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Preface

A few decades ago, the advent of high-speed electronic digital computers gave tremendous impetus to all
numerical methods for solving engineering problems, and made it possible to solve with good accuracy
many problems which previously could only be solved approximately. Finite difference methods, applied
manually, gave way to finite element methods, which are still one of the most versatile and widely used,
particularly in structural and solid mechanics. In thermofluids, methods of the finite volume type tend

to be preferred.

Slower to develop have been boundary element methods, based on boundary integral equations. Initial
development was largely in the hands of mathematicians, as the underlying mathematics are relatively
sophisticated. It was engineers, however, who turned boundary element methods into practically useful

and powerful techniques.

The purpose of this book is to serve as a deliberately simple introduction to boundary element methods
applicable to a wide range of engineering problems. The mathematics are kept as simple as reasonably
possible. Computer programs form an integral part of the boundary element approach and they are
treated as such in the text. Several programs suitable for use on desktops or laptops are presented and
described in detail and their uses are illustrated with the aid of a number of practical examples. Problems,

with solutions, are provided at the ends of the chapters, for readers to solve for themselves.

The programming language used in the main text is Fortran. Although it is somewhat unfashionable these
days for general programming purposes, Fortran is still very widely used in engineering computation.
Matlab versions of the programs are also provided in Appendices. Full listings of all the programs, both

Fortran and Matlab, are available for download here.

A prior knowledge of either Fortran or Matlab is desirable. The level of continuum mechanics, numerical
analysis, matrix algebra, vector analysis and other mathematics employed is that normally taught in
undergraduate engineering courses. The book is therefore suitable for engineering undergraduates and
other students at an equivalent level. Postgraduates and practising engineers may also find it useful if

they are comparatively new to boundary element methods.

The book is presented in two Parts. This Part I starts with a brief review of the problems encountered
in engineering, showing that they of two broad types. It then describes boundary element treatments of
problems of the potential type, using both constant and quadratic boundary elements. Part I is concerned

with elastic stress analysis problems of the plane strain and plane stress types.

Imperial College London Professor Roger Fenner
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Notation

The mathematical symbols commonly used in the main text are defined in the following list. In some
cases particular symbols have more than one meaning in different parts of the book, although this should

not cause any serious ambiguity.

A area of a solution domain

[4] square matrix

Ay coefficient of matrix [4]

aq, ay,az constants in general boundary condition Equation 1.83
[B] square matrix

Bj; coefficient of matrix [B]

[b] column vector of known coefficients

torsional couple
specific heat

xyr Cyxs Cyy free term constants
flexural rigidity of a flat plate
Young's modulus

strain

© Mmoo H.6H 0
8
)

S
F

drag and pressure flow shape factors for downstream flow
function of position in Poisson’s equation
function of position in biharmonic equation
shear modulus

acceleration due to gravity

heat generated per unit volume

height of a channel or solution domain in general
total rate of heat conduction

surface heat transfer coefficient

nodal point number

unit vector in the x co-ordinate direction
Jacobian of transformation (from global to intrinsic co-ordinates)
nodal point number

unit vector in the y co-ordinate direction

ratio of outer to inner radius for a cylinder
thermal conductivity

nodal point number

unit vector in the z co-ordinate direction
maximum dimension of the solution domain
total number of boundary elements in a mesh
element number

total number of nodes in a mesh

shape function

o

direction of outward normal to the boundary of a solution domain

S zz3lIzohmmasxRxTTTS s mme Q@ QS

outward normal vector to boundary
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components of n in the x and y directions

unit outward normal vector to boundary

components of 1 in the x and y directions
source/force point on a boundary

pressure gradient in the zco-ordinate direction
pressure

source/force point

volumetric flow rate

field point on a boundary

field point

a function of intrinsic co-ordinate &

radial co-ordinate

distance between a source/force point and a field point
vector distance between points

unitvector in the direction between points

boundary of a domain

distance along a boundary

vector tangent to a boundary

ratio between lengths of successive elements on a boundary segment
part of a boundary forming element m

distance along a solution domain boundary
temperature

traction kernel function

remote temperature of surroundings in thermal convection
time

traction

displacement kernel function

displacement or velocity in thexdirection
displacement in the radial direction

displacement in the@direction

mean value of u

velocity component of a boundary in the z co-ordinate direction
displacement or velocity in theydirection

mean value of v

width of a channel or solution domain in general
displacement or velocity in thezdirection

global Cartesian co-ordinates

components of body forces per unit volume in the Cartesian co-ordinate

directions
Cartesian co-ordinates
column vector of unknown quantities

coefficient of linear thermal expansion

coefficient in mixed boundary condition, Equation 2.32
coefficient in mixed boundary condition, Equation 2.32
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Subscripts

T
X,z
0

1,2
1,2,3

Superscripts

E3

ES

an angle

change in temperature

a small distance

local intrinsic co-ordinate within an element
angle of rotation per unit length of a bar in torsion
angular co-ordinate

an angle

permeability of a porous medium

viscosity

Poisson's ratio

local intrinsic co-ordinate within an element
dimensionless pressure gradient
dimensionless flow rate

density

stress

velocity potential

fundamental solution for potential

stress function

stream function

potential

grad operator

harmonic (Laplacean) operator

biharmonic operator

counter for nodes within an element

von Mises equivalent (stress)

nodal point numbers

solution to Laplace’s equation

element number

direction of the outward normal to a boundary
particular integral solution satisfying Poisson’s equation
radial direction in polar co-ordinates

direction along a boundary

segment

total solution (Laplace plus particular integral)
Cartesian co-ordinate directions

angular direction in polar co-ordinates

inner and outer of two concentric circular boundaries
nodes of a quadratic element

effective value under plane stress conditions
modified quantity
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Some Program Variable Names

The Fortran computer program variable names widely used in the programs and main text are defined

in alphabetical order in the following list.

A
All

Coefficients of matrix [A]

Matrix diagonal coeflicient A (potential problems)

AIIXX, AIIXY, AITYX, AIIYY

AlJ
AK

Coeflicients at the diagonal of matrix (elastic problems)
Matrix coefficient A,

First kernel function contributing to the matrix [A] (potential problems)

AKXX, AKXY, AKYX, AKYY

ALPERP
ALPERP2
ALPHA
ALPHAN
ALPHASEG
ALSEG
ANG
ANGFIR
ANGSEG
ANGSTORE
AROW
AROWX
AROWY
BDPSI
BETA
BETAN
BETASEG
BIJ

BK

First kernel functions contributing to the [A] matrix (elastic problems)
Perpendicular distance from centre of curvature to mid point of a segment chord
Square of ALPERP

Element values of constants in mixed boundary conditions

Nodal point values of constants in mixed boundary conditions (quadratic elements)
Boundary segment values of constants in mixed boundary conditions

Length of a segment chord measured between its end points

Angular position of current end point on a curved boundary segment

Angular position of first end point on a curved boundary segment

Angle subtended at centre of curvature by a curved boundary segment

Angular positions of end points on curved boundary segments

Array storing element node contributions to the [A] matrix (potential problems)
Array storing element node contributions to the [A] matrix (elastic problems)
Array storing element node contributions to the [A] matrix (elastic problems)
Coefhicient of right hand side vector (matrix [B] times vector of knowns)

Element values of constants in mixed boundary conditions

Nodal point values of constants in mixed boundary conditions (quadratic elements)
Boundary segment values of constants in mixed boundary conditions

Matrix coefficient B,

Second kernel function contributing to the [B] matrix (potential problems)

BKXX, BKXY, BKYX, BKYY

BK2

Second kernel functions contributing to the [B] matrix (elastic problems)
Non-singular part of second kernel function when P is the current element node

(potential problems)

BK2XX, BK2XY, BK2YX, BK2YY

Non-singular parts of second kernel functions when P is the current element node
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BROW
BROWX
BROWY
BTX, BTY
CASE

D

DPSI
DPSIPI
DPSIPIM
DPSISEG
DPSISTORE
DPSIT
DRDN
DUDZ
DVDZ
DZDE

E

EGL
ELENGTH

Some Program Variable Names

(elastic problems)

Array storing element node contributions to the [B] matrix (potential problems)
Array storing element node contributions to the [B] matrix (elastic problems)

Array storing element node contributions to the [B] matrix (elastic problems)
Coefficients of right hand side column vector (matrix [B] times the vector of knowns)
Alphanumeric plane stress or strain problem type

Perpendicular distance from P to the element containing node Q

Nodal point values of the potential gradient solution to Laplace’s equation

Nodal point values of the particular integral potential gradient function

Values of the particular integral potential gradient at the nodes of each element
Values of potential gradient applied as boundary conditions to the boundary segments
Temporary store for potential gradient

Nodal point values of total potential gradient (Laplace plus particular integral)

Rate of change of radius with distance along normal to boundary

Rate of change of displacement u with & along element

Rate of change of displacement v with £ along element

Jacobian of transformation from intrinsic co-ordinate & to %

Young’s modulus

Values of the intrinsic co-ordinate at the Gauss points (logarithmic quadrature)

Lengths of the elements
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ESS
ESTORE
ETA
EVX
EVY

F1
FLOWELEM
FLOWIN
FLOWOUT
FLOWSEG
FXELEM
FXSEG
FYELEM
FYSEG
HX

HY

I
I1,12,13
IBC
IBCD
IBCE
IBCM
IBCN
IBCP
IBCPC
IBCS
IBCU
IBOUND
IC
IDIRPC
IEEND
IEP1
IEP2
IFIRST
IFLAG
IGAUSS
IINT
ILAST
IN

Direct strain along boundary

Stored value of Young’s modulus

Intrinsic co-ordinate #

x component of the vector along an element

y component of the vector along an element

Constant function f, in Poisson’s equation

Potential flow across an element

Total potential flow into the domain

Total potential flow out of the domain

Flows of potential across the boundary segments

Force on an element in x direction

Total force on a boundary segment in x direction

Force on an element in y direction

Total force on a boundary segment in y direction

Interval between points in the x direction used in domain integration
Interval between points in the y direction used in domain integration
Node counter

Numbers of the three nodes of a quadratic element

Type number of boundary conditions applied to the (constant) elements
Counter for segments subject to applied potential gradient boundary conditions
Type number of boundary conditions applied to the (quadratic) elements
Counter for segments subject to applied mixed boundary conditions
Type number of boundary conditions applied to the nodes (of quadratic elements)
Counter for segments subject to applied potential boundary conditions
Counter for point displacement constraints

Counter for segments subject to applied stress boundary conditions
Counter for segments subject to applied displacement boundary conditions
Counter for boundaries

Case number for logarithmic Gaussian quadrature

Direction numbers of point displacement constraints

Counter for element end points

Counter for first end point of an element

Counter for second end point of an element

Numbers of first nodes on the segments

Flag for ill-conditioning of the [A] matrix

Counter for Gauss points

Counter for internal points

Numbers of last nodes on the segments

Counter for nodes within an element
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IROW
ISEG
ISEGBC
ISEGELEM
ISEGEND
ISEGMAX
ISEGMIN
ISEND

IT

IX
IXMAX
IY
IYMAX

JACOB
TMAX

M

Ml

M3
MAXL
MAXNB
MAXNEL
MAXNEQN
MAXNNP
MAXNPC
MFIRST
MLAST
MMAX
MMIN
NBCD
NBCM
NBCP
NBCPC
NBCS
NBCT
NBCU
NBOUND
NEEND
NEL

Number of row in the [A] matrix

Segment counter

Segment numbers for a particular type of boundary condition
Segment numbers for elements

Segment numbers for element end points

Number of last segment on current boundary

Number of first segment on current boundary

Counter for boundary segment end points

Number indicating type of Gaussian quadrature (normal or logarithmic)
Counter for points in the x direction used in domain integration
Maximum value of IX

Counter for points in the y direction used in domain integration
Maximum value of IY

Node counter

Jacobian of transformation from global to local intrinsic £ co-ordinate
Maximum number of columns in the extended [A] matrix

Element counter

Numbers of the elements adjacent to the first node of each element
Numbers of the elements adjacent to the third node of each element
Maximum dimension of the solution domain

Maximum number of boundaries allowed by the array dimensions
Maximum number of elements

Maximum number of equations

Maximum number of nodal points allowed by the array dimensions
Maximum number of point displacement constraints

Numbers of the first elements on the segments

Numbers of the last elements on the segments

Number of last element on current boundary

Number of first element on current boundary

Number of segments subject to applied potential gradient boundary conditions
Number of segments subject to applied mixed boundary conditions
Number of segments subject to applied potential boundary conditions
Number of point displacement constraints

Number of segments subject to applied stress boundary conditions
Total number of segments subject to applied boundary conditions
Number of segments subject to applied displacement boundary conditions
Number of boundaries

Number of element end points

Number of elements

Download free eBooks at bookboon.com



Boundary Element Methods for Engineers:

Part I: Potential Problems

NELB
NELSEG
NEP1
NEP2
NEQN
NGAUSS
NINT
NNP
NNPB
NODE
NODEPC
NSEGB
NSEGTOT
NU

NX

NY

PI

PSI
PSIBOT
PSIIP
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Numbers of elements on the boundaries

Number of elements on current boundary segment

Numbers of the first end points of the elements

Numbers of the second end points of the elements

Number of equations

Number of Gauss points

Number of internal points

Number of nodal points

Numbers of nodal points on each of the boundaries

Numbers of the nodes of the elements

Numbers of nodes subjected to point displacement constraints
Numbers of boundary segments on each of the boundaries

Total number of boundary segments

Poisson’s ratio

Number of internal points in the x direction used in domain integration
Number of internal points in the y direction used in domain integration
T

Nodal point values of the potential solution to Laplace’s equation

Value of potential on the bottom edge of a rectangular domain

Laplace equation potential at an internal point
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PSIIPT
PSILEFT
PSIPI
PSIRIGHT
PSISEG
PSIT
PSITOP
PSIVAL
R1

RI1X
R1Y

R2

R2X
R2Y
RATSEG
RFEN
RSEG
RX

RY

SD

SDL

SF

SFL

SFN
SIGE
SIGNN
SIGNNSEG
SIGSN
SIGSNSEG
SIGSS
STORE
TITLE
TMX
TX
T™MY

TY

U
UELEM
UNGX
UNGY

Total potential at an internal point (Laplace plus particular integral)

Value of potential on the left hand edge of a rectangular domain

Nodal point values of the particular integral potential function

Value of potential on the right hand edge of a rectangular domain

Values of potential applied as boundary conditions to the boundary segments
Nodal point values of total potential (Laplace plus particular integral)

Value of potential on the top edge of a rectangular domain

Values of potential stored for domain integration

Distance from point P to the first end of element containing node Q

x component of radius vector from P to the first end of element containing Q
y component of radius vector from P to the first end of element containing Q
Distance from point P to the second end of element containing node Q

x component of radius vector from P to the second end of element containing Q
y component of radius vector from P to the second end of element containing Q
Ratio between successive element lengths on current boundary segment
Value of function R(§)

Radius of curvature of current boundary segment

Component in x direction of unit radius vector from P to Q

Component in y direction of unit radius vector from P to Q

Shape function derivatives for quadratic elements (normal quadrature)

Shape function derivative values for quadratic elements (logarithmic quadrature)
Shape function values for quadratic elements (normal quadrature)

Shape function values for quadratic elements (logarithmic quadrature)

Shape function value at a Gauss point

Nodal point values of von Mises equivalent stress

Nodal point values of direct stress normal to boundary

Boundary segment values of direct stress normal to boundary

Nodal point values of shear stress along boundary

Boundary segment values of shear stress along boundary

Nodal point values of direct stress along boundary

Stored values in the boundary condition application process

Alphanumeric title for the problem (maximum 80 characters)

Element nodal point values of traction in x direction

Nodal point values of traction in x direction

Element nodal point values of traction in y direction

Nodal point values of traction in y direction

Nodal point values of displacement in x direction

Element values of displacement in x direction

x component of the unit normal at a Gauss point

y component of the unit normal at a Gauss point
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UNMX
UNMY
UNX
UNY
USEG
uv

\Y%
VELEM
VSEG
WG
WGL
XC
XCENT
XEEND
XFIRST
XINT
XLAST
XMID
XNODE
XP
XPOINT
XQ
XSEND
XX

YC
YCENT
YEEND
YFIRST
YINT
YINTGL
YLAST
YMID
YNODE
YP
YPOINT
YQ
YSEND
YY
ZETA
G

x components of the unit normals at the nodes of each element

y components of the unit normals at the nodes of each element

x components of the unit normals at the nodes

y components of the unit normals at the nodes

Boundary segment values of displacement in x direction

Nodal point values of computed displacements (or tractions)

Nodal point values of displacement in y direction

Element values of displacement in y direction

Boundary segment values of displacement in y direction

Values of the Gaussian weighting factors (normal quadrature)

Values of the Gaussian weighting factors (logarithmic quadrature)

x co-ordinate of the origin for the particular integral function

x co-ordinate of the centre of curvature of a curved boundary segment
x co-ordinates of the element end points

x co-ordinate of first end point of current boundary segment

x co-ordinate of an internal point

x co-ordinate of last end point of current boundary segment

x co-ordinate of the mid point between the ends of a curved segment
x co-ordinates of the nodes

x co-ordinate of point

Global x co-ordinate of an internal point

x co-ordinate of Gauss point

x co-ordinates of the boundary segment end points

x co-ordinate relative to the origin for the particular integral

y co-ordinate of the origin for the particular integral function

y co-ordinate of the centre of curvature of a curved boundary segment
y co-ordinates of the element end points

y co-ordinate of first end point of current boundary segment

y co-ordinate of an internal point

Values of y direction integrals stored for domain integration

y co-ordinate of last end point of current boundary segment

y co-ordinate of the mid point between the ends of a curved segment
y co-ordinates of the nodes

y co-ordinate of point P

Global co-ordinate of an internal point

y co-ordinate of Gauss point Q

y co-ordinates of the boundary segment end points

y co-ordinate relative to the origin for the particular integral
Intrinsic co-ordinate &

Values of the intrinsic co-ordinate § at the Gauss points (normal quadrature)
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Boundary Element Methods for Engineers:
Part I: Potential Problems Introduction

1 Introduction

The aim of this chapter is to review many of the types of problems encountered in engineering, particularly
those involving solid components or fluid flows. Problems from widely diverse branches of engineering
are often governed by mathematically identical equations. This means that they can be solved using
the same methods. Such methods may be either analytical where the problem is sufficiently simple, or

computational in more general cases.

Traditional methods of solving engineering problems involved the use of algebraic formulae derived
from approximate analyses of the physical quantities of interest. For example, the distributions of
displacements and stresses in a solid component, or of velocities, pressure and temperature in a flowing
fluid, might be required. Such a problem had to be simplified to the point where an analytical solution
could be obtained which, it was hoped, was a sufficiently good approximation to the solution of the real

problem. With the advent of modern high-speed digital computers, the focus of engineering analysis

has moved towards more versatile and accurate numerical methods.
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Well-established types of numerical technique include the finite difference, finite volume and finite
element methods. In all these methods, the distributions of the variables are obtained as approximate
values at a large, but finite, number of discrete points over the entire region of interest, the solution
domain. Despite some significant differences these methods are very similar in this important respect,
and may be described as domain methods. In boundary methods, on the other hand, the primary results
are the distributions of the variables on the boundary of the solution domain only, again defined in terms
of values at a finite number of points. The most widely used name for such boundary-based techniques
is the boundary element method. Another is the boundary integral equation (BIE) method, reflecting
the fact that the differential equation governing the physical process throughout the solution domain is

transformed into an integral equation applied to the boundary alone.

The object of this book is to provide a simple treatment of the fundamentals, numerical implementation
and some of the applications of boundary element methods to continuum mechanics problems in
engineering. Part I is concerned with problems which fall into the category known as potential problems,

while Part II deals with stress analysis of elastic solids.

1.1 Continuum Mechanics Problems

The concept of treating solids and fluids as though they are continuous media, rather than composed of
discrete molecules, is one that is widely used in most branches of engineering. In this section, the basic

equations of continuum mechanics are reviewed.

The mathematical equations for the deformation of solids are very similar in form to those for the flow of
fluids. The essential difference is that solid behaviour is described in terms of displacements and strains,
but for fluids velocities and strain rates are the corresponding variables. Equations are presented here
for Cartesian co-ordinate systems, first in their full three-dimensional forms. Problems considered in

this book are two-dimensional, allowing further simplification of the equations.

1.1.1 Stresses and strains

The symbol o is used to indicate stress, and individual components are indicated by double subscripts
direct stresses: Oy, Oyy, 0z,
shear stresses: 0y, 0y, Oz, Oyx) Ozy, Oxz

The first subscript defines the direction of the stress component, and the second one denotes the direction

of the outward normal to the surface on which it acts, as shown in Figure 1.1. For any small element of

material to be in equilibrium in a rotational sense, the shear stresses must be complementary

Oxy = Oyx, Oyz = Ozy, Ozx = Oxz (1.1)
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Figure 1.1 Cartesian stress components

The components of solid displacement or fluid velocity in the x, y and z co-ordinate directions are
denoted by u, v and w. Following the same double subscript notation, the direct and shear components

of strain or strain rate may be defined by

_ Ou _ ov _ow

Cxx = a: eyy - ;: €7z = E (].2)
_ _Ou | ov

exy B eyx B E a (13)

ov  ow

eyzzezyza_z'l'a (1.4)
_ __ 0w  du

€zx = €xz = ax | oz (1.5)

1.1.2 Equilibrium equations

If inertia effects are sufficiently small to be neglected, the partial differential equations of equilibrium in

the three Cartesian co-ordinate directions are

aaxx aaxy 60'xz v o_
ox + ady + dz +X=0 (1.6)
doyy |, 00yy | 00y, &
% + 3y + 3z +Y=0 (1.7)
9sx | 092y | 992 | 7 _
ox + oy + az +Z2=0 (1.8)

where X, Y and Z are the components at the relevant point in the material of any body forces per unit

volume acting in the co-ordinate directions. The force of gravity is the most common example.
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While inertia effects are not normally important in solid mechanics, they can only be ignored in fluids
if the flows are ‘slow” enough to be dominated by pressure and viscous forces. Otherwise, terms would
have to be added to Equations 1.6 to 1.8. For example, Equation 1.6 becomes

ou

00xx | 00xy | 00y, v o (_ a_u 6_u a_u)
ax+ay+az +X=p 6t+u6x+v6y+waz (1.9)

where t istime P and is the density of the fluid. This, together with the equivalent equations for the

other two directions, are known as the Navier-Stokes equations.

1.1.3 Energy equation

If thermal convection is ignored, the equation for conservation of energy within a solid or fluid material is

%t  a%r | 3T aT
k(ﬁ‘l‘a—yz-l'ﬁ)ﬂ-g—pcpa (1.10)

where T is the temperature, g is the heat per unit volume generated at the point of interest, k is the
thermal conductivity, and C,, is the specific heat of the material. Heat may be generated, for example,

by mechanical work, and

g = Oxxexx T Oyy€yy + 05,677 + Oxyeyy + 0y7€yz + O0zx€zx (1.11)

Excellent Economics and Business programmes at:

N

&

university of E AACSB
groningen - f\CCREDITED

N A

| .
| |
“The perfect start
of a successful,

| ., international career’
‘- >
. K HERE
sy A CLIC

to discover why both socially
and academically the University

of Groningen is one of the best
places for a student to be

I

www.rug.nl/feb/education

23 Click on the ad to read more

Download free eBooks at bookboon.com


http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

Another example of heat generation in a material is when an electrical current is passed through a
conductor. For a fluid in which heat is transferred by convection, the following term would have to be

added to the right-hand side of Equation 1.10

+w

oT aT aT
pCp (u ™ +v % 5)

(1.12)

1.14 Compatibility equations

Strains or strain rates should be compatible with each other. The physical interpretation of this statement
is that no discontinuities such as holes or overlaps of material should exist, which in mathematical terms
means that 4, v and w should be continuous and differentiable functions of x, y and z. Using the six
strain (rate) definitions from Equations 1.2 to 1.5, the following six relationships can be obtained by

using differentiation to eliminate u, v and w.

exy | Oleyy _ ’exy (1.13)
dy? 0x? 0xdy
Doy | Oy _ ey (1.14)
0z2 ay? dydz
0%e,,  0%eyy _ 0%ey, (1.15)
dx2 0z2 0z0x
0%exx _ 9 ( Oeyz | Oegy aex}’)
2 0yoz T ox ox + ay + 0z (1'16)
d%e 9 (de de de
vy :_( vz _ Oz | xy) (1.17)
0z0x dy \ dx ady 0z
2 0%y _ 9 (aeyz Oezx aex)’) (1.18)
oxdy 0z \ dx ay 0z

Such compatibility equations rarely appear in fluid mechanics analyses, because these are normally set
up with velocities as the unknowns. Compatibility of strain rates is then satisfied automatically. On the
other hand, problems of solid stress analysis are often set up with stresses as the unknowns, in which

case it is necessary to ensure that the strains are compatible.

1.1.5 Continuity equation

Conservation of mass in a fluid flow is ensured by the continuity equation. For a constant density fluid

it becomes the incompressibility condition

exx T €yy+ e, =0 (1.19)
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1.1.6 Constitutive equations

The connections between stresses on the one hand and strains or strain rates on the other are defined
by constitutive equations which involve the appropriate material properties. For present purposes solids
are assumed to be purely elastic and fluids to be purely viscous. The existence of viscoelastic materials is
ignored. In general the properties of a material may vary. If they are independent of position the material
is said to be homogeneous. If they are independent of direction at all points it is said to be isotropic. If

they are independent of the stress or strain (rate) applied the material is said to be linear.

Strains in an elastic solid may be produced both by applying stresses and by changing the material

temperature. For a homogeneous, isotropic and linearly elastic solid the constitutive equations are

Exx = %[Uxx - v(ayy + O'ZZ)] + aAT (1.20)
eyy = %[ayy —v(o,, + axx)] + aAT (1.21)
ey = % [022 = V(0xx + 0yy)] + aAT (1.22)
exy = ag—y = 2(1;1/) Oxy (1.23)
ey, = 2 = 2(1;”) Oys (1.24)
e =2=20g (1.25)

In these equations E is Young’s modulus, G is the shear modulus, v is Poisson’ ratio, & is the coefficient

of linear thermal expansion and AT is the temperature change.

A Newtonian fluid is homogeneous, isotropic and linear, and under laminar flow conditions the

constitutive equations for its flow are
Oxx = P+ 2Uiexy, Oyy = =P+ 2Ueyy, 0z =P+ 2Uey (1.26)
Oxy = Uexy,  Oyz = Ueyz, Ozx = H€zx (1.27)
where p is the hydrostatic pressure in the fluid and u is the viscosity.

1.2 Some Practical Engineering Problems

The following examples demonstrate the application of the above equations to practical problems. It is
not the details of all the examples that are important, but rather the similarities between the resulting

differential equations.
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1.2.1 Downstream viscous flow in a uniform channel

Figure 1.2 shows the cross-section of a uniform flow channel, which for present purposes is taken to
be rectangular in shape. The lower three sides of the channel are assumed to be stationary while the
top surface moves with a velocity V, in the downstream z-direction normal to the cross-section shown.
The velocity of flow, w, is also in this direction. Because the channel is uniform, there are no variations
of either geometry or physical variables in the downstream direction, with the exception that pressure
is a linear function of z, but constant across the cross-section. Substituting the expressions for stresses
given in Equations 1.26 and 1.27 into equilibrium Equation 1.8 and ignoring body forces, the governing

differential equation for downstream velocity w becomes
d ow d ow\ _ dp _
dx (’u 6x) + ay (ﬂ 6y) T oz F, (1.28)
Because the viscosity is constant
2 Py
WL LIV _y w=-2 (1.29)

The mathematical symbol V2 is a partial differential operator, and is sometimes referred to as the Laplacian.

Problems governed by this type of equation may be referred to as either potential or harmonic.
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Figure 1.2 Rectangular channel geometry and co-ordinates

If there is no slip between the fluid and the solid walls of the channel, the boundary conditions for

velocity are
w=0onx=0 x=W and y =0; w=V,ony=H (1.30)
The downstream volumetric flow rate is found by integration of the velocity profile over the cross-section
Q= f, wdxdy (1.31)

1.2.2 Torsion of a prismatic bar

Figure 1.3 shows the cross-section of a prismatic bar, which for present purposes is elliptical in shape.
The ends of the bar are twisted relative to each other about the z-axis normal to the cross-section shown.
The St. Venant theory of torsion assumes that the deformation of the bar is a combination of a rotation
of the cross-section and a warping in the z-direction, although there is no warping in the particular
case of a bar of circular cross-section. The angle of rotation, in the anticlockwise direction, is assumed
to be @ per unit length of the bar and the cross-section illustrated is assumed to be at a distance z from

the position of zero rotation. Hence, the displacements of the typical point P shown in the figure are
u=-60zy, v=0zx, w=w(xYy) (1.32)

x and y being the co-ordinates of P. The displacement w describes the warping of the cross-section.

Figure 1.3 Elliptical cross-section of a prismatic bar
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Using the definitions of strains given in Equations 1.2 to 1.5

ey, =0x+-—, e, =—->—10y (1.33)

With displacements being chosen as the unknowns, compatibility Equations 1.13 to 1.18 are automatically
satisfied. In the absence of temperature change, constitutive Equations 1.20 to 1.25, give the only nonzero
stress components as g, = Ge,, and 0, = Gezy. Among the equilibrium Equations 1.6 to 1.8, only

the last is relevant, and ignoring body forces becomes

0075 | 00zy _
Consequently

—+—=Vw=0 (1.35)

Figure 1.4 Part of the boundary of a cross-section of a prismatic bar

The boundary conditions for this torsion problem are for the shear stresses acting on the outer surface
of the bar to be zero. At a particular point on the surface let n be the direction of the outward normal

there, in which case the surface stress 0y, is zero, and so is the complementary stress dy,,. Consequently

Opz = Oxz COSY + gy, siny =0 (1.36)
d d .
(%—Hy) cosy + (%+9x) siny =0 (1.37)

where V is the angle between the direction of n and the x-axis. Boundary conditions for displacement
of this type are not straightforward to apply, particularly for asymmetrical bar cross-sections where the

position of the axis of rotation is not obvious.
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This example provides a good illustration of the difficulties of formulating a problem in terms of
displacements when the boundary conditions are defined in terms of stresses. Consequently, solid
mechanics problems are sometimes more conveniently formulated in using stress functions. In this

torsion problem stress function X can be defined to automatically satisfy the equilibrium Equation 1.34

ax ax
Ozx = 2y’ Oyz = T 5% (1.38)

The relevant shear strains are

19y _ 10y

€zx = Eg: €yz = T Gox (1.39)
which must the satisfy compatibility Equations 1.16 and 1.17, meaning that
Oezx _ Oeyz _
3y Pl constant (1.40)

The value of the constant can be found from Equations 1.33 as —26. Then, substituting the strains defined

by Equations 1.39 into Equation 1.40, the final differential equation for X is obtained as

92 02
a—’j + ﬁ =V2y = —2G6 (1.41)
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In mathematical terms this is very similar to Equation 1.35. The zero shear stress boundary condition
0nz = 0is obtained when the gradient of the stress function along the boundary is zero, in other words
when the value of is constant along the boundary. Because it is not the absolute value of the stress
function, but only its derivatives, which determine the stress distribution, y = 0 is a suitable boundary

condition, and much simpler to apply than Equation 1.37 for warping displacement.

Given the shear stress distributions over the cross-section, the magnitude of the couple required to twist

the bar may be found by integration
C = [[(x0y, — yo,,) dx dy (1.42)

Introducing the stress function already defined

- ox ax
C= —ff(xa+y$) dx dy

=-—Jf [;—x(x)()+%(y)()] dxdy + 2 [[ y dx dy

and applying Green’s theorem to the first of these two integrals

C=—¢$(xdy —yxdx) +2[[ x dx dy

The line integration in this new integral is carried out around the boundary of the bar. Because y = 0

on this boundary, the expression for torsional couple becomes
C=2[xdxdy (1.43)

1.2.3 Ideal fluid flow

The ‘ideal” fluid model of flow can be used to describe the motion of real fluids in areas away from the
wakes and boundary layers that occur near solid boundaries. Close to such boundaries viscous effects
are significant, but an ideal fluid, which is homogeneous, isotropic and incompressible, is also assumed
to have negligible viscosity. The flow of an ideal fluid is governed by pressure forces and fluid inertia.
For two-dimensional flow in the x — y plane (with w = 0 everywhere) the equilibrium equations in

the form of Equation 1.9 for steady (time-independent) flow with negligible external body forces are

_9 _ ou_ 0u
%P (u " + vay) (1.44)
_9 _ ( o a_”) 1.45
5y = P Ut 75, (1.45)
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The two-dimensional form of the continuity Equation 1.19 is

du . dv
%oy 0 (1.46)

which is automatically satisfied by stream function ¥, defined by

L (1.47)

u_ay' ox

Equations 1.44 and 1.45 can be rearranged as

_ 0 (p uZ+v?\ _ ou_ ov
ax (p t ) v (ay ax) (1.48)
_ 9 (p uZ+v?\ v ou
ay (p t ) —u (6x ay) (1.49)
and these in general require that
du Ov
oy ax (1.50)

Using Equations 1.47 for velocities expressed in terms of stream function, this becomes
Vi) =0 (1.51)

Given the stream function distribution, the pressure distribution can be determined from

u?+v?

% + = constant (1.52)

An alternative approach to ideal fluid flow problems is to define a velocity potential @

w
ax ’ T oy (1.53)

which automatically satisfies Equation 1.50. In order to satisfy continuity Equation 1.46 it is necessary that
V29 =0 (1.54)

The same mathematical form of equation is obtained, and the fact that it is for velocity potential helps

to explain why problems governed by this type of equation may be referred to as potential problems.
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1.24 Diffusion and potential problems

Many physical processes involve diffusion and variables which are effectively a type of potential (including
velocity potential in the ideal fluid flow problem above). An example is thermal conduction in solid or
fluid materials, governed by the energy Equation 1.10. For steady heat conduction in the x — y plane

this reduces to
V2T = —% (1.55)

Boundary conditions for the temperature may be of various types. The simplest is when the temperature
at the boundary or part of the boundary is known. On the other hand, a boundary which is thermally

insulated, with no heat transfer across it, is subject to the derivative condition

oT _
an

0 (1.56)

As usual 7 is the direction of the outward normal to the boundary. A more general type of condition
is applicable when the heat conducted towards the boundary is convected away from the surface into a

fluid in contact with it
T _ o
—ka =h(T — Ty) (1.57)

where h is the heat transfer coeflicient and Tw is the remote temperature of the surrounding fluid.
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Other examples of diffusion and potential problems are provided by electrical conduction, electrostatic
potential in insulating media, fluid flow in porous media, and neutron diffusion in a nuclear reactor.
Take the flow of a fluid in a porous medium, such as water seeping through rock or soil. The flow is
Newtonian and at a microscopic level the volumetric flow rate along an individual passage in the soil
is proportional to the local pressure gradient along the passage. Then at a macroscopic level the mean
velocity in a given direction at a particular position, which is the sum of the flow rates along individual
passages, is also proportional to the pressure gradient in that direction at the chosen position. Therefore,
for two-dimensional flow in the x — y plane

i=-KL, B=-Kk (1.58)
where k is the permeability of the soil, and pressure is effectively a form of velocity potential. As in
the case of ideal fluid flow considered above, a stream function ¥ may be defined which automatically

satisfies continuity

o )

U=@, v=—o0 (1.59)
Differentiation can be used to eliminate pressure from Equations 1.58 to give

ou ﬁ R

3y ax_ v ¥=0 (1.60)

Boundary conditions are generally of the form of either prescribed constant values of for boundaries

impervious to flow, or zero derivatives normal to boundaries where the pressure is constant.

An alternative approach to porous media flow problems is to work in terms of pressure as a velocity

potential. Substituting Equations 1.58 into continuity Equation 1.46 gives

Vp =0 (1.61)

1.2.5 Plane strain

Both plane strain and plane stress are important types of two-dimensional solid loading and deformation.
Figure 1.5 shows a solid body whose cross-section is does not vary in the -direction. If its length in
this direction is large, the typical cross-section OABC shown can be treated as being far from the ends.
Provided that the surface loadings applied to the body are in the x — y plane, the state of strain created

at OABC is two-dimensional, independent of and with displacement w = 0.
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Figure 1.5 The plane strain approximation for a prismatic solid body

Ignoring body forces, equilibrium Equations 1.6 to 1.8 become

Ooyy | 00y,

2 =0 (1.63)
00,;

2o _ g (1.64)

Using the strain definitions given in Equations 1.2 to 1.5, e,, = e,,, = e, = 0 and with no temperature

change constitutive Equation 1.22 becomes
02z = V(0xx + 0yy) (1.65)

One method of continuing the analysis is to define a stress function X, known as Airy’s stress function,

which automatically satisfies equilibrium Equations 1.62 and 1.63

0%y 9%y _ 0%y
Oy = W ) O-yy = ﬁ , O-xy = — oxdy (166)

Using Equation 1.65

Oyz = VVZX (1.67)
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and constitutive Equations 1.20, 1.21 and 1.23 give the nonzero strain components as

_l[@x_, (%« 2

exe = 355~ v (55 +v7)] (1.68)
_1[%x_ (9%x  p2

Cyy = E [6x2 v (6y2 +wW X)] (1.69)
__2(1+v) 9%y

exy = — =% 50y (1.70)

These strains must be compatible. Equations 1.14 to 1.18 are automatically satisfied by the plane strain

assumptions, and substituting the expressions for strains into Equation 1.13 gives

'x 0% _ [ a*x 2y2 ]__ '
ax4+ay4 vzax26y2+vv Vep)| = 2(1+v)6x26y2

which can be simplified to
Viy =0 (1.71)

irrespective of the value of Poisson’s ratio. The biharmonic partial differential operator V* is defined by

4, — p2(y2,) = 2%, %% o'x

Equation 1.71 may be subject to various types of boundary conditions, including prescribed stresses or

displacements.
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1.2.6 Plane stress

Figure 1.6 shows a flat solid plate lying parallel to the x — y plane. Provided the applied loadings are
in plane of the plate as shown, the direct and shear stress components on the faces of the plate are zero.
If the plate is thin then it may be assumed that throughout the material the plane stress approximation
02z = Oy; = Oy, = 0 is applicable. Ignoring body forces, the equilibrium conditions again reduce to

Equations 1.62 and 1.63, allowing the use of Airy’s stress function defined in Equations 1.66.
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Figure 1.6 The plane stress approximation for a thin solid body

Using constitutive Equations 1.20 to 1.25, e, = e;, = 0 and with no temperature change

Cxx = %(axx - vayy) = %(% — v%) (1.73)
eyy = %(ayy — vaxx) = %(% -V Z;)Z() (1.74)
ey, = —%(axx +oyy) = —%VZ)( (1.75)

If these expressions for strains are substituted into compatibility Equation 1.13 then

a5, Ok _9'x_
dx* + dy* Zv 9x29y2 2(1 + V) 0x20y?2
Viy=0 (1.77)

irrespective of the value of Poisson’s ratio. The remaining compatibility Equations 1.14 to 1.18 are not all
automatically satisfied but, it can be shown that they are satisfied approximately when the plate is thin
enough for variations through the thickness of the stresses and strains are small enough to be ignored.

The possible boundary conditions for plane stress problems are similar to those for plane strain.
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1.2.7 Recirculating viscous flow

In Section 1.2.1 the governing equation for downstream viscous flow in a uniform channel was derived.
If, for example, the top surface of this channel, shown in Figure 1.2, moves with a velocity V, in the
x-direction relative to the remaining stationary sides, a recirculating viscous flow is created in the plane
of the cross-section. A stream function as defined in Equations 1.47 automatically satisfies continuity
for this two-dimensional flow. Ignoring body forces, the equilibrium equations are Equations 1.62 and

1.63. Introducing constitutive Equations 1.26 and 1.27, these equilibrium conditions may be expressed as

op _ 0%u @ (du . Ov
5_”[zﬁ+$(5+5)] (1.78)
o _ [, 2 (9, v
ay M [2 9y? * o (ay + ax)] (1.79)

Using differentiation to remove the pressure from these equations, and introducing the stream function,

the governing equation is obtained as
Vi =0 (1.80)

If there is no slip between the fluid and the solid walls of the channel, the boundary conditions are

YP=0, v:—%: onx=0,x=W
Y=0, u=2—;l:=0 ony=0 (1.81)

d
Y=0Q, u=3'=V, ony=H

where Q is the volumetric flow rate per unit length of channel in the downstream direction leaking into
and out of the channel in the small gaps between the moving and fixed channel surfaces. The absolute
values of the stream function defined on these surfaces are not important, provided a difference of Q;,

is maintained between them, because it is only the derivatives of ¥ that define velocities in the flow.

In this problem of recirculating viscous flow, the direct strain rate in the z-direction is zero, and there

is a close physical analogy with the plane strain deformation of solid bodies described in Section 1.2.5.

1.2.8 Laterally loaded flat plate

Thelast example concerns a flat plate, of uniform thickness, lying parallel to the x — y plane and subjected
to a lateral pressure p(x,y). Without going into the details, the equation governing the displacement

normal to the surface of the plate is

4, = P
VW—D (1.82)
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The parameter D = Eh3/12(1 —v?) is known the flexural rigidity of the plate. Applicable boundary
conditions include w = 0 for a rigidly supported edge, and dw/dn = 0 (n being the direction of the
outward normal to the boundary in the x — y plane) for an edge of the plate which is rigidly clamped
and therefore not able to rotate. It is interesting to note the familiar mathematical form of the governing

equation, although such plate bending problems are outside the scope of this book.

1.2.9 General comments

In the above examples there are obvious similarities between the governing partial differential equations.
There are also a number of general observations that can be made. Problems involving solid bodies tend
to be formulated in terms of stress variables (including stress functions) which automatically satisfy the
conditions of equilibrium, and solutions are obtained which satisfy the equations of strain compatibility.
On the other hand, problems in fluid flow tend to be formulated in terms of velocity variables (including
stream functions) which automatically satisfy the continuity equation, and solutions are obtained which
satisfy the equations of equilibrium. These approaches are guided by the forms of the boundary conditions,
with stresses being more commonly prescribed for solids, and velocities for fluids. Such formulations

are not necessarily relevant when numerical methods of solution are employed, particularly when more

general mixed types of boundary conditions have to be satisfied.
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Simple boundary conditions define either the value of the dependent variable on a boundary, or the value
of its first derivative in the direction normal to the boundary. A more general boundary condition, of

which these are special cases, is typified by Equation 1.57 which takes the form
a
a1%+a21/)+a3 =0 (1.83)

where ¥ is the dependent variable and and are known constants. The order of the differential equation
governing a problem, which is the order of the highest derivative in the equation, determines the
number of boundary conditions required for a solution to be found. The second-order equations arising
in Sections 1.2.1 to 1.2.4 need two conditions per co-ordinate direction, one on each boundary. The
fourth-order equations arising in Sections 1.2.5 to 1.2.8 need four conditions, two on each boundary

(for example, Equations 1.81).

Solving the governing equations with the appropriate boundary conditions for a particular problem
gives the dependent variable as a function of position within the region of interest, the solution domain.
Some problems call for further analysis. Flow rate in Section 1.2.1 and torsional couple in Section 1.2.2,
for example, are obtained by integration of the dependent variables over the solution domains. While in
many of the problems described, body forces and temperature changes are ignored, if they were included
the fundamental types of the differential equations obtained would not be affected. These equation types

have a large impact on the methods of solution to be employed.

1.1.10  Harmonic and biharmonic equations

The governing equations for the problems outlined are essentially of two types.

%Y 9%Y
a2z Yoy = VY = fi(6y) (1.84)
O L 0N L, 0 _ ooz N _uh

toot2 =VA(V ) =V = fa(x, y) (1.85)

ax* = o0yt dx20y?

Second-order Equation 1.84 is often referred to as Poisson’s equation, reducing to Laplace’s equation as a
particular casewhen f; = 0. Equation 1.85, on the other hand, is fourth-order. One way of distinguishing
between the two types is by referring to them as harmonic (Equation 1.84) and biharmonic (Equation
1.85), both somewhat mathematical descriptions. For practical engineering purposes it is perhaps more
convenient to refer to problems governed by Equation 1.84 as potential problems. In this book, the only
types of problems governed by Equation 1.85 which are considered in detail are elastic stress analysis

problems, treated in Part 2.

It is worth noting that all the problems considered are equilibrium problems, involving either steady fluid
flows or static stresses in solids. If, for example, the time derivative term in Equation 1.10 is retained in
Equation 1.55, the resulting unsteady thermal conduction problem is of the propagation type, with the

solution changing with time.

Download free eBooks at bookboon.com



13 Methods for Solving Harmonic and Biharmonic Equations

Harmonic and biharmonic partial differential equations can only be solved analytically in few simple
cases. Although many mathematical functions satisfy the differential equations, in general they cannot
also satisfy the imposed boundary conditions, and it is the boundary conditions as well as the differential

equations that define the solutions.

Traditional numerical methods of solution are based on discretisation, with continuous functions such
as stresses, displacements or velocities being represented approximately by discrete values at a finite
number of points both within the solution domain and on its boundary. These values are computed from
sets of simultaneous, normally linear, algebraic equations. The accuracies of the approximations increase
with the numbers of points employed, especially if the extra points are concentrated in regions where
the functions change their values rapidly. Various methods of analysis are used to assemble the required

sets of linear algebraic equations, including finite difference, finite volume and finite element methods.

The purpose of this book is to introduce a fundamentally different class of methods known as boundary
element methods for solving potential and elastic stress analysis problems. As their name suggests, they
require only the boundary of the solution domain to be discretised, although values of the variables can

also be found at any point of interest within the domain.

Problems

1.1 The downstream viscous flow problem described in Section 1.2.1 has a plane of symmetry. If
advantage is to be taken of this symmetry to analyse only one half of the channel, what are the

boundary conditions that should be applied to the reduced domain?

1.2 A thin membrane is subject to a uniform tensile force of S per unitlength in all in-plane directions.
Under a uniform pressure of magnitude p the deflection w in the z-direction of the membrane

which lies in the x — y plane is governed by the equation

Explain how such a membrane can be used experimentally as an analogue for the torsion

problem.

1.3 Water seeps through the porous rock underneath a concrete dam. Equation 1.61 for pressure

governs this flow. What are the appropriate boundary conditions?
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1.4 In the following problems a two-dimensional approximation is to be used for analysis. In each

case, which is the more appropriate approximation, plane strain or plane stress?

a) An elastic membrane under in-plane loading.

b) The cross-section of a dam holding back water.

c) The cross-section of a billet of metal undergoing forging.

d) The cross-section of a thick-walled cylinder.

e) A tension test specimen.

1.5 What physical problems are represented by the following distributions of Airy’s stress function:

(a) y = Ax?% (b) y = By3, where A and B are constants?

1.6 Starting from Equations 1.20 to 1.22 under plane strain conditions in the absence of temperature

changes, determine the direct stresses and in terms of the corresponding direct strains oy, and

0yy. What happens when the value of Poisson’s ratio is %4? Explain the physical significance.

~
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2 Boundary Element Analysis of
Potential Problems

In this chapter a form of boundary element analysis for two-dimensional potential problems such as
those outlined in Chapter 1 is presented. Two types of elements are considered: constant and quadratic.

Three-dimensional problems are discussed briefly in Section 7.3.
From Equation 1.84, potential problems are governed by Poisson’s equation

oty | oty
vz VY = f1(x,¥) (2.1)
where f; (x, y) is a known function of position within the solution domain. If f;(x,y) = 0 everywhere

then Equation 2.1 becomes Laplace’s equation, which it is convenient to consider first
2V 2 g2y = (2.2)

Possible boundary conditions at the edges of the domain are prescribed values of potential 1, prescribed
values of the potential gradient in the direction normal to the boundary, or in general a linear relationship

between potential and potential gradient
0
aq % + azlll +az = 0 (23)
where a4, a; and as are known constants.

2.1 Fundamental Solution

A substantial amount of fairly sophisticated mathematics has gone into the development of boundary
element methods. In this book, however, only a minimum of mathematics is introduced, and the emphasis
is on developing methods which are straightforward to understand and apply to practical engineering

problems.

In order to proceed, a special form of solution to Laplace’s equation is required, which is known as
the fundamental solution. In practical terms, the fundamental solution is that due to a source of
potential concentrated at a point in a solution domain of infinite extent in all directions. A mathematical
requirement of the fundamental solution is that its value is singular (goes to infinity) at a point - the
point where the source is located. The effects of a point source in terms of potential distribution will be
the same in all directions moving away from the point. In two dimensions, if r and 8 are plane polar
co-ordinates centred at the source point, the potential distribution will be a function only of r. In fact it is

$=n() (2.4)

r
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where “In” is the natural logarithm function. If co-ordinates X and y also have their origin at the source

point then
r =+ +y?)% (2.5)
and ¢ = In G) = In(x? + y2)™% = —%In(x? + y?) (2.6)

Differentiating partially with respect to x

¢ _ 4 2x x

ax 72 (x2+4y?2) (x%2+y2) (2.7)
and a ainaz—(p—— LR S TV S—— 2 (2.8)

8N T T T Gty | @iz X T T yt) T e2gy2)? :

Similarly, differentiating partially with respect to Y

9% _ ¥

dy - (x24y2) (29)

% 1 2y?2

o T @D | @y (210)
Adding the second derivatives defined in Equations 2.8 and 2.10

2 2 2 2
U U 1) (2.11)

P Gy
and the fundamental solution satisfies Laplace’s equation, Equation 2.2.
The physical significance of Equation 2.4 can be explored by regarding ¢ as the temperature in a medium

of infinite extent in all directions, and having a thermal conductivity of k. Consider a point Z with co-

ordinates (x,y) at distance r from a point heat source at O in Figure 2.1.

Figure 2.1 Co-ordinates and geometry near a point heat source
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The temperature gradient in the radial direction at Z is

9 _ 9 (_ —__1
6r_ar( lnr)— r

Now consider the circle passing through point Z of radius centred at point O. The total rate of heat

conduction outwards across this circle is
H=¢k(-32)rdo =§kdo = 2mk (2.12)

where the line integration is carried out around the circumference. The negative sign is present because a
positive outflow of heat is associated with a negative temperature gradient in the outward direction. The
magnitude of quantity H is the strength of the heat source, which is a constant. Under steady conditions

the total heat conducted outwards from a point heat source is independent of the distance from the source.

If p and q are any two points within the two-dimensional solution domain for a potential problem, the

fundamental solution at g referred to an origin at p (or vice versa), may be expressed as

1
¢ =1In [r(p’q)] r(p,q) #0 (2.13)
As r(p, q) approaches zero the solution tends to infinity, which is not permitted. Point p is referred to

as the source point, g as the field point.

2.2 Boundary Integral Equation

The aim now is to relate what is happening within a solution domain of a potential problem to what
is happening on the boundary, with a view to only analysing the latter. The above examination of the
fundamental solution provides some useful guidance. Equation 2.12 was the result of summing the local
heat transfer rates across the circle surrounding the heat source to give the total net heat flow, which
under steady conditions must be equal to the magnitude of the source. It involved in effect an integral
around the circle or boundary. This idea can be generalised: a boundary, S, of any size and shape could
be drawn around the source. The total rate of heat conduction out of the domain can be found from a

boundary integral along the path of the boundary
a¢
H=¢ k(-2)ds (2.14)

where n is the outward normal direction to boundary S.
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The line integral symbol in Equation 2.14 means integration in the anticlockwise direction along the
boundary enclosing the solution domain. In general, it means integration along the boundary in the
direction which always keeps the domain on the left. If the domain contains a hole, for example, which
is perfectly permissible in the present context, the solution domain would be defined by two boundaries:
the outer one and the edge of the inner hole. Integration around the hole boundary would be in the
clockwise direction to keep the domain always on the left. The sum of the integrals around the two

boundaries would be required to find the total rate of heat conduction from the domain.

Equation 1.55, a simplified form of the general energy equation, Equation 1.10, relates heat generation

per unit area in the two-dimensional domain to the Laplace operator applied to temperature
g =—kV?¢ (2.15)
For a point source of heat, the magnitude of g can be thought of as tending to infinity at the point,

but with the area over which it acts tending to zero. The summation of heat generated can, however, be

expressed as

H= [, gdxdy = [[, (-kV*¢)dxdy (2.16)

Need help with your
dissertation?

Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

Get Help Now

Go to www.helpmyassignment.co.uk for more info E:/Helpmyassignment

45 Click on the ad to read more

Download free eBooks at bookboon.com


http://www.helpmyassignment.co.uk

where A is the area of the domain enclosed by boundary S. Combining Equations 2.14 and 2.16, and

removing the constant common factor of -k
2 — 99
Iy V’pdxdy = ¢ —-dS (2.17)

In this more general form, the sum of potential sources within a solution domain is equated to the net

flow of potential across the boundary or boundaries.

Comparing Equations 2.12 and 2.16 it is clear that for the fundamental solution associated with a single

point source within the domain
I, (W¢)dxdy = —2m (2.18)

In mathematical terms, the magnitude of a source at a particular point is given by the divergence of the

vector field. The vector field is the potential gradient

(124D 2 2
V¢—(lax+]ay)¢—lax+]a (2.19)

y

where i and J are the unit vectors in the x and Y directions, respectively, and its divergence is

V.(V) = (z—+] ) ( ‘;i’ +16¢) = V2¢ (2.20)

dy

Equation 2.17 can be written as
d
[f, V.(V¢) dx dy = §, %ds (2.21)

and is sometimes referred to as the divergence theorem. It is a general result which holds for any
continuous and differentiable function, and could therefore be written for not just potential gradient

V.¢ but for YV.d where 1 is any (continuous and differentiable) function.
]
[f, V.wv¢)dxdy = ¢ p3tds (2.22)

Now V.(@ve) = (i +j)- (w3 +iv3)

-5 e e+ S5 5

and Equation 2.22 becomes

dy

IS, [wvie + 5222+ ‘:”Zi]d xdy = ¢ p3tds (2.23)
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Interchanging functions 1 and ¢

2 4 2000 26 0p aw
'U [¢V v+ ox 6x dy 6y] dx dy ﬁs ¢ on ds (2.24)

and subtracting Equation 2.24 from 2.23

If, @V — ¢VPyp)dxdy = § (p22— ¢2L)ds (2.25)

which is a result known as Green’s symmetric identity (symmetric because it is symmetric in functions

Yand ¢).

Equation 2.25 looks promising in that the left hand side integral over the area of the solution domain
involves V2¢ and V2, which will both be zero if ¢ and 1 satisfy Laplace’s equation. Hence the area
integral will also be zero, leaving only the boundary integral on the right hand side. Suppose that
is the required solution to Equation 2.2, and that ¢ is the fundamental solution. Now ¢ does satisfy
V2¢ = 0, except at the source point for the fundamental solution if this is located within the solution

domain. With a little care this can be dealt with.

small circle
radius ¢

Figure 2.2 A two-dimensional solution domain, including a small circular region of radius € surrounding the
source point p

Surround the source point P with a small circle as shown in Figure 2.2. If the circle is very small, the
value of ¥ can be taken as constant within it, equal to the value at point p, that is ¥ (p). The integral
over the circle of V¢ is already known from Equation 2.18 (which evolved from Equation 2.12) as

—2m. Equation 2.25 becomes
d d
2mp(p) + & (¢ 2 ¢ %) ds =0 (2.26)
The function ¢ is known, so provided the values of both 1 and its gradient normal to the boundary are

known at every point along the boundary, this provides a means of calculating the value of the required

solution 1 at any point within the solution domain. The challenge now is to find these boundary values.
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It can be anticipated that if point p is taken to the boundary at a point P, the resulting equation will

involve only quantities on the boundary.

arc of circle

(@

Figure 2.3 Typical point P on the boundary
(a) P on a smooth part of the boundary (b) P at a corner

Around the source point P on the boundary, which is assumed to be locally smooth as in Figure 2.3a,
consider an arc of a circle centred at P, the ends of which are on the boundary. “Smooth” in this context
means that the direction of the tangent to the boundary does not undergo an abrupt change at point P.
If the radius of the arc is very small, the value of 1 can again be taken as constant within it, equal to the
value at point P, that is {/(P). The integral over the region enclosed by the arc of V2¢ can be inferred
from Equation 2.18 (which again evolved from Equation 2.12) as -, because as the radius of the arc
shrinks to zero the region of integration becomes a semi-circle, containing just half of the effects of the

point source (the other half being outside the boundary). Equation 2.25 becomes

mp(P) + ¢ (W2 — ¢p2) ds=0 (2.27)
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which is now a truly boundary integral equation. The first term in this equation, which does not involve
integration, is referred to as the “free term”. If boundary point P is not on a smooth part of the boundary
but at a corner such as that shown in Figure 2.3b, then the free term becomes §i(P), where § is the angle
between the tangents at the corner measured through the domain. In practice, the precise magnitude of

the constant in the free term is not important because it can be found in another way.

Equation 2.27 is the boundary integral equation for point P as the source point of the fundamental

solution. To improve the clarity of what it means it can be written as

mp(P) + § YO LEPAS@ = ¢ 6.0 (F) dS@ (2.28)
Point () is on the boundary and moves around the boundary as the integration with respect to S, the
distance along the boundary, proceeds. Function ¢ (P, Q) is the fundamental solution for field point Q
due to a source point at P, and n is the direction of the normal to the boundary at the field point. At
any point () either the value of 1 or its normal gradient will be known from the boundary conditions
of the particular problem (or there will be a known linear relationship between them). Care will have
to be taken when (Q passes through P during the integration, because there the fundamental solution

is not defined.

2.3 Discretisation of the Boundary Integral Equation

In general, Equation 2.28 cannot be solved analytically, and some form of numerical method must be
employed. Solution variable 1 is found not as a continuous algebraic function of position along the
boundary, but as numerical values at a finite number of discrete points on the boundary. The boundary
may be subdivided into small pieces or boundary elements. Associated with each element are one or
more of these points, known as nodes or nodal points. The distributions of ¥ and its normal gradient
over the elements are defined in terms of nodal point values by suitable interpolation functions. For
example, the simplest type of boundary element is the constant element, having a single node at its centre
and over which the variables are assumed to be constant. Next comes the linear element with a node at
each end and assumed linear variations between them. Then the quadratic element with an additional

node at its centre and assumed quadratic variations between the three nodes.

Whichever type of boundary element is used, boundary integral Equation 2.28 is applied to each of the

N nodal points P in turn, in the discretised form

M M
mp(P) + Zl Jsm V@ dn((iQ){ln [r(Pl, Q)]}dS(Q) - ;1 Lm In [r(Pl, Q)] (3_15% ds(Q) (2.29)
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The total number of boundary elements is M, m is an element counter, and S, is the piece of the boundary
occupied by element number m. The details of how integration is carried out over an individual element
depend on the type of element involved. Equation 2.29 represents a set of N linear equations, where N
is the number of nodal points (N = M for constant or linear elements, N = 2M for quadratic elements).

They can be expressed as

[Ally] = [B1 ]3] (2:30)
where [A] and [B] are square matrices containing known constant coeflicients, and in general all will be
non-zero. The column vectors [¥] and [Z—Z] contain the nodal point values of potential and potential
gradient normal to the boundary. At each node one of these will be unknown and one of them known,
or there will be a linear relationship between them. The equations can be rearranged, taking all unknown
quantities to the left hand side, known quantities to the right hand side, giving a set of linear equations

in a familiar form

[A][x] = [B*]ly] = [b] (2.31)

where [4*] and [B*] are modified coeflicient matrices and [b] is a column vector of known coeflicients.
This set can be solved for the N unknowns x at the nodes, meaning that the potential and potential
gradient are known at every nodal point on the boundary. Given this information, values of potential

at points within the solution domain can be found from Equation 2.26.

The case of a “mixed” boundary condition where there is a linear relationship between potential and
potential gradient deserves a little more explanation. The general form is given by Equation 2.3, which
for present purposes can be re-expressed as
@ _

5, = At B (2.32)
where @ and 8 are known constants. In Equations 2.30 the potential gradient for the relevant node is
replaced by the expression ay) + f3, where the potential is unknown. While f remains on the right hand
side and contributes to known vector [b], ay is taken to the left hand side by subtracting o times the
relevant coefficient of [B] from the corresponding coefficient of matrix [A]. The details of this process

should become clearer when the programming of the analysis is considered.
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24 Constant Boundary Elements

- ———

g

n(Q) m+1

Figure 2.4 Constant element discretisation of a two-dimensional solution domain boundary

A constant boundary element for a two-dimensional problem takes the form of a straight line representing
a piece of the boundary of the solution domain. The potential and potential gradient are assumed not
to vary along an element, their constant values being assigned to the central nodal point of the element.
Figure 2.4 shows a typical arrangement of constant elements on a boundary. Since the number of nodes
is equal to the number of elements it is convenient to number both nodes and elements in the same
sequence, taken from an arbitrary starting point and keeping the domain to the left of the direction of
numbering. Element number m forming piece S of the boundary therefore contains node number j,

where j = m. Equation 2.29 becomes
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M M
mp(P)+mz=1¢m fs ] dn‘(lQ){m [r(;’ 5]} asc@ = mzzl (j—f)m fs e Q)] dsQ)  (233)

The functions which have to be integrated in this equation are often referred to as kernels. The forms of
these functions and the methods of evaluating the integrals depend on whether or not the node P and

the point Q are in the same element.

2.4.1 Points P and Q not in the same element

Taking the general case shown in Figure 2.4, in which P and Q are not in the same element, the first

kernel is

} _( Inr) = — 242 (2.34)

dniQ) { In [r(P,Q) rdn

Radius 7 is simply the scalar distance between P and Q, and :—; the rate of change of distance r with
movement in the direction of the normal n. This function has to be integrated over each and every
boundary element. While the potential and potential gradient are assumed to be constant over an
individual element, the fundamental solution and hence kernel function associated with a particular

point P varies over the element.

element m

Figure 2.5 Integration over a typical constant element

Figure 2.5 illustrates the process for a typical element m with node j as its node. Point P is also a node,

say the node numbered i(i # j) The coefficient A4;; of matrix [4] in Equation 2.30 is therefore

45 = I, o mal 5@ = &, (-75) 8 @39)

rdn
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This is the coefficient in the i th row of the matrix, forming the equation for node i as the source point
P, and in the jth column, corresponding to node j in element m. Angle 0 is that between the radius
vector 1 (from p in the direction of ) and the outward normal vector 1, and Z—; = cos@. For a small
incremental distance dS along the element from (, the components along and perpendicular to vector
1 are dS sinf and dS cos6, respectively, as shown in Figure 2.6. The latter is the same as r dg, which

means that

1dr r dé

_ _ldr _ 0, _cos@ _ b2 _ _ _
Aij - me( )dS - f91 ( )cos@ - 91( de) - 91 92 (2.36)

r

rdn

dS cos @

Figure 2.6 Incremental distances at point Q

The subscripts 1 and 2 refer to the ends of the element, taken in order along the boundary, always keeping
the domain to the left. So the matrix coefficient is simply the difference between the angles at the first
and second element ends (Figure 2.5), measured in radians. The required angles have to be computed
with care, because inverse trigonometric functions have to be used, and these are multi-valued. A more
robust approach is to find the angular difference (61 — 6,) directly. Let #1 be the unit vector in the
direction from point P to the first end of the boundary element, with components #;, and #;, in the
x and directions, respectively. Similarly, let #, be the unit vector in the direction from P to the second
end, with components #,, and 7,,. Then the sine of the angle between them can be found from the

vector product

i j k
PATy = |Fix F1iy O0)l=k x1 x1 xsin(6, —6;) (2.37)
Tox T2y 0
Sin(91 - 02) = flyféx - f'le'zy (238)

where k is the unit vector in the direction, normal to the x — y plane. The angular difference can be

found from

91 - 92 = Sin_1 (f'lyf'zx - f'le'zy) (239)
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It is worth noting that this result still holds when P is on the same side of the boundary as the outward
pointing normal, which can happen with more complicated boundary shapes, and particularly when
there are holes in the domain and therefore more than one boundary. In mathematical terms, such a

domain is said to be multiply-connected.

The integral of the second kernel function gives the corresponding coefficient in the [B] matrix in

Equation 2.30

(2.40)

By = Jy, In [ 4@ = f77 in [

cosf

If d is the distance from point P to the foot of the perpendicular on the line of the element (Figure 2.5),

then d = rcos and

Bij _ 9912 In (cose)

fez In (cosB)Secze ddo = dfg (cosa) d(tand)

cos20
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Integrating by parts

By = () cano] —a [ tano (=) (Z2n) qg
v "\q ) 01 o, MY \coso d
cosf b2 02
= d[ln(—)tan@] +d (sec?6 — 1)do
d 91 01

cos6 b2
= d [ln (—) tan@ + tanf — 9]
d 0,

which, given that d = r;cos 6; = r,cos 6,, becomes
B; = 7;sin6, (ln (%) + 1) — 7y5inf; (ln (%) + 1) +d(6, —6,) (2.41)

Dimension d can be found as the component of either r; or 7, in the normal direction 7, in other

words from the scalar product of, say, vector r; with unit vector 7
d = Tl.ﬁ = Tlxﬁx + leﬁy (242)

where 1, and 7, are the components of 7 in the x and Y directions. The two sines in Equation 2.41

can be found from the relevant vector products

= o

ksinf, =nAT,

Sin91 = ﬁxfly - ﬁyf'lx (243)
Similarly sinf, = i, ), — A, Fy, (2.44)

24.2 Points P and Q in the same element

Integration along the element containing the source point P involves integration through the singularity
. . d . .
of the fundamental solution. Radius r and normal n are orthogonal, d_; = 0 in Equation 2.35, and there

is no contribution to the term on diagonal of matrix [A]. However, due to the free term in Equation 2.33
Aii =T (2.45)

Using constant elements with nodes at their centres, the boundary is locally smooth at every node. It is
worth noting, however, that the coefficients in any row [4] of can be checked. If the potential is uniform
over the entire boundary of the domain, it is also uniform over the domain itself. This means that the

normal gradients of potential must be zero everywhere along the boundary. Hence

[A][y] = [0] (2.46)
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and, since the 1 values are all identical, the sum of the coefficients in any row of [A] should be zero.

Therefore

M
Ay =— Z Ayj (2.47)
j=1
]

j #1

In the case of constant elements this merely provides a useful check on the coefficients. When higher-
order elements such as quadratic are used, however, it provides an important means of computing the

diagonal coefficients.

Figure 2.7 shows the situation when P and Q are in the same element, and the integral of the second

kernel over this element is required.

(1)

Figure 2.7 Special case when P and Q are in the same element

Point P is at the centre of the element, so that r; = r,, and the integrals over the two halves of the element
are identical. But they are also improper integrals, because of the singularity of the fundamental solution
at P, and must therefore be treated as limits. Considering the integral over the half of the element between

the first end, labelled 1, and the centre of the element

B, =fs In [r(;’ Q)] ds(Q) = zygol{f In (%) (—dr)}

1 1
= 2lim {j In (—) dr}
-0 £ T

1\1? LET |
= 2lim,_, {[r In (—)] + f r—dr}
r/l, e T
1 "1
= 2lim {[r In (—) + r] }
-0 r €
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and because lim [e In (l)] = 0 this becomes
e-0 €
1
By = 2r; (In (;) +1) (2.48)
While the kernel function is singular at P, its integral over the element is finite.

The constant boundary element treatment of potential problems has the merit that the integrations of
the kernel functions can be carried out analytically, thereby eliminating one source of inaccuracy. On
the other hand, the use of straight line elements with one node at the centre of each provides only a

relatively crude discretisation of the problem.

25 Quadratic Boundary Elements

After the constant element, the next simplest is the linear element. Although in two dimensions this still
takes the form of a straight line, it has a node at each end and accommodates linear variations of potential
and potential gradient along its length. Much of the simplicity of the constant element treatment is thereby
lost, but without any improvement in the ability to represent curved boundary shapes. Consequently,

if higher-order elements are to be used, quadratic elements are generally preferred to linear elements.
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Figure 2.8 Quadratic element discretisation of a two-dimensional solution domain boundary

Figure 2.8 shows a typical arrangement of quadratic line elements on parts of the boundary of a two-
dimensional solution domain. Each element has three nodes, one at each end and one at its centre. While
the end nodes are shown as solid circles, those at the centres of elements are shown as open circles.
The relevant boundary integral equation is Equation 2.29. Note that, because the total number of nodal
points is twice the total number of elements, 2M equations are generated, M being the total number
of elements. The integrations involved in the evaluation of the equation coefficients must in general be

carried out numerically.

Figure 2.9 A typical quadratic line element

Figure 2.9 shows a typical curved element. Its three nodes are numbered in the direction of integration
from 1 to 3, these numbers being local to the particular element. The second node is at the centre of
the element as measured along its curved length. A local co-ordinate, ¢, which is often referred to as an
intrinsic co-ordinate, follows the curved shape of the element, and is said to be a curvilinear (curved line)
co-ordinate. It has its origin at the centre node: that is, § = 0 at node 2, and takes the values -1 and +1
at nodes 1 and 3, respectively. The reason for choosing this particular definition of local co-ordinate is
to anticipate the use of Gaussian quadrature (Appendix A) for integration along the elements. The global

co-ordinates describing the problem as a whole, rather than just the one element, remain as x and y.
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With a quadratic element, the potential 1, which is defined by its discrete values at the three nodes,
Y1, P, and 15 is allowed to vary quadratically with the intrinsic co-ordinate along the element. The

distribution can be expressed as

PY(&) = Ny ()1 + N2 ()Y, + N3 (O)ps = X2 N (O, (2.49)

Functions Ny, N, and N; which interpolate 1) between the nodes are each quadratic, and must be such that

Y(=1) =9y = Ny (=Dp; + No(=D3p2 + N3 (=193
Y(0) =, = N1 (0)y; + N2 (0)y, + N3(0)3
P(+1) =93 = Ny (+Dpg + No(+ D)z + N3 (+ 133
For example, N, is required to take the values 1, 0 and 0 at the three nodes. So, if

N, (§) = a + b& + c&?

l=a—-—b+c, 0=a, 0=a+b+c

from which a =0, b = —%, c= +%, and
1
Ni(§) =8¢ - 1) (2.50)

Similarly, N, is required to take the values 0, 1 and 0 at the nodes, and N5 the values 0, 0 and 1, and
Ny(§) =1-¢2 (2.51)
1
N3(§) =28+ 1) (2.52)

Functions Ny, N, and Nj are referred to as shape functions. They can also be used to define the variations

of the potential gradient normal to the boundary in terms of the nodal point values

W py i i WY _y3 oy (%

T =M@ (5), + M@ (5), + M@ (5), = 2N (). (2.53)
and the variations of the global co-ordinates

x(§) = Ny (©)xy + N2 (§)xz + N3(§)xz = Xy Ne()xc (2.54)

y(&) = Ny (©)y1 + No(§)yz + N3(O)ys = X3 Ne()ye (2.55)
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Elements that use the same (shape) functions to interpolate both the geometry and the variations of the
problem variables are known as isoparametric elements. Representation of the boundary geometry is
now by means of a series of parabolas, each fitted through the three nodes of an element, rather than
the straight lines associated with constant and linear elements. The parabolas reduce to straight lines

wherever the boundary is genuinely straight.

In order to find the vector normal, n, to the boundary at a point along an element, it is convenient to
first find the tangent vector S (Figure 2.9). Moving along the boundary as the intrinsic co-ordinate ¢ is

. . d .
varied, the rates of change of the global co-ordinates are j—? and %, and the tangent vector is

_dx

=%

. dy .
i+ a j (2.56)
Given Equations 2.54 and 2.55, the rates of change are

b _ g3 dNe() A _ g3 dN©)
df c=1 df Cc» df c=1 df

Ve (2.57)

and the derivatives of the shape functions are

i@ _ , 1 AN _ v @) _ ., 1
d¢ - E 2’ de - 2{ ) - E + 2 (258)
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The vector normal can be found as the vector product of § and the unit vector in the third global co-

ordinate direction, out of the plane of the solution domain
o . _dy. dx.
n—nxl+ny]—S/\k—dfl o) (2.59)
where n, and n, are the components of n in the x and 7y directions.

In order to integrate round the boundary it is necessary to change from global co-ordinate S to local

intrinsic co-ordinate ¢ within each element, by means of the Jacobian of transformation

J(@) = “(dx)2+(dy ’_ = /n +n? (2.60)

This Jacobian can also be used to define the components of the unit normal

n-=

n Ny =« ~ =
= —J] = i
wimd ) © +J(§)] Al + 7y (2.61)

Introducing the transformation from global to intrinsic co-ordinate, the boundary integral equation,

Equation 2.29, becomes

)+ Y [ @i infagl o
m=1"" ’

M
_ mz=1 El In [r(; 5 (%)Q J(E)dE (2.62)

Then introducing the parametric representations, Equations 2.49 and 2.53, for the potential and potential

gradient distributions

M 3
nz/)(P>+leCch e [LRGYIOEY
M
=le(dn)c [ LRGYGE 63

where ¢ is the number (1, 2 or 3) of the node in element number m.

Of the two kernel functions in Equation 2.63, the second one, on the right hand side of the equation,
is straightforward to evaluate, except when points P and Q are in the same element. As in the constant

element case, the first kernel is given by

1dr

o Unlgal = s Ccim = 15 =2 (2.64)
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where 6 is the angle shown in Figure 2.5. Now

cosf = rr—ﬁ = Waftxtryy) (2.65)

r

where 7, and 7, are the components of the radius vector, r, joining P and Q.

2.5.1 Points P and Q not in the same element

In general, the required integrations cannot be performed analytically, but may be carried out numerically
using a method known as Gaussian quadrature, which is described in Appendix A. Provided point P is

not in the element over which integration is required the process is straightforward.

2.5.2 Points P and Q in the same element

The case where P is in the relevant element requires some care, because when P and Q are coincident
both of the kernel functions are singular. The orders of the singularities are 7~!and In(r~1), respectively.
Provided that P is not the c¢ th node of the element, however, the shape function N, (§) goes to zero at
P, and the products of kernels and shape functions (in Equation 2.63) are not singular at P, and may

be integrated normally.

If P is the ¢ th node of the element then, provided that the boundary at this point is smooth, 7 and n are
orthogonal and the first kernel is zero. The diagonal coefficient of [A] is given by Equation 2.45. If the
boundary is not smooth at P, however, then the first kernel is not zero and is difficult to evaluate directly.
The diagonal coeflicient of [A], which includes the free term, is always obtainable from a summation

condition equivalent to Equation 2.47.
2M
Ay =— z Ay (2.66)
=1
j#i
In other words, the sum of the coefficients in any row of [A] should again be zero.
Still considering P to be the ¢ th node of the element in Equation 2.63, the second kernel requires special

treatment to deal with the In(r~1) singularity, using a modified form of Gaussian quadrature. The radial

distance from P to a point Q at (x,y) can be arranged in the form

r(P,Q) =nR($) (2.67)
where R (§) is a known function and 7 is a modified intrinsic co-ordinate with its origin at P. The form of

R (&) depends on which of the three element nodes P is located at. Co-ordinate 7 is chosen in each case

to conform to the requirements of Gaussian quadrature involving a logarithmic function (Appendix A).
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P at the first node

If P is at the first node of the element
1
r(P,Q) = [(x —x)* + (v —y)*] (2.68)

and x and y are defined in terms of intrinsic co-ordinate¢ by Equations 2.54 and 2.55. So

x —xp = [N1(§) — 1lxg + Np(O)xz + N3()x3 (2.69)
y—=y1 =[Ny (§) — 1]y; + N ()y, + N3(E)ys (2.70)
Intrinsic co-ordinate” is chosen to range from 0 at the first node (§ = —1) to 1 at the third node

(¢ = +1), so that

n=3@E+1) |§| =2 (2.71)
M@ -1 =5 -§-2) =3¢ +DE-2) =0 —2) (272)
Ny =1-¢*=2n(1—¢) (2.73)
N3 () =3¢+ 1) =n¢ (2.74)
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Therefore
x —x1 =0 —2)x +2(1 — §)xy + Ex5] (2.75)
y=y1 =0l —2)y1 +2(1 = Oy, + §ysl (2.76)

R ={[(E—2x; +2(1 -y + Ex3]* + [(E — Dy1 +2(1 — Oy, + 53’3]2}% (2.77)

The integral of the second kernel in Equation 2.63 can be expressed as

f_ﬂ 10| 5] MO 16 06 = f in (5 N6/ © [ an + f () N0 ¢ (279)

R()

Because R (&) is not zero within the range of integration, the second integral on the right hand side can
be evaluated by normal Gaussian quadrature. The first integral on the right hand side, however, involves
the singular logarithmic function, but can nevertheless be evaluated using the appropriate quadrature

formula described in Appendix A.

P at the second node

If P is at the second node of the element

r(P,Q) = [(x =120 + (v — ) [ (2.79)
x —x3 = N (E)xq + [N2() — 1]xz + N3(E)x3 (2.80)
y =¥z = N1 ()yy + [N2(§) — 1]y, + N3(E)ys (2.81)

For integration purposes, the element needs to be divided into two regions, from the second node to the
third node (¢ = 0 to 1) and from the second node to the first node (¢ = 0 to —1). Between the second

and third nodes the intrinsic co-ordinate 1 is chosen as

m=g | dm| =1 (2.82)
and N; () = 7€ — 1) =m(E — 1) (2.83)
[N(§) — 1] = =§% = —m4¢ (2.84)
N3(§) =58 +1) =m(E+1) (2.85)
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Therefore
1 1
x =Xy =11 58 = Dy = $xp + 5 + D (2.86)

Yy=Y2=M E =Dy = $y2 +§(€ + 1)y3] (2.87)

[

RO =[5 = Dx —x +5 €+ Dxs| +[5E = Dyr =gy +5E + Dys| | @
Between the second and first nodes the intrinsic co-ordinate is chosen as
d
m=-¢  |5]=1 (2.89)

and R(¢§) is as defined in Equation 2.88.

The integral of the second kernel in Equation 2.63 can be expressed as

[ ] me@ @ = [ n(H)mcero [ ans +

1

w5 Ne @I (2.90)

o (=) Ne (@) |35 ama + [ 1n (

The third integral on the right hand side can be evaluated by normal Gaussian quadrature, while the
first and second involve the singular logarithmic function and must be evaluated using the appropriate

quadrature formula.

P at the third node

If P is at the third node of the element

r(P,Q) = [(x—x3)? + (v — y3) L2 (2.91)
x —x3 = N1 (§)x1 + No()xz + [N3(§) — 1]x3 (2.92)
y—y3 = N1 (§)y1 + N2 ()y, + [N3(§) — 1]y3 (2.93)

Intrinsic co-ordinate 7 is chosen to range from 0 at the third node (§ = +1) to 1 at the first node
(6 = —1), so that

n=;0-9 |§|=2 (2.94)

Ni(§) =38 —1) = —n¢ (2.95)
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No(§) =1-¢*=2n(1+9) (2.96)
N () —1] =5+ -2 =2 - DE+2) = 1 +2) (297)
Therefore
x—x3 =n[—&x; +2(1 + E)xy — (¢ + 2)x3] (2.98)
y—y3=n[={y1 +2(1 + )y, — (€ + 2)y3] (2.99)

R ={[=¢x1 +2(1+ Oy — (€ + 2)x3]® + [y + 20+ Dy — (€ + 2)}’3]2}% (2.100)

The integral of the second kernel in Equation 2.63 can be expressed as

I35 [ M@ @ 4 = [ n () M@ @ [5] an + [ In (555) Ne @ )¢ (2.101)

The second integral on the right hand side can be evaluated by normal Gaussian quadrature, while
the first involves the singular logarithmic function and must be evaluated using the appropriate

quadrature formula.
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2.6 Scaling

Whether using either constant or quadratic boundary elements, or indeed any other type, spurious
results can sometimes be obtained if the average domain dimension is of the order of unity. This makes
the typical radial distance between nodes to be of order unity, at which value the logarithmic kernel
function In G) is zero. This difficulty can be simply avoided by ensuring that all distances between nodes
are either less than or greater than unity. Of the two, the first is easier to achieve, by first determining
the maximum dimension of the problem (the maximum distance between any pair of nodes) and using
this to scale all the problem dimensions to be less than unity. Once the solution to the scaled problem

has been obtained, the scaling can be removed.

An interesting side effect of this scaling is that problems are in effect being solved in the terms of
dimensionless ratios between actual dimensions and the maximum dimensions, thereby avoiding the

issue of what is meant by the logarithm of a dimensioned quantity.

2.7 Solving the Linear Equations

Using either constant or quadratic boundary elements the final outcome of the analysis is a set of linear

equations of the form
[A][x] = [b] (2.102)

where [A] and [b] are respectively a matrix and column vector of known coefficients. Few if any of these
coefficients are zero in magnitude. This feature has an important bearing on the best choice of method
of solution. For example, iterative methods such as Gauss-Seidel are not suitable (and probably would
not converge). Direct elimination-type methods are appropriate, and one of the most common, Gaussian
elimination, is chosen here. The method is described in detail, including an appropriate computer

subprogram, in Appendix B.

2.8 Solving Poisson’s Equation

So far in this chapter attention has been focussed on solving Laplace’s equation, Equation 2.2, rather

than the more general Poisson’s equation, Equation 2.1
%y | 9%y _ V2 =
wz T = Y= fi(x,y) (2.1)

With a non-zero function on the right hand side, integration of this function is required. For a general
function of position, which cannot be integrated analytically, numerical integration over the solution
domain is required. From the problems reviewed in Chapter 1, however, it is clear that the special case
of constant f; (independent of co-ordinates x and y) is one that embraces many problems of practical

interest in engineering.
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The solution to Poisson’s equation can be expressed as

Y =9, +p (2.103)

where 1), is the solution to Laplace’s equation (f; = 0) and 1p; is any function (a particular integral)

which satisfies

V2, = f (2.104)
One possible form is

Ypr = c1x% + cpy? (2.105)
where c; and ¢, are constants which must be such that

2c1+2c;=f (2.106)

A possible choice of constants is

fi

; (2.107)

€L =Cy =
Because the total solution expressed in Equation 2.103 must satisfy the applied boundary conditions,
it means that 1;, the solution to Laplace’s equation, must satisfy these conditions with the boundary
conditions implicit in Equation 2.105 subtracted. In other words, at any point on the boundary at which

potential is prescribed, from this prescribed value must be subtracted the value of
Yp = Z—l(xz +y%) (2.108)

At any point on the boundary at which potential gradient is prescribed, from this prescribed value must

be subtracted the value of

dyp; _ 0¢p; 0Ypr o~ _ f1(o o ~
=+ 5y Ty = 7(xnx +yA,) (2.109)

where 71, and i, are the components in the x and y directions of the unit outward normal vector to

the boundary at the point concerned.
So Poisson’s equation can be solved by the boundary element method as though it were Laplace’s

equation, by simply modifying boundary conditions. Once the solution is obtained, the contributions

of the particular integral to the computed boundary values are added back in.
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With an f;(x,y) function other than constant, the same kind of procedure can be applied, provided
a particular integral equivalent to Equation 2.105 can be found by analytical integration of f1(x,y). If

this is not possible then numerical integration over the domain must be used.

Problems

2.1 Show that the fundamental solution defined by Equation 2.4 satisfies Laplace’s equation in plane

polar co-ordinates

9% 10¢ 9%

oz Trar Tz =0

2.2 Define the constants a;, a, and az in the general potential boundary condition Equation 2.3 in

terms of the heat transfer parameters in Equation 1.57.

2.3 For a linear boundary element with a node at each end, the distribution of potential can be

expressed as

Y(&) = N (Y1 + N2 ()Y,

where y, and v, are the values at the first node where {=-1 and the second node where {=+1,

respectively. Derive expressions for the shape functions N, (§) and N, (¢).
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2.5

2.6

2.7

2.8

2.9

Show that the quadratic element shape functions are such that

Ny (&) + Ny (&) + N3 (§) =1

for all values of the intrinsic co-ordinate.

Show that if a quadratic boundary element is a straight line, the quadratic interpolations of

geometry implied by Equations 2.54 and 2.55 reduce to the appropriate linear forms.

For a straight line boundary element, show that the Jacobian of co-ordinate transformation
defined by Equation 2.60 is constant along the element, and find its magnitude in terms of the

global co-ordinates of the end nodes of the element.

A quadratic boundary element is used to approximate the arc of a circle, with its three nodes
located on the arc. The arc subtends an angle of either (a) 90° or (b) 45° at the centre of the
circle. In each case find the error in the distance from the centre of the circle, expressed as a

percentage of the true arc radius, at a point half way between two of the nodes.

Show that for a straight quadratic element the function R(¢) in Equations 2.67 and 2.77 reduces

to the length of the element, and therefore cannot be zero.
Derive a suitable particular integral for Poisson’s equation, Equation 2.1, when
filx,y) =Ex+Fy+G

where E, F and G are constants. What changes to the boundary conditions for the boundary

element solution to the corresponding Laplace equation should be made?
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3 Constant Boundary Element
Program for Potential Problems

In this chapter a computer program to implement the constant boundary element formulation for two-
dimensional potential problems developed in Chapter 2 is presented and described in detail. It is then
used to solve some typical problems to demonstrate the capabilities of the method, particularly problems

where exact analytical solutions are available for direct comparison.

The programming language used is Fortran, whose name is derived from Formula translation, and which
is particularly suitable for engineering and scientific applications. Despite being somewhat unfashionable,
the fact remains that the majority of engineering computer programs currently in use are written in
Fortran. The programs presented here were run using a Fortran 95 compiler. While more recent versions
of Fortran have been published, the enhancements they offer are not of significance to the type of simple

programming of numerical computation procedures employed here.
For readers who prefer to use Matlab, a translation is provided in Appendix C.

Digital computers, whether desktop or laptop, work in binary arithmetic. Both numbers and characters
are represented and stored as a number of binary digits or ‘bits, and these bits are grouped together in
‘bytes’ (1 byte = 8 bits). Individual numbers are usually represented by either 32 bits (4 bytes) or 64 bits
(8 bytes) depending on both the computer and whether the double precision option is selected in the
Fortran program. If the number of bits is small the precision of stored numbers is relatively low and
significant roundoff errors may be accumulated in the course of a calculation, depending on the method

of calculation used. All the case studies described in this book were run using 64-bit number storage.

The style of writing programs should be such as to make the coding straightforward to follow and
check, and at the same time efficient in terms of execution time and memory. With these requirements
in mind the programs in this book use variable names which are readily identifiable with the physical
or mathematical quantities they represent. Whenever possible the same names are used throughout,
their definitions being listed at the beginning of the book. The programs are divided into relatively short
subprograms which can be written, developed and tested separately. Also, comment statements are used
liberally, both to explain the coding and to separate successive sets of statements for improved readability.
For the same reason, a uniform system of statement numbering is used within each subprogram, input
and output FORMAT statements being numbered from 51 and 61 respectively. This last convention is a
hangover from the Fortran tradition in which the (magnetic tape) unit number for input was 5, while that

for output was 6, the same digits being used to start the corresponding FORMAT statement numbers.
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Using either a desktop or laptop, input data for a program can be entered from the keyboard as required.
Alternatively, a data file can be prepared and stored before the program is run. In this book, the latter
approach is adopted. This is because in practice programs need to be run several times, with mostly the
same input data, requiring only small changes to the data file. Similarly, computed results can be output
to either the computer screen or a stored file. The latter is preferred here because the file provides a
potentially permanent record. The convention is adopted of naming the input file DATA and the main
output file RESULTS.

3.1 Program BEM2PC

The program name indicates that it is for boundary element method analysis of two-dimensional potential
problems using constant elements. Each of the subprogram units which make up the whole are described

in turn. The Preface explains how the full program can be accessed as a single file.

If the program appears long and complex, it is mainly because of the needs of data input, testing and
output. The boundary element core is quite compact. Much of the data handling is concerned with the
definition of the arrangement of elements on the boundary (or boundaries) of the solution domain, and
the application of boundary conditions to them. The simplest approach would be to enter the co-ordinates
of the end points of each and every element, followed by the type and magnitude of the relevant boundary
condition applied to each. Indeed, this is still an option. But with potentially hundreds of elements, this
would be tedious. Instead, the strategy adopted is to divide each boundary up into a series of boundary
segments, which are either straight lines or circular arcs. The number of elements within a segment can
then be chosen, and varied easily, and from which the program generates all the element geometric data.
The elements on a segment do not have to be uniform in size, but can be varied in length by a constant
ratio between successive elements. In the present version of the program, each segment is subject to only
one uniform boundary condition, be it prescribed potential, prescribed potential gradient, or prescribed
mixed condition connecting potential and potential gradient. The program distributes this condition to
all the elements involved. Consequently, the ends of segments are conveniently defined as points where
there is a significant change in either shape (a corner, for example) or boundary condition. How this

works in practice is demonstrated later in this chapter.

3.1.1 Main program

At the beginning of the program is a storage module named SHAREDDATA2PC which allows stored
data to be accessed and shared by all those subprograms that require it (by means of a USE statement).
The dimensioned array sizes in the module allow for up to 1000 constant boundary elements on up 10
different boundaries forming the solution domain. The maximum number of linear equations to solved

is 1000. A dictionary of the variable names used is provided at the beginning of the book.
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The main program named BEM2PC is designed mainly to call each of the other subprograms in turn. It
does, however, also serve to name the files with which the program communicates via OPEN statements.
File DATA, which is addressed as file number 5 in the program, serves to supply the input data which
defines the current problem. The main output of results is to file RESULTS, addressed as file number 6.
Element mesh data, on the other hand, are output to file MESHRES (mesh results) and numbered 7. The
term mesh is borrowed from finite elements, although for two-dimensional boundary element analysis
the mesh takes the form of a line following the boundary. The rationale behind splitting data output
between two files is that, in a typical problem once the mesh data are established and checked, attention
turns to the results of the computation, which will often require several runs, looking at file RESULTS
each time. Mesh data, which generally involve a lot of information, are available in MESHRES but need

not be accessed every time the program is run.

MODULE SHAREDDATAZ2PC

!

! MODULE STORING SHARED DATA.

!

REAL :: XEEND(1010),YEEND(1010),XNODE (1000), YNODE (1000)

REAL :: XSEND(1000),YSEND(1000),UNX (1000),UNY (1000)

REAL :: F1,XC,YC,PSI(1000),DPSI(1000),ALPHA(1000),BETA (1000)
REAL :: PSISEG(1000),DPSISEG(1000),ALPHASEG (1000),BETASEG (1000)
REAL :: STORE (1000),PSIPI (1000),DPSIPI(1000),PSIT(1000)

REAL :: DPSIT(1000),FLOWSEG (1000)

REAL :: PI,A(1000,1001),MAXL,ELENGTH (1000)

INTEGER :: NEL,NNP,MAXNNP,MAXNB,NEP1 (1000),NEP2(1000),NEEND
INTEGER :: NBOUND,NSEGTOT,NNPB (10),NSEGB (10)

INTEGER :: NBCP,NBCD,NBCM,NBCT, IBC (1000)

INTEGER :: ISEGBC(1000),IFIRST(1000),ILAST (1000)

INTEGER :: ISEGEND(1000),ISEGELEM(1000)

END MODULE SHAREDDATA2PC

PROGRAM BEM2PC

! PROGRAM FOR SOLVING TWO DIMENSIONAL POTENTIAL PROBLEMS BY THE BOUNDARY
! ELEMENT METHOD USING CONSTANT ELEMENTS.

USE SHAREDDATA2PC
OPEN (5, FILE="DATA")
OPEN (6, FILE="RESULTS")
OPEN (7, FILE="MESHRES")
PI=4.0*ATAN(1.)
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! DEFINE THE MAXIMUM PROBLEM SIZE PERMITTED BY THE ARRAY DIMENSIONS.
MAXNNP=1000
MAXNB=10

! INPUT THE PROBLEM TITLE AND TYPE.
CALL INTITLE

! INPUT OR GENERATE THE MESH DATA.
CALL MESHC

! OUTPUT THE MESH DATA.
CALL MSHOUT

! INPUT, PROCESS AND OUTPUT THE BOUNDARY CONDITIONS.
CALL BCS

! IF GOVERNING EQUATION IS POISSON TYPE, MODIFY THE BOUNDARY CONDITIONS.
CALL POISSON

! FORM THE COEFFICIENT MATRIX AND APPLY THE BOUNDARY CONDITIONS.
CALL FRMTRX

! SOLVE THE LINEAR EQUATIONS.
MAXNNPP1=MAXNNP+1
CALL ELIMIN(A,PSI,NNP,MAXNNP,MAXNNPP1l, IFLAG)

IF (IFLAG == 1) THEN
WRITE (6, 61)
61 FORMAT (/ "MATRIX ILL-CONDITIONING DETECTED IN EQUATION SOLVER")
STOP
END IF

! OUTPUT NODAL POINT VALUES OF POTENTIAL AND POTENTIAL GRADIENT,
! ALSO POTENTIAL FLOWS ACROSS BOUNDARY SEGMENTS.
CALL OUTPUT

! COMPUTE VALUES OF POTENTIAL AT INTERNAL POINTS.
CALL INTERNAL

STOP

END PROGRAM BEM2PC
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After defining the maximum numbers of nodal points and elements (MAXNNP) and boundaries

(MAXNB) permitted by the array dimensions, the main program calls the following subprograms in turn:

INTITLE for the problem title,

MESHC to input and create the mesh data,

MSHOUT to write out the mesh data,

BCS for the boundary conditions,

POISSON to compute the particular integral if the problem is of the Poisson type,
FRMTRX to define the [A] and [B] coeflicient matrices,

ELIMIN to solve the equations,

OUTPUT to write out the results, and finally

INTERNAL to find values of potential at any desired points within the domain.

Note that if ELIMIN detects a singular or very ill-conditioned matrix a warning is written out and
execution terminates. In practice this is most likely to be due to the coeflicient matrix being singular.
This can happen when the problem is inadequately defined, for example with only potential gradient or

mixed boundary conditions, and potential nowhere defined.
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3.1.2 Subprogram INTITLE

An alphanumeric title for the problem is first read into TITLE. Next the constant value of function f;
(Equation 2.1) is read into F1. If this value is zero the problem is of the Laplace type, and an appropriate
message is written out. If it is not zero the problem is Poisson type and the global co-ordinates of the
origin used to define to particular integral are read into XC and YC, normally chosen to be roughly at

the centre of the domain. The value of fi together with the origin co-ordinates are then written out.

SUBROUTINE INTITLE
!
! SUBPROGRAM TO INPUT PROBLEM TITLE AND TYPE (LAPLACE OR POISSON).
!

USE SHAREDDATA2PC

CHARACTER (80) :: TITLE

! INPUT THE PROBLEM TITLE.
READ (5, FMT=" (A80) ") TITLE
WRITE (6, 61) TITLE
61  FORMAT ("CONSTANT BOUNDARY ELEMENT SOLUTION FOR",
& " TWO DIMENSIONAL POTENTIAL PROBLEM" // A)

! INPUT THE VALUE OF THE (CONSTANT) F1 FUNCTION IN THE GOVERNING
! EQUATION.

READ (5, *) F1

IF(F1 == 0.) WRITE(6,62)
62  FORMAT(/ "LAPLACE EQUATION")

IF(F1 /= 0.) THEN

WRITE (6,63) F1

63 FORMAT (/ "POISSON EQUATION, F1 = ",E12.4," CONSTANT")

! INPUT THE COORDINATES OF THE ORIGIN FOR THE PARTICULAR INTEGRAL.
READ(5,*) XC,YC
WRITE (6, 64) XC,YC

64 FORMAT (/ "ORIGIN FOR PARTICULAR INTEGRAL:",5X,"X =",E12.4,5X,
& "y =",E12.4)
END IF

!
RETURN

END SUBROUTINE INTITLE
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3.13 Subprogram to input and generate the element mesh data

Subprogram MESHC reads in a minimal amount of information from which to create the mesh of constant
boundary elements. The process is complicated by the fact that there are several levels of geometric
features. Firstly, boundaries: there will be more than one for a multiply-connected domain, with internal
holes within the outer boundary. Secondly, segments of boundaries whose ends are located at changes
of either geometry or boundary condition, and can be either straight or follow circular arcs. Thirdly, the
ends of elements which are distributed either uniformly or non-uniformly along the segments. Finally,

the nodes of the elements, which are located at the mid points between successive element end points.

SUBROUTINE MESHC

! SUBPROGRAM TO READ IN AND GENERATE THE GEOMETRIC DATA FOR A MESH OF
! CONSTANT ELEMENTS.

USE SHAREDDATA2PC

! INPUT THE NUMBER OF SEPARATE BOUNDARIES.
READ (5, *) NBOUND

! TEST THE NUMBER OF BOUNDARIES.
IF (NBOUND < 1 .OR. NBOUND > MAXNB) THEN
WRITE (6, 61) NBOUND,MAXNB
61 FORMAT (/ "NBOUND =",I4,2X,"OUTSIDE PERMITTED RANGE 1 TO",I4)
STOP
END IF

! FOR EACH BOUNDARY IN TURN INPUT THE NUMBER OF SEGMENTS.
NNP=0
IEEND=0
NSEGTOT=0
Each boundary in turn: DO IBOUND=1, NBOUND
NNPB (IBOUND) =0
READ (5, *) NSEGB (IBOUND)
NSEGTOT=NSEGTOT+NSEGB (IBOUND)

! TEST THE NUMBER OF SEGMENTS.
IF (NSEGTOT < 1 .OR. NSEGTOT > MAXNNP) THEN
WRITE (6, 62) NSEGTOT,MAXNNP
62 FORMAT (/ "NSEGTOT =",I16,2X,"OUTSIDE PERMITTED RANGE 1 TO",I6)
STOP
END IF
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! INPUT THE CARTESIAN GLOBAL COORDINATES OF THE END POINTS OF THE
! SEGMENTS. TAKE THE END POINTS CONSECUTIVELY, KEEPING THE DOMAIN
! TO THE LEFT OF THE DIRECTION OF NUMBERING.

READ (5, *) (XSEND (ISEND) , YSEND (ISEND), ISEND=1,NSEGB (IBOUND) )

! DEFINE THE FIRST END POINT ON THE CURRENT BOUNDARY.
IEEND=IEEND+1
XEEND (IEEND) =XSEND (1)
YEEND (IEEND)=YSEND (1)

! FOR EACH OF THE SEGMENTS (BETWEEN ENDS 1 AND 2, 2 AND 3, ETC.)
! INPUT THE RADIUS OF CURVATURE (+VE FOR CONVEX WITH CENTRE OF
! CURVATURE INSIDE DOMAIN, -VE FOR CONCAVE), THE NUMBER OF
!  ELEMENTS IN THE SEGMENT, AND THE LENGTH RATIO BETWEEN SUCCESSIVE
!  ELEMENTS IN THE DIRECTION OF NUMBERING.
ISEGMAX=NSEGTOT
ISEGMIN=ISEGMAX-NSEGB (IBOUND) +1
Each segment in turn: DO ISEG=ISEGMIN, ISEGMAX
READ (5, *) RSEG,NELSEG,RATSEG
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!  FIND AND TEST NUMBER OF NODES/ELEMENTS SO FAR.
NNP=NNP+NELSEG
NNPB (IBOUND) =NNPB (IBOUND) +NELSEG
IF(NNP < 1 .OR. NNP > MAXNNP) THEN
WRITE (6, 63) NNP,MAXNNP
63 FORMAT (/ "NNP =", I6,2X,"OUTSIDE PERMITTED RANGE 1 TO",I6)
STOP
END IF

! FIRST AND LAST NODES ON CURRENT SEGMENT.
ILAST (ISEG)=NNP
IFIRST (ISEG) =NNP-NELSEG+1

! COORDINATES OF THE FIRST END POINT OF THE SEGMENT.
ISEND=ISEG-ISEGMIN+1
XFIRST=XSEND (ISEND)
YFIRST=YSEND (ISEND)

!  COORDINATES OF THE LAST END POINT OF THE SEGMENT.
ISEND=ISEND+1
IF (ISEG == ISEGMAX) ISEND=1
XLAST=XSEND (ISEND)
YLAST=YSEND (ISEND)

! GENERATE ELEMENT DATA FOR A STRAIGHT SEGMENT.
IF (RSEG == 0.) THEN

! DEFINE THE ELEMENT END POINT COORDINATES ON THE SEGMENT.

Each element in turn: DO M=1,NELSEG

IEEND=IEEND+1

ISEGEND (IEEND) =ISEG

IF(RATSEG == 1.) THEN
XEEND (IEEND) =XFIRST+ (XLAST-XFIRST) *FLOAT (M) /FLOAT (NELSEG)
YEEND (IEEND) =YFIRST+ (YLAST-YFIRST) *FLOAT (M) /FLOAT (NELSEG)

ENDIF

IF (RATSEG /= 1.) THEN
XEEND (IEEND) =XFIRST+ (XLAST-XFIRST) * (1.-RATSEG**M)

& / (1.-RATSEG**NELSEG)
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YEEND (IEEND) =YFIRST+ (YLAST-YFIRST) * (1.-RATSEG**M)
& / (1.-RATSEG**NELSEG)
END IF
END DO Each element in turn
END IF

! GENERATE ELEMENT DATA FOR A SEGMENT IN THE FORM OF A CIRCULAR ARC.
IF(RSEG /= 0.) THEN

! LOCATE THE CENTRE OF THE ARC.
XMID= (XFIRST+XLAST) /2.
YMID= (YFIRST+YLAST) /2.
ALSEG=SQRT ( (XLAST-XFIRST) **2+ (YLAST-YFIRST) **2)
ALPERP2=RSEG**2- (ALSEG/2.) **2
IF (ABS (ALPERP2) < 1.E-6*RSEG**2) ALPERP2=0.
IF (ALPERP2 < -1.E-6*RSEG**2) THEN
WRITE (6, 64) ISEG

64 FORMAT (/ "DATA ERROR FOR SEGMENT NUMBER",I6,
& / "NOT POSSIBLE TO CREATE A CIRCULAR ARC")
STOP
END IF

ALPERP=SQRT (ALPERP2)

UVFLX= (XLAST-XFIRST) /ALSEG
UVFLY= (YLAST-YFIRST) /ALSEG
FACT=1.

IF(RSEG < 0.) FACT=-1.
XCENT=XMID-ALPERP*UVFLY*FACT
YCENT=YMID+ALPERP*UVFLX*FACT

! FIND THE ANGLE SUBTENDED THERE BY THE SEGMENT.
IF (ALPERP /= 0.) ANGSEG=2.*ATAN (ALSEG*0.5/ALPERP)

IF (ALPERP == 0.) ANGSEG=PI
! DEFINE THE ELEMENT END POINT COORDINATES ON THE SEGMENT.
ANGFIR=ATAN2 (YFIRST-YCENT, XFIRST-XCENT)
Each element in turn: DO M=1,NELSEG
IEEND=IEEND+1
ISEGEND (IEEND) =ISEG
IF (RATSEG == 1.) ANG=ANGSEG*FLOAT (M) /FLOAT (NELSEG)
IF (RATSEG /= 1.) ANG=ANGSEG* (1.-RATSEG**M)/ (1.-RATSEG**NELSEG)
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IF(RSEG < 0.) ANG=-ANG
XEEND (IEEND) =XCENT+ABS (RSEG) *COS (ANGFIR+ANG)
YEEND (IEEND) =YCENT+ABS (RSEG) *SIN (ANGFIR+ANG)
END DO Each element in turn

END IF

END DO Each segment in turn
END DO Each boundary in turn
NEEND=IEEND
NEL=NNP
!
! GENERATE THE ELEMENT POINT DATA AND THE NODAL POINT COORDINATES.
MMIN=1
IEP1=0
IEP2=1
Each boundary in turn: DO IBOUND=1, NBOUND
MMAX=MMIN+NNPB (IBOUND) -1
Each element on current boundary: DO M=MMIN,MMAX
IEP1=IEP1+1

IEP2=IEP2+1
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NEP1 (M) =IEP1
NEP2 (M) =IEP2
XNODE (M) =0.5* (XEEND (IEP1) +XEEND (IEP2))
YNODE (M) =0.5* (YEEND (IEP1) +YEEND (IEP2))
ISEGELEM (M) =ISEGEND (IEP2)
END DO Each element on current boundary
MMIN=MMAX+1
IEP1=IEP1+1
IEP2=IEP2+1
END DO Each boundary in turn
!
! FIND AND STORE THE COMPONENTS OF THE UNIT OUTWARD NORMALS AT THE NODES,
! ALSO THE ELEMENT LENGTHS.
Each node in turn: DO I=1,NNP
IEP1=NEP1 (I)
IEP2=NEP2 (I)
EVX=XEEND (IEP2) -XEEND (IEP1)
EVY=YEEND (IEP2) -YEEND (IEP1)
UNX (I)=EVY
UNY (I)=-EVX
DENOM=SQRT (UNX (I) **2+UNY (I) **2)
UNX (I)=UNX (I)/DENOM
UNY (I)=UNY (I)/DENOM
ELENGTH (I)=SQRT (EVX**2+EVY**2)
END DO Each node in turn

! DETERMINE THE MAXIMUM DIMENSION OF THE SOLUTION DOMAIN.
MAXL=0.
Each node in turn: DO I=1,NNP
Each other node in turn: DO J=1,NNP
DIST=SQRT ( (XNODE (I)-XNODE (J)) **2+ (YNODE (I) -YNODE (J) ) **2)
IF(DIST > MAXL) MAXL=DIST
END DO Each other node in turn
END DO Each node in turn

RETURN
END SUBROUTINE MESHC
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The number of boundaries is first read into NBOUND. If there is more than one boundary, the order
of numbering them is arbitrary. Then, for each boundary in turn, the number of segments forming the
boundary is read into NSEGB, followed by the global co-ordinates of the segment end points (taken
consecutively) into XSEND and YSEND. The starting point for defining segments on the boundary is
arbitrary, but then the order of numbering must be such as to keep the domain on the left: anticlockwise
for the outer boundary surrounding the domain, clockwise for a boundary defining a hole in the domain.
Note that the first end point, which is an end of both the first and last segment, must only be defined
once: the number of end points on a boundary is equal to the number of segments, and the program

makes the connection to close the boundary.

Then, for each segment of the current boundary in turn, its radius of curvature, the number of elements
on the segment, and the ratio between the lengths of successive elements on the segment are read into
RSEG, NELSEG and RATSEG, respectively. A zero value of RSEG indicates a straight segment, while the
sign of a non-zero value of RSEG indicates whether the part of the boundary defined by the segment is
convex or concave. A positive radius indicates convex, with the centre of curvature inside the domain,
while a negative value indicates concave, with the centre outside the domain. A unit value of RATSEG
indicates a uniform distribution of elements along the segment, whether it be straight or curved. A value
greater than one requires the lengths of successive elements to increase in the direction of segment end

numbering, a value less than one requires a similar decrease.

The subprogram uses a number of housekeeping variables to keep track of various totals: IEEND stores
the current element end point number, array NNPB the number of nodal points (or elements) on each
boundary,and NNP the overall total number of nodal points. Similarly, ISEGMIN and ISEGMAX store the
numbers of the first and last segments on the current boundary (the segment numbering runs sequentially
from one boundary to the next), while IFIRST and ILAST do the same for nodes (elements) on the
current segment. Note that wherever possible tests are applied (and warning messages given) to check
that array dimensions are not going to be exceeded. It is also worth noting that arrays concerned with
segments are given the same dimensions (1000, in module SHAREDDATA2PC) as those for elements.
This is to give the user the freedom to define the geometry and boundary condition of each element
individually, by making each segment contain only one element. Two arrays, XEEND and YEEND
(element end point co-oordinates) are actually given dimensions of 1010. This is because due to the way
element end point co-ordinates are defined it is convenient to have the last point on a boundary distinct
from the first point, whose co-ordinates it shares. This means that the number of element end points

on a boundary is one more than the number of elements, and there could be as many as 10 boundaries.
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The subprogram stores the co-ordinates of the first and last element end points on the current segment and
then defines the element end point co-ordinates, storing in XEEND and YEEND. Note that the segment
number associated with a particular element end point is stored temporarily in array ISEGEND. Once
the element data have been generated this information is transferred from ISEGEND to ISEGELEM,
the segment number associated with each element. This information will be required later in the final
output of results, when the segment number for each element is required for calculating potential flows

across the various segments.

For a straight segment, simple linear interpolation is applied to define the element end points. If x; and
x, (XFIRST and XLAST) are the x global co-ordinates of the first and last segment end points, m (M) is
the element counter (from 1 to the number of elements on the segment) and n; (NELSEG) is the number

of elements on the segment, then the x co-ordinate of the second end of the mth element is given by
x=x + nﬂ(xz —X1) (3.1)

and similarly for the co-ordinate. The position of the first end point on the segment has already been
defined as that of the last point of the previous segment, except for the first end point on each boundary,
which was defined initially for the boundary. If the distribution of element end points along the segment
is not uniform, but has a constant ratio S between the lengths of successive elements (RATSEG in the
subprogram), then a different formula is required. Let x* be the component in the direction of the x

length of the first element, then

X —x; =x"(1+S+S2+83+..... + 571 (3.2)
Multiply through by S

S(x; —x) =x"(S+S2+S3+8*..... + S™s)

and subtracting

A=8)(x —x) =x"(1— S™) (3.3)
from which
ot = 9= (3.4)

(1-Sns)
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The x co-ordinate of the second end of the m th element is given by

. . 1-sm
x—x;=x"(1+S+S2+S3+.... 45 = (0 —x))
1-9
(1-sm
x =x1+ (X2 = x1) (1_5ns)) (3:3)

and similarly for the y co-ordinate. In the limit as § — 1, Equation 3.5 reduces to 3.1.

(x,,5,)

x.y.)

Figure 3.1 Geometry of a boundary segment in the form of a circular arc

The same formulae are applied in the case of a segment in the form of a circular arc, but to angles
subtended at the centre of curvature rather than to lengths between element end points. Given that the
input data provide only the co-ordinates of the end points of a segment and its radius of curvature, the
location of the centre of curvature requires some care. Figure 3.1 shows a boundary segment with end
points A and A, with co-ordinates (x1,y1) and (x,,y,), respectively, and radius of curvature R (the
centre is within the domain when R is positive). The midpoint of the straight line joining the end points

is M, at (x,,, »4,) or (XMID, YMID) in terms of program variables, where
1 1
X =5 (%1 +X2) and Y = 5 (1 +¥2) (3.6)
The length of the line joining the end points is L (ALSEG)

L=V[(x; — %)%+ (2 — y1)?] (3.7)
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If the centre of curvature is C, at (x.,y.) or (XCENT, YCENT), and the length of the perpendicular
from C to the line A/A) at M is h (ALPERP) then

h? = R? - (g)2 (3.8)
Before taking the square root to find h, it is necessary to test that the expression for h?> (ALPERP2) is
either positive or zero. A negative value would imply that the distance apart of the end points exceeds
twice the radius of curvature: either the points are too far apart or the radius of curvature is too small. It
is then not possible to create a circular arc. The particular case of h? = 0 deserves some care, because it
corresponds to the case of centre C at point M, giving a semi-circular segment, which can often occur in
practice. Because floating point arithmetic cannot be carried out with perfect precision, the test applied
in the program is h? < 107°R2. If satisfied, h? is assumed to be zero and the segment is treated as a
semi circle. The program does not accommodate circular arc segments whose subtended angles exceed

180°, because more information would be required to detect them. An attempt to enter data for such a

segment would result in a segment with an angle less than 180°, which could be identified by inspecting

the mesh data output.
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The position of the centre of curvature is found by first defining the unit vector in the direction from

point A and to point A,

P N ~ _ (xa—xq) ~ _ O2-y1)
V=7, i+Dyj where D, = — and 9, = ==

The unit vector perpendicular to this towards C is
u=-0,i+70j (3.9

and would be the negative of this if R is negative, implying that C is outside the domain. The co-ordinates
of C (XCENT, YCENT) are therefore

Xe = Xy —hﬁy Ve = ym-|-h1'}x (3.10)

Let 0 be the angular polar co-ordinate centred at point C in Figure 3.1, measured from the line CA . The

angular position 8; (ANGFIR) of CA (to the first segment end point) relative to the x axis is given by

tanf; = O1y0) (3.11)

(x1—x¢)

and the angular extent of the segment, A8 (ANGSEG), by

tan (%) = % (3.12)

If the elements on the segment are of uniform size, the angular co-ordinate of the second end of the

mth element is

=210 (3.13)

ns

If the lengths of the elements increase by a constant ratio S (RATSEG), the angular co-ordinate of the

second end of the mth element is

6 = ((11:‘;:1)) (3.14)
In either case, the corresponding global coordinates are

x = x. + |R| cos(6; + 0) (3.15)

y =¥+ |R|sin(6; +6) (3.16)
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Given all the element end point data for all the boundaries, the subprogram then goes on to define the
nodes as the midpoints of the straight lines between the ends of the elements and stores the nodal co-
ordinates in XNODE and YNODE. The numbers of the corresponding first and second end points are
stored in NEP1 and NEP2. Then the element lengths (ELENGTH) are computed, and the components
of the unit outward normals (UNX and UNY) are found. Finally, the maximum dimension (MAXL) of
the solution domain is found as the maximum distance between any pair of nodal points, for subsequent

use in scaling as described in Section 2.6.

314 Mesh data output subprogram

The subprogram MSHOUT serves to write out the geometric data for the mesh to file MESHRES.
Following the number of elements, number of nodes, and number of element ends, the numbers and
co-ordinates of the end points are written out, two sets to a line. Then the element numbers, end point

numbers, nodal co-ordinates and components of the unit outward normals to the elements are written out.
SUBROUTINE MSHOUT
! SUBPROGRAM TO WRITE OUT THE MESH DATA.
USE SHAREDDATA2PC
! OUTPUT THE NUMBERS OF ELEMENTS AND NODES, ALSO THE ELEMENT END
! POINT COORDINATE DATA.
WRITE (7,71) NEL,NNP,NEEND,

& (IEEND, XEEND (IEEND) , YEEND (IEEND) , IEEND=1, NEEND)
71 FORMAT (/ "GEOMETRIC DATA FOR THE MESH" //

& 10X, "NUMBER OF ELEMENTS =",I16 //

& 10X, "NUMBER OF NODAL POINTS =",I6 //

& 10X, "NUMBER OF ELEMENT END POINTS =",I6 //
& "COORDINATES OF ELEMENT END POINTS" //
& 2(" I X Y "/
& 2(I6,2E12.4))

i
! QUTPUT THE ELEMENT END POINT NUMBERS, NODAL COORDINATES AND
! COMPONENTS OF THE UNIT OUTWARD NORMALS AT THE NODES.
WRITE (7,72) (M,NEP1 (M), NEP2 (M), XNODE (M) , YNODE (M) , UNX (M) ,
& UNY (M) ,M=1,NEL)
72 FORMAT (/ "ELEMENT END POINT NUMBERS, NODAL COORDINATES",
& " AND UNIT NORMAL COMPONENTS" //
& (" M NEP1 NEP2 X (NODE) Y (NODE) ",
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& " UNX UNY") / (316,4E12.4))

!

! SCALE THE ELEMENT END POINT AND NODAL POINT COORDINATES.
Each element end point in turn: DO IEEND=1,NEEND
XEEND (IEEND) =XEEND (IEEND) /MAXL
YEEND (IEEND) =YEEND (IEEND) /MAXL
END DO Each element end point in turn
Each node in turn: DO I=1,NNP
XNODE (I)=XNODE (I)/MAXL
YNODE (I)=YNODE (I)/MAXL
END DO Each node in turn

RETURN
END SUBROUTINE MSHOUT

Finally, the co-ordinates of the element end points and nodes are scaled using the maximum dimension

of the domain.
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3.1.5 Subprogram for applying the boundary conditions

The subprogram BCS serves to apply boundary conditions of either the prescribed potential, prescribed
potential gradient, or mixed (linear relationship between potential and potential gradient) types. As
already indicated, it is assumed that each segment of elements has a uniform boundary condition applied
to it, which is an important consideration when defining the segments. The total numbers of segments
subject to the three types of condition are first read into variables NBCP, NBCD and NBCM, respectively.
In the case of prescribed normal derivatives (gradients) it is only necessary to include those segments
subject to non-zero gradients. Storage arrays including ALPHA and BETA for the mixed boundary
condition are set to zero for each nodal point. Array IBC stores the type of boundary condition (1, 2 or
3 for three types) for each node. In the absence of other information, the condition at a node is assumed
to be zero potential gradient. This is perhaps the most common single condition encountered in practice,
for example on a line of symmetry, a thermally insulated boundary in a heat conduction problem, or an
impermeable boundary in a fluid mechanics problem. The default boundary condition type is therefore

set as 2, with the corresponding zero value of gradient being stored in array STORE.

SUBROUTINE BCS

! SUBPROGRAM TO INPUT, PROCESS AND OUTPUT THE BOUNDARY CONDITIONS.

USE SHAREDDATA2PC

! INPUT THE NUMBERS OF SEGMENTS SUBJECT TO EACH TYPE OF BOUNDARY
! CONDITION.

! NBCP - PRESCRIBED POTENTIAL.

! NBCD - NON-ZERO PRESCRIBED NORMAL DERIVATIVE OF POTENTIAL.

! NBCM - MIXED BOUNDARY CONDITION.

! ANY SEGMENT NOT INCLUDED IS ASSUMED TO BE SUBJECT TO A ZERO

! NORMAL DERIVATIVE OF POTENTIAL.

READ (5, *) NBCP,NBCD, NBCM

!  TEST THESE BOUNDARY CONDITION NUMBERS.
NBCT=NBCP+NBCD+NBCM
IF (NBCP < 0 .OR. NBCP > MAXNNP .OR. NBCD < 0 .OR. NBCD > MAXNNP
& .OR. NBCM < 0 .OR. NBCM > MAXNNP .OR. NBCT < 0 .OR.
& NBCT > MAXNNP) THEN
WRITE (6, 61) NBCP,NBCD,NBCM,NBCT, MAXNNP

61 FORMAT (/ "NBCP =", I6,3X,"NBCD =",I6,3X,"NBCM =", 16
& / "NBCT =",16,3X,"OUTSIDE PERMITTED RANGE 0 TO",I6)
STOP
END IF
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! INITIALISE THE BOUNDARY CONDITION STORAGE ARRAYS.
Each node in turn: DO I=1,NNP
IBC(I)=2
STORE (I)=0.

ALPHA(I)=0.

BETA(I)=0.

END DO Each node in turn

! INPUT, STORE AND OUTPUT THE PRESCRIBED POTENTIAL BOUNDARY CONDITIONS.
IF(NBCP > 0) THEN
READ (5, *) (ISEGBC (IBCP),PSISEG (IBCP), IBCP=1,NBCP)
WRITE (6, 62)
62 FORMAT (/ "PRESCRIBED POTENTIAL BOUNDARY CONDITIONS")
Each segment with prescribed potential: DO IBCP=1,NBCP
ISEG=ISEGBC (IBCP)
IF(ISEG < 1 .OR. ISEG > NSEGTOT) THEN
WRITE (6,63) ISEG,NSEGTOT
63 FORMAT (/ "ISEG = ",I6,2X,"OUTSIDE PERMITTED RANGE 1 TO",I6)
STOP
END IF
Each node on current segment: DO I=IFIRST (ISEG),ILAST(ISEG)
IBC(I)=1
STORE (I)=PSISEG (IBCP)
END DO Each node on current segment
WRITE (6,64) PSISEG(IBCP),IFIRST(ISEG),ILAST(ISEG)
64 FORMAT (/ "POTENTIAL =",E12.4,5X,"AT NODES ",I6,5X,"TO ",I6)
END DO Each segment with prescribed potential
END IF

! INPUT, STORE AND OUTPUT THE PRESCRIBED POTENTIAL GRADIENT BOUNDARY
!  CONDITIONS.
IF(NBCD > 0) THEN
READ(5,*) (ISEGBC (IBCD),DPSISEG(IBCD),IBCD=1,NBCD)
WRITE (6, 65)

65 FORMAT (/ "PRESCRIBED POTENTIAL GRADIENT B