−1) =
π

2
= Arccot 0.

If t > 0, then both t + i and t − i lie in the right half plane, so

1
2i

Log
(

t + i

t − i

)
=

1
2

Arg
(

t + i

t + i

)
=

1
2
{Arg(t + i) − Arg(t − i)}

= Arg(t + i) = Arccot t.

Summing up we have

1
2i

Log
(

t + i

t − i

)
= Arccot t for t reel og t ≥ 0.

Example 6.12 Construct the Riemann surface of arctan z.

Figure 40: One branch with the branch cut along the imaginary axis from −i to i.

It follows from

arctan z =
1
2i

log
(

1 + iz

1 − iz

)
, z ∈ C \ {i,−i},

that the branch points are i and −i, and that they are both logarithmic.

The surface is obtained by cutting infinitely many planes along the line segment between −i and
i and then glue them together along the cut, such that the left hand edge (where Re(z) < 0 and
−1 < Im(z) < 1) is glued to the right edge (where Re(z) > 0 and −1 < Im(z) < 1) in the plane above
the first plane. Continue in this way infinitely often upwards as well as downwards.
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Example 6.13 Prove that the complex formula

(6) Arsinh z = Log
(

z + exp
(

1
2

Log
(
z2 + 1

)))

agrees with the usual real funktion Arsinh t for z = t ∈ R.

This is almost trivial, because we have for z = t ∈ R,

Log
(

t + exp
{

1
2

Log
(
t2 + 1

)})
= Log

(
t + exp

{
ln
√

t2 + 1
})

= Log
(
t +
√

t2 + 1
)

= ln
(
t +
√

t2 + 1
)

= Arsinh t,

where the latter follows from the usual real analysis.

Example 6.14 Solve each of the equations

tan z = 2i and tan z = 1 − i.

(a) The solution is

z = arctan(2i) =
1
2i

log
(

1 − 2
1 + 2

)
=

1
2i

log
(
−1

3

)
=

1
2i

{− ln 3 + i(π + 2pπ)}

=
π

2
+ pπ +

i

2
ln 3, p ∈ Z.

(b) The solution is

z = arctan(1 − i) =
1
2i

log
(

1 + i + 1
1 − i − 1

)
=

1
2i

log
(

2 + i

−i

)
=

1
2i

log(−1 + 2i)

=
1
2i

{
ln
√

5 + i

(
Arccot

(
−1

2

)
+ 2pπ

)}
=

1
2

Arccot
(
−1

2

)
+ pπ − i

4
ln 5, p ∈ Z.

Example 6.15 An ocean is considered as a plane of usual rectangular coordinates. A navigable ship
A, which sails with the constant speed a, receives at the position (x0, y0) the following SOS message:

“Ship B at the position (x1, y1). All instruments destroyed. We sail with the speed b along a straight
line though unknown direction.”

Assuming that a > b, prove that A can find B (i.e. sail in such a way that A at some later time is at
the same position as B).

Assume that (x1, y1) = 0. If ship A sails directly towards 0, then it will be at time t at the distance
|z0| − t · a from 0. Hence, the two ships have the same distance from 0, when

|z0| − t · a = t · b,
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–1

–0.5

0.5

1

–1 –0.5 0.5 1

Figure 41: B starts at 0 and then sails along a radius (above to the left). The distance between the
circles is b. Since a > b, then let A sail it a direction, such that A is always on the same circle as B.

i.e. to time t =
|z0|

a + b
, where the distance to the centrum is

b |z0|
a + b

. Then A changes its direction, such

that A and B always have the same distance to 0 (i.e. such that they always lie on the same circle of
centrum 0). Now, a > b, so A has a positive variation of the angle with respect to 0, and this variation
of the angle will eventually go through the whole interval [0, 2π]. Since a > b, this is possible, when
A runs through some part of a logarithmic spiral. Since B has the variation of the angle 0, the points
A and B will eventually be at the same position, so it is actually possible for A to find B under the
given circumstances.
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Example 6.16 Prove the formula

arccos z = −i log
(
z +
√

z2 − 1
)

.

Put

z = cos w =
1
2
(
eiw + e−iw

)
.

When we multiply by 2 eiw �= 0 and then rearrange the equation, we get

(
eiw
)2 − 2z eiw + 1 = 0,

which is an equation of second degree in eiw. The solution is

eiw = z ±
√

z2 − 1,

hence finally,

w = −i log
(
z ±
√

z2 − 1
)

.

Example 6.17 Prove the formula

arcosh z = log
(
z +
√

z2 − 1
)

.

Put

z = cosh w =
1
2
(
ew + e−w

)
.

When we multiply by 2 ew and then rearrange the equation, we get

(ew)2 − 2z ew + 1 = 0,

which is an equation of second degree in ew. Its solution is

ew = z ±
√

z2 − 1,

and hence

w = arcosh z = log
(
z ±
√

z2 − 1
)

.
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Example 6.18 Prove the formula

arsinh z = log
(
z +
√

z2 + 1
)

.

Put

z = sinhw =
1
2
(
ew − e−w

)
.

When we multiply by 2 ew, and then rearrange, we get

(ew)2 − 2z ew − 1 = 0,

which is an equation of second degree in ew. Its solution is

ew = z ±
√

z2 + 1,

thus

w = arsinh z = log
(
z ±
√

z2 + 1
)

.

Example 6.19 Prove the formula

arctan z =
i

2
log

i + z

i − z
.

Put

z = tanw =
1
i

e2iw − 1
e2iw + 1

.

When we solve this equation with respect to e2iw, we get

e2iw =
−iz − 1
iz − 1

=
i − z

i + z
,

and thus

w = arctan z =
1
2i

log
(

i − z

i + z

)
=

i

2
log
(

i + z

i − z

)
.
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Example 6.20 Prove the formula

arccot z =
i

2
log

z − i

z + i
.

Put

z = cot w = i · e2iw + 1
e2iw − 1

.

Solving this with respect to e2iw gives

e2iw =
z + i

z − i
=
(

z − i

z + i

)−1

,

and thus

w = arccot z = − 1
2i

log
(

z − i

z + i

)
=

i

2
log
(

z − i

z + i

)
.

Example 6.21 Prove the formula

artanh z =
1
2

log
1 + z

1 − z
.

Put

z = tanh w =
e2w − 1
e2w + 1

.

Solving this with respect to e2w gives

e2w =
−z − 1
z − 1

=
1 + z

1 − z
,

hence

w = artanh z =
1
2

log
1 + z

1 − z
.

Example 6.22 Prove the formula

arcoth z =
1
2

log
z + 1
z − 1

.

Put

z = coth w =
e2w + 1
e2w − 1

.

Solving this with respect to e2w gives

e2w =
z + 1
z − 1

,

thus

w = arcoth z =
1
2

log
z + 1
z − 1

.
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Example 6.23 Find all complex numbers z ∈ C, which satisfy the equation

2 cos 2z − 5 cos z + 2 = 0.

This is a complex trigonometric equation, which can be solved in various ways.

First variant. The equation is solved as a pure trigonometric equation by using the formula

cos 2z = 2 cos2 z − 1,

which also holds for complex numbers. By putting this into the equation we get

0 = 2 cos 2z − 5 cos z + 2 = 2
{
2 cos2 z − 1

}− 5 cos z + 2 = 4 cos2 z − 5 cos z

= 4 cos z

{
cos z − 5

4

}
.

Thus we get the two equations

cos z = 0 and cos z =
5
4
.

The solution of cos z = 0 is given by

z =
π

2
+ pπ, p ∈ Z.
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The latter equation cos z =
5
4

does indeed makes sense in the Theory of Complex Functions.
According to a formula,

z = arccos
5
4

=
1
i

log

⎛
⎝5

4
± i

√
1 −
(

5
4

)2
⎞
⎠ =

1
i

log

(
5
4
± i

√
1 − 25

16

)
=

1
i

log

(
5
4
± i

√
− 9

16

)

=
1
i

log
(

5
4
± i2 · 3

4

)
=

1
i

log
(

5
4
∓ 3

4

)
.

It follows from

5
4
− 3

4
=

1
2

and
5
4

+
3
4

= 2,

that

ln
(

5
4
− 3

4

)
= − ln

(
5
4

+
3
4

)
= − ln 2,

and

arg
(

5
4
− 3

4

)
= arg

(
5
4

+
3
4

)
= {2pπ | p ∈ Z},

hence

z =
1
i

log
(

5
4
∓ 3

4

)
=

1
i

{
ln
(

5
4
∓ 3

4

)
+ i arg

(
5
4
∓ 3

4

)}
=

1
i
{∓ ln 2 + i 2pπ}

=
1
i

{±i2 ln 2 + i 2pπ
}

= 2pπ ± i ln 2, p ∈ Z.

The complete solution is given by

z =

⎧⎪⎨
⎪⎩

π

2
+ pπ, p ∈ Z,

2qπ ± i ln 2, q ∈ Z.

Second variant. Alternatively we apply Euler’s formulæ, i.e.

cos z =
1
2
{
eiz + e−iz

}
.

This is the standard method, if the given equation already contains eiz. Then substitute w = eiz,
and we get after a reduction an algebraic equation in w, which is then solved.

In the particular case we have

cos 2z =
1
2
{
e2iz + e−2iz

}
=

1
2

{
w2 +

1
w2

}
,

and

cos z =
1
2
{
eiz + e−iz

}
=

1
2

{
w +

1
w

}
,
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hence by insertion,

0 = 2 cos 2z − 5 cos z + 2 = 2 · 1
2

{
w2 +

1
w2

}
− 5 · 1

2

{
w +

1
w

}
+ 2.

When we multiply by 2w2 = 2 e2iz �= 0, we get

0 = 2
{
w4 + 1

}− 5
{
w3 + w

}
+ 4w2 = 2

{
w4 + 2w2 + 1

}− 5w
{
w2 + 1

}
= 2

(
w2 + 1

)2 − 5w
(
w2 + 1

)
=
(
w2 + 1

) {
2w2 − 5w + 2

}
.

This equation has the solutions w = ±i and

w =
5 ±√

52 − 4 · 2 · 2
4

=
5 ± 3

4
=

⎧⎪⎨
⎪⎩

2,

1
2
.

Since w = eiz, we shall then solve the four equations

(1) eiz = i, (2) eiz = −i, (3) eiz = 2, (4) eiz =
1
2
.

1) If

eiz = i = exp
(
i
π

2

)
,

we get by the logarithm,

iz = i · π

2
+ 2ipπ, p ∈ Z,

hence

z =
π

2
+ 2pπ, p ∈ Z.

2) If

eiz = −i = exp
(
−i

π

2

)
,

we get by the logarithm,

iz = −i · π

2
+ 2ipπ, p ∈ Z,

hence

z = −π

2
+ 2pπ, p ∈ Z.

3) If

eiz = 2 = eln 2,

we get by the logarithm,

iz = ln 2 + 2ipπ, p ∈ Z,

hence

z = 2pπ − i ln 2, p ∈ Z.

The Arcus Functions and the Area Functions

Download free eBooks at bookboon.com



Complex Functions Examples c-9

105 
 

4) If

eiz =
1
2

= e− ln 2,

we get by the logarithm,

iz = − ln 2 + 2ipπ, p ∈ Z,

hence

z = 2pπ + i ln 2, p ∈ Z.

Remark 6.2 Notice that an easier variant is to note in (1) that w2 + 1 = 0 is equivalent to
e2iz + 1 = 0, thus

2iz = log(−1) = iπ + 2ipπ, p ∈ Z,

and hence

z =
π

2
+ pπ, p ∈ Z. ♦

Example 6.24 Find all complex solutions of the equation

2 e3iz(1 + 2 cos 2z) sin z = −63i.

First method. We find by Euler’s formulæ,

−63i = 2 e3iz(1 + 2 cos 2z) sin z = 2 e3iz
(
1 + e2iz + e−2iz

) · 1
2i
(
eiz − e−iz

)
,

hence by a multiplication by i,

63 = e3iz
(
e2iz + 1 + e−2iz

) (
eiz − e−iz

)
=
{
e2iz

(
e2iz + 1 + e−2iz

)} {
eiz
(
eiz − e−iz

)}
(7)

=
(
e4iz + e2iz + 1

) (
e2iz − 1

)
= e6iz − 1,

thus

(8) e6iz = 63 + 1 = 64 = 26,

and by the logarithm,

6iz = log
(
26
)

= 6 ln 2 + 2ipπ, p ∈ Z,

so the solution is

z = p · π

3
− i ln 2, p ∈ Z.

Remark 6.3 The computation (7) can be performed in many ways. The chosen one is neither
the longest nor the shortest one. ♦

The Arcus Functions and the Area Functions

Download free eBooks at bookboon.com



Complex Functions Examples c-9

106 
 

Second method. It is also possible to solve the equation by using some elementary trigonometry.
It follows from

cos 2z · sin z =
1
2

sin 3z − 1
2

sin z,

f̊as

(1 + 2 cos 2z) sin z = sin z + sin 3z − sin z = sin 3z,

that

(9) 2 e3iz · sin 3z = −63i.

Then by Euler’s formulæ,

2 e3iz · 1
2i
(
e3iz − e−3iz

)
=

1
i

(
e61z − 1

)
= −63i,

and we find again

e6iz = 64.

Then proceed from (8) above.

Remark 6.4 Since z is complex, we no longer have that sin 3z is the imaginary part of e3iz. (In spite
of its name the imaginary part is always real, while sin 3z is not real for all z ∈ C). Hence we can no
longer immediately separate the original equation or equation (9) into its real and imaginary parts. ♦
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Example 6.25 Find all complex solutions of the equation

e2iz(2 cos z − 3) + 2 eiz − cos 2z = 2
(
4 + sin2 z

)
.

By using Euler’s formulæ we get the equation

e2iz
(
eiz − 3 + e−iz

)
+ 2 eiz − 1

2
e2iz − 1

2
e−2iz = 2

{
4 +
(

eiz − e−iz

2i

)2
}

,

hence by a computation

e3iz−3e2iz+eiz+2eiz − 1
2

e2iz − 1
2

e−2iz = 2
{

4 − 1
4
(
e2iz−2+e−2iz

)}
,

thus

e3iz−3e2iz+eiz+2eiz − 1
2

e2iz − 1
2

e−2iz = 8 − 1
2

e2iz+1 − 1
2

e−2iz,

which is reduced to

(10) e3iz − 3 e2iz + 3 eiz − 1 = 8.

This equation can also be written

(11)
(
eiz − 1

)3
= 23.

Remark 6.5 Since

− cos 2z = 2 sin2 z − 1,

it is of course faster to get to (10) by adding

cos 2z − 1 = −2 sin2 z

to the original equation. ♦

First variant. We solve (11) by taking its cubic root. We get the following three possibilities,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eiz − 1 = 2,

eiz − 1 = 2

{
−1

2
+ i

√
3

2

}
,

eiz − 1 = 2

{
−1

2
− i

√
3

2

}
,

thus

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

eiz = 3,

eiz = i
√

3,

eiz = −i
√

3.

By using the logarithm,

iz =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

log 3 = ln 3 + i 2pπ,

log(i
√

3) = 1
2 ln 3 + i

(
π
2 + 2pπ

)
log(−i

√
3) = 1

2 ln 3 + i
(−π

2 + 2pπ
)
,

p ∈ Z,
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where the latter two families of solutions may be joined in

iz =
1
2

ln 3 + i
(π

2
+ pπ

)
, p ∈ Z.

Hence, the solution is given by

z =

⎧⎪⎨
⎪⎩

2pπ − i ln 3,

π

2
+ pπ − i

1
2

ln 3,
p ∈ Z.

Second variant. If one only derived (10) – and not (11) – then we may instead proceed in the
following way,

First put w = eiz into (10) to get the polynomial of entire coefficients

w3 − 3z2 − 3w2 + 3w − 9 = 0.

Since the constant term is −9 and the coefficient of w3 is 1, and since the polynomial has entire
coefficients, any possible rational root must belong to the set

{±1, ±3, ±9}.

A simple check shows that w = 3 is a root, and then we get by a simple division that

w3 − 3z2 − 3w2 + 3w − 9 = (w − 3)
(
w2 + 3

)
0.

The problem is then reduced to solving the two equations

(a) w = eiz = 3 and (b) w2 = e2iz = −3.

(a) We get by the logarithm,

iz = ln 3 + 2ipπ, dvs. z = 2pπ − i ln 3, p ∈ Z.

(b) We get by the logarithm,

2iz = ln 3 + iπ + 2ipπ, dvs. z =
π

2
+ pπ − i

2
ln 3, p ∈ Z.

Hence,

z =

⎧⎪⎨
⎪⎩

2pπ − i ln 3,

π

2
+ pπ − i

1
2

ln 3,
p ∈ Z.
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Example 6.26 Find all solutions z ∈ C of the equation

cos 2z − cos z = i e2iz sin z.

Putting w = eiz �= 0, it follows by Euler’s formlæ,

cos 2z =
1
2

{
w2 +

1
w2

}
, cos z =

1
2

{
w +

1
w

}
, sin z =

1
2i

{
w − 1

w

}
.

When these expressions are put into the equation, we get

1
2

{
w2 +

1
w2

}
− 1

2

{
w +

1
w

}
= i w2 · 1

2i

{
w − 1

w

}
.

Then multiply by 2w2 �= 0 to get

w4 + 1 − w3 − w = w5 − w3,

which is rearranged and reduced to

0 = w5 − w4 + w − 1 = (w − 1)
(
w4 + 1

)
=
(
eiz − 1

) (
e4iz + 1

)
.

Hence the solution of the equation is given by

z =
1
i

log 1 =
1
i
· 2ipπ = 2pπ, p ∈ Z,

and

z =
1
4i

log(−1) =
1
4i

· (2p + 1)iπ =
π

4
+ p · π

2
, p ∈ Z.

Alternatively,

cos z + i e2iz sin z =
1
2
(
eiz + e−iz

)
+ i e2iz · 1

2i
(
eiz − e−iz

)
=

1
2
{
eiz + e−iz + e3iz − eiz

}
= eiz · 1

2
(
e2iz + e−2iz

)
= eiz cos 2z,

and we reformulate the equation in the following way

eiz cos 2z − cos 2z =
(
eiz − 1

)
cos 2z = 0,

from which we get the two possibilities

eiz = 1 or cos 2z = 0,

corresponding to the solutions

z = 2pπ, p ∈ Z, or z =
π

4
+ p · π

2
, p ∈ Z.
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Example 6.27 Find all solutions of the equation

eiz cos z − 4i sin z + 1 = 2 e−2iz.

It follows by Euler’s formulæ that the equation is equivalent to

eiz · 1
2
(
eiz + e−iz

)− 4i · 1
2i
(
eiz − e−iz

)
+ 1 = 2 e−2iz,

hence by a multiplication by 2 e2iz (�= 0 for all z ∈ C) we get the equivalent equation

e2iz
(
e2iz + 1

)− 4 eiz
(
e2iz − 1

)
+ 2 e2iz = 4.

Then by a reduction,

e4iz − 4 e3iz + 3 e2iz + 4 eiz − 4 = 0.

Putting w = eiz, we obtain the equation of fourth degree,

0 = w4 − 4w3 + 3w2 + 4w − 4 = w4 − 4w3 +
(
4w2 − w2

)
+ 4w − 4

=
(
w4 − 4w3 + 4w2

)− (w2 − 4w + 4
)

=
(
w2 − 1

) (
w2 − 4w + 4

)
= (w − 1)(w + 1)(w − 2)2,

which has the simple roots −1 and 1, and the double root 2.
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Alternatively one may also find the roots as one of the rational possibilities

{±1, ±2, ±4}.
This is left to the reader.

It follows from w = eiz that we have

1) the equation eiz = 1, hence

iz = log 1 = 2ipπ, or z = 2pπ, p ∈ Z,

2) the equation eiz = −1, hence

iz = log(−1) = iπ + 2ipπ, or z = π + 2pπ, p ∈ Z,

3) the equation eiz = 2, hence

iz = log 2 = ln 2 + 2ipπ, or z = 2pπ − i ln 2, p ∈ Z.

Summing up we see that the solution is given by

z =

⎧⎨
⎩

pπ, p ∈ Z,

2pπ − i ln 2, p ∈ Z.

Alternatively and with more calculations we see that the equation is equivalent to

0 = eiz cos z − 4i sin z + 1 − 2 e−2iz

= (cos z + i sin z) cos z − 4i sin z + 1 − 2 cos 2z + 2i sin 2z
= cos2 z + i sin z · cos z − 4i sin z + 1 − 2

(
1 − 2 sin2 z

)
+ 4i sin z · cos z

= 1 − sin2 z + i sin z{cos z − 4 + 4 cos z} + 1 − 2 + 4 sin2 z

= 3 sin2 z + i sin z{5 cos z − 4} = i sin z{−3i sin z + 5 cos z − 4}
= i · sin z ·

{
−3i

2i
(
eiz − e−iz

)
+

5
2
(
eiz + e−iz

)− 4
}

= i · sin z ·
{
−3

2
eiz +

3
2

e−iz +
5
2

eiz +
5
2

e−iz − 4
}

= i · sin z · {eiz − 4 + 4 e−iz
}

= i e−iz sin z ·
{(

eiz
)2 − 4 eiz + 4

}
= i e−iz sin z · {eiz − 2

}2
.

This is 0, if either sin z = 0, or eiz = 2, hence the solutions are⎧⎨
⎩

sin z = 0 : z = pπ,

eiz = 2 : iz = log 2 = ln 2 + 2ipπ,
p ∈ Z,

and the conclusion is

z =

⎧⎨
⎩

pπ, p ∈ Z,

2pπ − i ln 2, p ∈ Z.
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Example 6.28 Find all solutions z ∈ C of the equation

4i cos z − 2 eiz sin z + 3i = i e−iz.

Apply Euler’s formlæ to get

0 = 4i cos z − 2 eiz sin z + 3i − i e−iz = 4i · 1
2
(
eiz + e−iz

)− 2 eiz · 1
2i
(
eiz − e−iz

)
+ 3i − i e−iz

= 2i
(
eiz + e−iz

)
+ i eiz

(
eiz − e−iz

)
+ 3i − i e−iz = i e−iz

{
2 e2iz + 2 + e3iz − eiz + 3 eiz − 1

}
= i e−iz

{(
eiz
)3

+ 2
(
eiz
)2

+ 2 eiz + 1
}

= i e−iz
(
eiz + 1

){(
eiz
)2

+ eiz + 1
}

.(12)

Then either

eiz = −1,

i.e.

iz = log(−1) = i(π + 2pπ), p ∈ Z,

and thus

z = π + 2pπ, p ∈ Z,

or

eiz =
−1 ±√

1 − 4
2

=
−1 ± i

√
3

2
= exp

(
±i

2π
3

)
,

i.e.

z = ±2π
3

+ 2pπ, p ∈ Z.

Hence all solutions are real and given by

z =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

π + 2pπ,

2π
3

+ 2pπ,

4π
3

+ 2pπ,

p ∈ Z.

Notice that (12) can also be written

0 = i e−iz
(
eiz + 1

){(
eiz
)2

+ eiz + 1
}

= i ei z
2
(
ei z

2 + e−i z
2
) {

eiz + 1 + e−iz
}

= 2i ei z
2 cos

z

2
· (1 + 2 cos z) = 4i ei z

2 cos
z

2
·
{

cos z +
1
2

}
,

so we shall only solve

cos
z

2
= 0,
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which has the solutions
z

2
=

π

2
+ pπ, i.e.

z = π + 2pπ, p ∈ Z,

and

cos z = −1
2
,

which has the solutions

z = ±2π
3

+ 2pπ, p ∈ Z,

and we have found the same solutions as previously.

A third variant is given by the following,

0 = 4i cos z − 2 eiz sin z + 3i − i e−iz

= 4i cos z − 2(cos z + i sin z) sin z + 3i − i(cos z − i sin z)
= 4i cos z − 2 cos z sin z − 2i sin2 z + 2i + i − i cos z − sin z

= 4i cos z + 2i cos2 z + i(1 − cos z) − sin z(1 + 2 cos z)
= i

(
2 cos2 z + 3 cos z + 1

)− sin z(1 + 2 cos z)
= i(2 cos z + 1)(cos z + 1) + i(1 + 2 cos z) · i sin z

= i(2 cos z + 1)(cos z + 1 + i · sin z)
= i(2 cos z + 1)

(
eiz + 1

)
,

and the task is reduced to the solution of the two equations

cos z = −1
2

or eiz = −1,

from which follows that

z =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2π
3

+ 2pπ,

4π
3

+ 2pπ,

π + 2pπ,

p ∈ Z.

Example 6.29 Find all solutions z ∈ C of the equation

tan2 z + (2 − 4i) tan z = 3 + 6i.

Clearly, this equation is an equation of second degree in tan z, so we get

tan z = −1 + 2i ±
√

(−1 + 2i)2 + 3 + 6i = −1 + 2i ±√
1 − 4 − 4i + 3 + 6i

= −1 + 2i ±
√

2i = −1 + 2i ±
√

(1 + i)2 = −1 + 2i ± (1 + i)

=

⎧⎨
⎩

−1 + 2i + 1 + 1 = 3i,

−1 + 2i − 1 − i = −2 + i.
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We shall only solve the two equations

(a) tan z = 3i and (b) tan z = −2 + i.

It follows from the formula of arctan that

(a)

z = arctan(3i) =
1
2i

log
(

1 − 3
1 + 3

)
=

1
2i

log
(
−1

2

)
=

1
2i

{− ln 2 + i(π + 2pπ)}

=
π

2
+ pπ + i

1
2

ln 2, p ∈ Z,

(b)

z = arctan(−2 + i) =
1
2i

log
(

1 − 2i − 1
1 + 2i + 1

)
=

1
2i

log
( −2i

2 + 2i

)
=

1
2i

log
( −i

1 + i
· 1 − i

1 − i

)

=
1
2i

log
(

1
2
{−1 − i}

)
=

1
2i

log
(

1√
2

exp
(

i
3π
4

))
=

1
2i

{
−1

2
ln 2 + i

(
3π
4

+ 2pπ

)}

=
3π
8

+ pπ +
i

4
ln 2, p ∈ Z.
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¡noindent Hence,

z =

⎧⎪⎪⎨
⎪⎪⎩

π

2
+ pπ + i

1
2

ln 2, p ∈ Z,

3π
8

+ pπ + i
1
4

ln 2, p ∈ Z.

Alternatively, the equation is written as an equation in w = e2iz. It follows from

tan z =
sin z

cos z
=

1
i
· e2iz − 1
e2iz + 1

=
1
i
· w − 1
w + 1

,

that

0 = tan2 z + (2 − 4i) tan z − 3 − 6i = −
(

w − 1
w + 1

)2

+ (2 − 4i) · 1
i
· w − 1
w + 1

− 3 − 6i

= − 1
(w + 1)2

{
(w − 1)2 − (2 − 4i) · (−i) · (w − 1)(w + 1) + (3 + 6i)(w + 1)2

}
= − 1

(w + 1)2
{
(w − 1)2 + (4 + 2i)

(
w2 − 1

)
+ (3 + 6i)(w + 1)2

}
= − 1

(w + 1)2
{
w2 − 2w + 1 + (4 + 2i)w2 − 4 − 2i + (3 + 6i)

(
w2 + 2w + 1

)}
= − 1

(w + 1)2
{
(1+42i+3+6i)w2 + (−2+6+12i)w + (1−4−2i+3+6i)

}
= − 1

(w + 1)2
{
(8 + 8i)w2 + (4 + 12i)w + 4i

}
= − 4

(w + 1)2
{
2(1 + i)w2 + (1 + 3i)w + i

}
= − 4

(w + 1)2
· 1
1 − i

· {2 · 2w2 + (4 + 2i)w + 1 + i
}

.

Since w = −1 is not a zero of the numerator, we shall only find the solutions of the equation of second
degree

4w2 + (4 + 2i)w + 1 + i = 0.

These are given by the usual solution formula

e2iz = w =
−4 − 2i ±√(−4 − 2i)2 − 4 · 4(1 + i)

8
=

−4 − 2i ±√
16 + 16i − 4 − 16 − 16i

8

=
−4 − 2i ±√−4

8
=

−4 − 2i ± 2i
8

=
−2 − i ± i

4
=

⎧⎪⎪⎨
⎪⎪⎩

−1
2
,

−1 + i

2
,

so

(a)

z =
1
2i

log
(
−1

2

)
=

1
2i

{− ln 2 + i(π + 2pπ)} =
π

2
+ pπ + i

1
2

ln 2, p ∈ Z,
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(b)

z =
1
2i

log
(
−1 + i

2

)
=

1
2i

log
(

1√
2

exp
(
−i

3π
4

))
=

1
2i

{
−1

2
ln 2 + i

(
−3π

4
+ 2pπ

)}

= −3π
8

+ pπ +
i

4
ln 2, p ∈ Z.

The Arcus Functions and the Area Functions

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

American online      
LIGS University 

 ▶ enroll by September 30th, 2014 and 

 ▶ save up to 16% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to 

      find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc, 

DBA and PhD  programs:

Note: LIGS University is not accredited by any 
nationally recognized accrediting agency listed 
by the US Secretary of Education. 
More info here. 

http://s.bookboon.com/LIGS


Complex Functions Examples c-9

117 
 

7 The inverse of an algebraic expression.

Example 7.1 Find w as a many-valued function of z, when

3w4 − 4w3 − 6w2 + 12w = z.

This example illustrates in all details what may happen, when one tries to find the inverse many-valued
function.

We see that Ω = C and that the function f : Ω → C is given by

f(w) = 3w4 − 4w3 − 6w2 + 12w.

According to the Fundamental Theorem of Algebra the equation

f(w) = 3w4 − 4w3 − 6w2 + 12w = z

has four solutions w1, w2, w3, w4, and since these four solutions usually are different, the inverse
f◦−1(z) will in general be four-valued, and we conclude that the corresponding Riemann surface is
composed of four branches.

The we find the singular points in the w-plane, i.e. we shall find the points w, for which f ′(w) = 0.
We get the equation

f ′(w) = 12
(
w3 − w2 − w + 1

)
= 12

(
w2 − 1

)
(w − 1) = 12(w − 1)2(w + 1) = 0.

It follows that the singular points are w1 = 1 and w2 = 2, corresponding to the branch points in the
z-plane

z1 = f (w1) = 5 and z2 = f (w2) = −11.

We have in general that if w0 ∈ Ω is a zero of order n − 1 of the derivative f ′(w), i.e.

f (n) (w0) = f (1+n−1) (w0)

is the first derivative, which is different from zero (note that the value of the function itself f (w0) here
is of no importance), then the structure of the Riemann surface is in a neighbourhood of the branch
point z0 = f (w0) of the same structure as the Riemann surface of n

√
z − z0. Hence, we conclude that

we have a cubic root structure around the point z1 = 5 and a square root structure around the point
z2 = −11.

Alternatively we may give the following direct proof: By definition, w = 1 is a root, so we get by
a factor expansion of

0 = f(w) − f (w1) = f(w) − 5,

that

f(w) − 5 = 3w4 − 4w3 − 6w2 + 12w − 5 = (3w + 5)(w − 1)3 = 0.

In a small neighbourhood of the point w1 = 1 the factor 3w +5 is very close to 8, so we conclude that
we must have a structure as a cubic root.

The inverse of an algeraic expression
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Analogously we get for 0 = f(w) − f (w2) = f(w) + 11 that

f(w) + 11 = 3w4 − 4w3 − 6w2 + 12w + 11 =
(
3w2 − 10w + 11

)
(w + 1)2,

and since the factor 3w2 − 10w + 11 is close to 24 in a small neighbourhood of w2 = −1, the square
root structure follows.

Usually we start with the fundamental domains and then find the branch cuts from these. However,
since the structures of the square root and the cubic root are well-known, we shall instead fix the
branch cuts, i.e. ] −∞ , −11] of the square root, and [5,+∞ [ of the cubic root.

We have now four z-planes, which all must contain at least one branch cut. It follows by a small
analysis, that since we shall distribute 5 = 3+2 branch cuts among four planes, two of the planes
must only have the branch cut [5 , +∞ [ of the cubic root, one plane must have the branch cut
] −∞ , −11] from the square root, and finally, one z plane is equipped with both branch cuts. Then
we can use a pair of scissors, some paper and some glue to construct the Riemann surface (which of
course must have some self intersections).

We shall still find the fundamental domains in the w-plane. This must be bounded by curves, which
by the function z = f(w) is mapped either into the branch cut of the square root ] −∞ , −11] (this
is true for two curves from w = −1 to ∞) or into the branch cut of the cubic root [5,+∞[. This is
true for three curves from w = +1 to ∞, where the half tangents of these curves shall forme the angle
2π
3

with respect to each other in a neighbourhood of w = 1, because we here have approximately the

same structure as the fundamental domains of (w − 1)3 = a.

Let w = u + iv (= w(t)) be any such curve. Then f(w) is either contained in ] − ∞ , −11] or in
[5 , +∞[. In particular, Im f(w) = 0, so

0 = Im
{
3w4 − 4w3 − 6w2 + 12w

}
= 4v

{
3u3 − 3uv2 − 3u2 + v2 − 3u + 3

}
.

It follows immediately that v = 0. However, the interval ] − 11, 5 [ is not contained in the image, so
only the curve v = 0, u ≥ +1, can be used, and this is mapped into [5,+∞[.

We shall now neglect this possibility, so we assume that v �= 0 in the following. When we solve the
equation with respect to v2, then

(13) v2 =
3(u − 1)2(u + 1)

3u − 1
, u �= 1

3
.

A routine check shows that if u =
1
3
, then we only get the “solution” v = 0, which is rejected, because

we assumed that v �= 0. Hence, none of the solution curves can intersect the line u =
1
3
.

An analysis of the sign of (13) shows that if v �= 0, then we have the following possibilities:

1) u ∈ ] −∞ , −1 [, 2) u ∈
]

1
3

, 1
[

, 3) u ∈ ] 1 , +∞ [.

It is easy to prove in 1) that the image curve is the branch cut ] −∞ , −11 [ in the z-plane.

Similarly, we get in case 2) that the image curve is the branch cut ] 5 , +∞ [.

The inverse of an algeraic expression
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In case 3), however, we get a “false solution”, because the image curve becomes ] −∞ , 5 [, which has
not been defined as a branch cut.

By taking the square root of (13) we obtain the four remaining curves.

The only thing which is missing is to find the correspondence between the four planes with their
branch cuts and the fundamental domains. We shall first choose the z-plane, which has two branch
cuts, i.e. in which both w = −1 and w = +1 are branch points. Then put the other z-plane also
containing the square root branch cut below this plane and glue them together. Analogously, put the
latter two z-planes with only the branch cut of the cubic root above the chosen plane and glue them
together as a cubic root. Finally, if we abstract ourselves from the self intersections of this surface,
we have constructed the corresponding Riemann surface of the inverse map w = f ◦−1(z).

The inverse of an algeraic expression
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8 Simple example of potential flows

We collect in this chapter the simplest examples of the potentials, which are met in the literature. In
the first three of them, the (source (and the drain), the curl and the curl source, the potential is a
many-valued function. Finally, the dipole, is here derived from the joint system of a source and a drai
of the same strength, followed by taking some limit. By this limit the potential of the dipole becomes
a usual analytic function.

Example 8.1 Sources and drains.

The potential of a source at z = 0 is a (many-valued) function of the type

F (z) =
N

2π
log z + c, z ∈ C \ {0}, c ∈ C,

where we call N ∈ R \ {0} the strength of the source. If N < 0, the source is called a drain.

By separating F (z) = ϕ(x, y) + i · ψ(x, y) into its real and imaginary parts we get

ϕ(x, y) =
N

2π
ln |z| + c1, ψ(x, y) =

N

2π
arg z + c2.

The equipotential curves ϕ(x, y) = k are circles |z| = C, where C = exp
(

2π
N

{k − c1}
)

, and the

flow lines ψ(x, t) = k are the half lines arg z = α. We should of course here write α ∈ arg z instead.
However, the not so correct notation will hardly cause any misunderstanding.

If N > 0, we interpret the model as the description of a point source at z = 0, from which there is
sent a radial flow. In instead N < 0, all flow arrows are pointing at z = 0, which explains why we
here call it a drain instead.

Example 8.2 Curls.

The potential of a curl around z = 0 is a (many-valued) function of the form

F (z) =
Γi

2π
log z + c, z ∈ C \ {0}, c ∈ C,

where the constant Γ ∈ R \ {0} is called the intensity of the curl. When we separate into the real and
imaginary parts we get

ϕ(x, y) = − Γ
2π

arg z + c1, ψ(x, y) =
Γ
2π

ln |z| + c2.

In this case the flow lines are the circles of centrum at z = 0, explaining why we call this a model of
a curl.

Example 8.3 Curl sources.

Simple example of potential fl ows
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By adding a source and a curl both centred at z = 0, we get a curl source of the complex potential

F (z) =
N + iΓ

2π
log z + c, z ∈ C \ {0}.

Its real potential is

ϕ(x, y) =
N

2π
ln |z| − Γ

2π
arg z + c1,

and the corresponding flow function is

ψ(x, y) =
Γ
2π

ln |z| + N

2π
arg z + c2.

Then, by using polar coordinates we get more well-arranged that

ψ(x, y) =
1
2π

(Γ · ln r + nθ) + c2,

so the flow lines are in polar coordinates gives given by

r = C · exp
(
−N

Γ
θ

)
.

It follows that the flow lines are logarithmic spirals. Then a small consideration shows that the
equipotential curves are also a system of logarithmic spirals, which are orthogonal to the system of
flow lines.

Example 8.4 Dipoles.

For given h > 0 we consider a system consisting of a source at z1 = −h

2
of strength

N

h
, and a drain

at z2 =
h

2
of strength −N

h
. The corresponding complex potential is chosen as

Fh(z) =
N

2πh
Log

(
z +

h

2

)
− N

2πh
Log

(
z − h

2

)
.

We obtain by taking the limit h → 0+ the complex potential of the dipole

F (z) = lim
h→0+

N

2π
1
h

{
Log

(
z +

h

2

)
− Log

(
z − h

2

)}
=

N

2π
· 1
z
, z ∈ C \ {0}.

When we separate into the real and the imaginary part, we see that the corresponding flow lines are
circular arcs of centrum at (0, y) on the y-axis and of the radius |y| > 0. By sketching these we obtain
the model of a dipole. We change the orientation of the dipole by also allowing N �= 0 to be a complex
number.

Simple example of potential fl ows
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