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Preface

Preface
This book is the result of many years’ experience of teaching fisheries economics and management, also 
called bioeconomics, for undergraduate and graduate students in interdisciplinary programs, both in 
Norway and abroad. These students often have a limited background in economics and mathematics and 
the challenge has been to be analytical without being unnecessary mathematical. I have found that with 
the exercises at the end of some of the chapters students are quite capable looking at fisheries economics 
and management from an analytic perspective. Exercises and careful reading of the logical steps of the 
text is the key to understanding fisheries economics.
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Introduction

1 Introduction
As long as people have been living on the earth they have utilised fish and other renewable marine 
resources for food, clothes and other necessities. The species caught have varied across regions and time. 
For example, the Nordic countries have a several thousand-year history of utilisation of living marine 
resources. Fish species like cod, herring and salmon, as well as several species of seals and whales, have 
always been important elements in the diet of coastal people and as goods for trade. Historically, local 
people have had free access to these resources in the sense that no authority above the fishing village 
or tribal level decided how fishing could take place and the intensity of these activities. Natural short 
run and long run fluctuations in the size of fish stocks, fish migration, species composition and weather 
and climate, as well as seasonal variations in the availability of different species, represented the main 
challenge for the fishers. However, in particular during the twentieth century, several fisheries around 
the world have experienced more and more restrictions on the freedom of individual fishers to establish 
and conduct their business. In addition, technological change and the transformation of local supply 
fisheries to fisheries based on national and global markets have had an immense effect on the way fishers 
perform their profession.

The objective of these materials is to give a thorough introduction to and review of the theory of fisheries 
economics and management, illustrated by actual and stylised examples, such that the student may 
understand better why it could be beneficial for society at large to organise people’s access to fishing, 
and how this may be done. Hopefully, this will contribute to the long-term improvement of fisheries 
management and fishing industry performance.

In economics, we study how human beings utilise scarce resources for the production and distribution 
of goods and services that have alternative uses. Scarce resources include labour, capital and natural 
resources. The relative emphasis on each of these resources varies across the sub-fields of economics. 
Historically the main emphases seem to have changed according to the perception of economists, and 
people in general, of which resource is the most scarce. In particular, over the last couple of decades 
environmental and resource economics have gained more and more ground within economic discourse 
and theory. This has probably been affected by the increase in industrial production, transport and 
population growth, and the implications of this for local communities and countries all over the world. 
Some global problems, such as climate change, may be the result of millions of decisions at the household, 
business and national level. For each of the economic agents pursuing their own private interests their 
emission of CO2 as individuals might seem insignificant, but the total is huge and is expected to have 
serious long-term effects. Another example is biological and economic overfishing. Each fisher’s catch 
might seem insignificant compared with the wide ocean and the size of the ecosystem. However, the total 
catches of many fish stocks around the world have contributed to biological and economic overfishing. 
This has at some points in time been the case, for example, for cod in Canadian, Icelandic and Norwegian 
waters, despite the relatively small catch of each fisher and vessel.
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In this text, fisheries economic theory is partly used as a synonym for bioeconomic theory and partly 
for something wider, including the application of microeconomic theory to fishing industry issues. A 
distinctive feature of bioeconomic theory is that it aims at analysing and modelling the main interactions 
between fishers (economic agents) and fishstocks (resources that might sustain harvest), as well as 
studying how such interactions are affected by the managers (principals of the society). However, we 
admit that the analysis is limited to major economic and biological issues, excluding most post-harvesting 
issues, as well as social and legal issues. Some basic elements from biological modelling will be used, but 
we do not intend to go into any detail of biological modelling and analyses. There are several similarities 
between the methods used by economists and biologists. Within both disciplines, core elements are 
theories, models and statistical methods to test hypotheses and give predictions. Predicting economic 
growth and the growth of fish stocks is not that different from a methodological point of view.

The economic world is extremely complex and difficult to grasp, not just for lay people, but also for 
trained economists. Even within smaller economies, such as Norway, Namibia and New Zealand, not 
to mention major economies like China, the European Union, Japan and the United States of America, 
millions of transactions between firms, and between firms and consumers, are taking place every day. 
To gain an overview of the functioning of these economies it would not be sufficient to start collecting 
data and other empirical information from these markets. We also need theories and models to explain 
connections between important economic variables. From consumer theory we recognise concepts 
like budget constraint, utility and individual demand, and from the theory of the firm, or production 
theory, the concepts of marginal cost, average cost and supply curve are well known. Market theory 
integrates elements from the theories of consumers and firms and concepts such as total demand, market 
price and equilibrium are well known. Based on theories, the functioning of complex markets may be 
described in a sufficiently simple way to give students and other interested parties an understanding of 
how markets work, and researchers may derive hypotheses to be tested against economic data. This does 
not necessarily mean that theory has to come before empirical investigation. Sometimes empirical data 
may give the researcher ideas for further investigation of interesting economic relationships and create 
the foundation for developing theories and models.

A theory or a model is not necessarily better the more detailed and complex it is. More important is that 
it includes, in a simple way, those economic variables of most importance for the issues at stake, and 
that it contributes to our knowledge of the functioning of the economy. Regarding the application of 
economic theory, a model that simplifies and summarises the theory in a coherent way is often useful. 
We may say, there is nothing as practical as an excellent theory, with the exception of an excellent model. 
Fisheries economic theory is in its most condensed form applied welfare theory, with elements from 
consumer, production and market theory. Fisheries economic models have something in common with 
macro economic models with the focus on aggregated economic variables. In fisheries economics the 
focus is often on the aggregated effects of all fishers’ actions, to allow comparison of, for instance, the 
total catch of all fishers and the natural growth of the fish stock(s).
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Introduction

Markets and ecosystems are often fluctuating and the development of key variables such as prices of 
fish, catches and fish stocks is uncertain. Risk and uncertainty are, however, not included in the analyses 
presented in this book. Focus is on deterministic theory to keep the discussion as simple as possible.1

Fisheries economic theory includes positive as well as normative elements: positive since it may explain 
why some fish stocks are over-fished, others under-utilised or not used commercially at all. On the other 
hand, like parts of welfare theory, fisheries economic theory is also normative since it may give guidance 
as to how intensively fish resources should be used and how the fishing industry could be managed. This 
text includes both positive and normative theories and models.2
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2 Population dynamics and fishing
This chapter shows the basic features of fish stock dynamics and how the stock is affected by fishing. The 
sustainable yield curve, yield as a function of fishing effort, is derived. This curve is an important bridge 
between the work of biologists and economists, and it will be used extensively throughout these materials.

2.1 Growth of fish stocks

A fish species that lives and is able to reproduce itself within a given geographical area is called a stock or 
a population. In fisheries science and management literature, the term “stock” is most common, whereas 
in the ecology literature “population” is generally preferred. Some authors use stock as a synonym for an 
exploited population, but in this text the term stock will be used for any population, whether exploited 
or not. Ecologically speaking a population is “a group with unimpeded gene flow”. An example of the 
relationship between species and stocks is the North Atlantic species cod (Gadus morhua) which consists 
of several stocks, including the Canadian-Newfoundlandic, the Icelandic and the Arcto-Norwegian cod. 
In principle, stocks are self-contained entities, even though there might be some migrational exchange 
between them. Each stock has its own particular characteristics that may be genetic, a result of differing 
environments, or usually a mixture of both.3

Fish stock change depends on recruitment, natural mortality, individual growth and harvesting. This 
may be summarised as follows:

Stock change = Recruitment + Individual growth – Natural mortality – Harvest
= Natural growth – Harvest

Note that the stock change can be positive or negative if recruitment and individual growth together is 
greater or smaller, respectively, than natural mortality and harvest. Empirical research and theoretical 
reasoning have concluded that natural growth of fish stocks may be illustrated as bell-shaped growth 
curves as shown in figure 2.1. Growth curves could also be called yield curves since the natural growth of 
fish stocks might be harvested. For most fish species, lower stock levels mean relative higher recruitment 
and individual growth, whereas higher stock levels imply relative lower recruitment, lower individual 
growth and/or higher natural mortality due to density-dependent biological processes. Thus, the sum of 
growth-augmenting and growth-impeding factors is a bell-shaped growth curve with the highest growth 
at an intermediate stock level. The maximum natural growth is at stock level XMSY in figure 2.1. If the 
natural growth of the stock is harvested, the maximum harvest is achieved for stock level XMSY and this 
harvest is called the maximum sustainable yield (MSY). MSY could be, for example, 200 000 tonnes per 
year for a cod stock. In each case shown in figure 2.1 a stable equilibrium of the unharvested stock exists 
at level K, and this level is usually called the environmental carrying capacity of the stock.
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Figure 2.1. Growth curves with (a) compensation, (b) depensation, and (c) critical depensation.

For growth curve (a) in figure 2.1 the relative natural rate of growth F(X)/X increases when the stock 
level decreases, and we call this effect pure compensation. At low stock levels, some stocks have relative 
growth rates that decrease with reduced stock level. The growth of such stocks is said to be depensatory, 
and two growth curves with depensation are shown in panels (b) and (c) in figure 2.1. Growth curve (c) 
has a critical stock level K0 which implies extinction if the stock should be depleted below this level for 
any reason. Depensation may be observed for some prey stocks, for example, herring, but not exclusively 
prey stocks. This feature may be the effect of a predator, for instance, seals, that continue to consume its 
prey even when the prey stock declines. Thus, in such a case the prey stock will demonstrate depensatoric 
growth. In case the predator is in strong need and has the ability to locate and consume the last school 
of prey, the prey stock is vulnerable to critical depensation and extinction if fished too hard.

For a thorough discussion of bioeconomic fishery models we shall need some simple mathematical tools. 
The following symbols will be used, where t indicates point in time:

 = Stock level (weight of the stock, for example in thousand tonnes)
 = dX(t)/dt = Change in stock per unit of time

 = Natural growth function.

Unless necessary for the understanding, the symbol for time, t, will be omitted in the text and equations.

For the natural growth function dX/dt = F(X) the following characteristics are valid:

(2.1)  
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A closer look at figure 2.1 reveals that the growth curves in panels (a) and (b) fulfil the requirements of 
growth function (2.1). However, this is not the case for very low stock levels in panel (c). Natural growth, 
expressed as in figure 2.1 and equation (2.1), is the limit to fishers’ harvest. To produce a harvest, fishers 
need man-made tools and fishing effort, in addition to nature’s tool, the fish stock. Without both, there 
will be no harvest.

Note that the growth curve in Figure 2.1 panel (a) is based on the natural growth function 
 which we shall return to several times. In this function K is the carrying capacity 

of the habitat of this fish stock. Thus K is the maximum stock level, to be observed only before harvesting 
takes place. Further, r is the maximum growth rate, F(X)/X, to be observed only when X is close to zero.

Box 2.1 The Zarephath widow’s pot

The importance of the supply of natural resources for people’s survival and welfare have been described and discussed 
in both the secular and religious literature down the ages. The Bible, for example, mentions in several places water 
resources and their significance for people living in the area that today is called the Middle East. Issues related to the 
production of food from land and sea are also common themes in the Bible. The story of the Zarephath widow’s pot is 
a case of renewable resource use. In fact, it was not just one pot in this story, but two – a jar and a cruse.

In 1Kings 17, the Bible tells how the prophet Elijah had been living from water of the stream Cherith, east of Jordan, and 
of bread and meat that the ravens brought him in the mornings and evenings. However, after a while the stream dried 
up because of lack of rain. Then God told Elijah to go to the town of Zarephath to stay with a poor and hungry widow. 
He came upon her at the gate of the city and she willingly shared her very last resources with him, using her final meal 
and oil to make a cake to be shared between Elijah, her son and herself.

And Eli’jah said to her, “Fear not; go and do as you have said; but first make me a little cake of it and bring it to me, and 
afterward make for yourself and your son. For thus says the LORD the God of Israel, ‘The jar of meal shall not be spent, and 
the cruse of oil shall not fail, until the day that the LORD sends rain upon the earth.’“ And she went and did as Eli’jah said; and 
she, and he, and her household ate for many days. The jar of meal was not spent, neither did the cruse of oil fail, according to 
the word of the LORD which he spoke by Eli’jah.
1 Kings17, 13–16.

As the pots of the widow sustained her use of meal and oil, so the fish in the sea might sustain mankind’s harvest. As 
long as harvesters use the resource within its production possibilities, the fish stock will give a lasting yield. However, it 
might go wrong if too many take too much from the same pot. A necessary, but not sufficient condition to avoid over-
fishing is ecological and economic knowledge – that is to say, knowledge about interactions between man and nature.

Epilogue. Supply and sharing of resources are hardly as easy as in this story. Could it be that future “water wars” would be 
much harder, with more severe consequences for the people involved than some of the fish wars we have seen in recent 
decades? The Middle East area of Elijah and the widow in this story might be a candidate area for such wars. However, 
with co-operation and proper management conflicts may be avoided or reduced, for water as well as for fish resources.
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2.2 Effort and production

A fish harvesting firm or a fisher uses several inputs, or factors, to catch fish and to land it round, gutted 
or processed. Inputs used include fuel, bait, gear and labour. In this respect a harvesting firm is not 
much different from any other firm – a set of inputs is used to produce an output. However, the direct 
contribution from the natural resource, the fish stock, constitutes a significant difference compared with 
a manufacturing firm that can use as much as it wants of all the required inputs. A fisher can vary the 
amount of inputs, but not the size of the stock.

In actual fishing we usually find that for a given set of inputs the amount of output for the fishing firm 
varies with the stock level and the availability of the fish. Fish migration for spawning and feeding makes 
most stocks in certain areas more available for the fishers at some times of the year than in others. Such 
seasonal variations in the distribution of fish stocks and year classes are the basis for many seasonal 
fisheries around the world. However, to start with, we shall simplify the analysis by disregarding seasonal 
variations and assume that the fish stock is homogeneously distributed across area and time. The focus 
is on the size of the stock and the importance of this for the catch.
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For analytical and practical purposes it is useful to let fishers encounter the stock with what is called 
fishing effort, or just effort. Examples of effort are hours of trawling, number of gillnets and number of 
long-line hooks4. Effort is produced by optimal use of inputs and is expressed in the production function

(2.2)  

where E is effort and vi is factor i. In one way, this is a regular production function recognisable from 
the theory of the firm. However, the great difference is that E is not a final product to be sold, like the 
products of most firms, but an intermediate good produced to encounter the fish stock.

Catch, the product of fish harvesting firms, is a function of effort and stock and this can be expressed 
in the harvest function

(2.3)  

Harvest function (2.3) is a short-run production function in the sense that it is valid for a given stock 
level at any point in time, without any feedback from effort to stock. Figure 2.2 gives an example of how 
catch varies with effort for two stock levels; H: high and L: low. Note that the catch is non-increasing in 
effort – that is, more effort implies higher catch, but not necessarily proportional to the increase in effort.

Figure 2.2. Short-run variations in harvest as a function of effort.

If effort is measured, for example, in trawl hours, catch could be measured in kg or tonnes. Effort and 
catch should both be related to the same unit of time, which could be a day or a week.

Thus, there is a dichotomy in the analysis of fish production that is not found in the traditional theory 
of the firm. This way of analysing fisheries has the advantage that it treats the inputs controlled by the 
firm, such as fuel, bait and gear, differently from the major input, fish stocks. The latter is a necessary 
factor of production affected by the actions of numerous fishers (see the next section), but not controlled 
by any of them.
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2.3 Yield and stock effects of fishing

Fish stock levels are affected by fishing if the total effort is sufficiently high over some period of time. 
How much depends on the growth potential of the stock and the total harvest. Change in the stock is 
expressed by the growth equation

(2.4)  

From this equation follows

(2.5)  

To ensure positive growth of the stock, the harvest must be lower than the natural growth. Biological 
equilibrium is by definition achieved when , and in this case equations (2.3) and (2.4) give

(2.6)  

Since this is one equation with two variables, X and E, the stock is implicitly given as a function of effort 
E. This means that at equilibrium the stock level is a function of effort, and from equation (2.3) it now 
follows that the equilibrium harvest is also a function of effort. This equilibrium harvest is often called 
sustainable yield since it can be sustained by the stock for a given level of effort.

We have seen that, knowing the growth function F(X) and the short-run harvest function (2.3), the 
sustainable yield may be derived from equation (2.6). This can also be done graphically as shown in 
figure 2.3. To simplify the analysis we now assume that the short-run harvest function is linear in effort 
and stock level:

(2.7)  

Equation (2.7) is called the Schaefer harvest function (Schaefer, 1957). The parameter q is a constant called 
the availability parameter. This parameter expresses how effective the effort is in relation to the stock 
level. If effort is measured in, for example, gill net days, q expresses the ratio between catch per gill net 
day, H/E, and stock level, X. Thus, the value of q is directly linked to the scaling of E. In some fisheries 
the combined harvest technology and fish behaviour is such that catch per unit of effort, H/E, is nearly 
independent of the stock size (see Bjørndal, 1987). In other fisheries catch per unit effort increases with 
the stock level, but not proportionally as in the Schaefer function (see Eide et al., 2003).
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Panel (a) of figure 2.3 shows short-run harvest as straight lines for five different effort levels. For the 
smallest effort E1 the harvest curve crosses the growth curve for stock level X1 and harvest H1. Thus, a 
small effort – over a sufficiently long time to let the stock reach equilibrium – gives a high stock level 
and a relatively small catch. A somewhat higher effort level E2 gives a lower stock level X2 but a higher 
sustainable catch, H2. However, an even higher effort like E4 gives stock level X4 that is significantly 
lower than X2, even though the sustainable catch H4 is equal to H2. Similarly, E5 gives a catch H5 equal 
to E1, even though the stock level X5 is much smaller than X1. In Figure 2.3 the highest possible harvest 
is reached for effort level E3 and this harvest is called the maximum sustainable yield (MSY).

Figure 2.3. The sustainable yield curve shows harvest as a function of effort and is derived from the natural growth curve and 
the harvest curve.
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The natural-growth stock-level curve in panel (a) has been transformed into a sustainable-harvest effort 
curve in panel (b). The H(E) curve is also called the sustainable yield curve and it connects the long-run 
harvest potential to fishing effort. This harvest-effort curve has the same form as the growth curve in 
this case since the Schaefer short-run harvest function is linear in both effort and stock. It is important 
to note the difference between the short-run harvest function H = f (E,X) in (2.3), depicted as straight 
lines in panel (a) of figure 2.3, and the sustainable yield curve H(E), in panel (b). The former is valid for 
any combination of effort, E, and stock, X, at any time, whereas the latter is the long-run equilibrium 
harvest for given levels of effort. The sustainable yield curve is conditional on equilibrium harvest.

The main purpose of figure 2.3 is to derive the equilibrium harvest-effort curve shown in panel (b). Let 
us now use this to discuss what happens over time if fishing takes place outside equilibrium. Suppose 
fishers use effort E1 to harvest a virgin stock at the carrying capacity level K. To start with, the harvest 
will be significantly greater than H1 since the stock level K is bigger than X1, and this implies that the 
stock level will decrease. When the stock decreases, the harvest will also decrease until it reaches such 
a level that, according to the short-run harvest curve designated qE1X in panel (a) of figure 2.3, harvest 
equals the natural growth of the stock. The decrease in harvest will continue until stock level X1 has 
been reached. At this point in time, harvest equals natural growth, and another equilibrium has been 
established. On the other hand, if fishers use effort E1 to fish at a stock level lower than X1 the stock will 
grow since natural growth is greater than harvest. The length of the transition period between, for example, 
the virgin stock level K and level X1 depends on the biological production potential of the stock. Growth 
curves and sustainable yield curves, as shown in figure 2.3, may be used to compare different equilibria 
but cannot be used to tell how long a time the transition from one equilibrium to another will take.

So far in this chapter we have analysed the effects of fishing on a stock with growth compensation (see 
figure 2.1). However, if the growth process exhibits depensation or critical depensation, the sustainable 
yield curve proves to become very different from the case of compensation. This is demonstrated in 
figures 2.4 and 2.5. The former is for the case of depensation and the latter is for the case of critical 
depensation of growth. In figure 2.4 panel (a), ED is the effort that makes the Schaefer harvest curve 
tangent to the growth curve at the zero stock level. Mathematically, ED can be found from equation

Figure 2.4. The natural growth curve and sustainable yield as a function of effort in the case of depensation.
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Figure 2.5. The natural growth curve and sustainable yield as a function of effort in the case of critical depensation.

(2.8)  

The left-hand side (lhs) of this equation is the slope of the Schaefer harvest curve, and the right hand 
side (rhs) is the slope of the growth curve.

To ensure a sustainable harvest there is an upper limit on effort which cannot be exceeded, and this effort 
level is designated EMAX in figures 2.4 and 2.5. If effort levels above EMAX are maintained for a sufficiently 
long time the stock will be biologically over-fished and finally will become extinct. In case of extinction, 
panel (b) of figures 2.4 and 2.5 shows that the yield is zero for effort higher than EMAX.
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Figure 2.4 panel (b) shows that the harvest curve is double, with an upper and a lower branch for each 
value of effort between ED and EMAX. This is due to the existence of two intersection points between each 
of the linear harvest curves and the growth curve, as shown in panel (a). There is, however, a significant 
difference between the two branches of the yield curve. The upper part constitutes stable points of 
harvesting whereas the lower part constitutes unstable harvesting. An example will explain the stability 
problem. The harvest curve for effort E1 intersects with the growth curve for two stock levels, the low 
one X1L and the high one X1H in panel (a) of figure 2.4. For stock levels lower than X1L the harvest curve 
is above the growth curve and the natural growth is too small to compensate for the harvest. This implies 
that the stock will decrease from X1L to zero if effort E1 is maintained over a sufficiently long period of 
time, indicated in panel (a) by an arrow pointing to the left. Thus, X1L is an unstable equilibrium for 
the stock harvested by effort E1. This would also be the case for all other left-hand side intersections 
between the harvest curve and the growth curve for effort levels between ED and EMAX. On the other hand, 
if the stock level is just above X1L natural growth is larger than harvest for effort E1 and the stock will 
increase. An arrow pointing to the right indicates this. Therefore, in this case the stock will in the long 
run increase towards X1H, which is a stable equilibrium. The lower part of the yield curve in figure 2.4 
panel (b) is dashed to mark that this part represents unstable harvest. Figure 2.5 shows that, in case of 
growth with critical depensation, the harvest curve is double for all levels of E between zero and EMAX. 
The lower part of the yield curve also represents unstable harvest in this case.

Exercise 2.1

Assume that the harvest function is H(E,X)=qEX, where q is the catchability coefficient and E is fishing 
effort. The catchability coefficient for a particular fishery is q=0.00067, and the stock level is X=3.0 
million tonnes.

a) What is the catch per unit of effort (CPUE) in this case?
b) What could the unit of measurement of effort be if the fish stock is for example cod or hake?
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Exercise 2.2

Assume that the function  describes the annual natural growth of a fish stock. X 

represents the stock biomass at the start of the year. K is the environmental carrying capacity in stock 

biomass terms and r is the intrinsic growth rate.

a) Show that the maximum sustainable yield (MSY) can be expressed by the two parameters r 
and K, so that 

b) Draw a picture of F(X) for r=0.4 and K=8.0 million tonnes.
Assume that the harvest function is H(E,X)=qEX, where q is the catchability coefficient and E 
is fishing effort measured in number of vessel year.

c) Show how the sustainable yield curve (the long-run catch function) H(E) can be found. Tip: 
find it graphically like in figure 2.3, or by use of H(E,X)=F(X) where you eliminate X by 
using the harvest function.

d) Add to your picture of F(X) the harvest function H(E,X)=qEX for q=0.00067 and E equal to 
100, 200, 400 and 500 vessel year. What is the sustainable yield for these levels of effort?
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3 A basic bioeconomic model
In this chapter we shall use the sustainable yield curve derived in figure 2.3 to analyse economic 
and biological effects of fishing under open access and managed fisheries. The concept of resource 
rent is defined and discussed, and we demonstrate how important this concept is for the analysis of 
managed fisheries.

3.1 Open access bioeconomic equilibrium

Let us start by asking the following question: if fishers have open and free access to a fishery, is there an 
effort level that may give rise to an economic equilibrium in the fish harvesting industry in the sense that 
effort is stable over time? If the answer to this question is affirmative, then one might ask how economic 
factors like effort costs and fish prices affect effort and stock at equilibrium.

The gross revenue of a fishery, for example, per season or year, equals quantity harvested multiplied 
by the price of fish. The price of fish from a particular stock is hardly affected by quantity fished if the 
fish is sold in a competitive market with many sellers and buyers and in competition with similar types 
of fish from other stocks. In the following analysis we shall assume that the price of fish, p, is constant 
across time and quantity.

Based on the sustainable yield curve (see H(E) in figure 2.3) the total revenue of fishing can be 
represented as

(3.1)  

The total revenue curve will simply have the same shape as the sustainable yield curve, scaled up or 
down depending on the actual price. It is important to notice that the total revenue function and curve 
are both in terms of effort. In micro-economics, however, revenue is usually related to output.

From the total revenue function in equation (3.1) we derive the average revenue and the marginal revenue 
functions. The average revenue per unit of effort is

(3.2)  

and the marginal revenue of sustainable fishing is

(3.2’)  
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The distinction between the concepts of average and marginal revenue is very important in fisheries 
economics. Average revenue is the total revenue divided by total effort, whereas marginal revenue shows 
the change in total revenue as a result of a small change in effort. When we know the sustainable yield 
harvest, H(E) and the price of fish, p, we can also find TR(E), AR(E) and MR(E). Figure 3.1 panel (a) 
shows the total revenue curve based on the sustainable yield curve in figure 2.3 and a constant price of 
fish. The corresponding average revenue of effort AR(E) and marginal revenue of effort MR(E) curves are 
shown in panel (b). In this case the form of the TR curve is such that the AR and MR curves are almost 
straight lines. Whether they really are straight lines or curved is not of importance for this analysis. 
Note that for sufficiently high effort costs, or low price, the open access effort level in Figure 3.1 may be 
lower than the maximum sustainable yield effort, implying that the stock will be higher than its MSY 
level (also see Figure 2.3).

Figure 3.1. The maximum economic yield level of fishing effort is significantly lower than the open access level.

The total cost of a fishery depends on the costs and efficiency of each fishing vessel and its crew. However, 
at this stage we shall not go into a detailed discussion of the cost structure of the vessels. In the long run, 
actual effort expands by the addition of new vessels and the subtraction of old ones, as well as by varying 
the effort and efficiency of each vessel. To simplify the analysis, we shall assume that the total cost of a 
fishery can be expressed in a simple function of effort. In general, the connection between average cost of 
effort, AC(E), and marginal cost of effort, MC(E), on the one hand, and total cost, TC(E), on the other is

(3.3)  
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and

(3.4)  

If dMC/dE > 0 each additional unit of effort would be more costly than the previous ones, whereas dMC/
dE = 0 means that effort can be added to the fishery at constant marginal costs. Increasing marginal 
cost means that the vessels are different from a cost and efficiency perspective. In this case we organise 
vessels along the effort axis with the most cost effective one to the left and the least cost effective ones 
towards the right (more on this in chapters 6.1 and 7.1). Constant marginal cost of effort implies that 
there is an infinitely elastic supply of effort – in other words, the supply curve is horizontal. In this case 
one could think of homogenous vessels that are added to the fishery at the same cost as the previous 
one. Homogenous vessels are, from a cost point of view, equally equipped and crewed and the marginal 
and the average cost of effort are the same for all vessels. Costs, including capital, labour and operating 
costs, per unit of effort could be denominated, for example, as $ per vessel year, vessel day, trawl hour 
or gill net day. In figure 3.1 panel (a) the total cost curve, TC(E), is shown as an upward-sloping straight 
line. In other words, the cost function is linear in effort at a constant cost, a, per unit of effort.

(3.5)  

Since effort in this analysis is homogenous from a cost point of view we shall also assume that vessels 
are homogenous from an efficiency point of view. This implies that they all catch the same amount of 
fish per unit of effort and that the average revenue is the same for all vessels. Under open access, vessels 
will enter the fishery if revenue per unit of effort is greater than cost per unit, and exit the fishery if 
cost per unit is higher than revenue. When average revenue of effort equals marginal cost of effort there 
will be an economic equilibrium with neither an incentive to leave nor an incentive to enter the fishery. 
Thus, we have now arrived at the following criterion for open access economic equilibrium in the fish 
harvesting industry

(3.6)  

Recall that the revenue curves in figure 3.1 are based on biological equilibria (  = 0) and that this is also the 
case for criterion (3.6). In other words, there are simultaneous biological and economic equilibria when 
(3.6) is fulfilled. This is called the open access bioeconomic equilibrium, or just bionomic equilibrium.

For homogenous vessels, as in the analysis of this chapter, effort and harvest are the same for all vessels. 
Thus, the catch efficiency is the same for all vessels. What factors determine this efficiency at bioeconomic 
equilibrium? Are biological or economic factors most important? Let us try to answer these questions by 
using the bioeconomic model analysed above. By taking the derivative of (3.5) with respect to E we have

(3.7)  
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and from (3.1) and (3.2) follows

Box 3.1 Denomination of fishing variables

H and E in the harvest function (2.3) have to be related to the same time period, for example one day, month or year.  The 
unit of measurement of effort, E, can be, for example, one hour of trawling in demersal trawl fisheries, one gill net day in 
coastal gill net fishing, or 100 hooks in long line fisheries. Using Dt as symbol for the unit of time, one hour of trawling 
as the unit of effort and metric tonne as the unit of harvest and stock, the denominations of the variables would be

 E: Trawl hours/Dt
 H: Tonnes/Dt
 X: Tonnes

The unit of time used for measuring TR and TC has to be the same as for measuring H and E. The denomination of the 
cost per unit of effort, a, would be $ per trawl hour, $ per gill net day or $ per 100 fishing hooks, respectively, using the 
above examples. The denominations in $ terms will be

 a: $/trawl hour
 TC = aE: $/Dt
 TR = pH: $/Dt

If one vessel produces s units of effort during Dt, Z vessels will produce the total effort 

 E = s Z Dt

If we know the total effort and the number of vessels, the average effort per vessel is found by dividing trawl hours with 
the number of vessels times the unit of time

 s = E/ZDt. 

(3.8)  

Substituting for MC(E) from (3.7) and for AR(E) from (3.8) into (3.6) and re-arranging somewhat gives 
the following

(3.9)  
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The left-hand side of (3.9) is called catch per unit of effort (CPUE), and this is equal to the ratio of cost 
per unit of effort to price of fish. It may seem strange that only economic factors, and not biological, 
affect CPUE at the open access bioeconomic equilibrium. How is this possible? Firstly, note that E and 
a are closely related. If E is measured, for example, in trawl hours, a will be in $ per trawl hour, and if 
E is measured in trawler year, a will be in $ per trawler year. CPUE will be tonnes per trawl hour or 
tonnes per trawler year, correspondingly. At bionomic equilibrium, CPUE will be greater the greater 
cost of effort and the lower price of fish is. Biological conditions do not affect the productivity of fishing, 
according to (3.9). The reason for this is that the open access stock level is an endogenous variable 
determined together with the sustainable catch, effort and CPUE by the exogenous variables; effort cost 
and fish price (see also Ch. 5.2). The ratio of cost of effort-price of fish affects fishing and thereby the 
size of the stock and the CPUE; low effort cost and high fish price imply a low equilibrium stock level 
under open access harvesting.

In actual fisheries, prices, costs, efficiency and fish stocks fluctuate over time and economic and biological 
equilibria are only rarely observed. Nevertheless, the open access model has proved a useful point of 
reference in fisheries economics, just as the model of perfect competition is a useful reference model 
for understanding economics in general.
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3.2 Maximising resource rent

Economic rent is, generally speaking, a payment to a factor of production in excess of what is necessary for 
its present employment. For example, if a fisher makes $20 000 in his present occupation as a participant 
in an open-access fishery and his second best alternative, as a builder, pays $18 000, the economic 
rent is $2000. If his neighbour is a less efficient fisher who makes only $18 000, which is just above his 
opportunity cost in the labour market, this fisher does not earn any rent. The kind of rent earned by the 
former fisher is called intra-marginal rent (more on this in Ch. 7.1), which is closely related to rent from 
land discussed by classical economists like Ricardo. In Ricardo’s context, rent is payment for the use of 
land: “the uses of the original and indestructible powers of the soil” (Ricardo, 1821, p. 33).

In present day economies, firms in some industries have monopoly power, which is the ability to 
influence the market price of the goods or services they sell. If such a firm generates revenue exceeding 
all its opportunity costs, including normal profit, super-normal profit is generated. Normal profit is the 
necessary payment to attract and keep capital in an industry. This may vary since risk and uncertainty 
vary between industries. Super-normal profit in this context is also called monopoly rent. Monopoly rent 
is related to the downward-sloping demand curve for the goods produced by a firm, whereas the intra-
marginal rent noted above is related to the upward-sloping marginal cost curve of an industry. In the 
latter case the intra-marginal producers are more efficient than the marginal one that just breaks even.

In fisheries, there is a possibility of generating another type of rent related to the common pool 
characteristics of fish as a natural resource. This rent, called resource rent, is the industry earnings in excess 
of all costs and normal profit, and this may exist independently of any monopoly or intra-marginal rent. 
We shall see this more clearly when there is a horizontal marginal cost curve (no intra-marginal rent) 
and a horizontal demand curve (no monopoly rent) at the industry level. Using the previous symbols, 
resource rent is defined, within the sustainable harvest model, by

(3.10)  

The resource rent equals the revenue in excess of all costs, and this will vary with fishing effort. Assuming 
that the objective of fisheries management is to maximise the resource rent, let us now derive the 
effort level that can realise this objective. Note that alternatively we could have used harvest, H, as the 
management instrument instead of effort, E. Whether we use harvest or effort is mainly a matter of 
convenience and tradition. For a given effort the corresponding equilibrium harvest follows from the 
sustainable yield curve derived in chapter 2. To find the optimal level of effort, we may think of a sole 
owner that has total control of the fishery, including the control of effort and exclusive right to use the 
resource; Gordon (1954) and Scott (1955) are early proponents of this approach. A necessary condition 
for maximisation of л (E) in (3.10) is

(3.11)  
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where MR(E) = dTR(E)/dE is the marginal revenue of effort for sustainable fishing and MC(E), the 
marginal cost of effort, is defined in (3.4). The second order condition for maximisation of л (E) is

(3.12)  

From the necessary condition (3.11) we derive the following condition for maximum resource rent

(3.13)  

The optimality rule in (3.13) is a very important economic reference point for fisheries management. 
Note the difference between this rule and the open access rule in (3.6). In both cases the left-hand side is 
the same, the marginal cost of effort MC(E), whereas the right-hand side differs. Under open access the 
effort expands and the stock decreases until the average revenue, AR(E), is reduced and equals marginal 
cost of effort at the bionomic equilibrium. In order to maximise resource rent, effort has to be reduced 
to such a level that the marginal revenue MR(E) equals marginal cost, as shown in (3.13).
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Maximum resource rent is also called maximum economic yield, with the acronym MEY. Effort and 
stock level corresponding to maximum economic yield are therefore given the subscript MEY as shown 
above in figure 3.1. This figure shows that EMEY is significantly lower than EMSY. The reduction of effort 
compared with the open access effort level saves costs and/or enlarges fishery revenues. Figure 3.1 has 
been designed such that revenue is about the same under open-access and MEY fishing and this is 
also the case for quantity harvested since price per kg of fish, p, is constant – independent of quantity 
harvested. But how is it possible to harvest the same quantity of fish with two such different effort levels 
as under open access and MEY fishing? Recall that to harvest fish we need two major inputs, effort and 
stock, as expressed in the harvest function (2.3). To harvest a certain quantity of fish one may choose a 
large fishing effort and a small fish stock, or a small effort and a large stock. From an analytical point of 
view we compare two different equilibria without taking into account the time needed to change from 
one stock level to another. The sustainable yield curve (shown in figure 2.3) and the above analysis 
allows for comparison of different biological and economic equilibria, without paying regard to the 
time dimension (time and investment will be studied in Ch. 4). It is pretty obvious that to maximise 
resource rent within the above analysis it pays to use the small effort-large stock combination, instead 
of large effort-small stock.

Under the open access regime each fisher does not have an incentive to save fish in the sea to let it grow 
and to let it spawn new recruits for later periods of fishing. If fisher Mary wanted to pursue such goals 
it is very likely that Peter, Paul or another fisher, or all of them, would take such an opportunity to catch 
what Mary left. This leaves Mary without any other choice than to behave selfishly and maximise her 
own goal at any time. Thus, under open access the fish in the sea has zero opportunity cost for each 
fisher, resulting in the large-effort small-stock equilibrium.

Under MEY management the resource has a positive opportunity cost due to the spawning and growth 
capacity of fish that can be used for harvesting and to maintain a larger stock than the open access provides. 
A larger stock gives lower unit cost of harvest ($ per tonne) than a small stock. This cost saving effect 
of increased stock level, called stock effect, is utilised to generate resource rent under the MEY regime.

The analysis in this text is based on the assumption that effort, which combines inputs like vessel, gear, 
fuel, and labour, has an alternative value in the society’s production. This is a reasonable assumption for 
the long-term adaptation analysed within a bioeconomic framework. It takes time for stocks to adjust 
to changes in effort and other exogenous factors. Factors of production used to produce vessels and 
gear could alternatively have been used for the production of other goods and services for consumption 
and investment.
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When a society’s resources and outputs are allocated in such a way that no feasible change can improve 
anyone’s welfare without reducing the welfare of at least one other person, then a Pareto optimum 
exists (named after Vilfredo Pareto, Italian economist and mathematician, 1848–1923). A reallocation 
that makes one person better off without making anyone else worse off is called a Pareto improvement. 
From our analysis it should be clear that open access harvesting is not Pareto optimal. By reducing effort 
from E∞to EMEY, as shown in figure 3.1, society saves on some factors of production that can be used in 
other sectors of the economy. This saving of resources should make it possible for the society to realise a 
Pareto improvement. Note that this criterion is rather strict, requiring that the improvement should take 
place “without making anyone else worse off ”. However, economic development often takes place with 
net gains for someone, but losses for others. Even if total gains are larger than total losses in monetary 
terms, such a change is not a Pareto improvement because of the losses for someone. The Kaldor-Hicks 
criterion says that if a change in the economy is such that the gainers could compensate the loosers and 
still be better off, this change is beneficial for the society as a whole (J.R. Hicks and N. Kaldor published 
their work in 1939 in the Economic Journal). Compensation is hypothetical and this criterion suggests 
that the change is preferable even if compensation does not actually take place.

3.3 Effort and harvest taxes

In the previous section we have seen that a fishery can provide an economic surplus, resource rent, 
if effort is reduced below the open access level. We also derived the effort level EMEY that maximises 
resource rent. Using the sustainable yield curve, H(E) in figure 2.3, what the rent maximising harvest, 
HMEY, is follows immediately. The analysis so far does not tell how the reduction in E could take place. 
In many countries regulation traditionally plays a key role in managing fishing capacity and effort. We 
may think of capacity in numbers and size of vessels whereas effort is related to use of vessels in fishing. 
Examples of management instruments for capacity and effort reductions include vessel and fisher licences, 
effort quotas, length and weight limits for hull and fitted vessels, as well as engine power limitations. 
Such regulations are called input regulations. Output regulations related to the harvest of fish are called 
quotas – be it total harvest quotas or harvest quotas per enterprise, vessel or fisher. In addition, input 
and output regulations may be combined with technical regulations, which include minimum mesh 
size of gear, minimum size of fish, and closed areas and seasons. Some of the regulatory instruments 
may be transformed into market instruments, such as tradeable licences and quotas (more on this in 
the next section).
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Indirect management instruments include taxes, fees and subsidies. The latter, for example a fuel subsidy, 
would encourage an expansion of effort and can be disregarded as an instrument to reduce effort in the 
direction of EMEY. In other parts of the economy corrective taxes are used to discourage the use of some 
goods and services, for example, motor vehicle fuel and tobacco, and to finance government budgets. 
Corrective taxes can in theory bring marginal private costs into alignment with marginal social costs. Such 
instruments are called Pigouvian taxes (after the British economist A. C. Pigou, 1877–1959). In principle, 
these could be used in fisheries, even though in practical fisheries policy they are hardly the regulatory 
means of primary choice among major fishing nations (see, for example, OECD, 1997). Nevertheless, 
studying the effects of Pigouvian taxes on fishing effort, as well as on resources, is an excellent point of 
departure for studies in fisheries management – and to gain a basic grasp on how economic instruments 
work. Therefore, let us have a closer look at the effects of taxes on effort and harvest.

We have seen in sections 3.1 and 3.2 that a renewable resource like fish is economically overexploited 
under an open access regime, provided the market price is high enough and the harvest cost low enough 
to make it a commercial resource. Another interpretation is that the bioeconomic model predicts that 
open access fisheries, in the long run, will not generate resource rent. Figure 3.1 shows that the average 
revenue per unit effort, AR(E), is greater than the marginal cost of effort, MC(E) if total participation 
in the fishery, measured by E, is less than E∞. The existence of a super-normal profit for the participants 
attracts new fishers with the result that total effort increases. This will take place as long as E is less than 
E∞. On the other hand, if effort at the point of departure for our analysis is greater than E∞ fishers will 
have higher costs than revenues and some of them will leave this fishery. Thus, E∞ is the open access 
equilibrium level for effort as long as prices and costs are constant, and to this effort corresponds an 
open access equilibrium level of the fish stock.

In public discourse “the tragedy of the commons” seems to have several meanings, including that effort 
is higher than the maximum sustainable yield effort, effort is higher than the maximum economic yield 
effort, stock level is lower than the maximum sustainable yield stock and that sustainable yield is lower 
than maximum sustainable yield. It is, however, important to distinguish between “tragedies” related 
to biological concepts and to economic concepts. A fish stock that is economically over-fished, as is 
always the case at open access equilibrium, is not necessarily biologically over-fished. If fishing costs are 
high and/or fish price is low, open access does not necessarily attract enough effort to cause biological 
over-fishing. The equilibrium effort has to be higher than the maximum sustainable yield effort to cause 
biological over fishing, and this will not happen unless the effort cost is sufficiently low and/or the fish 
price is high enough.
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Based on the analysis above it is now clear that the management board should aim at doing something 
with the prices, costs or institutions that fishermen face. For fishermen high fish prices may be good in 
the short run, but with bad institutions (open access) this may in the long run be a threat against fish 
stocks. Using Pigouvian taxes, the manager’s task is to find the tax rate, on either effort or harvest, that 
adjusts effort to the maximum economic yield level EMEY. This requires an extensive knowledge about the 
biological and economic characteristics of the fishery, expressed in the H(E), TR(E) and TC(E) functions. 
However, any tax rate lower than the optimal one will move the fishery in the right direction, from 
E∞towards EMEY. Let us now assume that the manager has all the necessary information freely available 
so that we do not have to include information and management costs in the analysis. Panel (a) of figure 
3.2 shows total revenues and costs, whereas panel (b) shows average and marginal figures.

The following symbols will be used:

tE = tax per unit effort (for example, $ per trawl hour or trawler year)
tH = tax per unit harvest (for example, $ per kg or tonne of fish landed).

With an effort tax the total cost for the fishers is

(3.14)  
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Figure 3.2. Use of corrective (Pigouvian) taxes on effort and harvest can equate social and private costs and 
social and private revenues.

where E and a are effort and cost per unit of effort, respectively. The use of subscript p for TC underlines 
that this is the total private cost of the fishers, including what they have to pay in effort taxes to the 
government. Note that for any value of E total private cost TCp is greater than the total cost, TC, since 
fishers have to include the effort tax in their costs. The effect of an effort tax can be analysed equivalent 
to a shift in the cost per unit effort, thus increasing the slope of the total cost curve for the industry. 
This is shown in figure 3.2, where TC(E) is the total cost curve exclusive of the effort tax and TCp(E) 
is the total cost curve including the tax. The effect of the effort tax is to augment total private costs to 
such a level that the TCp curve intersects the total revenue curve for the maximum sustainable yield 
effort level EMEY. This implies that the total revenue, TR(E), is shared between the government, as the tax 
collector, and the fishing industry. The former receives the resource rent, πMEY, and the fishers end up 
with the difference between the total revenue and the resource rent, TR(E) minus πMEY. Fishers in total 
receive TR(E) for their catch, and out of this they pay a tax proportionate to their effort. What is left is 
just enough to cover the costs of the fishers. Recall that ordinary remuneration of capital and labour is 
included in the costs.
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The total amount of resource rent depends on biological and economic characteristics of the fishery, 
related to the forms of the curves in figure 3.2. In general, we could say that low cost fisheries with high 
priced and/or easy to catch fish have the greatest potential for generating resource rent. On the other 
hand, high cost fisheries with low priced and/or hard to catch fish may even make it uneconomical 
to sustain a fishery on a commercial basis. Realising resource rent has a meaning only when a fishery 
generates, or is expected to generate, higher revenues than costs.

With a harvest tax the total private revenue of fishers equals

(3.15)  

where p and H are the price of fish and of harvest, respectively. Note that TR now has the subscript p 
to underline that the total revenue in (3.15) is what the private industry receives net of taxes. The other 
part, equal to thH(E), is the government’s tax revenue. It is easy to see by re-arranging (3.15) that the total 
revenue of the fishery, pH(E), equals the sum of private and government revenues. Recall that the tax rate 
th is measured in $ per kg or per tonne – in other words we do not use a percentage tax in this analysis. 

Figure 3.2 panel (b) shows in detail the effects of the two taxes discussed above. The MC, AR and MR 
curves are the before-tax fishery marginal cost, average revenue and marginal revenue, respectively. 
The open access bioeconomic equilibrium is at the effort level E∞ where the fishery marginal cost curve 
intersects the average revenue curve. In this case with a horizontal MC curve the effort tax shifts this 
curve upward to MCp, a distance equal to the size of the tax. If, for example, the fishery marginal cost 
is $100 per trawl hour and the effort tax tE also equals $100 per trawl hour, the fishery marginal cost 
including the tax will be twice the pre-tax level. In figure 3.2 panel (b) this is illustrated with a MCp curve 
at a level twice as high as the MC curve. The MCp curve intersects the AR curve for an effort level that 
gives maximum economic yield, EMEY. The industry now faces the effort cost including the tax and this 
will equal average revenue AR at equilibrium. For effort levels lower than EMEY the AR curve is above 
the MCP curve. This implies that additional effort will enter the fishery due to super-normal profit in 
the industry, and the stock will decline to reduce the average revenue along the downward sloping AR 
curve towards the EMEY level. On the other hand, if effort is above the EMEY level the effort cost including 
the tax is above the average revenue curve, imposing a loss on the participating vessels. This implies that 
some effort will have to leave the industry, resulting in lower catch, increased stock level and increased 
average revenue when moving from the right along the AR curve towards EMEY. In case of an effort tax 
as the only management instrument fishers will face a higher cost of effort, but in all other respects their 
adaptation will be as under open access.
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In case of a harvest tax, the average and the marginal revenue curves of the sustainable fishery are 
affected as shown in figure 3.2 panel (b). If the price of fish is $2.00 per kg and the harvest tax is $1.00 
per kg, the net price of fish received by the fishers will be $1.00. Whether fishers receive $2.00 per kg 
and are charged a tax of $1.00 per kg, or they receive the net price of $1.00 does not make any difference 
to their net revenues. In the latter case the $1.00 harvest tax is levied on the buyers who collect the tax 
on behalf of the government. With this example the ARp(E) curve has a slope about half as steep as the 
AR(E) curve in figure 3.2. This is due to the definition of average revenue; namely total revenue divided 
by effort. With a constant price of fish the numerator of the average revenue will change in proportion 
with the harvest tax for a given level of effort. The right-hand side end point of the average revenue 
curve on the effort axis will not be affected by the harvest tax; thus the intersection is at Ek for both the 
AR and the ARP curve.

In figure 3.2 the level of the effort tax is such that the linear TCp curve intersects the total revenue curve 
for EMEY. This implies that the total tax revenue equals the resource rent:

(3.16)  
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In the case of a harvest tax in figure 3.2 the level of this tax has been set such that the TRp curve intersects 
the total cost curve for EMEY. The resource rent in this case is exactly of the same amount as the tax revenue:

(3.17)  

By use of taxes on effort or harvest, the profit maximising behaviour of fishers results in lower effort 
than under open access, and those who stay in the industry earn a normal remuneration. Open access 
fisheries give, as we have seen, too many fishers in the industry, but resource taxes on effort or harvest 
could positively alter this. Thus, a tax on harvest contributes to decreasing the total revenue of the industry 
whereas a tax on effort contributes to increasing the industry costs. Resource taxes levied on effort or 
harvest would change the private cost or private revenue, respectively, to discourage participation in the 
fishery. The tax authority, traditionally the central government, collects the resource rent generated. This 
tax revenue may be used to reduce other taxes or to augment the government’s expenditures. From a 
policy point of view resource rent can be re-distributed, for example, to fishing communities or regions, 
without any efficiency loss. The question of how the resource rent is spent or re-distributed should be 
seen independently of the problem of generating the rent. That is one of the strengths of this analysis. 
However, in actual commercial fisheries resource taxes have not been a common management instrument, 
like in other environmental and natural resource saving relations (for an overview of environmentally 
related taxes in industrialised countries, see OECD, 2001; OECD 2003; and The Environmental Taxes 
Database of OECD at http://www.oecd.org/). Also see Flaaten, 2010 for a story on what may happen to 
fisheries dependent regions and countries if distributional issues are neglected.

Management does not come for free (Schrank et al., 2003). There are costs of research and assessment of 
fish stocks and markets, as well as costs of obtaining information on costs and earnings of fishing vessels. 
In addition management and enforcement systems are necessary institutions which need economic 
funding. In some cases locally limited ecosystems may be governed more efficient and less costly by 
fishermen and other stakeholders themselves (see Ostrom, 1990, which is one of the major works that 
gained professor Elinor Ostrom the 2009 Nobel price in economics).
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3.4 Fishing licences and quotas

We have seen in the previous section how effort and harvest taxes could be used to reduce effort down 
to or towards the long run optimum, the rent maximising level. How much effort is reduced from the 
open-access level depends on the size of the tax, which in this case acts as a price instrument. In simple 
cases like this, with a single resource and no distinction between year classes, with one-dimensional 
effort (no substitution5 between inputs), no management costs and no uncertainty, the manager may 
choose freely between indirect price instruments (taxes) and direct instruments, such as effort and harvest 
quotas. Price management (taxes) and quantity management (quotas) have equivalent effects on overall 
industry production and economic performance, therefore they are called dual instruments. However, to 
ensure that the expected results are lasting, the effort quotas and harvest quotas should be transferable. 
This means that there has to be a quota market to ensure that at any time the most cost-effective fishers 
do the fishing. In a successful MEY-managed fishery resource rent per unit effort would be ΠMEY/EMEY 
and resource rent per unit harvest would be ΠMEY/HMEY (recall figure 3.2). These two ratios indicate the 
equilibrium prices of effort and harvest quotas, respectively.

In actual fisheries the initial distribution of the fishing rights, such as vessel licences, effort quotas and 
harvest quotas are often heavily debated. There could be several reasons for this, but the main one has to 
do with the distribution of resource rent, which may be significant in well-managed fisheries. Even in a 
system with non-transferable harvest and effort quotas, significant resource rent may still be generated, 
in particular, if the initial quotas are given for free to those fishers that are most successful under the 
open access regime. The question is, however, whether these fishers also in the future will be the most 
efficient ones (Nøstbakken, 2012).

Let us now have a closer look at the effects of using licences and quotas as management instruments 
and compare the results to that of taxes. A vessel licence is a permission to register and use a vessel for 
commercial fishing. The licence may or may not specify limits to the vessel characteristics, for example, 
length (metres), weight (gross registered tonnes), hold volume (cubic metres) or engine power (horse 
power or kilowatt), and to the type of gear (for example, trawl, long-line or purse seine). A licence usually 
restricts the fishing capacity of the vessel; in general capacity is the amount of fish that can be produced 
per unit of time, for example, per year, with existing vessel, equipment and gear at a given stock level, 
provided the availability of variable factors of production is not restricted.6 While capacity is related to 
the mere existence of the fishing vessel, effort is related to its use, measured for example, in hours, days 
or years. What to use as the unit of effort is mainly a question of convenience (see Box 3.1). In what 
follows we shall focus on effort and harvest quotas as management tools without discussing explicitly 
the use of licences. However, there is a close connection between the licence value and the quota value, 
depending on the amount of harvest quotas or effort quotas a licence holder is given or allowed to acquire. 
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Figure 3.3 is derived from figure 3.2 and shows effort along the horizontal axis and market price of effort 
along the vertical axis. Effort and its market price are both related to the same unit of measurement. 
For example, if effort is measured in trawl hours the effort quota price is in $ per hour trawling, and if 
effort is measured in whole-year operated trawlers, the price is in $ per trawler year. Resource rent per 
unit effort is the difference between the average revenue per unit effort, AR(E), and the marginal cost of 
effort, MC(E) (see figure 3.2). In a perfect market, disregarding uncertainty, the effort quota price reflects 
the expected resource rent per unit effort and the harvest quota price reflects the expected resource rent 
per unit harvest. The licence price in figure 3.3 has its maximum for just one unit of effort, recalling 
that the highest average resource rent is gained if only one unit of effort participates in the fishery. At 
the other end of the effort price curve is the zero price for the open access case. The quota price is zero 
if the number of effort quotas equals the amount of effort that would establish itself under open access. 
In an open access fishery the market price of quotas is zero because no resource rent is generated. The 
total value of the quotas is, as usual, the product of price and quantity. In this case the maximum total 
value of the effort quotas, which is the product mMEYEMEY shown in figure 3.3, is equal to the maximum 
resource rent, DMEY, shown in figure 3.2. Note that this analysis relates to long run equilibrium harvesting 
where the manager has adapted the number of effort quotas to maximise resource rent.
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Figure 3.3. Effort quota price as a function of sustainable effort.

So far in this chapter we have studied some long-run aspects of fisheries, in particular the cases of 
open-access and MEY management, assuming that the supply of homogenous effort is plentiful at a 
constant marginal cost of effort, previously denoted a. However, from the theory of the firm we recall 
that increasing marginal cost is necessary to avoid corner solutions with “all” or “nothing” production. 
In fisheries economics the declining stock as a function of effort helps avoid corner solutions, as shown 
implicitly in figure 3.2.7
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Let us now assume that in the short run there is increasing marginal cost of effort at the firm level 
(more on this in chapter 6). This means that if there is a market for effort quotas the firm wants to buy 
more quotas the cheaper they are; the firm may be a multi-vessel company, a single vessel company or 
an owner-operated vessel. The downward sloping demand curve corresponds fully to the regular firm’s 
demand for any variable input that can be bought in the market. Figure 3.4 shows the equilibrium in a 
quota market with two competitive firms. The quota price is shown on the vertical axis. On the horizontal 
axis the distance CD measures the managers’ total supply of effort quotas or harvest quotas. If effort 
quotas are used, the total supply CD has to be less than the open access effort level to ensure demand and 
a positive price. If there is a positive price for effort quotas this also ensures a positive price for harvest 
quotas, and vice versa. In figure 3.4 quotas in firm A are measured off to the right from C and quotas in 
firm B are measured off to the left from D. The AA curve expresses the value of the marginal quota in 
firm A and the BB curve measures the value of the marginal quota in firm B. Thus the AA and the BB 
curves are the demand curves for quotas for firms A and B respectively. Each of these demand curves 
depends upon three things. First, the harvest technology for producing effort from capital, labour and 
other inputs. Second, the price of fish; an increase in the price shifts the demand for quota upwards. 
Third, the amount of vessel specific capital, which may be different for the two firms. In this case depicted 
in figure 3.4 there is more vessel capital in firm B than in firm A since the quota demand for any price 
m is higher in firm B than in firm A.

Figure 3.4.  Two firms’ demand for quotas as a function of quota price. “Effort/harvest” means effort quota or harvest quota.
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Figure 3.4 shows that the quota price m* is the equilibrium price. For this price the total quota, equal 
to the distance CD, is allocated between the two competitive firms according to the profit maximising 
criterion.8 If the initial quota distribution is CG for firm A and DG for firm B, both firms will gain 
from a quota trade. Firm A will sell quota FG to firm B, and the market equilibrium is established at F 
with the quota price m*. In general, if the manager distributes for free the initial total quota CD equally 
between several firms, which are allowed to trade quotas, a competitive quota market ensures that the 
most efficient firms conduct the actual harvest. This is also the case for any other initial free distribution 
of the total quota. When quotas are distributed for free to the fish harvesting firms these firms reap the 
benefits of a successful management regime. Alternatively the manager could auction the quotas, and with 
a competitive market the equilibrium price is m*, as shown in figure 3.4. The main difference between an 
auction and initially free quotas is in the distribution of the resource rent. With an auction the auctioneer 
collects the resource rent, whereas the rent benefits the recipients when quotas are distributed for free. 
This may explain why fishers are usually in favour of free initial quotas and why they oppose auctions.
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Exercise 3.1

A fish stock with its distribution area limited to a bay is managed locally. Assume that the following 
function describes the annual growth of the stock:

where X is the stock level at the beginning of the year, r is the intrinsic growth rate and K is the carrying 
capacity.

When fishing takes place harvest per unit of effort is proportional to the stock level, implying the 
following catch function:

where H is catch, q is the catchability coefficient and E is fishing effort measured as number of vessel 
years. The unit cost of effort is a and p is the price of fish.

The parameter values are:

r = 0.25 per year
K = 1000 tonnes
q = 0.05 tonnes per vessel year
p = 1.00 $ per kg
a = 10 000 $ per vessel year

Find (and explain how) equilibrium effort, catch, revenues and costs for each of the following management 
objectives:

a) Maximise employment in fish harvesting,
b) Maximise harvest to be processed onshore,
c) Maximise resource rent of the fishery.

How could you as the manager of this fishery realise objective c given that objective a has been followed 
until now?
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Exercise 3.2

Two firms, A and B, are profit maximisers and act as if they are price takers in a competitive quota 
market (it could be either harvest quota or effort quota).

M = quota price ($ per tonne or per trawl day)
X = quota (tonnes or trawl days)

The demand functions for quotas differ between the two firms, and are:

mA = 1000 – 0.015XA

mB = 1200 – 0.010XB

1. What is the marginal value of quota for each firm (mA and mB) if the total quota X = 50 000 
is distributed between A and B, with XA = 20000 and XB = 30000?

2. What is the competitive equilibrium quota price (m* = mA = mB) and the corresponding 
quota for each firm (XA and XB), assuming that quotas are fully utilised?

3. What is the traded quota (the difference between the initial distribution and the competitive 
equilibrium) for each firm?

4. Draw a picture of what you have derived in question 1–4 based on the information above 
(tip: see figure 3.4) and mark on the axis the numbers you have found.

What is the efficiency gain from trade, in $ and in % of the equilibrium value of the total quota?

Exercise 3.3

In a fishery the long-run harvest function (harvest volume) is

a,b positive constants, E is fishing effort. Total cost is

, with c=unit cost of effort and
Total revenue is , with p = constant price of fish.

a) Find the open-access equilibrium values of effort and harvest, E∞ and H∞, respectively.
b) Find the fishing effort that maximizes resource rent, EMEY, and the corresponding harvest, 

HMEY. What happens to EMEY and HMEY if p increases?
c) Find the fishing effort that maximizes sustainable yield (harvest), EMSY.
d) With the parameters a = 30, b = 0.02, c = 100 and p = 10, calculate E∞, EMSY and EMEY. Does 

this imply biological overfishing or not?
e) The fisheries management board levy a tax per unit fishing effort, tE = 100. What will the 

fishing effort be in this case? Does this imply biological overfishing or not?
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4 Investment analysis
To fish down or to build up a fish stock takes time, and time is money for enterprises and consumers. 
In this chapter we introduce the concept of discounting and analyse how a positive discount rate affects 
the optimal long-run harvest and stock level, as well as the fishery in transition. Both discrete and 
continuous time frameworks are used.

4.1 Discounting

In the previous chapter we discussed resource rent in an open access and in a maximum economic yield 
fishery, and showed that open access implies dissipation of the potential resource rent due to excessive 
effort and too low stock level. To change from open access to maximum economic yield fishing necessitates 
reduced effort and increased stock level. However, rebuilding a fish stock takes time since the resource 
itself has a limited reproductive and growth capacity. Rebuilding can only take place if harvesting is 
reduced or stopped for some time since harvest has to be less than natural growth to generate growth in 
the stock. At any point in time the resource manager has the choice between depletion, rebuilding and 
equilibrium harvesting of the fish stock. Depletion means that harvest is greater than natural growth, 
and revenue is high in the short run. However, this harvest strategy is not viable in the long run and 
will have to be changed after some while to avoid economic losses.
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Rebuilding a fish stock means investing the foregone harvest, thus, revenue is reduced in the short run 
with the aim of getting more in return at a later stage. In this case a part of the potential net revenue 
is invested in the fish stock, the natural resource capital, to save for future purposes. For the resource 
owner, usually the society, the question at any point in time is whether to consume or invest. For an 
investment in the stock to be profitable, the return on this investment should be just as good or better 
than for other investment projects. A sum of money to be received in the future is not of the same value 
as the same sum of money received today, since money could be deposited in the bank at a positive 
interest rate. Thus, the interest rate plays an important role in the evaluation of investment projects as 
well as in comparison of the value of money at different points in time.

Before we proceed to study capital management of the resource stock, let us recapitulate the main 
connections between present value and interest rate in a discrete and a continuous time context. (Now you 
should have a quick look at this sub-chapter. If you already knows this you may go directly to chapter 4.2).

When investing A0 dollars, for example as a bank deposit, at an annual interest of i per cent, your capital 
will after one year have grown to A0(1 + i) and after two years the value will be A0(1 + i)2. In general, an 
investment of A0 dollars on these conditions will after t years have the following value

(4.1)  

Solving equation (4.1) for A0 gives

(4.2)  

This shows the connection between the future and the present value of money. At dollars in t years is worth 
A0 at the present, therefore, A0 is called the present value of At. It is easy to see from equation (4.2) that 
the present value of a given amount of future money is lower the farther in the future it will be received 
and the higher the interest is. For businesses and people investing their money, i is usually called the 
interest rate or market rate of interest, whereas in economic analysis it is often called the social rate of 
discount. The factor 1/(1 + i)t = (1 + i)-t of (4.2) is the discount factor, which has a value less than one 
for all positive values of i and t. For t = 0 the discount factor equals one and it decreases for increased 
values of t. This means that money at the investment or loan point in time is not discounted, whereas all 
future money is. Note that the discount factor approaches zero when t goes to infinity. This means that 
money values in the very, very far future hardly have any value today if they are discounted. The present 
value of a stream of future annual profit is the sum of the present value of each of them. For example, 
with an annual interest rate of 5 per cent the present value of a profit of $1000 a year for the next five 
years, starting one year from now, is 0.952 · $1000 + 0.907 · $1000 + 0.864 · $1000 + 0.823 · $1000 + 
0.784 · $1000 = $4330. (The author has made a deliberate mistake for one of the discount factors – find 
this by use of your calculator).
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Traditionally, discrete time formulas as discussed above are commonly used in investment and economic 
analysis. This is due to the fact that usually interest is calculated and firms report economic results to 
owners and tax authorities on an annual basis. However, in principle the period length for interest and 
present value calculations may be arbitrarily chosen as long as the interest rate is adjusted accordingly. 
For use in population dynamics and natural resource economics it is often useful to calculate growth and 
decay on a continuous time basis using the instantaneous annual rate of discount, δ. The relationship 
between the discrete time annual interest rate and the instantaneous rate of interest is

(4.3)  

Figure 4.1. Discount factors for discrete (bars) and continuous (curve) time, with i = 0.10 and d = 0.093.

where e = 2.71828 is the base of the natural system of logarithms. Figure 4.1 shows the connection 
between discount factors for i = 0.1 and δ = 0.0953 using discrete and instantaneous time, respectively, 
on an annual basis. From (4.3) we derive, by taking the natural logarithm of both sides,

 (4.4)

For i = 0.1 we derive δ = 0.0953 by using (4.4). For bank deposits, using the annual rate of interest i, 
compound interest is usually calculated at the end of each year. However, using the instantaneous rate of 
interest δ implies that interest on interest is calculated on a continuous basis throughout the year. That 
is why δ is less than i – the continuous calculated interest on interest compensates for the lower value 
of the proper interest rate (δ compared to i). Note that this discussion is based on a time step of one 
year in the case of discrete time. If, however, we use a shorter time step, the difference between i and 
δ, according to equation (4.4), will be smaller. In the extreme case when the time step approaches zero, 
the discrete time rate of interest, i, will approach the continuous time rate of interest, δ.
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As noted above, formula (4.2) is for the discrete time case. Using continuous time in the corresponding 
formula for computation of the present value A0 of the future value at time t, A(t), we get

(4.5)  

Whether one should use discrete or continuous time approach in economic analysis of investment is 
primarily a question of convenience. The formulas (4.2) and (4.5) give the same result as long as i and 
δ are in accordance with (4.4). In theoretical analysis it seems that the continuous time approach is the 
preferred one, whereas in empirical work discrete time calculations are the most common. The fact that 
most fish stocks are assessed at regular time intervals is a practical argument for using discrete time 
models in studies of applied fisheries biology and fisheries economics.
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4.2 Fish stocks as capital

At any point in time the resource manager has a choice between depleting, rebuilding and equilibrium 
harvesting of the fish stock. These options imply that the harvest has to be either above, below or equal 
to the natural growth of the stock. Globally many fish stocks are overexploited and the policy objective 
is to rebuild them (FAO, 2010). Such rebuilding means an investment in the natural capital. To assure 
profitability of an investment in a fish stock the present value of postponing the harvest has to be greater 
than the value of immediate harvest. In case of actual management the options are usually “greater” or 
“smaller” harvest now compared with “smaller” or “greater” future harvest, or change in harvest. However, 
to simplify the analysis let us start by comparing two distinct options, A and B. For option A there is an 
equilibrium harvest in all periods, with a constant harvest equal to the natural growth of the stock in 
the initial period. For option B there is no harvest in the initial period, period 0, and the natural growth 
of this period is invested in the stock with the aim of increasing the potential harvest in all succeeding 
periods. Therefore, for option B equilibrium fishing takes place such that natural growth is harvested 
from including period 1. With H denoting harvest and X fish stock, the two options are

Option A: , and

Option B: ,

where superscript denotes harvest option and subscript denotes harvest period. To compare the economic 
results of the two alternatives, the net economic result of each harvest period is discounted to the starting 
point, period 0. The fish price, p, is given at the world market whereas the unit cost of harvesting, c, 
depends on the stock size in the following way

(4.6)  

In other words, the unit cost of harvest, for example $ per kg, diminishes with increased stock level. The 
resource rent for each period of time is

(4.7)  

The two sets of resource rent we are going to compare are

Note for option B the zero harvest and zero resource rent of the commencement period. Compared with 
option A, this will increase the stock level and the harvest potential for all subsequent periods. Now the 
question is: when is option B to be preferred to option A? To answer this let us try to derive a criterion, 
or rule, for when to invest in the stock. The analysis will conclude with the investment rule in (4.12).
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The difference in resource rent between options B and A from and including period 1 is

(4.8)  

Recall that π0
A = π A, whereas π0

B = 0. Assuming that the period length is one year, i designates the annual 
rate of discount. It is of course possible to use any period length as long as the interest rate i is adjusted 
accordingly. Nevertheless, we shall in this section think of one year as the period length. The present 
value of the future n-period resource rent differences is

(4.9)  

Since a fish stock has the potential of living eternally we need the infinite horizon equivalent of (4.9). This 
is easily derived by letting n approach ∞ in formula (4.9), thus the right-hand side changes to an infinite 
horizon geometric series. According to the formula for an infinite geometric series, we have a + ak + ak2 
+……+ akn-1 = a/(1 – k), when k < 1 and n → ∞ (see, for example, Berck and Sydsæter, 1991). Defining 

and

k = 1/(1 + i)

we derive

(4.10)  

(the student should check that this is correct). We have now found, in (4.10), that by not harvesting during 
the starting period, thus investing the value π0

A in the stock, the additional present value of future harvests 
equals the additional annual value divided by the annual rate of discount. The important question now 
is: is this a profitable investment for the resource owner? According to the standard investment criterion, 
the investment is profitable if there is a positive difference between present value of future profit due to 
the investment and the initial investment. Therefore, in our case the investment is profitable if

(4.11)  

Rearranging (4.11), we derive the following investment rule:

Invest in the fish stock if

(4.12)  
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This investment rule says that the resource owner should invest in the stock as long as the relative 
profitability of the fish stock capital is greater than that of alternative investments expressed by the annual 
rate of discount, i. This result also implies that the optimal stock level is established when the left-hand 
side expression of (4.12) equals the annual rate of discount. Thus, the long-run optimal stock level may 
be found from the formula

(4.13)  

At the optimum the relative profitability of the fishery, based on the notion of resource rent, should equal 
the annual rate of discount. Further investment in the resource will reduce the unit cost of harvesting, 
according to (4.6). However, sustainable yield and revenue will become relatively smaller and smaller 
due to the shape of the growth function, F(X) (see figure 2.1). The resource rent on the left-hand side of 
(4.13) consists of both revenue and cost elements, which may vary differently with a change in the fish 
stock according to whether the stock level is lower or higher than the MSY level. The different elements 
of the resource rent and the effects of changes in the discount rate warrant further investigations.
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4.3 Long-run optimal stock levels

For the discrete time analysis in section 4.2 the interest rate i was used, measuring the rate of interest per 
year. In section 4.1 the instantaneous rate of interest, δ, was explained and compared with the discrete 
time rate of interest i. The former measures compound interest, that is, interest on the accrued interest 
as well as on the principal, on a continuous time basis. To see the implications for the long-run optimal 
stock level of the interest rate, fish price, density dependent harvest cost and natural growth, we shall now 
use continuous time to analyse the investment issue. Instead of asking how much harvest to postpone 
from one period of time to the next, for example, from one year to the next, we ask how much should 
possibly be postponed from one moment in time to the next moment, marginally later than the first.

We shall now assume that the management objective of the resource owner is to maximise his wealth. 
This is somewhat different from maximising resource rent (which was discussed in section 3.2). Resource 
rent is a flow concept, denoted for example by $/year, whereas wealth is a stock concept, denoted for 
example by $. Economic flows are related to time periods, for example periods of one year, whereas wealth 
is related to a specific point in time, for instance 1 January in a particular year. (Note that stock in this 
connection means a capital stock in general and not a fish stock.) There is, however, a clear link between 
flows and stocks, since wealth is the present value of the net revenue for all successive periods. To see 
this more clearly, let A(t) denote the net revenue per period of time at time t, δ the rate of discount, and 
V the wealth of the resource owner. Recalling formula (4.2), the wealth is

(4.2’)  

As noted above, the resource manager has a choice among various income streams. In making this choice 
the manager is basically determining an investment strategy. In a perfectly certain world, which is the 
kind of world we are considering, the investment decision will be affected by the opportunity cost of 
capital, expressed by the discount rate δ, and the ecological and economic characteristics of the fishery. 
A necessary condition for maximising the resource owner’s wealth, expressed in (*), is that he includes 
the opportunity cost of capital when considering what long-run level of the fish stock he shall aim at. 
(This opportunity cost of capital was deliberately excluded when we discussed the MEY management 
objective in section 3.2.)

We shall see that the long-run optimal stock level is implicitly given by equation (4.18) and that this may 
be presented graphically as in figure 4.2. We shall see that equation (4.19), called the Clark-Munro rule, 
is the continuous time equivalent to the discrete time investment rule of equation (4.13).
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Recall equation (4.13), which implicitly yields the discrete time long-run optimal stock level, and think of 
how it may look when we use continuous time and very small changes in the variables. As noted above, 
at any point in time the resource manager has the choice between depleting, rebuilding and equilibrium 
harvesting of the fish stock. In all three cases harvesting may be possible, but of a different magnitude. 
Harvesting a quantity H at any point in time creates revenues for and imposes costs on the industry. 
Current resource rent per unit harvest depends on the price of fish and the cost of harvesting. As in the 
previous analysis we shall assume a constant price of fish, p, independent of the level of harvest, and a 
unit cost of harvest, c(X), that depends on the stock level only (see equation 4.6). Investing the proceeds 
at the instantaneous rate of discount, δ, implies that the sustainable interest from this harvest equals

(4.14)  

Thus, the proceeds from the fishery, (p-c(X))H, becomes the principal of the resource owner’s financial 
investment. Equation (4.14) expresses the sustainable net income per period of time from an instantaneous 
harvest H that has been converted into a perpetual investment. Note that on the left-hand side of (4.14), 
X is placed after the semicolon. This means that X is kept constant – thus H is the independent variable 
in this case.

The sustainable interest is altered by a marginal change in the instantaneous harvest and is found from 
equation (4.14) by taking the derivative of R with respect to H.

(4.15)  

This marginal sustainable interest is the marginal opportunity cost of resource capital, emanating from 
an incremental investment in the stock since the alternative to harvesting H is to leave it in the sea as 
an investment in the stock. Figure 4.2 panel (b) shows dR/dH as the upward sloping curve, equal to zero 
at the open access stock level. The open access stock level generates zero resource rent and we see from 
(4.14) that this is the case when p = c(X∞); recalling that X∞ is the open-access equilibrium stock level. If 
the current harvest generates zero rent there is no surplus to invest and sustainable interest on this zero 
value “investment” will of course also be zero. The unit cost of harvesting is lower the higher the stock 
level – thus the unit resource rent, (p-c(X)), is higher the higher the stock level. Harvesting H now with 
the objective of investing the proceeds in the bank means that the initial bank deposit, the principal, is 
higher the higher the stock level at the moment of harvesting. With a constant rate of interest, δ, this 
means that the marginal sustainable interest, expressed by dR/dH in equation (4.15), portrays an upward 
sloping curve in figure 4.2 panel (b).
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The alternative to current harvest (option A) is to leave the fish in the sea (option B), which is to invest 
in the stock with the purpose of harvesting at a later point in time. Such an investment may augment 
the natural growth of the stock and decrease the unit cost of harvesting to yield a future net gain from 
these two effects combined. Sustainable harvesting is when the natural growth is being harvested, that 
is H ≡ F(X). In this case the sustainable resource rent at stock level X is

(4.16)  

where we have substituted natural growth, F(X), for harvest, H. Recall that H ≡ F(X) is by definition the 
equilibrium harvest, also called sustainable harvest, for a given level of the fish stock, X. The sustainable 
resource rent, π(X), is portrayed in figure 4.2 panel (a). This rent has its maximum for stock level XMEY, 
or to put it the other way around, the stock level that gives maximum economic yield is called the 
maximum economic yield level, XMEY.
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Figure 4.2. Graphical determination of the long-run optimal stock level X* (panel (b) adapted from Clark, 1990).

Future gain comes via two components, lowering the unit cost of harvesting and possibly increasing the 
sustainable yield. Let us have a closer look at these two components by taking the derivative of equation 
(4.16) with respect to X, arriving at

(4.17)  

This is the marginal sustainable resource rent, portrayed in figure 4.2 panel (b) as the downward sloping 
curve. This may be interpreted as the “revenue” side of the investment budget – the net revenue resulting 
from a marginal investment in the fish stock. It is not obvious from equation (4.17) why  is 
downward sloping. However, note that dπ /dX is the slope of the sustainable resource rent π (X), defined 
in equation (4.16) and depicted in figure 4.2 panel (a). This panel shows that the slope of the π (X)-curve, 
the marginal sustainable resource rent, is positive but decreasing with increasing stock level between 
the open-access level, X∞ and the maximum economic yield level, XMEY. Therefore, investing one tonne 
of fish in the stock, that is, to increase the stock level by one tonne, gives a higher economic return for 
stock levels closer to X∞ than close to XMEY.
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The marginal sustainable resource rent consists of two terms (on the right-hand side of equation 4.17). 
The first term is the instantaneous marginal product of the stock, F’(X), evaluated at the net price, or 
resource rent per unit of harvest, [p – c(X)]. This term expresses the partial net gain for the fishery due 
to a change in the sustainable yield from a marginal increase in the stock level. Recall that F’(X) may be 
positive or negative, for stock levels below or above, respectively, the MSY level (see equation 2.1). The 
second term of the right hand side of (4.17) is related to the cost saving effect of increasing the stock level. 
Note that this is always positive due to the minus sign and the negative value of c’(X) (see equation 4.6).

From an investment point of view there has to be a balance between the profitability of investing (proceeds 
from the harvest) in the bank and abstaining from harvesting to invest in “fish in the sea” (to increase 
the fish stock level). Thus, the marginal profitability of these two types of investment has to be equal to 
ensure a balanced portfolio. Equating equation (4.15) and (4.17) gives

(4.18)  

where X* denotes the long-run optimal stock level, implicitly given by this equation. In our case equation 
(4.18) has a unique solution for X = X*, the optimal equilibrium stock level, shown in figure 4.2. We 
have discussed above the economic significance of each of the two sides of equation (4.18). It is easy 
to see from figure 4.2 that an increase in the discount rate, δ, will reduce the optimal stock level. Such 
an increase will turn the upward sloping curve anti-clockwise around X∞, thus moving the intersection 
point towards the left. Increased δ means that the opportunity cost of investments rises, making it more 
costly to keep a large capital stock, the fish stock, in the sea. If δ goes towards infinity, which implicitly 
is to say that the manager sets a zero value on future revenues, the optimal stock level goes towards the 
open-access level X∞. This is precisely what fishers in an open-access fishery are confronted with. For 
each fisher the opportunity cost of investing in the stock by abstaining from harvest is infinitely high. 
What Peter possibly saves in the sea for his future use will be harvested by his competitors, including Paul 
and Mary, to yield zero return on his savings. This is why Peter, and each of the other fishers, is forced 
by the open-access regime to behave in a myopic way to catch as much as possible at any point in time.

Having discussed the effect of an infinitely high discount rate we now turn to the other extreme, a discount 
rate equal to zero. Figure 4.2 panel (b) shows that the upward sloping curve, showing the marginal 
sustainable opportunity cost of investment, will turn clockwise around X∞ when δ decreases. This moves 
the optimal stock level X* towards the maximum economic yield level, XMEY. Thus if future revenues are 
not discounted relative to current revenue, which is the meaning of δ → 0, the capital theoretic approach 
to management reduces to that of maximising the resource rent. In this case a sacrifice of current harvest 
for future gains causes less “pain” since future gains last forever without being discounted. One $ next 
year, or in 20 years, is just as good as one $ today.

Download free eBooks at bookboon.com



Fisheries Economics and Management

59 

Investment analysis

Our analysis of the effect of discounting on the long-run optimal stock level is a simplified approach to 
capital-theoretic analysis of fisheries management. The development around 1970 of the mathematical 
tool of optimal control theory, an extension of the standard calculus of variations, made it possible to 
analyse dynamic economic issues in a more thorough way than had previously been done. Control 
theory was applied to analysis of economic growth, capital investment, natural resource management and 
other issues that included evaluation of income across time. Several studies of capital theoretic analysis 
of fisheries appeared in the early 1970s (for a review, see for example, Munro and Scott, 1985). In 1975 
two Canadian researchers, a mathematician, Colin W. Clark, and an economist, Gordon R. Munro, 
published one of the most quoted fisheries economics papers ever (Clark and Munro, 1975) which led to 
the investment rule in equation (4.19). Note that if we divide with the resource rent per unit of harvest, 
[p – c(X)], on both sides of equation (4.18) we arrive at

(4.19)  
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Equation (4.19) is the continuous time equivalent to the discrete time equation (4.13) for computation 
of the long-run optimal fish stock level in steady state. The left-hand side of (4.19) is the fish stock’s own 
rate of interest, and this equals the social rate of discount (which may or may not be equal to the market 
rate of interest) on the right-hand side. The stock’s own rate of interest consists of two parts, first, the 
instantaneous marginal product of the resource, F’(X), which can be positive, negative or zero. Second, it 
includes what has been termed the marginal stock effect, -c’(X)F(X)/(p – c(X)), which is always positive 
since c’(X) is negative. The marginal stock effect has a positive effect on the optimal long-run stock size. If 
the unit cost of harvesting, c(X), is high this implies a higher optimal stock level. The same result applies 
if the absolute value of the marginal unit cost of harvesting, c’(X), is large. In some cases it may be that 
the marginal stock effect is great enough to imply an optimal stock level high enough to have F’(X) < 0 
(see equation 4.19). This means that the optimal stock level may be above the maximum sustainable 
yield level, despite the use of discounting. It is also seen from equation (4.19) that if the unit cost of 
harvest is completely insensitive to stock changes, that is c’(X) = 0, the Clark-Munro rule reduces to the 
simple marginal-productivity rule F’(X) = δ. In this special case the fish stock’s instantaneous marginal 
productivity equals the marginal opportunity cost of capital, the social rate of discount, δ. Theoretical 
reasoning and empirical work have shown that the marginal stock effect is weak for schooling pelagic 
species, often fished with purse seine, and stronger for demersal species, often fished with bottom trawl 
or gill-net. Herring (Clupea sp.) and Anchoveta are examples of the former, and cod (Gadus morhua) 
and orange roughy (Hoplostethus atlanticus) are examples of the latter.

4.4 Transition to long-run optimum

We have seen that the long-run optimal stock level can be derived from equation (4.18), which is 
equivalent to the Clark-Munro rule in (4.19), and that this can be depicted graphically as in figure 4.2. 
The analysis started by comparing two investment alternatives, option A, with immediate equilibrium 
harvest and investment of the net proceeds in the “bank”, versus option B, with no harvest during the 
initial period, but with equilibrium harvest from including the next period. Thus in option B the natural 
growth of the initial period is invested in the stock to harvest more later, whereas in option A the net 
proceeds of the initial period harvest are invested in the “bank” to yield future interest. To simplify the 
analysis we have in this approach discussed two outliers, the all (option B) or nothing (option A) fish 
stock investment of the initial period. However, in actual management situations there are at any point 
in time a wide range of possible exploitation intensities, from zero harvest, which implies investing the 
total natural growth in the stock, via some harvest or equilibrium harvest to different degrees of over-
exploitation. The latter implies running down the fish stock. In a complete theoretical analysis there 
is usually a connection between the long-run optimum and the optimal path towards equilibrium. 
Nevertheless, for practical and pedagogical reasons we have discussed these two issues separately, as if 
the optimal long-run stock level implicitly is given by equation (4.18).
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Figure 4.3 shows two possible recovery strategies in case of an overfished stock, that is, when the initial 
stock level is below the optimal level. Path (i) is the non-fishing adjustment path, also called the bang-
bang approach to fisheries adjustment. In this case the fishery is totally closed down (panel b) and the 
stock recovers at its maximum speed (panel a), limited by its natural rate of growth, until time t1 when 
the optimal stock level is reached. From time t1, long run optimal harvesting, H*, takes place at stock 
level X*. The gradual adjustment path, path (ii) in Figure 4.3, which allows some harvesting during the 
stock recovery period, goes on until time t2, with the implication that it takes somewhat longer for the 
stock to reach its optimal equilibrium level.

Figure 4.3. Strategy (ii) implies some fishing during the transition period and a slower rebuilding of the stock than strategy (i), 
which is the bang-bang strategy with complete closure of the fishery for some time.

In figure 4.3 the difference between strategy (i) and (ii), with respect to harvest and stock recovery, is 
found during the adjustment period up to t2. However, from t2 to infinity the long-run optimal harvesting 
takes place regardless of the transition period strategy. Therefore, for an evaluation of the costs and gains 
of the alternative rebuilding strategies, it suffices to compare performances of the transition period, that 
is, until t2. Strategy (ii) gives the highest catch in the first part of the period up to t1, during which strategy 
(i) demands total close down of the fishery. In the second part of the transition period, between t1 and 
t2, strategy (i) gives the highest catch, equal to the long run optimum, H*. If the price of fish is constant, 
regardless of quantity harvested, and the unit cost of harvesting depends on stock level only, as given in 
(4.6), the bang-bang strategy is superior to any other strategy (see Clark and Munro, 1975). This implies 
that any strategy postponing the moment for equilibrium harvesting beyond t1, for example, to t2, is an 
inferior solution. The present value of resource rent from harvesting will be highest with the bang-bang 
strategy, given the two crucial assumptions regarding price of fish and unit cost of harvesting. The reason 
for this is that there are no price and unit cost penalties from reduction of harvest and effort, neither 
from the market in the form of forgone opportunities for gaining a higher price with smaller harvest, 
nor from any effort-dependent unit cost of harvesting. (The case of price and cost characteristics that 
may lead to more gradual transition paths than the bang-bang path is discussed below.)
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So far we have discussed transition as if path (ii) in figure 4.3 is the only alternative to the bang-bang 
path (i). However, this is just for illustrative purposes. In empirical work and actual management it could 
be that several alternative paths are closer to optimum than the bang-bang path. In figure 4.3 panel (b), 
path (ii) depicts a gradual increase in harvest during the transition period, from H0 at the commencement 
of the transition to the equilibrium harvest, H*, at the end. Alternatively we may for instance start with 
a catch somewhat larger than H0 and keep this constant until the optimal equilibrium stock level is 
reached. Another alternative is to start with a harvest somewhat lower than H0 and stay below harvest 
path (ii) throughout the transition period. This implies that the stock will grow faster than shown for 
stock path (ii) of figure 4.3 panel (a), and t2 will be moved to the left to shorten the time necessary to 
rebuild the stock to the optimal level X*.

If the price of fish varies with harvest, as is the case with a downward sloping demand curve, this may 
have an effect on the optimal transitional fishery. In this case the optimal path is usually a more gradual 
transition to the long-run equilibrium in order to benefit from the high price-low quantity combination. 
Thus, the bang-bang solution with complete closure of the fishery during the transition period is no 
longer optimal. The reason for this is that the positive economic effects of a small harvest at a higher 
average price throughout the transitional period will be beneficial compared with the negative effect 
from delaying the moment of time we reach a fully restored fishery. Related to figure 4.3, this means 
that the point in time when the optimal equilibrium stock level and harvest are reached, t1, is postponed 
somewhat, for example to t2.
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If harvest costs are different from what we assumed above (see equation 4.6), this also may imply an 
optimal transition path different from the bang-bang approach (i), towards a more gradual transition 
path illustrated by (ii) in figure 4.3. For instance, if the unit cost of harvesting depends not only on 
the stock level, but also on effort or on harvest level, this may switch the optimal transition path from 
bang-bang to more gradual stock recovery. The existence of some high-liners, that is, fishers who are 
significantly more cost-effective than the average, could be an argument for letting this type of effort 
continue harvesting during the rebuilding of the fish stock. In other words, if effort is heterogeneous 
it may be an advantage for the realisation of resource rent, in present value terms, to operate a minor 
fishery with the most cost-effective effort rather than closing down the fishery during the transition 
period. (We shall return to the issue of high-liners and intra-marginal rent in chapter 7).

4.5 Adjusted transition paths

We have seen above that economically over-fished stocks need reduction or complete cession of harvesting 
to recover and grow to the optimal level. Temporary reduction in harvest also requires a reduction in 
fishing effort. Since effort is composed of, or produced from, labour, variable inputs like fuel, bait and 
gear, as well as vessel capital, the reduction of effort will have repercussions on the labour market and 
the markets for other inputs. The consequences of these changes are most severe in areas dependent 
on fishing with few alternative employment opportunities. The same applies to the negative effects of 
reduced quantities of fish as raw materials for the fish processing and marketing industries, often called 
the post-harvesting sector. For owners and employees of this sector there may be both economic and 
social costs incurred because of fluctuations in landings of fish, in particular when landings are reduced. 
Therefore, rebuilding of fish stocks is not possible without temporary negative effects on employment, 
the vessel service industry and the post-harvest industry. However, the short- and medium-term costs 
of industries and society should be outweighed by future gains from higher stock levels, otherwise fish 
stock investment is futile.

The objectives of actual fisheries management often include elements other than resource rent or net 
revenue of the industry. For example, such objectives are included in the Code of Conduct for Responsible 
Fisheries, adopted in 1995 by the Food and Agriculture Organisation of the United Nations (FAO), 
shown in Box 4.1.
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Box 4.1 FAO Management Objectives

Recognising that long-term sustainable use of fisheries resources is the overriding objective of conservation and management, 
States and subregional or regional fisheries management organisations and arrangements should, inter alia, adopt appropriate 
measures, based on the best scientific evidence available, which are designed to maintain or restore stocks at levels capable 
of producing maximum sustainable yield, as qualified by relevant environmental and economic factors, including the special 
requirements of developing countries.

Such measures should provide inter alia that: 

a. excess fishing capacity is avoided and exploitation of the stocks remains economically viable; 
b. the economic conditions under which fishing industries operate promote responsible fisheries; 
c. the interests of fishers, including those engaged in subsistence, small-scale and artisanal fisheries, are taken 

into account; 
d. biodiversity of aquatic habitats and ecosystems is conserved and endangered species are protected; 
e. depleted stocks are allowed to recover or, where appropriate, are actively restored; 
f. adverse environmental impacts on the resources from human activities are assessed and, where appropriate, 

corrected; and 
g. pollution, waste, discards, catch by lost or abandoned gear, catch of non-target species, both fish and non-fish species, 

and impacts on associated or dependent species are minimised, through measures including, to the extent practicable, 
the development and use of selective, environmentally safe and cost-effective fishing gear and techniques.

States should assess the impacts of environmental factors on target stocks and species belonging to the same ecosystem or 
associated with or dependent upon the target stocks, and assess the relationship among the populations in the ecosystem. 

FAO (1995), pp. 9–10.

The Code, which is voluntary, was developed by FAO and its member countries as a response to the 
economic and ecological failure of several fisheries worldwide. Certain parts of it are based on relevant 
rules of international law, including those reflected in the United Nations Convention on the Law of 
the Sea of 10 December 1982. From an economic point of view the main objective of “…maximum 
sustainable yield, as qualified by relevant environmental and economic factors…” is a little bit strange. 
However, instead of further interpretation of this agreed FAO text, let us anticipate that the manager, on 
his own or together with the industry and other stakeholders, does the thinking, specifies the management 
objective(s) and in the end arrives at a long-run target level for the fish stock. Let us call this level the 
target stock level, with the corresponding target harvest and effort level as well.9 The target stock level 
may be above, equal to or below the optimal stock level discussed above.

The transition costs and benefits depend on the objectives of policy makers (for example, economic, 
biological, social, and administrative) and on the characteristics of the instruments (technical measures, 
input and output controls) that are used to achieve their objectives. The objectives pursued by fishery 
managers, and the management measures that are used to achieve these objectives will thus play an 
important role in determining the costs and benefits incurred in a transition to targeted fisheries.
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Taking the development of the stock towards a long-run target as a guiding principle, it is possible to 
evaluate the benefits and costs associated with this transition. If a stock is not realising its production 
potential because it is too small, then harvest opportunities are being forgone. Potential harvest that could 
be generated by the stock is not being realised, due to its depleted state. Figure 4.4 provides a stylised 
illustration of the adjusted transition path. Panel (a) shows the harvests from the fish stock, panel (b) 
shows the effort levels associated with harvesting the stock over time and panel (c) shows the change 
in the stock level over time. In comparison with a fishery being man aged at its target levels, time t0 is 
characterised by lower harvest, higher effort and smaller stock size. If the stock were given a chance 
to rebuild, a larger harvest with lower level of effort could be realised. The line CB in panel (a) shows 
harvest forgone due to the depleted state of the stock.
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Figure 4.4. Stylised adjusted targets and transition paths for stock level, effort and harvest of a fishery.
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Figure 4.4 also illustrates the principle of the transition period’s pains discussed above. If managers enact 
remedial measures to allow fish stocks to rebuild, then harvest and effort need to be reduced during the 
transition period. Instead of continuing to harvest AB in panel (a), harvest needs to be reduced to DE. 
Figure 4.4 panel (b) illustrates the reduction in effort that is required. Effort needs to fall below that 
associated with the long-run target if the stock is to rebuild.

The movement over time from t1 to t2 illustrates the final stage of the transition process. As the size of 
the fish  stock increases towards the target level, harvest can increase. Due to the increased abundance 
of fish, the effort required to harvest this level of yield would be relatively lower than that before the 
transition period started. A recovered fishery is characterised by relatively higher catch, larger stock 
and lower effort.

The benefits and costs of a transition to targeted fisheries also depend on the resource’s biological charac-
teristics. In the case of short-lived species, stocks that have been overfished may rebound to target levels 
in a relatively short period of time. In the case of species with low fertility or that grow slowly, recovery 
may take a significant amount of time, in which case the benefits associated with the transition will only 
be incurred in the more distant future. Indeed it is possible that the discounted costs could outweigh 
the benefits.

Exercise 4.1

Two fisheries, A and B, generate annual sustainable resource rent D1 (million €) as shown in the table. 
By closing the fishery completely for one year the stock is allowed to recover somewhat and the annual 
sustainable resource rent increases to D2.

A B

D1 11.00 0.90

D2 11.50 1.05

Table 4.1

1. Would you as the manager recommend this one-year closure of the fishery when the social 
rate of discount, at an annual basis, is 7%? 

2. What size of the discount rate could make it worthwhile to close both fisheries for one year?

Exercise 4.2

1. Show that the present value, PV, of an eternal constant annual flow of income, A, equals 

2. A resource economic investment project gives eternal net revenue of 10 million USD per year. 
What is the net present value of this project when the annual discount rate is 5% or 10%?
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5 The Gordon-Schaefer model
This chapter discusses the Gordon-Schaefer model for analysis of open-access and optimally managed 
fisheries. The main differences between this and the previous chapters are derived from the use here of 
a specific form of the natural growth function. This allows us to find exact expressions for equilibrium 
levels of the fish stock, effort, revenues, costs and resource rent.

5.1 The logistic growth model

Most fish stocks are such that natural growth is small for both high and low stock levels and largest for 
some intermediate level. The reasons for this are mainly density-dependent biological factors, such as 
individual growth and natural mortality. In the previous chapters we have used a bell-shaped graph for 
natural growth as a function of stock size. Now we are going to use the logistic growth function, which 
is a mathematical representation of biomass growth of an animal stock, and this depicts a symmetric 
bell-shaped natural growth curve.

Stock change per unit of time is

(5.1)  
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where F(X) is natural growth and H is catch. The Gordon-Schaefer model, named after the works of two 
Canadian researchers (economist H. Scott Gordon (1954) and biologist M. B. Schaefer (1957)), is based 
on the logistic type natural growth equation

(5.2)  

Equation (5.2) was designed and discussed first by P.F. Verhulst (1838), and later re-discovered by R. 
Pearl (1925). Parameter r is the maximum relative growth rate, also called the intrinsic growth rate, and 
K is the carrying capacity, both parameters assumed to be fixed. The reader should verify that the relative 
natural growth is a linear function of the stock level and approaches its maximum, equal to r, when 
the stock level goes to zero, that is F(X)/X approaches r when X approaches zero. Parameter r is mainly 
related to the actual species we are studying while K depends on mainly the natural environment of the 
stock, such as size and biological productivity of the habitat. Equation (5.2) is quadratic in X and for low 
stock levels the first part with the positive sign is dominating, whereas for higher levels the second part, 
with the negative sign, is dominating. Natural growth is usually positive, but may even be negative if the 
stock level for any reason is higher than K. However, negative natural growth can for obvious reasons 
not represent biological equilibrium, with dX/dt = 0 in (5.1), neither with nor without harvesting.

Natural growth has its maximum for a specific stock level that may be found by maximising F(X) with 
respect to X. This stock level produces the maximum sustainable yield (MSY), and the student should 
verify that this equals

(5.3)  

Substituting XMSY for X in equation (5.2) gives

(5.4)  

Thus the maximum sustainable yield equals a quarter of the product of the two parameters.

The Gordon-Schaefer model includes natural growth, according to the law of equation (5.2), and harvest 
according to

(5.5)  

that we recall from chapter 2. This harvest function has the property of having catch per unit of effort 
proportional to the stock level, with the catchability parameter q as the proportional ratio. In Schaefer 
(1957) catch and effort data were used to estimate changes in fish stocks.
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We are now going to find the connection between harvest and effort at equilibrium for this model. 
Equilibrium harvesting means dX/dt ≡ 0 and H ≡ F(X) in equation (5.1), and from (5.5) follows X = H/
qE. Substituting this expression for X in (5.1) gives

(5.6)  

Rearranging equation (5.6) somewhat gives

(5.7)  

Comparing (5.7) and (5.2), we notice also that the former, the equilibrium harvest function, is a quadratic 
function. It is quadratic in the product qE, whereas the natural growth function (5.2) is quadratic in X. 
You may notice that the product qE has to be less than r to have a positive harvest, according to equation 
(5.7). If qE is kept at or above r the stock becomes extinct and this of course gives a zero equilibrium 
harvest. We are now going to use the equilibrium harvest function for an economic analysis of open 
access and optimally managed fisheries.

5.2 The open-access fishery

Let us now see if we can find the open-access effort and stock equilibrium levels expressed as functions 
of biological and economic parameters. This way we may analyse the equilibrium levels are affected by 
changes in parameter values.

When harvest is sold in a competitive market with several close substitutes, the quay price of fish, p, is 
hardly dependent on the quantity landed. Let us assume that p is constant. Price multiplied by quantity 
in (5.7) gives the total revenue

(5.8)  

The TR(E) curve and the H(E) curve are shown in Figure 5.1 panel (a) for p > 1. In this case the TR 
curve is above the H curve, but generally the graphical picture depends on the units of measurement 
for total revenue and harvest.
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Figure 5.1. The sustainable harvest and revenue curves, as well as total cost, are shown in Panel (a), and the 
marginal and average revenue and cost curves of the Gordon-Schaefer model are shown in Panel (b).
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Total harvest costs increase with effort, and the simplest form is when the increase is proportional. With 
a constant unit cost of effort, a, total cost equals

(5.9)  

The total cost is shown as a straight line in Figure 5.1 panel (a). In this case MC(E) = AC(E) = a, and 
this is shown in panel (b). We may use equation (5.8) to find the average and marginal revenue of effort. 
The average revenue equals

(5.10)  

The average revenue curve is a straight, downward sloping line as shown in Figure 5.1 panel (b). Its 
maximum is for E close to zero. In this case the equilibrium stock level will be close to its carrying 
capacity, implying the highest AR(E). The average revenue approaches zero when effort E approaches 
r/q. If the fishing effort is kept sufficiently large, E > r/q, for a long time the stock becomes extinct. This 
is why AR(E) = 0 for such high effort levels.

Let us now find the open-access effort level for the Gordon-Schaefer model. We have seen in Ch. 3, 
equation (3.6) that at bioeconomic equilibrium under open-access MC(E) = AR(E). With total cost 
given in (5.9) the open-access equilibrium level of effort can be found from AR(E) = a combined with 
(5.10). This gives

(5.11)  

Thus the open-access equilibrium level of fishing effort depends on both biological and economic 
parameters. It is proportional with the intrinsic growth rate r, increases with fish price and carrying 
capacity, and decreases with effort cost. In other words, fisheries based on biologically highly productive 
resources with large r and K, may sustain a large fishing effort under open-access. In addition, this may 
be spurred on by high fish price and low effort cost. Having found the open-access effort level in (5.11) 
the corresponding equilibrium harvest may be found by substituting E∞ for E in equation (5.7).

After discussing the open-access fishing effort, let us now find the open-access equilibrium level of the 
fish stock. For this we will use the unit cost of harvesting and the resource rent per unit harvest. The 
unit cost of harvest follows by use of equations (5.5) and (5.9):

(5.12)  

This demonstrates that the unit cost of harvest decreases with an increase in the stock size. We could 
say that a large stock has a cost-saving effect for the fishery.
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With constant price of fish the resource rent per unit harvest is

(5.13)  

At the open-access equilibrium the stock level X∞ follows from b(X∞) = 0, and we have

(5.14)  

We notice that in this model the open-access equilibrium stock level is a function of economic and 
harvest technical parameters only. No biological parameters appear in (5.14), but they do in (5.11) for 
the open-access effort level. It is the economic parameters, in addition to the catchability parameter, that 
put a downward limit on the stock level in open-access fisheries. The stock level will be small if fish is 
expensive and easy to catch at a low cost.

5.3 Economic optimal harvesting

We have seen in Chapter 3 that to maximise the resource rent, л(E) = TR(E) – TC(E), of a fishery, it is 
necessary for marginal cost of effort to equal marginal revenue of effort, that is, MC(E) = MR(E). This 
is also the case for the Gordon-Schaefer model and we shall use this condition to find, first, the effort 
level that maximises the resource rent, and, second, the corresponding stock level. From (5.8) we derive

(5.15)  

The graphical picture of (5.15) is a straight, downward sloping line, as shown in figure 5.1 panel (b). 
Comparing this with the average revenue, AR(E) in (5.10), we see that the MR(E) curve is exactly twice 
as steep as the AR(E) curve. Putting MR(E) in (5.15) equal to MC(E), which is a in this case, gives the 
following effort level

(5.16)  

The optimal effort level, which maximises the resource rent, depends on the economic, biological and 
harvest efficiency parameters. EMEY, where the subscript acronym means maximum economic yield, is 
large in the case of low effort cost and high fish price fisheries, for a given resource and harvest efficiency. 
The rent maximising effort level in (5.16) compared with the open-access effort in (5.11) is

(5.17)  

Thus in the Gordon-Schaefer model the resource rent maximising effort level is just half of the open-
access level. This implies that the total effort cost at the rent maximising equilibrium is just half of the 
open-access cost, since cost per unit of effort is constant, equal to a.
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To find the resource rent maximising stock level, we commence by substituting for H from (5.5) into 
(5.7), which gives

(5.18)  

By substituting for E from (5.16) into (5.18) and rearranging somewhat gives

(5.19)  

Using the expressions found for XMSY in (5.3) and X∞ in (5.14) we can rewrite (5.19) to get

(5.20)  

The rent maximising stock level is always greater than the maximum sustainable yield stock level. In 
fact, we have to add half of the open-access stock level to the MSY- stock level to get the MEY level. 
This is due to the cost-saving effect of a large fish stock. We have seen above, in (5.14), that the open-
access stock level is affected positively by the cost of effort-price of fish ratio. When this ratio is large, 
the MEY-stock level should also be large, to allow the cost-saving effect of the stock to compensate for 
the relatively large effort cost.
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We have seen that the total cost is lower at the MEY equilibrium than at open access. However, in general 
we cannot say if the total revenue is highest for the MEY or the open-access equilibrium, as seen in 
figure 5.1. In fact, this depends partly on the unit cost of effort, a. Figure 5.1 demonstrates that the total 
cost curve will have a moderate slope if a is small, implying higher total revenue for the MEY fishery 
than under open access. In this case, with inexpensive harvest cost, MEY management may bring a triple 
dividend-reduced total cost, increased total revenue and increased stock level.

So far we have conducted the economic analysis using fishing effort as the independent variable in 
figure 5.1 and in several equations in this chapter. An alternative approach is to use the stock level 
instead of fishing effort. This has some advantages when it comes to the capital theoretic discussion on 
the optimal stock size. In addition, it allows a direct comparison between the open-access effort and stock 
levels on the one hand, and the MEY levels for effort and stock on the other hand. Even if we use the 
stock level as the independent variable, it has to be controlled, directly or indirectly, through harvest. At 
equilibrium we have H ≡ F(X), which means that harvest is kept equal to the natural growth to keep the 
stock level constant. Thus sustainable yield equals natural growth. Combining this with a constant price 
of fish, p, and the natural growth function in equation (5.2), the total revenue as a function of stock size is

(5.21)  

Equation (5.21) shows that the difference between the natural growth curve and the total revenue curve 
is to be found in the price of fish. For p > 1 (p < 1) the total revenue curve will be above (below) the 
natural growth curve, which equals sustainable yield.

Total cost as a function of stock size is found by multiplying the unit cost of harvesting in equation (5.12) 
by the sustainable yield that we used for equation (5.21). This gives

(5.22)  

Equation (5.22) depicts a straight, downward sloping total cost curve as a function of the stock, as 
shown in Figure 5.2. For each stock level, TC(X) tells how much it costs to harvest the sustainable yield 
produced at this stock level. The downward sloping TC(X) curve clearly demonstrates the cost-saving 
effect of increasing stock size.

We can now find the resource rent as a function of stock size, R(X), based on the expression found above 
for total revenue and total cost. The resource rent is

(5.23)  

which may be rearranged, and by substituting for X∞ from (5.14) we have (the student should check this):

(5.24)  
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Figure 5.2. Total revenue, total cost and resource rent as functions of the stock.

We notice from equation (5.24) that the resource rent equals zero for X = X∞ and for X = K. Thus the 
open-access stock level is the lower bound and the carrying capacity is the upper bound on the stock 
size for a positive resource rent. The graph of the resource rent is presented in figure 5.2 together with 
the total revenue and total cost curves as functions of stock size. The open-access stock level, X∞, may be 
below, equal to or above the maximum sustainable yield stock level, XMSY, whereas the rent maximising 
stock level, XMEY, is always above the MSY level. Figure 5.2 may be used to explain what happens to the 
stock level when economic parameters change. For example, if the unit cost of effort, a, decreases, the 
total cost curve’s intersection point at the vertical axis moves downward, as seen from equation (5.22). 
This reduces the open access as well as the MEY stock level.

5.4 Discounting effects

In Chapter 4 we discussed the concepts of discounting and present value in relation to the capital approach 
to resource management. We derived, in equation (4.19), the Clark-Munroe rule that implicitly gives 
the optimal long-term stock level as a function of biological and economic parameters, including the 
discount rate. For the Gordon-Schaefer model presented in this chapter we have natural growth and 
cost functions that can be used to find the optimal long-run stock level. This stock level is needed to 
ensure the maximum present value of future resource rent, our wealth, as defined in (4.2’). To find the 
explicit expression for the optimal long-term stock level we commence by substituting for F(X) from 
equation (5.2) and c(X) from (5.12), in addition to F’(X) and c’(X), into equation (4.19). Then solve 
equation (4.19) with respect to X, to arrive at a quadratic equation in X (the student should check these 
steps). The positive solution of this quadratic equation is

(5.25)  
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To simplify somewhat we substitute the following into (5.25): z = X/K, z∞ = X∞/K = a/pqK and γ = δ /r, 
and find

(5.26)  

z is the normalised stock size, implying stock levels between zero and one. z∞ is the normalised open-
access stock level, and γ is the ratio of capital growth to maximum stock growth. γ could be called the 
bioeconomic growth rate. If γ > 1 it means that “bank” capital yields a higher interest rate than “nature” 
capital, and the opposite for γ < 1. We notice in equation (5.26) that the optimal long-term stock level, 
on its normalised form, depends on just two variables, the normalised open-access stock level, z∞, and 
the bioeconomic growth rate, γ. Table 5.1 shows how z*

 varies with z∞ and γ. 

For zero discount rate the optimal stock level, according to equation (5.27), is z* = ½ + z∞/2. Comparing 
this with the expression for XMEY in equation (5.20) we infer that X* = XMEY when γ = δ = 0, since zMSY = ½. 
Thus, when the discount rate goes to zero, the optimal long-term stock level goes to the resource rent 
maximising level. In fact, we have previously seen this through the graphical analysis in Figure 4.2. We 
also notice from equation (5.26) that the optimal stock level equals the MSY level only for zero effort 
cost and zero discounting. In this case z* = zMSY = 1/2, since z∞ = 0 and γ = 0.
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 z∞

0 0.10 0.30 0.50 0.70 0.90

 γ

0 0.50 0.55 0.65 0.75 0.85 0.95

0.10 0.45 0.51 0.62 0.73 0.84 0.95

0.25 0.38 0.45 0.59 0.71 0.83 0.94

0.50 0.25 0.37 0.54 0.68 0.81 0.94

1.00 0 0.25 0.47 0.64 0.79 0.93

2.00 0 0.16 0.40 0.59 0.77 0.92

5.00 0 0.12 0.34 0.54 0.73 0.91

∞ 0 0.10 0.30 0.50 0.70 0.90

Table 5.1. Optimal normalised stock level as a function of the open-access stock level, z∞,  
and the bioeconomic growth rate, γ .

From Table 5.1 we see that if the bioeconomic growth rate goes to infinity, γ = δ /r → ∞, the optimal 
stock level equals the open-access level, since the values in the last row equal the z∞-values in the head 
row. Generally, the optimal stock level decreases with the bioeconomic growth rate – that is, when we 
move down a given column in Table 5.1. Also notice that the effect of the discount rate on the optimal 
stock size is greater for low-cost fisheries than for high-cost fisheries. In Table 5.1 low-cost fisheries are 
found in the columns to the left, recalling that z∞ = a/pqK. “Low-cost” in this connection could also mean 
high-valued and easy-to-catch since p and q appear in the denominator and a in the numerator of z∞.

Table 5.1 demonstrates, in the column of z∞ = 0, that, with costless harvesting, the stock owner may 
want to extinguish the stock when the bioeconomic growth rate is equal to or greater than one. When 
δ = r (γ > 1) the fish has higher value in the “bank”, at a discount rate of δ, than in the sea, at a maximum 
growth rate of r. In this case, with zero harvest cost, the resource owner would want to transform his 
capital from “fish in the sea” to “money in the bank” to maximise his wealth. In actual fisheries, however, 
effort costs are not zero and harvest efficiency, expressed by q, is not infinitely high. Thus the analysis of 
the effects of an infinitely high discount rate may be seen mainly as a modelling exercise, and not as a 
prediction of what would happen if a natural resource is managed by a sole owner. On the other hand, if 
biological, economic and harvest technical conditions are such that open-access harvesting would imply 
extinction of the resource, transferring the resource to a sole owner would not necessarily be sufficient 
to save the resource from extinction.

Exercise 5.1.

A fish stock X has the following natural growth function

(1.1)  
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Assume that F(X) is the annual natural growth when the size of the stock at the beginning of the year is X.

1. Draw the graph based on (1.1) when r = 0.30 and K = 8000. K is measured in thousand tonnes.
2. What unit of measure does r have? Discuss the biological parameters r and K using the 

graph in question 1.
3. Assume that no fishing takes place. What is the equilibrium size of the fish stock, according 

to equation (1.1)?
We introduce the following harvest function

(1.2) 

where q is the catchability/availability parameter/coefficient and E is fishing effort.
4. Discuss the catchability parameter q.

With harvest, H¸ change in the stock level per unit of time is

(1.3) 

5. Define equilibrium fishing, using function (1.3), and show that the equilibrium harvest, 
H, can be presented as a function of X. Compare this function with function (1.1). What 
characterises equilibrium fishing?

6. Find an expression for the stock level (XMSY) that gives maximum sustainable yield HMSY 

(Hint:  is a necessary condition).

7. What is the size of XMSY and HMSY, in thousand tonnes and thousand tonnes per year, 
respectively?

8. Assume that no fishing has taken place and the fish stock is at its pristine/virgin 
equilibrium. What is the size of the harvest in year 1 when fishing effort is E = 100, and 

9. Explain why the harvest in year 1 (see question 8) is higher than the maximum sustainable 
harvest/yield you found in question 7.

10. Use equations (1.1), (1.2) and (1.3) to find the equilibrium harvest H as a function of effort 
E (Hint: from (1.2) follows X=H/qE).

11. What is the equilibrium harvest when fishing effort is kept constant at 100 vessels per year?
12. What is the equation for annual total revenue as a function of effort, TR(E), (for equilibrium 

harvesting) when the price of fish is constant?
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13. What is the expression for sustainable resource rent when total cost of the fishery is

(1.4) 

14. The economic parameters are p = 1.0 $/kg and a = 1.0 million $/(vessel×year). What is the 
size of the equilibrium fish stock in an Open Access fishery? What is the total harvest in this 
case, and how many vessels participate?

15. What are the optimal/MEY fishing effort and the corresponding stock level and harvest? 
What is the maximum annual resource rent (total and per vessel)?

Exercise 5.2

1. Show that for the Schaefer model the long-run optimal stock level X* is as given in 
equation (5.26).

2. Use the parameters from a previous exercise and δ = 10% to find the value of X*.
3. Compare X* to what you previously found for Xoo and XMEY and discuss the differences.
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Exercise 5.3

Assume that the function

describes the growth of the fish stock. X represents the stock biomass, K is the environmental carrying 
capacity and r is the intrinsic growth rate.

Further we assume that the harvest function is linear in effort (E) and stock level.

where q s a constant catchability coefficient, and E is the total effort (measured in number of vessel year).

a) Show that the equilibrium harvest function will be:

b) Draw a picture of H(E) for the values r = 0.4, K = 8000 (million tonnes) and q = 0.001.
c) Find the level of effort that gives maximum sustainable yield (EMSY), and the sustainable 

yield for this level of effort (HMSY).
Assume a constant price of fish (per unit of weight), p, and a constant cost per unit of effort, a.

d) Calculate the equilibrium effort and harvest in the case of open access (E∞ and H∞), when 
the price and cost values are p = 10 and a = 20 (and the parameter values from b)).

e) Calculate the equilibrium effort and harvest in the case of optimal economically solution 
(EMEY) and HMEY) (with the same price, cost and parameter values).

f) Assume that the government introduces a fixed tax per unit of effort. Which value of this 
tax should be chosen to reach the optimal solution?
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6 Fishing vessel economics
In this chapter we apply microeconomic theory to the operation of fish harvesting firms, including 
analysis of small-scale fishers’ decision-making and the effects of share arrangements. Stock size and its 
availability for fishing are exogenous variables for each firm.

6.1 Optimal vessel effort

In the previous chapters we assumed that vessels are homogenous with respect to cost and catchability, 
implying that cost per unit of effort, a, is constant and equal for all vessels. The reason for this is the 
long-run perspective where it is reasonable to assume that adding homogenous vessels to the fleet can 
expand effort at a constant cost per unit effort. In actual fisheries vessels usually differ with respect to 
efficiency and costs. The latter is also the case for the opportunity cost of labour which may vary across 
geographical areas. For example, fishers living in a small coastal community far away from larger towns 
and cities usually have few alternative employment possibilities; thus the opportunity cost of labour will 
be lower in such a community than in larger labour markets. On the other hand, other inputs required 
for fishing may be more costly in small fishing communities than in towns, due to transportation cost 
and less competition between distributors. The price of fuel, for instance, seems to be higher in small, 
remote fishing communities than in larger towns. Thus, differences in efficiency of effort, market prices 
of inputs and opportunity cost of labour may all contribute to the existence of heterogeneous effort in 
the fish harvesting industry.

Before analysing the bioeconomic effects of heterogeneous effort (see chapter 7) we shall in this chapter 
study the economic adaptation of fishing vessels. This includes the economic objectives of fishing 
activities, the costs structure and the size and availability of the natural resource, the fish stock. The 
activity level of a vessel is measured by its fishing effort, and we reckon that any vessel’s effort can be 
expressed by use of a standardised efficiency measure of fishing effort. The unit of measurement of effort 
at the vessel level, e, could be, for example, one hour of trawling in demersal trawl fisheries, one gill net 
day in coastal gill net fishing or 100 hooks in long line fisheries. Vessel effort, e, is in technical terms 
and it takes labour, fuel, gear etc. to produce effort. This may be expressed in the production function 
e=f(v1,v2,….vn) at the vessel level, where the v’s are the inputs. Recall the fishery wide effort function 
with total effort, E, in equation (2.2). Total effort is the aggregate of the effort of all vessels in a fishery. 
This production function has the same characteristics as we are used to in the theory of the firm in a 
microeconomic text. It may have one, two or n number of inputs and it may have constant returns to 
scale or variable returns to scale (see Varian, 2003).
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We use the following symbols to analyse a vessel’s economic adaptation of fishing effort

e = effort of one fishing vessel
c(e) = total variable cost of effort
avc(e) = average variable cost of effort
mc(e) = marginal cost of vessel effort

Sometimes, subscripts i and j will be used to distinguish between or to compare two vessels. At this stage 
we disregard fixed cost, but shall return to this when discussing long-run issues in section 6.2.

Average variable cost of vessel effort equals total variable cost divided by effort:

avc = avc(e) = c(e)/e.

Marginal cost of vessel effort is the addition to total cost due to the addition of one unit to effort:

mc = mc(e) = d c(e)/d e.
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If effort is measured in trawl hours, the average variable cost tells how many $ one hour of trawling on 
average costs, whereas marginal cost tells by how many $ total cost increases with the addition of one 
hour of trawling.

Each vessel can vary effort by varying the inputs needed for the generation of effort. For example, in 
the case of trawling, a vessel can vary its speed between harbour and fishing ground, allowing more or 
less time for proper harvest activities on the fishing ground. High speed to and from the fishing ground 
means more time for actual fishing. Since engine fuel consumption increases progressively with speed, 
this implies that also marginal cost of vessel effort increases with expansion of effort.

Recalling the theory of the firm, marginal cost may decline with output at low level, reaches a minimum, 
and rises thereafter, due to the form of the production function. In the case of fisheries we may think 
of effort as the (intermediate) product of the production process and that this (intermediate) product is 
produced by regular inputs according to a regular production function.

When the catch of a vessel is small in relation to the stock size, the vessel operator considers stock as 
constant in the short-run, not affected by the activity of the vessel. This also applies to the market price 
of fish – seen from a vessel operator’s point of view, the market price is considered unaffected by the 
landings of each vessel. Even if there are effects on stock and market price from the total harvest of 
all vessels, the magnitude of this is an empirical question. However, for the analysis of a single vessel’s 
adaptation we shall assume that there are no significant effects on stock level and market price. Thus, 
the vessel operator acts as if his fishing has no effect on the stock level or on the market price.

In a given period of time the vessel’s catch is a function of its effort, which it can adapt, and the stock 
level, which is taken as given. For the case of simplicity, let us assume that the vessel harvest function 
equals the Schaefer harvest function:

(6.1)  

where q is the catchability coefficient.

The operating profit of the vessel is

(6.2)  

Using (6.1) and (6.2) the operating profit is

(6.3)  
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We have included the stock level as an argument in functions (6.1) and (6.2), but after the semicolon of 
the functional symbols to stress that the stock level has an effect on harvest and that this is outside the 
control of the vessel operator. However, to simplify the notation, this has not been done for the fish price. 

Assuming that the vessel operator maximises operating profit given in equation (6.3), the first order 
condition for this is

(6.4)  

Equation (6.4) implies the following criterion for the vessel’s adaptation of its effort

(6.5)  

Equation (6.5) tells that the marginal cost of vessel effort shall equal the marginal revenue of effort. The 
latter equals the product of fish price, catchability coefficient and stock level, and this product is the 
revenue earned by the addition of one unit of effort. Note that in the traditional theory of production, 
or theory of the firm, the right-hand side of the equation, corresponding to (6.5), would include only 
p, whereas in this case both q and X are included in addition to the price. For a given set of p, q and X, 
the vessel’s optimal effort is implicitly given by equation (6.5).

In studying the theory of production, we usually measure product along the horizontal axis whereas 
in this case we have used fishing effort as the fisher’s decision variable. The reason for this is discussed 
above. An ordinary firm is considered to have control of its total production process, including all 
inputs needed and the costs of these. A fish-harvesting firm, however, does not have control of its most 
important input, the fish stock. This is definitely not an input like fuel and bait that can be bought in the 
input market. The fisher knows the cost per unit of effort, for instance, per trawl hour, and we anticipate 
that he also knows how the catch varies with stock level. Thus cost per unit of harvest will depend on 
both input costs and on the stock level and its catchability.
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The average variable cost and the marginal cost curves are shown in figure 6.1. Panel (a) of this figure 
shows that avc first declines, reaches its minimum for effort level e∞, and rises thereafter. The mc curve 
first declines, reaches its minimum for an effort level lower than e∞, and rises thereafter. When the avc 
curve attains its minimum, mc equals avc. We recognise the form of these cost curves from the theory 
of the firm, with the important difference that in this case effort is the variable along the horizontal axis, 
whereas the corresponding variable in the theory of the firm is the firm’s quantity of output. We may 
regard vessel effort as an intermediate output of the fish-harvesting firm – an output produced by use 
of regular inputs. However, how much of the final output, fish catch, the effort produces depends on the 
stock size and its availability, in addition to the effort. Once we know how much catch is produced by 
effort, cost per unit of harvest can also be calculated. (In chapter 3.1 we introduced the cost per unit of 
effort, a, and in chapter 4.2 the unit cost of harvest was introduced.) The distinction between (average 
and marginal) cost per unit of effort on the one hand and cost per unit of harvest on the other hand is 
crucial for the understanding of fisheries economics.
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Figure 6.1. Two fishing vessels: short-run adaptation of effort for given cost structure, price of fish, catchability and stock level.

Figure 6.1 shows graphically the adaptation of effort for two profit maximising vessels, vessel i and 
vessel j. Panel (a) of this figure shows the marginal revenue of effort, pqX, for two levels of the fish stock, 
namely X∞ and X1. The optimal effort of vessel i is ei

∞ for stock level X∞. This effort is according to the 
optimality criterion in equation (6.5), that is, marginal cost of effort equals marginal revenue of effort. 
In this case vessel i does not make any profit, but just breaks even, since the marginal revenue of effort, 
pqX∞, equals average variable cost. If the stock level is lower than X∞ it will be optimal for this vessel to 
stop fishing since marginal revenue will be below the minimum average cost. In this case, without any 
fixed cost, it is better for the vessel to be idle with zero revenue and zero cost, than to operate with a 
negative result. Vessel i is a marginal vessel for stock level X∞ since just a small reduction in the stock 
level will force the vessel out of operation.

Figure 6.1 panel (b) shows that vessel j has its maximal profit for effort ej
∞ at stock level X∞, and that profit 

equals the area ABCD in this case. This profit is called producer’s surplus or quasi-rent in the theory of 
the firm and intra-marginal rent in fisheries economic theory.10 The latter refers to rent earned by those 
vessels that are more cost efficient than the marginal vessel. In figure 6.1 vessel i is a marginal vessel at 
stock level X∞ whereas vessel j is intra-marginal at this level. Note that vessel j would be able to operate 
with a positive profit even at a stock level somewhat lower than X∞.
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If the stock level is X1, instead of X∞, by chance or by active management of the fishery, figure 6.1 shows 
that the profit maximising effort will be ei

1 and ej
1, for vessel i and j, respectively. In this case the profit 

for each of these two vessels will equal the single-shaded areas of panel (a) and panel (b). In other words, 
higher stock level means higher marginal revenue of effort, thus encouraging each vessel to increase 
its effort. How much vessel effort increases depends on the steepness of the marginal cost curve. If this 
curve is very steep the optimal effort will hardly be expanded if stock level increases, as is the case at 
stock level X1 for vessel i in figure 6.1 panel (a).

6.2 Vessel behaviour in the long run

Up to this point we have not been specific about short run versus long run. Like any firm, a fish harvester 
may have different criteria for its short-run and its long-run adaptation.11 In the short run it suffices to 
cover operation cost whereas in the long run a harvester will have to cover his fixed cost as well. This is 
illustrated in figure 6.2, where marginal and average cost curves are based on the total cost tc(e) = c(e) 
+ k, with c(e) as variable cost and k as fixed cost. Marginal effort cost is mc(e), average variable cost of 
effort is avc(e) and average total cost of effort is atc(e).

Figure 6.2. Short-run and long-run adaptation of fishing effort may vary due to fixed costs.
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Note that the marginal cost of effort curve intersects from below the two average cost curves at their 
minimum points. For obvious reasons the average total cost curve lies above the average variable cost 
curve at any effort level. However, the difference between average total cost and average variable cost 
narrows when effort expands since this allows the fixed cost to be divided by more units of effort. In 
the short run a vessel may operate if marginal revenue of effort is above pqXM, which is equal to the 
minimum of its average variable cost. For given values of p and q this implies that the stock level at 
least has to be above XM for fishing operations to take place on a commercial basis. In figure 6.2 X1 is 
greater than X∞, which is greater than XM. In the long run a vessel will also have to cover fixed costs, 
which implies that the stock level has to be at or above X∞ for the vessel to be able to cover its capital 
cost. We have used subscript ∞ to indicate that this is the stock level at which the marginal vessel breaks 
even under an open-access fishing regime. The marginal vessel, producing effort e∞, will be able to cover 
all its costs, including normal capital return, but without earning any above normal profit. However, if 
effective management measures have been taken and the stock level is kept at, for example, X1, the vessel 
will earn the gross profit ABEF shown in figure 6.2. This gross profit includes the super profit DCEF. In 
this case the super profit is the vessel’s share of the resource rent.
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The optimal vessel effort depends on the marginal revenue, denoted pqX in figure 6.2, and on the marginal 
cost of effort curve. For a constant price of fish and a constant catchability parameter this implies that 
the marginal cost curve represents the vessel’s supply curve for fishing effort. If the product of price, 
catchability and stock level, pqX, increases, the vessel’s optimal effort will increase. For example, if a 
gill-net vessel experiences higher marginal revenue of effort, it could increase its profit by increasing 
its use of variable inputs, such as fuel necessary to increase the speed between the harbour and the 
fishing ground. A vessel has greater flexibility in varying its effort the gentler the marginal cost curve. 
Traditionally, in many parts of the world, fishing vessels have been designed and manned to be flexible 
to adapt to changing markets and resources. This means, in the context of figure 6.2, a moderate sloping 
marginal cost of effort curve.

6.3 Quota price and optimal effort

We shall now analyse how the optimal vessel effort and harvest depend on the harvest quota price. In 
Chapter 3.4 we analysed the market price of effort quotas and harvest quotas by use of downward sloping 
demand curves. Having seen above how the marginal cost of effort becomes the vessel’s supply curve 
for fishing effort, we shall now have a closer look at the relationship between this supply curve and the 
demand of effort and harvest quotas. In particular we shall see how the market price of fish, harvest 
costs, technological efficiency and stock level affect a fishing firm’s demand for harvest quotas. Let us 
assume that fish harvesters can buy any amount of harvest quota at the price of m $ per tonne. The quota 
price may be given either in a competitive market or as a harvest tax determined by a fishery manager. 
Disregarding uncertainty, a profit maximising firm will adapt fishing effort and harvest as discussed 
above, but with the additional constraint that it has to pay for its quota in proportion to its harvest.

To simplify the graphical analysis we assume a linear marginal cost of effort curve, shown in figure 
6.3 panel (a).12 Based on this we shall derive the downward sloping demand curve for harvest quota 
in panel (c). In figure 6.3 panel (a), fishing effort is measured horizontally and marginal cost of effort, 
average total cost of effort and marginal revenue of effort are measured vertically. Since the fishing firm 
has to pay for its harvest quota, its net price of fish is p – m, and it is this net price that matters for the 
vessel’s adaptation of effort. If the landing price of fish is 2.00 €/kg and the market price of quota is 0.75 
€/kg, the net price of fish for the vessel equals 1.25 €/kg. When harvest quotas are for free (m = 0), the 
optimal level of vessel effort, e0, is formed, in figure 6.3 panel (a), where the marginal cost of effort curve 
intersects the horizontal marginal revenue line at level pqX. Note that pqX is assumed to be constant 
throughout this analysis, whereas we discussed effects of changes in the stock level in figures 6.1 and 
6.2. Figure 6.3 panel (b) shows the optimal effort as a function of the harvest quota price, including e0 
for the zero harvest quota price. Panel (c) shows the vessel’s demand for harvest quota as a function 
of quota price. This is derived from panel (b) using the harvest function h = qeX. Catch h follows in a 
straightforward way when e has been derived, since, by assumption, qX is constant.
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Figure 6.3. A vessel’s demand for harvest quota depends on its cost structure, price of fish, 
catchability and stock level.
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In the same way as the optimal effort and the harvest quota were derived for the zero quota price, they 
can be derived for any quota price, including m*. As noted above, in this case it is the net price of fish, 
p – m*, that matters for the fishing firm. The harvest quota price mM is the maximum price the vessel 
portrayed in figure 6.3 can afford to pay without losing money in the long run. If the harvest quota price 
is greater than mM, the horizontal marginal revenue line will be below the maximum of the average total 
cost of effort curve. Thus in such a case the optimal vessel strategy is to stop fishing to avoid losing money 
through a negative net profit. In the short run, however, a vessel with an effort cost structure similar to 
what is shown in figure 6.3 panel (a) can operate for a while and earn a positive gross profit even if the 
harvest quota price is greater than mM.13 The combination of positive gross profit and negative net profit 
is most likely to appear for vessels with high fixed costs. This would imply a greater difference between 
average total cost and average variable cost, and a gradual phasing out of bankrupt vessels not able to 
meet their log-run capital obligations. On the other hand, capital-intensive vessels may be more efficient 
than other vessels, thus compensating for higher fixed costs with lower variable costs. To predict what 
kind of vessels would be most competitive in a quota market, one would need empirical information 
about fishing firm and vessel costs.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

89,000 km
In the past four years we have drilled

That’s more than twice around the world.

careers.slb.com

What will you be?

1 Based on Fortune 500 ranking 2011. Copyright © 2015 Schlumberger. All rights reserved.

Who are we?
We are the world’s largest oilfield services company1.  
Working globally—often in remote and challenging locations— 
we invent, design, engineer, and apply technology to help our  
customers find and produce oil and gas safely.

Who are we looking for?
Every year, we need thousands of graduates to begin  
dynamic careers in the following domains:
n  Engineering, Research and Operations
n  Geoscience and Petrotechnical
n  Commercial and Business

http://s.bookboon.com/Schlumberger1


Fisheries Economics and Management

93 

Fishing vessel economics

6.4 A small-scale fisher’s choice of leisure time and income

We have seen above how a fish harvesting firm adapts effort to maximise profit. The effort supply curve 
is typically upward sloping, implying that a vessel is used more intensively the higher the marginal 
revenue of effort. However empirical studies of small-scale fisheries in some cases seem to contradict 
this result, showing that effort may even decrease with increased marginal revenue of effort. Sociologists 
and anthropologists have attributed this to fishers’ and their families’ social and economic needs, which 
may differ between different people (see e.g. Maurstad, 2000). In economics we recognise differences 
in individual preferences, in particular in the theory of the consumer. Some people prefer to buy more 
apples than pears and some prefer to work part time instead of full time. Let us now use and adapt the 
theory of consumer behaviour to analyse how a small-scale fisher may chose to allocate his total available 
time between fishing – to earn income to buy consumer goods – and leisure time. In other words this is 
to analyse the choice between income and leisure. Since income – or consumer goods – and leisure are 
alternative sources of utility, an indifference map may represent the fisher’s preference pattern between 
them, for example, such as one of the two shown in figure 6.4.

The following symbols are used

x = quantity of consumer goods
P = consumer price index
T = time constraint (total hours available)
e = fishing effort, in hours of fishing
z = hours of leisure time
w = income per hour of fishing

The fisher’s utility is a function of consumer goods and leisure time

(6.10)  

The time constraint of the fisher is

(6.11)  

The fisher’s budget constraint is

(6.12)  
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since wT is the maximum income he could earn if he spent all his available hours on fishing. This is 
distributed across leisure time, wz, and consumer goods, Px. Thus the actual income from fishing is 

 The small scale fisherman wants to maximize his utility, we assume, by choosing x and 
z. This means we should find the maximum of the utility function (6.10) given the budget constraint 
(6.12). This can be done by one of two methods. First, by substituting for x from equation (6.12) into 
(6.10), which makes utility a function of only one variable, z, and maximizing utility with respect to this 
variable, leisure time. Second, we can use the Lagrange method (see Box 6.1). The two methods lead to 
the same result that the necessary condition for the fisher’s optimal adaptation is

(6.13)  

where

 and 

Dear student, you should now do the calculations that lead to equation (6.13).

The interpretation of equation (6.13) is that the marginal value of one dollar from fishing should be the 
same whether spent on leisure time or on consumer goods. In other words, at the margin the fisher is 
indifferent between a small increase in consumer goods or in leisure time.

The budget constraint may be rewritten

(6.14)  

to see that it is only the real value of income per hour of fishing that counts for the fisher.
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Box 6.1 Using the Lagrange method

This method uses an assisting function, which combines the function we are going to maximize (utility) and the 
constraining function (budget), and has got its name after the French mathematician and astronomer Joseph Louis 
Lagrange (1736–1813).

Maximizing the utility, , subject to the linear constraint, , we start by introducing a helping 
hand, the Langrangian multiplier λ, and formulate the Langrangian function

Note that what is in the parenthesis following λ equals zero. Thus maximizing the L-function will give the same result 
as maximising the U-function, but now we can be sure that the budget constraint is fulfilled.

The Langrangian theorem states that an optimal choice of (x,z) must satisfy the following three equations, the first order 
conditions,

(B6.1) 

(B6.2) 

(B6.3) 

Using the first two of these equations we arrive at the condition

, which is the same as in equation (6.13).

The three equations (B6.1)–(B6.3) can be used to find the three unknown variables x, z and λ. However, to find explicit 
solutions we would have to specify the utility function. In microeconomic texts you may find several examples of utility 
functions, such as the Cobb-Douglas function and the linear function. 

Figure 6.4 Two examples of the small-scale fisher’s choice between consumer goods and leisure time.
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Let us now analyse what happens to the fisherman’s choice between leisure time and consumer goods if 

fishing conditions improve. The preference map in Figure 6.4 panel (a) is such that the fisherman would 

like to reduce his leisure time if real value of income per hour increases from  to , and further 

to . This implies that he increases his fishing time and the consumption of goods. In this case the 

fisher’s labour supply curve – measured by his fishing time – is upward sloping. Figure 6.4 panel (b) 

shows the preference map of a fisher who will increase his leisure time when real value of income per 

hour of fishing increases. This fisher will decrease time allocated to fishing if the real value of his hourly 

income increases, in other words, his supply curve for labour is downward sloping.

Figure 6.5 shows two possible supply curves for fishing effort for a small-scale fisher who allocates his 
time between leisure and fishing – the latter to earn income to buy consumer goods. Thus, based on this 
theory we cannot tell whether a small-scale fisher will increase or decrease his fishing effort when the 
real value of his hourly income increases. This real value of hourly income is the fisher’s opportunity cost 
of effort. Note the difference between this inconclusive result regarding the slope of a small-scale fisher’s 
effort supply curve and the fishing firm’s upward sloping effort supply curve derived in the previous 
section. This difference may also have implications for the design of management tools. It is not certain 
that the same management instruments will work efficiently for both industrial (large-scale) fisheries 
and for small-scale fisheries.
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Figure 6.5. The effort supply curve in small-scale fisheries may be backward or forward bending, 
depending on the fisher’s preferences for leisure time and consumer goods.

Exercise 6.1

A fishing vessel has harvest function h = qeX (with q and X exogeneously given), price of fish p, fixed 
cost k, variable cost vc(e) = ce + ae2 and unit cost of harvest quota m.

1. What is the optimal effort, expressed as a function of other variables and parameters?
2. What is the optimal harvest, expressed as a function of other variables and parameters?
3. What is the harvest quota demand function (inverse; m as a function of h)?
4. Draw a picture of what you found in question 3 for the following parameter values:

Symbol Value  Unit

p 3000 €/tonne

m
min: 0

max: 1000
€/tonne

c 60 €/hour

a 0.045 €/hour2

k 259 200 €/year

q 1.2×10-6 1/hour

X 105 tonne

vc - €/year

tc - €/year

5. Draw a picture of marginal revenue of effort ((p – m)qX), marginal cost, average variable cost 
and average total cost as functions of effort, using data from question 4. What is the optimal 
vessel effort for m = 0 and m = 1000? For what effort level does the average total cost have 
its minimum?
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Exercise 6.2

A fishing vessel has harvest function: h = q e X (with q and X exogenously given). The vessel has the 
following total cost function:

a) Find the expression for: mc(e), avc(e) and atc(e) (marginal cost, average variable cost and 
average total cost).

b) Assume that the marginal revenue (mr) of effort is
 mr = pqX = 2055
What is the optimal effort?

c) Suppose that stock and/or price reductions give another mr:
i) mr = 1255
ii) mr = 655
What is the optimal effort in these cases?

d) Draw a picture.
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7  Extension of the basic 
bioeconomic model

This chapter demonstrates that even in an open-access fishery rent may be generated if vessels are 
heterogeneous. An empirical example from Vietnam is given. Further, we extend the bioeconomic model 
to include areal distribution and migration of fish, on the background that marine reserves are established 
in many countries. The analysis includes achievements with a reserve and open-access harvesting outside 
with respect to stock protection, sustainable harvest, employment and rent.

7.1 Intra-marginal rent for the most efficient vessels

In this section we will study some management issues related to a fishing fleet of heterogeneous vessels. 
In most fisheries vessels vary with respect to size, engine power, gear-type, costs and other technical and 
economic characteristics. In the preceding chapter we have seen examples of how the cost structure of 
vessels may differ. However, when, in Chapters 3 and 4, we discussed open-access and managed fisheries, 
this was done for homogeneous vessels. The reason for this is the wish to start with the simplest model 
that may provide insight in the economics of fishing. From this we learned that the potential resource rent 
is wasted in an open-access fishery, but that sole ownership or other management measures can mitigate 
this and create resource rent. Now, what are the results when there are technically and economically 
heterogeneous vessels?

Figure 7.1 shows for each of twelve vessels the standardised effort along the horizontal axis and the 
average cost per unit of standardised effort along the vertical axis. The vessels are arranged from the left 
to the right according to their cost efficiency, with vessel no. 1 as the most cost efficient one and vessel 
no. 12 as the least cost efficient. We may choose, for example, vessel no. 9 as the standard vessel against 
which the efforts of the others are measured. Since the width of each vessel bar in Figure 7.1 illustrates 
the standardised effort of each vessel, we notice that, for example, vessel no. 3 produces about twice 
as much effort as the standard vessel, no. 9. This implies that vessel no. 3 would catch twice as much 
fish per day as vessel no. 9, when effort is measured in hours or days of fishing of the standard vessel. 
Further, we notice in Figure 7.1 that the average cost per unit of standardised effort is lowest for vessel 
no. 1, even though this vessel no. 1 produces the same effort as the standard vessel no. 9.
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Figure 7.1. The increasing marginal cost of effort curve for a fishery is based on heterogeneous vessels. The fishing effort 
of each vessel is measured by the width of the bar whereas the height of the bar measures cost per unit of effort.

With several vessels in a fishery, we may substitute the cost bars in Figure 7.1 with a curve enveloping 
the bars. This curve is called the MC(E) curve and is shown in figure 7.2 panel (b). Note that we use the 
concept Marginal Cost of Effort, MC(E), in a particular way, namely at the fishery level, describing the 
addition to total cost of adding one more unit of fishing effort to the fishery. This is somewhat different 
from the concept of marginal cost at the vessel level, discussed in the preceding chapter. The total cost 
of effort, TC(E), in figure 7.2 panel (a) is derived from the MC(E) curve. In this case the TC(E) curve is 
increasing progressively, since the MC(E) curve is upward sloping. The TR(E) curve in Figure 7.2 panel 
(a) is the sustainable long run total revenue curve, recalled from previous chapters, and the corresponding 
average revenue, AR(E), and marginal revenue, MR(E), curves are shown in panel (b).
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Figure 7.2. Equilibrium fishing effort, resource rent and intra-marginal rent under open-access and under maximum 
economic yield management in the case of heterogeneous effort.
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Open-access equilibrium is found where MC(E) = AR(E), for effort level E∞. Under open access, vessels 
will enter the fishery if the average revenue per unit effort is greater than the marginal cost of effort, and 
exit the fishery if revenue is less than cost. The equilibrium of the open-access fishery is demonstrated 
in figure 7.2 panel (b). For the effort level E∞ the total revenue equals the square AGOE∞ and the total 
cost equals the area below the MC(E) curve, namely the quadrilateral ADOE∞. This implies that there 
is an economic surplus in the fishery, equivalent to the area AGD, since AGOE∞ > ADOE. This surplus 
is called intra-marginal rent or producer’s surplus.14 This rent accrues to those vessels that have lower 
costs than the marginal vessels at E∞. Note that in figure 7.2 panel (a) the intra-marginal rent is the line 
segment R. Thus in this case, with a progressively increasing TC(E) curve, the equilibrium point is to 
the left of the intersection between the TR(E) and the TC(E) curves, the difference between them being 
the intra-marginal rent.

The total rent of the fishery is defined as

(7.1)  
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We discussed at length the maximisation of rent in Chapters 3 and 5, and know that figure 7.2 panel (b) is 
useful to illustrate the solution. The rent maximising effort level, EMEY, is found where the upward sloping 
marginal cost of effort curve, MC(E), intersects the downward sloping MR(E) curve. The relationship 
between revenue, cost and rent is as follows:

Resource rent   BHFC
+ Intra-marginal rent  CFD
+ Total cost   CDOEMEY

= Total revenue  BHOEMEY

The total rent equals the area BHDC, in figure 7.2 panel (b), and this is clearly greater than the open-
access intra-marginal rent for the open-access fishery, which equals AGD. We notice that even though 
total rent is greater for the effort level EMEY than for E∞, the intra-marginal rent is reduced. This may have 
some implications for management. In case of heterogeneous fishing effort, we have seen that the most 
cost-efficient vessels do make above-normal profit, called intra-marginal rent. If the fishery manager 
wants to reduce effort from E∞ to EMEY, some vessels that have to leave the fishery will lose their part of 
the intra-marginal rent. This may result in objections to change of management objective. However, as 
demonstrated above, the total rent is highest for the EMEY effort level, and some of this could be used to 
compensate those vessels that may be in danger of losing their previous intra-marginal rent. The advice 
to managers, as a result of this analysis, is to analyse carefully what distributional effects may follow a 
change in the management system. Otherwise it may be difficult to get the fishermen and the vessels to 
comply with rules and regulations.
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Box 7.1 Economic efficiency of some gill-net fishing vessels in Vietnam

This figure presents an example of heterogeneous cost efficiency of vessels in an offshore fishery in a developing 
country, where some make a good profit and others a loss. Data for 2008 was collected to study gill-net vessels in Nha 
Trang, Vietnam, fishing mainly tuna and mackerel in the East Sea (South China Sea). The vessels are about 13-20 m long, 
have a crew of 8-12 men and an average trip lasts for 16 days. The total cost includes fuel, nets, labour, maintenance, 
depreciation and interest payment on loans, but excludes calculated interest on the vessel owner’s capital. The height 
of the bars measures the average total cost per unit of standardized effort for each vessel. The unit of effort is put equal 
to the estimated average effort of the 58 vessels in the sample. The width of a bar indicates the relative effort of each 
vessel and the vessels are numbered arbitrarily from 1 to 58 (note the difference to the ordering in Figure 7.1). Thus the 
total effort of all 58 vessels equals 58.0 on the horizontal axis. The horizontal curves ARws(E) and ARos(E) are the average 
revenue per unit of standardised effort with and without a lump sum subsidy, respectively, paid by the Government in 
2008 only to compensate for the very high fuel costs that year. We see that vessels no.28 and no.49 just break even and 
that the relative effort of the former is much greater than the latter. On average vessels with the highest effort, which 
are usually the biggest ones, are also the most cost efficient ones – the bar widths are wider to the left than to the 
right. However, there are several exceptions, for example vessel no.47 (between no.37 and no.31) to the left and vessel 
no.13 towards the right. All in all this figure demonstrates what is quite common in the open access fishing industries 
globally – some vessels and fishermen make good money, others loose.
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 Figure Box 7.1: The cost-efficiency of 58 vessels. In million VND per vessel per year (1 USD=16,950VND). Source: Duy et al., 2010.

7.2 Marine reserves15

Many countries have set aside marine areas for the protection of fish stocks, fauna and flora in the water 
and on the sea floor, often with the aim of increasing the harvest of fish outside these areas. Such areas 
are known as marine reserves, nature reserves, marine protected areas, marine managed areas, marine 
parks, marine sanctuaries, fishery reserves or closed areas, their nomenclature sometimes reflecting local 
purposes and rules and sometimes arbitrary. Here they are called marine reserves (MRs), indicating that 
they are protected from human exploitation of fish, either fully or against some types of fishing gear and 
vessels. Human activities and expansion have contributed to overuse of several terrestrial and marine 
populations and ecosystems around the world and some populations have even become extinct. Economic 
and legal instruments to mitigate such problems have been designed and implemented.
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In the previous chapters we have mainly focused on resource rent creation as the policy objective and 
input (licences, effort and capacity) and output (taxes, different types of fish quotas) control as economic 
policy instruments to achieve the objective. However, in actual policy creation there may be several other 
objectives, such as preservation of fish stocks and other living organisms in the ecosystem, maximum 
sustainable yield for food security, consumer and producer surplus, and employment locally or nationally 
(Box 4.1). As will be seen below marine reserves (MRs) may contribute to several such objectives, but also 
may not be particularly suitable for generating resource rent. Also important for the success of the MR 
are the rules for fishing and other activities outside the reserve. Are there restrictions on the fishermen 
regarding their choice of vessel, gear and target species? Do they have to pay resource taxes on input or 
output? Is it an open-access fishery with free entry and exit? To highlight the main features of the MR 
we will analyse the case of a fully protected fish stock inside the reserve and unrestricted open access 
outside it with reference to the analyses in chapters 3 and 5.

Marine reserve model

We should expect that the protection of part of a fish stock in one area, the MR, will result in increased 
biological and economic yields outside the reserve through spillover effects of fish eggs, juveniles and 
individuals of fishable size. A major question to be answered is how large a part of the total distribution 
area of the fish stock should be set aside for the MR? Should it be 5, 20 or 40%, for example? The 
remaining 95, 80 or 60% will be the harvest zone, HZ. The modelling approach is kept simple, so we 
can investigate analytically to what extent reserve size may be tuned to achieve biological and economic 
objectives. In the previous analytic chapters fish had no geographical distribution. Now it is distributed 
across two areas, the MR and the HZ. Even though there may be migration both ways, as indicated by 
the two uppermost arrows in figure 7.3, the net migration means that fish resources flow from the area 
with the highest density of fish to a low density area (density is e.g. gram per square metre or ton per 
square km). Otherwise fish within each area are homogeneously distributed. Without any fishing in the 
MR the fish density will be highest in this area and fish will spill over to the HZ to allow more resources 
for the fishing vessels. The analysis is limited to a single stock and questions related to multi-cohort, 
multi-species, by-catch and ecosystem interactions are not considered for the moment.
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Figure 7.3. The main features of the marine reserve model and analysis. The choice of reserve size m is at the 
forefront of our discussion.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/BI


Fisheries Economics and Management

108 

EEtension of the basic bioeconomic model

With reference to figure 7.3, before establishing the marine reserve we have a fish stock of size X (measured, 
for example, in tons) distributed across an area of unit size one (for example, 1.0 km2). Thus the density 
of fish is also X (ton per km2). The growth of this stock follows the logistic growth equation discussed in 
chapter 5, with natural growth equal to , where r is the intrinsic growth rate and K 
is the carrying capacity. Now the total distribution area of the stock is divided into two parts, as shown 
in figure 7.3, and the marine reserve is of size m and the harvest area of size 1-m. The corresponding 
sub-stocks are XR and XH, respectively, such that X= XR+ XH. The density of fish in each sub-area now 
depends on both the sub-area size and the size of its sub-stock. Thus the density of fish in the MR and 
the HZ is XR/m and XH/(1-m), respectively. Recall that in the previous chapters, we did not mention 
densities of fish, only the stock size, and harvest per unit of effort in the Schaefer harvest function (2.7) 
is proportional to stock size. As long as the distribution area of the stock stays the same, density will vary 
proportionally with stock size and implicitly we have taken care of the density of fish. Now, however, 
it is important to introduce explicitly the density concept since both migration of fish between the two 
sub-areas and the harvest rate will depend on the densities, and the former on the difference in densities.

Dispersal and migration of fish eggs, juveniles and grown-ups vary with factors such as species, ecosystem, 
sea current and season, and are the object of research of biologists and other marine scientists. The 
difference in density between the two sub-areas seems to matter for migration, and we shall assume that 
the net migration from the MR to the HZ is proportional to the density difference, M=σ[XR/m-XH/(1-
m)], where σ is the migration coefficient. Thus, if fish is removed from the harvest zone by fishing, the 
density difference increases and more fish will migrate from the reserve. The bigger σ is the greater is the 
migration of fish into the harvest zone. In figure 7.3, it is the lower arrow, indicating the net migration 
M, that is of importance in this analysis.

In our analysis, we treat σ as given. Note, however, that the shape of the MR (and the HZ) may affect 
this migration coefficient in actual cases. If, for example, the population distribution area is a river (like 
a very narrow rectangle) the migration coefficient is smaller with the two sub-areas downstream and 
upstream rather than along the left bank and right bank (Flaaten and Mjølhus, 2010).

Open-access harvesting in the HZ

Open-access harvesting takes place in the HZ largely as discussed in chapters 3 and 5. There are, however, 
a couple of differences. First, for the vessels in the HZ catch per unit of effort is proportional to the density 
of fish in this sub-area, and according to the Schaefer harvest function harvest now equals H=qEXH/
(1-m) (figure 7.3). Note the difference between this and the harvest function (2.7), which we have used 
in previous chapters.16 Second, the quantity and density of fish in the HZ depend on natural growth, 
as previously, but also on the migration from the MR. With this modelling approach some important 
management questions may be raised.
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Can the marine reserve, combined with open-access harvesting outside, contribute:

 - to preservation of fish stocks and other living organisms in the ecosystem,
 - to maximum sustainable yield (MSY) for food security,
 - to increased employment locally or nationally, and 
 - to generation of consumer and producer surplus?

Preservation

Stocks threatened by heavy depletion or even extinction by efficient and cheap harvesting, may be 
increased and preserved by the use of marine reserves. The relative reserve size m needed will vary with 
harvest efficiency and costs, as well as with the market price of fish. Recall from chapter 5 that the open-
access stock level at equilibrium is X∞ = , where a is the unit cost of effort, p is the price of harvest, 
and q is the catchability coefficient. Thus X∞ is positive in the Gordon-Schaefer model with positive effort 
costs and will not be extinct. However, if costs are low and price and catchability high, the stock may 
well be heavily depleted. This is particularly so in the case of schooling species (e.g. anchovy, mackerel 
and herring) in fisheries with purse seine and advanced sonar fish-finding technology. In such fisheries, 
the threat of stock collapse is much higher than within the Gordon-Schaefer framework where catch per 
unit effort decreases as stock size is reduced.17 In our marine reserve model the m needed to keep the 
equilibrium stock above a specified minimum level increases with p and q and decreases with a. It can also 
be shown that m has to be bigger the greater the migration rate and the lower the intrinsic growth rate 
(Flaaten and Mjølhus, 2005). The intuition behind this is as follows. Since the HZ sub-stock is depleted 
and since migration between the zones depends on relative densities, there will be migration from the 
nature reserve to the HZ, where the migrating population will then be depleted through harvesting. 
If the migration rate is greater than the intrinsic growth rate, then the MR sub-population leaves MR 
faster than reproduction occurs and the population will be heavily reduced, and in extreme case can 
even become extinct. A sufficiently large reserve will work to protect the overall stock.18
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Maximum sustainable yield (MSY) for food security

Securing enough protein and food for people nationally may be one of the objectives of fisheries 
management, though usually not favoured by economists since foodstuff can be efficiently traded 
internationally. However, let us discuss if marine reserves can contribute to this objective. In chapter 
5 the maximum sustainable yield is derived, MSY=rK/4, in a single species context, for the Gordon-
Schaefer model. Having discussed the ability of an MR to protect the overall stock level, we now ask 
if this, combined with open-access fishing in the HZ, can realize MSY? Is it possible to tune m* such 
that effort in the HZ adjusts to what is needed to harvest MSY? It will be shown that this is the case 
but is conditional on economic, biological and technological parameters and also that post-MR growth 
equals pre-MR growth.19 A man-made line dividing the habitat of fish into two parts, the MR and HZ 
(figure 7.3), in itself obviously does not change the growth and behaviour of fish, and this is the approach 
of this analysis. However, it could be that actually fishing the whole area or just a part of it would make 
a difference. With harvesting, the latter implies different densities of fish in the two areas with different 
possibilities for the fish to spawn, find prey and grow (it is left to the reader to investigate the literature 
for such alternatives; see Flaaten and Mjølhus, 2010 for some references).
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For tuning m* to achieve MSY see figure 7.4. Parameter c on the horizontal axis is the pre-reserve 
equilibrium normalized stock level c = , varying between zero and one. In low-cost, high-price 
and technically efficient fisheries the stock will be biologically over-exploited, thus c<0.50. In such cases 
the possibility of tuning m* to achieve MSY is of interest. Figure 7.4 gives, vertically, the m* needed to 
realize MSY for different degrees of overfishing pre-reserve. Recall that both pre-reserve and post-reserve 
there is open-access fishing with equilibrium determined by the parameters. Two biological parameters 
are of importance for the conclusion, namely the migration coefficient, σ, and the intrinsic growth rate, 
r. In fact it is merely the ratio between them, γ = σ/r, that is of importance.

Figure 7.4 Reserve size m* chosen to realize MSY; downward sloping curves show m* as a function of 
the pre-reserve open-access stock level c, for two cases, relative migration γ = 0 .3 < ½ and γ = 0.7 > ½. 
Such tuning is not possible when c > ½. For the uppermost curve  (Flaaten and 
Mjølhus, 2010).
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Note some characteristics of the two curves in figure 7.4. First, only in the case when the resource is 
biologically overused from open-access harvesting, c < 0.50, will the establishment of a permanent 
MR succeed in realizing MSY. Both curves emanate at c = 0.50 on the horizontal axis, i.e. at the MSY 
normalized stock level. Second, only the curve for γ = 0.30 intersects the vertical axis, implying that the 
MR restricted open-access fishery can realize MSY even for very low levels of c, provided the MR size 
is close to 0.60. Third, in the case of a higher γ, γ = 0.70 in figure 7.4, no MR is large enough to realize 
MSY if c is low, c < cmin. If the stock has been fished down below cmin, in figure 7.4 equal to 0.15, a reserve 
will contribute to increased total stock and to increased harvest, but not enough to realize MSY. This 
is because of the high relative migration rate γ, indicating that the migration of fish from the reserve 
to the harvest zone is too fast compared with the intrinsic growth needed to build up the stock to the 
MSY level (recall γ = σ/r). In fact, it can be shown that this occurs when γ > 0.50 since the intersection 
of the possibility curves with the vertical axis is at m* = 2γ in figure 7.4 (Flaaten and Mjølhus, 2005). 
Fourth, an MR may help to achieve MSY even if γ is higher than 0.50 as long as cmin < c < cmsy, i.e. when 
on the curve connecting cmin at m* = 1 and c = 0.50 at m*= 0. To summarize, figure 7.4 demonstrates 
how MR size must be chosen to realize MSY for different combinations of migration, intrinsic growth 
and pre-reserve stock size – the latter determined by harvest efficiency, price of fish and cost of effort.

As regards nature reserves, monitoring, control and enforcement (MCE) costs may vary with reserve 
shape, in addition to size. In particular, high population density in a reserve may attract poachers, making 
reserve geometry of importance. Therefore, reserve design may act as an additional or joint management 
tool to decide reserve size. For simple geometric forms of the population distribution area the migration 
coefficient σ may be directly related to reserve size and shape. If, for example, the population distribution 
area is a river (like a very narrow rectangle) the migration coefficient is smaller with the two sub-areas 
downstream and upstream rather than along the left bank and right bank. Thus the reserve shape may 
affect migration between the MR and HZ as well as MCE costs.

Employment

In some countries fisheries are seen as important labour market buffers, particularly in poor countries 
(Bené et al., 2010), even though we acknowledge the need to restrict effort to create resource rent. 
Independently of the approach taken, however, it is important to know how effort and catch change when 
an MR is created. In fisheries, employment is both output-related and input-related; total employment in 
the sector depends both on effort used in capture and on catch landed for processing, which may be more 
or less labour-intensive. The possibility of designing an MR to maximize harvest was discussed above, 
and it is likely that post-harvest employment in processing and distribution of fish increases with harvest. 
Let us now discuss if effort-related employment at equilibrium changes because of the introduction of 
an MR. Fishing effort is a composite concept, designed for use in bioeconomic models where it bridges 
the gap between humans’ fishing activities and nature’s fish stocks through fishing mortality. In actual 
fisheries the composition of effort varies, but capital and labour are the core inputs, in addition to other 
variables such as fuel, gear, bait and ice. Empirical studies have demonstrated that labour increases with 
effort, proportionally or at a decreasing rate (Squires and Kirkley, 1999; Long et al., 2008).
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A reserve is a restriction on the free movement of effort and in general this increases the need for effort 
in the fishery. This is also the case when MSY is achieved with reserve size m*. Within the modelling 
approach in this chapter, an MR and open-access harvesting in an HZ may realize MSY through increased 
effort, thus increasing employment in both fish processing and harvesting (for details, see Reithe et al., 
2014). For harvest levels other than MSY it is necessary to limit the analysis to numerical simulations, 
and to compare the post-reserve results with the pre-reserve effort and yield for different parameter 
sets. Higher effort is usually required in the case of an MR than in the pure open-access case. For high 
levels of effort pre-reserve, resulting in biological overfishing, the protective benefits of the MR ensure 
a bigger total stock and the migration results in spillover that secures a higher yield. Thus employment 
with a reserve will be greater than for the overall open-access fishery.
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Consumer surplus

For open-access fisheries with constant price of fish and cost of effort, no resource rent, no consumer 
surplus (CS) and no producer surplus (PS) are generated in the analyses in this and the previous 
chapters. Then in that case, from an economic perspective, why bother establishing an MR if it does 
not generate any rent? We have already given some answers to this when discussing stock preservation, 
sustainable yield and employment. In addition, actual fishing fleets often display heterogeneous vessels 
and costs – implying PS (intra-marginal rent) in open-access fisheries (see sub-chapter 7.1, including 
Box 7.1). Also, fish markets often display downward sloping demand and the possibilities of CS, and we 
will now discuss this. The increased harvest following the creation of an MR, for a biological overfished 
stock, (see above) combined with a downward sloping demand curve allows for the creation of CS.20 
Now, let us investigate the case of consumer surplus to see how this changes the previous conclusions 
about zero economic rent. With a downward sloping demand curve for fish, we assume there is a unique 
stable equilibrium at overall open access. If this is for an overfished stock level, both stock and harvest 
will be lower the higher the fish price is, all other parameters being constant. This creates a backward 
bending supply curve, as opposed to a regular upward-sloping supply curve, known from the theory of 
production, where quantity increases with price. (Copes, 1970)

Disregarding processing and distribution costs, consumer price equals ex-vessel price and the downward 
sloping demand implies CS, measured by the area between the demand curve and the equilibrium price. 
As demonstrated above, tuning reserve size to realize MSY, under HZ open access, may or may not be 
possible, depending on biological and economic parameters. The case of biological over-exploitation 
pre-MR and open-access harvesting in the HZ post-MR implies increased harvest as well as increased 
consumer surplus when demand is downward-sloping. This is clearly an economic benefit of MR creation 
for over-exploited resources. Consumer surplus may be of great importance for some resources, such as 
those harvested and used for easily perishable food at local or national markets limited in size.

Producer surplus

We discussed heterogeneous vessels in sub-chapter 7.1. With such a fishing fleet, usually thought to be a 
more realistic assumption for modelling, total cost of fishing will be non-linear. The most efficient vessels 
will earn a super-normal profit in spite of open access. This rent, the intra-marginal rent or producer 
surplus (PS), is discussed in figure 7.2 and may be estimated from cost and earnings data (for an example 
of cost data see Box 7.1). Now the question is whether an MR as the only policy instrument can potentially 
increase PS. In the light of the analysis in Reithe et al. (2014) the answer is mainly affirmative.
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Open-access equilibrium effort is found where average revenue AR(E) is equal to marginal cost MC(E) 
(chapter 3). With no MR and total costs now assumed to be quadratic in effort, C = aE2, equilibrium 
open-access effort and stock will be given by  and , respectively. 
Thus, E∞ decreases and S∞ increases with the cost parameter α. In other words, this qualitative result is 
similar to that of the Gordon-Schaefer model with a linear total cost function; open-access equilibrium 
effort decreases and stock increases with the unit cost of effort, and PS decreases. The parameter α 
determines the open-access equilibrium both pre-reserve and post-reserve and PS will be greater the 
smaller α is. For a biological over-exploited stock pre-reserve an MR will increase PS when there is HZ 
fishing, for parameters discussed in figure 7.4; that is for an over-exploited stock and relative migration, 
α, between 0.3 and 0.7 (Reithe et al., 2014). An MR of any moderate size will cause equilibrium effort, 
and hence also PS, to increase. However, if the reserve is made “too large” effort and PS may decrease 
compared with the pure open-access case.

Concluding remarks

It is well known (see chapters 3 and 5) that no rent is generated under open access within the Gordon-
Schaefer model with constant price of fish and homogeneous effort. However, we also know that 
small changes in the underlying assumptions may allow for rent generation, in particular consumer 
and producer surplus, as demonstrated in this chapter. (See Box 7.1 for a related empirical study.) We 
have discussed the possibility of such rent generation by use of a marine reserve with open-access 
fishing outside. However, maximizing total economic rent may of course not be the only objective of 
fisheries management. Therefore, this MR approach also considers what is usually classified as ecological 
objectives, namely resource conservation and restoration and maximum sustainable yield, as well as 
social objectives, such as employment and food security.

For developing countries, which typically have fisheries in tropical ecosystems characterized by a high number 
of species and mixed fisheries, limited resources available for fisheries management and a high degree of 
subsistence and small-scale fisheries, the management tools often used by industrialized countries are not 
suitable. Taxing or controlling the harvest of thousands of vessels, each catching a small amount which is sold 
on local markets, would be very demanding. Fisheries management does not come for free and monitoring, 
control and enforcement are not perfect, usually resulting in some IUU fishing (Schrank et al., 2003). As 
regards actual management the efficiency and costs of different instruments should be an integral part of 
the policy discussion. OECD fishing countries from 1987 to 2007 saw a decline in fish catches of about 2% 
per year on average, whereas the other fishing nations worldwide had an annual increase of about 2%, 
despite the more advanced instruments of the former (Flaaten, 2013). Because of overfishing and decline 
in catches in several member countries the OECD has instigated discussions and analyses to mitigate such 
problems (OECD, 2012 and 2013). Controlling fish in a particular area (MR) is easier and cheaper than 
conventional input and output control, but it is essential to know how closing an area will affect stocks, 
harvest, vessels and labour, and if any economic and social benefits could be generated by doing so (Reithe 
et al., 2014 p. 35).
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In the fisheries management literature other factors, such as enhancing food security and food safety, 
inter-generational equity, reducing vulnerability to external shocks from foreign exchange fluctuations and 
extreme climatic events, have been suggested to play a role in the establishment and maintenance of marine 
reserves. Some may be included in a bioeconomic analysis of marine reserves, whereas others are beyond 
the scope of what economists can do; they are beyond the scope of this study and require environmental, 
social and political tools of analysis. From an economic perspective the long-term cost-effectiveness of 
marine reserves compared with other management tools should be at the forefront of analysis.
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8 Growth and yield of year classes
In this chapter we analyse the effects on yield and economic rent of changes in technical fisheries 
regulations by use of a year class model. It is shown that technical regulations such as minimum mesh 
size can realise greater long-term yield and economic rent if fishing mortality is controlled simultaneously. 
Fisheries biologists usually use year class models in their stock assessment and advisory work.

8.1 Growth and ageing

In Chapter 2 it was noted that the biological processes that generate bell-formed growth curves include 
individual growth, recruitment and natural mortality. Even though a fish stock may consist of several 
year classes, of which just the older ones spawn and ensure recruitment to the stock, and young fish may 
have a higher growth rate than the older ones, bell-shaped growth curves incorporate all such processes. 
In addition, as have been shown in the previous chapters, the growth curves form a good foundation 
for economic analysis of fishing. However, there are at least two reasons for also studying fisheries 
adaptation and management within a year class framework. First, a year class model may increase our 
understanding of the biological and economic effects of technical regulations. Second, fishery scientists 
in actual assessment and advisory work extensively use year class models. When working with detailed 
and complex year class models we must be aware that even in such models we can find the maximum 
sustainable yield (MSY) and the corresponding stock size, though these characteristics are not as apparent 
as in the aggregated biomass models. Fisheries management in many parts of the world is dominated by 
analysis and management advice from biologists and other natural science researchers, who base their 
work mainly on disaggregated models. Such models specify in more or less detail the three biological 
processes – recruitment, growth and mortality – of the year classes of the stock. Therefore, let us have a 
closer look at such population models and how they may be used for economic analysis.

A cohort is a group of fish of the same age belonging to the same stock. That is why year class models 
are often called cohort models. In the temperate zones of the world fish stocks usually have only one 
spawning season per year, thus producing one cohort per year. However, fish stocks in tropical areas, 
where spawning can take place throughout the year, may produce two or more cohorts annually.
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Fish usually grow throughout their lives, but at a decreasing relative rate both with respect to length 
and weight. This contrasts with humans and many other animals whose growth ceases some time after 
adolescence. The growth of a single fish may depend on the available food, water temperature and other 
biotic and abiotic factors, in addition to its basic physiological characteristics. Even though there may 
be a great variation of growth within a cohort, it is useful to describe the average growth of fish by use 
of a graph or an equation. Figure 8.1 shows the estimated age-specific length and weight of Northeast 
Arctic cod, and figure 8.2 shows the estimated age-specific length and weight of Pacific mackerel. Note 
that length increases at a decreasing rate for both species throughout the life of the fish, whereas weight 
increases at an increasing rate until the age of around eight years for cod and five years for mackerel. 
Actual data will typically be dotted above and below the growth curve, with the curve depicting the 
average value at each age. That is why fish actually can be longer and heavier than the asymptotic values 
shown in these figures.

Figure 8.1. Average length and weight at age of Northeast Arctic cod portrayed by use of the von Bertanlanffy growth 
equation. Parameter values are: k = 0.12, l∞ = 130 cm, w∞ = 17.00 kg, t0 = 0. Source: Parameter values from Sullivan (1991). 
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Figure 8.2. Average length and weight of Pacific mackerel depicted by use of the von Bertanlanffy growth equation. 
Parameter values are: k = 0.24, l∞ = 44 cm, w∞ = 1.00 kg, t0 = 0. Source: Parameter values from Sullivan (1991).

There are more than one species of both cod and mackerel, and several stocks, in both the Atlantic and 
the Pacific. Growth rates vary between areas due to differences in sea temperature, food availability, and 
other factors. Mackerel is a pelagic species that grows relatively fast at a young age and reaches maturity 
already after two to four years. Cod is a relatively slow growing but long-lived species that can reach the 
age of 20 or 30 years, and it reaches a significant length and weight.
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The length at age curves in figures 8.1 and 8.2 are calculated on the basis of the von Bertalanffy (1938) 
length growth equation

(8.1)  

The weight at age curves in figures 8.1 and 8.2 are calculated on the basis of the von Bertalanffy weight 
growth equation

(8.2)  

Each of equations (8.1) and (8.2) describes the growth of individuals by use of three parameters. Other 
functional forms have also been used for curve fitting of fish growth, but the von Bertanlanffy equations 
are the most common (see, for example, the FishBase web page). Parameter l∞ is the maximum length 
of the fish, to be reached only at a very advanced age – really at an infinitely high age, mathematically 
speaking. Parameter k, together with l∞, contributes to the relative growth of fish. Note that even though k 
usually is called the growth parameter, length growth is really a function of both k and l∞. The parameter 
k is usually smaller for big fish, such as cod and halibut, than for small fish, such as pilchard and sprat 
(for lots of examples see FishBase at http://www.fishbase.org/search.php). At a very young age, as larvae 
or juvenile, fish may have another growth pattern from that during the later stages of life. Parameter t0 
tells the hypothetical age at which the fish would have had length zero if growth followed the normal 
pattern throughout life. (To see that l(t0) = 0, substitute t0 for t in equation (8.1).) Technically, t0 may be 
positive, negative or zero. However, for the growth curves shown in figures 8.1 and 8.2 t0 has been fixed 
to zero, to simplify the estimation process, figures and comparison between species. (For a thorough 
review of estimation methods for parameters in growth functions, and in other fisheries equations and 
models, see Haddon (2001).)

If we follow a cohort of fish throughout time there will typically be a gradual reduction in the number 
of individuals from the birth of the cohort to the point in time when the last individual dies. There 
are great variations between stocks in how fast a cohort is reduced in size. Some marine species, for 
example, seals, have a few offspring with a low natural mortality, whereas others, for example, mackerel, 
have a huge number of offspring, with a high natural mortality. The most common cause of natural 
mortality of fish is predation from other fish, sea birds and sea mammals. The smaller a fish is the more 
individuals in the sea are able to eat it, thus implying a high rate of mortality from predation. It is not 
uncommon that mortality due to predation on fish eggs and fries exceeds 10–20 per cent per day. For 
adult fish, however, daily rates of mortality may be down to a fraction of one per cent. In addition to 
predation, other natural causes of death of fish include illness, starvation, parasites and poisoning. Such 
causes often weaken the fish to make it more vulnerable to predation – thus fulfilling the saying: one 
man’s death is the other’s life.
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For management purposes it is important to distinguish between natural mortality on the one hand 
and fishing mortality on the other. Fishing means removal of fish from the sea, thus adding to the total 
mortality of the cohort. For managers, an important question is how many fish should be removed 
from the cohort and how many should be left in the sea. (We shall come back to this at a later stage). 
Total mortality, denoted Z, consists of the sum of natural mortality, denoted M, and fishing mortality, 
denoted F. First, let us have a closer look at the effects of natural mortality on the surviving number 
of fish. Disregarding the very early stages of the life of a fish, natural mortality seems to be a relative 
constant fraction of the number of fish. This means that, disregarding fishing, for example, 20 per cent 
of the cohort will die from natural causes from one year to the next. However, fish typically die every 
day and minute throughout the year, and for this reason it has proved practical to count mortality on an 
instantaneous basis. Recalling Chapter 4 we have seen that, regarding discounting, it is rather a question 
of convenience whether we should use discrete or continuous time for the calculation of present value 
and compound21 interest. The same applies to the development of a cohort over time. Fisheries biologists 
tend to use continuous time when calculating natural and fishing mortality in a management context. 
Therefore, we shall use the same approach.

Starting with N0 fish, the number of fish will have decreased to 

(8.3)  

at time t if the total instantaneous mortality rate, Z = M + F, is constant.

For some species, such as salmon, most fish die after spawning, implying that M is extremely high during 
the post-spawning period. However, for most fish species of commercial value, natural mortality, M, is 
in the range of between 0.1 and 0.8.

Box 8.1 Fishing mortality in a fish farm

Farming of salmon, and other big fish, is an extreme example of single cohort fishing. For each new round of production, 
farmers usually put some thousands of juveniles of the same cohort into the cage. After having fed and tended the fish for a 
couple of years, the stock may be harvested during a very short period of time. Let us have a closer look at a numerical example 
to see how great the fishing mortality F can be in the case of fish farming. A cage contains 60 000 salmon at time t, that is 
N(t) = 60 000. The harvest takes place during five days, which implies that dN = 60 000 and dt = 5 / 365 = 0.0137 when time 
is measured in years. Neglecting natural mortality this implies

(1) 

Based on equation (1) and the data given above we derive F = 73.0. This is an extremely high fishing mortality compared with 
the harvesting of wild fish. However, F > 1 is not unknown in commercial fisheries, in particular in the case of fast growing 
short-lived species. Note that F =1 does not imply that the whole cohort is fished in one year (see exercise 8.1).

Small fish, such as sprat and pilchard, usually have higher M than bigger fish, such as cod and halibut.
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Multiplying the number of fish in equation (8.3) with the individual weight in equation (8.2) gives the 
biomass at age t

(8.4)  

Figure 8.3 shows the development of a mackerel cohort in numbers and total weight, or biomass. In 
this case with a natural mortality M = 0.4 and no fishing (F = 0) the number of fish decreases from one 
billion recruits at time zero to approximately 200 million at the age of four and 135 million at the age 
of five. Thus after four years there will be only one in five fishes left in the cohort. The natural mortality 
used in this example fits the Pacific mackerel, but the number of recruits is arbitrarily chosen (low).
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Figure 8.3. The decline in number of fishes and the rise and decline of biomass in a given cohort of mackerel, without fishing. 
Parameters used are N(0) = 1 billion, M = 0.4 and growth parameters as in figure 8.2.

Figure 8.4. The decline in number of fishes and the rise and decline of biomass of a cod cohort, without fishing. 
Parameters used are N(0) = 1 billion, M = 0.2 and growth parameters as in figure 8.1.
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Figure 8.4 shows the development of a cohort of cod in number and total weight, or biomass. In this case 
with a natural mortality M = 0.2 and no fishing (F = 0) the number of fish decreases from one billion 
recruits at time zero to approximately 420 million at the age of four and 200 million at the age of eight. 
Thus after four years there will be just above four in ten fishes left in the cohort and at the age of eight 
there will be two in ten fishes left. The natural mortality used in this example fits the Northeast Arctic cod. 
The number of recruits in figure 8.4 is arbitrarily chosen, but is within observed limits for this cod stock.

Multiplying number of fish by the individual weight gives the age-specific biomass curve shown in 
figures 8.3 and 8.4. Thus the total weight, the biomass of a cohort, depends on the weight of single fish 
and the number of fish. Biomass typically increases progressively (convex) during the early stage of 
life, then continues to grow but slower and slower (concave) until it reaches its maximum. From this 
maximum the biomass decreases gradually towards zero at the maximum age of the fish. This maximum 
age is usually much higher than the average age of harvested fish. The maximum age is the age a fish 
of a given stock could reach if it were left un-harvested by man and predators. The particular biomass 
curve shown in figures 8.3 and 8.4 are based on the weight curves of Pacific mackerel and Northeast 
Arctic cod, respectively. In the case of mackerel the cohort reaches its maximum biomass at the age of 
four years, whereas in the case of cod the cohort reaches its maximum biomass at the age of nine, in 
both cases with the assumption of no fishing. The age that gives biomass maximum of a cohort depends 
on the biological characteristics of the fish stock. Higher natural mortality M, ceteris paribus, means a 
lower age at biomass maximum.

As noted above the age-specific biomass curves shown in figures 8.3 and 8.4 are based on the absence of 
fishing. If and when fishing takes place, the biomass growth will be slower and the decline will be faster 
than shown. In actual fisheries the gear type in use often determines what sizes of fish are caught and 
what sizes escape. For example, a fisher’s choice of gill-net mesh size usually depends on his targeted 
fish species and size. Small fish have a greater probability than big fish of avoiding being entangled in 
the net. This probability increases the smaller the fish is, since the little ones pass through the meshes 
more easily without being trapped. However, a big fish also has a positive probability of escaping the gill 
net, because it is not entangled or it has the power to free itself from the net. Thus a gill net typically 
catches most medium-sized fish, and this “medium size” depends on the mesh size. On the other hand, 
trawl has the property of keeping few of the small fish, most medium-sized fish and all the big ones 
that encounter the gear. For very small fish, trawl takes none at all. For example, bottom trawl used for 
cod-like fish does not catch shrimp, even if such a species is present on the fishing ground.
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Figure 8.5. Selectivity curves for three types of fishing gear.
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The selectivity pattern varies across gear type and this pattern may be described by use of selectivity 
curves. Figure 8.5 shows three examples of selectivity curves, namely size dependent selectivity for gill-
net and trawl as well as knife-edge selectivity. For analytical purposes it is often convenient to assume 
knife-edge selectivity to focus on the harvest potential of a fish stock. Even though knife-edge selectivity 
is hard to achieve in actual fisheries, bottom trawl with steel or alloy grids that substitute parts of the net 
may come close to this. The grid will stay open with a fixed distance between the bars, allowing all or 
most fish below a certain thickness to escape the gear independent of how many fish are in the cod-end 
of the trawl. Most gear has a somewhat more complicated selectivity pattern than knife-edge selectivity, 
for example, like bell-shaped or s-shaped curves. In conventional trawl, the net is gradually stretched 
and the real mesh size reduces as more and more fish accumulate in the trawl, thus effectively decreasing 
the selectivity properties of the gear. In general, the selectivity curve of gill-net is bell-shaped and that 
of conventional trawl is s-shaped. The values of the selectivity parameter vary between zero and one, 
telling the probability of a fish encountered by the gear being trapped as a function of the size of the 
fish. Knife-edge selectivity exists when the selectivity parameter is zero for small fish up to a given size 
and one for all sizes equal to or bigger than this minimum catchable size. Most gear types do not catch 
the very smallest fish. What “smallest” means varies across type of gear and mesh size.

With a direct relationship between fish size and age, as we see in figures 8.1 and 8.2, the first-age-of-
capture, tc, is the age that corresponds to the minimum catchable size. In the case of knife-edge selectivity 
the definition of tc is clear, namely the age at which fish reaches its minimum catchable size. However, 
for practical purposes in the case of size variable selectivity of trawl tc must be related to the age that 
gives, for example, s(w) = 0.25 and for gill-net tc may be defined as the lower age for which, for example, 
s(w) = 0.25. Note that in the bell-shaped selectivity curve for gill-net there are two weight (age) classes 
of fish that give for example s(w) = 0.25, whereas for trawl there is only one.
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8.2 Sustainable yield and economic surplus

With knife-edge selectivity and constant fishing mortality throughout each cohort’s life the yield from 
this cohort depends on the mesh size and the fishing mortality.

Figure 8.6 shows the yield curves for cod for three different age-of-first-capture, tc. In this case we have 
drawn the picture of total yield (the eumetric yield is explained below). A quite similar picture would 
appear if we divide total yield by the number of recruits at t0 and depict yield per recruit. In fact, in the 
biological literature yield per recruit is more common than total yield in this connection.22 Note that 
the curves for zero and three years of first capture have a distinct maximum whereas the curve for nine 
years does not have such a maximum. This is because the biomass maximum of the cohort is reached 
at the age just below nine, at 8.6, as shown in figure 8.4. Any yield curve with tc equal to or greater than 
the age of natural biomass maximum (without fishing) will be without a distinct maximum point. The 
fishing mortality that gives the maximum yield, for a given first age of capture, tc, is called Fmax. This 
is a biological reference point that tells what the fishing mortality should be for the fishery to produce 
maximum yield, given knife-edge selectivity and a specific age of first capture. In figure 8.6 we have two 
values of Fmax, one for age 0 and one for age 3. Fisheries biologists use Fmax and several other biological 
reference points in their assessment and advisory work (for a review, see, Caddy and Mahon, 1995).

Figure 8.6. Yield curves of cod for three different age-of-first-capture, namely 0, 3 and 9 year as well as eumetric yield, 
based on knife-edge gear selectivity. Parameter values of growth are as in figure 8.1, N(0) = 1 billion and M = 0.2.

Note that the catch will consist of fish at or above the age of first capture tc, as long as the fishing mortality 
is within reasonable limits and the stock consists of several year classes. Some fish will survive fishing 
and reach an age well above tc. A fish stock will typically consist of a higher proportion of old fish the 
lower the fishing pressure has been throughout some period of time.
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Figure 8.6 clearly demonstrates that it is the combination of mesh size and fishing mortality that 
determines the possible yield of a cohort. If, for example, fishers use an extremely small mesh size, with 
the age of first capture close to zero, and a high fishing mortality, the yield from this cohort will usually 
be low. However, if the fishing mortality is kept low, even with such a small mesh size the yield may 
be significant. Figure 8.6 shows that the combination of age of first capture equal to zero and fishing 
mortality equal to 0.1 would yield almost 400 000 tonnes, which is about half of the maximum yield. 
However, to obtain the maximum yield it is necessary to have a high first-age-of-capture, almost nine 
years, and a high fishing mortality, about 1.0 or higher. Thus this cohort analysis demonstrates the need 
for simultaneous mesh size and fishing mortality control. So what combination should the manager aim 
at? To answer this question we shall have to include economic issues in the analysis of cohort fishing.
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For the mackerel cohort shown in figure 8.3 the maximum biomass occurs at the age of four and for 
cod shown in figure 8.4 the maximum occurs at the age of almost nine. However, such a maximum 
can be harvested only by use of an infinitely high fishing mortality exactly when the biomass reaches 
its maximum. Theoretically, at this point in time the total cohort is harvested by unlimited use of the 
knife-edge selective gear. However, from an economic point of view it is easy to understand that this 
is not a very useful concept of optimal fishing. Infinitely high fishing mortality and effort would imply 
infinitely high costs. Therefore, for an economic approach to cohort fishing we introduce the concept 
of eumetric yield curve.23 For each value of F in figure 8.6 there exists some mesh size that gives the 
maximum sustained yield. The resulting curve through these maxima is the tangent to each of the size 
selective yield curves. We could also say that the eumetric yield curve is the envelopment of the individual 
mesh size conditional curves, as show in figure 8.6.

We discussed in chapter 2 how harvest may depend on stock size. One of the simplest relationships 
between stock size and harvest is the case of proportionality. For a cohort fishery this means that harvest 
is proportional also to the number of fish

(8.5)  

where Y = catch in number of fish. If fishing mortality is proportional to fishing effort, E, we have

(8.6)  

where q is the catchability coefficient. Combining (8.5) and (8.6) gives the Schaefer harvest function in 
number of fish:

(8.7)  

in the case of cohort fishing. Since the eumetric yield is the greatest possible yield that can be obtained 
for each level of fishing mortality, F, this holds also for each level of fishing effort E = F/q.

Let us use these catch equations for an economic analysis of the cohort fishery, recalling that eumetric 
yield means that both fishing effort and mesh size are optimally adapted. If the fishing industry is a small 
part of the national economy it is reasonable to assume that effort can be expanded at a constant cost 
per unit and that fish may be sold at a constant price per unit harvest. Total cost is

(8.8)  
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where a = cost per unit effort. By combining equations (8.6) and (8.8) it follows easily that cost per 
unit fishing mortality is aF = a/q. The actual value of aF tends to be a large number since F is a small 
number, whereas the value of a depends on the choice of unit for measuring fishing effort. Whether 
effort is measured in, for example, trawler year or trawl hour makes a great difference to the value of a.

Figure 8.7 shows how revenue and costs may increase with fishing effort. In this case there are four 
revenue curves, corresponding to the three age-of-first-capture specific and the eumetric yield curves 
in figure 8.6. With a constant price, p, per unit harvest independent of fish size, the revenue curves in 
figure 8.7 is just a rescaling of the yield curves in the figure 8.6. For most types of gear the cost per unit 
effort varies very little with mesh size and selectivity pattern of the gear. This is why there is only one total 
cost curve in figure 8.7. In this case we assume that cost per unit effort and total cost are independent of 
mesh size and age-of-first-capture. Note that the main difference between figures 8.7 and 3.1 is that the 
former displays four possible revenue curves whereas the latter has only one. Even though biomass models 
are often used for analysis of multi-cohort fisheries, they do not explicitly consider selectivity effects.

Figure 8.7. Revenue and cost curves for cohort fisheries, with revenue depending proportionally on and cost independent of 
the type of yield curve.
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Let us now use figure 8.7 to analyse and compare the open access (OA) and the maximum economic 
rent (MEY, where Y denotes yield) fishing regimes. For an OA fishery with no technical regulations we 
would expect fishers to catch any fish of commercial value. If even the smallest fish attracts the price p, 
fishers would choose the smallest mesh size available and keep for sale any fish they catch. In figure 8.7 
this means that the OA equilibrium will be at A0 for the rent dissipating effort level E0

00. However, 
assume the fisheries manager introduces a technical regulation demanding all fishers use a mesh size 
that effectively increases the age of first capture to three years. This means that the R3 curve in figure 8.7 
will be the actual revenue curve for the fishery. OA fishing implies that the equilibrium changes from 
A0 to A3 with higher revenue, cost and effort compared to the OA fishery with no technical regulation. 
Technical regulations may contribute to the overall size of the fishery, but as the only management tool, 
no rent will be generated.24 The resource rent is maximised for the effort level EMEY, where we find the 
greatest distance between the R and C curves. To realise this optimum the management authority has 
to limit, directly or indirectly, the amount of effort in the fishery, and simultaneously limit the mesh 
size to achieve the eumetric yield. Compared with the economic analysis of the biomass fishery in the 
previous chapters, we now see the need for at least two management tools: firstly, a technical regulation 
to avoid harvest of small fish, and secondly, some control to avoid excessive fishing mortality. The latter 
may be achieved by input control or output control, as discussed in Chapter 3.
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The simplicity of figure 8.7 should not lead us to the conclusion that the only difference between a cohort 
model and a biomass model is the introduction of a first age of capture or a mesh-size parameter in the 
former. In fact, a cohort model with several year classes and a stock-recruitment relationship may be 
incredibly complex from a dynamic point of view (see Clark, 1990, ch. 9). The above analysis of a cohort 
fishery is based on the assumption of constant recruitment and fixed age-dependent individual growth. 
In other words there are no density-dependent processes that reduce recruitment at low stock levels or 
reduce individual growth at high stock levels. For actual fish stocks, recruitment usually depends on 
both spawning stock size and environmental conditions, and growth of individual fish may slow down at 
high stock levels due to competition for food. Fish has to grow for some years to mature and reproduce, 
therefore the number of recruits to the fishable stock depends on the spawning stock size one or more 
years before. The length of this time lag between spawning and recruitment varies across species and 
stocks. Adding multi-cohort, stock recruitment and time lag to the cohort analysis above could make 
the analysis too complex for analytical solutions to be found. A common solution to such problems is 
to use numerical model simulations. The need for technical regulations of a fishery is likely to become 
even more prevalent within such a framework.

Groups of year classes of a given fish stock may have different migration patterns due to different needs. 
The spawning cohorts, for example, need suitable spawning grounds at a time of the year when the chances 
of offspring survival is good. Juvenile cohorts grow relatively fast (as seen in figures 8.1 and 8.2) and 
they need a large amount of food. Therefore, younger generations of fish tend to migrate across season 
and area to find suitable and plentiful food. Migration of fish for spawning, feeding or other biological 
reasons may imply a need for additional management tools, such as area and seasonal restrictions on 
fishing. However, from an economic point of view, it is important to distinguish between management 
tools that increase the net revenue (resource rent) of a fishery and tools that mainly increase harvest costs. 
An example of the latter is when fishers are restricted from harvesting where and when the fish is easiest 
and least costly to catch. However, restricting access to harvesting the spawning stock through area and 
seasonal closure may be economically sound if this protects spawners and increases future recruitment. 
The stock-recruitment relationship is important for the long-term yield and the economic performance 
of the fisheries. It is important to stress that technical regulation of, for example, gear selectivity, area and 
seasonal closure, should be designed to increase the long-term profitability of the fishery. Unfortunately, 
in fisheries around the world there are several examples of actual regulations that inflict costs on the 
industry without increasing yield and revenues (see, for example, Shrank et al., 2003).
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Exercise 8.1.

In a cod fishery fishing mortality is proportional to fishing effort (F = qE) and the catchability coefficient 
is q = 2.5 · 10–4 per vessel-year, with unit of time equal to one year. The price of fish is constant (across 
volume and size of fish), p = 2.00 $/kg, and cost per vessel-year is a = 0.5 million $.

1. What is F when E = 4000 vessel-years?
2. Use figure 8.5 to sketch the corresponding graphs of eumetric revenue and total cost of 

fishing mortality (tip: see figure 8.6 and use cost per unit F, c = TC/F, to draw the total cost 
of fishing mortality curve, C(F) = cF).

3. Use the graphs to find approximate values for  and FMEY. What are the 
corresponding number of vessels?
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9  Multispecies and 
ecosystem harvesting

This chapter will introduce some important concepts and models being used in economic analysis of 
multispecies and ecosystem harvesting. We shall focus on predator-prey interactions that are a key to 
the understanding of more complex aquatic ecosystems and models of such systems.

A classic on multispecies management:

The amount of food for each species of course gives the extreme limit to which each can increase; 
but very frequently it is not the obtaining food, but the serving as prey to other animals which 
determines the average number of a species. Thus, there seems to be little doubt that the stock of 
partridges, grouse and hares on any large estate depends chiefly on the destruction of vermin. If 
not one head of game were shot during the next twenty years in England, and, at the same time, 
if no vermin were destroyed, there would, in all probability, be less game than at present, although 
hundreds of thousands of game animals are now annually shot. (Darwin, 1882, pp. 53–54; quoted 
from Volterra, 1928, pp. 21–22).

9.1 Multispecies and ecosystem management

The purpose of this section is to introduce the reader to bioeconomic multispecies modelling and 
management. We shall do so by use of simple graphical analysis and examples from North Atlantic 
fisheries. The mathematical tool for deriving one of the key graphs is known to most students and will 
be used in the next section.

Each fish stock is a part of a greater ecosystem, interacting with its prey, predator and competitor species, 
in addition to being affected by other biological as well as physical conditions in the sea. A typical fish 
species targeted by man both consumes some species and serves as prey for others. Who eats whom 
may also vary on a temporal and spatial scale. For example, big adult fish may feed even on their own 
offspring in addition to prey where the individual fish is small. As the offspring grows bigger, individuals 
change from serving as feed to become predators on the next generation of offspring. Such cannibalistic 
behaviour is also an important part of many fish communities, including for cod (Gadus morhua) and 
herring (Clupea harrengus) in the North Atlantic. Marine ecosystems may be more or less complex and 
the number of commercially exploited species varies. In general, tropical systems seem to be richer in 
number of species than ecosystems in the temperate zones. For example, the Mekong river ecosystem 
has around 1400 species of fish and crustaceans whereas the Barents Sea ecosystem in the Northeast 
Atlantic has only a tenth of this.
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Box 9.1 Hippopotamus management in the old Egypt

If we can trust the historic portrayal of the novel River God (Wilbur Smith, 1993) the old Egyptians managed actively 
their aquatic resources nearly 3800 years ago, in the 1790s BC under the reign of Queen Lostris. 

The priests of Hapi had kept a strict count of the number of these great beasts in the lagoon, and had given sanction for 
fifty of them to be slaughtered for the coming festival of Osiris. This would leave almost three hundred of the goddess’s flock 
remaining in the temple lagoon, a number that the priests considered ideal to keep the waterways free for choking weed, to 
prevent the papyrus beds from encroaching upon the arable lands and to provide a regular supply of meat for the temple. 
Only the priests themselves were allowed to eat the flesh of the hippopotamus outside the ten days of the festival of Osiris.
“River God”, p. 9.

Co-evolved species adapted to their environment may have complex dynamics that are difficult to fully 
comprehend. For biologists and other natural scientists there is hardly any limit to how much research 
is needed to describe and predict further development of each species, commercial or non-commercial, 
in its ecosystem. Nevertheless, for management of any single species or multispecies, objectives setting 
harvest quotas, limiting effort, collecting resource taxes and imposing technical restrictions are among 
the policy means available. A key question when it comes to ecosystem management is how much of 
the complex dynamics of nature do we have to know to manage those species we want to harvest or to 
protect from harvesting? Management costs are not negligible, in particular when it comes to ecosystem or 
multispecies research and management. For actual management, cost-benefit analysis of such approaches 
should be warranted.

9.1.1 Effort and stock levels

The main results of single species bioeconomic analyses are that the optimal level of fishing effort is less 
than the open-access level and that the optimal stock level is higher than the open-access level. These 
general results are valid whether the optimum is derived by maximising annual economic rent or the 
present value of all future rent. For static rent maximisation the main results of single species analysis 
are shown in Figure 9.1. Panels (a) and (b) show how the sustainable revenue and the total cost of 
harvesting vary with fishing effort and stock level, respectively. Generally speaking, the optimal level of 
fishing effort, E*

ss, is less than the open access level, Eoa
ss, and the optimal stock level, X*

ss, is higher than 
the open access level, Xoa

ss. These general results are valid whether the optimum is derived by maximising 
annual economic rent or the present value of rent.
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Figure 9.1. Open access (OA) and optimal (*) effort (E) and stock level (X) in a single species (SS) model. Arrows indicate the most 
likely direction of change of optimal E and X if the stock is a prey or a predator, respectively.
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In single species models, the biological constraint to the optimisation problem is the yield-effort or yield-
stock curves on which the revenue curves are based. Moving from single species to two species models, 
changes the biological constraint to, for example, the maximum sustainable yield frontier (MSF), shown 
in Figure 9.2. The MSF is derived (see the next sub-chapter, 9.2) by maximizing yield of species no.2 for 
a given yield of species no.1 when there are biological interactions between the two species. Maximising 
yield from each of the two species as if it were independent of the other, gives the combined yields at 
the point S in Figure 9.2. However, this is not a sustainable combination of yields since it is outside the 
MSF. Any point on or inside the MSF would be sustainable (see e.g. Flaaten, 1988 and 1991).

What combination of yield should be chosen depends in general on the management objective, as well as 
the price of fish and the harvest cost for each species.25 In the biology literature, objectives for managing 
fish stocks are usually related to the maximum sustainable yield (MSY), yield per recruit (Y/R) or some 
related concepts. In cases of two or more biologically interdependent species, maximum sustainable 
yield frontiers (MSF) might replace the single-species MSY concept. However, the fallacy of biological 
management objectives is that they do not consider the economic benefits and costs of fisheries. Many 
fish stocks are deliberately not fished due to low market price and/or high catch cost. In the Barents Sea, 
for example, there are more than 100 fish species, but only about 10 are commercially targeted.

Figure 9.2. The maximum sustainable yield frontier (MSF) gives the maximum possible yield of one species 
for a given yield of the other.
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Some international organisations and agreements have established their own objectives for fisheries 
management. The Food and Agriculture Organization of the United Nations (FAO) formulated the 
following objective (see Box 4.1):

Recognizing that long-term sustainable use of fisheries resources is the overriding objective 
of conservation and management, states and subregional or regional fisheries management 
organizations and arrangements should, inter alia, adopt appropriate measures, based on the 
best scientific evidence available, which are designed to maintain or restore stocks at levels capable 
of producing maximum sustainable yield, as qualified by relevant environmental and economic 
factors, including the special requirements of developing countries. (FAO, 1995.)

Thus, even though the FAO’s Code of Conduct establishes the single-species concept, with maximum 
sustainable yield as the main management objective, it is qualified by relevant environmental and 
economic factors.

Contrary to the management objectives above, economic objectives are strongly related to social welfare 
theory that emphasises the net economic results to society of utilising natural resources. “Society” in 
this context usually means a country, but it could also mean a group of indigenous people, a region 
within a country, or a group of countries. The resource rent is the gross catch value minus the harvest 
costs. If stocks are jointly managed, the objective could be to maximise the combined resource rent, or 
the present value of all future rent from them. With respect to the effect that the relative net value of 
harvest has on the optimal combined harvesting, let us use two simplified examples to illustrate this. In 
both cases we assume that there are predator-prey interactions between the stocks and that they can be 
harvested independently of each other.

Example 1. Valuable predator and cheap prey

Let species 2 be a predator of high net value per unit harvest and species 1 a low net valued prey species. 
In this case the optimal combined yield is in the vicinity of B in figure 9.2 where the prey is mainly 
kept in the sea as feed for the predator. In this case the effort of the predator fishery does not have to 
be increased (much) compared with its single species effort shown in figure 9.1(a), whereas the effort 
of the prey fishery should be decreased. The effects on the stock levels are opposite to the effects on the 
effort levels.
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Example 2. Predator of low net value and prey of high net value

If the predator is of low market value and/or expensive to harvest, its net value per unit harvest is low. 
Likewise, if the prey is of high market value and/or cheap to harvest its net value per unit harvest is 
high. In this case the optimal combined harvest is in the vicinity of A in figure 9.2 where the predator 
stock is fished down to leave more prey to be harvested by the fishermen. In some cases it even pays to 
subsidise the fishermen to harvest more predators than they otherwise would have done. In this case 
the optimal effort of the predator fishery should be increased and the stock level of the predator reduced 
compared with the single species case, as indicated by the arrows in figure 9.1.

Non-consumptive values of certain species of a marine ecosystem should also be included in a complete 
analysis, if such values are considered significant. The international discourse on, inter alia, whaling, 
sealing, dolphin by-catch and turtle excluder devices demonstrates the importance of integrating non-
consumptive issues in the management objectives. Further analysis usually reveals the need for a trade-
off between use (harvest) and non-use (protection) values, even more so when the non-use values are 
connected to top-predators that consume commercially valuable fish.
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9.1.2 Mixed catch and gear selectivity

In most fisheries catches consist of more than just the main targeted species. Mixed catches create other 
management problems in addition to the ones discussed above. This is especially the case when the catch 
consists of species of different size distribution and with different growth properties. The mixed catches 
of, inter alia, cod, haddock and whiting in the North Sea trawl fishery is an example of this. Figure 9.3 
illustrates this problem. One particular type of gear may use either a small or a large mesh size in the 
net to catch two species simultaneously. The small mesh size gives MSFA whereas the big mesh size gives 
MSFB in figure 9.3.

Figure 9.3. The maximum sustainable yield frontier (MSF) in mixed fisheries may depend on the mesh 
size of the nets. A indicates MSF for small mesh size and B for big mesh size.

Species 1 may consist of plentiful small fish that easily escape gear with big meshes. Species 2 has fewer 
but bigger fish that are fished too young when small meshed nets are used. What combination of yield 
should be chosen depends in general on the management objective and on the ratio of cost of effort-price 
of fish between the two stocks. If the stocks are jointly managed, the objective could be to maximise 
the combined resource rent from them. Another solution would be to try to develop selective gear and 
fishing methods to avoid mixed fisheries.

After this brief and simple presentation of some results from bioeconomic single and multispecies 
theory, I will now give a few examples of modelling and management of North Atlantic fisheries and 
try to relate this to the theory.
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9.1.3 Examples from the North Atlantic

For many years, biologists and other scientists in the North Atlantic coastal states have undertaken 
research on marine multispecies interactions. There are also examples of bioeconomic multispecies 
analyses of fisheries in these areas (see, e.g., Eide and Flaaten, 1998). Russian and Norwegian researchers 
have conducted studies on “who eats whom” in the Barents Sea area and have modelled these multispecies 
interactions (see e.g. Rødseth, 1998). Two figures will give an example of why it may be important to 
also include economic aspects in multispecies modelling, instead of relying on biological reasoning 
only. Figure 9.4 shows the Northeast Atlantic cod’s age-dependent average annual consumption of 
some commercially important prey species. Species included are shrimp, capelin, herring and cod 
(cannibalism) above 5, 10, 10 and 20 cm, respectively. The figures are in grams of prey per kg of cod, 
for each age class of cod from 1 to 7+ years. Figure 9.4 shows, for example, that 1 kg of two-year-old 
cod annually consumed 2000 grams of prey of these four species above the given size, and that about 
75 per cent of this was capelin. For all age classes, capelin is the main prey among the species and size 
groups included in figure 9.4.

Figure 9.4. Arcto-Norwegian cod’s age-dependent average annual consumption of some commercially important 
prey species. Species included are shrimp (Pandalus borealis), capelin (Mallotus villosus), herring (Clupea harengus) 
and cod (Gadus morhua) above 5, 10, 10 and 20 cm, respectively. In grams of prey per kg of cod, 1984–92. Calculations 
based on data from The Institute of Marine Research, Bergen.

Download free eBooks at bookboon.com



Fisheries Economics and Management

142 

Multispecies and ecosystem harvesting

Figure 9.5. Age-dependent average annual opportunity cost of Arcto-Norwegian cod’s consumption of some 
commercially important prey species. Species included are shrimp (Pandalus borealis), capelin (Mallotus villosus), herring 
(Clupea harengus) and cod (Gadus morhua) above 5, 10, 10 and 20 cm, respectively. In NOK per kg of cod, in 1991–92 
prices. Consumption data from 1984 to 1992. Sources: Calculations based on biological data from the Institute of Marine 
Research, Bergen, and economic data from The Directorate of Fisheries, Bergen.
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Taking the net opportunity cost of feed into consideration (see Flaaten and Kolsvik, 1995, for details) 
gives the results shown in figure 9.5. The net value of the prey is the net contribution that the fish in the 
sea could have given for the prey harvesters if they had less competition from the predator, the cod. The 
net value per unit of catch was found by Flaaten and Kolsvik (1995) to be 30 per cent of the quay-side 
price in these fisheries. In other words, if a predator eats fish that would have been worth € 1.00 at the 
quay, the fisher’s net loss is only € 0.30 since he would have had to spend € 0.70, including labour costs, 
to catch the fish. Figure 9.5 shows, for example, that two-year-old cod had an annual feed cost of NOK 
1.50 (€ 0.20) per kg of biomass, and that about 75 per cent of this was inflicted on the shrimp fisheries. 
Except for age class 7+, the opportunity cost of shrimp dominates the economic figures, whereas capelin 
dominated the biological results in figure 9.4.

The model MULTSPEC from the Institute of Marine Research (IMR), Bergen (see Tjelmeland and Bogstad, 
1998) is a biological multispecies model for the Barents Sea fish/sea-mammal system. The MULTSPEC 
model includes cod, capelin, herring, minke whale (Balaenoptera acutorostrata), harp seal (Pagophilus 
groenlandicus) and species of zooplankton. The ECONMULT model (see Eide and Flaaten, 1998) is a 
bioeconomic multifleet model to be used with more aggregated multispecies models than the very detailed 
MULTSPEC. MULTSIMP and AGGMULT are aggregated models (see Tjelmeland, 1990 and 1992; Eide 
and Flaaten, 1998). None of these models include shrimp, even though figures 9.4 and 9.5 indicate that 
shrimp should be included in the bioeconomic multispecies analysis of the Barents Sea fisheries.

9.1.4 Interactions of fish and sea mammals

Some species of whales and seals are important predators on fish in the North Atlantic. Icelandic, 
Norwegian and other scientists have for many years conducted research on the feeding ecology of whales 
and seals. Sigurjónsson and Vikingsson (1995) give an excellent review of much of the work done on 
whales, dolphins and porpoises in the area between Greenland, Iceland, Jan Mayen and the Faroe Islands 
until the mid 1990s (also see Sigurjónsson and Vikingsson, 1997). Their report also gives estimates, using 
two different methods, of annual consumption by these species in different parts of this area. On average, 
the consumption of commercially valuable fish is about 25 per cent of the total annual feed of whales. 
The total fish consumption exceeds 1.2 million tonnes per year in Icelandic and adjacent waters (mid 
1990s). With regard to the implications for management of their results, Sigurjonsson and Vikingsson 
are careful with their conclusion:

The present analysis of consumption…is just one step towards a better understanding of the role 
of cetaceans in the marine ecosystem in these waters. The results show, however, that the amount 
of food consumed is substantial, while the implications of that conclusion require further study. 
(Sigurjónsson and Vikingsson, 1995 p. 10).
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For the Barents Sea and parts of the Norwegian Sea the paper by Schweder et al. (1998) investigates the 
effects on cod and herring fisheries of changing the target stock level of minke whales. Using a scenario 
modelling approach the biological model includes cod, herring, capelin and minke whales – with fish 
populations age and length distributed and minke whales age and sex distributed. The minke whale is an 
opportunistic forager that consumes plankton and other fish in addition to cod, herring and capelin. One 
of the findings is that a reduction of the minke whale stock from 72 per cent of carrying capacity to 60 
per cent increases the annual catch of cod by some 100 thousand tonnes. This corresponds to an increase 
in the annual catch of cod by approximately 6 tonnes with a mean reduction in the whale stock of one 
animal. For herring no clear main effect was found on catch, due to the biological interactions between 
species and size groups. With respect to implications for fisheries management the authors conclude:

The results concerning the effects on the cod and herring fisheries must be taken as tentative 
since the ecosystem model used could be improved, and so could the strategies for managing the 
fisheries. (Schweder et al., 1998 p. 77).

When it comes to predators like whales and seals, however, harvesting is often controversial, as the 
following quotation demonstrates:

An early exploration (of multispecies fisheries), May et al. (1979), has proved very influential, 
and now forms the basis for a very controversial piece of work, a bioeconomical analysis of the 
Barents Sea fishery by Flaaten (1988). Flaaten’s work is controversial because of his conclusion 
that sea mammals should be heavily depleted to increase the surplus production of fish resources 
for man. (Yodzis, 1994, p. 51.)

Harvesting is, however, not the only utility generated from sea mammals. It has long been acknowledged 
that non-use values included in the objective function may have implications for stock management. 
The following quotation demonstrates this:

It should, however, be stressed that this result […that the sea mammals should be heavily depleted 
to increase the surplus production of fish resources for man…] may be somewhat modified if the 
resource is assigned an optional value from people’s willingness to pay for keeping the stock at 
higher level. A biological argument that also may weaken our result is the eventual existence of 
critical depensation for lower stock levels. (Flaaten, 1988, p. 114.)

An alternative to comprehensive multispecies or ecosystem models is partial analysis. Flaaten and Stollery 
(1996) developed methods for the calculation of the net cost that predators inflicted upon the prey species 
fisheries. Applying one of the methods to the Northeast Atlantic stock of minke whales26 predation of 
fish, we estimated the annual predation costs per minke whale, at 1991–92 prices, at between NOK 
11,600 and NOK 15,100. This would amount to between approximately € 1950 and € 2550 per minke 
whale, using 2002 prices and exchange rates.
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9.1.5 An historical note

The examples I have given on multispecies modelling so far are all from the North Atlantic. The reason 
for this is simple – this is the area where I am working and that I know pretty well. There are, however, 
several examples of especially biological multispecies modelling of fisheries in other parts of the world. 
My final example is from the Mediterranean, and this is not just an ordinary example, but one of the 
most important ones in the history of multispecies modelling and management.

The first ever attempt, as far as I know, at conducting a multispecies analysis of fishing was by means 
of limit cycle models. Empirical studies of the Upper Adriatic Sea fisheries before, during and after the 
First World War found in D’Ancona (1926) were an important source of inspiration to the theoretical 
works by V. Volterra (1928) as demonstrated by this quotation:
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Doctor UMBERTO D’ANCONA (D’Ancona, 1926) has many times spoken to me about the 
statistics which he was making in fishery in the period during the war and in periods before and 
after, asking me if it were possible to give a mathematical explanation of the results which he was 
getting in the percentages of the various species in these different periods. This request has spurred 
me to formulate the problem and solve it, establishing the laws which are set forth in § 7. Both 
D’Ancona and I working independently were equally satisfied in comparing results which were 
revealed to us separately by calculus and by observation, as these results were in accord; showing 
for instance that man in fisheries, by disturbing the natural condition of proportion of two species, 
one of which feeds upon the other, causes diminution in the quantity of the species that eats the 
other, and an increase in the species fed upon. (Volterra, 1928, p. 4).

Based upon his empirical studies of the fisheries of the Upper Adriatic Sea, D’Ancona (1926) concluded 
that the predators of this sea, the sharks, ought to be decreased by increased harvest intensity. That would 
make it possible to increase the yields of more valuable prey stocks.

Hopefully, this section has shown that in some cases, at least, multispecies modelling is useful, if not 
necessary, for improved overall management. This is especially so when there are strong predator-prey 
or competitive biological interactions among species that can be harvested independently of each other. 
A biological multispecies model gives the biological restriction on the possible combinations of harvest 
rates for the species in a particular area. In addition, a bioeconomic multispecies model helps to pick 
the optimal combination of harvest rates. Multispecies models may also help understanding variations 
over time in catch and effort composition, as seen in the case of the Upper Adriatic Sea before, during 
and after the First World War.

9.2 More on predator-prey modelling

We shall in this section give a review of a two-species predator-prey model and derive its maximum 
sustainable yield frontier (MSF), analysed in May et al. (1979) and Flaaten (1988). Suppose there is a 
prey, W1, on which the existence of a predator, W2, is based. W1 and W2 can be thought of as biomasses. 
A simple model describing the dynamics of such a system is

(9.1)  

(9.2)  

where r1 and r2 are the intrinsic growth rates of the respective species. K is the carrying capacity of the 
total systems, at which the prey will settle in the case of no predator and no harvest.
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The per capita27 growth rate of the prey decreases from r1 for stock levels close to zero, to zero for stock 
levels equal to the carrying capacity in case of no predators. If predators exist, the per capita growth rate 
for the prey becomes zero for a stock level lower than its carrying capacity. The presence of predators 
reduces the per capita growth rate in proportion to the biomass of the predator. The predation coefficient, 
a, tells how much the per capita growth rate of the prey reduces per unit of the predator, or to put it 
another way, a tells which share of the prey stock one unit of the predator is consuming per unit of time. 
The total rate of consumption is expressed in the term of aW1W2. Note that the predator’s consumption 
is similar to fishermen’s harvest in the Schaefer harvest function discussed in Chapter 3.

The predator’s per capita growth rate decreases from r2 when its own stock level is close to zero, to zero 
for a stock level equal to its own carrying capacity, which is proportional to the level of the prey stock. 
The proportionality coefficient α is the equilibrium stock ratio.

Mathematical stability properties of the model (9.1)–(9.2) will not be discussed here. (It can be found in 
the literature of theoretical ecology, e.g., in Beddington and Cook (1982), May (1974) and May (1981), 
as well in mathematics texts for economists, e.g., Sydsæter et al. (2008).) However, it is easy to see, by 
letting  and  equal to zero in (9.1) and (9.2), that if an equilibrium point exists with both species 
being positive, the stock levels will be28

(9.3)  

(9.4)  

where ν = aαK/r1.

It should be noticed that the intrinsic growth rate of the predator, r2, does not affect the equilibrium 
values of either of the two species. The equilibrium values of both species increase with any increase in 
r1 or K, ceteris paribus. From (9.3) and (9.4) it follows

(9.5)  

The equilibrium stock ratio α determines the relative size of the predator stock to that of its prey, when 
there is no harvesting. Outside equilibrium the relative stock size differ from α except for along the 
predator isocline.

Even though r2 does not affect the equilibrium values of the stocks, it is of importance to the behaviour 
of the system outside equilibrium. Defining the “natural return time”, TR, of the species as

(9.6)  

r2 will affect the time the predator will need to reach equilibrium from a higher or lower level.
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Suppose that the fish stocks are harvested independently with constant effort per unit of time, Fi, scaled 
such that F1 = 1 corresponds to constant catchability coefficients equal to ri. Then the catch rates will be

(9.7)  

(9.8)  

With harvesting introduced this will influence the growth rates in (9.1) and (9.2).

To simplify notation and the analysis a little we define the dimensionless stock levels X1=W1/K and 
X2=W2/αK. Then rewrite equations (9.1) and (9.2) as

(9.9)  

(9.10)  

when harvesting,  and , is included. Here the dimensionless parameter ν is 
defined as 
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The equilibrium properties of this ecological system depend only on the fishing efforts, F1 and F2, and 
ν. The dynamics additionally involve r1 and r2. The phase-diagram for the system (9.13)–(9.14) is shown 
in Figure 9.6. The isoclines are found by setting dX1/dt = 0 and dX2/dt = 0 in (9.9) and (9.10). This gives

(9.11)    for 

(9.12)     for 

If positive equilibrium values of X1 and X2 exist simultaneously they are found where the isoclines 
intersect, that is for

(9.13)  

(9.14)  

X1 and X2 both equal 1/(1 + ν) in the absence of fishing, and zero in the case of F1 = 1. In addition, X2 

will equal zero if F2 = 1. Thus there is a limit to how intensive fishing can be without causing extinction 
of the stocks. With fishing the relative stock size is X2 / X1 = 1 – F2.

Figure 9.6. Phase diagram for a predator-prey model.

It is seen from (9.13) that only for F1 < 1 will there exist a positive equilibrium value of the prey. If  
F1 ≥ 1 the prey-stock will be extinct, and so, of course, will be the predator, as seen from (9.14). The 
latter expression shows that only for F2 < 1 and F1 < 1 will the predator survive.
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The equilibrium values of both species increase with decreasing fishing pressure on the prey, i.e., for 
reduced F1. More of the prey gives increased carrying capacity for the predator which can be kept on a 
higher level.

On the other hand, the effects on the prey and the predator from decreased fishing pressure on the 
predator are the opposite of each other. From (9.13) it is seen that the equilibrium value of the prey will 
decrease, and from (9.14) that the predator will increase. The increased stock level of the predator means 
heavier predation on the prey, and thereby a reduced equilibrium level for the latter.

Let us now investigate the MSF for this two-species model. It may be of interest from both a biological 
and an economical efficiency point of view to maximise the sustainable yield of one species for a specified 
constant sustainable yield level of the other. This problem is equivalent to that of welfare economics: 
deriving the production possibility frontier by maximising the output of one good for a specified amount 
of output of the other, for a fixed amount of factors of production. In the two-species biological system 
the limited amount of factors of production are embodied in the carrying capacity and the intrinsic 
growth rate of the model. In a marine ecosystem, the limited factor of production used for “production” 
of fish will usually be the zoo-plankton communities.

The problem of maximising

(9.15)  

subject to the constraint

(9.16)  

can be done by using the Lagrange method, as demonstrated in Beddington and May (1980).

The Lagrangian function of this problem is (also see Box 6.1)

(9.17)  

We shall use the first order conditions for the solution of the problem, and they are

(9.18)  

(9.19)  
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To eliminate λ we first rearrange equations (9.18) and (9.19) and get

(9.20)  

(9.21)  

From equations (9.20) and (9.21) we eliminate λ and derive the following quadratic equation:

(9.22)  

which has the following two solutions for X1 for given values of X2:

(9.23) 
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For each level of X2 we calculate X1 from (9.23), and the resulting yields, y1 and y2, are given by (9.15) 
and (9.16). The locus combining the yields of the two species is shown in figure 9.7 for ν = 2. This is 
the maximum sustainable yield frontier (MSF), named so to emphasise the connections to the concepts 
used in welfare economics. MSF gives the absolute sustainable yield of either population for a specified 
yield of the other. All combinations of yields on or below this curve are sustainable, whereas yields to the 
northeast of the curve are possible for some period of time, but they are not sustainable. The star in the 
northeast corner corresponds to a combination of the largest possible yield of the prey and the largest 
possible yield of the predator, but such a combination of yields is definitely not sustainable.

Figure 9.7. The maximum sustainable yield frontier (MSF) of a two-species model shows sustainable 
combinations of yield of species 1 (SY1) and species 2 (SY2). Parameters used are r1 = 2.0, r2 = 1.15 and 
ν = 2.0. Source: Flaaten (1988).

From the single species logistic growth model it is known that a given sustainable yield less than the 
maximum sustainable yield (MSY) can be harvested at two different stock levels, above or below the 
MSY level. These two ways of harvesting are called biological underexploitation and overexploitation, 
respectively. From a biological point of view the best way of harvesting is to harvest the MSY, whereas 
the economical optimal yield stock level, also depend on product price, harvesting cost and discount 
rate in addition to biological factors.

Unit harvesting cost is usually assumed to be a decreasing function of stock level, leading to the conclusion 
that the resource should be biologically underexploited to reduce costs. On the other hand, a positive 
discount rate leads to the conclusion that the resource should be heavily exploited since a given amount 
of net revenue “today” is preferred to the same amount “tomorrow”. In other words, from an economic 
point of view, harvesting below, at or above the MSY stock level can all be optimal; it is a question of 
prices, costs and discount rates (see Chapter 4).
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The smallest of the two solutions of equation (9.23) corresponds to a biologically inefficient harvest level, 
either underexploitation of the predator, or overexploitation of the prey. In the former case the predator 
is kept on the highest stock level of two possible ones, both giving the same sustainable yield of the 
predator. A higher predator stock means more consumption of the prey, thereby removing a potential 
prey yield. To achieve the highest possible sustainable yield of the prey for a given predator yield it is 
therefore obviously best to underexploit the predator. For similar reasons it is efficient to underexploit 
the prey to give more food to the predator. MSF harvesting thus means that the predator shall not be 
underexploited, and neither shall the prey be overexploited.

The terminal points of the MSF locus in figure 9.7, A and B, are related to specific stock levels of the 
predator and the prey. At point A the predator is extinct and the prey is at its single species biological 
optimum level:

(9.24)  

The absolute maximum sustainable yield of the predator, at point B in figure 9.7, occurs for an unharvested 
prey stock above, at or below its single species biological optimum, depending on the size of the 
dimensionless combination of parameters, ν. The smaller ν is, the higher will be the prey stock level. In 
fact it can be shown that

(9.25)  

At point B in Figure 9.7 there is no prey harvest and this entire species is left in the sea as natural feed 
for the predator.

From the definition of υ we know that it will be smaller the lower the predation coefficient a and the 
equilibrium stock ratio α. In other words, the maximum stock level of the prey is greater the lower the 
predator pressure, which is in accordance with the quotation from Charles Darwin at the beginning of 
this chapter.

The maximum sustainable yield frontier (MSF) in Figure 9.7 pinpoints a key management issue for the 
case of multispecies harvesting. Should we aim at harvesting mainly then predator species and leave 
the prey in the sea as feed for the predators? Or should we mainly aim at harvesting the prey, by fishing 
down the predators? The latter would imply biological overfishing of the predator. Such questions are 
important in many of the world’s fisheries, including the krill-sea mammals system in the Antarctica, the 
fish-fish-sea mammals system in the Northeast Atlantic and the fish-sea mammals system in the North 
Pacific. When it comes to in particular sea mammals the issue of non-consumptive value of charismatic 
species brings an additional dimension into management that we have not explored in this chapter (see 
e.g. Bulte and Von Kooten, 1999).
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Exercise 9.1

1) Assume the following two species interaction:

 

 

a) Formulate a simple predator−prey model (put in missing segments in the above equations) 
with harvesting, and draw the isoclines in a phase plane diagram.

b) Explain what happens to stock levels and harvest when the harvest of the predator is increased.
c) Explain how you would manage this fishery if the predator has no value in the market.
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10 Recreational fishing
This chapter discusses recreational fishing, where people (consumers) are willing to pay to go fishing. 
The willingness to pay may depend on several environmental and resource characteristics. We focus on 
the demand for fishing days and quality and analyse the open-access, the competitive and the social 
optimal recreational fishery.

10.1 Recreational angling

Recreational fishing is fishing for fun. The view of what is fun in life differs from person to person, and 
some people do not think fishing is fun at all. Thus there are at the same time and in the same country 
some who participate in recreational fishing and some who do not. The fun usually depends on several 
characteristics of the fishing itself and on other amenities. The size of individual fish, the size of the 
catch per day fishing, the fishing process itself, the fish species available and the natural scenery at the 
fishing spot are among the characteristics recreational fishermen consider when contemplating whether 
to go fishing or not. Travel time and out-of-pocket costs matter. Of course income and the cost of fishing 
also matter for the demand for recreational fishing as for other goods and services, and we may, at the 
market level, analyse this good as we do for other goods. However, at the individual level the recreational 
fishing good is often a discrete good that is available only in integer units, for example when you have 
to buy fishing permits only for full days’ fishing (e.g. $/day).

Other terms used for recreational fishing include sport fishing and hobby fishing. We shall, however, use 
recreational fishing and distinguish this from the commercial fishing and small-scale fishing discussed 
in the previous parts of this book, where the market value of the catch is balanced against the costs of 
the commercial firm or the opportunity costs of the small-scale fisherman. A person who takes part 
in recreational fishing will in this chapter be called an angler, since in most cases recreational fishing 
is conducted by use of hook and line. To fish for fun requires that people have earned income in other 
activities to spend on goods and services, including on recreational fishing. In actual cases we may find 
fishermen who combine recreational fishing with subsistence fishing to gain food for the household 
and/or small-scale commercial fishing to obtain cash. Here, however, we shall focus on recreational 
fishing proper.

From an economic point of view recreational fisheries may be treated as any other good that gives utility 
for the consumers and resource owners. However, the fish in the water is a common pool resource 
implying that any catch of one recreational fisherman has an effect on the stock, thereby reducing the 
harvest potential for the other recreational fishermen. In this respect recreational fisheries share the 
externalities characteristic of the commercial fisheries discussed in the previous chapters. Consumers 
choose to buy or not to buy a good, and if they buy they also have to decide on the quantity. Thus, for 
recreational fishing as a consumer good, we may ask who the fishermen are, what species and how much 
they catch, how they catch (gear type), where they go fishing and at what time or season.
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Why should we from an economic point of view be interested in recreational fisheries? Is this not just a 
minor hobby activity for a few people? Like fisheries discussed in the previous chapters, also recreational 
fisheries demonstrate externalities. These require management for at least three reasons. First, recreational 
fishing is a popular activity that gives fun, pleasure and exercise to lots of people. Globally recreational 
fisheries are a big and still increasing part of fisheries. In some countries they are even bigger than the 
commercial fisheries sector if we compare expenditures in recreational fisheries with the landing value 
in the commercial sector (see articles in Aas, 2008). In a recent survey of seven developed countries’ 
recreational fisheries, participation rates varied from five (Germany) to fifty-five (Lithuania) per cent 
of the total population. Finland and Sweden both had a participation rate of more than thirty per cent 
(Ditton, 2008). Considering that some people are too young or too old to go fishing, these numbers 
indicate that recreational fishing is a widespread spare-time activity. Of course some people fish only once 
a year, but others fish regularly. Second, in some areas there are increasing conflicts between commercial 
and recreational fishing. As the commercial sector is more and more restricted in its activities, it is also 
natural to look into recreational fishing and its effects on resources in the commercial sector to minimize 
conflicts and to increase the total social benefits from the natural resource. Third, if a tourist industry 
develops based on recreational fisheries’ guests we may have a commercial fisheries sector and a tourist 
sector competing for the same fish and fishing grounds.

10.2 Short-run analysis

In the short run we may neglect possible effects on the fish resource from anglers. However, in the long 
run such effects have to be included if the anglers’ catch is of some importance compared with the size 
of the fish stock and its growth potential. Let us start with the simplest task – the short-run analysis of 
recreational fishing.

Assume that the demand for recreational fishing, measured by days of fishing, D, depends on:

• The price of the fishing permit (money per day of fishing, $/D)
• The quality of fishing, defined as the quantity of fish per day of fishing (Q=kg/D)
• The income and prices of alternative goods, assumed to be constant
• Recreational fishing being a normal good (demand increases with income)
• Utility maximization of a representative consumer
• A fish stock that is limited in size and potential yield – in other words, a scarce resource
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We have a recreational fisheries sector with several resource firms and a competitive numeraire sector 
comprising the remaining economy. All in all there are n recreational fishermen (consumers), each 
with a utility function that is separable and linear in the numeraire good. Thus there are no income 
effects in the recreational fisheries and we can perform a partial equilibrium analysis. We shall analyse 
and compare competitive open access with a profit-maximizing resource owner. In some recreational 
fisheries the resource is limited to that of a lake or a river. This entity may be unique in the sense that 
recreational fishers’ willingness to pay for fishing is different from for fishing in nearby lakes and rivers. 
In other cases a lake is a lake and a river is a river from the recreational anglers’ point of view.

The variables we are going to use are shown in Table 10.1.
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Symbol Definition Unit (*) Value (for Exercise 10.1)

Exogenous:

r Maximum (intrinsic) growth rate Year-1 0.5

K Carrying capacity Kg 4*103

q Catchability coefficient of the angler fishery Kg/day2 4*10-5

α Constant of the linear demand function $/day 99.0

β Slope of the linear demand function  
(the marginal willingness to pay for an angler day)

$/day2 3.125*10-3

γ Quality constant of the linear demand function  
(the marginal willingness to pay for quality)

$/kg 6.25

c Constant marginal cost of issuing permits $/day 20.0

Endogenous:

X The fish stock level Kg

H Total catch per year (**) Kg/year

D Total number of permits (angler days) per year Days

Q Quality of fishing (catch per angler day) Kg/day

P Price per angler day (price per permit) $/day

d Number of permits per representative consumer Days

n Number of anglers (consumers) Number

Table 10.1. Variables in the recreational fishery analysis 
(*) One day means one angler day, which is one angler who fishes for one day. 
(**) One year consists of a given number of days’ angling.

In the previous chapters we have mainly worked with a constant price of fish to simplify the analysis, 
but without loosing track of the main bioeconomic issues. For the recreational fishery, however, we 
shall revert to the downward sloping demand curve, so well known from the micro economic theory. 
In general there are several possibilities for demand functions, including linear demand and constant 
elasticity demand. We shall stick to the former29 and derive, from the consumer’s utility-maximizing 
behaviour, the following linear inverse demand function:

(10.1)  

where Q0 is the lowest fishing quality that attracts anglers to this particular fishery. The parameters α, β 
and γ are all positive. The inverse demand for recreational fishing is downward sloping in the number 
of fishing days and is positively affected by an increase in the quality of the fishing. Quality by definition 
depends on the catch rate, the catch per angler day. To simplify we now assume that quality equals the 
catch per angler day, which is Q=H/D. In this case γ expresses the marginal willingness to pay for catch 
per angler day and β expresses the marginal willingness to pay for an angler day.
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Figure 10.1. Demand and supply of angler days, short run

Figure 10.1 shows the downward sloping demand curves for two levels of quality, Q1 and Q2 with Q1<Q2. 
In this case the anglers’ demand curves represent inverse demand for daily fishing permits for the given 
quality levels. With the quality of fishing equal to the catch per angler day, for the price p*, the anglers 
want to purchase D* permits if the quality equals Q1, and D** permits if the quality equals Q2. For this 
price p* the consumer surplus corresponds to the triangle CBA for the low quality and the triangle 
CFG for the high quality Q2. There is no producer surplus in this case with the horizontal supply curve. 
Note that the demand curves in Figure 10.1 are for the short run when we neglect that the stock level 
is negatively affected by the recreational fishery.

The supply curve of angler permits reflects the aggregate marginal cost of issuing and handling permits 

and in Figure 10.1 this is drawn as a horizontal line at p*. This means that the total cost of producing 

permits equals C(D)=cD, where c is the cost per permit. The marginal cost of permits is C’(D)=c. In 

other words the average and the marginal costs of issuing permits are the same. In a competitive market 

for fishing permits, as illustrated in this figure, the equilibrium price is limited from the cost side since 

p=c. We now easily derive the competitive number of angler days, , for quality Q1 and D** 

for quality Q2, where D*<D**. Thus the number of angler days at equilibrium increases with the quality 

of the recreational fishery and decreases with the cost of producing permits. The anglers’ perception of 

quality is reflected in γ, implying that the competitive number of angler days increases with their marginal 

willingness to pay for quality. In this case with a linear demand curve there is a limit to how many days 

the anglers would like to go fishing, to be found where the demand curves intersect the horizontal axis, 

for p=0 in Figure 10.1.
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In most countries recreational sea fishing is free of charge, but still the number of angler days is not 
infinitely large (see the case studies in Aas, 2008). To go fishing the angler will usually have to travel to 
the port, have suitable fishing gear and own or rent a boat – all costly activities. Thus the private costs 
of recreational fishing may set a limit to how many people actually go fishing, even if the fishery is free. 
However, as we have seen in the previous chapters, the harvest affects the fish stock to a greater or lesser 
extent, depending on the amount of effort targeting the resource. In the case of recreational fishing the 
total effort, equal to D above, equals the number of anglers times the average number of fishing days and 
it may well be that this significantly affects the resource. So far we have not included this important issue 
in the analysis. In some fisheries, for example in rivers and creeks, free access could easily cause heavy 
biological overfishing and also the extinction of fish stocks. We shall return to the resource issue below. 

In the case of inland fisheries, in lakes and rivers, there usually exists some kind of private property where 
fishing rights are owned, or controlled, by landowners, farmers or local commons bodies (again, see 
Aas, 2008). In such cases the rights owner can achieve more than discussed above where the competitive 
solution did not generate any producer surplus, but only consumer surplus. Assuming that there is a 
unique source of fishing the willingness to pay is taken care of by a downward sloping demand curve 
as in Figure 10.1. For a given quality Q the total profit for the resource owner is

(10.2)  
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Maximizing π with respect to D, treating the quality, Q, as given, implies that the resource owner should 
strive for a solution where the marginal revenue equals the marginal cost, as we know from the theory 
of the monopoly. With the profit function (10.2) this implies that

(10.3)  

and the resource owner aims at  angler days by selling this number of licenses. Note that 

DM is smaller than the competitive number of angler days, D2, discussed above for quality Q2. In fact with 

linear demand the resource owner should, to maximize his profit, aim at only half of the competitive 

number of angler days where anglers pay only the costs of supplying the permits. This is demonstrated in 

Figure 10.2. The consumer surplus is now reduced from the triangle CFN to the triangle LMN, whereas 

the producer surplus is increased from zero to the square CNML. This means that the social surplus is 

reduced by the triangle NFM.

As explained above the analysis related to Figure 10.1 and Figure 10.2 excludes any effect the anglers’ 
fishing might have on the resources. Is this a realistic analysis? Well, in some cases it may be sufficient 
not to include the resource in discussing recreational fisheries management. For example, if anglers just 
exploit the fringes of a big fish resource, which is mainly utilized by commercial fishermen, and they do 
this in one or a few scenic localities, their demand is really for the joint amenities and fish resource. If 
each locality has something unique to offer anglers, who differ in preferences, there may be a separate 
demand curve for each of them. In such cases the proper quality of the recreational fishery is determined 
by the commercial fishery, through its fishing pressure and effect on the stock. However, local communities 
or landowners may exert some market power and make money from the anglers’ willingness to pay for 
the joint product of fishing and terrestrial amenity.

Figure 10.2. The sole owner’s adaptation
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10.3 Long-run analysis

How can we include in a simple way the stock and the fishing pressure in the analysis of recreational 
fisheries, knowing that in some actual fisheries this is an issue of interest? The demand curves in 
Figures 10.1 and 10.2 are downward sloping in angler days, D, for a given quality of the fishery, measured 
by Q. The more angler days, the more the stock will be negatively affected and the quality of the fishing 
reduced via the average catch per angler day, Q. Thus in the long run the demand curve will shift inward, 
instead of staying constant as we assumed for the short-run analysis in the two figures discussed above. 
This is demonstrated in Figure 10.3 where the uppermost curve corresponds to the demand curve for the 
constant Q2 and the lowermost curve is the resource adjusted demand curve that we have to consider in a 
long-run analysis. The latter reflects that for each level of angler days there exists a long-run equilibrium 
level for the fish stock and this stock level determines the catch per angler day, the recreational fishery 
quality Q. How much the long-run demand curve differs from the short-run curve depends on the 
biological productivity and on the anglers’ efficiency and willingness to pay for quality. Let us have a 
closer look at this by including an explicit growth model in the analysis. To make it simple we shall use a 
familiar growth model, the logistic growth used extensively in Chapter 5 in the Gordon–Schaefer model.30

The growth function is , with X as the fish stock level, r is the intrinsic growth rate and K 
is the carrying capacity for the stock. The angler harvest function is H=qDX, where q is the catchability 
constant and, recalling the analysis of the Gordon–Schaefer model in Chapter 5, we have (see equations 
5.2–5.7) that the long-run productivity will vary with the number of angler days in this way:

(10.4)  

assuming that angling is the only type of fishing occurring.31 The angler harvest function in (10.4) 
corresponds to the long-run harvest function H(E) used extensively previously, including in Chapters 3 
and 5. Substituting for Q from (10.4) into (10.1) gives

(10.5)  

where  and . Thus the resource adjusted angler demand curve, in (10.5), shown 

in Figure 10.3, is steeper than the short-run demand curve in (10.1), since b>β, but also this curve is 

linear in the angler days, D. The resource adjusted demand curve is corrected for the resource effect 

of angling, which is the negative effect angling has on the stock and on the catch per angler day. These 

effects can not be neglected in the “long” run.

The student should now complete exercise 10.1.
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In Figure 10.3 the short-run demand curve has the negative slope β and the resource adjusted demand 
curve has the steeper negative slope b. The difference between the two slopes increases with the anglers’ 
willingness to pay for fishing quality (measured by γ) and with the angling productivity, which equals 
the catchability constant q. The biological characteristics of the stock, represented by r and K, also affect 
the resource adjusted demand curve, as seen from equation (10.5). The willingness to pay for an angling 
day, P(D), is higher the more productive the resource is, measured by r and K.

Figure 10.3. The resource adjusted angler demand curve and the short-run demand curve. The latter is shown for 
Q=qK implying that in this special case the intersection point on the vertical axis is the same for all three curves.
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What we called the competitive solution in Figure 10.2, for D** with permit price P* is not a sustainable 
solution. It is not a bioeconomic equilibrium since the limits of the fish stock production are excluded 
from the analysis. Thus the resource adjusted demand curve implies that DL in Figure 10.3 is the maximum 
number of permits that could be issued at the price P*. For DL there will be equilibrium in both the 
market for permits and in the sea for the stock. We may call this the competitive angling equilibrium.

If the owner of the angling resource maximizes the net value of the fishery, the number of angling permits 
should be reduced to  in Figure 10.3, based on the same reasoning as we used in Figure 10.2. With 

 permits the market price will be , which is considerably higher than P*. Note that the surplus of 
the resource owner, equal to the square CNML in Figure 10.3, is smaller than the corresponding surplus 
in Figure 10.2. The important difference between the two is that only that of Figure 10.3 is sustainable. 
From this we conclude that if the anglers of a recreational fishery affect the resource this effect must be 
taken into account when considering the number of permits that should be issued.

We commenced this chapter by defining recreational fishing as fishing for fun, and continued by including 
days of fishing and quality as two major variables in the analysis. As the indicator for quality we chose 
catch per day of fishing and demonstrated that this is affected by the activities of the anglers. This way 
the recreational fishery can be analysed within the framework of bioeconomic modelling, now well 
known from the previous chapters. Our analysis includes the basics that distinguish recreational fisheries 
from commercial fisheries. However, recreational fisheries around the world vary in the type of natural 
resources, property and user rights and the way these fisheries are governed (many examples are given 
in Aas, 2008). Compared with our model above, one type of difference has to do with the biology of the 
targeted fish stock. For example, in salmon fisheries in the North Atlantic the majority of fish die after 
spawning and the stock growth function is skewed to the left with the maximum sustainable yield at a 
lower stock level than half of the carrying capacity (see Olaussen and Skonhoft, 2008). Another type of 
difference has to do with the utility function of the anglers. Some consumers may prefer tranquillity, with 
their utility being negatively affected by the number of anglers and angler days. If their willingness to pay 
for this is sufficiently high some resource owners, for example of salmon rivers, may find it profitable to 
market their services to the high-paying few rather than to the mass market. This seems in particular 
to be the case if the average size of the fish matters and not just the weight of the catch – the angling 
market value of fishing a ten kg salmon may be much higher than the aggregated value of ten salmon 
or trout of one kg each. In a survey of Norwegian rivers, 92 per cent of sport fishermen reported that 
the quality of the river in terms of the average catch per day was important. In addition, 72 per cent 
reported that the price of fishing permits was important (Fiske and Aas, 2001, quoted from Olaussen 
and Skonhoft, 2008). The issues mentioned here, and several others, have been discussed in the literature 
(see e.g. McConnell and Sutinen, 1979; Bishop and Samples, 1980; Anderson, 1983 and 1993; Rudd et 
al., 2002; not to forget two major books, Pitcher and Hollingworth, 2002 and Aas, 2008).
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There is a great variation around the world in institutional arrangements regarding property rights and 
governance for the resources in recreational fisheries. This is partly reflected in the many ways recreational 
fisheries are managed. We have analysed the case of trade in fishing permits per angler day. Related 
measures could be to combine this with other measures, such as free or inexpensive access for members 
of a local commons and auction to the highest bidder of some fishing days, if the river or lake is owned 
in common by a community. Output control could also be used, for example a bag limit on the size of 
catch per angler per day. In addition to the permit price anglers might have to pay a fee per fish or per 
kg of fish. A more controversial way of limiting the catch is to use the catch and release method. If for 
example the stock consists of few big spawners that are necessary for the long-run sustainability of the 
fishery the anglers might have to release such fish into the water immediately after catching them. This 
may be controversial mainly for two reasons: first, uncertainty about the survival rate of the released 
fish; second, some people do not like the idea of having fish nearly killed just for the pleasure of man, 
even though hunting and fishing have for thousands of years given pleasure, food and money to people. 
Recreational fisheries management remains to be just as rich and complex, if not more, in theory and 
actual cases to give pleasure and challenges to generations to come of students and researchers.

Exercise 10.1

The demand for angler days in a recreational fishery can be described with the linear inverse demand 
function in equation (10.1). This recreational fishery is regulated by the use of angler day permits. In 
the short run the harvest depends on the number of angler days and the stock level, and we assume 
this is according to the Schaefer harvest function H=qDX, with the definition of symbols given above 
in this chapter. The growth of the stock follows the logistic growth law (see Chapter 5) and the long run 
equilibrium harvest equals the growth, . By use of the variables and values in Table 
10.1, answer the following questions:

1. Draw a figure of the short-run demand curves for Q1=0.06 and Q2=0.15 (see equation (10.1).
2. Derive the long-run average catch per angler day, which is an indicator Q of the quality 

of the fishery (tip: see Chapter 5, equations (5.2)–(5.7), in particular the catch per unit of 
effort equation).

3. Derive the long-run demand function (price as a function of angler days), first by use of symbols, 
then plot this demand curve into your figure with the two short-run demand curves.

4. Give a verbal explanation of why there is a difference in the slope of the short-run and long-
run demand curves for angler day permits.

5. Prove and explain why the long-run and short-run demand curves intersect the P axis at the 
same point for Q=qK.

6. What is the competitive(long-run equilibrium) number of permits if the constant marginal 
cost of issuing permits is c=10.0 $/permit?

7. What is the maximum value of the quality indicator, Q=Qmax?
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Endnotes
1.  See e.g. Andersen (1981) for a bioeconomic analysis of price uncertainty, and Flaaten et al. (1998) and 

Jensen (2008) for overview and analyses of several types of uncertainty in fisheries.
2.  For alternative texts and further reading see Anderson (1986), Clark (1990) and Hannesson (1993).
3.  Pitcher and Hart (1992) give a thorough review of fisheries biology and fisheries biological models as 

well as a review of fish stocks globally. Hamre (1986) and Pedersen (2002) give reviews of fish stocks in 
the North Sea and Norwegian waters.

4. Measuring of fishing effort can be complicated. For a scientific contribution, see Squires (1987).
5.  Substitution between inputs in the effort production function (2.2) have proved to create problems in 

actual fisheries management where one or a few inputs are restricted – see Dupont (1990).
6.  A common definition of capacity often used in productivity studies is that of Johansen (1968): “The 

maximum amount that can be produced per unit of time with existing plant and equipment, provided 
the availability of variable factors of production is not restricted”.

7.  However, one corner solution in figure 3.2 would be zero effort and the virgin fish stock, in the case where 
effort cost is too high for there to be an intersection between the MC(E) and the AR(E) curves. Another 
corner solution would be for zero effort cost, implying extinction of the stock and zero effort after the 
“extinction process” is finished.

8.  Our use of only two firms is of course to make the model and the discussion as simple as possible, even 
though we know it takes more than two to create a competitive market.

9.  The following part of this section is adapted from OECD (2000) where the target state of fisheries is called 
responsible fisheries. FAO (1995) describes the concept of “responsible fisheries” and its development. 
Discard of fish and other unwanted/illegal adaptations to regulations by fishermen are discussed in the 
literature, including in Jensen and Vestergaard (2002).

10.  Sometimes intra-marginal rent refers to rent related to the average total cost curve, shown in figure 6.2. 
However, the main point is that intra-marginal rent is a surplus that accrues to those vessels that are more 
cost efficient than the marginal one.

11.  Ex-ante, before a vessel is designed and built, the owner has a wide range of sizes and technological 
solutions to choose from, but ex-post, after completion, the vessel’s major technical characteristics, such 
as length, weight, hold size and engine power are fixed. Thus we may say that a fishing vessel capacity 
is flexible ex-ante, but not ex-post, whereas fishing effort is flexible also ex-post. Such characteristics of 
production is often called “putty-clay” – can you guess why? (see Johansen, 1972). How flexible effort is 
depends on the technical characteristics built in to the vessel. Effort measured in days and hours of fishing 
is definitely variable ex-post. 

12.  With fixed cost, k, quadratic variable cost of effort curve vc(e) = ae2 and total cost tc(e) = ae2 + k, we get 
the linear marginal cost curve mc(e) = 2ae.

13.  Note that with variable cost of effort equal to vc(e) = ae2, average variable cost is avc(e) = ae, which is a 
straight line with half the slope of mc(e) = 2ae shown in figure 6.3. Thus in this particular case there is 
no intersection between mc(e) and avc(e) to act as the short-run brake on vessel operations.

14. Producer’s surplus in fisheries was discussed first in Copes (1972).
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Endnotes

15.  This sub-chapter is based on, with some direct quotations from, Flaaten and Mjølhus, 2010 and Reithe 
et al., 2014. These two articles give many references to the a quite comprehensive literature on MRs, 
including Holland and Brazee,1996; Hannesson, 1998; Conrad, 1999; Sanchirico and Wilen, 2001; Pezzy 
et al., 2003; Grafton et al., 2005; Armstrong (2007).

16.  Even though both catchability coefficients are denoted by q, they differ because of the difference between 
X and XH/(1-m). 

17.  Migration of a schooling species between two parts of its habitat area may however have other causes 
than those discussed here with density difference as the driving force.

18.  The m needed to keep the stock above a specific level depends on economic, biological and technical 
parameters – for details see Flaaten and Mjølhus, 2010 and Reithe et al., 2014.

19. For the proof see Flaaten and Mjølhus, 2010.
20.  Pezzey et al., 2000 mention additionally, in the case of marine reserves, the possibility of a shift in demand 

caused by “more desirable fish”. However, this is not pursued in this book.
21.  Recall figure 4.1, which shows the discount factor for discrete and continuous time. By adjusting the 

discount rates to each other the discount factors may be almost the same.
22.  For calculation of yield per recruit, the number of recruits is usually estimated at the age of first capture 

and not at the age of zero. This means that for the cod example shown in figure 8.5, the number of recruits 
would equal N(3) since three-year old cod is about the smallest size to be caught in commercial fisheries 
using the legal minimum mesh size. In the case of Northeast Arctic cod, N(3) = 605 million is the mean 
recruitment for 1950–1982 (Jacobsen, 1992).

23.  This concept was introduced in Beverton and Holt (1957). Dictionaries tell that “eu” is a prefix meaning 
“good”, “well”, occurring chiefly in words of Greek origin.

24.  When cost per unit effort increases with effort, implying the existence of intra-marginal rent (IMR) in 
the OA fishery, the total IMR may increase as a result of technical regulations only.

25.  Welfare economic measurement is more complex in the case of multispecies harvesting (see 
Vestergaard, 1999).

26.  This stock comprises the minke whale in the North Sea, Norwegian coast, Norwegian Sea, Barents Sea 
and Spitsbergen area.

27. The term “per capita” is used, even though we mean per unit of biomass.
28.  In a logistic single species model, the equilibrium stock level with no harvesting always equals the 

carrying capacity.
29.  In the case of a quadratic and strictly concave utility function this gives rise to a linear demand structure 

(Singh and Vives, 1984). For the case of two goods the implication is that the demand for permits reduces 
to equation (10.1) when there is no explicit price of the quality. 

30.  Since most of the salmon die after spawning, Olaussen and Skonhoft (2008) and others use another type 
of biological recruitment model.

31.  We could of course have combined the effects on the stock from angling and commercial fishing, but have 
chosen to stick to the former only to keep the analysis as simple as possible. 
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