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Calculus 3c-3 Introduction

Introduction

Here follows a collection of general examples of power series. The reader is also referred to Calculus
3b.

The important technique of solving linear differential equations with polynomial coefficients by means
of power series is postponed to the next book in this series, Calculus 3c-4.

It should no longer be necessary rigourously to use the ADIC-model, described in Calculus 1c¢ and
Calculus 2¢, because we now assume that the reader can do this himself.

Even if T have tried to be careful about this text, it is impossible to avoid errors, in particular in the

first edition. It is my hope that the reader will show some understanding of my situation.

Leif Mejlbro
14th May 2008
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Calculus 3c-3 Power series; radius of convergence and sum

1 Power series; radius of convergence and sum

Example 1.1 Find the radius of convergence for the power series,

Vlan(x) = — —0 for n — oo,

and the series is convergent for every x € R, hence the interval of convergence is R.

Example 1.2 Find the interval of convergence for the power series

1
Let a,(x) = %M" > 0. Then we get by the criterion of roots

YVan(x) = v"lnn-%a% for n — oc.

The limit value is < 1, if and only if z €] — 3, 3[, so the interval of convergence is | — 3, 3[.

360°
thinking.

Deloitte.

Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affliated entities.
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Calculus 3c-3 Power series; radius of convergence and sum

Alternatively we may apply the criterion of quotients, when n > 1 and x # 0,

uir) i t) o 81 k) [s] o
an(x) 3+l

for n — oo, because

Inn |z|»  Inn 3 3
Inn +1 1—|—l | 1-|-l
1n(n—|—1)_nn " n _1+n n

— 1 forn — oco.
Inn Inn Inn

Since % < 1 for z €] — 3, 3], the interval of convergence is | — 3, 3[.

Example 1.3 Find the interval of convergence for the power series

o0

> {1 (-2)"}am

Put a,(x) = {1 —(=2)"} 2™

The criterion of roots gives the following,

Vian(@)] = /L4 (1)t 20] 2] = /20[1 + (~1)7F1 - 270 - [a

1
- 2’{/1+(—1)"+1'2—n'|af|—>2|w| for n = cc.

1 11
Since 2|z| < 1 for |z| < 3 the interval of convergence is } ~3'3 [

When z # 0, then a,(z) # 0, so we can apply the criterion of quotients

1
n+1 _(_1\ .
e {1 g )

2n{1_ (—1)m+ . 2%}

1 11
for n — oo. Since 2|z| < 1 for |z| < 3 the interval of convergence is ]—5, 3 [

An+41 (x)
an(x)

o =

1— _2n+1
-2 2] — 2]

1 (—2)"

Remark 1.1 One can prove that the sum function is

1 L 1 L\ 1
1—=z 142z T l—2 142z

s e

> {1-(=2)"}a"
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Calculus 3c-3 Power series; radius of convergence and sum

Example 1.4 Find the interval of convergence for the power series

(oo}
>
FT"
n=1 "
Put
on | on
an(z) = Fm" :ﬁx"zo.

1) We get by the criterion of roots the condition

on 2 2
Van(z) = || 22" = L Lo?< for n — oo.
TL2 ( n n)2

1 1 1
The interval of convergence is given by 2 < =, so it is ]—— — {
g g Y 9’ 22
2) If we instead apply the criterion of quotients, we must except x = 0, because one must never
divide by 0. However, the convergence is trivial for = 0. Then we get for z # 0

. 2
ant1(z) _ 2ntt L2t —n2 —922 () 9g?
an(z) (n+1)2 2mg2n n+1

e . 1 . .
when n — oo. This limit value is < 1 for |x| < —=, so the interval of convergence is

V2

-5l
V2 V2L
Remark 1.2 The sum function cannot be expressed by known elementary functions. ¢

Remark 1.3 There also exist some other methods of solution, but since they are rather sophisticated,
they are not given here.

Example 1.5 Find the interval of convergence for the power series

S ot
= (n+1)2n

We get by the criterion of roots

Vlan ()| = ¢ 2" - mﬂm for n — oo.
(n+1)2"  Yn+1 2 2

Since % < 1 for z €] — 2,2], the interval of convergence is | — 2, 2[.

Alternatively, when = # 0 we get by the criterion of quotients,

An+1 (‘T>
an(x)

(nt1)-2" 2"t 41z x|
. = ik AN |
(n+2)-2ntL |x|n n+2 2 2

for n — oo
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Calculus 3c-3 Power series; radius of convergence and sum

Remark 1.4 It will later be possible to prove that the series is almost a logarithmic series in the
interval 0 < |z| < 2 and with the sum

=3 (5) =1 (5) = (-3),
thus
o) = gln (%) for 0 < |z| < 2,

1 for x = 0.

Example 1.6 Find the interval of convergence for the power series
Z (vn+1)" "
n=1

We get by the criterion of roots
Vlan(z)| = (Vn+1) - |z]* — 2z for n — oo.

Since 2|z|? < 1 for |z| < 1/3/2, the interval of convergence becomes
|-l

Alternatively one may try to apply the criterion of quotients for x # 0. Then we get the following
awkward expression

n/p T n+1 4/ n
GZZES) - w;i)i) '|x|3:{c/ﬁ+llH} ("Wnr 14 1) el

It is difficult, though still possible, to show that this expression tends towards 2|x|® for n — oc.

SKETCH OF PROOF. First rearrange in the following way,

Inn In(n+1)
ex — | —€eX E—
n+1/n+1+1 71 {L/_ n+1/n+ 17 p n p n+1

Yn+1 Yn+1 Yn+1

, .exp(th”)_expC%) {m_nM}

S Wm+1 Inn In(n+1) n n+1
n n+1
1 d .
The first factor converges towards 3 the second factor converges towards T exp(t) = 1. Finally,
t=0
1
note that the last factor is (w %) , apply Taylor’s formula and insert (i.e. take the n-th power).
n(n

Finally, take the limit. Obviously, this method is far from the easiest one, so in this case one should
avoid the criterion of quotients and find another possible solution method.
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Calculus 3c-3 Power series; radius of convergence and sum

Example 1.7 Find the interval of convergence for the power series

00
n!
>

n=1

Put
|
an(x) = :—n|x|" >0, where a,(z) >0 for z # 0.

Note that the convergence is trivial for x = 0.

The faculty function occurs, so we are led to choose the criterion of quotients. When = # 0 we
have a,(z) # 0, so

an+1(33) - (n+ ) | |n+1 n" B (n—i—l)! . nm" . |x|
an(x) (n+1)ntt n!|z|” n! (n+1) - (n+1)n
n+1 n\" || |z]
— — | —] |7 = = for n — oo,
n+1 \n-+1 ( 1) e
1+
n
1 n
because <1 + —) — e for n — oo.
n
SIMPLY CLEVER SKODA

We will turn your CV into
an opportunity of a lifetime

- ’I.’.
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Calculus 3c-3 Power series; radius of convergence and sum

4

The condition of convergence becomes — < 1, hence |z| < e, and the interval of convergence is
e
I=]—e,e|

Remark 1.5 The sum function in | — e, e[ cannot be expressed by elementary functions.

Example 1.8 Find the interval of convergence for the power series

o0 n

ST aspso
a” + b"

n=0

Since a > b > 0, we get by the criterion of roots,

Since — < 1 for |z| < a, the interval of convergence is | — a, a.
a

Alternatively, assuming that = # 0 and thus a,,(z) # 0,we get by the criterion of quotients,

a1+ b '
an+bTL a
el =

- an+1 + bn+1

an+1($)

ol - 2
an ()

n+1 a
antl. {]_ + (b> }
a

b n
for n — oo. In fact, if @ > b > 0, then (5) — 0 for n — oo.

If instead a = b > 0, then

an+1(x)
an(z)

Since — < 1 for |z| < a, the interval of convergence is | — a, a[.
a

_ad"+a” |
- an+1 + an+1 |$| - ?

Example 1.9 Find the interval of convergence for the power series

o0 n

X
Z:2“+1'

n=0

We get by the criterion of roots

m:7|x| :m~71 —>m for n — oo.
Var+1 2 Y1427 2

Sine ? < 1 for |z| < 2, the interval of convergence is | — 2, 2[.
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Calculus 3c-3 Power series; radius of convergence and sum

Alternatively, when x # 0 we get by the criterion of quotients,

2" +1 1427 |z |

=iy T Ty T
on+l 1 1+2 2 2

An+1 (x)
an(z)

for n — oo,

and we conclude as above that the interval of convergence is | — 2, 2|.

In this case we may also apply the criterion of equivalence. In fact, when x # 0, then

"l _ (lal\"
27 4+ 1 2n 2 ’

and Y7 (%) is convergent, if and only if x €] — 2,2].

Example 1.10 Find the interval of convergence for the power series

$S
2n
n=1

We get by the criterion of roots that

N PREI 2242 )
Ylan(x)] = — (2|x for n — oo.
@) = = = (@le)

1 11
Since (2|z])? < 1 for |z| < 3 the interval of convergence } ~3'3 [
Alternatively, we get by the criterion of quotients for x # 0,
22(n+1)
T 2(n+1)

2n 1 n
. 2(7’L+1) L = . (92 2 2 2

An+1 ($>
an(x)

DO |
DO |
B

for n — oo, and we conclude as above that the interval of convergence ] —

Remark 1.6 It can be shown later that the sum function is

flay =3 2 e

n=1 n=1

i % (42?)" = _% In (1 + 427)

N =
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Calculus 3c-3 Power series; radius of convergence and sum

Example 1.11 Find the interval of convergence for the power series

= @),
> e

n=1

Put
2n)!
an(z) = % |z|™ >0 where a,(z) >0 for z # 0.

Since the faculty function occurs, we apply the criterion of quotients.

When x = 0, the series is trivially convergent.
When z # 0, we get the quotient

an+1(x) _ (2{n + 1})! ey (n!)? R @{n+1h! { n! }2 "
an(x) ({n+1})2 (2n)!  |x|™ (2n)! (n+1)!
1
_ 2ndD)-@n+]) x| = 1+% 4lz| — 4|z or n — 0o

According to the criterion of quotients the series is convergent for 4|x| < 1, hence the interval of

111
convergence 1s | ——, — |.
& 11

Example 1.12 Find the interval of convergence for the power series

i 3= g,

n=0

It follows by the criterion of roots that

lan(z)] = {/3—7*|z|" = ‘;—J — 0 for alle x € R, nar n — oc.

Hence, the interval of convergence is R.

Alternatively if follows by the criterion of quotients for x # 0 that

2
R AN .
=57 B :32n+1HO for alle z € R, nar n — oo.

an+1(IL‘)
an ()

We conclude again that the interval of convergence is R.

Remark 1.7 The sum function of the series cannot be expressed by elementary functions.
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Calculus 3c-3 Power series; radius of convergence and sum

Example 1.13 Find the radius of convergence for the power series

o'}
E nx2n,
n=1

and check if the series is absolutely convergent, conditionally convergent or divergent at the endpoints
of the interval of convergence.

It follows by the criterion of roots that

Vlan(z)| = ¥Yn-2® - 2> forn — oco.
As 22 < 1 for x €] — 1,1], the radius of convergence is o = 1.

Alternatively it follows by the criterion of quotients for z # 0 that

n+1

1
any1() _ x| = (1 4 _> |z| — |z] for n — oo.
n n

an(x)

Hence the interval of convergence is given by |z] < 1, so o = 1.
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Calculus 3c-3 Power series; radius of convergence and sum

Let r £ = 41 be anyone of the endpoints. Then
lan(£1)] =n — oo for n — oo.

The necessary condition for convergence is not fulfilled, so the series is coarsely divergent at the
endpoints of the interval of convergence.

Remark 1.8 The sum function of this series in | — 1,1[ is found by the following argument: When
€] —1,1], then

=, = d [, d 1 y

nglny =y;ny 1:yd_y<7§y>:yd_y(1—y):(l—y)2’
Putting y = 22, z €] — 1, 1], we get

fe)= Yt =Y on (e =

xin:lnm 7n=1nx 7(1*932)2.

Example 1.14 Find the radius of convergence for the power series
i (_l)nil n
A
= non
and check if the series is absolutely convergent, conditionally convergent or divergent at the endpoints
of the interval of convergence.

It follows by the criterion of roots that

1
nv|an(x)=%'|%—>%l for n — oo.

Now, % < 1 for |z| < 5, thus o = 5.

Alternatively it follows by the criterion of quotients for x # 0 that

R N I B
Ty Tt T avl 5 5 T

ant1(z)
an ()

and we conclude as above that o = 5.

(=)t o . . 1 :
————. This series is alternating, and since — — 0 is

If = 5, then we get the series Y.~
n
decreasing, the series is (conditionally) convergent by Leibniz’s criterion. Conditionally convergent,
because the numerical series Y - | — is divergent (then harmonic series).
n

If z = —5, then we get the divergent series — > -

n—1 —» and the series is divergent at x = —5.
n

15
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Calculus 3c-3 Power series; radius of convergence and sum

Remark 1.9 One can prove that for z €] — 5, 5[, the sum function is
(o) o0
(_l)nfl (_1)n71 (I)” T
S N S e 7_:1(1 —).
f@) nz::l nsn ; n \5 U
Onw can also prove by applying Abel’s theorem that if x = 5, then

iﬂz lim 1n(1+§)=1n2.

n r—5—
n=1

Example 1.15 Find the radius of convergence for the power series
S
2 T
and check if the series is absolutely convergent, conditionally convergent or divergent at the endpoints
of the interval of convergence.

It follows by the criterion of roots that

Vlan(z)| = C/1|i|—3 = 2 = || for n — oo.
n 3 n
(¥/n)” {1+ 3

Thus, the condition for convergence is || < 1, so ¢ = 1.

Alternatively it follows by the criterion of quotients for x # 0 that

1
n 1+ —
n+1(2) = | _1+n3: M x| =z for n— oo
an(z) | 14(n+1)  |z[? 1 1 ’
14— +—
n) n

and we conclude as above that o = 1.

Then consider the endpoints = +1. Using the criterion of equivalence we get

STRIRETE SRt
n201+n3 _n201+n3 n=0 713’

which is convergent, because the exponent in the denominator is 3 > 1. Hence, it follows that the
series is absolutely convergent at the endpoints of the interval of convergence.

Remark 1.10 One can prove that the sum function cannot be expressed by elementary functions.
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Calculus 3c-3 Power series; radius of convergence and sum

Example 1.16 Find the radius of convergence for the power series
o0
n(n + 2)
2 Trmiop e
— (n+2)3
and check if the series is absolutely convergent, conditionally convergent or divergent at the endpoints
of the interval of convergence.
nin+2)

1+ (n+ 2)
o = 1, we conclude that we also have o = 1 for the glven series.

The criterion of equivalence. Since yand 02 1 hab the radius of convergence
n

Alternatively it follows by the criterion of roots that

” 2
Va@l= 20 VT

1+ (n+2)3

o[ = |z

for n — oo, hence p = 1.
Alternatively it follows by the criterion of quotients, when = # 0 that

B (n—|—1)(n+3)'1—|—(n—|—2)3.‘ |
1+ (n+3)3 n(n +2) v
1+ (n+2)2 (n+1)(n+3)

1+(n+33 nn+3)

Ap+1 ($)
an ()

|z| — |z|  for n — oo,

and we conclude that o = 1.

2
Then we check the endpoints. Since % ~ and Zn 1 — is divergent, the series is divergent
at the point z = 1, and we cannot have absolute convergence at the point x = —1.
At the endpoint z = —1 we get the alternating series > - M (=1)™. If we delete the
=14 (n+2)3 ’
change of sign (—1)", we see that the inverse of the remainder
n(n+2) 17" nd+6n +12n+9 9 1 1 1
= n+d+--——<-
1+ (n+2)3 n? 4+ 2n 2 n 2 n+2
. . n(n+2) . .
tends increasingly towards oo for n > Ny and n — oo, hence m — 01is decreasing eventually.
n
Then it follows by Leibniz’s criterion that the series is (conditionally) convergent for xz = —1.

17
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Calculus 3c-3 Power series; radius of convergence and sum

Example 1.17 Find the radius of convergence for the power series

> {e"In(3n+7)}a",

n=0

and check if the series is absolutely convergent, conditionally convergent or divergent at the endpoints
of the interval of convergence.

It follows by the criterion of roots that

1 1
thus the condition of convergence e|z| < 1 is fulfilled for |z| < —, thus p = —
e e

an(z)| = e ¥/In(3n +7) - || — e|z| for n — oo,

Alternatively we get by the criterion of quotients for x # 0 the following calculations,

1
Inn +1n (3 + —0)
n

Inn +1In <3+ z)
n

e" 1. In(3n + 10)
e”-In(3n+7)

an+1 (55)
an(x)

ol =

-elx] — elx] for n — oo,

1
and we conclude as above that o = —.
e

~
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Calculus 3c-3 Power series; radius of convergence and sum

1
At the endpoints © = +=— we have
e

1
an, <:|:—>‘ =In(Bn+7) — for n — oo,
e

and the necessary condition for convergence is not satisfied.
The series is coarsely divergent at both endpoints.

Example 1.18 Find the radius of convergence for the power series

4an

nzz:ln(n—kl)'

Check if the series is absolutely convergent, conditionally convergent or divergent at the endpoints of
the interval of convergence.

First solution. Breadth of view.

We have according to the laws of magnitudes that ‘ — oo for |z| > 1 and n — oo, so the

x4n
nn+1)
series is coarsely divergent for |x| > 1, and we conclude that o < 1.
On the other hand, if |z| < 1, then the series has a convergent majoring series

=01 2
=1 < — = —
n+1 [=1] _;ﬁ 6’

o0

n oo
n+1‘ -

=1
hence

1) 0> 1, thus p =1, since also p < 1.

2) The series is absolutely convergent at the endpoints of the interval.

3) The series is also uniformly convergent in the interval [—1,1].

Second solution. The criterion of roots.
1,477, x4n

If t = = th
we put a, () ‘n(n—&-l) "t 1) en
ot
{ an(x):—ﬂfzr4 for n — oo.
nin+1)
Since 2* < 1 for |x| < 1, the radius of convergence is ¢ = 1.
4an
We find at the endpoints © = +1 that = . Since the sequence of segments is given
nin+1) n(n+1)
by
N N N N+1
1 1 1
T M EE ) BRI
n=1 n=1 n=1 n=2
19
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Calculus 3c-3 Power series; radius of convergence and sum

the series is absolutely convergent at the endpoints of the interval, and the sum is
3 L lim s 1
E R N =1
o n(n + 1) N —oo

Third solution. The criterion of quotients.

4an 4an
Put again a,(z) = n(ZJr 0 = n(:j+ 0 Then a,(x) > 0 for « # 0, and [still for @ # 0]
4(n+1)
an+1(x): i .n(n—&—l): "t Lt forn — oo
an(T) (n+1)(n+2) x4n n+2

Since 2* < 1 for |x| < 1, the radius of convergence is ¢ = 1.
Then continue as in the second solution.

Remark 1.11 Tt is not difficult to find the sum function. First note that f(0) = 0 and that whenever
0 < |z| <1 then

I IR < VI S a\n : _
flz) = ;m_gﬁ(x) _,;1”+1($) all series have o = 1

1 1

= Z - (a:4)n — Z - (a:4) ~ change of indices n+—n — 1
n=1 n=2

= i 1 (z4)" - L {i 1 (=" - x4} add and subtract
n=1 n .’E4 n=1 n

= 1+ (1 — %) Z (:c4)n collecting the terms

x4 1-—
1 4
= 14— I(l—ab),
T
hence
0 for x = 0,
11—zt
fle)=9 1+ o In(1—2%) for 0 < |z] <1,
1 for x = £1.

20
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Calculus 3c-3 Power series; radius of convergence and sum

Example 1.19 Find the radius of convergence for the power series
3n

=z
;n—i—éf

and check if the series is absolutely convergent, conditionally convergent or divergent at the endpoints
of the interval of convergence.

It follows by the criterion of roots that

an (@] =

Kl

Vn+ 4

where the condition |z|3 < 1 gives the radius of convergence ¢ = 1.

— |z? for n — oo,

Alternatively we get by the criterion of quotients for x # 0 that

3n+3 4 4
ans1(z)| _ |z| ntd n+t x> o for n— oo,
an(x) n+5 |z’ n+5
and we conclude as above that o = 1.
1

1
At the endpoint © =1 the series y 7 =Y, — is clearly divergent.
n

()™

n+4
series is conditionally convergent. (Apply Leibniz’s criterion.)

n+4
At the endpoint © = —1 we get the series > >~ ,

n=4

s (=)™ . .
=Y . It is well-known that this
n

Remark 1.12 When 0 < |z| < 1 the sum function is

f@) = 712::0”4_4_71:4 n _E;E(x)
1 =1 3\ 3 6 9 :
= — —(2%)" = =2’ —Za® — 22 (leeg til og treek fra)
zt | =n
1 3 1 1 2 1 5

This expression does not make sense for z = 0. If we, however, insert x = 0 directly into the series,

we get f(0) = i

21
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Power series; radius of convergence and sum

Example 1.20 Find the radius of convergence for the power series

oo

Z {2"n"2In(n+2)} 2™,

n=1

and check if the series is absolutely convergent, conditionally convergent or divergent at the endpoint

of the interval of convergence.

It follows by the criterion of roots that

Vlan(z)| =2

' 1
(4/m)”

- Y/In(n+2) - x| — 2|x| for n — oo,

1
thus the condition 2|z| < 1 shows that the radius of convergence is p = 7

Alternatively it follows by the criterion of quotients for x # 0 that

An+1 (x)

2n+1

an(z)

(n+1)

2

2

B n
o n+1

)2.

and we conclude as above that o =

no.l
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Calculus 3c-3 Power series; radius of convergence and sum

1
At the endpoints © = :|:§ of the interval of convergence we get the series

> lan()) = 3 D

Now

0 In(n+2) Inn+2) 1 c
< n2 N " p3/n = /20

1 3
and Y7, Yo is convergent, because 3 > 1. Hence the series is absolutely convergent at both

endpoint of the interval of convergence.
Example 1.21 Find the radius of convergence o for the power series

oo _1 n
Z ) x2n7
n+1

n=0

—

and find its sum for each x €]— o, 0.

Here we have several variants.

1) The shortest version is the following:

For x = 0 the sum is 1. For x # 0 we get by a rearrangement and comparing with the logarithmic
series that

- =" 5, 1 = (=" ouny1 1 2
Zn+1x —;Zn+1(x) —Pln(l—i—x)

n=0 n=0

for 22 < 1, i.e. for |z| < 1, so o = 1. The sum function is

1
o0 n —In(1+2%) for0<|z|]<1
_ (_]‘) 2n 1'2 ’
f@—ngw—

1 for x = 0.

2) A more traditional proof is directly to prove that o = 1.
a) An application of the criterion of roots gives

Y p2n 72 5

Vlan(x)| = = — for n — oo.
lan ()] Yn+1 Yn+1

The condition of convergence is 22 < 1, thus |z| < 1, and we see that o = 1.

b) We get by the criterion of quotients for x # 0 that a,(z) # 0 and
_n+1 L e T 9

_n+2. o :n+2-x — x* for n — oo.

an+1($)
an(z)

The condition of convergence becomes 2% < 1, thus |z| < 1 and g = 1.
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Calculus 3c-3 Power series; radius of convergence and sum

¢) An application of the criterion of comparison shows that

oo ( n 0o S
nz: n—l—l Z: Snz:%m < oo for x| <1,
hence ¢ > 1.
On the other hand, if |z| > 1, then it follows by the rules of magnitudes that |a,(z)| =

1

T |z|>" — oo, and the necessary condition of convergence is not fulfilled, so o < 1. We

conclude that o = 1.

Example 1.22 Given the power series

oo

Z(n + 1)z"

n=1

Find its interval of convergence and its sum.

First variant. It is well-known that

in—kl an :i ﬁ—l for |z| < 1.
n=1 = n=1

Second variant We get by e.g. the criterion of roots that

V0an(z)] = ¥Vn+1-|z| — |z| for n — co.
The condition of convergence becomes |z| < 1 so the interval of convergence is |— 1,1][.

Then we get by integrating each term in |— 1, 1] that
o 22

/f t)dt = Z/n+ Dt"dt = Z

The sum function is then obtained by a differentiation,

d [22—-1+1 d 1 1
f@):@(ﬁ>:@{‘m‘”l_x}:u_x)z‘l’

which we write as

1-(1—2)* 2z—2a?
1-22  (1-2)?

flz) = for x €]—1,1].

There are of course other variants.
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Calculus 3c-3 Power series; radius of convergence and sum

Example 1.23 Find the radius of convergence o for the power series

n

=z
;n—i—l’

and find its sum function for each x]— o, o].

If we e.g. apply the criterion of roots, then

Vlan(x)] = =l — |z for n — oo.

vn—+1

The condition of convergence is |z| < 1, so p = 1.

The polynomial of first degree in the denominator indicates that the logarithmic function must enter
somewhere in the sum function.

1) If 2 = 0 then we of course get f(0) = 1.
2) If 0 < |z| < 1, then
l,nJrl 1 n

o0 o0 (o]
" 1 T 1

n=1

We conclude that the sum function is

1, for z =0,

flz) =

1
——In(l —xz), for0<|z|<1.
x

Example 1.24 Find the radius of convergence for the power series
(oo}
1
> e,
n!

n=0

and find its sum function.

We get by formal calculations that

N 1 n X X
xzjoﬁx +e¥ = (xz+1)e”.
n=

The exponential series is convergent in R, hence these calculations are legal, and the interval of
convergence is R, and p = 0.
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Calculus 3c-3 Power series; radius of convergence and sum

Alternatively we get for x # 0 that

. n+t2
~ (n+1)!

an+1(x)

[ n! 1 n+2
an ()

It follows from the criterion of quotients that o = cc.

When each term is integrated, it then follows that

x =1 =1
t)dt = =g — 2" = xe”.
f) sar=3 e =S

We obtain the sum function by a differentiation,

f(z) = (z+ 1)e”, z eR.
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Calculus 3c-3 Power series; radius of convergence and sum

Example 1.25 1) Find the radius of convergence X for the power series

[e%S)
2mn+2

Y S —, zeR
n?—1

n=2

2) Find the sum of the power series for |z| < \.

1) The radius of convergence is here found in three different ways.

a) The criterion of comparison. Since
) Ja* _ 2]

2
* n?2 —1

<9272 |z|™, n>2

)

n? -
xn
and since ) — and > a™ both have the radius of convergence A = 1, the given series must
also have the radius of convergence A = 1.

b) The criterion of roots. For n > 1 we get

n+2
n\/ 7”|L;C|_ o= el V2t

so we conclude that the radius of convergence is A\ = 1.

— |z|  for n — oo,

¢) The criterion of quotients. When z # 0 we get

Uny1 2|x|nt3 ' n*—1  n?-1 el
an  (m+1)2-1 22 (mr12-1 "
1
1— =
= — D 2] |2 for n — oo,

1
(1+1) -1
n
and the radius of convergence is A = 1.

2) The sum function is here found in two different ways.

a) Application of a known series. We know that

1 N
ln(l—x):nz_:l? for [z <1=A.

Then we get by a decomposition,
2 2 1 1
n2—1 (n—-Dn+1) n-1 n+l

It is now legal to split the series, when |x| < 1, in the following way:

s 2xn+2 s xn+2 o mn-&-? s xn+3 oo xn-l—l
f@) = X = a1 Ty
n=2 n=2 n=2 n=1 n=3
S S E AT o S
BRI TR
1 z3
3 2
= —xz)ln | —— — 1.
(x m)n(lx)—i—x +2, |z <
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Calculus 3c-3 Power series; radius of convergence and sum

b) Differentiation. Putting
oo

anrl
=2) <1,

we see that g(0) = 0, and f(x) = = - g(x). By differentiation of each term of the series of g(x)
we get for |z| < 1 that

oo

*ZIZ—:—Qxln 1—x).

—
Hence
flz) = x~g(x):x/0£g'(t)dt:—2x/()£t~ln(1—t)dt
_ _QxF ln(lt)} vor [ U —ld
2 1-t¢

v 1
= —x ln(l—x)—l—x/ <t+1+—)dt
0

3
= —x?’ln(l—x)—l—%—FxQ—l—xln(l—x)

= (x3—m)ln<1 !

3
)—!—xQ—l—%, |z| < 1.
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Calculus 3c-3 Power series; radius of convergence and sum

Remark 1.13 One may of course make this method more troublesome by defining

and ¢'(x) = x - h(x). Since

h/ _ - n—2_ - n __ 1 1
(J:)—Zx —Za: =T lz] < 1,
n=2 n=0

we get h(z) = fox KW (t)dt = —In(1 — x), and then one continues as above.

Example 1.26 Given the power series

n

[ee]
> Ty
5 .
—n(n®+1)
1) Find the interval of convergence |— o, o| for the power series.

2) Prove that the power series is convergent at both endpoints of the interval of convergence.

3) Is the power series uniformly convergent in the interval [—o, o] ?

1) Here there are several variants, like e.g.

a) Criterion of comparison and magnitudes. Since

n
Zm§2|$l < o0 fOI’|.’L"<17
n=1 n=1
the series is at least convergent for |z| < 1,1i.e. o > 1. On the other hand,
— oo forn— oo, if|z|>1,

hence the series is coarsely divergent for || > 1, and o < 1.
We conclude that the interval of convergence is |— 1, 1], and the radius of convergence is p = 1.

|z["

b) The criterion of quotients. If x # 0, then a,(x) = A+ 1) > 0, hence
() ] nn? +1)
an(r) (A D{(n+1)2+1} fal
1
1 1+

i 5 x| — |z| for n — oo.
14— 1+l +i
n n n2

The condition of convergence becomes |z| < 1,80 p=1and I =]—1,1].

29
Download free eBooks at bookboon.com



Calculus 3c-3 Power series; radius of convergence and sum

¢) The criterion of roots. Put a,(z) = _ > 0. Then
n(n?+1)
R M

Yn-VYn?+1 . 1
(V/n)? I+-3

1
for n — oo, idet {/n — 1 og {/1+ — — 1 for n — oo.
n

n

The condition of convergence becomes |z| < 1,s0 o =1 and I =]—1,1].

2) For z = £1 we get the estimate

> e

It follows from the criterion of comparison that the power series is convergent at both endpoints
of the interval of convergence.

(o]

s 1 2
<2 i D CEm RO T

1=1 n=1

1 1 1

A variant is to note that ———— ~ —. Since > °° . — is convergent, the convergence at the
n(n?2+1) n? 2=t n3 sent, &

endpoints follows from the criterion of equivalence.

3) If z € [-1,1], then we get as in (2) that

_ T | < — =
E : 2 = § : 2
— n(n?+1) —n 6

The power series has a convergent majoring series in the interval [—1, 1], hence it is uniformly
convergent.

Example 1.27 Consider the power series

“n+1

1) Find the radius of convergence.

2) Does the series converge at the endpoints of the interval of convergence?

1) The radius of convergence is 1, which is proved in the following in four different ways:

a) The criterion of quotients. If x # 0, then we get for n — oo that

An 41 (33)
an(x)

(D)4 oy om0 n(n+2)
= [ = = g el = ]
n+1 n+1 |zl n+1)

We conclude from the criterion of quotients that we have convergence for |z| < 1 and
divergence for |z| > 1, hence the radius of convergence is 1.
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Calculus 3c-3 Power series; radius of convergence and sum

b) The criterion of roots. It follows from

1 1
1< vi: 7\1/1—|——§ Y2 -1 forn— oo,
n n
that

1 1
T\L/n—'_ |x|”:’\L/1+—~|x|—>x| for n — oo.
n n

We conclude from the criterion of roots that we have convergence for |z| < 1 and divergence
for |z| > 1, and the radius of convergence must be 1.

¢) Criterion of comparison. It follows from

o0 o0 1 o0
Slel <30 (141 ) lel <23 Jal”
n=1 n=1 n n=1
that the series Y z™ and > (n 4 1)/n - 2™ have the same radius of convergence, namely 1

(known for > a™).

d) Known series. If || < 1, then
o0 oo
T 1 1
"= —a" =1 .
Z * 1—-2 ©8 Z n" R
n=1 n=1
By addition we get (at least) convergence for || < 1 and the sum is

—~n+l N 1, 1
Zn—x :Zx —|—ng :1i$—|—lnl_$.

n

I
=
S
3
Il
-
3
I
-

Both terms on the right hand side tend towards +o0o, when x — 1—, so we conclude that the
radius of convergence is 1.

2) We have at the endpoints +1 that

1 1
nt |(:|:1)n|:nJr —1#0 forn— oo,
n

thus the necessary condition for convergence is not fulfilled. Hence we have divergence at both
endpoints.
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Example 1.28 Given the power series

X 1\n+1 " —

(n—1)n
1) Find the interval of convergence for the power series.

2) Prove that in the interval of convergence,

(1+x)* f"(x) = —2x — 3.

1) We can find the interval of convergence in several different ways:

a) We get by the criterion of roots,

2n —1
Van(2)] = 1"/(7;141)n|x| —|z|  forn — oco.

The condition of convergence |z| < 1 shows that the radius of convergence is ¢ = 1m so the
interval of convergence is |— 1,1].
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Calculus 3c-3 Power series; radius of convergence and sum

b) If we instead apply the criterion of quotients, we get for  # 0 that

An+41 (x)
an ()

_ (@n+ Dlz** (n—1)n
(n+1)(n+2) (2n—1)z"

— |z| for n — oc.

The condition of convergence is |z| < 1, so the radius of convergence is o = 1, and the interval
of convergence is |— 1, 1[.

2) If |z] < 1, we can find the sum function in the following way,

(oo}

1
_ -1 n+1 | _ n+1 - n
Y R D n_1+ -
= z:(—l)’”rl :E” + Z ™. — g™ (NB. Both series are convergent for |z| < 1)
n=2
e} o 1 n+1
DG "+1+z< —a
n=1
S n+1 e n+1
B S GEPID S AU
n=1 n=1

= (1-z ln(l—i—x)—:r forxe]—l,l[,

where we recognize the logarithmic series. Hence

) = — -z 2
(=) = 1n(1+:10)+1+ 1 ln(l+ac)+1+ 2
and
1 2 3
@)=~y - -

T+ (1422 (142
and we finally get
(1+2)*f"(z)=—2 -3 forxec]—1,1[.

3) Alternatively it follows by differentiation of each term before the summation of the series,

— (—1)"*(2n —1
-y S <
n=2 ’I’L o
that
o0 o
fz) = Z(—l)"“@n —1)z" %= Z(—l)”+1(2n—|— 3)z"
n=2 n=0
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Calculus 3c-3 Power series expansions of functions

2 Power series expansions of functions
Example 2.1 Find the power series of the function
f(z) = cos®z,

and its radius of convergence. Check, if the series is convergent or divergent at the endpoints of the
interval of convergence.

1
Since cos?z = 5(1 + cos 2x), we get for every x € R that

i 2.17 2n _ i

The interval of convergence is R, and the radius of convergence is o = oo
In this case we do not have an endpoint. Notice that one should always check, if the endpoints exist
or not.

1 1
f(x) ==+ = cos2x = 22" Log?n,

2 2

N)I»—l
l\D|>—‘

Example 2.2 Find the power series of the function
f(z) = sin’ z,

and its radius of convergence. Check if the series is convergent or divergent at the endpoints of the
interval of convergence.

1
Since sin? z = 5(1 — cos2x), we get for every x € R that

12 @

The interval of convergence is again R, hence the radius of convergence is p = oo
Again we have no endpoints of the interval of convergence.

[e'S)
21, 2n __ E 2271—1 . (EQTL.

N | =
DO | =
l\D|>—‘

cos2x = —

DN | =

fx) =

Example 2.3 Find the power series of the function
f(x) =sinz - cosz,

and its radius of convergence. Check if the series is convergent or divergent at the endpoints of the
interval of convergence.

By a small trigonometric reformulation we get for ever y x € R that

o _ L. _ 1 - (71)”‘ 2n+1 __ - (71)71 n 2n+1
f(x)—blnx-cosx—581n2x—§§m(2x) _gm.zl T .

The interval of convergence is R, and the radius of convergence is o = oo
We have no endpoint, so the last question does not make sense.
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Calculus 3c-3 Power series expansions of functions

Example 2.4 Find the power series of the function

1+
fa) =ty /1,

ant its radius of convergence. Check if the series is convergent or divergent at the endpoints of the
interval of convergence.

+x

1
Since 1 >0 for =1 < x < 1, and f(0) = 0, we get in this interval

— T

flz) = lnw/ii_i :%{ln(l—kx)—ln(l—w)}

1 (7 (d d
= [ 1w+ - Ema-ola
2/0 {dtn(+) a1 )}

1 /(1 1 Tt = [*
= 3 —t—dt=| —%= 2" dt
e e

o0

_ 1 2n+1
- ZQon :

n=0

2n+1

Obviously, the series ZZOZO x has the radius of convergence p = 1, and the series is divergent

2n+1
for x = +1, i.e. at the endpoints of the interval of convergence.

Example 2.5 Find the power series of the function

fla) = —

2—za’

and its radius of convergence. Check if the series is convergent or divergent at the endpoints of the
interval of convergence.

Whenever we are considering an expression consisting of two terms, the general strategy is to norm
it, such that the dominating term is adjusted to 1. This is here done in the following way:

If |z < 2, then ‘g‘ < 1, hence

oo o0

1 1 z\" 1,
.17£:§ (5) :ZQn+1w'
D) n=0 n=0

[\
\
8
| =

It follows from the above that p = 2.

1
We get at the endpoints of the interval of convergence x = +2 that |a,(x)| = 7 Since this does not

tend towards 0, the series is coarsely divergent at the endpoint of the interval of convergence.

Remark 2.1 If instead |z| > 2, then x becomes the dominating term in the denominator. Then we
get formally

1 11 1< /2\" = ont
=g = () =X

T

This is, however, not a power series, because the exponents of = are negative. Such series are called
Laurent series. They are very important in Complex Function Theory.
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Example 2.6 Find the power series of the function

T

fla) = 142 —222’

and its radius of convergence. Check if the series is convergent or divergent at the endpoints of the
interval of convergence.

Since

1+z—22%=(1—x)(1+22),

we get by a decomposition for |z| <

T 1 1 1

1
57
_ T 1

l+z—202 (l—z)(1+22) 3 1-2 3 1+2z

flz) =

I, 1 °°1 N

The radius of convergence is p = —

The series is coarsely divergent at the endpoints of the interval of convergence, because

o) |- ()} <o s

Example 2.7 Find the power series of the function

f(z) = (1+2%) In(1 + 2).

Find its radius of convergence. Check if the series is convergent or divergent at the endpoints of the
interval of convergence.

The logarithmic series (for In(1 + x)) is convergent for x €] — 1, 1], hence we have in this interval
) n—

fle) = (1+2°)In(1+2)=(1+27) Z
n=1

& nf & n 1
= Z — "+ Z "2 (multiply by 1 + z?)

n—1

= x + Z ™4 Z p— 2™ (removal of some terms and a change of index)

1 G 1 1
= - Exz + Z(fl)”*1 {— + 5 } z"  (collecting the series)

=3 n n —
2 vt n(n—2)" °
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Clearly, the radius of convergence is o = 1.
We get at the endpoint © = —1 the divergent series

1 (1 1
—1—=— = .
2 Z}){n+n—2}

n=

We get at the endpoint x = 1 the alternating series

- 1 1
1—= )t — :
2+n;3( ) {n+n2}

1 1
Since — + 5 0 is decreasing for n — oo, it is convergent according to Leibniz’s criterion. It
n

is, however, not absolutely convergent, so it must be conditionally convergent.

Remark 2.2 We obtain by applying Abel’s theorem,

 [— o1 |1 1 .
1—54—7;(—1) 1{54- }: lim f(z)=2-In2.

n — 2 r—1—
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Calculus 3c-3 Power series expansions of functions

Example 2.8 Find the power series of the function

f(z) = Arctan z +1In+/1+ 2.

Find its radius of convergence. Check if the series is convergent or divergent at the endpoints of the
interval of convergence.

Since
4 Arctan ¢ = L~ i(—l)”xgn for |z| <1
dx 1+ a2 o '

we get by integrating each term in the same interval,

o0 71 n
Arctan x = Z —2( +)1 2t for |z] < 1.
n

n=0

Since

X 1yn—1
1n\/1+x2:%1n(1+m2):%ZLQCQ" for |z| < 1,
n=1

n

we get by adding the two series in the common domain of convergence that
O R e ) L
Arct Inv1 2 = —— " —— " < 1.
rctan x +In/1+ T;:O mti” —|—nE:1 oy & for ||

the radius of convergence is of course p = 1.

Since both series by Leibniz’s criterion are (conditionally) convergent at the endpoints of the interval
of convergence, the power series for f(x) is also convergent for x = £1.
It is possible by a small consideration to conclude that the convergence at = £1 is conditional.
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Example 2.9 Find the power series for the function
f(z)=1In <x+ 1 +x2)

by applying the formula

ln(a:—i- 1+ 22 zeR.

[ =
)
0 1+ ¢2

Find the radius of convergence of the series.

We have

#:(1“2)1/2:2(_2/2)#" for [t| <1,

L+ =

i.e. o =1, where

(-D" 1:2:3-4-5---(2n-1)-2n _ (-1 (2n)! _(=1)" <2n>

(—1/2) B _% (_%_1)”(_%“_”) (=) 1:3-5---(2n-1)

AL n!n! T yn nlnl — 4n n

By integrating each term and then add them all, we get

— (-H" 1
1n<x+ 1+x2)22(n_:1~4—n<2:)x2”+1 forx €] —1,1[.

n=0

The radius of convergence does not change by an integration, hence o = 1.

Example 2.10 Find the power series for the function
f(x) = Arcsin x

by using the formula

r 1
Arcsinx:/ —dt, re|—1,1[.
Vv ] [

Find the radius of convergence of the series.

Now,

% —(1-e) V= i(—l)" ( _11/2 )t" for |t < 1,

L—t n=0

so o = 1, where

(1)n(‘1/2) _ (1)”._%<_%_1>.“<_%_n+1>i.1~3~5~~(2n1)

n n! 2n n!
1 1:2.34.5--@2n-120 1 @20) 1 (2
Toon.on nln! T4n oplp! T 4n \n )7
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Calculus 3c-3 Power series expansions of functions

We get by integration of each term that

— 1 L [ 2n
Arcsinx:Z—~—( >x2"+1 forx €] —1,1[.
Zeon+1 4\ n

The radius of convergence does not change by an integration, so o = 1.

Example 2.11 1) Prove that
_1)n71$n+1

, x€]—1,1][.

-
(z4+1)In(l1+2)=a+ —
; nn+1)

2) Given a1 =1 and the recursion formula
(1) any1 = an + (=1)"(n + 1), neN,
which produces the sequence
ap =17 =22 4+ 4 (=1)""'n?, n € N.
Show by testing in (1) that a,, can also be written

2) a, = (_1)n_1;(n+ D new

3) Prove that the series

o0

1
Z 12224 4 (=) Ip2

n=1
s convergent and find its sum.
Hint: Ezploit (2) and possibly also the result of (1).

1) It follows from a known power series expansion that

& -1 n—1
In(l1+42) = g Lx” for x €]—1,1],
n
n=1

that

(z+1)In(142) = xi #x" + i %x”

n=1 n=1
o0 o0
(_1)n71 n+1 (_1)77, n+1
- 1 1 o (—1)nlgntt
_ —1)" 1) - n+l _ S
z+;( ) {n n—i—l}x I+n; n(n+1)

These calculations are correct for x €]—1, 1], and it must be noted that the series is also absolutely
convergent at the endpoints of the interval, because the denominator is n(n + 1) ~ n?.
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Calculus 3c-3 Power series expansions of functions

1
2) By insertion of n =1 into (2) we get a1 = 5{(—1)1_1 -1-(1+1)} =1 as required.

Assume that (2) is true for some n € N. Then

Uny1 = ‘JVA"M+1x+pnwn+n

2
(~1)"(n+1) (~1)"(n+ D(n+2)
2

This is the same as the result we obtain by replacing n by n + 1 in (2):

(DY (4 1) ((n+1)+1)  (—1)"(n+1)(n+2)
Ap+1 = 9 = 9 .

Hence, if the formula holds for some n € N, then it also holds for n + 1. Since the formula is valid
for n = 1, we conclude that (2) holds in general by induction.

sssssssssssssvsssssassssssssssssssssnssssssssssnnsssssssssssssssssssssssfilcgte]-Lucent @
www.alcatel-lucent.com/careers

2%

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".

N
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Calculus 3c-3 Power series expansions of functions

3) When we insert (2) we formally get

S 1 S _1)77.71
Z 2_92 1,2 :22 :
1224 (1) i n(n+1)

This series is, however, absolutely convergent:

oy CU oy oy Lo
nzln(n—l—l) - nzln(n—l—l)* n:1n2_ 3’

proving the first question. The last question is now proved in two different ways:

a) Sum by means of (1). If we apply Abel’s theorem for z = 1 on the series of (1), then

> (_1)71—1 e (_1)n—1.1n+1
2 i) T2 agan T DmED-1=2mm2-1,
n=1 n=1

hence

SN = (—1)7171 .

) 220 {% - n%l}

_ Qi (71)n+1 JrQi (—1)n :2i (71)n+1 +2NZ+1 (71)n+1

n=1 n n=1 n+l n=1 n n=2 n
N
1 n+1 -1 N+1
= 42%*2+2% — 4In2-2,  for N — oo,
n=1

hence the series is convergent with the sum

=4In2 - 2.

- 1
Z 2_92 _1\n—1,2
o P24+ (=)
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Calculus 3c-3 Power series expansions of functions

Example 2.12 1) Find, by using power series for elementary functions, the power series for the
functions sin(z?) and In(1 + 2z), and find the intervals of convergence of the series.

2) Prove that one has

n+1

sina:fzcosz—z e 1 e +1)|$2n+1, z €R.
n— n !

1) a) Since

o0 71 n
sinu = Z ﬁ u?ntt for u € R,
n=0

it follows by the substitution u = 22 that

o0

sin(x Z @n + 1 x4t for x € R.
0

b) Since

(=1
In(1 =Yt for —l<u<l,
n(l+u) 2 U or u
. N . 11
it follows by the substitution u = 2x €]— 1, 1], i.e. x € ]—5 ' { that

2 (—1)nt 11
In(1+2z) = —2"x" f €
n(1+ 2x) nz::l p x orze =55

2) The interval of convergence is R for both of the series for sinz and cosz (and the radius of
convergence is 00). Hence, we get by legal operations of calculations that we have for € R

: _ = (_1)n 2n+1 _ - (_1)71 2n+1

SINTX —TCOST = ;7(2714»1) X + 7;)—(271)' X +
_ - (_1)n 2n+1 __ - (_1)n 2n+1
= X gt =3 oy (e
_ = (*1)n+1'2” 2n+1 > (*1)n+1 2n+1
T & @n-D2a@etl) " ’ Z < @n—1)12n+1) "
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Calculus 3c-3 Cauchy multiplication

3 Cauchy multiplication

Example 3.1 Prove by using Cauchy multiplication that for any x €] — 1,1],

2 (1)t 1 1
2 _ I n
(Arctan z)* = g p <1—|—3—|— +2n_1)x .

Since

(D"
Arctan z = E p2ntt for |z| < 1,
= 2n+1

we get in this interval that

> —1)7 . s (—1)F J+k 220 +k)+2
Arct 2 _ ( 241 L2hF1
(Arctan z) ZQjJrlx Z21c+1 jz(:)kz% 2g+1 2k +1)
oo ]+k 2(j+k)+2 . n p2nt2
= 2 Z =22 (st k= n — )
v S 2j+1 )(2k + 1) == 2]+1 2n—2j+1)
B i ( 1)" Lp2n "z_: n
B — n 27+1)(2n—25—-1)
o 24\2j+1 " m-2j-1
- i (=) i ! m VT L o
n — 25 — 1 n 3 2n —1
n=1 j=1 n=1

Example 3.2 Find the first five terms of the power series of
f(z) =e®sinz.

First method. If we interpret “the first five terms” as the terms up to a5z, then we get by a simple
multiplication of known power series that

1 1 1 1 1
e“sinx = <1+x+§x2+6x3+ﬂx4+--> (x—gx?’-i-ﬂows-F"')
1 1 1 1 1 1
_ 2, 23 24 S5 S8 Sa4 — 05 =
=z + et + pat + ot + 6U T Y T v T +120x -
= x+$2+1$3—i$+
- 3 30
Second method. Calculation of the Taylor coefficients. In this calculation we have
f(_q;) = ¢%sin T, f(o) = 0’
fl(x) = e"(sinz +cosx), fo =1
f”( ) = 2e*cosu, f”(O) = 2,
)(x) = 2e%(cosx — sinx), (0) = 2,
4)(x) = —4e®sinz = —4f(x), (0) = 0,
f(5)(x = —4f'(x) = —4e*(sinx + cosx), f(5) 0) = —4,
45
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Calculus 3c-3 Cauchy multiplication

hence

_Oof(n)(o)n_ o, 1 s 1 5
f(x)—; L =zr+zx +§x—%x +ee

Third method. Complex calculations:

e’sinz = Im{e*(cosz +isinz)} = Im {e"e”} = Im{exp((1+1i)z)}
(1+i)22%  (1+i)32®  (1+i)*2*  (1+i)%2° }

= Im{1+(1+i)x+ 51 3l m =]
—1+i 1 141
=1 1 1 . -2, - 3 -4 -5
m{ +(1+i)z+ix+ 3 2 g 5 +

1 1
_ 2,4+ 3 L 5, .
=r+x +3x 3Ox+

/

Leadiny
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Calculus 3c-3 Cauchy multiplication

Example 3.3 Find the first five terms of the power series of the function
f(x) =e" cosa.

First method. If we interpret “the first five terms” as the terms up to asx®, then we get by a simple
multiplication of known power series,

1 1 1 1 1 1
ecosr = <1+x—|— §x2+6x3+ﬂx4+m1‘5+- . ) <1——x2+—m4—|—- - )

1 1 1 1 1 1 1 1
1 _2 _3 _4 = b5 .“7_27_37_47_5 _4 = .5
B R R YR R T o7 T T Tt Tt gt gyt
1 1 1 .
1+I7§$376$47%$0+

Second method. Calculation of the Taylor coefficients. We get

f(@) = e€%cosz, f(0) = L,
f'(z) = e*(cosx — sinx), 1'(0) = L,
1(x) = —2¢e%sinx, f"(0) = 0,
G)z) = —2e*(sinz + cosx), @) = -2,
fW(x) = —de"cosx = —4f(x), f@0) = —4,
O (z) = —4f'(z) = —4e®(cosz —sinz), fO(0) = —4,
hence

— f™0) ., _ Lg 1y 15
f(x):z o xf1+xfgx76xf%x +e

Third method. Complex calculations:

e’ cosz= Re{e”(cosz+isinz)}= Re{e’e”} = Re{exp((1+i)z)}

-~ (14922 (1+49)32® (1+i)*a* (1+4)52°
= Re {1+(1+z):17+ o + a1 + 1 + 5l +- -
—1+43 1 142
= Re {1—|—(1—1—2’)3:—}—2'3:2—&——?)—Hur:?’—gaﬁl——;(—)Z z’ 4 }
1 1 1
:1+$—§$3—6I‘4—%l’5+
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Calculus 3c-3 Integrals described by series

4 Integrals described by series

Example 4.1 Find (expressed as a sum of an infinite series) the value of the integral

Lsina
dx.
0 X

We have
sin 1« (=nn 2n+1 - (=" 2n
I N = B A f R\ {0
x xngo@nJrl)!x nZZO(anLl)!gj o forz eRA{0},

which is supplied by the value 1 for 2 = 0. The series is uniformly convergent in [0,1]) (because
> m = sinh 1 is a convergent majoring series). Hence, we get by integrating each term before
summation that

Lsinz = (-1m L. O =4
/0 x dxnz_%(Qn—I—l)!/O v d$7§(2n+1)(2n+1)!'

Example 4.2 Find (expressed by the sum of an infinite series) the value of the integral

/2
Ja—
o l+4at

We have
LI i(fl)"x‘l" for |z] < 1
4 b bl
1+ —

an
1 1
which is uniformly convergent in [0, 5], because it has the convergent majoring series ZZOZO (§> .

Hence, by integrating each term,

V2 g > 1/2 Sl D LR Ry G D E |
_ —1)" 4nd — R S
/0 1+ 2% p3( )/ oo 7;)471—1—1 9in 7;471—5—1 167

n=0 0

Remark 4.1 One can in fact directly find the value of the integral. However, this is not so easy. We
show below how it is done:
First we get by a smart decomposition

1 1
52— Tioriaisas (222 is added and subtracted)
x 2?2 +at — 2z
1
= (difference of two squares)
(22 + 1) — (V2u)?

1 2 42 -~
T vt l) (@ Var ) (@ —b"=(a+b)(a=))

1{ z+ V2 T2 }

— decomposition).
22 | 22 +v2x4+1 22 —V2z+1 ( P )
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Calculus 3c-3 Integrals described by series

When this expression is integrated, we get (where some of the details have been left out)

V2 _de 1 a? +V2zr +1 1/2
/0 1+2*  1/2 [hl 2 or i1 +2{Arctan(\/§x+1)+ Arctan(\/ix—l)}]o
1 5+2v2 1 V2 V2
= 1 A 1+ - A 1 - X2
4\/§n<5—2\/§>+2\/§{ man( * 2) man( )
1, 5+2v2
= n
42 \5-2V2

1 V2 V2
+ﬁArctan [tan (Arctan (1 + 7)) — tan (Arctan (1 — 7))]

(+9)-(-9
1 In (5 +2v2 Arctan

1
+
w(535) 2 N

1 5422 1 2V2
= 4\/§1n<5_2\/§>+2\/§Ar0tan<T>.

Example 4.3 Find (expressed by the sum of an infinite series the value of the integral,

1
/ cos vz dx.
0

Here

n

[e’e] 1) o0 -1
cos V=) ((zn;! (Vo™ =3 ((Qn%! @ forz20,
n=0 n=0

is wniformly convergent in [0, 1], hence by integrating each term before summation

! N e S G VL
/0 cos(vr)de =3, "5 /0 e =D T

n=0 n=0

Remark 4.2 The integral can be given an exact value by the substitution v = \/z, i.e. z = u? and
dx = 2udu, thus

1 1 1
/cos\/Ed;E = /cosu~2udu:[2usinu]é—/ 2sinu du
0 0 0

[2usinu 4+ 2cosu](1) =2(sinl 4 cos1—1).

Example 4.4 Find the value of the integral below expressed by the sum of an infinite series

/1/2x Arctanzd
———dx.
0

3
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Calculus 3c-3 Integrals described by series

When 0 < z < 1, we get from

o = (_1)71 2n+1
Arctan z = Z miﬂ ) for |z < 1,
n=0
that
— Arct 1 (—1) ! > (—1)n-1 — (—1)"
o Arctane LS (D" a5 D" s §S D"
3 3 £ ot 1 — 2n+1 = 2n+3

We see immediately that the series has ZZOZO 47™ as a convergent majoring series in the interval

1
[O, 5}, hence the series is uniformly convergent in this interval. By integrating each term before

summing we get

/1/2x Argctanzdx:i (=)™ 1 '
0 x 2n+1)(2n+3) 22ntl

n=0

Remark 4.3 We can also here find the exact value of the integral. If x # 0, then by a partial
integration,

xr — Arctan x dx Arctan x 1 1 Arctanz 1 dx
x3 x? a3 x 2 x? 2 ) z2(1+2?)
1

1+1 Arctanz 1 / 1 J 1+1 Arctanz 1 1+1 Arct
= —— - . —  ——|ldzr=——-4+ - ——— 4+ — . =+ = . Arctan z
r 2 2 2 2 1422 r 2 2 2 x 2

1 Arctan r —

1
=3 T+§~Arctanx.

Det ses ved reekkeudvikling, at singulariteten i @ = 0 er haevelig (veerdien er her 0), sa

V2 2 — Arctan z 1 1 1 1 1 5 1
/0 S E— dr = 3 -4 {Arctan 3~ 5} + §Arctan 3= §Arctan 5~ 1.
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5 Sums of series

Example 5.1 Find the radius of convergence for the power series

o0

Z(_l)nx2n7

n=0

and find (inside the interval of convergence) an explicit expression for the function which is defined
by the series.

The series is a quotient series of quotient —x2, thus ¢ = 1, and

- n, 2n __ - _ n __ 1 _ 1
f(fv)znzz:o(—l) v —;( z*) T1-(—2?) 1+a?

> Apply now
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Calculus 3c-3 Sums of series

Example 5.2 Find the radius of convergence for

oo
E na”.
n=0

Find inside the interval of convergence an explicit expression for the function defined by the series.

We put t a,(x) = n|z|™ > 0, which is > 0 for = # 0, n > 1.

Criterion of roots.

Van(x) = Y/nlzjr = /n - |z] — |z for n — oo.
The condition of convergence is |z| < 1, thus the interval of convergence is I =] — 1, 1].
Criterion of quotients. We have for  # 0 and n > 1 that

ng1(r)  (n D)™
an(z) — nzf

1
:(1+—> |z| — |x| for n — oo.
n

The condition of convergence is |z| < 1, thus I =] —1,1].

Alternatively, if |z| > 1 then a,(z) = n|z|™ — oo, and the series is coarsely divergent, thus we
conclude that o < 1.
On the other hand, if || < 1, then n(y/|x|)™ — 0 for n — oo by the laws of magnitudes. In particular

n(y/|z])" < c(x) for every n, and we get the estimate

Yonlal" =) a(V]e)"(VIz)" < e(2) Y (V]al)" < oo
n=0 n=0 n=0

(quotient series of quotient y/|z| < 1). Consequently we have absolute convergence for || < 1, hence
0 > 1. Putting the things together we get o = 1, and the interval of convergence is I =] — 1, 1].

Sum function. The series looks like the standard series

oo

= Zx" for |z| < 1.
n=0

When this series is differentiated, we get

d 1
%(1—1‘) TE an -1 for |x| < 1.

n=1

It is seen that we are only missing a factor x in order to obtain the wanted result, so

o
A=z an an" for |x| < 1,
n=0

where we have added 0 corresponding to n = 0 in the series.
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Example 5.3 Find the radius of convergence for the power series
n—1

- (_1) "
;(n—Q)n '

Find (inside the interval of convergence) an explicit expression for the function which is defined by
the series.

1
The coefficient ————— is a rational function, hence p = 1, because we have e.g.

(n—2)n
V(n—2n—1 for n — oo.

We get by a decomposition,

111 1
n—2n 2 n-—-2 2

Here n occurs in the denominator, so we are aiming at a logarithmic series. We get for |z| < 1,

n=3 n=3 n=3
L, ZOO (=t 1 ZOO ="t . Lo
:§I > " :1775 > i T+ T — <
1 1 1
: s . . . . o 1 . .
Remark 5.1 Since )~ . —2) is equivalent with the convergent series > > . —, the given series
n—2)n n

is absolutely convergent at the endpoints of the interval of convergence, hence by Abel’s theorem,

= (1)t , 1 1, 1., 1
ALV | g ~(22 — 1)In(1 ==
Z(n—2)n im (5% 4% +2(x YIn(1+ z) 7

r—1—
n=3

and

because we get by the laws of magnitudes (z? — 1)In(1 + ) = (z — ){(1 + 2)In(1 + z)} — 0 for
14+2z—0+. O
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Example 5.4 Find the radius of convergence for the power series

Find (inside the interval of convergence) an explicit expression for the function defined by the series.

Here we immediately recognize the structure of the logarithmic series. If we put y = 2z, then
ST =Y~y =~ (- y) = ~In(1 - 20),

1 1
which holds for |y| = |2z| < 1, hence for |z| < g s0e=g.

Example 5.5 Find the radius of convergence for the power series

o0

Yo (=1 (n+ 1"

n=0

Find (inside the interval of convergence) an explicit expression for the function defined by the series.

The coefficient n + 1 is a polynomial, hence ¢ = 1. One may here use that Yn+1 — 1 for n — oo
and the criterion of roots.

Sum function. It is well-known that

= Z )yra for |x| < 1.

When this equation is differentiated, we get

- <1+1x>2 - % {D—D”x”} =Y ()"t ==) (=) (et )"

n=0 n=0
hence
i( D™(n+1)z" #
vt (14 z)%
Alternatively we put
(oo}
fl@) = (=1)"(n+1)z"
n=0

hence by termwise integration for |z| < 1,

(oo}

N n n _ 1
Fle) = 0 f(t)dt:Z( o= xz 1+x_1_1+x’

n=0
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Sums of series

Example 5.6 Find the radius of convergence for the power series

> 2

S (-2 g,
n+1

n=0

Find (inside the interval of convergence) an explicit expression for the function which is defined by

the series.

The condition of convergence is by the criterion of roots,

2 2
V/lan(@)] = Y/zn'% Jafr = K/H 9| — 20z] < 1, for n — oo,

n+1 n+1
1
S0 |x|<g=§.

If z = 0, then the sum is (—2)? - —— -1 = 2.

-~
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2 1 1
Now, nte_ 1+ , so we get for 0 < |z| < = that
n+1 n+1 2
= n+2 = = (=" = 1 (1)t
—9)". no_ —97)" S (92) = —97)" o S ()
n;)( s ;( z) +;n+1(w) ;( x)+2x; —— (20)
1 In(1+22)

BT TR
Summing up we get the sum function

1 In(1 + 2z)

1
f0r0<|x|<§

2 forz =0

Example 5.7 Find the radius of convergence for the power series

xn

—(n+3)

Find (inside the interval of convergence) an explicit expression for the function defined by the series.

We put a,(z) = (nj—| ok Then we get by the criterion of quotients for x # 0,
n+1 |
an1(2) = |21 L3 2] — 0 < 1 for n — oco.
an(x) (n+4)! |x|™ n+4

The series is convergent for every x € R, thus ¢ = co.

Since we have a faculty in the denominator, we aim at an exponential function.

1 1

If x # 0, we get by changing indices,

= z" g3 1 o= 2" 1 >z z2
— — S S Sl
/(@) (n+ 3)! Z n! s n! a3 Z n! T

n=3 n=

fx) =
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Example 5.8 Find the radius of convergence for the power series
i (_1)n x2n

P TN .
n=0 2 n( nt 1)

Find (inside the interval of convergence) an explicit expression for the function which is defined by
the series.

We get by the criterion of roots,

n

for n — oo.

@= s [l — 5]
ap(z)| = —/—/—-|=| —|=
" Yon+1 12 2
From the condition )g‘ < 1 we get the radius of convergence p = 2.

If x =0, then f(0) = 1.
If 0 < |z] < 2, the structure

n

2n+1

indicates that we should think of Arctan. With that function in

our mind we easily get

10 =3 g = 250 S (Y™ 22 an (3)

n=0

Summing up we get the sum function

2
fay = | 5 Aean (), oro<isl <2
1, for z = 0.

Example 5.9 Find the radius of convergence for the power series
>
g+l
n=0 3n
Find inside the interval of convergence an explicit expression for the function which is defined by the
series.

It follows from the rearrangement
= " 1 = /z\"
> g =32 (3)
n=0 n=0

x x
that the series is a quotient series of quotient 3 This is convergent for ’g‘ < 1, thus for x €] — 3, 3],

and the radius of convergence is o = 3.
Inside the interval of convergence the sum function is given by

L Ny A T | 1
A D = for |z| < 3.
;}3““ 3;)(3) 37T 3_p vl

wlg
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Example 5.10 Find the radius of convergence for the power series
o0
—1)n
Z ( ') x?)n.
= nl

Find inside the interval of convergence an explicit expression for the function which is defined by the
Series.

The faculty in the denominator indicates that we should think of an exponential function. One should
immediately recognize

S o S L oy ),
n=0 ’ n=0

which is true for every x € R, sa p = oo.

Example 5.11 Find the radius of convergence for the power series
> e
= (n=2)(n-1)n

Find inside the interval of convergence an explicit expression for the function, given by the series.

It follows from

]

T WVn_2 Un-1 n

Vlan ()]

— || for n — oo,

that o = 1.
The sum function can be found in several ways.

First method. If we define

o0 n

x
= —_— f <1,
we get by successive differentiations
> pn—1 > 2
flla)y=) —S——==> ——, lz[<1, f(0)=0,
—n=2)n-1) ‘Zm-1n
N S |
f"(:c):z 1:2—1’”:7111(17@ for |z| < 1,
n— n
n=2 n=1

hence by successive integrations with f/(0) = f(0) =0,

fla) = /Oz(—l) In(l —t)dt = [~(t — 1)In(1 — )]§ + /Oz % dt

= —(z—1)In(l —z)+x,

58
Download free eBooks at bookboon.com



Calculus 3c-3 Sums of series

/OI 0 dtz/:{—(t—l)ln(l—t)—i—t}dt

-1y 1) [
= [ 5 In(1 t)—|—2t 0—|— | 5 t—ldt

-
—
8
~—
|

_ —%(1:—1)2111(1—1:)4—%x2+i{(x—l)2—l}
2

1 1
= —5(:1:— 1?In(1 —z) + %x ~ 5%
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Calculus 3c-3 Sums of series

Second method. We get by a decomposition a simpler variant. In fact, it follows from

1 1 1
n—2)(n—1n 2 n—-2 n-—1

n 1
2 n

that whenever |z| < 1, then

1z = 11,
UGN D D R Ve D e
n=3 n=3 n=3
Il 1 Ion1
_ n+2 n+1 n
EP SR DL D DL
n=1 n=2 n=3
=1 =1, 11, 2
=l prmr e tg et e
n=1 n=1 n=1
1 1 1
2 n 2 2
= —(z—-2 1 — ——z—=
(z x+ ); " +x 5%~ 1%
2 2 1
= ——(z-1)In(l—-2)+ -z 5%
R k 5.2 Si ! ! d >y L t, the series is absolutel
emark 5.2 Since ——  — ~ —, an — is convergen e series is absolutely con-
(n—2)(n—1)n n¥ n=1pn3 versent, Y
vergent at the endpoints of the interval of convergence. Then by Abel’s theorem,
= 1 1
; U RN e SEAy
and
c- (=" , 5
Z—: lim f(z)=-2In2+ -.
—n=2)n-1n ==l 4

Example 5.12 Find the radius of convergence for the power series
oo
1
>l
n!

n=0

Find inside the interval of convergence an explicit expression for the function given by the series.

By the criterion of quotients we get for z # 0,

An+1 (x)

n-+2 242 n! 1 n-+2 9
an()

- NI 0 f
(n+1)! n+1 a2 (n+1)2 oo,

so the series is convergent for every z € R, and ¢ = oc.
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Calculus 3c-3 Sums of series

The sum function is found by a comparison with the exponential series,

_ °°n+1 2n Oon 2n - 1 2n
fa) = Y ™= e+ e
n=0 n=0 n=0
— i i(xQ)n + i 1 an _ eXp(xQ) + io: - x2n+2
n! (n—1)! !
n=0 n=1 n=0
[eS)
= exp(a?) +a? Z_% (@) = (1+2%) exp(a?)

Example 5.13 Find the radius of convergence o for the power series

S
= (n+2)(n+1)(2n+1) ’
and find its sum in the interval of convergence. Check, if the power series is convergent for x = g or
T = —p.

We get by the criterion of roots,

V3 n
Vlan(z)| = Vs 2?- Va2 — 2? forn — oco.
Un+2-Yn+1-2n+1

The condition of convergence is |x|? < 1, hence the radius of convergence is o = 1.
The sum function is found in various ways.

First method. We put

o0

B 3(—1)"
I@)=) T Om T DD

n=0

2?2 for |x| < 1, f(0)=0.

Then we get in the interval of convergence by termwise differentiation,

1N — 2(n+1)-3(-D)" . 1_ = (=" 2n+1
HOEDY (n+2)(n+1)(2n+1) * =63 (n+2)2n+1) " o

n=0 n=0

and f’(0) = 0. By another differentiation we get

n + n

f”(.]?) -6 Z (_1)n xZn _ 62 (_l)n x?n—4.
n=0 n=2

1
If x = 0, then f”(0) =6 - 3 1 =3, and if 0 < |z| < 1, we get by a comparison with the logarithmic

series,

#(z) = % {Z (=" (22)" +m2} —6. :H—Lj—i—a?)’

n x

n=1
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where we have changed the lower bound to n = 1 and added 2.

We get by integration f’(x) as a convergent improper integral,

fl@) = f'(0)+6-/m{w}dt

4
0+ t

12-In(1+t3)7" 6 [* 1 2t
= 046 |- —0n—"> | = (2t——5 ) dt
ol = s L (o)

2 _In(1 2 | 14+t3) -1
%H/ 1. a+8)-1 .
0

= -2
4 t? 1+4¢2

2 _1 1 2
= -2 % + 4Arctan z.
T

By another integration we find f(x) for 0 < |z| < 1 as an improper integral,
x

T2 _In(1 +¢2
fl@) = F(0)+4 Arctantdt—Z/ #
0 0+

dt

Tt 2 —In(1+¢2)1" |
_ [4t.Arctant]§—4/ —2dt+{#} _/ _2(%
o 141 t o+ Jort

T 2 —In(1 2 x 2t
4z - Arctan = — 2 [In(1 + t2)] +2 n( +a%) / dt
0

0 2 L 1+t2
In(1 + 22
= 4x~Arctanx—31n(1+$2)+1_n(;zx)’
T

supplied by f(0) = 0.

Second method. We get by a decomposition,
3 1 3 4
a2t 2n+l) n+2 ndl omtl
We have f(0) = 0 as before. For 0 < |z| < 1 we get by the decomposition

3(=1)" L2 +2
(n+2)(n+1)2n+1)

flz) =

M8

n=0

_1)n x2n+2 _ i 3(_1)n x2n+2 + i 4(_1)71 x2n+2

I
M8

n:0n+2 = n+1 n:O2n+1
o0 o0 o0
(=" 5, 9 ()" L (=" 2nt1
= Z . —3Z—n (z%) —|—43:Z—2n+13:
n=2 n=1 n=0
= i i (=1)" (12)" +a225 — 3n(1 + 1:2) + 42 Arctan z
g2 - n
In(1+422
= l—rl(x;f)—?)ln(l—FxQ)—&—élerctan z.

Summing up we get

1

1- (3 + —2) In(1 + 2?) + 4z Arctan z, for 0 < |z| < 1,
x

0, for x = 0.

fx) =

2
14 ¢2

)i
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Calculus 3c-3 Sums of series

Endpoints. Since

3
(n+2)(n+1)(2n+1)

1
n®

3
2 )
and since n = 3 > 1 secures that the equivalent series is convergent, the original series is convergent
at the endpoints of the interval of convergence.

The sum function is even (only even exponents occur in the series), hence it follows by Abel’s theorem
that the value for x = £1 is

lim f(z)=1—-3+1)In(1+1)+4-1-Arctan1=1—-4In2+ 7.

r—1—

[ ]
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Calculus 3c-3 Sums of series

Example 5.14 Find the radius of convergence o for the power series

i(fl)" LS SR gt
— n n+l1l 2n+1 4n -

Find the sum function of the power series in the interval of convergence. Check if the power series is
convergent for x = p or for x = —p.

By the criterion of roots it follows from

11 4 1
nintl el n(n_|_1)(2n+1){(n+1)(2n+1)+n(2n—|—1)—4n(n+1)}

= m{(2n+l)2—4n2—4n}=

1 1
n(n+1)(2n+1) T

for x # 0 that

o] 1 2?1 x? )\ 2
an (T - _ — — = -
Yn-Yn+1-2n+1 4 Y|z 4 2

2
x
for n — oco. The condition of convergence is ('—) < 1, hence |z] < 2, and o = 2.

2

Endpoints 1. Since the equivalent series > -, is convergent, we conclude that the series is

913
convergent at the endpoints of the interval of convergence x = 4+2 and that the sum can be found by
using Abel’s theorem, if only the sum function is found.

Sum function. If z = 0, then f(0) = 0. if 0 < |x| < 2, then we get the sum function by the following
splitting (note that all series are convergent for |z| < 2),

(—1)" 1+ 1 4 2t
n n+1 2n+1 4n

NE

flz) =

3
Il
—

Il
(e
\
—_
~
3
SR

n=1 n n=1 n=1

1 z? 4 K (=Dt a2\ 8 K (1) pa 2t
- () AR (5) S NG

xn<+4>+x3z n <4> x222n+1 2

n=2 n=1

1 x? x? 4 22 8 z 8 =z

= Eln<1+z>+—3ln(1+z>ﬁ 1 fﬁArctan(§)+? 5
8 x

Summing up we have found the sum function

4 1 22 8 T 3
0

for x=0.
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Endpoints 2. As mentioned earlier the series is convergent at the endpoints of the interval of
convergence. By using Abel’s theorem we get the sum for z = 2,

4 1 4 8 3 3
lim f(z) = (g—a)m(l—l-z)—ZArctan1+§:§—g.

r—2—

Since the power series only contains odd exponents, the sum function is odd, and we get by Abel’s
theorem the sum for x = —2,

3 7 T 3
A, fle) = <§§>5§-

Example 5.15 Find the radius of convergence o for the power series

(e o)
2" —n
x’
Z n!

n=0

and find its sum function in the interval of convergence.

By the rules of calculation,

—~2"—n 2" > °°12n°° 1 N
nz:;) n v nz;) Z_: nz_%n_ z) _;(n—l)!x

n

s
1 =1 .
::Z; PR

[m =n—1, ie.n=m+ 1], in the common domain of convergence for the series on the right hand
side.

By inspection of the standard series it follows that

— 1
> = —exp(2z) forallz €R, [o=od],
n!
n=0
and

— 1

Z —a™ =¢e" forallex €R, [o=oc]
m=0 """

We conclude that ¢ = min{oo, 00} = oo, and the sum function is

oo2n_n

Z ] " =e?® —ze® forallz €R, p=o0
n!

n=0

The question of convergence at the interval of convergence does not give sense because +oo ¢ R.
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Example 5.16 Find the radius of convergence o for the power series

Z(?n + 1),
n=0

and find its sum function in the interval of convergence. Check if the power series is convergent for
x = p or for x = —p.

We put a,(x) = (2n + 1)|z|* > 0. Then

Van(x) = V2n+1-|z| — |z| for n — oo.
By the criterion of roots the series is convergent for |z| < 1, thus o = 1.

Since ¢ = 1, we can split the series into two series which both have o =1,

(o9} o0 oo
Z(Qn+1)x"=22nw"+2x", |z < 1.
n=0 n=0 n=0
o0 1 . . :
Here, >~ 2™ = ——, |z| < 1, is the well-knows quotient series.

1—2a’

Then we get by termwise differentiation,

= d 1 1
= — = f 1.
;nz T (l—m) EE or |z] <

This looks very much like the first series on the right hand side. When we multiply by 2z and add
some zero terms, we get

23;‘ oo o0
m:Zan"zZan" for |z| < 1.
n=1 n=0

We get by insertion for |z| < 1,

oo

2x 1 142
Z(Qn—l—l)x": (1—x)2+1—m = (1j—x)2 = f(x).

n=0

Since (2n 4+ 1)| £ 1| — oo for n — oo, the series is coarsely divergent at the endpoints of the
interval of convergence.

The underhand dealing here is that the sum function can be extended continuously to x = —1; and
the series is not convergent here.
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Example 5.17 Find the radius of convergence o for the power series
2 )
= 4an 1

and find its sum in the interval of convergence. Check, if the power series is convergent for x = g or
for x = —p.

We get by the criterion of roots,

22
Van(z)] = —m—e — z? for n — oo,

Vdn? — 1
so the condition of convergence 22 < 1 gives |z| < 1, thus o = 1.

For x = 0 we get the sum f(0) = 0. It follows by a decomposition that

1 ! B .
4n2 -1 (2n—-1D2n+1) 2\ 2n—-1 2n+1)’
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hence for 0 < |z| < 1,
=Y g =3
4n? —1 2n:1 —
> 2l = o Toodt L [( 1 1 1, (1+x
= rdt= | —— == — =1
;%H /Og_:o /O 1—¢2 2/0 {1—t+1+t} 2“(1—3;)’

which by insertion gives the sum function

1 1 1+ 1
@) = Z(x_5>ln<1—x)+§ for 0 < |z| < 1,
0

for x = 0.

The sum at the endpoints is here directly obtained by a decomposition without any reference to Abel’s
theorem:

N

1 1 1 1 1
i == lim (1- _—
Z4n2 2N33>oz<2n 1 2n—|—1> QNTlo( 2N—|—1> 2

1 1 . 0o
m ~ W’ and since Zn:l W
endpoints. Then we get by Abel’s theorem and the laws of magnitude that since the value is the

same at +1, we have

Alternatively, is convergent, the series is convergent at the

o0

ngl Fl—l = qc1_1)1{1_ flx)= %+m1—i>r?— i(m—i—l)(m—1){ln(1+x)—ln(1—x)}= =

Example 5.18 Find the radius of convergence o for the power series
o0
1)
Z (1 + ( ) ) .772”,
n
n=1
and find its sum function in the interval of convergence. Check if the power series is convergent for

xr = p or forx = —p.

We can here find the radius of convergence more or less elegantly (there are several variants). Here is
one of them. If |z| > 1, then we have for the n-th term that

(1)

so o < 1. If on the other hand, |z| < 1, then we have the estimate

— oo form — oo, hence coarsely divergens,

ST ATH I
; < * n = ;(x )", onvergens,
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(quotient series with the quotient 2 < 1). It follows that ¢ > 1. Summarizing we get o = 1.
It follows from the first argument that the series is coarsely divergent for x = +1 = +p.
Sum function. For |z] < 1 we get according to standard series,

( ]')n 2 2 ( 1)71 2 12 2
d (14— )2 =D ™ "= In(1 + for |z| < 1
< n n_lx ot n (:E ) 1— a2 ( v )7 ' ‘ | ’

because the two series in the splitting both have p = 1, so the splitting is legal.

Note that the right hand side is not defined for z = +1.

Example 5.19 Find the radius of convergence o for the power series

> {n+ (-

Find the sum function of the power series in the interval of convergence. Check if the power series is
convergent for x = o or for x = —p.

We get by the criterion of roots,

Van(z)] = ¥/n+ (=1)r - 2? — 22 for n — oo.

In fact, for n = 2m even we get {/n+ (—-1)" = */2m+1 — 1 for n = 2m — oo through even

indices, and for n = 2m + 1 odd we get {/n+ (—1)" = *_/2m+1)—1 = *"2m — 1 for

n = 2m + 1 — oo through odd indices.
The condition of convergence 22 < 1 gives |z| < 1, hence o = 1.

At the endpoints of the interval of convergence we get |a,(z)] = n+ (—1)" — oo for n — o0, so
the necessary condition for convergence is not fulfilled, and the series is (coarsely) divergent for
r ==+l

The sum function is for || < 1 given by

o] oo 2
f(x) _ T;{n+( 2n _ anQn + Z _ 1'27;171(1'2)"_1 + - +$Ux2.

From

= 1 1 = n—1
og — = = ny" T, |yl <1,
Z dy ( y> (I-y)? ; i

follows by inserting y = x? that

x? x?

fla) = (1 —a2)2 142
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Example 5.20 Find the radius of convergence o for the power series

— (2n+1)(2n+2)
Find its sum function in the interval of convergence. Check if the power series is convergent for x = o
or for x = —o.
We get by the criterion of roots,

1 2 2
Vlan(x)| = ¢ > for n — oo,
o ()] Yo+ 1-{/2n+2

so the condition of convergence gives 22 < 1, hence |z| < 1, and thus ¢ = 1.

1
Sum function. We get for = 0 that f(0) = 5 Then by a decomposition,

1 1 1
2n+1)(2n+2) 2n+1 2n+2’

hence we get for 0 < |z| < 1 the sum function

D S S S Sl T P OF e I
B n:0(2n+1)(2n—|—2) 2n +1 n02n+2 xn:O2n—|—1 202 4= n

1 ) 1 (" dt ,
5/ Zt"dt+—ln1—w :E/o 17t2 21(1—35)

1 1+x 1 9
. (1 - 22).
2xn<1—x>+2x2 n(l - a’)

As conclusion we get

1 1
~In T + —In(1—-2?), for0<|z|<1,
f(JC) — 2x 1—=z 2
1

22
5 for x = 0.
i 1 1 S . .
Since m Nz and ), RS convergent, the series is convergent at the endpoints
n n n

of the interval of convergence. Since (41)?" = 1, we find the sum at the endpoints according to Abel’s
theorem,

zln(l+z) —zln(l —2) +1In(l — ) +1In(1 + )

R 27
. 1
= xlir{l 2—372{(17 + ) In(l+2)—(z—1)In(l —2)} =In2.
Alternatively,
o0 N 2N+2 _ o0 -
1 . 1 1 _ (1)1 (1)1
nz::o 2n+1)(2n +2) Nﬂnoo;(%ﬂ 2n+2) Nﬂnoo; n nz::l n "
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Example 5.21 Find the radius of convergence o for the power series

- n—1 n 2n
> (1) ye e R
n=1

Find its sum function in the interval of convergence. Check if the power series is convergent for x = o
or for x = —o.

We get by the criterion of roots,
Vlap(2)| = ——=12° — = for n — oo.

The condition of convergence x? < 1 implies that |z| < 1, hence ¢ = 1.

Convergence at the endpoints. If x = +1, then we get the alternating series

> n
. -
nzz:l( ) 4n? — 1

Then by a decomposition,

n 1 1 1 )
R 2n—1+2n+1 — 0 decreasingly for n — oc.

ant to do?

Vowo Toucxs | Rewanr Tovcks | Mack Toueks | Vowo Buses | Vowo Coxsteucrion Ecuresent | Wowo Pesm | Vowo Aemo | Vowo IT
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Calculus 3c-3 Sums of series

By Leibniz’s criterion the series is convergent at the endpoints of the interval of convergence (same
value which is found below by means of Abel’s theorem, once the sum function is found).

Sum function. If 2 = 0, we get the sum f(0) = 0. If 0 < |z| < 1, we get by the decomposition above
that

oo . 1o (=t Lo (D)
_ _1)" 1 n 2n _ — N ) 2n - N ) 2n
f(z) 712::1( ) anz —17 4; m_1 " +4; R
I (—1)" 2n+1 I o w— (=" i1, L 1 1 1
4x;—2n+1x 4xn:0n_02n+1x —|—4 1 T o rcanx—|—4

Summing up we get

1 1 1
fa)=14 1 <x - E) Arctan = + 1 for 0 < |z| < 1,
0

for x = 0.

Value at the endpoints. Since the series is convergent at the endpoints of the interval of convergence,
we can apply Abel’s theorem:

oo

B S U !
DU gy =l ) = g

Example 5.22 Find the radius of convergence o for the power series

(oo}

Z 1 p2ntd
2n(n+1)(n+3)

n=0

Find its sum function in the interval of convergence. Check if the power series is convergent for x = o
or for x = —p.

We get by the criterion of roots,
1 1

an(z)| = 5 - — - :
2 Yn+1-Yn+3

2
It follows from the condition of convergence % < 1 that |z| < v/2, thus o = V2.

n

2
, x
x2-vﬂx4—>7 for n — oo.

Sum function. If z = 0, then f(0) = 0. If 0 < |x| < v/2, then we exploit the decomposition

(n+1)1(n+3) :%<n—1i-1 _n—lm)

when we find the sum function

& 2n+4 e 1 2(n+1) 4 > 1 2(n+3)
U pr L O DE mit e
—2Mn+1)(n+3) ‘n+l 201 a? fdm 3 2nid
2§:1 z2\" 4 il 22\" 22 1 [a? 2
= x _ —_— _—— —_ —_— _——_——— - —_—
—n 2 22 —n 2 2 2\«z
2 4 x? 22
2
= —z°1 1— —1 1—— 24+ —.
x n( )+m2 n 2)—1— + 5
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Summing up we get the sum function

2 2 2
. 2(%—%)1n<1—%)+2+%
J@) =

0 for x = 0.

for 0 < |z < /2,

We get at the endpoints = = ++/2 by using the sequence of segments,

n=0

11 1
= 2 lim {14 — — =3.
Nﬂnoo{ Ty T N2 N+3} ;

< (V2! 4 (1 1L AR |
Z(n+1)(n+3) B §n_0{n+1_n+3}_21\}£noo{;n+l_

We can alternatively show the latter by Abel’s theorem, because the series is convergent, using

that

1 1
(n+1)(n+3) n?’

hence

2
lim z)=2-0+2+=-=3,
Jimf(a) :

where we have applied that
2 22 22 2 22 22
S oS m(1-Z)=(1+=)(1-"%)m(1-=
G2)n(-7)-(2) (- F)u(-%) -0

Example 5.23 Find the radius of convergence o for the power series
e 2n+1

Yt
n=0 4”(7}, + 1) ’

and find for each x €] — g, o] the sum function f(x) of the series.
(Apply e.g. some suitable substitution).

We get by the criterion of roots,

2

x il x? ||
Vil = 4ol - 2 = (]
4 Yn+1 4 2

for n — oo.

The condition of convergence gives ( ) < 1, hence |z| < 2, sa p = 2.

m|a

0.

Sum function. If z = 0 then f(0)

for%—>1—.
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Calculus 3c-3 Sums of series

If |z| €]0,2], we get the sum function

2n+1 4

Z4"n+ :5;

Summing up we get

4 z?
F@) = —Eln (1—1) for 0 < |z| < 2,
0

for x = 0.

Remark 5.3 Obviously, the series is divergent at the endpoints of the interval of convergence, so we
cannot apply Abel’s theorem.

Example 5.24 Let F :]— g, 0[— R be the integral of

[e%S)
x2n+1

f(m):nzzzoma

for which F(0) = 0. Find the power series for F(xz) and prove that it is convergent for x = —p and

T = p.
2

1
By means of the given formula, > - — = %, one shall find the value of the integral fog f(z)dx.
n

Background. It is easily seen that o =2 and

4 2
—ln(lx—) for 0 < |z] < 2,
T 4

for x = 0.

fz) =

2
x
Direct integration of f(x) is not possible in practice, because we get by t = R

4 ot In(1—1¢) Int
/f(x)dx——/;ln(l—z) ~xdx——Q/fdt_—ﬂntln(l—t)—i—Q/t_—ldt

thus an integral of the same structure where one cannot proceed further.

We use instead for |z] < 2 termwise integration
r 2n+1 2n+2 e
t 1 rz\2n
F(z) = —_dt==> =23 ()
(@) /0 ;4n(n+1 Z4n (n+1)? nZ:On2 2

This series is clearly absolutely convergent for z = ¢ = 2, and

2

2 o 2
1 T T
— Hdt =2 Y
/Of() 7?:1”2 =3
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Calculus 3c-3 Sums of series

Example 5.25 Find the radius of convergence o for the power series

i 3” +2) L2
vt (n+1)2n+1) ’

Find its sum function in the interval of convergence.

Prove that the series is conditionally convergent at the endpoints of the interval of convergence, and
find the sum function for x = o.

1) Radius of convergence. We get by the criterion of roots,

Vlan(z _\/—?m;ﬁ 2 || — 2? for n — oo.

The condition of convergence becomes 22 < 1, thus |z| < 1, and o = 1.

EXPERIENCE THE POW
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Calculus 3c-3 Sums of series

2) Sum function. If z = 0, then f(0) = 0.

Then by a decomposition,

3n+2 1 1

(n+1)(2n+1) n—|—1+2n+1’

thus if 0 < |2| < 1, then we get the sum function

flz) = (=1)"(3n + 2)) p2ntl Z (=n g2+l Z (=" 2+l
0

O(n+1)(2n+1 n+1 —2n+1

3
Il

8=

e —1)n-1 1
Z % (z*)" + Arctan z = p In(1 4 2%) + Arctan z,
n=1

i.e. by summing up,

1

—In(1+2?)+ Arctan z for 0 < |z| < 1,
fay=9 "
0 for x = 0.

3) Conditional convergence at the endpoints. Since

3n + 2 1
(m+1)2n+1) ~ n+1’

and since Y~ is divergent, it follows that the series is not absolutely convergent.

n—+1

(=1)"(3n+2)

N ntl — g f ==+l ay™> ~—— -~/
oW, T x for x ;and > 7 CESVCTESY)

is alternating with

3n+2 1 1

mtD@ntl) n+l omel

0 decreasingly.

Hence it follows from Leibniz’s criterion that the series is convergent and thus conditionally
convergent at the endpoints of the interval of convergence.

4) Value at the endpoints. The series is convergent for = 1, so it follows from Abel’s theorem
that the value is

o0

—1)"(Bn+2) 1 - 7
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Calculus 3c-3 Sums of series

Example 5.26 1) Find the radius of convergence o for the power series

2) Prove that the series is absolutely convergent at the endpoints of the interval of convergence and
find the sum of the series

3) Prove that the sum of the power series is

14z — 222 3x+2
fla) = — In(1—2)+ 5y for|z| < o og x # 0,

0, for x = 0.

1) We get by the criterion of roots,

Vlan(2)] Vin +4 |z| — |z| for n — oo
n = — — .
Un-Yntl Unieo

The condition of convergence is here || < 1, so o = 1.

3n+4
2) Since __ontd
n(n+1)(n+ 2)
convergent at the endpoints of the interval of convergence, hence for r = +1.

3
—, and since Y . — 1s convergent, we conclude that series is absolutely

Then by a decomposition,

3n+4 2 1 Lot ot [ 1
nn+1)(n+2) n n+l n+2 “|n n+l n+l n+2/J°
This gives us the segmental sequence

oo i%ﬂi{%‘nil}*i{nif a2l

1

n
1 1 1 5 2 1 5
2(1——)+(§—N—_|_2>————_—_’§ for n — oo.

We conclude that the sum of the series is

2—3“4 " lim sy = 2
m+n+2) ¢ " NENT Y

n=1

3) If x =0, then f(0) =
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Calculus 3c-3 Sums of series

If 0 < |z| < 1, then it follows by the decomposition in (2) that

oo

- 3n+4 " — 1 1 =1
— L -9 - on n _ n
/(@) Zn(n+1)(n+2)x ;nm Zn+1$ ;nJer

n=1

oo o o0
1, 1 1, 1 1, z?
= 2) o9 ‘;{ZW _””}_ﬁ{ medat
n=1 n=1
1
2

I 1\ \1 1
< x x2>znx+ Tt

and the claim is proved.

Remark 5.4 Alternatively it is possible in (3) to expand the given function

1+ ax— 222 3r+2
72111(1—35)—# o

X

by known power series and then compare with the series in (1).
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Calculus 3c-3 Sums of series

Remark 5.5 Since (1 —z)In(l —z) — 0 for & — 1— by the laws of magnitudes, we get (cf. Abel’s
theorem) that

lim f(z) = lim{

r—1— r—1—

1 — 222 3 2 5 1-— 142
LQQC In(1 - z) + x;— } 24 lim (I —2)1 +22) In(1 — z)
xr xr

5 5
= 5—&—3 lim (1—x)ln(1—m):§,

r—1—

in accordance with the value found in (2).

Example 5.27 Find the interval of convergence for the power series

- 6n2gntt
; (n+1(n+2)(n+3)(n+4)

Prove that the power series is absolutely convergent at the endpoints of the interval of convergence.

Since

6n2ynt4 6n2 6
~ zn+4 _ In+4’

n+D)(n+2)(n+3)(n+d)  n n?

and since > oo, i has the radius of convergence p = 1, the same holds by the criterion of
n

equivalence for the given series.

. 6 . . .
Since >0, — 1s convergent, we conclude that both series are absolutely convergent at the endpoints
of the interval of convergence.

Comment. One can actually find the sum function. First we get by a decomposition

6n? 1 12 27 16

(n+1)(n+2)(n+3)(n+4) n+l Tha2 T ni3 ng4

Hence for |z| < 1,

> 6n2zntt

fl@) = ;(n+1)(n+2)(n+3)(n+4)

1

S 1

1 4 | A = 1
— —~12 - ,n+ 27 n+4 16 = ,.nt4
nZnJrlx ;nJer + ;n+3x ;n+4x

. n X n 2 > .n 2 3
= xg{zx——x}—12x2{zx——x—%}+27m {Zx——x—%—%}
n n n

n=1

X n 2 3 4
xr xXr X X
~16 2 -z

n=1

23
= —(2° —122° + 272 — 16) In(1 — z) + 5 z® —192% 4 16

23
= (22 —11z+16)- (1 —2)In(1l —z) + Fa:S — 1922 + 162
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Sums of series

We get in particular (cf. Abel’s theorem),

23 5
L S =g 19 16=75
and
23 233
] =928.2.In2— 2 1916 =56In2 — =22,
%lme() n 5 5

Example 5.28 Find the radius of convergence for the power series

- (_1)n(n+2) 2n _ - n 1 1 2n+2
;(n+l)(2n+3)$ P=2.0D {n+1_2n+3}x o

n=0

Find its sum in the interval of convergence.

n -+ 2 1 1

- - h h lity.
i+ 1)(2n+3)  ntl  an4g oneewe have equalily

Obviously,

Then we get by the criterion of roots,

n Vn+2 2 0/ 5 2
\/|an(x)|:{l/n_+l.m~|x\- 2?2 — |z for n — oo.

The condition of convergence |z|? < 1 implies that || < 1, hence o = 1.

Sum function. If x = 0, then f(0) =0. If 0 < |z|] < 1, then

- 1 1 2n+2 - -1 2\n+1
/(@) Z(_l)n{n+2_2n+3}x . :;%(M :

o (D" 1
= ln(1+x2)+§ =In(1 + 2?) _E
= 2n+1 T

1
= In(l +2?%) + = Arctan x — 1.
x
Summing up we get

1
flz) = In(1 + 22) + . Arctan x — 1, for 0 < |z| < 1,
0 for x = 0.

Remark 5.6 We get at the endpoints the alternating series

i n+2 _i 11
— n+1(2n+3)*n=1 n+1 2n+3J°
Since

1 1
n+1l 2n+3

—0 decreasingly,

o

(=D

+nz:%2n+3
2n+171

xZ(n—&-l)
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Calculus 3c-3 Sums of series

the series is convergent according to Leibniz’s criterion.

2 1 1
Now m ~ g and Y07, on is divergent, so the series is not absolutely convergent,

hence it is conditionally convergent.

Finally, we get by Abel’s theorem,

= n 1 1 . T
2 (1) {n——H - 2n—+3} = Jim f(x)=In2+7 -1
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