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Introduction

Here follows a collection of examples of general, elementary series. The reader is also referred to
Calculus 3b. The main subject is Power series; but first we must consider series in general. We shall
in Calculus 3c-3 return to the power series.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.
I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
14th May 2008

Introduction

Download free eBooks at bookboon.com
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1 Partial sums and telescopic series

Example 1.1 Prove that the series

∞∑
n=1

(
1

n + 4
− 1

n + 6

)

is convergent and find its sum.

We shall in this chapter only use the definition of the convergence as the limit of the partial sums of
the series. In this particular case we have

sN =
N∑

n=1

(
1

n + 4
− 1

n + 6

)

=
{

1
5
− 1

7

}
+
{

1
6
− 1

8

}
+
{

1
7
− 1

9

}
+ · · · +

{
1

N + 2
− 1

N + 4

}

+
{

1
N + 3

− 1
N + 5

}
+
{

1
N + 4

− 1
N + 6

}
.

The sum is finite, and we see that all except four terms disappear, so

sN =
1
5

+
1
6
− 1

N + 5
− 1

N + 6
→ 1

5
+

1
6
− 0 − 0 =

11
30

for N → ∞.

It follows by the definition that the series is convergent and its sum is

∞∑
n=1

(
1

n + 4
− 1

n + 6

)
= lim

N→∞
sN =

11
30

.

Remark 1.1 Since

N∑
n=1

1
n + 4

=
N+4∑
n=5

1
n

and
N∑

n=1

1
n + 6

=
N+6∑
n=7

1
n

(finite sums with the same terms; check!), we get more well-arranged (the sum can be split, because
it is finite)

sN =
N∑

n=1

1
n + 4

−
N∑

n=1

1
n + 6

=
N+4∑
n=5

1
n
−

N+6∑
n=7

1
n

=

{
1
5

+
1
6

+
N+4∑
n=7

1
n

}
−
{

N+4∑
n=7

1
n

+
1

N + 5
+

1
N + 6

}

=
1
5

+
1
6
− 1

N + 5
− 1

N + 6
→ 1

5
+

1
6

=
11
30

for N → ∞,

etc.

Partial sums and telescopic series
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Example 1.2 Prove that the given series is convergent and find its sum

∞∑
n=1

1
(2n − 1)(2n + 1)

.

Since we have a rational function in e.g. x = 2n, we start by decomposing the term

1
(2n − 1)(2n + 1)

=
1
2

1
2n − 1

− 1
2

1
2n + 1

.

Then calculate the N -th partial sum

sN =
N∑

n=1

1
(2n − 1)(2n + 1)

=
1
2

N∑
n=1

1
2n − 1

− 1
2

N∑
n=1

1
2n + 1

=
1
2

N−1∑
n=0

1
2n + 1

− 1
2

N∑
n=1

1
2n + 1

=
1
2
− 1

2
· 1
2N + 1

.

Since the sequence of partial sums is convergent,

sN =
1
2
− 1

2
· 1
2N + 1

→ 1
2

for N → ∞,

the series is convergent and its sum is

∞∑
n=1

1
(2n − 1)(2n + 1)

= lim
N→∞

sN =
1
2
.

Partial sums and telescopic series
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Example 1.3 Prove that the given series is convergent and find its sum,
∞∑

n=2

1
n2 − 1

.

We get by a decomposition,

1
n2 − 1

=
1

(n − 1)(n + 1)
=

1
2
· 1
n − 1

− 1
2
· 1
n + 1

.

Se sequence of partial sums is then

sN =
N∑

n=2

1
n2 − 1

=
1
2

N∑
n=2

1
n − 1

− 1
2

N∑
n=2

1
n + 1

=
1
2

N−1∑
n=1

1
n
− 1

2

N+1∑
n=3

1
n

(the same insides, check the first and the last terms)

=

{
1
2

+
1
4

+
1
2

N−1∑
n=3

1
n

}
− 1

2

{
N−1∑
n=3

1
n

+
1
N

+
1

N + 1

}
(remove some terms)

=
3
4
− 1

2
· 1
N

− 1
2
· 1
N + 1

(cancel the two identical sums)

→ 3
4

for N → ∞.

It follows by the definition that the series is convergent and its sum is
∞∑

n=2

1
n2 − 1

= lim
N→∞

sN =
3
4
.

Example 1.4 Prove that the given series is convergent and find its sum
∞∑

n=1

√
n + 1 −√

n√
n2 + n

.

This is a nontypical case, though one may still copy the method of decomposition. since√
n2 + n =

√
n + 1 · √n,

it follows by a division that
√

n + 1 −√
n√

n2 + n
=

√
n + 1 −√

n√
n + 1 · √n

=
1√
n
− 1√

n + 1
.

Then calculate the sequence of partial sums,

sN =
N∑

n=1

√
n + 1 −√

n√
n2 + n

=
N∑

n=1

1√
n
−

N∑
n=1

1√
n + 1

=
N∑

n=1

1√
n
−

N+1∑
n=2

1√
n

=
1√
1
− 1√

N + 1
= 1 − 1√

N + 1
.

Partial sums and telescopic series
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Since the sequence of partial sums is convergent

sN = 1 − 1√
N + 1

→ 1 for N → ∞,

the series is also convergent and its sum is

∞∑
n=1

√
n + 1 −√

n√
n2 + n

= lim
N→∞

sN = 1.

Remark 1.2 We see from the expression of the sequence of partial sums that the convergence is very
slow, so it is not a good idea here to use a pocket calculator.

Example 1.5 . Prove that the given series is convergent and find its sum,

∞∑
n=1

2n + 1
n2(n + 1)2

.

We first decompose,

2n + 1
n2(n + 1)2

=
(n2 + 2n + 1) − n2

n2(n + 1)2
=

1
n2

− 1
(n + 1)2

.

This gives us the sequence of partial sums

sN =
N∑

n=1

2n + 1
n2(n + 1)2

=
N∑

n=1

1
n2

−
N∑

n=1

1
(n + 1)2

=
N∑

n=1

1
n2

−
N+1∑
n=2

1
n2

=

{
1 +

N∑
n=2

1
n2

}
−
{

N∑
n=2

1
n2

+
1

(N + 1)2

}

= 1 − 1
(N + 1)2

→ 1 for N → ∞.

It follows by the definition that the series is convergent and its sum is

∞∑
n=1

2n + 1
n2(n + 1)2

= lim
N→∞

sN = 1.

Example 1.6 Prove that the given series is convergent and find its sum,

∞∑
n=1

3n + 4
n(n + 1)(n + 2)

.

We get by a decomposition that

3n + 4
n(n + 1)(n + 2)

=
2
n
− 1

n + 1
− 1

n + 2
.

Partial sums and telescopic series
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The sequence og partial sums becomes

sN =
N∑

n=1

3n + 4
n(n + 1)(n + 2)

= 2
N∑

n=1

1
n
−

N∑
n=1

1
n + 1

−
N∑

n=1

1
n + 2

= 2
N∑

n=1

1
n
−

N+1∑
n=2

1
n
−

N+2∑
n=3

1
n

(same insides)

=

{
N∑

n=1

1
n
−

N+1∑
n=2

1
n

}
+

{
N∑

n=1

1
n
−

N+2∑
n=3

1
n

} (
by writing 2

N∑
n=1

1
n

=
N∑

n=1

1
n

+
N∑

n=1

1
n

)

=

{
1 +

N∑
n=2

1
n
−

N∑
n=2

1
n
− 1

N + 1

}
+

{
1 +

1
2

+
N∑

n=3

1
n
−

N∑
n=3

1
n
− 1

N + 1
− 1

N + 2

}

=
{

1 − 1
N + 1

}
+
{

3
2
− 1

N + 1
− 1

N + 2

}

=
5
2
− 2

N + 1
− 1

N + 2
→ 5

2
for N → ∞.

It follows by the definition that the series converges towards the sum

∞∑
n=1

3n + 4
n(n + 1)(n + 2)

= lim
N→∞

sN =
5
2
.

Partial sums and telescopic series
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Example 1.7 Prove that the given series is convergent and find its sum,

∞∑
n=1

2n + n2 + n

2n+1n(n + 1)
.

By using a decomposition like method we get

2n + n2 + n

2n+1n(n + 1)
=

1
2
· 1
n(n + 1)

+
1

2n+1
=

1
2

1
n
− 1

2
1

n + 1
+

1
2n+1

.

The sequence of partial sums is

sN =
N∑

n=1

2n + n2 + n

2n+1n(n + 1)
=

1
2

N∑
n=1

1
n
− 1

2

N∑
n=1

1
n + 1

+
N∑

n=1

1
2n+1

=
1
2

N∑
n=1

1
n
− 1

2

N+1∑
n=2

1
n

+
1
2

(
1 − 1

2N

)

=

{
1
2

+
1
2

N∑
n=2

1
n

}
−
{

1
2

N∑
n=2

1
n

+
1
2

1
N + 1

}
+

1
2
− 1

2N+1

=
1
2
− 1

2
1

N + 1
+

1
2
− 1

2N+1
= 1 − 1

2
1

N + 1
− 1

2N+1
→ 1 for N → ∞.

By the definition, the series is convergent and its sum is

∞∑
n=1

2n + n2 + n

2n+1n(n + 1)
= lim

N→∞
sN = 1.

Example 1.8 Check if the given series is convergent or divergent,

∞∑
n=1

2 + (−1)n

2n
.

First estimate each term,

0 < an =
2 + (−1)n

2n
≤ 3

2n
= bn.

Then the larger series

∞∑
n=1

bn = 3
∞∑

n=1

1
2n

= 3, (a quotien series),

is convergent, so it follows from the criterion of comparison that the smaller series

∞∑
n=1

an =
∞∑

n=1

2 + (−1)n
2n

is also convergent.

Partial sums and telescopic series
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Remark 1.3 We can in this case even find the sum. which will give us an alternative proof. The
sequence of partial sums is

sN =
N∑

n=1

2 + (−1)n

2n
= 2

N∑
n=1

(
1
2

)n

+
N∑

n=1

(
−1

2

)n

= 2
{

1 − 1
2N

}
+

(
−1

2

)
−
(
−1

2

)N+1

1 −
(
−1

2

) (quotient series)

= 2 − 2
2N

− 1
3
− 2

3
·
(
−1

2

)N+1

→ 5
3

for N → ∞.

It follows that the series converges towards the sum

∞∑
n=1

2 + (−1)n

2n
= lim

N→∞
sN =

5
3
.

Partial sums and telescopic series
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2 Simple convergence criteria for series

Example 2.1 Check if the given series is convergent or divergent,

∞∑
n=2

1√
n(n − 1)

.

Criterion of comparison. Since

√
n(n − 1) <

√
n · n = n, we have

1√
n(n − 1)

>
1
n

.

Therefore, if we put an = 1/
√

n(n − 1) and bn = 1/n, we get

∞∑
n=2

an =
∞∑

n=2

1
n(n − 1)

≥
∞∑

n=2

1
n

=
∞∑

n=2

bn.

Since the smaller series is divergent (the harmonic series is divergent), the larger series is also, thus

∞∑
n=2

1√
n(n − 1)

is divergent.

Criterion of equivalence. Putting as above

an =
1√

n(n − 1)
and bn =

1
n

, n ≥ 2,

we see that both an > 0 and bn > 0. Since

bn

an
=

√
n(n − 1)

n
=

√
n − 1

n
=

√
1 − 1

n
→ 1 for n → ∞,

the series
∑

an and
∑

bn are equivalent. Since the harmonic series is divergent, it follows that

∞∑
n=2

bn =
∞∑

n=2

1
n

is divergent.

By the criterion of equivalence,

∞∑
n=2

an =
∞∑

n=2

1√
n(n − 1)

is divergent.

Simple convergence criteria for series
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Example 2.2 Check if the given series is convergent or divergent,

∞∑
n=1

1
1 + lnn

.

It follows either by the magnitudes or by a graphical consideration that

0 < 1 + lnn ≤ n for every n ∈ N.

Hence,

–4

–2

0

2

0.5 1 1.5 2 2.5 3

x

an =
1

1 + lnn
≥ 1

n
= bn,

and thus
∞∑

n=1

an ≥
∞∑

n=1

bn.

Since the smaller series
∑

bn is divergent (the harmonic series), the larger series
∑

an is by the
criterion of comparison also divergent.

We have proved that

∞∑
n=1

1
1 + lnn

is divergent.

Simple convergence criteria for series
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Example 2.3 Check if the given series is convergent or divergent,

∞∑
n=1

ne−n2
.

Criterion of comparison. By putting an = ne−n2
> 0, and e.g. bn = 1/n2, it is seen that

0 < an = n · e−n2
=

1
n2

· n3e−n2
<

1
n2

= bn for n ≥ N (in fact for n ∈ N),

since the magnitudes assure that at n3 · e−n2 → 0 for n → ∞.

Since the larger series
∑

bn =
∑

n−2 is convergent, it follows by the criterion of comparison that

∞∑
n=1

an =
∞∑

n=1

ne−n2
is konvergent.

Remark 2.1 Another choice of bn could be bn = e−n or bn = exp(−n2/2). In both cases we also
prove the convergence.

Criterion of quotients. If we put an = n exp(−n2) > 0, it follows that

an+1

an
=

(n + 1) exp(−(n + 1)2)
n exp(−n2)

=
(

1 +
1
n

)
e−2n−1 → 0 < 1 for n → ∞,

and the convergence follows by the criterion of quotients.

Criterion of roots. If we put an = n exp(−n2) > 0, it follows that

n
√

an = n
√

n · e−n → 1 · 0 = 0 < 1 for n → ∞,

and the convergence follows by the criterion of roots.

Example 2.4 Check if the given series is convergent or divergent,

∞∑
n=1

1
2n2 −√

n
.

Criterion of equivalence. If we put

an =
1

2n2 −√
n

> 0 og bn =
1

2n2
, for n ∈ N,

it follows that

bn

an
=

2n2 −√
n

2n2
= 1 − 1

2
1

n
√

n
→ 1 for n → ∞,

thus (an) and (bn) are equivalent sequences. Since

∞∑
n=1

bn =
1
2

∞∑
n=1

1
n2

is convergent,

Simple convergence criteria for series
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the criterion of equivalence shows that

∞∑
n=1

1
2n2 −√

n
is konvergent.

Criterion of comparison. Since
√

n ≤ n ≤ n2 for n ∈ N, we have

2n2 −√
n ≥ 2n2 − n2 = n2,

thus

0 < an =
1

2n2 −√
n
≤ 1

n2
= bn, n ∈ N.

The larger series
∑

bn =
∑

1/n2 is convergent, hence the smaller series

∞∑
n=1

1
2n2 −√

n
is also convergent.

Simple convergence criteria for series
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Example 2.5 Check if the given series is convergent or divergent,

∞∑
n=1

1
n +

√
n

.

Criterion of equivalence. Put

an =
1

n +
√

n
> 0 and bn =

1
n

> 0.

Then

bn

an
=

n +
√

n

n
= 1 +

1√
n
→ 1 for n → ∞,

so (an) and (bn) are equivalent. The harmonic series

∞∑
n=1

bn =
∞∑

n=1

1
n

is divergent,

so we conclude by the criterion of equivalence that

∞∑
n=1

an =
∞∑

n=1

1
n +

√
n

is also divergent.

Criterion of comparison. Since
√

n ≤ n for n ∈ N, we have n +
√

n ≤ 2n, so

an =
1

n +
√

n
≥ 1

2n
= bn.

Since the harmonic series is divergent, the smaller series

∞∑
n=1

bn =
1
2

∞∑
n=1

1
n

is divergent.

By the criterion of comparison, the larger series

∞∑
n=1

an =
∞∑

n=1

1
n +

√
n

is divergent.

Simple convergence criteria for series
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Example 2.6 Check if the series
∞∑

n=1

1
n
√

2n2 + 1

is convergent or divergent.

Since

√
2n2 + 1 = n

√
2 +

1
n2

> n,

it follows by the criterion of comparison that

0 <
∞∑

n=1

1
n
√

2n2 + 1
<

∞∑
n=1

1
n · n =

∞∑
n=1

1
n2

< ∞,

so the series is convergent.

We can also apply the criterion of equivalence, but it will only be a variant of the above.

Remark 2.2 Since an = 1/(n
√

2n2 + 1) approximately behaves like a fractional rational function,
we cannot use the criteria of quotients or roots:

n
√

an → 1, and
an+1

an
→ 1, for n → ∞.

Example 2.7 Check if the given series is convergent or divergent,
∞∑

n=1

n + 2
(n + 1)

√
n + 3

.

Criterion of equivalence. Put

an =
n + 2

(n + 1)
√

n + 3
> 0.

By counting the degrees we see that it would be reasonable to compare with bn = 1/
√

n. Since

bn

an
=

(n + 1)
√

n + 3
(n + 2)

√
n

=
n + 1
n + 2

√
n + 3

n
=
(

1 − 1
n + 2

)√
1 +

3
n
→ 1 for n → ∞,

it follows that (an) and (bn) are equivalent. Then compare bn = 1/
√

n and cn = 1/n. We see that

bn =
1√
n
≥ 1

n
= cn.

The harmonic series is divergent, so
∑

cn =
∑ 1

n
is divergent. The larger series

∑
bn is also divergent,

so according to the criterion of equivalence
∞∑

n=1

an =
∞∑

n=1

n + 2
(n + 1)

√
n + 3

is divergent.

Simple convergence criteria for series
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Remark 2.3 The above is rather difficult. It will later be proved that
∑

n−α is divergent, when
α ≤ 1. This is true here, where α = 1

2 .

Criterion of comparison. Since

an =
n + 2

(n + 1)
√

n + 3
≥ 1√

n + 3
>

1
n

= bn for n ≥ 3,

and
∑

bn =
∑

1/n is divergent (the harmonic series again), the larger series

∞∑
n=1

an =
∞∑

n=1

n + 2
(n + 1)

√
n + 3

divergent.

Example 2.8 Check if the given series is convergent or divergent,

∞∑
n=1

4n2 + 5n − 2
n(n2 + 1)3/2

.

Criterion of equivalence. Put

an =
4n2 + 5n − 2
n(n2 + 1)3/2

> 0.

By counting the degrees we are led to choose bn = 4/n2. Then

bn

an
=

n(n2 + 1)3/2

4n2 + 5n − 2
· 4
n2

=
n · n3

(
1 +

1
n2

)3/2

n2

(
4 +

5
n
− 2

n2

) · 4
n2

→ 1 for n → ∞,

so (an) and (bn) are equivalent. Since

∞∑
n=1

bn = 4
∞∑

n=1

1
n2

is convergent,

it follows that also
∞∑

n=1

4n2 + 5n − 2
n(n2 + 1)3/2

is convergent.

Criterion of comparison. Since

0 < an =
4n2 + 5n − 2
n(n2 + 1)3/2

=
n2

n4
·

4 +
5
n
− 2

n2(
1 +

1
n2

)3/2
≤ 4 + 5 − 0

(1 + 0)3/2
· 1
n2

=
9
n2

= bn,

Simple convergence criteria for series
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where the larger series

∞∑
n=1

bn = 9
∞∑

n=1

1
n2

is convergent,

the smaller series
∞∑

n=1

an =
∞∑

n=1

4n2 + 5n − 2
n(n2 + 1)3/2

is also convergent.

Simple convergence criteria for series
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Example 2.9 Check if the given series is convergent or divergent,

∞∑
n=1

√
n − lnn

n2 + 10n3
.

The series looks horrible, but if we use the principle of taking the dominating factors outside the
expression, then the task becomes fairly easy:

(1) an =

√
n − lnn

n2 + 10n3
=

√√√√√√√
n

(
1 − 1

n
lnn

)

n3

(
10 +

1
n

) =
1
n

√√√√√√1 − 1
n

lnn

10 +
1
n

.

It follows by the magnitude that the latter factor converges towards 1/
√

10 for n → ∞. We have now
two variants.

Criterion of equivalence. If we put

bn =
1√

10 · n,

it follows from the above that

bn

an
=

√√√√√√10 − 10
n

lnn

10 +
1
n

→ 1 for n → ∞,

thus (an) and (bn) are equivalent. Since
∑

bn =
1√
10

∑ 1
n

is divergent, we have that

∞∑
n=1

√
n − lnn

n2 + 10n3
is also divergent.

Criterion of comparison. Since 1/4 < 1/
√

10, it follows from (1) that there is an N ∈ N, such that

an ≥ 1
4
· 1
n

= bb for every n ≥ N.

Since the smaller series
∞∑

n=N

bn =
1
4

∞∑
n=N

1
n

is divergent,

then the larger series

∞∑
n=1

an =
∞∑

n=1

√
n − lnn

n2 + 10n3
is also divergent.
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Download free eBooks at bookboon.com



Calculus 3c-2

 

22  

Example 2.10 Check if the given series is convergent or divergent,

∞∑
n=1

(
√

1 + n2 − n).

The insides
√

1 + n2 − n is of the type “∞−∞”, so we must first make a rearrangement

an =
√

1 + n2 − n =
(
√

1 + n2)2 − n2

√
1 + n2 + n

=
1

n +
√

1 + n2
=

1
n
· 1

1 +
√

1 +
1
n2

.

It follows immediately from this that

an ≥ 1
2n

= bn > 0.

Since the smaller series
∑

bn =
1
2
∑ 1

n
is divergent, the larger series

∞∑
n=1

an =
∞∑

n=1

(
√

1 + n2 − n) is also divergent

according to the criterion of comparison.

We can alternatively apply the criterion of equivalence with bn =
1
2n

, because

bn

an
=

1
2

{
1 +

√
1 +

1
n2

}
→ 1

2
{1 + 1} = 1 for n → ∞,

thus (an) and (bn) are equivalent. Since

∞∑
n=1

bn =
1
2

∞∑
n=1

1
n

is divergent,

we also have that
∞∑

n=1

an =
∞∑

n=1

(
√

1 + n2 − n) is divergent.
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Download free eBooks at bookboon.com



Calculus 3c-2

 

23  

Example 2.11 Check if the given series is convergent or divergent,

∞∑
n=1

exp(−√
n)√

n
.

Whenever the exponential function appears together with a term which is almost polynomial, one
should immediately think of the different magnitudes and try to make a comparison with a known
convergent series.
Here we choose the standard series

∞∑
n=1

bn =
∞∑

n=1

1
n2

, which is convergent.

We shall isolate the factor 1/n2. This gives the following estimate

0 < an =
exp(−√

n)√
n

=
1
n2

· n2 exp(−√
n)√

n
=

1
n2

·
{

(
√

n)3e−
√

n
}

.

Due to the law of magnitudes, x3e−x → 0 for n → ∞.

Then put x =
√

n → ∞ for n → ∞. We see that there exists an N ∈ N, such that

0 < an <
1
n2

= bn for n ≥ N.

Since the larger series

∞∑
n=N

bn =
∞∑

n=N

1
n2

is convergent,

then the smaller series
∞∑

n=1

an =
∞∑

n=1

exp(−√
n)√

n
is also ckonvergent

since we only add a finite number of terms
∑N−1

n=1 an.

Example 2.12 Check if the given series is convergent or divergent,

∞∑
n=1

1

n ln
(

1 +
1
n

) .

Criterion of comparison. We get from

0 < n ln
(

1 +
1
n

)
≤ ln 2 · n,

that

an =
1

n ln
(

1 +
1
n

) ≥ 1
ln 2

· 1
n

= bn > 0.
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Since the smaller series
∞∑

n=1

bn =
1

ln 2

∞∑
n=1

1
n

is divergent,

the larger series

∞∑
n=1

an =
∞∑

n=1

1

n ln
(

1 +
1
n

) is also divergent.

Alternatively we prove that the necessary condition of convergence is not fulfilled. In fact, we
get by Taylor’s formula

ln(1 + x) = x + xε(x).

If we put x = 1/n → 0 for n → ∞, then

n ln
(

1 +
1
n

)
= n

{
1
n

+
1
n

ε

(
1
n

)}
= 1 + ε

(
1
n

)
→ 1 for n → ∞,

hence

an =
1

n ln
(

1 +
1
n

) → 1
1

= 1 �= 0 for n → ∞.

The necessary condition of convergence is not fulfilled, hence the series is divergent.

Simple convergence criteria for series
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Example 2.13 Check if the given series is convergent or divergent,

∞∑
n=1

1
n

Arccot n.

We get by Taylor’s formula that

Arctan x = x + xε(x).

Put x = 1/n. Then

0 < an =
1
n

Arccot n =
1
n

Arctan
1
n

=
1
n

{
1
n

+
1
n

ε

(
1
n

)}
=

1
n2

{
1 + ε

(
1
n

)}
,

hence

0 < an =
1
n2

{
1 + ε

(
1
n

)}
≤ 2

n2
= bn for n ≥ N.

Since the larger series

∞∑
n=N

bn = 2
∞∑

n=N

1
n2

is convergent,

it follows by the criteria of comparison that the smaller series

∞∑
n=1

1
n

Arccot n is also convergent.

Example 2.14 Check if the given series is convergent or divergent,

∞∑
n=1

ln
(

1 +
1
n2

)
.

We get by Taylor’s formula that

ln(1 + x) = x + xε(x).

We even get by a graphical consideration that

0 < ln(1 + x) < x for x > 0.

If we put x = 1/n2, it follows that

0 < an = ln
(

1 +
1
n2

)
<

1
n2

= bn, for n ∈ N.

The larger series

∞∑
n=1

bn =
∞∑

n=1

1
n2

is convergent,

Simple convergence criteria for series
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0
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x

hence the smaller series
∞∑

n=1

an =
∞∑

n=1

ln
(

1 +
1
n2

)
is also convergent

by the criterion of comparison.

Example 2.15 Check if the given series is convergent or divergent,

∞∑
n=1

(3n)!3n

n3n22n
.

This example either assumes Stirling’s formula or the criterion of quotients combined with a pocket
calculator.

It follows from Stirling’s formula

n! =
√

2πn
(n

e

)n
{

1 + ε

(
1
n

)}

when n is replaces by 3n that

(3n)! =
√

6πn

(
3n
e

)3n{
1 + ε

(
1
n

)}
,

hence

an =
(3n)!3n

n3n22n
=

√
6πn · 33n · n3n · 3n

e3n · n3n · 4n

{
1 + ε

(
1
n

)}
=

√
6πn ·

(
34

4e3

)n{
1 + ε

(
1
n

)}
.
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We get by a calculation on a pocket calculator that

a =
34

4e3
≈ 1, 008 > 1,

hence

an =
√

6πn · an

{
1 + ε

(
1
n

)}
→ ∞,

and the necessary condition of convergence is not fulfilled, and the series is divergent.

Alternatively we apply the criterion of quotients. Since

an =
(3n)!3n

n3n · 22n
> 0,

we get

an+1

an
=

(3n + 3)!3n+1

(n + 1)3n+3 · 22n+2
· n3n · 22n

(3n)!3n
=

(3n + 3)(3n + 2)(3n + 1)3(
1 +

1
n

)3n

· (n + 1)3 · 22

→ 34

e3 · 4 ≈ 1, 008 > 1 for n → ∞,

where we again have used our pocket calculator.
Since the limit value is > 1, it follows from the criterion of quotients that the series is divergent.

Example 2.16 Check if the series

∞∑
n=2

(
n
√

n − 1
)n

is convergent.

The structure invites an application of the criterion of roots. The criterion of comparison may also
be applied. Anyway, an application of the criterion of quotients will be rather messy, although it is
also possible to succeed in this case. See below.

Initial investigation. Since n
√

n > 1, we have ( n
√

n − 1)n
> 0 for n ≥ 2. Since even n

√
n → 1 for

n → ∞, there exists an N , such that

0 ≤ n
√

n − 1 ≤ 1
2

for every n ≥ N (one may here even choose N = 2).

1) Criterion of roots. Since

n
√

|an| = n
√

n − 1 → 0 < 1 for n → ∞,

it follows from the criterion of roots that the series is convergent.
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2) Criterion of comparison. Since

0 < n
√

n − 1 ≤ 1
2

for every n ≥ 2,

we get the estimate

0 <

∞∑
n=2

(
n
√

n − 1
)n

<

∞∑
n=2

(
1
2

)n

=
1
2
,

and the series is convergent.

3) The criterion of quotients becomes very messy:

∣∣∣∣an+1

an

∣∣∣∣ =
(

n+1
√

n + 1 − 1
)n+1

( n
√

n − 1)n =
{

n+1
√

n + 1 − 1
n
√

n − 1

}n

· ( n+1
√

n + 1 − 1
)
.

This does not look nice. We can, however manage it by noting that the latter factor → 0 for
n → ∞, and by convincing oneself that the former factor can be estimated upwards by 1, by
proving that n

√
n− 1 is decreasing in n for n ≥ 3, which means that the numerator is smaller than

the denominator.

Simple convergence criteria for series
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Example 2.17 Check if the series

∞∑
n=1

2n

n7

is convergent.

First variant. According to the rules of magnitudes,

an =
2n

n7
→ ∞ for n → ∞,

hence the necessary condition of convergence is not fulfilled, and the series is divergent.

Second variant. Since an = 2n/n7 > 0, we get by the criterion of roots that

0 < n
√

an = n

√
2n

n7
=

2

( n
√

n)7
→ 2 > 1 for n → ∞,

showing that the series is divergent.

Third variant. Choosing the same an we get by the criterion of quotients that

an+1

an
=

2n+1

(n + 1)7
· n7

2n
=

2(
1 +

1
n

)7 → 2 > 1 for n → ∞,

and we conclude that the series is divergent.

Example 2.18 Check if the series

∞∑
n=2

(
lnn

n

)n

is convergent.

First variant. The structure invites to an application of the criterion of roots. Put

an =
(

lnn

n

)n

> 0 for n ≥ 2.

Then

n
√

an =
1
n

lnn → 0 < 1 for n → ∞,

by the laws of magnitudes. Then the series is convergent by the criterion of roots.

Second variant. Put

f(x) =
lnx

x
, med f ′(x) =

1 − lnx

x2
.

Simple convergence criteria for series
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Then we have a global maximum for x = e, thus

0 <
lnn

n
= f(n) ≤ f(e) =

ln e

e
=

1
e

for n ≥ 3.

Then

0 < an =
(

lnn

n

)n

<
1
en

= bn for n ≥ 3.

The larger series is convergent, because it is a quotient series of quotient 1/e ∈ ]0, 1[,

∞∑
n=2

bn =
∞∑

n=2

(
1
e

)n

and thus convergent. Then it follows by the criterion of comparison that the smaller series

∞∑
n=2

an =
∞∑

n=2

(
lnn

n

)n

is also convergent.

Third variant. It is possible to apply also the criterion of quotients, but this will give a terrible
mess, so the details are ere left out.

Example 2.19 Check if the series

∞∑
n=1

2n + n2

3n

is convergent.

First variant. Criterion of roots. Since an > 0 and

0 < n
√

an =
n

√
2n + n2

3n
=

2
3

n

√
1 +

n2

2n
→ 2

3
< 1 for n → ∞,

it follows from the criterion of roots that the series is convergent.

Second variant. Criterion of quotients. Since an > 0 and

an+1

an
=

2n+1 + (n + 1)2

3n+1
· 3n

2n + n2
=

2
3
·
1 +

(n + 1)2

2n+1

1 +
n2

2n

→ 2
3

< 1 for n → ∞,

it follows from the criterion of quotients that the series is convergent.

Third variant. Criterion of comparison. Since

0 <
2n + n2

3n
≤ 2n + 2n

3n
= 2 ·

(
2
3

)n

,

Simple convergence criteria for series
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and the larger quotient series
∑

2 ·
(

2
3

)n

is convergent, it follows from the criterion of comparison

that the given series is convergent.

Addition, fourth variant. By using the theory of power series it is possible explicitly to find its
sum. We have for |x| < 1

1
1 − x

=
∞∑

n=0

xn,

and we are allowed to differentiate each term separately

1
(1 − x)2

=
∞∑

n=1

nxn−1 og
2

(1 − x)3
=

∞∑
n=2

n(n − 1)xn−2, |x| < 1.

Then

∑
n=1

n2xn = x2
∞∑

n=2
(n=1)

n(n − 1)xn−2 + x

∞∑
n=1

nxn−1 =
2x2

(1 − x)3
+

x

(1 − x)2
.

Choosing x =
1
3
, which immediately gives the convergence, we get

∞∑
n=1

2n + n2

3n
=

∞∑
n=1

(
2
3

)n

+
∞∑

n=1

n2

(
1
3

)n

=

2
3

1 − 2
3

+
2 · 1

9
8
27

+

1
3
4
9

= 2 +
3
4

+
3
4

=
7
2
.

Example 2.20 Check if the series
∞∑

n=1

2n + 3n

6n

is convergent.

First variant. Find the sum directly. Every term is positive, so we may split the series. Then it
is reduced to two convergent quotient series,

∞∑
n=1

2n + 3n

6n
=

∞∑
n=1

2n

6n
+

∞∑
n=1

3n

6n
=

∞∑
n=1

(
1
3

)n

+
∞∑

n=1

(
1
2

)n

=

1
3

1 − 1
3

+

1
2

1 − 1
2

=
3
2
.

Second variant. Criterion of comparison . Since

0 < an =
2n + 3n

6n
<

3n + 3n

6n
= 2 · 1

2n
= bn,

and the larger quotient series
∑

bn (quotient 1/2 < 1) is convergent, the smaller series

∞∑
n=1

an =
∞∑

n=1

2n + 3n

6n
is also convergent.
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Third variant. Criterion of roots. Since an > 0, and

n
√

an = n

√
2n + 3n

6n
=

3
6

n

√
1 +
(

2
3

)n

→ 3
6
· 1 =

1
2

< 1 for n → ∞,

it follows from the criterion of roots that the series is convergent.

Fourth variant. Criterion of quotients. Since an > 0, and

an+1

an
=

2n+1 + 3n+1

6n+1
· 6n

2n + 3n
=

6n

6n+1
· 3n+1

3n
·
1 +
(

2
3

)n+1

1 +
(

2
3

)n → 1
2

< 1 for n → ∞,

it follows from the criterion of quotients that the series is convergent.
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Example 2.21 Check if the series
∞∑

n=1

5n−1

n2 + n

is convergent.

1) Prove directly that the series is crudely divergent. It follows from the laws of magnitudes that

an =
5n−1

n2 + n
→ ∞ �= 0 for n → ∞,

hence the necessary condition of convergence is not fulfilled.

2) Alternatively we get by the criterion of roots that

n
√

|an| = n

√
5n−1

n2 + n
=

5
n
√

5 · n
√

n · n
√

n + 1
→ 5 > 1 for n → ∞,

hence the series is divergent.

3) Alternatively every an > 0, so by using the criterion of quotients,

0 <
an+1

an
=

5n

(n + 1)(n + 2)
· n(n + 1)

5n−1
= 5 · n

n + 2
→ 5 > 1 for n → ∞,

and the series is divergent.

Example 2.22 Check if the series
∞∑

n=1

n2 + 1
n3 + 1

is convergent.

Since
n2 + 1
n3 + 1

is a quotient between two polynomials, the criteria of roots and of quotients will both

give the limit value 1, so nothing can be concluded by applying these two criteria.

It follows instead by the equivalence

an =
n2 + 1
n3 + 1

=
n2

n3
·
1 +

1
n2

1 +
1
n3

=
1
n
·
1 +

1
n2

1 +
1
n3

∼ 1
n

= bn,

that the series behaves approximately like the divergent harmonic series. Then by the criterion of
equvivalence se series

∞∑
n=1

n2 + 1
n3 + 1

is divergent.

Simple convergence criteria for series

Download free eBooks at bookboon.com



Calculus 3c-2

 

34  

Example 2.23 Check if the series

∞∑
n=0

(n + 1)2n

(2n)!

is convergent.

Whenever the faculty function occurs, apply only the criterion of quotients and avoid the criterion of
roots.

Criterion of quotients. First check the assumption

an =
(n + 1)2n

(2n)!
> 0, OK.

Then we get [be aware of the calculation of an+1]

an+1

an
=

(n + 2)2(n+1)

(2n + 2)!
· (2n)!
(n + 1)2n

=
(

n + 2
n + 1

)2(n+1)

· (n + 1)2

(2n + 2)(2n + 1)

=

{(
1 +

1
n + 1

)n+1
}2

· 1
4
·

1 +
1
n

1 +
1
2n

.

When we apply the standard sequence
(

1 +
1
n

)n

→ e for n → ∞, we get

an+1

an
→ e2 · 1

4
· 1 + 0
1 + 0

=
(e

2

)2

> 1 for n → ∞.

It follows from the criterion of quotients that the series is divergent.

Remark 2.4 It is possible also to use the Criterion of roots (excluded here) if we apply Stirling’s
formula.

Remark 2.5 If we instead use the rather sophisticated estimate

(2n − j + 1)j ≤ (n + 1)n for j = 1, . . . , n,

(prove this), one may directly prove the coarse divergence,

an =
(n + 1)2n

(2n)!
=

(n + 1)2n∏n
j=1(2n − j + 1)j

≥ (n + 1)2n

(n + 1)nnn
=
(

1 +
1
n

)n

> 1,

thus an does not converge towards 0 for n → ∞, proving that we have coarse divergence.

Simple convergence criteria for series
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Example 2.24 Check if the series

∞∑
n=1

n2n+1

9n(n!)2

is convergent.

The structure indicates that we should apply the criterion of quotients. Since an > 0 and

an+1

an
=

(n + 1)2n+3

9n+1((n + 1)!)2
· 9n(n!)2

n2n+1
=

1
9
· (n + 1)2n+3

(n + 1)2
· 1
n2n+1

=
1
9

(
n + 1

n

)2n+1

=
1
9

(
1 +

1
n

)
·
{(

1 +
1
n

)n}2

→ 1
9
· 1 · e2 =

(e

3

)2

< 1 for n → ∞,

it follows from the criterion of quotients that the series is convergent.

Example 2.25 Check if the series

∞∑
n=1

1√
n

tan
1√
n

is convergent.

Since tanx > x for 0 < x ≤ 1, we get

an =
1√
n

tan
1√
n
≥ 1√

n
· 1√

n
=

1
n

= bn.

The smaller series
∑

bn is the divergent harmonic series, hence it follows from the criterion of com-
parison that the larger series

∞∑
n=1

an =
∞∑

n=1

1√
n

tan
1√
n

is divergent.

Example 2.26 Check if the series

∞∑
n=1

n!
2(n2)

is convergent.

Since the faculty function occurs, one should use the criterion of quotients and avoid the criterion of
roots.

Criterion of quotients. First check the assumption

an =
n!

2(n2)
> 0, OK.

Simple convergence criteria for series
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Da (n + 1)2 = n2 + 2n + 1, f̊as dernæst, at

an+1 =
(n + 1)!
2n2+2n+1

.

It follows from the laws of magnitudes that

an+1

an
=

(n + 1)!
2n2+2n+1

· 2(n2)

n!
=

n + 1
22n+1

→ 0 < 1 for n → ∞.

(The exponential function dominates any polynomial).
It follows from the criterion of quotients that the series is convergent.

Simple convergence criteria for series
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Example 2.27 Check if the series
∞∑

n=1

(2n)!
n2n

is convergent.

The faculty function occurs we use the Criterion of quotients.

First check the assumption,

an =
(2n)!
n2n

> 0, OK.

Then calculate an+1 separately (in order to avoid errors),

an+1 =
(2{n + 1})!

(n + 1)2(n+1)
=

(2n + 2)!
(n + 1)2n+2

.

Finally, check the quotient,

0 <
an+1

an
=

(2n + 2)!
(n + 1)2n+2

· n2n

(2n)!
=

(2n + 2)(2n + 1) · (2n)!
(2n)!

·
(

n

n + 1

)2n

· 1
(n + 1)2

=
(2n + 2)(2n + 1)

(n + 1)2
· 1{(

1 +
1
n

)n}2 → 4
e2

=
(

2
e

)2

< 1,

because
(

1 +
1
n

)n

→ e for n → ∞ (a standard sequence).

Then the criterion of quotients shows that the series is convergent.

Example 2.28 Find all values of the constant a ∈ R+, for which the series
∞∑

n=1

ann!
nn

is convergent.

From a > 0 follows that bn =
ann!
nn

> 0, hence we get for the quotient

bn+1

bn
=

an+1(n + 1)!
(n + 1)n+1

· nn

ann!
=

a(
1 +

1
n

)n → a

e
for n → ∞.

We conclude by the criterion of quotients that the series is convergent for 0 < a < e, and divergent
for a > e.

Investigation of the possible convergence when a = e. We cannot conclude anything from the criterion

of quotients itself, but since
(

1 +
1
n

)n

is increasing, it follows that
(

1 +
1
n

)n

< e for every n, thus

bn+1

bn
=

e(
1 +

1
n

)n >
e

e
= 1 for every n ∈ N,

Simple convergence criteria for series
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which shows that (bn) is increasing. Since every bn > 0, we conclude that the necessary condition of
convergence is not fulfilled. Hence the series is divergent for a = e.

Alternatively we apply Stirling’s formula

n! =
√

2πn ·
(n

e

)n
{

1 + ε

(
1
n

)}
.

If a = e, then

bn =
enn!
nn

=
( e

n

)n

·
√

2πn ·
(n

e

)n
{

1 + ε

(
1
n

)}
=

√
2πn

{
1 + ε

(
1
n

)}
,

hence bn → ∞ �= 0 for n → ∞, and the necessary condition of convergence is not satisfied.

We conclude that we have convergence for 0 < a < e and divergence for a ≥ e.

Addition. If we put

cn =
enn!

nn+1/2
, n ∈ N,

then

cn+1

cn
=

e(
1 +

1
n

)n+1/2
=

1√
1 +

1
n

· e(
1 +

1
n

)n → 1 for n → ∞.

Then by Taylor’s formula (with three terms),

ln(1 + x) = x − 1
2
x2 +

1
3
x3 + x3ε(x).

Writing x = 1/n, we get

ln

{(
1 +

1
n

)n+1/2
}

=
(

n +
1
2

){
1
n
− 1

2
1
n2

+
1
3

1
n3

+
1
n3

ε

(
1
n

)}
= 1 +

1
12

1
n2

+
1
n2

ε

(
1
n

)
,

hence

cn+1

cn
=

e(
1+

1
n

)n+1/2
=

e

exp
(
1+

1
12

1
n2

+
1
n2

ε

(
1
n

)) =
1

exp
(

1
12

1
n2

+
1
n2

ε

(
1
n

)) < 1

for n ≥ N . This shows that (cn) is decreasing eventually, so (cn) is bounded

0 < cn =
enn!

nn+1/2
< k1,

thus

n! < k1 · e−n nn+1/2 = k1

√
n ·
(n

e

)n

.

On the other hand, (bn) is increasing, so

bn =
enn!
nn

> k2 > 0,

Simple convergence criteria for series
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and thus

n! > k2 · e−n nn = k2

(n

e

)n

.

Therefore, there exist positive constants k1, k2, such that

k2 ·
(n

e

)n

< n! < k1

√
n ·
(n

e

)n

for n ∈ N,

and we are pretty close of a proof of Stirling’s formula.

Example 2.29 Prove that the series

∞∑
n=2

1
(lnn)p

is divergent for every p ∈ R.

According to the laws of magnitudes, to every p ∈ R there exists an Np ∈ N \ {1}, such that

(lnn)p < n for n ≥ Np.

Then

an =
1

(ln n)p
>

1
n

= bn for alle n ≥ Np.

The smaller series is the divergent harmonic series, so it follows from the criterion of comparison that
the larger series is also divergent. Since p ∈ R was any number, the claim is proved.

Example 2.30 Check in each of the following cases if the given series is conditionally convergent,
absolutely convergent or divergent.

(1)
∞∑

n=1

(−1)n−1

(
n + 1

n
+

n

n + 1
− 2
)

.

(2)
∞∑

n=1

(−1)n−1

(
n + 1

n
+

n

n + 1
− 1
)

.

(3)
∞∑

n=1

(−1)n−1 ln
(

n + 1
n

+
n

n + 1
− 1
)

.

1) It follows from the rearrangement

n + 1
n

+
n

n + 1
− 2 =

1
n
− 1

n + 1
=

1
n(n + 1)

∼ 1
n2

and the criterion of equivalence that the series is absolutely convergent.

Simple convergence criteria for series
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2) It follows from the rearrangement [cf. (1)]

n + 1
n

+
n

n + 1
− 1 = 1 +

1
n(n + 1)

→ 1 �= 0 for n → ∞

that the necessary condition of convergence is not satisfied, so the series is (coarsely) divergent.

3) It follows from (2) and a Taylor expansion that

ln
(

n + 1
n

+
n

n + 1
− 1
)

= ln
(

1 +
1

n(n + 1)

)

=
1

n(n + 1)
+

1
n(n + 1)

ε

(
1

n(n + 1)

)
∼ 1

n2
.

Then it follows from the criterion of equivalence that the series is absolutely convergent.

Simple convergence criteria for series
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3 The integral criterion

Example 3.1 Check if the given series is convergent or divergent,

∞∑
n=1

√
2n − 1 ln(4n + 1)

n(n + 1)
.

It follows from the integral criterion that
∑

n−α is convergent for α > 1. We shall need this result
below.

Let alone the logarithmic term we see by counting the degrees of the other terms that we should
compare with

∞∑
n=1

√
2

nα
, hvor α =

3
2

> 1.

Since
3
2

=
5
4

+
1
4
, where we still have

5
4

> 1, we can dominate the logarithmic term by n1/4, because
the laws of magnitudes give

ln(4n + 1) ≤ 1√
2
· 4
√

n for n ≥ N.

Then

0 < an =
√

2n − 1 ln(4n + 1)
n(n + 1)

≤
√

2n · 1√
2

4
√

n

n · n =
1

n5/4
for n ≥ N.

Since α =
5
4

> 1, the larger series

∑ 1
n5/4

is convergent.

By the criterion of comparison the smaller series

∞∑
n=1

√
2n − 1 ln(4n + 1)

n(n + 1)
is also convergent.

Example 3.2 Check if the given series is convergent or divergent,

∞∑
n=2

Arctan n

n ln n
.

In this case we compare with a series which according to the integral criterion is divergent.

Now, Arctan n ≥ Arctan 1 =
π

4
, thus

an =
Arctan n

n ln n
≥ π

4
· 1
n ln n

= bn for n ≥ 2.

The integral criterion
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Since f(x) = x lnx tends increasingly towards ∞, it follows that
1

n ln n
tends decreasingly towards 0.

Since∫ t

2

dx

x lnx
= [ln(lnx)]t2 = ln(ln t) − ln(ln 2) → ∞ for t → ∞,

it follows by the integral criterion that the series

∞∑
n=2

bn =
π

4

∞∑
n=2

1
n ln n

is divergent.

By the criterion of comparison the larger series

∞∑
n=2

Arctan n

n ln n
is also divergent.

Example 3.3 Prove the inequalities

π

4
<

∞∑
n=1

1
n2 + 1

<
1
2

+
π

4
.

We shall use the integral criterion.

1) Identification of the function. Clearly, we shall choose

f(x) =
1

x2 + 1
for x ∈ [1,∞[.

2) Assumptions. Obviously, f(x) =
1

x2 + 1
tends decreasingly towards 0 for x → ∞ in [1,∞[.

3) By the integral criterion,
∑∞

n=1 f(n) and
∫∞
1

f(x) dx are both convergent (or divergent) at the
same time. We get in case of convergence
∫ ∞

1

f(x) dx <

∞∑
n=1

1
n2 + 1

< f(1) +
∫ ∞

1

f(x) dx.

4) When we calculate the integral we get∫ ∞

1

f(x) dx =
∫ ∞

1

dx

1 + x2
= [Arctan x]∞1 =

π

4
.

Therefore we have convergence.

5) Since f(1) =
1

12 + 1
=

1
2
, we get by insertion into the estimates of (3) that

π

4
<

∞∑
n=1

1
n2 + 1

<
1
2

+
π

4
.

The integral criterion
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Example 3.4 . Prove the inequalities

1
8

<
∞∑

n=2

1
n3

<
1
4
.

As a rule of thumb we shall only go through harder estimates by either Leibniz’s criterion or by the
integral criterion. This series is not alternating, so n Leibniz’s criterion cannot be used.

Instead we shall try the integral criterion.

1) Identification of the function. Obviously, we shall choose

f(x) =
1
x3

for x ∈ [2,∞[.

2) Assumptions. Clearly, f(x) =
1
x3

is a) decreasing on [2,∞[, and b) tends towards 0 for x → ∞.

3) Then by the integral criterion,

∫ ∞

2

f(x) dx ≤
∞∑

n=2

1
n3

≤ f(2) +
∫ ∞

2

f(x) dx.

The integral criterion
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4) Calculation of the integral gives∫ ∞

2

f(x) dx =
∫ ∞

2

1
x3

dx =
[
−1

2
· 1
x2

]∞
2

=
1
8
.

5) Since f(2) =
1
23

=
1
8
, we get by insertion into the estimates of (3) that

1
8

<
∞∑

N=2

1
N3

<
1
8

+
1
8

=
1
4
.

Example 3.5 Prove that the series

∞∑
n=1

ln

(√
1 + n2

n

)

is convergent, and that its sum is smaller that
π

4
.

It follows immediately by the rearrangement

f(x) = ln

(√
1 + x2

x

)
=

1
2

ln
(

1 + x2

x2

)
=

1
2

ln
(

1 +
1
x2

)
, x ∈ [1,∞[,

that f(x) is decreasing and that f(x) → 0 for x → ∞.

Then we get by partial integration,∫
f(x) dx =

1
2

∫
1 · ln(1 + x2) −

∫
1 · lnx dx

=
1
2

{
x · ln(1 + x2) −

∫
2x2

1 + x2
dx

}
−
{

x · lnx −
∫

x

x
dx

}

=
1
2
x
{
ln(1 + x2) − 2 ln x

}− ∫ (1 − 1
1 + x2

)
dx + x

=
1
2
x ln
(

1 +
1
x2

)
+ Arctan x.

The estimate ln(1 + y) ≤ y for y > −1 follows easily from the graph. Then by putting y = 1/x2,

0 < x ln
(

1 +
1
x2

)
≤ x · 1

x2
=

1
x
→ 0 for x → ∞.

This implies that the improper integral is convergent∫ ∞

1

f(x) dx = lim
x→∞

{
1
2
x ln
(
1 +

1
x2

)
+ Arctan x

}
− 1

2
· 1 · ln(1 + 1)− Arctan 1

=
π

2
− 1

2
ln 2 − π

4
=

π

4
− 1

2
ln 2.

From the integral criterion follows that the series

∞∑
n=1

ln

(√
1 + n2

n

)
=

∞∑
n=1

f(n)

The integral criterion
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0

0.5

1

1.5

2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x

is convergent and that we have the estimate

∞∑
n=1

ln

(√
1 + n2

n

)
< f(1) +

∫ ∞

1

f(x) dx =
1
2

ln 2 +
π

4
− 1

2
ln 2 =

π

4
.

Example 3.6 Check for each of the following series if it is convergent or divergent,

(1)
∞∑

n=1

(n −
√

n2 − 1), (2)
∞∑

n=1

1√
n

(n −
√

n2 − 1).

Notice that we have the well-known result (n − √
n2 − 1)(n +

√
n2 − 1) = 1.

It is obvious that

(n −
√

n2 − 1)(n +
√

n2 − 1) = n2 − (n2 − 1) = 1.

Since 0 ≤ √
n2 − 1 < n, it follows in particular that

(2) 0 < n −
√

n2 − 1 =
1

n +
√

n2 − 1

⎧⎪⎨
⎪⎩

≤ 1
n

,

>
1
2n

,
for every n ∈ N.

1) It follows from (2) that n − √
n2 − 1 >

1
2n

. Since
∑∞

n=1

1
2n

is divergent, we conclude from the

criterion of comparison that
∑∞

n=1(n −√
n2 − 1) is divergent.

The integral criterion
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2) It follows from (2) that

0 <
1√
n

(n −
√

n2 − 1) ≤ 1
n3/2

.

Since
∑∞

n=1

1
n3/2

is convergent by the integral criterion, because
(

α =
3
2

> 1
)

, it follows from the

criterion of comparison that the series

∞∑
n=1

1√
n

(n −
√

n2 − 1)

is convergent.

Example 3.7 Let α be a real number bigger than 1. Prove that

∞∑
n=k

1
nα

<
α

α − 1
· 1
kα−1

for k ∈ N.

Hint: First use the integral criterion to prove that

∞∑
n=k

1
nα

<
1
kα

+
1

(α − 1)kα−1
for k ∈ N.

It is obvious that when α > 1, then f(t) =
1
tα

is decreasing for t > 0 with the limit value. By
considering an area we get

∞∑
n=k

1
nα

<
1
kα

+
∫ ∞

k

1
tα

dt =
1
kα

+
[

t1−α

1 − α

]∞
k

=
1
kα

+
1

(α − 1)kα−1
=

α − 1 + k

(α − 1)kα

=
kα − (k − 1)(α − 1)

(α − 1)kα
≤ α

α − 1
· 1
kα−1

,

because k ≥ 1 and α > 1.

The integral criterion
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4 Small theoretical examples

Example 4.1 Let
∑∞

n=1 an be an infinite series of positive terms. Prove or disprove the following
claim:

• If
∑∞

n=1 an is divergent, then
∑∞

n=1 a2
n is also divergent.

This claim is wrong. In fact, if we choose an =
1
n

, then

∞∑
n=1

an =
∞∑

n=1

1
n

is divergent,

and
∞∑

n=1

a2
n =

∞∑
n=1

1
n2

is convergent.

Small theoretical examples
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We know in general that if an =
1

nα
, then

∞∑
n=1

an =
∞∑

n=1

1
nα

is divergent for α ≤ 1,

and
∞∑

n=1

a2
n =

∞∑
n=1

1
n2α

is convergent for 2α > 1.

We see that we get counterexamples of the claim, if only

1
2

< α ≤ 1.

Example 4.2 Let
∑∞

n=1 an be an infinite series of positive terms. Prove or disprove the following
claim:

• If
∑∞

n=1 a2
n is convergent, then

∑∞
n=1

an

n
is also convergent.

The claim is true, which is proved by a small trick. It follows from

0 ≤
(

an − 1
n

)2

= a2
n +

1
n2

− 2
an

n

by a rearrangement that

0 <
an

n
≤ 1

2
a2

n +
1
2

1
n2

= bn.

By the assumption, the larger series is convergent,

∞∑
n=1

bn =
1
2

∞∑
n=1

a2
n +

1
2

∞∑
n=1

1
n2

as a sum of two convergent series of positive terms. Using the criterion of comparison the smaller
series

∞∑
n=1

an

n
is convergent.

Remark 4.1 By a modification of the proof above it follows that

• If
∑∞

n=1 a2
n is convergent, then

∑∞
n=1

an

nα
is convergent for every α >

1
2
.

Small theoretical examples
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5 Conditional convergence and Leibniz’s criterion

Example 5.1 Prove that the following series is conditionally convergent

∞∑
n=1

(−1)n

ln coshn
.

Since ln coshn > 0, and ln coshn tends increasingly towards +∞, we see that

1
ln coshn

→ 0 decreasingly for n → ∞.

In particular, the necessary condition for convergence is fulfilled.

Absolute convergence? Using the definition of cosh, we get the following estimate for every n ∈ N,

0 < ln coshn = ln
(

en + e−n

2

)
< ln

(
en + e+n

2

)
= n,

hence

bn =
1

ln coshn
>

1
n

= an.

The smaller series
∑∞

n=1 an =
∑∞

n=1

1
n

is divergent (the harmonic series), hence the larger series

∞∑
n=1

bn =
∞∑

n=1

1
ln coshn

is also divergent according to the criterion of comparison. This proves that the series is not er
absolutely convergent.

Conditional convergence? The series is alternating,
∑∞

n=1(−1)nbn, where bn =
1

ln coshn
→ 0 is

decreasing for n → ∞. It follows from Leibniz’s criterion that the series is convergent.

Since the series is convergent, though not absolutely convergent, it must be conditionally convergent.

Example 5.2 Prove that the following series is conditionally convergent,

∞∑
n=1

(−1)n

ln sinhn
.

Since ln sinhn > 0 for n ∈ N, and ln sinhn increases to +∞, it follows that

1
ln sinhn

→ 0 is decreasing for n → ∞.

In particular, the necessary condition for convergence is fulfilled.

Conditional covergence and Leibniz’s criterion
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Absolute convergence? By using the definition of sinh we obtain the following estimate for every
n ∈ N

0 < ln sinhn = ln
(

en − e−n

2

)
< ln

(
en + en

2

)
= n,

hence

bn =
1

ln sinhn
>

1
n

= an.

The smaller series
∑∞

n=1 an =
∑∞

n=1

1
n

is divergent (the harmonic series), so the larger series

∞∑
n=1

bn =
∞∑

n=1

1
ln sinhn

is divergent according to the criterion of comparison. This shows that the original series cannot
be absolutely convergent.

Conditional convergence? The series is alternating,
∑∞

n=1(−1)nbn, where bn =
1

ln sinhn
→ 0

decreases for n → ∞. Then it follows from Leibniz’s criterion that the series is convergent.

As the series is convergent, though not absolutely convergent, it is conditionally convergent.

Conditional covergence and Leibniz’s criterion
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Example 5.3 Check if the given series is absolutely convergent, conditionally convergent or divergent,

∞∑
n=1

(−1)n cos
(

2π
n

)
.

The necessary condition for convergence? From

|an| =
∣∣∣∣cos

(
2π
n

)∣∣∣∣→ cos 0 = 1 �= 0 for n → ∞,

follows that the necessary condition of convergence is not fulfilled, hence the series is (coarsely)
divergent.

Example 5.4 Check if the given series is absolutely convergent, conditionally convergent or divergent,

∞∑
n=1

(−1)n sin
(

2π
n

)
.

The necessary condition for convergence? As sin
(

2π
n

)
→ 0 for n → ∞, this condition is

satisfied.

Absolute convergence? We see that

|an| =
∣∣∣∣sin
(

2π
n

)∣∣∣∣ = sin
(

2π
n

)
for n ≥ 4

where
2π
n

∈
]
0,

π

0

]
for n ≥ 4. Hence, by a consideration of a graph we get for n ≥ 4 that

|an| = sin
(

2π
n

)
≥ 2

π
· 2π

n
=

4
n

.

The smaller series
∑∞

n=4

4
n

= 4
∑∞

n=4

1
n

is divergent, hence the larger series
∑∞

n=4 |an| is also divergent
according to the criterion of comparison, and the series is not absolutely convergent.

Conditional convergence? As |an| = sin
(

2π
n

)
for n ≥ 4 decreases towards 0, and the series is

alternating for n ≥ 4,

∞∑
n=4

(−1)n sin
(

2π
n

)
=

∞∑
n=4

(−1)n|an|,

it follows from Leibniz’s criterion that the series is convergent.

As the series is convergent, though not absolutely convergent, it is conditionally convergent.

Conditional covergence and Leibniz’s criterion

Download free eBooks at bookboon.com



Calculus 3c-2

 

52  
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Example 5.5 Check if the given series is absolutely convergent, conditionally convergent or divergent,

∞∑
n=1

(−1)n

sinhn
.

Necessary condition for convergence? From sinhn → ∞ for n → ∞, follows that

(−1)n

sinh n
→ 0 for n → ∞,

and the necessary condition is fulfilled.

Absolute convergence? We have e.g. that

sinhn =
en − e−n

2
>

en

4
, implies 0 <

1
sinhn

<
2
en

.

The larger series

∞∑
n=1

4
en

= 4
∞∑

n=1

(
1
e

)n

is a quotient series of quotient 1/e ∈ ]0, 1[, hence convergent.

According to the criterion of comparison the smaller series

∞∑
n=1

1
sinhn

is convergent.

We conclude that the original series is absolutely convergent.

Conditional covergence and Leibniz’s criterion
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Example 5.6 Check if the following series is absolutely convergent, conditionally convergent or di-
vergent,

∞∑
n=1

(−1)n cosh
(

1
n

)
.

Necessary condition for convergence? It follows from

|an| = cosh
(

1
n

)
→ cosh 0 = 1 �= 0 for n → ∞,

that the necessary condition for convergence is not fulfilled, so the series is (coarsely) divergent.

Example 5.7 Check if the following series is absolutely convergent, conditionally convergent or di-
vergent,

∞∑
n=1

(−1)n tanh
(

1
n

)
.

Necessary condition for convergence? As tanh
(

1
n

)
→ 0 for n → ∞, this condition is satisfied.

Absolute convergence? The graph of tanhx is concave (cf. the figure), hence

0 < tanh(1) · x < tanh(x) for x ∈ ]0, 1[.

When x = 1/n, we get the estimate

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x

tanh
(

1
n

)
> tanh(1) · 1

n
> 0.

Conditional covergence and Leibniz’s criterion
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Since the smaller series
∞∑

n=1

tanh(1) · 1
n

= tanh(1)
∞∑

n=1

1
n

is divergent (the harmonic series), the larger series
∑∞

n=1 tanh
(

1
n

)
is also divergent by the criterion

of comparison. This shows that the original series is not absolutely convergent.

Conditional convergence? As tanh(x) is increasing, we get

1) tanh
(

1
n

)
decreasing for n → ∞.

2) tanh
(

1
n

)
→ 0 for n → ∞ is proved above.

3)
∑∞

n=1(−1)n tanh
(

1
n

)
is due to the factor (−1)n alternating.

The series is convergent according to Leibniz’s criterion.

Since the series is convergent, though not absolutely convergent, it is conditionally convergent.

Conditional covergence and Leibniz’s criterion
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Example 5.8 Check if the following series is absolutely convergent, conditionally convergent or di-
vergent,

∞∑
n=1

(−1)n Arctan
(

1
n

)
.

Necessary condition for convergence? Because of Arctan
(

1
n

)
→ 0 for n → ∞, this condition is

fulfilled.

Absolute convergence? The graph of Arctan x is concave (cf. the figure), hence

0 <
π

4
x ≤ Arctan x for x ∈ ]0, 1].

Putting x = 1/n this gives the estimate

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x

Arctan
(

1
n

)
≥ π

4
· 1
n

for n ∈ N.

The smaller series
∞∑

n=1

π

4
· 1
n

=
π

4

∞∑
n=1

1
n

is divergent (the harmonic series), hence the larger series
∑∞

n=1 Arctan
(

1
n

)
is also divergent accord-

ing to the criterion of comparison, and the series is not absolutely convergent.

Conditional convergence? Since Arctan
(

1
n

)
→ 0 is decreasing for n → ∞, and the series

∑∞
n=1(−1)n Arctan

(
1
n

)
is alternating, it follows form Leibniz’s criterion that the series is conver-

gent.

As the series is convergent, though not absolutely convergent, it is conditionally convergent.

Conditional covergence and Leibniz’s criterion
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Example 5.9 Check if the following series is absolutely convergent, conditionally convergent or di-
vergent,

∞∑
n=1

(−1)n Arccot
(

1
n

)
.

Necessary condition for convergence? Since

|an| = Arccot
(

1
n

)
→ π

2
�= 0 for n → ∞,

the necessary condition for convergence is not fulfilled, and the series is (coarsely) divergent.

Example 5.10 Check if the series
∞∑

n=1

(−1)n−1 ·
√

n

1 + n

is absolutely convergent, conditionally convergent or divergent.

Use the flow diagram in Calculus 3b.

1) Is the series coarsely divergent? It follows from

|an| =
√

n

1 + n
=

1
√

n +
1√
n

→ 0 for n → ∞,

that the series is not coarsely divergent.

2) Is the series absolutely convergent? Since

|an| =
√

n

n + 1
≥ 1

n + 1
,

we get (the harmonic series)
∞∑

n=1

|an| =
∞∑

n=1

√
n

n + 1
≥

∞∑
n=1

1
n + 1

=
∞∑

n=2

1
n

= ∞.

Then it follows form the criterion of comparison that the series is not absolutely convergent.

3) Is the series conditionally convergent? Obviously, the series is alternating. The auxiliary
function is

f(x) =
√

x

x + 1
, x ∈ [1,∞[, where f(x) → 0 for x → ∞.

Since

f ′(x) =
1

2
√

x
· 1
x + 1

−
√

x

(x + 1)2
=

x + 1 − 2x
2
√

x · (x + 1)2
= − x − 1

2
√

x · (x + 1)2
< 0

for x > 1, we see that f(x) decreases for x > 1.

According to Leibniz’s criterion the series is convergent.

As the series is convergent, though not absolutely convergent, it is conditionally convergent.

Conditional covergence and Leibniz’s criterion
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Example 5.11 Check if the series
∞∑

n=2

(−1)n

2n −√
n · lnn

is absolutely convergent, conditionally convergent or divergent.

Necessary condition of convergence? It follows from 2n − √
n · lnn �= 0 and

2n −√
n · lnn =

√
n{2√n − lnn} = n

{
2 − lnn√

n

}
→ ∞ for n → ∞,

that

(−1)n

2n −√
n · lnn

→ ∞ for n → ∞,

hence the necessary condition of convergence is fulfilled.

Absolute convergence? As lnn/
√

n → 0 for n → ∞, we have

0 < 2n −√
n · lnn = n

{
2 − lnn√

n

}
< 2n for n ≥ 2.

Hence

1
2n −√

n · lnn
>

1
2
· 1
n

.

The smaller series
∑∞

n=2
1
2n = 1

2

∑∞
n=2

1
n (the harmonic series) is divergent, so the larger series

∞∑
n=2

1
2n −√

n · lnn

is also divergent according to the criterion of comparison. Thus the series is not absolutely
convergent.

Conditional convergence? Two of the conditions of Leibniz’s criterion have already been proved,
namely that the series is alternating and |an| → 0 for n → ∞. We shall show that the sequence is
decreasing eventually. We introduce the auxiliary function (t ∼ √

n)

ϕ(t) = 2t2 − t · ln(t2) = 2t2 − 2t ln t, t ≥
√

2.

Now

ϕ′(t) = 4t − 2 ln t − 2 = 2(2t − ln t − 1) > 0 for t ≥
√

2,

so ϕ(t) is increasing, and

|an| =
1

ϕ(
√

n)
=

1
2n −√

n · lnn
is decreasing for n → ∞.

Then it follows from Leibniz’s criterion that the series is convergent.

As the series is convergent, though not absolutely convergent, it is conditionally convergent.

Conditional covergence and Leibniz’s criterion
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Example 5.12 Check if the series

∞∑
n=1

(−1)n lnn

n + 1

is absolutely convergent, conditionally convergent or divergent.

Apply the flow diagram from Calculus 3b.

1) Is the series coarsely divergent? We have

|an| =
lnn

n + 1
→ 0 for n → ∞

by the law of magnitudes, so the series is not coarsely divergent.

2) Is the series absolutely convergent? Since lnn > 1 for n ≥ 3, we get the following estimate
of the numerical series.

∞∑
n=1

lnn

n + 1
≥

∞∑
n=3

1
n + 1

=
∞∑

n=4

1
n

= ∞ (the harmonic series).

It follows from the criterion of comparison that the series is not absolutely convergent.

Conditional covergence and Leibniz’s criterion
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3) Is the series conditionally convergent? There are several criteria in the literature for condi-
tional convergence, but at this stage one may assume that Leibniz’s criterion is the only known
one to most readers.

a) As ln n/(n + 1) ≥ 0, the factor (−1)n shows that the series is alternating.

b) If we put f(x) =
lnx

x + 1
, it follows from 1. that f(x) → 0 for x → ∞.

c) It follows from

f ′(x) =
1

x(x + 1)
− lnx

(x + 1)2
=

x + 1 − x lnx

x(x + 1)2

that f ′(x) < 0, at least for x ≥ 4, thus f(x) is decreasing eventually.

Then it follows from Leibniz’s criterion that the series is convergent.

As the series is convergent, though not absolutely convergent, it is conditionally convergent.

Example 5.13 Check if the series

∞∑
n=1

(−1)n+1 n

3n−1

is convergent or divergent. In case of convergence, check if the series is conditionally convergent or
absolutely convergent.

We have from the magnitudes,

0 < |an| = 3 · n

3n
≤ 1

2n
for n ≥ n0.

The larger series
∑

2−n is convergent, hence the smaller series is also convergent by the criterion of
comparison, and the series is absolutely convergent.

Alternatively the convergence is obtained by the criterion of roots,

n
√

|an| = n
√

3 · n
√

n · 1
3
→ 1

3
< 1 for n → ∞.

Alternatively the convergence is obtained by the criterion of quotients,

|an+1|
|an| =

3(n + 1)
3n+1

· 3n

3n
=

n + 1
n

· 1
3
→ 1

3
< 1 for n → ∞.

Remark 5.1 It is possible directly to find the sum. In fact,

ϕ(x) :=
1

1 − x
=

∞∑
n=0

xn for x ∈ ] − 1, 1[,

hence by differentiation each term (which is legal for power series in their open interval of convergence),

ϕ′(x) =
1

(1 − x)2
=

∞∑
n=1

nxn−1 for x ∈ ] − 1, 1[.

Conditional covergence and Leibniz’s criterion
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Choosing x = − 1
3 ∈ ] − 1, 1[, we get

∞∑
n=1

(−1)n−1

3n−1
=

∞∑
n=1

n

(
−1

3

)n−1

= ϕ′
(
−1

3

)
=

1(
1 +

1
3

)2 =
9
16

.

Example 5.14 Check if the series

∞∑
n=10

(−1)n

n − 3
√

n

is convergent or divergent. In case of convergence, check if the series is conditionally convergent or
absolutely convergent.

Necessary condition for convergence? Since n − 3
√

n > 0 for n ≥ 10, and

1
n − 3

√
n

=
1√
n
· 1√

n − 3
→ 0 for n → ∞,

this condition is fulfilled.

Absolute convergence? Since

1
n − 3

√
n

>
1
n

,

and
∑∞

n=10

1
n

is divergent, it follows from the criterion of comparison that the numerical series

∞∑
n=10

1
n − 3

√
n

is divergent,

and the series is not absolutely convergent.

Conditional convergence? The series is alternating, and an → 0 for n → ∞. Thus we shall only
prove that

(3)
1

n − 3
√

n

is decreasing in order to apply Leibniz’s criterion. However, the denominator

n − 3
√

n =
√

n · (√n − 3)

is clearly increasing, so (3) is decreasing. Hence it follows from Leibniz’s criterium that the series
is convergent.

As the series is convergent, though not absolutely convergent, it is conditional convergent.

Conditional covergence and Leibniz’s criterion
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Example 5.15 Check if the series

∞∑
n=1

(−1)n

√
n

is convergent or divergent. In case of convergence, check if the series is conditionally convergent or
absolutely convergent.

Necessary condition for convergence Since 1/
√

n → 0 for n → ∞, this condition is fulfilled.

Absolute convergence? Since
1√
n

≥ 1
n

for every n ∈ N, and since the harmonic series
∑∞

n=1

1
n

is

divergent, it follows from the criterion of comparison that

∞∑
n=1

1√
n

is also divergent. This proves that the series is not absolutely convergent.

Conditional convergence? The series is alternating, and
1√
n
→ 0 is decreasing for n → ∞. Hence,

it follows from Leibniz’s criterion that the series is convergent.

As the series is convergent, though not absolutely convergent, it is conditionally convergent.

Example 5.16 Check if the series

∞∑
n=1

(−1)n

ln(en + e−n)

is convergent or divergent. In case of convergence, check if the series is conditionally convergent or
absolutely convergent.

Remark 5.2 Since ln(en + e−n) = ln(2 cosh n), this example is almost identical with Example 5.1.

Necessary condition for convergence? Since

0 <
1

ln(en + e−n)
<

1
ln(en + 0)

=
1
n
→ 0 for n → ∞,

this condition is satisfied.

Absolute convergence? It follows from

|an| =
1

ln(en + e−n)
≥ 1

ln(en + en)
=

1
n + ln 2

≥ 1
2n

,

where
∑

1
2n is divergent, and the criterion of comparison that

∑ |an| is divergent. Hence the series
is not absolutely convergent.

Conditional covergence and Leibniz’s criterion
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Conditional convergence? The series is alternating and |an| → 0 for n → ∞. Since

ln(en + e−n) = ln(2 cosh n) → ∞ is increasing for n → ∞,

because both ln and cosh are increasing, we have

1
ln(en + e−n)

→ 0 decreasingly.

It follows from Leibniz’s criterion that the series is convergent.

As the series is convergent, though not absolutely convergent, it is conditionally convergent.

Conditional covergence and Leibniz’s criterion
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Example 5.17 Check if the series

∞∑
n=2

(−1)n

lnn

is convergent or divergent. In case of convergence, check if the series is conditionally convergent or
absolutely convergent.

Note that lnn > 0 for every n ≥ 2.

Necessary condition for convergence? This is fulfilled, because

1
lnn

→ 0 for n → ∞.

Absolute convergence? We see that

1
lnn

>
1
n

,

and since
∑∞

n=2
1
n is divergent, it follows from the criterion of comparison that

∑∞
n=2

1
lnn

is also
divergent. This proves that the series is not absolutely convergent.

Conditional convergence? The series is alternating, and

1
lnn

→ 0 aftagende for n → ∞.

Hence the series is convergent according to Leibniz’s criterion.

As the series is convergent, though not absolutely convergent, it is conditionally convergent.

Example 5.18 Check if the series

∞∑
n=2

(−1)n

n(ln n)2

is convergent or divergent. In case of convergence, check if the series is conditionally convergent or
absolutely convergent.

Apply the flow diagram.

1) Is the series coarsely divergent? Since n(ln n)2 → ∞, it is obvious that

an =
(−1)n

n(lnn)2
→ 0 for n → ∞,

and the series is not coarsely divergent.

2) Is the series absolutely convergent? Concerning the numerical series we get the auxiliary
function

f(x) =
1

x(lnx)2
, for x ∈ [2,∞[.

Conditional covergence and Leibniz’s criterion
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The denominator tends increasingly towards ∞ (look at the derivative) for x → ∞ in [2,∞[, hence
f(x) tends decreasingly towards 0 for x → ∞ in the same interval.

According to the integral criterion

∞∑
n=2

1
n(ln n)2

and
∫ ∞

2

f(x) dx

have the same property of convergence. Since the integral∫ ∞

2

f(x) dx =
∫ ∞

2

dx

x(ln x)2
=
[
− 1

lnx

]∞
2

=
1

ln 2

is convergent, the series is absolutely convergent, where we apply the integral criterion.

Remark 5.3 One should here not be misled by the changing of sign (−1)n and immediately start
with Leibniz’s criterion. This is a waste of time! Leibniz’s criterion will only show the convergence,
so anyway one shall afterwards check the absolute convergens.

Example 5.19 Check if the series

∞∑
n=1

(−1)nn2

1 + n2

is convergent or divergent. In case of convergence, check if it is conditionally or absolutely convergent.

Necessary condition for convergence? We see that

|an| =
n2

1 + n2
= 1 − 1

1 + n2
→ 1 �= 0 for n → ∞,

so the necessary condition for convergence is not fulfilled, and the series is (coarsely) divergent.

Example 5.20 Check if the series

∞∑
n=1

(−1)n

{
1 − cos

(
1
n

)}

is convergent or divergent. In case of convergence, check if the series is conditionally or absolutely
convergent.

Necessary condition for convergence? As

1 − cos
(

1
n

)
→ 1 − cos 0 = 1 − 1 = 0 for n → ∞,

this condition is fulfilled.

Absolute convergence? Since |an| = 1 − cos 1
n , we get by a Taylor expansion

0 < 1 − cos
1
n

= 1 −
{

1 − 1
2

1
n2

+
1
n2

ε

(
1
n

)}
=

1
2
· 1
n2

+
1
n2

ε

(
1
n

)
∼ 1

2
· 1
n2

.

Conditional covergence and Leibniz’s criterion
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Now
∞∑

n=1

1
2
· 1
n2

is convergent, so by the criterion of equivalence,

∞∑
n=1

{
1 − cos

1
n

}
is convergent,

and we have proved the absolute convergence.

Alternatively,

0 < 1 − cos
1
n

= 2 sin2 1
2n

<
1

4n2
,

As
∑

1/n2 is convergent, it follows by the criterion of comparison that
∑{1−cos 1

n} is convergent,
from which follows that we have absolute convergence.

Conditional covergence and Leibniz’s criterion
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Example 5.21 Prove that the series below is conditionally convergent and find its sum:
∞∑
n=

(−1)n(n + 1)
n(2n + 1)

.

Necessary condition for convergence. Clearly,

|an| =
n + 1

n(2n + 1)
=

1 +
1
n

2n + 1
→ 0 for n → ∞,

so the condition is fulfilled.

Absolute convergence? As

|an| =
n + 1

n(2n + 1)
≥ n + 1

n(2n + 2)
=

1
2n

,

and
∑

1
2n is divergent, the larger series

∑ |an| is also divergent, and the series is not absolutely
convergent.

Conditional convergence. Since

1
|an| =

n(2n + 1)
n + 1

=
n(2n + 2) − n − 1 + 1

n + 1
= 2n − 1 +

1
n + 1

→ ∞ is increasing,

we must have that |an| → 0 is decreasing. The series is alternating, so it follows from Leibniz’s
criterion that the series is convergent.

As the series is convergent, though not absolutely convergent, it is conditionally convergent.

Sum. We get by a decomposition,

n + 1
n(2n + 1)

=
1
n
− 1

2n + 1
,

hence the sectional sequence becomes

sN =
N∑

n=1

(−1)n(n + 1)
n(2n + 1)

=
N∑

n=1

(−1)n

n
−

N∑
n=1

(−1)n

2n + 1
.

Now
N∑

n=1

(−1)n

n
→

∞∑
n=1

(−1)n

n
= − ln(1 + 1) = − ln 2,

and

−
N∑

n=1

(−1)n

2n + 1
→ 1 −

∞∑
n=0

(−1)n

2n + 1
= 1 − Arctan 1 = 1 − π

4
,

where we in both cases apply Abel’s theorem, i.e. both series are convergent according to Leibniz’s
criterion, and

ln(1 + x) =
∞∑

n=1

(−1)n−1

n
xn, Arctan x =

∞∑
n=0

(−1)n

2n + 1
x2n+1, |x| < 1.

Conditional covergence and Leibniz’s criterion
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Then it follows by taking the limit that
∞∑

n=1

(−1)n(n + 1)
n(2n + 1)

= lim
N→∞

sN =
∞∑

n=1

(−1)n

n
−

∞∑
n=1

(−1)n

2n + 1
= 1 − π

4
− ln 2.

Example 5.22 Prove that the series below is conditionally convergent and find its sum
∞∑

n=1

(−1)n(n + 1)
n(n + 2)

,

Necessary condition for convergence? Clearly,

0 < |an| =
n + 1

n(n + 2)
≤ 1

n
→ 0 for n → ∞,

so |an| → 0 for n → ∞, and the condition is satisfied.

Absolute convergence? We see that

|an| =
n + 1

n(n + 2)
≥ 1

n + 2
,

and the smaller series
∑∞

n=2

1
n + 2

=
∑∞

n=3

1
n

is divergent. Hence also
∑∞

n=1 |an| is divergent, and

the series is not absolutely convergent.

Conditional convergence. We see that

1
|an| =

n(n + 2)
n + 1

= n + 1 − 1
n + 1

→ ∞ is increasing,

so |an| → 0 decreasingly. The series is alternating, so it follows from Leibniz’s criterion that the
series is convergent.

As the series is convergent, though not absolutely convergent, it is conditionally convergent.

Sum. We get by a decomposition,

n + 1
n(n + 2)

=
1
2

1
n

+
1
2

1
n + 2

,

hence the sectional sequence becomes

sN =
N∑

n=1

(−1)n(n + 1)
n(n + 2)

=
1
2

N∑
n=1

(−1)n

n
+

1
2

N∑
n=1

(−1)n

n + 2
=

1
2

N∑
n=1

(−1)n

n
+

1
2

N+2∑
n=3

(−1)n−2

n

=
N∑

n=1

(−1)n

n
− 1

2

{
−1

1
+

1
2

}
+

1
2

{
(−1)N+1

N + 1
+

(−1)N

N + 2

}
, .

By taking the limit and applying a known sum we finally get
∞∑

n=1

(−1)n(n + 1)
n(n + 2)

= lim
N→∞

sN =
∞∑

n=1

(−1)n

n
+

1
4

+ 0 =
1
4
− ln 2.
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Example 5.23 Prove that the series
∞∑

n=1

(−1)n−1 1
n

= 1 − 1
2

+
1
3

+ · · ·

is convergent. Find an approximation s∗ of the sum of the series, such that

|s − s∗| < 10−1.

It is easily proved by Leibniz’s criterion that the series is convergent.

Since |s − sn| ≤ 1
n + 1

(the absolute value of the first neglected term), we can choose n = 9, thus

s∗ = s9 = 1 − 1
2

+
1
3
− · · · + 1

9
≈ 0, 745 635.

Remark 5.4 It is easy to prove that

ln 2 ≈ 0, 693 147.

This shows that the error here is < 10−1.

Example 5.24 Prove that the series
∞∑

n=1

(−1)n−1 · n

4n2 − 1

is convergent and find its sum. Check if the series is absolutely convergent.

Necessary condition for convergence. This follows from
n

4n2 − 1
→ 0 for n → ∞.

Absolutely convergence? Since
n

4n2 − 1
≥ n

4n2
=

1
4

1
n

, and
∑∞

n=1

1
4
· 1

n
is divergent, it follows

that
∑ |an| is divergent, and the series is not absolutely convergent.

Conditional convergence. This can be proved by using Leibniz’s criterium, but this not neces-
sary here. In fact, we get by a decomposition that

n

4n2 − 1
=

n

(2n − 1)(2n + 1)
=

1
4
· 1
2n − 1

+
1
4
· 1
2n + 1

,

and the sectional sequence becomes

sN =
N∑

n=1

(−1)n−1 n

4n2 − 1
=

1
4

N∑
n=1

(−1)n−1

2n − 1
+

1
4

N∑
n=1

(−1)n−1

2n + 1

=
1
4

N∑
n=1

(−1)n−1

2n − 1
+

1
4

N+1∑
n=2

(−1)n

2n − 1
(change of index)

=
1
4
− 1

4

N∑
n=2

(−1)n

2n − 1
+

1
4

N∑
n=2

(−1)n

2n − 1
+

1
4

(−1)N+1

2N + 1

=
1
4

+
1
4

(−1)N+1

2N + 1
→ 1

4
for N → ∞.

Conditional covergence and Leibniz’s criterion
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We conclude that the series is convergent.

As the series is convergent, though not absolutely convergent, it is conditionally convergent, and its
sum is according to the above,

∞∑
n=1

(−1)n−1 · n

4n2 − 1
= lim

N→∞
sN =

1
4
.

Conditional covergence and Leibniz’s criterion
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Example 5.25 Check the values of α ∈ R for which the series

∞∑
n=2

(−1)n

nα lnn

is absolutely convergent, conditionally convergent or divergent, respectively.

Necessary condition for convergence?. It follows from

|an| =
1

nα lnn
→ ∞ for n → ∞, when α < 0,

that the series is coarsely divergent for α < 0.

Absolute convergence. Since

|an| =
1

nα lnn
≤ 1

ln 2
· 1
nα

for n ≥ 2,

and
∑∞

n=2 n−α is convergent for α > 1, the series is absolutely convergent for α > 1.

Conditional convergence? If 0 ≤ α ≤ 1, then

1
nα lnn

≥ 1
n ln n

.

Now,
1

n ln n
→ 0 decreasingly, so by the integral criterion

∞∑
n=2

1
n ln n

∼
∫ ∞

2

dx

x lnx
= [ln(lnx)]∞2 = ∞

and the series is not absolutely convergent for 0 ≤ α ≤ 1.

On the other hand,
1

nα lnn
→ 0 is decreasing for n → ∞ and 0 ≤ α ≤ 1, and since the series is

alternating, it is convergent according to Leibniz’s criterion.

As the series is convergent, though not absolutely convergent for 0 ≤ α ≤ 1, it is conditionally
convergent.

Conclusion. The series is

1) Absolutely convergent for α > 1.

2) Conditionally convergent for 0 ≤ α ≤ 1.

3) Coarsely divergent for α < 0.

Conditional covergence and Leibniz’s criterion
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Example 5.26 Check the values of α for which the series

∞∑
n=1

n2(−1)n

(n2 + 1)α

os

1) absolutely convergent,

2) convergent,

3) conditional convergent.

1) It follows by the criterion of equivalence and

|an| =
n2

(n2 + 1)α
∼ n

n2α
=

1
n2α−1

,

that the series is absolutely convergent, if and only if 2α − 1 > 1, hence α > 1.

2) If we put f(x) =
x

(x2 + 1)α
, it follows that f(x) → 0 for x → ∞, if and only if α >

1
2
, which we

shall assume in the following. Now,

f ′(x) = − (2α − 1)x2 − 1
(x2 + 1)α+1

< 0 for x >
1√

2α − 1
,

so |an| = f(n) → 0 decreasingly for n > 1/
√

2α − 1, n → ∞. The series is alternating, thus it

follows from Leibniz’s criterion that the series is convergent, if and only if α >
1
2
.

3) The series is conditionally convergent, when it is convergent and not absolutely convergent. Ac-

cording to 1. and 2. this happens when
1
2

< α ≤ 1.

As a conclusion we get that the series is

1) absolutely convergent for α > 1,

2) convergent for α >
1
2
,

3) conditionally convergent for
1
2

< α ≤ 1,

4) coarsely divergent for α ≤ 1
2
.

Conditional covergence and Leibniz’s criterion

Download free eBooks at bookboon.com



Calculus 3c-2

 

72  

Example 5.27 Prove that the series

(4)
∞∑

n=1

an =
∞∑

n=1

(−1)n−1 2n + 1
n

is divergent. Then prove that if one introduces parentheses into (4) in the following way

(a1 + a2) + (a3 + a4) + (a5 + a6) + · · · ,

then we get a convergent series.

Necessary condition for convergence?. Since

|an| =
2n + 1

n
= 2 +

1
n
→ 2 �= 0 for n → ∞,

this cannot be fulfilled, so (4) is coarsely divergent.

Convergence by introducing parentheses. First calculate

a2n−1 + a2n = (−1)2n−2

(
2 +

1
2n − 1

)
+ (−1)2n−1

(
2 +

1
2n

)

= 2 +
1

2n − 1
− 2 − 1

2n
=

1
2n − 1

− 1
2n

=
1

2n(2n − 1)
∼ 1

4n2
.

Here
∑∞

n=1

1
4n2

is convergent, so it follows from the criterion of equivalence that

∞∑
n=1

(a2n−1 + a2n) =
∞∑

n=1

1
2n(2n − 1)

is convergent.

Example 5.28 Check in each of the cases below if the given series is conditionally convergent, abso-
lutely convergent or divergent.

∞∑
n=1

(−1)n

(
1 +

1
n2

)
,

∞∑
n=1

cos nπ√
n

,
∞∑

n=1

(n!)2

(2n)!
.

1) Necessary condition for convergence. It follows from∣∣∣∣(−1)n

(
1 +

1
n2

)∣∣∣∣ = 1 +
1
n2

→ 1 �= 0 for n → ∞,

that the necessary condition for convergence is not fulfilled, so
∑∞

n=1(−1)n

(
1 +

1
n2

)
is (coarsely)

divergent.

2) Now cos nπ = (−1)n, so the series can more conveniently also be written
∑∞

n=1(−1)n/
√

n.

Conditional covergence and Leibniz’s criterion
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a) Necessary condition for convergence? This follows from∣∣∣∣ (−1)n

√
n

∣∣∣∣ = 1√
n
→ 0 for n → ∞.

b) Absolute convergence? Since
∑∞

n=1

1√
n

is divergent, the series is not absolutely convergent.

c) Conditional convergence? The series is alternating and
1√
n
→ 0 is decreasing for n → ∞. It

therefore follows from Leibniz’s criterion that the series is convergent. As it is not absolutely
convergent, it is conditionally convergent.

3) Clearly, an =
(n!)2

(2n)!
> 0, so

∑∞
n=1 an =

∑∞
n=1 |an|, and the series is either absolutely convergent

or divergent.

We get from the criterion of quotients that

an+1

an
=

((n+1)!)2

(2n+2)!
· (2n)!
(n!)2

=
(n+1)2

(2n+2)(2n+1)
=

1
4
· n+1
n+ 1

2

→ 1
4

< 1

for n → ∞. It therefore follows that the series is convergent, thus absolutely convergent.

Conditional covergence and Leibniz’s criterion
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Example 5.29 Check if each of the series

(1)
∞∑

n=1

sin
(
n

π

6

) n2 + 2
n2 + 3n + 2

, og (2)
∞∑

n=1

(−1)n+1 ln
(

1 +
2
n2

)

is divergent, conditionally convergent or absolutely convergent.

We shall use the flow diagram from Calculus 3b, i.e. first check if an → 0. If “yes”, then continue with
“absolute convergence”. Note that (2) invites to an early application of Leibniz’s criterion, which is
here a waste of time.

1) Since sin
(
n

π

6

)
= 1 for n = 3 + 12p, p ∈ N0, we have sin

(
n

π

6

)
= 1. From

n2 + 2
n2 + 3n + 2

=
1 +

2
n2

1 +
3
n

+
2
n2

→ 1 �= 0 for n → ∞,

follows that

a3+12p → 1 for p → ∞.

The necessary condition for convergence is not fulfilled, hence the series is coarsely divergent.

2) Using a well-known graph (cf. the figure) we have the estimate

0 < ln(1 + x) < x for every x > 0.

[Alternatively, ln(1 + x) = x + xε(x), etc.]

0

0.5

1

1.5

2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

Then for x =
2
n2

,

0 < |an| =
∣∣∣∣(−1)n+1 ln

(
1 +

2
n2

)∣∣∣∣ = ln
(

1 +
2
n2

)
<

2
n2

→ 0 for n → ∞.
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Thus, (a) the necessary condition for convergence is fulfilled, and

(b)
∞∑

n=1

|an| <
∞∑

n=1

2
n2

= 2 · π2

6
=

π2

3

is convergent, hence the series is absolutely convergent.

Remark 5.5 Leibniz’s criterion it not at all mentioned in this proof. ♦

Example 5.30 Check in each of the following cases if the series is conditionally convergent, absolutely
convergent or divergent.

(1)
∞∑

n=1

2nn!
(2n)!

, (2)
∞∑

n=8

(−1)e−p.

1) The faculty function occurs, hence the criterion of quotients is the most natural criterion to
apply. All terms are positive, the the series is either absolutely convergent or divergent. It follows
by the criterion of quotients from

an+1

an
=

2n+1(n+1)!
(2n+2)!

· (2n)!
2nn!

=
2(n+1)

(2n+2)(2n+1)
=

1
2n+1

→ 0 < 1

for n → ∞ that the series is absolutely convergent.

2) From 0 <
1
e

< 1 follows that

∞∑
p=8

|(−1)pe−p| =
∞∑

p=8

(
1
e

)p

=
1
e8

· 1

1 − 1
e

< ∞,

so the series is absolutely convergent.

Remark 5.6 The series is a quotient series, so we can find its exact sum,

∞∑
p=8

(−1)pe−p =
∞∑

p=8

(
−1

e

)p

=
(
−1

e

)8

· 1

1 −
(
−1

e

) = e−8 · e

e + 1
=

e−7

e + 1
.
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Example 5.31 Check in each of the following cases if the series is absolutely convergent, conditionally
convergent or divergent,

∞∑
n=1

(−1)n en

n2
,

∞∑
n=1

(−1)n (n!)3

(3n)!
.

1) We have by the laws of magnitudes

en

n2
→ ∞ for n → ∞,

hence the necessary condition for convergence is not satisfied, and
∑∞

n=1(−1)n en/n2 is (coarsely)
divergent.

2) If we put an =
(n!)3

(3n)!
> 0, then

an+1

an
=

{(n+1)!}3

{3(n+1)}! ·
(3n)!
(n!)3

=
{

(n+1)!
n!

}3

· (3n)!
(3n+3)!

=
(n+1)3

(3n+3)(3n+2)(3n+1)
=

1

3
(

3 − 1
n+1

)(
3 − 2

n+1

)

→ 1
33

=
1
27

< 1 for n → ∞.

Then by the criterion of quotients,

∞∑
n=1

(−1)n (n!)3

(3n)!

is absolutely convergent.

Example 5.32 Check in each of the following cases, if the series is absolutely convergent, condition-
ally convergent or divergent.

(1)
∞∑

n=1

(−1)n lnn

n
, (2)

∞∑
n=1

(−4)n(2n)!
(3n)!

.

1) The series
∑∞

n=1(−1)n lnn

n
is not absolutely convergent. It is conditionally convergent.

a) Applying e.g. the criterion of comparison we get

∞∑
n=1

∣∣∣∣(−1)n lnn

n

∣∣∣∣ ≥ ln 2
∞∑

n=2

1
n

= ∞,

which shows that we do not have absolute convergence.

Conditional covergence and Leibniz’s criterion
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b) Due to the different magnitudes, the function
lnx

x
tends towards mod 0 for x → ∞, and

d

dx

(
lnx

x

)
=

1
x2

− lnx

x2
=

1 − lnx

x2
< 0 for x > e,

thus for n ≥ 3 we see that
lnn

n
tends decreasingly towards 0. Furthermore, the series is alter-

nating, so it follows from Leibniz’s criterion that the series is convergent, hence conditionally
convergent.

2) This series is absolutely convergent. In fact, if we put

an =
∣∣∣∣ (−4)n(2n)!

(3n)!

∣∣∣∣ = 4n · (2n)!
(3n)!

�= 0,

then

an+1

an
=

4n+1(2n + 2)!
(3n + 3)!

· (3n)!
4n · (2n)!

=
4(2n + 2)(2n + 1)

(3n + 3)(3n + 2)(3n + 1)

=
8
3
· 2n + 1
(3n + 2)(3n + 1)

→ 0 for n → ∞.

We conclude from the criterion of quotients that the series is absolutely convergent.

Conditional covergence and Leibniz’s criterion
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Example 5.33 1) Prove that
√

n + 1 −√
n → 0 for n → ∞.

Hint: Apply the formula

a − b =
a2 − b2

a + b
.

2) Check if the series

∞∑
n=1

(−1)n−1(
√

n + 1 −√
n) = (

√
2−1)−(

√
3−

√
2)+· · ·+(−1)n−1(

√
n + 1 −√

n)+· · ·

is absolutely convergent, conditionally convergent or divergent.

3) When we remove all the parentheses of the series in (2), we get the series
√

2 − 1 −
√

3 +
√

2 +
√

4 −
√

3 − · · · .

Is this series convergent or divergent?

1) It follows from

√
n + 1 −√

n =
(
√

n + 1)2 − (
√

n)2√
n + 1 +

√
n

=
1√

n + 1 +
√

n
,

that
√

n + 1 −√
n → 0 decreasingly for n → ∞.

Alternatively,

√
n + 1 −√

n =
√

n

{√
1 +

1
n
− 1

}
=

√
n

{
1 +

1
2

1
n

+
1
n

ε

(
1
n

)
− 1
}

=
1
2

1√
n

+
1√
n

ε

(
1
n

)
→ 0 for n → ∞.

2) If we put an =
√

n + 1 −√
n =

1√
n + 1 +

√
n

, then

a) an → 0 for n → ∞, thus the series is not coarsely divergent.

b) an ∼ 1
2
√

n
, and

∑∞
n=1

1
2
√

n
is divergent, hence the series is not absolutely convergent.

c) We see that
∑∞

n=1(−1)n−1(
√

n + 1 −√
n) =

∑∞
n=1(−1)n−1an is alternating, and that an → 0

is decreasing, so it follows from Leibniz’s criterion that the series is convergent. Since it is
not absolutely convergent, it must be conditionally convergent.

d) When we remove all the parentheses we see that |bn| ≥ 1 for every n, and the necessary
condition for convergence is not satisfied. The series is coarsely divergent.

Conditional covergence and Leibniz’s criterion
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Example 5.34 1) Prove that the series

∞∑
n=1

1
1+2+ · · · +n

= 1 +
1

1+2
+ · · · + 1

1+2+ · · · +n
+ · · · ,

is convergent with the sum 2.

(Hint: One may without proof use that 1+2+ · · · +n =
1
2
n(n+1), n ∈ N).

2) Prove that the series

∞∑
n=1

1
1−2+ · · · +(−1)n−1n

= 1 +
1

1−2
+ · · · + 1

1−2+ · · · +(−1)n−1n
+ · · ·

is conditionally convergent with sum 0.

Hint: One may use without proof that

1 − 2 + · · · + (−1)n−1n =
1
2

(−1)n−1

{
n +

1
2
(
1 + (−1)n−1

)}
, n ∈ N.

1) When we consider the sectional sequence sN , we get by a decomposition,

sN =
N∑

n=1

1
1 + 2 + · · · + n

=
N∑
n1

2
n(n + 1)

= 2
N∑

n=1

(
1
n
− 1

n + 1

)

= 2
N∑

n=1

1
n
− 2

N+1∑
n=2

1
n

= 2 − 2
N + 1

→ 2 for N → ∞,

and the series is according to the definition (absolutely) convergent with the sum

∞∑
n=1

1
1 + 2 + · · · + n

= 2.

2) We first apply the hint,

∞∑
n=1

1
1 − 2 + · · · + (−1)n−1n

=
∞∑

n=1

2(−1)n−1

n + 1
2{1 + (−1)n−1} .

a) Now,
∣∣∣∣ 2(−1)n−1

n + 1
2{1 + (−1)n−1}

∣∣∣∣ ∼ 2
n

, and
∑ 2

n
is divergent. Thus it follows from the criterion

of equivalence that the series is not absolutely convergent.

b) The series is alternating, and
2

n + 1
2{1 + (−1)n−1} is weakly decreasing towards 0. Hence the

series is convergent by Leibniz’s criterium, and therefore conditionally convergent according
to (a).

Conditional covergence and Leibniz’s criterion
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Sum. We see

an =
∣∣∣∣ 1
1−2+ · · · +(−1)n−1n

∣∣∣∣ = 2

n +
1
2
{1+(−1)n−1}

→ 0

weakly decreasing for n → ∞.

Then calculate the sectional subsequence s2N ,

s2N =
∞∑

n=1

(−1)n−1an =
2N∑
n=1

2(−1)n−1

n + 1
2{1 + (−1)n−1}

=
N∑

p=1

{
2(−1)2p−1−1

(2p−1) + 1
2{1+(−1)2p−1−1} +

2(−1)2p−1

2p + 1
2{1+(−1)2p−1}

}

=
N∑

p=1

(
2
2p

− 2
2p

)
= 0 → 0 for N → ∞.

We can now continue in different ways:

a) The series is convergent, thus sN → s for N → ∞. The subsequence (s2N ) converges both
towards s and towards 0, and its limit is unique. Hence s = 0, and the sum is 0.

b) Since s2N+1 = a2n+1 + s2N = a2N+1 =
1

N + 1
, we have

sn =

{
0 for n lige,
2

n + 1
for n ulige,

and it follows that sn → 0 for n → ∞.

As a conclusion we finally get

∞∑
n=1

1
1 − 2 + · · · + (−1)n−1n

= 0,

where the convergence is conditional.

Conditional covergence and Leibniz’s criterion
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6 Series of functions; uniform convergence

Example 6.1 Let f : R → R be a C1-function, for which f(0) = 0. Prove that if the series
∑∞

n=1 an

(real terms) is absolutely convergent, then the series
∑∞

n=1 f(an) is also absolutely convergent.

We shall apply Taylor’s formula from e.g. Calculus 1b.

1) We assume that the series
∑∞

n=1 an is absolutely convergent. Then especially, |an| → 0 for n → ∞.

2) Since f ∈ C1(R) we get by Taylor’s formula that

f(x) = f(0) +
f ′(0)

1!
x + xε(x) = f ′(0) · x + xε(x).

3) Since (an) is bounded, we can find constants C and N , such that

|ε(an)| ≤ C for n ≥ N.

Without loss of generality we may assume that N = 1.

Series of functions; uniform convergence
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4) Since

f(an) = f ′(0) · an + anε(an)

where

|f(an)| ≤ |f ′(0)| · |an| + |an| · C = (|f ′(0)| + C) · |an|,

and since
∑∞

n=1 |an| is convergent, and |f ′(0)| + C < ∞, we get by applying the criterion of
comparison that

∑∞
n=1 |f(an)| is convergent, so

∑∞
n=1 f(an) is absolutely convergent.

Remark 6.1 It is here essential that f(0) = 0 and that f ′(0) is finite. Consider for instance the func-

tion f(x) =
√|x| which is not differentiable at 0 (vertical half tangent), while

∑∞
n=1

1
n2

is convergent.
In this case we see that

∞∑
n=1

f

(
1
n2

)
=

∞∑
n=1

1
n

is divergent.

Example 6.2 Find all values x ∈ R, for which the series

∞∑
n=0

(1 − x)xn

is convergent, and find for each of these values the sum function of the series.

Then check if the series is uniformly convergent in

(1) ] − 1, 1[, (2)
]
−1

2
,
1
2

[
.

1) When |x| < 1, the series is the usual quotient series of quotient x, hence the series is here convergent
with the sum function

f(x) =
∞∑

n=0

(1 − x)xn =
1 − x

1 − x
= 1 for x ∈ ] − 1, 1[.

2) When r x = 1, all terms of the series are 0, thus f(1) = 0.

3) When x = −1 or |x| > 1, we see that |(1− x)xn| does not converge towards 0 for n → ∞, and the
series is coarsely divergent.

Conclusion. The series is convergent for x ∈ ] − 1, 1] with the sum function

f(x) =
{

1 for x ∈ ] − 1, 1[,
0 for x = 1.

Series of functions; uniform convergence
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0

0.2

0.4

0.6

0.8

1

–2 –1 1 2
x

1) Every term (1 − x)xn is continuous in ] − 1, 1], while the sum function f(x) is not continuous at
1. Hence, the convergence cannot be uniform in this interval.

2) When x ∈
]
−1

2
,
1
2

[
, we get the estimate

|sN (x) − 1| =

∣∣∣∣∣
N∑

n=0

(1 − x)xn − 1

∣∣∣∣∣ =
∣∣∣∣∣

N∑
n=0

xn −
N∑

n=0

xn+1 − 1

∣∣∣∣∣ = |x|N+1 ≤ 1
2N+1

,

which tends towards 0 for N → ∞ independently of x ∈
]
−1

2
,
1
2

[
, hence the convergence is uniform

in
]
−1

2
,
1
2

[
.

Alternatively we have the convergent majoring series

∞∑
n=0

|1 − x| · |x|n ≤ 3
2

∞∑
n=0

1
2n

= 3, for x ∈
]
−1

2
,
1
2

[
, .

We conclude again that the series is uniformly convergent i
]
−1

2
,
1
2

[
.

Series of functions; uniform convergence
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Example 6.3 Check if the series

∞∑
n=0

(1 − x)xn

is uniformly convergent in the interval I = [0, 1[.

This is a tricky example, because the sum function f(x) = 1 is continuous in [0, 1[, so one is misled
to think that the convergence is uniform. This is not true!

When x ∈ [0, 1[, we get as in Example 6.2 that

|sN (x) − 1| = |x|N+1.

By choosing

xN =
1

N+1
√

2
∈ [0, 1[,

it follows that

|sN (xN ) − 1| =
1
2

for every N ∈ N,

and the convergence is not uniform.

Series of functions; uniform convergence
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Example 6.4 1) Prove that the series

(5)
∞∑

n=0

x2

(1 + x2)n

is convergent for every x ∈ R, and find its sum function.

2) Then prove that (5) is not uniformly convergent in the interval R.

3) Prove also that (5) is uniformly convergent in any interval of the form [a, b], where 0 < a < b.

4) Find

∞∑
n=0

∫ 2

1

x2

(1 + x2)n
dx.

1) If x = 0, then f(0) = 0.

If x �= 0, then the series is a quotient series of quotient 1/(1 + x2) ∈ ]0, 1[ (i.e. convergent), and its
sum is

∞∑
n=0

x2

(1 + x2)n
=

x2

1 − 1
1 + x2

=
x2(1 + x2)

x2
= 1 + x2.

The sum function is

f(x) =
∞∑

n=0

x2

(1 + x2)n
=
{

1 + x2 for x �= 0
0 for x = 0.

0

0.5

1

1.5

2

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1
x

2) Every term x2/(1 + x2)n is continuous, while the sum function is not continuous at x = 0. It
follows that the convergence cannot be uniform in any interval, which contains 0, and in particular
not in R.

Series of functions; uniform convergence
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3) Finally, we can prove the uniform convergence in [a, b], where 0 < a < b, in two ways:

a) directly by the definition (estimate such that x disappears),

b) find a convergent majoring series.

a) We shall prove that

|sN (x) − (1 + x2)| ≤ aN → 0 for N → ∞, x ∈ [a, b],

where aN does not depend on x. We get

|sN (x) − (1 + x2)| =

∣∣∣∣∣
N∑

n=0

x2

(1 + x2)n
− (1 + x2)

∣∣∣∣∣ =
∣∣∣∣∣

N∑
n=0

1 + x2 − 1
(1 + x2)n

− (1 + x2)

∣∣∣∣∣
=

∣∣∣∣∣
N∑

n=0

1
(1 + x2)n−1

−
N∑

n=0

1
(1 + x2)n

− (1 + x2)

∣∣∣∣∣
=

∣∣∣∣∣(1 + x2) +
N−1∑
n=0

1
(1 + x2)n

−
N∑

n=0

1
(1 + x2)n

− (1 + x2)

∣∣∣∣∣
=

1
(1 + x2)N

≤ 1
(1 + a2)N

→ 0 for N → ∞ independent of x ≥ a,

and we have proved that the series is uniformly convergence, even in the half infinite intervals
[a,∞[, where a > 0.

b) Alternatively we get for 0 < a ≤ x ≤ b < ∞ the following estimate

∞∑
n=0

∣∣∣∣ x2

(1 + x2)n

∣∣∣∣ ≤
∞∑

n=0

b2

(1 + a2)n
= b2

∞∑
n=0

(
1

1 + a2

)n

=
b2(1 + a2)

a2
.

Notice that the numerator is estimated from above, while the denominator is estimated from
below by some smaller positive number, and also that the quotient 1/(1+a2) ∈]0, 1[, hence the
quotient series is convergent with the given sum. Since we have obtained a convergent majoring
series we conclude that the original series is uniformly convergent.

4) According to 3) the convergence is uniform in the closed and bounded (i.e. compact) interval [1, 2].
Then we can interchange summation and integration, so we get by 1)

∞∑
n=0

∫ 2

1

x2

(1 + x2)n
dx =

∫ 2

1

∞∑
n=0

x2

(1 + x2)n
dx =

∫ 2

1

(1 + x2) dx

=
[
x +

x3

3

]2
1

= 1 +
7
3

=
10
3

.

It is possible, though very difficult directly to calculate the sum of the integrals. We shall leave
out these tedious details.
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Example 6.5 Prove that the series

∞∑
n=1

cos nx

n4
and

∞∑
n=1

1
n2 + x2

are uniformly convergent in the interval R.

We use in both cases the criterion of majoring series.

1) Since | cos nx| ≤ 1, each term of the series can be estimated from above by
∣∣∣cos nx

n4

∣∣∣ ≤ 1
n4

, for alle x ∈ R.

Then er
∑∞

n=1

1
n4

is a convergent majoring series (x does not occur), so
∑∞

n=1

cos nx

n4
is uniformly

convergent in R.

Remark 6.2 Here
∑∞

n=1

1
n4

=
π4

90
is one of the standard series. ♦

2) Each term of the series is estimated from above by decreasing the denominator,∣∣∣∣ 1
n2 + x2

∣∣∣∣ = 1
n2 + x2

≤ 1
n2

, da x2 ≥ 0.

Now,
∑∞

n=1

1
n2

is a convergent majoring seris (x does not occur), hence
∑∞

n=1

1
n2 + x2

is uniformly

convergent i R.

Remark 6.3 Here
∑∞

n=1

1
n2

=
π2

6
is one of the standard series. ♦

Example 6.6 Prove that the series

∞∑
n=1

xn

n3/2

is uniformly convergent for |x| ≤ 1, and divergent for |x| > 1.

1) Since∣∣∣∣ xn

n3/2

∣∣∣∣ ≤ 1
n3/2

for |x| ≤ 1,

and 3
2 > 1, the series

∑∞
n=1 1/n3/2 is a convergent majoring series, thus

∑∞
n=1 xn/n3/2 is uniformly

convergent for |x| ≤ 1.
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2) If |x| > 1, then it follows by the magnitudes that∣∣∣∣ xn

n3/2

∣∣∣∣ = |x|n
n3/2

→ ∞ for n → ∞.

The necessary condition for convergence is not fulfilled, so the series is coarsely divergent for
|x| > 1.

Example 6.7 Prove that the series

∞∑
n=1

2 cos nx + 3 sinn2x

n
√

n

is uniformly convergent in the interval R.

Each term of the series is estimated by∣∣∣∣2 cos nx + 3 sinn2x

n
√

n

∣∣∣∣ ≤ 2 + 3
n
√

n
=

5
n3/2

, for alle x ∈ R,

so a majoring series (in which x does not occur) is

∞∑
n=1

5
n3/2

.

Now, α =
3
2

> 1, so the majoring series is convergent.

We conclude that the series is uniformly convergent in R.

Example 6.8 Prove that the series

∞∑
n=1

2nx

n!

is uniformly convergent in the interval ] −∞, k], where k is any number in R+.

We shall find a convergent majoring series. It follows from

2nx ≤ 2nk = (2k)n,

that

0 <

∞∑
n=1

2nx

n!
≤

∞∑
n=1

1
n!
(
2k
)n

= exp
(
2k
)− 1 for x ≤ k.

Thus we have constructed a convergent majoring series, and the claim is proved.
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Remark 6.4 We see that we have pointwisely everywhere,

∞∑
n=1

2nx

n!
= exp (2x) − 1, x ∈ R,

and this convergence is even uniform over each interval of the type x ∈ ] −∞, k].

Example 6.9 Prove that the series

∞∑
n=2

1
n(ln n)x

is uniformly convergent in the interval [k,∞[, where k is any real number bigger than 1. Then prove
that the sum function tends towards ∞ for x tending towards 1 from the right.

When n ≥ 3, then ln n > 1, and thus n(ln n)x ≥ n(ln n)k for x ≥ k and n ≥ 3. This gives us the
estimate

0 <

∞∑
n=3

1
n(ln n)x

≤
∞∑

n=3

1
n(lnn)k

for x ≥ k.

Series of functions; uniform convergence
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Now,
1

n(ln n)k
is decreasing in n for n ≥ 3 and k > 1. Since

∫ ∞

3

dt

t(ln t)k
=
[
− 1

k − 1
· 1
(ln t)k−1

]∞
3

=
1

k − 1
· 1
(ln 3)k−1

,

we get by the integral criterion that
∑∞

n=3

1
n(ln n)k

is a convergent majoring series, so the series

is uniformly convergent, because nothing is changed by adding the function
1

2(ln 2)x
, even if it tends

towards ∞ for x → ∞.

Assume that x > 1. Since
1

n(ln n)x
is decreasing in n for n ≥ 3, we get by the integral criterion

the following estimate from below,
∞∑

n=2

1
n(ln n)x

=
1

2(ln 2)x
+

∞∑
n=3

1
n(ln n)x

≥ 1
2(ln 2)x

+
∫ ∞

3

dt

t(ln t)x

=
1

2(ln 2)x
+
[
(ln t)1−x

1 − x

]∞
3

=
1

2(ln 2)x
+

1
x − 1

· 1
(ln 3)x−1

.

Then the claim follows from the fact that the lower estimate clearly tends towards ∞ for x → 1+.

Example 6.10 Prove that the series
∞∑

n=1

sinnx

n2

is uniformly convergent for every x ∈ R.

Also prove that∫ π

0

( ∞∑
n=1

sinnx

n2

)
dx = 2

∞∑
n=1

1
(2n − 1)3

.

Each term in the series is estimated from above by∣∣∣∣ sinnx

n2

∣∣∣∣ ≤ 1
n2

for every x ∈ R.

Then
∑∞

n=1

1
n2

=
π2

6
is a convergent majoring series (a standard series), so the series itself is uniformly

convergent in R.

Since the convergence is uniform, and [0, π] is a bounded interval, we may interchange summation and
integration,∫ π

0

( ∞∑
n=1

sinnx

n2

)
dx =

∞∑
n=1

1
n2

∫ π

0

sinnxdx =
∞∑

n=1

1
n2

[
− 1

n
cos nx

]π

0

=
∞∑

n=1

1
n3

{1 − (−1)n}.

As

1 − (−1)n =
{

2 for n odd,
0 for n even,

Series of functions; uniform convergence
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we shall only sum over odd indices, thus

∫ π

0

( ∞∑
n=1

sinnx

n2

)
dx =

∞∑
n=1

1
n3

{1 − (−1)n} = 2
∞∑

n=1

1
(2n − 1)3

.

Remark 6.5 The exact value of
∑∞

n=1

1
(2n − 1)3

is yet not known; but one may of course find

approximating values.
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Example 6.11 1) Prove that the series

(6)
∞∑

n=0

sinx · (cos x)2n

is pointwise convergent for every x ∈ [0, π], and find its sum for every x ∈ [0, π].

2) Check if the series (6) is uniformly convergent in [0, π].

3) Prove that the series (6) is uniformly convergent in
[
π

3
,
2π
3

]
.

1) When x ∈ ]0, π[, the quotient fulfils 0 ≤ cos2 x < 1, so the quotient series is pointwise convergent i
]0, π[ and its sum function is

∞∑
n=0

sinx · (cos x)2n = sinx

∞∑
n=0

{cos2 x}n =
sinx

1−cos2 x
=

1
sinx

.

When either x = 0 or x = π, every term is 0, and the sum is 0.

As a conclusion we get pointwise convergence in [0, π] and the sum function is here given by

f(x) =
{

1/ sin x for x ∈ ]0, π[,
0 for x = 0 or x = π.

2

4

6

8

10

y

0.5 1 1.5 2 2.5 3

x

2) Since every term of the series is a continuous function, and the sum function is not continuous at
the end points, we conclude that the series cannot be uniformly convergent in the interval [0, π].
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3) If x ∈
[
π

3
,
2π
3

]
, then | cos x| ≤ 1

2
. Hence we get the estimate

∣∣∣∣∣
∞∑

n=0

sinx · (cos x)2n

∣∣∣∣∣ ≤
∞∑

n=0

1 ·
(

1
2

)2n

=
∞∑

n=0

(
1
4

)n

=
1

1 − 1
4

=
4
3
.

The series has the convergent majoring series
∑

4−n in the interval
[
π

3
,
2π
3

]
, so it must be uni-

formly convergent in this interval.

Example 6.12 Prove that the series

f(x) =
∞∑

n=1

1
(n + x)2

is uniformly convergent for x ≥ 0, and then calculate

∫ 1

0

f(x) dx =
∫ 1

0

{ ∞∑
n=1

1
(n + x)2

}
dx.

We assume that x ≥ 0. Every term is estimated from above by decreasing the denominator,

0 <
1

(n + x)2
≤ 1

(n + 0)2
=

1
n2

for every x ≥ 0.

Now,
∑∞

n=1

1
n2

=
π2

6
is a convergent majoring series (a standard series). Hence, it follows that the

series is uniformly convergent for x ≥ 0.

Since the series is uniformly convergent in the bounded interval [0, 1], we may interchange summation
and integration. Hereby we get∫ 1

0

f(x) dx =
∫ 1

0

{ ∞∑
n=1

1
(n + x)2

}
dx =

∞∑
n=1

∫ 1

0

1
(n + x)2

dx

=
∞∑

n=1

[
− 1

n + x

]1
x=0

=
∞∑

n=1

(
1
n
− 1

n + 1

)

= lim
N→∞

N∑
n=1

(
1
n
− 1

n + 1

)
(telescoping series)

= lim
N→∞

{
1 − 1

N + 1

}
= 1.
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Example 6.13 1) Prove that the series

∞∑
n=1

(−1)n−1

n2 + x2

is convergent for every x ∈ R.

2) Explain why we have the following inequalities for every x ∈ R and every n ∈ N,

2|x| ≤ x2 + 1 ≤ x2 + n.

3) Define a function f by

f(x) =
∞∑

n=1

(−1)n−1

n2 + x2
, x ∈ R.

Prove that f is differentiable and that

f ′(x) = 2
∞∑

n=1

(−1)nx

(n2 + x2)2
, x ∈ R.

(Hint: Apply the result of (2)).

1) We get by a crude estimate that∣∣∣∣∣
∞∑

n=1

(−1)n−1

n2 + x2

∣∣∣∣∣ ≤
∞∑

n=1

1
n2

< ∞,

and we see that the series has a convergent majoring series, so it is even uniformly convergent, and
its sum function f(x) is continuous.

2) Now, x2 − 2|x|+1 = (|x|− 1)2 ≥ 0, so we obtain the left hand inequality by a rearrangement. The
right hand inequality is trivial.

3) Formally we get by termwise differentiation,

“f ′(x)” = 2
∞∑

n=1

(−1)nx

(n2 + x2)2
.

However, the following estimate∣∣∣∣∣2
∞∑

n=1

(−1)nx

(n2 + x2)2

∣∣∣∣∣ ≤
∞∑

n=1

2|x|
n2 + x2

· 1
n2 + x2

≤
∞∑

n=1

1 · 1
n2

< ∞

shows that the formally differentiated series has a convergent majoring series, so it is uniformly
convergent. Hence, f is differentiable with the derivative

f ′(x) = 2
∞∑

n=1

(−1)nx

(n2 + x2)2
.
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Example 6.14 1) Prove that the series

∞∑
n=1

fn(x) =
∞∑

n=1

(−1)n−1

x + n
=

1
1 + x

− 1
x + 2

+ · · · + (−1)n−1

x + n
+ · · ·

is convergent for every x ∈ [0,∞[

2) Let f be the sum function of the series of (1), thus

(7) f(x) =
∞∑

n=1

fn(x) =
∞∑

n=1

(−1)n−1

x + n
, x ∈ [0,∞[.

Prove that f is differentiable and that

f ′(x) =
∞∑

n=1

f ′
n(x), x ∈ [0,∞[.

1) If x ≤ 0, then |fn(x)| =
1

x + n
→ 0 decreasingly. Now, fn(x) = (−1)n−1|fn(x)|, so the series is

alternating, and therefore convergent according to Leibniz’s criterion. Hence, the series of f(x)
is pointwise convergent for every x ∈ [0,∞[.

2) The formally termwise differentiated series is

∞∑
n=1

(−1)n

(x + n)2
, x ∈ [0,∞[.

Clearly, this series has the convergent majoring series
∑ 1

n2
, so it is uniformly convergent. The

series of f(x) is pointwise convergent, and the termwise differentiated series is uniformly convergent,
so it follows that f(x) is differentiable with the derivative

f ′(x) =
∞∑

n=1

f ′
n(x) =

∞∑
n=1

(−1)n

(x + n)2
, x ∈ [0,∞[.
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