bookboon.com

Real Functions in Several Variables: Volume X

Vector Fields I
Leif Mejlbro

Download free books at

Leif Mejlbro

Real Functions in Several Variables
 Volume X Vector Fields I Tangential Line Integral and Gradient Fields Gauß's Theorem

Real Functions in Several Variables: Volume X Vector Fields I Tangential Line Integral and Gradient Fields Gauß's Theorem $2^{\text {nd }}$ edition
© 2015 Leif Mejlbro \& bookboon.com
ISBN 978-87-403-0917-1

Contents

Volume I, Point Sets in \mathbb{R}^{n} 1
Preface 15
Introduction to volume I, Point sets in \mathbb{R}^{n}. The maximal domain of a function 19
1 Basic concepts 21
1.1 Introduction 21
1.2 The real linear space \mathbb{R}^{n} 22
1.3 The vector product 26
1.4 The most commonly used coordinate systems 29
1.5 Point sets in space 37
1.5.1 Interior, exterior and boundary of a set 37
1.5.2 Starshaped and convex sets 40
1.5.3 Catalogue of frequently used point sets in the plane and the space 41
1.6 Quadratic equations in two or three variables. Conic sections 47
1.6.1 Quadratic equations in two variables. Conic sections 47
1.6.2 Quadratic equations in three variables. Conic sectional surfaces 54
1.6.3 Summary of the canonical cases in three variables 66
2 Some useful procedures 67
2.1 Introduction 67
2.2 Integration of trigonometric polynomials 67
2.3 Complex decomposition of a fraction of two polynomials 69
2.4 Integration of a fraction of two polynomials 72
3 Examples of point sets 75
3.1 Point sets 75
3.2 Conics and conical sections 104
4 Formulæ 115
4.1 Squares etc 115
4.2 Powers etc. 115
4.3 Differentiation 116
4.4 Special derivatives 116
4.5 Integration 118
4.6 Special antiderivatives 119
4.7 Trigonometric formulæ 121
4.8 Hyperbolic formulæ 123
4.9 Complex transformation formulæ 124
4.10 Taylor expansions 124
4.11 Magnitudes of functions 125
Index 127
Volume II, Continuous Functions in Several Variables 133
Preface 147
Introduction to volume II, Continuous Functions in Several Variables 151
5 Continuous functions in several variables 153
5.1 Maps in general 153
5.2 Functions in several variables 154
5.3 Vector functions 157
5.4 Visualization of functions 158
5.5 Implicit given function 161
5.6 Limits and continuity 162
5.7 Continuous functions 168
5.8 Continuous curves 170
5.8.1 Parametric description 170
5.8.2 Change of parameter of a curve 174
5.9 Connectedness 175
5.10 Continuous surfaces in \mathbb{R}^{3} 177
5.10.1 Parametric description and continuity 177
5.10.2 Cylindric surfaces 180
5.10.3 Surfaces of revolution 181
5.10.4 Boundary curves, closed surface and orientation of surfaces 182
5.11 Main theorems for continuous functions 185
6 A useful procedure 189
6.1 The domain of a function 189
7 Examples of continuous functions in several variables 191
7.1 Maximal domain of a function 191
7.2 Level curves and level surfaces 198
7.3 Continuous functions 212
7.4 Description of curves 227
7.5 Connected sets 241
7.6 Description of surfaces 245
8 Formulæ 257
8.1 Squares etc. 257
8.2 Powers etc. 257
8.3 Differentiation 258
8.4 Special derivatives 258
8.5 Integration 260
8.6 Special antiderivatives 261
8.7 Trigonometric formulæ 263
8.8 Hyperbolic formulæ 265
8.9 Complex transformation formulæ 266
8.10 Taylor expansions 266
8.11 Magnitudes of functions 267
Index 269
Volume III, Differentiable Functions in Several Variables 275
Preface 289
Introduction to volume III, Differentiable Functions in Several Variables 293
9 Differentiable functions in several variables 295
9.1 Differentiability 295
9.1.1 The gradient and the differential 295
9.1.2 Partial derivatives 298
9.1.3 Differentiable vector functions 303
9.1.4 The approximating polynomial of degree 1 304
9.2 The chain rule 305
9.2.1 The elementary chain rule 305
9.2.2 The first special case 308
9.2.3 The second special case 309
9.2.4 The third special case 310
9.2.5 The general chain rule 314
9.3 Directional derivative 317
$9.4 \quad C^{n}$-functions 318
9.5 Taylor's formula 321
9.5.1 Taylor's formula in one dimension 321
9.5.2 Taylor expansion of order 1 322
9.5.3 Taylor expansion of order 2 in the plane 323
9.5.4 The approximating polynomial 326
10 Some useful procedures 333
10.1 Introduction 333
10.2 The chain rule 333
10.3 Calculation of the directional derivative 334
10.4 Approximating polynomials 336
11 Examples of differentiable functions 339
11.1 Gradient 339
11.2 The chain rule 352
11.3 Directional derivative 375
11.4 Partial derivatives of higher order 382
11.5 Taylor's formula for functions of several variables 404
12 Formulæ 445
12.1 Squares etc. 445
12.2 Powers etc. 445
12.3 Differentiation 446
12.4 Special derivatives 446
12.5 Integration 448
12.6 Special antiderivatives 449
12.7 Trigonometric formulæ 451
12.8 Hyperbolic formulæ 453
12.9 Complex transformation formulæ 454
12.10 Taylor expansions 454
12.11 Magnitudes of functions 455
Index 457
Volume IV, Differentiable Functions in Several Variables 463
Preface 477
Introduction to volume IV, Curves and Surfaces 481
13 Differentiable curves and surfaces, and line integrals in several variables 483
13.1 Introduction 483
13.2 Differentiable curves 483
13.3 Level curves 492
13.4 Differentiable surfaces 495
13.5 Special C^{1}-surfaces 499
13.6 Level surfaces 503
14 Examples of tangents (curves) and tangent planes (surfaces) 505
14.1 Examples of tangents to curves 505
14.2 Examples of tangent planes to a surface 520
15 Formulæ 541
15.1 Squares etc. 541
15.2 Powers etc. 541
15.3 Differentiation 542
15.4 Special derivatives 542
15.5 Integration 544
15.6 Special antiderivatives 545
15.7 Trigonometric formulæ 547
15.8 Hyperbolic formulæ 549
15.9 Complex transformation formulæ 550
15.10 Taylor expansions 550
15.11 Magnitudes of functions 551
Index 553
Volume V, Differentiable Functions in Several Variables 559
Preface 573
Introduction to volume V, The range of a function, Extrema of a Function in Several Variables 577
16 The range of a function 579
16.1 Introduction 579
16.2 Global extrema of a continuous function 581
16.2.1 A necessary condition 581
16.2.2 The case of a closed and bounded domain of f 583
16.2.3 The case of a bounded but not closed domain of f 599
16.2.4 The case of an unbounded domain of f 608
16.3 Local extrema of a continuous function 611
16.3.1 Local extrema in general 611
16.3.2 Application of Taylor's formula 616
16.4 Extremum for continuous functions in three or more variables 625
17 Examples of global and local extrema 631
17.1 MAPLE 631
17.2 Examples of extremum for two variables 632
17.3 Examples of extremum for three variables 668
17.4 Examples of maxima and minima 677
17.5 Examples of ranges of functions 769
18 Formulæ 811
18.1 Squares etc. 811
18.2 Powers etc. 811
18.3 Differentiation 812
18.4 Special derivatives 812
18.5 Integration 814
18.6 Special antiderivatives 815
18.7 Trigonometric formulæ 817
18.8 Hyperbolic formulæ 819
18.9 Complex transformation formulæ 820
18.10 Taylor expansions 820
18.11 Magnitudes of functions 821
Index 823
Volume VI, Antiderivatives and Plane Integrals 829
Preface 841
Introduction to volume VI, Integration of a function in several variables 845
19 Antiderivatives of functions in several variables 847
19.1 The theory of antiderivatives of functions in several variables 847
19.2 Templates for gradient fields and antiderivatives of functions in three variables 858
19.3 Examples of gradient fields and antiderivatives 863
20 Integration in the plane 881
20.1 An overview of integration in the plane and in the space 881
20.2 Introduction 882
20.3 The plane integral in rectangular coordinates 887
20.3.1 Reduction in rectangular coordinates 887
20.3.2 The colour code, and a procedure of calculating a plane integral 890
20.4 Examples of the plane integral in rectangular coordinates 894
20.5 The plane integral in polar coordinates 936
20.6 Procedure of reduction of the plane integral; polar version 944
20.7 Examples of the plane integral in polar coordinates 948
20.8 Examples of area in polar coordinates 972
21 Formulæ 977
21.1 Squares etc. 977
21.2 Powers etc. 977
21.3 Differentiation 978
21.4 Special derivatives 978
21.5 Integration 980
21.6 Special antiderivatives 981
21.7 Trigonometric formulæ 983
21.8 Hyperbolic formulæ 985
21.9 Complex transformation formulæ 986
21.10 Taylor expansions 986
21.11 Magnitudes of functions 987
Index 989
Volume VII, Space Integrals 995
Preface 1009
Introduction to volume VII, The space integral 1013
22 The space integral in rectangular coordinates 1015
22.1 Introduction 1015
22.2 Overview of setting up of a line, a plane, a surface or a space integral 1015
22.3 Reduction theorems in rectangular coordinates 1021
22.4 Procedure for reduction of space integral in rectangular coordinates 1024
22.5 Examples of space integrals in rectangular coordinates 1026
23 The space integral in semi-polar coordinates 1055
23.1 Reduction theorem in semi-polar coordinates 1055
23.2 Procedures for reduction of space integral in semi-polar coordinates 1056
23.3 Examples of space integrals in semi-polar coordinates 1058
24 The space integral in spherical coordinates 1081
24.1 Reduction theorem in spherical coordinates 1081
24.2 Procedures for reduction of space integral in spherical coordinates 1082
24.3 Examples of space integrals in spherical coordinates 1084
24.4 Examples of volumes 1107
24.5 Examples of moments of inertia and centres of gravity 1116
25 Formulæ 1125
25.1 Squares etc. 1125
25.2 Powers etc. 1125
25.3 Differentiation 1126
25.4 Special derivatives 1126
25.5 Integration 1128
25.6 Special antiderivatives 1129
25.7 Trigonometric formulæ 1131
25.8 Hyperbolic formulæ 1133
25.9 Complex transformation formulæ 1134
25.10 Taylor expansions 1134
25.11 Magnitudes of functions 1135
Index 1137
Volume VIII, Line Integrals and Surface Integrals 1143
Preface 1157
Introduction to volume VIII, The line integral and the surface integral 1161
26 The line integral 1163
26.1 Introduction 1163
26.2 Reduction theorem of the line integral 1163
26.2.1 Natural parametric description 1166
26.3 Procedures for reduction of a line integral 1167
26.4 Examples of the line integral in rectangular coordinates 1168
26.5 Examples of the line integral in polar coordinates 1190
26.6 Examples of arc lengths and parametric descriptions by the arc length 1201
27 The surface integral 1227
27.1 The reduction theorem for a surface integral 1227
27.1.1 The integral over the graph of a function in two variables 1229
27.1.2 The integral over a cylindric surface 1230
27.1.3 The integral over a surface of revolution 1232
27.2 Procedures for reduction of a surface integral 1233
27.3 Examples of surface integrals 1235
27.4 Examples of surface area 1296
28 Formulæ 1315
28.1 Squares etc. 1315
28.2 Powers etc. 1315
28.3 Differentiation 1316
28.4 Special derivatives 1316
28.5 Integration 1318
28.6 Special antiderivatives 1319
28.7 Trigonometric formulæ 1321
28.8 Hyperbolic formulæ 1323
28.9 Complex transformation formulæ 1324
28.10 Taylor expansions 1324
28.11 Magnitudes of functions 1325
Index 1327

Fascinating lighting offers an infinite spectrum of possibilities: Innovative technologies and new markets provide both opportunities and challenges. An environment in which your expertise is in high demand. Enjoy the supportive working atmosphere within our global group and benefit from international career paths. Implement sustainable ideas in close cooperation with other specialists and contribute to influencing our future. Come and join us in reinventing light every day.

Light is OSRAM

Volume IX, Transformation formulæ and improper integrals 1333
Preface 1347
Introduction to volume IX, Transformation formulæ and improper integrals 1351
29 Transformation of plane and space integrals 1353
29.1 Transformation of a plane integral 1353
29.2 Transformation of a space integral 1355
29.3 Procedures for the transformation of plane or space integrals 1358
29.4 Examples of transformation of plane and space integrals 1359
30 Improper integrals 1411
30.1 Introduction 1411
30.2 Theorems for improper integrals 1413
30.3 Procedure for improper integrals; bounded domain 1415
30.4 Procedure for improper integrals; unbounded domain 1417
30.5 Examples of improper integrals 1418
31 Formulæ 1447
31.1 Squares etc. 1447
31.2 Powers etc. 1447
31.3 Differentiation 1448
31.4 Special derivatives 1448
31.5 Integration 1450
31.6 Special antiderivatives 1451
31.7 Trigonometric formulæ 1453
31.8 Hyperbolic formulæ 1455
31.9 Complex transformation formulæ 1456
31.10 Taylor expansions 1456
31.11 Magnitudes of functions 1457
Index 1459
Volume X, Vector Fields I; Gauß's Theorem 1465
Preface 1479
Introduction to volume X, Vector fields; Gauß's Theorem 1483
32 Tangential line integrals 1485
32.1 Introduction 1485
32.2 The tangential line integral. Gradient fields. 1485
32.3 Tangential line integrals in Physics 1498
32.4 Overview of the theorems and methods concerning tangential line integrals and gradient fields 1499
32.5 Examples of tangential line integrals 1502
33 Flux and divergence of a vector field. Gauß's theorem 1535
33.1 Flux 1535
33.2 Divergence and Gauß's theorem 1540
33.3 Applications in Physics 1544
33.3.1 Magnetic flux 1544
33.3.2 Coulomb vector field 1545
33.3.3 Continuity equation 1548
33.4 Procedures for flux and divergence of a vector field; Gauß's theorem 1549
33.4.1 Procedure for calculation of a flux 1549
33.4.2 Application of Gauß's theorem 1549
33.5 Examples of flux and divergence of a vector field; Gauß's theorem 1551
33.5.1 Examples of calculation of the flux 1551
33.5.2 Examples of application of Gauß's theorem 1580
34 Formulæ 1619
34.1 Squares etc. 1619
34.2 Powers etc. 1619
34.3 Differentiation 1620
34.4 Special derivatives 1620
34.5 Integration 1622
34.6 Special antiderivatives 1623
34.7 Trigonometric formulæ 1625
34.8 Hyperbolic formulæ 1627
34.9 Complex transformation formulæ 1628
34.10 Taylor expansions 1628
34.11 Magnitudes of functions 1629
Index 1631
Volume XI, Vector Fields II; Stokes's Theorem 1637
Preface 1651
Introduction to volume XI, Vector fields II; Stokes's Theorem; nabla calculus 1655
35 Rotation of a vector field; Stokes's theorem 1657
35.1 Rotation of a vector field in \mathbb{R}^{3} 1657
35.2 Stokes's theorem 1661
35.3 Maxwell's equations 1669
35.3.1 The electrostatic field 1669
35.3.2 The magnostatic field 1671
35.3.3 Summary of Maxwell's equations 1679
35.4 Procedure for the calculation of the rotation of a vector field and applications of Stokes's theorem 1682

Deloitte.

Discover the truth at www.deloitte.ca/careers
© Deloitte \& Touche LLP and affiliated entities.
35.5 Examples of the calculation of the rotation of a vector field and applications of Stokes's theorem 1684
35.5.1 Examples of divergence and rotation of a vector field 1684
35.5.2 General examples 1691
35.5.3 Examples of applications of Stokes's theorem 1700
36 Nabla calculus 1739
36.1 The vectorial differential operator ∇ 1739
36.2 Differentiation of products 1741
36.3 Differentiation of second order 1743
36.4 Nabla applied on \mathbf{x} 1745
36.5 The integral theorems 1746
36.6 Partial integration 1749
36.7 Overview of Nabla calculus 1750
36.8 Overview of partial integration in higher dimensions 1752
36.9 Examples in nabla calculus 1754
37 Formulæ 1769
37.1 Squares etc. 1769
37.2 Powers etc. 1769
37.3 Differentiation 1770
37.4 Special derivatives 1770
37.5 Integration 1772
37.6 Special antiderivatives 1773
37.7 Trigonometric formulæ 1775
37.8 Hyperbolic formulæ 1777
37.9 Complex transformation formulæ 1778
37.10 Taylor expansions 1778
37.11 Magnitudes of functions 1779
Index 1781
Volume XII, Vector Fields III; Potentials, Harmonic Functions and Green's Identities 1787
Preface 1801
Introduction to volume XII, Vector fields III; Potentials, Harmonic Functions and Green's Identities 1805
38 Potentials 1807
38.1 Definitions of scalar and vectorial potentials 1807
38.2 A vector field given by its rotation and divergence 1813
38.3 Some applications in Physics 1816
38.4 Examples from Electromagnetism 1819
38.5 Scalar and vector potentials 1838
39 Harmonic functions and Green's identities 1889
39.1 Harmonic functions 1889
39.2 Green's first identity 1890
39.3 Green's second identity 1891
39.4 Green's third identity 1896
39.5 Green's identities in the plane 1898
39.6 Gradient, divergence and rotation in semi-polar and spherical coordinates 1899
39.7 Examples of applications of Green's identities 1901
39.8 Overview of Green's theorems in the plane 1909
39.9 Miscellaneous examples 1910
40 Formulæ 1923
40.1 Squares etc. 1923
40.2 Powers etc. 1923
40.3 Differentiation 1924
40.4 Special derivatives 1924
40.5 Integration 1926
40.6 Special antiderivatives 1927
40.7 Trigonometric formulæ 1929
40.8 Hyperbolic formulæ 1931
40.9 Complex transformation formulæ 1932
40.10 Taylor expansions 1932
40.11 Magnitudes of functions 1933
Index 1935

We will turn your CV into an opportunity of a lifetime

Preface

The topic of this series of books on "Real Functions in Several Variables" is very important in the description in e.g. Mechanics of the real 3-dimensional world that we live in. Therefore, we start from the very beginning, modelling this world by using the coordinates of \mathbb{R}^{3} to describe e.g. a motion in space. There is, however, absolutely no reason to restrict ourselves to \mathbb{R}^{3} alone. Some motions may be rectilinear, so only \mathbb{R} is needed to describe their movements on a line segment. This opens up for also dealing with \mathbb{R}^{2}, when we consider plane motions. In more elaborate problems we need higher dimensional spaces. This may be the case in Probability Theory and Statistics. Therefore, we shall in general use \mathbb{R}^{n} as our abstract model, and then restrict ourselves in examples mainly to \mathbb{R}^{2} and \mathbb{R}^{3}.

For rectilinear motions the familiar rectangular coordinate system is the most convenient one to apply. However, as known from e.g. Mechanics, circular motions are also very important in the applications in engineering. It becomes natural alternatively to apply in \mathbb{R}^{2} the so-called polar coordinates in the plane. They are convenient to describe a circle, where the rectangular coordinates usually give some nasty square roots, which are difficult to handle in practice.

Rectangular coordinates and polar coordinates are designed to model each their problems. They supplement each other, so difficult computations in one of these coordinate systems may be easy, and even trivial, in the other one. It is therefore important always in advance carefully to analyze the geometry of e.g. a domain, so we ask the question: Is this domain best described in rectangular or in polar coordinates?

Sometimes one may split a problem into two subproblems, where we apply rectangular coordinates in one of them and polar coordinates in the other one.

It should be mentioned that in real life (though not in these books) one cannot always split a problem into two subproblems as above. Then one is really in trouble, and more advanced mathematical methods should be applied instead. This is, however, outside the scope of the present series of books.

The idea of polar coordinates can be extended in two ways to \mathbb{R}^{3}. Either to semi-polar or cylindric coordinates, which are designed to describe a cylinder, or to spherical coordinates, which are excellent for describing spheres, where rectangular coordinates usually are doomed to fail. We use them already in daily life, when we specify a place on Earth by its longitude and latitude! It would be very awkward in this case to use rectangular coordinates instead, even if it is possible.

Concerning the contents, we begin this investigation by modelling point sets in an n-dimensional Euclidean space E^{n} by \mathbb{R}^{n}. There is a subtle difference between E^{n} and \mathbb{R}^{n}, although we often identify these two spaces. In E^{n} we use geometrical methods without a coordinate system, so the objects are independent of such a choice. In the coordinate space \mathbb{R}^{n} we can use ordinary calculus, which in principle is not possible in E^{n}. In order to stress this point, we call E^{n} the "abstract space" (in the sense of calculus; not in the sense of geometry) as a warning to the reader. Also, whenever necessary, we use the colour black in the "abstract space", in order to stress that this expression is theoretical, while variables given in a chosen coordinate system and their related concepts are given the colours blue, red and green.

We also include the most basic of what mathematicians call Topology, which will be necessary in the following. We describe what we need by a function.

Then we proceed with limits and continuity of functions and define continuous curves and surfaces, with parameters from subsets of \mathbb{R} and \mathbb{R}^{2}, resp..

Continue with (partial) differentiable functions, curves and surfaces, the chain rule and Taylor's formula for functions in several variables.

We deal with maxima and minima and extrema of functions in several variables over a domain in \mathbb{R}^{n}. This is a very important subject, so there are given many worked examples to illustrate the theory.

Then we turn to the problems of integration, where we specify four different types with increasing complexity, plane integral, space integral, curve (or line) integral and surface integral.

Finally, we consider vector analysis, where we deal with vector fields, Gauß's theorem and Stokes's theorem. All these subjects are very important in theoretical Physics.

The structure of this series of books is that each subject is usually (but not always) described by three successive chapters. In the first chapter a brief theoretical theory is given. The next chapter gives some practical guidelines of how to solve problems connected with the subject under consideration. Finally, some worked out examples are given, in many cases in several variants, because the standard solution method is seldom the only way, and it may even be clumsy compared with other possibilities.

I have as far as possible structured the examples according to the following scheme:
A Awareness, i.e. a short description of what is the problem.
D Decision, i.e. a reflection over what should be done with the problem.
I Implementation, i.e. where all the calculations are made.
C Control, i.e. a test of the result.
This is an ideal form of a general procedure of solution. It can be used in any situation and it is not linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a situation which did not contain Mathematics at all. The student is recommended to use it also in other disciplines.

From high school one is used to immediately to proceed to I. Implementation. However, examples and problems at university level, let alone situations in real life, are often so complicated that it in general will be a good investment also to spend some time on the first two points above in order to be absolutely certain of what to do in a particular case. Note that the first three points, ADI, can always be executed.

This is unfortunately not the case with C Control, because it from now on may be difficult, if possible, to check one's solution. It is only an extra securing whenever it is possible, but we cannot include it always in our solution form above.

I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a shorthand, because they are often (too often, I would say) misused. Instead of \wedge I shall either write "and", or a comma, and instead of \vee I shall write "or". The arrows \Rightarrow and \Leftrightarrow are in particular misunderstood by the students, so they should be totally avoided. They are not telegram short hands, and from a logical point of view they usually do not make sense at all! Instead, write in a plain language what you mean or want to do. This is difficult in the beginning, but after some practice it becomes routine, and it will give more precise information.

When we deal with multiple integrals, one of the possible pedagogical ways of solving problems has been to colour variables, integrals and upper and lower bounds in blue, red and green, so the reader by the colour code can see in each integral what is the variable, and what are the parameters, which
do not enter the integration under consideration. We shall of course build up a hierarchy of these colours, so the order of integration will always be defined. As already mentioned above we reserve the colour black for the theoretical expressions, where we cannot use ordinary calculus, because the symbols are only shorthand for a concept.

The author has been very grateful to his old friend and colleague, the late Per Wennerberg Karlsson, for many discussions of how to present these difficult topics on real functions in several variables, and for his permission to use his textbook as a template of this present series. Nevertheless, the author has felt it necessary to make quite a few changes compared with the old textbook, because we did not always agree, and some of the topics could also be explained in another way, and then of course the results of our discussions have here been put in writing for the first time.

The author also adds some calculations in MAPLE, which interact nicely with the theoretic text. Note, however, that when one applies MAPLE, one is forced first to make a geometrical analysis of the domain of integration, i.e. apply some of the techniques developed in the present books.

The theory and methods of these volumes on "Real Functions in Several Variables" are applied constantly in higher Mathematics, Mechanics and Engineering Sciences. It is of paramount importance for the calculations in Probability Theory, where one constantly integrate over some point set in space.

It is my hope that this text, these guidelines and these examples, of which many are treated in more ways to show that the solutions procedures are not unique, may be of some inspiration for the students who have just started their studies at the universities.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed. I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
March 21, 2015

MAERSK

Click on the ad to read more

Introduction to volume X , Vector Fields I; Gauß's Theorem

This is the tenth volume in the series of books on Real Functions in Several Variables.
It is the first volume on Vector Fields. It was necessary to split the material into three volumes because the material is very big. In this first volume we deal with the tangential line integral, which e.g. can be used to describe the work of a particle when it is forced along a given curve by some force. It is here natural to introduce the gradient fields, where the tangential line integral only depends on the initial and the terminal points of the curve and not of the curve itself. Such gradients fields are describing conservative forces in Physics.

Tangential line integrals are one-dimensional in nature. In case of two dimensions we consider the flux of a flow through a surface. When the surface $\partial \Omega$ is surrounding a three dimensional body Ω, this leads to Gauß's theorem, by which we can express the flux of a vector field \mathbf{V} through $\partial \Omega$, which is a surface integral, by a space integral over Ω of the divergence of the vector field \mathbf{V}. This theorem works both ways. Sometimes, and most frequently, the surface integral is expressed as space integral, other times we express a space integral as a flux, i.e. a surface integral. Applications are obvious in Electro-Magnetic Field Theory, though other applications can also be found.

The present volume should be followed by reading Volume XI, Vector Fields II, in which we define the rotation of a vector field \mathbf{V} in the ordinary three dimensional space \mathbb{R}^{3} and then describe Stokes's theorem. We shall also consider the so-called nabla calculus, which more or less shows that the theorems mentioned above follow the same abstract structure.

Gauß's and Stokes's theorems have always been considered as extremely difficult to understand for the reader. Therefore we have given lots of examples of worked out problems.

32 Tangential line integrals

32.1 Introduction

We shall in this book introduce the analogues of the differential and integral calculus for functions in one variable, extending the theory to vector fields. Since we are dealing with fields, we give ordinary functions the name scalar fields.

The main issue will be to extend the following equivalent rules for a function $F:[a, b] \rightarrow \mathbb{R}$, where we assume that its derivative $F^{\prime}:[a, b] \rightarrow \mathbb{R}$ exists and is continuous (of course half tangents at the endpoints). The first one is

$$
\int_{a}^{b} F^{\prime}(x) \mathrm{d} x=F(b)-F(a) .
$$

In this one-dimensional version this well-known formula can also be interpreted in the following way. To the left the interval of integration $[a, b] \subset \mathbb{R}$ has the boundary $\partial[a, b]=\{a, b\}$ consisting of the two endpoints, a and b. Therefore, when we move from left to right, the ordinary integration of the derivative $F^{\prime}(x)$ over the interval $[a, b]$ is replaced by the right hand side, where we in some sense (to be defined later on) "integrate" the function $F(x)$ itself (without being differentiated) over the two boundary points $\partial[a, b]=\{a, b\}$. This is a geometrical/topological idea combined with measure theory. We shall deal with the problem of how to generalize the above to all the various forms of integrals, which we have already met, i.e. to line, plane, space and surface integrals.

The second rule, which we want to generalize to functions or vector fields in several variables, is, given F as above,

$$
F(x)=F(a)+\int_{a}^{x} F^{\prime}(\xi) \mathrm{d} \xi .
$$

In this case we may expect some reconstruction formulæ of a scalar or vector field, given its derivatives. We may of course also expect some difficulties in this process, because for the time being it is not obvious how the partial derivatives of $F(\mathbf{x})$ (a function in several variables) should enter the right hand side of the generalization of the equation above.

To ease matters, we shall only specify the domains and the order of differentiability needed of the scalar or vector fields under consideration in important definitions and theorems. Otherwise, when these properties are not explicitly described, we shall tacitly assume that $F(\mathbf{x})$, or $\mathbf{F}(\mathbf{x})$, is of class C^{∞}, so it is always allowed to interchange the order of differentiation. Also, in these cases, the domain will always be a nice one.

Since this chapter in particular is supporting physical theories, we shall in most cases only consider domains which lie in either \mathbb{R}^{3} or \mathbb{R}^{2}.

32.2 The tangential line integral. Gradient fields.

The tangential line integral is introduced in Physics, when we shall calculate e.g the work, which a force executes on a particle bound to a fixed curve. Let \mathbf{V} denote the force (given as a field in the space), and let \mathcal{F} be a given curve in space of a given parametric description, so we can determine its tangent vector field \mathbf{t}. If $\mathrm{d} s$ denotes the infinitesimal length element on \mathcal{K}, then the infinitesimal work done by \mathbf{V} on a unit particle at $\mathbf{x} \in \mathcal{K}$ must be $\mathbf{V} \cdot \mathbf{t d} s$, cf. Figure 32.1.

Figure 32.1: Geometrical analysis of the tangential line integral. Here \mathbf{t} is the unit tangent vector field to the curve \mathcal{K}, and \mathbf{V} is a vector field, where we are going to integrate the dot product $\mathbf{V} \cdot \mathbf{t}$ along \mathcal{K}.

We get the total work done of \mathbf{V} on this unit particle by integrating along the curve \mathcal{K}, a process we denote by anyone of the symbols

$$
\int_{\mathcal{K}} \mathbf{V} \cdot \mathbf{t} \mathrm{d} s, \quad \text { or } \quad \int_{\mathcal{K}} \mathbf{V} \cdot \mathrm{d} \mathbf{x}, \quad \text { or } \quad \int_{\mathcal{K}} \mathbf{V}(\mathbf{x}) \cdot \mathrm{d} \mathbf{x},
$$

depending on the context. Note the appearance of the dot product.
If \mathbf{V} instead denotes an electrical field, then the tangential line integral along \mathcal{K} is equal to the difference in potential between the end point and the initial point, provided that we can neglect the contribution from inductance.

Assume that the curve \mathcal{K} has the parametric description $\mathbf{x}=\mathbf{r}(\tau)$, where $\mathbf{r}:[\alpha, \beta] \rightarrow \mathbb{R}^{n}$ is a C^{1} vector field. If furthermore, $\mathbf{r}^{\prime}(\tau) \neq \mathbf{0}$, then the unit tangent vector field is given by

$$
\mathbf{t}=\frac{\mathbf{r}^{\prime}(\tau)}{\left\|\mathbf{r}^{\prime}(\tau)\right\|}, \quad \text { and } \quad \mathrm{d} s=\left\|\mathbf{r}^{\prime}(\tau)\right\| \mathrm{d} \tau, \quad \text { hence } \quad \mathrm{d} \mathbf{x}=\mathbf{r}^{\prime}(\tau) \mathrm{d} \tau
$$

Since $\left\|\mathbf{r}^{\prime}(\tau)\right\|$ is cancelled by this process, we may allow that we in some points have $\mathbf{r}^{\prime}(\tau)=\mathbf{0}$, as long as this set is small. We quote without proof,

Theorem 32.1 Reduction of a tangential line integral. Assume that \mathcal{K} is an oriented continuous and piecewise C^{1} curve in the domain $A \subseteq \mathbb{R}^{n}$, given by the parametric description $\mathbf{r}:[\alpha, \beta] \rightarrow \mathbb{R}^{n}$, where \mathbf{r} is injective almost everywhere, and where $\mathbf{r}^{\prime} \neq \mathbf{0}$ also almost everywhere.
Let $\mathbf{V}: A \rightarrow \mathbb{R}^{n}$ be a C^{0} vector field. Then we have the following reduction of the tangential line integral of \mathbf{V} along \mathcal{K},

$$
\int_{\mathcal{K}} \mathbf{V} \cdot \mathbf{t} \mathrm{d} s=\int_{\alpha}^{\beta} \mathbf{V}(\mathbf{r}(\tau)) \cdot \mathbf{r}^{\prime}(\tau) \mathrm{d} \tau
$$

The abstract integral in blue is to the left, and the ordinary 1-dimensional integral (in black), which can be calculated, is to the right. We note that we introduce a compensating factor to the integrand in the dot product to the right.

Clearly, the value of the integral changes its sign, when the orientation of the curve is reversed, or, if the particle is moved in the opposite direction.
The tangential line integral is also called the current of the vector field along the curve.

Example 32.1 The following simple example is only illustrating the methods. It will probably never be met in practice.
Given the vector field

$$
\mathbf{V}(x, y, z)=\left(2 x, e^{-a}+z, y z\right), \quad \text { for }(x, y, z) \in \mathbb{R}^{3}
$$

We shall show how we find its current along the curve \mathcal{K} of the parametric description

$$
\mathcal{K}: \quad(x, y, z)=\mathbf{r}(\tau)=\left(\ln \tau, \tau^{3}, \frac{1}{\tau}\right), \quad \text { for } \tau \in[1,2] .
$$

We first calculate

$$
\mathbf{r}^{\prime}(\tau)=\left(\frac{1}{\tau}, 3 \tau^{2},-\frac{1}{\tau^{2}}\right) \quad \text { and } \quad \mathbf{V}(\mathbf{r}(\tau))=\left(2 \ln t, \frac{2}{\tau}, t^{2}\right)
$$

Then the current C of \mathbf{V} along \mathcal{K} is given by

$$
\begin{aligned}
C & :=\int_{\mathcal{K}} \mathbf{V} \cdot \mathbf{t} \mathrm{d} s=\int_{1}^{2} \mathbf{V}(\mathbf{r}(\tau)) \cdot \mathbf{r}^{\prime}(\tau) \mathrm{d} \tau \\
& =\int_{1}^{2}\left\{2 \frac{\ln \tau}{\tau}+6 \tau-1\right\} \mathrm{d} \tau=\left[(\ln \tau)^{2}+3 \tau^{2}-\tau\right]_{\tau=1}^{2}=(\ln 2)^{2}+8
\end{aligned}
$$

When we use rectangular coordinates in \mathbb{R}^{3} we also write

$$
\mathbf{V} \cdot \mathbf{t} \mathrm{d} s=\mathbf{V}(\mathbf{x}) \cdot \mathrm{d} \mathbf{x}=\left(V_{x}, V_{y}, V_{z}\right) \cdot(\mathrm{d} x, \mathrm{~d} y, \mathrm{~d} z)=V_{x} \mathrm{~d} x+V_{y} \mathrm{~d} y+V_{z} \mathrm{~d} z
$$

where we have put $\mathbf{V}=\left(V_{x}, V_{y}, V_{z}\right)$ and $(\mathrm{d} x, \mathrm{~d} y, \mathrm{~d} z)$ in rectangular coordinates. In this case the result of Theorem 32.1 is written

$$
\int_{\mathcal{K}} V_{x} \mathrm{~d} x+V_{y} \mathrm{~d} y+V_{z} \mathrm{~d} z=\int_{\alpha}^{\beta}\left\{V_{x} \frac{\mathrm{~d} x}{\mathrm{~d} \tau}+V_{y} \frac{\mathrm{~d} y}{\mathrm{~d} \tau}+V_{z} \frac{\mathrm{~d} z}{\mathrm{~d} \tau}\right\} \mathrm{d} \tau
$$

and similarly for rectangular coordinates in the general space \mathbb{R}^{n}.
An important special case, is when \mathcal{K} is a closed curve, i.e. its endpoints coincide. In this case the tangential line integral is called the circulation of the vector field \mathbf{V} alont \mathcal{K}, and it is denoted

$$
\oint_{\mathcal{K}} \mathbf{V}(\mathbf{x}) \cdot \mathrm{d} \mathbf{x}, \quad \text { or e.g. } \quad \oint_{\mathcal{K}} V_{x} \mathrm{~d} x+V_{y} \mathrm{~d} y+V_{z} \mathrm{~d} z
$$

The shall below consider the important vector fields \mathbf{V} (the gradient fields), for which the circulation is 0 , no matter the choice of an admissible curve \mathcal{K} in the definition of the circulation. But first we include a small exercise,

Example 32.2 Consider again the vector field

$$
\mathbf{V}(x, y, z)=\left(2 x, e^{-a}+z, y z\right), \quad \text { for }(x, y, z) \in \mathbb{R}^{3}
$$

from Example 32.1, and let \mathcal{K} be the circle given by the parametric description

$$
\mathcal{K}: \quad(x, y, z)=\mathbf{r}(\tau)=(1, \cos \tau, \sin \tau), \quad \tau \in[0,2 \pi[.
$$

Then

$$
\mathbf{r}^{\prime}(\tau)=(0,-\sin \tau, \cos \tau), \quad \text { and } \quad \mathbf{V}(\mathbf{r}(\tau))=\left(2, \frac{1}{e}+\sin \tau, \cos \tau \sin \tau\right)
$$

and the circulation becomes

$$
C:=\int_{0}^{2 \pi} \mathbf{V}(\mathbf{r}(\tau)) \cdot \mathbf{r}^{\prime}(\tau) \mathrm{d} \tau=\int_{0}^{2 \pi}\left\{0-\frac{\sin \tau}{e}-\sin ^{2} \tau+\cos ^{2} \tau\right\} \mathrm{d} \tau=-\pi
$$

- Because achieving your dreams is your greatest challenge. IE Business School's Master in Management taught in English, Spanish or bilingually, trains young high performance professionals at the beginning of their career through an innovative and stimulating program that will help them reach their full potential.
- Choose your area of specialization.
- Customize your master through the different options offered.
- Global Immersion Weeks in locations such as London, Silicon Valley or Shanghai.

> Because you change, we change with you.

We then introduce the gradient fields, i.e. vector fields \mathbf{V}, for which there exists a C^{1} function F, such that

$$
\mathbf{V}=\nabla F=\left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right)
$$

We get by the chain rule (cf. Section 9.2) that

$$
\frac{\mathrm{d}}{\mathrm{~d} \tau}\{F(\mathbf{r}(\tau))\}=\nabla F(\mathbf{r}(\tau)) \cdot \mathbf{r}^{\prime}(\tau)
$$

so by the reduction theorem and then by inserting this equation from the right to the left,

$$
\begin{aligned}
\int_{\mathcal{K}} \nabla F(\mathbf{x}) \cdot \mathrm{d} \mathbf{x} & =\int_{\alpha}^{\beta} \nabla F(\mathbf{r}(\tau)) \cdot \mathbf{r}^{\prime}(\tau) \mathrm{d} \tau=\int_{\alpha}^{\beta} \frac{\mathrm{d}}{\mathrm{~d} \tau}\{F(\mathbf{r}(\tau))\} \mathrm{d} \tau \\
& =[F(\mathbf{r}(\tau))]_{\tau=\alpha}^{\beta}=F(\mathbf{r}(\beta))-F(\mathbf{r}(\alpha))
\end{aligned}
$$

In other words, for gradient fields the value of the tangential line integral along \mathcal{K} only depends on the endpoints and not on the permitted curve joining the endpoints. Thus, if \mathcal{K}_{1} and \mathcal{K}_{2} are two permitted curves between the same endpoints, then

$$
\int_{\mathcal{F}_{1}} \nabla F(\mathbf{x}) \cdot \mathrm{d} \mathbf{x}=\int_{\mathcal{F}_{2}} \nabla F(\mathbf{x}) \cdot \mathrm{d} \mathbf{x}=F(\text { final point })-F(\text { initial point }) .
$$

This result is coined in the following theorem (as usual without its full proof)

Theorem 32.2 The gradient integral theorem. Given a C^{1} function $F: A \rightarrow \mathbb{R}$, where $A \subseteq \mathbb{R}^{2}$, and let $\mathbf{a}, \mathbf{b} \in A$. then

$$
\int_{\mathcal{K}} \nabla F(\mathbf{x}) \cdot \mathrm{d} \mathbf{x}=F(\mathbf{b})-F(\mathbf{a})
$$

for every continuous and piecewise C^{1} curve \mathcal{K} lying in A with initial point $\mathbf{a} \in A$ and final point $\mathbf{b} \in A$.

The reader who is familiar with the Theory of Complex Functions will in case of $n=2$ recognize this as connected with analytic functions. In Physics, the gradient field ∇F in \mathbb{R}^{2} and \mathbb{R}^{3} is interpreted as a conservative vector field.

We shall now prove the important circulation theorem.
If we choose \mathcal{K} as any permitted curve in A from a point $\mathbf{a} \in A$ to another point $\mathbf{x} \in A$, and the gradient field ∇F is given in A, then we get by a rearrangement of the result of Theorem 32.2,

$$
F(\mathbf{x})=F(\mathbf{a})+\int_{\mathbf{a}}^{\mathbf{x}} \nabla F(\mathbf{u}) \cdot \mathrm{d} \mathbf{u}
$$

so we can reconstruct $F(\mathbf{x})$, using our knowledge of $\mathbf{V}(\mathbf{u})=\nabla F(\mathbf{u})$. Note that we are strictly speaking only given that $\mathbf{V}(\mathbf{u})$ is a gradient field, so to begin with we only know the existence of the function F, so the right formulation of the above would be that

$$
F(\mathbf{x})=F(\mathbf{a})+\int_{\mathbf{a}}^{\mathbf{x}} \mathbf{V}(\mathbf{u}) \cdot \mathrm{d} \mathbf{u}
$$

where it is given that \mathbf{V} is a gradient field.
We note that if furthermore the endpoints coincide, $\mathbf{a}=\mathbf{b}$, the curve \mathcal{K} is closed, so the circulation is for gradient fields,

$$
C=\oint_{\mathcal{K}} \nabla F(\mathbf{x}) \cdot \mathrm{d} \mathbf{x}=0
$$

and we have proved that the circulation of a gradient field along any closed curve is always 0 .
Then we prove the opposite, namely that if the circulation of \mathbf{V} along every closed curve in the open domain A of \mathbf{V} is zero, then \mathbf{V} is a gradient field. The idea is of course to construct the function F and then prove that it is indeed a primitive of \mathbf{V}.

We choose a fixed point $\mathbf{a} \in A$, i.e. the open domain of \mathbf{V}, and we let $\mathbf{x} \in A$ be any other (variable) point in A. Since by assumption

$$
\oint_{\mathcal{K}} \mathbf{V}(\mathbf{u}) \cdot \mathrm{d} \mathbf{u}=0
$$

for every closed (permitted) curve \mathcal{K} in A, it follows that the tangential line integral from \mathbf{a} to \mathbf{x} is independent of the integration path from \mathbf{a} to \mathbf{x}.
In fact, let \mathcal{K}_{1} and \mathcal{K}_{2} be any two paths from \mathbf{a} to \mathbf{x}, and let $-\mathcal{K}_{2}$ denote the path from \mathbf{x} to \mathbf{a} of \mathcal{K}_{2} in the reversed direction. Then the concatenated curve $\mathcal{K}:=\mathcal{K}_{1}-\mathcal{K}_{2}$ is closed, so by splitting the integral,

$$
0=\oint_{\mathcal{K}} \mathbf{V}(\mathbf{u}) \cdot \mathrm{d} \mathbf{u}=\int_{\mathcal{K}_{1}} \mathbf{V}(\mathbf{u}) \cdot \mathrm{d} \mathbf{u}-\int_{\mathcal{K}_{2}} \mathbf{V}(\mathbf{u}) \cdot \mathrm{d} \mathbf{u}
$$

and it follows by a rearrangement, that the value of the integral of the differential form $\mathbf{V}(\mathbf{u}) \cdot$ du does not depend on the path from \mathbf{a} to \mathbf{x}.

We can therefore unambiguously define the function

$$
F(\mathbf{x}):=\int_{\mathbf{a}}^{\mathbf{x}} \mathbf{V}(\mathbf{u}) \cdot \mathrm{d} \mathbf{u}
$$

where we can choose any (permitted) integration path from \mathbf{a} to \mathbf{x}.
The increase of this function is the difference

$$
\Delta F=F(\mathbf{x}+\mathbf{h})-F(\mathbf{x})=\int_{\mathbf{x}}^{\mathbf{x}+\mathbf{h}} \mathbf{V}(\mathbf{u}) \cdot \mathrm{d} \mathbf{u}
$$

Since A was assumed to be an open domain, and $\mathbf{x} \in A$, we can choose $r>0$, such that $\mathbf{x}+\mathbf{h} \in A$, whenever $\|\mathbf{h}\|<r$. Then the whole line segment $[\mathbf{x} ; \mathbf{x}+\mathbf{h}]$ lies in A, whenever $0<\|\mathbf{x}\|<r$, which we assume in the following. When we integrate along this line segment, it follows from the mean value theorem, cf. e.g. Section 9.5 or Section 20.2 , that there exist numbers $\left.\theta_{1}, \ldots, \theta_{n} \in\right] 0,1[$, such that

$$
\Delta F=\int_{0}^{1} \mathbf{V}(\mathbf{x}+\tau \mathbf{h}) \cdot \mathbf{h} \mathrm{d} \tau=\sum_{i=1}^{n} h_{i} \int_{0}^{1} V_{i}(\mathbf{x}+\tau \mathbf{h}) \mathrm{d} \tau-\sum_{i=1}^{n} h_{i} V_{i}\left(\mathbf{x}+\theta_{i} \mathbf{h}\right) .
$$

When we add and subtract the right term, $\mathbf{h} \cdot \mathbf{V}(\mathbf{x})$, then

$$
\Delta F=\mathbf{h} \cdot \mathbf{V}(\mathbf{x})=\sum_{i=1}^{n} h_{i} V_{i}\left(\mathbf{x}+\theta_{i} \mathbf{h}\right)-\sum_{i=1}^{n} h_{i} V_{i}(\mathbf{x})=\mathbf{h} \cdot \mathbf{V}(\mathbf{x})+\sum_{i=1}^{n} h_{i}\left\{V_{i}\left(\mathbf{x}+\theta_{i} \mathbf{h}\right)-V_{i}(\mathbf{x})\right\}
$$

Since \mathbf{V} is continuous, and all $\left.\theta_{i} \in\right] 0,1[$, it follows that

$$
\sum_{i=1}^{n} h_{i}\left\{V_{i}\left(\mathbf{x}+\theta_{i} \mathbf{h}\right)-V_{i}(\mathbf{x})\right\}=\|\mathbf{h}\| \sum_{i=1}^{n} \frac{h_{i}}{\|\mathbf{h}\|}\left\{V_{i}\left(\mathbf{x}+\theta_{i} \mathbf{h}\right)-V_{i}(\mathbf{x})\right\}=\|\mathbf{h}\| \varepsilon(\mathbf{h})
$$

where

$$
\varepsilon(\mathbf{h})=\sum_{i=1}^{n} \frac{h_{i}}{\|\mathbf{h}\|}\left\{V_{i}\left(\mathbf{x}+\theta_{i} \mathbf{h}\right)-V_{i}(\mathbf{x})\right\} \rightarrow 0 \quad \text { for } \mathbf{h} \rightarrow \mathbf{0}
$$

because $\left|h_{i} /\|\mathbf{x}\|\right| \leq 1$ is bounded, and because \mathbf{V} is continuous. We therefore conclude that the constructed function F is differentiable of the gradient $\nabla F=\mathbf{V}$.

Hence, we have proved
Theorem 32.3 The circulation theorem. A C^{0} vector field \mathbf{V} on A is a gradient field, if and only if the circulation is 0 for every closed permitted curve \mathcal{K} contained in A,

$$
\oint_{\mathcal{K}} \mathbf{V} \cdot \mathrm{d} \mathbf{x}=0 .
$$

In practice it is only possible to use Theorem 32.3 to prove that a given vector field is not a gradient field. The vector field in Example 32.2 is therefore not a gradient field, because we have found a closed curve, along which the circulation is $-\pi \neq 0$.

The circulation does not always have to be zero in important applications. If e.g. H denotes a magnetic field, an \mathcal{K} is a closed curve, then Ampère's law says that the circulation of \mathbf{H} along \mathcal{K} is given by

$$
\oint_{\mathcal{K}} \mathbf{H} \cdot \mathbf{t} \mathrm{d} s=I
$$

where I is the current, which is linked by the closed curve \mathcal{K}. Since in general, $I \neq 0$, this means that the magnetic field is not a gradient field.

We shall then derive some other criteria which assure that a given C^{1} vector field \mathbf{V} is a gradient field. Assume to begin with that \mathbf{V} is a gradient field. Then there exists a scalar field F, such that $\mathbf{V}=\nabla F$. We then call the scalar field F a primitive of the vector field \mathbf{V}, or of the differential form $\mathbf{V}(\mathbf{x}) \cdot \mathbf{x}$.

Clearly, if \mathbf{V} has the primitive F, then all primitives o \mathbf{V} are given by $F+c$, where $c \in \mathbb{R}$ is an arbitrary constant.

Let us furthermore assume that \mathbf{V} is a C^{1} gradient field (and not just C^{0}) with the C^{2} primitive F. Then we have in coordinates

$$
\left(V_{1}, V_{2}, \ldots, V_{n}\right)=\left(\frac{\partial F}{\partial x_{1}}, \frac{\partial F}{\partial x_{2}}, \ldots, \frac{\partial F}{\partial x_{n}}\right), \quad \text { or } \quad V_{i}=\frac{\partial F}{\partial x_{i}}, \quad i=1, \ldots, n
$$

so interchanging the order of differentiation, which we may, because $F \in C^{2}$,

$$
\frac{\partial V_{i}}{\partial x_{j}}=\frac{\partial}{\partial x_{j}}\left(\frac{\partial F}{\partial x_{i}}\right)=\frac{\partial^{2} F}{\partial x_{j} \partial x_{i}}=\frac{\partial^{2} F}{\partial x_{i} \partial x_{j}}=\frac{\partial}{\partial x_{i}}\left(\frac{\partial F}{\partial x_{j}}\right)=\frac{\partial V_{j}}{\partial x_{i}}
$$

So whenever \mathbf{V} is a C^{1} vector field, a necessary condition for \mathbf{V} being a gradient field is that

$$
\begin{equation*}
\frac{\partial V_{i}}{\partial x_{j}}=\frac{\partial V_{j}}{\partial x_{i}} \quad \text { for all } i, j \in\{1, \ldots, n\} \tag{32.1}
\end{equation*}
$$

Whenever (32.1) holds, we call

$$
\mathbf{V} \cdot \mathrm{d} \mathbf{x}=V_{1} \mathrm{~d} x_{1}+\cdots+V_{n} \mathrm{~d} x_{n}
$$

a closed differential form. Thus the differential of a C^{2} gradient field is always a closed differential form.

Unfortunately, this necessary condition is not sufficient. We need an extra condition on the domain A of \mathbf{V}, namely that A is simply connected, cf. Section 5.9.
Simply connected domains are easy to describe in \mathbb{R}^{2}. Let $A \subseteq \mathbb{R}^{2}$ be a connected plane set. Every closed bounded curve \mathcal{K} in \mathbb{R}^{2} divides the plane into three mutually disjoint sets, the curve \mathcal{K} itself, the outer and unbounded open set B_{1}, and the inner and bounded open set B_{2}. We say that A is simply connected, if for every closed curve \mathcal{K} in A, the inner bounded set B_{2} by this division is contained in A, thus $B_{2} \subset A$. This is very easy to visualize on a figure. The typical example of a connected plane set, which is not simply connected, is $\mathbb{R}^{2} \backslash\{\mathbf{0}$, because if we as \mathcal{K} choose the unit circle, then the point $\mathbf{0}$ lies inside \mathcal{K} and not in $A=\mathbb{R}^{2} \backslash\{\mathbf{0}\}$.

In higher dimensions simply connected sets are more difficult to visualize. For instant the set $\mathbb{R}^{3} \backslash\{\mathbf{0}\}$ is simply connected. The problem is of cause that we, opposite to the plane case, cannot define precisely what lies inside a closed curve. However, at broad class of connected sets is consisting of simply connected sets, and the members are also easy to visualize, namely the star-shaped domains. The open domain A is called star-shaped, if there is a point $\mathbf{a} \in A$, such that for every other $\mathbf{x} \in A$ the straight line segment from \mathbf{a} to \mathbf{x} lies entirely in A, i.e.

$$
[\mathbf{a} ; \mathbf{x}]:=\{(1-\lambda) \mathbf{a}+\lambda \curvearrowleft \mid \lambda \in[0,1]\} \subseteq A .
$$

We shall only formulate the following theorem for star-shaped sets, because the proof here is fairly simple, and we note that it is also true in general for simply connected sets,

Theorem 32.4 The primitive of a gradient field. Let $A \subseteq \mathbb{R}^{n}$ be a star-shaped open domain, and assume that $\mathbf{V}: A \rightarrow \mathbb{R}^{n}$ is a C^{1} vector field, which fulfils the condition

$$
\frac{\partial V_{i}}{\partial x_{j}}(\mathbf{x})=\frac{\partial V_{j}}{\partial x_{i}}(\mathbf{x}) \quad \text { for all } \mathbf{x} \in A \text { and for all } i, j \in\{1, \ldots, n\}
$$

Then \mathbf{V} is a gradient field, and a C^{2} scalar primitive is defined by

$$
F(\mathbf{x}):=\int_{\mathbf{a}}^{\mathbf{x}} \mathbf{V}(\mathbf{u}) \cdot \mathrm{d} \mathbf{u}, \quad \text { for all } \mathbf{x} \in A
$$

where $\mathbf{a} \in A$ is fixed, and where we integrate along any continuous and piecewise C^{1} curve lying in A and going from \mathbf{a} to \mathbf{x}.
Every primitive of \mathbf{V} is of the form $F+c$, where $c \in \mathbb{R}$ is a constant.

Proof. Given the assumptions of Theorem 32.4. Since A is star-shaped, we choose the point $\mathbf{a} \in A$, such that any other point $\mathbf{x} \in A$ can be "seen from a by a straight line segment lying totally in A. Using, if necessary, a translation, we may assume that $\mathbf{a}=\mathbf{0}$. We then define

$$
F(\mathbf{x}):=\mathbf{x} \cdot \int_{0}^{1} \mathbf{V}(\tau \mathbf{x}) \mathrm{d} \tau, \quad \mathbf{x} \in A
$$

where the path integral here is another way to write the line integral from $\mathbf{a}=\mathbf{0}$ to \mathbf{x} alont the straight line segment $[\mathbf{0} ; \mathbf{x}] \subseteq A$. Then

$$
F(\mathbf{x})=\sum_{i=1}^{n} x_{j} \int_{0}^{1} V_{i}(\tau \mathbf{x}) \mathrm{d} \tau=\sum_{i=1}^{n} \int_{0}^{1} U_{i}(\mathbf{x}, \tau) \mathrm{d} \tau
$$

where we for technical reasons later on have put

$$
\mathbf{U}(\mathbf{x}, \tau):=\mathbf{V}(\tau \mathbf{x})
$$

It follows from the chain rule that

$$
\frac{\partial U_{i}}{\partial x_{j}}=\tau D_{j} V_{i}(\tau \mathbf{x}) \quad \text { and } \quad \frac{\partial U_{i}}{\partial \tau}=\sum_{i=1}^{n} x_{j} D_{j} V_{i}(\tau \mathbf{x})
$$

where $D_{j} V_{i}$ denotes the derivative of the function V_{i} with respect to the j-th variable $\left(y_{j}=\tau x_{j}\right)$. Finally,

$$
\begin{aligned}
\frac{\partial F}{\partial x_{j}}(\mathbf{x}) & =\sum_{i=1}^{n}\left\{\frac{\partial x_{i}}{\partial x_{j}} \int_{0}^{1} U_{i} \mathrm{~d} \tau+x_{i} \int_{0}^{1} \frac{\partial U_{i}}{\partial x_{j}} \mathrm{~d} \tau\right\}=\int_{0}^{1} U_{j} \mathrm{~d} \tau+\sum_{i=1}^{n} x_{i} \int_{0}^{1} \tau D_{j} V_{i}(\tau \mathbf{x}) \mathrm{d} \tau \\
& =\int_{0}^{1} U_{j} \mathrm{~d} \tau+\int_{0}^{1}\left\{\tau \sum_{i=1}^{n} x_{i} D_{i} V_{j}(\tau \mathbf{x}) \mathrm{d} \tau\right\}=\int_{0}^{1} U_{j} \mathrm{~d} \tau+\int_{0}^{1} \tau \frac{\partial U_{j}}{\partial \tau} \mathrm{~d} \tau=\int_{0}^{1} \frac{\partial}{\partial \tau}\left\{\tau U_{j}\right\} \mathrm{d} \tau \\
& =\left[\tau V_{j}(\tau \mathbf{x})\right]_{0}^{1}=V_{j}(\mathbf{x})
\end{aligned}
$$

and we have proved that $\nabla F=\mathbf{V}$, so \mathbf{V} is indeed a gradient field. \diamond

Example 32.3 The proof of Theorem 32.4 gives a concrete solution formula, once the assumptions have been checked. Namely, calculate the line integral of the differential form $\mathbf{V}(\mathbf{x}) \cdot \mathrm{d} \mathbf{x}$ along the straight line segment $[\mathbf{a} ; \mathbf{x}]$. We shall demonstrate this method on the vector field

$$
\mathbf{V}(x, y, z)=\left(y^{2}+z, 2 x y+2 y z^{2}, 2 y^{2} z+x\right), \quad \text { for }(x, y, z) \in \mathbb{R}^{3}
$$

where we have the coordinate functions

$$
V_{x}(x, y, z)=y^{2}+z, \quad V_{y}(x, y, z)=2 x y+2 y z^{2}, \quad V_{z}(x, y, z)=2 y^{2} z+x
$$

We first check

$$
\frac{\partial V_{x}}{\partial y}=2 y=\frac{\partial V_{y}}{\partial x}, \quad \frac{\partial V_{x}}{d d z}=1=\frac{\partial V_{z}}{\partial x}, \quad \frac{\partial V_{y}}{\partial z}=4 y z=\frac{\partial V_{z}}{\partial y}
$$

so $\mathbf{V} \cdot \mathrm{d} \mathbf{x}$ is a closed differential form. Since $A=\mathbb{R}^{3}$ is trivially star-shaped, it follows from Theorem 32.4 that $\mathbf{V}(\mathbf{x})$ is a gradient field.

According to the theorem, one possible solution formula is

$$
F(\mathbf{x})=\mathbf{x} \cdot \int_{0}^{1} \mathbf{V}(\tau \mathbf{x}) \mathrm{d} \tau, \quad \mathbf{x} \in A
$$

where

$$
\begin{aligned}
\int_{0}^{1} \mathbf{V}(\tau x, \tau y, \tau z) \mathrm{d} \tau & =\int_{0}^{1}\left(\tau^{2} y^{2}+\tau z, 2 \tau^{2} x y+2 \tau^{3} y z^{2}, 2 \tau^{3} y^{2} z+\tau x\right) \mathrm{d} \tau \\
& =\left(\frac{1}{2} y^{2}+\frac{1}{2} z, \frac{2}{3} x y+\frac{1}{2} y z^{2}, \frac{1}{2} y^{2} z+\frac{1}{2} x\right)
\end{aligned}
$$

so a primitive is given by

$$
\begin{aligned}
F(x, y, z) & =(x, y, z) \cdot \int_{0}^{1} \mathbf{V}(\tau x, \tau y, \tau z) \mathrm{d} \tau \\
& =\frac{1}{3} x y^{2}+\frac{1}{2} x z+\frac{2}{3} x y^{2}+\frac{1}{2} y^{2} z^{2}+\frac{1}{2} y^{2} z^{2}+\frac{1}{2} x z=x z+x y^{2}+y^{2} z^{2}
\end{aligned}
$$

Check;

$$
\frac{\partial F}{\partial x}=z+y^{2}=V_{x}, \quad \frac{\partial F}{\partial y}=2 x y+2 y z^{2}=V_{y}, \quad \frac{\partial F}{\partial z}=x+2 y^{2} z=V_{z}
$$

so $F(x, y, z)=x z+x y^{2}+y^{2} z^{2}$ is indeed a primitive of \mathbf{V}. We then get all primitives by adding an arbitrary constant $c \in \mathbb{R}$. \diamond

The method of radial integration, as in Example 32.3, often requires some hard calculations. We note, however, that we may choose other and more reasonable integration paths. A commonly used method is integration along a continuous step line, where each of the steps is parallel to one of the coordinate axes. When we describe this method we assume for convenience that we integrate from $\mathbf{0}$. If $\mathbf{a} \rightarrow \mathbf{b}$ designates that we integrate along the straight line segment between \mathbf{a} and \mathbf{b}, then the idea is - whenever possible - to use the following paths of integration,

1) In \mathbb{R}^{2} :
$(0,0) \rightarrow(x, 0) \rightarrow(x, y)$.
2) In $\mathbb{R}^{3}: \quad(0,0,0) \rightarrow(x, 0,0) \rightarrow(x, y, 0) \rightarrow(x, y, z)$,

We see that each arrow represents an integration along an axiparallel line segment. More explicitly,

1) In \mathbb{R}^{2}, the vector field is $\mathbf{V}(x, y)=\left(V_{x}(x, y), V_{y}(x, y)\right)$, and the line integration from $(0,0)$ can be written

$$
F(x, y)=\int_{0}^{x} V_{x}(\tau, 0) \mathrm{d} \tau+\int_{0}^{y} V_{y}(x, \tau) \mathrm{d} \tau
$$

because $\mathbf{V}(x, y) \cdot(\mathrm{d} x, \mathrm{~d} y)=V_{x}(x, 0) \mathrm{d} x$ on the line segment from $(0,0)$ to $(x, 0)$, since here $\mathrm{d} y=0$, and $\mathbf{V}(x, y) \cdot(\mathrm{d} x, \mathrm{~d} y)=V_{y}(x, y) \mathrm{d} y$ on the line segment from $(x, 0)$ to (x, y), because here $\mathrm{d} x=0$.
2) In \mathbb{R}^{3} the vector field is $\mathbf{V}(x, y, z)=\left(V_{x}(x, y, z), V_{y}(x, y, z), V_{z}(x, y, z)\right)$, so the analogue solution formula becomes

$$
F(x, y, z)=\int_{0}^{x} V_{x}(\tau, 0,0) \mathrm{d} \tau+\int_{0}^{y} V_{y}(x, \tau, 0) \mathrm{d} \tau+\int_{0}^{z} V_{z}(x, y, \tau) \mathrm{d} \tau
$$

In some cases this step line does not lie in A, but one may modify this construction to obtain this property by choosing another axiparallel step line. It should be easy for the reader to carry out the necessary modification in such cases.

The advantage of this method is that all usual variables, except for one, are constants in each of the subintegrals. If we in particular integrate from $\mathbf{0}$, then we get lots of zeros in the integrands, so some of the terms may even disappear. We shall see this phenomenon in Example 32.4 below.

It may occur in some cases that we cannot find $F(\mathbf{x})$ everywhere in A by only using a simple step line as above, though we may get a result in a nonempty subset $B \subset A$. Then it is legal just to check by differentiation, if we indeed have $\nabla F=\mathbf{V}$ in all of A, and that solves the problem.

Example 32.4 We consider again the gradient field from Example 32.3 above, (no need to check once more that it is a gradient field),

$$
\mathbf{V}(x, y, z)=\left(y^{2}+z, 2 x y+2 y z^{2}, 2 y^{2} z+x\right), \quad \text { for }(x, y, z) \in \mathbb{R}^{3}
$$

where we have the coordinate functions

$$
V_{x}(x, y, z)=y^{2}+z, \quad V_{y}(x, y, z)=2 x y+2 y z^{2}, \quad V_{z}(x, y, z)=2 y^{2} z+x
$$

Then by the method of step lines,

$$
\begin{aligned}
F(x, y, z) & =\int_{0}^{x} V_{x}(\tau, 0,0) \mathrm{d} \tau+\int_{0}^{y} V_{y}(x, \tau, 0) \mathrm{d} \tau+\int_{0}^{z} V_{z}(x, y, \tau) \mathrm{d} \tau \\
& =\int_{0}^{x} 0 \mathrm{~d} \tau+\int_{0}^{y} 2 x \tau \mathrm{~d} \tau+\int_{0}^{z}\left(2 y^{2} \tau+x\right) \mathrm{d} \tau \\
& =0+\left[x \tau^{2}\right]_{0}^{y}+\left[y^{2} \tau^{2}+x \tau\right]_{0}^{z}=x y^{2}+y^{2} z^{2}+x z
\end{aligned}
$$

which is calculated with less effort than in the method of Example 32.3. \diamond

A third method is to manipulate with the differential form $\mathbf{V}(\mathbf{x}) \cdot d \mathbf{x}$ by using the rules of computation of differentials in the "unusual direction" finally getting $\mathrm{d} F(\mathbf{x})$, where $F(\mathbf{x})$ is the wanted primitive. This method requires some skill, though it is also the most elegant one, because if one succeeds, then there is no need to check the assumptions of Theorem 32.4.

Example 32.5 Consider again from the two previous examples

$$
\mathbf{V}(x, y, z)=\left(y^{2}+z, 2 x y+2 y z^{2}, 2 y^{2} z+x\right), \quad \text { for }(x, y, z) \in \mathbb{R}^{3}
$$

where we have the coordinate functions

$$
V_{x}(x, y, z)=y^{2}+z, \quad V_{y}(x, y, z)=2 x y+2 y z^{2}, \quad V_{z}(x, y, z)=2 y^{2} z+x
$$

Then the corresponding closed differential form is

$$
\mathbf{V}(x, y, z) \cdot(\mathrm{d} x, \mathrm{~d} y, \mathrm{~d} x)=\left(y^{2}+z\right) \mathrm{d} x+\left(2 x y+2 y z^{2}\right) \mathrm{d} y+\left(2 y^{z}+x\right) \mathrm{d} z
$$

The strategy is to split all the terms and then pair them, so that they can stepwise be included as the differential of some function. When we deal with polynomials we may also collect terms of the same (general) degree. In general, if e.g. we have a function $\varphi(y)$ in y alone as a factor of $\mathrm{d} y$, then use that $\varphi(y) \mathrm{d} y=\mathrm{d} \Phi(y)$, where $\Phi^{\prime}(y)=\varphi(y)$. Similarly for the other variables.

In the present case we get, using these methods,

$$
\begin{aligned}
& \mathbf{V}(x, y, z) \cdot(\mathrm{d} x, \mathrm{~d} y, \mathrm{~d} z)=y^{2} \mathrm{~d} x+z \mathrm{~d} x+2 x y \mathrm{~d} y+2 y z^{2} \mathrm{~d} y+2 y^{2} z \mathrm{~d} z+x \mathrm{~d} z \\
& \quad=y^{2} \mathrm{~d} x+z \mathrm{~d} x+x \mathrm{~d}\left(y^{2}\right)+z^{2} \mathrm{~d}\left(y^{2}\right)+y^{2} \mathrm{~d}\left(z^{2}\right)+x \mathrm{~d} z \\
& \quad=\left\{y^{2} \mathrm{~d} x+x \mathrm{~d}\left(y^{2}\right)\right\}+\{z \mathrm{~d} x+x \mathrm{~d} z\}+\left\{z^{2} \mathrm{~d}\left(y^{2}\right)+y^{2} \mathrm{~d}\left(z^{2}\right)\right\} \\
& \quad=\mathrm{d}\left(x y^{2}\right)+d(x z)+d\left(y^{2} z^{2}\right)=\mathrm{d}\left(x y^{2}+x z+y^{2} z^{2}\right)
\end{aligned}
$$

from which we conclude that \mathbf{V} has a primitive, so it is a gradient field, and that modulo a constant this primitive is given by

$$
F(x, y, z)=x y^{2}+x z+y^{2} z^{2} .
$$

We note again that this method has the advantage that if it succeeds, then it is not necessary to check the assumptions of Theorem 32.4. \diamond

Example 32.6 Consider the vector field

$$
\mathbf{V}(x, y)=\left(V_{x}(x, y), V_{y}(x, y)\right)=\left(\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right), \quad \text { for }(x, y) \neq(0,0)
$$

where the domain $A=\mathbb{R}^{2} \backslash\{(0,0)\}$ is not simply connected.
However, using the differential form we immediately get

$$
V_{x}(x, y) \mathrm{d} x+V_{y}(x,, y) \mathrm{d} y=\frac{x}{\sqrt{x^{2}+y^{2}}} \mathrm{~d} x+\frac{y}{\sqrt{x^{2}+y^{2}}} \mathrm{~d} y=\frac{1}{2} \frac{\mathrm{~d}\left(x^{2}+y^{2}\right)}{\sqrt{x^{2}+y^{2}}}=\mathrm{d}\left(\sqrt{x^{2}+y^{2}}\right)
$$

so \mathbf{V} is a gradient field in A, and all its primitives are given by

$$
F(x, y)=\sqrt{x^{2}+y^{2}}+c, \quad \text { where } c \in \mathbb{R} \text { is an arbitrary constant. }
$$

Alternatively, we first note that

$$
\frac{\partial V_{x}}{\partial y}=\frac{\partial}{\partial y}\left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right)=-\frac{1}{2} \frac{x}{x^{2}+y^{2}} \frac{y}{\sqrt{x^{2}+y^{2}}}=\frac{\partial}{\partial x}\left(\frac{y}{\sqrt{x^{2}+y^{2}}}\right)=\frac{\partial V_{y}}{\partial x}
$$

so $\mathbf{V}(x, y) \cdot(\mathrm{d} x, \mathrm{~d} y)$ is closed, and $\mathbf{V}(x, y)$ is a gradient field in every star-shaped domain contained in A.

One may choose the right half plane $x>0$ as our subdomain. Here we can use the step line,

$$
(1,0) \rightarrow(x, 0) \rightarrow(x, y), \quad x>0
$$

so by the solution formula,

$$
\begin{aligned}
F(x, y) & =\int_{1}^{x} V_{x}(\tau, 0) \mathrm{d} \tau+\int_{0}^{y} V_{y}(x, \tau) \mathrm{d} \tau \\
& =\int_{1}^{x} \mathrm{~d} \tau+\int_{0}^{y} \frac{\tau}{\sqrt{x^{2}+\tau^{2}}} \mathrm{~d} \tau=x-1+\left[\sqrt{x^{2}+\tau^{2}}\right]_{0}^{y} \\
& =x-1+\sqrt{x^{2}+y^{2}}-x=\sqrt{x^{2}+y^{2}}-1 \quad \text { for } x>0 .
\end{aligned}
$$

However, $F(x, y)=\sqrt{x^{2}+y^{2}}-1$ is C^{1} in $\mathbb{R}^{2} \backslash\{(0,0)\}$, and

$$
\frac{\partial F}{\partial x}(x, y)=\frac{x}{\sqrt{x^{2}+y^{2}}}=V_{x}(x, y), \quad \frac{\partial F}{\partial y}(x, y)=\frac{y}{\sqrt{x^{2}+y^{2}}}=V_{y}(x, y)
$$

so we have checked that the result, which was only derived for $x>0$ also holds in all of $\mathbb{R}^{2} \backslash\{(0,0)\}$.
Note alse that we get all primitives by adding an arbitrary constant, so it is no error above that we get $\sqrt{x^{2}+y^{2}}$ in the first method, and $\sqrt{x^{2}+y^{2}}-1$ in the second one. \diamond

32.3 Tangential line integrals in Physics

Consider a unit particle which moves along a curve \mathcal{K} under the action of a force $\mathbf{F}(\mathbf{x})$. Then the work done by this force is given by the tangential line integral

$$
W=\int_{\mathcal{K}} \mathbf{F}(\mathbf{x}) \cdot \mathrm{d} \mathbf{x}
$$

If $\mathbf{F}=-\nabla E_{p}$ is a gradient field, then the work is independent of the path, so

$$
\int_{\mathcal{K}} \mathbf{F}(\mathbf{x}) \cdot \mathrm{d} \mathbf{x}=E_{p}(A)-E_{p}(B)
$$

where A is the initial point of \mathcal{K} and B is the final point, The function E_{p} with the conventional minus sign in front of it, is the potential energy.

A force \mathbf{F}, which is also a gradient field, is in Physics called a conservative force.
The tangential line integrals are especially used in Electro-magnetic Field Theory. An electric field $\mathcal{E}=\mathcal{E}(\mathbf{x}, t)$, where t is the time variable, describes the force per unit charge, so when one unit of charge is moved along the curve \mathcal{K}, then the work done by $\mathcal{E}(\mathbf{x}, t)$ is equal to the tangential line integral

$$
W=\int_{\mathcal{K}} \mathcal{E}(\mathbf{x}, t) \cdot \mathrm{d} \mathbf{x}
$$

If \mathcal{K} is closed, we get the circulation of the electric field along \mathcal{K}. This is also called the electromotive force (emf) applied to the closed path \mathcal{K},

$$
\mathrm{emf}=\oint_{\mathcal{K}} \mathcal{E}(\mathbf{x}, t) \cdot \mathrm{d} \mathbf{x}
$$

although this is not a force, but an energy.
If $\mathcal{E}(\mathbf{x})$ is time-independent, we call it a static electric field. In this case the circulation along a closed curve \mathcal{K} is always zero,

$$
\mathrm{emf}=\oint_{\mathcal{K}} \mathcal{E}(\mathbf{x}) \cdot \mathrm{d} \mathbf{x}=0
$$

so $\mathcal{E}(\mathbf{x})$ is in this case a gradient field.
We have previously also mentioned Ampère's law, where the magnetic field \mathbf{H} in general is not a gradient field.

The physical examples above are just the simplest ones of the applications of the tangential line integrals in Physics. We shall later introduce the more powerful Gauß's and Stokes's theorems and see some applications of them.

32.4 Overview of the theorems and methods concerning tangential line integrals and gradient fields

The current of a vector field \mathbf{V} along a curve \mathcal{K} of parametric representation $\mathbf{r}(t)$ is defined by:

$$
\int_{\mathcal{K}} \mathbf{V} \cdot \mathrm{t} \mathrm{~d} s=\int_{\mathcal{K}} \mathbf{V} \cdot \mathrm{d} \mathbf{x}=\int_{\alpha}^{\beta} \mathbf{V}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) \mathrm{d} t
$$

where we have identified

$$
\mathbf{x}=\mathbf{r}(t) \quad \text { and } \quad \mathrm{d} \mathbf{x}=\mathbf{r}^{\prime}(t) t a
$$

It can in some cases be identified as an electric current along wire, represented by the curve.

Figure 32.2: Example of a plane curve \mathcal{K} with initial point $(0,0)$.

There are here two important special cases:

1) The gradient integral theorem:

$$
\int_{\mathcal{K}} \nabla F(\mathbf{x}) \cdot \mathrm{d} \mathbf{x}=F(\mathbf{b})-F(\mathbf{a})
$$

no matter how the curve \mathcal{K} from \mathbf{a} to \mathbf{b} is chosen.
2) Circulation, i.e. \mathcal{K} is a closed curve.

Whenever the word "circulation" occurs in an example, always think of Stokes's theorem,

$$
\oint_{\delta \mathcal{F}} \mathrm{V} \cdot \mathbf{t} \mathrm{~d} s=\int_{\mathcal{F}} \mathbf{n} \cdot \boldsymbol{\operatorname { r o t }} \mathbf{V} \mathrm{d} S
$$

and see if it applies, cf. Chapter 35.

Figure 32.3: The half sphere \mathcal{F} gives a typical example, when we shall apply Stokes's theorem.

We shall here only consider the gradient integral theorem, because the circulation will be treated separately later.

A necessary condition (which is not sufficient). The "cross derivatives" agree,

$$
\frac{\partial V_{i}}{\partial x_{j}}=\frac{\partial V_{j}}{\partial x_{i}} \quad \text { for all } i, j=1, \ldots, k
$$

"I studied English for 16 years but...
 ...I finally learned to speak it in just six lessons" Jane, Chinese architect

Click to hear me talking before and after my unique course download

A trap: Even if the necessary conditions are all fulfilled, the field \mathbf{V} is not always a gradient field, although many readers believe it.

A sufficient condition (which is not necessary). The "cross derivatives" agree:

$$
\frac{\partial V_{i}}{\partial x_{j}}=\frac{\partial V_{j}}{\partial x_{i}} \quad \text { for all } i, j=1, \ldots, k
$$

and
the domain A is star shaped.

Remark 32.1 Even when \mathbf{V} is a gradient field, the corresponding domain A does not have to be star shaped. \diamond

Concerning the calculations in practice we refer to Section 32.2:

1) Indefinite integration,
2) Method of inspection,
3) Integration along a curve consisting of lines parallel with one of the axes,
4) Radial integration.

The radial integration cannot be recommended as a standard procedure.
In some cases a differential form can be simplified by removing a gradient field:

$$
\mathbf{V}=\nabla F+\mathbf{U}
$$

or more conveniently,

$$
\mathbf{V} \cdot \mathrm{d} \mathbf{x}=V_{x} \mathrm{~d} x+V_{y} \mathrm{~d} y+V_{z} \mathrm{~d} z=\mathrm{d} F+U_{x} \mathrm{~d} x+U_{y} \mathrm{~d} y+U_{z} \mathrm{~d} z
$$

where \mathbf{U} ought to be simpler than \mathbf{V}.
If so, then

$$
\int_{\mathcal{K}} \mathrm{V} \cdot \mathrm{~d} \mathrm{x}=F(\mathbf{b})-F(\mathbf{a})+\int_{\mathcal{K}} \mathrm{U} \cdot \mathrm{~d} \mathbf{x} .
$$

This method is e.g. used in Thermodynamics, where the vector field usually is not a gradient field.
In these reductions one can take advantage of the well-known rules of calculus for differentials:

$$
\begin{aligned}
& \alpha \mathrm{d} f+\mathrm{d} g=\mathrm{d}(\alpha f+g), \\
& f \mathrm{~d} g+g \mathrm{~d} f=\mathrm{d}(f g), \\
& f \mathrm{~d} g-g \mathrm{~d} f=f^{2} \mathrm{~d}\left(\frac{g}{f}\right), \\
& F^{\prime}(f) \mathrm{d} f=\mathrm{d}(F \circ f) .
\end{aligned}
$$

32.5 Examples of tangential line integrals

Example 32.7 Calculate in each of the following cases the tangential line integral

$$
\int_{\mathcal{K}} \mathbf{V}(\mathbf{x}) \cdot \mathrm{d} \mathbf{x}
$$

of the vector field \mathbf{V} along the plane curve \mathcal{K}. This curve will either be given by a parametric description or by an equation. First sketch the curve.

1) The vector field $\mathbf{V}(x, y)=\left(x^{2}+y^{2}, x^{2}-y^{2}\right)$ along the curve \mathcal{K} given by $y=1-|1-x|$ for $x \in[0,2]$.
2) The vector field $\mathbf{V}(x, y)=\left(x^{2}-2 x y, y^{2}-2 x y\right)$ along the curve \mathcal{K} given by $y=x^{2}$ for $x \in[-1,1]$.
3) The vector field $\mathbf{V}(x, y)=(2 a-y, x)$ along the curve \mathcal{K} given by $\mathbf{r}(t)=a(t-\sin t, 1-\cos t)$ for $t \in[0,2 \pi]$.
4) The vector field $\mathbf{V}(x, y)=\left(\frac{x+y}{x^{2}+y^{2}}, \frac{y-x}{x^{2}+y^{2}}\right)$ along the curve \mathcal{K} given by $x^{2}+y^{2}=a^{2}$ and run through in the positive orientation of the plane.
5) The vector field $\mathbf{V}(x, y)=\left(x^{2}-y^{2},-(x+y)\right)$ along the curve \mathcal{K} given by $\mathbf{r}(t)=(a \cos t, b \sin t)$ for $t \in\left[0, \frac{\pi}{2}\right]$.
6) The vector field $\mathbf{V}(x, y)=\left(x^{2}-y^{2},-(x+y)\right)$ along the curve \mathcal{K} given by $\mathbf{r}(t)=(a(1-t)$, bt) for $t \in[0,1]$.
7) The vector field $\mathbf{V}(x, y)=\left(-y^{3}, x^{3}\right)$ along the curve \mathcal{K} given by $\mathbf{r}(t)=(1+\cos t, \sin t)$ for $t \in$ $\left[\frac{\pi}{2}, \pi\right]$.
8) The vector field $\mathbf{V}(x, y)=\left(-y^{2}, a^{2} \sinh \frac{x}{a}\right)$ along the curve \mathcal{K} given by $y=a \cosh \frac{x}{a}$ for $x \in[a, 2 a]$.

A Tangential line integrals.
D First sketch the curve. Then compute the tangential line integral.

Figure 32.4: The curve \mathcal{K} of Example 32.7.1.

Figure 32.5: The curve \mathcal{K} of Example 32.7.2.

I 1) Here the parametric description of the curve can also be written

$$
y=\left\{\begin{array}{cl}
x & \text { for } x \in[0,1] \\
2-x & \text { for } x \in[1,2]
\end{array}\right.
$$

This gives the following calculation of the tangential line integral

$$
\begin{aligned}
\int_{\mathcal{K}} \mathbf{V}(\mathbf{x}) \cdot \mathrm{d} \mathbf{x}= & \int_{\mathcal{K}}\left\{\left(x^{2}+y^{2}\right) \mathrm{d} x+\left(x^{2}-y^{2}\right) \mathrm{d} y\right\} \\
= & \int_{0}^{1}\left\{\left(x^{2}+x^{2}\right) \mathrm{d} x+\left(x^{2}-x^{2}\right) \mathrm{d} x\right\} \\
& +\int_{1}^{2}\left\{\left(x^{2}+(2-x)^{2}\right) \mathrm{d} x+\left(x^{2}-(2-x)^{2}\right)(-\mathrm{d} x)\right\} \\
= & \int_{0}^{1} 2 x^{2} \mathrm{~d} x+\int_{1}^{2} 2(2-x)^{2} \mathrm{~d} x=\frac{2}{3}\left[x^{3}\right]_{0}^{1}+\frac{2}{3}\left[(x-2)^{3}\right]_{1}^{2} \\
= & \frac{2}{3}+\frac{2}{3}=\frac{4}{3}
\end{aligned}
$$

2) Here

$$
\begin{aligned}
\int_{\mathcal{K}} \mathrm{V}(\mathrm{x}) \cdot \mathrm{d} \mathbf{x} & =\int_{\mathcal{K}}\left\{\left(x^{2}-2 x y\right) \mathrm{d} x+\left(y^{2}-2 x y\right) \mathrm{d} y\right\} \\
& =\int_{-1}^{1}\left\{\left(x^{2}-2 x^{3}\right) \mathrm{d} x+\left(x^{4}-2 x^{3}\right) \cdot 2 x \mathrm{~d} x\right\} \\
& =\int_{-1}^{1}\left(x^{2}-2 x^{3}+2 x^{5}-4 x^{4}\right) \mathrm{d} x \\
& =\int_{-1}^{1}\left(x^{2}-4 x^{4}\right) \mathrm{d} x+0=2\left[\frac{1}{3} x^{3}-\frac{4}{5} x^{5}\right]_{0}^{1} \\
& =2\left(\frac{1}{3}-\frac{4}{5}\right)=\frac{2}{15}(5-12)=-\frac{14}{15}
\end{aligned}
$$

Figure 32.6: The curve \mathcal{K} of Example 32.7.3 for $a=1$.

Figure 32.7: The curve \mathcal{K} of Example 32.7.4 for $a=1$.
3) Similarly we get

$$
\begin{aligned}
& \int_{\mathcal{K}} \mathrm{V}(\mathrm{x}) \cdot \mathrm{dx}=\int_{\mathcal{K}}\{(2 a-y) \mathrm{d} x+x \mathrm{~d} y\} \\
& \quad=\int_{0}^{2 \pi}\{(2 a-a(1-\cos t)) a(1-\cos t)+a(t-\sin t) a \sin t\} \mathrm{d} t \\
& \quad=a^{2} \int_{0}^{2 \pi}\{(1+\cos t)(1-\cos t)+(t-\sin t) \sin t\} \mathrm{d} t \\
& \quad=a^{2} \int_{0}^{2 \pi}\left\{1-\cos ^{2} t+t \sin t-\sin ^{2} t\right\} d t=a^{2} \int_{0}^{2 \pi} t \sin t \mathrm{~d} t \\
& \quad=a^{2}[-t \cos t+\sin t]_{0}^{2 \pi}=-2 \pi a^{2}
\end{aligned}
$$

4) We split the curve \mathcal{K} into two pieces, $\mathcal{K}=\mathcal{K}_{1}+\mathcal{K}_{2}$, where \mathcal{K}_{1} lies in the upper half plane, and \mathcal{K}_{2} lies in the lower half plane, i.e. $y>0$ inside \mathcal{K}_{1}, and $y<0$ inside \mathcal{K}_{2}. Then we get the
tangential line integral

$$
\begin{aligned}
\int_{\mathcal{K}} \mathbf{V}(\mathrm{x}) \cdot \mathrm{d} \mathbf{x}= & \int_{\mathcal{K}}\left(\frac{x+y}{x^{2}+y^{2}} \mathrm{~d} x+\frac{y-x}{x^{2}+y^{2}} \mathrm{~d} y\right) \\
= & \int_{\mathcal{K}} \frac{1}{x^{2}+y^{2}} \frac{1}{2} \mathrm{~d}\left(x^{2}+y^{2}\right)+\int_{\mathcal{K}} \frac{1}{x^{2}+y^{2}}(y \mathrm{~d} x-x \mathrm{~d} y) \\
= & \int_{\mathcal{K}} \frac{1}{2} \mathrm{~d} \ln \left(x^{2}+y^{2}\right)+\int_{\mathcal{K}_{1}} \frac{1}{1+\left(\frac{x}{y}\right)^{2}}\left(\frac{1}{y} \mathrm{~d} x+x\left(-\frac{1}{y^{2}}\right) \mathrm{d} y\right) \\
& \quad+\int_{\mathcal{K}_{2}} \frac{1}{1+\left(\frac{x}{y}\right)^{2}}\left(\frac{1}{y} \mathrm{~d} x+x\left(-\frac{1}{y^{2}}\right) \mathrm{d} y\right) \\
= & 0+\int_{\mathcal{K}_{1}} \frac{1}{1+\left(\frac{x}{y}\right)^{2}} \mathrm{~d}\left(\frac{x}{y}\right)+\int_{\mathcal{K}_{2}} \frac{1}{1+\left(\frac{x}{y}\right)^{2}} \mathrm{~d}\left(\frac{x}{y}\right) \\
= & \int_{\mathcal{K}_{1}} \mathrm{dArctan}\left(\frac{x}{y}\right)+\int_{\mathcal{K}_{2}} \mathrm{dArctan}\left(\frac{x}{y}\right) \\
= & {[\operatorname{Arctan} t]_{+\infty}^{-\infty}+[\operatorname{Arctan} t]_{+\infty}^{-\infty}=-\pi-\pi=-2 \pi . }
\end{aligned}
$$

Excellent Economics and Business programmes at:

Figure 32.8: The curve \mathcal{K} of Example 32.7.5 for $a=1$ and $b=2$.

Alternatively we get by using the parametric description

$$
(x, y)=a(\cos t, \sin t), \quad t \in[0,2 \pi]
$$

that

$$
\begin{array}{rl}
\int_{\mathcal{K}} & \mathbf{V}(\mathrm{x}) \cdot \mathrm{d} \mathrm{x}=\int_{\mathcal{K}}\left(\frac{x+y}{x^{2}+y^{2}} \mathrm{~d} x+\frac{y-x}{x^{2}+y^{2}} \mathrm{~d} y\right) \\
& =\int_{0}^{2 \pi} \frac{a^{2}}{a^{2}}\{(\cos t+\sin t)(-\sin t)+(\sin t-\cos t) \cos t\} \mathrm{d} t \\
& =\int_{0}^{2 \pi}\left\{-\cos t \cdot \sin t-\sin ^{2} t+\cos t \cdot \sin t-\cos ^{2} t\right\} \mathrm{d} t \\
& =-\int_{0}^{2 \pi} d t=-2 \pi
\end{array}
$$

5) Here

$$
\begin{array}{rl}
\int_{\mathcal{K}} & \mathbf{V}(\mathrm{x}) \cdot \mathrm{d} \mathrm{x}=\int_{\mathcal{K}}\left\{\left(x^{2}-y^{2}\right) \mathrm{d} x-(x+y) \mathrm{d} y\right\} \\
& =\int_{0}^{\frac{\pi}{2}}\left\{\left(a^{2} \cos ^{2} t-b^{2} \sin ^{2} t\right)(-a \sin t)-(a \cos t+b \sin t) b \cos t\right\} \mathrm{d} t \\
& =\int_{0}^{\frac{\pi}{2}}\left\{-a\left[\left(a^{2}+b^{2}\right) \cos ^{2} t-b^{2}\right] \sin t-a b \cos ^{2} t-b \sin t \cos t\right\} \mathrm{d} t \\
& =\left[+a\left(a^{2}+b^{2}\right) \frac{1}{3} \cos ^{3} t-a b^{2} \cos t-\frac{a b}{2}\left(t+\frac{1}{2} \sin 2 t\right)-\frac{1}{2} b^{2} \sin ^{2} t\right]_{0}^{\frac{\pi}{2}} \\
& =-\frac{a b}{2} \cdot \frac{\pi}{2}-\frac{b^{2}}{2}-\frac{a\left(a^{2}+b^{2}\right)}{3}+a b^{2}=\frac{a}{3}\left(2 b^{2}-a^{2}\right)-\frac{b}{4}(2 b+a \pi)
\end{array}
$$

Figure 32.9: The curve \mathcal{K} of Example 32.7.6 for $a=1$ and $b=2$.
6) Here

$$
\begin{array}{rl}
\int_{\mathcal{V}} & \mathbf{V}(\mathrm{x}) \cdot \mathrm{d} \mathrm{x}=\int_{\mathcal{K}}\left\{\left(x^{2}-y^{2}\right) \mathrm{d} x-(x+y) \mathrm{d} y\right\} \\
& =\int_{0}^{1}\left\{\left[a^{2}(1-t)^{2}-b^{2} t^{2}\right](-a)-[a-a t+b t] \cdot b\right\} \mathrm{d} t \\
& =\int_{0}^{1}\left\{-a^{3}(t-1)^{2}+a b^{2} t^{2}+b(a-b) t-a b\right\} \mathrm{d} t \\
& =\left[-\frac{a^{3}}{3}(t-1)^{3}+\frac{a b^{2}}{3} t^{3}+\frac{1}{2} b(a-b) t^{2}-a b t\right]_{0}^{1} \\
& =\frac{a b^{2}}{3}+\frac{1}{2}(a-b) b-a b-\frac{a^{3}}{3} \\
& =\frac{a}{3}\left(b^{2}-a^{2}\right)-\frac{b}{2}(a+b) .
\end{array}
$$

Remark. The vector field $\mathbf{V}(\mathbf{x})$ is the same as that in Example 32.7.5 and in Example 32.7.6. Furthermore, the curves of these two examples have the same initial point and end point. Nevertheless the two tangential line integrals give different results. We shall later be interested in those vector fields $\mathbf{V}(\mathbf{x})$, for which the tangential line integral only depends on the initial and end points of the curve \mathcal{K}. (In Physics such vector fields correspond to the so-called conservative forces.) We have here an example in which this ideal property is not satisfied. \diamond

Figure 32.10: The curve \mathcal{K} of Example 32.7.7.
7) We get

$$
\begin{array}{rl}
\int_{\mathcal{K}} & \mathrm{V}(\mathrm{x}) \cdot \mathrm{dx}=\int_{\mathcal{K}}\left\{-y^{3} \mathrm{~d} x+x^{3} \mathrm{~d} y\right\} \\
& =\int_{\frac{\pi}{2}}^{\pi}\left\{-\sin ^{3} t \cdot(-\sin t)+(1+\cos t)^{3} \cos t\right\} \mathrm{d} t \\
& =\int_{\frac{\pi}{2}}^{\pi}\left\{\sin ^{4} t+\cos t+3 \cos ^{2} t+3 \cos ^{3} t+\cos ^{4} t\right\} \mathrm{d} t \\
& =\int_{\frac{\pi}{2}}^{\pi}\left\{\sin ^{4} t+\cos ^{4} t+\left(2 \cos ^{2} t \cdot \sin ^{2} t-\frac{1}{2} \sin ^{2} 2 t\right)+\cos t+\frac{3}{2}+\frac{3}{2} \cos 2 t+3 \cos ^{3} y\right\} \mathrm{d} t \\
& =\int_{\frac{\pi}{2}}^{\pi}\left\{\left(\sin ^{2} t+\cos ^{2} t\right)^{2}-\frac{1}{4}+\frac{1}{4} \cos 4 t+\cos t+\frac{3}{2} \cos 2 t+3 \cos t-3 \sin ^{2} t \cos t\right\} \mathrm{d} t \\
& =\left[t-\frac{t}{4}+\frac{1}{16} \sin 4 t+\sin t+\frac{3}{2} t+\frac{3}{4} \sin 2 t+3 \sin t-\sin ^{3} t\right]_{\frac{\pi}{2}}^{\pi} \\
& =\left(1-\frac{1}{4}+\frac{3}{2}\right) \frac{\pi}{2}-4+1=\frac{9 \pi}{8}-3 .
\end{array}
$$

8) We get

$$
\begin{aligned}
\int_{\mathcal{K}} \mathrm{V}(\mathrm{x}) \cdot \mathrm{d} \mathrm{x} & =\int_{\mathcal{K}}\left\{-y^{2} \mathrm{~d} x+a^{2} \sinh \frac{x}{a} \mathrm{~d} y\right\} \\
& =\int_{a}^{2 a}\left\{-a^{2} \cosh ^{2} \frac{x}{a} \mathrm{~d} x+a^{2} \sinh \frac{x}{a} \cdot \sinh \frac{x}{a} \mathrm{~d} x\right\} \\
& =-a^{2} \int_{a}^{2 a}\left\{\cosh ^{2}\left(\frac{x}{a}\right)-\sinh ^{2}\left(\frac{x}{a}\right)\right\} \mathrm{d} x=-a^{3}
\end{aligned}
$$

Figure 32.11: The curve \mathcal{K} of Example 32.7.8 for $a=1$.

Figure 32.12: The curves $y=\sqrt{3 x}, y=\sqrt{3} x$ and $y=\sqrt{3} x^{2}$.

Example 32.8 Compute the tangential line integral of the vector field

$$
\mathbf{V}(x, y)=\left(2 x y, x^{6} y^{2}\right)
$$

along the curve \mathcal{K} given by $y=a x^{b}, x \in[0,1]$. Then find a such that the line integral becomes independent of b.

A Tangential line integral.
D Just use the standard method.
I We calculate the line integral

$$
\begin{aligned}
\int_{\mathcal{K}} \mathrm{V}(x, y) \cdot \mathrm{d} \mathbf{x} & =\int_{\mathcal{K}} 2 x y d x+x^{6} y^{2} \mathrm{~d} y=\int_{0}^{1}\left\{2 x a x^{b}+x^{6} a^{2} x^{2 b} \cdot a b x^{b-1}\right\} \mathrm{d} x \\
& =\int_{0}^{1}\left\{2 a x^{b+1}+a^{3} b x^{3 b+5}\right\} \mathrm{d} x=\frac{2 a}{b+2}+\frac{a^{3} b}{3(b+2)}=\frac{a\left(a^{2} b+6\right)}{3(b+2)}
\end{aligned}
$$

Assume that this result is independent of b. Then $b+2$ must be proportional to $a^{2} b+6$, so $a^{2}=3$.

According to the convention $a>0$, hence $a=\sqrt{3}$. By choosing this a we get

$$
\int_{\mathcal{K}} \mathbf{V}(x, y) \cdot \mathrm{d} \mathbf{x}=\frac{\sqrt{3}(3 b+6)}{3(b+2)}=\sqrt{3}
$$

which is independent of b.

ul careers.slb.com
'Based on Fortune 500 ranking 2011. Copyright © 2015 Schlumberger. All rights reserved

In the past four years we have drilled

89,000 km

That's more than twice around the world.

Who are we?

We are the world's largest oilfield services company'. Working globally-often in remote and challenging locationswe invent, design, engineer, and apply technology to help our customers find and produce oil and gas safely.

Who are we looking for?

Every year, we need thousands of graduates to begin
dynamic careers in the following domains:

- Engineering, Research and Operations
- Geoscience and Petrotechnical
- Commercial and Business

What will you be?

Sehlumheryger

Example 32.9 Calculate in each of the following cases the tangential line integral

$$
\int_{\mathcal{K}} \mathbf{V}(\mathbf{x}) \cdot \mathrm{d} \mathbf{x}
$$

of the vector field \mathbf{V} along the space curve \mathcal{K}, which is given by the parametric description $\mathcal{K}=\left\{\mathbf{x} \in \mathbb{R}^{3} \mid \mathbf{x}=\mathbf{r}(t), t \in I\right\}$.

1) The vector field is $\mathbf{V}(x, y, z)=\left(y^{2}-z^{2}, 2 y z,-x^{2}\right)$, and the curve \mathcal{K} is given by $\mathbf{r}(t)=\left(t, t^{2}, t^{3}\right)$ for $t \in I$.
2) The vector field is $\mathbf{V}(x, y, z)=\left(\frac{1}{x+z}, y+z, \frac{2}{x+y+z}\right)$, and the curve \mathcal{K} is given by $\mathbf{r}(t)=$ $\left(t, t^{2}, t^{3}\right)$ for $t \in[1,2]$.
3) The vector field is $\mathbf{V}(x, y, z)=\left(3 x^{2}-6 y z, 2 y+3 x z, 1-4 x y z^{2}\right)$, and the curve \mathcal{K} is given by $\mathbf{r}(t)=\left(t, t^{2}, t^{3}\right)$ for $t \in[0,1]$.
4) The vector field is $\mathbf{V}(x, y, z)=\left(3 x^{2}-6 y z, 2 y+3 x z, 1-4 x y z^{2}\right)$, and the curve \mathcal{K} is given by $\mathbf{r}(t)=(t, t, t)$ for $t \in[0,1]$.
5) The vector field is $\mathbf{V}(x, y, z)=\left(3 x^{2}-6 y z, 2 y+3 x z, 1-4 x y z^{2}\right)$, and the curve \mathcal{K} is given by

$$
\mathbf{r}(t)= \begin{cases}(0,0, t), & \text { for } t \in[0,1] \\ (0, t-1,1), & \text { for } t \in[1,2] \\ (t-2,1,1), & \text { for } t \in[2,3]\end{cases}
$$

6) The vector field is $\mathbf{V}(x, y, z)=(x, y, x z-y)$, and the curve \mathcal{K} is given by $\mathbf{r}(t)=(t, 2 t, 4 t)$ for $t \in[0,1]$.
7) The vector field is $\mathbf{V}(x, y, z)=(2 x+y z, 2 y+x z, 2 z+x y)$, and the curve \mathcal{K} is given by

$$
\mathbf{r}(t)=(a(\cosh t) \cos t, a(\cosh t) \sin t, a t) \quad \text { for } t \in[0,2 \pi]
$$

8) The vector field is $\mathbf{V}(x, y, z)=\left(y^{2}-z^{2}, 2 y z,-x^{2}\right)$, and the curve \mathcal{K} is given by $\mathbf{r}(t)=(t, t, t)$ for $t \in[0,1]$.

A Tangential line integrals in space.
D Insert the parametric descriptions and calculate the tangential line integral. Note that Example 32.9.7 is a gradient field, so it is in this case possible to find the integral directly.

I 1) We get

$$
\begin{aligned}
\int_{\mathcal{K}} \mathbf{V}(\mathrm{x}) \cdot \mathrm{d} \mathbf{x} & =\int_{\mathcal{K}}\left\{\left(y^{2}-z^{2}\right) \mathrm{d} x+2 y z \mathrm{~d} y-x^{2} \mathrm{~d} z\right\} \\
& =\int_{0}^{1}\left\{\left(t^{4}-t^{6}\right)+2 t^{2} \cdot t^{3} \cdot 2 t-t^{3} \cdot 3 t^{2}\right\} \mathrm{d} t \\
& =\int_{0}^{1}\left\{3 t^{6}-2 t^{4}\right\} d t=\frac{3}{7}-\frac{2}{5}=\frac{1}{35}
\end{aligned}
$$

2) Here

$$
\begin{aligned}
\int_{\mathcal{K}} \mathrm{V}(\mathrm{x}) \cdot \mathrm{d} \mathrm{x} & =\int_{\mathcal{K}}\left\{\frac{1}{x+z} \mathrm{~d} x+(y+z) \mathrm{d} y+\frac{2}{x+y+z} \mathrm{~d} z\right\} \\
& =\int_{1}^{2}\left\{\frac{1}{t+t^{3}}+\left(t+t^{3}\right)+\frac{6 t^{2}}{2 t+t^{3}}\right\} \mathrm{d} t \\
& =\int_{1}^{2}\left\{\frac{1}{t}-\frac{t}{1+t^{2}}+\frac{6 t}{2+t^{2}}+t+t^{3}\right\} \mathrm{d} t \\
& =\left[\ln t-\frac{1}{2} \ln \left(1+t^{2}\right)+3 \ln \left(2+t^{2}\right)+\frac{t^{2}}{2}+\frac{t^{4}}{4}\right]_{1}^{2} \\
& =\ln 2-\frac{1}{2} \ln 5+3 \ln 6-\frac{1}{2} \ln 2-3 \ln 3+\frac{4}{2}+\frac{16}{4}-\frac{1}{2}-\frac{1}{4} \\
& =\frac{9}{2} \ln 2+\frac{1}{2} \ln 5+\frac{21}{4}=\frac{21}{4}+\frac{1}{2} \ln \frac{512}{5}
\end{aligned}
$$

3) First note that for any curve,

$$
\begin{aligned}
& \int_{\mathcal{K}} \mathrm{V}(\mathrm{x}) \cdot d \mathrm{x}=\int_{\mathcal{K}}\left\{\left(3 x^{2}-6 y z\right) \mathrm{d} x+(2 y+3 x z) \mathrm{d} y+\left(1-4 x y z^{2}\right) \mathrm{d} z\right\} \\
& (32.2)=\int_{\mathcal{K}} \mathrm{d}\left(x^{3}+y^{2}+z\right)-\int_{\mathcal{K}} z\{6 y \mathrm{~d} x-3 x \mathrm{~d} y+4 x y z \mathrm{~d} z\}
\end{aligned}
$$

Such a rearrangement can also be used with success in Example 32.9.3, Example 32.9.4 and Example 32.9.5.
When we apply (32.2), we get

$$
\begin{aligned}
\int_{\mathcal{K}} \mathrm{V}(\mathrm{x}) \cdot \mathrm{d}(\mathrm{x}) & =\left[x^{3}+y^{2}+z\right]_{(0,0,0)}^{(1,1,1)}-\int_{0}^{1} t^{3}\left\{6 t^{2}-3 t \cdot 2 t+t^{6} \cdot 3 t^{2}\right\} d t \\
& =3-\int_{0}^{1} 12 t^{11} d t=3-1=2
\end{aligned}
$$

Alternatively, it follows by a direct insertion that

$$
\begin{aligned}
\int_{\mathcal{K}} \mathbf{V}(\mathrm{x}) \cdot \mathrm{d} \mathrm{x} & =\int_{\mathcal{K}}\left\{\left(3 x^{2}-6 y z\right) \mathrm{d} x+(2 y+3 x z) \mathrm{d} y+\left(1-4 x y z^{2}\right) \mathrm{d} z\right\} \\
& =\int_{0}^{1}\left\{\left(3 t^{2}-6 t^{2} \cdot t^{3}\right)+\left(2 t^{2}+3 t \cdot t^{3}\right) 2 t+\left(1-4 t \cdot t^{2} \cdot t^{6}\right) 3 t^{2}\right\} \mathrm{d} t \\
& =\int_{0}^{1}\left\{3 t^{2}-6 t^{5}+4 t^{3}+6 t^{5}+3 t^{2}-12 t^{11}\right\} \mathrm{d} t \\
& =\int_{0}^{1}\left(6 t^{2}+4 t^{3}-12 t^{11}\right) d t=\left[2 t^{3}+t^{4}-t^{12}\right]_{0}^{1}=2
\end{aligned}
$$

4) The vector field is the same as in Example 32.9.3. We get by (32.2),

$$
\begin{aligned}
\int_{\mathcal{K}} \mathrm{V}(\mathrm{x}) \cdot \mathrm{d} \mathrm{x} & =\left[x^{3}+y^{2}+z\right]_{(0,0,0)}^{(1,1,1)}-\int_{0}^{1}\left(6 t^{2}-3 t^{2}+4 t^{4}\right) \mathrm{d} t \\
& =3-\int_{0}^{1}\left(3 t^{2}+4 t^{4}\right) \mathrm{d} t=3-1-\frac{4}{5}=\frac{6}{5}
\end{aligned}
$$

Alternatively, it follows by a direct insertion that

$$
\begin{aligned}
\int_{\mathcal{K}} \mathrm{V}(\mathrm{x}) \cdot \mathrm{dx} & =\int_{0}^{1}\left\{\left(3 t^{2}-6 t^{2}\right)+\left(2 t+3 t^{2}\right)+1-4 t^{4}\right\} \mathrm{d} t \\
& =\int_{0}^{1}\left(1+2 t-4 t^{4}\right) d t=1+1-\frac{4}{5}=\frac{6}{5}
\end{aligned}
$$

5) The vector field is the same as in Example 32.9.3. When we apply (32.2) and just check that $\mathbf{r}(t)$ is a continuous curve, we get

$$
\begin{aligned}
\int_{\mathcal{K}} \mathrm{V}(\mathrm{x}) \cdot \mathrm{d} \mathrm{x} & =\left[x^{3}+y^{2}+z\right]_{(0,0,0)}^{(1,1,1)}-\left[\int_{\mathcal{K}} z\{6 y \mathrm{~d} x-3 x \mathrm{~d} y+4 x y z \mathrm{~d} z\}\right. \\
& =3-\int_{0}^{1} 0 \mathrm{~d} t-\int_{1}+20 \mathrm{~d} t-\int_{2}^{3} 1 \cdot 6 \mathrm{~d} t=3-6=-3
\end{aligned}
$$

Alternatively, it follows by direct insertion that

$$
\begin{aligned}
\int_{\mathcal{K}} \mathrm{V}(\mathrm{x}) \cdot \mathrm{d} \mathrm{x} & =\int_{\mathcal{K}}\left\{\left(3 x^{2}-6 y z\right) \mathrm{d} x+(2 y+3 x z) \mathrm{d} y+\left(1-4 x y z^{2}\right) \mathrm{d} z\right\} \\
& =\int_{0}^{1}(1-4 \cdot 0) \mathrm{d} t+\int_{1}^{2}\{2(t-1)+0\} \mathrm{d} t+\int_{2}^{3}\left\{3(t-2)^{2}-6\right\} \mathrm{d} t \\
& =[t]_{0}^{1}+2\left[\frac{1}{2}(t-1)^{2}\right]_{1}^{2}+3\left[\frac{1}{3}(t-2)^{3}-2 t\right]_{2}^{3} \\
& =1+1+1-3 \cdot 2 \cdot 3+3 \cdot 2 \cdot 2=3(1-6+4)=-3
\end{aligned}
$$

6) Here we get by insertion,

$$
\begin{aligned}
\int_{\mathcal{K}} \mathbf{V}(\mathrm{x}) \cdot \mathrm{d} \mathrm{x} & =\int_{\mathcal{K}}\{x \mathrm{~d} x+y \mathrm{~d} y+(x z-y) \mathrm{d} z\} \\
& =\int_{0}^{1}\{t+2 t \cdot 2+(t \cdot 4 t-2 t) \cdot 4\} \mathrm{d} t \\
& =\int_{0}^{1}\left(t+4 t+16 t^{2}-8 t\right) d t=\int_{0}^{1}\left(16 t^{2}-3 t\right) \mathrm{d} t \\
& =\frac{16}{3}-\frac{3}{2}=\frac{32-9}{6}=\frac{23}{6}
\end{aligned}
$$

7) It follows immediately that

$$
\begin{aligned}
\int_{\mathcal{K}} \mathbf{V}(\mathrm{x}) \cdot \mathrm{d} \mathbf{x} & =\int_{\mathcal{K}}\{(2 x+y z) \mathrm{d} x+(2 y+x z) \mathrm{d} y+(2 z x y) \mathrm{d} z\} \\
& =\int_{\mathcal{K}}\left\{\mathrm{d}\left(x^{2}+y^{2}+z^{2}\right)+(y z \mathrm{~d} x+x z \mathrm{~d} y+x y \mathrm{~d} z)\right\} \\
& =\int_{\mathcal{K}} \mathrm{d}\left(x^{2}+y^{2}+z^{2}+x y z\right)=\left[x^{2}+y^{2}+z^{2}+x y z\right]_{(x, y, z)=(a, 0,0)}^{a(\cosh 2 \pi, 0,2 \pi)} \\
& =a^{2} \cosh ^{2} 2 \pi+4 a^{2} \pi^{2}-a^{2}=a^{2}\left(4 \pi^{2}+\sinh ^{2} 2 \pi\right)
\end{aligned}
$$

Alternatively, we get by the parametric description

$$
\mathbf{r}(t)=a(\cosh t \cdot \cos t, \cosh t \cdot \sin t, t), \quad t \in[0,2 \pi],
$$

that

$$
\mathbf{r}^{\prime}(t)=a(\sinh t \cdot \cos t-\cosh t \cdot \sin t, \sinh t \cdot \sin t+\cosh t \cdot \cos t, 1)
$$

thus

$$
\begin{aligned}
\int_{\mathcal{K}} \mathrm{V}(\mathrm{x}) \cdot \mathrm{d} \mathbf{x}= & \int_{\mathcal{K}}\{(2 x+y z) \mathrm{d} x+(2 y+x z) \mathrm{d} y+(2 z+x y) \mathrm{d} z\} \\
= & \int_{0}^{2 \pi}\left(2 a \cosh t \cos t+a^{2} t \cosh t \sin t\right) a(\sinh t \cos t-\cosh t \sin t) \mathrm{d} t \\
& +\int_{0}^{2 \pi}\left(2 a \cosh t \sin t+a^{2} \cosh t \cos t\right) a(\sinh t \sin t+\cosh t \cos t) \mathrm{d} t \\
& +\int_{0}^{2 \pi}\left(2 a t+a^{2} \cosh ^{2} t \cdot \cos t \cdot \sin t\right) a \mathrm{~d} t \\
= & a^{2} \cdot(\cdots)+a^{3} \cdot(\cdots)
\end{aligned}
$$

Then the easiest method is to reduce and use that

$$
\cos t=\frac{1}{2}\left(e^{i t}+e^{-i t}\right), \quad \sin t=\frac{1}{2 i}\left(e^{i t}-e^{-i t}\right)
$$

and similarly for $\cosh t$ and $\sinh t$. We finally obtain the result by a partial integration.

The variants above are somewhat sophisticated, so we proceed here by first calculating the coefficient of a^{2} :

$$
\begin{aligned}
\int_{0}^{2 \pi} 2 & \cosh t \cdot t(\sinh t \cdot \cos t-\cosh t \cdot \sin t) \mathrm{d} t \\
& +\int_{0}^{2 \pi} 2 \cosh t \cdot \sin t(\sinh t \cdot \sin t+\cosh t \cdot \cos t) \mathrm{d} t+\int_{0}^{2 \pi} 2 t \mathrm{~d} t \\
= & 2 \int_{0}^{2 \pi} \cosh t \cdot \sinh t \mathrm{~d} t+\int_{0}^{2 \pi} 2 t \mathrm{~d} t=\left[\sinh ^{2} t+t^{2}\right]_{0}^{2 \pi}=4 \pi^{2}+\sinh ^{2} 2 \pi
\end{aligned}
$$

Then we find the coefficient of a^{3} :

$$
\begin{aligned}
\int_{0}^{2 \pi} & t\left\{\cosh t \sinh t \sin t \cos t-\cosh ^{2} t \sin ^{2}\right\} \mathrm{d} t \\
& \quad+\int_{0}^{2 \pi} t\left\{\cosh t \sinh t \sin t \cos t+\cosh ^{2} t \cos ^{2} t\right\} \mathrm{d} t+\int_{0}^{2 \pi} \cosh ^{2} t \cos t \sin t \mathrm{~d} t \\
= & \int_{0}^{2 \pi} t\left(\cosh t \sinh t \sin 2 t+\cosh ^{2} t \cos 2 t\right) \mathrm{d} t+\frac{1}{2} \int_{0}^{2 \pi} \cosh ^{2} t \sin 2 t \mathrm{~d} t
\end{aligned}
$$

Note that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\{\frac{1}{2} \cosh ^{2} t \cdot \sin 2 t\right\}=\cosh t \cdot \sinh t \cdot \sin 2 t+\cosh ^{2} t \cdot \cos 2 t
$$

so the whole expression can then be written

$$
\begin{aligned}
\int_{0}^{2 \pi} & \left\{t \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{1}{2} \cosh ^{2} t \sin 2 t\right)+\frac{\mathrm{d} t}{\mathrm{~d} t} \cdot\left(\frac{1}{2} \cosh ^{2} t \sin 2 t\right)\right\} \mathrm{d} t \\
& =\int_{0}^{2 \pi} \frac{\mathrm{~d}}{\mathrm{~d} y}\left(\frac{t}{2} \cosh ^{2} t \sin 2 t\right) \mathrm{d} t=\left[\frac{t}{2} \cosh ^{2} t \cdot \sin 2 t\right]_{0}^{[2 \pi}=0
\end{aligned}
$$

As a conclusion we get

$$
\int_{\mathcal{K}} \mathrm{V}(\mathrm{x}) \cdot \mathrm{dx}=a^{2}\left(4 \pi^{2}+\sinh ^{2} 2 \pi\right)+0 \cdot a^{3}=a^{2}\left(4 \pi^{2}+\sinh ^{2} 2 \pi\right)
$$

8) Here we get [cf. also Example 32.9.1, where the vector field is the same]

$$
\begin{aligned}
\int_{\mathcal{K}} \mathrm{V}(\mathrm{x}) \cdot \mathrm{d} \mathrm{x} & =\int_{\mathcal{K}}\left\{\left(y^{2}-z^{2}\right) \mathrm{d} x+2 y z \mathrm{~d} y-x^{2} \mathrm{~d} z\right\} \\
& =\int_{0}^{1}\left\{\left(t^{2}-t^{2}\right)+2 t^{2}-t^{2}\right\} \mathrm{d} t=\int_{0}^{1} t^{2} \mathrm{~d} t=\frac{1}{3}
\end{aligned}
$$

Example 32.10 Calculate in each of the following cases the tangential line integral of the given vector field \mathbf{V} along the given curve \mathcal{K}.

1) The vector field is $\mathbf{V}(x, y)=(x+y, x-y)$, and the curve \mathcal{K} is the ellipse of centrum $(0,0)$ and half axes a, b, run through in the positive orientation of the plane.
2) The vector field is $\mathbf{V}(x, y)=\left(\frac{1}{|x|+|y|}, \frac{1}{|x|+|y|}\right)$, and the curve \mathcal{K} is the square defined by its vertices

$$
(1,0), \quad(0,1), \quad(-1,0), \quad(0,-1)
$$

in the positive orientation of the plane.
3) The vector field is $\mathbf{V}(x, y)=\left(x^{2}-y, y^{2}+x\right)$, and the curve \mathcal{K} is the line segment from $(0,1)$ to $(1,2)$.
4) The vector field is $\mathbf{V}(x, y)=\left(x^{2}-y^{2}, y^{2}+x\right)$, and the curve \mathcal{K} is the broken line from $(0,1)$ over $(1,1)$ to $(1,2)$.
5) The vector field is $\mathbf{V}(x, y)=\left(x^{2}-y, y^{2}+x\right)$, and the curve \mathcal{K} is that part of the parabola of equation $y=1+x^{2}$, which has the initial point $(0,1)$ and the final point $(1,2)$.
6) The vector field is $\mathbf{V}(x, y, z)=(y z, x z, x(y+1))$, and the curve \mathcal{K} is the triangle given by its vertices

$$
(0,0,0), \quad(1,1,1), \quad(-1,1,-1)
$$

and run through as defined by the given sequence.
7) The vector field is $\mathbf{V}(x, y, z)=(\sin y, \sin z, \sin x)$, and the curve \mathcal{K} is the line segment from $(0,0,0)$ to (π, π, π).
8) The vector field is $\mathbf{V}(x, y, z)=(z, x,-y)$, and the curve \mathcal{K} is the quarter circle from $(a, 0,0)$ to $(0,0, a)$ followed by another quarter circle from $(0,0, a)$ to (0.a.0), both of centrum $(0,0,0)$.

A Tangential line integrals in the 2-dimensional and the 3-dimensional space.
D Sketch in the 2-dimensional case the curve \mathcal{K}. Then check if any part of $\mathbf{V}(\mathbf{x}) \cdot \mathrm{d} \mathbf{x}$ can be sorted out as a total differential. Finally, insert the parametric description and calculate.

I 1) As \mathcal{K} is a closed curve, we get

$$
\int_{\mathcal{K}} \mathbf{V}(\mathrm{x}) \cdot \mathrm{d} \mathbf{x}=\int_{\mathcal{K}}\{(x+y) \mathrm{d} x+(x-y) \mathrm{d} y\}=\int_{\mathcal{K}} \mathrm{d}\left(\frac{1}{2} x^{2}+x y-\frac{1}{2} y^{2}\right)=0
$$

because $\mathbf{V} \cdot \mathrm{d} \mathbf{x}$ is a total differential.
Alternatively, \mathcal{K} has e.g. the parametric description

$$
(x, y)=\mathbf{r}(t)=(a \cos t, b \sin t), \quad t \in[0,2 \pi]
$$

hence

$$
\mathbf{r}^{\prime}(t)=(-a \sin t, b \cos t)
$$

Figure 32.13: A possible curve \mathcal{K} in Example 32.10.1.

Figure 32.14: The curve of Example 32.10.2.

Then by insertion,

$$
\begin{array}{rl}
\int_{\mathcal{K}} & \mathbf{V} \\
& =\int_{0}^{2 \pi}\{(a \cos t+b \sin t)(-a \sin t)+(a \cos t-b \sin t) b \cos t\} \mathrm{d} t \\
& =\int_{0}^{2 \pi}\left\{-a^{2} \cos t \sin t-a b \sin ^{2} t+a b \cos ^{2} t-v^{2} \sin t \cos t\right\} \mathrm{d} t \\
& =\int_{0}^{2 \pi}\left\{a b \cos 2 t-\frac{1}{2}\left(a^{2}+b^{2}\right) \sin 2 t\right\} \mathrm{d} t=0
\end{array}
$$

2) Since $|x|+|y|=1$ on \mathcal{K}, we have

$$
\int_{\mathcal{K}} \mathrm{V} \cdot \mathrm{~d} \mathbf{x}=\int_{\mathcal{K}} \frac{1}{|x|+|y|}(\mathrm{d} x+\mathrm{d} y)=\int_{\mathcal{K}} 1 \mathrm{~d}(x+y)=0 .
$$

Alternatively, and more difficult we can use the parametric description of \mathcal{K} given by

$$
\mathbf{r}(t)= \begin{cases}(1-t, t), & t \in[0,1] \\ (1-t, 2-t), & t \in[1,2] \\ (t-3,2-t), & t \in[2,3] \\ (t-3, t-4), & t \in[3,4]\end{cases}
$$

Alcatel-Lucent
www.alcatel-lucent.com/careers

Figure 32.15: The curve \mathcal{K} of Example 32.10.3

Then

$$
\mathbf{r}^{\prime}(t)= \begin{cases}(-1,1), & t \in] 0,1[\\ (-1,-1), & t \in] 1,2[\\ (1,-1), & t \in] 2,3[\\ (1,1), & t \in] 3,4[\end{cases}
$$

Since $|x|+|y|=1$ on \mathcal{K}, we get

$$
\begin{aligned}
\int_{\mathcal{K}} \mathrm{V} \cdot \mathrm{~d} \mathrm{x} & =\int_{\mathcal{K}}(\mathrm{d} x+\mathrm{d} y) \\
& =\int_{0}^{1}(-1+1) \mathrm{d} t+\int_{1}^{2}(-1-1) \mathrm{d} t+\int_{2}^{3}(1-1) \mathrm{d} t+\int_{3}^{4}(1+1) \mathrm{d} t \\
& =0-2+0+2=0
\end{aligned}
$$

3) First note that

$$
\begin{aligned}
\int_{\mathcal{K}} \mathrm{V} \cdot \mathrm{~d} \mathbf{x} & =\int_{\mathcal{K}}\left\{\left(x^{2}-y\right) \mathrm{d} x+\left(y^{2}+x\right) \mathrm{d} y\right\}=\frac{1}{3} \int_{\mathcal{K}} \mathrm{d}\left(x^{3}+y^{3}\right)+\int_{\mathcal{K}}(-y \mathrm{~d} x+x \mathrm{~d} y) \\
& =\frac{1}{3}(8+1-1)+\int_{\mathcal{K}}(-y \mathrm{~d} x+x \mathrm{~d} y)
\end{aligned}
$$

so

$$
\begin{align*}
\int_{\mathcal{K}} \mathrm{V} \cdot \mathrm{~d} \mathbf{x} & =\frac{8}{3}+\int_{\mathcal{K}}(-y \mathrm{~d} x+x \mathrm{~d} y) \tag{32.3}\\
& =\int_{\mathcal{K}}\left\{\left(x^{2}-y\right) \mathrm{d} x+\left(y^{2}+x\right) \mathrm{d} y\right\} \tag{32.4}
\end{align*}
$$

Then we calculate Example 32.10.3, Example 32.10.4 and Example 32.10.5 in the two variants corresponding to (32.3) and (32.4), respectively.

A parametric description of \mathcal{K} is e.g.

$$
\mathbf{r}(t)=(t, 1+t), \quad t \in[0,1]
$$

and accordingly, $\mathbf{r}^{\prime}(t)=(1,1)$.

Figure 32.16: The curve \mathcal{K} of Example 32.10.4.

Then by (32.3),

$$
\int_{\mathcal{K}} \mathrm{V} \cdot \mathrm{~d} \mathrm{x}=\frac{8}{3}+\int_{0}^{1}\{-(1+t)+t\} \mathrm{d} t=\frac{8}{3}-1=\frac{5}{3}
$$

Alternatively, we get by (32.4) that

$$
\begin{aligned}
\int_{\mathcal{K}} \mathrm{V} \cdot \mathrm{~d} \mathrm{x} & =\int_{0}^{1}\left\{t^{2}-(1+t)+(1+t)^{2}+t\right\} \mathrm{d} t=\int_{0}^{1}\left\{(1+t)^{2}+t^{2}-1\right\} \mathrm{d} t \\
& =\left[\frac{1}{3}(1+t)^{3}+\frac{1}{3} t^{3}-t\right]_{0}^{1}=\frac{8+1-1}{3}-1=\frac{5}{3}
\end{aligned}
$$

4) It follows from (32.3) that

$$
\int_{\mathcal{K}} \mathrm{V} \cdot \mathrm{~d} \mathrm{x}=\frac{8}{3}+\int_{0}^{1}(-1) \mathrm{d} x+\int_{1}^{2} 1 \mathrm{~d} y=\frac{8}{3}-1+1=\frac{8}{3}
$$

Alternatively, we get by (32.4),

$$
\begin{aligned}
\int_{\mathcal{K}} \mathrm{V} \cdot \mathrm{~d} \mathbf{x} & =\int_{0}^{1}\left(x^{2}-1\right) \mathrm{d} x+\int_{1}^{2}\left(y^{2}+1\right) \mathrm{d} y=\left[\frac{1}{3} x^{3}-x\right]_{0}^{1}+\left[\frac{1}{3} y^{3}+y\right]_{1}^{2} \\
& =\frac{1}{3}-1+\frac{8}{3}+2-\frac{1}{3}-1=\frac{8}{3}
\end{aligned}
$$

5) $\mathrm{By}(32.3)$,

$$
\begin{aligned}
\int_{\mathcal{K}} \mathrm{V} \cdot \mathrm{dx} & =\frac{8}{3}+\int_{0}^{1}\left\{\left(-1-x^{2}\right)+x \cdot 2 x\right\} \mathrm{d} x \\
& =\frac{8}{3}+\int_{0}^{1}\left(x^{2}-1\right) \mathrm{d} x=\frac{8}{3}+\left[\frac{1}{3} x^{3}-x\right]_{0}^{1}=\frac{8}{3}+\frac{1}{3}-1=2
\end{aligned}
$$

Figure 32.17: The curve \mathcal{K} of Example 32.10.5.

Alternatively, by (32.4),

$$
\begin{aligned}
\int_{\mathcal{K}} \mathrm{V} \cdot \mathrm{dx} & =\int_{\mathcal{K}}\left\{x^{2}-x^{2}-1+\left[\left(x^{2}+1\right)^{2}+x\right] \cdot 2 x\right\} \mathrm{d} x \\
& =\int_{\mathcal{K}}\left\{2 x^{5}+4 x^{3}+2 x^{2}+2 x-1\right\} \mathrm{d} x \\
& =\left[\frac{1}{3} x^{6}+x^{3}+\frac{2}{3} x^{3}+x^{2}-x\right]_{0}^{1}=\frac{1}{3}+1+\frac{2}{3}+1-1=2
\end{aligned}
$$

6) Here a parametric description is e.g. given by

$$
\mathbf{r}(t)=\left\{\begin{array}{cl}
(t, t, t), & t \in[0,1] \\
(3-2 t, 1,3-2 t), & t \in[1,2] \\
(t-3,,-t+3, t-3), & t \in[2,3]
\end{array}\right.
$$

hence

$$
\mathbf{r}^{\prime}(t)=\left\{\begin{array}{cc}
(1,1,1), & t \in] 0,1[\\
(-2,0,-2), & t \in] 1,2[\\
(1,-1,1), & t \in] 2,3[
\end{array}\right.
$$

First variant. We get by direct insertion,

$$
\begin{aligned}
\int_{\mathcal{K}} \mathbf{V} \cdot & \mathrm{d} \mathbf{x}=\int_{\mathcal{K}}\{y z \mathrm{~d} x+x z \mathrm{~d} y+x(y+1) \mathrm{d} z\} \\
= & \int_{0}^{1}\left(t^{2}+t^{2}+t^{2}+t\right) \mathrm{d} t+\int_{1}^{2}\{\cdot(3-2 t) \cdot(-2)+(3-2 t) \cdot 2 \cdot(-2)\} \mathrm{d} t \\
& +\int_{2}^{3}\left\{(-t+3)(t-3) \cdot 1+(t-3)^{2} \cdot(-1)+(t-3)(-t+3) \cdot 1+t-3\right\} \mathrm{d} t \\
= & \int_{0}^{1}\left(3 t^{2}+t\right) d t-6 \int_{1}^{2}(3-2 t) d t-\int_{2}^{3}\left\{3(t-3)^{2}-(t-3)\right\} \mathrm{d} t \\
= & {\left[t^{3}+\frac{1}{2} t^{2}\right]_{0}^{1}+6\left[t^{2}-3 t\right]_{1}^{2}-\left[(t-3)^{3}-\frac{1}{2}(t-3)^{2}\right]_{2}^{3} } \\
= & 1+\frac{1}{2}+6(4-6-1+3)+\left(-1-\frac{1}{2}\right)=0 .
\end{aligned}
$$

2. variant. Reduction by removing a total differential.

As

$$
\mathrm{V} \cdot \mathrm{~d} \mathrm{x}=y z \mathrm{~d} x+x z \mathrm{~d} y+x y \mathrm{~d} z+x \mathrm{~d} z=\mathrm{d}(x y z)+x \mathrm{~d} z
$$

and as \mathcal{K} is a closed curve, we have $\int_{\mathcal{K}} \mathrm{d}(x y z)=0$, so the calculations are simplified by removing $\mathrm{d}(x y z)$:

$$
\begin{aligned}
\int_{\mathcal{K}} \mathrm{V} \cdot \mathrm{dx} & =\int_{\mathcal{K}} \mathrm{d}(x y z)+\int_{\mathcal{K}} x \mathrm{~d} z=0+\int_{\mathcal{K}} x \mathrm{~d} z \\
& =\int_{0}^{1} t \mathrm{~d} t+\int_{1}^{2}(3-2 t) \cdot(-2) \mathrm{d} t+\int_{2}^{3}(t-3) \mathrm{d} t \\
& =\left[\frac{1}{2} t^{2}\right]_{0}^{1}+\int_{1}^{2}(4 t-6) \mathrm{d} t+\left[\frac{1}{2}(t-3)^{2}\right]_{2}^{3} \\
& =\frac{1}{2}+\left[2 t^{2}-6 t\right]_{1}^{2}-\frac{1}{2}=8-12-2+6=0 .
\end{aligned}
$$

Remark. The expressions would have been even simpler, if we did not insist on that the parametric intervals $[0,1],[1,2],[2,3]$ should follow each other. Instead one can split \mathcal{K} into three subcurves

$$
\begin{array}{lll}
\mathcal{K}_{1}: & \mathbf{r}_{1}(t)=(t, t, t), & t \in[0,1], \\
\mathcal{K}_{2}: & \mathbf{r}_{2}(t)=(1-2 t, 1,1-2 t), & t \in[0,1] \\
\mathcal{K}_{3}: & \mathbf{r}_{3}(t)=(t-1,1-t, t-1), & t \in[0,1]
\end{array}
$$

Join the best at

the Maastricht University

- $33^{\text {rd }}$ place Financial Times worldwide ranking: MSc

School of Business and Economics!

- $1^{\text {st }}$ place: MSc International Business
- $1^{\text {st }}$ place: MSc Financial Economics
- $2^{\text {nd }}$ place: MSc Management of Learning
- $2^{\text {nd }}$ place: MSc Economics
- $2^{\text {nd }}$ place: MSc Econometrics and Operations Research
- $2^{\text {nd }}$ place: MSc Global Supply Chain Management and Change
Sources: Keuzegids Master ranking 2013; Elsevier 'Beste Studies' ranking 2012; Financial Times Global Masters in Management ranking 2012

Visit us and find out why we are the best! Master's Open Day: 22 February 2014

 in theNaster's Open Day: 22 Festary 2014
where

$$
\begin{array}{lll}
\mathcal{K}_{1}: & \mathbf{r}_{1}^{\prime}(t)=(1,1,1), & t \in] 0,1[\\
\mathcal{K}_{2}: & \mathbf{r}_{2}^{\prime}(t)=(-2,0,2), & t \in] 0,1[\\
\mathcal{K}_{3}: & \mathbf{r}_{3}^{\prime}(t)=(1,-1,1) . & t \in] 0,1[
\end{array}
$$

We obtain that the three line integrals can be joined like in the second variant above:

$$
\begin{aligned}
\int_{\mathcal{K}} \mathbf{V} \cdot \mathrm{d} \mathbf{x} & =\cdots=\int_{\mathcal{K}} x \mathrm{~d} z=\int_{\mathcal{K}_{1}} x \mathrm{~d} z+\int_{\mathcal{K}_{2}} x \mathrm{~d} z+\int_{\mathcal{K}_{3}} x \mathrm{~d} z \\
& =\int_{0}^{1} t \mathrm{~d} t+\int_{0}^{1}(1-2 t) \cdot(-2) \mathrm{d} t+\int_{0}^{1}(t-1) \mathrm{d} t \\
& =3 \int_{0}^{1}(2 t-1) d t=3\left[t^{2}-t\right]_{0}^{1}=0 .
\end{aligned}
$$

7) The most obvious parametric description is here

$$
\mathbf{r}(t)=t(1,1,1), \quad \text { with } \mathbf{r}^{\prime}(t)=(1,1,1), \quad t \in[0, \pi]
$$

Thus we can put $x=y=z=t$ everywhere. Then

$$
\int_{\mathcal{K}} \mathbf{V} \cdot \mathrm{d} \mathbf{x}=\int_{\mathcal{K}}\{\sin y \mathrm{~d} x+\sin z \mathrm{~d} y+\sin x \mathrm{~d} z\}=\int_{0}^{\pi} 3 \sin t \mathrm{~d} t=[-3 \cos t]_{0}^{\pi}=6 .
$$

8) If we call the two curve segments \mathcal{K}_{1} and \mathcal{K}_{2}, then the most obvious parametric description is

$$
\begin{array}{ll}
\mathcal{K}_{1}: & a(\cos t, 0, \sin t), \\
\mathcal{K}_{2}: & t \in\left[0, \frac{\pi}{2}\right] \\
& a(0, \sin t, \cos t), \\
t \in\left[0, \frac{\pi}{2}\right]
\end{array}
$$

Then by insertion,

$$
\begin{aligned}
\int_{\mathcal{K}} \mathbf{V} \cdot \mathrm{d} \mathbf{x} & =\int_{\mathcal{K}}(z \mathrm{~d} x+x \mathrm{~d} y-y \mathrm{~d} z) \\
& =a^{2} \int_{0}^{\frac{\pi}{2}}(\sin t \cdot(-\sin t)) \mathrm{d} t+a^{2} \int_{0}^{\frac{\pi}{2}}(-\sin t) \cdot(-\sin t) \mathrm{d} t \\
& =-a^{2} \int_{0}^{\frac{\pi}{2}} \sin ^{2} t d t+a^{2} \int_{0}^{\frac{\pi}{2}} \sin ^{2} t \mathrm{~d} t=0
\end{aligned}
$$

Example 32.11 Find in each of the following cases a function

$$
\boldsymbol{\Phi}(x, y)=\int_{\mathcal{K}} \mathbf{V}(\tilde{\mathbf{x}}) \cdot \mathrm{d} \tilde{\mathbf{x}}
$$

to the given vector field $\mathbf{V}: A \rightarrow \mathbb{R}^{2}$, where \mathcal{K} is the broken line which runs from $(0,0)$ over $(x, 0)$ to (x, y). Check if $\boldsymbol{\Phi}$ is defined in all of A, and calculate finally the gradient $\nabla \boldsymbol{\Phi}$.

1) The vector field $\mathbf{V}(x, y)=\left(y^{2}-2 x y,-x^{2}+2 x y\right)$ is defined in $A=\mathbb{R}^{2}$.
2) The vector field $\mathbf{V}(x, y)=\left(\frac{1}{\sqrt{y^{2}-x^{2}+1}}, x\right)$ is defined in

$$
A=\left\{(x, y) \mid-\sqrt{1+y^{2}}<x<\sqrt{1+y^{2}}\right\}
$$

3) The vector field $\mathbf{V}(x, y)=\left(\frac{x}{\sqrt{1-x^{2}-y^{2}}}, \frac{y}{\sqrt{a-x^{2}-y^{2}}}\right)$ is defined in the disc A given by $x^{2}+y^{2}<1$.
4) The vector field $\mathbf{V}(x, y)=\left(\frac{x-1}{\sqrt{(x-1)^{2}+y^{2}}}, \frac{y}{\sqrt{(x-1)^{2}+y^{2}}}\right)$ in the set A given by $(x, y) \neq$ $(1,0)$.
5) The vector field $\mathbf{V}(x, y)=(\cos y, \cos x)$ is defined in $A=\mathbb{R}^{2}$.
6) The vector field $\mathbf{V}(x, y)=(\cos (x y), 0)$ is defined in $A=\mathbb{R}^{2}$.
7) The vector field $\mathbf{V}(x, y)=\left(x^{2}+y^{2}\right.$, xy) is defined in $A=\mathbb{R}^{2}$.
8) The vector field $\mathbf{V}(x, y)=\left(x^{2}+y^{2}, 2 x y\right)$ is defined in $A=\mathbb{R}^{2}$.

A Tangential line integrals.
D Remove, whenever possible, total differentials. Integrate along a broken line. Finally, compute the gradient $\nabla \boldsymbol{\Phi}$.

I 1) We get by inspection,

$$
\begin{aligned}
\boldsymbol{\Phi}(x, y) & =\int_{\mathcal{K}} \mathbf{V}(\tilde{\mathbf{x}}) \cdot \mathrm{d} \tilde{\mathbf{x}}=\int_{\mathcal{K}}\left\{\left(\tilde{y}^{2}-2 \tilde{x} \tilde{y}\right) \mathrm{d} \tilde{x}+\left(-\tilde{x}^{2}+2 \tilde{x} \tilde{y}\right) \mathrm{d} \tilde{y}\right\} \\
& =\int_{\mathcal{K}} \mathrm{d}\left(\tilde{x} \tilde{y}^{2}-\tilde{x}^{2} \tilde{y}\right)=x y^{2}-x^{2} y \quad(=x y(y-x))
\end{aligned}
$$

Alternatively,

$$
\boldsymbol{\Phi}(x, y)=\int_{\mathcal{K}}\left\{\left(\tilde{y}^{2}-2 \tilde{x} \tilde{y}\right) \mathrm{d} \tilde{x}+\left(-\tilde{x}^{2}+2 \tilde{x} \tilde{y}\right) \mathrm{d} \tilde{y}\right\}=\int_{0}^{x} 0 \mathrm{~d} t+\int_{0}^{y}\left(-x^{2}+2 x t\right) \mathrm{d} t=x y^{2}-x^{2} y
$$

Finally,

$$
\nabla \boldsymbol{\Phi}=\left(y^{2}-2 x y, 2 x y-x^{2}\right)=\mathbf{V}(x, y)
$$

and $\boldsymbol{\Phi}$ is defined in all of $A=\mathbb{R}^{2}$.

Figure 32.18: The domains of $\mathbf{V}(x, y)$ and $\boldsymbol{\Phi}(x, y)$.
2) The domain A for $\mathbf{V}(x, y)$ lies between the two hyperbolic branches given by $x^{2}-y^{2}=1$. The domain \tilde{A} of $\boldsymbol{\Phi}(x, y)$ is smaller, in fact only the points lying between the two vertical lines $x= \pm 1$, because we can only reach these by curves of the type \mathcal{K}. (The curve \mathcal{K} must never leave A, because we require that \mathbf{V} is defined).

We get for $(x, y) \in \tilde{A}$,
(32.5)

$$
\mathbf{\Phi}(x, y)=\int_{0}^{x} \frac{1}{\sqrt{1-t^{2}}} \mathrm{~d} t+\int_{0}^{y} x \mathrm{~d} t=\operatorname{Arcsin} x+x y
$$

The function $\boldsymbol{\Phi}$ is only defined in \tilde{A}. In this subset of A we get

$$
\nabla \boldsymbol{\Phi}(x, y)=\left(\frac{1}{\sqrt{1-x^{2}}}+y, x\right) \neq \mathbf{V}(x, y)
$$

In particular, $\mathbf{V}(x, y)$ is not a gradient field.
Remark. Formula (32.5) is a mindless insertion into one of the solution formulæ for this type of problems. It cannot be applied here because the assumptions of it are not fulfilled. \diamond
3) Here we get

$$
\begin{aligned}
\boldsymbol{\Phi}(x, y) & =\int_{\mathcal{K}}\left\{\frac{x}{\sqrt{1-x^{2}-y^{2}}} \mathrm{~d} x+\frac{y}{\sqrt{1-x^{2}-y^{2}}} \mathrm{~d} y\right\} \\
& =\int_{\mathcal{K}} \mathrm{d}\left(-\sqrt{1-x^{2}-y^{2}}\right)=1-\sqrt{1-x^{2}-y^{2}}
\end{aligned}
$$

Alternatively we get for $x^{2}+y^{2}<1$ by an integration along the broken line that

$$
\begin{aligned}
\boldsymbol{\Phi}(x, y) & =\int_{0}^{x} \frac{t}{\sqrt{1-t^{2}}} \mathrm{~d} t+\int_{0}^{y} \frac{t}{\sqrt{1-x^{2}-t^{2}}} \mathrm{~d} t=\left[-\sqrt{1-t^{2}}\right]_{0}^{x}+\left[-\sqrt{1-x^{2}-t^{2}}\right]_{0}^{y} \\
& =1-\sqrt{1-x^{2}}+\sqrt{1-x^{2}}-\sqrt{1-x^{2}-y^{2}}=1-\sqrt{1-x^{2}-y^{2}}
\end{aligned}
$$

It follows immediately that

$$
\nabla \boldsymbol{\Phi}(x, y)=\left(\frac{x}{\sqrt{1-x^{2}-y^{2}}}, \frac{y}{\sqrt{1-x^{2}-y^{2}}}\right)=\mathbf{V}(x, y)
$$

Figure 32.19: The domain \tilde{A} of $\boldsymbol{\Phi}$ lies to the left of the dotted line $x=1$.
and that $\boldsymbol{\Phi}$ is defined in all of A.
4) In this case we have for any curve \mathcal{K} from $(0,0)$ in A that

$$
\begin{aligned}
\boldsymbol{\Phi}(x, y) & =\int_{\mathcal{K}}\left\{\frac{x-1}{\sqrt{(x-1)^{2}+y^{2}}} \mathrm{~d} x+\frac{y}{\sqrt{(x-1)^{2}+y^{2}}} \mathrm{~d} y\right\} \\
& =\int_{\mathcal{K}} \mathrm{d}\left(\sqrt{(x-1)^{2}+y^{2}}\right)=\sqrt{(x-1)^{2}+y^{2}}-1
\end{aligned}
$$

If we only integrate along curves \mathcal{K} of this type, then we can only reach points in

$$
\tilde{A}=\{(x, y) \mid x<1, y \in \mathbb{R}\}
$$

By integration along a broken line in this domain,

$$
\begin{aligned}
\boldsymbol{\Phi}(x, y) & =\int_{0}^{x} \frac{t-1}{\sqrt{(t-1)^{2}+0^{2}}} \mathrm{~d} t+\int_{0}^{y} \frac{t}{\sqrt{(x-1)^{2}+t^{2}}} \mathrm{~d} t \\
& =\int_{0}^{x} \frac{t-1}{|t-1|} \mathrm{d} t+\left[\sqrt{(x-1)^{2}+t^{2}}\right]_{0}^{y} \\
& \left.=\int_{0}^{x}(-1) \mathrm{d} t+\left[\sqrt{(x-1)^{2}+y^{2}}-\sqrt{(x-1)^{2}}\right] \quad \quad \quad \text { (because } t<x<1\right) \\
& =-x-|x-1|+\sqrt{(x-1)^{2}+y^{2}}=x-(1-x)+\sqrt{(x-1)^{2}+y^{2}} \\
& =\sqrt{(x-1)^{2}+y^{2}}-1 .
\end{aligned}
$$

It follows that $\nabla \boldsymbol{\Phi}=\mathbf{V}$ and that $\boldsymbol{\Phi}$ can be extended to all of A.
5) When we integrate along the broken line

$$
(0,0) \longrightarrow(x, 0) \longrightarrow(x, y)
$$

we get

$$
\boldsymbol{\Phi}(x, y)=\int_{\mathcal{K}} \mathbf{V} \cdot \mathrm{d} \mathbf{x}=\int_{0}^{x} \cos 0 \mathrm{~d} t+\int_{0}^{y} \cos x \mathrm{~d} t=x+y \cos x
$$

which is defined in all of \mathbb{R}^{2}. Here,

$$
\nabla \boldsymbol{\Phi}(x, y)=(1-y \sin x, \cos x) \neq \mathbf{V}
$$

It is seen that \mathbf{V} is not a gradient field.
6) When we integrate along the broken line

$$
(0,0) \longrightarrow(x, 0) \longrightarrow(x, y)
$$

we get in all of \mathbb{R}^{2},

$$
\boldsymbol{\Phi}(x, y)=\int_{\mathcal{K}} \mathbf{V} \cdot \mathrm{d} \mathbf{x}=\int_{0}^{x} \cos (t \cdot 0) \mathrm{d} t+0=x
$$

where $\nabla \boldsymbol{\Phi}=(1,0) \neq \mathbf{V}$, so \mathbf{V} is not a gradient field.
7) When we integrate along the broken line

$$
(0,0) \longrightarrow(x, 0) \longrightarrow(x, y)
$$

we get in all of \mathbb{R}^{2},

$$
\boldsymbol{\Phi}(x, y)=\int_{\mathcal{K}} \mathbf{V} \cdot \mathrm{d} \mathbf{x}=\int_{0}^{x}\left(t^{2}+0^{2}\right) d t+\int_{0}^{y} x t \mathrm{~d} t=x^{3}+\frac{1}{2} x y^{2}
$$

where

$$
\nabla \boldsymbol{\Phi}=\left(3 x^{2}+\frac{1}{2} y^{2}, x y\right) \neq \mathbf{V}(x, y)
$$

It follows that \mathbf{V} is not a gradient field.
8) When we integrate along the broken line

$$
(0,0) \longrightarrow(x, 0) \longrightarrow(x, y)
$$

we get in \mathbb{R}^{2}

$$
\boldsymbol{\Phi}(x, y)=\int_{\mathcal{K}} \mathbf{V} \cdot \mathrm{d} \mathbf{x}=\int_{0}^{x}\left(t^{2}+0^{2}\right) \mathrm{d} t+\int_{0}^{y} 2 x t \mathrm{~d} t=\frac{x^{3}}{3}+x y^{2}
$$

where

$$
\nabla \boldsymbol{\Phi}=\left(x^{2}+y^{2}, 2 x y\right)=\mathbf{V}(x, y)
$$

In this case $\mathbf{V}(x, y)$ is a gradient field.

Example 32.12 Calculate in each of the following cases the tangential line integral of the given vector field $\mathbf{V}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ along the described curve \mathcal{K}.

1) The vector field $\mathbf{V}(x, y)=\nabla\left(\frac{1}{2} x^{2}+x y-\frac{1}{2} y^{2}\right)$ along the ellipse \mathcal{K} of centrum $(0,0)$ and half axes a, b, in the positive orientation of the plane.
2) The vector field $\mathbf{V}(x, y)=\nabla\left(x^{4}+\ln (1+y)\right)$ along the arc of the parabola \mathcal{K} given by $y=x^{2}$, $x \in[-1,3]$.
3) The vector field $\mathbf{V}(x, y)=\nabla(x+2 y-\exp (x y))$ along the broken line \mathcal{K}, which goes from $(2,0)$ over $(1,2)$ to $(0,1)$.

A Line integral of a gradient field.
\mathbf{D} As $\mathbf{V}(x, y)=\nabla F$, the tangential line integral is only depending on the initial point and the end point,

$$
\int_{\mathcal{K}} \mathbf{V} \cdot \mathrm{d} \mathbf{x}=F\left(\mathbf{x}_{s}\right)-F\left(\mathbf{x}_{b}\right)
$$

I 1) The ellipse is a closed curve, so

$$
\int_{\mathcal{K}} \mathbf{V} \cdot \mathrm{d} \mathbf{x}=0
$$

2) The initial point is $(-1,1)$, and the end point is (3, 9), hence

$$
\int_{\mathcal{K}} \mathbf{V} \cdot \mathrm{d} \mathbf{x}=\left[x^{4}+\ln (1+y)\right]_{(-1,1)}^{(3,9)}=81+\ln 10-1-\ln 2=80+\ln 5
$$

3) The initial point is $(2,0)$, and the end point is $(0,1)$, hence

$$
\int_{\mathcal{K}} \mathbf{V} \cdot \mathrm{d} \mathbf{x}=[x+2 y-\exp (x y)]_{(2,0)}^{(0,1)}=0+2-1-2-0+1=0
$$

Example 32.13 Calculate in each of the following cases the tangential line integral of the given vector field $\mathbf{V}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ along the described curve \mathcal{K}.

1) The vector field $\nabla\left(x^{2}+y z\right)$ along the curve \mathcal{K}, given by

$$
\mathbf{r}(t)=(\cos t, \sin t, \sin (2 t)), \quad t \in[0,2 \pi] .
$$

2) The vector field $\nabla(\cos (x y z))$ along the line segment \mathcal{K} from $\left(\pi, \frac{1}{2}, 0\right)$ to $\left(\frac{1}{2}, \pi,-1\right)$.
3) The vector field $\nabla(\exp x+\ln (1+|y z|)$ along the broken line \mathcal{K}, which goes from $(0,1,1)$, via $(\pi,-3,2)$ to $(1, \sqrt{3},-\sqrt{3})$.

A Tangential line integrals of gradient fields.
D Use that

$$
\int_{\mathcal{K}} \nabla F \cdot \mathrm{~d} \mathbf{x}=F(\text { end point })-F(\text { initial point })
$$

is independent of the path of integration.
Since the absolute value occurs in Example 32.13.3, we shall here be very careful.
I 1) As \mathcal{K} is a closed curve (i.e. the initial point $(1,0,0)$ is equal to the end point), it follows that

$$
\int_{\mathcal{K}} \mathbf{V} \cdot \mathrm{d} \mathbf{x}=0 .
$$

2) Since $F(x, y, z)=\cos (x y z)$, and the initial point and the end point are given, we have

$$
\int_{\mathcal{K}} \mathbf{V} \cdot \mathrm{d} \mathbf{x}=\cos \left(\frac{1}{2} \cdot \pi \cdot(-1)\right)=-\cos \left(\pi \cdot \frac{1}{2} \cdot 0\right)=-1
$$

3) First note that

$$
F(x, y, z)= \begin{cases}\exp x+\ln (1+y z) & \text { for } y z>0 \\ \exp x+\ln (1-y z) & \text { for } y z<0\end{cases}
$$

so we must be very careful, whenever the curve \mathcal{K} intersects one of the planes $y=0$ or $z=0$. In case of the first curves this can occur, because the parametric description is

$$
t(0,1,1)+(1-t)(\pi,-3,2)=((1-t) \pi, 4 t-3,2-t), \quad t \in[0,1]
$$

and the same is true for the second curve, because it has the parametric description

$$
t(\pi,-3,2)+(1-t)(1, \sqrt{3},-\sqrt{3})=(1+t(\pi-1), \sqrt{3}-t(3+\sqrt{3}),-\sqrt{3}+t(2+\sqrt{3}))
$$

for $t \in[0,1]$.
The former curve intersects the plane $y=0$ for $t=\frac{3}{4}$, and the latter curve intersects both the plane $y=0$ and the plane $z=0$. The point is, however, that in everyone of these intersection points the dubious term $\ln (1+|x y|)=0$, so they are of no importance. Hence we can conclude that

$$
\begin{aligned}
\int_{\mathcal{K}} \mathbf{V} \cdot \mathrm{d} \mathbf{x} & =\left[\exp x+\ln (1+|y z|]_{(0,1,1)}^{(1, \sqrt{3},-\sqrt{3})}\right. \\
& =e+\ln 4-1-\ln 2=e-1+\ln 2
\end{aligned}
$$

Remark. Always be very careful when either the absolute value or the square root occur. One should at least give a note on them. \diamond

Example 32.14 Given the vector field

$$
\mathbf{V}(x, y)=\left(\frac{2 y}{2 x+y}, \frac{y}{2 x+y}+\ln (2 x+y)\right)
$$

1. Sketch the domain of \mathbf{V}, and explain why \mathbf{V} is a gradient field.
2. Find every integral of \mathbf{V}.

Let \mathcal{K} be the curve given by

$$
(x, y)=\left(2 t^{2}, t\right), \quad 1 \leq t \leq 2
$$

3. Compute the value of the tangential line integral

$$
\int_{\mathcal{K}} \mathbf{V} \cdot \mathbf{t} \mathrm{d} s
$$

Let F be the integral of \mathbf{V}, for which $F(1,1)=0$.
4. Find an equation of the tangent at the en point $(1,1)$ of that level curve for F, which goes through the point $(1,1)$.

A Gradient field, integrals, tangential line integral, level curve.
D Follow the guidelines.

Figure 32.20: The domain is the open half plane above the oblique line.

I 1) Clearly, $\mathbf{V}(x, y)$ is defined in the domain where $2 x+y>0$, cf. the figure.
As

$$
\frac{\partial V_{1}}{\partial y}=\frac{2}{2 x+y}-\frac{2 y}{(2 x+y)^{2}},
$$

and

$$
\frac{\partial V_{2}}{\partial x}=-\frac{2 y}{(2 x+y)^{2}}+\frac{2}{2 x+y}=\frac{\partial V_{1}}{\partial y}
$$

it follows that $V_{1} \mathrm{~d} x+V_{2} \mathrm{~d} y$ is a closed differential form. Since the domain is simply connected, the differential form is even exact, and \mathbf{V} is a gradient field.
2) Since

$$
F_{1}(x, y)=\int \frac{2 y}{2 x+y} \mathrm{~d} x=y \int \frac{2 \mathrm{~d} x}{2 x+y}=y \ln (2 x+y), \quad 2 x+y>0
$$

where

$$
\nabla F_{1}=\left(\frac{2 y}{2 x+y}, \frac{y}{2 x+y}+\ln (2 x+y)\right)=\mathbf{V}(x, y)
$$

all integrals are given by

$$
F(x, y)=y \ln (2 x+y)+C, \quad C \in \mathbb{R}
$$

Figure 32.21: The curve \mathcal{K}.
3) We get by the reduction theorem for tangential line integrals that

$$
\begin{aligned}
\int_{\mathcal{K}} \mathrm{V} \cdot \mathrm{td} s & =\int_{1}^{2} \mathbf{V}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) \mathrm{d} t \\
& =\int_{1}^{2}\left(\frac{2 t}{4 t^{2}+t}, \frac{t}{4 t^{2}+t}+\ln \left(4 t^{2}+t\right)\right) \cdot(4 t, 1) \mathrm{d} t \\
& =\int_{1}^{2}\left\{\frac{8 t}{4 t+1}+\frac{1}{4 t+1}+\ln \left(4 t^{2}+t\right)\right\} \mathrm{d} t \\
& =\int_{1}^{2}\left\{2-\frac{1}{4 t+1}+\ln t+\ln (4 t+1)\right\} \mathrm{d} t \\
& =2-\frac{1}{4}[\ln (4 t+1)]_{1}^{2}+[t \ln t-t]_{1}^{2}+[t \ln (4 t+1)]_{1}^{2}-\int_{1}^{2} \frac{4 t}{4 t+1} \mathrm{~d} t \\
& =2-\frac{1}{4}[\ln (4 t+1)]_{1}^{2}+2 \ln 2-1+2 \ln 9-\ln 5-1+\frac{1}{4}[\ln (4 t+1)]_{1}^{2} \\
& =2 \ln 2+4 \ln 3-\ln 5=\ln \frac{324}{5}
\end{aligned}
$$

4) It follows from $F(1,1)=\ln 3+C=0$ that $C=-\ln 3$, so

$$
F(x, y)=y \ln (2 x+y)-\ln 3
$$

However, we shall not need the exact value of $C=-\ln 3$ in the following.
The normal of the level curve is $\nabla F=\mathbf{V}$, hence

$$
\mathbf{V}(1,1)=\left(\frac{2}{3}, \frac{1}{3}+\ln 3\right)
$$

and the direction of the tangent is e.g.

$$
\mathbf{v}=\left(\frac{1}{3}+\ln 3,-\frac{2}{3}\right)
$$

and we get a parametric description of the tangent,

$$
(x(t), y(t))=(1,1)=t\left(\frac{1}{3}+\ln 3,-\frac{2}{3}\right), \quad t \in \mathbb{R}
$$

If we instead want an equation of the tangent, then one possibility is given by

$$
0=\mathbf{V} \cdot(x-1, y-1)=\frac{2}{3} x+\left(\frac{1}{3}+\ln 3\right) y-1-\ln 3
$$

Need help with your dissertation?

Get in-depth feedback \& advice from experts in your topic area. Find out what you can do to improve the quality of your dissertation!

Get Help Now
\qquad

33 Flux and divergence of a vector field. Gauß's theorem

33.1 Flux

Let \mathbf{V} be a C^{0} vector field in a domain in \mathbb{R}^{3}, and let \mathcal{F} be a C^{1} surface in this domain. Then we can define a continuous unit vector field \mathbf{n} of unit normal vectors to \mathcal{F}.

The flux of \mathbf{V} through \mathcal{F} with respect to this vector field of normals (there are locally two possibilities of the orientation of \mathbf{n}) is defined as the surface integral of $\mathbf{V}(\mathbf{x}) \cdot \mathbf{n}(\mathbf{x})$ over \mathcal{F}, also denoted

$$
\int_{\mathcal{F}} \mathbf{V} \cdot \mathbf{n} \mathrm{d} S, \quad \text { or } \quad \int_{\mathcal{F}} \mathbf{V}(\mathbf{x}) \cdot \mathbf{n}(\mathbf{x}) \mathrm{d} S, \quad \text { or } \quad \int_{\mathcal{F}} \mathbf{V} \cdot \mathrm{d} \mathbf{S}
$$

where we have put $\mathrm{d} \mathbf{S}:=\mathbf{n} \mathrm{d} S$ for the vectorial element of area.

Figure 33.1: Illustration of the flux. We integrate the dot product $\mathbf{V} \cdot \mathbf{n}$ over the surface \mathcal{F}.

The flux describes the flow of the vector field \mathbf{V} through the surface \mathcal{F} in the direction of the normal vector field \mathbf{n}. It is obvious that if we replace \mathbf{n} by the opposite normal vector field $-\mathbf{n}$, then the flux changes its sign.

We mention a couple of examples from Physics. If e.g. $\mathbf{V}=\mathbf{J}$ is the density of an electric current, then $\int_{\mathcal{F}} \mathbf{J} \cdot \mathbf{n} \mathrm{d} S$ is the electric current passing through \mathcal{F} (measured in the direction of \mathbf{n}). If instead $\mathbf{V}=\mathbf{B}$ is a magnetic field, then $\int \mathcal{F} \mathbf{B} \cdot \mathbf{n} \mathrm{d} S$ is the magnetic flux through the surface \mathcal{F} (also measured in the direction of \mathbf{n}).

Then we shall see how the flux in practice is calculated, when we introduce coordinates. Let $\mathbf{r}: E \rightarrow \mathbb{R}^{3}$ be a (rectangular) C^{1} parametric description of the surface \mathcal{F} in the parameters $(u, v) \in E \subseteq \mathbb{R}^{2}$. We have previously shown that

$$
\mathbf{N}(u, v):=\mathbf{r}_{u}^{\prime}(u, v) \times \mathbf{r}_{v}^{\prime}(u, v)
$$

is a normal to \mathcal{F}, provided that $\mathbf{N}(u, v) \neq \mathbf{0}$. Hence, the unit normal field \mathbf{n} is for $\mathbf{N} \neq \mathbf{0}$ given by

$$
\mathbf{n}:=\frac{\mathbf{N}}{\|\mathbf{N}\|}, \quad \text { and } \quad \mathrm{d} S=\|\mathbf{N}\| \mathrm{d} u \mathrm{~d} v
$$

It follows immediately that the vectorial area element is

$$
\mathbf{n} \mathrm{d} S=\mathbf{N} \mathrm{d} u \mathrm{~d} v
$$

We note that as usual that we may allow $\mathbf{N}(u, v)=\mathbf{0}$ in the applications as long as this only takes place in a null set, i.e. we only require that $\mathbf{N}(u, v) \neq \mathbf{0}$ almost everywhere. Then we have (again, the proof is omitted),

Theorem 33.1 Reduction of a flux of a vector field. Let $A \subseteq \mathbb{R}^{3}$ be an open domain, and let $\mathbf{V}: A \rightarrow \mathbb{R}^{3}$ be a C^{0} vector field. Finally let $\mathcal{F} \subset A$ be a continuous and piecewise C^{1} surface of the parametric description $\mathbf{r}: E \rightarrow \mathbb{R}^{3}$, where we assume that E is a closed and bounded domain in the (u, v)-plane, that \mathbf{r} is injective almost everywhere, and where the normal vector field $\mathbf{N}(u, v) \neq \mathbf{0}$ almost everywhere.
Then the flux of \mathbf{V} through \mathcal{F} in the direction of the normal vector field \mathbf{N} can be calculated by the following plane integral over E,

$$
\int_{\mathcal{F}} \mathbf{V} \cdot \mathrm{n} \mathrm{~d} S=\int_{E} \mathbf{V}(\mathbf{r}(u, v)) \cdot \mathbf{N}(u, v) \mathrm{d} u \mathrm{~d} v
$$

This is very important, so we include a couple of examples to exercise the method.

Example 33.1 We shall find the flux Φ of the vector field

$$
\mathbf{V}(x, y, z)=\left(y z,-x z, x^{2}+y^{2}\right), \quad \text { for }(x, y, z) \in \mathbb{R}^{3}
$$

through the surface \mathcal{F}, given by the parametric description

$$
\mathbf{r}(u, v)=(u \sin v, u \cos v, u v), \quad \text { for } 0 \leq u \leq 1 \text { and } 0 \leq v \leq u
$$

Figure 33.2: The surface \mathcal{F} of Example 33.1

Since

$$
\mathbf{r}_{u}^{\prime}(u, v)=(\sin v, \cos v, v), \quad \text { and } \quad \mathbf{r}_{v}^{\prime}(u, v)=(u \cos v,-u \sin v, u)
$$

we get

$$
\mathbf{N}(u, v)=\left|\begin{array}{ccc}
\sin v & \cos v & v \\
u \cos v & -u \sin v & v \\
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3}
\end{array}\right|=u(\cos v+v \sin v, v, \cos v-\sin v,-1)
$$

so $\mathbf{N}(0,0)=\mathbf{0}$ and $\mathbf{N}(u, v) \neq \mathbf{0}$ elsewhere in E.
The vector field \mathbf{V} restricted to \mathcal{F} is described in the parameters (u, v) as

$$
\mathbf{V}(\mathbf{r}(u, v))=\left(u^{2} v \cos v,-u^{2} v \sin v, u^{2}\right)=u^{2}(v \cos v,-v \sin v, 1)
$$

so

$$
\mathbf{V}(\mathbf{r}(u, v)) \cdot \mathbf{N}(u, v)=u^{3}\left(v \cos ^{2} v+v^{2} \sin v \cos v-v^{2} \sin v \cos v+v^{2} \sin ^{2} v-1\right)=u^{3}\left(v^{2}-1\right)
$$

and the flux of \mathbf{V} through \mathcal{F} is given by

$$
\begin{aligned}
\Phi & =\int_{E} \mathbf{V}(\mathbf{r}(u, v)) \cdot \mathbf{N}(u, v) \mathrm{d} u \mathrm{~d} v=\int_{E} u^{3}\left(v^{2}-1\right) \mathrm{d} u \mathrm{~d} v \\
& =\int_{0}^{1}\left\{\int_{0}^{u}(v-a) \mathrm{d} v\right\} u^{3} \mathrm{~d} u=\int_{0}^{1}\left\{\frac{1}{2} u^{5}-u^{4}\right\} \mathrm{d} u=\frac{1}{12}-\frac{1}{5}=-\frac{7}{60}
\end{aligned}
$$

Figure 33.3: The flux of the Coulomb field through \mathcal{F} in Example 33.2

Example 33.2 The Coulomb field or Newton field is defined by

$$
\mathbf{V}_{k}(x, y, z):=k \frac{(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \quad \text { for }(x, y, z) \neq(0,0,0)
$$

where $k \neq 0$ is some given constant. Its direction is always directed away from $\mathbf{0}$, and

$$
\|\mathbf{V}\|=\frac{|k|}{\|\mathbf{x}\|^{2}}
$$

We choose $k=1$ in the following and write \mathbf{V} instead of \mathbf{V}_{1}. We shall find the flux of \mathbf{V} through the surface \mathcal{F}, which is the following square at height $a>0$, and given by

$$
\mathcal{F}: \quad[-a, a] \times[-a, a] \times\{a\}, \quad \text { with the unit normal } \mathbf{n}=(0,0,1) .
$$

The flux is

$$
\begin{aligned}
\Phi & :=\int_{\mathcal{F}} \mathbf{V} \cdot \mathbf{n} \mathrm{d} S=\int_{-a}^{a}\left\{\int_{-a}^{a}\left[\frac{(x, y, z) \cdot(0,0,1)}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right]_{z=a} \mathrm{~d} x\right\} \mathrm{d} y \\
& =\int_{-a}^{a}\left\{\int_{-a}^{a} \frac{a}{\left(x^{2}+y^{2}+a^{2}\right)^{3 / 2}} \mathrm{~d} x\right\} \mathrm{d} y
\end{aligned}
$$

Brain power

By 2020, wind could provide one-tenth of our planet's electricity needs. Already today, SKF's innovative knowhow is crucial to running a large proportion of the world's wind turbines.

Up to 25% of the generating costs relate to maintenance. These can be reduced dramatically thanks to our systems for on-line condition monitoring and automatic luot cation. We help make it more economical to create cleaner cheaper energy out of thin air.

By sharing our experience, expertise, and creativity, industries can boost performance beyond expectations.

Therefore we need the best employees who can peet this challenge!

Plug into The Power of Knowledge Engineering. Visit us at www.skf.com/knowledge 두ㄹㅜㅜㅇ

It follows from the symmetry that this plane integral is 8 times the plane integral restricted to the triangle T on Figure 33.4. Since the two variables (x, y) only occur in the integrand in the form of $x^{2}+y^{2}$, it is natural to change to polar coordinates, $\varrho^{2}=x^{2}+y^{2}$. This means that we should use polar coordinates on the triangle T. This is given in polar coordinates by

$$
T: \quad 0 \leq \varphi \leq \frac{\pi}{4}, \quad \text { and } \quad 0 \leq \varrho \leq \frac{a}{\cos \varphi}
$$

Then the flux becomes, where we remember the weight function ϱ,

Figure 33.4: The restricted domain T of Example 33.2

$$
\begin{aligned}
\varphi & =8 \int_{T} \frac{a}{\left(x^{2}+y^{2}+a^{2}\right)^{3 / 2}} \mathrm{~d} x \mathrm{~d} y=8 \int_{0}^{\frac{\pi}{4}}\left\{\int_{0}^{\frac{a}{\cos \varphi}} \frac{a \varrho}{\left(a^{2}+\varrho^{2}\right)^{3 / 2}} \mathrm{~d} \varrho\right\} \mathrm{d} \varphi \\
& =8 \int_{0}^{\frac{\pi}{4}}\left[\frac{a}{\sqrt{a^{2}+\varrho^{2}}}\right]_{\frac{a}{\cos \varphi}}^{0} \mathrm{~d} \varphi=8 \int_{0}^{\frac{\pi}{4}}\left\{1-\frac{|\cos \varphi|}{\sqrt{1+\cos ^{2} \varphi}}\right\} \mathrm{d} \varphi \\
& =8\left(\frac{\pi}{4}-\int_{0}^{\frac{\pi}{4}} \frac{\cos \varphi}{\sqrt{2-\sin ^{2} \varphi}} \mathrm{~d} \varphi\right)=2 \pi-8 \int_{0}^{\frac{\pi}{4}} \frac{\cos \varphi}{\sqrt{2-\sin ^{2} \varphi}} \mathrm{~d} \varphi
\end{aligned}
$$

If we change variable from φ to ψ by putting $\sin \varphi=\sqrt{2} \sin \psi$, then we get for $\varphi=\frac{\pi}{4}$ that $\sin \psi=\frac{1}{2}$, so $\psi=\frac{\pi}{6}$. The ψ-interval becomes $\psi \in\left[0, \frac{\pi}{6}\right]$, and the flux is

$$
\begin{aligned}
\Phi & =2 \pi-8 \int_{0}^{\frac{\pi}{4}} \frac{\cos \varphi}{\sqrt{2-\sin ^{2} \varphi}} d \varphi=2 \pi-8 \int_{\varphi=0}^{\frac{\pi}{4}} \frac{\sqrt{2} d \sin \psi}{\sqrt{2-2 \sin ^{2} \psi}} \\
& =2 \pi-8 \int_{\psi=0}^{\frac{\pi}{6}} \frac{\cos \psi}{\sqrt{1-\sin ^{2} \psi}} d \psi=2 \pi-8 \int_{0}^{\frac{\pi}{6}} \frac{\cos \psi}{\cos \psi} d \psi=2 \pi-\frac{8 \pi}{6}=\frac{2 \pi}{3} .
\end{aligned}
$$

33.2 Divergence and Gauß's theorem

We shall in this section consider a closed continuous and piecewise C^{1} surface \mathcal{F}, which we also assume to be the boundary of a bounded domain $\Omega \subset \mathbb{R}^{3}$ in space. Furthermore, we assume that the unit normal vector field \mathbf{n} on \mathcal{F} is defined almost everywhere. We shall for a bounded surface which is the boundary of some domain Ω, i.e. $\mathcal{F}=\partial \Omega$, always assume that \mathbf{n} is oriented away from Ω.
Let \mathbf{V} be a C^{1} vector field defined on an open domain containing the closure $\bar{\Omega}$. Then the flux of \mathbf{V} through $\mathcal{F}=\partial \Omega$, i.e.

$$
\Phi:=\int_{\mathcal{F}} \mathbf{V} \cdot \mathbf{n} \mathrm{d} S
$$

is interpreted as the flow of something, which flows out of Ω through the boundary surface $\mathcal{F}=\partial \Omega$. Clearly, this is of interest in Physics, so we shall here analyze this situation more closely in order to obtain an alternative way of calculating the flux. It is obvious that we in some sense must take into account what is created inside Ω, so we can expect that the result is a space integral of some integrand derived by a mathematical process from \mathbf{V}.
We shall start the analysis with a very simple case, where we assume that Ω is an axiparallel parallelepipedum. Using if necessary a translation we may assume that Ω is described by

$$
\omega=[0, a] \times[0, b] \times[0, c], \quad \text { for some } a, b, c>0 .
$$

Figure 33.5: The flux of \mathbf{V} through the two parallel surfaces of height $z=0$ and $z=c$ of the parallelepipedum ω. Note that the field \mathbf{n} is pointing in opposite directions on the two surfaces.

We shall first consider the flux through the surfaces of ω of height $z=0$ and $z=c$. We clearly have $\mathbf{n}=(0,0,-1)$ on the surface, for which $z=0$, and $\mathbf{n}=(0,0,1)$ on the plane surface, for which $z=c$,
cf. Figure 33.5. Hence, the combined contribution to the flux from these two opposite surfaces is

$$
\begin{aligned}
\Phi_{z} & =\int_{0}^{a}\left\{\int_{0}^{b} V_{z}(x, y, c) \mathrm{d} y\right\}+\int_{0}^{a}\left\{\int_{0}^{b}(-1) V_{z}(x, y, 0) \mathrm{d} y\right\} \\
& =\int_{0}^{a}\left\{\int_{0}^{b}\left[V_{z}(x, y, z)\right]_{z=0}^{z=c} \mathrm{~d} y\right\} \mathrm{d} x=\int_{0}^{a}\left\{\int_{0}^{b}\left\{\int_{0}^{c} \frac{\partial V_{z}}{\partial z}(x, y, z)\right\} \mathrm{d} y\right\} \mathrm{d} x \\
& =\int_{\omega} \frac{\partial V_{z}}{\partial z}(x, y, z) \mathrm{d} \Omega
\end{aligned}
$$

Similarly,

$$
\Phi_{y}=\int_{\omega} d f r a c \partial V_{y} \partial y(x, y, z) \mathrm{d} \Omega \quad \text { and } \quad \Phi_{z}=\int_{\omega} d f r \operatorname{rac} \partial V_{z} \partial z(x, y, z) \mathrm{d} \Omega
$$

so the total flux Φ of \mathbf{V} through the boundary surface of ω is

$$
\Phi=\Phi_{x}+\varphi_{y}+\Phi_{z}=\int_{\omega}\left\{\frac{V_{x}}{\partial x}+\frac{V_{y}}{\partial y}+\frac{V_{z}}{\partial z}\right\} d a \omega
$$

This result is valid for every axiparallel parallelepipedum.

Figure 33.6: The flux of \mathbf{V} through the surface of the union of two axiparallel parallelepipeda. The contribution to the total flux is cancelled on the common surface, because the only change in the integrand is the unit normal, which changes its sign.

When we calculate the total flux of two adjacent axiparallel parallelepipeda, we see that on a common surface the total contribution to the flux is zero, because the only change in the integrand is the sign of the unit normal vector field, which is + on the surface of ω_{1} and - on the surface of ω_{2}.
By iterating this result we see in general, that if Ω is a union of finitely many axiparallel parallelepipeda, then the total contribution from every "inner surface" must be zero, i.e. when there are two smaller parallelepipeda ω_{i} and ω_{j} with a common surface. These "inner surfaces" also disappear in $\partial \Omega$, so we can replace $\bigcup_{j=1}^{k} \partial \omega_{j}$ with $\partial \bigcup_{j=1}^{k} \omega_{j}=\partial \Omega$.

The argument above makes it plausible that when we approximate Ω from the inside with finite unions $\bigcup_{j=1}^{n} \omega_{j}$ of such parallelepipeda, and let $n \rightarrow+\infty$, then we may expect that the flux of \mathbf{V} through a general $\partial \Omega$ is given by

$$
\Phi:=\int_{\partial \Omega} \mathbf{V} \cdot \mathbf{n} \mathrm{d} S=\int_{\Omega}\left\{\frac{V_{x}}{\partial x}+\frac{V_{y}}{\partial y}+\frac{V_{z}}{\partial z}\right\} \mathrm{d} \Omega
$$

and although the above is far from a correct proof, this is true under the assumptions we shall state below in Theorem 33.2. However, since the integrand on the right hand side keeps occurring in many cases, we first shorten the notation by giving it a name, which in the general \mathbb{R}^{n} is coined by the following definition.

Definition 33.1 Let $\mathbf{V}=\left(V_{1}, \ldots, V_{n}\right)$ be a C^{1} vector field in an open domain $\Omega \subseteq \mathbb{R}^{n}$. We define the divergence of \mathbf{V} by

$$
\operatorname{div} \mathbf{V}:=\frac{\partial V_{1}}{\partial x_{1}}+\cdots+\frac{\partial V_{n}}{\partial x_{n}}
$$

It is not possible here to give the proof of the following important theorem, because the closed surface $\mathcal{F}=\partial \Omega$ may not be nice, and even if it is, the approximation of Ω from the inside by $\Omega_{k}=\bigcup_{j=1}^{k} \omega_{j}$ as described above in general gives a boundary $\partial \Omega_{k}$ which is difficult to handle in comparison with the surface integral over Ω. We therefore just quote the following very important theorem.

Theorem 33.2 Gauß's theorem in \mathbb{R}^{3}. Given a C^{1} vector field \mathbf{V} on a domain $A \subseteq \mathbb{R}^{3}$. Let $\Omega \subseteq A$ be closed and bounded, where we assume that the boundary $\partial \Omega$ is the union of closed continuous and piecewise C^{1} surfaces, each with a unit normal vector field pointing away from Ω almost everywhere. Then the flux of \mathbf{V} through $\partial \Omega$ out of Ω is given by

$$
\Phi:=\int_{\partial \Omega} \mathbf{V} \cdot \mathbf{n} d S=\int_{\Omega} \operatorname{div} \mathbf{V} d \Omega
$$

Consider again the axiparallel parallelepipedum ω, which was used to make this theorem plausible. Then clearly the normal field does not exist on the edges, but these edges are just nullsets. This is what we mean by the formulation of the theorem above.
It is important to note that the formula

$$
\int_{\partial \Omega} \mathbf{V} \cdot \mathbf{n} \mathrm{d} S=\int_{\Omega} \operatorname{div} \mathbf{V} \mathrm{d} \Omega
$$

can be read and applied in both directions. At first it may seem strange that we reformulate a two dimensional surface integral to the left as a three dimensional space integral on the right hand side of the equation. However, the examples later on will show that the calculations often become easier in the space integral than in the surface integral.
The other situation may of course also occur. We shall give some examples in Section 33.5.
Note also, that the geometrical analysis is important. One should e.g. always check that the unit vector field \mathbf{n} is pointing away from Ω.

Theorem 33.2 is formulated for sets and vector fields in \mathbb{R}^{3}. There exists a similar result in \mathbb{R}^{2}, which is given in the next theorem.

Theorem 33.3 Gauß's theorem in \mathbb{R}^{2}. Consider a plane C^{1} vector field \mathbf{V} on a plane domain $A \subseteq \mathbb{R}^{2}$. Let $E \subset A$ be a closed and bounded plane domain, where the boundary ∂E is the union of closed continuous and piecewise C^{1} curves, each with a unit normal vector field pointing away from E almost everywhere. Then the flux of \mathbf{V} through E is given by

$$
\Phi:=\int_{\partial E}\left(V_{x} n_{x}+V_{y} n_{y}\right) d s=\int_{E}\left(\frac{\partial V_{x}}{\partial x}+\frac{\partial V_{y}}{\partial y}\right) d S
$$

where $\mathbf{V}=\left(V_{x} . V_{y}\right)$ and $\mathbf{n}=\left(n_{x}, n_{y}\right)$ in rectangular coordinates.

If $\operatorname{div} \mathbf{V}=0$, then we say that the vector field \mathbf{V} is divergence free. Divergence free vector fields are important in the applications in e.g. Physics, though not all relevant vector fields are divergence free.

Example 33.3 Area and volume formulce. Let us first consider \mathbb{R}^{2}. If we consider thee vector field $\mathbf{V}(x, y)=(x, y)$, then the divergence is given by

$$
\operatorname{div} \mathbf{V}=\frac{\partial x}{\partial x}+\frac{\partial y}{\partial y}=2
$$

When we apply Gauß's theorem in two dimensions we get the area formula,

$$
\frac{1}{2} \int_{\partial E} \mathbf{x} \cdot \mathbf{n} \mathrm{~d} s=\frac{1}{2} \int_{E} \operatorname{div} \mathbf{V} \mathrm{~d} x \mathrm{~d} y=\int_{E} \mathrm{~d} x \mathrm{~d} y=\operatorname{area}(E)
$$

In \mathbb{R}^{3} the vector field $\mathbf{V}(x, y, z)=(x, y, z)$ has the divergence

$$
\operatorname{div} \mathbf{V}=\frac{\partial x}{\partial x}+\frac{\partial y}{\partial y}+\frac{\partial z}{\partial z}=3
$$

so it follows from Gauß's theorem in three dimensions that we have the following volume formula,

$$
\frac{1}{3} \int_{\partial \Omega} \mathbf{x} \cdot \mathbf{n} \mathrm{d} S=\frac{1}{3} \int_{\Omega} \operatorname{div} \mathbf{V} \mathrm{d} \Omega=\operatorname{vol}(\Omega)
$$

Example 33.4 If a is a constant vector field, then trivially div $\mathbf{a}=0$, so the flux through any closed boundary surface $\mathcal{F}=\partial \Omega$ is zero, because we get from Gauß's theorem that

$$
\Phi:=\int_{\partial \Omega} \mathbf{a} \cdot \mathbf{n} \mathrm{d} S=\int_{\Omega} \operatorname{div} \mathbf{a} \mathrm{d} \Omega=0
$$

Example 33.5 Let a, b, c be positive constants. We shall find the flux of Φ of the vector field

$$
\mathbf{V}(x, y, z)=(y, x, z+c) \quad \text { for }(x, y, z) \in \mathbb{R}^{3}
$$

through the surface of the upper half of the massive ellipsoid, given by

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \leq 1 \quad \text { and } \quad z \geq 0
$$

It follows immediately that

$$
\operatorname{div} \mathbf{V}=\frac{\partial y}{\partial x}+\frac{\partial x}{\partial y}+\frac{\partial(z+c)}{\partial z}=1
$$

so the flux is

$$
\Phi=\int_{\partial \Omega} \mathbf{V} \cdot \mathbf{n} \mathrm{d} S=\int_{\Omega} \operatorname{div} \mathbf{V} \mathrm{d} \Omega=\operatorname{vol}(\mathbf{V})=\frac{1}{2} \cdot \frac{4 \pi}{3} a b c=\frac{2 \pi}{3} a b c
$$

33.3 Applications in Physics

We shall in this section give some applications of Gauß's theorem in Physics, demonstrating that this theory is indeed important in Physics.

33.3.1 Magnetic flux

The density of the C^{1} magnetic flux \mathbf{B} satisfies for every domain Ω,

$$
\int_{d d \Omega} \mathbf{B} \cdot \mathbf{n} \mathrm{~d} S=0
$$

which is the integral formulation of one of Maxwell's equations. By an application of Gauß's theorem we get

$$
\int_{\Omega} \operatorname{div} \mathbf{B} \mathrm{d} \Omega=0 \quad \text { for every (measurable) set } \Omega \subseteq \mathbb{R}^{3} \text {. }
$$

Since div B is continuous (in fact, $\mathbf{B} \in C^{1}$), this implies that

$$
\operatorname{div} \mathbf{B}=0
$$

which is the differential formulation of the same of Maxwell's equations as above.
In fact, if div $\mathbf{B}\left(\mathbf{x}_{0}\right)>0$, then due to the continuity also div $\mathbf{B}(\mathbf{x})>0$, whenever $\left\|\mathbf{x}-\mathbf{x}_{0}\right\|<\delta$ for $\delta>0$ sufficiently small. This would imply that $\int_{\Omega_{\delta}} \operatorname{div} \mathbf{B} \mathrm{d} \Omega>0$, where $\Omega_{\delta}=\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{0}\right\|<\delta\right\}$, which is a contradiction, so we conclude that $\operatorname{div} \mathbf{B}=0$.

Figure 33.7: For divergence free vector fields the flux inwards through \mathcal{F}_{1} is equal to the flux outwards through \mathcal{F}_{2}.

Then let \mathbf{V} be a divergence free C^{1} vector field. Consider a domain Ω, such that the surface boundary $\partial \Omega$ is cut into two subsurfaces \mathcal{F}_{1} and \mathcal{F}_{2} as indicated on Figure 33.7 by a closed curve \mathcal{K}.

Let Φ_{1} the the flux into Ω through \mathcal{F}_{1}, and Φ_{2} the flux out of Ω through \mathcal{F}_{2}. It follows fromGauß's theorem that the flux out of Ω through the whole of $\partial \Omega=\mathcal{F}_{1} \cup \mathcal{F}_{2}$ is given by

$$
\Phi=\Phi_{2}-\Phi_{1}=\int_{\mathcal{F}_{2}} \mathbf{V} \cdot \mathbf{n} \mathrm{~d} S+\int_{\mathcal{F}_{1}} \mathbf{V} \cdot(-\mathbf{n}) \mathrm{d} S=\int_{\Omega} \operatorname{div} \mathbf{V} \mathrm{d} \Omega=0
$$

In other words, the flux of a divergence free vector field through a surface of fixed boundary curve \mathcal{K} only depends on this closed curve \mathcal{K} and not of the shape of the surface, which has \mathcal{K} as boundary curve.
We have already derived that the density of the magnetic flux is divergence free. Therefore, according to the result above we can now talk of the magnetic flux being surrounded by a closed curve.

33.3.2 Coulomb vector field

Then we return to the Coulomb vector field, already considered in Example 33.2. We shall for convenience choose $k=1$, so the Coulomb field is here

$$
\mathbf{V}(x, y, z)=\frac{(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}, \quad \text { for }(x, y, z) \neq(0,0,0)
$$

We shall first prove that \mathbf{V} is divergence free, $\operatorname{div} \mathbf{V}=0$. It follows from straight forward differentiation that

$$
\frac{\partial V_{x}}{\partial x}=\frac{\partial}{\partial x}\left\{x\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}\right\}=\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}-3 x^{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{5}{2}}
$$

and similarly, due to the symmetry,

$$
\begin{aligned}
& \frac{\partial V_{y}}{\partial y}=\frac{\partial}{\partial y}\left\{x\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}\right\}=\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}-3 y^{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{5}{2}} \\
& \frac{\partial V_{z}}{\partial z}=\frac{\partial}{\partial z}\left\{x\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}\right\}=\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}-3 z^{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{5}{2}}
\end{aligned}
$$

hence, by adding these three equations,

$$
\operatorname{div} \mathbf{V}=\frac{V_{x}}{\partial x}+\frac{\partial V_{y}}{\partial y}+\frac{\partial V_{z}}{\partial z}=3\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}-3\left(x^{2}+y^{2}+z^{2}\right)^{1-\frac{5}{2}}=0
$$

Using Gauß's theorem we conclude that the flux through any closed boundary surface $\partial \Omega$ of the Coulomb field is zero, provided that $\mathbf{0} \notin \Omega$!

Then assume that $\mathbf{0} \in \Omega^{\circ}$ (an interior point of Ω). We put

$$
B_{a}=B[\mathbf{0}, a]=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2} \leq a^{2}\right\}, \quad a>0
$$

where $a>0$ is chosen so small that $B_{a} \subset \Omega^{\circ}$. When we apply Gauß's theorem on the set $\Omega \backslash B_{a}$, where $\mathbf{0} \notin \Omega \backslash B_{a}$, then we get by the previous result that the flux through $\partial\left(\Omega \backslash B_{a}\right)=\partial \Omega \cup \partial B_{a}$ is

$$
\int_{\partial \Omega} \mathbf{V} \cdot \mathbf{n} \mathrm{d} S+\int_{\partial B_{a}} \mathbf{V} \cdot(-\mathbf{n}) \mathrm{d} S=\int_{\Omega \backslash B_{a}} \operatorname{div} \mathbf{V} \mathrm{~d} \Omega=0
$$

cf. Figure 33.8.

Figure 33.8: Analysis of Gauß's theorem applied to the set $\Omega \backslash B_{a}$.

We note that $-\mathbf{n}$ on ∂B_{a} is the unit normal vector field pointing away from the solid set $\Omega \backslash B_{a}$. Also, $x^{2}+y^{2}+z^{2}=a^{2}$ on ∂B_{a}, so the Coulomb field is on ∂B_{a} given by

$$
\mathbf{V}_{\partial B_{a}}=\frac{a \mathbf{n}}{a^{3}}=\frac{\mathbf{n}}{a^{2}}, \quad \text { for } x^{2}+y^{2}+z^{2}=a^{2}
$$

Combining the results and comments above we conclude that when $\mathbf{0} \in \Omega$, then the flux of the Coulomb field through $\partial \Omega$ is given by

$$
\begin{aligned}
\int_{\partial \Omega} \mathbf{V} \cdot \mathbf{n} \mathrm{d} S & =\int_{\partial \Omega} \mathbf{V} \cdot \mathbf{n} \mathrm{d} S+\int_{\partial B_{a}} \mathbf{V} \cdot(-\mathbf{n}) \mathrm{d} S+\int_{\partial B_{a}} \mathbf{V} \cdot \mathbf{n} \mathrm{~d} S=0+\int \partial B_{a} \mathbf{V} \cdot \mathbf{n} \mathrm{~d} S \\
& =\int_{\partial B_{a}} \frac{\mathbf{n}}{a^{2}} \cdot \mathbf{n} \mathrm{~d} S=\frac{1}{a^{2}} \int_{\partial B_{a}} \mathrm{~d} S=\frac{1}{a^{2}} \operatorname{area}\left(\partial B_{a}\right)=4 \pi
\end{aligned}
$$

In other words, we have proved that for any solid body Ω with a reasonable ssurface $d d \Omega$, the flux of the Coulomb vector field \mathbf{V} through $\partial \Omega$ is given by

$$
\int_{\partial \Omega} \mathbf{V} \cdot \mathbf{n} \mathrm{d} S= \begin{cases}0 & \text { if } \mathbf{0} \notin \bar{\Omega} \\ 4 \pi & \text { if } \mathbf{0} \in \Omega^{\circ}\end{cases}
$$

We do not consider the case, when $\mathbf{0} \in \partial \Omega$.

33.3.3 Continuity equation

Consider a fluid or gas of density ϱ and velocity field \mathbf{v}. Then the mass in a domain Ω is given by

$$
M=\int_{\Omega} \varrho \mathrm{d} \Omega
$$

and the flow of mass through the surface $\partial \Omega$ away from Ω is given by the flux

$$
q:=\int_{\partial \Omega} \varrho \mathbf{v} \cdot \mathbf{n} \mathrm{d} S
$$

The law of conservation of mass is then infintesimally expressed in the following way,

$$
q \mathrm{~d} t=-\mathrm{d} M
$$

Then we get by an application of Gauß's theorem,

$$
0=q+\frac{d a M}{\mathrm{~d} t}=\int_{\partial \Omega} \varrho \mathbf{v} \cdot \mathbf{n} \mathrm{d} S+\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega} \varrho \mathrm{d} \Omega=\int_{\Omega}\left\{\operatorname{div}(\varrho \mathbf{v})+\frac{\partial \varrho}{\partial t}\right\} \mathrm{d} \Omega
$$

Assuming that ϱ and \mathbf{v} are of class C^{1}, we see that the integrand $\operatorname{div}(\varrho \mathbf{v})+\frac{\partial \varrho}{\partial t}$ is continuous, and we have previously seen that if f is a continuous function satisfying

$$
\int_{\Omega} f \mathrm{~d} \Omega=0 \quad \text { for all subsets of } \Omega
$$

then $f \equiv 0$. We have therefore proved the continuity equation

$$
\operatorname{div}(\varrho \mathbf{v})+\frac{\partial \varrho}{\partial t}=0
$$

This equation can also be found in other physical disciplines - the mathematical proof above is the same and only the physical interpretations are different. If for instance u denotes the energy density, and \mathbf{q} the density of the energy flow, then the conservation of the energy is expressed by the similar equation

$$
\operatorname{div} \mathbf{q}+\frac{\partial u}{\partial t}=0
$$

Similarly, if J denotes the density of a current and ϱ the density of the charge, then the law of conservation of the electric charge is written
$\operatorname{div} \mathbf{J}+\frac{\partial \varrho}{\partial t}=0$.
All these results stem from an application of Gauß's theorem.

33.4 Procedures for flux and divergence of a vector field; Gauß's theorem

33.4.1 Procedure for calculation of a flux

The flux Φ of a vector field \mathbf{V} through a surface \mathcal{F} is given by a surface integral (cf. Chapter 27) in the following way:
If $\mathbf{x}=\mathbf{r}(u, v),(u, v) \in E$ is a parametric representation of the surface \mathcal{F} with a given continuous unit normal vector field \mathbf{n}, then the flux is given by

$$
\Phi_{\mathcal{F}}(\mathbf{V})=\int_{\mathcal{F}} \mathbf{V} \cdot \mathrm{n} \mathrm{~d} S=\int_{\mathcal{F}} \mathbf{V}(\mathrm{x}) \cdot \mathrm{n}(\mathbf{x}) \mathrm{d} S=\int_{E} \mathbf{V}(\mathbf{r}(u, v)) \cdot \mathbf{N}(u, v) \mathrm{d} u \mathrm{~d} v
$$

It is the amount of the vector field which "flows through the surface in the direction of the normal vector" (e.g. per time unit).

Typically there are two different ways in which the flux can be calculated.

Standard procedure.

In principle this can always be applied, but it is often very cumbersome.

1) Divide if necessary \mathcal{F} into convenient sub-surfaces $\mathcal{F}_{1}, \ldots, \mathcal{F}_{k}$ each having its own unit normal vector field $\mathbf{n}_{1}, \ldots, \mathbf{n}_{k}$.
2) Check, whether $\mathcal{F}\left(\right.$ or $\left.\mathcal{F}_{j}\right)$ is "flat", and if it is not too difficult to calculate $\int_{\mathcal{F}} \mathrm{V} \cdot \mathrm{n} \mathrm{d} S$ as an ordinary plane integral, because \mathcal{F} is lying in a plane set.
3) If \mathcal{F} is not flat, we calculate the normal vector corresponding to the specific parametric representation in the variables (u, v),

$$
\mathbf{N}(u, v)=\left|\begin{array}{ccc}
\mathbf{e}_{x} & \mathbf{e}_{y} & \mathbf{e}_{z} \\
\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\
\frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v}
\end{array}\right|
$$

Note that $\mathbf{N}(u, v)$ no longer is a unit normal vector field. Stated roughly, we build the weight function into the new normal vector field $\mathbf{N}(u, v)$.
4) Calculate the plane integral over the parametric domain E,

$$
\Phi_{\mathcal{F}}(\mathbf{V})=\int_{E} \mathbf{V}(\mathbf{r}(u, v)) \cdot \mathbf{N}(u, v) \mathrm{d} u \mathrm{~d} v
$$

33.4.2 Application of Gauß's theorem

The method can in principle always be applied when the surface is "closed", i.e. one adds a surface with two numerically equal normal vector fields, which are pointing in the opposite directions, \mathbf{n} and $-\mathbf{n}$, such that one surrounds a 3-dimensional domain Ω with outgoing normal, and an additional surface integral, which hopefully should be easy to calculate.

Figure 33.9: The surface of the unit half sphere is closed by adding the unit disc in the (x, y)-plane with a normal vector pointing downwards (this gives us the closed upper unit half sphere with normal vectors pointing outwards) and the unit disc in the (x, y)-plane with the normal vector pointing upwards.

1) Check that $\mathcal{F}=\partial \Omega$ is closed, i.e. this surface surrounds a 3 -dimensional body Ω.
2) Quote Gauß's theorem and reduce the surface integral to a space integral,

$$
\int_{\partial \Omega} \mathrm{n} \cdot \mathbf{V} \mathrm{~d} S=\int_{\Omega} \operatorname{div} \mathbf{V} \mathrm{d} \Omega
$$

3) Calculate the space integral $\int_{\Omega} \operatorname{div} \mathbf{V} \mathrm{d} \Omega$ by applying one of the methods from Chapter 24 .

Remark 33.1 Usually one would not call it a reduction to go from 2 dimensions to 3 dimensions; but note that the surface \mathcal{F} of dimension 2 may have a fairly complicated geometry, while we in principle always end up with rectangular coordinates i 3 dimensions, which here may be considered as a simpler situation. \diamond

33.5 Examples of flux and divergence of a vector field; Gauß's theorem

33.5.1 Examples of calculation of the flux

Example 33.6

A. Find the flux Φ_{2} of the vector field

$$
\mathbf{V}(x, y, z)=\left(x^{2}+y^{2}, z^{2}, y^{2}\right), \quad(x, y, z) \in \mathbb{R}^{3}
$$

through the surface \mathcal{F} defined by

$$
\mathbf{r}(u, v)=(u+v, u-v, u+2 v), \quad u^{2}+v^{2} \leq 4
$$

Figure 33.10: The surface \mathcal{F} and its projection onto the (x, y)-plane.
D. We see that the surface \mathcal{F} lies in a plane, but because this plane is oblique, it is very difficult to exploit its flat structure. Instead we analyze the reduction formula

$$
\int_{\mathcal{F}} \mathbf{V} \cdot \mathrm{n} \mathrm{~d} S=\int_{E} \mathbf{V}(\mathbf{r}(u, v)) \cdot \mathbf{N}(u, v) \mathrm{d} u \mathrm{~d} v
$$

where the abstract surface integral is rewritten as an abstract plane integral. By inspecting the right hand side it is seen that we shall

1) identify the parametric domain E,
2) find the normal vector $\mathbf{N}(u, v)$ for the surface \mathcal{F}, corresponding to the parameters (u, v),
3) express $\mathbf{V}(\mathbf{r}(u, v))$ on the surface \mathcal{F} as a function in the parameters (u, v).
I. 1) The parametric domain is the disc of centre $(0,0)$ and radius 2 ,

$$
E=\left\{(u, v) \mid u^{2}+v^{2} \leq 4=2^{2}\right\}
$$

2) The normal vector. It follows from the parametric representation of the surface that

$$
\frac{\partial \mathbf{r}}{\partial u}=(1,1,1) \quad \text { and } \quad \frac{\partial \mathbf{r}}{\partial \mathbf{v}}=(1,-1,2)
$$

Figure 33.11: The parametric domain E is a disc of centre $(0,0)$ and radius 2.

Hence, the normal vector is

$$
\mathbf{N}(u, v)=\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}=\left|\begin{array}{ccc}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\
1 & 1 & 1 \\
1 & -1 & 2
\end{array}\right|=(3,-1,-2)
$$

Click on the ad to read more
3) The restriction of the vector field to the surface is given by

$$
\begin{aligned}
\mathbf{V}(x, y, z) & =\left(x^{2}, y^{2}, z^{2}\right) \\
& =\left((u+v)^{2}+(u-v)^{2},(y+2 v)^{2},(u-v)^{2}\right) \\
& =\left(2\left(u^{2}+v^{2}\right),(u+2 v)^{2},(u-v)^{2}\right)
\end{aligned}
$$

4) The integrand is according to 2 and 3 ,

$$
\begin{aligned}
\mathbf{V} \cdot \mathbf{N} & =(3,-1,-2) \cdot\left(2\left(u^{2}+v^{2}\right),(u+2 v)^{2},(u-v)^{2}\right) \\
& =6\left(u^{2}+v^{2}\right)-(u+2 v)^{2}-2(u-v)^{2} \\
& =6 u^{2}+6 v^{2}-\left(u^{2}+4 u v+4 v^{2}\right)-\left(2 u^{2}-4 u v+2 v^{2}\right) \\
& =3 u^{2}
\end{aligned}
$$

5) By insertion of 4 into the reduction formula we get by also using 1 ,

$$
\Phi_{2}=\int_{\mathcal{F}} \mathbf{V} \cdot \mathbf{n} \mathrm{d} S=\int_{E} \mathbf{V}(\mathbf{r}(u, v)) \cdot \mathbf{N}(u, v) \mathrm{d} u \mathrm{~d} v=3 \int_{E} u^{2} \mathrm{~d} u \mathrm{~d} v
$$

Since the parametric domain E is a disc, it is easiest to reduce it in polar coordinates,

$$
u=\varrho \cos \varphi, \quad v=\varrho \sin \varphi, \quad 0 \leq \varrho \leq 2, \quad 0 \leq \varphi \leq 2 \pi
$$

Hence we get the result

$$
\begin{aligned}
\Phi_{2} & =3 \int_{E} u^{2} \mathrm{~d} u \mathrm{~d} v=3 \int_{0}^{2 \pi}\left\{\int_{0}^{2} \varrho^{2} \cos ^{2} \varphi \cdot \varrho \mathrm{~d} \varrho\right\} \mathrm{d} \varphi \\
& =3 \int_{0}^{2 \pi} \cos ^{2} \varphi \mathrm{~d} \varphi \cdot \int_{0}^{2} \varrho^{3} \mathrm{~d} \varrho=3 \cdot \pi \cdot\left[\frac{1}{4} \varrho^{4}\right]_{0}^{2} \\
& =12 \pi .
\end{aligned}
$$

Example 33.7

A. Let $a, b, c>0$, be constants, and let

$$
\mathbf{V}(x, y, z)=(y, x, z+c), \quad(x, y, z) \in \mathbb{R}^{3}
$$

Find the flux Φ_{3} of \mathbf{V} through the half ellipsoidal surface

$$
\mathcal{F}_{1}=\left\{(x, y, z) \left\lvert\,\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2}=1\right., z \geq 0\right\}
$$

where the normal is directed u upwards, $\mathbf{n} \cdot \mathbf{e}_{z} \geq 0$, and the flux Φ_{4} of \mathbf{V} through the projection \mathcal{F}_{2} of \mathcal{F}_{1} onto the (x, y)-plane,

$$
\mathcal{F}_{2}=\left\{(x, y, z) \left\lvert\,\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2} \leq 1\right.\right\}, \quad \mathbf{n}=(0,0,1)
$$

D. Summing up we see that \mathcal{F}_{1} and \mathcal{F}_{2} surround a spatial domain Ω. The flux Φ_{3} represents e.g. the energy which flows out of Ω through \mathcal{F}_{1}, and Φ_{4} represents the energy which flows into Ω through \mathcal{F}_{2}. Hence, the difference $\Phi_{3}-\Phi_{4}$ represents the energy which is created by \mathbf{V} in Ω.

Figure 33.12: The half ellipsoidal surface \mathcal{F}_{1} for $a=1, b=2$ and $c=3$. The surface \mathcal{F}_{2} is hidden below \mathcal{F}_{1} in the (x, y)-plane.

I 1. Consider first

$$
\mathcal{F}_{1}=\left\{(x, y, z) \left\lvert\,\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2}=1\right., z \geq 0\right\}, \quad \mathbf{n} \cdot \mathbf{e}_{3} \geq 0
$$

The easiest method, which can be found in some textbooks, is to use spherical coordinates (left to the reader). We shall here as an alternative apply rectangular coordinates instead. Then we can consider \mathcal{F}_{1} as the graph of the function

$$
z=f(x, y)=c \sqrt{1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}}, \quad\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2} \leq 1
$$

Then the hidden parametric representation is given by

$$
\mathbf{r}(x, y)=\left(x, y, c \sqrt{1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}}\right), \quad\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2} \leq 1
$$

This parametric representation is differentiable when

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}<1
$$

i.e. when $z>0$. If so, we get

$$
\frac{\partial \mathbf{r}}{\partial x}=\left(1,0,-\frac{c}{a^{2}} \frac{x}{\sqrt{1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}}}\right)=\left(1,0,-\frac{c^{2}}{a^{2}} \cdot \frac{x}{z}\right)
$$

and analogously

$$
\frac{\partial \mathbf{r}}{\partial y}=\left(0,1,-\frac{c}{b^{2}} \frac{y}{\sqrt{1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}}}\right)=\left(0,1,-\frac{c^{2}}{b^{2}} \cdot \frac{y}{z}\right)
$$

where we have used that $z=c \sqrt{1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}}$ in order not to be overburdened with a square root in the following. (It is always possible to substitute back again, if necessary). Then

$$
\mathbf{N}(x, y)=\frac{\partial \mathbf{r}}{\partial x} \times \frac{\partial \mathbf{r}}{\partial y}=\left|\begin{array}{ccc}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\
1 & 0 & -\frac{c^{2}}{a^{2}} \frac{x}{z} \\
0 & 1 & -\frac{c^{2}}{b^{2}} \frac{y}{z}
\end{array}\right|=\left(\frac{c^{2}}{a^{2}} \cdot \frac{x}{z}, \frac{c^{2}}{b^{2}} \cdot \frac{y}{z}, 1\right)
$$

Now $\mathbf{N} \cdot \mathbf{e}_{3}=1>0$, so $\mathbf{N}(x, y)$ is pointing in the right direction.
The integrand is then calculated,

$$
\mathbf{V} \cdot \mathbf{N}=(y, x, z+c) \cdot\left(\frac{c^{2}}{a^{2}} \cdot \frac{x}{z}, \frac{c^{2}}{b^{2}} \cdot \frac{y}{z}, 1\right)=c^{2}\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right) \frac{x y}{z}+z+c
$$

The domain of integration is the ellipse in the (x, y)-plane

$$
E=\left\{(x, y) \left\lvert\,\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2} \leq 1\right.\right\}
$$

Hence, the flux is equal to the improper plane integral

$$
\begin{aligned}
\Phi_{3} & =\int_{\mathcal{F}_{1}} \mathrm{~V} \cdot \mathrm{n} \mathrm{~d} S \\
& =\int_{E}\left\{c\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right) \cdot \frac{x y}{\sqrt{1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}}}+c \sqrt{1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}}+c\right\} \mathrm{d} x \mathrm{~d} y .
\end{aligned}
$$

Then note that we have e.g.

$$
\int_{x} \sqrt{1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}} \mathrm{~d} x=-a^{2} \sqrt{1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}}
$$

i.e. if we integrate over an interval of the form $[0, k]$ (where the integrand is ≥ 0) or over $[-k, 0]$ (where the integrand is ≤ 0), then we get finite values in both cases, i.e. the improper integral is convergent.

If we put $k=a \sqrt{1-\left(\frac{y}{b}\right)^{2}}$, it follows of symmetric reasons that

$$
\begin{aligned}
& \int_{E} c\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right) \frac{x y}{\sqrt{1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}}} \mathrm{~d} S \\
& \quad=\lim _{\varepsilon \rightarrow 0+} \int_{-b}^{b} c\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right) y\left\{\int_{-a \sqrt{1-\left(\frac{y}{b}\right)^{2}}+\varepsilon}^{a \sqrt{1-\left(\frac{y}{b}\right)^{2}}-\varepsilon} \frac{x \mathrm{~d} x}{\sqrt{1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}}}\right\} \\
& \\
& \quad=\lim _{\varepsilon \rightarrow 0+} c\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right) \int_{-b}^{b} y \cdot 0 \mathrm{~d} y=0
\end{aligned}
$$

The expression of the flux is therefore reduced to

$$
\begin{aligned}
\Phi_{3} & =0+\int_{E}(z+c) \mathrm{d} x \mathrm{~d} y \\
& =\int_{E} c \sqrt{1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}} \mathrm{~d} x \mathrm{~d} y+c \cdot \operatorname{area}(E) \\
& =c \int_{E} \sqrt{1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}} \mathrm{~d} x \mathrm{~d} y+c \cdot \pi a b .
\end{aligned}
$$

The purpose of the following elaborated variant is to straighten up the ellipse by the change of variables

$$
u=\frac{x}{a}, \quad v=\frac{y}{b}, \quad \text { i.e. } \quad x=a u, \quad y=b v .
$$

The corresponding Jacobian is

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right|=a b>0
$$

By the transformation formula the parametric domain E is mapped into the unit disc B in the (u, v)-plane, hence

$$
\begin{aligned}
\Phi_{3} & =\pi a b c+c \int_{E} \sqrt{1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}} \mathrm{~d} x \mathrm{~d} y \\
& =\pi a b c+c \int_{B} \sqrt{1-u^{2}-v^{2}}\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \mathrm{d} u \mathrm{~d} v \\
& =\pi a b c+a b \cdot c \int_{B} \sqrt{1-u^{2}-v^{2}} \mathrm{~d} u \mathrm{~d} v \\
& =a b c\left\{\pi+\int_{0}^{2 \pi}\left\{\int_{0}^{1} \sqrt{1-\varrho^{2}} \cdot \varrho \mathrm{~d} \varrho\right\} \mathrm{d} \varphi\right\} \\
& =a b c\left\{\pi+2 \pi \int_{0}^{1} \sqrt{1-t} \cdot \frac{1}{2} \mathrm{~d} t\right\} \\
& =\pi a b c\left\{1+\left[-\frac{2}{3}(1-t)^{\frac{3}{2}}\right]_{0}^{1}\right\} \\
& =\pi a b c \cdot\left(1+\frac{2}{3}\right)=\frac{5}{3} \pi a b c
\end{aligned}
$$

No matter whether one is using spherical or rectangular coordinates, it is very difficult to find Φ_{3}, and there are lots of pit falls (as seen above we get e.g. an improper surface integral in the rectangular version).

I 2. Next look at

$$
\mathcal{F}_{2}=E=\left\{(x, y, z) \left\lvert\,\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2} \leq 1\right., z=0\right\}, \quad \mathbf{n}=(0,0,1)
$$

The restriction of \mathbf{V} to E is obtained by putting $z=0$, i.e.

$$
\mathbf{V}(x, y, 0)=(y, x, c)
$$

The unit normal vector is $\mathbf{n}=(0,0,1)$, so the integrand becomes

$$
\mathbf{V}(x, y, 0) \cdot \mathbf{n}=(y, x, c) \cdot(0,0,1)=c
$$

We conclude by using the reduction theorem on the simple calculation

$$
\Phi_{4}=\int_{E} \mathbf{V} \cdot \mathbf{n} \mathrm{~d} S=c \int_{E} \mathrm{~d} S=c \cdot \operatorname{area}(E)=c \cdot \pi a b=\pi a b c
$$

I 3. Finally we have (cf. Figure 33.13),
The flux out of $\partial \Omega$ of \mathbf{V} is according to I 1. and I 2. given by

$$
\Phi_{3}-\Phi_{4}=\frac{5}{3} \pi a b c-\pi a b c=\frac{2}{3} \pi a b c
$$

where we use $-\Phi_{4}$, because Φ_{4} indicates the flux into Ω through \mathcal{F}_{2}.

Figure 33.13: The domain Ω.

Let us then alternatively show the same result by means of Gauß's theorem.
We first realize that \mathcal{F}_{1} and \mathcal{F}_{2} surround a spatial domain

$$
\Omega=\left\{(x, y, z) \left\lvert\,\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2} \leq 1\right., z \geq 0\right\}
$$

From $\mathbf{V}(x, y, z)=(y, x, z+c)$ we then get

$$
\operatorname{div} \mathbf{V}=0+0+1=1
$$

The flux out through $\partial \Omega$ (the normal of direction away from the domain) is then according to Gauß's theorem,

$$
\Phi=\int_{\partial \Omega} \mathrm{V} \cdot \mathrm{n} \mathrm{~d} S=\int_{\Omega} \operatorname{div} \mathbf{V} \mathrm{d} \Omega=\int_{\Omega} \mathrm{d} \Omega=\operatorname{vol}(\Omega)=\frac{1}{2}\left(\frac{4 \pi}{3} a b c\right)=\frac{2 \pi}{3} a b c
$$

By comparison we see that this is exactly $\Phi_{3}-\Phi_{3}$ as we claimed.
Summarizing, Φ_{3} in I 1. was difficult to compute, while Φ_{4} in I 2. and Φ in I 3. were easy. Since $\Phi_{3}-\Phi_{4}=\Phi$, we might have calculated Φ_{3} by computing the easy right hand side of

$$
\Phi_{3}=\Phi_{4}+\Phi
$$

i.e. expressed in integrals,

$$
\begin{equation*}
\int_{\mathcal{F}_{1}} \mathbf{V} \cdot \mathbf{n} \mathrm{~d} S=\int_{\mathcal{F}_{2}} \mathbf{V} \cdot \mathbf{n} \mathrm{~d} S+\int_{\Omega} \operatorname{div} \mathbf{V} \mathrm{d} \Omega \tag{33.1}
\end{equation*}
$$

or put in other words: an ugly surface integral (the left hand side) is expressed as the sum of a simple surface integral (here even a plane integral) and a simple spatial integral (the right hand side).

This technique can often be applied when one shall calculate the flux through a more or less complicated surface \mathcal{F}_{1}.

1) First draw a figure, thereby realizing where \mathcal{F}_{1} is placed in the space.
2) Then add a nice surface \mathcal{F}_{2}, such that $\mathcal{F}_{1} \cup \mathcal{F}_{2}$ becomes the boundary of a spatial body Ω. Check in particular that the normal vector on \mathcal{F}_{2} is always pointing away from the domain Ω).
3) Calculate the right hand side of (33.1), thereby finding the flux through \mathcal{F}_{1}.

Remark 33.2 We shall later in Example 33.9 give some comments which will give us an even more easy version of calculation. \diamond

Example 33.8

A. Let the surface \mathcal{F} be the square

$$
\mathcal{F}=\{(x, y, z)| | x|\leq a,|y| \leq a, z=a\}, \quad a>0
$$

at the height a with the unit normal vector $\mathbf{n}=(0,0,1)$ pointing upwards.
Find the flux through \mathcal{F} of the Coulomb field

$$
\mathbf{V}(x, y, z)=\frac{(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}, \quad(x, y, z) \neq(0,0,0)
$$

(Concerning the Coulomb field see also Example 33.9).

Figure 33.14: The surface \mathcal{F} for $a=1$.
D. Using rectangular coordinates we get from the reduction theorem that

$$
\begin{aligned}
\Phi_{5} & =\int_{\mathcal{F}} \mathbf{V} \cdot \mathbf{n} \mathrm{d} S=\int_{-a}^{a}\left\{\int_{-a}^{a} \frac{(x, y, a) \cdot(0,0,1)}{\left(x^{2}+y^{2}+a^{2}\right)^{3 / 2}} \mathrm{~d} x\right\} \mathrm{d} y \\
& =\int_{-a}^{a}\left\{\int_{0}^{a} \frac{a}{\left(x^{2}+y^{2}+a^{2}\right)^{3 / 2}} \mathrm{~d} x\right\} \mathrm{d} y=4 a \int_{0}^{a}\left\{\int_{0}^{a} \frac{1}{\left(x^{2}+y^{2}+a^{2}\right)^{3 / 2}} \mathrm{~d} x\right\} \mathrm{d} y
\end{aligned}
$$

where we have used that the integrand is even in both x and y, and that the domain is symmetric.

So far, so good, but from now on the calculations become really tough. The reason is that the integrand invites to the application of polar coordinates, while the domain is better described in rectangular coordinates. The mixture of these two coordinate systems will always cause some difficulties.

For pedagogical reasons we shall here show both variants, first the rectangular version, which is extremely difficult, and afterwards the polar version, which is "only" difficult. This exercise will show that one cannot just restrict oneself to rely on the rectangular method alone!

I 1. Rectangular variant. Calculate directly

$$
\Phi_{5}=4 \int_{0}^{a}\left\{\int_{0}^{a} \frac{a}{\left(x^{2}+y^{2}+a^{2}\right)^{3 / 2}} \mathrm{~d} x\right\} \mathrm{d} y
$$

First we note by a partial integration of an auxiliary function that

$$
\begin{aligned}
& \int_{0}^{a} 1 \cdot\left(t^{2}+c^{2}\right)^{\alpha} \mathrm{d} t=\left[t \cdot\left(t^{2}+c^{2}\right)^{\alpha}\right]_{0}^{a}-\int_{0}^{a} t \cdot \alpha\left(t^{2}+c^{2}\right)^{\alpha-1} \cdot 2 t \mathrm{~d} t \\
& \quad=a\left(a^{2}+c^{2}\right)^{\alpha}-2 \alpha \int_{0}^{a}\left(t^{2}+c^{2}-c^{2}\right)\left(t^{2}+c^{2}\right)^{\alpha-1} \mathrm{~d} t \\
& \quad=a\left(a^{2}+c^{2}\right)^{\alpha}-2 \alpha \int_{0}^{a}\left(t^{2}+c^{2}\right)^{\alpha} \mathrm{d} t+2 \alpha c^{2} \int_{0}^{a}\left(t^{2}+c^{2}\right)^{\alpha-1} \mathrm{~d} t .
\end{aligned}
$$

When $\alpha \neq 0$ and $c>0$, we get by a rearrangement

$$
\begin{equation*}
\int_{0}^{a}\left(t^{2}+c^{2}\right)^{\alpha-1} \mathrm{~d} t=\frac{1+2 \alpha}{2 \alpha c^{2}} \int_{0}^{a}\left(t^{2}+c^{2}\right)^{\alpha} \mathrm{d} t-\frac{a\left(a^{2}+c^{2}\right)^{\alpha}}{2 \alpha c^{2}} \tag{33.2}
\end{equation*}
$$

Choosing $t=x$ and $\alpha=-\frac{1}{2}$ and $c^{2}=y^{2}+a^{2}$ in (33.2) and multiplying by a, we get the inner integral in Φ_{5} : Since $1+2 \alpha=0$ we have

$$
\int_{0}^{a} \frac{a}{\left(x^{2}+y^{2}+a^{2}\right)^{3 / 2}} \mathrm{~d} x=-\frac{a^{2}\left(a^{2}+y^{2}+a^{2}\right)^{-1 / 2}}{2\left(-\frac{1}{2}\right)\left(a^{2}+y^{2}\right)}=\frac{a^{2}}{\left(y^{2}+a^{2}\right) \sqrt{y^{2}+2 a^{2}}}
$$

which gives by insertion

$$
\Phi_{5}=4 \int_{0}^{a} \frac{a^{2}}{\left(y^{2}+a^{2}\right) \sqrt{y^{2}+2 a^{2}}} \mathrm{~d} y
$$

So far we can still use the pocket calculator TI-89, but from now on it denies to calculate the exact value! Therefore, we must from now on continue by using the old-fashioned, though well tested methods from the time before the pocket calculators.

When we consider the dimensions we see that $y \sim a$, hence a convenient substitution must be $y=a u$. Then

$$
\begin{aligned}
\Phi_{5} & =4 \int_{0}^{a} \frac{a^{2}}{\left(y^{2}+a^{2}\right) \sqrt{y^{2}+2 a^{2}}} \mathrm{~d} y=4 \int_{0}^{1} \frac{a^{2}}{\left(a^{2} u^{2}+a^{2}\right) \sqrt{a^{2} u^{2}+2 a^{2}}} \cdot a \mathrm{~d} u \\
& =4 \int_{0}^{1} \frac{1}{\left(u^{2}+1\right) \sqrt{u^{2}+2}} \mathrm{~d} u=4 \int_{0}^{1} \frac{1}{\left(u^{2}+1\right) \sqrt{\left(u^{2}+1\right)+1}} \mathrm{~d} u
\end{aligned}
$$

where it should be surprising that Φ_{5} is independent of a.
The following circumscription is governed by the following general principle:

- Whenever the square of two terms is involved then it should be rewritten as 1 plus/minus something which has "something to do" with the other terms in the integrand.

The circumscription indicates that we should try the monotonous substitution

$$
t=u^{2}+1, \quad u=\sqrt{t-1}, \quad \mathrm{~d} u=\frac{1}{2} \frac{1}{\sqrt{t-1}} \mathrm{~d} t, \quad t \in[1,2]
$$

By this substitution we get

$$
\Phi_{5}=4 \int_{0}^{1} \frac{1}{\left(u^{2}+1\right) \sqrt{\left(u^{2}+1\right)+1}} \mathrm{~d} u=4 \int_{1}^{2} \frac{1}{t \sqrt{t+1}} \cdot \frac{1}{2} \frac{1}{\sqrt{t-1}} \mathrm{~d} t=2 \int_{1}^{2} \frac{\mathrm{~d} t}{t \sqrt{t^{2}-1}}
$$

The structure $\sqrt{t^{2}-1}$ looks like

$$
\sqrt{\cosh ^{2} w-1}=\sqrt{\sinh ^{2} w}=|\sinh w|
$$

which is a means to get rid of the square root. We therefore try another substitution,

$$
t=\cosh w, \quad w=\ln \left(t+\sqrt{t^{2}-1}\right), \quad \mathrm{d} t=\sinh w \mathrm{~d} w, \quad w \in[0, \ln (2+\sqrt{3})]
$$

Since we have $\sinh w \geq 0$ in this interval, we get

$$
\begin{aligned}
\Phi_{5} & =2 \int_{1}^{2} \frac{\mathrm{~d} t}{t \sqrt{t^{2}-1}}=2 \int_{0}^{\ln (2+\sqrt{3})} \frac{\sinh w}{\cosh w \cdot \sinh w} \mathrm{~d} w \\
& =2 \int_{0}^{\ln (2+\sqrt{3})} \frac{\mathrm{d} w}{\cosh w}=2 \int_{0}^{\ln (2+\sqrt{3})} \frac{2}{e^{w}+e^{-w}} \mathrm{~d} w \\
& =4 \int_{0}^{\ln (2+\sqrt{3})} \frac{e^{w}}{1+\left(e^{w}\right)^{2}} \mathrm{~d} w=4\left[\operatorname{Arctan}\left(e^{w}\right)\right]_{0}^{\ln (2+\sqrt{3})} \\
& \left.=4\{\operatorname{Arctan}(2+\sqrt{3}))-\frac{\pi}{4}\right\}=4 \operatorname{Arctan}(2+\sqrt{3})-\pi
\end{aligned}
$$

Our troubles in the rectangular case are not over. How can we find $\operatorname{Arctan}(2+\sqrt{3})$ without using a pocket calculator?

Figure 33.15: The rectangular triangle with the opposite side $=2+\sqrt{3}$, so $\varphi=\operatorname{Arctan}(2+\sqrt{3})$ is the nearby angle.

Geometrically $\varphi=\operatorname{Arctan}(2+\sqrt{3})$ is that angle in the rectangular triangle on the figure, which is $>\frac{\pi}{4}$.

The hypothenuse can be found by Pythagoras' theorem,

$$
r^{2}=(2+\sqrt{3})^{2}+1^{2}=4+3+4 \sqrt{3}+1=8+4 \sqrt{3}=4(2+\sqrt{3}),
$$

i.e. $r=2 \sqrt{2+\sqrt{3}}$. From $\varphi>\frac{\pi}{4}$, follows that $\psi=\frac{\pi}{2}-\varphi<\frac{\pi}{4}$, and

$$
\cos \psi=\frac{1}{r}(2+\sqrt{3})=\frac{1}{2} \sqrt{2+\sqrt{3}} .
$$

We shall get rid of the square root by squaring, so we try

$$
\cos 2 \psi=2 \cos ^{2} \psi-1=2 \cdot \frac{1}{4}(2+\sqrt{3})-1=1+\frac{1}{2} \sqrt{3}-1=\frac{\sqrt{3}}{2} .
$$

Since we have been so careful to show that $0<\psi<\frac{\pi}{4}$, it follows that $0<2 \psi<\frac{\pi}{2}$, hence

$$
2 \psi=\operatorname{Arccos}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{6}, \quad \text { i.e. } \psi=\frac{\pi}{12} .
$$

Then

$$
\operatorname{Arctan}(2+\sqrt{3})=\varphi=\frac{\pi}{2}-\psi=\frac{\pi}{2}-\frac{\pi}{12}=\frac{5 \pi}{12} .
$$

By a final insertion we get that the flux is

$$
\Phi_{5}=4 \operatorname{Arctan}(2+\sqrt{3})-\pi=4 \cdot \frac{5 \pi}{12}-\pi=\frac{5 \pi}{3}-\pi=\frac{2 \pi}{3} .
$$

Remark 33.3 It is obvious why this variant is never seen in ordinary textbooks. The morale is that even if something can be done, it does not always have to, and we should of course have avoided this variant. It should, however, be added that the pocket calculator finally will find that

$$
\begin{aligned}
& \operatorname{Arctan}(2+\sqrt{3})=\frac{5 \pi}{12} . \\
& \text { oolar variant. We shall start from the very b } \\
& \Phi_{5}=4 \int_{0}^{a}\left\{\int_{0}^{a} \frac{a}{\left(x^{2}+y^{2}+a^{2}\right)^{3 / 2}} \mathrm{~d} x\right\} \mathrm{d} y .
\end{aligned}
$$

The domain $[0, n]^{2}$ is not fit for a polar description, but if we note that the integrand is symmetrical about the line $y=x$, then this symmetry gives that

$$
\Phi_{5}=2 \cdot 4 \int_{T} \frac{a}{\left(x^{2}+y^{2}+a^{2}\right)^{3 / 2}} \mathrm{~d} x \mathrm{~d} y=8 \int_{T} \frac{a}{\left(x^{2}+y^{2}+a^{2}\right)^{3 / 2}} \mathrm{~d} x \mathrm{~d} y,
$$

where the triangle T is bounded by $y=0$ in the right half-plane (corresponding in polar coordinates to $\varphi=0$), the line $y=x$ (corresponding to $\varphi=\frac{\pi}{4}$) and $x=\varrho \cos \varphi=a$, i.e.

$$
\varrho=\frac{a}{\cos \varphi} .
$$

		${ }^{1.2}$

Figure 33.16: The domain T is the lower triangle and $a=1$.

Therefore, a polar description of T is

$$
T=\left\{(\varrho, \varphi) \left\lvert\, 0 \leq \varphi \leq \frac{\pi}{4}\right., 0 \leq \varrho \leq \frac{a}{\cos \varphi}\right\}
$$

Then the rest follows from the usual reduction theorems,

$$
\Phi_{5}=8 \int_{T} \frac{a}{\left(x^{2}+y^{2}+a^{2}\right)^{3 / 2}} \mathrm{~d} S=8 \int_{0}^{\frac{\pi}{4}}\left\{\int_{0}^{\frac{a}{\cos \varphi}} \frac{a}{\left(\varrho^{2}+a^{2}\right)^{3 / 2}} \cdot \varrho \mathrm{~d} \varrho\right\} \mathrm{d} \varphi
$$

The inner integral is calculated by using the substitution

$$
t=\varrho, \quad \mathrm{d} t=2 \varrho \mathrm{~d} \varrho, \quad \text { i.e. } \varrho \mathrm{d} \varrho=\frac{1}{2} \mathrm{~d} t
$$

hence

$$
\begin{aligned}
& 8 \int_{0}^{\frac{a}{\cos \varphi}} \frac{a}{\left(\varrho^{2}+a^{2}\right)^{3 / 2} \varrho \mathrm{~d} \varrho=4 \int_{0}^{\frac{4}{\cos ^{2} \varphi}} \frac{a}{\left(t+a^{2}\right)^{3 / 2}} \mathrm{~d} t} \\
& \quad=4\left[-\frac{2 a}{\left(t+a^{2}\right)^{1 / 2}}\right]^{\frac{a^{2}}{\cos ^{2} \varphi}}=8\left\{1-\frac{a}{\sqrt{\frac{a^{2}}{\cos ^{2} \varphi}+a^{2}}}\right\} \\
& \quad=8\left\{1-\frac{a|\cos \varphi|}{a \sqrt{1+\cos ^{2} \varphi}}\right\}=8\left\{1-\frac{|\cos \varphi|}{\sqrt{1+\cos ^{2} \varphi}}\right\} .
\end{aligned}
$$

Since $|\cos \varphi|=\cos \varphi$ for $0 \leq \varphi \leq \frac{\pi}{4}$, we get by an insertion and an application of the substitution

$$
u=\sin \varphi, \quad \mathrm{d} u=\cos \varphi \mathrm{d} \varphi, \quad \cos ^{2} \varphi=1-\sin ^{2} \varphi=1-u^{2}
$$

that

$$
\begin{aligned}
\Phi_{5} & =8 \int_{0}^{\frac{\pi}{4}}\left\{1-\frac{1}{\sqrt{1+\cos ^{2} \varphi}} \cdot \cos \varphi\right\} \mathrm{d} \varphi \\
& =8 \cdot \frac{\pi}{4}-8 \int_{0}^{\frac{1}{\sqrt{2}}} \frac{\mathrm{~d} u}{\sqrt{1+\left(1-u^{2}\right)}}=2 \pi-8 \int_{0}^{\frac{1}{\sqrt{2}}} \frac{\mathrm{~d} u}{\sqrt{2-u^{2}}} \\
& =2 \pi-8 \int_{0}^{\frac{1}{\sqrt{2}}} \frac{1}{\sqrt{1-\left(\frac{u}{\sqrt{2}}\right)^{2}}} \cdot \frac{1}{\sqrt{2}} \mathrm{~d} u=2 \pi-8 \int_{0}^{\frac{1}{2}} \frac{\mathrm{~d} v}{\sqrt{1-v^{2}}}
\end{aligned}
$$

$$
=2 \pi-8[\operatorname{Arcsin} v]_{0}^{\frac{1}{2}}=2 \pi-8 \cdot \frac{\pi}{6}=\frac{2 \pi}{3}
$$

Remark 33.4 It should be admitted that the polar version also contains some difficulties, though they are not as bad as in the rectangular version. \diamond

Example 33.9

The Coulomb vector field (cf. Example 33.8),

$$
\mathbf{V}(x, y, z)=\frac{(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}, \quad \text { for }(x, y, z) \neq(0,0,0)
$$

satisfies (where one absolutely should not put everything in the same fraction with the same denominator, unless one wants to obscure everything)

$$
\begin{aligned}
& \frac{\partial V_{x}}{\partial x}=\frac{\partial}{\partial x}\left\{\frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right\}=\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}-\frac{3 x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}} \\
& \frac{\partial V_{y}}{\partial y}=\frac{\partial}{\partial y}\left\{\frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right\}=\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}-\frac{3 y^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}} \\
& \frac{\partial V_{z}}{\partial z}=\frac{\partial}{\partial z}\left\{\frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right\}=\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}-\frac{3 z^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}
\end{aligned}
$$

from which we get by adding these expressions,

$$
\operatorname{div} \mathbf{V}=\frac{\partial V_{x}}{\partial x}+\frac{\partial V_{y}}{\partial y}+\frac{\partial V_{z}}{\partial z}=\frac{3}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}-\frac{3\left(x^{2}+y^{2}+z^{2}\right)}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}=0
$$

i.e. \mathbf{V} is divergence free so we can use the results of Section 33.3.2 for domains Ω, which do not contain the point $(0,0,0)$.
A. Let Ω be any spatial domain with $(0,0,0)$ as an inner point. Find the flux of the Coulomb field through $\partial \Omega$, i.e. find $\int_{\partial \Omega} \mathrm{V} \cdot \mathrm{n} \mathrm{d} S$.
D. Since div \mathbf{V} is not defined in $(0,0,0)$, we cannot apply Gauß's theorem directly. But since $(0,0,0)$ is an inner point, there exists a ball

$$
K=K(\mathbf{0} ; r) \subset \Omega
$$

totally contained in Ω. If we cut K out of Ω, we get a domain $\tilde{\Omega}=\Omega \backslash K$, in which div \mathbf{V} is defined everywhere and equal to 0 . According to Section 33.3.2 the surface $\partial \Omega$ can be deformed into ∂K, and then the flux through ∂K can be calculated as an ordinary surface integral. (The singular point $(0,0,0)$ lies in K, so we cannot apply Gauß's theorem in the latter calculation).
I. We are just missing one thing. Since both $\partial \Omega$ and ∂K are closed surfaces, neither of them has a boundary curve, so we get formally

$$
\delta(\partial \Omega)=\emptyset=\delta(\partial K)
$$

Alternatively there is flowing just as much into $\tilde{\Omega}$ through ∂K as out of $\tilde{\Omega}$ through $\partial \Omega$, because the flow is balanced.

Thus we have proved by using Gauß's theorem that

$$
\int_{\partial \Omega} \mathbf{V} \cdot \mathbf{n} \mathrm{d} S=\int_{\partial K} \mathbf{V} \cdot \mathbf{n} \mathrm{~d} S
$$

The right hand side is calculated as a usual surface integral, where it this time is worthwhile to keep the abstract formulation as long as possible.

1) On ∂K we have $r^{2}=x^{2}+y^{2}+z^{2}$, i.e. $r=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$, and

$$
\mathbf{n}(x, y, z)=\frac{1}{r}(x, y, z)
$$

2) The vector field is then rewritten in the following way

$$
\mathbf{V}(x, y, z)=\frac{(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}=\frac{1}{r^{3}}(x, y, z)=\frac{1}{r^{2}} \cdot \frac{1}{r}(x, y, z)=\frac{1}{r^{2}} \mathbf{n}
$$

where we have used 1).
3) Since $\mathbf{n} \cdot \mathbf{n}=\|\mathbf{n}\|^{2}=1$, we get by an insertion of 2) that the flux is given by

$$
\begin{aligned}
\int_{\partial \Omega} \mathrm{V} \cdot \mathbf{n} \mathrm{~d} S & =\int_{\partial K} \mathbf{V} \cdot \mathbf{n} \mathrm{~d} S=\int_{\partial K} \frac{1}{r^{2}} \mathbf{n} \cdot \mathbf{n} \mathrm{~d} S \\
& =\frac{1}{r^{2}} \int_{\partial K} \mathrm{~d} S=\frac{1}{r^{2}} \operatorname{area}(\partial K)=\frac{1}{r^{2}} \cdot 4 \pi r^{2}=4 \pi
\end{aligned}
$$

because the area of a sphere of radius r is given by $4 \pi r^{2}$.
The result can be applied in an improved version of the horrible Example 33.8. Let $\Omega=K(\mathbf{0} ; r)$, where $r>\sqrt{3} a$, and let T be the cube of centre $\mathbf{0}$ and edge length $2 a$. Then the flux through ∂T is equal to the flux through the sphere $\partial \Omega$, i.e. according to the above,

$$
\int_{\partial T} \mathbf{V} \cdot \mathbf{n} \mathrm{~d} S=\int_{\partial \Omega} \mathbf{V} \cdot \mathbf{n} \mathrm{d} S=4 \pi
$$

On the other hand, ∂T is disintegrated in a natural way into six squares of the same congruent form: They appear from each other by a convenient revolution around one of the axis. The Coulomb field is due to its symmetry invariant (apart from a change of letters) by these revolutions, so the flux is the same through every one of the six squares. If we choose one of these. e.g.

$$
\mathcal{F}=\{(x, y, z) \mid-a \leq x \leq a,-a \leq y \leq a, z=a\}=[-a, a] \times[-a, a] \times\{a\}
$$

then

$$
4 \pi=\int_{\partial T} \mathbf{V} \cdot \mathbf{n} \mathrm{~d} S=6 \int_{\cap F} \mathbf{V} \cdot \mathbf{n} \mathrm{~d} S
$$

from which

$$
\int_{\mathcal{F}} \mathbf{V} \cdot \mathbf{n} \mathrm{d} S=\frac{1}{6} \cdot 4 \pi=\frac{2 \pi}{3}
$$

Obviously this method is far easier in its calculations than the method applied in Example 33.8. \diamond

Figure 33.17: In most calculus courses Ω is typically a ball.

Example 33.10 Assume that Ω e.g. represents a subsoil water reservoir, which is polluted by some fluid or gas of density $\varrho=\varrho(x, y, z, t)$ and velocity vector $\mathbf{v}=\mathbf{v}(x, y, z, t)$.
The mass of the polluting agent in Ω at time t is given by

$$
M=M(t)=\int_{\Omega} \varrho(x, y, z, t) \mathrm{d} \Omega=\int_{\Omega} \varrho \mathrm{d} \Omega .
$$

The change of mass in time is then obviously equal to
(33.3) $\frac{\mathrm{d} M}{\mathrm{~d} t}=\frac{\mathrm{d}}{\mathrm{d} t} \int_{\Omega} \varrho(x, y, z, t) \mathrm{d} \Omega=\int_{\Omega} \frac{\partial \varrho}{\partial t} \mathrm{~d} \Omega$.

Because achicving your dreams is your greatest challenge. IE Business School's Master in Management taught in English, Spanish or bilingually, trains young high performance professionals at the beginning of their career through an innovative and stimulating program that will help them reach their full potential.

- Choose your area of specialization.
- Customize your master through the different options offered.
- Global Immersion Weeks in locations such as London, Silicon Valley or Shanghai.

Because you change, we change with you.

This change must be equal to the flow of mass into Ω by the vector field

$$
\varrho \mathbf{v}=\varrho(x, y, z, t) \mathbf{v}(x, y, z, t) .
$$

Since $-\mathbf{n}$ points into Ω, this amount is according to Gauß's theorem equal to

$$
-q=-\int_{\partial \Omega} \varrho \mathbf{v} \cdot \mathbf{n} \mathrm{d} S=-\int_{\Omega} \operatorname{div}(\varrho \mathbf{v}) \mathrm{d} \Omega
$$

When this expression is equated to (33.3), we get after a rearrangement that

$$
0=q+\frac{\mathrm{d} M}{\mathrm{~d} t}=\int_{\Omega} \operatorname{div}(\varrho \mathbf{v}) \mathrm{d} \Omega+\int_{\Omega} \frac{\partial \varrho}{\partial t} \mathrm{~d} \Omega=\int_{\Omega}\left\{\operatorname{div}(\varrho \mathbf{v})+\frac{\partial \varrho}{\partial t}\right\} \mathrm{d} \Omega
$$

This is true for every domain Ω. Assuming that the integrand is continuous (what it always is in practical applications), it must be 0 everywhere. In fact, if the integrand e.g was positive in a point, then it had due to the continuity also to be positive in an open domain Ω_{1}, and then the integral over Ω_{1} becomes positive too, contradicting the assumption.

Thus we have once more derived the continuity equation

$$
\operatorname{div}(\varrho \mathbf{v})+\frac{\partial \varrho}{\partial t}=0
$$

which the density and the velocity vector field of the pollution vector field must satisfy.

Remark 33.5 Here the divergence is referring to the spatial variables and not to the time variable t. Hence, the continuity equation is written in all details in the following way

$$
\frac{\partial}{\partial x}\left(\varrho v_{x}\right)+\frac{\partial}{\partial y}\left(\varrho v_{y}\right)+\frac{\partial}{\partial z}\left(\varrho v_{z}\right)+\frac{\partial \varrho}{\partial t}=0
$$

Furthermore it should be noted that there is a big difference here between the application of $\frac{\mathrm{d}}{\mathrm{d} t}$ and $\frac{\partial}{\partial t} . \diamond$

Example 33.11 Find in each of the following cases the flux of the given vector field through the described oriented surface \mathcal{F}.

1) The flux of $\mathbf{V}(x, y, z)=\left(z, x,-3 y^{2} z\right)$ through the surface \mathcal{F} given by $x^{2}+y^{2}=16$ for $x \geq 0, y \geq 0$ and $z \in[0,5]$, where the normal vector \mathbf{n} is pointing away from the Z-axis.
2) The flux of $\mathbf{V}(x, y, z)=(\cos x, 0, \cos x+\cos y)$ through the surface \mathcal{F} given by $(x, y) \in[0, \pi] \times\left[0, \frac{\pi}{2}\right]$ and $z=0$, and where $\mathbf{n}=\mathbf{e}_{z}$.
3) The flux of $\mathbf{V}(x, y, z)=\left(x y, z^{2}, 2 y z\right)$ through the surface \mathcal{F} given by $x^{2}+y^{2}+z^{2}=a^{2}$, and $x \geq 0$, $y \geq 0, z \geq 0$, and where \mathbf{n} is pointing away from origo.
4) The flux of $\mathbf{V}(x, y, z)=\left(x+y, x-y, y^{2}+z\right)$ through the surface \mathcal{F} given by $x^{2}+y^{2} \leq 1$ and $z=x y$, and where $\mathbf{n} \cdot \mathbf{e}_{z}>0$.
5) The flux of

$$
\mathbf{V}(x, y, z)=\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}(x, y, z)
$$

through the surface \mathcal{F} given by $\varrho \leq a$ and $z=h$, and where $\mathbf{n}=\mathbf{e}_{z}$.
[Cf. Example 33.14].
6) The flux of

$$
\mathbf{V}(x, y, z)=\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}(x, y, z)
$$

through the surface \mathcal{F} given by $\varrho=a$ and $z \in[-h, h]$, and where \mathbf{n} is pointing away from the Z-axis.
[Cf. Example 33.14].
7) The flux of $\mathbf{V}(x, y, z)=(y, x, x+y+z)$ through the surface \mathcal{F} given by the parametric description

$$
\mathbf{r}(u, v)=(u \cos v, u \sin v, h v), \quad u \in[0,1], \quad v \in[0,2 \pi]
$$

8) The flux of $\mathbf{V}(x, y, z)=\left(y,-x, z^{2}\right)$ through the surface \mathcal{F} given by the parametric description

$$
\mathbf{r}(u, v)=\left(\sqrt{u} \cos v, \sqrt{u} \sin v, v^{\frac{3}{2}}\right), \quad 1 \leq u \leq 2, \quad 0 \leq v \leq u
$$

9) The flux of $\mathbf{V}(x, y, z)=(y z,-x z, h z)$ through the surface \mathcal{F} given by the parametric description

$$
\mathbf{r}(u, v)=(u \cos v, u \sin v, h v), \quad u \in[0,1], \quad v \in[0,2 \pi]
$$

A Flux of a vector field through a surface.
D Sketch whenever possible the surface. If the surface is only described in words, set up a parametric description. Compute the normal vector \mathbf{N} (possibly the normed normal vector \mathbf{n}) and check the orientation. Finally, find the flux.
I 1) The surface is in semi polar coordinates described by

$$
\varrho=a, \quad \varphi \in\left[0, \frac{\pi}{2}\right], \quad z \in[0,5]
$$

and the surface is a cylinder with the parameter domain

$$
E=\left\{(\varphi, z) \left\lvert\, \varphi \in\left[0, \frac{\pi}{2}\right]\right., z \in[0,5]\right\} .
$$

Figure 33.18: The surface \mathcal{F} of Example 33.11.1.

Figure 33.19: The surface \mathcal{F} of Example 33.11.2.

The unit normal vector is

$$
\mathbf{n}=(\cos \varphi, \sin \varphi, 0)
$$

and the area element is

$$
\mathrm{d} S=\mathrm{d} s \mathrm{~d} z=4 \mathrm{~d} \varphi \mathrm{~d} z
$$

Hence we get the flux

$$
\begin{aligned}
\int_{\mathcal{F}} \mathrm{V} \cdot \mathrm{n} \mathrm{~d} S & =\int_{E}\{z \cos \varphi+4 \cos \varphi \cdot \sin \varphi\} \cdot 4 \mathrm{~d} \varphi \mathrm{~d} z \\
& =4 \int_{0}^{\frac{\pi}{2}}\left\{\int_{0}^{5}(z \cos \varphi+4 \sin \varphi \cdot \cos \varphi) \mathrm{d} z\right\} \mathrm{d} \varphi \\
& =4 \int_{0}^{\frac{\pi}{2}}\left\{\frac{25}{2} \cos \varphi+20 \sin \varphi \cos \varphi\right\} \mathrm{d} \varphi=4 \cdot \frac{25}{2}+4 \cdot 20 \cdot \frac{1}{2} \\
& =90
\end{aligned}
$$

Figure 33.20: The surface \mathcal{F} of Example 33.11.3 for $a=1$.
2) In this case the flux is

$$
\begin{aligned}
\int_{\mathcal{F}} \mathrm{V} \cdot \mathrm{n} \mathrm{~d} S & =\int_{0}^{\pi}\left\{\int_{0}^{\frac{\pi}{2}}(\cos x+\cos y) \mathrm{d} y\right\} \mathrm{d} x \\
& =\int_{0}^{\pi}\left\{\frac{\pi}{2} \cos x+1\right\} \mathrm{d} x=0+1 \cdot \pi=\pi
\end{aligned}
$$

3) The surface is a subset of the sphere of centrum $(0,0,0)$ and radius a, lying in the first octant.

Choosing rectangular coordinates we find the area element on \mathcal{F},

$$
\mathrm{d} S=\frac{a}{\sqrt{a^{2}-x^{2}-y^{2}}} \mathrm{~d} x \mathrm{~d} y \quad\left(=" \frac{a}{z} \mathrm{~d} x \mathrm{~d} y "\right)
$$

and the unit normal vector is

$$
\mathbf{n}=\frac{1}{a}(x, y, z)=\frac{1}{a}\left(x, y, \sqrt{a^{2}-x^{2}-y^{2}}\right), \quad(x, y) \in E
$$

where the parameter domain is

$$
E=\left\{(x, y) \mid 0 \leq x \leq a, 0 \leq y \leq \sqrt{a^{2}-x^{2}}\right\}
$$

Then the flux of the vector field $\mathbf{V}(x, y, z)=\left(x y, z^{2}, 2 y z\right)$ through \mathcal{F} is

$$
\begin{array}{rl}
\int_{\mathcal{F}} & \mathbf{V} \cdot \mathbf{n} \mathrm{d} S=\int_{\mathcal{F}}\left(x y, z^{2}, 2 y z\right) \cdot \frac{1}{a}(x, y, z) \mathrm{d} S \\
& =\frac{1}{a} \int_{\mathcal{F}}\left\{x^{2} y+y z^{2}+2 y z^{2}\right\} \mathrm{d} S=\frac{1}{a} \int_{\mathcal{F}} y\left(x^{2}+3 z^{2}\right) \mathrm{d} S \\
& =\frac{1}{a} \int_{E} a\left\{\frac{y x^{2}}{\sqrt{a^{2}-x^{2}-y^{2}}}+3 y \sqrt{a^{2}-x^{2}-y^{2}}\right\} \mathrm{d} x \mathrm{~d} y \\
& =\int_{0}^{a}\left\{\int_{0}^{\sqrt{a^{2}-x^{2}}}\left\{\frac{x^{2}}{\sqrt{a^{2}-x^{2}-y^{2}}}+3 \sqrt{a^{2}-x^{2}-y^{2}}\right\} y \mathrm{~d} y\right\} \mathrm{d} x \\
& =\frac{1}{2} \int_{0}^{a}\left\{\int_{0}^{a^{2}-x^{2}}\left(\frac{x^{2}}{\sqrt{a^{2}-x^{2}-t^{2}}}+3 \sqrt{a^{2}-x^{2}-t}\right) \mathrm{d} t\right\} \mathrm{d} x \\
& =\frac{1}{2} \int_{0}^{a}\left[-2 x^{2} \sqrt{a^{2}-x^{2}-t^{2}}-3 \cdot \frac{2}{3}\left(\sqrt{a^{2}-x^{2} t}\right)^{3}\right]_{t=0}^{a^{2}-x^{2}} \mathrm{~d} x \\
& =\int_{0}^{a}\left\{x^{2} \sqrt{a^{2}-x^{2}}+\left(a^{2}-x^{2}\right) \sqrt{a^{2}-x^{2}}\right\} \mathrm{d} x \\
& =a^{2} \int_{0}^{a} \sqrt{a^{2}-x^{2}} d x=a^{2} \cdot \frac{\pi}{4} \cdot a^{2}=\frac{\pi a^{4}}{4} .
\end{array}
$$

Alternatively, the area element on \mathcal{F} is given in polar coordinates by

$$
\mathrm{d} S=a^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \varphi, \quad \theta \in\left[0, \frac{\pi}{2}\right], \quad \varphi \in\left[0, \frac{\pi}{2}\right]
$$

thus the parameter domain is

$$
E=\left\{(\theta, \varphi) \left\lvert\, 0 \leq \theta \leq \frac{\pi}{2}\right., 0 \leq \varphi \leq \frac{\pi}{2}\right\}=\left[0, \frac{\pi}{2}\right] \times\left[0, \frac{\pi}{2}\right]
$$

As

$$
(x, y, z)=a(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)
$$

Figure 33.21: The parameter domain of Example 33.11.3 for $a=1$.
the unit normal vector is

$$
\mathbf{n}=\frac{1}{a}(x, y, z)=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)
$$

The flux of the vector field

$$
\mathbf{V}(x, y, z)=\left(x y, z^{2}, 2 y z\right)
$$

through the surface \mathcal{F} is

$$
\begin{array}{rl}
\int_{\mathcal{F}} & \mathbf{V} \cdot \mathbf{n} \mathrm{d} S=\int_{\mathcal{F}}\left(x y, z^{2}, 2 y z\right) \cdot \frac{1}{a}(x, y, z) \mathrm{d} S \\
& =\frac{1}{2} \int_{\mathcal{F}}\left\{x^{2} y+y z^{2}+2 y z^{2}\right\} \mathrm{d} S=\frac{1}{a} \int_{\mathcal{F}} y\left(x^{2}+3 z^{2}\right) \mathrm{d} S \\
& =\frac{1}{a} \int_{E} a \sin \theta \sin \varphi \cdot a^{2}\left\{\sin ^{2} \theta \cos ^{2} \varphi+3 \cos ^{2} \theta\right\} \cdot a^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \varphi \\
& =a^{4} \int_{0}^{\frac{\pi}{2}}\left\{\int_{0}^{\frac{\pi}{2}} \sin ^{2} \theta\left(\sin ^{2} \theta \cos ^{2} \varphi+3 \cos ^{2} \theta\right) \sin \varphi \mathrm{d} \varphi\right\} \mathrm{d} \theta \\
& =a^{4} \int_{0}^{\frac{\pi}{2}} \sin ^{2} \theta\left[-\frac{1}{3} \sin ^{2} \theta \cos ^{3} \varphi-\frac{1}{3} \cos ^{2} \theta \cos \varphi\right]_{\varphi=0}^{\frac{\pi}{2}} \mathrm{~d} \theta \\
& =a^{4} \int_{0}^{\frac{\pi}{2}} \sin ^{2} \theta\left(\frac{1}{3} \sin ^{2} \theta+3 \cos 2 \theta\right) \mathrm{d} \theta .
\end{array}
$$

We compute the integrand by introducing the double angle,

$$
\begin{aligned}
\int^{\theta} & \left(3 \cos ^{2} \theta+\frac{1}{3} \sin ^{2} \theta\right) \mathrm{d} \theta \\
& =\frac{1}{2}(1-\cos 2 \theta)\left\{\frac{3}{2}(1+\cos 2 \theta)+\frac{1}{6}(1-\cos 2 \theta)\right\} \\
& =\frac{1}{12}(1-\cos 2 \theta)\{9(1+\cos 2 \theta)+(1-\cos 2 \theta)\} \\
& =\frac{1}{12}(1-\cos 2 \theta)(10+8 \cos 2 \theta)=\frac{1}{6}(1-\cos 2 \theta)(5+4 \cos 2 \theta) \\
& =\frac{1}{6}\left(5-\cos 2 \theta-4 \cos ^{2} 2 \theta\right)=\frac{1}{6}\{5-\cos 2 \theta-2(1+\cos 4 \theta)\} \\
& =\frac{1}{6}(3-\cos 2 \theta-2 \cos 4 \theta)=\frac{1}{2}-\frac{1}{6} \cos 2 \theta-\frac{1}{3} \cos 4 \theta
\end{aligned}
$$

The flux is obtained by insertion,

$$
\begin{aligned}
\int_{\mathcal{F}} \mathrm{V} \cdot \mathrm{nd} S & =a^{4} \int_{0}^{\frac{\pi}{2}} \sin ^{2} \theta\left(\frac{1}{3} \sin ^{2} \theta+3 \cos ^{2} \theta\right) \mathrm{d} \theta \\
& =a^{4} \int_{0}^{\frac{\pi}{2}}\left\{\frac{1}{2}-\frac{1}{6} \cos 2 \theta-\frac{1}{3} \cos 4 \theta\right\} \mathrm{d} \theta \\
& =a^{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}-a^{4} \cdot \frac{1}{6} \cdot \frac{1}{2}[\sin 2 \theta]_{0}^{\frac{\pi}{2}}-a^{4} \cdot 13 \cdot \frac{1}{4}[\sin 4 \theta]_{0}^{\frac{\pi}{2}}=\frac{\pi a^{4}}{4}
\end{aligned}
$$

4) Let $E=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$ be the unit disc. Then a parametric description of the surface \mathcal{F} is given by

$$
\{(x, y, x y) \mid(x, y) \in E\}
$$

where the normal vector is

$$
\mathbf{N}(x, y)=\left|\begin{array}{ccc}
\mathbf{e}_{x} & \mathbf{e}_{y} & \mathbf{e}_{z} \\
1 & 0 & y \\
0 & 1 & x
\end{array}\right|=(-y,-x, 1)
$$

and clearly, $\mathbf{N} \cdot \mathbf{e}_{z}=1>0$.
Then the flux of the vector field

$$
\mathbf{V}(x, y, z)=\left(x+y, x-y, y^{2}+z\right)
$$

through \mathcal{F} is given by

$$
\begin{aligned}
\int_{\mathcal{F}} \mathbf{V} \cdot \mathrm{nd} S & =\int_{E} \mathbf{V} \cdot \mathbf{N} \mathrm{~d} x \mathrm{~d} y=\int_{E}\left(x+y, x-y, y^{2}+x y\right) \cdot(-y,-x, 1) \mathrm{d} x \mathrm{~d} y \\
& =\int_{E}\left\{-x y-y^{2}-x^{2}+x y+y^{2}+x y\right\} \mathrm{d} x \mathrm{~d} y=\int_{E}\left(x y-x^{2}\right) \mathrm{d} x \mathrm{~d} y \\
& =\int_{0}^{2 \pi}\left\{\int_{0}^{1} \varrho^{2}\left(\cos \varphi \cdot \sin \varphi-\cos ^{2} \varphi\right) \varrho \mathrm{d} \varrho\right\} \mathrm{d} \varphi \\
& =\frac{1}{4} \int_{0}^{2 \pi}\left(\cos \varphi \cdot \sin \varphi-\cos ^{2} \varphi\right) d \varphi \\
& =0-\frac{1}{4} \cdot 2 \pi \cdot \frac{1}{2}=-\frac{\pi}{4}
\end{aligned}
$$

Figure 33.22: The surface \mathcal{F} of Example 33.11.6 for $a=1$ og $h=1$.
5) The surface \mathcal{F} is a disc parallel to the $X Y$-plane at the height h. We choose

$$
E=\left\{(x, y) \mid x^{2}+y^{2}=\varrho^{2} \leq a^{2}\right\}
$$

as the parameter domain. Then the flux through \mathcal{F} is

$$
\begin{aligned}
\int_{\mathcal{F}} \mathrm{V} \cdot \mathrm{nd} S & =\int_{E} \frac{h}{\left(x^{2}+y^{2}+h^{2}\right)^{\frac{3}{2}}} \mathrm{~d} x \mathrm{~d} y=h \int_{0}^{2 \pi}\left\{\int_{0}^{a} \frac{1}{\left(\varrho^{2}+h^{2}\right)^{\frac{3}{2}}} \varrho \mathrm{~d} \varrho\right\} \mathrm{d} \varphi \\
& =h \cdot 2 \pi\left[\frac{1}{2}(-2) \frac{1}{\sqrt{\varrho^{2}+h^{2}}}\right]_{\varrho=0}^{a}=2 \pi h\left(\frac{1}{\sqrt{h^{2}}}-\frac{1}{\sqrt{a^{2}+h^{2}}}\right) \\
& =2 \pi\left(1-\frac{h}{\sqrt{a^{2}+h^{2}}}\right) .
\end{aligned}
$$

6) In this case \mathcal{F} is a cylindric surface which is given in semi polar coordinates by the parametric description

$$
\{(a, \varphi, z) \mid \varphi \in[0,2 \pi], z \in[-h, h]\}
$$

and the parameter domain becomes

$$
E=\{(\varphi, z) \mid \varphi \in[0,2 \pi], z \in[-h, h]\}=[0,2 \pi] \times[-h, h] .
$$

The unit normal vector pointing away from the Z-axis is

$$
\mathbf{n}=(\cos \varphi, \sin \varphi, 0)
$$

and the area element on \mathcal{F} is

$$
\mathrm{d} S=\mathrm{d} s \mathrm{~d} z=a \mathrm{~d} \varphi \mathrm{~d} z
$$

thus the flux through \mathcal{F} is

$$
\begin{aligned}
\int_{\mathcal{F}} \mathrm{V} \cdot \mathrm{nd} S & =\int_{E} \frac{a}{\left(a^{2}+z^{2}\right)^{\frac{3}{2}}}\left(\cos ^{2} \varphi+\sin ^{2} \varphi+0\right) a \mathrm{~d} \varphi \mathrm{~d} z \\
& =a^{2} \cdot 2 \pi \int_{-h}^{h} \frac{1}{\left(a^{2}+z^{2}\right)^{\frac{3}{2}}} \mathrm{~d} z=4 \pi a^{2} \int_{0}^{h} \frac{1}{\left(a^{2}+z^{2}\right)^{\frac{3}{2}}} \mathrm{~d} z
\end{aligned}
$$

It is natural here to introduce the substitution

$$
z=a \sinh t, \quad \mathrm{~d} z=a \cosh t \mathrm{~d} t, \quad t=\operatorname{Arsinh}\left(\frac{z}{a}\right)
$$

Then we get the flux through the surface

$$
\begin{aligned}
\int_{\mathcal{F}} \mathrm{V} \cdot \mathrm{nd} S & =4 \pi a^{2} \int_{0}^{\operatorname{Arsinh}\left(\frac{h}{a}\right)} \frac{a \cosh t}{a^{3} \cosh ^{3} t} \mathrm{~d} t=4 \pi \int_{0}^{\operatorname{Arsinh}\left(\frac{h}{a}\right)} \frac{\mathrm{d} t}{\cosh ^{2} t} \\
& =4 \pi[\tanh t]_{0}^{\operatorname{Arsinh}\left(\frac{h}{a}\right)}=4 \pi\left[\frac{\sinh t}{\sqrt{1+\sinh ^{2} t}}\right]_{0}^{\operatorname{Arsinh}\left(\frac{h}{a}\right)}=4 \pi \cdot \frac{\frac{h}{a}}{\sqrt{1+\frac{h^{2}}{a^{2}}}} \\
& =\frac{4 \pi h}{\sqrt{a^{2}+h^{2}}}
\end{aligned}
$$

Remark. The field of Example 33.11.5 and Example 33.11.6 is the so-called Coulomb field, cf. Section 33.3.2. It is tempting to combine the results of Example 33.11.5 and Example 33.11.6 to find the flux of the Coulomb field through the surface of the whole cylinder. Since $\mathbf{n}=-\mathbf{e}_{z}$, when we consider the surface of Example 33.11.5 at height $-h$, it follows that

$$
\text { flux }=2 \pi\left(1-\frac{h}{\sqrt{a^{2}+h^{2}}}\right)+\frac{4 \pi h}{\sqrt{a^{2}+h^{2}}}-2 \pi\left(\frac{-h}{\sqrt{h^{2}}}-\frac{(-h)}{\sqrt{a^{2}+h^{2}}}\right)=4 \pi . \diamond
$$

7) Here

$$
\mathbf{N}(u, v)=\left|\begin{array}{ccc}
\mathbf{e}_{x} & \mathbf{e}_{y} & \mathbf{e}_{z} \\
\cos v & \sin v & 0 \\
-u \sin v & u \cos v & h
\end{array}\right|=(h \sin v,-h \cos v, u),
$$

so the flux of the vector field $(y, x, x+y+z)$ through \mathcal{F} is

$$
\begin{aligned}
& \int_{\mathcal{F}} \mathbf{V} \cdot \mathbf{n} \mathrm{d} S=\int_{E} \mathbf{V} \cdot \mathbf{N}(u, v) \mathrm{d} u \mathrm{~d} v \\
&=\int_{E}(u \sin v, u \cos v, u(\cos v+\sin v)+h v) \cdot(h \sin v,-h \cos v, u) \mathrm{d} u \mathrm{~d} v \\
&=\int_{E}\left(h u \sin ^{2}-h u \cos ^{2} v+u^{2}(\cos v+\sin v)+h u v\right) \mathrm{d} u \mathrm{~d} v \\
&=\int_{E} h u(-\cos 2 v) \mathrm{d} u \mathrm{~d} v+\int_{E} u^{2}(\cos v+\sin v) \mathrm{d} u \mathrm{~d} v+h \int_{E} u v \mathrm{~d} u \mathrm{~d} v \\
&=0+0+h \int_{0}^{1} u \mathrm{~d} u \int_{0}^{2 \pi} v \mathrm{~d} v=h \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 4 \pi^{2}=h \pi^{2}
\end{aligned}
$$

8) The normal vector of the surface \mathcal{F} of the parametric description

$$
\mathbf{r}(u, v)\left(\sqrt{u} \cos v, \sqrt{u} \sin v, f^{3 / 2}\right), \quad 1 \leq u \leq 2, \quad 0 \leq v \leq u
$$

is

$$
\begin{aligned}
\mathbf{N}(u, v) & =\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}=\left|\begin{array}{ccc}
\mathbf{e}_{x} & \mathbf{e}_{y} & \mathbf{e}_{z} \\
\frac{1}{2 \sqrt{u}} \cos v & \frac{1}{2 \sqrt{u}} \sin v & 0 \\
-\sqrt{u} \sin v & \sqrt{u} \cos v & \frac{3}{2} \sqrt{v}
\end{array}\right| \\
& =\left(\frac{3}{4} \sqrt{\frac{v}{u}} \sin v,-\frac{3}{4} \sqrt{\frac{v}{u}} \cos v, \frac{1}{2}\right)
\end{aligned}
$$

The flux of $\mathbf{V}(x, y, z)=\left(y,-x, z^{2}\right)$ through \mathcal{F} is

$$
\begin{array}{rl}
\int_{\mathcal{F}} & \mathbf{V} \\
& =\int_{E}\left(\sqrt{u} S=\int_{E} \mathbf{V}(u, v) \cdot \mathbf{N}(u, v) \mathrm{d} u \mathrm{~d} v\right. \\
& =\int_{E}\left\{\frac{3}{4} \sqrt{v} \sin ^{2} v+\frac{3}{4} \sqrt{v} \cos \cos ^{2} v+\frac{1}{2} v^{3}\right\} \mathrm{d} u \mathrm{~d} v \\
& =\int_{E}\left\{\frac{3}{4} \sqrt{v}+\frac{1}{2} v^{3}\right\} \mathrm{d} u \mathrm{~d} v=\int_{1}^{2}\left\{\int_{0}^{u}\left(\frac{3}{4} v^{\frac{1}{2}}+\frac{1}{2} v^{3}\right) \mathrm{d} v\right\} \mathrm{d} u \\
& =\int_{1}^{2}\left[\frac{3}{4} \cdot \frac{2}{3} v^{\frac{3}{2}}+\frac{1}{8} v^{4}\right]_{0}^{u} \mathrm{~d} u=\int_{1}^{2}\left(\frac{1}{2} u^{\frac{3}{2}}+\frac{1}{8} u^{4}\right) \mathrm{d} u \\
& =\left[\frac{1}{2} \cdot \frac{2}{5} u^{\frac{5}{2}}+\frac{1}{40} u^{5}\right]_{1}^{2}=\frac{1}{5}(\sqrt{2})^{5}+\frac{1}{40} \cdot 2^{5}-\frac{1}{5}-\frac{1}{40} \\
& =\frac{1}{40}(8 \cdot 4 \sqrt{2}+32-8-1)=\frac{1}{40}(32 \sqrt{2}+23)=\frac{4 \sqrt{2}}{5}+\frac{23}{40}
\end{array}
$$

9) Here we have [cf. Example 33.11.7]

$$
\mathbf{N}(u, v)=\left|\begin{array}{ccc}
\mathbf{e}_{x} & \mathbf{e}_{y} & \mathbf{e}_{z} \\
\cos v & \sin v & 0 \\
-u \sin v & u \cos v & h
\end{array}\right|=(h \sin v,-h \cos v, u),
$$

and the flux of the vector field $(y z,-x z, h z)$ through the surface \mathcal{F} becomes

$$
\begin{array}{rl}
\int_{\mathcal{F}} & \mathbf{V} \cdot \mathbf{n} \mathrm{d} S=\int_{E} \mathbf{V} \cdot \mathbf{N}(u, v) \mathrm{d} u \mathrm{~d} v \\
& =\int_{E}\left(u h v \sin v,-u h v \cos v, h^{2} v\right) \cdot(h \sin v,-\cos v, u) \mathrm{d} u \mathrm{~d} v \\
& =h \int_{E}\left(u h \sin ^{2} v+u h \cos ^{2} v+h u v\right) \mathrm{d} u \mathrm{~d} v=h^{2} \int_{E} u(1+v) \mathrm{d} u \mathrm{~d} v \\
& =h^{2} \int_{0}^{1} u \mathrm{~d} u \cdot \int_{0}^{2 \pi}(v+1) \mathrm{d} v=h^{2} \cdot \frac{1}{2}\left[\frac{v^{2}}{2}+v\right]_{0}^{2 \pi}=\frac{h^{2}}{2} \cdot\left\{2 \pi^{2}+2 \pi\right\}=h^{2} \pi(\pi+1) .
\end{array}
$$

"I studied English for 16 years but...
 ...I finally learned to speak it in just six lessons"
 Jane, Chinese architect

Click to hear me talking before and after my unique course download

33.5.2 Examples of application of Gauß's theorem

Example 33.12 Find in each of the following cases the flux of the given vector field \mathbf{V} through the surface of the given set Ω in the space.

1) The vector field $\mathbf{V}(x, y, z)=\left(5 x z, y^{2}-2 y z, 2 y z\right)$, defined in the domain Ω by $x^{2}+y^{2} \leq a^{2}, y \geq 0$, $0 \leq z \leq b$.
2) The vector field $\mathbf{V}(x, y, z)=\left(2 x-\sqrt{1+z^{2}}, x^{2} y,-x z^{2}\right)$, defined in the cube $\Omega=[0,1] \times[0,1] \times[0,1]$.
3) The vector field $\mathbf{V}(x, y, z)=\left(x^{2}+y^{2}, y^{2}+z^{2}, z^{2}+x^{2}\right)$ given in the domain Ω defined by $x^{2}+y^{2}+z^{2} \leq a^{2}$ and $z \geq 0$.
4) The vector field $\mathbf{V}(x, y, z)=\left(2 x+\sqrt[3]{y^{2}+z^{2}}, y-\cosh (x z), y^{2}+2 z\right)$, defined in the solid ball

$$
\Omega=\bar{K}((3,-1,2) ; 3)
$$

5) The vector field $\mathbf{V}(x, y, z)=\left(-x+\cos z,-x y, 3 z+e^{y}\right)$, defined in the domain Ω given by $x \in[0,3]$, $y \in[0,2], z \in\left[0, y^{2}\right]$.
6) The vector field ∇T, where $T(x, y, z)=x^{2}+y^{2}+z^{2}$ is defined in the domain Ω given by $x^{2}+y^{2} \leq 2$ and $z \in[0,2]$.
7) The vector field $\mathbf{V}(x, y, z)=\left(x^{3}+x y^{2}, 4 y z^{2}-2 x^{2} y,-z^{3}\right)$, defined in the solid ball given by

$$
x^{2}+y^{2}+z^{2} \leq a^{2}
$$

8) The vector field $\mathbf{V}(x, y, z)=(2 x, 3 y,-z)$, defined in the ellipsoid Ω, given by

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2} \leq 1
$$

A Flux out of a body in space.
D Apply Gauß's theorem of divergence.
I According to Gauß's theorem the flux is given by

$$
\int_{\partial \Omega} \mathbf{V} \cdot \mathbf{n} \mathrm{d} S=\int_{\Omega} \operatorname{div} \mathbf{V} \mathrm{d} \Omega
$$

1) Since

$$
\operatorname{div} \mathbf{V}=5 z+2 y-2 z+2 y=3 z+4 y
$$

the flux is

$$
\int_{\Omega} \operatorname{div} \mathbf{V} \mathrm{d} \Omega=\int_{0}^{b} 3 z \mathrm{~d} z \cdot \frac{1}{2} \pi a^{2}+4 \int_{0}^{b} \int_{0}^{\pi}\left\{\int_{0}^{a} \varrho \sin \varphi \cdot \varrho \mathrm{~d} \varrho\right\} \mathrm{d} \varphi \mathrm{~d} z=\frac{3}{4} \pi a^{2} b^{2}+\frac{8}{3} a^{3} b
$$

2) Since

$$
\operatorname{div} \mathbf{V}=2+x^{2}-2 x z
$$

the flux is

$$
\int_{\Omega} \operatorname{div} \mathbf{V} \mathrm{d} \Omega=2+\int_{\Omega} x^{2} \mathrm{~d} \Omega-\int_{\Omega} 2 x z \mathrm{~d} \Omega=2+\frac{1}{3}-\frac{1}{2}=\frac{11}{6}
$$

3) Here

$$
\operatorname{div} \mathbf{V}=2 x+2 y+2 z
$$

It follows by the symmetry that

$$
\int_{\Omega} 2 x \mathrm{~d} \Omega=\int_{\Omega} 2 y \mathrm{~d} \Omega=0
$$

We obtain the flux by an application of Gauß's theorem, the argument of symmetry above and semi polar coordinate,

$$
\begin{aligned}
\int_{\Omega} \operatorname{div} \mathbf{V} \mathrm{d} \Omega & =\int_{\Omega} 2 x \mathrm{~d} \Omega+\int_{\Omega} 2 y \mathrm{~d} \Omega+\int_{\Omega} 2 z \mathrm{~d} \Omega=\int_{\Omega} 2 z \mathrm{~d} \Omega \\
& =\int_{0}^{2 \pi}\left\{\int_{0}^{a}\left\{\int_{0}^{\sqrt{a^{2}-\varrho^{2}}} 2 z \mathrm{~d} z\right\} \varrho \mathrm{d} \varrho\right\} \mathrm{d} \varphi \\
& =2 \pi \int_{0}^{a}\left(a^{2}-\varrho^{2}\right) \varrho \mathrm{d} \varrho=2 \pi\left[\frac{a^{2}}{2} \varrho^{2}-\frac{\varrho^{4}}{4}\right]_{0}^{a}=2 \pi \cdot \frac{a^{4}}{4}=\frac{\pi a^{4}}{2}
\end{aligned}
$$

4) Since

$$
\operatorname{div} \mathbf{V}=2+1+2=5
$$

the flux is

$$
\int_{\Omega} \operatorname{div} \mathrm{V} \mathrm{~d} \Omega=5 \operatorname{vol}(\bar{K}((3,-1,2) ; 3))=5 \cdot \frac{4 \pi}{3} \cdot 3^{3}=180 \pi
$$

5) Since

$$
\operatorname{div} \mathbf{V}=-1-x+3=2-x
$$

the flux is given by

$$
\begin{aligned}
\int_{\Omega} \operatorname{div} \mathbf{V ~ d} \Omega & =\int_{\Omega}(2-x) \mathrm{d} \Omega=\int_{0}^{3}(2-x)\left\{\int_{0}^{2}\left\{\int_{0}^{y^{2}} \mathrm{~d} z\right\} \mathrm{d} y\right\} \mathrm{d} x \\
& =\left[2 x-\frac{x^{2}}{2}\right]_{0}^{3} \cdot \int_{0}^{2} y^{2} \mathrm{~d} y=\left(6-\frac{9}{2}\right) \cdot\left[\frac{y^{3}}{3}\right]_{0}^{2}=\frac{3}{2} \cdot \frac{8}{3}=4
\end{aligned}
$$

6) Since

$$
\operatorname{div} \mathbf{V}=\Delta\left(x^{2}+y^{2}+z^{2}\right)=2+2+2=6
$$

the flux is given by

$$
\int_{\Omega} \operatorname{div} \mathbf{V} \mathrm{d} \Omega=6 \operatorname{vol}(\Omega)=6 \cdot \pi \cdot(\sqrt{2})^{2} \cdot 2=24 \pi
$$

7) Here,

$$
\operatorname{div} \mathbf{V}=3 x^{2}+y^{2}+4 z^{2}-2 x^{2}-3 z^{2}=x^{2}+y^{2}+z^{2}
$$

The flux is easiest computed in spherical coordinates,

$$
\int_{\Omega} \operatorname{div} \mathrm{V} \mathrm{~d} \Omega=\int_{0}^{2 \pi}\left\{\int_{0}^{\pi}\left\{\int_{0}^{a} r^{2} \cdot r \sin \theta \mathrm{~d} r\right\} \mathrm{d} \theta\right\} \mathrm{d} \varphi=2 \pi\left[\frac{r^{5}}{5}\right]_{0}^{1} \cdot[-\cos \theta]_{0}^{\pi}=\frac{4}{5} \pi a^{5}
$$

8) From

$$
\operatorname{div} \mathbf{V}=2+3-1=4
$$

follows that the flux is

$$
\int_{\Omega} \operatorname{div} \mathbf{V} \mathrm{d} \Omega=4 \operatorname{vol}(\Omega)=4 \cdot \frac{4 \pi}{3} a b c=\frac{16}{3} \pi a b c
$$

Example 33.13 Find in each of the following cases the flux of the given vector field \mathbf{V} through the surface of the described body of revolution Ω.

1) The vector field is $\mathbf{V}(x, y, z)=\left(y^{2}+z^{4},(x-a)^{2}+z^{4}, x^{2}+y^{2}\right)$, and the meridian cut of Ω is given by $\varrho \leq a$ and $0 \leq z \leq \sqrt[4]{a^{2}-\varrho^{2}}$.
2) The vector field is

$$
\mathbf{V}(x, y, z)=\left(x^{2}-2 x y, 2 y^{2}+6 x^{2} z^{2}, 2 z-2 x z-2 y z\right)
$$

and the meridian cut of Ω is given by $0 \leq z \leq 1$ and $\varrho \leq e^{-z}$.
3) The vector field is $\mathbf{V}(x, y, z))\left(x^{2}-x z, y^{2}-y z, z^{2}\right)$, and the meridian cut of Ω is given by $\varrho \leq \sqrt{\ln z}$ and $z \in\left[e, e^{2}\right]$.
4) The vector field is $\mathbf{V}(x, y, z)=(2 x+2 y, 2 y+z, z+2 x)$, and the meridian cut of Ω is given by

$$
\varrho \leq a, \quad \frac{\varrho^{2}-a^{2}}{a} \leq z \leq \sqrt{a^{2}-\varrho}
$$

A Flux through the surface of a body of revolution.
D Sketch if possible the meridian cut. Calculate div \mathbf{V} and apply Gauß's theorem.
I 1) From $\operatorname{div} \mathbf{V}=0$, follows trivially that the flux is

$$
\int_{\Omega} \operatorname{div} \mathbf{V} \mathrm{d} \Omega=0
$$

and we do not have to think about the body of revolution at all.
2) We conclude from

$$
\operatorname{div} \mathbf{V}=2 x-2 y+4 y+2-2 x-2 y=2
$$

that the flux is

$$
\int_{\Omega} \operatorname{div} \mathbf{V} \mathrm{d} \Omega=2 \operatorname{vol}(\Omega)=2 \int_{0}^{1} \pi e^{-2 z} \mathrm{~d} z=\pi\left(1-e^{-2}\right)
$$

3) Here,

$$
\operatorname{div} \mathbf{V}=2 x-z+2 y-z+2 z=2 x+2 y
$$

If we put

$$
B(z)=\left\{(x, y) \mid x^{2}+y^{2} \leq \ln z\right\}, \quad z \in\left[e, e^{2}\right]
$$

Figure 33.23: The meridian cut of i Example 33.13.2.

Figure 33.24: The meridian cut of Example 33.13.3.

Figure 33.25: The meridian cut of Example 33.13.4.
then the flux is

$$
\int_{\Omega} \operatorname{div} \mathbf{V} \mathrm{d} \Omega=\int_{\Omega}(2 x+2 y) \mathrm{d} \Omega=\int_{e}^{e^{2}}\left\{\int_{B(z)}(2 x+2 y) \mathrm{d} x \mathrm{~d} y\right\} d z=0
$$

because it follows from the symmetry that

$$
\int_{B(z)} x \mathrm{~d} x \mathrm{~d} y=\int_{B(z)} y \mathrm{~d} x \mathrm{~d} y=0
$$

Excellent Economics and Business programmes at:
4) It follows from the equations of the meridian cut that when $z>0$ we have the quarter of a circle, and when $z<0$ we get an arc of a parabola. It is natural to split the cut of Ω_{0} correspondingly in $\Omega_{1}($ for $z>0)$ and $\Omega_{2}($ for $z<0)$.

Since

$$
\operatorname{div} \mathbf{V}=2+2+1=5
$$

we get by Gauß's theorem that the flux is

$$
\begin{aligned}
\text { flux } & =\int_{\partial \Omega} \mathrm{V} \cdot \mathrm{nd} S=\int_{\Omega} \operatorname{div} \mathbf{V ~ d} \Omega=5 \operatorname{vol}(\Omega)=5 \operatorname{vol}\left(\Omega_{1}\right)+5 \operatorname{vol}\left(\Omega_{2}\right) \\
& =5 \cdot \frac{1}{2} \cdot \frac{4 \pi}{3} a^{3}+5 \int_{-a}^{0} \pi \varrho(z)^{2} \mathrm{~d} z=\frac{10 \pi}{3} a^{3}+5 \pi \int_{-a}^{0}\left(a z+a^{2}\right) \mathrm{d} z \\
& =\frac{10 \pi}{3} a^{3}+5 \pi\left[\frac{a z^{2}}{2}+a^{2} z\right]_{-a}^{0}=\frac{10 \pi}{3} a^{3}+5 \pi\left(-\frac{a^{3}}{2}+a^{3}\right) \\
& =5 \pi a^{3}\left(\frac{2}{3}+\frac{1}{2}\right)=5 \pi a^{3} \cdot \frac{7}{6}=\frac{35}{6} \pi a^{3} .
\end{aligned}
$$

Example 33.14 Let Ω denote the cylinder given by $z \in[-h, h]$, $\varrho \in[0, a], \varphi \in[0,2 \pi]$. Find the flux through the surface $\partial \Omega$ of the Coulomb vector field

$$
\mathbf{V}(x, y, z)=\frac{1}{r^{3}}(x, y, z), \quad(x, y, z) \neq(0,0,0), \quad r=\sqrt{x^{2}+y^{2}+z^{2}}
$$

[Cf. Example 33.11.5, Example 33.11.6 and Example 35.8].
A Flux through the surface of a body.
D Think of how to treat the singularity at $(0,0,0)$ before we can apply Gauß's theorem. Find the flux.

I When $(x, y, z) \neq(0,0,0)$, we get [cf. Example 35.8]

$$
\frac{\partial V_{1}}{\partial x}=\frac{1}{r^{3}}-\frac{3}{r^{5}} x^{2}, \quad \frac{\partial V_{2}}{\partial y}=\frac{1}{r^{3}}-\frac{3}{r^{5}} y^{2}, \quad \frac{\partial V_{3}}{\partial z}=\frac{1}{r^{3}}-\frac{3}{r^{5}} z^{2}
$$

hence

$$
\operatorname{div} \mathbf{V}=\frac{3}{r^{3}}-\frac{3}{r^{5}}\left(x^{2}+y^{2}+z^{2}\right)=\frac{3}{r^{3}}-\frac{3}{r^{5}} r^{2}=0
$$

One could therefore be misled to "conclude" that the flux is 0 , "because $(0,0,0)$ is a null set"; but this is not true.

Let $R \in] 0, \min \{a, h\}[$. An application of Gauß's theorem shows that the flux through the surface of $\Omega \backslash K(\mathbf{0} ; R)$ is

$$
\int_{\Omega \backslash K(\mathbf{0} ; R)} \operatorname{div} \mathbf{V} \mathrm{d} \Omega=0
$$

because $(0,0,0) \notin \Omega \backslash K(\mathbf{0} ; R)$. Hence, the flux is

$$
\begin{aligned}
\int_{\partial \Omega} \mathbf{V} \cdot \mathbf{n d S} & =\left\{\int_{\partial \Omega} \mathbf{V} \cdot \mathbf{n d} S-\int_{\partial K(0 ; R)} \mathbf{V} \cdot \mathbf{n} \mathrm{d} S\right\}+\int_{\partial K(0 ; R)} \mathbf{V} \cdot \mathbf{n} \mathrm{d} S \\
& =\int_{\Omega \backslash K(\mathbf{0} ; R)} \operatorname{div} \mathbf{V} \mathrm{d} \Omega+\int_{\partial K(0 ; R)} \mathbf{V} \cdot \mathbf{n} \mathrm{d} S=\int_{\partial K(0 ; R)} \mathbf{V} \cdot \mathbf{n} \mathrm{d} S .
\end{aligned}
$$

On the boundary $\partial K(\mathbf{0} ; R)$ the outer unit normal vector is given in rectangular coordinates by $\mathbf{n}=\frac{1}{R}(x, y, z)$, thus

$$
\mathbf{V} \cdot \mathbf{n}=\frac{1}{R^{3}}(x, y, z) \cdot \frac{1}{R}(x, y, z)=\frac{1}{R^{2}}
$$

The area element is given in polar coordinates by

$$
\mathrm{d} S=R^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \varphi
$$

Then the flux through $\partial \Omega$ is given by

$$
\int_{\partial \Omega} \mathbf{V} \cdot \mathrm{nd} S=\int_{\partial K(0 ; R)} \mathrm{V} \cdot \mathrm{nd} S=\int_{0}^{2 \pi}\left\{\int_{0}^{\pi} \frac{1}{R^{2}} \cdot R^{2} \sin \theta \mathrm{~d} \theta\right\} \mathrm{d} \varphi=2 \pi[-\cos \theta]_{0}^{\pi}=4 \pi
$$

Example 33.15 We shall find the flux Φ of the vector field

$$
\mathbf{V}(x, y, z)=\left(e^{y}+\cosh z, e^{x}+\sinh z, x^{2} z^{2}\right), \quad(x, y, z) \in \mathbb{R}^{3}
$$

through the oriented half sphere \mathcal{F} given by

$$
x^{2}+y^{2}+z^{2}-2 a z=0, \quad z \leq a, \quad \mathbf{n} \cdot \mathbf{e}_{z} \geq 0
$$

It turns up that the integration over \mathcal{F} is rather difficult, while on the other hand the expression of div \mathbf{V} is fairly simple. One will therefore try to arrange the calculations such that it becomes possible to apply Gauß's theorem.

1) Construct a closed surface by adding an oriented dist \mathcal{F}_{1} to \mathcal{F}. Sketch the meridian half plane.
2) Find the flux Φ_{1} of the vector field \mathbf{V} through \mathcal{F}_{1}.
3) Apply Gauß's theorem on the body Ω of the boundary $\partial \Omega=\mathcal{F} \cup \mathcal{F}_{1}$, and then find Φ.

A Computation of the flux of a vector field through a surface where a direct calculation becomes very difficult.

D Apply the guidelines, i.e. add a surface \mathcal{F}_{1}, such that $\mathcal{F} \cup \mathcal{F}_{1}$ surrounds a body, on which Gauß's theorem can be applied. Hence, something is added and then subtracted again, and then one uses Gauß's theorem.

Figure 33.26: The surface of Example 33.15 for $a=1$.

Figure 33.27: The meridian curve of Example 33.15 for $a=1$.

I 1) When we add a^{2} to both sides of the equation of the half sphere, we obtain

$$
a^{2}=x^{2}+y^{2}+z^{2}-2 a z+a^{2}=\varrho^{2}+(z-a)^{2}
$$

It follows from the condition $\mathbf{n} \cdot \mathbf{e}_{z} \geq 0$ that the curve in the meridian half plane of \mathcal{F} is the quarter of a circle of centrum $(0, a)$ and radius a,

$$
\varrho^{2}+(z-a)^{2}=a^{2}, \quad z \leq a, \quad \varrho \geq 0
$$

Note that the normal vector has an upwards pointing component.
The disc ("the lid"), which shall be added is of course the disc in the plane $z=a$ of centrum ($0,0, a$) and radius a.
2) The flux of \mathbf{V} through \mathcal{F}_{1} of normal \mathbf{e}_{z} is

$$
\int_{\mathcal{F}_{1}} \mathrm{~V} \cdot \mathrm{n} \mathrm{~d} S=\int_{\mathcal{F}_{1}} x^{2} a^{2} \mathrm{~d} S=a^{2} \int_{0}^{2 \pi} \cos ^{2} \varphi\left\{\int_{0}^{a} \varrho^{2} \cdot \varrho \mathrm{~d} \varrho\right\} \mathrm{d} \varphi=a^{2} \pi \cdot\left[\frac{\varrho^{4}}{4}\right]_{0}^{a}=\frac{\pi}{4} a^{6}
$$

3) Let Ω be the domain which is surrounded by $\mathcal{F}_{1} \cup(-\mathcal{F})$, where $-\mathcal{F}$ indicates that we have reversed the orientation, such that the normal is pointing away from Ω) on both \mathcal{F}_{1} and $-\mathcal{F}$.

Then

$$
\operatorname{div} \mathbf{V}=0+0+2 x^{2} z=2 x^{z}=2 x^{2}(z-a)+2 a x^{2}
$$

In the past four years we have drilled

89,000 km

That's more than twice around the world.

Who are we?

We are the world's largest oilfield services company'.
Working globally—often in remote and challenging locations-
we invent, design, engineer, and apply technology to help our customers find and produce oil and gas safely.

Who are we looking for?

Every year, we need thousands of graduates to begin
dynamic careers in the following domains:

- Engineering, Research and Operations
- Geoscience and Petrotechnical
- Commercial and Business

What will you be?

Ul careers.slb.com
Sehlumheryger
so it follows from Gauß's theorem that

$$
-\int_{\mathcal{F}} \mathbf{V} \cdot \mathbf{n} \mathrm{d} S+\int_{\mathcal{F}_{1}} \mathbf{V} \cdot \mathbf{n} \mathrm{~d} S=-\int_{\mathcal{F}} \mathbf{V} \cdot \mathbf{n} \mathrm{d} S+\frac{\pi}{4} a^{6}=\int_{\Omega} \operatorname{div} \mathbf{V} \mathrm{d} \Omega
$$

hence by a rearrangement,

$$
\begin{aligned}
\Phi & =\int_{\mathcal{F}} \mathrm{V} \cdot \mathrm{n} \mathrm{~d} S=\frac{\pi}{4} a^{6}-\int_{\Omega} \operatorname{div} \mathbf{V} \mathrm{d} \Omega=\frac{\pi}{4} a^{6}-\int_{\Omega} 2 a x^{2} \mathrm{~d} \Omega-\int_{\Omega} 2 x^{2}(z-a) \mathrm{d} \Omega \\
& =\frac{\pi}{4} a^{6}-a \int_{\Omega} \mathrm{d} \Omega+\int_{\Omega}\left(x^{2}+y^{2}\right)(a-z) \mathrm{d} \Omega
\end{aligned}
$$

where we have used the symmetry in x and y in the domain of integration in the latter equality.

By the transformation $z \curvearrowright a-z$ the solid half ball Ω is mapped into the solid half ball

$$
\Omega_{1}=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq a^{2}, z \geq 0\right\}
$$

so

$$
\Phi=\frac{\pi}{4} a^{6}-a \int_{\Omega_{1}}\left(x^{2}+y^{2}\right) \delta \Omega+\int_{\Omega_{1}}\left(x^{2}+y^{2}\right) z d \Omega
$$

When we use the slicing method, we see that Ω_{1} at height $z \in[0, a]$ is cut into the circle

$$
B(z)=\left\{(x, y, z) \mid x^{2}+y^{2} \leq a^{2}-z^{2}\right\}=\left\{(x, y, z) \mid \varrho \leq \sqrt{a^{2}-z^{2}}\right\}, \quad z \in[0, a] \text { fixed }
$$

hence

$$
\begin{aligned}
a \int_{\Omega_{1}} & \left(x^{2}+y^{2}\right) \mathrm{d} \Omega=a \int_{0}^{a}\left\{\int_{B(z)}\left(x^{2}+y^{2}\right) \mathrm{d} S\right\} \mathrm{d} z \\
& =a \int_{0}^{a}\left\{\int_{0}^{2 \pi}\left[\int_{0}^{\sqrt{a^{2}-z^{2}}} \varrho^{2} \cdot \varrho \mathrm{~d} \varrho\right] \mathrm{d} \varphi\right\} \mathrm{d} z=2 \pi a \int_{0}^{a}\left[\frac{\varrho^{4}}{4}\right]_{0}^{\sqrt{a^{2}-z^{2}}} \mathrm{~d} z \\
& =\frac{\pi}{2} a \int_{0}^{a}\left(a^{2}-z^{2}\right)^{2} \mathrm{~d} z=\frac{\pi}{2} a \int_{0}^{a}\left(z^{4}-2 a^{2} z^{2}+a^{4}\right) \mathrm{d} z \\
& =\frac{\pi}{2} a\left[\frac{z^{5}}{5}-\frac{2 a^{2}}{3} z^{3}+a^{4} z\right]_{0}^{a}=\frac{\pi}{2} a\left\{\frac{a^{5}}{5}-\frac{2}{3} a^{5}+a^{5}\right\} \\
& =\frac{\pi}{2} a^{6} \cdot\left(\frac{1}{5}-\frac{2}{3}+1\right)=\frac{4 \pi}{15} a^{6}
\end{aligned}
$$

and by some reuse of previous results,

$$
\begin{aligned}
& \int_{\Omega_{1}}\left(x^{2}+y^{2}\right) z \mathrm{~d} \Omega=\int_{0}^{a} z\left\{\int_{B(z)}\left(x^{2}+y^{2}\right) \mathrm{d} S\right\} \mathrm{d} z \\
& \quad=\frac{\pi}{2} \int_{0}^{a}\left(z^{2}-a^{2}\right)^{2} \cdot z \mathrm{~d} z=\frac{\pi}{4}\left[\frac{1}{3}\left(z^{2}-a^{2}\right)^{3}\right]_{0}^{a}=\frac{\pi}{12} a^{6}
\end{aligned}
$$

Finally, we get by insertion that

$$
\begin{aligned}
\Phi & =\frac{\pi}{4} a^{6}-a \int_{\Omega_{1}}\left(x^{2}+y^{2}\right) \mathrm{d} \Omega+\int_{\Omega_{1}}\left(x^{2}+y^{2}\right) z \mathrm{~d} \Omega \\
& =\frac{\pi}{4} a^{6}-\frac{4 \pi}{15} a^{6}+\frac{\pi}{12} a^{6}=\frac{\pi a^{6}}{60}(15-16+5)=\frac{\pi a^{6}}{15} .
\end{aligned}
$$

Example 33.16 Let a set $\Omega \subset \mathbb{R}^{3}$ and a vector field $\mathbf{V}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be given in the following way,

$$
\begin{aligned}
& \Omega=\left\{(x, y, z) \left\lvert\, \frac{x^{2}+y^{2}-a^{2}}{a} \leq z \leq \sqrt{a^{2}-x^{2}-y^{2}}\right.\right\}, \\
& \mathbf{V}(x, y, z)=(2 x+2 y, 2 y+z, z+2 x) .
\end{aligned}
$$

The boundary $\partial \Omega$ is oriented such that the normal vector is always pointing away from the body. By \mathcal{F}_{1} and \mathcal{F}_{2} we denote the subsets of $\partial \Omega$, for which $z \geq 0$, and $z \leq 0$, respectively. Find the fluxes of \mathbf{V} through \mathcal{F}_{1} and \mathcal{F}_{2}, respectively.

A Flux through surfaces.
D Apply both rectangular and polar coordinates. Check Gauß's theorem. This cannot be applied directly. It can, however, come into play by a small extra argument.
Finally, calculate the fluxes.

Figure 33.28: The cut of the meridian half plane for $a=1$.

I By using semi polar coordinates we obtain that

$$
a z \geq \varrho^{2}-a^{2} \quad \text { og } \quad z^{2}+\varrho^{2} \leq a^{2}
$$

and the meridian half plane becomes like shown on the figure.
As

$$
\begin{aligned}
\operatorname{vol}(\Omega) & =\operatorname{vol}\left(\Omega_{1}\right)+\operatorname{vol}\left(\Omega_{2}\right)=\frac{1}{2} \cdot \frac{4 \pi}{3} a^{3}+\int_{-a}^{0} \pi \varrho(z)^{2} \mathrm{~d} z=\frac{2 \pi}{3} a^{3}+\pi \int_{-a}^{0} a(a+z) \mathrm{d} z \\
& =\frac{2 \pi}{3} a^{3}+\frac{\pi}{2} a \int_{0}^{a} 2 t \mathrm{~d} t=\frac{2 \pi}{3} a^{3}+\frac{\pi}{2} a^{3}=\frac{7 \pi}{6} a^{3}
\end{aligned}
$$

and $\operatorname{div} \mathbf{V}=2+2+1=5$, it follows from Gauß's theorem that

$$
\operatorname{flux}(\mathcal{F})=\operatorname{flux}\left(\mathcal{F}_{1}\right)+\operatorname{flux}\left(\mathcal{F}_{2}\right)=\int_{\mathcal{F}} \mathbf{V} \cdot \mathrm{n} \mathrm{~d} S=\int_{\Omega} \operatorname{div} \mathbf{V} \mathrm{d} \Omega=5 \operatorname{vol}(\Omega)=\frac{35 \pi}{6} a^{3} .
$$

The parametric description of \mathcal{F}_{1} is chosen as

$$
\mathbf{r}(u, v)=\left(u, v, \sqrt{a^{2}-u^{2}-v^{2}}\right), \quad u^{2}+v^{2} \leq a^{2}
$$

and then

$$
\frac{\partial \mathbf{r}}{\partial u}=\left(1,0,-\frac{u}{\sqrt{a^{2}-u^{2}-v^{2}}}\right) \quad \text { and } \quad \frac{\partial \mathbf{r}}{\partial v}=\left(0,1,-\frac{v}{\sqrt{a^{2}-u^{2}-v^{2}}}\right)
$$

from which we get the normal vector

$$
\mathbf{N}(u, v)=\left|\begin{array}{ccc}
\mathbf{e}_{x} & \mathbf{e}_{y} & \mathbf{e}_{z} \\
1 & 0 & -\frac{u}{\sqrt{a^{2}-u^{2}-v^{2}}} \\
0 & 1 & -\frac{v}{\sqrt{a^{2}-u^{2}-v^{2}}}
\end{array}\right|=\frac{1}{\sqrt{a^{2}-u^{2}-v^{2}}}\left(u, v, \sqrt{a^{2}-u^{2}-v^{2}}\right),
$$

which is clearly pointing away from the body, because the Z-coordinate is +1 .
If we put $B=\left\{(u, v) \mid u^{2}+v^{2}<a^{2}\right\}$, it follows from $(x, y, z)=\left(u, v, \sqrt{a^{2}-u^{2}-v^{2}}\right)$ that

$$
\begin{aligned}
& \operatorname{flux}\left(\mathcal{F}_{1}\right)=\int_{\mathcal{F}_{1}} \mathbf{V} \cdot \mathbf{n d} S=\int_{B} \mathbf{V}(u, v) \cdot \mathbf{N}(u, v) \mathrm{d} u \mathrm{~d} v \\
& =\int_{B}\left(2 u+2 v, 2 v+\sqrt{a^{2}-u^{2}-v^{2}}, \sqrt{a^{2}-u^{2}-v^{2}}+2 u\right) \\
& \quad \cdot \frac{1}{\sqrt{a^{2}-u^{2}-v^{2}}}\left(u, v, \sqrt{a^{2}-u^{2}-v^{2}}\right) \mathrm{d} u \mathrm{~d} v \\
& =\int_{B} \frac{1}{\sqrt{a^{2}-u^{2}-v^{2}}}\left\{2 u^{2}+2 u v+2 v^{2}+v \sqrt{a^{2}-u^{2}-v^{2}}\right\} \\
& \left.\quad+\left(a^{2}-u^{2}-v^{2}\right)+2 u \sqrt{a^{2}-u^{2}-v^{2}}\right\} \mathrm{d} u \mathrm{~d} v \\
& =\int_{B} \frac{a^{2}+u^{2}+v^{2}}{\sqrt{a^{2}-u^{2}-v^{2}}} \mathrm{~d} u \mathrm{~d} v+0=\int_{0}^{2 \pi}\left\{\int_{0}^{a} \frac{a^{2}+\varrho^{2}}{\sqrt{a^{2}-\varrho^{2}}} \cdot \varrho \mathrm{~d} \varrho\right\} \mathrm{d} \varphi=\pi \int_{0}^{a^{2}} \frac{a^{2}+t}{\sqrt{a^{2}-t}} \mathrm{~d} t \\
& =\pi \int_{0}^{a^{2}}\left\{\frac{2 a^{2}}{\sqrt{a^{2}-t}}-\sqrt{a^{2}-t}\right\} \mathrm{d} t=\pi\left[-4 a^{2} \sqrt{a^{2}-t}+\frac{2}{3}\left(\sqrt{a^{2}-t}\right)^{3}\right]_{0}^{a^{2}} \\
& =\pi\left\{4 a^{2} \sqrt{a^{2}}-\frac{2}{3} a^{3}\right\}=\frac{10 \pi}{3} a^{3} .
\end{aligned}
$$

Hence

$$
\operatorname{flux}\left(\mathcal{F}_{2}\right)=\operatorname{flux}(\mathcal{F})-\operatorname{flux}\left(\mathcal{F}_{1}\right)=\frac{35 \pi}{6} a^{3}-\frac{10 \pi}{3} a^{3}=\frac{5}{2} \pi a^{3},
$$

and thus

$$
\operatorname{flux}\left(\mathcal{F}_{1}\right)=\frac{10 \pi}{3} a^{3} \quad \text { and } \quad \operatorname{flux}\left(\mathcal{F}_{2}\right)=\frac{5 \pi}{2} a^{3} .
$$

Alternatively, \mathcal{F}_{2} is given by the parametric description

$$
\mathbf{r}=(x, y, z)=\left(u, v, \frac{1}{a}\left(u^{2}+v^{2}-a^{2}\right)\right), \quad(u, v) \in B
$$

hence

$$
\frac{\partial \mathbf{r}}{\partial u}=\left(1,0, \frac{2 u}{a}\right) \quad \text { and } \quad \frac{\partial \mathbf{r}}{\partial v}=\left(0,1, \frac{2 v}{a}\right)
$$

and hence

$$
\mathbf{N}_{1}(u, v)=\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}=\left|\begin{array}{ccc}
\mathbf{e}_{x} & \mathbf{e}_{y} & \mathbf{e}_{z} \\
1 & 0 & \frac{2 u}{a} \\
0 & 1 & \frac{2 v}{a}
\end{array}\right|=\left(-\frac{2 u}{a},-\frac{2 v}{a}, 1\right)
$$

This normal vector is pointing inwards, so we are forced to choose

$$
\mathbf{N}(u, v)=-\mathbf{N}_{1}(u, v)=\left(\frac{2 u}{a}, \frac{2 v}{a},-1\right)
$$

American online LIGS University

is currently enrolling in the Interactive Online BBA, MBA, MSc, DBA and PhD programs:
enroll by September 30th, 2014 and

- save up to 16% on the tuition!
- pay in 10 installments / 2 years
- Interactive Online education
visit www.ligsuniversity.com to find out more!

Note: LIGS University is not accredited by ans nationally recognized accrediting agency listed by the US Secretary of Education. More info here.

Then

$$
\begin{aligned}
\operatorname{flux} & \left(\mathcal{F}_{2}\right)=\int_{\mathcal{F}_{2}} \mathbf{V} \cdot \mathrm{n} \mathrm{~d} S=\int_{B} \mathbf{V}(u, v) \cdot \mathbf{N}(u, v) \mathrm{d} u \mathrm{~d} v \\
& =\int_{B}\left(2 u+2 v, 2 v+\frac{1}{a}\left(u^{2}+v^{2}-a^{2}\right), \frac{1}{a}\left(u^{2}+v^{2}-a^{2}\right)\right) \cdot\left(\frac{2 u}{a}, \frac{2 v}{a},-1\right) \mathrm{d} u \mathrm{~d} v \\
& =\int_{B}\left\{\frac{4 u^{2}}{a}+\frac{4 u v}{a}+\frac{4 v^{2}}{a}+\frac{2 v}{a}\left(u^{2}+v^{2}-a^{2}\right)-\frac{1}{a}\left(u^{2}+v^{2}-a^{2}\right)\right\} \mathrm{d} u \mathrm{~d} v \\
& =\frac{1}{a} \int_{B}\left\{4 u^{2}+4 v^{2}-u^{2}-v^{2}+a^{2}\right\} \mathrm{d} u \mathrm{~d} v+0 \\
& =\frac{a^{2}}{2} \operatorname{area}(B)+\frac{3}{a} \int_{B}\left(u^{2}+v^{2}\right) \mathrm{d} u \mathrm{~d} v=a \cdot \pi a^{2}+\frac{3}{a} \cdot 2 \pi \int_{0}^{a} \varrho^{2} \cdot \varrho \mathrm{~d} \varrho \\
& =\pi a^{3}+\frac{6 \pi}{a} \cdot \frac{a^{4}}{4}=\frac{5 \pi}{2} a^{3}
\end{aligned}
$$

in accordance with the previous found result.

Example 33.17 Let K be the solid ball $\overline{\left(\mathbf{x}_{0} ; a\right)}$, and let \mathbf{V} be a C^{1} vector field on A, where $A \supset K$. Prove the following claims by using partial integration, Gauß's divergence theorem and the formula

$$
\mathbf{x}=\frac{1}{2} \nabla(\mathbf{x} \cdot \mathbf{x}) .
$$

1) If the divergence of \mathbf{V} is a constant p, then

$$
\int_{K}\left(\mathbf{x}-\mathbf{x}_{0}\right) \cdot \mathbf{V}(\mathbf{x}) d \Omega=\frac{4}{15} a^{5} p
$$

2) If the rotation of \mathbf{V} is a constant vector \mathbf{P}, then

$$
\int_{K}\left(\mathbf{x}-\mathbf{x}_{0}\right) \times \mathbf{V}(\mathbf{x}) d \Omega=\frac{4}{15} a^{5} \mathbf{P}
$$

A Generalized partial integration.
D Follow the guidelines.
I 1) It follows from

$$
\mathbf{x}-\mathbf{x}_{0}=\frac{1}{2} \nabla\left(\left(\mathbf{x}-\mathbf{x}_{0}\right) \cdot\left(\mathbf{x}-\mathbf{x}_{0}\right)\right)=\frac{1}{2} \nabla\left(\left\|\mathbf{x}-\mathbf{x}_{0}\right\|^{2}\right),
$$

and $f(\mathbf{x})=\left\|\mathbf{x}-\mathbf{x}_{0}\right\|^{2}$ that

$$
\begin{aligned}
\int_{K} & \left(\mathbf{x}-\mathbf{x}_{0}\right) \cdot \mathbf{V}(\mathbf{x}) \mathrm{d} \Omega=\frac{1}{2} \int_{K} \nabla\left(\left\|\mathrm{x}-\mathrm{x}_{0}\right\|^{2}\right) \cdot \mathbf{V}(\mathrm{x}) \mathrm{d} \Omega \\
& =\frac{1}{2} \int_{\partial K} \mathbf{n} \cdot \mathbf{V}(\mathbf{x})\left\|\mathbf{x}-\mathbf{x}_{0}\right\|^{2} \mathrm{~d} S-\frac{1}{2} \int_{\Omega}\left\|\mathrm{x}-\mathrm{x}_{0}\right\|^{2} \nabla \cdot \mathbf{V} \mathrm{~d} \Omega \\
& =\frac{1}{2} a^{2} \int_{\partial K} \mathbf{n} \cdot \mathbf{V}(\mathbf{x}) \mathrm{d} S-\frac{1}{2} p \int_{\Omega}\left\|\mathrm{x}-\mathrm{x}_{0}\right\|^{2} \mathrm{~d} \Omega \\
& =\frac{1}{2} a^{2} \int_{\Omega} \nabla \cdot \mathbf{V}(\mathbf{x}) \mathrm{d} \Omega-\frac{1}{2} p \int_{0}^{a}\left\{\int_{0}^{2 \pi}\left(\int_{0}^{\pi} r^{2} \cdot r^{2} \sin \theta \mathrm{~d} \theta\right) \mathrm{d} \varphi\right\} \mathrm{d} r \\
& =\frac{1}{2} p a^{2} \cdot \operatorname{vol}(\Omega)-\frac{1}{2} p \int_{0}^{a} r^{r} \mathrm{~d} r \cdot 2 \pi \cdot \int_{0}^{\pi} \sin \theta \mathrm{d} \theta \\
& =\frac{1}{2} p a^{2} \cdot \frac{4 \pi}{3} a^{3}-\frac{1}{2} p \cdot \frac{a^{5}}{5} \cdot 2 \pi \cdot 2=\frac{p a^{5} \pi}{15} \cdot\{10-6\}=\frac{4}{15} a^{5} \pi p
\end{aligned}
$$

2) We can then replace \cdot by \times, hence

$$
\begin{aligned}
\int_{K}(\mathbf{x} & \left.-\mathbf{x}_{0}\right) \times \mathbf{V}(\mathrm{x}) \mathrm{d} \Omega=\frac{1}{2} \int_{K} \nabla\left(\left\|\mathbf{x}-\mathbf{x}_{0}\right\|^{2}\right) \times \mathbf{V}(\mathrm{x}) \mathrm{d} \Omega \\
& =\frac{1}{2} \int_{\partial K} \mathbf{n} \times \mathbf{V}(\mathbf{x})\left\|\mathbf{x}-\mathbf{x}_{0}\right\|^{2} \mathrm{~d} S-\frac{1}{2} \int_{\Omega}\left\|\mathbf{x}-\mathrm{x}_{0}\right\|^{2} \nabla \times \mathbf{V} \mathrm{d} \Omega \\
& =\frac{1}{2} a^{2} \int_{\Omega} \nabla \times \mathbf{V}(\mathrm{x}) \mathrm{d} \Omega-\frac{1}{2} \mathbf{P} \int_{0}^{a}\left\{\int_{0}^{2 \pi}\left(\int_{0}^{\pi} r^{2} \cdot r^{2} \sin \theta \mathrm{~d} \theta\right) \mathrm{d} \varphi\right\} \mathrm{d} r \\
& =\frac{1}{2} a^{2} \mathbf{P} \cdot \operatorname{vol}(\Omega)-\frac{1}{2} \mathbf{P} \int_{0}^{a} r^{4} \mathrm{~d} r \cdot 2 \pi \cdot \int_{0}^{\pi} \sin \theta \mathrm{d} \theta \\
& =\left\{\frac{1}{2} a^{2} \cdot \frac{4 \pi}{3} a^{3}-\frac{1}{2} a^{5} \cdot 2 \pi \cdot 2\right\} \mathbf{P}=\frac{4}{15} a^{5} \pi \mathbf{P}
\end{aligned}
$$

Alcatel-Lucent

www.alcatel-Iucent.com/careers

Example 33.18 Let a be a positive constant. We let T denote the subset of

$$
T_{1}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z \geq 0, x^{2}+y^{2}+z^{2} \leq 9 a^{2}\right\}
$$

which also lies outside the set

$$
T_{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+(z-a)^{1}<a^{2}\right\}
$$

hence $T=T_{1} \backslash T_{2}$.

1) Explain why T is given in spherical coordinates by

$$
\theta \in\left[0, \frac{\pi}{2}\right], \quad \varphi \in[0,2 \pi], \quad r \in[2 a \cos \theta, 3 a]
$$

2) Find the mass of T when the density of mass on T is $\mu(x, y, z)=\frac{z}{a^{4}}$.
3) Find the flux of the vector field

$$
\mathbf{V}(x, y, z)=\left(x z+4 x y, y z-2 y^{2}, x^{2} y^{2}\right), \quad(x, y, z) \in \mathbb{R}^{3}
$$

through ∂T.
4) Find the volume of the subset T^{\star} of T, which is given by the inequalities

$$
x \geq 0, \quad y \geq 0, z \geq \sqrt{x^{2}+y^{2}}
$$

A Spherical coordinates, mass, flux, volume.
D Sketch the meridian half plane; compute a space integral; apply Gauß's theorem; once again, consider the meridian half plane.

Figure 33.29: The meridian half plane for T, when $a=1$. The angle between the Z-axis and the dotted radius is θ. The two dotted lines are perpendicular to each other.

I 1) When we consider the meridian half plane, it follows immediately that

$$
\theta \in\left[0, \frac{\pi}{2}\right] \quad \text { and } \quad \varphi \in[0,2 \pi] .
$$

It only remains to prove that the meridian cut of ∂T_{2} has the equation

$$
r=2 a \cos \theta
$$

Draw a radius and the perpendicular line on this as shown by the dotted lines on the figure. Together with the line segment $[0,2 a]$ on the Y-axis these form a rectangular triangle. The angle between the Z-axis and the dotted radius is θ, and the hypothenuse (the line segment on the Z-axis) is $2 a$. Hence, the closest of the smaller sides (i.e. placed up to ∂T_{2}) must have the length $2 a \cos \theta$. This proves that the equation of ∂T_{2} is

$$
r=2 a \cos \theta
$$

It then follows that $r \in[2 a \cos \theta, 3 a]$ in T.
2) We have in spherical coordinates

$$
\mu(x, y, z)=\frac{z}{a^{4}}=\frac{r}{a^{4}} \cos \theta
$$

hence the mass is given by

$$
\begin{aligned}
M & =\int_{T} \mu \mathrm{~d} \Omega=\int_{0}^{\frac{\pi}{2}}\left\{\int_{0}^{2 \pi}\left\{\int_{2 a \cos \theta}^{3 a} \frac{1}{a^{4}} r \cos \theta \cdot r^{2} \sin \theta \mathrm{~d} r\right\} \mathrm{d} \varphi\right\} \mathrm{d} \theta \\
& =\frac{2 \pi}{a^{4}} \int_{0}^{\frac{\pi}{2}} \cos \theta \cdot \sin \theta\left[\frac{r^{4}}{4}\right]_{2 a \cos \theta}^{3 a} \mathrm{~d} \theta=\frac{\pi}{2} \int_{0}^{\frac{\pi}{2}}\left(81-16 \cos ^{4} \theta\right) \cos \theta \sin \theta \mathrm{d} \theta \\
& =\frac{\pi}{2}\left[-\frac{81}{2} \cos ^{2} \theta+\frac{16}{6} \cos ^{6} \theta\right]_{0}^{\frac{\pi}{2}}=\frac{\pi}{2}\left(\frac{81}{2}-\frac{16}{6}\right)=\frac{\pi}{12}(243-16)=\frac{117 \pi}{12} .
\end{aligned}
$$

Leading
 Maastricht University

Join the best at

the Maastricht University School of Business and Economics!

- $33^{\text {rd }}$ place Financial Times worldwide ranking: MSc International Business
- $1^{\text {st }}$ place: MSc International Business
- $1^{\text {st }}$ place: MSc Financial Economics
- $2^{\text {nd }}$ place: MSc Management of Learning
- $2^{\text {nd }}$ place: MSc Economics
- $2^{\text {nd }}$ place: MSc Econometrics and Operations Research
- $2^{\text {nd }}$ place: MSc Global Supply Chain Management and Change
Sources: Keuzegids Master ranking 2013; Elsevier 'Beste Studies' ranking 2012; Financial Times Global Masters in Management ranking 2012

Visit us and find out why we are the best!
 Master's Open Day: 22 February 2014

 Netherlands3) From

$$
\operatorname{div} \mathbf{V}=z+4 y+z-4 y+0=2 z
$$

follows by Gauß's theorem and 2) that the flux is

$$
\int_{\partial T} \mathbf{V} \cdot \mathbf{n} \mathrm{~d} S=\int_{T} \operatorname{div} \mathbf{V} \mathrm{~d} \Omega=\int_{T} 2 z \mathrm{~d} \Omega=2 a^{4} \int_{T} \mu \mathrm{~d} \Omega=\frac{227 \pi}{6} a^{4}
$$

Figure 33.30: The meridian cut of T^{\star} is the domain between the two circular arcs lying above the line $z=\varrho$.
4) By analyzing the meridian half plane once more we see that T^{\star} is given by

$$
\theta \in\left[0, \frac{\pi}{4}\right], \quad \varphi \in\left[+\frac{\pi}{2}\right], \quad r \in[2 a \cos \theta, 3 a]
$$

hence the volume is

$$
\begin{aligned}
\operatorname{vol}\left(T^{\star}\right) & =\int_{0}^{\frac{\pi}{4}}\left\{\int_{0}^{\frac{\pi}{2}}\left\{\int_{2 a \cos \theta}^{3 a} r^{2} \sin \theta \mathrm{~d} r\right\} \mathrm{d} \varphi\right\} \mathrm{d} \theta=\frac{\pi}{2} \int_{0}^{\frac{\pi}{4}} \sin \theta \cdot\left[\frac{1}{3} r^{3}\right]_{2 a \cos \theta}^{3 a} \mathrm{~d} \theta \\
& =\frac{\pi}{6} a^{3} \int_{0}^{\frac{\pi}{4}}\left(27-8 \cos ^{3} \theta\right) \sin \theta \mathrm{d} \theta=\frac{\pi}{6} a^{3}\left[-27 \cos \theta+2 \cos ^{4} \theta\right]_{0}^{\frac{\pi}{4}} \\
& =\frac{\pi}{6} a^{3}\left(-\frac{27}{\sqrt{2}}+\frac{2}{4}+27-2\right)=\frac{\pi}{12}(51-27 \sqrt{2}) a^{3} .
\end{aligned}
$$

Example 33.19 Let a be a positive constant and consider the function

$$
f(x, y, z)=a^{2} x^{2}+a^{3} y+z^{4}, \quad(x, y, z) \in \mathbb{R}^{3}
$$

1) Find the gradient $\mathbf{V}=\nabla f$ and the tangential line integral

$$
\int_{\mathcal{K}} \mathbf{V} \cdot \mathbf{t} \mathrm{d} s
$$

where \mathcal{K} is the line segment from $(0,0, a)$ to $(2 a, 3 a, 0)$.
2) Find the flux of \mathbf{V} through the surface of the half sphere given by

$$
x^{2}+y^{2}+z^{2} \leq a^{2} \quad \text { and } \quad z \geq 0
$$

A Gradient; tangential line integral; flux.
D Apply Gauß's theorem in 2).
I 1) The gradient is

$$
\mathbf{V}=\nabla f=\left(2 a^{2} x, a^{3}, 4 z^{3}\right)
$$

Since \mathbf{V} is a gradient field, $\mathbf{V}=\nabla f$, we get

$$
\int_{\mathcal{K}} \mathbf{V} \cdot \mathbf{t d} s=f(2 a, 3 a, 0)-f(0,0, a)=\left(a^{2} \cdot 4 a^{2}+a^{3} \cdot 3 a\right)-a^{4}=6 a^{4}
$$

2) Then by Gauß's theorem,

$$
\begin{aligned}
\operatorname{flux}(\partial L) & =\int_{\partial L} \mathrm{~V} \cdot \mathrm{n} \mathrm{~d} S=\int_{L} \operatorname{div} \mathbf{V} \mathrm{~d} \Omega=\int_{L}\left(2 a^{2}+12 z^{2}\right) \mathrm{d} \Omega \\
& =2 a^{2} \cdot \frac{1}{2} \cdot \frac{4 \pi}{3} a^{3}+12 \int_{L} z^{2} \mathrm{~d} \Omega=\frac{4 \pi}{3} a^{5}+12 \int_{0}^{a} z^{2} \cdot \pi\left(a^{2}-z^{2}\right) \mathrm{d} z \\
& =\frac{4 \pi}{3} a^{5}+12 \pi\left[a^{2} \cdot \frac{1}{3} z^{3}-\frac{1}{5} z^{5}\right]_{0}^{a}=\frac{4 \pi}{3} a^{5}+\frac{24}{15} \pi a^{5}=\frac{44 \pi}{15} a^{5}
\end{aligned}
$$

Example 33.20 Given the tetrahedron

$$
T=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 0 \leq x, 0 \leq y, 4-x-2 y \leq z \leq 8-2 x-4 y\right\}
$$

and the vector field

$$
\mathbf{V}(x, y, z)=\left(z \cos x+3 y z, x^{2} y+x \sinh z, \frac{1}{2} z^{2} \sin x+3 x^{2}-5 y^{2}\right), \quad(x, y, z) \in \mathbb{R}^{3}
$$

Find the flux of \mathbf{V} through ∂T.
A Flux of a vector field through a closed surface.
D Apply Gauß's theorem.
I It follows from

$$
\operatorname{div} \mathbf{V}=\frac{\partial V_{1}}{\partial x}+\frac{\partial V_{2}}{\partial y}+\frac{\partial V_{3}}{\partial z}=-z \sin x+x^{3}+\frac{1}{2} \cdot 2 z \sin x=x^{2}
$$

by Gauß's theorem that the flux of \mathbf{V} through ∂T is given by
(33.4) $\int_{\partial T} \mathrm{~V} \cdot \mathbf{n} \mathrm{~d} S=\int_{T} \operatorname{div} \mathbf{V} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z=\int_{T} x^{2} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z$.

The bounds of the tetrahedron give the estimates

$$
4-x-2 y \leq z \leq 8-2 x-4 y=2(4-x-2 y)
$$

hence $4-x-2 y \geq 0$, and thus $0 \leq x \leq 4-2 y$ and $0 \leq y \leq 2$. By a reduction of (33.4) we then get

$$
\begin{array}{rl}
\int_{\partial T} & \mathrm{~V} \cdot \mathrm{n} \mathrm{~d} S=\int_{T} x^{2} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z=\int_{0}^{2}\left\{\int_{0}^{4-2 y}\left(\int_{4-x-2 y} 8-2 x-4 y x^{2} \mathrm{~d} z\right) \mathrm{d} x\right\} \mathrm{d} y \\
& =\int_{0}^{2}\left\{\int_{0}^{4-2 y} x^{2}(4-x-2 y) \mathrm{d} x\right\} \mathrm{d} y=\int_{0}^{2}\left\{\int_{0}^{4-2 y}\left(4 x^{2}-x^{3}-2 y x^{2}\right) \mathrm{d} x\right\} \mathrm{d} y \\
& =\int_{0}^{2}\left[\frac{4}{3} x^{3}-\frac{1}{4} x^{4}-\frac{2}{3} y x^{3}\right]_{x=0}^{4-2 y} \mathrm{~d} y \\
& =\int_{0}^{2}\left\{\frac{4}{3}(2\{2-y\})^{3}-\frac{1}{4}(2\{2-y\})^{4}-\frac{2}{3} y(2\{2-y\})^{3}\right\} \mathrm{d} y \\
& =\int_{0}^{2}\left\{\frac{32}{3}(2-y)^{3}-\frac{16}{4}(2-y)^{4}-\frac{16}{3} y(2-y)^{3}\right\} \mathrm{d} y \\
& =\left(\frac{16}{3}-\frac{16}{4}\right) \int_{0}^{2}(2-y)^{4} \mathrm{~d} y=\frac{16}{12} \int_{0}^{2} t^{4} \mathrm{~d} t=\frac{4}{3}\left[\frac{1}{5} t^{5}\right]_{0}^{2}=\frac{128}{15}
\end{array}
$$

Example 33.21 Given the vector field

$$
\mathbf{V}(x, y, z)=\left(4 x+3 y^{3}, 9 x y^{2}+z, y\right), \quad(x, y, z) \in \mathbb{R}^{3}
$$

1) Find $\operatorname{div} V$ and $\operatorname{rot} \mathbf{V}$.
2) Show that \mathbf{V} is a gradient field and find all its integrals.
3) Compute the tangential line integral

$$
\int_{\mathcal{K}} \mathbf{V} \cdot \mathbf{t} \mathrm{d} s=\int_{\mathcal{K}}\left(4 x+3 y^{3}\right) a \mathrm{~d} x+\left(9 x y^{2}+z\right) \mathrm{d} y+y \mathrm{~d} z
$$

where \mathcal{K} denotes the line segment from the point $(0,0,0)$ to the point $(1,1,1)$.
4) Find the flux of \mathbf{V} through the unit sphere $x^{2}+y^{2}+z^{2}=1$ with a normal vector pointing away from the ball.
A Vector analysis.
D Follow the guidelines
I 1) We get by direct computations

$$
\operatorname{div} \mathbf{V}=4+18 x y^{2}
$$

and

$$
\operatorname{rot} \mathbf{V}=\left|\begin{array}{ccc}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
4 x+3 y^{3} & 9 x y^{2}+z & y
\end{array}\right|=\left(1-1,0-0,9 y^{2}-9 y^{2}\right)=(0,0,0)
$$

and we note that \mathbf{V} is rotation free.
2) Since the field is rotation free and the domain is simply connected, we conclude that \mathbf{V} is a gradient field. Then by calculating the differential form,

$$
\begin{aligned}
\mathbf{V} \cdot(\mathrm{d} x, \mathrm{~d} y, \mathrm{~d} z) & =\left(4 x+3 y^{3}\right) \mathrm{d} x+\left(9 x y^{2}+z\right) \mathrm{d} y+y \mathrm{~d} z \\
& =4 x \mathrm{~d} x+3\left(y^{3} \mathrm{~d} x+x \cdot 3 y^{2} \mathrm{~d} y\right)+(z \mathrm{~d} y+y \mathrm{~d} z) \\
& =\mathrm{d}\left(2 x^{2}+3 x y^{3}+y x\right)
\end{aligned}
$$

and it follows once more that \mathbf{V} is a gradient field with all its integrals given by

$$
F(x, y, z)=2 x^{2}+3 x y^{3}+y z+C, \quad C \in \mathbb{R}
$$

3) We have proved that \mathbf{V} is a gradient field with an integral F. Then it follows that

$$
\begin{aligned}
\int_{\mathcal{K}} \mathrm{V} \cdot \mathrm{td} s & =\int_{\mathcal{K}}\left(4 x+3 y^{3}\right) \mathrm{d} x+\left(9 x y^{2}+z\right) \mathrm{d} y+y \mathrm{~d} z \\
& =[F(x, y, z)]_{(0,0,0)}^{(1,1,1)}=\left[2 x^{2}+3 x y^{3}+y z\right]_{(0,0,0)}^{(1,1,1)}=2+3+1=6
\end{aligned}
$$

4) An application of Gauß's theorem gives

$$
\int_{\partial \Omega} \mathrm{V} \cdot \mathrm{n} \mathrm{~d} S=\int_{\Omega} \operatorname{div} \mathbf{V} \mathrm{d} \Omega=\int_{\Omega}\left(4+18 x y^{2}\right) \mathrm{d} \Omega=4 \operatorname{vol}(\Omega)+0=4 \cdot \frac{4 \pi}{3}=\frac{16 \pi}{3},
$$

because $\int_{\Omega} 18 x y^{2} \mathrm{~d} \Omega=0$ of symmetric reasons. The integrand is odd in x, and the body is symmetric with respect to the (Y, Z)-plane.

Example 33.22 A body of revolution L with the Z-axis as axis of rotation is given in semi polar coordinates (ϱ, φ, z) given by the inequalities

$$
0 \leq \varphi \leq 2 \pi, \quad-a \leq z \leq a, \quad 0 \leq \varrho \leq a-\frac{z^{2}}{a}
$$

where $a \in \mathbb{R}_{+}$is some given constant.

1. Calculate the space integral

$$
I=\int_{L} z^{2} \mathrm{~d} \Omega
$$

Given the vector field

$$
\mathbf{V}(x, y, z)=\left(\cos x, y \sin x, z^{3}\right), \quad(x, y, z) \in \mathbb{R}^{3}
$$

2. Find the flux

$$
\int_{\partial L} \mathbf{V} \cdot \mathbf{n} \mathrm{~d} S
$$

where the unit normal vector \mathbf{n} is pointing away from the body.
A Space integral and flux in semi polar coordinates.
D Slice up the body; apply Gauß's theorem.

Figure 33.31: The meridian curve when $a=1$.

I 1) It follows from the rearrangement

$$
\varrho=a\left\{1-\left(\frac{z}{a}\right)^{2}\right\}
$$

that the meridian curve is an arc of a parabola.

The space integral is computed by the method of slicing,

$$
\begin{aligned}
I & =\int_{L} z^{2} \mathrm{~d} \Omega=\pi \int_{-a}^{a}\left(a-\frac{z^{2}}{a}\right)^{2} z^{2} \mathrm{~d} z=2 \pi \int_{0}^{a}\left(a^{2}-2 z^{2}+\frac{z^{4}}{a^{2}}\right) z^{2} \mathrm{~d} z \\
& =2 \pi \int_{0}^{a}\left\{a^{2} z^{2}-2 z^{4}+\frac{z^{6}}{a^{2}}\right\} \mathrm{d} z=2 \pi\left[\frac{a^{2}}{3} z^{3}-\frac{2}{5} z^{5}+\frac{z^{7}}{7 a^{2}}\right]_{0}^{a} \\
& =2 \pi a^{5}\left(\frac{1}{3}-\frac{2}{5}+\frac{1}{7}\right)=\frac{2 \pi a^{5}}{105}(35-42+15)=\frac{16 \pi a^{5}}{105}
\end{aligned}
$$

2) The flux is according to Gauß's theorem given by

$$
\begin{aligned}
\int_{\partial L} \mathbf{V} \cdot \mathbf{n d} S & =\int_{\Omega} \operatorname{div} \mathbf{V} \mathrm{d} \Omega=\int_{\Omega}\left\{-\sin x+\sin x+s z^{2}\right\} \mathrm{d} \Omega \\
& =3 \int_{\Omega} z^{2} \mathrm{~d} \Omega=3 I=\frac{16 \pi a^{5}}{35}
\end{aligned}
$$

where we have used the result of 1).

Example 33.23 Given the vector field

$$
\mathbf{V}(x, y, z)=\left(3 x z^{2}-x^{3}, 3 y z^{2}-y^{3}, 3 z\left(x^{2}+y^{2}\right)\right), \quad(x, y, z) \in \mathbb{R}^{3}
$$

and the constant $a \in \mathbb{R}_{+}$.

1. Show that \mathbf{V} is a gradient field and find all its integrals.

Let \mathcal{K} be the curve which is composed of the quarter circle of centrum at $(0,0,0)$ and runs from $(a, 0,0)$ to $(0, a, 0)$, and the line segment from $(0, a, 0)$ to $(0, a, 2 a)$.
2. Find the tangential line integral

$$
\int_{\mathcal{K}} \mathbf{V} \cdot \mathbf{t} \mathrm{d} s
$$

3. Find the flux of \mathbf{V} through the surface of the ball of centrum $(0,0,0)$ and radius a.

A Vector analysis.
D Each question can be answered in several ways. We shall here demonstrate some of the variants.
I 1) First note that \mathbf{V} is of class C^{∞}.
First variant. Prove directly by some manipulation that the differential form $\mathbf{V} \cdot d \mathbf{x}$ can be written as $d F$ where F then by the definition is an integral. Do this by pairing terms which are similar to each other.

$$
\begin{aligned}
\mathbf{V} \cdot \mathrm{d} \mathbf{x} & =\left(3 x z^{2}-x^{3}\right) \mathrm{d} x+\left(3 y z^{2}-y^{3}\right) \mathrm{d} y+3 z\left(x^{2}+y^{2}\right) \mathrm{d} z \\
& =\frac{3}{2} z^{2} \mathrm{~d}\left(x^{2}\right)-\frac{1}{4} \mathrm{~d}\left(x^{4}\right)+\frac{3}{2} z^{2} \mathrm{~d}\left(y^{2}\right)-\frac{1}{4} \mathrm{~d}\left(y^{4}\right)+\frac{3}{2}\left(x^{2}+y^{2}\right) \mathrm{d}\left(z^{2}\right) \\
& =\mathrm{d}\left(\frac{3}{2}\left(x^{2}+y^{2}\right) z^{2}-\frac{1}{4} x^{4}-\frac{1}{4} y^{4}\right)
\end{aligned}
$$

It follows immediately from this result that \mathbf{V} is a gradient field and that all integrals are given by

$$
F(x, y, z)=\frac{3}{2}\left(x^{2}+y^{2}\right) z^{2}-\frac{1}{4} x^{4}-\frac{1}{4} y^{4}+C
$$

where C is an arbitrary constant.
Second variant. Clearly, \mathbb{R}^{3} is simply connected. Furthermore,

$$
\begin{array}{lll}
\frac{\partial L}{\partial y}=0, & \frac{\partial M}{\partial x}=0, & \text { hence } \frac{\partial L}{\partial y}=\frac{\partial M}{\partial x} \\
\frac{\partial L}{\partial z}=6 x z, & \frac{d d N}{\partial x}=6 x z, & \text { hence } \frac{\partial L}{\partial z}=\frac{\partial N}{\partial x} \\
\frac{\partial M}{\partial z}=6 y z, & \frac{\partial N}{\partial y}=6 y z, & \text { hence } \frac{\partial M}{\partial z}=\frac{\partial N}{\partial y}
\end{array}
$$

Since all the "mixed derivatives" are equal, it follows that $\mathbf{V} \cdot d \mathbf{x}$ is closed and hence exact. This means that \mathbf{V} is a gradient field and the integrals of \mathbf{V} exist.

In this variant we shall find the integrals by using line integrals. There are two sub-varants:
a) Integration along the broken line

$$
(0,0,0) \longrightarrow(x, 0,0) \longrightarrow(x, y, 0) \longrightarrow(x, y, z)
$$

In this case,

$$
\begin{aligned}
F_{0}(x, y, z) & =\int_{0}^{x}\left(-t^{3}\right) \mathrm{d} t+\int_{0}^{y}\left(-t^{3}\right) \mathrm{d} t+\int_{0}^{z} 3 t\left(x^{2}+y^{2}\right) \mathrm{d} t \\
& =\frac{3}{2}\left(x^{2}+y^{2}\right) z^{2}-\frac{1}{4}\left(x^{4}+y^{4}\right)
\end{aligned}
$$

The integrals are

$$
F(x, y, z)=\frac{3}{2}\left(x^{2}+y^{2}\right) z^{2}-\frac{1}{4}\left(x^{4}+y^{4}\right)+C
$$

where C is an arbitrary constant.
b) Radial integration along $(0,0,0) \longrightarrow(x, y, z)$.

The coordinates of \mathbf{V} are homogeneous of degree 3. Hence,

$$
\begin{aligned}
F_{0}(x, y, z) & =(x, y, z) \cdot\left(\left(3 x z^{2}-x^{3}\right) \int_{0}^{1} t^{3} \mathrm{~d} t,\left(3 y z^{2}-y^{3}\right) \int_{0}^{1} t^{3} \mathrm{~d} t, 3 z\left(x^{2}+y^{2}\right) \int_{0}^{1} t^{3} \mathrm{~d} t\right) \\
& =\frac{1}{4}(x, y, z) \cdot\left(3 x z^{2}-x^{3}, 3 y z^{2}-y^{3}, 3 z\left(x^{2}+y^{2}\right)\right) \\
& =\frac{1}{4}\left\{3 x^{2} z^{2}-x^{4}+3 y^{2} z^{2}-y^{4}+3 z^{2}\left(x^{2}+y^{2}\right)\right\} \\
& =\frac{3}{2}\left(x^{2}+y^{2}\right) z^{2}-\frac{1}{4}\left(x^{4}+y^{4}\right)
\end{aligned}
$$

The integrals are

$$
F(x, y, z)=\frac{3}{2}\left(x^{2}+y^{2}\right) z^{2}-\frac{1}{4}\left(x^{4}+y^{4}\right)+C
$$

where C is an arbitrary constant.
Third variant. Start by one of the variants 2 a) and 2 b) above without proving in advance that \mathbf{V} is a gradient field. The possible candidates of the integrals are

$$
F(x, y, z)=\frac{3}{2}\left(x^{2}+y^{2}\right) z^{2}-\frac{1}{4}\left(x^{4}+y^{4}\right)+C
$$

Check these!:

$$
\nabla F(x, y, z)=\left(3 x z^{2}-x^{3}, 3 y z^{2}-y^{3}, 3 z\left(x^{2}+y^{2}\right)\right)=\mathbf{V}(x, y, z)
$$

This shows that \mathbf{V} is a gradient field and its integrals are given by

$$
F(x, y, z)=\frac{3}{2}\left(x^{2}+y^{2}\right) z^{2}-\frac{1}{4}\left(x^{4}+y^{4}\right)+C
$$

where C is an arbitrary constant.
Fourth variant. Improper integration.
First put

$$
\omega=\mathbf{V} \cdot \mathrm{d} \mathbf{x}=\left(3 x z^{2}-x^{3}\right) \mathrm{d} x+\left(3 y z^{2}-y^{3}\right) \mathrm{d} y+3 z\left(x^{2}+y^{2}\right) \mathrm{d} z
$$

By an improper integration of the first term on the right hand side we get

$$
F_{1}(x, y, z)=\int^{x}\left(3 t z^{2}-t^{3}\right) \mathrm{d} t=\frac{3}{2} x^{2} z^{2}-\frac{1}{4} x^{4}
$$

The differential is

$$
\mathrm{d} F_{1}=\left(3 x z^{2}-x^{3}\right) \mathrm{d} x+3 x^{2} z \mathrm{~d} z
$$

hence

$$
\omega-\mathrm{d} F_{1}=\left(3 y z^{2}-y^{3}\right) \mathrm{d} y+3 z y^{2} \mathrm{~d} z
$$

which neither contains x nor $\mathrm{d} x$.
When we repeat this procedure on $\omega-\mathrm{d} F_{1}$ we get

$$
F_{2}(y, z)=\int^{y}\left(3 t z^{2}-t^{3}\right) \mathrm{d} t=\frac{3}{2} y^{2} z^{2}-\frac{1}{4} y^{4}
$$

with the differential

$$
\mathrm{d} F_{2}=\left(3 y z^{2}-y^{3}\right) \mathrm{d} y+3 z y^{2} \mathrm{~d} z=\omega-\mathrm{d} F_{1} .
$$

Then by a rearrangement,

$$
\omega=\mathbf{V} \cdot \mathrm{d} \mathbf{x}=\mathrm{d} F_{1}+\mathrm{d} F_{2}=\mathrm{d}\left(\frac{3}{2} x^{2} z^{2}-\frac{1}{4} x^{4}+\frac{3}{2} y^{2} z^{2}-\frac{1}{4} y^{4}\right)
$$

proving that \mathbf{V} is a gradient field with the integrals

$$
F(x, y, z)=\frac{3}{2}\left(x^{2}+y^{2}\right) z^{2}-\frac{1}{4}\left(x^{4}+y^{4}\right)+C
$$

C being an arbitrary constant.

Figure 33.32: The curve \mathcal{K} for $a=1$.
2) Here we have two variants.

First variant. Since \mathbf{V} is a gradient field with the integral

$$
F_{0}(x, y, z)=\frac{3}{2}\left(x^{2}+y^{2}\right) z^{2}-\frac{1}{4}\left(x^{4}+y^{4}\right)
$$

and \mathcal{K} is a connected curve, we have

$$
\begin{aligned}
\int_{\mathcal{K}} \mathbf{V} \cdot \mathbf{t d} s & =F_{0}(0, a, 2 a)-F_{0}(a, 0,0) \\
& =\frac{3}{2}\left(0^{2}+a^{2}\right) \cdot 4 a^{2}-\frac{1}{4}\left(0^{4}+a^{4}\right)+\frac{1}{4}\left(a^{4}+0^{4}\right)=6 a^{4}
\end{aligned}
$$

Second variant. The definition of a tangential line integral.
The curve \mathcal{K} is composed of the two sub-curves

$$
\begin{array}{ll}
\mathcal{K}_{1}: & (x(t), y(t), z(t))=a(\cos t, \sin t, 0), \quad t \in\left[0, \frac{\pi}{2}\right], \\
\mathcal{K}_{2}: & (x(t), y(t), z(t))=a(0,1, t), \quad t \in[0,2] .
\end{array}
$$

First calculate

$$
\begin{aligned}
\int_{\mathcal{K}_{1}} \mathbf{V} \cdot \mathbf{t} \mathrm{~d} s & =\int_{0}^{\frac{\pi}{2}} a^{3}\left(-\cos ^{3} t,-\sin ^{3} t, 0\right) \cdot a(-\sin t, \cos t, 0) \mathrm{d} t \\
& =a^{4} \int_{0}^{\frac{\pi}{2}}\left\{\cos ^{3} t \cdot \sin t-\sin ^{3} t \cdot \cos t\right\} \mathrm{d} t \\
& =\frac{a^{4}}{4}\left[-\cos ^{4} t-\sin ^{4} t\right]_{0}^{\frac{\pi}{2}}=\frac{a^{4}}{4}\{-1+1\}=0
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{\mathcal{K}_{2}} \mathbf{V} \cdot \mathbf{t d} s & =\int_{0}^{2} a^{3}\left(0,3 t^{2}-1,3 t\left(0^{2}+1^{2}\right)\right) \cdot a(0,0,1) \mathrm{d} t \\
& =a^{4} \int_{0}^{2} 3 t \mathrm{~d} t=\frac{3}{2} a^{4} \cdot 4=6 a^{4}
\end{aligned}
$$

Summarizing we get

$$
\int_{\mathcal{K}} \mathbf{V} \cdot \mathbf{t} \mathrm{d} s=\int_{\mathcal{K}_{1}} \mathbf{V} \cdot \mathbf{t} \mathrm{~d} s+\int_{\mathcal{K}_{2}} \mathbf{V} \cdot \mathbf{t} \mathrm{~d} s=0+6 a^{4}=6 a^{4}
$$

3) This problem can also be solved in various ways.

First variant. According to Gauß's theorem,

$$
\text { flux }=\int_{\bar{K}(\mathbf{0} ; a)} \operatorname{div} \mathbf{V} \mathrm{d} \Omega=\int_{\bar{K}(\mathbf{0} ; a)} 6 z^{2} \mathrm{~d} \Omega
$$

because

$$
\operatorname{div} \mathbf{V}=3 z^{2}-3 x^{2}+3 z^{2}-3 y^{2}+3\left(x^{2}+y^{2}\right)=6 z^{2}
$$

The calculation of this integral is most probably performed in one of the following subvariants, although there exist some other (and more difficult) ways of calculation.
a) Partition of $\bar{K}(\mathbf{0} ; a)$ into slices parallel to the $X Y$-plane.

By using this slicing method we get

$$
\begin{aligned}
\text { flux } & =\int_{\bar{K}(0 ; a)} 6 z^{2} \mathrm{~d} \Omega=\int_{-a}^{a}\left\{\int_{\bar{K}\left((0,0) ; \sqrt{a^{2}-z^{2}}\right)} 6 z^{2} \mathrm{~d} x \mathrm{~d} y\right\} \mathrm{d} z \\
& =\int_{-a}^{a} 6 z^{2} \operatorname{area}\left(K(0,0) ; \sqrt{a^{2}-z^{2}}\right) \mathrm{d} z=\int_{-a}^{a} 6 z^{2} \pi\left(a^{2}-z^{2}\right) \mathrm{d} z \\
& =12 \pi \int_{0}^{a}\left(a^{2} z^{2}-z^{4}\right) \mathrm{d} z=12 \pi\left[\frac{1}{3} a^{2} z^{3}-\frac{1}{5} z^{5}\right]_{0}^{a}=12 \pi a^{5} \cdot \frac{2}{15}=\frac{8 \pi}{5} a^{5} .
\end{aligned}
$$

b) Calculation in spherical coordinates:

$$
\begin{aligned}
\text { flux } & =\int_{\bar{K}(0 ; a)} 6 z^{2} \mathrm{~d} \Omega=\int_{0}^{2 \pi}\left\{\int_{0}^{\pi}\left(\int_{0}^{a} 6 r^{2} \cos ^{2} \theta \cdot r^{2} \sin \theta \mathrm{~d} r\right) \mathrm{d} \theta\right\} \mathrm{d} \varphi \\
& =2 \pi \int_{0}^{\pi} 6 \cos ^{2} \theta \cdot \sin \theta \mathrm{~d} \theta \cdot \int_{0}^{a} r^{4} \mathrm{~d} r=2 \pi\left[2\left(-\cos ^{3} \theta\right)\right]_{0}^{\pi} \cdot \frac{a^{5}}{5} \\
& =\frac{4 \pi}{5} a^{5}(1+1)=\frac{8 \pi}{5} a^{5} .
\end{aligned}
$$

Second variant. Direct application of the definition.
Put $\mathcal{F}=\partial K(\mathbf{0} ; a)$. Then the unit normal vector field on \mathcal{F} is given by

$$
\mathbf{n}=\frac{1}{a}(x, y, z)
$$

By insertion into the definition,

$$
\begin{aligned}
\text { flux } & =\int_{\mathcal{F}} \mathbf{V} \cdot \mathbf{n} \mathrm{d} S=\frac{1}{a} \int_{\mathcal{K}}\left\{3 x^{2} z^{2}-x^{4}+3 y^{2} z^{2}-y^{4}+3 z^{2}\left(x^{2}+y^{2}\right)\right\} \mathrm{d} S \\
& =\frac{1}{a} \int_{\mathcal{F}}\left\{6 z^{2}\left(x^{2}+y^{2}\right)-x^{4}-y^{4}\right\} \mathrm{d} S
\end{aligned}
$$

We shall in the following calculate this surface integral in two different ways. Notice that there are many other possibilities. In both of these two sub-variants we shall need the following:

Calculations:

(33.5) $\int_{0}^{2 \pi}\left(\cos ^{4} \varphi+\sin ^{4} \varphi\right) \mathrm{d} \varphi$

$$
\begin{aligned}
& =\int_{0}^{2 \pi}\left(\cos ^{4} \varphi+\sin ^{4} \varphi+2 \sin ^{2} \varphi \cos ^{2} \varphi-2 \sin ^{2} \varphi \cos ^{2} \varphi\right) \mathrm{d} \varphi \\
& =\int_{0}^{2 \pi}\left\{\left(\cos ^{2} \varphi+\sin ^{2} \varphi\right)^{2}-\frac{1}{2} \sin ^{2} 2 \varphi\right\} \mathrm{d} \varphi \\
& =\int_{0}^{2 \pi}\left\{1-\frac{1}{2} \cdot \frac{1}{2}(1-\cos 4 \varphi)\right\} \mathrm{d} \varphi=\frac{3}{4} \cdot 2 \pi=\frac{3 \pi}{2}
\end{aligned}
$$

Figure 33.33: The meridian curve \mathcal{M}.
a) Consider the surface \mathcal{F} as a surface of revolution with the meridian curve

$$
\mathcal{M}: \quad \varrho(z)=\sqrt{a^{2}-z^{2}}, \quad z \in[-a, a]
$$

thus

$$
x(z)=\sqrt{a^{2}-z^{2}} \cos \varphi, \quad y=\sqrt{a^{2}-z^{2}} \sin \varphi, \quad z=z
$$

and the weight function

$$
\sqrt{\left\{\varrho^{\prime}(z)\right\}^{2}+1}=\sqrt{1+\frac{z^{2}}{a^{2}-z^{2}}}=\sqrt{\frac{a^{2}}{a^{2}-z^{2}}}=\frac{a}{\sqrt{a^{2}-z^{2}}}
$$

By insertion into a suitable formula we get

$$
\begin{aligned}
\text { flux }= & \frac{1}{a} \int_{\mathcal{F}}\left\{6 z^{2}\left(x^{2}+y^{2}\right)-x^{4}-y^{4}\right\} \mathrm{d} S \\
= & \frac{1}{a} \int_{-a}^{a}\left\{\int_{0}^{2 \pi}\left\{6 z^{2}\left(\left[a^{2}-z^{2}\right] \cos ^{2} \varphi+\left[a^{2}-z^{2}\right] \sin ^{2} \varphi\right)\right\}\right. \\
& \left.-\left(a^{2}-z^{2}\right)^{2}\left(\cos ^{4} \varphi+\sin ^{4} \varphi\right) \mathrm{d} \varphi\right\} \frac{\sqrt{a^{2}-z^{2}} \cdot a}{\sqrt{a^{2}-z^{2}}} \mathrm{~d} z \\
= & \int_{-a}^{a}\left\{\int_{0}^{2 \pi}\left\{6 z^{2}\left(a^{2}-z^{2}\right)-\left(a^{2}-z^{2}\right)^{2}\left(\cos ^{4} \varphi+\sin ^{4} \varphi\right)\right\} \mathrm{d} \varphi\right\} \mathrm{d} z \\
= & \int_{-a}^{a}\left\{2 \pi \cdot 6 z^{2}\left(a^{2}-z^{2}\right)-\frac{3 \pi}{2}\left(a^{2}-z^{2}\right)^{2}\right\} \mathrm{d} z \quad(\text { by }(33.5)) \\
= & 12 \pi \int_{-a}^{a}\left(a^{2} z^{2}-z^{4}\right) \mathrm{d} z-\frac{3 \pi}{2} \int_{-a}^{a}\left(a^{4}-2 a^{2} z^{2}+z^{4}\right) \mathrm{d} z \\
= & 2 \cdot 12 \pi\left[\frac{a^{2}}{3} z^{3}-\frac{1}{5} z^{5}\right]_{0}^{a}-2 \cdot \frac{3 \pi}{2}\left[a^{4} z-\frac{2}{3} a^{2} z^{3}+\frac{1}{5} z^{5}\right]_{0}^{a} \\
= & 24 \pi a^{5} \cdot \frac{2}{15}-3 \pi a^{5}\left(1-\frac{2}{3}+\frac{1}{5}\right)=\pi a^{5} \cdot\left(\frac{16}{5}-1-\frac{3}{5}\right)=\frac{8 \pi a^{5}}{5} .
\end{aligned}
$$

b) Alternatively it follows by the symmetry that the flux through

$$
\mathcal{F}_{+}=\{(x, y, z) \in \mathcal{F} \mid z \geq 0\}
$$

is equal to the flux through $\mathcal{F} \backslash \mathcal{F}_{+}$, thus

$$
\text { flux }=\frac{2}{a} \int_{\mathcal{F}_{+}}\left\{6 z^{2}\left(x^{2}+y^{2}\right)-x^{4}-y^{4}\right\} \mathrm{d} S .
$$

The surface \mathcal{F}_{+}is the graph of

$$
z=\sqrt{a^{2}-x^{2}-y^{2}}, \quad(x, y) \in B=\left\{(x, y) \mid x^{2}+y^{2} \leq a^{2}\right\}
$$

and the normal vector is

$$
\mathbf{N}(x, y)=\left(-\frac{\partial z}{\partial x},-\frac{\partial z}{\partial y}, 1\right)=\left(\frac{x}{\sqrt{a^{2}-x^{2}-y^{2}}}, \frac{y}{\sqrt{a^{2}-x^{2}-y^{2}}}, 1\right)
$$

hence

$$
\|\mathbf{N}(x, y)\|=\frac{a}{\sqrt{a^{2}-x^{2}-y^{2}}}
$$

Then by
i) reduction of the surface integral to a plane integral,
ii) reduction in polar coordinates,
iii) application of the calculation (33.5),
iv) the change of variable $t=\sqrt{a^{2}-r^{2}}$, i.e.

$$
r^{2}=a^{2}-t^{2} \quad \text { and } \quad \mathrm{d} t=-\frac{r}{\sqrt{a^{2}-r^{2}}} \mathrm{~d} r
$$

we finally get

$$
\begin{aligned}
\text { flux } & =\frac{2}{a} \int_{B}\left\{6\left(a^{2}-x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)-x^{4}-y^{4}\right\} \frac{a}{\sqrt{a^{2}-x^{2}-y^{2}}} \mathrm{~d} x \mathrm{~d} y \\
& =2 \int_{0}^{2 \pi}\left\{\int_{0}^{a}\left\{6\left(a^{2}-r^{2}\right) r^{2}-r^{4}\left(\cos ^{4} \varphi+\sin ^{4} \varphi\right)\right\} \frac{r}{\sqrt{a^{2}-r^{2}}} \mathrm{~d} r\right\} \mathrm{d} \varphi \\
& =2 \int_{0}^{a}\left\{12 \pi\left(a^{2}-r^{2}\right) r^{2}-\frac{3 \pi}{2} r^{4}\right\} \frac{r}{\sqrt{a^{2}-r^{2}}} \mathrm{~d} r \quad(\text { by }(33.5)) \\
& =\pi \int_{0}^{a}\left\{24 t^{2}\left(a^{2}-t^{2}\right)-3\left(a^{2}-t^{2}\right)^{2}\right\} \mathrm{d} t \\
& =\pi \int_{0}^{a}\left\{24 a^{2} t^{2}-24 t^{4}-3 a^{4}+6 a^{2} t^{2}-3 t^{4}\right\} \mathrm{d} t \\
& =\pi a^{5}\left\{8-\frac{24}{5}-3+2-\frac{3}{5}\right\}=\pi a^{5}\left\{7-\frac{27}{5}\right\} \\
& =\pi a^{5} \cdot \frac{35-27}{5}=\frac{8 \pi a^{5}}{5} .
\end{aligned}
$$

Need help with your dissertation?

Get in-depth feedback \& advice from experts in your topic area. Find out what you can do to improve the quality of your dissertation!

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Example 33.24 Let a be a positive constant. Consider the set

$$
A=\left\{(x, y, z) \in \mathbb{R}^{3}\left|x^{2}+y^{2} \leq a^{2}, 0 \leq y,-y \leq x \leq y,|z| \leq 2 a\right\}\right.
$$

1) Describe A in semi polar coordinates (ϱ, φ, z).
2) Compute the space integrals

$$
I=\int_{A} x \mathrm{~d} \Omega, \quad J=\int_{A} y \mathrm{~d} \Omega, \quad K=\int_{A} z^{2} \mathrm{~d} \Omega .
$$

3) Find the flux of the vector field

$$
\mathbf{V}(x, y, z)=\left(3 x z^{2}+\cosh y, z^{2} e^{x}, z^{3}-3 a x z+\sinh y\right), \quad(x, y, z) \in \mathbb{R}^{3}
$$

through the surface ∂A with its normal vector pointing outwards.
A Space integrals; flux.
D The first two problems are solved by the reduction theorems. In 3) we apply Gauß's theorem.

Figure 33.34: The domain B for $a=1$ lies inside the upper angular space and inside the half circle.

I 1) Clearly, A is a cylinder with a quarter disc B in the (X, Y)-plane as generating surface. Hence A is described in semi polar coordinates by

$$
A=\left\{(\varrho, \varphi, z) \quad \mid 0 \leq \varrho \leq a, \frac{\pi}{4} \leq \varphi \leq \frac{3 \pi}{4},-2 a \leq z \leq 2 a\right\}
$$

2) By an argument of symmetry (first integrate with respect to x) we get

$$
I=\int_{A} x \mathrm{~d} \Omega=0
$$

Alternatively,

$$
\begin{aligned}
I & =\int_{A} x \mathrm{~d} \Omega=\int_{-2 a}^{2 a}\left\{\int_{0}^{a}\left(\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \varrho \cos \varphi \cdot \varrho \mathrm{~d} \varphi\right) \mathrm{d} \varrho\right\} \mathrm{d} z \\
& =4 a \int_{0}^{a} \varrho^{2} \mathrm{~d} \varrho \cdot \int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \cos \varphi \mathrm{~d} \varphi=4 a \cdot \frac{a^{3}}{3}[\sin \varphi]_{\frac{\pi}{4}}^{\frac{3 \pi}{4}}=0
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
J & =\int_{A} y \mathrm{~d} \Omega=\int_{-2 a}^{2 a}\left\{\int_{0}^{a}\left(\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \varrho \sin \varphi \cdot \varrho \mathrm{~d} \varphi\right) \mathrm{d} \varrho\right\} \mathrm{d} z \\
& =4 a \cdot \frac{a^{3}}{3}[-\cos \varphi]_{\frac{3}{4}}^{\frac{3 \pi}{4}}=\frac{4 a^{4}}{3} \cdot\left\{\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right\}=\frac{4 \sqrt{2} a^{4}}{3}
\end{aligned}
$$

Finally, by the slicing method,

$$
K=\int_{A} z^{2} \mathrm{~d} \Omega=\int_{-2 a}^{2 a} z^{2} \operatorname{area}(B) \mathrm{d} z=\frac{1}{4} \cdot \pi a^{2}\left[\frac{z^{3}}{3}\right]_{-2 a}^{2 a}=\frac{1}{4} \pi a^{2} \cdot 2 \cdot \frac{8 a^{3}}{3}=\frac{4 \pi a^{5}}{3}
$$

3) By an application of Gauß's theorem,

$$
\text { flux }=\int_{A} \operatorname{div} \mathbf{V} \mathrm{~d} \Omega=\int_{A}\left\{3 z^{2}+0+3 z^{2}-3 a z\right\} \mathrm{d} \Omega=6 K-3 a I=8 \pi a^{5}
$$

where we have inserted the values of K and I found in 2).

Example 33.25 Consider the function

$$
F(x, y, z)=x^{4}+x e^{y} \sin z, \quad(x, y, z) \in \mathbb{R}^{3}
$$

and the vector field $\mathbf{V}=\nabla F$.

1) Find the divergence $\nabla \cdot \mathbf{V}$ and the rotation $\nabla \times \mathbf{V}$.
2) Check if \mathbf{V} has a vector potential.
3) Find the flux of \mathbf{V} through ∂A, where A is the half ball given by the inequalities

$$
x^{2}+y^{2}+z^{2} \leq 9, \quad z \leq 0
$$

4) Find the flux of \mathbf{V} through the surface \mathcal{F} given by

$$
x^{2}+y^{2}+z^{2}=9, \quad z \leq 0
$$

Show the orientation of \mathcal{F} on a figure. (Hint: Use that the surface \mathcal{F} is a subset of the surface ∂A of 3).

A Divergence, rotation, flux.
D Find V. Use the rules of calculations and finally also Gauß's theorem.
I 1) First calculate

$$
\mathbf{V}=\nabla F=\left(4 x^{3}+e^{y} \sin z, x e^{y} \sin z, x e^{y} \cos z\right)
$$

Then

$$
\nabla \cdot \mathbf{V}=\nabla \cdot \nabla F=\Delta F=12 x^{2}+x e^{y} \sin z-x e^{y} \sin z=12 x^{2}
$$

and

$$
\nabla \times \mathbf{V}=\nabla \times \nabla F=\mathbf{0}
$$

which is obvious because \mathbf{V} is a gradient field and thence rotation free.
2) Since \mathbf{V} is not divergence free in any open domain, \mathbf{V} does not have a vector potential.
3) We get by Gauß's theorem, an argument of symmetry and using spherical coordinates,

$$
\begin{aligned}
\operatorname{flux}(\partial A) & =\int_{\partial A} \mathrm{~V} \cdot \mathrm{n} \mathrm{~d} S=\int_{A} \nabla \cdot \mathbf{V} \mathrm{~d} \Omega=12 \int_{A} x^{2} \mathrm{~d} \Omega=12 \int_{A} y^{2} \mathrm{~d} \Omega \\
& =6 \int_{A}\left(x^{2}+y^{2}\right) \mathrm{d} \Omega=6 \int_{0}^{2 \pi}\left\{\int_{\frac{\pi}{2}}^{\pi}\left(\int_{0}^{3} r^{2} \sin ^{2} \theta \cdot r^{2} \sin \theta \mathrm{~d} r\right) \mathrm{d} \theta\right\} \mathrm{d} \varphi \\
& =6 \cdot 2 \pi \int_{\frac{\pi}{2}}^{\pi}\left(1-\cos ^{2} \theta\right) \sin \theta \mathrm{d} \theta \cdot \int_{0}^{3} r^{4} \mathrm{~d} r \\
& =\frac{12 \pi}{5} \cdot 3^{5} \cdot\left[-\cos \theta+\frac{1}{3} \cos ^{3} \theta\right]_{\frac{\pi}{2}}^{\pi}=\frac{12 \pi}{5} \cdot 3^{5} \cdot \frac{2}{3}=\frac{1944 \pi}{5}
\end{aligned}
$$

Figure 33.35: The body A.
4) Let \mathcal{G} denote the disc in the (X, Y)-plane with the unit normal vector field pointing upwards, and let \mathcal{F} denote the half sphere with the unit normal vector field pointing downward. Then according to 3),

$$
\operatorname{flux}(\partial A)=\operatorname{flux}(\mathcal{F})+\operatorname{flux}(\mathcal{G})=\frac{1944 \pi}{5}
$$

Since $\mathbf{n}=(0,0,1)$ on \mathcal{G}, it follows by a rearrangement that

$$
\begin{aligned}
\operatorname{flux}(\mathcal{F}) & =\frac{1944 \pi}{5}-\operatorname{flux}(\mathcal{G})=\frac{1944 \pi}{5}-\int_{\mathcal{G}}\left[x e^{y} \cos z\right]_{z=0} \mathrm{~d} S=\frac{1944 \pi}{5}-\int_{\mathcal{G}} x e^{y} \mathrm{~d} S \\
& =\frac{1944 \pi}{5}-\int_{-3}^{3} e^{y}\left\{\int_{-\sqrt{9-y^{2}}}^{\sqrt{9-y^{2}}} x \mathrm{~d} x\right\} \mathrm{d} y=\frac{1944 \pi}{5}-0=\frac{1944 \pi}{5}
\end{aligned}
$$

where we for symmetric reasons calculate the plane integral over the disc in rectangular coordinates.

Example 33.26 The set $\Omega \subset \mathbb{R}^{3}$ is given in semi polar coordinates (ϱ, φ, z) by the inequalities

$$
-\frac{\pi}{2} \leq \varphi \leq \frac{\pi}{2}, \quad 0 \leq z \leq h, \quad 0 \leq \varrho \leq a\left(1-\frac{z}{h}\right)
$$

where a and h are positive constants.
Also given the vector field

$$
\mathbf{U}(x, y, z)=\left(x^{3} z+2 y \cos x, y^{3} z+y^{2} \sin x, x^{2} y^{2}\right), \quad(x, y, z) \in \mathbb{R}^{3}
$$

1) Find the divergence $\nabla \cdot \mathbf{U}$.
2) Find the flux Φ of the vector field \mathbf{U} through the surface $\partial \Omega$.

A Vector field, flux.
D Sketch a figure. Apply Gauß's theorem.

Figure 33.36: The body Ω for $a=2$ and $h=1$.

Figure 33.37: The meridian cut of Ω for $\varphi \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $a=2, h=1$.

I We see that Ω is (half of) a cone (of revolution) with the top point $(0,0, h)$ and a half disc in the (X, Y)-plane as its basis.

1) The divergence is

$$
\operatorname{div} \mathbf{U}=\nabla \cdot \mathbf{U}=\left(3 x^{2} z-2 y \sin x\right)+\left(3 y^{2} z+2 y \sin x\right)+0=3 z\left(x^{2}+y^{2}\right)
$$

2) By applying Gauß's theorem and reducing in semi polar coordinates we conclude that the flux is

$$
\begin{aligned}
\Phi & =\int_{\Omega} \operatorname{div} \mathrm{U} \mathrm{~d} \Omega=\int_{\Omega} 3 z\left(x^{2}+y^{2}\right) \mathrm{d} \Omega=\int_{0}^{h}\left\{\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\int_{0}^{a\left(1-\frac{z}{h}\right)} 3 z \varrho^{2} \cdot \varrho \mathrm{~d} \varrho\right) \mathrm{d} \varphi\right\} \mathrm{d} z \\
& =3 \pi \int_{0}^{h} z\left(\int_{0}^{a\left(1-\frac{z}{h}\right)} \varrho^{3} \mathrm{~d} \varrho\right) \mathrm{d} z=3 \pi \cdot \frac{1}{120} a^{4} h^{2}=\frac{\pi}{40} a^{4} h^{2}
\end{aligned}
$$

An alternative calculation is

$$
\begin{aligned}
\Phi & =\int_{0}^{h} \pi \cdot 3 z \cdot \frac{1}{4} a^{4}\left(1-\frac{z}{h}\right)^{4} \mathrm{~d} z=\frac{3 \pi}{4} a^{4} h \int_{0}^{h}\left\{1-\left(1-\frac{z}{h}\right)\right\}\left(1-\frac{z}{h}\right)^{4} \mathrm{~d} z \\
& =\frac{3 \pi}{4} a^{4} h \int_{0}^{h}\left\{\left(1-\frac{z}{h}\right)^{4}-\left(1-\frac{z}{h}\right)^{5}\right\} \mathrm{d} z=\frac{3 \pi}{4} a^{4} h^{2} \int_{0}^{1}\left\{\zeta^{4}-\zeta^{5}\right\} \mathrm{d} \zeta \\
& =\frac{3 \pi}{4} a^{4} h^{2} \cdot\left(\frac{1}{5}-\frac{1}{6}\right)=\frac{\pi}{40} a^{4} h^{2}
\end{aligned}
$$

Example 33.27 Find the divergence and the rotation of the vector field

$$
\mathbf{V}(x, y, z)=\left(2 x+x y, 7 x-\frac{1}{2} y^{2}, 3 z\right), \quad(x, y, z) \in \mathbb{R}^{3}
$$

and find the flux of \mathbf{V} through the unit sphere $x^{2}+y^{2}+z^{2}=1$, where the normal vector is pointing outwards.

A Divergence, rotation and flux).
D Apply Gauß's theorem.
I The divergence is

$$
\operatorname{div} \mathbf{V}=2+y-y+3=5
$$

The rotation is

$$
\operatorname{rot} \mathbf{V}=\left|\begin{array}{ccc}
\mathbf{e}_{x} & \mathbf{e}_{y} & \mathbf{e}_{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
2 x+x y & 7 x-\frac{1}{2} y^{2} & 3 z
\end{array}\right|=\left|\begin{array}{ccc}
\mathbf{e}_{x} & \mathbf{e}_{y} & \mathbf{e}_{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x y & 7 x & 0
\end{array}\right|=(0,0,7-x)
$$

By Gauß's theorem the flux through the surface \mathcal{F} of the unit sphere is given by

$$
\int_{\mathcal{F}} \mathrm{V} \cdot \mathrm{n} \mathrm{~d} S=\int_{\Omega} \operatorname{div} \mathbf{V} \mathrm{d} \Omega=\int_{\Omega} 5 \mathrm{~d} \Omega=5 \operatorname{vol}(\Omega)=5 \cdot \frac{4 \pi}{4} \cdot 1^{3}=\frac{20 \pi}{3}
$$

Example 33.28 .

1) Find the volume of the body of revolution

$$
A=\left\{\begin{array}{l|l}
(x, y, z) \in \mathbb{R}^{3} & \frac{1}{2} x^{2}+\frac{1}{2} y^{2}-1 \leq z \leq 1
\end{array}\right\}
$$

2) Find the flux of the vector field

$$
\mathbf{V}(x, y, z)=\left(y^{2}+x, x z^{2}-y x^{2}, x^{2} z\right), \quad(x, y, z) \in \mathbb{R}^{3}
$$

through ∂A, where the unit normal vector is always pointing away from the body.
A Volume and flux.
D Sketch a section of A in the meridian half plane. Apply the method of slicing by finding the volume. The flux is found by means of Gauß's theorem.
I 1) It follows from the sketch of the meridian half plane that the domain is described in semi polar coordinates by

$$
0 \leq \varrho \leq \sqrt{2 z+2}, \quad-1 \leq z \leq 1
$$

Figure 33.38: The meridian cut for A. The boundary curve has the equation $z=\frac{1}{2} \varrho^{2}-1$.
and that the body of revolution is a subset of a paraboloid of revolution.
The Slicing method. The paraboloid of revolution is intersected by a plane at the height $z \in]-1,1]$ (the dotted line on the figure) in a circle of area

$$
\pi \cdot \varrho(z)^{2}=2 \pi(z+1)
$$

Thus the volume of the body of revolution is

$$
\operatorname{vol}(A)=\int_{-1}^{1} 2 \pi(z+1) \mathrm{d} z=\left[\pi(z+1)^{2}\right]_{-1}^{1}=4 \pi
$$

2) According to Gauss's theorem, the flux of \mathbf{V} through ∂A is given by

$$
\int_{\partial A} \mathbf{V} \cdot \mathrm{n} \mathrm{~d} S=\int_{A} \operatorname{div} \mathbf{V} \mathrm{~d} \Omega=\int_{A}\left\{1-x^{2}+x^{2}\right\} \mathrm{d} \Omega=\operatorname{vol}(A)=4 \pi
$$

34 Formulæ

Some of the following formulæ can be assumed to be known from high school. It is highly recommended that one learns most of these formuld in this appendix by heart.

34.1 Squares etc.

The following simple formulæ occur very frequently in the most different situations.

$$
\begin{array}{ll}
(a+b)^{2}=a^{2}+b^{2}+2 a b, & a^{2}+b^{2}+2 a b=(a+b)^{2}, \\
(a-b)^{2}=a^{2}+b^{2}-2 a b, & a^{2}+b^{2}-2 a b=(a-b)^{2}, \\
(a+b)(a-b)=a^{2}-b^{2}, & a^{2}-b^{2}=(a+b)(a-b), \\
(a+b)^{2}=(a-b)^{2}+4 a b, & (a-b)^{2}=(a+b)^{2}-4 a b .
\end{array}
$$

34.2 Powers etc.

Logarithm:

$$
\begin{array}{rlrl}
\ln |x y| & =\ln |x|+\ln |y|, & & x, y \neq 0, \\
\ln \left|\frac{x}{y}\right| & = & \ln |x|-\ln |y|, & \\
x, y \neq 0, \\
\ln \left|x^{r}\right| & = & r \ln |x|, & \\
x \neq 0 .
\end{array}
$$

Power function, fixed exponent:

$$
\begin{aligned}
& (x y)^{r}=x^{r} \cdot y^{r}, x, y>0 \quad(\text { extensions for some } r), \\
& \left(\frac{x}{y}\right)^{r}=\frac{x^{r}}{y^{r}}, x, y>0 \quad(\text { extensions for some } r) .
\end{aligned}
$$

Exponential, fixed base:

$$
\begin{array}{ll}
a^{x} \cdot a^{y}=a^{x+y}, \quad a>0 & (\text { extensions for some } x, y), \\
\left(a^{x}\right)^{y}=a^{x y}, a>0 & (\text { extensions for some } x, y), \\
a^{-x}=\frac{1}{a^{x}}, a>0, & (\text { extensions for some } x), \\
\sqrt[n]{a}=a^{1 / n}, a \geq 0, \quad n \in \mathbb{N} .
\end{array}
$$

Square root:

$$
\sqrt{x^{2}}=|x|, \quad x \in \mathbb{R}
$$

Remark 34.1 It happens quite frequently that students make errors when they try to apply these rules. They must be mastered! In particular, as one of my friends once put it: "If you can master the square root, you can master everything in mathematics!" Notice that this innocent looking square root is one of the most difficult operations in Calculus. Do not forget the absolute value! \diamond

34.3 Differentiation

Here are given the well-known rules of differentiation together with some rearrangements which sometimes may be easier to use:

$$
\begin{aligned}
& \{f(x) \pm g(x)\}^{\prime}=f^{\prime}(x) \pm g^{\prime}(x) \\
& \{f(x) g(x)\}^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)=f(x) g(x)\left\{\frac{f^{\prime}(x)}{f(x)}+\frac{g^{\prime}(x)}{g(x)}\right\}
\end{aligned}
$$

where the latter rearrangement presupposes that $f(x) \neq 0$ and $g(x) \neq 0$. If $g(x) \neq 0$, we get the usual formula known from high school

$$
\left\{\frac{f(x)}{g(x)}\right\}^{\prime}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}}
$$

It is often more convenient to compute this expression in the following way:

$$
\left\{\frac{f(x)}{g(x)}\right\}=\frac{d}{d x}\left\{f(x) \cdot \frac{1}{g(x)}\right\}=\frac{f^{\prime}(x)}{g(x)}-\frac{f(x) g^{\prime}(x)}{g(x)^{2}}=\frac{f(x)}{g(x)}\left\{\frac{f^{\prime}(x)}{f(x)}-\frac{g^{\prime}(x)}{g(x)}\right\}
$$

where the former expression often is much easier to use in practice than the usual formula from high school, and where the latter expression again presupposes that $f(x) \neq 0$ and $g(x) \neq 0$. Under these assumptions we see that the formulæ above can be written

$$
\begin{aligned}
& \frac{\{f(x) g(x)\}^{\prime}}{f(x) g(x)}=\frac{f^{\prime}(x)}{f(x)}+\frac{g^{\prime}(x)}{g(x)} \\
& \frac{\{f(x) / g(x)\}^{\prime}}{f(x) / g(x)}=\frac{f^{\prime}(x)}{f(x)}-\frac{g^{\prime}(x)}{g(x)}
\end{aligned}
$$

Since

$$
\frac{d}{d x} \ln |f(x)|=\frac{f^{\prime}(x)}{f(x)}, \quad f(x) \neq 0
$$

we also name these the logarithmic derivatives.
Finally, we mention the rule of differentiation of a composite function

$$
\{f(\varphi(x))\}^{\prime}=f^{\prime}(\varphi(x)) \cdot \varphi^{\prime}(x)
$$

We first differentiate the function itself; then the insides. This rule is a 1-dimensional version of the so-called Chain rule.

34.4 Special derivatives.

Power like:

$$
\begin{array}{ll}
\frac{d}{d x}\left(x^{\alpha}\right)=\alpha \cdot x^{\alpha-1}, & \text { for } x>0, \quad(\text { extensions for some } \alpha) . \\
\frac{d}{d x} \ln |x|=\frac{1}{x}, & \text { for } x \neq 0 .
\end{array}
$$

Exponential like:

$$
\begin{array}{ll}
\frac{d}{d x} \exp x=\exp x, & \text { for } x \in \mathbb{R} \\
\frac{d}{d x}\left(a^{x}\right)=\ln a \cdot a^{x}, & \text { for } x \in \mathbb{R} \text { and } a>0
\end{array}
$$

Trigonometric:

$$
\begin{array}{ll}
\frac{d}{d x} \sin x=\cos x, & \\
\text { for } x \in \mathbb{R}, \\
\frac{d}{d x} \cos x=-\sin x, & \\
\frac{\text { for } x \in \mathbb{R},}{d x} \tan x=1+\tan ^{2} x=\frac{1}{\cos ^{2} x}, & \\
\text { for } x \neq \frac{\pi}{2}+p \pi, p \in \mathbb{Z}, \\
\frac{d}{d x} \cot x=-\left(1+\cot ^{2} x\right)=-\frac{1}{\sin ^{2} x}, & \\
\text { for } x \neq p \pi, p \in \mathbb{Z} .
\end{array}
$$

Hyperbolic:

$$
\begin{array}{lrl}
\frac{d}{d x} \sinh x=\cosh x, & & \text { for } x \in \mathbb{R}, \\
\frac{d}{d x} \cosh x=\sinh x, & & \text { for } x \in \mathbb{R}, \\
\frac{d}{d x} \tanh x=1-\tanh ^{2} x=\frac{1}{\cosh ^{2} x}, & & \text { for } x \in \mathbb{R}, \\
\frac{d}{d x} \operatorname{coth} x=1-\operatorname{coth}^{2} x=-\frac{1}{\sinh ^{2} x}, & & \text { for } x \neq 0 .
\end{array}
$$

Inverse trigonometric:

$$
\begin{aligned}
\frac{d}{d x} \operatorname{Arcsin} x & =\frac{1}{\sqrt{1-x^{2}}}, & & \text { for } x \in]-1,1[, \\
\frac{d}{d x} \operatorname{Arccos} x & =-\frac{1}{\sqrt{1-x^{2}}}, & & \text { for } x \in]-1,1[, \\
\frac{d}{d x} \operatorname{Arctan} x & =\frac{1}{1+x^{2}}, & & \text { for } x \in \mathbb{R}, \\
\frac{d}{d x} \operatorname{Arccot} x & =\frac{1}{1+x^{2}}, & & \text { for } x \in \mathbb{R} .
\end{aligned}
$$

Inverse hyperbolic:

$$
\begin{aligned}
\frac{d}{d x} \operatorname{Arsinh} x & =\frac{1}{\sqrt{x^{2}+1}}, & & \text { for } x \in \mathbb{R}, \\
\frac{d}{d x} \operatorname{Arcosh} x & =\frac{1}{\sqrt{x^{2}-1}}, & & \text { for } x \in] 1,+\infty[, \\
\frac{d}{d x} \operatorname{Artanh} x & =\frac{1}{1-x^{2}}, & & \text { for }|x|<1, \\
\frac{d}{d x} \operatorname{Arcoth} x & =\frac{1}{1-x^{2}}, & & \text { for }|x|>1 .
\end{aligned}
$$

Remark 34.2 The derivative of the trigonometric and the hyperbolic functions are to some extent exponential like. The derivatives of the inverse trigonometric and inverse hyperbolic functions are power like, because we include the logarithm in this class. \diamond

34.5 Integration

The most obvious rules are dealing with linearity

$$
\int\{f(x)+\lambda g(x)\} d x=\int f(x) d x+\lambda \int g(x) d x, \quad \text { where } \lambda \in \mathbb{R} \text { is a constant }
$$

and with the fact that differentiation and integration are "inverses to each other", i.e. modulo some arbitrary constant $c \in \mathbb{R}$, which often tacitly is missing,

$$
\int f^{\prime}(x) d x=f(x)
$$

If we in the latter formula replace $f(x)$ by the product $f(x) g(x)$, we get by reading from the right to the left and then differentiating the product,

$$
f(x) g(x)=\int\{f(x) g(x)\}^{\prime} d x=\int f^{\prime}(x) g(x) d x+\int f(x) g^{\prime}(x) d x
$$

Hence, by a rearrangement

The rule of partial integration:

$$
\int f^{\prime}(x) g(x) d x=f(x) g(x)-\int f(x) g^{\prime}(x) d x
$$

The differentiation is moved from one factor of the integrand to the other one by changing the sign and adding the term $f(x) g(x)$.

Remark 34.3 This technique was earlier used a lot, but is almost forgotten these days. It must be revived, because MAPLE and pocket calculators apparently do not know it. It is possible to construct examples where these devices cannot give the exact solution, unless you first perform a partial integration yourself. \diamond

Remark 34.4 This method can also be used when we estimate integrals which cannot be directly calculated, because the antiderivative is not contained in e.g. the catalogue of MAPLE. The idea is by a succession of partial integrations to make the new integrand smaller. \diamond

Integration by substitution:

If the integrand has the special structure $f(\varphi(x)) \cdot \varphi^{\prime}(x)$, then one can change the variable to $y=\varphi(x)$:

$$
\int f(\varphi(x)) \cdot \varphi^{\prime}(x) d x=" \int f(\varphi(x)) d \varphi(x)^{\prime \prime}=\int_{y=\varphi(x)} f(y) d y
$$

Integration by a monotonous substitution:

If $\varphi(y)$ is a monotonous function, which maps the y-interval one-to-one onto the x-interval, then

$$
\int f(x) d x=\int_{y=\varphi^{-1}(x)} f(\varphi(y)) \varphi^{\prime}(y) d y
$$

Remark 34.5 This rule is usually used when we have some "ugly" term in the integrand $f(x)$. The idea is to put this ugly term equal to $y=\varphi^{-1}(x)$. When e.g. x occurs in $f(x)$ in the form \sqrt{x}, we put $y=\varphi^{-1}(x)=\sqrt{x}$, hence $x=\varphi(y)=y^{2}$ and $\varphi^{\prime}(y)=2 y$.

34.6 Special antiderivatives

Power like:

$$
\begin{array}{ll}
\int \frac{1}{x} d x=\ln |x|, & \text { for } x \neq 0 . \quad \text { (Do not forget the numerical value!) } \\
\int x^{\alpha} d x=\frac{1}{\alpha+1} x^{\alpha+1,} & \text { for } \alpha \neq-1, \\
\int \frac{1}{1+x^{2}} d x=\operatorname{Arctan} x, & \text { for } x \in \mathbb{R}, \\
\int \frac{1}{1-x^{2}} d x=\frac{1}{2} \ln \left|\frac{1+x}{1-x}\right|, & \text { for } x \neq \pm 1, \\
\int \frac{1}{1-x^{2}} d x=\operatorname{Artanh} x, & \text { for }|x|<1, \\
\int \frac{1}{1-x^{2}} d x=\operatorname{Arcoth} x, & \text { for }|x|>1, \\
\int \frac{1}{\sqrt{1-x^{2}}} d x=\operatorname{Arcsin} x, & \text { for }|x|<1, \\
\int \frac{1}{\sqrt{1-x^{2}}} d x=-\operatorname{Arccos} x, & \text { for } x \in \mathbb{R}, \\
\int \frac{1}{\sqrt{x^{2}+1}} d x=\operatorname{Arsinh} x, & \text { for } x \in \mathbb{R}, \\
\int \frac{1}{\sqrt{x^{2}+1}} d x=\ln \left(x+\sqrt{x^{2}+1}\right), & \text { for } x \in \mathbb{R}, \\
\int \frac{x}{\sqrt{x^{2}-1}} d x=\sqrt{x^{2}-1,} & \text { for } x>1, \\
\int \frac{1}{\sqrt{x^{2}-1}} d x=\operatorname{Arcosh} x, & \text { for } x>1 \text { eller } x<-1
\end{array}
$$

There is an error in the programs of the pocket calculators TI-92 and TI-89. The numerical signs are missing. It is obvious that $\sqrt{x^{2}-1}<|x|$ so if $x<-1$, then $x+\sqrt{x^{2}-1}<0$. Since you cannot take the logarithm of a negative number, these pocket calculators will give an error message.

Exponential like:

$$
\begin{array}{ll}
\int \exp x d x=\exp x, & \text { for } x \in \mathbb{R} \\
\int a^{x} d x=\frac{1}{\ln a} \cdot a^{x}, & \text { for } x \in \mathbb{R}, \text { and } a>0, a \neq 1
\end{array}
$$

Trigonometric:

$$
\begin{array}{ll}
\int \sin x d x=-\cos x, & \text { for } x \in \mathbb{R}, \\
\int \cos x d x=\sin x, & \\
\int \operatorname{tar} x \in \mathbb{R}, \\
\int \cot x d x=\ln |\sin x|, & \text { for } x \neq \frac{\pi}{2}+p \pi, \quad p \in \mathbb{Z}, \\
\int \frac{1}{\cos x} d x=\frac{1}{2} \ln \left(\frac{1+\sin x}{1-\sin x}\right), & \\
\int \frac{1}{\sin x} d x=\frac{1}{2} \ln \left(\frac{1-\cos x}{1+\cos x}\right), & \text { for } x \neq p \pi, \quad p \in \mathbb{Z}, \\
\int \frac{1}{\cos ^{2} x} d x=\tan x \neq p \pi, \quad p \in \mathbb{Z}, \\
\int \frac{1}{\sin ^{2} x} d x=-\cot x, & \text { for } x \neq \frac{\pi}{2}+p \pi, \quad p \in \mathbb{Z} \\
\int \text { for } x \neq p \pi, \quad p \in \mathbb{Z}
\end{array}
$$

Hyperbolic:

$\int \sinh x d x=\cosh x$,	for $x \in \mathbb{R}$,
$\int \cosh x d x=\sinh x$,	for $x \in \mathbb{R}$,
$\int \tanh x d x=\ln \cosh x$,	for $x \in \mathbb{R}$,
$\int \operatorname{coth} x d x=\ln \|\sinh x\|$,	for $x \neq 0$,

$\int \frac{1}{\cosh x} d x=\operatorname{Arctan}(\sinh x), \quad$ for $x \in \mathbb{R}$,
$\int \frac{1}{\cosh x} d x=2 \operatorname{Arctan}\left(e^{x}\right), \quad$ for $x \in \mathbb{R}$,
$\int \frac{1}{\sinh x} d x=\frac{1}{2} \ln \left(\frac{\cosh x-1}{\cosh x+1}\right), \quad$ for $x \neq 0$,

$$
\begin{array}{ll}
\int \frac{1}{\sinh x} d x=\ln \left|\frac{e^{x}-1}{e^{x}+1}\right|, & \text { for } x \neq 0 \\
\int \frac{1}{\cosh ^{2} x} d x=\tanh x, & \text { for } x \in \mathbb{R} \\
\int \frac{1}{\sinh ^{2} x} d x=-\operatorname{coth} x, & \text { for } x \neq 0
\end{array}
$$

34.7 Trigonometric formulæ

The trigonometric formulæ are closely connected with circular movements. Thus $(\cos u, \sin u)$ are the coordinates of a point P on the unit circle corresponding to the angle u, cf. figure A.1. This geometrical interpretation is used from time to time.

Figure 34.1: The unit circle and the trigonometric functions.

The fundamental trigonometric relation:

$$
\cos ^{2} u+\sin ^{2} u=1, \quad \text { for } u \in \mathbb{R}
$$

Using the previous geometric interpretation this means according to Pythagoras's theorem, that the point P with the coordinates $(\cos u, \sin u)$ always has distance 1 from the origo $(0,0)$, i.e. it is lying on the boundary of the circle of centre $(0,0)$ and radius $\sqrt{1}=1$.

Connection to the complex exponential function:

The complex exponential is for imaginary arguments defined by

$$
\exp (\mathrm{i} u):=\cos u+\mathrm{i} \sin u
$$

It can be checked that the usual functional equation for \exp is still valid for complex arguments. In other word: The definition above is extremely conveniently chosen.

By using the definition for $\exp (\mathrm{i} u)$ and $\exp (-\mathrm{i} u)$ it is easily seen that

$$
\begin{aligned}
\cos u & =\frac{1}{2}(\exp (\mathrm{i} u)+\exp (-\mathrm{i} u)) \\
\sin u & =\frac{1}{2 i}(\exp (\mathrm{i} u)-\exp (-\mathrm{i} u))
\end{aligned}
$$

Moivre's formula: We get by expressing $\exp (\mathrm{i} n u)$ in two different ways:

$$
\exp (\mathrm{i} n u)=\cos n u+\mathrm{i} \sin n u=(\cos u+\mathrm{i} \sin u)^{n}
$$

Example 34.1 If we e.g. put $n=3$ into Moivre's formula, we obtain the following typical application,

$$
\begin{aligned}
& \cos (3 u)+\mathrm{i} \sin (3 u)=(\cos u+\mathrm{i} \sin u)^{3} \\
&=\cos ^{3} u+3 \mathrm{i} \cos ^{2} u \cdot \sin u+3 \mathrm{i}^{2} \cos u \cdot \sin ^{2} u+\mathrm{i}^{3} \sin ^{3} u \\
& \quad=\left\{\cos ^{3} u-3 \cos u \cdot \sin ^{2} u\right\}+\mathrm{i}\left\{3 \cos ^{2} u \cdot \sin u-\sin ^{3} u\right\} \\
& \quad=\left\{4 \cos ^{3} u-3 \cos u\right\}+\mathrm{i}\left\{3 \sin u-4 \sin ^{3} u\right\}
\end{aligned}
$$

When this is split into the real- and imaginary parts we obtain

$$
\cos 3 u=4 \cos ^{3} u-3 \cos u, \quad \sin 3 u=3 \sin u-4 \sin ^{3} u . \diamond
$$

Addition formulæ:

$$
\begin{aligned}
& \sin (u+v)=\sin u \cos v+\cos u \sin v, \\
& \sin (u-v)=\sin u \cos v-\cos u \sin v, \\
& \cos (u+v)=\cos u \cos v-\sin u \sin v, \\
& \cos (u-v)=\cos u \cos v+\sin u \sin v .
\end{aligned}
$$

Products of trigonometric functions to a sum:

$\sin u \cos v=\frac{1}{2} \sin (u+v)+\frac{1}{2} \sin (u-v)$,
$\cos u \sin v=\frac{1}{2} \sin (u+v)-\frac{1}{2} \sin (u-v)$,
$\sin u \sin v=\frac{1}{2} \cos (u-v)-\frac{1}{2} \cos (u+v)$,
$\cos u \cos v=\frac{1}{2} \cos (u-v)+\frac{1}{2} \cos (u+v)$.

Sums of trigonometric functions to a product:

$$
\begin{aligned}
& \sin u+\sin v=2 \sin \left(\frac{u+v}{2}\right) \cos \left(\frac{u-v}{2}\right) \\
& \sin u-\sin v=2 \cos \left(\frac{u+v}{2}\right) \sin \left(\frac{u-v}{2}\right) \\
& \cos u+\cos v=2 \cos \left(\frac{u+v}{2}\right) \cos \left(\frac{u-v}{2}\right), \\
& \cos u-\cos v=-2 \sin \left(\frac{u+v}{2}\right) \sin \left(\frac{u-v}{2}\right) .
\end{aligned}
$$

Formulæ of halving and doubling the angle:
$\sin 2 u=2 \sin u \cos u$,
$\cos 2 u=\cos ^{2} u-\sin ^{2} u=2 \cos ^{2} u-1=1-2 \sin ^{2} u$,
$\sin \frac{u}{2}= \pm \sqrt{\frac{1-\cos u}{2}} \quad$ followed by a discussion of the sign,
$\cos \frac{u}{2}= \pm \sqrt{\frac{1+\cos u}{2}} \quad$ followed by a discussion of the sign,

34.8 Hyperbolic formulæ

These are very much like the trigonometric formulæ, and if one knows a little of Complex Function Theory it is realized that they are actually identical. The structure of this section is therefore the same as for the trigonometric formulæ. The reader should compare the two sections concerning similarities and differences.

The fundamental relation:

$$
\cosh ^{2} x-\sinh ^{2} x=1
$$

Definitions:

$$
\cosh x=\frac{1}{2}(\exp (x)+\exp (-x)), \quad \sinh x=\frac{1}{2}(\exp (x)-\exp (-x))
$$

"Moivre's formula":

$$
\exp (x)=\cosh x+\sinh x
$$

This is trivial and only rarely used. It has been included to show the analogy.

Addition formulæ:

$$
\begin{aligned}
& \sinh (x+y)=\sinh (x) \cosh (y)+\cosh (x) \sinh (y), \\
& \sinh (x-y)=\sinh (x) \cosh (y)-\cosh (x) \sinh (y), \\
& \cosh (x+y)=\cosh (x) \cosh (y)+\sinh (x) \sinh (y), \\
& \cosh (x-y)=\cosh (x) \cosh (y)-\sinh (x) \sinh (y) .
\end{aligned}
$$

Formulæ of halving and doubling the argument:

$$
\begin{aligned}
& \sinh (2 x)=2 \sinh (x) \cosh (x) \\
& \cosh (2 x)=\cosh ^{2}(x)+\sinh ^{2}(x)=2 \cosh ^{2}(x)-1=2 \sinh ^{2}(x)+1 \\
& \sinh \left(\frac{x}{2}\right)= \pm \sqrt{\frac{\cosh (x)-1}{2}} \quad \text { followed by a discussion of the sign, } \\
& \cosh \left(\frac{x}{2}\right)=\sqrt{\frac{\cosh (x)+1}{2}}
\end{aligned}
$$

Inverse hyperbolic functions:

$$
\begin{array}{ll}
\operatorname{Arsinh}(x)=\ln \left(x+\sqrt{x^{2}+1}\right), & x \in \mathbb{R} \\
\operatorname{Arcosh}(x)=\ln \left(x+\sqrt{x^{2}-1}\right), & x \geq 1, \\
\operatorname{Artanh}(x)=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right), & |x|<1, \\
\operatorname{Arcoth}(x)=\frac{1}{2} \ln \left(\frac{x+1}{x-1}\right), &
\end{array}|x|>1 .
$$

34.9 Complex transformation formulæ

$$
\begin{array}{ll}
\cos (\mathrm{i} x)=\cosh (x), & \cosh (\mathrm{i} x)=\cos (x) \\
\sin (\mathrm{i} x)=\mathrm{i} \sinh (x), & \sinh (\mathrm{i} x)=\mathrm{i} \sin x .
\end{array}
$$

34.10 Taylor expansions

The generalized binomial coefficients are defined by

$$
\binom{\alpha}{n}:=\frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{1 \cdot 2 \cdots n}
$$

with n factors in the numerator and the denominator, supplied with

$$
\binom{\alpha}{0}:=1 .
$$

The Taylor expansions for standard functions are divided into power like (the radius of convergency is finite, i.e. $=1$ for the standard series) andexponential like (the radius of convergency is infinite).
Power like:

$$
\begin{array}{ll}
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}, & |x|<1, \\
\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}, & |x|<1, \\
(1+x)^{n}=\sum_{j=0}^{n}\binom{n}{j} x^{j}, & n \in \mathbb{N}, x \in \mathbb{R}, \\
(1+x)^{\alpha}=\sum_{n=0}^{\infty}\binom{\alpha}{n} x^{n}, & \alpha \in \mathbb{R} \backslash \mathbb{N},|x|<1, \\
\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}, & |x|<1, \\
\operatorname{Arctan}(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}, & |x|<1 .
\end{array}
$$

Exponential like:

$$
\begin{array}{ll}
\exp (x)=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}, & x \in \mathbb{R} \\
\exp (-x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{n!} x^{n}, & x \in \mathbb{R} \\
\sin (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1)!} x^{2 n+1}, & x \in \mathbb{R}, \\
\sinh (x)=\sum_{n=0}^{\infty} \frac{1}{(2 n+1)!} x^{2 n+1}, & x \in \mathbb{R}, \\
\cos (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n)!} x^{2 n}, & x \in \mathbb{R}, \\
\cosh (x)=\sum_{n=0}^{\infty} \frac{1}{(2 n)!} x^{2 n}, & x \in \mathbb{R} .
\end{array}
$$

34.11 Magnitudes of functions

We often have to compare functions for $x \rightarrow 0+$, or for $x \rightarrow \infty$. The simplest type of functions are therefore arranged in an hierarchy:

1) logarithms,
2) power functions,
3) exponential functions,
4) faculty functions.

When $x \rightarrow \infty$, a function from a higher class will always dominate a function form a lower class. More precisely:
A) A power function dominates a logarithm for $x \rightarrow \infty$:

$$
\frac{(\ln x)^{\beta}}{x^{\alpha}} \rightarrow 0 \quad \text { for } x \rightarrow \infty, \quad \alpha, \beta>0 .
$$

B) An exponential dominates a power function for $x \rightarrow \infty$:

$$
\frac{x^{\alpha}}{a^{x}} \rightarrow 0 \quad \text { for } x \rightarrow \infty, \quad \alpha, a>1 .
$$

C) The faculty function dominates an exponential for $n \rightarrow \infty$:

$$
\frac{a^{n}}{n!} \rightarrow 0, \quad n \rightarrow \infty, \quad n \in \mathbb{N}, \quad a>0
$$

D) When $x \rightarrow 0+$ we also have that a power function dominates the logarithm:

$$
x^{\alpha} \ln x \rightarrow 0-, \quad \text { for } x \rightarrow 0+, \quad \alpha>0 .
$$

Index

absolute value 162
acceleration 490
addition 22
affinity factor 173
Ampère-Laplace law 1671
Ampère-Maxwell's law 1678
Ampère's law 1491, 1498, 1677, 1678, 1833
Ampère's law for the magnetic field 1674
angle 19
angular momentum 886
angular set 84
annulus 176, 243
anticommutative product 26
antiderivative 301,847
approximating polynomial $304,322,326,336,404$, 488, 632, 662
approximation in energy 734
Archimedes's spiral 976, 1196
Archimedes's theorem 1818
area $887,1227,1229,1543$
area element 1227
area of a graph 1230
asteroid 1215
asymptote 51
axial moment 1910
axis of revolution 181
axis of rotation 34,886
axis of symmetry $49,50,53$
barycentre 885, 1910
basis 22
bend 486
bijective map 153
body of revolution 43, 1582, 1601
boundary 37-39
boundary curve 182
boundary curve of a surface 182
boundary point 920
boundary set 21
bounded map 153
bounded set 41
branch 184
branch of a curve 492
Brownian motion 884
cardiod 972, 973, 1199, 1705

Cauchy-Schwarz's inequality 23, 24, 26
centre of gravity 1108
centre of mass 885
centrum 66
chain rule $305,333,352,491,503,581,1215,1489$, 1493, 1808
change of parameter 174
circle 49
circular motion 19
circulation 1487
circulation theorem 1489, 1491
circumference 86
closed ball 38
closed differential form 1492
closed disc 86
closed domain 176
closed set 21
closed surface 182, 184
closure 39
clothoid 1219
colour code 890
compact set 186, 580, 1813
compact support 1813
complex decomposition 69
composite function 305
conductivity of heat 1818
cone $19,35,59,251$
conic section 19, 47, 54, 239, 536
conic sectional conic surface 59,66
connected set 175,241
conservation of electric charge 1548, 1817
conservation of energy 1548,1817
conservation of mass 1548,1816
conservative force 1498,1507
conservative vector field 1489
continuity equation $1548,1569,1767,1817$
continuity 162,186
continuous curve 170, 483
continuous extension 213
continuous function 168
continuous surfaces 177
contraction 167
convective term 492
convex set $21,22,41,89,91,175,244$
coordinate function 157, 169
coordinate space 19, 21

Cornu's spiral 1219
Coulomb field 1538, 1545, 1559, 1566, 1577
Coulomb vector field 1585, 1670
cross product 19, 163, 169, 1750
cube 42, 82
current density 1678,1681
current 1487, 1499
curvature 1219
curve 227
curve length 1165
curved space integral 1021
cusp 486, 487, 489
cycloid 233,1215
cylinder $34,42,43,252$
cylinder of revolution 500
cylindric coordinates $15,21,34,147,181,182$, $289,477,573,841,1009,1157,1347,1479$, 1651, 1801
cylindric surface $180,245,247,248,499,1230$
degree of trigonometric polynomial 67
density 885
density of charge 1548
density of current 1548
derivative 296
derivative of inverse function 494
Descartes'a leaf 974
dielectric constant 1669, 1670
difference quotient 295
differentiability 295
differentiable function 295
differentiable vector function 303
differential 295, 296, 325, 382, 1740, 1741
differential curves 171
differential equation $369,370,398$
differential form 848
differential of order $p 325$
differential of vector function 303
diffusion equation 1818
dimension 1016
direction 334
direction vector 172
directional derivative $317,334,375$
directrix 53
Dirichlet/Neumann problem 1901
displacement field 1670
distribution of current 886
divergence 1535 , 1540, 1542, 1739, 1741, 1742
divergence free vector field 1543
dodecahedron 83
domain 153, 176
domain of a function 189
dot product 19, 350, 1750
double cone 252
double point 171
double vector product 27
eccentricity 51
eccentricity of ellipse 49
eigenvalue 1906
elasticity 885,1398
electric field $1486,1498,1679$
electrical dipole moment 885
electromagnetic field 1679
electromagnetic potentials 1819
electromotive force 1498
electrostatic field 1669
element of area 887
elementary chain rule 305
elementary fraction 69
ellipse 48-50, 92, 113, 173, 199, 227
ellipsoid $56,66,110,197,254,430,436,501,538$, 1107
ellipsoid of revolution 111
ellipsoidal disc 79, 199
ellipsoidal surface 180
elliptic cylindric surface $60,63,66,106$
elliptic paraboloid $60,62,66,112,247$
elliptic paraboloid of revolution 624
energy 1498
energy density 1548 , 1818
energy theorem 1921
entropy 301
Euclidean norm 162
Euclidean space 19, 21, 22
Euler's spiral 1219
exact differential form 848
exceptional point 594, 677, 920
expansion point 327
explicit given function 161
extension map 153
exterior 37-39
exterior point 38
extremum 580, 632
Faraday-Henry law of electromagnetic induction 1676
Fick's first law of diffusion 297

Fick's law 1818
field line 160
final point 170
fluid mechanics 491
flux 1535, 1540, 1549
focus $49,51,53$
force 1485
Fourier's law 297, 1817
function in several variables 154
functional matrix 303
fundamental theorem of vector analysis 1815
Gaussian integral 938
Gauß's law 1670
Gauß's law for magnetism 1671
Gauß's theorem $1499,1535,1540,1549,1580,1718$, hysteresis 1669

$$
\begin{aligned}
& 1724,1737,1746,1747,1749,1751,1817, \\
& 1818,1889,1890,1913
\end{aligned}
$$

Gauß's theorem in $\mathbb{R}^{2} 1543$
Gauß's theorem in $\mathbb{R}^{3} 1543$
general chain rule 314
general coordinates 1016
general space integral 1020
general Taylor's formula 325
generalized spherical coordinates 21
generating curve 499
generator 66,180
geometrical analysis 1015
global minimum 613
gradient $295,296,298,339,847,1739,1741$
gradient field 631, 847, 1485, 1487, 1489, 1491, 1916
gradient integral theorem 1489, 1499
graph 158, 179, 499, 1229
Green's first identity 1890
Green's second identity 1891, 1895
Green's theorem in the plane 1661, 1669, 1909
Green's third identity 1896
Green's third identity in the plane 1898
half-plane 41, 42
half-strip 41, 42
half disc 85
harmonic function 426, 427, 1889
heat conductivity 297
heat equation 1818
heat flow 297
height 42
helix 1169,1235

Helmholtz's theorem 1815
homogeneous function 1908
homogeneous polynomial 339, 372
Hopf's maximum principle 1905
hyperbola $48,50,51,88,195,217,241,255,1290$
hyperbolic cylindric surface $60,63,66,105,110$
hyperbolic paraboloid $60,62,66,246,534,614$, 1445
hyperboloid 232, 1291
hyperboloid of revolution 104
hyperboloid of revolution with two sheets 111
hyperboloid with one sheet $56,66,104,110,247$, 255
hyperboloid with two sheets $59,66,104,110,111$, 255,527
identity map 303
implicit given function 21,161
implicit function theorem 492, 503
improper integral 1411
improper surface integral 1421
increment 611
induced electric field 1675
induction field 1671
infinitesimal vector 1740
infinity, signed 162
infinity, unspecified 162
initial point 170
injective map 153
inner product $23,29,33,163,168,1750$
inspection 861
integral 847
integral over cylindric surface 1230
integral over surface of revolution 1232
interior 37-40
interior point 38
intrinsic boundary 1227
isolated point 39
Jacobian 1353, 1355
Kronecker symbol 23
Laplace equation 1889
Laplace force 1819
Laplace operator 1743
latitude 35
length 23
level curve 159, 166, 198, 492, 585, 600, 603
level surface 198, 503
limit 162, 219
line integral 1018, 1163
line segment 41
Linear Algebra 627
linear space 22
local extremum 611
logarithm 189
longitude 35
Lorentz condition 1824
Maclaurin's trisectrix 973, 975
magnetic circulation 1674
magnetic dipole moment 886, 1821
magnetic field 1491, 1498, 1679
magnetic flux 1544, 1671, 1819
magnetic force 1674
magnetic induction 1671
magnetic permeability of vacuum 1673
magnostatic field 1671
main theorems 185
major semi-axis 49
map 153
MAPLE $55,68,74,156,171,173,341,345,350$, $352-354,356,357,360,361,363,364$, 366, 368, 374, 384-387, 391-393, 395397, 401, 631, 899, 905-912, 914, 915, 917, 919, 922-924, 926, 934, 935, 949, 951, 954, 957-966, 968, 971-973, 975, 1032-1034, 1036, 1037, 1039, 1040, 1042, 1053, 1059, 1061, 1064, 1066-1068, 10701072, 1074, 1087, 1089, 1091, 1092, 1094, $1095,1102,1199,1200$
matrix product 303
maximal domain 154,157
maximum $382,579,612,1916$
maximum value 922
maximum-minimum principle for harmonic functions 1895
Maxwell relation 302
Maxwell's equations 1544, 1669, 1670, 1679, 1819
mean value theorem $321,884,1276,1490$
mean value theorem for harmonic functions 1892
measure theory 1015
Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157, 1347, 1479, 1651, 1801, 1921
meridian curve 181, 251, 499, 1232
meridian half-plane $34,35,43,181,1055,1057$, 1081
method of indefinite integration 859
method of inspection 861
method of radial integration 862
minimum 186, 178, 579, 612, 1916
minimum value 922
minor semi-axis 49
mmf 1674
Möbius strip 185, 497
Moivre's formula $122,264,452,548,818,984$, $1132,1322,1454,1626,1776,1930$
monopole 1671
multiple point 171
nabla 296, 1739
nabla calculus 1750
nabla notation 1680
natural equation 1215
natural parametric description 1166, 1170
negative definite matrix 627
negative half-tangent 485
neighbourhood 39
neutral element 22
Newton field 1538
Newton-Raphson iteration formula 583
Newton's second law 1921
non-oriented surface 185
norm 19, 23
normal 1227
normal derivative 1890
normal plane 487
normal vector 496, 1229
octant 83
Ohm's law 297
open ball 38
open domain 176
open set 21, 39
order of expansion 322
order relation 579
ordinary integral 1017
orientation of a surface 182
orientation $170,172,184,185,497$
oriented half line 172
oriented line 172
oriented line segment 172
orthonormal system 23
parabola 52, 53, 89-92, 195, 201, 229, 240, 241
parabolic cylinder 613
parabolic cylindric surface 64,66
paraboloid of revolution $207,613,1435$
parallelepipedum 27, 42
parameter curve $178,496,1227$
parameter domain 1227
parameter of a parabola 53
parametric description 170, 171, 178
parfrac 71
partial derivative 298
partial derivative of second order 318
partial derivatives of higher order 382
partial differential equation 398,402
partial fraction 71
Peano 483
permeability 1671
piecewise C^{k}-curve 484
piecewise C^{n}-surface 495
plane 179
plane integral 21, 887
point of contact 487
point of expansion 304,322
point set 37
Poisson's equation 1814, 1889, 1891, 1901
polar coordinates $15,19,21,30,85,88,147,163$, $172,213,219,221,289,347,388,390$, 477, 573, 611, 646, 720, 740, 841, 936, $1009,1016,1157,1165,1347,1479,1651$, 1801
polar plane integral 1018
polynomial 297
positive definite matrix 627
positive half-tangent 485
positive orientation 173
potential energy 1498
pressure 1818
primitive 1491
primitive of gradient field 1493
prism 42
Probability Theory 15, 147, 289, 477, 573, 841, $1009,1157,1347,1479,1651,1801$
product set 41
projection 23,157
proper maximum $612,618,627$
proper minimum $612,613,618,627$
pseudo-sphere 1434
Pythagoras's theorem 23, 25, 30, 121, 451, 547, 817, 983, 1131, 1321, 1453, 1625, 1775, 1929
quadrant 41, 42, 84
quadratic equation 47
range 153
rectangle 41, 87
rectangular coordinate system 29
rectangular coordinates $15,21,22,147,289,477$, 573, 841, 1009, 1016, 1079, 1157, 1165, 1347, 1479, 1651, 1801
rectangular plane integral 1018
rectangular space integral 1019
rectilinear motion 19
reduction of a surface integral 1229
reduction of an integral over cylindric surface 1231
reduction of surface integral over graph 1230
reduction theorem of line integral 1164
reduction theorem of plane integral 937
reduction theorem of space integral 1021, 1056
restriction map 153
Ricatti equation 369
Riesz transformation 1275
Rolle's theorem 321
rotation 1739, 1741, 1742
rotational body 1055
rotational domain 1057
rotational free vector field 1662
rules of computation 296
saddle point 612
scalar field 1485
scalar multiplication 22, 1750
scalar potential 1807
scalar product 169
scalar quotient 169
second differential 325
semi-axis 49, 50
semi-definite matrix 627
semi-polar coordinates $15,19,21,33,147,181$, $182,289,477,573,841,1009,1016,1055$, 1086, 1157, 1231, 1347, 1479, 1651, 1801
semi-polar space integral 1019
separation of the variables 853
signed curve length 1166
signed infinity 162
simply connected domain 849, 1492
simply connected set 176,243
singular point 487,489
space filling curve 171
space integral 21, 1015
specific capacity of heat 1818
sphere 35,179
spherical coordinates $15,19,21,34,147,179,181$, $289,372,477,573,782,841,1009,1016$, 1078, 1080, 1081, 1157, 1232, 1347, 1479, 1581, 1651, 1801
spherical space integral 1020
square 41
star-shaped domain 1493, 1807
star shaped set $21,41,89,90,175$
static electric field 1498
stationary magnetic field 1821
stationary motion 492
stationary point 583,920
Statistics $15,147,289,477,573,841,1009,1157$, 1347, 1479, 1651, 1801
step line 172
Stokes's theorem 1499, 1661, 1676, 1679, 1746, $1747,1750,1751,1811,1819,1820,1913$
straight line (segment) 172
strip 41, 42
substantial derivative 491
surface 159, 245
surface area 1296
surface integral 1018, 1227
surface of revolution 110, 111, 181, 251, 499
surjective map 153

tangent 486

tangent plane 495, 496
tangent vector 178
tangent vector field 1485
tangential line integral $861,1485,1598,1600,1603$
Taylor expansion 336
Taylor expansion of order 2,323
Taylor's formula 321, 325, 404, 616, 626, 732
Taylor's formula in one dimension 322
temperature 297
temperature field 1817
tetrahedron 93, 99, 197, 1052
Thermodynamics 301, 504
top point $49,50,53,66$
topology $15,19,37,147,289.477,573,841,1009$, 1157, 1347, 1479, 1651, 1801
torus 43, 182-184
transformation formulæ1353
transformation of space integral 1355, 1357
transformation theorem 1354
trapeze 99
triangle inequality 23,24
triple integral 1022, 1053
uniform continuity 186
unit circle 32
unit disc 192
unit normal vector 497
unit tangent vector 486
unit vector 23
unspecified infinity 162
vector 22
vector field $158,296,1485$
vector function $21,157,189$
vector product 19, 26, 30, 163, 169. 1227, 1750
vector space 21,22
vectorial area 1748
vectorial element of area 1535
vectorial potential 1809, 1810
velocity 490
volume 1015, 1543
volumen element 1015
weight function 1081, 1229, 1906
work 1498
zero point 22
zero vector 22
($r, s, t)$-method 616, 619, 633, 634, 638, 645-647, 652, 655
C^{k}-curve 483
C^{n}-functions 318
1-1 map 153

