bookboon.com # Real Functions in Several Variables: Volume IX sformation of Integrals and Improper Integrals Leif Mejlbro Download free books at bookboon.com Leif Mejlbro # **Real Functions in Several Variables** Volume IX Transformation of Integrals and Improper Integrals Real Functions in Several Variables: Volume IX Transformation of Integrals and Improper Integrals 2nd edition © 2015 Leif Mejlbro & bookboon.com ISBN 978-87-403-0916-4 ## Contents | V | olum | he I, Point Sets in \mathbb{R}^n | 1 | |----|---|--|--| | Pr | Preface 15 | | | | In | trodu | action to volume I, Point sets in \mathbb{R}^n . The maximal domain of a function | 19 | | 1 | | Introduction The real linear space \mathbb{R}^n The vector product The most commonly used coordinate systems Point sets in space 1.5.1 Interior, exterior and boundary of a set 1.5.2 Starshaped and convex sets 1.5.3 Catalogue of frequently used point sets in the plane and the space Quadratic equations in two or three variables. Conic sections 1.6.1 Quadratic equations in two variables. Conic sections 1.6.2 Quadratic equations in three variables. Conic sectional surfaces 1.6.3 Summary of the canonical cases in three variables. | 22
26
29
37
40
41
47
47 | | 2 | 2.1
2.2
2.3
2.4 | Introduction | 67
69
72 | | 3 | 3.1
3.2 | mples of point sets Point sets Conics and conical sections | | | 4 | Form
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11 | mulæ 118 Squares etc. 11 Powers etc. 11 Differentiation 11 Special derivatives 11 Integration 11 Special antiderivatives 11 Trigonometric formulæ 12 Hyperbolic formulæ 12 Complex transformation formulæ 12 Taylor expansions 12 Magnitudes of functions 12 | | | In | dex | Magmidade of Ianonome | 127 | | V | olum | e II, Continuous Functions in Several Variables | 133 | | | |----|--|--|------------|--|--| | Pr | Preface | | | | | | In | Introduction to volume II, Continuous Functions in Several Variables | | | | | | 5 | 5 Continuous functions in several variables | | | | | | | 5.1 | Maps in general | | | | | | 5.2 | Functions in several variables | | | | | | 5.3 | Vector functions | | | | | | 5.4 | Visualization of functions | | | | | | 5.5 | Implicit given function | | | | | | 5.6 | Limits and continuity | | | | | | 5.7 | Continuous functions | | | | | | 5.8 | Continuous curves | | | | | | | 5.8.2 Change of parameter of a curve | | | | | | 5.9 | Connectedness | | | | | | | Continuous surfaces in \mathbb{R}^3 | | | | | | 0.10 | 5.10.1 Parametric description and continuity | | | | | | | 5.10.2 Cylindric surfaces | | | | | | | 5.10.3 Surfaces of revolution | | | | | | | 5.10.4 Boundary curves, closed surface and orientation of surfaces | 182 | | | | | 5.11 | Main theorems for continuous functions | 185 | | | | 6 | A u | seful procedure | 189 | | | | | 6.1 | The domain of a function | 189 | | | | 7 | | mples of continuous functions in several variables | 191 | | | | | 7.1 | Maximal domain of a function | | | | | | 7.2 | Level curves and level surfaces | | | | | | $7.3 \\ 7.4$ | Continuous functions | | | | | | $7.4 \\ 7.5$ | Connected sets | | | | | | 7.6 | Description of surfaces | | | | | 0 | | * | | | | | 8 | 8.1 | nulæ
Squares etc | 257 | | | | | 8.2 | Powers etc. | | | | | | 8.3 | Differentiation | | | | | | 8.4 | Special derivatives | | | | | | 8.5 | Integration | | | | | | 8.6 | Special antiderivatives | | | | | | 8.7 | Trigonometric formulæ | | | | | | 8.8 | Hyperbolic formulæ | | | | | | 8.9 | Complex transformation formulæ | | | | | | 8.10 | Taylor expansions | 266 | | | | | 8.11 | Magnitudes of functions | 267 | | | | In | \mathbf{dex} | | 269 | | | | V | olum | ne III, Differentiable Functions in Several Variables | 275 | | | |---|---|---|-----|--|--| | Pr | Preface | | | | | | Introduction to volume III, Differentiable Functions in Several Variables | | | | | | | 9 | Differentiable functions in several variables | | | | | | | 9.1 | Differentiability | 295 | | | | | | 9.1.1 The gradient and the differential | 295 | | | | | | 9.1.2 Partial derivatives | 298 | | | | | | 9.1.3 Differentiable vector functions | 303 | | | | | | 9.1.4 The approximating polynomial of degree 1 | 304 | | | | | 9.2 | The chain rule | | | | | | | 9.2.1 The elementary chain rule | 305 | | | | | | 9.2.2 The first special case | 308 | | | | | | 9.2.3 The second special case | 309 | | | | | | 9.2.4 The third special case | 310 | | | | | | 9.2.5 The general chain rule | 314 | | | | | 9.3 | Directional derivative | 317 | | | | | 9.4 | C^n -functions | 318 | | | | | 9.5 | Taylor's formula | 321 | | | | | | 9.5.1 Taylor's formula in one dimension | 321 | | | | | | 9.5.2 Taylor expansion of order 1 | 322 | | | | | | 9.5.3 Taylor expansion of order 2 in the plane | 323 | | | | | | 9.5.4 The approximating polynomial | 326 | | | | 10 | Sor | me useful procedures | 333 | | | | | 10.1 | Introduction | 333 | | | | | 10.2 | The chain rule | 333 | | | | | 10.3 | Calculation of the directional derivative | | | | | | 10.4 | Approximating polynomials | 336 | | | | 11 | Exa | amples of differentiable functions | 339 | | | | | 11.1 | Gradient | 339 | | | | | 11.2 | The chain rule | | | | | | 11.3 | Directional derivative | 375 | | | | | 11.4 | Partial derivatives of higher order | 382 | | | | | 11.5 | Taylor's formula for functions of several variables | 404 | | | | 12 | For | rmulæ | 445 | | | | | 12.1 | Squares etc. | 445 | | | | | 12.2 | Powers etc | 445 | | | | | 12.3 | Differentiation | 446 | | | | | 12.4 | Special derivatives | 446 | | | | | 12.5 | Integration | 448 | | | | | 12.6 | Special antiderivatives | 449 | | | | | 12.7 | Trigonometric formulæ | 451 | | | | | 12.8 | Hyperbolic formulæ | 453 | | | | | 12.9 | Complex transformation formulæ | 454 | | | | | 12.10 | Taylor expansions | 454 | | | | | 12.11 | Magnitudes of functions | 455 | | | | In | \mathbf{dex} | | 457 | | | | Volum | e IV, Differentiable Functions in Several Variables | 463 | |---------|---|-------------| | Preface | | 477 | | Introdu | ction to volume IV, Curves and Surfaces | 481 | | 13 Di | fferentiable curves and surfaces, and line integrals in several variables | 483 | | 13.1 | Introduction | 483 | | 13.2 | Differentiable curves | $\dots 483$ | | 13.3 | Level curves | $\dots 492$ | | 13.4 | Differentiable surfaces | | | 13.5 | Special C^1 -surfaces | 499 | | 13.6 | Level surfaces | 503 | | 14 Ex | amples of tangents (curves) and tangent planes (surfaces) | 505 | | 14.1 | Examples of tangents to curves | | | 14.2 | Examples of tangent planes to a surface | $\dots 520$ | | 15 For | | 541 | | 15.1 | Squares etc. | | | 15.2 | Powers etc. | | | 15.3 | Differentiation | | | 15.4 | Special derivatives | | | 15.5 | Integration | | | 15.6 | Special antiderivatives | | | 15.7 | Trigonometric formulæ | | | 15.8 | Hyperbolic formulæ | | | 15.9 | Complex transformation formulæ | | | 15.10 | v i | | | 15.11 | Magnitudes of functions | $\dots 551$ | | Index | | 553 | | Volum | e V, Differentiable Functions in Several Variables | 559 | | Preface | | 573 | | Introdu | ction to volume V, The range of a function, Extrema of a Function | | | | everal Variables | 577 | | 16 Th | ne range of a function | 57 9 | | | Introduction | | | | Global extrema of a continuous function | | | 10.2 | 16.2.1 A necessary condition | | | | 16.2.2 The case of a closed and bounded domain of f | | | | 16.2.3 The case of a bounded but not closed domain of f | | | | 16.2.4 The case of an unbounded domain of f | | | 16.3 | Local extrema of a continuous function | | | 10.0 | 16.3.1 Local extrema in general | | | | 16.3.2 Application of Taylor's formula | | | 16.4 | Extremum for continuous functions in three or more variables | | | | camples of global and local extrema | 631 | | 17.1 | MAPLE | | | 17.2 | Examples of extremum for two variables | | | | Examples of extremum for three variables | 668 | | 17.4 | Examples of maxima and minima | 677 | | |---------------|---|-----|--| | 17.5 | Examples of ranges of functions | 769 | | | 18 Formulæ 81 | | | | | 18.1 | Squares etc. | 811 | | | 18.2 | Powers etc. | 811 | | | 18.3 | Differentiation | 812 | | | 18.4 | Special derivatives | 812 | | | 18.5 | Integration | | | | 18.6 | Special antiderivatives | | | | 18.7 | Trigonometric formulæ | | | | 18.8 | Hyperbolic formulæ | | | | 18.9 | Complex transformation formulæ | | | | 18.10 | v i | | | | 18.11 | Magnitudes of functions | 821 | | | Index | | 823 | | | Volum | ne VI, Antiderivatives and Plane Integrals | 829 | | | Preface | | 841 | | | | | 041 | | | | action to volume VI, Integration of a function in several variables | 845 | | | | iderivatives of functions in several variables | 847 | | | | The theory of antiderivatives of functions in several variables | | | | 19.2 | 1 0 | | | | | Examples of gradient fields and antiderivatives | | |
| | gration in the plane | 881 | | | | An overview of integration in the plane and in the space | | | | | Introduction | | | | 20.3 | The plane integral in rectangular coordinates | | | | | 20.3.1 Reduction in rectangular coordinates | | | | 20.4 | 20.3.2 The colour code, and a procedure of calculating a plane integral | | | | | Examples of the plane integral in rectangular coordinates | | | | 20.5 | | | | | | Procedure of reduction of the plane integral; polar version | | | | | Examples of the plane integral in polar coordinates | | | | | Examples of area in polar coordinates | | | | 21 Fo | | 977 | | | 21.1 | Squares etc. | | | | | Powers etc. | | | | 21.3 | Differentiation | | | | 21.4 | Special derivatives | | | | 21.5 | Integration | | | | 21.6 | Special antiderivatives | | | | 21.7 | Trigonometric formulæ | | | | 21.8 | Hyperbolic formulæ | | | | 21.9 | Complex transformation formulæ | | | | 21.10 | v 1 | | | | 21.11 | Magnitudes of functions | | | | Index | | 989 | | | Volume VII, Space Integrals | | 995 | | | |-----------------------------|--|------|--|--| | Preface | Preface Introduction to volume VII, The space integral | | | | | Introdu | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | 22.1 | Introduction | 1015 | | | | 22.2 | Overview of setting up of a line, a plane, a surface or a space integral | | | | | 22.3 | | | | | | 22.4 | Procedure for reduction of space integral in rectangular coordinates | | | | | | Examples of space integrals in rectangular coordinates | | | | | | e space integral in semi-polar coordinates | 1055 | | | | 23.1 | Reduction theorem in semi-polar coordinates | 1055 | | | | 23.2 | Procedures for reduction of space integral in semi-polar coordinates | 1056 | | | | 23.3 | Examples of space integrals in semi-polar coordinates | 1058 | | | | 24 Th | e space integral in spherical coordinates | 1081 | | | | 24.1 | Reduction theorem in spherical coordinates | 1081 | | | | 24.2 | Procedures for reduction of space integral in spherical coordinates | 1082 | | | | 24.3 | | | | | | 24.4 | Examples of volumes | 1107 | | | | 24.5 | Y | 1116 | | | | 25 For | | 1125 | | | | 25.1 | Squares etc. | | | | | 25.2 | Powers etc. | | | | | 25.3 | Differentiation | | | | | 25.4 | Special derivatives | | | | | 25.5 | Integration | | | | | 25.6 | Special antiderivatives | | | | | 25.7 | Trigonometric formulæ | | | | | 25.8 | Hyperbolic formulæ | | | | | 25.9 | Complex transformation formulæ | | | | | 25.10 | v i | | | | | 25.11 | Magnitudes of functions | 1135 | | | | Index | | 1137 | | | | Volum | ne VIII, Line Integrals and Surface Integrals | 1143 | | | | Preface | | 1157 | | | | Introdu | action to volume VIII, The line integral and the surface integral | 1161 | | | | | e line integral | 1163 | | | | 26.1 | Introduction | | | | | 26.2 | Reduction theorem of the line integral | | | | | | 26.2.1 Natural parametric description | | | | | 26.3 | Procedures for reduction of a line integral | | | | | 26.4 | Examples of the line integral in rectangular coordinates | | | | | 26.5 | Examples of the line integral in polar coordinates | | | | | 26.6 | Examples of arc lengths and parametric descriptions by the arc length | 1201 | | | | 27 The surface integral | | | | | | |---------------------------------------|---|--|--------------------|--|--| | | 27.1 The reduction theorem for a surface integral | | | | | | | 27.1.1 The integral over the graph of a function in two variables | | | | | | | | 27.1.2 The integral over a cylindric surface | | | | | | | 27.1.3 The integral over a surface of revolution | $\dots \dots 1232$ | | | | | 27.2 | Procedures for reduction of a surface integral | $\dots 1233$ | | | | | 27.3 | Examples of surface integrals | $\dots 1235$ | | | | | 27.4 | Examples of surface area | $\dots \dots 1296$ | | | | 28 | For | rmulæ | 1315 | | | | | 28.1 | Squares etc. | $\dots \dots 1315$ | | | | 28.2 Powers etc. 28.3 Differentiation | | Powers etc. | $\dots 1315$ | | | | | | $\dots\dots\dots1316$ | | | | | | | Special derivatives | $\dots 1316$ | | | | | 28.5 | Integration | | | | | | 28.6 | Special antiderivatives | $\dots \dots 1319$ | | | | | 28.7 | Trigonometric formulæ | 1321 | | | | | 28.8 | Hyperbolic formulæ | | | | | 28.9 Complex transformation formulæ | | $\dots \dots 1324$ | | | | | | 28.10 | | | | | | | 28.11 | 1 Magnitudes of functions | $\dots \dots 1325$ | | | | In | ndex 1327 | | | | | | Volum | e IX, Transformation formulæ and improper integrals | 1333 | | |--|---|------|--| | Preface | | | | | Introduction to volume IX, Transformation formulæ and improper integrals | | | | | 29 Tra | ansformation of plane and space integrals | 1353 | | | 29.1 | Transformation of a plane integral | 1353 | | | 29.2 | | | | | 29.3 | Procedures for the transformation of plane or space integrals | 1358 | | | 29.4 | Examples of transformation of plane and space integrals | 1359 | | | 30 Im | proper integrals | 1411 | | | 30.1 | Introduction | 1411 | | | 30.2 | Theorems for improper integrals | 1413 | | | 30.3 | Procedure for improper integrals; bounded domain | 1415 | | | 30.4 | Procedure for improper integrals; unbounded domain | 1417 | | | 30.5 | Examples of improper integrals | 1418 | | | 31 For | | 1447 | | | 31.1 | Squares etc. | | | | 31.2 | Powers etc. | 1447 | | | 31.3 | Differentiation | 1448 | | | 31.4 | Special derivatives | 1448 | | | 31.5 | Integration | 1450 | | | 31.6 | Special antiderivatives | 1451 | | | 31.7 | Trigonometric formulæ | | | | 31.8 | Hyperbolic formulæ | | | | 31.9 | Complex transformation formulæ | | | | 31.10 | v i | | | | 31.11 | Magnitudes of functions | 1457 | | | Index | | 1459 | | | Volum | e X, Vector Fields I; Gauß's Theorem | 1465 | | | Preface | | 1479 | | | Introdu | action to volume X, Vector fields; Gauß's Theorem | 1483 | | | | ngential line integrals | 1485 | | | 32.1 | Introduction | 1485 | | | 32.2 | The tangential line integral. Gradient fields | 1485 | | | 32.3 | Tangential line integrals in Physics | 1498 | | | 32.4 | Overview of the theorems and methods concerning tangential line integrals and | | | | | gradient fields | | | | 32.5 | Examples of tangential line integrals | 1502 | | | 33 Flu | x and divergence of a vector field. Gauß's theorem | 1535 | | | 33.1 | Flux | | | | 33.2 | Divergence and Gauß's theorem | 1540 | | | 33.3 | Applications in Physics | 1544 | | | | 33.3.1 Magnetic flux | 1544 | | | | 33.3.2 Coulomb vector field | 1545 | | | | 33.3.3 Continuity equation | | | | 33.4 | Procedures for flux and divergence of a vector field; Gauß's theorem | 1549 | | | | 33.4.1 Procedure for calculation of a flux | 1549 | | | | 33.4.2 Application of Gauß's theorem | 1549 | | | 33.5 | Examples of flux and divergence of a vector field; Gauß's theorem | | | | | 33.5.1 Examples of calculation of the flux | | | | | 33.5.2 Examples of application of Gauß's theorem | 1580 | | | 34 Formulæ | | | | | | |------------|---|------|--|--|--| | 34.1 | Squares etc. | 1619 | | | | | 34.2 | 34.2 Powers etc | | | | | | 34.3 | Differentiation | 1620 | | | | | 34.4 | Special derivatives | 1620 | | | | | 34.5 | Integration | 1622 | | | | | 34.6 | Special antiderivatives | | | | | | 34.7 | Trigonometric formulæ | | | | | | 34.8 | Hyperbolic formulæ | | | | | | 34.9 | Complex transformation formulæ | 1628 | | | | | 34.10 | Taylor expansions | | | | | | 34.11 | Magnitudes of functions | | | | | | Index | | 1631 | | | | | Volum | e XI, Vector Fields II; Stokes's Theorem | 1637 | | | | | Preface | | 1651 | | | | | Introdu | ction to volume XI, Vector fields II; Stokes's Theorem; nabla calculus | 1655 | | | | | | ation of a vector field; Stokes's theorem | 1657 | | | | | | Rotation of a vector field in \mathbb{R}^3 | 1657 | | | | | 35.2 | Stokes's theorem | 1661 | | | | | | Maxwell's equations | | | | | | | 35.3.1 The electrostatic field | | | | | | | 35.3.2 The magnostatic field | | | | | | | 35.3.3 Summary of Maxwell's equations | | | | | | 35.4 | Procedure for the calculation of the rotation of a vector field and applications of | | | | | | | Stokes's theorem | 1682 | | | | Discover the truth at www.deloitte.ca/careers Deloitte © Deloitte & Touche LLP and affiliated entities. | 35.5 | 5 Exampl | es of the calculation of the rotation of a vector field and applications of | | |--------|--------------|---|--------------| | | Stokes' | s theorem | 1684 | | | 35.5.1 | Examples of divergence and rotation of a vector field | 1684 | | | 35.5.2 | General examples | 1691 | | | 35.5.3 | Examples of applications of Stokes's theorem | 1700 | | 36 N | abla calc | ulus | 1739 | | 36. | 1 The vec | torial differential operator ∇ | 1739 | | 36.2 | 2 Differen | tiation of products | 1741 | | 36.3 | 3 Differen | tiation of second order | 1743 | | 36.4 | 4 Nabla a | pplied on ${f x}$ | $\dots 1745$ | | 36.5 | 5 The inte | egral theorems | 1746 | | 36.6 | 6 Partial | integration | 1749 | | 36. | 7 Overvie | w of Nabla calculus | 1750 | | 36.8 | 8 Overvie | w of partial integration in higher dimensions | $\dots 1752$ | | 36.9 | 9 Exampl | es in nabla calculus | 1754 | | 37 F | ormulæ | | 1769 | | 37. | 1 Squares | s etc | 1769 | | 37.5 | 2 Powers | etc | 1769 | | 37.3 | 3 Differer | ntiation | 1770 | | 37.4 | 4 Special | derivatives | 1770 | | 37.5 | 5 Integra | tion | $\dots 1772$ | | 37.0 | 6 Special | antiderivatives | $\dots 1773$ | | 37. | 7 Trigono | ometric formulæ | 1775 | | 37.8 | 8 Hyperb | oolic formulæ | 1777 | | 37.9 | 9 Comple | ex transformation formulæ | 1778 | | 37. | 10
Taylor | expansions | 1778 | | 37. | 11 Magnit | tudes of functions | 1779 | | Index | | | 1781 | | Volu | me VII | Vector Fields III; Potentials, Harmonic Functions and | | | | n's Iden | | 1787 | | | | | | | Prefac | ce | | 1801 | | Introd | luction to | volume XII, Vector fields III; Potentials, Harmonic Functions a | and | | Green | 's Identit | ies | 1805 | | 38 P | otentials | | 1807 | | 38. | 1 Definition | ons of scalar and vectorial potentials | 1807 | | 38.2 | 2 A vecto | r field given by its rotation and divergence | 1813 | | 38.3 | 3 Some ap | oplications in Physics | 1816 | | 38.4 | 4 Exampl | es from Electromagnetism | 1819 | | 38.5 | 5 Scalar a | and vector potentials | 1838 | | 39 H | armonic | functions and Green's identities | 1889 | | 39. | 1 Harmon | nic functions | 1889 | | 39.5 | 2 Green's | s first identity | 1890 | | 39.5 | Green's | s second identity | 1891 | | 39.4 | | s third identity | | | 39.5 | | s identities in the plane | | | 39.6 | | nt, divergence and rotation in semi-polar and spherical coordinates | | | 39.7 | | les of applications of Green's identities | | | 39.8 | - | ew of Green's theorems in the plane | | | 39.9 | | aneous examples | | | 40 Form | | 1923 | |---------|--------------------------------|--------------| | 40.1 | ~ 1 ···· | | | 40.2 | Powers etc | $\dots 1923$ | | 40.3 | Differentiation | 1924 | | 40.4 | Special derivatives | $\dots 1924$ | | 40.5 | Integration | | | 40.6 | Special antiderivatives | | | 40.7 | Trigonometric formulæ | 1929 | | 40.8 | Hyperbolic formulæ | | | 40.9 | Complex transformation formulæ | | | | | | | 40.11 | Magnitudes of functions | 1933 | | Index | | 1935 | SIMPLY CLEVER ŠKODA Do you like cars? Would you like to be a part of a successful brand? We will appreciate and reward both your enthusiasm and talent. Send us your CV. You will be surprised where it can take you. Send us your CV on www.employerforlife.com #### Preface The topic of this series of books on "Real Functions in Several Variables" is very important in the description in e.g. Mechanics of the real 3-dimensional world that we live in. Therefore, we start from the very beginning, modelling this world by using the coordinates of \mathbb{R}^3 to describe e.g. a motion in space. There is, however, absolutely no reason to restrict ourselves to \mathbb{R}^3 alone. Some motions may be rectilinear, so only \mathbb{R} is needed to describe their movements on a line segment. This opens up for also dealing with \mathbb{R}^2 , when we consider plane motions. In more elaborate problems we need higher dimensional spaces. This may be the case in Probability Theory and Statistics. Therefore, we shall in general use \mathbb{R}^n as our abstract model, and then restrict ourselves in examples mainly to \mathbb{R}^2 and \mathbb{R}^3 . For rectilinear motions the familiar rectangular coordinate system is the most convenient one to apply. However, as known from e.g. Mechanics, circular motions are also very important in the applications in engineering. It becomes natural alternatively to apply in \mathbb{R}^2 the so-called polar coordinates in the plane. They are convenient to describe a circle, where the rectangular coordinates usually give some nasty square roots, which are difficult to handle in practice. Rectangular coordinates and polar coordinates are designed to model each their problems. They supplement each other, so difficult computations in one of these coordinate systems may be easy, and even trivial, in the other one. It is therefore important always in advance carefully to analyze the geometry of e.g. a domain, so we ask the question: Is this domain best described in rectangular or in polar coordinates? Sometimes one may split a problem into two subproblems, where we apply rectangular coordinates in one of them and polar coordinates in the other one. It should be mentioned that in *real life* (though not in these books) one cannot always split a problem into two subproblems as above. Then one is really in trouble, and more advanced mathematical methods should be applied instead. This is, however, outside the scope of the present series of books. The idea of polar coordinates can be extended in two ways to \mathbb{R}^3 . Either to *semi-polar* or *cylindric coordinates*, which are designed to describe a cylinder, or to *spherical coordinates*, which are excellent for describing spheres, where rectangular coordinates usually are doomed to fail. We use them already in daily life, when we specify a place on Earth by its longitude and latitude! It would be very awkward in this case to use rectangular coordinates instead, even if it is possible. Concerning the contents, we begin this investigation by modelling point sets in an n-dimensional Euclidean space E^n by \mathbb{R}^n . There is a subtle difference between E^n and \mathbb{R}^n , although we often identify these two spaces. In E^n we use geometrical methods without a coordinate system, so the objects are independent of such a choice. In the coordinate space \mathbb{R}^n we can use ordinary calculus, which in principle is not possible in E^n . In order to stress this point, we call E^n the "abstract space" (in the sense of calculus; not in the sense of geometry) as a warning to the reader. Also, whenever necessary, we use the colour black in the "abstract space", in order to stress that this expression is theoretical, while variables given in a chosen coordinate system and their related concepts are given the colours blue, red and green. We also include the most basic of what mathematicians call *Topology*, which will be necessary in the following. We describe what we need by a function. Then we proceed with limits and continuity of functions and define continuous curves and surfaces, with parameters from subsets of \mathbb{R} and \mathbb{R}^2 , resp.. Continue with (partial) differentiable functions, curves and surfaces, the chain rule and Taylor's formula for functions in several variables. We deal with maxima and minima and extrema of functions in several variables over a domain in \mathbb{R}^n . This is a very important subject, so there are given many worked examples to illustrate the theory. Then we turn to the problems of integration, where we specify four different types with increasing complexity, plane integral, space integral, curve (or line) integral and surface integral. Finally, we consider *vector analysis*, where we deal with vector fields, Gauß's theorem and Stokes's theorem. All these subjects are very important in theoretical Physics. The structure of this series of books is that each subject is usually (but not always) described by three successive chapters. In the first chapter a brief theoretical theory is given. The next chapter gives some practical guidelines of how to solve problems connected with the subject under consideration. Finally, some worked out examples are given, in many cases in several variants, because the standard solution method is seldom the only way, and it may even be clumsy compared with other possibilities. I have as far as possible structured the examples according to the following scheme: - A Awareness, i.e. a short description of what is the problem. - **D** Decision, i.e. a reflection over what should be done with the problem. - I Implementation, i.e. where all the calculations are made. - **C** Control, i.e. a test of the result. This is an ideal form of a general procedure of solution. It can be used in any situation and it is not linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a situation which did not contain Mathematics at all. The student is recommended to use it also in other disciplines. From high school one is used to immediately to proceed to **I**. *Implementation*. However, examples and problems at university level, let alone situations in real life, are often so complicated that it in general will be a good investment also to spend some time on the first two points above in order to be absolutely certain of what to do in a particular case. Note that the first three points, **ADI**, can always be executed. This is unfortunately not the case with **C** Control, because it from now on may be difficult, if possible, to check one's solution. It is only an extra securing whenever it is possible, but we cannot include it always in our solution form above. I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a shorthand, because they are often (too often, I would say) misused. Instead of \land I shall either write "and", or a comma, and instead of \lor I shall write "or". The arrows \Rightarrow and \Leftrightarrow are in particular misunderstood by the students, so they should be totally avoided. They are not telegram short hands, and from a logical point of view they usually do not make sense at all! Instead, write in a plain language what you mean or want to do. This is difficult in the beginning, but after some practice it becomes routine, and it will give more precise information. When we deal with multiple integrals, one of the possible pedagogical ways of solving problems has been to colour variables, integrals and upper and lower bounds in blue, red and green, so the reader by the colour code can see in each integral what is the variable, and what are the parameters, which do not enter the integration under consideration. We shall of course build up a hierarchy of these colours, so the order of integration will always be defined. As already mentioned above we reserve the colour black for the theoretical expressions, where we cannot use ordinary calculus, because the symbols are only shorthand for a concept. The author has been very grateful to his old friend and colleague, the late Per Wennerberg Karlsson, for many discussions of how to present these difficult topics on real functions in several variables, and for his permission
to use his textbook as a template of this present series. Nevertheless, the author has felt it necessary to make quite a few changes compared with the old textbook, because we did not always agree, and some of the topics could also be explained in another way, and then of course the results of our discussions have here been put in writing for the first time. The author also adds some calculations in MAPLE, which interact nicely with the theoretic text. Note, however, that when one applies MAPLE, one is forced first to make a geometrical analysis of the domain of integration, i.e. apply some of the techniques developed in the present books. The theory and methods of these volumes on "Real Functions in Several Variables" are applied constantly in higher Mathematics, Mechanics and Engineering Sciences. It is of paramount importance for the calculations in *Probability Theory*, where one constantly integrate over some point set in space. It is my hope that this text, these guidelines and these examples, of which many are treated in more ways to show that the solutions procedures are not unique, may be of some inspiration for the students who have just started their studies at the universities. Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed. I hope that the reader will forgive me the unavoidable errors. Leif Mejlbro March 21, 2015 # Introduction to volume IX, Transformation formulæ and improper integrals This is the ninth volume in the series of books on Real Functions in Several Variables. In Chapter 29 we investigate how to change variables in the integrals in the plane or space. It is shown that the previous chapters are special cases of this general theory. In particular, we obtain a new introduction of the various weight functions. Formally, Chapter 29 would suffice for the theory, but we have chosen for pedagogical reasons to describe separately the plane integral in rectangular or polar coordinates, the space integral in rectangular, semi-polar or spherical coordinates, the line integral and the surface integral, because then we can identify the weight function, which should be used in each case. In Chapter 30 we look at the cases, where $f: A \to \mathbb{R}$ is continuous, but A is either unbounded or not closed. In this case the integrand may tend to $\pm \infty$, when **x** approaches a boundary point. Such integrals called improper integrals. One should for improper integrals always split the integrand f into its positive and negative parts, i.e. $$f(\mathbf{x}) = f_{+}(\mathbf{x}) - f_{-}(\mathbf{x}),$$ where $$f_{+}(\mathbf{x}) := \begin{cases} f(\mathbf{x}) & \text{if } f(\mathbf{x}) > 0, \\ 0 & \text{if } f(\mathbf{x}) \leq 0, \end{cases} \qquad f_{-}(\mathbf{x}) := \begin{cases} 0 & \text{if } f(\mathbf{x}) > 0, \\ -f(\mathbf{x}) & \text{if } f(\mathbf{x}) \leq 0, \end{cases}$$ where for technical reasons both f_+ and f_- are nonnegative. Then we discuss the possible definition of $$\int_A f(\mathbf{x}) \, \mathrm{d}\mu, \qquad \text{provided that } f(\mathbf{x}) \ge 0 \text{ for all } \mathbf{x} \in A,$$ i.e. for f nonnegative. Or, alternatively, split the domain $A=A_+\cup A_-$, where f>0 on A_+ and $f\leq 0$ on A_- . If both f_+ and f_- have finite values of their (proper or improper) integrals, then we say that $$\int_{A} f(\mathbf{x}) d\mu := \int_{A} f_{+}(\mathbf{x}) d\mu - \int_{A} f_{-}(\mathbf{x}) d\mu = \int_{A} f(\mathbf{x}) d\mu + \int_{A} f(\mathbf{x}) d\mu \quad (\in \mathbb{R}),$$ is convergent. All the integrals above, plane, space and surface integrals, can be improper. To decide whether they are convergent or not, we split them as above and then use a truncation technique and finally let the truncations shrink towards the "singular points" on the (intrinsic) boundary of A to see if we have convergence or divergence. ### 29 Transformation of plane and space integrals #### 29.1 Transformation of a plane integral We shall in this section see how we can integrate a plane integral by using a change of variables. Consider two bounded and closed plane sets $B, D \subset \mathbb{R}^2$, and let $$\mathbf{r} = (r_1, r_2) : D \to \mathbb{R}^2$$ be a C^1 vector function, which satisfies - 1) The vector function \mathbf{r} maps D onto B, i.e. $\mathbf{r}(D) = B$, so it is surjective. - 2) The vector function \mathbf{r} is injective almost everywhere. We use the coordinates $(x,y) \in B$ and $(u,v) \in D$, so we have $$x = r_1(u, v)$$ and $y = r_2(u, v)$. If we consider B as a surface, and not just a plane set, then $\int_B f(x,y) dS$ can be viewed as a surface interal, so we get from Chapter 27 that the reduction formula is $$\int_{B} f(x,y) \, dx \, dy = \int_{D} f(r_{1}(u,v), r_{2}(u,v)) \cdot ||\mathbf{N}(u,v)|| \, du \, dv.$$ When the plane domain (surface) B is imbedded in \mathbb{R}^3 , we can use the following rectangular description, $$B = \{(x, y, 0) \mid x = r_1(u, v) \text{ and } y = r_2(u, v) \text{ for } (u, v) \in D\}.$$ Then the normal vector \mathbf{N} is parallel with the z-axis, and we get $$\mathbf{N}(u,v) = \det \begin{pmatrix} \frac{\partial r_1}{\partial u} & \frac{\partial r_1}{\partial v} & 0 \\ \frac{\partial r_2}{\partial u} & \frac{\partial r_2}{\partial v} & 0 \\ \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{pmatrix} = \det \begin{pmatrix} \frac{\partial r_1}{\partial u} & \frac{\partial r_1}{\partial v} \\ \frac{\partial r_2}{\partial u} & \frac{\partial r_2}{\partial v} \end{pmatrix} \mathbf{e}_3,$$ so we have calculated the weight function, which is the absolute value of the so-called Jacobian, defined by $$\frac{\partial(x,y)}{\partial(u,v)} := \det \begin{pmatrix} \frac{\partial r_1}{\partial u} & \frac{\partial r_1}{\partial v} \\ \frac{\partial r_2}{\partial u} & \frac{\partial r_2}{\partial v} \end{pmatrix}, \qquad \|\mathbf{N}(u,v)\| = \left| \frac{\partial(x,y)}{\partial(u,v)} \right|.$$ The requirement from Chapter 27 is that the weight function is $\neq 0$ almost everywhere. We can therefore formulate (and again without a correct proof) the following theorem, **Theorem 29.1** The transformation theorem for a plane integral. Let $(x, y) \in B$ and $(u, v) \in D$, where B and D are bounded and closed sets in the (x, y)-plane, the (u, v)-plane resp.. Assume that $$\mathbf{r} = (r_1, r_2) : D \to \mathbb{R}^2$$ is a C^1 vector function, such that - 1) The vector function maps D onto B, i.e. $\mathbf{r}(D) = B$, and $x = r_1(u, v)$ and $y = r_2(u, v)$. - 2) The vector function \mathbf{r} is injective almost everywhere in D. - 3) The Jacobian is $\neq 0$ almost everywhere, i.e. $$\frac{\partial(x,y)}{\partial(u,v)} := \det \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix} \neq 0 \quad almost \ everywhere.$$ If $f; B \to \mathbb{R}$ is a continuous function, then we have the reduction formula $$\int_{B} f(x,y) dx dy = \int_{D} f(r_{1}(u,v), r_{2}(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv.$$ It is for mnemotechnical reasons that we use the old-fashioned notation of the Jacobian. The reason is that we then remember that intuitively $du\,dv$ in the "numerator" is "cancelled" by the symbol " $\partial(u,v)$ " in the "denominator", leaving " $\partial(x,y)$ " in the "numerator", which is more or less the same as $dx\,dy$ on the left hand side of the transformation formula. This incorrect notation reminds us that the Jacobian is a function of (u,v), which is more difficult to derive, when we use a more correct notation. As a simple check, let us consider the change from rectangular coordinate in the plane to polar coordinates, so \mathbf{r} is given by $$x = \varrho \cos \varphi$$ and $y = \varrho \sin \varphi$. Then $$\frac{\partial(x,y)}{\partial(\varrho,\varphi)} = \det \begin{pmatrix} \frac{\partial x}{\partial \varrho} & \frac{\partial x}{\partial \varphi} \\ \frac{\partial y}{\partial \varrho} & \frac{\partial y}{\partial \varphi} \end{pmatrix} = \det \begin{pmatrix} \cos \varphi & -\varrho \sin \varphi \\ \sin \varphi & \varrho \cos \varphi \end{pmatrix} = \varrho,$$ which is precisely the weight function we found previously in Chapter 20, when we used polar coordinates, so we have again derived the well-known formula $$\int_{B} f(x, y) \, \mathrm{d}x \, \mathrm{d}y = \int_{D} f(\varrho \cos \varphi, \varrho \sin \varphi) \varrho \, \mathrm{d}\varrho \, \mathrm{d}\varphi.$$ #### 29.2 Transformation of a space integral Since in the previous section $$\|\mathbf{N}(u,v)\| = \left| \frac{\partial(x,y)}{\partial(u,v)} \right| = \left| \det \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix} \right|$$ is the area of the parallelogram formed by the tangents of the two parameter curves, this gives us a clue of what we should expect in three The analogue in three dimensions is a map $\mathbf{r} = (r_1, r_2, r_3) : D \to B$, where we use the notation $$(x, y, z) = (r_1(u, v, w), r_2(u, v, w), r_3(u, v, w)),$$ and where we assume that \mathbf{r} is surjective, and injective almost everywhere. The *Jacobian* is here $$\frac{\partial(x,y,z)}{\partial(u,v,w)} := \det \left(\begin{array}{ccc} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{array} \right).$$ It is well-known from *Linear Algebra* that the absolute value of the *Jacobian* is the volume of the parallelepipidum spanned by the three tangents of the three parameter curves at a given point. In other words, our parallelepipeda are the building stones, which we use when we build up the 3-dimensional integral, and their volumes, the absolute
value of the Jacobian, form the weight function. The above makes the following theorem plausible. We quote it – as usual without a correct proof. **Theorem 29.2** Transformation theorem for a space integral Let $(x, y, z) \in B$ and $(u, v, w) \in D$, where $B \subset \mathbb{R}^3$ and $D \subset \mathbb{R}^3$ are bounded and closed sets. Assume that $$\mathbf{r} = (r_1, r_2, r_3) : D \to \mathbb{R}^3$$ is a C^1 vector function, such that 1) The vector function \mathbf{r} maps D onto B, i.e. $\mathbf{r}(D) = B$, and $$x = r_1(u, v, w),$$ $y = r_2(u, v, w),$ $z = r_3(u, v, w).$ - 2) The function \mathbf{r} is injective almost everywhere. - 3) The Jacobian is $\neq 0$ almost everywhere, i.e. $$\frac{\partial(x,y,z)}{\partial(u,v,w)} := \det \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{pmatrix} \neq 0 \quad almost \ everywhere.$$ If $f: B \to \mathbb{R}$ is a continuous function, then the reduction formula is $$\int_B f(x,y,z)\,\mathrm{d} x\,\mathrm{d} y\,\mathrm{d} z = \int_D f\left(r_1(u,v,w),r_2(u,v,w),r_3(u,v,w)\right) \left|\frac{\partial(x,y,z)}{\partial(u,v,w)}\right|\,\mathrm{d} u\,\mathrm{d} v\,\mathrm{d} w.$$ Let us check this formula by transforming the integral in rectangular coordinates into spherical coordinates, i.e. **r** is here specified by $$x = r \sin \theta \cos \varphi,$$ $y = r \sin \theta \cos \varphi,$ $z = r \cos \theta.$ Then the Jacobian is $$\begin{split} \frac{\partial(x,y,z)}{\partial(r,\theta,\varphi)} &= \det \begin{pmatrix} \sin\theta\cos\varphi & r\cos\theta\cos\varphi & -r\sin\theta\sin\varphi \\ \sin\theta\cos\varphi & r\cos\theta\sin\varphi & r\cos\theta\cos\varphi \end{pmatrix} \\ &= \cos\theta\det \begin{pmatrix} r\cos\theta\cos\varphi & -r\sin\theta\sin\varphi \\ r\cos\theta\sin\varphi & r\sin\theta\cos\varphi \end{pmatrix} + r\sin\theta\det \begin{pmatrix} \sin\theta\cos\varphi & -r\sin\theta\sin\varphi \\ \sin\theta\sin\varphi & r\sin\theta\cos\varphi \end{pmatrix} \\ &= r^2\cos^2\theta\sin\theta\det \begin{pmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix} + r^2\sin^3\theta\det \begin{pmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix} \\ &= r^2\sin\theta\left\{\cos^2\theta + \sin^2\theta\right\} = r^2\sin\theta, \end{split}$$ so we have indeed obtained the same weight function as we found in Chapter 24. #### 29.3 Procedures for the transformation of plane or space integrals All the reduction formulæ in the previous chapters are special cases of more general formulæ. The presentations were using the classical coordinate systems: the rectangular, polar, semi-polar, and the spherical coordinate systems. When the coordinate system under consideration is not one of these we must use the general formulæ form the present section instead. #### A. Dimension 2. - 1) Find a suitable parameter representation $(x, y) = \mathbf{r}(u, v)$, $(u, v) \in D$. Sketch the parametric domain D and argue *briefly* that $\mathbf{r}(u, v)$ is injective, with the exception of e.g. a *finite* number of points. (More precisely one can neglect a so-called null set; which usually is not defined in elementary courses in Calculus). Show also that the *range* is $\mathbf{r}(D) = B$. - 2) Calculate the Jacobian $$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}.$$ Note here that one is forced to find x and y as functions of (u, v) in 1) in order to calculate the Jacobian. The area element is $$dS = dx dy = \left| \frac{\partial(x, y)}{\partial(u, v)} \right| du dv,$$ where the area element dx dy is lying in B, while the area element du dv is lying in the parametric domain D. 3) Insert the result and calculate the right hand side by previous known methods in the expression $$\int_{B} f(x, y) dx dy = \int_{D} f(\mathbf{r}(u, v)) \left| \frac{\partial(x, y)}{\partial(u, v)} \right| du dv.$$ **Remark 29.1** Usually u and v are given as functions in x and y instead of the form we shall use: (29.1) $$u = U(x, y)$$ and $v = V(x, y)$. Then one has to solve these equations with respect to x and y. If we in this way obtain a unique solution, then we have at the same time implicitly proved that the map is injective. Apply furthermore (29.1) to find the images of the boundary curves of B, thereby finding the boundary of D. Finally, the parametric domain D is identified. \Diamond #### B. Dimension 3. Formally the procedure is the same as in section A with obvious modifications due to the higher dimension. - 1) Find a suitable parametric representation $(x, y, z) = \mathbf{r}(u, v, w), (u, v, w) \in D$. (This will usually be given, possibly in the form u = U(x, y, z), v = V(x, y, z), w = W(x, y, z). If so, solve these equations with respect to x, y, z). - Sketch the parametric domain D and argue (briefly) that the mapping $\mathbf{r}(u, v, w)$ is injective almost everywhere. Show that the range is $\mathbf{r}(D) = B$. Cf. also the remarks to section A. 2) Calculate the **Jacobian** $$\frac{\partial(x,y,z)}{\partial(u,v,w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}.$$ Then the volume element is $$d\Omega = dx dy dz = \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| du dv dw,$$ where one must be careful not to forget the numerical signs of the Jacobian. 3) Insert and calculate the right hand side by means of one of the previous methods in the formula $$\int_{B} f(x, y, z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \int_{D} f(\mathbf{r}(u, v, w)) \, \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| \, \mathrm{d}u \, \mathrm{d}v \, \mathrm{d}w.$$ #### 29.4 Examples of transformation of plane and space integrals #### Example 29.1 A. Calculate the plane integral $$I = \int_{B} \cos\left(\frac{y-x}{y+x}\right) \, \mathrm{d}x \, \mathrm{d}y$$ over the trapeze shown on the figure. **D.** A direct calculation applying one of the usual reduction theorems is not possible, because none of the forms $$\int \cos\left(\frac{y-x}{y+x}\right) dx = \int \cos\left(\frac{2y}{y+x} - 1\right) dx = \int \cos\left(1 - \frac{2x}{y+x}\right) dy$$ can be integrated within the realm of our known functions. The situation is even worse in polar coordinates. Therefore, the only possibility left is to find a convenient transform, such that the integrand becomes more easy to handle. Figure 29.1: The trapeze B. The unpleasant thing is of course the fraction $\frac{y-x}{y+x}$. One idea would be to introduce the numerator as a new variable, and the denominator as another new variable. If we do this, then we must show that we obtain a *unique* correspondence between the domain B and a *parametric domain* D, which also should be found. Finally we shall find the *Jacobian*. When we have found all the terms in the transformation formula, then calculate the integral. **Remark 29.2** This time we see that it is here quite helpful to start the discussion in \mathbf{D} , which is not common knowledge from high school. First we discuss the problem. Based on this discussion we make a decision on the further procedure. \Diamond I. According to **D**. we choose the numerator and the denominator as our new variables. Most people would here choose the *numerator* as u and the *denominator* as v, so we shall do the same, although it can be shown that we shall get simpler calculations if we interchange the definition of u and v. We therefore put as the most natural choice (29.2) numerator: $$u = y - x$$ and denominator: $v = y + x$. Then we shall prove that this gives a *one-to-one* correspondence. This means that we for any given u and v obtain unique solutions x and y: $$x = \frac{v - y}{2}$$ and $y = \frac{u + v}{2}$. Obviously the transform is continuous both ways. Since B is closed and bounded, the range D by this transform is again closed and bounded, cf. the important second main theorem for continuous functions. Since the transform is one-to-one *everywhere*, the boundary ∂B is mapped one-to-one onto the boundary ∂D . This is expressed in the following way: - 1) The line x + y = 1 corresponds by (29.2) to v = 1. - 2) The line y = x, i.e. y x = 0, corresponds by (29.2) to u = 0. - 3) The line y + x = 4 corresponds by (29.2) to v = 4. - 4) The line y = 3x corresponds to $\frac{u+v}{2} = 3\frac{v-u}{2}$, i.e. to v = 2u. Figure 29.2: The parametric domain D. The oblique line has the equation v = 2u or $u = \frac{1}{2}v$ as its representation. The only closed and bounded domain in the (u, v)-plane, which has the new boundary curves as its boundary is D as indicated on the figure. In practice one draws the lines v = 1, u = 0, v = 4 and v = 2u and use the figure to find out where the bounded set D is situated, such that the boundary consists of parts of all four lines. Then we calculate the weight function $\left| \frac{\partial(x,y)}{\partial(u,v)} \right|$. The "old fashioned" notation above indicates that we shall use the transform, where x and y (in the "numerator") are functions of u and v (in the "denominator"), i.e. $$x = \frac{1}{2}v - \frac{1}{2}u$$ and $y = \frac{1}{2}u + \frac{1}{2}v$. This gives us the *Jacobian* $$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} \end{vmatrix} = \frac{1}{2} \cdot \frac{1}{2} \begin{vmatrix} -1 & 1 \\ 1 & 1 \end{vmatrix} = \frac{1}{4} \cdot (-2) = -\frac{1}{2}.$$ It follows that the Jacobian is negative, hence the weight function becomes $$\left| \frac{\partial(x,y)}{\partial(u,v)} \right| = \frac{1}{2}.$$ **Remark 29.3** If we here interchange u and v in (29.2), then we obtain that the Jacobian becomes positive. \Diamond We have now come to the reduction formula, $$I = \int_{B} \cos\left(\frac{y-x}{y+x}\right) dx dy = \int_{D} \cos\left(\frac{u}{v}\right) \cdot \frac{1}{2} du dv.$$ Note that both sides here are abstract plane integrals. We see on the right hand side that $\int \cos\left(\frac{u}{v}\right) dv$ cannot be integrated within the realm of our known arsenal of functions. But $\int \cos\left(\frac{u}{v}\right) du$ can! Therefore, when we reduce the plane integral on the right hand side we put the u-integral as the inner integral. Then $$I = \frac{1}{2} \int_D \cos\left(\frac{u}{v}\right) \, \mathrm{d}u \, \mathrm{d}v = \frac{1}{2} \int_1^4 \left\{ \int_0^{\frac{v}{2}} \cos\left(\frac{u}{v}\right) \, \mathrm{d}u \right\} \, \mathrm{d}v.$$ When $v \neq 0$ is kept constant, we get from the inner integral $$\int_0^{\frac{v}{2}} \cos\left(\frac{u}{v}\right) du = \left[v \sin\left(\frac{u}{v}\right)\right]_0^{\frac{v}{2}} = v \sin\left(\frac{v}{2} \cdot \frac{1}{v}\right) = \sin\left(\frac{1}{2}\right) \cdot v,$$ where $\sin\left(\frac{1}{2}\right)$ is a constant, which shall *not* be found explicitly! (Note that at $\frac{1}{2}$ radian is *not* equal to $\frac{\pi}{2}$). Finally we get by insertion $$I = \frac{1}{2} \int_1^4 \sin\left(\frac{1}{2}\right) \cdot v \, \mathrm{d}v = \frac{1}{2} \, \sin\left(\frac{1}{2}\right) \cdot \left[\frac{1}{2} \, v^2\right]_1^4 = \frac{15}{4} \, \sin\left(\frac{1}{2}\right). \qquad \diamondsuit$$ #### Example 29.2 #### A. Let $$A = \{(x, y, z) \mid 0 \le x \le 1, 0 \le y \le \sqrt{x}, -y \le z \le y\}.$$ calculate $$I = \int_A \frac{\exp\left((2 - y - z)^3\right)}{4 + y + z} d\Omega.$$ Figure 29.3: The domain A. Note the different scales on the axes. **D.** Let us start by pulling out the teeth of this big and horrible example! Its purpose is *only* to demonstrate that even apparent incalculable integrals in some cases nevertheless can be calculated by using a "convenient transform". This example is from a textbook, where earlier students got the wrong impression that "every application of the transformation theorem looks like this example", which is not true. Without this extra comment this example will send a *wrong* message to the reader. Let us first discuss, how we can find a reasonable transform. I shall follow more or less the way of thinking which the author of this example must have used, the first time it was created. At the end of this example I shall describe the very modest requirements which may be demanded of the students. In other words, this example should only be used as an *inspiration* for other similar problems which may occur in practice. **I.** Let us start by looking at the *geometry* of A. The projection B of A onto the (x, y)-plane is $$B = \{(x, y) \mid 0 \le x \le 1, \ 0 \le y \le \sqrt{x}\}.$$ Since A for every $x \in]0,1]$ is cut into an isosceles rectangular triangle $$\Delta_x = \{(y, z) \mid 0 \le y \le \sqrt{x}, -y \le z \le y\},\$$ it is easy to sketch A, cf. a previous figure. Figure 29.4: The projection B of the domain A onto the (x, y)-plane. Then the integrand $$\frac{\exp\left((2-y-z)^3\right)}{4+y+z}$$ should be "straightened out". A reasonable guess would be to introduce $$u = y + z$$. Remark 29.4 Once we have gone through all the calculations it can be seen that $$\tilde{u} = \frac{y+z}{2},$$ would be a better choice, because then we would get rid of a lot of irritating constants. Of pedagogical reasons we shall not here use the most optimal transform, but instead the transform which one would expect the student to choose. \Diamond Since we do not get further information from the integrand, we shall turn to the domain A. The boundary of A is (almost) determined by putting equality sign into the definition of A instead of \leq . First everything is written in a "binary" way in the definition of A, $$\begin{array}{lll} A & = & \{(x,y,z) \mid 0 \leq x \leq 1 \, \land \, 0 \leq y \leq \sqrt{x} \, \land \, -y \leq z \leq y\} \\ & = & \{(x,y,z) \mid 0 \leq x \, \land \, x \leq 1 \, \land \, 0 \leq y \, \land \, 0 \leq \sqrt{x} - y \, \land \, 0 \leq y + z \, \land \, 0 \leq y - z\}, \end{array}$$ i.e. every condition which is defining A contains only one inequality sign and one of the sides of the inequality is a constant. We see that there are composed expressions in the latter three conditions, $$\sqrt{x} - y \ge 0$$, $y + z \ge 0$, $y - z \ge 0$. Since we already have chosen $u = y + z \ge 0$, we get the inspiration of choosing the new variables (29.3) $$u = y + z \ge 0$$, $v = y - z \ge 0$, $w = \sqrt{x} - y \ge 0$, where we have taken the most ugly term, $\sqrt{x} - y$ and put it equal to w, i.e. $$w = \sqrt{x} - y$$. We note that we by these choices have obtained that $u, v, w \ge 0$, and that equality signs must correspond to boundary points in the (u, v, w)-space for the parametric domain D. Next we show that the transform (29.3) is one-to-one. i.e. we shall express x, y, z uniquely by u, v, w. We get immediately from the first two equations that $$y = \frac{u+v}{2}$$ and $z = \frac{u-v}{2}$. From the third equation we get $$\sqrt{x} = w + y = w + \frac{u+v}{2} = \frac{1}{2}(u+v+2w),$$ which obviously is ≥ 0 , because $u, v, w \geq 0$. Therefore, by squaring, $$x = \frac{1}{4} (u + v + 2w)^2.$$ Thus, x, y, z are uniquely determined by u, v, w, so the transform is one-to-one. Since the transform and its inverse are both continuous and the domain A is closed and bounded, it follows from the second main theorem for continuous functions that D is also closed and bounded. It follows from the binary representation of A that ∂A is a subset of the union of the surfaces $x=0, x=1, y=0, \sqrt{x}-y=0, y+z <=0$ and y-z=0. These are now investigated one by one. Figure 29.5: The projection of the parametric domain D in the (u, v)-plane. 1) The plane x=0 corresponds to $\frac{1}{4}(u+v+2w)^2=0$. Since $u,v,w\geq 0$, we only get (u,v,w)=(0,0,0), which is in agreement with the figure of A, because the plane x=0 just cuts A in $\mathbf{0}$. 2) The plane x=2 corresponds to $\frac{1}{4}(u+v+w)^2=1$, i.e. $\frac{1}{2}(u+v+2w)=+1$, from which $w=1-\frac{u+v}{2}\geq 0$. Here we have again used that $u, v, w \ge 0$. Note that we also get that $$u+v \leq 2$$. - 3) The plane y = 0 corresponds to $\frac{1}{2}(u + v) = 0$, i.e. u + v = 0. - 4) The remaining conditions have been found previously for u = 0, v = 0 and w = 0. Figure 29.6: The parametric domain D. Summing up we find that the parametric domain is given by $$\begin{split} D &= \left. \left\{ (u,v,w) \;\; \middle|\;\; 0 \leq u, \, 0 \leq u+v \leq 2, \, 0 \leq w \leq 1 - \frac{u+v}{2} \right. \right\} \\ &= \left. \left\{ (u,v,w) \;\; \middle|\;\; 0 \leq u \leq 2, \, 0 \leq v \leq 2 - u, \, 0 \leq w \leq 1 - \frac{u+v}{2} \right. \right\} \\ &= \left. \left\{ (u,v,w) \;\; \middle|\;\; (u,v) \in B, \, 0 \leq w \leq 1 - \frac{u+v}{2} \right. \right\}, \end{split}$$ where the projection B in the (u, v)-plane is given by $$B = \{(u, v) \mid 0 \le u \le 2, 0 \le v \le 2 - u\},\$$ so B and D are now easily sketched. By the chosen transform the *integrand* is carried over into $$\frac{\exp((2-y-z)^3)}{4+u+z} = \frac{\exp((2-u)^2)}{4+u}.$$ Then we calculate the weight function $\left| \frac{\partial(x,y,z)}{\partial(u,v,w)} \right|$. First note that $$\frac{\partial(x,y,z)}{\partial(u,v,w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \end{vmatrix} = \begin{vmatrix} \frac{1}{2}(u+v+2w) & \frac{1}{2}(u+v+2w) & u+v+2w \\ \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix} = \begin{vmatrix} \frac{1}{2}(u+v+2w) & \frac{1}{2}(u+v+2w) & u+v+2w \\ \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & -\frac{1}{2} & 0 \end{vmatrix}$$ $$= (u+v+2w) \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{vmatrix} = -\frac{1}{2}(u+v+2w).$$ Since $u, v, w \ge 0$ in D, we see that the weight function is $$\left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| = +\frac{1}{2} (u + v + 2w).$$ This is only 0 for (u, v, w) = (0, 0, 0) in D, i.e. in just one point, which is a null-set (without a positive volume). Therefore we may continue with the transformation theorem in its abstract form: $$I = \int_{A} \frac{\exp((2 - y - z)^{3})}{4 + y + z} dx dy dz$$ $$= \int_{D} \frac{\exp((2 - u)^{3})}{4 + u} \frac{1}{2} (u + v + 2w) du dv dw.$$ Here it is obvious that we shall not start by integrating after u. If we choose u as the last (i.e. the outer) variable of integration, then we get by one of the reduction theorems that (29.4) $$I = \frac{1}{2} \int_0^2 \frac{\exp((2-u)^3)}{4+u} \left\{ \int_{B(u)} (u+v+2w) \, dv \, dw \right\} du,$$ where B(u) is the intersection of D for u constant, i.e. $$B(u) = \left\{ (v, w) \mid 0 \le v \le 2 - u, \ 0 \le w \le 1 - \frac{u + v}{2} \right\}.$$ We calculate for fixed $u \in [0, 2]$ the inner integral in (29.4) by first integrating vertically with respect to w: $$\int_{B(u)} (u+v+2w) \, \mathrm{d}v \, \mathrm{d}w = \int_0^{2-u} \left\{ \int_0^{1-\frac{u+v}{2}} (u+v+2w) \, \mathrm{d}w \right\} \, \mathrm{d}v.$$ We calculate the inner integral $$\begin{split} \int_0^{1-\frac{u+v}{2}} (u+v+2w) \, \mathrm{d}w &= \left[(u+v)w + w^2 \right]_0^{1-\frac{u+v}{2}} = \left[w(u+v+w) \right]_0^{1-\frac{u+v}{2}} \\ &= \left\{ 1 - \frac{u+v}{2} \right\} \left\{ 1 + \frac{u+v}{2} \right\} =
1 - \frac{1}{4} \left(u+v \right)^2. \end{split}$$ By insertion we next get for fixed u that $$\int_{B(u)} (u+v+2w) \, dw \, dv = \int_0^{2-u} \left\{ 1 - \frac{1}{4} (u+v)^2 \right\} dv = \left[v - \frac{1}{12} (u+v)^3 \right]_{v=0}^{2-u}$$ $$= -(u-2) + \frac{1}{12} (u^3 - 2^3)$$ $$= \frac{1}{12} (u-2) \left\{ -12 + u^2 + 2u + 4 \right\}$$ $$= \frac{1}{12} (u-2) \left\{ u^2 + 2u - 8 \right\} = \frac{1}{12} (u-2)^2 (u+4).$$ Note that we have found all factors. When this result is put into (29.4), we get the reduction $$I = \frac{1}{2} \int_0^2 \frac{\exp((2-u)^3)}{4+u} \left\{ \int_{B(u)} (u+v+2w) \, dv \, dw \right\} du$$ $$= \frac{1}{2} \int_0^2 \frac{\exp((2-u)^3)}{4+u} \cdot \frac{1}{12} (u-2)^2 (u+4) \, du$$ $$= \frac{1}{24} \int_0^2 \exp((2-u)^3) (u-2)^2 \, du.$$ Now, choose the substitution $t = (2 - u)^3$. Then $dt = -3(2 - u)^2 du$, and hence $$(u-2)^2 du = -\frac{1}{3} dt.$$ Finally we get $$I = \frac{1}{24} \int_0^2 \exp\left((2-u)^3\right) (u-2)^2 du = \frac{1}{24} \int_{(2-0)^3}^{(2-2)^3} \exp(t) \cdot \left(-\frac{1}{3}\right) dt$$ $$= \frac{1}{72} \int_0^8 e^t dt = \frac{e^8 - 1}{72}.$$ **Remark 29.5** It is obvious from this example, that the application of transformation theorems is not an easy job. Therefore, one will usually be *given* the transform which should be applied, $$u = f(x, y, z),$$ $v = g(x, y, z),$ $w = h(x, y, z).$ Then the task for the reader can be described in the following points: 1) Solve the equations after x, y, z, (from this follows automatically that the transform is one-to-one), $$x = F(u, v, w),$$ $y = G(u, v, w),$ $z = H(u, v, w).$ - 2) *Identify* the parametric domain; use here the second main theorem and that a boundary in most cases by a continuous transform again is mapped into a part of the boundary. - 3) Calculate the weight function $\left| \frac{\partial(x,y,z)}{\partial(u,v,w)} \right|$ from the expressions found in 1). - 4) Reduce the integrand $$\Phi(x, y, z) = \Phi(F, G, H) = \Psi(u, v, w);$$ 5) Set up the abstract reduction formula, $$\int_{A} \Phi(x, y, z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \int_{B} \Psi(u, v, w) \, \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| \, \mathrm{d}u \, \mathrm{d}v \, \mathrm{d}w.$$ 6) Reduce the right hand side of 5) by known methods, usually in rectangular coordinates, though semi-polar coordinates may occur, and calculate the value of the resulting integral. It should be of no surprise that in general even this very simple type of example may be fairly large.◊ **Example 29.3** Let B be the trapeze which is bounded by the coordinate axes and the lines given by the equations x + y = 1 and $x + y = \frac{1}{2}$. Compute the plane integral $$\int_{B} \exp\left(\frac{y}{x+y}\right) \, \mathrm{d}x \, \mathrm{d}y$$ by introducing the new variable (u, v) = (x + y, x - y). A Transformation of a plane integral. ${f D}$ Compute the Jacobian and find the new domain D. Figure 29.7: The domain B in the XY-plane. Figure 29.8: The domain D after the transformation to the UV-plane. I From $$(x,y) = \mathbf{\Phi}(u,v) = \left(\frac{u+v}{2}, \frac{u-v}{2}\right),$$ follows that $$J_{\mathbf{\Phi}} = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{1}{2} & d\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{vmatrix} = -\frac{1}{2},$$ and $$D = \left\{ (u, v) \ \middle| \ \frac{1}{2} \le u \le 1, \ -u \le v \le u \right\}.$$ Then by the formula of transformation, $$\begin{split} \int_{B} \exp\left(\frac{y}{x+y}\right) \, \mathrm{d}x \, \mathrm{d}y &= \int_{D} \exp\left(\frac{u-v}{2u}\right) \cdot \left|\frac{\partial(x,y)}{\partial(u,v)}\right| \, \mathrm{d}u \, \mathrm{d}v \\ &= \frac{1}{2} \int_{\frac{1}{2}}^{1} \sqrt{e} \left\{ \int_{-u}^{u} \exp\left(-\frac{v}{2u}\right) \, \mathrm{d}v \right\} \, \mathrm{d}u = \frac{\sqrt{e}}{2} \int_{\frac{1}{2}}^{1} (-2u) \left[\exp\left(-\frac{v}{2u}\right)\right]_{v=-u}^{u} \, \mathrm{d}u \\ &= -\sqrt{e} \int_{\frac{1}{2}}^{1} u \cdot \left(\frac{1}{\sqrt{e}} - \sqrt{e}\right) \, \mathrm{d}u = (e-1) \int_{\frac{1}{2}}^{1} u \, \mathrm{d}u = \frac{3}{8} \, (e-1). \end{split}$$ **Example 29.4** Let B denote set in the first quadrant, which is bounded by the curves xy = 1 and xy = 2 and by the lines y = x and y = 4x. Sketch B and compute the plane integral $$\int_B x^2 y^2 \, \mathrm{d}x \, \mathrm{d}y$$ by introducing the new variables $(u, v) = \left(xy, \frac{y}{x}\right)$. - A Transformation of a plane integral. - **D** Sketch B. Find den inverse function $$(x, y) = (x(u, v), y(u, v)) = \mathbf{\Phi}(u, v),$$ and find the corresponding domain D in the UV-plane. Calculate the Jacobian and finally transform the plane integral. Figure 29.9: The domain B in the XY-plane. I If u = xy and $v = \frac{y}{x}$ and x, y > 0, then u, v > 0, and $$x(u,v) = \sqrt{\frac{u}{v}}, \qquad y(u,v) = \sqrt{uv}.$$ The domain D is given by $$1 \le xy = u \le 2$$ and $1 \le \frac{y}{x} = v \le 4$, hence $$D = \{(u, v) \mid 1 \le u \le 2, 1 \le v \le 4\} = [1, 2] \times [1, 4],$$ i.e. a rectangle in the UV-plane, which it is no need to sketch. Finally, the Jacobian is $$\begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \frac{1}{2\sqrt{uv}} & -\frac{1}{2} \cdot \frac{1}{v} \sqrt{\frac{u}{v}} \\ \frac{1}{2} \sqrt{\frac{v}{u}} & \frac{1}{2} \cdot \frac{1}{u} \sqrt{\frac{u}{v}} \end{vmatrix} = \frac{1}{4} \left\{ \frac{1}{\sqrt{uv}} \sqrt{\frac{u}{v}} + \sqrt{\frac{v}{u}} \cdot \frac{1}{v} \sqrt{\frac{u}{v}} \right\} = \frac{1}{4} \left\{ \frac{1}{v} + \frac{1}{v} \right\} = \frac{1}{2v}.$$ We get by the transformation formula of the plane integral $$\begin{split} \int_B x^2 y^2 \, \mathrm{d}x \, \mathrm{d}y &= \int_D u^2 \cdot \frac{1}{2v} \, \mathrm{d}u \, \mathrm{d}v = \frac{1}{2} \int_1^2 u^2 \, \mathrm{d}u \cdot \int_1^4 \frac{1}{v} \, \mathrm{d}v \\ &= \left[\frac{1}{2} \left[\frac{1}{3} \, u^3 \right]_1^2 \cdot [\ln v]_1^4 = \frac{1}{6} (8 - 1) \ln 4 = \frac{7}{3} \, \ln 2. \end{split}$$ Example 29.5 Find the area of the set in the first quadrant, which is bounded by the curves $$xy = 4$$, $xy = 8$, $xy^3 = 5$, $xy^3 = 15$, by introducing the new variables u = xy and $v = xy^3$. - **A** Area of a set computed by a transformation of a plane integral. - **D** Find the transformed domain D in the UV-plane and the inverse functions x(u, v) and y(u, v) by this transformation. Calculate the Jacobian and apply the transformation formula to find the area. Figure 29.10: The domain D in the XY-plane. (Different scales on the axes). I Let B be the given set in the first quadrant. Then x, y > 0 for $(x, y) \in B$. It follows immediately that we by the transformation get the domain $$D = [4, 8] \times [5, 15].$$ From u = xy, $v = xy^3$, u > 0 and v > 0 follows $y^2 = \frac{v}{u}$ and $x^2 = \frac{u^3}{v}$, i.e. $$y = +\sqrt{\frac{v}{u}}$$, and $x = +\sqrt{\frac{u^3}{v}}$. Then we get the Jacobian, $$J(u,v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \frac{3}{2}\sqrt{\frac{u}{v}} & -\frac{1}{2}\sqrt{\frac{u^3}{v^3}} \\ -\frac{1}{2}\sqrt{\frac{v}{u^3}} & \frac{1}{2}\sqrt{\frac{1}{uv}} \end{vmatrix} = \frac{3}{4}\frac{1}{v} - \frac{1}{4}\frac{1}{v} = \frac{1}{2v} > 0.$$ Hence the area is $$\operatorname{area}(B) = \int_B dx \, dy = \int_D J(u, v) \, du \, dv = \int_4^8 du \cdot \int_4^1 5 \frac{1}{2v} \, dv = \frac{4}{2} [\ln v]_5^{15} = 2 \ln 3.$$ Example 29.6 Find the area of the set in the first quadrant, which is bounded by the curves $$y = x^3$$, $y = 4x^3$, $x = y^3$, $x = 4y^3$, by introducing the new variables $$u = \frac{y}{x^3}, \qquad v = \frac{x}{y^3}.$$ A Area of a set by a transformation of a plane integral. **D** Sketch the domain B. Then find D and x(u,v) and y(u,v) by the transformation. Calculate the Jacobian and apply the transformation formula to find the area. Figure 29.11: The domain B in the XY-plane. I The curves $y = x^3$ and $x = y^3$ intersect at (x, y) = (1, 1). The curves $y = 4x^3$ and $x = 4y^3$ intersect at $(x, y) = \left(\frac{1}{2}, \frac{1}{2}\right)$. It follows that if the transformation exists and is bijective, then $$D = [1, 4] \times [1, 4].$$ Clearly, x > 0 and y > 0, and hence u > 0 and v > 0. We shall now try to solve the equations $$u = \frac{y}{x^3}$$ and $v = \frac{x}{y^3}$ for $u, v \in [1, 4]$. From $$u^3v = \frac{y^3}{x^9} \cdot \frac{x}{y^3} = \frac{1}{x^8}$$ follows that $$x = u^{-\frac{3}{8}} v^{-\frac{1}{8}}$$, and similarly $y = u^{-\frac{1}{8}} v^{-\frac{3}{8}}$. The Jacobian is $$J(u,v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} -\frac{3}{8}u^{-\frac{11}{8}}v^{-\frac{1}{8}} & -\frac{1}{8}u^{-\frac{9}{8}}v^{-\frac{3}{8}} \\ -\frac{1}{8}u^{-\frac{3}{8}}v^{-\frac{9}{8}} & -\frac{3}{8}u^{-\frac{1}{8}}v^{-\frac{11}{8}} \end{vmatrix}$$ $$= \frac{9}{64}u^{-\frac{3}{2}}v^{-\frac{3}{2}} - \frac{1}{64}u^{-\frac{3}{2}}v^{-\frac{3}{2}} = \frac{1}{8}u^{-\frac{3}{2}}v^{-\frac{3}{2}}.$$ We get the area by applying the transformation formula $$\operatorname{area}(B) = \int_{B} dS = \frac{1}{8} \int_{1}^{4} u^{-\frac{3}{2}} du \cdot \int_{1}^{4} v^{-\frac{3}{2}} dv = \frac{1}{8} \left\{ \int_{1}^{4} t^{-\frac{3}{2}} dt \right\}^{2}$$ $$= \frac{1}{8} \left\{ \left[-\frac{2}{\sqrt{t}} \right]_{1}^{4} \right\}^{2} = \frac{1}{8} (2-1)^{2} = \frac{1}{8}.$$ ### American online **LIGS University** is currently enrolling in the Interactive Online BBA, MBA, MSc, DBA and PhD programs: - enroll by September 30th, 2014 and - save up to 16% on the tuition! - pay in 10 installments / 2 years - ► Interactive Online education - visit <u>www.ligsuniversity.com</u> to find out more! Note: LIGS University is not accredited by any nationally recognized accrediting agency
listed by the US Secretary of Education. More info here. **Example 29.7** Let $B \subset \mathbb{R}^2$ be given by $$0 \le x, \qquad 0 \le y, \qquad \sqrt{x} + \sqrt{y} \le 1.$$ find the area of B and the plane integral $$I = \int_{B} \exp\left[\left(\sqrt{x} + \sqrt{y}\right)^{4}\right] dx dy$$ by introducing the new variables $$u = \sqrt{x} + \sqrt{y}, \qquad v = \sqrt{x} - \sqrt{y}.$$ - A Transformation of a plane integral. - **D** Sketch B; find x and y as functions of u and v; calculate the Jacobian; find the domain of the parameters $(u, v) \in A$; finally, apply the transformation theorem. Figure 29.12: The domain A in the (X, Y)-plane. I If we put $u = \sqrt{x} + \sqrt{y}$ and $v = \sqrt{x} - \sqrt{y}$, then $$2\sqrt{x} = u + v$$ and $2\sqrt{y} = u - v$, hence $$x = \frac{1}{4} (u + v)^2$$ and $y = \frac{1}{2} (u - v)^2$. Then we get the Jacobian $$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \frac{1}{2}(u+v) & \frac{1}{2}(u+v) \\ \frac{1}{2}(u-v) & -\frac{1}{2}(u-v) \end{vmatrix}$$ $$= \frac{1}{2}(u+v) \cdot \frac{1}{2}(u-v) \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -\frac{1}{2}(u^2-v^2).$$ We shall then find the domain of the new parameters A: - 1) The boundary part x = 0 corresponds to u + v = 0. - 2) The boundary part y = 0 corresponds to u v = 0. - 3) The boundary part $\sqrt{x} + \sqrt{y} = 1$ corresponds to u = 1. Since a closed and bounded set by the second main theorem of continuous functions is mapped into a closed and bounded set by this continuous change of variables, the new domain is the triangle A on the figure. Figure 29.13: The domain A in the (U, V)-plane. Note that the Jacobian is negative on A, so this time we shall need the absolute values in the formula. By the transformation theorem, $$\operatorname{area}(B) = \int_{B} dx \, dy = \int_{A} \left| \frac{\partial(x, y)}{\partial(u, v)} \right| \, du \, dv = \frac{1}{2} \int_{A} (u^{2} - v^{2}) \, du \, dv$$ $$= \frac{1}{2} \int_{0}^{1} \left\{ \int_{-u}^{u} (u^{2} - v^{2}) \, dv \right\} \, du = \frac{1}{2} \int_{0}^{1} \left[u^{2} v - \frac{1}{3} v^{3} \right]_{-u}^{u} \, du$$ $$= \frac{1}{2} \int_{0}^{1} \left(2u^{3} - \frac{2}{3} u^{3} \right) \, du = \frac{2}{3} \int_{0}^{1} u^{3} \, du = \frac{1}{6},$$ and $$I = \int_{B} \exp\left[\left(\sqrt{x} + \sqrt{y}\right)^{4}\right) dx dy = \frac{1}{2} \int_{A} \exp\left(u^{4}\right) \cdot \left(u^{2} - v^{2}\right) du dv$$ $$= \frac{1}{2} \int_{0}^{1} \left\{ \int_{-u}^{u} \exp\left(u^{4}\right) \cdot \left(u^{2} - v^{2}\right) dv \right\} du = \frac{2}{3} \int_{0}^{1} \exp\left(u^{4}\right) \cdot u^{3} du$$ $$= \frac{1}{6} \int_{0}^{1} e^{t} dt = \frac{e - 1}{6}.$$ **Example 29.8** Define a vector field $\mathbf{r}: \mathbb{R}^2 \to \mathbb{R}^2$ in the following way, $$\mathbf{r}(u,v) = (e^u \cos v, e^u \sin v).$$ Prove that the Jacobian $J_{\mathbf{r}}$ is different from zero almost everywhere, and that \mathbf{r} is not injective. A Jacobian and a non-injective transformation. **D** Calculate and exploit the periodicity. I The Jacobian is $$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} e^u \cos v & -e^u \sin v \\ e^u \sin v & e^u \cos v \end{vmatrix} = e^{2u} \neq 0.$$ Then note that $(u, v) = (u_0, v_0 + 2p\pi), p \in \mathbb{Z}$, are all mapped into the same point $$(x,y) = (e^{u_0}\cos v_0, e^{u_0}\sin v_0),$$ so the transformation is not injective. REMARK. We may add that \mathbb{R}^2 by **r** is mapped (infinitely often) onto $\mathbb{R}^2 \setminus \{(0,0)\}$. **Example 29.9** Define a vector field $\mathbf{r}: \mathbb{R}^2 \to \mathbb{R}^2$ as follows: $$\mathbf{r}(u,v) = \left(u^2 - v^2, 2uv\right).$$ Prove that the Jacobian $J_{\mathbf{r}}$ is different from zero almost everywhere ant that \mathbf{r} is not injective. **A** Jacobian and a non-injective transformation. **D** Calculate the Jacobian and find two different (u, v)-points which are mapped into the same (x, y). I The Jacobian is $$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} 2u & -2v \\ 2v & 2u \end{vmatrix} = 4(u^2 + v^2) \neq 0 \quad \text{for } (u,v) \neq (0,0).$$ Clearly, (u, v) and (-u, -v) are mapped into the same point, $$(x,y) = (u^2 - v^2, 2uv),$$ so the map is not injective for $(u, v) \neq (0, 0)$. **Example 29.10** Let B be the parallelogram of vertices (0,0), (1,-1), (2,1) and (3,0). Compute the plane integral $$I = \int_{B} \frac{\cos(\frac{1}{2}\pi(x+y))}{1+x-2y} dx dy$$ by introducing the new variables $$u = x + y,$$ $v = x - 2y.$ - A Plane integral by a change of variables and the transformation formula. - **D** Sketch B and find the domain D. Calculate the Jacobian and insert into the formula. Figure 29.14: The parallelogram B. I It follows from the figure that $$u = x + y \in [0, 3]$$ and $v = x - 2y \in [0, 3]$, and the new domain is the square $D = [0, 3] \times [0, 3]$. From $$x = \frac{2}{3}u + \frac{1}{3}v$$ and $y = \frac{1}{3}u - \frac{1}{3}v$, follows that the Jacobian is $$\frac{\partial(x,y)}{\partial(u,v)} = \left| \begin{array}{cc} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} \end{array} \right| = -\frac{1}{9}.$$ When we finally put everything into the transformation formula, then $$I = \int_{B} \frac{\cos(\frac{1}{2}\pi(x+y))}{1+x-2y} dx dy = \int_{D} \frac{\cos(\frac{1}{2}\pi \cdot u)}{1+v} \left| -\frac{1}{9} \right| du dv$$ $$= \frac{1}{9} \int_{0}^{3} \cos(\frac{\pi}{2}u) du \cdot \int_{0}^{3} \frac{dv}{1+v} = \frac{1}{9} \cdot \frac{2}{\pi} \left[\sin(\frac{\pi}{2}u) \right]_{0}^{3} \cdot [\ln(1+v)]_{0}^{3}$$ $$= \frac{2}{9\pi} \left\{ \sin(\frac{3\pi}{2}) - 0 \right\} \cdot \{\ln 4 - \ln 1\} = -\frac{4}{9\pi} \ln 2.$$ **Example 29.11** Let B be the plane set which is bounded by the X-axis and the line of equation y = x and an arc of the parabola given by $$5x = 4 + y^2, \qquad y \in [0, 1].$$ Calculate the plane integral $$I = \int_{B} \cos \left[\left(\sqrt{\frac{5}{4} x + y} + \sqrt{\frac{5}{4} x - y} \right)^{4} \right] dx dy$$ by introducing the new variables (u, v) given by $$5x = u^2 + v^2, \qquad 2y = uv, \qquad -u \le v \le u.$$ - A Plane integral by a change of variables and the transformation formula. - **D** Sketch B and find the new domain D. Calculate the Jacobian and put everything into the formula. Figure 29.15: The point set B. I It follows from $5x = u^2 + v^2$ and 2y = uv that $$5x + 4y = u^2 + v^2 + 2uv = (u+v)^2$$, $5x - 4y = u^2 + v^2 - 2uv = (u-v)^2$. Since $|v| \leq u$, we get from this $$u + v = +\sqrt{5x + 4y}$$ and $u - v = +\sqrt{5x - 4y}$, hence $$u = \frac{\sqrt{5x + 4y} + \sqrt{5x - 4y}}{2}$$ and $v = \frac{\sqrt{5x + 4y} - \sqrt{5x - 4y}}{2}$. Then we determine the boundary curves of the new domain. 1) If $y = x, x \in [0, 1]$, then $$u = \frac{\sqrt{9x} + \sqrt{x}}{2} = 2\sqrt{x}$$ and $v = \frac{\sqrt{9x} - \sqrt{x}}{2} = \sqrt{x}$, so this boundary curve is transformed into $v = \frac{1}{2}u$. Then by a small consideration, $u \in [0, 2]$. 2) If $$y=0,\,x\in\left[0,\frac{4}{5}\right]$$ on the X-axis, then $v=0$ and $u=\sqrt{5x}\in[0,2].$ 3) If finally $5x = 4 + y^2$, $y \in [0, 1]$, then $$4 + y^2 = u^2 + v^2$$ and $4y = 2uv$, i.e. $$(u+v)^2 = (y+2)^2$$ and $(u-v)^2 = (2-y)^2$, thus $$u + v = y + 2 \ge 0$$ and $u - v = 2 - y \ge 0$, or u=2 and $v=y\in[0,1]$. Then we can sketch the new domain (a triangle). Figure 29.16: The new domain D. Since $$x = \frac{1}{5}(u^2 + v^2), \qquad y = \frac{1}{2}uv,$$ we get the Jacobian $$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{2}{5}u & \frac{2}{5}v \\ \frac{1}{2}v & \frac{1}{2}u \end{vmatrix} = \frac{1}{5}(u^2 - v^2) \ge 0.$$ Finally, since $$\frac{5}{4}x + y = \frac{1}{4}(5x + 4y) = \frac{1}{4}(u^2 + v^2 + 2uv) = \left(\frac{u+v}{2}\right)^2,$$ and similarly, $$\frac{5}{4}x - y = \left(\frac{u - v}{2}\right)^2,$$ we get the plane integral $$\begin{split} I &= \int_{B} \cos \left[\left(\sqrt{\frac{5}{4}} \, x + y + \sqrt{\frac{5}{4}} \, x - y \right)^{4} \right] \, \mathrm{d}x \, \mathrm{d}y \\ &= \int_{D} \cos \left[\left(\frac{u + v}{2} + \frac{u - v}{2} \right)^{4} \right] \cdot \frac{1}{5} \left(u^{2} - v^{2} \right) \, \mathrm{d}u \, \mathrm{d}v = \int_{D} \cos \left(u^{4} \right) \cdot \frac{1}{5} \left(u^{2} - v^{2} \right) \, \mathrm{d}u \, \mathrm{d}v \\ &= \int_{0}^{2} \cos \left(u^{4} \right) \left\{ \int_{0}^{\frac{u}{2}} \frac{1}{5} \left(u^{2} - v^{2} \right) \, \mathrm{d}v \right\} \, \mathrm{d}u = \int_{0}^{2} \cos \left(u^{4} \right) \cdot \frac{1}{5} \left\{ u^{2} \cdot \frac{u}{2} - \frac{1}{3} \cdot \left(\frac{u^{3}}{8} \right) \right\} \, \mathrm{d}u \\ &= \frac{1}{5} \cdot \frac{11}{24} \int_{0}^{2} \cos \left(u^{4} \right) \, u^{3} \, \mathrm{d}u = \frac{11}{480} \left[\sin \left(u^{4} \right) \right]_{0}^{2} = \frac{11}{480} \sin 16. \end{split}$$ Join the best at the Maastricht University School of Business and Economics! #### Top master's programmes - 33rd place Financial Times worldwide ranking: MSc International Business - 1st place: MSc International Business - 1st place: MSc Financial Economics - 2nd place: MSc Management of Learning - 2nd place: MSc Economics - 2nd place: MSc Econometrics and Operations Research - 2nd place: MSc Global Supply Chain Management and Change Sources: Keuzegids Master ranking 2013; Elsevier 'Beste Studies' ranking 2012; Financial Times Global Masters in Management ranking 2012 > University is the best specialist university in the Netherlands (Elsevier) Maastricht Visit us and find out why we are the best! Master's Open Day: 22 February 2014 www.mastersopenday.nl Click
on the ad to read more **Example 29.12** Let B be the plane point set which is bounded by the X-axis and the line of equation $y = \frac{1}{2}x$, and the branches of the hyperbola, $$x^{2} - y^{2} = 1$$, $x > 0$, and $x^{2} - y^{2} = 4$, $x > 0$. Compute the plane integral $$I = \int_{R} \frac{x+y}{x-y} \exp\left(x^2 - y^2\right) dx dy$$ by introducing the new variables (u, v) given by $$x = u \cosh v, \qquad y = u \sinh v.$$ - A Transformation of a plane integral. - **D** Sketch the domain B, and find the domain D of the new variables, and compute the Jacobian. Finally, insert everything into the transformation formula. Figure 29.17: The domain B. I If y = 0, x > 0, then v = 0 and x = u, hence the segment on the X-axis is transformed onto a segment on the U-axis. If $$y = \frac{1}{2}x$$, then $u \sinh v = \frac{1}{2}u \cosh v$, i.e. $$\tanh v = \frac{1}{2} = \frac{e^v - e^{-v}}{e^v + e^{-v}} = \frac{e^{2v} - 1}{e^{2v} + 1},$$ or $e^{2v} + 1 = 2e^{2v} - 2$, thus $e^{2v} = 3$, and hence $v = \frac{1}{2} \ln 3$, and u is a "free" variable. If $x^2 - y^2 = 1$ x > 0, then $u^2 = 1$, and since u > 0, we must have u = 1. If $x^2 - y^2 = 4$, x > 0, then $u^2 = 4$, and since u > 0, we must have u = 2. Summarizing, the new domain is the rectangle $$D = [1,2] \times \left[0,\frac{1}{2}\,\ln 3\right].$$ Then the Jacobian is computed, $$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \cosh v & u \sinh v \\ \sinh v & u \cosh v \end{vmatrix} = u > 0.$$ By the transformation formula, $$I = \int_{B} \frac{x+y}{x-y} \exp(x^{2}-y^{2}) dx dy = \int_{D} \frac{u(\cosh v + \sinh v)}{u \cosh v - \sinh v} \exp(u^{2}) \cdot u du dv$$ $$= \int_{D} e^{2v} \exp(u^{2}) u du dv = \int_{1}^{2} \exp(u^{2}) u du \cdot \int_{0}^{\frac{1}{2} \ln 3} e^{2v} dv$$ $$= \frac{1}{2} \left[\exp(u^{2}) \right]_{1}^{2} \cdot \frac{1}{2} \left[e^{2v} \right]_{0}^{\frac{1}{2} \ln 3} = \frac{1}{4} \left(e^{4} - e \right) \cdot (3-1) = \frac{e}{2} \left(e^{3} - 1 \right).$$ **Example 29.13** A triangle B in the (X,Y)-plane is given by the inequalities $$x + y \ge 1$$, $2y - x \le 2$, $y - 2x \ge -2$. By introducing $$(29.5) \quad u = x + y, \qquad v = x - y,$$ we get a map from the (X,Y)-plane onto the (U,V)-plane. 1) Prove that the image D in the (U,V)-plane of B by this map is given by $$1 < u < 4$$, $u - 4 < 3v < 4 - u$, and sketch D. 2) Calculate the plane integral $$\int_{B} \frac{3}{x+y} \, \mathrm{d}x \, \mathrm{d}y$$ by introducing the new variables given by (29.5). - A Transformation of a plane integral. - ${f D}$ Find the domain of the new variables D and compute the Jacobian, and then finally insert into the formula. - \mathbf{I} 1) It follows from (29.13) that $$x = \frac{u+v}{2}$$ and $y = \frac{u-v}{2}$. Hence Figure 29.18: The new domain D. - a) $x + y \ge 1$ is transformed into $u \ge 1$, - b) $2y x \le 2$ is transformed into $u 3v \le 4$, - c) $y 2x \ge -2$ is transformed into $u + 3v \le 4$. We get by a rearrangement, $u-4 \le 3v \le 4-u$, hence $u \le 4$, and $$D = \{(u, v) \mid 1 \le u \le 4, u - 4 \le 3v \le 4 - u\}.$$ We can here exploit that it is given that B is a triangle and thus bounded. The transformation (29.13) is continuous, so D is connected an bounded, and then we can sketch the three boundary lines and identify the image as the bounded part. 2) The Jacobian is $$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{vmatrix} = -\frac{1}{2}.$$ Then by the transformation formula, $$\int_{B} \frac{3}{x+y} \, dx \, dy = \int_{D} \frac{3}{u} \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \, du \, dv = \frac{3}{2} \int_{1}^{4} \left\{ \int_{-\frac{4-u}{3}}^{\frac{4-u}{3}} \, dv \right\} \, du$$ $$= \frac{3}{2} \int_{1}^{4} \frac{1}{u} \cdot 2 \cdot \frac{4-u}{3} \, du = \int_{1}^{4} \left(\frac{4}{u} - 1 \right) \, du = 4 \ln 4 - 3 = 8 \ln 2 - 3.$$ **Example 29.14** Let B be the bounded domain which is given by the inequalities $$e^{-x} \le y \le 2e^{-x}, \qquad e^x \le y \le^2 e^x.$$ 1. Sketch B. If we put (29.6) $$u = y e^x, \quad v = y e^{-x},$$ we get a map of the (X,Y)-plane into the (U,V)-plane. - **2.** Prove that the image of B by this map is the square $[1,2] \times [1,2]$. - 3. Calculate the plane integral $$I = \int_B 4y^2 \, \exp\left(y^2 + x\right) \, \mathrm{d}x \, \mathrm{d}y$$ by introducing the new variables given by (29.6). - A Transformation of a plane integral. - **D** Follow the guidelines supplied by a calculation of the Jacobian before everything is put into the transformation formula. ALTERNATIVELY, one can actually in this case compute the plane integral directly. Figure 29.19: The domain B. I 1) Let us first find the intersection point of the boundary curves of B. a) If $$y = e^{-x} = 2e^x$$, then $x = -\frac{1}{2} \ln 2$ and hence $y = \sqrt{2}$. b) If $$y = e^x = 2e^{-x}$$, then $x = \frac{1}{2} \ln 2$ and hence $y = \sqrt{2}$. c) The remaining two intersection points are immediately seen to be (0,1) and (0,2). Then it is easy to sketch the domain B, even if one does not have MAPLE at hand. 2) By the change of variables $u = y e^x$ and $v = y e^{-x}$, a) $$y=e^x$$ and $x\in\left[0,\frac{1}{2}\ln2\right]$ is transformed into $v=1$ and $u=e^{2x}\in[1,2],$ b) $$y = 2e^{-x}$$ and $x \in \left[0, \frac{1}{2} \ln 2\right]$ is transformed into $u = 2$ and $v = 2e^{2x} \in [1, 2]$, c) $$y=2e^x$$ and $x\in\left[-\frac{1}{2}\ln 2,0\right]$ is transformed into $v=2$ and $u=2e^{2x}\in[1,2],$ d) $$y = e^{-x}$$ and $x \in \left[-\frac{1}{2} \ln 2, 0 \right]$ is transformed into $u = 1$ and $v = e^{-2x} \in [1, 2]$. Thus we get the new domain $D = [1, 2] \times [1, 2]$ in the (U, V)-plane. 3) Then we find x and y as functions of u and v: From $y \ge 1$ and $u, v \ge 1$, follows that $$\frac{u}{v} = e^{2x}$$, dvs. $x = \frac{1}{2} \ln \left(\frac{u}{v}\right) = \frac{1}{2} \ln u - \frac{1}{2} \ln v$. From $v = y e^{-x}$, follows that $$y = v e^x = v \sqrt{\frac{u}{v}} = \sqrt{uv}.$$ This gives the Jacobian $$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{1}{2u} & -\frac{1}{2v} \\ \frac{1}{2}\sqrt{\frac{v}{u}} & \frac{1}{2}\sqrt{\frac{u}{v}} \end{vmatrix} = \frac{1}{4}\left(\frac{1}{\sqrt{uv}} + \frac{1}{\sqrt{uv}}\right) = \frac{1}{2}\frac{1}{\sqrt{uv}} > 0.$$ When we insert into the transformation formula, we get $$I = \int_{B} 4y^{2} \exp\left(y^{2} + x\right) dx dy = \int_{D} 4uv \exp\left(uv + \frac{1}{2}\ln\left(\frac{u}{v}\right)\right) \frac{1}{2} \frac{1}{\sqrt{uv}} du dv$$ $$= \int_{D} 4uv \exp(uv) \cdot \sqrt{\frac{u}{v}} \cdot \frac{1}{2} \frac{1}{\sqrt{uv}} du dv = \int_{D} 2u \exp(uv) du dv$$ $$= 2\int_{1}^{2} \left\{ \int_{1}^{2} u \exp(uv) dv \right\} du = 2\int_{1}^{2} [\exp(uv)]_{v=1}^{2} du$$ $$= 2\int_{1}^{2} (e^{2u} - e^{u}) du = \left[e^{2u} - 2e^{u}\right]_{1}^{2} = e^{4} - 2e^{2} - e^{2} + 2e = e^{4} - 3e^{2} + 2e.$$ ALTERNATIVELY, it is actually possible to calculate the plane integral directly without using the transformation theorem. First write $B = B_1 \cup B_2$, as an (almost) disjoint union where $$B_1 = \left\{ (x, y) \mid \sqrt{2} \le y \le 2, \ln\left(\frac{y}{2}\right) \le x \le \ln\left(\frac{2}{y}\right) \right\}$$ and $$B_2 = \left\{ (x, y) \mid 1 \le y \le \sqrt{2}, \ln\left(\frac{1}{y}\right) \le x \le \ln y \right\}.$$ We have the following natural splitting, $$\int_{B} 4y^{2} \exp(y^{2} + x) dx dy = I_{1} + I_{2},$$ where $$I_{1} = \int_{B_{1}} 4y^{2} \exp(y^{2} + x) dx dy = \int_{\sqrt{2}}^{2} \left\{ \int_{\ln(\frac{y}{2})}^{\ln(\frac{2}{y})} 4y^{2} \exp(y^{2}) e^{x} dx \right\} dy$$ $$= \int_{\sqrt{2}}^{2} 4y^{2} \exp(y^{2}) \cdot \left(\frac{2}{y} - \frac{y}{2}\right) dy = \int_{\sqrt{2}}^{2} (8y - 2y^{3}) \exp(y^{2}) dy$$ $$= \int_{\sqrt{2}}^{2} 2(4 - y^{2}) \exp(y^{2}) 2y dy = \int_{t=2}^{4} (4 - t)e^{t} dt = \left[(5 - t)e^{t} \right]_{2}^{4} = e^{4} - 3e^{2},$$ and $$I_{2} = int_{B_{2}}4y^{2} \exp(y^{2} + x) dx dy = \int_{1}^{\sqrt{2}} \left\{ \int_{\ln(\frac{1}{y})}^{\ln y} 4y^{2} \exp(y^{2}) e^{x} dx \right\} dy$$ $$= \int_{1}^{\sqrt{2}} 4y^{2} \exp(y^{2}) \cdot \left(y - \frac{1}{y}\right) dy = \int_{1}^{\sqrt{2}} \left(4y^{3} - 4y\right) \exp(y^{2}) dy$$ $$= \int_{1}^{\sqrt{2}} \left(2y^{2} - 2\right) \exp(y^{2}) \cdot 2y dy = 2 \int_{1}^{2} (t - 1)e^{t} dt = 2 \left[(t - 2)e^{t}\right]_{1}^{2} = 2e.$$ Summarizing we get $$\int_{B} 4y^{2} \exp(y^{2} + x) dx dy = I_{1} + I_{2} = e^{4} - 3e^{2} + 2e.$$ **Example 29.15** Let A denote the tetrahedron, which is bounded by the four planes of the equations $$x + y = 1$$, $y + z = 1$, $z + x = 1$, $x + y + z = 1$. Calculate the space integral $$I = \int_{A} (x+y)(y+z) dx dy dz$$ by introducing the new variables $$u = 1 - x - y$$, $v = 1 - y - z$, $w = 1 - z - x$. **A** Transformation of a space integral. Find the Jacobian and the limits of u, v and w. I We derive from $$dx dy dz = \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| du dv dw = \left| \frac{\partial(u, v, w)}{\partial(x, y, z)} \right|^{-1} du dv dw$$ and $$\frac{\partial(u,v,w)}{\partial(x,y,z)} = \begin{vmatrix} -1 & -1 & 0\\ 0 & -1 & -1\\ -1 & 0 & -1 \end{vmatrix} = -1 - 1 + 0 - 0 - 0 - 0 = -2$$ that the weight function is $$\left| \frac{\partial(x,y,z)}{\partial(u,v,w)} \right| = \left| \frac{\partial(u,v,w)}{\partial(x,y,z)} \right|^{-1} = \frac{1}{2}.$$ The integrand is $$(x+y)(y+z) = (1-u)(1-v).$$ Considering the limits of u, v and w we see that $$x+y=1$$ corresponds to $u=1-x-y=0,$ $y+z=1$ corresponds to $v=1-y-z=0,$ $z+x=1$ corresponds to $w=1-z-x=0.$ From $$u + v + w = 3 - 2(x + y + z),$$ follows that $$x + y + z = 1$$ corresponds to $u + v + w = 1$. Finally, the tetrahedron lies in the first octant of the XYZ-space, where $x+y \le 1$, $y+z \le 1$ and $z+x \le 1$. Hence the domain in the UVW-space is $$B = \{(u, v, w) \mid u \ge 0, v \ge 0, w \ge 0, u + v + w \le 1\}$$ = \{(u, v, w) \| 0 \le u \le 1, 0 \le v \le 1 - u, 0 \le w \le 1 - u - v\}. By this transformation followed by a reduction in rectangular
coordinates we get $$I = \int_{A} (x+y)(y+z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \int_{B} (1-u)(1-v) \cdot \frac{1}{2} \, \mathrm{d}u \, \mathrm{d}v \, \mathrm{d}w$$ $$= \frac{1}{2} \int_{0}^{1} (1-u) \left\{ \int_{0}^{1-u} (1-v) \left\{ \int_{0}^{1-u-v} \, \mathrm{d}w \right\} \, \mathrm{d}v \right\} \, \mathrm{d}u$$ $$= \frac{1}{2} \int_{0}^{1} (1-u) \left\{ \int_{0}^{1-u} (1-v)(1-u-v) \, \mathrm{d}v \right\} \, \mathrm{d}u$$ $$= \frac{1}{2} \int_{0}^{1} (1-u) \left\{ \int_{0}^{1-u} \left\{ (v-1)^{2} + u(v-1) \right\} \, \mathrm{d}v \right\} \, \mathrm{d}u$$ $$= \frac{1}{2} \int_{0}^{1} (1-u) \left[\frac{1}{3} (v-1)^{3} + \frac{u}{2} (v-1)^{2} \right]_{0}^{1-u} \, \mathrm{d}u$$ $$= \frac{1}{2} \int_{0}^{1} (1-u) \left\{ \frac{1}{3} - \frac{1}{3} u^{2} 3 + \frac{u}{2} \cdot u^{2} - \frac{u}{2} \right\} \, \mathrm{d}u$$ $$= \frac{1}{2} \int_{0}^{1} (1-u) \left\{ \frac{1}{3} + \frac{1}{6} u^{3} - \frac{u}{2} \right\} \, \mathrm{d}u = \frac{1}{12} \int_{0}^{1} (1-u)(2+u^{3}-3u) \, \mathrm{d}u$$ $$= \frac{1}{12} \int_{0}^{1} \left\{ 2 + u^{3} - 3u - 2u - u^{4} + 3u^{2} \right\} \, \mathrm{d}u = \frac{1}{12} \left\{ 2 + \frac{1}{4} - \frac{3}{2} - \frac{2}{2} - \frac{1}{5} + \frac{3}{3} \right\}$$ $$= \frac{1}{12} \cdot \frac{1}{30} (60 + 15 - 45 - 6) = \frac{1}{12} \cdot \frac{1}{30} \cdot 24 = \frac{1}{15}.$$ ## Empowering People. Improving Business. BI Norwegian Business School is one of Europe's largest business schools welcoming more than 20,000 students. Our programmes provide a stimulating and multi-cultural learning environment with an international outlook ultimately providing students with professional skills to meet the increasing needs of businesses. BI offers four different two-year, full-time Master of Science (MSc) programmes that are taught entirely in English and have been designed to provide professional skills to meet the increasing need of businesses. The MSc programmes provide a stimulating and multicultural learning environment to give you the best platform to launch into your career. - MSc in Business - MSc in Financial Economics - MSc in Strategic Marketing Management - MSc in Leadership and Organisational Psychology www.bi.edu/master **Example 29.16** Let A be the closed point set in \mathbb{R}^3 , which is bounded by the four elliptic paraboloids of the equations (1) $$z = \frac{3}{2} - \frac{1}{6}x^2 - \frac{2}{3}y^2$$ (2) $$z = \frac{1}{2} - \frac{1}{2}x^2 - 2y^2$$, (3) $$z = -1 + \frac{1}{4}x^2 + y^2$$, (4) $$z = -2 + \frac{1}{8}x^2 + \frac{1}{2}y^2$$. The point set A intersects the ZX-plane in a point set B_1 , and the YZ-plane in a point set B_2 . - 1) Sketch B_1 and B_2 . - 2) Calculate the volume Vol(A) and the space integral $$I = \int_A \frac{1}{\sqrt{x^2 + 4y^2 + z^2}} \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$$ by introducing the new variables (u, v, w), such that $$x = \sqrt{uv}\cos w$$, $y = \frac{1}{2}\sqrt{uv}\sin w$, $z = \frac{1}{2}(u - v)$, where $$u, v \in [0, +\infty[, \qquad w \in [0, 2\pi].$$ - **A** Transformation of a space integral. - **D** First sketch B_1 (put y=0) and B_2 (put x=0). Then apply the transformation formula, i.e. calculate the weight function and change variables. Figure 29.20: The set B_1 is the union of the two "oblique" quadrilateral sets. Figure 29.21: The set B_2 is the union of the two "oblique" quadrilateral sets. **I** 1) By putting y = 0, we get in the XZ-plane the four parabolas $$z = \frac{3}{2} - \frac{1}{6}x^2$$, $z = \frac{1}{2} - \frac{1}{2}x^2$, $z = -1 + \frac{1}{4}x^2$, $z = -2 + \frac{1}{8}x^2$, and it is easy to sketch B_1 . By putting x = 0, we get in the YZ-plane $$z = \frac{3}{2} - \frac{2}{3}y^2$$, $z = \frac{1}{2} - 2y^2$, $z = -1 + y^2$, $z = -2 + \frac{1}{2}y^2$ and it is easy to sketch B_2 . 2) Let $$x = \sqrt{uv} \cos w$$, $y = \frac{1}{2}\sqrt{uv} \sin w$, $z = \frac{1}{2}(u - v)$, where $u, v \ge 0$ and $w \in [0, 2\pi]$. We shall first find the image of A by this transformation. a) By insertion into the boundary surface $$z = \frac{3}{2} - \frac{1}{6}x^2 - \frac{2}{3}y^2$$ we get $$\frac{1}{2}(u-v) = \frac{3}{2} - \frac{1}{6}uv\cos^2 w - \frac{1}{6}uv\sin^2 w = \frac{3}{2} - \frac{1}{6}uv,$$ hence 3(u-v) = 9 - uv, which is reformulated as $$uv + 3u = u(v + 3) = 9 + 3v = 3(v + 3).$$ It follows from $v \ge 0$ that u = 3, hence this boundary surface is mapped into a part of the plane u = 3. b) By insertion into the boundary surface $$z = \frac{1}{2} - \frac{1}{2}x^2 - 2y^2$$ we get $$\frac{1}{2}(u-v) = \frac{1}{2} - \frac{1}{2}uv\cos^2 w - \frac{1}{2}uv\sin^2 w = \frac{1}{2} - \frac{1}{2}uv,$$ i.e. u - v = 1 - uv, and thus $$uv + u = u(v + 1) = v + 1.$$ From $v \ge 0$ follows that u = 1, hence the boundary surface is mapped into a part of the plane u = 1. c) We get by insertion into the boundary surface $$z = -1 + \frac{1}{4}x^2 + y^2$$ that $$\frac{1}{2}(u-v) = -1 + \frac{1}{4}uv\cos^2 w + \frac{1}{4}uv\sin^2 w = -1 + \frac{1}{4}uv,$$ thus 2(u-2) = uv - 4, and hence $$uv + 2v = v(u + 2) = 2u + 4 = 2(u + 2).$$ It follows from $u \ge 0$ that v = 2, so the boundary surface is mapped into a part of the plane v = 2 d) We get by insertion into the boundary surface $$z = -2 + \frac{1}{8}x^2 + \frac{1}{2}y^2$$ that $$\frac{1}{2}(u-v) = -2 + \frac{1}{8}uv\cos^2 w + \frac{1}{8}uv\sin^2 w = -2 + \frac{1}{8}uv,$$ thus 4(u-v) = -16 + uv, and hence $$uv + 4v = v(u + 4) = 4u + 16 = 4(u + 4).$$ It follows from $u \ge 0$ that v = 4, so the boundary surface is mapped into a part of the plane v = 4. The only condition on w is that $(\cos w, \sin w)$ shall encircle the unit circle only once, so $w \in [0, 2\pi]$. By the transformation A is mapped onto the set $$B = [1, 3] \times [2, 4] \times [0, 2\pi].$$ Then we calculate the Jacobian (for u, v > 0) $$\frac{\partial(x,y,z)}{\partial(u,v,w)} = \begin{vmatrix} \frac{1}{2}\sqrt{\frac{v}{u}}\cos w & \frac{1}{2}\sqrt{\frac{u}{v}}\cos w & -\sqrt{uv}\sin w \\ \frac{1}{4}\sqrt{\frac{v}{u}}\sin w & \frac{1}{4}\sqrt{\frac{u}{v}}\sin w & \frac{1}{2}\sqrt{uv}\cos w \\ \frac{1}{2} & -\frac{1}{2} & 0 \end{vmatrix}$$ $$= \frac{1}{2}\cdot\frac{1}{4}\cdot\frac{1}{2}\sqrt{uv} \begin{vmatrix} \sqrt{\frac{v}{u}}\cos w & \sqrt{\frac{u}{v}}\cos w & -2\sin w \\ \sqrt{\frac{v}{u}}\sin w & \sqrt{\frac{u}{v}}\sin w & 2\cos w \\ 1 & -1 & 0 \end{vmatrix}$$ $$= \frac{1}{16}\sqrt{uv}\cdot2 \begin{vmatrix} \sqrt{\frac{v}{u}}\cos w & \left(\sqrt{\frac{u}{v}}+\sqrt{\frac{v}{u}}\right)\cos w & -\sin w \\ \sqrt{\frac{v}{u}}\sin w & \left(\sqrt{\frac{u}{v}}+\sqrt{\frac{v}{u}}\right)\sin w & \cos w \\ 1 & 0 & 0 \end{vmatrix}$$ $$= \frac{1}{8}\sqrt{uv}\left(\sqrt{\frac{u}{v}}+\sqrt{\frac{v}{u}}\right) \begin{vmatrix} \cos w & -\sin w \\ \sin w & \cos w \end{vmatrix} = \frac{1}{8}(u+v) > 0.$$ # Need help with your dissertation? Get in-depth feedback & advice from experts in your topic area. Find out what you can do to improve the quality of your dissertation! Get Help Now Go to www.helpmyassignment.co.uk for more info We get by the transformation formula, $$Vol(A) = \int_{A} dx dy dz = \int_{B} \frac{\partial(x, y, z)}{\partial(u, v, w)} du dv dw = \int_{0}^{2\pi} \left\{ \int_{2}^{4} \left\{ \int_{1}^{3} \frac{1}{8} (u + v) du \right\} dv \right\} dw$$ $$= \frac{1}{8} \cdot 2\pi \int_{2}^{4} \left[\frac{u^{2}}{2} + uv \right]_{u=1}^{3} dv = \frac{\pi}{8} \int_{2}^{4} \left\{ 9 + 6v - 1 - 2v \right\} dv$$ $$= \frac{\pi}{8} \int_{2}^{4} \left\{ 4v + 8 \right\} dv = \frac{\pi}{8} \left[2v^{2} + 8v \right]_{2}^{4} = \frac{\pi}{4} \left[v^{2} + 4v \right]_{2}^{4}$$ $$= \frac{\pi}{4} \left\{ 16 + 16 - 4 - 8 \right\} = \pi \left\{ 4 + 4 - 1 - 2 \right\} = 5\pi.$$ Let us turn to the space integral. Since $$x^{2} + 4y^{2} + z^{2} = uv\cos^{2}w + uv\sin^{2}w + \frac{1}{4}(u - v)^{2} = \frac{1}{4}\left\{(u - v)^{2} + 4uv\right\} = \frac{1}{4}(u + v)^{2},$$ and u + v > 0, the integrand is transformed into $$\frac{1}{\sqrt{x^2 + 4y^2 + z^2}} = \frac{2}{u + v}.$$ Finally, by the transformation formula, $$\int_{A} \frac{1}{\sqrt{x^2 + 4y^2 + z^2}} dx dy dz = \int_{B} \frac{1}{u + v} \cdot \frac{\partial(x, y, z)}{\partial(u, v, w)} du dv dw$$ $$= \int_{B} \frac{2}{u + v} \cdot \frac{u + v}{8} du dv dw = \frac{1}{4} \int_{B} du dv dw = \frac{1}{4} \operatorname{Vol}(B)$$ $$= \frac{1}{4} \cdot 2 \cdot 2 \cdot 2\pi = 2\pi.$$ **Example 29.17** We can write the formula of transformation of a space integral in the following way, $$\int_{\tilde{\Omega}} f(\tilde{\mathbf{x}}) d\tilde{\Omega} = \int_{\Omega} f(\tilde{\mathbf{x}}(\mathbf{x})) |J(\mathbf{x})| d\Omega,$$ where J is the determinant of that matrix, the elements of which are $$\frac{\partial \tilde{\mathbf{x}}_i}{\partial x_j}, \qquad i, j \in \{1, 2, 3\}.$$ We shall in particular interpret $\tilde{\Omega}$ as created from Ω by a translation and a deformation. This means that to the point \mathbf{x} we let correspond a point $\tilde{\mathbf{x}}$ given by $$\tilde{\mathbf{x}} = \mathbf{x} + \mathbf{u}(\mathbf{x}),$$ where \mathbf{u} is the displacement vector field. When \mathbf{u} is a constant vector, we get a translation. However, in general \mathbf{u} varies in space (as indicated by the notation), such that we have a combination of a translation and a deformation. **1.** Compute J(x, y, z) by introducing $\mathbf{u} = (u_x, u_y, u_z)$. In the Theory of Elasticity the deformations are often small in the sense that the derivative of \mathbf{u} is small, so we can reject all there products. - **2.** Prove that by this assumption, $J = 1 + div \mathbf{u}$. - **3.** Finally, prove that the divergence is the relative increase of the volume corresponding to the deformation. - A Transformation of space integrals. - **D** Calculate the first approximation of the Jacobian. - I 1) The transformation is given by $$\tilde{x}_1 = x + u_x(\mathbf{x}),$$ $$\tilde{x}_2 = y + u_y(\mathbf{x}), \qquad \mathbf{x} = (x, y, z),$$ $$\tilde{x}_3 = z + u_z(\mathbf{x}),$$ hence $$J(x,y,z) = \begin{vmatrix} 1 + \frac{\partial
u_x}{\partial x} & \frac{\partial u_y}{\partial x} & \frac{\partial u_z}{\partial x} \\ \frac{\partial u_x}{\partial y} & 1 + \frac{\partial u_y}{\partial y} & \frac{\partial u_z}{\partial y} \\ \frac{\partial u_x}{\partial z} & \frac{\partial u_y}{\partial z} & 1 + \frac{\partial u_z}{\partial z} \end{vmatrix}$$ $$= 1 + \frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z} + \text{ products of higher order.}$$ 2) If we remove all products of higher order, then we get $$J = 1 + \operatorname{div} \mathbf{u}$$. 3) The geometrical interpretation of J is given by $$d\tilde{\Omega} = |J(\mathbf{x})| d\Omega,$$ where $d\tilde{\Omega}$ and $d\Omega$ are considered as infinitesimal volumes corresponding to each other. This may possibly be clarified by $$\Delta \tilde{\Omega} \approx |J(\mathbf{x})| \Delta \Omega.$$ Assume that div \mathbf{u} is small, so higher order terms can be rejected. Then $$J = 1 + \operatorname{div} \mathbf{u} > 0.$$ and thus $$d\tilde{\Omega} = \{1 + \operatorname{div} \mathbf{u}\} d\Omega.$$ The factor $1 + \text{div } \mathbf{u}$ indicates the quotient between the two infinitesimal volumes, so div \mathbf{u} can be interpreted as the relative signed increase of the volume. ### **Example 29.18** Let $A \subset \mathbb{R}^3$ be given by $$0 \le x$$, $0 \le y$, $0 \le z$, $\sqrt{x} + \sqrt{y} + \sqrt{z} \le 1$. Compute the volume of A and the space integral $$I = \int_{A} \exp\left[\left(\sqrt{x} + \sqrt{y} + \sqrt{z}\right)^{6}\right] dx dy dz$$ by introducing the new variables $$u = \sqrt{x} + \sqrt{y}$$, $v = \sqrt{x} - \sqrt{y}$, $w = \sqrt{x} + \sqrt{y} + \sqrt{z}$. - A Transformation of space integrals. - **D** Find the inverse transformation and compute the Jacobian before the transformation formula is applied. - I We derive from $$2\sqrt{x} = u + v$$, $2\sqrt{y} = u - v$, $\sqrt{z} = w - u$, that $$x = \frac{1}{4}(u+v)^2$$, $y = \frac{1}{4}(u-v)^2$, $z = (w-u)^2$. Then find the parametric domain B in the (u, v, w)-space. 1) The boundary surface x = 0 is mapped into the plane v = -u. Figure 29.22: The domain A. - 2) The boundary surface y = 0 is mapped into the plane v = u. - 3) The boundary surface z = 0 is mapped into the plane w = u. - 4) The boundary surface $\sqrt{x} + \sqrt{y} + \sqrt{z} = 1$ is mapped into the plane w = 1. The set A is closed and bounded, and the transformation is continuous. It therefore follows from the second main theorem for continuous functions that A is transformed into the closed and bounded parametric domain $$B = \{(u, v, w) \mid 0 \le w \le 1, 0 \le u \le w, -u \le v \le u\}.$$ Then the Jacobian is given by $$\frac{\partial(x,y,z)}{\partial(u,v,w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix} = \begin{vmatrix} \frac{1}{2}(u+v) & \frac{1}{2}(u+v) & 0 \\ \frac{1}{2}(u-v) & -\frac{1}{2}(u-v) & 0 \\ -2(w-u) & 0 & 2(w-u) \end{vmatrix}$$ $$= \frac{1}{2}(u+v) \cdot \frac{1}{2}(u-v) \cdot 2(w-u) \begin{vmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ -1 & 0 & 1 \end{vmatrix}$$ $$= \frac{1}{2}(u^2-v^2)(w-u) \cdot (-2) = -(u^2-v^2)(w-u).$$ Since $v^2 \leq u^2$ and $u \leq w$ in B, it follows from the transformation formula that $$\operatorname{vol}(A) = \int_{A} d\Omega = \int_{V} \left| -\left(-u^{2} - v^{2}\right) (w - u) \right| du dv dw$$ $$= \int_{0}^{1} \left\{ \int_{0}^{w} \left[\int_{-u}^{u} \left(u^{2} - v^{2}\right) (w - u) dv \right] du \right\} dw$$ $$= \int_{0}^{1} \left\{ \int_{0}^{w(w - u) \cdot \frac{4}{3} u^{3} du} \right\} dw = \int_{0}^{1} \left\{ \frac{4}{3} \int_{0}^{w} \left(wu^{3} - u^{4}\right) du \right\} dw$$ $$= \int_{0}^{1} \frac{4}{3} \left[\frac{1}{4} wu^{4} - \frac{1}{5} u^{5} \right]_{v=0}^{w} dw = \int_{0}^{1} \frac{1}{15} w^{5} dw = \frac{1}{90},$$ and $$I = \int_{A} \exp\left[\left(\sqrt{x} + \sqrt{y} + \sqrt{z}\right)^{6}\right] d\Omega$$ $$= \int_{0}^{1} \exp\left(w^{6}\right) \left\{ \int_{0}^{w} \left[\int_{-u}^{u} \left(u^{2} - v^{2}\right) \left(w - u\right) dv\right] du \right\} dw$$ $$= \int_{0}^{1} \frac{1}{15} \exp\left(w^{6}\right) \cdot w^{5} dw = \frac{1}{90} \int_{0}^{1} e^{t} dt = \frac{e - 1}{90},$$ where we also found that $$\int_0^w \left\{ \int_{-u}^u (u^2 - v^2) (w - u) \, dv \right\} \, du = \frac{1}{15} w^5.$$ **Example 29.19** Let B be the triangle given by $x \ge 0$, $y \ge 0$, $x + y \le 1$. Compute the improper plane integral $$I = \int_{B} \exp\left(\frac{x - y}{x + y}\right) \, \mathrm{d}S$$ by introducing the new variables (u, v) = (x + y, x - y). - A Transformation of an improper plane integral. - **D** The integrand is not defined at $(x, y) = (0, 0) \in B$. Otherwise, the integrand is positive, so in the worst case we shall only get that the value becomes $+\infty$. Find x and y expressed by u and v. Find the parametric domain in the (u, v)-plane. Compute the Jacobian. Finally, insert into the transformation formula, check if the singularity has any effect and compute. Figure 29.23: The domain of integration B. I The transformation is continuous with a continuous inverse: $$u = x + y$$ and $v = x - y$, $x = \frac{1}{2}(u + v)$ and $y = \frac{1}{2}(u - v)$. Furthermore, B is closed and bounded, so by using the second main theorem for continuous functions we conclude that the image, i.e. the new parametric domain A in the (u, v)-plane is also closed and bounded. It therefore suffices to find the images of the boundary curves. - 1) x = 0 is mapped into u + v = 0, i.e. into v = -u. - 2) y = 0 is mapped into u v = 0, i.e. into v = u. - 3) x + y = 1 is mapped into u = 1. It follows that A in the (u, v)-plane is the triangle which is defined by these three lines, hence $$A = \{(u, v) \mid 0 \le u \le 1, -u \le v \le u\}.$$ Then compute the Jacobian, Figure 29.24: The parametric domain A in the (u, v)-plane. $$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial u}{\partial v} \end{vmatrix} = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{vmatrix} = -\frac{1}{2}.$$ Finally, by putting into the transformation formula where we also have in mind that the integral is an improper one of a positive integrand: $$\begin{split} I &= \int_{B} \exp\left(\frac{x-y}{x+y}\right) \, \mathrm{d}S = \int_{A} \exp\left(\frac{v}{u}\right) \left|\frac{\partial(x,y)}{\partial(u,v)}\right| \, \mathrm{d}u \, \mathrm{d}v \\ &= \frac{1}{2} \int_{0}^{1} \left\{ \int_{-u}^{u} \exp\left(\frac{v}{u}\right) \, \mathrm{d}v \right\} \, \mathrm{d}u = \frac{1}{2} \lim_{\varepsilon \to 0+} \int_{\varepsilon}^{1} \left\{ \int_{-u}^{u} \exp\left(\frac{v}{u}\right) \, \mathrm{d}v \right\} \, \mathrm{d}u \\ &= \frac{1}{2} \lim_{\varepsilon \to 0+} \int_{\varepsilon}^{1} u \left[\exp\left(\frac{v}{u}\right) \right]_{v=-u}^{u} \, \mathrm{d}u = \frac{1}{2} \lim_{\varepsilon \to 0+} \int_{\varepsilon}^{1} u \left(e - e^{-1}\right) \, \mathrm{d}u \\ &= \sinh 1 \int_{0}^{1} u \, du = \frac{\sinh 1}{2}. \end{split}$$ **Example 29.20** Let A be the tetrahedron which is bounded by the four planes of the equations $$x + y + z = 0$$, $x + y - z = 0$, $x - y - z = 0$, $2x - z = 1$. Calculate the space integral $$I = \int_A (x+y+z)(x+y-z)(x-y-z) dx dy dz$$ by introducing the new variables $$u = x + y + z$$, $v = x + y - z$, $w = x - y - z$. - A Transformation of a space integral. - **D** Find x, y, z expressed by u, v, w. Then find the parametric domain B in the (u, v, w)-space which is uniquely mapped onto A. Compute the Jacobian, and finally, apply the transformation formula. - I It follows from $$u = x + y + z$$, $v = x + y - z$, $w = x - y - z$, that $$u + w = 2x$$, i.e. $x = \frac{1}{2}(u + w)$. Then $$u - v = 2z$$, i.e. $z = \frac{1}{2}(u - v)$ and $$v - w = 2y$$, i.e. $y = \frac{1}{2}(v - w)$. Summarizing, $$u = x + y + z,$$ $v = x + y - z,$ $w = x - y - z,$ $x = \frac{1}{2}(u + w),$ $y = \frac{1}{2}(v - w),$ $z = \frac{1}{2}(u - v),$ and the Jacobian is $$\frac{\partial(x,y,z)}{\partial(u,v,w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix} = \begin{vmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & 0 \end{vmatrix} = \frac{1}{8} \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \end{vmatrix} = \frac{1}{8} (-1-1) = -\frac{1}{4}.$$ We shall find the images of the boundary surfaces of the tetrahedron: - 1) x + y + z = 0 is mapped into u = 0. - 2) x + y z = 0 is mapped into v = 0. - 3) x y z = 0 is mapped into w = 0. - 4) 2x z = 1, i.e. 2 = 4x 2z, is mapped into $$2 = 2u + 2w - u + v = u + v + 2w$$, i.e. $u + v + 2w = 2$. Figure 29.25: The transformed parametric domain B. The inverse transformation is continuous, and A is closed and bounded. Hence, A is transformed into a new tetrahedron B as indicated on the figure. Note that B is cut at the height $w \in [0,1[$ in the triangle $$B(w) = \{(u, v) \mid u \ge 0, v \ge 0, u + v \le 2(1 - w)\}.$$ This can be exploited in the calculation of the transformed integral by the method of slicing. According to the transformation theorem, $$I = \int_{A} (x+y+z)(x+y-z)(x-y-z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$$ $$= \int_{B} uvw \left| \frac{\partial(x,y,z)}{\partial(u,v,w)} \right| \, \mathrm{d}u \, \mathrm{d}v \, \mathrm{d}w = \frac{1}{4} \int_{0}^{1} w \left\{ \int_{B(w)} uv \, \mathrm{d}S \right\} \, \mathrm{d}w.$$ Then calculate the integral over the slice at height w, $$\int_{B(w)} uv \,
dS = \int_0^{2(1-w)} u \left\{ \int_0^{2(1-w)-u} v \, dv \right\} du = \int_0^{2(1-w)} u \cdot \frac{1}{2} \left\{ 2(1-w) - u \right\}^2 du$$ $$= \frac{1}{2} \int_0^{2(1-w)} \left\{ 4(1-w)^2 u - 4(1-w)u^2 + u^3 \right\} du$$ $$= \frac{1}{2} \left[2(1-w)^2 u^2 - \frac{4}{3} (1-w)u^3 + \frac{1}{4} u^4 \right]_0^{2(1-w)}$$ $$= \frac{1}{2} \left\{ 2(1-w)^2 \cdot 4(1-w)^2 - \frac{4}{3} (1-w) \cdot 8(1-w)^3 + \frac{1}{4} \cdot 16(1-w)^4 \right\}$$ $$= \frac{1}{2} (1-w)^4 \left\{ 8 - \frac{32}{3} + 4 \right\} = \frac{1}{2} \cdot \frac{4}{3} (1-w)^4 = \frac{2}{3} (w-1)^4.$$ Finally, by insertion, $$I = \frac{1}{4} \int_0^1 w \left\{ \int_{B(w)} uv \, dS \right\} dw = \frac{1}{4} \cdot \frac{2}{3} \int_0^1 w(w-1)^4 \, dw$$ $$= \int 16 \int_0^1 \left\{ (w-1)^5 + (w-1)^4 \right\} dw = \frac{1}{6} \left[\frac{1}{6} (w-1)^6 + \frac{1}{5} (w-1)^5 \right]_0^1$$ $$= \frac{1}{6} \left\{ -\frac{1}{6} - \frac{1}{5} (-1) \right\} = \frac{1}{6} \left(\frac{1}{5} - \frac{1}{6} \right) = \frac{1}{180}.$$ **Example 29.21** Let K denote the closed ball of centrum (1,1,1) and radius $\sqrt{3}$. We construct a subset $A \subset K$ by only keeping those points from K in A, which furthermore satisfy $r \geq 1$ and lie in the first octant. Calculate the space integral $$I = \int_A \frac{1}{r^6} \, \mathrm{d}\Omega$$ by introducing the new variables $$u = \frac{x}{r^2}, \qquad v = \frac{y}{r^2}, \qquad w = \frac{z}{r^2}.$$ - **A** Transformation of a space integral. This is the 'simplest" non-trivial example in the three dimensional space. We shall see that even in this case the computations grow very big. - **D** First find A, and then the parametric domain D of the variables (u, v, w). Compute the Jacobian, and finally also the transformed integral. Figure 29.26: The boundary surface of A in each of the three planes x = 0, y = 0, or z = 0. ### I The set A is described by $$A = \left\{ (x,y,z) \mid (x-1)^2 + (y-)^2 + (z-1)^2 \leq 3, x^2 + y^2 + z^2 \geq 1, x \geq 0, y \geq 0, z \geq 0 \right\}.$$ The boundary surface in each of the planes x = 0, y = 0 and z = 0 is indicated on the figure. Then check the image in the (u, v, w)- space of each of the boundary surfaces in the (x, y, z)-space. Clearly, the boundary surface $x^2 + y^2 + z^2 = 1$ is mapped into $u^2 + v^2 + z^2 = 1$, and they both lie in the first octant. Then check the transformation of the boundary surface $$(x-1)^2 + (y-1)^2 + (z-1)^2 = 3.$$ If we put $$R^2 = u^2 + v^2 + w^2 = \frac{x^2}{r^4} + \frac{y^2}{r^4} + \frac{z^2}{r^4} = \frac{1}{r^2},$$ then $$x = u \cdot r^2 = \frac{u}{R^2}, \qquad y = \frac{v}{R^2}, \qquad z = \frac{w}{R^2},$$ hence by insertion $$(u - R^2)^2 + (c - R^2)^2 + (w - R^2)^2 = 3R^4,$$ and thus by a computation $$\begin{array}{rcl} 3R^4 & = & u^2 - 2uR^2 + R^4 + v^2 - 2vR^2 + w^2 - 2wR^2 + R^4 \\ & = & (u^2 + v^2 + w^2) - 2(u + v + w)R^2 + 3R^4 \\ & = & R^2 - 2(u + v + w)R^2 + 3R^4 = 3R^4 + R^2\{1 - 2(u + v + w)\}. \end{array}$$ Now, $R^2 = u^2 + v^2 + w^2 = \frac{1}{r^2} > 0$, to this is reduced to the equation of a plane surface in the first octant, $$u + v + w = \frac{1}{2}.$$ Figure 29.27: The domain D lies in the first octant between the two surfaces. We conclude that D is that part of the closed first octant, which also lies between the plane $u+v+w=\frac{1}{2}$ and the sphere $u^2+v^2+w^2=1$. Since we have $$u + v + w = R\{\sin\theta(\cos\varphi + \sin\varphi) + \cos\theta\}$$ in spherical coordinates $$u = R \sin \theta \cos \varphi, \quad v = R \sin \theta \sin \varphi, \quad w = R \cos \theta,$$ we get the following description of D in spherical coordinates $$D = \left\{ (R, \varphi, \theta) \mid [2\{\sin\theta(\cos\varphi + \sin\varphi) + \cos\theta\}]^{-1} \le R \le 1, 0 \le \varphi, \theta \le \frac{\pi}{2} \right\}.$$ Then calculate the Jacobian $\frac{\partial(x,y,x)}{\partial(u,v,w)}$, where we use that $$(x,y,z) = \left(\frac{u}{R^2}\,,\,\frac{v}{R^2}\,,\,\frac{w}{R^2}\right).$$ First note that e.g. $$\frac{\partial}{\partial u}\left(\frac{1}{R^2}\right) = -\frac{1}{R^4} \cdot \frac{\partial R^2}{\partial u} = -\frac{2u}{R^4},$$ and similarly of symmetric reasons, $$\frac{\partial}{\partial v}\left(\frac{1}{R^2}\right) = -\frac{2v}{R^4} \quad \text{and} \quad \frac{\partial}{\partial w}\left(\frac{1}{R^2}\right) = -\frac{2w}{R^4},$$ Then $$\begin{split} \frac{\partial(x,y,z)}{\partial(u,v,w)} &= \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \end{vmatrix} = \begin{vmatrix} \frac{1}{R^2} - \frac{2u^2}{R^4} & -\frac{2uv}{R^4} & -\frac{2uw}{R^4} \\ -\frac{2uv}{R^4} & \frac{1}{r^2} - \frac{2v^2}{R^4} & -\frac{2vw}{R^4} \end{vmatrix} \\ & -\frac{2uw}{R^4} & -\frac{2vw}{R^4} & \frac{1}{R^2} - \frac{2w^2}{R^4} \end{vmatrix} \\ & = \frac{1}{R^{12}} \begin{vmatrix} -u^2 + v^2 + w^2 & -2uv & -2uw \\ -2uv & u^2 - v^2 + w^2 & -2vw \\ -2uw & -2vw & u^2 + v^2 - w^2 \end{vmatrix} \\ & = \frac{1}{R^{12}} \left\{ (R^2 - 2u^2)(R^2 - 2v^2)(R^2 - 2w^2) - 8u^2v^2w^2 - 8u^2v^2w^2 \\ & -4u^2w^2(R^2 - 2v^2) - 4v^2w^2(R^2 - 2u^2) - 4u^2v^2(R^2 - 2w^2) \right\} \\ & = \frac{1}{R^{12}} \left\{ R^6 - 2(u^2 + v^2 + w^2)R^4 + 4R^2(u^2v^2 + u^2w^2 + v^2w^2) - 24u^2v^2w^2 \\ & -4R^2(u^2w^2 + v^2w^2 + u^2v^2) + 8u^2v^2w^2 + 8u^2v^2w^2 + 8u^2v^2w^2 \right\} \\ & = \frac{1}{R^{12}} \left\{ -R^6 \right\} = -\frac{1}{R^6}. \end{split}$$ Finally, we get by the transformation theorem and a consideration of a volume that $$I = \int_{A} \frac{1}{r^{6}} d\Omega = \int_{D} R^{6} \cdot \frac{1}{R^{6}} d\omega = \int_{D} d\omega = \text{vol}(D)$$ $$= \frac{1}{8} \cdot \frac{4\pi}{3} - \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{\pi}{6} - \frac{1}{48},$$ in which the slicing method is latently applied. # 30 Improper integrals ### 30.1 Introduction In some cases it is possible to extend the various forms of integrals considered in the previous volumes to situations which are not covered by the theorems already given. We considered earlier (abstract) integrals symbolized by $$\int_{\mathbf{A}} f(\mathbf{x}) \, \mathrm{d}\mu,$$ where A is closed and bounded, and the function $f: A \to \mathbb{R}$ is continuous. We shall in this chapter investigate what can be done if these conditions above are not all fulfilled. Let us start with a useful technical trick, which will be very important in the discussion below. We shall split the function f under consideration into its positive part f_+ and its negative part f_- , and then continue by only discussing the case where f is nonnegative. Given any function $f: A \to \mathbb{R}$, we define f_+ and f_- in the following way, $$f_{+}(\mathbf{x}) := \begin{cases} f(\mathbf{x}), & \text{if } f(\mathbf{x}) > 0, \\ 0, & \text{if } f(\mathbf{x}) = \leq 0, \end{cases} \qquad f_{-}(\mathbf{x}) := \begin{cases} -f(\mathbf{x}), & \text{if } f(\mathbf{x}) < 0, \\ 0, & \text{if } f(\mathbf{x}) \geq 0. \end{cases}$$ Then clearly both f_{+} and f_{-} are nonnegative, and $$f(\mathbf{x}) = f_{+}(\mathbf{x}) - f_{-}(\mathbf{x})$$ and $f_{+}(\mathbf{x}) \cdot f_{-}(\mathbf{x}) = 0$ for all $\mathbf{x} \in A$. Furthermore, the splitting of f, satisfying the two conditions above, is unique. Now, if we can prescribe (finite) values of both $\int_A f_+(\mathbf{x}) d\mu$ and $\int_A f_-(\mathbf{x}) d\mu$, then we simply define the value of the improper integral $\int_A f(\mathbf{x}) d\mu$ by putting $$\int_{A} f(\mathbf{x}) d\mu = \int_{A} f_{+}(\mathbf{x}) d\mu - \int_{A} f_{-}(\mathbf{x}) d\mu.$$ This means that we in the following only shall consider nonnegative integrands, $f \geq 0$, when we extend the plane, space, line or surface integrals to the case of improper integrals, where either f is not continuous, or A is either not bounded or not closed. Once we have restricted the investigation to nonnegative functions $f \geq 0$, the idea of defining the improper integral $\int_A f(\mathbf{x}) d\mu$ goes as follows. We choose a sequence of nested closed and bounded sets, i.e. $$A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots \subset A$$, such that the given nonnegative function f is continuous on every A_n , and such that $A_n \to A$ in some sense for $n \to +\infty$. Since f is continuous on every A_n , and A_n is closed and bounded, the integral of f over each A_n does indeed exist, and since $f \ge 0$ is nonnegative, and the sequence A_n is nested, i.e. $A_n \subset A_{n+1}$ for every $n \in \mathbb{N}$, we conclude that the sequence $$\int_{A_1} f(\mathbf{x}) \, \mathrm{d}\mu \le \int_{A_2} f(\mathbf{x}) \, \mathrm{d}\mu \le \dots \le \int_{A_n} f(\mathbf{x}) \, \mathrm{d}\mu \le \dots,$$ of real numbers is (weakly) increasing, hence it is either convergent, or tending towards $+\infty$. This is the reason for only considering nonnegative functions. It is not hard to see that any nested increasing sequence of closed and bounded subsets of A, on which $f \ge 0$ is continuous, will do. We still have to explain, what is meant by $A_n \to A$ for $n \to +\infty$. If $$\bigcup_{n=1}^{+\infty} A_n = A,$$ then the immediate definition of the improper integral of f over A becomes $$\int_A f(\mathbf{x}) \, \mathrm{d}\mu = \lim_{n \to +\infty} \int_{A_n} f(\mathbf{x}) \, \mathrm{d}\mu.$$ If the limit is convergent towards the value $I \in \mathbb{R}$, we say that the improper integral is convergent and $$\int_{A} f(\mathbf{x}) \, \mathrm{d}\mu = I.$$ If the limit is $+\infty$, we say that the improper integral is divergent. **PDF** components for **PHP** developers www.setasign.com However, measures are only determined modulo null sets, so we may weaken the definition to the requirement that only $$\bigcup_{n=1}^{+\infty} A_n = A \setminus M, \qquad \text{where } \mu(M) = 0, \quad \text{i.e.} \quad M \text{ is a null set.}$$ Then we can still use the definitions above of the improper integral, because the "missing
values" from $f(\mathbf{x})$ over the null set M have by definition only the weight 0, so we only exclude 0. ## 30.2 Theorems for proper integrals A further analysis of the improper integrals shows that we can divide those considered here into two types, which may not be disjoint, - 1) Unbounded continuous integrand. - 2) Unbounded domain of integration. Only these cases will be relevant for us, although the classification above is not complete. There exist improper integrals, which cannot be broken down to a finite number of cases of the types above, but they will be outside the realm of this chapter. The proofs of the following theorems have already been sketched in Section 30.1. We shall be satisfied with these sketches and not bother with more precise proofs. **Theorem 30.1** . *Improper integral with unbounded integrand*. Let $A \subset \mathbb{R}^k$ be a bounded set, and let $M \subset A$ be a null set, $\mu(M) = 0$. Assume that $$f: A \setminus M \to [0, +\infty[$$ is a nonnegative continuous and unbounded function. Choose an increasing (nested) sequence of sets $$A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots \subset A$$, such that $$M \subset A \setminus A_n$$ for all $n \in \mathbb{N}$, and $\mu(A \setminus A_n) \to 0$ for $n \to +\infty$. Then either $$\lim_{n \to +\infty} \int_{A_n} f(\mathbf{x}) \, \mathrm{d}\mu = +\infty,$$ and we call the improper integral divergent, or, $$\lim_{n \to +\infty} \int_{A_n} f(\mathbf{x}) \, \mathrm{d}\mu = I < +\infty,$$ is convergent, in which case we say that the improper integral is convergent of the value $$\int_{A} f(\mathbf{x}) \, \mathrm{d}\mu := \lim_{n \to +\infty} \int_{A_{-}} f(\mathbf{x}) \, \mathrm{d}\mu.$$ **Theorem 30.2** Improper integral with unbounded domain of integration. Assume that $A \subseteq \mathbb{R}^k$ is unbounded, and that $f: A \to \mathbb{R}$ is a nonnegative and continuous function. Choose an increasing (nested) sequence of closed and bounded sets, $$A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots \subset A, \quad such that \bigcup_{n=1}^{+\infty} A_n = A.$$ then either $$\lim_{n \to +\infty} \int_A f(\mathbf{x}) \, \mathrm{d}\mu = +\infty,$$ and the improper integral of f over A is said to be divergent, or it is convergent of the value $$\int_{A} f(\mathbf{x}) d\mu = \lim_{n \to +\infty} \int_{A_n} f(\mathbf{x}) d\mu < +\infty.$$ In the applications we usually have to combine these two theorems. # 30.3 Procedure for improper integrals; bounded domain Problem 30.1 Calculate the integral $$\int_A f(\mathbf{x}) \, \mathrm{d}S,$$ where the domain A is bounded, and where either A is not closed, or the integrand $f(\mathbf{x})$ is not defined for all $\mathbf{x} \in A$. We choose in this description for convenience $A \subset \mathbb{R}^2$. The procedure is analogous for any $A \subset \mathbb{R}^k$. **Idea:** Approximate $\int_A f(\mathbf{x}) dS$ by $\int_{A_n} f(\mathbf{x}) dS$, where - 1) The function $f(\mathbf{x})$ is continuous for all $x \in A_n$. - 2) All sets $A_n \subset A$ are closed and bounded, $n \in \mathbb{N}$. - 3) area $(A \setminus A_n) \to 0$ for $n \to +\infty$. **Remark 30.1** Even if we are approaching the solution by this idea, it is not enough. We shall below supply it with some sufficient conditions in the description of the procedure. \Diamond ### Procedure. 1) Examine whether $f(\mathbf{x})$ has a continuous extension $F(\mathbf{x})$ to \overline{A} . If this is the case, then $$\int_{A} f(\mathbf{x}) \, \mathrm{d}S = \int_{\overline{A}} F(\mathbf{x}) \, \mathrm{d}S,$$ where the right hand side is calculated by well-known methods, and the problem is solved. 2) If $f(\mathbf{x})$ does not have a continuous extension to \overline{A} , we continue by an analysis of the sign of $f(\mathbf{x})$. This step is extremely important! Divide A into two subsets $$A^+ = \{(x,y) \in A \mid f(x,y) \ge 0\}$$ and $A^- = \{(x,y) \in A \mid f(x,y) \le 0\}.$ If f(x,y) is continuous where it is defined, then this division is most easily performed by finding the *null curves* i.e. the curves where f(x,y)=0. These curves divide the domain into open sub-domains. Due to the continuity the sign of f is constant in each of these sub-domains, so in order to find the sign one just has to apply f to one point in each sub-domain. The curves where f(x,y)=0 can afterwards be included in any of the two sets A^+ or A^- , and even in both of them, because since the integrand is 0 on these curves they will not contribute the final result. 3) Let us first consider A^+ . If $A^+ = \emptyset$, then go to 4) below. If on the other hand $A^+ \neq \emptyset$, we choose a convenient increasing sequence of *closed and bounded* subsets $A_{\varepsilon}^+ \subset A^+$, such that $$\operatorname{area}(A^+ \setminus A_{\varepsilon}^+) \to 0 \quad \text{for } \varepsilon \to 0 + .$$ Calculate $$I_{\varepsilon}^{+} = \int_{A_{\varepsilon}^{+}} f(x, y) \, \mathrm{d}S \qquad (\geq 0).$$ If $I_{\varepsilon}^+ \to +\infty$ for $\varepsilon \to 0+$, then the improper integral is divergent. If on the other hand $\lim_{\varepsilon\to 0} I_{\varepsilon}^+ < +\infty$ (there are only these two possibilities, because I_{ε}^+ increases, when ε decreases towards 0), then $$\int_{A^+} f(x, y) \, \mathrm{d}S = \lim_{\varepsilon \to 0+} \int_{A_{\varepsilon}^+} f(x, y) \, \mathrm{d}S \qquad \ge 0.$$ 4) Then consider the other subset A^- . If $A^- = \emptyset$, go to 5). If on the other hand, $A^- \neq \emptyset$, choose a convenient increasing sequence of closed and bounded subsets $A_{\varepsilon}^- \subset A^-$, such that $$\operatorname{area}(A^- \setminus A_{\varepsilon}^-) \to 0 \quad \text{for } \varepsilon \to 0 + .$$ Calculate $$I_{\varepsilon}^{-} = \int_{A_{\varepsilon}^{-}} f(x, y) \, \mathrm{d}S \qquad (\leq 0).$$ If $I_{\varepsilon}^{-} \to -\infty$ for $\varepsilon \to 0$, then the improper integral is divergent. If instead $\lim_{\varepsilon\to 0}I_{\varepsilon}^->-\infty$ (there are only these two possibilities), then $$\int_{A^{-}} f(x, y) \, \mathrm{d}S = \lim_{\varepsilon \to 0+} \int_{A^{-}_{\varepsilon}} f(x, y) \, \mathrm{d}S \qquad (\leq 0).$$ 5) It is only when we have obtained *convergence* in both 3) and 4) that we can conclude that the improper integral is *convergent* with the value $$\int_{A} f(x, y) \, dS = \int_{A^{+}} f(x, y) \, dS + \int_{A^{-}} f(x, y) \, dS.$$ # Procedure for improper integrals; unbounded domain Problem 30.2 Calculate the integral $$\int_A f(x,y) \, \mathrm{d}S,$$ where the domain of integration $A \subseteq \mathbb{R}^2$ is unbounded. #### Procedure: 1) Examine whether f has a continuous extension to $\overline{A} \setminus \{\infty\}$. If this is not the case, remove suitable bounded neighbourhoods of the "sick" points, and treat each of these neighbourhoods as previously. The residual set which we here denote by A is then treated in the following way. 2) The important analysis of the sign of the integrand. Divide A into the two sets $$A^+ = \{(x,y) \in A \mid f(x,y) \ge 0\}$$ and $A^- = \{(x,y) \in A \mid f(x,y) \le 0\}.$ The sets A^+ and A^- are found by analyzing the null curves, i.e. the set defined by the equation f(x,y) = 0. 3) Let us first consider A^+ . If $A^+ = \emptyset$, then go to 4) in the following. If $A^+ \neq \emptyset$, we choose one of the possible methods of trimming the set - a) Rectangular: $A_n^+ = [-n, n]^2 \cap A^+,$ b) Polar: $A_R^+ = \overline{K}(\mathbf{0}; R) \cap A^+,$ and we calculate - a) Rectangular: $I_n^+ = \int_{A^+} f(x, y) \, dS$, b) Polar: $I_R^+ = \int_{A^+} f(x, y) \, dS$. If $I_n^+ \to +\infty$ for $n \to +\infty$, resp. $I_R^+ \to +\infty$ for $R \to +\infty$, then the improper integral is divergent. Otherwise, - $\int_{A^+} f(x,y) \, dS = \lim_{n \to +\infty} \int_{A_n^+} f(x,y) \, dS.$ a) Rectangular: - $\int_{A^+} f(x,y) \, \mathrm{d}S = \lim_{R \to +\infty} \int_{A_R^+} f(x,y) \, \mathrm{d}S.$ Then go to 4). 4) Next turn to A^- . If $A^- = \emptyset$, then go to 5). If $A^- \neq \emptyset$, choose one of the trimming possibilities - a) Rectangular: $A_n^- = [-n, n]^2 \cap A^-,$ b) Polar: $A_R^- = \overline{K}(\mathbf{0}; R) \cap A^-,$ and calculate a) Rectangular: $I_n^- = \int_{A_-^-} f(x,y) \, \mathrm{d}S$, b) Polar: $I_R^- = \int_{A_-^-} f(x,y) \, \mathrm{d}S$. If $I_n^- \to -\infty$ for $n \to +\infty$, resp. $I_R^- \to -\infty$ for $R \to +\infty$, then the improper integral is divergent. Otherwise, a) Rectangular: $\int_{A^{-}} f(x,y) dS = \lim_{n \to +\infty} \int_{A_{n}^{-}} f(x,y) dS.$ b) Polar: $\int_{A^{-}} f(x,y) \, \mathrm{d}S = \lim_{R \to +\infty} \int_{A_{R}^{-}} f(x,y) \, \mathrm{d}S.$ 5) If we obtain convergence in both 3) and 4), then the improper integral is convergent with the value $$\int_{A} f(x, y) \, dS = \int_{A^{+}} f(x, y) \, dS + \int_{A^{-}} f(x, y) \, dS.$$ Remark 30.2 If we put $$A^0 = \{(x, y) \in A \mid f(x, y) = 0\},\$$ it is seen that $$\int_{A^0} f(x, y) \, dS = \int_{A^0} 0 \, dS = 0,$$ so it is of no importance whether we include A^0 in our calculations, or not. The contribution from A^0 is always 0. \Diamond # 30.5 Examples of improper integrals ## Example 30.1 **A.** Let $B = [0,1]^2$ be the unit square. Examine whether the improper plane integral $$I = \int_B \frac{1}{y - x - 1} \, \mathrm{d}S$$ is convergent. If this is the case, find its value. - **D.** The domain B is closed and bounded; but the integrand is not defined in all points of B. Cut away open neighbourhoods of the points where the integrand is not defined; note that the integrand does not change sign; calculate the integral over any of the truncated domains and finally go to the limit. - I. The denominator must never be zero, so we have to avoid the line y = x + 1. This line cuts B at the point (0,1), which must be removed from the domain of integration. Then we realize that $\frac{1}{y-x-1} < 0$ everywhere in $B \setminus \{(0,1)\}$, hence the integrand does not
change sign in the part of B, where it is defined. Therefore we shall not further divide the domain according to the positive and the negative part of the integrand. Our next step is to truncate B, such that the singular point (0,1) does not lie in any of the closed and bounded domains $B(\varepsilon)$, and such that $$\operatorname{areal}(B \setminus B(\varepsilon)) \to 0 \quad \text{for } \varepsilon \to 0.$$ Figure 30.1: The domain B with the oblique singular line y = x + 1 and the singular point (0,1), and a convenient truncation parallel to the Y-axis. The most reasonable truncations among many possibilities are given by $$B(\varepsilon) = [\varepsilon, 1] \times [0, 1]$$ and $\tilde{B}(\varepsilon) = [0, 1] \times [\varepsilon, 1]$, for $0 < \varepsilon < 1$. We shall here choose the first one. Then by a reduction, $$I(\varepsilon) = \int_{B(\varepsilon)} \frac{1}{y - x - 1} \, \mathrm{d}S = \int_{\varepsilon}^{1} \left\{ \int_{0}^{1} \frac{1}{y - x - 1} \, \mathrm{d}y \right\} \, \mathrm{d}x.$$ We calculate the inner integral, $$\int_0^1 \frac{1}{y-x-1} \, \mathrm{d}y = [\ln|y-x-1|]_0^1 = \ln|-x| - \ln|-x-1| = \ln x - \ln(x+1).$$ Then insert the result followed by a partial integration, $$I(\varepsilon) = \int_{\varepsilon}^{1} \{1 \cdot \ln x - 1 \cdot \ln(x+1)\} dx$$ $$= [x \ln x]_{\varepsilon}^{1} - \int_{\varepsilon}^{1} x \cdot \frac{1}{x} dx - [(x+1)\ln(x+1)]_{\varepsilon}^{1} + \int_{\varepsilon}^{1} (x+1) \cdot \frac{1}{x+1} dx.$$ The clever trick is here to choose $\int dx = x$ in the first partial integration, and $\int dx = x + 1$ in the second one. In fact, the antiderivatives are only determined modulo a constant. By this trick we get $$I(\varepsilon) = 1 \cdot \ln 1 - \varepsilon \ln \varepsilon - 2 \ln 2 + (1 + \varepsilon) \ln(1 + \varepsilon)$$ = $-2 \ln 2 - \varepsilon \cdot \ln \varepsilon = (1 + \varepsilon) \ln(1 + \varepsilon).$ Since area $B \setminus B(\varepsilon) = \varepsilon \to 0$ for $\varepsilon \to 0+$, this is the right limit. It follows from the magnitude of functions that $$\varepsilon \ln \varepsilon \to 0$$ for $\varepsilon \to 0+$, and since $$(1+\varepsilon) \cdot \ln(1+\varepsilon) \to 1 \cdot \ln 1 = 0$$ for $\varepsilon \to 0+$, we conclude that $$\begin{split} I &= & \lim_{\varepsilon \to 0+} I(\varepsilon) \\ &= & -2 \, \ln 2 - \lim_{\varepsilon \to 0+} \varepsilon \cdot \ln \varepsilon + \lim_{\varepsilon \to 0+} (1+\varepsilon) \cdot \ln (1+\varepsilon) \\ &= & -2 \, \ln 2. \end{split}$$ i.e. the improper integral is convergent and its value is $$I = \int_{B} \frac{1}{y - x - 1} \, \mathrm{d}S = -2 \, \ln 2 < 0.$$ **C.** A very weak control. The integrand is negative, where it is defined. Hence the result should also be negative, which is seen to be true. (Note that this is only catching errors, where we end up with a positive result. Negative wrong results cannot be traced in this way). ◊ Discover the truth at www.deloitte.ca/careers Deloitte © Deloitte & Touche LLP and affiliated entities. ### Example 30.2 **A.** Let \mathcal{F} be the half-sphere \mathcal{F} in the upper half plane of radius a > 0, i.e. in spherical coordinates, $$r = a, \qquad 0 \le \theta \le \frac{\pi}{2}, \qquad 0 \le \varphi \le 2\pi.$$ Examine whether the improper surface integral $$I = \int_{\mathcal{F}} \frac{1}{z} \, \mathrm{d}S$$ is convergent or divergent. Figure 30.2: The surface \mathcal{F} for a=1. ### **D.** Surface integrals can also be improper! In the formulation of the task there is a hint of using *spherical* coordinates; though there exist also quite reasonable variants of solutions in *semi-polar* and *rectangular* coordinates. The points where the integrand is not defined lie on the circle $$\{(x, y, 0) \mid x^2 + y^2 = a^2\}$$ in the (x, y)-plane. Hence by the truncations we shall stay away from the (x, y)-plane. On the residual part of the surface we see that the integrand $\frac{1}{z} > 0$, so no further division of the domain is needed concerning the sign of the integrand. I 1. Spherical coordinates. In this case we truncate \mathcal{F} to $\mathcal{F}(\varepsilon)$ by $$\mathcal{F}(\varepsilon): \quad r=a, \quad 0 \leq \theta \leq \frac{\pi}{2} - \varepsilon, \quad 0 \leq \varphi \leq 2\pi, \quad \text{where } 0 < \varepsilon < \frac{\pi}{2}.$$ A geometrical consideration gives that $$\operatorname{area}(\mathcal{F} \setminus \mathcal{F}(\varepsilon)) \to 0 \quad \text{for } \varepsilon \to 0+,$$ and as mentioned in **D**. the integrand is positive, so we shall not divide the domain further. By a reduction of the ordinary surface integral over $\mathcal{F}(\varepsilon)$ we get $$I(\varepsilon) = \int_{\mathcal{F}(\varepsilon)} \frac{1}{z} \, dS = \int_0^{2\pi} \left\{ \int_0^{\frac{\pi}{2} - \varepsilon} \frac{1}{a \cos \theta} \cdot a^2 \sin \theta \, d\theta \right\} \, d\varphi$$ $$= a \cdot 2\pi \int_0^{\frac{\pi}{2} - \varepsilon} \frac{1}{\cos \theta} \cdot \sin \theta \, d\theta = 2\pi a \left[-\ln \cos \theta \right]_0^{\frac{\pi}{2} - \varepsilon}$$ $$= 2\pi a \left\{ \ln \cos 0 - \ln \cos \left(\frac{\pi}{2} - \varepsilon \right) \right\}$$ $$= -2\pi a \ln \left\{ \cos \frac{\pi}{2} \cdot \cos \varepsilon + \sin \frac{\pi}{2} \cdot \sin \varepsilon \right\}$$ $$= -2\pi a \ln \{0 + \sin \varepsilon\} = -2\pi a \ln \sin \varepsilon.$$ Since $\sin \varepsilon \to 0+$ for $\varepsilon \to 0+$, we have $\ln \sin \varepsilon \to -\infty$ for $\varepsilon \to 0+$, i.e. $I(\varepsilon) \to -(-\infty) = +\infty$ for $\varepsilon \to 0+$, and the improper surface integral is *divergent*. ### I 2. Semi-polar coordinates. Here the surface is described by $$\mathcal{F}: \quad 0 < z < a \quad \text{and} \quad \rho = \sqrt{a^2 - z^2},$$ i.e. $\varrho^2 + z^2 = a^2$, $\varrho \ge 0$. The surface is truncated in the following way, $$\mathcal{F}(\varepsilon): \quad \varepsilon \leq z \leq a, \quad \varrho = \sqrt{a^2 - z^2}, \quad \text{where } 0 < \varepsilon < a,$$ and it follows geometrically that area $(\mathcal{F} \setminus \mathcal{F}(\varepsilon)) \to 0$ for $\varepsilon \to 0+$. The surface integral over $\mathcal{F}(\varepsilon)$ is reduced in the following $$I(\varepsilon) = \int_{\mathcal{F}(\varepsilon)} \frac{1}{z} \, dS = \int_{\varepsilon}^{a} \frac{1}{z} \left\{ \int_{B(z)} \, ds \right\} \, dz = \int_{\varepsilon}^{a} \frac{1}{z} \operatorname{length}\{B(z)\} \, dz,$$ because $\mathcal{F}(\varepsilon)$ is cut at height $z \in [\varepsilon, a]$ in a circle B(z) of radius $\varrho = \sqrt{a^2 - z^2}$, such that the inner integral is the length of B(z), i.e. $$2\pi \,\varrho = 2\pi \sqrt{a^2 - z^2}.$$ Then we get by insertion $$I(\varepsilon) = 2\pi \int_{\varepsilon}^{a} \frac{1}{z} \sqrt{a^2 - z^2} \, \mathrm{d}z.$$ When z is small, then $\sqrt{a^2-z^2}\approx a$, hence the integrand is $\approx \frac{a}{z}$. This function cannot be integrated from 0, so this gives a hint that we may have divergence. Let us prove this. The integrand is positive everywhere. If $0 < z \le \frac{\sqrt{3}}{2}a$, then $$\sqrt{a^2 - z^2} \ge \sqrt{a^2 - \frac{3}{4} a^2} = \frac{a}{2}$$ We then have for $0 < \varepsilon < \frac{\sqrt{3}}{2} a$ the following estimates $$\begin{split} I(\varepsilon) &= 2\pi \int_{\varepsilon}^{a} \frac{1}{z} \sqrt{a^{2} - z^{2}} \, \mathrm{d}z \geq 2\pi \int_{\varepsilon}^{\frac{\sqrt{3}}{2} a} \frac{1}{z} \sqrt{a^{2} - z^{2}} \, \mathrm{d}z \\ &\geq 2\pi \int_{\varepsilon}^{\frac{\sqrt{3}}{2} a} \frac{a}{2} \cdot \frac{1}{z} \, \mathrm{d}z = \pi a \int_{\varepsilon}^{\frac{\sqrt{3}}{2} a} \frac{\mathrm{d}z}{z} \\ &= \pi a \left[\ln z \right]_{\varepsilon}^{\frac{\sqrt{3}}{2} a} = \pi a \left\{ \ln \left(\frac{\sqrt{3}}{2} a \right) - \ln \varepsilon \right\} \to +\infty \quad \text{for } \varepsilon \to \infty, \end{split}$$ and we conclude that the improper surface integral is divergent. I 3. Rectangular coordinates. In this case we consider \mathcal{F} as the graph of the function $$z = f(x,y) = \sqrt{a^2 - x^2 - y^2},$$ $(x,y) \in E,$ where the parametric domain is $$E = \{(x, y) \mid x^2 + y^2 \le a^2\}.$$ The natural truncation of the domain is here $$E_{\varepsilon} = \{(x, y) \mid x^2 + y^2 \le (a - \varepsilon)^2\}, \qquad 0 < \varepsilon < a,$$ and it is obvious that area $(E \setminus E_{\varepsilon}) \to 0$ for $\varepsilon \to 0+$. SIMPLY CLEVER ŠKODA Do you like cars? Would you like to be a part of a successful brand? We will appreciate and reward both your enthusiasm and talent. Send us your CV. You will be surprised where it can take you. Send us your CV on www.employerforlife.com The weight function is in the case of a graph given by $$\sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} = \sqrt{1 + \left(\frac{x}{\sqrt{a^2 - x^2 - y^2}}\right)^2 + \left(\frac{y}{\sqrt{a^2 - x^2 - y^2}}\right)^2}$$ $$= \frac{a}{\sqrt{a^2 - x^2 - y^2}}.$$ Then we get by the reduction formula, $$I(\varepsilon) = \int_{\mathcal{F}(\varepsilon)} \frac{1}{z} \, dS = \int_{E_{\varepsilon}} \frac{1}{\sqrt{a^2 - x^2 - y^2}} \cdot \frac{a}{\sqrt{a^2 - x^2 - y^2}} \, dx \, dy$$ $$= a \int_{E_{\varepsilon}} \frac{1}{a^2 - x^2 - y^2} \, dx \, dy = a \int_0^{2\pi} \left\{ \int_0^{a - \varepsilon} \frac{1}{a^2 - \varrho^2} \cdot \varrho \, d\varrho \right\} \, d\varphi$$ $$= a \cdot 2\pi \int_0^{(a - \varepsilon)^2} \frac{1}{a^2 - t} \cdot \frac{1}{2} \, dt = \pi \, a \, \left[-\ln |(a^2 - t)| \right]_0^{(a - \varepsilon)^2}$$ $$= \pi \, a \, \left\{ \ln a^2 - \ln \{a^2 - (a - \varepsilon)^2\} \right\}$$ $$= \pi \, a \, \left\{ 2 \ln a - \ln \{(2a - \varepsilon) - \pi \, a \ln \varepsilon \right\}$$ $$\to 2\pi \, a \ln a - \pi \, a \ln 2a - (-\infty) = +\infty \quad \text{for } \varepsilon \to 0+.$$ and we conclude again that the improper surface integral is divergent. **Remark 30.3** In this case we could use all the three classical coordinate systems. Note that the three proofs are totally different in their arguments. ◊ ### Example 30.3 **A.** Let B be the disc given by
$x^2 + y^2 \le a^2$. Find all values of $\alpha \in \mathbb{R}$, for which the (proper or improper) plane integral $$J(\alpha) = \int_{\mathbb{R}} (a^2 - y^2 - x^2)^{\alpha} \, \mathrm{d}S$$ is convergent. In case of convergence, find its value. This example is of the same type as $$\int_0^a t^{\alpha} dt = \begin{cases} \frac{1}{\alpha + 1} a^{\alpha + 1} & \text{for } \alpha > -1, \\ \text{divergent} & \text{for } \alpha \le -1, \end{cases}$$ and $$\int_{a}^{+\infty} t^{\alpha} dt = \begin{cases} \text{divergent} & \text{for } \alpha \ge -1, \\ \frac{1}{|\alpha + 1|} \cdot \frac{1}{a^{|\alpha + 1|}} & \text{for } \alpha < -1, \end{cases}$$ known from the Theory of Functions in One Variable. Figure 30.3: The disc B and the truncation B(p) for a = 1. **D.** Dimensional considerations are here extremely useful. In fact, $x, y \sim a$ and $\int_B \cdots dS \sim a^2$, hence $$J(\alpha) \sim a^{2\alpha} \cdot a^2 = a^{2(\alpha+1)}$$. In order to get convergence we must have $$a^{2(\alpha+1)} \to 0$$ for $a \to 0+$, i.e. $\alpha + 1 > 1$, or $\alpha > -1$. Since $$a^{2(\alpha+1)} \to +\infty$$ for $a \to 0+$, when $\alpha < -1$, we may expect divergence in this case. (A rough argument is the following: The integral of a positive term tends to $+\infty$, when the domain is shrunk. This is only possible, when we *start* with the value $+\infty$, i.e. with divergence). The integral is proper, when $\alpha \geq 0$, and it is improper when $\alpha < 0$. When the integrand is defined, it is positive, so we shall not bother with an extra division of the domain according to the positive and negative part of the integrand. If $\alpha < 0$, then the integrand is not defined on the boundary (the circle) $x^2 + y^2 = a^2$. The considerations above indicate that the value $\alpha = -1$ divides convergence and divergence. For that reason we start by first examining this case. I. When we truncate, it is of no importance whether the integral is proper or improper. Since the integrand is positive (of fixed sign) we shall not make any further division of the domain. We truncate by the definition $$B(p) = \{(x, y) \mid x^2 + y^2 \le (p a)^2\}, \qquad 0$$ and we note that area $\{B \setminus B(p)\} \to 0$ for $p \to 1-$. 1) If $\alpha = -1$, we get by using *polar* coordinates in B(p) that $$J(-1;p) = \int_{B(p)} \frac{1}{a^2 - x^2 - y^2} dS = \int_0^{2\pi} \left\{ \int_0^{pa} \frac{1}{a^2 - \varrho^2} \cdot \varrho \, d\varrho \right\} d\varphi$$ $$= 2\pi \int_0^{(pa)^2} \frac{1}{a^2 - t^2} \cdot \frac{1}{2} dt = \pi \left[-\ln|a^2 - t|| \right]_0^{(pa)^2}$$ $$= \pi \left\{ \ln a^2 - \ln(a^2 - p^2 a^2) \right\} = \pi \ln \left\{ \frac{a^2}{a^2 (1 - p^2)} \right\}$$ $$= \pi \ln \left(\frac{1}{1 - p^2} \right) \to +\infty \quad \text{for } p \to -1.$$ We therefore conclude that $$J(-1) = \int_{B} \frac{dS}{a^{2} - x^{2} - y^{2}} = \lim_{p \to 1-} J(-1; p) = +\infty,$$ is divergent. 2) If $\alpha < -1$, i.e. $\alpha + 1 < 0$, then we can use 1) in the following rearrangements and estimates, $$\begin{split} \left(a^2-x^2-y^2\right)^{\alpha} &= \left(a^2-x^2-y^2\right)^{\alpha+1} \cdot \frac{1}{a^2-x^2-y^2} \\ &= a^{2(\alpha+1)} \cdot \left\{1-\frac{x^2+y^2}{a^2}\right\}^{\alpha+1} \cdot \frac{1}{a^2-x^2-y^2} \\ &= a^{2(\alpha+1)} \cdot \frac{1}{\left\{1-\frac{x^2+y^2}{a^2}\right\}^{|\alpha+1|}} \cdot \frac{1}{a^2-x^2-y^2} \\ &\geq a^{2(\alpha+1)} \cdot \frac{1}{a^2-x^2-y^2}, \end{split}$$ because $$\left\{1 - \frac{x^2 + y^2}{a^2}\right\}^{|\alpha + 1|} \le 1.$$ Then it follows from 1) that $$J(\alpha; p) = \int_{B(p)} (a^2 - x^2 - y^2)^{\alpha} dS \ge a^{2(\alpha+1)} \int_{B(p)} \frac{1}{a^2 - x^2 - y^2} dS$$ $$= a^{2(\alpha+1)} J(-1; p) \to +\infty \quad \text{for } p \to 1-,$$ i.e. $J(\alpha; p) \to +\infty$ for $p \to 1-$, and we have got divergence for $\alpha < -1$, and hence also for $\alpha \le -1$. 3) If $\alpha > -1$, i.e. $\alpha + 1 > 0$, we get by using *polar* coordinates in B(p) that $$J(\alpha; p) = \int_{B(p)} \left(a^2 - x^2 - y^2\right)^{\alpha} dS = \int_0^{2\pi} \left\{ \int_{black0}^{pa} \left(a^2 - \varrho^2\right)^{\alpha} \cdot \varrho d\varrho \right\} d\varphi$$ $$= 2\pi \int_{a^2}^{a^2(1-p^2)} t^{\alpha} \cdot \left(-\frac{1}{2}\right) dt = \pi \left[-\frac{1}{\alpha+1} t^{\alpha+1}\right]_{a^2}^{a^2(1-p^2)}$$ $$= \frac{\pi}{\alpha} \left\{ a^{2(\alpha+1)} - a^{2(\alpha+1)} \cdot \left(1-p^2\right)^{\alpha+1} \right\}$$ $$= \frac{\pi}{\alpha+1} a^{2(\alpha+1)} \left\{ 1 - \left(1-p^2\right)^{\alpha+1} \right\}.$$ Since $\alpha + 1 > 0$ and $1 - p^2 \to 0+$ for $p \to 1-$, it follows that $$(1-p^2)^{\alpha+1} \to 0$$ for $p \to 1-$. Hence the integral is *convergent* for $\alpha > -1$ with the value $$J(\alpha) = \int_B (a^2 - x^2 - y^2)^{\alpha} dS = \frac{\pi}{\alpha + 1} a^{2(\alpha + 1)}.$$ Summing up we have proved that $$J(\alpha) = \int_{B} \left(a^2 - x^2 - y^2\right)^{\alpha} dS = \begin{cases} \frac{\pi}{\alpha + 1} a^{2(\alpha + 1)} & \text{for } \alpha > -1; & \text{convergence;} \\ \infty & \text{for } \alpha \leq -1; & \text{divergence.} \end{cases}$$ When the integrand has fixed sign, we allow ourselves to put the value equal to $+\infty$ (positive integrand) or $-\infty$ (negative integrand). Note that we shall *not* allow this notation, if both the positive part and the negative part are infinite, because $\infty - \infty$ does not make sense. We shall return to this in Example 30.5. \Diamond ### Example 30.4 A. In advanced technical literature one often sees the improper 1-dimensional integral $$\int_0^\infty e^{-x^2} dx.$$ Obvious applications can be found in Probability and Statistics (the normal distribution); but one can also find it in many other places (the heat equation, diffusion). We shall find the value of this important integral. **D.** The integral cannot be calculated by methods from the elementary calculus. It is fairly easy to prove that it is convergent. In fact, if we introduce the function $$f(t) = (1+t)e^{-t}$$ with $f'(t) = -te^{-t} < 0$ for $t > 0$, then it follows, because f(t) is decreasing for t > 0, that we have $$(1+t)e^{-t} \le f(0) = 1$$, i.e. $e^{-t} \le \frac{1}{1+t}$ for $t \ge 0$. If we put $t = x^2$, we get $$e^{-x^2} \le \frac{1}{1+x^2},$$ hence $$0 < \int_0^n e^{-x^2} dx \le \int_0^n \frac{dx}{1+x^2} = \operatorname{Arctan} n \to \frac{\pi}{2} \quad \text{for } n \to +\infty.$$ This proves the convergence, and also the estimate $$(0 \le) \int_0^\infty e^{-x^2} \, \mathrm{d}x \le \frac{\pi}{2}.$$ However, we still have not found the exact value. We shall show that it is possible to find the value by using methods from the *Theory of Functions* in Several Variables. The trick is instead to consider the improper plane integral $$I = \int_{B} \exp(-x^2 - y^2) dS$$, where $B = [0, +\infty[^2 \text{ is the first quadrant.}]$ The integrand is defined and positive everywhere, so we shall not make any further division of the domain according to the sign of the integrand. The domain of integration is unbounded, so we must truncate it in a bounded way. We have two obvious possibilities of doing this, depending on whether we consider polar or rectangular coordinates. The idea is to use both of them, because we by using the polar coordinates obtain the value of the integral I, and by using the rectangular coordinates we obtain the connection to the integral under consideration. Figure 30.4: The domain Q(R) for R = 1. 1) Polar coordinates. We truncate by taking the intersection of B and discs of radius R, $$Q(R) = \{(x, y) \mid x \ge 0, y \ge 0, x^2 + y^2 \le R^2\}.$$ We reach every point in the first quadrant B by taking the limit $R \to +\infty$. When we apply the reduction theorem in polar coordinates over Q(R) we get $$I(R) = \int_{Q(R)} \exp(-x^2 - y^2) dS = \int_0^{\frac{\pi}{2}} \left\{ \int_0^R \exp(-\varrho^2) \varrho d\varrho \right\} d\varphi$$ $$= \frac{\pi}{2} \int_0^{R^2} e^{-t} \cdot \frac{1}{2} dt = \frac{\pi}{4} \left[e^{-t} \right]_0^{R^2} = \frac{\pi}{4} \left\{ 1 - \exp(-R^2) \right\}.$$ Since $\exp(-R^2) \to 0$ for $R \to +\infty$, we conclude that the improper integral is *convergent* with the value $$I = \int_{B} \exp(-x^{2} - y^{2}) dS = \lim_{R \to \infty} I(R) = \frac{\pi}{4}.$$ 2) Rectangular coordinates. The truncation is here $$R(n) = \{(x,y) \mid 0 \le x \le n, \ 0 \le y \le n\} = [0,n]^2.$$ We get every point in the first quadrant B by taking the limit $n \to +\infty$. Figure 30.5: The domain R(n) for n = 1. When we apply the rectangular reduction theorem over R(n) we get $$J(n) = \int_{R(n)} \exp(-x^2 - y^2) dS = \int_0^n \left\{ \int_0^n e^{-x^2} \cdot e^{-y^2} dx \right\} dy$$ $$= \int_0^n e^{-x^2} dx \cdot \int_0^n e^{-y^2} dy = \left\{ \int_0^n e^{-t^2} dt \right\}^2.$$ 3) Summary. According to 1) the improper integral is convergent, hence the limit can be taken in 2). Since the limit is the same, no matter which truncation we are using, we must have $$I = \frac{\pi}{4} = \int_{B} \exp(-x^{2} - y^{2}) dS = \lim_{n \to \infty} J(n) = \left\{ \int_{0}^{\infty} e^{-t^{2}} dt \right\}^{2}.$$ Since $\int_0^\infty e^{-t^2} dt > 0$, we finally get the value of the integral $$\int_0^\infty e^{-t^2} \, \mathrm{d}t = \frac{\sqrt{\pi}}{2}.$$ Remark 30.4 It follows that $$I = \frac{\sqrt{\pi}}{2} \le \frac{\pi}{2},$$ cf. a remark in section \mathbf{D} . \Diamond ### Example 30.5 A. Examine whether the improper plane integral $$\int_{\mathbb{R}^2} \frac{xy}{(1+x^2)(1+y^2)} \, \mathrm{d}S$$ is convergent or divergent. - **D.** An analysis of the sign shows that the integrand is positive in the first and the third quadrant, while it is negative in the second and the fourth quadrant, so we shall also divide the domain according to the sign. Here we shall also demonstrate the *wrong* argument where one forgets to divide according to the sign of the integrand. This shows that one has to be careful here. - I. We see that the integrand changes its sign if we reflect it in either the x-axis or in the y-axis. This
shows that the integral over any bounded set B, which is symmetric with respect to at least one of the axes, is 0, $$\int_{B} \frac{xy}{(1+x^2)(1+y^2)} \, \mathrm{d}S = 0.$$ The usual truncations in discs or centred squares satisfy this symmetry with respect to both axes, so if one is not too careful one will *erroneously* conclude in the limit that the plane integral is "convergent with the value $\lim_{n\to\infty} 0 = 0$ ". Figure 30.6: The truncation B(n) for n = 1. We shall prove that this conclusion is not correct. We choose this time the truncation $$B(n) = [0, n] \times [0, n],$$ i.e. we only consider a subset of the set, where the integrand is ≥ 0 . If something goes wrong here in the first quadrant, then it also is wrong in any bigger subset of $[0, n]^2 \cup [-n, 0]^2$. By reduction over B(n) we get $$\int_{B(n)} \frac{xy}{(1+x^2)(1+y^2)} \, dS = \int_0^n \left\{ \int_0^n \frac{xy}{(1+x^2)(1+y^2)} \, dx \right\} \, dy$$ $$= \int_0^n \frac{x}{1+x^2} \, dx \cdot \int_0^n \frac{y}{1+y^2} \, dy = \left\{ \int_0^n \frac{t}{1+t^2} \, dt \right\}^2$$ $$= \left\{ \left[\frac{1}{2} \ln \left(1 + x^2 \right) \right]_0^n \right\}^2 = \frac{1}{4} \left\{ \ln \left(1 + n^2 \right) \right\}^2$$ $$\to +\infty \quad \text{for } n \to \infty.$$ This shows that the improper integral is *divergent*, thus our first argument must be wrong! (Of the type $\infty - \infty$). Remark 30.5 We shall demonstrate how wrong this illegal method is. If we choose the "skew" truncation $$Q(a, n) = [-a n, n] \times [-an, n],$$ $a > 0$ constant, we still get \mathbb{R}^2 by taking the limit $n \to +\infty$. We get by a rectangular reduction, $$\int_{Q(a,n)} \frac{xy}{(1+x^2)(1+y^2)} dS = \left\{ \int_{-an}^n \frac{t}{1+t^2} dt \right\}^2 = \left\{ \left[\frac{1}{2} \ln (1+t^2) \right]_{-an}^n \right\}^2$$ $$= \left\{ \frac{1}{2} \ln \left(\frac{1+n^2}{1+a^2n^2} \right) \right\}^2 = \left\{ \frac{1}{2} \ln \left(\frac{1+\frac{1}{n^2}}{a^2+\frac{1}{n^2}} \right) \right\}^2$$ $$\to \left\{ \ln a \right\}^2 \quad \text{for } n \to \infty.$$ Every calculation is correct. The only thing which is *wrong* is that the assumptions of taking the limit (with respect to the conclusion of convergence) are *not* satisfied. We note that $\{\ln a\}^2$ go through the whole interval $[0, +\infty[$, when a go through \mathbb{R}_+ , which means that we can obtain any $q \geq 0$ as a candidate for a limit of the improper plane integral, which is nonsense. If we instead use the truncations $$R(a,n) = [-n,an] \times [-an,n],$$ $a > 0$ constant, we obtain analogously all negative numbers as possible limits. But if the limit exists, then it is unique! Hence the improper plane integral is divergent. \Diamond Example 30.6 Given the meridian curve \mathcal{M} of the parametric description $$\varrho = a \cos t, \quad z = a\{\ln(1+\sin t) - \ln\cos t - \sin t\}, \qquad t \in \left[0, \frac{\pi}{2}\right]$$ When this is rotated we obtain a surface of revolution \mathcal{O} (half of the pseudo-sphere), which stretches into infinity along the positive part of the Z-axis. Find the integral which gives the area of that part of \mathcal{O} , which corresponds to [0,T], where $T<\frac{\pi}{2}$. Then find the area of the pseudo-sphere by letting $T \to \frac{\pi}{2}$. - A Surface area of an infinite surface of revolution; improper surface integral. - **D** First find the curve element ds on \mathcal{M} . Then compute the surface area of \mathcal{O}_T , i.e. the surface corresponding to $t \in [0,T]$, where $T < \frac{\pi}{2}$. This means that we shall calculate $$2\pi \int_{\mathcal{O}_T} \varrho(t) \, ds.$$ Finally, take the limit $T \to \frac{\pi}{2}$. ${f I}$ First calculate $$\mathbf{r}'(t) = a\left(-\sin t, \frac{\cos t}{1+\sin t} + \frac{\sin t}{\cos t} - \cos t\right) = a\left(-\sin t, \frac{\cos t \cdot (1-\sin t)}{1-\sin^2 t} + \frac{\sin t}{\cos t} - \cos t\right)$$ $$= a\left(-\sin t, \frac{1-\sin t + \sin t - \cos^2 t}{\cos t}\right) = a\sin t \cdot (-1, \tan t).$$ Hence $$ds = \|\mathbf{r}'(t)\| dt = a |\sin t| \sqrt{1 + \tan^2 t} dt = a \left| \frac{\sin t}{\cos t} \right| dt = a \tan t dt,$$ Figure 30.7: The meridian curve of the pseudo-sphere. and accordingly, area $$(\mathcal{O}_T)$$ = $2\pi \int_{\mathcal{O}_T} \varrho(t) ds = 2\pi \int_0^T a \cos t \cdot a \tan t dt$ = $2\pi a^2 \int_0^T \sin t dt = 2\pi a^2 (1 - \cos T).$ Finally, by taking the limit we find the improper surface area $$\operatorname{area}(\mathcal{O}) = \lim_{T \to \frac{\pi}{2}^{-}} \operatorname{area}(\mathcal{O}_T) = 2\pi a^2.$$ Remark. Note that the "half" pseudo-sphere" has the same surface area as the usual upper half sphere of radius a. \Diamond **Example 30.7** Check in each of the following cases if the given surface integral is convergent or divergent; in case of convergency, find the value. - 1) The surface integral $\int_{\mathcal{F}} \frac{1}{(a+4z)^2} dS$ over the surface \mathcal{F} given by $az = x^2 + y^2$, $(x,y) \in \mathbb{R}^2$. - 2) The surface integral $\int_{\mathcal{F}} \frac{x^2}{z^2 + a^2} dS$ over the surface \mathcal{F} given by $x^2 + y^2 = a^2$, $z \in \mathbb{R}$. - 3) The surface integral $\int_{\mathcal{F}} y^2 \exp\left(-\frac{|z|}{a}\right) dS$ over the surface \mathcal{F} given by $x^2 + y^2 = a^2$, $z \in \mathbb{R}$. - 4) The surface integral $\int_{\mathcal{F}} \frac{1}{z(x+y)} dS$ over the surface \mathcal{F} given by $z = \sqrt{2xy}$, $(x,y) \in [a, +\infty[^2.$ A Improper surface integral. - **D** First analyze why the integral is improper. Then truncate the surface and split it into the positive and the negative part of the integrand. Finally take the limit. - I 1) The surface is a paraboloid of revolution. $$z = \frac{1}{a}(x^2 + y^2) = \frac{1}{a} \varrho \ge 0.$$ The integrand is $\geq \frac{1}{a^2} > 0$ everywhere on the surface. The surface is described as the graph of the equation $z = \frac{1}{a}(x^2 + y^2)$, so the weight function becomes $$\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^2+\left(\frac{\partial z}{\partial y}\right)^2}=\sqrt{1+\left(\frac{2x}{a}\right)^2+\left(\frac{2y}{a}\right)^2}=\sqrt{1+\frac{4}{a^2}\,\varrho^2}.$$ We choose the truncated domain in polar coordinates as $0 \le \varrho \le R$. It follows from the above that the area element is $$dS = \sqrt{1 + \frac{4}{a^2} \,\varrho^2} \,\varrho \,d\varrho \,d\varphi,$$ hence the surface integral over the truncated surface \mathcal{F}_R is $$\int_{\mathcal{F}_R} \frac{1}{(a+4z)^2} \, \mathrm{d}S = \int_0^{2\pi} \left\{ \int_0^R \frac{1}{\left(a + \frac{4\varrho^2}{a}\right)^2} \sqrt{1 + \frac{4}{a^2}} \, \varrho \, \mathrm{d}\varrho \right\} \, \mathrm{d}\varphi$$ $$= \frac{2\pi}{a^2} \int_0^R \left\{ 1 + \frac{4}{a^2} \, \varrho^2 \right\}^{-\frac{3}{2}} \cdot \frac{1}{2} \cdot \frac{a^2}{4} \cdot \frac{4}{a^2} \cdot 2\varrho \, \mathrm{d}\varrho$$ $$= \frac{2\pi}{a^2} \cdot \frac{a^2}{8} \left[-\frac{2}{\sqrt{1 + \frac{4}{a^2}} \, \varrho^2} \right]_0^R = \frac{\pi}{2} \left(1 - \frac{1}{\sqrt{1 + \frac{4}{a^2}} \, R^2} \right).$$ This expression clearly converges for $R \to +\infty$, hence the improper surface integral is convergent of the value $$\int_{\mathcal{F}} \frac{1}{(a+4z)^2} \, dS = \lim_{R \to +\infty} \frac{\pi}{2} \left(1 - \frac{1}{\sqrt{1 + \frac{4}{a^2} R^2}} \right) = \frac{\pi}{2}.$$ 2) The surface is an infinite cylinder surface with the circle in the XY-plane of centrum (0,0) and radius a as its leading curve. When we use semi-polar coordinates we get $$x = a \cos \varphi, \quad y = a \sin \varphi, \quad z = z, \qquad \varphi \in [0, 2\pi], \quad z \in \mathbb{R},$$ and $$dS = a \, d\varphi \, dz.$$ The integrand is positive, so we choose the truncation $|z| \leq A$. Then $$\int_{\mathcal{F}_A} \frac{x^2}{z^2 + a^2} \, dS = \int_0^{2\pi} \left\{ \int_{black - A}^A \frac{a^2 \cos^2 \varphi}{z^2 + a^2} \cdot a \, dz \right\} \, d\varphi$$ $$= \int_0^{2\pi} \cos^2 \varphi \, d\varphi \cdot a^2 \int_{-A}^A \frac{1}{1 + \left(\frac{z}{a}\right)^2} \cdot \frac{1}{a} \, dz = a^2 \pi \cdot 2 \operatorname{Arctan}\left(\frac{A}{a}\right).$$ This expression converges for $A \to +\infty$, and we conclude that the improper surface integral is convergent with the value $$\int_{\mathcal{F}} \frac{x^2}{z^2 + a^2} \, \mathrm{d}S = \lim_{A \to +\infty} a^2 \pi \cdot 2 \operatorname{Arctan}\left(\frac{A}{a}\right) = a^2 \pi^2.$$ 3) By using semi-polar coordinates it is seen that $$x = a \cos \varphi, \quad y = a \sin \varphi, \quad z = z, \qquad \varphi \in [0, 2\pi], \quad z \in \mathbb{R}.$$ The surface element is $$dS = a \, d\varphi \, dz.$$ The integrand is positive everywhere, so we choose the truncation $|z| \leq A$. Then $$\begin{split} \int_{\mathcal{F}_A} y^2 \exp\left(-\frac{|z|}{a}\right) \, \mathrm{d}S &= \int_0^{2\pi} \left\{ \int_{-A}^A a^2 \sin^2 \varphi \cdot \exp\left(-\frac{|z|}{a}\right) a \, \mathrm{d}z \right\} \, \mathrm{d}\varphi \\ &= a^3 \cdot \pi \cdot 2 \int_0^A \exp\left(-\frac{z}{a}\right) \, \mathrm{d}z = 2a^4 \pi \cdot \left[-\exp\left(-\frac{z}{a}\right)\right]_0^A \\ &= 2\pi a^4 \left\{ 1 - \exp\left(-\frac{A}{a}\right) \right\}. \end{split}$$ This expression is clearly convergent for $A \to +\infty$, hence the improper surface integral is convergent with the value $$\int_{\mathcal{F}} y^2 \exp\left(-\frac{|z|}{a}\right) dS = \lim_{A \to +\infty} \int_{\mathcal{F}_A} y^2 \exp\left(-\frac{|z|}{a}\right) dS = 2\pi a^4.$$ 4) When the surface is the graph of $z = \sqrt{2xy}$ for $x, y \ge a$, then the surface element is $$dS = \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dx dy = \sqrt{1 + \frac{y}{2x} + \frac{x}{2y}} dx dy$$ $$= \sqrt{\frac{2xy + y^2 + x^2}{2xy}} dx dy = \frac{x + y}{\sqrt{2xy}} dx dy.$$ The integrand is given on the surface \mathcal{F} by $$\frac{1}{z(x+y)} = \frac{1}{\sqrt{2xy}(x+y)}$$ which is clearly positive, because $x, y \ge a$. For every A > a we define the truncation by $a \le x,
y \le A$. Then the surface integral over the corresponding truncated surface \mathcal{F}_A is $$\int_{\mathcal{F}_A} \frac{1}{z(x+y)} \, \mathrm{d}S = \int_a^A \left\{ \int_a^A \frac{1}{\sqrt{2xy}(x+y)} \cdot \frac{x+y}{\sqrt{2xy}} \, \mathrm{d}x \right\} \, \mathrm{d}y$$ $$= \frac{1}{2} \left\{ \int_a^A \frac{\mathrm{d}x}{x} \right\} \cdot \left\{ \int_a^A \frac{\mathrm{d}y}{y} \right\} = \frac{1}{2} \left\{ \left[\ln t\right]_a^A \right\}^2 = \frac{1}{2} \left\{ \ln \left(\frac{A}{a}\right) \right\}^2 \to +\infty \quad \text{for } A \to +\infty.$$ We conclude that the improper surface integral is divergent. 5) The surface is the same as in **Example 30.7.4**, so the surface element is $$\mathrm{d}S = \frac{x+y}{\sqrt{2xy}} \,\mathrm{d}x \,\mathrm{d}y.$$ The integrand is on the surface \mathcal{F} given by $$\frac{1}{z^2 x y} = \frac{1}{2xy \cdot xy} = \frac{1}{2} \cdot \frac{1}{x^2} \cdot \frac{1}{y^2}.$$ This is positive, so we shall again use the truncation $a \leq x, y \leq A$. Then $$\int_{\mathcal{F}_A} \frac{1}{z^2 x y} \, \mathrm{d}S = \int_a^A \left\{ \int_a^A \frac{1}{2} \cdot \frac{1}{x^2} \cdot df rac1 y^2 \cdot \frac{x+y}{\sqrt{2xy}} \, dx \right\} \, \mathrm{d}y$$ $$= \frac{1}{2\sqrt{2}} \int_a^A x^{-\frac{3}{2}} \, \mathrm{d}x \cdot \int_a^A y^{-\frac{5}{2}} \, \mathrm{d}y + \frac{1}{2\sqrt{2}} \int_a^A x^{-\frac{5}{2}} \, \mathrm{d}x \cdot \int_a^A y^{-\frac{3}{2}} \, \mathrm{d}y$$ $$= \frac{1}{\sqrt{2}} \left[-\frac{2}{\sqrt{x}} \right]_a^A \cdot \left[-\frac{2}{3} \cdot \frac{1}{y\sqrt{y}} \right]_a^A = \frac{2\sqrt{2}}{3} \left(\frac{1}{\sqrt{a}} - \frac{1}{\sqrt{A}} \right) \cdot \left(\frac{1}{a\sqrt{a}} - \frac{1}{A\sqrt{A}} \right)$$ $$\to \frac{2\sqrt{2}}{3} \cdot \frac{1}{\sqrt{a}} \cdot \frac{1}{a\sqrt{a}} = \frac{2\sqrt{2}}{3a^2} \quad \text{for } A \to +\infty.$$ The improper surface integral converges towards the value $$\int_{\mathcal{T}} \frac{1}{z^2 x y} \, \mathrm{d}S = \frac{2\sqrt{2}}{3a^2}.$$ **Example 30.8** Check in each of the following cases if the given surface integral is convergent or divergent; in case of convergency, find its value. Let S denote the sphere of centrum (0,0,0) and radius a, while F is given by $az = x^2 + y^2$, $x^2 + y^2 \le a^2$. 1) $$\int_{\mathcal{S}} \frac{1}{a-z} \, \mathrm{d}S$$, 2) $$\int_{\mathcal{S}} \sqrt{\frac{a}{|z|}} \, \mathrm{d}S$$, 3) $$\int_{\mathcal{F}} \frac{1}{a-z} \, \mathrm{d}S$$, 4) $$\int_{\mathcal{F}} \sqrt{\frac{a}{z}} \, \mathrm{d}S$$. A Improper surface integrals. - **D** Analyze why the integral is improper. Since the integrands are ≥ 0 in all cases, we shall only find some nice truncations of the surface. - I 1) Since $|z| \le a$ on \mathcal{S} , the integrand is $\frac{1}{a-z} > 0$ on $\mathcal{S} \setminus \{(0,0,a)\}$. The integrand tends towards $+\infty$, when $(x,y,z) \to (0,0,a)$ on \mathcal{S} . When we use spherical coordinates on S, $$x = a \cos \varphi \cdot \sin \theta$$, $y = a \sin \varphi \cdot \sin \theta$, $z = a \cos \theta$, for $$\varphi \in [0, 2\pi], \qquad \theta \in [0, \pi],$$ it is well-known that $$dS = a^2 \sin \theta \, d\varphi \, d\theta.$$ The singular point (0,0,a) corresponds to $\theta=0$, hence we choose the truncation $\theta\in [\varepsilon,\pi]$, where $\varepsilon>0$ corresponds to the subsurface $\mathcal{S}_{\varepsilon}$. When we integrate over $\mathcal{S}_{\varepsilon}$ we get $$\int_{\mathcal{S}_{\varepsilon}} \frac{1}{a-z} \, \mathrm{d}S = \int_{0}^{2\pi} \left\{ \int_{\varepsilon}^{\pi} \frac{1}{a-a \cos \theta} \, a^{2} \sin \theta \, \mathrm{d}\theta \right\} \, \mathrm{d}\varphi$$ $$= 2\pi a \int_{\varepsilon}^{\pi} \frac{\sin \theta}{1-\cos \theta} \, \mathrm{d}\theta = 2\pi a \left[\ln(1-\cos \theta) \right]_{\varepsilon}^{\pi}$$ $$= 2\pi a \left\{ \ln 2 - \ln(1-\cos \varepsilon) \right\} = 2\pi a \ln \frac{2}{2 \sin^{2} \frac{\varepsilon}{2}}$$ $$= 4a\pi \ln \frac{1}{\sin \frac{\varepsilon}{2}} \to +\infty \quad \text{for } \varepsilon \to 0+,$$ and the improper surface integral is divergent. 2) In this case the integrand is > 0 on S_0 , where S_0 is the set of points on S, which is not contained in the XY-plane, where the integrand is not defined. We use again spherical coordinates. Due to the symmetry it suffices to consider the domain $$\mathcal{S}_{\varepsilon}: \qquad \varphi \in [0, 2\pi] \quad \text{and} \quad \theta \in \left[0, \frac{\pi}{2} - \varepsilon\right].$$ It follows by insertion of $z = a \cos \theta$ and $dS = a^2 \sin \theta d\theta d\varphi$, that $$\int_{\mathcal{S}_{\varepsilon}} \sqrt{\frac{a}{|z|}} \, dS = \int_{0}^{2\pi} \left\{ \int_{0}^{\frac{\pi}{2} - \varepsilon} \sqrt{\frac{a}{a \cos \theta}} \cdot a^{2} \sin \theta \, d\theta \right\} d\varphi$$ $$= 2\pi a^{2} \int_{0}^{\frac{\pi}{2} - \varepsilon} \frac{\sin \theta}{\sqrt{\cos \theta}} \, d\theta = 2\pi a^{2} \left[-2\sqrt{\cos \theta} \right]_{0}^{\frac{\pi}{2} - \varepsilon}$$ $$= 4\pi a^{2} \{1 - \sqrt{\sin \varepsilon}\} \to 4\pi a^{2} \quad \text{for } \varepsilon \to 0 + .$$ We conclude that the improper surface integral is convergent. Of symmetric reasons the value is $$\int_{\mathcal{S}} \sqrt{\frac{a}{|z|}} \, \mathrm{d}S = \lim_{\varepsilon \to 0+} 2 \int_{\mathcal{S}_{\varepsilon}} \sqrt{\frac{a}{|z|}} \, \mathrm{d}S = 2 \cdot 4\pi a^2 = 8\pi a^2.$$ 3) The surface is the graph of $z = \frac{1}{a}(x^2 + y^2) = \frac{\varrho^2}{a}$, so the area element is $$dS = \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dx dy = \sqrt{1 + \left(\frac{2x}{a}\right)^2 + \left(\frac{2y}{a}\right)^2} dx dy$$ $$= \frac{1}{a}\sqrt{a^2 + 4(x^2 + y^2)} dx dy = \frac{1}{a}\sqrt{a^2 + 4\varrho^2} \cdot \varrho d\varrho d\varphi.$$ The integrand is the same as in **Example 30.8.1**, and since $z \leq a$ on \mathcal{F} , it is positive for z < a. We choose the truncation in polar coordinates by $$\mathcal{F}_{\varepsilon}: \quad 0 \leq \varrho \leq a - \varepsilon, \quad \varphi \in [0, 2\pi].$$ Then by insertion, $$\int_{\mathcal{F}_{\varepsilon}} \frac{1}{a-z} \, \mathrm{d}S = \int_{0}^{2\pi} \left\{ \int_{0}^{a-\varepsilon} \frac{1}{a - \frac{\varrho^{2}}{a}} \cdot \frac{1}{a} \sqrt{a^{2} + 4\varrho^{2}} \, \varrho \, \mathrm{d}\varrho \right\} \, \mathrm{d}\varphi$$ $$= 2\pi \int_{0}^{a-\varepsilon} \frac{\varrho}{a^{2} - \varrho^{2}} \sqrt{a^{2} + 4\varrho^{2}} \, \mathrm{d}\varrho \ge a\pi \int_{0}^{a-\varepsilon} \frac{1}{a^{2} - \varrho^{2}} \cdot 2\varrho \, \mathrm{d}\varrho$$ $$= a\pi \left[-\ln\left(a^{2} - \varrho^{2}\right)\right]_{0}^{a-\varepsilon}$$ $$= a\pi \left\{ \ln a^{2} - \ln\left(a^{2} - (a - \varepsilon)^{2}\right) \right\} \to +\infty$$ for $\varepsilon \to 0+$, and the improper surface integral is divergent. 4) The singular point is (0,0,0). We choose the truncation $$\mathcal{F}_{\varepsilon}: \qquad \varphi \in [0, 2\pi], \quad \varrho \in [\varepsilon, a],$$ and $$z = \frac{\varrho^2}{a} > 0,$$ $dS = \frac{1}{a} \sqrt{a^2 + 4\varrho^2} \varrho \, d\varrho \, d\varphi.$ Then by insertion $$\begin{split} \int_{\mathcal{F}_{\varepsilon}} \sqrt{\frac{a}{z}} \, \mathrm{d}S &= \int_{0}^{2\pi} \left\{ \int_{\varepsilon}^{a} \sqrt{\frac{a^{2}}{\varrho^{2}} \cdot \frac{1}{a}} \sqrt{a^{2} + 4\varrho^{2}} \, \varrho \, \mathrm{d}\varrho \right\} \, \mathrm{d}\varphi \\ &= 2\pi a \int_{\varepsilon}^{a} \sqrt{1 + \left(\frac{2\varrho}{a}\right)^{2}} \, \mathrm{d}\varrho \qquad \left[\frac{2\varrho}{a} = \sinh t\right] \\ &= 2\pi a \int_{\varrho=\varepsilon}^{a} \sqrt{1 + \sinh^{2}t} \cdot \frac{a}{2} \, \cosh t \, \mathrm{d}t = \pi a^{2} \int_{\operatorname{Arsinh}}^{\operatorname{Arsinh}} \frac{2\varepsilon}{a} \cosh^{2}t \, \mathrm{d}t \\ &= \frac{\pi a^{2}}{2} \int_{\operatorname{Arsinh}}^{\operatorname{Arsinh}} \frac{2\varepsilon}{a} (1 + \cosh 2t) \, \mathrm{d}t = \frac{\pi a^{2}}{2} \left[t + \frac{1}{2} \sinh 2t\right]_{\operatorname{Arsinh}}^{\operatorname{Arsinh}} \frac{2\varepsilon}{a} \\ &= \frac{\pi a^{2}}{2} \left\{ \operatorname{Arsinh} 2 - \operatorname{Arsinh} \frac{2\varepsilon}{a} \right\} + \frac{\pi a^{2}}{2} \left[\sinh t \sqrt{1 + \sinh^{2}t}\right]_{\operatorname{Arsinh}}^{\operatorname{Arsinh}} \frac{2\varepsilon}{a} \\ &\to \frac{\pi a^{2}}{2} \operatorname{Arsinh} 2 + \frac{\pi a^{2}}{2} \left\{ \ln(2 + \sqrt{5}) + 2\sqrt{5} \right\} \end{split}$$ for $\varepsilon \to 0+$, and the improper surface integral converges towards the value $$\int_{\mathcal{F}} \sqrt{\frac{a}{z}} \, dS = \frac{\pi a^2}{2} \{ \ln(2 + \sqrt{5}) + 2\sqrt{5} \}.$$ **Example 30.9** Check if the surfaces of the bodies of revolution of the leading curves of the equations $$y^2(a-x)=x^3$$ (rectangular) and $\varrho=\frac{a^2}{a^2+z^2}, z\in\mathbb{R},$ (Semi-polar coordinates), can be given a finite area. (The values shall not be computed). - A Improper surface integrals. - **D** Since we are only dealing with areas, the integrand is automatically positive. Truncate suitably before the computation of the surface integral, and then take the limit. - I 1) The curve \mathcal{K} of the equation $$y^2(a-x) = x^3$$ is rotated around the asymptote x = a. For symmetric reasons it suffices to consider $y \geq 0$, thus $$y = x\sqrt{\frac{x}{a-x}} = x^{\frac{3}{2}}(a-x)^{-\frac{1}{2}}.$$ One easily sees that $$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}\sqrt{\frac{x}{(a-x)^3}} \cdot (3a - 2x).$$ The length of the circle C_x (around the line x=a) at the height y(x) is $2\pi(a-x)$, [In fact, $0 \le x < a$]. If we truncate at the height $y(x_0)$ corresponding to some $x_0 \in [0, a[$, and remember the symmetry around y = 0 we get the corresponding surface area, $$2\int_0^{x_0} \operatorname{length}(C_x) \cdot \frac{\mathrm{d}y}{\mathrm{d}x} \, \mathrm{d}x$$ $$= 2\int_0^{x^0} 2\pi (a-x) \cdot \frac{1}{2} \sqrt{\frac{x}{(a-x)^3}} \cdot (3a-2x) \, \mathrm{d}x = 2\pi \int_0^{x_0} \sqrt{\frac{x}{a-x}} \left\{ a + 2(a-x) \right\} \, \mathrm{d}x$$ $$= 2\pi \int_0^{x_0} \left\{
a\sqrt{\frac{x}{a-x}} + 2\sqrt{x(a-x)} \right\} \, \mathrm{d}x, \qquad 0 < x_0 < a.$$ We conclude that the surface has a finite area. The only problem is the term $\sqrt{\frac{x}{a-x}}$ in the integrand, and $$0 \le \sqrt{\frac{x}{a-x}} \le \sqrt{a} \cdot \frac{1}{\sqrt{a-x}}$$ for $0 < x < a$, and $$\int_0^{x_0} \frac{dx}{\sqrt{a-x}} = \left[-2\sqrt{a-x}\right]_0^{x_0} = 2\{\sqrt{a} - \sqrt{a-x_0}\},$$ which converges towards $2\sqrt{a}$ for $x_0 \to a$. Since the area of the surface is smaller than this value, we conclude that the improper surface integral exists. REMARK. It is in fact possible to find the exact value. When we put $t = \frac{x}{a-x}$ we get $$x = \frac{at}{t+t} = a - \frac{a}{t+1},$$ hence $$\mathrm{d}x = \frac{a}{(t+1)^2} \,\mathrm{d}t,$$ and $$2\pi \int a\sqrt{\frac{x}{a-x}} \, dx = 2\pi a \int \sqrt{t} \cdot \frac{a}{(t+1)^2} \, dt = 2\pi a^2 \int u \cdot \frac{1}{(u^2+1)^2} \cdot 2u \, du$$ $$= 2\pi a^2 \left\{ -\frac{u}{u^2+1} + \int \frac{1}{u^2+1} \, du \right\} = 2\pi a^2 \left\{ \operatorname{Arctan} u - \frac{u}{u^2+1} \right\}$$ $$= 2\pi a^2 \left\{ \operatorname{Arctan} \sqrt{\frac{x}{a-x}} - \frac{\sqrt{\frac{x}{a-x}}}{\frac{x}{a-x}+1} \right\} = 2\pi a^2 \left\{ \operatorname{Arctan} \sqrt{\frac{x}{a-x}} - \frac{1}{a} \sqrt{x(a-x)} \right\},$$ hence by taking the limit $$2\pi \int_0^a a\sqrt{\frac{x}{a-x}} \, dx = 2\pi a^2 \left\{ \frac{\pi}{2} - 0 \right\} = \pi^2 a^2.$$ The latter integral is calculated by noting that $y = \sqrt{x(a-x)}$ for $0 \le x \le a$ describes a half circle of centrum $\frac{a}{2}$ and radius $\frac{a}{2}$, hence $$4\pi \int_0^a \sqrt{x(a-x)} \, dx = 4\pi \cdot \frac{1}{2} \cdot \pi \left(\frac{a}{2}\right)^2 = \frac{\pi^2 a^2}{2}.$$ Summarizing, the improper surface area is convergent, and its value is $$\pi^2 a^2 + \frac{\pi^2 a^2}{2} = \frac{3}{2} \pi^2 a^2. \qquad \langle$$ 2) When the curve $\varrho = \frac{a^2}{a^2 + z^2}$, $z \in \mathbb{R}$, is rotated around the Z-axis, we get an infinite surface which at the height z is cut into a circle C(x) of radius $\varrho(z)$, hence length($$C(x)$$) = $2\pi \varrho = \frac{2\pi a^3}{a^2 + z^2}$ When we put $$\mathcal{F}_k = \{(x, y, z) \in \mathcal{F} \mid |z| \le ka\}, \qquad k > 0,$$ then we get area $$(\mathcal{F}_k)$$ = $2 \int_0^{ka} \operatorname{length}(C(x)) dz = 4\pi a^3 \int_0^{ka} \frac{1}{a^2 + z^2} dz$ = $4\pi a^2 \int_0^k \frac{1}{1 + t^2} dt = 4\pi a^2 \operatorname{Arctan} k$ $\to 4\pi a^2 \cdot \frac{\pi}{2} = 2\pi^2 a^2 \text{ for } k \to +\infty.$ The improper surface area exists and its value is $$area(\mathcal{F}) = 2\pi^2 a^2.$$ **Example 30.10** A surface \mathcal{F} is given by the equation $$z = 1 + x^2 - y^2,$$ $(x, y) \in \mathbb{R}^2.$ - 1. Indicate the type of the surface and its vertices. - **2.** Find an equation of the tangent plane of \mathcal{F} through the point (2,1,4). Let q be a positive number. Let $\mathcal{F}(q)$ denote the subset of \mathcal{F} , which is given by $$z = 1 + x^2 - y^2$$, $x^2 + y^2 \le q^2$. 3. Compute the surface integral $$I(q) = \int_{\mathcal{F}(q)} \frac{1}{(z + 3x^2 + 5y^2)^{3/2}} \, dS.$$ 4. Explain shortly why $$I = \int_{\mathcal{F}} \frac{1}{(z + 3x^2 + 5y^2)^{3/2}} \, \mathrm{d}S$$ is an improper surface integral and prove that I is divergent. - A Surface; tangent plane; surface integral; improper surface integral. - **D** Identify the type of the surface; e.g. set up a parametric description (or use a formula) and find find the field of the normal vectors. Calculate the surface integral by a reduction theorem. Note that the integrand is positive, and finally take the limit. Figure 30.8: The surface $\mathcal{F}(q)$ for q=3 with the projection D(q) onto the (x,y)-plane. ## I 1) It follows from the rearrangement $$z - 1 = x^2 - y^2$$ that the surface is an equilateral hyperbolic paraboloid with its vertex at (0,0,1). 2) It follows from the parametric description $$\mathbf{r}(x,y) = (x, y, 1 + x^2 - y^2), \quad (x,y) \in \mathbb{R}^2,$$ that $$\frac{\partial \mathbf{r}}{\partial x} \times \frac{\partial \mathbf{r}}{\partial y} = \begin{vmatrix} \mathbf{e}_x & \mathbf{e}_y & \mathbf{e}_z \\ 1 & 0 & 2x \\ 0 & 1 & -2y \end{vmatrix} = (-2x, 2y, 1).$$ Then we check if the point (2,1,4) lies on \mathcal{F} : $$1 + x^2 - y^2 = 1 + 4 - 1 = 4 = z$$, thus $(2,1,4) \in \mathcal{F}$. The normal vector is in this point $$(-2x, 2y, 1) = (-4, 2, 1) = \mathbf{N},$$ and an equation of the tangent plane is $$0 = \mathbf{N} \cdot (x-2, y-1, z-4) = (-4, 2, 1) \cdot (x-2, y-1, z-4)$$ $$= -4x + 2y + z + 8 - 2 - 4 = -4x + 2y + z + 2,$$ hence by a rearrangement, $$z = 4x - 2y - 2.$$ 3) The parametric domain for $\mathcal{F}(q)$ is the disc in the (x,y)-plane $$D(q) = \{(x, y) \mid x^2 + y^2 \le q^2\}.$$ Since $z = 1 + x^2 - y^2$ on $\mathcal{F}(q)$, it follows by the theorem of reduction that $$\begin{split} I(q) &= \int_{\mathcal{F}(q)} \frac{1}{(z+3x^2+5y^2)^{3/2}} \, \mathrm{d}S = \int_{D(q)} \frac{\|\mathbf{N}(x,y)\|}{(1+4x^2+4y^2)^{3/2}} \, \mathrm{d}x \, \mathrm{d}y \\ &= \int_{D(q)} \frac{(1+4x^2+4y^2)^{1/2}}{(1+4x^2+4y^2)^{3/2}} \, \mathrm{d}x \, \mathrm{d}y = \int_{D(q)} \frac{1}{1+4(x^2+y^2)} \, \mathrm{d}x \, \mathrm{d}y \\ &= \int_0^{2\pi} \left\{ \int_0^q \frac{1}{1+4\varrho^2} \, \varrho \, \mathrm{d}\varrho \right\} \, \mathrm{d}\varphi = 2\pi \cdot \frac{1}{8} \ln \left(1+4\varrho^2\right) = \frac{\pi}{4} \ln \left(1+4\varrho^2\right). \end{split}$$ 4) Now \mathcal{F} is unbounded, so I is an improper surface integral. The integrand is positive on \mathcal{F} , hence it suffices to take the limit $q \to +\infty$ for I(q). Then $$I = \lim_{q \to +\infty} I(q) = \frac{\pi}{4} \lim_{q \to +\infty} \ln\left(1 + 4q^2\right) = +\infty,$$ which proves that the improper surface integral is divergent. # 31 Formulæ Some of the following formulæ can be assumed to be known from high school. It is highly recommended that one *learns most of these formulæ in this appendix by heart*. ## 31.1 Squares etc. The following simple formulæ occur very frequently in the most different situations. $$\begin{array}{ll} (a+b)^2=a^2+b^2+2ab, & a^2+b^2+2ab=(a+b)^2,\\ (a-b)^2=a^2+b^2-2ab, & a^2+b^2-2ab=(a-b)^2,\\ (a+b)(a-b)=a^2-b^2, & a^2-b^2=(a+b)(a-b),\\ (a+b)^2=(a-b)^2+4ab, & (a-b)^2=(a+b)^2-4ab. \end{array}$$ ### 31.2 Powers etc. ### Logarithm: $$\begin{split} &\ln|xy| = & \ln|x| + \ln|y|, & x,y \neq 0, \\ &\ln\left|\frac{x}{y}\right| = & \ln|x| - \ln|y|, & x,y \neq 0, \\ &\ln|x^r| = & r\ln|x|, & x \neq 0. \end{split}$$ ### Power function, fixed exponent: $$(xy)^r = x^r \cdot y^r, x, y > 0$$ (extensions for some r), $$\left(\frac{x}{y}\right)^r = \frac{x^r}{y^r}, x, y > 0$$ (extensions for some r). ## Exponential, fixed base: $$\begin{split} &a^x \cdot a^y = a^{x+y}, \quad a > 0 \quad \text{(extensions for some } x, \, y), \\ &(a^x)^y = a^{xy}, \, a > 0 \quad \text{(extensions for some } x, \, y), \\ &a^{-x} = \frac{1}{a^x}, a > 0, \quad \text{(extensions for some } x), \\ &\sqrt[n]{a} = a^{1/n}, \, a \geq 0, \quad n \in \mathbb{N}. \end{split}$$ ### Square root: $$\sqrt{x^2} = |x|, \qquad x \in \mathbb{R}.$$ Remark 31.1 It happens quite frequently that students make errors when they try to apply these rules. They must be mastered! In particular, as one of my friends once put it: "If you can master the square root, you can master everything in mathematics!" Notice that this innocent looking square root is one of the most difficult operations in Calculus. Do not forget the absolute value! \Diamond ### 31.3 Differentiation Here are given the well-known rules of differentiation together with some rearrangements which sometimes may be easier to use: $${f(x) \pm g(x)}' = f'(x) \pm g'(x),$$ $$\{f(x)g(x)\}' = f'(x)g(x) + f(x)g'(x) = f(x)g(x)\left\{\frac{f'(x)}{f(x)} + \frac{g'(x)}{g(x)}\right\},$$ where the latter rearrangement presupposes that $f(x) \neq 0$ and $g(x) \neq 0$. If $g(x) \neq 0$, we get the usual formula known from high school $$\left\{\frac{f(x)}{g(x)}\right\}' = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}.$$ It is often more convenient to compute this expression in the following way: $$\left\{\frac{f(x)}{g(x)}\right\} = \frac{d}{dx}\left\{f(x)\cdot\frac{1}{g(x)}\right\} = \frac{f'(x)}{g(x)} - \frac{f(x)g'(x)}{g(x)^2} = \frac{f(x)}{g(x)}\left\{\frac{f'(x)}{f(x)} - \frac{g'(x)}{g(x)}\right\},$$ where the former expression often is *much easier* to use in practice than the usual formula from high school, and where the latter expression again presupposes that $f(x) \neq 0$ and $g(x) \neq 0$. Under these assumptions we see that the formulæ above can be written $$\frac{\{f(x)g(x)\}'}{f(x)g(x)} = \frac{f'(x)}{f(x)} + \frac{g'(x)}{g(x)},$$ $$\frac{\{f(x)/g(x)\}'}{f(x)/g(x)} = \frac{f'(x)}{f(x)} - \frac{g'(x)}{g(x)}.$$ Since $$\frac{d}{dx}\ln|f(x)| = \frac{f'(x)}{f(x)}, \qquad f(x) \neq 0,$$ we also name these the logarithmic derivatives. Finally, we mention the rule of differentiation of a composite function $$\{f(\varphi(x))\}' = f'(\varphi(x)) \cdot \varphi'(x).$$ We first differentiate the function itself; then the insides. This rule is a 1-dimensional version of the so-called *Chain rule*. ## 31.4 Special derivatives. Power like: $$\frac{d}{dx}(x^{\alpha}) = \alpha \cdot x^{\alpha - 1},$$ for $x > 0$, (extensions for some α). $$\frac{d}{dx}\ln|x| = \frac{1}{x},$$ for $x \neq 0$. # Exponential like: $$\frac{d}{dx} \exp x = \exp x, \qquad \text{for } x \in \mathbb{R},$$ $$\frac{d}{dx} (a^x) = \ln a \cdot a^x, \qquad \text{for } x \in \mathbb{R} \text{ and } a > 0.$$ ## **Trigonometric:** $$\frac{d}{dx}\sin x = \cos x, \qquad \text{for } x \in \mathbb{R},$$ $$\frac{d}{dx}\cos x = -\sin x, \qquad \text{for } x \in \mathbb{R},$$ $$\frac{d}{dx}\tan x = 1 + \tan^2 x = \frac{1}{\cos^2 x}, \qquad \text{for } x \neq \frac{\pi}{2} + p\pi, p \in \mathbb{Z},$$ $$\frac{d}{dx}\cot x = -(1 + \cot^2 x) = -\frac{1}{\sin^2 x}, \qquad \text{for } x \neq p\pi, p \in \mathbb{Z}.$$ ## Hyperbolic: $$\frac{d}{dx}\sinh x = \cosh x, \qquad \text{for }
x \in \mathbb{R},$$ $$\frac{d}{dx}\cosh x = \sinh x, \qquad \text{for } x \in \mathbb{R},$$ $$\frac{d}{dx}\tanh x = 1 - \tanh^2 x = \frac{1}{\cosh^2 x}, \qquad \text{for } x \in \mathbb{R},$$ $$\frac{d}{dx}\coth x = 1 - \coth^2 x = -\frac{1}{\sinh^2 x}, \qquad \text{for } x \neq 0.$$ # Inverse trigonometric: $$\frac{d}{dx} \operatorname{Arcsin} x = \frac{1}{\sqrt{1 - x^2}}, \qquad \text{for } x \in]-1, 1[,$$ $$\frac{d}{dx} \operatorname{Arccos} x = -\frac{1}{\sqrt{1 - x^2}}, \qquad \text{for } x \in]-1, 1[,$$ $$\frac{d}{dx} \operatorname{Arctan} x = \frac{1}{1 + x^2}, \qquad \text{for } x \in \mathbb{R},$$ $$\frac{d}{dx} \operatorname{Arccot} x = \frac{1}{1 + x^2}, \qquad \text{for } x \in \mathbb{R}.$$ ### Inverse hyperbolic: $$\frac{d}{dx} \operatorname{Arsinh} x = \frac{1}{\sqrt{x^2 + 1}}, \qquad \text{for } x \in \mathbb{R},$$ $$\frac{d}{dx} \operatorname{Arcosh} x = \frac{1}{\sqrt{x^2 - 1}}, \qquad \text{for } x \in]1, +\infty[,$$ $$\frac{d}{dx} \operatorname{Artanh} x = \frac{1}{1 - x^2}, \qquad \text{for } |x| < 1,$$ $$\frac{d}{dx} \operatorname{Arcoth} x = \frac{1}{1 - x^2}, \qquad \text{for } |x| > 1.$$ **Remark 31.2** The derivative of the trigonometric and the hyperbolic functions are to some extent exponential like. The derivatives of the inverse trigonometric and inverse hyperbolic functions are power like, because we include the logarithm in this class. \Diamond # 31.5 Integration The most obvious rules are dealing with linearity $$\int \{f(x) + \lambda g(x)\} dx = \int f(x) dx + \lambda \int g(x) dx, \quad \text{where } \lambda \in \mathbb{R} \text{ is a constant},$$ and with the fact that differentiation and integration are "inverses to each other", i.e. modulo some arbitrary constant $c \in \mathbb{R}$, which often tacitly is missing, $$\int f'(x) \, dx = f(x).$$ If we in the latter formula replace f(x) by the product f(x)g(x), we get by reading from the right to the left and then differentiating the product, $$f(x)g(x) = \int \{f(x)g(x)\}' dx = \int f'(x)g(x) dx + \int f(x)g'(x) dx.$$ Hence, by a rearrangement ### The rule of partial integration: $$\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g'(x) dx.$$ The differentiation is moved from one factor of the integrand to the other one by changing the sign and adding the term f(x)g(x). Remark 31.3 This technique was earlier used a lot, but is almost forgotten these days. It must be revived, because MAPLE and pocket calculators apparently do not know it. It is possible to construct examples where these devices cannot give the exact solution, unless you first perform a partial integration yourself. \Diamond **Remark 31.4** This method can also be used when we estimate integrals which cannot be directly calculated, because the antiderivative is not contained in e.g. the catalogue of MAPLE. The idea is by a succession of partial integrations to make the new integrand smaller. \Diamond ### Integration by substitution: If the integrand has the special structure $f(\varphi(x))\cdot\varphi'(x)$, then one can change the variable to $y=\varphi(x)$: $$\int f(\varphi(x)) \cdot \varphi'(x) \, dx = \int f(\varphi(x)) \, d\varphi(x) = \int_{y=\varphi(x)} f(y) \, dy.$$ ### Integration by a monotonous substitution: If $\varphi(y)$ is a monotonous function, which maps the y-interval one-to-one onto the x-interval, then $$\int f(x) dx = \int_{y=\varphi^{-1}(x)} f(\varphi(y))\varphi'(y) dy.$$ **Remark 31.5** This rule is usually used when we have some "ugly" term in the integrand f(x). The idea is to put this ugly term equal to $y = \varphi^{-1}(x)$. When e.g. x occurs in f(x) in the form \sqrt{x} , we put $y = \varphi^{-1}(x) = \sqrt{x}$, hence $x = \varphi(y) = y^2$ and $\varphi'(y) = 2y$. \Diamond # 31.6 Special antiderivatives #### Power like: $$\int \frac{1}{x} dx = \ln |x|, \qquad \text{for } x \neq 0. \text{ (Do not forget the numerical value!)}$$ $$\int x^{\alpha} dx = \frac{1}{\alpha + 1} x^{\alpha + 1}, \qquad \text{for } \alpha \neq -1,$$ $$\int \frac{1}{1 + x^2} dx = \text{Arctan } x, \qquad \text{for } x \in \mathbb{R},$$ $$\int \frac{1}{1 - x^2} dx = \frac{1}{2} \ln \left| \frac{1 + x}{1 - x} \right|, \qquad \text{for } x \neq \pm 1,$$ $$\int \frac{1}{1 - x^2} dx = \text{Artanh } x, \qquad \text{for } |x| < 1,$$ $$\int \frac{1}{\sqrt{1 - x^2}} dx = \text{Arcoth } x, \qquad \text{for } |x| < 1,$$ $$\int \frac{1}{\sqrt{1 - x^2}} dx = \text{Arccos } x, \qquad \text{for } |x| < 1,$$ $$\int \frac{1}{\sqrt{1 - x^2}} dx = - \text{Arccos } x, \qquad \text{for } |x| < 1,$$ $$\int \frac{1}{\sqrt{x^2 + 1}} dx = \text{Arsinh } x, \qquad \text{for } x \in \mathbb{R},$$ $$\int \frac{1}{\sqrt{x^2 - 1}} dx = \ln(x + \sqrt{x^2 + 1}), \qquad \text{for } x \in \mathbb{R},$$ $$\int \frac{1}{\sqrt{x^2 - 1}} dx = \text{Arcosh } x, \qquad \text{for } x > 1,$$ $$\int \frac{1}{\sqrt{x^2 - 1}} dx = \ln|x + \sqrt{x^2 - 1}|, \qquad \text{for } x > 1 \text{ eller } x < -1.$$ There is an error in the programs of the pocket calculators TI-92 and TI-89. The numerical signs are missing. It is obvious that $\sqrt{x^2-1} < |x|$ so if x < -1, then $x + \sqrt{x^2-1} < 0$. Since you cannot take the logarithm of a negative number, these pocket calculators will give an error message. ### **Exponential like:** $$\int \exp x \, dx = \exp x, \qquad \text{for } x \in \mathbb{R},$$ $$\int a^x \, dx = \frac{1}{\ln a} \cdot a^x, \qquad \text{for } x \in \mathbb{R}, \text{ and } a > 0, a \neq 1.$$ ### **Trigonometric:** $$\int \sin x \, dx = -\cos x, \qquad \text{for } x \in \mathbb{R},$$ $$\int \cos x \, dx = \sin x, \qquad \text{for } x \in \mathbb{R},$$ $$\int \tan x \, dx = -\ln|\cos x|, \qquad \text{for } x \neq \frac{\pi}{2} + p\pi, \quad p \in \mathbb{Z},$$ $$\int \cot x \, dx = \ln|\sin x|, \qquad \text{for } x \neq p\pi, \quad p \in \mathbb{Z},$$ $$\int \frac{1}{\cos x} \, dx = \frac{1}{2} \ln \left(\frac{1 + \sin x}{1 - \sin x} \right), \qquad \text{for } x \neq \frac{\pi}{2} + p\pi, \quad p \in \mathbb{Z},$$ $$\int \frac{1}{\sin x} \, dx = \frac{1}{2} \ln \left(\frac{1 - \cos x}{1 + \cos x} \right), \qquad \text{for } x \neq p\pi, \quad p \in \mathbb{Z},$$ $$\int \frac{1}{\cos^2 x} \, dx = \tan x, \qquad \text{for } x \neq \frac{\pi}{2} + p\pi, \quad p \in \mathbb{Z},$$ $$\int \frac{1}{\sin^2 x} \, dx = -\cot x, \qquad \text{for } x \neq p\pi, \quad p \in \mathbb{Z}.$$ # Hyperbolic: $$\int \sinh x \, dx = \cosh x, \qquad \qquad \text{for } x \in \mathbb{R},$$ $$\int \cosh x \, dx = \sinh x, \qquad \qquad \text{for } x \in \mathbb{R},$$ $$\int \tanh x \, dx = \ln \cosh x, \qquad \qquad \text{for } x \in \mathbb{R},$$ $$\int \coth x \, dx = \ln |\sinh x|, \qquad \qquad \text{for } x \neq 0,$$ $$\int \frac{1}{\cosh x} \, dx = \operatorname{Arctan}(\sinh x), \qquad \qquad \text{for } x \in \mathbb{R},$$ $$\int \frac{1}{\cosh x} \, dx = 2 \operatorname{Arctan}(e^x), \qquad \qquad \text{for } x \in \mathbb{R},$$ $$\int \frac{1}{\sinh x} \, dx = \frac{1}{2} \ln \left(\frac{\cosh x - 1}{\cosh x + 1} \right), \qquad \text{for } x \neq 0,$$ $$\int \frac{1}{\sinh x} dx = \ln \left| \frac{e^x - 1}{e^x + 1} \right|, \qquad \text{for } x \neq 0,$$ $$\int \frac{1}{\cosh^2 x} dx = \tanh x, \qquad \text{for } x \in \mathbb{R},$$ $$\int \frac{1}{\sinh^2 x} dx = -\coth x, \qquad \text{for } x \neq 0.$$ # 31.7 Trigonometric formulæ The trigonometric formulæ are closely connected with circular movements. Thus $(\cos u, \sin u)$ are the coordinates of a point P on the unit circle corresponding to the angle u, cf. figure A.1. This geometrical interpretation is used from time to time. Figure 31.1: The unit circle and the trigonometric functions. ### The fundamental trigonometric relation: $$\cos^2 u + \sin^2 u = 1$$, for $u \in \mathbb{R}$. Using the previous geometric interpretation this means according to *Pythagoras's theorem*, that the point P with the coordinates $(\cos u, \sin u)$ always has distance 1 from the origo (0,0), i.e. it is lying on the boundary of the circle of centre (0,0) and radius $\sqrt{1}=1$. ## Connection to the complex exponential function: The complex exponential is for imaginary arguments defined by $$\exp(\mathrm{i} u) := \cos u + \mathrm{i} \sin u.$$ It can be checked that the usual functional equation for exp is still valid for complex arguments. In other word: The definition above is extremely conveniently chosen. By using the definition for $\exp(i u)$ and $\exp(-i u)$ it is easily seen that $$\cos u = \frac{1}{2}(\exp(\mathrm{i}\,u) + \exp(-\mathrm{i}\,u)),$$ $$\sin u = \frac{1}{2i} (\exp(\mathrm{i} u) - \exp(-\mathrm{i} u)),$$. Moivre's formula: We get by expressing $\exp(inu)$ in two different ways: $$\exp(inu) = \cos nu + i \sin nu = (\cos u + i \sin u)^{n}.$$ **Example 31.1** If we e.g. put n=3 into Moivre's formula, we obtain the following typical application, $$\cos(3u) + i \sin(3u) = (\cos u + i \sin u)^{3}$$ $$= \cos^{3} u + 3i \cos^{2} u \cdot \sin u + 3i^{2} \cos u \cdot \sin^{2} u + i^{3} \sin^{3} u$$ $$= \{\cos^{3} u - 3 \cos u \cdot \sin^{2} u\} + i\{3 \cos^{2} u \cdot \sin u - \sin^{3} u\}$$ $$= \{4 \cos^{3} u - 3 \cos u\} + i\{3 \sin u - 4 \sin^{3} u\}$$ When this is split into the real- and imaginary parts we obtain $$\cos 3u = 4\cos^3 u - 3\cos u, \qquad \sin 3u = 3\sin u - 4\sin^3 u. \quad \diamondsuit$$ ### Addition formulæ: $$\sin(u+v) = \sin u \cos v + \cos u \sin v,$$ $$\sin(u-v) = \sin u \cos v - \cos u \sin v,$$ $$\cos(u+v) = \cos u \cos v - \sin u \sin v,$$ $$\cos(u-v) = \cos u \cos v + \sin u \sin v.$$ ## Products of trigonometric functions to a sum: $$\sin u \cos v = \frac{1}{2}\sin(u+v) + \frac{1}{2}\sin(u-v),$$ $$\cos u \sin v = \frac{1}{2}\sin(u+v) - \frac{1}{2}\sin(u-v),$$ $$\sin u \sin v = \frac{1}{2}\cos(u-v) - \frac{1}{2}\cos(u+v),$$ $$\cos u \cos v = \frac{1}{2}\cos(u-v) + \frac{1}{2}\cos(u+v).$$ # Sums of trigonometric functions to a product: $$\sin u + \sin v = 2\sin\left(\frac{u+v}{2}\right)\cos\left(\frac{u-v}{2}\right),$$ $$\sin u - \sin v = 2\cos\left(\frac{u+v}{2}\right)\sin\left(\frac{u-v}{2}\right),$$ $$\cos u +
\cos v = 2\cos\left(\frac{u+v}{2}\right)\cos\left(\frac{u-v}{2}\right),$$ $$\cos u - \cos v = -2\sin\left(\frac{u+v}{2}\right)\sin\left(\frac{u-v}{2}\right).$$ ### Formulæ of halving and doubling the angle: $$\sin 2u = 2\sin u \cos u,$$ $$\cos 2u = \cos^2 u - \sin^2 u = 2\cos^2 u - 1 = 1 - 2\sin^2 u,$$ $$\sin \frac{u}{2} = \pm \sqrt{\frac{1 - \cos u}{2}} \qquad \text{followed by a discussion of the sign,}$$ $$\cos \frac{u}{2} = \pm \sqrt{\frac{1 + \cos u}{2}} \qquad \text{followed by a discussion of the sign,}$$ # 31.8 Hyperbolic formulæ These are very much like the trigonometric formulæ, and if one knows a little of Complex Function Theory it is realized that they are actually identical. The structure of this section is therefore the same as for the trigonometric formulæ. The reader should compare the two sections concerning similarities and differences. ## The fundamental relation: $$\cosh^2 x - \sinh^2 x = 1.$$ # **Definitions**: $$\cosh x = \frac{1}{2} (\exp(x) + \exp(-x)), \quad \sinh x = \frac{1}{2} (\exp(x) - \exp(-x)).$$ ## "Moivre's formula": $$\exp(x) = \cosh x + \sinh x.$$ This is trivial and only rarely used. It has been included to show the analogy. ### Addition formulæ: $$\sinh(x+y) = \sinh(x)\cosh(y) + \cosh(x)\sinh(y),$$ $$\sinh(x-y) = \sinh(x)\cosh(y) - \cosh(x)\sinh(y),$$ $$\cosh(x+y) = \cosh(x)\cosh(y) + \sinh(x)\sinh(y),$$ $$\cosh(x-y) = \cosh(x)\cosh(y) - \sinh(x)\sinh(y).$$ ### Formulæ of halving and doubling the argument: $$\sinh(2x) = 2\sinh(x)\cosh(x),$$ $$\cosh(2x) = \cosh^2(x) + \sinh^2(x) = 2\cosh^2(x) - 1 = 2\sinh^2(x) + 1,$$ $$\sinh\left(\frac{x}{2}\right) = \pm\sqrt{\frac{\cosh(x) - 1}{2}} \qquad \text{followed by a discussion of the sign,}$$ $$\cosh\left(\frac{x}{2}\right) = \sqrt{\frac{\cosh(x) + 1}{2}}.$$ ### Inverse hyperbolic functions: $$\begin{aligned} \operatorname{Arsinh}(x) &= \ln \left(x + \sqrt{x^2 + 1} \right), & x \in \mathbb{R}, \\ \operatorname{Arcosh}(x) &= \ln \left(x + \sqrt{x^2 - 1} \right), & x \ge 1, \\ \operatorname{Artanh}(x) &= \frac{1}{2} \ln \left(\frac{1 + x}{1 - x} \right), & |x| < 1, \\ \operatorname{Arcoth}(x) &= \frac{1}{2} \ln \left(\frac{x + 1}{x - 1} \right), & |x| > 1. \end{aligned}$$ # 31.9 Complex transformation formulæ $$\cos(ix) = \cosh(x),$$ $\cosh(ix) = \cos(x),$ $\sin(ix) = i \sinh(x),$ $\sinh(ix) = i \sin x.$ # 31.10 Taylor expansions The generalized binomial coefficients are defined by $$\begin{pmatrix} \alpha \\ n \end{pmatrix} := \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{1\cdot 2\cdots n},$$ with n factors in the numerator and the denominator, supplied with $$\left(\begin{array}{c} \alpha \\ 0 \end{array}\right) := 1.$$ The Taylor expansions for *standard functions* are divided into *power like* (the radius of convergency is finite, i.e. = 1 for the standard series) and *exponential like* (the radius of convergency is infinite). **Power like**: $$\begin{split} \frac{1}{1-x} &= \sum_{n=0}^{\infty} x^n, & |x| < 1, \\ \frac{1}{1+x} &= \sum_{n=0}^{\infty} (-1)^n x^n, & |x| < 1, \\ (1+x)^n &= \sum_{j=0}^n \binom{n}{j} x^j, & n \in \mathbb{N}, x \in \mathbb{R}, \\ (1+x)^{\alpha} &= \sum_{n=0}^{\infty} \binom{\alpha}{n} x^n, & \alpha \in \mathbb{R} \setminus \mathbb{N}, |x| < 1, \\ \ln(1+x) &= \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}, & |x| < 1, \\ \operatorname{Arctan}(x) &= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, & |x| < 1. \end{split}$$ ## Exponential like: $$\exp(x) = \sum_{n=0}^{\infty} \frac{1}{n!} x^n, \qquad x \in \mathbb{R}$$ $$\exp(-x) = \sum_{n=0}^{\infty} (-1)^n \frac{1}{n!} x^n, \qquad x \in \mathbb{R}$$ $$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} x^{2n+1}, \qquad x \in \mathbb{R}$$ $$\sinh(x) = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} x^{2n+1}, \qquad x \in \mathbb{R}.$$ $$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!} x^{2n}, \qquad x \in \mathbb{R}$$ $$\cosh(x) = \sum_{n=0}^{\infty} \frac{1}{(2n)!} x^{2n}, \qquad x \in \mathbb{R}.$$ # 31.11 Magnitudes of functions We often have to compare functions for $x \to 0+$, or for $x \to \infty$. The simplest type of functions are therefore arranged in an hierarchy: - 1) logarithms, - 2) power functions, - 3) exponential functions, - 4) faculty functions. When $x \to \infty$, a function from a higher class will always dominate a function form a lower class. More precisely: **A)** A power function dominates a logarithm for $x \to \infty$: $$\frac{(\ln x)^{\beta}}{x^{\alpha}} \to 0 \quad \text{for } x \to \infty, \quad \alpha, \, \beta > 0.$$ **B)** An exponential dominates a power function for $x \to \infty$: $$\frac{x^{\alpha}}{a^x} \to 0$$ for $x \to \infty$, α , $a > 1$. C) The faculty function dominates an exponential for $n \to \infty$: $$\frac{a^n}{n!} \to 0, \quad n \to \infty, \quad n \in \mathbb{N}, \quad a > 0.$$ **D)** When $x \to 0+$ we also have that a power function dominates the logarithm: $$x^{\alpha} \ln x \to 0-$$, for $x \to 0+$, $\alpha > 0$. ### Index absolute value 162 acceleration 490 addition 22 affinity factor 173 Ampère-Laplace law 1671 Ampère-Maxwell's law 1678 Ampère's law 1491, 1498, 1677, 1678, 1833 Ampère's law for the magnetic field 1674 angle 19 angular momentum 886 angular set 84 annulus 176, 243 anticommutative product 26 antiderivative 301, 847 approximating polynomial 304, 322, 326, 336, 404, 488, 632, 662 approximation in energy 734 Archimedes's spiral 976, 1196 Archimedes's theorem 1818 area 887, 1227, 1229, 1543 area element 1227 area of a graph 1230 asteroid 1215 asymptote 51 axial moment 1910 axis of revolution 181 axis of rotation 34, 886 axis of symmetry 49, 50, 53 barycentre 885, 1910 basis 22 bend 486 bijective map 153 body of revolution 43, 1582, 1601 boundary 37–39 boundary curve 182 boundary curve of a surface 182 boundary point 920 boundary set 21 bounded map 153 bounded set 41 branch 184 branch of a curve 492 Brownian motion 884 cardiod 972, 973, 1199, 1705 Cauchy-Schwarz's inequality 23, 24, 26 centre of gravity 1108 centre of mass 885 centrum 66 chain rule 305, 333, 352, 491, 503, 581, 1215, 1489, $1493,\,1808$ change of parameter 174 circle 49 circular motion 19 circulation 1487 circulation theorem 1489, 1491 circumference 86 closed ball 38 closed differential form 1492 closed disc 86 closed domain 176 closed set 21 closed surface 182, 184 closure 39 clothoid 1219 colour code 890 compact set 186, 580, 1813 compact support 1813 complex decomposition 69 composite function 305 conductivity of heat 1818 cone 19, 35, 59, 251 conic section 19, 47, 54, 239, 536 conic sectional conic surface 59, 66 connected set 175, 241 conservation of electric charge 1548, 1817 conservation of energy 1548, 1817 conservation of mass 1548, 1816 conservative force 1498, 1507 conservative vector field 1489 continuity equation 1548, 1569, 1767, 1817 continuity 162, 186 continuous curve 170, 483 continuous extension 213 continuous function 168 continuous surfaces 177 contraction 167 convective term 492 convex set 21, 22, 41, 89, 91, 175, 244 coordinate function 157, 169 coordinate space 19, 21 Cornu's spiral 1219 dodecahedron 83 Coulomb field 1538, 1545, 1559, 1566, 1577 domain 153, 176 Coulomb vector field 1585, 1670 domain of a function 189 dot product 19, 350, 1750 cross product 19, 163, 169, 1750 cube 42, 82 double cone 252 double point 171 current density 1678, 1681 current 1487, 1499 double vector product 27 curvature 1219 eccentricity 51 curve 227 eccentricity of ellipse 49 curve length 1165 eigenvalue 1906 curved space integral 1021 elasticity 885, 1398 cusp 486, 487, 489 electric field 1486, 1498, 1679 cycloid 233, 1215 electrical dipole moment 885 cylinder 34, 42, 43, 252 electromagnetic field 1679 cylinder of revolution 500 electromagnetic potentials 1819 cylindric coordinates 15, 21, 34, 147, 181, 182, electromotive force 1498 289, 477, 573, 841, 1009, 1157, 1347, 1479, electrostatic field 1669 1651, 1801 element of area 887 cylindric surface 180, 245, 247, 248, 499, 1230 elementary chain rule 305 degree of trigonometric polynomial 67 elementary fraction 69 ellipse 48–50, 92, 113, 173, 199, 227 density 885 density of charge 1548 ellipsoid 56, 66, 110, 197, 254, 430, 436, 501, 538, 1107 density of current 1548 ellipsoid of revolution 111 derivative 296 derivative of inverse function 494 ellipsoidal disc 79, 199 Descartes'a leaf 974 ellipsoidal surface 180 elliptic cylindric surface 60, 63, 66, 106 dielectric constant 1669, 1670 elliptic paraboloid 60, 62, 66, 112, 247 difference quotient 295 elliptic paraboloid of revolution 624 differentiability 295 differentiable function 295 energy 1498 energy density 1548, 1818 differentiable vector function 303 energy theorem 1921 differential 295, 296, 325, 382, 1740, 1741 entropy 301 differential curves 171 Euclidean norm 162 differential equation 369, 370, 398 differential form 848 Euclidean space 19, 21, 22 differential of order p 325 Euler's spiral 1219 differential of vector function 303 exact differential form 848 diffusion equation 1818 exceptional point 594, 677, 920 dimension 1016 expansion point 327 direction 334 explicit given function 161 direction vector 172 extension map 153 directional derivative 317, 334, 375 exterior 37-39 directrix 53 exterior point 38 Dirichlet/Neumann problem 1901 extremum 580, 632 displacement field 1670 Faraday-Henry law of electromagnetic induction distribution of current 886 1676 divergence 1535, 1540, 1542, 1739, 1741, 1742 Fick's first law of diffusion 297 divergence free vector field 1543 height 42 helix 1169, 1235 Fick's law 1818 Helmholtz's theorem 1815 field line 160 homogeneous function 1908 final point 170 homogeneous polynomial 339, 372 Hopf's maximum principle 1905 fluid mechanics 491 hyperbola 48, 50, 51, 88, 195, 217, 241, 255, 1290 flux 1535, 1540, 1549 focus 49, 51, 53 hyperbolic cylindric surface 60, 63, 66, 105, 110 force 1485 hyperbolic paraboloid 60, 62, 66, 246, 534, 614, Fourier's law 297, 1817 1445 hyperboloid 232, 1291 function in several variables 154 hyperboloid of revolution 104 functional
matrix 303 fundamental theorem of vector analysis 1815 hyperboloid of revolution with two sheets 111 hyperboloid with one sheet 56, 66, 104, 110, 247, Gaussian integral 938 Gauß's law 1670 hyperboloid with two sheets 59, 66, 104, 110, 111, Gauß's law for magnetism 1671255, 527 Gauß's theorem 1499, 1535, 1540, 1549, 1580, 1718, hysteresis 1669 1724, 1737, 1746, 1747, 1749, 1751, 1817, 1818, 1889, 1890, 1913 identity map 303 Gauß's theorem in \mathbb{R}^2 1543 implicit given function 21, 161 Gauß's theorem in \mathbb{R}^3 1543 implicit function theorem 492, 503 general chain rule 314 improper integral 1411 general coordinates 1016 improper surface integral 1421 general space integral 1020 increment 611 induced electric field 1675 general Taylor's formula 325 induction field 1671 generalized spherical coordinates 21 generating curve 499 infinitesimal vector 1740 generator 66, 180 infinity, signed 162 geometrical analysis 1015 infinity, unspecified 162 global minimum 613 initial point 170 gradient 295, 296, 298, 339, 847, 1739, 1741 injective map 153 gradient field 631, 847, 1485, 1487, 1489, 1491, inner product 23, 29, 33, 163, 168, 1750 inspection 861 gradient integral theorem 1489, 1499 integral 847 integral over cylindric surface 1230 graph 158, 179, 499, 1229 integral over surface of revolution 1232 Green's first identity 1890 interior 37-40Green's second identity 1891, 1895 Green's theorem in the plane 1661, 1669, 1909 interior point 38 intrinsic boundary 1227 Green's third identity 1896 isolated point 39 Green's third identity in the plane 1898 Jacobian 1353, 1355 half-plane 41, 42 half-strip 41, 42 Kronecker symbol 23 half disc 85 Laplace equation 1889 harmonic function 426, 427, 1889 Laplace force 1819 heat conductivity 297 Laplace operator 1743 heat equation 1818 latitude 35 heat flow 297 length 23 level curve 159, 166, 198, 492, 585, 600, 603 | limit 162, 219 line integral 1018, 1163 line segment 41 Linear Algebra 627 linear space 22 local extremum 611 logarithm 189 longitude 35 Lorentz condition 1824 Maclaurin's trisectrix 973, 975 magnetic circulation 1674 magnetic fipole moment 886, 1821 magnetic flore 1674 magnetic flore 1674 magnetic induction 1671 magnetic force 1674 magnetic induction 1671 magnetic permeability of vacuum 1673 magnostatic field 1691, 1498, 1679 magnostatic field 1671 main theorems 185 major semi-axis 49 map 153 MAPLE 55, 68, 74, 156, 171, 173, 341, 345, 350, 352-354, 356, 357, 360, 361, 363, 364, 366, 368, 374, 384-387, 391-393, 395-397, 401, 631, 899, 905-912, 194, 915, 917, 919, 922-924, 926, 934, 935, 949, 951, 954, 957-966, 968, 971-973, 975, 1032-1034, 1036, 1037, 1039, 1040, 1042, 1053, 1059, 1061, 1064, 1066-1068, 1070-1072, 1074, 1987, 1089, 1091, 1092, 1094, 1053 maximal domain 154, 157 maximum 382, 579, 612, 1916 maximum alung 922 measure theory 1015 Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157, 1347, 1479, 1651, 1801, 1921 meridian balf-plane 34, 35, 43, 181, 1055, 1057, 1081 | level surface 198, 503 | method of indefinite integration 859 | |--|--|--| | Inine segment 41 | limit 162, 219 | method of inspection 861 | | Linear Algebra 627 | line integral 1018, 1163 | method of radial integration 862 | | Inioral space 22 local extremum 611 logarithm 189 mmf 1674 Möbius strip 185, 497 Moivre's formula 122, 264, 452, 548, 818, 984, 1132, 1322, 1454, 1626, 1776, 1930 monopole 1671 multiple point 171 multiple point 175 magnetic circulation 1674 magnetic dipole moment 886, 1821 magnetic fired 1491, 1498, 1679 magnetic fired 1491, 1498, 1679 magnetic force 1674 magnetic force 1674 magnetic induction 1671 magnetic permeability of vacuum 1673 magnostatic field 1671 main theorems 185 major semi-axis 49 map 153 MAPLE 55, 68, 74, 156, 171, 173, 341, 345, 350, 352-354, 356, 357, 360, 361, 363, 363, 364, 363, 363, 364, 363, 363 | line segment 41 | minimum 186, 178, 579, 612, 1916 | | local extremum 611 logarithm 189 Möbius strip 185, 497 Moivre's formula 122, 264, 452, 548, 818, 984, 1132, 1322, 1454, 1626, 1776, 1930 monopole 1671 multiple point 171 | Linear Algebra 627 | minimum value 922 | | longarithm 189 longitude 35 Möbius strip 185, 497 Moivre's formula 122, 264, 452, 548, 818, 984, 1132, 1322, 1454, 1626, 1776, 1930 monopole 1671 multiple point 171 175 mabla calculus 1750 mabl | linear space 22 | minor semi-axis 49 | | Iongitude 35 | local extremum 611 | mmf 1674 | | Iongitude 35 | logarithm 189 | Möbius strip 185, 497 | | Maclaurin's trisectrix 973, 975 monopole 1671 magnetic circulation 1674 multiple point 171 magnetic dipole moment 886, 1821 nabla 296, 1739 magnetic flux 1544, 1671, 1819 nabla calculus 1750 magnetic induction 1671 natural equation 1215 magnetic permeability of vacuum 1673 natural parametric description 1166, 1170 magnestatic field 1671 natural parametric description 1166, 1170 magnestatic field 1671 natural parametric description 1166, 1170 magnetic permeability of vacuum 1673 natural parametric description 1166, 1170 magnestic field 14671 natural parametric description 1166, 1170 magnestic field 1671 natural parametric description 1166, 1170 magnestic field 1671 natural equation 1215 magnetic induction 1671 natural equation 1215 magnetic permeability of vacuum 1673 natural equation 1215 magnetic field 1491, 1498, 1672 natural equation 1215 magnetic permeability of vacuum 1673 natural equation 1215 magnetic induction 1671 natural equation 1215 magnetic permeability of vacuum 1673 natural equation 1215 magnetic induction 1671 natural eq | ~ | Moivre's formula 122, 264, 452, 548, 818, 984, | | Maclaurin's trisectrix 973, 975 multiple point 171 magnetic circulation 1674 magnetic dipole moment 886, 1821 nabla 296, 1739 magnetic field 1491, 1498, 1679 nabla 296, 1739 magnetic field 1491, 1498, 1679 nabla calculus 1750 magnetic force 1674 nabla calculus 1750 magnetic induction 1671 nabla calculus 1215 magnetic permeability of vacuum 1673 negative definite matrix 627 magnetic field 1671 negative half-tangent 485 main theorems 185 neighbourhood 39 major semi-axis 49 neutral element 22 MAPLE 55, 68, 74, 156, 171, 173, 341, 345, 350, Newton-Raphson iteration formula 583 MS2-354, 356, 357, 360, 361, 363, 364, 366, 368, 374, 384-387, 391-393, 395-397, 401, 631, 899, 995-912, 914, 915, normal 227 non-oriented surface 185 917, 919, 922-924, 926, 934, 935, 949, 951, 954, 957-966, 968, 971-973, 975, normal 1227 1032-1034, 1036, 1037, 1039, 1040, 1042, normal veriant element 22 1053, 1059, 1061, 1064, 1066-1068, 1070-1072, 1074, 1087, 1089, 1091, 1092, 1094, 1095, 1102, 1199, 1200 ormal verter 496, 1229 maximum 382, 579, 612, 1916 ormal verter 496, 1229 maximum walue 922 ordance of expansion 32 | Lorentz condition 1824 | | | magnetic circulation 1674 magnetic filpole moment 886, 1821 magnetic filed 1491, 1498, 1679 magnetic flux 1544, 1671, 1819 magnetic force 1674 magnetic permeability of vacuum 1673 magnostatic field 1671 main theorems 185 major semi-axis 49 map 153 MAPLE 55, 68, 74, 156, 171, 173, 341, 345, 350, 352–354, 356, 357, 360, 361, 363, 364, 366, 368, 374, 384–387, 391–393, 395–397, 401, 631, 899, 905–912, 914, 915, 917, 919, 922–924, 926, 934, 935, 949, 951, 954, 957–966, 968, 971–973, 975, 1032–1034, 1036, 1037, 1039, 1040, 1042, 1095, 1102, 1199, 1200 matrix product 303 maximal domain 154, 157 maximum 382, 579, 612, 1916 maximum value 922 maximum-minimum principle for harmonic functions 1895 Maxwell relation 302 Maxwell's equations 1544, 1669, 1670, 1679, 1819 mean value theorem 521, 884, 1276, 1490 mean value theorem for harmonic functions 15, 147, 289, 477, 573, 841, 1009, 1157, 1347, 1479, 1651, 1801, 1921 meridian curve 181, 251, 499, 1232 meridian half-plane 34, 35, 43, 181, 1055, 1057, aparabola 52, 53, 89–92, 195, 201, 229, 240, 241 maghetic flux 1544, 1679, 1681 anabla calculus 1750 nabla calculus 1750 nabla calculus 1750 nabla calculus 1750
natural parametric description 1166, 1170 natural parametric description 1166, 1170 natural parametric description 1166, 1170 neaural parametric description 1166, 1170 nequative definite matrix, 627 negative half-tangent 485 neighbourhood 39 netural element 22 Newton field 1538 Newton-Raphson iteration formula 583 Newton's second law 1921 non-oriented surface 185 normal 1227 normal derivative 1890 normal 1923 normal 1923 normal 1924 octant 83 Ohm's law 297 open ball 38 order of expansion 322 order relation 579 ordinary integral 1017 oriented line 172 oriented line 183 orthodory definite matrix 627 natural equation 1215 natural parametric description 1166, 1170 na | M 1 ' 1 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' | • | | magnetic dipole moment 886, 1821 nabla 296, 1739 magnetic field 1491, 1498, 1679 nabla calculus 1750 magnetic force 1674 natural equation 1215 magnetic induction 1671 natural parametric description 1166, 1170 magnetic field 1671 natural parametric description 1166, 1170 magnestic field 1671 negative definite matrix 627 magnetic field 1671 negative definite matrix 627 main theorems 185 neighbourhood 39 major semi-axis 49 neutral element 22 MAPLE 55, 68, 74, 156, 171, 173, 341, 345, 350, 366, 368, 374, 384-387, 391-393, 395-397, 401, 631, 899, 905-912, 914, 915, 917, 919, 922-924, 926, 934, 935, 949, 917, 919, 922-924, 926, 934, 935, 949, 917, 919, 922-924, 926, 934, 935, 949, 917, 919, 922-924, 926, 934, 935, 949, 917, 1919, 922-924, 926, 934, 935, 949, 917, 1032, 1053, 1059, 1061, 1064, 1066-1068, 1070-1072, 1074, 1087, 1089, 1091, 1092, 1094, 1095, 1102, 1199, 1200 normal plane 487 normal plane 487 normal vector 496, 1229 normal vector 496, 1229 octant 83 Ohm's law 297 open ball 38 open set 21, 39 order relation 579 579< | | multiple point 171 | | magnetic field 1491, 1498, 1679 nabla calculus 1750 magnetic flux 1544, 1671, 1819 nabla notation 1680 magnetic induction 1671 natural equation 1215 magnetic permeability of vacuum 1673 natural parametric description 1166, 1170 magnetic permeability of vacuum 1673 negative definite matrix 627 magnetic field 1671 negative definite matrix 627 magnetic permeability of vacuum 1673 negative definite matrix 627 magnetic field 1671 negative definite matrix 627 magnetic permeability of vacuum 1673 neighbourhood 39 magnetic field 1671 neighbourhood 39 maior semi-axis 49 neutral element 22 map 153 MAPLE 55, 68, 74, 156, 171, 173, 341, 345, 350, Newton-Raphson iteration formula 583 May 153 Mewton's second law 1921 non-oriented surface 185 366, 368, 374, 384-387, 391-393, 395-397, 919, 922-924, 926, 934, 935, 949, 915, 1032-1034, 1036, 1037, 1039, 1040, 1042, 1053, 1059, 1061, 1064, 1066-1068, 1070-1072, 1074, 1087, 1089, 1091, 1092, 1094, 1095, 1102, 1199, 1200 normal 1227 normal 1227 maximum 382, 579, 612, 1916 open domain 154, 157 open ball 38 open set 21, 39 maximum walue 922 open set 21, 39 order re | <u> </u> | 11 000 1720 | | magnetic flux 1544, 1671, 1819 magnetic force 1674 magnetic induction 1671 magnetic permeability of vacuum 1673 magnostatic field 1671 main theorems 185 major semi-axis 49 map 153 MAPLE 55, 68, 74, 156, 171, 173, 341, 345, 350, 352–354, 356, 357, 360, 361, 363, 364, 368, 374, 384–387, 391–393, 395–397, 401, 631, 899, 905–912, 914, 915, 917, 919, 922–924, 926, 934, 935, 949, 951, 954, 957–966, 968, 971–973, 975, 1032–1034, 1036, 1037, 1039, 1040, 1042, 1095, 1102, 1199, 1200 matrix product 303 maximal domain 154, 157 maximum value 922 maximum-minimum principle for harmonic functions 1895 Maxwell relation 302 Maxwell's equations 1544, 1669, 1670, 1679, 1819 mean value theorem for harmonic functions 1895 measure theory 1015 Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157, 1347, 1479, 1651, 1801, 1921 meridian urve 181, 251, 499, 1232 meridian half-plane 34, 35, 43, 181, 1055, 1057, aparabolic excluders and survance of the company | | | | magnetic force 1674 magnetic induction 1671 magnetic permeability of vacuum 1673 magnostatic field 1671 main theorems 185 major semi-axis 49 map 153 MAPLE 55, 68, 74, 156, 171, 173, 341, 345, 350, | | | | magnetic induction 1671 magnetic permeability of vacuum 1673 magnostatic field 1671 main theorems 185 major semi-axis 49 map 153 MAPLE 55, 68, 74, 156, 171, 173, 341, 345, 350, 352-354, 356, 357, 360, 361, 363, 364, 366, 368, 374, 384-387, 391-393, 395- 397, 401, 631, 899, 905-912, 914, 915, 917, 919, 922-924, 926, 934, 935, 949, 1032-1034, 1036, 1037, 1039, 1040, 1042, 1053, 1059, 1061, 1064, 1066-1068, 1070- 1072, 1074, 1087, 1089, 1091, 1092, 1094, 1095, 1102, 1199, 1200 matrix product 303 maximal domain 154, 157 maximum value 922 maximum-minimum principle for harmonic functions 1895 Maxwell's equations 1544, 1669, 1670, 1679, 1819 mean value theorem 321, 884, 1276, 1490 mean value theorem 321, 884, 1276, 1490 mean value theorem for harmonic functions 1895 Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157, 1347, 1479, 1651, 1801, 1921 meridian half-plane 34, 35, 43, 181, 1055, 1057, magnetic permeability of vacuum 1673 negative definite matrix 627 negative half-tangent 485 neighbourhood 39 neutral element 22 Newton field 1538 Newton-Raphson iteration formula 583 584 Newton-Raphson iteration formula 583 Newton-Raphson iteration formula 583 Newton-Raphson iteration formula 584 | | | | magnetic permeability of vacuum 1673 magnostatic field 1671 main theorems 185 major semi-axis 49 map 153 MAPLE 55, 68, 74, 156, 171, 173, 341, 345, 350, | | - | | magnostatic field 1671 main theorems 185 major semi-axis 49 map 153 MAPLE 55, 68, 74, 156, 171, 173, 341, 345, 350, 352–354, 356, 357, 360, 361, 363, 364, 366, 368, 374, 384–387, 391–393, 395–391, 919, 922–924, 926, 934, 935, 949, 1032–1034, 1036, 1037, 1039, 1040, 1042, 1053, 1059, 1061, 1064, 1066–1068, 1070–1072, 1074, 1087, 1089, 1091, 1092, 1094, 1095, 1102, 1199, 1200 matrix product 303 maximal domain 154, 157 maximum value 922 maximum-minimum principle for harmonic functions 1895 Maxwell relation 302 Maxwell's equations 1544, 1669, 1670, 1679, 1819 mean value theorem 321, 884, 1276, 1490 mean value theorem for harmonic functions 1892 measure theory 1015 Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157, 1347, 1479, 1651, 1801, 1921 meridian half-plane 34, 35, 43, 181, 1055, 1057, as a parabolic englinder 613, as a parabolic englinder 613, and so 614, and so parabolic englinder 614, | <u> </u> | | | main theorems 185 major semi-axis 49 map 153 MAPLE 55, 68, 74, 156, 171, 173, 341, 345, 350, 362, 354, 356, 357, 360, 361, 363, 364, 362, 397, 401, 631, 899, 905–912, 914, 915, 917, 919, 922–924, 926, 934, 935, 949, 1032–1034, 1036, 1037, 1039, 1040, 1042, 1053, 1059, 1061, 1064, 1066–1068, 1070–1072, 1074, 1087, 1089, 1091, 1092, 1094, 1095, 1102, 1199, 1200 matrix product 303 maximal domain 154, 157 maximum 382, 579, 612, 1916 maximum value 922 maximum-minimum principle for harmonic functions 1895 Maxwell relation 302 Maxwell's equations 1544, 1669, 1670, 1679, 1819 mean value theorem 321, 884, 1276, 1490 mean value theorem for harmonic functions 18, 151, 174, 289, 477, 573, 841, 1009, 1157, 1347, 1479, 1651, 1801, 1921 meridian curve 181, 251, 499, 1232 meridian half-plane 34, 35, 43, 181, 1055, 1057, as a parabolis englinder of 13, as a possible englinder 613, 614, as a possible englinder 614, as a possible englinder 614, as a poss | - · | ~ | | major semi-axis 49 map 153 MAPLE 55, 68, 74, 156, 171, 173, 341, 345, 350, | <u> </u> | | | MAPLE 55, 68, 74, 156, 171, 173, 341, 345, 350, 352–354, 356, 357, 360, 361, 363, 364, 366, 368, 374, 384–387, 391–393, 395– 397, 401, 631, 899, 905–912, 914, 915, 917, 919, 922–924, 926, 934, 935, 949, 1032–1034, 1036, 1037, 1039, 1040, 1042, 1053, 1059, 1061, 1064, 1066–1068, 1070– 1072, 1074, 1087, 1089, 1091, 1092, 1094, 1095, 1102, 1199, 1200 matrix product 303 maximal domain 154, 157 maximum 382, 579, 612, 1916 maximum value 922 maximum-minimum principle for harmonic functions 1895 Maxwell relation 302 Maxwell's equations 1544, 1669, 1670, 1679, 1819 mean value theorem 321, 884, 1276, 1490 mean value theorem for harmonic functions 1892 measure theory 1015 Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157, 1347, 1479, 1651, 1801, 1921 meridian curve 181, 251, 499, 1232 meridian half-plane 34, 35, 43, 181, 1055, 1057, may loss of expansion iteration formula 583 Newton-Raphson iteration formula 583 Newton's second law 1921 non-oriented surface 185 norm 19, 23 normal 1227 normal derivative 1890 normal plane 487 normal vector 496, 1229 octant 83 Ohm's law 297 open ball 38 open domain 176 open set 21, 39 order relation 579 ordinary integral 1017 orientation of a surface 182 oriented line 172 oriented line 172 oriented line 172 oriented line segment 172 oriented line segment 172 oriented line segment 172 oriented line segment 172 orthonormal system 23 | | <u> </u> | | MAPLE 55, 68, 74, 156, 171, 173, 341, 345, 350, | · | | | 352–354, 356, 357, 360, 361, 363, 364, 366, 368, 374, 384–387, 391–393, 395–397, 401, 631, 899, 905–912, 914, 915, 917, 919, 922–924, 926, 934, 935, 949, 951, 954, 957–966, 968, 971–973, 975, 1032–1034, 1036, 1037, 1039, 1040, 1042, 1053, 1059, 1061, 1064, 1066–1068, 1070–1072, 1074, 1087, 1089, 1091, 1092, 1094, 1095, 1102, 1199, 1200 matrix product 303 maximal domain 154, 157 maximum 382, 579, 612, 1916 maximum value 922 maximum-minimum principle for harmonic functions 1895 Maxwell relation 302 Maxwell's equations 1544, 1669, 1670, 1679, 1819 mean value theorem 321, 884, 1276, 1490 mean value theorem for harmonic functions 1892 measure theory 1015 Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157, 1347, 1479, 1651, 1801, 1921 meridian curve 181, 251, 499, 1232 meridian half-plane 34, 35, 43, 181, 1055, 1057, | • | | | 366, 368, 374, 384–387, 391–393, 395– 397, 401, 631, 899, 905–912, 914, 915, 917, 919, 922–924, 926, 934, 935, 949, 951, 954, 957–966, 968, 971–973, 975, 1032–1034, 1036, 1037, 1039, 1040, 1042, 1053, 1059, 1061, 1064, 1066–1068, 1070– 1072, 1074, 1087, 1089, 1091, 1092, 1094, 1095,
1102, 1199, 1200 matrix product 303 maximal domain 154, 157 maximum 382, 579, 612, 1916 maximum value 922 maximum-minimum principle for harmonic functions 1895 Maxwell relation 302 Maxwell's equations 1544, 1669, 1670, 1679, 1819 mean value theorem 321, 884, 1276, 1490 mean value theorem for harmonic functions 1892 measure theory 1015 Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157, 1347, 1479, 1651, 1801, 1921 meridian curve 181, 251, 499, 1232 meridian half-plane 34, 35, 43, 181, 1055, 1057, non-oriented surface 185 norm 19, 23 normal 1227 normal derivative 1890 normal plane 487 normal vector 496, 1229 octant 83 Ohm's law 297 open ball 38 open domain 176 open set 21, 39 order of expansion 322 order relation 579 ordinary integral 1017 orientation 170, 172, 184, 185, 497 oriented line 172 oriented line 172 oriented line segment | | | | 397, 401, 631, 899, 905–912, 914, 915, 917, 919, 922–924, 926, 934, 935, 949, 951, 954, 957–966, 968, 971–973, 975, 1032–1034, 1036, 1037, 1039, 1040, 1042, 1053, 1059, 1061, 1064, 1066–1068, 1070–1072, 1074, 1087, 1089, 1091, 1092, 1094, 1095, 1102, 1199, 1200 octant 83 Ohm's law 297 open ball 38 open domain 154, 157 open ball 38 open domain 176 open set 21, 39 order of expansion 322 order relation 579 ordinary integral 1017 orientation of a surface 182 orientation of a surface 182 oriented lafe line 172 oriented line 172 oriented line 172 oriented line 172 oriented line segment 173 oriented line segment 172 oriented line segment 173 oriented line segment 173 oriented line segment 174 oriented line segment 175 | | | | 917, 919, 922–924, 926, 934, 935, 949, 951, 954, 957–966, 968, 971–973, 975, 1032–1034, 1036, 1037, 1039, 1040, 1042, 1053, 1059, 1061, 1064, 1066–1068, 1070–1072, 1074, 1087, 1089, 1091, 1092, 1094, 1095, 1102, 1199, 1200 aximul domain 154, 157 aximum value 922 aximum-minimum principle for harmonic functions 1895 aximul theorem 321, 884, 1276, 1490 aximul theorem for harmonic functions 15, 147, 289, 477, 573, 841, 1009, 1157, 1347, 1479, 1651, 1801, 1921 aximul and full figuration | | | | 951, 954, 957–966, 968, 971–973, 975, 1032–1034, 1036, 1037, 1039, 1040, 1042, 1053, 1059, 1061, 1064, 1066–1068, 1070–1072, 1074, 1087, 1089, 1091, 1092, 1094, 1095, 1102, 1199, 1200 octant 83 matrix product 303 Ohm's law 297 maximum 382, 579, 612, 1916 open domain 176 maximum value 922 order relation 302 maxwell relation 302 order of expansion 322 order relation 579 maxwell's equations 1544, 1669, 1670, 1679, 1819 mean value theorem 321, 884, 1276, 1490 mean value theorem for harmonic functions 1892 measure theory 1015 Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157, 1347, 1479, 1651, 1801, 1921 meridian curve 181, 251, 499, 1232 meridian half-plane 34, 35, 43, 181, 1055, 1057, parabolic curlinger and relation 1000, 10 | | | | 1032–1034, 1036, 1037, 1039, 1040, 1042, 1053, 1059, 1061, 1064, 1066–1068, 1070–1072, 1074, 1087, 1089, 1091, 1092, 1094, 1095, 1102, 1199, 1200 octant 83 matrix product 303 Ohm's law 297 maximum 382, 579, 612, 1916 open ball 38 maximum value 922 order relation 302 maxwell relation 302 ordinary integral 1017 Maxwell's equations 1544, 1669, 1670, 1679, 1819 mean value theorem 321, 884, 1276, 1490 mean value theorem for harmonic functions 1892 measure theory 1015 Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157, 1347, 1479, 1651, 1801, 1921 meridian curve 181, 251, 499, 1232 meridian half-plane 34, 35, 43, 181, 1055, 1057, parabolic curling and plane 487 normal plane 487 normal vector 496, 1229 octant 83 Ohm's law 297 open ball 38 open domain 176 open set 21, 39 order of expansion 322 order relation 579 ordinary integral 1017 orientation of a surface 182 orientation 170, 172, 184, 185, 497 oriented line 172 oriented line 172 oriented line segment 172 orthonormal system 23 maridian curve 181, 251, 499, 1232 maridian half-plane 34, 35, 43, 181, 1055, 1057, parabolic curlinder 613 | | | | 1053, 1059, 1061, 1064, 1066–1068, 1070– 1072, 1074, 1087, 1089, 1091, 1092, 1094, 1095, 1102, 1199, 1200 matrix product 303 maximal domain 154, 157 maximum 382, 579, 612, 1916 maximum value 922 maximum-minimum principle for harmonic functions 1895 Maxwell relation 302 Maxwell's equations 1544, 1669, 1670, 1679, 1819 mean value theorem 321, 884, 1276, 1490 mean value theorem for harmonic functions 1892 measure theory 1015 Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157, 1347, 1479, 1651, 1801, 1921 meridian curve 181, 251, 499, 1232 meridian half-plane 34, 35, 43, 181, 1055, 1057, normal vector 496, 1229 nordan 176 open ball 38 open domain 176 open ball 38 open domain 176 open ball 38 orde | | | | 1072, 1074, 1087, 1089, 1091, 1092, 1094, 1095, 1102, 1199, 1200 octant 83 matrix product 303 Ohm's law 297 maximal domain 154, 157 open ball 38 maximum 382, 579, 612, 1916 open domain 176 maximum value 922 open set 21, 39 maximum-minimum principle for harmonic functions 1895 order relation 579 Maxwell relation 302 ordinary integral 1017 Maxwell's equations 1544, 1669, 1670, 1679, 1819 mean value theorem 321, 884, 1276, 1490 orientation of a surface 182 orientation 170, 172, 184, 185, 497 measure theory 1015 oriented line 172 oriented line 172 oriented line 172 measure theory 1015 oriented line segment 172 oriented line segment 172 oriented line segment 172 orthonormal system 23 meridian curve 181, 251, 499, 1232 parabola 52, 53, 89–92, 195, 201, 229, 240, 241 parabolic cylinder 613 | | | | 1095, 1102, 1199, 1200 octant 83 matrix product 303 Ohm's law 297 maximal domain 154, 157 open ball 38 maximum 382, 579, 612, 1916 open domain 176 maximum value 922 open set 21, 39 maximum-minimum principle for harmonic functions 1895 order of expansion 322 Maxwell relation 302 ordinary integral 1017 Maxwell's equations 1544, 1669, 1670, 1679, 1819 orientation of a surface 182 mean value theorem 321, 884, 1276, 1490 orientation 170, 172, 184, 185, 497 mean value theorem for harmonic functions 1892 oriented half line 172 measure theory 1015 oriented line segment 172 Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157, 1347, 1479, 1651, 1801, 1921 oriented line segment 172 meridian curve 181, 251, 499, 1232 parabola 52, 53, 89–92, 195, 201, 229, 240, 241 meridian half-plane 34, 35, 43, 181, 1055, 1057, parabolic cylinder 613 | | normal vector 496, 1229 | | matrix product 303 maximal domain 154, 157 maximum 382, 579, 612, 1916 maximum value 922 maximum-minimum principle for harmonic functions 1895 Maxwell relation 302 Maxwell's equations 1544, 1669, 1670, 1679, 1819 mean value theorem 321, 884, 1276, 1490 mean value theorem for harmonic functions 1892 mean value theorem for harmonic functions 1892 mean value theory 1015 Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157, 1347, 1479, 1651, 1801, 1921 meridian curve 181, 251, 499, 1232 meridian half-plane 34, 35, 43, 181, 1055, 1057, parabolic cylinder 613 Ohm's law 297 open ball 38 open domain 176 open set 21, 39 order of expansion 322 order relation 579 ordinary integral 1017 orientation of a surface 182 oriented line 172 oriented line 172 oriented line segment 172 orthonormal system 23 parabola 52, 53, 89–92, 195, 201, 229, 240, 241 parabolic cylinder 613 | | | | maximal domain 154, 157 maximum 382, 579, 612, 1916 maximum value 922 maximum-minimum principle for harmonic functions 1895 Maxwell relation 302 Maxwell's equations 1544, 1669, 1670, 1679, 1819 mean value theorem 321, 884, 1276, 1490 mean value theorem for harmonic functions 1892 measure theory 1015 Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157, 1347, 1479, 1651, 1801, 1921 meridian curve 181, 251, 499, 1232 meridian half-plane 34, 35, 43, 181, 1055, 1057, parabolic evilinder 613 open ball 38 open domain 176 order of expansion 322 order relation 579 ordinary integral 1017 orientation of a surface 182 orientation 170, 172, 184, 185, 497 oriented line 172 oriented line segment 172 orthonormal system 23 parabola 52, 53, 89–92, 195, 201, 229, 240, 241 parabolic evilinder 613 | | | | maximum 382, 579, 612, 1916 maximum value 922 maximum-minimum principle for harmonic functions 1895 Maxwell relation 302 Maxwell's equations 1544, 1669, 1670, 1679, 1819 mean value theorem 321, 884, 1276, 1490 mean value theorem for harmonic functions 1892 measure theory 1015 Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157, 1347, 1479, 1651, 1801, 1921 meridian curve 181, 251, 499, 1232 meridian half-plane 34, 35, 43, 181, 1055, 1057, maximum 382, 579, 612, 1916 open domain 176 open set 21, 39 order of expansion 322 order relation 579 ordinary integral 1017 orientation of a surface 182 orientation 170, 172, 184, 185, 497 oriented line 172 oriented line segment 172 oriented line segment 172 orthonormal system 23
parabola 52, 53, 89–92, 195, 201, 229, 240, 241 parabolic cylinder 613 | | | | maximum value 922 maximum-minimum principle for harmonic functions 1895 Maxwell relation 302 Maxwell's equations 1544, 1669, 1670, 1679, 1819 mean value theorem 321, 884, 1276, 1490 mean value theorem for harmonic functions 1892 measure theory 1015 Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157, 1347, 1479, 1651, 1801, 1921 meridian curve 181, 251, 499, 1232 meridian half-plane 34, 35, 43, 181, 1055, 1057, maximum value 922 open set 21, 39 order of expansion 322 order relation 579 ordinary integral 1017 orientation 170, 172, 184, 185, 497 oriented half line 172 oriented line segment 172 oriented line segment 172 orthonormal system 23 parabola 52, 53, 89–92, 195, 201, 229, 240, 241 parabolic cylinder 613 | | ± | | maximum-minimum principle for harmonic functions 1895 Maxwell relation 302 Maxwell's equations 1544, 1669, 1670, 1679, 1819 mean value theorem 321, 884, 1276, 1490 mean value theorem for harmonic functions 1892 measure theory 1015 Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157, 1347, 1479, 1651, 1801, 1921 meridian curve 181, 251, 499, 1232 meridian half-plane 34, 35, 43, 181, 1055, 1057, parabolic cylinder 613 order of expansion 322 order relation 579 orientation of a surface 182 orientation 170, 172, 184, 185, 497 oriented half line 172 oriented line segment 172 orthonormal system 23 parabola 52, 53, 89–92, 195, 201, 229, 240, 241 parabolic cylinder 613 | | - | | tions 1895 order relation 579 Maxwell relation 302 ordinary integral 1017 Maxwell's equations 1544, 1669, 1670, 1679, 1819 orientation of a surface 182 mean value theorem 321, 884, 1276, 1490 orientation 170, 172, 184, 185, 497 mean value theorem for harmonic functions 1892 measure theory 1015 oriented line 172 Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157, 1347, 1479, 1651, 1801, 1921 oriented line segment 172 meridian curve 181, 251, 499, 1232 meridian half-plane 34, 35, 43, 181, 1055, 1057, parabolic cylinder 613 | | | | Maxwell relation 302 ordinary integral 1017 Maxwell's equations 1544, 1669, 1670, 1679, 1819 mean value theorem 321, 884, 1276, 1490 orientation 170, 172, 184, 185, 497 mean value theorem for harmonic functions 1892 measure theory 1015 oriented line 172 oriented line 172 Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157, 1347, 1479, 1651, 1801, 1921 oriented line segment 172 oriented line segment 172 orthonormal system 23 meridian curve 181, 251, 499, 1232 parabola 52, 53, 89–92, 195, 201, 229, 240, 241 parabolic cylinder 613 | | | | Maxwell's equations 1544, 1669, 1670, 1679, 1819 mean value theorem 321, 884, 1276, 1490 mean value theorem for harmonic functions 1892 measure theory 1015 Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157, | | | | mean value theorem 321, 884, 1276, 1490 mean value theorem for harmonic functions 1892 measure theory 1015 Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157, 1347, 1479, 1651, 1801, 1921 meridian curve 181, 251, 499, 1232 meridian half-plane 34, 35, 43, 181, 1055, 1057, parabola 52, 53, 89–92, 195, 201, 229, 240, 241 parabolic cylinder 613 | Maxwell relation 302 | | | mean value theorem for harmonic functions 1892 measure theory 1015 oriented line 172 oriented line 1801, 1801, 1921 oriented line 1801, | - · · · · · · · · · · · · · · · · · · · | | | measure theory 1015 oriented line 172 Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157, 1347, 1479, 1651, 1801, 1921 oriented line segment 172 oriented line 172 oriented line 172 oriented line 172 oriented line 181 oriented line 172 oriented line 172 orthonormal system 23 meridian curve 181, 251, 499, 1232 meridian half-plane 34, 35, 43, 181, 1055, 1057, parabola 52, 53, 89–92, 195, 201, 229, 240, 241 parabola 613 | | | | Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157, 1347, 1479, 1651, 1801, 1921 orthonormal system 23 meridian curve 181, 251, 499, 1232 parabola 52, 53, 89–92, 195, 201, 229, 240, 241 parabolic cylinder 613 | mean value theorem for harmonic functions 1892 | | | 1347, 1479, 1651, 1801, 1921 orthonormal system 23 meridian curve 181, 251, 499, 1232 meridian half-plane 34, 35, 43, 181, 1055, 1057, parabola 52, 53, 89–92, 195, 201, 229, 240, 241 | measure theory 1015 | | | meridian curve 181, 251, 499, 1232
meridian half-plane 34, 35, 43, 181, 1055, 1057, parabola 52, 53, 89–92, 195, 201, 229, 240, 241 | Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157, | ~ | | meridian half-plane 34, 35, 43, 181, 1055, 1057, parabola 52, 53, 89–92, 195, 201, 229, 240, 241 | 1347, 1479, 1651, 1801, 1921 | orthonormal system 23 | | meridian nan-plane 34, 35, 45, 101, 1055, 1057, parabolic cylinder 613 | | manahala E2 E2 00 00 105 001 000 040 041 | | 1081 parabolic cylinder 015 | meridian half-plane 34, 35, 43, 181, 1055, 1057, | | | | 1081 | parabolic cylinder 015 | | parabolic cylindric surface 64, 66 | quadrant 41, 42, 84 | |---|--| | paraboloid of revolution 207, 613, 1435 | quadratic equation 47 | | parallelepipedum 27, 42 | | | parameter curve 178, 496, 1227 | range 153 | | parameter domain 1227 | rectangle 41, 87 | | parameter of a parabola 53 | rectangular coordinate system 29 | | parametric description 170, 171, 178 | rectangular coordinates 15, 21, 22, 147, 289, 477, | | parfrac 71 | 573, 841, 1009, 1016, 1079, 1157, 1165, | | partial derivative 298 | 1347, 1479, 1651, 1801 | | partial derivative of second order 318 | rectangular plane integral 1018 | | partial derivatives of higher order 382 | rectangular space integral 1019 | | partial differential equation 398, 402 | rectilinear motion 19 | | partial fraction 71 | reduction of a surface integral 1229 | | Peano 483 | reduction of an integral over cylindric surface 1231 | | permeability 1671 | reduction of surface integral over graph 1230 | | piecewise C^k -curve 484 | reduction theorem of line integral 1164 | | piecewise C^n -surface 495 | reduction theorem of plane integral 937 | | plane 179 | reduction theorem of space integral 1021, 1056 | | plane integral 21, 887 | restriction map 153 | | point of contact 487 | Ricatti equation 369 | | point of expansion 304, 322 | Riesz transformation 1275 | | point set 37 | Rolle's theorem 321 | | Poisson's equation 1814, 1889, 1891, 1901 | rotation 1739, 1741, 1742 | | polar coordinates 15, 19, 21, 30, 85, 88, 147, 163, | rotational body 1055 | | 172, 213, 219, 221, 289, 347, 388, 390, | rotational domain 1057 | | 477, 573, 611, 646, 720, 740, 841, 936, | rotational free vector field 1662 | | 1009, 1016, 1157, 1165, 1347, 1479, 1651, | rules of computation 296 | | 1801 | | | polar plane integral 1018 | saddle point 612 | | polynomial 297 | scalar field 1485 | | positive definite matrix 627 | scalar multiplication 22, 1750 | | positive half-tangent 485 | scalar potential 1807 | | positive orientation 173 | scalar product 169 | | potential energy 1498 | scalar quotient 169 | | pressure 1818 | second differential 325 | | primitive 1491 | semi-axis 49, 50 | | primitive of gradient field 1493 | semi-definite matrix 627 | | prism 42 | semi-polar coordinates 15, 19, 21, 33, 147, 181, | | Probability Theory 15, 147, 289, 477, 573, 841, | 182, 289, 477, 573, 841, 1009, 1016, 1055, | | 1009, 1157, 1347, 1479, 1651, 1801 | 1086, 1157, 1231, 1347, 1479, 1651, 1801 | | product set 41 | semi-polar space integral 1019 | | projection 23, 157 | separation of the variables 853 | | proper maximum 612, 618, 627 | signed curve length 1166 | | proper minimum 612, 613, 618, 627 | signed infinity 162 | | pseudo-sphere 1434 | simply connected domain 849, 1492 | | Pythagoras's theorem 23, 25, 30, 121, 451, 547, | simply connected set 176, 243 | | 817, 983, 1131, 1321, 1453, 1625, 1775, | singular point 487, 489 | | 1929 | space filling curve 171
space integral 21, 1015 | | | space integral 41, 1010 | specific capacity of heat 1818 triangle inequality 23,24 sphere 35, 179 triple integral 1022, 1053 spherical coordinates 15, 19, 21, 34, 147, 179, 181, uniform continuity 186 289, 372, 477, 573, 782, 841, 1009, 1016, unit circle 32 1078, 1080, 1081, 1157, 1232, 1347, 1479, unit disc 192 1581, 1651, 1801 unit normal vector 497 spherical space integral 1020 unit
tangent vector 486 square 41 unit vector 23 star-shaped domain 1493, 1807 unspecified infinity 162 star shaped set 21, 41, 89, 90, 175 static electric field 1498 vector 22 stationary magnetic field 1821 vector field 158, 296, 1485 stationary motion 492 vector function 21, 157, 189 stationary point 583, 920 vector product 19, 26, 30, 163, 169. 1227, 1750 Statistics 15, 147, 289, 477, 573, 841, 1009, 1157, vector space 21, 22 1347, 1479, 1651, 1801 vectorial area 1748 step line 172 vectorial element of area 1535 Stokes's theorem 1499, 1661, 1676, 1679, 1746, vectorial potential 1809, 1810 1747, 1750, 1751, 1811, 1819, 1820, 1913velocity 490 straight line (segment) 172 volume 1015, 1543 strip 41, 42 volumen element 1015 substantial derivative 491 surface 159, 245 weight function 1081, 1229, 1906 surface area 1296 work 1498 surface integral 1018, 1227 surface of revolution 110, 111, 181, 251, 499 zero point 22 surjective map 153 zero vector 22 tangent 486 (r, s, t)-method 616, 619, 633, 634, 638, 645–647, tangent plane 495, 496 652, 655 tangent vector 178 C^k -curve 483 tangent vector field 1485 C^n -functions 318 tangential line integral 861, 1485, 1598, 1600, 1603 1-1 map 153 Taylor expansion 336 Taylor expansion of order 2, 323 Taylor's formula 321, 325, 404, 616, 626, 732 Taylor's formula in one dimension 322 temperature 297 temperature field 1817 tetrahedron 93, 99, 197, 1052 Thermodynamics 301, 504 top point 49, 50, 53, 66 topology 15, 19, 37, 147, 289. 477, 573, 841, 1009, 1157, 1347, 1479, 1651, 1801 torus 43, 182–184 transformation formulæ1353 transformation of space integral 1355, 1357 transformation theorem 1354 trapeze 99