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Self Adjoint Operators

13.1 Simultaneous Diagonalization
Recall the following definition of what it means for a matrix to be diagonalizable.

Definition 13.1.1 Let A be an n x n matriz. It is said to be diagonalizable if there exists

an invertible matriz S such that
S~1AS =D

where D is a diagonal matriz.
Also, here is a useful observation.

Observation 13.1.2 If A is an n x n matriz and AS = SD for D a diagonal matriz, then
each column of S is an eigenvector or else it is the zero vector. This follows from observing
that for s the k" column of S and from the way we multiply matrices,

ASk = )\ksk

It is sometimes interesting to consider the problem of finding a single similarity trans-
formation which will diagonalize all the matrices in some set.

Lemma 13.1.3 Let A be an n X n matriz and let B be an m X m matriz. Denote by C the

matriz A
_ 0
c=(41).

Then C is diagonalizable if and only if both A and B are diagonalizable.

Proof: Suppose S;lASA = D4 and SngSB = Dp where D4 and Dp are diagonal

Sa > is such that

matrices. You should use block multiplication to verify that S = ( 0 S
B

S~1CS = D¢, a diagonal matrix.
Conversely, suppose C' is diagonalized by S = (s1, -+ ,Sptm). Thus S has columns s;.
For each of these columns, write in the form

(%)
Yi

where x; € F™ and where y; € F'™. The result is

S Si2
S =
( So1 Saz )
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where Sp1 is an n X n matrix and Sss is an m X m matrix. Then there is a diagonal matrix

Dy

Sll 512
S21 S22

D =diag (M, - , Apem) = ( 131 0 )

such that

A/
S
oo

Hence by block multiplication
AS11 = 511D1, BSa = S22Do

BSy1 = Sa1Dq, AS12 = S12D3
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It follows each of the x; is an eigenvector of A or else is the zero vector and that each of the
y; is an eigenvector of B or is the zero vector. If there are n linearly independent x;, then
A is diagonalizable by Theorem 9.3.12 on Page 9.3.12.

The row rank of the matrix (X1, - ,Xn1m) must be n because if this is not so, the rank
of S would be less than n + m which would mean S~! does not exist. Therefore, since the
column rank equals the row rank, this matrix has column rank equal to n and this means
there are n linearly independent eigenvectors of A implying that A is diagonalizable. Similar
reasoning applies to B. B

The following corollary follows from the same type of argument as the above.

Corollary 13.1.4 Let Ay be an ng X ng matriz and let C denote the block diagonal

(35 ()

Ay 0

matriz given below.

C= )
0 A,
Then C' is diagonalizable if and only if each Ay is diagonalizable.
Definition 13.1.5 A set, F of n X n matrices is said to be simultaneously diagonalizable if

and only if there exists a single invertible matriz S such that for every A € F, STYAS = D4
where D 4 s a diagonal matriz.

Lemma 13.1.6 If F is a set of n X n matrices which is simultaneously diagonalizable, then
F is a commuting family of matrices.

Proof: Let A, B € F and let S be a matrix which has the property that S~'AS is a
diagonal matrix for all A € F. Then S~'AS = D4 and S™'BS = Dp where D4 and Dp
are diagonal matrices. Since diagonal matrices commute,

AB = SDsS 'SDpS™'=8D,DpS~*
= SDpDsS™'=S8DpS 'SD,S™! = BA.

Lemma 13.1.7 Let D be a diagonal matriz of the form

ML, 0 -0
D = 9 AQI’RQ . . ’ (131)
: - 0
0 cee 0 )\T[n,,,

where I, denotes the n; X n; identity matriz and X\; # X; for i # j and suppose B is a
matriz which commutes with D. Then B is a block diagonal matriz of the form

B, 0 - 0
po| 0 B (13.2)
' 0
0 0 B

where B; is an n; X n; matrix.
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Proof: Let B = (B;;) where B;; = B; a block matrix as above in 13.2.

By By -+ By,
Byy Bay - Ba,
Brl Br2 e Brr

Then by block multiplication, since B is given to commute with D,
)\jBij = )\ZB’LJ
Therefore, if i # j,B;; =0. B

Lemma 13.1.8 Let F denote a commuting family of n X n matrices such that each A € F
is diagonalizable. Then F is simultaneously diagonalizable.

Proof: First note that if every matrix in F has only one eigenvalue, there is nothing to
prove. This is because for A such a matrix,

STLAS =\

and so
A=)

Thus all the matrices in F are diagonal matrices and you could pick any S to diagonalize
them all. Therefore, without loss of generality, assume some matrix in F has more than one
eigenvalue.

The significant part of the lemma is proved by induction on n. If n = 1, there is nothing
to prove because all the 1 x 1 matrices are already diagonal matrices. Suppose then that
the theorem is true for all K < n — 1 where n > 2 and let F be a commuting family of
diagonalizable n x n matrices. Pick A € F which has more than one eigenvalue and let
S be an invertible matrix such that S™'AS = D where D is of the form given in 13.1.
By permuting the columns of S there is no loss of generality in assuming D has this form.
Now denote by F the collection of matrices, {SilCS :C € .7:} . Note F features the single
matrix S. _

It follows easily that F is also a commuting family of diagonalizable matrices. By
Lemma 13.1.7 every B € F is of the form given in 13.2 because each of these commutes
with D described above as S™'AS and so by block multiplication, the diagonal blocks B;
corresponding to different B € F commute.

By Corollary 13.1.4 each of these blocks is diagonalizable. This is because B is known to
be so. Therefore, by induction, since all the blocks are no larger than n—1 x n—1 thanks to
the assumption that A has more than one eigenvalue, there exist invertible n; x n; matrices,
T; such that Ti_lBiTi is a diagonal matrix whenever B; is one of the matrices making up
the block diagonal of any B € F. It follows that for T" defined by

T 0 -+ 0
T= 0 T : ,

: . .0

0 --- 0o T

then T~!BT = a diagonal matrix for every B € F including D. Consider ST. It follows
that for all C € F,

something in F

——
T-' S§7'CS T =(ST)'C(ST)= a diagonal matrix. B
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Theorem 13.1.9 Let F denote a family of matrices which are diagonalizable. Then F is
simultaneously diagonalizable if and only if F is a commuting family.

Proof: If F is a commuting family, it follows from Lemma 13.1.8 that it is simultaneously
diagonalizable. If it is simultaneously diagonalizable, then it follows from Lemma 13.1.6 that
it is a commuting family. W

13.2 Schur’s Theorem

Recall that for a linear transformation, L € £ (V, V) for V a finite dimensional inner product
space, it could be represented in the form

L= Zlijvi X Vj
ij

where {vi,---,v,} is an orthonormal basis. Of course different bases will yield different
matrices, ({;;) . Schur’s theorem gives the existence of a basis in an inner product space such
that (;;) is particularly simple.

Definition 13.2.1 Let L € L(V,V) where V is vector space. Then a subspace U of V is L
invariant if L (U) C U.

In what follows, F will be the field of scalars, usually C but maybe something else.

Theorem 13.2.2 Let L € L (H,H) for H a finite dimensional inner product space such
that the restriction of L*to every L invariant subspace has its eigenvalues in F. Then there
exist constants, ¢;; for i < j and an orthonormal basis, {w;},—, such that

n J
L:ZZCZ']'WZ'@W]'

j=11i=1

The constants, c;; are the eigenvalues of L.
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Proof: If dim (H) = 1, let H = span (w) where |w| = 1. Then Lw = kw for some k.
Then

L=kw®w

because by definition, w ® w (w) = w. Therefore, the theorem holds if H is 1 dimensional.

Now suppose the theorem holds for n — 1 = dim (H) . Let w,, be an eigenvector for L*.
Dividing by its length, it can be assumed |w,| = 1. Say L*w,, = puw,. Using the Gram
Schmidt process, there exists an orthonormal basis for H of the form {vy, -+ ,v,_1,w,}.
Then

(Lvi, Wa) = (v, L'wWy) = (v, pwy) = 0,

which shows

L:H; =span(vy, -+ ,Vp_1) = span (vi, -+ ,Vyp_1).
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Denote by L; the restriction of L to H;. Since H; has dimension n — 1, the induction

hypothesis yields an orthonormal basis, {w1,- -, w,_1} for H; such that
n—1 7
j=1i=1
Then {wy,---,w,} is an orthonormal basis for H because every vector in
Span (Vla T 7Vn71)

has the property that its inner product with w,, is 0 so in particular, this is true for the
vectors {wy, -+ ,Wy,_1}. Now define ¢;;, to be the scalars satisfying

LWn = Zcmwi (134)

and let

n J

B = Z Z Cif Wi QW .
j=1i=1
Then by 13.4,

CijWiln;j E CinW; = Lw,.
j=11:i=1

fl1<k<n-1,

n J k
BWk = E E CijWi(Skj = E CikW;
i=1

j=11i=1

while from 13.3,
n—1 7

ka - Llwk - Z Zczjwz jk — Zczsz
j=11i=1
Since L = B on the basis {wy,---,w,}, it follows L = B.
It remains to verify the constants, cgr are the eigenvalues of L, solutions of the equation,
det (\I — L) = 0. However, the definition of det (Al — L) is the same as

det (\I — C)

where C' is the upper triangular matrix which has ¢;; for i < j and zeros elsewhere. This
equals 0 if and only if A is one of the diagonal entries, one of the cy;. B

Now with the above Schur’s theorem, the following diagonalization theorem comes very
easily. Recall the following definition.

Definition 13.2.3 Let L € L (H, H) where H is a finite dimensional inner product space.
Then L is Hermitian if L* = L.

Theorem 13.2.4 Let L € L(H, H) where H is an n dimensional inner product space. If
L is Hermitian, then all of its eigenvalues \i are real and there exists an orthonormal basis
of eigenvectors {wy} such that

k
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Proof: By Schur’s theorem, Theorem 13.2.2, there exist /;; € IF such that

nJ

j=1i=1
Then by Lemma 12.4.2,
n J n J
liw;@w; = L= L* = Z Z (lijWZ‘@Wj)*
j=11i=1 j=11i=1
n o no i
S e =3 Y e,
j=114i=1 =1 j=1

By independence, if i = j,

and so these are all real. If i < j, it follows from independence again that
li; =0

because the coefficients corresponding to 7 < j are all 0 on the right side. Similarly if ¢ > j,
it follows l;; = 0. Letting A\ = lx), this shows

LZZ/\kaQ@Wk
k

That each of these wy is an eigenvector corresponding to Ay is obvious from the definition
of the tensor product. W

13.3 Spectral Theory Of Self Adjoint Operators

The following theorem is about the eigenvectors and eigenvalues of a self adjoint operator.
Such operators are also called Hermitian as in the case of matrices. The proof given gen-
eralizes to the situation of a compact self adjoint operator on a Hilbert space and leads to
many very useful results. It is also a very elementary proof because it does not use the
fundamental theorem of algebra and it contains a way, very important in applications, of
finding the eigenvalues. This proof depends more directly on the methods of analysis than
the preceding material. The field of scalars will be R or C. The following is useful notation.

Definition 13.3.1 Let X be an inner product space and let S C X. Then
St={reX:(x,8)=0 forallsecS}.
Note that even if S is not a subspace, S= is.

Definition 13.3.2 A Hilbert space is a complete inner product space. Recall this means
that every Cauchy sequence,{xy}, one which satisfies

lim |z, —z,| =0,
n,Mm—00

converges. It can be shown, although I will not do so here, that for the field of scalars either
R or C, any finite dimensional inner product space is automatically complete.
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Theorem 13.3.3 Let A € L (X, X) be self adjoint (Hermitian) where X is a finite dimen-
sional Hilbert space. Thus A = A*. Then there exists an orthonormal basis of eigenvectors,

{uj };‘;1 :

Proof: Consider (Az,x). This quantity is always a real number because

(Az,z) = (z, Ax) = (z, A"z) = (Azx,x)
thanks to the assumption that A is self adjoint. Now define
A =inf{(Az,z) : |z| =1,z € X; = X}.
Claim: )\ is finite and there exists v; € X with |v;| = 1 such that (Avy,v1) = A1.

Proof of claim: Let {u; }?:1 be an orthonormal basis for X and for z € X, let (zq, - - -,
Z,) be defined as the components of the vector x. Thus,

n
Tr = E TjUj.
j=1

Since this is an orthonormal basis, it follows from the axioms of the inner product that

n
2 2
o =Dl
j=1

Thus
n
(Az,z) = ZxkAuk, ijuj = Zxk@ (Aug, uj) ,
k=1 j=1 k,j
a real valued continuous function of (z1, - -+, x,) which is defined on the compact set

n
2
K={(z1, an) €F": > |ay|* = 1}.
j=1
Therefore, it achieves its minimum from the extreme value theorem. Then define

n
v = E TjUsj
Jj=1
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where (21, ,x,) is the point of K at which the above function achieves its minimum.
This proves the claim.
Continuing with the proof of the theorem, let X5 = {vl}J‘ . This is a closed subspace of
X. Let
Ao =inf {(Az,z) : |z| =1,z € X5}

As before, there exists vy € X3 such that (Avg,ve) = A2, A1 < Ay, Now let X3 = {Ul,’ljz}J—
and continue in this way. This leads to an increasing sequence of real numbers, {\;};_, and
an orthonormal set of vectors, {vy, -, v,}. It only remains to show these are eigenvectors
and that the \; are eigenvalues.

Consider the first of these vectors. Letting w € X; = X, the function of the real variable,
t, given by
(A (v1 + tw) ,v1 + tw)

vy + twl]?

(Avy,v1) + 2t Re (Avy, w) + 2 (Aw, w)

f) =

o1 |* + 2t Re (v1, w) + 2 |w]?

*I studied
English for 16 >
years but...
...I finally

learned to

speak it in jus
Six lessons”

Jane, Chinese architect
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achieves its minimum when ¢t = 0. Therefore, the derivative of this function evaluated at
t = 0 must equal zero. Using the quotient rule, this implies, since |v1| = 1 that

2Re (Avy, w) |v1|* — 2Re (vy, w) (Avy, v1)

= 2 (Re (Av1, w) — Re (v, w) A1) = 0.
Thus Re (Av; — Ajvy,w) = 0 for all w € X. This implies Av; = Ajvy. To see this, let w € X
be arbitrary and let § be a complex number with |#] = 1 and
‘(A’Ul — )\11)1,’(1))| =0 (AUl — )\1’01,’11}) .
Then B
|(Avy — Av1,w)] = Re (Avl — /\1111,911}) =0.

Since this holds for all w, Avy = Avy.
Now suppose Avg = Agvg for all k& < m. Observe that A : X,,, — X,,, because if y € X,
and k < m,
(Ay,’Uk) = (ya Avk) = (yv )‘kvk‘) = 07

showing that Ay € {vy,--- ,vm_l}L = X,,. Thus the same argument just given shows that
for all w € X,
(Avy, — AU, w) = 0. (13.5)

Since Av,, € X,,, I can let w = Av,, — Avp, in the above and thereby conclude Av,, =
AU, A
Contained in the proof of this theorem is the following important corollary.

Corollary 13.3.4 Let A € L (X, X) be self adjoint where X is a finite dimensional Hilbert
space. Then all the eigenvalues are real and for \y < Ao < -+ < A\, the eigenvalues of A,
there exists an orthonormal set of vectors {uy, -+ ,u,} for which

Auk = )\kuk.

Furthermore,
A = inf {(Az,z) : || = 1,z € Xi}

where N
X ={ur, - yup— ), X1 =X,

Corollary 13.3.5 Let A € L(X,X) be self adjoint (Hermitian) where X is a finite dimen-
stonal Hilbert space. Then the largest eigenvalue of A is given by

max {(Ax,x) : [x| =1} (13.6)
and the minimum eigenvalue of A is given by
min {(Ax,x) : |x| =1}. (13.7)

Proof: The proof of this is just like the proof of Theorem 13.3.3. Simply replace inf
with sup and obtain a decreasing list of eigenvalues. This establishes 13.6. The claim 13.7
follows from Theorem 13.3.3.

Another important observation is found in the following corollary.

Corollary 13.3.6 Let A € L (X, X) where A is self adjoint. Then A=Y, \jv; ®v; where
Av; = N and {v;}.—, is an orthonormal basis.
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Proof : If v, is one of the orthonormal basis vectors, Avy = A\pvg. Also,
Z Aiv; ® v; (vg) Z Aiv; (Ui, v5)

Z )\iéikvi = )\k’l)k.

Since the two linear transformations agree on a basis, it follows they must coincide. B

By Theorem 12.4.5 this says the matrix of A with respect to this basis {v;}]_, is the
diagonal matrix having the eigenvalues A1, --- , A, down the main diagonal.

The result of Courant and Fischer which follows resembles Corollary 13.3.4 but is more
useful because it does not depend on a knowledge of the eigenvectors.

Theorem 13.3.7 Let A € L (X, X) be self adjoint where X is a finite dimensional Hilbert
space. Then for Ay < Ay < -+ < A\, the eigenvalues of A, there exist orthonormal vectors
{uy, -+ ,un} for which

Auk = )\kuk.
Furthermore,
A = max {min{(A:mx) Del =12 € {wy, - 7w;c,l}l}} (13.8)
Wi, W —1
where if k =1,{wy,--- ,wk_l}L = X.
Proof: From Theorem 13.3.3, there exist eigenvalues and eigenvectors with {uy, -, u,}

orthonormal and A; < A; 1. Therefore, by Corollary 13.3.6
n
A= Z )\j’u]‘ & U
j=1

Fix {w1,~~~ ,wk,l}.
(Az, x) :Z)\]xuj uj, T Z)\\xuj
Jj=1
Then let Y = {wy, - - ,wk—l}J—

inf {(Az,2) : |2| = Lz € Y} =inf ¢ d N |(w,u)]* : [o] = Lz €Y
j=1

k
< inf Z/\j \(z,u;)* : x| =1, (x,u;) =0 for j >k, andz €Y . (13.9)

The reason this is so is that the infimum is taken over a smaller set. Therefore, the infimum
gets larger. Now 13.9 is no larger than

k
inf ¢ A > [(@,uy)* |2 =1, (z,u;) =0 for j > k, and z €Y p =\,
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because since {u1,--- ,u,} is an orthonormal basis, |z|* = > | (=, u;)|* . Tt follows since
{wi, -+, w_1} is arbitrary,

sup {inf {(Aamx) el =12 € {wy, - ,wk,l}l}} < Ak (13.10)
Wi, Wkr—1
However, for each wq,--- ,wg_1, the infimum is achieved so you can replace the inf in the

above with min. In addition to this, it follows from Corollary 13.3.4 that there exists a set,
{wy, -+ ,wg—1} for which

inf{(Ax,ac) Szl =12 € {wq, - ,wk,l}J‘} = Ag.

Pick {wy, -+ ,wg—1} = {u1,--- ,ug—1}. Therefore, the sup in 13.10 is achieved and equals
A, and 13.8 follows. W
The following corollary is immediate.

Corollary 13.3.8 Let A € L (X, X) be self adjoint where X is a finite dimensional Hilbert
space. Then for Ay < Ao < --- < N\, the eigenvalues of A, there exist orthonormal vectors
{u1, -+ ,un} for which

Auk = )\kuk.

Furthermore,

Wi, We—1

Ak =  max {min { (/|1x|72x) cx# 0,z € {wy, - ,wk_l}L}} (13.11)
x

where if k =1,{wy, - ,wk,l}J‘ = X.
Here is a version of this for which the roles of max and min are reversed.

Corollary 13.3.9 Let A € L (X, X) be self adjoint where X is a finite dimensional Hilbert
space. Then for Ay < Ay < -+ < A\, the eigenvalues of A, there exist orthonormal vectors
{u1,++ ,up} for which

Auk = )\kuk.

Furthermore,
A
A = min {max{( x|,2x) cx# 0,z € {wy, - 7wnk}J_}} (13.12)
Wiy -
where if k =n,{wy, - ,wn_k}L =X.
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13.4 Positive And Negative Linear Transformations

The notion of a positive definite or negative definite linear transformation is very important
in many applications. In particular it is used in versions of the second derivative test for
functions of many variables. Here the main interest is the case of a linear transformation
which is an n X n matrix but the theorem is stated and proved using a more general notation
because all these issues discussed here have interesting generalizations to functional analysis.

Lemma 13.4.1 Let X be a finite dimensional Hilbert space and let A € L(X,X). Then
if {v1,--- ,vn} is an orthonormal basis for X and M (A) denotes the matriz of the linear
transformation A then M (A*) = (M (A))*. In particular, A is self adjoint, if and only if
M (A) is.
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Proof: Consider the following picture

A
X — X
gt o Tq
F» — F”
M (4)
where ¢ is the coordinate map which satisfies ¢ (x) = Y, 2;v;. Therefore, since {v1, -+ ,v,}

is orthonormal, it is clear that |x| = |¢ (x)|. Therefore,

x> +[y]* +2Re(x,y) = |x+y>=le(x+y)
la()* + g (y)]” +2Re (¢ (x),q(y)) (13.13)

Now in any inner product space,
(x,iy) = Re (z,4y) + ¢ Im (z, iy) .
Also
(z,iy) = (=) (z,y) = (=i) Re (z,y) + Im (2,y) .
Therefore, equating the real parts, Im (z,y) = Re (z,4y) and so
(z,y) = Re(x,y) +iRe (z,iy) (13.14)
Now from 13.13, since g preserves distances, .Re(q(x),q(y)) = Re(x,y) which implies

from 13.14 that
(x,y) = (¢(x),q(¥))- (13.15)

Now consulting the diagram which gives the meaning for the matrix of a linear transforma-
tion, observe that go M (A) = Aoqg and go M (A*) = A* o q. Therefore, from 13.15

(A(q(x),q(y) = (a(x), A% (y)) = (¢(x) ¢ (M (A7) (y))) = (x, M (A") (y))

but also

(Ag(x)),q(y) = (¢(M(A) (x)),q(y) = (M (A) (x),y) = (x, M (4)" (y)) -

Since x,y are arbitrary, this shows that M (A*) = M (A)" as claimed. Therefore, if A is self
adjoint, M (A) = M (A*) = M (A)" and so M (A) is also self adjoint. If M (A) = M (A)*
then M (A) = M (A*) and so A = A*. 1

The following corollary is one of the items in the above proof.

Corollary 13.4.2 Let X be a finite dimensional Hilbert space and let {vy,--- ,v,} be an
orthonormal basis for X. Also, let q be the coordinate map associated with this basis satis-
fying q (x) = 32, xvi. Then (%,y)p. = (q(x),q(¥))x - Also, if A € L(X,X), and M (A)
is the matriz of A with respect to this basis,

(Ag(x),q¢(¥))x = (M (A) X, ¥ ) -

Definition 13.4.3 A self adjoint A € L(X,X), is positive definite if whenever x # 0,
(Ax,x) > 0 and A is negative definite if for all x # 0, (Ax,x) < 0. A is positive semidef-
inite or just nonnegative for short if for all x, (Ax,x) > 0. A is negative semidefinite or
nonpositive for short if for all x, (Ax,x) < 0.
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The following lemma is of fundamental importance in determining which linear trans-
formations are positive or negative definite.

Lemma 13.4.4 Let X be a finite dimensional Hilbert space. A self adjoint A € L (X, X)
is positive definite if and only if all its eigenvalues are positive and negative definite if and
only if all its eigenvalues are negative. It is positive semidefinite if all the eigenvalues are
nonnegative and it is negative semidefinite if all the eigenvalues are nonpositive.

Proof: Suppose first that A is positive definite and let A be an eigenvalue. Then for x
an eigenvector corresponding to A, A (x,x) = (Ax,x) = (Ax,x) > 0. Therefore, A > 0 as
claimed.

Now suppose all the eigenvalues of A are positive. From Theorem 13.3.3 and Corollary
13.3.6, A = >, \ju; ® u; where the \; are the positive eigenvalues and {u;} are an
orthonormal set of eigenvectors. Therefore, letting x # 0,

(Ax,x) = ((Z A ® ui> x7x) = (Z Aiu; (x,u;) 7X>

(Z i (x,u)) (ui,x)> =3 Ail(u, %) >0
i=1 =1

because, since {u;} is an orthonormal basis, |x|* = S (g, x)|°.

To establish the claim about negative definite, it suffices to note that A is negative
definite if and only if —A is positive definite and the eigenvalues of A are (—1) times the
eigenvalues of —A. The claims about positive semidefinite and negative semidefinite are
obtained similarly. W

The next theorem is about a way to recognize whether a self adjoint A € £ (X, X) is
positive or negative definite without having to find the eigenvalues. In order to state this
theorem, here is some notation.

Definition 13.4.5 Let A be an n x n matriz. Denote by Ay the k x k matriz obtained by
deleting the k +1,--- ,n columns and the k+1,--- ,n rows from A. Thus A, = A and Ay,
is the k x k submatriz of A which occupies the upper left corner of A. The determinants of
these submatrices are called the principle minors.

The following theorem is proved in [§]

Theorem 13.4.6 Let X be a finite dimensional Hilbert space and let A € L (X, X) be self
adjoint. Then A is positive definite if and only if det (M (A),) > 0 for every k =1,--- ,n.
Here M (A) denotes the matriz of A with respect to some fized orthonormal basis of X.

Proof: This theorem is proved by induction on n. It is clearly true if n = 1. Suppose then
that it is true for n—1 where n > 2. Since det (M (A)) > 0, it follows that all the eigenvalues
are nonzero. Are they all positive? Suppose not. Then there is some even number of them
which are negative, even because the product of all the eigenvalues is known to be positive,
equaling det (M (A)). Pick two, A1 and Ay and let M (A) u; = \;u; whereu; #0fori=1,2
and (uj,uz) = 0. Now if y = aguy + asuy is an element of span (uy,us), then since these
are eigenvalues and (uy,us) = 0, a short computation shows

(M (A) (041111 + C%Qllg) ,auap + OZQIIQ)

= la1* A [wy|* + Jaz]? Az Jus|? < 0.
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Now letting x € C"!, the induction hypothesis implies

(x*,0) M (A) ( ’5 ) =x*"M(A),_,x=(M(A)x,x) > 0.

Now the dimension of {z € C" : z, = 0} is n— 1 and the dimension of span (u;, uz) = 2 and
so there must be some nonzero x € C™ which is in both of these subspaces of C™. However,
the first computation would require that (M (A)x,x) < 0 while the second would require
that (M (A)x,x) > 0. This contradiction shows that all the eigenvalues must be positive.
This proves the if part of the theorem. The only if part is left to the reader.

Corollary 13.4.7 Let X be a finite dimensional Hilbert space and let A € L(X,X) be
self adjoint. Then A is negative definite if and only if det (M (A),) (—1)k > 0 for every
k=1,---,n. Here M (A) denotes the matriz of A with respect to some fized orthonormal
basis of X.

Proof: This is immediate from the above theorem by noting that, as in the proof of
Lemma 13.4.4, A is negative definite if and only if —A is positive definite. Therefore, if
det (=M (A),) > 0 for all k = 1,--- ,n, it follows that A is negative definite. However,

det (=M (A),) = (1) det (M (A),). B

13.5 Fractional Powers

With the above theory, it is possible to take fractional powers of certain elements of £ (X, X)
where X is a finite dimensional Hilbert space. To begin with, consider the square root of a
nonnegative self adjoint operator. This is easier than the general theory and it is the square
root which is of most importance.

Theorem 13.5.1 Let A € L(X,X) be self adjoint and nonnegative. Then there exists a
unique self adjoint nonnegative B € L (X, X) such that B> = A and B commutes with every
element of L (X, X) which commutes with A.

Proof: By Theorem 13.3.3, there exists an orthonormal basis of eigenvectors of A, say
{v;i}_, such that Av; = A\;v;. Therefore, by Theorem 13.2.4, A = Y. \;v; ® v; where each
A > 0.

Now by Lemma 13.4.4, each \; > 0. Therefore, it makes sense to define

B = Z)\g/QviQ@vi.
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It is easy to verify that

4 N N JOifi#Ay
(Uz®”z)(vj®vﬂ)_{ v; @ if i =j

Therefore, a short computation verifies that B2 = ZZ Aiv; @v; = A. If C commutes with
A, then for some c;j,

C = E CijV; Q V;
ij

and so since they commute,

CiiV; QUi ALUE R U = Cii A0 iV @ U = Cik A\LU; ® U,
J fi kO
1,5,k .5,k i,k
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= Z Cij AU @ UpV; QU = Z Cij MOkiVE @ Vj = chj)\kvk ® v;

.5,k .5,k gk

E CikAiV; ® Uk
ki

Then by independence,
CikAi = Cik Ak

Therefore, cl-k)\i/ 2 = cikAi/ % which amounts to saying that B also commutes with C. It is
clear that this operator is self adjoint. This proves existence.

Suppose B is another square root which is self adjoint, nonnegative and commutes with
every matrix which commutes with A. Since both B, By are nonnegative,

(B(B —B1)w,(B—B1)x) 20,

Now, adding these together, and using the fact that the two commute,
(B> B})z,(B—B1)z) = ((A— A)z,(B—By)z) = 0.

It follows that both inner products in 13.16 equal 0. Next use the existence part of this to
take the square root of B and B, which is denoted by v/B, /By respectively. Then

0 = (VB(B-B)«VB(B-B)x)
(VB (B - B), VBl (B - By)<)

which implies VB (B — By)x = /By (B — By)z = 0. Thus also,

0

B(B—By)x =B, (B—Bj)z=0
Hence
0=(B(B—-B1)z—B1(B—Byj)z,z)=((B—B1)z,(B—B1)zx)

and so, since z is arbitrary, By = B. i
The main result is the following theorem.

Theorem 13.5.2 Let A € L (X, X) be self adjoint and nonnegative and let k be a positive
integer. Then there exists a unique self adjoint nonnegative B € L (X, X) such that B* = A.

Proof: By Theorem 13.3.3, there exists an orthonormal basis of eigenvectors of A, say
{vi};_, such that Av; = A;v;. Therefore, by Corollary 13.3.6 or Theorem 13.2.4, A =
> Aivi ® v; where each A; > 0.

Now by Lemma 13.4.4, each \; > 0. Therefore, it makes sense to define

B = Z)\i/kvi ® v;.

K2

It is easy to verify that

_f0ifi#]
(Uz®vz)(v]®v])_{ V; @ v; lf'L:j

Therefore, a short computation verifies that B* = >; Aiv; ® v; = A. This proves existence.
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In order to prove uniqueness, let p(t) be a polynomial which has the property that
p(N) = /\;/’C for each ¢. In other words, goes through the ordered pairs ()\i, )\;/k). Then a

similar short computation shows

pA) =3 pM)v@v =Y N vouv =5
3 [

Now suppose C* = A where C € £ (X, X) is self adjoint and nonnegative. Then
CB=Cp(A)=Cp(C*) =p(C*)C =p(A)C =BC.

Therefore, {B,C} is a commuting family of linear transformations which are both self
adjoint. Letting M (B) and M (C) denote matrices of these linear transformations taken
with respect to some fixed orthonormal basis, {v1,- -+, vy}, it follows that M (B) and M (C)
commute and that both can be diagonalized (Lemma 13.4.1). See the diagram for a short
verification of the claim the two matrices commute..

B C
X — X — X
q? o tq o tq
Fr - " O
M (B) M (C)

Therefore, by Theorem 13.1.9, these two matrices can be simultaneously diagonalized. Thus
UM (B)U =Dy, UM (C)U = D, (13.17)

where the D; is a diagonal matrix consisting of the eigenvalues of B or C. Also it is clear
that
M (C)" =M (4)

because M (C)" is given by
k times

¢ *Cqq 1 Cq g7 Cq = ¢ CFq = ¢t Ag = M (A)

and similarly

Then raising these to powers,
U'M(AU=U"'MB)"U=D¥

and
UM AU =U"'M(C)*U = Dk

Therefore, DY = D% and since the diagonal entries of D; are nonnegative, this requires that
Dy = D,. Therefore, from 13.17, M (B) = M (C) andso B=C. R

13.6 Polar Decompositions

An application of Theorem 13.3.3, is the following fundamental result, important in geo-

metric measure theory and continuum mechanics. It is sometimes called the right polar
decomposition. The notation used is that which is seen in continuum mechanics, see for
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example Gurtin [11]. Don’t confuse the U in this theorem with a unitary transformation.
It is not so. When the following theorem is applied in continuum mechanics, F' is normally
the deformation gradient, the derivative of a nonlinear map from some subset of three di-
mensional space to three dimensional space. In this context, U is called the right Cauchy
Green strain tensor. It is a measure of how a body is stretched independent of rigid motions.
First, here is a simple lemma.

Lemma 13.6.1 Suppose R € L(X,Y) where X,Y are Hilbert spaces and R preserves dis-
tances. Then R*R = 1.

Proof: Since R preserves distances, |Rx| = |x| for every x. Therefore from the axioms
of the inner product,

X+ ly* + (x,y) + (v.x) =[x +y[’ = (R(x+y) . R(x+y))
= (Rx,Rx) + (Ry,Ry) + (Rx, Ry) + (Ry, Rx)

= [x|* + |y|* + (R"Rx,y) + (v, R*Rx)

and so for all x,y,
(R"Rx —x,y)+ (y,R"Rx —x) =0

Hence for all x,y,
Re(R*Rx —x,y) =0

Now for x,y given, choose a € C such that
a(R*Rx —x,y) = |(R"Rx — x,y)|
Then

0 = Re(R*Rx—x,ay) =Rea(R'Rx —x,y)
= |[(R"Rx—x,y)|

Thus |[(R*Rx —x,y)| = 0 for all x,y because the given x,y were arbitrary. Let y =
R*Rx — x to conclude that for all x,

R*Rx—x=0

which says R*R = I since x is arbitrary. B
The decomposition in the following is called the right polar decomposition.

Theorem 13.6.2 Let X be a Hilbert space of dimension n and let' Y be a Hilbert space of
dimension m >n and let F € L(X,Y). Then there exists R € L(X,Y) and U € L (X, X)
such that

F=RU, U=U"(U is Hermitian),

all eigenvalues of U are non negative,
U?=F‘F,R*R=1,

and |Rx| = |x]|.
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Proof: (F*F)" = F*F and so by Theorem 13.3.3, there is an orthonormal basis of
eigenvectors, {vy,---,vy,} such that

F*FVZ' = )\iVZ', F*F = Z >\ivi X v,
i=1
It is also clear that A; > 0 because
>\i (Vi,Vi) = (F*FVZ',VZ') = (FVZ',FVZ') Z 0

Let N
U= Z)\g/zvi ® v;.

i=1

n
Then U? = F*F, U = U*, and the eigenvalues of U, {)\2/2}' are all non negative.

=1
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Let {Ux1,- -+ ,Ux,} be an orthonormal basis for U (X) . By the Gram Schmidt procedure
there exists an extension to an orthonormal basis for X,

{lea e 7UXT7YT’+17 e 7YTL} :
Next note that {Fxy,---,Fx,} is also an orthonormal set of vectors in ¥ because
(Fxi, Fxj) = (F*Fxy,x;) = (Uxk,x;) = (Ux, Ux;) = 6 3.

By the Gram Schmidt procedure, there exists an extension of {Fxy, -+, Fx,} to an or-
thonormal basis for Y,
{FX17"‘ 7FXT7ZT‘+17"' 7Zm}'

Since m > n, there are at least as many zj as there are y;. Now for x € X, since

{lea"' aerayr—O—la"' 7Yn}

is an orthonormal basis for X, there exist unique scalars

Cl, 7C’r‘7d7‘+17" : 7dn
such that
X = chUXk + Z dk}’k
k=r+1
Define . .
Rx=> oaFxi+ Y dizk (13.18)
k=1 k=r+1
Thus
2
| Rx|? Z|Ck| + Z |di” =[x
k=r+4+1
Therefore, by Lemma 13.6.1 R*R = I.
Then also there exist scalars by such that
Ux =Y bUxy (13.19)

k=1
and so from 13.18,

RUx = i bkFXk =F (i bkxk>
k=1

k=1
Is F (22:1 kak) =F (X)?

(F <i bkxk> — F(X) ,F (i bkxk> — F(X))
k=1 k=1

[0 (S 2) (o))
() (o))

(B o))
[

bUxy — Ux, > bpUxy, — Ux) =0

k=1 k=1
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Because from 13.19, Ux = Y, _, byUxy,. Therefore, RUx = F (>, _, byxy) = F (x). &
The following corollary follows as a simple consequence of this theorem. It is called the
left polar decomposition.

Corollary 13.6.3 Let F € L(X,Y) and suppose n > m where X is a Hilbert space of
dimension n and 'Y is a Hilbert space of dimension m. Then there exists a Hermitian U €
L(X,X), and an element of L(X,Y), R, such that

F=UR, RR* = I.

Proof: Recall that L** = L and (ML)* = L*M*. Now apply Theorem 13.6.2 to
F* e L(Y,X). Thus,
F*=R'U

where R* and U satisfy the conditions of that theorem. Then
F=UR

and RR*=R"*R*=1. 1
The following existence theorem for the polar decomposition of an element of £ (X, X)
is a corollary.

Corollary 13.6.4 Let F € L(X,X). Then there exists a Hermitian W € L(X,X), and
a unitary matriz Q such that F = W@, and there exists a Hermitian U € L (X, X) and a
unitary R, such that F = RU.

This corollary has a fascinating relation to the question whether a given linear transfor-
mation is normal. Recall that an n x n matrix A, is normal if AA* = A* A. Retain the same
definition for an element of £ (X, X).

Theorem 13.6.5 Let F € L(X,X). Then F is normal if and only if in Corollary 15.6.4
RU = UR and QW = WQ.

Proof: I will prove the statement about RU = UR and leave the other part as an
exercise. First suppose that RU = UR and show F' is normal. To begin with,

UR*= (RU)" = (UR)" = R*U.
Therefore,

FF UR*RU = U?
FF* = RUUR*=URR‘U =U?

which shows F' is normal.
Now suppose F' is normal. Is RU = UR? Since F' is normal,

FF* = RUUR* = RU?R*
and
F*F =UR*RU = U2

Therefore, RU?R* = U2, and both are nonnegative and self adjoint. Therefore, the square
roots of both sides must be equal by the uniqueness part of the theorem on fractional powers.
It follows that the square root of the first, RUR* must equal the square root of the second,
U. Therefore, RUR* = U and so RU = UR. This proves the theorem in one case. The other
case in which W and @) commute is left as an exercise. B
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13.7 An Application To Statistics

A random vector is a function X : £ — RP where 2 is a probability space. This means
that there exists a o algebra of measurable sets F and a probability measure P : F — [0, 1].
In practice, people often don’t worry too much about the underlying probability space and
instead pay more attention to the distribution measure of the random variable. For F a
suitable subset of RP, this measure gives the probability that X has values in E. There
are often excellent reasons for believing that a random vector is normally distributed. This
means that the probability that X has values in a set E is given by

/E (2m)7? dlet (0) 2P (_% (= m)” 27 - m)> o

The expression in the integral is called the normal probability density function. There are
two parameters, m and ¥ where m is called the mean and ¥ is called the covariance matrix.
It is a symmetric matrix which has all real eigenvalues which are all positive. While it may
be reasonable to assume this is the distribution, in general, you won’t know m and ¥ and
in order to use this formula to predict anything, you would need to know these quantities.

What people do to estimate these is to take n independent observations x1,--- ,x, and
try to predict what m and X should be based on these observations. One criterion used for
making this determination is the method of maximum likelihood. In this method, you seek
to choose the two parameters in such a way as to maximize the likelihood which is given as

n

_ L Y (x;—m
Il (E)UQexp(—i(xi—m) = xom) ).
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/2

For convenience the term (27)"/“ was ignored. This leads to the estimate for m as

n
1 -
m = — E X; = X.
n-
i=1

This part follows fairly easily from taking the In and then setting partial derivatives equal to
0. The estimation of X is harder. However, it is not too hard using the theorems presented
above. I am following a nice discussion given in Wikipedia. It will make use of Theorem
7.5.2 on the trace as well as the theorem about the square root of a linear transformation
given above. First note that by Theorem 7.5.2,

(x;—m)" X7 (x;—m) = trace((x;—m)" S (x;—m))
= trace ((xi—m) (x;—m)” E_l)

Therefore, the thing to maximize is

n

1 1 .
EW@@ <—2 trace ((x;—m) (x;—m)" 2 ))
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n 1 - ‘e
= det (Z71) /2exp (—ztraceZ(xi—m) (x;—m)" X 1)
i=1

S

n 1 ~ .
det (X71) /2 exp | — trace E (x;—m) (x;—m)" %
i=1

= det (lel)n/2 exp (; trace (SEI))

where S is the p X p matrix indicated above. Now S is symmetric and has eigenvalues which
are all nonnegative because (Sy,y) > 0. Therefore, S has a unique self adjoint square root.
Using Theorem 7.5.2 again, the above equals

det (E_l)n/2 exp <—; trace (51/22_15’1/2)>

Let B = S¥/2%7181/2 and assume det (S) # 0. Then ¥~! = S~1/2BS~1/2. The above
equals

det (S71) det (B)"? exp (—; trace (B)>

Of course the thing to estimate is only found in B. Therefore, det (S _1) can be discarded
in trying to maximize things. Since B is symmetric, it is similar to a diagonal matrix D
which has Ay, -, A, down the diagonal. Thus it is desired to maximize

P n/2 12
(1) ()
i=1 i=1

Taking In it follows that it suffices to maximize

n < 1<
52111&—52&

Taking the derivative with respect to A;,

and so \; = n. It follows from the above that
= S1/2B—lsl/2

where B~! has only the eigenvalues 1/n. It follows B~! must equal the diagonal matrix
which has 1/n down the diagonal. The reason for this is that B is similar to a diagonal
matrix because it is symmetric. Thus B = P*1%I P = %I because the identity commutes
with every matrix. But now it follows that

¥=-5

1
n

Of course this is just an estimate and so we write 3 instead of .
This has shown that the maximum likelihood estimate for X is

S==> (x;~m)(x;—m)"
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13.8 The Singular Value Decomposition
In this section, A will be an m X n matrix. To begin with, here is a simple lemma.

Lemma 13.8.1 Let A be an m xn matriz. Then A*A is self adjoint and all its eigenvalues
are nonnegative.

Proof: It is obvious that A*A is self adjoint. Suppose A*Ax = Ax. Then )\|x|2 =
(Ax,x) = (A*Ax,x) = (Ax,Ax) > 0. B

Definition 13.8.2 Let A be an m xn matriz. The singular values of A are the square roots
of the positive eigenvalues of A*A.

With this definition and lemma here is the main theorem on the singular value decom-
position. In all that follows, I will write the following partitioned matrix

o 0
0 0
where o denotes an r x r diagonal matrix of the form

g1 0

0 Ok

and the bottom row of zero matrices in the partitioned matrix, as well as the right columns
of zero matrices are each of the right size so that the resulting matrix is m x n. Either
could vanish completely. However, I will write it in the above form. It is easy to make the
necessary adjustments in the other two cases.

Theorem 13.8.3 Let A be an m X n matriz. Then there exist unitary matrices, U and V
of the appropriate size such that

where o is of the form

for the o; the singular values of A, arranged in order of decreasing size.

Proof: By the above lemma and Theorem 13.3.3 there exists an orthonormal basis,
{vi}i_, such that A*Av; = o?v; where 02 >0 fori=1,-- ,k,(0; > 0), and equals zero if
i > k. Thus for i > k, Av; = 0 because

(Av;, Av;) = (A" Av,,v;) = (0,v,;) = 0.
Fori=1,--- k, define u; € F™ by

u; = J;lAVZ'.
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Thus AV,L' = o;Uu;. Now

(u5,u;) = (a;lAvi,ajflAvj): (U{lvi,aglA*Avj)

- — gj
(Ui 1VZ',O'j 10’?Vj) = ij (Vi,Vj) = 5,‘]‘.
7

Thus {ui}f:l is an orthonormal set of vectors in F™. Also,

* * _—1 —1 * —1 2 2
AA uZ:AA Ui AVi:CTi AA AVi:O'i AO’iVi:O'iui.

Now extend {ui}le to an orthonormal basis for all of F™, {u,};~, and let
U= ( u - U, )

while
VE(Vl S T )

Thus U is the matrix which has the u; as columns and V is defined as the matrix which has
the v; as columns. Then

u;
U AV = uz A( v Vi )
w,
uj
. o 0
= u (Ulul oruy 0o --- 0):(0 0)
u,

Download free eBooks at bookboon.com



Linear Algebra Ill Advanced topics Self Adjoint Operators

where ¢ is given in the statement of the theorem. W

The singular value decomposition has as an immediate corollary the following interesting
result.

Corollary 13.8.4 Let A be an m xn matriz. Then the rank of A and A* equals the number
of singular values.

Proof: Since V and U are unitary, they are each one to one and onto and so it follows
that

rank (A) = rank (U*AV) = rank < g 8 ) = number of singular values.

Also since U,V are unitary,

rank (A*) = rank (V*A*U) = rank ((U*AV)")

= rank (< g 8 > ) = number of singular values. l

/
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13.9 Approximation In The Frobenius Norm

The Frobenius norm is one of many norms for a matrix. It is arguably the most obvious of
all norms. Here is its definition.

Definition 13.9.1 Let A be a complex m X n matriz. Then
[|A]| - = (trace (A4%))"?
Also this norm comes from the inner product
(A, B) = trace (AB™)

Thus ||AH§¢ is easily seen to equal ), lai;|? so essentially, it treats the matriz as a vector
in Fmxm,

Lemma 13.9.2 Let A be an m X n complex matriz with singular matriz
c 0
(0 0)

1215 = [1A]]% (13.20)

with o as defined above. Then

and the following hold for the Frobenius norm. If U,V are unitary and of the right size,
UAllp = 1 Allg, [TAV] = [|All - (13.21)
Proof: From the definition and letting U, V' be unitary and of the right size,
|UA|[3 = trace (UAA*U*) = trace (AA*) = ||A||%

Also,
AV |3, = trace (AVV*A*) = trace (AA*) = || 4|3

It follows , , )
[UAV [z = AV = | Al[F -

Now consider 13.20. From what was just shown,
2 w112 2
A[[p = UV |5 = [} . B
Of course, this shows that

2
1Al =) ot
i

the sum of the squares of the singular values of A.
Why is the singular value decomposition important? It implies

_ o 0 #
A=U ( 0 0 ) v
where o is the diagonal matrix having the singular values down the diagonal. Now sometimes

A is a huge matrix, 1000x2000 or something like that. This happens in applications to
situations where the entries of A describe a picture. What also happens is that most of the
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singular values are very small. What if you deleted those which were very small, say for all
1 > [ and got a new matrix
a=v( 7 9)
= 0 0 7

Then the entries of A’ would end up being close to the entries of A but there is much less
information to keep track of. This turns out to be very useful. More precisely, letting

g1 0

) " (o 0
o= . 7UAV—(0 O)’
0 o

m2 c—d 0 N
-tz = (757 0 )

Thus A is approximated by A’ where A’ has rank [ < r. In fact, it is also true that out
of all matrices of rank I, this A’ is the one which is closest to A in the Frobenius norm. Here
is why.

Let B be a matrix which has rank I. Then from Lemma 13.9.2

2 T
_ 2
= > o

k=111

2
% % % c 0 X
|A- Bl =lU* (A= B)V|[z = ||[U*AV - U BV||§:H<O 0>_U BV

F

and since the singular values of A decrease from the upper left to the lower right, it follows
that for B to be closest as possible to A in the Frobenius norm,

X _(d 0
U*BV = ( 0 0 )
which implies B = A’ above. This is really obvious if you look at a simple example. Say
s 0 3 0 00
( 0 0 ) =10 2 0 O
0 00 O

for example. Then what rank 1 matrix would be closest to this one in the Frobenius norm?
Obviously

3 0 0 0
0 0 0 O
0 0 0 O

13.10 Least Squares And Singular Value Decomposition

The singular value decomposition also has a very interesting connection to the problem of
least squares solutions. Recall that it was desired to find x such that |Ax — y| is as small as
possible. Lemma 12.5.1 shows that there is a solution to this problem which can be found by
solving the system A*Ax = A*y. Each x which solves this system solves the minimization
problem as was shown in the lemma just mentioned. Now consider this equation for the
solutions of the minimization problem in terms of the singular value decomposition.
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Therefore, this yields the following upon using block multiplication and multiplying on the

left by V*.
o2 0 N o 0 .
(0 0>Vx—(0 O)Uy. (13.22)

One solution to this equation which is very easy to spot is

ot 0 N
X—V( 0 0)Uy. (13.23)

13.11 The Moore Penrose Inverse

The particular solution of the least squares problem given in 13.23 is important enough that
it motivates the following definition.

Definition 13.11.1 Let A be an m x n matriz. Then the Moore Penrose inverse of A,

denoted by AT is defined as
ar=v( 7 Yo
= 00 .

* (o 0
vav= (5 0)

Here

as above.

Thus ATy is a solution to the minimization problem to find x which minimizes |Ax — y]|.
In fact, one can say more about this. In the following picture M, denotes the set of least
squares solutions x such that A*Ax = A*y.

Af(y)

/

ker(A*A)
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Then AT (y) is as given in the picture.

Proposition 13.11.2 ATy is the solution to the problem of minimizing |Ax —y| for all x
which has smallest norm. Thus

’AA'*'y - y| < |Ax —y| for allx

and if x1 satisfies |Axy —y| < |Ax —y| for all x, then |ATy| < |xq].

Proof: Consider x satisfying 13.22, equivalently A* Ax =A*y,

o2 0 " o 0 "
(5 0)v==(50)o

which has smallest norm. This is equivalent to making |V*x| as small as possible because
V* is unitary and so it preserves norms. For z a vector, denote by (z), the vector in F¥
which consists of the first k entries of z. Then if x is a solution to 13.22

< o? (‘g*X)k > _ ( U(UO*Y)k )

> Apply now

REDEFINE YOUR FUTURE
AXA GLOBAL GRADUATE
PROGRAM 2015

redefining / standards M

N
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and so (V*x), = 0! (U*y), . Thus the first k entries of V*x are determined. In order to
make |V*x| as small as possible, the remaining n — k entries should equal zero. Therefore,

V*x:< (VBX)k ) _ ( o=t (g*y)k ) _ ( a(;l 8 )U*y

0'71 0 . A+
X—V( 0 0)Uy:Ayl

and so

Lemma 13.11.3 The matriz A1 satisfies the following conditions.
AATA = A, ATAAT = AT, AT A and AA™ are Hermitian.

Proof: This is routine. Recall

and

—1
+ o 0 "
A _V< 0 0>U

so you just plug in and verify it works. W

(13.24)

A much more interesting observation is that AT is characterized as being the unique
matrix which satisfies 13.24. This is the content of the following Theorem. The conditions

are sometimes called the Penrose conditions.

Theorem 13.11.4 Let A be an m X n matriz. Then a matriz Ag, is the Moore Penrose

inwverse of A if and only if Ay satisfies

AAGA = A, AgAAg = Ao, AgA and AAy are Hermitian.

(13.25)

Proof: From the above lemma, the Moore Penrose inverse satisfies 13.25. Suppose then
that Ay satisfies 13.25. It is necessary to verify that Ay = A™. Recall that from the singular

value decomposition, there exist unitary matrices, U and V such that

c 0
0 0

« _( P Q
VAoU—<R S)
where P is k x k.

Next use the first equation of 13.25 to write

U*AV:ZE( ),A:UEV*.

Let

A ,_éo— A A
Uuxv*v ( R g ) Uusv: =Uxv>™.

Then multiplying both sides on the left by U* and on the right by V,

(5 0)(a $)(50)-(3 )
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Now this requires
ocPo 0 c 0
(77 9)-(59) s
Therefore, P = o~ !. From the requirement that AAy is Hermitian,

Ao
A

——
S PQ ) e o 0 P Qo
UZVV(RS>U—U(OO)(RS)U

must be Hermitian. Therefore, it is necessary that
o 0 P Q _ oP 0@
0 0 R S o 0 0
is Hermitian. Then
I oQ \ _ I 0
0 0 S\ Qv 0

QRfo=0

Thus

and so multiplying both sides on the right by o1, it follows Q* = 0 and so Q = 0.
From the requirement that AgA is Hermitian, it is necessary that

Ao

- ~ A
P Q\ s Po 0.
V<R S)UUEV = V(Ra 0>V
I 0 .
o V(RJ 0>V
is Hermitian. Therefore, also
I 0
Ro 0

is Hermitian. Thus R = 0 because this equals

I 0\ (1 oR*
Ro 0 —\ o 0
which requires Ro = 0. Now multiply on right by o~ to find that R = 0.
Use 13.26 and the second equation of 13.25 to write

Ag Ao Ao

P Q W cmmiugon P
V(R S)UUZVV<R

ll

which implies

7N
(@RS
o o
——
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This yields from the above in which is was shown that R, @ are both 0

(o s)(E8) (0 5) = (0 0)

_ (001 g)

Therefore, S = 0 also and so
" (P QY _ (ot o0
VAoU:(R S>_<0 0>

—1
AO:V<" 8>U*:A+.l

which says

0

(13.28)

(13.29)

The theorem is significant because there is no mention of eigenvalues or eigenvectors in
the characterization of the Moore Penrose inverse given in 13.25. It also shows immediately

that the Moore Penrose inverse is a generalization of the usual inverse. See Problem 3.
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13.12 Exercises

10.

11.

12.

13.

. Show (A*)" = A and (AB)" = B*A*.

Prove Corollary 13.3.9.
Show that if A is an n x n matrix which has an inverse then AT = A1

Using the singular value decomposition, show that for any square matrix A, it follows
that A*A is unitarily similar to AA*.

Let A, B be a m x n matrices. Define an inner product on the set of m x n matrices
by
(A, B) . = trace (AB™).

Show this is an inner product satisfying all the inner product axioms. Recall for M an
n X n matrix, trace (M) = Y7 M;;. The resulting norm, ||-|| is called the Frobenius
norm and it can be used to measure the distance between two matrices.

Let A be an m X n matrix. Show ||AH; = (A4, A)p =2, 0% where the o are the
singular values of A.

If A is a general n x n matrix having possibly repeated eigenvalues, show there is a
sequence {Ax} of n x n matrices having distinct eigenvalues which has the property
that the 45" entry of Aj converges to the ij*" entry of A for all ij. Hint: Use Schur’s
theorem.

Prove the Cayley Hamilton theorem as follows. First suppose A has a basis of eigen-
vectors {vi},_;,Avi = Agvi. Let p(X) be the characteristic polynomial. Show
p(A)vi = p(Ar) vy = 0. Then since {vy} is a basis, it follows p (4)x =0 for all
x and so p (A) = 0. Next in the general case, use Problem 7 to obtain a sequence { A}
of matrices whose entries converge to the entries of A such that Ay has n distinct
eigenvalues and therefore by Theorem 7.1.7 Aj has a basis of eigenvectors. There-
fore, from the first part and for py (\) the characteristic polynomial for Ay, it follows
pr (Ar) = 0. Now explain why and the sense in which limy_,oc pr (Ar) = p (A).

Prove that Theorem 13.4.6 and Corollary 13.4.7 can be strengthened so that the
condition on the Ay is necessary as well as sufficient. Hint: Consider vectors of the

form ( )(; ) where x € F¥.

Show directly that if A is an » X n matrix and A = A* (A is Hermitian) then all the
eigenvalues are real and eigenvectors can be assumed to be real and that eigenvectors
associated with distinct eigenvalues are orthogonal, (their inner product is zero).

Let vi,---, v, be an orthonormal basis for F”. Let @ be a matrix whose i*"* column
is v;. Show

QR=QQ" =1

Show that an n x n matrix @ is unitary if and only if it preserves distances. This
means |@Qv| = |v|. This was done in the text but you should try to do it for yourself.

Suppose {vy,---,v,} and {wy,--- ,w,} are two orthonormal bases for F" and sup-
pose @ is an n X n matrix satisfying Qv; = w;. Then show @ is unitary. If |v| = 1,
show there is a unitary transformation which maps v to e;.
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14.
15.

16.

17.

18.

Finish the proof of Theorem 13.6.5.

Let A be a Hermitian matrix so A = A* and suppose all eigenvalues of A are larger
than §°. Show
(Av,v) > &% |v|?

Where here, the inner product is (v,u) = Z?Zl VU .

Suppose A + A* has all negative eigenvalues. Then show that the eigenvalues of A
have all negative real parts.

The discrete Fourier transform maps C* — C" as follows.

F (x) = z where 2, = Z eIk
Show that F~! exists and is given by the formula

F~1(z) = x where z; = Z ek,

Here is one way to approach this problem. Note z = Ux where

e—i2E00 o210 o220 efﬂl(n 1)0
P27 (. 27, 279, _;2m
—i%70-1 e~ i 11 e i 21 ez T(n—1)-1
U— 1 o—i220-2 o—i2E1:2 o—i2E2:2 o—i2E (n—1)-2
7
71—0 (n—1) —i2%1.(n—1) —i272.(n—1) —i2% (n—1)-(n—1)

e e (& (&

Now argue U is unitary and use this to establish the result. To show this verify

each row has length 1 and the inner product of two different rows gives 0. Now
227 227

Uyj = e "% 7% and so (U )y = et ik,

Let f be a periodic function having period 27w. The Fourier series of f is an expression

of the form
oo n
ikr — 13 ik
Z ce't = nh_}rrgc Z cre
k=—o00 k=—n
and the idea is to find ¢ such that the above sequence converges in some way to f. If

[ee]

f(x): Z Ckeik:r

k=—o00

and you formally multiply both sides by e~*™* and then integrate from 0 to 2,
interchanging the integral with the sum without any concern for whether this makes

sense, show it is reasonable from this to expect
1 27

Cm =
o

f(x)e "™ dy.

Now suppose you only know f (z) at equally spaced points 27j/n for j =0,1,--- . n
Consider the Riemann sum for this integral obtained from using the left endpoint of
the subintervals determined from the partition {27” J }?:0' How does this compare with
the discrete Fourier transform? What happens as n — oo to this approximation?
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19. Suppose A is a real 3 x 3 orthogonal matrix (Recall this means AAT = ATA=1.)
having determinant 1. Show it must have an eigenvalue equal to 1. Note this shows
there exists a vector x # 0 such that Ax = x. Hint: Show first or recall that any
orthogonal matrix must preserve lengths. That is, |Ax| = |x].

20.

21.

Let A be a complex m x n matrix. Using the description of the Moore Penrose inverse

in terms of the singular value decomposition, show that

lim (A*A+60) " A* = A*

6—0+

where the convergence happens in the Frobenius norm. Also verify, using the singular
value decomposition, that the inverse exists in the above formula.

Show that AT = (4*A)" A*. Hint: You might use the description of AT in terms of

the singular value decomposition.
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Norms

In this chapter, X and Y are finite dimensional vector spaces which have a norm. The
following is a definition.

Definition 14.0.1 A linear space X is a normed linear space if there is a norm defined on
X, || satisfying
[Ix|| >0, [|x|| =0 if and only if x =0,

e+ yll < Il + Iyl
[lex[| = fe [[x]]

whenever ¢ is a scalar. A set, U C X, a normed linear space is open if for every p € U,
there exists § > 0 such that

B(p,6)={z:|lz—pl| <o} CU.
Thus, a set is open if every point of the set is an interior point.

To begin with recall the Cauchy Schwarz inequality which is stated here for convenience
in terms of the inner product space, C".

Theorem 14.0.2 The following inequality holds for a; and b; € C.

n n 1/2 n 1/2
Zaigi S <Z |ai|2> (Z |b1|2> . (14.1)
i=1 i=1 i=1

Definition 14.0.3 Let (X, ||||) be a normed linear space and let {x,},-, be a sequence of
vectors. Then this is called a Cauchy sequence if for all € > 0 there exists N such that if
m,n > N, then

||z — zm|| <e.

This is written more briefly as

lim ||z, — 2] =0.
m,n— oo

Definition 14.0.4 A normed linear space, (X, ||-||) is called a Banach space if it is com-
plete. This means that, whenever, {x,} is a Cauchy sequence there exists a unique x € X
such that limy, o ||x — xp|| = 0.
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Let X be a finite dimensional normed linear space with norm ||-|| where the field of
scalars is denoted by F and is understood to be either R or C. Let {vy,---,v, } be a basis
for X. If x € X, denote by x; the i component of x with respect to this basis. Thus

n
X = E T;Vi.
i=1

Definition 14.0.5 For x € X and {vy, -+ ,v,} a basis, define a new norm by

n 1/2
x| = (Z Izil2> -
i=1

n
X = E T;Vi.
=1

Similarly, for'y € Y with basis {w1,---, W}, and y; its components with respect to this

basis,
m 1/2
= (Siu)
i=1

For Ae L(X,Y), the space of linear mappings from X to 'Y,

where

[|A]| = sup{|Ax]| : |x| < 1}. (14.2)

The first thing to show is that the two norms, ||-|| and ||, are equivalent. This means
the conclusion of the following theorem holds.

Theorem 14.0.6 Let (X,||||) be a finite dimensional normed linear space and let |-| be
described above relative to a given basis, {vi,---,vy,}. Then |-| is a norm and there exist
constants 6, A > 0 independent of x such that

& [|x|| < [x| <A[lx]]. (14.3)

Proof: All of the above properties of a norm are obvious except the second, the triangle
inequality. To establish this inequality, use the Cauchy Schwarz inequality to write

n n n n
D+ uil” < > s + > il + 2Re Y 2,7,
1=1 =1 =1 =1

" /2 1/2
x[* + |y[* + 2 <Z |$i|2> (Z |yi|2>

i=1 i=1

x+y|’

IN

2 2 2
= X+ Iyl" +2x[lyl = (x| +[y])

and this proves the second property above.
It remains to show the equivalence of the two norms. By the Cauchy Schwarz inequality
again,

[Ill

n n 1/2
2
<3 Jail [vil| < || <Z|vi| )
=1 =1

n
E TiVi
i=1

= 0 'x|.
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This proves the first half of the inequality.
Suppose the second half of the inequality is not valid. Then there exists a sequence
x* € X such that

‘xk’ > kak| L k=1,2,---
Then define .
k e
YT
It follows
y* =1 [y > k[ly*]]- (14.4)

Letting y¥ be the components of y* with respect to the given basis, it follows the vector

(ylf, 7y’;)

is a unit vector in F™. By the Heine Borel theorem, there exists a subsequence, still denoted
by k such that

(yf7 : 71/,12) — (y17"' 7yn>
It follows from 14.4 and this that for

n
y= Z YiVvi,
i=1

0=t Iyl = i,

n n
k
E Yi Vi E YiVi
i=1 i=1

but not all the y; equal zero. This contradicts the assumption that {vy,---,v,} is a basis
and proves the second half of the inequality. B

Corollary 14.0.7 If (X,||]|]) is a finite dimensional normed linear space with the field of
scalars F = C or R, then X is complete.

Proof: Let {x*} be a Cauchy sequence. Then letting the components of x* with respect
to the given basis be

b 2k
it follows from Theorem 14.0.6, that
k k
(x1) .. ’xn)
is a Cauchy sequence in F" and so
(xlf’ 7x51) - ($1,~" vxn) SR

Thus
’ n n
kE_ k
x"¥ = TPV — v, € X. 1
i=1 i=1

Corollary 14.0.8 Suppose X is a finite dimensional linear space with the field of scalars
either C or R and ||-|| and |||-||| are two norms on X. Then there exist positive constants, &
and A, independent of x € X such that

S < [lx[] < Al -

Thus any two norms are equivalent.

Download free eBooks at bookboon.com



Linear Algebra Il Advanced topics Norms

This is very important because it shows that all questions of convergence can be consid-
ered relative to any norm with the same outcome.

Proof: Let {vy,---,v,} be a basis for X and let |-| be the norm taken with respect to
this basis which was described earlier. Then by Theorem 14.0.6, there are positive constants
01,A1,02, Ao, all independent of x €X such that

a2 [[Ix[[| < x| < Az [[[x]]]

Oy [x[| < x| < Aqf[x]].

Then A AA
1 182
oo |[Ix]]] < [x| < Ap]x]] < —[x] < [/
01 o1
and so 5 A
2 2
—_— < < — |
A x| < []x[| < 5, I

Need help with your
dissertation?

Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

Get Help Now

Go to Www.helpmyassignment.co.uk for more info E:/Helpmyassignment

54

Click on the ad to read more

Download free eBooks at bookboon.com


http://www.helpmyassignment.co.uk

Definition 14.0.9 Let X and Y be normed linear spaces with norms ||-||x and |||y re-
spectively. Then L (X,Y) denotes the space of linear transformations, called bounded linear
transformations, mapping X to Y which have the property that

1A]l = sup {[|Az]ly : [J2|x <1} < o0
Then ||A|| is referred to as the operator norm of the bounded linear transformation A.

It is an easy exercise to verify that ||-|| is a norm on £ (X,Y’) and it is always the case
that
1Azl < || Al ||2l]x -

Furthermore, you should verify that you can replace < 1 with = 1 in the definition. Thus

1Al = sup {[[Azlly : [Jz]|x =1}

Theorem 14.0.10 Let X and Y be finite dimensional normed linear spaces of dimension
n and m respectively and denote by ||-|| the norm on either X orY. Then if A is any linear
function mapping X to Y, then A € L(X,Y) and (L(X,Y),||||) is a complete normed
linear space of dimension nm with

[ Ax(| < [ AJ[ ]l -

Proof: It is necessary to show the norm defined on linear transformations really is a
norm. Again the first and third properties listed above for norms are obvious. It remains to
show the second and verify ||A|| < co. Letting {vy,---,v,} be a basis and |-| defined with
respect to this basis as above, there exist constants 6, A > 0 such that

o |Ix[| < x| < Allx]].
Then,

1A+ Bl|

sup{[[(A + B) (x)|| : ||| <1}
sup{[[Ax|| : [[x[| <1} +sup{|[Bx]| : [|x|| <1}
Al -+ 1Bl -

IA

Next consider the claim that ||A|| < co. This follows from

o (B

n 1/2 n 1/2
< x| (ZIIA(VZ-HQ) < Aflx]] (ZIIA(VZ-HQ) < o0
i=1

=1

n

Z|$2| [ A (vi)]

1A (x

N o\ 1/2
Thus [|A]l < A (S0, 114 (o))
Next consider the assertion about the dimension of £ (X,Y). It follows from Theorem
9.2.3. By Corollary 14.0.7 (£ (X,Y),||-]]) is complete. If x # 0,

1 X
||Ax||=HA
I

Note by Corollary 14.0.8 you can define a norm any way desired on any finite dimensional
linear space which has the field of scalars R or C and any other way of defining a norm on

<Al =
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this space yields an equivalent norm. Thus, it doesn’t much matter as far as notions of
convergence are concerned which norm is used for a finite dimensional space. In particular
in the space of m x n matrices, you can use the operator norm defined above, or some
other way of giving this space a norm. A popular choice for a norm is the Frobenius norm
discussed earlier but reviewed here.

Definition 14.0.11 Make the space of m x n matrices into a Hilbert space by defining
(A,B) =tr (AB™).
Another way of describing a norm for an n X n matrix is as follows.

Definition 14.0.12 Let A be an m x n matriz. Define the spectral norm of A, written as
1411, to be

rnaux{)\l/2 : A is an eigenvalue of A*A} .

That is, the largest singular value of A. (Note the eigenvalues of A* A are all positive because
if A*Ax = M\x, then
A(x,x) = (A*Ax,x) = (Ax,Ax) > 0.)

Actually, this is nothing new. It turns out that ||-||, is nothing more than the operator
norm for A taken with respect to the usual Euclidean norm,

n 1/2
x| = (Z |> .
k=1

Proposition 14.0.13 The following holds.
1Al = sup {|Ax][ : [x] = 1} = [[A]].
Proof: Note that A*A is Hermitian and so by Corollary 13.3.5,
A, = max {(A*Ax,x)l/2 x| = 1}
= Inax{(Ax,Ax)l/2 x| = 1}
— max{]Ax|: [x| = 1} = [|4]|. m

Here is another proof of this proposition. Recall there are unitary matrices of the right

size U,V such that A = U g 8

in the section on the singular value decomposition. Then since unitary matrices preserve
norms,

> V* where the matrix on the inside is as described

o 0 o 0
|Al] = sup U( )V*X = sup U( )V*x
A x| <1 00 Vex|<1 0 0
o 0 o 0
= s lo (70 )= (50 )y|=ei=a
yl<1 00 yl<1 [\ 0 0 2

This completes the alternate proof.

From now on, [|A||, will mean either the operator norm of A taken with respect to the
usual Euclidean norm or the largest singular value of A, whichever is most convenient.

An interesting application of the notion of equivalent norms on R™ is the process of
giving a norm on a finite Cartesian product of normed linear spaces.
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Definition 14.0.14 Let X;, i =1,--- ,n be normed linear spaces with norms, ||-||,. For

n

X = (21, ,Zn) EHXZ»

i=1
define 0 : T]"_, X; — R™ by

0(x) = (leally - s llwnll,)

Then if ||-|| is any norm on R™, define a norm on [[;_, X;, also denoted by ||-|| by
[IxI| = [16x]].
The following theorem follows immediately from Corollary 14.0.8.

Theorem 14.0.15 Let X; and ||-||; be given in the above definition and consider the norms
on H?:l X; described there in terms of norms on R™. Then any two of these norms on
H?=1 X; obtained in this way are equivalent.

For example, define

or

n 1/2
[Ix[l; = (Z |in2>
i=1
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and all three are equivalent norms on []}", X;.

14.1 The p Norms

In addition to [|-||; and ||-||., mentioned above, it is common to consider the so called p
norms for x € C".

Definition 14.1.1 Let x € C". Then define forp > 1,

n
1xll, = | D lail”
i=1

The following inequality is called Holder’s inequality.

1/p

]
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Proposition 14.1.2 For x,y € C",

n n 1/p n . 1/p’
Z |23 [ys| < (Z |$i|p) <Z |yi|p>
i=1

i=1 i=1
The proof will depend on the following lemma.

Lemma 14.1.3 Ifa,b> 0 and p’ is defined by % + 1% =1, then

’

a? b

p p
Proof of the Proposition: If x or y equals the zero vector there is nothing to
prove. Therefore, assume they are both nonzero. Let A = (3, |mi|p)1/p and B =

’ l/pl
(Z?:l ly:|? ) . Then using Lemma 14.1.3,

Z |xl| |yz

INNgE

and so
n n 1/p n 1/p’
> lalul < 4= (3 w) (Swr)
i=1 i=1 i=1

Theorem 14.1.4 The p norms do indeed satisfy the axioms of a norm.

Proof: It is obvious that [|-[|, does indeed satisfy most of the norm axioms. The only
one that is not clear is the triangle inequality. To save notation write ||-[| in place of ||-||,
in what follows. Note also that 1% = p — 1. Then using the Holder inequality,

n
Ix+yll" = Z|$i+yz’|p
n n
< Y lmitwl” ) eyl il
=1 =1
n P n P
= Z|xi+yi|?|$i|+Z|mi+yi|?|yi|
=1 =1
n 1/p’ n 1/p n 1/p
< (me”) (zw) +(zym’)
=1

i=1 i=1

= A+ yIP (111, + iy, )
so dividing by ||x + YHP/p, , it follows

[+ y1[” 1%+ y[|777 = [Jx + v < |Ix]l,, +[[y]],
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(p—}%:p(l—i) :p%:l.).l
It only remains to prove Lemma 14.1.3.
Proof of the lemma: Let p’ = ¢ to save on notation and consider the following picture:

% /

t =1
t
a
a b p q
a b
ab < / tp_ldt+/ 28 e = — + =,
0 0 p q

Note equality occurs when a? = b9.
Alternate proof of the lemma: Let

f(t)Ell)(at)p—l—;(IZ)q, t>0

You see right away it is decreasing for a while, having an asymptote at ¢ = 0 and then
reaches a minimum and increases from then on. Take its derivative.

f’@)—(awpla+<f)ql(;f)

Set it equal to 0. This happens when

q
g _ VT (14.5)
aP

Thus
pa/(p+a)
- ap/(p+a)

and so at this value of ¢,
b
at — (ab)q/(p-i-q)7 (t) _ (ab)p/(p-i-q) )

Thus the minimum of f is

1 a/(+a)\P 1 p/o+a)\? _ pq/(p+q)
pgw) ) +qQM) ) = (ab)

but recall 1/p+1/g =1 and so pqg/ (p + ¢) = 1. Thus the minimum value of f is ab. Letting
t = 1, this shows
a?  be
ab < — 4+ —.
p q
Note that equality occurs when the minimum value happens for ¢ = 1 and this indicates
from 14.5 that a” =07. B
Now [|A[|, may be considered as the operator norm of A taken with respect to |||, . In
the case when p = 2, this is just the spectral norm. There is an easy estimate for ||Aﬁp in
terms of the entries of A.
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Theorem 14.1.5 The following holds.

a/p\ V1

AL, < | D01 D0 1Al
k J
Proof: Let [[x]|, < 1andlet A= (a1, - ,a,) where the aj, are the columns of A. Then

e(ze)

and so by Holder’s inequality,

[Ax]], =

kaak < Z|xk| |lal,
e p K

() ()

a/p\ 9

S 1A u
o\

IA

IA
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14.2 The Condition Number

Let A € L(X,X) be a linear transformation where X is a finite dimensional vector space
and consider the problem Az = b where it is assumed there is a unique solution to this
problem. How does the solution change if A is changed a little bit and if b is changed a
little bit? This is clearly an interesting question because you often do not know A and b
exactly. If a small change in these quantities results in a large change in the solution, x,
then it seems clear this would be undesirable. In what follows ||-|| when applied to a linear
transformation will always refer to the operator norm.

Lemma 14.2.1 Let A, B € L (X, X) where X is a normed vector space as above. Then for
[||| denoting the operator norm,

IABI| < [[A[l[|BI| -
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Proof: This follows from the definition. Letting ||z|| < 1, it follows from Theorem
14.0.10
|ABz|| < [[A[[||Bx|| < [|AI{|BI[|=[| < [[A[[||B]|

and so
IAB|| = sup [|ABx|| <[[Al|[|B]|. &
[lz]|<1
Lemma 14.2.2 Let A,B € L(X,X),A™" € L(X,X), and suppose ||B|| < 1/||A7Y||.
Then (A+ B)™" exists and

[ca+ 57| < lla” 1||‘1—||Alm|'

The above formula makes sense because HA‘IBH <1.

Proof: By Lemma 14.2.1,

=1

AT'B|| < ||[ATH] Bl < ||A7!
1471l < [l 10 < A~

Suppose (A+ B)z = 0. Then 0 = A(I+ A7'B)z and so since A is one to one,
(I + A_lB) x = 0. Therefore,

1(7+ A7) ]| = |al| - [|4~"Ba|
> ||| = |[A7'B]| [[«]| = (1 = [|A7'B]]) [[«]| > 0

a contradiction. This also shows (I + A7 B) is one to one. Therefore, both (A + B)"' and
(I+A7'B)™" arein £(X,X). Hence

-1 —1

(A+B) = (A(I+47B) " = (1+47B) 7 4

Now if
T = (I—|—A_1B)71y

for ||y|| <1, then
(I+A7'B)z =

and so
lz]| (1= [|[A™"B||) < ||z + A ' Bz|| < [jyll = 1

and so

— —1p\ L 1
lall = || (r+47B) yH§1_||A—1B\|
Since ||y|| < 1 is arbitrary, this shows
—1 —1 1
|(r+47B) H§1_||A—1B\|
Therefore,
fosmr | = feama]
1
< Jla! HI+A13 H< A
Ja A =
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Proposition 14.2.3 Suppose A is invertible, b # 0, Ax = b, and Ajx; = by where
|IA = Ay|| <1/||[A7Y||. Then

s — 2 | (A=Al =t
< IA[[]]A + : (14.6)
R S =t —ap M G T

Proof: It follows from the assumptions that
Ax — Ajx + Ajx — Ayzy = b — by

Hence
Ay(z—m) = (A1 — A)x+b—br.

Now A; = (A+ (A; — A)) and so by the above lemma, A" exists and so
(x—x1)=A7 (A — Az + A7 (b—by)

—(A+ (A —A) (A —Aaz+(A+ (A —A) " (b-1b).
By the estimate in Lemma 14.2.2,

1A~
— < A — A - )
Dividing by ||z]]|,
||z — ]| |[A~Y] ( ||b—b1|>
< A, — A+ P 14.7
Tl = 1=Ta @ —an (A g (D
Now b= Az = A (A™'b) and so |[b]| < [|A||[|A~*b|| and so
=[] = [JA™ 0| > (o]l / || All -
Therefore, from 14.7,
le ol o AN (A4 A A b
] 7 1=[|A7" (AL = A)]| |1 Al |10]]
A~ 1A <||A1—A||+||b—bl||)
T 1A (A= A)| |1 Al |10l

which proves the proposition. B

This shows that the number, ||A~!||[|A]|, controls how sensitive the relative change in
the solution of Ax = b is to small changes in A and b. This number is called the condition
number. It is bad when it is large because a small relative change in b, for example could
yield a large relative change in .

Recall that for A an n x n matrix, ||A[|, = o1 where o is the largest singular value. The
largest singular value of A~! is therefore, 1/0,, where o, is the smallest singular value of A.
Therefore, the condition number reduces to o1/0,, the ratio of the largest to the smallest
singular value of A.
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14.3 The Spectral Radius

Even though it is in general impractical to compute the Jordan form, its existence is all that
is needed in order to prove an important theorem about something which is relatively easy
to compute. This is the spectral radius of a matrix.

Definition 14.3.1 Define o (A) to be the eigenvalues of A. Also,
p(A) = max (1A : X € 7 (4))
The number, p (A) is known as the spectral radius of A.
Recall the following symbols and their meaning.

lim sup ay, lim inf a,
n—oo n—oo

They are respectively the largest and smallest limit points of the sequence {a,,} where +o00
is allowed in the case where the sequence is unbounded. They are also defined as

lim sup a, = lim (sup{ax:k>n}),
n— o0 n—00

im i = i i k> .

lim nll)lgo an, nh_}rrolo (inf {ay : k > n})

Thus, the limit of the sequence exists if and only if these are both equal to the same real
number.

Lemma 14.3.2 Let J be a p X p Jordan matriz

i

T,

where each Ji is of the form
Jr = A\l + Np,

in which Ny is a nilpotent matriz having zeros down the main diagonal and ones down the
super diagonal. Then

Tim [ = p
where p = max {|\g|,k = 1,...,n}. Here the norm is defined to equal

1B = max {|By;] ,i,j} -
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Proof: Suppose first that p # 0. First note that for this norm, if B, C are p X p matrices,
[1BC|| < plIBI|C]|

which follows from a simple computation. Now
M+ Ny)" tn
L7 =
(A + Ny)"

n 1/n
A 1
<_1 [ + ‘Nl)

S - (14.8)
A 1 "
(f1+;NQ
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From the definition of p, at least one of the A;/p has absolute value equal to 1. Therefore,

A\ 1 n 1/n
A1 =
( T+ le)

—1=e, >0
A 1 "
A2 L
( i pNQ)
because each Nj has only zero terms on the main diagonal. Therefore, some term in the
matrix has absolute value at least as large as 1. Now also, since N = 0, the norm of

the matrix in the above is dominated by an expression of the form CnP where C is some
constant which does not depend on n. This is because a typical block in the above matrix

is of the form )
p n )\k n— ]
— \i p

(2

and each |Ag| < p.
It follows that for n > p+ 1,

Cn? > (1+e,)" > " ef’fl
p+1

( Cnp >1/(P+1)
— >e, >0
(p+1)

Therefore, lim,, . e, = 0. It follows from 14.8 that the expression in the norms in this
equation converges to 1 and so

and so

lim [|J"[|'" = p.
n—oo

In case p = 0 so that all the eigenvalues equal zero, it follows that J® = 0 for all n > p.
Therefore, the limit still exists and equals p. B
The following theorem is due to Gelfand around 1941.

Theorem 14.3.3 (Gelfand) Let A be a complex p X p matriz. Then if p is the absolute
value of its largest eigenvalue,
lim [|A"[|Y" = p.

n—oo

Here ||-|| is any norm on L (C™,C™).

Proof: First assume ||-|| is the special norm of the above lemma. Then letting J denote
the Jordan form of A, S~'AS = J, it follows from Lemma 14.3.2

lim sup ||An||1/n lim sup ||Sjnsil||1/n
n—00

n—oo

IN

tin sup () 11117 177117 = o

lim inf ||J%|"/" =1lim inf |[$~tA"S]||"

n—oo n—oo
_ . . 2 —1 1/774 n 1/n_ . . n 1/7L
= lim inf ((p°) [[SII[|S7]]) " [|A™|I""" =1lim_inf []A"]]

If follows that lim inf, o ||A"||"/" = limsup,, , . [[A"[|"™ = lim,_s ||A™||Y/™ = p.
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Now by equivalence of norms, if |||-||| is any other norm for the set of complex p x p
matrices, there exist constants §, A such that

SlA™| < [[|A™I] < Af]A™]
Then raising to the 1/n power and taking a limit,

p<lim inf [[|A"]||'" <lim sup [||4"]]|
n—00 n—00
9 -1
Example 14.3.4 Consider -2 8
1 1

. Estimate the absolute value of the largest

0 = N

etgenvalue.

A laborious computation reveals the eigenvalues are 5, and 10. Therefore, the right

answer in this case is 10. Consider HA7||1/7 where the norm is obtained by taking the
maximum of all the absolute values of the entries. Thus

7

9 -1 2 8015625 —1984375 3968750
-2 8 4 = | —3968750 6031250 7937500
1 1 8 1984375 1984375 6031250

and taking the seventh root of the largest entry gives

p(A) ~ 80156257 = 9.688951 236 71.

Of course the interest lies primarily in matrices for which the exact roots to the characteristic
equation are not known and in the theoretical significance.

14.4 Series And Sequences Of Linear Operators

Before beginning this discussion, it is necessary to define what is meant by convergence in
L(X,Y).

Definition 14.4.1 Let {Ay},-, be a sequence in L(X,Y) where X,Y are finite dimen-
sional normed linear spaces. Then lim,,_,., A = A if for every € > 0 there exists N such
that if n > N, then

[|A— A, <e.

Here the norm refers to any of the norms defined on L(X,Y). By Corollary 14.0.8 and
Theorem 9.2.3 it doesn’t matter which one is used. Define the symbol for an infinite sum in

the usual way. Thus
S = tm 3,
k=1 k=1

Lemma 14.4.2 Suppose {Ay}r-, is a sequence in L(X,Y) where X,Y are finite dimen-
sional normed linear spaces. Then if

o0
D AR < oo,
k=1

It follows that
> A (14.9)
k=1

exists. In words, absolute convergence implies convergence.
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Proof: For p <m <n,

n

Sa-da

k=1 k=1

<D 1Al
k=p

and so for p large enough, this term on the right in the above inequality is less than e.
Since € is arbitrary, this shows the partial sums of 14.9 are a Cauchy sequence. Therefore
by Corollary 14.0.7 it follows that these partial sums converge. B

As a special case, suppose A € C and consider

i tk)\k
k!
k=0

where ¢t € R. In this case, A, = tkk—ﬁ‘k and you can think of it as being in £ (C,C). Then the
following corollary is of great interest.

Corollary 14.4.3 Let
N L kA
JO=> Fr =12 57
k=0 k=1
Then this function is a well defined complex valued function and furthermore, it satisfies the
initial value problem,

y' =Xy, y(0)=1
Furthermore, if A = a + b,

(1) = e
Proof: That f (¢) makes sense follows right away from Lemma 14.4.2.
0 | 4k \k 0o ik [y (K
3 A = [t Al _ i
k! k!
k=0 k=0
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It only remains to verify f satisfies the differential equation because it is obvious from the
series that f(0) =

IR (GRS
h EZ

and by the mean value theorem this equals an expression of the following form where 6}, is
a number between 0 and 1.

ik(t+0kh)k_1/\k B i t+0hk uk
k=1

k!
k=1
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It only remains to verify this converges to

)\itk)\k =\ (¢
as h — 0. ( )
> t+9h > t’“Ak > t+9kh) —tF) AF
E: : *EZ =12
=0 k=0 k=0

and by the mean value theorem again and the triangle inequality

[e%S) k—1 k
<[5 kI )

k +"7 kl)\k
! |m§j (R

k=0

where 7,, is between 0 and 1. Thus

k—1
<wm§j auis M e

It follows f’ (t) = Af (t). This proves the first part.
Next note that for f (¢) = u (¢) + v (t), both u,v are differentiable. This is because

TS R
2 7 2

Then from the differential equation,
(a+1b) (u+iv) = u' +iv
and equating real and imaginary parts,
v =au—bv, vV = av + bu.
Then a short computation shows
(u? + v2)/ =2a(v® +2?), (u®+20?)(0)=1.

Now in general, if
y' =cy, y(0) =1,
with ¢ real it follows y () = e“’. To see this,

Yy —cy=0
and so, multiplying both sides by e~ you get
d —ct
= =0
at e )
and so ye~ ! equals a constant which must be 1 because of the initial condition y (0) = 1.
Thus

(U2 + 1}2) (t) _ e2at

and taking square roots yields the desired conclusion. l
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Definition 14.4.4 The function in Corollary 14.4.3 given by that power series is denoted
as
exp (At) or e,
The next lemma is normally discussed in advanced calculus courses but is proved here
for the convenience of the reader. It is known as the root test.

Definition 14.4.5 For {a,} any sequence of real numbers

lim sup a, = lim (sup{ax:k > n})
n—00 n—00
Similarly

lim nlggo ap = nl;n;o (inf {ag : kK > n})

In case Anis an increasing (decreasing) sequence which is unbounded above (below) then it
is understood that lim,,_,~, A, = co(—00) respectively. Thus either of limsup or liminf can
equal +00 or —oo. However, the important thing about these is that unlike the limit, these
always exist.

It is convenient to think of these as the largest point which is the limit of some sub-
sequence of {a,} and the smallest point which is the limit of some subsequence of {a,}
respectively. Thus lim,_, a, exists and equals some point of [—o0, o0] if and only if the
two are equal.

Lemma 14.4.6 Let {a,} be a sequence of nonnegative terms and let

r = lim sup azl/p.
p—o0

Then if r < 1, it follows the series, Y, | ar converges and if r > 1, then a, fails to converge
to 0 so the series diverges. If A is an n X n matriz and

1 < lim sup ||47|["/*, (14.10)

p—00
then >_3=, AF fails to converge.
Proof: Suppose r < 1. Then there exists N such that if p > N,
a,l/ P<R

where » < R < 1. Therefore, for all such p, a, < RP and so by comparison with the
geometric series, > RP, it follows Z;O:1 ap converges.
Next suppose r > 1. Then letting 1 < R < r, it follows there are infinitely many values
of p at which
R < allj/ p

which implies R? < a,, showing that a, cannot converge to 0 and so the series cannot
converge either.

To see the last claim, if 14.10 holds, then from the first part of this lemma, ||AP|| fails
to converge to 0 and so {ZZ;O Ak}:zo is not a Cauchy sequence. Hence Y ;- , AF =

iy, s00 Y g A¥ cannot exist. W
Now denote by o (A)? the collection of all numbers of the form \” where A € o (A).

Lemma 14.4.7 o (AP) = o (A)?
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Proof: In dealing with o (AP), is suffices to deal with o (JP) where J is the Jordan form
of A because JP and AP are similar. Thus if A € o (AP), then A € o (JP) and so A = «
where « is one of the entries on the main diagonal of JP. These entries are of the form AP
where A € 0 (A). Thus X € o (A)” and this shows o (4A?) C o (A)".

Now take o € o (A) and consider oP.

oI — AP = (P T+ + aAP™? + A7) (al — A)

and so aP] — AP fails to be one to one which shows that o € o (AP) which shows that
og(AP Co(AP). 1

14.5 Iterative Methods For Linear Systems

Consider the problem of solving the equation
Ax=Db (14.11)

where A is an n X n matrix. In many applications, the matrix A is huge and composed
mainly of zeros. For such matrices, the method of Gauss elimination (row operations) is
not a good way to solve the system because the row operations can destroy the zeros and
storing all those zeros takes a lot of room in a computer. These systems are called sparse.
To solve them, it is common to use an iterative technique. I am following the treatment
given to this subject by Nobel and Daniel [20].

Definition 14.5.1 The Jacobi iterative technique, also called the method of simultaneous
corrections is defined as follows. Let x' be an initial vector, say the zero vector or some
other vector. The method generates a succession of vectors, x2,x3,x*,--- and hopefully this
sequence of vectors will converge to the solution to 14.11. The vectors in this list are called

iterates and they are obtained according to the following procedure. Letting A = (a;;),

aii.ﬁ;—i_l = — Z aijx; + b;. (14.12)
JFi
In terms of matrices, letting
* e *
A = c. .
The iterates are defined as
* 0 0 x71'+1
0 = xQH
0 0 w
0 * * x{ bl
‘. . . CCE b2
Do : :
* * 0 T, bn
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The matrix on the left in 14.13 is obtained by retaining the main diagonal of A and
setting every other entry equal to zero. The matrix on the right in 14.13 is obtained from A
by setting every diagonal entry equal to zero and retaining all the other entries unchanged.

Example 14.5.2 Use the Jacobi method to solve the system

310 0 T 1
1 410 z | | 2
0 2 5 1 zs | 7| 3
00 2 4 T4 4

Of course this is solved most easily using row reductions. The Jacobi method is useful
when the matrix is 1000x1000 or larger. This example is just to illustrate how the method
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works. First lets solve it using row operations. The augmented matrix is

31 0 0 1
1 41 0 2
0 2 5 1 3
0 0 2 4 4
The row reduced echelon form is

1 000 &

79
01 00 Py
0 010 %
0 0 0 1 35

which in terms of decimals is approximately equal to

1.0 0 0 0 .206
0 10 0 0 .379
0 0 10 0 .275
0 0 0 1.0 .862

In terms of the matrices, the Jacobi iteration is of the form

r+1

3000 ) 0100 ] 1
0 400 ah ! 1010 zh 2

r+1 = - r+
0050 h 0201 x4 3
000 4 aitl 0020 zh 4

Multiplying by the inverse of the matrix on the left, 'this iteration reduces to

r+1 1 T
D o[ (g
T2 = 1 1 T2 2
2 = 2 1+ 14.14
020 1 ||a T2 .
ay ! 00 3 0 zh 1
Now iterate this starting with
0
a0
0
Thus
0 5+ 00 0 % %
2 i 0 30 R I - O
- ) . =
0 5 0 3 0 5 5
00 % 0 0 1 1
Then
X2
0 % 0 0 % % . 166
- 5 : —
00 % 0 1 1 7

1You certainly would not compute the invese in solving a large system. This is just to show you how the
method works for this simple example. You would use the first description in terms of indices.
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Continuing this way one finally gets

»
[=2]
Il
[
= FN

S un O wl=

Ni= Owl= O

Qulmr O O

x5

197
.351
.256 6
. 822

+

= O G [0 [

.216
. 386
.295
.871

You can keep going like this. Recall the solution is approximately equal to

. 206
379
275
. 862

so you see that with no care at all and only 6 iterations, an approximate solution has been
obtained which is not too far off from the actual solution.

It is important to realize that a computer would use 14.12 directly. Indeed, writing the
problem in terms of matrices as I have done above destroys every benefit of the method.
However, it makes it a little easier to see what is happening and so this is why I have
presented it in this way.

Definition 14.5.3 The Gauss Seidel method, also called the method of successive correc-
tions is given as follows. For A = (ai;), the iterates for the problem Ax =b are obtained
according to the formula

Zaij{l?;Jrl = — Z G,Z']{E; + bZ (1415)
Jj=1 j=i+1
In terms of matrices, letting
* ... *
A = c. .
* ... *
The iterates are defined as
* 0 0 II+1
* % m§+1
0 g
* * ok x,,
0 * * .Z‘i bl
.135 b2
_ |00 2+ (14.16)
0 --- 0 0 X, bn

In words, you set every entry in the original matrix which is strictly above the main
diagonal equal to zero to obtain the matrix on the left. To get the matrix on the right,
you set every entry of A which is on or below the main diagonal equal to zero. Using the
iteration procedure of 14.15 directly, the Gauss Seidel method makes use of the very latest
information which is available at that stage of the computation.

The following example is the same as the example used to illustrate the Jacobi method.
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Example 14.5.4 Use the Gauss Seidel method to solve the system

In terms of matrices, this procedure is

SO = W
O N O

r+1 1
x1+1 0 51
T
To _ 0 ~ 13
T 0 <
3 1 301
$Z+ 0 — %0

31 00 T
1 410 T2
0 2 5 1 T3
0 0 2 4

=W N =

o O o o
oo O
o O = O
o= OO

Norms

=W N

1
2

=

i
6

o

0

2As in the case of the Jacobi iteration, the computer would not do this. It would use the iteration
procedure in terms of the entries of the matrix directly. Otherwise all benefit to using this method is lost.
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As before, I will be totally unoriginal in the choice of x'. Let it equal the zero vector.
Therefore,

1
3
x? = 13
19
60
Now )
1 x1 1
o ot o V() (2 (e
x’ = - 0 12N 1 13 + 13 = .306
O A A B 300
60 10 60 60 :
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It follows

o & 0 0 .194 é .219
. 0 -5 1 0 L343 21 | -36875
*=7lo L -1 L 306 | " % | 2833
I 1
0 —& L - .846 i .85835
and so
3 0 0 .219 % .21042
5 -+ 1 0 . 36875 o 37657
X" = — ig; =
L L 1 .2833 g L2777
1 1 1
B T S .85835 Pl .86115
Recall the answer is
.206
.379
.275
. 862

so the iterates are already pretty close to the answer. You could continue doing these iterates
and it appears they converge to the solution. Now consider the following example.

Example 14.5.5 Use the Gauss Seidel method to solve the system

1 400 ) 1
1 410 || 2
02 5 1 zy | T | 3
00 2 4 4 4

The exact solution is given by doing row operations on the augmented matrix. When
this is done the row echelon form is

10 0 0 6
01 00 —g
0010 1
00 01 %
and so the solution is approximately
6 6.0
-1 |_| -12
1 1.0
1
5 .5
The Gauss Seidel iterations are of the form
1 000 z) 0400 zt 1
1 400 ah ! 0010 z} 2
r+1 = - r +
0 2 5 0 Ty 0 0 01 x5 3
00 2 4 ;cZH 0 0 0O x) 4

and so, multiplying by the inverse of the matrix on the left, the iteration reduces to the
following in terms of matrix multiplication.

0 4 0 0 1

. 0o -1 1 0 . 1
X=—1, 2 4 1 [¥+| 1
0 1 P 3

5 20 10 4
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This time, I will pick an initial vector close to the answer. Let

This is very close to the answer. Now lets see what the Gauss Seidel iteration does to it.

0 4 0 0 6 1 5.0
0 -1 1 0 -1 L -1.0
x* =~ 2 h1 +1 1 [ =
0 2 Lol 1 ; 9
1 1 1 1
0 -5 3 ~—10 2 1 .55

You can’t expect to be real close after only one iteration. Lets do another.

0 4 0 0 5.0 1 5.0
— 1 — 1 —
B |0 0 I N O .975
0 % % 3 9 ; .88
o -+ £ -4 .55 2 .56
0 4 0 0 5.0 1 4.9
a_ [0 =1 5 0 —.975 T | —945
*=7lo 2z -1 1 88 |7 % | 866
0 -1 % -1 .56 2 .567

The iterates seem to be getting farther from the actual solution. Why is the process which
worked so well in the other examples not working here? A better question might be: Why
does either process ever work at all?

Both iterative procedures for solving

Ax=b (14.17)

are of the form
Bx™"l = —Cx"+b

where A = B + C. In the Jacobi procedure, the matrix C' was obtained by setting the
diagonal of A equal to zero and leaving all other entries the same while the matrix B was
obtained by making every entry of A equal to zero other than the diagonal entries which are
left unchanged. In the Gauss Seidel procedure, the matrix B was obtained from A by making
every entry strictly above the main diagonal equal to zero and leaving the others unchanged
and C was obtained from A by making every entry on or below the main diagonal equal to
zero and leaving the others unchanged. Thus in the Jacobi procedure, B is a diagonal matrix
while in the Gauss Seidel procedure, B is lower triangular. Using matrices to explicitly solve
for the iterates, yields

x" = -B7'Cx" + B 'b. (14.18)

This is what you would never have the computer do but this is what will allow the statement
of a theorem which gives the condition for convergence of these and all other similar methods.
Recall the definition of the spectral radius of M, p (M), in Definition 14.3.1 on Page 459.

Theorem 14.5.6 Suppose p (B_lC) < 1. Then the iterates in 14.18 converge to the unique
solution of 14.17.
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I will prove this theorem in the next section. The proof depends on analysis which should
not be surprising because it involves a statement about convergence of sequences.

What is an easy to verify sufficient condition which will imply the above holds? It is easy
to give one in the case of the Jacobi method. Suppose the matrix A is diagonally dominant.
That is [ai;| > 32,4 lai;|. Then B would be the diagonal matrix consisting of the entries
la;i| . You can see then that every entry of B~1C has absolute value less than 1. Thus if
you let the norm ||B _10’ ‘Oo be given by the maximum of the absolute values of the entries

-Ic ’ ’00 = r < 1. Also, by equivalence of norms it follows there exist
positive constants §, A such that

SN < e < A

where here [|-|| is an operator norm. It follows that if [A| > 1, then (Al — B_lC)_1 exists.

In fact it equals
0o _ k
> (559)
k=0

the series converging because

" /B'c\" = ||(Bte\"
,;(J <> (%)

k

(5] =2 005)

Sfi?H( S IEEPIESI(EY

which shows the partial sums form a Cauchy sequence. Therefore, p (B_lC) < 1 in this
case.
You might try a similar argument in the case of the Gauss Seidel method.

14.6 Theory Of Convergence

Definition 14.6.1 A normed vector space, E with norm ||-|| is called a Banach space if it
is also complete. This means that every Cauchy sequence converges. Recall that a sequence
{zn},— is a Cauchy sequence if for everye > 0 there exists N such that whenever m,n > N,

[|zn — xm|| < e.
Thus whenever {x,} is a Cauchy sequence, there exists x such that

lim ||z — z,|| = 0.
n—oo
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Example 14.6.2 Let Q) be a nonempty subset of a mormed linear space, F. Denote by
BC (Q; E) the set of bounded continuous functions having values in E where E is a Banach
space. Then define the norm on BC (Q; E) by

A1l = sup{[|f (2)||g - & € Q.
Lemma 14.6.3 The space BC (Q; E) with the given norm is a Banach space.

Proof: It is obvious ||-|| is a norm. It only remains to verify BC (2; E) is complete. Let
{fn} be a Cauchy sequence. Then pick x € €.

fn (@) = fon (@)l < |fn = frll <€

whenever m, n are large enough. Thus, for each z,{f, ()} is a Cauchy sequence in F.
Since F is complete, it follows there exists a function, f defined on Q such that f(z) =

limy, o0 for ().
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It remains to verify that f € BC (Q; E) and that ||f — f,|| — 0. I will first show that

i (sup {17 )~ £, @)} ) =0, (14.19)

From this it will follow that f is bounded. Then I will show that f is continuous and
[lf — full = 0. Let € > 0 be given and let N be such that for m,n > N

||fn - fm” < 6/3
Then it follows that for all x,
_ — 1 _ <
1F @) = fon @l = T [|fo (@) = fon (@) < /3
Therefore, for m > N,

sup {[|f (@) = fun (@)]|} < 5 <=
€N

This proves 14.19. Then by the triangle inequality and letting N be as just described, pick
m > N. Then for any x €

L @)l < lfm (@)]|g +& < [|fml] + &
Hence f is bounded. Now pick « € Q and let € > 0 be given and N be as above. Then

@) = FWlle < [If @) = fm @)lg + [1fm (@) = fo @l + [[fm (W) = F W)

13 g
= 3 | fm () = fm (y)HE + 3

A

Now by continuity of f,,, the middle term is less than ¢/3 whenever ||z — y|| is sufficiently
small. Therefore, f is also continuous. Finally, from the above,

9
1= fall < 2

whenever n > N and so lim,_, ||f — fr|| = 0 as claimed. B
The most familiar example of a Banach space is F". The following lemma is of great
importance so it is stated in general.

Lemma 14.6.4 Suppose T : E — E where E is a Banach space with norm |-|. Also suppose
ITx —Ty| <r|x—y| (14.20)
for some r € (0,1). Then there exists a unique fized point, x € E such that
Tx = x. (14.21)
Letting x' € E, this fized point, x, s the limit of the sequence of iterates,
xt, Tx', 7%, (14.22)

1

In addition to this, there is a nice estimate which tells how close x* is to x in terms of

things which can be computed.

1
x! — x| < — |x! = Tx!]. 14.23
1
-7
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Proof: This follows easily when it is shown that the above sequence, {T”Cxl}:i1 is a
Cauchy sequence. Note that

|T2x1 —Tx1| <r |Tx1 —X1|.

Suppose
[ Thx! — T x| <o T - (14.24)
Then
Tk:+lxl o Tktxl| S r |Tktxl o Tk:71X1|
< kTt |Tx1 — xl‘ =7k ’Tx1 —x!.

By induction, this shows that for all k£ > 2, 14.24 is valid. Now let k& > > N.

k—1 k—1
Thx! — Tlx1’ = Z (Tj'“x1 — zjl) < Z |Tj+1X1 — Tix!
=l j=l
k—1 N
< er ‘Tx1 —x1’ < |Tx1 —x1| T
j=N

which converges to 0 as N — oo. Therefore, this is a Cauchy sequence so it must converge
to x € E. Then

x = lim TFx' = lim TFt'x! =T lim TFx' = Tx.
k—o0 k—oo k—o00

This shows the existence of the fixed point. To show it is unique, suppose there were
another one, y. Then
x—yl=[Tx-Ty[<r|x-y]|

and so x =y.
It remains to verify the estimate.

|x1 fxf < ’xl fo1| + }Tx1 fx| = |x1 fol} + |Tx1 —Tx

< ’xlfo1|+r|x17x|

and solving the inequality for ’xl — x‘ gives the estimate desired. B
The following corollary is what will be used to prove the convergence condition for the
various iterative procedures.

Corollary 14.6.5 Suppose T : E — E, for some constant C
Tx —-Ty| < Clx—yl,
for allx,y € E, and for some N € N,
’TNX—TNy‘ <rlx-yl,

for all x,y € E where r € (0,1). Then there exists a unique fized point for T and it is still
the limit of the sequence, {Tkxl} for any choice of x".
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Proof: From Lemma 14.6.4 there exists a unique fixed point for TV denoted here as x.
Therefore, TNx = x. Now doing T to both sides,
TNTx = Tx.
By uniqueness, Tx = x because the above equation shows Tx is a fixed point of TV and
there is only one fixed point of TN. In fact, there is only one fixed point of T' because a
fixed point of T is automatically a fixed point of 7.
It remains to show TFx!' — x, the unique fixed point of TV. If this does not happen,
there exists € > 0 and a subsequence, still denoted by T* such that
’Tkx1 — xl >e
Now k = jxN + r; where r, € {0,--- N — 1} and j; is a positive integer such that
limg 00 jx = 00. Then there exists a single » € {0,--- , N — 1} such that for infinitely
many k,r, = r. Taking a further subsequence, still denoted by T* it follows
|TNtrx! — x| > e (14.25)
However,
TNyl = TrpikNx! & Trx = x
and this contradicts 14.25. B
Theorem 14.6.6 Suppose p (B_lc) < 1. Then the iterates in 14.18 converge to the unique
solution of 14.17.
Proof: Consider the iterates in 14.18. Let Tx = B~'Cx + b. Then
T~ Thy| = |(B70) ' x = (B7'0)"y| < ||(B1)"|| I~ w1
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Here ||-|| refers to any of the operator norms. It doesn’t matter which one you pick because
they are all equivalent. I am writing the proof to indicate the operator norm taken with
respect to the usual norm on E. Since p (B_lC) < 1, it follows from Gelfand’s theorem,

Theorem 14.3.3 on Page 461, there exists N such that if & > N, then for some r'/¥ < 1,
1/k
H(B*C)kH <ri/k <1,

Consequently,
|TNX—TNy| <rlx-yl.

Also [Tx — Ty| < ||B7'C|| |x — y| and so Corollary 14.6.5 applies and gives the conclusion
of this theorem. W
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14.7 Exercises

1. Solve the system

4 1 1 T 1
15 2 y | =1 2
0 2 6 z 3

using the Gauss Seidel method and the Jacobi method. Check your answer by also
solving it using row operations.

2. Solve the system

4 1 1 T 1
1 7 2 y | =1 2
0 2 4 z 3

using the Gauss Seidel method and the Jacobi method. Check your answer by also
solving it using row operations.

3. Solve the system

5 1 1 T 1
1 7 2 Y = 2
0 2 4 z 3

using the Gauss Seidel method and the Jacobi method. Check your answer by also
solving it using row operations.

4. If you are considering a system of the form Ax = b and A~! does not exist, will either
the Gauss Seidel or Jacobi methods work? Explain. What does this indicate about
finding eigenvectors for a given eigenvalue?

5. For ||x||,, = max{|z;|:j=1,2,---,n}, the parallelogram identity does not hold.

Explain.
6. A norm ||-]| is said to be strictly convex if whenever ||z|| = ||y||,x # v, it follows
z+y
|| < il =l

Show the norm || which comes from an inner product is strictly convex.

7. A norm ||-]| is said to be uniformly convex if whenever ||z,]|, ||y.|| are equal to 1 for
all n € N and lim, o0 ||Zn + yn|| = 2, it follows lim, o0 ||€n — yn|| = 0. Show the
norm || coming from an inner product is always uniformly convex. Also show that
uniform convexity implies strict convexity which is defined in Problem 6.

8. Suppose A : C™ — C™ is a one to one and onto matrix. Define
|Ix[| = [Ax].
Show this is a norm.

9. If X is a finite dimensional normed vector space and A,B € L (X, X) such that
||B|| < ||A]l, can it be concluded that ||A='B|| < 1?
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10.

11.

12.

13.

14.

15.

Let X be a vector space with a norm ||-|| and let V' = span (vq,--- ,vy,) be a finite
dimensional subspace of X such that {vq,-- ,v,,} is a basis for V. Show V is a closed
subspace of X. This means that if w,, — w and each w,, € V, then so is w. Next show
that if w ¢V,

dist (w, V) =inf{||lw —v|| :v €V} >0

is a continuous function of w and
|dist (w, V') — dist (wq, V)| < ||lwr — w]|

Next show that if w ¢ V, there exists z such that ||z|| = 1 and dist (2,V) > 1/2. For
those who know some advanced calculus, show that if X is an infinite dimensional
vector space having norm ||-||, then the closed unit ball in X cannot be compact.
Thus closed and bounded is never compact in an infinite dimensional normed vector
space.

Suppose p(A) < 1 for A € L(V,V) where V is a p dimensional vector space having
a norm ||-||. You can use R? or C? if you like. Show there exists a new norm |||-|||
such that with respect to this new norm, |||A4||| < 1 where |||A]||| denotes the operator
norm of A taken with respect to this new norm on V,

[[|A[|] = sup {[|[Ax]|[ - |[|x]|| < 1}
Hint: You know from Gelfand’s theorem that
|A™ Y < r <1

provided n is large enough, this operator norm taken with respect to ||-||. Show there
exists 0 < A < 1 such that A
— | <1
p(A)

You can do this by arguing the eigenvalues of A/X are the scalars /A where p € o (A).
Now let Z, denote the nonnegative integers.

[IIx[[| = sup
nely

n
A

First show this is actually a norm. Next explain why

n+1
[ Ax][[| = A sup

neZy

< Affx|]l-

)\TL—I—I X
Establish a similar result to Problem 11 without using Gelfand’s theorem. Use an
argument which depends directly on the Jordan form or a modification of it.

Using Problem 11 give an easier proof of Theorem 14.6.6 without having to use Corol-
lary 14.6.5. It would suffice to use a different norm of this problem and the contraction
mapping principle of Lemma 14.6.4.

A matrix A is diagonally dominant if |a;| > >°,_; a;;| . Show that the Gauss Seidel
method converges if A is diagonally dominant.

Suppose f () = > p2,an A" converges if [\| < R. Show that if p (A) < R where A is

an n X n matrix, then
(o)
F(A) =) a, A"
E—0

converges in £ (F",F") . Hint: Use Gelfand’s theorem and the root test.
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16.

17.

Referring to Corollary 14.4.3, for A = a + ib show
exp (\t) = e (cos (bt) + isin (bt)).
Hint: Let y (t) = exp (M) and let z () = e~y (¢) . Show
2"+ 0?2 =0, 2(0) = 1,2 (0) = ib.
Now letting z = u + iv where u, v are real valued, show

W’ +b*u = 0, u(0)=1,4/(0)=0
o'+ = 0, v(0) =0, (0)=b.

~

Next show u (t) = cos (bt) and v (t) = sin (bt) work in the above and that there is at
most one solution to

w” +b*w = 0w (0) = a,w (0) = .

Thus z (t) = cos (bt) + isin (bt) and so y (t) = e (cos (bt) + isin (bt)). To show there
is at most one solution to the above problem, suppose you have two, wy, ws. Subtract
them. Let f = w; — wy. Thus

fl/ 4 b2f =0

and f is real valued. Multiply both sides by f’ and conclude

d ((f)° | f
dt( 5 +b22>—°

Thus the expression in parenthesis is constant. Explain why this constant must equal
0.

Let A € L(R™,R™). Show the following power series converges in £ (R™,R™).

.tk Ak
k!

k=0

You might want to use Lemma 14.4.2. This is how you can define exp (tA). Next show
using arguments like those of Corollary 14.4.3

% exp (tA) = Aexp (tA)

so that this is a matrix valued solution to the differential equation and initial condition
V' (t)=A¥(t), ¥ (0)=1.

This W (¢) is called a fundamental matrix for the differential equation y’ = Ay. Show
t — U (t)yo gives a solution to the initial value problem

y' = Ay, y (0) = yo.
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18.

In Problem 17 ¥ () is defined by the given series. Denote by exp (to (A)) the numbers
exp (tA) where A € o (A). Show exp (to (A)) = o (¥ (¢)). This is like Lemma 14.4.7.
Letting J be the Jordan canonical form for A, explain why

= tkA L thgk
k=0 ’ k=0

and you note that in J*, the diagonal entries are of the form A* for A an eigenvalue
of A. Also J = D + N where N is nilpotent and commutes with D. Argue then that

> tk)Jk

!
= k!

is an upper triangular matrix which has on the diagonal the expressions e where
A € 0 (A). Thus conclude
o (W (1)) S exp (to (A))

/

‘ -
i
-

-
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19.

20.

21.

Next take et € exp (to (A)) and argue it must be in o (¥ (¢)). You can do this as
follows:

S LA L U > ¢k

V() — e = - TI:ZH@’“—A’“I)
k=0 k=0 k=0

oo L k-1

> % D AN | (A= D)
k=0 """ j=1

Now you need to argue
o0

tk k—1
Do AN
k=0 ki j=1

converges to something in £ (R™,R™). To do this, use the ratio test and Lemma 14.4.2
after first using the triangle inequality. Since A € o (A), W (t) — e[ is not one to one
and so this establishes the other inclusion. You fill in the details. This theorem is a
special case of theorems which go by the name “spectral mapping theorem”.

Suppose VU (t) € L(V, W) where V, W are finite dimensional inner product spaces and
t — U (t) is continuous for ¢ € [a, b]: For every € > 0 there there exists ¢ > 0 such that
if |s —t| < § then || (¢t) — ¥ (s)|| < €. Show t — (¥ (¢) v, w) is continuous. Here it is
the inner product in W. Also define what it means for ¢ — W (¢) v to be continuous
and show this is continuous. Do it all for differentiable in place of continuous. Next
show ¢ — || W (¢)|] is continuous.

If z (t) € W, a finite dimensional inner product space, what does it mean for ¢t — z (t)
to be continuous or differentiable? If z is continuous, define

/abz(t)thW

<w, /abz(t)dt> z/ab (w, = (1)) dt.

Show that this definition is well defined and furthermore the triangle inequality,

/abz(t)dt </ab|z(t)|dt,

and fundamental theorem of calculus,

CZ(/:Z(S)C:S) =2 (t)

hold along with any other interesting properties of integrals which are true.

as follows.

For V, W two inner product spaces, define

/b\IJ(t)dteﬁ(V,W)

b b
(w/ U (1) dt (U)> z/ (w0, T () v) dt.

as follows.

Download free eBooks at bookboon.com



22.

23.

Show this is well defined and does indeed give fab U (t)dt € L(V,W). Also show the

triangle inequality
b
| / U (t) dt

where ||-|] is the operator norm and verify the fundamental theorem of calculus holds.

b
s/ 1 ()| dt

/

(/:\I/(s)ds> — ().

Also verify the usual properties of integrals continue to hold such as the fact the

integral is linear and
b c c
/\I/(t)dt+/ \I/(t)dt:/ U (1) dt
a b a

and similar things. Hint: On showing the triangle inequality, it will help if you use
the fact that

lwly, = sup |(w,v)].
jo|<1

You should show this also.

Prove Gronwall’s inequality. Suppose u (t) > 0 and for all ¢ € [0,7T],

u(t) < wug —|—/0 Ku (s)ds.

where K is some nonnegative constant. Then
u (t) < uge’t.

Hint: w(t) = fotu(s) ds. Then using the fundamental theorem of calculus, w (t)
satisfies the following.

u(t) — Kw(t) =w' (t) — Kw (t) < ug, w(0) = 0.

Now use the usual techniques you saw in an introductory differential equations class.
Multiply both sides of the above inequality by e %* and note the resulting left side is
now a total derivative. Integrate both sides from 0 to t and see what you have got. If
you have problems, look ahead in the book. This inequality is proved later in Theorem
C.4.3.

With Gronwall’s inequality and the integral defined in Problem 21 with its properties
listed there, prove there is at most one solution to the initial value problem

y' = Ay, y(0) = yo.
Hint: If there are two solutions, subtract them and call the result z. Then
z' = Az, z(0) = 0.

It follows

z(t)zO—i—/O Az (s)ds
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and so ,
|z (1) < /0 Al |z (s)[| ds
Now consider Gronwall’s inequality of Problem 22.

24. Suppose A is a matrix which has the property that whenever p € o (A4), Rep < 0.
Consider the initial value problem

y = Ay,y (0) = yo.

The existence and uniqueness of a solution to this equation has been established above
in preceding problems, Problem 17 to 23. Show that in this case where the real parts
of the eigenvalues are all negative, the solution to the initial value problem satisfies

lim y (t) = 0.

t—o0
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25.

Hint: A nice way to approach this problem is to show you can reduce it to the
consideration of the initial value problem

z' = Jez, z(0) = 29

where J. is the modified Jordan canonical form where instead of ones down the main
diagonal, there are € down the main diagonal (Problem 19). Then

z =Dz + N,z

where D is the diagonal matrix obtained from the eigenvalues of A and NN. is a nilpotent
matrix commuting with D which is very small provided € is chosen very small. Now
let ¥ (¢) be the solution of
V' =-DU, ¥ (0)=1

described earlier as

i (—1)" tk D*

—
— k!

Thus ¥ (t) commutes with D and N,. Tell why. Next argue
(¥ (t)z) = ¥ (t) Nez ()

and integrate from 0 to t. Then

U (t)z(t) —zo = /0 U (s) Nz (s) ds.

It follows .
W (t)z(t)]] < ||Zo||+/0 [[Ne[| [[W (s) z (s)]] ds.

It follows from Gronwall’s inequality
1 ()2 ()] < []z0]] /™Ml

Now look closely at the form of W (¢) to get an estimate which is interesting. Explain
why
ett 0
v(t) =
0 eHnt

and now observe that if € is chosen small enough, || V.|| is so small that each component
of z (t) converges to 0.

Using Problem 24 show that if A is a matrix having the real parts of all eigenvalues
less than 0 then if

U (t)=A¥(t), ¥(0)=1
it follows

lim ¥ (¢) =0.

t—o0

Hint: Consider the columns of ¥ (¢)?
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27.

28.
29.

30.

Let W (t) be a fundamental matrix satisfying
U (t) = AP (t), ¥ (0)=1.

Show W (¢)" = ¥ (nt) . Hint: Subtract and show the difference satisfies ®’ = A®, & (0)
0. Use uniqueness.

If the real parts of the eigenvalues of A are all negative, show that for every positive
t

nll)rgo U (nt) = 0.
Hint: Pick Re(0(A4)) < =X < 0 and use Problem 18 about the spectrum of ¥ (t)
and Gelfand’s theorem for the spectral radius along with Problem 26 to argue that
|| (nt) Je=*"|| < 1 for all n large enough.

Let H be a Hermitian matrix. (H = H*). Show that ¢! =37 (iZ!)n is unitary.

n=0

Show the converse of the above exercise. If V is unitary, then V = e for some H
Hermitian.

If U is unitary and does not have —1 as an eigenvalue so that (I + U )71 exists, show
that
H=i(I-U)(I+U)"

is Hermitian. Then, verify that

U=(+iH)(I—iH)".
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31. Suppose that A € L£(V,V) where V is a normed linear space. Also suppose that
[|A|l <1 where this refers to the operator norm on A. Verify that

o

(I-A)=> A

=0

This is called the Neumann series. Suppose now that you only know the algebraic
condition p (A) < 1. Is it still the case that the Neumann series converges to (I — A)~'?
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Numerical Methods,
Eigenvalues

15.1 The Power Method For Eigenvalues

This chapter discusses numerical methods for finding eigenvalues. However, to do this
correctly, you must include numerical analysis considerations which are distinct from linear
algebra. The purpose of this chapter is to give an introduction to some numerical methods
without leaving the context of linear algebra. In addition, some examples are given which
make use of computer algebra systems. For a more thorough discussion, you should see
books on numerical methods in linear algebra like some listed in the references.

Let A be a complex p X p matrix and suppose that it has distinct eigenvalues

{>\1a e 7>\'m}
and that |[A1| > |Ag| for all k. Also let the Jordan form of A be

J1
J =
JIm
with
Jr = Ay + Ny,
where N;* # 0 but NJ* ™' = 0. Also let

PlAP=J A=PJjpP L.

Now fix x € FP. Take Ax and let s; be the entry of the vector Ax which has largest
absolute value. Thus Ax/s; is a vector y; which has a component of 1 and every other

entry of this vector has magnitude no larger than 1. If the scalars {s1, - ,s,—1} and
vectors {y1, -+ ,y¥n—1} have been obtained, let
_ AYn—l
Yn ==
S

where s, is the entry of Ay, _; which has largest absolute value. Thus

yo = Az A'X (15.1)

SnSn—1 SpSp—1-'"S1
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Consider one of the blocks in the Jordan form.
Tk n )\nfi
i = ChNi =K (k,
k 1 ; ( z) A7 k 1K (k,n)
Then from the above,

K(1,n)
N\
SpSp—1-""S1 SnSn—1"""S1

P71

K (m,n)

Consider one of the terms in the sum for K (k,n) for k > 1. Letting the norm of a matrix
be the maximum of the absolute values of its entries,

n\ APt
AN
‘() a2

where C depends on the eigenvalues but is independent of n. Then this converges to 0
because the infinite sum of these converges due to the root test. Thus each of the matrices
K (k,n) converges to 0 for each k > 1 as n — oc.

Now what about K (1,n)? It equals

()2 ()

= (1) oy )

1

<n'k

A

where lim,,_, o, m (n) = 0. This follows from

() 0

It follows that 15.1 is of the form

AT n (AL'N{* +m(n)) 0 1 Ayn—1
n=_—"—""— P vt P 'x=
Y SnSn—1"""S1 (T1> ( 0 En x Sn

where the entries of F,, converge to 0 as n — co. Now denote by (P_lx)m1 the first my
entries of P~'x where it is assumed that A\; has multiplicity m;. Assume that

(Pflx)m1 ¢ ker NJ*
This will be the case unless you have made an extremely unfortunate choice of x. Then y,,
is of the form
o (M) (TN ) (7, ) 152)
SpSn—1-"81 \I'1 Zy,

where (:l)zn — 0. Also, from the construction, there is a single entry of y,, equal to 1 and
all other entries of the above vector have absolute value no larger than 1. It follows that

n
)\1 <n>
SnSn—1-"""51 \T1
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must be bounded independent of n.
Then it follows from this observation, that for large n, the above vector y,, is approxi-

mately equal to
AT "\ p AN (P‘lx)m1
SpSn—1-- 51 \I'1l 0

1 AT (")]VT1 0 _
— P 1 1 1 P 1 15.
P ( 0 0 ) X (15.3)

If (P~'x) - ¢ ker (N7*), then the above vector is also not equal to 0. What happens when
it is multiplied on the left by A — A1 = P (J — A1) P~1? This results in

L _p ( NN ()N O ) P lx=0
0

SnSn—1-""S1 0

because N{ 11 — (. Therefore, the vector in 15.3 is an eigenvector and y,, is approximately
equal to this eigenvector.
With this preparation, here is a theorem.

Theorem 15.1.1 Let A be a complex p X p matriz such that the eigenvalues are
{)\la )‘Qa T a)\’r}
with |A1] > |Aj| for all j # 1. Then for x a given vector, let

Ax
yi=—

S1
where s1 s an entry of Ax which has the largest absolute value. If the scalars {s1, -+ ,Sn-1}
and vectors {y1, - ,¥n—1} have been obtained, let

— AYnf 1
= s

Yn

where s, is the entry of Ay,_1 which has largest absolute value. Then it is probably the case
that {sp} will converge to Ay and {y,} will converge to an eigenvector associated with A;.

Proof: Consider the claim about s,1. It was shown above that

L P( )\1—r1N17-1 (Pflx)ml )
0

is an eigenvector for \;. Let z; be the entry of z which has largest absolute value. Then for
large n, it will probably be the case that the entry of y, which has largest absolute value
will also be in the I*" slot. This follows from 15.2 because for large n, z,, will be very small,
smaller than the largest entry of the top part of the vector in that expression. Then, since
m (n) is very small, the result follows if z has a well defined entry which has largest absolute
value. Now from the above construction,

n+1
Sn+1Yn+1 = AYn ~ /\17 " z
Sn PRI 81 rl

Applying a similar formula to s, and the above observation, about the largest entry, it
follows that for large n

N AT n—1
Spi1 R ——— 20, Sp N ————— 2
Sp 81\ Sn—1""951 1
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Therefore, for large n,

Sngl AL mec(n—ri41) A
Sn Nsn(n—1)~--(n—r1)~sn

which shows that s,41 ~ A;.
Now from the construction and the formula in 15.2, for large n

puan n+1 AN +m(n)) (P 'x
ot — )P((1 P m () ( >m1)
Sn4+1Sn—1"""S1 T1 Znp

M AT (n-l-l)P( (ALTNT +m () (P7'%), )

8n+1 SpSn—1-°°" 51 1 Zy,

Q

RPN <n>P< (ANt 4 (n) (P'X),,, >

() snSn—1--+s1\m1 Zy,

("2

R

T1
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Thus {y, } is a Cauchy sequence and must converge to a vector v. Now from the construction,
Av = lim sp11yp41 = lim Ay, = Av. B
n—oo n—oo
In summary, here is the procedure.
Finding the largest eigenvalue with its eigenvector.
1. Start with a vector, u; which you hope is not unlucky.

2. If uy, is known,
Auk

Sk+1

Up41 =
where sg11 is the entry of Auy which has largest absolute value.

3. When the scaling factors sy are not changing much, sx41 will be close to the eigenvalue
and ug4; will be close to an eigenvector.

4. Check your answer to see if it worked well.

5 —14 11
Example 15.1.2 Find the largest eigenvalue of A = -4 4 -4
3 6 -3

You can begin with u;=(1,---, l)T and apply the above procedure. However, you can

accelerate the process if you begin with A™u; and then divide by the largest entry to get
the first approximate eigenvector. Thus

5 —14 11\ /1 2.5558 x 102!
—4 4 —4 1 | = —-1.2779 x 10%!
3 6 -3 1 —3.6562 x 1017

Divide by the largest entry to obtain a good aproximation.

2.5558 x 102! 1 1.0
—1.2779%x10%" | ——— = —0.5
2.5558 x 1021

—3.6562 x 101° —1.4306 x 10~
Now begin with this one.
5 =14 11 1.0 12.000
—4 4 —4 —-0.5 = —6.0000
3 6 -3 —1.4306 x 106 4.2918 x 1076
Divide by 12 to get the next iterate.
12.000 1 1.0
—6.0000 2 = —0.5
4.2918 x 1076 3.5765 x 1077

Another iteration will reveal that the scaling factor is still 12. Thus this is an approximate
eigenvalue. In fact, it is the largest eigenvalue and the corresponding eigenvector is

1.0
—0.5
0

The process has worked very well.
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15.1.1 The Shifted Inverse Power Method

This method can find various eigenvalues and eigenvectors. It is a significant generalization
of the above simple procedure and yields very good results. One can find complex eigenvalues
using this method. The situation is this: You have a number, a which is close to A, some
eigenvalue of an n x n matrix A. You don’t know A but you know that « is closer to A
than to any other eigenvalue. Your problem is to find both A and an eigenvector which goes
with A\. Another way to look at this is to start with « and seek the eigenvalue A, which is
closest to « along with an eigenvector associated with A. If « is an eigenvalue of A, then
you have what you want. Therefore, I will always assume « is not an eigenvalue of A and
so (A — o)™ " exists. The method is based on the following lemma.

Lemma 15.1.3 Let {\,},_, be the eigenvalues of A. If x, is an eigenvector of A for the

eigenvalue i, then Xy is an eigenvector for (A — ozI)_1 corresponding to the eigenvalue

1 .
o Conversely, if

1
A—a

(A—al) 'y = y (15.4)
andy # 0, then Ay = \y.
Proof: Let A\, and x; be as described in the statement of the lemma. Then
(A—al)xp = (A — a)xg
and so

1
)\kfa

x, = (A— oz])_1 Xf.

Suppose 15.4. Then y :ﬁ [Ay — ay]. Solving for Ay leads to Ay = \y. &
Now assume « is closer to A than to any other eigenvalue. Then the magnitude of ﬁ

is greater than the magnitude of all the other eigenvalues of (A — al )71. Therefore, the
power method applied to (A — 04.7)71 will yield ﬁ You end up with s,41 = ﬁ and
solve for A.

15.1.2 The Explicit Description Of The Method

Here is how you use this method to find the eigenvalue and eigenvector closest
to a.

1. Find (A—al)™".
2. Pick u;. If you are not phenomenally unlucky, the iterations will converge.

3. If ug has been obtained,

(A—al) ' uy

Uy = ——
Sk+1

where sy, 1 is the entry of (A — o)™ u; which has largest absolute value.

4. When the scaling factors, s; are not changing much and the uy are not changing much,
find the approximation to the eigenvalue by solving

1

—

Sk+1 = b\

for A. The eigenvector is approximated by ug1.
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5. Check your work by multiplying by the original matrix to see how well what you have
found works.

Thus this amounts to the power method for the matrix (A — o).

5 —14 11
-4 4 -4
3 6 -3

Also find an eigenvector which goes with this eigenvalue.

Example 15.1.4 Find the eigenvalue of A = which is closest to —7.

In this case the eigenvalues are —6,0, and 12 so the correct answer is —6 for the eigen-
value. Then from the above procedure, I will start with an initial vector,

1
u; = 1
1
Then I must solve the following equation.
5 —14 11 1 00 T 1
-4 4 -4 |+71 0 10 y | =11
3 6 -3 0 0 1 z 1
Simplifying the matrix on the left, I must solve
12 —-14 11 x 1
-4 11 -4 Y 1
3 6 4 z 1

and then divide by the entry which has largest absolute value to obtain
1.0

w=| .184
—.76
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12 —-14 11 T 1.0

-4 11 -4 y | = .184

3 6 4 z —.76
and divide by the largest entry, 1.0515 to get

1.0
us;= | 0266
—.97061
12 -14 11 x 1.0
4 11 -4 y | = .0266
3 6 4 2 —.97061

Now solve

Solve
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and divide by the largest entry, 1.01 to get

1.0
u, = | 3.8454 x 1073
—.996 04

These scaling factors are pretty close after these few iterations. Therefore, the predicted
eigenvalue is obtained by solving the following for .

1
—— =1.01
AT
which gives A = —6.01. You see this is pretty close. In this case the eigenvalue closest to

—7 was —6.
How would you know what to start with for an initial guess? You might apply Ger-
schgorin’s theorem.

1 2 3
Example 15.1.5 Consider the symmetric matric A = 2 1 4 |. Find the middle
3 4 2

etgenvalue and an eigenvector which goes with it.

Since A is symmetric, it follows it has three real eigenvalues which are solutions to

1 0 0 1 2 3
p(A) = det[A[ 0 1 0 |- 2 1 4
0 01 3 4 2

= N —4\2 -2\ -17=0

If you use your graphing calculator to graph this polynomial, you find there is an eigenvalue
somewhere between —.9 and —.8 and that this is the middle eigenvalue. Of course you could
zoom in and find it very accurately without much trouble but what about the eigenvector
which goes with it? If you try to solve

100 12 3 x 0
(-8 0o 10 |-[2 14 y | =1 0
00 1 3 4 2 2 0

there will be only the zero solution because the matrix on the left will be invertible and the
same will be true if you replace —.8 with a better approximation like —.86 or —.855. This is
because all these are only approximations to the eigenvalue and so the matrix in the above
is nonsingular for all of these. Therefore, you will only get the zero solution and

Eigenvectors are never equal to zero!

However, there exists such an eigenvector and you can find it using the shifted inverse power
method. Pick a@ = —.855. Then you solve

1 2 3 1 00 x 1
21 4 |+385( 010 y | =11
3 4 2 0 0 1 z 1
or in other words,
1.855 2.0 3.0 T 1
2.0 1.855 4.0 y | =11
3.0 4.0 2.855 z 1
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and after finding the solution, divide by the largest entry —67. 944, to obtain

1.0
u, = | —.58921
—.23044
After a couple more iterations, you obtain
1.0
ug = | —.58777 (15.5)
—.22714

Then doing it again, the scaling factor is —513.42 and the next iterate is

1.0
u = —. 58778
—.22714

Clearly the uy are not changing much. This suggests an approximate eigenvector for this
eigenvalue which is close to —.855 is the above us and an eigenvalue is obtained by solving

1

———— = -514.01
A+ .855 514.01,
which yields A = —. 8569 Lets check this.
1 2 3 1.0 —. 856 96
2 1 4 —.58777 | = .50367
3 4 2 —.22714 .194 64
1.0 —.8569
—.8569 | —.58777 | = .5037
—.22714 .1946

Thus the vector of 15.5 is very close to the desired eigenvector, just as —. 8569 is very close
to the desired eigenvalue. For practical purposes, I have found both the eigenvector and the
eigenvalue.

2 1 3
Example 15.1.6 Find the eigenvalues and eigenvectors of the matricr A= 2 1 1
3 21

This is only a 3x3 matrix and so it is not hard to estimate the eigenvalues. Just get
the characteristic equation, graph it using a calculator and zoom in to find the eigenvalues.
If you do this, you find there is an eigenvalue near —1.2, one near —.4, and one near 5.5.
(The characteristic equation is 2 4+ 8\ + 4X* — A*> = 0.) Of course I have no idea what the
eigenvectors are.

Lets first try to find the eigenvector and a better approximation for the eigenvalue near
—1.2. In this case, let « = —1.2. Then

—25.357143  —33.928571  50.0
(A—al)™' = 12.5 17.5 —25.0
23.214286  30.357143 —45.0
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As before, it helps to get things started if you raise to a power and then go from the
approximate eigenvector obtained.

7

—25.357143 —33.928571  50.0 1 —2.2956 x 10!
12.5 17.5 —25.0 1 | = 1.1291 x 101!
23.214 286 30.357143 —45.0 1 2.0865 x 10!

Then the next iterate will be

—2.2956 x 101! 1 1.0

1.1291 x 1011 -~ = -0.49185
—2.2956 x 1011

2.0865 x 1011 —0.908 91
Next iterate:
—25.357143 —33.928571  50.0 1.0 —54.115
12.5 17.5 —25.0 —0.49185 | = 26.615
23.214 286 30.357143 —45.0 —0.908 91 49.184
Divide by largest entry
—54.115 1.0
26.615 —_— = —0.491 82
49.184 ) ~O4115 0.90888

You can see the vector didn’t change much and so the next scaling factor will not be much
different than this one. Hence you need to solve for A

1
A+1.2

= —54.115

Then A = —1.2185 is an approximate eigenvalue and

1.0
—0.491 82
—0.908 88

is an approximate eigenvector. How well does it work?

2 1 3 1.0 ~1.2185
2 1 1 049182 | = 0.5993
32 1 —0.90888 1.1075
1.0 ~1.2185

(-1.2185) | —0.49182 | = 0.599 28
—0.908 88 1.1075
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You can see that for practical purposes, this has found the eigenvalue closest to —1.2185
and the corresponding eigenvector.
The other eigenvectors and eigenvalues can be found similarly. In the case of —.4, you
could let a = —.4 and then

8.0645161 x 1072 —9.2741935 6.4516129
(A - ozI)71 = —. 40322581 11.370968  —7.258064 5
.403 22581 3.6290323 —2.7419355

Following the procedure of the power method, you find that after about 5 iterations, the
scaling factor is 9. 7573139, they are not changing much, and

—.7812248
u; = 1.0
.264 936 88
Thus the approximate eigenvalue is
1
— =9.7573139
A4
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which shows A = —.297512 78 is an approximation to the eigenvalue near .4. How well does
it work?

2 1 3 —.7812248 .23236104

2 11 1.0 = | —.29751272

3 2 1 . 264936 88 —.07873752

—.7812248 .232424 36

—.29751278 1.0 = —.29751278
.264 936 88 —7.8822108 x 1072

It works pretty well. For practical purposes, the eigenvalue and eigenvector have now been
found. If you want better accuracy, you could just continue iterating.
Next I will find the eigenvalue and eigenvector for the eigenvalue near 5.5. In this case,

29.2 16.8 23.2
(A—al) ' = 19.2 10.8 15.2
28.0 16.0 22.0

As before, I have no idea what the eigenvector is but I am tired of always using (1,1, 1)T
and I don’t want to give the impression that you always need to start with this vector.
Therefore, I shall let u; = (1,2, 3)T . Also, I will begin by raising the matrix to a power.

9

20.2 16.8 23.2 1 3.009 x 1016
19.2 10.8 15.2 2 | = 1.9682 x 106
28.0 16.0 22.0 3 2.8706 x 1016
Divide by largest entry to get the next iterate.
3.009 x 1016 1 1.0
1.9682 x 1016 | ————— = | 0.6541
16
2.8706 x 1016 | 3-009x 10 0.954
Now
29.2 16.8 23.2 1.0 62. 322
19.2 10.8 15.2 0.6541 | = | 40.765
28.0 16.0 22.0 0.954 59. 454
Then the next iterate is
62.322 1.0
40.765 | ——— = 0.6541
59.454 ) 62-322 0.95398

This is very close to the eigenvector given above and so the next scaling factor will also be
close to 62.322. Thus the approximate eigenvalue is obtained by solving

= 62.322

A—=5.5

An approximate eigenvalue is A = 5.516 and an approximate eigenvector is the above
vector. How well does it work?

2 1 3 1.0 5.516
2 11 0.6541 = 3.6081
3 21 0.953 98 5.2622
1.0 5.516
5.9516 0.6541 = 3.608
0.953 98 5.2622

It appears this is very close.
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15.1.3 Complex Eigenvalues

What about complex eigenvalues? If your matrix is real, you won’t see these by graphing
the characteristic equation on your calculator. Will the shifted inverse power method find
these eigenvalues and their associated eigenvectors? The answer is yes. However, for a real
matrix, you must pick a to be complex. This is because the eigenvalues occur in conjugate
pairs so if you don’t pick it complex, it will be the same distance between any conjugate
pair of complex numbers and so nothing in the above argument for convergence implies you
will get convergence to a complex number. Also, the process of iteration will yield only real
vectors and scalars.

Example 15.1.7 Find the complex eigenvalues and corresponding eigenvectors for the ma-
triz

5 -8 6
1 0 0
0 1 0

Here the characteristic equation is A* — 5% + 8\ — 6 = 0. One solution is A = 3. The
other two are 144 and 1 — 4. I will apply the process to a = i to find the eigenvalue closest
to 1.

—02—.147 1.24+4 .68 —.84+.12¢
(A—al)™ "= —144+.02 .68—.24i .12+ .84i
02+.147 —.24— .68 .84+ .88

Then let u; = (1,1, 1)T for lack of any insight into anything better.

—-02—-.147 1.244 .68 —.84+.12 1 .38 + . 661

—.14+.02: .68—.24: 124 .84¢ 1 | =1 .66+ .62

02+ .147 —.24— .68 .84+ .88 1 .62+ .34
S9 = .66 + . 621.

.804 87805 + .243902 441
Ug = 1.0
.756 09756 — . 195121 957

—-02—-.147 1.244 .68 —.84+.12
—.14+.02: .68 —.24: 12 4. 84¢
02+.147 —.24—.68; .84+ .88:

.804 87805 + .243902 444
1.0
.756 09756 — . 195121 95¢

.646 34146 + .817073 174
= .81707317 + . 353658 541
54878049 — 6.097 5609 x 10724

s3 = .646 341 46+.817073 17:. After more iterations, of this sort, you find sg = 1.002 748 5+
2.1376217 x 10~% and

1.0
ug = .50151417 — . 499807 337
1.5620881 x 1073 — . 499 778 55i
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Then

—.02—.147 1.244 .68 —.84+ .12
—.14+.02¢ .68—.24¢ 12+ 84¢
02+.147 —.24— .68 .84+ .88

1.0
.50151417 — . 499 807 33
1.5620881 x 1073 — . 499 778 557

1.000407 8 + 1.269979 x 10~ 34
= .50107731 — . 498 893 66
8.848928 x 10~% — . 499515 22i

510 = 1.000407 8 + 1.269979 x 10~2.

1.0
ujp = .500239 18 — .499 325 337
2.5067492 x 10~% — . 499 311 92

The scaling factors are not changing much at this point. Thus you would solve the following

for .
1

A—i
The approximate eigenvalue is then A = .999 59076 + .998 731 06¢. This is pretty close to
1+ 4. How well does the eigenvector work?

1.0004078 4 1.269979 x 1073 =

5 —8 6 1.0
1 0 0 .500239 18 — . 499 325 334
0 1 0 2.5067492 x 10~* — . 49931192
.99959061 + .998 731124
= 1.0

.500239 18 — .499 325 337

1.0
(.999590 76 + . 998 731 067) .500239 18 — . 499 325 331
2.5067492 x 107* — . 499311 92i

.999590 76 + . 998 731 067
= 998726 18 + 4.8342039 x 10~%i
4989289 — . 498 857 221
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It took more iterations than before because o was not very close to 1+ 4.

This illustrates an interesting topic which leads to many related topics. If you have a
polynomial, 2* + az3 + bx? + cx + d, you can consider it as the characteristic polynomial of
a certain matrix, called a companion matrix. In this case,

—a —-b —c —d
1 0 0 0
0 1 0 0
0 0 1 0

The above example was just a companion matrix for A*> — 50% + 8\ — 6. You can see the
pattern which will enable you to obtain a companion matrix for any polynomial of the form
A4+ a A" 4o 4+ ap_1 A+ a,. This illustrates that one way to find the complex zeros
of a polynomial is to use the shifted inverse power method on a companion matrix for the
polynomial. Doubtless there are better ways but this does illustrate how impressive this
procedure is. Do you have a better way?
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Note that the shifted inverse power method is a way you can begin with something close
but not equal to an eigenvalue and end up with something close to an eigenvector.

15.1.4 Rayleigh Quotients And Estimates for Eigenvalues

There are many specialized results concerning the eigenvalues and eigenvectors for Hermitian
matrices. Recall a matrix A is Hermitian if A = A* where A* means to take the transpose
of the conjugate of A. In the case of a real matrix, Hermitian reduces to symmetric. Recall

also that for x € F",
n
2 2
x| = x*x = E ;]
Jj=1

Recall the following corollary found on Page 239 which is stated here for convenience.

Corollary 15.1.8 If A is Hermitian, then all the eigenvalues of A are real and there exists
an orthonormal basis of eigenvectors.

Thus for {x;},_, this orthonormal basis,
e . [ 1iti=j
Xi%;j = iy :{ 0ifi
For x € F™", x # 0, the Rayleigh quotient is defined by
x* Ax
x|*

Now let the eigenvalues of A be A\ < Ay < --- < A, and Axy, = A\pXg where {xk}zzl is
the above orthonormal basis of eigenvectors mentioned in the corollary. Then if x is an
arbitrary vector, there exist constants, a; such that

n
X = E a;X;.
i=1

Also,
n n
2 —
xIP = Y ax Y ax;
i=1 j=1
n
_ — g T = 2
= ;a;X; X5 = a;a;055 = |6Li‘ .
1] iJ i=1
Therefore,

wax (i) (S5 aa)
2 2
‘X| Z?:l |a"L|
Zij Eiaj)\sz‘xj . Zij Eiaj)\jéij
2 = 2

> lail Di lail

n 2

1 las]T N
= 721_; | Z| 3 L e [)\1, )\n] .

2i1 lail

In other words, the Rayleigh quotient is always between the largest and the smallest eigenval-
ues of A. When x = x,,, the Rayleigh quotient equals the largest eigenvalue and when x = x;

the Rayleigh quotient equals the smallest eigenvalue. Suppose you calculate a Rayleigh quo-
tient. How close is it to some eigenvalue?
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Theorem 15.1.9 Let x # 0 and form the Rayleigh quotient,
x*Ax

[x|”

Il
2

Then there exists an eigenvalue of A, denoted here by Ay such that

Ax —
IAq—q\§7| x| (15.6)

|

Proof: Let x =, _, apxy where {x;},_, is the orthonormal basis of eigenvectors.

|Ax — qx|2 = (Ax —qx)" (Ax — ¢x)
= (Z aRARXp — qa/&%) (Z apAkXp — qakxk>
k=1 k=1
= [ D N-9ax; (Z (M —q) aka)
j=1 k=1

= (A — @) a; (Ak — q) arxjxy,

laxl” O — 9)°

I
NE

Now pick the eigenvalue A, which is closest to q. Then

n n
[Ax — qx* = " far* e —0)? = (A — 0)° D lawl” = (A — @) [x[*
k=1 k=1

which implies 15.6. B
1 2 3

Example 15.1.10 Consider the symmetric matric A= | 2 2 1 |. Let x=(1,1, 1)T .
3 1 4

How close is the Rayleigh quotient to some eigenvalue of A? Find the eigenvector and eigen-

value to several decimal places.

Everything is real and so there is no need to worry about taking conjugates. Therefore,
the Rayleigh quotient is

1 2 3 1

(11 1)f2 21 1
3.1 4 1 19
3 3
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According to the above theorem, there is some eigenvalue of this matrix A, such that

2 3 1 1
2 2 1 1 211
19 3.1 4 1 1
e 7
1
-
\/g 3

5 2
3 —1.2472

Ol

_|_

—
% ol | colen
w 2o

_|_

—

SN—"

Could you find this eigenvalue and associated eigenvector? Of course you could. This is
what the shifted inverse power method is all about.

Solve
1 2 3 19 1 0 0 T 1
2 2 1 |- 3 0 1 0 y | =11
3 1 4 0 0 1 z 1
In other words solve
L2 03 x 1
13
2 -3 17 y | =11
and divide by the entry which is largest, 3.8707, to get
.699 25
u, = | .49389
1.0
Now solve
-5 o2 3 x .69925
2 L y | = -49389
31 -1 z 1.0
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and divide by the largest entry, 2.9979 to get

71473
us = | .52263
1.0
Now solve ”
L9 3 x 71473
2 L y | = .52263
3  R— z 1.0

3
and divide by the largest entry, 3.0454, to get

L7137
ug = | .52056
1.0
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Solve

%2 3 z .T137
2 —1—?;3 1 y | = -52056
3 1 -1 z 1.0
and divide by the largest entry, 3.0421 to get
71378
us = [ .52073
1.0

You can see these scaling factors are not changing much. The predicted eigenvalue is then

about
1 19

3 0421 + 3 =6.6621.
How close is this?
1 2 3 .71378 4.7552
2 2 1 .52073 = 3.469
3 1 4 1.0 6.6621
while
.71378 4.7553
6.6621 | .52073 = 3.4692
1.0 6.6621

You see that for practical purposes, this has found the eigenvalue and an eigenvector.

15.2 The QR Algorithm

15.2.1 Basic Properties And Definition

Recall the theorem about the QR factorization in Theorem 5.7.5. It says that given an n xn
real matrix A, there exists a real orthogonal matrix @ and an upper triangular matrix R such
that A = QR and that this factorization can be accomplished by a systematic procedure.
One such procedure was given in proving this theorem.

There is also a way to generalize the QR factorization to the case where A is just a
complex n X n matrix and () is unitary while R is upper triangular with nonnegative entries
on the main diagonal. Letting A = ( a; - a, ) be the matrix with the a; the columns,
each a vector in C”, let Q1 be a unitary matrix which maps a; to |a;|e; in the case that
a; #0. If a; =0, let @1 = I. Why does such a unitary matrix exist? Let

{al/|al| y U2, - 7un}

be an orthonormal basis and let Q1 (a—ll) = e, Q1 (uz) = es etc. Extend Q; linearly. Then

lay
(1 preserves lengths so it is unitary by Lemma 13.6.1. Now

QA = (Qar Qay - Qia, )
= (lailer Qiaz --- @Qia, )

lai] b
0 A

which is a matrix of the form
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Now do the same thing for A; obtaining an n — 1 X n — 1 unitary matrix % which when
multiplied on the left of A; yields something of the form

ab1
0 A

Then multiplying A on the left by the product

((1) 6(2)/2 )Q15Q2Q1

yields a matrix which is upper triangular with respect to the first two columns. Continuing
this way

Qn@n-1---Q1A=R

where R is upper triangular having all positive entries on the main diagonal. Then the
desired unitary matrix is

Q= (Qnanl e Ql)*

> >
The QR algorithm is described in the following definition.

Definition 15.2.1 The QR algorithm is the following. In the description of this algorithm,
Q is unitary and R is upper triangular having nonnegative entries on the main diagonal.
Starting with A an n X n matriz, form

Ap=A=QR, (15.7)
Then
A = RiQ1. (15.8)
In general given
A = RiQy, (15.9)
obtain Apy1 by
A = Q1 Ri+1, App1 = Ri1Qrtr (15.10)

This algorithm was proposed by Francis in 1961. The sequence {Ag} is the desired
sequence of iterates. Now with the above definition of the algorithm, here are its properties.
The next lemma shows each of the Ay is unitarily similar to A and the amazing thing about
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this algorithm is that often it becomes increasingly easy to find the eigenvalues of the Ay.

Lemma 15.2.2 Let A be an n xn matriz and let the Qk and Ry be as described in the algo-
rithm. Then each Ay, is unitarily similar to A and denoting by Q™) the product Q1Qs - - - Q
and R™) the product RyRy_1 --- R1, it follows that

AF = Q®) R
The matriz on the left is A raised to the k" power.
(
A=0QWA,Q"* A, =Q"*AQW.

Proof: From the algorithm, Ry1 = Ax4+1Q5,, and so

Ap = Qry1Rier1 = Qer1 Ak 1Qp g

Now iterating this, it follows

Ap1 = QrArQy = QrQri1Ar 11051 Q%

/
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Ap—o = Qr1Ar1Q5_1 = Qr—1Q1Qk11 Ak 11Q5 11 Q1Q% 1
etc. Thus, after kK — 2 more iterations,

A=QW DAL, QUk+1*

The product of unitary matrices is unitary and so this proves the first claim of the lemma.
Now consider the part about A*. From the algorithm, this is clearly true for k = 1.
(A = QR) Suppose then that

AF =Q1Qs - QpRiRy—1 - Ry

What was just shown indicated

A=0Q1Q2 Qri1Ar1Qp 1 Q- Q1

and now from the algorithm, Ax,1 = Rp41Qky1 and so

A= Q1Q2 - Qk+1Rk+1Qk+1QZ+1QZ - Q’{

Then
Ak+1 — AAk —
A
Q1Q2 - Qr1 Re11Qr1Qp 11 Q-+ - Q1Q1 - QrRp Ry —1 - Ry

=Q1Q2 - Qri1Res 1 ReRy_1 -~ Ry = QUHUREH) @

Here is another very interesting lemma.

Lemma 15.2.3 Suppose Q%) Q are unitary and Ry, is upper triangular such that the di-
agonal entries on Ry are all positive and

Q = lim QR
k— oo
Then
lim Q™) =@, lim Ry, =1I.
k—oo

k—o0

Also the QR factorization of A is unique whenever A~ ewists.

Proof: Let
Q: (qlv"' 5q7l)7 Q(k) = (qlfa 7q]7€L)

where the q are the columns. Also denote by rfj the ij*" entry of Ry. Thus

™ <
QW Ry = (df,--- ,ay)

0 rﬁn

It follows
r’flq’f — a1
and so
= |rhdi| = 1

Therefore,

qlf—Hh-
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Next consider the second column.
ol + rheds — qa
Taking the inner product of both sides with ¥ it follows

lim i, = klij;o (2 af) = (a2 -q1) =0.

k—oo
Therefore,
lim 75,45 = qo
k—oo
and since r5, > 0, it follows as in the first part that r5, — 1. Hence
lim qg = Q2.
k—o0

Continuing this way, it follows

lim rfj =0
k—o0

for all ¢ # j and

k

lim r; =1, klingo q? = qj.

k—o0
Thus Ry, — I and Q) — Q. This proves the first part of the lemma.
The second part follows immediately. If QR = Q'R = A where A™! exists, then

QQ =R(E®)"

and I need to show both sides of the above are equal to I. The left side of the above is
unitary and the right side is upper triangular having positive entries on the diagonal. This
is because the inverse of such an upper triangular matrix having positive entries on the
main diagonal is still upper triangular having positive entries on the main diagonal and
the product of two such upper triangular matrices gives another of the same form having
positive entries on the main diagonal. Suppose then that Q = R where @ is unitary and R
is upper triangular having positive entries on the main diagonal. Let Q = @ and Ry = R.
It follows

and so from the first part, Ry — I but Ry = R and so R = I. Thus applying this to
QR*Q'=R (R’)_1 yields both sides equal 7. B

A case of all this is of great interest. Suppose A has a largest eigenvalue A which is
real. Then A" is of the form (A"flal, e ,A”flan) and so likely each of these columns
will be pointing roughly in the direction of an eigenvector of A which corresponds to this
eigenvalue. Then when you do the QR factorization of this, it follows from the fact that R
is upper triangular, that the first column of Q will be a multiple of A" 'a; and so will end
up being roughly parallel to the eigenvector desired. Also this will require the entries below
the top in the first column of A,, = QT AQ will all be small because they will be of the form
al'Aq; ~ Aql'q; = 0. Therefore, A,, will be of the form

N a

e B
where e is small. It follows that A" will be close to A and q; will be close to an eigenvector for
A. Then if you like, you could do the same thing with the matrix B to obtain approximations

for the other eigenvalues. Finally, you could use the shifted inverse power method to get
more exact solutions.
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15.2.2 The Case Of Real Eigenvalues

With these lemmas, it is possible to prove that for the QR algorithm and certain conditions,
the sequence Ay converges pointwise to an upper triangular matrix having the eigenvalues
of A down the diagonal. I will assume all the matrices are real here.
0 1

1 0/
You can verify quickly that the algorithm will return this matrix for each k. The problem
here is that, although the matrix has the two eigenvalues —1, 1, they have the same absolute
value. The QR algorithm works in somewhat the same way as the power method, exploiting
differences in the size of the eigenvalues.

If A has all real eigenvalues and you are interested in finding these eigenvalues along
with the corresponding eigenvectors, you could always consider A + Al instead where A\ is
sufficiently large and positive that A+ Al has all positive eigenvalues. (Recall Gerschgorin’s
theorem.) Then if y is an eigenvalue of A + AI with

This convergence won’t always happen. Consider for example the matrix

(A+ M) x = px

then
Ax = (up—A)x

so to find the eigenvalues of A you just subtract A from the eigenvalues of A + AI. Thus
there is no loss of generality in assuming at the outset that the eigenvalues of A are all
positive. Here is the theorem. It involves a technical condition which will often hold. The
proof presented here follows [26] and is a special case of that presented in this reference.

Before giving the proof, note that the product of upper triangular matrices is upper
triangular. If they both have positive entries on the main diagonal so will the product.
Furthermore, the inverse of an upper triangular matrix is upper triangular. I will use these
simple facts without much comment whenever convenient.

Theorem 15.2.4 Let A be a real matriz having eigenvalues
AM>A>o> A, >0
and let
A=S8DS™! (15.11)

where
A1 0

D= .
0 An

and suppose S~' has an LU factorization. Then the matrices Ay in the QR algorithm
described above converge to an upper triangular matriz T’ having the eigenvalues of A,
A, -, A\n descending on the main diagonal. The matrices Q%) converge to Q', an orthog-

onal matrix which equals Q except for possibly having some columns multiplied by —1 for @
the unitary part of the QR factorization of S,

S =QR,

and
lim A, =T = Q7 AQ'
k—oo
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Proof: From Lemma 15.2.2

Ak = QWRM = gpkg—1 (15.12)
Let S = QR where this is just a QR factorization which is known to exist and let S~! = LU
which is assumed to exist. Thus

QWR™ = QrRD*LU (15.13)
and so
QW R® = QRD*LU = QRD*LD*D*U
That matrix in the middle, D* LD " satisfies
(D*LD™Y), . = AFLijA; " for j <, 0if j > i.

i
Thus for j < i the expression converges to 0 because A; > A; when this happens. When
i = j it reduces to 1. Thus the matrix in the middle is of the form

I+ Ey

> Apply now
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where E; — 0. Then it follows
Ak = QWRM = QR (I + E;,) D*U

=Q (I + RExR™')RD"U = Q (I + F};) RD*U

where Fy, — 0. Then let I + Fj, = @Ry where this is another QR factorization. Then it
reduces to
QWR® = QQR,RD*U

This looks really interesting because by Lemma 15.2.3 Q) — I and Ry — I because
QrRy = (I + Fy) — 1. So it follows Q@ is an orthogonal matrix converging to ) while
~1
R.RD"U (R®)

is upper triangular, being the product of upper triangular matrices. Unfortunately, it is not
known that the diagonal entries of this matrix are nonnegative because of the U. Let A be
just like the identity matrix but having some of the ones replaced with —1 in such a way
that AU is an upper triangular matrix having positive diagonal entries. Note A%2 = I and
also A commutes with a diagonal matrix. Thus

QWR® = QQiRyRD* AU = QQy R, RAD" (AU)
At this point, one does some inspired massaging to write the above in the form
-1
QQx (AD¥) [(AD*) ™" ReRAD| (AD)

= Q(QuA) D" |(AD") ™" RyRAD"| (AD)

EGk

= Q(QrA) D" [(AD’C)*1 RkRAD’“] (AU

Now I claim the middle matrix in [-] is upper triangular and has all positive entries on the
diagonal. This is because it is an upper triangular matrix which is similar to the upper
triangular matrix R;R and so it has the same eigenvalues (diagonal entries) as Ry R. Thus

the matrix G, = DF {(/\Dk)f1 RkRAD’“] (AU) is upper triangular and has all positive
entries on the diagonal. Multiply on the right by G,:l to get

QWRWG! = QQiA - Q'

where @’ is essentially equal to @ but might have some of the columns multiplied by —1.
This is because Qr — I and so QrA — A. Now by Lemma 15.2.3, it follows

QW - @', RPG ! — 1.

It remains to verify Ay converges to an upper triangular matrix. Recall that from 15.12
and the definition below this (S = QR)

A=SDS™' = (QR)D(QR)"' = QRDR'QT = QTQ"

Where T is an upper triangular matrix. This is because it is the product of upper triangular
matrices R, D, R~!. Thus

QTAQ =T.
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If you replace Q with Q' in the above, it still results in an upper triangular matrix 7" having
the same diagonal entries as T. This is because

T=QTAQ = (Q'N)" A(Q'A) = AQTAQ'A

and considering the ii*" entry yields
(QTAQ),, Z Ay (QTAQ) Ak = Aishis (QTAQ"), = (QTAQ),,
Recall from Lemma 15.2.2,
Ay = QWT AQ™)
Thus taking a limit and using the first part,
A =QWTAQW — QTAQ' =T'. ®

An easy case is for A symmetric. Recall Corollary 7.4.13. By this corollary, there exists
an orthogonal (real unitary) matrix @ such that

QTAQ =D
where D is diagonal having the eigenvalues on the main diagonal decreasing in size from the
upper left corner to the lower right.
Corollary 15.2.5 Let A be a real symmetric n X n matriz having eigenvalues
AM>A>> A, >0

and let Q be defined by

QDQT = A, D=QTAQ, (15.14)
where Q is orthogonal and D is a diagonal matriz having the eigenvalues on the main
diagonal decreasing in size from the upper left corner to the lower right. Let QT have an
LU factorization. Then in the QR algorithm, the matrices Q%) converge to Q' where Q' is
the same as Q except having some columns multiplied by (—1). Thus the columns of Q' are
eigenvectors of A. The matrices Ay converge to D.

Proof: This follows from Theorem 15.2.4. Here S = Q,S~! = Q. Thus
Q=5S=CQR
and R = I. By Theorem 15.2.4 and Lemma 15.2.2,
Ay = QWTAQW — QTAQ = QTAQ = D.

because formula 15.14 is unaffected by replacing @ with @’. B

When using the QR algorithm, it is not necessary to check technical condition about
S~! having an LU factorization. The algorithm delivers a sequence of matrices which are
similar to the original one. If that sequence converges to an upper triangular matrix, then
the algorithm worked. Furthermore, the technical condition is sufficient but not necessary.
The algorithm will work even without the technical condition.

Example 15.2.6 Find the eigenvalues and eigenvectors of the matrix

A:

== Ot

1
2
1

N W o
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It is a symmetric matrix but other than that, I just pulled it out of the air. By Lemma
15.2.2 it follows A, = QMTAQ®). And so to get to the answer quickly I could have the
computer raise A to a power and then take the QR factorization of what results to get the

Ekth iteration using the above formula. Lets pick k = 10.

10

5 1 1 4.2273 x 107 2.5959 x 107 1.8611 x 107
1 3 2 = 2.5959 x 10" 1.6072 x 107 1.1506 x 107
1 2 1 1.8611 x 107 1.1506 x 107 8.2396 x 10°

Now take QR factorization of this. The computer will do that also.

This yields

.79785 —.59912 —6.6943 x 102
48995  .70912 —.50706
.35126 .37176 .85931
5.2983 x 107 3.2627 x 107 2.338 x 107
0 1.2172 x 10° 71946.
0 0 277.03
Next it follows
79785 —.59912 —6.6943 x 1072 \ ©
A = .48995  .70912 —.50706
.35126 .37176 .85931
5 1 1 .79785 —.59912 —6.6943 x 1072
1 3 2 48995  .70912 —.50706
1 2 1 .35126 .37176 .85931

-
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and this equals

6.0571 3.698 x 1073 3.4346 x 1075
3.698 x 10~3 3.2008 —4.0643 x 10~
3.4346 x 1075 —4.0643 x 1074 —.2579

By Gerschgorin’s theorem, the eigenvalues are pretty close to the diagonal entries of the
above matrix. Note I didn’t use the theorem, just Lemma 15.2.2 and Gerschgorin’s theorem
to verify the eigenvalues are close to the above numbers. The eigenvectors are close to

.79785 —.59912 —6.6943 x 102
48995 |, .70912 , —.50706
.35126 .37176 .85931
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Lets check one of these.

5 1 1 1 00 .79785
1 3 2 ]1-6.0571( 0 1 O .48995
1 21 0 0 1 .35126
—2.1972 x 1073 0
= 2.5439 x 1073 ~| 0
1.3931x 1073 0
Now lets see how well the smallest approximate eigenvalue and eigenvector works.
5 1 1 1 00 —6.6943 x 1072
1 3 2 ] —(-2579)1 0 1 0 —. 50706
1 21 0 0 1 .85931
2.704 x 10~4 0
=| —2.7377x107* | = | 0
—1.3695 x 1074 0

For practical purposes, this has found the eigenvalues and eigenvectors.

15.2.3 The QR Algorithm In The General Case

In the case where A has distinct positive eigenvalues it was shown above that under reason-
able conditions related to a certain matrix having an LU factorization the QR algorithm
produces a sequence of matrices { A; } which converges to an upper triangular matrix. What
if A is just an n xn matrix having possibly complex eigenvalues but A is nondefective? What
happens with the QR algorithm in this case? The short answer to this question is that the
Ay of the algorithm typically cannot converge. However, this does not mean the algo-
rithm is not useful in finding eigenvalues. It turns out the sequence of matrices { Ay} have
the appearance of a block upper triangular matrix for large k in the sense that the entries
below the blocks on the main diagonal are small. Then looking at these blocks gives a way
to approximate the eigenvalues. An important example of the concept of a block triangular
matrix is the real Schur form for a matrix discussed in Theorem 7.4.6 but the concept as
described here allows for any size block centered on the diagonal.

First it is important to note a simple fact about unitary diagonal matrices. In what
follows A will denote a unitary matrix which is also a diagonal matrix. These matrices
are just the identity matrix with some of the ones replaced with a number of the form e
for some 0. The important property of multiplication of any matrix by A on either side
is that it leaves all the zero entries the same and also preserves the absolute values of the
other entries. Thus a block triangular matrix multiplied by A on either side is still block
triangular. If the matrix is close to being block triangular this property of being close to a
block triangular matrix is also preserved by multiplying on either side by A. Other patterns
depending only on the size of the absolute value occurring in the matrix are also preserved
by multiplying on either side by A. In other words, in looking for a pattern in a matrix,
multiplication by A is irrelevant.

Now let A be an n x n matrix having real or complex entries. By Lemma 15.2.2 and the
assumption that A is nondefective, there exists an invertible S,

Ak = QWRM = spkg—1 (15.15)
where
A 0
D =
0 An

Download free eBooks at bookboon.com



and by rearranging the columns of S, D can be made such that
Ml > Ae] = > Al
Assume S~! has an LU factorization. Then
AF = SD*LU = SD*LD~*DFU.
Consider the matrix in the middle, D LD~*. The ij*" entry is of the form
A LA * it j <
(DFLD™F), . =< 1ifi=
0if j > 1
and these all converge to 0 whenever |X;| < |);|. Thus
DFLD™* = (L, + Ey)

where Lj is a lower triangular matrix which has all ones down the diagonal and some
subdiagonal terms of the form

AFLiiA; " (15.16)
for which |\;| = |\;| while E, — 0. (Note the entries of Lj are all bounded independent of
k but some may fail to converge.) Then

QWR® = S (Ly + E},) D*U

Let
SLr = QrRy, (15.17)

where this is the QR factorization of SLj. Then
QWR® = (QuRk + SEy) D*U
= Qr(I+QSER,") RyD*U
Qr (I + Fy,) R,.D*U

where Fj, — 0. Let I 4+ Fj, = Q}.R).. Then
QWRW = QuQ} R, Ry DU

By Lemma 15.2.3
Q) — I and R, — 1. (15.18)

Now let Ay be a diagonal unitary matrix which has the property that
A;D*U
is an upper triangular matrix which has all the diagonal entries positive. Then
QWR™M = QrQ) A (AR} RiA) AL DFU

That matrix in the middle has all positive diagonal entries because it is itself an upper
triangular matrix, being the product of such, and is similar to the matrix R} Rj which is
upper triangular with positive diagonal entries. By Lemma 15.2.3 again, this time using the
uniqueness assertion,

Q™ = QrQ,Ax, R® = (AR} RiAy) AL DFU
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Note the term Q;Q} Ar must be real because the algorithm gives all Q™) as real matrices.
By 15.18 it follows that for k large enough

QW = QrAy

where ~ means the two matrices are close. Recall
A = QWT AQ™)

and so for large k,
Ap = (QrAr)" A(QrAr) = ALQRAQLA

As noted above, the form of A;Q;AQrAy in terms of which entries are large and small is
not affected by the presence of Ay and Aj. Thus, in considering what form this is in, it
suffices to consider Q; AQy.

This could get pretty complicated but I will consider the case where

if |)\z| = ‘)\i+1|; then |)\i+2| < |)\i+1‘- (15.19)

This is typical of the situation where the eigenvalues are all distinct and the matrix A is real
so the eigenvalues occur as conjugate pairs. Then in this case, Ly above is lower triangular
with some nonzero terms on the diagonal right below the main diagonal but zeros everywhere
else. Thus maybe

(Lk)s-‘,-l,s 7& O

Recall 15.17 which implies
Qr = SLyR,! (15.20)

where R;l is upper triangular. Also recall that from the definition of S in 15.15,
S~'AS =D

and so the columns of S are eigenvectors of A, the i'" being an eigenvector for \;. Now from
the form of Ly, it follows LkR,gl is a block upper triangular matrix denoted by Tp and so
Qr = STp. It follows from the above construction in 15.16 and the given assumption on the
sizes of the eigenvalues, there are finitely many 2 x 2 blocks centered on the main diagonal
along with possibly some diagonal entries. Therefore, for large k the matrix

A = QWT AQ™)

Download free eBooks at bookboon.com



Linear Algebra Il Advanced topics Numerical Methods, Eigenvalues

is approximately of the same form as that of
Qi AQy =T ST ASTs = T ' DTy

which is a block upper triangular matrix. As explained above, multiplication by the various
diagonal unitary matrices does not affect this form. Therefore, for large k, Ay is approxi-
mately a block upper triangular matrix.

How would this change if the above assumption on the size of the eigenvalues were relaxed
but the matrix was still nondefective with appropriate matrices having an LU factorization
as above? It would mean the blocks on the diagonal would be larger. This immediately
makes the problem more cumbersome to deal with. However, in the case that the eigenvalues
of A are distinct, the above situation really is typical of what occurs and in any case can be
quickly reduced to this case.

To see this, suppose condition 15.19 is violated and A, - - - , A\j 4, are complex eigenvalues
having nonzero imaginary parts such that each has the same absolute value but they are all
distinct. Then let g > 0 and consider the matrix A+pl. Thus the corresponding eigenvalues
of A+pl are X\j+pi,- -, Ajip+p. A short computation shows shows [A; + pf, -+, [Ajip + 4
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are all distinct and so the above situation of 15.19 is obtained. Of course, if there are repeated
eigenvalues, it may not be possible to reduce to the case above and you would end up with
large blocks on the main diagonal which could be difficult to deal with.

So how do you identify the eigenvalues? You know Aj; and behold that it is close to a
block upper triangular matrix 7. You know Aj is also similar to A. Therefore, Tf has
eigenvalues which are close to the eigenvalues of Ay and hence those of A provided k is
sufficiently large. See Theorem 7.9.2 which depends on complex analysis or the exercise on
Page 264 which gives another way to see this. Thus you find the eigenvalues of this block
triangular matrix 75 and assert that these are good approximations of the eigenvalues of
Ay and hence to those of A. How do you find the eigenvalues of a block triangular matrix?
This is easy from Lemma 7.4.5. Say

By - %
TJIB = " :
0 B,
Then forming A — T} and taking the determinant, it follows from Lemma 7.4.5 this equals

[ det (A1; — B;)
j=1

and so all you have to do is take the union of the eigenvalues for each B;. In the case
emphasized here this is very easy because these blocks are just 2 x 2 matrices.

How do you identify approximate eigenvectors from this? First try to find the approx-
imate eigenvectors for Aj. Pick an approximate eigenvalue A, an exact eigenvalue for T7;.
Then find v solving Tzv = Av. It follows since T7; is close to Ay, that

Apv = A\v

and so
QW AQWTy = Apv =~ Av

Hence
AQWTy ~ \QW Ty

and so Q7Tv is an approximation to the eigenvector which goes with the eigenvalue of A
which is close to A.

Example 15.2.7 Here is a matriz.

3 2 1
-2 0 -1
-2 -2 0

It happens that the eigenvalues of this matriz are 1,1+14,1—1. Lets apply the QR algorithm
as if the eigenvalues were not known.

Applying the QR algorithm to this matrix yields the following sequence of matrices.

1.2353 1.9412 4.3657
A;=| —.39215 1.5425 5.3886 x 1072
—.16169 —.18864 .22222
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9.1772 x 1072 .63089 —2.0398
Ay = —2.8556 1.9082 —3.1043
1.0786 x 1072 3.4614 x 104 1.0

At this point the bottom two terms on the left part of the bottom row are both very
small so it appears the real eigenvalue is near 1.0. The complex eigenvalues are obtained

from solving
10 9.1772 x 102 63089
det(A(o 1)‘( ~2.8556  1.9082 ))‘0

A=1.0-.98828¢, 1.0+ .98828;

This yields

Example 15.2.8 The equation z* +2% +4x? 4+ —2 = 0 has exactly two real solutions. You
can see this by graphing it. However, the rational root theorem from algebra shows neither
of these solutions are rational. Also, graphing it does not yield any information about the

complex solutions. Lets use the QR algorithm to approzimate all the solutions, real and
complez.

A matrix whose characteristic polynomial is the given polynomial is

-1 -4 -1 2
1 0o 0 0
0 1 0 0
0 0 1 0

Using the QR algorithm yields the following sequence of iterates for Ay

299999 —2.5927 —1.7588 —1.2978
2.1213 —-1.7778 —1.6042 —.99415

A= 0 34246 —.32749 —.91799
0 0 —.44659 .10526
—.83412 —4.1682 —1.939 —.7783
Ao = 1.05 14514 2171 2.5474 x 102
9= 0 4.0264 x 1074 —.85029 —.61608
0 0 —1.8263 x 1072 .53939

Now this is similar to A and the eigenvalues are close to the eigenvalues obtained from
the two blocks on the diagonal. Of course the lower left corner of the bottom block is
vanishing but it is still fairly large so the eigenvalues are approximated by the solution to

10 —.85029 —. 61608
det (A< 0 1 ) - ( ~1.8263 x 1072 .53939 )) =0
The solution to this is
A= —.85834, .54744

and for the complex eigenvalues,

10 83412 —4.1682
det@(o 1)‘( 105 14514 ))ZO
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The solution is
A= —.34449 — 2.033 97, —. 34449 + 2.0339i

How close are the complex eigenvalues just obtained to giving a solution to the original
equation? Try —.34449 + 2.0339¢ . When this is plugged in it yields

—.0012 4 2.0068 x 10™%;

which is pretty close to 0. The real eigenvalues are also very close to the corresponding real
solutions to the original equation.

It seems like most of the attention to the QR algorithm has to do with finding ways
to get it to “converge” faster. Great and marvelous are the clever tricks which have been
proposed to do this but my intent is to present the basic ideas, not to go in to the numerous
refinements of this algorithm. However, there is one thing which is usually done. It involves
reducing to the case of an upper Hessenberg matrix which is one which is zero below the
main sub diagonal. To see that every matrix is unitarily similar to an upper Hessenberg
matrix , see Problem 1 on Page 360. What follows is a construction which also proves this.

Let A be an invertible n X n matrix. Let Q] be a unitary matrix

n 2
o1 > =2 laja] g
0
& - -
an1 O 0
The vector @} is multiplying is just the bottom n — 1 entries of the first column of A. Then
let Ql be
1 0
0 Q)
It follows
air a2 - Glp
1 0 a 1 0
AOF = AOF = .
i (o g )4ei=| A (o o)
0
* X *
a
I
0
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Now let Q% be the n — 2 X n — 2 matrix which does to the first column of A; the same sort
of thing that the n — 1 x n — 1 matrix @) did to the first column of A. Let

(T 0

where I is the 2 X 2 identity. Then applying block multiplication,

Q2Qi1AQiQ3 =] 0 *
. : A2
0 0

where As is now an n — 2 x n — 2 matrix. Continuing this way you eventually get a unitary

]
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matrix @ which is a product of those discussed above such that

* % % ok
* % %
QAQT = 0 * =«
R
0 0 * %

This matrix equals zero below the subdiagonal. It is called an upper Hessenberg matrix.
It happens that in the QR algorithm, if Ay is upper Hessenberg, so is Ax11. To see this,
note that the matrix is upper Hessenberg means that A;; = 0 whenever i — j > 2.

A1 = ReQp
where Ar = QrRy. Therefore as shown before,
Ap1 = ReARR; !
Let the ij*" entry of Ay be af;. Then if i —j > 2

n J
k4+1 _ k-1
ai; = 2 :2 :T’Lpapqrqj

p=t g=1
It is given that a’;q = 0 whenever p — ¢ > 2. However, from the above sum,
p—q=i—j=2

and so the sum equals 0.

Since upper Hessenberg matrices stay that way in the algorithm and it is closer to
being upper triangular, it is reasonable to suppose the QR algorithm will yield good results
more quickly for this upper Hessenberg matrix than for the original matrix. This would be
especially true if the matrix is good sized. The other important thing to observe is that,
starting with an upper Hessenberg matrix, the algorithm will restrict the size of the blocks
which occur to being 2 x 2 blocks which are easy to deal with. These blocks allow you to
identify the complex roots.

15.3 Exercises

In these exercises which call for a computation, don’t waste time on them unless you use a
computer or calculator which can raise matrices to powers and take QR factorizations.

1. In Example 15.1.10 an eigenvalue was found correct to several decimal places along
with an eigenvector. Find the other eigenvalues along with their eigenvectors.

3 2 1
2. Find the eigenvalues and eigenvectors of the matrix A = 2 1 3 numerically.
1 3 2
In this case the exact eigenvalues are £+/3,6. Compare with the exact answers.
3 2 1
3. Find the eigenvalues and eigenvectors of the matrix A = 2 5 3 numerically.
1 3 2

The exact eigenvalues are 2,4 + /15,4 — 1/15. Compare your numerical results with
the exact values. Is it much fun to compute the exact eigenvectors?
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0 2 1

2 5 3 numerically.
1 3 2

I don’t know the exact eigenvalues in this case. Check your answers by multiplying

your numerically computed eigenvectors by the matrix.

. Find the eigenvalues and eigenvectors of the matrix A =

0 2 1

. Find the eigenvalues and eigenvectors of the matrix A = | 2 0 3 | numerically.
1 3 2

I don’t know the exact eigenvalues in this case. Check your answers by multiplying

your numerically computed eigenvectors by the matrix.

3 2 3
. Consider the matrix A= [ 2 1 4 | and the vector (1,1,1)” . Find the shortest
3 4 0

distance between the Rayleigh quotient determined by this vector and some eigenvalue
of A.

1 2 1
. Consider the matrix A= [ 2 1 4 | and the vector (1,1,1)” . Find the shortest
1 45

distance between the Rayleigh quotient determined by this vector and some eigenvalue
of A.

3 2 3
. Consider the matrix A= | 2 6 4 and the vector (1,1,1)" . Find the shortest
3 4 =3

distance between the Rayleigh quotient determined by this vector and some eigenvalue
of A.
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11.
12.
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Using Gerschgorin’s theorem, find upper and lower bounds for the eigenvalues of A =
3 2 3

2 6 4
3 4 =3

Tell how to find a matrix whose characteristic polynomial is a given monic polynomial.
This is called a companion matrix. Find the roots of the polynomial 23 + 722 + 3z 4 7.

Find the roots to z* + 323 + 422 + = + 1. It has two complex roots.

Suppose A is a real symmetric matrix and the technique of reducing to an upper
Hessenberg matrix is followed. Show the resulting upper Hessenberg matrix is actually
equal to 0 on the top as well as the bottom.
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Positive Matrices

Earlier theorems about Markov matrices were presented. These were matrices in which all
the entries were nonnegative and either the columns or the rows added to 1. It turns out
that many of the theorems presented can be generalized to positive matrices. When this is
done, the resulting theory is mainly due to Perron and Frobenius. I will give an introduction
to this theory here following Karlin and Taylor [18].

Definition A.0.1 For A a matriz or vector, the notation, A >> 0 will mean every entry
of A is positive. By A > 0 is meant that every entry is nonnegative and at least one is
positive. By A > 0 is meant that every entry is nonnegative. Thus the matriz or vector
consisting only of zeros is > 0. An expression like A >> B will mean A — B >> 0 with
similar modifications for > and >.
For the sake of this section only, define the following for x = (21, - ,xn)T, a vector.
x| = (e, Jeal)”

Thus |x| is the vector which results by replacing each entry of x with its absolute value'.

Also define for x € C",
1xlly =D |l -
k

Lemma A.0.2 Let A >> 0 and let x > 0. Then Ax >> 0.
Proof: (Ax), = > ; Aijjz; > 0 because all the A;; > 0 and at least one z; > 0.
Lemma A.0.3 Let A >> 0. Define

S ={\: Ax > Ax for some x >> 0},

and let
K = {x > 0 such that ||x||; =1}.
Now define
S1 ={A: Ax > Xx for some x € K}.
Then

sup (S) = sup (S1) .

IThis notation is just about the most abominable thing imaginable. However, it saves space in the
presentation of this theory of positive matrices and avoids the use of new symbols. Please forget about it
when you leave this section.
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Proof: Let A € S. Then there exists x >> 0 such that Ax > Ax. Consider y = x/||x]|, .
Then |y||; = 1 and Ay > Ay. Therefore, A € S; and so S C S;. Therefore, sup (S) <
sup (S7) .

Now let A € S;. Then there exists x > 0 such that |[x||; = 1 so x > 0 and Ax > Ax.
Letting y = Ax, it follows from Lemma A.0.2 that Ay >> Ay and y >> 0. Thus A\ € S
and so S7 C S which shows that sup (S1) < sup(S). B

This lemma is significant because the set, {x > 0 such that ||x||; = 1} = K is a compact
set in R™. Define

Ao = sup (S) = sup (S1). (1.1)

The following theorem is due to Perron.
Theorem A.0.4 Let A >> 0 be an n X n matriz and let Ay be given in 1.1. Then

1. Ao > 0 and there exists xg>> 0 such that Axg = \gXg S0 Ag is an eigenvalue for A.
2. If Ax = ux where x £ 0, and p # Ag. Then |u| < Ao.

3. The eigenspace for Ao has dimension 1.

Proof: To see Ay > 0, consider the vector, e = (1, -- 71)T. Then
(de); =Y Ai; >0
J

and so Aq is at least as large as

m_in E Aij .
? .
J

Let {A;} be an increasing sequence of numbers from S; converging to Ag. Letting xj be
the vector from K which occurs in the definition of S7, these vectors are in a compact set.
Therefore, there exists a subsequence, still denoted by xj such that x; — x¢o € K and
Ar — Ag- Then passing to the limit,

Axg > AoXg, Xg > 0.

If Axg > A\oXg, then letting y = Axq, it follows from Lemma A.0.2 that Ay >> Aoy and
y >> 0. But this contradicts the definition of Ao as the supremum of the elements of S
because since Ay >> Agy, it follows Ay >> (Ao +¢)y for € a small positive number.
Therefore, Axg = AgXg. It remains to verify that xq >> 0. But this follows immediately
from
0< ZAiijj = (AXQ)i = )\01’01'.
J

This proves 1.

Next suppose Ax = ux and x # 0 and 1 # Ag. Then |Ax| = |p||x|. But this implies
Alx| > |p| |x|. (See the above abominable definition of |x].)

Case 1: |x| # x and |x| # —x.

In this case, A|x| > |Ax| = |u||x| and letting y = A|x|, it follows y >> 0 and
Ay >> |u|y which shows Ay >> (|u|+¢)y for sufficiently small positive e and verifies
|M| < Ao.

Case 2: |[x|=xor x| =—x

In this case, the entries of x are all real and have the same sign. Therefore, A |x| =
|Ax| = |p||x|. Now let y =|x|/||x||;. Then Ay = |p|y and so |p| € S; showing that

Download free eBooks at bookboon.com



|| < Ao. But also, the fact the entries of x all have the same sign shows u = |u| and so
€ Sq. Since p # Ao, it must be that p = |p| < Ag. This proves 2.
It remains to verify 3. Suppose then that Ay = A\gy and for all scalars a, axg # y. Then

ARey = A Rey, Almy = AgImy.

If Rey = a1xg and Imy = asxg for real numbers, a;,then y = (a1 +ias)xp and it is
assumed this does not happen. Therefore, either

tRey #xg forallt € R

or
tImy # x¢ for all t € R.

Assume the first holds. Then varying t € R, there exists a value of ¢ such that xg+tRey > 0
but it is not the case that xg+tRey >> 0. Then A (xg +tRey) >> 0 by Lemma A.0.2. But
this implies Ao (x¢ + t Rey) >> 0 which is a contradiction. Hence there exist real numbers,
ay and s such that Rey = a1xg and Imy = asx( showing that y = (a1 + ias) xo. This
proves 3.

It is possible to obtain a simple corollary to the above theorem.

Corollary A.0.5 If A > 0 and A™ >> 0 for some m € N, then all the conclusions of the
above theorem hold.

Proof: There exists 1, > 0 such that A™yo = pyyo for yo >> 0 by Theorem A.0.4 and
po =sup {p : A™x > ux for some x € K}.
Let A" = po- Then
(A=XoI) (A" 1+ X0A™ 24+ X7 ) yo = (A" = M\ ) yo =0

and so letting xg = (A™71 + NgA™ 24 4 )\6”_1[) Vo, it follows xg >> 0 and Axg =
>\0X0~

Suppose now that Ax = px for x # 0 and p # Ag. Suppose |u| > Ag. Multiplying both
sides by A, it follows A™x = u™x and |[p™| = |u|™ > A\j" = po and so from Theorem A.0.4,
since |p™| > g, and p™ is an eigenvalue of A™, it follows that u™ = p,. But by Theorem
A.0.4 again, this implies x = cyq for some scalar, ¢ and hence Ayg = pyq. Since yg >> 0,
it follows p > 0 and so u = Ao, a contradiction. Therefore, |u| < Ag.

Finally, if Ax = Aox, then A™x = A\j"x and so x = ¢y for some scalar, c¢. Consequently,

(AP N A™ 24 b AT ) x = e (AT XA T2+ N yo
= CXp-
Hence
mAT T x = exq

which shows the dimension of the eigenspace for Ag is one. B
The following corollary is an extremely interesting convergence result involving the pow-
ers of positive matrices.

Corollary A.0.6 Let A > 0 and A™ >> 0 for some m € N. Then for \y given in 1.1,

m
there exists a rank one matriz P such that lim,,_ H()%) - PH =0.
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Proof: Considering AT, and the fact that A and A7 have the same eigenvalues, Corollary
A.0.5 implies the existence of a vector, v >> 0 such that

ATv = \gv.

Also let x¢ denote the vector such that Axg = \gxg with xo >> 0. First note that x} v > 0
because both these vectors have all entries positive. Therefore, v may be scaled such that

vixg=x{v=1 (1.2)
Define
P =xqv’.
Thanks to 1.2,
A A
>\_0P =xovl =P, P (A_o) =xov?! ()\—0) =xov! =P, (1.3)

Positive Matrices
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and
P? = xovTxovT = vTxy = P. (1.4)

(&) = (@)
- (@)

Continuing this way, using 1.3 repeatedly, it follows

()7 - () +

The eigenvalues of (/‘\io) — P are of interest because it is powers of this matrix which

Therefore,

m
determine the convergence of (%) to P. Therefore, let @ be a nonzero eigenvalue of this

(£)-7)sm

for x # 0, and p # 0. Applying P to both sides and using the second formula of 1.3 yields

0:(P—P)x:<P(;i> —PQ)x:qu.

But since Px = 0, it follows from 1.6 that

matrix. Thus

Ax = Apux

which implies Agu is an eigenvalue of A. Therefore, by Corollary A.0.5 it follows that either
Aopt = Ao in which case u =1, or Ag |u| < Ao which implies |u| < 1. But if g = 1, then x is
a multiple of xg and 1.6 would yield

(2)-r)=~

which says x¢g —xgv’ x¢g = x¢ and so by 1.2, xo = 0 contrary to the property that xq >> 0.

Therefore, || < 1 and so this has shown that the absolute values of all eigenvalues of

(%) — P are less than 1. By Gelfand’s theorem, Theorem 14.3.3, it follows

(G-

whenever m is large enough. Now by 1.5 this yields

1) == 00 =) =

whenever m is large enough. It follows

. AN™
dn(5) —rll=o

T

1/m
<r<l1
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as claimed.
What about the case when A > 0 but maybe it is not the case that A >> 07 As before,

K = {x > 0 such that [[x[|; =1}.
Now define

S1={A: Ax > Ax for some x € K}
and

Ao = sup (S1) (1.7)

Theorem A.0.7 Let A > 0 and let Ao be defined in 1.7. Then there exists xg > 0 such
that AXO = )\0X0.

Proof: Let E consist of the matrix which has a one in every entry. Then from Theorem
A.0.4 it follows there exists x5 >> 0, ||xs||; = 1, such that (A + 6F) x5 = X\osxs where

Aos =sup{A: (A+dF)x > Ix for some x € K}.
Now if a < §
{AM:(A+ aFE)x > Ax for some x € K} C
{AN: (A4 0E)x > Ax for some x € K}

and so A\gs > Aoga because Ags is the sup of the second set and Ag, is the sup of the first. It
follows the limit, A\; = limg_, o+ Ags exists. Taking a subsequence and using the compactness
of K, there exists a subsequence, still denoted by § such that as § — 0, x5 — x € K.
Therefore,

Ax = \ix

and so, in particular, Ax > A1x and so A\; < Ag. But also, if A < A,
X < Ax < (A4 6E)x

showing that Ags > A for all such A. But then A\gs > A\¢ also. Hence A\; > Ao, showing these
two numbers are the same. Hence Ax = \ox. B

If A™ >> 0 for some m and A > 0, it follows that the dimension of the eigenspace for
Ao is one and that the absolute value of every other eigenvalue of A is less than Ag. If it is
only assumed that A > 0, not necessarily >> 0, this is no longer true. However, there is
something which is very interesting which can be said. First here is an interesting lemma.

Lemma A.0.8 Let M be a matriz of the form
A 0
v=(5¢)
A B
v-(4¢)

where A is an v X r matriz and C is an (n—1r) x (n—7r) matriz. Then det (M) =

det (A)det (B) and o (M) =0 (A)Uo (C).

or
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Proof: To verify the claim about the determinants, note
A 0 (A0 I 0
B C ) \0 I B C
A 0 A0 I 0
det(B C,):det(o I)det(B C)'

But it is clear from the method of Laplace expansion that

det(A O):detA

Therefore,

0 I

and from the multilinear properties of the determinant and row operations that

I 0 I 0
det(B C)zdet<0 C)zdetC.

The case where M is upper block triangular is similar.
This immediately implies 0 (M) = o (A)Uo (C).

Theorem A.0.9 Let A > 0 and let Ay be given in 1.7. If X is an eigenvalue for A such
that |\| = Xo, then A/ is a root of unity. Thus (A\/Xo)" =1 for some m € N.

Proof: Applying Theorem A.0.7 to AT, there exists v > 0 such that A”v = \gv. In
the first part of the argument it is assumed v >> 0. Now suppose Ax = Ax,x # 0 and that
|A| = Ag. Then

Alx| = [A[x] = Ao x|

and it follows that if A |x| > |A]|x|, then since v >> 0,
Xo (v, [x]) < (v, Ax]) = (AT, [x]) = o (v, [x])

a contradiction. Therefore,
Alx| = Ao |x]. (1.8)

It follows that
D Az = Xolxil = Y Aij |
j 5

and so the complex numbers,
Aijzj, Ajmy
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must have the same argument for every k, j because equality holds in the triangle inequality.
Therefore, there exists a complex number, p; such that
Aijzj = piAij || (1.9)
and so, letting r € N,
Ay = piAj || 15
Summing on j yields

D Ay =y A lag| . (1.10)
J J
Also, summing 1.9 on j and using that A is an eigenvalue for x, it follows from 1.8 that

Az; = ZAz’jxj = Hy ZAU || = pido |zl - (1.11)
- -

J
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From 1.10 and 1.11,

ZAijijj = MiZAU |x3|/1'j
J J
see 1.11

—N—
=y Y Aijpa |l
J
A _
= uiZAij <)\0> wip !
J
A —
() E
J
Now from 1.10 with r replaced by r — 1, this equals
2 A r—1 2 A r—2
pi (5o ) 2o Al ™t = w5 ) 2o Aumy sl i
J J
AN 2

J

= n

.

Continuing this way,
k
A -
> gl = pf <>\o> > Aijau;
J J

and eventually, this shows
A T
> Ay = p ()\0) > A
J J

= (£) A

r+1
and this says <%0) is an eigenvalue for ()\%) with the eigenvector being

T
(1p1, - Tnpy,)
2 3 4
Now recall that r € N was arbitrary and so this has shown that (/\’\—0) , (/\—’\D) , (%) o
are each eigenvalues of (%) which has only finitely many and hence this sequence must

repeat. Therefore, (A) is a root of unity as claimed. This proves the theorem in the case

Ao
that v >> 0.
Now it is necessary to consider the case where v > 0 but it is not the case that v >> 0.
Then in this case, there exists a permutation matrix P such that
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Then
Av = ATv = AT Pv,.

Therefore,
)\0V1 = PATPV1 = GV1

Now P? = I because it is a permutation matrix. Therefore, the matrix G = PATP and A
are similar. Consequently, they have the same eigenvalues and it suffices from now on to
consider the matrix G rather than A. Then

A u _ Ml M2 u
'\No )\ My My 0
where My is r X r and My is (n — r) x (n —r) . It follows from block multiplication and the
assumption that A and hence G are > 0 that

A" B
é=(% ¢ )

Now let A be an eigenvalue of G such that |A] = Ag. Then from Lemma A.0.8, either
A€o (A) or A € 0(C). Suppose without loss of generality that A € o (A’). Since A’ > 0
it has a largest positive eigenvalue A\ which is obtained from 1.7. Thus \; < Ag but A
being an eigenvalue of A’; has its absolute value bounded by A and so Ao = |A| < Ay < Ao
showing that \g € o (A’). Now if there exists v >> 0 such that A’Tv = \gv, then the first

part of this proof applies to the matrix A and so (A/\g) is a root of unity. If such a vector,
v does not exist, then let A’ play the role of A in the above argument and reduce to the

consideration of A ,
, B
o= (48

where G’ is similar to A’ and A\, \g € o (A”). Stop if A”Tv = \gv for some v >> 0.
Otherwise, decompose A” similar to the above and add another prime. Continuing this way
you must eventually obtain the situation where (A")" v = Agv for some v >> 0. Indeed,
this happens no later than when A"’ is a 1 x 1 matrix. l
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Functions Of Matrices

The existence of the Jordan form also makes it possible to define various functions of ma-
trices. Suppose

F) =Y @ (21)
n=0

for all [A| < R. There is a formula for f(A4) = > 7 ,a,A™ which makes sense whenever

p(A) < R. Thus you can speak of sin (A) or e” for A an n x n matrix. To begin with, define

P
feN) =D an\"
n=0

so for k < P
P
PN = Y ame(n—k+1)AmE
n=k
P n
= Y an (k> EINVTR, (2.2)
n==k
Thus

(k) LA
Pklm = an (k) AmF (2.3)

To begin with consider f (Jp, (A)) where J,, (A) is an m x m Jordan block. Thus J,, (A) =
D + N where N™ =0 and N commutes with D. Therefore, letting P > m

P
Z andm (A"
n=0

Il
M~
§
M:
VRS
=~ =
N———

S

7

=

From 2.3 this equals
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where for k =0,--- ,m—1, define diagy, (a1, , ¢m—k) the m x m matrix which equals zero
everywhere except on the k' super diagonal where this diagonal is filled with the numbers,
{a1,++ ,am—i} from the upper left to the lower right. With no subscript, it is just the
diagonal matrices having the indicated entries. Thus in 4 X 4 matrices, diag, (1,2) would
be the matrix

o O oo
o o oo
S oo
o o N o

Then from 2.5 and 2.2,

P
> andm (W) =

n=0

3
L
=
&
o
>
VR
~
=
~
N~—
e
—~
>
N—
N~

x>
Il
o
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Therefore, Ef:() a/n‘]’m ()\)” =

/ @y (m=1) (3
fP (A) fpl(!A) P2!( ) . fF()mflgl )
fP ()\) f}al(ﬁ\)
- ey (2.6)
fP (/\) : ]
2!
SAEY
1!
0 fr(A)

Now let A be an n x n matrix with p(A) < R where R is given above. Then the Jordan
form of A is of the form
Ji 0
J = ) (2.7)
0 J,
where Ji = Jp, (Ag) is an my x my Jordan block and A = S~1JS. Then, letting P > my,

for all &,
P P
D an At =85> a,J"S,
n=0 n=0

and because of block multiplication of matrices,

P n
D om0 GnJ] 0
P .
>0 -
n=0 .
0 Zi:o andy'
and from 2.6 Ef:o arJj} converges as P — oo to the my, x m;, matrix
B @)y, (m—1)
£ (Aw) f (1>!\k) f 2(!>\k) f(mk—(f)\!k)
0 fow) oo
. @ 2.8
0 0 £ () . f 2(!/\k) (2.8)
) f’(l);lc)
0 0 e 0 ()

There is no convergence problem because [A| < R for all A € ¢ (A4). This has proved the
following theorem.

Theorem B.0.10 Let f be given by 2.1 and suppose p (A) < R where R is the radius of
convergence of the power series in 2.1. Then the series,

> a, A" (2.9)
k=0

converges in the space L (F™, F™) with respect to any of the norms on this space and further-
more,

2o @ 0
Y a,An =57 K s
k=0 -

0 S an
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where Yo ganJt is an my X my matriz of the form given in 2.8 where A = S71JS and
the Jordan form of A, J is given by 2.7. Therefore, you can define f (A) by the series in
2.9.

Here is a simple example.

4 1 -1 1

) . 1 1 0 -1

Example B.0.11 Find sin (A) where A = 0 -1 1 -1
-1 2 1 4

4 1 -1 1 2 0 -2 -1
1 10 -1 _ 1 -4 -2 -1
o -1 1 -1 1] o 0 -2 1
-1 2 1 4 -1 4 4 2
11 1
4 0 0 0 ;2 0 5
0210 s -2 0 -}
0 0 21 0 % —i %
1
0 0 0 2 0 35 5 5
Then from the above theorem sin (J) is given by
4 0 0 0 sind 0 0 0
. 0 210 0 sin2 cos2 %‘“2
sin = .
0 0 2 1 0 0 sin2 cos2
0 00 2 0 0 0 sin 2
Therefore, sin (A) =
2 0 -2 -1 sind 0 0 0 % 3 0 3
1 -4 =2 -1 0 sin2 cos2 =52 s —¢ 0 -}
: 1 11 =M
0 0o -2 1 0 0 sin2 cos2 0 i 1
; 1
where the columns of M are as follows from left to right,
sin 4 sin4 —sin2 — cos 2 —cos2
1sind — 1sin2 1sind + 2sin2 — 2cos2 sin2
0 ’ —cos 2 "| sin2 —cos2
f%sin4+%sin2 f%sin4f%sin2+3(?052 cos2 —sin2

sin4 — sin2 — cos 2
%Sin4—|— %sinQ—QcosQ
—cos 2
—%sin4+ %Sin2+300s2

Perhaps this isn’t the first thing you would think of. Of course the ability to get this nice
closed form description of sin (A) was dependent on being able to find the Jordan form along
with a similarity transformation which will yield the Jordan form.

The following corollary is known as the spectral mapping theorem.
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Corollary B.0.12 Let A be an n X n matriz and let p (A) < R where for |\| < R,

FO) = anA".

n=0

Then f (A) is also an n x n matriz and furthermore, o (f (A)) = f (0 (4)). Thus the eigen-
values of f (A) are exactly the numbers f (X) where X is an eigenvalue of A. Furthermore,
the algebraic multiplicity of f (X) coincides with the algebraic multiplicity of A.

All of these things can be generalized to linear transformations defined on infinite di-
mensional spaces and when this is done the main tool is the Dunford integral along with
the methods of complex analysis. It is good to see it done for finite dimensional situations
first because it gives an idea of what is possible. Actually, some of the most interesting
functions in applications do not come in the above form as a power series expanded about
0. One example of this situation has already been encountered in the proof of the right
polar decomposition with the square root of an Hermitian transformation which had all
nonnegative eigenvalues. Another example is that of taking the positive part of an Hermi-
tian matrix. This is important in some physical models where something may depend on
the positive part of the strain which is a symmetric real matrix. Obviously there is no way
to consider this as a power series expanded about 0 because the function f (r) = % is not
even differentiable at 0. Therefore, a totally different approach must be considered. First
the notion of a positive part is defined.

Definition B.0.13 Let A be an Hermitian matriz. Thus it suffices to consider A as an
element of L (F"™,F™) according to the usual notion of matriz multiplication. Then there
exists an orthonormal basis of eigenvectors, {uy,--- ,u,} such that

A = Z Ajllj ® Uj,
j=1
for X; the eigenvalues of A, all real. Define

AT ="My @u,

Jj=1

This gives us a nice definition of what is meant but it turns out to be very important in
the applications to determine how this function depends on the choice of symmetric matrix
A. The following addresses this question.

Theorem B.0.14 If A, B be Hermitian matrices, then for |-| the Frobenius norm,

At —BT| <|A-B|.
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Proof: Let A =3, A\;v; ®v; and let B =}, u;w; ® w; where {v;} and {w;} are
orthonormal bases of eigenvectors.

2

]A+—B+|2:trace Z)\fvi@vi—z,ujw]- @w; | =
i J

trace | ) vievi+ > (M;)Z Wi QW

4 J

=D NS (Wi v viow; = Y N u (viowy) w0
¥

]
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Since the trace of v; ® w; is (v;, w;), a fact which follows from (v;, w;) being the only
possibly nonzero eigenvalue,

=N 20 () 2 A i) (2.10)

4,3

Since these are orthonormal bases,
2 2
> (v, wy)l =1=" " [(vi,w;)|
( J
and so 2.10 equals

=323 (A0 + ()" — 220w ) lveowy)

Similarly,

A= B =303 (07 + (1) = 2 ) [ (vi wy)I

Now it is easy to check that ()\i)2 + (,uj)2 = 2\ip; > ()\ZT")Q + (,u;r)z — 2)\;"#;. |
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Differential Equations

C.1 Theory Of Ordinary Differential Equations

Here I will present fundamental existence and uniqueness theorems for initial value problems
for the differential equation,
x'=f(t,x).

Suppose that f : [a,b] x R™ — R™ satisfies the following two conditions.
|f(t,X)—f(t,X1)‘ SK‘X_X1|7 (31)

f is continuous. (3.2)

The first of these conditions is known as a Lipschitz condition.

Lemma C.1.1 Suppose x :[a,b] = R™ is a continuous function and c € [a,b]. Then x is a
solution to the initial value problem,

x' =f(t,x), x(c) =% (3.3)

if and only if x is a solution to the integral equation,

x(t) =x0 + / f(s,x(s))ds. (3.4)
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Proof: If x solves 3.4, then since f is continuous, we may apply the fundamental theorem
of calculus to differentiate both sides and obtain x’ (t) = f (¢,x (¢)) . Also, letting ¢t = ¢ on
both sides, gives x (¢) = xg. Conversely, if x is a solution of the initial value problem, we
may integrate both sides from c to ¢ to see that x solves 3.4. B

Theorem C.1.2 Letf satisfy 3.1 and 3.2. Then there exists a unique solution to the initial
value problem, 3.3 on the interval [a,b].

Proof: Let ||x||, =sup {e* [x(t)| : t € [a,b]} . Then this norm is equivalent to the usual
norm on BC ([a, b],F™) described in Example 14.6.2. This means that for ||-|| the norm given
there, there exist constants § and A such that

[Ixllx 6 < [Ix]| < Al
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for all x €BC ([a,b] ,F*). In fact, you can take § = e’ and A = €** in case A > 0 with
the two reversed in case A < 0. Thus BC ([a, b],F") is a Banach space with this norm, |-||,.
Then let F': BC ([a,b],F") — BC ([a,b],F™) be defined by

t
Fx(t) =xo —|—/ f(s,x(s))ds.
Let A < 0. It follows

M |Fx(t) - Fy ()|

IN

o / £ (5,% () — £ (5. (5))] ds

IN

¢
/ KM% |x (s) — y (s)| eds

K

t
<x—yls / K= < ey, 1
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and therefore,

K

Al

If |A] is chosen larger than K, this implies F' is a contraction mapping on BC ([a,b],F™).
Therefore, there exists a unique fixed point. With Lemma C.1.1 this proves the theorem. B

|[Fx — Fyl|, <|x—yl|

C.2 Linear Systems
As an example of the above theorem, consider for ¢ € [a,b] the system
xX'=At)x({t)+gt), x(c) =x0 (3.5)

where A (t) is an n x n matrix whose entries are continuous functions of ¢, (a,; (t)) and
g (t) is a vector whose components are continuous functions of ¢ satisfies the conditions
of Theorem C.1.2 with f(¢,x) = A(t)x + g (t). To see this, let x = (x1,--- ,2,)" and
x1 = (11, @1)" . Then letting M = max {|a;; ()| : t € [a,b],4,§ < n},

£ (%) — (%) = [A(t) (x = x1)]

o\ 1/2 o\ 1/2
n n n n
=1 D012 ai () (2 — 21y) <MY |75 — x4
=1 |j=1 i=1 \j=1
1/2 1/2
n n n
<M Zn |a:j—x1j|2 =Mn Z|xj—x1j|2 = Mn|x —x1].

=1 j=1 j=1

Therefore, let K = Mn. This proves

Theorem C.2.1 Let A(t) be a continuous n x n matriz and let g (t) be a continuous vector
fort € [a,b] and let ¢ € [a,b] and xo € F™. Then there exists a unique solution to 3.5 valid
fort € la,b].

This includes more examples of linear equations than are typically encountered in an
entire differential equations course.

C.3 Local Solutions

Lemma C.3.1 Let D (xq,7) = {x € F" : |x — xo| < r} and suppose U is an open set con-
taining D (xq,r) such that £ : U — F™ is C* (U). (Recall this means all partial derivatives of

f exist and are continuous.) Then for K = Mn, where M denotes the mazimum of 68—; (z)

forz € D (xq,7), it follows that for all x,y € D (xo,7),

f(x) -f(y)l < Klx-yl.

Proof: Let x,y € D (xp,r) and consider the line segment joining these two points,
x+t (y — x) for ¢ € [0,1]. Letting h (t) = f (x+t (y — x)) for ¢t € [0,1], then

1
f(y)ff(x):h(l)fh(()):/o b (t) dt.
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Also, by the chain rule,

n

Z

—x)) (yi — i)

Therefore,

£ (y) —f(x)| =

/ Zaxz (x+t (y —x)) (yi — i) dt

< / ' (x+t (y — ) ‘yzxzdt

IN

MZ|yi—$i|SMW\X—Y|-.

i=1

Now consider the map, P which maps all of R" to D (xo,7) given as follows. For
x € D (xg,r), Px =x. For x ¢D (x0,7), Px will be the closest point in D (xg,7) to x. Such
a closest point exists because D (xg, ) is a closed and bounded set. Taking f (y) = |y — x|,
it follows f is a continuous function defined on D (x¢,r) which must achieve its minimum

value by the extreme value theorem from calculus.
b'e

/Px

Lemma C.3.2 For any pair of points, x,y € F*, |Px — Py| < |x —y]|.

Proof: The above picture suggests the geometry of what is going on. Letting z €
D (x¢,7), it follows that for all ¢ € [0,1],

x — Px|> < |x— (Px +t (z—Px))[?

= |x—Px|* + 2t Re ((x — Px) - (Px — 2)) + t? |z— Px/|?

Hence
2 Re ((x — Px) - (Px—2)) + 12 |z—Px[> >0

and this can only happen if
Re((x — Px) - (Px—1z)) > 0.
Therefore,

Re ((x — Px) - (Px—Py))
Re ((y — Py) - (Py—Px))

(A\VARAY

and so
Re(x — Px— (y — Py)) - (Px—Py) >0
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which implies
Re (x —y) - (Px — Py) > |Px — Py|’
Then using the Cauchy Schwarz inequality it follows
|x —y| = [Px — Py|.
|

With this here is the local existence and uniqueness theorem.

Theorem C.3.3 Let [a,b] be a closed interval and let U be an open subset of F™. Let
f:[a,b] x U — F" be continuous and suppose that for each t € [a,b], the map x —>§—wfi (t,x)
is continuous. Also let xg € U and ¢ € [a,b]. Then there exists an interval, I C [a,b] such
that ¢ € I and there exists a unique solution to the initial value problem,

x' =f(t,x), x(c) =% (3.6)
valid fort € I.
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Proof: Consider the following picture.
U
D(xq,r) .

The large dotted circle represents U and the little solid circle represents D (xq,r) as
indicated. Here r is so small that D (xg,7) is contained in U as shown. Now let P denote
the projection map defined above. Consider the initial value problem

x' =f(t, Px), x(c) = xo. (3.7)

From Lemma C.3.1 and the continuity of x _>887f7‘ (t,x), there exists a constant, K such
that if x,y € D (xq,7), then |f (t,x) — f(t,y)| < K |x —y| for all ¢ € [a,b]. Therefore, by
Lemma C.3.2

|f(t’PX) _f<tvPY)‘ < K‘PX_PY| < K|X_Y|'

It follows from Theorem C.1.2 that 3.7 has a unique solution valid for ¢ € [a,b]. Since x
is continuous, it follows that there exists an interval, I containing ¢ such that for ¢ € I,
x (t) € D (x¢,r) . Therefore, for these values of ¢, f (¢, Px) = f (¢,x) and so there is a unique
solution to 3.6 on 7. A

Now suppose f has the property that for every R > 0 there exists a constant, K such

that for all x,x; € B(0, R),
If (t,x) —f (t,x1)| < Kp|x —x1]. (3.8)

Corollary C.3.4 Let f satisfy 3.8 and suppose also that (t,x) — f(t,x) is continuous.
Suppose now that xq is given and there exists an estimate of the form |x(t)| < R for all
t €10,T) where T < 0o on the local solution to

x' =f(t,x), x(0) = xo. (3.9)
Then there exists a unique solution to the initial value problem, 3.9 valid on [0,T).

Proof: Replace f (t,x) with f (¢, Px) where P is the projection onto B (0, R). Then by
Theorem C.1.2 there exists a unique solution to the system

x' =f(t,Px), x(0) = x

valid on [0, T1] for every T; < T. Therefore, the above system has a unique solution on [0, T")
and from the estimate, Px = x. W

C.4 First Order Linear Systems
Here is a discussion of linear systems of the form
x' = Ax+f(t)

where A is a constant n X n matrix and f is a vector valued function having all entries
continuous. Of course the existence theory is a very special case of the general considerations
above but I will give a self contained presentation based on elementary first order scalar
differential equations and linear algebra.

Download free eBooks at bookboon.com



Definition C.4.1 Suppose t — M (t) is a matriz valued function of t. Thus M (t) =
(mij (t)). Then define
M (t) = (mgj (t)).

In words, the derivative of M (t) is the matriz whose entries consist of the derivatives of the
entries of M (t) . Integrals of matrices are defined the same way. Thus

/abM(t)dz'E (/abmij (t)dt).

In words, the integral of M (t) is the matriz obtained by replacing each entry of M (t) by the
integral of that entry.

With this definition, it is easy to prove the following theorem.

Theorem C.4.2 Suppose M (t) and N (t) are matrices for which M (t) N (t) makes sense.
Then if M’ (t) and N’ (t) both exist, it follows that

(M (t)N (t)) = M' ()N (t) + M (t) N’ (t).
Proof:

(LON @), = (MON©),) = <2M<t>ikN<t>kj>
k

= M0, N (0 + M (1 (N (1))

k

D (M(@)) N () +M (), (N (1)),

k
= (MONO+MEN (), N

In the study of differential equations, one of the most important theorems is Gronwall’s
inequality which is next.

Theorem C.4.3 Suppose u (t) > 0 and for all t € [0,T],

u (t) < ug +/O Ku (s)ds. (3.10)

where K is some nonnegative constant. Then
u (t) < uget. (3.11)

Proof: Let w(t) = fg u (s) ds. Then using the fundamental theorem of calculus, 3.10
w (t) satisfies the following.

u(t) — Kw(t) =w' (t) — Kw (t) < ug, w(0) =0. (3.12)

Multiply both sides of this inequality by e ** and using the product rule and the chain
rule,

e K (w' (t) — Kw (t)) = % (e Ftw (t)) < uge™ ™.

Integrating this from 0 to t,

t e—tK -1
e Kty (t) < uo/ e Ksds = wy (—) .
0 K
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Now multiply through by eX* to obtain

7tK_1
w (t) < g <—6K> et = —% + %e”{.

Therefore, 3.12 implies

u(t) <up+ K (—% + %e”() = uge™*.

|
With Gronwall’s inequality, here is a theorem on uniqueness of solutions to the initial
value problem,
x' =Ax+f(t), x(a) = xq, (3.13)

in which A is an n x n matrix and f is a continuous function having values in C".
Theorem C.4.4 Suppose x andy satisfy 3.18. Then x(t) =y (t) for all t.
Proof: Let z (t) =x(t+a) —y (t + a). Then for t > 0,
z' = Az, z(0) = 0. (3.14)

Note that for K = max {|a;;|} , where A = (a;5),

— |Zz|2 |f<5|2 2
|(Az,z)| = E a;j2i%| < K E |zi] |zj] < K E (2 + % =nK |z|”.
ij i ij

(For = and y real numbers, zy < %2 + % because this is equivalent to saying (z — y)2 >0.)
Similarly, |(z,A4z)| < nK |z|* . Thus,

(2,A2)|, |(Az,z)| < nK |z|*. (3.15)

Now multiplying 3.14 by z and observing that

9 (1) = (2. 2) + () = (Az2) + (2,4),

it follows from 3.15 and the observation that z (0) = 0,

|z(t)\2§/0 onK |z (s)|* ds
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and so by Gronwall’s inequality, |z (t)|2 =0 for all £ > 0. Thus,

for all t > a.
Now let w () = x(a—t) —y(a—t) for t > 0. Then w' (t) = (—A)w (t) and you can
repeat the argument which was just given to conclude that x (t) =y (¢) for all t < a. B

Definition C.4.5 Let A be an n x n matriz. We say ® (t) is a fundamental matriz for A
if
O (t)=Ad(t), ®(0) =1, (3.16)

and ® (t)~" exists for all t € R.
Why should anyone care about a fundamental matrix? The reason is that such a matrix

valued function makes possible a convenient description of the solution of the initial value

problem,
x' = Ax+f(t), x(0) = xo, (3.17)

/
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on the interval, [0,7]. First consider the special case where n = 1. This is the first order
linear differential equation,
= Xr+g, 7(0) =ro, (3.18)

where ¢ is a continuous scalar valued function. First consider the case where g = 0.
Lemma C.4.6 There exists a unique solution to the initial value problem,
=, 7(0) =1, (3.19)
and the solution for A\ = a + ib is given by
r(t) = e (cosbt + isinbt) . (3.20)

This solution to the initial value problem is denoted as e. (If X is real, e\ as defined here
reduces to the usual exponential function so there is no contradiction between this and earlier
notation seen in Calculus.)

Proof: From the uniqueness theorem presented above, Theorem C.4.4, applied to the
case where n = 1, there can be no more than one solution to the initial value problem,
3.19. Therefore, it only remains to verify 3.20 is a solution to 3.19. However, this is an easy
calculus exercise. B

Note the differential equation in 3.19 says

d
p (e) = AeM. (3.21)

With this lemma, it becomes possible to easily solve the case in which g # 0.

Theorem C.4.7 There exists a unique solution to 3.18 and this solution is given by the
formula,

t
r(t) = eMro + eM/ e g (s)ds. (3.22)
0

Proof: By the uniqueness theorem, Theorem C.4.4, there is no more than one solution.
It only remains to verify that 3.22 is a solution. But r (0) = e*0ry + foo e g (s)ds = rg
and so the initial condition is satisfied. Next differentiate this expression to verify the
differential equation is also satisfied. Using 3.21, the product rule and the fundamental
theorem of calculus,

¢
(1) = XeMrg 4+ et / e Mg (s)ds+eMe Mg ()= r(t)+g(t). A
0

Now consider the question of finding a fundamental matrix for A. When this is done,
it will be easy to give a formula for the general solution to 3.17 known as the variation of
constants formula, arguably the most important result in differential equations.

The next theorem gives a formula for the fundamental matrix 3.16. It is known as
Putzer’s method [1],[21].

Theorem C.4.8 Let A be an n X n matriz whose eigenvalues are {\1,--- ;A\, }. Define

k
Pe(A) = [[ A= D), Py (A) =1,

m=1
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and let the scalar valued functions, ry, (t) be defined as the solutions to the following initial
value problem

g (%) 0 0 (0) 0
7"/1 (t) 171 (t) “+ 79 (t) 1 (0) 1
Té (t) — )\27‘2 (t) + T1 (t) , T2 (O) — 0
"0 At () + 11 (1) i (0) 0

Note the system amounts to a list of single first order linear differential equations. Now
define

n—1
O(t) =) g (t) Pe(A).
k=0
Then
' (t) = AD (t), ®(0) =1. (3.23)

Furthermore, if ® (t) is a solution to 3.23 for all t, then it follows ® (t)~" exists for all t
and ® (t) is the unique fundamental matriz for A.

Proof: The first part of this follows from a computation. First note that by the Cayley
Hamilton theorem, P, (A) = 0. Now for the computation:

(1) = S s (0 P (A) = 3 Oarien () + i (1)) P (A) =
k=0 k=0
n—1 n—1 n—1
> Neparirr (8) Pe(A) + > rie (8) Pi (A) = > (Aesr — A) rigr (8) P (A) +
k=0 k=0 k=0

n—1 n—1
S () P (A) + Y A () Py (A)
k=0 k=0

n—1 n—1 n—1
== 1 () Pegr (A)+ D re () P (A) + A rig (1) P (A). (3.24)
k=0 k=0 k=0
Now using 7o (t) = 0, the first term equals
n n—1 n—1
=D (O Pe(A) == () Pe(A) = = i (t) Py (A)
k=1 k=1 k=0

and so 3.24 reduces to

A Z_: st (8) Py (A) = A (1)
k=0

This shows @' (t) = A® (¢). That ® (0) = 0 follows from

n—1

(0) = 11 (0)Pe(A) =71 (0) Py =1.
k=0
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It remains to verify that if 3.23 holds, then & (t)f1 exists for all t. To do so, consider
v # 0 and suppose for some to,  (to) v =0. Let x (t) = @ (¢c +¢) v. Then
(0) =@ (to

x' (t)=A® (to +t)v=Ax(t), x(0) = ® (tx) v=0.
But also z (t) = 0 also satisfies

z' (t) = Az (t), z(0) =0,

and so by the theorem on uniqueness, it must be the case that z (t) = x (t) for all ¢, showing
that ® (¢t + to) v = 0 for all ¢, and in particular for ¢ = —ty. Therefore,

(I)(ft(]‘i’to)V:IV:O

and so v = 0, a contradiction. It follows that @ (¢) must be one to one for all ¢ and so,
® ()" exists for all .

It only remains to verify the solution to 3.23 is unique. Suppose V¥ is another fundamental
matrix solving 3.23. Then letting v be an arbitrary vector,

z) =) v, yt) =T (t)v
both solve the initial value problem,
x' = Ax, x(0) = v,

and so by the uniqueness theorem, z (¢) = y (¢) for all ¢ showing that ® (t)v = ¥ (¢) v for
all ¢. Since v is arbitrary, this shows that ® (¢) = ¥ (¢) for every ¢t. B

It is useful to consider the differential equations for the r; for £ > 1. As noted above,
7o (t) = 0 and 7y () = eM’.

/
Thol = Mt 1Th41 + Tk, Thy1 (0) = 0.
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Thus .
Trt1 (t) = / eMer1(t=3)p () ds.
0
Therefore,
t At eAzt
ro (t) = er2t=s)ghisgg — i
2() /0 A2+ N\

assuming A1 # As.
Sometimes people define a fundamental matrix to be a matrix ® (¢) such that @' (¢) =

A® (t) and det (P (t)) # 0 for all ¢. Thus this avoids the initial condition, ® (0) = I. The
next proposition has to do with this situation.

Proposition C.4.9 Suppose A is an n x n matriz and suppose ® (t) is an n X n matriz for
each t € R with the property that

O (t) = AD (). (3.25)
Then either ® (t)~" exists for allt € R or ® (t)"" fails to exist for all t € R.

169
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Proof: Suppose ® (0) " exists and 3.25 holds. Let ¥ (£) = ® (£) ® (0)~". Then ¥ (0) = [
and
V()= ()P (0) " =Ad () D (0) ' = AV (1)

so by Theorem C.4.8, W (t) ™" exists for all ¢. Therefore, ® (t)™" also exists for all .

Next suppose ® (0)71 does not exist. I need to show ® (t)*1 does not exist for any ¢.
Suppose then that ® (to)~" does exist. Then letW (¢) = & (to + ) ® (to) . Then ¥ (0) =
I and ¥ = AU so by Theorem C.4.8 it follows W (t)™" exists for all ¢ and so for all
t,® (t +to) " must also exist, even for ¢ = —t which implies ® (0) ™" exists after all. B

The conclusion of this proposition is usually referred to as the Wronskian alternative and
another way to say it is that if 3.25 holds, then either det (® (¢)) = 0 for all ¢ or det (® (¢))
is never equal to 0. The Wronskian is the usual name of the function, t — det (® (¢)).

The following theorem gives the variation of constants formula,.

Theorem C.4.10 Let f be continuous on [0,T] and let A be an nxn matriz and Xo a vector
in C™. Then there exists a unique solution to 3.17, x, given by the variation of constants
formula,

X (t) = @ (£) %0 + (1) /O " (s) £ (5) ds (3.26)

for ® (t) the fundamental matriz for A. Also, ® (t)”" = ® (—t) and ® (t + s) = ® (t) D (s)
for all t,s and the above variation of constants formula can also be written as

x(t) = <I>(t)x0+/0t<1>(t—s)f(s)ds (3.27)

B (1) x0 + /0 "B () (1 5) ds (3.28)

Proof: From the uniqueness theorem there is at most one solution to 3.17. Therefore,
if 3.26 solves 3.17, the theorem is proved. The verification that the given formula works
is identical with the verification that the scalar formula given in Theorem C.4.7 solves the
initial value problem given there. ® (s)f1 is continuous because of the formula for the inverse
of a matrix in terms of the transpose of the cofactor matrix. Therefore, the integrand in
3.26 is continuous and the fundamental theorem of calculus applies. To verify the formula
for the inverse, fix s and consider x (t) = ® (s +t) v, and y (t) = ® (¢) @ (s) v. Then

X (t)=A®(t+s)v=Ax(t), x(0)=®(s)v

¥ () = AD (1) D (s) v = Ay (1), y (0) = D (s) v.

By the uniqueness theorem, x (t) = y (¢) for all ¢. Since s and v are arbitrary, this shows
B (t+s) = ®(t)®(s) for all t,s. Letting s = —t and using ® (0) = I verifies ® (t)" =
b (—t).

Next, note that this also implies ® (t — s) ® (s) = ® () and so ® (t — s) = & (1) P (s) .
Therefore, this yields 3.27 and then 3.28follows from changing the variable. B

If & = A® and ® (t)~" exists for all £, you should verify that the solution to the initial
value problem

x' = Ax+f, x(tg) = %o

is given by

x(t):@(t—to)xo—|—/t<1>(t—s)f(s)ds.

to
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Theorem C.4.10 is general enough to include all constant coeflicient linear differential
equations or any order. Thus it includes as a special case the main topics of an entire
elementary differential equations class. This is illustrated in the following example. One
can reduce an arbitrary linear differential equation to a first order system and then apply the
above theory to solve the problem. The next example is a differential equation of damped
vibration.

Example C.4.11 The differential equation is y"” + 2y’ + 2y = cost and initial conditions,
y(0) =1 and y' (0) =0.

To solve this equation, let 1 = y and xo = x| = 3. Then, writing this in terms of these
new variables, yields the following system.

xh + 229 + 221 = cost
xh = a9

This system can be written in the above form as

1 ' _ i) + 0 _ 0 1 Iy + 0 )
To —2x9 — 217 cost -2 =2 To cost
and the initial condition is of the form
X _ 1
(2)o-(0)

Now Py (A) = I. The eigenvalues are —1 4+ 4, —1 — ¢ and so

(% )-oea(3 ) -5 )

Recall 7 (t) = 0 and 7y (t) = e(=1*+9t Then
= (=1 —i)ry + e 1y (0) =0

and so e(—l-i—i)t _ e(—l—i)t
ra(t) = 2i

Putzer’s method yields the fundamental matrix as

B (1) _6<Wﬁ(é?)+emM@(Ej 4{i>
( et (cos (t) + sin (¢)) e tsint )

—2¢ tsint et (cos (t) — sin (t))

= e 'sin (t)

From variation of constants formula the desired solution is

()= (5000 v ) (5)

o (TR o ) (o)

B O
:<et@%(ﬂwm0)>+<—yww)_—i am+,ww+§ww>

—2e tsint —Z (cost)e™" + zesint + £ cost — £ sint
B 2 (cost)e ™t + 2e~tsint + & cost + Zsint
N —ge_tsint—%(cost)e_t—i— 2cost — Lsint

Thus y (t) = 1 (t) = 3 (cost) e™" + Ze'sint + £ cost + Zsint.
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C.5 Geometric Theory Of Autonomous Systems

Here a sufficient condition is given for stability of a first order system. First of all, here is
a fundamental estimate for the entries of a fundamental matrix.

Lemma C.5.1 Let the functions, ri be given in the statement of Theorem C.4.8 and sup-
pose that A is an n X n matriz whose eigenvalues are {1, , A\, }. Suppose that these
eigenvalues are ordered such that

Re (A1) <Re(A2) <--- <Re(\,) <0.

Then if 0 > —6 > Re(\,) is given, there exists a constant, C such that for each k =
07 ]-7 e, N,
|7y, (t)] < Ce™ 0! (3.29)

for allt > 0.

Proof: This is obvious for 7 (t) because it is identically equal to 0. From the definition
of the ry, 7] = A1r1,71 (0) = 1 and so r; () = e*! which implies

ra ()] < RO,
Suppose for some m > 1 there exists a constant, C,, such that
ry ()] < Cppt™eReim)t
for all kK < m for all t > 0. Then
Tt (1) = A1 Tt (8) + 7 () 7ngr (0) =0
and so

¢
Tt (8) = e’\m“t/ e Amt1sy (s)ds.
0

Then by the induction hypothesis,

IN

t
|rm+1 (t)| eRe()\m,+1)t / ‘e—)\m+1s’ CmSmeRe()\m)st
0

t
S 6Re()\m+1)t / SmCm€7 Re()\erl)seRe(/\m)sds
0

t
< eRe()\m+1)t/ SmCmdS — Cm tm—i—leRe()\erl)t
0 m+1
It follows by induction there exists a constant, C' such that for all k < n,
g (8)] < CtreRe@n)t

and this obviously implies the conclusion of the lemma.
The proof of the above lemma yields the following corollary.

Corollary C.5.2 Let the functions, i be given in the statement of Theorem C.4.8 and
suppose that A is an n X n matriz whose eigenvalues are {1, -+ , A\ }. Suppose that these
etgenvalues are ordered such that

Re(A1) <Re(N) <---<Re(\,).
Then there exists a constant C such that for all k < m

i (£)] < CtmeReGmt,
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With the lemma, the following sloppy estimate is available for a fundamental matrix.

Theorem C.5.3 Let A be an n x n matriz and let ® (t) be the fundamental matriz for A.
That is,
Q' (t) = AD (t), (0) = 1.

Suppose also the eigenvalues of A are {\1,---, A\, } where these eigenvalues are ordered such
that
Re (A1) <Re(A2) <--- <Re(\,) <0.
Then if 0 > —0 > Re (\,,), is given, there exists a constant, C such that ‘<I> ()] < Ce= 0t
for allt > 0. Also
@ (t) x| < Cn®/2e7 % |x]. (3.30)

Proof: Let

M = max {‘Pk (A)7.] for all Z,j,k} .

Then from Putzer’s formula for @ (t) and Lemma C.5.1, there exists a constant, C' such that

n—1
]@ (1), < 3 ceotu.
k=0

Let the new C be given by nCM. B

Next,
2
n

2
@ (t) x> = Z Z(I)ij Mx; | < Z

n n
i=1 \j=1 =1 \j=

|4 ()] 5]
1

n n 2 n
< Z Z Ce™ x| | = CPe 20 Z (n |x|)2 = 2 20tp3 |x\2
i=1 \j=1 i=1

This proves 3.30 and completes the proof.

Definition C.5.4 Let f : U — R" where U is an open subset of R™ such that a € U and
f(a) = 0. A point, a where f (a) = 0 is called an equilibrium point. Then a is asymptotically
stable if for any € > 0 there exists v > 0 such that whenever |xo —a| < r and x (t) the
solution to the initial value problem,

x' =f(x), x(0) = xo,
it follows

lim x(t) =a, |x(t) —a] <e

t—o0

A differential equation of the form x' = £ (x) is called autonomous as opposed to a nonau-
tonomous equation of the form x' = f (t,x). The equilibrium point a is stable if for every
€ > 0 there exists 6 > 0 such that if |xo — a| < ¢, then if x is the solution of

x' =f(x), x(0) = xo, (3.31)

then |x (t) —a| < e for all t > 0.
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Obviously asymptotic stability implies stability.
An ordinary differential equation is called almost linear if it is of the form

x' = Ax + g (x)

where A is an n X n matrix and
lim 839 _
im

x—0 |X‘

Now the stability of an equilibrium point of an autonomous system, x’ = f (x) can
always be reduced to the consideration of the stability of O for an almost linear system.
Here is why. If you are considering the equilibrium point, a for x’ = f (x), you could
define a new variable, y by a4+ y = x. Then asymptotic stability would involve |y (¢)| < €
and lim; ,o y (t) = 0 while stability would only require |y (¢)] < €. Then since a is an
equilibrium point, y solves the following initial value problem.

y' =f(at+y)—-f(a), y(0) =yo,

where yo = xg — a.
Let A = Df (a). Then from the definition of the derivative of a function,

y =Ay +g(y), y(0) =yo (3.32)
where
lim @ =0.
y—0 |y|

Thus there is never any loss of generality in considering only the equilibrium point 0 for an
almost linear system.! Therefore, from now on I will only consider the case of almost linear
systems and the equilibrium point 0.

Theorem C.5.5 Consider the almost linear system of equations,

x' = Ax+ g (x) (3.33)
where
lim 8% _ g
x—0 ‘X|

and g is a C' function. Suppose that for all X an eigenvalue of A, ReX < 0. Then 0 is
asymptotically stable.

Proof: By Theorem C.5.3 there exist constants ¢ > 0 and K such that for ® (¢) the
fundamental matrix for A,
1@ (1) x| < Ke % |x]|.

Let € > 0 be given and let r be small enough that Kr < ¢ and for |x| < (K +1)r,|g (x)]| <
1 |x| where 7 is so small that Kn < §, and let |yo| < 7. Then by the variation of constants
formula, the solution to 3.33, at least for small ¢ satisfies

y<t>=¢<t>y0+/0 D (t—s)g(y(s) ds.

IThis is no longer true when you study partial differential equations as ordinary differential equations in
infinite dimensional spaces.
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The following estimate holds.

t t
YO < Keyol+ [ Ke - ly ()] ds < Ke Mt [ Ke iy ()]s
0 0

Therefore,
t
%t ly (t)| < Kr +/ Kned® ly (s)|ds.
0
By Gronwall’s inequality,
ety (t)] < Krefmt

and so
ly ()] < KreEn=0t o co(Kn=o)t

Therefore, |y (t)] < Kr < ¢ for all ¢t and so from Corollary C.3.4, the solution to 3.33 exists
for all t > 0 and since Kn — 4 < 0,

lim |y (¢)] =0.1

t—o0

STUDY AT

LINKOPING UNIVERSITY, SWEDEN
RANKED AMONG TOP 50 UNIVERSITIES UNDER 50
Interested in Strategy and Management in International

Organisations? Kick-start your career with a master’s degree
from Linképing University, Sweden.

&

‘#}? Linkdping University

175

Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/liu

C.6 General Geometric Theory

Here I will consider the case where the matrix A has both positive and negative eigenvalues.
First here is a useful lemma.

Lemma C.6.1 Suppose A is an n X n matriz and there exists 6 > 0 such that
0<d<Re(A)<---<Re(\)

where {\1,--+ , A\n} are the eigenvalues of A, with possibly some repeated. Then there exists
a constant, C such that for all t <0,

[ (1) x| < Ce [x]
Proof: I want an estimate on the solutions to the system
O (1) =Ad (), ®(0) = 1.
for t < 0. Let s = —t and let ¥ (s) = ® (¢). Then writing this in terms of ¥,
V' (s) = —AV (s), ¥(0) = 1.

Now the eigenvalues of —A have real parts less than —J because these eigenvalues are
obtained from the eigenvalues of A by multiplying by —1. Then by Theorem C.5.3 there
exists a constant, C such that for any x,

[ (s)x] < Ce* [x].
Therefore, from the definition of W,
B (1) x| < Cet x|
Here is another essential lemma which is found in Coddington and Levinson [6]

Lemma C.6.2 Let p; (t) be polynomials with complex coefficients and let

£ =3 (e

where m > 1, \; # A, for j # k, and none of the p; (t) vanish identically. Let
o =max (Re (A1), -+ ,Re(\n)).
Then there exists a positive number, r and arbitrarily large positive values of t such that
e ()] >
In particular, | f (t)| is unbounded.

Proof: Suppose the largest exponent of any of the p; is M and let A\; = a; + ib;. First
assume each a; = 0. This is convenient because 0 = 0 in this case and the largest of the
Re (A;) occurs in every A;.

Then arranging the above sum as a sum of decreasing powers of ¢,

F@O) =t far () 4+ tf1 (8) + fo (£).
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Then

M) = far () + 0 (1)

where the last term means that tO (%) is bounded. Then

m
t) — 2 Cjeibﬁ
j=1

It can’t be the case that all the c; are equal to 0 because then M would not be the highest
power exponent. Suppose ¢ # 0. Then

o1 M o—ibit i(bj—bi)t 7p
TlgnooT/Ot ft Ridt = ZCJ e'\ITURdE = ¢f, #£ 0.

Letting r = |cx /2|, it follows [t=2 f (t) e=™**| > r for arbitrarily large values of t. Thus it
is also true that |f (¢)| > r for arbitrarily large values of ¢.
Next consider the general case in which o is given above. Thus

(W)= Y p (e +g(t)

jiaj=0o

where limy o g (t) = 0, g (t) being of the form 3" ps (¢) e(® =7+ \where a; — o < 0. Then
this reduces to the case above in which o = 0. Therefore, there exists r > 0 such that

’ef‘”f (t)’ >

for arbitrarily large values of ¢. B
Next here is a Banach space which will be useful.

Lemma C.6.3 For~ >0, let
E, ={x € BC([0,00),F") : t — "% (t) is also in BC ([0, 00),F")}
and let the norm be given by
|[x|[., = sup {le"x(t)| : t € [0,00)}

Then E., is a Banach space.

Proof: Let {x;} be a Cauchy sequence in E,. Then since BC ([0, 00),F") is a Banach
space, there exists y € BC ([0, 00), F™) such that e"'xy () converges uniformly on [0, 00) to
y (t). Therefore e "eVtxy (t) = xj, (t) converges uniformly to ey (¢) on [0,00). Define

x(t)=e 7y (t). Then y (t) = ?*x (t) and by definition,

|| xk fx||v — 0.
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C.7 The Stable Manifold

Here assume N
_ 0
() o

where A_ and A, are square matrices of size k X k and (n — k) x (n — k) respectively. Also
assume A_ has eigenvalues whose real parts are all less than —« while A has eigenvalues
whose real parts are all larger than a. Assume also that each of A_ and A, is upper
triangular.

Also, T will use the following convention. For v € F",

(v)
vV =
Vi
where v_ consists of the first k£ entries of v.
Then from Theorem C.5.3 and Lemma C.6.1 the following lemma is obtained.

Lemma C.7.1 Let A be of the form given in 3.3 as explained above and let ® (t) and
O_ (t) be the fundamental matrices corresponding to Ay and A_ respectively. Then there
exist positive constants, a and v such that

1D, (1) y| < Ce™ for allt <0 (3.35)
|®_ (t)y| < Ce™ @t for all t > 0. (3.36)

Also for any nonzero x € C"F,
|P () x| is unbounded. (3.37)

Proof: The first two claims have been established already. It suffices to pick a and ~
such that — (a + ) is larger than all eigenvalues of A_ and « is smaller than all eigenvalues
of A,. Tt remains to verify 3.37. From the Putzer formula for ® (¢),

O, (t)x = 2_: i1 (1) P (A) x
k=0
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where Py (A) = I. Now each ry, is a polynomial (possibly a constant) times an exponential.
This follows easily from the definition of the 7 as solutions of the differential equations

Thg1 = Mot 1Tk41 + T
Now by assumption the eigenvalues have positive real parts so
o =max (Re (A1), - ,Re(An—g)) > 0.

It can also be assumed
Re(MA) > - >Re(An—k)

By Lemma C.6.2 it follows |®, (¢) x| is unbounded. This follows because

n—1
Oy ()x=r1 ()X + > 1hep1 (B) Yk, 71 (8) = M.
k=1

Since x # 0, it has a nonzero entry, say z,, # 0. Consider the m'" entry of the vector
®, (t)x. By this Lemma the m*" entry is unbounded and this is all it takes for x (t) to be
unbounded. W
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Lemma C.7.2 Consider the initial value problem for the almost linear system
x' = Ax +g(x), x(0) = xo,

where g is Ctand A is of the special form

A_ 0
4= ( 0 A )
in which A_ is a k X k matriz which has eigenvalues for which the real parts are all negative
and Ay is a (n—k) x (n—k) matriz for which the real parts of all the eigenvalues are

positive. Then 0 is not stable. More precisely, there exists a set of points (a_,v (a_)) for
a_ small such that for xq on this set,

lim x(t,%x0) =0

t—o0

and for xo not on this set, there exists a § > 0 such that |x (t,x0)| cannot remain less than
0 for all positive t.

Proof: Consider the initial value problem for the almost linear equation,

x'=Ax+g(x), x(0)=a= ( a- )

ay

Then by the variation of constants formula, a local solution has the form

x(t,a) = ( ?- 2 ) ( - )
+/ot( - (6_5) D, (?,5) )g(X(Sva))ds (3.38)

Write x (t) for x (¢,a) for short. Let € > 0 be given and suppose ¢ is such that if |x| < 6,
then |g4 (x)| < €|x|. Assume from now on that |a] < §. Then suppose |x ()| < ¢ for all
t > 0. Writing 3.38 differently yields

o+ (048 ) (3 )+ (B0 ey e

*( f;mu—s);(x(s,a»ds )

:<<1>—O<t> ¢+0(t))<a+> (fo t—sg_<x(s,a>>ds>

0
+ oo o0 .
( Jo @+ (t—s)gs (x(s,a))ds— [, Oy (t —5)gy (x(s,a))ds )
These improper integrals converge thanks to the assumption that x is bounded and the
estimates 3.35 and 3.36. Continuing the rewriting,

x_ (t) _ O (t)a_ —|—f0 (t—s)g_(x(s,a))ds
(=) (( ))

x4 (t) Oy (1) (ar + [7° By (—s) gt (x(5,2))ds)

+( (- s (e, s )
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It follows from Lemma C.7.1 that if |x (¢,a)| is bounded by ¢ as asserted, then it must be
the case that a; + [;° ®4 (—s) g+ (x(s,a)) ds = 0. Consequently, it must be the case that

a_ (t—s)g_ (x(s,a))ds
x(t)=d(t + ( fo ) ) 3.39
=20 ) e i (3:39)
Letting ¢ — 0, this requires that for a solution to the initial value problem to exist and also
satisfy |x (t)| < 0 for all ¢ > 0 it must be the case that

<0~ (e ixteans )

where x (t,a) is the solution of

XIZAX“‘g(X)v X(O> = ( —fOOO(I)+ (_5)é+ (X(S’a))ds >

This is because in 3.39, if x is bounded by & then the reverse steps show x is a solution of
the above differential equation and initial condition.

It follows if T can show that for all a_ sufficiently small and a = (a_, O)T, there exists a
solution to 3.39 x (s,a) on (0,00) for which |x (s,a)| < d, then I can define

v = [ e g ()

and conclude that |x (£,%x0)| < & for all ¢ > 0 if and only if xo = (a_,% (a_))" for some
sufficiently small a_.
Let C, «, ¥ be the constants of Lemma C.7.1. Let 1 be a small positive number such that

Cn 1
7<7
« 6

Note that g—i (0) = 0. Therefore, by Lemma C.3.1, there exists 6 > 0 such that if x|, |y| < d,
then /

lg(x) —g(¥) <nlx-yl

and in particular,
g+ (x) — g+ (¥)| <nlx—y| (3.40)

because each g—i (x) is very small. In particular, this implies

g () <nlx|,lg+ (xX)| <nlx].

For x € E,, defined in Lemma C.6.3 and |a_| < 5%,

i (t)a_ +f (t—s5)g— (x(s))ds
ety = (-0 R0 e ),

I need to find a fixed point of F'. Letting |[x||, < J, and using the estimates of Lemma C.7.1,

t
e Fx () < P (H)a_ |+ e”t/ Ce= @ty 1x (s)| ds
0

—|—e”t/ Ce®t=*)y|x (s)| ds
¢
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IN

5 t
et — (ot + et ||x]| 077/ e~ (at7)(t=5) =75 44
2C v 0

oo
+e"’tC77/ e ds x|,
¢

t oo
< 0 + 5077/ e (=9 s 4 C’n5/ elatNE=s) g
0 t

2

6 1 0Cn 1 Cn 26

—+6Cn—4+ —— <6 — —.
< 2+ na+a+7* <2+a><3

Thus F' maps every x € E, having |[x||, < d to F'x where |[Fx]|, < e
Now let x,y € E, where |[x][,, |[y]|, <d. Then

' |Fx(t) - Fy ()] < 6“/0 (@ (t = s)[ne” 7" |x(s) =y (s)| ds

tert / 1B (£ — 5)] e x (s) — y (s)] ds
t

t o)
< Onllx -yl (/0 e_a(t_s)ds> —|—/75 el@tNt=5) (s

1 1 207 1
<on(5+ ) Il < 20 vl < 5 k=91l
It follows from Lemma 14.6.4, for each a_ such that |a_| < 52, there exists a unique solution

20"
to 3.39 in E,.
As pointed out earlier, if
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then for x (¢,x0) the solution to the initial value problem

x' = Ax +g(x), x(0) = x0

has the property that if x¢ is not of the form ( qp:(i; ) > , then |x (t,%0)| cannot be less
than ¢ for all ¢ > 0.

. . a_ 5 .
On the other hand, if xy = < ¥(a) > for [a_| < 5, then x (¢,%0) ;the solution to
3.39 is the unique solution to the initial value problem
x' = Ax + g (x), x(0) = xq.

and it was shown that [|x (-,xo)[|, < ¢ and so in fact,
|x (t,%0)| < de™ 7"
showing that

tliglox(t, xg) = 0.
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|
The following theorem is the main result. It involves a use of linear algebra and the
above lemma.

Theorem C.7.3 Consider the initial value problem for the almost linear system
X' = Ax +g(x), x(0) = xo

in which g is C1 and where at there are k < n eigenvalues of A which have negative real
parts and n — k eigenvalues of A which have positive real parts. Then 0 is not stable. More
precisely, there exists a set of points (a, (a)) for a small and in a k dimensional subspace
such that for xo on this set,

li =

Jim x (t,x0) =0
and for Xxo not on this set, there exists a § > 0 such that |x (t,x0)| cannot remain less than
6§ for all positive t.

Proof: This involves nothing more than a reduction to the situation of Lemma C.7.2.
From Theorem 10.5.2 on Page 10.5.2 A is similar to a matrix of the form described in Lemma

C.7.2. Thus A = §—1 < 1%7 : ) S. Letting y = Sx, it follows
+

A0 .
y/:< 0 A+>y+g(5 )

Now [x| = [S~15x| < ||S7!||ly| and |y| = [SS~'y| < [|S]| [x| . Therefore,

1

<|x| < ||S7! .
¥ < B < {157y

It follows all conclusions of Lemma C.7.2 are valid for this theorem. B

The set of points (a, 1) (a)) for a small is called the stable manifold. Much more can be
said about the stable manifold and you should look at a good differential equations book
for this.
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Compactness And Completeness

D.0.1 The Nested Interval Lemma

First, here is the one dimensional nested interval lemma.

Lemma D.0.4 Let I, = [ag, by be closed intervals, ay, < by, such that I, D Ixy1 for all k.
Then there exists a point ¢ which is contained in all these intervals. Iflimg_, o0 (b — a) =0,
then there is exactly one such point.

Proof: Note that the {ay} are an increasing sequence and that {b;} is a decreasing
sequence. Now note that if m < n, then

G, < ap < by,

while if m > n,

It follows that a,, < b, for any pair m,n. Therefore, each b, is an upper bound for all the
ap, and so if ¢ = sup {ay }, then for each n, it follows that ¢ < b,, and so for all, a,, < ¢ < b,
which shows that ¢ is in all of these intervals.

If the condition on the lengths of the intervals holds, then if ¢, ¢’ are in all the intervals,
then if they are not equal, then eventually, for large enough k, they cannot both be contained
in [ag, bk] since eventually by — ay, < |c — ¢|. This would be a contradiction. Hence ¢ = ¢'.
]

Definition D.0.5 The diameter of a set S, is defined as
diam (S) =sup{|x —y|: x,y € S}.

Thus diam (S) is just a careful description of what you would think of as the diameter.
It measures how stretched out the set is.
Here is a multidimensional version of the nested interval lemma.

Lemma D.0.6 Let I}, = le [af,bﬂ = {X eRP:zx; € [af,bﬂ} and suppose that for all
k=1,2,---,
I 2 It

Then there exists a point ¢ € RP which is an element of every Iy. If limg_, o diam (1) = 0,
then the point ¢ is unique.

f,bf] D) [af“,bf“} and so, by Lemma D.0.4, there
exists a point ¢; € [af, bﬂ for all k. Then letting ¢ = (¢1,- -, ¢p) it follows ¢ € I, for all k.
If the condition on the diameters holds, then the lengths of the intervals limy_, o [af, bf] =0
and so by the same lemma, each ¢; is unique. Hence c is unique.

Proof: For each i = 1,--- ,p, [a
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D.0.2 Convergent Sequences, Sequential Compactness

A mapping f : {k,k+ 1,k +2,---} > R? is called a sequence. We usually write it in the
form {a;} where it is understood that a; = f (j).

Definition D.0.7 A sequence, {a;} is said to converge to a if for every e > 0 there exists
ne such that if n > ne, then |a—a,| < e. The usual notation for this is lim,_,- a, = a
although it is often written as a,, — a. A closed set K C R"™ is one which has the property
that if {kj};il s a sequence of points of K which converges to x, then x € K.

One can also define a subsequence.
Definition D.0.8 {a,,} is a subsequence of {a,} if n1 <ng <---.
The following theorem says the limit, if it exists, is unique.

Theorem D.0.9 If a sequence, {a,} converges to a and to b then a = b.

Proof: There exists n. such that if n > n. then |a, —a| < £ and if n > n., then

2
|a,, — b| < 5. Then pick such an n.

9

215.

€
la—b| < |a—a,|+|a, —b| < §+
Since ¢ is arbitrary, this proves the theorem. H
The following is the definition of a Cauchy sequence in RP.

Definition D.0.10 {a,} is a Cauchy sequence if for all € > 0, there exists n. such that
whenever n,m > ng, if follows that |a,—a,;,| < .

A sequence is Cauchy, means the terms are “bunching up to each other” as m,n get
large.

Theorem D.0.11 The set of terms in a Cauchy sequence in RP is bounded in the sense
that for all n, |a,| < M for some M < co.

Proof: Let € =1 in the definition of a Cauchy sequence and let n > n;. Then from the
definition, |a,, — a,,| < 1.It follows that for all n > nq,|a,| < 1+ |a,,|.Therefore, for all n,

ni

lan| <1+ |an,| +Z|ak|‘ u
k=1

Theorem D.0.12 If a sequence {a,} in RP converges, then the sequence is a Cauchy se-
quence. Also, if some subsequence of a Cauchy sequence converges, then the original sequence
converges.

Proof: Let € > 0 be given and suppose a,,— a. Then from the definition of convergence,
there exists n. such that if n > n,, it follows that |a,—a| < 5 . Therefore, if m,n > ne + 1,

it follows that c

2
showing that, since ¢ > 0 is arbitrary, {a,} is a Cauchy sequence. It remains to that the
last claim.

Suppose then that {a,} is a Cauchy sequence and a = limj_, a,, where {a,, },-,
is a subsequence. Let € > 0 be given. Then there exists K such that if k,1 > K, then

€
la,—an| < la,—a| +|a—an| < 3 +-=¢
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lap —a;| < §. Then if k > K, it follows nj > K because ni,nz,ns, - - - is strictly increasing
as the subscript increases. Also, there exists K such that if & > K, |a,, —a| < 5. Then
letting n > max (K, K1), pick k£ > max (K, K1). Then

9

216.

3
la—a,| <la—ay|+|a,, —an] < 3 +
Therefore, the sequence converges. Bl

Definition D.0.13 A set K in R? is said to be sequentially compact if every sequence
in K has a subsequence which converges to a point of K.

Theorem D.0.14 If [ = le [ai, b;] where a; < b;, then Iy is sequentially compact.

Proof: Let {a;},.; C Iy and consider all sets of the form [[Y_, [¢;,d;] where [¢;,d;]
equals either [a;, %1% or [e;,d;] = [%$%,b;]. Thus there are 2P of these sets because
there are two choices for the i*" slot for i = 1,--- ,p. Also, if x and y are two points in one

1/2
of these sets, |z; — y;| < 271 |b; — a;| where diam (Iy) = (Zle |b; — ai|2) )

1/2

P 1/2 p
x -yl = (Z | — yi|2> <27 (Z |b; — ai|2> = 2" diam (Iy) .
1=1 i=1

In particular, since d = (dy,--- ,d,) and ¢ = (c1,-- - , ¢p) are two such points,

P 1/2
D, = (Z |d; — ci|2> < 271 diam (1)
=1

Denote by {Jy,- -, Jor } these sets determined above. Since the union of these sets equals
all of Iy = I, it follows that for some .Ji, the sequence, {a;} is contained in J;, for infinitely
many k. Let that one be called I;. Next do for I; what was done for Iy to get I C I)
such that the diameter is half that of Iy and Iy contains {aj} for infinitely many values
of k. Continue in this way obtaining a nested sequence {I;} such that I O Iy, and if
X,y € Iy, then |x —y| < 27%diam (Iy), and I, contains {a;} for infinitely many values of
k for each n. Then by the nested interval lemma, there exists ¢ such that c is contained in
each Ij. Pick a,, € I;. Next pick ng > n; such that a,, € I. If a,,, - ,a,, have been
chosen, let a,, , € Ix11 and ngy1 > ny. This can be done because in the construction, I,
contains {ay} for infinitely many k. Thus the distance between a,, and c is no larger than
27k diam (Iy), and so limy_ 00 @, =c € Iy. B

Corollary D.0.15 Let K be a closed and bounded set of points in RP. Then K is sequen-
tially compact.

Proof: Since K is closed and bounded, there exists a closed rectangle, [T7_; [ax, bi]
which contains K. Now let {x;} be a sequence of points in K. By Theorem D.0.14, there
exists a subsequence {x,,} such that x,, — x € [[7_, [ax, bi]. However, K is closed and
each x,, isin Ksoxc K. B

Theorem D.0.16 FEvery Cauchy sequence in RP converges.

Proof: Let {a; } be a Cauchy sequence. By Theorem D.0.11, there is some box [[}_, [a;, b;]
containing all the terms of {a;}. Therefore, by Theorem D.0.14, a subsequence converges
to a point of [T?_; [a;, b;]. By Theorem D.0.12, the original sequence converges. W
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Fundamental Theorem Of
Algebra

The fundamental theorem of algebra states that every non constant polynomial having
coefficients in C has a zero in C. If C is replaced by R, this is not true because of the
example, 22 +1 = 0. This theorem is a very remarkable result and notwithstanding its title,
all the best proofs of it depend on either analysis or topology. It was proved by Gauss in
1797 then proved with no loose ends by Argand in 1806 although others also worked on
it. The proof given here follows Rudin [22]. See also Hardy [12] for another proof, more
discussion and references. Recall De Moivre’s theorem on Page 19 which is listed below for
convenience.

Theorem E.0.17 Let r > 0 be given. Then if n is a positive integer,
[r (cost +isint)]" = r" (cosnt + isinnt) .
Now from this theorem, the following corollary on Page 1.5.5 is obtained.

Corollary E.0.18 Let z be a non zero complex number and let k be a positive integer. Then
there are always exactly k k' roots of z in C.

Lemma E.0.19 Leta, € C fork=1,--- ,nandlet p(z) = > ,_, axz®. Then p is contin-
uous.
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Proof:
laz" — aw™| < |a| |z — w| [z" 7" + 2" w4 - "

Then for |z — w| < 1, the triangle inequality implies |w| < 1 + |z| and so if |z — w| < 1,
laz" — aw™| < la||z —w|n (1 + |2])".
If € > 0 is given, let

€
0 < min (1, n) .
laln (1+2])

It follows from the above inequality that for |z — w| < §, |az™ — aw™| < e. The function of
the lemma is just the sum of functions of this sort and so it follows that it is also continuous.

Theorem E.0.20 (Fundamental theorem of Algebra) Let p (2) be a nonconstant polynomial.
Then there exists z € C such that p(z) = 0.

189
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Proof: Suppose not. Then

p(z) = Z apz®
k=0
where a,, # 0, n > 0. Then

n—1
k
p(2)] = lan] [2" =Y lax] |2|
k=0

and so
lim |p(z)| = oo. (5.1)

|z| =00
Now let
A=inf{|p(2)|: z € C}.
By 5.1, there exists an R > 0 such that if |z| > R, it follows that |[p (z)] > A + 1. Therefore,

A=inf{|p(z)|: z€ C} =inf {|p(2)|: |2| < R}.

190
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The set {z:|z] < R} is a closed and bounded set and so this infimum is achieved at some
point w with Jw| < R. A contradiction is obtained if |p (w)| = 0 so assume |p (w)| > 0. Then
consider

p(z+w)

p(w)

q(2)

It follows ¢ (2) is of the form
q(z) =1+ cpzf 4+ 2™

where ¢, # 0, because ¢ (0) = 1. It is also true that |¢(z)| > 1 by the assumption that
|p (w)| is the smallest value of |p(2)|. Now let § € C be a complex number with |§| = 1 and

Ocrw® = — |w|" | .
If i
— |w*|]e
w#o,gzw
wrCy,

and if w = 0, § = 1 will work. Now let n* = # and let ¢ be a small positive number.
g (tnw) = 1= % jw]" e + -+ + et ()"

which is of the form
1—t%w]® |eg| + % (g (¢, w))

where lim;_,q g (t,w) = 0. Letting ¢ be small enough,
lg (t,w)] < Jwl* |ex] /2

and so for such ¢,
g (tnw)| < 1=t [w]" [ex] + " ] |ex| /2 < 1,

a contradiction to |¢(z)| > 1. B
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Fields And Field Extensions

F.1 The Symmetric Polynomial Theorem

First here is a definition of polynomials in many variables which have coefficients in a
commutative ring. A commutative ring would be a field except you don’t know that every
nonzero element has a multiplicative inverse. If you like, let these coefficients be in a field
it is still interesting. A good example of a commutative ring is the integers. In particular,
every field is a commutative ring.

Definition F.1.1 Let k = (ky, ko, -+ , k) where each k; is a nonnegative integer. Let
i
Polynomials of degree p in the variables x1,xs, -+ ,x, are expressions of the form
g(ml’x27... 71',”) = Z a,kggllcl x']:b"
[k|<p

where each ay is in a commutative ring. If all ax = 0, the polynomial has no degree. Such
a polynomial is said to be symmetric if whenever o is a permutation of {1,2,--- ,n},

g (xa(l)axU(Z)a"' 71‘0(71)) =g($1,x2,~-~ amN)

An example of a symmetric polynomial is

n
51 (@1, @2, @y) = sz
i=1

American online
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Another one is

Sp (21,22, -+ ,n) =T 122 Ty

Definition F.1.2 The elementary symmetric polynomial s (x1, L2, ,&pn), k = 1,-+-
is the coefficient of (—I)km""C in the following polynomial.

(x—x1) (x—22) - (T — 2y)

=" — 512" f e — oty
Thus

S1 =T +T2+ -+ Ty

S9 = E Tilj, S3 = E TiTljTly.y Sp = T1T2" " Tp
1<j 1<j<k

193

Download free eBooks at bookboon.com



Then the following result is the fundamental theorem in the subject. It is the symmetric
polynomial theorem. It says that these elementary symmetric polynomials are a lot like a
basis for the symmetric polynomials.

Theorem F.1.3 Let g (x1,22, - ,x,) be a symmetric polynomial. Then g (x1,xa,- -+ ,Ty)
equals a polynomial in the elementary symmetric functions.

k kn
g(x1, 20, ,xn) = E agsy' sy
k

and the ayx are unique.

Proof: If n = 1, it is obviously true because s; = x1. Suppose the theorem is true for
n—1and g (z1, 9, - ,2,) has degree d. Let

g/ ($17$2,"' ?xn—l) Eg($1,$2,"' axn—ho)

By induction, there are unique ayx such that

’ 2 : 1k Tkn—1
g (5171,:1:2,"' 7:1;'”_1): aksll...5n71

k

where s) is the corresponding symmetric polynomial which pertains to z1,zo, -,z
i Y poly p 1,42, ybn—1-

Note that

!/

Sk (xlax27 e 7$n7170) = Sk; (:1:17:1;27 e 7xn71)
Now consider
kl knfl J—
9(1.171'27"' 7xn) - aksSy S 1 = q(xtha"' 7:1;77,)
k

is a symmetric polynomial and it equals 0 when x,, equals 0. Since it is symmetric, it is also
0 whenever x; = 0. Therefore,

q(v1,m2, ,n) = sph (T1, 22, ,Ty)
and it follows that h (zq1,22, - ,2,) is symmetric of degree no more than d — n and is
uniquely determined. Thus, if g (21,9, - ,z,) is symmetric of degree d,
Ene
g (‘rlvav e 717”) = Zaksllﬁ e Sn—l1 + th (1'1,1'2, e ,.’,En)
k
where h has degree no more than d —n. Now apply the same argument to h (z1, 22, -+, Zy)

and continue, repeatedly obtaining a sequence of symmetric polynomials h;, of strictly de-
creasing degree, obtaining expressions of the form

k kn—1 _ky
g(z1,22,- - ,2p) = § bsit -8, 7 S 4 Sphu (21,22, -+, Th)
k

Eventually h,,, must be a constant or zero. By induction, each step in the argument yields
uniqueness and so, the final sum of combinations of elementary symmetric functions is
uniquely determined. B
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Here is a very interesting result which I saw claimed in a paper by Steinberg and Redheffer

on Lindemannn’s theorem which follows from the above corollary.
Theorem F.1.4 Let oy, -, be roots of the polynomial equation

™ + ap_12" P+ faxt+ag=0

where each a; is an integer. Then any symmetric polynomial in the quantities apay, -« , GnQy,
having integer coefficients is also an integer. Also any symmetric polynomial in the quanti-
ties aip, - -+ , oy, having rational coefficients is a rational number.
Proof: Let f (x1, - ,2,) be the symmetric polynomial. Thus
f(x17... ,:L'n) GZ[I'I...:E”]

From Corollary F.1.3 it follows there are integers ag,...;, such that

k k
f(xlv"' 73771) = § akl“-knpll"'pnn
kittkp<m

sessssrssrssssessansanerrsrsarsansanesrnerrarsarsassansenessassassssssessfilCate]-Lucent @
www.alcatel-lucent.com/careers

"'

&

One generation’s transformation is the next’s status quo.

In the near future, pecple may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".
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where the p; are the elementary symmetric polynomials defined as the coefficients of

n
(x —xj)
j=1
Thus
f (analv e 7(1”0[”)
= ) akek Dy (@0, anan) o pht (anan, - anan)
kbt

Now the given polynomial is of the form

n

anH(x—aj)

Jj=1

and so the coefficient of z"7* is py (a1, , ) an = ay_g. Also
k L On—k
Pk (G;nal, e 7a‘nan) = 0nPk (0617 e 7an) = anT
n
It follows
k1 ko k
_ E : 1 Gn-1 2 Qp—2 nQo\
f(ana1,~.- ,anan) - Ay -k anT a, u an;
ki+4ky n n n

which is an integer. To see the last claim follows from this, take the symmetric polynomial
in ay,- -+ ,a, and multiply by the product of the denominators of the rational coefficients
to get one which has integer coefficients. Then by the first part, each homogeneous term is
just an integer divided by a,, raised to some power. H

F.2 The Fundamental Theorem Of Algebra

This is devoted to a mostly algebraic proof of the fundamental theorem of algebra. It
depends on the interesting results about symmetric polynomials which are presented above.
I found it on the Wikipedia article about the fundamental theorem of algebra. You google
“fundamental theorem of algebra” and go to the Wikipedia article. It gives several other
proofs in addition to this one. According to this article, the first completely correct proof
of this major theorem is due to Argand in 1806. Gauss and others did it earlier but their
arguments had gaps in them.

You can’t completely escape analysis when you prove this theorem. The necessary anal-
ysis is in the following lemma.

Lemma F.2.1 Suppose p(x) = 2" + ap_12" L + --- + a1 + ag where n is odd and the
coefficients are real. Then p(x) has a real root.

Proof: This follows from the intermediate value theorem from calculus.
Next is an algebraic consideration. First recall some notation.

m
Hai =a1ag - Qm
i=1
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Recall a polynomial in {z1,---,2,} is symmetric only if it can be written as a sum of
elementary symmetric polynomials raised to various powers multiplied by constants. This
follows from Proposition F.1.3 or Theorem F.1.3 both of which are the theorem on symmetric
polynomials.

The following is the main part of the theorem. In fact this is one version of the funda-
mental theorem of algebra which people studied earlier in the 1700’s.

Lemma F.2.2 Let p(z) = 2" 4+ ap_12" ' + -+ + a1z + ag be a polynomial with real coef-
ficients. Then it has a complex Toot.

Proof: It is possible to write
n=2"m
where m is odd. If n is odd, £k = 0. If n is even, keep dividing by 2 until you are left with
an odd number. If &k = 0 so that n is odd, it follows from Lemma F.2.1 that p(x) has a
real, hence complex root. The proof will be by induction on k, the case kK = 0 being done.
Suppose then that it works for n = 2'm where m is odd and | < k — 1 and let n = 2Fm
where m is odd. Let {z1,---,z,} be the roots of the polynomial in a splitting field, the
existence of this field being given by the above proposition. Then

n

p@) =[] @-2)=3 (-1 pat (61)

k=0
where py, is the k' elementary symmetric polynomial. Note this shows
k
Un—k = Dk (_1) . (62)

There is another polynomial which has coefficients which are sums of real numbers times
the py raised to various powers and it is

@@= [ (@—(n+z+taz), ter

1<i<j<n

I need to verify this is really the case for ¢; (). When you switch any two of the z; in g; ()
the polynomial does not change. For example, let n = 3 when ¢ (z) is

(x — (21 4+ 22+ tz122)) (x — (21 + 25 + t2123)) (€ — (22 + 23 + tz223))

and you can observe the assertion about the polynomial is true when you switch two dif-
ferent z;. Thus the coefficients of ¢; (x) must be symmetric polynomials in the z; with real
coefficients. Hence by Proposition F.1.3 these coefficients are real polynomials in terms of
the elementary symmetric polynomials pi. Thus by 6.2 the coefficients of ¢; (z) are real
polynomials in terms of the aj of the original polynomial. Recall these were all real. It
follows, and this is what was wanted, that ¢; (x) has all real coefficients.

Note that the degree of ¢; (z) is ( ") because there are this number of ways to pick

2
i <joutof {1, ---,n}. Now

<” > :@:2’“—%(2%—1)

=21 (0dd)

and so by induction, for each ¢t € R, ¢; (z) has a complex root.
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There must exist s # ¢ such that for a single pair of indices i, j, with i < j,
(z; + 2zj +tzizj) , (zi + zj + s225)

are both complex. Here is why. Let A (7, j) denote those ¢t € R such that (z; + z; + tz;2;) is
complex. It was just shown that every ¢ € R must be in some A (4,5). There are infinitely
many ¢t € R and so some A (i, j) contains two of them.

Now for that t, s,

zi+zj+tzzyg = a
Zi+zj+szizp = b
where t # s and so by Cramer’s rule,
a t
+ b slec
Zi Z; =
! 1t
1 s
and also
1 a
1 b
Zizj = eC
1t
’ 1 s

At this point, note that z;, z; are both solutions to the equation

2?2 — (1 +2m)x+ 2120 =0,
which from the above has complex coefficients. By the quadratic formula the z;, z; are both
complex. Thus the original polynomial has a complex root. B

With this lemma, it is easy to prove the fundamental theorem of algebra. The difference
between the lemma and this theorem is that in the theorem, the coefficients are only assumed
to be complex. What this means is that if you have any polynomial with complex coefficients
it has a complex root and so it is not irreducible. Hence the field extension is the same field.
Another way to say this is that for every complex polynomial there exists a factorization
into linear factors or in other words a splitting field for a complex polynomial is the field of
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complex numbers.

Theorem F.2.3 Let p(x) = a,a™ +a,_12" 1+ +a1x +ag be any complex polynomial,
n > 1,a, # 0. Then it has a complex root. Furthermore, there exist complex numbers
21, ,2Zn Such that

p(@) = an [ (o — =)
k=1

Proof: First suppose a,, = 1. Consider the polynomial

q(z) =p(z)p (@)
this is a polynomial and it has real coeflicients. This is because it equals

(" +ap_12" '+ a1z 4 ag) -

(2" + @ 12"+ +ar + @)

/
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The 27%* term of the above product is of the form
apr*@5a + apataza’ = o (ara; + araj)
and
axaj; + apa; = apa; + axa;

so it is of the form of a complex number added to its conjugate. Hence g (z) has real
coefficients as claimed. Therefore, by by Lemma F.2.2 it has a complex root z. Hence either
p(z) =0or p(z) =0. Thus p(z) has a complex root.

Next suppose a, # 0. Then simply divide by it and get a polynomial in which a,, = 1.
Denote this modified polynomial as ¢ (). Then by what was just shown and the Euclidean
algorithm, there exists z; € C such that

q(z) = (v —2)q(z)
where ¢; (z) has complex coeflicients. Now do the same thing for ¢; (x) to obtain
q(x) = (z - =) (r - 2) ¢ (2)

and continue this way. Thus

p(@) 1
an 11;[1 (z—2) W

Obviously this is a harder proof than the other proof of the fundamental theorem of
algebra presented earlier. However, this is a better proof. Consider the algebraic num-
bers A consisting of the real numbers which are roots of some polynomial having rational
coefficients. By Theorem 8.3.32 they are a field. Now consider the field A + iA with the
usual conventions for complex arithmetic. You could repeat the above argument with small
changes and conclude that every polynomial having coefficients in A + ¢A has a root in
A +iA. Recall from Problem 41 on Page 298 that A is countable and so this is also the case
for A + iA. Thus this gives an algebraically complete field which is countable and so very
different than C. Of course there are other situations in which the above harder proof will
work and yield interesting results.

F.3 Transcendental Numbers

Most numbers are like this. Here the algebraic numbers are those which are roots of a
polynomial equation having rational numbers as coefficients. By the fundamental theorem
of calculus, all these numbers are in C. There are only countably many of these algebraic
numbers, (Problem 41 on Page 298). Therefore, most numbers are transcendental. Never-
theless, it is very hard to prove that this or that number is transcendental. Probably the
most famous theorem about this is the Lindemannn Weierstrass theorem.

Theorem F.3.1 Let the «; be distinct nonzero algebraic numbers and let the a; be nonzero
algebraic numbers. Then
n
Z a;e® #0
i=1

I am following the interesting Wikepedia article on this subject. You can also look at the
book by Baker [4], Transcendental Number Theory, Cambridge University Press. There are
also many other treatments which you can find on the web including an interesting article
by Steinberg and Redheffer which appeared in about 1950.
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The proof makes use of the following identity. For f (z) a polynomial,

deg(f) deg(f)

I(s)= /Os e f(x)dx =¢€° Z 9 (0) - Z ) (s). (6.3)
=0 =0

where () denotes the j* derivative. In this formula, s € C and the integral is defined in
the natural way as

/1 sf (ts)e *dt (6.4)
0

The identity follows from integration by parts.

1

1

/sf(ts)es_tsdt = se® | f(ts)e 'Sdt
0 0

ts

e [
|

1 e
s

—ts

sf! (st) dt}

S

—S

- f(0) +/Ole‘t5f’ (st) dt]

= f(0)—e€’f(s)+ /0 ses T f! (st) dt

FO- e+ [ T (2) de

0

Continuing this way establishes the identity.

Lemma F.3.2 If K and c are nonzero integers, and B1,--- ,[3,, are the roots of a single
polynomial with integer coefficients,

Qz)=va™+--4u

where v,u # 0, then

K+c(efr 4. +efm)#£0.
Letting
om=DPQP () zP—1

and I (s) be defined in terms of f (x) as above, it follows,

lim S 7(8,) =0
plf%o; (8:)

and

> 79 (0) = 0" VP my (p)p
j=0

SN (8) = ma (p)p

i=1 j=0

where m; (p) is some integer.
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Proof: Let p be a prime number. Then consider the polynomial f (z) of degree n =
pm+p—1,
_ v =PQP () P!
(p—1!

~
—

From 6.3

m n

e T(B)=cY B D0 =D 98
i=1 j=0

i=1 =0

m n

- (x +eY eﬂ) FOO) =K fD0)=ed > f9(8) (6.5)
i=1 j=0 j=0

i=1 j=0
Claim 1: lim, ,o ¢y i, I(8;) =0.
Proof: This follows right away from the definition of I (3;) and the definition of f (z).
1
1)< [ 18,5 08) e
0
m— _ -1
< /1 Q)" B,
~Jo (p—1)!

which clearly converges to 0. This proves the claim.
The next thing to consider is the term on the end in 6.5,

K> 900 +e> > f9(8) (6.6)
j=0 i=1 j=0

The idea is to show that for large enough p it is always an integer. When this is done, it
can’t happen that K + CZ;’; ePi = 0 because if this were so, you would have a very small
number equal to an integer. Now

Q(x) P
o (G (@ = B)) (= By) (@ = B) | a7

(p—1)!
0" ((x = By) (& = By) -+ (& = B,,))" 2P~
(p—1)!

Download free eBooks at bookboon.com



Linear Algebra Il Advanced topics Fields And Field Extensions

It follows that for j < p—1, f4) (0) = 0. This is because of that term zP~1. If j > p, () (0)
is an integer multiple of p. Here is why. The terms in this derivative which are nonzero
involve taking p — 1 derivatives of 2P~ and this introduces a (p — 1)! which cancels out the
denominator. Then there are some other derivatives of the product of the (z — 3,) raised
to the power p. By the chain rule, these all involve a multiple of p. Thus this j** derivative
is of the form

pg(.’l?,’l]ﬂl,"‘ 7vﬂm)7 (68)

where g (z,v8;,- -+ ,v8,,) is a polynomial in z with coefficients which are symmetric poly-
nomials in {vf8y, - ,v8,,} having integer coefficients. Then derivatives of g with respect
to x also yield polynomials in z which have coefficients which are symmetric polynomials
in {vfq, - ,v08,,} having integer coefficients. Evaluating g at © = 0 must therefore yield
a polynomial which is symmetric in the {v8,,--- ,v8,,} with integer coefficients. Since the
{B1, -+, B,,} are the roots of a polynomial having integer coefficients with leading coeffi-
cient v, it follows from Theorem F.1.4 that this last polynomial is an integer and so the j**
derivative of f given by 6.8 when evaluated at x = 0 yields an integer times p. Now consider
the case of the (p — 1) derivative of f. The only nonzero term of f() (0) is the one which

> Apply now
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comes from taking p — 1 derivatives of zP~! and so it reduces to

v (*1)mp (B1By--- 5m)p
Now Q (0) = v (=1)™ (8, -+ B,,) = w and so v” (—1)™ (8,8, - 3,,)" = u” which yields
FOD) (0) = vmPury P = Dy

Note this is not necessarily a multiple of p and in fact will not be so if p > u, v because p is
a prime number. It follows

Z @) (0) = pPm=1)yp 4 o (p)p
j=0

where m (p) is some integer.
Now consider the other sum in 6.6,

D 9B

i=1 j=0

Using the formula in 6.7 it follows that for j < p, fU) (8;) = 0. This is because for such
derivatives, each term will have that product of the (x — ;) in it. Next consider the case
where 7 > p. In this case, the nonzero terms must involve at least p derivatives of the
expression

((x = By) (&= Ba) - (&= Bp))”
since otherwise, when evaluated at any (3, the result would be 0. Hence the (p —1)! will
vanish from the denominator and so all coefficients of the polynomials in the 8; and z will
be integers and in fact, there will be an extra factor of p left over. Thus the j* derivatives
for j > p involve taking the k' derivative, k > 0 with respect to = of

p'Umpg (x761a e aﬁm)

where g (z,81, -+ ,08,,) is a polynomial in z having coefficients which are integers times
symmetric polynomials in the {3;,---,3,,}. It follows that the k" derivative for k > 0
is also a polynomial in 2 having the same properties. Therefore, taking the k** derivative
where k corresponds to j > p and adding, yields

vamngC (ﬁi’ﬁl7"' 76’m) :Zf(J) (ﬁz) (69)
i=1

i=1

where g, denotes the kth derivative of g taken with respect to z. Now

Zg,k? (ﬁivﬁla e aﬁm)
i=1

is a symmetric polynomial in the {8, -, ,,} with no term having degree more than mp
and! so by Corollary F.1.3 this is of the form

m
Zg,k (ﬁiaﬁla"' aﬁm>: Z ak1--~/€mp11€1"'p§nm
i=1

kl?"'7k7n

1Note the claim about this being a symmetric polynomial is about the sum, not an individual term.
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where the ag,..r, are integers and the pjy are the elementary symmetric polynomials in
{B1,-+,Bm} Recall these were roots of va™ + --- 4+ « and so from the definition of the
elementary symmetric polynomials given in Definition F.1.2, these p, are each an integer
divided by v, the integers being the coefficients of @ (). Therefore, from 6.9

m m
SFB) =™ gk (BiBis B
=1 i=1
=™ > ke, 2Bl
k17"'7k77n

which is pv™P times an expression which consists of integers times products of coefficients
of @ (z) divided by v raised to various powers, the sum of which is always no more than
mp. Therefore, it reduces to an integer multiple of p and so the same is true of

ey Y f9(B)
i=1 j=0
which just involves adding up these integer multiples of p. Therefore, 6.6 is of the form
Ko?"=Dur + M (p) p
for some integer M (p). Summarizing, it follows

m n

cZI(ﬁi) = (K—i—cieﬁi) Zf(j) (0) + KvPm=YyP + M (p) p
i=1

i=1 =0

where the left side is very small whenever p is large enough. Let p be larger than max (K, v, u) .
Since p is prime, it follows it cannot divide KvP("™~Du? and so the last two terms must sum
to a nonzero integer and so the equation cannot hold unless

m
K+ CZ 40 |
i=1
Note this shows 7 is irrational. If 7 = k/m where k, m are integers, then both 7 and
—im are roots of the polynomial with integer coefficients,
m2z? + k?
which would require from what was just shown that
07£2+ei7r+67i77

which is not the case since the sum on the right equals 0.
The following corollary follows from this.

Corollary F.3.3 Let K and ¢; fori=1,--- ,n be nonzero integers. For each k between 1
and n let {8 (k)i}?;(lk) be the Toots of a polynomial with integer coefficients,

Qr (x) = vpa™ + - +uy,
where v, uy # 0. Then

mi mo ",
K+ Zeﬂ(l)j + ¢3 266(2)j +ede, Zeﬂ(n)j £ 0.
j=1 j=1 j=1
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Proof: Defining fi (z) and I} (s) as in Lemma F.3.2, it follows from Lemma F.3.2 that
for each k=1, --- ,n,

Tk m deg(fr)
Ck Z I, (B (k)z) = (Kk + ck Z eﬁ(k)q',) Z f]g]) (0)
=1

i=1 j=0
deg(fx) my, deg(fk)
S TR b S
i=1 j=0

This is exactly the same computation as in the beginning of that lemma except one adds

and subtracts K, Zdeg fi) f(]) (0) rather than K Z‘;igo(f’“) f,gj) (0) where the K}, are chosen
such that their sum equals K. By Lemma F.3.2,

my

CkZIk (KkJrckZ B(k )( (mr—1)p PJrNkp)

_Kk( (mr—1)p uP +Nkp) —Ckap

and so
CkZIk (Kk—FCkZe ) (Ulgmk—l)Puz—FNkp)

— K ,U(mk p p+Mkp

for some integer M},. By multiplying each @y (z) by a suitable constant, it can be assumed
without loss of generality that all the v;”’“_luk are equal to a constant integer U. Then the

above equals
mp

CkZIk <Kk+0k26 > (UP + Nip)

—KkUp + Mkp
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Adding these for all k gives

S e S L (B k), = U <K Y e i’fewk») KU+ Mp
k=1 =1 k=1 =1

n my
+ZNkp (Kk—i—ckZeﬁ(k)i) (610)

k=1 i=1
For large p it follows from Lemma F.3.2 that the left side is very small. If

K—i—zn:ckik:eﬂ(k)i =0
k=1 =1

then Y7 , cx o €®®)i is an integer and so the last term in 6.10 is an integer times p.
Thus for large p it reduces to

small number = —KU? + Ip
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where I is an integer. Picking prime p > max (U, K) it follows —KUP + Ip is a nonzero
integer and this contradicts the left side being a small number less than 1 in absolute value.
|

Next is an even more interesting Lemma which follows from the above corollary.

Lemma F.3.4 If by, b1, - ,b, are non zero integers, and v, -- ,7,, are distinct algebraic
numbers, then
boe'Yo + ble'h + -+ bne’Yn 7& 0

Proof: Assume
boe™® + bye?t 4 -+ + bpen =0 (6.11)

Divide by €70 and letting K = by,
K +b1e®® 44 pe®™ =0 (6.12)

where a (k) = v, — 7. These are still distinct algebraic numbers none of which is 0 thanks
to Theorem 8.3.32. Therefore, o (k) is a root of a polynomial

vEx™F 4 g (6.13)

having integer coefficients, vg,ur # 0. Recall algebraic numbers were defined as roots of
polynomial equations having rational coefficients. Just multiply by the denominators to get
one with integer coefficients. Let the roots of this polynomial equation be

{aB)y k), )

and suppose they are listed in such a way that « (k); = a (k). Letting i, be an integer in
{1,--- ,my} it follows from the assumption 6.11 that

I1 (K bW 4 hye®@iz o4 bneo‘(")in) =0 (6.14)

(ilv"'yin)
ike{l,m ,Mk,}

This is because one of the factors is the one occurring in 6.12 when iy = 1 for every k. The
product is taken over all distinct ordered lists (i1, - ,i,) where 4 is as indicated. Expand
this possibly huge product. This will yield something like the following.

K +¢; (6’8(1)1 4+ 4+ 65(1)“(1)) + ¢ <eﬁ(2)1 4+t 65(2)“(2)) et

n (eﬁuv)l Tt 65<N>M<N>) -0 (6.15)

These integers ¢; come from products of the b; and K. The /3 (i), are the distinct exponents
which result. Note that a typical term in this product 6.14 would be something like

By

«Q (kl)il +a (k2)i2 ot a(kn-p)

integer

—_—
KPPy, by, e

n—p

Gn—p

the k; possibly not distinct and each iy € {1,---,m;,}. Other terms of this sort are

Ol(kl)i/ -‘r(X(kz)L/ ~~~+a(k:n7p)i/
1 2 n-p,

K”kul - bkn_,,

KPHlpy oooby,  eF)italke)Falkn_p),
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where each 7 is another index in {1,---,m;,} and so forth. A given j in the sum of 6.15
corresponds to such a choice of {bkl, . ,bkn_p} which leads to Kp“bk1 -+ by,_, times a
sum of exponentials like those just described. Since the product in 6.14 is taken over all
choices i, € {1,---,my}, it follows that if you switch o (r); and a (r); , two of the roots of
the polynomial

VT 4 Uy

mentioned above, the result in 6.15 would be the same except for permuting the
6(8)1 aﬁ (5)2 s T aﬁ (s)y,(s) .

Thus a symmetric polynomial in
5 (3)1 B (5)2 B (S)H(s)

is also a symmetric polynomial in the a (k),,a(k),y, -, a (k)
given r, 8 (r),,---,B (r)u(r) are roots of the polynomial

(2= B =B (2= B0

whose coefficients are symmetric polynomials in the 5 (r) j which is a symmetric polynomial
in the « (k)j ,j=1,---,my for each k. Letting g be one of these symmetric polynomials
and writing it in terms of the o (k), you would have

S Ay, e am)galn)y
117“‘ 7ln

- for each k. Thus for a

where Ay, ...;, is a symmetric polynomial in « (k:)J ,j=1,-+-,my for each k < n —1. These
coefficients are in the field (Proposition 8.3.31) Q[A (1), -+, A (n — 1)] where A (k) denotes

{a(k)l T ,oz(k)mk}
and so from Proposition F.1.3, the above symmetric polynomial is of the form
K,
D Bk, 21 (@) a (), ) piy (), an),,,)
(k1 km,,)

where By, ..k, ~is a symmetric polynomial in « (k)J ,j=1,--- my for each k <n—1. Now
do for each By,...k,, what was just done for g featuring this time

{a(n_l)“... 7a(n—1)mn_1}

and continuing this way, it must be the case that eventually you have a sum of integer
multiples of products of elementary symmetric polynomials in « (k) jod =1 my for
each k < n. By Theorem F.1.4, these are each rational numbers. Therefore, each such g is
a rational number and so the 8 (r)j are algebraic. Now 6.15 contradicts Corollary F.3.3.

Note this lemma is sufficient to prove Lindemann’s theorem that 7 is transcendental.
Here is why. If 7 is algebraic, then so is 7 and so from this lemma, € + ¢?™ # 0 but this is
not the case because ™ = —1.

The next theorem is the main result, the Lindemannn Weierstrass theorem.

Theorem F.3.5 Suppose a(1),---,a(n) are nonzero algebraic numbers and suppose
a(l)v"' 7a(n)
are distinct algebraic numbers. Then

a(1)et® +a(2)e® 4 ... a(n)e™ £0
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Proof: Suppose a (j) = a(j), is a root of the polynomial

Uj, / ’ [ thiS pOI} nomial be a (])] o, a (.7)77” . S
COIltI'aI'y lhat uppose to lhe
a (1)] ea(l) + a (2)] ea(2) -4 a (n) ea(n) 0

Then consider the big product

H <a (1)i1 e 4 g (2)i2 @ 4.4 (n)i" ea(n)) (6.16)
(ilr“' 7in)
ike{l,--- ,mk}
the product taken over all ordered lists (i1, - ,4,). This product equals
0= bleﬂ(l) + b265(2) NI bNeB(N) (6.17)

where the [ (j) are the distinct exponents which result. The f (i) are clearly algebraic
because they are the sum of the « (i). Since the product in 6.16 is taken for all ordered lists
as described above, it follows that for a given k,if a (k), is switched with a (k) ;» that is, two
of the roots of vyz™* + --- 4+ uy are switched, then the product is unchanged and so 6.17

is also unchanged. Thus each by is a symmetric polynomial in the a (k) jod=1 my for
each k. It follows . '
b= Y A ge.al@ialn)r
(J1s sdmn)
and this is symmetric in the {a(n),, - ,a (n)mn} the coefficients Aj;, ... ;. = being in the

field (Proposition 8.3.31) Q[A(1),---,A(n — 1)] where A (k) denotes
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and so from Proposition F.1.3,

o= Y Bjgupi (aln)ycan), ) opir (a(n),a(n), )

(Js sdmn)

my
where the Bj, .. are symmetric in {a(k)j}‘ ) for each k¥ < n — 1. Now doing to
j=

sJmp

Bj, ... j.., what was just done to by and continuing this way, it follows by is a finite sum of
my

integers times elementary polynomials in the various {a (k) j} for £ < n. By Theorem
j=1

J_
F.1.4 this is a rational number. Thus by is a rational number. Multiplying by the product
of all the denominators, it follows there exist integers ¢; such that

0= c1ePD 4 eP@ L4 e

which contradicts Lemma F.3.4. B
This theorem is sufficient to show e is transcendental. If it were algebraic, then

ee 4+ (=1)e’ £0
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but this is not the case. If a # 1 is algebraic, then In (a) is transcendental. To see this, note
that
1e™@ 4 (=1)ae® =0

which cannot happen according to the above theorem. If a is algebraic and sin (a) # 0, then
sin (a) is transcendental because

1 ia 1 —ia : 0

—e' — —e —1)sin(a)e” =0

5 5;¢ T (=1)sin(a)
which cannot occur if sin (a) is algebraic. There are doubtless other examples of numbers
which are transcendental by this amazing theorem.

F.4 More On Algebraic Field Extensions

The next few sections have to do with fields and field extensions. There are many linear
algebra techniques which are used in this discussion and it seems to me to be very interesting.
However, this is definitely far removed from my own expertise so there may be some parts of
this which are not too good. I am following various algebra books in putting this together.

Consider the notion of splitting fields. It is desired to show that any two are isomorphic,
meaning that there exists a one to one and onto mapping from one to the other which
preserves all the algebraic structure. To begin with, here is a theorem about extending
homomorphisms. [17]

Definition F.4.1 Suppose F.F are two fields and that f : F — F is a homomorphism. This
means that

fley)=f(@)fQy), flet+y) =f(x)+f(y)

An isomorphism is a homomorphism which is one to one and onto. A monomorphism is
a homomorphism which is one to one. An automorphism is an isomorphism of a single
field. Sometimes people use the symbol ~ to indicate something is an isomorphism. Then if
p(z) € Flz], say

n
p(x) = Z aga®,
k=0

P (x) will be the polynomial in F [x] defined as
plx) = f(ar)a®.
k=0

Also consider f as a homomorphism of F [x] and F[z] in the obvious way.
f(p(x) =p(z)
The following is a nice theorem which will be useful.

Theorem F.4.2 Let F be a field and let v be algebraic over F. Let p(x) be the minimal
polynomial of r. Thus p(r) = 0 and p(x) is monic and no nonzero polynomial having
coefficients in F of smaller degree has r as a root. In particular, p (x) is irreducible over F.
Then define f : F[z] — F[r], the polynomials in r by

f <i ai:ci> = iairi
i=0 i=0

Download free eBooks at bookboon.com



Then f is a homomorphism. Also, defining g : F[z] / (p (z)) by
9(lg(@)]) = fq(z)) =q(r)
it follows that g is an isomorphism from the field F [z] / (p (z)) to F[r] .

Proof: First of all, consider why f is a homomorphism. The preservation of sums is
obvious. Consider products.

4,7 ij
Zairiijrj =f (Z aixi> f (Z bjxj)
i j i j

Thus it is clear that f is a homomorphism.
First consider why ¢ is even well defined. If [¢ (z)] = [¢1 (z)], this means that
@ (z) —q(x) =p(x)l(z)
for some I (z) € F [z]. Therefore,

f a1 () flg@@)+ f(p(x)i(z))
= flg@)+ f(p(=)f((x))
= q(r)+p)l(r)=q(r)=f(q(z))

Now from this, it is obvious that g is a homomorphism.

g([g@)] [ (@)]) = g(g@) a(@)])=flg@)qa(r)=q()aqlr
g([g (@) g ([q1 (=)]) q(r)qi(r)

Similarly, g preserves sums. Now why is g one to one? It suffices to show that if g ([¢ (z)]) = 0,
then [¢ (x)] = 0. Suppose then that

Then
q(x) =p(x)l(z)+p(z)
where the degree of p () is less than the degree of p (z) or else p (z) = 0. If p(x) # 0, then
it follows that
p(r)=0

and p (z) has smaller degree than that of p () which contradicts the definition of p (z) as the
minimal polynomial of r. Since p (x) is irreducible, F [z] / (p (z)) is a field. It is clear that g
is onto. Therefore, F[r] is a field also. (This was shown earlier by different reasoning.) W

Here is a diagram of what the following theorem says.

Extending f to g

F é F
p(z)eFlz] L p(z) € F[a]
p(x) = ZZ:O akmk - Z:of(ak) zk =p(x)
(r)y=0 p(F)=0
F[r 5% F [7]
r g r
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One such g for each 7

Theorem F.4.3 Let f : F —TF be an isomorphism of the two fields. Let r be algebraic
over F with minimal polynomial p (x) and suppose there exists 7 algebraic over F such that
p(F) = 0. Then there exists an isomorphism g : F[r] — F[F] which agrees with f on F. If
g :Flr]— F[r] is an isomorphism which agrees with f on F and if o ([k (z)]) = k (r) is the
homomorphism mapping F [x] / (p(x)) to Fr], then there must exist ¥ such that p(7) = 0
and g = Ba~" where B3

8:F ]/ (p(x) = F [

is given by B ([k (x)]) = k (7). In particular, g (r) = T.

Proof: From Theorem F.4.2; there exists «, an isomorphism in the following picture,
a (k@) =k(r). ,
Flr] & Flz]/ (p(x)) = F[7]

where 3 ([k (z)]) = k (7). (k () comes from f as described in the above definition.) This 3
is a well defined monomorphism because of the assumption that p (¥) = 0. This needs to be
verified. Assume then that it is so. Then just let g = fa~1.

Why is 8 well defined? Suppose [k (x)] = [k’ ()] so that k () — k' () = (x) p(z). Then
since f is a homomorphism,

k(z) =k (x) =1(x)p(x), k() —gh' (F) =1(7)p(F) =0

so [ is indeed well defined. It is clear from the definition that 8 is a homomorphism. Suppose
B ([k (z)]) = 0. Does it follow that [k (z)] = 07 By assumption, g (7) = 0 and also,

R () = p(2) [ (@) + 7 (2)

where the degree of p(x) is less than the degree of p (z) or else it equals 0. But then, since
f is an isomorphism,
k(z)=p(x)l(z)+p(z)

]
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where the degree of p (z) is less than the degree of p (x). However, the above shows that
p (r) = 0 contrary to p (z) being the minimal polynomial. Hence p (x) = 0 and this implies
that [k (x)] = 0. Thus 3 is one to one and a homomorphism. Hence g = Ba~! works if it

is also onto. However, it is clear that o' is onto and that 3 is onto. Hence the desired
extension exists.

Now suppose such an isomorphism g exists. Then 7 must equal g (r) and
0=g(p(r)=plg(r)=p()
Hence, 3 can be defined as above as 3 ([k (z)]) = k () relative to this 7 = g (r) and
Ba= (k(r) =Bk (@) =k(g(r) =g (k(r))

|

What is the meaning of the above in simple terms? It says that the monomorphisms
from F[r] to a field K containing F correspond to the roots of p(x) in K. That is, for each
root of p (z), there is a monomorphism and for each monomorphism, there is a root. Also,
for each root 7 of p(x) in K, there is an isomorphism from F [r] to F[].
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Note that if p (x) is a monic irreducible polynomial, then it is the minimal polynomial
for each of its roots. This is the situation which is about to be considered. It involves the
splitting fields K, K of p (), p (z) where 7 is an isomorphism of F and [ as described above.
See [17]. Here is a little diagram which describes what this theorem says.

Definition F.4.4 The symbol [K : F] where K is a field extension of F means the dimension
of the vector space K with field of scalars F.

. 3 :
o i () = p () p (@)
Flry, - o] 2 ]

B m < [K:TF]
2_1, am7{m[ :F},fi#qjj

Theorem F.4.5 Let 1 be an isomorphism from F to F and let K = Flry,--- ,r,],K =
F [y, , 7] be splitting fields of p(x) and p(x) respectively. Then there ewist at most
[K : F] isomorphisms (; : K — K which extend n. If {Fi,---,7,} are distinct, then there
exist exactly [K : F| isomorphisms of the above sort. In either case, the two splitting fields
are isomorphic with any of these (; serving as an isomorphism.

Proof: Suppose [K: F] = 1. Say a basis for K is {r}. Then {1,r} is dependent and so
there exist a,b € F, not both zero such that a + br = 0. Then it follows that r € F and so in
this case F = K. Then the isomorphism which extends 7 is just 7 itself and there is exactly
1 isomorphism.

Next suppose [K:F] > 1. Then p(x) has an irreducible factor over F of degree larger
than 1, ¢ (z). If not, you would have

p(z)=2a" +a, 12"+ ta,

and it would factor as
=(@—r1) - (x—rp)

with each r; € F, so F = K contrary to [K: F] > 1.Without loss of generality, let the roots
of g (z) in K be {ry, -+, 7 }. Thus

m n
“fle-—r. p@=T[e-n
i=1 i=1

Now g (x) defined analogously to p (z), also has degree at least 2. Furthermore, it divides
P () all of whose roots are in K. Denote the roots of g (z) in K as {7, , 7, } where they
are counted according to multiplicity.

Then from Theorem F.4.3, there exist k¥ < m one to one homomorphisms ¢, mapping
FF [r1] to K, one for each distinct root of g (x) in K. If the roots of p (z) are distinct, then
this is sufficient to imply that the roots of g (z) are also distinct, and k¥ = m. Otherwise,
maybe k < m. (It is conceivable that g (z) might have repeated roots in K.) Then

[K:F]=[K:TF[r]][F[r] : F]

and since the degree of ¢ (x) > 1 and ¢ () is irreducible, this shows that [F [r1] : F] =m > 1
and so
[K:F[r]] < [K:TF

Therefore, by induction, each of these & < m = [F[ri]: F|] one to one homomorphisms
extends to an isomorphism from K to K and for each of these (;, there are no more than
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[K : F[rq]] of these isomorphisms extending F. If the roots of p (z) are distinct, then there
are exactly m of these (; and for each, there are [K: F[rq]] extensions. Therefore, if the
roots of p(x) are distinct, this has identified

[K:F[r]]m=[K:Fr]][F[r]: F] = [K:F]

isomorphisms of K to K which agree with 1 on F. If the roots of p () are not distinct, then
maybe there are fewer than [K : F] extensions of 7.

Is this all of them? Suppose € is such an isomorphism of K and K. Then consider its
restriction to F[r;]. By Theorem F.4.3, this restriction must coincide with one of the (;
chosen earlier. Then by induction, ¢ is one of the extensions of the (; just mentioned. W

Definition F.4.6 Let K be a finite dimensional extension of a field F such that every el-
ement of K is algebraic over F, that is, each element of K is a root of some polynomial
in Flx]. Then K is called a normal extension if for every k € K all roots of the minimal
polynomial of k are contained in K.

So what are some ways to tell a field is a normal extension? It turns out that if K is a
splitting field of f () € F[z], then K is a normal extension. I found this in [17]. This is an
amazing result.

Proposition F.4.7 Let K be a splitting field of f (z) € F[x]. ThenK is a normal extension.
In fact, if L is an intermediate field between F and K, then IL is also a normal extension of
F.

Proof: Let » € K be a root of g (x), an irreducible monic polynomial in F[z]. Tt is
required to show that every other root of g (x) is in K. Let the roots of g (z) in a splitting
field be {r1 = r, 72, -+ ;7 }. Now g (z) is the minimal polynomial of r; over F because g (x)
is irreducible. Recall why this was. If p (z) is the minimal polynomial of r;,

g(z)=p(x)l(z)+r(z)

where r (2) either is 0 or it has degree less than the degree of p (x) . However, r (r;) = 0 and
this is impossible if p (z) is the minimal polynomial. Hence r (z) = 0 and now it follows
that g (x) was not irreducible unless [ (z) = 1.

By Theorem F.4.3, there exists an isomorphism »n of F[r{] and F [r;] which fixes F and
maps r1 to ;. Now K [rq] and K[r;] are splitting fields of f (x) over F [r1] and F [r;] respec-
tively. By Theorem F.4.5, the two fields K [r{] and K [r;] are isomorphic, the isomorphism,
¢ extending 1. Hence

(K] : K] = [Kr;] : K]

But 7 € K and so K[rq] = K. Therefore, K = K{r;] and so r; is also in K. Thus all the
roots of g () are actually in K. Consider the last assertion.

Suppose 7 = 1, € L where the minimal polynomial for r is denoted by ¢ (z). Then
letting the roots of ¢ (z) in K be {r1, -+ ,rn}. By Theorem F.4.3 applied to the identity
map on L, there exists an isomorphism 6 : L [r1] — L [r;] which fixes L and takes r to r;.
But this implies that

1=[L[r]:L)=[L[r]:L]

Hence 7; € L also. Since r was an arbitrary element of L, this shows that L is normal. B

Definition F.4.8 When you haveF [aq, - - - , a,,] with each a; algebraic so that F[ay,- -, an)]
is a field, you could consider
f@)=]]fi)
i=1
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where f; (x) is the minimal polynomial of a;. Then if K is a splitting field for f (x), this K
is called the normal closure. It is at least as large as F[a1, -+ , am] and it has the advantage
of being a normal extension.

F.5 The Galois Group

In the case where F = IF, the above suggests the following definition.

Definition F.5.1 When K is a splitting field for a polynomial p (x) having coefficients in
F, we say that K is a splitting field of p(x) over the field F. Let K be a splitting field of
p(z) over the field F. Then G (K,F) denotes the group of automorphisms of K which leave
F fixed. For a finite set S, denote by |S| as the number of elements of S. More generally,
when K is a finite extension of L, denote by G (K,L) the group of automorphisms of K
which leave L fized.

It is shown later that G (K, F) really is a group according to the strict definition of a
group. For right now, just regard it as a set of automorphisms which keeps F fixed. Theorem
F.4.5 implies the following important result.

Theorem F.5.2 Let K be a splitting field of p (x) over the field F. Then
G (K, F)| < [K:F]
When the roots of p (x) are distinct, equality holds in the above.

So how large is |G (K, F)| in case p (x) is a polynomial of degree n which has n distinct
roots? Let p (z) be a monic polynomial with roots in K, {ry,--- ,r,} and suppose that none
of the r; is in [F. Thus

p(r) = 2" +ax" ' +axx" 4 +a,
n
= H(a:—rk),aiE]F
k=1
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Thus K consists of all rational functions in the rq,---,r,. Let ¢ be a mapping from
{r1,--+,rn} to {ry,--- ,rn}, say r; — r;;. In other words o produces a permutation of
these roots. Consider the following way of obtaining something in G (K,F) from o. If
you have a typical thing in K, you can obtain another thing in K by replacing each r;
with r;, in a rational function, a quotient of two polynomials which have coefficients in F.
Furthermore, if you do this, you can see right away that the resulting map form K to K is
obviously an automorphism, preserving the operations of multiplication and addition. Does
it keep F fixed? Of course. You don’t change the coefficients of the polynomials in the
rational function which are always in F. Thus every permutation of the roots determines
an automorphism of K. Now suppose ¢ is an automorphism of K. Does it determine a

permutation of the roots?
0=0o(p(r:i)) =o(p(o(r)))

and so o (r;) is also a root, say r;;. Thus it is clear that each o € G (K,F) determines
a permutation of the roots. Since the roots are distinct, it follows that |G (K,F)| equals
the number of permutations of {ry,---,r,} which is n! and that there is a one to one
correspondence between the permutations of the roots and G (K, F). More will be done on
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this later after discussing permutation groups.
This is a good time to make a very important observation about irreducible polynomials.

Lemma F.5.3 Suppose q(x) # p(x) are both irreducible polynomials over a field F. Then
for K a field which contains all the roots of both polynomials, there is no root common to
both p (x) and q (z).

Proof: If [ (z) is a monic polynomial which divides them both, then [ (z) must equal
1. Otherwise, it would equal p(x) and ¢ (z) which would require these two to be equal.
Thus p(x) and ¢ (x) are relatively prime and there exist polynomials a (z),b(x) having
coefficients in F such that

a(z)p(x)+b(x)q(x) =1

Now if p (z) and ¢ (z) share a root r, then (x — r) divides both sides of the above in K [z],
but this is impossible. B

Now here is an important definition of a class of polynomials which yield equality in the
inequality of Theorem F.5.2.

Definition F.5.4 Let p(z) be a polynomial having coefficients in a field F. Also let K be a
splitting field. Then p (x) is separable if it is of the form

p(z) = HQi ()"

where each q; (z) is irreducible over F and each g; (xz) has distinct roots in K. From the
above lemma, no two g; (x) share a root. Thus

p1(@) =[] ()
=1

has distinct roots in K.

For example, consider the case where F = Q and the polynomial is of the form
(a:2 + 1)2 (m2 — 2)2 =28 —22% — 32t + 422 +4

Then let K be the splitting field over Q, Q [z’, \/ﬂ .The polynomials 22 + 1 and 2% — 2 are
irreducible over Q and each has distinct roots in K.

This is also a convenient time to show that G (K, F) for K a finite extension of F really
is a group. First, here is the definition.

Definition F.5.5 A group G is a nonempty set with an operation, denoted here as - such
that the following axioms hold.

1. Fora,B,v€ G,(a-B)-y=a- (B 7). We usually don’t bother to write the -.

2. There exists 1 € G such that ar = 1o = «

3. For every a € G, there exists o™ € G such that aa™' = o~ ta = 1.

Then why is G = G (K, F), where K is a finite extension of F, a group? If you simply
look at the automorphisms of K then it is obvious that this is a group with the operation
being composition. Also, from Theorem F.4.5 |G (K,F)| is finite. Clearly ¢+ € G. It is
just the automorphism which takes everything to itself. The operation in this case is just
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composition. Thus the associative law is obvious. What about the existence of the inverse?
Clearly, you can define the inverse of a, but does it fix F? If oo = ¢, then the inverse is clearly
t. Otherwise, consider a, o2, - - - . Since |G (K, F)| is finite, eventually there is a repeat. Thus
o™ = a", n > m. Simply multiply on the left by (a‘l)m to get ¢ = aa™ ™. Hence a~ ! is
a suitable power of o and so ™! obviously leaves F fixed. Thus G (K, F) which has been
called a group all along, really is a group.

Then the following corollary is the reason why separable polynomials are so important.
Also, one can show that if F contains a field which is isomorphic to Q then every polynomial
with coefficients in F is separable. This will be done later after presenting the big results.
This is equivalent to saying that the field has characteristic zero. In addition, the property
of being separable holds in other situations which are described later.

Corollary F.5.6 Let K be a splitting field of p(x) over the field F. Assume p(x) is
separable. Then
|G (K,F)| = [K:F]

Proof: Just note that K is also the splitting field of p; (x), the product of the distinct
irreducible factors and that from Lemma F.5.3, p; (x) has distinct roots. Thus the conclusion
follows from Theorem F.4.5. B

What if L is an intermediate field between F and K? Then p; () still has coefficients in
L and distinct roots in K and so it also follows that

|G (K,L)| = [K: L]

Definition F.5.7 Let G be a group of automorphisms of a field K. Then denote by Kg the
fizxed field of G. Thus

Ke={xeK:0(z) =2 for alloc € G}

Thus there are two new things, the fixed field of a group of automorphisms H denoted
by Ky and the Gallois group G (K, L). How are these related? First here is a simple lemma
which comes from the definitions.

Lemma F.5.8 Let K be an algebraic extension of L (each element of L is a root of some
polynomial in L) for L,K fields. Then

G(K L) =G (K Kgxy)

Proof: It is clear that . C Kgk 1) because if r € I then by definition, everything in
G (K, L) fixes r and so 7 is in K¢k ). Therefore,

G(K,L) 2 G (K, KgxL) -

Now let 0 € G (K,LL) then it is one of the automorphisms of K which fixes everything in
the fixed field of G (K,L). Thus, by definition, ¢ € G (K, KG(]K,]L)) and so the two are the
same. l

Now the following says that you can start with L, go to the group G (K, L) and then to
the fixed field of this group and end up back where you started. More precisely,

Proposition F.5.9 IfK is a splitting field of p (x) over the field F for separable p (z), and
if L is a field between K and F, then K is also a splitting field of p (x) over L and also

L =Keax,.L)
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Proof: By the above lemma, and Corollary F.5.6,

IG(K,L) = [K:L]=[K:Kexy] Kexr : L]
|G (K, Kewn))| [Kexw : L] =16 K,L)| [Kewx,w : L]

which shows that [KG(K,L) : IL] =1 and so, since . C Kgk 1), it follows that L. = K¢k 1)
|

This has shown the following diagram in the context of K being a splitting field of a
separable polynomial over F and L being an intermediate field.

L—G (K, ]L) — KG(K,]L) =L

In particular, every intermediate field is a fixed field of a subgroup of G (K,F). Is every
subgroup of G (K, F) obtained in the form G (K, L) for some intermediate field? This involves
another estimate which is apparently due to Artin. T also found this in [17]. There is more
there about some of these things than what I am including.

Theorem F.5.10 Let K be a field and let G be a finite group of automorphisms of K. Then
K:Kg] < |G|

Proof: Let G = {01, -+ ,0n},01 = ¢ the identity map and suppose {uy, - ,un} is a
linearly independent set in K with respect to the field K. Suppose m > n. Then consider
the system of equations

o1 (up) @y + o1 (u2)xo + - + 01 () T, =0

oy (ur) @y + oa (uz) X + -+ + 02 (Upy) Ty, =0
: (6.18)

on(up) @y +op (U)X + - + 0 () Ty, =0

which is of the form Mx = 0 for x € K™. Since M has more columns than rows, there
exists a nonzero solution x € K™ to the above system. Note that this could not happen if
x € K¢ because of independence of {uy,- - ,u,} and the fact that o1 = ¢. Let the solution
x be one which has the least possible number of nonzero entries. Without loss of generality,
some zj = 1 for some k. If o, (xx) = zy for all z; and for each r, then the x are each
in Kg and so the first equation above would be impossible as just noted. Therefore, there
exists [ # k and o, such that o, (z;) # x;. For purposes of illustration, say | > k. Now
do o, to both sides of all the above equations. This yields, after re ordering the resulting
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equations a list of equations of the form

o1 (u) oy (z)+--+or(ug) L+ 401 (w)o, () + -+ 01 (Um) op (X)) =0
Jg(ul)a,,(xl)—i----—}—og(uk)l—|—~-+02(ul)0r(ml)—l—-'-—i—ag(um)ar(xm):0

G (1) O (22) 4 -+ O (W) Lt -+ 0 (1) 00 (32) + -+ + O (1) T () = O

This is because o (1) = 1 if o is an automorphism. The original system in 6.18 is of the
form
op(up)xy 4+ +o(up) 14+ 4o (w)x+ -+ 01 (Um) T, =0
oa(up)xy 4+ F+oa(up)l 4+ +or(w)x+ -+ 02 (Um) Ty =0

on(up)xy 4+ Fop(up) 14+ +o (w) x4+ -+ opn (Um) Ty, =0

Now replace the k" equation with the difference of the k" equations in the original system
and the one in which o, was done to both sides of the equations. Since o, (z;) # z; the
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result will be a linear system of the form My = 0 where y # 0 has fewer nonzero entries
than x, contradicting the choice of x. B

With the above estimate, here is another relation between the fixed fields and subgroups
of automorphisms. It doesn’t seem to depend on anything being a splitting field of a
separable polynomial.

Proposition F.5.11 Let H be a finite group of automorphisms defined on a field K. Then
for Ky the fixed field,

Proof: If o € H, then by definition, 0 € G (K,Kg). It is clear that H C G (K,Kp).
Then by Proposition F.5.10 and Theorem F.5.2,

|H| > [K:Kp] > |G (K Ku)| > [H|

and so H = G(K,Kg). B
This leads to the following interesting correspondence in the case where K is a splitting
field of a separable polynomial over a field F.

Fixed fields Subgroups of G (K, F) (6.19)

Ky &

L% GKL)

H
Then afL =L and faH = H. Thus there exists a one to one correspondence between the
fixed fields and the subgroups of G (K,F). The following theorem summarizes the above
result.

Theorem F.5.12 Let K be a splitting field of a separable polynomial over a field F. Then
there exists a one to one correspondence between the fizved fields Ky for H a subgroup of
G (K,F) and the intermediate fields as described in the above. Hy C Hy if and only if
KHl :_) KH2. Also

|H| = [K: Kg]

Proof: The one to one correspondence is established above. The claim about the fixed
fields is obvious because if the group is larger, then the fixed field must get harder because it
is more difficult to fix everything using more automorphisms than with fewer automorphisms.
Consider the estimate. From Theorem F.5.10, |H| > [K: Kg|. But also, H = G (K,Kg)
from Proposition F.5.11 G (K,Ky) = H and from Theorem F.5.2,

|H|=|G(K,Kp)| < [K:Kg].

|
Note that from the above discussion, when K is a splitting field of p (z) € F[z], this
implies that if L is an intermediate field, then it is also a fixed field of a subgroup of G (K, F).
In fact, from the above,
L=Kegx,.)

If H is a subgroup, then it is also the Galois group
H=GKKg).

By Proposition F.4.7, each of these intermediate fields I is also a normal extension of F.
Now there is also something called a normal subgroup which will end up corresponding with
these normal field extensions consisting of the intermediate fields between F and K.
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F.6 Normal Subgroups

When you look at groups, one of the first things to consider is the notion of a normal
subgroup.

Definition F.6.1 Let G be a group. Then a subgroup N is said to be a normal subgroup if
whenever a € G,
a 'NaCN

The important thing about normal subgroups is that you can define the quotient group
G/N.

Definition F.6.2 Let N be a subgroup of G. Define an equivalence relation ~ as follows.

a~ B means a 1B e N

1

Why is this an equivalence relation? It is clear that a ~ « because o™ o =1 € N since

N is a subgroup. If a ~ 3, then a~ '3 € N and so, since N is a subgroup,
(04_15)71 =B laeN

which shows that 8 ~ «. Now suppose aa ~ 3, then o~ '3 € N and so, since N is a
subgroup,

(@'8) =B taeN
which shows that 3 ~ a. Now suppose a ~ 8 and 8 ~ . Then o~ '3 € N and 8~ '~ € N.
Then since N is a subgroup
a lppTly=a"lyeN
and so « ~ v which shows that it is an equivalence relation as claimed. Denote by [a] the
equivalence class determined by a.
Now in the case of N a normal subgroup, you can consider the quotient group.

Definition F.6.3 Let N be a normal subgroup of a group G and define G/N as the set of
all equivalence classes with respect to the above equivalence relation. Also define

[] 18] = [f]

Proposition F.6.4 The above definition is well defined and it also makes G/N into a
group.

Proof: First consider the claim that the definition is well defined. Suppose then that
a~ o and B ~ . It is required to show that

[af] = [o/F]
But
EN
—~
(a,@)_l 06/6/ _ ﬂ_loflo/ﬁ’ :B—laflalﬁ/
EN EN

—N— —
= g (a™"a) BB =mnina € N

Thus the operation is well defined. Clearly the identity is [¢] where ¢ is the identity in G
and the inverse is [a‘l] where a~! is the inverse for o in . The associative law is also
obvious. l

Note that it was important to have the subgroup be normal in order to have the operation
defined on the quotient group.
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F.7 Normal Extensions And Normal Subgroups

When K is a splitting field of a separable polynomial having coefficients in I, the intermediate
fields are each normal extensions from the above. If L is one of these, what about G (L, F)?
is this a normal subgroup of G (K, F)? More generally, consider the following diagram which
has now been established in the case that K is a splitting field of a separable polynomial in

F=1Lo CLy C Ly oo ClLg CLy=K (6.20)
G(FF)={i} CGL,F) CG(LyF) - CG(liF) CGEEF) O
The intermediate fields LL; are each normal extensions of F each element of I; being algebraic.
As implied in the diagram, there is a one to one correspondence between the intermediate
fields and the Galois groups displayed. Is G (L;_1,F) a normal subgroup of G (L;,F)?

Let o € G(L;,F) and let n € G (Lj_1,F). Then is 07 'no € G (L;—1,F)? Let r = ry
be something in L;_; and let {r1,---,7p,} be the roots of the minimal polynomial of r
denoted by f(x), a polynomial having coefficients in F. Then 0 = of (r) = f (o (r)) and
so o (r) = r; for some j. Since L;_; is normal, o (r) € L;_;. Therefore, it is fixed by 7. It
follows that

oclne(r)=c"to(r)=r

and so 0~ no € G (L;_1,F). Thus G (L;_1,F) is a normal subgroup of G (L;,F) as hoped.
This leads to the following fundamental theorem of Galois theory.

Theorem F.7.1 Let K be a splitting field of a separable polynomial p (x) having coefficients

i a field F. Let {Li}fzo be the increasing sequence of intermediate fields between F and K
as shown above in 6.20. Then each of these is a normal extension of F and the Galois group
G (L;j_1,F) is a normal subgroup of G (L;,F). In addition to this,

G(L;,F)~G(K,F)/G(K,L,)

where the symbol ~ indicates the two spaces are isomorphic.
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Proof: All that remains is to check that the above isomorphism is valid. Let
0:G(KF)/G(KL;) = G(L;,F), 0o] = o],

In other words, this is just the restriction of o to LL;. Is 6 well defined? If [o1] = [02], then
by definition, oj05 leq (K,L;) and so o104 ! fixes everything in L;. It follows that the
restrictions of o1 and o3 to LL; are equal. Therefore, 6 is well defined. It is obvious that
0 is a homomorphism. Why is € onto? This follows right away from Theorem F.4.5. Note
that K is the splitting field of p () over L; since L; O F. Also if 0 € G (IL;,F) so it is an
automorphism of L;, then, since it fixes F, p () = p () in that theorem. Thus o extends to
¢, an automorphism of K. Thus 6 = . Why is 6 one to one? If 6 [o] = 6 [a], this means
o0 =aonL;. Thus ca™! is the identity on L;. Hence ca™! € G (K,L;) which is what it
means for [o] = [o]. B

There is an immediate application to a description of the normal closure of an algebraic
extension F[ay,as, - ,an]. To begin with, recall the following definition.

Definition F.7.2 When you have F [ay, - - - , ap] with each a; algebraic so thatTF (a1, -, am]
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is a field, you could consider
Fa =11
i=1

where f; (x) is the minimal polynomial of a;. Then if K is a splitting field for f (z), this K
is called the normal closure. It is at least as large as F[aq,- -+, a,,] and it has the advantage
of being a normal extension.

Let G (K,F) = {ny,m9, -+ ,n,,} - The conjugate fields are the fields
n; (Flar, - am])

Thus each of these fields is isomorphic to any other and they are all contained in K. Let K’
denote the smallest field contained in K which contains all of these conjugate fields. Note
that if k € Flaq, -+, am] so that n; (k) is in one of these conjugate fields, then n;n, (k) is
also in a conjugate field because 7,7; is one of the automorphisms of G (K, F). Let

S={keK :n;(k) e K eachj}.

Then from what was just shown, each conjugate field is in S. Suppose k& € S. What about
k=17
U¥ (k)nj (kil) =1, (kkil) =1 (1)=1

and so (n; (k) = n; (k7'). Now (n; (k;))_1 € K’ because K’ is a field. Therefore,
n; (kfl) € K'. Thus S is closed with respect to taking inverses. It is also closed with
respect to products. Thus it is clear that S is a field which contains each conjugate field.
However, K’ was defined as the smallest field which contains the conjugate fields. Therefore,
S = K’ and so this shows that each n; maps K’ to itself while fixing F. Thus G (K,F) C
G (K',F). However, since K’ C K, it follows that also G (K',F) C G (K,F). Therefore,
G (K',F) = G (K,IF), and by the one to one correspondence between the intermediate fields
and the Galois groups, it follows that K’ = K. This proves the following lemma.

-1

Lemma F.7.3 Let K denote the normal extension of Fay,- -, a,] with each a; algebraic
so that Flay, -+ ,am] is a field. Thus K is the splitting field of the product of the minimal
polynomials of the a;. Then K is also the smallest field containing the conjugate fields

nj (Flar, -+ sam]) for {ny,me, - np = G (K F).

F.8 Conditions For Separability

So when is it that a polynomial having coefficients in a field F is separable? It turns out
that this is always the case for fields which are enough like the rational numbers. It involves
considering the derivative of a polynomial. In doing this, there will be no analysis used, just
the rule for differentiation which we all learned in calculus. Thus the derivative is defined
as follows.

(anx" +ap_ 12"t aix+ ao)/
= napr" Pt a i (n—1)2" 2+ 4y
This kind of formal manipulation is what most students do anyway, never thinking about

where it comes from. Here na, means to add a,, to itself n times. With this definition, it
is clear that the usual rules such as the product rule hold. This discussion follows [17].
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Definition F.8.1 A field has characteristic 0 if na # 0 for alln € N and a # 0. Otherwise
a field F has characteristic p if p-1 =10 for p-1 defined as 1 added to itself p times and p
is the smallest positive integer for which this takes place.

Note that with this definition, some of the terms of the derivative of a polynomial could
vanish in the case that the field has characteristic p. I will go ahead and write them anyway.
For example, if the field has characteristic p, then

(aP —a) =0

because formally it equals p - 1P~ = 0zP~!, the 1 being the 1 in the field.

Note that the field Z,, does not have characteristic 0 because p-1 = 0. Thus not all fields
have characteristic 0.

How can you tell if a polynomial has no repeated roots? This is the content of the next
theorem.

Theorem F.8.2 Let p(x) be a monic polynomial having coefficients in a field F, and let K
be a field in which p (x) factors

p(x)zH(m—ri), r; € K.

Then the r; are distinct if and only if p (x) and p' (z) are relatively prime over F.

Proof: Suppose first that p’ (x) and p (z) are relatively prime over F. Since they are not
both zero, there exists polynomials a (x),b (x) having coefficients in F such that

a(@)p(@) +b(@)p (v) = 1
Now suppose p (z) has a repeated root r. Then in K [1],
p)=(—r’g(@)
and so p/ (z) = 2 (x — ) g (x) + (x — r)* ¢’ (). Then in K [x],
a(@) (@ =)’ g (@) +b(@) (2 =) g (@) + (@ —1)¢ (1)) =1

Then letting = = r, it follows that 0 = 1. Hence p (z) has no repeated roots.
Next suppose there are no repeated roots of p (z). Then

px)=Y [[@—r)

i=1 j#i
p’ (x) cannot be zero in this case because
n—1
p(rn)=]] (rn=r;)#0
j=1

because it is the product of nonzero elements of K. Similarly no term in the sum for p’ (x)
can equal zero because

H(’)"i 77‘]’) # 0

J#i
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Then if ¢ (x) is a monic polynomial of degree larger than 1 which divides p (x), then the
roots of ¢ (z) in K are a subset of {ry, -+ ,7,}. Without loss of generality, suppose these
roots of g (x) are {ry, -+ ,7}, k <n—1, since q (x) divides p’ (x) which has degree at most
n— 1. Then ¢ (z) = Hle (x — r;) but this fails to divide p’ (z) as polynomials in K [z] and
so ¢ (x) fails to divide p’ (z) as polynomials in F [z] either. Therefore, ¢ (x) = 1 and so the
two are relatively prime. B

The following lemma says that the usual calculus result holds in case you are looking at
polynomials with coefficients in a field of characteristic 0.

Lemma F.8.3 Suppose that F has characteristic 0. Then if f' (x) = 0, it follows that f (z)
15 a constant.

Proof: Suppose
f(z) =apz™ + 12"V 4+ a1z + ag

Then take the derivative n — 1 times to find that a, multiplied by a positive integer ma,,
equals 0. Therefore, a,, = 0 because, by assumption ma, # 0 if a,, # 0. Now repeat the
argument with

fi(z) = 12"+ a1z +ag

and continue this way to find that f(x) =ap € F. B
Now here is a major result which applies to fields of characteristic 0.

Theorem F.8.4 If F is a field of characteristic 0, then every polynomial p(x), having
coefficients in F is separable.

Proof: It is required to show that the irreducible factors of p (x) have distinct roots in
K a splitting field for p (z). So let ¢ (z) be an irreducible monic polynomial. If [ (z) is a
monic polynomial of positive degree which divides both ¢ () and ¢’ (z), then since ¢ (z) is
irreducible, it must be the case that [ (z) = ¢ (z) which forces ¢ (x) to divide ¢’ (z) . However,
the degree of ¢’ () is less than the degree of ¢ (x) so this is impossible. Hence [ (x) = 1 and
so ¢’ (z) and ¢ (x) are relatively prime which implies that ¢ (z) has distinct roots. W

It follows that the above theory all holds for any field of characteristic 0. For example,
if the field is QQ then everything holds.

Proposition F.8.5 If a field F has characteristic p, then p is a prime.
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Proof: First note that if n-1 = 0, if and only if for all a # 0,n -a = 0 also. This just
follows from the distributive law and the definition of what is meant by n - 1, meaning that
you add 1 to itself n times. Suppose then that there are positive integers, each larger than
1 n,m such that nm -1 = 0. Then grouping the terms in the sum associated with nm - 1,
it follows that n (m - 1) = 0. If the characteristic of the field is nm, this is a contradiction
because then m - 1 # 0 but n times it is, implying that n < nm but n - a = 0 for a nonzero
a. Hence n - 1 = 0 showing that mn is not the characteristic of the field after all. B

Definition F.8.6 A field F is called perfect if every polynomial p (x) having coefficients in
F is separable.

The above shows that fields of characteristic 0 are perfect. The above theory about
Galois groups and fixed fields all works for perfect fields. What about fields of characteristic
p where p is a prime? The following interesting lemma has to do with a nonzero a € F
having a pt* root in F.
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Lemma F.8.7 Let F be a field of characteristic p. Let a # 0 where a € F. Then either
xP — a is irreducible or there exists b € F such that 2P —a = (z — b)".

Proof: Suppose that 2P — a is not irreducible. Then 2P — a = g (z) f () where the
degree of g (x) , k is less than p and at least as large as 1. Then let b be a root of g (). Then
b? — a = 0. Therefore,

2 —a=a2" - = (x - b)’.

That is right. 2P — b? = (z — b)” just like many beginning calculus students believe. It
happens because of the binomial theorem and the fact that the other terms have a factor of
p. Hence

o’ —a=(z-b)"=g(z)f(r)

and so g (z) divides (x — b)” which requires that g (z) = (z — b)* since g () has degree k.
It follows, since g () is given to have coefficients in F, that * € F. Also b € F. Since k,p
are relatively prime, due to the fact that k < p with p prime, there are integers m,n such
that

1=mk+np

Then from what you mean by raising b to an integer power and the usual rules of exponents
for integer powers,
b= (b")" ()" € F.
|
So when is a field of characteristic p perfect? As observed above, for a field of charac-

teristic p,
(a+b)* = aP + bP.

Also,
(ab)? = aPb?

It follows that @ — aP is a homomorphism. This is also one to one because, as mentioned
above
(a—b)P =aP —b°

Therefore, if a? = bP, it follows that a = b. Therefore, this homomorphism is also one to
one.

Let FP be the collection of a? where a € F. Then clearly F? is a subfield of F because
it is the image of a one to one homomorphism. What follows is the condition for a field of
characteristic p to be perfect.

Theorem F.8.8 Let F be a field of characteristic p. Then F is perfect if and only if F = FP.

Proof: Suppose F = F? first. Let f (z) be an irreducible polynomial over F. By Theorem
F.8.2,if f' (x) and f (z) are relatively prime over FF then f (z) has no repeated roots. Suppose
then that the two polynomials are not relatively prime. If d (z) divides both f (x) and f’ (x)
with degree of d (x) > 1. Then, since f (z) is irreducible, it follows that d (z) is a multiple
of f(z) and so f (x) divides f’ (z) which is impossible unless f’ () = 0. But if f/ (z) =0,
then f (z) must be of the form

ap + aya? + apx® + - 4 apx™?

since if it had some other nonzero term with exponent not a multiple of p then f’ (z) could
not equal zero since you would have something surviving in the expression for the derivative
after taking out multiples of p which is like

kaxk~1
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where a # 0 and k < p. Thus ka # 0. Hence the form of f (z) is as indicated above.
If aj, = b}, for some by, € F, then the expression for f (z) is

bl + Wia? + bha®P 4 - 4 bR "
= (bo+ b1z + by + -+ bya™)”

because of the fact noted earlier that a — a? is a homomorphism. However, this says that
f (z) is not irreducible after all. It follows that there exists aj such that ay ¢ FP contrary
to the assumption that F = FP. Hence the greatest common divisor of f’ (z) and f (z) must
be 1.

Next consider the other direction. Suppose F # FP. Then there exists a € F\ F’.
Consider the polynomial 2P — a. As noted above, its derivative equals 0. Therefore, P — a
and its derivative cannot be relatively prime. In fact, 2 — a would divide both. H

Now suppose F is a finite field. If n - 1 is never equal to 0 then, since the field is finite,
k-1=m-1, for some k <m. m >k, and (m — k) - 1 = 0 which is a contradiction. Hence
F is a field of characteristic p for some prime p, by Proposition F.8.5. The mapping a — a?
was shown to be a homomorphism which is also one to one. Therefore, F? is a subfield of
F. It follows that it has characteristic ¢ for some ¢ a prime. However, this requires ¢ = p
and so FP = F. Then the following corollary is obtained from the above theorem.

Corollary F.8.9 IfF is a finite field, then F is perfect.

With this information, here is a convenient version of the fundamental theorem of Galois
theory.

Theorem F.8.10 Let K be a splitting field of any polynomial p (z) € F[x] where F is
either of characteristic 0 or of characteristic p with FP = TF. Let {]Li}f:o be the increasing

sequence of intermediate fields between F and K. Then each of these is a normal extension
of F and the Galois group G (L;—1,F) is a normal subgroup of G (L;,IF). In addition to this,

G([L;,F)~GKTF)/G(K,L;j)

where the symbol ~ indicates the two spaces are isomorphic.

F.9 Permutations

Let {a1, - ,a,} be a set of distinct elements. Then a permutation of these elements is
usually thought of as a list in a particular order. Thus there are exactly n! permutations of
a set having n distinct elements. With this definition, here is a simple lemma.

Lemma F.9.1 FEvery permutation can be obtained from every other permutation by a finite
number of switches.

Proof: This is obviousif n = 1 or 2. Suppose then that it is true for sets of n—1 elements.
Take two permutations of {ai, - ,an}, P1, Ps. To get from P; to P» using switches, first
make a switch to obtain the last element in the list coinciding with the last element of Ps.
By induction, there are switches which will arrange the first n — 1 to the right order. W

It is customary to consider permutations in terms of the set I,, = {1,--- ,n} to be more
specific. Then one can think of a given permutation as a mapping ¢ from this set I,, to
itself which is one to one and onto. In fact, o (i) = j where j is in the i*" position. Often
people write such a ¢ in the following form

1 2 .. n
(z@ . Zn) (6.21)
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An easy way to understand the above permutation is through the use of matrix multiplica-

tion by permutation matrices. The above vector (i1, - - 7in)T is obtained by
1
2
(e, e, - e, ) : (6.22)
n

This can be seen right away from looking at a simple example or by using the definition of
matrix multiplication directly.

Definition F.9.2 The sign of the permutation 6.21 is defined as the determinant of the
above matriz in 6.22.

In other words, the sign of the permutation

1 2 ... n
iy iy e ip

equals sgn (i1, - ,i,) defined earlier in Lemma 3.3.1.

Note that from the fact that the determinant is well defined and its properties, the sign of
a permutation is 1 if and only if the permutation is produced by an even number of switches
and that the number of switches used to produce a given permutation must be either even
or odd. Of course a switch is a permutation itself and this is called a transposition. Note
also that all these matrices are orthogonal matrices so to take the inverse, it suffices to take
a transpose, the inverse also being a permutation matrix.

The resulting group consisting of the permutations of I,, is called S,,. An important idea
is the notion of a cycle. Let o be a permutation, a one to one and onto function defined on
I,. A cycle is of the form

(k’,a(kj) o2 (k),o%(k), - 0™t (k;)) , o (k) =k.
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The last condition must hold for some m because I, is finite. Then a cycle can be considered

as a permutation as follows. Let (i1,42, - ,%m) be a cycle. Then define o by o (i1) =
ig,O’(ig) = i3,"~ ,U(im) = il, and if k& ¢ {il,ig,-" ,im}, then O'(k) =k.
Note that if you have two cycles, (i1,%2, " ,%m), (j1,742, ,Jm) Which are disjoint in

the sense that
{ivsiz, - im0 {1, J2, o s Jm} =0,
then they commute. It is then clear that every permutation can be represented in a unique
way by disjoint cycles. Start with 1 and form the cycle determined by 1. Then start with the
smallest k € I,, which was not included and begin a cycle starting with this. Continue this
way. Use the convention that (k) is just the identity. This representation is unique up to
order of the cycles which does not matter because they commute. Note that a transposition
can be written as (a,b).
A cycle can be written as a product of non disjoint transpositions.

(i17i27 e 7im) = (im—lvim) c (i27im) (ilaim)
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Thus if m is odd, the permutation has sign 1 and if m is even, the permutation has sign
—1. Also, it is clear that the inverse of the above permutation is (iy,ig,- - ,im)_l =

(imv T 7i23i1) .
Definition F.9.3 A, is the subgroup of S, such that for o € A,, o is the product of an
even number of transpositions. It is called the alternating group.

The following important result is useful in describing A,,.

Proposition F.9.4 Let n > 3. Then every permutation in A, is the product of 8 cycles
and the identity.

Proof: In case n = 3, you can list all of the permutations in A4,

1 2 3 1 2 3 1 2 3
1 2 3)/)’\2 3 1)/)°’\3 1 2
In terms of cycles, these are
(1,2,3),(1,3,2)

You can easily check that they are inverses of each other. Now suppose n > 4. The
permutations in A,, are defined as the product of an even number of transpositions. There
are two cases. The first case is where you have two transpositions which share a number,

(a,c) (¢,b) = (a,c,b)

Thus when they share a number, the product is just a 3 cycle. Next suppose you have the
product of two transpositions which are disjoint. This can happen because n > 4. First note
that

(a,b) = (¢,b) (b,a,c) = (¢,b,a) (¢, a)

Therefore,

(a,b) (c,d) = (¢,b,a)(c,a)(a,d)(d,c,a)
= (¢, b,a)(c,a,d)(d,c,a)

and so every product of disjoint transpositions is the product of 3 cycles. B

Lemma F.9.5 Ifn > 5, then if B is a normal subgroup of A,, and B is not the identity,
then B must contain a 3 cycle.

Proof: Let o be the permutation in B which is “closest” to the identity without being
the identity. That is, out of all permutations which are not the identity, this is one which
has the most fixed points or equivalently moves the fewest numbers. Then « is the product
of disjoint cycles. Suppose that the longest cycle is the first one and it has at least four
numbers. Thus

a = (i1, d2,45,44, , M) Y1 7,
Since B is normal,
oy = (i3,72,91) (11, 92,13, 84, -+ ,m) (i1, 72,93) Y1 -V € Am
Then consider aja~! =
(i3,12,41) (i1,12,13,14, - ,m) (i1, 42,13) (M, - - - i4,13,12,71)
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Then for this permutation, i1 — 3,42 — 42,43 — 44,74 — 1. The other numbers not in
{i1,12,13,44 } are fixed, and in addition is is fixed which did not happen with «. Therefore,
this new permutation moves only 3 numbers. Since it is assumed that m > 4, this is a
contradiction to « fixing the most points. It follows that

a = (il,ig,ig,) Y1 '-"}/p (623)
or else

a = (i1,72) 71 Vp (6.24)

In the first case, say v; = (i4,15,- - ). Multiply as follows a7 =

(ia,ia,11) (i1, 82, 3) (i, 5, ) Yo - -7, (i1, 12, 44) € B
Then form a;a~! € B given by
(iayi,i1) (i1, 42, 88) (i, 05, -+ ) Yo -+ Yy (i1, 02, 00) 7 97+ (isy dn, i)
= (ia,12,11) (i1,12,13) (i4, 05, -~ ) (i1, 42,94) (-~ - ,i5,14) (i3,2,71)

Then i; — 44,49 — 43,43 — 45,94 — 42,95 — 41 and other numbers are fixed. Thus aja ™!

moves 5 points. However, a moves more than 5 if 7, is not the identity for any ¢ > 2. It
follows that

o = (i1,42,13) 71

and 7y, can only be a transposition. However, this cannot happen because then the above
a would not even be in A,,. Therefore, v; = ¢ and so

o = (ilai27i3)

Thus in this case, B contains a 3 cycle.

Now consider case 6.24. None of the 7, can be a cycle of length more than 4 since
the above argument would eliminate this possibility. If any has length 3 then the above
argument implies that o equals this 3 cycle. It follows that each vy, must be a 2 cycle. Say

a = (i1,i2) (i3,94) Yo Vp

Thus it moves at least four numbers, greater than four if any of «, for ¢ > 2 is not the
identity. As before, oy =

(ia,2,171) (i1,72) (i3,74) Yo - -+ 7 (41,12, 14)
= (ia,i2,11) (i1, 72) (43,94) (i1, 92,94) yo -7, € B

Then aja~ ! =

(ia,i2,1) (i1, 42) (i3, 74) (i1, 82,74) Yo =YYy - v3 'yt (is, da) (i1, d2)
= (ig,i2,11) (i1,92) (i3,44) (i1, 92,14) (i3,14) (11,12) € B

Then i1 — 13,42 — 14,13 — 41,14 — 23 so this moves exactly four numbers. Therefore, none
of the ~, is different than the identity for ¢ > 2. It follows that

a = (i1,12) (i3, ia) (6.25)
and a moves exactly four numbers. Then since B is normal, oy =

(i5,14,13) (i1,12) (i3,14) (i3,14,75) € B
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Then aya~t =

(i5,14,13) (i1,12) (i3,94) (43,14, 175) (i3,14) (i1,72) € B

Then 41 — 41,19 — 42,13 — 14,94 — 15,%5 — ¢3. Thus this permutation moves only three
numbers and so « cannot be of the form given in 6.25. It follows that case 6.24 does not
occur. l

Definition F.9.6 A group G is said to be simple if its only normal subgroups are itself and
the identity.

The following major result is due to Galois [17].
Proposition F.9.7 Let n > 5. Then A, is simple.

Proof: From Lemma F.9.5, if B is a normal subgroup of A,,, B # {¢}, then it contains

a 3 cycle a = (iy,12,13),
i1 i i3
o 13 11
Now let (j1,72,j3) be another 3 cycle.

Ji1 J2 Js
J2 Js g1

Let o be a permutation which satisfies

o (ix) = Jjr
Then
cac ' (j1) = oalii)=o0(i2) = jo
caoc t(ja) = oal(iz) =0 (i3) = js
caot(j3) = ocal(iz) =0 (i1) = j

while cao ! leaves all other numbers fixed. Thus cac ™! is the given 3 cycle. It follows that
B contains every 3 cycle. By Proposition F.9.4, this implies B = A,,. The only problem is
that it is not know whether o is in A,,. This is where n > 5 is used. You can modify o on
two numbers not equal to any of the {i1,is,i3} by multiplying by a transposition so that
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the possibly modified o is expressed as an even number of transpositions. H

F.10 Solvable Groups

Recall the fundamental theorem of Galois theory which established a correspondence be-
tween the normal subgroups of G (K, F) and normal field extensions. Also recall that if H
is one of these normal subgroups, then there was an isomorphism between G (Kg,F) and
the quotient group G (K, F) /H. The general idea of a solvable group is given next.

Definition F.10.1 A group G is solvable if there exists a decreasing sequence of subgroups
{H;}!", such that H' is a normal subgroup of H-1),

G:HOQHIQQHm:{L}v
and each quotient group H;_1/H; is Abelian. That is, for [a],[b] € H;_1/H;,
[ab] = [a] [b] = [b] [a] = [ba]
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Note that if G is an Abelian group, then it is automatically solvable. In fact you can
just consider Hy = G, Hy = {i}. In this case Hy/H; is just the group G which is Abelian.

There is another idea which helps in understanding whether a group is solvable. It
involves the commutator subgroup. This is a very good idea because this subgroup is
defined in terms of the group G.

Definition F.10.2 Let a,b € G a group. Then the commutator is
aba~ 17!

The commutator subgroup, denoted by G’, is the smallest subgroup which contains all the
commutators.

The nice thing about the commutator subgroup is that it is a normal subgroup. There
are also many other amazing properties.

Theorem F.10.3 Let G be a group and let G' be the commutator subgroup. Then G’ is a
normal subgroup. Also the quotient group G/G' is Abelian. If H is any normal subgroup of
G such that G/H is Abelian, then H D G'. If G' = {1}, then G must be Abelian.

Proof: The elements of G’ are just finite products of things like aba~'b~!. Note that
the inverse of something like this is also one of these.

(aba_lb_l)71 = babtat.
Thus the collection of finite products is indeed a subgroup. Now consider h € G. Then
haba=*b~'h™' = hah~'hbh~'ha " *h thb1h !
— hah ™" hbh~" (hah™") " (hbh =) ™!

which is another one of those commutators. Thus for ¢ a commutator and h € G,
heh™! = ¢

another commutator. If you have a product of commutators cics - - - ¢, then
m m
hcieg - - - th71 = HhCﬂLil = Hdz eq’
i=1 i=1

where the d; are each commutators. Hence G’ is a normal subgroup.

Consider now the quotient group. Is [g] [h] = [h][g]? In other words, is [gh] = [hg]?
In other words, is gh (hg)™" = ghg='h™' € G'? Of course. This is a commutator and G’
consists of products of these things. Thus the quotient group is Abelian.

Now let H be a normal subgroup of G such that G/H is Abelian. Then if g,h € G,
lgh] = [hg), gh(hg)™" =ghg~'h™' € H

Thus every commutator is in H and so H D G.
The last assertion is obvious because G/{¢} is isomorphic to G. Also, to say that
G’ = {1} is to say that
aba bt =1

which implies that ab = ba. B
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Let G be a group and let G’ be its commutator subgroup. Then the commutator sub-
group of G’ is G and so forth. To save on notation, denote by G**) the k' commutator
subgroup. Thus you have the sequence

GO oW oE@o5a®...

each G() being a normal subgroup of G~1) although it is possible that G(*) is not a normal
subgroup of G. Then there is a useful criterion for a group to be solvable.

Theorem F.10.4 Let G be a group. It is solvable if and only if G*) = {1} for some k.

Proof: If G*) = {1} then G is clearly solvable because of Theorem F.10.3. The sequence
of commutator subgroups provides the necessary sequence of subgroups.
Next suppose that you have

G=Ho2H; 22 Hp={}

where each is normal in the preceding and the quotient groups are Abelian. Then from
Theorem F.10.3, GV C H,. Thus H| O G®. But also, from Theorem F.10.3, since H;/H,
is Abelian,

H, D H| 2 G?.

Continuing this way G*) = {;} for some k < m. W

Theorem F.10.5 If G is a solvable group and if H is a homomorphic image of G, then H
1s also solvable.

Proof: By the above theorem, it suffices to show that H®) = {/} for some k. Let
f be the homomorphism. Then H' = f(G’). To see this, consider a commutator of
H, f@)f®) f@fo) " =7 (aba='b71) . It follows that HM = f(G™W). Now con-
tinue this way, letting GV play the role of G and H" the role of H. Thus, since G is
solvable, some G*) = {1} and so H®) = {;} also. B

Now as an important example, of a group which is not solvable, here is a theorem.

Theorem F.10.6 Forn > 5,5, is not solvable.

Proof: It is clear that A, is a normal subgroup of S, because if ¢ is a permutation, then
it has the same sign as 0~ !. Thus cac~! € A,, if a € A,,. If H is a normal subgroup of S,,,
for which S,,/H is Abelian, then H contains the commutator G’. However, aca~to~! € A,
obviously so A, D SJ. By Proposition F.9.7, this forces S, = A,,. So what is S//? If it is
Sp, then Sk # {i} for any k and it follows that S, is not solvable. If S}/ = {i}, the only
other possibility, then A, /{¢} is Abelian and so A,, is Abelian, but this is obviously false
because the cycles (1,2,3),(2,1,4) are both in A,. However, (1,2,3)(2,1,4) is

1 2 3 4
4 2 1 3
1 2 3 4
1 3 4 2

Note that the above shows that A,, is not Abelian for n = 4 also.

while (2,1,4) (1,2,3) is
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F.11 Solvability By Radicals

First of all, there exists a field which has all the n** roots of 1. You could simply define it
to be the smallest sub field of C such that it contains these roots. You could also enlarge
it by including some other numbers. For example, you could include Q. Observe that if
€=¢2"/" then €" =1but € £ 1if k < n and that if k < I < n, & # €. Such a field
has characteristic 0 because for m an integer, m -1 # 0. The following is from Herstein [13].
This is the kind of field considered here.

Lemma F.11.1 Suppose a field F has all the nt" roots of 1 for a particular n and suppose
there exists & such that the n'™ roots of 1 are of the form &* for k =1,--- ,n, the &* being
distinct. Let a € F be nonzero. Let K denote the splitting field of x™ — a over F, thus K is
a normal extension of F. Then K = F [u] where u is any root of 2™ — a. The Galois group
G (K, ) is Abelian.

Proof: Let u be a root of ™ — a and let K equal I [u] . Then let ¢ be the n* root of
unity mentioned. Then

(€"u)" =€) ur=a

and so each fku is a root of ™ — a and these are distinct. It follows that {u, Eu, - - ,§n71u}
are the roots of 2" — a and all are in F [u]. Thus F [u] = K. Let 0 € G (K, F) and observe

that since o fixes F, N n
0=o0 <<§ku> —a> = (Cf (5%)) —a

It follows that o maps roots of ™ — a to roots of ™ — a. Therefore, if o, @ are two elements
of G (K, ), there exist 4, j each no larger than n — 1 such that

o (u) =€, alu)=Eu
A typical thing in F [u] is p (u) where p(z) € F[z]. Then

ca(p(u) = p(€u) =p(Eu)
ao (p(u)) = p(§'¢u) =p (£ u)
Therefore, G (K, F) is Abelian. l
Definition F.11.2 For F a field, a polynomial p(x) € F[z] is solvable by radicals over

F =Fy if there is a sequence of fields Fy = F[a1],Fa = Fy [ag], -+ ,Fr, = Fr_1 [ax] such that
for each i > 1, a?i € F;_1 and Fy, contains a splitting field K for p (x) over F.
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Lemma F.11.3 In the above definition, you can assume that Fy is a normal extension of
F.

Proof: First note that F, = Flaj,as,- - ,ax]. Let G be the normal extension of Fy.
By Lemma F.7.3, G is the smallest field which contains the conjugate fields

N (IF [0,1,(12, o ’ak]) =F I:njalanjaQa o ’njak]
ks )
for {77177]2, e 77]m} =G (FkaF) AISO, (njai) = 77]‘ <ai‘cl> € ndFi—l,ndF =TF. Then

G =T[n (a1),m (az), - ,n (ar),ma (a1),me (a2), -+ ,my (ar) -]

and this is a splitting field so is a normal extension. Thus G could be the new Fj with
respect to a longer sequence but would now be a splitting field. B

At this point, it is a good idea to recall the big fundamental theorem mentioned above
which gives the correspondence between normal subgroups and normal field extensions since

o _.q The Graduate Programme
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it is about to be used again.

F =T, CF CF e CFrg CF.=K

Theorem F.11.4 Let K be a splitting field of any polynomial p (x) € F [x] where T is either
of characteristic 0 or of characteristic p with FP = F. Let {Fi}fzo be the increasing sequence
of intermediate fields between F and K. Then each of these is a normal extension of F and
the Galois group G (F;_1,F) is a normal subgroup of G (F;,F). In addition to this,

G (F;,F) ~G(K,F) /G (K, F;)
where the symbol ~ indicates the two spaces are isomorphic.

Theorem F.11.5 Let f () be a polynomial in F [x] where F is a field of characteristic 0
which contains all n*" roots of unity for each n € N. Let K be a splitting field of f (z). Then
if f(x) is solvable by radicals over F, then the Galois group G (K,F) is a solvable group.

Proof: Using the definition given above for f (x) to be solvable by radicals, there is a
sequence of fields
Fo=FCF, C--- CFy, KCFy,

where F; = F;_1 [a;], af" € F;_1, and each field extension is a normal extension of the pre-
ceding one. You can assume that Fy is the splitting field of a polynomial having coefficients
in F;_;. This follows from the Lemma F.11.3 above. Then starting the hypotheses of the
theorem at IF;_; rather than at F, it follows from Theorem F.11.4 that

G(Fj,Fj_1) ~G(Fi,Fj-1) /G (Fi, F)

By Lemma F.11.1, the Galois group G (F;,F;_1) is Abelian and so this requires that
G (Fi,F) is a solvable group.

Of course K is a normal field extension of F because it is a splitting field. By Theo-
rem F.10.5, G (Fg,K) is a normal subgroup of G (Fi,F). Also G (K,F) is isomorphic to
G (Fy,F) /G (F,K) and so G (K,F) is a homomorphic image of G (Fy,F) which is solv-
able. Here is why this last assertion is so. Define 0 : G (Fg,F) /G (Fi,K) — G (K,F) by
0[o] = o|lg. Then this is clearly a homomorphism if it is well defined. If [o] = [a] this
means oo~ ! € G (Fy,K) and so ca~? fixes everything in K so that 6 is indeed well defined.
Therefore, by Theorem F.10.5, G (K, F) must also be solvable. B

Now this result implies that you can’t solve the general polynomial equation of degree 5
or more by radicals. Let {a1,as2, - ,a,} C G where G is some field which contains a field
IF(). Let

F=TFo (a1,az2,- -+ ,an)

the field of all rational functions in the numbers a1, a2, -+ ,a,. I am using this notation
because I don’t want to assume the a; are algebraic over F. Now consider the equation

p(t) =t" —ait" L ast" 2+ - £ ay.

and suppose that p (¢) has distinct roots, none of them in F. Let K be a splitting field for
p(t) over F so that

n

pt)=T[@—r)

k=1
Then it follows that
a; = s;(ri, -+ ,Tn)
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where the s; are the elementary symmetric functions defined in Definition F.1.2. For o €
G (K,F) you can define ¢ € S,, by the rule

G (k) = j where o (1) =r;.

Recall that the automorphisms of G (K, F) take roots of p (¢) to roots of p (¢). This mapping
o — & is onto, a homomorphism, and one to one because the symmetric functions s;
are unchanged when the roots are permuted. Thus a rational function in si, 82, , s, is
unaffected when the roots ry are permuted. It follows that G (K, F) cannot be solvable if
n > 5 because S,, is not solvable.

For example, consider 3x° — 2523 + 45z + 1 or equivalently z — 23—5303 + 152+ % It clearly
has no rational roots and a graph will show it has 5 real roots. Let F be the smallest field
contained in C which contains the coefficients of the polynomial and all roots of unity. Then
probably none of these roots are in F and they are all distinct. In fact, it appears that the
real numbers which are in F are rational. Therefore, from the above, none of the roots are
solvable by radicals involving numbers from F. Thus none are solvable by radicals using

numbers from the smallest field containing the coefficients either.
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Selected Exercises

Exercises Tax=2-2y=—tz=*t
1.6 Jr=ty=5+2,z2=—-s,w=s
. —1_ 5 9 -
B9 = 105~ s Exercises
3 —(1—i)V2,(1+14) V2 L

4 This makes no sense at all. You can’t add different

size vectors.
1 1 .
Exercises
1.17
-1 -1 n n 2 1/2
y 3 D k=1 Brakbi| < (Zk:l By lax] ) :
N 1/2
(Zhes Beloel)

‘N\

5 Iz #0, let w= 4 The inequality still holds. See the proof of the in-

|2 :
equality.

7 sin (5x) = 5cos? xsinz — 10 cos? x sin®  + sin®

5

cos (5x) = cos® x — 10 cos® zsin? 2 4 5 cos wsin Exercises

9 (242) (e~ (VE+1)) (2~ (1-iv3))

2.2
(e (- )VE) (- (-1 +0)VE) ) A ALAT , AT
. . = T2 2
(z - (-1=9)Vv2)) (= - (1+1)v2)) o
3 You know that A;; = —Aj;. Let j = 4 to conclude
15 There is no single v/ —1. that A;; = —A;; and so A;; = 0.
. 50=0+0=0.
Exercises

6 0A=(0+0)A =0A+0A. Now add the additive
1.11 inverse of 0A to both sides.

70=04=(1+(-1)) A= A+(—1) A. Hence, (-1) A

lae=2—-4t,y=-8tz=1. . ) M
* 4 : is the unique additive inverse of A. Thus —A =

3 These are invalid row operations. (=1) A. The additive inverse is unique because if A;
is an additive inverse, then A; = A;+(A4A + (—4)) =
5x=2,y=0,z=1. (A1 + A) + (—A) = —A.
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27

29

(Ax,y) = Zl (AX)Z. Yi = Zi Zk Airrrys

(x,ATy) =D kT, (AT)M Yi = Dk 2 ThAikYi,
the same as above. Hence the two are equal.
((AB)T X, y) =

(x,(AB)y) =

(ATX,By) = (BTATx,y) . Since this holds for ev-

ery X,y, you have for all y, ((AB)T x — BT ATx, y) .

Let y = (AB)" x — BT ATx. Then since x is arbi-
trary, the result follows.

Give an example of matrices, A, B, C such that B #
C,A#0, and yet AB = AC.

11 1 -1\ (00

11 -1 1 L0 0

11 -1 1 (00

11 1 -1/ V00
It appears that there are 8 ways to do this.
ABB Al = ATA ' =T

B 'A7'AB=B"'IB=1

Then by the definition of the inverse and its unique-
ness, it follows that (AB)~' exists and (AB)™" =
B7tAL

Multiply both sides on the left by A1
11 1 -1\ (00
11 -1 1 L0 0

Almost anything works.
5 2
1 6
)

(5 3)-
(23) (5 3)=(

1 2 3 -2 4 =5
2 1 4 = 0 1 -2
1 0 2 1 -2 3
10 3
Row echelon form: 0 1 % . A has no in-
0 0 O

verse.

2.7

1

11

13

Exercises

Show the map T : R™ — R™ defined by T' (x) = Ax
where A is an m xn matrix and x is an m x 1 column
vector is a linear transformation.

This follows from matrix multiplication rules.

Find the matrix for the linear transformation which
rotates every vector in R? through an angle of 7 /4.

(i el ) -(13 27

Find the matrix for the linear transformation which
rotates every vector in R? through an angle of 27 /3.

( 2cos (1/3) —2sin (7/3) ) _ ( \}g —1/§ >

2sin(w/3)  2cos (m/3)
Find the matrix for the linear transformation which
rotates every vector in R? through an angle of 27/3
and then reflects across the z axis.

( (1) 31 ) ( cos (2m/3) —sin (27/3) )

sin (27/3)  cos (27/3)
)
Find the matrix for the linear transformation which
rotates every vector in R? through an angle of 7/4
and then reflects across the z axis.

(o S) (e )
(52 )
-3V2 —3V2

Find the matrix for the linear transformation which
reflects every vector in R? across the  axis and then
rotates every vector through an angle of /4.
cos (m/4) —sin(n/4) 1 0
sin (w/4)  cos(mw/4) 0 -1
_ ( V2 3V2 )
={ 1 1
V2 —3V2
Find the matrix for the linear transformation which
reflects every vector in R? across the x axis and then
rotates every vector through an angle of 7/6.
cos (m/6) —sin(7/6) 1 0
sin (7/6)  cos(mw/6) 0 -1
1 1
(3 ko)
3 T3V3
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15 Find the matrix for the linear transformation which
rotates every vector in R? through an angle of 57 /12.
Hint: Note that 57/12 = 27/3 — 7 /4.

( cos (2/3) —sin (27/3) )

sin (27/3)  cos (27/3)
( cos (—m/4) —sin(—7/4) )
sin(—m/4) cos(—m/4)

_(m\f—i 2 V33— g 2)
UEvaVBE Ve VRV V2

17 Find the matrix for proj, (v) where u = (1,5,3)" .

1 1 5 3
35 25 15
3 15 9

19 Give an example of a 2 x 2 matrix A which has all its
entries nonzero and satisfies A2 = A. Such a matrix
is called idempotent.

You know it can’t be invertible. So try this.
a a)’ [ a*+ba a®+ba
b b T\ P+ab bVE+ab

Let a® +ab = a,b?+ab = b. A solution which yields
a nonzero matrix is

(54)

21 To = _%tl — %tQ —t3,$1 = —Qtl —tQ +t3 where the
t; are arbitrary.

—2t) —ty +t3 4
—it1 — 2ty —t3 7/2
23 t + 0 , i € F
to 0
ts 0

That second vector is a particular solution.

25 Show that the function T3, defined by Ty, (v) = v —
proj, (v) is also a linear transformation.

This is the sum of two linear transformations so it
is obviously linear.

33 Let a basis for W be {wy,---,w,} Then if there
exists v € V \ W, you could add in v to the basis
and obtain a linearly independent set of vectors of
V' which implies that the dimension of V' is at least
r 4+ 1 contrary to assumption.

41 Obviously not. Because of the Coriolis force expe-
rienced by the fired bullet which is not experienced
by the dropped bullet, it will not be as simple as
in the physics books. For example, if the bullet is
fired East, then y'sin¢ > 0 and will contribute to
a force acting on the bullet which has been fired
which will cause it to hit the ground faster than the
one dropped. Of course at the North pole or the
South pole, things should be closer to what is ex-
pected in the physics books because there sin ¢ = 0.
Also, if you fire it North or South, there seems to
be no extra force because y’ = 0.

Exercises

3.2

2 1=det (AA™!) =det (A)det (A71).

3 det (A) = det (AT) = det (—A) = det (1) det (4) =
(—1)" det (A) = —det (A).

6 Each time you take out an @ from a row, you mul-
tiply by a the determinant of the matrix which re-
mains. Since there are n rows, you do this n times,
hence you get a”.

9 det A = det (P~'BP) = det (P~') det (B) det (P)
= det (B) det (P~'P) = det (B).
11 If that determinant equals 0 then the matrix Al — A
has no inverse. It is not one to one and so there

exists x # 0 such that (M — A)x = 0. Also recall
the process for finding the inverse.

et 0 0
13 0 e t(cost+sint) —(sint)e™?
0 —e'(cost—sint) (cost)e™?

15 You have to have det (Q)det (Q7) = det Q> =1
and so det (Q) = £1.

Exercises
3.6
1 2 3 2
6 3 2 3
5 det 5 9 2 3 =5
3 4 6 4
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% -t 0 %€7t 5 Here they are.
6 | Lcost+ Llsint —sint dsint—4

? p 3 5 cost
2sint — jcost cost —icost— isint 100 0 01 010
010}, 1T 0oO0],{0O01
8 det (A — A) = det (\I — ST'BS) 00 1 01 0 10 0
= det (AS™1S — ST1BS) 01 0 1 0 0 00 1
:det(Sil()\IfB)S) 1 0 0 y 0 0 1 s 0 1 0
0 0 1 010 1 00
= det (S7') det (A — B) det (5)
— det (5—15) det (\] — B) = det (A — B) So what is the di.mension of thg spag of these? One
way to systematically accomplish this is to unravel
9 From the Cayley Hamilton theorem, A" +a,,_1 A" 1+ them and then use the row reduced echelon form.
-+t a1 A+ agl = 0. Also the characteristic polyno- Unraveling these yields the column vectors
mial is det (t/ — A) and the constant term is 1 0 0 0 1 0
(—1)" det (A). Thus ag # 0 if and only if det (A) # 0 0 1 1 0 0
0 if and only if A=! has an inverse. Thus if A™! 0 1 0 0 0 1
exists, it follows that 0 1 0 1 0 0
- 1 0 0 0 0 1
I=—(A"4+a, A" 1+ +a1A
a0l == (A" + @y a14) o {{offr]fo]f1]]o
=A (—A”_1 — @y AP all) and also 0 0 1 0 0 1
apl = (—A”*1 — a1 A2 — . alf) A There- 0 1 0 0 1 0
fore, the inverse is 1 0 0 1 0 0
1 (_An—l —ay, A2 alj) Then arranging these as the columns of a matrix
o yields the following along with its row reduced ech-
11 Say the characteristic polynomial is ¢ (¢) which is of elon form.
degree 3. Then if n > 3,t™ = ¢ (¢) 1 (t) 4+ r (t) where 100010
the degree of r (¢) is either less than 3 or it equals 001100
zero. Thus A" = q(A)I(A) +r(A) = r(A) and 0100 0 1
so all the terms A™ for n > 3 can be replaced with 01 010 0
some 7 (A) where the degree of r (t) is no more than 1 000 0 1 |, rowechelon form:
2. Thus, assuming there are no convergence issues, 001 010
the infinite sum must be of the form Ei:o b A 00100 1
01 0 010
Exercises oo o0
1 0 000 1
4.6 01 0 00 1
001 00 1
1 A typical thing in {Ax:x € P(uy,---,u,)} is 00010 -1
ShitAuy : ty € [0,1] and so it is just 00001 -1
00 00 0 O
P (Auy, -, Au,).
(Auy, -, Aun) 00000 O
11 00000 O
2 E= ( 0 1 > 000 0O0 O

The dimension is 5.

10 Tt is because you cannot have more than min (m, n)
nonzero rows in the row reduced echelon form. Re-
call that the number of pivot columns is the same
as the number of nonzero rows from the description
of this row reduced echelon form.

P(el,ez) ‘ E(P<elﬂe2))
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It follows from the fact that ey, ---,e, occur as
columns in row reduced echelon form that the di-
mension of the column space of A is n and so, since
this column space is A (R™), it follows that it equals
Fm.

Since m > n the dimension of the column space of
A is no more than n and so the columns of A cannot
span F™.

If >3,cizi = 0, apply A to both sides to obtain
> ¢iw; = 0. By assumption, each ¢; = 0.

There are more columns than rows and at most m
can be pivot columns so it follows at least one col-
umn is a linear combination of the others hence A
is not one too one.

Ib—Ay|* = [b—Ax+Ax—Ay|’
= [b—Ax]> + |Ax — Ay|* + 2 (b—Ax,A (x — y))
= |b—Ax[*+|Ax — Ay|*+2 (ATb—AT Ax, (x — y))

= |b—Ax|* + |Ax — Ay|*and so, Ax is closest to b
out of all vectors Ay.

1020
01 1 7
No- 1 g 0 01
000 0

Let A be an m x n matrix. Then ker (A4) is a sub-
space of F". Is it true that every subspace of F™ is
the kernel or null space of some matrix? Prove or
disprove.

Let M be a subspace of F™. If it equals {0} , consider

the matrix I. Otherwise, it has a basis {mj,--- ,mg}.

Consider the matrix

((my m; 0)
where 0 is either not there in case k = n or has
n — k columns.

This is easy to see when you consider that P¥ is
its own inverse and that P¥ multiplied on the right
switches the i*" and j** columns. Thus you switch
the columns and then you switch the rows. This has
the effect of switching A;; and A;;. For example,

1000 a b ¢ d
0 0 0 1 e f z h
0010 j kI m
01 00 n t h g

31

1000 a d c b
0001} [n g h t
0010} |4 m 1l k
0100 e h z f

More formally, the #it" entry of P AP is
j ij _ piiA. Pl
> PIALPI =PIA;P=A
s,p

33t i iJ

If A has an inverse, then it is one to one. Hence the
columns are independent. Therefore, they are each
pivot columns. Therefore, the row reduced echelon
form of A is I. This is what was needed for the
procedure to work.

—
‘»—A,_.‘OJ

Exercises
5.8
1 20
1121 3]|.=
1 2 3
100 1 2 0
2 1 0 -3 3
1 0 1 0 0 3
1 2 1 100
3122 ]1.=1001
2 1 1 01 0
100 1 2 1
21 0 0 -3 —1
1 0 1 0 0 1
1 2 1 1000
s t22| o001
24 1" 71oo1o0
3 2 1 01 0 0
10 0 0 1 2 1
31 0 0 0 —4 -2
20 1 0 0 0 -1
10 -1 1 0 0 0
1 210
93 0 1 1
10 2 1
LV LyIoVIT 0
V11
V11

]
-
=

-
[,

o o ﬁ
-
[N
o
o5 ﬂ
iy
=
ﬁ
—_
w)—‘
NHL\%:Q
o e 5
=
%; =
—_
2l
§
=
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Exercises
6.6

1 The maximum is 7 and it occurs when 1 = 7,29 =
0,333 = 0,1‘4 = 3,.135 = 5,.136 =0.

2 Maximize and minimize the following if possible.
All variables are nonnegative.

(a) The minimum is —7 and it happens when z; =
0,372 = 7/2,$3 =0.

(b) The maximum is 7 and it occurs when x; =
77.’172 = O,$3 =0.

(¢) The maximum is 14 and it happens when x; =
7, Lo = T3 = 0.

(d) The minimum is 0 when x; = x93 = 0,23 = 1.
4 Find a solution to the following inequalities for z,y >

0 if it is possible to do so. If it is not possible, prove
it is not possible.

(a) There is no solution to these inequalities with
x1, w2 > 0.
(b) A solution is x1 = 8/5,x2 = z3 = 0.

(¢) There will be no solution to these inequalities
for which all the variables are nonnegative.

(d) There is a solution when zo = 2,23 = 0,21 =
0.

(e) There is no solution to this system of inequal-
ities because the minimum value of x7 is not
0.

Exercises
7.3

1 Because the vectors which result are not parallel to
the vector you begin with.

3 A=A tand A > 2™

5 Let x be the eigenvector. Then A™x = \"'x,A™x =

Ax = A\x and so
AT =)

Hence if A # 0, then
Amfl =1

and so |A\| = 1.

-1 -1 7
7 -1 0 4 |, eigenvectors:
-1 -1 5
3 2
1 ~1,¢ 1 < 2. This is a defective ma-
1 1
trix.
-7 —12 30
9 -3 =7 15 |, eigenvectors:
-3 -6 14
-2 5 2
1 ,1 O — —1, 1 2
0 1 1

This matrix is not defective because, even though
A =1 is a repeated eigenvalue, it has a 2 dimen-
sional eigenspace.

3 -2 -1
11 0 5 1 , eigenvectors:
0 2 4
1 0 -1
0|, —3 3, 1 =6
0 1 1
This matrix is not defective.
5 2 =5
13 12 3 —10 |, eigenvectors:
12 4 -11
_1 5
3 6
1 1 0 ~ -1
0 1

This matrix is defective. In this case, there is only
one eigenvalue, —1 of multiplicity 3 but the dimen-
sion of the eigenspace is only 2.

1 26 —17
15 4 -4 4 , eigenvectors:
-9 —-18 9
_% —9
2 0, 1 & —12,
1 0
-1
0 < 18
1
-2 1 2 %
17 —11 -2 9 |, eigenvectors: 1 1
-8 0 7 1

This is defective.
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25

27

29

4 -2 =2
0 2 =2 |, eigenvectors:
2 0 2
1 —1
-1 4, —1 2 — 24,
1 1
i
z' 2+ 2
4 -2 =2
0 2 =2 |, eigenvectors:
2 0 2
—1
4, —1 2 — 24,
1
{ ( 242
1
—5 —6 , eigenvectors:
—1
+ —06, —1 ~ 2 — 61,
1
i 2460

1

This is not defective.

First consider the eigenvalue A = 1. Then you have
ares = 0,bxz = 0. If neither a nor b = 0 then
A = 1 would be a defective eigenvalue and the ma-
trix would be defective. If a = 0, then the dimen-
sion of the eigenspace is clearly 2 and so the ma-
trix would be nondefective. If b = 0 but a # 0,
then you would have a defective matrix because the
eigenspace would have dimension less than 2. If
¢ # 0, then the matrix is defective. If ¢ = 0 and
a = 0, then it is non defective. Basically, if a, c # 0,
then the matrix is defective.

A(x+iy) = (a+1ib) (x + iy) . Now just take com-
plex conjugates of both sides.

Let A be skew symmetric. Then if x is an eigenvec-
tor for A,

MxTx =xTATx = —xTAx = —xT%\

and so A = —\. Thus a +ib = — (a — ib) and so

a=0.
31 This follows from the observation that if Ax = Ax,
then AX = AX
1 -3 1
33 -1 ) 1 ) % ) % ) 1 ) %
1 1 0
-1
35 1 (acos (t) + bsin (1)),
1
0
-1 (csin (ﬁt) + dcos (ﬁt)) ,
1
2
1 | (ecos(2t) + fsin (2t))where a, b, ¢, d, e, f are
1
scalars.
Exercises
7.10
1 To get it, you must be able to get the eigenvalues

15
19

21
23

and this is typically not possible.

J(57)

-1

0
2 0

-1

(¢ -

—_

— O
o |
[\
N~

-1

(291G
0

() )= (0 )

it is back to where you started. Thus the algo-
rithm merely bounces between the two matrices

0 -1 0 -2
<2 0 )and(1 0

bly converge.

NN O

) and so it can’t possi-
B(1+2:,6),B(i,3),B(7,11)

Gerschgorin’s theorem shows that there are no zero
eigenvalues and so the matrix is invertible.

622 +12y2 + 1822

(1")2 + %\/gx/ _ 2<y/>2 _ %\/iy/ _ 2<2/)2 _ %\/gz/
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25 (0,—1,0) (4,—1,0) saddle point. (2,—1,—12) local

minimum.

27 (1,1),(-1,1),(1,-1), (-1, —1) saddle points.
(—%\/5\/67 0) , (%\/5\/6, 0) Local minimums.
29 Critical points: (0,1,0), Saddle point.

43 Suppose > a;g; = 0. Then0 =", a; >0 Aijfi =
> fi 22 Aijai. Tt follows that >, Ajja; = 0 for
each j. Therefore, since AT is invertible, it follows
that each a; = 0. Hence the functions g; are linearly
independent.

91 41 Exercises
9.5
Exercises 1 This is because ABC is one to one.
8.4

7 In the following examples, a linear transformation,

1 The first three vectors form a basis and the dimen-
sion is 3.

3 No. Not a subspace. Consider (0,0,1,0) and mul-
tiply by —1.

5 NO. Multiply something by —1.

7 No. Take something nonzero in M where say u; =
1. Now multiply by 100.

9 Suppose {x1, -+ ,Xx} is a set of vectors from F".

Show that 0 is in span (x1,- - ,Xk) .
0= Zz OXi
11 Tt is a subspace. It is spanned by
3 2 1
1 1 0 .
t el o | These are also indepen-
0 0 1

dent so they constitute a basis.

13 Pick n points {z1,--- ,2,}. Then let e; () = 0 un-
less z = x; when it equals 1. Then {e;} ", is linearly
independent, this for any n.

15 {l,x,xQ,xg,x‘l}
17T L avi) =30 aw;

19 No. There is a spanning set having 5 vectors and
this would need to be as long as the linearly inde-
pendent set.

23 No. It can’t. It does not contain O.

25 No. This would lead to 0 = 1.The last one must
not be a pivot column and the ones to the left must
each be pivot columns.

T is given by specifying its action on a basis 5. Find
its matrix with respect to this basis.

V)

(
(

01 0 0

0 0 2 0

00 0 3

0 0 00

1 0 2 0 O

01 0 6 0

13 00 1 0 12
00 01 O

00 0 0 1

15 You can see these are not similar by noticing that
the second has an eigenspace of dimension equal to
1 so it is not similar to any diagonal matrix which
is what the first one is.

19 This is because the general solution is y, +y where
Ay, = b and Ay = 0. Now A0 = 0 and so the so-
lution is unique precisely when this is the only so-
lution y to Ay = 0.

Exercises

10.6

1

1 1 0 )
(0 1),<0 1).Thesearebothm
Jordan form.

2 Consider
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8 N34 a—1

10 A2
11 A% —3)%2+ 14
1100
010 0
6100 21
00 0 2
Exercises
10.9
4233\ +14
0 0 —14
501 0 o
01 3
00 0 -3
s 100
01 0 —11
001 8
2.0 0
710 0 -7
01 -2
0 -1 0 10 0
sl 1 o ofl,lo0o i 0o |,0+riQ
0 0 1 0 0 —i
Exercises
11.4
6
1] .
1

6 The columns are
L (=D)"+1 = —

é—3(—1)"+1 = —1
%—2(—1):+1 ’ %—1 ’
& —2(-1)"+1 -1

0 (-D)" =& +1

0 3(-1)"— & +1

= |7 2(-1)" -2 +1

0 2(-1)" - & +1

12

\

—_

o

\

—_
—_ o oo

m (12 0)(F )

Exercises

12.7

w

Ne)

11

14

16

21

22

Sl-Gl5
~_

S5

W= =

)
{ 1L,V3(2z—1),6V5 (2? —z+ %) }

39,22, 1
2z R

2 2

le+yl" +lz—yl"=@+y,z+y)+@-yz—y)
2 2 2 2

= lzl" + 1yl +2(z,y) + |2 + |yl —2(z,y).

Give an example of two vectors in R* x,y and a

subspace V such that x-y = 0 but Px-Py # 0

where P denotes the projection map which sends x
to its closest point on V.

Try this. V is the span of e; and e; and x = e3 +
€1,y =ester.

Px = (es+ej,e1)e; + (e3+e1,e3) ey =€
Py = (es+ej,e1)e; + (es+ej,ez)es = e

Px-Py=1

__ 13 2
y=%5xr—-5
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Exercises Exercises
12.9 15.3
1 volume is /218 123
1 2 2 1.0 |, eigenvectors:
3 0. 31 4
0.53491
0.7494
13.12 0.13016
0.838 32 < 1.6790
13 This is easy because you show it preserves distances. ’
—0.529 42
15 (Ax,x) = (UDU*x,x) = (DU*x,Ux) > 6* |U*x|” = 0.83483
6% |x|? —0.38073 < —1.341
—0.39763
16 0> ((A+ A*) x,x) = (Ax,x) + (A*x, %)
= (Ax,x) + (Ax,x) Now let Ax = Ax. Then you 3.2 10 .
get 0> A|x|> + A x> = Re (V) [x|? 2 ? ;) g » elgenvectors:
19 If Ax = Ax, then you can take the norm of both 0.57735
sides and conclude that |A| = 1. It follows that the 0'577 35 & 6.0
eigenvalues of A are €'?, e=* and another one which ’ -
. . . 0.57735
has magnitude 1 and is real. This can only be 1 or
—1. Since the determinant is given to be 1, it follows 0.78868
that it is 1. Therefore, there exists an eigenvector —0.21132 < 1.7321,
for the eigenvalue 1. —0.57735
0.211 32
. —0.78868 ~ —1.7321
Exercises 0.577 35
14.7 3 2 1.0
0.09 3 2 5 3 |, eigenvectors:
1 0.21 1 3 2
0.43 0.416 01
L 0.77918 <~ 7.8730,
4.2373 x 10 0.468 85
3 7.6271 x 1072
0.71186 0.904 53
—0.30151 + 2.0,
28 You have H = U*DU where U is unitary and D is ~0.30151
a real diagonal matrix. Then you have 9.3568 x 10-2
eiM —0.549 52 + 0.12702
A > (iD)" .83022
e'LH:U*Z(Z ') U=U* U 0.830
n!
n=0 eirn 0 2 1.0
4 2 5 3 , eigenvectors:
and this is clearly unitary because each matrix in 1 3 2
the product is. 0.28433
0.81959 < 7.5146,
0.49743
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10

11

12

0.209 84
0.453 06 < 0.18911,
—0.866 43

0.93548

—0.35073 + —0.70370
4.3168 x 1072

0

2

1

2
0 3 , eigenvectors:
3

0.3792
0.584 81 ~ 4.9754,
0.71708

0.81441
0.156 94 + —0.300 56,
—0.558 66

0.43925
—0.795 85 — —2.6749
0.41676

17.3333 — \,| < 0.47141
17— Ag| = 2.4495

Ay — 8] < 3.2660
~10< A< 12

23 + 722 + 3z + 7.0 = 0, Solution is:

[z = —0.14583 + 1.0114],
[z = —0.14583 — 1.0114],
[z = —6.7083]

—1.475541.18273,

—1.4755—1.1827¢,—0.024 44 + 0.528 231,

—0.02444 — 0.528 23¢

Let QTAQ = H where H is upper Hessenberg.
Then take the transpose of both sides. This will
show that H = HT and so H is zero on the top as

well.
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