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Spectral Theory

1. Spectrum and resolvent

1 Spectrum and resolvent
Example 1.1 Define, for h € R, the operator 1, on L*(R) by
nf(x) = flz = h).

Show that T3, is bounded.

Obviously, 7, is linear, and it follows from

+oo “+oo
||mf||§=/ \f(w—h)lzdw=/ |f(2)|*dz = || 113,

— 00 — 00

that | Tf]|2 = || f||2 for all f € L*(R), hence |T|| = 1.

Remark 1.1 Here we add that 75, is also regular. In fact, if 7, f = 0, then f(x —h) =0 for all z € R,
thus f = 0. This shows that 75 is injective, hence the inverse operator exists. Then we get by the
change of variable y = x — h, i.e. x = y + h, that 7, f(x + h) = f(z), and we infer that

() (@) = f(z +h) = 7 f(2),

so also ||(7,) 71| = 1, and we have proved that 73, is regular for every h € R. ¢

360°
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Spectral Theory 1. Spectrum and resolvent

Example 1.2 Consider in L*(R) the operator Q defined by
Qf(x) == f(x),

with
D@Q) ={feL*(R) | Qf € L*(R)}.

Determine o(Q) and o,(Q).

A qualified guess is that o(Q) = C\ R. Let A € C\ R. We shall prove that Q) = @ — A [ is reguleer.
Write A = € +in, where &, n € R and 1 # 0. It follows from the equation

A f(x) =Qf (@) = A f(2) = (x — A) f(z) = g(2),
that

_ _ _g@)  g(=)

It follows for n # 0 that

| 2

Q5 g(@)|? = 19 < pla@l

@ —9+inP T
and we infer that Q' is defined on all of L?(R), and

1
@31, < o gl

Hence,

1
[Im A|’

and we have proved that C\ R € o(Q).

1
1 < - —
lox'l <

Then let A € R. As before, Q)" is defined by

- g(x)
Q@ tg(a) = N— 2
only the domain is now given by

D(QX1)={9€L2(R) ’ )f](_ILELQ(R)}.

Due to the singularity at x = A, the inverse Q;l is not defined in all of L?(R). However, it is easily
seen that the subspace

U={feLl’R)|Ie>0Vz e[\, +e|: f(z)=0}

of L*(R) is dense in L2(R), so we conclude from U S D (Q;l) that Q' is densely defined and
unbounded, hence A € 0.(Q) for every A € R. Utilizing that the splitting of the spectral sets is
disjoint, we conclude that

Q(Q) =C \ R, UP(Q) = (Z)a UC(Q) =R, UT(Q) = 0.

6
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Spectral Theory 1. Spectrum and resolvent

Example 1.3 Let (e,,) denote an orthonormal basis in a Hilbert space H, and consider the operator

o0 o0
T E ag€r | = E ArCr+41-
k=1 k=1

Determine | T|| and o(T).

It is well-known that T is called the shift operator. We first analyze T =T — A I, thus

—+o0 —+o0 —+o0 —+oo
The =1 E ager | = E ARCr4+1 — E Aaper = —Aaje; + E {ak_l — )\ak} €L.
k=1 k=1 k=1 k=2

Hence, if Thx = 0, then
Aa1 =0 and Aap =ap_1, k>2.
We have two possibilities:

1) A =0, then a1 = Aas =0, and ag_1; = Aag =0, thus x = 0, and Ty = T is injective, so A = 0 is
not an eigenvalue.

1
2) If X # 0, then a; = 0 and ay = — ar—1, hence we get by recursion that all ay = 0, which means

that x = 0. This proves that every T} is injective.

Summing up we have proved that T’ ! exists for every A € C, sa op(T) = 0.

It follows from
“+o00

T <Z akek>
k=1

for all  that ||T|| = 1, hence

2
1T =

2 +o0
= lawf* = |jalf?
k=1

+oo
E AK€E+1
k=1

oT) 2{r e C[|A| > 1}.
Let A # 0, |A] <1 and

+o0o
Yy = Zbkek € H.

k=1
We shall try to solve the equation Tha = y. It follows immediately from the above that

—Arp =b and Tp_1 — AT =bg, k>2

thus
b 1 1
xlz—xl and I’“:X“‘l_Xb’“’ k> 2,
f hich % hoosing | ticul t ! L oand i
rom which e.g. 19 = —— — —. oosing in particular y = e; we get ©1 = ——, 9 = ——, and in
g. T2 SV g 1 p Y 1 g 1 N2 2
general,
1
l’n:—)\—n, n € N.
7
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Spectral Theory 1. Spectrum and resolvent

From 0 < |A| < 1 follows that |z,| — 400 for n — 400, so the only possible solution is

400 <
x:;xnen = —;A—nen ¢ H,
which, however, does not belong to H. This shows that
e1 ¢ T (D (Ty)) = Ta(H).
Hence we conclude that Ty U exists, but it is unbounded, when 0 < Al <1, s0
{AeCl0< A <1} Eo(T).
The set o(T) is closed, so it follows from o(T) N o(T) = @ that

oT)={ eC|\ <1} and oT)={\eC||\>1.

Example 1.4 Consider in (? the operator

1

1 1
(ZL’l,ZL'Q,CEg,...)}—) :L’l,§($1+£L’2),Z(Z’1+ZL’2+’I‘3),...,271—_1(:[‘1+x2+...+xn)’_“ .

Show that the operator is bounded and not surjective.
Let (e,,) denote an orthonormal basis in a Hilbert space H, and consider the operator

o0 (o]
T <Z akek> == Z \/Eakek_l.
k=1 k=2
Determine the spectrum o(T), and find for each eigenvalue the corresponding eigenvectors.
Assume that

1 1
Tx = (I1,§(5€1 +x2),1(9:1 + zo +x3),...> =(0,0,0,...).

1
Then z; = 0, 3 xo = 0, thus x5 = 0, and we get by induction that z,, = 0 for all n € N. It follows
that Tr = 0 implies that = 0, hence T is injective.

Then we get
+o0 1 +oo 1 n +oo 77,2
2 2
||T17H§:Z4n—_1 |21 + 22+ + @ §Z4n_1 2”2 |51 SZM—_IIIzHé,
n=1 n=1 j=1 n=1

from which we conclude that

1T <

8
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Spectral Theory 1. Spectrum and resolvent

and T is bounded.
If

yOZO and Yn = ($1+$2++ﬂ?n),

2n71
then

T+ a0+ Fx, =2""ty,, thus z,=2""ly,—2" 2y, 1, neN.

1
Choose in particular, y = —, n € N. Then (y,,) € £? with ||y|| = l, while
n

V6

277,71 2n72 2n72 n—2 N
€T — — = — —> OO’
" n n—1 n(n—1)

according to the rule of magnitudes. In particular, the necessary condition of convergence of > |z, |2
is not fulfilled. We conclude that T is not surjective, T2 # ¢2, hence T is singular.

Let us first find the point spectrum, i.e. let A € 0,(T) be an eigenvalue. Then there exists a vector
x # 0, such that Tz = Az, which can also be written

+oo “+o0 “+o0 +oo
T <Z Jikek) = Z \/E cXECEp—1 = Z vV k—1- Tk4+1€k = Z Axkek.
k=1 k=2 k=1 k=1

SIMPLY CLEVER SKODA
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Spectral Theory 1. Spectrum and resolvent

Then

A \F
T = "= —F—— - T1.

€T =
SN/ (k+1)

Choosing x1 = 1 we see that if x is an eigenvector with 1 = 1, then x necessarily has the form

190 k-1

k=1
It only remains to check if the constructed x belongs to H. We get

-1

2 = 2 ’)‘2 1 A2
lal|? = > || Z :W{e -1},
k=1

because the series is convergent for all A € C, and the sum function above has a removable singularity
for A = 0. (Notice that ey is an eigenvector corresponding to A = 0). We infer that

and the given linear operator has every complex A € C as an eigenvalue.

Example 1.5 Let (e,,) denote an orthonormal basis in a Hilbert space H. We define the sequence
(fk)rez by

fO = e,
fe = e+ for k>0,
fe = e_au for k < 0.

In this way (fx)kez is an orthonormal basis. We define the double sided shift operator S by

S( Z akfk) = Z ak fry1-

k=—o0 k=—o00

Show that S is a bounded operator and show that S has no eigenvalues.

First notice that

—+0o0 —+o00 “+o0
Z ag fr = Zak62k+1 + Z a—kC2k,
k=—o00 k=0 k=1
and
+o00 +o00 infty
T( > akfk) = > afiri= Y, a1k —Zak 1€2k+41 +Za k—1€2k-
k=—o00 k=—o00 k=—o00 k=1
From (f)rez being an orthonormal basis follows that
+o00 2 +oo 2 +oo +o0o 2
T ( > akfk) = D aferr| = D lal=| D arfe| ,
k=—o0 k=—o00 k=—o0 k=—00

10
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Spectral Theory 1. Spectrum and resolvent

from which ||T|| =1 and T € B(H).
Assume that the equation Tz = Az is fulfilled. It follows from the above that
Aap =ap_1 forkeNg, and MNa_p=a_p_1 forkeN.
If A =0, then Tz = 0, and we get from ||Tz|| = ||z|| = 0 that = 0, hence A =0 ¢ o,(T).

If XA # 0, then we get by recursion,

ar for k€ Ng, and a_x_1 = Aa_; for ke N.

= k1 41

Thus, if a_; # 0, then all possible a; # 0, and we get

+oo +oo 1 +oo X
2 2
Yo lal? = Yy e+ YN[ ]
k=—o00 k=0 A | k=1
+o0 &
= |a,1|2 Z ’)\2‘ 5
k=—o00

which of course is divergent for every A € C. We conclude that T" does not have eigenvalues, hence
op(T) = 0.

Example 1.6 Define, for h € R, , the operator 1, on L*(R) by
() = flz — h).

Show that T, has no eigenvalues and that
o(m) C{zeC||z|=1}.

(It is in fact true that o (o) ={z € C| |z| = 1}.)

Remark 1.2 Note that if A = 0, then 79 = I, and XA = 1 is trivially an eigenvalue with all of L?(IR)
as its eigenspace. For that reason we assume that h > 0. ¢

It follows from

+oo “+o0
I fI2 = / fla — b)dz = / (@) 2 = | £2.

that ||75|| = 1, hence
o(m) E{z€C|[z| <1}
Assume that

i (@) = flx—h)=XAf(z),  where [A[ <[lm[ = 1.

11
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Spectral Theory 1. Spectrum and resolvent

If [N\ = 1, then | f(x — h)| = |f(2)], h > 0. Thus the function |f(z)| is periodic of period h > 0, hence

+o0 400 h
1= [ @k = 3 [ If@)Pds < +oc.

n=-—oo

This is of course only possible, if foh |f(2)|?dz = 0, i.e. if f(z) = 0 for almost every = € [0, h], and
hence for almost every x € R. Then z is represented by the zero function, and we infer that no A € C
satisfying |A\| = 1 can be an eigenvalue.

It has previously been proven in EXAMPLE 1.1 that (7,) " = 7_,. Of course, this can also be proved
directly,

Tophf(z) = T-nf(x —h) = fz —h +h) = f(z) = I f(2),
and
mrnf (@) = mf(x+h) = f(x+h—h) = f(z) = If(x).
Tt is also obvious that H(Th)‘lw = |7_nl =1, and ()" € B(H). Thus if |A| < 1, then

-1

(=AD" = ()" (I Y (Th)*l) € B(H),
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Spectral Theory 1. Spectrum and resolvent

because H)\(Thfl” = |A| < 1. Therefore, {\ € C | |\| < 1} C o(73), and thus
o(m) 2{A e C[|Al #1},

which implies that
o(m) S eC =1}

Finally,
op(m) S 7 (m) 08 op(m)N{AECT| N =1} =0,

from which follows that o, (15,) = 0.

Example 1.7 Given below some closed linear operators from (2 into £2. Check in each case if the
operator is singular.

1) Thx = (x2,23,...).

1 1 1
2) TQZ: <§x1,2—2x2,2—3x3,...).

3) TgI = (O,Ihl‘g,...).
4) Tyx = (0,22, x3,...).

A linear operator is singular, if at least one of the following three conditions if satisfied:

1) There exists an f € D(T') \ {0}, such that T'f = 0.

2) The inverse T~! exists, and D (T—1) = TD(T) =Y, while T~! itself is unbounded.
3) The inverse T~! exists, but it is not densely defined in Y, thus TD(T) # Y.
We shall below check these three conditions.

1) Tt follows by choosing = = (1,0,0,...) # 0 that Thxz = 0, hence T} is singular of type (1). This
means that 0 € 0,(17), i.e. 0 is an eigenvalue of T7.

2) Clearly, Tox = 0 implies that = 0, so T is injective and the inverse exists. Then we solve the
equation Tox =y, thus

1 1 1
Tox = (§x1,2—2x2,2—3x3,...> = (y1,Y2,Y2,-.-) = ¥.

1
When we identify the coordinates we get — x,, = y,,, hence z,, = 2"y, and the inverse operator
2n

T, 1is given by

T5 'y = (291, 2%y0, 2%y3,...)

for

yeD(Tgl):{ye["

+oo
D 2% ynl? < +oo} C 2.

n=1

13
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Spectral Theory 1. Spectrum and resolvent

Let U be the subspace consisting of all sequences which are 0 eventually. Then clearly,
UcD(Ty")

The subspace U is dense in £2, so this is also the case for the larger subspace D (T 2_1). Furthermore,
it follows from the definition of the inverse T} ! that it is unbounded, i.e. T5 is singular of type
(2). This means that 0 € o, (T2) lies in the continuous spectrum for T5.

3) It is obvious that T3 is injective and that
Ty ty = (Y2, 2, Ya, - - )
for
y €D (T3 ) {y € £ |y =0},

Clearly, T, !'is bounded, though not densely defined, so T3 is of type (3), corresponding to that
0 € 0,(T3) lies in the residual spectrum for T5.

4) We infer from Tyz = 0 for z = (1,0,0,...) # 0 that 0 is an eigenvalue, 0 € o, (T4), hence T} is
singular of type (1).

Example 1.8 Let V denote the Banach space (C([0,1]),] - o), and let the operator T be given by

Tf(z) = / Cfdn fev.

Check if T is regular.

The inverse operator of T is the differential operator D, given by
D(D) = {f € C*([0,1)) | f(0) =0},

a _

do

It is easily seen (e.g. by using Weierstrafl’s Approximation Theorem) that D(D) is dense in V. On

the other hand, D is unbounded. In fact, choose

Df = fro for feCN((0,1]),  f(0)=0.

Jn(z) = sin(mnz), z € 10,1], fn € D(D).
then
Dfn(x) = 7n - cos(mnx), x €10,1],

hence || fnlloo =1 and ||Dfy]lcc = mn.

Remark 1.3 A simpler example is of course g,(z) = 2™, x € [0,1]. However, the f, occur very
frequently as an example in other cases, so we have chosen to present it here. ¢

We have proved that T is singular of type (2), i.e. 0 € o.(T) lies in the continuous spectrum for 7.

14
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Spectral Theory 1. Spectrum and resolvent

Example 1.9 Let H = L*(R), and let g be a bounded continuous real function defined on R. Prove
that the operator T given by

Tf(z) =g(2)f(x),  feL*R),

belongs to B(H).
Find a necessary and sufficient condition on g that T is reqular.

When g is bounded, ||g||cc < +00, then

+oo

—+oo
IITfH§:/ 9(@)*| f(x)Pdw < HgHio/ |f(2)Pdz = |lgll3 - II£113,

hence | Tf]l2 < ||glloo - | fl|2 for all f € H, and we infer that T' € B(H) with ||T|| < ||¢]| co-
Then we shall find when T is regular, i.e. when T fulfils the following three conditions:
1) The equation Tf = 0 has only the trivial solution f = 0, so T~ exists.
2) The inverse operator T~ is densely defined, i.e.
D (1) =T (1*(R))

is dense in L?(R).
3) The inverse operator T~ is bounded.
We now check each of these conditions:

1) Tt follows from T f(z) = g(x) - f(z) that Tf = 0, if and only if g(x) - f(z) = 0 for almost every
x € R. Therefore, if we want always to conclude that f =0 (in L?(R)), then we must assume that
g(z) # 0 for almost every = € R.

2) Then we want that 7! is bounded. It follows from T'f(z) = g(z)f(z) = h(x) that
1
flz) =T h(z) = — h(x),
(@) =T~ h(a) = 5 h(a)
and then the same consideration as above shows that we must require that
|l
- < +00.
9l

3) Based on the conditions above, assume that
0<b<]g(z)| < a< +oo, for all z € R.

Then clearly all three conditions are fulfilled, so these conditions are sufficient that both 7" and
T e B(H).

15
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Spectral Theory 1. Spectrum and resolvent

Example 1.10 Let (ex) denote an orthonormal basis in a Hilbert space H, and let the operator T be
defined by

+oo +oo
T E ag€r | = E A€Clr—1.-
k=1 k=2

Prove that X is an eigenvalue for T, if and only if |\ < 1.
Find o(T) and o(T).

Assume that A € 0,(T), thus there exists

“+o0

T = Zxkek, where 0< Z lzg|? < oo,
k=1

such that Tx = Az, i.e.

+oo +oo +oo
E LClr—1 = E Tk+1€k = A E TrCr.
k=2 k=1 k=1

When we identify the coordinates we get

$k+1:)\$k7 k € N.

~
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Spectral Theory 1. Spectrum and resolvent

Choosing z1 = 1, we get by either induction or by recursion — both methods can be applied — that
x = A1 and an eigenvector corresponding to the eigenvalue A\ must necessarily be of the form

—+00
T =T E /\k_lek.
k=1

This candidate belongs to the Hilbert space, if and only if
+oo 5 +oo
SN =D IAPF < oo,
k=1 k=0

i.e. if and only if |\| < 1. We infer that

op(T) E{A e CAl <1}

If on the other hand A € C satisfies |A| < 1, then we get by insertion that z = -1:51) Ne—ley is an
eigenvector, so A € 0,(T), and we have proved that

op(T)={Ae C| N <1}

Then assume that A € C satisfies |A| > 1. We shall prove that A € o(T).

Remark 1.4 If here one tries directly to find the inverse operator 7' ! thus try to solve the equation
T\x = y with respect to x € H for given yn € H, then we end up with an unpleasant infinite system
of equations of the form

(1) Zp41 — Axp =Yg, keN,

where the solution also must satisfy
+oo
Z |{Ek‘2 < +00.
k=1

Even this is possible, it is very difficult to solve this system of equations. Hence we search an alternative
method of solution. ¢

We note that

+oo

E Tk41€Ek

k=1

[T = < |ll,

where we get equality, when z7 = 0. This shows that ||T|| = 1.

It follows from

1
T,\:T—AI:—)\I(I—XT), Al > 1,

17
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Spectral Theory 1. Spectrum and resolvent

and

1 1
— T = — 1
HA H B

by using the Neumann series that

1 1.\
T;I:—X (I—XT> € B(H).

Remark 1.5 The explicit solution is given by the Neumann series

+

8

1 .
—_TJ
=1y,

> =

w:T)\_ly:f

<
Il
o

which can also be found directly, if we work on (1). However, the precise solution is not so interesting
in this connection. ¢

We infer that
{AeClIAl>1} & o(T).

Now, o(T) is closed and disjoint from o(T'), and
op(T) ={A e C| Al <1} S o(T),

hence

o(T)={AeC| AN <1} o5 of)={AeC|] > 1}

Example 1.11 Consider the Banach space (C([0,1]),] - ||oc). Let v € C([0,1]) be real, and let the
operator T be defined by

Tf(x) = v(x)f(x).
Find o(T) and o(T).

We conclude from
1T flloo = llv(@)f (@) lloe < [[v]loollflloo

where we get equality by choosing f = v, that ||T|| = ||v||ec. Then it follows that
o(T) S{AeCIA < [vfloc}

Now, v is continuous, and [0, 1] is compact, hence v([0,1]) is also compact. Let A ¢ v([0,1]). Then
there exists a by > 0, such that

lv(x) — A] > by for all x € [0,1].

18
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Spectral Theory 1. Spectrum and resolvent

Then
Inf(z) = {v(z) — AL f(z) = g(x) € C([0,1])
for

fla) =Ty g(x) = € C([0,1]).

v(x) — A
1

It follows that |7 < R hence Ty € B(C(]0,1])), and
A

o(T) 2 C\v([0,1]) and  o(T) & v([0,1]).

If conversely A € v(]0,1]), then there exists an z¢ € [0,1], such that v(z¢) = A. Then the equation
T\ f = g cannot be solved for any g, for which f(xg) # 0, because then the candidate f then will not
be continuous at xy. Hence we finally get

o(T)=v([0,1)) and  o(T) =C\w([0,1]).

Example 1.12 Consider in the Banach space (> the operator T given by
T(l’l,xg,...) = (.%2,(53,...).

Find o(T), 0,(T), 0.(T) and o,(T).

We get from ||[Tz]|c < ||2]oo with equality for

|21 < sup |4,
i>2

that |7 =1, hence o(T) S {A € C | |A| < 1}.
Therefore, if A € 0,(T'), then |A| < 1, and there exists an x # 0, such that Tz = Az, i.e.
Tht1 = AT = -+ = \kxq.

We can therefor put z; = 1 for an eigenvector, and thus any eigenvector has the form of a constant
times

(LN A ).

It follows by insertion that this candidate indeed is an eigenvector, if it belongs to £>°, i.e. if |A| < 1.
We conclude that

op(T) = o(T) ={A e C| Al <1},

oT) ={AeC[Al > 1},
and 0.(T) = o,.(T) = 0.
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Spectral Theory 1. Spectrum and resolvent

Example 1.13 Let T : 2> — (? denote the operator

T (21, oy covy Ty o) = (T, Tay o vvy Ty - ) -

Find ||T]|.

Find all eigenvalues for T'.

Show that the eigenspace corresponding to any eigenvalue is infinite dimensional.
Determine the operators T*, TT* and T*T.

Determine o(T) and o(T).

1) We infer from

—+o0 —+oo
IT2|* = wanl® < > laal* = |2
n=1 n=1

for every x € ¢2 that ||T| < 1.

For x = (0,22,0,24,0,26,0,...) we get in particular that

“+o00 “+oo
||T33||2 = HT(O,SCQ,O,.%4,0,$6, cee )”2 = Z ‘$2n|2 = Z |$n|2 = ”x”Qv
n=1

n=1

and we conclude that ||T'|| = 1.
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Spectral Theory 1. Spectrum and resolvent

2) Assume that A € 0,(T). Then there exists an x € ¢2\ {0}, such that Tz = Az. We get for the
n-th coordinate of this equation that

(2) zop = A&y, n € N.

If A =0, then we get the conditions x5, = 0, n € N. It follows that if

—+o0
Z |352n+1|2 < +00,

n=0

then (z1,0,235,0,25,0,...) is an eigenvector corresponding to the eigenvalue A = 0, hence 0 €
op(T), and the eigenspace corresponding to A = 0 is spanned by {e2,—1 | n € N}, hence it is
infinite dimensional, cf. the third question.

Assume that A € 0,(T) \ {0}. Then it follows from (2) with n = 2™~1q that
Togmg = NTgn-14 = A2 Tom—24 = -+ = A" xq, m € N.

We get in particular for ¢ = 1,
Tom = A" 7.

If we put 1 = 1 and 2" = 0, when r is not of the form 2", we get an eigenvector, if and only if

+oo
> AP < oo,

n=0

This condition is fulfilled if and only if |A| < 1. Hence we conclude that the point spectrum is
given by

op(T) = {A €T ||\ <1}

3) Assume that A € 0,(T), so |A| < 1. Then we get by a simple computation that every odd index
2q 4+ 1, g € Ny, determines an eigenvector x by

T(2g+1).2n = A", n € N, og 2, = 0 otherwise.

All these eigenvectors are linearly independent, so we conclude that the eigenspace corresponding
to an eigenvalue A € 0,(7T) is infinite dimensional.

4) Now, T' € B (¢?), and |T|| =1, so T* € B ({*) and || T*|| = 1.

We have for every = € /2 and every y € 2 that

+oo
(Txay) = ((352,954»256,~~~)7(il/17y2ay3>~--)) :Zx2ny—n
n=1
= ((07x2707$4707 s )7 (Ovy1707y25 07 s )) = ($7T*y) 5
so we infer that

T*y = T*(y17y27y37 . ) = (O7y1707y270ay37 cee )7 Yy e 62'
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Spectral Theory 1. Spectrum and resolvent

Furthermore,
TT*x =T (T*(x1,x2,x3,...)) =T(0,21,0,22,0,23,...) = (x1,22,23,...) = x,
ie. TT* =1, and
TTax =T (T(x1,x2,3,...)) = T* (22,24, 26,...) = (0,22,0,24,0, z¢, ... ),
proving that T*T = P is the projection onto the subspace of £? which is spanned by {es,, | n € N}.
5) It follows from || 7| =1 that
oM EAeCIAN<T}={reC|Al <1}
Furthermore,
op(T) = A€ CI A <1} Co(T) S {reC A <1},
and the spectrum is closed, hence

o(T)={AeC[A| <1} og oT)=C\o(T)={AeC|[A>1}.
Remark 1.6 It is also easy to prove that
op (T*) = 0.
In fact, we get from T*y = Ay that

(07y1707y2707y37 .. ) =A (y17y2>y37y47y53y6a e )

If X =0, then the right hand side is 0, and this implies that y, = 0, thus y =0, and 0 ¢ o, (T*). If
A # 0, then

0=Ay2ny1, n€Ng, and y, =Ays, neN.

The former equation gives ys,4+1 = 0, which is then inserted into the latter (follows by an iteration,
when n is even) to give ya, = 0, hence y = 0, and we have proved that o, (T*) = 0.

Now, o, (T*) =, hence also o,.(T) = 0. Since (1) = 0,(T) Uo.(T) U o,(T) is a disjoint splitting of
the spectrum, we conclude that

ofT) = {AeClA>1},
o(T) = {AeC|[A <1},
o(T) = reC| <1},
oo(T) = {AeC|A[=1},
o (T) = 0. O
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Spectral Theory 1. Spectrum and resolvent

Example 1.14 Let X denote the Banach space of C(|—1,1])-functions equipped with the usual sup-
norm || - ||, and let T € B(X) be given by

Tf=r0)+/f
1) Find the norm of T.
2) Determine the resolvent set o(T') for T and find
= (T -t
for all A € o(T).

3) Show that the spectrum for T is a pure point spectrum and find all eigenvalues and corresponding
ergenfunctions.

4) Show that all f € X can be written as a sum of eigenfunctions belonging to different eigenspaces,
and show that this decomposition is unique.

1) Clearly,
1T flloo < [FO)+ [ Fllee < I flloo + I flloo = 21 flloos

where we obtain equality if e.g. f is a real function with maximum at 0, i.e. ||T]] = 2.

2) Then we shall check when it is possible for all g € X to solve the equation
(T—-X)g=y, feX.
We get
(3) 9(z) = Tf(z) = A f(z) = f(0) + f(z) = A f().

In particular for x = 0,

9(0) = f(0) + f(0) = A f(0) = (2= A) £(0).

Now, the solution f must be continuous, so this equation cannot be solved for arbitrary g € X,
when A = 2, hence 2 € o(T).

If A # 2, then

1

f(0) = CRY 9(0),

which gives by insertion into (3),
1
40 =(1— .
9(2) = 5= 9(0) = (1 = A) f(z)

Hence, if A = 1, then this equation cannot be solved for an arbitrary g € X, so 1 € o(T). If we
assume that A # 1, then we get the candidate of the solution

1 1

fla) =Ty g(z) = -\ g(x) — mg(o),
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Spectral Theory 1. Spectrum and resolvent

which is clearly continuous, when ¢ is continuous. Finally,

1 1
T gl < o =C\) 19]loo-
1750l < { i+ ey el = Ol

This implies that o(T) 2 C\ {1,2}, and because we have proved above that {1,2} € o(T), it
follows that

o(T)=C\ {1,2} and o(T) ={1,2}.
3) Here we shall prove that A = 1 and A = 2 are eigenvalues, i.e. we shall prove that the equation
Tf=f0)+f(x)=Af(x)
has non-trivial solutions for A =1 and A = 2.
If A =1, then a check gives
fO)+ f(z) = f(=),

and the condition becomes f(0) = 0. Any function f € C([—1,1]), for which f(0) = 0, is therefore
an eigenfunction corresponding to the eigenvalue A = 1.
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1. Spectrum and resolvent

If A =2, then
f0) + f(z) =2 f(x),

and we get the condition f(z) = f(0) for all = € [—1,1]. This shows that every constant function
f(x) = ¢ is an eigenfunction corresponding to the eigenvalue A = 2, and we have proved that

o(T) ={1,2} = 0,(T).
Let f € C([-1,1]). Then we have the following splitting of f,
f(x) ={f(@) = f(0)} + f(0) = g(x) + h(z),

where g(z) = f(x) — f(0) satisfies g(0) = 0, so g belongs to the eigenspace corresponding to A = 1,
and where h(z) = f(0) is constant, hence h(z) belongs to the eigenspace of the eigenvalue. This

proves the existence.

If conversely

f(@) = g(x) + h(z)
is such a splitting, then

Tf(@) = f(@) + F(0) = Tg(x) + Th(z) = g(x) + 2h(x),
and we get the two equations

{g(x) +  2h(z) f(@) + £(0),
g(x) +  h(z) f(z),

from which we get h(xz) = f(0) by subtraction, and then

and we have proved the uniqueness.

Example 1.15 Let H denote a Hilbert space and let T € B(H).
m € N that T = 0.

Show that
m—1
(I-AT)"' =Y A"T" € B(H),
n=0

and deduce that C\ {0} C o(T).
Show next that o(T) = 0,(T) = {0}.

We have T™ = 0, and

m—1

Assume that we have for some

m—1 m—1 m—1 m
(I=AT) > AT = Y AT = AHT =14 Y e =y e
n=0 n=0 n=1 n=1

n=0

= - \"T™ =],
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Spectral Theory 1. Spectrum and resolvent

and analogously because T is defined everywhere,
m—1
SN = AT) = 1.
n=0

We therefore conclude that
m—1 m—1
SONTM =T+ Y NT"=(I-A\T)""  for every A € C,
n=0 ni

If 1o # 0, then

=

m—

> inT" € B(H),

~1
(T_uj)lz_l<]_lT> =—
[ ‘i

I

==

proving that o(7") 2 C\ {0}.

Clearly, T™ = 0 implies that T™ f =T (T™~' f) = 0 for every f € H. Hence if 7™~ f # 0 for some
f € H, then T™! f is an eigenvector for T', corresponding to A = 0.

First find the smallest m € N, such that 7™ = 0 and 7™~ # 0. It follows from this that
o(T) = a,(T) = {0},
and hence

o(T) = C\{0}.

Example 1.16 Let E be a Banach space and let P € B(E) satisfy P? = P.
1) Show that P — X\ is injective for A € C\ {0,1}.

2) Show that P — X1 is surjective for A € C\ {0,1}, and find (P — XI)~".
3) Show that o(P) = o,(P) = {0, 1}.

Remark 1.7 The latter claim of the example is not true, if P = 0 or I. In fact, it is well-known that
0(0) = 0,(0) ={0} and o(I) = op(I) = {1},

and it is obvious that both 02 = 0 and I? = I. Of a similar reason we must assume in (2) that
A ¢ {0,1}, while (1) also holds for 0 and I. ¢

1) Let A € C\ {0,1}, and assume that
(P—X)z=Px—Ax=0,
i.e. Px = Az. Then also
Pz = Pz = X\ Pux.

Because A # 1, we must have Px = 0, and since also A # 0, we get
1
T = 5 Px =0,

and we have proved that P — A\ [ is injective.
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2) Let again A € C\ {0,1}. Because P? = P, the formal Neumann series for (P — AI)~! can in
principle be reduced to u P — 1 I, where we shall find g and then prove that this is indeed the

inverse operator. A check gives

(uP—§I> (P—XI) = (P—\I) (,m-%]) =I+uP2—)\uP—§P

= I+{u/\u§}Pl+{u(1>\)§}P

1
Choosing = m we get that the inverse operator is given by
(P-2I)t= L p lIeB(E)
A1 =) A

and that in particular, P — A I is surjective.

3) It follows from (2) that o(P) 2 C\ {0,1}, hence o(P) € {0,1}. We have also assumed that P # 0
and P # I, hence

{r € M | Px =0} # {0}, M,
and
{w€ M| Po =z} £{0}, M,

are the eigenspaces corresponding to A = 0 and A = 1, respectively, hence

o(P) = o,(P)={0,1}.
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Spectral Theory 2. The adjoint a bounded operator

2 The adjoint of a bounded operator
Example 2.1 Let T € B(H) where H is a Hilbert (or just Banach) space. Show that |Rx(T)| — 0

for |\ = oo.

Since T € B(H), we see that Ry(T) = (T — A I)~! exists for every A € C, for which |\| > ||T||. Then
by the Neumann series,

1 1 ! 1 1
_ o 1 _ = - _ = _~ qm

We get the estimate

ITII} 1 1
Riy( < = 0 for |[A| — 400,
|| >\ || |>\|Z{ |/\‘ |)\| . H | |

A

and the claim is proved.

Example 2.2 Let T be a self adjoint operator in a Hilbert space H. Show that if D(T) = H, then T
is bounded.

When T is self adjoint, then T is closed, and since D(T) = H is closed, it follows from the Closed
Graph Theorem that T is bounded.
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Spectral Theory 2. The adjoint a bounded operator

Example 2.3 Let T be a bounded operator on a Hilbert space H and assume that N and M are closed
subspaces of H. Show that

T(M)CN  ifand onlyif T*(N*)cC M™*.
Show moreover that

ker(T) =T*(H)*  and  ker(T)t =T*(H).

We assume that T'(M) S N, and we shall prove that 7* (N+) € M*.

Let x € M and y € N*. By the assumption, Tz € N, thus
0= (Tz,y) = (z,T"y).

Now, 2 € M was arbitrary, so it follows that 7%y € M. This holds for every y € N+, hence
T* (N*+) € M+

Then by iteration, T** (MLL) C N+L. However, T** = T and M++ = M, and N*+ = N, so we
conclude that

T(M)S N  ifandonlyif 7T*(N')CSM*

If x € ker(T), then T = 0, and ker(T) is a closed subspace. Then put M = ker(T) and N = {0},
and it follows from the above that

T* (NY) = T*(H) Cker(T)*,  thus  {T*(H)}" 2 ker(T).
If conversely = € {T*(H)}", then for every y € H,

0= (2,T"y) = (Tz,y),
so Tz = 0, and we have z € ker(T). We have proved that

Ker(T) = {7 (H)}
Finally, it follows from this equation that

ker(T)" = {T*(H)}— = T*(H),

where the bar means the closure of the set.

Example 2.4 Let T be a bounded operator on a Hilbert space H with ||T|| = 1, and assume that we
can find xo € H such that Txg = xg. Show that also T*xg = xg.

First we get
0 < |[TFz— xOHz = (T*x¢ — xo, T"x0 — x0)
= (T*xo,T*x0) — (20, T*x0) — (T* 20, T0) + (70, T0)
= || T*20||* = (Two, o) — (0, Txo) + ||zo >
= || T*o|* = (z0, w0) — (w0, 0) + [lo]®

2 2
= [T zolI” = [lzoll”,
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from which || T* o> > ||zo|?, or

lzoll < I T*ol| < T - lzoll = 1Tl - llzoll = [lzoll -
Thus we must have equality everywhere, and therefore in particular, ||zq|| = ||T*20]|, hence by inser-
tion,
2 2 2 2 2
1% x0 — wol” = T xoll” — l[zolI” = [lzolI” = flzoll” = 0.

This shows that T*xy — xq, or after a rearrangement, T*xy = xg.

Example 2.5 Let (e,,) denote an orthonormal basis in a Hilbert space H, and consider the operator

oo oo
T E ap€g = E aE€r+41-
k=1 k=1

Find the adjoint T* and show that T* is an extension of T'.

Put
+oo +oo
szmkekeH and y:ZykekED(T*):H.
k=1 k=1
then

+oo +o00o +o00 +o00o +o0o +oo
(Tz,y) = <Z mkek+172ykek> = <Z xk-1ek7Zykek> = waTr = Y Tk
k=1 k=1 k=2 k=1 k=2 k=1
—+o00 +oo
(Z wkekakaek) = (2, T*y),
k=1 k=1

from which
“+oo “+oo
Ty =T1" (Z yk6k> = yrriex.
k=1 k=1
It follows from D (T~') = {e1}" and

o0 400
T ly=T1T" <Z yk€k> = Zyk+1ek fory e D (Tﬁl) ,
k=2 k=1

that T— 'y = T*y for all y € D (Tﬁl) C H, hence T~ Cc T*.

Finally, we notice that T*e; = 0, thus Tt # T*.
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Example 2.6 Let (e,,) denote an orthonormal basis in a Hilbert space H, and consider the operator

T (Z akek> = Z \/ki —1 Ap€Cr—1-
k=1

k=2

Show that T is a densely defined unbounded operator, and find T™.

It follows from |le,| = 1 and
ITen|| =vn—1— 4+ for n — +oo,

that 7" is unbounded.

Put
+o0 too
T = Zxkek and y= Z YnCn-
k=1 n=1
Then

“+o00 o0 +o00
(Tz,y) = (Z VEkzpie, Zynen> = Z VI T ln
k=1 n=1 n=1

400 “+o00 “+ o0
= (z,T*y) = (Z Tni1€ni1s Z Vi - yk€k+1> = (»’U,Z Vk—1- yk—1€k> )
n=1 k=1 k=2

and we infer that
—+oo +o0
Ty =1T" (Z yk€k> = Z Vk—=1- yp_1e.
k=1 k=2

Then we shall explain that the formal computations above are legal. Thus, we shall prove that

+o0o
Zk lag|® < —|—oo}

D(T) = {m €H
k=2

is dens in H. Let x € H be arbitrary. To any € > 0 there exists an N, such that

+oo

Z lag)® < 2.

k=N+1

Choose zn = (a1,a2,...,an,0,0,...) € D(T). Then ||z —zn]|| < e. This proves that D(T') is dense
in H, thus T* exists and the formal computations above are correct, when € D(T) and y € D (7).

We infer from

+oo +oo
IT*yl* = > (k= 1) lyemal” = Yk lwel” (= ITwl),
k=1

k=2

that D (T*) = D(T).
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Example 2.7 Consider the operator T : {2 — (% given by

1 2
T(x1,Tnye ey Tpyen) = (596275;63"”’%4—1%""”) .
1) Determine ||T||.
2) Find all eigenvalues o, (T) and corresponding eigenvectors.

3) Determine the adjoint T* and o, (T*) and the resolvent o(T).

1) Tt is obvious that || Tx| < ||z||. Then it follows from

n

n+1

1T (en)| = —1 for n — +oo,

that |7 = 1.

2) Assume that A € 0,(T) is an eigenvalue, and let = € 22 be a corresponding eigenvector. Then we
get for the coordinates,

n
n+1

Az, = Tn+1, n €N,
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2. The adjoint a bounded operator

hence by a rearrangement and recursion,

n+1 n+l n
$n+1Z/\'Tl‘nZ"':/\H'Tm"'I'mZ)\n(n+1)ﬂf1>
hence
T =n- A" lag, n € N.

It follows that

+o0 +o0 too
Sl = 30 n2ARO fa P = [ 23 m2 AR,
n=1 n=1 n=1

where the series is convergent, if and only if |A\| < 1, thus
op(T) ={A e C|[A <1},

and a corresponding eigenvector is

zxy = (1,2A,3X%, ... nA" T ).

3) We see that T* exists in B (), so

R 2 n—1
(‘T,T*y) = (Tl',y) = Z n+1 $n+1y_n = Z Tn, - n Yn—1
n=1 n=2

and we get

1 2 n—1
T*y:<07§y17§y27"'7 n ynh"')u yee2

Assume that A € o, (T) is an eigenvalue for T*. Then

n—1
Ayr =0, AYn = - Yn—1, nE€N\{1}.

We have two possibilities: Either A = 0, or y; = 0.

1 2 n—1
($1,$2,...7$n,-..), 07§y1a§y2a"'a7ynfla"' 3

(a) A =0. It follows from the latter equation that y,_1 = 0 for n € N\ {1}, meaning that y = 0,

and we conclude that 0 ¢ o, (T").
(b) A # 0. In this case, y; = 0, and then it follows by induction on

n—1
nA

Yn = Yn—1, HEN\{I}v

that y,, = 0, and hence y = 0. We conclude that A ¢ o, (T).
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Summing up,
op (T*) = 0.
Hence o,.(T) = (. Furthermore,
op(T) ={AeClA <1} S o(T) S{AeC| A <|T]| =1},
and because o (7)) is closed, we must have
o(T) = {reC| A <1}
Utilizing that
o(T)=0p(T)Uo(T)U, (T) = 0,(T) Uo(T)
is a disjoint splitting, we finally find the continuous spectrum
ooT) = {Ae C| N = 1},
and the resolvent set

oT) ={AeCl Al > 1}.

Example 2.8 Let T : (2 — (2 be the linear operator given by
T(x1,22,. Tpyo-.) = (X1 + X2, 00 + T3, ..., Ty + Tpat,- .- )-
1) Find the point spectrum o,(T') and determine all eigenvectors associated to A € o,(T).
2) Determine ||T|.
3) Determine the adjoint T* and find also the point spectrum o, (T*).
4) Let S =T — 1. Determine ||S||.
5) Find o.(T) and o.(T) with the help of S above.

1) We shall find the non-trivial solutions of the equation
Tx = \zx.
The coordinate equation of this equation becomes
Ty + Tpt1 = Ay, n €N,
thus
(4) zp41 = (A= 1)xp, n € N.

If A =1, then z,41 = 0, so we can only choose ;1 # 0. On the other hand, e; is clearly an
eigenvector and 1 € 0,(T).
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Figure 1: The point spectrum o,(T) is the open set inside the circle.

If A # 1, then we can divide (4) by (A — 1)"*1 # 0. Then it follows by recursion that

Tn+1 o Tn o 1

[ L O N T W

s0 T, = (A\)"1z;. Choosing x; = 1 we see that one candidate of an eigenvector is given by its
coordinates x, = (A — 1)"~!. Because

400 400 400
S leal = S A1 = 3 e
n=1 n=1 n=0

is convergent, if and only if |\ — 1] < 1, it follows that
op(T)={AeC||N-1| <1}

with the eigenvectors
(LA=1,(A=1% ..., (x=1)""" ..., for |A — 1] < 1.

We notice for A = 1 that we get precisely (1,0,0,...).

2) From

2€0(T) S{AeCI A < [T},

and a consideration of the figure, it follows that || > 2.

On the other hand, an application of Minkowski’s inequality gives
172 = 2+ (021,22, )| < llz] + Il = 2]l

proving that ||T]| < 2.

Summing up, ||T]| = 2.
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3) It follows from

400 “+o00 +oo
(Txay) = Z(z7z+z71+l)%: any_n+zxnyn—l
n=1 n=1 n=2
+00 - 400 -
= DG+ ) (Y1 +yn) = (2, Ty) = Y 2u(T*y),,
n=2 n=1

that
Ty = (y1, 91+ Y2,¥2 + Y3+ -2 Yn—1+ Yny - - ),
or written in coordinates,
(T*y), = y1, (T*y),, = Yn—1+yn forn>2.
The equation T*y = Ay is written in coordinates as
Y1 = Ay and Yn-1+Yn = Ay, forn>2,
thus
A=1)=y1=0 and A=1Dyn =yn-1 forn>2.

We get from the first equation that either A =1 or y; = 0. If A = 1, then it follows from the last
equations that y,_1 = 0 for all n > 2, hence y = 0, and A = 1 is not an eigenvalue for 7™.
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2. The adjoint a bounded operator

If A# 1 and y; = 0, then we see by recursion on

1

Yn = N1 Yn—1

that the only solution is y = 0.

Summing up, o, (T*) = 0.

Then of course, o,.(T) = ().

Because

(S2)p = (T2)p — Ty = Tpg1,

and [|Sz| < ||x|| with equality for z; = 0, it follows immediately that ||S| = 1.

We get from T'=S+ 1 that T — X[ =S —(A—1)I, so

A€ o,(T)
A€o (T)
A€o (T)

if and only if A —1¢€0,(5), thus. 0,(T)=140,(5),
if and only if A—1€0.(5), thus o.(T)=140.(9),
if and only if A —1€o0,.(S), thus o,.(T)=1+0.(9).

It is not surprising that the various parts of the spectrum for is obtained by translating the
corresponding parts of the spectrum for S. We now conclude from

op(S) ={AeCl Al <1},

and

JT(S) = @,

(because o,.(T) = 0),

and from o(S) being closed, and

op(S) ={AcCIN <1} Ea(S) EAeCIA<SE={reC|A <1},

that

o(S)={reC |\ <1},

and hence that

ou(S) = {Ae T[]\ =1}.

Finally, by utilizing the translation, we get

o(T)

op(T)
oc(T)
o (T)

{AeC|]A-1]<1},
{AeC||A=-1] <1},
{AeC|A-1]=1}

0.
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Example 2.9 We consider in (? the operator

3 1
T(x1,22,. Tpyoo.) = (2902,—303,...,&:5”“,...).
2 n

1) Find ||T.
2) Find o,(T) and find the eigenspace associated to all A € o,(T).
3) Determine the adjoint T*.
4) Determine o, (T).
5) Let X\ ¢ 0,(T)Uo,.(T). For k € N we define an operator I, on (* by
I (1, 22y« oy Thy Thg1,y .- ) = (0,0, 00,0, gy Tg1,y -+ - )
and we define T, = I T. Show that there is a k € N such that
1Tl < A
Use this to solve the equation
Ty =Mz =y
for a given y € (2. Finally, show that the equation
(T-X)zx=y
has a solution x = (T — \T) ™y for all y € (2.
6) Find o(T) and o(T) (e.g. by use of the Closed Graph Theorem,).

1
1) From 1+ — < 2 for all n € N, follows for every x € ¢2 that
n

“+o0 2 oo
1 2 2 2
||Tz||2zz<1+ﬁ) st <22 fonp? < 2112},

n=1 n=1
proving that ||T]| < 2.
On the other hand,
7(0,1,0,0,...) = (2,0,0,0,...),
and we infer that ||T| = 2.

2) Assume that Tax = Az, thus

n+1

Tpil = ATy, n € N.

For A =0 we get x = (1,0,0,...) as an eigenvector, and 0 is an eigenvalue, 0 € o,(T).
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If A # 0, then a multiplication by n A=+ follows by a recursion gives that

(n+1) A~ (D) Tpp1 =nN "xp=---=1-A"1xg,

and we get the coordinates of the candidate

1 ..
Ty =—N""layg,

n

n € N.

the corresponding sequence lies in ¢2 for 21 # 0, if and only if

+ool

> AP < oo

n=1

+ool ’

7r
It is well-known that — = — < 400, so this condition is equivalent to |A] < 1, and we

n=1p2 6

conclude that

op(T) ={re Cl[Al <1},

and an eigenvector corresponding to A € o,,(T') is given by

A
Z1 (1757

/\2 /\n—l
)

If 2, y € £, then

(Tz,y) =

hence

+o00 +oo +o00

Z(Tx>ny_n: Zn;’;ll’nquy_n: an nilynfl = (x,T*y),

n=1 n=1 n=2

3 n
T*(ylay%"'ayna"'): <0a2y17§y27"'7n_1yn17“'))

or written in coordinates,

(T*y)

n
(T"y)y = —= Yn-1,

We prove that o, (1) = 0, because this will imply that o,.(T") = 0.
Assume that A € o, (T). It follows from the equation T*y = Ay that

0= Ay,

n

n—1

1=0,

forn =1,

— for n € N\ {1}.

forn=1,

Yn—1 = AYn, for n € N\ {1}.
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If A =0, then clearly y =0, so 0 ¢ o, (T).
1

If A # 0, then y; = 0. Multiply the last coordinate equation by — A"~!. Then it follows by
n

recursion that

A" Anl A
T Y1 = 03

?yn:mynflz"':

from which y,, = 0 for all n € N, and there is no eigenvectors. Hence, o, (I'*) = (), and therefore
o (T) =0.

5) If
A ¢ op(T)Uor(T) = 0p(T) = {A € C[[A] <1},
then |A] > 1. It follows from

+oo 2 2
2 n+1 2 kE+1
Tit® = 3 () bewaal® < () el

n==k

that

k+1 1
Til| < = =1+~
IThll < — + o

where we can obtain equality, so

1
Tl =1+ T
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Spectral Theory 2. The adjoint a bounded operator

Because |A| > 1, we can choose k so big that
1

1Tl =1+ 3 < Al
Now, A & 0,(T)Uo,(T), so (I'— AI)~! exists and is densely defined.
It follows from ||T%| < |A|, that

(T — A x) " € B(L£%(,
where I1,¢? is a Hilbert space which is isomorphic to ¢2.
The equation

Tx — Az =y, y € (2

has the coordinate form
n+1

xn+17)\xn:yn7 n € N.

Thus is follows from A # 0 that

n+1
azn:x<Twn+1—yn>, ne{l,....k—1},

Trx — A Ix = Iy.
It follows from the above that the latter equation can be solved,
Iz = (Tk—)\Ik)flfky for all y € (2.
Hence for a given y € (2,
Iz =(0,...,0, 2k, Tkt1,...) = (T — )\Ik)71 Iy
is uniquely determined. The recursion formula

1

1
xnzx{%xnﬂ—yn}, forn e {l,....k—1},

determines the remaining elements of z, so (T'— XA I)~! is defined everywhere.

6) If || > 1, then it follows from the above that (T'— AI)~! is defined everywhere. Now, T'— A [ is
closed, so (T'— A 1)~! is also closed. Then it follows from the Closed Graph Theorem that A € o(T')
for every A € C, for which |\| > 1. Hence

o(T)=0p(T)={AeC|N <1}, on(T) =0.(T) =0,
and
oT) ={AeC|[A[>1}

Remark 2.1 This example shows that it is possible that every A for which A € C med |\| = ||T|
belongs to the resolvent set, p € o(T'). So far we have only seen examples, in which there is always
at least one A € o(T), such that |A| = ||T||. This is not the case in the present example. ¢
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3 Self adjoint operators
Example 3.1 Let T € B(H). Show that we can write T' as
T=A+iB,

where A and B are uniquely determined, bounded self adjoint operators.

First assume that 7" can be written in the form T'= A + i B, where A and B are self adjoint. Then

(Tz,y) = (Az+iBz,y)= (Az,y)+1i(Bz,y)
= (v,Ay) +i(z, By) = (v, Ay — i By) = (z,(A —iB)y) = (v, T"y),

and it follows that if
T=A+iB then T = A—1B.

We get by simple addition or subtraction,

1 1
A=-(T+T") and B=—(T-T%).
2 24
Conversely, if
1 * 1 *
A:§(T+T) and Bz;(T—T)7
i

then clearly, T'= A + i B. Furthermore, A and B are obviously linear and
1 1

Al < 5 AT+ 071 =170, WBI < 5 AT+ 1713 = 17,

so A and B are bounded. Finally,
1 * 1 * * Kk 1 *

(o) = (G + 7o) = (050 +70) = (2,504 T0) = (. 40)
and

(Be,y) = (AT = Ty ) = (- AT = TYy) = (2 (T = Ty ) = (2. By)

x’ y - 22 x7y - x? QZ y - 1’? QZ y - x? y k)

shows that both A and B are self adjoint.
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Example 3.2 Show that T € B(H) is self adjoint if and only if one of the following conditions is
satisfied:

(Tz,x) = (x,Tx) forallz € H,
and

(Tx,xz) €R for all z € H.

We assume implicitly that H is a complex Hilbert space.

We have T' € B(H), thus T is self adjoint if and only if 7% = T', thus if and only if
(5) (Tx,y) = (z,Ty) for all z, y € H.

Choosing y = x in (5) we get in particular the first condition above, thus

6) (Tx,z) = (x,Tx) for all z € H.

This condition is equivalent with

(Tz,z) = (z,Tz) = (Tz,z) (€R),

and it follows that the two conditions are equivalent. It only remains to prove that (6) implies that
T is self adjoint.

Assume (6). We shall prove (5). We get by replacing « in (6) by z + y that

(T(x+y)z+y) = (Tz,z) +(Tz,y)+ Ty,2)+ (Ty,y),
(z+y,T(x+y) = (2,72) +(2,Ty)+ (y,Tx)+ (y,Ty),

It follows from the assumption (6) that the three columns marked with a * inside each column are
mutually equal. Hence by a subtraction and a rearrangement,

(7) (TJZ, Z/) + (Ty,.%‘) = (vay) + (y,T$)

If we write x 4 iy in (6) instead of x, then we get analogously,

(T(x+1y),z+1y) = (Tz,z) —i(Tz,y)+i(Ty,z)+ (Ty,y),
(z+1y,T(x+iy) = (x,Tz) —i(z,Ty) +i(y,Tz)+ (v, Ty),

We conclude as before by utilizing that the columns marked with a x by the assumption (6) are
identical that

We get by adding (7) and (8), followed by a division by 2,
(Tz,y) = (2,Ty).

This is true for all z, y € H, so we have proved (5), thus T is self adjoint.
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Example 3.3 Let S and T be bounded, self adjoint operators on a Hilbert space. Show that ST + TS
and i(ST — TS) are self adjoint.

The proof is simple, because S, T' € B(H) and
(STH+TS) =(ST) +(TS) =T*S*+S*T*=ST+1TS,
and

(i(ST — TS)}* = —i{(ST)* — (TS)*} = —i{T*S* — S*T*} = i(ST — TS).

sssssssssssssvsssssassssssssssssssssnssssssssssnnsssssssssssssssssssssssfilcgte]-Lucent @
www.alcatel-lucent.com/careers

2%

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".

N
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Spectral Theory 3. Self adjoint operators

Example 3.4 Let T be a bounded self adjoint operator. Define the numbers
m = inf{(Tz,z) | [lz| = 1},
and
M = sup{(Tz,z) | ||z[| = 1}.
Show that o(T) C [m, M], and show that both m and M belong to o(T).
Show that ||T|| = max{|m|, |M|}.
We deduce from the definitions of m and M that
m||z||? < (Tz,z) < M |z|? for all z € H.

Now, T € B(H) is self adjoint, so o(T) € R. Choose A € R\ [m, M]. We shall prove that A € o(T).
First assume that A < m. Then

(T —=ADz|> = (Tx—\z,Tx— \x)
= (Tz—mx+ (m— Nz, Tx —mz+ (m— \)zx)
= ||Tz —mz|* + (m — N)?||z||* + 2{m — \} (Tz — mz, z).

It follows from m — A > 0 and (Tx — mx,x) = (Tx,x) — m(z,z) < 0 that we have the estimate,
)T = ADall? > 0+ (m — APlJelf? +0 = (m — A2 o],

which implies that T — A I is injective, and (T — A I)~! exists and is bounded. Then
A€ o(T)Uao,(T).

Because T is self adjoint, the residual spectrum is o.(T) = (), hence X\ € o(T).

If instead A > M, then we get analogously
T —ADz||* = (Tz—\z, Tz —\z)
(Mx —Tax+ (A= M)z, Mx — Tx + (A — M)zx)
Mz — Tz|]® + (A — M)?||z||? +2{\ - M} (Mz — Tz, )
(A = M)2||]%,

%

because A — M > 0 and (Mz — Tx,z) = M||z||?> — (Tx,z) > 0. As before we infer that (T — A1)

—1
x
exists and is bounded. We have proved that C\ [m, M] € o(T"), and it follows that o(T") € [m, M].

Using a well-known formula we get
I = sup{|(Tw, 2)| | lal] = 1} = masc{lm, |M]}.
Assume e.g. that ||T|| = |[M|= M > 0, and let A = M. Then
M e o,(T)Uoo(T)U o(T).

We shall prove that M ¢ o(T). This is done INDIRECTLY.
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Assume that M € o(T), thus (T'— M I)~! € B(H). Then there exists a ¢ > 0, such that
1
T —MI) x| < = |z for all x € H.
c

If we put y = (T'— M I)~'a, then x = (T — M I)y, hence
|7 =MDyl > cly]  forallye I
This implies that ||T'— M I|| > ¢ > 0.

From M = sup{(Tz,z) | ||| = 1} follows the existence of a sequence x,, ||z,|| = 1, of unit vectors,
such that

(Txp,x,) — M = ||T|| for n — +o0,
and we conclude from
(Tn, ) < |[Txpl - 2o = T2, < [T = M,

that also | Tz, || — M. Then for every such sequence,

0 < (T =MDyl = (Txy, — May, Tx, — Mz,)
= ”Tmn”2 +M2||xn||2 —2M(Txy,, xy,)
— M?+ M?*—2M? =0,

which shows that the estimate |[(T' — M I)z,|| > ¢|lz,|| = ¢ > 0 is not true, and we have derived a
contradiction. Therefore, M ¢ o(T), i.e. M € o(T).

An analogous argument shows that if ||T'|| = |m| = —m, then m € o(T).

Finally, assume that |m| = —m < M. It follows from the above that M € o(T"). We shall prove that
also m € o(T). First notice that T'— M I of course is self adjoint. Then it follows from

(T =M ID)z,z) = (Tz,2) — M||z|]?,
and
m||z|* < (Tz,z) < M |z,
that
(m — M)||z[|* < (T = M Iz, z) < (M — M)||z||* =0,
and
inf{((T — M Dz,z) | ||z|| =1} =m - M <0.
Then from the above, m — M € o(T — M I), which means that
T—-MI)—(m—-—MI=T-mlI

is not regular, so m € o (7).
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Example 3.5 Consider in L?(R) the operator Q defined by
Qf(x) =z f(x),

with
D(Q) ={f e L*(R) | Qf € L*(R)}.

Show that @ is self adjoint.

Let f, g € D(Q), thus f, g € L?(R) and = - f(2), = - g(x) € L?>(R). Because Q is densely defined, we
get

+o0 o +oo
(Qf.9) = / © f(2)g(@) d = / f(z) - T9() dz = (f.Qq).

— 00 — 00

proving that @) is symmetric, @ € Q*. It remains to prove that D(Q) = D (Q*). To do this it suffices
to prove that @) is a closed operator.

Assume that (f,) € D(Q) and f, — f € L*(R), and = f, — g € L*(R). We shall prove that
g(x) = x - f(x) almost everywhere. We find

oS3 = [ 11 19(2) — & £(&) P + { / m +f " lg(a) - xf<x>|2da:} |

Here, f_ll lg(x) — x f(x)|>dz = 0, because f € L?([—1,1]) implies that also x - f € L?([—1,1]), noting
that the interval is bounded. This means that g(z) = x - f(x) for almost every x € [—1,1]. If |z| > 1,

then we get f, — f and f, — M, both in the sense of L?, because
x

/w>1

The limit value is unique, hence f(z) =

g()

2
dx < / lg(2)|?dx < +oo.
v || >1

9(x) almost everywhere for |z| > 1. Hence we conclude that
x
g(x) =« f(x) for almost every = € R.

This proves that @ is closed, which again implies by the above that Q = @*, and we have proved that
Q is self adjoint.

Example 3.6 Show that the set of self adjoint operators is closed in B(H).

We shall only prove that if (7,,) C B(H) is a sequence of self adjoint operators, converging towards
T € B(H), then T is also self adjoint. The condition T}, — T for n — +occ0 means that

Tz = lim T,z for all z € H.

n—-+oo
Therefore, if x, y € H, then
(Tz,y) = hr—? (Th,y) = lir_~r_1 (z, Thy) = (2, Ty),

proving that 7' S T*. Because D(T) = H, we have T'=T*, hence T is self adjoint.
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Example 3.7 Let (e,) denote an orthonormal basis in a Hilbert space H, and let (ry) be all the
rational numbers in |0, 1], arranged as a sequence. Consider the operator

oo oo
T E (&% = E TLaR€l.
k=1 k=1

Show that T is self adjoint and that ||T|| = 1. Find o(T) and determine the point spectrum and the
continuous spectrum for T.

First note that
—+o00 +oo
1Tz)? = rf okl < lawl® = 2],
k=1 k=1

thus T'€ B(H) and ||T|| < 1. Furthermore,
+oo +oo
(Tz,y) = > reasle = Y axTw¥k = (2, Ty),
k=1 k=1

proving that T is self adjoint. This implies that the residual spectrum is empty, o,.(T') = 0.
From Tey, = ey, follows that every i, € 0,(T), and we concluder further from 0 < r, < ||T|| that

IT]| > supry =1,
kEN

hence ||T] = 1.

/

Leadiny
% Maastricht University o Learnin:

Join the best at
o A N - 33" place Financial Times worldwide ranking: MSc
the Maastricht University International Business

+ 1%t place: MSc International Business

School of Business and 15t place: MSc Financial Economics

2" place: MSc Management of Learning
e » 2" place: MSc Economics
| Zi5p
Econom Ics. » 2" place: MSc Econometrics and Operations Research
+ 2" place:MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is
the best specialist
university in the
Netherlands
(Elsevier)

Master’s Open Day: 22 February 2014

www.mastersopenday.nl

N

48

Click on the ad to read more
Download free eBooks at bookboon.com


http://www.mastersopenday.nl

Spectral Theory 3. Self adjoint operators

Conversely, if Tz = Az, then

+o00
T — Az = Z(rk — Nager =0,
k=1

so either A\ = r; or xp = 0. This shows that
op(T) =QnNJ0,1[={rx [ k € N}.

Assume that A < 0. Then
2

—+o0 —+o0 +oo
Tz = Al = | > (i + M) arer| =D e+ M) [l = AP D awl® = AP - [l
k=1 k=1 k=1

from which we infer that |Tax — Az| > |A| - ||z||, hence X € o(T). It follows that
o(T) 2C\ [0,1].
On the other hand, o(T) is closed, so it follows from
o(T) 2 0,(T) = QNJ0, 1],
that o(T) 2 [0,1]. From o(T) and o(T) being disjoint we conclude that
o(T)=C\0,1] and o(T) = [0,1].
Now, 0,.(T') = 0 for self adjoint operators, and o,(7") = QN]0, 1], hence the continuous spectrum is
oo(T) = o(T) \ op(T) = ([0,1] \ Q) U{0, 1}.

Example 3.8 Let (ex) be an orthonormal basis in a Hilbert space H, and assume that T € B(H) has
the matriz representation T = (t;i) with respect to the orthonormal basis (ey) (see VENTUS, HILBERT
SPACES, EXAMPLE 2.7). Derive a necessary and sufficient condition on the tj;, that T is self adjoint.

In VENTUS, HILBERT SPACES, EXAMPLE 2.7 we derived that ¢;, = (Tej, ey ), and

+00 “+00 400 “+oo +oo
T E Zj€j = E E xjtjkek = E E :L‘jtjk CL.
j=1 j=1k=1 k=1 { j=1

If

“+o0 “+o0
szxjej and y:Zykek,
j=1 k=1

then
400 [ +oo +o00 +o0 400 +00 400
(Tz,y) = (DD @itik per Y yker | = > > witine = > T bjr;
k=1 Jj=1 k=1 k=1j=1 j=1k=1
+o0 +oo [ +oo
- (Eee s {Smfa) e,
=1 j=1 \k=1
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Hence
+o00 400 +o00 400
* * T
Ty =3 wtiee; =D D wilje;,
j=1k=1 j=1k=1

so T* = (t;k> = (E) This means that T* is obtained from T by taking the transpose and apply

complex conjugating.
It follows from the above that T is self adjoint if and only if T* =T, i.e. if and only if

ty =t forallj k=1,2,3,....

Note that
tr; = (Ter,e;) = (€5, Tex),

so the example shows that in this case T is self adjoint, if
(Tej,er) = (ej,Tey) for all j, k € N,

and there is nothing new in that statement.

Example 3.9 Let H = L*(R), and let V denote a bounded real continuous function. We define the
operator T by

Tf(z)=V(2)- f(z),  feL*R).

Prove that T is a bounded self adjoint operator.
In Quantum Mechanics the operator T is called a potential operator.

It follows from ||V||ec < 400 that

+00 Foo
176 = [ V@ VErmd = [ Ve d
“+o0
< VIR [ 1r@Pds = VIR 115,
hence

ITfll2 < Vlise - Ifllz for ethvert f € L*(R).
We conclude that T € B(V) and ||T] < ||V so-

Utilizing that V(x) is real we see that

“+o0 - “+o0 .
(Tf,g) = / V(@) f(z) - 9(x) da = / f(x) - V(@)g(@) dz = (f,Tg),

— 00 — 00

which shows that T is self adjoint.
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Example 3.10 Let H denote a Hilbert space. Introduce in the set of all self adjoint operators from
B(H) a relation < by

S<T, ifT—S>0,

cf. EXAMPLE 6.1. Prove that < is a partial relation.

It follows from S — S =02> 0 that S < S.

Assume that S <T and T < U, thusT—S>0and U —T > 0.
We shall prove that S < U, i.e. that U — S > 0.
We have

(U—=8)z,z) = (U-T)+(T - S)z,z)
= ((U-T)z,2)+ (T - S)z,z) > 0.

This holds for every x € H, hence the claim is proved.

Example 3.11 Let H be a Hilbert space and let T € B(H) be positive and self adjoint.
Show that

(T2, )1 < (T, 2) (Ty, y),
forallx, y e H.
We shall here be aware of two possible obstacles. First, (T'z,y) could be a complex number, and
secondly (Tx,z) could be 0, so we must never divide by (T, x).
Let z, y € H be given, and choose o € R such that
(Tz,y) = |(Tz,y)| '
Using the assumption it follows for any A € C that

0 < (TA\z+y),\z+y)
= M*(Tz,2) + A(Tz,y) + X (Ty, ) + (Ty,y)
= [N*(Tz,z) + A(Tz,y) + X (y, Tz) + (Ty,y)
IA?(Tz, ) + 2Re{MTz,9)} + (Ty,y),
where we have used that T is self adjoint, hence
(Ty,z) = (t,Tx) = (Tz,y).
Choosing in particular A = pe ', u € R, then
p?(Tx, x) + 2u|(Tz,y)| + (Ty,z) >0 for all € R.
All coefficients are real, so the condition of the discriminant B? — AC < 0 holds, thus

(Tz,y)|* < (Tx,z) (Ty,y) for all x, y € H,

and the claim is proved.
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Example 3.12 1) Let V denote a normed space. Show that

=yl = [zl =yl forallz,y V.

2) Let T be a bounded, linear and self adjoint operator on a Hilbert space. Assume that T is surjective
and show that T is then injective.

3) Assume that T is a closed linear operator on a normed space X. Show that ker(T) is closed in X.

4) Let H denote a Hilbert space and assume that (x,,) and (y,) are two sequences in the closed unit
ball of H such that (x,,y,) — 1. Show that ||z, — y,|| — 0.

5) Let (zy,) and (y,) denote two orthonormal sequences in a Hilbert space H, and assume that

(oo}
Z lzn —ynll® < 1.
n=1

Show that if (xy,) is an orthonormal basis, then so is (yn).

1) It follows from the triangle inequality that
[zl = Iz —y) +yll < lle =yl + llyll,

and analogously (or just by interchanging letters)

lyll < lle =yl + ll=]].

> Apply now
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Spectral Theory 3. Self adjoint operators

2)

By a rearrangement,

]l — ] }
< ||l — ,
lyll - izl § < e = vl

hence
[ =yl = [zl = llyll
We shall prove that if Tx = 0, then x = 0. We get for every y € H that

0= (O’y) = (Txvy) = (.IZ,Ty)

From T being surjective follows that the image of T is all of H, so x is perpendicular to H, thus
x =0, and T is injective.

Let T be closed, thus the graph G(T) is closed as a subset of X x X. Let (x,) C ker(T) denote a
convergent sequence in X, i.e. &, — x. Then ((z,,0)) C G(T'), and

(#n,0) = (2,0) € G(T) = G(T),
which shows that x € ker(T).

Here,

||xn - yn||2 = (:En - yn7xnyn) = (-Tnaxn) - (yna‘rn) - (xnayn) + (ynayn)
= lznll® + lynll* = 2Re {(zn, ya)} ,

and since all x,, and y,, belong to the unit ball, we have
0< ||zn —ynll> <14+1—-2Re{(20,yn)} = 2-2=0 for n — oo,
proving that

|2n —ynll — 0 for n — oo.

Let € H be perpendicular to all y,,. From (x,) being an orthonormal basis and (x,y,) = 0 we
get

€T = Z(l‘,.’lﬁn) Tn = Z {(xayn) + (l‘,In - yn)}xn = Z(x’xn - yn) L -

This implies the estimate, when we apply that (x,) is orthonormal and the Cauchy-Schwarz
inequality,

00 oo e}
2
Iz =D 1@ 20 =y < Y M2 - e = yal® = 2l* Y |z — yal*-
n=1 n=1 n=1

It follows from the assumption that Y~ | |2, —yn|/* < 1, so the only possibility for this inequality
is when = = 0, hence x = 0 is the only vector in H, which is perpendicular on all y,,. This shows
that (y,) is an orthonormal basis.
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Example 3.13 Let (x,,) C €% and define the sequence y = (y,,) by
Yn = Tn+1 +nx, + Tn—1,

where we put xg = 0 whenever it is necessary.
1. Show that y € (% if and only if (nx,) € (2.
Let

D={xzct?|(nz,)c?},
and define a linear operator T : D — (% by Tx =y, where y is given above.

2. Show that D is dense in (2.

3. Show that T is self adjoint.

1) Tt follows from

(yn) = ($n+1) + (nxn) + (xnfl)a

and that £? is a vector space that if (x,,) and nz,) € €2, then (y,) € 2.
If conversely (z,,) and (y,,) € ¢2, then it follows from

(nzn) = (Yn) — (Tn41) — (Tn-1),

that (nz,) € (2.

ALTERNATIVELY, we have the following possible, though not very brilliant variant,

“+ o0 +oo
Zyi = Z ($n+1 —f—?’l.’lﬁn +$n71)2
n=1 n=1

+oo +oo —+oo +oo +oo —+oo
2
= E xiﬂ + E (nxn)” + E xfhl +2 E Tt 1N Ty + 2 E NTpTy_1 + 2 E Tnat1Tn_1
n=1 n=1 n=1 n=1 n=1 n=1

+oo +o0 % +o0 2
2 2 2
I2l15 + ) (nan) +2||x||2{ (nan) } +2{Z(nxn) } l[#]l2 + 2([z]|2]|[|2

<
n=1 n=1 n=1
1 1 2
+o00 2 400 +o00 2
2 2 2
= 4||$||§+4|x||{2(nmn) } +Y  (nwn) {Z(m:n) } +2]lzl2
n=1 n=1 n=1

Hence, if 3% (n2,)? < 400, then 3275 y2 < 400, s0 y € (2.
Conversely, if y € £2, then by a rearrangement,

NIy =Yn — Tp4+1 — Tn—1,
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hence
+oo +oo
Z (n l'n)Q = Z (yn — Tpt1 — l’n,1)2
n=1 n=1

“+oo +oo +oo +oo +oo +oo

= Zyi + in+l + Zzi—l - 2Zyn$n+1 - 2Zyn$n—1 + 2Z$n+1$n—1
n=1 n=1 n=1 n=1 n=1 n=1

lylls + 22 + lll13 + 2lyl2llelz + 2lyllllz]lz + 20|zl

= |yl +4lylzlzlz + 423 = {lyll2 + 2 2]l2}* < +oo.

IN

We conclude that (nx,,) € /2.

2) Let D = {z € £*> | (nx,) € £*}, and let z € £? be arbitrary, i.c. >, 22 < 4o0. To any € > 0
there exists an N € N, such that

+oo
2 2
E zo < e

n=N+1

Define z = (z,,) by

S form=1,2,..., N,
n 0 forn>N.
Then
“+o0 N
Z (nan)® = anxi < 00,
n=1 n=1

because the sum is finite, so z € D, and
1 1
+oo ) 2 “+oo 2 .
||Z_x|2:{2(zn_xn) } :{ Z Z?z} < (52)2 =5
n=1 n=N+1

which shows that 2 approximates z, and we get that D is dense in ¢2. Clearly, D is a subspace,
because (1,,), (Yn), (nxy,), (ny,) € 2 for every A € R imply that (x,, + \y,) and (n(z, + A\y,)) =
(na, + Any,) € £2. Finally, it is obvious that T is linear.

3) Because T is densely defined, the adjoint T™* exists. Let € D, and let y € D (T*). Then

(T‘T7 y) = (l‘, T*y) )
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thus
“+o0
(Tx,y) = Z($n+1 +nx, +xn71)yn
n=1

—+oo +oo +o0

- Z Tn41Yn + Z NTnYn + Z Tn—1Yn
n=1 n=1 n=1
“+oo +oo +oo

= Z TpYn—1 + Z TpMYn + Z TnYn+1
n=2 n=1 n=0
400 “+o00 “+o00

= Z TnYn—1 + Z TpNYn + Z TnYn+1
n=1 n=1 n=1

+oo
= Z Tn (yn+1 +ny, + ynfl) = (x,T*y) .

n=1

The splitting of the sums in the second equality is legal, because each of the three series on the
right hand side is absolutely convergent by the Cauchy-Schwarz inequality. Hence we conclude

that

Ty = (Ynt1 +1Yn +Yn—1),

thus D € D (T*), and T C T*, so T is at least symmetric.

It follows from the result of (1) that (y,+1 +nyn + yn_1) € 2, when (y,,) € 2, if and only if
(nyn) € 2. Hence D (T*) = D, and T = T*, and we have proved that T is self adjoint.
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Spectral Theory 4. Isometric operators

4 Isometric operators

Example 4.1 Let T € B(H). An operator is called isometric if |Tx| = ||z| for all x € H. Show
that the following conditions are equivalent for T € B(H).

1) T is isometric.
2) T*T =1.

3) (Tx,Ty) = (x,y) for allz, y € H.

(3) = (2). This is almost trivial:
(z,y) = Tz, Ty) = (T"Tx,y) for all x, y € H,
thus T*T'x = x for all x € H, and hence T*T = 1.
(2) = (1). f T*T = I, then
| 7ol = (T, Tx) = (T T, 2) = (w,) = |l2]]%,
proving that T is isometric.
(1) = (3). If T is isometric, we get as above,
(T"Tx,z) = (Ix,xz), thus (T*T —I)z,z)=0,

for all x € H. Then it follows from EXAMPLE 1.8 in VENTUS, FUNCTIONAL ANALYSIS, HILBERT
SPACES that T*T — I = 0, if H is a complex Hilbert space, hence T*T = I.

Example 4.2 Let T € B(H) be an isometric operator. Show that T(H) is a closed subspace.
Show that T(H) = H if H s finite dimensional.
Give an example of an isometric operator with T(H) # H.

1) When T € B(H) is isometric, i.e. ||Tz| = ||z|| for all # € H, then in particular 7" is injective, thus
T-':T(H)— H exists.
Put y = Tx. Then it follows from the above that HT‘ltH = |ly||, and T~ is continuous (though
not necessarily defined in all of H).

Now, H is closed, so T(H) = (T‘l)_1 (H) is also closed.

2) Let H be finite dimensional, dim H = n, and denote by {e,...,e,} a basis of H.

When T is isometric, then T is injective. In fact, 0 = ||Tx| = ||«|| implies trivially that = = 0.
We claim that the images {Tey,...,Te,} of the basis vectors are linearly independent. Assume
that

O:)\1T€1+"'+)\HT€n (:T()\lel ++)\nen))

The operator T is injective, so also Aje; + --- + Aye, = 0. Here {e1,...,e,} is a basis, so
A ==\, =0. It follows that Tey,...,Te, are linearly independent, so n < dimT(H) < n,
thus dim T'(H) = n. This is only possible, if T(H) = H, because T : H — H.
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3) Let (ex)ren denote an orthonormal basis in an infinite dimensional Hilbert space. Define T' € B(H)
by

Te =T (Z xkek> = Z:Ekek+1.
k=1 k=1

Then clearly T is isometric, ||Tx| = ||z| for all € H, and

T(H) = {61}L # H.

Example 4.3 Let T € B(H) be an isometric operator and let M and N denote closed subspaces of
the Hilbert space H. Show that

T(M)=N = T(M*)cN"
Show that T is isometric if and only if for any orthonormal basis (ex), (Tey) is an orthonormal
sequence.
Assume that T € B(H) is isometric, and let M and N S H be closed subspaces, and assume that
T(M) = N. We shall prove that for every z € M+ and for every y € N we have that (Tz,y) = 0.

From y € N = T(M) follows that there exists a z € M, such that y = Tz, and then we get from
EXAMPLE 4.1, (3) that

(Tl’,y) = (T{ZZ,TZ) = ($,Z) =0,
because x € M+ and z € M. It follows that T (ML) C Nt

Let (ex) denote an orthonormal basis, and assume that T is isometric. We get again from ExXAM-
PLE 4.1, (3) that

(Tej, Ter) = (ej, ex) = dju,

(Kronecker symbol), which shows that (Tej) is an orthonormal sequence. Of course (Tey) needs not
be a basis. An example is given in EXAMPLE 4.2.

If conversely there exists an orthonormal basis (eg), such that (Tey) is an orthonormal sequence, then

+o0 too
To =Y zTer,  thus [Tzl =) |al* = [z,
k=1 k=1

and 7T is isometric.

Remark 4.1 The answer of the latter question above shows that if there is just one orthonormal basis
(ex), such that (Tey) is an orthonormal sequence, then every orthonormal basis has this property. ¢
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Example 4.4 Let T € B(H) be an isometric operator. Show that TT* is a projection and determine
its range.

Assume that T € B(H) is isometric. We shall prove that TT* is a projection, i.e. TT* must satisfy
the two conditions,
(TT x,y) = (2, TT*y) for all x, y € H,
and
(TT*)? =TT*.
We get,
(TT*2,) = (T2, T"y) = (,TT"y),
and the first condition is fulfilled. Then apply the result T*T = I from EXAMPLE 4.1, (2),
(TT*)2 =TT*TT*=T(T"T)T*=TIT* =TT",
and it follows that P = TT™* is a projection.
The range of the projection P =TT™* is given by Px =TT*z =z, i.e. TT*H. Now,
T*(H) =T*(H) = ker(T)",
thus TT*(H) = T (ker(T)*). It follows from
H = ker(T) @ ker(T)™*,
that
TT*(H) =T (ker(T)*) =T (ker(T) @ ker(T)") = T(H),

and the range is TH.

Example 4.5 Consider the Hilbert space L*([0,00)). Let h > 0 and define the operator T by

Tf(z)=0 for 0 <ax <h,
Tf(z)= f(x—h) for h < x.

Show that T is isometric and determine T*. Find TT* and T*T.

First notice that
2 oo 2 +ee 2 oo 2 2
ITfI3 = / T ()2 = /h |z — h)[2dz = / (@) 2 = [ £3.

which shows that T is isometric. Then it follows from EXAMPLE 4.1, (2) that T*T = I.
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Let f, g € H. Then

+o0 - +oo _
(Tf.g) / T (2)g(@) de = /h f(& — h)g(@) de

= [ = (7.1),
and we conclude that
T*g(z) = g(xz + h) for z € [0, o0
Then finally we get

x+h—h)=g(z) for x € [h, +00],

TT*g(x) =Tg(x + h) = { g 0 for x € [0, h],

thus TT*g = 1(p, 4o0[ - 9-
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5 Unitary and normal operators

Example 5.1 An operator T € B(H) is called unitary if it is isometric and surjective. Show that
the following conditions are equivalent for an operator T € B(H),

(a) T is unitary.

(b) T is bijective and T~ = T*.

(c) T* =TT* = 1.

(d) T and T* are isometric.

(e) T is isometric and T* is injective.

(f) T* is unitary.

(a) = (b). Assume that T is unitary, thus T(H H, and ||Tz| = ||z| for x € H. Clealrly7 Tx=0
implies that = = 0, so T is injective, and T~} sts and is continuous with ||T |~ . (Sketch
of proof: Put y = Tz, etc.) From D (T~') = = H, we even get that 71 € B(H)7 and we
conclude that T is bijective.

Then it follows from EXAMPLE 4.1, (2) that T*T = I, and from the definition of T=! we get
T—'T = I. Hence,

0= (r*-T""T, thus (T*—=T7")T(H)={0}.
From T(H) = H follows that T* — T~ is identically 0 on all of H, thus T* = T1.
(b) = (c). Assume that T is bijective and that 7~! = T*. Then
T"T=T"'T=I and TT*=TT '=1.

(c) = (d). Let T*T = TT* = I. It follows from EXAMPLE 4.1, (2) that T is isometric. Then we
conclude from

(TT*)" = (T*)" T* = I* =1,
that T* is also isometric by EXAMPLE 4.1, (2).
(d) = (e). If T and T* are isometric, then T* is in particular injective.

(e) = (a). Assume that T is isometric and that T* is injective. We shall prove (a), so it only remains
to prove that T(H) = H.

Because T'(H) is closed, it suffices to prove that if
(Ty,z) =0 for all y € H,

then © = 0. We have
0= (Ty,x) = (y, T*x) for all y € H.

When we in particular choose y = T™*x, then
(T*z, T*z) = ||T*z||> = 0, thus T*x = 0.

Now, T™ is injective, so = = 0.
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Summing up we have proved that (a)—(e) are equivalent. We shall only prove that we can add (f) to
this family of equivalent conditions.

(a) A (d) = (f). If T is unitary, then 7" and T** = T are isometric, so T* is unitary by (d).

(f) A (d)= (a). If T* is unitary, then T* and T** =Y are isometric, and T is unitary by (d).

Example 5.2 Let (e) denote an orthonormal basis in a Hilbert space H and let T € B(H) be given
by

T (Z akek> = Z )\kakek.
k=1 k=1

Show that T is unitary if and only if |A\x| =1 for all k.

We conclude from

o0 2 o0
Z)\kxkek = Z|)\k|2|xk|2>
k=1 k=1

that if [A\g| =1 for all k, then ||Tz|| = ||z||, hence T is isometric.

1T =

If there exists a k, such that |\gx| # 1, then ||Tex| = || # 1 = ||ex]|, and T is not isometric.

We have proved that T is isometric, if and only if [Ag| = 1 for all k& € N. We shall only prove that if
[Ak] =1 for all k € N, then T(H) = H, because this implies by EXAMPLE 5.1 that T is unitary.

Let y € H, ie.

o0 (o)
Y= Zykek and Z lyx|? < o0.
k=1 k=1

If there exists an x € H, such that Tz = y, then

oo o o0
E AeTrer = E Yrek and g lzi]? < 0.
k=1 k=1 k=1

It is seen by the identification that since Ay Y- |)\k|2 = 1, we have only the possibility that
AkTg = Y, thus
Yk  ~—
=== = \u¥k-
Tk " kYK

We shall only prove that the candidate

o0
T = Z AkYrer
k=1

belongs to H. This is trivial, because

oo o0 o0
Dotz = PalPlyel® = Dyl = llyll* < oo,
k=1 k=1 k=1
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so x € H, and Tx = y. This proves that T'(H) = H, and it then follows from ExaMPLE 5.1 that T
is unitary.
Example 5.3 Let T € B(H) be unitary. Show that

o(T)c{zeC|l|z|=1}.

Let |A| # 1. Because T is unitary, we get in particular that ||T]| = ||«||, hence
[Tz = Axl| > [ Ta| = [IAz][| = [1 = [A[] - [l]-

It follows that (T — X\I)~! exists for every A € C, for which [A\| # 1. We shall finish the proof by
showing that (7' — A I)~! is densely defines in H, because then

o(T) 2C\{zeCl[z] =1} and o(T)S{zeC[|z[=1}.

Assume that (T — A1)~ is not densely defined for some A € C. Then there exists an y # 0, such that
y L(T—-X)D(T —\I)=(T—-\I)(H),

thus
0=(T-AD)z,y) = (=, (T" = XI)y) = (x,0) forallze H.

We conclude that T*y — Ay = 0, hence X is even an eigenvalue for 7% = T~ 1.

By EXAMPLE 5.1, T* is also unitary, thus || = 1, and hence also || = 1. Then it follows by
contraposition that if |\ # 1, then (T — AI)~! is densely defined. Then

oT)2C\ {2 €C|Jz| =1} and o(T) C{zeC ||z =1}.
Example 5.4 An operator T € B(H) is normal if
Tr* =T"T.

Show that T is normal if and only if | T*z|| = ||Tx|| for all x € H.

If T € B(H) is normal, i.e. T*T = TT*, then
| T*x||? = (T*z, T*x) = (TT*x,z) = (T*Tx,z) = (Tx,Tx) = ||Tz||?,
and we conclude that |T*z|| = ||Tz|| for all z € H.
Assume conversely that ||T*z|| = || T« for all x € H. Then
0= |T*z|? = |Tz|]?> = (T*z, T*x) — (T2.Tz) = (TT*z,2) — (T*Tx,z) = (TT* — T*T) z,z).

The space H is complex. so it follows that TT* — T*T = 0, hence T*T = TT™* as required.
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Example 5.5 Let T € B(H) be normal. Show that
(T = ADz|| = |[(T* = X1) ||

for all x € H. Show that o.(T) is empty.

If T is normal, then T*T = TT*, and we get

T = AT)z|? = (T XD, (T — Xz

Tz, Tx) — Nx.Tx) — X(Tx,z) + |\?*(z, 2)
T*Tz,z) — A(T*z,2) — X (z,T*z) + |\*(z, 2)
TT*z,x) — (T*:c,X:E) - (X:c,T*z) + (Xx,Xm)
T2, T x) — (T*m,Xa:) — (Xx,T*a:) + (Xx,Xa:)

— (1" =XD)a, (T* =XD)z) = |[(T* =3 D) |,

|
~ o~~~ —~

and the first claim is proved.

It follows that X is an eigenvalue for T (of eigenvector x), if and only if X is an eigenvalue for T* (the
same eigenvector x), thus

ap (T7) = op(T).

On the other hand, ¢,(T) € o, (T*) = 0,(T), and because o,(T") and 0,(T") are disjoint, we must
have o,.(T) = 0.

[ ]
B By 2020, wind could provide one-tenth of our planet's
ra | n p O W e r electricity needs. Already today, SKF's innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.
Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our

stems for on-line condition monitoring and automatic
ication. We help make it more economical to create

Therefore we'need the best employees who can
eet this challenge!

Trﬁf Power of Knowledge Engineering

:’:-‘%.i

=

Plug into The Power of Knowle‘ngineering.
Visit us at www.skf.com/knowledges

64

Click on the ad to read more
Download free eBooks at bookboon.com



http://www.skf.com/knowledge

Spectral Theory 5. Unitary and normal operators

Example 5.6 Let H = L*([0,1]) and consider the operator

Tf(z)=V3af(z*).

1) Show that T € B(H) and find ||T|.
2) Show that T—! exists and that T~ € B(H).

Determine T~ 1g(y) for g € H, and find HT’1||.

3) Show that o(T) € {\ € C | |A| = ||T][}.

1)

The operator T is obviously linear.

Then by the change of variable y = 2,

o= [ s = [ s |1 @) = [ rwPa= 113
hence T is isometric (||Tf||2 = || f]|2), thus T' € B(H) and ||T|| = 1.
We shall prove that the equation

Tf(z)=g(x),  geL*([0,1)),

always has a uniquely determined solution, thus 7! : H — H. It follows by the definition that
we shall solve

Tf(x) =V3af(2®) = g(z).

Utilizing the monotone change of variable z = /y, we get

S) = Jg 9@ = 5o 9 (W =T 00,
hence
() = = = (VE). g e H e A0,

We get from the computation in (1) that Tf = g and f = T~ !g that
ITfll2 = llgllz = I fll2 = |7~ 9|

and 7! is also isometric, HT*1g||2 = ||g|2, and ||T*1H =1
We say that T is unitary, cf. EXAMPLE 5.1.

T-' € B(H),

27

This has already been proved in EXAMPLE 5.3. However, let us do it again. If |A\| > 1, then

T—AIZ-A(I—%T), where

1 1
STll=— <1
‘A H NS

thus (T'— M )~! € B(H), and (T — A I)~! is given by the Neumann series
1321
T—-A)t=—2) —T"

n=0
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Then let [A| < 1. From T~! € B(H) follows that T—A1 =T (I — AT~'). From |[AT~!|| = [\ < 1
follows by a Neumann series that

(T-AD)' =T - T 'T' = (io A" (Tl)"> = +§A” (r=)"",
n=0 n=0

hence (T'— A I)~! € B(H), and we conclude that

oT) 2{AeClAI#1} and o(T)E{AeC[]A[ =1}
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Spectral Theory 6. Positive operators and projections

6 Positive operators and projections
Example 6.1 An operator T € B(H) is positive if
(Tx,z) >0 forallxz € H,

and we write T > 0.
Prove the following:

1) T > 0 implies that T is self adjoint.

2) IfS, T>0,a>0, then S+aT > 0.
3) If T >0 and S € B(H), then S*T'S > 0.
4) If T € B(H) then T*T > 0,

5) If T is an orthogonal projection then T > 0.

1) Assume that T € B(H) is positive, i.e. (Tx,z) > 0 for every x € H. Then
(T*z,z) = (z,Tz) = (Tx,z) = (Tz,z) >0,
and 7™ is also positive, and
(T*=T)z,z) =0 for every = € H.

Then assume that the vector space is complex. Then it follows that T* — T =0, i.e. T* =T, and
we have proved that T is self adjoint.

2) This is trivial: For every z € H,
(S+aT)z,x)=(Sz,z) +a(Tz,z) >0+ a-0=0.

3) It follows from Sz € H for every x € H that
(8*TSx,z) = (T(Sx),Sx) > 0.

4) This is again trivial. In fact, for every x € H,
(T*Tx,z) = (Tx, Tx) = ||Tz||* > 0.

5) Let T denote an orthogonal projection. Then
T*=T7 and T?=T.

It follows from (4) that

T*"T =TT =T*=T

is positive, hence T" > 0.
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Example 6.2 Let Py and Py denote the orthogonal projections of the closed subspaces M and N of
a Hilbert space H. Show that M C N implies that Py < Py.

If M € N, then
H=N®N-=Mo (M- nN)oN*,
which means that every element x € H has a unique decomposition
=1y +ay+at, where z,, € M, zy €M+ NN, zteN* .
Then
Py = Py (wM + N —i—:cJ‘) =z and Pyz = Py (xM + N —|—xJ‘) =z +aN.
It follows that

((Py — Py)x,z) = (xM —I—xn—xM,xM—l—:z:N—FxJ‘):(a?N,zM—I—:z:N—l—xJ‘)
= (mN,xM)—i—(acN,mN)—i-(mN,xJ‘)

= 0+ |lzy)?+0=|lzy]? >0,

hence Py — Py > 0, and whence Py < Py.
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Spectral Theory 6. Positive operators and projections

Example 6.3 An operator T € B(H) is called a contraction
1Tz < ||« for all xz € H.
Show that the following conditions are equivalent for an operator T € B(H):
1) T is a contraction,
2) Tl <1,
3) T"T <1,
4) TT* <1,
5) T* is a contraction,

6) T*T is a contraction.

(1) = (2). Let T € B(H) denote a contraction, thus ||Tz| < ||z| for all x € H. Then
1T} = sup{[|Tz| | [lz]| <1} <sup{[l] | [l«]| <1} =1,
and we have proved (2).

(2) = (3). Assume that |T|| < 1. Then

9) (I -T*T)w,z) = (z,2)— (T"Tx,z) = |z|*> - (Tz,Tx)
]|® = || > [J«]|* = 1- [|=[|* = 0,
and we have proved that I = T*T > 0, hence T*T < I, and we have proved that (3).

(3) = (1). Assume that T*T < I. By repeating (9) we see that ||z||> — ||Tz||*> > 0, thus | Tz| < |z,
and we have proved (1).

It follows from the above that the former three conditions (1)—(3) are equivalent.

(1) & (5). If T'is a contraction, then by (2), ||T*] = |T'|| < 1, and we infer that T* is a contraction.

If conversely T™ is a contraction, then T** = T is contraction.
We have proved that the conditions (1)—(3) and (5) are equivalent.
(1) & (4). If (1) is fulfilled, then also (3) and (5), and it follows that (5) is equivalent with
(T*)*T* =TT* < I,
and (1)—(5) are all equivalent.
(1) = (6). If T is a contraction, then we have proved that | T*|| = ||T|| < 1, and it follows that
JTTe < T T < 10 = 1,

thus T*T is a contraction by (2), and we have proved (6).
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(6) = (1). If T*T is a contraction, then
|1 T*Tx| < |z for all x € H,
hence by the Cauchy-Schwarz inequality
|IT2|? = (Ta,Tw) = (T*Tx,2) < |T* Tz - | < ||=]*.
We infer that ||Tz|| < ||z|| for every x € H, and T is by the definition a contraction.

We have proved that the six conditions (1)—(6) are equivalent.
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Spectral Theory 7. Compact operators

7 Compact operators

Example 7.1 Let S and T be linear and bounded operators and assume that S is compact. Show that
ST and TS are compact.

According to the definition, S € B(H) is compact, if S(X) is compact for every bounded set X C H.
Consider S, T' € B(H), and let S be compact. If X is bounded, then T(X) is also bounded. In fact,
if

M = sup{|[z|| | ||| € X},
then

[Tl < [T - l=l < [[T[|- M for all z € X.

Tt follows that ST(X) = S(T(X)) is compact, hence the composite operator ST is compact.

Since T is continuous, it follows that T'S(X) S T (S (X )) Now, S(X) is compact for every bounded

set X, and T is continuous, hence T' (S (X )) is also compact. Now every closed subset of a compact

set is compact, hence T'S(X) is compact, and the composite operator T'S is compact.

Example 7.2 Let S and T be compact operators in B(H), and let « € C. Show that S + «T is
compact.

Denote by X a bounded set. Then S(X) and T(X) are both compact sets, because S and T are
compact operators. Choose any sequence (z,) & (S +aT)(X). Then we can find other sequences
(yn) € X and (z,) € X, such that

Ty = Syn +aTz,.

The set S(X) is compact, hence there exists a subsequence (ys,,), such that Sy, — y, and we obtain
the subsequence (z,,,) by

T, = Syn; +aTzy,.
If @ = 0, there is nothing to prove. If o # 0, it follows by a rearrangement that

1 1
Tzn, = — 2n, — — Syn, € T(X).
o o

The set T'(X) is compact, so there is a subsequence (n;, ), such that Tz, — z. This implies that the

subsequence (9cn]k) is convergent,
Tp, = Synjk + aTznjk —y+az.

We have proved that any sequence (z,,) from (S+a T)(X) has a convergent subsequence, hence(S + o T)(X)
is compact. Furthermore, X is any bounded set in H, so we infer that S + T is compact.
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Remark 7.1 This result shows that the set of compact operators in B(H) is a subspace of B(H).
Then it follows from the result of EXAMPLE 7.1 that the subspace of compact operators is even a
so-called two-sided ideal in B(H) with the composition of operators as multiplication. ¢

Example 7.3 Let (e) denote an orthonormal basis in a Hilbert space H, and define the operator T
by

o0 o0 1
T (Z akek> = Z E Ap€Cl—1.-
k=1 k=2
Show that T is compact and find T*. Find 0,(T) and o, (T*).

Define T},, n > 2, by

—+oo n
Tn <Z akek> = Z % AK€Cl—1-
k=2

k=1

Then T, is of finite rank, thus also compact. It follows from

o] +oo 1
(T —T) (Z%%) = > 7 QkCh—1;
k=1 k=n-+1
that
+oo 2 +o0 1 ) 1 —+o0 ) 1 —+oo 2
(T -T) (Z) = 2 plal < gogn 2 lml < pogy Do ae
n=1 k=n+1 k=n+1 k=1

1

thus |[|[(T — T, <
ws |7 =Tl < —
T — T,|| — 0 for n — 4o0. It follows that T is compact.

1
||z|| for all x € H, and we have proved that [|T — T,| < nEl hence
n

Then we check when T\ = T — A [ is injective. It follows by recursion from

+oo +oo
1
T (Z%%) = Z {k—_HakJrl - )\ak} er =0,
k=1 k=1

that
apy1 = (E+Dhap =--- = (k+ D!\ay, k e N.
If A # 0, then

+oo —+oo 5
D ar =" faal* (KA.
n=1 k=1

Now, (k!|/\|k_1)2 — 400 for k — 400, thus this series is only convergent, if a; = 0, and hence all
ar = 0. Therefore, when A # 0, then Thz = 0 implies that = = 0, thus T is injective for X\ # 0. In
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particular we get for the point spectrum o,(7") € {0}. On the other hand T'e; =0 = 0- ey, thus 0 is
an eigenvalue, and o,(T) = {0}.

Then we search the adjoint operator T*. Let

+oo +oo
T = E TEk 0og Y= E YkCk-
k=1 k=1

Then

“+oo “+o0
(TCC,y) = ( % TrClk—1, Zyn€n> Z% k—1 — Z Tk€k, Z Yn—1€n = ((E,fr*y)7
k=2 n=1

Mg

from which

() S

*

Yn€n - — Yn—1€n = Yn€n41-
n=1 n n=1 n+1

n=2

Assume that p € o, (T*) is an eigenvalue for T*. Then there is a y = : 1 Ynen # 0, for which

(10) (T* — p 1) <Zyn6n>uy161+2{ Yn—1 — ,uyn}enO.

Here we derive the conditions
1
pyr =0 and —Yn-1=HYn, n22.

If =0, then it follows immediately from (10) that y = 0, thus 0 ¢ o, (T).
If p # 0, then

1
y1 =0 and Yn = — Yn—1, N =>2,
nuy

and it follows by either induction or by recursion that y = 0, contradiction the assumption. We
therefore conclude that o, (1) = (). This implies that the residual spectrum for 7" is empty, o,.(T') = 0.

Remark 7.2 It is also possible here to find ¢(T") and o (7), though this is not an easy task. For
completeness the derivations are given in the following.

It follows immediately from the expressions of 7" and T that
1
T|=|T" = =
Il = I =5,
hence

a(T)g{zec ‘ |z|§%} and a(T*)g{zec ‘ |z|§%},
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It follows from the expression of T*,
—+oo +oo 1
* E : _ E :
! (nlyn€n> - =ntl Sty

that T* is injective, so (T*)™" exists. Then from e; L T*D (T*) follows that (T*) " is not densely
defined. This means that 0 € o,. (T7*).

It follows from T* € B(H) and T € B(H), that T** =T = T. We have already proved that
op(T) = 0p (T™) = {0}.

so it follows by contraposition that o, (T*) = {0}. We have proved
op(T) ={0}, on(T) =0, 0p(T")=0, on(T")={0}.

Then we claim that

(11) 0.(T) = 0. (T™) = 0.

First notice that if (11) holds, then it easily follows that

o(T) =0 (T") ={0} and o(T)=o(T")=C\{0}.
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In order to prove (11) we shall need the following theorem:

Theorem 7.1 Assume that T € B(H) is compact, and choose X # 0. If T\ =T — M\ s injective,
then the range (T — XNI)(H) is closed.

First assume that Theorem 7.1 holds. Let A € o.(T). Then 0,(T) = {0}, and because o,(T") and
o.(T) are disjoint, we must have A # 0. Then it follows from the definition of o.(T) that T — A I is
injective and that (T'— AT)(H) is dense in H. Theorem 7.1 shows that (T'— A I)(H) is closed, hence
(T — XNI)(H) = H, and whence (T — XAI)~! is bounded by the theorem of bounded inverse. This
means that A € o(T), contradicting the assumption that A € o.(T). We conclude that o.(T) = (.

The proof of o, (T*) = () is apart from a very small modification exactly the same as that above. This
modification is that we this time shall use that because o, (T*) = {0}, we must have A # 0 for any
possible A € 0.(T). ¢

PROOF OF THEOREM 7.1. Let y = lim,,— 4 o Yn, where y,, = (T — A1)z,

1) Assume that (x,) has a bounded subsequence. Because T is compact, there must exist another
subsequence (x,,) such that the image sequence (Tx,,) is convergent. From follows

1

that z,, — = and y = (T'— AI)x, hence y € (T'— A I)(H), and we have proved that (T'— A I)(H)
is closed in this case.

2) Then assume that (z,) does not have any bounded subsequence. Then ||z, | — +oo. We define
T,

Zn = [zl = 1,

[l

thus (T — AI)z, — 0. There is a subsequence (zy,), such that (Tz,,) is convergent. However,
1

(zni -3 sz> is convergent, so z,, — z, where ||z|| = 1 and (T — A I)z = 0, contradicting that

T — X1 is injective. Hence the sequence (z,,) must have a bounded subsequence, and we are back

in case (1) above, and the claim is proved. O

Example 7.4 Let T be a bounded operator on a Hilbert space H. Show that:
1) If T is compact, then T* is also compact.
2) If T*T is compact, then T is compact.

3) If T is self adjoint and T™ is compact for some n, then T is compact.

1) Assume that T is compact. Let X be a bounded set, and let (y,) S T*(X) be any sequence, thus
there exists a sequence (z,,) € X, such that y,, = T*z,,.

We shall prove that there exists a subsequence (xnj), such that (T *xnj) is convergent. This is
done INDIRECTLY. Assume that T is not compact. Then there exists a bounded sequence (¢, ),
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which converges weakly towards ¢, such that (T, ) does not converge strongly towards T,
thus there exist a subsequence (f,,) and an n > 0, such that

I T*frn = T*p| >n for all n € N,
hence

N < ANT* fr =Tl < T - | — ¢l (< M),
and whence

n
an _QOnH Z T 2T
177l

Now, (T f,, — T*p) is bounded and it converges weakly towards 0, hence TT™ f,, converges strongly
towards TT™p, i.e.

0 < (fo = @ = (TT % (fo = 9) s fr = ) < ITT* (fu = @) - [ fr = ll = 0

for n — +o00. This gives a contradiction, 7 > 0 being fixed, and our assumption that T* is not
compact, must be wrong. We therefore conclude that 7™ is compact as claimed above.

It follows trivially from EXAMPLE 7.1 that if T is compact, then T*T is also compact.

Assume that T*T is compact, and also assume (thus an INDIRECT proof) that T is not compact.

Then there exists a bounded sequence (), which converges weakly towards ¢, such that (cf. (1))
| Ten — Tl >n for all n € N.

Because (¢, — ¢) is bounded and weakly convergent, it follows that (T*Tp,, — T*Tp) is strongly
convergent, and we get

2
7 < AT (e =N = (T (0n—¢), T (pn — )
= (T"T (¢n = ¢) 00— 9) < IT*T (0 = )| - lpn — ¢l
HT*T((Pn _90)” -M — 0 for n — 400,

IN

which is a contradiction, because n > 0 is a given constant. We therefore conclude that T is
compact.

Finally, assume that T is self adjoint, 7% =T | and that T" is compact for some given n € N.

If n = 2m is even, then it follows from T being self adjoint that
is compact. Then we infer from (2) that T™ is compact, where m = g <n.

If instead n = 2m — 1 is odd, then
TnJrlT’rLT _ T?m —_ (Tm)* (Tm)

. . . n+1
is compact, cf. EXAMPLE 7.1, and we infer as above that T is compact, where m = 5 <n,

when n > 1.

By recursion we get after a finite number of steps that T2 is compact, and hence that T2 = Tx T
is also compact, which by (2) implies that T is compact.
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Example 7.5 Let T : {2 — (2 be the linear operator given by

1
T(mlaxZa ey Tan—1,T2n, dOtS) = (fEQ, x1, 5 X4, 5 Z3, -
1) Find |T].
2) Find T*.

3) Prove that T is compact.

cey T X2p, — X215 - -
n n

1

1

4) Find the spectrum and resolvent set for T', and determine a set of basis vectors for the eigenspace

3)

assoctated to X € op(T).

In general,

—+oo

2 1 2 2 = 2 2
ITe)? = 3 = {laanl® + w201} < Y laal® = 2%
n=1

n=1
thus ||T]] < 1.
On the other hand,
[Ter]| = [lezf| =1 = [lea]]  and

so ||T|| =1, and T € B (£?).

Because T' € B ((?), we also have T* € B (¢?), and || T*|| = ||T||. Then

—+o0

1 1
T = —T2nYoan—1+ — Tan—1Y2n
(T, y) Z{nfCQ Y2 1+n22 1Y2 }

n=1

+oo

1 1
= Z {$2n—1 — Yon + T2y . yzn—l} = (2, T"y) = (=, Ty),

n=1
hence T'=T*, and T is self adjoint.
We get that T is compact from T, — T, where

1 1 1
2 2

1
Tn(l'l,l'g,...) = (1’2,1’1, — X4, —Ig,...,gl’gn, ﬁ.’EQn,l,0,0,...

is of finite rank, thus compact, and where

+oo

n 1 2 2
1T =T)el™ = > o {loasl® + foanal} <
k=n+1

i.e.

1
IT-T,)| <———0 for n — +oo.
n+1

(n

1
+1

)

l=]1%,

[Tea = lleall = 1 = llell,

)
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4) Because T is self adjoint and compact, we can apply the main theorem, thus

op(T) = {\n | n € N}.
Now Tz = 0 implies that z = 0, hence 0 ¢ 0,(7T"), which means that o.(T) = {0} and o,(T) = 0,
because T is self adjoint.

The eigenvalue problem Tz = Az, A # 0, is now written in coordinates
1

1
— Ton Aon—1, —AZon—1+ — Ton 0,
n ] n
ie. neN,
1 1
—Top-1 = Alan, — Top—1 — ATap 0,
n n
which has non-trivial solutions, if and only if there exists an n € N, such that
1
-\ = .
n
0, e M=
1 n
- =A
n
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Spectral Theory 7. Compact operators

1
We get the eigenvalues A = +—, n € N, corresponding to e.g. the eigenvectors
n

1
€2n—1 + €2p, Ap = —,
n

n € N.

1

€an—1 — €2n, )\—n = )
n

We finally get

W ={1 | nezo}.  am-10  om-

and

on=c\ (wu{s | nezi o)),
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