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Introduction

Introduction

This is the fifth book containing examples from the Theory of Complex Functions. In this volume we
shall consider the Laurent series, which are, roughly speaking, complex power series in which we also
allow negative exponents. We shall only consider the the series and their relationship to the general
theory, and finally the technique of solving linear differential equations with polynomial coefficients
by means of Laurent series. The importance of these Laurent series will be shown in the following
books, where we first introduce the residues in the sixth book, and then examples of applications in
the seventh book. Thus these three books, the present one and the two following, form together make
up an important part of the Theory of Complex Functions.

Even if I have tried to be careful about this text, it is impossible to avoid errors, in particular in the
first edition. It is my hope that the reader will show some understanding of my situation.

Leif Mejlbro
12th June 2008
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1 Some theoretical background

Definition 1.1 We define a Laurent series expanded from the point z0 ∈ C a series of the form

+∞∑
n=−∞

an (z − z0)
n :=

+∞∑
n=0

an (z − z0)
n +

+∞∑
n=1

a−n (z − z0)
−n

.

The domain of convergence of the Laurent series is defined as the intersection of the domains of
convergence of the series on the right hand side of the equation above.

If a−n = 0 for every n ∈ N, then the Laurent series is just an usual power series, which domain of
convergence is of one of the following three types:

the empty set, an open disc of centrum z0, all of C.

If there exists an n ∈ N, such that a−n �= 0, then the domain of convergence is either

the empty set, or an annulus {z ∈ C | r < |z − z0| < R}.

Some theoretical background
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If R = +∞, then the domain is the complementary set of a closed disc, and if r = 0, then the domain
is either an open disc with its centrum removed, or the complex plan with z0 removed, C \ {z0}. The
Laurent series expansion of an analytic function f(z) is always convergent in an annulus of centrum z0,
where this annulus does not contain any singularity of f(z), i.e. f(z) is analytic in all of the annulus.
The most important case, however, is when the inner radius is r = 0, i.e. when we consider a disc
with only its centrum removed, or the complex plane with the point of expansion z0 removed.

When we compute the coefficients of a Laurent series in an annulus we may use the following theorem,
from which is also follows that if the annuli are as large as possible, given the point of expansion z0,
then the Laurent series expansions are different in each of the possible annuli.

Theorem 1.1 Laurent’s theorem. Assume that f(z) is analytic in an open annulus

{z ∈ C | r < |z − z0| < R} .

Then the corresponding Laurent series in this annulus is uniquely determined by

f(z) =
+∞∑

n=−∞
an (z − z0)

n
,

where

an =
1

2πi

∮
C

f(z)
(z − z0)

n+1 dz, for every n ∈ Z,

and where C is any simple, closed curve separating |z − z0| = r from |z − z0| = R, run through in the
positive sense of the plane.
The series is uniformly convergent in every closed and bounded subset of the annulus.

It was pointed out in Complex Functions c-4 that the Laurent series may be used in the theory of
Fourier series. However, the most important applications are connected with the so-called Calculus of
residues, which we shall return to in Complex Functions c-6 and to the specific application in Complex
Functions c-7. In these cases in the next books we shall only consider the behaviour of the function
in the neighbourhood of an isolated singularity of f(z).

Assume that z0 is an isolated singularity of the analytic function f : Ω → C, i.e. there exists an R > 0,
such that the disc with the centrum removed B (z0, R) \ {z0} ⊆ Ω is contained in Ω. Then we have
some Laurent series expansion,

f(z) =
+∞∑

n=−∞
an (z − z0)

n
, for z ∈ B (z0, R) \ {z0} .

There are here three possibilities:

1) If an = 0 for all negative n, then the Laurent series is an usual power series, and we can extend
f(z) analytically to z0. Therefore, we call this case a removable singularity.

Theorem 1.2 If the analytic function f(z) is bounded in a neighbourhood of z0 (with the exception
of z0 itself), then z0 is a removable singularity, and f(z) is also bounded at z0.

Some theoretical background
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2) If an �= 0 for some, though only a finite number of negative n, e.g. a−N �= 0 and an = 0 for every
n < −N , then z0 is called a pole of order N . In this case one sometimes write f (z0) = ∞ (complex
infinity).

Theorem 1.3 If f(z) → ∞ for z → z0, then f(z) has a pole at z0.

3) If an �= 0 for infinitely many negative n, then z0 is called an essential singularitet of f(z). The
function behaves really wildly in any neighbourhood of an essential singularity,

Theorem 1.4 Picard’s theorem (1879). If z0 is an isolated essential singularity of the analytic
function f(z), and D(r) := B (z0, r) \ {z0}, r > 0, is any neighbourhood of z0 (with the exception
of z0 itself), then the image f(D(r)) is either C or C with the exception of one point w0, i.e.
C \ {w0}.

Finally, we mention that there is no principal difference if we also consider ∞ as an isolated singularity.
We must, however, in this case, request that the analytic function f(z) is defined in the complementary
set of a disc, |z| > R, where we always may choose z0 = 0 as the point of expansion. Thus we assume
that

f(z) =
+∞∑

n=−∞
an zn, for |z| > R.

Then we have the same three possibilities as above for a finite isolated singularity, though it here are
the positive exponents which are causing troubles:

1) If an = 0 for every n ∈ N, then ∞ is a removable singularity for f(z). In this case we define by
continuous expansion,

f(∞) = a0.

We note that we in connection with the z-transform always consider Laurent series of this type.

2) If an �= 0 for some, though only finitely many n ∈ N, e.g. aN �= 0 and an = 0 for every n > N ,
then we call ∞ a pole of f(z) of order N .

3) Finally, if an �= 0 for infinitely many n ∈ N, we call ∞ an essentiel singularity of f(z).

We should here add that e.g sin z er 0 for z = nπ, n ∈ Z, then z = nπ, n ∈ Z, are poles of 1/ sin z.
However, since z = nπ → ∞ for n → ±∞, we see that ∞ is not an isolated singularity of 1/ sin z, and
it is not possible later on to speak about the residue at ∞ for such functions.

Some theoretical background
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2 Laurent series

.

Example 2.1 Find the Laurent series expansions of the function

f(z) =
1

z − 2
, z �= 2,

from z0 = 0 in each of the domains in which there exists such an expansion.

The function is defined in C \ {2}, and the point of expansion is z0 = 0. Therefore, we have an usual
Taylor expansion in the disc |z| < 2 and a Laurent series expansion in the complementary of a disc
|z| > 2. The denominator consists of two terms, so the strategy is always to norm the numerically
larger of the terms and then apply the usual geometric series expansion.

1) In the disc |z| < 2 the constant 2 is dominating in the denominator, and
∣∣∣z
2

∣∣∣ < 1. Hence,

f(z) =
1

z − 2
= −1

2
· 1

1 − z

2

= −1
2

+∞∑
n=0

{z

2

}n

= −
+∞∑
n=0

1
2n+1

zn, for |z| < 2,

which clearly is a Taylor series.

2) We have in the complementary of a disc, |z| > 2, that
∣∣∣∣1z

∣∣∣∣ < 1, so in this case we instead use that

f(z) =
1

z − 2
=

1
z
· 1

1 − 2
z

=
1
z

+∞∑
n=0

{
2
z

}n

=
+∞∑
n=1

2n−1 · 1
zn

, for |z| > 2.

Summing up we get

f(z) =
1

z − 2
=

⎧⎪⎪⎨
⎪⎪⎩

−∑+∞
n=0

1
2n+1

zn, for |z| < 2,

∑+∞
n=1 2n−1 · 1

zn
, for |z| > 2.

Obviously, we cannot get any expansion when |z| = 2.

Example 2.2 Find the Laurent series expansions of the function

f(z) =
1

(z − 1)(z − 2)
, z ∈ C \ {1, 2},

from z0 = 0 in each of the domains where such an expansion exists.

The singularities are 1 and 2, and the point of expansion is z0 = 0. Thus, we get three domains, a
disc Ω1 = B(0, 1), and annulus Ω2 = {z ∈ C | 1 < |z| < 2}, and finally a complementary set of a disc,
Ω3 = {z ∈ C | |z| > 2}. Since the function is a rational function, we start by a decomposition,

f(z) =
1

(z − 1)(z − 2)
=

1
z − 2

− 1
z − 1

,

Laurent series
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and then the most easy method is just to expand each fraction separately. We may here even use

that the Laurent series of
1

z − 2
already have been found in Example 2.1, so we shall skip these

computations.

1) If z ∈ Ω1 = {z ∈ C | |z| < 1}, then we get the Taylor series

f(z) =
1

z − 2
− 1

z − 1
= −1

2
· 1

1 − z

2

+
1

1 − z
=

+∞∑
n=0

{
1 − 1

2n+1

}
zn, for |z| < 1.

We note that there are no negative exponents in this expansion.

2) If z ∈ Ω2 = {z ∈ C | 1 < |z| < 2}, then we get the Laurent series

f(z) =
1

z − 2
− 1

z − 1
= −1

2
· 1

1 − 1
z
2
− 1

z
· 1

1 − 1
z

= −
+∞∑
n=0

1
2n+1

zn −
+∞∑
n=1

1
zn

.

We note that we have both positive and negative exponents in the Laurent series expansion.

Laurent series
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3) If z ∈ Ω3 = {z ∈ C | |z| > 2}, then we get the Laurent series

f(z) =
1

z − 2
− 1

z − 1
=

1
z
· 1

1 − 2
z

− 1
z
· 1

1 − 1
z

=
+∞∑
n=1

{
2n−1 − 1

} · 1
zn

=
+∞∑
n=2

{
22−1 − 1

} · 1
zn

.

Note in this case that the series expansion does not contain any positive exponents.

Example 2.3 Find the Laurent series expansions of the function

f(z) =
1

(1 − z)2
, z �= 1,

from z0 = 0 in each of the domains in which such an expansion exists.

The function f(z) is analytic in the unit disc Ω1 = B(0, 1) and in the complementary set
Ω2 = C \ B[0, 1]. Since z = 1 is a double pole, we first consider the following auxiliary function

g(z) :=
1

1 − z
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑+∞
n=0 zn, |z| < 1,

−1
z
· 1

1 − 1
z

= −∑+∞
n=1

1
zn

, for |z| > 1.

Since f(z) = g′(z) for z �=, and since we may termwise differentiate the Laurent series in their domains,
we easily get,

f(z) =
+∞∑
n=1

n zn−1 =
+∞∑
n=0

(n + 1)zn, for z ∈ Ω1, dvs. for |z| < 1,

and

f(z) =
+∞∑
n=1

n · z−n−1 =
+∞∑
n=2

(n − 1)z−n, for z ∈ Ω2, i.e. for |z| > 1.

Obviously, this technique may be used in general on rational functions, whenever the denominator
has a multiple root.

Example 2.4 Find the domain of convergence of each of the following series:

(a)
+∞∑
n=0

(
zn +

1
2nzn

)
, (b)

+∞∑
n=0

(
zn

n!
+

n2

zn

)
, (c)

+∞∑
n=0

(
zn +

1
zn

)
.

(a) Here

+∞∑
n=0

zn =
1

1 − z
is convergent for |z| < 1,

Laurent series

Download free eBooks at bookboon.com



Complex Funktions Examples c-5

 

12  

–1.5

–1

–0.5

0.5

1

1.5

–1.5 –1 –0.5 0.5 1 1.5

Figure 1: The domain in (a) is an annulus.

and
+∞∑
n=0

1
2nzn

=
+∞∑
n=0

(
1
2z

)n

=
2z

2z − 1

is convergent for
∣∣∣∣ 1
2z

∣∣∣∣ < 1, thus for |z| >
1
2
. The common domain of convergence is the annulus

{z ∈ C | 1
2

< |z| < 1},

and the sum function is

f(z) =
1

1 − z
+

2z
2z − 1

.

(b) The series

+∞∑
n=0

zn

n!
= ez

is convergent for every z ∈ C, and the series

+∞∑
n=0

n2

zn

(
=

z2 + z

(z − 1)2

)

is convergent for
∣∣∣∣1z

∣∣∣∣ < 1, thus for |z| > 1. The domain of convergence is the complementary set

of a disc

{z ∈ C | |z| > 1},
and the corresponding sum function is

f(z) = ez +
z2 + z

(z − 1)2
.

Laurent series
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(c) The series
∑∞

n=0 zn has the domain of convergence |z| < 1, and the series
∑+∞

n=0

1
zn

has the

domain of convergence |z| > 1. The intersection is empty, so the open domain of convergence is
also empty.

Remark 2.1 Additionally, we prove here that

+∞∑
n=0

(
zn +

1
zn

)

is also divergent, when |z| = 1. We put on this circle, z = ei θ, so

zn +
1
zn

= ei n θ + e−i n θ = 2 cos nθ,

and the series is
+∞∑
n=0

(
zn +

1
zn

)
= 2

+∞∑
n=0

cos nθ, z = ei θ.

We shall prove that the trigonometric series
∑+∞

n=0 cos nθ is divergent for every θ ∈ R. The
necessary condition of convergence is that the n-th term tends towards 0, i.e. we require that

cos nθ → 0 for n → +∞.

Now, if e.g. | cos nθ| < 1
2 for some n, then

| cos 2nθ| =
∣∣2 cos2 nθ − 1

∣∣ ≥ 1 − 2 · 1
4

=
1
2
,

and it follows that cosnθ does not tends towards 0 for n → +∞, so the series is divergent. ♦

Example 2.5 Find the domain of convergence for each of the following series:

(a)
∑∞

n=1

{
z(z + n)

n

}n

, (b)
∑+∞

n=0

(−1)n

z + n
,

(c)
∑+∞

n=0

2n

z2n + 1
, (d)

∑+∞
n=0

zn

1 + z2n .

Hint: None of the series is a power series.

(a) It follows that{
z(z + n)

n

}n

= zn
(
1 +

z

n

)n

,

where(
1 +

z

n

)n

→ ez for n → +∞.

Laurent series
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In particular, to every z there exist constants C1 and C2, as well as an N , such that

C1|z|n ≤
∣∣∣∣
{

z(z + n)
n

}n∣∣∣∣ ≤ C2|z|n for n ≥ N, .

Then we apply the criterion of equivalence for usual real series to conclude that the two series

+∞∑
n=1

{
z(z + n)

n

}n

og
+∞∑
n=1

zn,

are absolutely convergent in the same domain, so the domain of convergence is the open unit disc

|z| < 1.

Aside. Note that if |z| = 1, then∣∣∣∣z(z + n)
n

∣∣∣∣
n

→ |ez| �= 0,

and the necessary condition of convergence is not fulfilled, so the series is divergent on |z| = 1.

Laurent series
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(b) If z /∈ Z− ∪ {0}, then

(−1)n

z + n
=

(−1)n

x + n + i y
= (−1)n · x + n − i y

(x + n)2 + y2
.

Clearly. the sum of the imaginary part alone is convergent for z /∈ Z− ∪ {0}, because the terms are

asymptotically equal to a constant times
1
n2

. Concerning the real parts we get for the numerical
values,

x + n

(x + n)2 + y2
↘ 0 for n → +∞ and n ≥ N(x).

The corresponding real sequence is alternating, hence it follows from Dirichlet’s criterion that
the real part of the series is also convergent. (A further analysis would of course show that the
convergence of the real part is conditional, but we shall not use this fact here). The series is clearly
not defined for z ∈ Z− ∪ {0}, so the series is convergent for z /∈ Z− ∪ {0}.

(c) If |z| ≤ 1, then of course,

2n

z2n + 1
→ ∞ for n → +∞,

and the series is divergent.
If instead |z| > 1, then

2n

z2n + 1
=

2n

z2n · 1

1 +
1

z2n

=
(

2
z2n/n

)n

· {1 + o(1)}.

It follows from

2
z2n/n

→ 0 for n → +∞ og |z| > 1,

that there exist a k ∈ ]0, 1[ and an N(k; z), such that∣∣∣∣ 2n

z2n + 1

∣∣∣∣ < kn for alle n ≥ N(k; z).

(Note that the denominator is never 0, when |z| > 1). Hence, the domain of convergence is the
complementary set of a disc |z| > 1.

(d) If |z| = 1, then∣∣∣∣ zn

1 + z2n

∣∣∣∣ ≥ 1
2

> 0,

and the necessary condition of convergence is not fulfilled, so the series is divergent for |z| = 1.

If |z| < 1, then we get the following estimates with some constants C1(z) > 0 and C2(z) > 0,

C1(z) |z|n ≤
∣∣∣∣ zn

1 + z2n

∣∣∣∣ ≤ C2(z) |z|n,

Laurent series
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and since
∑+∞

n=0 zn is convergent for |z| < 1, it follows from the criterion of equivalence that we
have convergence for |z| < 1.

It |z| > 1, then z2n

dominate, so we get instead the following estimate∣∣∣∣ zn

1 + z2n

∣∣∣∣ ≤ C

|z|2n−n
≤ D ·

(
1
|z|

)n

n ≥ N.

We conclude from
1
|z| < 1 that the series is convergent.

Summing up we see that the domain of convergence is given by |z| �= 1, i.e. in all points of C, with
the exception of the points of the unit circle.

Example 2.6 Find a strip {z ∈ C | |y| < k}, in which the series

+∞∑
n=1

1
2n

cos nz

is convergent. What is the largest possible k?
Prove that the series defines an analytic function in the strip.

It follows formally from

cos nz =
1
2

ei n z +
1
2

e−i n z,

that

+∞∑
n=1

1
2n

cos nz =
1
2

+∞∑
n=1

1
2n

ei n z +
1
2

+∞∑
n=1

1
2n

e−i n z =
1
2

+∞∑
n=1

(
ei z

2

)n

+
1
2

+∞∑
n=1

(
e−i z

2

)n

.

The former series is convergent when∣∣∣∣ei z

2

∣∣∣∣ < 1, i.e. when e−y < 2, or y > − ln 2,

and the latter series is convergent when∣∣∣∣e−iz

2

∣∣∣∣ < 1, i.e. when ey < 2, or y < ln 2.

Then obviously,

+∞∑
n=1

1
2n

cos nz

Laurent series
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is convergent for |y| < ln 2 (and divergent for |y| > ln 2). If |y| < ln 2, then we get the sum function

+∞∑
n=1

1
2n

cos nz =
1
2

+∞∑
n=1

(
ei z

2

)n

+
1
2

+∞∑
n=1

(
1

2ei z

)n

=
1
2
·

ei z

2

1 − ei z

2

+
1
2
·

1
2ei z

1 − 1
2ei z

=
1
2
· eiz

2 − ei z
+

1
2
· e−i z

2 − e−i z
=

1
2
· 2ei z − 1 + 2e−i z − 1
4 − 2ei z − 2e−i z + 1

=
1
2
· 4 cos z − 2
5 − 4 cos z

=
2 cos z − 1
5 − 4 cos z

, |y| < ln 2,

and the function is clearly analytic in the strip.

Example 2.7 Prove that the series

+∞∑
n=0

z2n

1 − z2n+1

is convergent for every z ∈ C, for which |z| �= 1.
Find an expression of the sum of the series, partly in {z | |z| < 1}, and partly in {z | |z| > 1}.

If |z| < 1, then |z|m <
1
2

for m ≥ N = N(z), hence

∣∣∣∣ z2n

1 − z2n+1

∣∣∣∣ ≤ 2 ·
∣∣∣z2n

∣∣∣ ≤ 2 · |z|n for n ≥ lnN

ln 2
.

Since
∑

2 |z|n is convergent for |z| < 1, it follows that

+∞∑
n=0

z2n

1 − z2n

is convergent for |z| < 1.

If instead |z| > 1, we write

z2n

1 − z2n+1 = −

(
1
z

)2n

1 −
(

1
z

)2n+1 = − z2n

1

1 − z2n+1

1

,

and since
∣∣∣∣1z

∣∣∣∣ = |z1| < 1, it follows from the above that the series

+∞∑
n=0

z2n

1 − z2n+1 =
+∞∑
n=0

z2n

1

1 − z2n+1

1

is convergent for |z1| < 1, i.e. for |z| > 1.
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Finally, if |z| = 1, then∣∣∣∣ z2n

1 − z2n+1

∣∣∣∣ ≥ 1
2

> 0,

and the necessary condition of convergence is not fulfilled, so we have divergence for |z| = 1.

Now,

w

1 − w2
=

w(1 + w)
(1 − w)(1 + w)

− w2

1 − w2
=

w

1 − w
− w2

1 − w2
,

so if we put w = z2n

, then

z2n

1 − 22n+1 =
z2n

1 − z2n − z2n+1

1 − z2n+1 ,
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and the sectional sequence becomes

sn(z) =
z

1 − z2
+

z2

1 − z4
+ · · · + z2n

1 − z2n+1

=
(

z

1−z
− z2

1−z2

)
+
(

z2

1−z2
− z4

1−z4

)
+ · · · +

(
z2n

1−z2n − z2n+1

1−z2n+1

)

=
z

1 − z
− z2n+1

1 − z2n+1 .

If |z| < 1, then the latter term tends towards 0 for n → +∞, hence

+∞∑
n=0

z2n

1 − z2n+1 = lim
n→+∞ sn(z) =

z

1 − z
for |z| < 1.

If |z| > 1, then

− z2n+1

1 − z2n+1 =
1

1 −
(

1
z

)2n+1 → 1 for n → +∞,

thus

+∞∑
n=0

z2n

1 − z2n+1 = lim
n→+∞ sn(z) =

z

1 − z
+ 1 =

1
1 − z

for |z| > 1,

so summing up,

+∞∑
n=0

z2n

1 − z2n+1 =

⎧⎪⎪⎨
⎪⎪⎩

z

1 − z
for |z| < 1,

1
1 − z

for |z| > 1.
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Example 2.8 Prove that the power series

f(z) =
+∞∑
n=0

z2n

represents a function, which is analytic in the disc |z| < 1, and which cannot be continuously extended
across the unit circle.
Hint: Apply the equation

f(z) = z + z2 + z4 + · · · + z2k−1
+ f

(
z2k

)
.

Prove that if ζ ∈ C satisfies ζ2k

= 1 for some k ∈ N, then f(t ζ) → ∞ for t → 1−.

Since
∣∣z2n∣∣ ≤ |z|n, whenever |z| < 1, it is obvious that f(z) is analytic in the open disc |z| < 1.

Then

f(z) = z + z2 + z4 + · · · + z2k−1
+ f

(
z2k

)
.

If we choose ζ ∈ C, such that ζ2k

= 1, then

(t ζ)2
k

= t2
k

, t ∈ ]0, 1[,

and we get

f
(
(t ζ)2

k
)

= f
(
t2

k
)

=
+∞∑
n=0

(
t2

k
)2n

=
+∞∑
n=0

t2
k+n → +∞ for t → 1−,

where we have used that t is positive. Now

z + z2 + · · · + z2k−1

is bounded for z = t ζ, so we conclude that

f(t ζ) → ∞ for t → 1 − .

Since this holds for every k, and since the set of 2k-roots, k ∈ N0, are dense on the unit circle, we
conclude that it is not possible to extend f continuously to any point on the unit circle |z| = 1.

Example 2.9 Find the Laurent series expansion from z0 = 0 for each of the following functions in
the given domains:

(a)
z − 1
z + 1

for |z| > 1, (b)
10

(z + 2) (z2 + 1)
for 1 < |z| < 2.

(a) If |z| > 1 then it follows by an application of the geometric series that

z − 1
z + 1

=
1 − 1

z

1 +
1
z

= −1 +
2

1 +
1
z

= −1 + 2
+∞∑
n=0

(−1)n

(
1
z

)n

= 1 + 2
+∞∑
n=1

(−1)n · 1
zn

.
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–2

–1

0

1

2

–2 –1 1 2

Figure 2: The annulus 1 < |z| < 2.

(b) We decompose

10
(z + 2) (z2 + 1)

=
A

z + 2
+

Bz + C

z2 + 1
.

Then

A =
10
5

= 2,

hence by reduction,

Bz + C

z2 + 1
=

10
(z + 2) (z2 + 1)

− 2
z + 2

=
10 − 2z2 − 2

(z + 2) (z2 + 1)
= −2

z2 − 4
(z + 2) (z2 + 1)

=
−2z + 4
z2 + 1

.

Since 1 < |z| < 2, it follows by the geometric series that

10
(z + 2) (z2 + 1)

=
2

z + 2
+

−2z + 4
z2 + 1

=
1

1 +
z

2

+
−2 · 1

z
+ 4 · 1

z2

1 +
(

1
z

)2

=
+∞∑
n=0

(−1)n
(z

2

)n

− 2
z

+∞∑
n=0

(−1)n · 1
z2n

+
4
z2

+∞∑
n=0

(−1)n · 1
z2n

=
+∞∑
n=0

(−2)n

2n
zn +

+∞∑
n=0

2(−1)n+1

z2n+1
+

+∞∑
n=1

4(−1)n+1

z2n
.
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Example 2.10 Find the Laurent series for
z + 1
z − 1

, in the disc |z| < 1, and in the complementary set

of a dise |z| > 1.

(a) If |z| < 1, then by the geometric series

z + 1
z − 1

=
z − 1 + 2

z − 1
= 1 − 2

1 − z
= 1 − 2

+∞∑
n=0

zn = −1 − 2
+∞∑
n=1

zn, |z| < 1.

(b) If |z| > 1, then put w =
1
z
, thus |w| < 1. If follows from (a) that

z + 1
z − 1

=
1 + w

1 − w
= −w + 1

w − 1
= 1 + 2

+∞∑
n=1

wn = 1 + 2
+∞∑
n=1

1
zn

, |z| > 1.

“Alternatively”,

z + 1
z − 1

=
1 +

1
z

1 − 1
z

= −1 +
2

1 − 1
z

= −1 + 2
+∞∑
n=0

1
zn

= 1 + 2
+∞∑
n=1

1
zn

, |z| > 1.
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Example 2.11 Find the Laurent series for

1
z2(1 − z)

in the sets 0 < |z| < 1, and |z| > 1.

(a) If 0 < |z| < 1, then

1
z2(1 − z)

=
1
z2

+∞∑
n=0

zn =
+∞∑

n=−2

zn.

(b) If |z| > 1, then

1
z2(1 − z)

= − 1
z3

· 1

1 − 1
z

= − 1
z3

+∞∑
n=0

1
zn

= −
+∞∑
n=3

1
zn

.

Example 2.12 Find the Laurent series expansion from 0 for each of the following functions in the
given domains:

(a)
z2 − 1

(z + 2)(z + 3)
for |z| > 3, (b)

24
z2(z − 1)(z + 2)

for 0 < |z| < 1.

(a) Since
∣∣∣∣2z

∣∣∣∣ < 1 and
∣∣∣∣3z

∣∣∣∣ < 1 for |z| > 3, we get by a decomposition (remember the constant term,

because the numerator and the denominator have the same degree),

z2 − 1
(z + 2)(z + 3)

= 1 +
3

z + 2
− 8

z + 3
= 1 +

3
z
· 1

1 +
2
z

− 8
z
· 1

1 +
3
z

= 1 +
3
z

+∞∑
n=0

(−1)n · 2n

zn
− 8

z

+∞∑
n=0

(−1)n · 3n

zn

= 1 +
+∞∑
n=1

(−1)n−1 · 3 · 2n−1

zn
−

+∞∑
n=1

(−1)n−1 · 8 · 3n−1

zn

= 1 +
+∞∑
n=1

(−1)n
{
8 · 3n−1 − 3 · 2n−1

} · 1
zn

.

(b) Since |z| < 1 and
∣∣∣z
2

∣∣∣ < 1 for 0 < |z| < 1, it follows by a decomposition, in which
1
z2

does not
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enter that

24
z2(z − 1)(z + 2)

=
1
z2

{
8

z − 1
− 8

z + 2

}
= − 1

z2

⎧⎨
⎩ 8

1 − z
+

4

1 +
z

2

⎫⎬
⎭

= − 1
z2

{
+∞∑
n=0

8zn +
+∞∑
n=0

(−1) · 4 · 1
2n

zn

}
= −

+∞∑
n=0

{
8 + (−1)n 1

2n−2

}
zn−2

= −
+∞∑

n=−2

{
8 + (−1)n · 1

2n

}
zn.

Example 2.13 Write the function

f(z) =
z

1 + z3

in the form
∑+∞

n=0 anzn, as well as in the form
∑+∞

n=0 bn
1
zn

. Indicate in both cases the domain of
convergence.

It follows from 1 + z3 = 0 that |z| = 1. We shall therefore consider the cases |z| < 1 and |z| > 1
separately.

If |z| < 1, then

z

1 + z3
= z

+∞∑
n=0

(−1)nz3n =
+∞∑
n=0

(−1)nz3n+1, |z| < 1.

If instead |z| > 1, then

z

1 + z3
=

1
z2

· 1

1 +
1
z3

=
1
z2

+∞∑
n=0

(−1)n · 1
z3n

=
+∞∑
n=0

(−1)n · 1
z3n+2

, z| > 1.

Example 2.14 Find the Laurent series expansion from 0 of

(a)
sinh z

z8
for |z| > 0, (b)

exp
(
z2

)− 1
z3

for |z| > 0.

(a) We get by using the series expansion of sinh z that

sinh z

z8
=

1
z8

+∞∑
n=0

z2n+1

(2n + 1)!
=

+∞∑
n=0

z2n−8+1

(2n + 1)!
=

+∞∑
n=−4

z2n+1

(2n + 9)!
, for z ∈ C \ {0}.

(b) In the same way,

exp
(
z2

)− 1
z3

=
1
z3

+∞∑
n=1

z2n

n!
=

+∞∑
n=1

z2n−3

n!
=

1
z

+
+∞∑
n=0

z2n+1

(n + 2)!
, for z ∈ C \ {0}.
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Example 2.15 Find the Laurent series expansion from 0 of

(a) z2 exp
(

1
z

)
, (b) exp

(
z +

1
z

)
, (c) sin z · sin 1

z
.

(a) We get by a series expansion

z2 exp
(

1
z

)
= z2

+∞∑
n=0

1
n! zn

= z2 + z +
1
2

+
+∞∑
n=1

1
(n + 2)! zn

, z ∈ C \ {0}.

(b) Here we use Cauchy multiplication,

exp
(

z +
1
z

)
= exp z · exp

1
z

=
+∞∑
p=0

zp

p!

+∞∑
q=0

1
q! zq

=
+∞∑
p=0

+∞∑
q=0

1
p! q!

zp−q =
+∞∑

n=−∞
anzn, z ∈ C \ {0},

where it follows from the symmetry that a−n = an. Furthermore,

an =
+∞∑

p, q=0
p−q=n

1
p! q!

=
+∞∑
q=0

1
q!(q + n)!

, n ∈ N0,

hence

exp
(

z +
1
z

)
=

+∞∑
n=0

{
+∞∑
q=0

1
q!(q + n)!

}
zn +

+∞∑
n=1

{
+∞∑
q=0

1
q!(q + n)!

}
1
zn

for z ∈ C \ {0}.
(c) We get by a Cauchy multiplication for z ∈ C \ {0} that

sin z · sin 1
z

=
+∞∑
p=0

(−1)p

(2p + 1)!
z2p+1

+∞∑
q=0

(−1)q

(2q + 1)!

(
1
z

)2q+1

=
+∞∑
p=0

+∞∑
q=0

(−1)p−q

(2p + 1)!(2q + 1)!
z2(p−q).

The symmetry implies that a−n = an, and it follows directly that a2n+1 = 0, n ∈ Z. Finally,

a2n =
+∞∑

p, q=0
p−q=n

(−1)p−q

(2p + 1)!(2q + 1)!
= (−1)n

+∞∑
q=0

1
(2q + 1)!(2q + 2n + 1)!

for n ∈ N0. Hence we get for z ∈ C \ {0},

sin z · sin 1
z

=
+∞∑
n=0

(−1)n

{
+∞∑
q=0

1
(2q + 1)!(2q + 2n + 1)!

}
z2n

+
+∞∑
n=1

{
+∞∑
q=0

1
(2q + 1)!(2q + 2n + 1)!

}
1

z2n
.
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Example 2.16 Find the Laurent series expansion of the following functions,

(a)
z

z + 2
for |z| > 2, (b) sin

1
z

for z �= 0.

(a) Since
∣∣∣∣2z

∣∣∣∣ < 1 for |z| > 2, it follows by a division and an application of the geometric series,

z

z + 2
=

1

1 +
2
z

=
+∞∑
n=0

(−1)n · 2n

zn
for |z| > 2.

(b) Here we get by the series expansion of sin w, where we put w =
1
z
,

sin
1
z

=
+∞∑
n=0

(−1)n

(2n + 1)!
1

z2n+1
for z �= 0.
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Example 2.17 Find the Laurent series expansion of the following functions:

(a) cos
1
z

for z �= 0, (b)
1

z − 3
for |z| > 3.

(a) Put w =
1
z

into the series expansion of cos w to get

cos
1
z

=
+∞∑
n=0

(−1)n

(2n)!
1

z2n
for z �= 0.

(b) Since
∣∣∣∣3z

∣∣∣∣ < 1 for |z| > 3, it follows by a small rearrangement followed by an application of the

geometric series that

1
z − 3

=
1
z
· 1

1 − 3
z

=
1
z

+∞∑
n=0

3n

zn
=

+∞∑
n=1

3n−1 1
zn

for |z| > 3.

Example 2.18 Find the first four terms of the Laurent series expansion of

f(z) =
ez

z (z2 + 1)

in the set 0 < |z| < 1.

If 0 < |z| < 1, then

1
z (z2 + 1)

=
1
z

+∞∑
n=0

(−1)nz2n =
1
z
− z + z3 − z5 + · · · .

Now,

ez = 1 + z +
z2

2!
+

z3

3!
+

z4

4!
+ · · · ,

so we get by a Cauchy multiplication,

ez

z (z2 + 1)
=

{
1
z
− z + z3 − z5 + · · ·

}{
1 + z +

z2

2
+

z3

6
+

z4

24
+ · · ·

}

=
1
z

+ 1 +
{

1
2
− 1

}
z +

{
1
6
− 1

}
z2 +

{
124 − 1

2
+ 1

}
z3 + · · ·

=
1
z
− 1 − 1

2
z − 5

6
z2 +

13
24

z3 + · · · .
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Example 2.19 Find the first four terms of the Laurent series expansion of
1

sin z
from 0.

Since sin z = 0 for z = 0 and z = ππ, and since sin z �= 0 for 0 < |z|π, the domain of convergence is
0 < |z| < π.

Since sin z is odd and has a zero of order 1 at 0, the structure must be

1
sin z

=
a−1

z
+ a1z + a3z

3 + a5z
5 + · · · .

Now,

sin z = z − z3

3!
+

z5

5!
− z7

7!
+ · · · ,

so we get for 0 < |z| < π,

1 = sin z · 1
sin z

=
{

z − z3

3!
+

z5

5!
− z7

7!
+ · · ·

}{a1

z
+ a1z + a3z

3 + a5z
5 + · · ·

}

=
{

1 − z2

6
+

z4

120
− z6

5040
+ · · ·

}{
a−1 + a1z

2 + a3z
2 + a5z

6 + · · ·}
= a−1 +

{
a1 − 1

6
a−1

}
z2 +

{
a3 − 1

6
a1 +

1
120

a−1

}
z4

+
{

a5 − 1
6

a3 +
1

120
a1 − 1

5040
a−1

}
z6 + · · · .

Then it follows from the identity theorem that

a−1 = 1,

a1 =
1
6

a−1 =
1
6
,

a3 =
1
6

a1 − 1
120

a−1 =
1
36

− 1
120

=
7

360
,

a5 =
1
6

a3 − 1
120

a1 +
1

5040
a−1 =

7
6 · 360

− 1
6 · 120

+
1

5040
=

7 − 3
6 · 360

+
1

5040

=
1

180

{
1
3

+
1
28

}
=

31
3 · 180 · 28

=
31

15120
.

Finally, by insertion,

1
sin z

=
1
z

+
1
6

z +
7

360
z3 +

31
15120

z5 + · · · , 0 < |z| < π.
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Example 2.20 Find the Laurent series expansions of the following functions:

(a)
z

z2 − 1
i 1 < |z − 2| < 3, (b)

ez

z − 1
i |z| > 1.

–3

–2

–1

0

1

2

3

–1 1 2 3 4 5

Figure 3: The annulus of centrum at z = 2, determined by the singularities z = ±1.

(a) The singular points are z = ±1, where the denominator is 0. Then apply a decomposition and
change variable to z − 2,

z

z2 − 1
=

z

(z − 1)(z + 1)
=

1
2
· 1
z − 1

+
1
2
· 1
z + 1

=
1
2
· 1
z − 2

· 1
1

z − 2

+
1
6
· 1

1 +
z − 2

3

=
1
2
· 1
z − 2

+∞∑
n=0

(−1)n

(z − 2)n
+

1
6

+∞∑
n=0

1
3n

(z − 2)n

=
+∞∑
n=0

1
6 · 3n

(z − 2)n −
+∞∑
n=1

(−1)n

2
· 1
(z − 2)n

for 1 < |z − 2| < 3.

(b) If |z| > 1, then

1
z − 1

=
1
z
· 1

1 − 1
z

=
+∞∑
n=1

1
zn

og ez =
+∞∑
n=0

1
n!

zn,

so by a Cauchy multiplication,

ez

z − 1
=

+∞∑
p=0

1
p!

zp
+∞∑
q=1

1
zq

=
+∞∑
p=0

+∞∑
q=1

1
p!

zp−q for |z| > 1.

If we put n = p − q ∈ Z, then q = p − n ≥ 1, i.e. p ≥ n + 1 and p ≥ 0. Hence,

an =
+∞∑

p=n+1

1
p!

for n > −1,
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and

an =
+∞∑
p=0

1
p!

= e for n ≤ −1.

Finally, by insertion,

ez

z − 1
=

+∞∑
n=1

e

zn
+

+∞∑
n=0

{
+∞∑

p=n+1

1
p!

}
zn for |z| > 1.
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Example 2.21 Given the function f by

f(z) =
5z

6z2 − z − 1
.

1) Find the largest annulus

R1 < |z| < R2, where R1 > 0 and R2 < +∞,

in which f is analytic.

2) Find the power series from z0 = 0 of f in the domain |z| < R1.

3) Find the Laurent series from z0 = 0 of f in the annulus R1 < |z| < R2.

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

–0.6 –0.4 –0.2 0.2 0.4 0.6

Figure 4: The open annular domain.

1) It follows from

6z2 − z − 1 = 6
(

z − 1
2

)(
z +

1
3

)
,

that the singular points of the function are −1
3

and
1
2
. Consequently, R1 =

1
3

and R2 =
1
2
, and

the annulus becomes

{z ∈ C | 1
3

< |x| <
1
2
}.

2) If |z| < R1 =
1
3
, then

f(z) =
5z

6z2 − z − 1
=

5
6
· z(

z − 1
2

)(
z +

1
3

) =
5
6
·

1
2

1
2

+
1
3

· 1

z − 1
2

+
5
6
·

−1
3

−1
2
− 1

3

· 1

z +
1
3

=
1

2z − 1
+

1
1 + 3z

=
1

1 + 3z
− 1

1 − 2z
=

+∞∑
n=0

{(−3)n − 2n} zn.

Laurent series

Download free eBooks at bookboon.com



Complex Funktions Examples c-5

 

32  

3) If
1
3

< |z| <
1
2
, then

f(z) =
1

2z − 1
+

1
1 + 3z

= − 1
1 − 2z

+
1
3z

· 1

1 +
1
3z

= −
+∞∑
n=0

2nzn +
1
3z

+∞∑
n=0

(−1)n · 1
3n

· 1
zn

= −
+∞∑
n=0

2nzn +
+∞∑
n=1

(−1)n−1

3n
· 1
zn

.

Example 2.22 Find for each of the annuli

(a) 0 < |z − z0| < |z0|,
(b) |z0| < |z − z0| < +∞,

the Laurent series of the function

f(z) =
1

z(z − 2)

from z0 = 2. The result shall be given in one of the forms

(a) f(z) =
∑

n an (z − z0)
n,

(b) f(z) =
∑

n bn (z − z0)
n.

–2

–1

0

1

2

1 2 3 4

Figure 5: The limiting circle |z − 2| = 2.

(a) If 0 < |z − 2| < 2, we put w =
z − 2

2
. Then

0 < |w| < 1 and z = 2(w + 1),
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and we get by the usual geometric series,

f(z) =
1

z(z − 2)
=

1
2(w + 1) · 2w =

1
4w

· 1
1 + w

=
1

4w

+∞∑
n=0

(−1)nwn =
1
4

+∞∑
n=−1

(−1)n+1wn

=
+∞∑

n=−1

(−1)n+1

2n+2
(z − 2)n for 0 < |z − 2| < 2.

(b) If 2 < |z − 2| < +∞, then |w| > 1, where w =
z − 2

2
as above. We get by the well-known trick,

f(z) =
1

4w
· 1
1 + w

=
1

4w2
· 1

1 +
1
w

=
1

4w2

+∞∑
n=0

(−1)n

wn
=

+∞∑
n=2

(−1)n

4wn

=
+∞∑
n=2

(−1)n2n−2 1
(z − 2)n

for 2 < |z − 2| < +∞.

Example 2.23 Given the functions

f(z) =
1

1 + z2
and g(z) =

1
z3 (1 + z2)

.

1) Find the Taylor series of f with z0 = 0 as point of expansion, and determine its coefficients.
Find the radius of convergence R of the series.

2) Find the Laurent series of g from z0 = 0 in the domain 0 < |z| < R, and determine its coefficients.

3) Find the Laurent series of g from z0 = 0 in the domain |z| > R, and determine its coefficients.

1) Clearly,

f(z) =
1

1 + z2
=

+∞∑
n=0

(−1)nz2n for |z| < 1,

thus R = 1. It follows that

a2n+1 = 0 and a2n = (−1)n for n ∈ N0,

and a2n = 0 otherwise.

2) The Laurent series of g(z) i 0 < |z| < 1 is according to (1) given by

g(z) =
1
z3

f(z) =
+∞∑
n=0

(−1)nz2n−3.

It follows that a2n = 0 and

a2n−3 = (−1)n for n ∈ N0,

and a2n−3 = 0 otherwise.
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3) If instead |z| > 1, then the Laurent series of g(z) is given by

g(z) =
1

z3 (1 + z2)
=

1
z5

· 1

1 +
1
z2

=
1
z5

+∞∑
n=0

(−1)n

z2n
=

+∞∑
n=0

(−1)nz−2n−5, for |z| > 1.

Here,

a−2n−5 = (−1)n for n ∈ N0,

and am = 0 for m /∈ {−2n − 5 | n ∈ N0}.
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Example 2.24 Given the functions

f(z) =
ez

1 + z
and g(z) = ez+1.

1) Find the first five terms

a0 + a1z + a2z
2 + a3z

3 + a4z
4

in the Taylor series of f with 0 as point of expansion.
Specify the radius of convergence of the Taylor series.

2) Find the Taylor series of g with z0 = −1 as point of expansion.
Determine the Laurent series of f i C \ {−1}.

1) The function f(z) =
ez

1 + z
is analytic in C \ {−1}, where −1 is a simple pole. Hence the Taylor

series from 0 is convergent for |z| < 1, i.e. in the open unit disc.

The first five terms of the Taylor series are found by termwise multiplication,

f(z) =
ez

1 + z
= a0 + a1 + a2z

2 + a3z
3 + a4z

4 + · · ·

=
{

1 +
z

1!
+

z2

2!
+

z3

3!
+

z4

4!
+ · · ·

}{
1 − z + z2 − z3 + z4 − · · ·}

= 1 + (1 − 1)z +
(

1
2
− 1 + 1

)
z2 +

(
1
6
− 1

2
+ 1 − 1

)
z3 +

(
1
24

− 1
6

+
1
2
− 1 + 1

)
z4 + · · ·

= 1 +
1
2

z2 − 1
3

z3 +
3
8

z4 + · · · .

2) Since g(z) = ez+1 is analytic in C, and the point of expansion is −1, we get

g(z) = ez+1 =
+∞∑
n=0

1
n!

(z + 1)n, z ∈ C.

When we shall find the Laurent series of f in C \ {−1}, it is tacitly understood that z0 = −1 is
the point of expansion. We find

f(z) =
ez

1 + z
=

1
e
· ez+1

z + 1
=

1
e

+∞∑
n=0

1
n!

(z + 1)n−1 =
1
e
· 1
z + 1

+
+∞∑
n=0

1
e
· 1
(n + 1)!

(z + 1)n.
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Example 2.25 Denote by c any complex number, and define for any fixed c a function fc by

fc(z) =
(

1
z2

+
c

z4

)
sin z.

1) Determine in the domain C \ {0} the Laurent series

+∞∑
n=1

bn

zn
+

+∞∑
n=0

anzn

for fc.
Determine the coefficients bn and an.

2) Find for any c the value of the integral∮
|z|=1

fc(z) dz.

3) Put c = 6. Explain why f6 has a primitive in the domain C \ {0}, and find the Laurent series of
any primitive of f6.

4) Discuss if c �= 6 why fc does not have a primitive in C \ {0}.

1) Inserting the series expansion of sin z, we get for z �= 0 that

fc(z) =
(

1
z2

+
c

z4

)
sin z =

1
z2

+∞∑
n=0

(−1)n

(2n + 1)!
z2n+1 +

c

z4

+∞∑
n=0

(−1)n

(2n + 1)!
z2n+1

=
+∞∑

n=−1

(−1)n+1

(2n + 3)!
x2n+1 +

+∞∑
n=−2

c
(−1)n+2

(2n + 5)!
z2n+1

=
c

z3
+

(
1 − c

3!

) 1
z

+
+∞∑
n=0

(−1)n

{
c

(2n + 5)!
− 1

(2n + 3)!

}
z2n+1.

It follows that

b1 = 1 − c

3!
, b3 = c and bn = 0 otherwise,

and

a2n = 0, n ∈ N0, a2n+1 = (−1)n

{
c

(2n + 5)!
− 1

(2n + 3)!

}
, n ∈ N0.

2) Now fc is analytic in C \ {0}, so it follows from the residue theorem that∮
|z|=1

fc(z) dz = 2πi res (fc; 0) = 2πi
(
1 − c

6

)
.
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3) If c = 6, then

f6(z) =
6
z3

+
+∞∑
n=0

{
6

(2n + 5)!
− 1

(2n + 3)!

}
z2n+1, z �= 0.

If z �= 0, then this clearly has the primitive

F6(z) = − 3
z2

+
+∞∑
n=0

(−1)n

2n + 2

{
6

(2n + 5)!
− 1

(2n + 3)!

}
x2n+2

= − 3
z2

+
+∞∑
n=1

(−1)n−1

2n

{
6

(2n + 3)!
− 1

(2n + 1)!

}
z2n

= − 3
z2

+
+∞∑
n=1

(−1)n−1

2n
· 1
(2n + 3)!

{6 − (2n + 3)(2n + 2)}zn

= − 3
z2

+
+∞∑
n=1

(−1)n−1

2n
· 1
(2n + 3)!

(−1){2n + 3 + 2}(2n)z2n

= − 3
z2

+
+∞∑
n=1

(−1)n

(2n + 3)!
· (2n + 5)z2n,

where we may add any arbitrary constant.
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4) If c �= 6, then the Laurent series contains a term of the type
c

z
, and it is well-known that this does

not have any primitive in C \ {0}.
A primitive is e.g. Log z, and this is only defined in the plane with a branch cut along the negative
real axis, including 0.

Example 2.26 Given the function

f(z) =
z + 2
1 − z2

.

1) Find the Taylor series
∑+∞

n=0 anzn of f with the point of expansion z0 = 0, and determine its
coefficients.
Find also the radius of convergence R.

2) Find the Laurent series of f from the point z0 = 0 in the domain |z| > R, and determine its
coefficients.

3) Find the Laurent series of f in the largest possible annulus

0 < |z − 1| < r.

Find its coefficients and the outer radius r.

1) The function

f(z) =
z + 2
1 − z2

has the poles ±1, so the radius of convergence (from z0 = 0) is R = 1. For |z| < 1 we have the
Taylor series

f(z) = (z + 2) · 1
1 − z2

= (z + 2)
+∞∑
n=0

z2n =
+∞∑
n=0

z2n+1 +
+∞∑
n=0

2z2n, |z| < 1.

By identification,

an =

⎧⎨
⎩

2 for n even,

1 for n odd,
n ∈ N0.

2) If |z| > 1, then∣∣∣∣ 1
z2

∣∣∣∣ < 1,

and thus

f(z) = −z + 2
z2

· 1

1 − 1
z2

= −
(

1
z

+
2
z2

) +∞∑
n=0

1
z2n

= −
+∞∑
n=0

1
z2n+1

−
+∞∑
n=1

2
z2n

, |z| > 1.
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–2

–1

0

1

2

–1 1 2 3

Figure 6: The disc {z ∈ C | 0 < |z| < 2} without its centrum.

It follows that

bn =

⎧⎨
⎩

−1 for n odd,

−2 for n even,
n ∈ N.

3) The singularities are 1 and −1, so r = 2. Putting w = z − 1, it follows for 0 < |w| = |z − 1| < 2
that

0 <
∣∣∣w
2

∣∣∣ < 1,

hence

f(z) =
z + 2
1 − z2

= − (z − 1) + 3
(z − 1)(z + 1)

= − w + 3
w(w + 2)

= −w + 3
2w

· 1

1 +
w

2

= −
{

1
2

+
3
2
· 1
w

} +∞∑
n=0

(−1)n

2n
wn =

+∞∑
n=0

(−1)n+1

2n+1
wn +

+∞∑
n=0

3
(−1)n−1

2n+1
wn−1

=
+∞∑
n=0

(−1)n+1

2n+1
wn − 3

2
· 1
w

+
+∞∑
n=0

3
(−1)n

2n+2
wn = −3

2
· 1
w

+
+∞∑
n=0

(−1)n · 1
2n+2

wn

= −3
2
· 1
2
z − 1 +

+∞∑
n=0

(−1)n

2n+2
· (z − 1)n, 0 < |z − 1| < 2,

and thus

b1 = −3
2

and an =
(−1)n

2n+2
, n ∈ N0.
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Example 2.27 Given the function

f(z) = 2 − z2 − 2 cos z.

1) Find the Maclaurin series of f and its radius of convergence.
Determine the order of the zero of f at z = 0.

2) Then put

g(z) = f

(
1
z

)
for z �= 0.

Find the Laurent series of g in the set |z| > 0.
Determine the type of the singularities of g at z = 0.

3) Put

h(z) =
1

f(z)
.

Find the type of the singularity of h at z = 0.
Determine the coefficients a−j for every j > 0 of the Laurent series of h,

+∞∑
j=1

a−jz
−j +

+∞∑
j=0

ajz
j

in a neighbourhood of z = 0, where z �= 0.

1) The function f(z) is analytic in C, so the radius of convergence is +∞.
By insertion of the power series of cos z we get

f(z) = 2 − z2 − 2
+∞∑
n=0

(−1)n

(2n)!
z2n = −2

+∞∑
n=2

(−1)n

(2n)!
z2n =

+∞∑
n=2

2(−1)n+1

(2n)!
z2n.

It follows immediately that f(z) has a zero of order 4 at z = 0.

2) If z �= 0, it follows from (1) that the Laurent series of g(z) = f

(
1
z

)
is

g(z) =
+∞∑
n=2

2(−1)n+1

(2n)!
1

z2n
, |z| > 0,

and it follows that z = 0 is an essential singularity.

3) Since f(z) has a zero of order 4, the function h(z) =
1

f(z)
has a pole of order 4 at 0. Hence,

h(z) =
a−4

z4
+

a−3

z3
+

a−2

z2
+

a−1

z
+

+∞∑
j=0

ajz
j , z �= 0.

Laurent series

Download free eBooks at bookboon.com



Complex Funktions Examples c-5

 

41  

Since f(z) is even, h(z) is also even. This implies that a−3 = a−1 = 0 in the following expansion,

1 = f(z) · h(z)

=
{
− 2

4!
z4 +

2
6!

z6 − 2
8!

z8+
}{a−4

z4
+

a3

z3
+

a−2

z2
+

a−1

z
+ · · ·

}

=
{
− 2

4!
+

2
6!

z2 − 2
8!

z4 + · · ·
}{

a−4 + a−2z
2 + · · ·}

= − 1
12

a−4 +
{

2
6!

a−4 − 2
4!

a−2

}
z2 + · · · .

We get

a−4 = −12 and a−2 =
2
6!

· 4!
2

a−4 =
−12
5 · 6 = −2

5
.

Summing up we get

a−4 = −12, a−3 = 0, a−2 − 2
5
, a−1 = 0.
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Example 2.28 Given the functions

f(z) =
1

1 − z
and g(z) = z2f ′′(z) + z f ′(z).

1) Find the Maclaurin series of f .
Find also the Maclaurin series of g and the coefficients of this series.

2) Find the Laurent series of f in the annulus |z| > 1.
Also, find the Laurent series of g in the same annulus and the coefficients of this series.

3) Finally, find the Laurent series of g in the set defined by |z − 1| > 0.

1) The Maclaurin series of f is given by

f(z) =
+∞∑
n=0

zn, |z| < 1.

Hence by termwise differentiation and insertion,

g(z) = z2
+∞∑
n=2

n(n − 1)zn−2 + z

+∞∑
n=1

n zn−1 =
+∞∑
n=2

(n=0)

n(n − 1)zn +
+∞∑
n=1

(n=0)

n zn

=
+∞∑
n=0

n2z2 =
+∞∑
n=1

n2zn, for |z| < 1.

2) If |z| > 1, then

f(z) =
1

1 − z
=

1
z
· 1

1 − 1
z

=
1
z

+∞∑
n=0

1
zn

=
+∞∑
n=1

1
zn

=
+∞∑
n=1

z−n,

hence

f ′(z) = −
+∞∑
n=1

n z−n−1 and f ′′(z) = +
+∞∑
n=1

n(n + 1)z−n−2, |z| > 1,

thus

g(z) = z2f ′′(z = +z f ′(z) =
+∞∑
n=1

n(n + 1)z−n −
+∞∑
n=1

n z−n

=
+∞∑
n=1

n2z−n =
+∞∑
n=1

n2

zn
for |z| > 1.

3) If z �= 1, then

f(z) =
1

1 − z
, f ′(z) =

1
(1 − z)2

, f ′′(z) =
2

(1 − z)3
,
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hence

g(z) = z2f ′′(z) + z f ′(z) =
2z2

(1 − z)3
+

z

(1 − z)2

= − 2
(z − 1)3

{(z − 1) + 1}2 +
z − 1 + 1
(z − 1)2

=
−2

(z − 1)3
{
(z − 1)2 + 2(z − 1) + 1

}
+

1
(z − 1)2

+
1

z − 1

= − 2
z − 1

− 4
(z − 1)2

− 2
(z − 1)3

+
1

(z − 1)2
+

1
z − 1

= − 2
(z − 1)3

− 3
(z − 1)2

− 1
z − 1

for |z − 1| > 0,

which we consider as a degenerated Laurent series from z1 = 1 with only three terms.

Example 2.29 Given the function

f(z) =
1

z2(z − 4)
.

1) Find the Laurent series of f in the annulus 0 < |z| < 4.

2) Find the Laurent series of f in the set 4 < |z|.
3) Compute the integrals∮

|z|=1

f(z) dz and
∮
|z|=5

f(z) dz.

1) If 0 < |z| < 4, then
∣∣∣z
4

∣∣∣ < 1, hence

f(z) =
1

z2(z − 4)
= − 1

4z2
· 1

1 − z

4

= − 1
4z2

+∞∑
n=0

zn

4n
=

+∞∑
n=0

(
− 1

4n+1

)
zn−2

=
+∞∑

n=−2

(
− 1

4n+3

)
zn, 0 < |z| < 4.

2) If instead |z| > 4, then
∣∣∣∣4z

∣∣∣∣ < 1, hence

f(z) =
1

z2(z − 4)
=

1
z3

· 1

1 − 4
z

=
1
z3

+∞∑
n=0

4n

zn
=

+∞∑
n=3

4n−3

zn
.

Laurent series
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3) The closed curve |z| = 1 lies in the annulus 0 < |z| < 4, so if we apply the Laurent series from (1),
we get∮

|z|=1

f(z) dz = 2πi a−1 = 2πi ·
(
− 1

42

)
= −πi

8
.

The closed curve |z| = 5 lies in the set |z| > 4, so if we apply the Laurent series from (2), we get∮
|z|=5

f(z) dz = 2πi ã−1 = 0.

Example 2.30 Let c denote any complex number, and define the function fc by

fc(z) =
(

1
z
− c

z2

)
ez.

1) Find the Laurent series
∑+∞

−∞ ajz
j of fc in C \ {0}, and determine the coefficients aj for every j.

2) Explain why the Laurent series of fc is uniformly convergent on the circle |z| = 1.
Find for every constant c the value of the line integral∮

|z|=1

fc(z) dz.

3) Discuss, why fc does not have a primitive in the set C \ {0}, when c �= 1.

4) Put c = 1. Prove that f1 has a primitive in C \ {0}.
Find the Laurent series in C \ {0} of a primitive F1 of f1.

1) If z �= 0, then the Laurent series is given by

fc(z) =
(

1
z
− c

z2

)
ez =

(
1
z
− c

z2

) +∞∑
n=0

1
n!

zn =
+∞∑
n=0

1
n!

zn−1 −
+∞∑
n=0

c

n!
zn−2

=
+∞∑

n=−1

1
(n + 1)!

zn −
+∞∑

n=−2

c

(n + 2)!
zn = − c

z2
+

1 − c

z
+

+∞∑
n=0

{
1

(n + 1)!
− c

(n + 2)!

}
zn

= − c

z2
+

1 − c

z
+

+∞∑
n=0

n + 2 − c

(n + 2)!
zn.

The coefficients are then

a−2 = −c, a−1 = 1 − c,

and

an =
1

(n + 1)!
− c

(n + 2)!
, for n ≥ 0.

Laurent series
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2) We have the following estimate, when |z| = 1,∣∣∣∣∣− c

z2
+

1 − c

z
+

+∞∑
n=0

{
1

(n + 1)!
− c

(n + 2)!

}
zn

∣∣∣∣∣ ≤ |c| + |1 − c| +
+∞∑
n=0

1
n!

+ |c|
+∞∑
n=0

1
n!

≤ |c| + |1 − c| + (1 + |c|)e < +∞,

proving that the Laurent series is uniformly convergent on |z| = 1.

We get by termwise integration,∮
|z|=1

fc(z) dz = 2iπ a−1 = 2iπ(1 − c).

3) A necessary condition for fc having a primitive is∮
|z|=1

fc(z) dz = 0.

When c �= 1, we see that this condition is not fulfilled, so in this case a primitive does not exist in
C \ {0}.

4) If c = 1, then

f1(z) = − 1
z2

+
+∞∑
n=0

{
1

(n + 1)!
− 1

(n + 2)!

}
zn = − 1

z2
+

+∞∑
n=0

{
n + 1

(n + 2)!

}
zn.

Here, − 1
z2

has the primitive
1
z
, and since the series

ϕ(z) =
+∞∑
n=0

n + 1
(n + 2)!

zn

is analytic in C, it follows that ϕ(z) has a primitive, thus

f1(z) = − 1
z2

+ ϕ(z), z ∈ C \ {0},
has a primitive. Then by termwise integration of the Laurent series expansion it follows that all
primitives are given by

F1(z) =
1
z

+ k +
+∞∑
n=1

1
(n + 1)!

zn, z �= 0,

where k ∈ C is an arbitrary constant.

Remark 2.2 Here it is not hard to find an exact expression of the primitives F1(z), z �= 0, by
elementary functions. In fact,

F1(z) =
1
z

+ k +
+∞∑
n=1

1
(n + 1)!

zn = k − 1 +
+∞∑

n=−1

1
(n + 1)!

zn =

= k − 1 +
ez

z
, z �= 0. ♦

Laurent series
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3 Fourier series

Example 3.1 Find the value of the integral

I(r) =
∫ 2π

0

1 + r ei t

1 − r ei t
dt for r �= 1.

Hint: Consider the function f(z) =
1 + z

1 − z
.

If r = 0, then

I(0) =
∫ 2π

0

1 dt = 2π.

Let r �= 0 and r �= 1. Denote by C the circle |z| = r with positive direction (assuming that r > 0), so
we have the parametric description

z = r ei t and dz = i r ei tdt.

Fourier series
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Then∮
C

f(z) dz =
∮

C

1 + z

1 − z
dz =

∫ 2π

0

1 + r ei t

1 − r ei t
· i r ei tdt = −i

∫ 2π

0

1 + r ei t

1 − r ei t

(
1 − r ei t − 1

)
dt

= −i

∫ 2π

0

(
1 + r ei t

)
dt + i

∫ 2π

0

1 + r ei t

1 − r ei t
dt.

Then apply Cauchy’s integral theorem and Cauchy’s integral formula respectively,

∮
C

f(z) dz =

⎧⎨
⎩

0 for r ∈ ]0, 1[,

−4π i, for r > 1.

Hence by a rearrangement and insertion,

∫ 2π

0

1 + r ei t

1 − r ei t
dt = 2π +

1
i

∮
C

f(z) dz =

⎧⎨
⎩

2π for r ∈ [0, 1[,

−2π for r > 1.

We note that if r < 0, then due to the periodicity,∫ 2π

0

1 + r ei t

1 − r ei t
dt =

∫ 2π

0

1 − |r| ei t

1 + |r| ei t
dt =

∫ 2π

0

1 + |r| ei(t+π)

1 − |r| ei(t+π)
dt =

∫ 2π

0

1 + |r| eit

1 − |r| ei t
dt.

Hence, I(−r) = I(r), and we see that I(r) is not defined for r = ±1, and that

I(r) =
∫ 2π

0

1 + r ei t

1 − r ei t
dt =

⎧⎨
⎩

2π for |r| < 1,

−2π for |r| > 1,
r ∈ R \ {−1, 1}.

Example 3.2 Find the Laurent series of
1

1 − z
, when |z| > 1. Then find the Fourier series of

ϕ(θ) =
1 − r cos θ

1 + r2 − 2r cos θ
, ψ(θ) =

r sin θ

1 + r2 − 2r cos θ
, r > 1.

It follows from |z| > 1 that

1
1 − z

= −1
z
· 1

1 − 1
z

= −1
z

+∞∑
n=0

1
zn

= −
+∞∑
n=1

1
zn

, |z| > 1.

Then put z = r ei θ, r > 1, to get

1
1 − z

=
1

1 − r ei θ
=

1 − r cos θ + i r sin θ

(1 − r cos θ)2 + (r sin θ)2
=

1 − r cos θ + i · r sin θ

1 + r2 − 2r cos θ
= ϕ(θ) + i ψ(θ),

and

1
1 − z

= −
+∞∑
n=1

1
zn

= −
+∞∑
n=1

1
rn

e−i n θ = −
+∞∑
n=1

1
rn

cos nθ + i

+∞∑
n=1

1
rn

sinnθ.
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Finally, when we separate the real and the imaginary parts, we get

ϕ(θ) =
1 − r cos θ

1 + r2 − 2r cos θ
= −

+∞∑
n=1

1
rn

cos nθ, r > 1,

ψ(θ) =
r sin θ

1 + r2 − 2r cos θ
=

+∞∑
n=1

1
rn

sinnθ, r > 1.

Example 3.3 Prove for 0 < |z| < 4 that

1
4z − z2

=
+∞∑
n=0

zn−1

4n+1
.

Then find the Fourier series of

(a)
4 cos θ − cos 2θ

17 − 8 cos θ
, (b)

sin θ − 4 sin θ

17 − 8 cos θ
.

If 0 < |z| < 4, then 0 <
∣∣∣z
4

∣∣∣ < 1, and we get by an application of the geometric series that

1
4z − z2

=
1
4z

· 1

1 − z

4

=
1
4z

+∞∑
n=0

zn

4n
=

+∞∑
n=0

zn−1

4n+1
.

If we put z = ei θ, then |z| = 1 < 4, and it follows by insertion and reduction that

1
4z − z2

=
1

4 ei θ − e2i θ
=

4 e−i θ − e−2i θ

(4 ei θ − e2i θ) (4 e−i θ − e−2i θ)
=

4 cos θ − cos 2θ + i(sin 2θ − 4 sin θ)
16 + 1 − 4 ei θ − 4 e−i θ

=
4 cos θ − cos 2θ

17 − 8 cos θ
+ i

sin 2θ − 4 sin θ

17 − 8 cos θ
=

+∞∑
n=0

ei(n−1)θ

4n+1
=

+∞∑
n=0

cos(n − 1)θ
4n+1

+ i
+∞∑
n=0

sin(n − 1)θ
4n+1

.

Finally, when we separate the real and the imaginary parts,

(a) Real part.

4 cos θ − cos 2θ

17 − 8 cos θ
=

+∞∑
n=0

cos(n − 1)θ
4n+1

=
1
16

+
17
64

cos θ +
+∞∑
n=2

1
4n+2

cos nθ.

(b) Imaginary part.

sin 2θ − 4 sin θ

17 − 8 cos θ
=

+∞∑
n=0

(n − 1)θ
4n+1

= −15
64

sin θ +
+∞∑
n=2

1
4n+2

sinnθ.
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4 Laurent series solution of differential equations

Example 4.1 Find all Laurent series from 0, which are a solution of the differential equation

z3f ′(z) + f(z) = 0,

and determine its domain of convergence.

Remark 4.1 It is actually possible to solve the equation by inspection. However, since the trick is
far from evident, we shall here start with the standard solution. ♦

Laurent series solution. Since z0 = 0 is a singular point of the differential equation, we can at most
expect a Laurent series solution (possibly non at all). When we put the formal series

f(z) =
+∞∑

n=−∞
anzn =

∑
anzn =

+∞∑
n=0

anzn +
+∞∑
n=1

a−nz−n,

into the differential equation, we get

0 = z3f ′(z) + f(z) = z3
∑

nanzn−1 +
∑

anzn =
∑

nanzn+2 +
∑

anzn

=
∑

nanzn+2 +
∑

an+2z
n+2 =

∑
{nan + an+2} zn+2.

According to the identity theorem this equation is satisfied, if and only if the following recursion
formula holds

nan + an+2 = 0, n ∈ Z,

thus

(1) an+2 = −nan, n ∈ Z.

Equations of this type are solved by first identifying those values of n ∈ Z, for which one of the
coefficients degenerate to 0 and then split the summation domain into different parts by means of
these exception values. We see that an obvious zero is n = 0, where

a2 = −0 · a0 = 0.

This proved that a2 = 0, while a0 can be chosen arbitrarily.
Then by induction of (1),

a2n = 0, for n ∈ N.

This means that the possible Laurent series solution is now reduced to

(2) f(z) =
+∞∑
n=0

a−nz−n +
+∞∑
n=0

a2n+1z
2n+1.

Let us take a closer look on the latter series of (2),

+∞∑
n=0

a2n+1z
2n+1 = z

+∞∑
n=0

a2n+1

(
z2

)n
.

Laurent series solution of differential equations
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If z �= 0, then it is convergent, if and only if

+∞∑
n=0

a2n+1

(
z2

)n

is convergent. Putting

bn = a2n+1 and w = z2,

we see that we shall examine the conditions of convergence of the auxiliary series

+∞∑
n=0

bnwn,

where we have by (1),

bn+1 = a2(n+1)+1 = a(2n+1)+2 = −(2n + 1)a2n+1 = −(2n + 1)bn.

Laurent series solution of differential equations
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This shows that if b0 �= 0, then all bn �= 0, n ∈ N0, and we can determine the w-radius of convergence,

�w = lim
n→+∞

∣∣∣∣ bn

bn+1

∣∣∣∣ = lim
n→+∞

∣∣∣∣ bn

−(2n + 1)bn

∣∣∣∣ = lim
n→+∞

1
2n + 1

= 0,

so if b0 = a1 �= 0, the series is only convergent for w = 0. Therefore, we are forced for reasons of
convergence to put

a1 = 0.

If a1 = 0, then it follows from (1) that a3 = 0, and thus

a2n+1 = 0, n ∈ N,

by induction. The series is then reduced to

f(z) =
+∞∑
n=0

a−nz−n.

If we replace n by −n in (1), then

a−n+2 = na−n, n ∈ Z,

so

(3) a−n =
1
n

a−n+2, n ∈ Z.

If n = 1, then a−1 = a1 = 0. If n = 3, then

a−3 =
1
3

a−1 = 0,

hence by induction,

a−2n+1 = 0, n ∈ N.

The series is now reduced to

f(z) =
+∞∑
n=0

a−2nz−2n.

We now replace n by 2n in (3). Then we obtain the following recursion formula for a−2n:

(4) a−2n =
1
2n

a−2n+2 =
1
2n

a−2(n−1), n ∈ N.

Finally, we put cn = a−2n. Then we derive from (4) the following recursion formula,

cn =
1
2n

cn−1, n ∈ N.

This is multiplied by 2nn! in order to get

2nn!cn = 2n−1(n − 1)!cn−1, n ∈ N,

Laurent series solution of differential equations
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where we see that the right hand side is obtained from the left hand side by replacing n everywhere
by n − 1. Therefore, by recursion,

2nn!cn = 2n−1(n − 1)!cn−1 = · · · = 200!c0 = c0 = a0,

hence

a−2n = cn =
a0

2nn!
, n ∈ N.

The corresponding formal Laurent series it then given by

f(z) =
+∞∑
n=0

a−2nz−2n = a0

+∞∑
n=0

1
n!

· 1
2n

(
1
z2

)n

= a0

+∞∑
n=0

1
n!

(
1

2z2

)n

.

We should immediately recognize the exponential series which is convergent, if only∣∣∣∣ 1
2z2

∣∣∣∣ < +∞, hence if z ∈ C \ {0}.

We have with only inspection found the domain of convergence, so the complete solution is given by

f(z) = a0 exp
(

1
2z2

)
, for z ∈ C \ {0}.

Alternatively the differential equation can be solved by inspection. However, this solution is not
obvious, so we have postponed it to this place of the example. First assume that we for some reason
suspect that

an = 0 for n ∈ N.

The previous computations show that this is actually the case. This means that

f(z) =
+∞∑
n=0

a−nz−n =
+∞∑
n=0

a−nwn, w =
1
z
.

If we put

g(w) = f(z) = f

(
1
w

)
,

then g(w) ought to be expanded as a Taylor series from w0 = 0. We shall only find a differential
equation for g(w).

Since w =
1
z

is a (one-to-one) transformation of C\{0} onto itself, it follows by implicit differentiation
that

0 = z3f ′(z) + f(z) = z3 d

dz
f(z) + f(z) = z3 dw

dz

d

dw
g(w) + g(w)

= z3 ·
(
− 1

z2

)
g′(w) + g(w) = −z g′(w) + g(w) = − 1

w
g′(w) + g(w),

which we write for w ∈ C \ {0} in the following way

(5) g′(w) − w g(w) = 0, w ∈ C \ {0}.

Laurent series solution of differential equations
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This equation is either solved by inserting a w-Taylor series

g(w) =
+∞∑
n=0

bnwn,

and then apply the usual power series method, or by multiplying (5) by an integrating factor, which

here can be chosen as exp
(
−1

2
w2

)
�= 0, and finally reduce.

The former standard method is left to the reader. In the latter case, however, we have the following
equivalent equations,

0 = exp
(
−1

2
w2

)
dg

dw
− w exp

(
−1

2
w2

)
· g(w)

= exp
(
−1

2
w2

)
dg

dw
+

d

dw

(
exp

(
−1

2
w2

))
· g(w)

=
d

dw

{
exp

(
−1

2
w2

)
g(w)

}
.

An integration gives with an arbitrary constant c ∈ C,

exp
(
−1

2
w2

)
g(w) = c, w ∈ C \ {0}.

Finally, it follows from g(w) = f(z) and w =
1
z

that

f(z) = g(w) = c · exp
(

1
2

w2

)
= c · exp

(
1

2z2

)
, z ∈ C \ {0}.

Example 4.2 Find all Laurent series from 0, which are solutions of the differential equation(
z2 − z

)
f ′(z) = (1 − 2z) f(z),

and determine the domain of convergence.

First method. Inspection. By some rearrangements,

0 =
(
z2 − z

)
f ′(z) + (2z − 1) f(z) =

(
z2 − z

)
f ′(z) +

d

dz

(
z2 − z

) · f(z)

=
d

dz

{(
z2 − z

)
f(z)

}
.

hence by integration,(
z2 − z

)
f(z) = C,

and thus

f(z) =
C

z2 − z
=

C

z(z − 1)
= −C

z
+

C

z − 1
, C ∈ C, z �= 0, 1.
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The Laurent series are then easily found in the two domains

0 < |z| < 1 and |z| > 1.

We shall find these in the second method, so we shall not give it here but refer to the following.

Second method. Laurent series methode. Assume that f(z) =
∑

anzn is a formal Laurent series
solution. Then

f ′(z) =
∑

nanzn−1,

and hence by insertion,

0 =
(
z2 − z

)
f ′(z) − (1 − 2z) f(z)

=
∑

nanzn+1 −
∑

nanzn −
∑

anzn +
∑

2anzn+1

=
∑

(n + 2)anzn+1 −
∑

(n + 1)anzn

=
∑

(n + 1)an−1z
n −

∑
(n + 1)anzn

=
∑

()n + 1) {an−1 − an} zn.

Then we conclude from the identity theorem that we get the recursion formula

(n + 1) {an−1 − an} = 0, n ∈ Z.

Laurent series solution of differential equations
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Here, either n = −1, i.e.

0 · {a−1 − a1} = 0,

in which case a−2 does not have to be equal to a−1, or an = an−1. Therefore, we conclude that

an = a−2 for n ≤ −2,

and

an = a−1 for n ≥ −1.

The formal solution is

f(z) = a−1

+∞∑
n=−1

zn + a−2

+∞∑
n=2

1
zn

.

The former series converges for |z| < 1, and the latter for |z| > 1. This means that the series is
divergent for all z ∈ C, if a−1 · a−2 �= 0.

Then put a−2 = 0. We get

f(z) = a−1

+∞∑
n=−1

zn =
a−1

z
· 1
1 − z

, 0 < |z| < 1.

If a−1 = 0, then

f(z) = a−2

+∞∑
n=2

1
zn

=
a−2

z2
· 1

1 − 1
z

=
a−2

z
· 1
z − 1

, |z| > 1.

Example 4.3 Find all Laurent series from 0, which are solution of the differential equation

z3f ′′(z) +
(
3z2 + z

)
f ′(z) + f(z) = 0,

and the domain of convergence.
Express the Laurent series by elementary functions.

First method. Inspection. It is possible in some cases to solve a differential equation by inspection.
Here we have an example of such an equation. This is, however, not always possible.

We rearrange the equation in the following way,

0 = z3f ′′(z) + (3z + z) f ′(z) + f(z) =
{
z3f ′′(z) + 3z2f ′(z)

}
+ {z f ′(z) + f(z)}

=
d

dz

{
z3f ′(z)

}
+

d

dz
{z f(z)} =

d

dz

{
z3f ′(z) + z f(z)

}
.
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Therefore, if z �= 0 we get by integration, including an arbitrary constant

z3f ′(z) + z f(z) = z3

{
f ′(z) +

1
z2

f(z)
}

= a,

thus

f ′(z) +
1
z2

f(z) =
a

z3
, z �= 0.

We multiply this equation by exp
(
−1

z

)
�= 0, z �= 0, in order to get

a

z3
exp

(
−1

z

)
= exp

(
−1

z

)
f ′(z) +

d

dz

(
−1

z

)
exp

(
−1

z

)
f(z)

= exp
(
−1

z

)
d

dz
f(z) +

d

dz
exp

(
−1

z

)
· f(z) =

d

dz

{
exp

(
−1

z

)
f(z)

}
.

On the other hand, when z �= 0 we get by the change of variable u = − 1
z

that
du

dz
=

1
z2

, and

1
z3

exp
(
−1

z

)
= − 1

z2
·
(
−1

z

)
exp

(
−1

z

)
= −du

dz
· u eu = −du

dz

d

du
{(u − 1)eu}

=
d

dz
{(1 − u)eu} =

d

dz

{(
1 +

1
z

)
exp

(
−1

z

)}
.

Hence by insertion

d

dz

{
exp

(
1
z

)
f(z)

}
=

d

dz

{
a

(
1 +

1
z

)
exp

(
−1

z

)}
,

and by another integration including another arbitrary constant b ∈ C,

exp
(
−1

z

)
f(z) = a

(
1 +

1
z

)
exp

(
−1

z

)
+ b.

The complete solution is

f(z) = a

(
1 +

1
z

)
+ b exp

(
1
z

)
, a, b ∈ C, z �= 0.

Second method. Change of variable. Since a0(z) = z3 is only 0 for z = 0, we see that z = 0 is
the only singular point, so we may expect that any possible solution must have the domain of

definition C \ {0}. Since C \ {0} is mapped into itself by the transformation w =
1
z
, an idea would

be to see what this equation is mapped into by this transformation.

Let z �= 0 and w =
1
z
, and let g be given by

g(w) = g

(
1
z

)
= f(z).
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We shall set up a differential equation for g(w). It follows by the chain rule that

f ′(z) = g′
(

1
z

)
·
(
− 1

z2

)
= −w2g′(w),

and

f ′′(z) =
1
z4

g′′
(

1
z

)
+

2
z3

g′
(

1
z

)
= w4g′′(w) + 2w3g′(w),

which put into the differential equation give

0 = z3f ′′(z) +
(
3z2 + z

)
f ′(z) + f(z)

=
1

w3

{
w4g′′(w) + 2w3g′(w)

}
+

{
3

w2
+

1
w

}
· {−w2g′(w)

}
+ g(w)

= w g′′(w) + 2 g′(w) − 3 g′(w) − w g′(w) + g(w)
= {w g′′(w) − g′(w)} − {w g′(w) − g(w)}.

The latter two expressions are the numerator of the derivative of a fraction of denominator w.
Thus, if the equation is divided by w2 �= 0, then

0 =
w g′′(w) − 1 · g′(w)

w2
− w g′(w) − 1 · g(w)

w2
=

d

dw

{
g′(w)

w
− g(w)

w

}
,

hence by integration,

g′(w) − g(w)
w

= −a, a ∈ C.

We have here chosen the sign in front of the arbitrary constant a ∈ C in order to ease some later
computations.

The numerator looks like the derivative of ew−wg(w), where we are only missing the factor e−w.
Therefore, we multiply the equation by w e−w in order to get

d

dw

{
e−wg(w)

}
= e−wg′(w) − e−wg(w) = −aw e−w =

d

dw

{
a(w + 1)e−w

}
,

where the latter equality is proved by a simple test.
An integration with respect to w then gives with a new arbitrary constant b ∈ C that

e−wg(w) = a(w + 1)e−w + b,

so we obtain the complete solution

f(z) = g(w) = a(1 + w) + b ew = a

(
1 +

1
z

)
+ b exp

(
1
z

)
, z �= 0.

Third method. The standard method. We put a formal Laurent series

f(z) =
+∞∑

n=−∞
anzn =

∑
anzn, r < |z| < R,
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into the original differential equation. Then we have in the domain of convergence r < |z| < R
(note that in particular z �= 0) that

f(z) =
∑

anzn, f ′(z) =
∑

nanzn−1, f ′′(z) =
∑

n(n − 1)anzn−2,

hence by insertion into the equation

0 = z3f ′′(z) +
(
3z2 + z

)
f ′(z) + f(z)

= z3
∑

n(n − 1)anzn−2 + 3z2
∑

nanzn−1 + z
∑

nanzn−1 +
∑

anzn

=
∑

n(n − 1)anzn+1 +
∑

3nanzn+1 +
∑

nanzn +
∑

anzn

=
∑{

n2 − n + 3n
}

anzn+1 +
∑

(n + 1)anzn

=
∑

n(n + 2)anzn+1 +
∑

(n + 1)anzn

=
∑

(n − 1)(n + 1)an−1z
n +

∑
(n + 1)anzn

=
∑

(n + 1) {(n − 1)an−1 + an} zn.
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This equation is fulfilled in the domain of convergence, so we obtain the following recursion formula

(6) (n + 1) {(n − 1)an−1 + an} = 0, n ∈ Z,

where we must not cancel the common factor (n + 1).

If n = −1, then n + 1 = 0, and (6) is fulfilled, no matter the choices of the values of a−1−1 = a−2

and a−1. Hence we conclude that a−2 and a−1 are independent of each other, and we may for the
time being consider them as being arbitrary.

When n �= −1, formula (6) is reduced to

(7) (n − 1)an−1 + an = 0, n ∈ Z \ {−1}.

When n = 1, we get a1 = 0, hence by recursion for n ∈ N,

an = −(n − 1)an−1 = · · · = (−1)n−1(n − 1)! a1 = 0,

thus

an = 0 for n ∈ N positive.

If n = 0, then −a−1 + a0 = 0, so a0 = a−1, and

a0 +
a−1

z
= a−1

(
1 +

1
z

)

determines one family of solutions for a−1 ∈ C.

We have proved that a solution necessarily must have the form

f(z) = a−1

(
1 +

1
z

)
+

−∞∑
n=−2

anzn = a−1

(
1 +

1
z

)
+

+∞∑
n=2

bn
1
zn

, z �= 0,

where we have put bn = a−n, n ∈ N \ {1}. We shall derive a recursion formula for bn, n ∈ N \ {1}.
If we write −n instead of n in (7), then

(−n − 1)a−n−1 + a−n = 0, n ∈ N \ {1},

which expressed by the bn becomes

(n + 1)bn+1 = bn, n ∈ N \ {1}.

We multiply this equation by n! in order to get

(n + 1)! bn+1 = n! bn = · · · = 2! b2 = 2b2, n ∈ N \ {1},

thus

a−n = bn =
2
n!

b2 =
2
n!

a−2,

Laurent series solution of differential equations

Download free eBooks at bookboon.com



Complex Funktions Examples c-5

 

60  

and we have (formally) for z �= 0,

f(z) = a−1

(
1 +

1
z

)
+

+∞∑
n=2

2
n!

a−2
1
zn

= a−1

(
1 +

1
z

)
+ 2a−2

+∞∑
n=2

1
n!

(
1
z

)n

= a−1

(
1 +

1
z

)
+ 2a−2

+∞∑
n=0

1
n!

(
1
z

)n

− 2a−2

(
1 +

1
z

)

= (a−1 − 2 a−2)
(

1 +
1
z

)
+ 2a−2 exp

(
1
z

)
,

which is true for all z �= 0, because the exponential series

+∞∑
n=0

1
n!

(
1
z

)n

= exp
(

1
z

)

is convergent for
∣∣∣∣1z

∣∣∣∣ < +∞, i.e. for z �= 0. Only the zero solution can be extended to C.

Example 4.4 Find all Laurent series from 0, which are solutions of the differential equation

z3f ′′(z) + z2f ′(z) − f(z) = 0,

and determine the domain of convergence.

Assume that

f(z) =
∑

anzn, r < |z| < R,

is a Laurent series solution. Then

f ′(z) =
∑

nanzn−1 and f ′′(z) =
∑

n(n − 1)anzn−2

in the same domain. Then by insertion into the differential equation,

0 = z3f ′′(z) + z2f ′(z) − f(z) =
∑

n(n − 1)anzn+1 +
∑

nanzn+1 −
∑

anzn

=
∑

n2anzn+1 −
∑

an+1z
n+1 =

∑{
n2an − an+1

}
zn+1.

From the identity theorem we get the recursion formula

(8) an+1 = n2an, n ∈ Z.

If n = 0, then a1 = 0. We continue by recursion to get an = 0 for all n ∈ N, and we see that only
terms of non-positive indices are important.

We put bn = a−n, n ∈ N0, and write −n, n ∈ N0, instead of n in (8). Then we get the recursion
formula

(9) n2bn = (−n)2a−n = a−n+1 = bn−1, n ∈ N.
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We multiply this equation by {(n − 1)!}2 to get

{n!}2bn = {(n − 1)!}2bn−1 = · · · = {0!}2b0 = b0, n ∈ N0,

thus

a−n = bn =
1

{n!}2
a0, n ∈ N0.

The series is then

f(z) = a0

+∞∑
n=0

1
(n!)2

· 1
zn

, z ∈ C \ {0}, a0 ∈ C,

where it is easy to prove that

+∞∑
n=0

1
(n!)2

wn

has radius of convergence +∞.

Remark 4.2 We note that we in this case only get one Laurent series in spite of the fact that the
equation is of second order. ♦

Remark 4.3 One can prove that the series solution can be expressed by a Bessel function. ♦

Example 4.5 Find all Laurent series from 0, which are solutions of the differential equation

z4f ′′(z) + 2z3f ′(z) + f(z) = 0.

Determine the domain of convergence for each of them. Finally, express the Laurent series by ele-
mentary functions.

Assume that the solution is given on the form

f(z) =
+∞∑

n=−∞
anzn =

∑
anzn, r < |z| < R.

Then we have in the domain of convergence,

f ′(z) =
∑

nanzn−1, f ′′(z) =
∑

n(n − 1 = anzn−2,

hence by insertion into the differential equation,

0 = z4f ′′(z) + 2z3f ′(z) + f(z) =
∑

n(n − 1)anzn+2 +
∑

2nanzn+2 +
∑

anzn

=
∑

n(n + 1)anzn+2 +
∑

an+2z
n+2 =

∑
{n(n + 1)an + an+2} zn+2.
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We derive from this the recursion formula

(10) an+2 = −n(n + 1)an, n ∈ Z.

If n = 0, then we see that a0 is an indeterminate and a2 = 0. Then by recursion,

a2n = 0 for all n ∈ N.

If n = −1, then a−1 is an indeterminate and a1 = 0. By recursion we get

a2n+1 = 0 for all n ∈ N0.

Summing up we have

an = 0 for all n ∈ N.

When we replace n by −n, and write bn instead of a−n, then

−(−n)(−n + 1)a−n = −n(n − 1)bn = a−n+2 = bn−2, n ∈ N \ {1},
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hence

(11) −n(n − 1)bn = bn−2, n ∈ N \ {1}.

Thus we get by multiplying by −(n − 2)!,

+n! bn = −(n − 2)! bn−2, n ∈ N \ {1},

and then we have to split the investigation according to whether n is even or odd.

(a) If n = 2p is even, then

(2p)! b2p = −(2p − 2)! b2p−2 = · · · = (−1)p0! b0 = (−1)pa0,

hence

a−2n = b2n =
(−1)n

(2n)!
a0, n ∈ N0.

(b) If n = 2p + 1, p ∈ N0, is odd, then

(2p + 1)! b2p+1 = −(2p − 1)! b2p−1 b2p−1 = · · · = (−1)p · 1! b1 = (−1)pa−1,

hence

a−2n−1 = b2n+1 =
(−1)n

(2n + 1)!
a−1, n ∈ N0.

In both cases the corresponding series are convergent for
∣∣∣∣1z

∣∣∣∣ < +∞, i.e. for z �= 0, and with exception

of the zero solution (which is convergent in C) the domain of convergence is C \ {0}.
Finally, we recognize the coefficients as belonging to the cosine and the sine series respectively, so

f(z) =
+∞∑
n=0

a−n · 1
zn

= a0

+∞∑
n=0

(−1)n

(2n)!

(
1
z

)2n

+ a−1

+∞∑
n=0

(−1)n

(2n + 1)!

(
1
z

)2n+1

= a0 cos
(

1
z

)
+ a−1 sin

(
1
z

)
. z ∈ C \ {0}.

Example 4.6 Find all Laurent series from 0, which are solutions of the differential equation

z4f ′′(z) + 2z3f ′(z) − f(z) = 0.

Determine the domain of convergence for each of these. Finally, express the Laurent series by ele-
mentary functions.

When we for r < |z| < R put

f(z) =
∑

anzn, f ′(z) =
∑

nanzn−1, f ′′(z) =
∑

n(n − 1)anzn−1,
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into the differential equation, then

0 = z4f ′′(z) + 2z3f ′(z) − f(z) =
∑

n(n − 1)anzn+2 +
∑

2nanzn+2 −
∑

anzn

=
∑

n(n + 1)anzn+2 −
∑

an+2z
n+2 =

∑
{n(n + 1)an − an+2} zn+2.

It follows by the identity theorem that we have the recursion formula

(12) an+2 = n(n + 1)an, n ∈ Z.

If n = 0, then a2 = 0, and hence by induction,

a2n = 0 for n ∈ N,

while a0 is an indeterminate.
If n = −1, then a1 = 0, and hence by induction,

a2n+1 = 0 for n ∈ N0,

while a−1 is an indeterminate.
Summing up we have

an = 0 for n ∈ N.

If we put bn = a−n, n ∈ N0 and replace n by −n in (12), then we get

(13) bn−2 = a−n+2 = (−n)(−n + 1)a−n = n(n − 1)bn, n ∈ N \ {1}.

If we multiply (13) by (n − 2)!, we get

n! bn = (n − 2)! bn−2.

Here there is a leap of 2 in the indices, so we must split into the cases of even or odd indices. We find

(2n)! b2n = (2{n − 1})!b2(n−1) = · · · = 0! b0 = a0,

(2n + 1)! b2n+1 = (2{n − 1} + 1)! b2(n−1)+1 = · · · = 1! b1 = a−1,

hence

a−2n = b2n =
1

(2n)!
a0 and a−2n−1 = b2n+1 =

1
(2n + 1)!

a−1, n ∈ N0.

Thus the formal Laurent series solution is given by

f(z) = a0

+∞∑
n=0

1
(2n)!

· 1
z2n

+ a−1

+∞∑
n=0

1
(2n + 1)!

· 1
z2n+1

= a0 cosh
(

1
z

)
+ a−1 sinh

(
1
z

)
.

The determination of the domain of convergence C \ {0} is trivial, because we only consider known

series which are convergent for
∣∣∣∣1z

∣∣∣∣ < +∞.

Only the zero solution can be extended to all of C.
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Alternatively, the coefficient a0(z) = z4 leads one the the idea of transforming the differential

equation into a differential equation in the new variable w =
1
z
, z �= 0, w �= 0. If we put

f(z) = g

(
1
z

)
= g(w).

then

dw

dz
= − 1

z2
= −w2,

and

f ′(z) = −w2g′(w) and f ′′(z) = w4g′′(w) + 2w3g′(w).

Since zw = 1, it follows by insertion that

g′′(w) − g(w) = 0,

the complete solution of which is

g(w) = c1e
w + c2e

−w = a0 coshw + a−1 sinhw.

Then finally.

f(z) = c1 exp
(

1
z

)
+ c2 exp

(
−1

z

)
= a0 cosh

(
1
z

)
+ a−1 sinh

(
1
z

)
, z ∈ C \ {0}.

Example 4.7 Find all Laurent series from 0 which are solutions of the differential equation

z4f ′′(z) + 4z3f ′(z) +
(
2z2 + 1

)
f(z) = 0,

and determine the domain of convergence.

If we put the formal Laurent series

f(z) =
+∞∑

n=−∞
anzn =

∑
anzn, r < |z| < R,

and its formal derivatives

f ′(z) =
∑

nanzn−1 og f ′′(z) =
∑

n(n − 1)anzn−2,

into the differential equation, then

0 = z4f ′′(z) + 4z3f ′(z) +
(
2z2 + 1

)
f(z)

=
∑

n(n − 1)anzn+2 +
∑

4nanzn+2 +
∑

2anzn+2 +
∑

anzn

=
∑(

n2 + 3n + 2
)
anzn+2 +

∑
anzn

=
∑

(n + 1)(n + 2)anzn+2 +
∑

anzn

=
∑

(n − 1)nan−2z
n +

∑
anzn

=
∑

{(n − 1)nan−2 + an} zn.
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Then apply the identity theorem on this in order to get the recursion formula

(14) (n − 1)nan−2 + an = 0, n ∈ Z.

If n = 0, then a0 = 0, and a−2 is an indeterminate.
If n = 1, then a1 = 0, and a−1 is an indeterminate.
It follows from a0 = a1 = 0 and

an = −(n − 1)nan−2 for n ≥ 2,

by recursion that

an = 0 for n ∈ N0.

Put bn = a−n. Then it follows from (14) for n ∈ N that

(−n − 1)(−n)a−n−2 + a−n = n(n + 1)bn+2 + bn = 0, for n ∈ N,

thus

(15) bn+2 = − 1
(n + 1)n

bn, n ∈ N.
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The leap of the indices in (15) is 2, so we must split the following into the cases of even or odd indices.

(a) If n = 2p, p ∈ N, is even, then it follows by p recursions that

b2p+2 = b2(p+1) = − 1
(2p + 1) · 2p b2p = · · · =

(−1)p

(2p + 1)!
b2.

(b) If n = 2p − 1, p ∈ N, is odd, then it follows by p recursions that

b2p+1 = − 1
2p(2p − 1)

b2p−1 = · · · =
(−1)p

(2p)!
b1.

Hence the complete solution is

f(z) = b2

+∞∑
p=0

(−1)p

(2p + 1)!
· 1
z2p+2

+ b1

+∞∑
p=0

(−1)p

(2p)!
· 1
z2p+1

= a−2 · 1
z

+∞∑
p=0

(−1)p

(2p + 1)!

(
1
z

)2p+1

+ a−1 · 1
z

+∞∑
p=0

(−1)p

(2p)!

(
1
z

)2p

= a−2 · 1
z

sin
(

1
z

)
+ a−1 · 1

z
cos

(
1
z

)
,

where we recognize the trigonometric series, which are convergent for
∣∣∣∣1z

∣∣∣∣ < +∞, thus the domain of

convergence is C \ {0}.

Example 4.8 (a) Find all Laurent series solutions from z0 = 0 of the differential equation

(16) z
d2f

dz2
+ (z + 3)

dt

dz
+ 2f(z) = 0, z ∈ C,

and determine their domains of convergence.

(b) Use e.g. the exponential series to express the complete solution by means of known elementary
functions.
Hint: There are some solution possibilities. In one of them one needs the simple formula

1
(n + 2)n!

=
1

(n + 1)!
− 1

(n + 2)!
.

(c) Explain why there exists precisely one solution f(z) of (16) fulfilling f(0) = 1, and find it.

(a) If we put the formal Laurent series

f(z) =
∑

anzn, f ′(z) =
∑

nanzn−1, f ′′(z) =
∑

n(n − 1)anzn−2,
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into (16), then

0 = z
∑

n(n − 1)anzn−2 + z
∑

nanzn−1 +
∑

3nanzn−1 +
∑

2anzn

=
∑

n(n − 1)anzn−1 +
∑

nanzn +
∑

3nanzn−1 +
∑

2anzn

=
∑

n(n + 2)anzn−1 +
∑

(n + 2)anzn

=
∑

n(n + 2)anzn−1 +
∑

(n + 1)an−1z
n−1

=
∑

{n(n + 2)an + (n + 1)an−1} zn−1.

Then it follows from the identity theorem that we get the recursion formula

(17) n(n + 2)an + (n + 1)an−1 = 0 for n ∈ Z.

The coefficients of the recursion formula have the obvious “zeros” n = −2, −1 and 0. These are
checked separately.

• If n = −2, then

0 · a−2 − a−3 = 0,

hence

a−3 = 0 and a−2 is arbitrary.

• If n = −1, then

−a−1 + 0 · a−2 = 0,

hence

a−1 = 0 and a−2 is arbitrary.

• If n = 0, then

0 · a0 + a−1 = 0,

hence

a−1 = 0 and a0 is arbitrary.

• If n < −2, then it follows from (17) that

an−1 = −n(n + 2)
n + 1

an, n ≤ −3, a−3 = 0,

and we conclude by induction,

an = 0 for n ≤ −3.
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• If n > 0, then it follows from (17) that

n(n + 2)an = −(n + 1)an−1, n ∈ N.

When we multiply this formula by (−1)n · (n − 1)! �= 0, then we get the equivalent formulæ

(−1)nn! (n + 2)an = (−1)n−1(n − 1)! ({n − 1} + 2)an−1 = · · · = (−1)00! 2 a0 = 2a0,

and we conclude that

an =
2(−1)n

(n + 2)n!
a0 = 2(−1)n · n + 1

(n + 2)!
a0.

The formal Laurent series solutions are therefore given by

f(z) =
a−2

z2
+ 2a0

+∞∑
n=0

n + 1
(n + 2)!

(−z)n.

It follows from∣∣∣∣∣
+∞∑
n=0

anzn

∣∣∣∣∣ ≤
+∞∑
n=0

2 |a0| · |z|n
(n + 2)n!

≤ 2 |a0|
+∞∑
n=0

|z|n
n!

= 2 |a0| exp(|z|),

by the criterion of comparison that the series is convergent for every z ∈ C. Hence, if a−2 �= 0,
then the complete solution is

f(z) =
a−2

z2
+ 2a0

+∞∑
n=0

n + 1
(n + 2)!

(−z)n, for z ∈ C \ {0}.

This solution can only be extended to all of C, if a−2 = 0.

(b) If z �= 0, then

+∞∑
n=0

n + 1
(n + 2)!

(−z)n =
+∞∑
n=0

n + 2 − 1
(n + 2)!

(−z)n =
+∞∑
n=0

−z)n

(n + 1)!
−

+∞∑
n=0

(−z)n

(n + 2)!

= −1
z

+∞∑
n=0

(−z)n+1

(n + 1)!
− 1

z2

+∞∑
n=0

(−z)n+2

(n + 2)!
= −1

z

+∞∑
n=1

1
n!

(−z)n − 1
z2

+∞∑
n=2

(−z)n

n!

= −1
z

{
e−z − 1

}− 1
z2

{
e−z − 1 + z

}
= −1

z
e−z +

1
z
− 1

z2
e−z +

1
z2

− 1
z

=
1
z2

{
1 − (1 + z)e−z

}
.

Hence we conclude that if z �= 0, then the complete solution is given by

f(z) =
a−2

z2
+ 2a0 · 1 − (1 + z)e−z

z2
.

Since

1 − (1 + z)e−z

z2
=

+∞∑
n=0

n + 1
(n + 2)!

(−z)n for z �= 0,

it follows by taking the limit that

lim
z→0

1 − (1 + z)e−z

z2
=

0 + 1
(0 + 2)!

=
1
2
.

Laurent series solution of differential equations

Download free eBooks at bookboon.com



Complex Funktions Examples c-5

 

70  

(c) The solution

f(z) =
a−2

z2
+ 2a0 · 1 − (1 + z)e−z

z2

is according to the above bounded for z → 0, were the limit value exists, if and only if a−2 = 0.
When this is the case, we have

lim
z→0

f(z) = 2a0 lim
z→0

1 − (1 + z)e−z

z2
= 2 · a0 · 1

2
= a0 = 1.

Thus the solution is

f(z) = 2
+∞∑
n=0

n + 1
(n + 2)!

(−z)n =

⎧⎪⎨
⎪⎩

2 · 1 − (1 + z)e−z

z2
for z �= 0,

1 for z = 0.

Remark 4.4 It is actually possible to solve the equation (16) directly without using Laurent series.
However, the trick and the reformulations are somewhat sophisticated. We give for completeness a
short review of this solution and emphasize at the same time that this is not a trivial solution. ♦
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Since z = 0 is a singular point, we assume in general in the following that z �= 0. The not so obvious
idea is then to multiply the differential equation by z �= 0. Then

z2 d2f

dz2
+ z2 df

dz
+ 3z

df

dz
+ 2z f(z) = 0.

Now,

z2 d2f

dz2
+ 2z

df

dz
=

d

dz

{
z2 df

dz

}

and analogously,

z2 df

dz
+ 2z f(z) =

d

dz

{
z2f(z)

}
.

We shall therefore try to reduce the equation by applying these formulæ, where we immediately must

admit that we always will get an extra term z
df

dz
, which apparently cannot be removed. When we

try this program above, then

0 = z2 d2f

dz2
+ z2 df

dz
+ 3z

df

dz
+ 2z f(z)

=
{

z2 d2f

dz2
+ 2z

df

dz

}
+ z

df

dz
+

{
z2 df

dz
+ 2z f(z)

}

=
d

dz

{
z2 df

dz

}
+ z

df

dz
+

d

dz

{
z2 f(z)

}
.

Since

z2 df

dz
=

d

dz

{
z2f(z)

}− 2z f(z),

it follows by insertion that

0 =
d

dz

(
d

dz

{
z2f(z)

}− 2z f(z)
)

+ z
df

dz
+

d

dz

{
z2f(z)

}
=

d2

dz2

{
z2f(z)

}− 2 f(z) − 2z
df

dz
+ z

df

dz
+

d

dz

{
z2f(z)

}
=

d

dz

(
d

dz

{
z2f(z)

})
+

d

dz

{
z2f(z)

}−
{

z
df

dz
+ 2 f(z)

}

=
d

dz

(
d

dz

{
z2f(z)

})
+

d

dz

{
z2f(z)

}− 1
z

{
z2 df

dz
+ 2z f(z)

}

=
d

dz

(
d

dz

{
z2f(z)

})
+

(
1 − 1

z

)
d

dz

{
z2f(z)

}
.

If we put

g(z) =
d

dz

{
z2f(z)

}
,

then the equation in z �= 0 is reduced to

(18)
dg

dz
+

(
1 − 1

z

)
g(z) = 0.
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Using the usual solution of a real, linear, inhomogeneous differential equation of first order we at led
to guess on the following complete solution of (18):

g(z) = C1 · z e−z.

However, we cannot totally rely on the real solution formula in the complex theory, because the
principal logarithm occurs latently in the computations. Hence we shall check our guess of solution.
On the other hand, this is now trivial. When g(z) is given as above, then

g′(z) = C1(1 − z)e−z = C1z e−z ·
(

1
z
− 1

)
= −

(
1 − 1

z

)
g(z).

Alternatively we divide (18) by z, and come back to (16):

0 = z
d2f

dz2
+ (z + 3)

df

dz
+ 2 f(z) =

1
z

dg

dz
+

1
z

g(z) − 1
z2

g(z) =
d

dz

{
1
z

g(z)
}

+
1
z

g(z).

When we multiply this equation by ez �= 0, then

0 = ez d

dz

{
g(z)
z

}
+

d ez

dz
·
{

g(z)
z

}
=

d

dz

{
ez

z
g(z)

} (
=

d

dz

{
ez

z

d

dz

{
z2f(z)

}})
,

hence

g(z) =
d

dz

{
z2f(z)

}
= C1z e−z.

When this equation is integrated, we get for z �= 0,

z2f(z) = −C1 · (z + 1)e−z + C2,

and then finally.

f(z) = C1 · 1 − (1 + z)e−z

z2
+

C2 − C1

z2
.

A consequence of the above is that if (16) is multiplied by the integrating factor ez, then it is possible
by some manipulations to write the equation in the form

d

dz

{
ez

z

d

dz

[
z2f(z)

]}
= 0, z ∈ C \ {0},

which immediately can be integrated. We have here made a small detour to find the more obvious
integrating factor z �= 0, by which the ideas are presented more clearly than if we immediately had
multiplied by the not so obvious factor ez. ♦
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Example 4.9 Given the differential equation

(19) z f ′′(z) + 4 f ′(z) +
(

z +
2
z

)
f(z) = 0.

1) Assume that the Laurent series

f(z) =
+∞∑

n=−∞
anzn

is a solution of (19). Find a recursion formula for the coefficients an. Then show that an = 0 for
n ≤ −3.

2) Find all Laurent series solutions of (19) and their domains of convergence.

3) Express the Laurent series solutions of (19) by means of elementary functions.

Alternative solution. The singular point is z = 0. Let z �= 0. When we multiply by z, it follows
that the equation is equivalent to

0 = z2f ′′(z) + 4z f ′(z) + z2f(z) + 2 f(z)
=

{
z2f ′′(z) + 2z f ′(z)

}
+ {2z f ′(z) + 2 f(z)} + z2f(z)

=
d

dz

{
z2f ′(z)

}
+

d

dz
{2z f(z)} + z2f(z)

=
d2

dz2

{
z2f(z)

}
+ z2f(z),

which is a known differential equation in g(z) = z2f(z). The complete solution is

g(z) = z2f(z) = c1 sin z + x2 cos z for z ∈ C \ {0}.

Finally,

f(z) = c1 · sin z

z2
+ c2 · cos z

z2
for z ∈ C \ {0}.

Only the zero solution can be extended to all of C.

Standard solution. 1) When we put a formal Laurent series into the differential equation, then

0 =
∑

n(n − 1)anzn−1 +
∑

4nanzn−1 +
∑

anzn+1 +
∑

2anzn−1

=
∑{

n2 − n + 4n + 2
}

anzn−1 +
∑

anzn+1

=
∑

{(n + 1)(n + 2)an + an−2} zn−1.

The identity theorem implies the following recursion formula,

(20) (n + 1)(n + 2)an + an−2 = 0, n ∈ Z.
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If n = −1, then a−3 = 0.
If n = −2, then a−4 = 0.
Then we get by induction,

an = 0 for n ≤ −3.

Finally,

an+2 = − 1
(n + 3)(n + 4)

an for n > −3.

2) If n = 2p, p ∈ N0, is even, then it follows from (20) that

(2p + 2)(2p + 1)a2p = −a2(p−1).

When we multiply this equation by (2p)!(−1)p �= 0, it follows by a trivial recursion that

(2p + 2)!(−1)pa2p = (2p)!(−1)p−1a2(p−1) = · · · = 0!(−1)a−2,

hence

a2p =
(−1)p+1

(2p + 2)!
a−2, p ∈ N0.
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Analogously, if n = 2p + 1, p ∈ N0, is odd, then

(2p + 3)(2p + 2)a2p+1 = −a2p−1 = −a2(p−1)+1,

hence by a multiplication by (−1)p · (2p + 1)! �= 0, followed by a simple recursion,

(−1)p(2p + 3)!a2p+1 = (−1)p−1(2{p − 1} + 2)! a2(p−1)+1 = · · · = (−1) · 1! a−1,

thus

a2p+1 =
(−1)p+1

(2p + 3)!
a−1.

3) The formal Laurent series solution is for z �= 0 given by

f(z) = a−1

+∞∑
p=1

(−1)p+1

(2p + 3)!
z2p+1 + a−2

+∞∑
p=−1

(−1)p+1

(2p + 2)!
z2p

= a−1

+∞∑
p=0

(−1)p

(2p + 1)!
z2p−1 + a−2

+∞∑
p=0

(−1)p

(2p)!
z2p−2

= a−1 · 1
z2

+∞∑
p=0

(−1)p

(2p + 1)!
z2p+1 + a−2 · 1

z2

+∞∑
p=0

(−1)p

(2p)!
z2p

= a−1 · sin z

z2
+ a−2 · cos z

z2
,

where we have recognized the sum functions of the series. Clearly, the domain of convergence
is C \ {0}, and only the zero solution can be extended to all of C.

Example 4.10 Given the differential equation

(21)
(
z2 − z

)
f ′′(z) + (4z − 2)f ′(z) + 2 f(z) = 0.

1) We assume that (21) has a Laurent series solution f(z) =
∑+∞

n=−∞ anzn. Derive the recursion
formula for the coefficients an.

2) Find all Laurent series solutions of (21) and their domains of convergence.

3) Then express each of the Laurent series solutions of (21) by elementary functions.

4) Explain why the solutions of (21) all can be extended to C with the exception of at most two points.
Find the type of singularity of each of these points.

First method. Inspection. The most important task is of course to find all solutions of (21). We
shall here do it by inspection without applying any of the auxiliary questions in the formulation.

The coefficient z2 − z = z(z − 1) of the term of highest order of differentiation f ′′(z) is zero at the
singular points 0 and 1. Then we reformulate (21) in the following way:

0 =
(
z2 − z

)
f ′′(z) + (2z − 1)f ′(z) + (2z − 1)f ′(z) + 2 f(z)

=
d

dz

{(
z2 − z

)
f ′(z) + (2z − 1)f(z)

}
=

d2

dz2

{(
z2 − z

)
f(z)

}
,
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hence by two integrations.(
z2 − z

)
f(z) = b z − a.

If z ∈ C \ {0 , 1}, we get by a decomposition,

f(z) =
b z − a

z2 − z
=

b z − a

z(z − 1)
=

a

z
+

b − a

z − 1
,

where we have trivial analytic extensions if either a = 0 or b = a.
If a �= 0, then z = 0 is a simple pole, and if b �= a, then z = 1 is a simple pole.

Second method. The standard method.

1) When we by the formal Laurent series into (21), we get

0 =
∑

n(n − 1)anzn −
∑

n(n − 1)anzn−1

+
∑

4nanzn −
∑

2nanzn−1

+
∑

2anzn

=
∑{

n2 − n + 4n + 2
}

anzn −
∑{

n2 − n + 2n
}

anzn−1

=
∑

(n + 1)(n + 2)anzn −
∑

n(n + 1)anzn−1

=
∑

(n + 1)(n + 2)anzn −
∑

(n + 1)(n + 2)an+1z
n

=
∑

(n + 1)(n + 2) {an − an+1} zn.

It follows from the identity theorem that we have the recursion formula

(n + 1)(n + 2) {an − an+1} = 0, n ∈ Z.

Note in particular that

(22) an = an+1 for n ∈ Z \ {−1,−2},
while we have no condition for n = −1 or n = −2 whatsoever.

2) Then solve the recursion formula

(n + 1)(n + 2) {an − an+1} = 0. n ∈ Z.

If n = −1, there is no relationship between a−1 and a0.
If n = −2, there is no relationship between a−2 and a−1.
If n > −1, then we get by recursion of (22) that an = a0.
If n < −2, then we get by recursion of (22) that an = a−2.

Hence, all formal Laurent series solutions of (21) are given by

f(z) =
+∞∑

n=−∞
anzn = a−2

+∞∑
n=2

1
zn

+ a−1 · 1
z

+ a0

+∞∑
n=0

zn,

and we seemingly have three arbitrary constants of the solution of a linear differential equation
of only second order! However, there is nothing wrong here, which follows when we investigate
the domains of convergence of each series:
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• The series
∑+∞

n=2

1
zn

is convergent for
∣∣∣∣1z

∣∣∣∣ < 1, i.e. in the open complementary set of the

unit disc |z| > 1.

• The degenerated Laurent series
1
z

is convergent for z ∈ C \ {0}.
• The series

∑+∞
n=0 zn is convergent in the open unit disc |z| < 1.

When we compare these results it follows that a0 and a−2 cannot both be different from zero,
so if we want convergent series solutions, then we must have a0 · a−2 = 0.

We have the following possibilities:

(a) f(z) = 0, z ∈ C,

(b) f(z) = a−1 · 1
z
, z ∈ C \ {0},

(c) f(z) = a0

∑+∞
n=0 zn, |z| < 1,

(d) f(z) = a−1 · 1
z

+ a0

∑+∞
n=0 zn, 0 < |z| < 1,

(e) f(z) = a−1 · 1
z

+ a−2

∑+∞
n=2

1
zn

, |z| > 1.
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3) When |z| < 1, then of course

a0

+∞∑
n=0

zn = a0 · 1
1 − z

, |z| < 1.

Analogously when |z| > 1,

a−2

+∞∑
n=2

1
zn

= a−2 · 1
z2

· 1

1 − 1
z

= a−2 · 1
z(z − 1)

= −a−2

z
+

a−2

z − 1
.

Then these expressions can be put into (c)–(e).

4) We get by insertion into (d),

f(z) = a−1 · 1
z

+ a0 · 1
1 − z

, 0 < |z| < 1.

Insertion into (e) gives

f(z) = a−1 · 1
z
− a−2

z
− a−2

1 − z

= (a−1 − a−2) · 1
z

+ (−a−2) · 1
1 − z

, |z| > 1.

It follows that the general solution has the form by elementary functions,

f(z) = A · 1
z

+ B · 1
1 − z

,

where f(z) at most has the simple poles at z = 0 and z = 1. By either an analytic extension of
f(z), or just by checking the differential equation it follows that this function f(z) is a solution
of (21) everywhere in its domain.
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Example 4.11 Find all Laurent series

f(z) =
a−1

z
+

+∞∑
n=0

anzn =
+∞∑

n=−1

anzn

(expansion from z0 = 0), which are solutions of the differential equation

(23)
(
z3 − z

)
f ′′(z) +

(
4z2 − 2

)
f ′(z) + 2z f(z) = 0.

Determine the domain of convergence for each of these solutions.
Put g(z) = z · f(z) and express g′(z) explicitly by elementary functions.
Then express all the Laurent series solutions of (23) by means of elementary functions.

First method. Inspection. We get by some small manipulations,

0 =
(
z3 − z

)
f ′′(z) +

(
4z2 − 2

)
f ′(z) + 2z f(z)

=
(
z3 − z

) d

dz
f ′(z) +

(
3z2 − 1

) · f ′(z) +
(
z2 − 1

) d

dz
f(z) + 2z · f(z)

=
d

dz

{(
z3 − z

)
f ′(z) +

(
z2 − 1

)
f(z)

}
=

d

dz

{(
z2 − 1

) · {z f ′(z) + 1 · f(z)}}
=

d

dz

{(
z2 − 1

) d

dz
(z f(z))

}
.

Then by an integration,

(
z2 − 1

) d

dz
(z f(z)) = C1, dvs.

d

dz
(z f(z)) =

C1

z2 − 1
.

If |z| < 1, then

d

dz
Log

(
1 − z

1 + z

)
=

1
1−z
1+z

· −(1 + z) − (1 − z)
(1 + z)2

=
−2

1 − z2
=

2
z2 − 1

,

so we conclude that

z f(z) =
C1

2
Log

(
1 − z

1 + z

)
+ C2,

and finally,

f(z) =
C1

2
· 1
z

Log
(

1 − z

1 + z

)
+

C2

z
.

In general we conclude for the corresponding Laurent series, the derivation of which is postponed
to the next variant, that since the singularities are 0 and −1 and 1, their domain of convergence
is 0 < |z| < 1. For some values of C1 and C2 the domain of convergence may be larger. (Again
the investigation is postponed to the next variant).
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Second method. The standard method. Assume that f(z) =
∑+∞

n=−1 anzn is a Laurent series
solution in a domain defined by 0 < |z| < R. We get by termwise differentiation in this domain

f ′(z) =
+∞∑

n=−1

n <n zn−1 and f ′′(z) =
+∞∑

n=−1

n(n − 1)anzn−2,

hence by insertion into the differential equation,

0 =
(
z3 − z

)
f ′′(z) +

(
4z2 − 2

)
f ′(z) + 2z f(z)

=
+∞∑

n=−1

n(n−1)anzn+1−
+∞∑

n=−1

n(n−1)anzn−1+
+∞∑

n=−1

4nanzn+1−
+∞∑

n=−1

2nanzn−1+
+∞∑

n=−1

2anzn+1

=
+∞∑

n=−1

{
n2 + 3n + 2

}
anzn+1 −

+∞∑
n=−1

n(n + 1)anzn−1

=
+∞∑

n=−1

(n + 1)(n + 2)anzn+1 −
+∞∑

n=+1

n(n + 1)anzn−1

=
+∞∑

n=−1

(n + 1)(n + 2)anzn+1 −
+∞∑

n=−1

(n + 2)(n + 3)an+2z
n+1

=
+∞∑

n=−1

(n + 2) {(n + 1)an − (n + 3)an+2} zn+1.

Since n + 2 �= 0 for n ≥ −1, the recursion formula is reduced to

(24) (n + 3)an+2 = (n + 1)an, n ≥ −1,

and we see that there is a leap of 2 in the indices.

If n = 2p − 1, p ∈ N0, then it follows from (24) that

(2p + 2)a2p+1 = 2p · a2p−1 = · · · = 2 · 0 · a−1 = 0,

hence a−1 is an indeterminate, and a2p+1 = 0 for p ∈ N0.

If n = 2p − 2, p ∈ N, then it follows from (24) that

(2p + 1)a2p = (2p − 1)a2p−2 = · · · = 1 · a0,

hence

a2n =
a0

2n + 1
for n ∈ N0,

and a0 is also arbitrary. Therefore, all possible Laurent series solutions are given by

(25) f(z) =
a−1

z
+ a0

+∞∑
n=0

z2n

2n + 1
, a−1, a0 ∈ C.

Laurent series solution of differential equations

Download free eBooks at bookboon.com



Complex Funktions Examples c-5

 

81  

If a−1 = 0 and a0 = 0, then f(z) ≡ 0, the domain of which is all of C.
If a−1 �= 0 and a0 = 0, then f(z) =

a−1

z
, the domain of which is C \ {0}.

If a−1 = 0 and a0 �= 0, then

f(z) = a0

+∞∑
n=0

z2n

2n + 1
,

the domain of which is {z ∈ C | |z| < 1}.
If both a−1 �= 0 and a0 �= 0, then the Laurent series is convergent in the open unit disc {z ∈ C |
0 < |z| < 1} with the centrum removed, which we expected, because the differential equation has
the singular points −1, 0 and 1. (These are the zeros of the coefficient z3 − z of f ′′(z)).

If we exclude all the exception cases, it follows in general from (25) that

g(z) = z · f(z) = a1 − +a0

+∞∑
n=0

z2n+1

2n + 1
, 0 ≤ |z| < 1,

hence

g′(z) = a0

+∞∑
n=0

z2n =
a0

1 − z2
= −a0

2

{
1

z − 1
− 1

z + 1

}
, |z| < 1.
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When |z| < 1, then both 1− z and 1 + z lie in the domain of the principal logarithm, and we have

Arg(1 − z), Arg(1 + z) ∈
]
−π

2
,

π

2

[
.

Hence

g(z) = a−1 − a0

2
Log(1 − z) +

a0

2
Log(1 + z) = a−1 +

a0

2
Log

(
1 + z

1 − z

)
,

and thus

f(z) =
a−1

z
+

a0

2z
Log

(
1 + z

1 − z

)
=

a−1

z
− a0

2z
Log

(
1 − z

1 + z

)

=
a−1

z
+

a0

2z
Log(1 + z) − a0

2z
Log(1 − z),

for 0 < |z| < 1.

Third method. Intuition. By reading the text of the example we see that g(z) = z f(z) occurs
somewhere as an auxiliary function. This is a latent hint of reformulating the differential equation
as an equation in g(z) instead. We get

g(z) = z f(z), g′(z) = z f ′(z) + f(z), g′′(z) = z f ′′(z) + 2 f ′(z),

hence

0 =
(
z2 − 1

)
z f ′′(z) +

(
4z2 − 2

)
f ′(z) + 2z f(z)

=
(
z2−1

) {z f ′′(z)+2 f ′(z)}+
{
4z2−2−2z2+2

}
f ′(z)+2z f(z)

=
(
z2 − 1

)
g′′(z) + 2z{z f ′(z) + f(z)} =

(
z2 − 1

)
g′′(z) + 2z g′(z)

=
d

dz

{(
z2 − 1

)
g′(z)

}
.

It follows immediately that(
z2 − 1

)
g′(z) = C1.

Then we may proceed as in the first method. However, to demonstrate another variant, we

expand − C1

1 − z2
as a series in the open unit disc |z| < 1 followed by an integration. Then for

|z| < 1,

g′(z) = − C1

1 − z2
= −C1

+∞∑
n=0

z2n,

hence

g(z) = z · f(z) = C2 − C1

+∞∑
n=0

1
2n + 1

z2n+1, |z| < 1,

and thus

f(z) =
C2

z
− C1

+∞∑
n=0

1
2n + 1

z2n, 0 < |z| < 1.

We must of course integrate
1

1 − z2
directly (cf. the two previous methods).
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5 Isolated boundary points

Example 5.1 Describe the type of singularity at z0 = 0 of the function f(z) =
sin z

z
, z ∈ C \ {0}.

The function f(z) has a removable singularity at z0 = 0. In fact, we get by a series expansion that

f(z) =
sin z

z
=

1
z

+∞∑
n=0

(−1)n

(2n + 1)!
z2n+1 = 1 − z2

3!
+

z4

5!
− · · · for z �= 0.

Clearly, the function can be extended analytically to z = 0 by f(0) = 1, so

f∗(z) =

⎧⎪⎨
⎪⎩

sin z

z
, for z ∈ C \ {0},

1, for z = 0,

is analytic.

Example 5.2 Describe the type of singularity at z0 = 0 of the function f(z) = exp
(
1z2

)
, z ∈ C\{0}.

It follows by a Laurent series expansion from z0 = 0 that

f(z) = exp
(

1
z2

)
=

+∞∑
n=0

1
n!

{
1z2

}n
=

+∞∑
n=0

1
n!

1
z2n

, z ∈ C \ {0}.

Since a−2n =
1
n!

�= 0 for all n ∈ N0, i.e. for infinitely many negative indices, the singularity is an
essential singularity.

Alternatively we choose the two sequences

z′n =
1
n
→ 0 for n → +∞, and z′′n =

i

n
→ 0 for n → +∞.

When we take the limit n → +∞ we get respectively,

f (z′n) = exp
(
n2

) → ∞ and f (z′′n) = exp
(−n2

) → 0.

Thus we have two different limit values for two different sequences, both converging towards the
singularity, and we conclude that we have an essential singularity.

Example 5.3 Describe the singularities of the function

f(z) =
1

sin z
, for z ∈ C \ {pπ | p ∈ Z}.

It follows from

lim
z→pπ

d

dz
sin z = lim

z→pπ
cos z = (−1)p �= 0 for every p ∈ Z,
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that the denominator sin z has simple zeros for z = pπ, p ∈ Z, i.e. f(z) =
1

sin z
has simple poles at

the same points. Notice that since pπ → ∞ for p → +∞, we do not have ∞ as an isolated singularity
of f(z).

Example 5.4 Indicate the order of the pole at z = 0 of

(sin z + sinh z − 2z)−2.

Determining the order of the pole at z = 0 of

(sin z + sinh z − 2z)−2,

is the same as determining the order of the zero at z = 0 of

(sin z + sinh z − 2z)2.

It follows by a series expansion that

sin z + sinh z − 2z =
{

z − z3

3!
+

z5

5!
+ · · ·

}
+

{
z +

z3

3!
+

z5

5!
+ · · ·

}
− 2z

=
2 z5

5!
+ · · · =

1
60

z5 {1 + · · · },
so f(z) = sin z + sinh z − 2z has a zero of order five at z = 0. Hence we conclude that

(sin z + sinh z − 2z)−2,

has a pole of order 2 · 5 = 10 at z = 0.

Example 5.5 Find the type of the singular points in C of

(a) f(z) =
1

ez − 1
, (b)

z(z − π)2

sin2 z
.

(a) The denominator is ϕ(z) = ez − 1 = 0 for z = 2i p π, p ∈ Z, and

ϕ′(z) = ez = 1 for z = 2i p π, p ∈ Z.

Hence we conclude that ϕ(z) has simple zeros for z = 2i p π, p ∈ Z, i.e.

f(z) =
1

ϕ(z)
=

1
ez − 1

has simple poles for z = 2i p π, p ∈ Z.

(b) Since sin z = 0 for z = p π, p ∈ Z, where all these are simple zeros, we conclude that

1. z = 0 is a simple pole of
z(z − π)2

sin2 z
;

2. z = π is a removable singularity of
z(z − π)2

sin2 z
;

3. z = p π, p ∈ Z \ {0 , 1}, are double poles of
z(z − π)2

sin2 z
.
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Example 5.6 Indicate the type of the singulary points in C of

(a)
z2 − 1
z2 + 1

, (b)
1

z − z3
, (c)

z4

1 + z4
.

(a) The function

z2 − 1
z2 + 1

= 1 − 2
z2 + 1

has simple poles for z = ±i.

(b) The denominator has the simple zeros z = −1, 0, 1, so z = −1, 0, 1, are simple poles of

f(z) =
1

z − z3
.

(c) It follows from

f(z) = z41 + z4 = 1 − 1
1 + z4

,

that f(z) has the simple poles

1√
2

+
i√
2
,

1√
2
− i√

2
, − 1√

2
+

i√
2
, − 1√

2
− i√

2
.
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Example 5.7 Indicate the type of the singular points in C of

(a)
1

z (z2 + 4)2
, (b)

z3 + 5
(z4 − 1) (z + 1)

.

(a) Clearly, z = 0 is a simple pole, and z = ±2i are double poles.

(b) The function

f(z) =
z3 + 5

(z4 − 1) (z + 1)

has the three simple poles 1, i and −i, and the double pole −1.

Example 5.8 Given

F (z) = exp
(

1
z − 1

)
for z ∈ C \ {1}.

Indicate the type of the singularity at z0 = 1, and find res(F (z); 1).
Describe for every constant α > 0 the set of points z ∈ C \ {1}, for which |F (z)| = α. Show in
particular on a figure the set

{z ∈ C \ {1} | |F (z)| = α}
for representative values of α > 0.
Prove by choosing α > 0 conveniently that F (z) is bounded for |z| < 1, and indicate the smallest
constant C > 0, for which

|F (z)| ≤ C for |z| < 1.

It follows by a series expansion from z0 = 1 that

(26) F (z) = exp
(

1
z − 1

)
=

+∞∑
n=0

1
n!

(
1

z − 1

)n

=
+∞∑
n=0

1
n!

· 1
(z − 1)n

, z ∈ C \ {1}.

Then by the classification of the isolated singularities,

a−n =
1
n!

�= for all n ∈ N0,

and we are in case III, i.e. z0 = 1 is an essential singularity.
It follows from the series expansion (26) that

res(F (z); 1) = a−1 =
1
1!

= 1.

If z = z + i y �= 1, then

1
z − 1

=
1

x − 1 + i y
=

x − 1
(x − 1)2 + y2

− i · y

(x − 1)2 + y2
,
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hence

|F (z)| = exp
(

Re
{

1
z − 1

})
= exp

(
x − 1

(x − 1)2 + y2

)
, z �= 1.

Thus the equation |F (z)| = α for α > 0 and z �= 1 can be written

exp
(

x − 1
(x − 1)2 + y2

)
= α, (x, y) �= (1, 0),

which is equivalent to

(27)
x − 1

(x − 1)2 + y2
= lnα, lnα ∈ R, (x, y) �= (1, 0).

If α = 1, then lnα = 0, hence x = 1. We have furthermore required that (x, y) �= (1, 0), so y �= 0, and
we end up with two half lines.

If α ∈ R+ \ {1}, then lnα �= 0. We get by a rearrangement of (27) that

(x − 1)2 + y2 =
1

lnα
· (x − 1), (x, y) �= (1, 0),

hence

(x − 1)2 − 2 · 1
2 ln α

(x − 1) +
(

1
2 ln α

)2

+ y2 =
(

1
2 ln α

)2

for (x, y) �= (1, 0), which we also write as

(
x − 1 − 1

ln (α2)

)2

+ y2 =
{

1
ln (α2)

}2

, α �= 1, (x, y) �= (1, 0).

This is a circle where the point (1, 0) has been removed with centrum and radius respectively,(
1 +

1
ln (α2)

, 0
)

and
1

|ln (α2)| ,

where one must not forget the numerical sign of the radius > 0.
The natural extensions of all these circles are all passing through the singular point (1, 0). Hence,
the family of curves can also be described as all circles in the plane through the point (1, 0) and of
centrum on the x-axis, supplied with the vertical line x = 1, where we remove the common point (1, 0)
form all curves.

If

1 +
1

ln (α2)
= 0,

i.e. ln
(
α2

)
= −1, or in other words,

α =
1√
e
,
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–2

–1

0

1

2

–2 –1 1 2 3 4

Figure 7: Some of the level curves |F (z)| = α.

we precisely obtain the unit circle (with the exception of the singular point (1, 0)).

If α <
1√
e
, then

ln
(
α2

)
< ln

1
e

= −1,

hence
∣∣ln (

α2
)∣∣ > 1, and the radius is

r =
1

|ln (α2)| < 1,

and the x-coordinate of the centrum is

1 +
1

ln (α2)
∈ ]0, 1[.

When α runs through the interval

0 < α <
1√
e
,

this corresponds to that we run through all circles of the considered type (with the exception of the
point (1, 0)) contained in the unit disc.

It follows that every z, |z| < 1 in the open unit disc lies on precisely one of the curves

|F (z)| = α,

corresponding to a uniquely determined

α ∈
]

0 ,
1√
e

[
.

We conclude that C =
1√
e

is the smallest constant, for which

|F (z)| =
∣∣∣∣exp

(
1

z − 1

)∣∣∣∣ ≤ C for |z| < 1,
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–1

–0.5

0.5

1

–1 –0.5 0.5 1

Figure 8: The curves |F (α)| = α for 0 < α <
1√
e

fill in all of the open unit disc.

hence

|F (z)| =
∣∣∣∣exp

(
1

z − 1

)∣∣∣∣ <
1√
e

for |z| < 1.
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Remark 5.1 We should of course compare this result with Picard’s theorem which says that the

function exp
(

1
z − 1

)
takes on any value of C \ {0} in any neighbourhood of z0 = 1. Nevertheless, it

is seen that the function is limited at any point in a neighbourhood of z0 = 1, which also lies in the
open unit disc. ♦

Example 5.9 Given the Laurent series

+∞∑
n=−∞

zn

2|n|
.

Find the domain of convergence Ω and the sum function f of this series.
Then find the value of the complex line integral∮

|z|=1

f(z) dz.

We start by writing the Laurent series as a sum of two geometric series:

+∞∑
n=−∞

zn

2|n|
=

+∞∑
n=0

(z

2

)n

+
−1∑

n=−∞
(2z)n =

+∞∑
n=0

(z

2

)n

+
+∞∑
m=1

(
1
2z

)m

=
+∞∑
n=0

(z

2

)n

+
1
2z

+∞∑
n=0

(
1
2z

)n

.

The conditions of convergence are
∣∣∣z
2

∣∣∣ < 1 and
∣∣∣∣ 1
2z

∣∣∣∣ < 1, so we conclude that the domain of convergence

is

Ω =
{

z ∈ C

∣∣∣∣ 1
2

< |z| < 2
}

.

–2

–1

0

1

2

–2 –1 1 2

Figure 9: The domain Ω lies between the two circles, where the singularities 1
2 and 2 have been marked

and with the path of integration |z| = 1 indicated.

The sum function is in Ω given by expansions of the geometric series given by

f(z) =
1

1 − z

2

+
1
2z

1

1 − 1
2z

=
2

2 − z
+

1
2z − 1

=
3z

(2 − z)(2z − 1)
.

Isolated boundary points

Download free eBooks at bookboon.com



Complex Funktions Examples c-5

 

91  

The value of the line integral is obtained by Laurent’s theorem, because the coefficient of z−1 is 1
2 ,

and because we integrate along a closed simple curve in Ω, which separates the two boundary circles,∮
|z|=1

f(z) dz = 2πi · a−1 = πi.

Alternatively we may apply Cauchy’s integral theorem and integral formula:∮
|z|=1

f(z) dz =
∮
|z|=1

2
2 − z

dz +
∮
|z|=1

1
2

z − 1
2

dz = 0 + 2πi · 1
2

= πi.

Example 5.10 Given

f(z) =
z4 exp(1/z)

z2 + 1
.

Find the singularities of f(z) and indicate their type.
Then compute the line integral∮

C

f(z) dz,

where C is the circle |z − 2i| =
√

2 of positive direction.

It follows from

f(z) =
z4 exp(1/z)
z + i)(z − i)

= z2
exp

1
z

1 +
(

1
z

)2

that the singularities are

z = i, pole of first order,
z = −i, pole of first order,
z = ∞, pole of second order,
z = 0, essential singularity.

The given circle surrounds precisely one of the singularities. We compute the integral by the residue
theorem. The pole at z = i is simple, so

res(f(z); i) =

⎡
⎢⎣z4 exp

1
z

2z

⎤
⎥⎦

z=i

=
1
2i

e−i,

and hence∮
C

f(z) dz = 2πi · 1
2i

e−i = π e−i = π(cos 1 − i sin 1).

Isolated boundary points
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Figure 10: The curve C with its direction and with the singularity z = i inside.

Example 5.11 Given the functions

f(z) =
1

z2(2 − z)
and g(z) =

sin(πz)
z2(2 − z)

.

1) Indicate the isolated singularities and their types of f and g in C.

2) Find the Laurent series of f in the annulus 0 < |z| < 2 and in the set 2 < |z|.

3) Find the terms
b1

z
+ a0 + a1z of the Laurent series of g in the annulus 0 < |z| < 2.

4) Explain why the function h(z) = z g(z) can be represented by a power series of radius of convergence
R = +∞. (One shall not find the general term of the power series).

1) The function

f(z) =
1

z2(2 − z)

is a rational function with a double pole at z = 0 and a simple pole at z = 2 (and also a zero of
order 3 at∞).

The function

g(z) =
sin(πz)

z2(2 − z)
= sin(πz) · f(z)

has the same (finite) singularities as f(z). However, their types are different, because z = 0 and
z = 2 are both simple zeros of the numerator. This implies that z = 0 is a simple pole of g(z), and
that z = 2 is a removable singularity of g(z).

Isolated boundary points
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2) In the annulus 0 < |z| < 2, we get the Laurent series expansion

f(z) =
1

z2(2 − z)
=

1
2z2

· 1

1 − z

2

=
1

2z2

+∞∑
n=0

1
2n

zn

=
+∞∑
n=0

1
2n+1

zn−2 =
+∞∑

n=−2

1
2n+3

zn, for 0 < |z| < 2,

where we have used that
∣∣∣z
2

∣∣∣ < 1. It follows that

an =
1

2n+3
for n ≥ −2, and 0 otherwise.

Isolated boundary points
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If instead |z| > 2, then

f(z) =
1

z2(2 − z)
= − 1

z3
· 1

1 − 2
z

= − 1
z3

+∞∑
n=0

2n · 1
zn

= −
+∞∑
n=0

2n · 1
zn+3

= −
+∞∑
n=3

2n−3 · 1
zn

, for |z| > 2,

because
∣∣∣∣2z

∣∣∣∣ < 1. Hence,

a−n = bn = −2n−3 for n ≥ 3, and 0 otherwise.

3) Since g(z) has a simple pole at z = 0, the Laurent series of g(z) is in the domain 0 < |z| < 2 given
by

g(z) =
b1

z
+ a0 + a1z + · · · =

{
1
2

1
z2

+
1
4

1
z

+
1
8

+ · · ·
}{

πz − 1
6

π3z3 + · · ·
}

=
π

2
· 1
z

+
π

4
+

{
π

8
− π3

12

}
z + · · · ,

hence

b1

z
+ a0 + a1z =

π

2
· 1
z

+
π

4
+

{
π

8
− π3

12

}
z.

4) The function

h(z) = z g(z) =
sin(πz)
z(z − 2)

has the singularities at z = 0 and z = 2, and they can both be removed. Hence we can extend h(z)
analytically to all of C, so the Taylor series is convergent in all of C. Note that the sum function
of the Taylor series is rather complicated. so that is why it is not requested here. The extension
to all of C is

H(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin(πz)
z(2 − z)

for z ∈ C \ {0, 2},

π

2
for z = 0,

−π

2
for z = −2.
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Example 5.12 Given the function

f(z) =
z2 − 1

cos(πz) + 1
.

1) Find all the isolated singularities of f in C, and indicate their type.

2) Find the radius of convergence of the Maclaurin series of f without determining the coefficients.
Find the coefficients a0, a1, a2 and the Maclaurin series of f .

1) The isolated singularities are given by the equation

cos(πz) + 1 = 0, i.e. πz = π + 2pπ, p ∈ Z,

thus

zp = 2p + 1, p ∈ Z.

These are all at most poles of second order.
If p = 0, then z0 = 1 is also a zero of the numerator.
If p = −1, then z−1 = −1 is also a zero of the numerator.
We conclude that z0 = 1 and z−1 = −1 are simple poles.
Since

d2

dz2
{cos(πz) + 1}|z=zp

�= 0,

any other singularity must be a pole of second order.

2) The closest singularities of 0, are z0 = 1 and z−1 = −1. They both have the distance 1 to 0, so
the radius of convergence is R = 1.

If |z| < 1, then

f(z) =
z2 − 1

cos(πz) + 1
= a0 + a1z + a2z

2 + · · · ,

and we conclude immediately that a1 = 0, because f(z) is an even function. If one does not see
this, we may still perform the following calculation, where we multiply by the denominator,

z2 − 1 =
{
a0 + a1z + a2z

2 + · · ·}{
2 − π2

2
z2 + · · ·

}
= 2a0 + 2a1z +

(
2a2 − π2

2
a0

)
z2 + · · · .

Then by identification of the coefficients,

a0 = −1
2
, a1 = 0, a2 =

π2

4
a0 = −π2

8
.

Isolated boundary points
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6 The conditions around the point at ∞
Example 6.1 Indicate the type of the singular points i C ∪ {∞} of

(a)
2

(z − 3)2
+

1
z − 3

+ ez, (b)
cos z

z − π

2

.

(a) The function

f(z) =
2

(z − 3)2
+

1
z − 3

+ ez

has a double pole at z = 3 and an essential singularity at ∞.

(b) The function

f(z) =
cos z

z − π

2

has a removable singularity at z =
π

2
, where

f
(π

2

)
= lim

z→π
2

cos z

z − π
2

= lim
z→π

2

− sin z

1
= −1,

and an essential singularity at ∞.

Example 6.2 Indicate the type of the singular points in C ∪ {∞} of

(a) sin z + sin
1
z
, (b)

sin z

z3
.

(a) The function

f(z) = sin z + sin
1
z

has only essential singularities at 0 and at ∞.

(b) The function

f(z) =
sin z

z3

has a double pole (notice, not a triple pole) at z=0, and an essential singularity at ∞. In fact,
sin z has a simple zero at z = 0, which will lower the order of the pole by 1.

The conditions around the point at ∞
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Example 6.3 Indicate the type of the singular points in C ∪ {∞} of

(a)
1

cos
1
z

, (b)
1 − cos z

z6
.

(a) The function

f(z) =
1

cos
1
z

has simple poles for

1
z

=
π

2
+ p π =

π

2
(2p + 1),

i.e. for

zp =
2

π(2p + 1)
, p ∈ Z.

The conditions around the point at ∞
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We note that 0 is not an isolated singularity, because zp → 0 for p → +∞, and for p → −∞, i.e.
0 is an essential (non-isolated) singularity.

It follows from

lim
z→∞

1

cos
1
z

=
1

cos 0
= 1,

that ∞ is a removable singularity.

(b) Here 1 − cos z has a zero of second order at z = 0, so the function

f(z) =
1 − cos z

z6

has a fourfold pole at z = 0.
Finally, ∞ is an essential singularity.

Example 6.4 Indicate the type of the singular points in C ∪ {∞} of

(a)
cos z

z
, (b)

ez − 1
z(z − 1)

.

(a) We see that z = 0 is a simple pole of

cos z

z
,

and furthermore that ∞ is an essential singularity.

(b) The function

ez − 1
z(z − 1)

has a removable singularity at z = 0, a simple pole at z = 1, and an essential singularity at z = ∞.

Example 6.5 Indicate the type of the singular points in C ∪ {∞} of

(a)
z5

z3 + z
, (b) ecosh z.

(a) It is immediately seen that

z5

z3 + z
=

z5

z (z2 + 1)
==

z5

z(z − i)(z + i)
=

z2

1 +
1
z2

has a removable singularity at z = 0, simple poles at z = ±i, and a double pole at ∞.

The conditions around the point at ∞
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(b) The function ecosh z has only an essential singularity at ∞.

Example 6.6 Indicate the type of the singular points in C ∪ {∞} of

(a)
ez

1 + z2
, (b)

z2 + 1
ez

.

(a) It follows immediately that z = ±i are simple poles and that z = ∞ is an essential singularity.

(b) The function

(
z2 + 1

)
e−z =

(
1 + z2

) +∞∑
n=0

(−1)n

n!
zn = 1 − z +

+∞∑
n=2

(−1)n

{
1
n!

+
1

(n − 2)!

}
zn

has an essential singularity at ∞. It does not have any other singularity.

Example 6.7 Indicate the type of the singular points in C ∪ {∞} of

(a) z e−z, (b)
z5

(1 − z)2
, (c) cos z − 1

z
.

(a) The only singularity of the function z e−z is the essential singularity at ∞.

(b) The function

z5

(1 − z)2
=

z3(
1 − 1

z

)2

has a double pole at z = 1 and a triple pole at ∞.

(c) The function

cot z − 1
z

has simple poles at z = p π, p ∈ Z\{0}. Since p π → ∞ for p → ±∞, we see that ∞ is an essential
(non-isolated) singularity.
The singularity at z = 0 requires a closer investigation:

cot z − 1
z

=
cos z

sin z
− 1

z
=

z · cos z − sin z

z · sin z
=

z
{
1 − 1

2 z2 + o
(
z2

)}− {
z − 1

6 z3 + o
(
z3

)}
z2 (1 + o(z))

=
−z3

6
+ o

(
z3

)
z2(1 + o(z))

= −z

6
+ o(z),

and we conclude that the singularity at z = 0 is removable.

The conditions around the point at ∞
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Example 6.8 Indicate the type of the singular points in C ∪ {∞} of

(a)
1

ez − 1
− 1

z
, (b)

ez

z (1 − e−z)
.

(a) The function

1
ez − 1

− 1
z

has the simple poles for z = 2p π i, p ∈ Z \ {0}. We see that ∞ is a (non-isolated) essential
singularity.

The singularity at z = 0 requires a closer investigation. It follows by a series expansion that

1
ez − 1

− 1
z

=
z − ez + 1
z (ez − 1)

=
1 + z − {

1 + z + 1
2 z2 + o

(
z2

)}
z{1 + z + o(z) − 1} =

− 1
2 z2 + o

(
z2

)
z2 + o (z2)

= −1
2
· 1 + o(1)
1 + o(1)

,

and we conclude that the singularity at z = 0 is removable.

The conditions around the point at ∞
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(b) We have a double pole at z = 0, which e.g. can be seen by a Taylor expansion of the denominator.

We have simple poles for z = 2p π i, p ∈ Z \ {0}.

The singularity at ∞ is not isolated, though the limit of a sequence of poles, hence ∞ is an essential
(non-isolated) singularity.

Example 6.9 Indicate the type of the singular points in C ∪ {∞} of

(a)
1 − ez

1 + ez
, (b) z exp

1
z
.

(a) The function

1 − ez

1 + ez
=

2
1 + ez

− 1

has simple poles at z = i(2p + 1)π, p ∈ Z, and a non-isolated essential singularity at ∞.

(b) It follows from

z exp
1
z

=
+∞∑
n=0

1
n!

1
zn−1

,

that the singularity at z = 0 is essential.

It follows from

exp
1
z
→ 1 for z → ∞,

that ∞ is a simple pole of z · exp
1
z
.

Example 6.10 Find all zeros and poles in C ∪ {∞} for

(a)
z2 − 1

z1
, (b)

z − 1
z3 + 1

.

(a) The simple zeros are 1 and −1, and the simple poles are i and −i.

(b) The zeros are 1 (simple) and ∞ (double), and the three simple poles are

−1,
1
2

+ i

√
3

2
,

1
2
− i

√
3

2
.

The conditions around the point at ∞
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Example 6.11 Find all zeros and poles in C ∪ {∞} of

(a)
(z − 1)2(z + 2)3

z
, (b)

1
(z − 1)3

.

(a) The zeros are

1, 1, −2, −2, −2,

and the poles are

0, ∞, ∞, ∞, ∞.

Here, 1 is a double zero, and −2 is a triple zero. Furthermore, 0 is a simple pole, and ∞ is a
fourfold pole.

(b) It follows by inspection that ∞ is a triple zero, and that 1 is a triple pole.

Example 6.12 Given the function

f(z) = z3 cos
(

1
z

)
.

1) Find in the domain |z| > 0 the Laurent series

+∞∑
n=1

bn

zn
+

+∞∑
n=0

anzn

of the function f .
Indicate the coefficients an and bn.

2) Indicate the isolated singularities of f in C = C ∪ {∞} and their type.

3) Find the value of the integral∮
|z|=1

f(z) dz,

and the residuum of f at ∞.

1) We get by insertion into the series of cos w,

f(z) = z3 cos
(

1
z

)
= z3

+∞∑
n=0

(−1)n

(2n)!

(
1
z

)2n

= z3 − 1
2

z +
+∞∑
n=0

(−1)n

(2n + 4)!
1

z2n+1
for |z| > 0.

It follows that

a1 = −1
2
, a3 = 1, an = 0 for n ∈ N0 \ {1, 3},

and

b2n = 0 for n ∈ N0, b2n+1 =
(−1)n

(2n + 4)!
for n ∈ N0.

The conditions around the point at ∞

Download free eBooks at bookboon.com



Complex Funktions Examples c-5

 

103  

2) The isolated singularities in C = C ∪ {∞} are an essential singularity at 0, and because cos
(

1
z

)
=

cos 0 = 1 for z → ∞, a pole of order 3 at ∞.

3) Then by Cauchy’s residue theorem,∮
|z|=1

f(z) dz = 2πi res(f ; 0) = 2πi · a−1 =
2πi

4!
=

πi

12
= −2πi res(f ;∞),

so

res(f ;∞) = −res(f ; 0) = − 1
4!

= − 1
24

.

The conditions around the point at ∞
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