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Probability spaces and random variables
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FX(x) = P ({ω ∈  / X(ω) ≤ x}) = PX ((−∞;x])
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X(ω)    

 ()
( )

= 35
120

3×()
( )

= 63
120

3×()
( )

= 21
120

1
120

      

           
         A  
          
       PX   
          P 

          
       X     
             
              
 



n
k


= n!

k!(n−k)!      k  

    n      

10
3


= 10!

3!(10−3)!
= 120 .

       A = P()  P (ω) = 1
120

.

   PX        X 
               

{X = k}  k = 0, ..., 3

          P (X = 3) =
1

120
.  {X = 2} ,         

            
P (X = 2) = 3×7

120
.      {X = 1}    

         

7
2


= 21 

      P (X = 1) = 63
120

.  P (X = 0) =
7
3


/

10
3


= 35/120.    

63 + 35 + 21 + 1 = 120 

  {X = k}     {ω ∈    X(ω) = k}.
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          (,A, P ) 
        PX   BX  
   A   BX  A.       
            
           
       

       FX  
  X      

lim
x→−∞

FX(x) = 0  lim
x→+∞

FX(x) = 1

 FX          B1 ⊂ B2 ⇒
P (B1) ≤ P (B2))  x ≤ y,   (−∞; x] ⊆ (−∞; y]   PX ((−∞;x]) ≤
PX ((−∞; y]) .

       FX(x)   
    (−∞; x] ,        (xn, n ∈ N)
      x   Bn = (−∞;xn]
     B = (−∞; x] .     
  

            
       −∞  +∞  n   

             
            
           
          x  

P (X ≥ x) = 1− FX(x) = 0.99

 X            

 X      

V aR(99%) = F−1
X (0.01)

            
     |x| .
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            X
      Y,    
  

∀x ∈ R, FX(x) ≤ FY (x)

 FX  FY     X  Y.
      X  Y      

     X  Y,    
           

P ({X ≥ x}) ≥ P ({Y ≥ x})

    x,       
 x     X    Y.    
 

    

      

          
            X
      Y,    
  

∀x ∈ R, FX(x) ≤ FY (x)

 FX  FY     X  Y.
      X  Y      

     X  Y,    
           

P ({X ≥ x}) ≥ P ({Y ≥ x})

    x,       
 x     X    Y.    
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      X       
(xn, n ∈ N)  



n∈N
P ({ω ∈  / X(ω) = xn}) =



n∈N
P (X = xn) = 1

(xn, n ∈ N)      X.
    Y        

fY             
 

FY (x) =

 x

−∞
fY (y)dy

 FY     Y. fY       Y  
  .

      
 +∞

−∞
fY (y)dy = 1

    X           
           X.  
           
 

   B ∈ A        B, 
B   

B(ω) = 1  ω ∈ B

= 0 

              
ω    ω     B.

           
         
           
              
    K = 1000   XT     
    T.          100 ×
{XT≥1000}  {XT ≥ 1000} = {ω ∈  / XT (ω) ≥ 1000} .
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  X        {x1, ..., xn} ,
 xi = xj  i = j     Γ = {B1, ..., Bn}   


X =
n

i=1

xiBi

      Bi = {ω ∈  / X(ω) = xi} , i =
1, 2, ..., n.

 Card() = N  X(ωi) = xi  

X =
N

i=1

xi{ωi}


    Card() < +∞     
     {ωi}     
           
           
  

    

           
       X,     
     Y = g(X)  g    
          
   

•            g  
            
         K   T,  
   YT = g(XT ) = max(XT −K; 0)  XT  
T    
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•           
           
        Xt  t.     
 [0; t]   

Yt = ln


Xt

1


= ln(Xt) 

          
        

•           
        
          
   

        fX 
fY               
          

   X      fX  g  
     R  R   fY
 Y = g(X)   

fY (x) =
fX(g

−1(x))

|g′ (g−1(x))|  x ∈ Y ()

= 0 

 Y () = {y ∈ R / y = Y (ω)  ω ∈ } .
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Moments of a random variable
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      40

21
     

     40
63

      
              
          
    

$40× 1

120
+ $

40

21
× 21

120
+ $

40

63
× 63

120
= $1
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    X       
{x1, ..., xn} , xi ∈ R   i.  pi = P (X = xi)  i = 1, ..., n; 
  X   P     
      E(X),   

E(X) =
n

i=1

xipi

  X       fX   FX  
  X   P       
E(X),  

E(X) =

 +∞

−∞
xfX(x)dt =

 +∞

−∞
xdFX(x)

 n   xi          


  X = B  E(X) = E(B) = P (B).
  X

n
i=1 xiBi  Bi = {X = xi} ,   

E(X) = E


n

i=1

xiBi


=

n

i=1

xiE (Bi) =
n

i=1

xipi

       EP   E  
      P.  E  
           
  

           
          
   P,     
 Q.          
 EP  EQ        .

          
          
    X    Y  X+Y  
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   V         

     (,A, P )  X    
    X  E(X) 



XdP,   

    

E(X) =





XdP = sup
Y ∈V

{E(Y ), Y ≤ X}

     E(Y )   Y ∈ V  Y  
         
     X         
       X.    
            
             
              
             

   


XdP,     E(X) 

         x   
  FX            X 
  P.         .

           X    
       X     

X = X+ −X−

 X+ = max(X; 0)  X− = max(−X; 0).    E(X)  
    

  V     
  f       sup∈ f(x)     

    f(x)  x ∈ A.
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   X         X
 E(X),        

E(X) = E(X+)− E(X−)

        X+  X− 


         E(X)  
    X       P,   
       P     E(X) 
   E (|X|)    |X| = X+ +X− 

         


   X,Z       A,B
   A 

 X = A ⇒ E(X) = P (A)

 0 ≤ X ≤ Z ⇒ 0 ≤ E(X) ≤ E(Z)

 {X ≥ 0  A ⊂ B} ⇒ E (XA) ≤ E (XB)

∀c ∈ R, E(cX) = cE(X)

 E(X + Z) = E(X) + E(Z)

 |E(X)| ≤ E (|X|)

  X = A       P (A)     
 1 − P (A)         
E(X) = P (A)

     Y = 0     V   
E(X) ≥ E(Y ) = 0.

    Z ≥ X,  

sup
Y ∈V

{E(Y ), Y ≤ X} ≤ sup
Y ∈V

{E(Y ), Y ≤ Z} 

   E(Z) ≥ E(X).

    A ⊂ B  X ≥ 0,  XA ≤ XB  
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 X ∈ V            X   
c > 0.   X  cX X+−X−  (cX)+−(cX)−.
       c   (cX)− = −cX+  (cX)+ = −cX−


E(cX) = E

(cX)+


− E


(cX)−



= −cE

X−+ cE


X+


= −c (−E(X)) = cE(X)

             
    X  X+ −X−

 |X| = X++X− E (|X|) = E(X+)+E(X−) ≥ |E(X+)−E(X−)|
      x  y    x + y > x − y 
x+ y > y − x.

     (x1, x2, ..., xn)     X  

    E(X)    x = 1
n

n

i=1

xi.
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    X     E [u(X)]   
  u     

            
             
         50 = 1

2
(0 + 100)  

           E(X)  
      X.

      

E [u(X)] ≤ u [E(X)]

 X  u(X)   

         
      

   X       u  
   R  R   u(X)     

E [u(X)] ≤ u [E(X)] 

          
 x1  x2   p  1− p.   

pu(x1) + (1− p)u(x2) ≤ u(px1 + (1− p)x2)

      u(x)     
  (x1, u(x1))  (x2, u(x2)).

  f      (x, y)   λ ∈ [0; 1] , f(λx + (1 − λ)y) ≥
λf(x) + (1− λ)f(y)
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    u      
  u           X  

     X    

          
          u′ > 0 
u′′ < 0          
            
        
        

         
           
        
          
         

           
 

    
        2n     

      n        
      

 N          
            
  1/2.  P (N = n) = 1

2n
     

n− 1           
     2n.        
X      

E(X) =
+∞

n=1

2n × P (N = n) =
+∞

n=1

2n × 1

2n
= +∞
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Moments of a random variable
   

            
        

         
          
        

E(ln(X)) =

+∞

n=1

ln(2n)× 1

2n
= ln(2)

+∞

n=1

n

2n

   
+∞

n=1

n

2n
=

+∞

n=1

+∞

k=n

1

2k
= 2

   E(ln(X)) = 2 ln(2) = ln(4)     
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           X. 
           
           
            
            
         

  

         X, 
  2(X)        

2(X) = E(X2)

 2(X)  X   

   X       
 X,  V (X)  σ2(X)   

V (X) = σ2(X) = E

(X − E(X))2



V (X)           Y =
X − E(X),   V (X) = 2(Y ). Y      
 E(Y ) = 0

   X     

V (X) = E

(X − E(X))2


= E(X2)−E(X)2 



E

(X − E(X))2


= E


X2 − 2XE(X) + E(X)2




= E

X2

− 2E [XE(X)] + E(X)2 

= E(X2)− 2E(X)2 + E(X)2 

= E(X2)− E(X)2 

 σ      σ        
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   card() =  P (ω) = 0.25   ω,  X 


X =




2
3
−1
0




E(X) = 1      Y = X − E(X) 
 

Y =




1
2
−2
−1




   X  Y     

V (X) = V (Y ) = 0, 25×

12 + 22 + (−2)2 + (−1)2


= 2.5

          
 

V (X) = V (X + c) 

    c.

     (x1, x2, ...., xn)     X  
           

s2 =
1

n− 1

n

i=1

(xi − x)2 

  n−1   n       
 X         x.

   X       
  X,  σ(X)      V (X)

σ(X) =

V (X)
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Moments of a random variable
     

      n     X, 
 n(X)        

n(X) = E(Xn)

   X         
 3.    X,  Sk(X)   

Sk(X) =
3(X − E(X))

σ(X)3


      (x1, x2, ...., xn)    
X, Sk(X)   

Sk =
n

(n− 1)(n− 2)


xi − x

s

3



       

            
        Sk = −0.73  
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        X   

κ(X) =
4(X − E(X))

σ4


       X   

eκ(X) = κ(X)− 3 

     κ = 3.      
     κ(X)     
           κ(X) =
8.93             
            
          
      

         
          
        
         

      
 L0 (,A)          (,A).
           
 

∀ω ∈ , (X + Y ) (ω) = X(ω) + Y (ω)

∀ω ∈ , ∀c ∈ R, (cX)(ω) = cX(ω)

     L0 (,A)        
             
           
            
        
       

           
      P   .  
     P      
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Moments of a random variable
       

     

     n   Rn  x  y,  
         d(x, y)  x  y 
      d     Rn    
 Rn,  

x = y ⇔
n

i=1

(xi − yi)
2 = 0 

  xi = yi  i = 1, ..., n.
          

 [a; b] .         

d(f, g) =

 b

a

|f(x)− g(x)| dx 

            d(f, g) = 0 
f = g  f(x) = 0  [a; b]  g(x) = 0  [a; b[  g(b) = 1. 

   d(f, g) = 0  f  g      
 

      f  g        
              
         R  

fRg  f  g           

R        fRf  fRg ⇔
gRf)   fRg  gRh⇒ fRh)

       d     
    R     
 [a; b] .  f̂  ĝ       
f  g,   d(f̂ , ĝ)          
(f, g)     f̂ × ĝ.

           
     

  d    S     S × S  R    d(x, y) = 0
 x = y  d(x, y) = d(y, x)   d(x, z) ≤ d(x, y) + d(y, z)   
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Moments of a random variable       

     X  Y   (,A, P ) 
 P  P   

P (ω ∈  / X(ω) = Y (ω)) = 1

      X = Y a.s⇔ P (X = Y ) = 1

         

   (,A, P )    A ∈ A  P  
P (A) = 0.

             
     

L1(,A, P )      P    
 (,A, P ).

     R   L1(,A, P ) 

XRY ⇔ X = Y P 

   

   P   P             
    

       

     X  Y   (,A, P ) 
 P  P   

P (ω ∈  / X(ω) = Y (ω)) = 1

      X = Y a.s⇔ P (X = Y ) = 1

         

   (,A, P )    A ∈ A  P  
P (A) = 0.

             
     

L1(,A, P )      P    
 (,A, P ).

     R   L1(,A, P ) 

XRY ⇔ X = Y P 

   

   P   P             
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Moments of a random variable
       

   L1(,A, P )
  L1(,A, P )     R    
 L1(,A, P ).     L0(,A, P )    R
     L0(,A).

   L1(,A, P )      L0(,A, P ).

    L1(,A, P )  R+,  X → X1  


X → X1 = E(|X|)
  

    L1  R   X  E(X),  X →
E(X),     

     L1(,A, P )      L0 (,A, P ) 
          

     X → X1    X1 = 0 ⇔ X = 0 P 
      

X + Y 1 ≤ X1 + Y 1
   ω ∈ ,   |X(ω) + Y (ω)| ≤ |X(ω)|+ |Y (ω)| , 

E(|X + Y |) ≤ E(|X|) + E(|Y |)

       αX1 = |α| X1    
  

          
 

        
              
           

  L         
       S     S  R,  . 
 x = 0     x = 0
 ∀x ∈ S,∀c ∈ R, cx = |c| x
 ∀(x, y) ∈ S × S, x+ y ≤ x+ y
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      L1(,A, P ))       
d1(X, Y ) = X − Y 1 , L1(,A, P )         
       d1   L1 
   

       (Xn, n ∈ N∗)  
L1    X ∈ L1    

lim
n→+∞

E (|Xn −X|) = 0

   Xn
L→ X.

  L1        
        Rn 
   L1.           
          
       

   L2(,A, P )
  L2(,A, P )       
  L2(,A, P )        
     L2(,A, P )    


   L2(,A, P )      L1(,A, P )

  X  Y     L2(,A, P )    XY  
L1(,A, P ).

Download free eBooks at bookboon.com



Probability for Finance

55 

Moments of a random variable
       

       
      
         

      

E(XY )2 ≤ E(X2)E(Y 2) 

 Z = X + tY  t ∈ R 

E

Z2


= E

X2 + 2tXY + t2Y 2


≥ 0

= E

X2

+ 2tE (XY ) + t2E


Y 2


          t.      
      ∆′        ∆′

  
∆′ = E (XY )2 − E


X2

E

Y 2


            X 
Y   L2.            XY 


         L2.
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Moments of a random variable
       

     L2×L2  R   ., .  


(X, Y )→ X, Y  = E(XY ) 

     L2.
     

X2 =

X,X =


E(X2) 

    d2    d2(X, Y ) = X − Y 2 .

   ., .    X,X = E(X2) > 0  X 
 P           
 

      L1,       L2  
L2     

    (Xn, n ∈ N∗)   L2    X ∈ L2

    
lim

n→+∞
E

(Xn −X)2


= 0

L2             
           
  L2          Rn, 
         L2.    
     

   

    R2,    f : R2 → R   

∀x ∈ R2, f(x) = a1x1 + a2x2 

 a1  a2     x′ = (x1, x2).     
(a1, a2)    f.    a′ = (a1, a2)  
     x ∈ R2  f(x)      

   H            
         H      
   H  
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  a  x.         f 
R2  R      a ∈ R2.     
          
 L2(,A, P ).
   f       L2  R 
 Yf ∈ L2     X ∈ L2

f(X) = X, Yf  = E(XYf )

  X         f(X)  
       X → f(X)    
         Card() = N  
        Yf  

f(X) = X, Yf  = E(XYf ) =
N

i=1

X(ωi)Yf(ωi)P (ωi) 

     X = ei = {ωi},   
  ωi.

f(ei) = ei, Yf = P (ωi)Yf (ωi) 

f(ei)                
       ωi.         
P (ωi)  Yf (ωi).   Yf(ωi)       
       f(ei)     
        Yf (ωi)    
    Yf(ωi)         
      

 Yf(ωi)       
   ωi      X,     
     

X =
N

i=1

xiei

 X(ωi) = xi.   

f(X) = X, Yf =
N

i=1

xif(ei) =
N

i=1

xiYf(ωi)P (ωi) 

   R,        x  y   
< x, y >=





xy.
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     L2      
        x  R2     C ⊂
R2.    C     z     C   
 x.    z      x  C.  
 y     y.         
x−z  y−z    90◦  270◦.       
            
        

< x− z, y − z > ≤ 0 

          
    C          C   
z)

  A       
∀λ ∈ [0; 1] ,∀(x, y) ∈ A×A, λx+ (1− λ)y ∈ A.
 R,      x  y    < x, y > / x . y .

       

  

     L2      
        x  R2     C ⊂
R2.    C     z     C   
 x.    z      x  C.  
 y     y.         
x−z  y−z    90◦  270◦.       
            
        

< x− z, y − z > ≤ 0 

          
    C          C   
z)

  A       
∀λ ∈ [0; 1] ,∀(x, y) ∈ A×A, λx+ (1− λ)y ∈ A.
 R,      x  y    < x, y > / x . y .
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Moments of a random variable       

     R2

          
   

   C       L2  X ∈ L2.
  Z ∈ C  

X − Z, Y − Z  0   Y ∈ C

Z      X  C.      
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   X  Y      L2(,A, P )
   X  Y,  Cov(X,Y )   σXY ) 
 

cov(X, Y ) = E [(X − E(X)) (Y − E(Y ))]

   X  Y          

 X(ω) Y (ω)
ω1  
ω2  
ω3  
ω4  

    X  Y

         E(X) = E(Y ) = 2. 
       

 X(ω)− E(X) Y (ω)− E(Y )
ω1  
ω2  
ω3  
ω4  

      

      

cov(X, Y ) =
1

4
(−1× 1 + (−2)× (−1) + 1× (−1) + 2× 1) = 0.5

         
 P          
  X  Y.       
   a, b, c, d        
   X, Y, Z,W  

Cov(aX+bY, cZ+dW ) = ac×σXZ+ad×σXW+bc×σY Z+bd×σYW 

     Cov(aX, Y ) = aCov(X, Y ).
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Moments of a random variable
       

       

V (X + Y ) = V (X) + V (Y ) + 2Cov (X, Y )

 Cov (X,X) = V (X).

   Cov (X,Y )        
X  Y.             
           
          
   

   X  Y     L2;  
  X  Y    ρXY ,   

ρXY =
Cov(X,Y )

σ(X)σ(Y )

 σ(X)  σ(Y )      X  Y.

ρXY     Cov( X
σ(X)

, Y
σ(Y )

),      

             
    X  Y     


ρXY =
X, Y 

X2 Y 2
 ρXY             
 X  Y.             
        
             
          
            
   

       

σ(X) =


1

4
((−1)2 + (−2)2 + (1)2 + (2)2) =

√
2.5 = 1.58

σ(Y ) =


1

4
((1)2 + (−1)2 + (−1)2 + (1)2) = 1

ρXY =
0.5

1.58
= 0.316
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Moments of a random variable
       

           
  X  Y         
           ρ 
    

  X  Z      L2  a, b, c, d
  

Cov(aX + b, cZ + d) = ac× Cov(X,Z)

ρaX+b,cZ+d = sign(ac)× ρXZ

           Y
W            
σ(aX + b) = |a| σ(X)  σ(cY + d) = |c| σ(Y )
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Moments of a random variable
  

     X  Y  L2    
     

            
          
 

    


 

              
          
          
       

          
            X1 
      X1       
           X0 = 90   
  

E (X1) =
1

2
[0 + 200] = 100 

            
           
     

X0 =
E (X1)

1 +Riskpremium
= 90 

           
  X0           
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Moments of a random variable
       

           
 Q   P   

X0 = EQ(X1) 

           
     = {ω1, ω2} , X1(ω1) = 200  X1(ω2) = 0.

 Q   

Q(ω1) = q1 = 0.45

Q(ω2) = q2 = 1− q1 = 0.55

         EQ (X1) = 90 = X0. 
 Q            
    

q1 × 200 + q2 × 0 = 90 

q1 + q2 = 1 

           
            
 Q          
           
    

         
              


X1(ω1) = 200 X1(ω2) = 100 X0 = 130 

Y1(ω1) = 150 Y1(ω2) = 110 Y0 = 120 

      Q   X0 = EQ(X1).    

130 = 200Q(ω1) + 100 (1−Q (ω1))

   Q(ω1) = 0.3.

     Q′   Y0 = EQ′(Y1).   
 

150Q′(ω1) + 110 (1−Q′ (ω1)) = 120
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Moments of a random variable
  

    Q′(ω1) = 0.25.
Q  Q′          

            
     

            
             
             
           


     Q  Q′       
    (X0, Y0)      


      θ  

θX


200
100


+ θY


150
110


+ θZ


1
1


=


0
0



 θZ             
             
            
              


 θX = −2; θY = 5; θZ = −350   

−2

200
100


+ 5


150
110


− 350


1
1


=


0
0



        −2× 130 + 5× 120− 350 = −10
           

              
  (X0, Y0)       

         X1    
  Y1,   X0     Y0      
        −2X0+5Y0 = 350.    
             
           Y1 
    Y0 = 122.
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Moments of a random variable
       

    Q”    

122 = 150Q”(ω1) + 110 (1−Q”(ω1))

 Q”(ω1) =
12
40

= 0.3.

        Q”    
 Q          
            
        Q   
             
       

          r    
         1

1+r
,      X1 



X0 =
1

1 + r
EQ(X1) 
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Moments of a random variable
  

           
            
            
         Q  
   

   

            
          
      ω     
     ω        
       {ω} 

        ω1  
A1

1,           P (ω1) > 0  
 A1

0           P (ω1),
          A1

0 = EQ (A1
1) ,

   EQ (A1
1) = Q(ω1).    

             
  P        Q. 
            
            


     

      Q     
   P 

∀B ∈ A, P (B) = 0⇒ Q(B) = 0

   Q << P.

    P  Q   

∀B ∈ A, P (B) = 0⇔ Q(B) = 0

     Q << P  P << Q.
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  Q << P         A
 φ  

∀B ∈ A, Q(B) =



B

φdP

      P (B) = 0 ⇒ Q(B) = 0   
   φ,           
  Q(B) =


B
φdP,     φ = dQ

dP
   

  φ        Q
   P.   P  Q   dQ

dP
 dP

dQ
 

dQ

dP
= 1/

dP

dQ

   P  Q      (,A)
 φ = dQ

dP
.     

EQ (X1) = E (φX1)

        
X1 EQ (X1)     X1.        
 P     φX1     E (φX1) = φ,X1
         L2 (,A, P ) . φ  
          

    Card() = N  A = P ()  P (ω) > 0  
ω          

Q({ω}) =


{ω}
φdP = φ(ω)P (ω)

φ    

φ(ω) =
Q(ω)

P (ω)

      φ       
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Moments of a random variable

   

  

 

             
            
      

   n       
  (,A, P )     (Rn,BRn) .    X =
(X1, ...., Xn)

′   Xi    

           
        

          


   

  

 

             
            
      

   n       
  (,A, P )     (Rn,BRn) .    X =
(X1, ...., Xn)

′   Xi    
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        X = (X1, ...., Xn)
′   

FX  Rn  [0; 1]  

FX(x) = P (∩ni=1 {Xi ≤ xi})

 x ∈ Rn    (x1, x2.., xn)
′ .

   Xi         X  
  fX  Rn  R  

FX(x) =

 x

−∞

 x

−∞
...

 xn

−∞
fX(x)dx1...dxn

          
            
        E(X)   
    Xi  X      


X =




V (X1) ... Cov(X1, Xj) Cov(X1, Xn)

Cov(Xj ,X1) V (Xj)
Cov(Xn, X1) V (Xn)




      X   

X =




σ2
1 ... σ1j σ1n

σj1 σ2
j

σn1 σ2
n




         
         
  

   X    n 
  U,W   n   Rn.

 E(U ′X) = U ′E(X)

E (U ′X,W ′X) = U ′E(XX ′)W

V (U ′X) = U ′XU

CoV (U ′X,W ′X) = U ′XW
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          U ′X =n
i=1 UiXi      V (U ′X)     X   (n, n)

  XX ′   n× n   E(XX ′)    n× n 
   E(XiXj)          

          
 

    

     n   X    
  U ∈ Rn          n
      U,  R,    

R = U ′X =
n

i=1

UiXi

           
 

E(R) = U ′E(X)

V (R) = U ′XU

  E(X)          
             
    

 U        

n

i=1

Ui = 1

    U ′ =1       Rn  
    

         
            e.
X             
           
          

 (n, n)  M        ∀x ∈ R, x = 0⇔ x′Mx > 0.
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Moments of a random variable
       

     

min
1

2
U ′XU

  

U ′E(X) = e

U ′ =1

  1
2
         

            

    

L (U, λ, ) =
1

2
U ′XU + λ (e− U ′E(X)) +  (1− U ′)

        X =   E(X) =
       

∂L
∂U

= U − λ− = 

∂L
∂λ

= e− U ′ = 

∂L
∂

= 1− U ′ = 

       

U = λ−1+−1

      

e = λ′−1+′−1

1 = λ′−1+′−1

     

U =
1

D


(eC − A)−1+(b− eA)−1





A = ′−1

B = ′−1

C = −1

D = BC − A2

          x →
√
x′−1x

    Rn      x, y = x′−1y. 
    D   
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      χ2,  t   
       

  

  

  

          


     X    
 p  X        p  1− p.
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     B ∈ A  P (B) = p,     B
      p.    

B ∼ B(p) 

            
      X   a  b (a > b) 
 p  1− p,   Y = 1

a−b(X − b)     
  p  1− p. Y   B(p).      
           
              
           ln(u)
 ln(d) u  up  d  down).       
S0,     S1,     uS0  dS0. 
  

ln(S1) = ln(S0) +X

 X       ln(u)  ln(d).  
            
    

           
            
         B = {SPT ≥ K} 
SPT               T
 K             
           
         P (B).

  

   X ∼ B(p),  E(X) = p  σ2(X) = p(1− p)

     X      
 p,   E(X)    

E(X) = p× 1 + (1− p)× 0 = p

   X,   σ2(X)       
  

σ2(X) = E(X2)− E(X)2 = p− p2 = p(1− p)

             X = X.
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Usual probability distributions in financial models
   

       Y    y1  y2
  p  (1− p).   

σ2(Y ) = p(1− p)(y1 − y2)
2 

      X = 1
y−y (Y − y2)  B(p) 

Y = (y1 − y2)X + y2    

E(Y ) = (y1 − y2)E(X) + y2 = py1 + (1− p)y2 

σ2(Y ) = (y1 − y2)
2σ2(X) = p(1− p)(y1 − y2)

2 

            
      Y       
  y1 = ln(u)  y2 = ln(d).      
 

σ2(Y ) = p(1− p) ln
u
d

2
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   u  d       
          
  

    X      
 n  p  X       n   
Xi, i = 1, ..., n,     B(p).   

P (X = k) =


n

k


pk(1− p)n−k



n
k


= n!

k!(n−k)!       k   n.
  X   B(n, p).

           
         
           S 
  St   t  ,  (t+ 1)   


St+1 = St ×Xt+1

 Xt+1   u  d   p  1−p.  
Xt    St      

St = S0 ×
t

s=1

Xs

    

ln


St
S0


=

t

s=1

ln(Xs)

          s = 0  s = t 
         t   
  ln(u)  ln(d)   p  1− p.
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    ln(St)  B(n, p)   

P (ln(St) = ln(S0) + k × u) =


n

k


pk(1− p)t−k



n
k


         

 k     t− k  

  

         
      

   X ∼ B(n, p)  E(X) = np  σ2(X) = np(1− p)

    B(n, p)       n 
      B(p)).

     X ∼ B(n, p)

E(X) = np  σ2(X) = np(1− p)

      n   
      

        
    t    

E


ln


St
S0


= t (p ln (u) + (1− p) ln(d))

σ2


ln


St
S0


= tp(1− p) ln

u
d

2

          
             
            
           
        St−St

St
.
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Usual probability distributions in financial models
     

  



           
             
   

    X      
 λ  X        

∀k ∈ N, P (X = k)= exp(−λ)λ
k

k!

   X ∼ P(λ).

      P(2).      
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Usual probability distributions in financial models
   

    P(2)

  

   X ∼ P(λ)  E(X) = λ  σ2(X) = λ

          
        ex =

+∞
k=0

xk

k!
.

E(X) =
+∞

k=0

kP (X = k) =
+∞

k=0

k exp(−λ)λ
k

k!
= exp(−λ)

+∞

k=1

k
λk

k!

= λ exp(−λ)
+∞

k=1

λk−1

(k − 1)!
= λ exp(−λ)

+∞

k=0

λk

k!
= λ exp(−λ) exp(λ) = λ

           

σ2(X) = E(X2)− E(X)2 = exp(−λ)
+∞

k=0

k2λ
k

k!
− λ2 
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Usual probability distributions in financial models
     

   

+∞

k=0

k2λ
k

k!
=

+∞

k=1

k2λ
k

k!
= λ

+∞

k=1

k
λk−1

(k − 1)!

= λ
+∞

k=1

(k − 1)
λk−1

(k − 1)!
+ λ

+∞

k=1

λk−1

(k − 1)!

= λ2
+∞

k=0

λk

k!
+ λ

+∞

k=0

λk

k!

=

λ2 + λ


exp(λ)

      σ2(X) = λ.

   P(λ)        
             
 

          
  B(n, p)  n    p      
             
              
             
       n     
  p           
        np    np(1− p)
         np(1− p) ≃ np
 p          
            
    λ = np.

          
           P(λ),   
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Usual probability distributions in financial models

   

  

  



  X        [a; b] ,
a < b,    fX   

fX(x) =


1

b−a  x ∈ [a; b]

0 

   X ∼ U([a; b]).

  FX)  X      

FX(x) =





x−a
b−a  x ∈ [a; b]
0  x < a
1  x > b

           
[0; 1] .

         [c; d]  
[a; b]

PX ([c; d]) = PX (]c; d]) =
d− c

b− a
= FX(d)− FX(c)

           
   [a; b]         
          
         a  b.

  

   X ∼ U([a; b])  E(X) = b+a
2

 σ2(X) = (b−a)
12

  X      [a; b] ,    X 
 

E(X) =

 +∞

−∞
xfX(x)dx =

1

b− a

 b

a

xdx =
1

b− a


x2

2

b

a

=
1

2

(b2 − a2)

b− a
=

b+ a

2
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Usual probability distributions in financial models
     

        [0; 1]

        

σ2(X) =

 +∞

−∞
x2fX(x)dx−


b+ a

2

2

=
1

b− a


x3

3

b

a

−

b+ a

2

2

=
1

3

(b3 − a3)

b− a
− 1

4
(a2 + 2ab+ b2)

=
1

3
(a2 + ab+ b2)− 1

4
(a2 + 2ab+ b2)

=
(b− a)2

12
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  X       m 
σ   X ∼ N (m,σ))    fX   

fX(x) =
1

σ
√
2π

exp


−1

2


x−m

σ

2


fX            
      x = m      
     2/3       
    [m− σ;m+ σ]         
[m− 2σ;m+ 2σ] .

         N (0, 1) 
    

    N (0, 1)

         
            χ2 ,
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   X ∼ N (m,σ2), E(X) = m  σ2(X) = σ2

          

E(X) =
1

σ
√
2π

 +∞

−∞
x exp


−1

2


x−m

σ

2

dx

 y = x−m
σ
,   

E(X) =
1√
2π

 +∞

−∞
(σy +m) exp


−1

2
y2


dy

=
σ√
2π

 +∞

−∞
y exp


−1

2
y2


dy +

m√
2π

 +∞

−∞
exp


−1

2
y2


dy

=


− σ√

2π
exp


−1

2
y2

+∞

−∞
+m = m

 E(X) = m.        exp

−1

2
y2


       
   y = x−m

σ
      

σ2(X) =
1√
2π

 +∞

−∞
(σy +m)2 exp


−1

2
y2


dy −m2

=
σ2

√
2π

 +∞

−∞
y2 exp


−1

2
y2


dx+

2mσ√
2π

 +∞

−∞
y exp


−1

2
y2


dx

         0      
    2mσ) ;       

σ2

√
2π

 +∞

−∞
y × y exp


−1

2
y2


dx

=
σ2

√
2π


y exp


−1

2
y2

+∞

−∞
−
 +∞

−∞
− exp


−1

2
y2


dx



= σ2


1√
2π

y exp


−1

2
y2

+∞

−∞
+

1√
2π

 +∞

−∞
exp


−1

2
y2


dx



             
1.    σ2(X) = σ2.

Download free eBooks at bookboon.com



Probability for Finance

86 

Usual probability distributions in financial models
     

            
          
           
           
          
  

  



         0  t  
 r = ln


St
S


 St   t  (t > 0).  

           
 St = S0e

r          
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  X       m
 σ2  ln(X) ∼ N (m,σ2).    X   

fX(x) =





1
xσ

√
2π

exp


−1

2


ln(x)−m

σ

2


 x > 0

0 

  X ∼ LN(m,σ2).

          
 m = 0  σ = 1
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   X ∼ LN(m,σ2), E(X) = exp

m+ σ

2


 σ2(X) =

exp (2m+ σ2) (exp(σ2)− 1))

      

E(X) =
1

σ
√
2π

 +∞

0

exp


−1

2


ln(x)−m

σ

2

dx

  y = ln(x),     

E(X) =
1

σ
√
2π

 +∞

−∞
exp(y) exp


−1

2


y −m

σ

2

dy

       

E(X) =
1

σ
√
2π

 +∞

−∞
exp


−1

2


(y − (m+ σ2))2

σ2


exp


m+

σ2

2


dy

= exp


m+

σ2

2



                
    (m+ σ2)   σ2.

       V (X)     E(X2) =
exp (2(m+ σ2))     V (X) = exp (2m+ σ2) (exp(σ2)− 1))

   Y ∼ N (0, 1)  X     

X = exp


m− σ2

2


+ σY



 m  σ    σ > 0. X   1  
        m  σ   
    

     X    K   1  
   max(X −K; 0)    
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    E

(X −K)+


 (x)+ = x  x > 0  (x)+ = 0

  fX    X,  :

E

(X −K)+


=

+∞

0

fX(x)max(x−K; 0)dx =

+∞

K

fX(x)(x−K)dx

=

+∞

K

xfX(x)dx−K

+∞

K

fX(x)dx 

=

+∞

K

xfX(x)dx−KP (X ≥ K) 

=

+∞

K

xfX(x)dx−KP (ln(X) ≥ ln(K)) 

     X 

P (ln(X) ≥ ln(K)) = P


m− σ2

2


+ σY ≥ ln(K)




= P


Y ≥

ln(K)−

m− σ

2



σ


 

   N(x)         

P (X ≥ K) = 1−N



ln(K)−


m− σ

2



σ


 

= N



− ln(K) +


m− σ

2



σ


 

             


            
  

+∞

K

xfX(x)dx = emN



− ln(K) +


m+ σ

2



σ
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      m = 3%  σ = 20%.  
             
               
     [900; 1000] .         
 [1000; 1100]?       
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 χ2   t    

  χ2 

     Y   χ2   n 
    Y    

Y =
n

i=1

X2
i 

  Xi        ∀i,
Xi ∼ N (0, 1).

            
  σ2      (X1, ....Xn)   
     (m,σ2

0),   Y 


Y =
n

j=1


Xi −m

σ0

2



  χ2   n       

σ2
0Y

n
=

1

n

n

j=1

(Xi −m)2 

           

  m      X = 1
n

n

i=1

Xi,  

Y ∗,    m  X      χ2 

 n− 1       1
n−1

n

j=1


Xi −X

2
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 χ2       χ2    
            
     

  t 

     Y   −t 
 n     Y   

Y =
Z
X
n



 Z       X   χ2 
 n   
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   n)      n/(n−2)   
   3(n−2)/(n−4).      n > 4.  
 n = 6,            
    

   

          
      F     
      

     Y    
   

Y =
X

n
X

n



 X1 (X2)   χ2   n1 (n2)   

      F (n1, n2)      F (n2, n1) 
        F    
             
        n1  n2   
         
           
             
         F   
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 t           t + 1,
       t.      
        
          
         
            
         

  

  

           
           
(,A, P )   = {ω1, ω2, ω3, ω4} , A = P()  P (ωi) = 0.25  
i = 1, .., 4.    X  Y       
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 X Y
ω1 1 1
ω2 2 1
ω3 3 2
ω4 4 2

    X  Y

  

E(X) =
1

4
(1 + 2 + 3 + 4) = 2.5 

E(Y ) =
1

4
(1 + 1 + 2 + 2) = 1.5 

      Y       X  .

 Y (ω) = 1,    ω    ω1  ω2.   
  {ω1, ω2}         {Y = 1} 
          {Y = 1} .  
       

(P (ωi |{Y = 1}), i = 1, ..., 4) =


1

2
;
1

2
; 0; 0




          X  
     E (X |{Y = 1}) 

E (X |{Y = 1}) =


X(ωi)P (ωi |{Y = 1}) = 1

2
(1 + 2) = 1.5 

    E(X)        {Y = 1} 
       

           
         Y     
    Y.     Y,       
             
   X    1.5.    
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       X  Y   
 (xi, i = 1, ..., n)  (yj, j = 1, ..., p) .

        X 
{Y = yi}      PX|Y (. |yi )   

PX|Y (x |yi ) = P (X = x |Y = yi ) =
P ({X = x} ∩ {Y = yi})

P ({Y = yi})

       P ({Y = yi}) = 0     
        Y. PX|Y (. |yi )  
       X.
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 fXY          ,
fX  fY     X  Y.

    y  fY (y) > 0,    
X  {Y = y}    fX|Y (. |y )   

fX|Y (x |y ) =
fXY (x, y)

fY (y)

   X     fX  B    
 P (B) = 0    X   B   

fX(x |B ) =


fX(x)
P (B)

 x ∈ X(B)

0 


         
        

       

         
          A.

          X 
  x1, ..., xN ,    B  A,    E(X |B ) 
  

E(X |B ) =
N

i=1

xiP ({X = xi} |B )

        X  
fX    B  A,    E(X |B )   

E(X |B ) =
1

P (B)



X(B)

xfX(x)dx =

 +∞

−∞
xfX(x |B )dx
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           {Y = 2}
 

E(X |{Y = 2}) =
N

i=1

xiP ({ωi} |{Y = 2}) 

= 3× P (ω3 |{Y = 2}) + 4× P (ω4 |{Y = 2}) 

=
1

2
(3 + 4) = 3.5 

     P (ω1 |{Y = 2}) = P (ω2 |{Y = 2}) = 0.

            
             
   X       Y. 
    Y,        
             
  

       
 

 

         X, 
 x1, ..., xN ,      Y,   
y1, ..., yM ,   E(X |Y ),      

∀ω ∈ {Y = yj} , E(X |Y )(ω) =
N

i=1

xiP ({X = xi} |{Y = yj}) 

        X  Y  
 

 E(X |Y )
ω1 1.5
ω2 1.5
ω3 3.5
ω4 3.5

     X    Y
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   X  Y     fX  fY  
    fX|Y (x |y )  .   
  X  {Y = y}  

E (X |Y = y ) =

 +∞

−∞
xfX|Y (x |y )dx

      X  Y   
  

∀ω ∈ {Y = y} , E(X |Y )(ω) =

 +∞

−∞
xfX|Y (x |y )dx

      Y     {Y = yj}
    .        E(X |Y )
              Y, 
        Y    
    E(X |Y ).       E(X |Y ) 
BY .         
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 (  X ∈ L1(,A, P )),    B  A,   B
  Z, 

∀B ∈ B, E (ZB) = E (XB) 

    

•  Z         Z  Z ′ 
           
        
      E(X |B ).

•        X    
 E(X |B )           B. 
             
 

•       X  B, E(X |B ) = X.

   Card() = , P (ωi) = pi   ωi  B  

B = {∅, {ω1, ω2} , {ω3, ω4} ,}

 B1 = {ω1, ω2} B2 = {ω3, ω4}  X    X = (x1; x2; x3;x4) .
   

p1x1 + p2x2 = p1z1 + p2z2 

p3x3 + p4x4 = p3z3 + p4z4 

 Card  , X              
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    Z   (z1; z2; z3; z4) . 
    B1      B2.  Z  B
        B1   B2.   

z1 = z2

z3 = z4

  

z1 = z2 =
1

p1 + p2
[p1x1 + p2x2] = E (X |B1 )

z3 = z4 =
1

p3 + p4
[p3x3 + p4x4] = E (X |B2 )

        B1 (B2)  
         X  
 B1(B2).

      X   B,  E (X |B )
    X.

    L2 ,A, P )

        
           
     L2 (,A, P ) .         


  

          
       R2,    


d(x, y) =


(x1 − y1)2 + (x2 − y2)

2

 x′ = (x1, x2)  y′ = (y1, y2) .

   x ∈ R2,         z =
(z1, z1)             x. 
  

minz(x1 − z1)
2 + (x2 − z1)

2

         z1 = z2.
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    L2 (,A, P ) 

   z1 = x+x
2

.    z    
  x ∈ R2        

    z − x    z.

< z − x, z >= (z1 − x1)z1 + (z1 − x2)z1 

=
x2 − x1

2
z1 +

x1 − x2

2
z1 = 0 

   R2     

d∗(x, y) =


p(x1 − y1)2 + q (x2 − y2)

2

 p + q = 1, p > 0, q > 0.        
  

      

z1 = px1 + qx2

z1            
    x

       L2

          
       X    
L2 (,A, P ) ,    E(X |B )  B  
     B   L2 (,B, P ) .

   L2 (,A, P )     R4  L2 (,B, P )
 R2           
      E(X |B )      X 
L2 (,B, P ) .    E (X |B )    

minZ∈L,B,P )E

(X − Z)2


= minZ∈L,B,P )d(X,Z)

2 = E

(X − E (X |B ))2



             
  E (X |B )  B   

z1 = z2 

z3 = z4 

           
           P  

PB        B  L,B, P ).      
 P       B.
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E

(X − Z)2


= p1(x1−z1)2+p2(x2−z1)2+p3(x3−z3)2+p4(x4−z3)2 

      z1  z3     
 

∂E

(X − Z)2



∂z1
= −2 [p1(x1 − z1) + p2(x2 − z1)] = 0 

∂E

(X − Z)2



∂z3
= −2 [p3(x3 − z3) + p4(x4 − z3)] = 0 

    

z1 = z2 =
1

p1 + p2
(p1x1 + p2x2) = E (X |B ) (ω1) = E (X |B ) (ω2)

z3 = z4 =
1

p3 + p4
(p3x3 + p4x4) = E (X |B ) (ω3) = E (X |B ) (ω4)
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   (X, Y )      L2 (,A, P ) 
B,B′    A  B ⊂ B′

  X    c ∈ R, E (X |B ) = c

 ∀(a, b) ∈ R2, E (aX + bY |B ) = aE (X |B ) + bE (Y |B )

  X ≤ Y, E (X |B ) ≤ E (Y |B )

 E (E (X |B′ ) |B ) = E (X |B )

  X  B E (XY |B ) = X E (Y |B )

  X    B, E (X |B ) = E(X)

               
       

   c     c.      
        B  
    c      L2 (,B, P ) . 
 L2 (,B, P )      L2 (,A, P ) ,     

           


            
        
E (X |B′ )     X  L2 (,B′, P ) . E (E (X |B′ ) |B )
    L2 (,B, P )  E (X |B′ )

        L2 (,B′, P )   
L2 (,B, P )          
 L2 (,B, P ) .         
         B = {∅,} E (X |B ) = E(X)
  E (E (X |B′ )) = E (X)  B′ 

     E (X − E(X) |B ) = 0  E(X)   

      X −E(X)     Y 
L2 (,B, P ) 

E((X − E(X)) Y ) = E (X −E(X))E(Y ) = 0 
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 X−E(X)  Y.           
          
     

    

           
         
          
         
           


     X = (X1, ...., Xn)     

 
n

i=1

aiXi    

 m′ = (E(X1), ..., E(Xn))      X 
   X.   fX  X   

∀x ∈ Rn, f(x) =


1√
2π

n
1

Det(X)
exp


−1

2
(x−m)′−1

X (x−m)




 Det(X)         
  

   X = (X1, ....,Xn)      
m X ;  p < n  Y1 = (X1, ...., Xp)  Y2 = (Xp+1, ...., Xn) .
 X    

X =


Σ11 Σ12

Σ21 Σ22



 Σii      Yi  Σij    
     Yi  Yj  i, j = 1, 2, i = j. 
   Y1   Y2 = y2 ∈ Rn−p   
    

E (Y1 |Y2 = y2 ) = E(Y1) + Σ12Σ
−1
22 (y2 − E(Y2)) 

Y|Y=y = Σ11 − Σ12Σ
−1
22 Σ21
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 p = 1  n = 2

     p = 1  n = 2 

E (X1 |X2 = x2 ) = m1 +
σ12

σ2
2

(y2 −m2)

X|X=x = σ2
1 −

σ2
12

σ2
2

 ρ12          

X|X=x = σ2
1(1− ρ2

12)

           
  x′ = (x1, x2))

fX|X (x1 |x2 ) =
fX(x1, x2)

fX(x2)
=

1

(2π)
√

|Det(X)|
exp


−1

2
(x−m)′−1

X (x−m)


1
σ

√
2π
exp


−1

2


x−m

σ

2


=
σ2√

2π

σ2

1σ
2
2 − σ2

12

exp

−1

2
(x−m)′−1

X (x−m)


exp


−1

2


x−m

σ

2


=
σ2√

2π

σ2

1σ
2
2 − σ2

12

exp


−1

2


(x−m)′−1

X (x−m)−

x2 −m2

σ2

2


     

−1
X =

1

σ2
1σ

2
2 − σ2

12


σ2

2 −σ12

−σ12 σ2
1



 A = (x−m)′−1
X (x−m),  

A =
σ2

2x
2
1 − 2σ2

2x1m1 − 2x1σ12x2 + 2x1σ12m2

σ2
1σ

2
2 − σ2

12

+

σ2
2m

2
1 + 2m1σ12x2 − 2m1σ12m2 + σ2

1x
2
2 − 2σ2

1x2m2 + σ2
1m

2
2

σ2
1σ

2
2 − σ2

12

       

fX(x1, x2)

fX(x2)
=

σ2√
2π

(σ2

1σ
2
2 − σ2

12)
exp


−1

2

(−σ2
2x1 + σ2

2m1 + σ12x2 − σ12m2)
2

σ2
2 (σ

2
1σ

2
2 − σ2

12)
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E (X1 |X2 = x2 ) = m1 +
σ12

σ2
2

(x2 −m2)

X|X=x = σ2
1 −

σ2
12

σ2
2

   g 

g(x1) =
1

σ2
1 − σ

σ

√
2π

exp


−1

2


x1 −m1 − σ

σ
(x2 −m2)


σ2

1 − σ
σ




2


=
σ2√

2π

(σ2

1σ
2
2 − σ2

12)
exp


−1

2

(−σ2
2x1 + σ2

2m1 + σ12x2 − σ12m2)
2

σ2
2 (σ

2
1σ

2
2 − σ2

12)



       g(x1) = fX|X (x1 |x2 ).

    X|X=x = σ2
1(1 − ρ2

12)  X2 = x2

             X1 
           
      X1     
 ρ12           
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           β
           
           
           
   

           
           
              
           
       L1  L2.   
          
            
             
         
 

  

   (Xn, n ∈ N)        X
        (,A, P ) ;

 (Xn, n ∈ N)   X     Xn
P→ X 

  ε > 0
lim

n→+∞
P (|Xn −X| > ε) = 0
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 (Xn, n ∈ N)   X     Xn
a.s→ X 

    0 ⊂   P (0) = 1  

∀ω ∈ 0, lim
n→+∞

Xn(ω) = X(ω)

  PXn PX      Xn X  (Xn, n ∈ N)
  X     Xn

L→ X)    
  f 

lim
n→+∞



R
f(x).dPXn(x) =



R
f(x).dPX(x)

      

           
 

    

          
            
                 
           
              

             
          
          

   
 X          

E(X) =    A > 0     

P (X ≥ A) ≤ 1

A

       A > 1    
           X.  
             
            
        X     
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 X ∈ L2 (,A, P )   E(X) = m  V (X) = σ2;  

B > 0  

P (|X − | ≥ B) ≤ σ2

B2

             
           
             
           
           

P (|X − | ≥ Aσ) ≤ 1

A2

 A      X      

P (X −   −Aσ) ≤ 1

2A2

          A =


1
2×0.01

= 7.0711. 
        A = 2.32, 
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 (Xn, n ∈ N)         

        σ),  
  Zn = 1

n

n
i=1Xi  (Zn, n ∈ N)     

       ε > 0

P (|Zn − | ≥ ε) ≤ σ2

nε2

           
 

         
        

   (Xn, n ∈ N)       
 Xn   X   X     L2)  
    

 limn→+∞E(Xn) = E(X)

 limn→+∞ V (Xn −X) = 0

      
 (Xn, n ∈ N)         

 Zn =
1
n

n
i=1Xi

(Zn, n ∈ N)     

    E(|Xn|) = +∞,   Zn   


          
          
           
            
           
         

            


ri = E(ri) +
K

k=1

βikFk + εi 
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 ri       i, F1, ..., FK   
   βik      i   
  k   εi        
  i.       Cov(Fk, Fj) = 0
 j = k)      Cov(Fk, εi) = 0). 
    Cov(εi, εm) = 0  i = m).

              
             
        N      
    

1

N

N

i=1

ri =
1

N

N

i=1

E(ri) +
1

N

N

i=1

K

k=1

βikFk +
1

N

N

i=1

εi 

=
1

N

N

i=1

E(ri) +
K

k=1


1

N

N

i=1

βik


Fk +

1

N

N

i=1

εi 

           

          1
N

N

i=1

εi    

         

   

           
            
           
           
      

     
 (Xn, n ∈ N)         

 p;   Tn  

Tn =

n
i=1Xi − np
np(1− p)

      

             
         p 
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  n      u  d 
              
        up  
            


   Y =

Y n

1 , ..., Y
n
k(n), n ≥ 1


    

     n,  s2n = V
k(n)

i=1 Y n
i


. Y  

     ε > 0,   U =

Un

1 , ..., U
n
k(n), n ≥ 1



 

Un
i = Y n

i  |Y n
i | ≤ εsn

= 0 

 

lim
n→+∞

V
k(n)

i=1 Y n
i



s2n
= 1

           
          
 

   Y =

Y n

1 , ..., Y
n
k(n), n ≥ 1


    

       

Y n

1 −E (Y n
1 ) , ...., Y

n
k(n) −E


Y n
k(n)


, n ≥ 1



       n ≥ 1,  Zn =
k(n)

i=1 Y n
i 

 E (Zn)→   V (Zn)→ σ2 = 0   Zn    
   Z

          
        u  d 
     u  d       
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