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Introduction

Introduction

This is the sixth book containing examples from the Theory of Complex Functions. In this volume we
shall consider the rules of calculations or residues, both in finite singularities and in ∞. The theory
heavily relies on the Laurent series from the fifth book in this series. The applications of the calculus
of residues are given in the seventh book.
Even if I have tried to be careful about this text, it is impossible to avoid errors, in particular in the
first edition. It is my hope that the reader will show some understanding of my situation.

Leif Mejlbro
15th June 2008
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1 Rules of computation of residues

We refer in general to the following rules of computation of residues:

Definition of a residuum. Assume that f(z) is an analytic function defined in a neighbourhood of
z0 ∈ C (not necessarily at z0 itself) with the Laurent series expansion

f(z) =
+∞∑

n=−∞
an zn, 0 < |z| < r.

We define the residuum, or residue, of f(z) (more correctly of the complex differential form f(z) dz)
as the coefficient of 1/z in the Laurent series, i.e.

res (f(z) dz; z0) = res (f(z); z0) :=
1

2πi

∮
Γ

f(z) dz = a−1,

where Γ denotes any simple closed curve, which surrounds z0 in positive sense, and where there is no
other singularity of f(z) inside and on the curve Γ.

Rule I. If z0 ∈ C is a pole of order ≤ q, where q ∈ N, of the analytic function f(z), then

res (f ; z0) =
1

(q − 1)!
lim

z→z0

dq−1

dzq−1

{
(z − z0)

q−1
f(z)

}
.

Rules of computation of residues
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An important special case of rule I is

Rule Ia. If z0 is a simple pole or a removable singularity of the analytic function f(z), then

res (f ; z0) = lim
z→z0

(z − z0) f(z).

Rule II. If A(z) and B(z) are analytic in a neighbourhood of z0, and B(z) has a zero of first order
at z0, then the residuum of the quotient f(z) := A(z)/B(z) is given by

res (f(z); z0) = res
(

A(z)
B(z)

; z0

)
=

A (z0)
B′ (z0)

.

We also have the following generalization of Rule II, which however is only rarely used, because it
usual implies some heavy calculations:

Rule III. Assume that A(z) and B(z) are both analytic in a neighbourhood of z0, and assume that
B(z) has a zero of second order. Then the residuum of the quotient f(z) = A(z)/B(z) at z0 it given
by

res (f(z); z0) = res
(

A(z)
B(z)

; z0

)
=

6A′ (z0)B′′ (z0) − 2A (z0)B(3) (z0)
3 {B′′ (z0)}2 .

The complicated structure of Rule III above indicates why it should only rarely be applied.

Definition of the residuum at ∞. Assume that f(z) is analytic in the set |z| > R, so f(z) has
a Laurent series expansion

f(z) =
+∞∑

n=−∞
an zn.

We define the residuum at ∞ as

res(f(z) dz;∞) := −a−1,

where one should notice the change of sign.

Rule IV. Assume that f(z) has a zero at ∞. Then

res(f dz;∞) = − lim
x→∞ z f(z).

Rule V. Assume that f(z) is analytic for |z| > R.Then

res(f(z) dz;∞) = −res
(

1
w2

f

(
1
w

)
dw; 0

)
.

Rules of computation of residues
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This may be expressed in the following way: If we change the variable in the Laurent series expansion
above by z = 1/w, then the singularity z0 = ∞ is mapped into w0 = 0. Since

− 1
w2

dw = d

(
1
w

)
(= dz),

it follows by this change of variable that we have as a differential form

res(f(z) dz;∞) = res
(

f

(
1
w

)
d

(
1
w

)
;w0 = 0

)
,

which shows that it is the complex differential form, which is connected with the residues.

Cauchy’s residue theorem. Assume that f(z) is analytic in an open domain Ω ⊆ C, and let Γ
be a simple, closed curve in Ω, run through in its positive direction, such that there are only a finite
number of singularities {z1, . . . , zk} of f(z) inside the curve, i.e. to the left of the curve seen in its
direction. Then

1
2πi

∮
Γ

f(z) dz =
k∑

n=1

res (f(z); zn) .

Special case of Cauchy’s residue theorem. Assume that f(z) is analytic in Ω = C\{z1, . . . , zk},
i.e. f(z) has only a finite number of singularities in C. then

k∑
n=1

res (f(z); zn) + res(f(z);∞) = 0,

i.e. the sum of the residues is 0.

Finally, it should be mentioned that since functions like

1
sin z

,
1

cos z
, tan z, cot z,

1
sinh z

,
1

cosh z
, tanh z, coth z,

etc., does not have ∞ as an isolated singularity, none of these functions has a residuum at ∞.

Rules of computation of residues
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2 Residues in finite singularities

Example 2.1 Find the residuum of the function f(z) =
1

z2(z − 1)
, z �= 0, 1, at the point 0.

Then compute∮
|z|= 1

2

dz

z2(z − 1)
.

We expand f(z) into a Laurent series in the annulus 0 < |z| < 1, i.e. in a neighbourhood of z0 = 0.
Then

f(z) =
1

z2(z − 1)
= − 1

z2
· 1
1 − z

= − 1
z2

+∞∑
n=0

zn = − 1
z2

− 1
z
− 1 − · · · − zn − · · · .

The residuum is a−1 of this expansion, so it follows immediately that

res
(

1
z2(z − 1)

, 0
)

= a−1 = −1.

Then∮
|z|= 1

2

dz

z2(z − 1)
= 2πi res

(
1

z2(z − 1)
, 0
)

= −2π i.

Example 2.2 Find the residuum of the function f(z) =
1

z2n (z2 − 1)
, z �= 0, 1, in the point 0.

The function can be considered as a function in w = z2, so the Laurent series expansion from z0 = 0
only contains even exponents. In particular, a−1 = 0, hence

res]
(

1
z2 (z2 − 1)

)
= a−1 = 0,

and we do not have to find the explicit Laurent series in this case.

Example 2.3 Find the residuum of the function f(z) =
sin2 z

z5
, z �= 0, at the point z0 = 0.

The numerator sin2 z has a zero of order 2, and the denominator z5 has a zero of order 5, hence

f(z) =
sin2 z

z5
has a pole of order 3 at z0 = 0.

If we choose q = 3 in Rule I, we get the following expression,

rex
(

sin2 z

z5
; 0
)

=
1
2!

lim
z→0

d2

dz2

{
sin2 z

z2

}
,

which will give us some unpleasant computations.

Residues in fi nite singularities
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Then note that Rule I gives us the possibility to choose a larger q, which here is to our advantage. In
fact, if we choose q = 5 in Rule I, then

rex
(

sin2 z

z5
; 0
)

=
1
4!

lim
z→0

d4

dz4

{
sin2 z

}
=

1
24

lim
z→0

d3

dz3
{sin 2z} =

1
24

lim
z→0

23{− cos 2z} = −1
3
.

Example 2.4 Find the residues at z = 0 of the following functions:

(a)
z2 + 1

z
, (b)

z2 + 3z − 5
z3

.

(a) It follows from

z2 + 1
z

=
1
z

+ z,

that

res(f ; 0) = a−1 = 1.

Residues in fi nite singularities
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(b) It follows from

z2 + 3z − 5
z3

=
1
z

+
3
z2

− 5
z3

,

that

res(f ; 0) = a−1 = 1.

Example 2.5 Find the residues at z = 0 of the following functions:

(a)
ez

z
, (b)

ez

z2
, (z)

sin z

z4
.

(a) Here, z = 0 is a simple pole, hence by Rule I,

res(f ; 0) = lim
z→0

ez = 1.

(b) Here, z = 0 is a double pole, hence by Rule I,

res(f ; 0) =
1
1!

lim
z→0

d

dz
ez = lim

z→0
ez = 1.

(c) We get by a series expansion of the numerator sin z that

sin z

z4
=

1
z4

{
z − z3

3!
+

z5

5!
− · · ·

}
=

1
z3

− 1
6
· 1
z

+
1

120
· z + · · · .

Hence

res
(

sin z

z4
; 0
)

= a−1 = −1
6
.

Alternatively we apply Rule I, considering 0 as a pole of at most order 4 (the order is in fact
3 < 4):

res
(

sin z

z4
; 0
)

=
1
3!

lim
z→0

d3

dz3
sin z =

1
6

lim
z→0

{− cos z} = −1
6
.

Residues in fi nite singularities
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Example 2.6 Find the residues at z = 0 of the following functions:

(a)
sin z

z5
, (b)

Log(1 + z)
z2

.

(a) Here,
sin z

z5
is an even function, so

res
(

sin z

z5
; 0
)

= a−1 = 0.

Alternatively we prove this by a series expansion,

sin z

z5
=

1
z5

{
z − z3

3!
+

z5

5!
− · · ·

}
=

1
z4

− 1
6

1
z2

+
1

120
− · · · ,

from which we derive that

res
(

sin z

z5
; 0
)

= a−1 = 0.

Alternatively we apply Rule I, because 0 is a pole of at most order 5 (the order is in fact 4):

res
(

sin z

z5
; 0
)

=
1
4!

lim
z→0

d4

dz4
sin z =

1
4!

lim
z→0

sin z = 0.

(b) We have in a neighbourhood of 0 (exclusive 0 itself),

Log(1 + z)
z2

=
1
z2

{
z − z2

2
+

z3

3
− · · ·

}
=

1
z
− 1

2
+

z

3
− · · · ,

so

res
(

Log(1 + z)
z2

; 0
)

= a−1 = 1.

Alternatively, z = 0 is a pole of at most order 2 (its order is 1), so by Rule I,

res
(

Log(1 + z)
z2

; 0
)

=
1
1!

lim
z→0

d

dz
Log(1 + z) = lim

z→0

1
1 + z

= 1.

Example 2.7 Find the residues of all singularities in C of

(a)
1

z(z − 1)
, (b)

z

z4 + 1
, (c)

sin z

z2(π − z)
.

(a) The function

f(z) =
1

z(z − 1)

has the simple poles 0 and 1. Then by Rule I:

res(f ; 0) = lim
z→0

z · f(z) = lim
z→0

1
z − 1

= −1,

res(f ; 1) = lim
z→1

(z − 1)f(z) = lim
z→1

1
z

= 1.

Residues in fi nite singularities
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(b) Here we have the four simple poles

exp
(
i
π

4

)
, exp

(
i
3π
4

)
, exp

(
i
5π
4

)
, exp

(
i
7π
4

)
.

If we put

A(z) = z and B(z) = z4 + 1,

and let z0 denote any of these simple poles, then z4
0 = −1 for all four of them, and we conclude by

Rule II that

res (f ; z0) =
A (z0)
B′ (z0)

=
z0

4 z3
0

=
1
4
· 1
z4
0

· z2
0 = −z4

0

4
,

hence

res
(
f ; exp

(
i
π

4

))
= −1

4
exp
(
i
π

2

)
= − i

4
;

res
(

f ; exp
(

i
3π
4

))
= −1

4
exp
(

i
3π
2

)
=

i

4
;

res
(

f ; exp
(

i
5π
4

))
= −1

4
exp
(

i
5π
2

)
= − i

4
;

res
(

f ; exp
(

i
7π
4

))
= −1

4
exp
(

i
7π
4

)
=

i

4
.

(c) Clearly, the singularity at z = π is removable, so

res(f ;π) = 0.

Since

sin z

z
→ 1 for z → 0,

the singularity at z = 0 is a simple pole, so

res(f ; 0) = lim
z→0

z · f(z) = lim
z→0

sin z

z
· 1
π − z

=
1
π

.

Alternatively we consider z = 0 as a pole of at most order 2, so it follows by Rule I that

res(f ; 0) =
1
1!

lim
z→

d

dz

(
sin z

π − z

)
= lim

z→0

{
cos z

π − z
+

sin z

(π − z)2

}
=

1
π

.

Analogously we can consider z = π as a “pole” of at most order 1. Then by Rule I,

res(f ;π) = lim
z→π

{
− sin z

z2

}
= 0.

Residues in fi nite singularities
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Example 2.8 Find the residues of all singularities in C of

(a)
z ei z

(z − π)2
, (b)

z3 + 5
(z4 − 1) (z + 1)

, (c)
ez

z3 − z
.

(a) The only singularity is a double pole at z = π, so if follows from Rule I that

res
(

z ei z

(z − π)2
;π
)

=
1
1!

lim
z→π

d

dz

(
z ei z

)
= lim

z→π

(
ei z + i z ei z

)
= −1 − i π.

(b) The function

f(z) =
z3 + 5

(z4 − 1) (z + 1)

has the three simple poles 1, i and −i, and the double pole −1. If we put

A(z) =
z3 + 5
z + 1

and B(z) = z4 − 1,

Residues in fi nite singularities
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where the simple poles z0 = 1, i, −i, all satisfy z4
0 = 1, then

res (f ; z0) =
A (z0)
B′ (z0)

=
1
4
· z0

z4
0

· z3
0 + 5

z0 + 1
=

1
4
· 1 + 5z0

1 + z0
=

1
4

+
z0

1 + z0
,

hence

res(f ; 1) =
1
4

+
1
2

=
3
4
;

res(f ; i) =
1
4

+
i

1 + i
=

3 + 2i
4

;

res(f ;−i) =
1
4
− i

1 − i
=

3 − 2i
4

.

Finally, it follows for the double pole −1 by Rule I,

res(f ;−1) = lim
z→−1

d

dz

{
z3 + 5

(z2 + 1) (z − 1)

}

= lim
z→−1

{
3z2

(z2 + 1) (z − 1)
− 2z

(
z3 + 5

)
(z2 + 1)2 (z − 1)

− z3 + 5
(z2 + 1) (z − 1)2

}

=
3

2 · (−2)
− 2(−1) · 4

22 · (−2)
− 4

2 · (−2)2
= −3

4
− 1 − 1

2
= −9

4
.

Check. The sum of the residues is

3
4

+
3 + 2i

4
+

3 − 2i
4

− 9
4

= 0.

This agrees with the fact that the function has a zero of second order at ∞, so the residuum in ∞
(the additional term) is 0 in this case.

(c) The poles z = −1, 0, 1 are all simple. Therefore we get by Rule I,

res(f ;−1) = lim
z→−1

(z + 1)f(z) = lim
z→−1

ez

z(z − 1)
=

e−1

(−1)(−2)
=

1
2e

,

res(f ; 0) = lim
z→0

z f(z) = lim
z→0

ez

z2 − 1
= −1,

res(f ; 1) = lim
z→1

(z − 1)f(z) = lim
z→1

ez

z(z + 1)
=

e

2
.

Residues in fi nite singularities
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Example 2.9 Find the residues at z = 0 of the following functions:

(a)
2z + 1

z (z3 − 5)
, (b)

ez

sin z
.

We have in both cases a simple pole atz = 0. As usual there are several possibilities of solutions, of
which we only choose one.

(a) It follows by Rule I,

res
(

2z + 1
z (z3 − 5)

; 0
)

= lim
z→0

2z + 1
z3 − 5

= −1
5
.

(b) In this case Rule II is the easiest one:

res
(

ez

sin z
; 0
)

= lim
z→0

ez

cos z
= 1.

Example 2.10 Find the residuum at z = 1 of

1
zn − 1

, n ∈ N.

Here z = 1 is a simple pole, so by rule II,

res
(

1
zn − 1

; 1
)

= lim
z→1

1
n zn−1

=
1
n

.

Addition. Let z0 denote any one of the simple poles, i.e. zn
0 = 1. Then it follows by Rule II that

res
(

1
zn − 1

; z0

)
=

1
n zn−1

0

· z0

z0
=

z0

n
. ♦

Example 2.11 Find the residues at all singularities in C of

(a)
1

(z2 − 1) (z + 2)
, (b)

(
z3 − 1

)
(z + 2)

(z4 − 1)2
, (c) exp

(
1

z − 1

)
.

(a) The poles at −2, −1 and 1 are all simple, hence by Rule I,

res
(

1
(z2 − 1) (z + 2)

;−2
)

= lim
z→−2

1
z2 − 1

=
1
3
,

res
(

1
(z2 − 1) (z + 2)

;−1
)

= lim
z→−1

1
(z − 1)(z + 2)

= −1
2
,

res
(

1
(z2 − 1) (z + 2)

; 1
)

= lim
z→1

1
(z + 1)(z + 2)

=
1
6
.

Residues in fi nite singularities

Download free eBooks at bookboon.com



Complex Funktions Examples c-6

 

17  

Remark 2.1 Here,

res
(

1
(z2 − 1) (z + 2)

;−2
)

+ res
(

1
(z2 − 1) (z + 2)

;−1
)

+ res
(

1
(z2 − 1) (z + 2)

; 1
)

= 0,

in agreement with the fact that we have a zero of order 3 at ∞, so the residuum here (the additional
term) is 0. ♦

(b) The poles are her z = 1, i, −1, −i, and z = 1 is a simple pole, while the other ones are double
poles. Hence by various applications of Rule I,

res(f ; 1) = lim
z→1

(z − 1)

(
z3 − 1

)
(z + 2)

(z4 − 1)2
= lim

z→1

z3 − 1
z − 1

· (z + 2)(
z4 − 1
z − 1

)2 = lim
z→1

3z2(z + 2)
(4z3)2

=
9
16

,

res(f ;−1) = lim
z→−1

d

dz

{ (
z3 − 1

)
(z + 2)

(z2 + 1)2 (z − 1)2

}

= lim
z→−1

{
3z2(z+2)+z3−1
(z2+1)2 (z−1)2

− 2 · 2z (z3−1
)
(z+2)

(z2+1)3 (z−1)2
− 2

(
z3−1

)
(z+2)

(z2+1)2 (z−1)3

}

=
3 · 1 − 1 − 1
22 · (−2)2

− 2 · 2 · (−1) · (−2) · 1
23 · (−2)2

− 2 · (−2) · 1
22 · (−2)3

=
1
16

− 4
16

− 2
16

= − 5
16

,

res(f ; i) = lim
z→i

d

dz

{ (
z3−1

)
(z+2)

(z+i)2 (z2−1)2

}

= lim
z→i

{
3z2(z+2)+z3−1
(z+i)2 (z2−1)2

− 2
(
z3−1

)
(z+2)

(z+i)2 (z2−1)2
− 2 · 2z (z3−1

)
(z+2)

(z+i)2 (z2−)3

}

=
−3(2 + i) − i − 1

−4 · (−2)2
− 2 · (−1 − i)(2 + i)

−8i(−2)2
− 4i(−1 − i)(2 + i)

−4(−2)3

=
7 + 4i

16
+

−1 − 3i
16i

− 2i(−1 − 3i)
16

=
7 + 4i

16
+

−3 + i

16
+

−6 + 2i
16

=
−2 + 7i

16
,

res(f ;−i) = lim
z→−i

d

dz

{ (
z3−1

)
(z+2)

(z−i)2 (z2−1)2

}

= lim
z→−i

{
3z2(z+2)+z3−1
(z−i)2 (z2−1)2

− 2
(
z3−1

)
(z+2)

(z−i)3 (z2−1)2
− 2 · 2z (z3−1

)
(z+2)

(z−i)2 (z2−1)3

}

=
−3(2 − i) + i − 1

−4 · (−2)2
− 2(−1 + i)(2 − i)

8i(−2)2
− (−4i)(−1 + i)(2 − i)

−4 · (−2)3
= res(f ; i) =

−2 − 7i
16

.

Note again that the sum of residues is 0.
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(c) The only singularity here is z = 1. It is essential, so we must expand into a Laurent series from
z0 = 1,

exp
(

1
z − 1

)
= 1 +

1
z − 1

+ · · · , , z �= 1.

It follows that

res
(

exp
(

1
z − 1

)
; 1
)

= a−1 = 1.

Residues in fi nite singularities

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/IE


Complex Funktions Examples c-6

 

19  

Example 2.12 Prove that the functions

(a)
1

sin z
, (b)

1
1 − ez

,

only have simple poles in C. Find these end their corresponding residues.

(a) The poles of
1

sin z
are the same as the zeros of sin z and of the same multiplicity. The function

sin z has the zeros {p π | p ∈ Z}, where

lim
z�π

d

dz
sin z = lim

z→p π
cos z = (−1)p �= 0,

hence all poles are simple. Finally, it follows by Rule II that

res
(

1
sin z

; p π

)
= lim

z�π

1
cos z

= (−1)p, p ∈ Z.

(b) The poles of
1

1 − ez
are the same as the zeros of 1 − ez and of the same multiplicity. The zeros

are z = 2i p π, p ∈ Z, and since

d

dz
(1 − ez) = −ez �= 0 for every z ∈ C,

all poles are simple. Hence by Rule II,

res
(

1
1 − ez

; 2i pπ

)
= lim

z→2i p π

1
−ez

= −1, p ∈ Z.

Example 2.13 Find the residues at all singularities in C of

1
1 − cos z

.

The function
1

1 − cos z
has a (non-isolated) essential singularity at ∞, and otherwise only poles in C.

The poles are determined by the equation 1 − cos z = 0, thus

(1) 0 = 1 − cos z = 2 sin2 z

2
,

the complete solution of which is z = 2pπ, p ∈ Z. It follows from (1) that the zeros are all of second

order, hence the poles z = 2pπ, p ∈ Z, of
1

1 − cos z
are all of second order. We then have by Rule I

Residues in fi nite singularities
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and l’Hospital’s Rule the following dreadful computation,

res
(

1
1 − cos z

; 2pπ

)
=

1
1!

lim
z→2pπ

d

dz

{
(z − 2pπ)2

1 − cos z

}

= lim
z→2pπ

2(z−2pπ)(1−cos z)−(z− 2pπ)2 sin z

(1−cos z)2

= lim
z→2pπ

2(z−2pπ) · 2 sin2 z
2 − (z−2pπ)2 · 2 sin z

2 cos z
2(

2 sin2 z
2

)2
=

1
2

lim
z→2pπ

2
(
2 · z

2 − 2pπ
)
sin z

2 − (2 · z
2 − 2pπ

)2 cos z
2

sin3 z
2

= 2 lim
w→pπ

(w − pπ) sinw − (w − pπ)2 cos w

sin3 w

= 2 lim
w→pπ

sinw+(w−pπ) cos w−2(w−pπ) cos w−(w−pπ)2 sinw

3 sin2 w · cos w

=
2
3

lim
w→pπ

sinw − (w − pπ) cos w + (w − pπ)2 sinw

sin2 w · cos w

=
2
3

lim
w→pπ

cos w−cos w+(w−pπ) sin w+2(w−pπ) sin w+(w−pπ)2 cos w

2 sin w · cos2 w − sin3 w

=
2
3

lim
w→pπ

3(w−pπ) sin w+(w−pπ)2 cos w

2 sin w · cos2 w − sin3 w

=
2
3

lim
w→pπ

3 sin w+3(w−pπ) cos w+2(w−pπ) cos w−(w−pπ)2 sinw

2 cos3 w−4 sin2 w · cos w−3 sin2 w · cos w
= 0.

Remark 2.2 Whenever one apparently has to go through some heavy computations like the previous
ones, one should check if there should not be another easier method. Here it would have been cheating
the reader first to bring the simple solution, so for pedagogical reasons we have first given the standard
solution.

An alternative method of solution is the following: First note that we have for every z ∈ C and
every p ∈ Z that

cos((z + 2pπ) − 2pπ) = cos(−(z + 2pπ) − 2pπ),

which is just another way of saying that the function 1− cos z is an even function with respect to any
2pπ, p ∈ Z, so if we expand the function from some 2pπ, then it is again even. In a Laurent series
expansion of any even function all coefficients a2n+1, n ∈ Z, of odd indices must be equal to 0. In
particular,

res
(

1
1 − cos z

; 2pπ

)
= a−1 = 0 for ethvert p ∈ Z. ♦
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Example 2.14 Find the residues at all singularities in C of
sinh z

sin2 z
.

Clearly, the poles are z = pπ, p ∈ Z, and z = 0 is a simple pole. Any other pole z = pπ, p ∈ Z \ {0}
is a double pole.

When we apply Rule I, we get

res(f ; 0) = lim
z→0

z · sinh z

sin2 z
= lim

z→0

z

(
z +

z3

3!
+ · · ·

)
(

z − z3

3!
+ · · ·

)2 = lim
z→0

z2

(
1 +

z2

6
+ · · ·

)

z2

(
1 − z2

6
+ · · ·

)2 = 1,

and

res
(

sinh z

sin2 z
; pπ

)
=

1
1!

lim
z→pπ

d

dz

{
(z − pπ)2 sinh z

sin2 z

}
= lim

z→0

d

dz

{
z2 sinh(z + pπ)

sin2 z

}
= a1,

where we to ease matters have put

(2)
z2 sinh(z + pπ)

sin2 z
= a0 + a1z + · · · , |z| < π,

because z = 0 is a removable singularity, and the function has a Taylor expansion in the open disc of
centrum 0 and radius π.

The task is now to determine the coefficient a1 in the Taylor expansion. It is obvious that the usual
definition with a differentiation followed by taking a limit becomes very messy. Instead we multiply
by the denominator, so (2) becomes equivalent to

z2 sinh(z + pπ) = (a0 + a1z + · · · ) sin2 z = (a0 + a1z + · · · ) · 1
2

(1 − cos 2z),

hence after insertion of the series expansions,

z2{sinh pπ + cosh pπ · z + · · · } = (a0 + a1z + · · · ) · 1
2

{
1 − 1 +

1
2

(2z)2 − 1
4!

(2z)4 + · · ·
}

= (a0 + a1z + · · · )
(

z2 − 1
3

z4 + · · ·
)

,

which for z �= 0 is reduced to

sinh pπ + cosh pπ · z + · · · = (a0 + a1z + · · · )
(

1 − 1
3

+ · · ·
)

= a0 + a1z + · · · .

When we identify the coefficients, we get

a0 = sinh pπ and a1 = cosh pπ,

so we conclude that

res
(

sinh z

sin2 z
; pπ

)
= a1 = cosh pπ, p ∈ Z \ {0},

res
(

sinh z

sin2 z
; 0
)

= 1 = cosh(0 · π), p = 0,
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(cf. the above). Summing up we have in general,

res
(

sinh z

sin2 z
; pπ

)
= cosh pπ, p ∈ Z.

Example 2.15 Find all Laurent series solutions in a disc with the centrum z0 = 0 excluded of the
differential equation(

z4 + z2
)
f ′(z) + 2

(
z3 + z

)
f(z) = 1,

and find the value of the complex line integral∮
|z|= 1

2

f(z) dz

for everyone of these solutions.

First method. Inspection. Let us first try some manipulation,

(
z2 + 1

) {
z2f ′(z) + 2z f(z)

}
=
(
z2 + 1

) d

dz

{
z2f(z)

}
= 1.
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When |z| < 1 this equation can be written

d

dz

{
z2f(z)

}
=

1
1 + z2

=
+∞∑
n=0

(−1)nz2n,

hence by termwise integration in the open unit disc |z| < 1:

z2f(z) = C +
+∞∑
n=0

(−1)n

2n + 1
z2n+1 = C + Arctan z, C ∈ C arbitrary constant,

and the complete solution in the disc (without its centrum) is given by

f(z) =
C

z2
+

+∞∑
n=0

(−1)n

2n + 1
z2n−1 =

C

z2
+

Arctan z

z2
, C ∈ C, 0 < |z| < 1.

The circle z| =
1
2

lies in this set, so we conclude that

∮
|z|= 1

2

f(z) dz = 2πi · res(f ; 0) = 2πi a−1 = 2πi,

which holds for all of the solutions above.

Second method. The method of series. The coefficient z4 + z2 = z2
(
z2 + 1

)
is 0 for z = 0 or for

z = ±i, and the solution f(z) is analytic in its domain. Therefore, we get by inserting the Laurent
series

f(z) =
∑

anzn, f ′(z) =
∑

nanzn−1,

into the differential equation that(
z4 + z2

)
f ′(z) + 2

(
z3 + z

)
f(z)

=
∑

nanzn+3 +
∑

nanzn+1 +
∑

2anzn+3 +
∑

2anzn+1

=
∑

(n + 2)anzn+3 +
∑

(n + 2)anzn+1

=
∑

nan−2z
n+1 +

∑
(n + 2)anzn+1

=
∑

{nan−2 + (n + 2)an} zn+1.

This expression is the identity theorem equal to 1, if −a−3 + a−1 = 1 and the following recursion
formula holds,

nan−2 + (n + 2)an = 0, for n ∈ Z \ {−1}.
If n = 0, then a0 = 0 and a−2 is an indeterminate. Then it follows by recursion that a2n = 0 for
n ∈ N0.
If n = −2, then a−4 = 0 and a−2 is an indeterminate. It follows by recursion that a−2n = 0 for
n ∈ N \ {1}.
It only remains to find the coefficients of odd indices, where we have already proved that

−a−3 + a−1 = 1.
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We have for the odd indices the recursion formulæ

a2n−1 = −2n − 1
2n + 3

a2n−3, n ∈ N,

and

a−2n−3 = −−2n + 1
−2n − 1

a−2n−1, n ∈ N.

Hence by recursion for the positive, odd indices,

a2n−1 = −2n − 1
2n + 1

a2n−3 = · · · = (−1)n · 2n − 1
2n + 1

· 2n − 3
2n − 1

· · · 3
5
· 1
3
· a−1 =

(−1)n

2n + 1
,

where the corresponding series is convergent for 0 < |z| < 1. This series is determined by the
coefficient a−1.
The analogous coefficients corresponding to the negative odd indices ≤ 3 have a similar structure,

corresponding to the domain of convergence given by
∣∣∣∣1z
∣∣∣∣ < 1, i.e. the set given by |z| > 1. This

series is determined by the coefficient a−3.
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Since a−1 − a−3 = 1, and since the curve |z| =
1
2

lies in the set 0 < |z| < 1, we must necessarily
have a−3 = 0, and hence a−1 = 1. Therefore, the complete solution is in the unit disc given by

f(z) =
a−2

z2
+

+∞∑
n=0

(−1)n

2n + 1
z2n−1, a2 ∈ C, 0 < |z| < 1.

Since the circle |z| =
1
2

lies in the set 0 < |z| < 1, we get for each of these solutions that

∮
|z|= 1

2

f(z) dz = 2πi a−1 = 2πi res(f ; 0) = 2π i.

Example 2.16 Find all Laurent series of the form

f(z) =
a−1

z
+

+∞∑
n=0

anzn =
+∞∑

n=−1

anzn,

which are solutions of the differential equation

(
z − z2

) df

dz
− (z − 1) f(z) = 1 + z,

and find the annulus r < |z| < R, in which these Laurent series are convergent.
Choose any constant c ∈ ]r,R[. Find for any of the solutions above the value of the line integral∮

|z|=c

f(z) dz.

Express each of the solutions f(z) by means of elementary functions in the domain of convergence.

Hint: Consider e.g.
1
2

z f(z).

First method. Inspection. The differential equation has the singular points z = 0 and z = 1, so we
may expect that the domain is given by 0 < |z| < 1. In this set the equation can be divided by
1 − z �= 0. Then

z · df

dz
+ 1 · f(z) =

d

dz
(z · f(z)) =

1 + z

1 − z
= −1 +

2
1 − z

.

The differential equation can now be written

(3)
d

dz
(z · f(z)) = −1 +

2
1 − z

.

If |z| < 1, then 1 − z lies in the right half plane, so Log(1 − z) is defined for |z| < 1. When we
integrate (3), we get

z · f(z) = −z − 2Log(1 − z) + C,
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thus

f(z) =
C

z
− 1 − 2

Log(1 − z)
z

, 0 < |z| < 1, C ∈ C.

We have now answered the last question of the example.

Since

Log(1 − z) = −
+∞∑
n=0

1
n + 1

zn+1 for |z| < 1,

it follows by insertion that

f(z) =
C

z
− 1 + 2

+∞∑
n=0

1
n + 1

zn =
C

z
+ 1 +

+∞∑
n=1

2
n + 1

zn for 0 < |z| < 1.

This shows that all Laurent series solutions are given by

f(z) =
C

z
+ 1 +

+∞∑
n=1

2
n + 1

zn, 0 < |z| < 1, C ∈ C.

Then it is easy to prove that if c ∈ ]0, 1[, then∮
|z|=c

f(z) dz)
∮
|z|=c

a−1

z
dz = 2π i res(f ; 0) = 2πi a−1 = 2πi · C, C ∈ C.

A variant is to expand
2

1 − z
− 1 in a series. Then the equation becomes

d

dz
(z · f(z)) = −1 +

2
1 − z

= −1 + 2
+∞∑
n=0

zn = 1 + 2
+∞∑
n=1

zn, |z| < 1.

We get by termwise integration in the disc |z| < 1,

z · f(z) = C + z +
+∞∑
n=1

2
n + 1

zn+1, |z| < 1, C ∈ C,

hence

f(z) =
C

z
+ 1 +

+∞∑
n=1

2
n + 1

zn, 0 < |z| < 1, C ∈ C.

Clearly, these Laurent series have their domains of convergence 0 < |z| < 1, when C �= 0, and
|z| < 1 if C = 0.
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Second method. The method of series. If we put

f(z) =
+∞∑

n=−1

anzn og
df

dz
=

+∞∑
n=−1

nanzn−1

into the differential equation, then

1 + z =
(
z − z2

) df

dz
− (z − 1) f(z)

=
+∞∑

n=−1

nanzn −
+∞∑

n=−1

nanzn+1 −
+∞∑

n=−1

anzn+1 +
+∞∑

n=−1

anzn

=
+∞∑

n=−1

(n + 1)anzn −
+∞∑

n=−1

(n + 1)anzn+1 =
+∞∑
n=0

(n + 1)anzn −
+∞∑
n=0

nan−1z
n

= 1 · a0 + 2a1z − 0 · a−1 − 1 · a0z +
+∞∑
n=2

{(n + 1)an − nan−1} zn

= a0 + (2a1 − a0) z +
+∞∑
n=2

{(n + 1)an − nan−1} zn.

Then it follows by the identity theorem that⎧⎨
⎩

a0 = 1,
2a1 − a0 = 1,
(n + 1)an = nan−1 for n ≥ 2.

We get a0 = 1 and a1 = 1, and then from the recursion formula,

(n + 1)an = nan−1 = · · · = 2 · a1 = 2, n ≥ 2,

thus

an =
2

n + 1
for n ≥ 2.

Finally, we note that a−1 is an indeterminate, so

f(z) =
a−1

z
+ 1 + z +

+∞∑
n=2

2
n + 1

zn, 0 < |z| < 1.

Clearly, the power series has the domain of convergence |z| < 1 = R.
If a−1 �= 0, then r = 0, so we get 0 < |z| < 1.
Clearly, if c ∈ ]0, 1[, then∮

|z|=c

f(z) dz =
∮
|z|=c

a−1

z
dz = 2πi a−1.
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Finally, we have in the given domain,

1
2

z · f(z) =
1
2

a−1 +
1
2

z +
1
2

z2 +
+∞∑
n=2

1
n + 1

zn+1

=
+∞∑
n=0

1
n + 1

zn+1 − 1
1

z − 1
2

z2 +
1
2

a−1 +
1
2

z +
1
2

z2

= −
+∞∑
n=0

(−1)n

n + 1
(−z)n+1 +

1
2

a−1 − 1
2

z =
1
2

a−1 − 1
2

z − Log(1 − z),

and hence for 0 < |z| < 1,

f(z) =
a−1

z
− 1 − 2 · Log(1 − z)

z
.
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Example 2.17 Given

f(z) =
tanhπz

z(z − i)
, z ∈ C \ {zn | n ∈ Z} .

(a) Find the isolated singularities {zn | n ∈ Z} for f(z), and indicate their type.

(b) Compute the residuum of f(z) in every pole.

(c) Prove that we have for every real c �= 0,

| tanh(π{c + it})| ≤ | coth(π c)|, t ∈ R.

(d) Assume that a > 0, and let Ca denote the boundary of the rectangle of the corners a, a+ i, −a+ i
and −a. Explain why

(4)
∮

Ca

f(z) dz =
∮

Ca

tanh π z

z(z − i)
dz

is defined, and find the value of this line integral.

(e) Prove that the improper integral∫ +∞

−∞

tanhπ x

z (1 + x2)
dx

is convergent, and find – possibly by taking the limit a → +∞ in (4) – the value of this integral.

(a) The singularities are given by z = 0, z = i and cosh π z = 0, thus πz = i
π

2
+ i n π, n ∈ Z. Hence,

the singularities are

z′0 = 0, z′1 = i and zn = i

(
n +

1
2

)
, n ∈ Z.

It is almost obvious that z′
0 = 0 and z′1 = i are removable singularities, because

lim
z→0

tanhπz

z(z − i)
= −1

i
lim
z→0

tanh π z

z
= i lim

z→0

π

cosh2 π z
1

= π i,

and

lim
z→i

tanhπ z

z(z − i)
=

1
i

lim
z→i

tanhπ z

z − i
= −i lim

z→i

π

cosh2 π z
1

=
−π i

(cosh i π)2
= −π i,

where the assumptions of l’Hospital’s rule are fulfilled, and

(cosh(i π))2 = (cos π)2 = (−1)2 = 1.

Furthermore, the singularities

zn = i

(
n +

1
2

)
, n ∈ Z,
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are all simple poles. In fact,
1

z(z − i)
is er defined for all zn, and for

tanhπ z =
sinhπ z

coshπ z

the denominator cosh πz has a simple zero at each zn.

(b) According to (a), the poles are given by

zn = i

(
n +

1
2

)
, n ∈ Z,

and they are all simple. When we apply Rule II, we get

res
(

tanhπ z

z(z − i)
; zn

)
= res

(
sinhπ z

z(z − i)
· 1
coshπ z

; i

(
n +

1
2

))
= lim

z→i(n+ 1
2 )

sinhπ z

z(z − i)
· 1
π · sinhπ z

=
1
π
· 1

i

(
n +

1
2

)
i

(
n − 1

2

) = − 1
π
· 1

n2 − 1
4

=
4
π
· 1
1 − 4n2

, n ∈ Z.

(c) Using the definitions of the complex hyperbolic functions we get

| tanh(π{c + i t})|2 =
| sin(π{c + i t})|2
| cosh(π{c + i t})|2 =

cosh2(π c) − cos2(π t)
sinh2(π c) + cos2(π t)

≤ cosh2(π c)
sinh2(π c)

= coth2(π c),

hence the estimate,

| tanh(π{c + i t})| ≤ | coth(π c)|.

–2

–1

0

1

2

–2 –1 1 2

Figure 1: The path of integration C2 and the poles on the imaginary axis.

(d) The path of integration Ca passes through the two removable singularities z′
0 = 0 and z′1 = i.

Since f(z) can be continued analytically to these points, the line integral∮
Ca

f(z) dz

Residues in fi nite singularities
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is defined, and we get by Cauchy’s residue theorem that the value is given by∮
Ca

tanhπ z

z(z − i)
dz = 2π i res

(
f(z) ;

i

2

)
= 2π i res (f(z) ; z0) = 2π i · 4

π
= 8i,

where we have used that z0 is the only pole inside Ca, and where res(f(z) ; zn) has been computed
in (b).

(e) Since

tanhπ x

x
→ π for x → 0,

the integrand is continuous on R. Since∣∣∣∣ tanhπ x

x (1 + x2)

∣∣∣∣ ≤ 1
1 + x2

for |x| ≥ 1,

it follows that
tanh π x

x (1 + x2)
has an integrable majoring function, so

∣∣∣∣
∫ +∞

−∞

tanh π x

x (1 + x2)
dx

∣∣∣∣ ≤
∫ +∞

−∞

∣∣∣∣ tanhπ x

x (1 + x2)

∣∣∣∣ dx ≤
∫ 1

−1

∣∣∣∣ tanh π x

x (1 + x2)

∣∣∣∣
2

dx +
∫ +∞

−∞

dx

1 + x2
< +∞,

and the improper integral∫ +∞

−∞

tanh π x

x (1 + x2)
dx

is convergent.

It follows from (d) that

8i =
∮

Ca

tanh π z

z(z − i)
dz(5)

=
∫ a

−a

tanh π x

x(x − i)
dx −

∫ a

−a

tanh(π{x + i})
(x + i)x

dx

+
∫ 1

0

tanh(π{a + it})
(a + it)(a + i{t − 1}) i dt −

∫ 1

0

tanh(π{−a + it})
(−a + it)(−a + i{t − 1}) i dt.

We get by (c) the estimates∣∣∣∣
∫ 1

0

tanh(π{a + it})
(a + it)(a + i{t − 1}) i dt

∣∣∣∣ ≤ | coth(π a)|
a2

· 1 → 0 for a → +∞,

∣∣∣∣
∫ 1

0

tanh(π{−a + it})
(−a + it)(−a + i{t − 1}) i dt

∣∣∣∣ ≤ | coth(π a)|
a2

· 1 → 0 for a → +∞.

Furthermore,

tanh(π{x + i}) =
sinh(π x + π i)
cosh(π x + π i)

=
sinhπx · cos π + i · coshπx · sinx

cosh πx · cos π + i · sinhπx · sinx
=

sinhπx

cosh πx
= tanhπ x,
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hence by insertion

∫ a

−a

tanhπ x

x(x − i)
dx =

∫ a

−a

tanh(π{x + i})
(x + i)x

dx =
∫ a

−a

tanhπ x

x

{
1

x − i
− 1

x + i

}
dx

=
∫ a

−a

tanhπ x

x
· 2i
x2 + 1

dx = 2i
∫ a

−a

tanhπ x

x (1 + x2)
dx.

This expression is convergent by the limit a → +∞, so it follows from (5) that

8i = 2i
∫ +∞

−∞

tanhπ x

x (1 + x2)
dx + 0 + 0,

and by a rearrangement,∫ +∞

−∞

tanhπ x

x (1 + x2)
dx = 4.

Residues in fi nite singularities
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3 Line integrals computed by means of residues

Example 3.1 An analytic function f in an open annulus

Ω = {z ∈ C | 0 < |z| < R},

can be described by its Laurent series:

f(z) =
+∞∑

n=−∞
anzn, z ∈ Ω.

1) Assume that the function is even, i.e.

f(z) = f(−z), z ∈ Ω.

Prove that an is zero for all odd values of n.

2) Find the value of the complex line integral∮
|z|=1

1
z sin z

dz.

1) When f is even, we have in Ω,

0 = f(z) − f(−z) =
+∞∑

n=−∞
{1 − (−1)n} zn =

+∞∑
p=−∞

2a2p+1z
2p+1.

We conclude from the identity theorem that

a2p+1 = 0 for p ∈ Z.

2) If we put f(z) =
1

z sin z
, then

f(−z) =
1

(−z) · sin(−z)
=

1
z sin z

= f(z),

so the integrand is an even function. Then by (1) we have in particular a−1 = 0, because −1 is
an odd index. Then∮

|z|=1

1
z sin z

dz = 2πi res
(

1
z sin z

; 0
)

= 2πi a−1 = 0.

Example 3.2 Find the value of the line integral∮
|z|=2

ez

z(z − 1)2
dz.

Line integrals computed by means of residues
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It is not a good idea in this case to use the traditional method of inserting a parametric description
and then compute. Note instead that we have inside the curve |z| = 2 (seen in its positive direction)
the two isolated singularities z = 0 and z = 1, hence by Cauchy’s residue theorem,∫

|z|=2

ez

z(z − 1)2
dz = 2πi

{
res
(

ez

z(z − 1)2
; 0
)

+ res
(

ez

z(z − 1)2
; 1
)}

.

Now, z = 0 is a simple pole, so it follows from Rule Ia that

res
(

ez

z(z − 1)2
; 0
)

= lim
z→0

z f(z) = lim
z→0

ez

(z − 1)2
= 1.

Since z = 1 is a pole of second order, q = 2, we get by Rule I,

res
(

ez

z(z − 1)2
; 1
)

=
1

(2 − 1)!
lim
z→1

d2−1

dz2−1

{
(z − 1)2f(z)

}
= lim

z→1

d

dz

{
ez

z

}
= lim

z→1

ez

z2
(z − 1) = 0.

Finally, by insertion,∮
|z|=2

ez

z(z − 1)2
dz = 2πi.

Example 3.3 Compute the line integral
∮
|z|=2

z ez

z2 − 1
dz.

In this case the integrand has two isolated singularities inside |z| = 2, namely the two simple poles
z = ±1. This gives us a hint of using Rule II. Put A(z) = z ez and B(z) = z2 − 1. Then B′(z) = 2z,
and it follows by Rule II that

rez
(

z ez

z2 − 1
; z0

)
= res

(
A(z)
B(z)

; z0

)
=

A (z0)
B′ (z0)

=
z0 ezp (z0)

2 z0
=

1
2

ez∗0,

where z0 is anyone of the singularities ±1. When we apply Cauchy’s residue theorem, we get∮
|z|=2

z ez

z2 − 1
dz = 2πi{ res(f ; 1) + res(f ; −1)} = 2πi · e1 + e−1

2
= 2π i · cosh 1.

Example 3.4 Compute the line integral
∮
|z|=2

z

z4 − 1
dz.

The integrand has the four simple poles 1, i, −1 and −i inside the path of integration. Then by
Cauchy’s residue theorem,∮

|z|=2

z

z4
dz = 2πi{res(f ; 1) + res(f ; i) + res(f ; −1) + res(f : −i)}.

When we shall find the residues in several simple poles, “more or less of the same structure”, we
usually apply Rule II. Let z0 be anyone of the four simple poles, and put A(z) = z and B(z) = z4 − 1.
Then we get by Rule II,

res
(

z

z4 − 1
; z0

)
=

A (z0)
B′ (z0)

=
z0

4z3
0

=
1
4

z2
0

z4
0

=
1
4

z2
0 ,

Line integrals computed by means of residues
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hence by insertion,∮
|z|=2

z

z4 − 1
dz =

2πi

4
{
12 + i2 + (−1)2 + (−i)2

}
= 0.

Example 3.5 Integrate the function

f(z) =
z ea z

1 + ez
, 0 < a < 1,

along the rectangle of the corners ±k, ±k + 2π i, where k > 0. Then let k tend towards +∞ in order
to find the integrals

J0 =
∫ +∞

−∞

eax

1 + ex
dx og J1 =

∫ +∞

−∞

x eax

1 + ex
dx.

0

2

4

6

–10 –5 5 10

Figure 2: The path of integration C10 and the singularity π i.

The integrand
z eaz

1 + ez
has simple poles for ez = −1, i.e. for

z = π i + 2i p π, p ∈ Z.

Of these, only z = π i lies inside the curve Ck, for all k > 0. The function is analytic outside the
singularities, so it follows from Cauchy’s residue theorem for every k > 0 that

(6)
∮

Ck

z eaz

1 + ez
dz = 2π i res

(
z eaz

1 + ez
; π i

)
= 2π i · π i eaπ i

eπ i
= 2π2eaπ i,

in particular, the value does not depend on k > 0.

On the other hand,∮
Ck

z eaz

1 + ez
dz =

∫ k

−k

x eax

1 + ex
dx +

∫ 2π

0

(k + it)ea(k+it)

1 + ek+it
i dt(7)

−
∫ k

−k

(x + 2πi)ea(x+2πi)

1 + ex+2πi
dx −

∫ 2π

0

(−k + it)ea(−k+it)

1 + e−k+it
i dt.

Line integrals computed by means of residues

Download free eBooks at bookboon.com



Complex Funktions Examples c-6

 

36  

Since 0 < a < 1, it follows by the magnitudes that∫ +∞

−∞

x eax

1 + ex
dx and

∫ +∞

−∞

(x + 2πi)ea(x+2πi)

1 + ex+2πi
dx

exist. We have furthermore the estimates∣∣∣∣
∫ 2π

0

(k + it)ea(k+it)

1 + ek+it
i dt

∣∣∣∣ ≤ (k + 2π)eak

ek − 1
· 2π → 0 for k → +∞,

and∣∣∣∣
∫ 2π

0

(−k + it)ea(−k+it)

1 + e−k+it
i dt

∣∣∣∣ ≤ (k + 2π)eak

ek − 1
· 2π → 0 for k → +∞.

Hence by taking the limit k → +∞, we conclude from (6) and (7) that

2π2eaπi = lim
k→+∞

∮
Ck

z eaz

1 + ez
dz =

∫ +∞

−∞

x eax

1 + ex
dx −

∫ +∞

−∞

(x + 2πi)ea(x+2πi)

1 + ex+2πi
dx

=
∫ +∞

−∞

x eax

1 + ex
dx − e2πai

∫ +∞

−∞

x eax

1 + ex
dx − e2πai · 2πi

∫ +∞

−∞

eax

1 + ex
dx

=
(
1 − e2πai

) ∫ +∞

−∞

x eax

1 + ex
dx − 2πi · e2πai

∫ +∞

−∞

eax

1 + ex
dx,

Line integrals computed by means of residues
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so by a division by eaπi,

2π2 = − (eπai − e−πai
) ∫ +∞

−∞

x eax

1 + ex
dx − 2πi · eπai

∫ +∞

−∞

eax

1 + ex
dx

= −2i sin aπ

∫ +∞

−∞

x eax

1 + ex
dx − 2πi(cos πa + i sinπa)

∫ +∞

−∞

eax

1 + ex
dx

= 2π · sin aπ

∫ +∞

−∞

eax

1 + ex
dx − 2i

{
sin aπ

∫ +∞

−∞

x eax

1 + ex
dx + π cos aπ

∫ +∞

−∞

eax

1 + ex
dx

}
.

Then we get by separating the real and the imaginary parts,

2π2 = 2π · sin aπ

∫ +∞

−∞

eax

1 + ex
dx,

and

sin aπ

∫ +∞

−∞

x eax

1 + ex
dx + π · cos aπ

∫ +∞

−∞

eax

1 + ex
dx = 0.

Finally, we derive that

J0 =
∫ +∞

−∞

eax

1 + ex
dx =

2π2

2π · sin aπ
=

π

sin aπ
,

and

J1 =
∫ +∞

−∞

x eax

1 + ex
dx = −π cos aπ

sin aπ

∫ +∞

−∞

eax

1 + ex
dx = −π cos aπ

sin aπ
· π

sin aπ
= −π2 cos aπ

sin2 aπ
.

Example 3.6 Compute the complex line integral∮
|z|=2

1(
z − π

2

)
cos z

dz.

The analytic function cos z has the simple zeros

z =
π

2
+ nπ, n ∈ Z.

Hence the given integrand has infinitely many (simple) poles outside |z| = 2. Inside |z| = 2 the
integrand has a simple pole at z = −π

2
and a double pole at z = +

π

2
. Except for the poles, the

function

f(z) =
1(

z − π

2

)
cos z

is analytic. Then by the residue theorem,∮
|z|=2

dz(
z − π

2

)
cos z

= 2πi
{

res
(
f ;

π

2

)
+ res

(
f ; −π

2

)}
.

Line integrals computed by means of residues
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–2

–1

1

2

–2 –1 1 2

Figure 3: The curve |z| = 2 with the two poles insider.

Determination of res
(
f ; −π

2

)
. The pole z = −π

2
is simple. Apply Rule II where e.g.

A(z) =
1

z − π

2

and B(z) = cos z.

Then

res
(
f ; −π

2

)
=

A
(
−π

2

)
B′
(
−π

2

) =
1(

−π

2
− π

2

)
·
(
− sin

(
−π

2

)) = − 1
π

.

Alternatively we apply Rule I. Then

res
(
f ; −π

2

)
= lim

z→−π
2

1
z − π

2

· z + π
2

cos z
=

1
−π

2 − π
2

· 1

limz→−π
2

cos z − cos
(−π

2

)
z − (−π

2

)
= − 1

π
· 1

limz→−π
2

d

dz
cos z

= − 1
π
· 1
[− sin z]z=−π

2

= − 1
π

.

Determination of res
(
f ;

π

2

)
. Here we shall demonstrate a seldom application of Rule III, where

A(z) = 1 and B(z) =
(
z − π

2

)
cos z.

Then A′ = 0, and

B′(z) = cos z −
(
z − π

2

)
sin z,

B′′(z) = −2 sin z −
(
z − π

2

)
cos z, B′′ = −2,

B′′′(z) = −3 cos z +
(
z − π

2

)
sin z, B′′′ = 0,

Line integrals computed by means of residues
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hence

res
(
f ;

π

2

)
=

6A′B′′ − 2AB′′′

3 (B′′)2
=

6 · 0 · (−2) − 2 · 1 · 0
3 · (−2)2

= 0.

Alternatively (and more difficult) we use Rule I and l’Hospital’s rule (or possibly o-technique)
with

g(z) =
z − π

2
cos z

=
z − π

2
sin
(π

2
− z
) = −

z − π

2
sin
(
z − π

2

) ,

hence

g
(π

2

)
= − lim

z→π
2

z − π

2
sin
(
z − π

2

) = −1,

and

g(z) − g
(π

2

)
z − π

2

=

z − π
2

cos z
+ 1

z − π

2

=
z − π

2
+ cos z(

z − π

2

)
· cos z

=
T (z)
N(z)

.

Since cos z has a simple zero at z =
π

2
, the denominator

N(z) =
(
z − π

2

)
· cos z

has a double zero at z =
π

2
. The series expansion of cos z from z =

π

2
is given by

cos z = −
(
z − π

2

)
+

1
3!

(
z − π

2

)3

+ o

((
z − π

2

)3
)

,

hence

T (z) =
1
6

(
z − π

2

)3

+ o

((
z − π

2

)3
)

,

N(z) = −
(
z − π

2

)2

+ o

((
z − π

2

)2
)

,

and we conclude that

T (z)
N(z)

= −1
6

(
z − π

2

)
+ o

((
z − π

2

)1
)

,

and therefore,

res
(
f ;

π

2

)
=

1
1!

g′
(π

2

)
= lim

z→π
2

g(z) − g
(π

2

)
z − π

2

= lim
z→π

2

T (z)
N(z)

= 0.
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Alternatively we apply l’Hospital’s rule recursively, since

T (z) = z − π
2 + cos z, T

(
π
2

)
= 0,

N(z) =
(
z − π

2

)
cos z, N

(
π
2

)
= 0,

T ′(z) = 1 − sin z, T ′ (π
2

)
= 0,

N ′(z) = cos z − (z − π
2

)
sin z, N ′ (π

2

)
= 0,

T ′′(z) = − cos z, T ′′ (π
2

)
= 0,

N ′′(z) = −2 sin z − (z − π
2

)
cos z, N ′′ (π

2

)
= −2,

and we conclude again that

lim
z→π

2

T (z)
N(z)

=
0
−2

= 0.

Finally, we get summing up,∮
|z|=2

dz(
z − π

2

)
cos z

= 2πi
{

res
(
f ;

π

2

)
+ res

(
f ; −π

2

)}
= 2πi

{
0 − 1

π

}
= −2i.

Line integrals computed by means of residues
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Example 3.7 Compute the complex line integral∮
|z|=2

e2z − ez+1

(z − 1)5
dz.

The integrand has a pole of at most order ≤ 5 at the point z = 1 (the order is actually 4) inside
|z| = 2, so we get from Rule I that∮

|z|=2

e2z − ez+1

(z − 1)5
dz = 2πi res(f ; 1) =

2πi

4!
lim
z→1

d4

dz4

(
e2z − ez+1

)

=
πi

12
· (24e2 − e1+1

)
=

15πi

12
e2 =

5πe2

4
· i.

Alternatively we may apply Rule I with q = 4 instead,∮
|z|=2

e2z − ez+1

(z − 1)5
dz = 2πi · res(f ; 1) =

2πi

3!
lim
z→1

d3

dz3

(
e2z − ez+1

z − 1

)
.

It is possible with some difficulty to get through these computations, but it is not worth it here. The
message is that we gain a lot by pretending a higher order.

Alternatively we use that we here also have

res(f ; 1) = −res(f ; ∞).

It is actually possible directly to find res(f ; ∞), but again the computations are rather difficult.

Alternatively we expand

g(z) = e2z − ez+1 ud fra z = 1.

as a series. The Taylor coefficients are

g(z) = e2z − ez+1, g(1) = 0,
g′(z) = 2 e2z − ez+1, g′(1) = e2,
g′′(z) = 4 e2z − ez+1, g′′(1)?3e2,
g(3)(z) = 8 e2z − ez+1, g(3)(1) = 7e2,
g(4)(z) = 16 e2z − ez+1, g(4)(1) = 15e2,

so the Laurent series expansion becomes

f(z) =
g(z)

(z − 1)5
=

1
(z − 1)5

{
0 +

e2

1!
(z − 1) +

3e2

2!
(z − 1)2 +

7e2

3!
(z − 1)3 +

15e2

4!
(z − 1)4 + · · ·

}
.

From here we get

res(f ; 1) = a−1 =
15e2

4!
=

15e2

24
=

5e2

8
,

hence by insertion,∮
|z|=2

e2z − ez+1

(z − 1)5
dz = 2πi a−1 =

5πe2

4
· i.
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Example 3.8 Given the function

f(z) =
(
a + b z2

)−m
,

where z ∈ C is a complex variable, and a, b ∈ R+ are positive, real numbers, and m ∈ N is a positive
integer.

(a) Find the singular points of the function f(z), and determine their type.

(b) We shall expand f(z) as a Laurent series in the set

0 <

∣∣∣∣z − i

√
a

b

∣∣∣∣ < R.

Find the largest possible R.
Then find the Laurent series and prove in particular that

a−1 =
(−1)m−1(2m − 2)!

bm{(m − 1)!}2

(
2i
√

a

b

)2m−1 .

(c) Prove that

lim
R→+∞

∫
CR

dz

(a + bz2)m = 0,

where CR denotes the half circle z = R eiθ, 0 ≤ θ ≤ π.

(d) Find

I =
∫ +∞

0

dx

(a + bx2)m .

(a) It follows from

a + bz2 = b
(
z2 +

a

b

)
= b

(
z − i

√
a

b

)(
z + i

√
a

b

)
,

that

f(z) =
1

(a + bz2)m =
1

bm

(
z − i

√
a

b

)m(
z + i

√
a

b

)m ,

showing that z = ±i

√
a

b
are poles of order m.

(b) Now,

g(z) =
(

z − i

√
a

b

)m

f(z) =
1

bm

(
z + i

√
a

b

)m ,
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–1

0

1

2

3

–2 –1 1 2

Figure 4: The domain of analyticity for a = b > 0.

so it follows from the figure that g(z) is analytic in the open disc{
z ∈ C

∣∣∣∣
∣∣∣∣z − i

√
a

b

∣∣∣∣ < 2
√

a

b

}
.

Hence, g(z) has a Taylor expansion from the centrum z0 = i

√
a

b
of this disc, and the maximum

radius is R = 2
√

a

b
. We conclude that f(z) has a Laurent series expansion in the set

0 <

∣∣∣∣z − i

√
a

b

∣∣∣∣ < 2
√

a

b
,

where R = 2
√

a

b
is maximum.

Assume that

0 <

∣∣∣∣z − i

√
a

b

∣∣∣∣ < 2
√

a

b
.

Then

f(z) =
1

(a + bz2)m =
1

bm

(
z − i

√
a

b

)m(
z + i

√
a

b

)m

=
1

bm

(
z − i

√
a

b

)m(
2i
√

a

b
+ z − i

√
a

b

)m

=
1

bm

(
z − i

√
a

b

)m · 1(
2i
√

a

b

)m ·

⎧⎪⎪⎨
⎪⎪⎩1 +

1

2i
√

a

b

(
z − i

√
a

b

)⎫⎪⎪⎬
⎪⎪⎭

−m

,
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hence by the binomial formula,

f(z) =
1

bm

(
z−i

√
a

b

)m · 1(
2i
√

a

b

)m

+∞∑
n=0

( −m
n

)⎧⎪⎪⎨
⎪⎪⎩

1

2i
√

a

b

(
z−i

√
a

b

)⎫⎪⎪⎬
⎪⎪⎭

n

.

Since( −m
n

)
=

(−m)(−m − 1) · · · (−m − n + 1)
1 · 2 · · ·n

= (−1)n · (m + n − 1)(m + n − 2) · · ·m
n!

· (m − 1)!
(m − 1)!

= (−1)n · (m + n − 1)!
n!(m − 1)!

= (−1)n

(
n + m − 1

n

)
,
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it follows by insertion that

f(z) =
1

bm

(
z−i

√
a

b

)m · 1(
2i
√

a

b

)m ×

×
+∞∑
n=0

(−1)n (m+n−1)!
n!(m−1)!

· 1(
2i
√

a

b

)n

(
z−i

√
a

b

)n

=
+∞∑
n=0

(−1)m

bm
· (m+n−1)!

n!(m−1)!
· 1(

2i
√

a

b

)m+n

(
z−i

√
a

b

)n−m

=
+∞∑

p=−m

(−1)m+p

bm
· 2m+p−1)!
(m+p)!(m−1)!

· 1(
2i
√

a

b

)2m+p

(
z−i

√
a

b

)p

=
+∞∑

p=−m

ap

(
z − i

√
a

b

)p

,

which is the Laurent series expansion of f(z) in the set

0 <

∣∣∣∣z − i

√
a

b

∣∣∣∣ < 2
√

a

b
,

of centrum i

√
a

b
and radius R = 2

√
a

b
.

In particular, a−1 for p = −1, i.e.

a−1 =
1

bm
· (2m − 2)!
(m − 1)!(m − 1)!

· (−1)m−1(
2i
√

a

b

)2m−1 =
1

bm

(
2m − 2
m − 1

)
· 1(

2
√

a

b

)2m−1 · 1
i
.

(c) We get from

1
|a + bz2| ≤

1
(bR2 − a)m for |z| = R >

√
a

b
,

the estimate∣∣∣∣ lim
R→+∞

∫
CR

dz

(a + bz2)m

∣∣∣∣ ≤ lim
R→+∞

1
(bR2 − a)m · πR = 0,

proving that

lim
R→+∞

∫
CR

dz

(a + bz2)m = 0.
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–1
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1

1.5
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–2 –1 1 2

Figure 5: The curves Γ√
2 and C√

2 for a = b.

(d) Denote by ΓR, where R >

√
a

b
, the closed curve shown on the figure for a = b > 0 and R =

√
2 >√

a

b
=
√

1
1

= 1. Then

∮
ΓR

dz

(a + bz2)m = 2πi res
(

f ; i

√
a

b

)
= 2πi · a−1 =

2π
bm

(
2m − 2
m − 1

)
1(

2
√

a

b

)2m−1

=
2π
bm

(
2m − 2
m − 1

)
1

22m−1
· bm

am

√
a

b
=

π

22m−2am

(
2m − 2
m − 1

)√
a

b
.

On the other hand,

lim
R→+∞

∮
ΓR

dz

(a + bz2)m = lim
R→+∞

∫
CR

dz

(a + bz2)m + lim
R→+∞

∫ R

−R

dx

(a + bx2)m

= lim
R→+∞

2
∫ +∞

0

dx

(a + bx2)m = 2
∫ +∞

0

dx

(a + bx2)m ,

and we conclude that

I =
∫ +∞

0

dx

(a + bx2)m =
2π

22mam

(
2m − 2
m − 1

)√
a

b
,

because the improper integral of course is convergent.
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Alternatively, the difference of the degrees is 2m ≥ 2 where the denominator is dominating,

and since none of the poles ±i

√
a

b
lie on the x-axis, we conclude by a theorem that

I =
∫ +∞

0

dx

(a + bx2)m =
1
2

∫ +∞

−∞

dx

(a + bx2)m =
1
2
· 2πi · res

(
1

(a + bz2)m ; i

√
a

b

)

= πi · res

⎛
⎜⎜⎝ 1

bm

(
z−i

√
a

b

)m(
z+i

√
a

b

)m ; i

√
a

b

⎞
⎟⎟⎠

=
πi

bm
· 1
(m−1)!

lim
z→i

√
a
b

dm−1

dzm−1

⎧⎪⎪⎨
⎪⎪⎩

1(
z+i

√
a

b

)m

⎫⎪⎪⎬
⎪⎪⎭ ,

Line integrals computed by means of residues

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012; 
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl


Complex Funktions Examples c-6

 

48  

thus

I =
∫ +∞

0

dx

(a + bx2)m =
πi

bm
· 1
(m−1)!

lim
z→i

√
a
b

−m)(−m−1) · · · (−m−m+2)(
z+i

√
a

b

)m+m−1

=
πi

bm
· (−1)m−1

(m−1)!
· (2m−2)!

(m−1)!
· 1(

2i
√

a

b

)2m−1

=
πi

bm
· (−1)m−1

(
2m−2
m−1

)
· 1

22m−1 · i2m−1 · am

bm

√
a

b

=
π

bm
· (−1)m−1

i2m−2

(
2m−2
m−1

)
· 1
22m−1

· bm

am

√
a

b
=

2π
22mam

(
2m − 2
m − 1

)√
a

b
.

Example 3.9 Given two polynomials P (z) and Q(z), where the degree of Q(z) is at least 1 bigger
than the degree of P (z). Let z1, . . . , zn be the different roots of Q(z). Then it can be proved that the
inverse Laplace transform of

F (z) =
P (z)
Q(z)

is given by

(8) f(t) =
n∑

j=1

res
(
eztF (z) ; zj

)
, for t ≥ 0,

where we consider the variable t as a parameter.
Assume given the formula (8). Find the inverse Laplace transform f(t), t ≥ 0, of

F (z) =
1

(z2 + 1)2
.

Describe the function f(t) in the real, i.e. such that the imaginary unit does not occur.

Since

F (z) =
1

(z2 + 1)2

has the two double poles ±i, we shall only find

f(t) = res

(
ezt

(z2 + 1)2
; i

)
+ res

(
ezt

(z2 + 1)2
; −i

)
.

We get by Rule I,

res

(
ezt

(z2 + 1)2
; i

)
=

1
1!

lim
z→i

d

dz

(
ezt

(z + i)2

)
= lim

z→i

{
t ezt

(z + i)2
− 2 ezt

(z + i)3

}

=
t eit

(2i)2
− 2 eit

(2i)3
= −1

4
t eit − i

4
eit,
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and

res

(
ezt

(z2 + 1)2
; −i

)
=

1
1!

lim
z→−i

d

dz

(
ezt

(z − i)2

)
= lim

z→−i

{
t ezt

(z − i)2
− 2 ezt

(z − i)3

}

=
t e−it

(−2i)2
− 2 e−it

(−2i)3
= −1

4
t e−it +

i

4
eit,

hence by insertion into (8),

f(t) = −1
4

t eit − i

4
eit − 1

4
t e−it +

i

4
e−it = −1

2
t

(
1
2
{
eit + e−it

})
+

1
2
· 1
2i
{
eit − e−it

}
= −1

2
t cos t +

1
2

sin t.

Alternatively we may apply Rule III, thus

res (f ; z0) =
6A′B′′ − 2AB′′′

3 (B′′)2
.

If we put

A(z) = ezt and B(z) =
(
z2 + 1

)2
= z4 + 2z2 + 1,

then

A(z) = ezt, A(i) = eit, A(−i) = e−it,
A′(z) = t ezt, A′(i) = t eit,
B(z) = z4 + 2z2 + 1, B(i) = 0, B(−i) = 0,
B′(z) = 4z3 + 4z, B′(i) = 0, B′(−i) = 0,
B′′(z) = 12z2 + 4, B′′(i) = −8, B′′(−i) = −8,
B(3)(z) = 24z, B(3)(i) = 24i, B(3)(−i) = −24i,

hence,

res

(
ezt

(z2 + 1)2
; i

)
=

6t eit · (−8) − 2eit · 24i
3(−8)2

= −1
4

t eit − i

4
eit,

and

res

(
ezt

(z2 + 1)2
; −i

)
=

6t e−it · (−8) − 2e−it · (−24i)
3(−8)2

= −1
4

t e−it +
i

4
e−it,

and we proceed as above.
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Example 3.10 (a) Find the complete solutions of the differential equation

(9) f ′(z) =
1
z

f(z) − 1
z + 1

,

in the domain Ω = {z ∈ C | |z| > 1}.
Hint: Find e.g.. f(z) =

∑
anzn as a Laurent series solution of (9) in Ω. It will be advantageous

to use the Laurent series expansion of
1

z + 1
in Ω.

(b) Prove that there exists precisely one solution f0(z) of (9) in Ω, such that f0(z) is bounded at ∞.
Express f0(z) by elementary functions without using sums.

(c) Compute the line integral∮
|z|=2

f0(z) dz.

(a) It follows by inspection that if z �= 0, −1, then

− 1
z + 1

· 1
z

=
f ′(z)

z
− 1

z2
f(z) =

z f ′(z) − 1 · f(z)
z2

=
d

dz

(
f(z)

z

)
.

Thus, for z| > 1,

f(z)
z

= c −
∫

1
z
· 1
z + 1

dz = c +
∫ (

1
1 + z

− 1
z

)
dz = c + Log

(
z + 1

z

)
,

because we only have

z + 1
z + 0

= −α, α ∈ R+ ∪ {0},

when z =
1

1 + α
∈ ]0, 1]. Hence the function

Log
(

z + 1
z

)
= Log

(
1 +

1
z

)

is analytic in Ω. The complete solution is then

f(z) = c · z + z · Log
(

1 +
1
z

)
, |z| > 1, c ∈ C.

Alternatively, assume that f(z) has a Laurent series expansion

f(z) =
+∞∑

n=−∞
anzn for |z| > 1.

Then by insertion,

f ′(z) − 1
z

f(z) =
+∞∑

n=−∞
nanzn−1 −

+∞∑
n=−∞

anzn−1 =
+∞∑

n=−∞
(n − 1)anzn−1.
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Furthermore,

− 1
z + 1

= −1
z
· 1

1 +
1
z

= −1
z

+∞∑
n=0

(−1)n · 1
zn

=
+∞∑
n=0

(−1)n−1z−n−1,

so if we on the left hand side write −n instead of n, the we get the following equation,

+∞∑
n=−∞

(−n − 1)a−nz−n−1 = −
+∞∑
n=0

(−1)nz−n−1.

The Laurent series expansion is unique, so we conclude that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(−n − 1)a−n = −(−1)n, thus a−n =
(−1)n

n + 1
, n ∈ N0,

a1 an indeterminate, (corresponding to n = −1),

an = 0 for n ≥ 2.

The formal series is given by

a1z +
+∞∑
n=0

(−1)n

n + 1
· 1
zn

= a1z + z

+∞∑
n=1

(−1)n+1

n
· 1
zn

= a1z + z · Log
(

1 +
1
z

)
,

which of course is convergent for
∣∣∣∣1z
∣∣∣∣ < 1, i.e. for |z| > 1.
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(b) If |z| > 1, then

z · Log
(

1 +
1
z

)
= z

+∞∑
n=1

(−1)n+1

n
· 1
zn

=
+∞∑
n=0

(−1)n

n + 1
· 1
zn

,

and it follows that

lim
z→∞ z · Log

(
z + 1

z

)
=

(−1)0

1 + 0
= 1.

When z → ∞, the term c · z is only bounded if c = 0, so the wanted solution is

f0(z) = z · Log
(

1 +
1
z

)
.

(c) The circle |z| = 2 lies in the domain of analyticity Ω, so it follows from the Laurent series epansion
that∮

|z|=2

f0(z) dz =
∮
|z|=2

z · Log
(

1 +
1
z

)
dz = 2πi a−1 = 2π i ·

(
−1

2

)
= −π i.

Example 3.11 Given the differential equation

(10)
(
z2 − z

)
f ′′(z) + (5z − 4)f ′(z) + 3 f(z) = 0.

(a) Assume that (10) has a Laurent series solution f(z) =
∑

anzn. Derive a recursion formula for
the coefficients an, and prove that an = 0 for n ≤ 4.

(b) Then find all Laurent series solutions of (10), and express each of them by elementary functions.

(c) Find the Laurent series solutions which have a pole at 0, determine the order of this pole and the
residuum at z = 0.

First method. Inspection. This solution method does not follow the text, so we must be careful to
have answered all questions.

We get for z �= 0 by some simple manipulations that

0 =
(
z2 − z

)
f ′′(z) + (5z − 4)f ′(z) + 3 f(z)

=
{(

z2 − z
)
f ′′(z) + (2z − 1)f ′(z)

}
+ {(3z − 3)f ′(z) + 3 f(z)}

=
d

dz

{(
z2 − z

)
f ′(z)

}
+

d

dz
{3(z − 1)f(z)}

=
d

dz

{
z − 1
z2

(
z3f ′(z) + 3z2f(z)

)}

=
d

dz

{
z − 1
z2

d

dz

(
z3f(z)

)}
.
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Hence by an integration,

z − 1
z

d

dz

(
z3f(z)

)
= c1, z ∈ C \ {0}, c1 ∈ C,

so z �= 0 and z �= 1,

d

dz

(
z3f(z)

)
=

c1z
3

z − 1
= c1(z + 1) +

c1

z − 1
.

When we integrate
c1

z − 1
, we have two possibilities:

1) In the first case we shall check the choice of c1 Log(z−1). This function has a branch cut along
the half line ]−∞,+1[. In particular, every circle of centrum at 0 will intersect ]−∞[ at least
once. This means that Log(1 − z) does not have any Laurent series expansion in any annulus,
so we have to reject this possibility of solution.

2) The second choice is c1 Log(1 − z) of the branch cut along the half line ]1,+∞[. In this case
we already know that

c1 Log(1 − z) = −c1

+∞∑
n=1

1
n

zn for |z| < 1,

and we even get a power series expansion. Hence, we shall choose this primitive in the following.

We get by another integration that

z3f(z) = c1

(
z2

2
+ z

)
+ c1 Log(1 − z) + c2, z ∈ C \ ({0} ∪ [1,+∞[),

hence

f(z) =
c2

z3
+

c1

z3
Log(1 − z) +

c1

z2
+

c1

2z
, z ∈ C \ ({0} ∪ [1 + ∞[).

When we insert the power series expansion, we get for 0 < |z| < 1 that

f(z) =
c2

z3
+

c1

z3

{
−

+∞∑
n=1

1
n

zn + z +
1
2

z2

}
=

c2

z3
+

c1

z3

{
−

+∞∑
n=3

1
n

zn

}

=
c2

z3
− c1

+∞∑
n=0

1
n + 3

zn, 0 < |z| < 1.

In particular, a0 = 0 for n ≤ −4, and if c2 �= 0, then 0 is a pole or order 3. If c2 = 0, then the
singularity at 0 becomes removable.

According to the above we have a−1 = 0, so res(f ; 0) = 0 for any such solution, and we have
answered all questions with the exception of determining the recursion formula, which does not
give sense any more.

Line integrals computed by means of residues
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Second method. The standard method, i.e. the series method. By inserting a formal Laurent series

f(z) =
∑

anzn

and its derivatives

f ′(z) =
∑

nanzn−1 and f ′′(z) =
∑

n(n − 1)anzn−2,

we get

0 =
(
z2 − z

)
f ′′(z) + (5z − 4)f ′(z) + 3 f(z)

=
∑

n(n−1)anzn−
∑

n(n−1)anzn−1 +
∑

5nanzn−
∑

4nanzn−1+
∑

3anzn

=
∑{

n2−n+5n+3
}

anzn−
∑

n(n+3)anzn−1

=
∑

(n+1)(n+3)anzn−
∑

n(n+3)anzn−1

=
∑

{(n+1)(n+3)an−(n+1)(n+4)an+1} zn

=
∑

(n+1) {(n+3)an − (n+4)an+1} zn.

Then apply the identity theorem to get the recursion formula

(11) (n + 1) {(n + 3)an − (n + 4)an+1} = 0, for n ∈ Z.

The strategy is first to check the obvious zeros of the factors in (11).

If n = −1, then n+1 = 0. This implies that a−1 and a0 are independent of each other, so for the
time being they may be chosen arbitrarily.

Remark 3.1 We shall later see that we get a condition on a−1, while a0 is an arbitrary
constant. However, this cannot yet be concluded. ♦.

If n �= −1, the recursion formula is reduced to

(12) (n + 3)an = (n + 4)an+1, n ∈ Z \ {−1}.

For n = −4, then a−4 = 0. Put bn = a−n, and derive from (12) that for n ∈ N \ {1},

(n − 3)bn = (n − 4)bn−1.

We get by recursion for n ≥ 4,

(n − 3)a−n = (n − 3)bn = (n − 4)bn−1 = · · · = (4 − 4)b4−1 = 0,

so we conclude that an = 0 for n ≤ −4. There is no restriction on b4−1 = a−3, so this we also
consider for the time being as an arbitrary constant.

If n = −3, then it follows from (12) that

a−2 = 0 · a−3 = 0.

We conclude that a−3 is indeed an arbitrary constant, which can be chosen freely.

Line integrals computed by means of residues
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If n = −2, then

0 = (−2 + 3)a−2 = (−2 + 4)a−1,

so a−1 = 0. In particular,

res(f ; 0) = a−1 = 0

for every convergent series solution.

The case n = −1 has already been treated above.

If n ∈ N0, then it follows from (12) that

(n + 4)an+1 = (n + 3)an = · · · = (0 + 3)a0 = 3a0,

hence

an =
3

n + 3
a0 for n ∈ N0,

and we have found all coefficients.

Summing up, the formal Laurent series solutions are given by

(13) f(z) =
a−3

z3
+ a0

+∞∑
n=0

3
n + 3

zn,

and it follows that the domain of convergence in general is 0 < |z| < 1 for a−3 �= 0 and a0 �= 0.
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Special cases

If a−3 = 0 and a0 �= 0, then the domain of convergence is |z| < 1.

If a−3 �= 0 and a0 = 0, then the domain of convergence is C \ {0}.
If a−3 = a0 = 0, then f(z) ≡ 0 and the domain of convergence is C.

Finally, we shall express the series
∑+∞

n=0

3
n + 3

zn by elementary functions. If we put

g(z) = z3
+∞∑
n=0

3
n + 3

zn,

then we get for |z| < 1,

g(z) = 3
+∞∑
n=0

1
n + 3

zn+3 = 3
+∞∑
n=3

1
n

zn = 3
+∞∑
n=1

1
n

zn − 3z − 3
2

zn = −3Log(1 − z) − 3z − 3
2

z2,

thus

f(z) = a−3z
3 + a0

g(z)
z3

=
a−3

z3
− 3a0

{
Log(1 − z)

z3
− 1

z2
− 3

2
1
z

}
, 0 < |z| < 1,(14)

in agreement with the solution by the first method with c2 = a−3 and c1 = −3a0.

According to (13) (and not (14)) the Laurent series solutions which have a pole at z = 0, are given
by a−3 �= 0. The order is 3, and since (13) does not contain any term of the form

a−1

z
(i.e. a−1 = 0

for all solutions), we have

res(f ; 0) = a−1 = 0.

Line integrals computed by means of residues
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4 The residuum at ∞
Example 4.1 Find the residues at ∞ of the following functions,

(a)
z3

z4 − 1
, (b)

(
z +

2
z

)4

, (c)
ez

z
.

(a) Since

f(z) =
z3

z4 − 1

has a zero of first order at ∞, we get

res(f ;∞) = − lim
n→∞ z · f(z) = − lim

z→∞
z4

z4 − 1
= − lim

z→∞
1

1 − 1
z4

= −1.

(b) It follows by the binomial formula that

(
z +

2
z

)4

=
16
z4

+
32
z2

+ 24 + 8z2 + z4, for z ∈ C \ {0},

which we may consider of a degenerated Laurent series in a neighbouhood of ∞. It follows from
a−1 = 0 that

res(f ;∞) = −a−1 = 0.

(c) Since

res(f ; 0) + res(f ;∞) = 0,

it follows by a rearrangement that

res(f ;∞) = −res
(

ez

z
; 0
)

= −1.

Alternatively,

res(f ;∞) = −res
(

1
z2

f

(
1
z

)
; 0
)

= −res

(
exp
(

1
z

)
z

; 0

)
= −1,

because

1
z

exp
1
z

=
1
z

+∞∑
n=0

1
n!

1
zn

=
1
z

+
1
z2

+
1
2

1
z3

+ · · · for z �= 0.
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Example 4.2 Find the residues at ∞ of the following functions:

(a)
1

z (1 − z2)
, (b)

z4

(z2 + 1)2
, (c)

z2n

(1 + z)n
, n ∈ N.

(a) The function f(z) =
1

z (1 − z2)
has a zero of order 3 at ∞, so

res
(

1
z (1 − z2)

; ∞
)

= 0.

Alternatively,

res
(

1
z (1−z2)

;∞
)

= −res

⎛
⎜⎜⎝ 1

z2
· 1

1
z

(
1 − 1

z2

) ; 0

⎞
⎟⎟⎠ = −res

(
z

z2−1
; 0
)

= 0.

(b) The Laurent series expansion of the function

f(z) =
z4

(z2 + 1)2

only contains even powers of z, so a−1 = 0, and thus

res

(
z4

(z2 + 1)2
; ∞
)

= 0.

(c) It follows by the rules of computation,

res
(

z2n

(1 + z)n
; ∞
)

= −res

⎛
⎜⎜⎜⎝ 1

z2
·

(
1
z

)2n

(
1 +

1
z

)n ; 0

⎞
⎟⎟⎟⎠ = −res

(
1

zn+2
· 1
(z + 1)n

; 0
)

= − 1
(n + 1)!

lim
z→0

dn+1

dzn+1

{
1

(z + 1)n

}
= − 1

(n + 1)!
lim
z→0

{
(−1)n+1 · n(n + 1) · · · (n + n + 1 − 1)

(z + 1)2n+1

}

= (−1)n · 1
(n + 1)!

· (2n)!
(n − 1)!

= (−1)n

(
2n

n − 1

)
.

Alternatively, z = −1 is the only finite singularity, so

res(f ;−1) + res(f ;∞) = 0,

and then by a rearrangement and Rule I for the residuum at a finite point,

res
(

z2n

(1 + z)n
; ∞
)

= −res
(

z2n

(1 + z)n
; −1

)
= − 1

(n − 1)!
lim

z→−1

dn−1

dzn−1

(
z2n
)

= − 1
n − 1)!

· 2n(2n − 1) · · · (n + 2) · (−1)n+1

= (−1)n · (2n)!
(n − 1)!(n + 1)!

= (−1)n

(
2n

n − 1

)
.
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Example 4.3 Prove that z = 0 is an essential singularity of exp
(
z−2
)
.

Then find

res
(
exp
(
z−2
)
; 0
)

and res
(
exp
(
z−2
)
;∞) .

It follows from

exp
(

1
z2

)
=

+∞∑
n=0

1
n!

for alle z ∈ C \ {0},

that

a−2n =
1
n!

�= 0, for n ∈ N0,

proving that 0 is an essential singularity.

Since a−1 = 0, we have

res
(

exp
(

1
z2

)
; 0
)

= a−1 = 0.

Here z = 0 is the only finite singularity, so

res
(

exp
(

1
z2

)
;∞
)

= −res
(

1
z2

exp
(
z2
)
; 0
)

= 0.
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Alternatively we get by Rule IV,

res
(

exp
(

1
z2

)
;∞
)

= −res
(

1
z2

exp
(
z2
)
; 0
)

= 0,

because

1
z2

exp
(
z2
)

=
+∞∑
n=0

1
n!

z2n−2 for z �= 0,

and it follows that a−1 = 0.

Example 4.4 Find the residues at ∞ of the following functions

(a)
1

z3 − z5
, (b)

z2 + 1
z3 + 1

, (c)
(

z2 +
1
z2

)
sin z.

(a) We see that

1
z3 − z5

= − 1
z5

· 1

1 − 1
z2

has a zero of order 5 at ∞, so

res
(

1
z3 − z5

; ∞
)

= 0.

(b) Since
z2 + 1
z3 + 1

has a zero of first order at ∞, we get

res
(

z2 + 1
z3 + 1

; ∞
)

= − lim
z→∞ z · z2 + 1

z3 + 1
= −1.

(c) It follows by a series expansion of sin z in the neighbourhood of ∞ that(
z2 +

1
z2

)
sin z = z2 sin z +

1
z
− 1

3!
z + · · · , z �= 0.

The power series expansion of z2 sin z is convergent in all of C, so the Laurent series of z2 sin z is
equal to the power series, and it will not contribute to the negative indices. Therefore,

res
((

z2 +
1
z2

)
sin ; ∞

)
= −a−1 = −1.

The residuum at ∞

Download free eBooks at bookboon.com



Complex Funktions Examples c-6

 

61  

Example 4.5 Find the residues at ∞ of the followingfunctions:

(a)
z2 + z + 1
z2(z − 1)

, (b)
ez

z2 (z2 + 9)
, (c) exp

(
z +

1
z

)
.

(a) Since
z2 + z + 1
z2(z − 1)

has a zero of first order at ∞, it follows from Rule IV that

res
(

z2 + z + 1
z2(z − 1)

;∞
)

= − lim
z→∞

z
(
z2 + z + 1

)
z2(z − 1)

= − lim
z→∞

1 +
1
z

+
1
z2

1 − 1
z

= −1.

(b) Since we have only a finite number of singularities in C, and since the sum of the residues is zero,
we get

res(f ;∞) = −res(f ; 0) − res(f ; 3i) − res(f ;−3i).

Here z = 0 is a double pole, so

res(f ; 0) =
1
1!

[
d

dz

{
ez

z2 + 9

}]
z=0

=
[

ez

z2 + 9
+ z {· · · }

]
z=0

=
1
9
.

Since z = ±3i are simple poles, we get

res(f ; 3i) =
e3i

(3i)2(3i + 3i)
=

e3i

−27 · 2i = − 1
27

· e3i

2i
,

res(f ;−3i) =
e−3i

(−3i)2(−3i − 3i)
=

e−3i

27 · 2i =
1
27

· e−3i

2i
,

hence

res(f ;∞) = −1
9
− 1

27

{
−e3i − e−3i

2i

}
= −1

9
+

1
27

sin 3.

Alternatively one may try Rule IV,

res(f ;∞) = −res
(

1
z2

f

(
1
z

)
; 0
)

= −res

(
z2 exp

(
1
z

)
9z2 + 1

; 0

)
,

which, however, does not look promising. It should be mentioned that it is possible to find the
Laurent series from z0 = 0; but the calculations are far more difficult than the argument above.

(c) We have for z �= 0,

exp
(

z +
1
z

)
=

+∞∑
n=0

1
n!

(
z +

1
z

)n

=
+∞∑
n=0

1
n!

⎧⎨
⎩

n∑
j=0

(
n
j

)
z2j−n

⎫⎬
⎭ ,
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so the coefficient a−1 corresponds to those terms for which n = 2j + 1, thus

res(f ;∞) = a−1 = −
+∞∑
j=0

1
(2j + 1)!

(
2j + 1

j

)
= −

+∞∑
n=0

(2n + 1)!
(2n + 1)!n!(n + 1)!

= −
+∞∑
n=0

1
n!(n + 1)!

.

By using the definition

Jm(z) =
+∞∑
n=0

(−1)n

n!(m + n)!

(z

2

)2n+n

, m ∈ N0,

of the Bessel function of order m it follows that

res(f ;∞) = −
+∞∑
n=0

1
n!(n + 1)!

= i J1(2i).

Example 4.6 Prove that

(a)
∮
|z|=1

eπz

4z2 + 1
dz = πi, (b)

∮
|z|=1

ez

z3
dz = πi.

(a) The integrand has simple poles at z0 = ± i

2
. Put

A(z) = eπz and B(z) = 4z2 + 1.

Then, using that 4z2
0 = −1, we get in each of the two cases of z0,

A (z0)
B′ (z0)

=
eπz0

8z0
=

1
4z2

0

· 1
2
· z0e

πz0 = −1
2

z0e
πz0 .

Hence,

res
(

f ;
i

2

)
= − i

2
exp
(
i
π

2

)
= − i

4
· i =

1
4
,

res
(

f ; − i

2

)
=

i

4
exp
(
−i

π

2

)
=

i

4
(−i) =

1
4
.

Since both
i

2
and − i

2
lie inside the circle |z| = 1, we finally get

∮
|z|=1

eπz

4z2 + 1
dz = 2πi

{
res
(

f ;
i

2

)
+ res

(
f ; − i

2

)}
= 2πi

{
1
4

+
1
4

}
= πi.
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(b) We have inside |z| = 1 a pole of order 3 atz = 0. It follows from

ez

z3
=

+∞∑
n=0

1
n!

zn−3, z ∈ C \ {0},

that

res(f ; 0) = a−1 =
1
2!

=
1
2
,

hence∮
|z|=1

ez

z3
dz = 2πi · res(f ; 0) = 2πi · a−1 = πi.

Example 4.7 Compute
∮
|z|=2

z

z4 − 1
dz.

This integral was previously computed in Example 3.4 by Rule II. We shall here show that it is much
easier to use Rule IV instead, because∮

|z|=2

z

z4 − 1
dz = −

∮ ∗

|z|=2

z

z4 − 1
dz = −2πi · res

(
z

z4 − 1
; ∞
)

= 2πi · lim
z→∞

z2

z4 − 1
= 0,

where
∮ ∗ denotes that we have changed the direction of the path of integration

∮ ∗
C
· · · dz = − ∮

C
· · · dz.
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Example 4.8 Prove that∮
|z|=1

ez(
z2 + z − 3

4

)2 dz = 0.

The poles of the integrand are given by

z = −1
2
±
√

1
4

+
3
4

= −1
2
± 1,

thus

z1 =
1
2

and z2 = −3
2
.

Only z1 =
1
2

lies inside the path of integration |z| = 1, and it is a pole of second order, so

∮
|z|=1

ez(
z2 + z − 3

4

)2 dz = 2πi · res

⎛
⎜⎜⎜⎝ ez(

z2 + z − 3
4

)2 ;
1
2

⎞
⎟⎟⎟⎠ =

2πi

1!
lim
z→ 1

2

d

dz

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ez(
z +

3
2

)2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= 2πi lim
z→ 1

2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ez(
z +

3
2

)2 − 2
ez(

z +
3
2

)3

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= 2πi
√

e ·
{

1
22

− 2
23

}
= 0.

Example 4.9 Prove that

(a)
∮
|z|=3

dz

z(z − 1)
= 0, (b)

∮
|z|=1

ez + sin z

z
dz = 2πi.

(a) The poles z = 0 and z = 1 lie inside |z| = 3, so∮
|z|=3

dz

z(z − 1)
= 2πi

{
res
(

1
z(z − 1)

; 0
)

+ res
(

1
z(z − 1)

; 1
)}

= 2πi{−1 + 1} = 0.

Alternatively we have a zero of second order at ∞, hence if we let
∮ � denote a closed path of

integration of negative direction, then∮
|z|=3

dz

z(z − 1)
= −

∮ �

|z|=3

dz

z(z − 1)
= −2πi · res

(
1

z(z − 1)
; ∞
)

= 0.

(b) The simple pole z = 0 is the only singularity inside |z| = 1, so∮
|z|=1

ez + sin z

z
dz = 2πi · res

(
ez + sin z

z
; 0
)

= 2πi
{
e0 + sin 0

}
= 2πi.
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Example 4.10 Prove that

(a)
∮
|z|=2

dz

(z − 1)(z + 3)
=

πi

2
, (b)

∮
|z|=4

sin z

(z − π)3
dz = 0.

(a) Here, z = 1 is the only singularity inside |z| = 2, so∮
|z|=2

dz

(z − 1)(z + 3)
= 2πi · res

(
1

(z − 1)(z + 3)
; 1
)

= 2πi · 1
4

=
πi

2
.

(b) Here, z = π is the only singularity inside |z| = 4 (notice that π < 4), and since π is a pole of at
most order 3 (it is actually only of order 2), it follows by Rule I that∮

|z|=4

sin z

(z − π)3
dz = 2πi · 1

2!
lim
z→π

d2

dz2
sin z = πi lim

z→π
(− sin z) = 0.

Example 4.11 Compute each of the following line integrals

(a)
∮
|z|=2

z3 − 3z + 1
(z − i)2

dz, (b)
∮
|z−1|=2

cos z

z7
dz, (c)

∮
|z|=3

dz

z4 − 1
.

(a) Here, z = i is a pole of at most second order inside |z| = 2, so∮
|z|=2

z3 − 3z + 1
(z − i)2

dz =
2πi

1!
lim
z→i

d

dz

(
z3 − 3z + 1

)
= 2πi lim

z→i

(
3z2 − 3

)
= −12πi.

(b) Here, z = 0 is a pole of at most seventh order inside |z − 1| = 2, so∮
|z−1|=2

cos z

z7
dz =

2πi

6!
lim
z→0

d6

dz6
cos z =

2πi

6!
lim
z→0

(− cos z) = −2πi

6!
= − πi

360
.

Alternatively, it follows by a series expansion for z �= 0 that

cos z

z7
=

1
z7

·
{

1 − z2

2!
+

z4

4!
− z6

6!
+ · · ·

}
=

1
z7

− 1
2

1
z5

+
1
24

1
z3

− 1
720

1
z

+ · · · ,

and since res(f ; 0) = a−1, we get∮
|z−1|=2

cos z

z7
dz = 2πi · res(f ; 0) = − 2πi

720
= − πi

360
.

(c) Each of the simple poles z0 = 1, i, −1, −i, satisfies z4
0 = 1, so

res
(

1
z4 − 1

; z0

)
=

1
4z3

0

=
z0

4z4
0

=
z0

4
.

The residuum at ∞

Download free eBooks at bookboon.com



Complex Funktions Examples c-6

 

66  

All poles lie inside |z| = 4, so

∮
|z|=3

dz

z4 − 1
= 2πi

4∑
j=1

res (f ; zj)?2πi

{
1 + i − 1 − i

4

}
= 0.

Alternatively, the integrand has a zero fourth order at ∞, thus res(f ;∞) = 0. Let
∮ � denote

the closed line integral of negative direction. Since all finite poles lie inside |z| = 3, we get∮
|z|=3

dz

z4 − 1
= −

∮ �

|z|=3

dz

z4 − 1
= −2πi · res(f ;∞) = 0.

Example 4.12 Compute each of the following line integrals:

(a)
∮

x2+y2=2x

dz

z4 + 1
, (b)

∮
|z−2|= 1

2

dz

(z − 1)(z − 2)2
.

–1

–0.5

0

0.5

1

–0.5 0.5 1 1.5 2

Figure 6: The path of integration and the four (simple) poles.

(a) Since the curve x2 + y2 = 2x, i.e.

(x − 1)2 + y2 = 1,

surrounds the two simple poles exp
(
i
π

4

)
and exp

(
−i

π

4

)
, and since the residue s here are

res
(

1
z4 + 1

; z0

)
=

1
4z3

0

= −z0

4
for z4

0 + 1 = 0,

we get∮
x2+y2=2x

dz

z4 + 1
= 2πi ·

(
−1

4

)
·
{

exp
(
i
π

4

)
+ exp

(
−i

π

4

)}
= −π i cos

π

4
= − π i√

2
.
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Only the pole z = 2 lies inside the circle, so a direct computation gives

∮
|z−2|? 1

2

dz

(z − 1)(z − 2)2
= 2π i · res

(
1

(z − 1)(z − 2)2
; 2
)

=
2π i

1!
lim
z→2

d

dz

{
1

z − 1

}

= 2π i lim
z→2

{
− 1

(z − 1)2

}
= −2πi.

Alternatively we change the direction of integration,
∮

= − ∮ �. We have a zero of order 3 at
∞, so

∮
|z−2|= 1

2

dz

(z − 1)(z − 2)2
= −

∮ �

|z−2|= 1
2

dz

(z − 1)(z − 2)2
= −2π i {res(f ; 1) + res(f ;∞)}

= −2π i {1 + 0} = −2π i.
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Example 4.13 Compute each of the following line integrals:

(a)
∮
|z|=2

dz

(z − 3) (z5 − 1)
; (b)

∮
|z|=1

z3

2z4 + 1
dz.

(a) The integrand has a zero of sixth order at ∞, so when we chance the direction of integration,∮
= − ∮ �, we get

∮
|z|=2

dz

(z − 3) (z5 − 1)
= −

∮ �

|z|=2

dz

(z − 3) (z5 − 1)
= −2πi{res(f ; 3) + res(f ;∞)}

= − 2πi

35 − 1
+ 0 = −2πi

242
= − πi

121
.

It is also possible to carry through an alternative solution, in which we compute the residues
at the five simple poles z0, satisfying z5

0 = 1:

res
(

1
(z − 3) (z5 − 1)

; z0

)
=

1
z0 − 3

· 1
5z4

0

=
1
5
· z0

z0 − 3
=

1
5

+
3
5
· 1
z0 − 3

.

We see that we get into some computational problems concerning the last term, because we for

z0 = exp
(

i
2π
5

)
get the denominator

z0 − 3 = exp
(

i
2π
5

)
− 3 =

(
cos

2π
5

− 3
)

+ i sin
2π
5

.

(b) It follows from res(f ;∞) = −1
2

= −a−1, that

∮
|z|=1

z3

2z4 + 1
dz = −2πi · res(f ;∞) = πi.

Alternatively,

res
(

z3

2z4 + 1
; z0

)
= lim

z→z0

z3

8z3
=

1
8

for each of the four simple poles inside |z| = 1, thus∮
|z|=1

z3

2z4 + 1
dz = 2πi · 4

8
= πi.

Alternatively, the function g(z) = 2z4 + 1 has the winding number 4 with respect to 0, and
since g′(z) = 8z3, we get∮

|z|=1

z3

2z4 + 1
dz =

1
8

∮
|z|=1

g′(z)
g(z)

dz =
4 · 2πi

8
= πi,

where the latter method assumes some knowledge of the Principle of Argument.
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Example 4.14 Compute∮
|z|=1

cos (e−z)
z2

dz.

The double pole z = 0 is the only singularityt inside |z| = 1, so∮
|z|=1

cos (e−z)
z2

dz = 2πi · res
(

cos (e−z)
z2

; 0
)

= 2πi · 1
1!

lim
z→0

d

dz
cos
(
e−z
)

= 2πi · lim
z→0

{− sin
(
e−z
) · (−e−z

)}
= 2πi · sin 1.

Example 4.15 Find the residuum at z = i for
1

z4 − 1
.

Then compute the line integral∮
|z−i|= 1

2

1
z4 − 1

.

Since z = i is a simple pole of
1

z4 − 1
, we get by Rule II that

res
(

1
z4 − 1

; i

)
= lim

z→i

1
4z3

= lim
z→i

z

4z4
=

i

4
.

The disc |z − i| ≤ 1
2

contains only the singular point z = i, so

∮
|z−i|= 1

2

dz

z4 − 1
= 2πi · res

(
1

z4 − 1
; i

)
= 2πi · i

4
= −π

2
.

Example 4.16 Compute

(a)
∮
|z|=2

z

z + 1
dz, (b)

∮
|z|=2

z

z3 + 1
dz, (c)

∮
|z|?2

ez

z2 − 1
dz.

(a) The singularity z0 = −1 lies inside |z| = 2, so∮
|z|=2

z

z + 1
dz = 2πi · res

(
z

z + 1
; −1

)
= −2πi.

Alternatively,

∮
|z|=2

z

z + 1
dz =

∮
|z|=2

{
1 − 1

z + 1

}
dz = −

∮
|z|=1

1
z + 1

dz

= 2πi · res
(

1
z + 1

; ∞
)

= −2πi lim
z→∞

z

z + 1
= −2πi.
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(b) Since the integrand does not have any singularity in the set given by |z| ≥ 2, and since
z

z3 + 1
has a zero of second order at ∞, we get∮

|z|=2

z

z3
dz = −

∮ �

|z|=2

z

z3 + 1
dz = −2πi · res

(
z

z3 + 1
; ∞
)

= 0.

(c) The integrand has the two simple poles z = ±1 inside |z| = 1, thus

∮
|z|=2

ez

z2 − 1
dz = 2πi

{
res
(

ez

z2 + 1
; 1
)

+ res
(

ez

z2 − 1
; −1

)}

= 2πi

{
e1

2
− e−1

2

}
= 2πi sinh 1.
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Example 4.17 Compute the line integral∮
|z|=5

z ez

1 − z2
dz.

It follows directly that∮
|z|=5

z ez

1 − z2
dz = 2πi

{
res
(
− z ez

z2 − 1
; 1
)

+ res
(
− z ez

z2 − 1
; −1

)}

= −2πi

{
1 · e1

2
+

(−1)e−1

−2

}
= −2πi cosh 1.

Example 4.18 Compute

(a)
∮
|z−1|=2

1
z4 + 1

dz, (b)
∮
|z|=2

dz

z2(z + 1)
.

–2

–1

1

2

–1 1 2 3

Figure 7: The four simple poles all lie inside |z − 1| = 2.

(a) It follows from

{z ∈ C | |z| ≤ 1} � {z ∈ C | |z − 1| ≤ 2},

that all singularities lie inside the closed path of integration |z − 1| = 2. We have a zero of fourth
order at ∞, so we get by changing the direction of the path of integration,∮

|z−1|=2

dz

z4 + 1
= −

∮ �

|z−1|=2

dz

z4 + 1
= −2πi · res

(
1

z4 + 1
; ∞
)

= 0.

(b) Every pole lies inside |z| = 2, and we have a zero of order 3 at ∞. Therefore,∮
|z|=2

dz

z2(z + 1)
= −

∮ �

|z|=2

dz

z2(z + 1)
= −2πi · res

(
1

z2(z + 1)
; ∞
)

= 0.
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Example 4.19 Compute

(a)
∮
|z|=2

sin z

(z − 1)2 (z2 + 9)
dz, (b)

∮
|z|=2

z7

(z4 + 1)2
, (c)

∮
|z|=1

ez

z3
dz.

(a) We have inside |z| = 2 only one singularity z = 1 (a double pole). It follows by the residuum
theorem that∮

|z|=2

sin z

(z − 1)2 (z2 + 9)
dz = 2πi · res

(
sin z

(z − 1)2 (z2 + 9)
; 1
)

=
2πi

1!
lim
z→1

d

dz

{
sin z

z2 + 9

}

= 2πi lim
z→1

{
cos z

z2 + 9
− 2z sin z

(z2 + 9)2

}
= 2πi

{
cos 1
10

− 2 sin 1
100

}

=
5 cos 1 − sin 1

25
· πi.

(b) We have four double poles lying inside the curve |z| = 1, and no singularity outside this curve.
Since we have a zero of first order at ∞, it follows by Rule IV that
∮
|z|=2

z7

(z4 + 1)2
dz = −

∮ �

|z|=2

z7

(z4 + 1)2
dz = −2πi · res

(
z7

(z4 + 1)2
; ∞
)

= −2πi

{
− lim

z→∞ z · z7

(z4 + 1)2

}
= 2πi · lim

z→∞

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1(
1 +

1
z4

)2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= 2πi.

Alternatively it is possible here to apply Rule III, i.e.

res (f ; z0) =
6A′B′′ − 2AB′′′

3 (B′′)2
=

2A′

B′′ − 2
3
· AB′′′

(B′′)2
,

where

A(z) = z7 and B(z) =
(
z4 + 1

) ∗ 2 = z8 + 2z4 + 1.

Finally, z4
0 = −1, so

A = z7
0 =

1
z0

, and A′ = 7z6
0 = −7z2

0 ,

B′ = 8
(
z7
0 + z3

0

)
, B′′ = 8

(
7z6

0 + 3z2
0

)
, B′′′ = 8

(
42z5

0 + 6z0

)
,

thus

B′′ = −32z2
0 and B′′′ = −8 · 36z0.

We have for each o the four poles z0 that

res (f ; z0) =
2
(−7z2

0

)
−32z2

0

− 2
3
· (−8 · 36)

322 · z4
0

=
7
16

− 16 · 32 · 4
3 · 162 · 4 =

1
4
.

The sum of the four residues is 1, so∮
|z|=2

z7

(z4 + 1)2
dz = 2πi.
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(c) It follows from

ez

z3
=

1
z3

{
1 +

z

1!
+

z2

2!
+ · · ·

}
,

that

a−1 =
1
2!

=
1
2
,

hence∮
|z|=1

ez

z3
dz = 2πi · res

(
ez

z3
; 0
)

= 2πi · a−1 = πi.

Alternatively, by Rule I,∮
|z|=1

ez

z3
dz = 2πi · res

(
ez

z3
; 0
)

= 2πi · 1
2!

lim
z→0

d2

dz2
ez = π.

Example 4.20 Compute

(a)
∮
|z|=2

4z3 + 2z
z4 + 2z2 + 1

dz, (b)
∮
|z|=2

dz

(z − 1)3(z − 7)
.

(a) We see from

z4 + 2z2 + 1 =
(
z2 + 1

)2
= (z − i)2(z + i)2,

that we have two double poles z0 = ±i. In particular, z2
0 = −1 and

(z − z0)
2

z4 + 2z2 + 1
=

1
(z + z0)

2 .

Thus by Rule I,

res
(

4z3 + 2z
z4 + 2z2 + 1

; z0

)
=

1
1!

lim
z→z0

d

dz

{
4z3 + 2z
(z + z0)

2

}
= lim

z→z0

{
12z2 + 2
(z + z0)

2 − 2
4z3 + 2z
(z + z0)

2

}

=
12z2

0 + 2
(2z0)

2 − 2 · 4z3
0 + 2z0

(2z0)
3 =

−12 + 2
−4

− 4z0

(
2z2

0 + 1
)

2z0 · 4z2
0

=
5
2

+
1
2

(−2 + 1) = 2,

and we conclude from the residuum theorem that∮
|z|=2

4z3 + 2z
z4 + 2z2 + 1

dz = 2πi{res(f ; i) + res(f ;−i)} = 2πi{2 + 2} = 8πi.
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Alternatively we have a zero of first order at ∞, and no further singularities outside |z| = 2,
hence∮

|z|=2

4z3 + 2z
z4 + 2z2 − 1

dz = −
∮ �

|z|=1

4z3 + 2z
z4 + 2z2 + 1

dz = −2πi · res(f ;∞)

= −2πi lim
z→∞

{
−z · 4z3 + 2z

z4 + 2z2 + 1

}
= −2πi · (−4) = 8πi.

(b) The only pole inside |z| = 2 is the triple pole z = 1, so we find

∮
|z|=2

dz

(z − 1)3(z − 7)
= 2πi res

(
1

(z − 1)3(z − 7)
; 1
)

= 2πi · 1
2!

lim
z→1

d2

dz2

{
1

z − 7

}

= πi lim
z→1

{
− 1

(z − 7)2

}
= πi · lim

z→1

2
(z − 7)3

= πi · 2
(−6)3

= − πi

108
.

Alternatively,

∮
|z|=7

dz

(z − 1)3(z − 7)
= −

∮ �

|z|=2

dz

(z − 1)3(z − 7)
= −2πi{res(f ; 7) + res(f ;∞)}

= −2πi

{
lim
z→7

1
(z − 1)3

+ 0
}

= −2πi

63
= − πi

108
,

because the integrand has a zero of order 4 at ∞ (Rule IV).
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Example 4.21 Compute

(a)
∮
|z|=1

ez

z5
dz, (b)

∮
|z|=2

dz

z2(z − 3)
, (c)

∮
|z|=2

sin z(
z − π

2

)2 dz.

(a) We have only the pole z = 1 of order 5 lying inside the curve |z| = 1. Hence by Rule I,∮
|z|=1

ez

z5
dz = 2πi · 1

4!
lim
z→0

d4

dz4
ez =

2πi

4!
=

πi

12
.

Alternatively we may find a−1 in the Laurent series expansion

ez

z5
=

1
z5

{
1 + z +

z2

2!
+

z3

3!
+

z4

4!
+ · · ·

}
,

hence

a−1 =
1
4!

=
1
24

,

and thus∮
|z|=1

ez

z5
dz = 2πi · 1

24
=

πi

12
.

(b) We have only the double pole z = 0 lying inside the closed curve |z| = 2. Then by Rule I,∮
|z|=2

dz

z2(z − 3)
= 2πi · 1

1!
· lim

z→0

d

dz

{
1

z − 3

}
= 2πi lim

z→0

{
− 1

(z − 3)2

}
= −2πi

9
.

Alternatively, z = 3 is a simple pole outside |z| = 2. Furthermore, we have a zero of order 3
at ∞, so we get by changing the direction of the path of integration,

∮
= − ∮ �, that

∮
|z|=2

dz

z2(z − 3)
= −

∮ �

|z|=2

dz

z2(z − 3)
= −2πi

{
res
(

1
z2(z − 3)

; 3
)

+ res
(

1
z2(z − 3)

; ∞
)}

= −2πi

{
1
9

+ 0
}

= −2πi

9
.

(c) It follows from
∣∣∣π
2

∣∣∣ < 2 and sin
π

2
= 1 that z =

π

2
is a double pole lying inside |z| = 2. This is

the only singularity in C, so we get by the residuum theorem that∮
|z|=2

sin z(
z − π

2

)2 dz = 2πi · 1
1!

lim
z→π

2

d

dz
sin z = 2πi lim

z→π
2

cos z = 0.

Alternatively we expand sin z as a power series from z0 =
π

2
, i.e.

sin z = 1 + 0 ·
(
z − π

2

)
− 1

2

(
z − π

2

)2

+ · · · ,
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hence

sin z(
z − π

2

)2 =
1(

z − π

2

)2 +
0

z − π

2

+ · · · ,

so a−1 = 0, and we get∮
|z|=2

sin z(
z − π

2

)2 = 2π · a−1 = 0.

Example 4.22 Let C denote the boundary of the square of the corners ±2 ± 2i. Compute

(a)
∮

C

e−z

z − i
π

2

dz, (b)
∮

C

cos z

z (z2 + 8)
dz, (c)

∮
C

z

2z + 1
dz.

–2

–1

0

1

2

–2 –1 1 2

Figure 8: The curve C.

(a) The integrand

e−z

z − i
π

2

has inside C only the simple pole at z = i
π

2
. Therefore, by Rule I,

∮
C

e−z

z − i
π

2

dz = 2πi · res
⎛
⎝ e−z

z − i
π

2

; i
π

2

⎞
⎠ = 2πi exp

(
−i

π

2

)
= 2π.

(b) The integrand

cos z

z (z2 + 8)
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has the simple poles z = 0 and z = ±i 2
√

2. Only z = 0 lies inside C, so it follows by the residuum
theorem and Rule I that∮

C

cos z

z (z2 + 8)
dz = 2πi · res

(
cos z

z (z2 + 8)
; 0
)

= 2πi lim
z→0

cos z

z2 + 8
=

πi

4
.

(c) The integrand
z

2z + 1
has a simple pole at z = −1

2
inside C. Hence,

∮
C

z

z + 1
dz = 2πi · res

(
z

z + 1
; −1

2

)
= 2π lim

z→− 1
2

(
z +

1
2

)
z

2z + 1
= 2πi lim

z→− 1
2

z

2
= −2πi

4
= −πi

2
.

Example 4.23 Compute the following line integrals:

(a)
∮
|z|= 1

2

(
1 − z4

)
e2z

z3
dz, (b)

∮
|z|=1

sinh z

sin z
dz.

(a) Here z e2z is analytic in all of C, so it follows by a direct computation and reduction, and the
residuum theorem that∮
|z|= 1

2

(
1 − z4

)
e2z

z3
dz =

∮
|z|= 1

2

e2z

z3
dz−

∮
|z|= 1

2

z e2z dz =
∮
|z|= 1

2

e2z

z3
dz+0 =

2πi

2!
lim
z→0

d2

dz2
e2z = 4πi.

(b) The singularity at z = 0 is removable, so
sinh z

sin z
, extended by the value 1 at z = 0, is analytic

everywhere inside and on the closed curve |z| = 1. We conclude from Cauchy’s integral theorem
that∮

|z|=1

sinh z

sin z
dz = 0.

Example 4.24 Compute each of the following line integrals:

(a)
1

2πi

∮
|z|=1

sin
(

1
z

)
dz, (b)

1
2πi

∮
|z|=1

sin2

(
1
z

)
dz.

(a) We see from

sin
1
z

=
1
z
− 1

3!z3
+ · · ·

for z �= 0, that a−1 = 1, hence

1
2πi

∮
|z|=1

sin
(

1
z

)
dz = res

(
sin
(

1
z

)
; 0
)

= a−1 = 1.
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(b) It follows from

sin2

(
1
z

)
=

1
2

{
1 − cos

(
2
z

)}
=

1
2
− 1

2

{
1 − 1

2!

(
2
z

)2

+ · · ·
}

=
1
z2

− · · · ,

that a−1 = 0, and hence by the residuum theorem,

1
2πi

∮
|z|=1

sin2

(
1
z

)
dz = 0.
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Example 4.25 Given

f(z) =
2
√

2 · z4 + z3 − 2z +
√

2

z
(
z −√

2
) (√

2 · z − 1
)3 .

Compute the complex line integral∮
|z|=1

f(z) dz,

where the path of integration is taken in the positive direction, by changing this direction of the path
of integration.

The function f(z) is a rational function of the simple pole z = 0 and the unpleasant triple pole z =
1√
2

inside |z| = 1, and the simple pole z =
√

2 outside the circle. If we change the direction of the path
of integration and then apply the residue theorem, then∮

|z|=1

f(z) dz = −
∮ �

|z|=1

f(z) dz = −2πi{res(f ;
√

2) + res(f ;∞)}

= −2πi

[
2
√

2 · z4 + z3 − 2z +
√

2
z · (√2 · z − 1)3

]
z=

√
2

−
{
− lim

z→∞ z · f(z)
}
· 2πi

= −2πi

{
8
√

2 + 2
√

2 − 2
√

2 +
√

2√
2 · (2 − 1)3

}
+ 2πi · 2

√
2(√

2
)3

= −18πi + 2πi = −16πi.

Alternatively we compute res(f ; 0) and res
(

f ;
1√
2

)
. We note that

(√
2 · z − 1

)3

=
(√

2
)3

·
(

z − 1√
2

)3

.

First we get for z = 0 that

res(f ; 0) =
√

2
(−√

2)(−1)3
= 1.

Then we use Rule I to compute the residuum at the triple pole z =
1√
2
:

res
(

f ;
1√
2

)
=

1
2!

lim
z→ 1√

2

d2

dz2

{
2
√

2 · z4 + z3 − 2z +
√

2
z(z −√

2)(
√

2)3

}

=
1
2
· 1
(
√

2)3
lim

z→ 1√
2

d2

dz2

{
2
√

2 z4 + z3 − 2z +
√

2
z(z −√

2)

}
.

Put

h(z) =
2
√

2 · z4 + z3 − 2z +
√

2
z(z −√

2)
,
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and then perform a division of polynomials and a decomposition to get

h(z) =
2
√

2 · z4 + z3 − 2z +
√

2
z(z −√

2)
z(z −

√
2) = 2

√
2 · z2 + 5z + 5

√
2 − 1

z
+

9
z −√

2
.

Clearly, it is much easier to differentiate the latter expression of h(z) than the former one. We obtain

h′′(z) = 4
√

2 − 2
z3

+
18

(z −√
2)3

,

hence by insertion

res
(

f ;
1√
2

)
=

1

2!
(√

2
)3 h′′

(
1√
2

)
=

1

2
(√

2
)3
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4
√

2 − 2
(√

2
)3

+
18(

1√
2
−√

2
)3

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=
1

2
(√

2
)3
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 +
18(

1 − 2√
2

)3

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= −9.
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Finally, we get∮
|z|=1

f(z) dz = 2πi

{
res(f ; 0) + res

(
f ;

1√
2

)}
= 2πi · {1 − 9} = −16πi.

Example 4.26 Given the differential equation

(15) z4 f ′′(z) +
(
2z3 + z

)
f ′(z) = f(z).

Assuming that

f(z) =
+∞∑

n=−∞
anzn

is a convergent Laurent series solution in a domain of the form {z ∈ C | r < |z| < R} satisfying (15),
we shall find a recursion formula for an with polynomial coefficients, and also prove that an = 0, when
n ∈ N.
Then find all Laurent series solution of (15).
Hint: The general solution cannot be expressed by elementary functions.
Denote by f0(z) the Laurent series solution of (15), which also satisfies

f0(1) =
√

e, res (f0 ; ∞) = 0.

Express f0(z) by elementary functions.

Here there are many possibilities of solution. We shall go through some of them:

1) The power series method (the standard method),

2) Transformation of the differential equation,

3) Inspection,

4) Transformation, follows by an inspection.

First method. The power series method (the standard method). Assume that the Laurent series

f(z) =
+∞∑

n=−∞
anzn

is a solution of (15) in the annulus

Ω = {z ∈ C | r < |z| < R}.

Then we have in Ω,

f ′(z) =
+∞∑

n=−∞
nanzn−1 og f ′′(z) =

+∞∑
n=−∞

n(n − 1)anzn−2.
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When we put these series into (15), we get by reduction,

0 = z4f ′′(z) + 2z3f ′(z) + z f ′(z) − f(z)

=
∑

n(n − 1)anzn+2 +
∑

2nanzn+2 +
∑

nanzn −
∑

anzn

=
∑

n(n + 1)anzn+2 +
∑

(n − 1)anzn(16)

=
∑

(n − 2)(n − 1)an−2z
n +

∑
(n − 1)anzn

=
∑

(n − 1) {(n − 2)an−2 + an} zn.

From (16) also follows that

0 =
∑

n(n + 1)anzn+2 +
∑

(n − 1)anzn

=
∑

n(n + 1)anzn+2 +
∑

(n + 1)an+2z
n+2

=
∑

(n + 1) {nan + an+2} zn+2.

We have now the following two “variants” of the recursion formula, which shall both be fulfilled
for all n ∈ Z:

(n − 1) {(n − 2)an−2 + an} = 0, (n + 1) {nan + an+2} = 0.

The treatment of each of the two recursion formulæ is in principle the same, so we shall only solve
one of them, namely,

(n − 1) {(n − 2)an−2 + an} = 0, n ∈ Z.

If n = 1, then the left hand side is identically zero, so a−1 and a1 are independent of each other.

If n �= 1, then the recursion formula is reduced to

(n − 2)an−2 + an = 0, n ∈ Z \ {1}.
If n = 2, then a2 = 0, and since we have a leap of 2 in the indices in the recursion formula, it
follows that

a2n = 0 for n ∈ N.

If n = 2p + 1, p ∈ N, is odd, it follows by recursion that

a2p+1 = −(2p − 1)a2p−1 = · · · (−1)p(2p − 1)(2p − 3) · · · 3 · 1 · a1,

and since a1 is seemingly arbitrary, we cannot immediately conclude that a2p+1 = 0, p ∈ N0. The
point is that we shall only find the convergent series solutions. Assume that a1 �= 0. Then it
follows from the above that a2p+1 �= 0, and we shall check the conditions of convergence for

(17)
+∞∑
p=0

a2p+1z
2p+1,

where

a2p+1 = −(2p − 1)a2p−1, p ∈ N.
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Assuming that z �= 0, it follows by the criterion of quotients applied on (17) that the limiting value
of ∣∣∣∣a2p+1z

2p+1

a2p−1z2p−1

∣∣∣∣ = (2p − 1)|z|2

for p → +∞ must be smaller that 1 for the relevant z. This is only possible for z = 0, contradicting
the assumption of z �= 0.
Therefore, if a1 �= 0, the radius of convergence is 0. Since we are only interested in series of positive
radius of convergence, it follows that a1 = 0, and hence also a2p+1 = 0 for p ∈ N0, which together
with a2p = 0, p ∈ N, found previously precisely gives us

an = 0 for n ∈ N.

We have proved that the only possibilities of Laurent series solutions necessarily must be of the
form

f(z) =
+∞∑
n=0

a−nz−n =
+∞∑
n=0

bn · 1
zn

, bn = a−n, n ∈ N0.

Replacing n by −n in the recursion formula for an, we get

(−n − 2)a−n−2 + a−n = 0, n ∈ N0,

and since a−n−2 = bn+2 and a−n = bn, it follows that

bn+2 =
1

n + 2
bn, n ∈ N0, or bn =

1
n

bn−2, n ∈ N \ {1}.

If bn−2 �= 0 and w =
1
z
�= 0, then

∣∣∣∣ bnwn

bn−2wn−2

∣∣∣∣ = 1
n
|w|2 → 0 < 1 for n → +∞,

for every w �= 0, and the domain of convergence is given by

0 < |w| =
1
|z| < +∞.

The series is convergent for z ∈ C \ {0}.
If n = 2p, p ∈ N, is even, we get

(18) 2p · b2p = b2(p−1),

hence by a multiplication by 2p−1(p − 1)! �= 0, followed by a recursion,

2pp!b2p = 2p−1 · (p − 1)! b2(p−1) = · · · = 20 · 0! b0 = 10,

and thus

a−2p = b2p =
1

2pp!
a0, p ∈ N0.
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Alternatively, it follows from (18) by a straight recursion that

b2p =
1
2p

· b2(p−1) =
1
2p

· 1
2(p − 1)

· · · 1
2 · 2 · 1

2 · 1 b0 =
1

2pp!
a0, p ∈ N0.

If n = 2p + 1, p ∈ N, is odd, then it follows by recursion that

b2p+1 =
1

2p + 1
b2p−1 =

1
2p + 1

· 1
2p − 1

· · · 1
5
· 1
3
· b1 =

1
(2p + 1)(2p − 1) · · · 5 · 3 · 1 a−1.

Remark 4.1 It is here possible further to reduce the expression by multiplying the numerator
and the denominator by 2p · p! �= 0. This gives

b2p+1 =
1

2p+1
· 2p
2p

· 1
2p−1

· 2(p−1)
2p−2

· 1
2p −3

· · · 2 · 2
4

· 1
3
· 2 · 1

2
· 1
1
· a−1 =

2p p!
(2p + 1)!

a−1. ♦
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Summing up, all Laurent series solutions, which are convergent for z ∈ C \ {0}, are given by

f(z) =
+∞∑
n=0

a−n · 1
zn

=
+∞∑
p=0

b2p · 1
z2p

+
+∞∑
p=0

b2p+1 · 1
z2p+1

= a0

+∞∑
n=0

1
n!2n

· 1
z2n

+ a−1

{
1
z

+
+∞∑
p=1

1
(2p+1)(2p−1) · · · 5 · 3 · 1 · 1

z2p+1

}

= a0

+∞∑
n=0

1
n!

{
1

2z2

}n

+ a−1

+∞∑
n=0

2nn!
(2n + 1)!

· 1
z2n+1

= a0 exp
(

1
2z2

)
+ a−1

+∞∑
n=0

2nn!
(2n + 1)!

· 1
z2n+1

.

Only the zero solution can be extended to all of C.

The series expansion of f0(z) is convergent in C \ {0} (a neighbourhood of ∞), so the condition is
that

a−1 = −res (f0 ; ∞) = 0,

so if z ∈ C \ {0}, then

f0(z) = a0 · exp
(

1
2z2

)
.

Second method. Transformation of the differential equation. Since we shall prove that

an = 0 for n ∈ N,

we shall actually prove that f(z) has the structure

f(z) =
+∞∑
n=0

a−n · 1
zn

=
+∞∑
n=0

bnwn = g(w), w =
1
z
, a−n = bn.

The idea is to transform (15) into an equivalent differential equation for g(w). Since

dw

dz
=

d

dz

{
1
z

}
= − 1

z2
= −w2,

it follows from the chain rule that

f ′(z) =
d

dz
g(w) = g′(w)

dw

dz
= −w2g′(w) = − 1

z2
g′(w),

and

f ′′(z) =
2
z3

g′(w) − 1
z2

g′′(w)
dw

dz
= 2w3g′(w) + w4g′′(w),
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which we put into (15) for z �= 0 and w �= 0,

0 = z4f ′′(z) +
(
2z3 + z

)
f ′(z) − f(z)

=
1

w4

{
w4g′′(w) + 2w3g′(w)

}
+
{

2
w3

+
1
w

}
· (−w2 g′(w)

)− g(w)

= g′′(w) +
2
w

g′(w) − 2
w

g′(w) − w g′(w) − g(w) = g′′(w) − w g′(w) − g(w).

The equation (15) is in the domain C \ {0} equivalent to

(19) g′′(w) − w g′(w) − g(w) = 0, w ∈ C \ {0},
where (19) of cause can be extended to w = 0. (The restriction w �= 0 is only caused by the
transformation w = 1

z .) Since (19) is a differential equation of analytic coefficients without singular
points, (i.e. the coefficient of g′′(z) is �= 0 everywhere), all solutions of (19) are power series solutions
of domain of convergence C, and there are precisely two linearly independent families of solutions.
We conclude that an = b−n = 0 for n ∈ N.

Put

g(w) =
+∞∑
n=0

bnwn, g′(w) =
+∞∑
n=1

n bnwn−1, g′′(w) =
+∞∑
n=2

n(n − 1)bnwn−2.

Then by insertion into (19),

0 =
+∞∑
n=2

n(n−1)bnwn−2−
+∞∑
n=1

(n=0)

n bnwn −
+∞∑
n=0

bnwn =
+∞∑
n=0

(n+2)(n+1)bn+2w
n −

+∞∑
n=0

(n+1)bnwn,

thus

+∞∑
n=0

(n + 1) {(n + 2)bn+2 − bn}wn = 0.

It follows from n + 1 �= 0 for n ∈ N0 and by the identity theorem that we have the following
reduced recursion formula,

(n + 2)bn+2 = bn, thus bn+2 =
1

n + 2
bn, n ∈ N0.

Then we proceed as in the first method above.

Third method. Inspection. Assume that z �= 0. If we divide (15) by z2, we get by a small rear-
rangement that

0 =
{
z2f ′′(z) + 2z f ′(z)

}
+

z f ′(z) − 1 · f(z)
z2

=
d

dz

{
z2f ′(z)

}
+

d

dz

{
f(z)

z

}
.

Hence by an integration,

(20) z2f ′(z) +
f(z)

z
= c, z �= 0, c ∈ C arbitrary.
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When we put the Laurent series of f(z) and f ′(z) into (20), then

c =
∑

nanzn+1+
∑

anzn−1 =
∑

(n−1)an−1z
n+
∑

an+1z
n =

+∞∑
n=−∞

{(n − 1)an−1 + an+1} zn.

Then we apply the identity theorem. We get in particular for n = 0,

−a−1 + a1 = c.

However, c is an arbitrary constant, so this equation only says that a−1 are a1 independent of each
other.

If n �= 0, then

(n − 1)an−1 + an+1 = 0, n ∈ Z \ {0},

which is a third variant of the recursion formula. This is with only trivial changes solved in the
same way as by the first method.
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Fourth method. Transformation, followed by inspection. We can also inspect the transformed dif-
ferential equation (19). This gives

0 = g′′(w) − w g′(w) − g(w) =
d

dw
{g′(w) − w · g(w)} ,

hence by an integration,

g′(w) − w · g(w) = c.

If c = 0, we get

g(w) = a · exp
(

w2

2

)
,

and if c �= 0 we insert the series and solve the new recursion formula. The details are left to the
reader.

Example 4.27 (a) Describe the type of all isolated singularities in C
� = C ∪ {∞} of the function

f(z) =
z3 exp

(
1
z

)
1 + z

.

(b) Compute the line integral

∮
|z|=2

z3 exp
(

1
z

)
1 + z

dz.

(a) We have clearly the three singularities z = 0, z = −1 and z = ∞, and no other.

Obviously, z = 0 is an essential singularity (see what happens when e.g. z = x → 0 along the
positive and the negative real half axis, respectively).

Furthermore, z = −1 is trivially a simple pole, and finally, z = ∞ is a double pole. The latter is
seen in the following way:

lim
z→∞

f(z)
z2

= lim
z→∞

z

1 + z
exp
(

1
z

)
= 1 · e0 = 1 �= 0.

The residuum at ∞
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(b) Then by Cauchy’s residuum theorem,

∮
|z|=2

z3 exp
(

1
z

)
1 + z

dz = −
∮ �

|z|=2

z3 exp
(

1
z

)
1 + z

dz = −2πi · res

⎛
⎜⎜⎝

z3 exp
(

1
z

)
1 + z

; ∞

⎞
⎟⎟⎠

= 2πi · res

⎛
⎜⎝ 1

z2
·

1
z3

exp z

1 +
1
z

; 0

⎞
⎟⎠ = 2πi · res

(
1
z4

· ez

z + 1
; 0
)

= 2πi · 1
3!

lim
z→0

d3

dz3

{
ez

z + 1

}

=
πi

3
lim
z→0

d2

dz2

{
ez

z + 1
− ez

(z + 1)2

}
=

πi

3
lim
z→0

d

dz

{
ez

z + 1
− 2 · ez

(z + 1)2
+ 2 · ez

(z + 1)3

}

=
πi

3
lim
z→0

{
ez

z + 1
− 3

ez

(z + 1)2
+ 6

ez

(z + 1)3
− 6

ez

(z + 1)4

}
=

πi

4
{1 − 3 + 6 − 6} = −2πi

3
.

Alternatively,

∮
|z|=2

z3 exp
(

1
z

)
1 + z

dz = 2πi

⎧⎪⎪⎨
⎪⎪⎩res

⎛
⎜⎜⎝

z3 exp
(

1
z

)
1 + z

; 0

⎞
⎟⎟⎠+ res

⎛
⎜⎜⎝

z3 exp
(

1
z

)
1 + z

; −1

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭ ,

where

res

⎛
⎜⎜⎝

z3 exp
(

1
z

)
1 + z

; −1

⎞
⎟⎟⎠ = (−1)3 exp

(
1
−1

)
= −1

e
,

because z = −1 is a simple pole.
Since z = 0 is an essential singularity, we must here find a−1 in the Laurent series expansion of
f(z) in 0 < |z| < 1. We have in this domain,

z3 exp
(

1
z

)
1 + z

= z3
+∞∑
k=0

(−1)kzk ·
+∞∑
m=0

1
m!

· 1
zm

=
+∞∑
k=0

+∞∑
m=0

(−1)k

m!
z3+k−m.

It follows that we get a−1 for 3 + k −m = −1, i.e. when m = k + 4, followed by a summation over
k,

res

⎛
⎜⎜⎝

z3 exp
(

1
z

)
1 + z

; 0

⎞
⎟⎟⎠ = a−1 =

+∞∑
k=0

(−1)k

(k + 4)!
=

+∞∑
n=4

(−1)n

n!
=

1
e
−
{

1 − 1
1!

+
1
2!

− 1
3!

}

=
1
e
−
{

1
2
− 1

6

}
=

1
e
− 1

3
,
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and then by insertion,

∮
|z|=2

z3 exp
(

1
z

)
1 + z

dz = 2πi

⎧⎪⎪⎨
⎪⎪⎩res

⎛
⎜⎜⎝

z3 exp
(

1
z

)
1 + z

; 0

⎞
⎟⎟⎠+ res

⎛
⎜⎜⎝

z3 exp
(

1
z

)
1 + z

; −1

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭

= 2πi

{
1
e
− 1

3
− 1

e

}
= −2πi

3
.
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Example 4.28 Find the Laurent series expansion from z = 1 of

f(z) =
z + 2

(z − 1)4(z + 3)
,

in the domain given by 0 < |z − 1| < 4.
Find the residuum of f at z = 1 and z = ∞.

First method. We get by the change of variable w = z − 1,

f(z) = g(w) =
w + 3

w4(w + 4)
=

1
w4

(
1 − 1

w + 4

)
.

(a) If 0 < |z − 1| = |w| < 4, then

f(z) =
1

w4

(
1 − 1

4
· 1
1 + w

4

)
=

1
w4

{
1 − 1

4

+∞∑
n=0

(−1)n ·
(w

4

)n
}

=
3
4
· 1
w4

+
1
45

+∞∑
n=1

(−1)n+1 ·
(w

4

)n−4

=
3
4
· 1
w4

+
1
45

+∞∑
n=−3

(−1)n+1 ·
(w

4

)n

=
3
4
· 1
(z − 1)4

+
1
45

+∞∑
n=−3

(−1)n+1

{
1

4(z − 1)

}n

.

(b) If |z − 1| = |w| > 4, then we get instead

f(z) =
1

w4
·
(

1 − 1
w

· 1
1 + 4

w

)
=

1
w4

·
{

1 − 1
w

+∞∑
n=0

(−1)n ·
(

4
w

)n
}

=
1

w4
+

1
w5

+∞∑
n=0

(−1)n+1 ·
(

4
w

)n

=
1

w4
+

1
45

+∞∑
n=0

(−1)n+1 ·
(

4
w

)n+5

=
1

(z − 1)4
+

1
45

+∞∑
n=5

(−1)n4n · 1
(z − 1)n

.

Second method. We use again the change of variable w = z−1; but then we alternatively and more
clumsy though also more realistic, decompose instead,

f(z) =
w + 3

w4(w + 4)
= − 1

44
· 1
w + 4

+
1
44

· 1
w

− 1
43

· 1
w2

+
1
42

· 1
w3

+
3
4
· 1
w4

.

This decomposition is in itself difficult, so we only sketch the remaining part of the solution. We
use the same method as above on

− 1
44

· 1
w + 4

,

for 0 < |w| < 4, as well as for |w| > 4.
And then we get all the trouble of the final reductions.
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Since f(z) has a zero of order 4 at ∞, we have

res(f ;∞) = 0.

Furthermore, z = −3 is a simple pole, so

res(f ;−3) =
−1

(−4)4
= − 1

256
.

The sum of the residues is zero,

res(f ; 1) + res(f ;−3) + res(f ;∞) = 0,

hence

res(f ; 1) =
1

256
.

Alternatively, z = 1 is a pole of order 4, hence by Rule I,

res(f ; 1) =
1
3!

lim
z→1

d3

dz3

(
z + 2
z + 3

)
=

1
3!

lim
z→1

d3

dz3

{
1 − 1

z + 3

}
=

1
3!

lim
z→1

d2

dz2

{
1

(z + 3)2

}

=
1
3!

lim
z→1

d

dz

{
− 2

(z + 3)3

}
=

1
3!

lim
z→1

2 · 3
(z + 3)4

=
1
44

=
1

256
.
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