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Forword

Forword
Introductory physics provides a comprehensive overview of basic principles with the goal to find solutions 
to numerical problems: ‘How long does it take for a ball to hit the ground after being dropped from the 
top of 10-m tower,’ ‘What is the acceleration of a falling YoYo,’ etc. The solutions require that the relevant 
physical concepts are identified and then the appropriate equations are written down, manipulated, and 
solved. 

Students’ understanding of difficult concepts is improved when they are exposed to several different views 
of the same problem, and physics is no exception. It is particularly helpful when students are exposed 
to context-rich problems, since it allows them to make connections to other science disciplines. This 
is the role of lectures and recitations,and the lecturer should adapt his illustrative examples to his/her 
audience [eg., premeds, engineers, …]. The accompanying text should be geared towards self-study and 
focus on main concepts.

This is the guiding principle of the present text; we follow the outline of a standard introductory physics 
text. We explain the key ideas of each chapter, which are then illustrated by solving one or two ‘typical’ 
problems. This keeps the text at a reasonable length and yet is still comprehensive. We use topics covered 
on the MCAT as a general guiding principle for the selection of topics, as well as the overall depth and 
breadth of the text. 

We use different fonts to distinguish between explanation [in Serif font] and examples [in Sans Serif]. 
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Mathematical Tools

1	 Mathematical Tools
1.1	 Units

Physical quantities are measured using instruments; a meter stick for length L, a clock for time T, and a 
balance scale for mass m . Thus, physical quantities have magnitudes and units. The fundamental units 
in the international System of Units [SI] are:

Quantity Unit

Length meter [L] = m
Time second [T ] = s
Mass kilogram [m] = kg

For example, we write for distance d = 4.3m, for time t = 76.4 s, or for mass m = 0.56 kg . Prefixes 
are used for small and large values:

Prefix Symbol Factor

Giga G 109

Mega M 106

kilo k 103

centi c 10−2

milli m 10−3

micro µ 10−6

nano n 10−9

pico p 10−12

 

Thus, 3.4 nm = 3.4× 10−9m  and 0.34µs = 3.4× 10−7s. 

In any equation, the units on the left and right side must be equal: dimensional analysis. For example, 
we have distance [L], time [T ] , and speed [L/T ] . We use dimensional analysis to check whether an 
equation is possibly correct. For the formula x = 1

2
vt2 , we have [L] ?

= ([L]/[T ])[T ]2 = [L][T ] . That 
is, equation x = 1

2
vt2  is incorrect. For x = 1

2
vt  we get [L] ?

= ([L]/[T ])[T ] = [L] , so that the equation 
x = 1

2
vt  might be correct. Dimensional analysis does not tell you anything about factors such as 1

2
, π, etc.

The argument of mathematical functions [sine, cosine, the other trigonometric functions, exponential 
function, logarithm, etc] are always dimensionless. Thus, for the equation x = A cosBt , we have 
[Bt] = 1  so that [B] = 1/[t] = 1/s , and [A] = [x] = m . 
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Mathematical Tools

1.2	 Scalars and Vectors

Some physical quantities are fully specified by magnitude [and units]: “meet me at 12:34 pm,” “the distance 
between two cities is 287 km,” “today’s high temperature is 32°C,” and others. Such quantities are called 
scalars. On the other hand, some quantities have both magnitude [and units] and direction. If you are 
lost in the woods, the advice “you find the hut when you walk 3.3 km” is no help since direction is also 
needed: “you find the hut when you walk 3.3 km to the south.” The quantity of distance plus direction 
is called displacement. 

There are two different methods of characterizing displacement. 

1.	 Girl Scout method: walk 1.2 mi in NNE direction.
Two dimensional coordinate system: angle θ from positive x -axis in counterclockwise-direction

x

y

A

θ

 

Vector addition: the sum of the two vectors is defined by connecting the head of the first vector to the 
tail of the second vector [“head-to-tail”]. That is, the vectors �A  and �B  are the sides of a parallelogram, 
and the sum �C = �A+ �B  is the diagonal: 

Vectors can be multiplied by a scalar: the vector c �A  has the magnitude cA  and the same direction as 
the vector �A . If the scalar is negative, c < 0 , the vector c �A  has the magnitude |c|A  and is pointed in 
the opposite direction: θ → θ + 180◦ . Subtraction of two vectors is defined by �D = �A− �B = �A+ (− �B). 
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x

y

A
B

D=0.5A-2 B

-2B

D=0.5A-2 B

0.5A

 

2.	 City-dweller. In a city such as NYC, the street grid [“blocks”] provides the fundamental 
unit to describe the location: “Second Avenue and 34th Street.” Correspondingly, the 
displacement can be described by the number of blocks in east-west and north-south 
direction: “walk two blocks east and three blocks south.” We define components: 

	 Ax = A cos θ, � (1)

	 Ay = A sin θ, � (2)

with 

	 A2 = A2
x + A2

y. � (3)

and 

	 tan θ =
Ay

Ax
. � (4)

We then write �A = Axı̂+ Ay ̂ , where ı̂  and ̂  are the unit vectors [unit directions] along 
the x - and y -directions. 
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i

y

A

θ
x

j

 

In component form, multiplication by a scalar is given by A′
x = cAx  and A′

y = cAy , and vector addition 
is defined by the addition of the respective components, 

Cx = Ax + Bx, � (5)

Cy = Ay + By. � (6)

Example: Given two vectors in component form Ax = 7 , Ay = 4 and Bx = −3 , and By = +4 , find 
the magnitude and direction of the vector �D = 0.5 �A− 2 �B .

Solution: We have the components of the vctor �D : 

Dx = 0.5Ax + (−2)Bx = 0.5 · 7− 2 · (−3) = 9.5,

Dy = 0.5Ay + (−2)By = 0.5 · 4− 2 · 4 = −6.

We find the magnitude, 

D =
√

D2
x +D2

y =
√

9.52 + (−6)2 =
√
126.25 = 11.2,

and the direction, 

tan θD =
Dy

Dx
=

−6

9.5
= −0.63 −→ θD = 32.3◦.
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Motion in 1 -Dimension

2	 Motion in 1 -Dimension
The origin of Natural Philosophy in ancient [Greek] times can be traced back trying to understand the 
motion of objects. In modern-day physics, the analysis of motion is separated into two distinct parts: (1) 
the description of the motion [kinematics] and (2) the cause of the motion [dynamics]. The discussion of 
kinematics is separated into two parts: motion in one spatial dimension and motion in two dimensions. 
Motion in more than two dimensions does not add more of a physics context. 

2.1	 Displacement and Distance

In one dimension, the position of an object is described by the coordinate x . The goal of kinematics 
is to find the position as a function of time x = x(t) . We define displacement as the vector from the 
initial position to the final position: 

∆x = xf − xi. � (7)

In one dimension, the vector character of displacement is reflected by the fact that ∆x > 0  or ∆x < 0 .  
If the coordinate is along East-West, then ∆x > 0  means traveling east and ∆x < 0  means traveling 
west. 
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Motion in 1 -Dimension

Driving in a city 

•	 Drive 1 km to Cafe Newton in 4 min. 
•	 Go inside Cafe Newton and wait 6 min. 
•	 Drive 2 km to the intersection of Copernicus/Kepler Roads in 10 min. 
•	 Realize that the computer was left at home, drive home in 12 min. Get laptop in 2 min 
•	 Drive back to Copernicus/Kepler intersection in 12 min. 
•	 Drive 0.5 km to Galilei Circle in 6 min. 
•	 Drive 4 km along Hubble Highway in 8 min.

The description of the motion in a table:

t [min] 0 4 10 20 32 34 46 52 60
x [km] 0 1 1 3 0 0 3 3.5 7.5

We represent this in a graph of position x  vs. time t . 
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The displacement is ∆x = 3 km  between ti = 0  and tf = 20min , it is ∆x = −3 km  between 
ti = 20min  and tf = 32min  , and it is ∆x = 7.5 km  between ti = 0  and tf = 60min .

The odometer in a car measures the traveled distance. The distance traveled is 3 km  between ti = 0  and 
tf = 20min , it is 3 km  between ti = 20min  and tf = 32min , and it is 7.5 km  between ti = 0  
and tf = 60min .
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Motion in 1 -Dimension

2.2	 Velocity and Speed

The graph consists of piecewise straight lines, characterized by an intercept and a slope. The slope is 
determined by the ratio of the change along the vertical axis ∆x , divided by the change along the 
horizontal ∆t  [“rise-over-run”]. The (average) velocity is defined by 

v =
∆x

∆t
=

x− x0

t− t0
, � (8)

where x0  is the position at time t0: x0 = x(t0) . The unit of velocity is [v] = [x]/[t] = m/s . The 
average velocities for the above time intervals are:

[ti, tf ] [min] [0,4] [4,10] [10,20] [20,32] [32, 34] [34 46] [46,52] [52, 60]
v [km/h] 15 0 12 -15 0 15 5 30
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We use t0 = 0  and solve Eq.(8) for the coordinate x  when the velocity is constant: 

x(t) = x0 + vt. � (9)

The (average) speed is defined as the ratio of traveled distance divided by the change in time: 

speed =
distance traveled

∆t
. � (10)

Note that there is no equation for distance traveled and speed. 
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Motion in 1 -Dimension

Example 1: Emmy starts at time t = 0  and drives along a straight path: she starts at point A, drives 
straight to point B, turns aorund and drives to point C. She ends up at the point at time t = 14.7 s. 
Her average speed is 17.0 m/s, and the average velocity is 9.3 m/s. a) Find distances between points A 
and B and points B and C. b) Emmy drives twice as fast from A to B than she drives from B to C. Find 
her respective speeds.

Solution: We have the distance L between A and B and the distance d  between B and C: then 

L+ d = 17.0
m

s
· 14.7 s = 250.0m,

L− d = 9.3
m

s
· 14.7 s = 136.7m.

We get 

L =
250.0m+ 136.7m

2
= 193.4m, d =

250.0m− 136.7m

2
= 56.6m.

For times tAB = L/vAB  and tBC = d/vBC , where vBC = vAB/2. Since tAB + tBC = 14.7 s, we get, 

193.4m

vAB
+

56.7m

vBC
=

193.4m

vAB
+

2 · 56.7m
vAB

= 14.7
m

s
.
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Motion in 1 -Dimension

We get 

vAB =
193.4m+ 2 · 56.7m

14.7 s
= 20.9

m

s
,

and vBC = 10.4m/s. 

Example 2: A jaguar can reach speeds of 30 m/s. The fastest person is capable of reaching a speed of 10 
m/s. Suppose the the person and the jaguar are 500 m apart. Assume that they are both constantly at 
their top speed. How long does it take the jaguar to catch up to the person? 

Solution: We choose a coordinate system with x = 0  at the person’s starting position so that x = 500m  
for the initial position of the jaguar. We find the time-dependent coordinates of the person and jaguar: 

xp(t) = 0− 10
m

s
· t, (person),

xj(t) = 500m− 30
m

s
· t, (jaguar).

The jaguar catches up to the man when xp = xj  so that 

−10
m

s
· t = 500m− 30

m

s
· t −→ t∗ =

500m

20m/s
= 25.0 s.

Discussion: Key to solving kinematics problems is often setting up equations for the coordinates of one 
or more objects [e.g., the person and the jaguar], and then finding an equation for a particular event 
[e.g., jaguar catching up to the person]. 

2.3	 Acceleration

In general, the velocity varies with time; mathematically, we say that the velocity is a function of time 
v = v(t) . This is called instantaneous velocity. The rate of change in velocity is acceleration: 

a =
∆v

∆t
=

v − v0
t− t0

, � (11)

where v  is the velocity at time t , and v0  is the velocity at time t0. The unit of acceleration is 
[a] = [v]/[t] = m/s2 . We set t0 = 0 , and find, 

v = v0 + at, (instantaneous velocity) .� (12)

We only consider the case when the acceleration is piecewise constant. The acceleration can be positive 
or negative. The object speeds up, when both velocity and acceleration are positive or negative; and the 
object slows down, when the velocity is positive and the acceleration is negative [or vice versa]. 
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The average velocity during the time interval [0, t]  follows, 

v̄ =
1

2
[v + v0] = v0 +

1

2
at, (average velocity). � (13)

Note that the RHS of Eq. (13) is equal to the instantantaneous velocity at time  
t/2 : v(t/2) = v0 + a(t/2) . This is called the midpoint rule. The displacement follows, 

x− x0 = v̄t =

(
v0 +

1

2
at

)
· t = v0t+

a

2
t2. � (14)

We find an equation that relates displacement to velocity by eliminating the time using Eq. (12), 
t = (v − v0)/a , so that ∆x = x− x0 = (v0 + v)/2 · (v − v0)/a  so that 

v2 = v20 + 2a∆x. � (15)

Eqs. (12)-(15) are the basis for motion with constant acceleration. We will always assume that the 
acceleration is piecewise constant, i.e., is constant during finite time intervals. 

Example 3: A car is accelerating at a = 0.8m/s2. It passes through a 25.0-m wide crossing in a time 
of ∆t = 4.6 s. Assume that the car starts from rest. Calculate the time to reach the crossing and the 
distance from the crossing. 

Solution: We have for the average speed through the crossing, 

vave =
∆x

∆t
=

25.0m

4.6m/s
= 5.4

m

s
.

We set t = 0  and t = t1 when the car enters and leaves the crossing, respectively. We write v0  for the 
speed when the locomotive enters the crossing. Now we use the midpoint rule, 

vave = v(t/2) −→ 5.4
m

s
= v0 + a · t1

2
= v0 + 0.8

m

s2
· 2.3 s −→ v0 = 3.6

m

s
.

The car starts at t = −t∗ . We then have 

v0 = a|t∗| −→ |t∗| = v0
a

=
3.6m/s

0.8m/s2
= 4.5 s,

and for the distance between the start and the crossing: 

d =
a

2
|t∗|2 = 0.8m/s2

2
(4.5 s)2 = 8.1m.

Alternatively, the distance follows from v20 = 2ad , or d = v20/2a = (3.6m/s)2/(2 · 0.8m/s2) = 8.1m. 
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Example 4: A dog and her handler are at rest, and are facing each other at a distance of 40.0 m. On 
command, they run towards each other: the handler runs at a constant speed vp = 2.5m/s , while 
the dog first runs with constant acceleration ad = 2.0m/s2 until she reaches her maximum speed of 
vd = 4.5m/s . a) Calculate the time it takes the dog to reach her maximum speed. Choose t = 0  when 
the handler and dog start to run. b) Find the positions of the handler and dog at the instant the dog 
reaches her maximum speed. Choose the coordinate, such as that the handler is at the origin x = 0  at 
time t = 0 . c) Find the (common) position where the handler and dog meet. 

Solution: Since v = v0 + at  with v0 = 0 , we have for the time, 

td =
vd
ad

=
4.5m/s

2.0m/s2
= 2.25 s,

and for the dog’s coordinate, 

xd = x0,d −
1

2
ad t

2
d = 40.0m− 1

2
· 2.0m

s2
· (2.25 s)2 = 34.9m,

for the handler, 

xp = x0,p + vptd = 2.5
m

s
· 2.25 s = 5.6m.
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We write t = 2.25 s + t′  for times t > td . We then have the coordinates of the dog and her handler 
for times t′ > 0 : 

xd(t
′) = 34.9m− 4.5

m

s
· t′,

xp(t
′) = 5.6m+ 2.5

m

s
· t′.

Set xd(t
′) = xp(t

′)  so that 

34.9m− 4.5
m

s
· t′ = 5.6m + 2.5

m

s
· t′.

Rearrange 

29.3m = 7.0
m

s
· t −→ t′ = 4.2 s.

Plug the time t′  into either xd(t
′)  or xp(t

′) , and find xd = xp = 16.1m .

2.4	 Free Fall

Free fall is an important case of motion with constant acceleration. All objects near the Earth’s surface 
fall with the same acceleration, if effects due to air resistance can be eliminated or ignored. We choose 
the +y – axis upwards, so that v > 0  and v < 0  describes an object flying upwards and downwards, 
respectively. Then ay = −g  [negative sign indicates downwards]. We then have the kinematics equations 
for free fall, 

v(t) = v0 − gt, � (16)

y(t) = y0 + v0t−
1

2
gt2, � (17)

v2 = v20 − 2g∆y. � (18)

The speed of the object decreases on the way up [v > 0  and a = −g < 0 ], and increases on the way 
down [v < 0  and a = −g < 0 ]; the instantaneous velocity is zero at the highest point. 

Example 5: A ball is dropped from the roof of a tower with a height of 81 m. a) How long will it take 
to hit the ground? b) Calculate the speed without calculating the time.

Solution: We choose y = 0  at the ground. Then y0 = 81m  and v0 = 0 , so that 

y = 0 = 81m− 1

2
g(t∗)2 −→ t∗ =

√
2 · 81m
9.8m/s2

� 4.0 s.
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We get for the speed right before hitting the ground, 

vf = v0 − gt = −9.8
m

s2
· 4.0 m

s
.

A negative sign means that the object falls downwards. 

We have ∆y = yf − y0 = 0− 81m = −81m . Then: 

v2f =
(
0
m

s

)2

− 2 · 9.8 m

s2
· (−81m) � +1600

(m
s

)2

−→ |vf | = 40
m

s
.

The second method does not give the sign [positive or negative] of the velocity. 

Discussion: Rather than calculating the time from the vertical displacement ∆y  by solving a quadratic 
equation, it is always possible to find the time in two steps: (1) find the speed using Eq. (18), and add 
the appropriate sign to find the velocity, and (2) find the time using Eq. (16). 

Example 6: A ball is thrown along the vertical. The coordinate of the ball is observed as a function of time 
y(t). We choose y = 0  at the ground. The ball is at y = 13.2m at time t = 0 , and at y = 5.0m  at 
time t = 3.2 s. a) Find the displacement and average velocity of the ball between t = 0  and t = 3.2 s.  
b) Find the initial and final velocity of the ball. c) What is the height of the ball’s peak above ground? 
d) What is the average speed of the ball between t = 0  and t = 3.2 s? 

Solution: We have for the displacement ∆y = y − y0 = 5.0m− 13.2m = −8.2m , and for the 
average velocity 

vmax =
∆y

∆t
=

−8.2m

3.2 s
= −2.6

m

s
.

We use t = 0  when the ball is launched upward. We use the midpoint rule to find the instantaneous 
velocity at tmid = (0 + 3.2 s)/2 = 1.6 s, 

v(1.6 s) = −2.6
m

s
= v0 − 9.8

m

s2
· 1.6 s −→ v0 = −2.6

m

s
+ 15.7

m

s
= 13.1

m

s
.

We get for the final velocity at t = 3.2 s, 

vf = 13.1
m

s
− 9.8

m

s2
· 3.2 s = −18.3

m

s2
.

We have v = 0  at the highest point. We find the displacement to the peak, 

v2 = 0 = v20 − 2g∆y −→ ∆y =
v20
2g

=
(13.1m/s)2

2 · 9.8m/s2
= 8.8m.
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We have for the ypeak = 13.2m+ 8.8m = 22.0m, and the total distance traveled, 

d = (22.0m− 13.2m) + |5.0m− 22.0m| = 25.8m

so that for the average speed, 

speed =
25.8m

3.2 s
= 8.1

m

s
.
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3	� Motion in 2 Dimensions: 
Projectile Motion

A person walks at a speed vp  along the horizontal. The person throws a ball up in the air with velocity 
vb , and easily catches it while walking. For this person, it appears that the ball undergoes free-fall motion. 
On the other hand, for an observer at rest, the ball undergoes motion along both the horizontal and 
vertical axis. The trajectory of the ball as seen by the observer at rest is an ‘arc:’projectile motion. This 
would be the same if the ball is thrown at the initial speed v0 =

√
v2p + v2b  at the angle tan θ0 = vb/vp  

above the horizontal. 

peak

V0

Vpeak

horizontal coordinate [m]

ve
rt

ic
al

 c
oo

rd
in

at
e 

[m
]

The shape of the trajectory is an inverted parabola.

These everyday experiments show that the motion of the ball along the horizontal and vertical directions 
are independent of each other. The velocity component along the horizontal is constant [and thus the 
acceleration is zero], while the velocity component along the vertical follows laws of free fall. In particular, 
the velocity vector at the highest point [“peak”] is directed along the horizontal, �vpeak = vpı̂ , since the 
peak is the turning point for the motion along the vertical vy,peak = 0 . The instantaneous speed is equal 
to the magnitude of the instantaneous velocity vector |�v| . The speed of the object in projectile motion 
decreases on the way up, and increases on the way down.

The acceleration is constant and directed downwards, 

ax = 0, � (19)

ay = −g = −9.8
m

s2
, � (20)
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for the components of the velocity vector, 

vx(t) = vx,0 = const, � (21)

vy(t) = vy,0 − gt, � (22)

and the coordinates, 

x(t) = x0 + vx,0t, � (23)

y(t) = y0 + vy,0t−
1

2
gt2. � (24)

Here, we use the usual convention that vy > 0  means “going up,” vy < 0  means “going down” and 
vx > 0 means “going to the right,” and vx < 0 means “going to the left.”

In Eqs. (20)-(24), the trajectory is determined by the components of the initial velocity along the  
x - and y -coordinates. Instead of the two components of the velocity, one can also specify the speed 
v0 =

√
v2x,0 + v2y,0  and the direction tan θ = vy,0/vx,0. While the initial speed and launch angle at time 

t = 0  is a ‘popular choice,’ more general conditions are possible. The trajectory is fully determined by two 
independent quantities (vx, vy, x, y) at one or two times t1 and t2, although the necessary algebra might 
become cumbersome. Solving problems starts by determing whether it is necessary to find a particular 
time t , and if so, how that time is found. There are three possibilities: using the vertical velocity vy , the 
horizontal displacement ∆x , or the vertical displacement ∆y . 

Example 1: A projectile is launched with v0 = 19.2m/s  at angle θ0 = 38.7◦. a) Does the projectile 
‘clear’ a 3.0 m- high wall that is 30 m from the launch? b) How far behind the wall does the projectile 
hit the ground? 

Solution: We calculate the components of the initial velocity vector: 

vx,0 = 19.2
m

s
cos 38.7◦ = 15

m

s
,

vy,o = 19.2
m

s
sin 38.7◦ = 12

m

s
.

For this problem, we need to find the time when the projectile clears [or hits] the wall. That is, we set 
∆x = 30.0m  so that for the time t = t∗ : 

t∗ =
∆x

vx,0
=

30m

15m/s
= 2.0 s.
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We then find the vertical coordinate of the projectile at that instant, 

y = 12
m

s
· 2.0 s− 1

2
9.81

m

s2
· (2 s)2 = 24m− 20m = 4m.

Since y > 3m, the projectile clears the wall. The projectile falls to the ground when y = 0  so that 

y = v0,yt−
g

2
t2 =

(
v0,y −

gt

2

)
t −→ t′ = 2

v0,y
g

= 2
12m/s

9.8m/s2
= 2.45 s.

We thus get for the horizontal displacement, 

R = vx,0t
′ = 15

m

s
· 2.45 s = 36.8m.

That is, the projectile falls to the ground 6.8 m behind the wall. 

Discussion: The time to reach the peak follows from vy = vy,0 − gt = 0  or tpeak = vy,0/g . Thus, the 
time for the projectile to hit the ground is twice that of the projectile to reach the peak: this property 
reflects the symmetry of the trajectory. 
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The quantity R  is referred to as the range. We find for the time to reach the peak vpeak = v0 sin θ0/g , 
so that for the range R = v0 cos θ0 · 2v0 sin θ0/g , or, 

R =
v20
g
sin 2θ0,

� (25)

where we use 2 sin θ0 cos θ0 = sin 2θ0 . This shows that the maximum range projectile is achieved 
when θ0 = 45◦. 

Example 2: A device is hidden inside a ball, enabling you to measure the speed of the ball but not its 
direction. You forget to write down the times at which the ball was flying with different speeds. The ball 
undergoes projectile motion in the Earth’s gravitational field. a) From your records, you determine that 
the maximum speed of the ball was 30.0m/s , and that the minimum speed was 18.0m/s . Find the 
direction in which the ball was launched. b) How long is the ball in air until it hits the ground? c) What 
distance along the ground does the ball travel through the air until it hits the ground? 

Solution: We have vx = v0,x = vmin = 18.0m/s . Since v0 = vmax = 30.0m/s , we get: 

v0x = v0 cos θ0 −→ cos θ0 =
v0x
v0

=
18.0m/s

30.0m/s
= 0.6.

For the angle, this gives θ0 = 53.1◦ . We calculate the vertical component of the initial velocity: 

v0,y =
√
v20 − v20,x =

√(
30.0

m

s

)2

−
(
18.0

m

s

)2

= 24.0
m

s
.

Now we calculate the time to reach the highest point, 

vy = 0 = v0,y − gt∗ −→ t∗ =
v0,y
g

=
24.0m/s

9.8m/s2
= 2.45 s.

The total time in the air follows ttot = 2t∗ = 4.9 s. We have for the range, 

R = ∆xmax = vxttot = 18.0
m

s
· 4.9 s = 88.2m.
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4	 Dynamics: Newton’s Laws
Book on Table: The book moves when we push it: here push means that we exert a force. The ‘harder’ the 
push, i.e., the greater the force, the faster the book moves. Furthermore, the book moves in the direction 
of the push. Thus, the velocity is proportional to the force, 

�F = A�v, (book on table),

for some constant A that characterizes the book and table surface. 

Ice skater: The ice skater keeps moving, even when no force acts on the person: force and velocity are 
no longer proportional to each other. A force acts on the ice skater during the short time when she is 
pushed by her friend. During that same time interval, she is experiencing an acceleration, since the 
velocity changes with time. After that, she does not experience any acceleration. Thus, the acceleration 
is proportional to the force: 

�F = m�a, (ice skater),

where m  is the mass of the ice skater. In dynamics, we write the cause [force] and the effect [motion] 
on the left-and right-hand side of the equation, respectively. Newton’s law F = ma  often seems to go 
against common sense: in many cases, these misconceptions can be resolved by noting that everyday 
experience [such as driving a car, etc] take place when friction is dominant. 

4.1	 Newton’s Laws

First law: object remains in a state of rest or in a state with constant velocity, unless compelled to change 
by a net force. The first law defines inertial reference frames. 

Second law: the acceleration of an object with mass m  is proportional to the net force acting on it: 
∑

�F = m�a. � (26)
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Third law: whenever the first body exerts force on the second body, the second body exerts force on 
the first body that is equal in magnitude and opposite in direction. In short, forces always appear in 
pairs. The unit for force follows: [F ] = [m| · [a] = kg ·m/s2 = N, or Newton. The net force is the 
sum of physical forces acting on an object. In introductory physics, the list of physical forces is quite 
small: weight mg , the tension T  in a rope, the contact force, or normal force FN , and friction force 
fk . When an object sits on a block [so that the acceleration is zero], the net force on the block is zero. 
The weight of the block is directed downwards with magnitude W = mg . This force is balanced by the 
normal force the table exerts on the block; we have for the magnitude FN = mg  and the direction is 
upwards. “Normal” refers to the mathematical meaning of “perpendicular.” In general, the normal force 
is always directed perpendicular to the surface. 

The friction force is directed parallel to the surface. We distinguish two cases: (1) kinetic friction for 
moving objects. The friction force is directed against the direction of motion, and the magnitude is 
proportional to the normal force, 

fk = µkFN . � (27)
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When the object is at rest, static friction applies. The magnitude and direction [e.g., left or right] 
varies, and is determined by the condition that the net force is zero 

∑
�F = 0. The static friction has 

a maximum value: 

fs,max = µsFN . � (28)

The coefficient of static friction is greater than the coeffcient of kinetic friction, µs > µk . This explains 
the fact that a heavy box ‘jerks’ when it begins to move. 

4.2	 Free-Body Diagram

For each object, we replace its interaction of an object with “the rest of the universe” by forces: all forces 
are drawn in a free-body diagram. For example, if an object sits on a surface, the interaction between the 
object and the table is described by the normal force that the table exerts on the object. If the object is 
pulled by a rope, the interaction is described by the tension force acting on the object. Newton’s second 
law is written in component form, i.e., for both the x - and y -direction. The same process is repeated for 
each object of the system of interest. In this way, we find a system of coupled equations for the unknown 
forces and accelerations of the objects. 

We discuss four illustrative examples, each of which adds one more element of difficulty. The first 
problem only deals with a single object; the second problem deals with two objects; the third problem 
illustrates the “good” choice of a coordinate system; and the fourth problem deals with action-reaction 
pairs [Newton’s third law]. The choice of ‘system’ depends on the circumstances: we generally exclude 
the Earth, since it has an enormous mass, and does not move. For astronomical problems, the motion 
of the Earth must be taken into account.

 

P
m

 

Example 1: A block with mass m = 4.0 kg  is sitting on a horizontal surface. 

The coefficient of static friction between the block and the table is µs = 0.32 , and the coefficient of 
kinetic friction is µk = 0.29 . Starting from P = 0 , the push is continuously increased until the block 
begins to move. a) What is the maximum push Pmax that can be applied so the block does not move? 
b) After the push is slightly increased, what is the acceleration of the block? 
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P m

mg

FN

f

 

Solution: The forces on the block are the weight mg  (down), the normal force FN  (up), the push (right), 
and the friction force f . The direction of the friction force is then left, because the object is sliding to 
the right [as a result of the push]. When the block is at rest, we have f = fs. We write Newton’s law 
for the mass m : 

∑
Fx = P − fs = 0,

∑
Fy = FN −mg.

We find FN = mg , so that for the maximum static friction fs,max = µsmg : 

Pmax = µsmg = 0.32 · 4.0 kg · 9.8 m

s2
= 12.5N.

We increase the push by an infinitesimally small amount P = Pmax + δP , so that the block moves and 
f = fk = µkmg = 0.29 · 4.0 kg · 9.8m/s2 = 11.4N . We then have for the acceleration of the block: 

∑
Fx = Pmax − fk = ma −→ a =

Pmax − fk
m

=
12.5N− 11.4N

4.0 kg
= 0.28

m

s2
.

The jump of the acceleration of the block at rest [a = 0 ] to a non-zero value [a = 0.28m/s2] is 
described as a “jerk.” After the block moves, we intuitively reduce the push to P ′ = fk = 11.4N  so that 
the block is again in mechanical equilibrium 

∑
�F = 0, and slides at a constant velocity �v = const . 

Discussion: Here FN  and the weight of the block m�g  have the same magnitude, and are directed 
in opposite directions. However, they are not action-reaction forces since they are acting on the same 
object. When a person holds an object with mass m  in her hands, the action-reaction pair is (1) the 
weight of the object m�g  acting on her hands and (2) the normal force �FN  that the palm of her hands 
exerts on the object. 
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Example 2: A block with mass m1 = 2.2 kg  is attached to an unknown mass m2. When the block m1 
slides across a rough patch [with coefficient of kinetic friction µk = 0.36 ], the velocity of the block 
is constant v = 0.3m/s . a) Draw the appropriate freebody diagram(s) for this problem. b) Find the 
unknown mass m2. c) The block m1 is sliding across a smooth patch of the table. Find the acceleration 
of the block m1.

Solution: The forces on m1 are the weight m1g  (down), the normal force FN  (up), the tension T (right), 
and the friction force fk  (left). The forces on m2 are the weight m2g  (down) and the tension T (up). 
The magnitude of the tension forces acting on m1 and m2 are the same, because it is a single rope. 
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m1
fk

FN

m1g

T
m2

T

m2g

 

We have �v = const , the acceleration is zero, and the two blocks are in mechanical equilibrium 
∑

F = 0.  
We write Newton’s second law for m1: 

∑
Fx = T − fk = 0

∑
Fy = FN −m1g = 0,

and Newton’s second law for m2: 

m2g − T = 0.

Note that we take the direction of the forces into account by appropriate positive and negative signs. This 
implies that all variables represent the magnitudes of the respective forces, i.e., all variables are positive. 
This can be used to check the solution of the system of equations. We have FN = m1g = 21.6N , so 
that fk = µkFN = 0.36 · 21.6N = 7.8N .

We then have T = fk  and 

m2 =
T

m2
=

fk
g

=
7.8N

9.8m/s2
= 0.8 kg.

When the block m1 is on the smooth table surface, fk = 0. All forces remain the same, although the 
magnitude of the forces may change. We have 

T = m1a, m2g − T = m2a.

the common acceleration of the two blocks follows m2g −m1a = m2a  

a =
m2

m1 +m2
g =

0.8 kg

2.2 kg + 0.8 kg
· 9.8 m

s2
= 2.6

m

s2
.

m1

m2

50 20
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Example 3: The block 1 with mass m1 = 2.5 kg  is moving on a frictionless 20° incline, and the block 
2 with mass m2 = 4.5 kg  is moving on a frictionless 50° incline. The two blocks are connected by a 
string. a) Draw the appropriate free-body diagram(s) for the problem. b) Write down Newton’s second 
law for the two blocks. c) Find the (common) acceleration of the two blocks and the tension in the string 
connecting the blocks.

m1m2

W2

W1

FN,2 T

T
FN,1

Solution: The forces on m1 are the weight m1g , tension T, and the normal force FN,1; for m2, the 
forces are the weight m2g , the tension T, and the normal force FN,2. We use different (orthogonal) 
coordinate systems for the two blocks: along the incline and perpendicular to the incline. Along the 
incline: for the mass m1, 

T −m1g sin 20
◦ = m1a,

and for m2, 

m2g sin 50
◦ − T = m2a.

Perpendicular to the incline: for the mass m1, 

FN,1 −m1g cos 20
◦ = 0,

and for the mass m2, 

FN,2 −m2g cos 50
◦ = 0.
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We express the tension T in terms of the acceleration a, 

T = m1g sin 20
◦ +m1a.

so that m2g sin 50
◦ −m1g sin 20

◦ −m1a = m2a , and solve for a, 

a =
m2g sin 50

◦ −m1g sin 20
◦

m1 +m2
=

4.5 kg · sin 50◦ − 2.5 kg · sin 20◦
2.5 kg + 4.5 kg

· 9.8 m

s2
= 3.63

m

s2
.

The tension follows 

T = 2.5 · 9.8 m

s2
· sin 20◦ + 2.5 kg · 3.63 m

s2
= 17.5N.

m1

m2

T

a1
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Example 4: The block with mass m2 = 1.5 kg  is pulled by the rope such that it slides across the block 
with mass m1 = 3.8 kg . The block m1 sits on a horizontal table. The coefficient of kinetic friction 
between the block m1 and the table is µk = 0.17 . The coefficient of  kinetic friction between the two 
blocks is unknown. The block m1 moves towards the right with acceleration a1 = 0.56m/s2 . a) Draw 
the free-body diagram(s) appropriate for this problem. b) Write down Newton’s second law that describes 
this system. c) What is the coefficient of kinetic friction between the blocks? d) The tension in the rope 
is T = 11.2N . What is the acceleration a2 of the block m2? 

 

m2
m1

W2=m2g
W1=m1g

FN2 FN1

T

f21 f12fk

F’N2

 

Solution: The forces on the mass m2 are the weight m2g  (down), the tension T (right),  the normal 
force FN2 (up) exerted by the block  m1 on m2, and the friction force between the blocks f21  (left). 
The forces on m1 are the weight  m1g  (down), the force F ′

N,2 (down), the normal force FN,1 extered 
by the table on m1 (up), the friction force between the blocks f12  (right), and the kinetic friction force 
between m1 and the table fk  (left).  Note that we have two action-reaction pairs: 

�FN,2 = −�F ′
N,2

�f12 = −�f21.

The friction force fk  also has a reaction force: this is the force that the block m1 exerts on the ground 
[that is, on the Earth]. We do not include the Earth in the mechanical system [since the Earth remains 
stationary], and can thus ignore this reaction force. We have for the mass m2: 

∑
Fx = T − f21 = m2a2,

∑
Fy = FN2 −W2 = 0,

with f12 = µkFN2 , and for mass m1, 

∑
Fx = f12 − fk = m1a1 ,

∑
Fy = FN1 −W1 − F ′

N2 = 0 ,
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with fk = µkFN1 . We have |f12| = |f21| = µkm2g  and |fk| = 0.17 · (m1 +m2)g . Thus, 
µkm2g − 0.17 (m1 +m2)g = m1a1,

so that 

µk =
m1a1
m2g

+ 0.17
m1 +m2

m2
=

3.8 kg · 0.56m/s2

1.5 kg · 9.8m/s2
+ 0.17

1.5 kg + 3.8 kg

1.5 kg
= 0.14 + 0.60 = 0.75.

We have f21 = µkm2g = 0.75 · 1.5 kg · 9.8m/s2 = 11.0N , and then 

T − f12 = 11.2N− 11.0N = 0.2N = 1.5 kg · a2 −→ a2 =
0.2N

1.5 kg
= 0.13

m

s2
.

4.3	 Gravitational Force

m1

m2

F12 F21

r

The weight W = mg  is the gravitational force that the Earth exerts on an object with mass m . In 
general, there is an attractive force between two masses m1 and m2 separated by the distance r .

We have two masses m1 and m2. The forces F12 = −F21  are action-reaction pairs. The magnitude 
of the force is proportional  to both masses, and inversely proportional to the square of the radius r , 

F12 = F21 = G
m1m2

r2
, � (29)

where G = 6.67× 10−11N ·m2/kg2  is the universal gravitational constant. 

We consider the case of mass m  and the Earth ME , so that m1 = m  and m2 = ME . Since 
r = RE = 6.38× 106m  is the radius of the Earth, we get for the mass of the Earth: mg = GME/R

2
E : 

ME =
gR2

E

G
=

9.8m/s2 · (6.38× 106m)2

6.67× 10−11N2m2/kg2
= 5.98× 1024 kg.

This agrees with the book value. 
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5	 Uniform Circular Motion
In uniform circular motion, the object travels with constant speed v  along a fixed circular trajectory 
with radius r. The speed and radius determine the period of the motion, i.e., the time to complete one 
full revolution: 

v =
circumference

period
=

2πr

T
−→ T =

2πr

v
. � (30)

 

A

B

C

vBA

vCB

-vBA

 Δv= vCB -vBA 
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We gain insight by considering a numerical example. An object is moving on a circle with radius 
R = 8.0 cm . The object is at point A at time t = 0 , at point B at time t = 2.0 s, and at point C at time 

t = 4.0 s.  The vectors representing the average velocities during the intervals [0, 2 s]  and [2 s, 4 s] ,  
�vBA  and �vCB , respectively,  can be drawn, and the difference vector be found by geometric construction, 

|∆�r| = |�rB − �rA| = |�rC − �rB| = 6.0 cm.

The magnitudes of the velocities follows, 

|�vAB| = |�vBC | =
6.0 cm

2.0 s
= 3.0

cm

s
.

We then draw the vector ∆�v = �vCB − �vBA , and find the magnitude, 

|∆�v| = |�vCB − �vBA| =
4.5 cm

2.0 s
= 2.25

cm

s
.

The direction of �a  is in the direction of ∆�v , i.e., towards the center, 

|�aave(2.0 s)| =
|∆�v|
∆t

=
�v(3.0 s)− �v(1.0 s)

3.0 s− 1.0 s
=

2.25 cm/s

2.0 s
= 1.1

cm

s2
.

Thus, the acceleration is directed towards the center, so that the net force acting on the object must be 
directed towards the center as well. 

P1 P2

P’2

h

v*t

r

r
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We find an expression for the magnitude of the acceleration.  At time t = 0 , the object is at point P1  
moving with a velocity v   in tangential direction. At time t, the object would be at point P2 . Instead, it 
moves along the circle, and thus is at point P ′

2 . We find  an expression for the height using Pythagorean 
theorem: r2 + (vt)2 = (r + h)2. We assume that the time interval is short, so that vt < r  and h < r . 
Since (r + h)2 = r2 + 2rh+ h2 � r2 + 2rh, we simplify  the RHS: r2 + (vt)2 � r2 + 2rh  so that 
h = (vt)2/2r = 1

2
(v2/r)t2 . We compare the RHS with x = at2/2 , and find the value of the centripetal 

acceleration: 

ac =
v2

r
. � (31)

For the numerical example above, we find v2/r � (3 cm/s)2/(6 cm) = 1.5 cm/s2, in agreement with 
the graphical method.

We find the force acting towards the center from Newton’s second law: 

Fnet = mac = m
v2

r
. � (32)

This is sometimes called “centripetal force;” however, there is no new force involved, and the centriptal 
force is the net force. 

 

Example 1: An object goes around a vertical circular track, as shown.  Find the minimum speed of the 
object near the top of the loop, so that  it does not loose contact with the track.

Solution: We draw the free-body diagram of the object when it is near the top. We have the weight mg  
(down) and the normal force FN  (down).

mg

FN
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Newton’s second law then gives, 

FN +mg = m
v2

r
.

The object barely completes the loop when it is ‘weightless’ near the top: FN = 0 . We thus find a 
condition for the smallest speed: 

mg = m
v2min

r
−→ vmin =

√
gr.

For r = 15.0m , we find vmin =
√
9.8m/s2 · 15.0m = 12.1m/s . 

Example 2: Calculate the length of a (sidereal) month from the distance between the Earth and the 
Moon REM = 3.85× 108m.

Solution: We find the mass of the Earth and the Moon from tables ME = 5.98× 1024 kg  and 
MM = 7.35× 1022 kg . We thus have ME >> MM , and assume that the Moon rotates about the 
center of the Earth: 

Fnet = G
MEMM

R2
EM

= MM
v2

REM
.
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The orbit of the Moon is (nearly) circular, so that for the speed v = 2πREM/T , where T is the period 
[i.e., the length of a month], we find, 

GME

R2
E

=
4π2REM

T 2
−→ T 2 =

4π2

GME
R3

EM .

We conclude that the square of the period is proportional to the third power of the radius of the orbit; 
this is essentially Kepler’s third law of planetery orbits, for the special case when the orbit is a circle. We 
find the numerical value, 

T =

√
4π2(3.85× 108m)3

6.67× 10−11Nm2/kg2 · 5.98× 1024 kg
= 2.38× 106 s,

or 27.5 days (the value in tables is 27.3 days – the difference is due to simplifications made in our 
calculation). 

m

θ

l=0.89 m

Example 3: An object with mass m = 1.6 kg  is attached to a rope with length l = 0.89m . It is brought 
in uniform circular motion, such that the  rope makes an angle of θ = 16◦  with the vertical. a) Find 
the period of the motion. b) Find the tension in the rope. 
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Solution: The forces acting on the block are the weight mg  and the tension T.

mg

T

We then have Newton’s second law, 

∑
Fx = −T sin θ = −mac = −m

v2

r
,

∑
Fy = T cos θ −mg = 0.

We find for the tension in the rope, 

T =
mg

cos θ
=

1.6 kg · 9.8m/s2

cos 16◦
= 16.3N.

We find from the horizontal component, 

mac = T sin θ = mg tan θ = 1.6 kg · 9.8 m

s2
· tan 16◦ = 4.5N,

so that the centripetal acceleration is ac = 4.5N/1.6 kg = 2.8m/s2 .

Now the radius of the circular trajectory is r = l sin θ = 0.89m · sin 16◦ = 0.25m. The velocity 
follows, 

v =
√
acr =

√
2.8

m

s2
· 0.25m = 0.84

m

s
.

The period then follows T = 2πr/v = 2π · 0.25m/(0.84m/s) = 1.9 s . 
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6	 Work and Energy
When a person jumps off the ground from standing, she crouches and pushes on the ground with a 
force greater than weight. As a result, the ground exerts a normal force [“ground reaction force”] greater 
than the weight of the person: FN −mg = Fnet > 0  (upwards). The person could remain in this 
(uncomfortable) position forever; a non-zero net force is not sufficient to generate a finite velocity at 
lift-off. She can accomplish this by stretching her legs. If c  is the crouching distance, we say that the net 
force is doing work W = Fnet · c . This work generates the necessary finite velocity at lift-off. 

6.1	 Work-Kinetic Energy

We start from the kinematics equation in one dimension with time eliminated, v2 − v20 = 2a∆x . We 
multiply by the mass of the object and re-arrange, 

m

2
v2 − m

2
v20 = ma ·∆x = F ·∆x. � (33)

We define the kinetic energy 

KE =
m

2
v2. � (34)
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We note that the kinetic energy depends on the magnitude of the velocity, but not the direction of 
motion; the LHS of Eq. (34) is the change in kinetic energy. 

F

θ

s

For the RHS we define the work as, 

W = Fs cos θ. � (35)

We then find the work-kinetic energy theorem: 

W = ∆KE = KE−KE0. � (36)

The units of work [and the kinetic energy] are: [W ] = [KE] = [F ] · [s] = N ·m = J , or Joules.

We consider a few illustrative cases: (1) if a ball is in free fall, the weight mg  is the only force acting on 
the ball. If the ball travels upwards, the work done by the weight is negative, such that the kinetic energy 
decreases, ΔKE < 0, and the ball slows down. Likewise, if the ball falls downwards, the work done by 
the weight is positive and the change in kinetic energy is positive, ΔKE < 0, and the ball speeds up. (2) 
When an object slides across a frictionless horizontal surface [e.g., an ice skater], the forces acting on 
the skater are the weight and the normal force that are both in a vertical direction. Thus, we have for 
the angle θ = 90°, so that cos θ = 0  and the work done by both forces is zero, W = 0. This implies that 
the kinetic energy of the object does not change ΔKE < 0, and the speed of the object remains constant. 

The normal force is always perpendicular to the surface, while displacement is parallel to the surface. 
Thus, the angle θ between the normal force and the displacement is θ = 90°, and the work is equal to 
zero W = 0. The normal force is an example of a contstraint force: work done by constraint forces are 
always zero.
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When a person holds a weight and stretches the arms, the arm muscles i obviously do work [felt by 
fatiguing of the muscles], and yet the mechanical work defined in Eq. (35) is zero. This example shows 
that our intuitive sense of work can sometimes be different from the definition used in physics. The 
cells in the muscles produce tension by continuously stretching and contracting. Thus, microscopic cell 
displacements are parallel to the force (tension), so muscle cells do non-zero work. 

If a racket hits a tennis ball, the ball will accelerate so that it acquires the speed v  starting from rest 
v0 . The force exerted by the racket on the ball is W = mv2/2 , where m  is the mass of the ball. If 
the tennis ball is distorted by a distance s  [much smaller than the radius of the ball], the average force 
is Fave = W/s . We see that the force becomes larger Fave → ∞  as the distortion becomes smaller 
s → 0 . This shows that there is no such thing as a completely rigid object; even a golf or steel ball is 
distorted slightly when hit by another object. 

θ

s

h

Example 1: An object with mass m = 3.2 kg  sits on an incline plane at an angle θ = 23◦ . The object 
slides down the incline with s = 1.9m ,  starting from rest. Find the speed of the ball at the end of the 
ramp.  

Solution: The net force on the object is equal to the component of weight parallel to the incline, 
Fnet = −mg sin θ ; here the negative sign implies that the force is directed downward. We thus get 
for the work: 

W = Fnet · s = mg sin θ · s = mgh,

where we use s sin θ = 1.9m sin 23◦ = 0.74m = h  for the height of the incline. The work-kinetic 
energy theorem follows, 

m

2
v2 = mgh −→ v =

√
2gh =

√
2 · 9.8 m

s2
· 0.74m = 3.8

m

s
.
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This result is remarkable in two ways: (1) The speed is independent of the mass, so that all objects will 
reach the bottom at the end of the ramp. (2) The final speed is independent of the angle θ: it is the 
same for an object sliding along the incline or freely falling object with θ = 90°. While the final speed is 
independent of the angle θ, the time to reach the bottom of the ramp depends on the incline θ. We find 
the time from the kinematics equation for motion with constant acceleration a = g sin θ . 

6.2	 Potential Energy

The result shows that work done by gravitational force [weight] is the same, whether the object slides 
down along the incline or falls down the horizontal and then travels along the horizontal. That is, the 
work is independent of the path: we say the gravitational force is conservative. 

It follows that the work done by a conservative force can be expressed as a difference of a potential 
energy (PE), 

W = − [PEf − PE0] . � (37)

The potential energy is a function of the coordinates. Since h = |∆y| , the gravitational potential energy 
is given by 

PE = mgy. � (38)
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Note that the choice of coordinates y = 0  is arbitrary, so that the value of the potential energy is also 
arbitrary. We insert Eq. (37) into Eq. (36) and find KE−KE0 = −[PE − PE0]  or, 

KE+ PE = KE0 + PE0. � (39)

We define the sum of kinetic and potential energy as the total mechanical energy, and find 

Emech = KE+ PE = const. � (40)

Equation (40) then represents the conservation of (mechanical) energy.

Example 2: A steelball with mass m = 0.44 kg  and  radius r = 1.0 cm  moves along a rollercoaster.  
Seven photogates are placed along the track at different heights hi  from the base of the track; we measure 
the time intervals ∆ti  for the steel ball to pass through each photogate,

Photogate hi [m] ∆ti [s]
1 0.104 0.0420
2 0.084 0.0275
3 0.107 0.0516
4 0.081 0.0281
5 0.093 0.0363
6 0.080 0.0291
7 0.098 0.0426

Calculate the gravitational potential energy, the kinetic energy, and the total mechanical energy.
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Solution: We have the gravitational potential energy PEi = mghi . The (average) speed of the ball is 
vi = 2r/∆ti  as it passes through each photogate. The kinetic energy then follows KEi = mv2i /2 . Note 
that the steel ball moves along the track (translational motion), but also rotates [rotational motion]. As a 
result, the kinetic energy of the ball has a contribution from rotation. In this situation, the contribution 
of rotational kinetic energy can be described by an “effective” mass m∗ , greater than the mass m . If 
the track has a width w = 0.95 cm , we find, 

m −→ m∗ =

[
1 +

2

5

r2

r2 − (w/2)2

]
m = 1.517m.

The (total) kinetic energy is given by KEi = m∗v2i /2 ,

0 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

1 2 3 4 5 6 7 

Photogate KEi [J] PEi [J] Emech,i [J]
1 0.0453 0.0076 0.0529
2 0.0366 0.0178 0.0543
3 0.0466 0.0051 0.0516
4 0.0353 0.0170 0.0523
5 0.0405 0.1002 0.0507
6 0.0348 0.0160 0.0508
7 0.0426 0.0061 0.0487

Discussion: The mechanical energy of the system (slightly) decreases due to friction. 

Example 3: We return to the problem of the vertical loop from Chapter 4, where we found that the 
minimum speed near the top is given by vmin =

√
gR , with R  as the radius of the loop. 

Solution: We assume that the object is released from rest, so that the initial mechanical energy is equal 
to the potential energy. We choose y = 0  at the bottom of the loop. Then 

mgH =
m

2
gR+mg2R =

5

2
mgR −→ H =

5

2
R.

Discussion: The rolling ball has to be released from a greater height than an object sliding down a 
frictionless track.
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6.3	 Non-conservative forces

For an object in the gravitational field of the Earth, the mechanical system is the object and the Earth. 
The force [interaction] is described by a potential energy energy: we say that the system is closed. Not 
all interactions can be described in this manner. Since the (kinetic) friction force is always opposing the 
displacement, the work done kinetic friction force is negative. In particular, the work is non-zero when 
the object returns to its starting position, and we conclude that (kinetic) friction is a non-conservative 
force. Systems for which interactions are described by non-conservative forces are called open systems. 

We notice that the mechanical energy in Example 2 decreases from photogate 1 to 7; this decrease stems 
from the work done by the friction force. We write the work done by the friction force as, 

Wnc = −fks < 0, � (41)

where fk  is the (average) kinetic friction force and s  is the distance along the track. The change in the 
mechanical energy can be written, 

∆Emech = Emech,f −Emech,i = Wnc, � (42)

and always decreases, ∆Emech < 0 . 
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Example 4: An object with mass m = 3.2 kg  sits on an incline plane at an angle θ = 23◦ . The object 
slides down the incline with s = 1.9m ,  starting from the rest and travelling at the speed v = 2.1m/s  
at the end of the ramp. Find the coefficient of kinetic frcition between the object and the ramp  
[cf. Example 1].

Solution: We find the mechanical energy when the object is on the top of the ramp and at the bottom, 

Emech,i = mgh = 3.2 kg · 9.8 m

s2
· 0.74m = 23.2 J,

Emech,f =
m

2
v2f =

3.2 kg

2

(
2.1

m

s

)2

= 7.1 J.

We thus find the work done by the friction force, 

Wnc = 7.1 J− 23.2 J = −16.1 J,

so that for the friction force 

fk = −Wnc

s
= −−16.1 J

1.9m
= 8.5N.

The normal force is given by FN = mg cos θ = 3.2 kg · 9.8m/s2 cos 23◦ = 28.9N . Since  

fk = µkFN , we find the coefficient of kinetic friction, 

µk =
fk
FN

=
8.5N

28.9N
= 0.29.

This is a reasonable value for the coefficient of kinetic friction. 
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7	 Momentum
When a ball bounces off a wall, it is reflected with the same speed but travels in the opposite direction: 
�v → −�v . The kinetic energy is constant, and the net work done on the ball by the wall is zero. Since 
∆�v = �vf − �vi = −2�v = �aave∆t = �F∆t/m , we define the impulse as force× time , 

�J = �F ∆t. � (43)

So the momentum of an object with mass m  as mass × velocity  is 

�p = m�v. � (44)

Newton’s second law, �F = m�a , can then be written, 

�J = ∆�p. � (45)

This relationship is somewhat analogous to the work-kinetic energy theorem. It allows us to describe 
changes in the velocity of an object without knowing details of the forces [the magnitudes and direction 
an dfor how long they last]. For the ball bouncing off the wall, we do not know the magnitude of the 
force exerted by the wall on the ball or the duration of the force; however, the impulse of the force has 
a known value, �J = −2m�v . The unit of momentum and impulse are [J ] = [p] = N · s = kg ·m/s .

m1 m2

v1,i v2,i

v1,f v2,f

F12 F21
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We have two objects [pucks] sliding on (idealized) ice and traveling at velocities �v1,i  and �v2,i , respectively. 
They collide and exert forces �F12  and �F21  on each other. These two forces are an action-reaction  pair so 
that �F12 = −�F21 . After the collision, they travel at velocities  �v1f  and �v2f . Note that there no external 
forces, for example the  gravitational force in the case when the surface is inclined. 

We have for the impulses, 

F12∆t = m∆v1 = m1(v1,f − v1,i),

F21∆t = m∆v2 = m2(v2,f − v2,i).

Newton’s third law states �F12 = −�F21 , or F12 + F21 = 0 , so that the addition of the two equations 
yields (F12 + F21)∆t = m1(v1,f − v1,i) +m2(v2,f − v2,i) = 0  or, 

m1v1,i +m2v2,i = m1v1,f +m2v2,f . � (46)

We define the total momentum of the system [mass m1 and mass m2], 

ptot = m1v1 +m2v2. � (47)
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We thus see that the total momentum is the same before and after the collision. We say that the total 
momentum is conserved. No detailed knowledge of the forces is necessary.

2.7 m/s

Example 1: A person [mass mp = 43 kg] is standing on a skateboard [mass mb = 2 kg] at rest, while 
holding a dumbbell [mass M = 5 kg].  The person throws the dumbbell with a speed of 2.7 m/s to 
the right. 

Solution: System 1 is the person and skateboard m1 = 45 kg and  system 2 is the dumbbell is m2 = 5 kg . 
Initially, both systems are at rest v1,i = v2,i = 0 , so that the total momentum is zero, 

ptot = 0.

There are no external forces, so the total momentum is conserved such that the total momentum remains 
zero after the throw [“collision”]. Since v2.f = 2.7m/s , we find, 

ptot = 0 = 45 kg · v1,f + 5 kg · 2.7 m

s
−→ v1,f = −5 kg · 2.7m/s

45 kg
= −0.3

m

s
.

The person (and skateboard) are moving towards the ‘left.’ The force exerted by the person on the dumbbell 
is directed towards the ‘right,’ and the force exterted by the dumbbell on the person is directed towards 
the ‘left.’ We say that the person (and skateboard) ‘recoil.’

Discussion: The total momentum before and after the collision is zero. While the initial kinetic energy 
is zero KEi = 0 , the final kinetic energy is non-zero, 

KEf =
45 kg

2

(
0.3

m

s

)2

+
5 kg

2

(
2.7

m

s

)2

= 2.0 J + 18.2 J = 20.2 J.

Since W = KEf −KEi = 20.2 J, non-zero work is being done on the entire system [i.e., person and 
skateboard plus dumbbell]. This work is done by the person’s muscles [they are not considered part of the 
mechanical system, and are thus “external”]. The same mechanism applies to the locomotion of squids 
[with the squid replacing the person (and skateboard), and water replacing the dumbbell]. The propulsion 
of rockets and space probes [Juno, Huygens, Voyager, etc.] is based on the conservation of momentum. 
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7.1	 Center of Mass

The conservation of momentum can be expressed in a different way. We write the velocities in terms of 
displacements v = ∆x/∆t = (x− x0)/∆t , so that 

ptot = m1
x1 − x1,0

∆t
+m2

x2 − x2,0

∆t

=
1

∆t
[(m1x1 +m2x2)− (m1x1,0 +m2x2,0)] . � (48)

We define the center of mass [CoM] in one-dimension, 

xCoM =
m1x1 +m2x2

m1 +m2
. � (49)

Note that the CoM is a mathematical construct and is not associated with a particular mass. The (fictional) 
point CoM moves at the velocity 

vCoM =
∆xCoM

∆t
. � (50)

We see that the RHS of Eq. (48) is proportional to vCoM . We find 

ptot = MvCoM, � (51)

where M = m1 +m2  is the total mass of the entire system. It follows, 

Fext =
∆ptot
∆t

. � (52)

Eqs. (49)-(52) are valid for more than two objects with the obvious generalization. Thus, a multiparticle 
system moves under the influence of an external force �Fext , as if the entire mass is concentrated in the 
CoM. 

raft

m1=45.1 kg m2=65.2 kg

m=7.4 kg
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Example 2: Two people with masses m1 = 45.1 kg and m2 = 65.2 kg are standing on the left and right 
side of a 4.2m -long massless raft,  as shown. The person on the left holds a ball with mass mb = 7.4 kg . 
a) Find the center of mass of the system. b) The person with mass m1 throws the ball to the person with 
mass m2. Find the displacement of  the raft after the second person has caught the ball.

Solution: We have for the total mass Mtot = m1 +m2 +mb = 45.1 kg + 65.2 kg + 7.4 kg = 117.7 kg.  
We choose x = 0  at the left side of the boat, 

MtotxCoM = (45.1 kg + 7.4 kg) · 0 + 65.2 kg · 4.2m = 273.8 kg ·m,

so that for the center of mass, 

xCM =
273.8 kg ·m
117.7 kg

= 2.33m.

We use ∆x  for the displacement of the boat. Then 

MtotxCM = m1 ·∆x+ (m2 +mb) · (4.2m+∆x) = Mtot ·∆x+ 304.9 kg ·m.
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We thus have 273.8 kg ·m = 117.7 kg ·∆x+ 304.9 kg ·m , or 

∆x =
273.8 kg ·m− 304.9 kg ·m

117.7 kg
= −0.26m,

or ∆x = −26 cm . That is, the raft is moving towards the left. 

Discussion: The person m1 exerts a force on the ball directed towards the right. The ball exerts a 
reaction force on the person towards the left. Note that the conservation of momentum does not tell us 
the duration of the collision, i.e., the time for the boat to move to its new position. 

7.2	 Collisions

The momentum is conserved, but the mechanical energy is not conserved in the example with a person 
throwing the dumbbell while standing on a skateboard. This type of interaction between objects is called 
inelastic collision. 

Example 3: A bullet [with mass m = 23 g and velocity vb = 304m/s] is fired into a block [with mass 
M = 3.1 kg] that is initially at rest. The bullet embeds itself 6.2 cm  into the block. a) What is the speed 
of the block after the bullet embeds itself? b) What is the average force exerted by the block on the bullet? 

Solution: This is an inelastic collision, so that for the speed V, 

mvb = (M +m)V −→ V =
0.023 kg

3.1 kg + 0.023 kg
· 304 m

s
= 2.24

m

s
.

We use the work-kinetic energy theorem for the bullet, 

W = ∆KE =
0.023 kg

2

[(
2.24

m

s

)2

−
(
304

m

s

)2
]
= −1063 J.

Since the force acts over the distance s = 0.062m , we get 

W = −faves −→ fave =
1063 J

6.2× 10−2m
= 1.7× 104N.

When both momentum and mechanical energy are conserved, the collision is said to be completely 
elastic, 

m1v1i +m2v2i = m1v1f +m2v2f , � (53)

m1

2
v21i +

m2

2
v22i =

m1

2
v21f +

m2

2
v22f . � (54)

We thus have two equations for two unknowns v1f  and v2f , assuming that the masses of the two 
colliding objects are known, (v1i, v2i) −→ (v1f , v2f ).
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Example 4: We measure the collision of two gliders on a (frictionless) air track, when one of the gliders 
is initially at rest:

Case m1[kg] m2 [kg] v1i [m/s] v2i [m/s] v1f [m/s] v2f [m/s]

1 0.45 0.46 0.64 0 0 0.59
2 0.45 0.65 0.63 0 -0.14 0.47
3 0.65 0.45 1.01 0 0.14 1.16

a) Calculate the total momentum and total energy before and after the collision. Are the conservation 
laws obeyed? b) Is Newton’s third law obeyed during the collision? c) Describe the collision for an 
observer at the center-of-mass [i.e., a moving reference frame rather than a fixed laboratory system].

Solution: We find

Case Pi,tot [kg ·ms] Pf,tot [kg ·ms] Ei,tot [J] Ef,tot [J]

1 0.27 0.27 0.09 0.08
2 0.28 0.24 0.09 0.08
3 0.65 0.61 0.33 0.31

We observe that �Pi = �Pf  and Ei,tot = Ef,tot ; momentum and energy are conserved. Since �F∆t = ∆p ,  
we calculate the change of the momentum or impulse for each mass, ∆p = pf − pi = m(vf − vi).  
We get 

Case ∆ p1 [kg · m/s] ∆ p2 [kg ·m/s]
1 -0.29 +0.27
2 -0.35 +0.31
3 - 0.57 +0.52

We conclude that ∆p1 = −∆p2 , which is in agreement with Newton’s third law.

The CoM velocity follows from the total momentum vCoM = P/M , where M = m1 +m2  is the total 
mass. The relative velocity and relative momentum are defined, 

v̄i = vi − vCoM, p̄i = miv̄i.

We get 

Case p̄1,i [kg ·m/s] p̄1,f [kg ·m/s] p̄2,i [kg ·m/s] p̄2,f [kg ·m/s]
1 +0.15 -0.13 -0.15 +0.13
2 +0.17 -0.16 -0.17 +0.16
3 +0.27 -0.27 -0.27 + 0.27
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We observe that the relative momenta are exchanged during the collision, 

p̄1,f = p̄2,i p̄2,f = p̄1,i.

The collision can be described in terms of center of mass and relative momentum. For v2,i = 0  we have 

vCoM =
m1

m1 +m2

v1,i. � (55)

We then find, 

p̄1i = −p̄2i =
m1m2

m1 +m2

v1,i. � (56)

We find the final velocities v1f = vCoM − p̄1i/m1  and v2,f = vCoM − p̄2i/m2 , or 

v1,f =
m1

m1 +m2

v1i −
m2

m1 +m2

v1i =
m1 −m2

m1 +m2

v1,i, � (57)

v2,f =
m1

m1 +m2

v1i −
(
− m1

m1 +m2

v1i

)
=

2m1

m1 +m2

v1,i. � (58)

It is worthwhile to consider special cases: (1) m1 = m2  so that v1,f = 0  and v2,f = v1,f ; the moving 
object comes to a full stop, and the object initially at rest begins to move. This can be observed when a 
penny is “flicked” and slides towards a penny at rest. (2) m1 << m2  so that v1,f = −v1,i  and v2,f � 0;  
this describes the situation in which a ball hits a wall [anchored to the Earth], with the ball bouncing 
off with the same speed but in the opposite direction, such that the wall [Earth] does not move.  
(3) m1 >> m2  so that v1,f � v1,i  and v2,f � 2v1,i ; the heavier object is barely affected by the collision, 
while the lighter object moves with twice the speed. 
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8	� Rotational Kinematics and 
Dynamics

Rotational kinematics and dynamics can be described similarly to linear kinematics and dynamics, 
provided that appropriate quantities are used. 

8.1	 Rotational Kinematics

Angular displacement is defined, 

∆θ =
arc length

radius
=

s

r
. � (59)

For a full circle θ = 2π rad. Note that rad is not a unit, but rather a placeholder. Thus, “rad” may appear 
and disappear from equations. The angular velocity is defined 

ω =
∆ θ
∆ t

[ω] =
rad
s
,� (60)
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and angular acceleration, 

α =
∆ ω
∆ t

, [α] =
rad
s2

.� (61)

If T is the period, i.e., the time for one revolution is the average speed and is given by, 

ωave =
2π rad

T
. � (62)

Example 1: Find the angular speed of the minute and second hand. 

Solution: We have the period for the second hand Tsecond = 60 s , so that 

ωsecond =
2π rad

60 s
= 0.105

rad

s
.

The period for the minute hand is T = 3600 s, so that 

ωminute =
2π rad

3600 s
= 1.75× 10−3 rad

s
.

Discussion: Another unit for angular speed in common use is revolutions per minute (rpm). Then 
ωsecond = 1 rpm  and ωminute = 60−1 rpm = 0.0167 rpm . 

The kinematics equations are derived the same way as in the case of linear equations. For α = const , 
we find the average velocity ωave = (ω0 + ω)/2 = (ω0 + αt/2) , so that for the angular displacement 
we have ∆θ = ωavet = ω0t+ αt2/2 . We eliminate the time from the equation for the angular velocity 
t = (ω − ω0)/α , so that ∆θ = ωavet = (ω0 + ω)/2 · (ω − ω0)/α = (ω2 − ω2

0)/2α . We thus 
arrive at the kinematics equation for rotation, 

ω(t) = ω0 + αt, � (63)

θ(t) = θ0 + ωavet, with ωave = [ω + ω0]/2, � (64)

θ(t) = θ0 + ω0t +
1

2
αt2, � (65)

ω2 = ω2
0 + 2aα∆θ.2αΔθ.� (66)

We note that these equations are identical to Eqs. (11)-(15), when quantities for linear motion (x, v, a) 
are replaced by the respective quantities for rotational motion (θ, ω, α) . 
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s
θ

d

 

Rolling Motion: We consider a wheel with radius r  that  rolls without slipping. This means that the 
distance d is equal to arc-length s = rθ , 

d = rθ. � (67)

If the center of the wheel travels the distance d in the time t, we have for the linear speed v = d/t , and 
for the angular speed ω = θ/t . We find v = (rθ)/t = r(θ/t)  or 

vt = rω. � (68)

Similarly, if the center of the wheel accelerates from v0 = 0  to the velocity v  in time t, the angular 
velocity increases from ω0 to ω . Since v = rω , we find 

at = rα. � (69)

Here, v  and a  are the velocity and acceleration of a point on the perimeter relative to the the center: 
i.e., they are the tangential velocity and acceleration, vT = ωr  and aT = αr . 

Example 2: a) A car travels at the speed v = 25m/s . Find the angular speed of the wheels when the 
radius of the wheel is r = 0.31m  (1 foot). b) If the car accelerates from rest to v = 25m/s  in the 
time t = 17s, find the angular acceleration of the wheel, and the number of turns of the wheel.

Solution: We find for the angular speed, 

ω =
v

r
=

25m

s
= 80.6

rad

s
.

We find for the angular acceleration, 

α =
ω − ω0

t
=

80.6 rad/s− 0

17 s
= 4.74

rad

s2
.
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We have ω2 = 2α∆θ , so that 

∆θ =
ω2

2α
=

(80.6 rad/s)2

2 · 4.74 rad/s2
= 685.3 rad.

Since 1 rev = 2π rad, the number of turns follows N = ∆θ/(2π rad) = 109.1 . 

The speed is constant for uniform circular motion speed. Since the angular acceleration is zero α = 0 , and 
the tangential acceleration is zero as well. Since v = ωr , we find for the centriptal acceleration towards 
the center, ac = v2t /r = (rω)2/r , or 

ac = rω2. � (70)

For rolling motion of a wheel without slipping, the linear speed of the center must be the same as 
tangential speed: vCM = rω .

8.2	 Mechanical Equilibrium

axis

F

θ

line of action

l

L

 

We consider a meter stick that is free to rotate about a fixed axis (at the end). Intuition tells us that the 
applied force �F  is more “effective”  the greater the distance L from the axis, and the greater the angle 
θ < 90°. For a quantitative definition, we draw a straight line through the force called  the line of action. 
We then draw a line perpendicular to the line of action through the axis: the distance between the axis and 
the line of action is the lever arm, 

l = L sin θ. � (71)

The magnitude of the torque is then 

|τ | = F l = FL sin θ. � (72)
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The torque is a vector quantity. For rotation about a fixed axis, the torque is either positive or negative 
for counter-clockwise- and clockwise rotation, respectively, 

τ

{
> 0 counterclockwise,
< 0 clockwise.

. � (73)

The unit of torque is force times distance, [τ ] = [F ] · [l] = N ·m . Note that N ·m = J , but this is 
not used since torque and work are different physical quantities. 

For a point mass, the condition 
∑

�F = 0 is sufficient to guarantee that an object initially at rest, 
stays in rest. For an extended object, the condition 

∑
�F = 0 only guarantees that there there is no 

translational motion, i.e., motion to the left and right, up and down, and into- and out-of the page. 
However, the object could still rotate. In general, the torque depends of the axis of rotation. In the case 
when the net force is zero, 

∑
�F = 0, the torque is independent of the choice of the axis. It follows that 

the condition 
∑

τ = 0  is independent of the choice of the axis of rotation. We thus have the condition 
for mechanical equilibrium, 

∑
�F = 0 and

∑
τ = 0 (mechanical equilibrium). � (74)
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At the introductory physics level, we solve restricted problems where the axis of rotation is out-of or 
into- the page, and all forces are in the page’s plane. In this case, the condition for mechanical equilibrium 
consists of three equations so that we have at most three unknown quantities. Typical cases are: (1) three 
unknown forces in known directions [e.g., along a cable], and (2) one unknown force in a known direction 
and one unknown force in an unknown direction. Many practical problems are thus outside the scope 
of introductory physics; we cannot find the forces in each of the four legs of a table when an object sits 
on it in an arbitrary location. 

In many cases, the equation for the net torque 
∑

τ = 0  can be simplified by making a “smart” choice 
of the axis. For example, the lever arm for one or two forces is zero and the corresponding forces do 
not contribute to the net torque. 

M=5.1kg

1.9 m

2.3 m

 

Example 3: A block with mass M = 5.1 kg sits on a massless plank of length L = 2.3 m. The plank is 
supported on its left and right ends by cones. The block sits 1.9-m away from the left cone.

a) Draw the appropriate free-body diagram for the problem. b) (i) Write down Newton’s second law 
for the plank; and (ii) choose an axis of rotation and write down the torque about that axis. c) Find the 
forces that the cones exert on the plank. d) If the support forces by the left and right cones are in a ratio 
of two-to-one, i.e., FL/FR = 2 , where is the block placed? 

Solution: Note W = Mg = 5.1 kg · 9.8m/s2 = 50.0N, we have

(i) We have Newton’s second law, 

50.0 N

 FL  FR

∑
F = FL + FR − 50.0N = 0;
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(ii) we choose the left end of the plank as the axis of rotation, so that 

∑
τ = −50.0N · 1.9m + FR · 2.3m = 0.

We have 

FR =
50.0N · 1.9m

2.3m
= 41.3N,

so that 

FL = 50.0N− 41.3N = 8.7N.

In the case FL = 2FR  so that 

FL + FR = 3FR = 50.0N −→ FR =
50.0N

3
= 16.7N.

We use x  for the distance of the block from the left side of the plank. Then, 

τ = −50.0N · x+ 16.7N · 2.3N = 0 −→ x =
16.7N · 2.3m

50.0N
= 0.77m.

1.90 m

0.85 m

1.20 m

1.40 m

Example 4: A wooden board with length L = 1.20m and mass M = 3.4 kg is supported by one leg 
at the distance d = 0.85m from the left end of the board, and a cable anchored to the floor at 1.9 m 
from the left end of the board. The length of the leg is 1.4 m. a) Draw the free-body diagram  for the 
problem. b) Write down Newton’s second law for the board. c) Choose an axis of rotation and write 
down the torque about that axis. d) Find the tension in the cable. e) What is the magnitude of the force  
exerted by the leg on the board? 
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Θ

W=33.3 N

Fh

Fv

T

Solution: The angle of the cable with respect to the horizontal  is tan θ = (1.4m)/(0.7m) = 2, so 
that θ = 63.4◦ . We have the the weight of the table W = Mg = 33.3N; the forces from the leg Fh  
and Fv  and the tension on the cable T are determined by 

∑
Fx = Fh − T cos 63.4◦ = 0,

∑
Fy = −T sin 63.4◦ + Fv − 33.3N = 0.
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We choose the point of contact of the leg with the board as the axis of rotation. Then, 

∑
τ = 33.3N · 0.25m− T · 0.35m sin 63.4◦ = 0.

Since 0.35m · sin 63.4◦ = 0.31m, we have the equation for the torque, 

T =
8.3N ·m
0.31m

= 26.8N.

We see 

Fv = 33.3N + 26.8N · sin 63.4◦ = 57.3N, Fh = 26.8N · cos 63.4◦ = 12.0N.

We thus get for the magnitude of the force exerted by the leg, 

Fleg =
√

F 2
h + F 2

v =
√

(12.0N)2 + (57.3N)2 = 58.5N.

8.3	 Rotational Dynamics

We consider the simple case when an object with mass m  sits on the perimeter of a massless disk with 
radius r. The general case for an extended object can be obtained by adding point masses [superposition 
principle]. 

 

r

m

F

 

The disk can rotate freely about the center. A force F  acts on the mass m  in a tangential direction. The 
torque extered by the force about the axis, τ = Fr = (ma)r , where we used F = ma . Since a  is the 
tangential acceleration, we have a = αr , so that  τ = m(αr)r = (mr2)α . We define the motion of 
inertia 

I =
∑

i

mir
2
i . � (75)

The moment of inertia of an extended object about a fixed axis is usually given. The equation of motion 
is then 

τ = Iα. � (76)
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This is Newton’s second law for rotation: the force corresponds to the torque (F ↔ τ) , the mass 
corresponds to the moment of inertia (m ↔ I) , and the linear acceleration corresponds to the angular 
acceleration (a ↔ α). 

When the disk rotates through the angle θ, the arc length is s = rθ , so that the force is doing work on 
the mass W = Fs = Frθ . Since τ = Fr  is the torque, we have for the work, 

W = τθ. � (77)

If the object starts from rest, v0 = 0 , the speed of the object follows from the work-kinetic 
energy theorem, W = KE = mv2/2 . The tangential speed is given by v = ωr , and we get 
W = m(ωr)2/2 = (mr2)ω2/2 . We define the rotational kinetic energy, 

KErot =
1

2
Iω2. � (78)

This yields the work-kinetic energy theorem for rotation, 

W = ∆KErot. � (79)

When there is no net torque W = 0 , the rotational kinetic energy is constant. 

If the force acts during the time interval ∆t , the impulse J = F∆t  changes the momentum of the object 
J = F∆t = mv  for v0 = 0  at time t = 0 . We write (Ft) · r = (Fr) · t = (mv) · r = (mr2)ωt , and 
define the angular momentum, 

L =
∑

i

piri = Iω. � (80)

Thus, Netwon’s second law for rotation relates to the change in the angular momentum to the rotational 
impulse, 

Jrot = τ ·∆t = ∆L. � (81)
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We compare translational and rotational dynamics in this table:

Translation Rotation

Mass m Moment of inertia I =
∑

mir
2
i

Force F Torque τ =
∑

Firi
Acceleration a Angular acceleration α
Newton’s 2nd law F = ma “Newton’s 2nd law” τ = Iα
Momentum p = mv Angular momentum L = pr = mvr∑

F = 0: ptotal = const
∑

τ = 0: Lrot = const
Kinetic energy KE = mv2/2 Rotational kinetic energy KErot = Iω2/2
Work W = Fs Work W = τ∆θ
Work-KE W = ∆KE Work-KE W = ∆KErot
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R

r

 

Example 5: A Yo-Yo is a uniform disk with mass m = 0.24 kg , outer radius  R = 0.12m, and inner 
radius r = 0.08m . A string is wrapped around the inner  ring. The string hangs from the ceiling and 
the Yo-Yo falls under the influence  of it own weight. a) The Yo-Yo starts to fall from rest. After the Yo-Yo  
falls from the height h = 0.20m , it travels with the speed v = 0.6m/s . Find the  angular velocity and 
acceleration at that instant. b) Find the moment of inertia  of the Yo-Yo. c) Find the tension in the string. 

Solution: We have for the angular speed, 

ω =
v

r
=

0.6m/s

0.08m
= 7.5

rad

s
.

We have the angular displacement ∆θ = h/r = 0.20m/0.08m = 2.5 rad . Since ω0 = 0 , the angular 
acceleration is 

ω2 = 2α∆θ −→ α =
ω2

2∆θ
=

(7.5 rad/s)2

2 · 2.5 rad = 11.25
rad

s2
.

At the start, the Yo-Yo has gravitational potential energy, 

PE = mgh = 0.24 kg · 9.8 m

s2
· 0.20m = 0.47 J.

The gravitational energy is transformed into kinetic energy for translation and rotation. The translational 
kinetic energy is 

KEtrans =
1

2
0.24 kg ·

(
0.6

m

s

)2

= 0.04 J.

Thus, the rotational kinetic energy is 

KErot = PE−KEtrans = 0.47 J− 0.04 J = 0.43 J =
1

2
I · ω2,
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and 

I =
2 ·KErot

ω2
=

2 · 0.43 J
(7.5 rad/s)2

= 1.53× 10−2 kg ·m2.

We have the torque exerted on the Yo-Yo, 

τ = Iα = 1.53× 10−2 kgm2 · 11.25 rad
s2

= 0.17Nm.

For the tension T , 

τ = Tr −→ T =
τ

r
=

0.17Nm

0.08m
= 2.2N.

Example 6: The moment of inertia of the carousel with radius R = 4.5m is Icarousel = 1874 kg m2.  
Emmy has mass m = 56 kg , and stands on the carousel at the radius r0 = 4.0m. a) The carousel 
completes a full revolution every 25 seconds. Find the total angular momentum and the total rotational 
kinetic energy of the entire system [carousel plus Emmy]. b) She now walks towards the center and stops 
at the radius r = 3.2m . How long does it take to complete a full revolution when she is at r = 3.2m? 
c) The carousel completes one quarter of a revolution, while she walks from r0 = 4.0m to r = 3.2m . 
Find the (average) torque exerted on the carousel by Emmy.

Solution: We have to add Emmy’s moment of inertia to the carousel’s moment of inertia. The total 
moment of inertia is thus 

Itotal = Icarousel +mr20 = 1874 kgm2 + 56 kg · (4.0m)2 = 2770 kgm2.

We have ω = (2π rad)/25 s = 0.25 rad/s, and for the angular momentum, 

Ltotal = Itotal ω = 2770 kgm2 · 0.25 rad

s
= 692.5

kgm2

s
;

for the rotational kinetic energy, 

KErot =
1

2
Itotal ω

2 =
1

2
2770 kgm2 ·

(
0.25

rad

s

)2

= 86.6 J.

Emmy’s moment of inertia is changing as she walks towards the center. We now have 

I ′total = Icarousel +mr2 = 1874 kgm2 + 56 kg · (3.2m)2 = 2447 kgm2.

The total angular moment is conserved while she walks. We get the new angular velocity ω′ , 

Ltotal = Itotal ω = I ′total ω
′ −→ ω′ =

Itotal
I ′total

ω =
2770 kgm2

2448 kgm2
· 0.25 rad

s
= 0.28

rad

s
.
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We also get for the period, T ′ = 2π/ω′ = 2π/(0.28 rad/s) = 22.4 s. We use the work-kinetic energy 
theorem W = ∆KErot  to calculate the work done by Emmy on the carousel. Since KErot =

1
2
Icarouselω

2 ,  
we have 

W =
1

2
Icarousel

[
(ω′)

2 − ω2
]
=

1

2
1874 kgm2 ·

[(
0.28

rad

s

)2

−
(
0.25

rad

s

)2
]
= 14.9 J.

For the angular displacement we have ∆θ = 2π rad/4 = 1.57 rad. Since W = τave∆θ , 

τave =
W

∆θ
=

14.9 J

1.57 rad
= 9.5 N ·m,

or about 7 lb · ft [“foot pound”]. 

Example 7: A solid cylinder with mass m = 3.2 kg  and radius r = 3.6 cm  rolls down an incline at 
an angle θ = 23◦  with length s = 1.9m . Assume that the cylinder rolls without slipping. a) Find the 
speed of the cylinder at the bottom of the ramp. b) Find the torque acting on the cylinder.

Solution: Because there is only static and no kinetic friction, mechanical energy is conserved: gravitational 
potential energy is converted into translational and rotational kinetic energy, 

mgh =
m

2
v2 +

I

2
ω2,
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with h = 1.9m sin 23◦ = 0.74m. Because the cylinder rolls without slipping, ω = v/r , so that 

mgh =
1

2

[
m+

I

r2

]
v2.

We find for the speed, 

v =

√
2mgh

m+ I/r2
=

√
2gh

1 + I/mr2
.

Since v =
√
2gh , the speed of the cylinder at the end of the ramp is slower than the speed of the mass 

after sliding down the incline. For a cylinder I = mr2/2  so that I/mr2 = 1/2 . We then have 

v =

√
2gh

1 + 1/2
=

√
4

3
· 9.8m/s · 0.74m = 3.1

m

s
.

We note that the speed only depends on the radius of the cylinder, not its mass. For the acceration of 
the cylinder along the incline, we get a = v2/2s = (3.1m/s)2/(2 · 1.9m) = 2.5m/s2 . The angular 
acceleration follows 

α =
a

r
=

2.5m/s2

0.036m
= 69.4

rad

s2
.

The moment of inertia is I = 3.2 kg · (0.036m)2/2 = 2.1× 10−3 kgm2 , so the torque is, 

τ = Iα = 2.1× 10−3 kgm2 · 70.2 rad

s
= 0.146Nm.

The torque is produced by the static friction force τ = fsr , such that the friction force follows, 

fs =
τ

r
=

0.145Nm

0.036m
= 4.0N.

The maximum static friction force is given by fs,max = µsFN , where 
FN = 3.2 kg · 9.8m/s2 · cos 23◦ = 28.9N . We find the coefficient of static friction µs = fs/FN = 0.14. 
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9	 Oscillations

R

y

x

h
θ

 

Oscillations describe motions that recur after a fixed time, or a period T so that for any integer n , 

x(t + T ) = x(t), v(t+ T ) = v(t), a(t+ T ) = a(t).
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That is, the object returns to its starting point after a period. A pearl moving in a bowl is a simple example 
of harmonic motion. The pearl is initially at rest and is placed at the height h, so that it is displaced at 
the angle cos θ0 = (1− h/R)  with an initial speed ω0 = 0 . For t > 0 , the angle decreases, so that 
the angular velocity is negative ω = ∆θ/∆t < 0. When the pearl is at the bottom of the bowl θ = 0, the 
speed of the pearl is a maximum] ω = −|ω|max . The pearl then continues to move and rolls upwards 
on the other side of the bowl θ < 0, until it reaches a minimum θmin = −θ0 . At the turning point, the 
velocity is zero w = 0. The pearl then travels back towards the bottom of the bowl, so that w > 0. The 
pearl rolls upwards towards the initial angle φ0 , and the motion repeats itself. 

9.1	 Energy Consideration

From the description of the pearl, we have have for the energy

Time KE PE
0 mgh 0

T/4 0 mv20/2
T/2 mgh 0
3T/4 0 mv20/2
T mgh 0

That is, potential energy is transformed into kinetic energy, which is then transformed back into potential 
energy, PE −→ KE −→ PE −→ ... . The period of energy transformation is twice that of the coordinate 
TE = 2T . The transformation of two forms of energy into each other is common for all harmonic 
motion. The maximum angle φ0  is the amplitude of harmonic motion. Since v0 =

√
2g(1− cos θ0), 

the amplitude also determines the maximum speed of the oscillator [e.g., the pearl]. 
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9.2	 Motion on the Reference Circle: Simple Harmonic Motion

screen

v

a
ωt

light

shadow

 

We consider the uniform motion of a point along a circle of radius A.  Light produces a shadow on a 
screen. The motion of the shadow  mimics harmonic motion, and angular velocity is related to the period, 
ω = 2π/T , cf. Eq. (62). The coordinate of the shadow is x = A cos(ωt) . The magnitude of the object’s 
velocity on the reference circle is constant  v = Aω . The component of the velocity vector along the screen 
is −Aω sin(ωt) . The magnitude of the (centriptal) acceleration of the object  is ac = (Aω)2/A = Aω2  
so that the acceleration of the shadow  is a = −Aω2 cos(ωt) . Since a = −ω2 · A cos(ωt), we find, 

a = −ω2x. � (82)

Since F = ma , the force follows, 

F = −mω2 x. � (83)

That is, the force is linear in the coordinate x. The force is negative, F < 0 [F < 0] when x > 0  [x < 0]; 
that is, the force drives the shadow back to the origin x = 0 . We say that F is a linear restoring force. 
The period of oscillatory motion is independent of the amplitude of the motion. 

Example 1: A pearl is moving in a bowl. a) Show that the force on the pearl is a linear for small angular 
displacements. b) Determine the period of harmonic motion of the pearl.

Solution: The weight of the pearl in tangential direction is given by Ftangential = −mg sinφ . For small 
angles [in radians], sinφ � φ , so that the force is given by 

Ftangential � −mgφ.
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That is, the force is proportional to the angular displacement. We write the tangential acceleration in 
terms of angular acceleration, a = Rα, where R is the radius of the bowl. Newton’s second law yields 
mRα = −mgφ, or 

α = − g

R
φ.

Comparison with Eq. (83) then yields ω =
√

g/R , or for the period 

T = 2π

√
R

g
.

Discussion: The condition of small angular displacement is not as limited as it may appear. For φ = π/6 
[or φ = 30◦ ], we have sinφ = 0.5  or sinφ � φ  within 5%. For a bowl of radius R = 20 cm, the period 
follows T = 2π

√
(0.2m)/(9.8m/s2) = 0.9 s , which is easily verified at home. 

We assume above that x = A  at time t = 0 . This is not the case in general, and instead we have for 
the ‘phase angle’ φ = ωt −→ φ0 + ωt . We then have for the coordinate, velocity, and acceleration: 

x(t) = A cos(ωt+ φ0), � (84)

v(t) = −Aω sin(ωt+ φ0), � (85)

a(t) = −Aω2 cos(ωt+ φ0). � (86)
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These equations can also be derived with methods from calculus [i.e., taking the derivates with respect 
to time t ]. The oscillatory motion is specified by the amplitude A and the initial phase φ0 . 

Example 2: At time t = 0 , the displacement is x = 2.72m , the velocity is v = −2.54m/s , and the 
acceleration is a = −10.87m/s2. a) Find the amplitude, phase, and angular frequency for the harmonic 
motion. b) Find expressions for x(t) , v(t), and a(t).

Solution: We find for the ratio of the acceleration and coordinate, 

a

x
=

−10.87m/s2

2.72m
= −4.0 s−2 = −ω2 −→ ω = 2.0 s−1,

and the period is T = 2π/ω = 2π/(2.0 s−1) = 3.1 s. 

Since v2 = (Aω)2 sin2(ωt+ φ0) = (Aω)2[1− cos2(ωt+ φ0)] , we get v2 + (ωx)2 = (Aω)2 . We have 

v2 + (ωx)2 =
(
−2.54

m

s

)2

+

(
2.0

1

s
· 2.72m

)2

= 36
(m
s

)2

,

so that for the amplitude A = (6.0m/s)/(2.0 s−1) = 3.0m . Since x = A cosφ0  at time t = 0 , 

cos φ0 =
x

A
=

2.72m

3.0m
= 0.9 −→ φ0 = 0.43 rad,

or φ0 = 25◦ . 

 

L
φ

m

 

Example 3: Find the period of a mathematical pendulum that is an object with mass m  attached to a 
string of length L. 
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Solution: The force on the object is the weight F = mg  (directed downward). For the torque about 
the  fix point on the ‘ceiling,’ we get 

τ = −mg · L sinφ.

Note that the torque is negative (clockwise) [positive (counter-clockwise)]  when the angular displacement 
is positive, φ > 0 [negative φ < 0].  Since the moment of inertia is I = mL2, we have τ = Iα  so 
that −mgL sinα = mL2 sinφ , or  α = − g

L
φ.

Comparison with Eq. (82) yields 

T = 2π

√
L

g
.

Discussion: We find the length of a mathematical pendulum with period T = 2.0 s . We get 
L = (9.8m/s2)/(π s)2 = 1.0m.

9.3	 Elastic Forces: Spring

m

m

m

0

l

2l

x

 

An elastic spring is attached to the ceiling. A block with mass m  is attched to the spring, and the spring 
is stretched by the distance l .  If two blocks with total mass 2m  are attached, the spring is displaced  by 
the distance 2l . The forces on the block are the weight mg  [downward] and the elastic force [upwards]. 
Because the block is in mechanical equilibrium, the net force on the block is zero. We conclude that the 
elastic force is a linear restoring force, 

Felast = −kx, � (87)

where k  is the spring constant with unit [k] = [F ]/[x] = N/m . We thus have F > 0  for x < 0  and 

F < 0  for x > 0 . 
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k
m

 

We consider a block with mass m  sliding on a frictionless horizontal surface.  The force along the 
horizontal direction is given by F = Felast = −kx  so that the equation of motion of the block follows 
F = ma = −kx , or 

a = − k

m
x. � (88)

Comparison with Eq. (82) yields ω2 = k/m  so that 

T = 2π

√
m

k
. � (89)

Springs are stiffer for greater values of the spring constant. Eq. (89) then shows that stiffer springs 
oscillate with shorter periods. 
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Example 4: A block with mass m = 0.76 kg  is attached to a spring hanging from the ceiling so that 
the spring stretched by 12 cm. Find the period of oscillations when the block is streteched 3 cm more.

Solution: We find the spring constant from F = mg  and x0 = 0.12m : 

k =
mg

x0
=

0.76 kg · 9.8m/s2

0.12m
= 62.1

N

m
.

For x = 0.15 cm = x0 +∆x  with ∆x = 0.03m , we have from Newton’s second law: 

ma = −kx+mg = −k∆x− kx0 +mg = −k∆x.

We thus find the period: 

T = 2π

√
0.76 kg

62.1N/m
= 0.7 s.

Elastic Potential Energy: In Eq. (37), we defined change in potential energy as the negative of the work done 
on a system. We stretch a spring from x  to x+∆x  by applying the external force Fext = −Felastic = kx .  
Thus the work done by the elastic work is Welastic = Felastic ·∆x = −kx∆x . If we stretch the spring 
from x = 0  to a finite value x, the average elastic force is Felastic,ave = (0− kx)/2 = −kx/2  so that 
the work done by the elastic force is Welastic = Felastic,ave · x = (−kx/2) · x = −kx2/2 . We thus find 
the elastic potnetial energy: 

EPE =
kx2

2
. � (90)

Example 5: A 2.5 kg-block is resting on a flat horizontal table. A horizontal spring with spring constant 
k = 62N/m is attached to the block, as shown above. The block is displaced by 8.5 cm to the right and 
then released from rest. The block then begins to move to the left. a) Find the time that elapses until 
the block begins to move to the right. b) What is the it average speed of the block from the moment it 
is released until it begins to move to the right? c) What is the total energy of the system [i.e., the spring 
plus the mass]? d) Assume that the block is released from rest at time t = 0 . Find the time when the 
elastic energy of the spring is three times the kinetic energy of the block .

Solution: The period of the oscillation is 

T = 2π

√
m

k
= 2π

√
2.5 kg

62N/m
= 1.26 s.
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The time when the block is moving to the left is half the period: t∗ = T/2 = 0.63 s . The total displacement 
is ∆x = 2A = 2 · 0.085m = 0.17m . Then 

vave =
∆x

t∗
=

0.17m

0.63 s
= 0.27

m

s
.

The kinetic energy is zero when the block is released. The total mechanical energy follows 

Etot = EPE =
1

2
kA2 =

1

2
62

N

m
· (0.085m)2 = 0.22 J.

When EPE = 3KE, the total mechanical energy follows Emech = KE+ EPE = 4KE , so that 

KE =
1

2
mv2 =

Etot

4
=

1

8
kA2 =

1

8
mω2A2,

where we inserted k = mω2. We find 

v = ±1

2
ωA.

Since v(t) = −Aω sin(ωt), we get −Aω sin(ωt) = −Aω/2 so that sin(ωt) = 1/2 . We find 

ωt = 0.52 rad, −→ t =
0.52 rad

2π rad/(1.26 s)
= 0.104 s.

9.4	 Resonance

When the block [mass m ] sitting on the frictionless and attached to a spring [constant k ] is released 
from x0 = A  it undergoes oscillatory motion with angular frequency ω0 =

√
k/m ; we refer to it as 

the “natural frequency.” The system is driven when the block is moved by an external motor with angular 
frequency ω  and amplitude a . If the motor is turned on at time t = 0 , the block undergoes irregular 
motion for a certain time interval [“transient” interval] and then settles for a steady motion with angular 
frequency ω . The amplitude of the motion strongly depends on the frequency, A = A(ω) : the largest 
amplitude occurs when the driving frequency coincides with the natural frequency Amax = A(ω0) . This 
phenomenon universal for all oscillatory systems and is called resonance. 
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10	 Fluids
At a microscopic level, many-body systems consists of atoms and molecules. The same microscopic 
system may have different macroscopic properties, depending on the phase of the system; most systems 
have three phases: solid, liquid, and gas. Gases and liquids are combined and referred to as ‘fluid.’ For 
H2O , they are called ice, water, and vapor. In solids and liquids, the distance between neighboring 
atoms (molecules) is roughly equal to their ‘size,’ about 0.2 nm = 2× 10−10m; in gases, the typical 
distance is about 10 times greater, or 2 nm = 2× 10−9m . In solids, the atoms (molecules) are in fixed 
positions, while they move freely in liquids and gases. This explains why solids are stiff and fluids can 
easily be deformed. 

10.1	 Fluids at Rest

The density of an object is defined as the ratio of mass m  divided by its volume, 

ρ =
m

V
. � (1)
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T﻿he unit of density is [ρ] = [m]/[V ] = kg/m3. The density of liquids and solids are of the order of 
thousands of kilograms per cubic meter [ ρ ∼ 103 kg/m3] and is about a thousand times smaller 
[ ρ ∼ 1 kg/m3 ] for gases, which is consistent with the times greater distance between atoms (molecules). 
For H2O , the respective densities are:

Phase Density ρ [kg/m3]
Ice 917

Water (4◦C) 1000
Vapor (100◦C) 0.6

H2O  is has many unusual properties: among them is the greater density in the liquid phase compared to 
the solid phase. Note that the density of vapor strongly depends on temperature and pressure [see below]. 

Example 1: The approximate density of the human body is close to that of (liquid) water ρ � 1000 kg/m3 .  
Find the volume of a person.

Solution: For m = 70 kg  [or 155 lbs], so for the volume, 

V =
m

ρ
=

70 kg

1000 kg/m3 = 7.0× 10−2m3 = 7.0× 104 cm3.

This is equivalent to the volume of a cube with length a � 41 cm .

The response [e.g., the deformation] of a system to an external force F  also depends on the size of the 
system. Pressure is defined as the ratio of force divided by the area, 

P =
F

A
. � (2)

The SI unit of pressure is [P ] = [F ]/[A] = N/m2 = Pa  [“Pascal”]. Normal atmospheric pressure is 
Patm = 1.015× 105 Pa . Pressure explains why we sleep in beds rather than on the floor: the forces 
exerted by the mattress and the floor on the person are equal [and equal to the weight of the person].  
A mattress adjusts its shape to the person’s body, thereby increasing the area and decreasing the pressure. 

 

P0P

A
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The pressure inside and outside a piston is P  and P0 < P , respectively. If the cross-sectional area of 
the piston is A, a force F = (P − P0) · A  must be applied to move the piston to the left. 

P0P

A

Δs

If the piston is displaced by ∆s , work is done on the gas: W = F ·∆s . We find 
W = (PA) ·∆s = P (A ·∆s) = −P∆V , where we used A∆s = −∆s  [negative, because the 
volume of the gas decreases]. This yields an alternative definition of pressure 

P = − W

∆V
, � (3)

which is useful in many applications, especially when the change in the volume ∆V  is small and the 
change in pressure can be ignored. 

We examine the effect of gravity on a fluid. We consider a fluid element with a cross-sectional area A  and 
a height h . The forces on the element are from the top Ft , the bottom Fb, the left Fl , and the right Fr . 
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There is no difference between left and right [since we cannot differentiate between the volume element 
and its mirror image] so that Fl = Fr . Since the volume element is in mechanical equilibrium, the 
difference between the force from the bottom and top is equal to the weight: Fb − Ft = mg. This 
difference is produced by the pressure difference Fb − Ft = (Pb − Pt)A. The mass of the element is 
m = ρV = ρAh . We get (Pb − Pt)A = ρAhg , or (Pb − Pt) = ρgh . If P0  is the pressure on top 
of the surface, the pressure at the distance h  below the surface is 

P = P0 + ρgh. � (4)

That is, the pressure increases with the depth below the surface of fluid at rest: hydrostatic pressure. 
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Example 2: Hydrostatic pressure is the basis of commonly used units of pressure. In medicine, blood 
pressure is reported as 120/80 [systolic/diastolic pressure]. The units are millimeter mercury. Compare 
atmospheric pressure to atmospheric pressure. 

Solution: The density of mercury is ρHg = 13, 600 kg/m3. Thus 

120mm Hg = 0.12m · 13, 600 kg

m3
· 9.8 m

s2
= 1.6× 104 � 1

6
Patm.

The blood pressure produced by the heart is comparable to atmospheric pressure. 

Alternatively, we consider a small fluid element with volume ∆V  and mass m = ρ∆V . We imagine 
that we move the volume element slowly downward ∆y = −h  so that the work done on the element 
is zero [using the work-kinetic energy theorem]. Because the work done by gravity is Wg = mgh , 
the external force does work W = −Wg = −mgh . We then get for the pressure associated with the 
vertical displacement P = −(−mgh)/∆V = (m/∆V )gh = ρgh ; that is, we recover the expression 
for the hydrostatic pressure. We choose a coordinate y  along the vertical so that y = 0  at the surface. 
Then P = P0 + ρh(−y) , or P0 = P − ρgy : the sum of pressure and potential energy per volume is 
constant for a fluid element. 
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Example 3: A person is able to breath while diving with a snorkel. The flexible snorkel sticks out of 
the water. This is dangerous, however, because the lungs are compressed when a person is submerged. 
Estimate the maximum depth at which a person can safely snorkel.

Solution: The ribcage of a person can sustain the weight of a 100-lb person, so that F � 500N. The 
frontal area is A = 0.3m× 0.3m = 0.09m2 : 

∆P =
F

A
=

500N

0.09m2
= 5.5 kPa.

We set this pressure increase equal to the hydrostatic pressure: 

∆P = ρgh −→ h =
∆P

ρg
=

5.5 kPa

1, 000 kg/m3 · 9.8m/s2
= 0.56m;

Discussion: This estimate shows that snorkeling is limited to just below the surface.

Liquids do not have stiffness and any change in pressure applied to a completely enclosed fluid is 
transmitted undiminished to all parts of the fluid and the enclosing walls: Pascal’s principle. If fluid 
container has two pistons with cross-sectional areas A1  and A2 >> A1. A force F1  is applied to piston 
1. Since P = F1/A1 = F2/A2 , the fluid “produces” the force F2 = (A2/A1)F1  to the piston 2. If 
A2 >> A1 then F2 >> F1 . That is, a small force can produce a much larger one: this is the principle 
used in hydraulic lifts. 
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A block with mass m  [cross-sectional area A and height h ] is immersed in a fluid and suspended from 
a string with tension T. The tension is referred to as “apparent weight.” For solid objects, the density 
of air is much smaller than the density of the object ρ >> ρair  and the apparent weight is very close 
to the weight mg . If the object is immersed in water [or a similar fluid], the apparent weight is less 
than the weight: T < mg . Because the net force on the block is zero, we have T +∆P · A = mg , or 
mg − T = ∆P · A > 0 . This is called the “buoyant force,” 

FB = ρfluidgV, � (5)

the buoyant force is equal to the weight of the displaced fluid: Archimedes principle.
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Example 4: A person weighs 720 N in air and is lowered into a tank of water to about chin level. He now 
exhales as much air as possible and dunks his head underwater. His apparent weight while submerged 
is 34.3 N. a) Find his volume and his (average) density! b) Find the percentage of body fat (density of 
fat and lean body mass [soft tissue and bones]): 

ρf = 900
kg

m3
, ρl = 1, 100

kg

m3
.

Solution: apparent weight Wa , buoyant force Fb  and true weight W . Then Wa + Fb −W = 0 , or 
Fb = ρwaterVpg = W −Wa  so that 

Vp =
W −Wa

ρwaterg
= 7.0× 10−2m3.

The density of the person follows 

ρp =
W

Vpg
= 1050

kg

m3
.

Assume that xf  is the fraction of fat so that xl = (1− xl) is the fraction of the lean body mass. Then 
xfM  and (1− xf)M  are the mass of fat and lean body of the person. The volume of the person is 

V =
mf

ρf
+

ml

ρl
= M

[
xf

ρf
+

(1− xf)

ρl

]
.

The average density of the person follows ρp = M
V

= [xf/ρf + (1− xf)/ρl]
−1. We get 

(
1

ρp
− 1

ρl

)
=

(
1

ρf
− 1

ρl

)
xf .

Now solve for the fraction of fat: 

xf =
1

ρp

(
ρlρf

ρl − ρf

)
− ρf

ρl − ρf
=

4950 kg/m3

ρp
− 4.5.

The last equation is known as Siri’s formula. For the person, we get the buoyant force: 
Fb = 720N− 34.3N = 685.7N ; then Fb = ρwgV  so that for the volume

V = Fb/ρwg = 685.7N/(1.0× 103 kg/m3 · 9.8m/s2) = 7.0× 10−2m3 . 

This give the (average) density of the person: 

ρp = mp/V = Wair/(gV ) = 720N/(9.8m/s2 · 7.0× 10−2m3) = 1, 050 kg/m3 . 

The fraction of fat follows xf = (4950 kg/m3)/(1050 kg/m3)− 4.5 = 4.714− 4.5 = 0.214 , or 
xf = 21.4% , which is reasonable for healthy adult male. 
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10.2	 Fluids in Motion

A hair dryer can be used to hold up a light object [such as a Ping-Pong ball] in air. If A = πR2  is the 
cross-sectional area of the ball, the pressure difference between the top and bottom is related to the 
weight of the ball: (Pb − Pt)A = mg . We conclude that flow of air changes the pressure. Air flows 
from under the ball and comes to a (near) stop at the bottom. The air wraps around the edges and then 
recombines near the top, so that the flow speed is nonzero. This shows that the pressure is high (low) 
in regions with small (large) flow speeds.

We have seen for static fluids, cf. Eq. (6), that the sum of pressure and potential energy per volume is 
constant. For fluids in motion, we replace the potential energy by the total mechanical energy, that is, 
the sum of potential energy plus kinetic energy. We thus get 

P + ρgy +
ρ

2
v2 = const. � (6)

This is the Bernoulli equation. It shows that the pressure is reduced in regions where the fluid flow is 
fast, just as in the case of the Ping-Pong ball. 

Example 5: A model airplane has mass m = 1.5 kg  and wing area A = 0.2m2. The plane is kept afloat 
by air streaming past its wings. Ignore buoyancy due to air. a) Calculate the pressure difference between 
upper and lower surfaces to keep the airplane afloat. b) The wings are designed such that air rushes 
across the upper surface at twice the speed it rushes across the lower surface. Find the speed of air flow 
over the upper surface so that the airplane does not fall to the ground. Assume ρ = 1.29 kg/m3 for 
the density of air.
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Solution: The weight of the plane is mg = 14.7N . Then 

∆P =
mg

A
=

14.7N

0.2m2
= 73.5 Pa.

We write vu = v0 for the speed of air flow over the upper surface and vl = v0/2 for the speed of air 
flow over the lower surface. 

∆P =
1

2
ρ
(
v2u − v2l

)
=

1

2
ρ

(
v20 −

1

4
v20

)
=

3

8
ρv20

so that for the velocity: 

v20 =
8∆P

3ρ
=

8 · 73.5 Pa
3 · 1.29 kg/m3 = 152

m2

s2
.

Thus, v0 = 12.3m/s .

Discussion: This view of air lift is too simplistic, as airflow across wings is much more complex. Vortices, 
in particular, appear to play an important role. Also, planes can fly upside down, which would be 
impossible based on the simple explanation given here. 

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

American online      
LIGS University 

▶▶ enroll by September 30th, 2014 and 

▶▶ save up to 16% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to 

      find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc, 

DBA and PhD  programs:

Note: LIGS University is not accredited by any 
nationally recognized accrediting agency listed 
by the US Secretary of Education. 
More info here. 

http://s.bookboon.com/LIGS


Algebra-Based College Physics: Part I

93 

Fluids

We consider a flow through a pipe with cross-sectional area A . The flow speed is v , which we assume 
is constant. If x  is the coordinate along the pipe, volume element is ∆V = A∆x . Since the flow speed 
is v = ∆x/∆t, the volume flow rate follows ∆V/∆ = A(∆x/∆t) , or 

∆V

∆t
= Av. � (7)

The unit of volume flow rate [∆V/∆t] = m3/s . The mass of the fluid inside the volume element is 
∆m = ρ∆V . We then have for the mass flow rate ∆m/∆t = ρ∆V/∆t , or 

∆m

∆t
= ρAv, � (8)

with unit [∆m/∆t] = kg/s . 

We now consider a pipe with different cross-sectional areas A0  and A1 < A0 . The incoming mass of 
fluid must be the same as the outgoing mass, so we have 

ρ1A1v1 = ρ0A0v0. � (9)

When the fluid is incompressible [e.g., for liquids], this simplifies 

A1v1 = A0v0. � (10)

Eqs. (9) and (10) are referred to as the equation of continuity; they reflect the conservation of matter. 
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Example 6: A drinking straw 20 cm long and 3.0 mm in diameter stands vertically in a cup of juice 8.0 
cm in diameter. A section of the straw 6.5 cm long extends above the juice. A child sucks on the straw 
and the level of the juice begins to drop at 0.2 cm/s. a) What is the speed of the juice inside the straw? 
b) By how much does the pressure in the child’s mouth differ from atmospheric pressure? 

Solution: We use the equation of continuity A1v1 = A2v2  so that 

v2 =
A1

A2
v1 =

π(4.0 cm)2

π(0.15 cm)2
· 0.2cm

s
= 142

cm

s
= 1.42

m

s
.

We choose y = 0  at the level of juice. The Bernoulli equation reads: 

Patm = Pmouth + ρgy +
ρ

2
v2,

where Pmouth is the pressure in the child’s mouth. Thus 

Pmouth−Patm = −ρ·
(
gh+

v2

2

)
= −1000

kg

m2

(
0.065m · 9.8 m

s2
+

(1.42m/s)2

2

)
= −1.65 kPa.

That is, the pressure in the child’s mouth is less than the atmospheric pressure.

10.3	 Surface Tension

The equation P = −∆W/∆V  can be interpreted as the work necessary to “create” volume. Likewise, 
work is necessary to create surface area ∆A , and we define 

σ = −∆W

∆A
. � (11)
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The quantity σ  is referred to as surface tension with unit [σ = J/m2 = N/m ]. Alternatively, pressure is 
the force divided by area P = F/A  and the surface tension is equal to force divided by length σ = F/L . 
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We consider a droplet of radius R . The pressure inside the droplet is P , while the pressure outside is  
P0  [e.g., atmospheric pressure]. We assume that the droplet is in mechanical equilibrium so that it neither 
grows or shrinks. We cut the droplets into two hemispherical shells: the pressure difference produces 
the force (P − P0) · πR2 . This outward force is balanced by the force produced by the surface tension 
σ · 2πR . We set the two forces equal to each other, and find 

P − P0 =
σ

2R
. � (12)

This is called Laplace law. The pressure difference thus increases with decreasing size of the droplet. For 
water droplets:

R ∆P [atm]
1 mm 0.0014
0.1 mm 0.0144
1µm 1.436
10 nm 143.6

We consider two small droplets with radii R1  and R2 < R1, respectively: the total energy can be 
reduced if the small droplet shrinks and the larger droplet grows. This mechanism is responsible for the 
formation of large rain drops in the atmosphere. 
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11	 Waves
11.1	 Transverse and Longitudinal Waves

We are familiar with waves on water surfaces such as lakes and oceans. We observe crests and troughs 
traveling towards the beach at a constant speed v . The motion of crests and trough is called wave 
propagation. If we take a picture, crests and troughs are observed at equal distances; the distance between 
troughs [crests] defines the wavelength λ. If we focus on an object [such as a buoy] on the water surface, 
the object does not travel towards the shore, but rather moves up-and down with a period T. Because 
the displacement is perpendicular to the direction of wave propagation, we say that a surface water wave 
is a transverse wave. 

Sound is another familiar example. There is no macroscopic flow of air [‘wind’] associated with sound. 
Air [and liquids] have no stiffness, and sound is associated with the periodic condensation and expansion 
of air in the direction of wave propagation: sound is a longitudinal wave. At a fixed time, regions of 
compression and expansions are separated by the wavelength λ. On the other hand, at a fixed postion, 
the air alternatives between condensation and expansion with a period T.

The wave speed v , the wave length λ, and the period T, of frequency f = 1/T , are related 

v =
λ

T
= fλ. � (13)

Waves propagate energy and momentum; however, no long-range (net) transport of matter is associated 
with wave phenomena. 

Example 1: The speed of surface waves in shallow waters only depends on the depth d  of water: 
v =

√
gd . In water with depth d = 0.65m, find the period of the oscillatory motion associated with 

wave motion of wavelength λ = 1.7m. 

Solution: We have the wave speed: 

v =

√
9.8

m

s2
· 0.65m = 2.5

m

s
.

For λ = 1.7m, we find the period T : 

T =
λ

v
=

1.7m

2.5m/s
= 0.68 s,

or frequency f = 1/(.68 s) = 1.5Hz . 
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Discussion: The wave speed decreases as the depth decreases, i.e., as the wave moves towards the shore. 
Because the frequency remains constant, the wavelength decreases when the wave travels towards the 
shore. If the equation for the wave speed is used for deep ocean woth d = 4000m , the wave speed follows 
v � 200m/s . This shows that the propagation of disturbances on the ocean is fast [e.g., during a tsunami]. 

In the above example, the wave speed is independent of the wavelength or the frequency. This is not the 
case in general, and the wave speed depends on wavelength v = v(λ)  or the frequency v = v(f) : this 
dependence is referred to as dispersion.

11.2	 Wave Speed

p
2A

λ

x

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc 
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and 
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012; 
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl


Algebra-Based College Physics: Part I

99 

Waves

We consider a rope [elastic string] and excite it by attaching a vibrator at one end. A transverse wave 
develops along the wave that is travelling along the x -axis. Each (small) element of the string can be 
consider to be a harmonic oscillator along the vertical. The elasticity of the rope provides a coupling 
between oscillators: if a particular oscillator moves up (down), the oscillators in its vicinity also move 
up (down). 

The oscillator at the end with the vibrator undergoes driven harmonic motion. As a result the amplitude A 
of the oscillator is much larger than the maximum displacement of the vibrator. We can find an expression 
for the wave speed using dimensional analysis. We replace the the wavelength by the length of the rope 
λ ∼ L. We assume that the elastic coupling between the neighboring pieces of the rope produces an 
“effective” spring constant k. If the mass of the spring is m , then the period of the oscillatory motion is 
T ∼

√
m/k . The wave speed follows v ∼ L

√
k/m =

√
kL/(m/L) . The quantity m/L  is the mass 

per unit length, and we identify kL  with the tension along the string T ∼ kL. Despite the approximate 
nature of our calculation, we arrive at the correct expression for the wave speed: 

v =

√
T

m/L
. � (14)

If the rope is pulled more ‘taut,’ i.e., when the tension is increased, the wave speed increases.

For sound waves in a gas [longitudinal waves], we consider a volume element V = L3 . We write 
the force in terms of the pressure F = PL2, v ∼

√
PL2/(m/L) =

√
P/(m/L3) . The expression in 

the denominator is the density so that v ∼
√

P/ρ . In the next chapter, we see that the density 
of a gas is proportional to the pressure and inversely proportional to the (absolute) temperature  
T , ρ = m/V = MP/kT , where is the mass of a molecule and k  [k = 1.38× 10−21 J/K ] is the 
Boltzmann constant, v ∼

√
kT/M . This yields: 

v =

√
γkT

M
, � (15)

where the adiabatic exponent γ = 5/3  for diatomic gas, such as air. For most applications, the sound 
speed can be assumed constant v = 345m/s . The sound speed depends on the phase of the material 
[solid, liquid, or gas], 

vgas < vliquid < vsolid. � (16)

Typical values are v ∼ 5000m/s  for sound in solids, v ∼ 1000m/s  for liquids, and v ∼ 500m/s  
for gases. 

Example 2: A guitar string has length L = 0.56m and mass m = 2.4 g . Find the tension of a guitar 
string so that the speed of the transverse wave is equal to to speed of sound in air. 
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Solution: We solve for the tension along the string: 

F =
m

L
v2 =

2.4× 10−3 kg

0.56m

(
345

m

s

)2

= 510N.

Discussion: When a musician “tunes” the guitar, the wave speed along the string changes. Because the 
wavelength is fixed, the frequency of the sound changes as a result of the change in the wave speed. 

11.3	 Doppler Effect

We only consider the case when source and observer are moving along a straight line. We distinguish 
between the case (1) when the observer is stationary and the sourse is moving, and (2) when the observer 
is moving and the source is stationary. 

The source is producing a wave crest every period tn = nT  with n = 0, 1, 2, 3... . At some time t, the 
n -th crest has coordinate ±xn . Because each crest travels at the wave speed v , the distance between 
consecutive crests is ∆x = xn+1 − xn = λ . 

If the source travels with speed vs , the distance between crests is decreased when the source moves 
towards a stationary observer λ′ = λ− vsT < λ  and is increased when the source moves away from 
the from observer λ′ = λ+ vsT > λ . 
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We note that the speed of the wave crest v  is independent of the speed of the source vs . Because the 
distance between crests is λ′ = λ± vsT , the observer notices crests at the rate (frequency) v/λ′ , or 

fo =
v

λ′ =
v

λ± vsT
=

v/λ

1± vsT/λ
.
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Since v/λ = fs  is the frequency of the stationary source and λ/T = v  is the wave speed, we find 

fo =
fs

1± vs/v
, � (17)

where fs  is the frequency of stationary source. Here the “+” (“-”) sign applies when the source moves 
towards (away from) the stationary observer.

Example 3: A locomotive plays a horn with frequency fs = 1500Hz. What is the frequency heard 
by a passenger waiting at a train station when the locomotive enters (leaves) the station at the speed 
vs = 40m/s . 

Solution: We have 

fo =
1500Hz

1± (40m/s)/(345m/s)
=

{
1344Hz locomotive entering station
1697Hz locomotive leaving station

Discussion: This frequency change is easily detected by the human ear. 

When both source and observer [represented by an ‘ear’] are stationary, the number of intercepted 
wavefront by observer in a time interval t  is vt/λ . The frequency of the observed wave is this number 
divided by the time t : 

fo =
vt/λ

t
=

v

λ
, vo = 0.
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When the observer travels towards the source with the speed vo  (here towards the left), the speed of 
the wave crests relative to the observer is v + vo . That is, the number of crests “collected” by the ear in 
a time t  is (vt+ vot)/λ . Thus, the observed frequency detected by the ear is 

fo =
(vt+ vot)/λ

t
=

v + vo
λ

=
v

λ

(
1 +

vo
v

)
.

Since fs = v/λ  is the frequency of the source, the frequency when the source is stationary and the 
observer is moving: 

fo = fs

(
1± vo

v

)
, � (18)

where fs  is the frequency of the source. Here, the “+” (“-”) sign applies when the observer moves towards 
(away from) the stationary source.

Example 4: A bungee jumper falls towards the bottom of the valley. A horn with frequency fs = 690Hz 
blares from the bottom of the valley. What is the frequency observed by the bungee jumper when she 
has fallen the height h = 13m . 

Solution: We find the speed of the jumper from free fall: 

vs =
√
2gh =

√
2 · 9.8m/s2 · 13.0m = 16.0m/s. We then have for the frequency heard by the 

jumper: 

fo = 690Hz ·
(
1 +

16m/s

343m/s

)
= 722Hz.
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11.4	 Interference

We assume that two coherent sources S1 and S2 (indicated by the two red dots] produce waves in the same 
region. Coherent means that successive crests [solid] and troughs [dotted] of the two sources are produced 
at the same time. The addition of two waves follows the superposition principle: When two or more waves 
are present simultaneously at the same location, the resultant disturbance is the sum of the disturbances 
from the individual waves; that is, we add the amplitudes and not the intensities from different sources. 
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In the forward direction, a crest (trough) from S1 ‘meets’ a crest (trough) from S2. Along this (solid) 
center line, a wave with amplitde 2A  develops: we say that the waves add constructively. The direction 
of the center line define the zeroth-order maximum. On either side of this line, two dotted lines connect 
dots, where a crest (trough) from S1 meets a trough (crest) from S2: we say that the two waves add 
destructively, i.e., they cancel out each other. The directions of these two lines define the first-order 
minimum. We then indicate with solid lines the points, where a crest (trough) from S1 meets a crest 
(trough) from S2. These lines define the first order maximum. 

The condition for a maximum depends on the distances d1 and d2 between the two sources S1  
and S2 and the observation point P : 

|d1 − d2| = nλ, n = 0, 1, 2, ...� (19)

so that n = 0  for the zeroth-order maximum defines the center line. For the minimum, we have 

|d1 − d2| =
(
n+

1

2

)
λ, n = 0, 1, 2, ... � (20)
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Example 5: Two speakers vibrate in phase and produce the sound with frequency f = 440Hz [musical tone 
“A”]. The speakers are separated by the distance D = 23 cm. Find the shortest perpendicular distance from 
the speaker S2, where the sound from the two speakers cancels. What is the distance to the next maximum? 

Solution: We find the wave length of the sound λ = (345m/s)/(440m)  = 0.78m .  

Since n = 0 , distance d1 follows from Pythagorean theorem: (λ/2)2 = D2 + d21  so that

d1 =

√(
0.78m

2

)2

− (0.23m)2 = 0.32m.

We set n = 1  and find the distance to the first maximum: 

d2 =

√
(0.78m)2 − (0.23m)2 = 0.75m.

The distance between maximum and minimum is ∆d = d2 − d1 = 0.44m . 

Interference is a characteristic feature for all waves, independent of the nature of the wave, and explains 
several wave phenomena: (1) standing waves that are relevant for waves along a string and the sound 
waves and (2) diffraction. 

11.5	 Standing Waves
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A special case of interference applies when a wave interferes with a reflected wave: the two waves are 
automatically vibrating in phase. We consider the case when the original wave travels to the right [Frame 
1]. The reflected wave is generated at the wall and travels to the left. The superposition of the original and 
the relected yields the pattern shown in Frame 2. This pattern changes with time  [transient behavior]. 
After a long time, t → ∞, the pattern of crests and troughs is time-independent [stationary]. There are 
locations, where the (vertical) displacement is always zero; these locations are called nodes. In the middle 
between two nodes is a location with maxium (vertical) displace- ment. The locations of maximum 
displace- ments are referred to as antinodes [Frame 3]. Each part of the string moves in ‘unison;’ that is, 
each antinode reaches the maxium displacement at the same time, while at other times, the displacements 
are less than the maximum value [Frame 4]. This resulting wave is referred to as a standing wave, and 
is independent of the nature of the wave [transverse or longitudinal] and thus applies to a wave along a 
string [as shown], the sound waves in an organ pipe, etc. 

The time between successive maximum displacements is the period, or the inverse of the frequency 
of the wave, T = 1/f . The distance between neighboring nodes is half a wavelength λ/2. If the two 
ends of a rope are fixed, or the two ends of a pipe are closed, the wave has nodes at the two ends so that 
L = nλ/2 , for some integer n = 1, 2, 3, ... . This implies that the length of the rope or the organ pipe 
determines the frequencies of the produced sound: 

fn =
v

λn

=
v

2L
n, n = 1, 2, 3... � (21)
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The different cases are called the n -th harmonics, i.e., first, second, etc harmonic. In a music context, 
the second (third) harmonic is called the first (second) overtone. 

If one end is fixed and the other end swings freely [e.g., one end of the organ pipe is open, while the 
other side is closed] then there is a node at the fixed end and an antinode at the open end. We get for 
the length L = nλ/4  for n = 1, 3, 5, ...  so that for the possible frequencies, 

fn = n
( v

4L

)
, n = 1, 3, 5, ...

That is, there are no even harmonics in ‘asymmetric’ situations.

Example 6: The G string on a violin is 30 cm long. When played without fingering, it vibrates at a frequency 
of 196 Hz. a) What is the wave speed along the string? b) The mass of of the G-string is 1.2 g; Find the 
tension in the G-string. c) Another note on the C-major scale is D at 294 Hz. How far from the end of 
the string must a finger be placed to play this note? 

Solution: Because f1 = 196Hz  is the first harmonic, we have L = 0.3m = λ/2  so that λ = 0.6m.  
We thus have the wave speed: v = λf = 0.6m · 196Hz = 117.6m/s . The tension in the string 
follows from the wave speed v2 = T/m/LT = (m/L) · v2 = 55.3N so that T = (m/L) · v2 = 55.3N . Since f ′

1 = 294Hz ,  
we get the new wavelength: 

λ′ =
v

f ′
1

=
117.6m/s

294Hz
= 0.4m.

Since this is the first harmonic for the shortened string, we find L′ = λ′/2 = 0.2m. That is, the finger 
must be placed at the distance D = L− L′ = 10 cm from the end of the string.

If a musical instrument, say a piano, plays the tone A [with frequency 440 Hz], the vibrating string 
generates not only the first harmonic f1 = 440Hz  but also the higher harmonics [overtones] 
f2 = 2f1 = 880Hz , f3 = 3f1 = 1320Hz , etc, each with a different intensity. We say that the string 
generates a ‘complex’ sound characterized by a frequency spectrum; the difference in the spectrum is 
used to distinguish the sound from different instruments: piano, horn, etc.
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11.6	 Diffraction

θ

We assume that a plane wave travels towards a wall with an opening of size D. Behind the wall, we 
observe wave within a cone of angle θ around the forward direction. At greater angles, the interference 
leads to cancellation of the wave. This phenomenonis called diffraction: loosely speaking, diffraction is 
the bending of waves around a corner. Diffraction originates from the interference of outgoing waves 
originating from the opening. It makes it possible to hear people from room to room, even if we can’t 
see them [also reflection on walls, floor, and ceiling plays a role].

We use dimensional analysis to find the angle of diffraction θ. The angle is dimensionless [θ] = 1 , and 
depends on the ratio of two length scales: the wavelength λ and the diameter of the opening D. The 
diffraction phenomenon disappears when either the opening becomes very large or the wavelength 
becomes very small, 

sin θ =
λ

D
[rectangular opening]. � (22)

When the opening is a circle, the above expression must be slightly modified: 

sin θ = 1.22
λ

D
, [circular opening]. � (23)

The factor 1.22 cannot be derived with the tools of undergraduate physics [and mathematics]. 
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loudspeaker

D=0.75 m

L=18.0 m

person

x

Example 7: A loudspeaker is behind a rectangular opening that is 0.75 m wide. The opening is 18.0 m 
from a wall, where a person listens to the sound. The loudspeaker produces sounds with different 
frequencies. Use v = 343m/s  for the speed of sound in air. a) The loudspeaker produces sound with 
frequency f = 6.0 kHz . Find the maximum distance from the center, where she can clearly hear the 
sound. b) What is the highest frequency that the person can hear when she is standing at a distance 
x′ = 2.3m  from the center? 
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Solution: We have the wavelength of the sound: λ = v/f = (343m/s)/(6.0× 103 s−1) = 0.057m.  
The opening has width D = 0.75m. 

This gives the diffraction angle 

sin θ =
λ

D
=

0.057m

0.75m
= 0.076, −→ θ = 4.4◦.

Because the person is at a distance L = 18.0m from the opening, the distance of the person from the 
center 

x = L tan θ = 18.0m · tan 4.4◦ = 1.38m.

We have tan θ = x/L = (2.3m)/(18.0m) = 0.128 so that θ = 7.3◦. This gives the shortest 
wavelength: 

λ = D sin θ = 0.75m · sin 7.3◦ = 0.095m.

The frequency then follows 

f =
v

λ
=

343m

0.095m
= 3.6 kHz.

Discussion: The aperture dimension 0.75 m is much larger than typical speaker cones. 
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A theoretical derivation of diffraction is based on Huygens’ principle for wave propagation. All points of 
a wave front can be considered as sources of outgoing spherical waves [idicated by the red dots]. These 
spherical waves interfere constructively and destructively at different points in the plane. The envelope 
of the spherical waves then forms the next wave front, and the process repeats itself. The new wave front 
becomes clearer when the number of sources of outgoing spherical waves is increased. This description 
is exact in the limit as the number of sources becomes infinitely large. 

Download free eBooks at bookboon.com



Algebra-Based College Physics: Part I

113 

Thermal Physics

12	 Thermal Physics
12.1	 Temperature and Heat

While a formal definition of temperature is outside the scope of introductory physics, “temperature is 
the thing that’s the same for two objects, after they’ve been in contact long enough” [D.V. Schroeder, 
Thermal Physics (Addison-Wesley, San Francisco, 2000)]. When the two bodies are in contact, they will 
exchange energy with each other. Temperature is the quantity that describes such a spontaneous flow 
of energy [heat] between objects at different temperatures. Energy flows from the hotter object to the 
colder object. Two ojects have the same temperature when there is no net flow of heat between them. 
The zeroth law of thermodynamics states that two bodies, each in thermal equilibrium with a third, are 
also in thermal equilibrium with each other. 

Properties of water [H2O ] are used to define the Celsius temperature scale. Liquid water and ice coexist 
at Tc = 0◦C  and liquid water and vapor coexist at Tc = 100◦C. The absolute temperature scale is 

T = Tc + 273.15. � (24)
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The unit of temperature is [T ] = K  (Kelvin). 

Heat flow: Heat flow is the rate of energy transfer or Q/t . Two objects are kept at temperatures T0  and 
T1 , respectively. The two bodies are connected by a heat conductor [e.g., a metal strip] of length L and 
cross- sectional area A. The flow of heat depends on the “steepness” the temperature change ∆T/L  
[temperature gradient]. The heat flow is proportional to the cross-sectional area A: 

Q

t
= k · A · ∆T

L
. � (25)

Here, k is the thermal conductivity with unit [k] = W/(Km), and must in general be measured 
experimentally. Good heat conductors are also good conductors of electricity. Thus metals are good heat 
conductors, whereas insulators [wood and (most) plastics] are bad conductors. Humans are sensitive to 
heat flow, and not the temperature. After a cold winter night, the wood on the porch ‘feels’ warmer than 
the metal railing, although they are at the same temperature. The different “feel’ is due to difference in 
thermal conductivities of the two materials [greater for metal than for wood]. 

Heat can also be transferred through (blackbody) radiation, 

Q

t
= eσAT 4,

where A is the surface area, e  is the emissivity [e < 1] and σ  is the Stefan-Boltzmann constant 
σ = 5.67× 10−8W/(m2 ·K4) . 

Example 1: The temperature of skin is Tskin = 34◦C  [somewhat less than the body temperature 
[Tbody = 37◦C ] and the ambient temperature is Troom = 24◦C . The surface area of an adult is 
A � 1.85m2. Calculate the net heat loss of the person.
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Solution: Applied to the human body: skin temperature Tskin = 34◦C = 307K. We assume that the 
room temperature is at a “comfortable” Troom = 24◦C = 297K. The surface area of the human body 
is A � 1.85m2. We assume ε � 1. Then 

(
Q

t

)

net

=

(
Q

t

)

gain

−
(
Q

t

)

loss

= 1 · 5.67× 10−8 W

m2K4 · 1.85m2 ·
[
(297K)4 − (307K)4

]

= 816W− 932W � −100W.

That is, this result agrees with the metabolic rate of a person.

Discussion: Four main sources of heat loss in humans have been identified: (1) radiation (black -body 
radiation): see above 54-60% (2) convection and conduction of air from body ∼ 25%  (3) evaporation 
of sweat ∼ 7%  (4) evporation of water from breathing ∼ 14% . [source: I.P. Herman, Physics of the 
Human Body (Springer, New York, 2007)]

A temperature increase generally increases the size of an object. For a long strip, the fractional increase 
of length is proportional to the temperature change: 

∆L

L0
= α∆T, � (26)

while we have the fractional volume increase for a bulk object: 

∆V

V
= γ∆T. � (27)

Here the coefficients of linear α  and volume expansion γ  are related, γ = 3α . The units are 
[α] = [γ] = ( ◦C)−1 .

Example 2: Calculate the linear variation of a 50-m long steel T-beam due the seasonal temperature 
change. Use v(t/2) = v0 + a(t/2)  for steel.

Solution: We have Tlow = −20◦C  and Thigh = +40◦C  so that ∆T = 60◦C . Then 

∆L

L0
= 12× 10−6 1

◦C
· 60◦C = 7.2× 10−4 (= 0.072%),

so that the fractional change is 0.072%. For L = 50m , the length change is ∆L = 3.6 cm.

Discussion: Such a change in the length can produce significant problems for structural engineers who 
incorporate expansion joints in bridges and other structures. 
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12.2	 Calorimetry

Since heat flows spontateneously from object with high T to an object with low T, the temperature of 
a body changes when heat is added or removed. The heat Q  is proportional to the size of the object 
[mass m ] and also depends on the type of material, 

Q = mc∆T, � (28)

where c  is the specific heat. Since heat is a form of energy [just like kinetic and potential energy], the 
unit of the specific heat is c = J/(kg ◦C) . Heat must be added or removed during a phase change 
[gas-liquid (evporation or condensation), liquid-solid (melting or freezing), or gas-solid (sublimation)]. 
Because the temperature is constant during a phase change, 

Q = mL,

where the latent heat L  has the unit [L] = J/kg . The specific and latent heat for materials are measured 
experimentally. The specific heats are different for the different phases of the same substance and likewise, 
the latent heats are different for different phase transformations. Furthermore, the specific and latent 
heats are different for different substances. 
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Example 3: The best way to make hot chocolate is by putting steam into chilled milk. An Espresso 
machine produces vapor at 100◦C  and pressure P = 9.0× 105Pa [or 9 atm]. The barista puts 
msteam = 50.4 g  [V = 9.6× 10−3m3  or 9.6 L] of steam into the chilled milk. A 12-ounce cup of 
milk contains 0.36 kg of milk at the temperature 6◦C . Find the temperature of the Hot Chocolate! Ignore 
the specific heat of the cup. Useful data: Specific heat of water cwater = 4, 186 J/(kg ·◦ C) , Specific heat 
of milk cmilk = 3, 890 J/(kg ·◦ C) , and latent heat of vaporization of water Lwater = 22.6× 105 J/kg.

Solution:We have for the heat given off by the vapor [and hot water] and the absorbed heat: 

Q↑ = msteamLwater +msteamcwater(100
◦ − Tf)

Q↓ = mmilkcmilk(Tf − 6◦C)

Now set Q↑ = Q↓  and solve for the final temperature Tf : 

Tf =
msteam(Lwater + cwater100

◦) +mmilkcmilk6
◦C

mmilkcmilk +msteamcwater
=

134.5 kJ + 8.4 kJ

1.40 kJ/◦C + 0.2 kJ/◦C
= 89◦C

That’s about 190◦F .

Example 4: The composition [i.e., the fraction of pulp] of apples [or any other fruit or vegetable] is 
measured using calorimetry. Hot water [with mass mW = 0.11 kg in a aluminum beaker [with mass 
mAl = 0.05 kg] at the initial temperature Ti = 63◦C . Chipped apples are chilled at 0◦C  by placing 
them inside [or close to that! ]. The mass of the chipped apple is M = 0.05 kg . The final temperature 
is Tf = 46◦C . Assume that the apple consists of water and cellulose. How much of the apple is water? 
Useful data: Specific heat of water cwater = 4186 J/(kg ◦C) , aluminum cAl = 900 J/(kg ◦C) , and 
cellulose [pulp] ccellulose = 1400 J/(kg ◦C).

Solution The heat given off is by the hot water and the aluminum beaker: 

Q↑ = mW cW (Ti − Tf ) +mAlcAl(Ti − Tf ) =

[
460.5

J
◦C

+ 45.0
J
◦C

]
· 17◦C = 8594 J

The apple absorbs heat: 

Q↓ = Mcapple(Tf − 0◦C), � (29)
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where capple  is the unknown specific of the apple. We assume that we don’t have any heat loss so that 
Q↑ = Q↓ , and solve for the specific heat of the apple, 

capple =
9594 J

0.05 kg · 46◦C = 3736
J

kg ◦C
.

Then for the mass of apple: M = Mw +Mcellulose . We introduce the (mass) fraction of cellulose: 

r =
Mcellulose

M
.

We then have for the specific heat of apple in terms of the ratio r  and the known specific heat: 
capple = cW (1− r) + ccelluloser . Now solve for the ratio: 

r =
cW − capple
cW − ccellulose

=
4186 J/(kg◦C)− 3736 J/(kg◦C)

4186 J/(kg◦C)− 1400 J/(kg◦C)
= 0.16.

That is, 16% of the apple is cellulose and the remainder [84%] is water. 

Discussion: In agreement with published data [http://www.ca.uky.edu/enri/pubs/enri129.pdf – retrieved 
on Aug. 26, 2012]. The (more standard) determination of the percentage of water in fruits and vegetables 
is done by measuring the average density of apple. The latter is most easily done by measuring the 
buoyancy of an apple in air and water when it is fully submerged. 

12.3	 Ideal Gas Law

The ideal gas law connects the pressure, volume, and temperature: (1) for a fixed volume, a higher 
temperature leads to an increase in pressure, P ∼ T , (2) at constant pressure, a higher temperature 
leads to an increase volume, V ∼ T , and (3) at constant temperature, a higher pressure is associated 
with a smaller volume, P ∼ 1/V . This can be summarized as 

PV

T
= const, � (30)

where T is the absolute temperature [measured in Kelvin]. This law assume that the amount of gas [i.e., 
the mass] is kept constant. 

Example 5: A glass column is filled with air. At room temperature, the pressue is 2.5-times the atmospheric 
pressure. What is the pressure inside the glass column when it immersed in boiling water? 

Solution: We have the absolute temperatures T0 = 298K  and Tf = 373K . Since the volume is 
constant V0 = V1 = V , P0V/T0 = P1V/T  so that 

P1 =
T1

T0
P0 =

373K

298K
2.5 atm = 3.1 atm.
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In an ideal gas, molecules are moving in random directions aat random speeds inside a container. The 
molecules bounce off the walls. During a collision, the wall of the container exerts a force on a molecule; 
thus, the molecule exerts a (reaction) force on the container wall: the summation of all forces from all 
collisions produces the macroscopic pressure. 

A simplified derivation starts from a cubic container with volume V = L3 ; we choose a coordinate 
system aligned with the cube. We assume that the molecule travels with speed v  along the x -coordinate. 
The collision with the wall gives the change in momentum ∆p = (−mvx)−m(vx) = −2mvx . 
Since the time between consecutive collisons is t = 2L/v , the (average) force by one molecule follows 
Fave = (−2mvx)/(2L/vx) = −mv2x/L . The particle moves in all directions so that v2x = 〈v2〉 /3,  
where we introduced the mean square value 〈v2〉 . Thus for the force due to N  molecules 
F = Nm 〈v2〉 /3L  so that for the pressure P = F/L2 = Nm 〈v2〉 /3V . We find 

PV =
N

3
mv2rms =

2

3
N

(
1

2
mv2rms

)
=

2

3
N 〈KE〉 , � (31)

where we introduced the average kinetic energy of the molecule 〈KE〉 = m 〈v2〉 /2. Comparison with 
ideal gas law PV/T = const  yields 

〈KE〉 = m

2
v2rms =

3

2
kT, � (32)

where k = 1.381× 10−23 J/K  is the Boltzmann constant. 
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The number of molecules in a gas is enormous N >> 1 . Avogardo’s number is used to quantify large 
numbers, 

NA = 6.022× 1023. � (33)

The number of moles is then given by 

n =
N

NA
. � (34)

The product of the molecular mass and Avogadro’s number is the molar mass M = NAm. For helium 
MHe � 4 g  and air [80% N2  and 20% O2]; Mair = 28.8 g . Avogadro’s number and the Boltzmann 
constant are the connection between microscopic and macroscopic quantities. The unit for masses of 
molecules is the atomic mass unit: 

1 u =
1 g

NA
= 1.66× 10−27 kg. � (35)

Example 6: Calculate the average speed of a molecule of Argon gas at room temperature [here, atom 
and molecule mean the same]. 

Solution: The mass of an Argon atom is m = 39.95 u , so that 

vrms =
√

〈v2〉 =
√

3kT

m
=

√
3 · 1.38× 10−23 J/K · 293K
39.95× 1.66× 10−27 kg

= 428
m

s
.

Discussion: This root-mean-square speed is very close to the speed of sound for the gas. We get for the 
energy: 

Ethermal =
3

2
kT =

3

2
· 1.38× 10−23 J

K
· 300K = 6.2× 10−21 J.

The convenient unit for molecular energies is the electron Volt : 1 eV = 1.6× 10−19 J. Then 

Ethermal � 40meV.

The latent heat of vaporization for water is Lvapor = 22.6× 105 J/kg . The number of moles: 
n = 1 kg/(18× 10−3 kg/mol) = 56mol . We write L = Nε , so that for the energy per molecules: 

ε =
22.5× 105 J

56 · 6.02× 1023
� 6.6× 10−20 J = 0.4 eV.
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The ideal gas law can then be written PV = (2/3)nNA (3kT/2) or 

PV = nRT, � (36)

where R = kNA = 8.31 J/(mol ·K)  is the gas constant. 

Example 7: Calculate the molar volume at standard conditions. 

Solution: Standard conditions refers to temperature T = 0 ◦C = 273K  and atmospheric pressure 
P = 1.013× 105 Pa . Since n = 1mol: 

V =
nRT

P
=

1.0mol · 8.31 J/(molK) · 273K
1.013× 105Pa

= 0.0224× 10−2m3 = 22.4 l.

Example 8: A thermally isolated system consists of two volumes Vl = 1.0 L  and Vr = 2.0 L of an ideal 
gas separated by a movable partition. The partition is impermeable to gas, but can conduct heat. The 
pressures on the left and right side of the partition are Pl = 1.0 atm and Pr = 2.0 atm , respectively. 
The number of moles on the left side of the partition is nl = 1.0mol . The temperature is the same 
throughout the entire system and remains constant. a) Calculate the number of moles on the right side 
of the partition. b) The partition is now allowed to move without the gases mixing. After equilibrium is 
established, the pressure on the left and right side is the same. Because the system is thermally insulated, 
the temperature does not change. Calculate the volumes of the left and right sides of the partition when 
equilibrium is achieved. What is the equilibrium pressure? 

Solution: Use the ideal gas law: PV = nRT  so that PV/n = RT . Because the temperature is the 
same on both sides:

PlVl

nl
=

PrVr

nr
, −→ nr =

PrVr

PlVl
nl =

2.0 atm · 2.0 L
1.0 atm · 1.0 L 1.0mol = 4.0mol.

From the ideal gas law, PV = nRT , we have P/RT = n/V  so that 

Peq

RT
=

nl

Vl,eq
=

nr

Vr,eq
, −→ Vr,eq

Vl,eq
=

nr

nl
=

4.0mol

1.0mol
= 4,

where Vl,eq  and Vr,eq  are the respective volumes in equilibrium. Since Vl,eq + Vr,eq = 3.0 L, 

Vl,eq + 4Vl,eq = 5Vl,eq = 3.0 L, −→ Vl,eq =
3.0 L

5
= 0.6 L,

so that Vr,eq = 4 · 0.6 L = 2.4 L . Use the ideal gas law for the left side of the partition, 

PlVl = PeqVl,eq, −→ Peq =
Vl

Vl,eq
Pl =

1.0 L

0.6 L
1.0 atm = 1.67 atm.
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Discussion: In this example, the temperature is constant because no energy enters or leaves the system 
as whole form the outside.

The energy of an ideal gas is the sum of the kinetic energies of all molecules: U = N(3kT/2) , or 

U =
3

2
nRT (monatomic gas) � (37)

and 

U =
5

2
nRT, (diatomic gas), � (38)

for a diatomic gas, such as air.

Example 9: Calculate the internal energy of air inside a ‘typical’ room.

Solution: We assume for the volume V = 6m× 4m× 2.5m = 60m3 , and calculate the number of 
moles: n = (750m3)/(22.4× 10−3m3) = 2.7 kmol. The internal energy follows 

U =
5

2
2.7 kmol · 8.3 J

mol ·K · 273K = 15MJ.
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Discussion: That’s about 3,600 food calories. This calculation shows that the energy content of 
macroscopic thermal systems is enormous. 

12.4	 Thermodynamics

The internal energy of a thermal system can be changed by adding (Q > 0 ), or removing heat 
(Q < 0 ) so that ∆U = Q  and by doing work on the gas, e.g., by pumping the tire, W = −P∆V  so 
that ∆U = −∆W . We find 

∆U = Uf − Ui = Q−W. � (39)

This equation is the basis of the conversion of work into heat, e.g., by rubbing hands against each other. 
There is no macroscopic change of the hands so that ∆U = 0. Since W < 0  [work is done on the 
system] and thus ∆Q = ∆W < 0 , and heat is given off. 

The development of thermodynamics is based on the quest to reverse the process and convert heat into 
work [that is, “useable” energy, e.g., to run an engine]. In an internal combustion engine in a car, the 
input of heat occurs during a controlled explosion of the fuel-air mixture. While work and heat are 
both energies that can be added and removed to a thermal system, they have entirely different qualities: 
work is associated with a reversible macroscopic change of the volume ∆V  and heat is associated 
with irregular [random] motion of molecules. If the only change of an isolated system would be the 
conversion of heat into work, it would imply that disorder is destroyed [and order is created]. However, 
the time-development of the ‘universe’ is in one direction only [“arrow of time”] and disorder is created 
and order is destroyed. 

The amount of disorder in a system is quantified by the entropy S  and is generally very difficult to 
calculate. Fortunately, only the change in entropy is important for most application and is determined 
by the heat added or removed, 

∆S ≥ Q

T
. � (40)

The unit of entropy is [S] = J/K . The second law of thermodynamics then states that the entropy of 
the universe always increases: 

∆S ≥ 0. � (41)

The case ∆S = 0  corresponds to reversible changes. 
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The engine returns to the same ‘state’ after one cycle [represented by the circle]. Heat is transferred at 
the temperature T and the output is in the form of work W. This engine would give a net loss of entropy 
∆S = −Q/T , and thus would violate the second law of thermodynamics. We conclude that not all 
heat converted into work, and that the engine must expel heat as exhaust. 

We conclude that a heat engine must operate between two heat baths at temperatures Th  and Tc , 
respectively. Heat is removed from the bath at the higher temperature Th  and heat is expelled at the 
lower temperature Tc . Conservation of energy gives Qh = W +Qc  so that 

W = Qh −Qc.

The overall change entropy is given by 

∆S = −Qh

Th
+

Qc

Tc
≥ 0, −→ Qc

Qh
≥ Tc

Th
.
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Efficiency is defined as the ratio of the work [or benefit] divided by the input of heat [or cost], 

ε =
W

Qh
=

Qh −Qc

Qh
= 1− Qc

Qh
< 1− Tc

Th
. � (42)

The maximum possible value is called the Carnot-efficiency. 

Example 10: Calculate the maximum possible efficiency for an engine that runs between boiling 
temperature and freezing temperature.

Solution: We have for Tc = 273K and Th = 373K . The Carnot efficieny follows 

ε = 1− 273K

373K
= 0.27,

that is, a quarter of absorbed heat can be converted into work.

Discussion: The Carnot efficiency is an idealized case of a reversible engine. That is, an engine that runs 
infinitely slowly and thus ‘delivers’ zero power. If the power of the engine is maximized, the efficient is 
less than the Carnot value. One finds εp = 1−

√
Tc/Th = 1−

√
273K/373K � 0.15. This example 

shows that the efficiency of a ‘practical’ engine is much less than the corresponding Carnot efficiency. 
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A heat pump can be used for heating. The engine requires the input of work [e.g., by plugging it in an 
electric outlet] and removes heat Qc  from cold reservoir [outside] and delivers heat Qh  into hot reservoir 
[inside the house]: Qc +W = Qh . Coefficient of performance is defined as the ratio of the gain 

COP =
Qh

W
=

Qh

Qh −Qc
=

1

1− Tc/Th
> 1.

Example 11: Calculate the COP of a heater that runs between the outside at 0◦F  and room temperature 
60◦F . 

Solution: We have Tc = 256K and Th = 293K  so that 

COP =
1

1− 256K/293K
� 8.

Discussion: Note that a value grater than unity COP > 1  does not violate conservation of energy. For 
one joule of work [paid to the electric utility company! ] eight joules of heat are delivered to your living 
room. The difference of seven joules is provided by the cold ambient air. The heat Qc  is free. If instead 
you use a “space heater,” one joule of work is converted into one joule of heat so that COP = 1 .

A refrigerator is essentially the same as a space heater, but the use is different. The cold heat bath at 
temperature Tc  is the inside of the ‘fridge’ and the heat bath at the higher temperature Th  is the air of 
the kitchen. The fridge runs by logging it into an electric outlet. The gain is the heat Qc  removed from 
the inside of the fridge and the cost is the input of work: 

COP =
Qc

W
=

Qc

Qh −Qc
=

1

Th/Tc − 1
.
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Example 12: The inside of a refrigerator is 5◦C  and the ambient air of the kitchen is 25◦C . Find the 
COP of the refrigerator.

Solution: We have Tc = 278K and Th = 298K . Then 

COP =
1

298K/278K− 1
� 14.

That is, for one joule of work [paid to the electric utility company], 14 joules of heat are removed from 
the inside the fridge, and 15 joules of heat are delivered to the ambient air.
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