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Preface

The topic of this series of books on “Real Functions in Several Variables” is very important in the
description in e.g. Mechanics of the real 3-dimensional world that we live in. Therefore, we start from
the very beginning, modelling this world by using the coordinates of R? to describe e.g. a motion in
space. There is, however, absolutely no reason to restrict ourselves to R® alone. Some motions may
be rectilinear, so only R is needed to describe their movements on a line segment. This opens up for
also dealing with R?, when we consider plane motions. In more elaborate problems we need higher
dimensional spaces. This may be the case in Probability Theory and Statistics. Therefore, we shall in
general use R™ as our abstract model, and then restrict ourselves in examples mainly to R? and R3.

For rectilinear motions the familiar rectangular coordinate system is the most convenient one to apply.
However, as known from e.g. Mechanics, circular motions are also very important in the applications
in engineering. It becomes natural alternatively to apply in R? the so-called polar coordinates in the
plane. They are convenient to describe a circle, where the rectangular coordinates usually give some
nasty square roots, which are difficult to handle in practice.

Rectangular coordinates and polar coordinates are designed to model each their problems. They
supplement each other, so difficult computations in one of these coordinate systems may be easy, and
even trivial, in the other one. It is therefore important always in advance carefully to analyze the
geometry of e.g. a domain, so we ask the question: Is this domain best described in rectangular or in
polar coordinates?

Sometimes one may split a problem into two subproblems, where we apply rectangular coordinates in
one of them and polar coordinates in the other one.

It should be mentioned that in real life (though not in these books) one cannot always split a problem
into two subproblems as above. Then one is really in trouble, and more advanced mathematical
methods should be applied instead. This is, however, outside the scope of the present series of books.

The idea of polar coordinates can be extended in two ways to R3. Either to semi-polar or cylindric
coordinates, which are designed to describe a cylinder, or to spherical coordinates, which are excellent
for describing spheres, where rectangular coordinates usually are doomed to fail. We use them already
in daily life, when we specify a place on Earth by its longitude and latitude! It would be very awkward
in this case to use rectangular coordinates instead, even if it is possible.

Concerning the contents, we begin this investigation by modelling point sets in an n-dimensional
Euclidean space E™ by R™. There is a subtle difference between E™ and R™, although we often
identify these two spaces. In E™ we use geometrical methods without a coordinate system, so the
objects are independent of such a choice. In the coordinate space R™ we can use ordinary calculus,
which in principle is not possible in E™. In order to stress this point, we call E™ the “abstract space”
(in the sense of calculus; not in the sense of geometry) as a warning to the reader. Also, whenever
necessary, we use the colour black in the “abstract space”, in order to stress that this expression is
theoretical, while variables given in a chosen coordinate system and their related concepts are given
the colours blue, red and green.

We also include the most basic of what mathematicians call Topology, which will be necessary in the
following. We describe what we need by a function.

Then we proceed with limits and continuity of functions and define continuous curves and surfaces,
with parameters from subsets of R and R2, resp..
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Continue with (partial) differentiable functions, curves and surfaces, the chain rule and Taylor’s for-
mula for functions in several variables.

We deal with maxima and minima and extrema of functions in several variables over a domain in R™.
This is a very important subject, so there are given many worked examples to illustrate the theory.

Then we turn to the problems of integration, where we specify four different types with increasing
complexity, plane integral, space integral, curve (or line) integral and surface integral.

Finally, we consider vector analysis, where we deal with vector fields, Gauf3’s theorem and Stokes’s
theorem. All these subjects are very important in theoretical Physics.

The structure of this series of books is that each subject is usually (but not always) described by three
successive chapters. In the first chapter a brief theoretical theory is given. The next chapter gives
some practical guidelines of how to solve problems connected with the subject under consideration.
Finally, some worked out examples are given, in many cases in several variants, because the standard
solution method is seldom the only way, and it may even be clumsy compared with other possibilities.

I have as far as possible structured the examples according to the following scheme:
A Awareness, i.e. a short description of what is the problem.

D Decision, i.e. a reflection over what should be done with the problem.

I Implementation, i.e. where all the calculations are made.

C Control, i.e. a test of the result.

This is an ideal form of a general procedure of solution. It can be used in any situation and it is not
linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a
situation which did not contain Mathematics at all. The student is recommended to use it also in
other disciplines.

From high school one is used to immediately to proceed to I. Implementation. However, examples
and problems at university level, let alone situations in real life, are often so complicated that it in
general will be a good investment also to spend some time on the first two points above in order to
be absolutely certain of what to do in a particular case. Note that the first three points, ADI, can
always be executed.

This is unfortunately not the case with C Control, because it from now on may be difficult, if possible,
to check one’s solution. It is only an extra securing whenever it is possible, but we cannot include it
always in our solution form above.

I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a
shorthand, because they are often (too often, I would say) misused. Instead of A I shall either write
“and”, or a comma, and instead of V I shall write “or”. The arrows = and < are in particular
misunderstood by the students, so they should be totally avoided. They are not telegram short hands,
and from a logical point of view they usually do not make sense at all! Instead, write in a plain
language what you mean or want to do. This is difficult in the beginning, but after some practice it
becomes routine, and it will give more precise information.

When we deal with multiple integrals, one of the possible pedagogical ways of solving problems has
been to colour variables, integrals and upper and lower bounds in blue, red and green, so the reader
by the colour code can see in each integral what is the variable, and what are the parameters, which
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do not enter the integration under consideration. We shall of course build up a hierarchy of these
colours, so the order of integration will always be defined. As already mentioned above we reserve
the colour black for the theoretical expressions, where we cannot use ordinary calculus, because the
symbols are only shorthand for a concept.

The author has been very grateful to his old friend and colleague, the late Per Wennerberg Karlsson,
for many discussions of how to present these difficult topics on real functions in several variables, and
for his permission to use his textbook as a template of this present series. Nevertheless, the author
has felt it necessary to make quite a few changes compared with the old textbook, because we did not
always agree, and some of the topics could also be explained in another way, and then of course the
results of our discussions have here been put in writing for the first time.

The author also adds some calculations in MAPLE, which interact nicely with the theoretic text.
Note, however, that when one applies MAPLE, one is forced first to make a geometrical analysis of
the domain of integration, i.e. apply some of the techniques developed in the present books.

The theory and methods of these volumes on “Real Functions in Several Variables” are applied
constantly in higher Mathematics, Mechanics and Engineering Sciences. It is of paramount importance
for the calculations in Probability Theory, where one constantly integrate over some point set in space.

It is my hope that this text, these guidelines and these examples, of which many are treated in more
ways to show that the solutions procedures are not unique, may be of some inspiration for the students
who have just started their studies at the universities.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.

I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
March 21, 2015
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Introduction to volume 1V,
Curves and Surfaces

This is the fourth volume in the series of books on Real Functions in Several Variables. Its topic is
composed of differentiable curves and their tangents, differentiable surfaces and their tangent surfaces.

A curve is here defined as a continuous and piecewise C'-function f : I — R™ of an interval I into
either R% or R? for our purposes, though any dimension would do. It makes sense to talk of only
continuous curves, but the problem is, that they include the so-called ”space filling curves”, i.e. a
continuous curves, which e.g. sweeps through every point in R2, or even R3. By a modification of the
construction one is able to even define a curve with no double points, where its graph has a positive
area or volume, although the curve is felt to be of dimension 1, because its parametric description is in
a 1-1 correspondence with e.g. R. In order to avoid these anomalies we restrict ourselves to continuous
piecewise C'-curves, where the set of points, where f is not of class C', does not have positive area
or volume.

We must carefully distinguish between the curve with its parametric description and the range of the
curve in space, which may be a smooth 1-dimensional set in space, while the curve itself may not be
smooth. The reason is that if the parameter is interpreted as the time ¢, then the curve f : I — R™ also
gives us some information of the velocity of a particle which is following the curve in time. The range
may be smooth, while the particle may have some discontinuities in its velocity. The interpretation
above as the description of a path of a particle is what makes the parametric description of a curve
so important in Mechanics.

A C'-curve has a tangent at every point, where f'(¢) # 0. If instead f/(t) = 0, then the curve may be
smooth at this point, but it may also have a bend, or even a cusp. Therefore, the case where f'(¢t) = 0
always requires a special treatment.

Once we have introduced the C'-curves, one would believe that the generalisation to C'-surfaces
should be straightforward. It almost is. A continuous surface is a function f : D — R3 (or to higher
dimensional spaces R™), where D C R? is some connected domain. Again one must avoid the space
filling surfaces, which is done by the extra requirement that the curve is also of class C! with the
exception of some isolated points or points lying on some “nice curves”. The latter requirement is
hard to make precise, so instead we appeal to figures in each situation.

The above was the first obstacle. The second one is, what is a tangent plane? Clearly, in most
cases we can introduce the so-called parameter curves, where one of the parameters is held fixed,
while the other one varies. This gives us two continuous piecewise C'-curves through the point under
consideration. If they both have a tangent vector # 0, and these are not parallel, then they span a
plane, which is called the tangent plane at this point. If the tangent plane lies in R?, then it defines a
normal vector, perpendicular to the tangent plane in the point of the surface under consideration. We
give various descriptions of the tangent plane — either by a parametric description, or by an equation
which should be fulfilled. Note that the approximating polynomial P; of at most degree 1 again enters
the possible description of the tangent plane. In practical examples we shall benefit from the chain
rule already described in Volume III.

If the surface is given by an equation f(x) = 0, then the normal at a point x has the direction v/ f(x),
provided that this gradient is ## 0. This result holds in all dimensions.
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13 Differentiable curves and surfaces, and line integrals

13.1 Introduction

In this volume we shall consider the important geometrical objects, differentiable curves and differen-
tiable surfaces. It must be emphasized that we make a distinction between the parametric description
of a curve and the image of a curve. Two different curves (in their parametric descriptions) may
have the same image in space. In this way we can describe how e.g. a particle geometrically can run
through a given curve at different speed.

Similarly for differentiable surfaces, where two different parametric descriptions may have the same
geometric image.

Finally, we analyze the line integrals in several variables. Usually two different line integrals of the
same integrand may not be equal, even when the end points of the integration curves are the same.
We shall therefore investigate under which conditions this is fulfilled, i.e. when the value of the line
integral of a given integrand only depends on the end points of the integration curves. There are
indeed some pitfalls here, which should be avoided.

13.2 Differentiable curves

In general, a continuous curve C is uniquely specified by its parametric description, i.e. there is given
a continuous function r : I — R™ of an interval I C R into the real n-space R".

This definition looks indeed very innocent, had it not been for the Italian mathematician Peano, who
shortly before 1900 constructed a continuous curve

r:[0,1] — [0,1] x [0,1],

which mapped the interval [0, 1] onto the square [0, 1] x [0, 1], i.e. the curve runs through every point
in the unit square.

Peano’s construction contained a lot of double points. However, a couple of years later the Canadian
mathematician Osgood modified the curve to a space filling curve without double points. More
precisely, for every given ¢ €]0, 1] Osgood constructed a continuous curve

r. : [0,1] — [0,1] x [0, 1]

without double points, such that the area of the image of the curve satisfied the estimate
re([0,1))] = 1 e,

where € > 0 can be chosen as small as you like.

These examples are not convenient to use in practical applications, so instead we introduce:

Definition 13.1 A curve C of the parametric description
C={xeR"|x=r() fort €I}

is called a C*-curve, if the function r: I — R™, where I is an interval, is a C*-function.
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A curve is from now on by definition always continuous. We shall for convenience also introduce the
following extension of the definition above.

Definition 13.2 A (continuous) curve C given by the parametric function r : I — R™, where I =
[a,b], is called a piecewise C*-curve, if there exist points

a=ty <ty <---<t,=0,

such that the restriction of r to each of the subintervals [to,t1], [t1,t2], -+, [tp—1,tp] are all C*-
curves.

A broken line, e.g. a polygon, is an example of a piecewise C'*°-curve.

Since we define a curve by its parametric description, it is not hard to give examples, wherer; : I — R"™
is a C*°-curve, while ry : I € R™ is not, even if the images of r; and ry coincide in R™. Therefore,
one should never rely only on the geometrical shape of a curve. Such a picture may give some
information, but in the deeper analysis one should always consider the function r : I — R"™, which
defines the parametric description.

r(t+h)

©

Figure 13.1: Construction of the tangent to a curve.

Let r: I — R™ be a Cl-curve, and fix a point r(t), ¢t € I, on the curve. Let h be small in absolute
value, and consider the neighbouring curve point r(t 4+ k). We shall assume that ¢, ¢t + h € I for all
h sufficiently small, and that also r(t + h) # r(t) for h sufficiently small. Then r(t + k) — r(t) # 0
defines a direction, i.e. a unit vector with its foot point at r(¢). We shall use the notation

r(t+h) —r(t)

et =eT(h) =
(k)= e h) = e — <@

whenever h > 0,

and

t
e (t,h)=e (h) = ( whenever h < 0,
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so |leT(h)|| = |le” (k)| = 1. If the limit

lim et (h) =e™
h—0+

exists, we call the half-line from r(t) of direction e the positive half-tangent of the curve at r(t).
Similarly, if

e =e

exists, then the half-line from r(¢) of direction e~ is called the negative half-tangent of the curve at

r(t).

If ¢ is an end point of the interval I, there is only one half-tangent.

~
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Assume that both et and e exist at r(¢). Then we have three possibilities:

1) If et = —e™, the two half-tangents point in opposite directions. Then can be joined together into
a straight line, which is called the tangent of the curve at r(¢), and e™ is called the unit tangent
vector of the curve at this point.

2) If et = e~, then the two half-tangents coincide at r(t). We say that the curve has a cusp at r(t).

3) Finally, if e™ # 4e~, then we say that the curve has a bend at r(t).

el e’
% e\ e V
e_/ r(t) /‘(t)

Tangent Cusp Bend

Figure 13.2: A tangent, a cusp and a bend in R?.

We assume that r is differentiable and that r/(¢) # 0. Then
r(t+h)—r(t)={c'(t)+e(h)}h,

hence
et +R) = e (@)l = [Ix'(£) + ()] 7]

Here, e(h) — 0 for h — 0, so [le(h)|| < ||/ (¢)|| for |h| sufficiently small. This implies that r(t+h) # r(t)
for h # 0 sufficiently small. Then for such h > 0,

et (h) = e+l —r(t) _ Y@ +eh) b ”Zg;”

— et . .
et +h) —x®] @) +eB)] [k =e’ forh—0+

Similarly, for h < 0 numerically sufficiently small,

r'(t)+e(h)  h r'(t)

e’ (h) = T T T T T T AT =
W = oo remn T~ Ol

e~ for h — 0—,

so by comparison, e~ = —e* both exist and are of opposite directions, and we are in case 1) above.

We conclude that if r/(t) # 0, then the curve has a tangent at r(¢) of unit tangent direction

<

—~
~

=

e
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When ¢ is fixed and r’(¢t) # 0, we therefore get the following parametric description of the tangent of
the curve at the point r(t),

x=r(t) +vr'(t), v € R and fixed t € I.

The point r(t), corresponding to the parametric value v = 0, is called the point of contact of the tan-
gent. In the special case of dimension 3 we also get an equation of the normal plane of a differentiable
curve in the space R? at the point of contact r(t), by using that the tangent is perpendicular to the
normal plan at r(t), i.e. if x lies in the normal plane, then r’'(¢) and x — r(t) are perpendicular to each
other, so

(x—r(t))-r'(t) =0.

Normal plane

ormal r'(t)
vector

Figure 13.3: The tangent of a differentiable curve C is perpendicular to the normal plane.

If r'(t) = 0, we say that the point r(t) is a singular point of the curve C. Let r(t) be a singular point
of a C2-curve C. Then by Taylor’s formula,

r(t+h) — r(t) = {; v (1) + e(h)} B2,

If r”(t) # 0, then it follows that e* = e ™, so we have a cusp. Therefore, if a differentiable C-curve
C has indeed a tangent at a singular point, then both

rt)=0 and 1 (t)=0

at this point. This condition is of course not sufficient for the existence of a tangent at a singular
point.

We shall proceed by showing how we in practice compute the tangent of the graph of a C''-function
g: I =R, I xR CR?,

where I is some real interval.
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The graph can be considered as a curve C in R?. In rectangular coordinates we use the parametric
description

r(z) = (z,9(x)),  sor'(z)=(1,4'(x)) # (0,0),

and the graph C of g has a tangent at every point, where the function is of (local) class C2. The
parametric description of the tangent becomes

(Z‘, y) = ($07g (Z‘O)) +uv- (17‘9/ (xo)) = (.730 + v, g9 (1‘0) + vgl (.130)) ) v e Rv
or, in each of the coordinates,
T =xo+ v, y=g(xo) +v-g (20).

The parameter v can be eliminated by using that v = x — xp. When this is done, the equation of the
tangent is written in the more familiar way

y =g (z0) + (z — x0) g’ (o), z €R.

We note that the right hand side of this equation is also the approzimating polynomial Py (z) of at
most first degree, so the equation of the tangent of the graph can also be written

y = Pi(x), z € R

We shall in the following give some simple examples which show how we use the theory above in
practice.

Example 13.1 Given the C°°-curve C in 3-space of the parametric description
(z,y,2) =r(t) = (t,£,17), teR.

We shall find the tangent and the normal plane at the curve point (—1,1,—1) € R?, corresponding to
the value t = —1 of the parameter.

First, by a differentiation,
r'(t) = (1,2t,3t%) # (0,0,0)  fort € R.
Since r'(t) # 0, the curve C has a tangent at all its points. In particular, at (—1,1, —1), i.e. for t = —1,
r'(-1) = (1,-2,3).
This implies that a parametric description of the tangent is given by
(x,y,2) =(-1,1,-1)+v(1,-2,3) = (-1 +v,1 — 2v, =1 4 3v), for v € R.
The curve fort = —1,...,0 and the tangent at (—1,1, —1) forv = 0, ..., 0.3 are depicted in Figure 13.4.
The normal plane is given by
(x — x(t)) - '(t) = 0,
ie.
0= ((z,y,2)—(-1,1,-1))-(1,-2,3) = (z+1,y—1,24+1)-(1,-2,3) = (z+1) - 2(y — 1) + 3(2 + 1).

Depending on the actual application one would either keep this form, in which (z, yo, 2z0) = (—1,1—1)
still occurs, which sometimes may be convenient, or reduce to the equation

x—2y+3z=—6. O
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02 Tangent

0.4
0.6

0.8:

-1

Figure 13.4: The curve and the tangent of Example 13.1.

Example 13.2 We shall here give an example of a cusp at a singular point of a C'*°-curve. Consider

C: (z,y,2)=r(t) = (tQ,tg,t4) , teR.

e
(05050)

N

0

N

“_  Halftangent . 02
04 N

027 N
08
0

Figure 13.5: The curve and the tangent of Example 13.2.

Then by differentiation,
r'(t) = (2t,3t%,4t") and  r’(t) = (2,6t,12t%).

It is obvious that ¢ = 0 is defining the only singular point (0,0,0), so C has a tangent at every other
point of the curve. Since r”(t) # 0 for all ¢ € R, we must have a cusp at (0,0,0). The two coinciding
half-tangents are the positive z-axis. Cf. Figure 13.5. {
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Example 13.3 We shall here give an example of a curve C, where the tangent exists at the singular
point. The construction is very simple and illustrates the difference between a curve as a function and
a curve, represented by its graph alone.

Let the underlying graph be the parable of equation

y = a2, reR.

Then it is obvious that this parable has a tangent at all of its points. To get a curve C, i.e. a function,
with a singular point, we only change the parameter to x = t3, t € R. Then C has the parametric
description

(z,y) =r(t) = (¢*,1°), tcR.

The underlying graph is still the parable with tangents at all of its points, but since r/(t) = (3t2, 6t5) =
(0,0) for t = 0, we see that (0,0) is a singular point.

We note how we can introduce singular points by a simple change of the parameter. ¢
When C is a curve in R? or in R3, we may interpret C as the path, which a particle goes through with

velocity v'(t) and acceleration r”(t) of the particle at the point r(t) of the curve. This is the usual
application of curves in e.g. Mechanics.
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Example 13.4 Tt is customary in Fluid Mechanics to consider a function f(x,y,z,t) in the three
space variables (z,y, z) and the time variable ¢ as a function in time alone of a given (fluid) particle.
In other words, given f(z,y, z,t) we want to consider (x(¢),y(¢), z(t)) as the path of this fluid particle.
We obtain, using the chain rule,

df _of dv  0f dy  0f d=  Of

dt ~ 0z dt ' 9y dt ' 9z dt = ot’

which is correct, and nevertheless confusing, because the variable ¢ enters the equation in two different
ways, represented by the symbols

df af
— d —=.
a M a
They are clearly not equal, so how do we explain this?
The trick is to introduce a new time variable 7, whenever we are considering the fluid particle, and
keep t when we are not. This means that the particle is in 4-space described by the curve
((7),y(7), 2(1)), where t(1) = .
When we then differentiate with respect to 7, we get by the chain rule that

Af _0f de Of dy  0f dz 0f dt_0f ds  0f day  0f doz  0f
dr  Ox dr Oy dr 0z dr Ot dr  Ox dr Oy dar 0z dr = Ot’

because ¢(7) = 7. Using this simple trick we see the difference between
df of
E and E .

Then note that

do dy sy
dr’ dr’ dr ) T

is the velocity of the particle, so we can write

af of
7-"Vf+av

dr
where 7 f is the gradient of f with respect only to the space variables (z,y, z).

Once all this has been realized, we may shift back to the old notation without 7, writing ¢ instead of
T, SO

A _ofdr of dy of ds of
dr  Ox dr 9y dr 9z dr = oOt’

and

df

d d D
Here, ?{ = d—f, is sometimes also written D—{ in the literature, and it is called the substantial
T

derivative, while — denotes the ordinary partial derivative with respect to time t.

ot

of
ot’
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We obtain from the above the unexpected result that even if the motion is stationary, i.e. —Jtc =0,

the particle may still feel some independence in time, which is represented by the socalled convective
term v -/ f.

Another consequence of the above is that when Newton’s second law is applied, we must find the
acceleration of the particle by taking the substantial derivative of the velocity v. This means that we
in the rule of differentiation above replace f by v, getting

dav (_ dv ov

W)

ov
Hence, a fluid may be in a stationary condition, i.e. o= 0, (in the ordinary time variable ¢) and

yet the fluid particles are subjected to an acceleration, if the differential dv(x,v) = (v - /)v is not
equal to the zero vector. We here tacitly change to the other time variable 7, which is bound to the
particle. ¢

13.3 Level curves

Cf. also Section 5.2 in Volume II. Let f be a C'-function in two variables, and let ¢ be some constant.
It was mentioned in Section 5.2 that the equation

f(xv y) =cC
usually describes a level curve of the function f.

A level curve needs not be a continuous curve. It may instead be the union of several continuous
curves,, which are then called branches. An obvious example is given by the level curves on a map
describing e.g. a hilly landscape.

In order not to make it too complicated for us in the following we shall here only consider the given
level curve in a neighbourhood of some given point (ug,vg) on this level curve, where f (ug,vg) = c.
In general, when (ug,vg) is not singular (meaning that this point does only lie on one of the possible
branches), the neighbourhood can be chosen so small that it does not contain points from other
branches of the level curve.

In order to proceed we are forced to apply the implicit function theorem. The proof of this is fairly
long and complicated, as well as tedious, so we shall here only mention the main result, which we are
going to apply here in the following.

Theorem 13.1 Let f € C* in a neighbourhood of the point (ug,vo), where f (ug,vo) = ¢, and assume
that 7 f(u,v) # 0 everywhere in this neighbourhood. Then the level curve equation f (ug,vo) = ¢
describes a C'-curve C in (possibly another) neighbourhood of (ug,vo), where C is the graph of a
C'-function in one variable only.

Furthermore, if f, (uo,vo) # 0, then C can be described by an equation of the form y =Y (x), where
Y is a C'-function on some interval I, which has ug as an interior point. In this case we may locally
write

fl@,Y(z))=c forxz el
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If instead f (ug,vo) # 0, then C can be described by an equation of the form x = X (y), where X is a
C-function on some interval J, which has vy as an interior point. In this case we may locally write

f(XW),y)=c  foryeld

Let us assume that f € C! fulfils the assumptions of the implicit function theorem above in a neigh-
bourhood of some point (ug,vo). If f; (uo,v0) # 0, we know that there exists a function Y : I — R,
Y € CY(I) such that the level curve is locally described by

@Y (@) =c.

We do not know, however, how Y (z) is explicitly defined, with the exception of the value Y (up) = vo.
But since Y € C!, we still can differentiate the equation above with respect to x, giving by the chain
rule,

_0f  ofdy

0= or + oy do (1,Y'(2)) - (f;(w,Y(x))7f;(x7Y(x))) .

Solving the first equation with respect to Y'(x) we get

_fi(u, Y (u)) _fa (w0, Y (uo))
fyw, Y (u))’ [y (w0, Y (uo))

Thus, Y (ug) and Y’ (ug) can be explicitly found, so we can find the tangent of the curve C at this
point (ug,vg). In fact, the tangent is described by

(13.1)  Y'(u) = from which Y’ (ug) =

Y (ug) + (z — ug) Y’ (uo), z €R,
which is also the first approximation of Y (z) from the expansion point ug,
Y(x) =Y (uo) + (x —uo) Y’ (ug) .

If furthermore f € C2, then also Y € C?(I), and we can find Y (ug) by a differentiation of (13.1),
etc.. Clearly, the computations normally blow up very fast, because we have to differentiate a quotient
where the denominator f/(x,Y (x)) needs not be simple. In other words, the method may in principle
be applied, but it is in practice only of limited value, because the computations almost from the very
beginning become overwhelming.

If instead f.(u,v) # 0 in this neighbourhood, then we analogously show the existence of a locally
unique function x = X (y), where

(X'(y),1)-vf(X(y),y) =0, yel
and

(X (W), y)
(X (y),y)’

A general result is that since 5/ f(u,v) # 0, this gradient is always perpendicular to the level curve.

If both f;(u,v) # 0 and f; /u,v) # 0, then we easily derive from the above that

CREY@) [AX@LW
f;(%Y(ar))} {f;<X<y>,y>} =h

X'(y) = yeJ

V@)Xt = {
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because (z,Y (z)) = (X (y),y) are two descriptions of the same point. This result is recognized as the
rule of the derivative of the inverse function,

V@) X'(y)=1, o X'(y=

provided that Y'(x) # 0 and X'(y) # 0.

STUDY AT

LINKOPING UNIVERSITY, SWEDEN
RANKED AMONG TOP 50 UNIVERSITIES UNDER 50
Interested in Strategy and Management in International

Organisations? Kick-start your career with a master’s degree
from Linkoping University, Sweden.

;*ti Linkdping University

494

Click on the ad to read more

Download free eBooks at bookboon.com



http://s.bookboon.com/liu

13.4 Differentiable surfaces

When we introduce the concept of surfaces, we would expect that we should copy the definition og a
curve and extend this to allowing two parameters. This is indeed the case.

Definition 13.3 Let E C R? be a domain, and let v : E — R3 be a C"-function. Then r defines a
C" surface F by

F={xeR’|x=r(uv), (u,v) € E}.

Ifr € C*, then F is C®, and if r € CV, then F is a continuous, or C°, surface.

One should in the first analysis always avoid the general C°-surfaces, because they may have some
strange properties. It is not hard to construct a C-surface, i.e. a continuous vector function

r: [0,1]2 — R?, such that r ([0,1]?) = R?, i.e. the CO-surface is the full space R?. In fact, we already
know that this is even possible for a C%-curve. We avoid such pathological surfaces by restricting
ourselves to at least C'-surfaces (almost everywhere; see below). They will be called differentiable
surfaces in the following.

In practical applications usually only C'°°-surfaces are needed.

We shall clearly need that some C™-surfaces can be put together to form a piecewise C"-surface. This
allows us to describe the surface of e.g. a cube, or more generally, a polyhedron, or a cylinder, etc.. We
shall not give the precise definition of a piecewise C"-surface, but leave the problem to the reader’s
intuition.

Given a C'-surface F, the analogue of the tangent of a C'-curve must be a tangent plane, which we
shall now introduce.

Figure 13.6: Parameter curves of F.

Let r(u,v) € F be a point of a C'l-surface F.
If we fix one of the parameters u, v, and let the other vary, we get the two C'-curves

x =r(t,v), v fixed and t € I, (t,v) € E,
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x =r(u,t), u fixed and ¢ € J, (u,t) € E,
which are called the two parameter curves of F through the point r(u,v). Cf. Figure 13.6.

Let us assume that both I and J are open intervals. In order to find the tangents of these curves at
r(u,v) we differentiate with respect to ¢, so r} (u,v) and r] (u,v) are the vectors, which specify the
tangents, provided that none of them is the zero vector.

If r/, (u,v), rl,(u,v) # 0 are not parallel, then they span a plane with foot point at r(u,v), i.e. a plane
of the parametric description in the new parameters (s, t),

r(u,v) + st (u,v) + tr) (u,v), for (s,t) € R%,
When this plane exists, we call it the tangent plane of F at the point r(u,v).

Hence, the tangent plane at r(u,v) of a Cl-surface F exists, if and only if the two vectors r’(u,v) and
r} (u,v) are linearly independent.

Write
N(u,v) = 1), (u,v) X ) (u,v), for (u,v) € E.

Then N(u,v) # 0, if and only if r} (u,v) and r} (u,v) are linearly independent, so the tangent plane
exists, whenever N(u,v) # 0. In this case N(u,v) is perpendicular to r} (u,v) and r'(u,v), which
generate the tangent plane, so we call N(u,v) the normal vector of the surface F. Cf. Figure 13.7.

N(u,v)
| Tangent plane
SO T T ——
e e
Ve 7
s

/7 r(u,v)
l/ x-r(1,v) I/
5 -

Figure 13.7: Tangent plane and normal vector of a surface F.

We conclude that the C'-surface F has a tangent plane at the point r(u,v) € F, if and only if
N(u,v) # 0.

Given N(u,v) # 0 by the construction above. We then get an alternative description of the tangent
plane by using the orthogonality, so we get the following equation of the tangent plane,

N(u,v) - {x —r(u,v)} =0, for x = (x,y,2) € R3.

This equation states that the normal vector N(u, v) is perpendicular to any tangent vector x — r(u, v)
from the fixed point r(u, v) of the surface. Cf. Figure 13.7.
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We shall in the following restrict ourselves to piecewise C'-surfaces, for which N # 0, with possibly
some minor exceptions of isolated points, or points on C'-curves, lying on the surface. The latter
occurs typically, when two C'-surfaces are glued together along such a C'-curve. Consider e.g. a cube,
where the normal vector does not exist on the edges, but clearly elsewhere.

Once the normal vector N # 0 is specified, it locally defines an orientation of the surface. A surface
has locally two sides. The side, where N points outwards, is called the positive side. The other one,
where N is pointing inwards, is called the negative side of the surface.

Since N(u,v) = r/,(u,v) X r, (u,v), one may also express this by saying that the vectors (r},r,,N)
taken in this order define a righthanded screw, because one can put one’s right hand in such a position
that r'u is pointing along the thumb, r] along the index finger, and N along the middle finger. It
follows from this description that if one interchanges the parameters v and v, then the normal will

point in the opposite direction, and the orientation is changed as well.
We shall later need the unit normal vector, which is denoted by

N

n=-—,
IN]|

provided that N # 0.

Remark 13.1 It should be mentioned that the orientation in general only is defined locally. It is
not difficult to construct a surface F, which (of course) locally has two sides, but globally only one,
and hence no global orientation. The simplest example is the so-called Mdbius strip. Take a strip
of paper, twist one end 180° and then glue the two ends together. By following the middle line of
the strip on can move the (local) normal vector continuously inside the strip, until it points in the
opposite direction, so there is only one side of the surface and there cannot be a global orientation. ¢

Example 13.5 In order to exercise the procedure of determining the tangent plane of a surface we
consider the following C'*°-function,

r(u,v) = (u2+v,u3+02,u+v2), (u,v) € R,

We shall find the tangent plane at the point r(1,2) = (3,5,5). The surface in the neighbourhood of
this point is shown on Figure 13.8.

We get by partial differentiations,
r), (u,v) = (2u,3u? 1) and 1 (u,v) = (1,2v,2v).

The normal vector is computed by using the following method known from Linear Algebra by using
a formal determinant,

r), 2u 3u? 1
N(u,v) = det r, =| 1 20 20 |=(6u’v—2v,1+ duv,duv —3u?).
ccei « e ey e3

The tangent plane has in general the equation
N(u,v) - {x —r(u,v)} =0,
so by insertion,

(8,-7,5) - {(z,y,2) — (3,5,5)} =8(x — 3) = 7(y — 5) + 5(2 — 5) = 0.
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Figure 13.8: The surface F of Example 13.5 in a neighbourhood of the point (3,5,5).

In many applications, where (z, y, z) lies in a neighbourhood of (3,5,5), one would for numerical reasons
keep this equation,

8(x—3)—T(y—5)+5(z—5)=0,
though one may of course reduce it to

8x — Ty + bz = 14. O

498
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13.5 Special C'-surfaces

Some surfaces are considered over and over again, so we collect here the descriptions in rectangular
coordinates of the most important cases.

1) The graph of a C-function in two variables.
The parametric description is given by

r(z,y) = (v,y,Z(z,y))  for (z,y) € ECR%.
The normal vector is in this parametric description given by
N(‘Ta y) = (—Z;(I‘, y)? _Z:;($7y)7 1) =e€; — VZ('T’vy)

Clearly, N)x,y) # 0 everywhere, and the angle between N and the z-axis is Arccos([|IN||71).
The tangent plane at (x,y) is spanned by the vectors

rp(z,y) = (1,0, Zy(x,y))  and  rj(z,y) = (0,1,Z)(z,y)) .
An equation of the tangent plane is given by
z = Pl (:Eu y)7

where Pj(z,y) is the approximating polynomial of Z(z,y) of at most degree 1 at the point
(2,9, Z(z,y))-

2) A cylindric surface with generators parallel to the z-axis.
The parametric description has the form

r(t, z) = (X(t),Y(t),2), tel, zelJ(),

where I and J(t) are intervals in R.
The normal vector is

N(t,z) = (Y'(t),—X'(t),0), tel, zelJ().
Its generating curve L in the (x,y)-plane has the parametric description

r(t) = (X(1),Y(t),0), tel.

3) A surface of revolution with the z-axis as its axis.
The parametric description is

r(t,p) = (P(t)cosp, P(t)sing, Z(t)), tel, ¢e€]l0,2r],
and the normal vector is
N(t, ) = P(t)(=Z'(t)cosp,=Z'(t)sinp, P'(t)), tel, ¢el0,2n]

The meridian curve M is in semi-polar coordinates (o, , z) given by

Il

>
—

o~
=

0 and z = Z(t), fort € 1.
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Figure 13.9: The cylinder of revolution of Example 13.6 with a chosen coordinate system.

Example 13.6 We shall as a simple exercise find the outward unit normal vector n of the surface of
a cylinder of revolution of radius a and height h. We choose the coordinate sysem as in Figure 13.9.
The piecewise C'-surface is actually composed of three C>°-surfaces.

The plane surface at height A > 0 has at every point the outward unit normal vector n = (0,0, 1).

The plane surface in the (z,y)-plane has at every point the outward unit normal vector n = (0,0, —1).
Note that the normal vector with this orientation is pointing away from the cylinder.

The third curved surface is described by the function

r(p,z) = (acosp,asing, z), (p, 2) € [0,27] x[0, h].
Then by differentiation

r, (0, 2) = (—asing,acos ¢,0) and  r.(p,2) = (0,0,1),
so the normal vector is

—asingp acosp 0
N(p,2) = 1i,(p,2) X 1, (p,2) = 0 0 1 |=(acosyp,asing,0) = (z,y,0).
[ ey e,

At any point (z,y, z) on the curved surface the vector (z,y,0) clearly points away from the cylinder.
Hence the outward unit normal vector is here given by

n(p, z) = (cos p,sinp,0) = (f, y,O) , v €10, 2n],
a’ a

where (x,y, z) is assumed to lie on the curved surface. Clearly, we could alternatively have obtained
this result by elementary geometry by considering Figure 13.9. ¢
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Example 13.7 It has previously been shown that the ellipsoid of the equation

(§>2+(%)2+(§)2:1, a, b, c>0,

has the parametric description
r(0,) = (z,y,2) = (asinf cos ¢, bsin §sin p, c cos ), 0€l0,7], ¢e€l0,2n]

We shall in this example find the tangent plane at any given point of the ellipsoid, which clearly exists.
However, using the particular parametric description above we shall see that the computed normal
vector N (6, ¢) = 0 at some points, so we shall see how we can handle this problem.

Figure 13.10: The ellipsoid of Example 13.7 with a = 3, b =2 and ¢ = 1.

By differentiation,

rp(0, ) = (%,%, %) = (acos B cosp,bcosfsinp, —csinb),

Oor 0y 0z
/ —_— —_ —_ —_
r¢(9,g0) - (asﬁ’ 830’ (930

Then the normal vector becomes

) = (—asinfsin p, bsinf cos , 0).

acosfcosep beosfsing —csinf
N(@,¢) = ry(0,0) x1,(0,0) =| —asinfsing bsindcosyp 0
ez ey eZ

= (bc sin? 0 cos ¢, acsin? 0 sin ¢, ab cos 0 sin 9)

1 1
abcsin 0 (— sin @ cos p, —
a

b
= abcsinf (%, b%’ Cz_2> .

1
sin @ sin ¢, — cos 9)
c
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x z

The vector (—2, b%’ —2> is always # 0. However, the common factor abcsin@ is 0 for § = 0 or
a c

6 = m, corresponding to the two points (0,0,+c), where we clearly have the corresponding unit
normal vectors (0,0, +1), cf. Figure 3.10, while the computed normal vector N(6, ) in this particular

chosen coordinate system i 0 for § =0 or 8 = 7.

In other words, a surface may have a unit normal vector n, ||n| = 1, even if we get N = 0 at the
same point. This shows that N depends on the chosen coordinate system, while n does not!

To resolve this problem we note that we obtain another normal vector N by removing the common
factor abesin@, which is not identical zero. Letting (£,7,() denote a fixed point on the ellipsoidal
surface, corresponding to the parameters (6, ¢), we get

- & n ¢ 22 2
N(97<P)=(a2,b2,62 , Whereﬁ+b—2+g = 1.

The equation of the tangent plane at this point (£,7,() on the surface is then given by

0 = (x_gay_naz_C)'<%7bﬁ27C%)

w§ & yn n? 2 ¢ x| yn | )
a2 a2 ' b2 b2 2 2 b2 F—i_c—?_

so the equation of the tangent plane at any point (£, 7, () on the ellipsoidal surface is then

)

where the new parameters are the usual (z,y, 2).

We note that in order to find an equation of the tangent plane at a point (£,7,() on the ellipsoidal
surface we just replace one of the z-s, y-s and z-s in the original equation by (£,7,¢). ¢
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13.6 Level surfaces

We shall in the following assume that f € C! in three variables. We consider the equation

f(x7y"z) =cC

for some constant ¢. Let (£,7,() be a point, such that

(13.2)  f(&n,Q=c and v f(§n,() #0.

Using a version of the Implicit function theorem we can choose a neighbourhood of (£,1, (), such that
(13.2) in this neighbourhood describes a surface F., which is the graph of some C!-function in two
variables.

Since by assumption 7 f (€, 71, () # 0, at least one of the partial derivatives is # 0 at this point. Let us
for a moment assume that f.(£,7,¢) # 0. Then in this neighbourhood the surface F, can be described
by a function

z=Z(x,y)

in two variables, where Z is a C'*-function in some open set containing the point &, 7). This implies
that in this neighbourhood, (13.2) can be written in the form

[y, Z(x,y)) = c.
This equation is then differentiated partially with respect to x and y. Thus, by the chain rule,

0 _9f L0 of 9Z(zy)

%{f(x,y, Z(Ivy))} - oz 1+ aiy 0+ 5= = (1,0,Z;(.T,y)) ' Vf(xvya Z(Jﬁ,y)) =0,

0z Ox
and
0 0 0 af o
S 2} = g0+ 5L SLOZE (01, 210 - 9o 2 o) =

Since (1,0, Z}(z,y)) and (0,1, Z, (x,y)) are linearly independent tangent vectors, and 7 f (z,y, Z(z,y))
is perpendicular to both of them, we conclude that 7 f(z,y, Z(x,y)) is a normal vector to the surface
at the point (x,y, Z(x,y)).

Summing up we get

Theorem 13.2 The tangent plane of a level surface. A level surface F. is given by the equation
flz,y,2) = c. Assume that the point (§,7,() € F. satisfies 7 f(§,7m,¢) # (0,0,0). Then the tangent
plane af (§,1,() is given by the equation

(1’—57:(/—7’],2—() Vf(£7,’7a<-) :Oa
which can also be written
Pl(xay7z) =

where Py is the approzimating polynomial of at most degree 1 of the function f(x,y,z) with the
expansion point (&,m, ().
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We derived previously,

0=(1,0,Z,(z,v)) - vV f(2,y, Z(x,y)) = fo(x,y, Z(2,9)) + fl(z,y, Z(2,9)) - Z,(x,y),

and

from which, since f.(z,y, Z(x,y)) # 0 by assumption,

fo(@,y, Z(2,y)) Sy, Z(x,y))
flz,y, Z(z,y))’ fi(z,y, Z(x,y))

If f/(x,y,2)) # 0, then analogously the surface is described (locally) as a C!-function z = X (y, 2),
such that

Zy(x,y) = — and  Zy(z,y) =

(X (y,2),9,2) i X(y,2),y,2)
[1(X(y,2),y,2) [1(X(y,2),y,2)

Finally, if f;(z,y, 2) # 0, then we can find a (locally defined) C"-function y = Y (z, z), such that

_f?;(a:,Y(x,z),z)
fo(x,Y(x,2),2)

X,(y,2) = and  X[(y,2) =

BEY@E)

Yilw,2) = fo(@,Y (2, 2),2) ?

x

Then assume that all three partial derivatives f;, f;, f, are # 0 in a neighbourhood of a point (z, y, 2)
of a level surface F.. Then all six equations above exist, and we get by some multiplications,

Theorem 13.3 Theorem of local solution. Let f € Ct, and let (x,y,2) € F. be point on the level

surface given by f(x,y,2) = c. Assume that f,(z,y,2), f,(x,y,2), fl(z,y,2) are all # 0, so locally

any variable can be expressed as a C-function in the other two variables,

= X(y,z2), y=Y(x,z), z=2Z(z,y).
Then

Xy, 2) Yi(@2) =1,  Xi(y,2) Zy(x,y) =1,  Y(,2) Z,(z,y) =1,
and

Xy (y,2)-Y/(x,2) - Zy(2,y) = -1 and  X(y,2) Y (x,2)- Zy(x,y) = —1.

Example 13.8 We consider a thermodynamical system of volume V| temperature T and pressure p.
We assume that these variables satisfy an equation of the type f(p,V,T) = 0, where f is some C-
function. When we apply the Theorem of local solution above, then we get in the thermodynamical
notation,

(@), r), (a0), = e (o), Gar), = (), =y ¢
ov)p\or) \op/)y, 7 op )y \oT ), op V_<@>'
14

oT
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Examples of tangents (curves)
Real Functions in Several Variables: Volume IV and tangent planes (surfaces)

14 Examples of tangents (curves) and tangent planes (sur-
faces)

14.1 Examples of tangents to curves

Example 14.1 Find in each of the following cases an equation or a parametric description of the
tangent to the given curve at the given point.

1) The curve is given by o3 — y> + 22 — 3y + 1 = 0 and the point is (1,1).

2) The curve is given by x¥ — y* = 0 and the point is (2,4).

3) The curve is given by r(t) = (cost,sint,e?) and the point is (1,0,1).

4) The curve is given by r(t) = (t —sint, 1 — cost), and the point is (g -1, 1), [cf. Example 14.3.3]

2
3

5) The curve is given by x5 + yg = g and the point is (%, 1).
6) The curve is given by r(t) = (Int,cos(t — 1), 2t* — t?) and the point is (0,1,1).
7) The curve is given by r(t) = (Arcsin ¢, Arctan(2t), Arccot(2t)) and the point is (g, T —).

8) The curve is given by r(t) = (2sint, — cost, 3t) and the point is (0,1, 3m).

A Find the tangent to a curve at a point.

D First check if the point lies on the curve. Find the slope of the curve at the point. Write down
the equation of the tangent. Note that the case where the curve is given by an equation is treated
differently from a curve given a parametric description.
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Examples of tangents (curves)
Real Functions in Several Variables: Volume IV and tangent planes (surfaces)

I 1) When we put (z,y) = (1,1) into the equation we get 13 — 13 +2 — 3 +1 = 0, proving that (1,1)
lies on the curve.

Figure 14.1: The curve in 1).

When we differentiate the equation of the curve with respect to x we get

dy
= —(3y? +3)—= + 322 4 2.
0 (y+)dx+x+

d 5
When we here put (z,y) = (1,1), we get d—y =g %0 the equation of the tangent becomes
x

S| Ut

y—1=—(x—1).

2) By putting (z,y) = (2,4) into the equation of the curve we get 2 — 42 = 0, proving that (2,4)
lies on the curve. When we differentiate the equation of the curve with respect to x, we get

d d
— (Y _ el ylnx)
0 = dx (@ dz (e )

)
d
xy{lnx.dhy}_ym{myﬁ_y},
der =« y dx
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Examples of tangents (curves)

Real Functions in Several Variables: Volume IV and tangent planes (surfaces)

When we put (z,y) = (2,4), we get

_ dy Ldy| _ dy
0—16{1112 d:z:+2} 16{21n2+2d$}—16{(ln2 dfracl2) g (2In2 2)},

hence
@_21112—2_ In2-1
dz  m2-41 = 2m2-1

The equation of the tangent becomes

1—In2

3) It is immediately seen that r(0) = (1,0, 1), so the point lies on the curve. Furthermore,

Figure 14.3: The curve in 3).

r'(t) = (—sint, cost,e'), r'(0) = (0,1,1),

so a parametric description of the tangent is

(x(u),y(u),2(u)) =r(0) + u-r'(0) = (1,0,1) + u(0,1, 1), u€R.
4) Tt follows immediately that r (g) = ( ) proving that the point lies on the curve
corresponding to the value of the parameter t = g Furthermore,

r'(t) = (1 — cost,sint), r (g) =(1,1).
A parametric description of the tangent is

(w(u),y(u) = (g 1) +u-(1,1), uekR.
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Figure 14.5: The curve in 5).

5) It follows from

2 2
LA 13'§+1—1+1—§
8 —\2 T4 T

1
that the point <§, 1> lies on the curve.
If we put f(z,y) = 2%/% + y*/3, then

Vf(x,y):§<%,\;§> for £ # 0 and y # 0,

and hence

1 2

which indicates the direction of the normal of the curve at the point. The direction of the
tangent is then perpendicular to the normal 7 f, e.g. (1, —2).
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A parametric description of the tangent is

(2(t), y(t)) = (;1) E(1,-2) = <t+ é,—2t+ 1) . teR

1 1 5
This implies that ¢t = x — 3’ soy=1—-2t=1-2z+ 11 2z. Finally, we can write the
equation of the tangent

5
2r = —.
y—+ 2z 1

5
ALTERNATIVELY the equation f(z,y) = 1 is differentiated with respect to z. Then

dy
dx

X

Wl

y_% =0 for z # 0 and y # 0.

Wil

+

[SSRN )

1
At the point (5, 1) we find the slope
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so the equation of the tangent becomes

1 1
—1=-2 —— ] =-2 —
Y (x 8) :z:+4,

i.e.
5
2r = —.
Y+ 2x 1

REMARK. The methods fail when either z = 0 or y = 0. This is in accordance with the fact
that we have cusps in the corresponding points of the curve. ¢

6) Putting t = 1 we get
r(1) = (In1,cos(1 —1),2-1* — 12) = (0, 1,1),

so (0,1,1) lies on the curve. Furthermore,

Figure 14.6: The curve in 6).

1
r'(t) = (t,—sin(t—l),8t3—2t> ) r'(1) = (1,0,6),
S0 a parametric description of the tangent is

(x(u),y(u), z(u)) =r(1) +ur'(1) = (0,1,1) + u(1,0,6).

3
7) If we choose t = %, we get by insertion,

V3 ) V3 T T T
r (7> = (Arcsm <7> ,Arctan(ﬁ),Arccot(ﬂ)) = (5’ 3 E) ;

SO (g, z, g) lies on the curve. Furthermore,

Vi) = 1 2 2
TV 2 1A 1 42)”
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Figure 14.7: The curve in 7).

SO

. <\/§> 1 2 2 (2 1 1)
r 5 = I 3 3 = Y060 o |0
2 /1_% 1+4-5 1+4-3 2" 2
and a parametric description of the tangent is

(), y(u), 2(w) = (

™ T T

e 4,1,-1).
37376)+u(77 )

8) If we choose ¢ = m we see that
r(7) = (2sinm, — cosm, 3w) = (0,1, 37),

so (0,1,3m) lies on the curve. Furthermore,

Figure 14.8: The curve in Example 14.1.8.

r'(t) = (2cost,sint, 3)
where

r' () = (2cosm,sinm,3) = (—2,0,3).
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A parametric description of the tangent is

(@(u),y(u), z(u)) = (0,1,37) + u (—2,0,3).

Example 14.2 A curve is given by the parametric description
x =a{ln(l +sint) — lncost —sint}, y = —acost, te {0, g {

1) Prove that

dx a sin®t

E T cost

)

and find the direction of the tangent of the curve in the point P(t) corresponding to the value t > 0
of the parameter.

2) Find an equation of a parametric description of the tangent at P(t).

3) Finally find the length of the straight line from P(t) to the intersection of the tangent with the X
aris,

A Tangent of a curve, which is given by a parametric description.

D Follow the guidelines of the text.

I

-0.2
-04
Y 08
-0.8

Figure 14.9: The curve in Example 14.2

1) By a differentiation,

dx cost sint cost(l —sint)  sint
— = @| ——— + —— —cost + — cost
dt 1+sint  cost 1—sin?t cost
cost(l — sin t) sint 1 —sint sint
= a + —— —cost
cos?t cos t cost | cost
1 1 —cos?t sin? ¢
= a|(—— —cost| =a- =a- .
cost cost cost
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This gives us the direction of the tangent

dz d in’ ¢t
r'(t) = —x, ) — (2 ,sint | = atant (sint,cost)
dt ’ day cost

for t € }O,g[.

Note that the latter form is very convenient, because it immediately gives us the vector
(sint, cost) of the direction.

2) From the result of 1) we get a parametric description of the tangent at the point P(t),
(z(u),y(u)) = a(In(1 + sint) — Incost — sint, — cost) 4+ au (tant) (sin ¢, cost),

T
where t € }0, — [, and where one may put the factor (tant) into the parameter u, hence

obtaining an equivalent (and simpler) solution without the factor (tant).
When we apply the variant above, we get

au-sint-tant = x —a{ln(l+sint) —Incost —sint},

au - sint = y+acost,

hence in particular,

tant - (y + acost) = tant -y + asint = au sint - tant
=2 —aln(l +sint) + alncost + asint.

American online

is currently enrolling in the
Interactive Online
programs:

enroll by September 30th, 2014 and
save up to 16% on the tuition!

pay in 10 installments / 2 years
Interactive Online education

visit to

vvyvVvyyVvyy
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Note: LIGS University is not accredited by an
nationallg' recognized accrediting agency listed
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—

513 Click on the ad to read more

Download free eBooks at bookboon.com



http://s.bookboon.com/LIGS

The equation of the tangent is obtained by a reduction,
(14.1) tant-y = —aln(l +sint) + alncost,
which can also be written in one of the two forms
y=cott-{x —aln(l+sint) +alncost},
sint -y = cost - {x —aln(l +sint) + alncost}.

3) The intersection point of the tangent with the X axis is found by putting y = 0 into the
equation of the tangent and then solve the equation. Here we have two variants.

a) If we use the parametric description we get
y(u) = —a-cost + au - sint = 0,
which is fulfilled for v = cot¢. Using this u we get
z(u) = a{ln(l 4+ sint) — Incost — sint + sint} = a{ln(1l + sint) — Incost}.

Since P(t) has the coordinates (z(0),y(0)) from the equation of the tangent, the length of
the straight line on the tangent between P(t) and the intersection point with the X axis is

L = Vi0) =2} - {50}

V/{In(1+sint)—Incost—sint—In(1+sint)+Incost}2 + {—cost}?

= aVsin?t+ cos?t = a.

b) If we instead use the equation of the tangent, it follows from (14.1) that

0= —aln(l+sint) + alncost,
so the abscissa of the intersection point is given by
x = a{ln(1 +sint) — Incost},

thus z — xp = —sint, and

L =ay/{r —20}2 +y2 = aVsin?t + cos?t = a.
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Example 14.3 There are below given some plane curves by a parametric description
x =r(t), tel.

Ezplain in each case why the curve is a C'-curve with v'(0) = 0. Then check whether the curve has a
cusp at the point r(0). If the curve does not have a cusp, then find another parametric description of
the curve,

x = R(u), u € J,
such that w = 0 corresponds to t = 0, and such that R'(0) # 0.
1) r(t) = (t2,#3) for t € R.

2) r(t) = (t3,5) for t € R.

3) r(t) = (t —sint, 1 — cost) fort € [—m, 7). [Cf. Example 14.1.4].
4) r(t) = (cos®t,sint) fort e [—g, g]

5) r(t) = (3,sin’t) fort € [—7271;]

A Cl-curves with or without cusps.
D Follow the guidelines. One may also sketch the curve.

I 1) The coordinate functions of r(t) = (t2,¢3), t € R are clearly C*°-functions in ¢.

o] 2 04 06 08 1

Figure 14.10: The curve in 1).

Then by a differentiation,
r'(t) = (2t,3t%)  where r'(0) = 0.

The figure indicates that we have a cusp. However, one must never in situations like this trust

d
the figure 100 %. An argument is needed! Now, T:zf changes its sign, when ¢ goes through 0,

d d
while =7 does not change its sign, and it goes also faster towards 0 than ?‘: We therefore

conclude that we indeed have a cusp for t =0
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It is here possible to eliminate ¢, and one gets

x:yg/?’, y e R.

REMARK. If instead one tries to express y by x, then we get the more confused expression
ly| = z3/2, due to the fact that the square root occurs latently. Always be careful, whenever
the square root enters a problem. “If one can handle the square root, then one can handle
anything inside mathematics.”

2) The coordinate functions of r(t) = (¢3,t9), t € R, are clearly C*°-functions in .

0.8

0.6

0.2

Figure 14.11: The curve in 2).

We get by a differentiation
r'(t) = (3t%,6t5)  where r’(0) = 0.

It follows immediately that y = t5 = ()2 = 22, so the curve is a parabola, which does not
have a cusp.

An obvious alternative parametric description is u = ¢3, by which u = 0 for ¢t = 0, and
R'(u) = (u,u?), u € R,
where
R'(u) = (1,2u) and R'(0)=(1,0) # 0.
3) Clearly, the coordinate functions of
r(t) = (t —sint, 1 — cost), te|—m,mnl,

are C°-functions in ¢t €] — =, 7[.
The curve is a part of the cycloid with a cusp at 0. We get by a differentiation,

r'(t) = (1 — cost,sint)  where r'(0) = 0.
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Figure 14.12: The curve in 3).

d d
Since d—f does not change its sign, while ?Zt/ changes its sign when we pass through ¢ = 0, and

since
Lo 0
l—costzit + t%e(t)

tends faster towards zero than sint = ¢ 4 te(t) for t — 0, we conclude that the curve has a
cusp.

sssssssssssssvssssssssssssssssssssssssssssesssssnsssssssssssssssssssssssfilcgte]-Lucent @
www.alcatel-lucent.com/careers

o, ‘ = -

o

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".
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4) The coordinate functions of r(t) = (cos®t,sin®t), t € [—g, g} , are clearly C'*°-functions in the

int 1} W”[
open 1mterva. — ., = |.
P 279

Figure 14.13: The curve in 4).

The figure indicate that we may have a cusp for ¢t = 0, i.e. at the point (1,0).
Then by a differentiation,
r'(t) = 3(— cos® tsint,sin? t cost) where r'(0) = 0.
Since % changes its sign, while % does not for ¢ — 0, and since % tends faster towards 0
than % for ¢ — 0, we conclude again that the curve has a cusp.

5) The coordinate functions of r(t) = (3, sin” t) are clearly C*°-functions in the interval ] —g, g [

Figure 14.14: The curve in 5).

Then by a differentiation,

r'(t) = (3t%,2sint cost) = (3t?, sin 2t) where r'(0) = 0.
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d d
The curve has a cusp for ¢t = 0, because thj changes its sign, while Ff does not, when we pass

d d
through ¢ = 0, and because & 3t goes faster towards zero for t — 0 than Y5 2t.

dt dat
REMARK. Since sint ~ t for small ¢, the curve lies in the neighbourhood of ¢ = 0 close to
F(t) = (¢*,¢%)  for [t| small.

Cf. 1). O

Example 14.4 A space curve K is given by the parametric description
r(r) = (t2, e 4+ t3) , teR.
1) Find a parametric description of the tangent to K at the point r(2).
2) Prove that this tangent intersects the Y azis at some point (0,/,0), and find B.

A Tangent to a space curve.

D Standard methods.

Figure 14.15: The curve K for ¢ € [1,3] and its tangent at the point r(2). Notice the different scales
on the axes.

I 1) We get by a differentiation,
r'(t) = (2t,2¢*,3t%), hence 1'(2)= (4, 2¢*,12).

Since r(2) = (4,€*,12), the parametric description of the tangent to K at the point r(2) is
Y

(@(t),y(t), 2(t)) = r(2)+t-1r'(2)
= (4,¢",12) +t(4,2¢%,12)
= (4(t+1),e*2t+1),12(t+1)).
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2) It follows immediately that z(t) = z(¢) = 0 for t = —1, hence
(‘r(_l)v y(_l)v Z(_l)) = (Oa _647 0) = (Oa Ba 0)7

and we conclude that

B =—et.

14.2 Examples of tangent planes to a surface

Example 14.5 Find in each of the following cases an equation of the tangent plane to the given
surface at the given point.

1) The surface is given by r(u,v) = (2u,u? + v,v?), and the point is (0,1,1).
11
2) The surface is given by r(u,v) = u? — v%,u + v,u’ + 4v), and the point is <_Z’ 3 2).

3) The surface is given by xy — 2xz + xyz = 6, and the point is (—3,2,1).
4) The surface is given by r(u,v) = (u+ v,u? +v%,u +v3) for u > v, and the point is (0,2,0)
5) The surface is given by cosx — cosy + sinz = 1, and the point is (g, g, g)
1
6) The surface is given by z* + 2wz + 2yz + 4y = 0, and the point is (1, 3 —1).

7) The surface is given by z = Arctan(xzy), and the point is (1, 1, %)

A Tangent plane to a given surface.

D First check that the given point lies on the surface.

If the surface is given by a parametric description, then calculate the normal vector

or Or
X_

ou’ o

If the surface instead is given implicitly by f(z,y,2) = ¢, then it can be considered as a level
surface, so its normal vector is v/ f(z, y, 2).

I 1) Clearly, the point corresponds to the values of the parameters u = 0 and v = 1.
Then by partial differentiations

% = (2,2u,0) and % = (0,1, 2v),
so the normal vector is
9 b € €z €3
02(0’1) X 62(0,1) =(2,0,0)x(0,1,2)=| 2 0 0 |=(0,—4,2).

The tangent plane is given by
0-(x—0)—4(y—1)+2(z—1)=0,
hence by a rearrangement,

2y — z = 1.
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Figure 14.16: The surface in 1).

11
2) We first check that <_Z’ > 2) lies on the surface. We that solve the equations

1

2_ 2 _ _*

U v 7
L 1

u—+v = -
27

w4 = 2.

/
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When we divide the second equation into the first one we get

1 q n 1
—v=—z an u+v=_
U—v 2 9’

1
thus u =0and v = 3 These values solve the first two equations, and then we see by insertion

11
that the third one also holds. Thus we have proved that the point <—4, 2,2) lies on the

1
surface corresponding to (u,v) = (0, 2).

Figure 14.17: The surface in 2).

Then we get by partial differentiation,

or or 1

% - (2ua 1,2’&), % <07 2) - (Oa 170)5
or or 1

% = (—2’1}, 1,4), % <0, 5) = (—1, 1,4)

The normal vector is

(S31 €y €3
I (0, (0, 1) — 01,00 (—1,1,4=| 0 1 0 |=(401).
ou 2 ov 2 1 1 4

The tangent plane is given by

4<x+i>—|—0-(y—;>+1-(z—2):0,

which is reduced to
dr+z=1.

3) This is an implicitly given surface. Putting (z,y,2) = (—3,2,1) into the left hand side of the
equation we get

—3.2-2(=3)-1+3-2-1=—6+6+6=0,
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The gradient is given by

u? +v? =2,
u? +v3 =0,

(1) 2u7 3u2)7

Figure 14.18: The surface in 3).

so the point lies on the surface.

Vf(xayvz) = (y - 2Z,$ + 32, —2x + 3y)7

f(=3,2,1) = (2 — 2, -3 + 3,606) = (0,0, 12).

A normal vector is (0,0, 1), and the tangent plane is given by

If (0,2,0) lies on the surface we must have

0= (u+v)? = (u?+v?) + 2uv = 2 + 2uw,

M—(ut+o)d+uw=X X -0-A-1=X—-1=0,

(1,-1) =(1,2,3),
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where the solution should also satisfy u > v. It is easily seen that (u,v) = (1,—1) is a solution.

REMARK. In the present formulation of the example one does not have to check whether there
are other possible values of the parameters, which can be used instead. For completeness we
prove that there actually are no other values. This follows from

thus wv = —1. This implies that v and v are solutions of the equation of second degree

i.e. A= =£1. Since u > v, we see that (u,v) = (1,—1) is the only solution. ¢.
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Figure 14.19: The surface of 4).

or 3 or B
% - (17211731} )a %(17_1) - (17_273)

A normal vector is

€1 €9 €3
@(1,—1) or (1,2,3) x (1,-2,3)=| 1 2 3 | =4(3,0,—1).
ou ov 1 -2 3

The equation of the tangent plane is

z = 3x.
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5) When (z,y,2) = (g, g, g) is put into the left hand side of the equation, we get
G5 -on-Fem o

proving that the point lies on the surface.

ANNANNNN IS e

N RSN

AN e e
NN

Figure 14.20: The surface in 5).

The gradient is

vf(z,y,z) = (—sinz,siny, cos z)

and

vf (g,g, g) = (— Sing,sing,cosg) = —Sing -(1,-1,0).

A convenient normal of the surface at the point is therefore (1,—1,0), and a tangent plane is

T s T s T
O—(l,—l,O)-(x—g,y—g,z—§>—x—g—(y—g)—x—y,
i.e.

Y=z

1
6) When (z,y,2) = <1, 2’ —1) is put into the left hand side of the equation we get

1
(=12 4+2-1-(=1)+2- -(—1)+4-5:1—2—1+2:0,

N | =

,—1) lies on the surface.

1
proving that the point (1, 3

It follows from

VF = (22,224 4,2z 4+ 22 + 2y),
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Figure 14.21: The surface in 6).

that

2

1
vF (1,—,—1) =(=2,-244,-24241) = (-2,2,1)

1
is perpendicular to the surface at the point (1, 3 —1).

The tangent equation becomes

1 1
0 = vF(l,Q,—1> . (m—l,y—Q,z—i—l)

= —2(:5—1)—}—2(3/—%)—1—(2—1—1)

= 2x+2y+z+2.

7) The equation is equivalent to

F(z,y,7z) = Arctan(z,y) —z =0.

If we put (z,y,2) = (1, 1, %), we get

F(l,l,%) = Arctan 1 — % =0,

and (1, 1, %) lies on the surface.

Now
y T
F: 9 5_1 9
v <1+<xy>2 T+ (ay)? )
and
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526

Examples of tangents (curves)
and tangent planes (surfaces)



Examples of tangents (curves)
Real Functions in Several Variables: Volume IV and tangent planes (surfaces)

Figure 14.22: The surface of 7).

so the equation of the tangent plane becomes

0 = 2vF(1,1,%)-<x—1,y—l,z—%)

(1,1,-2)- (x—l,y—l,z—%)

= x—1—|—y—1—2z—|—g,

hence by a rearrangement,
71'
—2z=2—-_.

Tr—+vy z B

Example 14.6 Let F be an hyperboloid with two nets, given by

Consider F as a level surface and find an equation of the tangent plane of F through the point (&,1, ().

A Tangent plan for a level surface.

D Find the gradient and set up the equation of the tangent plane. We shall need that (£, 7, () lies on
the surface.

I If we put

we see that the hyperboloid F can be considered as the level surface F(x,y, z) = 1.

Let (¢,1m,¢) € F, i.e.
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The gradient in (£,7,() is

VF(£7177<> =2 ((]i7_b7727_<> )

c2

so the equation of the tangent plane is

Examples of tangents (curves)
and tangent planes (surfaces)

=g my—nt - ¢?

O:%VF(év’rhC)(x_évy_nﬂZ_C) a2

hence by a rearrangement
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Example 14.7 Let F be that part of the surface of equation xyz = 1 which lies in the first octant.
1) Find an equation of the tangent plane T of F at the point (£,7,¢() on the surface.

2) Find the intersection points between T and the coordinate axes.

3) Find the volume of the tetrahedron, which is bounded by T and the three coordinate planes.

A Tangent plane of a level surface.

D Find the gradient and the the tangent plane.

I 1) When F(z,y,2) = zyz, the F is the level surface F(z,y,z) = 1 in the first octant.

000

el

e
S

X "%
XX

(XX

@

&

o
0

7

¢

If (¢,n,¢) € F, then
} 1 1
'3 7 ¢’

and the gradient is here

n¢ =

&n'¢

The equation of the tangent plane becomes

TF(€1,0) = (nC. CE,En) = ( L1 1) |

ie.
x Yy VA
S+242=3
eyt

or alternatively,
xnG +y&C + z8n = 3.
2) The X axis is characterized by y = 0 and z = 0, so the intersection point is (3¢, 0,0).

We get analogously (0,3n,0) on the Y axis and (0, 0,3¢) on the Z axis.
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Examples of tangents (curves)
Real Functions in Several Variables: Volume IV and tangent planes (surfaces)

3) The volume is by the method of sections given by fOBC A(z) dz, where A(z) denotes the area
of a triangle which is cut out of the tetrahedron by a plane, parallel to the XY plane at the
height z.

At the height z = 0 we have

A(0) =3 &n

By the similarity we then get in general

9 2\ 2
A(z) = = 1——= .
e=sea(i-5) . =enx
Finally, by insertion and calculation of the integral we get the volume
3¢ 9 3¢ 2\ 2 z
V = Azdz:—fn/ (1——) dz {t:—}
0 ) 27" Jo 3¢ 3¢
9 ! 27 !
= —gn-sg/ (1—t)2dt:—gng/ u? du
2 0 2 0
27 9
= Z.1.13=1".
2 2

9
We note that the volume is constant = > no matter which point (£,7,¢) € F we have chosen.

Example 14.8 The surface F is given by the equation z* + y* + 222 = 19. Find an equation of the
tangent plane of F through the point (2,1,—1).

A Tangent plane.

D First check that (2,1, —1) lies on the surface. Then find a normal.

Figure 14.23: Part of the surface in the neighbourhood of the point (2,1, —1).
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I It follows from
2041+ 2(-1)2 =16 +1+2=19,
that (2,1, —1) lies on F. Then
N(z,y,2) = (42° 49>, 42) = 4(2>, >, 2),
and
N(2,1,-1) = 4(8,1,-1),

so the equation of the tangent plane is
1
hence by a reduction

8r+y—2z=18.
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the quality of your dissertation!

Get Help Now
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Examples of tangents (curves)
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Example 14.9 The surface F is given by the equation
By 423 4+6=0.

Prove that the straight line given by x = 1 and y = 1 intersects F in a single point P, and then find
an equation of the tangent plane of F at P.

A Tangent plane.

D Either exploit the geometric meaning of 7 F', or find two tangents the cross products of which gives
a normal.

Figure 14.24: The surface F in the neighbourhood of P. Note that the coordinate system is translated
along the Z axis, so the origo does not occur on the figure.

I By putting z = y = 1 we get
0=14+1+224+6=234+8=(2+2)(22 —22+4) = (z+2){(z — 1)* + 3}.

It follows that z = —2 is the only real solution, so the line of the parametric description r(z) =
(1,1, z) does only intersect the surface in the point P: (1,1,-2) € F.

We shall find the tangent plane in two ways.

First variant. If we put F(z,y,2) = 2® + y + 2% + 6, then 7 F indicates the direction in which
the increase of F' is largest, i.e. \/F is a normal to the surface F(z,y,z) = C at the surface
point.

We find
VF =3(2%9%2%), VF(1,1,-2)=3(1,1,4),
so an equation of the tangent plane is e.g. given by

1
= z—-14+y—14+424+8=x+y+42+6,
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hence by a rearrangement
T +y+4z=—6.

Second variant. A parametric description of the surface F is in a neighbourhood of the point
(1,1, —2) given by

r(u,v) = (wo, =6+ w3 +05), (uw0) € K((1,1,-2)57).

The parameter curves have the tangents
Or U 2 Or v 2
—_— = 1, 0, i ——— B a 07 17 =\ 3= .
Ou V6 + ud 4 v’ v Y6+ ud + 03
At the point (1,1, —2) we get the tangents
/ 1 / 1
r,(l,1,-2) = 1,0,—1 and r,(1,1,-2)= 0,1,—1 .

Then a parametric description of the tangent plane is given by

1 1
I‘(’LL,U) = (x,y,z) = (17 17_2) +u (1707 _Z) +U <0717 _Z)

1
<u+1,v—|—1,—4(u—|—v—|—8)>, (u,v) € R%.

When we eliminate v and v we get

s= v +8) = —{u+ )+ W+ 1)+ 6} =~ (@ +y+6),

hence by a rearrangement
T+y+4z=—6.

REMARK. Here we might alternatively have found the normal instead,
N(1,1,-2)=r/(1,1,-2) x r/ (1,1, -2).

The details are left to the reader. ¢
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Example 14.10 Given the function
flz,y,2) = 2* —4y* + 4o + 8y — 2, (z,y,2) € R?,
and the level surface F of the equation
flz,y,2) =12
1) Indicate the type of the surface and its top point.
2) Find 7f(2,0,0), and set up an equation of the tangent plane of F at the point (2,0,0).
A Level surface and tangent plane.

D Rewrite the equation of the level surface to one of the generic forms. The tangent plane is found
by the standard method.

%
=]
. e
K
SRR
N
- “““‘

Figure 14.25: Part of the level surface F.

I 1) The equation of the level surface
f(r,y,2) =2 — 4y + 42+ 8y —2=(z+2)* —4(y— 1) —2 =12
is rewritten as
s412= (@427 —d(y— 1)

and we see that F is an hyperbolic paraboloid of top point (—2,1,—12).
2) Tt follows from

vVilx,y,z)=2x+4,-8y+38,-1)

that the normal of the surface at the point (2,0,0) is
v f(2,0,0) = (8,8,—1).

Since

f(2,0,00=4—-4-02+4-2+8-0-0=12,
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we see that (2,0,0) lies on the surface.

The equation of the tangent plane is
0=v/f(2,0,0)-(z—2,y—0,2—0)=(8,8,-1) - (x — 2,y,2) =8z — 16 + 8y — z,

so by a rearrangement,

z = 8x + 8y — 16.

(]
B By 2020, wind could provide one-tenth of our planet's
ra I n p O W e r electricity needs. Already today, SKF's innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.
Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our

stems for on-line condition monitoring and automatic
jcation. We help make it more economical to create

Therefore we'need the best employees who can
eet this challenge!

Tr)_af Power of Knowledge Engineering

'-r:-‘%.i

e
Plug into The Power of Knowle‘ngineering.
Visit us at www.skf.com/knowledge

535 Click on the ad to read more

Download free eBooks at bookboon.com


http://www.skf.com/knowledge

Examples of tangents (curves)
Real Functions in Several Variables: Volume IV and tangent planes (surfaces)

Example 14.11 Let a be a constant. Consider the surface F,, given by the equation

4

24+ 4y? -2 4ozt =a+ad>

1
Let T, denote the tangent plane of F, at the point (a, 3 1> on the surface.

1) Find an equation of T .
2) Check if a can be chosen such that the point (1,1,0) belongs to the plane T,.

3) Prove that there exists a value of «, for which F, is a conic section and indicate its type and
centrum.

A Tangent plane; conic section.

1
D Check if (a, > 1> lies on the surface. Find a normal and prove that this can always be chosen

= 0. Set up an equation of the tangent plane. Insert (1,1,0) and solve with respect to a. Finally,
find «, such that every term is at most a square.

Figure 14.26: The surface F, for a = 1 in the neighbourhood of the point (1, 1,0), cf. 2).

1
I 1) If weput (z,y,2) = (a, 2 1>, then

1
a2—|—4-i—1—|—a:a2—|—a,

1
and the point (a, 3 1> lies on the surface F,.

In general a normal is given by

VF = (2z,8y, —22 + 4a2®) = 2(x, 4y, —2 + 2a2°).
. . . 1
By removing the factor 2 and inserting | «, 3’ 1) we get

n=(a2-1+2a)#0 for every a.
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Figure 14.27: The surface F, for a = —2 in the neighbourhood of the point (1, 1,0), cf. 2).

Since n is perpendicular to the tangent plane, the equation of the tangent plane becomes

1
0 = n-(x—a,y—2,2—1>

= a(a:—oz)—!—Z(y—;)—|—(—1—|—2a)(z—1)

= ar+2y+Ra—-1z—-a?-14+1-2a
ar + 2y + (2a — 1)z — a? — 2a,

which is rewritten as

ax + 2y + (2o — 1)z = o® + 2a.

Figure 14.28: The conic section in 3), i.e. for a = 0.

2) If we put (z,y, 2) = (1, 1,0) into the equation of the tangent plane, we get the following equation
of second order in «,

a?+20=a+2+0, ie. oa?4+a—-2=0,
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the roots of which are & = 1 and o = —2. For these values of « the point (1,1,0) lies in 7.

3) When we consider conic sections, the corresponding equation must at most contain terms of
degree two. We are therefore forced to put a = 0, corresponding to

2?4+ 4y? — 22 =0, ie. 2% =22 + 4%

This is the equation of a cone of centrum (0,0,0) and the Z axis as axis.

Example 14.12 Given the function

flx,y,z) =1n (16 — 2?27 — 4z2) , (z,y,2) € A,

where A is given by the inequality

3.

2 4+ 2y% + 422 < 16.

. Indicate the boundary OA and explain why A is a conic section; find the name of this and indicate

its half azes.
Check if A is

1) open,
2) closed,
3) star shaped.

Find the gradient 7 f(x,y, 2).

Let F be that level surface of f, which contains the point (2,1,1).

4.

5.

Find the value of f(z,y,z) for (z,y,z) € F.

Find an equation of the tangent plane of F at the point (2,1,1).

A Conic section; level surface; tangent plane.

D Follow the guidelines of the text.

I

1) Tt follows from the continuity of the function that the equation of the boundary 0A is

x? 4 2y% 4 422 = 16,

hence by a norming (division by 16),

x\2 Y 2 z\1
(%) +(5) =t
( 4) ( 22 > 2
This normed form shows that A is a conic section, in fact an ellipsoid of centrum (0, 0, 0) and

half axes 4, 2v/2 and 2 along the X axis, the Y axis and the Z axis respectively.

2) Since a polynomial is continuous and since we have “sharp” inequality signs, we conclude that
A is open. Hence A is an open ellipsoid, therefore convex, and thus also star shaped. The set
A is clearly not closed.
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3) the gradient of f in A is

1
16 — 22 — 22 — 422

vf(@,y,2) (-2, —4y, —82).

4) By insertion we see that if (x,y,2) € F, then
Fz,y,2) = £(2,1,1)In(16 — 4 — 2 — 4) = In6.

5) We get at the point (2,1,1) that
1 2
vf(2,1,1)= 6 (—4,-4,-8) = —3 (1,1,2).

The gradient is always perpendicular to the tangent plane, so an equation of the tangent plane
of F at the point (2,1,1) is given by
3
0 = _5 vf(2,1,1)(x—2,y—1,z—1)
(171’2) : (%—2,?]— 172_ 1)
T—2+y—1+22-2
r+y+2z—5,

thus after a rearrangement,

T+y+2z2=05.

ant to do?

Vouwro Touexs | Resanr Toocks | Macs Toveks | Vowo Buses | Vowo Cowsteucnion Esumsest | Wowo Pesm | Vowo Aeno | Wowo IT
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15 Formulae

Some of the following formule can be assumed to be known from high school. It is highly recommended
that one learns most of these formule in this appendiz by heart.

15.1 Squares etc.

The following simple formulae occur very frequently in the most different situations.

(a+b)?* = a® + b + 2ab, a® + b + 2ab = (a + b)?,
(a—b)* = a® + b — 2ab, a® +b? — 2ab = (a — b)?,
(a+b)(a —b) = a® — b, a?—b* = (a+b)(a—b),
(a+b)? = (a — b)? + 4ab, (a —b)? = (a + b)? — 4ab.

15.2 Powers etc.

Logarithm:
In|zy| = In|z|+1n|y|, x,y #0,
In|Z|= In|z| —Inly|, x,y#0,
In|z"| = rin|z|, x #0.

Power function, fixed exponent:

(zy)" =a" -y",z,y >0 (extensions for some r),

AN
<—) =—,z,y>0 (extensions for some 7).
)

Exponential, fixed base:

a®-a¥ =a*"¥, a>0 (extensions for some z, y),

(@®)! =a*¥,a >0 (extensions for some z, y),
e 1 :
a”t=-—,a>0, (extensions for some ),

Ya=a'"a>0, n € N.
Square root:
Va2 = |z, zeR.

Remark 15.1 It happens quite frequently that students make errors when they try to apply these
rules. They must be mastered! In particular, as one of my friends once put it: “If you can master the
square root, you can master everything in mathematics!” Notice that this innocent looking square
root is one of the most difficult operations in Calculus. Do not forget the absolute value!
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15.3 Differentiation

Here are given the well-known rules of differentiation together with some rearrangements which some-
times may be easier to use:

{f(@) £g(x)} = f'(x) £ ¢'(2),

{f(@)g(@)} = f'(@)g() + f(2)g'(x) = f(2)9() {J}é@) i gg<($>) }

where the latter rearrangement presupposes that f(x) # 0 and g(z) # 0.
If g(z) # 0, we get the usual formula known from high school

{f(m) }/ _ [(@)g(x) = f(z)g'(x)
g(x) g9(x)? '

It is often more convenient to compute this expression in the following way:

Vo) = dn U6 ) = 5 ot~ 30 o) ~ ko) )

where the former expression often is much easier to use in practice than the usual formula from high
school, and where the latter expression again presupposes that f(x) # 0 and g(x) # 0. Under these
assumptions we see that the formulae above can be written

{f(2)g(x)} _ f'(x) ¢ (=)
f(@)g(x) — flz)  g(x)

f(x)/g(x) ()  g(@)
Since

LTV 4 C) .

Fhlf@l=58. @ o,

we also name these the logarithmic derivatives.
Finally, we mention the rule of differentiation of a composite function
{f(e(@)} = f(e(@)) - ¢ (2).

We first differentiate the function itself; then the insides. This rule is a 1-dimensional version of the
so-called Chain rule.

15.4 Special derivatives.

Power like:

. (%) = - 271, for x > 0, (extensions for some a).
d 1
%1n|x|=5, for z # 0.
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Exponential like:

—expx = expcz,

dx

d

In (®)=Ina-a”,
Trigonometric:

— sinx = cosx,

dzr
— cosx = —sinux,
e T inx
d 1
—tanz =1+ tan’z = 7
dz cos? x
d 1
L ot = —(1+eot?a) = ———
Hyperbolic:
— sinhz = cosh z,
dx
— coshx = sinh z,
dx
d 1
—tanhz = 1 — tanh®x = 5
dx cosh® x
d 1
7 cothz =1 — coth?z = R
z sinh? z
Inverse trigonometric:

d 1
— Arcsin x =

dx V1—22’

1
e Arccos x = —7*1 —
d
% Arctan xXr = m,
d 1
e Arccot x = 522
Inverse hyperbolic:
d 1
— Arsinh z = ——,
dx A /x2 + 1
d 1
— Arcosh x = ——,
dx 552 -1
d 1
% Artanh x = 1——332’
d
% Arcoth z = m,

Remark 15.2 The derivative of the trigonometric and the hyperbolic functions are to some extent
exponential like. The derivatives of the inverse trigonometric and inverse hyperbolic functions are

for z € R,

forx € R and a > 0.

for z € R,
for x € R,

T
for;v;«é§+p7r,p€Z,

for x # pm,p € Z.

for z € R,

for z € R,
for x € R,

for = # 0.

forze]-1,1],
forze]—-1,1],
for z € R,

for x € R.

for x € R,
for x €]1,400],
for |z| < 1,

for |x| > 1.

power like, because we include the logarithm in this class. ¢
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15.5 Integration

The most obvious rules are dealing with linearity

/{f(x) + Ag(x)} dx = /f(x) dx + )\/g(x) dx, where A € R is a constant,

and with the fact that differentiation and integration are “inverses to each other”, i.e. modulo some
arbitrary constant ¢ € R, which often tacitly is missing,

[ F@ s = fa).

If we in the latter formula replace f(x) by the product f(z)g(z), we get by reading from the right to
the left and then differentiating the product,

f@g@) = [(@g@)} do= [ f@gle)ds+ [ s ) da.

Hence, by a rearrangement

The rule of partial integration:

/fumuwzzﬂmmw—/}umuwm

The differentiation is moved from one factor of the integrand to the other one by changing the sign
and adding the term f(z)g(x).

Remark 15.3 This technique was earlier used a lot, but is almost forgotten these days. It must
be revived, because MAPLE and pocket calculators apparently do not know it. It is possible to
construct examples where these devices cannot give the exact solution, unless you first perform a
partial integration yourself. ¢

Remark 15.4 This method can also be used when we estimate integrals which cannot be directly
calculated, because the antiderivative is not contained in e.g. the catalogue of MAPLE. The idea is
by a succession of partial integrations to make the new integrand smaller. ¢

Integration by substitution:

If the integrand has the special structure f(¢(z))-¢’(z), then one can change the variable to y = ¢(z):

[ #te@n ¢z =< [ re@nacar = [ swa
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Integration by a monotonous substitution:

If p(y) is a monotonous function, which maps the y-interval one-to-one onto the z-interval, then

[r@a= [ sewew

Remark 15.5 This rule is usually used when we have some “ugly” term in the integrand f(z). The
idea is to put this ugly term equal to y = ¢ ~!(z). When e.g. 2 occurs in f(z) in the form /z, we put

y = o Y(x) = \/z, hence = = ¢(y) = y? and ¢'(y) = 2y. O

15.6 Special antiderivatives

Power like:

1
/—dx = In x|,
x

/xo‘ dr = L 2o+l
a+1

1
/ 1522 dx = Arctan x,

1 1 1+
= dr =1
/1—x2 v 2n‘1—x"

1
/ dr = Artanh z,

1— 22

1
/ dr = Arcoth z,

1— 22

dx = Arcsin x,

=

1
———— dx = — Arccos z,
/ V1—22
1
———— dx = Arsinh z,
/ VaZ 41

1
/\/Tﬁd"ﬁ:ln(ﬂf—F 332—|—1),

T
———dx =122 -1,
/\/3:2—1
1
———dx = Arcosh z,
/\/:Jc2—1

1
/ﬁdlenm—kvﬁ—ﬂ,
22 —

for x # 0. (Do not forget the numerical value!)
for o # —1,
for z € R,
for x # +£1,
for |z| < 1,
for |z| > 1,
for |z| < 1,
for |x| < 1,
for x € R,
for x € R,
for z € R,
for x > 1,

for x > 1 eller x < —1.

There is an error in the programs of the pocket calculators TI-92 and TT-89. The numerical signs are
missing. It is obvious that Va2 — 1 < |z| so if x < —1, then z + V22 — 1 < 0. Since you cannot take
the logarithm of a negative number, these pocket calculators will give an error message.
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Exponential like:

/expxdx:expx, for z € R,
1
a®dr =— -a", for x € R, and a > 0,a # 1.
Ina
Trigonometric:
/sinxdx:—cosx, for z € R,
/cosxdx:sinx, for z € R,
/tanxdx:—ln|cosx\, forx;ég—i—pﬂ, p € Z,
/cotxdx:1n|sinx|, for z # pmr, p€Z,
1 1 1 i
/ dr==In ﬂ , forx;éz—i—pﬂ, p € Z,
cos x 2 1 —sinz 2
1 1 1—cosz
dr==In|{ —— f Z
/sinx T3 n(1+cosx)’ orx#pm peL
1 us
>— dxr = tanz, forz # - +pm, pe€EZ,
cos® x 2
1
—5— dx = —cotuw, for x # pmw, p€Z.
sin” z
Hyperbolic:
/sinhxdx = coshz, for x € R,
/coshxdx = sinhz, for x € R,
/tanhxdx = Incoshz, for x € R,
/cothxalx:1n|sinhx|7 for x # 0,
1 .
dx = Arctan(sinh z), for x € R,
coshz
1
/ dx = 2 Arctan(e”), for z € R,
coshz
1 1 coshx — 1
dr=—-In| ——— f 0
/sinhx YT n(coshx—i—l)’ orz #0,
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1 e’ —1
dr=In|—— f 0
/sinh:c e em—|—1" or & 70,
1
/ﬁdz:tanhz, for z € R,
cosh” z
1
/. 5— dr = — coth, for z # 0.
sinh” x

15.7 Trigonometric formulae

The trigonometric formulae are closely connected with circular movements. Thus (cosw,sinu) are
the coordinates of a point P on the unit circle corresponding to the angle u, cf. figure A.1. This
geometrical interpretation is used from time to time.

(cosu, sinu)

Figure 15.1: The unit circle and the trigonometric functions.

The fundamental trigonometric relation:
cos?u +sinu =1, for u € R.

Using the previous geometric interpretation this means according to Pythagoras’s theorem, that the
point P with the coordinates (cosu,sinu) always has distance 1 from the origo (0,0), i.e. it is lying
on the boundary of the circle of centre (0,0) and radius v/1 = 1.

Connection to the complex exponential function:
The complex exponential is for imaginary arguments defined by
exp(iu) :=cosu+1 sinu.

It can be checked that the usual functional equation for exp is still valid for complex arguments. In
other word: The definition above is extremely conveniently chosen.

By using the definition for exp(iu) and exp(—iu) it is easily seen that

1
cosu = i(exp(iu) + exp(—iu)),

1
sinu = %(exp(i u) —exp(—iu)),
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Moivre’s formula: We get by expressing exp(inu) in two different ways:
exp(inu) = cosnu + i sinnu = (cosu + 1 sinw)".

Example 15.1 If we e.g. put n = 3 into Moivre’s formula, we obtain the following typical application,
cos(3u) + i sin(3u) = (cosu + i sinu)?

= cos® u + 3i cos?

= {cos® u — 3cosu - sin® u} + i{3 cos® u - sinu — sin® u}

= {4cos®u — 3cosu} + i{3sinu — 4sin®u}

w-sinu + 3i% cosu - sin?u + ¥ sin®u

When this is split into the real- and imaginary parts we obtain
cos3u:4c053u—3cosu, sin3u = 3sinu — 4sin®u. ¢
Addition formulae:
sin(u + v) = sinwu cosv + cosu sin v,
sin(u — v) = sinu cosv — cosu sinv,
cos(u + v) = cosu cosv — sinu sinv,
cos(u — v) = cosu cosv + sinu sinv.

Products of trigonometric functions to a sum:
. 1. 1,
sinu cosv = sin(u + v) + 5 sin(u — v),
. 1. 1.
cosu sinv = o sin(u +v) — 5 sin(u — v),
. . 1
sinv sinv = 5 cos(u —v) — 5 cos(u + v),

1 1
cosU COSY = cos(u —v) + 3 cos(u + v).

Sums of trigonometric functions to a product:

sinu 4+ sinv = 2sin <u—2|—v> cos (U;U) ,

. . 9 u+v\ . uU—v
sinu — sinv = 2 cos sin
2 2 ’
cosu + cosv = 2 cos utv cos S ,
2 2
. u+uvy\ . U —v
cosu—cosv:—Zsm( )sm( 5 )

Formula of halving and doubling the angle:

sin 2u = 2sinw cosu,

2 2

cos 2u = cos” u — sin u:2cosgu—1:1—2sin2u,

1 —cosu

sin 5= + — followed by a discussion of the sign,

/1
cos g =+ $ followed by a discussion of the sign,
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15.8 Hyperbolic formulae

These are very much like the trigonometric formulae, and if one knows a little of Complex Function
Theory it is realized that they are actually identical. The structure of this section is therefore the same
as for the trigonometric formulze. The reader should compare the two sections concerning similarities

and differences.
The fundamental relation:
cosh? z — sinh? z = 1.
Definitions:

coshz = % (exp(z) + exp(—x)), sinhx = % (exp(z) — exp(—x)) .

“Moivre’s formula”:

exp(x) = coshz + sinh z.

This is trivial and only rarely used. It has been included to show the analogy.

Addition formulae:
sinh(z + y) = sinh(z) cosh(y) + cosh(z) sinh(y),
sinh(z — y) = sinh(z) cosh(y) — cosh(z) sinh(y),
cosh(z + y) = cosh(x) cosh(y) + sinh(z) sinh(y),
cosh(z — y) = cosh(z) cosh(y) — sinh(z) sinh(y).
Formula of halving and doubling the argument:
sinh(2z) = 2sinh(z) cosh(z),
cosh(2z) = cosh?(z) + sinh?(x) = 2 cosh®(z) — 1 = 2sinh®(z) + 1,

h(z) —1
sinh (E) =+ % followed by a discussion of the sign,

cosh (g) _ cosh(;c) + 1.

Inverse hyperbolic functions:

Arsinh(z) = In (1: + Va2 + 1) : z €R,
Arcosh(z) = In (a: + \/aﬁ) , x>1,
Artanh(x) = éln <1ti) ) |z <1,
Arcoth(a:):%ln (zi) 2] > 1.
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15.9 Complex transformation formulae
cos(iz) = cosh(z), cosh(iz) = cos(x),
sin(iz) = i sinh(x), sinh(iz) = isinz.

15.10 Taylor expansions

The generalized binomial coefficients are defined by

<a) ala—=1)-(a—n+1)

n = 1.2...n ’

with n factors in the numerator and the denominator, supplied with

(5) -

The Taylor expansions for standard functions are divided into power like (the radius of convergency
is finite, i.e. = 1 for the standard series) andexzponential like (the radius of convergency is infinite).
Power like:

1 o0
—:Zx", |z < 1,
x

1_
n=0
1 - n_n
=Y, ol <1,
n=0
(1+9€)":Z(@>wj, neNzeR,
=\
(1+x)o‘:z<3):c", acR\N,|z| <1,
n=0
o0 xn
In(1 = —nte <1
i) = 3o el <1,
o z2n+1
Arct D N | <1.
retan(a) = 3 (1" 3 o

Download free eBooks at bookboon.com



Exponential like:

— 1
exp(z) = Z ﬁx", zeR
n=0
- 1
exp(—x) = Z(—l)"ﬁw", reR
n=0 ’
- 1
sin(z) = Z(—l)"il;v%*l, z €R,
= (2n+1)!
sinh(z) = i #x%*l zeR
' ) )
= (2n+1)!
= n 1 2n
cos(z) = Z(—l) (2n)'w , z €R,
n=0 ’
cosh(z) = i L:52” reR
| ’ ’
= (2n)!

15.11 Magnitudes of functions

We often have to compare functions for x — 0+, or for x — co. The simplest type of functions are

therefore arranged in an hierarchy:
1) logarithms,

2) power functions,

3) exponential functions,

4) faculty functions.

When z — oo, a function from a higher class will always dominate a function form a lower class
precisely:

A) A power function dominates a logarithm for x — oo:

(Inz)?

pors -0 forx — 00, «, B >0.

B) An ezponential dominates a power function for x — oo:

xOL

— =0 forz — o0, a,a>1.
a[l)
C) The faculty function dominates an exponential for n — oo:

an

—'—>O, n—o00, neN, a>0.
n!

D) When = — 0+ we also have that a power function dominates the logarithm:

z%Inx — 0—, for x — 0+, a>0.
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Index

absolute value 162

acceleration 490

addition 22

affinity factor 173

Ampere-Laplace law 1671

Ampere-Maxwell’s law 1678

Ampere’s law 1491, 1498, 1677, 1678, 1833

Ampere’s law for the magnetic field 1674

angle 19

angular momentum 886

angular set 84

annulus 176, 243

anticommutative product 26

antiderivative 301, 847

approximating polynomial 304, 322, 326, 336, 404,
488, 632, 662

approximation in energy 734

Archimedes’s spiral 976, 1196

Archimedes’s theorem 1818

area 887, 1227, 1229, 1543

area element 1227

area of a graph 1230

asteroid 1215

asymptote 51

axial moment 1910

axis of revolution 181

axis of rotation 34, 886

axis of symmetry 49, 50, 53

barycentre 885, 1910

basis 22

bend 486

bijective map 153

body of revolution 43, 1582, 1601
boundary 37-39

boundary curve 182

boundary curve of a surface 182
boundary point 920

boundary set 21

bounded map 153

bounded set 41

branch 184

branch of a curve 492

Brownian motion 884

cardiod 972, 973, 1199, 1705

Cauchy-Schwarz’s inequality 23, 24, 26

centre of gravity 1108

centre of mass 885

centrum 66

chain rule 305, 333, 352, 491, 503, 581, 1215, 1489,
1493, 1808

change of parameter 174

circle 49

circular motion 19

circulation 1487

circulation theorem 1489, 1491

circumference 86

closed ball 38

closed differential form 1492

closed disc 86

closed domain 176

closed set 21

closed surface 182, 184

closure 39

clothoid 1219

colour code 890

compact set 186, 580, 1813

compact support 1813

complex decomposition 69

composite function 305

conductivity of heat 1818

cone 19, 35, 59, 251

conic section 19, 47, 54, 239, 536

conic sectional conic surface 59, 66

connected set 175, 241

conservation of electric charge 1548, 1817

conservation of energy 1548, 1817

conservation of mass 1548, 1816

conservative force 1498, 1507

conservative vector field 1489

continuity equation 1548, 1569, 1767, 1817

continuity 162, 186

continuous curve 170, 483

continuous extension 213

continuous function 168

continuous surfaces 177

contraction 167

convective term 492

convex set 21, 22, 41, 89, 91, 175, 244

coordinate function 157, 169

coordinate space 19, 21
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Cornu’s spiral 1219

Coulomb field 1538, 1545, 1559, 1566, 1577

Coulomb vector field 1585, 1670

cross product 19, 163, 169, 1750

cube 42, 82

current density 1678, 1681

current 1487, 1499

curvature 1219

curve 227

curve length 1165

curved space integral 1021

cusp 486, 487, 489

cycloid 233, 1215

cylinder 34, 42, 43, 252

cylinder of revolution 500

cylindric coordinates 15, 21, 34, 147, 181, 182,
289, 477,573,841, 1009, 1157, 1347, 1479,
1651, 1801

cylindric surface 180, 245, 247, 248, 499, 1230

degree of trigonometric polynomial 67
density 885

density of charge 1548

density of current 1548

derivative 296

derivative of inverse function 494
Descartes’a leaf 974

dielectric constant 1669, 1670
difference quotient 295
differentiability 295

differentiable function 295
differentiable vector function 303
differential 295, 296, 325, 382, 1740, 1741
differential curves 171

differential equation 369, 370, 398
differential form 848

differential of order p 325

differential of vector function 303
diffusion equation 1818

dimension 1016

direction 334

direction vector 172

directional derivative 317, 334, 375
directrix 53

Dirichlet/Neumann problem 1901
displacement field 1670

distribution of current 886

divergence 1535, 1540, 1542, 1739, 1741, 1742
divergence free vector field 1543

dodecahedron 83
domain 153, 176
domain of a function 189
dot product 19, 350, 1750
double cone 252
double point 171
double vector product 27

eccentricity 51

eccentricity of ellipse 49

eigenvalue 1906

elasticity 885, 1398

electric field 1486, 1498, 1679

electrical dipole moment 885

electromagnetic field 1679

electromagnetic potentials 1819

electromotive force 1498

electrostatic field 1669

element of area 887

elementary chain rule 305

elementary fraction 69

ellipse 48-50, 92, 113, 173, 199, 227

ellipsoid 56, 66, 110, 197, 254, 430, 436, 501, 538,
1107

ellipsoid of revolution 111

ellipsoidal disc 79, 199

ellipsoidal surface 180

elliptic cylindric surface 60, 63, 66, 106

elliptic paraboloid 60, 62, 66, 112, 247

elliptic paraboloid of revolution 624

energy 1498

energy density 1548, 1818

energy theorem 1921

entropy 301

Euclidean norm 162

Euclidean space 19, 21, 22

Euler’s spiral 1219

exact differential form 848

exceptional point 594, 677, 920

expansion point 327

explicit given function 161

extension map 153

exterior 37-39

exterior point 38

extremum 580, 632

Faraday-Henry law of electromagnetic induction
1676
Fick’s first law of diffusion 297
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Fick’s law 1818 Helmholtz’s theorem 1815

field line 160 homogeneous function 1908

final point 170 homogeneous polynomial 339, 372

fluid mechanics 491 Hopf’s maximum principle 1905

flux 1535, 1540, 1549 hyperbola 48, 50, 51, 88, 195, 217, 241, 255, 1290

focus 49, 51, 53 hyperbolic cylindric surface 60, 63, 66, 105, 110

force 1485 hyperbolic paraboloid 60, 62, 66, 246, 534, 614,

Fourier’s law 297, 1817 1445

function in several variables 154 hyperboloid 232, 1291

functional matrix 303 hyperboloid of revolution 104

fundamental theorem of vector analysis 1815 hyperboloid of revolution with two sheets 111
hyperboloid with one sheet 56, 66, 104, 110, 247,

Gaussian integral 938 255

Gauly’s law 1670 hyperboloid with two sheets 59, 66, 104, 110, 111,

Gaufl’s law for magnetism 1671 255, 527

Gauf}’s theorem 1499, 1535, 1540, 1549, 1580, 1718, hysteresis 1669
1724, 1737, 1746, 1747, 1749, 1751, 1817,

1818, 1889, 1890, 1913 identity map 303
Gauf’s theorem in R? 1543 implicit given function 21, 161
Gauf’s theorem in R? 1543 implicit function theorem 492, 503
general chain rule 314 improper integral 1411
general coordinates 1016 improper surface integral 1421
general space integral 1020 increment 611
general Taylor’s formula 325 induced electric field 1675
generalized spherical coordinates 21 induction field 1671
generating curve 499 infinitesimal vector 1740
generator 66, 180 infinity, signed 162
geometrical analysis 1015 infinity, unspecified 162
global minimum 613 initial point 170
gradient 295, 296, 298, 339, 847, 1739, 1741 injective map 153
gradient field 631, 847, 1485, 1487, 1489, 1491, inner product 23, 29, 33, 163, 168, 1750
1916 inspection 861
gradient integral theorem 1489, 1499 integral 847
graph 158, 179, 499, 1229 integral over cylindric surface 1230
Green’s first identity 1890 integral over surface of revolution 1232
Green’s second identity 1891, 1895 interior 37-40
Green’s theorem in the plane 1661, 1669, 1909 interior point 38
Green’s third identity 1896 intrinsic boundary 1227
Green’s third identity in the plane 1898 isolated point 39

Jacobian 1353, 1355
half-plane 41, 42

half-strip 41, 42 Kronecker symbol 23

half disc 85

harmonic function 426, 427, 1889 Laplace equation 1889

heat conductivity 297 Laplace force 1819

heat equation 1818 Laplace operator 1743

heat flow 297 latitude 35

height 42 length 23

helix 1169, 1235 level curve 159, 166, 198, 492, 585, 600, 603
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level surface 198, 503
limit 162, 219

line integral 1018, 1163
line segment 41

Linear Algebra 627
linear space 22

local extremum 611
logarithm 189
longitude 35

Lorentz condition 1824

Maclaurin’s trisectrix 973, 975

magnetic circulation 1674

magnetic dipole moment 886, 1821

magnetic field 1491, 1498, 1679

magnetic flux 1544, 1671, 1819

magnetic force 1674

magnetic induction 1671

magnetic permeability of vacuum 1673

magnostatic field 1671

main theorems 185

major semi-axis 49

map 153

MAPLE 55, 68, 74, 156, 171, 173, 341, 345, 350,
352-354, 356, 357, 360, 361, 363, 364,
366, 368, 374, 384-387, 391-393, 395—
397, 401, 631, 899, 905-912, 914, 915,
917, 919, 922-924, 926, 934, 935, 949,
951, 954, 957-966, 968, 971-973, 975,
1032-1034, 1036, 1037, 1039, 1040, 1042,
1053, 1059, 1061, 1064, 1066—-1068, 1070—
1072, 1074, 1087, 1089, 1091, 1092, 1094,
1095, 1102, 1199, 1200

matrix product 303

maximal domain 154, 157

maximum 382, 579, 612, 1916

maximum value 922

maximum-minimum principle for harmonic func-
tions 1895

Maxwell relation 302

Maxwell’s equations 1544, 1669, 1670, 1679, 1819

mean value theorem 321, 884, 1276, 1490

mean value theorem for harmonic functions 1892

measure theory 1015

Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157,
1347, 1479, 1651, 1801, 1921

meridian curve 181, 251, 499, 1232

meridian half-plane 34, 35, 43, 181, 1055, 1057,
1081

method of indefinite integration 859

method of inspection 861

method of radial integration 862

minimum 186, 178, 579, 612, 1916

minimum value 922

minor semi-axis 49

mmf 1674

Mobius strip 185, 497

Moivre’s formula 122, 264, 452, 548, 818, 984,
1132, 1322, 1454, 1626, 1776, 1930

monopole 1671

multiple point 171

nabla 296, 1739

nabla calculus 1750

nabla notation 1680

natural equation 1215

natural parametric description 1166, 1170
negative definite matrix 627

negative half-tangent 485
neighbourhood 39

neutral element 22

Newton field 1538

Newton-Raphson iteration formula 583
Newton’s second law 1921
non-oriented surface 185

norm 19, 23

normal 1227

normal derivative 1890

normal plane 487

normal vector 496, 1229

octant 83

Ohm’s law 297

open ball 38

open domain 176

open set 21, 39

order of expansion 322
order relation 579

ordinary integral 1017
orientation of a surface 182
orientation 170, 172, 184, 185, 497
oriented half line 172
oriented line 172

oriented line segment 172
orthonormal system 23

parabola 52, 53, 89-92, 195, 201, 229, 240, 241
parabolic cylinder 613
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parabolic cylindric surface 64, 66

paraboloid of revolution 207, 613, 1435

parallelepipedum 27, 42

parameter curve 178, 496, 1227

parameter domain 1227

parameter of a parabola 53

parametric description 170, 171, 178

parfrac 71

partial derivative 298

partial derivative of second order 318

partial derivatives of higher order 382

partial differential equation 398, 402

partial fraction 71

Peano 483

permeability 1671

piecewise C*-curve 484

piecewise C"-surface 495

plane 179

plane integral 21, 887

point of contact 487

point of expansion 304, 322

point set 37

Poisson’s equation 1814, 1889, 1891, 1901

polar coordinates 15, 19, 21, 30, 85, 88, 147, 163,
172, 213, 219, 221, 289, 347, 388, 390,
477, 573, 611, 646, 720, 740, 841, 936,
1009, 1016, 1157, 1165, 1347, 1479, 1651,
1801

polar plane integral 1018

polynomial 297

positive definite matrix 627

positive half-tangent 485

positive orientation 173

potential energy 1498

pressure 1818

primitive 1491

primitive of gradient field 1493

prism 42

Probability Theory 15, 147, 289, 477, 573, 841,
1009, 1157, 1347, 1479, 1651, 1801

product set 41

projection 23, 157

proper maximum 612, 618, 627

proper minimum 612, 613, 618, 627

pseudo-sphere 1434

Pythagoras’s theorem 23, 25, 30, 121, 451, 547,
817, 983, 1131, 1321, 1453, 1625, 1775,
1929

quadrant 41, 42, 84
quadratic equation 47

range 153

rectangle 41, 87

rectangular coordinate system 29

rectangular coordinates 15, 21, 22, 147, 289, 477,
573, 841, 1009, 1016, 1079, 1157, 1165,
1347, 1479, 1651, 1801

rectangular plane integral 1018

rectangular space integral 1019

rectilinear motion 19

reduction of a surface integral 1229

reduction of an integral over cylindric surface 1231

reduction of surface integral over graph 1230

reduction theorem of line integral 1164

reduction theorem of plane integral 937

reduction theorem of space integral 1021, 1056

restriction map 153

Ricatti equation 369

Riesz transformation 1275

Rolle’s theorem 321

rotation 1739, 1741, 1742

rotational body 1055

rotational domain 1057

rotational free vector field 1662

rules of computation 296

saddle point 612

scalar field 1485

scalar multiplication 22, 1750

scalar potential 1807

scalar product 169

scalar quotient 169

second differential 325

semi-axis 49, 50

semi-definite matrix 627

semi-polar coordinates 15, 19, 21, 33, 147, 181,
182, 289, 477, 573, 841, 1009, 1016, 1055,
1086, 1157, 1231, 1347, 1479, 1651, 1801

semi-polar space integral 1019

separation of the variables 853

signed curve length 1166

signed infinity 162

simply connected domain 849, 1492

simply connected set 176, 243

singular point 487, 489

space filling curve 171

space integral 21, 1015

Download free eBooks at bookboon.com



specific capacity of heat 1818 triangle inequality 23,24
sphere 35, 179 triple integral 1022, 1053
spherical coordinates 15, 19, 21, 34, 147, 179, 181,
289, 372, 477, 573, 782, 841, 1009, 1016, uniform continuity 186
1078, 1080, 1081, 1157, 1232, 1347, 1479, unit circle 32

1581, 1651, 1801 unit disc 192
spherical space integral 1020 unit normal vector 497
square 41 unit tangent vector 486
star-shaped domain 1493, 1807 unit vector 23
star shaped set 21, 41, 89, 90, 175 unspecified infinity 162

static electric field 1498

stationary magnetic field 1821
stationary motion 492 vector field 158, 296, 1485

stationary point 533, 920 vector function 21, 157, 189

Statistics 15, 147, 289, 477, 573, 841, 1009, 1157, Vector product 19, 26, 30, 163, 169. 1227, 1750
1347, 1479, 1651, 1801 vector space 21, 22

step line 172 Vector}al area 1748

Stokes’s theorem 1499, 1661, 1676, 1679, 1746, vectorial element of area 1535
1747, 1750, 1751, 1811, 1819, 1820, 1913  Vectorial potential 1809, 1810

straight line (segment) 172 velocity 490

strip 41, 42 volume 1015, 1543

substantial derivative 491 volumen element 1015

surface 159, 245

surface area 1296

surface integral 1018, 1227

surface of revolution 110, 111, 181, 251, 499

surjective map 153

vector 22

weight function 1081, 1229, 1906
work 1498

zero point 22
zero vector 22

tangent 486 (r, s, t)-method 616, 619, 633, 634, 638, 645647,
tangent plane 495, 496 652, 655

tangent vector 178 Ck_curve 4837

tangent vector field 1485 C"-functions 318

tangential line integral 861, 1485, 1598, 1600, 1603 1-1 map 153

Taylor expansion 336

Taylor expansion of order 2, 323

Taylor’s formula 321, 325, 404, 616, 626, 732

Taylor’s formula in one dimension 322

temperature 297

temperature field 1817

tetrahedron 93, 99, 197, 1052

Thermodynamics 301, 504

top point 49, 50, 53, 66

topology 15, 19, 37, 147, 289. 477, 573, 841, 1009,
1157, 1347, 1479, 1651, 1801

torus 43, 182-184

transformation formulael353

transformation of space integral 1355, 1357

transformation theorem 1354

trapeze 99
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