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Preface

The topic of this series of books on “Real Functions in Several Variables” is very important in the
description in e.g. Mechanics of the real 3-dimensional world that we live in. Therefore, we start from
the very beginning, modelling this world by using the coordinates of R3 to describe e.g. a motion in
space. There is, however, absolutely no reason to restrict ourselves to R3 alone. Some motions may
be rectilinear, so only R is needed to describe their movements on a line segment. This opens up for
also dealing with R2, when we consider plane motions. In more elaborate problems we need higher
dimensional spaces. This may be the case in Probability Theory and Statistics. Therefore, we shall in
general use Rn as our abstract model, and then restrict ourselves in examples mainly to R2 and R3.

For rectilinear motions the familiar rectangular coordinate system is the most convenient one to apply.
However, as known from e.g. Mechanics, circular motions are also very important in the applications
in engineering. It becomes natural alternatively to apply in R2 the so-called polar coordinates in the
plane. They are convenient to describe a circle, where the rectangular coordinates usually give some
nasty square roots, which are difficult to handle in practice.

Rectangular coordinates and polar coordinates are designed to model each their problems. They
supplement each other, so difficult computations in one of these coordinate systems may be easy, and
even trivial, in the other one. It is therefore important always in advance carefully to analyze the
geometry of e.g. a domain, so we ask the question: Is this domain best described in rectangular or in
polar coordinates?

Sometimes one may split a problem into two subproblems, where we apply rectangular coordinates in
one of them and polar coordinates in the other one.

It should be mentioned that in real life (though not in these books) one cannot always split a problem
into two subproblems as above. Then one is really in trouble, and more advanced mathematical
methods should be applied instead. This is, however, outside the scope of the present series of books.

The idea of polar coordinates can be extended in two ways to R3. Either to semi-polar or cylindric
coordinates, which are designed to describe a cylinder, or to spherical coordinates, which are excellent
for describing spheres, where rectangular coordinates usually are doomed to fail. We use them already
in daily life, when we specify a place on Earth by its longitude and latitude! It would be very awkward
in this case to use rectangular coordinates instead, even if it is possible.

Concerning the contents, we begin this investigation by modelling point sets in an n-dimensional
Euclidean space En by Rn. There is a subtle difference between En and Rn, although we often
identify these two spaces. In En we use geometrical methods without a coordinate system, so the
objects are independent of such a choice. In the coordinate space Rn we can use ordinary calculus,
which in principle is not possible in En. In order to stress this point, we call En the “abstract space”
(in the sense of calculus; not in the sense of geometry) as a warning to the reader. Also, whenever
necessary, we use the colour black in the “abstract space”, in order to stress that this expression is
theoretical, while variables given in a chosen coordinate system and their related concepts are given
the colours blue, red and green.

We also include the most basic of what mathematicians call Topology, which will be necessary in the
following. We describe what we need by a function.

Then we proceed with limits and continuity of functions and define continuous curves and surfaces,
with parameters from subsets of R and R2, resp..
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Continue with (partial) differentiable functions, curves and surfaces, the chain rule and Taylor’s for-
mula for functions in several variables.

We deal with maxima and minima and extrema of functions in several variables over a domain in Rn.
This is a very important subject, so there are given many worked examples to illustrate the theory.

Then we turn to the problems of integration, where we specify four different types with increasing
complexity, plane integral, space integral, curve (or line) integral and surface integral.

Finally, we consider vector analysis, where we deal with vector fields, Gauß’s theorem and Stokes’s
theorem. All these subjects are very important in theoretical Physics.

The structure of this series of books is that each subject is usually (but not always) described by three
successive chapters. In the first chapter a brief theoretical theory is given. The next chapter gives
some practical guidelines of how to solve problems connected with the subject under consideration.
Finally, some worked out examples are given, in many cases in several variants, because the standard
solution method is seldom the only way, and it may even be clumsy compared with other possibilities.

I have as far as possible structured the examples according to the following scheme:

A Awareness, i.e. a short description of what is the problem.

D Decision, i.e. a reflection over what should be done with the problem.

I Implementation, i.e. where all the calculations are made.

C Control, i.e. a test of the result.

This is an ideal form of a general procedure of solution. It can be used in any situation and it is not
linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a
situation which did not contain Mathematics at all. The student is recommended to use it also in
other disciplines.

From high school one is used to immediately to proceed to I. Implementation. However, examples
and problems at university level, let alone situations in real life, are often so complicated that it in
general will be a good investment also to spend some time on the first two points above in order to
be absolutely certain of what to do in a particular case. Note that the first three points, ADI, can
always be executed.

This is unfortunately not the case with C Control, because it from now on may be difficult, if possible,
to check one’s solution. It is only an extra securing whenever it is possible, but we cannot include it
always in our solution form above.

I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a
shorthand, because they are often (too often, I would say) misused. Instead of ∧ I shall either write
“and”, or a comma, and instead of ∨ I shall write “or”. The arrows ⇒ and ⇔ are in particular
misunderstood by the students, so they should be totally avoided. They are not telegram short hands,
and from a logical point of view they usually do not make sense at all! Instead, write in a plain
language what you mean or want to do. This is difficult in the beginning, but after some practice it
becomes routine, and it will give more precise information.

When we deal with multiple integrals, one of the possible pedagogical ways of solving problems has
been to colour variables, integrals and upper and lower bounds in blue, red and green, so the reader
by the colour code can see in each integral what is the variable, and what are the parameters, which
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do not enter the integration under consideration. We shall of course build up a hierarchy of these
colours, so the order of integration will always be defined. As already mentioned above we reserve
the colour black for the theoretical expressions, where we cannot use ordinary calculus, because the
symbols are only shorthand for a concept.

The author has been very grateful to his old friend and colleague, the late Per Wennerberg Karlsson,
for many discussions of how to present these difficult topics on real functions in several variables, and
for his permission to use his textbook as a template of this present series. Nevertheless, the author
has felt it necessary to make quite a few changes compared with the old textbook, because we did not
always agree, and some of the topics could also be explained in another way, and then of course the
results of our discussions have here been put in writing for the first time.

The author also adds some calculations in MAPLE, which interact nicely with the theoretic text.
Note, however, that when one applies MAPLE, one is forced first to make a geometrical analysis of
the domain of integration, i.e. apply some of the techniques developed in the present books.

The theory and methods of these volumes on “Real Functions in Several Variables” are applied
constantly in higher Mathematics, Mechanics and Engineering Sciences. It is of paramount importance
for the calculations in Probability Theory, where one constantly integrate over some point set in space.

It is my hope that this text, these guidelines and these examples, of which many are treated in more
ways to show that the solutions procedures are not unique, may be of some inspiration for the students
who have just started their studies at the universities.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.
I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
March 21, 2015
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Introduction to volume II,

Continuous Functions in Several Variables

This is the second volume in the series of books on Real Functions in Several Variables. We start in
Chapter 5 with the necessary theoretical background. Here we assume that the theory of volume I is
known by the reader.

We introduce maps and functions, including vector functions, and we give some guidelines on how to
visualize such functions. This is not always an easy task, because we easily are forced to consider graphs
lying in spaces of dimension ≥ 4, where very few human beings have a geometrical understanding of
what is going on.

Then we introduce the continuous functions, starting with defining the basic concept of what we
understand by taking a limit. We must apparently have some sense of “distance” in order to say that
two points are close to each other. We therefore make use of the topological notions of norm and
distance already introduced in volume I.

Continuous functions are then defined as functions, for which “the image points are lying close together,
whenever the points themselves are close to each other”. We of course make this more precise in the
text.

The first application of continuous functions is to introduce continuous curves. The safest description
of such curves, though it is not always necessary, is to use a parametric description of them. This is
also done in MAPLE, and at the same time we get a sense of direction of a motion along the curve
from an initial point to a final point.

Then we use the continuous curves to define (curve) connected sets, which are the only connected sets
we shall consider here. (There exist sets which are connected, but not curve connected; but they will
not be of interest to us.) A set A is (curve) connected, if any two points x and y ∈ A can always be
connected with a continuous curve, which lies entirely in A. If A ∈ Rn is open, then any two points
can always be connected by a continuous curve of a very special and convenient structure. The curve
consists of concatenated line segments, where each of them is parallel to one of the axes in Rn. This
property will be very useful in the theory of integration later on.

If furthermore, two curves connecting any two given points x and y ∈ A can be transformed contin-
uously into each other without leaving A during this transformation process, then A in some sense
“does not contain holes”, and A is called simply connected. As one would expect, simply connected
sets have better properties than sets, which are only connected.

Once we have introduced continuous curves, using a parametric description, where the parameter set
I of course is a one-dimensional interval, it is formally straightforward to replace this one-dimensional
parameter interval I for a one-dimensional curve by a two-dimensional interval to get a two-dimensional
surface. Then we discover that it is not essential that the parameter set indeed is an interval. A two-
dimensional connected set will suffice.

The vague definition above of a surface is of course not precise, so we must first get rid of all patholog-
ical cases, but in general a continuous function r : E → Rn, where E is a two-dimensional connected
set, defines a two-dimensional surface F in Rn. If n = 3, we can visualize the process of the function
r as taking a two-dimensional plate of shape E and then bend, compress and stretch this plate, such
that we in the end obtain the surface F of the wanted shape in e.g. R3.
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The above gives the general idea, although matters are not always that easy.

A parameter set E ⊆ R2 may have a non-empty boundary ∂E. We would expect that it is mapped by
r into the “boundary” δF of the surface F . Since topologically F = ∂F is equal to its own boundary,
we must describe, what is meant by the “boundary” of the different notation δF in F . Usually,
δF = r(∂E), but is easy to construct examples, where δF (⊆ r(∂E)) is not equal to r(∂E).

Finally we recall (without proofs) the three main theorems for continuous functions, and we show
some of their simplest implications, which will be used over and over again in the following volumes.

Chapter 6 on practical guidelines is very short in this volume.

Then follows a fairly long Chapter 7 with examples, following more or less the same structure as the
theoretical Chapter 5, so the reader may consult both chapter, when reading this book.

Chapter 8 on Formulæ is identical with Chapter 4 in volume I. It is convenient to have these for-
mulæ at the end of the books as reference, although many people alternatively may use MAPLE or
MATHEMATICA instead.

The index is the same in all volumes, and it covers the whole text.
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5 Continuous maps and functions in several variables

5.1 Maps in general

We shall restrict ourselves to the concept of a map from a subset of Rn into Rm, i.e. a map is here
defined on a set D ⊆ Rn in a coordinate space,

f : D → Rm, x �→ f(x), where D ⊆ Rn.

This is the precise notation, but it is in general too complicated, so we shall allow ourselves to use a
shorthand like

f : D → Rm, where D ⊆ Rn.

If Rm and Rn already are given, we shall just write

f(x) for x ∈ D, or just f(x) or f .

The notation

D
f→ Rm

may be useful, when we put several maps together into the same schematic structure in order to get
a feeling of what is going on, when we e.g. form some compositions of maps.

The map f : D → Rm has its domain D ⊆ Rn, and we call f(D) [⊆ Rm] its range. The map is said to
be surjective f : D → f(D), i.e. every point of f(D) is the image of at least one point of D. If every
point of f(D) is the image of precisely one point x ∈ D, then f is called injective.. If f : D → Rm is
injective, then as seen above, it is both an injective and surjective map of D onto the range f(D), and
we call in this case f a bijective map or a 1-1 map.

We shall use a little of our previously introduced Topology. We say that a map f : D → Rm is bounded,
if there exists a ball B of finite radius in Rm, such that f(D) ⊆ B. The terminology agrees with what
one would expect. A ball of finite radius must be bounded, and so is every subset of this ball.

It must be emphasized that a map f : D → Rm is specified by the operations defined by f itself, as
well of its specified domain D! If we for some reason extend the domain D to some other D1, in which
the operations given by f still make sense, or we let D1 ⊂ D be a real subset of D, so f is defined by
restriction to D1, then f1 : D1 → Rm is not considered as the same map as f → Rm, although they
are strongly related. We note the following important special cases: Given a map f : D → Rm.

1) If f1 : D1 → Rm satisfies

D1 ⊂ D and f1(x) = f(x) for all x ∈ D1,

then (f1, D1) is called a restriction of (f , D).

2) If f1 : D1 → Rm satisfies

D ⊂ D1 and f1(x) = f(x) for all x ∈ D,

then (f1, D1) is called an extension of (f , D).
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There are of course other possibilities, but they are not as important as the two cases described above.

In practice we shall want to specify the map f by its coordinates in D ⊆ Rn. This may be written in
the following way, or similarly,

f(x) = · · · , where x ∈ · · · ,

where we for x ∈ · · · write a specification of D using equations or inequalities between expressions in
its coordinates.

One problem often occurs in practice. We may by some theoretical analysis have derived the structure
of the map f , but somehow we have not specified its domain D. Then the normal procedure is to
analyze f in order to find the maximal domain, in which f can be defined. Some guidelines are given
in Section 5.2 and Chapter 6. This maximal domain is defined by Mathematics alone. We may
therefore later for physical reasons be forced to restrict this (mathematical) maximal domain, when
we interpret the model in the real world. One example is that we may get a relation (a map) in which
the temperature in Kelvin occurs. The maximal domain of the map may in a mathematical sense
allow the temperature to be negative, which of course is not possible in Physics.

5.2 Functions in several variables

Assume that the map f : D → R maps into the real line R, i.e. m = 1. In this case, when the range
is one-dimensional it is customary to call f a function, and we change the notation to f : D → R.

Let f : D → R be a function, where the domain D ⊆ Rn is of dimension ≥ 2. Then f is called a
function in several (real) variables. In the present case we have n variables. Using the well-known
theory of real functions in one real variable it is possible to derive simple properties of f by restricting
f to one-dimensional subsets of D.

We shall in the following illustrate the question of maximal domain of a given function. This was
introduced in Section 5.1 in general for maps.

1) Given f1(x, y) = exp
(

x2 + 2y2
)

in R2. Since exp is defined for all z ∈ R, and z = x2 + 2y2 ∈ R

for all (x, y) ∈ R2, the maximal domain is R2.

2) Given

f2(x, y) =
√
x+

√
y +

1

xy

in R2. The square root
√
z is only defined in the real for z ≥ 0, so we must require that both x ≥ 0

and y ≥ 0. However, a denominator must never be zero, so we also require that xy �= 0, and we
conclude that the maximal domain is the open first quadrant R2

+.

3) Given f3(x, y) = ln(x − 1) +
√
2− y in R2. The logarithm is only defined, if z = x − 1 > 0, i.e.

z > 1, and the square root is only defined for z = 2 − y ≥ 0, i.e. for y ≤ 2. We conclude that
the maximal domain of f3 is D3 = ]1,+∞[× ]−∞, 2], where we usually would prefer just to write
x > 1 and y ≤ 2 instead.
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4) The function

f4(x, y) =
1

x2 + 2y2 − 2x+ 1

in R2 is defined, when the denominator is �= 0, i.e. when

0 �= x2 + 2y2 − 2x+ 1 = (x− 1)2 + 2y2.

The only requirement is that (x, y) �= (1, 0), so the maximal domain of f4 is R2 \ {(1, 0)}.

5) Given in R2 the function

f5(x, y) =
�

4− x2 − y2 +
√
y.

The requirements of the domain are y ≥ 0 and 4 − x2 − y2 ≥ 0, i.e. x2 + y2 ≤ 4 = 22, so the
maximal domain D is the closed half-disc on Figure 5.1.

Figure 5.1: The maximal domain of f5 is a closed half-disc.

Its boundary ∂D is composed of the line segment [−2, 2] on the x-axis, where y = 0, and the
half-circle x2 + y2 = 22 = 4, y ≥ 0, in the upper half-plane, i.e. y = +

√
4− x2. The restriction of

f5 to ∂D is given by







F5,1(x) = f5(x, 0) =
√
4− x2, for x ∈ [−2, 2],

F5,2(x) = f5
�

x,
√
4− x2

�

for x ∈ [−2, 2].

It is a coincidence that F5,1 and F5,2 look the same. The reader should note the construction
above, because such restrictions to the boundary will be very important in the following chapters,
when we shall find the maximum and minimum of a function.
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6) A commonly used restriction is the restriction of a function to a line. We may in R2 use the
following parametric description,

ϕ(t) := (x0 + αt, y0 + βt) , t ∈ R,

where (α, β) �= (0, 0). If α = 0 (and β �= 0), we get the vertical line (parametric description)

ϕ(y) = (x0, βy) , y ∈ R,

where we clearly cannot use x as a parameter. If α �= 0, we may for convenience choose α = 1, so
by some reformulation we get

ϕ(x) = (x, y0 + βx) , x ∈ R.

The parametric description i t above is the safest to apply. It is also used in MAPLE. If we use
the other possibilities, there is an unexplainable tendency of forgetting the possibility of a vertical
line.
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7) Consider in R2 the function

f7(x, y) =
x− y

x
.

Its maximal domain in mathematical sense is given by x �= 0, i.e. the maximal domain consists of
all points in R2, except for the points on the y-axis.

Figure 5.2: The thermodynamical domain of the function f7. This is clearly not equal to the maximal
domain of f7 in the mathematical sense.

We may interpret f7(x, y) in Thermodynamics as the theoretical efficiency of a given engine, which
interacts with two heat reservoirs, a cold one of temperature y, and a warmer one of temperature
x. Then we must require of thermodynamical reasons that

x > 0, y > 0, and x ≥ y,

because temperatures measured in Kelvin are always positive. This means that the thermodynam-
ical domain is the restriction given in Figure 5.2.

5.3 Vector functions

Consider the map f : D → Rm, D ⊆ Rn, where m > 1. Then we call f a vector function. It is written
in the following way,

f = (f1, . . . , fm) , f(x) = (f1(x), . . . , fm(x)) .

The functions f1, . . . , fm are called the coordinate functions. Using the ordinary orthonormal basis in
Rm and the inner (dot) product, the projections of f(x) onto the lines defined by the basis vectors are
given by

f1(x) = e1 · f(x), · · · , fm(x) = em · f(x).

The maximal domain of a vector function f = (f1, . . . , fm) is defined as the intersection of all the
maximal domains of its coordinate functions f1, . . . , fm.

157

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume-II 
Continuous Functions in Several Variables

158 

Continuous maps and functions in several variables

If n = m > 1, i.e. domain and range are of the same dimension > 1, then the vector function
f : D → Rm is called a vector field.

If n = 1, and all coordinate functions are differentiable in the variable t ∈ D ⊆ R, then we define

df

dt
:=

(

df1
dt

, . . . ,
dfm
dt

)

.

Similarly, if they are all integrable for t ∈ [a, b],

∫ b

a

f(t) dt =

(

∫ b

a

f1(t) dt, . . . ,

∫ b

a

fm(t) dt

)

.

Figure 5.3: The graph of a function f defined in the interval I = [a, b].

5.4 Visualization of functions

Nothing can be more instructive than an illustrative figure. In the case of describing a map we e.g.
sketch its graph.

Let us first consider an ordinary function in one variable

f : I → R, where I ⊆ R.

Then its graph is defined as the set
{

(x, y) ∈ R2 | y = f(x), x ∈ I
}

⊂ R2.

In the given case, the graph is a curve in the plane R2, cf. Figure 5.3.

A function f : D → R in several variables has similarly given a graph. If e.g. D ⊆ R2, and f : D → R,
then the graph of f is given by

{

(x, y, z) ∈ R3 | z = f(x, y), (x, y) ∈ D
}

.
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Figure 5.4: The graph of a function f defined in the interval I = [a, b].

In this case the graph becomes a surface in R3, cf. Figure 5.4
However, it is often difficult – even in MAPLE – to sketch the graph of a function in two variables, so
instead one may introduce level curves of f . These are defined by fixing z = α, where the constant α
is a value of the range of f . Cf. Figure 5.5.

Figure 5.5: To the left we depict the level curves of the function z = f(x, y) = 1− x2 − y2 for α = 0,
0.2, 0.4, 0.6 and 0.8. The level curves are not equally spaced. To the right we have for comparison
sketched the graph of z = 1 − x2 − y2. The level curves are in the xy-plane, while the graph lies in
the xyz-space. We note that when the level curves are close to each others, the graph is very steep.

If the domainD is of dimension 3 (or higher), the graph description of the function f : D → R becomes
impossible, because the graph is then at least a curved 3-dimensional space in the 4-dimensional R4.
The author has only met one person, who actually could argue geometrically in E4, namely his late
professor in Geometry back in the 1970s. He told us young people that he could “see” some “vague

159

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume-II 
Continuous Functions in Several Variables

160 

Continuous maps and functions in several variables

shadows” in E4. Not many people have this gift, so we must instead use the idea of level curves. We
define in analogy with the above a level surface in the following way for a function f : D → R, where
D ⊆ R3,

{

(x, y, z) ∈ R3 | f(x, y, z) = α, (x, y, z) ∈ D
}

, α ∈ f(D) fixed.

In general, the level surfaces may be complicated to sketch. However, the idea is not quite impossible
in all cases.

Obviously, vector functions are far more difficult to visualize, unless one restricts oneself to only
considering each coordinate function separately. Another possibility is to sketch the so-called field
lines, which are curves which in each point take the value (a vector) of the vector function as its
tangent.
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5.5 Implicit given functions

We quite often end up – in particular in the applications in Physics – with an equation in some
variables, which clearly are dependent of each other, but where it is not obvious which variable should
be chosen as a function of the others, and where the function expression may be quite complicated. In
order to explain this problem, let us for simplicity consider the case of three variables, which satisfy
a relation like e.g.

(5.1) F (x, y, z) = 0,

where F : D → R, D ⊆ R3, is a function in three variables. If F is continuous, then (5.1) describes a
surface in R3, cf. Section 5.4.

This surface is far from always a graph of a function. If e.g. F (x, y, z) = x2 + y2 + z2 − 1, then (5.1)
describes the unit sphere. When we solve the equation (5.1) with respect to e.g. z, we get two possible
values,

x = ±
√

1− x2 − y2 for x2 + y2 ≤ 1,

defined in the closed unit disc, and the “function” is not unique. But locally we can in the open unit
disc choose one of the two possible signs and obtain a graph of a continuous function, e.g.

(5.2) z = Z(x, y) = +
√

1− x2 − y2, for x2 + y2 < 1,

the graph of which is the open upper half of the unit sphere. (We may of course extend this function
by continuity to the closed unit disc by adding z = Z(x, y) = 0 for x2 + y2 = 1 to the definition, but
this is not the point here.)

The example of the unit sphere above illustrates the primitive and yet efficient way of isolating one of
the variables as a function of the others. We fix a point (x, y) in the projection of the domain D ⊂ R3

onto R2 and then solve with respect to the remaining variable z. If there is just one solution, then we
have found z = Z(x, y) at this particular point (x, y). If there are several possible values of z, then
we must choose one of these. It is usually done, such that

(5.3) z = Z(x, y)

is locally continuous in the neighbourhood of some given point (x0, y0). In this case we say that z is
implicitly given by (5.1), i.e. an expression of the type

F (x, y, z) = 0,

while (5.3), i.e.

z = Z(x, y) in a neighbourhood of (x0, y0)

explicitly expresses z locally as a function in a neighbourhood of the given point (x0, y0). In the
explicit case z = Z(x, y) is just an ordinary function in two variables.

Note in 5.3) the difference between z, which is a variable, and Z, which is a function, here in two
variables. Strictly speaking, the two symbols z and Z must not be confused. They are related, but
not identical. However, it is nevertheless customary to let z alone denote both the variable z and the
function Z in order to avoid too many symbols.
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5.6 Limits and continuity

The definition of a limit of a function in one variable is easy to generalize to limits of functions in
several variables, when the absolute value | · | in R is replaced by the previously introduced norm � · �
in Rn. We recall that � · � is here defined as the Euclidean norm, i.e.

�x� =
√

x2
1 + · · ·+ x2

n for x = (x1, . . . , xn) ∈ Rn.

Let x ∈ Rm be a fixed vector. By the symbol

x → x0

we shall understand that whenever we are given an ε > 0, then we restrict x to the open ball B(x, ε),
where

�x− x0� < ε for all x ∈ B(x, ε).

More generally, given a set A ⊆ Rm, let x0 ∈ A, i.e. the closure of A, where we assume that x0 is not
an isolated point of A. This means that

A ∩ B (x0, r) �= ∅ for all radii r > 0.

Then we say that

x → x0 in A,

if

�x− x0� → 0 and x ∈ A \ {x0} ,

or, more explicitly, if for every given ε > 0, the point x is restricted to the set

(A ∩ B (x0, ε)) \ {x0} , on which �x− x0� < ε.

We assumed above that x0 ∈ A was bounded, so we could apply balls of centre x0 and then shrink
them by letting the radius r → 0+. If A is unbounded, we also have to define, what is meant by
x → ∞ on A, when k ≥ 2. We define

x → ∞ in A, if �x� → +∞ and x ∈ A.

Note the difference in notation between the symbol ∞ for the unspecified infinity and the signed
infinities +∞ and −∞. The latter two are linked to the two direction of the real line R = ]−∞,+∞[.
The unspecified infinity ∞ “lies far away in all possible directions at the same time”. A natural
sequence of “neighbourhoods” of ∞ is given by e.g. Rm \ B[0, n], n ∈ N, where we let n → +∞, or
similarly. When n increases, then clearly Rm \ B[0, n] decreases, and points in Rm \ B[0, n] satisfy
�x� > n.

Once these concepts have been specified we can build them together and e.g. define

lim
x→x0,x∈A

f(x) = a, also written f(x) → a for x → x0 in A.
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This means that for every ε > 0 there exists a δ > 0, such that

�f(x)− a� < ε, whenever �x− x0� < δ and x ∈ A.

Similarly, for an unbounded set A,

lim
x→∞,x∈A

f(x) = a, also written f(x) → a for x → ∞ in A,

means that for every ε > 0 there is an R > 0, such that

�f(x)− a� < ε, whenever �x� > R and x ∈ A.

The rules of omputation known from the 1-dimensional case, i.e. sum, difference, and ifm = 1, product
and quotient (provided that the denominator is always �= 0) are easily extended to limits in several
variables.

We also obtain some new rules of computation like e.g.: If (for images in the same Rm)

lim
x→x0,x∈A

f(x) = a ∈ Rm and lim
x→x0,x∈A

g(x) = b ∈ Rm,

then

lim
x→x0,x∈A

{f(x) · g(x)} = a · b,

where “·” is the inner (or dot) product..

When we restrict ourselves to R3, i.e. choose m = 3, we get a similar result for the vector (or cross)
product.

Another important result is that

lim
x→x0,x∈A

f(x) = a = (a1, . . . , am) ,

if and only if for all coordinate functions,

lim
x→x0,x∈A

f1(x) = a1, · · · , lim
x→x0,x∈A

fm(x) = am.

We shall briefly sketch some methods, which may show us, if a function f(x) has a limit for x → x0,
or if this is not the case. We shall illustrate the methods in RR2, where we for simplicity choose
x0 = 0.

1) A direct proof of convergence for x → 0 by comparing the magnitudes of the numerator and the
denominator. As an illustrative example we consider the function

f1(x, y) =
xy2

x2 + y2
for (x, y) �= (0, 0).

The numerator is a homogeneous monomial in (x, y) of degree 1+ 2 = 3, while the denominator is
a homogeneous polynomial in (x, y) of degree 2. Thus, if ̺ denotes the radius in polar coordinates,
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then we have roughly ̺3 in the numerator and ̺2 in the denominator, so f1(x, y) ∼ ̺, which tends
towards 0 for ̺ → 0+.

More precisely, in polar coordinates,

x = ̺ cosϕ and y = ̺ sinϕ,

so

f1(x, y) =
xy2

x2 + y2
=

̺ cosϕ · ̺2 sin2 ϕ

̺2
= ̺ cosϕ sin2 ϕ for ̺ > 0 and ϕ ∈ R.

To prove that f1(x, y) → 0 for (x, y) → (0, 0), i.e. for ̺ → 0+, we simply use the definition and
estimate,

|f1(x, y)− 0| =
∣

∣̺ cosϕ sin2 ϕ− 0
∣

∣ ≤ ̺ → 0 for ̺ → 0+,

from which we conclude that f1(x, y) → 0 for (x, y) → (0, 0).
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2) A proof of divergence for x → 0 by comparing the magnitudes of the numerator and the denomi-
nator. If we change f1 above to

f2(x, y) =
xy2

x4 + y4
for (x, y) �= (0, 0),

then the numerator is a monomial of degree 3, and the denominator is a homogeneous polynomial
of degree 4. In this case we get f2(x, y) ∼ 1/̺, so we would expect divergence for ̺ → 0+. To
prove this we again apply polar coordinates, so

f2(x, y) =
xy2

x4 + y4
=

̺3 cosϕ sin2 ϕ

̺4
(

cos4 ϕ+ sin4 ϕ
) =

1

̺
· cosϕ sin2 ϕ

cos4 ϕ+ sin4 ϕ
.

If ϕ = nπ/2, n ∈ Z, i.e. if (x, y) lies on either the x-axis or the y-axis, then clearly f2(x, y) = 0,
and in the limit ̺ → 0+ we also get 0. If instead ϕ �= nπ/2, n ∈ N, is kept fixed, then clearly
|f2(x, y)| → +∞ for ̺ → 0+, so f(x, y) is divergent for (x, y) → (0, 0). The argument above shows
also that f2(x, y) does not diverge towards ∞ either.

3) Proof of divergence by restricting ourselves to straight lines. Consider again

f2(x, y) =
xy2

x4 + y4
for (x, y) �= (0, 0),

above. We have seen already that f(0, y) = f(x, 0) = 0, so along the axes we get the limit 0 at
(0, 0). A straight line through (0, 0) is either given by the vertical y-axis, or it is described by the
equation y = αx for some constant α ∈ R. Then by insertion for (x, y) = (x, αy) on this line,

f2(x, αx) =
x3α2

x4 (1 + α4)
=

1

x
· α2

1 + α4
.

Choose any α �= 0, and the α-factor is a constant �= 0, while |1/x| → +∞ for x → 0, and f2(x, y)
diverges for (x, y) → (0, 0).

Another illustrative example is the following, where both the numerator and the denominator are
homogeneous polynomials of the same degree 2. We consider the function

f3(x, y) =
xy

x2 + y2
for (x, y) �= (0, 0).

Clearly, f3(x, 0) = f3(0, y) = 0, so if the function converges, then the limit must necessarily be 0.
This is not the case, for if we restrict ourselves to the straight line y = αx and exclude (0, 0), then
we get

f3(x, αx) =
α

1 + α2
,

which for α �= 0 is a constant �= 0 along this straight line, so this must also be the limit along
this line. But then we have found a different candidate of the limit, contradicting that the limit is
unique. Hence, f3(x, y) is divergent for (x, y) → (0, 0).

A variant is of course to use polar coordinates, in which case

f3(x, y) = cosϕ sinϕ =
1

2
sin 2ϕ,

independent of ̺, so along a straight half-line of angle ϕ the value of f3(x, y) is given by (sin 2ϕ)/2,
which is a nonconstant function in the angle ϕ, and we conclude again that f3(x, y) is divergent
for (x, y) → (0, 0).
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4) Analysis of level curves. In this case consider the function

f4(x, y) =
x

x2 + y2
for (x, y) �= (0, 0).

Let us first try the already known methods. The numerator is homogeneous of degree 1, and the
denominator is homogeneous of degree 2, so according to 2) we would expect divergence. Using
polar coordinates we get

f4(x, y) =
x

x2 + y2
=

̺ cosϕ

̺2
=

1

̺
cosϕ.

Fix ϕ �= nπ + π/2, n ∈ Z, so cosϕ is a constant �= 0. Then clearly

|f4(x, y)| =
1

̺
| cosϕ| → +∞ for ̺ → 0+,

so f4(x, y) is divergent for (x, y) → (0, 0), and the only possible limit is the unspecified ∞. But
since f4(0, y) = 0 for all y �= 0, this is not tending towards∞ for y → 0, so f4(x, y) is just divergent.

Figure 5.6: Some level curves of f4(x, y).

Alternatively we may analyze the level curves f4(x, y) = c. If c = 0, then x = 0, so the level curves
of f4 corresponding to the value 0 are the positive and the negative y-axes.

If instead c �= 0, and (x, y) �= (0, 0), then

f4(x, y) =
x

x2 + y2
= c, if and only if x2 + y2 =

1

c
x,

which we rewrite as
(

x− 1

2c

)2

+ y2 =
1

4c2
.

The level curve corresponding to the value c �= 0 is therefore, with the exception of the point (0, 0),

the circle of centre

(

1

2c
, 0

)

and radius
1

2|c| > 0. Cf. Figure 5.6. When we approach (0, 0) along
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the level curve (a circle or the y-axis) of constant c, we get the limit c at (0, 0). Since c ∈ R is
arbitrary, no unique limit exists, and f4(x, y) diverges for (x, y) → (0, 0).

5) The possibility of restriction to other curves than straight lines. The method above in 3), where
we approach the point x0 along straight lines, is only applicable to prove that we have divergence.
We shall below see that even if the limit is the same on the restriction of all straight lines, this
does not imply that the limit exists! So the same limit on all straight lines is only a necessary and
not a sufficient condition for that the limit exists.

Consider the function

f5(x, y) =
x2y

x4 + y2
for (x, y) �= (0, 0).

If x = 0, i.e. we restrict ourselves to the y-axis, then

f5(0, y) = 0 → 0 for y → 0.

Then we restrict ourselves to the straight line of equation y = αx, α ∈ R. Then

f5(x, αx) =
x2 · αx

x4 + α2x2
=

αx

x2 + α2
.

If α = 0, then clearly

f5(x, 0) = 0 → 0 for x → 0.

If α �= 0, then

|f5(x, αx) − 0| =
∣

∣

∣

∣

αx

x2 + α2

∣

∣

∣

∣

≤
∣

∣

∣

αx

α2

∣

∣

∣ =
1

|α| · |x| → 0 for x → 0.

Thus we have proved that the limit of f5(x, y) exists on the restriction to every straight line through
(0, 0), when (x, y) → (0, 0), and the common value of these limits is 0, and the necessary condition
is fulfilled.

It is not sufficient! To prove this we take a closer look on the denominator x4 + y2, which is
not a homogeneous polynomial in (x, y). The idea is to choose curves, on which x4 and y2 are
comparable through the limit process. If we choose the curves y = αx2, α ∈ R \ {0}, i.e. a family
of parabolas, then x4 + y2 = x4

{

1 + α2
}

, which is x4 times a constant depending on α. Then we
get by insertion for fixed α that

f5
(

x, αx2
)

=
x2 · αx2

x4 + α2x4
=

α

1 + α2
→ α

1 + α2
for x → 0.

Hence, the limits exist for (x, y) → (0, 0) along these parabolas, but the values are different for
different α, so we get lot of different candidates for the limit. This is not possible, because the
limit – if it exists – is unique. Hence, the limit of f5(x, y) does not exist for (x, y) → (0.0).

We emphasize that the methods described in 2)–5) can only be applied to prove divergence. To prove
convergence we either use a direct proof using some estimate like

|f(x)− a| ≤ g(x),

where we know – or prove – that g(x) → 0 for x → x0, or we prove that f(x) is a (local) contraction.
This means that there exists a constant α ∈ [0, 1[, such that

|f(x)− f(y)| < α�x− y� for x, y lying close to each other.
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5.7 Continuous functions

As in the one-dimensional case we use the concept of a limit, introduced in Section 5.6 to define
continuity of a function in several variables.

Definition 5.1 Consider a (vector) function f : A → Rm, where A ⊆ Rn, and let x0 ∈ A be a given
point. We say that f is continuous at x0, if

f(x) → f (x0) for x → x0 in A.

We say that f is continuous in a subset B ⊆ A, if f is continuous at all points of B.

The traditional way of stating that f is continuous at x0 ∈ A is the following:

To every given ε > 0 we can find δ > 0, such that

�f(x) − f (x0)� < ε, whenever x ∈ A and �x− x0� < δ.

The usual rules of computation, known from real functions in one real variable, are easily carried over
to our present case:

Given two (vector) functions f , g : A → Rm, and assume that they are both continuous at a given
point x0 ∈ A. Then the sum and difference and inner (dot) product of f and g are all continuous, i.e.

f + g, f − g and f · g are all continuous.
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If m = 3, then the vector (cross) product

f × g is continuous,
�

in R3
�

.

If m = 1, then the scalar product (note, no notation of the scalar product)

fg is continuous, (in R),

and also the scalar quotient

f

g
is continuous at x0, provided that g(x) �= 0 in a neighbourhood of x0.

Assume that f : A → Rm, where A ⊆ Rn, and g : B → Rn, B ⊆ Rk, are continuous in their respective
domains. If furthermore, g(B) ⊆ A, then the compositioncomposition

f ◦ g : B → Rm

exists and is continuous in B ⊆ Rk.It is not hard to prove that a vector function f is continuous, if

and only if all its coordinate functions are continuous.

We defined in Section 5.6 the limit of a function f(x) for x → x0 in A, where we only required
that x0 ∈ A is not an isolated point of the closure A of A. Assume that x0 ∈ A \ A and that
limx→x0,x∈A f(x) = a exists. Then we can extend the domain of f to also including x0, where the
extension is defined by

f̃(x) =







f(x) for x ∈ A,

limx→x0,x∈A f(x) = a for x = x0.

It follows immediately from this construction that if the extension is defined in x0 ∈ A \A, then the
extension is automatically continuous at this point x0.

We have already met an example of this type in Section 5.6, where we proved that

f1(x, y) =
xy2

x2 + y2
for (x, y) �= (0, 0),

has the limit

lim
(x,y)→(0,0)

f1(x, y) = 0.

Hence, the continuous extension of f1, defined in all of R2, is given by

f̃1(x, y) =















x2y

x2 + y2
for (x, y) �= (0, 0),

0 for (x, y) = (0, 0).

Sometimes one may be able to factorize the function under consideration and then cancel the common
factor, which becomes zero in the limit in both the numerator and the denominator. One of the
simplest examples is

f6(x, y) =
x2 − y2

x− y
for y �= x.
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In fact,

f6(x, y) =
x2 − y2

x− y
=

(x− y)(x+ y)

x− y
= x+ y for y �= x.

Only the factor x − y in both the numerator and the denominator is 0 at the exception set, and we
cancel them by division in the set where y �= x. Since the quotient x + y also makes sense for y = x
(formally we take the limit to this set), the continuous extension of f6 is defined by

f̃6(x, y) = x+ y for (x, y) ∈ R2.

A more sophisticated example using the same idea is given by

f7(x, y) =
sin(x+ y)

x+ y
for y �= −x.

A common trick in mathematics is to give an “unpleasant expression” a new name. In this case we
put t := x+ y, and the restriction is then t �= 0, in which case

f7(x, y) =
sin t

t
, t = x+ y �= 0.

It is well-known from the theory of real functions in one real variable that

lim
t→0

sin t

t
= 1,

which means that f7(x, y) has the continuous extension to all of R2,

f̃7(x, y) =















sin(x+ y)

x+ y
for x+ y �= 0,

1 for x+ y = 0.

5.8 Continuous curves

5.8.1 Parametric description

Intuitively, a continuous curve in Rm is a path, along which e.g. a particle moves from an initial point
to a final point, i.e. we have a sense of which direction the particle moves along the path. We coin
these ideas in the following definition.

Definition 5.2 A continuous curve in Rm is a continuous map r : I → Rm of a real interval I ⊆ R.
If I has the left end point a (including the possibility of −∞) and the right end point b (including the
possibility of +∞), we call r(a) the initial point of the curve, and r(b) the final point of the curve.

The curve inherits the orientation of the interval I, so roughly speaking, “we are just taking the
interval I, and then bend and stretch it” as described by the map r : I → Rm.

Given a continuous curve r : I → Rm. Its image is given by

K = {x ∈ Rm | x = r(t), t ∈ I} = {r(t) | t ∈ I}.
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This is often a better way to describe the curve than the formal definition above. Note, however,
that it is always safe to use Definition 5.2 in the applications, and this is also the most common
construction in MAPLE, where we e.g. in R2 write

[r1(t), r2(t), t = a..b] ,

where (x, y) = r(t), t ∈ [a, b].

We call x = r(t), t ∈ I, a parametric description of the curve K, and t is the parameter, and I the
parameter interval.

Given a continuous curve r : I → Rm. Assume that n different parameters t1, . . . , tn, where n ≥ 2,
all are mapped into the same point on the curve,

r (t1) = r (t2) = · · · = r (tn) = u ∈ Rm.

Then we call the common point u ∈ Rm a multiple point (of the curve). If n = 2, we may call it a
double point instead.

Remark 5.1 Even if Definition 5.2 looks very straightforward, it is not. It was a shock for the
mathematicians, when the Italian mathematician appr. 1900 constructed a continuous curve, which
passed through all points in e.g. the unit square. And even worse a couple of years later, when Osgood
modified Peano’s construction obtaining a continuous curve without multiple points, which Peano’s
curve had, and of positive area! In particular, the unit one-dimensional interval [0, 1], clearly of no
area, was mapped continuously and bijectively onto a set of positive area. However, although such
space filling curves are of interest in their own right, we shall not consider them further in this series
of books. We shall be more interested in differential curves, for which such phenomena do not occur.
♦
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Sometimes we may want to consider continuous curves, which are composed of axiparallel line seg-
ments. We therefore give such curves a name, namely step lines, because we step from one coordinate
to the next one, when we run through the curve, only changing one coordinate at a time, which
therefore locally can be used as a parameter. Cf. Figure 5.7.

Figure 5.7: An example of a step line.

We list the most commonly used parametric descriptions of curves.

1) A plane curve of the equation

y = Y (x), x ∈ I,

is already given by its parametric description, when we use t = x ∈ I as its parameter. Its graph
is

K = {(x, Y (x)) | x ∈ I}.

2) A straight line (segment) in Rm is given by the parametric description

x = a+ vt, t ∈ I,

where a and v ∈ Rm are constant vectors, and v �= 0, and I ⊆ R is some given interval.

If I = R, we get an oriented line in Rm. If I = [a,+∞[, ]a,+∞[, ]−∞, b[ or ]−∞, b], we get an
oriented half line in Rm. Finally, if I is bounded, we get an oriented line segment. The orientation
is inherited from the usual orientation of I ⊆ R with respect to the order relation ≤. The vector
v �= 0 is called the direction vector of the line. This is quite often chosen as a unit vector,

3) A circle of radius a > 0 and centre (0, 0) ∈ R2 of equation

x2 + y2 = a2,

is considered as a curve with the parametric description (in polar coordinates)

x = a cosϕ, y = a sinϕ, ϕ ∈ [0, 2π[,
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or in MAPLE-notation,

[a · cos(t), b · sin(t), t = 0..2π].

The circle inherits its orientation from the interval [0, 2π[. In the present case it is also positively
oriented in the plane R2. This means that the curve moves counterclockwise around the centre
(0, 0).

Figure 5.8: A circle of radius a as a curve of positive orientation in the plane R2.

If we want a parameter description in the negative sense of the plane, just replace t by −t, so we
get instead

x = a cosϕ, y = −a sinϕ, ϕ ∈ [0, 2π[.

Tbe parameter descriptions above describe the circle run through just once (and without double
points). Other choices of I are possible, like e.g. ]− π, π], where the initial point is (−1, 0) on the
negative x-axis. If I = R, then the circle is run through infinitely many times, just to mention a
few of the many possibilities.

The parameter ϕ ∈ [0, 2π[ can be interpreted as the angle of the radius vector from (0, 0) to the
point (x, y) �= (0, 0) under consideration.

4) A modification of the description of the circle above gives us the parametric description of an
ellipse of the equation

(x

a

)2

+
(y

b

)2

= 1.

In this case we just multiply the y-coordinate of the circle by the affinity factor b/a, so the basic
parametric description of the ellipse becomes

x = a cosϕ, y = b sinϕ, ϕ ∈ [0, 2π[,

where a, b > 0 are the two half axes of the ellipse. Cf. Figure 5.9.
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Figure 5.9: An ellipse of half axes a and b in the plane R2 is obtained from a circle by an application
of an affinity.

5.8.2 Change of parameter of a curve

Given a continuous curve of parametric description

x = r(t), t ∈ I.

As mentioned earlier, we may interpret the curve as the path of a particle. If we change the speed of
this particle, we get another curve,

x = r1(u), u ∈ J.

The path itself is of course the same in the two cases, but the parameters do not match, so that is
why we say that we have a different curve.

The change from r to r1 is given by a uniquely determined function

Φ : I → J, u = Φ(t),

such that

r1(u) = r(t) = r(Φ(u)) = (r ◦ Φ)(u).

In fact, every point of I must by the monotony of the map correspond to precisely one point of J ,
and vice versa, and this gives us a bijective function Φ : I → J .

We call Φ : I → J a change of parameter.
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5.9 Connectedness

Using continuous curves we can introduce a new important topological concept, which will be used in
the sequel. Given a set A, it is important that we can move from one point x ∈ A to another point
y ∈ A along a continuous curve without leaving A during this motion. We coin this property in the
following definition.

Definition 5.3 A set A ⊆ Rm is called connected, if any two points x, y ∈ A can be connected with
a continuous curve lying in A, i.e. we can find a continuous function r : [a, b] → Rm, such that

x = r(a), y = r(b), {r(t) | t ∈ [a, b]} ⊆ A.

In particular starshaped sets A are connected, because there exists a point x0 ∈ A, which can be
reached from any other point x ∈ A by a straight line segment in A. So when we construct a path
from x ∈ A to y ∈ A, we just take the detour via x0.

In particular, a convex set A is connected, because the straight line segment between two points x,
y ∈ A also lies totally in A.

One can prove that if a subset I ⊆ R of the real line is connected, then it is an interval. This may seem
obvious, and we have already tacitly used this property, when we described the process of changing
parameters.

It will also be convenient to consider any set A = {x0} consisting of just one point as connected.
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If A is an open and connected set, we call it an open domain. If we add some of its boundary points
to A, we just call the result a domain. And if we add all of its boundary points, then we call it a
closed domain.

We mention without proof the following theorem, which will be useful in the next volumes of this
series. In particular in connection with line integrals.

Theorem 5.1 Assume that A is an open domain. Then any two points x, y ∈ A from A can be
connected by a step line, i.e. a continuous curve consisting og only axiparallel line segments.

Consider the two connected sets of Figure 5.10, i.e. a disc and an annulus, They clearly do not have the
same topological shape, because the annulus contains a hole, which the disc does not. We therefore
introduce the following:

Let A be a connected set. Let x, y ∈ A be two points, connected with two continuous curves entirely
in A,

r0 : [0, 1] → A, r1 : [0, 1] → A, where r0(0) = r1(0) = x and r0(1) = r1(1) = y.

Assume that we can change r0 continuously, so that we in the end get to r1, i.e. we can deform the
path of r0 continuously until we reach the path of r1.

More precisely, we can find a family of maps

r(t, α) : [0, 1]× [0, 1] → Rm,

such that r(t, α) is continuous in the variables (t, α) ∈ [0, 1]× [0, 1] satisfying the conditions

r(t, 0) = r0(t), r(t, 1) = r1(t), for all t ∈ [0, 1].

We say that A is simply connected, if all curves r(·, α), α ∈ [0, 1] lie entirely in A. In some sense the
set A does not have “holes”.

In R2 it is easy to understand, what a hole is. However, the reader must be careful in higher dimensions.
If e.g. we just remove the centre of a solid ball in R3, then the remaining set is still simply connected,
even if one would believe that the removed point was a “hole”. Cf. Figure 5.11. However, if we remove
all points of the z-axis, or even a tube as on Figure 5.11, then the remaining set is no longer simply
connected. Consider e.g. two circles in this set, one circling around the z-axis, while the other one
does not. Then one cannot change one of them continuously to the other one without cutting the
z-axis, so we get outside A by this continuous transformation.
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Figure 5.10: The disc to the left is simply connected, while the annulus to the right is not, though it
of course is connected.

Figure 5.11: A simply connected and a not simply connected set in R3.

5.10 Continuous surfaces in R3

Surfaces are like curves also important in the applications. We shall here for convenience restrict
ourselves to surfaces in the 3-dimensional space R3. The primitive idea is described in the following
way: Take a plane plate and hammer it into a wanted shape. The hammering is then described by
some continuous function.

5.10.1 Parametric description and continuity

We shall of course generalize the definition of a (1-dimensional) curve to a 2-dimensional surface. So
instead of a 1-dimensional parameter interval I ⊆ R one is tempted to replace it by a 2-dimensional
interval like I × J ⊆ R2, where I, J ⊆ R are intervals. This actually is sufficient in many cases.
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However, a closer look shows that we may allow more general 2-dimensional parameter sets E ⊆ R2.
In fact, it suffices that E is connected, i.e. a domain in R2. This is in agreement with our primitive
idea in the introduction above, namely that E is some connected 2-dimensional plate, which should
be bent and stretched or compressed to give the wanted surface in R3.

Glancing at the previous definition of a curve we see that a surface should have the structure

F =
{

x ∈ R3 | x = r(u, v), (u, v) ∈ E
}

, where E ⊆ R2.

Here, r : E → R3 is a continuous vector function in two variables.

The above illustrates the general idea of a parametric description of a surface, which we illustrate on
Figure 5.12.

Figure 5.12: The parametric description r : E → R3 of a surface F .

We call x = r(u, v), (u, v) ∈ E a parametric description of the surface F . Let (u, v) ∈ E be a point in
the parameter domain. The vertical line segment in E through (u, v) is 1-dimensional. It is therefore
mapped into a continuous curve on the surface F . This curve is called the parameter curve on F
through (u, v). Similarly, when we consider a horizontal line segment through (u, v) ∈ E.

The sloppy definition above of a surface includes some pathological cases, which we should avoid in
practice. If e.g. r(u, v) = R(u) is independent of v, then the “surface” generates to a curve, which
one would not consider as a surface. Furthermore, since already curves can be space filling, the same
is true for surfaces even for continuous parametric descriptions. Since we do not have the concept of
a “null set” at hand, it is here not easy to give a precise definition of a surface, so we allow ourselves
only to sketch the main points.

1) The parametric map r : E → R3 should not only be continuous. It should also be differentiable
“almost everywhere”. (Differentiable functions are the subject of Volume III.) This only means that
we allow some – though not too many – exceptional points, in which we do not have differentiability.

2) The parametric curves should at “almost every point r(u, v) ∈ F have two parameter curves, which
have linearly independent tangent vectors with respect to the parameters (u, v) ∈ E.
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The simplest surfaces in R3 are probably the following:

1) A plane in R3. Given two linearly independent vectors b, c in R3, and let a just be a point in R3.
Then

x = r(u, v) = a+ bu+ cv, (u, v) ∈ R2,

is a parametric description of a plane through the point a ∈ R3.

2) A graph of a function. Assume that the surface F is the graph of a function in two variables,

z = Z(x, y), for (x, y) ∈ E.

Then this is clearly a parametric description. In fact, replace (x, y) with (u, v) ∈ E.

3) A sphere of radius a > 0 and centre at 0. I this case the most commonly used parametric
description is

x = (x, y, z) = r(θ, ϕ) = (a sin θ cosϕ, a sin θ sinϕ, a cos θ), θ ∈ [0, π], ϕ ∈ [0, 2π].

The construction is the following: Write the rectangular coordinates (x, y, z) as functions in the
spherical coordinates (r, θ, ϕ) introduced in Chapter 1 (volume I), and then keep r = a > 0 fixed.
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4) An ellipsoidal surface. In rectangular coordinates an ellipsoidal surface is given in its canonical
form by

(x

a

)2

+
(y

b

)2

+
(z

c

)2

= 1.

When we modify the parametric description of the sphere above we get the following parametric
description of the surface

(x, y, z) = (a sin θ cosϕ, b sin θ sinϕ, c cos θ), θ ∈ [0, π], ϕ ∈ [0, 2π].

In the next two sections we introduce other commonly occurring surfaces, which are also easily de-
scribed.

5.10.2 Cylindric surfaces

A cylindric surface is the union of all straight lines, the generators, in a space, which are parallel and
which all intersect a given curve. We shall here for convenience confine ourselves to the case, where
the given curve lies in a plane, and the generators are all perpendicular to this plane, supplied with
the extra assumption that the cylindric surface may consist of only line segments of the generators.

If the given curve L lies in the xy-plane, the cylindric surface above L is illustrated by taking a sheet
of paper and fold it along the curve L.

Figure 5.13: The given plane curve L in the xy-plane and the corresponding perpendicular cylindric
surface C in the xyz-space.

The parametric description of a cylindric surface is constructed in the following way:

First assume that in the xy-plane the given curve L has been given a parametric description of the
form

L =
{

(x, y) ∈ R2 | x = X(t), , y = Y (t), t ∈ I
}

.
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Then the cylindric surface C is described by adding J(t) as a z-interval above the point of the curve
(X(t), Y (t), 0) of the same parameter t ∈ I, hence

C =
{

(x, y, z) ∈ R3 | x = X(t), y = Y (t), z ∈ J(t), t ∈ I
}

.

5.10.3 Surfaces of revolution

A surface of revolution is constructed in the following way:

Given an axis of revolution – usually chosen as the z-axis – and a so-called meridian curve M in the
meridian half-plane {(̺, z) | ̺ ≥ 0, z ∈ R}.
Assume that the meridian curve has the following parametric description,

M = {(̺, z) | ̺ = P (t) ≥ 0, z = Z(t), t ∈ I}.
When we rotate M in R3 around the z-axis, the surface of revolution O is described in semi-polar, or
cylindric, coordinates (cf. Chapter 1 in Volume I) by

O : ̺ = P (t) ≥ 0 and z = Z(t), for t ∈ I and ϕ ∈ [0, 2π].

If we use rectangular coordinates, we of course get

O : x = P (t) cosϕ, y = P (t) sinϕ, z = Z(t), for t ∈ I and ϕ ∈ [0, 2π[,

cf. Figure 5.14.

Figure 5.14: The meridian curve M in the meridian half-plane, and the corresponding surface of
revolution O in the space R3.

If in particular M is a half-circle of radius a > 0 and centre at 0, then the surface of revolution
becomes a sphere of centre 0 and radius a. A parametric description of M is

M : ̺ = a sin θ, z = a cos θ, θ ∈ [0, π],

so the parametric description of the sphere is the well-known description in spherical coordinates with
r = a fixed,

O : x = a sin θ cosϕ, y = a sin θ sinϕ, z = a cos θ, θ ∈ [0, π], ϕ ∈ [0, 2π[,
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Figure 5.15: The meridian curve M is a half-circle, and the surface of revolution O is a sphere in the
xyz-space.

so this is a way to derive the spherical coordinates from the parametric descripton of M. Note that
θ here is measured positively from the vertical z-axis towards the horizontal ̺-axis, i.e. apparently in
the negative orientation of the meridian half-plane. Cf. also Figure 5.15.

If instead the meridian curve is a circle lying in the open meridian half-plan, so it does not touch the
axis of rotation, then its parametric description may be given by

̺ = a+ b cos t, z = b sin t, for t ∈ [0, 2π[, where 0 < b < a,

cf. Figure 5.16.

The surface of revolution is a torus of parametric description in semi-polar or cylindric, coordinates

O; ̺ = a+ b cos t, z = b sin t, for t ∈ [0, 2π[ and ϕ ∈ [0, 2π[.

Clearly, (̺ − a)2 + z2 = b2, which is an equation of the torus surface in semi-polar coordinates. The
equation in rectangular coordinates, is

(

√

x2 + y2 − a
)2

+ z2 = b2, where 0 < b < a,

because x = ̺ cosϕ and y = ̺ sinϕ, so ̺ =
√

x2 + y2.

5.10.4 Boundary curves, closed surfaces and orientation of surfaces

When we consider a curve, then it is obvious that its initial point and final point – if they exist – are
the points, where the curve stops in some sense. We note that a curve does not necessarily have initial
and final points. One example is the unit circle, where we can continue moving along it without ever
reaching one of its end points, because they do not exist.

Similarly, a surface F may have a boundary curve δF , where the surface F in some sense stops. Also
here we may expect cases, where such a boundary curve does not exist. We shall return to this later.
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Figure 5.16: The meridian curve M is a circle in the open meridian half-plane. The surface of
revolution O is a torus in the xyz-space. A figure of the torus is given in MAPLE. However, for some
obscure reason it has not been possible for the author to put it here.

We exclude here all space filling surfaces, so every surface F under consideration will not have interior
points in R3, thus F is equal to its topological boundary in R3, i.e. F = ∂F . The boundary curves
of surfaces we are considering here are intrinsic boundary curves with respect to the surface F itself
and they have nothing to do with the boundaries of sets in R3. It is for this reason that we use the
notation ∂F for such boundary curves.
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We get a hint of what is the meaning of δF , when we consider the parametric domain E ⊆ R2 of
F ⊂ R3. Clearly, E has a usual topological boundary ∂E in R2, and when we use the picture that E is
hammered into the shape of F in R3 by the application of the map r : E → R3, we would expect that
δF = r(∂E). This is very often the case, though not always, which we shall show in the following.

Consider the unit sphere in spherical coordinates. Then the parameter domain is

E = [0, π]× [0, 2π[,

which has the topological boundary

∂E = {0} × [0, 2π] ∪ {π} × [0, 2π] ∪ [0, π]× {0} ∪ [0, π]× {2π},
while the sphere F does not have a boundary curve, δF = ∅. By the “hammering” with the function
r we identify the two horizontal sides, [0, π]× {0} and [0, π]× {2π}, leaving us with a cylinder. And
then all points of {0}× [0, 2π] are identified, i.e. hammered and glued together to get the North Pole,
and all points of {π} × [0, 2π] are identified i.e. hammered and glued together to get the South Pole.
So all points of a possible boundary curve simply disappear by this proces.

Figure 5.17: The boundary curve δF = δF1 ∪ δF2 is not connected. Its branches are two circles lying
in parallel planes at different latitudes.

A boundary curve of a surface is not necessarily connected. If we cut the sphere with two parallel
planes and let the surface F be the part of the sphere, which lies between the two planes. Then the
boundary curve consists of two parallel circles at differet latitudes, cf. Figure 5.17.

Each connected component of δF is called a branch of δF , and each branch is a continuous curve in
space.

If a surface F does not have a boundary curve in this sense, δF = ∅, then we call F a closed surface.
We have already seen some closed surfaces; the sphere, the ellipsoidal surface, and the torus, all
considered in the previous Section 5.10.3.

Assume that F is a closed surface. If e.g. F is the sphere, then it is obvious that we can talk of the
inside and the outside of the sphere, so we can talk of a direction out of the ball, which has the sphere
as its boundary. This is the general idea of the new concept orientation.
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Not all surfaces have an inside and an outside, so we must find a means to decide when this is the
case. First note that if the surface is divided into sufficiently small pieces, which overlap each others,
then we locally can talk of two sides of the surface. We paint one of them red, and the other one
blue, and then go to the neighbouring piece of the surface (with an overlap). Paint this neighbouring
piece of the surface according to the colours in their overlap. Proceed in this way, until either all
local pieces of surface have been painted, in which case we can define e.g. blue the inside and red the
outside, and we have obtained an orientation. Or, we come to a piece of the surface, which according
to this procedure should have each both sides painted both red and blue, which is not possible. In
this case we say that the surface cannot be oriented.

The simplest example of a surface, which cannot be oriented, is the so-called Möbius’s strip. Take a
strip of paper and twist it once before gluing the ends of the strip together, cf. Figure 5.18.

Figure 5.18: Möbius’s strip. When the strip of paper is twisted once, we switch the local orientation,
denoted bu the arrows. When we glue the two ends together, we end up with a strip, which globally
has only one surface!

we shall in this series of books on Real Functions in Several Real Variables only consider surfaces,
which can be oriented.

5.11 Main theorems for continuous functions

We shall in this section quote (without proofs) the three main teorems for continuous functions, here
restricted to the spaces Rn. They will be very important in the applications in the sequel.

1st main theorem for continuous functions. Let A ⊆ Rn be a connected set, and let f : A → Rk

be continuous. Then the range, f(A), is also connected.

It should be noted that even if f : A → Rk is continuous and f(A) is connected, we cannot conclude
that the domain A itself is connected. Consider f = sin : A → R, where A ⊆ R. Then f is continuous
and sin(A) = ]− 1, 1[ is connected, while

A :=
⋃

n∈Z

]

−π

2
+ 2nπ,

π

2
+ 2nπ

[

is not connected.
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An important case is when k = 1, in which case f(A) is a connected set in R, i.e. an interval. We
shall later use this observation over and over again.

Let A ⊂ Rn. If A is bounded and closed, we call it compact. Compact sets are very important in
Mathematics, and the next two main theorems are dealing with them.

2nd main theorem for continuous functions. Let A ⊂ Rn be a compact set. If f : A → Rk is
continuous, then its range f(A) is also compact.

Again we consider the special case, when k = 1. If f : A → R is continuous, and A is compact, then
f(A) ⊂ R is also compact. In particular, f(A) contains its upper and lower bounds. We therefore
conclude that there must exist points a, b ∈ A, such that

f(a) ≤ f(x) ≤ f(b) for all x ∈ A.

Clearly f(a) is the minimum, and f(b) is the maximum of f on A, so we can in principle find points

in A, in which these extrema are attained. Unfortunately, the 2nd main theorem does not give any
hint of how to find these points in A. We shall later give some results in this direction.

Finally, we turn to the 3rd main theorem for continuous functions. For some reason this is in general
the most difficult one to understand for the reader. Let us start with the strict definition of continuity
as it was given half a century ago,

(5.4) ∀ ε > 0 ∀x ∈ A∃ δ > 0 ∀y ∈ A : �x− y� < δ ⇒ �f(x)− y� < ε.

Here, ∀ is read “forall”, and ∃ is read “there exists”.

Today one would use a lesser formal language like the following: First define the growth of the function
by

∆f(x,h) := f(x + h)− f(x).

Then continuity at the fixed point x ∈ A means that ∆f(x,x) → 0, when h → 0, which more explicitly
means that to every ε > 0 we can find δ = δ(ε,x) > 0, depending on both ε and x, such that

�h� < δ implies that �∆f(x,h)� < ε.

It is not hard to show that this is the same as the more stringent definition (5.4).

In the applications we often need a stronger property of f than just continuity. It is important for
many proofs that we can choose δ = δ(ε) > 0 above, independently of the point x ∈ A. This means
that δ is chosen after ε > 0, but before x ∈ A. When a function f has this property, we call it
uniformly continous. The same pair (ε, δ) can be used everywhere in A, so the formal mathematical
definition becomes

(5.5) ∀ ε > 0 ∃ δ > 0 ∀x ∈ A∀y ∈ A : �x− y� < δ ⇒ �f(x)− y� < ε.

When we compare (5.4) and (5.5), we see that the difference is, at we in (5.4) write

∀ ε > 0 ∀x ∈ A∃ δ = δ(ε,x) > 0 · · · ,

i.e. the choice of δ depends on both ε and x, while we in (5.5) have interchanged two groups of
quantors, so

∀ ε > 0 ∃ δ = δ(ε) > 0 ∀x ∈ A · · · ,
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i.e. ∀x ∈ A follows after the specification of δ.

This makes a very big difference, and uniform continuity is clearly a stronger concept than just
continuity.

3rd main theorem for continuous functions. Let A ⊂ Rn be compact, and let f → Rk be
continuous. Then f is uniformly continuous.

The latter two main theorems show that the compact sets (i.e. closed and bounded sets) in Rn are
very important. It is for that reason that they have been given a special name.

To show its importance we give a simple and useful consequence of the 3rd main theorem below.
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Theorem 5.2 Given a continuous function f : I× [a, b] → R, where [a, b] is a compact interval, while
I �= ∅ is just an interval. We define a function F : I → R by

F (x) :=

∫ b

a

f(x, t) dt, for x ∈ I.

Then F is continuous on I.

Proof. Choose any fixed x ∈ I◦ (the interior of I), and then a compact interval

J = [x− c, x+ c] ⊂ I◦,

which is possible, because I◦ �= ∅ is open. Then we have

∆ := F (x+ h)− F (x) =

∫ b

a

{f(x+ h, t)− f(x, t)} dt for |h| < c.

The restriction of the continuous function f to the compact set J × [a, b] is according to the 3rd main
theorem uniformly continuous. Hence, to every given ε > 0 there is a δ = δ(ε) > 0 depending only on
ε, such that

|f(x, t)− f(y, u)| < ε

b− a
, if (x, t), (y, u) ∈ J × [a, b] and �(x, t)− (y, u)� < δ.

Note that we only for technical reasons have divided ε by the length b− a of the interval [a, b].

The above is in particular true, if u = t ∈ [a, b] and y = x + h, where |h| < min{c, δ}. When h is
chosen in this way, then we get the estimates

|∆| ≤
∫ b

a

|f(x+ h, t)− f(x, t)| dt ≤
∫ b

a

ε

b− a
dt =

ε

b− a
· (b− a) = ε,

and we have proved that F is continuous at every point in the interior of I. If x ∈ I is an end point,
then just modify the J interval above. However, if the end point x of I does not belong to I, we
cannot conclude anything. However, Theorem 5.2 does not claim anything in this case. �
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6 A useful procedure

6.1 The domain of a function

Problem 6.1 Let the structure of a function f(x, y, . . . ) be given. Find the maximum domain of this
function, based on this structure.

Procedure.

1) Divide the function into subfunctions according to the signs + and −, i.e. write f = f+ + f−,
where f+ ≥ 0 and f− ≤ 0 (and f+ · f− = 0).

2) Find the domain for each of the subfunctions (if possible, sketch a figure).

3) Then the domain of f is the intersection of the domains of subfunctions. (Sketch a figure).

If f(x, y, . . . ) is a vector function, then apply the above separately for each coordinate function. The
domain is the intersection of all the domains of the coordinate functions.

One should in particular be aware of the following rules:

1) Never divide by 0.

Analyze the set of zeros for the denominator, if it exists.

2) In real analysis, never take the square root of a negative number.

Find the set of zeros of the radicand of the square root. Check the sign in the domains which are
bounded by this set of zeros.

3) In real analysis never take the logarithm of a negative number or of 0.

Find the set of zeros of the expression which we are going to take the logarithm of. Check the sign
in the domains which are bounded by this set of zeros.

Remark 6.1 Experience tells that the square root is in particular difficult to handle. A professor
once told me that “if one can handle the square root, then one can handle anything in mathematics!”.
Notice that pocket calculators does not like square roots either. ♦
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7 Examples of continuous functions in several variables

7.1 Maximal domain of a function

Example 7.1 Find and sketch in each of the following cases the domain of the given function.

1) f(x, y) = ln |1− x2 − y2|.

2) f(x, y) =
√

−x2 − y2.

3) f(x, y) = ln(1 − x2 − y2) +
√

(x − 1
2 )(x

2 + y2).

4) f(x, y) = ln[y(x2 + y2 + 2y)].

5) f(x, y) = y
√
2− x2 + Arctan

y

x
.

6) f(x, y) =
√

3− x2 − y2 + 2Arcsin(x2 − y2).

7) f(x, y) = Arcsin(2 − x2 − y).

8) f(x, y) =
√
xy − 1.

9) f(x, y) =
√
y + sinx+

√−y + sinx.

10) f(x, y) = xy.

11) f(x, y) = ln y + ln(x2 + y2 + 2y).

A Domain of a function.

D Analyze the domain and the sketch the set.

I 1) The function ln |1− x2 − y2| is defined for |1− x2 − y2| > 0, i.e. for x2 + y2 �= 1. The domain is
R2 with the exception of the unit circle:

R2 \ {(x, y) | x2 + y2 = 1}.

–1

–0.5

0.5

1

–1 –0.5 0.5 1

Figure 7.1: The domain of f(x, y) = ln |1− x2 − y2|

2) The requirement of the function
√

−x2 − y2 is that −x2 − y2 ≥ 0, i.e. the domain is only the
point {(0, 0)}.
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3) The function ln(1− x2 − y2) +
√

(x− 1
2 )(x

2 + y2) is defined for

1− x2 − y2 > 0 and

(

x− 1

2
)(x2 + y2

)

≥ 0.

We first conclude that x2 + y2 < 1, so the domain must be contained in the open unit disc.

Then note that both requirements are fulfilled for (x, y) = (0, 0), thus (0, 0) belongs to the
domain.

Finally, when 0 < x2 + y2 < 1 we also have the requirement x ≥ 1

2
.

Summarizing the domain is

{(0, 0)} ∪ {(x, y) | x ≥ 1

2
, x2 + y2 < 1}.

–1.5

–1

–0.5

0

0.5

1

1.5

y

–1.5 –1 –0.5 0.5 1 1.5

x

Figure 7.2: The domain of f(x, y) = ln(1− x2 − y2) +
√

(x− 1
2 )(x

2 + y2)

4) The function ln(y(x2 + y2 + 2y)) is defined for

y(x2 + y2 + 2y) = y{x2 + (y + 1)2 − 1} > 0.

Here we get two possibilities:

a) When both y > 0 and x2 + (y + 1)2 > 1, we see that we can reduce to y > 0, because then
also (y + 1)2 > 1.

b) The second possibility is that y < 0 and x2 + (y + 1)2 < 1. In this case we reduce to
x2 + (y + 1)2 < 1, because this inequality determines an open disc in the lower half plane
of centre (0,−1) and radius 1, and y < 0 is automatically satisfied.

Summarizing we obtain the domain

{(x, y) | y > 0} ∪ {(x, y) | x2 + (y + 1)1 < 1},

i.e. the union of the upper half plane and the afore mentioned circle in the lower half plane.
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–2.5

–2

–1.5

–1

–0.5

0

0.5

1

y

–2 –1 1 2
x

Figure 7.3: The domain of f(x, y) = ln[y(x2 + y2 + 2y)].

5) The function y
√
2− x2 + Arctan

y

x
is defined for

2− x2 ≥ 0 and x �= 0,

i.e. the domain is the union of two vertical strips, which are neither open nor closed,

{(x, y) | −
√
2 ≤ x < 0} ∪ {(x, y) | 0 < x ≤

√
2}.

This can also be written

[−
√
2,
√
2]× R \ {(0)} × R.

–2

–1

0

1

2

y

–2 –1 1 2

x

Figure 7.4: The domain of f(x, y) = y
√
2− x2 +Arctan

y

x
.

6) The function
√

3− x2 − y2 + 2Arcsin(x2 − y2) is defined for

x2 + y2 ≤ 3 and − 1 ≤ x2 − y2 ≤ 1,

i.e. for
√

x2 + y2 ≤
√
3, x2 − y2 ≤ 1, y2 − x2 ≤ 1.

193

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume-II 
Continuous Functions in Several Variables

194 

Examples of continuous functions in several variables

The domain is that component of the intersection with the disc which also contains the point
(0, 0).

–2

–1

0

1

2

y

–2 –1 1 2

x

Figure 7.5: The domain of f(x, y) =
√

3− x2 − y2 + 2Arcsin(x2 − y2).

7) The function Arcsin(2− x2 − y) is defined for

−1 ≤ 2− x2 − y ≤ 1,

i.e. when the following two conditions are fulfilled:

y ≤ 3− x2 and y ≥ 1− x2.
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Summarizing the domain becomes

{(x, y) | 1− x2 ≤ y ≤ 3− x2},

which is the closed set which lies between the two arcs of parabolas.

–4

–2

2

4

y

–2 –1 1 2
x

Figure 7.6: The domain of f(x, y) = Arcsin(2− x2 − y).

8) The function
√
xy − 1 is defined for xy ≥ 1 i.e. the sets in the first and third quadrant, which

are bounded by the hyperbola y =
1

x
and which is not close to any of the axes:

{(x, y) | x > 0, y > 0, xy ≥ 1} ∪ {(x, y) | x < 0, y < 0, xy ≥ 1}.

–2

–1

0

1

2

y

–2 –1 1 2

x

Figure 7.7: The domain of f(x, y) =
√
xy − 1.

9) The function
√
y + sinx+

√−y + sinx is defined when both

y + sinx ≥ 0 and − y + sinx ≥ 0,

i.e. when

− sinx ≤ y ≤ sinx.
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Hence the condition sinx ≥ 0, i.e. x ∈ [2pπ, π + 2pπ], p ∈ Z, and the domain is

⋃

p∈Z

{(x, y) | 2pπ ≤ x ≤ 2pπ + π, |y| ≤ sinx}.

On the figure the domain is the union of every second of the connected subsets.

–1.5
–1

–0.5
0

0.5
1

1.5

y

–6 –4 –2 2 4 6

x

Figure 7.8: The domain of f(x, y) =
√
y + sinx+

√−y + sinx.

10) This is a very difficult example. First notice that the function f(x, y) = xy is at least defined
when x, y > 0.

When x = 0 the function is defined for every y > 0.

When x < 0, the function is defined for every y =
p

2q + 1
, where p ∈ Z and q ∈ N0.

When y < 0 is not a rational number of odd denominator, we must necessarily require that
x > 0.

When y = − p

2q + 1
, p ∈ N, q ∈ N0, then xy is also defined for x < 0, though not for x = 0.

Remark. It is a matter of definition whether one can put x0 = 1 for x < 0. This may be
practical in some cases, though not in everyone. ♦.

This domain is fairly complicated:

{(x, y) | x > 0} ∪ {(0, y) | y > 0} ∪
⋃

p, q∈N0

{(x, y) | x < 0, y = −p/(2q + 1)},

where one may discuss whether the point (0, 0) should be included or not.

11) When the function f(x, y) = ln y + ln(x2 + y2 + 2y) is defined, we must at least require that
y > 0, because ln y in particular should be defined.

If on the other hand y > 0, then clearly also x2 + y2 + 2y > 0, no matter the choices of x and
y > 0, thus f(x, y) is defined for y > 0, i.e. in the upper half plane.
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Example 7.2 Describe in each of the following cases the domain of the given function.

1) f(x, y, z) =
√

1− |x| − |y| − |z|.

2) f(x, y, z) = ln(
√

1− |x| − |y| − |z|).

3) f(x, y, z) = Arcsin(x2 + y2 − 4).

4) f(x, y, z) = 4
√

x2 + 4y2 + 9z2 − 1.

5) f(x, y, z) = Arctan
x+ z

y
.

6) f(x, y, z) = exp(3x+ 2y + 5z).

A Domain of functions in three variables.

D Analyze in each case the function. There will here be given no sketches.

I 1) The function
√

1− |x| − |y| − |z| is defined for |x|+ |y|+ |z| ≤ 1,

{(x, y, z) | |x|+ |y|+ |z| ≤ 1}.

This set is a closed tetrahedron in the space.

2) The function ln(
√

1− |x| − |y| − |z|) is defined in the corresponding open tetrahedron in space,

{(x, y, z) | |x|+ |y|+ |z| < 1}.

3) The function Arcsin(x2 + y2 + z2 − 4) is defined when

−1 ≤ x2 + y2 + z2 − 4 ≤ 1,

i.e. in the shell
{

(x, y, z) | (
√
3)2 ≤ x2 + y2 + z2 ≤ (

√
5)2

}

,

of centre (0, 0, 0), inner radius
√
3 and outer radius

√
5.

4) The function 4
√

x2 + 4y2 + 9z2 − 1 is defined outside an ellipsoid,

{

(x, y, z)

∣

∣

∣

∣

∣

x2 +

(

y
1
2

)2

+

(

z
1
3

)2

≥ 1

}

,

where the half axes are 1,
1

2
and

1

3
.

5) The function Arctan
x+ z

y
is defined for y �= 0.

6) The function exp(3x+ 2y + 5z) is of course defined in the whole space R2.
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7.2 Level curves and level surfaces

Example 7.3 Let

f(x, y) = ln(2 − 2x2 − 3y2) + 2− 4x2 − 6y2, (x, y) ∈ A.

1) Sketch the domain A.

2) Describe the level curves of the function. It is convenient to introduce a new variable u, such that
f(x, y) = F (u(x, y)).

3) Sketch the level curve corresponding to f(x, y) = 0.

4) Find the range f(A).

A Domain and level curves.

D Describe the set given by 2− 2x2 − 3y2 > 0, where f(x, y) is defined. Then change the parameter
to u.

I 1) The function is defined, if and only if

u = u(x, y) = 2− 2x2 − 3y2 > 0,

i.e. for

�x

1

�2

+





y
�

2
3





2

< 1,
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which describes an open ellipsoidal disc of centrum (0, 0) and half axes 1 and

�

2

3
.

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

y

–1.5 –1 –0.5 0.5 1 1.5

x

2) If we define

u = u(x, y) = 2− 2x2 − 3y2 > 0,

i.e. u ∈ ]0, 2], then

f(x, y) = ln(2− 2x2 − 3y2) + 2− 4x2 − 6y2

= ln(2− 2x2 − 3y2) + 2(2− 2x2 − 3y2)− 2

= lnu+ 2u− u.

This is clearly an increasing function in u ∈ ]0, 2]. Every level curve

f(x, y) = lnu+ 2u− 2 = c

corresponds to

u = 2− 2x2 − 3y2 = k ∈ ]0, 2],

where k is unique according to the above.

Then by a rearrangement,

2x2 + 3y2 = 2− k, k ∈ ]0, 2].

If k = 2, then the level “curve” degenerates to the point (0, 0).

If 0 < k < 2, then the level curve is an ellipse





x
�

2−k
2





2

+





y
�

2−k
3





2

= 1

with the half axes

�

2− k

2
and

�

2− k

3
.
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3) When

f(x, y) = lnu+ 2u− 2 = 0,

it follows that u = 1 is a solution. Since the function of u is strictly increasing, it follows that
u = 1 is the only solution, so k = 1.

According to 2) the level curve f(x, y) = 0 is the ellipse





x
�

1
2





2

+





y
�

1
3





2

= 1

of centre (0, 0) and half axes

�

1

2
and

�

1

3
.
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1

y
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x

4) We obtain the range by changing the variable to u,

f(x, y) = F (u) = lnu+ 2u− 2, u ∈ ]0, 2],

because the value u is attained precisely on one level curve.

Since F ′(u) =
1

u
+ 2, we see that F (u) is increasing.

When n → 0+, we get F (u) → −∞. When u = 2, we get

F (u) = ln 2 + 4− 2 = 2 + ln 2.

Since F (u) is continuous, the connected interval ]0, 2] is mapped into the connected interval
]−∞, 2 + ln 2]. Here we apply the third main theorem of continuous functions.

The range is f(A) =]−∞, 2 + ln 2].
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Example 7.4 Sketch for each for the functions f : R2 → R below the level curves given by f(x, y) = C
for the given values of the constant C.

1) f(x, y) = x2 + y2, C ∈ {1, 2, 3, 4, 5},
2) f(x, y) = x2 − 4x+ y2, C ∈ {−3,−2,−1, 0, 1},
3) f(x, y) = x2 − 2y, C ∈ {−2,−1, 0, 1, 2},
4) f(x, y) = max{|x|, |y|}, C ∈ {1, 2, 3},
5) f(x, y) = |x|+ |y|, C ∈ {1, 2, 3},
6) f(x, y) = (x2 + y2 + 1)2 − 4x2, C ∈ { 1

2 , 1, 3},
7) f(x, y) = x2 + y2(1 + x)3, C ∈ {−4, 0, 14 , 1, 4}.
A Level curves.

D Whenever it is necessary, start by analyzing the given function.

I 1) The level curves are circles of centrum (0, 0) and radii
√
C, i.e. 1,

√
2,

√
3, 2,

√
5.

–2

–1

1

2

–2 –1 1 2

Figure 7.9: The level curves x2 + y2 = C, C = 1,
√
2,

√
3, 2,

√
5.

2) Since

f(x, y) = x2 − 4x+ y2 = (x − 2)2 + y2 − y,

we can also write the equation f(x, y) = C of the level curves in the form

(x− 2)2 + y2 = 4 + C.

The level curves are circles of centre (2, 0) and radius
√
4 + C, i.e. 1,

√
2,

√
3, 2,

√
5.

It follows that we obtain the same system as in 1), only translated to the centre (2, 0).

3) The equation of the level curves f(x, y) = C can also be written

y =
1

2
x2 − C

2
, C ∈ {−2,−1, 0, 1, 2}.

These are parabolas of top points at

(

0,−C

2

)

.
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–3

–2

–1

0

1

2

3

y

–1 1 2 3 4 5

x

Figure 7.10: The level curves x2 − 4x+ y2 = C, C = −3, −2, −1, 0, 1.
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–3 –2 –1 1 2 3

x

Figure 7.11: The level curves x2 − 2y = C, C = −2, −1, 0, 1, 2.

–3

–2

–1

0

1

2

3

y

–3 –2 –1 1 2 3

x

Figure 7.12: The level curves max{|x|, |y|} = C, C = 1, 2, 3.

4) The level curves are the boundary of the squares of centre (0, 0) and edge length 2C.

5) The level curves are the boundaries of the squares of centre (0, 0) and the corners (±C, 0) and
(0,±C).
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–3

–2

–1

0

1

2

3

y

–3 –2 –1 1 2 3

x

Figure 7.13: The level curves |x|+ |y| = C, C = 1, 2, 3.

6) First note that

f(x, y) = (x2 + y2 + 1)2 − 4x2

= (x2 + y2 + 1− 2x)(x2 + y2 + 1 + 2x)

= {(x− 1)2 + y2}{(x+ 1)2 + y2}.
The level curves f(x, y) = C can then be interpreted as the curves composed of the points
(x, y), for which the product of the distances to (1, 0) and (−1, 0) is equal to

√
C.

–0.3
–0.2
–0.1

0

0.1
0.2
0.3

y

–1 –0.5 0.5 1

x

Figure 7.14: The level curve (x2 + y2 + 1)2 − 4x2 =
1

2
.

7) First note that when x = −1, then f(−1, 0) = 1. This means that we shall be particular careful
in the case of C = 1.

Here we get five cases which are treated successively.

a) When C = −4, it follows from our first remark that x �= −1. Clearly, y �= 0, because
x2 = −4 does not have any real solution. The level curves are given by

y2 = − 4 + x2

(1 + x)3
> 0.
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–0.4

–0.2

0

0.2

0.4

y

–1 –0.5 0.5 1

x

Figure 7.15: The level curve (x2 + y2 + 1)2 − 4x2 = 1. Though it cannot be seen (due to some error
in the programme of sketching) the curves continue through (0, 0).
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0
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0.4

0.6

0.8

y

–1.5 –1 –0.5 0.5 1 1.5

x

Figure 7.16: The level curve (x2 + y2 + 1)2 − 4x2 = 3.

Accordingly, x < −1, and

y2 = − 1

(1 + x)2

(

x− 1 +
5

1− x

)

,

i.e.

y = ± 1

|1 + x|

√

1− x− 5

1 + x
= ± 1

|1 + x|

√

2 + |1 + x|+ 5

|1 + x| ,

for x < −1.

We get two level curves, which lie symmetrically to each other with respect to the X axis
where the line x = −1 and the X axis are the asymptotes.

b) When C = 0, we again find that x �= −1. Note that if y = 0, then x = 0 is a solution, hence
the point (0, 0) belongs to the solutions. When y �= 0, we get

y = ±
∣

∣

∣

∣

x

1 + x

∣

∣

∣

∣

· 1
√

|1 + x|
, x < −1.
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–4
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0
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y

–5 –4 –3 –2 –1 1

x

Figure 7.17: The level curves x2 + y2(1 + x)3 = −4.

The level “curves” are the point (0, 0) and two symmetric curves with respect to the X
axis. These are closer the asymptotes than the level curves for C = −4.

–4

–2

0

2

4

y

–5 –4 –3 –2 –1 1

x

Figure 7.18: The level curves x2 + y2(1 + x)3 = 0, where the point (0, 0) should be added.

c) If C =
1

4
, then x �= −1, and

y2 =
1
4 − x2

(1 + x)3
= − (x− 1

2 )(x + 1
2 )

(x+ 1)2
≥ 0.

We note that y = 0, if and only if x = ±1

2
.

Then the right hand side is positive, when either |x| < 1

2
or x < −1.

The level curves are two symmetric curves for x < −1 with respect to the X axis, where
the X axis and the line x = −1 are the asymptotes, supplied with a closed curve for

x ∈
[

−1

2
,
1

2

]

.

d) For C = 1 we are in the exceptional case mentioned above where x = −1 is a level curve.
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–4
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–5 –4 –3 –2 –1 1
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Figure 7.19: The level curves x2 + y2(1 + x)3 =
1

4
.

When x �= −1, we get

y2 =
1− x2

(1 + x)3
=

1− x

(1 + x)2
≥ 0,

thus x ≤ 1. When x = 1, we only get the solution y = 0, i.e. we get the point (1, 0).

The level curves are the line x = −1, two symmetric curves with respect to the X axis for
x < −1, and a curve with the X axis as an axis of symmetry for x ∈ ] − 1, 1] and the line
x = −1 as an asymptote.

–4

–2

0

2

4

y

–5 –4 –3 –2 –1 1

x

Figure 7.20: The level curves x2 + y2(1 + x)3 = 1.

e) When C = 4, we get

y2 =
4− x2

(1 + x)3
≥ 0.

It follows that (±2, 0) are solutions and that we only get solutions for either x ≤ −2 or
−1 < x ≤ 2.

We obtain two curves, each symmetric with respect to the X axis. Furthermore, one of
these curves has x = −1 as an asymptote.
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Figure 7.21: The level curves x2 + y2(1 + x)3 = 4.

Example 7.5 Describe the level surfaces for the following functions:

1) f(x, y, z) = x for (x, y, z) ∈ R3,

2) f(x, y, z) = max{|x|, |y|, |z|} for (x, y, z) ∈ R3,

3) f(x, y, z) =
√

max{|x|, |y|, |z|} for (x, y, z) ∈ R3,

4) f(x, y, z) = z − x2 − y2 for (x, y, z) ∈ R3,

5) f(x, y, z) =
x2 + y2 + z2 − a2

z
for z �= 0.

A Level surfaces in space.

D Analyze the function. The sketches are left to the reader, because there are difficulties here with
the MAPLE programs. (I am not clever enough to get the right drawings.)

I 1) Obviously, the level surfaces

f(x, y, z) = x = c

are all planes parallel to the Y Z plane, where c ∈ R.

2) The level surfaces are the boundaries of all cubes of centrum (0, 0, 0) and edge length 2c for
c > 0, supplied with the point (0, 0, 0) when c = 0.

Only c ≥ 0 is possible.

3) The level surfaces are the same as in 2), only the edge length is here 2c2 for c > 0. When c = 0
we obtain as before the point (0, 0, 0).

4) Since f(x, y, z) = z − x2 − y2 = c can also be written

z − c = x2 + y2,

we obtain all paraboloids of revolution with top point at (0, 0, c), through the unit circle in the
plane z = 1 + c and with the Z axis as the axis of revolution.
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5) First we rewrite

f(x, y, z) =
x2 + y2 + z2 − a2

z
= c, z �= 0,

to

x2 + y2 + z2 − a2 = cz, z �= 0,

i.e.

x2 + y2 +

(

z − C

2

)2

= a2 +
c2

4
, z �= 0+ .

The level surfaces are spheres of centrum
(

0, 0,
c

2

)

and radius

√

a2 +
c2

4
, with the exception

of the points in the XY plane, i.e. with the exception of the circle

x2 + y2 = a2, z = 0.
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Example 7.6 Consider the function f(x) = x · e, x ∈ Rk, where e is a constant unit vector.

1) Sketch the level curves of the function in the case of k = 2.

2) Describe the level surfaces of the function in the case of k = 3.

A Level curves and level surfaces.

D Sketch if possible a figure and analyze.

I 1) The level curves are all the straight lines ℓ, which are perpendicular to the line generated by the
vector e.

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

y

–0.4 –0.2 0.2 0.4 0.6 0.8 1 1.2 1.4

x

Figure 7.22: Some level curves when e =

(

3

5
,
4

5

)

.

2) Analogously the level surfaces for k = 3 are all planes π, which are perpendicular to the line
generated by the vector e.

Example 7.7 Let a be a positive constant. Find the domain of the function

f(x, y, z) = ln
(

a2 − 3x2 − y2 − 2z2
)

.

The describe the level surfaces for f , and find the range of the function.

A Domain, level surfaces, range.

D Just follow the text.

I The function is defined for

3x2 + y2 + 2z2 < a2,

which describes the open ellipsoid with the half axes

a√
3
, a,

a√
2
.
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The level surfaces are all the ellipsoidal surfaces

3x2 + y2 + 2 <2= b2, 0 < b < a,

with the half axes

b√
3
, b,

b√
2
.

The value of the function on such a level surface is ln
(

a2 − b2
)

.

The range of f is the same as the range of the function

g(t) = ln
(

a2 − t2
)

, t ∈ [0, a[,

so the range is ]−∞, 2 ln a].

Example 7.8 Sketch the domain A of the function

f(x, y) = ln
(

225− 25x2 − 9y2
)

.

Indicate the boundary ∂A of A, and sketch the level curve of f , which contains the point

(x, y) =

(

3

2
,
5

2

)

.

A Domain and level curve.

D Since ln is only defined on R+, the domain is given by the requirement that the expression inside
the ln is positive.

–4

–2

0

2

4

–3 –2 –1 1 2 3

Figure 7.23: The domain A and the level curve through

(

3

2
,
5

2

)

.
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I The function is defined for

225− 25x2 − 9y2 > 0, i.e. for (5x)2 + (3y)2 < 152,

hence

(x

3

)2

+
(y

5

)2

< 1.

The domain is an open ellipsoidal disc of centrum (0, 0) and half axes 3 and 5.

the level curve is given by

ln
(

225− 25x2 − 9y2
)

= f

(

3

2
,
5

2

)

= ln

{

225−
(

5 · 3
2

)2

−
(

3 · 5
2

)2
}

,

i.e. by

225− 25x2 − 9y2 = 225

(

1− 1

4
− 1

4

)

=
225

2
,
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hence by a rearrangement,

(5x)2 + (3y)2 =

(

15√
2

)2

.

This can also be written

(

x
3
2

√
2

)2

+

(

y
5
2

√
2

)2

= 1.

Thus the level curve is an ellipse of centrum (0, 0) and half axes
3

2

√
2 =

3√
2
and

5

2

√
2 =

5√
2
.

7.3 Continuous functions

Example 7.9 The range of each of the following functions in two variables is not the whole plane
but R2 \ M , where M �= ∅. Find the point set M in each case and explain why f : R2\ → R is
continuous. Finally, check whether the function has a continuous extension to either R2 or to R2 \L,
where L ⊂ M .

1) f(x, y) =
x2 − y2

x2 + y2
,

2) f(x, y) =
x3 + y3

x2 + y2
,

3) f(x, y) =
x2y

√

x2 + y2
,

4) f(x, y) =
xy

√

x2 + y2
,

5) f(x, y) =
3x− 2y

2x− 3y
,

6) f(x, y) =
x2 − y2

Arctan(x− y)
,

7) f(x, y) =
x3 − y3

x− y
,

8) f(x, y) =
1− exy

xy
.

A Examination of functions, continuous extension.

D Find the set of exceptional points. Since the numerator and the denominator are continuous in R2

in all cases, it is only a matter of determining the zero set of the denominator. A possible continuous
extension can only take place at points in which both the numerator and the denominator are zero,
so this set should be examined too.
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I 1) The denominator is clearly only zero at (0, 0), so M = {(0, 0)}.

If we use polar coordinates, we get for ̺ > 0,

f(x, y) =
̺2 cos2 ϕ− ̺2 sin2 ϕ

̺2
= cos2 ϕ− sin2 ϕ = cos 2ϕ,

and it is obvious that we cannot have a continuous extension to (0, 0), because there is no
restriction on ϕ.

2) Here also M = {(0, 0)}. By using polar coordinates we get

f(x, y) =
̺3 cos3 ϕ+ ̺3 sin3 ϕ

̺2
= ̺{cos3 ϕ+ sin3 ϕ),

which tends to 0 for ̺ → 0. Hence, the function has a continuous extension to (0, 0) given by
f(0, 0) = 0.

3) Again M = {(0, 0)}. By using polar coordinates we get

f(x, y) =
̺3 cos2 ϕ sinϕ

̺
= ̺2 cos2 ϕ sinϕ,

which tends to 0 for ̺ → 0. Hence the function has a continuous extension given by f(0, 0) = 0.

4) Also here M = {(0, 0)}. Again by polar coordinates,

f(x, y) =
̺2 sinϕ cosϕ

̺
= ̺ sinϕ cosϕ → 0 for ̺ → 0.

By continuous extension we get f(0, 0) = 0.

5) Here

M = {(x, y) | 2x = 3y} =

{

(x, y)

∣

∣

∣

∣

y =
2

3
x

}

.

The only possibility of a continuous extension must take place on that subset where the nu-
merator is also zero, i.e. on {(0, 0)}. Using polar coordinates we get

f(x, y) =
3 cosϕ− 2 sinϕ

2 cosϕ− 3 sinϕ
,

which clearly does not have a limit, when ̺ → 0, and ϕ ∈ [0, 2π[. In this case we do not have
a continuous extension.

6) Here M = {(x, y) | y = x}. Since

f(x, y) =
x+ y

Arctan(x− y)

x− y

, (x, y) /∈ M,

where

Arctan t

t
→ 1 for t → 0,

it is possible to extend the function to all of M by

f(x, x) = 2x, (x, x) ∈ M.
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7) Here we also have M = {(x, y) | y = x}. We get by a division

f(x, y) =
x3 − y3

x− y
= x2 + xy + y2, (x, y) /∈ M.

Clearly, the latter expression can be continuously extended to all of R2. On M we get

f(x, x) = 3x2, (x, x) ∈ M.

8) Here M = {(x, y) | x = 0 or y = 0}, i.e. the union of the coordinate axes.

Since

1− et

t
= −et − e0

t− 0
→ −1 for t → 0,

it follows from an application of the substitution t = xy that f can be extended to the axes by

f(0, y) = f(x, 0) = −1.
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Example 7.10 In each of the following cases one shall find the domain D of the given function f ,
and explain why f is continuous. Then show that f has a continuous extension to a point set B, where
B ⊃ D.

1) f(x, y) =
x+ y − 1√
x−√

1− y
,

2) f(x, y) = (x+ y) ln sinh(x+ y),

3) f(x, y) =
Arcsin(xy − 2)

Arctan(3xy − 6)
,

4) f(x, y) = exp

(

− 1

(x− y)2

)

.

A Examination of functions and continuous extensions.

D Find the point set where the numerator and the denominator are defined and continuous.

Then check a possible extension to the set where both the numerator and the denominator are
zero.

I 1) The numerator is defined in R2. The numerator is defined and continuous when x ≥ 0 and
1− y ≥ 0, i.e. for y ≤ 1.

The denominator is zero, when
√
x =

√
1− y for x ≥ 0 and y ≤ 1. A squaring shows that the

denominator is zero when

x+ y = 1, x ≥ 0, y ≤ 1,

and we see that the numerator is zero on the same set. We see that the domain is

D = {(x, y) | x ≥ 0, y ≤ 1, x+ y �= 1} = D1 ∪D2.

In the two subdomains D1 (the “lower triangular domain”) and D2 (the “upper triangular
domain”) both the numerator and the denominator are continuous, and the denominator is not
zero in these two sets, so the function us continuous on D.

It has already above been given a hint that there is a possible continuous extension to the line
x + y = 1 for x ≥ 0 and y ≤ 1, because both the numerator and the denominator are here 0.
We get by a simple rearrangement for (x, y) ∈ D, i.e. in particular for x+ y �= 1, that

f(x, y) =
x− (1− y)√
x−√

1− y
=

(
√
x)2 − (

√
1− y)2√

x−√
1− y

=
√
x+

√

1− y.

This expression is continuous on the set

{(x, y) | x ≥ 0, y ≤ 1},

and we have found our continuous extension of the original function.

2) Here f(x, y) is defined and continuous for sinh(x+ y) > 0, i.e. when x+ y > 0, and the domain
is

D = {(x, y) | x+ y > 0}.
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Figure 7.24: The domain of f(x, y) =
x+ y − 1√
x−√

1− y
.
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Figure 7.25: The domain of f(x, y) = (x+ y) ln sinh(x + y) lies above the oblique line.

By putting t = x+ y > 0 we exploit that f(x, y) actually is a function in x+ y. Then

f(x, y) = g(t) = t ln sinh t =
t

sinh t
{sinh t · ln sinh t}.

Here,
t

sinh t
→ 1 for t → 0+, and sinh t · ln sinh t → 0 for sinh t → 0+, i.e. for t → 0+. We

therefore conclude for z = sinh t that

lim
t→0+

t ln sinh t = 0.

Then by the substitution t = x+ y,

(x+ y) ln sinh(x + y) → 0 for x+ y → 0 + .

Hence, the function can be extended continuously to the set

D = {(x, y) | x+ y ≥ 0},
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where we for x+ y = 0 put

f(x,−x) = 0, x ∈ R.

3) The numerator Arcsin(xy − 2) is defined and continuous, when −1 ≤ xy − 2 ≤ 1, i.e. when
1 ≤ xy ≤ 3.

The denominator Arctan(3xy − 6) is defined and continuous for every (x, y) ∈ R2.

The denominator is zero for xy = 2, and we see that the numerator is zero on the same set.

Thus the domain is

D = {(x, y) | 1 ≤ xy < 2 or 2 < xy ≤ 3}.

We see that the domain has four connected components.

–3

–2

–1

0

1

2

3

y

–3 –2 –1 1 2 3

x

Figure 7.26: The domain of f(x, y) =
Arcsin(xy − 2)

Arctan(3xy − 6)
is the union of the sets which lie between the

hyperbolas in the first and third quadrant, with the exception of the dotted hyperbola in the “middle”
of each set.

Since both the numerator and the denominator are zero on the exceptional hyperbola of the
equation xy = 2, there is a possibility of a continuous extension to this hyperbola. We shall
now examine this possibility.

First note that

Arcsin t

Arctan 3t
=

1

3
· Arcsin t

t
· 3t

Arctan 3t
→ 1

3
for t → 0.

Then by the substitution t = xy − 2,

f(x, y) =
Arcsin(xy − 2)

Arctan(3xy − 6)
→ 1

3
for xy → 2.

Hence, we can extend f continuously to the set

B = {(x, y) |≤ xy ≤ 3}
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by putting

f(x, y) =











Arcsin(xy − 2)

Arctan(3xy − 6)
for xy ∈ [1, 3] \ {2},

1

3
for xy = 2.

4) The function is defined and continuous for y �= x, so the domain is given by

D = {(x, y) | y �= x}.

Since

lim
t→0

exp

�

− 1

t2

�

= 0,

it follows by the substitution t = x − y that f(x, y) can be extended to all of R2 by the
continuous extension

f(x, y) =







exp

�

− 1

(x− y)2

�

for y �= x,

0 for y = x.
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Example 7.11 Sketch in each of the cases below the domain of the given function or vector function.
Then examine whether the (vector) function has a limit for (x, y) → (0, 0), and find this limit when it
exists.

1) f(x, y) =
sin(xy)

x
,

2) f(x, y) =
1

x
sin y,

3) f(x, y) = x sin
1

y
,

4) f(x, y) =

(

ln(1 + x2 + y2)
√

x2 + y2
,
lnx+ ln y

ln(xy)

)

,

5) f(x, y) =

(

x sin y
√

x2 + y2
,
x2y2 + x2 + y2

x2 + 3y2

)

,

6) f(x, y) =

(

x

x+ y
,
√
x+ y

)

.

A Domains; limits.

D Analyze the function; take the limit.

I 1) The function is defined for x �= 0, i.e. everywhere except on the Y axis,

D = {(x, y) | x �= 0}.
There is of course no need to sketch the domain in this case.

By using polar coordinates we get from x = ̺ cosϕ �= 0 in D that ̺ > 0 and cosϕ �= 0. This
shows that in D,

|f(x, y)| =
∣

∣

∣

∣

sin(̺2 cosϕ sinϕ)

̺ cosϕ

∣

∣

∣

∣

≤ ̺2| cosϕ| | sinϕ|
̺| cosϕ| = ̺| sin ̺|,

which tends to 0 for ̺ → 0+, hence

lim
(x,y)→(0,0)

f(x, y) = 0.

Alternatively one can use directly that

|f(x, y)− 0| =
∣

∣

∣

∣

sin(xy)

x

∣

∣

∣

∣

≤ |xy|
|x| = |y| → 0

for |y| ≤
√

x2 + y2 → 0.

2) The domain is the same as in 1).

The limit does not exist, because e.g.

f(x, x) =
sinx

x
→ 1 for x → 0,

f(x,−x) = − sinx

x
→ −1 for x → 0.
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3) The function is defined for y �= 0, i.e. at the points outside the X axis. There is no need either
to sketch this set.

The limit is 0, because

|f(x, y)− 0| = |x| ·
∣

∣

∣

∣

sin
1

y

∣

∣

∣

∣

≤ |x| → 0 for (x, y) → (0, 0).

4) The vector function is defined (and continuous), when

a) 1 + x2 + y2 > 0 (always fulfilled),

b) x2 + y2 > 0 (i.e. (x, y) �= (0, 0)),

c) x > 0,

d) y > 0,

e) xy > 0,

f) xy �= 1.

Summarizing we see that the domain is the open first quadrant, with the exception of a branch
of a hyperbola,

D = {(x, y) | x > 0, y > 0} \ {(x, y) | xy = 1}.

1

2

3

4

5

y

1 2 3 4 5

x

Figure 7.27: The vector function is defined in the first quadrant with the exception of the branch of
the hyperbola.

Since

ln(1 + x2 + y2)
√

x2 + y2
=

1
√

x2 + y2

{

(x2 + y2) + (x2 + y2)ε(x2 + y2)
}

=
√

x2 + y2{1 + ε(x2 + y2)} → 0

for (x, y) → (0, 0), and

lnx+ ln y

ln(xy)
=

ln(xy)

ln(xy)
= 1 for (x, y) ∈ D,
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we conclude that

lim
(x,y)→(0,0)

(x,y)∈D

f(x, y) = (0, 1).

5) The vector function is defined for (x, y) �= (0, 0).

Let us estimate the first coordinate function,

∣

∣

∣

∣

∣

x sin t
√

x2 + y2

∣

∣

∣

∣

∣

=
|x|

√

x2 + y2
| sin y| ≤ 1 · | sin y| → 0

for (x, y) → (0, 0). We see that the first coordinate function converges towards 0 by the limit.

In the examination of the second coordinate function we use polar coordinates 0 < ϕ <
π

2
,

̺ > 0. We get by insertion

x2y2 + x2 + y2

x2 + 3y2
=

̺4 cos2 ϕ · sin2 ϕ+ ̺2

̺2(1 + 2 sin2 ϕ)
=

1

1 + 2 sin2 ϕ
+ ̺2 · sin

2 ϕ cos2 ϕ

1 + 2 sin2 ϕ
.
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The latter term converges towards 0 for ̺ → 0; but the first term depends on ϕ and not on ̺.

–1.5

–1

–0.5

0

0.5

1

1.5

y

–1.5 –1 –0.5 0.5 1 1.5

x

Figure 7.28: Example 7.11.5. The domain is the half plane which lies above the line.

Since the second coordinate function cannot be extended continuously to (0, 0), neither can the
vector function itself be extended continuously to (0, 0).

6) The vector function

f(x, y) =

(

x

x+ y
,
√
x+ y

)

is defined for x+ y �= 0 and x+ y ≥ 0, so the domain is

{(x, y) | x+ y > 0}.

The first coordinate function does not have a limit for (x, y) → (0, 0) in the domain. In fact if
we in particular restrict ourselves to the positive X axis where y = 0, then

lim
x→0+

f1(x, 0) = lim
x→0+

x

x+ 0
= 1.

If we instead restrict ourselves to the positive Y axis we get

lim
y→0+

f1(0, y) = lim
y→0+

0

0 + y
= 0.

Since 1 �= 0, the limit does not exist.
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Example 7.12 Let f : R2 \ {(0, 0)} → R be given by

f(x, y) =
x2y2

x2y2 + (x− y)2
.

Show that

lim
x→0

(

lim
y→0

f(x, y)

)

= lim
y→0

(

lim
x→0

f(x, y)
)

= 0,

and that f nevertheless does not have a limit for (x, y) → (0, 0).

A Limits.

D Calculate the successive limits and finally the limit along the line y = x.

I If x �= 0, then

x2y2 → 0 and x2y2 + (x− y)2 → x2 �= 0 for y → 0,

hence

lim
y→0

f(x, y) = 0 for x �= 0.

Note also that

lim
y→0

f(0, y) = lim
y→0

0

y2
= 0.

Since f(x, y) = f(y, x), it follows immediately that

lim
x→0

(

lim
y→0

f(x, y)

)

= lim
y→0

(

lim
x→0

f(x, y)
)

= 0.

Then consider the limit (x, y) → (0, 0) along the line y = x. This is given by

lim
x→0

f(x, x) = lim
x→0

x4

x4 + 02
= 1 �= 0.

We conclude that f does not have a limit for (x, y) → (0, 0).
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Example 7.13 Let f : R2 → R be given by

f(x, y) =

{

sin
1

x
sin y, x �= 0,

0, x = 0.

Prove that f(x, y) → 0 for (x, y) → (0, 0); and that we nevertheless do not have

lim
x→0

(

lim
y→0

f(x, y)

)

= lim
y→0

(

lim
x→0

f(x, y)
)

.

A Limits.

D Use the definition of a limit in 1), and the rules of calculations in 2).

I If x �= 0, then

|f(x, y)− f(0, 0)| =
∣

∣

∣

∣

sin
1

x

∣

∣

∣

∣

· | sin y| ≤ | sin y| → 0 for (x, y) → (0, 0),

and it follows trivially for x = 0 that

|f(0, y)− f(0, 0)| = 0 → 0 for (x, y) → (0, 0).

We conclude that

lim
(x,y)→(0,0)

f(x, y) = 0.

Then it follows immediately that

lim
y→0

f(x, y) =

{

limy→0 sin
1

x
· sin y = 0, for x �= 0,

limy→0 0 = 0, for x = 0,

thus

lim
x→0

(

lim
y→0

f(x, y)

)

= 0.

On the other hand, sin
1

x
· sin y for y �= pπ, p ∈ Z, does not have a limit for x → 0, so

lim
y→0

(

lim
x→0

f(x, y)
)

is not defined.
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Example 7.14 Find the domain A of

f(x, y) =
xy

x+ y
.

Show that f cannot be continuously extended to a point set B ⊃ A.
Then let

D = {(x, y) | 0 ≤ x, 0 ≤ y, x2 + y2 > 0},

and consider the function g : D → R given by

g(x, y) =
xy

x+ y
.

Sketch D, and prove that g has a continuous extension to the point set D ∪ {(0, 0)}. Compare with
the formula of thenresulting resistance of a connection in parallel of two resistances.

A Domain; continuous extension; limit.

D Find the point set, in which the denominator is 0, and then indicate A. Examine the limit in D.

I Clearly,

A = {(x, y) | y �= −x}.
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Furthermore, (0, 0) is the only point in which both the numerator and the denominator are zero,
so there is only a possibility of a continuous extension to the set A ∪ {(0, 0)}.
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–0.4

–0.2

0
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0.8
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–1 –0.5 0.5 1

x

When we restrict ourselves to the curve y = −x+ x2, x �= 0, we get

lim
x→0

f(x,−x+ x2) = lim
x→0

−x2 + x3

x2
= −1.

On the other hand, it is obvious that f(x, 0) = 0 → 0 for x → 0, so we get two different limits
by approaching (0, 0) along two different curves. Hence, the limit does not exist, and f cannot be
extended continuously.

The set D is the closed first quadrant with the exception of the point (0, 0). Since x ≥ 0 and y ≥ 0
in D, we have the estimate

0 < max{x, y} ≤ x+ y for every (x, y) ∈ D,

and hence

|g(x, y)− 0| =
∣

∣

∣

∣

x

x+ y

∣

∣

∣

∣

· |y| ≤ |y| → 0 for (x, y) → (0, 0) in D.

This shows that g can be extended continuously to (0, 0), when we define g(0, 0) = 0.

By the rearrangement

1

g(x, y)
=

x+ y

xy
=

1

x
+

1

y
, x > 0, y > 0,

we get the connection to the formula of the resulting resistance for a connection in parallel. From
the above follows that

g(x, y) =
xy

x+ y

in D◦ can be extended to D◦ ∪ {(0, 0)}.
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7.4 Description of curves

Example 7.15 In the following there are given some curves. In each case one shall find an equation
of the curve by eliminating the parameter t. Indicate the name of the curve.

1) r(t) =

(

a
1− t2

1 + t2
, b

2t

1 + t2

)

, for t ∈ R.

2) r(t) =
( a

cos t
, b tan t

)

, for t ∈
]

−π

2
,
π

2

[

∪
]

π

2
,
3π

2

[

.

3) r(t) =
(

at2, 2at
)

, for t ∈ R.

4) r(t) = (a sin t, a cos 2t), for t ∈ [−π, π].

A Description of curves.

D Eliminate the parameter.

I 1) It follows from x = a
1− t2

1 + t2
and y = b

2t

1 + t2
that

x

a
=

1− t2

1 + t2
and

y

b
=

2t

1 + t2
,

where the idea is that the two right hand sides are independent of the arbitrary constants a
and b.

We get by squaring and adding

(x

a

)2

+
(y

b

)2

=

(

1− t2

1 + t2

)2

+

(

2t

1 + t2

)2

=
(1− 2t2 + t4) + 4t2

(1 + t2)2
=

1 + 2t2 + tt

1 + 2t2 + t4
= 1.

Thus the curve is a subset of an ellipse of centre (0, 0) and the half axes a and b.

–1.5

–1

–0.5

0

0.5

1

1.5

y

–2 –1 1 2

x

Figure 7.29: the curve for a = 2 and b = 1.

Then

1− t2

1 + t2
= −1 +

2

1 + t2
≤ 1
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with equality for t = 0, so
1− t2

1 + t2
runs through the interval ]−1, 1] (twice), when t runs through

R. Since
2t

1 + t2
changes its sign for t = 0, we conclude that the arc of the curve is the ellipse

with the exception of the point (−a, 0).

2) It follows from x =
a

cos t
and y = b tan t that

x

a
=

1

cos t
and

y

b
=

sin t

cos t
,

so the parameter t is eliminated by

(x

a

)2

−
(y

b

)2

=
1− sin2 t

cos2 t
= 1.
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–2

–1

0

1

2

y

–3 –2 –1 1 2 3

x

Figure 7.30: The curves for a = 2 and b = 1.

This describes an hyperbola of the half axes a and b and of centre (0, 0). The two intervals
]

−π

2
,
π

2

[

and

]

π

2
,
3π

2

[

corresponds to the two branches.

3) Here, x = at2 and y = 2at, so t =
y

2a
. Then by insertion,

x = at2 =
1

4a
y2,

which is the equation of a parabola with top point (0, 0) and the X axis as its axis.

–2

–1

0

1

2

y

1 2 3 4

x

Figure 7.31: The curve for a =
1

4
.

4) When

(x, y) = r(t) = (a sin t, a cos 2t), t ∈ [−π, π],

and a > 0, it follows that

y = a cos 2t = a
(

1− 2 sin2 t
)

= 1− 2

a
(a sin t)2 = a− 2

a
x2,
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i.e.

y = a− 2

a
x2, x ∈ [−π, π],

which is a part of a parabolic arc. Note that we use that

–2

–1

0

1

2

y

–2 –1 1 2

x

Figure 7.32: The curve for a = 2.

|x| = |a sin t| ≤ a,

when we find the domain [−a, a], where we can have both x = −a and x = a.
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Example 7.16 Prove that the curve given by

r(t) =
�

3r + t2, t− t2, 3− 5t+ t2
�

, t ∈ R,

lies in a plane, and find an equation of this plane.

A Space curve lying in a plane.

D Put the coordinate functions of the curve into the general equation of a plane and find the coeffi-
cients.

I In general the equation of a plane is given by

ax+ by + cz = k.

Then by insertion of

(x, y, z) = (3t+ t2, t− t2, 3− 5t+ t2),

we get

k = a(3t+ t2) + b(t− t2) + c(3− 5t+ t2)

= t2(a− b+ c) + t(3a+ b− 5c) + 3c, t ∈ R.

This should hold for every t, so we must necessarily have







a− b+ c = 0,
3a+ b− 5c = 0,

3c = k.

It follows that if k = 0, then we only get (a, b, c) = (0, 0, 0) as a solution.

By choosing k �= 0, e.g. k = 3, we get c = 1, and then by insertion

�

a− b = −c = −1,
3a+ b = 5c = 5.

An addition shows that 4a = 4, i.e. a = 1, and it follows that b = 2.

Hence an equation of the plane is

x+ 2y + z = 3,

and we have at the same time proved that the curve lies in this plane.
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Example 7.17 Prove that the curve given by

r(t) =
(

2t
√
1− t, 2(1− t)

√
t, 1− 2t

)

, t ∈ [0, 1],

lies on a sphere of centre (0, 0, 0).

A A space curve lying on a sphere.

D Put the coordinate functions into the equation of the sphere and find its radius r.

I The general equation of a sphere of centrum (0, 0, 0) is

x2 + y2 + z2 = r2.

By putting

x = 2r
√
1− t, y = 2(1− t)

√
t, z = 1− 2t,

we get

x2 + y2 + z2 = 4t2(1− t) + 4(1− t)2t+ (1− 2t)2

= 4t(1− t){t+ (1 − t)}+ (1− 2t)2

= (4t− 4t2) + (1− 4t+ 4t2) = 1,

and we conclude that the curve lies on the unit sphere.

Example 7.18 Prove that the curve given by

r(t) =
(

a(1− sin t) cos t, b(sin t+ cos2 t), c cos t
)

, t ∈ [−π, π],

lies on an hyperboloid.

A A space curve lying on an hyperboloid.

D Calculate
(x

a

)2

,
(y

b

)2

and
(z

c

)2

, which are three expressions which are independent of the con-

stants a, b and c. Then compare.

I We calculate
(x

a

)2

= (1− sin t)2 cos2 t = (1− 2 sin t+ sin2 t) cos2 t

= cos2 t− 2 sin t cos2 t+ sin2 t cos2 t,
(y

b

)2

= (sin t+ cos2 t)2 = sin2 t+ 2 sin t cos2 t+ cos4 t
(z

c

)2

= = cos2 t.

Hence
(x

a

)2

+
(y

b

)2

= 1 + cos2 t = 1 +
(z

c

)2

,

and by a rearrangement
(x

a

)2

+
(y

b

)1

−
(z

c

)2

,

and we conclude that the curve lies on an hyperboloid with one sheet.
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Example 7.19 Sketch the so-called cycloid given by

r(t) = (a(t− sin t), a(1 − cost)) , t ∈ R.

A Sketch of a curve.

D If one does not have MAPLE at hand, start by finding some points of the curve. One may exploit
the geometrical meaning of

r(t) = a(t, 1)− a(sin t, cos t), t ∈ R,

where the former term on the right hand side is a rectilinear and even motion, while the latter
term is a circular motion. Thus the curve describes the motion of a point on a wheel, which is
rolling along the X axis.

I Clearly, r(t) is periodical of period 2π, so it suffices to sketch one period and a little bit of the
neighbouring periods.

–0.5

0.5
1

1.5
2

2.5

y

–2 2 4 6 8 10

x

Figure 7.33: The cycloid for a = 1.
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Example 7.20 Find in each of the cases below an equation of the given curve by eliminating the
parameter t, and then sketch the curve.

1) r(t) =

(

3t

1 + t3
,

3t2

1 + t3

)

, for t ∈ R \ {−1}.

2) r(t) = (cos t, sin t cos t), for t ∈ R.

3) r(t) =
(

a cos3 t, a sin3 t
)

, for t ∈ [−π, π].

4) r(t) =
(

a(1− 3t2), at(3− t2)
)

, for t ∈ R.

A Description of curves.

D Eliminate the parameter.

I 1) When t �= −1, we get

x =
3t

1 + t3
and y =

3t2

1 + t3
.

For t = 0 we get the point (x, y) = (0, 0).

For t �= 0 and t �= −1 we get t =
y

x
, where x �= 0 and y �= 0, so by insertion

x =
3t

1 + t3
=

3y/x

1 + (y/x)3
=

3x2y

x3 + y3
.
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When x �= 0 this is reduced to

x3 + y3 = 3xy.

Finally, we see that (x, y) = (0, 0), which corresponds to t = 0, also satisfies this equation, so
we can remove the restriction.

Note that the line y = x is an axis of symmetry.

–2

–1

0

1

2

y

–2 –1 1 2

x

2) Here, x = cos t and y = sin t cos t, hence

y2 = sin2 t cos2 = (1− cos2 t) cos2 = (1− x)x2,

or written more conveniently,

y2 = (1− x2)x2, hence y = ±|x|
√

1− x2, x ∈ [−1, 1].

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

y

–1 –0.5 0.5 1

x

3) From

x = a cos3 t, y = a sin3 t,

we get by elimination

x
2
3 + y

2
3 = a

2
3

{

cos2 t+ sin2 t
}

= a
2
3 .
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–1

–0.5

0

0.5

1

y

–1 –0.5 0.5 1

x

Figure 7.34: The curve for a = 1.

Note that

r′(t) = 3a sin t · cos(− cos t, sin t)

is 0 for t = p · −π

2
, p = −2, −1, 0, 1, 2, corresponding to the cusps on the curve.

4) First note that r′(t) = a(−6t, 3− 3t2), so y′(t) = 0 for t = ±1. It follows from

x(t) = a(1− 3t2) and y(t) = at(3− t2)

that x(t) is largest for t = 0, corresponding to x(t) ≤ x(0) = a. For this value the point on the
curve is r(0) = (a, 0).

Furthermore, we see that the X axis is an axis of symmetry.

Note

a) that x(t) = 0 for t = ± 1√
3
, corresponding to

(x, y) =

(

0,± 8a

3
√
3

)

,

b) that the curve has a horizontal tangent for y′(t) = 0, i.e. for t = ±1, corresponding to

(x, y) = (−2a,±2a),

c) and that y(t) = 0 for t = 0 and t = ±
√
3, corresponding to

(0, 0) and (−8a, 0).

d) that y and t have the same sign for 0 < |t| <
√
3, and opposite sign for |t| >

√
3. The latter

means that we are allowed to square by the elimination of t.

It follows from

x

a
= 1− 3t2 and

y

a
= t(3 − t2)
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–4

–2

0

2

4

y

–16 –14 –12 –10 –8 –6 –4 –2

x

Figure 7.35: The curve for a = 1.

that

t2 =
1

3

{

1− x

a

}

,

so we finally get by a squaring,

y2

a2
= t2

(

3− t2
)2

=
1

3

{

1− x

a

}

(

3− 1

3

{

1− x

a

}

)2

=
1

27

(

1− x

a

)(

8 +
x

a

)2

,

thus

y2 =
1

27a
(a− x)(8a+ x)2.

Note that |y| tends faster towards +∞ than |x| for |t| → +∞.

Example 7.21 Sketch the point set A in the first quadrant of the plane, which is bounded by the three
curves given by

r(t) = (cos t, 1 + sin t), t ∈
[

0,
π

2

]

,

r(t) = (1 + cos t, sint), t ∈
[

0,
π

2

]

,

r(t) = (2 cos t, 2 sin t), t ∈
[

0,
π

2

]

.

A A set bounded by given curves.

D Identify the curves and sketch the set.

I All three curves are quarter circles, which follows from

r1(t) = (0, 1) + (cos t, sin t), t ∈
[

0,
π

2

]

,

r2(t) = (1, 0) + (cos t, sin t), t ∈
[

0,
π

2

]

,

r3(t) = (0, 0) + 2(cos t, sin t), t ∈
[

0,
π

2

]

.
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Example 7.22 Let α be a non-negative constant, and let the curve K be given by the equation

̺ =
c

1 + a cosϕ
, ϕ ∈ I,

where I is a symmetric interval around the point 0, which is as big as possible. Prove that K is (a
part of) a conical section.

A Conical section in polar coordinates.

D Multiply by the denominator and reduce to rectangular coordinates, where c as usual denotes some
positive constant.

I Since ̺ ≥ 0 and c > 0, we must have 1 + α cosϕ > 0. Therefore, in order to find I we must find
possible zeros of the denominator, i.e. we shall examine the equation

1 + α cosϕ = 0, i.e. cosϕ = − 1

α
.

Since α ≥ 0, we have to distinguish between the cases

α = 0, 0 < α < 1, α = 1, α > 1.

1) If α = 0, then ̺ = c, which is the polar equation of a circle of radius c > 0. The circle is clearly
a conical section, and I = R.

2) If 0 < α < 1, then 1 + α cosϕ ≥ 1 − α > 0 for every ϕ, and the denominator is always
positive, and we get I = R. When we multiply by the denominator we get by using rectangular
coordinates,

c = ̺+ α̺ cosϕ = αx,

hence by a rearrangement,
�

x2 + y2 = c− αx ≥ 0.

We get in particular the condition x <
c

α
, which should be checked at the very end of this

example.

When this restriction is satisfied we can square, obtaining

x2 + y2 = c2 − 2αcx+ α2x2.

Then by a rearrangement,

(1 − α2)x2 + 2αcx+ y2 = c2, 0 < α < 1,

i.e.

(1 − α2)

�

x2 +
2αc

1− α2
x+

�

αc

1− α2

�2
�

+ y2 = c2 +
α2c2

1− α2
=

c2

1− α2
.

This can be written in the following canonical way











x+
αc

1− α2

c

1− α2











2

+











y
c√

1− α2











2

= 1.
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This is the equation of an ellipse, hence a conical section of

centre:

(

− αc

1− α2
, 0

)

and half axes:
c

1− α2
and

c√
1− α2

.

Note that

− αc

1− α2
+

c

1− α2
=

c

1 + α
<

c

α
for 0 < α < 1,

and we conclude that the earlier restriction for the squaring is automatically fulfilled.

3) If α = 1, the denominator is 1 + cosϕ = 0 for ϕ = an odd multiple of π, and > 0 otherwise.
The searched for interval is I = ]− π, π[.

When we multiply with the denominator we get

c = ̺+ ̺ cosϕ =
√

x2 + y2 + x,

hence
√

x2 + y2 = c− x ≥ 0, i.e. x ≤ c.

Assuming this we get by squaring,

x2 + y2 = c2 − 2cx+ x2,

so after some reduction we obtain the equation of the parabola

x = − 1

2c
y2 +

c

2
.

Clearly, this expression is ≤ c, so K is the whole of the parabola, and a parabola is also a
conical section.

4) If α > 1, then 1 + α cosϕ = 0 for

cosϕ = − 1

α
∈ ]− 1, 0[,

i.e. the largest possible symmetric domain interval I is

I =

]

−Arccos

(

− 1

α

)

,Arccos

(

− 1

α

)[

.

In this interval we get as in 2) that

√

x2 + y2 = c− αx ≥ 0, i.e. x ≤ c

α
,

and the calculations are then continued in the usual way under this assumption by a squaring,

x2 + y2 = c2 + α2x2 − 2αcx for x ≤ c

α
.

Then by a rearrangement,

(1 − α2)

{

x2 +
2αc

1− α2
x+

(

αc

1− α2

)2
}

+ y2 =
c2

1− α2
< 0,
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hence by norming











x− αc

α2 − 1
c

α2 − 1











2

−











y
c√

α2 − 1











2

= 1.

Thus, for ϕ ∈ I we get an arc of an hyperbola, which again is a conical section.

7.5 Connected sets

Example 7.23 Examine if the point set

A = {(x, y) | (x2 + y2 + 2x)(y2 − x) < 0}

is connected.

A Connected set.

D First find the boundary curves of A. Sketch a figure.

–2

–1

0

1

2

y

–2 –1 1 2 3 4

x

Figure 7.36: The set A consists of the points which either lies inside the circle or inside the parabola.

I Since (x2 + y2 + 2x)(y2 − x) is continuous in R2, the boundary ∂A is given by

0 = (x2 + y2 + 2x)(y2 − x) = {(x+ 1)2 + y2 − 1}(y2 − x),

i.e. the boundary is composed of the circle of equation

(x+ 1)2 + y2 = 1

of centre (−1, 0) and radius 1, and the parabola of equation x = y2. The plane R2 is in this way
divided into three subregions in which f(x, y) due to the continuity must have a fixed sign in each
of these.

The set A is characterized by the condition f(x, y) < 0.

Inserting the centre (−1, 0) of the circle we get

f(−1, 0) = −1 · 1 = −1 < 0,

241

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume-II 
Continuous Functions in Several Variables

242 

Examples of continuous functions in several variables

so by the continuity it follows that the open disc is contained in A.

The point (1, 0) lies inside the parabola, and the value is

f(1, 0) = 3 · (−1) = −3 < 0,

so the interior of the parabola is also a subset of A.

This is sufficient to declare that the set is not connected, because it is impossible to connect
(−1, 0) ∈ A with (1, 0) ∈ A by any continuous curve without intersecting at least one of the zero
curves, which do not lie in A. We therefore conclude that A is not connected.

Remark. Since (0, 1) is a point in the latter component, and

f(0, 1) = 1 · 1 = 1 > 0,

the third component of R2 does not contain any point from A, and A consists of precisely the
union of the open disc and the open interior of the parabola. However, one was never asked this
question. ♦
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Example 7.24 Give an example of a point set which fulfils the following condition: A is not con-
nected, but its closure A is connected.

A Connected sets.

D Analyze the concept of connected sets and give examples.

I According to Example 7.27 below an extreme example is A = Q, which is not connected in R,
while A = R is connected.

A simpler example is A = R \ {0} where A = R.

Another example is given by Example 7.23, because one by the closure also include the point
(0, 0), which can be reached by a continuous curve from both components.

Example 7.25 Show by an example that two connected point sets A and B do not necessarily have
a connected intersection.

A Connected sets.

D Sketch an “amoebe” in the plane.

I Sketch two “half moons” which only intersect in their tips, we see that the intersection has got two
components, and the intersection is not connected. Clearly, each “half moon” is connected.

The sketches are left to the reader.

Example 7.26 Examine if the domain of the function

f(x, y) = Arcsin(x2 + y2 − 3)

is simply connected.

A Simply connected sets.

D Find the domain and analyze.

I The function f(x, y) is defined for

−1 ≤ x2 + y2 − 3 ≤ 1,

i.e. for

2 ≤ x2 + y2 ≤ 4.

This set is an annulus (a set containing a “hole”) of inner radius
√
2 and outer radius 2.

This set is clearly not simply connected.
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–2

–1

1

2

–2 –1 1 2

Example 7.27 Prove that the set of rational numbers is not connected. Formulate a similar result
for a set in the plane.

A Connected sets.

D Analyze the definition of connected sets.

I Let x, y ∈ Q, where e.g. x < y. Every continuous curve in R, which connects x and y, will
then contain the interval [x, y], which also contains irrational numbers, i.e. points outside Q. We
conclude that Q is not connected.

The set {(x, y) | x ∈ Q, y ∈ Q} is not connected in the plane.

Example 7.28 Check in each of the cases below if the domain of the given function is connected.

1) f(x, y, z) = ln |1− x2 − y2 − z2|.

2) f(x, y, z) = ln(1 − x2 − y2 − z2).

3) f(x, y, z) =
√

y2 − x2 +
√
z2 − 1.

4) f(x, y, z) =
√
y − x+

√
z − 1.

5) f(x, y, z) = ln(1 − y2) +
√
x2 − 4 +

√
9− x2.

A Connected domains.

D First find the domain. Then analyze.

1) The function is defined for x2+y2+z2 �= 1, i.e. everywhere with the exception of the unit sphere.
The set can obviously be divided into two connected components, so it is not connected.

2) In this case the domain is the open unit ball, which is connected.

3) It suffices to realize that the domain has one part lying in the half space z ≥ 1 and another
part in the half space z ≤ −1 and no point in between. Hence the set is not connected.

4) The domain is given by y ≥ x and z ≥ 1, i.e. the union of two half spaces (convex sets) and
thus connected.
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5) The function is independent of z, and defined for

1− y2 > 0, x2 − 4 ≥ 0, 9− x2 ≥ 0,

so the domain is

[−3,−2]× ]− 1, 1[×R ∪ [2, 3]× ]− 1, 1[×R.

This set contains two connected components, hence it is not itself connected.

7.6 Description of surfaces

Example 7.29 In the following there are given some surfaces in the form x = r(u, v), (u, v) ∈ R2.
Find in each of these cases an equation of the surface by eliminating the parameters (u, v), and then
describe the type of the surface.

1) r(u, v) = (u, u+ 2v, v − u).

2) r(u, v) = (u, sin v, 3 cos v).

3) r(u, v) = (u cos v, u sin v, u2 sin 2v).

4) r(u, v) = (a(cos v − u sin v), b(sin v + u cos v), cu).

5) r(u, v) = (u cos v, 2u sin v, u2).

6) r(u, v) = (u + v, u− v, 4v2).

7) r(u, v) = (u + v, u2 + v2, u3 + v3).

A Description of surfaces.

D Eliminate (u, v) to obtain some known relationship between x, y, z.

I 1) Here

x = u, y = u+ 2v, z = v − u,

hence

y − 2z = u+ 2v − 2v + 2u = 3u = 3x,

or

3x− y + 2z = 0.

This is the equation of a plane through (0, 0, 0) with the normal vector (3,−1, 2).

2) Here

x = u, y = sin v, z = 3 cos v,

i.e.

y2 +
(z

3

)2

= 1, x = u, u ∈ R.

This is a cylindric surface with the X axis as its axis and the ellipse of centrum (0, 0) and half
axes 1 and 3 in the Y Z plane as the generating curve.
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3) It follows from

x = u cos v, y = u sin v, z = u2 sin 2v

that

2xy = 2u2 cos v · sin v = u2 sin 2v = z,

i.e.

z = 2xy,

which describes an hyperbolic paraboloid.

4) Here

x

a
= cos v − u sin v,

y

b
= sin v + u cos v,

z

c
= u,

hence

(x

a

)2

= cos2 v − 2u sin v · cos v + u2 sin2 v,

(y

b

)2

= sin2 v + 2u sin v · cos v + u2 cos2 v,
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and accordingly

(x

a

)2

+
(y

b

)2

= 1 + u2 = 1 +
(z

c

)2

.

This is the equation of an hyperboloid with one sheet.

5) It follows from

x = u cos v,
y

2
= u sin v, z = u2

that

x2 +
(y

2

)2

= u2 = z,

which is the equation of an elliptic paraboloid.

6) It follows from

x = u+ v, y = u− v, z = 4v2

that 2v = x− y, i.e.

z = 4v2 = (x− y)2.

This is the equation of a cylindric surface with the line y = x as its axis and a parabola as its
generating curve.

7) It follows from

x = u+ v, y = u2 + v2, z = u3 + v3

that

2z = 2(u3 + v3) = (u+ v)(2u2 − 2uv + 2v2) = x(2y − 2uv),

where

2uv = (u+ v)2 − (u2 + v2) = x2 − y.

Then by insertion,

2z = x(3y − x2).

This equation contains terms of first, second and third order.
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Example 7.30 Sketch the following cylindric surfaces.

1) x = cosϕ, y = sinϕ, ϕ ∈
[π

6
,
π

2

]

, z ∈ [1, 2ϕ].

2) xy = 1, y ∈
[

1

2
, 2

]

, z ∈ [0, x].

3) y = e−x, z ∈ [y, 1].

4) x = y2, z ∈ [x, y].

A Cylindric surfaces.

D First sketch the projection onto the XY plane.

I 1) Here we get a circular arc in the XY - plane.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

–0.2 0.2 0.4 0.6 0.8 1

x

Figure 7.37: The projection onto the XY plane.

0.5

1

1.5

2

2.5

3

3.5

–0.2

0.2
0.4
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1
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–0.2

0.2
0.4

0.6
0.8

1

s

Figure 7.38: The cylindric surface of 1).

2) The projection onto the XY plane is an arc of an hyperbola, lying in the first quadrant. Note
that x ∈ [ 12 , 2].

248

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume-II 
Continuous Functions in Several Variables

249 

Examples of continuous functions in several variables
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Figure 7.39: The projection onto the XY plane.
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Figure 7.40: The cylindric surface of 2).
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Figure 7.41: The projection onto the XY plane.

3) Since y ≤ 1, we must have x ≥ 0.

4) From x = y2 ≤ z ≤ y we get the condition 0 ≤ y ≤ 1. On the figure the surface looks wrong.
There may here be an error in the MAPLE programme, though I am not sure.
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Figure 7.42: The cylindric surface of 3).
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Figure 7.43: The projection onto the XY plane.
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Figure 7.44: The cylindric surface of 4).
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Example 7.31 In the following there are given some equations of meridian curves. Set up in each
case an equation of the corresponding surface of revolution O and find the name of O.

1) z = ̺.

2) ̺ = |z|.

3) ̺ = a.

4) z2 + 2̺2 = 2az.

5) z2 − ̺2 = a2.

6) ̺2 − z2 = a2.

A Surfaces of revolution with a given meridian curve.

D First sketch the meridian curve in the PZ half plane.

I 1) This is a cone of vertex (0, 0, 0).
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Figure 7.45: The meridian curve of 1).
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Figure 7.46: The surface of 1).

2) This is a double cone of vertex (0, 0, 0).

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

y

0.2 0.4 0.6 0.8 1

x

Figure 7.47: The meridian curve of 2).

3) This is clearly a cylinder.
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Figure 7.48: The surface of 2).
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Figure 7.49: The meridian curve of 3).
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Figure 7.50: The surface of 3).

4) It follows by a small rearrangement that the equation is equivalent to

(z − a)2 + 2̺2 = a2,
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i.e. in the canonical form







̺
a√
2







2

+

�

z − a

a

�2

= 1, ̺ ≥ 0.

The meridian curve is an half ellipse in the PZ half plane of centre (0, a) and half axes
a√
2

and a.

0

0.5

1

1.5

2

y

0.2 0.4 0.6 0.8 1

x

Figure 7.51: The meridian curve of 4).

The surface of revolution is the surface of an ellipsoid of centre (0, 0, a) and half axes
a√
2
,

a√
2

and a. Notice that one of the top points lies at (0, 0, 0). Also note that the scales are different
on the axes on the figure.
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Figure 7.52: The surface of 4).

5) In this case the meridian curves consist of two halves of branches of an hyperbola.
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Figure 7.53: The meridian curves of 5).

By the revolution we get an hyperboloid with two sheets. Only the upper sheet is sketched on
the figure (and we use different scales on the axes). There is a similar surface in the lower half
space.

6) The curve ̺2 − z2 = a2, ̺ ≥ 0, is a branch of an hyperbola with its top point at (a, 0) and
its half axes a and a. The surface of revolution is an hyperboloid with one sheet and of centre
(0, 0, 0) and with the Z axis as its axes of revolution and with the half axes a, a, a.
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Figure 7.54: The upper surface of 5).
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Figure 7.55: The meridian curve of 6).
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Figure 7.56: The surface of 6).
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8 Formulæ

Some of the following formulæ can be assumed to be known from high school. It is highly recommended
that one learns most of these formulæ in this appendix by heart.

8.1 Squares etc.

The following simple formulæ occur very frequently in the most different situations.

(a+ b)2 = a2 + b2 + 2ab, a2 + b2 + 2ab = (a+ b)2,
(a− b)2 = a2 + b2 − 2ab, a2 + b2 − 2ab = (a− b)2,
(a+ b)(a− b) = a2 − b2, a2 − b2 = (a+ b)(a− b),
(a+ b)2 = (a− b)2 + 4ab, (a− b)2 = (a+ b)2 − 4ab.

8.2 Powers etc.

Logarithm:

ln |xy| = ln |x|+ ln |y|, x, y �= 0,

ln

∣

∣

∣

∣

x

y

∣

∣

∣

∣

= ln |x| − ln |y|, x, y �= 0,

ln |xr| = r ln |x|, x �= 0.

Power function, fixed exponent:

(xy)r = xr · yr, x, y > 0 (extensions for some r),

(

x

y

)r

=
xr

yr
, x, y > 0 (extensions for some r).

Exponential, fixed base:

ax · ay = ax+y, a > 0 (extensions for some x, y),
(ax)y = axy, a > 0 (extensions for some x, y),

a−x =
1

ax
, a > 0, (extensions for some x),

n
√
a = a1/n, a ≥ 0, n ∈ N.

Square root:

√
x2 = |x|, x ∈ R.

Remark 8.1 It happens quite frequently that students make errors when they try to apply these
rules. They must be mastered! In particular, as one of my friends once put it: “If you can master the
square root, you can master everything in mathematics!” Notice that this innocent looking square
root is one of the most difficult operations in Calculus. Do not forget the absolute value! ♦
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8.3 Differentiation

Here are given the well-known rules of differentiation together with some rearrangements which some-
times may be easier to use:

{f(x)± g(x)}′ = f ′(x)± g′(x),

{f(x)g(x)}′ = f ′(x)g(x) + f(x)g′(x) = f(x)g(x)

{

f ′(x)

f(x)
+

g′(x)

g(x)

}

,

where the latter rearrangement presupposes that f(x) �= 0 and g(x) �= 0.
If g(x) �= 0, we get the usual formula known from high school

{

f(x)

g(x)

}′
=

f ′(x)g(x) − f(x)g′(x)

g(x)2
.

It is often more convenient to compute this expression in the following way:

{

f(x)

g(x)

}

=
d

dx

{

f(x) · 1

g(x)

}

=
f ′(x)

g(x)
− f(x)g′(x)

g(x)2
=

f(x)

g(x)

{

f ′(x)

f(x)
− g′(x)

g(x)

}

,

where the former expression often is much easier to use in practice than the usual formula from high
school, and where the latter expression again presupposes that f(x) �= 0 and g(x) �= 0. Under these
assumptions we see that the formulæ above can be written

{f(x)g(x)}′
f(x)g(x)

=
f ′(x)

f(x)
+

g′(x)

g(x)
,

{f(x)/g(x)}′
f(x)/g(x)

=
f ′(x)

f(x)
− g′(x)

g(x)
.

Since

d

dx
ln |f(x)| = f ′(x)

f(x)
, f(x) �= 0,

we also name these the logarithmic derivatives.

Finally, we mention the rule of differentiation of a composite function

{f(ϕ(x))}′ = f ′(ϕ(x)) · ϕ′(x).

We first differentiate the function itself; then the insides. This rule is a 1-dimensional version of the
so-called Chain rule.

8.4 Special derivatives.

Power like:

d

dx
(xα) = α · xα−1, for x > 0, (extensions for some α).

d

dx
ln |x| = 1

x
, for x �= 0.
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Exponential like:

d

dx
expx = expx, for x ∈ R,

d

dx
(ax) = ln a · ax, for x ∈ R and a > 0.

Trigonometric:

d

dx
sinx = cosx, for x ∈ R,

d

dx
cosx = − sinx, for x ∈ R,

d

dx
tanx = 1+ tan2 x =

1

cos2 x
, for x �= π

2
+ pπ, p ∈ Z,

d

dx
cotx = −(1 + cot2 x) = − 1

sin2 x
, for x �= pπ, p ∈ Z.

Hyperbolic:

d

dx
sinhx = coshx, for x ∈ R,

d

dx
coshx = sinhx, for x ∈ R,

d

dx
tanhx = 1− tanh2 x =

1

cosh2 x
, for x ∈ R,

d

dx
cothx = 1− coth2 x = − 1

sinh2 x
, for x �= 0.

Inverse trigonometric:

d

dx
Arcsin x =

1√
1− x2

, for x ∈ ]− 1, 1 [,

d

dx
Arccos x = − 1√

1− x2
, for x ∈ ]− 1, 1 [,

d

dx
Arctan x =

1

1 + x2
, for x ∈ R,

d

dx
Arccot x =

1

1 + x2
, for x ∈ R.

Inverse hyperbolic:

d

dx
Arsinh x =

1√
x2 + 1

, for x ∈ R,

d

dx
Arcosh x =

1√
x2 − 1

, for x ∈ ] 1,+∞ [,

d

dx
Artanh x =

1

1− x2
, for |x| < 1,

d

dx
Arcoth x =

1

1− x2
, for |x| > 1.

Remark 8.2 The derivative of the trigonometric and the hyperbolic functions are to some extent
exponential like. The derivatives of the inverse trigonometric and inverse hyperbolic functions are
power like, because we include the logarithm in this class. ♦
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8.5 Integration

The most obvious rules are dealing with linearity

∫

{f(x) + λg(x)} dx =

∫

f(x) dx + λ

∫

g(x) dx, where λ ∈ R is a constant,

and with the fact that differentiation and integration are “inverses to each other”, i.e. modulo some
arbitrary constant c ∈ R, which often tacitly is missing,

∫

f ′(x) dx = f(x).

If we in the latter formula replace f(x) by the product f(x)g(x), we get by reading from the right to
the left and then differentiating the product,

f(x)g(x) =

∫

{f(x)g(x)}′ dx =

∫

f ′(x)g(x) dx +

∫

f(x)g′(x) dx.

Hence, by a rearrangement

The rule of partial integration:

∫

f ′(x)g(x) dx = f(x)g(x)−
∫

f(x)g′(x) dx.

The differentiation is moved from one factor of the integrand to the other one by changing the sign
and adding the term f(x)g(x).

Remark 8.3 This technique was earlier used a lot, but is almost forgotten these days. It must
be revived, because MAPLE and pocket calculators apparently do not know it. It is possible to
construct examples where these devices cannot give the exact solution, unless you first perform a
partial integration yourself. ♦

Remark 8.4 This method can also be used when we estimate integrals which cannot be directly
calculated, because the antiderivative is not contained in e.g. the catalogue of MAPLE. The idea is
by a succession of partial integrations to make the new integrand smaller. ♦

Integration by substitution:

If the integrand has the special structure f(ϕ(x)) ·ϕ′(x), then one can change the variable to y = ϕ(x):

∫

f(ϕ(x)) · ϕ′(x) dx = “

∫

f(ϕ(x)) dϕ(x)′′ =

∫

y=ϕ(x)

f(y) dy.
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Integration by a monotonous substitution:

If ϕ(y) is a monotonous function, which maps the y-interval one-to-one onto the x-interval, then

∫

f(x) dx =

∫

y=ϕ−1(x)

f(ϕ(y))ϕ′(y) dy.

Remark 8.5 This rule is usually used when we have some “ugly” term in the integrand f(x). The
idea is to put this ugly term equal to y = ϕ−1(x). When e.g. x occurs in f(x) in the form

√
x, we put

y = ϕ−1(x) =
√
x, hence x = ϕ(y) = y2 and ϕ′(y) = 2y. ♦

8.6 Special antiderivatives

Power like:
∫

1

x
dx = ln |x|, for x �= 0. (Do not forget the numerical value!)

∫

xα dx =
1

α+ 1
xα+1, for α �= −1,

∫

1

1 + x2
dx = Arctan x, for x ∈ R,

∫

1

1− x2
dx =

1

2
ln

∣

∣

∣

∣

1 + x

1− x

∣

∣

∣

∣

, for x �= ±1,

∫

1

1− x2
dx = Artanh x, for |x| < 1,

∫

1

1− x2
dx = Arcoth x, for |x| > 1,

∫

1√
1− x2

dx = Arcsin x, for |x| < 1,

∫

1√
1− x2

dx = − Arccos x, for |x| < 1,

∫

1√
x2 + 1

dx = Arsinh x, for x ∈ R,

∫

1√
x2 + 1

dx = ln(x+
√

x2 + 1), for x ∈ R,

∫

x√
x2 − 1

dx =
√

x2 − 1, for x ∈ R,

∫

1√
x2 − 1

dx = Arcosh x, for x > 1,

∫

1√
x2 − 1

dx = ln |x+
√

x2 − 1|, for x > 1 eller x < −1.

There is an error in the programs of the pocket calculators TI-92 and TI-89. The numerical signs are
missing. It is obvious that

√
x2 − 1 < |x| so if x < −1, then x+

√
x2 − 1 < 0. Since you cannot take

the logarithm of a negative number, these pocket calculators will give an error message.
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Exponential like:

∫

expx dx = expx, for x ∈ R,

∫

ax dx =
1

ln a
· ax, for x ∈ R, and a > 0, a �= 1.

Trigonometric:

∫

sinx dx = − cosx, for x ∈ R,

∫

cosx dx = sinx, for x ∈ R,

∫

tanx dx = − ln | cosx|, for x �= π

2
+ pπ, p ∈ Z,

∫

cotx dx = ln | sinx|, for x �= pπ, p ∈ Z,

∫

1

cosx
dx =

1

2
ln

(

1 + sinx

1− sinx

)

, for x �= π

2
+ pπ, p ∈ Z,

∫

1

sinx
dx =

1

2
ln

(

1− cosx

1 + cosx

)

, for x �= pπ, p ∈ Z,

∫

1

cos2 x
dx = tanx, for x �= π

2
+ pπ, p ∈ Z,

∫

1

sin2 x
dx = − cotx, for x �= pπ, p ∈ Z.

Hyperbolic:

∫

sinhx dx = coshx, for x ∈ R,

∫

coshx dx = sinhx, for x ∈ R,

∫

tanhx dx = ln coshx, for x ∈ R,

∫

cothx dx = ln | sinhx|, for x �= 0,

∫

1

coshx
dx = Arctan(sinhx), for x ∈ R,

∫

1

coshx
dx = 2 Arctan(ex), for x ∈ R,

∫

1

sinhx
dx =

1

2
ln

(

coshx− 1

coshx+ 1

)

, for x �= 0,
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∫

1

sinhx
dx = ln

∣

∣

∣

∣

ex − 1

ex + 1

∣

∣

∣

∣

, for x �= 0,

∫

1

cosh2 x
dx = tanhx, for x ∈ R,

∫

1

sinh2 x
dx = − cothx, for x �= 0.

8.7 Trigonometric formulæ

The trigonometric formulæ are closely connected with circular movements. Thus (cosu, sinu) are
the coordinates of a point P on the unit circle corresponding to the angle u, cf. figure A.1. This
geometrical interpretation is used from time to time.

✫✪
✬✩

✲

✻

��
(cosu, sinu)

u
1

Figure 8.1: The unit circle and the trigonometric functions.

The fundamental trigonometric relation:

cos2 u+ sin2 u = 1, for u ∈ R.

Using the previous geometric interpretation this means according to Pythagoras’s theorem, that the
point P with the coordinates (cosu, sinu) always has distance 1 from the origo (0, 0), i.e. it is lying
on the boundary of the circle of centre (0, 0) and radius

√
1 = 1.

Connection to the complex exponential function:

The complex exponential is for imaginary arguments defined by

exp(iu) := cosu+ i sinu.

It can be checked that the usual functional equation for exp is still valid for complex arguments. In
other word: The definition above is extremely conveniently chosen.

By using the definition for exp(iu) and exp(− iu) it is easily seen that

cosu =
1

2
(exp(iu) + exp(− iu)),

sinu =
1

2i
(exp(i u)− exp(− iu)),

.
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Moivre’s formula: We get by expressing exp(inu) in two different ways:

exp(inu) = cosnu+ i sinnu = (cosu+ i sinu)n.

Example 8.1 If we e.g. put n = 3 into Moivre’s formula, we obtain the following typical application,

cos(3u) + i sin(3u) = (cos u+ i sinu)3

= cos3 u+ 3i cos2 u · sinu+ 3i2 cosu · sin2 u+ i3 sin3 u

= {cos3 u− 3 cosu · sin2 u}+ i{3 cos2 u · sinu− sin3 u}
= {4 cos3 u− 3 cosu}+ i{3 sinu− 4 sin3 u}

When this is split into the real- and imaginary parts we obtain

cos 3u = 4 cos3 u− 3 cosu, sin 3u = 3 sinu− 4 sin3 u. ♦

Addition formulæ:

sin(u+ v) = sinu cos v + cosu sin v,

sin(u− v) = sinu cos v − cosu sin v,

cos(u + v) = cosu cos v − sinu sin v,

cos(u − v) = cosu cos v + sinu sin v.

Products of trigonometric functions to a sum:

sinu cos v =
1

2
sin(u + v) +

1

2
sin(u− v),

cosu sin v =
1

2
sin(u + v)− 1

2
sin(u− v),

sinu sin v =
1

2
cos(u − v)− 1

2
cos(u+ v),

cosu cos v =
1

2
cos(u− v) +

1

2
cos(u + v).

Sums of trigonometric functions to a product:

sinu+ sin v = 2 sin

(

u+ v

2

)

cos

(

u− v

2

)

,

sinu− sin v = 2 cos

(

u+ v

2

)

sin

(

u− v

2

)

,

cosu+ cos v = 2 cos

(

u+ v

2

)

cos

(

u− v

2

)

,

cosu− cos v = −2 sin

(

u+ v

2

)

sin

(

u− v

2

)

.

Formulæ of halving and doubling the angle:

sin 2u = 2 sinu cosu,

cos 2u = cos2 u− sin2 u = 2 cos2 u− 1 = 1− 2 sin2 u,

sin
u

2
= ±

√

1− cosu

2
followed by a discussion of the sign,

cos
u

2
= ±

√

1 + cosu

2
followed by a discussion of the sign,
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8.8 Hyperbolic formulæ

These are very much like the trigonometric formulæ, and if one knows a little of Complex Function
Theory it is realized that they are actually identical. The structure of this section is therefore the same
as for the trigonometric formulæ. The reader should compare the two sections concerning similarities
and differences.

The fundamental relation:

cosh2 x− sinh2 x = 1.

Definitions:

coshx =
1

2
(exp(x) + exp(−x)) , sinhx =

1

2
(exp(x) − exp(−x)) .

“Moivre’s formula”:

exp(x) = coshx+ sinhx.

This is trivial and only rarely used. It has been included to show the analogy.

Addition formulæ:

sinh(x+ y) = sinh(x) cosh(y) + cosh(x) sinh(y),

sinh(x− y) = sinh(x) cosh(y)− cosh(x) sinh(y),

cosh(x + y) = cosh(x) cosh(y) + sinh(x) sinh(y),

cosh(x − y) = cosh(x) cosh(y)− sinh(x) sinh(y).

Formulæ of halving and doubling the argument:

sinh(2x) = 2 sinh(x) cosh(x),

cosh(2x) = cosh2(x) + sinh2(x) = 2 cosh2(x)− 1 = 2 sinh2(x) + 1,

sinh
(x

2

)

= ±
√

cosh(x) − 1

2
followed by a discussion of the sign,

cosh
(x

2

)

=

√

cosh(x) + 1

2
.

Inverse hyperbolic functions:

Arsinh(x) = ln
(

x+
√

x2 + 1
)

, x ∈ R,

Arcosh(x) = ln
(

x+
√

x2 − 1
)

, x ≥ 1,

Artanh(x) =
1

2
ln

(

1 + x

1− x

)

, |x| < 1,

Arcoth(x) =
1

2
ln

(

x+ 1

x− 1

)

, |x| > 1.
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8.9 Complex transformation formulæ

cos(ix) = cosh(x), cosh(ix) = cos(x),

sin(ix) = i sinh(x), sinh(ix) = i sinx.

8.10 Taylor expansions

The generalized binomial coefficients are defined by

(

α
n

)

:=
α(α− 1) · · · (α− n+ 1)

1 · 2 · · ·n ,

with n factors in the numerator and the denominator, supplied with

(

α
0

)

:= 1.

The Taylor expansions for standard functions are divided into power like (the radius of convergency
is finite, i.e. = 1 for the standard series) andexponential like (the radius of convergency is infinite).
Power like:

1

1− x
=

∞
∑

n=0

xn, |x| < 1,

1

1 + x
=

∞
∑

n=0

(−1)nxn, |x| < 1,

(1 + x)n =

n
∑

j=0

(

n
j

)

xj , n ∈ N, x ∈ R,

(1 + x)α =

∞
∑

n=0

(

α
n

)

xn, α ∈ R \ N, |x| < 1,

ln(1 + x) =

∞
∑

n=1

(−1)n−1x
n

n
, |x| < 1,

Arctan(x) =

∞
∑

n=0

(−1)n
x2n+1

2n+ 1
, |x| < 1.
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Exponential like:

exp(x) =

∞
∑

n=0

1

n!
xn, x ∈ R

exp(−x) =

∞
∑

n=0

(−1)n
1

n!
xn, x ∈ R

sin(x) =

∞
∑

n=0

(−1)n
1

(2n+ 1)!
x2n+1, x ∈ R,

sinh(x) =

∞
∑

n=0

1

(2n+ 1)!
x2n+1, x ∈ R,

cos(x) =

∞
∑

n=0

(−1)n
1

(2n)!
x2n, x ∈ R,

cosh(x) =

∞
∑

n=0

1

(2n)!
x2n, x ∈ R.

8.11 Magnitudes of functions

We often have to compare functions for x → 0+, or for x → ∞. The simplest type of functions are
therefore arranged in an hierarchy:

1) logarithms,

2) power functions,

3) exponential functions,

4) faculty functions.

When x → ∞, a function from a higher class will always dominate a function form a lower class. More
precisely:

A) A power function dominates a logarithm for x → ∞:

(lnx)β

xα
→ 0 for x → ∞, α, β > 0.

B) An exponential dominates a power function for x → ∞:

xα

ax
→ 0 for x → ∞, α, a > 1.

C) The faculty function dominates an exponential for n → ∞:

an

n!
→ 0, n → ∞, n ∈ N, a > 0.

D) When x → 0+ we also have that a power function dominates the logarithm:

xα lnx → 0−, for x → 0+, α > 0.
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absolute value 162
acceleration 490
addition 22
affinity factor 173
Ampère-Laplace law 1671
Ampère-Maxwell’s law 1678
Ampère’s law 1491, 1498, 1677, 1678, 1833
Ampère’s law for the magnetic field 1674
angle 19
angular momentum 886
angular set 84
annulus 176, 243
anticommutative product 26
antiderivative 301, 847
approximating polynomial 304, 322, 326, 336, 404,

488, 632, 662
approximation in energy 734
Archimedes’s spiral 976, 1196
Archimedes’s theorem 1818
area 887, 1227, 1229, 1543
area element 1227
area of a graph 1230
asteroid 1215
asymptote 51
axial moment 1910
axis of revolution 181
axis of rotation 34, 886
axis of symmetry 49, 50, 53

barycentre 885, 1910
basis 22
bend 486
bijective map 153
body of revolution 43, 1582, 1601
boundary 37–39
boundary curve 182
boundary curve of a surface 182
boundary point 920
boundary set 21
bounded map 153
bounded set 41
branch 184
branch of a curve 492
Brownian motion 884

cardiod 972, 973, 1199, 1705

Cauchy-Schwarz’s inequality 23, 24, 26
centre of gravity 1108
centre of mass 885
centrum 66
chain rule 305, 333, 352, 491, 503, 581, 1215, 1489,

1493, 1808
change of parameter 174
circle 49
circular motion 19
circulation 1487
circulation theorem 1489, 1491
circumference 86
closed ball 38
closed differential form 1492
closed disc 86
closed domain 176
closed set 21
closed surface 182, 184
closure 39
clothoid 1219
colour code 890
compact set 186, 580, 1813
compact support 1813
complex decomposition 69
composite function 305
conductivity of heat 1818
cone 19, 35, 59, 251
conic section 19, 47, 54, 239, 536
conic sectional conic surface 59, 66
connected set 175, 241
conservation of electric charge 1548, 1817
conservation of energy 1548, 1817
conservation of mass 1548, 1816
conservative force 1498, 1507
conservative vector field 1489
continuity equation 1548, 1569, 1767, 1817
continuity 162, 186
continuous curve 170, 483
continuous extension 213
continuous function 168
continuous surfaces 177
contraction 167
convective term 492
convex set 21, 22, 41, 89, 91, 175, 244
coordinate function 157, 169
coordinate space 19, 21
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Cornu’s spiral 1219
Coulomb field 1538, 1545, 1559, 1566, 1577
Coulomb vector field 1585, 1670
cross product 19, 163, 169, 1750
cube 42, 82
current density 1678, 1681
current 1487, 1499
curvature 1219
curve 227
curve length 1165
curved space integral 1021
cusp 486, 487, 489
cycloid 233, 1215
cylinder 34, 42, 43, 252
cylinder of revolution 500
cylindric coordinates 15, 21, 34, 147, 181, 182,

289, 477,573, 841, 1009, 1157, 1347, 1479,
1651, 1801

cylindric surface 180, 245, 247, 248, 499, 1230

degree of trigonometric polynomial 67
density 885
density of charge 1548
density of current 1548
derivative 296
derivative of inverse function 494
Descartes’a leaf 974
dielectric constant 1669, 1670
difference quotient 295
differentiability 295
differentiable function 295
differentiable vector function 303
differential 295, 296, 325, 382, 1740, 1741
differential curves 171
differential equation 369, 370, 398
differential form 848
differential of order p 325
differential of vector function 303
diffusion equation 1818
dimension 1016
direction 334
direction vector 172
directional derivative 317, 334, 375
directrix 53
Dirichlet/Neumann problem 1901
displacement field 1670
distribution of current 886
divergence 1535, 1540, 1542, 1739, 1741, 1742
divergence free vector field 1543

dodecahedron 83
domain 153, 176
domain of a function 189
dot product 19, 350, 1750
double cone 252
double point 171
double vector product 27

eccentricity 51
eccentricity of ellipse 49
eigenvalue 1906
elasticity 885, 1398
electric field 1486, 1498, 1679
electrical dipole moment 885
electromagnetic field 1679
electromagnetic potentials 1819
electromotive force 1498
electrostatic field 1669
element of area 887
elementary chain rule 305
elementary fraction 69
ellipse 48–50, 92, 113, 173, 199, 227
ellipsoid 56, 66, 110, 197, 254, 430, 436, 501, 538,

1107
ellipsoid of revolution 111
ellipsoidal disc 79, 199
ellipsoidal surface 180
elliptic cylindric surface 60, 63, 66, 106
elliptic paraboloid 60, 62, 66, 112, 247
elliptic paraboloid of revolution 624
energy 1498
energy density 1548, 1818
energy theorem 1921
entropy 301
Euclidean norm 162
Euclidean space 19, 21, 22
Euler’s spiral 1219
exact differential form 848
exceptional point 594, 677, 920
expansion point 327
explicit given function 161
extension map 153
exterior 37–39
exterior point 38
extremum 580, 632

Faraday-Henry law of electromagnetic induction
1676

Fick’s first law of diffusion 297
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Fick’s law 1818
field line 160
final point 170
fluid mechanics 491
flux 1535, 1540, 1549
focus 49, 51, 53
force 1485
Fourier’s law 297, 1817
function in several variables 154
functional matrix 303
fundamental theorem of vector analysis 1815

Gaussian integral 938
Gauß’s law 1670
Gauß’s law for magnetism 1671
Gauß’s theorem 1499, 1535, 1540, 1549, 1580, 1718,

1724, 1737, 1746, 1747, 1749, 1751, 1817,
1818, 1889, 1890, 1913

Gauß’s theorem in R2 1543
Gauß’s theorem in R3 1543
general chain rule 314
general coordinates 1016
general space integral 1020
general Taylor’s formula 325
generalized spherical coordinates 21
generating curve 499
generator 66, 180
geometrical analysis 1015
global minimum 613
gradient 295, 296, 298, 339, 847, 1739, 1741
gradient field 631, 847, 1485, 1487, 1489, 1491,

1916
gradient integral theorem 1489, 1499
graph 158, 179, 499, 1229
Green’s first identity 1890
Green’s second identity 1891, 1895
Green’s theorem in the plane 1661, 1669, 1909
Green’s third identity 1896
Green’s third identity in the plane 1898

half-plane 41, 42
half-strip 41, 42
half disc 85
harmonic function 426, 427, 1889
heat conductivity 297
heat equation 1818
heat flow 297
height 42
helix 1169, 1235

Helmholtz’s theorem 1815
homogeneous function 1908
homogeneous polynomial 339, 372
Hopf’s maximum principle 1905
hyperbola 48, 50, 51, 88, 195, 217, 241, 255, 1290
hyperbolic cylindric surface 60, 63, 66, 105, 110
hyperbolic paraboloid 60, 62, 66, 246, 534, 614,

1445
hyperboloid 232, 1291
hyperboloid of revolution 104
hyperboloid of revolution with two sheets 111
hyperboloid with one sheet 56, 66, 104, 110, 247,

255
hyperboloid with two sheets 59, 66, 104, 110, 111,

255, 527
hysteresis 1669

identity map 303
implicit given function 21, 161
implicit function theorem 492, 503
improper integral 1411
improper surface integral 1421
increment 611
induced electric field 1675
induction field 1671
infinitesimal vector 1740
infinity, signed 162
infinity, unspecified 162
initial point 170
injective map 153
inner product 23, 29, 33, 163, 168, 1750
inspection 861
integral 847
integral over cylindric surface 1230
integral over surface of revolution 1232
interior 37–40
interior point 38
intrinsic boundary 1227
isolated point 39
Jacobian 1353, 1355

Kronecker symbol 23

Laplace equation 1889
Laplace force 1819
Laplace operator 1743
latitude 35
length 23
level curve 159, 166, 198, 492, 585, 600, 603
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level surface 198, 503
limit 162, 219
line integral 1018, 1163
line segment 41
Linear Algebra 627
linear space 22
local extremum 611
logarithm 189
longitude 35
Lorentz condition 1824

Maclaurin’s trisectrix 973, 975
magnetic circulation 1674
magnetic dipole moment 886, 1821
magnetic field 1491, 1498, 1679
magnetic flux 1544, 1671, 1819
magnetic force 1674
magnetic induction 1671
magnetic permeability of vacuum 1673
magnostatic field 1671
main theorems 185
major semi-axis 49
map 153
MAPLE 55, 68, 74, 156, 171, 173, 341, 345, 350,

352–354, 356, 357, 360, 361, 363, 364,
366, 368, 374, 384–387, 391–393, 395–
397, 401, 631, 899, 905–912, 914, 915,
917, 919, 922–924, 926, 934, 935, 949,
951, 954, 957–966, 968, 971–973, 975,
1032–1034, 1036, 1037, 1039, 1040, 1042,
1053, 1059, 1061, 1064, 1066–1068, 1070–
1072, 1074, 1087, 1089, 1091, 1092, 1094,
1095, 1102, 1199, 1200

matrix product 303
maximal domain 154, 157
maximum 382, 579, 612, 1916
maximum value 922
maximum-minimum principle for harmonic func-

tions 1895
Maxwell relation 302
Maxwell’s equations 1544, 1669, 1670, 1679, 1819
mean value theorem 321, 884, 1276, 1490
mean value theorem for harmonic functions 1892
measure theory 1015
Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157,

1347, 1479, 1651, 1801, 1921
meridian curve 181, 251, 499, 1232
meridian half-plane 34, 35, 43, 181, 1055, 1057,

1081

method of indefinite integration 859
method of inspection 861
method of radial integration 862
minimum 186, 178, 579, 612, 1916
minimum value 922
minor semi-axis 49
mmf 1674
Möbius strip 185, 497
Moivre’s formula 122, 264, 452, 548, 818, 984,

1132, 1322, 1454, 1626, 1776, 1930
monopole 1671
multiple point 171

nabla 296, 1739
nabla calculus 1750
nabla notation 1680
natural equation 1215
natural parametric description 1166, 1170
negative definite matrix 627
negative half-tangent 485
neighbourhood 39
neutral element 22
Newton field 1538
Newton-Raphson iteration formula 583
Newton’s second law 1921
non-oriented surface 185
norm 19, 23
normal 1227
normal derivative 1890
normal plane 487
normal vector 496, 1229

octant 83
Ohm’s law 297
open ball 38
open domain 176
open set 21, 39
order of expansion 322
order relation 579
ordinary integral 1017
orientation of a surface 182
orientation 170, 172, 184, 185, 497
oriented half line 172
oriented line 172
oriented line segment 172
orthonormal system 23

parabola 52, 53, 89–92, 195, 201, 229, 240, 241
parabolic cylinder 613

272

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume-II 
Continuous Functions in Several Variables

273 

Index

parabolic cylindric surface 64, 66
paraboloid of revolution 207, 613, 1435
parallelepipedum 27, 42
parameter curve 178, 496, 1227
parameter domain 1227
parameter of a parabola 53
parametric description 170, 171, 178
parfrac 71
partial derivative 298
partial derivative of second order 318
partial derivatives of higher order 382
partial differential equation 398, 402
partial fraction 71
Peano 483
permeability 1671
piecewise Ck-curve 484
piecewise Cn-surface 495
plane 179
plane integral 21, 887
point of contact 487
point of expansion 304, 322
point set 37
Poisson’s equation 1814, 1889, 1891, 1901
polar coordinates 15, 19, 21, 30, 85, 88, 147, 163,

172, 213, 219, 221, 289, 347, 388, 390,
477, 573, 611, 646, 720, 740, 841, 936,
1009, 1016, 1157, 1165, 1347, 1479, 1651,
1801

polar plane integral 1018
polynomial 297
positive definite matrix 627
positive half-tangent 485
positive orientation 173
potential energy 1498
pressure 1818
primitive 1491
primitive of gradient field 1493
prism 42
Probability Theory 15, 147, 289, 477, 573, 841,

1009, 1157, 1347, 1479, 1651, 1801
product set 41
projection 23, 157
proper maximum 612, 618, 627
proper minimum 612, 613, 618, 627
pseudo-sphere 1434
Pythagoras’s theorem 23, 25, 30, 121, 451, 547,

817, 983, 1131, 1321, 1453, 1625, 1775,
1929

quadrant 41, 42, 84
quadratic equation 47

range 153
rectangle 41, 87
rectangular coordinate system 29
rectangular coordinates 15, 21, 22, 147, 289, 477,

573, 841, 1009, 1016, 1079, 1157, 1165,
1347, 1479, 1651, 1801

rectangular plane integral 1018
rectangular space integral 1019
rectilinear motion 19
reduction of a surface integral 1229
reduction of an integral over cylindric surface 1231
reduction of surface integral over graph 1230
reduction theorem of line integral 1164
reduction theorem of plane integral 937
reduction theorem of space integral 1021, 1056
restriction map 153
Ricatti equation 369
Riesz transformation 1275
Rolle’s theorem 321
rotation 1739, 1741, 1742
rotational body 1055
rotational domain 1057
rotational free vector field 1662
rules of computation 296

saddle point 612
scalar field 1485
scalar multiplication 22, 1750
scalar potential 1807
scalar product 169
scalar quotient 169
second differential 325
semi-axis 49, 50
semi-definite matrix 627
semi-polar coordinates 15, 19, 21, 33, 147, 181,

182, 289, 477, 573, 841, 1009, 1016, 1055,
1086, 1157, 1231, 1347, 1479, 1651, 1801

semi-polar space integral 1019
separation of the variables 853
signed curve length 1166
signed infinity 162
simply connected domain 849, 1492
simply connected set 176, 243
singular point 487, 489
space filling curve 171
space integral 21, 1015
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specific capacity of heat 1818
sphere 35, 179
spherical coordinates 15, 19, 21, 34, 147, 179, 181,

289, 372, 477, 573, 782, 841, 1009, 1016,
1078, 1080, 1081, 1157, 1232, 1347, 1479,
1581, 1651, 1801

spherical space integral 1020
square 41
star-shaped domain 1493, 1807
star shaped set 21, 41, 89, 90, 175
static electric field 1498
stationary magnetic field 1821
stationary motion 492
stationary point 583, 920
Statistics 15, 147, 289, 477, 573, 841, 1009, 1157,

1347, 1479, 1651, 1801
step line 172
Stokes’s theorem 1499, 1661, 1676, 1679, 1746,

1747, 1750, 1751, 1811, 1819, 1820, 1913
straight line (segment) 172
strip 41, 42
substantial derivative 491
surface 159, 245
surface area 1296
surface integral 1018, 1227
surface of revolution 110, 111, 181, 251, 499
surjective map 153

tangent 486
tangent plane 495, 496
tangent vector 178
tangent vector field 1485
tangential line integral 861, 1485, 1598, 1600, 1603
Taylor expansion 336
Taylor expansion of order 2, 323
Taylor’s formula 321, 325, 404, 616, 626, 732
Taylor’s formula in one dimension 322
temperature 297
temperature field 1817
tetrahedron 93, 99, 197, 1052
Thermodynamics 301, 504
top point 49, 50, 53, 66
topology 15, 19, 37, 147, 289. 477, 573, 841, 1009,

1157, 1347, 1479, 1651, 1801
torus 43, 182–184
transformation formulæ1353
transformation of space integral 1355, 1357
transformation theorem 1354
trapeze 99

triangle inequality 23,24
triple integral 1022, 1053

uniform continuity 186
unit circle 32
unit disc 192
unit normal vector 497
unit tangent vector 486
unit vector 23
unspecified infinity 162

vector 22
vector field 158, 296, 1485
vector function 21, 157, 189
vector product 19, 26, 30, 163, 169. 1227, 1750
vector space 21, 22
vectorial area 1748
vectorial element of area 1535
vectorial potential 1809, 1810
velocity 490
volume 1015, 1543
volumen element 1015

weight function 1081, 1229, 1906
work 1498

zero point 22
zero vector 22

(r, s, t)-method 616, 619, 633, 634, 638, 645–647,
652, 655

Ck-curve 483
Cn-functions 318
1-1 map 153
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